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Introduction

In this paper, we shall prove the generalised Razumov-Stroganov-Cantini-Sportiello the-
orem.

One may think of a link pattern of size n as a circle with the vertices 1, . . . , 2n at
exp(2πik

2n
), k = 1, . . . , 2n, and a perfect matching of these vertices by n edges such that

all edges are inside the circle and two edges never cross each other (see e. g. Figure 1).
On LP(2n), the set of link patterns of size n, one defines 2n different operators

ei : LPn → LPn, i = 1, . . . , 2n, where ei unconnects i, i+1 and the respective “partners”
j, k of a link pattern and connects i to i+ 1 and j to k instead.
Of course, LP(2n) is a finite set with elements which can be listed as π1, . . . , πm.
Now, for several reasons (e. g. reasons arising in physics), one is interested in the (as

it turns out, unique) eigenvector #   »µ2n in C
|LP(2n)| of an operator called Hamiltonian H0,

where H0 is defined by

H0 =
2n∑

i=1

(ei − 1).

One reason of being interested in #   »µ2n is the study of the dense O(1) loop model and
configurations of ice molecules in statistical mechanics; in this paper, however, we will
motivate this topic by means of percolation theory.
The Razumov-Stroganov-Cantini-Sportiello theorem now links the vector #   »µ2n to some

other well-studied objects in combinatorics, the so-called fully packed loop configurations
(FPLs). An FPL of size n is a bicoloration of the edges of the graph with vertex set
{(x, y) : 0 < x, y ≤ n}, where (x, y) is paired to (x, y + 1) and to (x + 1, y). When
defining them properly, it is immediate to define a function Π assigning a link pattern
to an FPL in a very obvious way.
The ordinary Razumov-Stroganov-Cantini-Sportiello theorem states, that, writing
FPLn for the set of FPLs of size n, #   »µ2n is given by

#   »µ2n =






|{φ ∈ FPLn : Π(φ) = π1}|
...

|{φ ∈ FPLn : Π(φ) = πm}|




 .

This somewhat surprising theorem was conjectured by A. V. Razumov and Yu. G.
Stroganov in [9] (2001) and proven and generalized by A. Cantini and L. Sportiello
in 2010 ([2], [1]) to some generalized sets of link patterns and FPLs.
We shall give the proof of this generalized theorem, following [1], in great detail.

This thesis is organized as follows:
In Chapter 1, we will motivate the problem by introducing percolation models and

proving the equivalence of finding #   »µ2n to some natural question from percolation theory.
The short Chapter 2 is intended to give the reader some concrete examples of link
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Figure 1: A link pattern in LP(8).

patterns and FPLs and a proof of the (easy to handle) case n = 3 of the ordinary
Razumov-Stroganov-Cantini-Sportiello theorem.
In Chapter 3, we shall gather all the ingredients for proving the refined Razumov-

Stroganov-Cantini-Sportiello theorem such as generalized link patterns, prove the unique-
ness of #  »µN (which will be a generalization of #   »µ2n) and deduce a condition equivalent to
satisfying H0

#  »µN = 0.
Chapter 4 introduces the generalizations of FPLs we will need and also a map called

Wieland half-gyration, which turns out to be crucial for all following considerations.
Finally, in Chapter 5, we will give a (combinatorial) proof of the generalized Razumov-

Stroganov-Cantini-Sportiello theorem; we will first prove that a certain vector
#»

ψ satisfies
H0

#»

ψ = 0 and then
#»

ψ = #  »µN .

The reader is assumed to have some basic knowledge about linear algebra, analysis,
probability theory, complex analysis and graph theory.

I want to express my gratitude to my supervisor Professor Ilse Fischer for introducing
me to the fascinating world of link patterns and FPLs and her support while writing this
thesis – I’m especially grateful for her readiness to openly discuss problems whenever
they arised. Furthermore, I want to thank my family and friends for their constant help
during my studies – not only in financial ways but also for being there when I needed
them.
Last but not least, thanks to my colleagues, especially Noëma Nicolussi, for extensive

discussions and useful suggestions on the Razumov-Stroganov-Cantini-Sportiello theo-
rem.
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1 Percolation

1.1 Introduction

Percolation is the mathematical model of a fluid flowing through some porous mate-
rial. Although the model is very easy to state, it is the field of extensive research by
mathematicans and physicans since its introduction by Broadbent and Hemmersley in
1954.
One usually considers the model of bond percolation: One takes the square lattice Z

2

and each edge is independently chosen to be “open” with some probability p ∈ (0, 1) or
“closed” (with probability 1− p). This gives a random graph, see Figure 2.
This model has its origins in physics in which percolation is regarded as a model for

some porous material: Some fluid is poured on the material. An open edge allows the
fluid to flow through whereas it can not cross a closed edge. So the fluid can flow all over
the whole material if and only if there is no infinitely connected component in the bond
percolation graph. Therefore, a natural (and probably the most well-known) question
about bond percolation is the following one:
For a given probability p, what is the probability θ(p) that a resulting random graph

has an infinite component?

Bond percolation is easily extended to Z
n where one can ask the same question.

Kolmogorov’s zero-one law implies that θ(p) is always 0 or 1, depending on p; it also
can be proven easily that there is a threshold value pc (depending on the dimension n)
such that for p < pc, θ(p) = 0 and for p > pc, θ(p) = 1.
For n = 2, pc is known to be 1

2
(although the proof is highly non-trivial) and it is also

known that θ(1
2
) = 0. If n ≥ 19, the value pc is also known; however, for 2 < n < 18,

this question is open. There are also many other conjectures about percolation. We will
now state a similar percolation model, called loop percolation.
Many of our considerations take place on Z (or a subset of Z2); we shall say that

(x, y) and (a, b) are neighbor vertices if their distance is 1, i. e. (a, b) = (x, y + 1) or
(a, b) = (x + 1, y). The square lattice then is the graph on Z with edges between any
two neighbor vertices; by a quadratic grid of size n (see Chapter 2) we shall mean the
graph

{(x, y) ∈ Z
2 : 0 < x, y ≤ n} for some n ∈ N

with edges between any two neighbor vertices; rectangular Lx × Ly-grids which we will
use in Chapter 4 are defined analogously as

{(x, y) ∈ Z
2 : 0 < x ≤ Lx, 0 < y ≤ Ly} for some Lx, Ly ∈ N

(again with edges between any two neighbor vertices).

Loop percolation is defined as follows:
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Figure 2: A portion of a percolation graph on Z
2 with p = 1

2
(note that this graph is

infinite in all four directions).

Figure 3: Left: A portion of a loop percolation graph on Z
2 with p = 1

2
(note that this

graph is infinite in all four directions). Right: The corresponding portion of
the associated percolation graph (blue).

5



Figure 4: Left: Edges included with probability p, right: edges included with probability
1− p.

Definition 1.1 (Loop Percolation on Z
2). Consider another random graph LP on the

square lattice:
Color the squares of Z2 in a checkerboard manner with black and white such that the

face bounded by (0, 0), (0, 1), (1, 0), (1, 1) is white.
Now, for each white square, one includes independently with probability p its bottom

and top edge into the set E and with probability 1−p its left and right edge (see Figure
4). This gives a random graph LP = (Z2, E), called loop percolation graph.

Figures 2 and 3 (left) are examples for a percolation and a loop percolation graph.
The two considered models turn out to be in fact equivalent:
When considering a loop percolation graph, one may put a vertex into each black

square in every other row. Now two vertices of the form (x, y) and (x, y + 2) or (x, y)
and (x+ 2, y) shall be connected if and only if this connecting edge would not cross an
edge of the loop percolation graph. This gives a normal percolation graph – one can
easily reconstruct the associated percolation graph (see Figure 3).

1.2 Cylindrical loop percolation and link patterns

We now consider a special variant of loop percolation:

Definition 1.2 (Cylindrical loop percolation on Z
2). Let n ∈ N, n ≥ 1. We define the

cylindrical loop percolation graph LPn with vertex set

V (LPn) = {(x, y) ∈ Z
2 : x+ y ≥ 0,−2(n− 1) ≤ x− y ≤ 2n},

where we identify for every k ≥ 0 the two vertices (−n+1+k, n−1+k) and (n+k,−n+k).
Again the squares are alternatively colored white and black; as in the usual loop perco-
lation graph the edges are chosen for each white square.

This definition gives a diagonal strip, infinite in (only) one direction, see Figure 5
(the link pattern corresponding to the graph in Figure 5 is given by π(1) = 2, π(3) =
4, π(5) = 6).
We perform the following bijection: We rotate the graph counter-clockwise by 45

degrees – then, we remove each black square and replace each white square by another
type of square, called plaquette, according to the following figure:

and
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Figure 5: A portion of a cylindric loop percolation graph LPn with n = 3 (note that this
graph is infinite (only) in top-right direction).

1 2 3 4 5 6

Figure 6: The cylindrical loop percolation graph shown in Figure 5 “after rotating” (note
that this graph is upwards infinite) in “normal shape” and wrapped around a
cylinder.

7



The resulting graph - containing a lot of paths - can be wrapped around a cylinder as
in Figure 6. This explains the name “cylindrical loop percolation”.
The model we will be concerned with is the following: Consider the cylindrical loop

percolation graph as in Figure 6 (left). We label the midpoints of the squares in the
bottom row from 1 to 2n – we can now follow a path starting in 1 ≤ i ≤ 2n until it
reemerges in 1 ≤ j ≤ 2n. This gives us (almost surely, cf. Lemma 1.5) a link pattern as
in the following definition:

Definition 1.3. A link pattern of size n is a function π : {1, . . . , 2n} → {1, . . . , 2n} such
that

(1) π ◦ π = id

(2) π(k) 6= k for all k ∈ {1, . . . , 2n} and

(3) there are no numbers a < b < c < d (understood modulo 2n) such that π(a) = c
and π(b) = d.

The set of all link patterns of size n will be denoted by LP(2n).
When considering link patterns, notations are (except in the following proof) to be
understood modulo 2n, for example holds 2n+ 1 = 1 or 2n− 1 < 2n < 1.

Proposition 1.4. The set LP(2n) is finite – more precisely, its cardinality is Cn, where
Cn := 1

n+1

(
2n
n

)
is the n-th Catalan number.

Proof. It is well-known that the set of Dyck paths of length n, which we will denote by
D(n) (i. e., lattice paths starting in (0, 0), ending in (2n, 0), with steps of the form (1, 1)
(an “up step”) and (1,−1) (a “down step”) s. t. the path never crosses the x-axis), has
cardinality Cn.
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Figure 7: A link pattern and the associated Dyck path.

A bijection between LP(2n) and D(n) is given as follows: For a link pattern π, create
a Dyck path D: If i is connected in π to j > i, the i-th step of D is an “up step”,
otherwise a “down step” (see Figure 7).

It is not immediately clear that every cylindrical loop percolation graph “has” a cor-
responding link pattern; however, the definition of a link pattern is meaningful because
of the following lemma:

Lemma 1.5. In the graph LPn, almost surely all paths are finite.
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Proof. For the moment, we will call a row in which the plaquettes alternate between the
two types an alternating row, i. e. an alternating row has the form

or

.

If LPn has an alternating row, all paths below must be finite (since they can not cross
that row).
Since an alternating row may have either form, the probability of a row being alternating
is given by 2pn(1 − p)n. Therefore, the probability that none of the first i rows is
alternating is given by αi, where α := 1− 2pn(1− p)n. Since α < 1,

lim
i→∞

αi = 0

and hence, almost surely, there is an alternating row in LPn.

We will think of link patterns in two ways:

(1) A link pattern can be seen as a circle with the vertices 1, . . . , 2n on the circle line
where each vertex is connected to exactly one other vertex (items (1) and (2)) -
if these connecting edges are drawn inside the circle then there are no two edges
crossing each other (item (3)). (We will mostly use this interpretation). Figure 8
(left) gives an example for this representation of a link pattern of size 5.

(2) The right picture of Figure 8 gives an example of the other way to represent a link
pattern: Here the matched points 1, . . . , 2n are not placed on a circle, but on a
straight line.
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Figure 8: Two ways on how to think of link patterns.

Now we have described how to obtain a link pattern from a cylindrical loop percola-
tion graph.
It is now natural to ask:
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Figure 9: The process of composing a link pattern with a row a ∈ {0, 1}2n.

