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1 Introduction

Let X be a compact, complex manifold. The isomorphism classes of holo-
morphic line bundles on X form an abelian group, called the Picard group of
X and denoted by Pic(X). A well known result in the theory of fiber bundles
and complex geometry gives a natural identification Pic(X) = H1(X,O∗

X).
It has naturally the structure of a complex Lie group. Generally, one has a
short exact sequence

0 Pic0(X) Pic(X) NS(X) 0,

with Pic0(X) = H1(X,OX)/2πiH
1(X,Z), and NS(X) is the Neron-Severi

group defined as ker(H2(X,Z) → H2(X,OX)). If X has a Kähler structure,
2πiH1(X,Z) is a lattice in H1(X,OX) and Pic0(X), the connected compo-
nent of the identity,becomes a complex torus.
In the general case, when X is not necessarily Kähler, one can still prove
that 2πiH1(X,Z) is closed in H1(X,OX), obtaining a complex Lie group
structure on Pic0(X). This group is not always compact, for example

X is a surface of class VII ⇒ Pic0(X) ∼= C
∗.

Surprisingly, the fact that 2πiH1(X,Z) is closed in H1(X,OX) is not pre-
sented clearly in the literature, so I give a detailed proof in chapter 2.2.1.
An important theory, developed originally by Atiyah in [2], concerns the con-
cept of Real vector bundles on a Real manifold, i.e. on a manifold endowed
with a continuous (or smooth) involution ι : X → X.

Definition 1.1. Let (X, ι) be a Real manifold and E → X a complex vector
bundle on X. A ι-Real structure on E is an involutive isomorphism ι̃ :
E → E such that ι̃ is fiber-wise anti-linear and renders the following diagram

commutative.

E E

X X

ι̃

ι

In complex geometry, it is often interesting to require compatibility with
the complex structures, leading to the next definition:

Definition 1.2. Let X be a complex manifold. A Real structure, compatible
with the complex structure on X, is an anti-holomorphic Real structure on X.
A Real structure compatible with ι on a holomorphic vector bundle E → X
is an anti-holomorphic ι-Real structure on E.

The goals of this article are twofold.
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1. Describe explicitly and geometrically the pointed set
Aff(X) = H1(X,A(1)) of isomorphism classes of holomorphic affine line
bundles on X by endowing it with a natural topology using techniques
from gauge theory.

2. Generalise the theory of Real structures to affine line bundles.

To achieve the first goal, we used a construction of Pic(X) based on
methods from gauge theory. For a given smooth line bundle L, we identify
the set of holomorphic structures on L with the space of integrable semi-
connections factorised by a natural action of the complex gauge group of L.
We first prove that the fiber over [L] of the natural map Aff(X) → Pic(X)
can be identified with the cohomology H1(X,L) of the sheaf of sections of
a representative L. This is proved by first showing that there is a bijective
correspondence between Aff(X) and the set of isomorphism classes of vector
bundle epimorphisms u : E → X × C, where E is a rank 2 holomorphic
vector bundle. We then regard E as extensions of X × C by L = ker(u) to
show the above property. One obtains a naive description

Aff(X) =
∐

[L]∈Pic(X)

H1(X,L).

There are some problems with this formula. Certainly, for L1
∼= L2, we know

that H1(X,L1) ∼= H1(X,L2) are isomorphic, but there is no canonical choice
of an isomorphism.
This problem can be solved using the Poincaré line bundle (also called the
universal line bundle) on Pic(X) ×X. This Poincaré line bundle gives us a
distinguished choice of a line bundle for each isomorphism class l ∈ Pic(X).
For every base-point x0 ∈ X, it is possible to define a holomorphic line bundle
Lx0 → Pic(X)×X, called the Poincaré line bundle, on X normalised at x0.
It is characterised by the following two properties:

1. Lx0↾{l}×X is a holomorphic line bundle belonging to the isomorphism
class l for every l ∈ Pic(X).

2. Lx0↾Pic(X)×{x0} is trivial.

The pair (Lx0 ,Pic(X)) fulfils the following unique property:

Theorem 1.3. For any complex manifold Y and holomorphic line bundle
M → Y ×X such that M↾Y×{x0} is trivial, there exists a unique holomorphic
map ϕ : Y → Pic(X) such that M ∼= (ϕ× Id)∗Lx0.
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In other words Lx0 classifies holomorphic families of line bundles on X
normalised at x0. A Poincaré line bundle gives us a choice of a line bundle
for each isomorphism class, and the we get

Aff(X) =
∐

l∈Pic(X)

H1(X,Lx0↾{l}×X).

To prove that there is natural topology on the right hand side, we use again
gauge theory, more precisely, a coupled gauge theoretical problem of classi-
fying pairs

{(δ, α) : α ∈ A0,1(L), δ ∈ Uint(L), δ(α) = 0}.
Our disjoint union can then be identified with a quotient of this set of pairs.
Several interesting questions naturally develop and will be addressed in a
future article.

Q.1: Does Aff(X) have a natural structure of a complex space? This seems
difficult because the dimension of H1(X,Lx0↾{l}×X) will in general vary
as l ∈ Picc(X) varies.

Q.2: Is it possible to generalise the Poincaré line bundle? In other words,
can we define a universal affine line bundle on Aff(X)×X satisfying a
similar universal property?

Concerning the second goal, we introduce a natural concept of a Real
affine line bundle and analogously to the linear case we obtain:

Proposition 1.4. Let (A, ι̃) is a Real affine line bundle over the Real man-
ifold X. Then the fixed point locus Aι̃ is a real affine bundle line on X ι.

Some interesting problems arise that will be addressed in a future article.

Q.1: Classify the Real affine line bundles over X in relevant cases. For
example, the Real linear line bundles over Klein surfaces and Real tori
are classified in [16]. It seems that so far no results in the affine case
are available, in fact, even the concept does not seem to exist in the
literature.

Q.2: An interesting family of minimal surfaces of class VII has been intro-
duced and classified by Enoki in [7]. They are constructed as compact-
ifications of affine line bundles over an elliptic curve C. Suppose that
(C, ι) is Real elliptic curve and suppose that we have a ι-Real affine line
bundle on C, do we get an associated Real structure on the correspond-
ing Enoki surface? Conversely, can we obtain every Real structure on
an Enoki surface this way?



5

2 Bundles

2.1 Classification of fibre bundles on a fixed base

Let X be a topological space, and G a topological group, we will denote by
GC the sheaf associated with the presheaf of continuous G-valued functions
defined on open sets of X. Let F be a topological space (called the standard
fiber) endowed with an effective continuous action α : G×X → X of G. We
refer to [11] for the following classification theorem:

Theorem 2.1. The isomorphism classes of topological fibre bundles X with
structure group G, standard fiber F and action α are in a natural one-one
correspondence with the elements of the cohomology set H1(X,GC). The
trivial bundle X×F corresponds to the distinguished element 1 ∈ H1(X,GC).

Suppose now that X and F are differentiable (complex) manifolds, G
is a (complex) Lie group,on and α is a smooth (respectively holomorphic)
action. We define GC∞ (respectively Ghol) to be the sheaf associated with the
presheaf of smooth (respectively holomorphic) G-valued functions on open
sets of X. With these conventions one has the following versions of Theorem
2.1:

Theorem 2.2. The isomorphism classes of differentiable (respectively holo-
morphic) fibre bundles X with structure group G and standard fiber F are
in a natural one-one correspondence with the elements of the cohomology set
H1(X,GC∞) (respectively H1(X,Ghol)). The trivial differentiable (respec-
tively holomorphic) bundle X × F corresponds to the distinguished element
1 ∈ H1(X,GC).

In the statements, for a sheaf of groups F on X we used the notation
H1(X,F) for the first Cěch cohomology set with values in F . Note that in
when F is a sheaf of abelian groups, this cohomology set (which in general
is just a set with distinguished element) becomes an abelian group. More-
over, when X is a (paracompact) manifold, this group coincides with the
cohomology group provided by the standard sheaf cohomology theory.

