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Introduction

Lens spaces are classical examples of manifolds. Especially the three-dimensional lens

spaces played an important role in the history of algebraic topology. The goal of this

thesis is to give an overview of how lens spaces can be constructed and to explain a

proof of the known homotopy and homeomorphy classification results of lens spaces.

According to [1] the name ”lens spaces” (Linsenräume) appeared for the first time in

the paper [2, p. 58] from 1931 by Threlfall and Seifert. The classical definition of a lens

space used by Threlfall and Seifert, also later in their book [3, p. 210], was first made by

Tietze in 1908 (see [4, p. 110]): A three-dimensional lens space Ll/m is a quotient space

of the 3-ball, where the top hemisphere gets identified with the bottom hemisphere after

a twist of 2πl/m, for some m ∈ Z, m ≥ 2 and some l ∈ Z relatively prime to m. The

3-ball used in this definition is oftentimes drawn in the shape of a lens (see for example

[3, p. 210], [2, p. 58], [5, p. 29]). The lens shape naturally occurs in another definition

of lens spaces, as orbit spaces of an action of Zm on S3, whose fundamental domain (in

the case m = 3) looks like a lens (see 2.8). We will discuss these constructions and their

equivalence in chapter 2, as well as a third construction: Historically, the first mentioning

of examples of lens spaces was through Heegard diagrams by Dyck (reference: [1]). Lens

spaces are exactly the three-dimensional manifolds of Heegard genus 1, which means a

lens space can be obtained by gluing together two full tori via a homeomorphism of their

boundaries. At the end of chapter 2, we explain a definition for higher-dimensional lens

spaces - our main subjects of further study.

The question Tietze posed was in which cases two given lens spaces are homeomorphic -

this has been an open question until 1935, when first Reidemeister developed a concept

to answer this question(, which is today known as Reidemeister torsion): two lens spaces

Ll/m and Ll′/m are homeomorphic, if and only if l ≡ ±l′ or l · l′ ≡ ±1 (mod m).

In chapter 5 we will see a proof of this statement, but with a different approach, which

is due to Whitehead (the concept - geometrical deformations - was first described in his

paper [6]) and which also answers the question of homeomorphy for higher-dimensional

lens spaces. We will see that two lens spaces are homeomorphic if and only if they are
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Introduction 2

simple-homotopy equivalent (in theorem 5.15) and we will briefly go over some important

notions of simple-homotopy theory in the section 1.3.

The theory of simple-homotopy has a close connection to developments in modern topol-

ogy, such as the s-cobordism theorem (see [7, p. 83]), and is very interesting in its own

right; the homeomorphy classification of lens spaces is a mere application of some of the

very strong theorems one can prove within simple-homotopy theory; still, there is some

tough algebra involved (in particular Franz’ theorem, which is stated in 5.1).

In their second paper [8, p. 548] from 1933, Threlfall and Seifert gave a necessary

condition for lens spaces to be homeomorphic: If Ll/m ∼= Ll′/m, then the congruence

l ≡ ±l′ · k2 (mod m) has a solution. Today, this congruence is known to be the classify-

ing condition for two lens spaces to be homotopy equivalent, which was first proven by

Whitehead in 1941 (in the paper [9]). We will see a proof of this statement(, which is

generalized to higher-dimensional lens spaces) in chapter 4. Our proof uses Bockstein

homomorphisms and more classical notions of algebraic topology. For a given m ∈ Z, all

homology and homotopy groups of two lens spaces Ll/m and Ll′/m are the same (which

we will see in chapter 3), so it may seem surprising that not much more theory is needed

to tell their homotopy equivalence classes apart. Although historically, the analysis of

the two lens spaces L1/5 and L2/5 (which are not homotopy equivalent) has led to the

development of ”Verschlingungszahlen” (described for example in [5, chapter 14.7]) by

Alexander. (To see Alexander’s proof of how L1/5 and L2/5 are not homeomorphic go to

[10, p. 258-260].) As one can easily see from the two classification results, that there are

not only examples of lens spaces, which share the same groups and are not homotopy

equivalent, but that there are lens spaces, which are not homeomorphic, but are homo-

topy equivalent - one example of this phenomenon are the two spaces L1/7 and L2/7 (see

example 5.1).

We will briefly review the important concepts of homology groups and homotopy groups

as well as some important theorems used in the proof of the homotopy classification

in the sections 1.1 and 1.2. We will compute the homology of lens spaces in chapter 3

using a CW decomposition, which will also help us in the proof of the homeomorphy

classification.

Lens spaces also played an important role in the construction of the first counter example

to the ”Hauptvermutung der kombinatorischen Topologie” by Milnor (in [11]): If L

denotes the lens space L1/7, then M := L×∆3 is a 6-manifold with border ∂M ∼= L×S2.

We define Y := (∂M × I)/(∂M × {1}) to be the cone over ∂M , and identify ∂M with

∂M×{0} ⊂ Y to set X := M∪Y . Milnor proved that there are two simplicial complexes

K1 and K2, such that |K1| ∼= |K2| ∼= X and that there is no subdivision of K1 which is

isomorphic to any subdivision of K2. However, we will not go into any details of this
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within this thesis. An explanation on how to construct more counter-examples to the

Hauptvermutung can be found in [7, p. 82-84].

Also of interest are infinite-dimensional lens spaces, which we will briefly discuss in 2.10.

Infinite-dimensional lens spaces are examples of Eilenberg-McLane spaces K(Zm, 1), and

their homotopy type hence only depends on the number m ∈ Z, much different than

in the finite-dimensional case. We will make use of infinite-dimensional lens spaces to

calculate the cup-product structure on the cohomology ring of a lens space in 3.8.

For the entire thesis we will suppose knowledge of elementary notions of topology, as

well as homological algebra and category theory. Good references are [12], [5], [13].





Chapter 1

Important Notions

We start by introducing some important notions - mostly of algebraic topoloy. The first

one: Singular homology groups are of great use in homotopy theory and have led to

many different developments in many fields of mathematics.

For our proof of the homotopy classification result of lens spaces, we will need to compute

their homology groups.

1.1 Singular (Co)Homology

Definition 1.1 (Singular Homology). Denote by ∆n the n-simplex, i.e. the convex hull

of {e0, . . . , en} ⊆ Rn+1, where the (ei)i∈{0...n} are the standard basis for Rn+1. For q ≥ 1

and 0 ≤ i ≤ n define δin−1 : ∆n−1 → ∆n to be the affine map defined by

δin−1(ej) =

ej if j < i

ej+1 if i ≤ j ≤ n
,

i.e. the embedding of ∆n’s ith facet into ∆n.

For any topological space X, define Cn(X) to be the free Z-module generated by the

set of all singular simplices, i.e. all continuous mappings ∆n → X. If (X,A) is a

topological pair, we have a canonical injective linear map Cn(A) ↪→ Cn(X) and we

define Cn(X,A) := Cn(X)/Cn(A).

For any topological space X, define the boundary operator ∂ = ∂n : Cn(X)→ Cn−1(X)

by ∂(σ) =
n∑
i=0

(−1)i(σ ◦ δin−1). Obviously this also induces a map ∂ : Cn(X,A) →

Cn−1(X,A). One may show ([5, p. 216]) that ∂∂ = ∂n ◦ ∂n−1 = 0, so that C∗(X,A)

becomes a chain complex, called the singular chain complex.

5



Chapter 1. Important Notions 6

Any continuous map f : (X,A)→ (Y,B) between topological pairs induces a chain map

f# : Cn(X,A)→ Cn(Y,B) (that means ∂f# = f#∂), by
∑
σ
nσσ 7→

∑
σ

(f ◦ σ).

We define the singular homology of a pair (X,A) to be the homology of the singular

chain complex, denoted by H∗(X,A). And by f∗ : Hn(X,A)→ Hn(Y,B) we denote the

induced map from the chain map f# for any continuous mapping f : (X,A)→ (Y,B).

Definition 1.2 ((Co)Homology with coefficients in G). If G is any abelian group, we

may define Cn(X,A;G) := Hom(Cn(X,A), G), the nth cochain group with coefficients

in G of the pair (X,A). From ∂ : Cn(X,A) → Cn−1(X,A) we obtain a coboundary

map δ : Cn−1(X,A;G) → Cn(X,A;G). Taking cohomology groups, we define the nth

cohomology group with coefficients in G by Hn(X,A;G) := Hn(C∗(X,A;G)).

Similarly, we may define homology with coefficients in G, by taking the tensor product

of Cn(X,A) with G. That means we define Hn(X,A;G) := Hn(C∗(X,A;G)), where

C∗(X,A;G) is given in each degree n by Cn(X,A;G) := Cn(X,A)⊗Z G.

Definition 1.3 (Cup Product). In definition 1.2, if we choose instead of an abelian

group G, a commutative ring with unity R, then we may define a product on C∗(X;R)

via

∪ : Cp(X;R)× Cq(X;R)→ Cp+q(X;R)

(φ ∪ ψ)(σ) := φ(σ
∣∣
[e0,...,ep]

) · ψ(σ
∣∣
[ep,...,ep+q ]

),

where ∆j−i = [ei, . . . , ej ] ⊆ ∆n = [e0, . . . , en] is the j−i simplex spanned by {ei, . . . , ej}.

One may show ([12, p. 206]) that

δ(φ ∪ ψ) = (δφ) ∪ ψ + (−1)pφ ∪ δψ,

so it follows that there is an induced product structure on cohomology:

∪ : Hp(X;R)×Hq(XR)→ Hp+q(X;R)

([φ], [ψ]) 7→ [φ ∪ ψ].

Proposition 1.4. The product ∪ is associative and has unity 1 ∈ H0(X;R).

If f : Y → X is continuous, then f∗(α ∪ β) = (f∗α) ∪ (f∗β) for all α, β ∈ H∗(X;R).

Also ∪ satisfies the graded commutativity property:

α ∪ β = (−1)pqβ ∪ α

for any α ∈ Hp(X;R) and β ∈ Hq(X;R).
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Reference: [12, p. 210].

The most important properties of homology groups are summarized in the following

theorem.

Theorem 1.5 (Eilenberg-Steenrod Axioms). Singular homology satisfies the Eilenberg-

Steenrod Axioms:

1. Homotopy invariance: If f : (X,A) → (Y,B) is homotopic to g, then f∗ = g∗ :

Hn(X,A)→ Hn(Y,B).

2. Long exact sequence: For any topological triple (X,A,B) and every degree q there

is a map ∂ = ∂q : Hq(X,A) → Hq−1(A,B), such that the following sequence is

exact:

. . . // Hq(A,B)
i∗ // Hq(X,B)

j∗
// Hq(X,A)

∂ // Hq−1(A,B) // . . . ,

where i : (A,B) ↪→ (X,B) and j : (X,B) ↪→ (X,A) are the inclusion mappings.

3. Excision: If (X,A) is a topological pair, and U ⊆ X such that Ū ⊆ Å, then the

inclusion map i : (X \U,A \U)→ (X,A) induces an isomorphism i∗ in homology.

4. Additivity: Inclusion mappings induce an isomorphism

⊕
α

Hq(Xα, Aα)→ Hq(
⊔
α

Xα,
⊔
α

Aα).

5. Dimension: Hq({∗}) = 0 for all q 6= 0 and H0({∗}) = Z.

Reference: [5, p. 221-229].

Corollary 1.6 (Suspension). For a topological space X, define the suspension of X as

ΣX := X × [0, 1]/X × {1}︸ ︷︷ ︸
=:C+

∪X × [−1, 0]/X × {−1}︸ ︷︷ ︸
=:C−

.

Then Hq(X, ∗) ∼= Hq+1(ΣX, ∗) naturally for all q.

Proof (see [14, p. 158]). Looking at the long exact sequence

0 = Hq+1(C+X, ∗) // Hq+1(C+X,X)
∂ // Hq(X, ∗) // Hq(C+X, ∗) = 0 ,

we see that ∂ must be an isomorphism (C+X is contractible). But Hq+1(C+X,X) ∼=
Hq+1(ΣX, ∗), with excision (for more details, see [14, p. 157 Corollary IV.9.2]).
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1.1.1 Cellular Homology

An important way of computing homology groups of a space - in particular a CW

complex - is with the help of a CW decomposition of it.

Definition 1.7. For any CW pair (X,A) with characteristic mappings φα : (Dn, ∂Dn)→
(Xn, Xn−1), respectively ϕα : Sn−1 = ∂Dn → Xn−1 for any cell α, define the cellular

chain complex of (X,A) by Ccell
n (X,A) := Z[En(X \A)] =

⊕
α∈En(X\A)

Z, where En(X \A)

denotes the set of all n-cells of X \A. Define the boundary map by

(∂cell
n )β,α := deg( Sn−1

ϕα
// Xn−1 // Xn−1

Xn−1\β
φ−1
β

∼=
// Dn−1

∂Dn−1

∼= // Sn−1 ).

For a cellular map f : (X,A)→ (Y,B) define f∗ : Ccell
n (X,A)→ Ccell

n (Y,B) by

(f∗)β,α := deg( Sn
φα

// Xn

Xn−1

f
// Y n

Y n−1
// Y n

Y n−1\β
φ−1
β

∼=
// D

n

∂Dn

∼= // Sn ).

Define cellular homology to be the homology of the cellular chain complex.

Theorem 1.8. There is a natural isomorphism between singular homology and cellular

homology.

Reference: [12, p. 137-140].

For our later purposes of defining Whitehead torsion of a CW pair (X,A) (in section

1.3.5) we will need an enriched algebraic structure on C∗(X̃, Ã) for a universal covering

(X̃, Ã) of (X,A), which is explained in the following definition.

Definition 1.9. Let (X,A) be a CW pair, p : X̃ → X the universal covering of X and

let G := Deck(p) its group of covering automorphisms. Let Ã = p−1(A). We define an

action of G on C∗(X̃, Ã) by g · σ = g#(σ). This way C∗(X̃, Ã) becomes a Z[G]-complex

if we define

(
∑
i

nigi) · σ :=
∑
i

ni(gi · σ) =
∑
i

ni(gi)#(σ).

Proposition 1.10. Let (X,A) be a CW pair, p : X̃ → X the universal covering of

X and let G := Deck(p) its group of covering automorphisms. Let Ã = p−1(A). Then

C∗(X̃, Ã) is a free Z[G]-complex with basis {α̃ : α ∈ E(X \ A)}. Where α̃ is the cell of

X̃ \ Ã that has characteristic map φ̃α, which is a specifically chosen lift of φα (see 1.20

for existence of lifts).

Reference: [7, p. 11].
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1.1.2 The Universal Coefficient Theorem

Another useful tool to compute (co)homology are the universal coefficient theorems. For

an explanation of the Tor- and Ext-functors, go to [13, p. 29].

Theorem 1.11 (Universal Coefficient Theorem). Let (X,A) be a topological pair, G an

abelian group.

Then there is a natural short exact sequence

0 // Hn(X,A)⊗G // Hn(X,A;G) // Tor(Hn−1(X,A), G) // 0 .

This sequence splits (unnaturally).

Reference: [5, p. 263].

Theorem 1.12 (Universal Coefficient Theorem). Let (X,A) be a topological pair, G an

abelian group.

Then there is a natural short exact sequence

0 // Ext(Hn−1(X,A), G) // Hn(X,A;G) // Hom(Hn(X,A), G) // 0.

This sequence splits (unnaturally).

Reference: [5, p. 333].

1.1.3 Bockstein Homomorphisms

We will make good use of Bockstein homomorphisms in the proof of the homotopy

classification of lens spaces, especially of the Bockstein homomorphism β associated to

the sequence 0 // Zm
m // Zm2 // Zm // 0 .

Definition 1.13. Let 0 // G // H // K // 0 be a short exact sequence of

abelian groups. Apply the covariant functor Hom(Cn(X),−) and obtain

0 // Cn(X;G) // Cn(X;H) // Cn(X;K) // 0

which is as well exact, because Cn(X) is free.

Since we have a short exact sequence of chain complexes, we get an associated long exact

sequence in homology:

. . . // Hn(X;G) // Hn(X;H) // Hn(X;K) // Hn+1(X;G) // . . .
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The boundary map Hn(X;K) → Hn+1(X;G) of this sequence is called a Bockstein

homomorphism.

For our purposes the most important Bockstein homomorphism will be the one associ-

ated to the sequence 0 // Zm
m // Zm2 // Zm // 0 . This β satisfies a useful

property:

Lemma 1.14. Let β be as stated above. Then β satisfies the derivation property

β(a ∪ b) = β(a) ∪ b+ (−1)|a|a ∪ β(b).

Also β satisfies β2 = 0.

