
D I S S E R T A T I O N

Titel der Dissertation

Supporting Software Architecture Documentation and
Evolution

Semi-automated Architectural Component Model Abstraction, Pattern
Identifaction, and Consistency Managment During Software Evolution.

verfasst von

Dipl.-Ing. Thomas Haitzer

angestrebter akademischer Grad

Doktor der technischen Wissenschaften (Dr. techn.)

Wien, 2016

Studienkennzahl lt. Studienblatt: A 786 880
Dissertationsgebiet lt. Studienblatt: Informatik
Betreuer: Univ.-Prof. Dr. Uwe Zdun

Declaration of Authorship

I, Thomas Haitzer, declare that this thesis with the title, “Supporting Software Architecture Doc-
umentation and Evolution” and the work presented in it are my own. I confirm that:

• This work was done wholly or mainly while in candidature for a research degree at this
University.

• Where any part of this thesis has previously been submitted for a degree or any other quali-
fication at this University or any other institution, this has been clearly stated.

• Where I have consulted the published work of others, this is always clearly attributed.

• Where I have quoted from the work of others, the source is always given. With the exception
of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have made clear
exactly what was done by others and what I have contributed myself.

Signed:

Date:

i

Abstract

Every software has an architecture. A number of approaches propose to document this architec-
ture from different perspectives using different views. A commonly used view is the architectural
component view, which shows a system’s overall structure and abstracts away the low-level details.
A central problem of all architectural views, including component views, is that the architecture
and implementation of a software system can drift apart as software systems evolve, often leading
to architectural knowledge evaporation. A related problem is the erosion of architectural knowl-
edge over time. Both problems can lead to inconsistent, outdated, or completely lost architectural
knowledge.

A number of approaches have been proposed to automatically reconstruct architectural views from
the source code, in some cases even including the detection of higher-level abstractions such as
design patterns. However, the precision and recall of such approaches is still limited, and they are
not designed to be continuously used in the software development process, but rather to reconstruct
a view at a certain point in time. That is, the reconstructed architecture is likely to suffer from
similar architectural knowledge evaporation problems in the future.

In this thesis, we provide evidence that component diagrams are beneficial to architecture un-
derstanding. Based on these findings, we then introduce a semi-automatic approach for creating
architectural component views based on architecture abstraction specifications that allows auto-
matic consistency checking during a system’s evolution and thus reduces the risk of architectural
drift and erosion. Our approach also supports the identification and documentation of architec-
tural pattern instances in those views. In contrast to the aforementioned approaches, our approach
explicitly considers the evolution of the documented system and actively supports this evolution
by providing navigable documentation and consistency checking between the involved artifacts.
It does not only focus on a limited set of abstractions, like certain design patterns, but can also
support the identification and documentation of higher-level architectural patterns.

The evolution of software is a complex process that consists of multiple tasks that have many
interdependencies. In large systems it usually involves multiple development teams that might be
located in different time zones or countries to work on the same system together. In such a situation
managing the order of these tasks or evolution steps and their distribution on the different teams
becomes challenging. Our approach also takes the architectural decision making during evolution
into account and aids the complex task of actually evolving a software system by letting the
architects define multiple, interdependent implementation tasks and automatically generate plans
for performing the implementation tasks that satisfy all dependencies and constraints.

iii

Zusammenfassung

Jedes Programm hat eine Architektur. Einige Ansätze verwenden zur Dokumentation dieser Soft-
warearchitektur verschiedene Perspektiven, die in mehreren Sichten festgehalten werden. Eine oft
verwendete Sicht sind Diagramme, die die Komponenten der Architektur und deren Verbindungen
zeigen. Ein wichtiges Problem aller dieser Sichten, die Architekturkomponenten zeigen, ist, dass
sich die dokumentierte Architektur und die Implementierung während der Evolution des Systems
auseinander bewegen können. Dies führt oft zum Verlust von Architekturwissen. Ein verwandtes
Problem ist die Erosion von Architekturwissen im Lauf der Zeit. Beide Probleme können zu inkon-
sistentem, obsoletem oder vollständig verlorenem Architekturwissen führen.

Einige Ansätze versuchen, Architektursichten automatisch aus dem Quellcode wiederherzustellen.
Manche dieser Ansätze versuchen auch, Artefakte wie Entwurfsmuster, die auf einem höheren
Abstraktionsniveau liegen, wiederherzustellen. Allerdings sind diese Ansätze limitiert im Bezug
auf Präzision und Wiedererkennung von Entwurfsmustern und sind meist nicht dazu gedacht, den
Software Prozess fortlaufend zu unterstützen, sondern zu einem Zeitpunkt eine Architektursicht
wiederherzustellen. Sie verhindern nicht, dass eine wiederhergestellte Architektur und der Quell-
code in der weiteren Entwicklung wieder auseinander driften.

In dieser Arbeit zeigen wir, dass Komponentendiagramme zum besseren Verständnis von Soft-
warearchitektur beitragen. Basierend auf diesen Erkenntnissen stellen wir einen semi-automatischen
Ansatz zur Erstellung von Komponentensichten vor, der die Gefahr für den Verlust von Architek-
turwissen reduziert, in dem er während der Evolution eines Systems die Artefakte automatisch auf
Konsistenz prüft. Unser Ansatz unterstützt auch die Identifikation und Dokumentation von Ar-
chitekturmustern in den Komponentensichten. Im Gegensatz zu den erwähnten Ansätzen berück-
sichtigt unser Ansatz die Software Evolution und unterstützt den Softwarearchitekten während der
Evolution, in dem er navigierbare Dokumentation zur Verfügung stellt und die Konsistenz der in-
volvierten Artefakte prüft. Des Weiteren beschränkt sich unser Ansatz nicht auf fixe Abstraktionen
wie einige, bestimmte Entwurfsmuster, sondern unterstützt die Identifikation und Dokumentation
von Architekturmustern, die sich auf einem höheren Abstraktionsniveau befinden.

Die Evolution von Software ist ein komplexer Prozess, der aus vielen einzelnen Aufgaben besteht,
die voneinander abhängig sein können. Bei großen Systemen müssen für die Evolution oft mehrere
Entwicklerteams zusammenarbeiten, die eventuell über mehrere Länder und Zeitzonen verstreut
sind. In solchen Szenarien ist die Koordination der einzelnen Aufgaben und der Reihenfolge ihrer
Bearbeitung eine große Herausforderung. Unser Ansatz berücksichtigt auch die dokumentierten
Entwurfsentscheidungen und hilft bei der komplexen Aufgabe, die die Weiterentwicklung (Evolu-
tion) eines Systems darstellt, indem er es erlaubt, die einzelnen Aufgaben und ihre Abhängigkeiten
zu definieren und dann automatisch Pläne für die Abarbeitung der Aufgaben generiert, die die
Abhängigkeiten und Einschränkungen unter den einzelnen Aufgaben berücksichtigen.

v

Acknowledgements

First of all, I would like to thank my advisor Prof. Uwe Zdun for his valuable input and guidance
throughout the dissertation. Without his patience and advice this thesis would not have been
possible. To my dear Sabrina I would like to say thank you for your listening ear and moral
support when I needed it. Without you, this thesis would have never been completed. Elena
Navarro and Srdjan Stevanetic, my co-authors, it was an honor working with you. The results of
our cooperation play a substantial role in this dissertation. I want to thank all my co-workers for
the fruitful discussions, advice, and moral support, especially Gerhard, Patrick and Simon, it was
a pleasure sharing our cosy office. A big thank you goes to my family for supporting me during
my studies in any way they could.

vii

List of Publications

This doctoral dissertation is mainly based on research work which has been either already published
in scientific workshops, conferences, and journals or submitted to a research venue (currently under
review). In particular, content of the following publications has been used in this thesis:

• Thomas Haitzer and Uwe Zdun. “DSL-based Support for Semi-automated Architectural
Component Model Abstraction Throughout the Software Lifecycle.” In: Proceedings of the
8th International ACM SIGSOFT Conference on Quality of Software Architectures. QoSA
’12. Bertinoro, Italy: ACM, 2012, pp. 61–70. isbn: 978-1-4503-1346-9. doi: 10.1145/

2304696.2304709

• Thomas Haitzer and Uwe Zdun. “Controlled Experiment on the Supportive Effect of Archi-
tectural Component Diagrams for Design Understanding of Novice Architects.” English. In:
Software Architecture. Ed. by Khalil Drira. Vol. 7957. Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2013, pp. 54–71. isbn: 978-3-642-39030-2. doi: 10.1007/978-

3-642-39031-9_6

• Thomas Haitzer and Uwe Zdun. “Semi-automated architectural abstraction specifications
for supporting software evolution.” In: Sci. Comput. Program. 90 [Sept. 2014], pp. 135–160.
issn: 01676423. doi: 10.1016/j.scico.2013.10.004

• Srdjan Stevanetic et al. “Supporting Software Evolution by Integrating DSL-based Archi-
tectural Abstraction and Understandability Related Metrics.” In: Proceedings of the 2014
European Conference on Software Architecture Workshops. ECSAW ’14. Vienna, Austria:
ACM, 2014, 19:1–19:8. isbn: 978-1-4503-2778-7. doi: 10.1145/2642803.2642822

• Thomas Haitzer and Uwe Zdun. “Semi-automatic Architectural Pattern Identification and
Documentation Using Architectural Primitives.” In: J. Syst. Softw. 102.C [Apr. 2015],
pp. 35–57. issn: 0164-1212. doi: 10.1016/j.jss.2014.12.042

• Thomas Haitzer et al. “Reconciling software architecture and source code in support of soft-
ware evolution.” submitted. Oct. 2015

• Thomas Haitzer et al. “Architecting for Decision Making About Code Evolution.” In: Pro-
ceedings of the 2015 European Conference on Software Architecture Workshops. ECSAW
’15. Dubrovnik, Cavtat, Croatia: ACM, 2015, 52:1–52:7. isbn: 978-1-4503-3393-1. doi:
10.1145/2797433.2797487. url: http://doi.acm.org/10.1145/2797433.2797487

viii

http://dx.doi.org/10.1145/2304696.2304709
http://dx.doi.org/10.1145/2304696.2304709
http://dx.doi.org/10.1007/978-3-642-39031-9_6
http://dx.doi.org/10.1007/978-3-642-39031-9_6
http://dx.doi.org/10.1016/j.scico.2013.10.004
http://dx.doi.org/10.1145/2642803.2642822
http://dx.doi.org/10.1016/j.jss.2014.12.042
http://dx.doi.org/10.1145/2797433.2797487
http://doi.acm.org/10.1145/2797433.2797487

Vita

Thomas Haitzer is a PhD student at the Research Group Software Architecture (SWA), Faculty
of Computer Science, University of Vienna since 2010. Before that, he completed his Master in
Software Engineering and Internet Computing at the Vienna University of Technology in 2010. His
research interests include software architectures, architecture evolution, architecture documenta-
tion, software patterns, and model-driven development.

ix

Contents

Declaration of Authorship i

Abstract iii

Zusammenfassung v

Acknowledgements vii

List of Publications viii

Vita ix

Contents ix

List of Figures xvii

List of Tables xxi

Abbreviations xxiii

I Foundations and Research Overview 1

1 Introduction 3
1.1 Key Concepts and Terminology . 5

1.1.1 Software Architecture Documentation . 5
1.1.2 Software Architecture Recovery . 6
1.1.3 Design Pattern and Architectural Pattern 6
1.1.4 Domain Specific Language . 6
1.1.5 Architectural Design Decision (ADD) . 7

2 Problem Analysis and Research Approach 9
2.1 Problem Statement . 9
2.2 Research Methods . 12

2.2.1 Design Science Research . 13
2.2.2 Case Study . 13
2.2.3 Controlled Experiment . 14

3 State of the Art 15

xi

Contents xii

3.1 Approaches Focusing on Software Architecture Reconstruction 15
3.1.1 Software Architecture Reconstruction Approaches Based on Automatic Clus-

tering . 15
3.1.2 Model-based Approaches for Creating Architecture Abstractions and Views 17
3.1.3 Hybrid and Other Approaches . 18

3.2 Identification and Documentation of Patterns . 19
3.2.1 Approaches Based on Architectural Patterns 21
3.2.2 Approaches Based on Design Patterns . 22

3.2.2.1 Approaches Based on Logic Oriented Programming / Formal Meth-
ods . 22

3.2.2.2 Graph-based Approaches . 23
3.2.2.3 Miscellaneous Design Pattern Identification Approaches 24

3.3 Software Architecture Evolution . 26
3.3.1 Techniques for Evolving Architectures . 26
3.3.2 Managing Architectural Knowledge . 29
3.3.3 Approaches That Focus on Traceability and/or Change Impact Analysis . . 30

3.4 Understandability of Software Architecture Documentation 31
3.5 Empirical Studies Researching Software Architecture and Design Understanding . 32

3.5.1 Empirical Studies Related to Architecture Design 32
3.5.2 Empirical Studies Focusing on Other Aspects of Components 33
3.5.3 Studies and Approaches on Design Understanding 34
3.5.4 Studies Focusing on UML Diagram Understandability 34
3.5.5 Studies Focusing on Traceability Links . 36

II Supporting the Architect During Evolution: Semi-automated Architec-
tural Component Model Abstraction and Pattern Identifaction 37

4 Controlled Experiment on the Supportive Effect of Architectural Component
Diagrams for Design Understanding of Novice Architects 39
4.1 Introduction . 39
4.2 Experiment Description . 41

4.2.1 Goal and Hypotheses . 41
4.2.2 Parameters and Variables . 43
4.2.3 Experiment Design . 44
4.2.4 Execution . 51

4.3 Analysis . 52
4.3.1 Descriptive Statistics . 52
4.3.2 Data Set Reduction . 53
4.3.3 Hypotheses Testing . 54

4.4 Discussion of the Post-study Questions . 56
4.5 Validity Evaluation . 58
4.6 Conclusions . 60

5 Semi-automated Architectural Abstraction Specifications for Supporting Soft-
ware Evolution 63
5.1 Introduction . 63
5.2 Research Problem . 65

Contents xiii

5.3 Approach Overview . 67
5.4 Domain Specific Language for Specifying Architectural Abstractions 69

5.4.1 Illustrative Example . 71
5.4.2 Automatic Generation of Traceability Links 71
5.4.3 Consistency Checking During Model Transformation 74

5.5 Evaluation . 76
5.5.1 Detailed Cases of Architectural Abstraction Evolution 76

5.5.1.1 Case 1: Apache CXF . 78
5.5.1.2 Case 2: Frag . 80
5.5.1.3 Case 3: Cobertura . 83
5.5.1.4 Case 4: Hibernate . 85
5.5.1.5 Case 5: Freecol . 86

5.5.2 Performance Evaluation . 89
5.6 Discussion . 90

5.6.1 Lessons Learned . 90
5.6.2 Limitations and Open Issues . 92

5.7 Conclusion . 93

6 Semi-automatic Architectural Pattern Identification and Documentation Using
Architectural Primitives 95
6.1 Introduction . 95
6.2 Background: Patterns and Architectural Primitives 99
6.3 Approach Overview . 100
6.4 Detailed Description of the Approach . 102

6.4.1 Pattern Catalog . 102
6.4.2 Architecture Abstraction Specification Language 104
6.4.3 Pattern Instance Documentation Tool . 105
6.4.4 Pattern Instances . 108

6.5 Case Studies . 109
6.5.1 Case Study: FreeCol . 109
6.5.2 Case Study: Frag . 113
6.5.3 Case Study: Apache CXF . 116

6.6 Performance Evaluation of the Pattern Instance Documentation Tool 119
6.7 Discussion . 120

6.7.1 Lessons Learned From the Case Studies . 120
6.7.2 Threats to Validity . 124

6.8 Conclusion . 126

7 Supporting Software Evolution by Integrating DSL-based Architectural Ab-
straction and Understandability Related Metrics 129
7.1 Introduction . 129
7.2 Integrated Approach Overview . 130
7.3 Integrated Approach Details . 132

7.3.1 Understandability Related Metrics . 132
7.3.2 Architecture Abstraction Approach and Metrics Integration 136

7.4 Case Study . 137
7.5 Conclusions and Future Work . 138

Contents xiv

III Consistency Managment During Software Evolution 139

8 Reconciling Software Architecture and Source Code in Support of Software
Evolution 141
8.1 Introduction . 141
8.2 Our approach: Code and Software Architecture Evolution 143
8.3 Approach Details . 146
8.4 Case Studies . 147

8.4.1 Case Study 1: Evolving From Apache CXF 2.6 to Apache CXF 2.7 148
8.4.2 Case Study 2: Apache CXF 2.7 to Apache CXF 3.0 152
8.4.3 Case Study 3: Soomla Store Version 3.2 to 3.3 156
8.4.4 Case Study 4: Soomla v3.3 Implementation of a New Custom Payment

Provider for Payment via Carrier . 159
8.4.5 Discussion . 161

8.5 Conclusions and Future Work . 162

9 Architecting for Decision Making About Code Evolution 163
9.1 Introduction . 163
9.2 Architecting for Code Evolution . 164

9.2.1 DSL for Specifying the Code Evolution . 166
9.2.2 Generating Decision Alternatives for Evolution 168

9.3 Case Study . 170
9.4 Conclusion . 171

IV Conclusions 175

10 Conclusions and Future Work 177
10.1 Conclusions & Limitations . 177
10.2 Future Work . 179

Appendices 183

A Controlled Experiment on the Supportive Effect of Architectural Component
Diagrams for Design Understanding of Novice Architects 183

B Xtext Grammar of the Architecture Abstraction DSL 187

C Xtext Grammar of the Architecture Abstraction DSL (Modified Variant for the
Identification of Architecture Patterns Based on Primivites) 191

D Reconciling Software Architecture and Source Code in Support of Software
Evolution 195
D.1 Complete Specification of QVT-operational Transformations 195
D.2 Exemplary Launch Configuration for Executing QVT-operational Transformations 199
D.3 Documented Architectural Decisions for the Soomla Case Studies 200

D.3.1 Case Study 3 . 200

Contents xv

D.3.2 Case Study 4 . 201

Bibliography 203

List of Figures

3.1 Evolution Styles and AK: guiding the evolution . 27

4.1 Freecol architecture overview . 47
4.2 View showing the architecture of the FreeCol server 47
4.3 View showing the architecture of the FreeCol client 48
4.4 View showing the architecture of the FreeCol meta-server 48
4.5 Detail view for the FreeCol Server showing the server-side Control component . . . 49
4.6 Detail view: FreeCol Commons . 49
4.7 Experience of the Participants . 52
4.8 Means of control and experiment group for the seven questions 53

5.1 Generating architectural component views from source code and comparing different
model versions . 68

5.2 Visualization of the Frag (v0.91) example for an architectural component view gen-
erated from an architectural abstraction specification. Components that were newly
introduced between Frag (v0.6) and Frag(v0.9) are colored in grey 73

5.3 Exemplary reports of inconsistencies . 75
5.4 Apache CXF (v2.4.3) architecture overview [Apa] 78
5.5 Detail view for Apache CXF (v2.4.3) transports . 79
5.6 Simplified architecture overview of Cobertura 1.1 83
5.7 Simplified architecture overview of the Hibernate 4.1.10 85
5.8 Simplified architecture overview of the FreeCol 0.10.7 87

6.1 Overview of the approach . 101
6.2 Excerpt of the Ecore model for the Pattern Catalog DSL 102
6.3 Example showing the MVC pattern in the Pattern Catalog DSL 103
6.4 Example for an architectural abstraction for the ClientController component of the

FreeCol system [The11] as well as an example for an architectural abstraction for
the Interpreter component of the Apache CXF [Apa] case study (Section 6.5.3). . 105

6.5 Example instance of the MVC-pattern for the program “FreeCol”[The11] 108
6.6 FreeCol case study: Page controller pattern instance with constraint violation[The11]111
6.7 FreeCol case study: Broker pattern template and Broker pattern instance description112
6.8 FreeCol architecture overview [The11] . 112
6.9 Architectural component view for Frag 0.91 . 114
6.10 Pattern templates for the Interpreter and Indirection patterns as well as the pattern

instance of the Interpreter pattern in the Frag example 114
6.11 Apache CXF architecture overview [Apa] . 117

xvii

List of Figures xviii

7.1 Integration of the understandability related metrics in the DSL-based architecture
abstraction approach . 132

7.2 Understandability effort for both component views 135
7.3 Soomla Android store component view 1 . 136
7.4 Soomla Android store component view 2 . 138

8.1 Main foundations of this chapter . 142
8.2 Carrying out an evolution step . 143
8.3 QVT-o transformation for adding a component to the architecture specification . . 147
8.4 A simplified view of the architecture of Apache CXF transports 149
8.5 Documented architectural decision to implement UDP transport support for Apache

CXF using the online version CoCoAdvise of the Advise Tool 150
8.6 Excerpt of the architecture specification showing the Core component of the trans-

port view as well as the new architectural component that was added during the
first transformation step of our case study with syntax highlighting for reported
inconsistencies . 151

8.7 Consistency report for the new architectural component that was added during the
first transformation step in our case study (as shown in Figure 8.6) 151

8.8 Architecture overview of Apache CXF 2.7 . 153
8.9 Documented architectural decision to merge the Components Core and API 154
8.10 Documented architectural decision to separate the WSDL related functionality from

the Core component . 155
8.11 The WSDL component that now holds WSDL relevant functionality in Apache CXF

3.0 . 155
8.12 Soomla Architecture Overview showing the architecture for version 3.2 and the

changes for version 3.3. Remove elements have a hatched background and new
elements have a colored background. 156

8.13 Architecture abstraction specification for the new provider independent Soomla
Billing component and the new components that implement the payment providers
for Google and Amazon . 157

8.14 Architecture abstraction specification for the RestfulBilling component. 160
8.15 Consistency report created in the Generate step for the new RestfulBilling Component160

9.1 Architecture changes in the broker scenario . 165
9.2 Planning an Evolution Step . 165
9.3 Excerpt of the Xtext grammar for the Evolution DSL shoing the rule for an imple-

mentation task, the different tpyes of tasks and two of the rules for specific tasks. . 167
9.4 Excerpt from the implementation tasks of the example for adding a broker. 168
9.5 Excerpt of the Alloy code for the introduced Broker example 169
9.6 Decision alternative generated by Alloy for the Broker example. 169
9.7 Architecture overview of Soomla with changes between version 3.2 and version 3.3. 171
9.8 Implementation tasks for Soomla v3.2 to v3.3. 172
9.9 Wizard integrated into the DSL user-interface to add the architectural changes. . . 173

D.1 QVT-o transformation for updating the architecture specification of a component . 196
D.2 QVT-o transformation for deleting a component 196
D.3 QVT-o transformation for adding a new connector to the architecture specification

of a component . 197
D.4 QVT-o transformation for deleting a connector (part 1 of 2) 198

List of Figures xix

D.5 QVT-o transformation for deleting a connector (part 2 of 2) 199
D.6 Exemplary launch configuration for adding the new UDP component to CXF archi-

tecture abstraction specification. 199
D.7 Architectural decision to implement provider independent billing in the Soomla

framework . 200
D.8 Documented architectural decision to re-add support for Google Play Billing . . . 201
D.9 Documend architectural decison to add support for payment via Amazon. 201
D.10 Architectural decision to add support for our custom payment provider using a

Restful service . 202

List of Tables

3.1 Comparison of related approaches . 19

4.1 Observed Variables . 45
4.2 Results of the code quality analysis for FreeCol with the open source tool Sonar-

Qube(Version 4.3) . 46
4.3 Questions and Classification of Questions . 51
4.4 Results of the Shapiro-Wilk normality test . 54
4.5 Results of the Wilcoxon rank-sum test . 55
4.6 Median and means for post-study Question 1 for all participants, the control group,

and the experiment group. 57
4.7 Statistical data for the question whether the participants deemed component dia-

grams helpful . 58

5.1 Architectural abstraction DSL clauses . 72
5.2 Necessary changes to the architectural abstraction specification (DSL code) com-

pared to source changes in Apache CXF . 79
5.3 Apache CXF: Average, median, and standard deviation (σ) for the number of classes

per component . 80
5.4 Necessary changes to the architectural abstraction specification (DSL code) com-

pared to source changes in Frag . 81
5.5 Frag: Average, median, and standard deviation (σ) for the number of classes per

component . 81
5.6 Necessary changes to the architectural abstraction specification (DSL code) com-

pared to source changes in Cobertura . 84
5.7 Cobertura: Average, median, and standard deviation for the number of classes per

component . 84
5.8 Necessary changes to the architectural abstraction specification (DSL code) com-

pared to source changes in Hibernate . 86
5.9 Hibernate: Average, median, and standard deviation (σ) for the number of classes

per component . 87
5.10 Necessary changes to the architectural abstraction specification (DSL code) com-

pared to source changes in Freecol . 88
5.11 Freecol: Lines of java source code (in thousands), average, median, and standard

deviation (σ) for the number of classes per component 88
5.12 Execution times, standard deviation (σ) and other key data for implemented cases 89

6.1 Overview of the defined primitives (excerpt) . 104
6.2 The number of traceability links created or deleted by the Traceabiliy Link Generator

during each evolution step. 116

xxi

List of Tables xxii

6.3 Results of the performance measurements for the case studies and larger synthetic
models (in milliseconds, each executed 1000 times) 120

6.4 Number of source code artifacts (classes and interfaces) compared to architecture
artifacts (components and connectors) which need to be considered during architec-
tural pattern identification. 122

7.1 Architecture level metrics [Ste+14a] . 135
7.2 Component level metrics and the obtained prediction models [Ste+14a] 135

8.1 Overview of all architectural changes from Apache CXF Version 2.6 to Apache CXF
Version 2.7 . 149

8.2 List of the architectural changes performed for the architecture evolution from
Soomla v3.2 to Soomla v3.3. 157

A.1 Empirical raw data . 183

Abbreviations

AADSL Architecture Abstraction Specification Language
ADD Architectural Design Decision
ADL Architecture Description Language
ADvISE Architectural Design DecIsion Support FramEwork
AK Architectural Knowledge
SA Software Architecture
CoCoADvISE Constrainable Collaborative Architectural Design DecIsion Support

FramEwork
DSL Domain-specific Language
MDD Model-Driven Development
NCOM Number of COMponents
NCONN Number of CONNectors
NELEM Number of ELEMents
NC Number of Classes
NID Number of Incoming Dependencies
NOD Number of Outgoing Dependencies
NIntD Number of Internal Dependencies
QT Question Type
Qx Question x
RQx Research Question x
IDE Integrated Development Environment
GUI Graphical User Interface
sLoC Lines of Source Code
MVC Model View Controller
CSS Cascading Style Sheets
UML Unified Modeling Language
EMF Eclipse Modeling Framework
PSG Process Structure Graph
RM Reflexion Models
CSP Constraint Satisfaction Problem

xxiii

Abbreviations xxiv

SOA Service-oriented Architecture
SOAP Simple-Object Access Protocol
GoF Gang-of Four
QVT Query/View/Transformation

Part I

Foundations and Research Overview

1

1 Introduction

Bass et al. [Bas+03] define software architecture in the following way: “The software architecture of
a program or computing system is the structure or structures of the system, which comprise software
elements, the externally visible properties of those elements, and the relationships among them.”
Based on this definition, it has been stated that every software has an architecture [Tay+10]. With
growing complexity of a system’s architecture, the need to document this architecture grows. A
number of different approaches have been proposed for documenting software architectures [Kru95;
Cle96]. Today a software architecture description is usually comprised of multiple views [ISO11;
Cle+02; Hof+00; Kru95; Zac87; ISO11]. The component and connector view (or component view
for short) of an architecture is a view that is often considered to contain the most significant
architectural information [Cle+02]. This view deals with the components, which are units of
runtime computation or data-storage, and the connectors which are the interaction mechanisms
between components [PW92a; Cle+02]. An architectural component view is a high-level abstraction
of the entities in the source code of the software system, as the software architecture concerns only
the major design decisions about a software system, and abstracts from irrelevant details [JB05].