We will be mostly interested in the case when X is a Riemann surface or a
compact complex surface, and G is either the multiplicative group GL(1) =
C∗, the complex affine group A(1) of affine automorphisms of C, or the
complex projective linear group PGL(2) of automorphisms of the complex
projective line.
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2.2 Line bundles

Let X be compact complex manifold. Taking F = C and G = GL(1) = C∗

in Theorem 2.1 we obtain that the isomorphism classes of holomorphic line
bundles on X correspond bijectively to H1(X,O∗

X). Endowing the set of iso-
morphism classes of holomorphic line bundles on X with the multiplication
structure defined by the tensor product of line bundles, one obtains a group
called the Picard group of X, and denoted Pic(X). One can then prove that
the bijection H1(X,O∗

X) → Pic(X) given by Theorem 2.1 is a group isomor-
phism.

For a connected, compact, complex manifold we have the exact exponen-
tial sheaf exact sequence, which reads

0 Z OX O∗
X 1.2πi exp

From this we get the following cohomology long exact sequence:

0 H0(X,Z) H0(X,OX) H0(X,O∗
X) H1(X,Z)

H1(X,OX) H1(X,O∗
X) H2(X,Z) H2(X,OX) . . .

The map H0(X,OX) ∼= C
exp−−→ C∗ ∼= H0(X,O∗

X) is surjective, since X is
compact, therefore we obtain the exact sequence

0 H1(X,Z) H1(X,OX) H1(X,O∗
X)

H2(X,Z) H2(X,OX) . . .

The morphism H1(X,OX) → H2(X,Z) sends (the isomorphism class of) a
line bundle L to its Chern class c1(L). The subgroup

NS(X) := ker(H2(X,Z) → H2(X,OX))

of H2(X,Z) is called the Neron-Severi group of X. The kernel ker(Pic(X) →
NS(X)) is usually denoted by Pic0(X). From the above we get the short
exact sequence

0 Pic0(X) Pic(X) NS(X) 0.
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2.2.1 Pic0(C) of a compact, connected, complex surface

As we said above, for a compact, connected, complex manifold,

0 H1(X,Z) H1(X,OX) H1(X,O∗
X)

is an exact sequence.
We will show that the image of the first morphism H1(X,Z) → H1(X,OX)
is closed. We won’t indicate the switches between Cěch and deRahm coho-
mology, it should be clear from the context.
Consider the sequence of morphisms

H1(X,Z) H1(X, iR) H1(X,C) H1(X,OX)

induced by the inclusions

Z iR C OX .
2πi

By the universal coefficient theorem, 2πiH1(X,Z) is a lattice in H1(X, iR).
So what is left to show is the following:

Theorem 2.3. The morphism H1(X, iR) → H1(X,OX) is injective.

This result generalises the well known case when X is Kähler. The sub-
tlety of the proof is that even though one does not have the direct sum
partition H1(X,C) = H1,0(X,C)⊕H0,1(X,C) in two equal-dimensional sub-
spaces in the general case, it is still possible to give almost the same proof
based on the factorisation A1(X) = A1,0(X)⊕ A0,1(X).
The given proof follows [16], the result and a proof is also available in [9].

Proof. By Dolbeault’s theorem we have H1(X,OX) ∼= H0,1(X,C). Therefore
the morphism has the form

H1(X, iR) H1(X,C) H0,1(X,C)

[α] [α] [α0,1] .

Let [α] ∈ H1(X, iR) and let α = −α1,0 + α0,1 be a representative of its
image, where α1,0 = α0,1 . Suppose that α0,1 is ∂̄-exact, i.e. ∂̄u = α0,1 for
some u ∈ A0(X,C). It follows that ∂ū = α1,0. Since α is closed, we get

0 = dα = (∂+ ∂̄)(−∂ū+ ∂̄u) = −∂̄∂ū+∂∂̄u = −∂̄∂ū− ∂̄∂u = −∂̄∂(2Re(u)),

where we used that ∂∂̄ = −∂̄∂ and Re(u) = 1
2
(u + ū). Therefore Re(u) is

constant by the maximum principle, so replacing u by u − Re(u), we can
suppose that the real part of u is 0, hence (∂ + ∂̄)u = α, since ū = −u.
Hence [α] = 0 in H1(X, iR) and proof is finished.
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For a large class of compact manifolds, this map is more than just injec-
tive.

Corollary 2.4. If X is also Kähler, H1(X, iR) → H1(X,OX) is an isomor-
phism.

Proof. IfX is Kähler, H1(X,C) ∼= H1,0(X,C)⊕H0,1(X,C) andH1,0(X,C) ∼=
Cb1(X)/2 ∼= H0,1(X,C). The result readily follows.

From theorem 2.3 and the discussion before it, we obtain:

Corollary 2.5. 1. The image of 2πiH1(X,Z) in H1(X,OX) is a closed
subgroup and the quotient Pic0(X) = H1(X,OX)/2πiH

1(X,Z) is nat-
urally an abelian complex Lie group.

2. If X is a Kähler surface, Pic0(X) is a complex torus of dimension
b1(X)/2.

3. If X is Riemann surface, Pic0(X) is a complex torus of dimension g,
the genus of X.

For a compact Kähler manifold 2πiH1(X,Z) is a lattice in H1(X,OX)
and a Kähler surface has an even first Betti number. The case of a Riemann
surface is clear, for a classical approach to Pic0(X) of a Riemann surface X,
have a look at Forster’s great book on Riemann surfaces [8]. In the case of
a surface of class VII, we have Pic0(X) ∼= C∗ so in general the quotient will
not be compact.

2.3 Affine line bundles

In this chapter we will look at the case where G is the affine group A(1) which
acts on C by affine transformations. A fiber bundle over X with structure
group A(1) and fiber C is called an affine line bundle. Again, by theorem 2.1,
the isomorphism classes of holomorphic affine line bundles are in a one-one
correspondence to the pointed set H1(X,A(1)hol). For the rest of this paper
we will denote this set by Aff(X) = H1(X,A(1)hol).
Explicitly, the affine group consists of the maps C → C, z 7→ az + b for
a ∈ C∗, b ∈ C. It can be regarded as the subgroup of GL(2) consisting of

the matrices of the form

(

a b
0 1

)

, with a ∈ C∗, b ∈ C. It fits into an exact

sequence of groups

0 C A(1) C∗ 1,
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which gives an exact sequence of sheaves

0 OX A(1)hol O∗
X 1.

Passing to the long exact sequence we obtain

. . . H1(X,OX) Aff(X) H1(X,O∗
X) H2(X,OX).

For every compact, connected, complex manifold X, the sequence takes the
form

0 H1(X,OX) Aff(X) H1(X,O∗
X) 0,

since H0(X,A(1)hol) → H0(X,O∗
X) and H

1(X,A(1)hol →) → H1(X,O∗
X)

are surjective.
The morphism Aff(X) → H1(X,O∗

X) sends the isomorphism class of an
affine line bundle to the isomorphism class of its linear part. This is generally
defined as follows:

Definition 2.6. For an affine line bundle A → X we can define it’s lineari-
sation Alin. Suppose A is defined by the co-cycles {gij : Ui ∩ Uj → A(1)}.
Define the linearisation Alin of A as the line bundle defined by the co-cycles
{hij : Ui ∩ Uj → A(1) → C∗}.

Using principal bundles, we can define the linearisation as follows:
Let P → X be a principal Autaff (C)-bundle, where Autaff (C) denotes the
affine automorphisms of C, and ρ : A(1) → Autaff (C) a holomorphic left
action on C such that A = P ×ρ F . Then Alin = P ×ρ̃ F , where ρ̃ is defined
by the following diagram

A(1) Autaff (C)

Autlin(C).

ρ

ρ̃

2.4 The geometry of Aff(X)

In this structure we want to take a closer look at the isomorphism class of
holomorphic affine line bundles Aff(X). So far we only know that it is a
pointed set, where the trivial affine line bundle corresponds to the distin-
guished element, and that it fits into the exact sequence above. Our first
theorem will be the following:
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Theorem 2.7. Let X be a compact, connected, complex manifold. Then

Aff(X) =
∐

[L]∈Pic(X)

H1(X,L).