Proof (see [12, p. 304,305]). Let φ and ψ be Zm cocycles representing a and b, and let

φ̃ and ψ̃ be lifts of these to Zm2 cochains (regarding φ and ψ as functions on singular

simplices to Zm, one can take φ̃ and ψ̃ to be the same functions when regarding Zm to

be a subset of Zm2). We then have δφ̃ = mη and δψ̃ = mµ for Zm cocycles η and µ

representing β(a) and β(b) by the definition of β. Now φ̃ ∪ ψ̃ is a Zm2 cochain lifting

the Zm cocycle φ ∪ ψ and we have

δ(φ̃∪ ψ̃) = δφ̃∪ ψ̃ + (−1)|a|φ̃∪ δψ̃ = mη ∪ ψ̃ + (−1)|a|φ̃∪mµ = m(η ∪ ψ + (−1)|a|φ∪ µ)

because of the derivation property of δ. We get that η ∪ ψ + (−1)|a|φ ∪ µ represents

β(a ∪ b) and the claim follows.

To prove β2 = 0, note that if β̃ denotes the Bockstein associated to the sequence

0 // Z m // Z // Zm // 0 and if ρ denotes the homomorphism Z→ Zm reduc-

ing coefficients mod m, then β = ρβ̃. Now β2 = ρβ̃ρβ̃, but β̃ρ = 0, since im ρ = ker β̃ in

the long exact sequence containing β̃.

1.2 Homotopy Groups

Definition 1.15. Let n ≥ 0, X a topological space, x0 ∈ X.

Define the nth homotopy group of (X,x0) to be πn(X,x0) := [(In, ∂In), (X,x0)] the set

of all homotopy classes of maps (In, ∂In), (X,x0) together with the algebraic structure:

(a) of a pointed set for n = 0,

(b) of a group for n = 1, via [f ][g] := [fg], where fg is the concatenation of paths,
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(c) of an abelian group for n > 1 via [f ] + [g] := [f + g], where

f + g : (In, ∂In)→ (X,x0), (s1, . . . , sn) 7→

f(2s1, s2, . . . , sn) 0 ≤ s ≤ 1/2

g(2s− 1, s2, . . . , sn) 1/2 ≤ s ≤ 1

(concatenation in the first variable).

Definition 1.16. Let n ≥ 1, (X,A) a topological pair, x0 ∈ A.

Define the nth relative homotopy group to be πn(X,A, x0) := [(In, ∂In, Jn−1), (X,A, x0)],

where Jn−1 := ∂In \ In−1, with the algebraic structure defined with the same formulas

as in 1.15 (c). Note that this is now only a group for n ≥ 2 and only abelian for n ≥ 3.

For a proof that these structures are indeed well-defined groups, respectively abelian

groups, see [12, p. 25, p. 340-342, p. 343].

Remark 1.17. Note that

[(In, ∂In, Jn−1), (X,A, x0)] = [(In/Jn−1, ∂In/Jn−1, ∗), (X,A, x0)]

= [(Dn, Sn−1, s0), (X,A, x0)].

Proposition 1.18 (Compression Criterion). A map f : (Dn, Sn−1, s0) → (X,A, x0)

represents zero in πn(X,A, x0) if and only if it is homotopic rel Sn−1 to a map with

image contained in A.

Reference: [12, p. 343].

Theorem 1.19 (Long Exact Sequence of Homotopy Groups). Let x0 ∈ B ⊆ A ⊆ X,

then the sequence

. . . // πn(A,B, x0)
i∗ // πn(X,B, x0)

j∗
// πn(X,A, x0)

∂ // πn−1(A,B, x0) // . . .

. . . // π1(X,A, x0)

is natural and exact, where i : (A,B) ↪→ (X,B) and j : (X,B) ↪→ (X,A) are the

inclusion mappings and ∂[f ] = [f
∣∣
Sn−1 ].

Reference: [12, p. 344-345].

Now the fundamental group π1(X,x0) of a space (X,x0) is known to have a close con-

nection to its covering theory and we will state some of the most important results. For

the higher homotopy groups πn(X,x0), n ≥ 2, we have 1.22.
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Theorem 1.20. Let p : (X̃, x̃0)→ (X,x0) a covering of pointed spaces and let (Y, y0) be

a connected, locally path connected pointed space. Then a map f : (Y, y0)→ (X,x0) has

a lift f̃ : (Y, y0) → (X̃, x̃0) if and only if f∗(π1(Y, y0)) is contained in the characteristic

subgroup of p, that means f∗(π1(Y, y0)) ⊆ p∗(π1(X̃, x̃0)). In this case the lift f̃ is unique.

Reference: [14, p. 81, Theorem II.4.5].

Theorem 1.21. Let p : (X̃, x̃0) → (X,x0) be a universal covering of a locally path

connected space X. Then Deck(p) ∼= π1(X,x0).

For future references, we call this isomorphism θ = θ(x0, x̃0) : π1(X,x0)→ Deck(p); for

any [α] ∈ π1(X,x0) it is given by

θ[α](y) = α̃ · pω(1),

where y ∈ X̃, ω is a path from x̃0 to y, and α̃ · pω is the unique lift of α · pω with

α̃ · pω(0) = x̃0.

Reference: [14, p. 84, Corollary II.4.11 and p. 86, Example II.5.4].

Proposition 1.22. Let p : (X̃, x̃0)→ (X,x0) be a covering map.

Then p∗ : πn(X̃, x̃0) → πn(X,x0) is an isomorphism for every n ≥ 2 and injective for

n = 1.

Proof (see [12, p. 342]). Let [f ] ∈ πn(X,x0), i.e. f : (Sn, s0)→ (X,x0). Since π1(Sn) =

0 for n ≥ 2, we may (by 1.20) lift f over p to an f̃ : (Sn, s0)→ (X̃, x̃0). Since p ◦ f̃ = f

we get p∗([f̃ ]) = [f ], so surjectivity is shown.

Now let f̃ , g̃ : (Sn, s0)→ (X̃, x̃0), s.t. p∗([f̃ ]) = p∗([g̃]).

This means that there is a homotopy H : Sn × I → X from H0 = p ◦ f̃ to H1 = p ◦ g̃,

that fixes basepoints, i.e. Ht(s0) = x0 for all t ∈ I.

Such a homotopy may be lifted to a H̃ : Sn × I → X̃, with H̃0 = f̃ and p ◦ H̃ = H (see

[14, p. 76, Theorem II.3.3]). Since H̃0(s0) = f̃(s0) = x̃0 and p(H̃t(s0)) = Ht(s0) = x0,

we get that H̃t(s0) = x̃0 for all t ∈ I. But since p ◦ H̃1 = H1 = g, our H̃1 is as well a

lift of g with H̃1(s0) = x̃0 = g̃(s0) and it follows H̃1 = g̃ since such a lift is unique. We

have shown f̃ ' g̃, and injectivity of p∗ follows.
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1.2.1 Whitehead’s theorem

Lemma 1.23 (Compression Lemma). Let (X,A) be a CW pair and (Y,B) a topological

pair, s.t. B 6= ∅ and that for all n: If X \ A has n-cells, then πn(Y,B, y0) = 0 for all

y0 ∈ B. Then every map f : (X,A)→ (Y,B) is homotopic rel A to a map X → B.

Proof (see [12, p. 347]). Assume inductively that f has already been homotoped to take

the skeleton Xk−1 to B. Let φ be the characteristic map of a cell ek of X \ A. Then

the composition f ◦ φ : (Dk, ∂Dk) → (Y,B) can be homotoped into B rel ∂Dk, since

πk(Y,B, y0) = 0 as we supposed (see 1.18). This homotopy of f ◦ φ now induces a

homotopy rel Xk−1 of f on the quotient space Xk−1 ∪ ek of Xk−1 t Dk. Doing this

for all the k-cells of X \A simultaneously, and taking the constant homotopy on A, we

obtain a homotopy of f
∣∣
Xk∪A to a map into B. Since every CW pair has the homotopy

extension property (see [12, p. 15]), this homotopy extends to a homotopy defined on

all of X, and we completed the induction step.

If the dimension of the cells of X \ A is bounded, then we are already done. If not, we

may define a homotopy, by performing the homotopy of the kth induction step during

the interval [1− 1/2k, 1− 1/2k+1].

Theorem 1.24 (Whitehead’s theorem). Let X, Y be connected CW complexes and

f : X → Y , s.t. f∗ : πn(X)→ πn(Y ) is an isomorphism for all n. Then

(a) f is a homotopy equivalence.

(b) If f : X ↪→ Y is the inclusion of a subcomplex, then X is a strong deformation

retract of Y .

Proof (see [12, p. 347-348]). We first prove (b):

From our assumptions it follows, that all relative homotopy groups are trivial (via the

long exact sequence of homotopy groups):

πn(Y,X) = 0 for all n.

Now from the compression lemma we get that id : (Y,X) → (Y,X) is homotopic rel X

to a mapping r : Y → X.

To prove (a), note that X and Y embed into the mapping cylinder Mf := (X×ItY )/ ∼
(where (x, 1) ∼ f(x)), which deformation retracts onto Y . Now our assumptions imply

πn(Mf , X) = 0 for all n.
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Note that if f : X → Y was a cellular map, then (Mf , X) would be a CW pair and we

were done by (b), since f : X → Y is the composition of the inclusion X ↪→Mf and the

retraction Mf → Y .

Otherwise, we first obtain a homotopy rel X of the inclusion (X ∪ Y,X) ↪→ (Mf , X) to

a map X ∪ Y → X. This homotopy then extends to a homotopy from id : Mf →Mf to

a map g : Mf →Mf , which takes X ∪ Y to X.

Now applying the compression lemma again to the composition

(X × I t Y,X × ∂I t Y ) // (Mf , X ∪ Y )
g

// (Mf , X)

we obtain a deformation retraction of Mf onto X.

We will now discuss a few applications of Whitehead’s theorem that will come in handy,

when we come to the definition of Whitehead torsion in section 1.3.

Proposition 1.25. Let (K,L) be a pair of connected CW complexes, and let p : K̃ → K

be the universal covering of K. Let L̃ := p−1L. If i∗ : π1L ↪→ π1K is an isomorphism,

then p
∣∣
L̃

: L̃ → L is the universal covering of L. Further, if L is a strong deformation

retract of K then L̃ is a strong deformation retract of K̃.

Proof (see [7, p. 9]). L̃ consists of the lifts of the cells of L and is hence a subcomplex

of K̃. Obviously p
∣∣
L̃

is a covering of L. Note that by 1.22 we have that p∗ : πn(K̃, L̃)→
πn(K,L) is an isomorphism for all n ≥ 1. To see that L̃ is connected, notice that

π1(K,L) = 0, since we have exactness in the sequence

π1(L)
∼= // π1(K) // π1(K,L) // π0(L)

∼= // π0(K).

Thus π1(K̃, L̃) = 0. So since K̃ is connected and the sequence

0 = π1(K̃, L̃) // π0(L̃) // π0(K̃)

is exact, it follows that L̃ is connected. L̃ is simply connected, because of the commu-

tativity of the diagram

π1L̃

p∗

��

⊆
// π1K̃ = 0

0

��

π1L
∼= // π1K

So p : L̃ → L is the universal covering. Now if L is a strong deformation retract of K,

we have πn(K,L) = 0 for all n, and hence πn(K̃, L̃) = 0 for all n. So by Whitehead’s

theorem L̃ is a strong deformation retract of K̃.
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Proposition 1.26. Let f : K → L be a cellular map between connected CW complexes,

such that f∗ : π1K → π1L is an isomorphism. If K̃, L̃ are universal covering spaces of

K, L and f̃ : K̃ → L̃ is a lift of f , then Mf̃ is a universal covering space of Mf .

Proof (see [7, p. 10]). Since f̃ is cellular and L̃ is a strong deformation retract of Mf̃ we

know that Mf̃ is a simply connected CW complex. Now let p : K̃ → K and p′ : L̃→ L

be the covering maps. Define α : Mf̃ →Mf by

α[w, t] := [p(w), t], if 0 ≤ t ≤ 1, w ∈ K̃

α[z] := [p′(z)], if z ∈ L̃

If [w, 1] = [z] then f̃(w) = z, so α[w, 1] = [p(w), 1] = [fp(w), 1] = [p′f̃(w)] = [p′(z)].

Hence α is well-defined. Note that α
∣∣
Mf̃\L̃

= α
∣∣
K̃×[0,1)

= p× id[0,1) and α
∣∣
L̃

= p′. That

means α
∣∣
Mf̃\L̃

and α
∣∣
L̃

are covering maps, and α takes cells homeomorphically onto

cells.

Let β : M̂f → Mf be the universal cover of Mf , and K̂ := β−1(K), L̂ := β−1(L). By

1.25, β
∣∣
L̂

: L̂ → L is a universal covering. We supposed that f∗ : π1K → π1L is an

isomorphism, so i∗ : π1K → π1Mf is as well an isomorphism. Hence, again by 1.25, K̂

is simply connected. Now clearly β
∣∣
M̂f\L̂

: M̂f \ L̂ → Mf \ K is a covering and since

πi(Mf \ L,K) = πi(M̂f \ L̂, K̂) = 0 for all i, we may conclude that M̂f \ L̂ is simply

connected and β
∣∣
M̂f\L̂

is as well a universal covering.

Now let α̂ : Mf̃ → M̂f be a lift of α. By the uniqueness of the universal covering

spaces of Mf \ L and L, α̂ must take Mf̂ \ L̃ homeomorphically onto M̂f \ L̂ and L̃

homeomorphically onto L̂. Thus α̂ is a continuous bijection. But α̂ takes each cell e

homeomorphically onto a cell α̂(e) and hence takes ē homeomorphically to α̂(ē) = α̂(e).

Since Mf̃ and M̂f carry the weak topology with respect to closed cells, it follows that α̂

is a homeomorphism. Since βα̂ = α it follows that α is a covering map.

1.2.2 The Hurewicz Homomorphism

In this section, we review the Hurewicz homomorphism, which makes an important

connection between the homology groups and the homotopy groups of a pair (X,A).

Definition 1.27. Fix a generator α̃n of Hn(Sn) ∼= Z. Let (X,x0) be a pointed space

and n ≥ 1. For any f : (Sn, s0) → (X,x0) representing an element of πn(X,x0) define

h
(X,x0)
n ([f ]) := f∗(α̃n), where f∗ : Hn(Sn)→ Hn(X) is the induced map on homology.

h(X,x0)
n : πn(X,x0)→ Hn(X), [f ] 7→ f∗([α̃n])
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is called the Hurewicz homomorphism.

Now fix a generator αn of Hn(Dn, ∂Dn) ∼= Z. If (X,A, x0) is a pointed topological pair,

then define the relative Hurewicz homomorphism by

h(X,A,x0)
n : πn(X,A, x0)→ Hn(X,A), [f ] 7→ f∗(αn)

Again f∗ : Hn(Dn, ∂Dn)→ Hn(X,A) is the induced map on homology.

Theorem 1.28 (Hurewicz). For any topological space X the Hurewicz homomorphism

induces an isomorphism

π1(X,x0)ab
∼= // H1(X)

between the abelized fundamental group of X and the first homology group of X.

Reference: [14, p. 169-172].

Theorem 1.29 (Hurewicz). Let X be (n − 1)-connected, n ≥ 2. Then H̃i(X) = 0 for

every i < n and h : πn(X)→ Hn(X) is an isomorphism.

Reference: [12, p. 366-367].

Corollary 1.30. If X is simply connected, then the smallest number q ∈ Z, where

πq(X) 6= 0 is also the smallest number q ∈ Z, where Hq(X) 6= 0. And for this q, we

have: πq(X) ∼= Hq(X).

Proof. This is obvious from 1.29.

Corollary 1.31 (Hurewicz, relative version). Let (X,A) be (n−1)-connected, n ≥ 2. Let

A 6= ∅ be simply connected. Then Hi(X,A) = 0 for every i < n and h : πn(X,A, x0)→
Hn(X,A) is an isomorphism.

Reference: [12, p. 366-367].

Corollary 1.32. Let X and Y be simply connected and f : X → Y , such that f∗ :

Hn(X)→ Hn(Y ) is an isomorphism for all n. Then f∗ : πn(X)→ πn(Y ) is as well an

isomorphism for all n. If in addition X and Y are CW complexes, then f is a homotopy

equivalence.

Proof (see [12, p. 367]). Without loss of generality we may assume, that X ⊆ Y and

f : X ↪→ Y is the inclusion (because X embeds into the mapping cylinder Mf , which
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deformation retracts onto Y and the composition r◦ i of the inclusion and the retraction

is equal to f : X
� � i //

f

66Mf
r // Y ).

The requirement that f∗ : Hn(X)→ Hn(Y ) is an isomorphism for all n now reads:

Hn(Y,X) = 0 for all n.

Since (Y,X) is simply connected, with 1.30 and 1.31 we conclude π2(Y,X) = 0. And,

inductively, that πn(Y,X) = 0 for all n. Via the long exact sequence of homotopy

groups, we see that f∗ : πn(X)→ πn(Y ) is an isomorphism for all n.

If X and Y are CW complexes, we conclude via Whitehead’s theorem, that f is a

homotopy equivalence.

1.3 Simple-Homotopy Theory

In this section, we will review some important notions of simple-homotopy theory. These

will be crucial for our proof of the homeomorphy classification of lens spaces. Our main

reference will be [7].

Throughout this section we will always assume R to be a ring with unity that satisfies

the following property:

If M is any finitely generated free module over R then any two bases of M have the

same cardinality.