In practice, architecture component views are often documented in the form of drawn component
diagrams that cannot easily be related to the source code. During the evolution of a system,
however, this often leads to the problem that source code changes are not reflected in the architec-
ture documentation, commonly referred to as architectural drift and architectural erosion. Taylor
et al. [Tay+10] define architectural drift as the “introduction of principal design decisions into a
system’s descriptive architecture that (a) are not included in, encompassed by, or implied by the
prescriptive architecture, but which (b) do not violate any of the prescriptive architecture’s design
decisions” and architectural erosion as “the introduction of architectural design decisions into a
system’s descriptive architecture that violate its prescriptive architecture” [Tay+10].

In small projects, architectural drift and erosion can be avoided, as it might be possible to under-
stand and maintain well written source code without additional architectural documentation. For
many larger systems, this is not an option, and additional architectural documentation is required
to aid the understanding of the system and especially to comprehend the “big picture” by providing
architectural knowledge about a system’s design [Bro13]. Otherwise important knowledge like e.g.

3

Chapter 1. Introduction 4

knowledge about architectural components and implemented architectural patterns can get lost
during a system’s evolution.

In this thesis, we provide evidence that component diagrams are beneficial to architecture under-
standing (in Chapter 4). Based on these findings, in Chapter 5, we then introduce an approach
for creating architectural component views based on architecture abstraction specifications that
allows automatic consistency checking during a systems evolution and thus reduces the risk of
architectural drift and erosion.

Another essential part of today’s architectural knowledge is information about the patterns used
in a system’s architecture. Patterns codify reusable design expertise that provides time-proven
solutions to commonly occurring software problems that arise in particular contexts and domains
[SB03].

A considerable number of approaches support software pattern identification [BJ94; BP00; Shu+96].
Most of these approaches (see e.g. [Heu+03; KP96; BP00; Phi+03]) focus on automatically de-
tecting design patterns in source code. Such pattern identification approaches are often restricted
to design patterns that were identified by Gamma et al. [Gam+95] (GoF patterns). Architectural
patterns, in contrast, convey broader information about a system’s architecture as they usually are
described at a larger scale than GoF patterns. The precision and recall of automatic pattern iden-
tification approaches in general and thus also the automatic identification of architectural patterns
often requires a significant amount of manual corrections, as false positives need to be discarded
and instances that were not found need to be added manually. However, in order to manually
correct these mistakes, the architect needs to understand the system first. Similar to architectural
component diagrams, architectural patterns are often documented in purely textual form that, at
best, references specific elements from the source code. In Chapter 6 we propose a semi-automatic
approach for identifying and documenting architectural patterns based on architectural component
views that are annotated with pattern primitives [ZA05] and thus works on a higher level of ab-
straction rather then directly in the source code. In addition, we support the architect during the
evolution of a software system through automatic consistency checks of the documented artifacts.

Software evolution itself is a challenging topic that has attracted a lot of attention during the last
decades, since Bersoff et al. [Ber+80] and Lehman [Leh80] presented their seminal articles in the
area. Even in the eighties, the need for managing the software evolution was already detected
and highlighted as one of the most complex aspects of the software lifecycle. Basically, from the
first steps of a software project onwards, the need of change starts to arise because new market
needs constantly impose new requirements, supporting technology is updated, decisions about the
software system change, and so on. In this context, the use of Software Architecture (SA) has been
highlighted as an important asset because, SA can be used as an artifact for the evolution to guide
the planning and restructuring of the software [Cue+13; Hol02], but it is also an artifact of the
evolution, because it must be evolved itself [Bar+08].

Chapter 1. Introduction 5

In Chapter 8 we propose an iterative approach for evolving architectural knowledge and source
code in a consistent manner. Our approach is based on two existing approaches by Garlan et al.
[Gar+09] and Cuesta et al. [Cue+13] that proposed to use architectural knowledge as an evolution
driver. We integrate these approaches with our approach for documenting architectural component
views in order to provide a software evolution approach that aids the consistent evolution of the
documented architecture and the source code.

When evolving a software system, not only the challenge of identifying the “right” changes to a
system arises, but also the challenge of planning and performing the necessary tasks to actually
evolve a system once the changes to a system’s architecture are decided. When evolving a complex
system, this often requires multiple teams to perform different inter-dependent tasks (evolution
steps) in a coordinated fashion in order to avoid inconsistencies. In this thesis we propose an
approach for planning architecture evolution that uses the Alloy model analyzer [Jac11] to auto-
matically compute plans for the evolution based on tasks that integrates with our approach for
documenting architectural component views.

When changes are made to a software system without careful consideration, often important qual-
ities of the system like performance, stability, understandability, and many more, can start to
degrade and, when left unchecked, can bring a software system to the point where it is no longer
usable or feasible to maintain. In recent time, a number of approaches that measure a soft-
ware systems properties with respect to different qualities like e.g. understandability have been
proposed [Ste+14b; Ste+15]. In Chapter 7 we propose an extension to our approach for document-
ing architectural component views from Chapter 5, which integrates the automatic calculation
of understandability metrics in order to reduce the risk that architectural changes impact the
understandability of a documented architectural component view in a negative way.

1.1 Key Concepts and Terminology

In this section we introduce the most important concepts and terminology that is used in this
thesis.

1.1.1 Software Architecture Documentation

We use the term Software architecture documentation in two ways. First, we use it to describe
the process of creating an architectural documentation of a software system, and second, we use
it to describe the documents, wikis, diagrams, documented ADDs, that together describe a soft-
ware systems architecture [Cle+02]. Clements et al. state that documenting the architecture of
a software system is as essential as the architecture itself, as architectural knowledge that is not

Chapter 1. Introduction 6

communicated is already lost. For small programs the source code might suffice as documentation
but for bigger, more complicated systems this is not sufficient. Different approaches for architec-
ture documentation have been proposed that capture architecture from different point of views in
order to not only capture a systems structure but also other aspects like e.g. its expected behavior
and functionality [Cle+02; Kru95].

1.1.2 Software Architecture Recovery

Software architecture recovery or software archaeology is the process of understanding and docu-
menting the architecture of an existing software system from its source code and or other available
sources [Tay+10]. This is necessary if the architectural knowledge has been lost. For example, if
no documentation exists, or only outdated, inconsistent documentation exists. Manual software
architecture recovery is a cumbersome process that requires a significant amount of time and thus
is an expansive process. That is why a number of automatic approaches have been proposed which
automatically identify implemented patterns or automatically group a system into architectural
components. However most of these automatic approaches often require a significant number of
manual corrections [Cor+10], which limits their applicability.

1.1.3 Design Pattern and Architectural Pattern

As already mentioned above, Schmidt and Buschmann [SB03] define patterns as “Patterns cod-
ify reusable design expertise that provides time-proven solutions to commonly occurring software
problems that arise in particular contexts and domains.” One of the best known sets of design
patterns was described by Gamma et al. [Gam+95]. These patterns usually target problems on a
detailed level of abstraction. For example the observer pattern [Gam+95] which describes a mech-
anism for notifying interested objects about the state changes of an observed object. Architectoral
patterns like the ones described by Buschmann et al. [Bus+96] describe problems and solutions on
a higher level of abstraction than design patterns. While there is not always a clear distinction
between design patterns and architectural patterns, a design pattern often only affects a small part
of a software system, while an architectural pattern usually affects the system as a whole. A more
detailed description of architectural patterns is given in Section 6.2 in Chapter 6.

1.1.4 Domain Specific Language

Fowler [Fow10] defines a Domain Specific Language as: “a computer programming language of
limited expressiveness focused on a particular domain.” He also gives a wide range of examples
on DSLs like regular expressions [Fri06] - which are a family of languages for finding patterns in
text, CSS [Mey06] - which is a language for manipulating the layout and style of a web-page,

Chapter 1. Introduction 7

make [Mec04] - a tool handling software builds in Linux and Unix, ant [Hol05] - a language for
describing builds in xml, graphviz [Ell+03] - which is a language for visualizing graphs, SQL - the
standard query language for relational databases, and many more. Domain specific languages are
usually not Turing-complete as they are tailored towards a specific purpose. One of the benefits
of DSLs is, that since DSLs lack the complexity of general purpose languages, domain experts are
able to learn these languages more easily and can edit or enhance the code written in a DSL. In
this thesis we propose the usage of multiple DSLs to define architecture abstraction specifications
(in Chapter 5) and to describe pattern templates and pattern instances (in Chapter 6).

1.1.5 Architectural Design Decision (ADD)

The ISO 42010 standard specifies that an architectural decision affects one or more architectural
elements and pertains to one or more concerns [ISO11]. An ADD might also raise new concerns.
In recent years, ADDs have become widely regarded as important architectural knowledge and
a significant amount of research has been done in this area [Lyt+13b; Lyt+13a; JB05; Zim+07;
Har+07]. ADDs are often documented using templates and capture the rationale behind an ar-
chitecture relevant decision, why a solution has been chosen, what the alternatives would have
been, and why the decision was necessary. This complements other approaches to architecture
documentation like the 4+1 views by Kruchten [Kru95] as it captures another important aspect
of a system’s architecture. While a documentation created using the 4+1 views approach might
document, that a specific pattern has been used, a documented ADD also tells that this decision
might have been based on a specific requirement, which is long obsolete.

Thesis Structure

This PhD thesis is structured as follows:

In Part I, we introduce the research problems and questions this thesis addresses (see Chapter 2).
In Chapter 3 we discuss the state of the art and compare the approach proposed in this thesis to
existing work. We conclude Part I by describing the research methods we used in the creation of
this thesis.

Part II first discusses our controlled experiment on the supportive effect of component diagrams,
which motivates our choice to use architectural component views in the other approaches dis-
cussed in this part. These approaches focus on creating architecture documentation and keep-
ing architecture documentation and source code consistent throughout the evolution by defining
architectural abstraction specifications that relate the architecture documentation (architectural
component views and architectural patterns) to source code.

Chapter 1. Introduction 8

In Part III we introduce our approaches that address research questions focusing on consistency
management throughout the software evolution by integrating the approaches proposed in Part II
with existing approaches, as well as proposing an approach for planning the software evolution
itself.

Finally, in Part IV, we conclude by and giving an overview of the main contributions of the thesis,
discussing limitations of the proposed approach, and open challenges that remain in the different
research areas.

2 Problem Analysis and Research Approach

In this chapter, we motivate our work by discussing existing research problems that we identified
in the research areas introduced in Chapter 1. We then formulate the research questions this thesis
addresses based on the identified problems. We conclude this chapter by discussing the research
methods that have been used in the creation of the approaches presented in this thesis.

2.1 Problem Statement

This dissertation contributes to different problems in the area of software architecture documen-
tation and software architecture evolution.

Components or components and connectors have received a lot of focus in recent years, especially
in the context of component and connectors as part of different view-models that were proposed
for software architecture documentation, like the ones by Kruchten [Kru95]. While a number of
studies have been conducted that focus on the usage of architecture documentation, like architec-
tural component views in practice, only a limited number of empirical studies about architectural
component views have been conducted to study their positive or negative effects while understand-
ing a software system. As a foundation for our further work, we studied the effects of component
diagrams on the understanding of a software system’s source code by (novice) software architects
in Chapter 4.

Research Question 1

Can architectural component views (in the form of UML component diagrams) have a positive
effect during the understanding of a software system?

Studies researching the usage of software architecture documentation approaches in practice [Ros+13]
often find that software architecture documentation “is outdated and not updated after changes to
requirements or source code”. Rost et al. also find that architecture documentation does often not
provide the right information for the stakeholders, often is inconsistent, and that architecture doc-
umentation often does not provide sufficient navigation support. This fits with other observations

9

Chapter 2. Problem Analysis and Research Approach 10

from Jansen et al. [Jan+07] who observe the problem that design and implementation of software
systems often drift apart during implementation and system evolution. A number of approaches
propose to resolve inconsistency between architecture documentation and source code by auto-
matically creating/generating documentation from the source code [Abr+00; Die+08; DB11]. For
some of these approaches the size of resulting diagrams (e.g. class diagrams) is a problem, while
the approaches that automatically create abstractions often require manual corrections [Cor+10].

Based on these problems we formulate the next research question:

Research Question 2

Can we support the software architect in the creation and maintenance of architectural com-
ponent views in order to mitigate the risk for architecture drift and erosion of the architecture
and the source code during system evolution?

We study this research question in Chapter 5.

Like architectural component views, architecture patterns are one of the most important means to
document and communicate a system’s structure. If an architect or developer is familiar with an
architectural pattern, she can draw conclusions about a system if she knows, that the system follows
e.g. an N-tier architecture or uses a Message Bus [HW03]. While an architectural component view
only describes a systems structure, architectural patterns can also include information about a
system’s behavior. However, documenting a system’s architectural patterns is still a cumbersome
task. Architectural patterns are often documented in the form of free-text documents with their
quality highly depending on the creator of the document. This form of documentation usually has
very limited ties to the actual source code and traceability links are purely text-based. Similar
to architectural component views, the manual documentation of architectural pattern instances
is tedious and prone to the same problems of becoming obsolete and inconsistent or being lost.
The identification of architecture patterns during software architecture recovery is especially time
consuming, as this requires the recovering architect to get a big picture understanding of the
system. Due to this, a number of approaches have been proposed that support the automatic
identification of patterns. A significant number of these pattern identification approaches focus
on design patterns [Heu+03; KP96; BP00; Phi+03; Kac+06b] or only support a subset of specific
patterns. In addition, automatic approaches often have problems with respect to false positives,
which leads to additional manual effort when using such approaches. Zdun and Avgeriou [ZA05]
proposed to use pattern primitives as basis for the documentation of architectural patterns and
show the use of the primitives in the form of UML diagrams [Obj10]. While this approach proposes
a model-driven approach to architectural pattern documentation, it does not consider traceability
links and is a purely manual approach. We investigate the following research question:

Chapter 2. Problem Analysis and Research Approach 11

Research Question 3

Can we support the software architect in the identification and documentation of architectural
patterns during implementation and throughout the evolution of a software system?

We discuss this research question in Chapter 6.

Keeping architecture documentation and source code consistent during evolution is an important
aspect of being able to communicate a system’s architecture [Cle+02]. While existing architecture
documentation helps people that have to evolve a system by providing insight into the architecture
of the system under evolution, the plain existence of architecture documentation is not sufficient, as
the quality of this documentation might be low, especially with respect to understandability. Just
consider the extreme cases: A component diagram depicting only a client, a server and a connector
between those two components. This diagram provides very little information that is not contained
somewhere else or would be obvious from the source code, where client and server code are probably
separated into different packages or projects. The same is true for any automatically generated
class diagram for a system with more than a hundred classes, which is significantly below the
number of classes in the prototypes for this thesis. This diagram, if it shows all classes and their
relations, has at least a hundred boxes and many more lines between these boxes. However the
research in our group shows, that such complex diagrams are not beneficial for the understanding of
a software system [SZ14]. One possible approach to measure and quantify the quality of a software
architecture documentation are metrics, more specifically understandability metrics like the ones
discussed by Stevanetic and Zdun [SZ14]. This leads us to our next research question, which we
tackle in Chapter 7:

Research Question 4

In how far is it possible to integrate and automatically calculate understandability metrics
during the creation and evolution of architectural component views and support the architect
in ensuring the quality/understandability of the documented architecture during evolution?

With respect to software archictecture documentation and evolution a huge number of approaches
have been published [Kno+06; Pas+10; San+05; Mur+95a], some of those focus on documenting
and evolving the architecture [Cue+13; Bar+12; Bar+13; FM06a] while some focus on recon-
structing the software architecture from source code [Lun+06; RD99; Hol98; Men+02]. Some
works establish traceability links between software architecture and source code [Tek+07; WP10;
KZ10b]. Also, as already mentioned before, a lot of approaches automatically detect design pat-
terns in source code [Heu+03; KP96; BP00; Phi+03; Kac+06b] or create automatic clusterings of
source code [Abr+00; Cor+10; Det+10; MM01]. However, to the best of our knowledge, there are
only very few approaches that specifically target the evolution of software architecture and source

Chapter 2. Problem Analysis and Research Approach 12

code in a consistent manner and that treat the architecture and the code as first class assets. This
brings us to the next research question:

Research Question 5

How to reconcile the different points of view that software architects and developers have when
the software is being evolved and how to enforce the integration of software architecture and
source code?

We address this research question in Chapter 8.

Software architecture evolution is a complex topic that has received a lot of attention over the years,
but still remains a complex task. This is especially true for large software projects. There often are
multiple development teams that have to coordinate in order to evolve different parts of a software
system in parallel. For example there could be one team responsible for the server of an application
and multiple development teams for the different clients that exist (Web, Android, iOS). In such
cases, tasks like modifying the server’s interface require a lot of communication effort. This is even
worse, if the teams are located in different countries and or time zones. So there is a clear need to
manage properly who is in charge of each requested change and how and when it will be carried
out. While there exist a number of approaches for planning activities that have inter-dependencies
in other areas that might be applicable in this situation, to the best of our knowledge, no approach
has been applied to the field of software architecture evolution and integrated with the software
architecture description itself.

The last research question we study in this thesis (Chapter 9) is:

Research Question 6

Is it possible to aid the architect in the description of the different, necessary evolution steps
and their dependencies, and automatically provide plans for the specific evolution steps during
the evolution of a software system?

2.2 Research Methods

The research in this thesis is based on Design Science research [Hev+04]. In Design Science research,
first a research question is posed, and then the develop/evaluate cycle is continuously repeated until
a satisfactory solution for the research question has been obtained. In the course of this research, the
research question can be altered or refined. In the first iterations, usually simplifying assumptions
are made, which are stepwise removed during later iterations. In the remainder of this section, we
briefly introduce and discuss different methods that were used throughout this thesis.

Chapter 2. Problem Analysis and Research Approach 13

2.2.1 Design Science Research

According to March and Smith [MS95] Design Science research aims to “produce and apply knowl-
edge of tasks or situations in order to create effective artifacts”, in contrast to explanation research
which focuses on gaining theoretical knowledge [VK07].

According to Vaishnavi and Kuechler [VK07] Design Science research produces 5 different outputs:
constructs, models, methods, instantiations. While constructs are the conceptual vocabulary of a
domain, models are a set of prepositions expressing relationships among constructs. Methods are
a set of steps to perform a task, while instantiations are operationalized constructs, models, and
methods.

Design Science research is comprised of the following steps [VK07]:

• Awareness of Problem: this might result from different sources like e.g. earlier research
efforts or other disciplines and it results in a proposal.

• Suggestion: is “a creative step where new functionality is envisioned based on a novel
configuration of either existing or new and existing elements” [VK07]. This step results in a
tentative design.

• Development: Here, the tentative design is further developed and implemented.

• Evaluation: The constructed artifact is evaluated according to criteria that are implicitly
(or sometimes explicitly) mentioned in the proposal, e.g. with respect to performance.

• Conclusion: In this step, the evaluation results are judged to be sufficient or insufficient.
In this phase, the results are also consolidated and written up.

The last step, conclusion, might create additional iterations in the research loop. In the research
of this thesis, we included an optional fifth step, dependent on the results of the conclusion step,
the communication of the written up results through articles in scientific journals or at conferences
and workshops.

2.2.2 Case Study

Wohlin et al. [Woh+12] define a case study in software engineering as “an empirical enquiry that
draws on multiple sources of evidence to investigate one instance (or a small number of instances)
of a contemporary software engineering phenomenon within its real-life context, especially when
the boundary between phenomenon and context cannot be clearly specified.” The aim of performing
case studies is to understand how and why some phenomena occur within a specific time space,

Chapter 2. Problem Analysis and Research Approach 14

as well as the mechanisms by which various cause-effect relationships are established [Eas+08;
Woh+03]. Two types of case studies exist: exploratory case studies that are used to derive new
hypotheses and build theories from the investigation of some phenomena, and confirmatory case
studies that test existing theories [Eas+08]. According to Wohlin et al. case studies are suitable
for industrial evaluation of software engineering methods and tools as they can avoid scale-up
problems [Woh+03]. We evaluated the approaches and tools that we developed in this thesis using
case studies based on existing real-life open-source systems. During the execution of the case
studies we investigated e.g. the feasibility of our approaches, the usability of our prototypes or
collected data to evaluate the performance of the introduced tools.

2.2.3 Controlled Experiment

Wohlin et al. [Woh+12] define a controlled experiment as an investigation of a testable hypothesis
where one or more independent variables are manipulated to measure their effect on one or more
dependent variables. The main difference between a controlled experiment and a case study is that
an experiment samples over the variables that are being manipulated (controlled study), while a
case study samples from the variables representing the typical situation (observational study).

The independent variables or factors represent the treatments in the experiment. In our case,
we had one independent variable (the participants experiment group). Dependent variables are
measured to investigate whether they are affected by the independent variables [Woh+12].

We have performed a controlled experiment to study the effects of component diagrams on the
understanding of a software architecture, which we present in detail in Chapter 4. For this exper-
iment we followed the guidelines by Kitchenham et al. [Kit+02] and Wohlin et al. [Woh+12] and
manipulated one independent variable (the group), while we observed one dependent variable (the
quality of the answers of the participants) and observed a number of other independent variables
like prior experience to prevent effects from these other independent variables.

3 State of the Art

In this chapter we give an overview of the current state of the art with respect to the different
research topcis that are relevant for this thesis, discuss the related work, and compare the discussed
approaches to our proposals.

3.1 Approaches Focusing on Software Architecture Reconstruc-
tion

The approaches discussed in this section are related to the field of software architecture reconstruc-
tion. Ducasse and Pollet [DP09] presented a survey on the state-of-the-art in the field of software
architecture reconstruction. They analyzed and categorized the existing approaches with respect
to their goals, inputs, process, techniques, and outputs.

We have split the discussed approaches in this section into different groups: In Subsection 3.1.1 we
present a number of selected articles that apply different approaches making use of automatic clus-
tering. Subsection 3.1.2 discusses articles that propose different kinds of model-based approaches
that create abstractions or views from source code. Finally, Subsection 3.1.3 presents selected
approaches that are either hybrid approaches or other approaches that do not fit into one of the
other sections but are nonetheless relevant for our work.

3.1.1 Software Architecture Reconstruction Approaches Based on Automatic
Clustering

Abreu et al. introduce a reengineering approach using cluster analysis [Abr+00]. This approach
uses six different affinity schemes and seven clustering methods to produce a series of clustering
proposals to verify which one produces the best results. However, the clustering leads to solutions
similar to those proposed by human experts only if the average number of classes per module is
not too high.

15

Chapter 3. State of the Art 16

Another approach for recovering architecture information is introduced by von Detten and Becker
[DB11]. The authors combine clustering and (anti-)pattern information to extract components
from existing source code.

Qingshan et al. [Qin+05] describe an architecture recovery approach that focuses on extracting the
Process Structure Graph (PSG) of a system. While this approach works fully automatic, it does
not allow to create views on different levels of abstraction but is limited to the PSG.

Corazza et al. [Cor+10] introduce a clustering approach that uses lexical information. It uses a
probabilistic model and the Expectation Maximization algorithm to weigh this information and
customizes the K-Medoids algorithm in order to group classes. In their case study they compare
their approach with other automatic clustering approaches previously compared by Bittencourt
and Guerrero [BG09]. In the case study they state that the authoritativeness values are close to
0.5 in 5 of 7 cases. This means that in five cases, it is necessary to execute move or join operations
for about half the entities.

Maletic and Marcus [MM01] used an automatic clustering approach that utilized latent semantic
indexing for the data-retrieval and a minimal spanning tree for partitioning the data. This approach
shares the same problem with aforementioned clustering approaches: The results it produces need
to be manually corrected.

Dietrich et al. [Die+08] describe an approach for analyzing Java dependency graphs with clustering.
However this approach still needs the configuration of the separation level (the number of iterations
of removing the edges with the maximum betweenness level) and does not produce stable results
when code changes occur.

De Lucia et al. [Luc+07] integrate a latent semantic indexing approach [Dee+90] into a software
artifact management system in order to recover traceability links. However they also state that one
of the limitations in using information retrieval techniques is that in order to find all traceability
links, it is necessary to manually discard a big amount of false positives.