The technique will be consist of passing to vector bundles of rank 2, where
a lot of theory is available. The intermediary result is given by:

Theorem 2.8. Let X be a compact, connected, complex manifold. There is
bijective correspondence between the set Aff(X) and the set of epimorphisms
of holomorphic vector bundles E → X ×C where E is a rank 2 holomorphic
vector bundles.

Recall that, the group A(1) can be regarded as the subgroup of GL(2)
consisting of matrices of the form

(

a b
0 1

)

, with a ∈ C
∗, b ∈ C.

This injection gives us a map of pointed sets Aff(X)
v−→ H1(X,GL(2)hol).

Proof part 1: Constructing an epimorphism from an affine bundle.
Let E be a holomorphic rank 2 vector bundle representing v([A]). We will
construct an epimorphism onto the trivial bundle X × C. Let {(Ui, ψi)} be
local trivialisations for E and denote the transition functions by gij : Uij →
GL(2). Since the transition functions of E are defined via the transition

functions of A, they are of the form gij(x) =

(

aij bij
0 1

)

. Therefore the

following diagram commutes, where ψij = ψ−1
i ◦ ψj.

Uij × C2 Uij × C2

Uij × C Uij × C

ψij

Id× pr2 Id× pr2

Id× Id

Let us calculate this in more details:
By definition, we have ψij(x, y) = (x, gij(x)y). Writing y = (y1, y2), we get

gij(x)y =

(

aij(x) bij(x)
0 1

)(

y1
y2

)

=

(

aij(x)y1 + bij(x)y2
y2

)

This shows that the above diagram commutes and patching together the
local functions we obtain an epimorphism E

p−→ X × C. From our explicit
calculation, by looking at the preimage of X × {0} and X × {1}, we see
furthermore:
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1. ker(p) ∼= Alin

2. p−1(X × {1}) ∼= A

3. Isomorphic affine bundles induce isomorphic maps.

Proof part 2: From an epimorphism to an affine bundle.
Suppose E

p−→ X ×C is an epimorphism onto the trivial bundle. From what
we found in the first part of the proof, p−1(X ×{1}) should be an affine line
bundle. Let {(Ui, ψi)} be local trivialisations for E with transition functions
gij. By definition, p is locally of the form Id×qi : Ui × C2 → Ui × C, where
qi is linear map C2 → C. From drawing the same diagram as above, we get
that

qi(

(

y1
y2

)

) = qi(

(

aij(x) bij(x)
cij(x) dij(x)

)(

y1
y2

)

),

on Uij. As a linear map, qi is of the form qi((y1, y2)) = αy1 + βy2. Setting
y1 = 0, then y2 = 0, comparing coefficients and using the fact that p is an
epimorphism shows that there are two possible cases:

1. cij = 0, dij = 1 and qi is equal to the second projection.

2. aij = 1, bij = 0 and qi is equal to the first projection.

The same arguments as in part 1 show that A = p−1(X × {1}) defines
an affine line bundle, that ker(p) is the linearisation of A and that isomor-
phic epimorphisms define isomorphic bundles. Clearly the two above cases
define the same affine line bundles. Just exchange the co-cycle

(

aij bij
0 1

)

with

the co-cycle
(

1 0
bij aij

)

to switch between second and first projection. The iso-
morphism between the two epimorphisms is locally defined by Ui × C2 →
Ui × C2, (x, (y1, y2)) 7→ (x, (y2, y1)), so it suffices to consider the first case
which gives us the bijective correspondence.

Recall the linearisation morphism Aff(X) −→ H1(X,O∗
X) from the pre-

vious section. We want to know the fiber over a given isomorphism class
of line bundles [L]. By the previous theorem 2.8 an affine bundles over L
corresponds, up to isomorphism, to an epimorphism E → X ×C with kernel
isomorphic to L. So we need to classify these epimorphisms. Instead of look-
ing at vector bundles, we will look at the corresponding sheaves. We denote
by E the sheaf corresponding to a vector bundle E, X × C corresponds of
course to OX , and with some abuse of notation, the sheaf corresponding to
L will be denoted by the same symbol. Then an affine line bundle over L is
identified with an exact sequence
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0 L E OX 0.

So given a line bundle L, we need to classify the extensions of OX with
L. The classes of such extensions are classified by Ext1(OX ,L). Each one of
those extensions E will be locally free of rank 2 since OX and L are locally
free of rank 1, so defines a vector bundle of rank 2. We cite the following
proposition, see [10] for a proof.

Proposition 2.9. For any sheaf of modules F and i ≥ 0, there is a canonical
isomorphism of OX(X)-modules Exti(OX ,F) ∼= H i(X,F), natural in F .

In our case, the result follows from the exact sequence obtained from the
spectral sequence:

0 H1(HomOX
(OX ,F)) Ext1(OX ,F) H0(Ext1(OX ,F)).

We assume that F is locally free so Ext1(OX ,F) vanishes and
HomOX

(OX ,F) = F , which gives the result. So we obtain that the set
of isomorphism classes of holomorphic affine line bundles with linearisation
isomorphic to L is described by H1(X,L). This proves theorem 2.7, i.e. we
obtain

Aff(X) =
∐

[L]∈Pic(X)

H1(X,L),

which we can rewrite as

Aff(X) =
∐

c∈NS(X)

∐

[L]∈Picc(X)

H1(X,L).

One not very nice thing about this expression, is that we have to make a
choice of representative for each isomorphism class [L] in Pic(X). So far we
have no such canonical choice, and even though for any two L1, L2 ∈ [L],
we have H1(X,L1) ∼= H1(X,L2), there is no canonical isomorphism L1 →
L2 inducing the isomorphism between the cohomology groups. There is a
solution for this problem that we will study in the next chapter.

2.5 A study of Picc(X)

Our goal is to give this set additional structure, so we need to study NS(X),
Picc(X) and H1(X,L). In the case of a compact Riemann surface or surface
of class VII, the Neron-Severi group is isomorphic to Z, as we already saw
above. Next up, Picc(X) for c ∈ NS(X). First we take a look at smooth
complex line bundles L with first Chern class c1(L) = c. Let ξX (resp. ξ∗X)
be the sheaf associated to the presheaf of smooth functions with values in C

(resp. C∗) defined on open subsets of X. The part of the long exact sequence
corresponding to the C∞-exponential sequence,
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0 Z ξX ξ∗X 0,2πi exp

that interests us is given by

H1(X, ξX) H1(X, ξ∗X) H2(X,Z) H2(X, ξX).

Now, ξX is a fine sheaf, so all cohomology groups H i(X, ξX) vanish for i >
0. Therefore for each c ∈ NS(X), there is only one line bundle L, up to
diffeomorphism, with c1(L) = c. So instead of classifying all holomorphic line
bundles with Chern class c, we classify the possible holomorphic structures
for a given complex smooth line bundle L.

2.5.1 Semi-connections

In this section we will study generalisations of the Dolbeault operator
∂̄ : A0,0(X)⊕n → A0,1(X)⊕n. As it turns out, instead of trying to find all
holomorphic structures on a smooth, complex vector bundle E, we can look
for a certain class of operators A0(E) → A0,1(E).

Let E be a holomorphic vector bundle of rank n over X. Then, via
trivialisations, we define the Dolbeault operator for E, ∂̄E : A0(E) → A0,1(E)
satisfying the Leibnitz rule

∂̄E(fω) = ∂̄(f)⊗ ω + f∂̄E(ω), ∀f ∈ A0,0(X), ∀ω ∈ A0(E).

This extends naturally to an operator ∂̄E : Ap,q(E) → Ap,q+1(E), satisfying
∂̄E ◦ ∂̄E = 0, by setting

∂̄E(σ ⊗ ω) = ∂̄(σ)⊗ ω + (−1)p+qσ ∧ ∂̄E(ω), ∀σ ∈ Ap,q(X), ∀ω ∈ A0(E).

We generalise this type of operator in a natural way, by what some people
call ”the (french) trick of turning a theorem into a definition”.

Definition 2.10. Let E be a smooth, complex vector bundle of rank n over
a complex manifold X. A semi-connection, or (0, 1)-connection on E is a
C-linear operator δ : A0(E) → A0,1(E), satisfying

δ(fω) = ∂̄f ⊗ ω + fδω, ∀f ∈ A0(X,C), ∀ω ∈ A0(E).

