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Abstract

This thesis deals with mathematical image segmentation, which is the process of dividing a
digital image into multiple segments, and its application to clinical images of the human retina.
At first we describe some different important image segmentation techniques including direct
and variational methods. One significant approach is to receive a segmented image as the
minimizer of an appropriate energy functional. We will introduce the Potts model as an energy
minimization problem on continuous regions and will also consider a discrete domain version.
The continuous model is also known as the piecewise constant Mumford-Shah model since it
is similar to the energy functional introduced by Mumford and Shah. We will work with
the discrete Potts model and its minimization, which is a NP - hard nonconvex optimization
problem. Therefore we will discuss two different algorithms for a numerical approximation:
the Graph Cuts method and the ADMM. In conclusion we will use an algorithm for minimizing
the Potts model via the ADMM to process clinical images of the human retina given by the
Vienna Reading Center (VRC) at the Department of Ophthalmology, Medical University of
Vienna. Our goal is to segment those images in different areas such that intraretinal cystoid
fluid can be located in the retina. Different resulting segmentations of those clinical images
are shown at the end of the thesis.

Zusammenfassung

Diese Masterarbeit beschiftigt sich mit mathematischer Bildsegmentierung, der Unterteilung
eines digitalen Bildes in verschiedene Segmente, und deren Anwendung auf klinische Bild-
daten der menschlichen Netzhaut.

Am Anfang beschreiben wir verschiedene wichtige Techniken der Bildsegmentierung. Ein
in der Literatur oft beschriebener Ansatz ist die Segmentierung eines Bildes durch die Min-
imierung eines passenden Energiefunktionals.

Dann stellen wir das Potts-Modell vor als ein Energieminimierungsproblem auf kontinuier-
lichen Regionen und geben auch eine diskrete Formulierung des Problems. Das kontinuier-
liche Modell ist auch bekannt als das stiickweise konstante Mumford-Shah-Modell, da es sehr
dhnlich ist zu dem Funktional, das von Mumford und Shah vorgestellt wurde. Wir arbeiten
weiter mit dem diskreten Potts-Modell und seiner Minimierung, welches ein nichtkonvexes
NP-Problem ist. Hierfiir werden zwei verschiedene algorithmische Losungansitze niher
beschrieben und diskutiert: die Graph Cuts Methode und der ADMM.

SchlieBlich wird ein Segmentierungsalgorithmus basierend auf dem beschriebenen ADMM
verwendet um auf klinische Bilder der menschlichen Netzhaut anzuwenden, welche vom
Vienna Reading Center (Fakultét fiir Ophthalmology, Medizinische Universitit Wien) zur
Verfiigung gestellt wurden. Unser Ziel ist es diese Bilder so zu segmentieren, dass Zysten
in der Netzhaut erkannt werden. Einige der numerischen Resultate werden am Schluss der
Arbeit présentiert.
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1 Introduction

Mathematical image processing is an important and wide field of Applied Mathematics that is
closely related to Computer Science and Engineering. It is essential in many applications in-
cluding medical image analysis, image compression, movie processing, computer aided qual-
ity control, information security, etc ... .

Image segmentation is the process of dividing a digital image into multiple segments (piece-
wise constant areas) to change the representation of an image. It is a difficult and important
problem so that in the literature already several different approaches (that belong to very dif-
ferent theoretical mathematical fields) exist.

First I will state in Chapter 2 some different important approaches of mathematical image
segmentation including direct and variational methods. It is important to be aware that some
methods are developed for images on a discrete domain and some for images on a continuous
domain. I will introduce the Potts model, whose minimizer shall yield a segmented image,
in Section 2.2.5 as an energy minimization problem on continuous regions, but a discrete do-
main version is considered in [SW14]. The continuous model is also known as the piecewise
constant Mumford-Shah model since it is similar to the energy functional introduced by Mum-
ford and Shah in [MS89]. In the further chapters I will work with the discrete Potts model
and its minimization. Since the minimization of the Potts model is a NP - hard nonconvex
optimization problem, I am describing in the following chapters two different algorithms for
a numerical approximation. In Chapter 3 the combinatorical Graph Cuts method, which is the
basis of important algorithms for solving energy minimization problems, is described in gen-
eral and on the Potts model. The method is widespread, but there are also some disadvantages
in those algorithms applied to vector valued images. An alternative are algorithms based on the
ADMM (alternating direction method of multipliers) which can sometimes lead better results.
In Chapter 4 I am going to describe the alternating direction method of multipliers (ADMM)
and two related methods, whose advantages shall be combined in the ADMM. A general con-
vergence result (based on the one by S. Boykov in [BV99]) will be stated and proved in Ap-
pendix A. Additionally I will state the application of the ADMM to the Potts model including
a different convergence result. In Chapter 5 the algorithm developed in [SW14] for minimiz-
ing the Potts model via ADMM is used to process images of the human retina given by the
Vienna Reading Center (VRC) at the Department of Ophthalmology, Medical University of
Vienna. They also provided those images manually segmented for ground truth information.
The VRC has extensive medical expertise and is one of the leading institutions in ophthalmic
image analysis. Our goal is to segment those images in different areas such that intraretinal
cystoid fluid can be located in the retina. Different resulting segmentations of those clinical
images are shown at the end.



2 Mathematical Image Processing

In that master’s thesis I am going to work with digital greyscale and vector valued images,
which consist of more than one channel. The most common vector valued images are rgb
color images, which consist of three channels with color intensity values of red, green and
blue. Digital rgb images are multispectral images, which means that each channel represents a
certain measured wave length taken by a camera. In general vector-valued images consist of k
channels (=features), where every channel can also contain calculated values, e.g. the gradient
or the laplacian of the color intensity values, a filtered image, etc. .. Those values do no longer
need to be physically measured length of waves, but also can provide important calculated
information of the original image.

2.1 Image representation

Although digital image data is defined on discrete regions Q ={0,1,...,m—1} x{0,1,...,n—
1} there exists important and helpful theory on continuous regions  C R? that can be adapted
to the discrete case.

2.1.1 Images on continuous regions

Every vector valued image I € Q x R”, where Q C R? denotes the image area, can be described
by a label function u : Q — R”. The function u returns a vector z € R” in every point (x,y) € Q,
that consists of the information given in all  channels of the image, e.g. in a rgb color image
u(x,y) returns a three dimensional vector with the color intensities for red, green and blue in
the point (x,y).

2.1.2 Images on discrete regions

Digital images on a discrete domain Q = {0, 1,...,m—1} x {0,1,...,n— 1} can be viewed as
a matrix / € R™"" consisting of pixels p;; € R”, where r denotes the number of channels.
The pixels can be labeled by a label function u : Q — R’, e.g. the intensity function u(i, j)
returns the color intensity values in all channels of the pixel p;; on the place (i, j) € Q. Usually
color intensity values are between 0 and 255 (in the case that the pixel intensity is stored as an
8-bit integer). A greyscale image is given by a matrix / € R”*" and a rgb color image is given
by a matrix I € R"*"*3,

Remark. Since we work in that chapter just with greyscale and rgb images, we assign each
pixel of the image matrix I = (p;j)i=1..m—1,j—1..n—1 With its color intensity values, i.e. p;; 1=



u(i,j)eRor R3, where u returns the color intensities. Note that in the discrete case each label
function u can be viewed as a R”*"*" matrix.

2.2 Image segmentation

Image Segmentation is a very important and wide field in image analysis and computer vi-
sion. The main idea is to partition a given image / into regions with similar properties or to
find boundaries of distinct objects in the scene (boundary detection). There do exist several
different approaches on solving those problems. In this chapter I will give a short overview
of some different ideas, including energy minimization and the Potts model, whose approach
will be subject of the further chapters.

Remark. Image denoising is closely related to image segmentation ([CENO04]). The goal in
that case is to remove noise or to recover details of a given corrupted digital image.

2.2.1 Edge detection for greyscale images

Edge detection techniques decide wether a pixel is part of an edge (a boundary between re-
gions) or not. With that information one can partition the image in objects and background.
There do exist several different approaches in the literature, some surveys can be found in
[RKS13], [SR0O9] and [HB13]. I will give a short summary of popular greyscale edge detec-
tion methods on discrete regions. Those methods are also included in the image processing
toolbox of matlab. They return a binary image of the same size as the original image with
binary pixels, such that p;; = 1 (white) on edges, and p;; = 0 (black) elsewhere.

There are mainly two different categories of edge detection methods: gradient and Laplacian
ones. The gradient methods detect edges by looking for the maximal gradient of the intensity
values in the image (the gradients of the label function u). Since edges can be viewed as the set
of those pixels with high spatial frequency, finding the pixels with a high first derivative can
yield the edges. On the contrary the Laplacian methods look for zero crossings in the second
derivative. This makes sense because the second derivative equals 0 when the first derivative
is at a maximum (i.e. very high gradient value).

Remark. All the described filter methods yield kernels (convolution masks), that give the
wanted result by convolving them with the original image.

For a suitable continuous image I € R? the continuous convolution with a kernel function
w:Q C R? — Ris given by

(wT)(x,y) = /Qw(x—u,y—v)l(u,v) du dv.

Similarly the discrete convolution of a discrete image / € R™*" with an (2k+ 1) x (2/+1)

mask w is given by
l

k
WD)y = Y, Y, w(i, M(m—in—j).

i=—k j=—I



Gradient methods

Original Image Sobe| method

Paberts method

Figure 2.1: Using the matlab Sobel, Prewitt and Roberts methods on a greyscale image.

Sobel method

The suggestion of the Sobel Operator was made in a talk by Irwing Sobel in 1968 [Sob14].
The Sobel operator is a discrete differentiation operator, which computes an approximation
of the absolute gradient magnitude at each point of the discrete input image. It returns edges
at those points where the estimated gradient exceeds some previously chosen threshold. The
standard Sobel Operator uses a 3 x 3 neighborhood for approximating the gradient in each
pixel, e.g. the neighborhood for the pixel e is given by

a b c
d e f
g h i

Note that it cannot be used on the boundary of the image. To get an estimate of the spatial
gradient in pixel e, a vector sum of 4 directional derivatives of orthogonal vectors is cal-
culated [Sobl14]. Therefore the 8 neighbors of the central pixel group into antipodal pairs:
(a,i),(b,h),(c,g) and (f,d). To get the estimated gradient in pixel e, one sums up the discrete
directional derivative of all pairs and takes the average. The directional derivative is defined
by the difference of the intensities divided by the distance of the pixels. Therefore the vector



sum for the gradient estimate in pixel e is given by

1

Gle) = 5 ((c—2)- (LT +(@—0)- [=1,1]7) + (b —h) - [0,1]" +(f —d) - [1,0]7,

where R = v/2 denotes the pixel distance. Multiplying by 2 gives the vector

_ ((c—g—a+i)+2(f—d)
Gle) = ((C—g+a—i)+2(b_h)).