All approaches discussed so far, deal with automatic recovery of design knowledge. More clustering
approaches and clustering measures are reviewed and compared by Maqbool and Babri [MB07].
They define a number of groups of clustering algorithms and compare the performance of the
different groups for different open source software projects. While Maqbool and Babri conclude
which approach works best for each of the applications, they do not draw any conclusions regarding
the overall effort necessary to correct the automatic clustering. A lot of clustering approaches
assume that no architectural knowledge about a system exists and approaches using heuristic
approaches based on inter-class relationships like the one by [Die+08] potentially have the problem
that their clusterings are not stable with respect to changes in the source code as small changes in
the source code might result in significantly different clusterings. This is especially true for heuristic
algorithms that contain a random element. In contrast to all these approaches, the approach we

Chapter 3. State of the Art 17

introduce in Chapter 5 is semi-automatic, enables the checking of design constraints during the
abstraction process, and provides traceability between source code and models.

3.1.2 Model-based Approaches for Creating Architecture Abstractions and Views

Various approaches have been proposed for creating abstractions or views from source code.
Scaniello et al. [Sca+10] propose an approach for semi-automatically detecting layers in software
systems based on the algorithm introduced by Kleinberg [Kle99] while Sartipi models the process
of recovering design patterns [Sar03] as a graph pattern matching problem between an entity rela-
tionship graph and an architecture pattern graph. Others use graph based approaches for keeping
models synchronized [IK04]. A different data source use Brosig et al. [Bro+09], who describe how
they extract a Palladio component model from Enterprise Java Beans and the runtime control flow.

Egyed [Egy04] describes an approach for model abstraction by using existing traceability informa-
tion and abstraction rules. However, the author identified 120 abstraction rules for the example of
UML class models, which need to be extended with a probability value because the rules may not
always be valid.

Another important approach for mapping source code models to high-level models is introduced
by Murphy et al. [Mur+95b]. They use software reflexion models which they compute from a
mapping between source model and high-level model. However, it requires a substantial amount
of effort, since it requires to define both, the high-level model and the mapping. In contrast
to the approach proposed in this thesis their approach also does not support traceability links
nor is it explicitly geared towards producing stable architecture abstraction during evolution. In
addition, we extend our approach for documenting architectural component views to support the
semi-automatic identification and documentation of architectural patterns.

An interesting software architecture recovery approach is introduced by Hassan and Holt [HH04].
It uses modification records from source code versioning systems. The authors also discuss how
to use this information with software reflexion models to assist in the understanding of a system’s
architecture. While the approach provides additional information to the developers, its basic
workings do not differ from the already discussed approach from Murphy et al. [Mur+95b].

Mens et al. [Men+02] propose intentional source code views that allow grouping of source code
by concerns. These views are defined in a logic programming language. Their approach provides
generic source views on a low abstraction level.

An approach that integrates source code with information found in problem reports and changelogs
to do architecture analysis is presented by Pinzger et al. [Pin+05]. The analysis produces specific
directed attributed graphs which then are integrated into a FAMIX [Tic+00] model and compute

Chapter 3. State of the Art 18

architectural views using binary relational algebra based on an approach introduced by Holt et al.
[Hol98]. These views then show intended and unintended couplings between architecture elements.

Other approaches [RD99; RR02] use manually written logic facts in Prolog to analyze object ori-
ented applications based on static and dynamic information of a system in their approaches for
reverse engineering. Like most of the architecture reconstruction approaches mentioned in this
section, these approaches do not take the evolution of a software artifact into account, while the
approach in this thesis specifically targets the evolution and tries to prevent architectural knowl-
edge evaporation. Our approach also allows to identify and document architectural patterns and
supports the architect by automatically creating traceability links between the different artifacts.

3.1.3 Hybrid and Other Approaches

Another approach that uses the package structure of a software system as a starting point is
presented by Lungu et al. [Lun+06]. They propose a visual architecture recovery approach that
introduces package patterns which they automatically detect in the package structure based on
heuristics. This results in the same drawbacks that all automatic approaches share and that we
discussed at the end of Section 3.1.1.

Passos et al. [Pas+10] give a illustrative overview on static architecture-conformance checking.
They compare three approaches: The Lattix Dependency Manager (LDM) [San+05], which is
based on Dependency-Structure Matrices, .QL [Moo+08], which is a source code query language
(SCQL) [UM12; Haj+06], and the reflexion models (RM) introduced by Murphy et al. [Mur+95b].
As Passos et al. summarize, all of these approaches have drawbacks. While the LDM tool has very
limited capabilities of expressing constraints, .QL has only a low abstraction level, and RMs have
only limited support for architecture reasoning and discovery.

An approach that is similar to our approach for creating architectural component views, which
we present in Chapter 5, is used by Feilkas et al. [Fei+09] to perform an industrial case study
on the loss of architectural knowledge during system evolution. In order to measure the loss of
architectural knowledge, they use an approach based on machine readable component descriptions
and policies in XML that are created manually. However their approach offers only limited ways
to describe mappings between components and source code as their mappings are solely based
on regular-expressions that map package-names to components, while we provide more means for
creating architecture abstraction specifications in Chapter 5 and then, in the remainder of this
thesis use these architecture abstraction specifications as a starting point for semi-automatically
identifying and documenting architectural patterns (see Chapter 6) as well as the definition of
implementation tasks during software evolution in Chapter 9.

Chapter 3. State of the Art 19

3.2 Identification and Documentation of Patterns

In this section we discuss the current state of the art with respect to the models for describing
patterns, pattern identification, as well as pattern documentation. In Table 3.1 we give an overview
of the related work discussed in this section and also provide a short comparison of this related work.
Most of the related works focus on automatic design pattern identification while only a limited
number focuses on finding architectural elements. As already discussed in Section 6.1 automatic
approaches are limited by a high number of false positives while existing semiautomatic approaches
focus either on a specific pattern [Sca+10] or on design patterns only [Guo+99]. In contrast, our
approach focuses on architecture documentation and evolution of architectural patterns. It provides
support for pattern variants and does not have the drawback of finding many false positives as
it is semiautomatic and requires the software architect to annotate the architecture model with
architectural primitive information. In Subsection 3.2.1 we discuss approaches with a focus on
architectural patterns, while Subsection 3.2.2 discusses approaches focusing on design patterns.
Our approach can broadly be categorized as a software architecture documentation approach.

Table 3.1: Comparison of related approaches

Approach Pattern types Method Pattern vari-
ants support

Auto-
mation

Focus

Medividovic et al.
[Med+03]

Architectural
styles

Model compari-
son

None Manual Stemming architec-
ture erosion

Yan et al.
[Yan+04]

Architectural
styles

State-machine Design Automatic Stemming architec-
ture erosion

Scaniello et al.
[Sca+10]

Layers pattern Link analysis Implementa-
tion

Semiauto-
matic

Pattern identifica-
tion

Sartipi [Sar03] Architectural
patterns

Graph transfor-
mation and AQL
queries

A* heuristic
matching

Automatic Architecture recon-
struction

Harris et al.
[Har+95]

Style-library Source code
queries

Implementa-
tion

Automatic Pattern identifica-
tion

Lungu et al.
[Lun+06]

Packaging pat-
terns

Custom script None Semiauto-
matic

Architecture recon-
struction

Paakki et al.
[Paa+00]

Architectural
and Design
patterns

CSP None Automatic Quality Assessment

Di Penta et al.
[DP+07]

Architectural
patterns

mu-calculus Design and
implementa-
tion

Automatic Detecting SOA pat-
terns

Wuyts [Wuy98] Design pat-
terns

Declarative
reasoning

None Manual Finding structural
relationships

Krämer et al.
[KP96]

Design pat-
terns

Prolog queries None Automatic Architecture recon-
struction

Chapter 3. State of the Art 20

Table 3.1 – continued from previous page
Approach Pattern types Method Pattern vari-

ants support
Auto-
mation

Focus

Tonella and An-
toniol [TA01]

Design pat-
terns

Concept analysis None Automatic Pattern identifica-
tion

Arévalo et al.
[Are+04]

Collaboration
patterns

Concept analysis None Automatic Detection of collab-
oration patterns

Guéhéneuc et al.
[GJ01]

Design pat-
terns

Explanation-
based CSP

Implementa-
tion

Automatic Pattern identifica-
tion

Alnusair et al.
[Aln+13]

Design pat-
terns

Semantic web
technologies and
first order logic

Design Automatic Pattern identifica-
tion

Lucia et al.
[DL+10]

Design pat-
terns

Model checking None Automatic Pattern identifica-
tion

Kaczor et al.
[Kac+06a]

Design pat-
terns

Graph-based None Automatic Pattern identifica-
tion

von Detten
[Det11]

Design pat-
terns

Graph-based None Automatic Pattern identifica-
tion

Seeman and Gu-
denberg [SG98]

Design pat-
terns

Graph-based None Automatic Pattern identifica-
tion

Balanyi and Fer-
enc [BF03]

Design pat-
terns

Graph-based and
DPML

None Automatic Pattern identifica-
tion

Wendehals et al.
[Wen03]

Design pat-
terns

Graph-rewrite
and fuzzy logic

Design and
implementa-
tion

Automatic Pattern identifica-
tion

Tsantalis et al.
[Tsa+06]

Design pat-
terns

Similarity scoring
between graph
vertices

Implementa-
tion

Automatic Pattern identifica-
tion

Shull et al.
[Shu+96]

Design pat-
terns

Guidelines for
manual identifi-
cation

None Manual Architecture recon-
struction

Bergenti and
Poggi [BP00]

Design pat-
terns

Interactive design
assistance

None Automatic Design improve-
ment

Palma et al.
[Pal+12]

Design pat-
terns

Goal-question-
metric

None Semiauto-
matic

Pattern recommen-
dations

Guo et al.
[Guo+99]

Design pat-
terns

Rigi standard for-
mat

None Semiauto-
matic

Architecture recon-
struction

Heuzeroth et al.
[Heu+03]

Design pat-
terns

Custom detection
algorithm per
pattern

None Automatic Pattern identifica-
tion

Washizaki et al.
[Was+09]

Design pat-
terns

Comparing code
before and after
a pattern’s intro-
duction

None Semiauto-
matic

Pattern identifica-
tion

Pinzger and Gall
[PG02]

Design pat-
terns

String-pattern-
matching

Implementa-
tion

Automatic Architecture recon-
struction

Chapter 3. State of the Art 21

Table 3.1 – continued from previous page
Approach Pattern types Method Pattern vari-

ants support
Auto-
mation

Focus

Rasool and
Mäder [RM11]

Design pat-
terns

SQL queries and
RegEx

Implementa-
tion

Automatic Pattern identifica-
tion

Stencel and
Wegrzynowicz
[SW08]

Design pat-
terns

First order logic
translated to SQL
queries

Design and
Implementa-
tion

Automatic Pattern identifica-
tion

Keller et al.
[Kel+99]

Design pat-
terns

Model-based Implementa-
tion

Automatic Reverse engineering

Philippow et al.
[Phi+03]

Design pat-
terns

Minimal key
structures

Implementa-
tion

Automatic Pattern recovery

Our approach Architectural
patterns

DSL based Design + im-
plementation

Semiauto-
matic

Architecture evolu-
tion

3.2.1 Approaches Based on Architectural Patterns

A number of other approaches have been presented that focus on the recovery of architectural
pattern information. Medividovic et al. [Med+03] combine architectural recovery and architectural
identification to create discovered and recovered architectural models and leverage architectural
styles to identify and reconcile mismatches between them.

DiscoTect [Yan+04], which is introduced by Yan et al. focuses on the behavoral information of a
system, as it uses a state machine to automatically detect architectural styles in low level execution
events during the runtime of a system.

Scaniello et al. [Sca+10] propose an approach for semi-automatically detecting layers in software
systems based on the algorithm introduced by Kleinberg [Kle99]. The authors implemented a
prototype and provide a case study for JHotDraw 1.

Harris et al. [Har+95] propose a style library and use a recognition engine to detect instances of
these abstractions in the source code.

Paakki et al. [Paa+00] present an approach for the detection of architectural and design patterns.
It treats pattern detection as a constraint satisfaction problem (CSP) and uses the AC-3 algorithm
[Mac77] to find pattern candidates and then use software metrics to assess the quality of the systems
architecture. The approach is implemented in Java but uses a Prolog variant for the representation
of architectures and patterns.

1http://www.jhotdraw.org/

http://www.jhotdraw.org/

Chapter 3. State of the Art 22

The approach presented by Di Penta et al. [DP+07] automatically analyzes SOAP messages in
execution traces to detect architectural patterns in a SOA system. It is based on model checking,
verifying patterns on a model of the system, where patterns are described as mu-calculus logic
formulae.

In this subsection we presented a number of approaches focusing on recovering or detecting archi-
tectural patterns with a majority of approaches focusing on the automatic detection of patterns. As
discussed in detail in Chapter 6, Section 6.1 automatic approaches are limited by a high number of
false positives while existing semiautomatic approaches focus either on a specific pattern [Sca+10]
or are limited to specific languages [Lun+06]. In contrast, the approach we propose in Chapter 6
focuses on architecture documentation and evolution of architectural patterns. It provides support
for pattern variants and does not have the drawback of finding many false positives as it is semiau-
tomatic and requires the software architect to annotate the architecture model with architectural
primitive information.

3.2.2 Approaches Based on Design Patterns

In this subsection we describe selected approaches for the identification of design patterns ranging
from manual identification techniques to automatic detection approaches.

In the first part we discuss approaches that utilize formal methods like concept analysis [TA99;
Are+04] or constraint satisfaction problems [GJ01] to tackle design pattern identification. The
second part contains approaches that represent patterns as graphs and or treat the problem of
pattern identification as a graph matching problem [Tsa+06]. In the last part we discuss approaches
that use various other techniques for the identification of patterns like String pattern matching
[PG02] or SQL queries [RM11].

3.2.2.1 Approaches Based on Logic Oriented Programming / Formal Methods

In this section we present a number of approaches that use logic oriented programming or formal
methods to identify design patterns in source code. Wuyts [Wuy98] uses declarative reasoning
to find structural relationships in Smalltalk programs. He created a declarative framework for
describing the structure of an object oriented system that he then uses to describe design patterns.
However his approach is not directly focused on reconstructing patterns.

Another approach is presented by Krämer et al. [KP96] that uses Prolog queries on C++ header
files to find a number of structural design patterns. However the precision of their approach is only
about 40 percent.

Chapter 3. State of the Art 23

Tonella and Antoniol [TA01] introduce an approach for object oriented pattern interference. It
utilizes concept analysis to detect design patterns in C++ source code. The authors present three
case studies that showcase the approach.

Arévalo et al. [Are+04] also use a formal approach based on concept analysis to detect collaboration
patterns between software artifacts. Their approach is language independent and analyzes a sys-
tem’s structure and improves the pattern detection algorithm introduced by Tonella and Antoniol
[TA01]. In comparison to the approach we discuss in Chapter 6, their approach works on a lower
abstraction level and focuses on class relations, while our approach is on the level of architectural
components and focuses on architectural patterns.

Guéhéneuc et al [GJ01] propose a explanation-based constraint programming approach for iden-
tifying and correcting micro-architectures that are similar to design patterns. They use a library
of constraints to search for design patterns. Their approach provides the benefit of being able to
explain why pattern candidates where rejected. Based on these explanations their approach lets
the user decide to relax specific constraints if desired and create new solutions.

Alnusair et al. [Aln+13] propose an approach that uses semantic web technologies for the detection
of design patterns in source code. They formalize the structure and behavior of patterns using first
order predicate logic.

Lucia et al. [DL+10] present an approach based on linear temporal logic that analyzes pattern
instances’ behavior statically and dynamically. First a set of pattern candidates is computed based
on structural information. For the pattern candidates the model checking tool SPIN is used to
check if they fulfill the behavior specified in the pattern description using sequence diagrams.

All the approaches in this section utilize formal methods for the identification or the description of
design patterns. With the exception of one [Wuy98], all these approaches are automatic and thus
have a potentially slow run-time behavior and possibly yield a high number of false positives. In
addition, the discussed approaches work on the abstraction level of source code while the approach
in this thesis, is semiautomatic and searches for architectural patterns on the level of architectural
components, which, compared to the source code level, reduces the search space.

3.2.2.2 Graph-based Approaches

This section presents different approaches for identifying design patterns in source code that rep-
resent pattern descriptions or source code relations as graphs or use graph matching algorithms.

An approach that uses operations on finite sets of bit-vectors to detect design patterns is introduced
by Kaczor et al. [Kac+06a]. They utilizes the parallelism of bit-wise operations in a bit-vector
algorithm that is able to detect exact as well as approximate instances of a pattern. The program

Chapter 3. State of the Art 24

and the patterns are represented as digraphs from which a string representation is computed. These
string representations are used as input for the bit-vector algorithm. They present 3 case studies
where they search for the Composite and AbstractFactory patterns in three different existing
applications.

von Detten [Det11] proposes to use symbolic execution in order to improve the detection of be-
havioral design patterns which are specified on the basis of UML sequence diagrams. The author
integrates his approach into the Reclipse tool.

An automatic approach for pattern-based design recovery in Java was introduced by Seemann
and von Gudenberg [SG98]. Their approach is based on graphs and the authors showcase their
approach for the detection of the design patterns Composite, Bridge, and Strategy.

Balanyi and Ferenc [BF03] introduce a design pattern description language DPML that is based
on XML and allows the description of a patterns structure and behavior. They then use the C++
reverse engineering framework Columbus to create an abstract semantic graph of the software
system and compare this graph to the pattern descriptions.

Wendehals et al. [Wen03] present an approach that they use to identify design patterns in Java
source code. It uses graph rewrite rules and fuzzy logic to allow for design- and implementation
variants of design patterns and utilizes dynamic analysis to improve the recognition of design
patterns. The approach confirms the candidates that are found by static analysis using dynamic
analysis. The confirmed pattern candidates are then presented to the user.

Tsantalis et al. [Tsa+06] propose a pattern detection approach based on the similarity scoring
between graph vertices. Due to the underlying algorithm it supports the recognition of patterns
that deviate from the defined structure. However in the presented version of their implementation,
pattern descriptions are hard-coded within the tool.

All of the graph-based approaches that we presented in this section work automatically and focus on
the identification of design patterns in source code. The approach we describe in Chapter 6 is semi-
automatic and focuses on the documentation of architectural patterns as architectural knowledge
based on architectural components. It specifically supports consistency checking of documented
patterns in order to keep architectural documentation and source code consistent throughout the
evolution of a software system.

3.2.2.3 Miscellaneous Design Pattern Identification Approaches

While a considerable number of approaches are based on formal methods or graphs, various ap-
proaches have been proposed that use different techniques for the identification of design patterns.
Some of these automatic design pattern identification approaches use existing existing query tools

Chapter 3. State of the Art 25

and languages like Dali [Guo+99] or regular-expressions and SQL [RM11; SW08]. While some of
the design pattern identification approaches are based on pattern catalogs or similar [Det11; BF03;
GJ01], other approaches only support a sub-set of existing design patterns [Phi+03; Kel+99].
Philippow et al. [Phi+03] give an overview over existing automatic design pattern recovery ap-
proaches and introduce an approach based on minimal key structures that uses a number of posi-
tive and negative search criteria including the possibility of uncertain elements. They implemented
the search algorithms for the GoF patterns [Gam+95] Composite, Singleton, and Interpreter. The
approach provides support for variability but uses fixed algorithms for the detection of the de-
sign patterns. Like already mentioned before all fully automatic approaches require the manual
correction of false positives and cannot guarantee a hundred percent detection rate, which both
leads to additional manual effort in the architecture recovery process. However the most important
difference between all these approaches that focus on identifying design patterns and our approach
(Chapter 6) is, that we specifically target the identification and documentation of architectural
patterns and thus work on the abstraction level of architectural components while design pattern
identification approaches work on the level of source code or source models.

Different approaches try to tackle the problems usually encountered with automatic approaches
for the identification of design patterns and try to reduce the number of false positives by taking
not only structural but also behavioral information into account, like Heuzeroth et al. [Heu+03],
who detect design patterns in legacy code and classify their found pattern candidates based on
the evidence they find during static and dynamic analyses. In another direction go Bergenti
and Poggi [BP00], who present an interactive design assistant that automatically finds a subset
of the GoF patterns [Gam+95] in UML diagrams and produces critiques for the found patterns
thus providing suggestions for design improvements. Another recommendation system for design
patterns is proposed by Palma et al. [Pal+12]. They implement a design pattern recommender
based on a goal-question-metric that focuses on supporting the engineers during the implementation
/ adaptation of a system. Based on the answers a user provides to their questions, the system
suggests the pattern with the highest weight. However in order to recompute the weights and
re-evaluate the recommended patterns, a complete re-run of the tools is necessary.

Other approaches aim at aiding the user during the manual identification of design patterns. For
example, Shull et al. [Shu+96] proposed an inductive method based on a set of procedures and
guidelines to aid the engineers who have no knowledge in the architecture reconstruction process.
Washizaki et al. [Was+09] combine automatic searching for design patterns in a system’s structure
and behavior with additional user input, who needs to specify if the system matches the conditions
and smells of a pattern manually.

In contrast to the aforementioned approaches, Pinzger and Gall [PG02] also consider patterns on
a higher abstraction level. They use an interactive and iterative architecture recovery approach
that is built upon low level patterns that are automatically detected via string-pattern-matching

Chapter 3. State of the Art 26

and creates pattern views. The pattern views are then used to abstract higher level patterns which
enable the description of a system’s architecture. In contrast to this approach where design patterns
are automatically detected in the source code via string-pattern-matching, the approach we present
in Chapter 6 allows to semi-automatically define abstractions, and then provides the architect with
a number of possible existing patterns. Furthermore we specifically take evolution into account and
provide the user with automatic consistency checking and traceability links between documented
architectural pattern instances, architectural component views, and the source code during the
future evolution of a system.

3.3 Software Architecture Evolution

Since the latest definition of the Lehman’s Laws of Software Evolution [Leh96], many empirical
studies on their validation have been published. All these studies, as Herraiz et al. summarize
[Her+13], validate the first law of evolution, that is, software “must be continually adapted, or
else it becomes progressively less satisfactory in use.´´ Mainly, we can consider that systems must
evolve in order to continue being useful. This confirms the need of techniques, methods, tools,
etc. guiding the different stakeholders in the software evolution process. There are different
approaches to follow that facilitate such software evolution. However, several authors, such as
[Bar+08; Bar+12; Bre+12; Hol02; NT10], claim that architecting is the most appropriate point of
view to address this issue as it enables stakeholders to work at a higher abstraction level.

There is a great deal of attention on architecting for software evolvability, especially since 2008.
Several authors [Bre+12; Jam+13] have pointed out that this can be due to the fact that more and
more systems turn into legacy systems, so that both practitioners and researchers have realized the
importance of software architecture evolution. This attention on software architecture evolution
is also shown by the number of literature reviews and mapping studies that have been published
during the last five years. Some of them [Bre+12; Jam+13] have analyzed the available architecting
practices and have classified them mainly into two different groups: (i) those practices that help
stakeholders to design [Tar07] and assess [Cle+01] the evolvability of the software architecture
when this is being specified; (ii) those practices (see e.g. [Bar+12; Le +08]) applied to evolve the
software architecture. Our approach focuses on the latter category, that is, on providing architects
and developers with assistance when both software architecture and code must be evolved.

3.3.1 Techniques for Evolving Architectures

When analyzing the available techniques for evolving architectures, the above-mentioned literature
reviews identify a wide spectrum of approaches. There have been approaches, such as [Hun+08;
Cor+02], that have analyzed the exploitation of transformation techniques for evolving legacy

Chapter 3. State of the Art 27

Target

Architecture

Initial

Architecture

Transitional

Architecture

time
E
v
o
lu
ti
o
n

 S
ty
le
s

A
rc
h
it
e
ct
u
ra
l K
n
o
w
le
d
g
e

ADD1

ADD2

ADD3

ADD4

inhibits

ADD1

ADD2

ADD3

constrains

ADD5

ADD4

inhibits

ADD1

ADD2

ADD3

constrains

ADD5

ADD7

ADD6

constraints
inhibits

Figure 3.1: Evolution Styles and AK: guiding the evolution

systems. Specifically, they transform the architecture, previously abstracted from the code, to
apply all the necessary changes and then transform it to code again. Therefore, all the architectural
evolution is carried out just in a single step, without keeping the knowledge behind each evolution
decision, analyzing the different alternatives during the evolution, etc. This kind of transformations
from architectural specifications to code, is not always applicable, especially when the evolution to
be carried out entails the development of new code.

A different approach was followed by Tamzalit and others [Le +08; NT10; Tam+06]. They have
used the concept of architectural styles as the way to constrain the changes that can be applied to
a system being evolved. With this aim, they define these architectural styles as sets of evolution
patterns, which are specified as generic transformations. Despite the importance of AK, highlighted
by the authors [Le +08; NT10], during the evolution process, no support or assistance is provided
for its use. A similar proposal is that presented by Barnes et al. [Bar+12; Bar+13]. They defined
Evolution Styles to support software architects while evolving a software system from an initial
architecture to a target architecture. As shown on top of Figure 3.1, while applying the approach,
several evolution paths can be defined as sequences of evolution steps. As a result of every evolution
step a transitional architecture is obtained, that is, a new snapshot of the software architecture.
Every one of these evolution steps is specified by means of an evolution operator that determines
how the architecture must be modified.

One of the most interesting aspects of this approach is that it provides two different kinds of
analysis: path evaluation functions and evolution path constraints. In order to carry out the
former analysis, every evolution path is annotated with a list of properties, such as duration
or cost, so that the software architects can determine, for instance, the economical or temporal
feasibility of an evolution path. On the other hand, and thanks to the automatic support for the

Chapter 3. State of the Art 28

analysis of evolution path constraints [Bar+13], the software architects can determine whether the
identified evolution paths satisfy the rules of the evolution style. For instance, they could check
that a component is not removed until a wrapper has been developed.

As can be observed, the use of evolution styles helps software architects to plan the evolution of
the software architecture that should be subsequently implemented by the developers. Moreover,
they can also evolve a system in a way that does not violate any of the rules described in the style.
However, so far the relation to code that implements the architecture has been neglected and in
particular that the code might not be compliant with the planned software architecture.