Any semi-connection extends to an operator A0,q → A0,q+1, satisfying

δ(α⊗ ω) = ∂̄α⊗ ω + (−1)qα ∧ δω.

If δ2 : A0 → A0,2 = 0, the semi-connection is called integrable. The space
of semi-connections is denoted by U(E) and the space of integrable semi-
connections by Uint(E).
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Suppose δ1 and δ2 are two semi-connections, f ∈ A0(X,C) and ω ∈
A0,1(E). Then (δ1 − δ2)(fω) = f(δ1 − δ2)(ω), so δ1 − δ2 is A0(X,C) linear,
therefore defines an element in A0,1(End(E)). This shows that U(E) is an
affine space over the vector space A0,1(End(E)). The group GC

E = Aut(E) =
Γ(X,GL(E)) of complex linear automorphism of E, also called the complex
gauge group of E, acts on U(E) from the left by

f · δ = f ◦ δ ◦ f−1.

Observing that a semi-connection δ on E induces a semi-connection on
End(E), which we denote by the same symbol, by setting

δ(α)(ω) = δ(α(ω))− α(δ(ω)),

enables us to write the action as

f · δ = δ − (δf)f−1.

Similarly because the a semi-connection can be extended, we associate to
a semi-connection δ an element Fδ ∈ A0,2(End(E)), corresponding to δ ◦ δ.
Integrability is then expressed as Fδ = 0.
The result is then the following:

Theorem 2.11. Let E be a smooth, complex vector bundle of rank n over a
complex manifold X. Then there is a bijection between the set of isomorphism
classes of holomorphic structure and the set Uint(E)/GC

E.

{holomorphic structures on E}
∼ isomorphism

Uint(E)

GC

E

The integrable semi-connection corresponding to a holomorphic structure
on E is given by the Dolbeault operator determined by the holomorphic
structure. It is not too hard to see that two isomorphic structures define
conjugated semi-connections. The idea of the other direction is first define
the holomorphic sections as solutions to δω = 0. Then one shows that this
sheaf is a locally free sheaf of rank n over the sheaf OX . Compared to the
relatively easy first direction, this one is harder and essentially utilises a
version of the Newlander-Nirenberg theorem. For a proof, utilising slightly
different definitions, see [13] or [12].

2.5.2 The Poincaré line bundle

Let us look at how this result helps in our original question. As we dis-
cussed in the beginning of this section Picc(X) is the set of holomorphic
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structures for a smooth line bundle L with first Chern number c1(L) = c. So
we obtain Picc(X) = Uint(L)/GC

L , where GC

L = C∞(X,C∗). If X is a Riemann
surface, of course every semi-connection is trivially integrable. The question
of additional structure on Picc(X) therefore reduces to studying the space
Uint(L)/GC

L . Let us recall that U(L) is an affine space, in the case of a line
bundle over A0,1(End(L)) = A0,1(End(L)) = A0,1(X). The space of inte-
grable semi-connections on a line bundle, if non-empty, i.e. c1(L) ∈ NS(X),
is an affine space over the space of closed (0, 1)-forms Z0,1(X).

Using the space of semi-connections, we will obtain a distinguished choice
of a representative for each isomorphism class of holomorphic line bundles
on X. Combined, these distinguished representatives give us a universal line
bundle on the product Pic(X)×X. For a given smooth complex line bundle
L, this will be achieved by a bundle

Lx0

Picc(X)×X,

p

depending on one, freely choosable point x0 ∈ X, satisfying the following
two properties:

1. For each l ∈ Picc(X), the restriction Lx0↾{l}×X is a holomorphic vector
bundle belonging to the isomorphism class l.

2. Lx0↾Picc(X)×{x0} is trivial, more precisely there is an obvious isomorphism
Lx0↾Picc(X)×{x0}= Picc(X)× Lx0 .

This is often called the Poincaré line bundle, or universal bundle of L, but
beware that some texts reserve this term for the case where c = 0. Now we
will show how this bundle looks like if we forget the holomorphic structure for
a moment. Fix a point x0 ∈ X and denote by evx0 : GC

L → C∗ the evaluation
map f 7→ f(x0). The kernel of this map is denoted by GC

x0
and is isomorphic

to GC

L/C
∗. The action of GC

L on U(L) induces a free action of GC

x0
on U(L).

To see this, recall that the action of GC

L on U is given by

f · δ = δ − (δf)f−1.

For a line bundle, this becomes

f · δ = δ − (∂̄f)f−1,

so if f stabilises δ, ∂̄f = 0 and therefore, since X is assumed compact, f is
equal to a constant α ∈ C∗ (in other words, f is an automorphism that is
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given by multiplication by a constant in each fiber). The stabiliser of each
point is therefore equal to C∗. On also sees that this free action leaves the
subspace Uint(L) invariant. Next, we define an action of GC

x0
on Uint(L)× L

induced by the action discussed above on U(L) and the canonical action on
L. The quotient by this action is denoted by Lx0 . The canonical projection
to Uint(L)×X gives us a line bundle fulfilling the properties described above.
Of course, just like this, so far there is no holomorphic structure on this bun-
dle and there is no good way to see that the restricted bundles Lx0↾{l}×X are
holomorphic line bundles in the isomorphism class of l.
One way to prove it is to use infinite dimensional manifolds. We will outline
the construction and give details later. Using the Sobolev completion with
respect to the Sobolev norm L2

k (for k > n/2) we obtain a Banach space
A0,1(X)k, and the structure of a Banach manifold on the corresponding com-
pletion of the affine space U(L). The tangent space at each point of this
manifold is given by A0,1(X)k. The integrability condition defines a closed
Banach submanifold Uint(L) of U(L). Similarly, we complete GC

L with respect
to the Sobolev norm L2

k+1 and we obtain a Banach Lie group GC

Lk+1
, which

acts smoothly on U(L) as before.
The product Uint(L)k×L becomes a holomorphic line bundle over Uint(L)k×
X. From now on we will omit the Sobolev index to save notations, so we will
right simplyA0,1(X),U(L),Uint(L) and GC

L instead ofA0,1(X)k,U(L)k,Uint(L)k
and GC

Lk+1
respectively.

We refer to Appendix A of [17] for the construction of the afore mentioned
Sobolov completions.

Therefore we obtain a line bundle

Uint(L)× L

Uint(L)×X.

Then using a semi-connection on the space of sections of the resulting bundle,
we can prove the properties described before.

Let us return to our bundle K = Uint(L)× L → Uint(L) ×X. We define
a map Θ : A0(K) → A0,1(K) by

Θ↾(m,x) (σ)(ξ
0,1, v0,1) =

∂

∂δm
(σ↾(m,x))(ξ

0,1) + δm↾m,x (σ)(v
0,1).

The two parts need to be explained in detail. For a fixed x ∈ X, a section
σ can be regarded as a function Uint(L) → Lx ∼= C, therefore the partial
derivative ∂

∂m
is well defined. For a function with values in C we also have a
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good definition for holomorphy, which would be harder in case of maps be-
tween Banach spaces. In the other expression δm↾(m,x) (σm)(v

0,1), we denote
by σm the section of L obtained by fixing m. The δm just emphasises that
m is a semi-connection on L. We could also write m↾m,x (σ)(v

0,1).
Since the action from GC

x0
on Uint(L) is defined by f · δ = f ◦ δ ◦ f−1,

f ◦ δm ◦ f−1(f ◦ σ)(v0,1) = f ◦ δm(σ↾m,x)(v0,1).

Therefore the map Θ is well defined on the quotient. The following proposi-
tion holds.

Proposition 2.12. Θ is an integrable semi-connection on the bundle

Lx0 = Uint(L)×GC
x0

L

Uint(L)
GC
x0

×X,

where Uint(L)×GC
x0
L denotes the quotient of Uint(L)×L by the action (δ, x) 7→

(f · δ, f(x)).

The result follows essentially from the integrability of the δ’s and the
Dolbeault operator on the base space, as well as the triviality condition.

Identifying Uint(L)/GC

x0
we obtain the following properties of Lx0 from

this proposition:

Corollary 2.13. (i) Lx0 is a holomorphic line bundle.