This leads to a pair of 3 x 3 convolution kernels that give the approximate spatial gradient.
Therefore for each point the estimated discrete derivative in the x direction can be calculated
by convolving the image with

-1 0 1
Gi=|-2 0 2
-1 0 1
and in the y direction with
1 2 1
Gy=0 0 O
-1 -2 -1

The gradient magnitude is then given by

|G|=1/G2+G3
G
0 = arctan (—x)
Gy

A detailed description and an extension to a 5 X 5 mask can be found in [GM13].

and the direction of the gradient by

Prewitt method

The Prewitt method is quite similar to the Sobel method. The 3 x 3 convolution kernels only
differ because the directional derivates are now not weighted by the pixel distance. So unlike
the Sobel operator, this operator does not emphasize pixels that are closer to the center of the
mask. Therefore the two masks are given by

and
1 1 1

-1 -1 -1
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Again the gradient magnitude is given by
G|= /G +G3.
Roberts method

The Roberts method is also a gradient-magnitude method. Instead of a 3 x 3 neighborhood it
uses a 2 x 2 neighborhood to get an approximate discrete gradient measurement. It uses the

two masks
1 0
)

0 1
6= o)

Since that operator uses a smaller neighborhood to calculate the gradient image, it is even
more sensitive to noise than the Sobel and Prewitt method.

and

Canny method

The classical gradient based operators Roberts, Prewitt and Sobel are weak concerning sharp
edges and are highly sensitive to noise in the image ([RKS13]). Also the Laplacian based
Marr and Hildreth operator (discussed later) has a high probability of detecting false edges.
In 1986 John F. Canny wanted to create an ideal edge detection algorithm for images that are
corrupted with noise. He developed one that reduces the probability of detecting false edge
and yields sharp edges.

As described in [RKS13], the algorithm of the Canny method seperates in 4 steps:
1. Smoothing Blurr the image to remove noise by convolving with a Gaussian Filter.

2. Finding gradients The Sobel operator is used to find the approximative gradients of all
pixels in the smoothed image. Edges are marked where the gradients of the image are
large.

3. Non - maximum suppression Only local maxima should be marked as edges to yield
sharp edges. The algorithm for each pixel p;; in the image is given by:

a) round the gradient direction 6 of p;; to the nearest 45 degrees;

b) compare the gradient magnitude |G(p;;)| with the magnitude of the pixels in pos-
itive and negative gradient direction, e.g. if the rounded gradient direction is 90
degrees compare |G(pij)| with [G(p(;—1);)| and |G(pi11););

c) if G(p;;) has the largest value, save the value of the gradient and mark the pixel
pij as edge pixel, otherwise suppress it.

4. Double thresholding The output of the non-maximum suppression still contains local
maxima that are created by noise. To suppress those, the method uses double threshold-
ing with a high and a low bound #;;,;, and #,,,. To decide wether a pixel is part of the

11



edge or not, we take the gradient magnitude of each pixel p;; that is marked as an edge.
If |G(pij)|< tiow  discard p;j,
\G(pij)|> thign  keep pij.
If 100 < |G(pij)|< thign holds, then
Ak, 1) € N3(pij) : |G(pra) > thigh keep pij,
H(kl,ll) S N3(pij) :

tiow < |G(k1,11)|< thign N I(k2,12) € N5(pij) : |G(ka,12)|> thign ~ keep pij,
else discard p;;,

if

where Ny(p;j) denotes the d x d neighborhood of p;;. After that step the set of edge
pixels is finally selected.

ariginal Image Canny method

Figure 2.2: The matlab Canny method applied on a greyscale image.

Laplacian methods

In those methods it is necessary to find an approximation for the continuous Laplace operator
2 2 . . .o . .

L(x,y) = Au(x,y) = % + g—y’z‘ and to adapt it to a discrete one L(i, j). To get an approximation

for the second derivative of the continuous function u : Q C R> — R we take its Taylor series

expansions

3
u(x+h) = u(x) +hu'(x) + h?zu”(x) + ;l—!u”’(x) +0(h*)
and
h2 3
u(x —h) = u(x) — hu'(x) + Tu”(x) - iu’"(x) +0(h*).

If we add those two expansions it leads to the approximation

x—h)—2u(x)+u(x+h)
h2

u” (x) ~ u

12



To get an approximation of the discrete second derivative in each pixel of the discrete image,
we set 1 = 1 as the step length between the pixels. That leads to an often used numerical ap-
proximation of second order derivatives, which is derived from the discrete central difference
operator (see e.g. [SK11] or [uTN12]):

(i, J) 2 uli+1,j) —2u(i, j) +u(i—1, j)
and

That yields in x-direction the 1 x 3 mask
e = (+1—-2+1)

and in y-direction the 3 x 1 mask

+1
-2
+1

which will give a matrix containing the approximative second derivatives by convolving with
the original image /(i, j). The discretized version of the Laplacian operator (=Laplacian filter)
can be found by

Uyy = )

00 0 010 010
L(i,j)*lz(uxx+uyy)*1:( 1-21]+{0=20 )*1: 1—41 %1
000 01 0 010

The set of edges is given by the zero-crossings. Note that since the Laplacian operator is the
sum of second-order derivatives the method is very sensitive to noise.

original Imags Lo methiod

Figure 2.3: Using the matlab LoG method on a greyscale image.
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Marr-Hildreth-Operator or Laplacian of Gaussian (LoG)

The LoG Filter first smooths a continuous image with a Gaussian filter G(x,y) and then finds
the zero-crossings in the Laplacian of the smoothed image. It uses the kernel

AG(x,y)*1(x,y) =: LoG(x,y) *I(x,y).
The derivative of the Gaussian filter is independent of the image and therefore can be precom-

puted. The standard Gaussian smoothing operator is given by the continuous kernel

_ x2 +y2

G(x,y)=e 207,

where x,y denote the image coordinates and o is a standard deviation of the associated prob-
ability distribution. The Laplacian of the Gaussian is given by

2 52 21 =E2d 21 @2
AG(W):@G(XJ)'i'g—ng(xay):(g—g)e 20 (g ——5)e 29,

which leads to
X +y? 202 _@nh)
———e 207 .

ot
In [Gun02] one can find ideas how to get, for a given discrete image /, an appropriate dis-
crete convolution mask from the equation above. After convolving the image with the kernel
LoG(x,y) the algorithm finds the set of edge pixels by looking for the zero - crossing pixels,
i.e. the pixels that cross the zero level.

LoG(x,y) =

The advantage of this approach compared to classical edge operators of small size is that a
larger area surrounding the current pixel can be taken into account. The influence of more
distant points decreases according to the o of the Gaussian filter, but the o variation does not
affect the location of the zero-crossings. Note that the operator suffers from two main disad-
vantages: it generates responses that do not correspond to edges and the localization error may
be severe at curved edges [RKS13].

More detailed information about Laplacian operators (and especially the LoG operator) can
be found in [RKS13], [MS98] and [Wee96].

Comparison of the methods

As stated in [RKS13], in comparison of all these edge detection techniques it is found that the
Canny method gives the optimum edge method. Some points of advantages compared to the
discussed methods in that section are:

e It is less sensitive to noise as compared to Prewitt, Sobel and Roberts edge detector,
because it uses the Gaussian filter before taking the gradient image. The LoG operator
is also highly sensitive to noise as it works with the second derivative/Laplacian.

e The classical operators have fixed kernels which do not change for different images.
The Canny algorithm depends on the standard deviation ¢ and two thresholds #;,,, and
thigh Which allow to improve the performance by changing and adapting them.

14



e Most methods use a single threshold limit, which means if the edge values fluctuate
above and below this value, the line will appear broken (streaking). The Canny method
is avoiding that by doing double thresholding (described in subsection 2.2.1).

2.2.2 Thresholding

Edge detection methods are based on partitioning an image based on strong changes of in-
tensity. Other methods, including thresholding, partition the image into regions that satisfy
some predefined criteria. In the case of thresholding the pixels are partitioned depending on
their intensity value. For a discrete greyscale image the result is usually a binary image (i.e.
consisting of colorvalues 0 and 1). There are different possibilities of dividing the image:

¢ Global thresholding with an a priori chosen threshold T
.. 1 if u(i,j)>T,
v(i, j) = T )
0 if u(i,j)<T,
where v(i, j) denotes the label function of the binary result image.

e Variable thresholding
Local or regional thresholding: 7 depends on a d x d neighborhood of the pixel p;;,
Adaptive thresholding: 7T is a function of the coordinates (i, j).

e Multiple thresholding with more than one a priori chosen thresholds, e.g.

a if u(i,j) > T,
v(i,j)=1<b if Ty <u(i,j) <D,
¢ if u(i,j)<Ti,

which returns the label function of an image with 3 regions.

Histegram of the image

Qriginal Image 1600
1400
1200

1000

Figure 2.4: Image histogram that shows the amount of the different pixel intensities in the
image.
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Choosing the threshold in global thresholding

There are different ways of finding an appropriate threshold. A common way is to analyze the
image histogram [SaKK10]. An image histogram shows the amount of pixels of each color
intensity (usually O to 255). The ideal case is given when the histogram presents two dominant
modes and a clear valley (bimodal). In that case the threshold T is selected as the valley point
between the two modes. In practice histograms are unfortunately often more complex with
many peaks and no clear valley. One simple technique to find an appropriate threshold uses
the mean value of all pixels. This technique has the main disadvantage that it considers that
approximately half of all pixels belong to the objects and the other half to the background. In
[SaKK10] and [NS93] other ideas on finding appropriate thresholds can be found.

Originzl mage Binary Image by using the mean threshold

Figure 2.5: Binary image by using the mean as global threshold.

2.2.3 Active Contours

Using active contour models (also called snakes) is another edge detection method with a
completely different approach as in Subsection 2.2.1. It is evolved on images on continuous
regions. Starting with an initial contour around an object in the image, the curve is deformed
towards the boundary of that object. The deformation is obtained by minimizing an appropri-
ate energy functional, i.e. its minimum should be the approximate curve at the boundary of
the located object.

The classical model introduced by Kass et al. (1988) in [KWT88] wants to find the curve C
that minimizes the energy

E(C)=a /O \C'(q)Pdq + B /0 '\ (g)Pdg— /0 V2(C(q)dg, @.1)

where C(gq) : [0,1] — R? denotes a parametrized curve, z : [0,a] x [0,b] — R* the original
given continuous image and @, and A are real positive constants. The first two addends
control the smoothness of the contours (internal energy) and the third term attracts the contour

16



towards the object (external energy). But as stated in [CKG97] the energy model (2.1) is not
suitable to handle changes in the topology of the evolving contour, i.e. the final curve will be
as the initial one, which can be a problem if an unknown number of objects should be detected
simultaneously. The solution without some additional procedures will be in most cases a curve
which approaches a convex hull type figure of the objects in the image. In [CKG97] a similar
energy model is introduced, which shall overcome those problems:

BC) =0 [ Clg)lda—1 [ 1V(Clg)lda. @2

Compared to (2.1) it is the same model with chosen parameter f = 0. By minimizing the
energy (2.2) it is wanted to locate the curve at the points of maxima |Vz| (edge detection)
while keeping smoothness in that curve. Equation (2.2) can be extended by generalizing the
edge detection part: Let g : [0,+oo[— R™ be a strictly decreasing function such that g(r) — 0
as r — oo. Now we can replace —|Vz| by g(|Vz|) obtaining a more general energy functional
given by

B(O) = [ ICa)lda+2 [ (v:(Ca))) g

] (2.3)
- /0 Eu(C()) + Eex(C(q)) dg.