Garlan et al. [GS09] propose a tool called Ævol, that supports the definition and planning of
architecture evolution based on Evolution styles. It allows the specification of evolution paths and
the comparison of alternative evolution paths regarding correctness conditions and cost-benefit.
While their approach has a similar focus, it requires the architect to specify all possible evolution
paths, whereas the approach we present in Chapter 9 only requires the definition of the necessary
evolution tasks and their dependencies, being generated automatically all possible decisions for
executing the tasks.

McVeigh et al. [McV+11] proposed Evolve, a model driven tool that captures incremental change
in the definition of software architecture. It implements Backbone, an architectural description
language with a graphical (UML2) and a textual representation. Based on the architecture doc-
umentation, backbone directly constructs initial implementations and extensions to these imple-
mentations. While their approach supports the evolution of a system’s architecture, the approach
we propose in Chapter 9 focuses on managing the complexity inherent to evolution and provides
valid plans for executing the tasks that arise during the evolution of a system.

An approach called ADVERT is proposed by Konersmann et al. [Kon+13]. Their approach
provides support for evolution on an architectural level by maintaining tracelinks between re-
quirements, design decisions, and architectural elements and also including software architecture
information into the source code. However, their approach does not consider planning the evolution
and thus has a focus different from our approach. In addition, their approach was only partially
implemented, being other elements assumed to work and only described for EJBs. However, the
approach we suggest in Chapter 9 is programming language independent.

Grunske [Gru05] proposes an approach for architectural refactoring based on a hypergraph-based
data structure that allows the formalization of refactorings as hypergraph transformation rules
that can be applied automatically. However, unlike the approach we present in Chapter 9, this
approach does not support evolution in general but is limited to behavior preserving architectural
refactoring.

Chapter 3. State of the Art 29

3.3.2 Managing Architectural Knowledge

Regarding the evolution of the SA, a second important aspect to be considered is how it became
specified in its latest form. It is important to know not only which or how many components and
connectors it has, or how they are related among themselves, but also it is important to know
what decisions have been made and why, that is, the rationale [PW92b] behind the architecture
specification. During the last decade, a great deal of attention has been paid to the field of
Architectural Knowledge (AK), since Bosch [Bos04] recalled the attention to this important aspect.
Unfortunately, too frequently, this AK vaporizes as architects fail to describe it in a proper way.
As Harrison et al. state [Har+07], this vaporization can have critical consequences, the expensive
system evolution being one of them.

Several empirical studies support this argument. For instance, Bratthall et al. [Bra+00] carried
out a survey with 17 subjects from both industry and academia and concluded that most of the
interviewed architects considered that by using AK they could shorten the time required to perform
change tasks. The interviewed subjects also concluded that the quality of the results, when they had
to predict changes on unknown real-time systems, was better using AK. Ozkaya et al. [Ozk+10a]
have also concluded, during their interview study, that the difficulties during both the initial phases
and the evolution of systems are not only due to the unavailability of AK, but also depend on its
ineffective use. This is especially noteworthy because, despite this unavailability and ineffective
use of AK, the interviewed architects have also remarked that they perceive AK to be essential
when evolution hits. Feilkas et al. [Fei+09] have carried out a case study on three industrial
information systems which had the importance of AK as one of its research questions. The authors
have detected that one of the problems in these projects was that developers were not aware of the
intended architecture because the AK was not properly described.

On the other hand, other empirical studies [Ahm+14; Din+14; Li+13; Tan+06; Tof+14] have
focused their attention on analyzing available AK practices. As one of their main results all of them
emphasize its usefulness as a valuable artifact for the software architecture evolution. For instance,
some works [Boe+09; Pah+09] have exploited an ontology-based approach to describe AK that can
be used for impact analysis by means of if-then scenarios. Another approach called Architecture
Rationale and Element Linkage (AREL) [Tan+07] is basically a language used to describe causal
relationships between Architectural Design Decisions (ADDs) and architectural elements. Using
these descriptions, the approach exploits Bayesian Belief Networks to carry out three different
probability-based reasoning methods that enable architects to estimate the impact of a change
before it is carried out. Other interesting work is a family of languages called ACL [Tib+10] that
enable software architects to relate architectural choices to decisions that are made throughout the
development process. One of the main strengths of the approach is that these decisions are defined
as constraints, so that the architectural model can be checked after its evolution to determine its
conformance. Another approach [Nav+13] proposes the use of anti-patterns to detect and record

Chapter 3. State of the Art 30

conflicting ADDs while the architecture is being evolved. However, as can be noticed, none of these
approaches really considers the evolution of the architecture, but just the use of AK for analysis
purposes.

Recently Cuesta et al. [Cue+13] have presented a proposal called AK-driven evolution styles
(AKdES), which focuses on the bottom part of Figure 3.1. Basically, the authors claim that every
evolution step is carried out because an evolution condition has been triggered. Then an evolution
decision, that must be stored as part of the AK as an ADD, has to be made as reaction to the
evolution. This evolution decision leads to an evolution step that must be carried out. It is worth
noting that all these ADDs as well as the relationships among them must be recorded in order to
have all the history of the evolution of the system properly described, so that the AK can be used
to avoid the previously sketched problems in the evolution process. As a result, ADDs are used to
convey the ideas behind each evolution step to both software architects and developers. However,
the already stated misalignment between code and SA can also happen, despite of considering such
AK as part of the evolution process, because misunderstandings, as well as architectural erosion
[Ter+13] or architectural drift [Ros+11], can, accidentally or not, occur. The approach presented
in Chapter 8 aims to address this open issue.

3.3.3 Approaches That Focus on Traceability and/or Change Impact Analysis

Feng and Maletic [FM06b] present an approach to analyze the impact of changing components at
runtime based on slicing on component interaction traces. Their dynamic component composition
model is based on a static model and a set of UML sequence diagrams. While their approach
focuses on the analyis of the impact of dynamic changes during runtime, in Chapter 5 we primarily
focus on providing architectural abstractions from source code to architectural component views
during software evolution and thus focus on changes at compile time between different evolution
steps of a software system.

Another approach that focuses on change impact analysis is presented by Zhao et al. [Zha+02].
They present an automated approach that uses architectural slicing and chopping to analyze formal
architectural specifications based on WRIGHT [AG97]. While this approach uses an architectural
specification as an input, in Chapter 5, we focus on semi-automatically providing this architecture
abstractions.

Knodel et al. [Kno+06] give an overview on how and when static architecture evaluations can
contribute to architecture development and show how architecture development is influenced by
architecture evaluations in the area of software product lines. While the approach from Chapter 5
targets the maintenance and recovery of architecture information in general, the approach intro-
duced by Knodel et al. [Kno+06] focuses on evaluating a system’s architecture regarding software
product lines.

Chapter 3. State of the Art 31

A wide variety of work has been done in the field of traceability: i.e. traceability of concerns
between architectural views [Tek+07], to linking design decisions to design models [KZ10a]. Win-
kler and Pilgrim [WP10] present a survey on the state of the art of traceability in requirements
engineering and model-driven development who base their work amongst others on the works by
Spanoudakis and Zisman [SZ05] who, based on extensive literature study, define eight different
kinds of traceability links, discuss a number of approaches for the generation and maintenance of
traceability links, and present a number of ways how traceability relations can be used in software
development.

3.4 Understandability of Software Architecture Documentation

In this section we give an overview of the current state of art regarding understandability metrics
as well as other approaches that utilize metrics in a similar way.

Many different software metrics for measuring the system’s architecture, components as its consti-
tuting parts, and structures similar to architectural component views, such as other higher-level
software structures (packages, graph-based structures) have been proposed. Metrics related to
components and the corresponding architectures [Kan+08; Sha+09; Sar01] measure size, coupling,
cohesion, and dependencies of individual components but also the complexity of the whole archi-
tecture when all the components and their interactions are taken into account. Different authors
have proposed different package level metrics that measure their size, coupling, stability, and co-
hesion [Mar03; GC12]. Graph-based metrics measure different interactions between the nodes in
the graph [Bha+12; Ma+06]. Some of the graph-based metrics have been shown to be useful in
measuring large scale software systems in the sense that those systems share some properties that
are common for complex networks across many fields of science [Ma+06]. All these mentioned
metrics can be applied or can be more or less easily adapted to be applicable for architectural com-
ponent views. However, none of the metrics is empirical evaluated regarding the understandability
of architectural components or architectural component views so far. In the software architecture
literature we find only very few studies that provide empirical evidence regarding the architectural
understandability or the measurement of architectural understandability (see e.g. [GC09; Eli10]).
The empirical studies in our group by Stevanetic et al. [Ste+14a] try to provide more evidence
in that context. While the main focus of this thesis is the creation and maintenance of software
architecture documentation during software evolution, the integration of understandability metrics
with the architecture documentation approach we propose in this thesis in Chapter 7, can be seen
as a starting point for future work on utilizing understandability metrics and additional studies on
the effect of understandability metrics on the architecture and source code quality are necessary.

Chapter 3. State of the Art 32

3.5 Empirical Studies Researching Software Architecture and De-
sign Understanding

In this thesis, as already discussed in Section 2.2, we have performed a controlled experiment that
lies the foundation for this thesis in Chapter 4, as it shows, that architectural component diagrams
can be helpful in aiding the architecture understanding. Based on this knowledge we propose the use
of architectural component views for documenting a system’s architecture in Chapter 5 and build
upon these architectural component views in Chapter 6 for the identification and documentation
of architectural patterns. We keep the focus of this section on controlled experiments and case
studies that provide contributions to software architecture and design understanding, while there
exists a huge number of case studies in the literature that have been performed to showcase the
applicability of specific approaches, that we do not discuss in this section.

The general notion of empirical studies in software architecture has been studied by Falessi et
al. [Fal+10]. They conclude from their study that a greater synergy between empirical software
engineering and software architecture would support the emergence of a body of knowledge con-
sisting of more widely accepted and well-formed theories on software architecture and the empirical
maturation of the software architecture area.

In Section 3.5.1 we discuss different studies that focus on architecture design. There also exist a
number of studies that focus on different aspects of components ranging from the optimal compo-
nent size to the reuse of components, which we discuss in Section 3.5.2. A number of works that
present studies and approaches with the topic of design understanding in general are presented in
Section 3.5.3. Section 3.5.4 discusses multiple empirical studies on different aspects of understand-
ability of UML diagrams. Finally a number of approaches that study the helpfulness of traceability
links between different artifacts are presented in Section 3.5.5.

3.5.1 Empirical Studies Related to Architecture Design

Only a few of the empirical studies in the area of software architecture are directly related to
architecture design or design understanding. Boucke et al. [Bou+10] introduce an approach that
explicitly supports compositions of models, together with relations among models in an architecture
description language. In an empirical study they show that their approach reduces the number of
manually specified elements and manual changes.

van Heesch et al. study in two surveys the reasoning process of architects, one with students [HA10]
and one with professionals [HA11]. A related study performs a controlled experiment about the
supportive effect of patterns in architecture decision recovery [Hee+12].

Chapter 3. State of the Art 33

Many empirical studies in the field of software architecture study other aspects, like quality as-
pects or other views. For instance, a number of studies related to evaluating architectures have
been conducted. Barbar et al. [Bab+07] performed an empirical study aiming at understanding
the different factors involved in evaluating architectures in industry. The influence of software
visualization on source code comprehensibility was studied by Umphress et al. [Ump+06] based on
control structure diagrams and complexity profile graphs. Biffl. et al. [Bif+08] study the impact
of experience and team size on the quality of scenarios for architecture evaluation. A number
of empirical studies aim at better understanding the relation of architecture and requirements
[Fer+10; Mil+10]. Various empirical studies relating architecture to certain qualities or metrics
have been conducted. For example, Hansen et al. study the relation of product quality metrics and
architecture metrics [Han+11].

Heijstek et al. [Hei+11] conducted a controlled experiment on whether visual or textual artifacts
are more effective at conveying architectural knowledge with 47 students and software engineering
professionals. In their experiment, they found no particular advantage of visual architectural
documentation compared to textual documentations. While we, in the controlled experiment
conducted in this thesis, used source code in the control group and source code aided by component
views in the experiment group, they did not use the source code at all for their experiment.

3.5.2 Empirical Studies Focusing on Other Aspects of Components

Even though we found no rigorous empirical studies of the effects of architectural component views
on understandability so far, aspects like reuse or fault density of components have been studied
empirically before. Fenton and Ohlsson have studied the relations of fault density and component
size in a large telecom system [FO00]. Mohagheghi et al. provide a study comparing software reuse
with defect density and stability [Moh+04]. Their study is based on historical data on defects,
modification rate, and software size. These metrics are compared to the reuse rates in a telecom
system. Mohagehghi and Conradi [MC08] also present a case study on the benefits of software
reuse in a large telecom product. In this study they evaluated and explored reuse benefits and
found that significant benefits in terms of lower fault density and code modification. They also
found that reuse reduced the risks and lead time of the second product as well as that reuse can
help reduce organizational restructuring risks.

Malaiya and Denton provide an analysis of a number of studies and identify the component par-
titioning and implementation as influencing, competing factors to determine the “optimal” com-
ponent size with regard to fault density [MD00]. Graves et al. have studied the software change
history of components to create a fault prediction model [Gra+00]. Metrics such as time elapsed
since the last changes, change times, and number of changes were used in the model, while size and
complexity metrics were not deemed useful. Our experiment and these studies have in common,

Chapter 3. State of the Art 34

that they make a link between component views and software quality, but in contrast to our ex-
periment they only study aspects that can solely be studied using the software systems and their
historical data. In contrast, we consider the (novice) architect’s perception of understandability
as well as expert opinions on their results. In addition, in those other studies, components are
understood as implemented software modules, rather than architectural abstractions.

3.5.3 Studies and Approaches on Design Understanding

There are a number of research directions related to improving design understanding of software
architectures. In particular, regarding architectural component views, software architecture liter-
ature suggests that architectural component views are central architectural abstractions [Cle+02],
and hence it can be assumed that they have a positive effect on the architectural understanding of
software systems (see e.g. [RW05; Cle+02]). A number of approaches suggest that other aids are
needed to gain a better understanding of the design or architecture, such as architectural views
[ISO11; Cle+02; Hof+00] or architectural decision models [TA05; Kru+06; Zim+09], which would
contain or augment component views. Both research directions only focus on complementing com-
ponent views with additional knowledge, but do not research on the effects of the component views
on the understandability of a software architecture or design but neither of them can fully resolve
understandability issues related to the component views themselves. Other literature suggests
that it might be hard to understand the source code only with models, and traceability links [Iee]
between components and code are needed to make the connection [Gal11].

Hungerford et al. [Hun+04] present a study on how 12 software developers use entity relationship
diagrams and data flow diagrams for defects search. They found that search strategies and defect
detection rate varied among the participants. Their results indicate that strategies that rapidly
switch between the two design diagrams are the most effective.

3.5.4 Studies Focusing on UML Diagram Understandability

A number of papers focus on the comprehension of UML diagrams. Some focus on dynamic models
[OD04], while others focus on specific diagrams or models like sequence diagrams [Gen+08], state
charts [CL+09], or class diagrams [Pur+01]. The influence of the level of detail in class and
sequence diagrams on the maintainability of software has been studied by Fernández-Sáez et al.
[FS+12]. In a paper by Fernández-Sáez et al. [FS+12] the effect of UML models with high and low
level of detail on software maintainability are studied. However no statistically significant result
could be obtained due to various factors. Only a slight tendency towards a better results with low
level of detail was found.

Chapter 3. State of the Art 35

Ricca et al. [Ric+07] report the results of three experiments they performed. In the experiments
they studied the effectiveness of UML stereotypes for Web design with regard to various compre-
hension tasks for different subjects. Their results show that Web design stereotypes are particularly
helpful to subjects with low experience. However they did not find a significant effect on the mean
performance, as the performance of experienced subjects did not change significantly.

Another set of experiments regarding UML stereotypes was performed by Staron et al. [Sta+06]
with students and participants from industry. They evaluated the role of stereotypes in improving
the comprehension of UML models. Their results show that stereotypes play a significant role in
the comprehension of models achieved by students as well as by professionals.

Tilley and Huang [TH03] performed a qualitative assessment of the efficacy of UML 1.4 diagrams
as graphical documentation in aiding program understanding. In their experiment they asked
participants to analyze a series of UML diagrams and answer a questionnaire on a hypothetical
software system. They identified three limiting factors for the efficacy of UML class diagrams:
ill-defined syntax and semantics of UML 1.4 itself, the role of spatial layout in fostering program
understanding, and the importance of domain knowledge in supplying necessary information to aid
the software engineer.

Torchiano [Tor04] studies if UML static object diagrams can improve program comprehension.
He asked 17 graduate students to answer questions about a software system which was either
described with a class diagram or with both a class diagram and an object diagram. The results
show a significant improvement for the experiment group for some, but not all tasks.

Otero and Dolato [OD04] evaluate the comprehension of designs in behavioral UML diagrams. In
this study, they conducted two experiments in which they assessed the time spent and the scores
obtained for answers to a questionnaire for different diagrams and different application domains.
In their studies they found that for the different application domains, different combinations of
diagrams support the comprehension best.

A number of studies have been conducted that focus on the effects of different UML models on
the understanding of a software system. An industrial case study focusing on the impact of UML
on software quality [NC09], as well as a controlled experiment studying the impact of OCL in
combination with UML find that the usage of UML (and OCL) improves the detection rate of
defects as well as program comprehension and impact analysis. While these approaches are similar
to our controlled experiment in their intent to study the impact of additional models, they do
not study the effect of architectural component diagrams in particular as they focus on the effects
of other UML models, or on comparing the effects of different diagrams while we study whether
(UML) component diagrams are beneficial to architecture understanding when provided to the
experiment group in addition to the source code.

Chapter 3. State of the Art 36

3.5.5 Studies Focusing on Traceability Links

A number of different studies examine the effects of traceability links on design understanding.
Mäder and Egyed [ME12] investigate the usefulness on traceability links between requirements and
the source code. In their experiment 52 students were given eight maintenance tasks on given
software projects. For half of the tasks traceability information was provided. Their results show
that the subjects found solutions faster and found better solutions when provided with traceability
information.

In a controlled experiment and its replication De Lucia et al. [De +09] assessed the usefulness of
an Information Retrieval-based traceability recovery tool during the link identification process. In
these two experiments they found that using the tool ADAMS [Bru+06] significantly reduced the
time spent by the participants to identify links. However they observed differences between partici-
pants with high and low experience. It seems that participants with lower experience profited more
as their achieved results came closer to the results achieved by participants with more experience.

In two other controlled experiments with bachelor and master students, De Lucia et al. [DL+11;
DL+06] investigate the quality of identifiers and comments produced when using COCONUT.
COCONUT is an Information Retrieval-based traceability recovery tool implemented as an Eclipse
Plugin that recommends candidate identifiers built on high-level use case information. Their results
indicate an improved quality of comments and variable names when COCONUT is used.

Two controlled experiments investigating the effects of the IR-based traceability recovery tool
SCOTCH [Qus+11] were conducted by Qusef et al. [Qus+12]. They asked 32 bachelor students to
perform traceability recovery tasks for two different systems in which the students had to find links
between test code and source code and compared the results to two base-line techniques (NC and
LCBA). Their results indicate an improvement when using SCOTCH over the base-line techniques
as participants identified a higher number of correct links with higher accuracy.

These studies show the positive effects of traceability links for finding faster and better solution
to given tasks. As such, these studies have a different focus then the one presented in Chapter 4,
but based on these findings, we ensured that the approach we present in Chapter 5 does not only
support the easy creation of traceability links between architecture and code, but our prototype
also provides them in a navigable manner in order to make switching between architecture and
code as simple as possible.

Part II

Supporting the Architect During
Evolution: Semi-automated

Architectural Component Model
Abstraction and Pattern Identifaction

37

4
Controlled Experiment on the Supportive Effect

of Architectural Component Diagrams for Design
Understanding of Novice Architects

4.1 Introduction

Today a software architecture description is usually comprised of multiple views [ISO11; Cle+02;
Hof+00]. The component and connector view (or component view for short) of an architecture is
a view that is often considered to contain the most significant architectural information [Cle+02].
This view deals with the components, which are units of runtime computation or data-storage,
and the connectors which are the interaction mechanisms between components [PW92a; Cle+02].
An architectural component view is a high-level abstraction of the entities in the source code of
the software system, as the software architecture concerns only the major design decisions about a
software system, and abstracts from irrelevant details [JB05].

While much research work has been done in component-related research areas such as modeling
languages for component and connector models, component implementation technologies, compo-
nent composition, and the formal semantics of components, only a very few rigorous empirical
studies relating to the use of component views in architectural descriptions of software systems
have been conducted. However, such foundational research is essential to provide guidelines and
tools to software architects, based on sound evidence, to help them understand how to design
component views that are appropriate for the architectural understanding of a software system.

We use the empirical data gathered in this controlled experiment as foundation for our other
research work that we present in this thesis, especially the approach for creating architectural
component views that we present in Chapter 5.

The goal of the experiment was to find an answer to Research Question 1 and determine whether
architectural component diagrams, provided in addition to a non-trivial software system’s source
code, have a supportive effect on the ability of novice architects to answer design and architecture
related questions about that system. This goal is interesting to study, as today it is unclear whether

39

Chapter 4. Controlled Experiment on the Supportive Effect of Architectural Component Diagrams
for Design Understanding of Novice Architects 40

component diagrams alone are sufficient to help architects to understand complex architectural
relationships in a given system in a better way than just studying the source code of that system.
While the software architecture literature suggests a supportive effects of component diagrams (see
e.g. [RW05; Cle+02]) for design understanding, there is little empirical evidence so far.

In addition, many existing approaches seem to assume seasoned architects as their main target
group. Assuming that component diagrams alone are a useful help to gain a better architectural
understanding of a system, as some of the software architecture literature suggests, it is unclear
whether this effect can also be observed for novice architects. As software architecture has the goal
to convey the big picture of a software system and novices who start on a new project especially
require help to gain such a big picture quickly, it is highly interesting whether there is indeed a
supportive effect on design understanding for them. Hence, in our experiment we particularly focus
on novice architects with medium programming experience.

The experiment presented in this chapter studies the experiment goal by letting 60 students with
medium programming experience answer seven questions about the design and architecture of a
given software system (the computer game FreeCol). One half of the participants, the control group,
received the source code of that system as the main source of information, while the other half
of the participants, the experiment group, additionally received architectural component diagrams
for FreeCol. The answers of the participants were rated by independent analysts. By showing
that the quality of the answers improves for certain questions, our study provides initial evidence
on how architectural component diagrams help in understanding the design and architecture of
software systems. The results indicate that architectural component diagrams are especially useful
if a direct link from the component diagram’s elements to the problem that requires understanding
can be made. That is, if the component diagrams provide some guidance or help to answer a
question. In these cases, component diagrams indeed have a supportive effect for software design
and architecture understanding. In contrast, if no such direct link can be made, we found evidence
that it should not be assumed that architectural component diagrams help in design understanding,
for instance only by providing a big picture view or some general kind of orientation.

In addition to the empirical study, the participants were also asked to complete a short questionnaire
after they completed the study. In this questionnaire we asked all participants for a self-evaluation
regarding their understanding of the given software system. In addition we asked the experiment
group if they found the component diagrams helpfull for the given task.

This chapter is organized as follows: In Section 4.2 we introduce our experiment, including the
goal, the hypotheses, the parameters and variables, the experimental design, and the execution.
The following Section 4.3 describes the statistical analysis and the testing of the hypotheses. In
Section 4.4 we present the results from the participants’ self-assessment. Section 4.5 provides the
validity evaluation. Finally, Section 4.6 concludes and discusses possible future research directions.

Chapter 4. Controlled Experiment on the Supportive Effect of Architectural Component Diagrams
for Design Understanding of Novice Architects 41

4.2 Experiment Description

For the design of the experiment we followed the guidelines by Kitchenham et al. [Kit+02] and
Wohlin et al. [Woh+12]. In our experiments, the guidelines by Kitchenham et al. were primarily
used in the planning phase of the experiments, while the advice by Wohlin et al. was used as a
reference for the analysis and interpretation of the results.

4.2.1 Goal and Hypotheses

As already mentioned in Chapter 2, the goal of the experiment was to determine whether archi-
tectural component diagrams, provided in addition to a non-trivial software system’s source code,
have a supportive effect on the ability of novice architects to answer questions about the design
and architecture of that system. Depending on the question asked, the guidance or help provided
by architectural component diagrams can vary greatly. The two extreme cases are that component
diagrams readily provide the answer without any need to study other information (like the source
code) and that component diagrams provide no clue for answering the question. Intentionally we
left out these two extreme cases and studied the shades of grey in between. In particular, we
further distinguished the following three types of questions in our experiment:

• QT1: A question about the software system’s design and architecture for which the compo-
nent diagrams provide some guidance or help, but the information in the component diagrams
alone is not enough to answer the question fully. This means that a question is assigned this
question type if the following criteria are fulfilled:

– The question focuses on one or more classes (objects) that are relevant for the architec-
ture of the system.

– The source code elements that are referenced in the question have the same or a very
similar name as an element (component, connector, or interface) in at least one of the
provided component diagrams.

– The answer to the question is at least partially provided by the component diagrams,
for example, because the component diagrams provide architectural information that is
required to answer the question.

– Finding the answer to this question without component diagrams requires substantial
effort as multiple classes in the source code have to be understood in order provide a
correct answer. For this experiment we classified a source code study as substantial
effort, if we estimated that it would take longer than 5 minutes to find the answer.

• QT2: A question about the software system’s design and architecture for which the compo-
nent diagrams provide some guidance or help, but the same information is easily visible from

Chapter 4. Controlled Experiment on the Supportive Effect of Architectural Component Diagrams
for Design Understanding of Novice Architects 42

the source code. This means that a question is assigned this question type if the following
criteria are fulfilled:

– The question focuses on one or more classes (objects) that are relevant for the architec-
ture of the system.

– The source code elements that are referenced in the question have the same or a very
similar name as an element (component, connector, or interface) in at least one of the
provided component diagrams.

– The answer to the question is at least partially provided by the component diagrams.
E.g. because the component diagrams provide architectural information that is required
to answer the question.