(ii) Lx0↾Uint(L)/GC
x0

×{x0} is trivial.

(iii) Lx0↾{l}×X→ {l} × X is a holomorphic line bundle with isomorphism
class l.

Proof. (i) The holomorphic structure is defined by the semi-connection Θ.

(ii) This is clear.

(iii) First of all note that, in general, the restriction of a semi-connection δ
to a complex submanifold Z ⊂ Y of the base manifold of a differentiable
bundle M → Y is well defined, and defines a semi-connection on the
restricted bundle M↾Z . This restriction is obtained by evaluating the
forms δ(α) on the tangent vectors of Z. This restricted semi-connection
will be integrable if the initial semi-connection δ was integrable, and
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will define precisely the natural holomorphic structure ofM↾Z . In other
words, the map which associated to an integrable semi-connection δ on
M the corresponding holomorphic line bundle Mδ commutes with re-
strictions.
Let us return to our case and fix a representative δl of l. Taking into
account the construction of the holomorphic structure on Lx0 (as a
quotient) it suffices to show that restricting the holomorphic structure
we defined on Uint(L)×L to {δl} ×X, one obtains precisely the holo-
morphic structure defined by δl. With this remark in mind, note that
in our case, the restriction of Θ to {δ} × X vanishes precisely on the
sections of L which are holomorphic with respect to δl.

2.6 The natural topology of Aff(X)

Fixing a x0 ∈ X, we now have a well defined choice of a representative for
each [L] ∈ Pic(X), by using the Poincaré line bundle normalised at x0.
This allows us to write

Aff(X) =
∐

l∈Pic(X)

H1(X,Lx0↾{l}×X).

We want to endow this set with a natural topology. One key point is
the equality H1(X,Lx0↾{l}×X)) = H0,1

δl
(X,Lx0↾{l}×X), between sheaf and Dol-

beault cohomology for vector bundles. This leads us to consider the following
expression

T =
∐

δ∈Uint(L)

Z0,1
δ (L)/B0,1

δ (L).

=
∐

δ∈Uint(L)

H0,1
δ (X,L)

=
∐

δ∈Uint(L)

H1(X,Lx0↾{δ}×X)

The gauge group GC

x0
acts freely on this set, and comparing with the definition

of the Poincaré line bundle, we see that

Aff(X) = T/GC

x0
.

Define the set

P = {(δ, α) ∈ U(L)× A0,1(L) : δ(α) = 0,Fδ = 0}
= {(δ, α) ∈ Uint(L)× A0,1(L) : δ(α) = 0},
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which is clearly a topological space (we ignore any additional structure, since
it is of no use for here). Next we define an equivalent relation ∼P on P by

(δ1, α1) ∼P (δ2, α2) ⇔ ∃f ∈ GC

x0
such that

f · δ1 = δ2,

α1 = fα2 + δ2(λ), for some λ ∈ A0(L).

One checks the equivalence of P/ ∼P and T/GC

x0
. The quotient topology on

P/ ∼P then gives us a natural topology for the set Aff(X). Some remarks
on why this topology is natural are in order.

Remark (i) The natural application Aff(X) → Pic(X) is continuous.
It is induced by the projection (δ, α) → (δ).

(ii) The restriction of the topology to each H1(X,Lx0↾l) is equivalent to
the vector space topology.

(iii) Let Y is a complex manifold and A → Y × X a holomorphic affine
line bundle. Then the map Y → Aff(X), y 7→ [A↾{y}×X ] is continuous,
where [A↾{y}×X ] denotes the isomorphism class of the holomorphic affine
line bundle A↾{y}×X over {y} ×X ∼= X.

The Poincaré line bundles has the following universal property.

Theorem 2.14. For every complex manifold T and holomorphic line bundle
M → T×X such that the restriction M↾T×{x0} is trivial, there exists a unique
holomorphic map f : T → Pic(X) such that M ∼= (f × Id)∗(Lx0).

The map f is defined by sending an element t ∈ T to the isomorphism
class of L↾{t}×X .

2.7 Affine line bundles over an elliptic curve

Let X be an elliptic curve, i.e. a Riemann surface of genus 1. We want to
study Affn(X) → Picn(X) for a fixed n ∈ Z. The fiber over an element
[L] ∈ Picn(X) is given by H1(X,L). In fact, as we will show, the number
dim(H1(X,L)), if n 6= 0, depends only on n and not on the chosen line
bundle. We will use the standard notation hn(L) = dimHn(X,L). Proofs of
the following three theorems can be found in [8].

Theorem 2.15. Let L be a line bundle of degree n < 0 over a Riemann
surface X of genus 1. Then h0(L) = 0.
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Theorem 2.16. Let L be a line bundle of degree n > 0 over a Riemann
surface X of genus 1. Then h1(L) = 0.

Theorem 2.17 (Hirzebruch-Riemann-Roch for a Riemann surface).
Let L be a line bundle over a Riemann surface X of genus g. Then the
following formula holds:

h0(L)− h1(L) = degL − g + 1.

We return to the case of a line bundle L over a Riemann surface X
of genus 1. Let n = degL. Combining the three theorems we obtain the
following cases:

(a) n > 0 : h0(L) = n and h1(L) = 0.

(b) n < 0 : h0(L) = 0 and h1(L) = −n.

(c) n = 0 and L ∼= OX : h
0(L) = h1(L) = 1.

(d) n = 0 and L 6∼= OX : h
0(L) = h1(L) = 0.

Note that case (c) follows from

H0(X,OX) = {f : X → C holomorphic} ∼= C.

Furthermore let us recall that by fixing a base point x0 ∈ X (we need
such a choice anyway for the Poincaré line bundle), we obtain an isomorphism
x 7→ (x)− (x0) between X and Pic0(X), where (x), respectively (x0), denote
the divisor associated to a point. Also recall that each connected component
Picn(X) of the Picard group is isomorphic to Pic0(X). We will sketch the
proof of the following theorem:

Theorem 2.18. Let n ∈ N r {0} and X a Riemann surface of genus 1.
Then Aff−n(X) → Pic−n(X) is a holomorphic vector bundle of rank n.

Sketch of the proof: Denote by ψ : Pic−n(X)×X → Pic−n(X) the first pro-
jection. Regarding the Poincaré line bundle, restricted to Pic−n(X)×X, as
a sheaf denoted by L−n

x0
, we see that the function

l 7→ dimH1({l} ×X,L−n
x0
↾{l}×X)

is constant and equal to n on Pic−n(X) by definition of the Poincaré line
bundle and the characterisation of the dimension of the first cohomology we
gave above. By a theorem of Grauert, related to his direct image theorem,
see [5] theorem 2.3 (b), the higher direct image sheaf R1ψ∗(L−n

x0
) is a locally
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free sheaf, so defines a holomorphic vector bundle. Another corollary of
Grauert’s theorem implies that the canonical maps

R1ψ∗(L−n
x0

)(l) → H1({l} ×X,L−n
x0
↾{l}×X)

are isomorphisms for every l ∈ Pic−n(X). Using the analytic interpretation
of the higher direct image sheaves from [6], one can prove that the topology
on Aff−n(X), introduced using Gauge theoretical methods in section 2.6,
coincides with the topology of the holomorphic bundle associated with the
sheaf R1ψ∗(L−n

x0
).

2.8 Projective line bundles

Now we look at fiber bundles with the complex projective line P1
C
as a fiber

and structure group PGL(2).
By definition PGL(2) = GL(2)/C∗ · Id, where Id is the identity matrix.

We express this as an exact sequence

1 C∗ GL(2) PGL(2) 1,

leading to an exact sequence of sheaves

1 O∗
X GL(2)hol PGL(2)hol 1.

The part of the corresponding long exact sequence that interests us is the
following

H1(X,O∗
X) H1(X,GL(2)hol) H1(X,PGL(2)hol) H2(X,O∗

X).

Supposing that X is a Riemann surface, H2(X,O∗
X) vanishes and the

exact sequence has the form

H1(X,O∗
X) H1(X,GL(2)hol) H1(X,PGL(2)hol) 0.