The following results for minimizing (2.2) are shown in [CKG97]:

1. It is first proven that finding a minimum for (2.2) is equivalent to finding a geodesic
curve in a Riemannian space with a metric derived from the image content. It describes
the connection between energy and curve evolution approaches of active contours. Re-
call that a geodesic curve in a Riemannian manifold is a (local) minimal distance path
between given points.

2. The curve evolution flow that minimizes the weighted length (which is derived from
(2.2)) is then given by

aggr) — ¢(2)kN — (Vg-N)N, (2.4)

where k denotes the Euclidean curvature and N the unit inward normal.

3. Now this flow is embedded in a level-set formulation in order to complete the model and
show its connection with previous curve evolution active contours. This geodesic flow
includes the new component velocity in the curve that improves the model, because it
allows to accurately track boundaries with high variation in their gradient.

4. Furthermore it is shown that the solution of the geodesic flow exists in the viscosity
framework - it is unique, stable and consistent.

17



Intial contour (blue) and final contour (red)

Figure 2.6: Using the activecontour function that is included in the Image Processing Toolbox
of Matlab R2015 on a discrete image with an initial rectangle contour.

As stated in [CKG97] the main advantages of the approach are:

e The approach allows simultaneous detection of interior and exterior boundaries in sev-
eral objects without special contour tracking procedures.

o There exist formal existence, uniqueness, stability and consistency results.
e [t does not require special stopping conditions.

Remark. Other ideas for improving the energy model (2.1) can be found in e.g. [MT95] (topo-
logically adaptable snake), [CKG97] (new model for active contous) and [MSV94] (shape
modeling and recovery).

Remark. Note that in the previous subsection we derived the model and solutions for con-
tinuous images. To use it on digital discrete images either the idea has to be adapted for
discrete images or one requires to receive a continuous image by interpolating the stored dis-
crete image samples. Under some circumstances it is possible that a discrete set of samples
can accurately represent a continuous image (sampling theorem). For more information on
that see e.g. [Rusl1].

2.2.4 Mumford - Shah functional

David Mumford and Jayant Shah formulated in [MS85] and [MS89] an energy minimization
problem which yields an optimal piecewise-smooth or piecewise-constant approximation of a
given continuous initial image. The idea is smiliar to active contours described in the subsec-
tion before. Note that the Mumford - Shah model was already proposed in 1985. Since then
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plenty of papers were published in which the model was studied and analyzed to get prop-
erties of the minimizer, find numerical approximations and discuss its applications in image
segmentation. A lot of different algorithms to find the minimizer of the functional have been
developed aswell. E.g. in [BCC'11] some different approaches and formulations, properties
and numerical algorithms are discussed.

In the original paper of Mumford and Shah ([MS89]) three variational problems are discussed.
We will state now the first one on piecewise smooth functions, which is known in the literature
as the Mumford-Shah functional. As described by Mumford and Shah it consists in computing
a decomposition of the domain € of the initial image z such that

Q=Q,U---UQ,
and
o the image shall vary smoothly and/or slowly within each ;

e the image shall vary discontinuously and/or rapidly across most of the boundary I" be-
tween different ;.

As stated in [MS89] that is the same as computing optimal approximations of a general initial
function z(x) (the initial image) by piecewise smooth functions u(x), i.e. functions u whose
restrictions u; to the subregions €2; are differentiable.

Definition of the minimization problem as stated in [MS89]

Let the regions ; be disjoint connected open subsets of a planar image domain €, each one
with a piecewise smooth boundary and let I" be the union of the part of the boundaries of the
subregions €2; inside €2 so that

Q=QU---UQ,UTI".

Let z be a differentiable function on UQ; that is allowed to be discontinuous across I'. Then
the functional is given by

E(u,T) :MZL(u_z)zdx+/Q_r|yvuu2dx + v, 2.5)

where u and v are positive parameters and |I'| stands for the total length of the boundaries.
By minimizing the functional above we get that
e the first addend penalizes the distance between the new image u and the initial image z,

o the second addend regulates that u is smooth on each €; and

e the third term controls that the boundaries of the subregions are as short as possible.
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Because of those reasons it holds that the smaller the functional (2.5) gets, the better (u,I")
segments the initial image z. Therefore it makes sense to look for the minimizer of that energy
functional to get a segmentation of the original image. Note that at that stage it remains to
show that there exists a minimizer and how it would be possible to calculate or approximate
1t.

As stated in [MS89] the minimizer (u,I") would be a cartoon of the actual image z, where u
may be taken as a new image in which the edges are drawn sharply and precisely, the objects
sourrounded by the edges are drawn smoothly without texture.

Remark. Note that if we restrict E(u,I") to piecewise constant instead of piecewise smooth
functions (i.e. u = const; on each open set Q;), the second term in (2.5) will vanish since
the derivative of constants equals zero. It is also called Potts model in the literature (see e.g.
[SW14]) and will be discussed later.

First variation approach by Mumford and Shah

Since the functional (2.5) is non-convex it is difficult to solve the minimization problem or to
find smooth approximations.

In [MS89] it is shown by analyzing the first variation of the functional that if the set of bound-
aries I is fixed, the functional (2.5) is a positive definite quadratic function in u with a unique
minimum! In that case the minimum will be the function u that solves the elliptic boundary
value problem

Au = pu?(u—7z)
du B (2.6)
nlsg "

on each subregion Q; , where dQ; denotes the boundary of Q; and % a unit normal vector to

0Q;. The second condition tells that % is zero on both sides of I" and on the inside of dQ (the
boundary of the whole domain Q).

Moreover we want to calculate the first variation of E(u,I") with respect to I'. If we assume
that ur is the solution of (2.6), E reduces to a function of I" alone. It is shown that if E (ur,I")
is minimized at [, I must satisfy the variational equation

e(u™)—e(u)+v-curve(T') =0,

where e(u;x) = u?(u(x) — z(x))? 4 || Vu(x)||>. In [MS89] more theoretical results of existence
and regularity of the minimizers can be found. Moreover in the book [MS95] by J.M. Morel
and S. Solimini three detailed chapters about existence and structural properties of the minimal
segmentations for the Mumford-Shah model can be found.

Further published approaches

Since the publishing of the Mumford - Shah functional in 1985 several approaches of approx-
imations and reformulations have been proposed: e.g. approximation by elliptic functionals
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defined on Sobolev spaces by L. Ambrosio and V.M. Tortorelli [AT90]; finite-differences dis-
cretization of the Mumford-Shah functional by A. Chambolle [Cha99]; convex approximation
by X. Cai, R. Chan and T.Zeng in [CCZ]; level set approximations by T. Chan and L. Vese
[VCO02]; ...

Level set formulation proposed by L.Vese and T.Chan

In 1999 L. Vese and T. Chan formulated in their paper An Active Contour Model without
Edges [CV99] a new model for active contours to detect objects in a given image. It uses
techniques of curve evolution, the Mumford-Shah functional restricted to piecewise constant
functions and level set formulation. In [CV99] the model is restricted to greyscale images
and two-phase segmentation (i.e. the calculated image consists only of two constant colors -
inside and outside the object), whereas in [CSV99] it is generalized to vector-valued images
and in [CV00] Chan and Vese propose a multiphase level set model that divides the image
in n piecewise constant regions. In [CVO1] they generalize their previous work to piecewise
smooth functions and describe how the piecewise-smooth Mumford-Shah functional can be
solved by a level set algorithm based on the level set method of Osher and Sethian ([OS88]). I
am going to describe their basic ideas of two-phase and multiphase segmentation formulated
in the papers [CV99] and [CV00].

Two - phase Level Set Model

The active contour model in [CV99] is given by

E(T,c1,c2) = w-length(T') + v - area(insidel)

-I-/ll/ |z—cl|2dx-|-/12/ |z— ¢2)dx,
inside(T) outside(T")

where z is the initial continuous image, I" the unknown set of edges, c¢; and c¢; are constant
unknowns (the two colors of the resulting image) and y > 0,v > 0, 41,4, > 0 are fixed pa-
rameters. As stated in [CV99], in almost all computations it lasts to choose the parameters as
v =0and A; = A,. Therefore we will work with the functional

E(T,cy,¢2) = p-length(T) + A (/ lz—c1[2dx+ \z—c2|2dx). (2.7)
inside(I) outside(T")

That model is a special case of the Mumford-Shah model (2.5) restricted to a two - phase
piecewise constant function u, taking the two unknown values ¢ = average(z) inside I" and
¢y = average(z) outside I

Based on the level set formulation in [OS88], an evolving curve I can be represented by the
zero level set of an appropriate Lipschitz continuous function ¢ : Q — R, i.e. T ={x€ Q:
@ (x) = 0}. We assume here that the unknown set of edges I in the image can be represented
by such a zero level set and we set ¢(x) > 0 for x inside I" and ¢(x) < O for x outside T".
Therefore the functional (2.7) becomes

B@.cr.ex) = p-tengrhlg =0b+a( [ maPdvs [ a-erfar).
>0 0<0

Using the one-dimensional Heaviside function H defined by
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1 x>0
H(x) =
0 x<0,

we can express (as stated in [CV99]) the perimeter surface area (length) by
length{x € Q: ¢(x) =0} = / |\VH(¢)|dx
and the area of the region {x € Q: ¢(x) > 0} by

area{x € Q: ¢(x) > 0} = / |H(¢(x))|dx.

Therefore it holds that

| e=eiPdxdy= [ == iPH(g)dr
$>0 Q

(2.8)
/ |Z—cz|2dxdy:/ lz— a2 (1 —H(9))dx.
¢<0 Q

The functional (2.7) can now be written as its level set formulation
E(p.crex) = [ [VHOW) 42 [ [=eiPHO() + | = eaP(1 ~H(6(x) di.

Keeping ¢ fixed and minimizing the energy E(¢,c,cp) with respect to the constants ¢; and
¢, one can express (as stated in [CV99]) the constant functions by

= fQZ(x) H($(x)) dx e average of z(x) in
C1 (¢) - fQH(¢(x)> dox (th g fZ( ) {¢ Z O})7

_ Joz(x) (1 -H(¢(x))) dx
Jo1—H(¢(x)) dx

Now keeping ¢ and c¢; fixed, by minimizing the energy E(¢,cy,cz) with respect to ¢, it is
possible to calculate the Euler - Lagrange equation for ¢, which is given by

9 Vo
PRI Ce

2.9

(the average of z(x) in {¢ < 0}).