– Finding the answer to this question in the source code without the component diagrams
requires only a limited effort (a source code study for which we estimated that it would
take less than 5 minutes to find the answer to the question).

• QT3: A question about the software system’s design and architecture for which the compo-
nent diagrams provide no direct guidance or help, only vague orientation in related compo-
nents and connectors; digging in the source code is required for answering the question. This
means that a question is assigned this question type if the following criteria are fulfilled:

– The referenced source code elements cannot directly be connected to any element in any
of the component diagrams.

– The component diagrams provide no help in answering the question by providing addi-
tional architectural information.

– The focus of this question is not architecture related but rather related to the design or
implementation of the system.

The experiment goal has led to one null hypothesis that we tested for each question type:

Hypotheses

We postulate the following hypothesis about the effects of architectural component diagrams (in
addition to the source code) on the quality of answers that novice architects provide to questions
about a software system’s design and architecture.

With respect to the quality of the answers given by the control group and the experiment group,

• the null hypothesis is that the quality does not improve, H0 : µ ≤ µ0;

• the alternative hypothesis is that the quality improves, H : µ > µ0.

Chapter 4. Controlled Experiment on the Supportive Effect of Architectural Component Diagrams
for Design Understanding of Novice Architects 43

We tested this hypothesis for the each of the question types separately and expect differences in
the results.

Expectations

Our expectations for the results of the three tests are:

• For design questions of Type QT1, we expect that the null hypothesis can be rejected. That is,
component diagrams have a supportive effect on the answers that novice architects provide
to questions about a software system’s design and architecture, if the component diagrams
provide architectural guidance for answering the question.

• For design questions of Type QT2, we expect that the null hypothesis can not be rejected.
That is, component diagrams are helpful, but that novice architects with medium software
development experience are able to see the same information in the source code, if it is easily
visible. However, this expectation might be wrong as possibly the visual information in the
component diagrams might be more readily accessible to novice architects than the easily
visible information in the source code.

• For design questions of Type QT3, we expect that the null hypothesis can not be rejected, as
there is no direct relation between the question and the additional information provided by the
component diagrams. This expectations might be wrong however. The insight gained through
component diagrams might have an indirect supportive effect, for instance by providing some
kind of general orientation that helps in answering this type of questions.

4.2.2 Parameters and Variables

Dependent Variable

One dependent variable was observed during the experiment, as shown in Table 4.1: the quality
of the answer to the question. In this context, we see the quality of the answer as the degree
of insight that is shown in the given answer. The quality of the answers was assessed by three
independent software architecture researchers with multiple years of practical software development
and architecture experience (later also referred to as analysts) using an interval scale, ranging from
0 (worst) to 10 (best). The interval scale nature of the rating system was explained to the analysts
before their analysis (i.e., that equal distances between the points on the scale can be assumed),
as this is important for applying parametric statistical tests [Ste46]. The analysts were assigned
per question, and each analyst rated each of the assigned questions for all participants in both
experiment and control group, to make sure that each question is homogeneously assessed (e.g. the

Chapter 4. Controlled Experiment on the Supportive Effect of Architectural Component Diagrams
for Design Understanding of Novice Architects 44

first analyst rated Question 1 for all participants). Two analysts rated two of the questions, and
one analyst rated three of the questions. Each of the analysts studied the software system used
in the experiment before their analysis in depth. A catalog of reference answers that was agreed
upon by the analysts was created before the evaluation to ensure fair evaluation. In addition to
this the analysts were asked to review the ratings given by their colleagues. The ratings were left
to the analysts’ own experience and interpretation, but they were asked to specifically take the
displayed architectural understanding into account. The analysts were not part of the authorship
of this work and had no knowledge on the participants’ identities or whether a participant was part
of the control group or experiment group. The participants of the experiments were also reminded
before the beginning of the experiment that they should focus on the architectural dimension of
the questions.

Independent Variables

Table 4.1 shows the factor (the participants group) that we changed in order to observe its effect
on the dependent variable (the quality of the answers). The treatment for the control group was
to perform the task based on the source code, while the treatment for the experiment group was
that the task was performed based on the source code and component diagrams.

Table 4.1 also shows a number of other independent variables that could influence the dependent
variable. They mainly concern characteristics and previous experiences of the participants. We
observed these variables to ensure similar prior experiences in the control and the experiment group
to prevent the prior experiences from influencing the results of this experiment.

In addition to the prior experience, the size of the system used in the experiment might influence
the results of the experiment. We eliminated this variable by only asking questions about one
system.

4.2.3 Experiment Design

To test the hypotheses, we conducted the experiment in the context of the Software Architecture
course at the Faculty of Computer Science, University of Vienna in spring 2012.

Subjects

The subjects of the experiment were 60 students of the Software Architecture course. The subjects
were randomly assigned into two equally sized groups of 30 students: experiment group and control
group. The software architecture course is in the 4th semester or later of the bachelor computer
science program. In the software architecture course, prior to the experiment, all participants

Chapter 4. Controlled Experiment on the Supportive Effect of Architectural Component Diagrams
for Design Understanding of Novice Architects 45

Type Description Scale
Type

Unit Range

Dependent
Variable

Quality of the answer to de-
sign question

Interval Points 0 (worst) to 10 (best)

Independent
Variable
(Factor)

Group Nominal N/A Possible values (treatment): exper-
iment group (source code and com-
ponent diagrams), control group
(source code only)

Other
(observed)
Independent
Variables

Programming experience Ratio Years Positive natural numbers including
zero.

Programming experience in
Java

Ordinal Years 4 classes: 0, 0-1, 1-3, >3

Programming experience Ordinal Years 4 classes: 0-1, 1-3, 3-6, >6
Commercial programming
experience in industry

Ordinal Years 4 classes: 0, 0-1, 1-3, >3

Experience in programming
computer games

Ordinal Years 4 classes: 0, 0-1, 1-3, >3

Result in previous assign-
ments

Interval Points 0 (worst) to 34 (best)

System size Ratio Lines of
source
code

Positive natural numbers without
0.

Table 4.1: Observed Variables

learned to model and read component diagrams with multiple practical assignments and had to
perform an advanced implementation task. All of the participants have taken at least a basic
programming course prior to the Software Architecture course. 87 percent of the students in the
control group and 90 percent of the students in the experiment group have taken a course on object
oriented modeling where they also learned UML. 17 percent of the students in the control group
and 27 percent of the students in the experiment group have also attended a course on distributed
systems design and programming.

Objects

The basis of the experiment is the source code of the Freecol computer game1, an open source
version of the classic computer game Colonization (a turn-based strategy game) with multi-player
support, implemented in Java.

We used the tool SonarQube2 to measure the size and complexity of FreeCol and the results of this
analysis are shown in Table 4.2. Complexity measurement in SonarQube is based on the branches
in the control flow of a system3.

Both experiment group and control group were provided with access to the complete source code
of Freecol. In order to avoid any bias caused by participants having in-depth knowledge of com-
plex Integrated Development Environments (IDEs) or code editors, source code access was only

1See http://www.freecol.org/.
2See http://www.sonarqube.org/.
3See http://docs.codehaus.org/display/SONAR/Metrics+-+Complexity.

http://www.freecol.org/
http://www.sonarqube.org/
http://docs.codehaus.org/display/SONAR/Metrics+-+Complexity

Chapter 4. Controlled Experiment on the Supportive Effect of Architectural Component Diagrams
for Design Understanding of Novice Architects 46

Artifact Count
Lines of source code 95425
Lines 175689
Statements 47032
Classes 850
Functions 6797
Accessors 980

Avg. complexity per
Artifact

Complexity

Function 3.5
Class 28.4
File 39.3

Table 4.2: Results of the code quality analysis for FreeCol with the open source tool Sonar-
Qube(Version 4.3)

provided using the Browser-based code navigation tool that is integrated with our locally hosted
installation of Gitorious4. While all participants are familiar with one of the different existing
IDEs, participants having an in-depth knowledge of the IDE used in the experiment might have
introduced a bias.

Instrumentation

The participants of both groups received the following materials: The Browser-based access to
the source code of Freecol was provided in a Lab environment on prepared computers. All other
materials were provided on paper. The participants received a questionnaire about the independent
variables regarding the participants’ experiences. Both groups also received 7 different questions
about the design and architecture of Freecol (see below). In addition, the experiment group received
an additional document with the following 6 UML component diagrams:

• FreeCol Architecture Overview (Figure 4.1): This diagram gives an overview of the FreeCol
components on a very high abstraction level. It shows the three executable parts Client,
Server, and MetaServer and how these parts are connected. In addition it visualizes that the
Client and the Server both make use of a (partly) common Model.

• FreeCol Server Architecture (Figure 4.2): This view shows the architecture of the FreeCol
server in more detail. It depicts that the FreeColServer component handles the communi-
cation over the network. Received messages are then forwarded to the ServerController via
InputHandler. It shows that the Server has its own Model that uses an externally provided
model and that the AI component is integrated into the FreeCol server using an AIPlayer
interface.

• FreeCol Client Architecture (Figure 4.3): This view shows the architecture of FreeCol’s client
in more detail. The graphical user interface (GUI) component uses ActionHandlers and
Actions to communicate to the ClientController which updates the Model and communicates
with the Server using the IServerAPI provided by the Clients network implementation that

4See http://www.gitorious.org/.

Chapter 4. Controlled Experiment on the Supportive Effect of Architectural Component Diagrams
for Design Understanding of Novice Architects 47

Client Server

MetaServer

IServerDiscovery

IServerRegistry

Model

Network

<<uses>> <<uses>>

Figure 4.1: Freecol architecture overview

Server

Model

AI

FreeColServer
INetworking

IAIPlayer

Control

IModel

IModel

IInputHandler

Figure 4.2: View showing the architecture of the FreeCol server

is encapsulated in FreeColClient. Furthermore it shows that the client has two components
for playing audio and video files that are used by the GUI.

• FreeCol MetaServer Architecture (Figure 4.4): This view shows the two main components of
the MetaServer: the registry component that provides the functionality to (de)register and
browse open servers and the NetworkHandler that implements the network protocol that is
used for server discovery and server (de)registration.

• Detailed View: FreeCol Server – Control (Figure 4.5): This view is on an even lower ab-
straction level than Figure 4.2. It shows the detailed inner workings of the ServerControl
component.

Chapter 4. Controlled Experiment on the Supportive Effect of Architectural Component Diagrams
for Design Understanding of Novice Architects 48

Client

ServerAPI

Soundplayer

IVideo

Videoplayer

IModel

Actions

Controller

FreeColClient

IGameControl

IServerAPI

GUI

UpdateHandlerIActionHandler

IPlayVideo

IPlaySound

ISound

Figure 4.3: View showing the architecture of the FreeCol client

IServerRegistration

MetaServer

Registry

IServerDiscovery

NetworkHandler

IServerRegistry

Figure 4.4: View showing the architecture of the FreeCol meta-server

Chapter 4. Controlled Experiment on the Supportive Effect of Architectural Component Diagrams
for Design Understanding of Novice Architects 49

Control

Change

GameController

InputHandler

IServerModel

IEnvironment

Changer

IEnvironment

Changer

<<uses>>

IModel

IPlayerManager

IInputHandler

IInputProcessor

Figure 4.5: Detail view for the FreeCol Server showing the server-side Control component

common

ModelNetwork

IResourceProvider

Resource Option

ICustomizeIMessageSender

IMessageProvider

IModel

Figure 4.6: Detail view: FreeCol Commons

• Detailed View: FreeCol Commons (Figure 4.6): This view shows a number of components
that are used by the FreeCol client as well as by the FreeCol server. The most important of
these is the common model that is used by the FreeCol client and is also extended by the
FreeCol Server.

The component diagrams have been created in an architectural reconstruction of FreeCol that took
place before the experiment and was independent of the experiment.

In the experiment we have tested 7 different questions about the design and architecture of Freecol.
The questions have been confirmed by the independent analysts as being relevant questions for
understanding Freecol’s design and architecture. The questions and their classifications are shown
in Table 4.3. We have classified the questions into the question types from Section 4.2.1 as follows:

Chapter 4. Controlled Experiment on the Supportive Effect of Architectural Component Diagrams
for Design Understanding of Novice Architects 50

• QT1: For 3 questions (Q1, Q5, Q7) the component diagrams provide direct guidance or help
to better understand Freecol’s design and architecture, but the information in the component
diagrams alone is not enough to answer the question fully.

• QT2: For 1 question (Q2) the answer can be deduced both from the component diagrams
and the source code organization (in packages) alike.

• QT3: For 3 questions (Q3, Q4, Q6) the component diagrams provide no obvious information,
only vague orientation, and digging in the source code is required to answer the question.

We asked 3 questions of type QT1 and 3 questions of type QT3, so clearly those two question types
are our main focus. We also checked QT2, but only once, as it is a rather seldom occurring option
somewhat in between QT1 and QT3 that some design aspects are directly visible from the source
code organization. To illustrate the difference between the two extremes in our experiment, QT1
and QT3, and let us briefly explain the difference in the level of detail modelled:

• Example for Type QT3: For question Q3 of type QT3 there is only a component AI visible in
the FreeCol Server Architecture model. It has a single connector with the interface AIPlayer
to the Model component. This provides only vague orientation for answering question Q3, as
it enables the participants to know that AI concerns are implemented in the server packages
and that there is a link to the model classes, but it does not provide details for answering
the question.

• Example for Type QT1: For question Q1 of type QT1 there are significantly more details
and links to all important aspects of the question in the component diagrams. First of
all in the FreeCol Client Architecture model, we can see a component Controller that is
linked through a connector with an interface GameControl to the Actions component and
through another connector with an interface UpdateHandler to the GUI component. This
enables participants to understand how GUI Actions use InGameController (and another
class ConnectController) to perform model, game, etc. updates using basic controls. It also
makes it easy to find various basic control tasks in the game’s client, which can then easily
be found in the source code. The Controller also has a connector to a port with the Model
interface, which links to details in the Commons and Server Architecture component views.
In the server, the Model component is linked to another Control component which is modelled
in a detailed view, the FreeCol Server: Control component diagram. This enables participants
to understand (1) the client-server relationship for control and the synchronization through
models and (2) the event handling for changes through model messages.

Clearly, the level of detail for question type QT1 is much higher. We hope this example helps
to illustrate what we mean by “providing direct guidance or help” for QT1 in contrast to “vague
orientation” for QT3.

Chapter 4. Controlled Experiment on the Supportive Effect of Architectural Component Diagrams
for Design Understanding of Novice Architects 51

ID Type Question Classification Details
Q1 QT1 Explain the role of the class

“InGameController” in the Pack-
age “net.sf.freecol.client.control”.
What is its purpose?

Component diagrams provide detailed orien-
tation through related components and con-
nectors, and also hint at interesting archi-
tectural concerns not easily seen from the
source code. Connection to the source code
must be made for providing the full answer.

Q2 QT2 How many and which independent exe-
cutable programs belong to this game?

Component diagrams provide detailed orien-
tation. The answer can be deduced from the
component view, but also from the package
structure in the source code.

Q3 QT3 Explain how the computer players (AI)
are integrated into the game. Which
classes are responsible for the inte-
gration and implementation of the AI
players? In which of the executable
program(s) (see Q2) do they run?

Component diagrams provide vague orienta-
tion through components. The source code
is the main source of information.

Q4 QT3 What is the role of the
class “DOMMessage” in the
“net.sf.freecol.common.networking”
Package? How is it used in the game?

Component diagrams provide no details for
answering the question, only vague orienta-
tion. The source code is the main source for
getting the required information.

Q5 QT1 What is the role of classes in the pack-
age “net.sf.freecol.metaserver”?

Component diagrams provide detailed orien-
tation through related components and con-
nectors. Connection to the source code must
be made for providing the full answer.

Q6 QT3 What are the roles of the classes in the
packages “net.sf.freecol.server.model”,
“net.sf.freecol.client.control”,
“net.sf.freecol.common.model”? How
are they related to each other?

Component diagrams are useful for basic ori-
entation, but not for answering the question.
The source code is the main source of infor-
mation.

Q7 QT1 In order to show a consistent game
state to all players, the programs of
the different players must be updated
regularly. How and by which classes
is this mechanism realized? Sketch the
control flow from one class (or object)
to the next one.

Component diagrams show related compo-
nents and connectors, and a few details help-
ful for answering the question. Component
diagrams also hint at the architectural big
picture not easily seen only from the source
code.

Table 4.3: Questions and Classification of Questions

4.2.4 Execution

The experiment was executed in the context of the Software Architecture course at the Faculty of
Computer Science, University of Vienna in the summer semester 2012/2013 where it was executed
as one of the tasks of the practical course. Before the experiment took place, the participants were
randomly assigned to experiment group and control group. Each of the two groups consisted of 30
participants (total participant number: 60).

Figure 4.7 shows the previous experience of the participants for the control group and the experi-
ment group. In particular, the figure shows the programming experience of the participants, which
is quite comparable in the two groups, with slightly more participants with longer experience in
the experiment group. The industry programming experience is low in both groups, with a few
participants with 1, 1-3, or even more than 3 years of industry experience in both groups. Finally,

Chapter 4. Controlled Experiment on the Supportive Effect of Architectural Component Diagrams
for Design Understanding of Novice Architects 52

most participants have no game programming experience; the very few participants with game
programming experience are equally present in both groups.

Control Group Exp. Group

Programming Experience

0
5

1
0

1
5

2
0

2
5

0 to 1 years
1 to 3 years
3 to 6 years
More than 6 years

Control Group Exp. Group

Industry Programming Exp.

0
5

1
0

1
5

2
0

2
5

3
0

No experience
Up to 1 year
1 to 3 years
More than 3 years

Control Group Exp. Group

Game Programming Exp.

0
1
0

2
0

3
0

4
0

No experience
Up to 1 year
1 to 3 years
More than 3 years

Figure 4.7: Experience of the Participants

Before the experiment started, the materials explained in Section 4.2.3 were handed out to the
participants and the tasks were briefly explained to both groups. After 15 minutes of introduction,
the participants were given time to fill out the questionnaire about their experiences. After all
participants were ready, the answering of the questions started. The answers were provided by the
participants on paper. This main phase of the experiment lasted for two hours.

The data collection was performed as planned in the design. No participants dropped out and no
deviations from the study design occurred.

The experiment took place in a controlled environment. The experiment was conducted for both
groups in different rooms, equipped with computers to which the participants had logins. At
least one experimenter was present in each room during the whole experiment time to assure
that participants behaved as expected. After the experiment, all materials were collected by the
experimenters before any of the participants left the room. There were no situations in which
participants behaved unexpectedly.

4.3 Analysis

4.3.1 Descriptive Statistics

Figure 4.8 shows the means for the quality of the answers given to the seven questions Q1–Q7 for
both control group and experiment group (the values can also be seen below in Table 4.5). As can
be seen, the means for questions of type QT1 (Q1, Q5, Q7) are always higher in the experiment
group than those in the control group. For the question of type QT2 (Q2) the control group yields

Chapter 4. Controlled Experiment on the Supportive Effect of Architectural Component Diagrams
for Design Understanding of Novice Architects 53

a slightly better result. The means for questions of type QT3 (Q3, Q4, Q6) of the experiment
group show the same or slightly better results than those of the control group.

Q1 Q2 Q3 Q4 Q5 Q6 Q7

Means

0
2

4
6

8
1
0

1
2

Control Group

Experiment Group

Figure 4.8: Means of control and experiment group for the seven questions

4.3.2 Data Set Reduction

Outliers are potential candidates for dataset reduction, i.e. data points that are either much
higher, or much lower than other data points. Our analysts did not report any participants that
might have caused outliers by intentional or motivated misreporting. The deviations from the
means for the ratings of all questions are in a corridor that roughly corresponds to our previous
experiences from other exercises with participants in our courses. Hence, we did not want to
exclude individual participants from the data set, as excluding data points would have introduced
a potential vulnerability for the study results.

An interesting outlier in the means for the seven questions is Question Q7, where both groups
performed rather poorly. Hence, we studied the answers for this question in depth to understand
whether it is necessary to exclude Question Q7 from the further analysis, for instance because it was
too hard to answer or simply because the participants did not have enough time for answering the
question (which was the last question). First we checked the protocols of the experiment and most
participants have finished before the end of the 2 hours slot, so the limited time frame does not seem
to be the cause of the poor results. To study whether the question was too difficult, we did an in
depth study of answers without knowledge whether the individual answers were from the control
group or the experiment group. The results are: Indeed, Question Q7 seems to be a difficult
question that requires complex design and architecture understanding and making connections
across multiple parts of the FreeCol system’s design and architecture. Most participants failed and
reached 0-3 points. Very few participants are in the middle ranks of 4-6 points. Only 6 out of the

Chapter 4. Controlled Experiment on the Supportive Effect of Architectural Component Diagrams
for Design Understanding of Novice Architects 54

60 participants managed to provide a sufficient answer to the question (with a score > 6 points).
We checked all sufficient answers, and all of them have understood the problem addressed by the
question. As this means that 10% of the participants were able to answer the question sufficiently,
it does not seem impossible for novice architects to answer Question Q7, just difficult. Hence, we
decided to not exclude the question from further analysis but rather view it as a case to study a
difficult question of type QT1.

4.3.3 Hypotheses Testing

Testing the Normality of the Data

As a first step in analysing the data, we tested the normality of the data by applying the Shapiro-
Wilk test [SW65], in order to see whether we can apply parametric tests like the t-test that assume
the normal distribution of the analysed data. The null hypothesis H0 for the Shapiro-Wilk test
states that the input data is normally distributed. H0 is tested at the significant level of α = 0.05
(i.e., the level of confidence is 95%). That is, if the calculated p-value is lower than 0.05 the null
hypothesis is rejected and the input data is not normally distributed.

Group N Shapiro-Wilk test p-value
Q1 Q2 Q3 Q4 Q5 Q6 Q7

Control
Group

30 0.06505 6.528e-05 0.07345 0.0852 0.005865 7.255e-05 1.362e-06

Experiment
Group

30 0.01998 9.035e-05 0.04852 0.3658 0.0002576 3.028e-05 0.0007023

Table 4.4: Results of the Shapiro-Wilk normality test

In the Table 4.4 the p-values for the Shapiro-Wilk normality test for the seven questions Q1–Q7 for
both control group and experiment group are shown. As can be seen, most questions do not have
a normal distribution (i.e., hypothesis H0 is rejected). Based on these considerations of normality,
we decided to pursue non-parametric statistical tests with our data.

Comparison of the Means Between Two Variables

To compare the means of the variable for the control group and experiment group of a question,
we applied the Wilcoxon rank-sum test [MR47]. The Wilcoxon rank-sum test is a non-parametric
test for assessing whether one of two data samples of independent observations is stochastically
greater than the other. The null hypothesis of the one-tailed Wilcoxon test (appropriate for the
hypotheses in our experiment) is that the means of the first variable’s distribution is less than
or equal to the means of the second variable’s distribution,so that we can write H0 : A ≤ B.
The Wilcoxon rank-sum test tries to find a location shift in the distributions, i.e., the difference
in means of two distributions. The corresponding alternative hypothesis HA could be written as

Chapter 4. Controlled Experiment on the Supportive Effect of Architectural Component Diagrams
for Design Understanding of Novice Architects 55

HA : A > B. If a p-value for the test is smaller than 0.05 (level of significance), the null hypothesis
is rejected and the distributions are shifted. If a p-value is larger than 0.05, the null hypothesis
can not be rejected, and we can not claim that there is a shift between the two distributions.

ID Control
Group: Mean

Experiment
Group: Mean

p-value

Q1 6.3 7.466667 0.02021
Q2 7.466667 7.1 0.4818
Q3 3.866667 4.3 0.263
Q4 4.266667 4.333333 0.494
Q5 3.133333 5.266667 0.01512
Q6 7.9 8.066667 0.2212
Q7 1.166667 2.433333 0.006899

Table 4.5: Results of the Wilcoxon rank-sum test

In the Table 4.5 the p-values for the Wilcoxon rank-sum test are shown, together with the means
for control group and experiment group. The raw material for these results is presented in the
Appendix in Table A.1. Based on the obtained p-values, we can assess that the following distribu-
tions show a statistically significant shift between each other: Q1, Q5, and Q7. None of the other
variables shows a statistically significant shift.

Testing Hypothesis H for QT1

In our experiment, we have introduced 3 questions related to QT1: Q1, Q5, and Q7. Each of
the three questions shows a significant location shift in their distributions, and in each of them
the experiment group shows better results than the control group in their means. This provides
evidence that H0 can be rejected for QT1. That is, indeed there is evidence that augmenting
the source code with architectural component diagrams improves the quality of answers that novice
architects provide to questions about a software system’s design and architecture, if the component
diagrams provide architectural guidance for answering the question.

It is interesting to note that the difficult Question Q7 shows the same result (even with the
highest significance level) as Questions Q1 and Q5 (of medium difficulty). While many of the
participants in the experiment group failed as well, all but one of the sufficient answers were in the
experiment group. This result seems to indicate that component diagrams can be especially helpful
for problems that require making complex design and architecture connections across multiple parts
of the system.

Testing Hypothesis H for QT2

In our experiment, we have introduced 1 question related to QT2: Q2. For this question we can
observe higher means for the control group than for the experiment group, however the location

Chapter 4. Controlled Experiment on the Supportive Effect of Architectural Component Diagrams
for Design Understanding of Novice Architects 56

shift is not statistically significant. This provides evidence that H0 can not be rejected for QT2.
As expected, there is no evidence that augmenting the source code with architectural component
diagrams does improve the quality of answers that novice architects provide to questions about a
software system’s design and architecture, if the component diagrams provide architectural guidance
for answering the question, but the same information is visible from the source code.

Testing Hypothesis H for QT3

In our experiment, we have introduced 3 questions related to QT3: Q3, Q4, and Q6. The means
of the experiment group show the same or slightly better results than those of the control group.
None of the three questions shows a significant location shift in their distributions, so H0 can
not be rejected for QT3. As expected, there is no evidence that augmenting the source code
with architectural component diagrams does improve the quality of answers that novice architects
provide to questions about a software system’s design and architecture, if the component diagrams
provide no direct guidance or help, only vague orientation in related components and connectors.