To give an interpretation of this exact sequence we define the projective
bundle associated to a rank 2 holomorphic vector bundle E → X. The
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projectivization P(E) of E is defined as P(E) =
∐

p∈X

Ep, where Ep denotes the

projectivization of the fiber.
The above sequence tells us that every holomorphic projective line bundle

over a Riemann surface is the projectivization of a holomorphic vector bundle
of rank 2.

Two holomorphic bundles E1, E2 of rank 2 define isomorphic projective
line bundles if and only if there exists a holomorphic line bundle L on X such
that E2

∼= E1⊗L. Therefore, the classification of projective line bundles over
a Riemann surface X is equivalent to the classification of rank 2 holomor-
phic bundles over X (modulo tensor product with line bundles). This shows
in particular that the theory of moduli spaces for holomorphic vector bun-
dles over Riemann surfaces plays an important role for the classification of
projective line bundles.

Note that the total space of a projective line bundle over a Riemann sur-
face X is (by definition) a ruled surface over X, which is a very important
class of surfaces. Indeed, by a classical result in the theory of complex sur-
faces, see for example [4], one knows that any algebraic surface with Kodaira
dimension −∞ is either a rational surface (a surface rationally equivalent to
P2
C
) or a ruled surface.

3 Real structures in the sense of Atiyah

3.1 Basic notions

In this chapter we will introduce Real structures in the sense of Atiyah on
smooth and on complex manifolds, the classic example being the complex
conjugation of the complex plane. The most notable difference to Atiyah’s
original definition, see [2], is that he introduced the notion in the continuous
case, whereas we will only consider the smooth or holomorphic version. For
the rest of the chapter, τ will denote complex conjugation in C or C∗.

Definition 3.1. First, for a complex manifold X with structure sheaf OX of
holomorphic function, we define the complex conjugate manifold X̄ as the
complex manifold with the underlying set X and structure sheaf OX , where
OX(U) := {τ ◦ f : f ∈ OX(U)}.

Remark (i) Alternatively we could have defined X̄ by using charts of X
and composing them with complex conjugation in Cn.

(ii) Clearly, we have (X) = X.
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(iii) For a map ϕ : X → Y between complex manifolds we have the following
equivalences:

X
ϕ−→ Y is holomorphic ⇔X

Id−→ X
ϕ−→ Y is anti-holomorphic

⇔X
ϕ−→ Y

Id−→ Y is anti-holomorphic

Definition 3.2. A Real structure on a smooth manifold X is formally defined
as a pair (X, ι), where ι is a smooth involution of X. We will usually just
say that ι is a Real structure on X, and call (X, ι) a Real manifold. If X
is a complex manifold and ι an anti-holomorphic involution, we call (X, ι)
a Real complex manifold. A Klein surface is a Real complex manifold such
that X is a Riemann surface. The fixed point locus of ι is denote by X ι.

We will treat the complex case in more detail, suppose now that (X, ι) is
a Real complex manifold. Alternatively, we can think of ι as a holomorphic
map X → X̄ (resp. X̄ → X), such that X

ι−→ X̄
ι−→ X and X̄

ι−→ X
ι−→ X̄ are

equal to IdX , resp. IdX̄ .
We want to generalise this to the sheaves A(1)hol and PGL(2)hol. To

achieve this we define a complex conjugation on the groups A(1) and PGL(2).
Let us look at the following commutative diagram, derived from the exact
sequence in chapter 1:

0 C A(1) C∗ 1,

0 C A(1) C∗ 1.

τ τ

The morphisms τ on the left and right define a morphism A(1) → A(1),
which by abuse of notation, we will also call ν.

An explicit definition of ν : A(1) → A(1) can be given using the split
morphism s : C∗ → A(1):

0 C A(1) C∗ 1

0 C A(1) C∗ 1.

φ

τ

ψ

ν ττ

φ ψ

s
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Define the map via ν(x) = ψ(s(φ−1(x · τ(ψ(x))−1))) · s(τ(ψ(x))). Note,
that by exactness, φ−1(x · τ(ψ(x))−1) defines a unique element.

By using an explicit description of A(1) as the maps C → C, z 7→ az + b
we get that ν sends such a map to z 7→ āz + b̄. Similarly we get a map
ν : PGL(2) → PGL(2) such that the following diagram commutes:

0 C∗ GL(2) PGL(2) 1

0 C∗ GL(2) PGL(2) 1.

τ τ ν

In the same way we did for the structure sheaf OX and the sheaf O∗
X ,

we can now define for f ∈ F(U), ι∗(f) ∈ F(ι(U)) by ι∗(f)(x) := ν(f(ι(x))),
where F is either A(1)hol or PGL(2)hol.

3.2 Real structures on an elliptic curve

Let now (X, ι) be a Klein surface of genus 1, w.l.o.g X = C/ < 1, α > with
Re(z) 6= 0. There are essentially three cases, corresponding to different fixed
point sets.

(a) α = it, t ∈ R>0 and ι([z]) = [z̄].

(b) α = it, t ∈ R>0 and ι([z]) = [1
2
+ z̄].

(c) α = 1
2
+ it, t ∈ R>0 and ι([z]) = [1

2
+ z̄].

In case (a), the fixed point set is the disjoint union of two circles given
by C1 = {[z], Re(z) = 0} and C2 = {[z], z = s+ it/2, s ∈ R}.
In case (b), the fixed point set is empty and in (c) it consists of one circle.
For related results and more general notions see [15]. The proof of the above
statement can also be found in [1] chapter II, proposition 1.

3.3 Real structures on vector bundles

If E → X is a complex vector bundle over a smooth manifold and ι a Real
structure on X we would like to lift the structure to E. First we need to
define what we mean by a lift.

Definition 3.3. Let E → X be a smooth, complex vector bundle over a
smooth manifold with Real structure ι. A smooth involution ι̃ : E → E is
called a Real structure on E, compatible with ι, if the induced map on the
fibres is anti-linear and the following diagram commutes.
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E E

X X

ι̃

π π

ι

If E → X is a holomorphic vector bundle over a Real complex manifold
(X, ι), we additionally demand that ι̃ is anti-holomorphic.

We will look at the special case of a line bundle L π−→ X over a com-
pact, connected complex manifold. Denoting by [L] the element in Pic(X)
corresponding to L, and denote by L the conjugate bundle of L. Recall the
description of the conjugate manifold X. Pulling back X

Id−→ X we get the
following commutative diagram:

Id∗(L) = L L

X X

Id

Id∗(π)=π π

Id

So L → X is a holomorphic vector bundle.
We define a map ι̂ : Pic(X) → Pic(X) by ι̂([L]) := [ι∗(L)], illustrated by the
following commutative diagram:

ι∗(L) L L

X X X

ι∗

ι∗(π)

Id

π π

ι Id

Proposition 3.4. The map ι̂ : Pic(X) → Pic(X) is an anti-holomorphic
involution.

Remark Note that this does not imply that ι∗(ι∗(L)) = L, it just means
that they are isomorphic.

Keeping the remark in mind, we get the following diagram, where the top
morphisms are not necessarily induced by the pullback.
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L ι∗(L) L

X X X

π ι∗π π

ι

Id

ι

Suppose next that [L] ∈ Pic(X)ι̂ is a fixed point. Then we obtain some
anti-holomorphic map ϕ̃ : L → L whose square lifts the identity Id : X → X.
In fact, the following theorem holds (which is stated without proof in [14]).
The reader is encouraged to look up further results in the same paper.

Theorem 3.5. Suppose X ι 6= ∅ and L a holomorphic line bundle over X.
Then

[L] ∈ Pic(X)ι̂ ⇔ L has a Real structure compatible with ι.

Proof. Let L be a holomorphic line bundle over X such that [L] ∈ Pic(X)ι̂.
Fixing an isomorphism ϕ : L → ι∗(L̄) we obtain an anti-holomorphic ι-
covering isomorphism ϕ̃ = ι̃◦ϕ that covers ι, where ι̃ : ι∗(L̄) → L is the map
induced by the pullback. Then ϕ̃ ◦ ϕ̃ is a holomorphic automorphism of L,
hence is equal to z IdL for some z ∈ C∗ since X is compact and connected.
By assumption there exists an x ∈ X ι, so for v ∈ Lx we get

zϕ̃x(v) = (ϕ̃x ◦ ϕ̃x)(ϕ̃x(v)) = (ϕ̃x(ϕ̃x ◦ ϕ̃x))(v) = ϕ̃x(zv) = z̄ϕ̃x(v).