) /l((z(x) —c1)2+(z(x) —cz)z) in Q

and

6(¢9)de
|V¢| n =0 ondQ,

where &(x) denotes the one-dimensional Dirac measure concentrated at 0 (8(x) := %H (x)).
As stated in [CV99] for the calculations we have to consider a slightly regularized version of
the functions H and 8. Further information on that can be found in [CV99] and [BCC™11].
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Multiphase Level Set Model

In [CVO00] they generalize the idea in the sense that the minimization problem is now restricted
to piecewise constant functions u taking (n+ 1) unknown constant values cy,...,c,. They
present the idea and solution for greyscale images (i.e. z : Q@ C R? — R), again based on level
set formulation. Using n disctinct levels {I} <l < --- < 1,}, with [; € R, the level set function
¢ : Q — R partitions the domain € into n 4 1 disjoint open regions

Q= {xe Qi< 9(x) <4},
Qj={reQ:lj<¢(x)<li}, 1<j<n—1
Q,={xeQ:l, < P(x) < +oo}.

As stated in [BCC™11], it holds for a level parameter / € R that

length{xEQ:(b(x)Zl}:/Q|VH(¢(x)—l)|dx

and
area{x € Q: ¢(x) > 1} = /QH((])(x) —)dx.

Therefore the energy is now given by
n
E(ocrrevend) = Y. [ IVHOW =1)|+ [ 809 = co2H(lh —9(x))dx
j=1

n—1
+j_21/glg(X)—CJIZH(¢(X)—11)H(1,-+1—¢(x))dx+/gyg(x)—cnyzH(gb(x)_zn)dx.

Again it is possible to calculate the Euler - Lagrange equations associated with the minimiza-
tion of E(cg,c1,-..,cn, ®). They can be found in [BCC™'11], where also a numerical algorithm
(using gradient descent) is presented for solving those equations.

Visualization

Using a matlab code by Yue Wu (http://www.mathworks.com/matlabcentral/fileexchange/23445-
chan-vese-active-contours-without-edges) who implemented the papers [CV99], [CSV99] and
[CVO00] of Chan and Vese yields figure 2.7, 2.8 and 2.9.
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Figure 2.7: Using the matlab code by Yue Wu, which is based on the papers of Chan - Vese.

Original Image Yechor valued bvo-phase level set approximation
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Figure 2.8: Using the code for two - phase level set approximation for vector - valued images.

Original Image rulkiphiase level setapproximation
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Figure 2.9: Using the matlab code for multiphase level set approximation by Yue Wu.
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2.2.5 Potts model

For some initial image z : @ — R’ on a continuous region Q C R? and ¥ > 0 the minimization
problem of the Potts model is formulated in [SW14] as

u* = argmin E(u) = argmin y-||Vulo + / (u—z)%dx, (2.10)
u u Q

where u : Q C R?> — R’ denotes a piecewise constant function and ||Vu||o the total boundary
length of its partitioning. The energy in (2.10) is basically the piecewise constant energy
model proposed by Mumford and Shah in [MS89] (compare it with the functional stated in
(2.5)). It is named after R. Potts, who introduced in 1952 (see [Pot52]) the jump penalty in a
fully discrete setting in the context of his work on statistical mechanics generalizing the Ising
model.

The second term in (2.10) provides approximation to the original data and the first term takes
care of the regularity of the partitioning. The parameter Y controls the balance between the
two penalties.

In [SW14] a fast strategy for solving the Potts problem for vector-valued images is presented.
For a given discrete n x m image z with values in R’ they consider a discrete domain version
of (2.10) by

. 2
W= argminy-Y Y @up- Ui # iva b + Y |uije— 2kl (2.11)
MeRanXS 171 (a,b)EN l,j,k
where u; ;. denotes the label vector of u at the pixel (i, j), N denotes a neighborhood system
with nonnegative weights @ and the Iverson bracket [-] equals one if the expression in the
bracket is true and zero otherwise.

In a simple case one may use the coordinate unit vectors as neighborhood and set @ uniformly
equal to 1. That corresponds to the jump penalty ||Vu|lo+]||V2ullo which counts the nonzero
entries of the directional difference operators. Applied to a scalar image z in R”™*" that yields
the problem

ut = argmin }/-Z[uw' 75 ui+17j] —+ [uw' 75 ui7j+1] —|—Z|u,~j —Zl‘j‘z. (2.12)
ueRm<n i3 iy

Minimization strategies

The continuous minimization problem (2.10) is nonconvex and as shown in [BVZ14] the dis-
crete problem (2.11) is NP-hard, which means that finding a global minimizer is at the moment
a computationally intractable task.

Since nevertheless the problem is important in image processing lots of efficient approxima-
tive strategies have been developed. We already discussed in Subsection 2.2.4 the level set
method of Chan and Vese. Another approach is the minimal graph cut algorithm (which will
be described in Chapter 3) developed by Boykov, Veksler and Zabih (see [BVZ14]). P. Felzen-
szwaln and D. Huttenlocher combine in their paper Efficient Belief Propagation for Early Vi-
sion the ideas and advantages of graph cuts and belief propagation to a faster algorithm. In
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[HSO8] H. Hirschmueller proposes a noniterative strategy called cost aggregation. The advan-
tage of that algorithm is the lower computational cost but it comes with lower quality results
compared to graphcuts. There do exist already several more approaches for efficient and fast
approximation algorithms, a short overview can be found in [SW14].

In Chapter 4 and 5 I am going to describe and use the algorithm proposed in [SW14]. Their
idea is to reformulate the problem (2.11) to a suitable constrained optimization problem so that
it is possible to apply the ADMM (described in Chapter 4) to obtain computationally tractable
subproblems (called univariate Potts problems). Then they propose an accelerated dynamic
programming strategy so that those subproblems can be solved quickly and exactly.

They claim in [SW14] that the main feature of that algorithm is its efficiency with respect
to runtime and memory consumption. Compared with e.g. the graph cuts method in higher-
dimensional codomains (i.e. vector - valued images) the computational cost is already signif-
icantly lower for rgb images. The cost grows linearly and not exponentially with the number
of channels (i.e. the dimension of the codomain). Because of that it is possible to process
multispectral images with even more than 30 channels in a reasonable time. Moreover the
algorithm needs on their experiments only a few iterations to converge and due the efficient
dynamic program the most time consuming parts of the algorithm can be solved pretty fast.
Moreover it is shown that the proposed algorithm converges, although due the NP - hardness
of the problem it is not possible to show that the limit point is in general a minimizer of the
functional (2.11).
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3 Energy Minimization via Graph Cuts

A common combinatorical way for minimizing energy functionals in image processing (e.g.
functionals as stated in the Sections 2.2.3, 2.2.4 and 2.2.5) are algorithms that use the GRAPH
CuTs method. I will now give an overview of the ideas behind that widespread method.

3.1 Appropriate energy functionals
In [BVZ14] we can find a detailed description of two different algorithms (the optimal swap

move and the optimal expansion move) using Graph Cuts to minimize an energy function of
the form

E(u) = Esmooth(u) +Edata(u)7 (3.1)
where u : Q — R® denotes a label function of a digital image, that is given by pixels p on the
discrete image area Q = {0, 1,...,m—1} x{0,1,...,n—1}. The function u assigns each pixel

p with alabel u), := u(i, j), where (i, j) denotes the location of the pixel p in Q. Furthermore
let P denote the set of all pixels p of the discrete domain Q. Typically Eg,,(u) is given by

Eqaa(u) =Y, Dp(up), (3.2)
peP

where D, measures the disagreement between the new labeling u;, and the observed data z,,
(original labeling of the pixel p). The addend Egpoom () is supposed to measure somehow the
smoothness of # and and should have the form

Esmooth(u): Z Vp,q(”pauq)7 (3.3)
P.gEN

where N denotes the set of interacting pairs of pixels and V), , the interacting penalty between
the pixels p and gq.

In general finding the optimal point of such an energy function is a NP-hard optimization
problem. For the cases that V), ; is given by a metric or a semi-metric, two efficient algorithms
that approximately minimize (3.1) are developed in [BVZ14]. In practice these methods run
in near-linear time.
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3.1.1 The Potts model

There exist several appropriate energy functions in the form of (3.1), one of them is the (de-
scribed in 2.2.5) two dimensional discretized Potts model

ut = argmin )’-Z[uw #* ui+1,]~] + [u,}j #* ui7j+1] +Z|uij —Zij‘z.
ucRmxn i,j i.j

In the notation of (3.2) and (3.3) the terms V), and D), are now given by the metrices

DP(”P) = |”p _Zp|2a

and

Vp(up) =7v- Z [ty 7 ug),

qeN,
where N, denotes the pixel neighbors north and east of p.

In order to understand the ideas behind the Graph Cuts method I will state in 3.2 some basic
definitions and theorems of graph theory.

3.2 Some basic concepts of graph theory

Definition 1 (Directed Graph). A directed graph (or digraph) is a set of nodes connected by
edges, where the edges have a direction associated with them. In formal terms, a digraph is a
pair G = (V,E) of

1. aset V whose elements are called vertices or nodes,
2. aset E of ordered pairs of vertices called arcs, (directed) edges or arrows.

It differs from an undirected graph, where the set E is defined in terms of unordered pairs of
vertices, which are usually called edges.

Definition 2 (Flow network). Let G = (V,E) be a finite directed graph in which every edge
(u,v) € E has a non-negative, real-valued capacity c(u,v). It represents the maximum amount
of flow that can pass through an edge. If (u,v) ¢ E, we assume that c(u,v) = 0. We distinguish
two vertices: a source s and a sink 7.

A flow in a flow network is a real function f: V x V — R with the following three properties
for all nodes u and v:

CAPACITY CONSTRAINTS
flu,v) < efu,v),
i.e. the flow along an edge cannot exceed its capacity.

SKEW SYMMETRY

f(uvv) = _f(va u>7
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Figure 3.1: A flow network with flow (left) and capacity (right)

1.e. the net flow from u to v must be the opposite of the net flow from v to u.

FLOW CONSERVATION

Z f(u,w) =0unless u =soru=t,
weV

i.e. the net flow to a node is zero, except for the source, which produces flow, and the sink,
which consumes flow. Therefore the flow conservation implies

Z flu,v) = Z f(v,z) for each vertex v € V'\ {s,1}.

(u,v)EE (vz)€E

Figure 3.1 is an example of a flow network showing flow (left) and the capacity (right) of each
edge.

3.2.1 Max-Flow Min-Cut Theorem

Let N = (V,E) be a flow network (directed graph) with s and ¢ being the source and the sink
of N.

Definition 3 (Value of flow). The value of flow is defined by

=Y fs0),

where s is the source of N. It represents the amount of flow passing from the source to the
sink.

The MAXIMUM FLOW PROBLEM is to maximize |f], i.e. to route as much flow as possible
from the source s to the sink 7.
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Definition 4 (S-T Cut). An S-T cut C = (S,T) is a partition of the set V of vertices such that
se€ Sandt € T,i.e. the sink and the source, get separated. The cut-set of C is the set

{(u,v)€E : ueSveT},

those edges that get removed and separate the graph. Note that if the edges in the cut-set of C
are removed, the value of flow equals zero (| f|= 0).

Definition 5 (Capacity of an S-T cut). The capacity of an S-T cut is defined by

c(S,T) = Z c(u,v).

(u,v)eSXT

The MINIMUM CUT PROBLEM is the problem of minimizing ¢(S,T) over all S and T, i.e. to
determine S and 7" such that the capacity of the S-T cut is minimal.