What is the probability that a random cylindrical loop percolation graph corresponds
to a given link pattern π? We now list the link patterns of size n as π1, π2, . . . , π|LP(2n)|

and consider a vector #   »µ2n ∈ C
|LP(2n)|, where the i-th component of #   »µ2n is the probability

that a cylindrical loop percolation graph corresponds to πi.
It is convenient to refer to the two plaquettes

and

as “type 0-plaquette” and “type 1-plaquette”, respectively. One may now define a
composition of a link pattern with a row a (which we can encode as a vector a ∈ {0, 1}2n);
one thinks of π as in the “line representation” and draws the row a below; this gives a
new link pattern π ◦ a as in Figure 9.
We can now define a Markov chain with states π1, . . . , πm ∈ LP(2n). A transition

π → π′ is given by π◦a, where a is a random chosen row; more precisely, the components
of a are chosen independently, where a component is 0 with probability p and 1 with
probability 1− p.
Therefore, the transition property P (π → π′) of this Markov chain is given by

P (π → π′) =

∑

a∈{0,1}2n P (π ◦ a = π′)

22n

(for example, if p = 1
2
, this equals #a∈{0,1}2n : π◦a=π′

22n
). We write T

(p)
n for the transition

matrix.

Lemma 1.6. T
(p)
n

#   »µ2n = #   »µ2n.

Proof. Let Cyl(2n, π) be the probability that a cylindrical loop percolation graph of
size 2n “has” the link pattern π. We shall introduce a notion we will later use very
frequently: If, thinking of a cylindrical loop percolation graph as a sequence of 0-1-
vectors (a1, a2, . . .), this graph has the link pattern π, we write Π(a1, a2, . . .) = π. We
get

Cyl(2n, π) = P ((a1, a2, . . .) ∈ ({0, 1}2n)N : Π(a1, a2, . . .) = π)

=
∑

σ∈LP(2n)

P (σ → π)P ((a2, a3, . . .) ∈ ({0, 1}2n)N : Π(a2, a3, . . .) = σ)

=
∑

σ∈LP(2n)

P (σ → π) Cyl(2n, π).

10



Observing now that

T (p)
n = (P (πi → πj))i,j∈{1,...,m}

(with m := |LP(2n)|) and

#   »µ2n =






Cyl(2n, π1)
...

Cyl(2n, πm)






completes the proof.

Before we can prove a crucial theorem, we need to define 2n certain operators on
LP(2n) (see Figure 10):

Definition 1.7. The operator ei : LP(2n)→ LP(2n), 1 ≤ i ≤ 2n, is given by

• ei(π) = π, if π(i) = i+ 1 (that is, i and i+ 1 are connected in π)

• ei(π) = π′, if π(i) 6= i + 1; here π′ shall denote the link pattern with π′(i) =
i+ 1, π′(π(i)) = π(i+ 1) (and π′(j) = π(j) for all j /∈ {i, i+ 1, π(i), π(i+ 1)}).
That is, if i and i + 1 are not connected in π (let i be connected to k and i + 1
to ℓ, say), in ei(π) all connections stay the same but those where i and i + 1 are
involved; i gets connected to i + 1 and k to ℓ. That is, if i and i + 1 are not
connected in π (let i be connected to k and i+1 to ℓ, say), in ei(π) all connections
stay the same but those where i and i + 1 are involved; i gets connected to i + 1
and k to ℓ.
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Figure 10: Left: A link pattern π ∈ LP(2n), right: e1(π). To obtain e1(π), one connects
1 and 2 and their previous “partners”, i. e., 3 and 4.

Remark. We will, by abuse of notation - in this and in all following chapters - identify
linear operators and the corresponding matrices.

Some other examples of the operators ei on LP(6) can be found in Chapter 2 in the
example after Theorem 2.3. It will be customary to work in the vector space C

|LP(2n)|
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– by abuse of notation, we will refer to this space as CLP(2n). Let π1, π2, . . . , πm be a list
of LP(2n), then we will use the notations

#»π1 =








1
0
...
0







, #»π2 =








0
1
...
0







, . . . , #  »πm =








0
0
...
1








for the standard basis of CLP(2n). We thus identify the i-th item in the list with the i-th
coordinate.

Remark. Operators acting on LP(2n) (like the ei) can be extended to linear operators
on C

LP(2n) – if S is a map LP(2n)→ LP(2n), we define its linear extension (which we
will also denote by S) on C

LP(2n) by

S




∑

π∈LP(2n)

cπ
#»π



 =
∑

π∈LP(2n)

cπ
#       »

S(π).

Definition 1.8. We define a linear operator H0 on C
LP(2n), called Hamiltonian, by

H0 :=
2n∑

i=1

(ei − 1).

Theorem 1.9. The vector #   »µ2n satisfies

H0
#   »µ2n = 0

(i. e., #   »µ2n is an eigenvector of H0 with eigenvalue 0).

Proof. We define for every a ∈ {0, 1}2n an operator fa on LP(2n) by setting fa(π) = π′,
where π′ is the link pattern obtained by composing the diagram of π with the row of
plaquettes encoded by a.
We therefore can write

(T (p)
n )π,π′ =

∑

a∈{0,1}2n,
fa(π)=π′

p
∑2n

j=1 aj(1− p)
∑2n

j=1(1−aj). (1)

Define 2n+ 1 “special” vectors in {0, 1}2n:

0 := (0, 0, . . . , 0),

ai := (δ1,i, δ2,i, . . . , δ2n,i) for 1 ≤ i ≤ 2n,

where δ denotes the Kronecker delta.

12



Figure 11: The link pattern π is, by adding the row 0 = (0, . . . , 0) to its cylinder, trans-
ferred into R(π).

Figure 12: The link pattern π is, by adding the row a6 to its cylinder, transferred into
Re6(π).

Now we split the sum in (1) into three parts:

(T (p)
n )π,π′ = δf0(π),π′p0(1− p)2n

+
2n∑

i=1

δfai (π),π′p1(1− p)2n−1

+
∑

a∈{0,1}2n,
fa(π)=π′,

a/∈{0,a1,...,a2n}

p
∑2n

j=1 aj(1− p)
∑2n

j=1(1−aj).

We have done so because we would like to differentiate T
(p)
n with respect to p at p = 0;

the third sum will thus not give any contribution at all. We thus obtain

d

d p

(
(T (p)

n

)

π,π′
)|p=0 = −2nδf0(π),π′ +

2n∑

i=1

δfai (π),π′ .

We investigate the action of the functions f0 and fai .
If in π the vertices i and j are connected, then so are in f0(π) the vertices i−1 and j−1
– that is, f0(π) = R(π).
The example in Figure 11 illustrates this thought. Similarly, we have fai(π) = Rei(π) =
ei−1R(π) (see Figure 12).

So, for Qn := d
d p
(T

(p)
n )|p=0, we have

Qn = −2nR +
2n∑

i=1

ei−1R

13



and consequently get

QnR
−1 = −2n+

2n∑

i=1

ei−1 =
2n∑

i=1

(ei − 1) = H0.

We have

T (p)
n

#   »µ2n = #   »µ2n

and thus

Qn
#   »µ2n = 0.

Since R−1 #   »µ2n = #   »µ2n,

H0
#   »µ2n = QnR

−1 #   »µ2n = Qn
#   »µ2n = 0.

Remark. We will see later that the eigenspace generated by #   »µ2n is one-dimensional.
Therefore, the vector #   »µ2n is independent of the chosen probability p, i. e. the notion #   »µ2n

(without any mention of p) is justified.

We thus want to compute the (we will later see, unique up to normalization) eigen-
vector w. r. t. the eigenvalue 0 of the Hamiltonian.
For stating the Razumov-Stroganov-Cantini-Sportiello theorem, the main result of this
thesis, we shall define (in Chapter 2) another class of objects, the so-called fully packed
loop configurations.

We will see that the components of #   »µ2n can be computed using these fully packed loop
configurations; in contrary to the cylindrical loop percolation graphs, there are only
finitely many fully packed loop configurations of a given size.

14



2 The ordinary Razumov-Stroganov-Cantini-Sportiello

theorem

In this chapter, we shall state the “ordinary” Razumov-Stroganov-Cantini-Sportiello
theorem. (We will later state and prove a refined version.)
Moreover, we prove this theorem for n = 3 to give the reader an idea on what is going
on.

2.1 Fully packed loop configurations and the

Razumov-Stroganov-Cantini-Sportiello theorem

Let Gn be the square grid of size n (the internal vertices) together with the set of external
vertices

{(1, 0), (2, 0), . . . , (n, 0), (n+ 1, 1), (n+ 1, 2), . . . , (n+ 1, n),

(n, n+ 1), (n− 1, n+ 1), . . . , (1, n+ 1), (0, n), (0, n− 1), . . . , (0, 1)}

such that each external vertex is incident to its internal neighbor vertex (i. e. as in Figure
13 (left)).
This is the playground which we will color in a certain way to obtain fully packed loop
configurations (see Figure 13 (right) for an example):

1 1 2 3 4

5

6

7

8

9101112

13

14

15

16

Figure 13: The “playground” of size 8 (left) and an FPL of size 8 (right).

Definition 2.1. A fully packed loop configuration (FPL) φ of size n is the graph Gn

defined above equipped with an edge-coloring function c : E → {b, w} satisfying the
following properties:

(1) Each internal vertex is incident to two black and two white edges (we call an edge
e black, if c(e) = b and white, if c(e) = w).
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14

Figure 14: A fully packed loop configuration φ and its corresponding link pattern Π(φ).

(2) Every other edge incident with an external vertex is colored black; starting with
a black edge at vertex (1, 0). Despite of not being colored, we refer to an external
vertex adjacent to a black edge as a black vertex and an external vertex adjacent
to a white edge as a white vertex.

Here and in the following, black vertices in FPLs will always be blue in illustrations.

Definition 2.2. The set of all FPLs of size n will (in this chapter) be called FPLn.

Example. Figure 14 (left) gives an example of an FPL of size 7.

Remark.

(1) Calling An the number of FPLs of size n, the sequence (An) is given by

(An)n≥1 = (1, 2, 7, 42, 429, 7436, 218348, . . .).

(2) There exists a formula for An, proven in [13] by Doron Zeilberger:

An =
n−1∏

i=0

(3i+ 1)!

(n+ i)!

(3) There exist several other interesting objects standing in bijection to FPLs of order
n, such as alternating sign matrices (quadratic matrices consisting only of 0’s, 1’s
and −1’s such that the nonzero entries alternate in each row and column and each
row and column sums up to 1). The interested reader is referred to [10].

Consider the subgraph φb induced by the black edges of an FPL φ. Since each internal
vertex in φb has degree 2, φb decomposes into circles and paths, where each path connects
two external vertices.
We label the black external vertices in φ from 1 to 2n starting with 1 at vertex (1,0);

this gives rise to a link pattern. We call Π: FPLn → LP(2n) the map assigning a link
pattern to a FPL in that way. See Figure 14 for an example.
We remind the reader of the definitions of the Hamiltonian H0 and the operators

ei, 1 ≤ i ≤ 2n on LP(2n) and state the former Razumov-Stroganov conjecture, proven
2010 by Cantini and Sportiello, the main result of this thesis.
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4

5 6

1

23

4

5 6

1

23

4

5 6

1

23

4

5 6

1

23

4

5 6

π1 π2 π3 π4 π5

Figure 15: The five link patterns in LP(6).

Theorem 2.3 (Razumov-Stroganov-Cantini-Sportiello theorem). The vector

#   »µ2n =






|{φ ∈ FPLn : Π(φ) = π1}|
...

∣
∣{φ ∈ FPLn : Π(φ) = π|LP(2n)|}

∣
∣






spans the eigenspace of H0 w. r. t. the eigenvalue 0.

Remark. Since (up to multiplication with a scalar) only #   »µ2n satisfies H0
#   »µ2n = 0 (as we

will see later), this vector (after normalising) is also the vector considered in Chapter 1

satisfying T
(p)
n

#   »µ2n = #   »µ2n.

In the remaining part of this chapter, we will illustrate this theorem for the case n = 3.

2.2 Proof of the theorem for n = 3

Example (Razumov-Stroganov-Cantini-Sportiello theorem for n = 3). Enumerating LP(6)
as in Figure 15, the actions of R, e1, . . . , e6 are given by

π = π1 π = π2 π = π3 π = π4 π = π5

R(π) π5 π4 π2 π3 π1
e1(π) π1 π1 π1 π4 π4
e2(π) π2 π2 π5 π5 π5
e3(π) π1 π1 π3 π1 π3
e4(π) π4 π5 π5 π4 π5
e5(π) π1 π2 π1 π1 π2
e6(π) π3 π5 π3 π5 π5

Therefore, the matrices R, e1, . . . , e6 are given by
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1 2

3

5 4

6

1 2

3

5 4

6

1 2

3

5 4

6

1 2

3

5 4

6

φ1 φ2 φ3 φ4

1 2

3

5 4

6

1 2

3

5 4

6

1 2

3

5 4

6

φ5 φ6 φ7

Figure 16: The seven FPLs in FPL3.