This is not much of a restriction for us, since our examples of rings will restrict to those

of the form R = Z[G], i.e. group rings for some group G, which all of those satisfy

this condition (see [7, p. 36]). Also any appearing free R-module will be assumed to be

finitely generated.

Furthermore, any appearing subgroup G of the group of units of a ring R will be assumed

to contain (−1).

1.3.1 Whitehead Groups

Definition 1.33. Let R be a ring. Let GLn(R) be the group of invertible matrices with

entries in R. Note that there is a natural injection of GLn(R) into GLn+1(R) given by

A 7→ (A 1 ).
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Using this, define the infinite general linear group of R to be the direct limit

GL(R) := lim
→

GLn(R).

GL(R) may be thought of as the group consisting of all infinite non-singular matrices

which are eventually the identity.

Let Eni,j be the n × n matrix, with entries all 0 except for a 1 in the (i, j)-spot. An

elementary matrix is defined to be a matrix of the form (In + aEni,j) for some a ∈ R.

Let E(R) denote the subgroup of GL(R) generated by all elementary matrices.

Lemma 1.34. E(R) is the commutator subgroup of GL(R), hence any subgroup H ⊆
GL(R) which contains E(R) is normal and the quotient GL(R)/H is abelian.

Reference: [7, p. 38-39].

Definition 1.35. Let G be a subgroup of the group of units R∗ of R. Let EG be the

group generated by E(R) and all matrices of the form
1
.
.
.

1
g

1
.
.
.

1

 , g ∈ G.

Define

KG(R) :=
GL(R)

EG
.

By 1.34 this is an abelian group. We denote the quotient map by τ : GL(R) → KG(R)

and we call τ(A) the torsion of the matrix A. We will write KG(R) additively, since it

is abelian so we have τ(AB) = τ(A) + τ(B).

Definition 1.36. Let G be a group, Z[G] its group ring and T := G ∪ (−G) the group

of trivial units of Z[G]. Define the Whitehead group of G to be Wh(G) := KT (Z[G]).

If G and G′ are subgroups of the units of R and R′ respectively then any ring ho-

momorphism f : R → R′ such that f(G) ⊆ G′ induces a group homomorphism

f∗ : KG(R)→ KG′(R
′) given by

f∗τ((aij)) = τ((f(aij))).

For any matrix (aij) ∈ EG we have (f(aij)) ∈ EG′ , so f∗ is well-defined. Thus we have a

covariant functor from the category of pairs (R,G) and ring homomorphisms f : R→ R′
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s.t. f(G) ⊆ G′ to the category of abelian groups and group homomorphisms.

(R,G) 7→ KG(R)

(f : G→ G′) 7→ (f∗ : KG(R)→ KG′(R
′)).

This then gives rise to a covariant functor from the category of groups to the category

of abelian groups and group homomorphisms.

G 7→Wh(G)

(f : G→ G′) 7→ (f∗ : Wh(G)→Wh(G′)).

Lemma 1.37. If g ∈ G and if f : G→ G is the group homomorphism s.t. f(x) = gxg−1

for all x then f∗ : Wh(G)→Wh(G) is the identity map.

Proof. Clearly, f∗ is conjugation with a sufficiently large matrix with only gs on the

diagonal. Since such a matrix has zero torsion, f∗ : Wh(G) → Wh(G) must be the

identity map.

Lemma 1.38. If A, B and X are n × n, m ×m and n ×m matrices respectively and

if A has a right inverse or B has a left inverse then

1.
(
A X
0 B

)
is non-singular ⇔ A and B are non-singular.

2. If A and B are non-singular then

τ
(
A X
0 B

)
= τ(A) + τ(B).

Reference: [7, p. 40].

Lemma 1.39. Let R be a commutative ring and G a subgroup of the group U of all

units of R. Let SK1(R) := τG(SL(R)) where τG : GL(R) → KG(R) and SL(R) is the

subgroup of GL(R) of matrices of determinant 1. Then SK1(R) is independent of the

group chosen and there is a split short exact sequence

0 // SK1(R)
⊆

// KG(R)
[det]

// U/G //

s
mm 0

where [det](τGA) := (detA) ·G and s(u ·G) := τG(u). In particular, if R is a field, [det]

is an isomorphism.
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Proof. Let τ1 : GL(R)→ K1(R). We have that

GL(R)
τ1 //

τG

33
K1(R)

π // KG(R) ,

where π : K1(R) → KG(R) is the natural map. Now π
∣∣
τ1(SL(R))

: τ1(SL(R)) →
τG(SL(R)) is obviously surjective and we wish to show the injectivity of π

∣∣
τ1(SL(R))

,

so that τG(SL(R)) ∼= τ1(SL(R)) and SK1(R) is independent of the group G. For that it

suffices to show that if τGA = 0 then τ1A = 0 for any matrix A ∈ SL(R). But if τGA = 0

then A is a product of some matrices Ap of the form In + aEni,j (for some n, i, j ∈ N,

a ∈ R dependent on p) and some matrices Bq of the form

Bq =


1
.
.
.

1
gq

1
.
.
.

1

 , gq ∈ G.

And since detA = 1, all appearing gs, say g1, . . . , gk ∈ G, must multiply to 1,
k∏
q=1

gi = 1.

But now τ1A may be computed as τ1(
k∏
q=1

Bq), so we get with 1.38 that

τ1(A) = τ1(
k∏
q=1

Bq) =
k∑
q=1

τ1(gq) = τ1(
k∏
q=1

gq) = τ1(1) = 0.

It is obvious that [det] ◦ s = id and the exactness of the sequence follows immediately

from the definitions of [det] and SK1(R).

1.3.2 (R,G)-complexes

Definition 1.40. For a module homomorphism f : M1 → M2 where M1 and M2 have

bases x = {x1, . . . , xp} and y = {y1, . . . , yq} respectively, we write 〈f〉x,y for the matrix

representing f , i.e. the matrix (aij) where f(xi) =
∑
j
aijyj .

If x = {x1, . . . , xp} and y = {y1, . . . , yp} are two bases of the same module M , we write

〈x/y〉 for the change-of-base matrix, i.e. the matrix (aij) where xi =
∑
j
aijyj .
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Definition 1.41. An (R,G)-module is defined to be a free R-module M along with a

distinguished family B of bases which satisfy:

If b and b′ are bases of M and if b ∈ B then

b′ ∈ B ⇔ τ(〈b/b′〉) = 0 ∈ KG(R).

If M1 and M2 are (R,G)-modules and if f : M1 →M2 is a module isomorphism then the

torsion of f - in symbols τ(f) - is defined to be τ(A) ∈ KG(R), where A is the matrix

of f with respect to any distinguished bases of M1 and M2. If τ(f) = 0 then f is called

a simple isomorphism of (R,G)-modules. In this case we write f : M1
Σ
≈M2.

Now an (R,G)-complex is defined to be a free chain complex over R

C : 0 // Cn // Cn−1
// . . . // C0

// 0

such that each Ci is an (R,G)-module. A distinguished basis of C is then a basis c =
⋃
ci

where each ci is a distinguished basis of Ci.

A simple isomorphism of (R,G)-complexes f : C → C ′ is a chain mapping such that

f
∣∣
Ci

: Ci
Σ
≈ C ′i for all i.

For a group G, we define a Wh(G)-complex to be a (R, T )-complex, where R = Z[G] is

the group ring and T = G ∪ −G is the group of trivial units.

Definition 1.42. An (R,G)-complex C is called an elementary trivial complex if it is

of the form

C : 0 // Cn
d // Cn−1

// 0

where d is a simple isomorphism of (R,G)-modules.

An (R,G)-complex is called trivial if it is the direct sum, in the category of (R,G)-

complexes, of elementary trivial complexes.

Two (R,G)-complexes C and C ′ are called stably equivalent, in symbols C
s∼ C ′, if there

are trivial complexes T and T ′ such that C ⊕ T
Σ
≈ C ′ ⊕ T ′.

To prove the uniqueness of the torsion of an acyclic (R,G)-complex in 1.50, we need

to be able to simplify such a complex (see 1.47). For the definition of torsion, we need

to have some knowledge about chain contractions. The following lemmas provide the

needed technicalities used in 1.49 and 1.50.

Definition 1.43. An R-module M is called stably free if there exist free R-modules F1

and F2 such that M ⊕ F1 = F2 (note that we only speak of free modules with finite

basis).
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Definition 1.44. Let C be a free chain complex over R with boundary operator d. A

degree-one homomorphism δ : C → C is called a chain contraction if δd+ dδ = 1.

Lemma 1.45. If C is a free acyclic chain complex over R with boundary operator d,

and if we denote Bi := dCi+1, then

1. Bi is stably free for all i

2. There is chain contraction δ : C → C.

3. Any chain contraction δ : C → C satisfies: dδ
∣∣
Bi−1

= 1, Ci = Bi⊕ δBi−1 for all i.

Reference: [7, p. 47].

Lemma 1.46. Suppose that C is an acyclic (R,G)-complex with chain contractions δ

and δ̄. For fixed i, let 1⊕ δd : Ci → Ci be defined by

1⊕ δd : Bi ⊕ δ̄Bi−1 = Ci → Bi ⊕ δBi−1 = Ci.

Then

1. 1⊕ δd is a simple isomorphism.

2. If Bi and Bi−1 are free modules with bases bi and bi−1 and if ci is a basis of Ci,

then τ〈bi ∪ δbi−1/ci〉 = τ〈bi ∪ δ̄bi−1/ci〉.

Reference: [7, p. 49].

Lemma 1.47 (Simplifying a Complex). If C is an acyclic (R,G)-complex of the form

C : 0 // Cn
dn // . . .

di+3
// Ci+2

di+2
// Ci+1

di+1
// Ci // 0 (n ≥ i+ 1)

and if δ : C → C is a chain contraction, then C
s∼ Cδ where Cδ is the complex

Cδ : 0 // Cn
dn // . . .

di+3
// Ci+2

di+2
//

⊕ Ci+1
// 0

Ci

δi+1

;;wwwwwwwww

Proof (see [7, p. 50-51]). We may assume without loss of generality that i = 0.

Let T be the trivial complex with T1 = T2 = C0, Ti = 0 for i 6= 1, 2, and ∂2 = id :

T2 → T1. Let T ′ be the trivial complex with T ′0 = T ′1 = C0, T ′i = 0 if i 6= 0, 1, and
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∂′1 = id : T ′1 → T ′0. We claim that C ⊕ T
Σ
≈ Cδ ⊕ T ′. These complexes look like

C ⊕ T : . . . // C3
// C2 ⊕ C0

d2⊕1
// C1 ⊕ C0

d1⊕0
// C0

// 0

Cδ ⊕ T ′ : . . . // C3
// C2 ⊕ C0

d2⊕δ1 // C1 ⊕ C0
0⊕1

// C0
// 0

And we define f : C ⊕ T → Cδ ⊕ T ′ by

fi = 1, if i 6= 1

f1(c0 + c1) = δ1c0 + (c1 + d1c1), if c0 ∈ C0 and c1 ∈ C1.

By computing

(d2 ⊕ δ1 ◦ f2)(c2 + c0) = d2 ⊕ δ1(c2 + c0)

= δ1c0 + d2c2

= δ1c0 + (d2c2 + d1d2c2︸ ︷︷ ︸
=0

)

= f1(d2(c2) + c0)

= f1 ◦ (d2 ⊕ 1)(c2 + c0)

and

(0⊕ 1) ◦ f1(c1 + c0) = (0⊕ 1)(δ1c0 + (c1 + d1c1))

= d1c1

= (d1 ⊕ 0)(c1 + c0)

= f0 ◦ (d1 ⊕ 0)(c1 + c0),

we see that f is a chain map. And it remains to show that f is a simple isomorphism.

This is obivious except for i = 1. But

〈f1〉 =

( C0 C1

C0 0 〈δ1〉
C1 〈d1〉 I

)
=

(
−I 〈δ1〉
0 I

)(
I 0

〈d1〉 I

)
.

Since 〈δ1〉〈d1〉 = 〈d1δ1〉 = 〈d1δ1 + δ0d0〉 = I. So by 1.38, τ(f1) = 0.
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1.3.3 The Torsion of an Acyclic Complex

Definition 1.48. Let C be an acyclic (R,G)-complex with boundary operator d. Let δ

be any chain contraction of C. Set

Codd := C1 ⊕ C3 ⊕ . . .

Ceven := C0 ⊕ C2 ⊕ . . .

(d+ δ)odd := (d+ δ)
∣∣
Codd

: Codd → Ceven.

And define τ(C) := τ(〈(d+ δ)odd〉) ∈ KG(R).

Lemma 1.49. τ(C) is well-defined, i.e. 〈d + δ〉 is non-singular and τ(d + δ) is inde-

pendent of the distinguished basis chosen and independent of which chain contraction δ

is chosen.

Proof (see [7, p. 52-54]). To show that 〈d + δ〉 is non-singular we fix a distinguished

basis c for C. Since (d+ δ)even ◦ (d+ δ)odd = (d2 + dδ + δd+ δ2)
∣∣
Codd

= (1 + δ2)
∣∣
Codd

we

have

〈(d+ δ)odd〉c〈(d+ δ)even〉c =



C1 C3 C5 . . .

C1 I 〈δ3δ2〉
C3 I 〈δ5δ4〉

C5 I
. . .

...
. . .


But now by 1.38 this matrix is non-singular and has zero torsion. Similarly, this holds for

〈(d+ δ)even〉c〈(d+ δ)odd〉c. Note that we also have τ(〈(d+ δ)odd〉c) = −τ(〈(d+ δ)even〉c).

Now let c =
⋃
ci and c′ =

⋃
c′i be basis of C where the ci and c′i are distinguished bases

of Ci. Then

〈d+ δ〉c =〈codd/c
′
odd〉〈d+ δ〉c′〈c′even/ceven〉

=

( 〈c1/c′1〉
〈c3/c′3〉

. . .

)
〈d+ δ〉c′

( 〈c′0/c0〉
〈c′2/c2〉

. . .

)

So with 1.38 we get

τ(〈d+ δ〉c) =
∑
i

τ〈c2i+1/c
′
2i+1〉+ τ(〈d+ δ〉c′) +

∑
i

τ〈c′2i/c2i〉 = τ(〈d+ δ〉c′).
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Lastly suppose that δ and δ̄ are two different chain contractions, and we wish to show

that τ(d+ δ) = τ(d+ δ̄). For that we compute

τ(d+ δ̄)− τ(d+ δ) =τ〈(d+ δ̄)odd〉+ τ〈(d+ δ)even〉

=τ〈(d+ δ) ◦ (d+ δ̄)
∣∣
Codd
〉

=τ〈(δd+ dδ̄ + δδ̄)
∣∣
Codd
〉

=τ



C1 C3 C5 . . .

C1 〈δd+ dδ̄〉 〈δδ̄〉

C3 〈δd+ dδ̄〉 〈δδ̄〉

C5 〈δd+ dδ̄〉 . . .

...
. . .


=
∑
i

τ〈(δd+ dδ̄)
∣∣
C2i+1

〉, by 1.38 if each (δd+ dδ̄)
∣∣
C2i+1

is non-singular.

However, (δd+ dδ̄)
∣∣
Cj

= 1⊕ δd : Bj ⊕ δ̄Bj−1 → Bj ⊕ δBj−1, since

(δd+ dδ̄)(bj) = bj

(δd+ dδ̄)(δ̄bj−1) = (δd)(δ̄bj−1) + (1− δ̄d)(δ̄bj−1)

= δd(δ̄bj−1) + δ̄bj−1 − δ̄bj−1

= δd(δ̄bj−1).

So we may apply 1.46 and get that (δd+ dδ̄)
∣∣
C2i+1

is a simple isomorphism. Conclusion:

τ(d+ δ̄) = τ(d+ δ).

Theorem 1.50. Let R be a ring, G a subgroup of the units of R containing (−1) and

let C be the class of acyclic (R,G)-complexes, then the torsion map τ : C → KG(R)

defined in 1.48 satisfies

(P1) C
Σ
≈ C ′ ⇒ τ(C) = τ(C ′)

(P2) τ(C ′ ⊕ C ′′) = τ(C ′) + τ(C ′′)

(P3) τ( 0 // Cn
d // Cn−1

// 0 ) = (−1)n−1τ(d).

And τ is uniquely determined by these properties.

Proof (see [7, p. 56-57]). Let d, d′, d′′ denote boundary operators for C, C ′, C ′′ respec-

tively.
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For (P1), suppose that f : C
Σ
≈ C ′. This means that there are distinguished bases of

C and C ′, such that 〈dn〉 = 〈d′n〉 and 〈fn〉 = I, for all n. Choose a chain contraction

δ : C → C and define δ′ := fδf−1. Then 〈d+ δ〉 = 〈d′ + δ′〉, and hence τ(C) = τ(C ′).