Theorem 3.2.1 (Max-Flow Min-Cut Theorem). The value of the maximum flow is equal to
the capacity of the minimum cut.

Remark. The theorem was proven by different people independently in 1956. One proof is
by L.R. Ford and D.R.Fulkerson and can be found in [FD56] .

3.2.2 Application to the optimization problem

Recall that the optimization problem we want to solve is given by

u* = argmin, E(u) = argmin,, Egmooth (%) + Edata(1).

The main idea is to construct an appropriate directed graph such that the minimizer can be
found by finding the minimum cut over that graph. As stated in the duality Theorem 3.2.1
finding the minimum cut is equivalent to finding the maximum flow. Therefore the max-
flow problem and the min-cut problem can be formulated as two primal-dual linear programs.
There are several fast and efficient algorithms for solving the max-flow problem. A compari-
son of some of them can be found in [BK04].

Now it just remains to find an appropriate graph for our energy functional (3.1). As mentioned
before we can find in [BVZ14] two appropriate graphs for solving the optimization problem.
In the following I will describe those two without the detailed proofs, which can be found in
[BVZ14].

3.3 Two different approaches

3.3.1 The optimal a -  swap move

Let P be the set of all pixels of an image, P, = {p € P | u, =} be the subset of the pixels which
are assigned with the same label / (e.g. all pixels with the same color intensity / € {0,...,255})
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Figure 3.2: Example of the graph G4 for a 1D image

and L the set of all different labels /. Given a pair of labels o and 8, a move from a labeling
u to a new labeling u’ is called an o — B swap if P, = P/ for any label [ # ¢, 8. Therefore the
only difference between u and «’ is that some pixels that were labeled « in u are now labeled
B in «’ and the other way round.

Given an input labeling u# and a pair of labels & and S we want to find a labeling u* that
minimizes the energy function E(u) over all labelings within one o - 8 swap of u.

The structure of the appropriate graph G5 = (Vy, Eqp) Will be as follows. The set of vertices
includes two terminals (i.e. the source and the sink) &, 8 and image pixels p which are in the
sets P and Pg. The set of vertices Vg therefore consists of &, and P 5 = Po U Pg.

Each pixel p € &, is connected to the terminals @ and 3 by edges tl‘,x and t,lf , called t-links.
Each pair of pixels p,q C &g that are neighbors is connected by an edge e, ; called n-link

(neighbor link). Therefore the set of edges Eqp consists of the t-links J,c », 5 (tl‘i‘, tg ) and the
n-links U, e 7,5 (ep.q)-
p,q neighbors

Figure 3.2 shows an example of such a graph for an 1D image.

D,(a)+ y Vpglot,ug)  forty,
q¢ 2 o/ neighbor ofp
The weights assigned to the edges are given by ¢ D, () + Y Voq(Biug)  for tﬁ ,
q¢ & qp/\ neighbor ofp
Via(a,B) fore, 4,

where D, (1) measures the distance of the actual label of the pixel p to the labeling / as defined
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in (3.2)(e.g, D,(I) =0 for p € &) and V, ,(«, B) is given by the definition (3.3).

We can now define a natural labeling u¢ corresponding to a cut C on G, B

a ift)eCforpe Py,
uS=3 B ifth eCforpe Pyp,

up forpePp¢ Pyp.
The pixel p € & is assigned with the label o if the cut C seperates p from the terminal o,
similarly with the 8 terminal. If p is not in Py it keeps its initial up,.

Remark. It now can be shown that the following results hold, which implies that we found an
appropriate graph that returns the minimizer for our optimization problem by calculating the
minimum cut of that graph.

Theorem 3.3.1. There is an one to one correspondence between cuts C on G4 and labelings

that are one o - 3 swap from u. Moreover the cost of a cut C on Gyg is |C| = E(u€) plus a
constant.

Corollary 1. The optimal & - B swap from u is u* = u® where C is the minimum cut on Gop-

The o - B swap algorithm

The algorithm for the optimization via the « - B swap is then given by

1. Start with an arbitrary labeling u
2. Set success ;=0

3. For each pair of labels o, C L
Find ' = argmin E (') among ' within one @ - 8 swap of u as described above.
If E(u') < E(u) set u :=u’ and success := 1

4. If success = 1 go to step 2

5. Return u

Remark. Each cycle in the algorithm consists of an iteration for every pair of labels (in a
fixed or random order). The algorithm stops after the first unsuccessful cycle, i.e. if no further
improvement is possible. One cycle in the swap move algorithm takes |L|? iterations. The al-
gorithm has the major advantage that it is guaranteed to terminate in a finite number of cycles.
As stated in [BVZ14] one can prove termination in &'(|P|) cycles. On the other hand the ma-
jor limitation of the method lies in the discrete label space in vector valued images. Since the
number of discrete labels scales exponentially with the dimension s of the codomain, the com-
putational costs grow exponentially in s. For example using a vector valued and just binary
image with s = 30 channels, we have to deal with 230 different label possibilities. Therefore
just one cycle in the algorithm takes |23|? iterations! The resulting immense computational
cost is a big disadvantage of using Graph Cuts on vector valued images.
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3.3.2 The optimal o expansion move

Given a label a, a move from a labeling u to a new labeling u’ is called an @— expansion if
Py C P} and P, C P for any label [ # «, i.e. an or—expansion move allows any set of image
pixels to change their labels to o.

The idea is quite smiliar to the & - f swap and can be found in [BVZ14], therefore I will not
go into details this time. Alike the o - § swap we want to find a labeling «’ that minimizes
the energy function E(u) over all labelings within one or—expansion of u. It is based again
on computing a labeling corresponding to a minimum cut on a graph Gy = (V,Ey). The
structure of the graph G is similar as before and it can be shown that the elementary cuts C
on G, correspond in a natural way to labelings € which are within one & expansion move of
u. That leads to the main results:

Theorem 3.3.2. Let Gy be constructed as in Section 4 of [BVZ14].Then there is a one to one
correspondence between elementary cuts on Gy and labelings within one o-expansion of u.
Moreover the cost of an elementary cut C is |C| = E (u®).

Corollary 2. The optimal a- expansion from u is u* = uC, where C is the minimum cut on G.

The oa-expansion algorithm

The algorithm is the same as in section 3.3.1, expect for step 3.1., where we look for the
minimum within one @-expansion of u.

Remark. Of course there also exist other approaches for finding appropriate graphs. E.g. in
[BTO9] a detailed description of using Graph Cuts on the popular Mumford-Shah Model can
be found.

3.3.3 Optimality properties

As already mentioned it is a NP-hard problem to compute the exact minimum of general
energy functionals of the form (3.1). But as stated in [BVZ14] it is shown that any local
minimum generated by the o — expansion algorithm is within a known factor of the global
optimum depending on V. The factor is given by

V(a,
2¢ = 2 max mc,lxa#ﬁ (@)
p.aeP ming gV (e, B)

Note that this algorithm just works if V is a metric, otherwise the a — B swap algorithm
will be used, which can be applied to a wider class of semimetrices V but does not have any
guaranteed optimality properties. In that case a local minimum can be arbitrarily far from the
global minimum. But it is also shown that a provable good solution can be obtained even for
a semimetric V by approximating it by a simple Potts metric.
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3.4 Graph Cuts and the Potts model

A stated in Section 3.1.1 the interaction penalty V in the Potts model energy is a metric.
Therefore the @ — expansion algorithm gives a solution within a factor of two of the global
minimum, see [BVZ14]. The Potts model energy minimization problem is closely related
to the multiway cut problem, which is a generalization of the standard two-terminal graph
cut problem described in that chapter. In [BVZ14] it is shown that the Potts model energy
minimization problem can be reduced to the multiway cut problem. The global minimum of
the Potts model energy E,, can be computed by finding the minimum cost multiway cut on
an (again) appropriately constructed graph. Moreover it is proven that if it would be possible
to compute the global minimum of E, it would also be possible to solve a certain class of
multiway cut problems that are known to be NP-hard. That implies that minimizing the Potts
model is always NP-hard and also the more general energy functions of the form (3.1).
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4 Energy Minimization via the
Alternating Direction Method of
Multipliers

4.1 Motivation

The alternating direction method of multipliers (ADMM) is an iterative algorithm that solves
convex optimization problems by breaking them into smaller pieces, each of which are then
easier to handle. It has recently found wide application in a number of areas. Some can be
found in [Ess09], [DR15] and [WBAW]. The ADMM was already developed in the 1970s,
with roots in the 1950s. In [BPC*11] one can find a detailed description and background
of the algorithm and an argumentation why the method is well suited to distributed convex
optimization and in particular to large-scale problems arising in statistics, machine learning
and other related areas.

The method is closely related to several optimization algorithms. Two important of them are
the DUAL ASCENT METHOD with dual decomposition and the METHOD OF MULTIPLIERS.
The ADMM combines the advantages of both algorithms. Therefore I will give a brief overview
of those two algorithms and their background. Then I will go into detail of the ADMM and the
possible application to the discretized Potts model including convergence results.

4.2 The dual ascent method

At first I will provide some theoretical basics in convex optimization.

4.2.1 Dual problem

Given an equality-constrained convex optimization problem

(et :b}f (%), 4.1)

where f: R" — Ris convex, A € R"™*" and b € R™, we assume its domain D = {x € R" : Ax =
b} is nonempty and denote the optimal value by x*. The LAGRANGIAN L :R" x R™ — R of
(4.1) 1s defined by

L(x,y) = f(x)+y" (Ax— D).
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The variable y € R is called LAGRANGE MULTIPLIER or dual variable. The LAGRANGE
DUAL FUNCTION g : R"™ — R for the problem (4.1) is given by

g(y) = inf L(x,y).

Remark. For fixed x, the Lagrangian L is affine in y. Since the dual function g is the pointwise
infimum of an affine function, it is always a concave function (even if the original problem
(4.1) is not convex!).

Remark. Note that the dual function g(y) may take the value —co.

Theorem 4.2.1. It holds that
g(y) <&,
for any y € R™. A simple proof can be found in [BV99].

The LAGRANGE DUAL PROBLEM is defined by
max g(y) 42)

and y* denotes the optimal dual point. Since g is always concave, (4.2) is a convex problem
and therefore always has an optimal point.

We know from Theorem 4.2.1 that y* < x* always holds, which is called WEAK DUALITY.
The difference between both optimal points A* := x* — y* > 0 is called DUALITY GAP. In
general A* # 0, but under some additional properties on the objective function f (e.g. Slater’s
condition) STRONG DUALITY holds, i.e. A* = 0. Further details about duality can be found
in [BV99].

We now assume that strong duality holds, therefore we can recover a primal optimal value x*
from a dual optimal point as
x* = argmin L(x,y"),

X

provided that there is only one minimizer of L(x,y*), e.g. if f is strictly convex.

4.2.2 Dual ascent method

The dual ascent method provides x* by solving the dual problem (4.2) iteratively. The iteration
is given by

1= argmin L(x, ")
X 4.3)

V= kg (A p).