4.4 Discussion of the Post-study Questions

In this section we present the results from one post-study question that all participants were asked
to complete, and one post-study question that was posed only to the experiment group. The idea
behind the questionnaire was to capture the participants own opinion on the supportive effect of
component diagrams as well as their opinion on how well they understood the architecture of the
given software system and whether their opinions are reflected in the achieved results. Therefore
we asked all participants:

Question 1: On a scale of 1 (worst) to 10 (best) – how would you rate your under-
standing of FreeCol after this session?

We report the data for this question in Table 4.6. The medians and means show that the experiment
group, which achieved slightly better scores then the control group, also give themselves a slightly
better score then the control group. However these two samples are not normally distributed and
thus we used a Wilcoxon Rank Sum test to determine if the two samples differ significantly. With
a resulting p-value of 0.3941 the groups do not differ significantly. Like any result based on the
personal opinion of the participants, it is hard to draw any conclusions as a number of different
interpretations are possible.

One possibility is that component diagrams have no effect on the self-evaluation of the participants,
as the empirical score of the participants shows a similar difference between the experiment and

Chapter 4. Controlled Experiment on the Supportive Effect of Architectural Component Diagrams
for Design Understanding of Novice Architects 57

Median Means
All participants 6 5.809
Experiment Group 6.5 6
Control Group 5 5.625

Table 4.6: Median and means for post-study Question 1 for all participants, the control group,
and the experiment group.

the control group, and on average, the participants estimate their own performance as quite good
and thus come to a similar result as our empirical study.

The results also seem to underline the results of our empirical study in so far, as we were able
to show a supportive effect of the component diagrams only for one type of question. Hence, it
cannot be expected that the experiment group has the impression to have gained a significantly
better understanding than the control group with regard to the whole experiment. It would be
interesting to study if the results would be significantly different if we would only provide questions
of type QT1.

Another possible conclusion from this result with respect to the rest of the experiment could be,
that component diagrams do not provide a false sense of improved understanding. As a significant
difference in the self-evaluation could be interpreted as a distortive effect that component diagrams
have on how participants rate their own understanding of the system when the experiment only
showed significant results for QT3 and not QT1 or QT2.

In addition we asked all participants of the experiment group to answer the question whether they
found component diagrams helpful:

Question 2: On a scale of 1 (worst) to 10 (best) – how helpful were the component
diagrams?

The statistical data for this question is shown in Table 4.7. One of the participants gave the lowest
possible score and the highest score given was an eight (given by three participants). However, the
average score is 5.2407, which is close to, but slightly below the average for the defined scale of 1
to 10 which is 5.5.

It seems that although the empirical data suggests a beneficial effect of component diagrams under
specific circumstances (QT1), this effect is not reflected in the participants opinions. Again, as we
asked the question for component diagrams in general and not for specific questions, this result
can be expected after the results of the empirical study, as it is unlikely that the questions of type
QT2 and QT3 made no impression on the participants or that the questions of type QT1 had such
an impact on the participants’ opinions that they would effect the overall rating of the component
diagrams.

Chapter 4. Controlled Experiment on the Supportive Effect of Architectural Component Diagrams
for Design Understanding of Novice Architects 58

Means Median Minimum Maximum
5.2407 5 1 8

Table 4.7: Statistical data for the question whether the participants deemed component diagrams
helpful

With respect to the two post-study questions, we can conclude that the answers are consistent
with the results from the study, as the study only showed a supportive effect for one of the three
question types and thus statistically significant results for the post-study questions were not be
expected.

4.5 Validity Evaluation

Several levels of validity have to be considered in this experiment. We consider the classification
scheme for validity in experiments by Cook and Campbell [CC79].

Internal Validity

The internal validity is the degree to which conclusions can be drawn about cause-effect of inde-
pendent variables on the dependent variables.

• The subjects’ experiences in the two groups have approximately the same degree with re-
gard to programming, industrial, and game programming experience. Of course, a certain
difference in experience between the two groups can not be entirely excluded.

• All subjects have at least medium programming experiences and have passed several courses
on programming and design at our university. Hence, we consider their responses as valid,
keeping in mind that our goal was to analyze the supportive effects component diagrams have
on novice architects.

• As the experiment lasted less than 2 hours fatigue effects were not considered relevant.

• No randomization of questions has been used and thus the participants might have gained
insight while carrying out the first tasks that might have influenced their performance in
the later questions. No particular order of the questions was enforced by the experimenters
and the participants received all questions at the same time and could choose the order in
which they answered the questions freely. Furthermore participants could revise answers to
previous questions at any time. Thus it is not likely that any insight gained would affect the
later tasks more than the tasks performed in the beginning.

Chapter 4. Controlled Experiment on the Supportive Effect of Architectural Component Diagrams
for Design Understanding of Novice Architects 59

• The experiment happened in a controlled environment in separate rooms under supervision
of at least one experimenter. While it is not possible to completely exclude misbehavior or
interaction among participants, it is not very likely that misbehavior or interactions have had
a big influence on the outcomes of the experiment.

• Possibly the analysts could have been biased towards the experiment group in some way. We
tried to exclude this threat to validity by not revealing to the analysts the identity of the
participants or in which of the two groups they have participated. Hence, it is rather unlikely
that this threat occurred.

• Regarding the post-study questions: The participants were not told that the tasks they were
given, were part of an experiment. In addition, they were explicitly told that the questionnaire
at the end of the experiment was not part of their grade but that we asked for their personal
opinions. This way we tried to reduce risk that the participants’ opinions were influenced by
the experimenters. However this thread cannot be totally ignored.

External Validity

The external validity is the degree to which the results of the study can be generalized to the
broader population under study. The greater the external validity, the more the results of an
empirical study can be generalized to actual software engineering practice.

• We used students of our software architecture lecture as subjects. As discussed above,
they have medium programming and design experience, but limited professional experience.
Hence, we believe them to be well representative for the target group of novice architects,
but if and how the results can be translated to more experienced architects is open to future
study. We plan to replicate the experiment with other target groups to find out more.

• The instrumentation and object in the experiment might have been unrealistic, not represen-
tative, or too simple to allow generalization. For instance, FreeCol as an open source game
might be too simple or no representative software system for typical architectural studies.
The component diagrams used might not be representative or unrealistic. Or the questions
asked might not be typical design or architecture questions. All these considerations might
impede the generalizability of our results. We do not think that this is the case as FreeCol
is a widely used, non-trivial software system implemented in Java. The component diagrams
were created in an architectural reconstruction effort that took place before the experiment
and was independent of the experiment. The questions have been confirmed by the indepen-
dent analysts as being relevant questions for understanding the design and architecture of
FreeCol.

Chapter 4. Controlled Experiment on the Supportive Effect of Architectural Component Diagrams
for Design Understanding of Novice Architects 60

• The experimenters could have biased the measurements of the independent variables. We
mitigated this risk by assigning the quality ratings to independent analysts that had no
knowledge about the goals of the experiment. Furthermore the analysts did not know the
identities nor the groups of the participants.

• While all of the participants had seen component diagrams before, their prior experience with
component diagrams was limited and thus their personal opinions on the helpfulness of those
diagrams primarily stemmed from this experiment. Participants with other backgrounds, e.g.
seasoned architects who have prior experiences with using component diagrams, might give
answers that are not or less influenced by the tasks in the study.

Conclusion Validity

The conclusion validity defines the extent to which the conclusion is statistically valid. The sta-
tistical validity might be affected by the size of the sample (60 participants, 30 in each group).
The size can be increased in replications of the study in order to reach normality of the obtained
data. We plan to replicate the study with different systems and by engaging subjects who work in
industry in our future work.

Construct Validity

The construct validity is the degree to which the independent and the dependent variables are
accurately measured by their appropriated instruments. As only one object, the FreeCol imple-
mentation and associated component diagrams, was used in the experiment, there is the risk that
the cause construct is under-represented. Possibly, the results could look different if multiple sys-
tems and multiple sets of diagrams would be used for the recovery. In case of bigger and more
complex systems, diagrams might be easier to understand than source code. We assume that the
used system is representative for medium-size object-oriented systems. This threat, however, can
not totally be ignored. Another potential threat to validity is that we only used one variable
to measure the quality of answers. This does not allow cross-checking the results with different
measures.

4.6 Conclusions

Our study provides initial evidence on how architectural component diagrams help in understanding
the design and architecture of software systems. The results indicate that architectural component
diagrams are especially useful if a direct link from the component diagram’s elements to the problem
that requires understanding can be made. Component diagrams seem to help in such cases to

Chapter 4. Controlled Experiment on the Supportive Effect of Architectural Component Diagrams
for Design Understanding of Novice Architects 61

understand the bigger architectural connections that are hard to see from studying the source code
alone and/or they provide orientation in the source code to understand such problems. However,
there is a different situation for problems that are readily solvable by looking at the source code
(like the question of type QT2 in our experiment) or for problems that are only vaguely linked to
what is depicted in the component diagrams (like the question of type QT3 in our experiment).
As expected, we found no evidence that architectural component diagrams help with respect to
QT2 and QT3, for instance, just by providing a big picture view or providing some general kind
of orientation. This data is in line with the observation from the post-study questions that the
participants’ self-assessment of their architecture understanding is slightly but not significantly
higher for the experiment group and that the participants gave an average score of 5.2 out of 10
on the question how helpful the component diagrams were.

We can conclude for the design of architectural component diagrams that they should be designed
with specific important architectural problems in mind and that elements of the component dia-
grams should explicitly represent links to those problems. That is, components, connectors, and
other model elements for providing an abstract understanding of the design that resolves the prob-
lem should be shown in the diagrams. The component views related to questions of type QT1 in
our experiment achieve this by leaving out irrelevant details and showing high-level connections
of system parts that are hard to reconstruct by just studying the low-level source code classes.
It also seems to be important that these links from component views to the problem in focus are
modeled in enough detail. Only vaguely showing a problem-related component in its context of
other components and connectors that are not related to the problem is not enough.

It seems plausible, based on our results, that such details could also be provided through other
architectural views or through architectural knowledge models. Further, it seems that making
links to the source code is important for the supportive effect revealed in our study. Such links
can be made explicit through traceability links. Hence, it also seems plausible that establishing
traceability links between architectural component views and code might have a further supportive
effect. We plan to study these aspects in further studies in our future work. From the combined
results of this and future studies we plan to develop design guidelines for architectural component
diagrams.

Regarding generalizability, our results are strictly limited to the target group of novice architects
with medium programming experience. We expect that similar results will also show for seasoned
architects, but potentially they can make more use of vague information in architectural component
diagrams. Again, we plan to investigate this in our future research.

In the following chapter (Chapter 5), we use the findings from this Chapter as a basis to propose
our own approach for documenting architectural component views, that links architectural com-
ponents to the source through architecture abstraction specifications and takes the findings from
this controlled experiment into account, as it provides navigable traceability links directly in the

Chapter 4. Controlled Experiment on the Supportive Effect of Architectural Component Diagrams
for Design Understanding of Novice Architects 62

prototype and, if necessary, as HTML tables that link architectural components to source code
and vice versa.

5
Semi-automated Architectural Abstraction

Specifications for Supporting Software Evolution

5.1 Introduction

The approach presented in this chapter focuses on architectural abstractions from the source code
in a changing environment while still supporting traceability. It is motivated and based on the
findings of the controlled experiment we presented in Chapter 4 on the one hand, and on the
other hand by the problem that in many software projects the design and the implementation drift
apart during development and system evolution [Jan+07]. In some small projects this problem
can be avoided, as it might be possible to understand and maintain a well written source code
without additional architectural documentation. For many larger systems, this is not an option,
and additional architectural documentation is required to aid the understanding of the system and
especially to comprehend the “big picture” by providing architectural knowledge about a system’s
design [Bro13]. One way to provide this information are automatically generated diagrams of the
systems (e.g. in form of class diagrams) [Kos03]. However these diagrams usually do not represent
higher-level abstractions, and hence they hardly support the understanding of the big picture.
First of all, the sheer size of the automatically generated diagrams is often a problem. In addition,
creating an automatic layout or partitioning that is understandable is still an open research topic
[SW05; Eig+03]. Clustering approaches from the reengineering research literature (e.g. [Abr+00;
Die+08; DB11]) can help to obtain an initial understanding and make sense of such diagrams.
However the case study by Corazza et al. [Cor+10] shows that in five out of seven cases it is
necessary to make manual corrections for about half of the entities of the analyzed source code.

As a consequence, today the documentation of the system’s architecture is usually maintained
manually. To model architectural knowledge, often models using box-and-line-diagrams [RW05],
UML [Obj10], architecture description languages (ADLs) [MT00], or similar modeling approaches
are used. In many cases, such models are created before the actual implementation begins. Later,
during implementation and system evolution, they loose touch with reality because changes to the
software design are only made in the source code while the architectural models are not updated
[Zim+08]. This problem is known as architectural knowledge evaporation [Jan+07].

63

Chapter 5. Semi-automated Architectural Abstraction Specifications for Supporting Software
Evolution 64

A considerable number of works exist that focus on abstractions from source code [Men+02;
Mur+95a; DB11; Egy04]. However, to the best of our knowledge, so far none of these approaches
targets architectural abstractions at different levels of granularity, traceability between architec-
tural models and the code, and the ability to cope with the constant evolution of software systems.
Our approach introduces the semi-automatic abstraction of architectural component and connec-
tor view models from the source code based on an architectural abstraction specified in a domain
specific language (DSL) [Fow10; Gro09]. In contrast to the related works, this approach specifically
targets architectural abstractions and requires changes to the architectural abstraction specifica-
tions only in the rare case that the architecture of the system changes, but not for the vast majority
of non-architectural changes we see during a software system’s evolution (see Section 5.2). Please
note that in the literature the term “component model” is often used to describe metamodels
for component-based development [LW07]. In this chapter, we (only) use the term architectural
component and connector view (or component view for short) to describe a model that contains
architectural components (as in [Ive+04]).

We chose a semi-automatic approach to enable the software architect to provide information which
system details are relevant for getting the right level of abstraction – as software architecture
is usually described in different views at different levels of abstraction. Our goal is to let the
software architect specify this information with minimal effort in an easy-to-comprehend DSL
that provides good tool support. Our approach allows architects to create different architectural
abstraction specifications that represent different levels of abstraction and thus supports views
ranging from high-level software architectural views to more low-level software design views. Once
the software architect has defined an architectural abstraction in the DSL, we can automatically
generate architectural component views from the source code using model-driven development
(MDD) techniques and check whether architectural design constraints are fulfilled by these models.

As our approach focuses on defining stable abstractions in the architectural abstraction specifica-
tion, it can cope with many changes to the underlying source code without changing the archi-
tecture description (i.e., an instance of the DSL). Only changes to the architecture itself, which
usually require a substantial modification of the source code, require the architectural abstraction
specification to be updated.

By creating different versions of the architectural component view over time, we are able to use a
delta comparison to check and reason about the changes of the architectural component view. The
generated models can be compared to a design model, to check the consistency of an implementation
and its design, and to analyze the differences. To support the iterative nature of our approach,
it also supports automatically checking the consistency between the source code model and the
architecture abstraction specification on the fly.

Once the architectural component views have been abstracted, another problem is to identify which
parts of the source code contribute to a specific component, i.e., to support traceability between

Chapter 5. Semi-automated Architectural Abstraction Specifications for Supporting Software
Evolution 65

architectural models and code. Today, this usually requires substantial and non-trivial manual
effort to identify which code elements are related to which model elements. In contrast, in our
approach, traceability can be automatically ensured, as model-driven development (MDD) [BG05]
is used to generate the required traceability links between the model elements and the source code
directly from the architectural abstraction specification.

The remainder of this chapter is organized as follows: Section 5.2 explains the research problem
addressed by this chapter in more detail, as well as the research method that was applied to design
and evaluate the DSL. Section 5.3 gives an overview of our approach. Section 5.4 provides details
about our architectural abstraction DSL and its implementation. In Section 5.5 we present the
evaluation of our approach based on five cases and a performance evaluation.

In Section 5.6 we discuss open issues and lessons learned. We conclude this chapter in Section 5.7.

5.2 Research Problem

During the software development life-cycle, the source code and the architecture of a system evolve
and change. This often results in architectural knowledge evaporation [Jan+07]. One of the
reasons for this is that in today’s software development processes the software architects often
have to manually capture and maintain the architectural knowledge, which is a tedious task that
is often forgotten in the daily business [Zim+08]. Additionally, when using conventional means for
architecture documentation like abstracted UML models or box-and-line diagrams, the traceability
between the architecture and the source code is lost. This can also lead to architectural knowledge
evaporation, when architects and developers lose track of the correspondences between code and
architecture.

A number of approaches have been proposed to address this research problem by providing auto-
matically or semi-automatically produced abstractions from the source code [Men+02; Mur+95b;
DB11; Egy04]. In contrast to these related works, our approach specifically targets architectural
abstractions. That is, we have designed our DSL to only require changes of the architecture ab-
straction specification once the architecture of the underlying software system has changed, but
not for other kinds of changes. In case of non-architectural changes, an updated architectural
documentation can automatically be re-generated from the altered source code without manual
changes in the architectural abstraction specification.

To reach this goal we have designed and implemented the DSL using an incremental refinement
process, following the design science research method [Hev+04].

Based on our original Research Question 2 (see Chapter 2) for this approach, we formulated the
following research questions:

Chapter 5. Semi-automated Architectural Abstraction Specifications for Supporting Software
Evolution 66

RQ5.1 Is it possible to create architectural abstractions based on generic filters that are stable
and that only have to be changed when architectural changes occur, but do not have to be
changed when non-architectural changes occur in order to prevent knowledge evaporation
and provide up-to-date architecture documentation throughout the evolution of a software
system?

RQ5.2 Is it possible to automatically generate traceability links that can be used to support the
architects in the definition of the architectural abstractions?

RQ5.3 Is it possible to automatically check the consistency between design and code for different
versions to support the architect during the evolution of a system?

RQ5.4 What is the effort to create and maintain architectural abstractions under the assumption
that knowledge about a system’s architecture already exists?

RQ5.5 Is it possible to do consistency checking and generate an architectural component view
with traceability links in an acceptable amount of time on a development machine?

In our design science research, these research questions emerged incrementally. We started with
RQ5.1 and incrementally refined it through the other research questions. In particular, we learned
during our research that traceability links (RQ5.2) are important for creating architectural abstrac-
tions. Our focus on evolution in RQ5.1 later led us to also study consistency checking problems
during system evolution (RQ5.3). Finally, our early prototype and usage experiences showed that
development effort (RQ5.4) and execution time (RQ5.5) are important for acceptance and usability
of our approach.

To address the research questions, while developing our DSL, we have studied the evolution of var-
ious software systems and their architecture documentations. We have classified changes in these
systems into architectural changes and non-architectural changes. In an incremental refinement
process, we have improved the DSL and its DSL tools to only require changes to the architectural
abstraction code for changes classified as architectural abstractions in the studied samples of archi-
tectural evolution. In each incremental design cycle we have added more samples of architectural
evolution and continued the iterations until only architectural changes required changes in the
architecture abstraction specification.

Finally, we have evaluated the resulting DSL for all changes that can be observed in a number
of consecutive versions of five open source projects. As can be seen in this study, reported in
Section 5.5, the vast majority of changes are non-architectural changes, and they can be tolerated by
the architectural abstractions defined in our DSL without changes to the architectural abstractions.
Only when changes that are classified as architectural changes are introduced in the open source
systems, updates to the architectural abstraction code in the DSL are necessary.

Chapter 5. Semi-automated Architectural Abstraction Specifications for Supporting Software
Evolution 67

5.3 Approach Overview

In this section we present an overview of our approach for supporting the semi-automated ar-
chitectural abstraction of architectural component views throughout the software life-cycle. Our
approach allows software architects to compare the abstract model with a previously defined archi-
tectural model and to maintain that model in correspondence with the source code over time. For
this purpose we have introduced a DSL that defines architectural abstractions from class models,
which can be automatically extracted from the source code, into architectural component views.
We believe that in a lot of cases it should be possible to create architectural abstractions that are
stable during the implementation process and only need to be changed when architectural changes
occur (e.g., leading to significant restructuring of the architectural design).

Once an architectural abstraction specification is defined, we can automatically generate the ar-
chitectural component view. The workflow for the generation process is depicted in Figure 5.1.
First, a class model is extracted from the source code. The extraction of a class model from source
code decouples our approach from a specific source language since the approach works on language
independent UML class models. For instance, for Java different tools exist that can perform this
extraction [Spi11; Soy11]. Then, a model transformation is used to generate a UML component
view. This model transformation uses the architectural abstraction specification defined in the
DSL code and the class model as inputs, and it generates UML component views from this input.
The architectural abstraction specification is needed here as it describes the relation between the
abstract model and the source code. The model transformation also generates bi-directional trace-
ability information that links the DSL, the class models, and the architectural component views.
During the model transformation, consistency checks are applied to identify potential discrepancies
between design and code.

As the software system evolves over time, we use our architectural abstraction in the DSL to create
multiple architectural component views, e.g. one for each version of the software systems. Our
approach can also be used to compare the created models to each other and to architectural com-
ponent views created manually during early software architecture design by the software architects.
This way, software architects can identify where the implementation differs from the original design
or from previous versions. They can then argue whether these changes are intended (e.g. flaws in
the design) or not (e.g. the implementation is not in accordance with the design). The comparison
of these very similar models with only minor differences is a straightforward task. Approaches for
advanced model comparison and a variety of frameworks that implement this functionality already
exist (see e.g. [Ecl11a; KP]). Based on this comparison, model consistency between a model and
consecutive versions can be checked. For example, if the original design model is compared to
models that were generated based on the existing implementation, the comparison can indicate

Chapter 5. Semi-automated Architectural Abstraction Specifications for Supporting Software
Evolution 68

UML Class

Model

UML Component

View

UML Component

View

(existing /

previous version)

Delta

automatic extraction

Compare

DSL

automatic

transformation

mapping

mapping

 component

model

generation

delta

comparison

Traceability Links
automatic

transformation

Source

code

design-code

consistency

checks

consistency

checks between

model versions

Figure 5.1: Generating architectural component views from source code and comparing different
model versions

which components are not yet implemented or how communication between components works in
the current implementation with respect to the intended design.

This approach enables developers to maintain an architecture documentation by providing an
“up-to-date” architectural component view that reflects the source code. In order to support
the developers in the definition of architectural abstractions and throughout the development our
approach generates traceability links between the source model and all generated artifacts. These
links provide direct navigation between the different artifacts in our tool.

In addition to the already mentioned consistency checking between different versions of the soft-
ware, our approach provides automatic consistency checking between the different artifacts of the
same version. These checks are based on the automatically generated traceability links and are
automatically triggered whenever one of the artifacts is changed. The implemented consistency
checks cover the following artifacts: source model, the architectural abstraction specification, and
the architectural component view.

If this approach is used in a software development project from the beginning, the software architect
drafts an architecture of the system as an abstraction specification that describes components that

Chapter 5. Semi-automated Architectural Abstraction Specifications for Supporting Software
Evolution 69

do not yet exist and that will be implemented over time. This way the architect can keep track of
the already implemented components using consistency checks as well as generate an abstraction
model whenever she desires to do so. As the architecture of the system evolves, adjustments to the
architecture abstraction specification are likely, while non-architectural changes should not have
an effect on our architecture abstraction specification.

Our approach also eases another frequently discussed problem in software projects: Often, the
connection between design and source code is lost during development. Using our architectural
abstraction approach, developers can keep track of which parts of the source code correspond to
which architectural components, introducing traceability links from the architectural model to the
source code and vice versa.

Multiple architectural abstractions can be defined for the same source code to create different
views at different levels of abstraction, where one architectural abstraction provides an overview
of a system and other architectural abstractions provide detailed views of different parts of the
system on varying levels of abstraction.

Our proof-of-concept implementation1 uses the EMF implementation of UML [Obj10] for its class
and architectural component view. This way it is possible to leverage architectural component
views created during design time and repeatedly compare them to the current status of the imple-
mentation.

5.4 Domain Specific Language for Specifying Architectural Ab-
stractions

To support the architectural abstraction from the automatically created class models to the archi-
tectural component views, we define a DSL based on Xtext 2.3 [Ecl11b]. This DSL provides rules
for abstracting the detailed UML classes into architectural components. The rules for defining the
abstractions can be grouped into three categories:

• Name- or ID-based filters: This category of filters selects classes based on the name or ID of
an object; for example all classes that reside in a specific package or all classes that contain
the string “message” in their name.

• Relation-based filters: These filters select classes based on their relationships to a selected
class or interface; for example all classes implementing a specific interface.

• Compositions: This category contains set operations instead of actual filters. Using set
operations one can manipulate the result sets from other filters in order to combine a number
of resource sets or define exclusions from more general filters.

1This prototype is available at https://swa.univie.ac.at/ArchitectureAbstractionDSL.

https://swa.univie.ac.at/ArchitectureAbstractionDSL

Chapter 5. Semi-automated Architectural Abstraction Specifications for Supporting Software
Evolution 70

ComponentDef returns ComponentDef :
'Component ' name=ID
'consists of ' (expr= OrComposition)
connectors += ConnectorAnnotation *;

ConnectorAnnotation :
{ ConnectorAnnotation }
'connector to ' targets +=[ComponentDef] (',' targets +=[ComponentDef])*
('implemented by '
(implementingExpression += OrComposition)?
('relation : ' implementingRelations +=[umlMM :: Dependency | QUALIFIED_NAME]
(',' implementingRelations +=[umlMM :: Dependency | QUALIFIED_NAME]) *) ?)?
;
OrComposition returns Expression :
ExcludeComposition (
{ OrComposition .left= current } 'or ' right = ExcludeComposition)*;

ExcludeComposition returns Expression :
AndComposition (
{ ExcludeComposition .left= current }
'and not '
right = Primary
)*;

AndComposition returns Expression :
Primary ({ AndComposition .left= current }
'and '
right = Primary)*;

Primary returns Expression :
NameFilter | RelationFilter |
ExtensionFilter | '{' OrComposition '}';
[...]