For (P2), suppose that C = C ′ ⊕ C ′′ (i.e. d = d′ ⊕ d′′) and that δ′, δ′′ are chain

contractions for C ′ and C ′′. Then obviously δ′ ⊕ δ′′ is a chain contraction for C. Since

permutation of rows and columns does not change the torsion of a matrix, we get

τ(C) = τ〈d+ δ〉 = τ〈(d′ ⊕ d′′) + (δ′ ⊕ δ′′)〉

= τ

(
〈d′ + δ′〉

〈d′′ + δ′′〉

)
= τ(C ′) + τ(C ′′).

For (P3), suppose that C is the complex

0 // Cn
d // Cn−1

// 0 .

Set δj := 0 if j 6= n, and δn := d−1
n : Cn−1 → Cn. If n is odd, then δ

∣∣
Codd

= 0,

so τ(C) = τ(d) = (−1)n−1τ(d). If n is even, then δ
∣∣
Ceven

= 0, so τ(C) = −τ(d) =

−(−1)nτ(d) = (−1)n−1τ(d).

Finally, we wish to show uniqueness of τ : C → KG(R) with these properties, so suppose

that µ : C → KG(R) also satisfies (P1)-(P3). Inductively applying 1.47, we get that

any (R,G)-complex C is stably equivalent to a complex C ′, where C ′ is of the form

0 // C ′m
d′ // C ′m−1

// 0 . By definition this means C ⊕ T
Σ
≈ C ′ ⊕ T ′ for some

trivial complexes T , T ′. But now the properties (P1)-(P3) imply that τ(C) = τ(C) +

τ(T ) = τ(C ′) + τ(T ′) = τ(C ′). Similarly µ(C) = µ(C ′). But then by (P3) τ(C ′) =

(−1)m−1τ(d′) = µ(C ′). That means τ(C) = µ(C).

Lemma 1.51. Let 0 // C ′
i // C

j
// C ′′ // 0 be a short exact sequence of

acyclic chain complexes and that σ : C ′′ → C is a degree-zero section (not necessarily

a chain map). Assume further that C, C ′ and C ′′ are (R,G)-complexes with preferred

bases c, c′ and c′′. Then

τ(C) = τ(C ′) + τ(C ′′) +
∑

(−1)kτ〈c′kc′′k/ck〉

where c′kc
′′
k := i(c′k) ∪ σ(c′′k). In particular, if i(c′k) ∪ σ(c′′k) is a distinguished basis of Ck

for all k, then τ(C) = τ(C ′) + τ(C ′′).

Reference: [7, p. 57].
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1.3.4 Changing Rings

Definition 1.52. Let C be an (R,G)-complex and h : R → R′ a ring homomorphism

with h(G) ⊆ G′. Construct the (R′, G′)-complex Ch as follows: Choose a distinguished

basis c = {cik} for C, and let Ch be the free graded R′-module generated by the set c. We

denote c = ĉ when c is being thought of as a subset of Ch. Define d̂ : Ch → Ch by setting

d̂(ĉik) =
∑
j
h(akj)ĉ

i−1
j if d(cik) =

∑
j
akjc

i−1
j . By stipulating that ĉ is a distinguished basis

for Ch we make Ch into an (R′, G′)-complex.

Define further

τh(C) := τ(Ch) ∈ KG′(R
′).

Alternatively, one may define Ch as the (R′, G′)-complex (R′⊗h C, 1⊗ d), where R′ is a

right R-module via r′ · r := r′h(r) for all r ∈ R, r′ ∈ R′, so R′ ⊗h C := R′ ⊗R C is a left

R′-module via ρ(r′ ⊗ x) := ρr′ ⊗ x for all (ρ, r′, x) ∈ R′ ×R′ × C.

Lemma 1.53. If C is an acyclic (R,G)-complex and h : (R,G) → (R′, G′) is a ring

homomorphism, then Ch is acyclic and τh(C) = h∗τ(C) where h∗ : KG(R) → KG′(R
′)

is the induced map.

Proof (see [7, p. 60]). Choose a chain contraction δ of C and suppose that δ(cik) =∑
j
bkjc

i+1
j . Define δ̂ : Ch → Ch by δ̂(ĉik) =

∑
j
h(bkj)ĉ

i+1
j . Since h(G) ⊆ G′ we have

h(1) = 1, so that: 〈d̂δ̂ + δ̂d̂〉 = h∗〈dδ + δd〉 = h∗(I) = I. So δ̂ is a chain contraction and

τh(C) = τ(Ch) = h∗τ(C).

Lemma 1.54. If 0 // C ′
α // C

β
// C ′′ // 0 is a split exact sequence of (R,G)-

complexes with distinguished bases c′, c and c′′ respectively, such that c = α(c′)∪b, where

β(b) = c′′, then

0 // C ′h = R′ ⊗h C ′
1⊗α

// Ch = R′ ⊗h C
1⊗β

// C ′′h = R′ ⊗h C ′′ // 0

is an exact sequence of (R′, G′)-complexes whose preferred bases have the analogous

property.

Reference: [7, p. 61].

1.3.5 The Torsion of a CW Pair

Definition 1.55. If (K,L) is a pair of finite, connected CW complexes, such that L is a

strong deformation retract of K, then we may define the torsion of (K,L) - in symbols
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τ(K,L) - by

τ(K,L) := τ(C(K̃, L̃)) ∈Wh(π1L)

where (K̃, L̃) is the universal covering of (K,L).

To explain this definition, we must first define how C(K̃, L̃) is a Wh(π1L) complex. For

that, let p : K̃ → K the universal covering of K and G := Deck(p) the group of covering

homeomorphisms. Then p
∣∣
L̃

: L̃ → L is the universal covering of L and L̃ is a strong

deformation retract of K̃, by 1.25. By 1.10, C(K̃, L̃) is a free Z[G]-complex, where a

basis can be constructed by choosing for each cell eα ∈ E(K \L) a specific lift φ̃α of φα.

If B denotes the set of all bases constructed in this fashion, then this determines the

structure of a Wh(G)-complex on C(K̃, L̃):

Lemma 1.56. The complex C(K̃, L̃), along with the family of bases B, determines an

acyclic Wh(G)-complex.

Proof (see [7, p. 62-63]). C(K̃, L̃) is acyclic, since L̃ is a strong deformation retract of

K̃.

Suppose that c, c′ ∈ B restrict to bases cn = {〈φ̃1〉, . . . , 〈φ̃q〉} and c′n = {〈ψ̃1〉, . . . , 〈ψ̃q〉}
of Cn(K̃, L̃). We wish to show that τ(〈cn/c′n〉) = 0. Now

〈ψ̃j〉 =
∑
k

ajk〈φ̃k〉 =
∑
i,k

njki 〈giφ̃k〉

for some ajk =
∑
i
njki gi ∈ Z[G]. But the cell ψ̃j(I̊

n), as a lift of ej is equal to one of the

cells gij φ̃j(I̊
n) and is disjoint from all the others. Hence all the coefficients in the last

sum are 0 except for N = njjij . But then φ̃j(I̊
n) = g−1

ij
ψ̃j(I̊

n), so by the same argument,

〈φ̃j〉 = N ′〈g−1
ij
ψ̃j〉. Hence 〈ψ̃j〉 = NN ′〈ψ̃j〉. So N = ±1 and 〈ψ̃j〉 = ±gij 〈φ̃j〉. Hence

〈cn/c′n〉 =

(±gi1
. . .
±giq

)
,

so τ(〈cn/c′n〉) = 0.

Furthermore, we need to clarify how the definition 1.55 is independent of the choice of

base points.

Lemma 1.57. Let X be path connected and let x, y ∈ X. Then all of the paths from

x to y induce the same isomorphism fx,y of Wh(π1(X,x)) onto Wh(π1(X, y)). Also

fy,x ◦ fx,y = fx,z.
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Proof (see [7, p. 63]). If γ : I → X is a path from x to y, let fγ : π1(X,x) → π1(X, y)

denote the usual isomorphism given by fγ [ω] = [γ̄ωγ]. Then, if α, β are two such

paths, f−1
β fα([ω]) = [βᾱ][ω][βᾱ]−1 for all [ω] ∈ π1(X,x). Hence f−1

β fα is an inner

automorphism, so by 1.37, (f−1
β )∗(fα)∗ = (f−1

β fα)∗ = idWh(π1(X,x)). Thus (fα)∗ = (fβ)∗

for all such α, β and we may set fx,y := (fα)∗. After this, it is now obvious that

fy,z ◦ fx,y = fx,z.

So there is a canonical isomorphism between the groups Wh(π1(K,x)) and Wh(π1(K, y))

for any x, y ∈ K and we may therefore identify all these groups and call the resulting

group Wh(π1K). Also, for any continuous f : K → K ′ inducing a homomorphism

between fundamental groups f∗ : π1(K,x)→ π1(K ′, x′), and hence between Whitehead

groups f∗ : Wh(π1(K,x)) → Wh(π1(K ′, x′)), we would have f∗ ◦ fx,y = fx′,y′ ◦ f∗, for

x, y ∈ K and x′, y′ ∈ K ′ satisfying f(x) = x′ and f(y) = y′, so that we can speak

of f∗ : Wh(π1K) → Wh(π1K
′), dropping the base points. This is because for any

[α] ∈ π1(K,x) and any path γ : I → K from x to y, we have f∗[γ̄αγ] = [(f ◦ γ)fα(f ◦γ)].

So since f ◦ γ : I → K ′ is a path from x′ to y′, we get f∗ ◦ fx,y = fx′,y′ ◦ f∗.

Lastly, we wish to identify G = Deck(p) with the fundamental group of K. If we choose

base points x ∈ K and x̃ ∈ p−1(x) then we may do so via the isomorphism (see 1.21)

θ = θ(x, x̃) : π1(K,x)→ G, for any [α] ∈ π1(K,x) given by

θ[α](y) = α̃ · pω(1),

where y ∈ K̃, ω is a path from x̃ to y, and α̃ · pω is the unique lift of α · pω with

α̃ · pω(0) = x̃. So this isomorphism - or rather its inverse ψ := θ−1 - induces a ring

isomorphism ψ : Z[G]→ Z[π1(K,x)] and we can now construct from C(K̃, L̃) the acyclic

Wh(π1(K,x))-complex C(K̃, L̃)ψ. The following lemma will assure the independence of

all the choices made:

Lemma 1.58. Let p̃ : K̃ → K and p̂ : K̂ → K be universal coverings of the connected

complex K. Let G̃ := Deck(p̃), Ĝ := Deck(p̂) the groups of covering homeomorphisms.

Let x, y ∈ K, x̃ ∈ p̃−1(x) and ŷ ∈ p̂−1(y). Let ψ̃ : G̃ → π1(K,x) and ψ̂ : Ĝ →
π1(K, y) the group isomorphisms determined by (x, x̃) and (y, ŷ). Then τ(C(K̂, L̂)ψ) =

fx,y(τ(C(K̃, L̃)ψ̃)).

Proof (see [7, p. 64-65]). Let h : K̃ → K̂ be a homeomorphism covering id : K → K

(using 1.20). Let H : G̃ → Ĝ be defined by H(g) := hgh−1. We first claim that

τC(K̂, L̂) = H∗(τC(K̃, L̃)). For that, let {〈φ̃ik〉} be a basis for Ci(K̃, L̃) and let φ̂ik :=

h ◦ φ̃ik for all i, k; and we may compute the torsions of C(K̃, L̃) and C(K̂, L̂) with these

bases. Now h induces a chain isomorphism of Z-complexes C(K̃, L̃)→ C(K̂, L̂) and one
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now immediately verifies that, if the matrix of d̃i is (akj) ∈ GL(Z[G̃]), then the matrix

of d̂i is (H(akj)), where H : Z[G̃]→ Z[Ĝ] is induced from H : G̃→ Ĝ. So by (the proof

of) 1.53, τC(K̂, L̂) = H∗(τC(K̃, L̃)).

Now let x̂ = h(x̃) and choose a path Ω : I → K̂ from x̂ to ŷ. Define ω := p̂Ω and

let fω : π1(K,x) → π1(K, y) the usual isomorphism. Denote θ̃ = θ(x, x̃) = ψ̃−1 and

θ̂ = θ(y, ŷ) = ψ̂−1. Then the following diagram commutes

G̃
H // Ĝ

π1(K,x)

θ̃

OO

fω
// π1(K, y)

θ̂

OO

since if [α] ∈ π1(K,x), we have

(θ̂fω[α])(ŷ) = θ̂[ω̄αω](ŷ)

= α̂ω(1) where α̂ω(0) = Ω̄(1) = x̂

= h(α̃ω(1)) because h(ãω(0)) = x̂

= h( ˜α · p̃h−1Ω(1)) because ω = p̂Ω = p̃h−1Ω

= h(θ̃[α]h
−1Ω(1))

= (hθ̃[α]h
−1)(ŷ)

= (Hθ̃[α])(ŷ).

Now because θ̂fω[α] and Hθ̃[α] agree at one point, they need to agree everywhere. Since

[α] was arbitrary, θ̂fω = Hθ̃. Finally, we get with 1.53 that

fx,yτ(C(K̃, L̃)ψ̃) = fω∗ψ̃∗(τC(K̃, L̃))

= ψ̂∗H∗(τC(K̃, L̃))

= ψ̂∗(τC(K̂, L̂))

= τ(C(K̂, L̂)ψ̂).

To conclude the explanation of the definition 1.55, if i : L ↪→ K denotes the inclusion

map, we define τ(K,L) to be i−1
∗ (τ(C(K̃, L̃)ψ)) ∈Wh(π1L).

Definition 1.59. Let (K,L) be a pair of finite CW-complexes (not necessarily con-

nected), such that L is a strong deformation retract of K. Let K1, . . . ,Kq and L1, . . . , Lq

be the components of K and L respectively, ordered so that Lj is a strong deformation
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retract of Kj for all j. We define

τ(K,L) :=

q∑
j=1

τ(Kj , Lj) ∈
q⊕
j=1

Wh(π1Lj) =: Wh(L).

1.3.6 Properties of the Torsion of a CW Pair

Lemma 1.60. If K ⊇ L ⊇M are CW (sub)complexes, where L is a strong deformation

retract of K and M is a strong deformation retract of L, then

τ(K,M) = τ(L,M) + i−1
∗ τ(K,L)

where i : M ↪→ L is the inclusion map.

Reference: [7, p. 67].

Lemma 1.61 (Excision). Let K, L and M be subcomplexes of the complex K ∪L, with

M = K ∩ L. If M is a strong deformation retract of K, then τ(K ∪ L,L) = j∗τ(K,M)

where j : M ↪→ L is the inclusion map.

Reference: [7, p. 68].

1.3.7 The Torsion of a Homotopy Equivalence

Definition 1.62. Suppose that f : K → L is a cellular homotopy equivalence between

finite CW complexes. Then K is a strong deformation retract of the mapping cylinder

Mf and f∗ : Wh(K) → Wh(L) is an isomorphism. Define the torsion of the homotopy

equivalence f by

τ(f) := f∗τ(Mf ,K) ∈Wh(L).

Lemma 1.63 (Homotopy Invariance). If f, g : K → L are homotopic cellular homotopy

equivalences, then τ(f) = τ(g).

Reference: [7, p. 72].

Remark 1.64. The proof in [7, p. 72] takes up only one line. But it uses the equivalence

of the functor Wh(L) as described in this chapter to another functor, described in [7,

Chapter II, p.14-23]. The equivalence of the two functors is proven in [7, p. 70-71].

Definition 1.65. A cellular homotopy equivalence f : K → L is called a simple-

homotopy equivalence if τ(f) = 0.
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Lemma 1.66. If L ⊆ K is a subcomplex and a strong deformation retract of K, then

τ(i) = i∗τ(K,L), where i : L ↪→ K is the inclusion map.

Reference: [7, p. 72].

Lemma 1.67. Let f : K → L and g : L→M be cellular homotopy equivalences, then

τ(gf) = τ(g) + g∗τ(f).

Reference: [7, p. 72-73].

Corollary 1.68. If f : K → L and g : L→ K are cellular homotopy equivalences which

are homotopy inverses of each other, then τ(g) = −g∗τ(f).

Proof (see [7, p. 73]). This is obvious from the preceding lemmata, since, if we have

gf ' idK then 0 = τ(gf) = τ(g) + g∗τ(f).

Theorem 1.69. Let X and Y be finite CW complexes. If f : X → Y is a homeomor-

phism, then f is a simple-homotopy equivalence.

Reference: [7, p. 102-106].

Remark 1.70. The proof of 1.69 in [7, p. 102-106] uses results of infinite-dimensional

topology. In fact, a stronger result is proven: If X and Y are finite CW complexes, then

f : X → Y is a simple-homotopy equivalence if and only if f × idQ : X × Q → Y × Q

is homotopic to a homeomorphism X ×Q → Y ×Q. Here Q :=
∞∏
j=1

[−1, 1] denotes the

Hilbert cube.

Theorem 1.71 (Computing Torsion). Let f : K → L be a cellular homotopy equivalence

between connected spaces and let f̃ : K̃ → L̃ be a lift of f to their universal covering

spaces, inducing f̃∗ : C(K̃) → C(L̃). Let GK and GL be the groups of covering homeo-

morphisms of K̃ and L̃ respectively and let C(K̃) → C(L̃) be viewed as Wh(GK)- and

Wh(GL)-complexes with boundary operators d and d′ respectively. Choose base points x,

y and points x̃, ỹ covering them, so that f(x) = y and f̃(x̃) = ỹ. And let f∗ : GK → GL

be induced from f∗ : π1(K,x)→ π1(L, y).