So by replacing ϕ̃ with 1√
|z|
ϕ̃ we can assume z ∈ {−1, 1}. We need to show

that z cannot be equal to −1. Note first that an anti-linear automorphism
of a complex vector space of complex dimension n, regarded as an automor-
phism of the underlying real vector space, is orientation preserving if n is
even and reverses the orientation if n is odd. In our case n = 1, so ϕ̃x is
orientation reversing. On the other hand, the next lemma shows that ϕ̃x
must be orientation preserving if z = −1. This finishes the proof.

Lemma 3.6. Let V be a real vector space of dimension 2 and ψ ∈ End(V )
such that ψ2 = − IdV . Then Tr(ψ) = 0 and det(ψ) = 1, in particular ψ is
orientation preserving.

Proof. Recall that in dimension 2, the characteristic polynomial χψ of ψ is
given by T 2 − Tr(ψ)T + det(ψ). By assumption, the polynomial T 2 + 1
annihilates ψ. Since this polynomial has no roots in the real numbers, we
conclude that it is the minimal polynomial of ψ. But the minimal polynomial
divides the characteristic polynomial and looking at the formula given above
we see that χψ(T ) = T 2 + 1 and comparing coefficients we obtain the result.
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In the next chapter we will generalise the following result, due to Atiyah,
to affine bundles.

Theorem 3.7. Let ι̃ : E → E be a ι-Real structure, compatible with ι : X →
X. Then Lι̃ → X ι is a real vector bundle.

This result and others can be found in [3], see also [2].

3.4 Real structures on affine bundles

Now we want to generalise the linear case to affine bundles.

Definition 3.8. Let A π−→ X be a smooth, complex affine bundle over a Real
manifold (X, ι). A smooth involution ι̃ : A → A is called a Real structure
on A, compatible with ι, if ι̃ is a lift of ι and the derivative of the induced
maps ι̃x : Ax → Aι(x) is anti-linear for every x ∈ X. As we had before for
vector bundles, if A → X is a holomorphic affine bundle over a Real complex
manifold (X, ι), we demand that ι̃ is anti-holomorphic.

The anti-linearity condition also says that the induced map on the lin-
earisation

ι̃lin : Alin → Alin,

is anti-linear on the fibers. In chapter 2.3 we defined a generalisation of com-
plex conjugation for the affine group. Using it we can define the conjugation
A of an affine line bundle A. Analogously to the previous chapter we obtain:
The result concerning the fixed point locus is similar to the linear case, i.e.
theorem 3.7.

Theorem 3.9. Suppose that ι̃ : A → A is an ι-Real structure on a smooth,
complex affine bundle π : A → X of rank n over a Real manifold (X, ι) and
X ι 6= ∅. Then Aι̃ is a real affine bundle of rank n over X ι.

We need some preparatory work before we can give the proof.

Proposition 3.10. (i) Let A be an affine vector space modelled on a vec-
tor space V and ϕ : A → A an affine involution. Then for any x ∈ A,
the barycentre of x and ϕ(x) is a fixed point. Furthermore for any
x ∈ Aϕ the fixed point set Aϕ is given by x + V Tϕ, where Tϕ denotes
the tangential map Tϕ : V → V of ϕ.

(ii) Let ψ : W → W be an anti-linear involution of a complex vector space
W of complex dimension n. Then the fixed point set Wψ is a real
subspace of real dimension n.
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Proof. (i) Let x ∈ A be arbitrarily chosen. Then barycentre y of x and

ϕ(x) is given by ϕ(x)−x
2

+ x. Note that this expression is well defined
since ϕ(x)− x ∈ V . A simple calculation shows that y is a fixed point.
The rest of the statement is clear.

(ii) We look at ψ as a linear involution of the underlying real vector space.
Then, since ψ2 = Id we immediately see that t2 − 1 annihilates ψ, so
its minimal polynomial splits into factors of degree 1 and hence ψ is
diagonalizable. In other words ψ similar to a matrix that has only 1’s
and -1’s at the diagonal. Therefore W = W1⊕W−1 is the direct sum of
its eigenspaces. Multiplying with i maps W1 to W−1 and W−1 to W1,
showing that bothW1 andW−1 have real dimension n. SinceW1 = Wψ

we get the result.

Lemma 3.11. Let ϕ : V → W be linear map of finite dimensional real
vector spaces, equivariant with respect to linear involutions f : V → V ,
g : W → W , i.e. ϕ(f(x)) = g(ϕ(x)). If ϕ is surjective, so is the induced
map ϕ1 : V

f → W g.

Proof. As in the proof of proposition (ii) we obtain compositions V = V1⊕V−1

and W = W1 ⊕W2. Of course we cannot say anything about the dimensions
of the Vi and Wi. Since ϕ is equivariant, it maps V1 into W1 and V−1 into
W−1, showing that ϕ = ϕ1 ⊕ ϕ−1 and that the induced map ϕ1 : V f =
V1 → W1 = W g is well defined. Clearly, if ϕ1 is not surjective, ϕ cannot be
surjective.

Proposition 3.12. Let π : E → X be a smooth vector bundle of rank n and
F ⊆ E a submanifold. Then the following conditions are equivalent:

(i) F is a subbundle of rank k.

(ii) Fx = Ex ∩ F is a linear subspace of dimension k for every x ∈ X.

Proof. Let 0 : X → E be the canonical zero-section, which we can regard
as a smooth map 0 : X → F and denote π↾F by q. Since q ◦ 0 = IdX , we
get that T0xq ◦ Tx0 = IdTxX , showing that q is a submersion at 0x for every
x ∈ X. Let us look at the following commutative diagram.

0∗(TF ) TF TX

X F X

Tq

0

Id

q
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We obtain a fiberwise surjective vector bundle morphism ϕ : 0∗(TF ) → TX
from the top row, since we showed that q is a submersion at each 0x. In other
words, we obtain a vector bundle epimorphism and a vector bundle ker(ϕ),
since the kernel of a vector bundle morphism is again a vector bundle. Note
that the kernel of T0xq : T0xF → TxX is exactly the tangent space T0xFx
which can be identified with Fx since Fx is a vector space. Using this we can
identify F with ker(ϕ), proving the the result.

There is an analog for affine bundles.

Proposition 3.13. Let π : A→ X be a smooth affine bundle of rank n and
E ⊆ A a submanifold of A. Then the following conditions are equivalent:

(i) E is an affine subbundle of rank k.

(ii) Ex is an affine subspace of dimension k for every x ∈ X and the
restriction πE : E → X is a submersion.

The method of this proof is essentially the same as the method used in
showing that each smooth affine bundle has a global section.

Proof. Obviously (i) implies (ii). For the other direction we can assume that
A is a vector bundle, since in the smooth case each affine bundle is isomorphic
to a vector bundle. By assumption πE is a submersion so we find an open
cover {Ui}i∈I of X and local sections si : Ui → E of E↾Ui

. Since we always
work with paracompact manifolds, this cover can be chosen locally finite.
Let {ρi}i∈I be a partition of unity subordinate to the cover {Ui}i∈I . Then
∑

i∈I ρisi is a smooth global section of A with values in E by (ii), reducing
the problem to the case of vector bundles and proposition 3.12.

The proof makes use of the following theorem, often called the slice the-
orem. We refer the reader to [18] for details.

Theorem 3.14. Let G be a compact Lie group and M a smooth G-manifold.
For m ∈ M and H = Gm, there exists a unique H-representation V and a
G-diffeomorphism ϕ : G×H V →M onto an open neighbourhood of Gm such
that ϕ(g, 0) = gm.

In the case of m ∈MG, V ∼= TmM is called the tangential representation
at m. We also use the following corollary, again we refer to [18].