R =









0 0 0 0 1
0 0 1 0 0
0 0 0 1 0
0 1 0 0 0
1 0 0 0 0









, e1 =









1 1 1 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 1 1
0 0 0 0 0









, e2 =









0 0 0 0 0
1 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 1 1 1









,

e3 =









1 1 0 1 0
0 0 0 0 0
0 0 1 0 1
0 0 0 0 0
0 0 0 0 0









, e4 =









0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 0 0 1 0
0 1 1 0 1









,

e5 =









1 0 1 1 0
0 1 0 0 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0









, e6 =









0 0 0 0 0
0 0 0 0 0
1 0 1 0 0
0 0 0 0 0
0 1 0 1 1









and the Hamiltonian by

H0 =
2·3∑

i=1

(ei − 1) =









3 2 2 2 0
1 2 0 0 1
1 0 2 0 1
1 0 0 2 1
0 2 2 2 3









− 6 Id =









−3 2 2 2 0
1 −4 0 0 1
1 0 −4 0 1
1 0 0 −4 1
0 2 2 2 −3









.

Figure 16 lists all FPLs of size 7; one readily checks that

Π(φ1) = π1,Π(φ2) = π1,Π(φ3) = π4,Π(φ4) = π5,Π(φ5) = π5,Π(φ6) = π2,Π(φ7) = π3.
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Therefore,

#»µ6 =









2
1
1
1
2









.

One checks that

H0
#»µ6 =









−3 2 2 2 0
1 −4 0 0 1
1 0 −4 0 1
1 0 0 −4 1
0 2 2 2 −3

















2
1
1
1
2









=









0
0
0
0
0









,

that is, the Razumov-Stroganov-Cantini-Sportiello theorem holds for n = 3.
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3 An equivalent condition for satisfying the

Razumov-Stroganov-Cantini-Sportiello theorem

This chapter has three goals:

• We state refined versions of link patterns needed for the refined Razumov-Stroganov-
Cantini-Sportiello theorem.

• We prove existence and uniqueness of the Hamiltonian’s eigenvector.

• We deduce a condition equivalent to satisfying the Razumov-Stroganov-Cantini-
Sportiello theorem.

We will, here and in the remaining part, mostly follow [1].

3.1 Definition of the refined link patterns

The reader may recall the definition of LP(2n) in Chapter 1 (Definition 1.3). For
the refined Razumov-Stroganov-Cantini-Sportiello theorem, we need, in addition, two
refined versions of LP(2n).

Definition 3.1.

(1) An element of LP∗(2n− 1) is a function

π : {1, . . . , 2n− 1} ∪ {x} → {1, . . . , 2n− 1} ∪ {x}

such that (cf. Definition 1.3)

(1) π ◦ π = id

(2) π(k) 6= k for all k ∈ {1, . . . , 2n− 1} ∪ {x} and

(3) there are no numbers a, b, c, d ∈ {1, . . . , 2n − 1}, a < b < c < d (understood
modulo 2n− 1) such that π(a) = c and π(b) = d.

(2) An element of LP(2n), viewed in circle-shape, consists of several areas (bounded
by the circle line and the connecting edges). An element π ∈ LP∗(2n) shall be an
element of LP(2n) where we choose one of these areas and mark it (in the circle
representation with a puncture).

(3) We often prove statements for LP(2n),LP∗(2n),LP∗(2n− 1) simultaneously and
shall write N instead of 2n or 2n− 1. The notation LP(N) can mean any of these
three sets. If π belongs to any of the three sets, we refer to it as a link pattern.

Again, if we consider link patterns, calculations are to be understood modulo N .

Remark. An element of LP∗(2n− 1) can be viewed as a circle with a puncture which is
connected to one of the boundary vertices and connections between the other vertices
as in LP(2n) (see the following example).
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Example. We regard these three sets for n = 3.

(1) The set LP(2n) consists of the following five elements:

1

23

4

5 6

1

23

4

5 6

1

23

4

5 6

1

23

4

5 6

1

23

4

5 6

(2) The set LP∗(2n− 1) consists of the following ten elements:

1

2
3

4
5

1

2
3

4
5

1

2
3

4
5

1

2
3

4
5

1

2
3

4
5

1

2
3

4
5

1

2
3

4
5

1

2
3

4
5

1

2
3

4
5

1

2
3

4
5

(3) The set LP∗(2n) consists of the following twenty elements:

1

23

4

5 6

1
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4

5 6

1

23
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5 6

1

23

4

5 6

1

23

4

5 6

1

23

4

5 6

1

23

4

5 6

1

23

4

5 6

1

23

4

5 6

1

23

4

5 6

1

23

4

5 6

1

23

4

5 6

1

23

4

5 6

1

23

4

5 6

1

23

4

5 6

1

23

4

5 6
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1

23

4

5 6

1

23

4

5 6

1

23

4

5 6

1

23

4

5 6

Remark. The sets LP(2n),LP∗(2n−1) and LP∗(2n) have cardinalities Cn, (2n−1)Cn−1

and (n + 1)Cn, respectively, where Cn = 1
n+1

(
2n
n

)
denotes the n-th Catalan number (cf.

Proposition 1.4).

Remark. Each connection line between two vertices in a link pattern splits the pattern
up into two link patterns (out of which one may be empty) of smaller size. This allows
us to do induction proofs on the size of a link pattern.

We now introduce some more notation:

Definition 3.2.

(1) Let π ∈ LP(N), i, j ∈ {1, . . . , N}. We write

i ∼ j

if π(i) = j (that is, i and j are connected in π). Otherwise, we write i 6∼ j.

(2) We need an extra definition for the case LP∗(2n):
If in π ∈ LP∗(2n) the vertices i and j are connected, the connecting edge de-
composes the link pattern in two topological components; the first one consists of
the vertices m with i < m < j, the second one consists of the vertices m with
j < m < i. Exactly one of these components contains the puncture; we write i∼̇j,
if the puncture is contained in the first one of these two components (see the next
example) and j∼̇i otherwise.

(3) In each of the three sets, i a i+ 1 shall mean that

• for LP(2n),LP∗(2n− 1) : i ∼ i+ 1,

• for LP∗(2n) : i ∼ i+1 and i+1∼̇i (that is, the short arc between i and i+1
does not surround the puncture).

Example. To get used to the definitions, we consider the following link patterns π1, π2, π3, π4
and note some of their properties:

1

23

4

5 6

1

23

4

5 6

1

23

4

5 6

1

2
3

4
5

In π1, π2 and π3, we have 1 ∼ 4, 4 ∼ 1, 2 ∼ 3, 3 ∼ 2, 5 ∼ 6, 6 ∼ 5 and i 6∼ j for every
other pair (i, j). In π1 and π3, we have, in addition, for i ∈ {2, 5} the relation i a i+ 1;
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in π2 this does only hold for i = 5.
In π4 we have 1 ∼ 5, 5 ∼ 1, 2 ∼ 4, 4 ∼ 2 and i 6∼ j for every other pair (i, j) as well as
5 a 1.
The relation i∼̇j does hold exactly for the following pairs (i, j):

• in π2: (1, 4), (2, 3), (6, 5),

• in π4: (1, 4), (3, 2), (6, 5).

3.2 Generalisations of R, ei and the Hamiltonian

We first extend the operators R and ei to the “new” sets:

Definition 3.3. We define operatorsR, ei, i ∈ {1, . . . , N}, acting on the sets LP(2n),LP∗(2n),
LP∗(2n− 1) as follows:

(1) Rotation operator R: This operator rotates the outer vertices of π one step counter-
clockwise. If in π ∈ LP(N) the vertices i and j are connected, then so are i − 1
and j − 1 in R(π).
The “structure” of the link pattern does not change: If in π ∈ LP∗(2n − 1), i is
connected to the puncture, then so is i− 1 in R(π).
Also, if in π ∈ LP∗(2n), i∼̇j, then i− 1∼̇j − 1 in R(π).

(2) Operators ei:

• If it holds in π that i a i+ 1, then eiπ = π.

• Otherwise, if in π the vertex i is connected to j and i + 1 to k, then in eiπ
the vertices i and i + 1 are connected (such that i a i+ 1) and so are j and
k.
This definition may be ambiguous if π ∈ LP∗(2n) – then, in some cases, the
connection between j and k can be drawn at both sides of the puncture. In
this case:

in eiπ holds j∼̇k :⇔ in π holds i∼̇j, but not i+ 1∼̇k

Remark. The last item of the previous definition may seem strange at first glance; it
means the following: If in π ∈ LP∗(2n) does not hold i ∼ i + 1, then the connections
{i, j} and {i + 1, k} split π into three components, the puncture may be in any of the
three components:
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k

j
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k

j

i

i + 1

k

j
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k

j
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k
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j

i

i + 1
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In eiπ the vertices j and k get connected - the puncture shall be in the thereby resulting
sector if and only if the puncture in π was in the middle sector.
Therefore, these link patterns get mapped to the following ones:
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It may be customary to give an alternative definition of the operators R and ei, 1 ≤
i ≤ N :
The actions of R and ei are given by the left and right diagram in Figure 17; π ∈
LP(N) is drawn inside the disk and R(π) or ei(π) are given by the juxtaposition of π
with the diagram shown in Figure 17. If loops are produced by this procedure, we just
ignore them.

1

2
3

N

N

1

23

1

2
3

j
j + 1

N

1

2

3

j

j + 1

N

Figure 17: Left: the action of the operator R; right: the action of the operator ej.

Example. We illustrate the function of this diagram with an example and apply the
operator e7 to a link pattern:

1

2

3

4

5

6

7

8

1

2
3

4

5

6
7

8

1

2

3

4

5

6

7
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2

3

4

5

6

7

8

Example. We again consider π1, π2, π3, π4 from the previous example and apply the op-
erators R (first row), e1 (second row) and e2 (third row) to these link patterns:

1

23

4

5 6

1

23
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5 6

1

23

4

5 6

1

2
3

4
5
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1

23

4

5 6

1

23

4

5 6

1
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4

5 6

1

2
3

4
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1
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1
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1
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1

2
3

4
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As in Chapter 1, we introduce the vector space C|LP(N)| as CLP(N): Let π1, π2, . . . , πm
be the elements of LP(N), then we will use the notations

#»π1 =








1
0
...
0







, #»π2 =








0
1
...
0







, . . . , #  »πm =








0
0
...
1








for the standard basis of CLP(N).
We want to establish some relations between the ei and R which we will use frequently.

To this end, we introduce the Temperley-Lieb algebra:

Definition 3.4. We call the algebra generated by R and ei, 1 ≤ i ≤ N , the (Cyclic)
Temperley-Lieb Algebra and denote this algebra by CTLN.

Proposition 3.5 (Properties of the Temperley-Lieb generators). The maps R, ei, 1 ≤
i ≤ N , have the following properties:

(1) ei = Rei+1R
−1

(2) e2i = ei

(3) eiej = ejei, if |i− j| 6= 1

(4) eiei±1ei = ei.

Proof. We start with the cases LP(2n) and LP∗(2n − 1). In the following, j, k, ℓ,m, h
may also denote the puncture (in the case LP∗(2n − 1)). Figures 18 and 19 illustrates
the proofs of items (1) and (3).

(1) Say i ∼ j, i+ 1 ∼ k are connected in π.
Then i+ 1 ∼ j + 1, i+ 2 ∼ k + 1 in R−1π, therefore i+ 1 ∼ i+ 2, j + 1 ∼ k + 1 in
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k + 1

j + 1

i+ 1 i+ 2

R−1

ei+1

k

j

i

i+ 1 ei

k + 1

j + 1

i+ 1 i+ 2

R

k

j

i

i+ 1

Figure 18: Illustration of item (1) of Proposition 3.5.

i

i+ 1m

j

j + 1

h ℓ

k

ei

ej

i

i+ 1m

j

j + 1

h ℓ

k

ej

i

i+ 1m

j

j + 1

h ℓ

k

ei

i

i+ 1m

j

j + 1

h ℓ

k

Figure 19: Illustration of item (3) of Proposition 3.5.
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ei+1R
−1π and thus i ∼ i+ 1, j ∼ k in Rei+1R

−1π.
On the other hand, the relations

i ∼ i+ 1, j ∼ k, ℓ ∼ m

also hold in eiπ. Since in neither in eiπ nor in Rei+1R
−1 any other edges are

“affected”, this proves (1).

(2) In eiπ, we have i a i+ 1, so another application of ei does (by its very definition)
not change anything.

(3) Say we have the relations i ∼ k, j ∼ ℓ, i+ 1 ∼ m, j + 1 ∼ h in π.
Then i ∼ i+1, j ∼ ℓ, k ∼ m, j+1 ∼ h in eiπ and i ∼ i+1, j ∼ j+1, k ∼ m, ℓ ∼ h
in ejeiπ.
On the other hand, j ∼ j + 1, i ∼ k, ℓ ∼ h, i + 1 ∼ m in ejπ and thus also
i ∼ i + 1, j ∼ j + 1, k ∼ m, ℓ ∼ h in eiejπ. Again, any other edges stay the same
during both procedures.