Listing 1: Excerpt of the Xtext grammar of our architectural abstraction DSL

We provide a number of different clauses that map groups of class model elements to components
in the architectural component view and to define exceptions to these rules. For the manipulation
of sets we provide three basic operations (union, intersection, and complement). For more
flexibility, we also added custom filters implemented in Java or Xtend [Eff+12]. For this purpose
we introduce two special clauses. The Java extension is supported using a filter that is implemented
as a static Java method. This method has to accept two parameters: the DSL object of type
JavaExtensionFilter and a List of Package objects. The method is expected to return all UML
classifiers that passed the filter. A similar clause exists for using custom filters defined in Xtend.

A complete list of all the clauses that we defined for architectural abstractions can be found in
Table 5.1.

The required and provided interfaces of a component are automatically deduced from the UML-
class model by defining all external interfaces, used by the component’s implementing classes, as

Chapter 5. Semi-automated Architectural Abstraction Specifications for Supporting Software
Evolution 71

required interfaces. All interfaces that are implemented by a component’s implementing classes
and used by another component are deduced as provided interfaces. The interface details can
be hidden by aggregating interfaces in ports as dedicated interaction points and using assembly
connectors between the ports.

Additionally our DSL supports the definition of connectors between components. A connector in
the architectural abstraction specification supports the definition of realizing objects by using a)
the same clauses that are available for components and or b) by specifying a UML dependency
relation from the UML class model as the implementing realization. If realizing objects are specified
they are stored in the generated UML component view in the form of a UML Realization relation
that can later be used for consistency checking.

In our examples and studies that we have used to incrementally refine and evaluate the DSL, this
set of language elements has been proven to be sufficient to express architectural abstractions in
a way that tolerates all kinds of non-architectural changes (see Sections 5.5.1 and 5.5.2 for details
on five cases of open source projects).

An excerpt of the DSL specification is depicted in Listing 1 as an Xtext grammar. It shows the
definition of the infix operators for union (and), intersection (or), and complement (and not). {,}

can be used to change the operator precedence. The complete Xtext grammar can be found in
Appendix B.

The transformation is implemented in Xtend [Eff+12] which is first defined for the abstract type
Expression and then refined for each of the DSL’s clauses.

5.4.1 Illustrative Example

Let us illustrate the use of our architectural abstraction DSL with a simple example. Figure 5.2
shows a high-level architectural component view for the Frag project [Zdu11]. Frag is a dynamic
programming language implemented in Java, specifically designed for supporting building DSLs
and supporting MDD. An excerpt of an architectural abstraction specification in the DSL which
is used to generate the component view depicted in Figure 5.2 can be found in Listing 2.

5.4.2 Automatic Generation of Traceability Links

The generation of traceability links is integrated in the architectural component view transforma-
tion. As the transformation is executed, the architectural abstraction specification (i.e., the DSL
code) is evaluated for each component. This evaluation yields a set of realizing classes and inter-
faces for each component. This set is stored in the generated UML component view using a UML
Realization relation which is defined by the UML-Standard [Obj10], as a relation between two sets

Chapter 5. Semi-automated Architectural Abstraction Specifications for Supporting Software
Evolution 72

Filter Parameters Description
class name String all classes, who’s name matches the regular ex-

pression
package
name

String all classes residing in packages with names match-
ing the regular expression

contained
in package

ID all classes residing in the package identified by
the ID

uses ID all classes using the class identified by the ID
used by ID all classes used by the class identified by the ID
child of ID all child classes of the class identified by the ID
super type ID all super classes of the class identified by the ID
instance of ID all instances of the interface identified by the ID
Java exten-
sion

String String that points to a static Java method which
takes the filter object and a List of UML pack-
ages as parameters and returns a list of matching
classifiers

Xtend
extension

String String that identifies an Xtend function which has
the same as the aforementioned Java method.

and two clauses infix operator for intersecting the results from two
clauses

or two clauses infix operator for uniting the results from two
clauses

and not two clauses infix operator for the difference between two re-
sults

Table 5.1: Architectural abstraction DSL clauses

Component Interpreter
consists of {
Class (".* Interp ") or {
{ // all classes the interpreter uses
// that reside within the core package
UsedBy (root.frag.core. Interp)
and Package (root.frag.core)
} and not Class (root.frag.core.Dual)
}
}
connector to Parser
connector to CommandObjects
implemented by Class (root.frag.core. CommandDispatcher)
connector to FileCommandObjects
implemented by Class (root.frag.core. CommandDispatcher)
Component CommandObjects
consists of Package (root.frag.objs)

Component Shell
consists of
Class (".* Shell ") or {
{ UsedBy (root.frag. Shell)
and Package (root.frag.core)
}
and not {
Class (root.frag.core. Interp)
or Class (root.frag.core.Dual)
}
}
connector to Interpreter

Listing 2: Code samples for architectural abstraction of the three main components of the Frag
(v0.91) example

Chapter 5. Semi-automated Architectural Abstraction Specifications for Supporting Software
Evolution 73

Shell

Frag

ParserInterp

IParser
IInterp

IEmbeddingFrag

MDD DSL FCL FMF TemplateEngine

IScript

Client

CommandObjs

ICommand

Dispatcher

FileCommandObjs

ICommand

Dispatcher

IDynamic

ComponentLoading

IDynamic

Component

Loading

IDynamic

ScriptLoading

IDynamic

Component

Loading

IDynamic

Component

Loading

IDynamic

Component

Loading

IDynamic

Component

Loading

Figure 5.2: Visualization of the Frag (v0.91) example for an architectural component view gen-
erated from an architectural abstraction specification. Components that were newly introduced

between Frag (v0.6) and Frag(v0.9) are colored in grey

of model elements: The supplier (component) specifies the behavior that is realized by the client
(a set of classes and interfaces). This relationship is navigable in both directions and thus able to
provide the answers to the question “Which classes and interfaces realize component X?” as well as
to the question “Which component does this class (partially) realize?”. For example, when looking
at the “Interpreter” component shown in Figure 5.2 the list of realizing source code elements that
are stored in the component realization contains 5 classes (Interp, FragObject, FragMethod,

CodeLine, Callframe).

Using traceability links, our prototype provides navigable links from the architecture specifications
to the source model and vice versa. For example, when the user clicks on root.frag.objs in Line
4 of Listing 2, the according element in the source model is automatically opened and the clicked
element is highlighted.

The traceability links are used in our prototype to provide the developer with a direct navigation
from the source model to a generated architectural component view. For instance, when the
developer opens the context menu for the Interp class in the Eclipse UML2 editor our prototype
provides a context-menu entry that, when clicked, opens the according component in architecture

Chapter 5. Semi-automated Architectural Abstraction Specifications for Supporting Software
Evolution 74

abstraction specification as well as the generated component in the generated UML2 component
view.

While the automatic generation of traceability links from source code is nothing new, our approach
uses them specifically to provide interactive tool support to aid the developers and architects in
the definition of the architectural abstractions. In addition, the traceability links are the basis for
most of our consistency checks, as explained in the next section.

5.4.3 Consistency Checking During Model Transformation

Once an architectural abstraction is defined, it is important to identify discrepancies between design
and code. To aid this task, our approach supports design constraint checking. Constraints that
have to hold for the class model and the architectural component view can be checked, and then
discrepancies can be identified by determining which parts of an implementation are not visible in
the design and vice versa. At the moment we have implemented checks for the following constraints
and plan on implementing further checks in the future:

• Mapping of a particular class to multiple components

• Components where the DSL clauses do not map to any realizing elements in the source model

• DSL clauses not matching any classes in the class model

• Particular classes that are not mapped to any component

• Components that have a connector in the architecture abstraction specification but do not
have a relation in the source model

• Components that have a relation in the source model but do not have a connector in the
architecture abstraction specification. E.g. components that make use of an interface that is
defined in another component.

Constraint checking is realized in our prototype using Xtext2’s [Eff+12] validation framework.
This framework distinguishes between cheap, normal, and expensive constraint checks. While
cheap checks are automatically executed whenever a change in DSL-editor happens, normal checks
are executed when the model is saved, and expensive checks are manually triggered. The majority
of our consistency checking constraints are realized as cheap checks, and a few more expensive
constraints are realized as normal checks; expensive constraints are not used.

For a number of constraints our prototype automatically provides possible solution options. This
ranges from the creation of a new component for classes that are not mapped to any component,
over modifying clauses that do not match any source code elements in a way that they possibly

Chapter 5. Semi-automated Architectural Abstraction Specifications for Supporting Software
Evolution 75

Figure 5.3: Exemplary reports of inconsistencies

target a larger number of source code elements, to removing classes that are mapped by multiple
components from one of the mapped components.

Figure 5.3 shows two exemplary inconsistencies that were reported for the Frag [Zdu11] example.
The first inconsistency is an error reporting that one or more source code elements where added to
more than one component in the architectural abstraction specification. Using the already men-
tioned traceability links, the consistency checks found that the class Interp is contained in the
architecture abstraction specifications of the components Shell and Interpreter. This inconsis-
tency is reported with a marker on every abstraction specification the conflicting class is part of.
In Figure 5.3 you can also see a proposed solution for this problem: The exclusion of the class
Interp either from the component Shell or the component Interpreter.

Chapter 5. Semi-automated Architectural Abstraction Specifications for Supporting Software
Evolution 76

The other inconsistency reported in Figure 5.3 is a warning that shows the lists of elements from
the source code that are not part in any of the defined components. This features provides valuable
information to the software architect as it provides information about possible starting points for
the next iteration in the architecture recovery process. While source code elements that are used
in multiple components are reported as errors, unused source code elements are only implemented
as a warning as there might be cases where the software architect does not want to include some
source code elements in the architecture abstraction specification.

5.5 Evaluation

To evaluate our approach with regard to the required effort in creating and maintaining archi-
tectural abstractions we conducted five case studies. We have performed these case studies as
replications of the same research steps (explained below) for five open source projects of different
size and in different application areas. The case studies illustrate how the features of the approach
like consistency checks and traceability links are used during an architecture recovery.

As approaches like the one introduced in this chapter can potentially require a lot of computa-
tional effort, we measured the performance of our tool-suite while creating and maintaining the
architectural abstraction specifications for our cases and present the results from this evaluation
in Section 5.5.2.

5.5.1 Detailed Cases of Architectural Abstraction Evolution

In this section we discuss the five open source projects Apache CXF [Apa], Frag [Zdu11], Hibernate
[LM10], Cobertura [M. 11], and Freecol [The11] that we have used in our evaluation. During the
incremental refinement of our DSL design, we started with scenarios from these projects and
extended the set of scenarios step-by-step to cover all changes observed in multiple versions of the
five cases studied in this section. The lessons learned from this examples are discussed in Section
5.6.

We have performed the five case studies as replications of the same research steps: First, we
automatically generated a UML class model from the source code using our parser. Then we tried
to gain an initial understanding of the program. In order to ease this task we imported the source
code in an Eclipse IDE. After an initial study of the source code, we created a first, incomplete
architecture abstraction specification. The time that was required to create this initial specification
heavily depended on the size and the previously existing architectural knowledge about the example
cases. Then we utilized the consistency checks to further improve the abstraction specification by
removing the reported inconsistencies step-by-step. The inconsistencies at this point usually were
source code elements that had not been considered in the abstraction specification.

Chapter 5. Semi-automated Architectural Abstraction Specifications for Supporting Software
Evolution 77

When we were satisfied with the resulting architecture abstraction specification, we updated the
source model to a newer version. After that we checked the architecture specification and the new
source model for inconsistencies. Any reported inconsistencies were fixed before we continued with
the next version of the program.

For all of the examples, we report the following data points:

• The estimated lines of source code give an impression of the projects size2.

• The number of changes in the source code between different versions together with the number
of changes in our architecture abstraction specification necessary to account for the changes
in the source code, to indicate how stable our abstractions are3. This is directly related to
answering RQ5.1 and indirectly to answering RQ5.2 and RQ5.3 as the number of changes
between different versions of the examples is related to the number of reported inconsistencies
and therefore also to the number of used traceability links.

• The number of components in the architecture abstraction specification as well as the av-
erage, standard deviation, and median for the number of classifiers per component provide
measures for the abstraction level of our architecture abstraction specification and show that
the resulting components are roughly of similar size. This is important, as a single component
holding all classes would not have been representative for finding the necessary changes to
the architecture abstractions. Therefore this data is related to answering RQ5.1.

• The time to create and to update the architecture abstraction specifications helps to find
an answer to RQ5.4 as it indicates the amount of effort that is necessary for creating and
maintaining architectural abstraction specifications.

• The estimated time required to gather the architectural knowledge indicates the necessary
effort if this approached is used for software architecture reconstruction and not from the
beginning of a software project.

• The execution time of our prototype for all example cases, which indicates an answer to
RQ5.5, is reported and discussed in Section 5.5.2.

In the following section we report the data for each example case and discuss the lessons learned
in Section 5.6.1.

Chapter 5. Semi-automated Architectural Abstraction Specifications for Supporting Software
Evolution 78

Interceptor

Front-end

Service Model
Pluggable Data

Bindings

ServiceMetaData

Service Impl

register Resource obtain Resource

InterceptorChain

doInterceptMessage

creates

serializeData

handle

Message

Protocol Binding

Create Message

EndPoint MessageObserver

onMessage

Transport

transport

Message

Service Impl

transport

Response

ToolsBus

accesCommonTools

Figure 5.4: Apache CXF (v2.4.3) architecture overview [Apa]

5.5.1.1 Case 1: Apache CXF

Apache CXF is an open source services framework that helps developers build and develop various
kinds of Web services. In the Apache CXF case, we used the architecture overview that is available
from the CXF web-site4 as a basis for our source code study which required about 2 hours. After
this, the first architectural abstraction specification took 15 minutes to create. However it was
not complete and the consistency checks reported a relevant number of source code elements that
were not considered in the specification. We then spent another two and half hours studying the
source code while incrementally improving our architectural abstraction specification and all the
time reducing the number of missing source elements that our consistency checks reported. We
continued to the point where the consistency checks did not report any inconsistencies.

Next, we updated the source model to a newer version and adapted our architecture abstraction
specification to the changed source model. We repeated the last step for all versions of Apache
CXF. We estimate the total time required for updating the specification to accommodate the
changes in the source models with 45 minutes.

2We used the tool SLOCCount [Whe09] to estimate the lines of source code.
3We used the Linux command line tool diff [HM76] to estimate the changes between the different versions of the

cases.
4http://cxf.apache.org/docs/cxf-architecture.html

http://cxf.apache.org/docs/cxf-architecture.html

Chapter 5. Semi-automated Architectural Abstraction Specifications for Supporting Software
Evolution 79

Transport

Servlet
HTTP

Standalone
JMS Local

Conduit

Destination

Factory ConduitConduitConduit

FactoryManager

DestinationFactoryManager

transport Message transport ResponseonMessage

Destination

Factory

Destination

Factory

Destination

Factory

Figure 5.5: Detail view for Apache CXF (v2.4.3) transports

Apache CXF ver-
sion

Files
added

Files
removed

Files
changed

Total
changes

DSL changes

Overview 2.0.10 ⇒
2.2.12

299 83 1040 1422 4 new packages;
2 removed pack-
ages

Overview 2.2.12 ⇒
2.3.7

133 19 923 1075 3 new packages

Overview 2.3.7 ⇒
2.4.3

115 62 739 916 1 new package

Transport 2.0.10 ⇒
2.2.12

29 4 90 123 1 new compo-
nent

Transport 2.2.12 ⇒
2.3.7

17 3 117 137 1 new compo-
nent

Transport 2.3.7 ⇒
2.4.3

20 23 120 163 1 component re-
moved

Table 5.2: Necessary changes to the architectural abstraction specification (DSL code) compared
to source changes in Apache CXF

To show the ability to provide different views for a system we created a detail view for the “Trans-
port" component in the CXF architecture overview (see Figure 5.5.).

The results in Table 5.2 show that in order to keep the Apache CXF abstraction up-to-date hardly
any changes were necessary. In the course of the evolution of Apache CXF from version 2.0.10 to
version 2.4.3 more than 5000 changes were implemented but only ten changes to the architectural
abstraction specification were necessary. These modifications constitute eight new and two removed
packages that were introduced between the different versions. This result might be caused by the
fact that we only compared minor revisions (no older version than Apache CXF 2.0.10 was available
at the time of the case study) during which no major changes to the architecture were made.

When looking at the detail view for the transport component in Table 5.2, three changes were
necessary. The package “http_osgi” was added in version 2.2 and removed in version 2.4, and the

Chapter 5. Semi-automated Architectural Abstraction Specifications for Supporting Software
Evolution 80

CXF
Version

sLoC # of
Com-
po-

nents

Avg. # of
classifiers

per
component

σ for the
of

classi-
fiers

Median
for the

of
classi-

fiers
Overview
2.0

198k 11 123.64 93.04 98,00

Overview
2.2

342k 11 180.18 150.15 159,00

Overview
2.3

370k 11 194.23 154.11 185.00

Overview
2.4

390k 11 212.73 174.22 193.00

Transport
2.0

1196 5 26.40 14.69 25.00

Transport
2.2

1399 5 31.40 16.89 25.00

Transport
2.3

1715 5 38.20 20.10 30.00

Transport
2.4

1229 5 38.00 22.03 30.00

Table 5.3: Apache CXF: Average, median, and standard deviation (σ) for the number of classes
per component

package “jaxws_http_spi” that was added in version 2.3.

Table 5.3 contains additional data for this case study. It shows the average number of classifiers
per component, the standard deviation for the number of classifiers per component, the median
number of classifiers per component, and the lines of source code (in thousands) for the specific
version of the program. The standard deviation indicates that the components in the CXF case
vary significantly in size (number of classifiers). While in CXF 2.4 the smallest component has
only 36 realizing classifiers, the largest component is realized by 534 classifiers. However as the
median indicates, the size of the different components is dispersed between these extremes.

The details for the Transport view are also summarized in Table 5.3. As can be seen, 5 components
with an average of 26.4 to 38 classifiers have been introduced, again with substantial deviations
between different components.

5.5.1.2 Case 2: Frag

Frag is a dynamic programming language implemented in Java, specifically designed for supporting
building DSLs and supporting MDD. The high-level architecture of Frag in Version 0.91 was shown
already in Figure 5.2.

Chapter 5. Semi-automated Architectural Abstraction Specifications for Supporting Software
Evolution 81

Frag version Files
added

Files
removed

Files
changed

Total
changes

DSL changes

0.6 ⇒ 0.7 48 44 32 124 2 new compo-
nents, 2 minor
changes

0.7 ⇒ 0.8 9 1 148 158 2 new compo-
nents, 6 minor
changes

0.8 ⇒ 0.91 7 40 36 83 no changes

Table 5.4: Necessary changes to the architectural abstraction specification (DSL code) compared
to source changes in Frag

Frag
Version

sLoC # of
Com-
po-

nents

Avg. # of
classifiers

per
component

σ for the
of

classi-
fiers

Median
for the

of
classi-

fiers
0.6 10k 7 21,57 25,20 6,00
0.7 12k 10 16,00 23,83 6,00
0.8 14k 11 18,73 23,93 10,00
0.9.1 13k 11 14,18 11,29 11,00

Table 5.5: Frag: Average, median, and standard deviation (σ) for the number of classes per
component

The author of Frag could provide a UML component diagram that he created within half an hour.
Using this architectural information as a starting point, the effort required to create an architecture
abstraction specification for Frag took about 15 minutes while updating the specification to the
newer versions took about 40 minutes.

During this evolution of Frag’s architecture, we identified a number of differences when comparing
the architecture of Version 0.91 to the architecture of Version 0.6, which is missing the components
DSL, FCL, FMF, and TemplateEngine. Figure 5.2 highlights these differences. Components that
were part of Frag 0.6 have a white background, while components that where introduced in the
newer versions have a grey background.

The architectural abstraction specification for Frag 0.6 has less than fifty lines of DSL code and
shows a very straightforward architecture. The changes necessary to conform to Frag 0.7 are
shown in Listing 3. They constitute a substantial modification to the architectural abstraction
specification. This was expected, since in this revision the architecture of Frag had been reworked
to use the Java Reflection API for dynamic dispatching of Frag method calls. Also a number of
new features were introduced that led to new components. These components were grouped in a
new package called mdsd.

Prior to these changes, our consistency checks reported 3 missing packages and 85 classes that were
not considered in the architectural abstraction specification for Frag.

Chapter 5. Semi-automated Architectural Abstraction Specifications for Supporting Software
Evolution 82

Component Parser
consists of {
Package (root.frag. parser)
- and not

- Package (root.frag. parser . predefinedObjs)
}
Component CommandObjects
consists of {
+ Package (root.frag.objs)
- Package (root.frag. parser . predefinedObjs)
- or Package (root.frag. predefinedObjects)
}
+ Component DSL
+ consists of {
+ Package (root.mdsd.dsl) or {
+ Package (root.mdsd) and Class (".* DSL .*")
+ }
+ }
+ Component FCL
+ consists of {
+ Package (root.mdsd.fcl) or {
+ Package (root.mdsd) and Class (".* FCL .*")
+ }
+ }
+ Component FMF
+ consists of
+ Package (root.mdsd) and Class (".* FMF .*")

Listing 3: Architectural abstraction specification modifications for the changes in Frag 0.7

For the following version of Frag (0.8) 7 inconsistencies were reported by our prototype. Another
new component (TemplateEngine) was introduced which required twelve lines of DSL code and the
top-level package mdsd was renamed to mdd, which required updates to the architectural abstraction
specification at six places that were automatically highlighted by the consistency checks. The
integration of partial support for such automatic architectural abstraction specification updates
are a topic for future research.

Another change was that the code for the FMF component was moved into a package of its own,
with only one class remaining outside this package. These changes account for 5 new lines of DSL
code.

For the following release (Frag 0.91) the number of changes halved and no changes to the ar-
chitecture were made. Because of this, no inconsistencies are reported and no updates to the
architectural abstraction specification are required. A summary of all the changes that occurred
during the evolution of Frag is shown in Table 5.4.

The data on how classifiers are distributed to components in this case can be found in Table 5.5. As
the average and standard deviation suggest, the number of classes per component varies. However

Chapter 5. Semi-automated Architectural Abstraction Specifications for Supporting Software
Evolution 83

Coverage

Instrument

Reporting

JavaNCSS

GetData

Check

Instrumenter

JavaNCSS

Figure 5.6: Simplified architecture overview of Cobertura 1.1

as the median is close to the average, the size of the components is evenly distributed between the
minimum and maximum.

5.5.1.3 Case 3: Cobertura

Cobertura is a Java code coverage analysis tool that can be used to determine what percentage of
your source code is exercised by a unit test suite. For Cobertura, we created an initial architectural
abstraction specification on the basis of Version 1.0 through source code study.

With no prior architectural knowledge available, the effort to conduct the source code study and
create an initial architectural abstraction specification was roughly 40 minutes and another 15 min-
utes of improving this specification. The total required time to adapt the architecture abstraction
specification from Cobertura 1.0 step by step until Cobertura 1.9.4.1 was about 70 minutes.

A simplified version of the architecture of Cobertura is depicted in Figure 5.6.

Table 5.6 summarizes the evolution of architectural abstraction specification until the most recent
Version 1.9.4.1. While initial versions only contained about 4000 lines of source code, Version 1.9.4,
the last available version, has about 50000 lines of source code.

As Table 5.7 shows, the last version only has three more components than the initial version.
All three introduced components were predated by a reported inconsistency that listed newly
introduced classes and the only other reported inconsistency was a package that was removed in
version 1.3 and thus could no longer be used in the architecture abstraction specification.

While the components are of similar size from Version 1.0 through to Version 1.9, in Version 1.9.4
the JavaNCSS component triples in size. This is caused by the new package net.sourceforge.-

cobertura.javancss.parser. As a result, the standard deviation increases from 3.24 to 14.06. This

Chapter 5. Semi-automated Architectural Abstraction Specifications for Supporting Software
Evolution 84

Cobertura
version

Files
added

Files
removed

Files
changed

Total
changes

DSL changes

1.0 ⇒ 1.1 18 10 23 51 no changes
1.1 ⇒ 1.2 23 1 2 26 no changes
1.2 ⇒ 1.3 12 5 8 25 1 new compo-

nent and 1 minor
change

1.3 ⇒ 1.4 25 3 3 31 no changes
1.4 ⇒ 1.5 20 2 0 22 no changes
1.5 ⇒ 1.6 17 3 1 21 no changes
1.6 ⇒ 1.7 18 1 0 19 no changes
1.7 ⇒ 1.8 47 11 1 59 1 new component
1.8 ⇒ 1.9 16 10 1 27 no changes
1.9 ⇒ 1.9.4 26 14 9 49 1 new component
1.9.4 ⇒ 1.9.4.1 1 0 0 1 no changes

Table 5.6: Necessary changes to the architectural abstraction specification (DSL code) compared
to source changes in Cobertura

Cobertura
Version

sLoC # of
Com-
po-

nents

Avg. # of
classifiers

per
component

σ for the
of

classi-
fiers

Median
for the

of
classi-

fiers
1.0 4239 5 11 7,66 10,00
1.1 3491 5 8 5,87 7,00
1.2 3421 5 8 5,81 7,00
1.3 3406 6 5 2,61 4,50
1.4 3556 6 6 2,95 4,50
1.5 4003 6 6 2,77 5,50
1.6 3956 6 7 2,51 6,50
1.7 3997 6 7 2,17 6,50
1.8 17165 7 7,86 2,67 9,00
1.9 18179 7 9,14 3,24 10,00
1.9.4 51343 8 13,25 14,06 10,50
1.9.4.1 51342 8 17 17,10 10,50

Table 5.7: Cobertura: Average, median, and standard deviation for the number of classes per
component

new parser might be a candidate for a component in its own right. However, as this parser is
only used within JavaNCSS, we decided against interpreting this as an architectural change, as this
parser is an internal implementation detail of the JavaNCSS component and in our opinion not
relevant to the overall architecture of Cobertura. This is why we accepted the increased standard
deviation and kept the, compared to the other components, large JavaNCSS component.