Corollary 3.15. Let G be a compact group acting smoothly on a smooth
manifold M . Then the fixed point set MG is a closed submanifold of M .
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Remark 1. The dimension of MG may vary on the connected compo-
nents, so generally MG is not a pure dimensional submanifold.

2. If (X, ι) is a Real manifold, the corollary implies that X ι, if non-empty,
is a closed submanifold. If (X, ι) is a Real complex manifold of dimen-
sion n one can show that X ι is even a pure dimensional submanifold
of real dimension n.

With all the machinery assembled, we can give the proof of our original
theorem.

Proof of theorem 3.9: Suppose x ∈ X ι . By proposition 3.4 the fixed point
set Aι̃x

x of the fiber map ι̃x : Ax → Ax is a real affine subspace of dimension
n. Next, the corollary of the slice theorem tells us that Aι̃ is a submanifold
of A↾Xι . Showing that q = π↾Aι̃ is a submersion and applying proposition
3.13 finishes the proof. The slice theorem tells us that the tangent space
TyAι̃ in a point y ∈ Aι̃

x is given by (TyA)Ty ι̃. Now lemma 3.11 implies the
surjectivity of Tyq : TyAι̃ → TxX

ι, finishing the proof.

3.5 A look ahead

Similarly to the linear case, we define

ι̂ : Aff(X) → Aff(X),

by
ι̂([A]) = [ι∗(A)].

ι∗(A) A A

X X X

ι̃

ι∗(π)

Id

π π

ι Id

Further properties of this map will be addressed in some future article.

Q.1 Is the map ι̂ : Aff(X) → Aff(X) an involution?

Q.2 Is it continuous with respect to the natural topology defined in chapter
2.4?

Q.3 Do we obtain a result similar to theorem 3.5?

Q.4 How does a Real structure on a line bundle lift to an affine line bundle
lying above it?
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4 Enoki surfaces

Our goal is to study Real structures on Enoki surfaces, a family of complex
surfaces introduced and classified by Ichiro Enoki in 1980. See his paper [7].
A general reference for this section is [4]. We will first collect some results
and terminology of the classification of complex surfaces. Some generality
will be sacrificed to make the exposition more readable and to stay closer to
cases that are of interest to us.
For the rest of this chapter X denotes a connected, complex manifold of
complex dimension n. The canonical bundle of X is defined as KX =

∧nΩ1
X ,

where Ω1
X denotes the cotangent bundle of X. It is a line bundle over X.

Definition 4.1. For d ∈ N, the d-th plurigenus of X is defined as

P d(X) = h0(X,KX) = dimH0(X,K⊗d
X ).

The Kodaira dimenson kod(X) of X is defined as follows:

kod(X) =

{

−∞ if P d(X) = 0 for all d > 0

min k such that P d/dk is bounded .

Definition 4.2. A surface of class VII is a complex surface S with kod(X) =
−∞ and b1 = 1. If X is also minimal, it is a surface of class VII0.

Let now S be a complex surface. A curve C on a surface S is a 1-
dimensional subspace of S, locally defined by one equation. It naturally
corresponds to an effective divisor and vice versa. For a divisor D on S, we
denote its self-intersection number by (D)2. There are two possible cases for
a surface S of class VII0 that has a curve:

1. There exists a divisor D such that (D)2 = 0.

2. For every divisor D on S, (D)2 < 0.

In his paper, Enoki constructed surfaces Sn,α,t for n > 0, 0 < |α| < 1 and
t ∈ Cn satisfying the following properties:

1. Sn,α,t is a surface of class VII0 with b2 = n.

2. Sn,α,t has an effective divisor Dn,α,t with (Dn,α,t)
2 = 0.

3. Sn,α,t − Dn,α,t = An,α,t is an affine line bundle of degree −n over an
elliptic curve.
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Then, he goes on to prove his main theorem:

Theorem 4.3. Suppose S is a surface of class VII0 with b2 = n. If there
exists an effective divisor D with (D)2 = 0, then S is biholomorphic to Sn,α,t
and D = mDn,α,t for some n, α, t as above and m ∈ Z.

We will provide a very short description of the construction utilised his
paper. We mentioned that an Enoki surface is a compactification of an affine
line bundle. The important thing to remember is that is not the trivial fiber-
wise compactification. One would just obtain a ruled surface over an elliptic
curve, with fibers P1, but not a class VII surface. The compactification is
along an exceptional divisor D, as stated above. The construction consists
of a series of blow-ups of P1 × C, defined by a birational automorphism

gn,α,t : (z, w) → (wnz + t(w), αw),

where n is a natural number, t is a polynomial and α ∈ C with 0 < |α| < 1.
The α corresponds to an elliptic curve C∗/ < α >, that will be the base
space of the affine line bundle obtained. What the blow-ups do to construct
the exceptional divisor is essentially attaching projective lines at two points,
such that two projective lines have transversal intersection or not at all. The
following drawing illustrates the idea.

After passing to an inductive limit of certain subspaces for each blow-up, one
defines an equivalence relation induces using the gn,α,t and obtain a cycle of
n rational curves, i.e. a reduced divisor whose irreducible components are
rational curves which intersect according to the the drawing below:

More precisely,
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1. if n = 1, the divisor is singular rational curve C with a simple (nodal)
singularity, so that (C)2 = 0.

2. If n ≥ 2, using a suitable indexation of these curves one obtains (Ci ·
Cj) = 1 when j = i± 1 modulo n, and (Ci · Cj) = 0 otherwise.

This is of course an oversimplification but the idea should be clear. Again,
we refer to Enoki’s paper [7] for the details.

Some interesting questions arise:

Q.1: If α is a real number, and t ∈ R[x] a polynomial with real coefficients,
does there exist a natural Real structure on the corresponding Enoki
surface?

Q.2: Suppose that the affine line bundle corresponding to an Enoki surface
is equipped with a Real structure. Does the structure lift to a Real
structure on the Enoki surface?

Q.3: In general, classify all Real structures on an Enoki surface.
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Abstract (deutsche Version)

Die zwei Hauptthemen der Arbeit sind affine Bündel über kompakten, kom-
plexen Mannigfaltigkeiten und Reelle Strukturen im Sinne von Atiyah. Die
Beschreibung der Menge der Isomorphieklassen von holomorphen affinen Ger-
adenbündeln mittels der Kohomologie von holomorphen Geradenbündeln
(Theorem 2.7), sowie die Einführung einer Topologie auf dieser Menge ist
das erste neue Resultat dieser Arbeit. Die Konstruktion der Topologie ver-
wendet Methoden der Eichtheorie, um ein holomorphes Analogon des für
abelsche Varietäten bekannten Poincaré Geradenbündels zu definieren. Als
Anwendung werden affine Geradenbündel über einer Riemannschen Fläche
betrachtet.

Im darauffolgenden Kapitel werden Reelle Strukturen im Sinne von Atiyah
behandelt. Zuerst wird in Kapitel 3.3 ein Beweis von [14] Proposition 2.12.(1)
gegeben. Anschließend werden Reelle Strukturen auf affinen Bündeln definiert
und gezeigt dass die Fixpunktmenge einer solchen Struktur ein affines Bündel
ist. Dieses Resultat verallgemeinert das schon bekannte Theorem für Vek-
torbündel.

Das letze Kapitel 4 behandelt Enokiflächen und stellt weiterführende Fragestel-
lungen vor.



Abstract (english version)

The two main topics of this article are affine bundles over compact, complex
manifolds and Real structures in the sense of Atiyah. The first main result
describes the set of isomorphism classes of holomorphic affine line bundles
using the cohomology of holomorphic line bundles and the description of a
topology on this set. The construction of the topology uses gauche theoreti-
cal methods as well as a holomorphic analogue of the Poincaré line bundle,
well known in the case of abelian varieties. Affine line bundles over a Rie-
mann surface are discussed as an application.

Real structures in the sense of Atiyah are treated in the next chapter. A
proof of [14] proposition 2.12.(1) is given in chapter 3.3. Real structures on
affine bundles are subsequently defined and it is shown that the fixed point
set of such a structure defines an affine bundle. This result generalises the
well known case of Real structures on vector bundles.

The last chapter discusses Enoki surfaces and presents problems in the con-
text of the first two chapters.
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