(4) Let i ∼ j, i+1 ∼ k, i+2 ∼ ℓ in π be connected, say. We again only pay attention to
the edges changing during the applications of the ek. Then i ∼ i+1, j ∼ k, i+2 ∼ ℓ
in eiπ and thus i ∼ ℓ, i + 1 ∼ i + 2, j ∼ k in ei+1eiπ, so i ∼ i + 1, ℓ ∼ i + 2, j ∼ k
in eiei+1eiπ, which therefore equals eiπ.
Similarly, if i− 1 ∼ j, i ∼ k, i + 1 ∼ ℓ in π, then i− 1 ∼ j, i ∼ i + 1, k ∼ ℓ in eiπ,
therefore i− 1 ∼ i, j ∼ j + 1, k ∼ ℓ in ei−1eiπ and thus i− 1 ∼ j, i ∼ i + 1, k ∼ ℓ
in eiei−1eiπ, which again equals eiπ.

The proofs for the case LP∗(2n) are essentially the same; although one has to make
more distinctions about the location of the puncture.

Now that we have extended the operators R and ei to LP
∗(2n− 1) and LP∗(2n), we

do the same for H0 in a canonical way:

Definition 3.6. The Hamiltonian H0 ∈ CTLN is defined as

H0 :=
N∑

i=1

(ei − 1).

We will prove later (see Corollary 3.19) that H0 has a unique (up to normalization)
right-nullvector. We call this vector #  »µN its ground state, that is, #  »µN is the unique vector
in C

LP(N) satisfying

H0
#  »µN = 0. (†)

In Chapter 4, we will define refined versions of FPLs which will be necessary for stating
the Razumov-Stroganov-Cantini-Sportiello theorem for LP∗(2n− 1) and LP∗(2n).
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3.3 Excursion: Tools for proving our results

Definition 3.7. A real n× n matrix A is called

(1) right stochastic if each row of A sums to 1.

(2) left stochastic if each column of A sums to 1.

Remark. The matrix A is right stochastic if and only if AT is left stochastic.

Definition 3.8. Let A be a real n×nmatrix with aij ≥ 0 for all i, j ∈ {1, . . . , n}. We call
A irreducible if for all i, j ∈ {1, . . . , n} there is a sequence s0, . . . , sm with s0 = i, sm = j
and ask,sk+1

> 0 for all k ∈ {0, . . . ,m− 1}.

Lemma 3.9. Let A be an irreducible n× n matrix and let i, j ∈ {1, . . . , n}.
Then there is a k > 0 such that

(Ak)ij > 0.

Proof. Let s0, . . . , sm, s0 = i, sm = j be a sequence witnessing the irreducibility of i
and j. Then

(Am)ij =
∑

(t1,...,tm−1)∈[n]m−1

ai,t1 · at1,t2 · . . . · atm−1,j

≥ as0,s1 · as1,s2 · . . . · asm−1,sm > 0.

Lemma 3.10. The largest eigenvalue of a (left or right) stochastic matrix A his 1.

Proof. It suffices to prove this claim for a right stochastic matrix A. For if χA(x), χAT (x)
are the characteristic polynomials of A,AT , respectively, then, because the determinant
function is stable under transposition,

χAT (x) = det(AT − λ Id) = det((AT − λ Id)T )

= det(A− λ IdT ) = det(A− λ Id) = χA(x);

that is, the eigenvalues of AT and A equal each other (as roots of the characteristic
polynomials).
We show that A has eigenvalue 1:

(1) The matrix A is right stochastic, i. e. its entries are non-negative and each row
sums up to 1. So we get

A








1
1
...
1








=








1
1
...
1








= 1








1
1
...
1







,
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i. e. 1 is eigenvalue of A.

(2) We show: 1 is the largest eigenvalue of A:
Suppose λ > 1 was an eigenvalue of A. Then for an x ∈ R

n, we had Ax = λx. Let
x̄ = max{x1, x2, . . . , xn}. Since the rows of A sum up to 1 and all components of
A are non-negative, all components yi of y = Ax satisfy yi ≤ x̄.
On the other hand, since λ > 1, λx̄ > x̄. But this implies Ax = y 6= λx, a
contradiction.

Theorem 3.11 (Perron-Frobenius theorem, special case). Let A be a left real stochastic
irreducible matrix of dimension n× n. Then 1 is a simple eigenvalue of A and AT .
Moreover, the eigenvector corresponding to 1 of A and AT can be chosen such that all
components are positive.

Remark. One can prove a more general theorem dealing with quadratic matrices not
being necessarily stochastic. The reader is referred to [11].

Proof.

(1) We show: If B is an n × n matrix, B 6= A, with 0 ≤ bij ≤ aij, 0 ≤ i, j ≤ n and σ
an eigenvalue of B, then σ < 1:
Let σ be the eigenvalue of S associated with x, i. e. we have Sx = σx.
Suppose σ ≥ 1.
As before, let x̄ = max{x1, . . . , xn}. Since B 6= A, there is a row i of B, whose
entries sum up to a smaller value than 1.
So it follows for the component yi of y = Sx, that yi < x̄.
On the other hand, since σ ≥ 1, σx̄ ≥ x̄.
But this implies Sx = y 6= σx, a contradiction.

(2) Let A(i) be the matrix A with the i-th row and i-th column replaced by zeroes.
Since A was assumed irreducible, no row of A can consist completely of zeros. So
A(i) 6= A (and therefore, by (1), each eigenvalue of A(i) is stricly smaller 1).

(3) Let

Λ =








λ1 0
λ2

0
. . .

λn







.

Then det(Λi−Ai) =
∂

∂λi
det(Λ−A), where Λi, Ai are the (n−1)× (n−1) matrices

resulting from deleting the i-th row and j-th column of Λ, A, respectively.
To prove this, we expand det(Λ − A) along the i-th row and obtain (here Bij
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denotes the matrix obtained by deleting the i-th row and j-th column of Λ− A):

∂

∂ λi
det(Λ− A) =

∂

∂ λi

(
n∑

j=1

(−1)i+j(Λ− A)ij det(Bij)

)

=
∂

∂ λi
((−1)2i(λi − aii det(Bii))) +

∂

∂ λi

(
∑

j 6=i

(−1)i+j(−aij) det(Bij)

)

=
∂

∂ λi
((λi − aii) det(Λi − Ai))

=
∂

∂ λi
(λi det(Λi − Ai)) = det(Λi − Ai).

This is what we wanted to show.

(4) We want to show:

d

dλ
det(λ Idn-A) =

n∑

i=1

det(λ Idn−1−Ai).

Define f : Rn → R, f(λ1, . . . , λn) = det(Λ− A); g : R→ R
n, g(λ) = (λ, . . . , λ);

hi : R
n → R, hi(λ1, . . . , λn) = det(Λi − Ai) (where Λ,Λi are defined as in (3)).

Then, by (3)

hi(g(λ)) =
∂

∂ λi
f(g(λ)).

It follows

n∑

i=1

det(λ Id−Ai) =
n∑

i=1

hi(g(λ)) =
n∑

i=1

∂

∂ λi
f(g(λ))

=
(

∂
∂ λ1

f(g(λ)), . . . , ∂
∂ λn

f(g(λ))
)
·








1
1
...
1








= Jf (g(λ)) · Jg(λ) = Jf◦g(λ) =
d

dλ
f(g(λ))

=
d

dλ
det(λ Id−A)

by an application of the higher-dimensional chain rule (where Jh(x) is the Jacobian
of the function h in x).

(5) We show: The characteristic polynomial χAi
(x) of each Ai is positive for x = 1:

The leading coefficent of each χAi
(x) is 1, so it follows that lim

x→∞
χAi

(x) = +∞.
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By (2), each A(i) has eigenvalues strictly less than 1.
Since each eigenvalue of Ai is also eigenvalue of A(i) (for if σ is eigenvalue of Ai,
then there is an x ∈ R

n−1 such that Aix = σx – now σ is eigenvalue of A(i) with

eigenvector x+, where x+j =







xj, if j > i
0 if j = i

xj−1, if j > i
; so every eigenvalue of Ai is strictly

smaller than 1).
Therefore, and because of lim

x→∞
χAi

(x) = +∞, it follows that χAi
(1) > 0.

(6) We have

∂

∂ λ
det(λ Idn−A)

(4)
=

n∑

i=1

det(λ Idn−1−Ai),

and at λ = 1 we obtain

∂

∂ λ

∣
∣
∣
∣
λ=1

det(λ Idn−A) =
n∑

i=1

det(Idn−1−Ai)
(5)
> 0.

So the zero of the characteristic polynomial of A at λ = 1 is simple; therefore 1
has algebraic (and hence also geometric) multiplicity 1. This is what we wanted
to show.

(7) It remains to show the part about the positivity of the eigenvectors:

The corresponding eigenvector in A is








1
1
...
1







, therefore we investigate T := AT .

By the lemma, for each pair (i, j) of an irreducible matrix B there is an ℓ ∈ N

with (Bℓ)ij > 0. The transposition of A clearly preserves the irreducibiliy of A.
Therefore, and because of the non-negativity of the components of AT it follows
that for sufficiently large k the matrix

(Id+T )k = Id+kT +
k(k − 1)

2
T 2 + · · ·

(binomial expansion) has strictly positive components..
Let y be the eigenvector corresponding to 1 of T = AT , i. e. Ty = y.
We can assume (after multiplication with a scalar) that all components of y are
non-negative.
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We shall write 0 < z, if all components of z are greater 0. We have

0 < (Id+T )ky = (Id+kT +
k(k − 1)

2
T 2 + . . .)y

= (y + ky +
k(k − 1)

2
y + . . .) = (1 + 1)ky

and this proves the remaining part.

We will later also need the following “continuity result”:

Theorem 3.12. Let

f(z) = a0 + a1z + . . .+ anz
n =

m∏

j=1

(z − zj)
kj ,

ai ∈ C, an 6= 0, be a polynomial with the zero zj having multiplicity kj.
Let Ki be the disk with center zi and radius Ri with Ri chosen such that

0 < Ri < min
j∈{1,...,m}\{i}

|zi − zj| . (2)

Then there is an ε > 0 such that for each δs ∈ C, |δs| ≤ ε (s = 0, 1, . . . , n − 1) the
polynomial

f̃(z) = (a0 + δ0) + (a1 + δ1)z + . . .+ (an−1 + δn−1)z
n−1 + anz

n

has exactly ki zeros in the disk Ki.

Proof. Let H(z) := δ0 + δ1z + . . .+ δn−1z
n−1. Fix an i ∈ {1, . . . ,m}.

In the disk Ki we have

|H(z)| =
∣
∣δ0 + δ1z + . . .+ δn−1z

n−1
∣
∣

≤ |δ0|+ |δ1| |z|+ . . .+ |δn−1| |z|
n−1

≤ ε(1 + |z|+ . . .+ |z|n−1)

= ε(1 + |(z − zi) + zi|+ . . .+ |(z − zi) + zi|
n−1)

≤ ε(1 + (Ri + |zi|) + . . .+ (Ri + |zi|)
n−1) = ε

(
n−1∑

j=0

(Ri + |zi|)
j

)

︸ ︷︷ ︸

:=αi

.

Furthermore, the triangle inequality for j 6= i yields

|zi − zj| ≤ |zi − z|+ |z − zj| ≤ Ri + |z − zj| ,
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thus

|z − zi| ≥ |zi − zj| −Ri. (3)

We now estimate f(z) on Ki:

|f(z)| = |a0 + a1z + . . .+ anz
n|

= |an|

∣
∣
∣
∣
∣

m∏

j=0

(z − zj)
kj

∣
∣
∣
∣
∣
= |an|

m∏

j=1,
j 6=i

|z − zj|
kj

= |an| |z − zi|
ki

m∏

j=1,
j 6=i

|z − zj|
kj = |an|R

ki
i

m∏

j=1

|z − zj|
kj

(3)

≥ |an|R
ki
i

m∏

j=1,
j 6=i

(|z − zj| −Ri)
kj

︸ ︷︷ ︸

>0 by (2)

︸ ︷︷ ︸

>0

=: ωi.

Now choosing ε < ωi

αi
gives

|H(z)| ≤ εαi <
ωi

αi

· αi = ωi ≤ |f(z)| .

By Rouché’s theorem, f̃(z) = f(z) + H(z) and f(z) have the same amount of zeros
inside Ki.
But, by (2), zi is the only zero (with multiplicity ki) in Ki.
Therefore, f̃(z) has exactly ki roots in Ki.