Then τ(f) ∈Wh(GL) is the torsion of the Wh(GL)-complex C which is given by

1. Cn = [C(K̃)f∗ ]n−1 ⊕ Cn(L̃)
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2. ∂n : Cn → Cn−1 has the matrix

( [C(K̃)f∗ ]n−2 Cn−1(L̃)

[C(K̃)f∗ ]n−1 −f∗〈dn−1〉 〈f̃∗〉
Cn(L̃) 0 〈d′n〉

)

In particular if we let C̄(K̃) be the Wh(GL)-complex with C̄n(K̃) = [C(K̃)f∗ ]n−1 and

the boundary operator d̄ given by 〈d̄n〉 = −f∗〈dn−1〉 then τ(f) = τ(C ) where there is a

basis-preserving short exact sequence of Wh(GL)-complexes

0 // C(L̃) // C // C̄(K̃) // 0.

Proof (see [7, p. 74-76]). To compute τ(Mf ,K) we use the universal covering of Mf

given in 1.26. So let α : Mf̃ → Mf be the natural projection such that α
∣∣
K̃

and

α
∣∣
L̃

are the universal coverings of K and L. Let G := Deck(α) the group of covering

homeomorphisms of Mf̃ . If g ∈ GK define E(g) ∈ G to be the unique extension of g to

Mf̃ . If h ∈ G define R(h) ∈ GL to be the restriction of h to L̃. Now in the following

commutative diagram

GK
i∗ // G

p∗
// GL

π1(K,x)

θ(x,x̃)

OO

i∗ //

f∗

77
π1(Mf , x)

θ(x,x̃)

OO

p∗
// π1(L, y)

θ(y,ỹ)

OO

we have that E = i∗ : GK → G (using the fact that the inclusion ĩ : K̃ ↪→ Mf̃ covers

i : K ↪→ Mf and that ĩ ◦ g = i∗(g) ◦ ĩ for any g ∈ GK (see [7, p. 12])) and that

R = p∗ : G→ GL (because f̃(x̃) = ỹ and the fact that the projection p̃ : Mf̃ → L̃ covers

p : Mf → L, this follows again with the formula p̃ ◦ h = p∗(h) ◦ p̃, for all h ∈ G). Hence

f∗ = RE : GK → GL.

We view C(Mf̃ , K̃) as a Wh(G)-complex, so that E−1
∗ (τC(Mf̃ , K̃)) = τ(Mf ,K) ∈

Wh(GK) and τ(f) = f∗τ(Mf ,K) = R∗(τC(Mf̃ , K̃)). So by 1.53, τ(f) = τ(C ) where

C is the Wh(GL)-complex [C(Mf̃ , K̃)]R. To show that C satisfies the conclusion of the

theorem, we first study C(Mf̃ , K̃).
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Now C(Mf̃ , K̃) is isomorphic as a Z-complex to the algebraic mapping cone of f̃∗ (see

[7, p. 8]) which is given by

Cn = Cn−1(K̃)⊕ Cn(L̃)

∂n(a) = −dn−1(a) + f̃∗(a), for a ∈ Cn−1(K̃)

∂n(b) = d′n(b), for b ∈ Cn(L̃)

A typical cell en−1 of K gives rise, upon choosing a fixed lift, to an element 〈ẽn−1〉 of

Cn−1(K̃). The image of 〈ẽn−1〉 under our isomorphism is the element 〈ẽn−1 × (0, 1)〉 ∈
Cn(Mf̃ , K̃). Suppose that, when d〈ẽn−1〉 is written as a linear combination in Z(GK)

we get

d〈ẽn−1〉 =
∑
i,j

ni,jgi〈ẽn−2
j 〉, for some gi ∈ GK .

Then, over Z, we get

d〈ẽn−1〉 =
∑
i,j

ni,j〈giẽn−2
j 〉.

Applying the isomorphism, the corresponding boundary in C(Mf̃ , K̃) is

∂〈ẽn−1 × (0, 1)〉 = −

∑
i,j

ni,j〈giẽn−2
j × (0, 1)〉

+ f̃∗〈ẽn−1〉

= −

∑
i,j

ni,jE(gi)〈ẽn−2
j × (0, 1)〉

+ f̃∗〈ẽn−1〉.

The last equation gives the boundary with Z[G]-coefficients and it holds because E(gi)
∣∣
Mf̃\L̃

=

E(gi)
∣∣
K̃×[0,1)

= gi × id[0,1).

Similarly, if we write f̃∗〈ẽn−1〉 as a linear combination with coefficients in Z[GL], denoting

cells in L with u’s, we get

f̃∗〈ẽn−1〉 =
∑
p,q

mp,q〈hpũn−1
q 〉, for some hp ∈ GL

=
∑
p,q

mp,q〈R−1hpũ
n−1
q 〉, since hp

∣∣
L̃

= (R−1hp)
∣∣
L̃

=
∑
p,q

mp,q(R
−1hp)〈ũn−1

q 〉.

We can compute ∂n〈ũn〉 in an analogous way and we conclude that the matrix of ∂n :

Cn(Mf̃ , K̃) → Cn−1(Mf̃ , K̃), when C(Mf̃ , K̃) is considered as a Z[G]-module, is given
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by

〈∂n〉 =

(
−E〈dn−1〉 R−1〈f̃∗〉

R−1〈d′n〉

)

where 〈dn−1〉 is a Z[GK ] matrix and 〈f̃∗〉 and 〈d′n〉 are Z[GL] matrices. From the equation

f∗ = RE it now follows that the complex C = C(Mf̃ , K̃)R, with τ(f) = τ(C ) fulfills the

claimed properties.

The assertion that the sequence 0 // C(L̃) // C // C̄(K̃) // 0 is exact and

basis-preserving follows immediately from the first part of the theorem.





Chapter 2

Constructions of Lens Spaces

There are several constructions that lead to what we call lens spaces. In this chapter

we will consider the popular constructions and see how they are equivalent. At first we

will deal with 3-dimensional lens spaces and then see how one can generalize to higher

dimensions.

2.1 Construction via Tori

Consider two solid tori T1 = D2 × S1 and T2 = S1 × D2 and a homeomorphism of

their boundaries ∂Ti ∼= S1 × S1, i ∈ {1, 2}, given by f : S1 × S1 → S1 × S1, (z, w) 7→
(zawc, zbwd), where ad− bc = ±1, a, b, c, d ∈ Z. When gluing T1 and T2 together along

their borders via f , we arrive at a closed 3-manifold M = M( a bc d ) := T1 ∪f T2 and call

this a lens space. To visualize, take a look at the meridian curve t 7→ (e2πit, 1), which

gets transformed to the (|a|, |b|) torus curve t 7→ (e2πiat, e2πibt).

Figure 2.1: f maps a meridian curve to a (5,3) torus curve, when |a| = 5, |b| = 3.

37
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Proposition 2.1. M = M( a bc d ) is uniquely defined up to homeomorphism by the num-

bers a and b. If a = 0 then M ∼= S2×S1. If a = 1 then M ∼= S3. Otherwise M ∼= M(a, b)

where a, b are coprime and satisfy 1 ≤ b < a.

Proof (see [15, p. 16]). For other a′, b′, c′, d′, such that a′d′ − b′c′ = ±1, if there are

numbers α, β, γ, δ ∈ {−1, 1} and n,m ∈ Z, such that(
γ 0

n δ

)(
a b

c d

)
=

(
a′ b′

c′ d′

)(
α m

0 β

)
,

that is

a′ = αγa, b′ = βγb−mαβγa, c′ = nαa+ αδc, d′ = nβb+ βδd−mnαβa−mαβδc,

then by defining the two homeomorphisms

F : D2 × S1 → D2 × S1, (z, w) 7→ (zαwm, wβ)

G : S1 ×D2 → S1 ×D2, (w, z) 7→ (wγ , zδwn),

we would get (G
∣∣
S1×S1) ◦ f = f ′ ◦ (F

∣∣
S1×S1) and therefore M ∼= M ′, where f and f ′ are

the gluing maps of M and M ′ := M( a
′ b′

c′ d′
) respectively (using [15, Proposition 1.49]).

In the case (a ≤ 0) we set α = −1, β = γ = δ = 1 and m,n = 0 and get a′ ≥ 0, so from

now on, w.l.o.g. a ≥ 0.

If (ad − bc < 0) we set α = β = γ = 1, δ = −1, m = n = 0 and arrive at a′ = a ≥ 0,

b′ = b and a′d′ − b′c′ = αβγδ(ad− bc) > 0. So w.l.o.g. ad− bc = 1.

In the case (a = 0), we get bc = −1 and with α = c, β = b, γ = δ = 1, n = 0, m = d we

arrive at ( a
′ b′

c′ d′
) = ( 0 1

1 0 ), so M ∼= M( 0 1
1 0 ) ∼= (D2 ∪idS1

D2)× S1 ∼= S2 × S1.

Now suppose that ad̃−bc̃ = 1. It follows, that −bc̃ ≡ 1 ≡ −bc (mod a), i.e. c ≡ c̃ (mod a)

so there is an n ∈ Z, s.t. c̃ = c+ na. Analogously there exists an ñ ∈ Z, s.t. d̃ = d+ ñb.

Plugging this into the equation ad̃− bc̃ = 1, we see, that actually n = ñ.

Now with α = β = γ = δ = 1, m = 0 and n as above, we get M ∼= M( a b
c̃ d̃

), so M is

uniquely determined by (a, b), and we may solely write M(a, b) instead of M( a bc d ).

With α = β = γ = δ = 1 and n = 0, we get M(a, b) ∼= M(a, b−ma) for any m ∈ Z, i.e.

b may be reduced mod a.

For a = 1 this means that M(1, b) ∼= M(1, 0) ∼= M( 1 0
0 1 ).
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In the case ( a bc d ) = ( 1 0
0 1 ), we get f = idS1 × idS1 , so M ∼= D2 × S1 ∪ S1 × D2 =

∂(D2 ×D2) ∼= S3.

Remark 2.2. In fact, we could just use any auto-homeomorphism f of the torus (not only

the ones given by (z, w) 7→ (zawc, zbwd)) for this construction and the homeomorphy

type of the resulting space will only depend on what f does on a meridian. We outline

a proof of this, as described in [10, p. 254]. For, let f , f ′ : S1 × S1 → S1 × S1

be two homeomorphisms such that f(m) = f ′(m), where m := S1 × {1} ⊂ T1 is a

meridian. We wish to extend the identity map idT2 : T2 → T2 to a homeomorphism

F : T1 ∪f T2 → T1 ∪f ′ T2. Let D := D2 × {1} ⊂ T1 be a disc that spans m. We may

already extend idT2 to a map G : D ∪
f
∣∣∣
m

T2 → D ∪
f ′
∣∣∣
m

T2, since f(m) = f ′(m). But

now the complement (T1 ∪f T2) \ (D ∪ T2) = T̊1 \D ∼= B2 × (0, 1) is topologically a ball

and we may hence further extend G to the homeomorphism F which we desire, since

the homeomorphism is already given on its boundary.

2.2 Construction from a 3-Ball

Let m, l ∈ Z, where 1 ≤ l < m and m, l are coprime. Consider a closed 3-ball B ⊂ R3

and divide its equator C = S1×0 ⊂ B into m equal segments [vj , vj+1] ⊂ C, where vj =

(cos(2πj/m), sin(2πij/m), 0) ∈ C (oftentimes B is drawn in the shape of a lens, see 2.8).

Joining each point of a segment [vj , vj+1] to either the north pole N ∈ S2 or the south

pole S ∈ S2 via arcs of great circles on ∂B = S2 gives 2p triangles ∆j := [vj , vj+1, N ],

∆′j := [vj , vj+1, S] of S2. Now identify the top hemisphere with the lower hemisphere

via reflection after a twist by an angle of 2πl/m, so that each triangle ∆j gets identified

with the triangle ∆′j+l. We arrive at a closed 3-manifold called the lens space Ll/m.

Of course this construction doesn’t make any sense for m = 0, but otherwise it is

equivalent to the construction in the previous section.

Proposition 2.3. The manifolds Ll/m, constructed in this section, and M(m, l), con-

structed in the previous section, are homeomorphic, when 1 ≤ l < m and m, l are

coprime.

Proof (see [10, p. 256-257]). Cut out a core cylinder Z fromB, which connects the north

and south pole of S2. Draw m equally spaced lines on the cylinder, connecting the ends

of the remainder of each triangle ∆j ∩ Z with the remainder ∆′j ∩ Z, j ∈ {1 . . .m}.

After the identification of the top and bottom faces of Z via the rotation of angle 2π/m,

these lines join to form an (m, l) torus curve c.
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Z

∆1∆m ∆2

. . .. . .

∆′1∆′m ∆′2
. . .. . .

cc c

∆1
∆m ∆2

. . .. . .

∆′1
∆′m ∆′2

. . .. . .

R

Figure 2.2: The removed cylinder Z and the rest R.

To see what happens to the rest R := B3 \ Z, we divide it into m equal parts, by

vertical cuts through the boundaries of the ∆j , j ∈ {1 . . .m}. After the identification of

the ∆j ∩R with ∆′j+l ∩R, the result is a cylinder with the curve c as the edge at each

end. Now when the m equal parts are rejoined, the ends of the cylinder close to form a

solid torus, with c as a meridian curve.

∆1

∆′1

∆m

∆′m

∆2

∆′2

. . .

c c

c c
c c

c c

Figure 2.3: R divided into m equal parts and then ∆j ∩R identified with ∆′
j+l ∩R.

So Ll/m is obtained by glueing two solid tori together via a homeomorphism of their

boundaries, which transforms a meridian curve to a (m, l) torus curve, so the desired

result now follows from 2.2.
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Remark 2.4. A Heegard splitting of an orientable 3-dimensional manifold M is a decom-

position of M into two handlebodies, M = V ∪fW . Here f : ∂V → ∂W is an orientation

reversing homeomorphism of the boundaries of V and W . Every orientable 3-manifold

has a Heegard splitting and the lens spaces are exactly the 3-dimensional manifolds of

Heegard genus 1.

2.3 Construction as an Orbit Space of S3

Let m ∈ Z, 1 ≤ ln < m, ln,m coprime for n ∈ {1, 2}. Consider the action of Zm on

S3 ⊂ C2 generated by ρ : S3 → S3, (z1, z2) 7→ (e2πil1/mz1, e
2πil2/mz2), for l1, l2 coprime

to m. Define the lens space Lm(l1, l2) := S3/Zm to be the orbit space of this action on

S3.

We wouldn’t call this again a lens space if this construction wasn’t equivalent to the

previous ones.

Proposition 2.5. Let m ∈ Z, 1 ≤ ln < m, and let ln,m be coprime for n ∈ {1, 2}.
Then Lm(l1, l2) ∼= Lm(l, 1) ∼= Ll/m, where l := l1r and r ∈ Z is chosen to satisfy

l2r ≡ 1 (mod m).

Proof (see [12, p. 145]). Divide the unit circle C := 0×S1 in the second C factor of C2

into m segments [vj , vj+1], with vj := (0, e2πij/m), subscripts taken mod m. Join the

vj ∈ C to the circle S1 = S1×0 in the first C factor of C2 via arcs of great circles in S3 and

get a 2-dimensional ball B2
j that is bounded by S1, i.e. B2

j := {cos θ ·vj+sin θ ·(z, 0) : z ∈
S1, 0 ≤ θ ≤ π

2 }. Joining each point of the segment [vj , vj+1] to S1 gives a 3-dimensional

ball B3
j := {cos θ · v + sin θ · (z, 0) : z ∈ S1, 0 ≤ θ ≤ π

2 , v ∈ [vj , vj+1]} bounded by

B2
j ∪ B2

j+1. Now ρ maps S1 to itself (rotates it by an angle of 2πl1) and rotates C by

an angle of 2πl2, that means it permutes the B2
j ’s and the B3

j ’s. We may choose an r,

such that rl2 ≡ 1 (mod m), since m and l2 are coprime. Now ρr will as well generate

the action of Zm, but will also take each B2
j and B3

j to the next one. So we may obtain

L as the quotient of one B3
j by identifying its two faces B2

j and B2
j+1 via ρr, but this is

exactly the construction described in the previous section for the lens space Ll/m, where

l := rl1.

Remark 2.6. From the construction given in this section, we immediately see, that

π1(Ll/m) ∼= Zm,

since Ll/m is the orbit space of a free action from Zm on S3, which is simply connected

and therefore its universal cover (using covering theory [14, Proposition II.2.3, Proposi-

tion II.5.1]).
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Remark 2.7. We have L1/2
∼= RP3, since in this case ρ is the antipodal map.

Remark 2.8. In the case m = 3, the sets B3
j ⊂ S3 in the proof of 2.5 look, after a

stereographic projection S3 → R3, like lenses.