In each iteration step we first calculate x*! = argmin L(x*,y), then we update the dual vari-
able via line search. The LINE SEARCH strategy (see e.g. [WS06]) is a numerical method for
finding some local optimum iteratively. In our case we want to maximize the dual function
(because of (4.2)), i.e. we want some y* such that Vg(y*) = 0 holds.

36



Remark. The dual ascent method can be used in some cases when the dual function g is not
differentiable [BPC™11], it is then called DUAL SUBGRADIENT METHOD. In that case the
residual Ax**! — b is not the gradient of g, but the negative of a subgradient (see Definition
6) of —g. Those cases require a different choice of the step length o and it appears that the
convergence is not monotone.

Each line search method computes a search direction s* and then tells with a step length o
how far to move along that direction. One iteration step is given by
R N

The success of a line search method depends on effective choices of the direction and the step
length. Since we want to find the maximum for the dual problem we require that in each
iteration step g(y**!) > g(y*) holds (which can be satisfied with some appropriate choice of
aX). In the dual ascent method we have to assume that g is differentiable. The search direction
s+1is defined as Ax**! — b, which is the gradient of g(y**!). That can be calculated since we
first compute x**'! = argmin L(x*,y) in every step. Thus

X

Ve(y* ™) = Vyinf L(x,y*1)
— Vy L(xk+1,yk+l)

_ Vy (f(xk-H) +y(k+1)T (Axk—H —b))
:Axk—H b

4.4)

holds.
Remark. More about LINE SEARCH methods on dual problems can be found in [ZL96].

As stated in [BPCT 11] it needs several assumptions on ¢* and f such that x* and y* converge
to an optimal (dual) point. Unfortunately the assumptions often do not hold in applications,
therefore the method often is not appropriate.

4.2.3 Dual decomposition

The major benefit of the dual ascent method is that it can lead to a decentralized algorithm.
For example if we can split the objective function f such that

N
flx) = ;fi(xi)

holds (f is seperable), where x = (x1,...,xy) and the variables x; € R" are subvectors of x. We
now can take the suitable partition of the Matrix A = [Ay,...,Ay], such that Ax = ng: 1Aix;.
Therefore the Lagrangian can be rewritten as

(fi(x) +yT Apxj — lyTb) .
N

M=

N
L(x,y) = ;Li(xi,y) =, 1
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The x-minimization step in (4.3) splits now into N seperate problems that can be solved in
parallel. Explicitly the algorithm can now be written as

xf“ := argmin Li(xi,yk)
4 4.5)
yk+l ::yk+ ak(Axk+1 _b)

For each i = 1,...,N the x-minimization step is processed independently. In the dual update
step the Aixf-‘“ are collected to compute the residual Ax**! —b. After the dual variable y**!
is computed it will be distributed again to carry out the N individual x; minimization steps.
Those two steps are called broadcast and gather operations (see [BPC ™ 11]). The main benefit
is that we now have split the problem into lower dimensional problems, that can be solved
with less computational cost.

Remark. That method is now called dual decomposition instead of dual ascent method. Dual
decomposition is based on ideas of the early 1960s and there are several papers that discuss
different approaches. Some references can be found in [BPC*11].

4.3 Method of multipliers

4.3.1 Augmented Lagrangian

Augmented Lagrangian methods are developed to bring robustness to the dual ascent method
and to yield convergence without that strict assumptions on f. The AUGMENTED LAGRANGIAN
for the original problem (4.1) is defined by

Lp(x,y) = f(x) +y" (Ax—b) + (p/2)[|Ax —b[3,

where p > 0 denotes the PENALTY PARAMETER. It is the same as calculating the Lagrangian
of the problem

min f(x) +(p/2)||Ax—b|3,
s.t.Ax=b
what is clearly equivalent to the original problem. The associated dual function is now given
by
gp(y) = inf Lp(x,y).

The major benefit of including the penalty term is that g, can be shown to be differentiable
under much milder conditions on the original problem as before.

4.3.2 Algorithm

The algorithm is very similar to the standard dual ascent method, but it uses the augmented
Lagrangian instead of the usual Lagrangian and p is used as the step length in the line search.
Therefore the algorithm is given by

= argmin Ly (x,y%)
x (4.6)

yk+1 ::yk —i—p(Axk+1 —b)
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and is called METHOD OF MULTIPLIERS for (4.1).

Remark. It is easy to motivate why the penalty parameter p is an appropriate choice for the
step length in the line search. For simplicity we assume here that f is differentiable (which
is not required for the algorithm to work). In the first step in the algorithm x**! minimizes
Ly (x,y~), therefore it holds that

0= Vpr(xk+17yk)

= Vo f () + AT+ p(AXH b)) “.7)
— V, f(H) £ ATy
So by using p as the step length it yields that the iterate (ka’ ka) is always dual feasible (i.e.

k+1 5

y*1is a solution of the dual problem max, g, (y) since Vg, (y**1) = V(1) + ATyk+1 = 0).

4.3.3 Advantages and disadvantages

As already proposed the method converges under rather mild conditions [BPC*11], but that
comes at a cost. When f is separable, the augmented Lagrangian L, is not separable, so
the x-minimization step cannot be carried out separately in parallel for each x; as in (4.5).
Therefore the basic method of multipliers cannot be used with decomposition. We are looking
for an algorithm that combines the convergence properties of the method of multipliers with
the decomposability of dual ascent. That leads to the ADMM.

4.4 ADMM (alternating direction method of multipliers)

As described in [BPCT11] we require in the ADMM that the optimization problem has the
form

Alei??:cf<x) + g(Z), (48)

with primal variables x € R", z € R™ and A € RP*" B € RP*™ and ¢ € R”. Assumptions on f
and g will be discussed in Appendix A. Compared to the general problem (4.1) it is the only
difference that the primal variable x has been split into two parts. The optimal value of the
new problem will be denoted by

p" = inf {f(x) +g(z)| Ax+ Bz = c}.
As in Section 4.3.1 we form the augmented Lagrangian

Lp(x,z,y) = f(x) +8(2) +" (Ax+Bz—c) + (p/2)||Ax + Bz —c]3. (4.9)
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4.4.1 Algorithm
The iterations of the ADMM are given by

= argmin Ly (x,25,y%)
X

= argmin L, (* ! 7,)%) (4.10)
Z

Yl = K 4 p (AL 4 B o),

where p > 0 again is the penalty parameter. The algorithm consists of an x and a z-minimization
step and an update of the dual variable y. As in the method of multipliers the line search for the
dual variable update uses a step length equal to the augmented Lagrangian penalty parameter
p. The main difference to the method of multipliers applied to the new problem (4.8) is that
the primal variable is split into two primal variables x and z, which are not treated jointly, i.e.
they are updated in an alterning/sequential fashion (which gives the method its name). The
algorithm state in ADMM consists of z¥ and y*, i.e. (ZX*1,y**1) is a function of (z£,y*), on
the contrary x* is not part of the state - it is an intermediate result computed from the previous
state (z=1,y*~1). Therefore the roles of x and z are almost symmetric, but not quite.

Scaled Form

The algorithm can be rewritten in a scaled form, which is often more convenient to use. The
idea is to combine the linear and quadratic terms in the augmented Lagrangian and to scale
the dual variable. Let d = L y be the SCALED DUAL VARIABLE and r := Ax+ Bz — ¢ for
simplicity. Then the second part of the augmented Lagrangian (4.9) can easily be transformed
by the equality

Pyi2_P LTE SN ST
yTr+§H”Hz:EHFJFl—)yHﬁ'%Hsz

p 2 P2 1D
= Z)ir+dI3-E )13
Hence we can reformulate the ADMM algorithm (4.10) by
A= argmin (f(x)+§”Ax+sz—c+dk|y§)
Z*1.— argmin (g(z)+ gHAka +Bz—c+dk|]%) (4.12)
z

dk+1 — dk +Axk+] +sz+] —c.

Defining the residual at iteration step k as r* = Ax* + BzX — ¢ it holds that

k
d*=d"+Y 1,
j=1

i.e. the scaled dual variable can be calculated via the running sum of the residuals.
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The algorithm in (4.10) is called UNSCALED FORM and the one in (4.12) the SCALED FORM.
The two algorithms are equivalent, but the notation of the scaled one is shorter and more
convenient to use, therefore we will work with that one. The unscaled form is used when it is
important to emphasize the role of the dual variable or to give an interpration that is based on
the unscaled dual variable.

Remark. There do exist many extensions and variations on the classic ADMM algorithm in
the literature. A standard extension is to use different penalty parameters p* (instead of the
same for each iteration) to improve the convergence in practice or to get less dependent on the
initial choice of the penalty parameter. As stated in [BPCT11] it can be difficult to prove the
convergence of ADMM in those cases, but the fixed-p theory still holds if one assumes that p
becomes fixed after a finite number of iterations.

Another variation is to change the order of updating the variables, to do it in multiple times or
to add an d-update between the x and y-update with half the step length. E.g. one can divide
the primal variable into k blocks/primal variables and update each of them in turn before
performing each dual variable update. In [HL13] a proof for global linear convergence of the
ADMM can be found for k-splitted convex and separable functions.

A detailed proof of convergence of the ADMM with assumptions on the objective functions
can be found in Appendix A (based on the one in [BPCT11]).

4.5 The ADMM applied to the Potts model

We now apply the unscaled form (4.12) of the ADMM to the Potts problem

u* = argmin y- ||Vullo + ||lu—z|5 . (4.13)
u

We will deduce it the same way as described in [SW14], where they consider a four-connected
neighborhood for each pixel and first start with a given greyscale image z € R”*". We now set
the neighborhood weights @ in the discretized Potts model (2.11) uniformly equal to 1. Since
we chose a four-connected neighborhood the jump penalty can be expressed as

IVullo= IViullo+|Vaullo := Y i j # wiv1 ]+ Y [uij # uijr1]-
0 i

To get the Potts problem in the needed form (4.8) for the ADMM, we rewrite it as the bivariate
constrained optimization problem

1 1

min Viulo+y [[Vavllot+s lu— 23+ v —2zl3, 4.14
{u,yeR™1ny—y=0} ’}/H ! HO ')/H 2 HO 2” ||2 2” ||2 ( )

with u,v € R™*",

Remark. Note that we calculate with the ADMM the objective minimum instead of the min-

imal argument u*wanted in (4.13). But it can be shown (see Theorem 4.5.1) that the primal
variables u and v (i.e. the arguments) converge in the algorithm.
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The functional is now splitted in two parts with two primal variables # and v. For simplicity
we define

1
f@):=v|Viullo + EHM—ZH%
and

1
8 =7 [2vlo + 5 v =23

As stated in (4.9) the augmented Lagrangian is now given by

Lp(u,v,y) = f(u) +g(v) + y' (u—v) + gIIM—VIlﬁ- (4.15)

Again p > 0 regulates how strongly the difference between u and v is penalized and the dual
variable y is an (m x n)-dimensional matrix of Lagrange multipliers. Since

yi(u—v)+ —Hu—VHz— —IIM—V+—H2 - _”EH2

holds, the augmented Lagrangian (4.15) can be rewritten as
p i Yy

2 p||27

Ly (u,v,y) = f(u) +8(v)+ —IIM—V+—||2

which is the form we need for the scaled ADMM.