3.4 Scattering Equations

We continue by rewriting the Hamiltonian:

Lemma 3.13. Let i ∈ {1, . . . , N}. Then

H0 =
N−1∑

k=0

Rk(ei − 1)R−k.

Proof. Fix i ∈ {1, . . . , N}.
By Proposition 3.5, we have Rei = ei+1R, which inductively implies Rkei = ei+kR

k.
This yields

N−1∑

k=0

Rk(ei − 1)R−k =
N−1∑

k=0

(ei+k − 1) =
N∑

i=1

(ei − 1) = H0.
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Definition 3.14. We define operators Xi(t) ∈ CTLN, 1 ≤ i ≤ N for 0 ≤ t ≤ 1, by

Xi(t) = t · Id+(1− t)ei.

We define for each i a so-called scattering equations by

Xi(t)
#          »

ψ(i)(t) = R
#          »

ψ(i)(t). (⋆)

(where
#          »

ψ(i)(t) is unknown). Our next goal is to show that a vector
#          »

ψ(i)(t) satisfying (⋆)
is a solution of (†).

Proposition 3.15 (Properties of Xi). The operator Xi(t) has the following properties:

(1) Xi(1) = Id

(2) RkXi(t)R
−k = Xi+k(t)

(3) dXi(t)
dt

= 1− ei.

Proof.

(1) Xi(1) = Id+(1− 1)ei = Id.

(2) We apply property (1) of Proposition 3.5:

RkXi(t)R
−k = Rkt IdR−k +Rk(1− t)eiR

−k

= t IdRkR−k + (1− t)RkeiR
−k

= t Id+(1− t)ei+kR
kR−k

= t Id+(1− t)ei+k = Xi+k(t).

(3) dXi(t)
dt

= Id−ei = 1− ei.

Theorem 3.16. If
#          »

ψ(i)(t) satisfies the scattering equation (⋆), then

H0

#           »

ψ(i)(1) = 0,

i. e.
#           »

ψ(i)(1) satisfies (†).

In particular, the
#           »

ψ(i)(1), 1 ≤ i ≤ 2n, all equal each other.
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Proof. By the previous proposition, part (2),

Xi+k(t) = RkXi(t)R
−k.

Thus it follows

Xi+ℓ(t)Xi+ℓ−1(t) . . . Xi+1(t)Xi(t)

= RℓXi(t)R
−ℓRℓ−1Xi(t)R

−(ℓ−1) . . . RXi(t)R
−1Xi(t)

= Rℓ+1R−1Xi(t)R
−1Xi(t)R

−1 . . . R−1Xi(t)R
−1Xi(t)

= Rℓ+1(R−1Xi(t))
ℓ+1.

We set ℓ = N − 1 and obtain Xi+N−1(t) . . . Xi(t) = RN(R−1Xi(t))
N .

If
#          »

ψ(i)(t) satisfies the equation (⋆), i. e.

Xi

#          »

ψ(i)(t) = R
#          »

ψ(i)(t),

we get

R−1Xi

#          »

ψ(i)(t) =
#          »

ψ(i)(t).

We define the scattering matrix Si(t), 1 ≤ i ≤ N , by

Si(t) = Xi+N−1(t) . . . Xi+1(t)Xi(t);

this implies, since RN = 1,

Si(t) = Xi+N−1(t)Xi+N−2(t) . . . Xi+1(t)Xi(t)
#          »

ψ(i)(t)

= RN(R−1Xi)
N

#          »

ψ(i)(t) = RN
#          »

ψ(i)(t) =
#          »

ψ(i)(t),

which yields

(Si(t)− 1)
#          »

ψ(i)(t) = 0.

We have Si(1) = Xi+N−1(1) . . . Xi+1(1)Xi(1) = 1 · . . . · 1 = 1 and
dXj(t)

dt
= 1 − ej, and

therefore

dSi(t)

dt

∣
∣
∣
∣
t=1

=

(
i+N−1∑

j=i

Xi+N−1(t) . . . Xj+1(t)
dXj(t)

dt
Xj−1(t) . . . Xi(t)

)∣
∣
∣
∣
t=1

=
i+N−1∑

j=i

(1− ej) = −H0,

what proves the statement.

35



In the following, we consider only X1(t) and the corresponding equation

(t Id+(1− t)e1)
#          »

ψ(i)(t) = R
#          »

ψ(i)(t).

Proposition 3.17 (Properties of 1
N
H0 + Id). Let A := 1

N
H0 + Id. Then the following

properties hold:

(1) A is left stochastic.

(2) A has eigenvalue 1 corresponding to the eigenvector v with multiplicity 1 if and
only if H0 has eigenvalue 0 corresponding to the eigenvector v with multiplicity 1.

Proof.

(1) It suffices to show that all entries in A are non-negative and all columns of H0 sum
up to 0. We start with the latter.
The j-th column of H0 is given by























#k ∈ {0, . . . , N − 1} : ek(πj) = π1
#k ∈ {0, . . . , N − 1} : ek(πj) = π2

...
#
(
k ∈ {0, . . . , N − 1} : ek(πj) = πj

)
−N ← j-th row

...
#k ∈ {0, . . . , N − 1} : ek(πj) = πN

Therefore, the sum of the entries of the j-th column equals

#
(
k ∈ {0, . . . , N − 1} : ek(πj) ∈ {π1, . . . , πN}

)
−N = N −N = 0.

Concerning the former:
The only (possibly) negative entries of H0 are on its main diagonal. But each
diagonal element h of H0 satisfies −N ≤ h, therefore every diagonal element h′

of 1
N
H0 satisfies the inequality −1 ≤ h′ and hence each diagonal element a of

A = 1
N
H0 + Id satisfies 0 ≤ a.

(2) We have

(
1

N
H0 + 1

)

v = v ⇔
1

N
H0v = 0⇔ H0v = 0.

Since the matrix A is only a scaling of H0, these two eigenvalues have in both
matrices the same algebraic and geometric multiplicity.

Lemma 3.18. The matrix A = 1
N
H0 + Id is irreducible.
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Proof. By definition of H0, we have:

aij 6= 0 if and only if there is an ek : ek(πj) = πi.

So we want to show: For each link pattern πj there is a finite sequence ekℓ , ekℓ−1
, . . . , ek1

such that ekℓekℓ−1
. . . ek1πj = πi. We first show this fact for the case LP(2n) and describe

afterwards the changes for the cases LP∗(2n− 1) and LP∗(2n).

(1) We can assume that πj is the following “very simple” link pattern π:

1

2
34

2n-1

2n

1

2
34

2n-1

2n

1

2
34

2n-1

2n

1

2
34

2n-1

2n

1

2
34

2n-1

2n

1

2
34

2n-1

2n

1

2
34

2n-1

2n

1

2
34

2n-1

2n

1

2
34

2n-1

2n

1

2
34

2n-1

2n

For if πj 6= π, then

e2n−1 . . . e3e1πj = π

(since e1 connects the vertices 1 and 2, e3 connects 3 and 4 and preserves the
already connected vertices 1 and 2 etc.).
So, if we have found a sequence ekℓ , . . . , ek1 with ekℓ . . . ek1π = πi, we get by con-
caternating

ekℓ . . . ek1e2n−1 . . . e1πj = πi.

(2) We thus want to show that there exists a sequence e1, . . . , eℓ with eℓ . . . e1π = πi
and show this by induction on n.
The induction basis (n = 1) is clear, as there is only one link pattern in LP(2),
namely

12 12

.

n→ n+ 1: Suppose πi(1) = m.
Then

in π : 1 ∼ 2, 3 ∼ 4, 5 ∼ 6, . . . , 2n− 1 ∼ 2n,

in e2π : 1 ∼ 4, 2 ∼ 3, 5 ∼ 6, . . . , 2n− 1 ∼ 2n,

in e4e2π : 1 ∼ 6, 2 ∼ 3, 4 ∼ 5, . . . , 2n− 1 ∼ 2n,

in e6e4e2 are 1 and 8 connected etc.
Sincem has to be even, in em−2em−4 . . . e6e4e2π are the vertices 1 andm connected.
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By connecting 1 and m, the link pattern breaks down into two components.
Thus the statement follows from the induction hypothesis.

(3) The proof in the case LP∗(2n − 1) is essentially the same, but we use as “very
simple” link pattern π the following one obtained via eN−1 . . . e2πj:

1

2
3

N − 1
N

1

2
3

N − 1
N

1

2
3

N − 1
N

1

2
3

N − 1
N

1

2
3

N − 1
N

1

2
3

N − 1
N

1

2
3

N − 1
N

1

2
3

N − 1
N

1

2
3

N − 1
N

(i. e. the vertex 1 is connected to the center and each even vertex M with M +1).
If in πi the vertex 1 is connected to the center, we apply the induction hypothesis
(for LP(2n)) for the link pattern with the vertices 2, . . . , N ; otherwise in πi the
vertex 1 is connected to a vertex m, in this case we connect by the same procedure
as above the vertices 1 und m. This connection breaks down the link pattern in
two link patterns as before, on which we apply the induction hypothesis (for the
cases LP∗(2n− 1) and LP(2n)).

(4) The case LP∗(2n) is somewhat more complicated, since in this case two vertices
i and j are not just connected; here we rather have i∼̇j or j∼̇i. Again we only
have to show that the vertex 1 may be “suitable connected” and can then apply
the induction hypothesis. Let m be the vertex with 1 ∼ m.
First case: m∼̇1. Our “very simple link pattern” π then should be e2n−1 . . . e1πj:

1

2
34

2n− 1
2n

1

2
34

2n− 1
2n

1

2
34

2n− 1
2n

1

2
34

2n− 1
2n

1

2
34

2n− 1
2n

1

2
34

2n− 1
2n

1

2
34

2n− 1
2n

1

2
34

2n− 1
2n

1

2
34

2n− 1
2n

1

2
34

2n− 1
2n

We have the following “connection-relations”:

in π :2∼̇1, 4∼̇3, 6∼̇5, . . . , 2n∼̇2n− 1,

in e2π :3∼̇2, 4∼̇1, 6∼̇5, . . . , 2n∼̇2n− 1,

in e4e2π :5∼̇4, 6∼̇1, 3∼̇2, . . . , 2n∼̇2n− 1

etc., in em−2em . . . e2π we have m∼̇1.
Second case: 1∼̇m. Then we consider the following link pattern π′ = Rπ instead
of π, obtained by e2n . . . e2πj:
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2n

1
23

4

2n− 1

2n

1
23

4

2n− 1

2n

1
23

4

2n− 1

2n

1
23

4

2n− 1

2n

1
23

4

2n− 1

2n

1
23

4

2n− 1

2n

1
23

4

2n− 1

2n

1
23

4

2n− 1

2n

1
23

4

2n− 1

2n

1
23

4

2n− 1

As before, we have the following relations:

in π′ :3∼̇2, 5∼̇4,m+ 5∼̇m+ 4,m+ 3∼̇m+ 2,m+ 1∼̇m, . . . , 1∼̇2n,

in em+1π
′ :3∼̇2, 5∼̇4,m+ 5∼̇m+ 4,m+ 2∼̇m+ 1,m+ 3∼̇m, . . . , 1∼̇2n,

in em+3em+1π
′ :3∼̇2, 5∼̇4,m+ 2∼̇m+ 1,m+ 4∼̇m+ 3,m+ 5∼̇m, . . . , 1∼̇2n.

If we continue in this vein, we have in em+5em+3em+1π
′ the connection m + 7∼̇m

etc. and thus the link pattern e2n−1e2n−3 . . . em+3em+1π
′ satisfies 1∼̇m.

Corollary 3.19. The vector #  »µN as in Definition 3.6 exists and is unique (if normalized).

Proof. Apply the Perron-Frobenius theorem to A = 1
N
H0 + Id and use the previous

proposition and the previous lemma.

Lemma 3.20. Fix i ∈ {0, . . . , N − 1}, 0 ≤ t ≤ 1.
Then there is a unique (up to multiplication with a scalar) solution of

Xi(t)
#          »

ψ(i)(t) = R
#          »

ψ(i)(t). (4)

Proof. The fact that there is a unique solution to (4) is equivalent to the existence of a
unique solution to the equation

R−1Xi(t)
#          »

ψ(i)(t) =
#          »

ψ(i)(t). (5)

But if we can show that the matrix R−1Xi(t) is left stochastic and irreducible, this
follows from the Perron-Frobenius theorem. We can do so for t ∈ (0, 1), for t ∈ {0, 1}
we will use a continuity argument.

(1) We show that R−1Xi(t) is left stochastic:
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As in the proof of Proposition 3.17, the j-th column of Xi(t) has the form



























0
...
0

j-th row→ t
0
...
0

+ (1− t)



























M1
...

Mj−1

Mj

Mj+1
...