Figure 2.4: One of the sets B3
j in the case m = 3 after stereographic projection.

2.4 Higher-Dimensional Lens Spaces

The construction used in the last section can easily be generalized to higher dimensions.

We will define higher dimensional lens spaces to be the orbit space of an action on S2n−1

generated by Zm.

Definition 2.9. Let m > 1 be an integer and l1, . . . , ln positive integers relatively prime

to m. Define the lens space L := Lm(l1, . . . , ln) := S2n−1/Zm, where the action of Zm
on S2n−1 is generated by ρ : S2n−1 → S2n−1, (z1, . . . , zn) 7→ (e2πil1/mz1, . . . , e

2πiln/mzn).

Remark 2.10. This construction also gives us the opportunity to define infinite-dimensional

lens spaces. Given a sequence of integers l1, l2, . . . coprime to m we can define the space

Lm(l1, l2, . . . ) to be the orbit space S∞/Zm.

Lm(l1, l2, . . . ) is a CW complex, since it is the union of an increasing sequence of finite-

dimensional complexes, namely the lens spaces Lm(l1, l2) ⊂ Lm(l1, l2, l3) ⊂ . . . , each

Lm(l1, . . . , ln) being a subcomplex of Lm(l1, . . . , ln, ln+1) (see 3.1).

Since the universal cover of such a space is S∞ (see [14, Proposition II.2.3, Proposition

II.5.1]), which is contractible, Lm(l1, l2, . . . ) is an Eilenberg-MacLane space K(Zm, 1)

(for a description, see [12, p. 365]). Hence its homotopy type does only depend on m

(see [12, p. 366, Proposition 4.30]). Not so in the finite-dimensional case, which we will

see in 4.1.
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(Co)Homology of Lens Spaces

3.1 A Cell Decomposition of Lens Spaces

We will now describe a CW decomposition of lens spaces (as in [12, p. 145]).

Let C := 0 × · · · × 0 × S1 ⊂ Cn be the unit circle of the nth C factor of Cn. Divide

C into m segments [vj , vj+1], where the jth vertex vj := (0, . . . , 0, e2πij/m), subscripts

taken mod m. Joining vj ∈ C by arcs of great circles in S2n−1 to the unit sphere

S2n−3 ⊂ Cn−1 × 0 gives a (2n − 2)-dimensional ball B2n−2
j that is bounded by S2n−3.

That is B2n−2
j := {cos θ · vj + sin θ · (z, 0) : z ∈ S2n−3, 0 ≤ θ ≤ π

2 }. Similarly, joining

each point of the jth segment [vj , vj+1] ⊂ C to S2n−3 gives a ball B2n−1
j bounded by

B2n−2
j ∪ B2n−2

j+1 , again every subscript taken mod m. Now ρ (from 2.9) maps S2n−3 to

itself and rotates C by an angle of 2πln/m, so it permutes the B2n−2
j ’s and the B2n−1

j ’s.

Since ln and m are coprime, we may choose an r, such that rln ≡ 1 (mod m). Now ρr

will as well generate the action of Zm, but will also take each B2n−2
j and B2n−1

j to the

next one. Thus we may obtain L as the quotient of one B2n−1
j by identifying its two

faces B2n−2
j and B2n−2

j+1 via ρr.

Since Lm(l1, . . . , ln−1) is the quotient of S2n−3 ⊂ S2n−1 it is naturally a subspace of

Lm(l1, . . . , ln), since S2n−3 is compact. Since Lm(l1, . . . , ln) can be obtained from this

subspace by attaching two cells, of dimensions 2n − 1 and 2n − 2, that is, the interior

of B2n−1
j and the interiors of its two identified faces B2n−2

j and B2n−2
j+1 , we can apply

induction to arrive at a CW decomposition of Lm(l1, . . . , ln) with one cell ek in each

dimension k ≤ 2n− 1.

The CW decomposition now allows us to compute the homology groups of the lens space.

Proposition 3.1. By setting ekj := B̊k
j with the Bk

j , j ∈ {0 . . .m − 1}, k ∈ {0 . . . 2n −
1} as explained above, we obtain a CW structure on S2n−1. Denoting ẽk := ek0, the

43
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cellular chain complex Ck(S
2n−1) determined by this CW structure satisfies the following

properties:

1. ekj = ρtẽk, where tlj ≡ j (mod m)

2. d(ẽ2i+1) = ρri+1 ẽ2i − ẽ2i, where ri+1li+1 ≡ 1 (mod m)

3. d(ẽ2i) = ẽ2i−1 + ρẽ2i−1 + · · ·+ ρm−1ẽ2i−1

4. dρ = ρd : Ck(S
2n−1)→ Ck−1(S2n−1)

Proof (see [7, p. 89-90]). We have already explained how ρ permutes the B2n−2
j ’s and

the B2n−1
j ’s, so (1) is evident.

Denoting the inclusion ∂B2i+1
0 = B2i

0 ∪B2i
1 ↪→ Si+1 by ι, we compute

d(ẽ2i+1) =

m∑
j=0

e2i
j · deg( S2i ∼= B2i

0 ∪B2i
1

ι // S2i+1 // S2i+1

S2i+1\e2ij
∼= S2i )

= e2i
0 · deg(. . . ) + e2i

1 · deg(. . . ), since all other maps aren’t surjective

= ε(ρri+1 ẽ2i − ẽ2i),

since the first map is the same as the second after a reflection, which has degree −1 and

a rotation, which has degree +1. Now we may choose ε := 1 as to how we orient the

cells. This gives us (2).

Now, by a similar computation, (3) follows from the fact that ∂B2i
j = S2i−1 = B2i−1

0 ∪
B2i−1

1 ∪ · · · ∪B2i−1
m−1.

Finally (4) follows easily from (1), (2) and (3).

Proposition 3.2. The homology groups of the lens space Lm(l1, . . . , ln) are given by

Hk(Lm(l1, . . . , ln)) =


Z if k = 0, 2n− 1

Zm if k is odd and 0 < k < 2n− 1

0 otherwise

Proof. For the odd-dimensional cells e2i+1 we get from property (2) of 3.1, that

d(e2i+1) = d(p∗(ẽ2i+1)) = p∗(d(ẽ2i+1)) = p∗(ρ
ri+1 ẽ2i − ẽ2i) = e2i − e2i = 0,

where p : S2n−1 → L(l1, . . . , ln) denotes the projection.
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Similarly, for even-dimensional cells, we get from property (3) of 3.1, that

d(e2i) = m · e2i−1.

So the resulting cellular chain complex is given by

0 // Z 0 // Z m // Z 0 // . . . 0 // Z m // Z 0 // Z // 0 .

And the desired result is an easy computation.

Remark 3.3. Note that p∗ : Z ∼= H2n−1(S2n−1) → H2n−1(Lm(l1, . . . , ln)) ∼= Z is multi-

plication by m, since this is the only map that fits into a commutative square

C2n−1(S2n−1) ∼= Zm

��

p∗=(1,1,...,1)
// Z ∼= C2n−1(L)

∼=
��

H2n−1(S2n−1) ∼= Z
p∗

// Z ∼= H2n−1(L)

Remark 3.4. Analogously, the infinite-dimensional lens space Lm(l1, l2, . . . ) has a cell

decomposition with one cell in each dimension and the homology groups are:

Hk(Lm(l1, l2, . . . )) =


Z if k = 0

Zm if k > 0 is odd

0 if k > 0 is even

Corollary 3.5. The cohomology groups of the lens space Lm(l1, . . . , ln) are given by:

Hk(Lm(l1, . . . , ln)) =


Z if k = 0, 2n− 1

Zm if k is odd and 0 < k < 2n− 1

0 otherwise

And the (co)homology groups with coefficients in Zm are given by:

Hk(Lm(l1, . . . , ln);Zm) =

Zm if 0 ≤ k ≤ 2n− 1

0 otherwise

Hk(Lm(l1, . . . , ln);Zm) =

Zm if 0 ≤ k ≤ 2n− 1

0 otherwise

Proof. These are straightforward applications of the universal coefficient theorem: From

[13, p. 29-30] we know that Tor(Z,Zm) = 0 and Tor(Zm,Zm) = Zm. Denoting L =
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L(l1, . . . , ln) we get

Hk(L;Zm) ∼=



(Z⊗ Zm)⊕ Tor(0,Zm) if k = 0, 2n− 1

(Zm ⊗ Zm)⊕ Tor(Z,Zm) if k = 1

(Zm ⊗ Zm)⊕ Tor(0,Zm) if k is odd and 1 < k < 2n− 1

(0⊗ Zm)⊕ Tor(Zm,Zm) if k is even and 0 < k < 2n− 1

0 otherwise

∼=

Zm if 0 ≤ k ≤ 2n− 1

0 otherwise

The results for Hk(L) and Hk(L;Zm) follow from the facts that Ext(Z,Zm) = 0 and

Ext(Zm,Zm) = Zm (see [13, p. 30]).

The following lemma will prove to be useful in the computation of the cup product

structure on the cohomology ring of lens spaces.

Lemma 3.6. Let L = L(l1, . . . , ln). Let β be the Bockstein homomorphism β : Hq(L;Zm)→
Hq+1(L;Zm) associated to the sequence 0 // Zm

m // Zm2 // Zm // 0 . Let

0 ≤ q < 2n− 1. Then β is an isomorphism if q is odd and the trivial homomorphism if

q is even.

Proof (see [12, p. 303-304]). Let β̃ be the Bockstein associated to the sequence

0 // Z m // Z // Zm // 0.

From the natural map from this sequence to the sequence

0 // Zm
m // Zm2 // Zm // 0,

we get the relationship β = ρβ̃, where ρ denotes the homomorphism Z → Zm reducing

coefficients mod m. Hence we get the following commutative diagram, whose upper row

is the exact sequence containing β̃:

Hq(L;Z)
ρ

// Hq(L;Zm)
β̃

//

β
''OOOOOOOOOOOO

Hq+1(L;Z)
m //

ρ

��

Hq+1(L;Z)

Hq+1(L;Zm)

If q is even, the vertical map ρ in the diagram is surjective (see 3.5). And so is β̃ since

m is trivial (again 3.5). That means β = ρ ◦ β̃ : Zm → Zm is surjective and hence
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an isomorphism. If q is odd, the horizontal map ρ in this diagram is surjective, so by

exactness β̃ = 0, hence β = 0.

Remark 3.7. Note that for the infinite-dimensional lens space Lm(l1, l2, . . . ) the same

arguments in the proof of 3.6 apply for any q ≥ 0. So we have that for any q ≥ 0 that

β is an isomorphism for q odd and 0 for q even.

Proposition 3.8. The cup product structure on H∗(L;Zm) where L = Lm(l1, . . . , ln)

may be described in the following way:

There is a generator x of H1(L;Zm) and y of H2(L;Zm), such that Hq(L;Zm) is gen-

erated by yk if q = 2k or xyk if q = 2k + 1. When m is odd x2 = 0 and when m is even

x2 is the unique element of order 2 in H2(L;Zm) ∼= Zm.

Proof (see [12, p. 208-209, 304-305]). We first consider the infinite dimensional lens

space L∞ = Lm(1, 1, . . . ) i.e. L∞ = S∞/Zm where the action of Zm on S∞ is gen-

erated by the rotation v 7→ e2πi/mv. We will derive the cup product structure of L∞

from the cup product structure on CP∞. First note that the quotient map S∞ → CP∞

factors through L∞, so we have a projection L∞ → CP∞. Looking at the cell structure

on L∞ (3.4), we see that each even-dimensional cell of L∞ projects homeomorphically

onto the corresponding cell of CP∞ (for a description of the cell structure of CP∞, see

[12, p. 7]). From cellular (co)homology it then follows that the map L∞ → CP∞ induces

isomorphisms on even-dimensional cohomology with Zm coefficients.

Since H∗(CP∞;Zm) is a polynomial ring (see [12, p. 220]), we deduce that if y ∈
H2(L∞;Zm) is a generator, then yk generates H2k(L∞;Zm) for all k.

Now by 3.7 there is a generator x ∈ H1(L∞;Zm) with β(x) = y so we get

β(xyk)
1.14
= β(x)yk − xβ( yk︸︷︷︸

∈H2k(L;Zm)

)
3.7
= yk+1.

So β takes xyk to a generator, so xyk must have been a generator of H2k+1(L∞;Zm) in

the first place.

If m is odd we have now completely described the cup product structure on H∗(L∞;Zm),

since in this case the graded commutativity of H∗(L∞;Zm) implies that x2 = 0. When

m is even, then we get from the commutativity property that either x2 = 0 or that x2

is the unique element of order 2 in H2(L∞;Zm). By [12, p. 202, p. 207] we may use

a triangulation to compute the cup-product structure on H∗(L∞;Zm) to decide which

case holds: We triangulate the 2-skeleton of L∞, which is a 2-cell attached to the circle

S1 by a map of degree m, the following way: Take a regular m-gon subdivided into m

triangles Ti by edges ei around a central vertex and then identify all the outer edges by
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rotations of the m-gon to one edge e. Then the Ti are bounded by edges e, ei and ei+1,

subscripts taken mod m. Now a generator x of H1(L∞;Zm) is represented by a cocycle

ϕ assigning the value 1 to the edge e, which generates H1(L∞). That ϕ is a cocycle

means that ϕ(ei) + ϕ(e)− ϕ(ei+1) = 0 for all i ∈ Zm. So we may take ϕ(ei) = i ∈ Zm.

Then (ϕ∪ϕ)(Ti) = ϕ(ei)ϕ(e) = i. Now (ϕ∪ϕ)(
∑
i
Ti) = 0+1+ · · ·+(m−1) =: k ∈ Zm,

that means x2 = [ϕ ∪ ϕ] = k · y. In the case m even, it follows that k = m
2 , since all the

terms 1 and m− 1 cancel, 2 and m− 2 cancel, and so on, except for the term m
2 . Hence

x2 is the unique element of order 2 in H2(L∞;Zm).

e

e

e

e

e

e

e

T0

e1

e0

T1 e2

. . .

. . .

Figure 3.1: The triangulation of the 2-skeleton

Since the homotopy type of any infinite-dimensional lens space is already determined

only by m (see 2.10) we may choose any sequence l1, l2, . . . of numbers coprime to m to

get an infinite-dimensional lens space in which an arbitrary finite-dimensional lens space

L = Lm(l1, . . . , ln) embeds as the (2n− 1)-skeleton. Since the cell structure for cells of

dimension ≤ 2n−1 is then the same as that of L(l1, l2, . . . ) ' L∞ and there are no more

cells of dimension ≥ 2n, it follows that the cup product structure on H∗(L;Zm) can be

described in the same way as that of H∗(L∞;Zm) but modulo the relation yn = 0.



Chapter 4

The Homotopy Classification

In this chapter, we will see a proof of the homotopy classification of lens spaces. The

concepts needed in this proof are dealt with in sections 1.1 and 1.2.

Proposition 4.1. Let Lm(l1, . . . , ln) ' Lm(l′1, . . . , l
′
n) be two homotopy equivalent lens

spaces. Then l1 · · · ln ≡ ±l′1 · · · l′n · kn for some k ∈ Z coprime to m.

Proof. We follow the approach suggested in [12, Exercise 2, p.310].

Let L := Lm(l1, . . . , ln), L′ := Lm(l′1, . . . , l
′
n). Let β be the Bockstein homomorphism β :

Hq(L;Zm)→ Hq+1(L;Zm) associated to the sequence 0 // Zm
m // Zm2 // Zm // 0 .

Note that β : H1(L;Zm)→ H2(L;Zm) is an isomorphism by 3.6.

Let x be a generator of H1(L;Zm), y := β(x) ∈ H2(L;Zm) and let z ∈ H2n−1(L;Zm) be

the image of a generator of H2n−1(L;Z) ∼= Z. Note that z generates H2n−1(L;Zm), since

the maps H2n−1(L;Z)→ Hom(H2n−1(L),Z) and H2n−1(L;Zm)→ Hom(H2n−1(L),Zm)

of the universal coefficient theorem are isomorphisms, that means z can be thought of

as the mod m reduction of a generator of H2n−1(L;Z).

Define t ∈ Zm via the equation

xyn−1 = tz. (∗)

This is well defined since for another t′ to satisfy this equation, we would get from

tz = xyn−1 = t′z that tz = t′z, so t = t′ since z is a generator of H2n−1(L;Zm).

Also from (the proof of) 3.8 it follows that xyn−1 is a generator of H2n−1(L;Zm), so it

follows that t actually lies in Z∗m, the group of units of Zm. This allows us to define τ(L)

to be the image of t in Z∗m/±(Z∗m)n, where ±(Z∗m)n denotes the subgroup {±an, a ∈ Z∗m}
of Z∗m.

49
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We will now show that τ(L) does not depend on the choices of x and z and is therefore

a homotopy invariant, since homology and the Bockstein are homotopy invariants. For,

let x′, z′ be different choices. Since H1(L;Zm) ∼= Zm, we have x′ = e ·x, for some e ∈ Z∗m
and since H2n−1(L;Z) ∼= Z, we have z′ = ±z.