Remark. Note that the variables u,v and y in (4.15) are now matrices in R™*" instead of
vectors as described in (4.9). But since the functions f(u) and g(v) just consist of the discrete
matrix norms ||-||> and ||-||o which can be easily adapted to vector norms by reordering the
entries of the matrix, it is equivalent to the form of the augmented Lagrangian for the ADMM
in (4.9).

4.5.1 Algorithm for the Potts problem
Thus the ADMM for the Potts problem reads

k
k1. - Piiu— k=22
1 1= argmin ( () + 5l (0F = Z)B),

: 4.16
W+ 2)1B). e

lv—(u

p
2

V= ko (R k),

Vil = argmin (g(v) +
14

We now want to simplify the expression for #**! and v**!. To do that we first note that
both iteration steps are of the same form. I will do the transformations for #**!, which are
equivalent to the ones on v and can be adapted easily. We use the general notation

W=y [ Vunllo + (IIM—Z||2+PIIM—(V+p)||z)
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and will do some transformations on the second addend ||u — z||3+p||u— (v + ) |3. For sim-
plicity we set ¢ := v+ %. We can easily calculate that

(=2 +p(u—c)* = (14p)u’ —2u(z+pc) +2° +pc*

_ _zkpeNt (zHpe) 5,
—(1+P)<M 1+p> 1o +z7+pc

holds. Since the argument of the minimum only depends on the first addend, we just use that.
Combining that with the equivalent transformation of v and scaled primal variables yields the
iteration steps

) B
W= argmin — | Vyullo + u— (14 p) ' e+ pvF — )13,
u 1+p
) B
W argmin Vvl £ v (14p) ot 13, 1D
v

VL (T R

We observe that the expressions for ! and v**! are separable into n subproblems of the
form
.2y _
u! = argmin IVhllo + [l = (14 p) ™ (2. +pve; =313,
herm  14p 4.18)
.2y _ '
vii | = argmin IVhllo + [1h—(1+p) ™! (zi,: +pui +57.) 13,
nern  1+p
for j=1,...,nand i = 1,...,m. The fundamental strategy is that these subproblems are uni-

variate Potts problems which can be solved exactly and efficiently using dynamic program-
ming. A detailed description about that can be found in [SW14].

4.5.2 Choosing the parameters p and y

In the algorithm described in [SW14] the penalty parameter p changes with each iteration
(which is a common variation in the ADMM as stated in Remark 4.4.1). The parameter pg is
initialized small and positive and increases during the iteration by a factor 7 > 1. Hence, p is
given by the geometric progression

P =pi=""po.
That strategy ensures that # and v can evolve quite independently at the beginning and will be
close to each other at the end of the iteration. That variation of the standard ADMM is used

because the geometric progression yields satisfactory results while being very fast. When the
difference of u and v falls below some fixed tolerance, the iterations will be stopped.

The other important decision is the choice of the regularization parameter y. Intuitively y can
be interpreted as a scaling parameter. In connection with one-dimensional Potts functionals
different approaches for an appropriate choice of ¥ are reported in the literature. E.g. some
ideas can be found in [DKO1] and [WWLK]. In [SW14] they choose the parameter 7y in their
algorithm empirically.
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Algorithm as stated in [SW14]

INPUT Image z € R™*", parameter 7, initial value py > 0, step size 7 > 1.
OUTPUT Computed result u € R™*" to the Potts problem.
begin
v=zp=po;y=0;
repeat
forj=1:ndo
minimize subproblem (4.18a) to get u. ;
end for
fori=1:mdo
minimize subproblem (4.18b) to get v; .

end for

y=y+pu—v);

p=71-p;
until reached stopping criterion
end

Algorithm 1: ADMM strategy for the Potts problem

Theorem 4.5.1. The algorithm 1 converges in the sense that there exists an u* such that
k

uk — u* and V¢ — u*.
A detailed but very technical proof for the primal variable convergence of the algorithm (4.17),
1.e. of Theorem 4.5.1, can be found in [SW14].

Remark. Note that since the problem (4.13) is a non convex optimization problem and the
functions f(u) and g(v) in (4.9) do not fulfill the needed assumptions to show convergence
of the algorithm (see Appendix A) objective and residual convergence must not always ap-
pear. Nevertheless Theorem 4.5.1 guarantees primal variable convergence which is from main
interest since we are looking for the minimal argument.

4.5.3 Vector-valued images

The proposed method can be extended to vector-valued images z € R™*"** with s > 1, e.g.
color or multispectral images. Taking the general Potts model from (2.11) the data and jump
terms in the ADMM are given by

| —Z||%= Z |Mijk _Zijk|2
i,k

and

IVullo="Y, @up-[tij: 7 ttivajo.]-
(a,b)eN
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The jump penalty cannot be evaluated componentwise, it is declared if two neighboring vec-
tors u; j. and ujy, j1p. are not equal. In the ADMM algorithm the intermediate solutions
u,v and the multipliers y; in (4.17) are now in R”*"*¢_but the Lagrangian multipliers can be
carried out componentwise. As stated in [SW14] the same dynamic program as in the two
dimensional case is used.
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5 Application of the Potts Problem on
Clinical Retinal Images

In that chapter I am going to apply the algorithm described in 4.5, which is proposed in
[SW14], to clinical retinal images. I am using the Pottslab matlab code Version 0.42 from
the website http.//pottslab.de/pottslab-version-0-42/.

The data I am using is provided by the VRC. The VRC stores and analyses millions of images,
mainly from optical coherence tomography (OCT) that are recorded in multi-center clinical
trials in many hundred study sites all over the world. For this master thesis the VRC provided
retinal OCT images and annotations of intraretinal fluid that were performed by medical expert
graders. The images are stored in a dem file as a three dimensional (1024 x 512 x 128) ma-
trix, i.e. the volume data consists of 128 cross-sectional images of one retina each of the size
(1024 x 512). Our goal is to identify intraretinal cystoid fluid, further referred to as “cysts”
in the human retina. I will do presegmentation of the separated 2D greyscale images, which
can be a useful sub-step of a more sophisticated and comprehensive image processing pipeline
which is developed at the VRC in collaboration with the Vienna Research Group for Young
Investigators on computational harmonic analysis of high-dimensional biomedical data.

Remark. To work with smaller data I scaled the images to the size (512 x 512) since the
surroundings do not include necessary information for cyst identification.

5.1 Results

Taking an image containing cysts (e.g. image no. 75 of the volume data) I first processed it
directly with the 2D potts algorithm. The result with chosen parameters ¥ = 0.01, Isotropic
= false and Verbose = true yields the image shown in figure 5.3. For bigger y the vertical
boundaries of the cysts vanish and for smaller ¥ the smoothness gets even worse, see figure
5.4. The processing time was approximately 30 seconds. After trying the potts algorithm on
lots of different features of the image, the best result was achieved by using the multispec-
tral image consisting in the first channel of a Gabor filter (see e.g. [FS98]) applied to the
original image and in the second channel of a smoothed version of the original image (see
figure 5.5). Using the 2D potts algorithm on that multispectral image yields a sufficient result
- the cysts are located mainly correct, boundaries are kept well and the whole cross section
is segmented in reasonable regions. Furthermore separated cysts remain separated in the seg-
mentation (boundaries are preserved). The time for processing the multispectral (512 x 512 x
2) image with the potts algorithm was approximately 60 seconds.
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Figure 5.1: Original image no. 75 of size 512x512.

Figure 5.2: Image no. 75 where the regions we want to identify are manually marked (red) via
the annotations of intraretinal fluid provided by the VRC.
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Figure 5.3: Image no. 75 processed with 2D potts and parameter y = 0.01.

(a) y=0.005 (b) y=0.015

Figure 5.4: Image no. 75 processed with 2D potts and different y parameters.
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(a) Gaborfilter on image 5.1 (b) Smoothingfilter on image 5.1

Figure 5.5: Features used for the multispectral image of size (512x512x2).

The first channel of the multispectral image consists of a Gabor filter applied to the original
image. Gabor filters, named after D. Gabor, are bandpass filters that are used in image process-
ing for feature extraction and texture analysis. A band-pass filter chooses frequencies within
a certain range and rejects those outside that range. The impulse response of the 2D Gabor
filters is created by multiplying an Gaussian kernel function with a sinusoidal plane wave. It
is possible to extract different features of an image by choosing different frequencies and ori-
entations in the Gabor filters. They are directly related to Gabor wavelets. More about Gabor
analysis and its applications can be found in the book of H.G. Feichtinger and T.Strohmer
([FS98]). A Gabor analysis toolbox can be found on the website http.//ltfat.sourceforge.net/.

The smoothed image used for the second feature in the multispectral image is reached again
by minimizing an energy function. In that case the minimizer of the functional

1 2
E(u) = 5 llu—z|| 2 +1Dul|

yields the resulting image. More information about that and the developed matlab algorithm
can be found in my Bachelor thesis [Brel3].
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Figure 5.6: Using 2D potts with parameter ¥ = 0.1 on the multispectral image of size 512 x
512 x 2 consisting of the 2 channels shown in figure 5.5 .

Because of the previous good result by using the multispectral image (consisting of the first
channel with a Gabor filter applied to the original image and the second channel of a smoothed
version of the original image) I use the same idea on other images of the data. Each of the
multispectral images is then processed with the 2D potts algorithm. It led good results on all
128 images of the volume data and I will show here the most important ones. Next to the
original images I will show the image where the regions we want to identify are manually
marked (red) via the annotations of intraretinal fluid provided by the VRC.

Image no. 68 (figure 5.7) is the last image of the data before cysts first appear in the cross
section, the processed image correctly does not localize cysts here. Image no. 69 (figure 5.9)
is the first image where cysts appear - the processed image (figure 5.10) already segments
cysts here too. In image no. 77 (figure 5.11) a big amount of cysts appear and again the
processed image (figure 5.12) localizes it mainly correct and the boundaries are sharp. Image
no.91 is the last image of the cross-sectional data where cysts appear - again it is localized in
the processed image. From image no. 92 (figure 5.15) no more cysts appear in the image data,
the processed image does not show cysts as well.
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Figure 5.7: Bild no. 68

Figure 5.8: Processed image
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(a) Original image (b) Intraretinal fluid manually marked

Figure 5.9: Image no. 69

Figure 5.10: Processed image
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(a) Original image (b) Intraretinal fluid manually marked

Figure 5.11: Image no. 77

Figure 5.12: Processed image
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(a) Original image (b) Intraretinal fluid manually marked

Figure 5.13: Image no. 91

Figure 5.14: Processed image
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Figure 5.15: Bild no. 92

Figure 5.16: Processed image
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A Convergence Proof of the ADMM

There do exist many convergence results of the ADMM that are already discussed in the
literature. Here, a basic and general convergence proof based on the one in [BPC*11] will be
stated. In that proof we need some assumptions on the splitted objective functions f, g and
the unaugmented Lagrangion Ly.

Assumption 1. The functions f : R” — RU{+} and g : R” — RU {+ec} are closed, proper
and convex.