MN

,

where

Mℓ := #k ∈ {0, . . . , N − 1} : ek(πj) = πℓ,

the column thus sums up to t+ (1− t) · 1 = 1.
Since the left-multiplication with R−1 only permutes the rows of Xi(t), this also
holds for R−1Xi(t).

(2) We prove that R−1Xi(t), 0 < 1 < t is irreducible.
We have:

(R−1Xi(t))jℓ = #k ∈ {0, . . . , N − 1} : ek(πℓ) = R−1(πj)

and this is (since 1− t 6= 0) always greater 0 (compare the proof of Lemma 3.18).
But we have proven the latter fact already in Lemma 3.18.

(3) The proof given in (2) does not extend to t = 1 (since Xi is not irreducible then).
However, let χt(z) be the characteristic polynomial of R−1Xi(t).
By the Perron-Frobenius theorem, for 0 < t < 1, the zero of χt(z) at z = 1 is
simple.
Let t → 1, by Theorem 3.12 can χ1(z) also have a at most simple zero at z = 1;
being left stochastic guarantees the existence of such a zero.

Proposition 3.21. Let
#     »

ψ(t) ∈ C
LP(N). Then

#     »

ψ(t) satisfies the scattering equation (⋆)

if and only if
#     »

ψ(t) satisfies the two equations

e1(1−R)
#     »

ψ(t) = 0 and (6)

(1− e1)(t1−R)
#     »

ψ(t) = 0. (7)

Proof. If
#     »

ψ(t) satisfies (⋆), we have

(t Id+(t− 1)e1 −R)
#     »

ψ(t) = 0. (8)
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By applying e1 and (1− e1), respectively, we obtain

e1(t Id−R− (t− 1)e1)
#     »

ψ(t) = 0 (9)

(1− e1)(t Id−R− (t− 1)e1)
#     »

ψ(t) = 0. (10)

Conversely, adding these two equations yields the scattering equation (8).
Since by the elementary Temperley-Lieb properties, e21 = e1, the equation (9) is equiva-
lent to

0 = (e1t− e1R− (t− 1)e1)
#     »

ψ(t) = e1(1−R)
#     »

ψ(t)

and (10) to

0 = (t Id−R− (t− 1)e1 − te1 + e1R + (t− 1)e1)
#     »

ψ(t)

= (t Id−R− te1 + e1R)
#     »

ψ(t) = (1− e1)(t1−R)
#     »

ψ(t),

completing the proof of the proposition.

Theorem 3.22. The vector
#     »

ψ(t) satisfies the scattering equation (⋆) at i = 1 if and only
if the following two conditions are satisfied:

(1) e1(1−R)
#     »

ψ(t) = 0

(2) For every πj ∈ LP(N) with 1 6a 2 we have

tψi(t) = ψR−1(i)(t).

Here, ψi(t) denotes the i-th component of
#     »

ψ(t) and ψR−1(i)(t) the j-th component

of
#     »

ψ(t), where j is defined by

ψj = R−1(ψi).
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Proof. We rewrite the second equation (7) of the previous proposition:

0 = (1− e1)(t1−R)
#     »

ψ(t) =(1− e1)





|LP(N)|
∑

i=1

tψi(t)
#»πi −

|LP(N)|
∑

i=1

ψi(t)R
#»πi





=(1− e1)





|LP(N)|
∑

i=1

tψi(t)
#»πi −

|LP(N)|
∑

i=1

ψR−1(i)(t)
#»πi





=

|LP(N)|
∑

i=1

(tψi(t)− ψR−1(i)(t))(1− e1)
#»πi

=
∑

i∈{1,...,|LP(N)|},
1a2

(tψi(t)− ψR−1(i)(t))(1− e1)
#»πi

+
∑

i∈{1,...,|LP(N)|},
16a2

(tψi(t)− ψR−1(i)(t))(1− e1)
#»πi

If 1 a 2 in πi, then πi = e1πi ⇒ (1− e1)
#»πi = 0.

On the other hand, if 1 6a 2 in πi, then πi 6= e1πi; so satisfying (7) is equivalent to

tψi(t)− ψR−1(i)(t) = 0 for all i ∈ {1, . . . , |LP(N)|} with 1 6a 2.
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4 Generalized FPLs and the refined theorem

In this chapter, we will define generalizations of fully packed loop configurations and the
corresponding version of the Razumov-Stroganov-Cantini-Sportiello theorem.

4.1 Generalized FPLs and corresponding link patterns

We first need to define the domains we will work with. For the ordinary FPLs in
Chapter 2, our domains were quadratic squares of size n; here we weaken this conditions
to rectangular domains where a square of vertices is removed on some corners. Figure
20 shows the procedure of creating a suitable domain.

1 1 1

Figure 20: Producing a suitable domain in three steps: (1) Taking a rectangular grid, (2)
removing squares on some corners (and connecting the remaining vertices),
(3) adding external vertices.

More formally, a domain is defined as follows:

Definition 4.1. In the following, a domain Λ is a graph (V,E) consisting of vertices
created by the following procedure:
Take a rectangular Lx × Ly grid. Now, calling the corners A1, A2, A3, A4, remove an
ai× ai square of vertices from the corner Ai. Here, the parameters a1, a2, a3, a4 must be
chosen such that the squares removed do not overlap (but they might share a perimeter).
Therefore, 2ai external vertices are cut out; the remaining vertices are connected

pairwise “from the outside inwards” as in the following picture:
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A such domain Λ = Λ(Lx, Ly, a1, a2, a3, a4) therefore is given by six integer parameters
Lx, Ly, a1, a2, a3, a4.

The domain Λ has Lx − a1 − a2 vertices of the form (1, y), Ly − a2 − a3 vertices of
the form (x, 1), Lx− a3− a4 vertices of the form (Lx, y) and Ly − a4− a1 vertices of the
form (x, Ly).
For every such vertex v, we add another vertex which is only adjacent to v. For v ∈
{A1, A2, A3, A4}, if present, we add two vertices, each only adjacent to the respective Ai.
We will refer to these new vertices as the external vertices of Λ. So in total, we have

2n external vertices, where n is defined by

n = Lx + Ly − a1 − a2 − a3 − a4.

We enumerate the external vertices form 1 up to 2n, counter-clockwise, starting from
the bottom-left. (Note that we have labeled all external vertices unlike in Chapter 2,
where we did so only for the black vertices.)

This procedure gives us a suitable domain where we can define the generalised fully
packed loop configurations.

Definition 4.2. Let Λ = Λ(Lx, Ly, a1, a2, a3, a4) be a domain as in Definition 4.1.
A fully packed loop configuration (FPL) φ on Λ is a graph with the same vertex and
edge set as Λ equipped with an edge coloring function c : E(φ)→ {b, w} such that

• each vertex of degree 4 has two black and two white adjacent edges (that is, edges
e with c(e) = b and c(e) = w, respectively)

• each vertex of degree 3 has one black and two white adjacent edges or vice versa

• each vertex of degree 2 has one black and one white adjacent edge (these degree
conditions guarantee the black/white subgraph of φ to decompose into paths and
circles)

• the boundary conditions are alternating : if c(i) = b, then c(i ± 1) = w for all
external vertices i. (Note that in contrary to Definition 2.1, we do not require 1
to be black.) Again, any calculations are to be understood modulo 2n.

The set of all FPLs on the domain Λ will be called FPL(Λ). We refer to the vertices
A1, A2, A3, A4, if present in φ, as the corners of φ and define cΛ to be the number of
corners in φ (which, of course, only depends on Λ).

We will, in the following, assume cΛ 6= 0 and furthermore assume without loss of
generality a1 = 0, i. e., the corner A1 is present in Λ. We refer to A1 as the reference
corner of Λ and call L = L(Λ) the length of the reference side, that is, the number of
vertices form A1 up to the next corner (which may be again A1, if cΛ = 1). The vertices
1, . . . , L form the reference side of Λ.
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We have to explain how these new FPLs relate to the sets LP(2n),LP∗(2n− 1) and
LP∗(2n). For this purpose, we define two important subsets of FPL(Λ):
If Lx− 1 = Ly = a2 + a4 or Ly = Lx− 1 = a2 + a4, the domain Λ has an internal edge

for which both adjacent faces have at most 3 sides.
We can split this edge into two and produce thereby a vertex of degree 2 which will be
the puncture in a link pattern in LP∗(2n− 1).
If Lx = Ly = a2 + a4 there is in Λ at most one face with 1 or 2 sides.

One may put a puncture in this special face; the so-punctured domain will allow for the
LP∗(2n) correspondence.
Figures 21 and 22 give examples of generalized FPLs.
Therefore, some domains allow for two correspondences (namely LP(2n) and LP∗(2n−

1) or LP(2n) and LP∗(2n)). We thus make an implicit choice by choosing Λ - if the
domain shall be punctured or not. It is then immediate how to assign an link pattern
π to an FPL - one only has to decide whether the black or white paths shall be present
in π and which path shall be numbered 1 in π.
We shall write LP(Λ) for the set of link pattern corresponding to the FPLs on Λ.

Remark. FPLs do not exist on every domain constructed in this way!
On some domains FPLs do not exist for a more obvious reason, namely because Lx +
Ly − a1 − a2 − a3 − a4 is odd and there is no puncture in Λ = Λ(Lx, Ly, a1, a2, a3, a4).
Then there exists no possible matching of the black vertices - simply because there is an
odd number of black external vertices.
An example would be the domain Λ = Λ(6, 6, 0, 0, 3, 0):

The condition that Lx+Ly− a1− a2− a3− a4 is even is however not sufficient, consider
e. g. Λ = Λ(4, 2, 0, 0, 0, 0) and suppose there was an FPL in FPLb(Λ). Then one would
have to color

,

this would however not work properly. (One could start e. g. coloring the marked edge
on the left either black or white and then recall the degree constraints – each internal
vertex has two black and two white adjacent edges.)

In the following, whenever we write Λ, we mean a domain as defined in Definition 4.1.

Definition 4.3. We define an operator Π(φ, v), where φ is an FPL and v a black vertex
of φ: Π(φ, v) is the link pattern π associated to the black subgraph of the FPL φ, where
the vertex v corresponds to 1 in π, v + 2 to 2, v + 4 to 3, and so on.
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Figure 21: Left: An FPL φ on Λ = Λ(7, 7, 0, 0, 0, 0) with four corners (i. e. cΛ = 0).
We further have h(φ) = 5, L = 7 and n = 14. Right: An FPL φ
on Λ = Λ(15, 14, 0, 6, 4, 8) with only one corner A1 (i. e. cΛ = 1). The
further characteristics are h(φ) = 7, L = 22, 2n − 1 = 11. Because of
a2+a4 = Ly = Lx−1,Λ allows for the LP∗(2n−1) correspondence; therefore
a vertex is added in the middle (and thereby the edge in the middle is split
up into two).
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Figure 22: Left: An FPL φ on Λ = Λ(14, 14, 0, 6, 4, 8) with one corner (i. e. cΛ = 1)
allowing for the LP∗(2n) correspondence (since a2 + a4 = Lx = Ly). We
further have h(φ) = 7, L = 20 and n = 10. Right: The link pattern π =
Π(φ, 1). (The link pattern Riπ is, as always, given as Π(φ, v − 2i).)
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v v v

Figure 23: A black vertex v of type a, b, c, respectively.

See Figure 22 for an example. FPL(Λ) clearly splits into two domains:

Definition 4.4. FPL+(Λ) denotes the subset of FPL(Λ) where 1 is colored black;
analogously FPL−(Λ) denotes the subset of FPL(Λ) where 1 is colored white.

Remark. Trivially, |FPL+(Λ)| = |FPL−(Λ)| =
|FPL(Λ)|

2
.

A special case of Π is the following one:

Definition 4.5. Π+(φ) := Π(φ, 1) for φ ∈ FPL+(Λ).
That is, Π+ assigns to φ ∈ FPL+(Λ) the corresponding link pattern, where the vertex
1 in the link pattern corresponds to the black vertex 1 in φ.

We can finally state the refined Razumov-Stroganov-Cantini-Sportiello theorem:

Theorem 4.6 (Refined Razumov-Stroganov-Cantini-Sportiello theorem). The vector

#  »µN :=
∑

φ∈FPL+(Λ)

#           »

Π+(φ)

satisfies (†), i. e. H0
#  »µN = 0.

Remark. If Λ = Λ(n, n, 0, 0, 0, 0) for some n, #  »µN equals #   »µ2n defined in Chapter 2.

Another important definition will be the one of a refinement position.

Consider a black external vertex v of an FPL φ and the corresponding black path. The
edge adjacent to v will go towards the center of φ; but then there are three possibilities
of what the next edge of the corresponding black path is (cf. Figure 23):

• the path goes to the right; we then call v a “type a” vertex

• the path goes to the left; we then call v a “type b” vertex

• the path goes up; we then call v a “type c” vertex.