Plugging this into the equation ∗ yields

x′(y′)n−1 = tz′

⇒ ex · en−1yn−1 = ±t′z
⇒ xyn−1 = (±e−nt′)z
⇒ ±ent = t′

So t is unique in Z∗m/± (Z∗m)n.

Now define f̃ : S2n−1 → S2n−1, (r1e
iθ1 , . . . , rne

iθn) 7→ (r1e
ik1θ1 , . . . , rne

iknθn) for some

k1, . . . , kn ∈ Z. If we choose k1, . . . , kn to satisfy kjlj ≡ l′j (mod m) for all j ∈ {1 . . . n},
the following computation shows, that f̃ induces a map f : L→ L′.

prj((ρ
′ ◦ f̃)(r1e

tθ1 , . . . , rne
iθn))

= e2πl′j/m · rjeikjθj

= e2πkj lj/m · e2πia · rjeikjθj

= e2πkj lj/m · rjeikjθj

= prj((f̃ ◦ ρ)(r1e
tθ1 , . . . , rne

iθn)).

Here prj is the projection to the jth component, ρ and ρ′ are the maps that induce the

group actions on S2n−1 and we have shown that f̃ ◦ ρ = ρ′ ◦ f̃ . So we have that the

following diagram commutes:

S2n−1
f̃

//

p

��

S2n−1

p′

��

L
f

// L′

where p and p′ are the projections.

We will now show by induction that f̃ has mapping degree k1 · · · kn.

(n = 1) Obviously f̃ : S1 → S1, eiθ 7→ eiθ·k1 has degree k1.

(n → n + 1) Suppose that f̃ : S2n−3 → S2n−3 has degree k1 · · · kn−1. Now using 1.6,

Σ2f̃ = g1 has degree k1 · · · kn−1 as well, where Σ is suspension and g1(r1e
tθ1 , . . . , rne

iθn) =

(r1e
iθ1k1 , . . . , rn−1e

iθn−1kn−1 , rne
iθn); after a suitable identification of S2n−1 with Σ2S2n−3.

The map g : S1 → S1, eiθ 7→ eiθ·kn has degree kn and so has Σ2n−2g = g2, where

g2(r1e
tθ1 , . . . , rne

iθn) = (r1e
iθ1 , . . . , rn−1e

iθn−1 , rne
iθn·kn); after a suitable identification
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of S2n−1 with Σ2n−2S1. But f̃ : S2n−1 → S2n−1 is the composition g1 ◦ g2, so it has

degree k1 · · · kn.

Now f has degree k1 · · · kn as well, meaning its induced homomorphism f∗ : Z ∼=
H2n−1(L) → H2n−1(L′) ∼= Z is multiplication by k1 · · · kn. (To see this, observe that

(f∗ ◦ p∗)(z) = (p′∗ ◦ f̃∗)(z) = k1 · · · kn · p′∗(z). Because p∗, p
′
∗ are both multiplication by

m 6= 0 (see 3.3), the assertion follows).

Finally we will show that the map f : L → L′ induces an isomorphism f∗ : π1(L) →
π1(L′) of fundamental groups and hence an isomorphism f∗ : H1(L′) → H1(L) of

cohomology groups by Hurewicz’s theorem and the universal coefficient theorem:

Let γk : I → S2n−1, t 7→ (e2πitk/m, 0, . . . , 0) and p : S2n−1 → L the projection. We have

π1(L) ∼= Zm ∼= π1(L′) and the map e := p ◦ γ1 is a representative of a generator of

π1(L), because ek ' p ◦ γk 6' 0 for any 1 ≤ k < m (note that every interval [ jk ,
j+1
k ] ⊆ I,

0 ≤ j < k gets mapped to e(I) by p◦γk). And since f ◦e = f ◦p◦γ1 = p′◦ f̃ ◦γ1 = p′◦γk1 ,

we have that f∗([e]) ∈ π1(L′) is a generator.

The proof of our claim is now only a matter of computation. From

x′y′n−1 = t′z′

⇒ f∗(x′y′n−1) = f∗(t′z′)

⇒ ±kn · xyn−1 = k1 · · · kn · t′z, for some 0 6= k ∈ Z

we see, that τ(L) = k1 · · · kn · τ(L′).

And when L ' L′, we also have τ(L) = τ(L′). And hence τ(L′) = k1 · · · kn · τ(L′),

so k1 · · · kn = 1 in Z∗m/ ± (Z∗m)n. So k1 · · · kn · l1 · · · ln = l1 · · · ln in Z∗m/ ± (Z∗m)n. By

definition of the kj , j ∈ {1 . . . n} we get l′1 · · · l′n = l1 · · · ln in Z∗m/± (Z∗m)n. So we have

l1 · · · ln ≡ ±l′1 · · · l′n · kn (mod m) for some k ∈ Z.

Proposition 4.2. If m ∈ Z and l1, . . . , ln, l
′
1, . . . , l

′
n ∈ Z are relatively prime to m, and

l1 · · · ln ≡ ±l′1 · · · l′n · kn (mod m) for some k ∈ Z, then Lm(l1, . . . , ln) ' Lm(l′1, . . . , l
′
n).

Proof. We follow the approach suggested in [12, Exercise 29, p.391].

As seen in the section on the cell decomposition of lens spaces, having k̃ ∈ Z coprime

to m, ρk̃ will as well generate the action of Zm on S2n−1 and we get Lm(l′1, . . . , l
′
n) =

Lm(k̃l′1, . . . , k̃l
′
n). So without loss of generality we may assume that k = 1, i.e. l1 · · · ln ≡

±l′1 · · · l′n (mod m)

Let f : L → L′ be a map of degree k1 · · · kn, as constructed in the proof of 4.1. In the

following, we will now construct a map g : L→ L′ of degree k1 · · · kn+d ·m: Let c : L→
L∨S2n−1 collapse the border of a small ball to a point. Let idL∨d : L∨S2n−1 → L∨S2n−1
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be the identity map on L on the first component and some map d : S2n−1 → S2n−1 of

degree d ∈ Z on the second. Let (f, p′) : L ∨ S2n−1 → L′, where f : L → L′ is the

map of degree k1 · · · kn mentioned before on the first component and the projection p′ :

S2n−1 → L′ on the second. Define g : L→ L′ as the composition g := (f, p′)◦(idL∨d)◦c.
Since we have a natural isomorphism H2n−1(L ∨ S2n−1) ∼= H2n−1(L) ⊕ H2n−1(S2n−1),

we see that (idL ∨ d)∗(z1, z2) = (z1, d · z2) for any (z1, z2) ∈ H2n−1(L ∨ S2n−1) and that

(f, p′)∗(z1, z2) = k1 · · · kn · z1 + m · z2. The map c∗ maps a generator e ∈ H2n−1(L) to

(e, ẽ) where ẽ is a generator of H2n−1(S2n−1), since L ∨ S2n−1 has two (2n − 1)-cells

e2n−1 and ẽ2n−1 both of which yield an entry of 1 in the matrix of c∗.

As the composition of these maps, g has degree k1 · · · kn + d ·m.

Since k1, . . . kn ∈ Z were chosen to satisfy kjlj ≡ l′j (mod m) for all j ∈ {1 . . . n} it

follows, together with our requirement that l1 · · · ln ≡ ±l′1 · · · l′n (mod m), that k1 · · · kn ≡
±1 (mod m). We may hence choose a d ∈ Z s.t. k1 · · · kn+d ·m = ±1. We will now show

that in this case, the map g of degree ±1 induces isomorphisms between all homotopy

groups g∗ : πk(L) → πk(L
′) and is therefore a homotopy equivalence by Whitehead’s

theorem.

First we show that g induces an isomorphism between the fundamental groups π1(L)→
π1(L′): Observe that any path γ : I → L ∨ S2n−1 can be homotoped to a path γ′ :

I → L ⊂ L ∨ S2n−1, since S2n−1 is simply connected for n > 1. That means, for any

γ ∈ π1(L), that g∗(γ) = f∗(γ), but we have already seen in the proof of 4.1, that f∗ is

an isomorphism π1(L)→ π1(L′).

For the higher homotopy groups πq, q > 1, consider a lift g̃ : S2n−1 → S2n−1 of g : L→ L′

to the universal covering spaces.

S2n−1
g̃

//

p

��

S2n−1

p′

��

L g
// L′

Note that m · g̃∗ = p′∗ ◦ g̃∗ = g∗ ◦ p∗ = ±p∗ = ±m : H2n−1(S2n−1) → H2n−1(L′), where

multiplication by m is assumed to be a map between the groups H2n−1(S2n−1) and

H2n−1(L), H2n−1(L′) respectively. So we see that g̃∗ : H2n−1(S2n−1) → H2n−1(S2n−1)

is an isomorphism. So g̃ : S2n−1 → S2n−1 induces isomorphisms on every homology

group of S2n−1 and therefore on every homotopy group of S2n−1 (see 1.32). But since

p∗ : πq(S
2n−1)→ πq(L) resp. p′∗ : πq(S

2n−1)→ πq(L
′) is an isomorphism for every q > 1

(see 1.22), so is g∗ = p′∗ ◦ g̃∗ ◦ p−1
∗ : πq(L)→ πq(L

′) for every q > 1.
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So g : L→ L′ induces isomorphisms on all homotopy groups and is therefore a homotopy

equivalence by Whitehead’s theorem.

Combining 4.1 and 4.2 we arrive at the homotopy classification of lens spaces.

Theorem 4.3. Two lens spaces Lm(l1, . . . , ln) and Lm(l′1, . . . , l
′
n) are homotopy equiva-

lent if and only if there is a k ∈ Z such that l1 · · · ln ≡ ±l′1 · · · l′n · kn (mod m).

Example 4.1. The lens spaces L1/5 = L5(1, 1) and L2/5 = L5(2, 1) are not homotopy

equivalent.

Example 4.2. For m ∈ {2, 3, 4, 6} and any given n ≥ 2, any two lens spaces Lm(l1, . . . , ln)

and Lm(l′1, . . . , l
′
n) are homotopy equivalent. For, in these cases, the only congruence

classes of numbers coprime to m are those of 1 and −1 respectively (in the case m = 2

even these aren’t distinct), i.e. li ≡ ±1 (mod m). Hence l1 · · · ln ≡ ±1 ≡ l′1 · · · l′n (mod m)

and we may apply 4.3.

Example 4.3. The two lens spaces L1/7 = L7(1, 1) and L2/7 = L7(2, 1) are homotopy

equivalent, since 1 · 1 ≡ (2 · 1) · 22 (mod 7) so by 4.3 we have L1/7 ' L2/7.





Chapter 5

The Homeomorphy Classification

In this chapter, we will see a proof of the homeomorphy classification of lens spaces.

Most of the needed concepts were dealt with in section 1.3, though, we will make use of

a number theoretic result (Franz’ theorem) which we will explain in the first section of

this chapter.

5.1 Franz’ Theorem

In the proof of 5.14, we will need to compare two expressions with roots of unities,

coming from the torsions of acyclic complexes as computed in 5.13. To arrive at our

desired result, we will make use of the following theorem.

Theorem 5.1 (Franz’ Theorem). Let S := {j ∈ Z : 0 < j < m, gcd(j,m) = 1}. Let

{aj}j∈S be a sequence of integers, indexed by S, satisfying

1.
∑
j∈S

aj = 0

2. aj = am−j

3.
∏
j∈S

(ξj − 1)aj = 1 for every mth root of unity ξ 6= 1.

Then aj = 0 for all j ∈ S.

The purpose of this section is to explain a proof of Franz’ Theorem. Our main source

for this is [16].

Definition 5.2. A map χ : Z → C is called a Dirichlet character or short character

(mod m) if it satisfies the following conditions

55
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1. χ(a) = χ(b) if a ≡ b (mod m)

2. χ(ab) = χ(a)χ(b) for all a, b ∈ Z

3. χ(a) = 0 if and only if gcd(a,m) 6= 1.

The character χ0 that suffices χ0(a) = 1 if gcd(a,m) = 1 is called the trivial character.

Lemma 5.3 (Orthogonality Relations). There are φ(m) characters (mod m), where φ

is Euler’s totient function, and the following equations hold:

1.
m−1∑
n=0

χ(n) =

φ(m) if χ = χ0

0 if χ 6= χ0

2.
∑
χ
χ(n) =

φ(m) if n ≡ 1 (mod m)

0 if if n 6≡ 1 (mod m)
.

Proof (see [17, p. 179-180]). We refer to [17, p. 176, Lemma 6.6] for a proof of why

there are exactly φ(m) characters.

To prove (1), let S denote the sum on the left side of the equation to prove. If χ = χ0,

then χ(a) = 1 if gcd(a, q) = 1 and χ(a) = 0 otherwise. Hence S = φ(m).

If χ 6= χ0, there exists a number a1 with gcd(a1,m) = 1, such that χ(a1) 6= 1. But then

χ(a1) · S =
m−1∑
n=0

χ(a1)χ(n) =
m−1∑
n=0

χ(a1n) =
m−1∑
n=0

χ(n) = S,

since a1n runs through all residues (mod m) in the same time as n does. Hence S = 0.

To prove (2), let S again denote the sum on the left side of the equation to prove. Now

if gcd(n,m) = 1 and n ≡ 1 (mod m), then χ(n) = χ(1) = 1 for all characters χ (mod

m), and since there are φ(m) of them, S = φ(m).

If gcd(n,m) > 1, then all terms in the sum are zero, hence S = 0.

Now suppose gcd(n,m) = 1 and n 6≡ 1 (mod m). That means there must be a character

χ1 (mod m) with χ1(n) 6= 1 (see [17, p. 176, Lemma 6.6]). But then

χ1(n) · S =
∑
χ

χ1(n)χ(n) =
∑
χ

(χ1χ)(n) =
∑
χ

χ(n) = S,

and hence S = 0.
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Proposition 5.4. Let {aj}j∈S be a sequence of integers, indexed by S (as stated in

Franz’ Theorem), satisfying
∑
j
ajχ(j) = 0 for all characters χ (mod m). Then an = 0

for all n ∈ S.

Proof (see [16, p. 2]). Let n ∈ S. Choose n′ ∈ S, such that nn′ ≡ 1 (mod m). Then

0 =
∑
χ

χ(n′)
∑
j

ajχ(j) =
∑
j

aj
∑
χ

χ(jn′) = anφ(m),

because of 5.4. Hence an = 0.

Definition 5.5. The conductor of a character χ (mod m) is the smallest number f > 0

such that χ(a) = 1 for all a ∈ Z with gcd(a,m) = 1 and a ≡ 1 (mod f).

If f = m, we say that the character χ is primitive.

Proposition 5.6. Let χ be a character (mod m) and let f be its conductor. Then f

divides m.

Proof (see [16, p. 2]). Let gcd(f,m) = f0. Let a be an integer, such that gcd(a,m) = 1

and a ≡ 1 (mod f0). We may choose integers y and z such that a − 1 = ym + zf .

By defining x := a − ym = 1 + zf , we get x ≡ a (mod m) and x ≡ 1 (mod f). That

means χ(x) = χ(a) and χ(x) = 1, hence χ(a) = 1. We conclude that f0 ≥ f and further

f0 = f . But that means f divides m.

Proposition 5.7. We may associate to any character χ (mod m) with conductor f a

primitive character χ′ (mod f), such that χ = χ0χ
′, where χ0 is the trivial character

(mod m).

Proof (see [16, p. 3]). For any integer a satisfying gcd(a, f) = 1, we define χ′(a) := χ(x),

where x is chosen to satisfy gcd(x,m) = 1 and x ≡ a (mod f). This definition does not

depend on the choice of x, since if gcd(x,m) = gcd(y,m) = 1 and x ≡ y (mod f), we get

that y ≡ xx′ (mod m) with x′ ≡ 1 (mod f) and hence χ(x′) = 1 and χ(y) = χ(x).

Definition 5.8. A Gaussian sum is an expression of the form

G(χ, ξ) :=
m−1∑
l=0

χ(l)ξl,

where χ is a character (mod m) and ξ is a mth root of unity.

Proposition 5.9. If χ is a primitive character (mod m) and ξ is a primitive mth root of

unity, we have that G(χ, ξk) = χ̄(k)G(χ, ξ) for any integer k. Also |G(χ, ξ)| =
√
m 6= 0.
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Proof (see [16, p. 4-5]). First suppose that gcd(k,m) = 1. Then χ(l) = χ(kl)χ̄(k), so

that

G(χ, ξk) = χ̄(k)
m−1∑
l=0

χ(kl)ξkl = χ̄(k)G(χ, ξ),

since kl runs through all residues (mod m) in the same time as l does.

Note that we haven’t used yet that ξ is a primitive root of unity. Now if ξ wasn’t

primitive and we had ξd = 1 for a proper divisor d of m, then, since χ is primitive, we

may choose an integer k with gcd(k,m) = 1, k ≡ 1 (mod d) and χ(k) 6= 1. Then ξk = ξ

and we get G(χ, ξ) = 0 from the equation above.