That is equivalent to claiming that the epigraphs of f and g are closed nonempty convex sets.
It is important to note that the assumption allows f and g to be nondifferentiable and to assume
the value +-co.

Assumption 2. The unaugmented Lagrangian L has a saddle point, i.e. there exist (x*,z*,y*) €
R"™ x R™ x R? (not necessarily unique) such that

L()(X*?Z*:y> < LO(X*7Z*7y*) < Lo(x,z,y*)
holds for all x € R",z € R™,y € R”.

Remark. With those two assumptions we can already follow some important facts. With as-
sumption 1 we get that Lo(x*,z*,y") is finite for any saddle point. Combined with assumption
2 that implies that (x*,z") is primal optimal and y* is dual optimal. Moreover strong duality
holds, i.e. the primal and dual problems are equal.

Note that we do not need any explicit assumptions on A, B or ¢ of the equality constraint. The
matrices A and B are not required to have full rank.

Theorem A.0.1. Under the assumptions 1 and 2 the iterates of the ADMM stated in (4.16)
satisfy

1. Residual convergence
¥ := (Ax* + Bz — ¢) — 0 as k — oo, i.e. the iterates approach primal feasibility.

2. Objective convergence
pki= (oK) +g(*) — p* as k — oo, where p* := inf{f(x) +g(z)|Ax+ Bz =c}. Le. the
objective function of the iterates approaches the optimal value.

Remark. Note that under that conditions the primal variables x* and z* in (4.12) do not nec-
essarily converge to (primal) optimal values. On the other hand in [SW14] it is shown that
the algorithm applied to the Potts model yields primal variable convergence (see Theorem
4.5.1), but the functions do not fulfill the assumptions 1 and 2 and therefore neither residual
nor objective convergence must appear.
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A.1 Proof of Theorem A.0.1

Let (x*,z*,y*) be a saddle point for the unaugmented Lagrangian Ly = f(x) 4+ g(y) +y' (Ax+
Bz — ¢) and define

1
k k 2 k 2
14 ZEH)’ =y la+plB(Z" =23

The proof is based on three key inequalities, which will be stated first and proved afterwards
using basic results from convex analysis.

Lemma 1. Ir holds that
VR <vE— p AT E—p BT =25,

This states that V¥ decreases in each iteration by an amount that depends on the norm of the
residual and the change in z. Therefore it holds that vk < v for every k and because of that
y* and Bz* are bounded. By iterating the inequality we get that

p Y NP E+HIBE T =253 < V7,
k=0
which implies our wanted result that /X — 0 and B(z**! — z£) — 0 as k — co. Therefore the

residual convergence stated in Theorem A.0.1 holds.

Lemma 2. It holds that
pk+1 _p* < _<yk+l>Trk+1 _p<B(Zk+l _Zk))T<_rk+l —|—B(Zk+1 —Z*))-

The righthand side converges to zero as k — oo, because B(z*T! —z*) is bounded and we
already saw that 7**! — 0 and B(z8*! — zK) — 0 for k — oo.

Lemma 3. Ir holds that
P _pk+1 < y*TrkJrl'

Here again the righthand side goes to zero since 7! — 0 for k — co. Thus it follows from
Lemma 2 and Lemma 3 that limy_... p¥ = p* holds, i.e. the objective convergence (stated in

Theorem A.0.1) is shown.

Proof of Lemma 3. As assumed in assumption 2 (x*,z*,y*) is a saddle point for Ly. So it
holds that
Lo(x",2",y") < Lo(x* 1,21 y").

Using the primal feasibility Ax* + Bz* = ¢ we get the identity
Lo(x*,2",y") = f(x*) +8(z") +¥" (Ax" +BZ" —¢) = f(x") + (") = p".

It follows immediatly that

p* Spk+1 +y*Trk+l

holds, where p*t1 := f(xXkt1) +g(ZF1). -
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Proof of Lemma 2. In that proof we will need some basic theory about subdifferentials. There-
fore I will provide first some important facts (without proofs). The proofs and more informa-
tion about subdifferentials can be found in [Roc66], [BV08] and [Bal10].

Definition 6. Subdifferential
Let f: R" — (—o0,+o00] be a convex function. The essential domain of the function f is given
by domf =: {x € R": f(x) < +o0}. A vector g € R" is called a subgradient of f at the point
X0 if

f(x)> flxo)+ g7 (x—x9) VxeR"
The SUBDIFFERENTIAL df(xp) is then given by the set of all subgradients of f in xp. A
function f is called subdifferentiable at x if there exists at least one subgradient at x. The
function is called subdifferentiable if it is subdifferentiable at all x € domf. Note that if
xo € R" domf, then f(xg) = oo, s0 df(x9) = 0.

Remark. The subdifferential d f(x) is always a closed convex set, even if f is not convex.
This follows from the fact that it is the intersection of an infinite set of halfspaces

If(x)= () {glf(x) > flxo) +g" (x—x0)}.

xedomf

Theorem A.1.1. If f is convex and x € int domf then d f(x) is nonempty and bounded.

Theorem A.1.2. A convex function f is differentiable at xo € int domf if and only if the
subdifferential df(xqg) consists of only one point, which is the derivative at xq (i.e.d f(xg) =

{Vf(x0)})-

Remark. Therefore if f is convex and differentiable, its gradient at xq is a subgradient. But a
subgradient can exist even if f is not differentiable at xg.

Example. Let f(x) = |x|. For xp # 0 the subgradient is unique: df(xo) = {+1} for xo > 0
and df(xg) = {—1} for xo < 0. Therefore it is differentiable in those points. At xop = 0 the
subdifferential is defined by the inequality |x|> g7 x for all x, which is satisfied if and only if
g € [—1,1]. Therefore we get df(0) = [—1,1] and so f is not differentiable in 0.

Theorem A.1.3. A point x* is a minimizer of a convex function f if and only if f is subdif-
ferentiable at x*and 0 € df(x*), i.e. g =0 is a subgradient of f at x*. This follows directly
because in that case f(x) > f(x*) for all x € domf. If f is differentiable at x* the condition
reduces to V f(x*) = 0.

Corollary 3. It holds that
1. d(af)(x) = a(df(x)) for o = 0;
2. df(x) =df1(x)+--+dfm(x) if f = f1+... fm, where fi,..., [ are convex functions;
3. oh(x) = AT f(Ax+b) if h(x) = f(Ax+Db) and f is convex.
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Theorem A.1.4. Moreau-Rockafeller
Let f,g: R" — (—oo,+o00| be convex functions. Then

df(x0) +dg(xo) C I(f +8)(x0)
holds for every xo € R". If int domf|Jdom g # 0 it also holds that

d(f+8)(x0) C df(xo)+ dg(xo)

for every xo € R".

Remark. As stated in [BPC"11] f and g are subdifferentiable, because we know from as-
sumption 1 that they are closed, proper and convex. The augmented Lagrangian L, is the sum
of subdifferentiable and differentiable functions, therefore it is subdifferentiable too.

By definition x**! minimizes Ly (x,7,y¥). Combining the optimality condition in Theorem

A.1.3 with the calculus rules in Corollary 3 and the result about differentiability in Theorem
A.1.2, we get

0€ 8Ly (!, 25,5) = 8 () + AT + pAT (AP + B —0).

k1 _ prk+1 the equation can be rearranged as

Since y* ==y
0¢e 5f(xk+1) +AT(yk+1 _pB<Zk+1 —Zk))-

Using again Theorem A.1.3, this implies that x**! minimizes
f(xk+1) + (yk+1 _pB<Zk+1 —zk))Ax.

k+1

One can show with a similar argument that z*! minimizes g(z) + y*+"7 Bz. It follows imme-

diatly that
f(karl) + (yk+1 _pB<Zk+1 _Zk))TAkarl < f(x*) + (yk+l —pB(Zk+l _Zk))TAx*

and
g(zk+l)+y(k+l)TBZk+l Sg(z*)—i—y(kH)TBZ*.

Adding those two inequalities we receive
pk+1 —pt< y(kH)TA(x* _xk+1) —I—y(kH)TB(z* _Zk+1) —pB(zk+1 —zk)TA(x* —ka),
Using Ax* + Bz* = c, it can be rewritten to

pk—H _p* < _y(k+1)Trk+1 _p<B(Zk+1 _Zk))T<_rk+1 +B(Zk+1 —Z*))-
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Proof of Lemma 1. Adding the inequalities of Lemma 2 and 3 and multiplying by 2 we get
that

20/ =y —2p (B =) 1 2p (B =) (B(ZH —2)) <0. (A

To prove the wanted inequality we have to do some technical transformations on (A.1). First
we just rewrite the first term 2(y¥*! — y*)T /A1 Since y*+! = yk + prA+1 we receive

204 =)+ 2p 4B,
substituting A1 = ll)(ykJrl —y*) and splitting the second term in two addends, it yields

2 k k k 1 k+1 k12 k+112
E(y -y H ! —y )+E||y Y5+ 5

Treating just the first two terms and using the identity y*T1 — y& = (y¥F1 —y*) — (3K —y*) in
the second addend we get

=y O =) H I =13

DO =) G =) = OF =) O =)

=M =0 =)+ O )]

[OF =)+ O =y =) + O =)

=y =y 13- =113

Therefore the inequality (A.1) can be rewritten as

1 * * *
l—)(Hyk“—y =1 =y*[13) +plI* T E—20 (B =) ¥ 4 2p(B(Z! = 2)T (B! %)) <.
We now rewrite the last three terms
P||7’k+l ||%_2P(B(Zk+1 —Zk))T}"k—H +2p(B(Zk+l —Zk))T(B(Zk+l _Z*))~ (A2)
Completing the square yields to
pllF T =B =) 3—p| BT = ) F+20(BET - )T (B — 7).
Using now the identity (X! —z*) = (5! — ) 4 (ZF — z*) leads to
pl|P* ! =B = ) F+p BT = )5 +20(BET - )T (B —2Y).

Splitting the last term and using the identity (zX+! —zK) = (51 — 2*) — (zF — z*) we finally
receive for the last three terms (A.2)

Pl = BEH =) B+ (IBEH — ) BB~ )I3).
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Therefore the inequality (A.1) can be rewritten as

Lok * k k k k k k)12
l—)(Hy Ty B =y 1)+ A =BE T =3+ (IBE ! =23 1B( ~29)]3) <0,
which is equivalent to
To show the wanted inequality
VRS VE—p | Fp B2 - 23
we have to check if the middle term of the square
plIrt =B = 3= plIF 3 —2pr VT (BT =) +p|BEH - 2|13

is negative. Recall from the proof of Lemma 2 that z**! minimizes g(z) + y*+DT Bz and

similarly z¥ minimizes g(z) + y*” Bz. Therefore we can sum up the two inequalities
y y
(1) YHEDT gl o () YT gk

and
g(zk)+ykTsz Sg(zk+1)+ykTsz+l

to get that
(yk-i-l —yk)T(B(Zk—H —Zk)) < 0.

Using that y**1 — y* = pr5*1 yields the desired result
pr(k+1)T(B(Zk+1 _ Zk)) <0.
Therefore we can follow from (A.3) that

VR VR p B pl B2 3

holds. 0
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