Lemma 4.7. Consider a side of an FPL starting with a black vertex. Then

• the first vertex (on this side) is of type a or c

• vertices of type c are followed by vertices of type b
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• the last vertex is of type b or c.

Proof. The lemma is proven if we can rule out the following five cases:

(1) The first vertex can not be of type b.

(2) The last vertex can not be of type a.

(3) A vertex of type b cannot be followed by a vertex of type c.

(4) A vertex of type b cannot be followed by a vertex of type a.

(5) A vertex of type c cannot be followed by a vertex of type a.

The first vertex can not be of type b because of the alternating boundary conditions:

Analogously, the last vertex can not be of type a. This rules out (1) and (2).
Now consider a vertex of type b. If it was followed by a type a vertex, the situation
would look like this:

But then the marked vertex would have at most one adjacent black edge, what is im-
possible (since a vertex of degree 4 must have 2 adjacent black edges). This rules out
(3).
Cases (4) and (5) are analysed similarly: If a vertex of type b was followed by a type

c vertex, there would be the following situation:

Finally consider a vertex of type c. If it was followed by a type a vertex, the situation
would look like this:

Both are contradictions for the marked vertices by the degree constraints.

Corollary 4.8. On each side of an FPL (and in particular on the reference side) there
is exactly one boundary vertex v (black or white) which has the form

v or v .
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Proof. By the last lemma, the sequence of black vertices is either

(a, . . . , a, c, b . . . , b)

or

(a, . . . , a, b . . . , b)

(with a possibly empty sequence of a’s and b’s). The first case corresponds to

,

(that is, the row contains exactly one and not ); the second case to

,

(that is, the row contains exactly one and not ).

Definition 4.9. Let φ ∈ FPL(Λ). We have seen that there is a unique tile of the form

v or v

on the reference side of φ; we refer to the vertex v as the refinement position of φ and
say, φ has a black or white refinement position, respectively. We shall write h(φ) for this
vertex.

Definition 4.10. FPLb(Λ) is the subset of FPL(Λ) consisting of all FPLs with black
refinement position; analogously is FPLw(Λ) the subset of FPL(Λ) consisting of all
FPLs with white refinement position.

Remark. There is no a priori relation between FPLb(Λ) and FPL+(Λ) (except for
|FPLb(Λ)| = |FPL+(Λ)|).

When we assign a link pattern to an FPL, it will be often convenient to start counting
from the refinement position:

Definition 4.11. Πb(φ) := Π(φ, h(φ)).

4.2 Wieland half-gyration

We need to define an important map on FPL(Λ), the so-called Wieland half-gyration.
Introduced by Wieland 2000 in [12], it is the core of many works concerning FPLs.
Let φ be an FPL, than color the faces of the underlying domain in a checkerboard

manner. This can be done in two ways; therefore we make the following agreement:
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Figure 24: First row: An FPL in FPL+(Λ) and the associated pairing. Second row:
An FPL in FPL−(Λ) and the associated pairing. The domain Λ is given by
Λ(5, 5, 0, 0, 0, 2).

If φ ∈ FPL+(Λ), the bottom-left face is colored white; if φ ∈ FPL−(Λ), the bottom-
left face is colored black.
Now extend this coloring to the external vertices in the following way:
If φ ∈ FPL+(Λ), then we “pair” the vertices 2i and 2i + 1 for every i ∈ {1, . . . , n}

(that is, we identify the vertices 2i and 2i+ 1); if φ ∈ FPL−(Λ), we “pair” the vertices
2i− 1 and 2i for every i ∈ {1, . . . , n} and identify the resulting FPL with φ.
By identifying two vertices, another face is produced; we color all new produced faces

black.
We refer to the set of black faces as Γ+, if φ ∈ FPL−(Λ) and Γ+, if φ ∈ FPL−(Λ).

Definition 4.12. To define Wieland half-gyration, we first need to define two maps

H+ : FPL+(Λ)→ FPL−(Λ), H− : FPL−(Λ)→ FPL+(Λ).

The maps H+ and H− are defined similarly, but H+ acts on each black face γ ∈ Γ+,
whereas H− acts on each black face γ ∈ Γ− in the following way:
If the face γ is of size 4 and its edges colored alternatively, that is, has the form

or

or has size 2 and is punctured and colored alternatively, it stays unchanged, in every
other case its colors are inverted.
Figure 26 lists all possible configurations of a circle γ up to rotation and switching black
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Figure 25: An FPL φ (left) and H(φ) (right).

and white and H±(γ) directly under γ.
Since these circles are disjoint, we can let H± act on all circles simultaneously; H(φ)
shall be the thereby resulting FPL.
We now define the Wieland half-gyration H by

H(φ) :=

{
H+(φ) if φ ∈ FPL+(Λ)
H−(φ) if φ ∈ FPL−(Λ)

Remark.

(1) Each vertex has at most two black adjacent faces (i. e. faces affected by H). One
may check that for each combination of these two faces, the degree constraints
after the application of H are still met, i. e. that H(φ) is indeed an FPL.

(2) By the very definition of H±, vertices of unpunctured faces of size 2 always change
their colors.
Therefore, all external vertices of an FPL change their colors by applying H (this
can be seen as a justification that H+, H− indeed map into FPL−(Λ),FPL+(Λ),
respectively).

(3) We have

Hk(φ) = H(−1)kH(−1)k−1 . . . H−H+φ

if φ ∈ FPL+(Λ) and

Hk(φ) = H(−1)k+1H(−1)k . . . H+H−φ

if φ ∈ FPL−(Λ).
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Figure 26: Top row: Circles before the application of H, bottom row: the corresponding
circles after the application of H.

(4) Often, one is interested in H2 and calls this map the Wieland gyration, therefore
the name half-gyration for H.

(5) After applying H, there is no need for the external vertices to stay paired (and if
we want to apply H again, we need to do the “other pairing”). In illustrations, we
let sometimes the vertices stay paired and sometimes not - there is no difference
whatsoever.

Lemma 4.13 (Wieland half-gyration lemma). Let φ ∈ FPL(Λ) and v be an external
black vertex of φ. Then

Π(H(φ), v + 1) = Π(φ, v).

Proof. We show that two external black vertices v and w are connected by a black path
if and only if v + 1 and w + 1 are connected by a black path in H(φ).
We thus have to show that for each circle affected by H the following holds:
If a black path enters the circle at the vertex i and leaves it at the vertex j, in H(φ)
also a black path enters the circle at i and leaves it at j.
But this is clear by inspecting Figure 26.
So we can identify the black paths in φ and H(φ). It remains to show that a black

path connecting v and w in φ connects v + 1 and w + 1 in H(φ):
Since v is paired to v + 1 and

v v + 1

,
v v + 1

under the application of H (that is, a path ending in φ in the vertex v ends in H(φ) in
the vertex v + 1), the lemma follows. (By inspecting the “punctured” cases in Figure
26, one gets the lemma for LP∗(2n).)

Corollary 4.14. Let φ ∈ FPL(Λ) and v be an external black vertex of φ. Then

Π(H2(φ), v) = RΠ(φ, v).

Proof. The set of black external edges of φ is given by {. . . , v− 2, v, v+2, . . .} and thus

Π(φ, v + 2) = R−1Π(φ, v).
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By the previous lemma,

Π(H2(φ), v) = Π(H(φ), v − 1)

= Π(φ, v − 2) = RΠ(φ, v).
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5 The proof of the

Razumov-Stroganov-Cantini-Sportiello theorem

This chapter is devoted to two things:

We first prove that a certain vector
#        »

ψΛ(t) satisfies the two conditions stated in Theorem

3.22, i. e.
#        »

ψΛ(t) is the unique (up to normalization) eigenvector for the Hamiltonian H0.

Then, we show that
#        »

ψΛ(t) equals the vector #  »µN defined in Theorem 4.6.

Fix a domain Λ. In this chapter, an FPL’s refinement positions plays a crucial role;
therefore we will mark it in illustrations with a vertex bigger than the other vertices.
Sometimes it is convenient to work in the vector space C

FPLb(Λ), defined by

C
FPLb(Λ) := C

|FPLb(Λ)|

with standard basis

#»

φ1 =








1
0
...
0







, . . . ,

#  »

φm =








0
...
0
1







,

where φ1, . . . , φm is an enumeration of FPLb(Λ).
Any map F defined on FPLb(Λ) can be extended (as in Chapter 1) to a linear map on
C

FPLb(Λ) by

F




∑

φ∈FPLb(Λ)

cφ
#»

φ



 =
∑

φ∈FPLb(Λ)

cφ
#       »

F (φ).

5.1 A certain vector satisfies the

Razumov-Stroganov-Cantini-Sportiello theorem

The vector
#        »

ψΛ(t) shall assign to each FPL the corresponding link pattern, weighted with
a factor corresponding to its refinement position, more precisely:

Definition 5.1. We define the vector
#        »

ψΛ(t) by

#        »

ψΛ(t) :=
∑

φ∈FPLb(Λ)

th(φ)−1 #         »

Πb(φ),

where h(φ) denotes the refinement position of φ ∈ FPLb(Λ).

Our goal is to show Theorem 5.2, which, by Theorem 3.22, follows from Theorem 5.3
and Theorem 5.4.
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Theorem 5.2. The vector
#        »

ψΛ(t) satisfies the scattering equation (⋆) at i = 1, i. e.

X1(1)
#         »

ψΛ(1) = R
#         »

ψΛ(1).

Theorem 5.3. e1(1−R)
#        »

ψΛ(t) = 0.

Theorem 5.4. Let πi ∈ LP(Λ) with 1 6a 2. Then the i-th coordinate ψi(t) of
#        »

ψΛ(t)
satisfies

tψi(t) = ψR−1(i)(t)

(where R−1(i) is defined as in Theorem 3.22).

It will be convenient to use the following notions:

Definition 5.5. Let FPL
[i]
b (Λ) be the subset of FPLb(Λ) consisting of all FPLs with

refinement position i (and we define FPL[i]
w (Λ) alike).

(1) We define a vector
#   »

ψ
[i]
Λ ∈ C

LP(Λ) (which is a non-weighted restriction of
#  »

ψΛ to
FPLb(Λ)) by

#   »

ψ
[i]
Λ :=

∑

φ∈FPL
[i]
b
(Λ)

#         »

Πb(φ).

(2) We define another vector
# »

s
[i]
Λ ∈ C

FPLb(Λ) by

# »

s
[i]
Λ :=

∑

φ∈FPL
[i]
b
(Λ)

#»

φ .

We make the following easy observations:

Proposition 5.6.

(1) Πb

# »

s
[i]
Λ =

#   »

ψ
[i]
Λ .

(2)
#        »

ψΛ(t) =
L∑

i=1

ti−1
#   »

ψ
[i]
Λ .

Now we can prove Theorems 5.3 and 5.4:

Proof of Theorem 5.3. Fix Λ and a refinement position i ∈ {1, . . . , L}.
We define two operators ẽ1, ẽN on FPL+(Λ) and FPL−(Λ).
Let φ ∈ FPL+(Λ), then ẽ1(φ) (or ẽN(φ)) is the FPL resulting from the following pro-
cedure:

• All faces but the face on the top-right (or top-left) of the refinement position stay
unchanged.

55



• All colors of the face on the top-right (or top-left) of the refinement position are
inverted, if the face is of the form

or ,

otherwise it also stays unchanged.

On FPL−(Λ) are the operators ẽ1 and ẽN defined alike, but the terms “top-left” and
“top-right” are interchanged.

The choice of the names ẽ1 and ẽN is not coincidentally; indeed we have for ẽ1:

and

and analogously for ẽN :

and

,

that is, we have

Πb(ẽ1(φ)) = e1Πb(φ),Πb(ẽN(φ)) = eNΠb(φ).

Claim: The functions HẽN and H−1ẽ1 are bijections FPL
[i]
b (Λ)→ FPL

[i]
w (Λ).

Since the functions H, ẽ1, ẽN are invertible, they are indeed bijections; it thus only
remains to show that their image is FPL[i]

w (Λ).

Let φ ∈ FPL
[i]
b (Λ), then φ looks near its refinement position like this:

?

We distinguish two cases depending on the color of the edge marked with “?”.
Case 1: If this edge is white, applying HẽN results in the following FPL (note that the
refinement position changes from i to i− 1 and back to i):

ẽN H

Case 2: If the edge is black, then applying HẽN results in the following FPL:
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ẽN H

In both cases, HẽN(φ) ∈ FPL
[i]
w (Λ).

From that and the invertibility of H and ẽN we obtain the claim concerning HẽN .
An analogous proof holds for H−1ẽ1; therefore the two maps are indeed bijections
FPL

[i]
b (Λ)→ FPL

[i]
w (Λ).