Now let gcd(k,m) > 1. Then ξk isn’t primitive and hence G(χ, ξk) = 0, as we have just

seen. But in this case we also have χ(k) = 0.

To prove |G(χ, ξ)| =
√
m, remark that

m−1∑
n=0

|G(χ, ξn)|2 = φ(m)|G(χ, ξ)|2,

for, from the first part, all the terms that are not zero are equal and there are φ(m) of

them.

We proceed to calculate:

m−1∑
n=0

|G(χ, ξn)|2 =

m−1∑
n=0

∑
l,k

χ(l)χ̄(k)ξn(l−k)

=
∑
l,k

χ(l)χ̄(k)
m−1∑
n=0

ξn(l−k)

= m
∑

l≡k (mod m)

χ(l)χ̄(k) = mφ(m).

We conclude |G(χ, ξ)| =
√
m.

Corollary 5.10. Let χ be a character (mod m) with conductor f and let ξ be a primitive

f th root of unity. If χ′ denotes the associated primitive character (mod f) of χ, then

G(χ, ξk) = χ̄′(k)G(χ, ξ) for all integers k. Also G(χ, ξ) 6= 0.
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Proof (see [16, p. 5]). From 5.9, we get G(χ′, ξk) = χ̄′(k)G(χ′, ξ). But for any mth root

of unity η, we have

G(χ, η) =
m−1∑
l=0

χ(l)ηl =
m−1∑
l=0

χ0(l)χ′(l)ηl

=
∑

0≤l<m
gcd(l,m)=1

χ′(l)ηl

=

f−1∑
l=0

χ′(l)ηl = G(χ′, η).

Also from 5.9 we now conclude that |G(χ, ξ)| =
√
f 6= 0 and hence G(χ, ξ) 6= 0.

Definition 5.11. A Dirichlet L-series is a function given by

L(s, χ) :=
∞∑
n=1

χ(n)

ns
,

for any Dirichlet character χ and s ∈ C.

Theorem 5.12. For any non-trivial character χ, we have L(1, χ) 6= 0.

Reference: [16, p. 8-9].

Proof of Franz’ theorem (see [16, p. 11-12]). After 5.4 it suffices to show, that
∑

j χ(j) =

0 for all characters χ (mod m). For the trivial character, this follows from (1). For any

character χ satisfying χ(−1) = −1 this follows from (2). So we may from now on suppose

that χ is a non-trivial character that satisfies χ(−1) = 1.

From (3), we get

log 1 =
∑
j

log(1− ξj) = −
∑
j

aj

∞∑
k=1

ξkj

k
.

From an = a−n, we see that the last sum is real and hence 0, the principal value of the

logarithm.

We may also replace ξ with ξn and get

∑
j

aj

∞∑
k=1

ξknj

k
= 0.

By multiplying with χ̄(n) = χ̄(nj)χ(j) and summing up, we get

∞∑
k=1

1

k

∑
j,n

ajχ(j)χ̄(nj)ξkjn = 0. (∗)
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But
∑
n
χ̄(nj)ξkjn =

∑
n
χ̄(n)ξkn = G(χ̄, ξk) and hence by 5.10, if f denotes the conductor

of χ and if ξ is a primitive fth root of unity, we have for all integers k:

G(χ̄, ξk) = χ′(K)G(χ̄, ξ),

where χ′ denotes the primitive character (mod f) associated to χ. Now equation ∗
becomes ∑

j

ajχ(j) ·G(χ̄, ξ) · L(1, χ′) = 0.

L(1, χ) is not zero because of 5.12 and G(χ̄, ξ) is not zero as well because of 5.10. That

means
∑
j
ajχ(j) = 0.

5.2 The Classification Result

We will deal with a certain acyclic complex in our proof of the homeomorphy classifica-

tion and need to compute its torsion. This is the purpose of the following proposition.

Proposition 5.13. Write Zm = {1, t, . . . , tm−1}. Let R := Z[Zm] and let G := {±tj :

j ∈ Z} ⊂ R be the group of trivial units of R. Let R′ := C, and let ξ 6= 1 be a m’th

root of unity and let G′ := {±ξj : j ∈ Z} ⊂ R′. Let (r1, . . . , rn) be a sequence of integers

coprime to m and let Σ(t) := 1 + t+ · · ·+ tm−1 ∈ R.

Define h : R→ R′ by h(
∑
j
njt

j) =
∑
j
njξ

j.

Also let C be the (R,G)-complex

0→ C2n−1
〈trn−1〉

// C2n−2
〈Σ(t)〉

// C2n−3
〈trn−1−1〉

// C2n−4
〈Σ(t)〉

// . . .
〈tr1−1〉

// C0 → 0.

where each Cj has rank 1 and the 1 × 1 matrix of dj : Cj → Cj−1 is written above the

arrow.

Then C is not acyclic while Ch (as defined in 1.52) is acyclic and τ(Ch) ∈ KG′(C) is

equal to the torsion of the 1× 1 matrix 〈
n∏
j=1

(ξrj − 1)〉.

Proof (see [7, p. 59-60]). C is a chain complex, since

Σ(t) · (trj − 1) = Σ(t) · (t− 1)(1 + t+ · · ·+ trj−1) = (tm − 1)(1 + · · ·+ trj−1) = 0.

C is not acyclic, since, if {ci} is a basis for Ci, then Σ(t) · c2n−1 is not a boundary, while

d(Σ(t) · c2n−1) = Σ(t) · (trn − 1)c2n−2 = 0, so it’s a cycle. However Ch is acyclic. Since
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(1 + ξ + · · ·+ ξm−1) = ξm−1
ξ−1 = 0 we have that Ch is of the form

0→ C2n−1
〈ξrn−1〉

// C2n−2
0 // C2n−3

〈ξrn−1−1〉
// C2n−4

0 // . . .

Since every rj is coprime to m, we have ξrj 6= 1 and hence every matrix 〈ξrj − 1〉 is

non-singular and Ch is acyclic.

A chain contraction is δ : Ch → Ch, given by δq =

0 if q odd

〈ξrk+1 − 1〉−1 if q = 2k even
:

Cq → Cq+1. Hence we get from 1.39

τ(Ch) = τ

 ξrn−1
ξrn−1

.
.
.
ξr1−1

 = τ
(
〈
n∏
j=1

(ξrj − 1)〉
)
.

Theorem 5.14. Let L = Lm(l1, . . . , ln) and L′ = Lm(l′1, . . . , l
′
n) and suppose that f :

L → L′ is a simple-homotopy equivalence. If f∗ : G := Deck(p) → Deck(p′) =: G′ is

the map between the groups of covering automorphisms of L, L′ (generated by ρ, ρ′)

respectively, coming from the induced map between fundamental groups, and if f∗(ρ) =

(ρ′)a, then there are numbers εi ∈ {±1} such that (l1, . . . , ln) is equal (mod m) to some

permutation of (ε1al
′
1, ε2al

′
2, . . . , εnal

′
n).

Proof (see [7, p. 97-99]). With the cell structure on S2n−1 = L̃ = L̃′ as explained in

3.1, we get two Z[G′]-complexes C(L̃′) and C(L̃)f∗ with basis {ẽk} in dimension k and

boundary operators gotten from the described properties in 3.1. Write Σ(x) := 1 + x+

· · ·+ xm−1, C ′j := Cj(L̃
′) and Cj := [Cj(L̃)]f∗ , then these complexes look like

C(L̃′) : 0→ C ′2n−1

(ρ′)r
′
n−1

// C ′2n−2

Σ(ρ′)
// C ′2n−3

(ρ′)
r′n−1−1

// . . .
Σ(ρ′)

// C ′1
(ρ′)r

′
1−1

// C ′0 → 0

C(L̃)f∗ : 0→ C2n−1
(ρ′)arn−1

// C2n−2
Σ(ρ′a)

// C2n−3
(ρ′)arn−1−1

// . . .
Σ(ρ′a)

// C1
(ρ′)ar1−1

// C0 → 0

Now from 1.71, we get that 0 = τ(f) = τ(C ), where C is an acyclic Wh(G′)-complex

which fits into a based short exact sequence of Wh(G′)-complexes

0 // C(L̃′) // C // C̄(L̃) // 0 .

Here C̄(L̃) is the complex C(L̃)f∗ shifted in dimension by one and with boundary oper-

ator multiplied by (−1). Now these complexes - apart from C - aren’t acyclic, but by

5.13, if we change rings via h : Z[G′] → C, h(
∑
j
nj(ρ

′)j) :=
∑
j
njξ

j , with a mth root of
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unity ξ 6= 1, then we get a based short exact sequence (see 1.54):

0 // C(L̃′)h // Ch // C̄(L̃)h // 0 ,

where C(L̃′)h and C̄(L̃)h are now acyclic (C, Ḡ)-complexes, with Ḡ = {±ξj : j ∈ Z}.
And from 5.13 we also get

τ(C(L̃′)h) = τ(〈
n∏
k=1

(ξr
′
k − 1)〉) ∈ KḠ(C)

τ(C̄(L̃)h) = −τ(〈
n∏
k=1

(ξark − 1)〉) ∈ KḠ(C).

We now get from 1.51 and 1.53 that

0 = h∗(τC ) = τ(Ch)

= τ(C(L̃′)h) + τ(C̄(L̃)h)

= τ(〈
n∏
k=1

(ξr
′
k − 1)〉)− τ(〈

n∏
k=1

(ξark − 1)〉).

We conclude (using 1.39) that the determinants of these two 1 × 1 matrices can only

differ by a factor lying in Ḡ:

n∏
k=1

(ξr
′
k − 1) = ±ξs

n∏
k=1

(ξark − 1) (∗)

and since there were no restrictions on ξ, this equation holds for every mth root of unity

ξ 6= 1.

By setting sk := r′k and tk := ark we directly get from ∗, that

∣∣∣∣∣
n∏
k=1

(ξsk − 1)

∣∣∣∣∣
2

=

∣∣∣∣∣
n∏
k=1

(ξtk − 1)

∣∣∣∣∣
2

or equivalently
n∏
k=1

(ξsk − 1)(ξ−sk − 1) =

n∏
k=1

(ξtk − 1)(ξ−tk − 1). (∗∗)

Now let S be as described in Franz’ Theorem (5.1) and for any j ∈ S let Sj be the

subsequence of (s1,−s1, s2,−s2, . . . , sn,−sn) consisting of those terms x such that x ≡
j (mod m). Let bj be the length of Sj . Similarly define the sequence Tj with length

b′j from the sequence (t1,−t1, t2,−t2, . . . , tn,−tn). Since gcd(sk,m) = 1, we have that

±sk ≡ j (mod m) for some j ∈ S, and since i 6= j implies Si ∩ Sj = ∅, the sequence

(s1,−s1, s2,−s2, . . . , sn,−sn) is the disjoint union of the Sj . Hence
∑
j∈S

bj = 2n. Also
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Sj → Sm−j , x 7→ −x is obviously a bijection, so bj = bm−j . Analogously we have that∑
j∈S

b′j = 2n and b′j = b′m−j for all j ∈ S. Now by defining aj := bj − b′j we get

1.
∑
j∈S

aj = 2n− 2n = 0

2. aj = bj − b′j = bm−j − b′m−j = am−j

3. If ξ 6= 1 is anymth root of unity and if Sj = (εj1sj1, . . . , εjbjsjbj ), Tj = (δj1tj1, . . . , δjb′j tjb′j )

with εjα, δjβ ∈ {±1}, then

∏
j∈S

(ξj − 1)aj =
∏
j∈S

(ξj − 1)bj (ξj − 1)−b
′
j

=
∏
j∈S


 bj∏
i=1

(ξεjisji − 1)

 b′j∏
i=1

(ξdjitji − 1)

−1


=
n∏
k=1

(ξsk − 1)(ξ−sk − 1)(ξtk − 1)−1(ξ−tk − 1)−1

= 1, because of ∗∗.

So we may now apply Franz’ Theorem (5.1) and get aj = 0 for all j, and hence bj = b′j .

But any bj is just the number of terms among (r′1, . . . , r
′
n) which are congruent to ±j

mod m. And the b′j behave analogously with respect to the (ar1, . . . , arn). Hence, under

some reordering r′i1 , . . . , r
′
in

we get

εikr
′
ik
≡ ark (mod m), εik ∈ {±1}, k ∈ {1, . . . , n}.

So εik l
′
ik
≡ a−1lk (mod m) and εikal

′
ik
≡ lk (mod m).

Theorem 5.15. If L = Lm(l1, . . . , ln) and L′ = Lm(l′1, . . . , l
′
n), the following assertions

are equivalent:

(a) There is a number a ∈ Z and there are numbers εj ∈ {±1} such that (l1, . . . , ln) is

a permutation of (ε1al
′
1, . . . , εnal

′
n).

(b) L is simple-homotopy equivalent to L′

(c) L is homeomorphic to L′.

Proof (see [7, p. 100-101]). (c⇒b) follows generally from 1.69.

(b⇒a) is the subject of 5.14.
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For (a⇒c), suppose that for all i ∈ {1, . . . , n} we have li = επ(i)al
′
π(i), where π is a

permutation of {1, . . . , n}. Let Ti : C → C be the identical map if εi = 1 and let

Ti : C → C map z to its complex conjugate z̄ whenever εi = −1. Define T : S2n−1 →
S2n−1, (z1, . . . , zn) 7→ (Tπ−1(1)(zπ−1(1)), . . . , Tπ−1(n)(zπ−1(n))). Since our assumption im-

plies (ρ′)a ◦ T = T ◦ ρ we get an induced map h : L→ L′.

S2n−1 T //

p

��

S2n−1

p′

��

L
h

// L′

But such an h : L → L′ must be a homeomorphism, since T is (using [15, Proposition

1.49]).

Corollary 5.16. Two three dimensional lens spaces Ll/m = Lm(l, 1) and Ll′/m =

Lm(l′, 1) are homeomorphic if and only if l ≡ ±l′ or l · l′ ≡ ±1 (mod m).

Proof. If the permutation spoken of in 5.15(a) is the identity, we get l ≡ ±al′ and 1 ≡
±a (mod m), for some a ∈ Z. This is equivalent to the statement that l ≡ ±l′ (mod m).

In the other case, we get that l ≡ ±a and 1 ≡ ±al′ (mod m), for some a ∈ Z. But this

is equivalent to l · l′ ≡ ±1 (mod m)

Example 5.1. The two lens spaces L1/7 = L7(1, 1) and L2/7 = L7(2, 1) are homotopy

equivalent but not homeomorphic. We have seen in example 4.3 that they are homotopy

equivalent, but from L1/7
∼= L2/7 would follow by 5.16 that either 1 ≡ ±2 (mod 7) or

1 · 2 ≡ ±1 (mod 7), both of which is absurd.

Example 5.2. For m ∈ {2, 3, 4, 6} and any given n ≥ 2, any two lens spaces Lm(l1, . . . , ln)

and Lm(l′1, . . . , l
′
n) are homeomorphic.

Example 5.3. Any two lens spaces Ll/5 and Ll′/5 are homeomorphic if and only if they

are homotopy equivalent.



Appendix

Zusammenfassung

Diese Masterarbeit beschäftigt sich mit den Mannigfaltigkeiten, die Linsenräume genannt

werden. Ein Linsenraum Lm(l1, . . . , ln), für m ∈ Z, m ≥ 2 und l1, . . . , ln ∈ Z teilerfremd

zu m, entsteht durch eine Wirkung der Gruppe Zm auf eine Sphäre S2n−1 ungera-

der Dimension, die von dem Homöomorphismus ρ : S2n−1 → S2n−1, (z1, . . . , zn) 7→
(e2πil1/mz1, . . . , e

2πiln/m) erzeugt wird. In Kapitel 2 wird näher auf verschiedene Kon-

struktionen von Linsenräumen eingegangen und die Äquivalenz dieser Konstruktio-

nen bewiesen. Kapitel 4 beschäftigt sich mit der Homotopie-Klassifikation von Lin-

senräumen, also mit der Fragestellungen, wann sind zwei verschiedene Linsenräume

Lm(l1, . . . , ln) und Lm(l′1, . . . , l
′
n) homotopie-äquivalent? Dies ist der Fall, wenn es eine

Zahl k ∈ Z gibt, sodass l1 · · · ln ≡ ±l′1 · · · l′n · kn (mod m). Die nötigen Vorbereitungen,

das heißt die Berechnung der Homologiegruppen und des Cohomologierings von Lin-

senräumen, werden in Kapitel 3 besprochen. Diese Berechnungen sind auch wichtig

für die Homöomorphie-Klassifikation, welche in Kapitel 5 besprochen wird. Zwei Lin-

senräume Lm(l1, . . . , ln) und Lm(l′1, . . . , l
′
n) sind homöomorph genau dann, wenn es eine

Zahl a ∈ Z und Zahlen εj ∈ {±1}, j = 1 . . . n, gibt, sodass (l1, . . . , ln) eine Permutation

von (ε1al
′
1, . . . , εnal

′
n) ist. Der Beweis der Homöomorphie-Klassifikation verwendet ein

Resultat der Zahlentheorie, was im ersten Teil von Kapitel 5 besprochen wird.
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