So it follows

HẽN
# »

s
[i]
Λ =

∑

φ∈FPL
[i]
w (Λ)

#»

φ and H−1ẽ1
# »

s
[i]
Λ =

∑

φ∈FPL
[i]
w (Λ)

#»

φ

and therefore

H2ẽN
# »

s
[i]
Λ = ẽ1

# »

s
[i]
Λ .

By recalling Wieland’s half-gyration lemma 4.13, we obtain

e1
#   »

ψ
[i]
Λ = e1Πb(

# »

s
[i]
Λ ) = Πb(ẽ1

# »

s
[i]
Λ )

= Πb(H
2ẽN

# »

s
[i]
Λ ) = RΠb(ẽN

# »

s
[i]
Λ )

= ReNΠb(
# »

s
[i]
Λ ) = ReN

#   »

ψ
[i]
Λ .

This implies

e1(1−R)
#   »

ψ
[i]
Λ = (e1 − e1R)

#   »

ψ
[i]
Λ = (e1 −ReN)

#   »

ψ
[i]
Λ = 0

and thus, by Proposition 5.6,

e1(1−R)
#        »

ψΛ(t) = 0,

as required.

Proof of Theorem 5.4. Choose i ∈ {1, . . . ,LP(N)} such that 1 6a 2 in πi; let ψi(t) be

the i-th coordinate of
#        »

ψΛ(t).

We have by definition of
#        »

ψΛ(t)

tψi(t) = t(a0t
0 + a1t

1 + . . .+ aL−1t
L−1) = a0t

1 + a1t
2 + . . .+ aL−1t

L−1,

where

aj = #(φ ∈ FPLb(Λ) : Πb(φ) = πi, h(φ) = j + 1).
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Since we want to show

tψi(t) = ψR−1(i)(t),

we have to show that this expression equals

ψR−1(i)(t) = b0t
0 + . . .+ bL−1t

L−1,

where

bj = #(φ ∈ FPLb(Λ) : Πb(φ) = R−1(πi), h(φ) = j + 1).

So we have to show

∀j ∈ {0, . . . , L− 1} : aj = bj+1,

i. e.

#(φ ∈ FPLb(Λ) : Πb(φ) = πi, h(φ) = j + 1)

=#(φ ∈ FPLb(Λ) : Πb(φ) = R−1(πi), h(φ) = j + 2).

Let φ ∈ FPLb(Λ) such that Πb(φ) = R−1(π) and h(φ) = j + 2. Then N 6a 1 in
φ′ := H(φ) (because of Πb(φ) = R−1(πi) and 1 6a 2 in πi).
We claim Πb(φ

′) = R(πi) and h(π
′) = j + 1 and start to prove the latter.

The area near φ’s refinement position looks schematically like (here, we label the faces
in φ to illustrate the situation better)

1 2 3 4 5
6 7 8

.

Note that N 6a 1 in πi; so the edge on top of face 7 must be white.
Now we apply H.
Regardless of whether φ ∈ FPL+(Λ) or φ ∈ FPL−(Λ), of the faces in the picture only
faces 2, 4 and 7 are affected. So this part of φ becomes

1 2 3 4 5
6 7 8

,

that is, h(H(φ)) = j + 1.
The former is a calculation involving Lemma 4.14 and Corollary 4.14:

Πb(φ
′) = Π(H(φ), j + 1)

= Π(H2(φ), j + 2)

= R(φ, j + 2) = RΠb(φ) = RR−1πi = πi.
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This proves our claim.

Now let φ ∈ FPLb(Λ) with Πb(φ) = πi and h(φ) = j + 1.
Then setting φ′ := H(φ), Πb(φ

′) = R−1(πi) and h(φ
′) = j + 2; the proof of these facts is

analogous to the proof above.
Thus H is a bijection between

{φ ∈ FPLb(Λ),Πb(φ) = πi, h(φ) = j + 1}

and

{φ ∈ FPLb(Λ),Πb(φ) = R−1(πi), h(φ) = j + 2}

so the theorem follows.

We have proven that H0

#         »

ψΛ(1) = 0; the Razumov-Stroganov-Cantini-Sportiello theo-
rem however states H0

#  »µN = 0 (with #  »µN defined as in Chapter 4). Hence it remains to

prove
#         »

ψΛ(1) =
#  »µN .

5.2 The remaining part

We start by making observations about the refinement position of an FPL.

Lemma 5.7. Let φ ∈ FPL+(Λ) and φ
′ := H(φ).

(1) If h(φ) is even (=white), then h(φ′) ∈ {h(φ), h(φ) + 1}.

(2) If h(φ) is odd (=black), then h(φ′) ∈ {h(φ), h(φ)− 1}.

Proof.

(1) There are three possible cases on how the vertex directly above the refinement
position looks like:

(a) (b) (c)

After applying H, the cases correspond to (recall that since φ ∈ FPL+(Λ) and φ’s
refinement position is even, the face on the top-right of the refinement position is
affected by H)

(a) (b) (c)

59



Note that the edge h(φ) + 1, h(φ), H(φ) + 1 is the new (white, black or white)
refinement position, respectively.

(2) In the same vein, for φ with h(φ) odd, we have the three possible cases

(a) (b) (c) .

By recalling that the face on the top-left of the refinement position is affected by
H (since φ ∈ FPL+(Λ) and the refinement position is odd), we get by applying
H

(a) (b) (c) .

Note that the edge h(φ), h(φ) − 1 or H(φ) − 1 is the new (white, black or black)
refinement position, respectively.

Dual to the previous lemma is the next one:

Lemma 5.8. Let φ ∈ FPL−(Λ) and φ
′ := H(φ).

(1) If h(φ) is odd (=white), then h(φ′) ∈ {h(φ), h(φ) + 1}.

(2) If h(φ) is even (=black), then h(φ′) ∈ {h(φ), h(φ)− 1}.

Lemma 5.9. Let ht(φ) := h(H t(φ)) and define g(t;φ) := ht(φ)− t = h(H t(φ))− t.
Fix φ ∈ FPL+(φ); then g(t;φ) is non-decreasing in t and each odd value has exactly
one preimage.

Proof. By Lemma 5.7, if g(t) is even, then ht+1(φ) ∈ {ht(φ), ht(φ) + 1} , so g(t + 1) ∈
{ht(φ)−t−1, ht(φ)−t} = {g(t)−1, g(t)}; if g(t) is odd, then ht+1(φ) ∈ {ht(φ), ht(φ)−1},
so g(t+ 1) ∈ {ht(φ)− t− 1, ht(φ)− t− 2} = {g(t)− 1, g(t)− 2}.
Thus, to prove the second fact, it remains to show that g can not be ultimately constant;
but this follows from t increasing to infinity and ht(φ) being bounded by L(φ).

Hence, if φ is an an FPL, we can define t∗(φ) to be the preimage of 1 under g.

Proposition 5.10. Define a function Θ on FPL+(Λ) and a function Θ−1 on FPLb(Λ)
by

Θ(φ) := H t∗(φ)φ; Θ−1(φ) := H−h(φ)+1φ.

Then
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(a) im(Θ) = FPLb(Λ) and im(Θ−1) = FPL+(Λ).

(b) Θ(Θ−1(φ)) = φ and Θ−1(Θ(φ)) = φ.

Thus, Θ is a bijection between FPL+(Λ) and FPLb(Λ).

(c) For φ ∈ FPL+(Λ), we have

Π+(φ) = Πb(Θ(φ)).

Proof.

(a) Let φ ∈ FPL+(Λ). Recall that since φ ∈ FPL+(Λ), H
2k+1(φ) ∈ FPL−(Λ) and

H2k(φ) ∈ FPL+(Λ). We distinguish two cases:

First case: h(H t∗(φ)φ) is even. Then, because of h(H t∗(φ)φ) − t∗(φ) = 1, t∗(φ) is
odd. So, H t∗(φ)(φ) ∈ FPL−(Λ) and has an even refinement position, so h(H t∗(φ)φ)
is black.

Second case: h(H t∗(φ)φ) is odd. Then, t∗(φ) is even. So, H t∗(φ)(φ) ∈ FPL+(Λ)
and has an odd refinement position, so h(H t∗(φ)φ) is black.

Similarly, one checks that Θ−1(φ) ∈ FPL+(Λ) for φ ∈ FPLb(Λ):

First case: h(φ) is even. Then φ ∈ FPL−(Λ) and −h(φ)+1 is odd, so H−h(φ)+1φ ∈
FPL+(Λ).

Second case: h(φ) is odd. Then φ ∈ FPL+(Λ) and −h(φ) + 1 is even, so
H−h(φ)+1φ ∈ FPL+(Λ).

(b) We have to show (Θ(Θ−1(φ))) = φ and (Θ−1(Θ(φ))) = φ.
Concerning the former, Θ(Θ−1(φ)) = φ is equivalent to

H t∗(H−h(φ)+1φ)H−h(φ)+1φ = Θ(H−h(φ)+1φ) = φ;

this, in turn, holds if and only if

t∗(H−h(φ)+1φ)− h(φ) + 1 = 0,

that is, if and only if

t∗(H−h(φ)+1φ) = h(φ)− 1.

Let ψ := H−h(φ)+1φ; thus we want to show g(h(φ)− 1;ψ) = 1.

g(h(φ)− 1;ψ) = h(Hh(φ)−1ψ)− h(φ) + 1

= h(Hh(φ)−1H−h(φ)+1φ)− h(φ) + 1

= h(φ)− h(φ) + 1 = 1.
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Concerning the latter, we want to show Θ−1(Θ(φ)) = φ. Let m := t∗(φ) (i. e. we
have h(Hm(φ))−m = 1).
So

Θ−1(Θ(φ)) = Θ−1(Hmφ) = H−h(Hm(φ))+1Hmφ

= H−(h(Hmφ))+1+mφ = H−1+1φ = φ.

(c) By Wieland gyration, we have

Πb(Θ(φ)) = Πb(H
t∗(φ)φ) = Π(H t∗(φ)φ, h(H t∗(φ)φ))

= Π(φ, h(H t∗(φ)φ)− t∗(φ)
︸ ︷︷ ︸

=1 by definition of t∗(φ)

) = Π(φ, 1)

= Π+(φ).

Corollary 5.11 (Razumov-Stroganov-Cantini-Sportiello theorem). Recall the definition
of #  »µN given in Chapter 4,

#  »µN :=
∑

φ∈FPL+(Λ)

#         »

Πb(φ).

Then, #  »µN =
#         »

ψΛ(1), that is,
#  »µN satisfies (†).

Proof. We have

#  »µN = Π+

∑

φ∈FPL+(Λ)

#»

φ
(c)
= Πb

∑

φ∈FPL+(Λ)

Θ
(

#»

φ
)

(b)
= Πb

∑

φ∈FPLb(Λ)

#»

φ =
#         »

ψΛ(1),

using (c) and (b) of the previous proposition, respectively.
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Abstract

For several reasons, one is interested in finding the unique eigenvector of the Hamiltonian,
a linear operator in CTLn, the Cyclic Temperley-Lieb algebra of size n (an algebra acting
on the set of link patterns of size n).
A. V. Razumov and Yu. G. Stroganov conjectured in 2001 a relation between these

eigenvector, the so-called ground-state and enumerations of fully packed loop configura-
tions of size n.
L. Cantini and A. Sportiello managed to prove this conjecture in 2010 and also proved

a refined version corresponding to more general fully packed loop configurations.
In this thesis, we shall – after a motivation for the topic by means of percolation

theory – prove this refined theorem (by a proof which is of combinatorical nature) in
great detail and give examples.
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Zusammenfassung

Aus meheren Grn̈den ist es von Interesse, den eindeutigen Eigenvektor des Hamilton-
Operators, eines linearen Operators in CTLn, der Cyclic Temperley-Lieb-Algebra der
Ordnung n (eine Algebra, die auf der Menge der Link Patterns der Ordnung n operiert),
zu finden.
A. V. Razumov und Yu. G. Stroganov stellten im Jahr 2001 die Vermutung auf, dass

eine bestimmte Verbindung zwischen diesem Eigenvektor, dem sogenannten ground-
state, und Abzählungen von fully packed loop configurations der Größe n bestehe.
L. Cantini and A. Sportiello gelang es 2010, diese Vermutung zu beweisen – sie be-

wiesen außerdem eine verfeinerte Version, die sich auf allgemeinere fully packed loop
configurations bezieht.
In dieser Arbeit werden wir – nach einer Motivation des Themas durch das Gebiet der

Perkolationstheorie – diese verfeinerte Aussage in großer Ausführlichkeit beweisen (der
Beweis wird auf kombinatorische Weise geführt) und Beispiele geben.
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