Chapter 5. Semi-automated Architectural Abstraction Specifications for Supporting Software
Evolution 85

Core

ByteCode

Provider

Extension SPI

EJB

Engine

Envers

HQL

Infinispan

getMetaModel

registerExtension
translateQuery

getByteCode
handleTransactions

createMapping

getConnection

Util

commonUtilities

Figure 5.7: Simplified architecture overview of the Hibernate 4.1.10

5.5.1.4 Case 4: Hibernate

Hibernate is an open source Java persistence framework that supports object-relational mapping
and querying of databases.

Although we found some information about the Hibernate architecture in the projects documenta-
tion, we still required a substantial amount of time for the initial source code study, which required
about 3 hours. We then required 30 minutes for the creation of the initial architecture abstraction
specification, another 150 minutes for improving the specification, and after that about 75 minutes
for updating the specification according to the newer versions of Hibernate.

A simplified version of the architecture of Hibernate is depicted in Figure 5.7 and Table 5.8 presents
the changes we encountered over the different versions. Especially interesting are the changes from
version 3.6.10 to version 4.0.0alpha1 and from this version to 4.0.0.final, since these two changes
constitute the transition between two major versions. While this version’s changes consisted of
a huge number of modified files and more than 150 new classes, only eight inconsistencies were
reported which led to eight minor changes (added or removed packages) in the DSL code but no
added or removed component. In our opinion, a part of the reason for this low level of change is
the high level of abstraction that is used in the architectural component view for this case.

Chapter 5. Semi-automated Architectural Abstraction Specifications for Supporting Software
Evolution 86

Hibernate version Files
added

Files
removed

Files
changed

Total
changes

DSL changes

3.6.6 ⇒ 3.6.10 22 0 89 111 no changes
3.6.10 ⇒ 4.0.0.al-
pha1

20 86 2597 2703 3 removed pack-
ages; 3 new
packages

4.0.0.alpha1 ⇒
4.0.0.final

174 420 1270 1864 2 removed pack-
ages

4.0.0 ⇒ 4.0.1 19 2 70 91 no changes
4.0.1 ⇒ 4.1.0 54 5 221 280 no changes
4.1.0 ⇒ 4.1.1 12 5 192 209 no changes
4.1.1 ⇒ 4.1.2 15 5 720 740 no changes
4.1.2. ⇒ 4.1.3 20 3 391 414 no changes
4.1.3 ⇒ 4.1.4 12 2 87 101 no changes
4.1.4 ⇒ 4.1.5 132 1 92 225 no changes
4.1.5 ⇒ 4.1.6 22 0 87 109 no changes
4.1.6 ⇒ 4.1.7 8 0 54 62 no changes
4.1.7 ⇒ 4.1.8 34 11 147 192 1 new package
4.1.8 ⇒ 4.1.9 16 1 118 135 no changes
4.1.9 ⇒ 4.1.10 42 1 112 155 no changes

Table 5.8: Necessary changes to the architectural abstraction specification (DSL code) compared
to source changes in Hibernate

As the standard deviation reported in Table 5.9 indicates, the components in this case are of
varying size. The smallest component is realized by approx. 40 classifiers while the three largest
components have more than 500 realizing classifiers.

5.5.1.5 Case 5: Freecol

Freecol is an open source game implemented in Java that is based on the popular game Colonization.
While Version 0.4 has only 30.000 lines of code, the last version we examined has more than 100.000
lines of code.

We found no existing architectural information for FreeCol. This is why the necessary source code
study required about 3,5 hours before we could create a first architectural abstraction specification.
Updating the specification to the newer versions of FreeCol then required another 60 minutes.

The results for this example are presented in Table 5.10 and an architecture overview is shown in
Figure 5.8.

Although the size of this project more than tripled, no inconsistencies were reported by our proto-
type and therefore no changes to the architectural abstraction specification (the DSL code) were
necessary. The main cause for this stable architecture abstraction is that most changes to the game
were improvements to the graphical user interface, improvements to the gameplay, or bug fixes.

Chapter 5. Semi-automated Architectural Abstraction Specifications for Supporting Software
Evolution 87

Hibernate
Version

sLoC # of
Com-
po-

nents

Avg. # of
classifiers

per
component

σ for the
of

classi-
fiers

Median
for the

of
classi-

fiers
3.6.6 344k 9 225,89 219,91 174,00
3.6.10 351k 9 226,78 220,60 174,00
4.0.0.alpha1 343k 9 293,33 240,14 210,00
4.0.0.final 387k 9 298,67 261,32 189,00
4.0.1 389k 9 295,00 256,85 184,00
4.1.0 400k 9 296,33 258,13 184,00
4.1.1 402k 9 296,22 257,96 185,00
4.1.2 405k 9 301,11 262,16 191,00
4.1.3 407k 9 297,11 257,24 186,00
4.1.4 409k 9 297,22 257,48 186,00
4.1.5 410k 9 302,44 263,30 192,00
4.1.6 413k 9 298,11 258,78 187,00
4.1.7 416k 9 298,11 258,78 187,00
4.1.8 421k 9 306,22 249,67 189,00
4.1.9 423k 9 306,33 249,63 189,00
4.1.10 426k 9 308,22 252,77 190,00

Table 5.9: Hibernate: Average, median, and standard deviation (σ) for the number of classes per
component

ServerModel

AI

FreeColServer

INetworking

IAIPlayer

Control

IModel

IInputHandler

Network

GUI

ClientController

ClientModel

IModel

ClientInputHandler

ICommon

Common

Figure 5.8: Simplified architecture overview of the FreeCol 0.10.7

Chapter 5. Semi-automated Architectural Abstraction Specifications for Supporting Software
Evolution 88

Freecol version Files
added

Files
removed

Files
changed

Total
changes

DSL changes

0.4 ⇒ 0.5.0 190 55 0 245 no changes
0.5.0 ⇒ 0.5.3 155 9 1 165 no changes
0.5.3 ⇒ 0.6.0 185 72 1 258 no changes
0.6.0 ⇒ 0.6.1 60 6 0 66 no changes
0.6.1 ⇒ 0.7.0 217 31 0 248 no changes
0.7.0 ⇒ 0.7.4 356 31 1 388 no changes
0.7.4 ⇒ 0.8.0 284 86 18 388 no changes
0.8.0 ⇒ 0.8.4 117 10 0 127 no changes
0.8.4 ⇒ 0.9.0 280 72 14 366 no changes
0.9.0 ⇒ 0.9.5 370 18 18 406 no changes
0.9.5 ⇒ 0.10.0 468 95 71 634 no changes
0.10.0 ⇒ 0.10.7 542 88 22 652 no changes

Table 5.10: Necessary changes to the architectural abstraction specification (DSL code) compared
to source changes in Freecol

Freecol
Version

sLoC # of
Com-
po-

nents

Avg. # of
classifiers

per
component

σ for the
of

classi-
fiers

Median
for the

of
classi-

fiers
0.4 31k 9 25,44 40,51 9,00
0.5 42k 9 28,00 44,00 9,00
0.5.3 47k 9 28,22 44,20 9,00
0.6 52k 9 33,67 57,08 9,00
0.6.1 54k 9 37,56 61,42 9,00
0.7.0 60k 9 41,44 67,81 9,00
0.7.4 63k 9 42,56 70,48 9,00
0.8.0 74k 9 51,22 83,90 9,00
0.8.4 76k 9 52,00 84,83 9,00
0.9.0 84k 9 57,89 94,07 10,00
0.9.5 82k 9 56,89 91,57 10,00
0.10.0 92k 9 64,44 103,43 11,00
0.10.7 101k 9 73,44 119,64 12,00

Table 5.11: Freecol: Lines of java source code (in thousands), average, median, and standard
deviation (σ) for the number of classes per component

Table 5.11 presents the data about component sizes for this case. The high averages of classes
per component (compared to the medians) indicate that this architectural abstraction consists of a
number of small components and a very few larger components. In this case the large components
are GUI and Common. While the purpose of the first component is rather self-explanatory, the
component “Common” provides functionality that is used on the client and on the server. That
is, it provides functions that the client and server have in common. We focused our architectural
abstraction on the “big picture” architecture of the system to convey an understanding for the
whole system.

Chapter 5. Semi-automated Architectural Abstraction Specifications for Supporting Software
Evolution 89

Project #Clauses Avg.
Exec.
Time

(in ms)

σ (in ms) Median
Exec.
Time

(in ms)
Cobertura 1.9.4.1 19 176 257 116
Frag 0.9.1 41 283 281 219
FreeCol 0.9.5 21 704 647 455
Apache CXF 2.4 35 3010 1534 2353
Hibernate 3.6.6 96 3117 956 2757

Table 5.12: Execution times, standard deviation (σ) and other key data for implemented cases

5.5.2 Performance Evaluation

To validate our approach, we realized architectural abstraction specifications for the five open source
projects explained in the previous section (see Table 5.12). As approaches like the one introduced
in this chapter can potentially require a lot of computational effort, we measured the performance
of our prototype tool-suite for the transformations in the five open source projects. Performance
problems can be introduced for instance through the exponential growth of the execution time
of the analysis according to the size of the model and the architectural abstraction specification.
However, for regular usage of the approach an execution time below two minutes is acceptable. We
measured the time it takes to execute the constraint checks and the transformations. Table 5.12
shows the execution times for the most recent version of each of the five open source cases which
we obtained on a developer notebook (Intel i7 L620, 4 Gb RAM). We measured each execution
time 100 times and calculated the average value. We also measured the minimum and maximum
values, but as we observed only small deviations around the average values, so we only report the
averages here.

The results from Table 5.12 suggest that the execution time increases with the number of clauses
in the architectural abstraction specification and with the number of classes in the source code.
The results also suggest that the approach is well applicable for even larger projects like Hibernate
in the normal flow of software development. Thus we can state that for the example cases it is
possible to generate an architectural component view with traceability links and check all artifacts
for consistency within an acceptable amount of time (RQ5.5).

Please note that we did not report the time that is needed for extracting the class model from the
source code, since this algorithm converts every class in the source code into an instance in the
model. That is, this algorithm has a time requirement of O(n), where n is the number of classes
in the project.

Chapter 5. Semi-automated Architectural Abstraction Specifications for Supporting Software
Evolution 90

5.6 Discussion

In this section we discuss the lessons learned from the five example cases from the case study as
well as the results of the performance evaluation of our prototype. Furthermore we discuss the
limitations of the approach and open issues in Section 5.6.2.

5.6.1 Lessons Learned

The cases discussed in Section 5.5.1 confirm that it is possible to create abstractions based on the
generic filters defined in our DSL (RQ5.1). In all cases, from version to version a large number of
changes have been applied, often in many different files. Still only small changes to the DSL were
necessary, even for major architectural changes in the projects.

The times required to create an initial architectural abstraction specification differ between the
systems where architectural knowledge was already available in other forms (Apache CXF, Frag)
and the systems where we had no or only very limited architectural knowledge about the system
prior to our case study (Cobertura, Hibernate, FreeCol). In our opinion, the time that was necessary
to come from the initial specification to a satisfactory one depends on factors like the quality of
existing architectural information and system size. For instance, while we could create an initial
specification for Apache CXF based on an existing box diagram within 15 minutes, it took us long
to create a specification that we were satisfied with. For Frag, on the other hand, we had first hand
architectural knowledge as one of the authors is also involved in the development of Frag. Thus
the creation of a satisfactory architecture abstraction specification took only 20 minutes before we
could start comparing the different versions of Frag. Regarding RQ5.4 we can conclude that the
effort of creating a suitable architectural abstraction specification varies heavily depending on the
existing knowledge of the source code and architecture. If it exists, a small architectural abstraction
specification can be created in about 15-20 minutes.

The consistency checking rules are an important means to automatically indicate that changes
to the DSL might be necessary. In our finalized version, all necessary changes between different
versions of the examples were automatically detected by the consistency checking. This reduced
the necessity for manually searching for changes or the use of other tools like diff. In addition the
inconsistencies are reported directly for the violating parts of the specification and thus direct the
software architect to the origin of the problem at hand. The inconsistency that was reported the
most while creating the example cases, and thus was the most helpful, were source code elements
that were not considered in the architectural abstraction specification. In summary, in the example
cases the consistency checks were very helpful in creating and maintaining architectural abstraction
specifications (RQ5.3).

Chapter 5. Semi-automated Architectural Abstraction Specifications for Supporting Software
Evolution 91

Traceability links are an important aid to find and understand the links between components and
realizing classifiers between two version quickly. That is, without support through consistency
checking and traceability links, in our 5 cases, the same low number of updates would have been
necessary in our DSL, but the amount of manual searching and understanding of change impacts
would have been substantially higher. We used them throughout all the examples to navigate
between the architectural abstraction specification and the source code elements whenever an in-
consistency was reported. The traceability links provide the foundation for all consistency checks
and are especially helpful when source code elements are not considered in the architecture ab-
straction specification. So with respect to RQ5.2 we can state that: For these five examplary cases
we are able to generate traceability links that were useful during the definition of architectural
abstractions.

Once the architectural abstraction specification is defined, we are able to automatically create
abstraction models from the source code. We noticed many of our component definitions are
based on one to five Package rules. Packages are a major way of grouping multiple Java classes
(besides Tagging interfaces and so on). The advantage of component definitions based on existing
groupings like packages is that the architectural abstraction specifications can cope with many kinds
of changes, as in an established software project the coarse grained (package) structure usually is
stable. For this reason, only major changes require a change of the architectural abstraction
specification. For example, the introduction of a new subpackage or a new class do not require any
changes. Only the introduction of new major packages or new components requires architectural
abstraction specification updates. However, while in our use cases the grouping based on Package
rules was beneficial, this might not be always the case.

Our approach supports the creation of architectural abstraction specifications on different levels of
abstraction. The data in Table 5.12 supports this claim. While we needed 41 clauses to map the
13k lines of code from Frag, we only needed 21 clauses to map the 103k lines of code from FreeCol
and 35 clauses for mapping the 386k lines of code of Apache CXF to components. This indicates
that the Apache CXF architectural abstraction specification is on a higher abstraction level than
the one for Frag.

The five cases indicate that creating and maintaining architectural abstractions is easier for high-
level abstractions and that generic filters like package-based or name-based filters are less likely
to be changed. For example, name-based filters are unaffected by changes as long as the regular
expression for matching the name is not affected. A Package rule that uses a regular expression
like “.*model.*" only is affected if this exact part of the name is modified, while a Package-rule
based on the fully qualified name of the package needs to be updated as soon as one of the packages
on its path is modified.

However, it is not always possible to define architectural abstraction specifications solely using
name-based filters like Package name filters and the union of their results (or). One example is

Chapter 5. Semi-automated Architectural Abstraction Specifications for Supporting Software
Evolution 92

the Shell component in Listing 2 that consists of all the classes that contain the name “Shell” and
all elements in the root.frag.core package that are used by root.frag.Shell. The definitions
based on the relationships between classes have two disadvantages: Firstly, they are hard to read
because it is unclear which classes match the specified filter. Secondly, relationship-based filters
can have side-effects. A related class can reside within a package that is also targeted by a package-
based or a name-based filter. This can be avoided by defining an exception in one of the filters.
The evolution of relationship-based filters is similar to the already mentioned Package-filters that
is based on fully qualified names. They need to be updated only if the class that is defined in the
filter is moved, renamed, or deleted.

When we compare the statistical data for the different versions of the cases to the corresponding
number of lines of source code, one can see that they develop in a similar manner. As the lines of
code grow, the average size of classifiers and the median for the number of classifiers per component
also grow. Because of this, we think that the added source code gets distributed among the different
components. This negates the potential threat to validity that in our cases, all classes could be
aggregated in a single component. In this case obviously no changes to the architectural abstraction
would ever be necessary. As already mentioned, this is not the case in any of the presented cases.

5.6.2 Limitations and Open Issues

Our approach has limitations when being applied to architectural knowledge recovery and no prior
knowledge about a software project exists. Under these circumstances our approach is only applica-
ble after initial architectural knowledge has been acquired, since it does not provide an automated
abstraction that can be used for refinement. This limitation does not reduce the applicability in a
software development project where the focus lies on preserving architectural knowledge. In such
cases, the required knowledge usually is created in an early stage of a software development project
(i.e. this problem will not arise in the first place).

While we demonstrated the approach we presented in this chapter on cases that use programming
languages supporting the structuring of source code (e.g., via packages in Java), our approach
is also applicable for other languages that do not offer such features. The limitation that arises
from the missing structuring of source code features is that the Package filter cannot be used. All
other rules are still available and can be used instead. However, this limitation often increases the
number of rules necessary to define an architectural abstraction specification, though.

In our five case studies, we documented the architectures on a high abstraction level. It is likely
that a more detailed architectural descriptions of the same example cases lead to more changes
during the evolution of the systems. This is partly reflected in the Apache CXF Transport case.
However the main goal of our approach is to support the understanding of the “big picture”. This is

Chapter 5. Semi-automated Architectural Abstraction Specifications for Supporting Software
Evolution 93

the reason why we chose a high abstraction level for our case studies. We would like to investigate
in future research in how far our approach is applicable for detailed design as well.

Furthermore, while our approach is designed to be independent of the source programming language
by using UML as the respresentation of the source model and a number of tools exist for different
programming languages that transform from source code into UML2 model elements, we currently
use examples that are implemented in Java. The reason for this is that we currently only have
implemented a transformation from Java to our input representation in EMF UML2.

5.7 Conclusion

In this chapter, we presented a semi-automatic approach for supporting architectural abstractions
of source code into architectural component views. Our approach, supported through a DSL and
MDD tooling, can automatically generate architectural component views from source code and
supports traceability between the mapped artifacts. By creating architectural abstraction specifi-
cations with the DSL on different levels of abstraction, we are able to generate different abstracted
views for one project. A major feature of our approach is its ability to cope with change. Only ma-
jor changes, like newly introduced components, require an update of the architectural abstraction
specification. Overall, our evaluations and experience show that architectural abstraction specifica-
tions can be created and maintained with low effort. This is due in part to the traceability links and
inconsistency checking support. That is, we can check for inconsistencies between abstraction and
code and identify the participating source code and architectural components in case constraints
are violated.

Our approach has limitations when used for reengineering as knowledge about the source code and
the design of a project are needed to create the architectural abstraction specification; in many
reengineering approaches the main assumption is that such knowledge does not yet exist. Hence,
our approach can be used together with these approaches: The reengineering approaches can be
used for acquiring an understanding of a project, and our approach can be used to maintain and
evolve an architectural view on the system once it has been sufficiently understood. We plan to
investigate this relation in our future work.

In our future work we also plan to increase the usability of the presented approach by implementing
support for other popular programming languages by providing the necessary transformations from
source code to the UML2 class model. For this purpose we will focus on languages that are already
supported in the Eclipse IDE like C++.

Based on the answers to the more detailed research questions in this chapter, we can give the
following answer for RQ 2: With the approach we proposed in this chapter, we are able to support
the architect during the creation and maintenance of architectural component views and through

Chapter 5. Semi-automated Architectural Abstraction Specifications for Supporting Software
Evolution 94

the automatic generation of traceability links as well as automatic consistency checking we are able
to reduce the risk for architectural drift and erosion of architectural component views and source
code. However, while the architectural components view is very important, it is limited in the
information it conveys.

In Chapter 6 we extend this approach towards the architectural pattern discovery and documen-
tation. For this purpose we allow the developer to annotate components and connectors from the
architecture abstraction specification with architectural primitives [ZA08] and then search pattern
candidates that are built of these architectural primitives.

6
Semi-automatic Architectural Pattern

Identification and Documentation Using
Architectural Primitives

6.1 Introduction

As already mentioned in Chapter 5, during maintenance and evolution of a software system, a deep
understanding of the system’s architecture is essential. This knowledge about a system’s architec-
ture tends to erode over time [Jan+07] or even get lost. In a recent study Rost et al. [Ros+13]
found that architecture documentation is frequently outdated, updated only with strong delays,
and inconsistent in detail and form. They also found that developers prefer interactive (navigable)
documentation compared to static documents. This also reflects our personal experiences as well
as those of others. For instance, our colleague Neil Harrison shared the following story from his
experiences with large-scale industrial systems: “Once upon a time I worked on a large system
that was already a few years old. It had a well-defined architecture. When I started, I was given
copies of three or four documents that described the architecture. In addition, I watched several
videotapes in which the architects described the architecture. As a result, I gained a good under-
standing of the architecture of the system. I felt comfortable working in most parts of the system,
including some of the more arcane parts of the code.

After a few years, I left the project to work on other things. But several years later I returned.
I think it was about ten years later. The system was still being used and was under active
development. Of course, it had changed greatly to add new capabilities and support changes in
technology. Underneath it all, the original architecture was largely intact, but it was much more
obscure. I wanted to refresh my architectural memory, so I asked around for the original memos
and videotapes. Nobody had even heard of them. Critical architectural knowledge had been lost.
People were actually afraid to change the original code, because they didn’t understand how it
worked. A very few old timers knew the original system, and they were the ones who dared change
the early code. (I soon became one of them.)”

95

Chapter 6. Semi-automatic Architectural Pattern Identification and Documentation Using
Architectural Primitives 96

Software architecture documentation or, in case of lost architectural knowledge, software archi-
tecture reconstruction [DP09] techniques can be used to (re)establish the proper architectural
documentation of the software system. An essential part of today’s architectural knowledge is
information about the patterns used in a system’s architecture. Patterns can be seen as building
blocks for the composition of a system’s architecture [Bus+96; BJ94]. This is especially valid
for architectural patterns or styles which describe a system’s fundamental structure and behavior
[LN95]. A considerable number of software architecture reconstruction approaches support soft-
ware pattern identification [BJ94; BP00; Shu+96]. Most of these approaches (see e.g. [Heu+03;
KP96; BP00; Phi+03]) focus on automatically detecting design patterns in the source code. Such
pattern identification approaches are often restricted to design patterns that were identified by
Gamma et al. [Gam+95] (GoF patterns). Architectural patterns, in contrast, convey broader in-
formation about a system’s architecture as they usually are described at a larger scale than GoF
patterns.

There are a number of important problems in automatic pattern identification in general and
especially in architectural pattern identification. Existing approaches often only focus on the task
of identifying a system’s design patterns while the documentation of the reconstructed patterns
and the future evolution of the system are not considered (which is just as essential as identifying
an architectural pattern).

In addition, architectural patterns are often much harder to detect directly in the source code than
GoF design patterns, as there is often a large number of classes involved in the implementation
of the pattern and the variations between different instances of the patterns are very large. As a
consequence of the large number of involved classes, there is a possibly huge search space for these
patterns that grows with every class and increases execution times [DP09].

A big problem of pattern identification is the variability in pattern implementations. Only a
very few pattern identification approaches consider pattern variations at all, and they are usually
focused on GoF design patterns only [Wen+01; Wen03]. For instance, hardly any implementation
of a system strictly adheres to the Layers pattern [Bus+96] as described in the textbook, but a huge
number of systems are designed based on Layers. To give a concrete example, in the definition
of the Layers pattern, a layer only has access to the functionality provided by the layer below
it. However, this rule is often violated for cross-cutting concerns like performance, security, or
logging. As a consequence, many layered architectures contain parts that do not strictly adhere
to the Layers pattern. In addition to this, the Layers pattern suggests but does not in any way
enforce clean interfaces between the layers. For these reasons, it is hard to automatically detect
architectural patterns like Layers.

Another problem of automatic pattern identification is the accuracy of the approaches, which is of-
ten not sufficient. That is, some approaches treat pattern instances they find as candidates [Wen03].
However the likelihood of false positives increases with system size and can lead to precision values

Chapter 6. Semi-automatic Architectural Pattern Identification and Documentation Using
Architectural Primitives 97

around 40 percent [KP96] which means that 60 percent of the found pattern instances are false
positives. This requires substantial manual effort to review the found pattern instances.

In the light of the aforementioned problems, we have split our original Research Question 3 and
formulated the following, more detailed research questions:

RQ6.1 How far can a semi-automatic architectural pattern approach go toward the goal of iden-
tifying the patterns in architectural reconstruction?

RQ6.2 How far can a semi-automatic architectural pattern approach go toward the goal of main-
taining documented pattern instances during the further evolution of a reconstructed ar-
chitecture?

RQ6.3 In how far are the concepts and tools applicable in existing real-life systems?

RQ6.4 How efficient are the actual pattern instance matching algorithms that are based on prim-
itives?

RQ6.5 Are primitives and an adaptable pattern catalog adequate means to handle the variability
inherent to architectural patterns?

The main contributions of this chapter are, first, to suggest a novel semi-automatic architectural
pattern identification approach that tackles the aforementioned problems that arise during the
documentation and evolution of architectural patterns like the variability inherent to patterns,
consistency between the documented architecture and the source code, and the large number of
source code artifacts that are related to the implementation of architectural patterns. This is based
on the architectural component views that we presented in Chapter 5.

Second, we show the approach’s feasibility in terms of tool support (in the context of three open
source case studies), and to study the performance of the approach (also in the context of these
cases). We aim to assist the software architect during the reconstruction of architectural knowl-
edge as well as supporting the architect in the documentation of the reconstructed architectural
knowledge. After the architectural knowledge has been reconstructed and documented with our
approach, we support the software architect in keeping the created architectural documentation in
sync with the source code of the application. As Clements et al. [Cle+02] state, a strong architec-
ture is only useful if it is properly documented in order to allow others to quickly find information
about it.

Our proposed solution is an interactive approach for the semi-automatic identification and doc-
umentation of architectural patterns based on a set of Domain Specific Languages (DSLs). It
consists of the following main components:

Chapter 6. Semi-automatic Architectural Pattern Identification and Documentation Using
Architectural Primitives 98

• Architecture Abstraction Specification Language: In the Architecture Abstraction Specifica-
tion Language, which we discussed in detail in Chapter 5, the software engineers can semi-
automatically create an abstraction of an architectural component view based on design
models or during architecture reconstruction. To address the rich concepts and variations
of patterns, we propose to use architectural primitives [ZA05] that can be leveraged by
software engineers for pattern annotation during software architecture documentation and
reconstruction. Architectural primitives are primitive abstractions at the architectural level
(i.e. defined for components, connectors, and other architectural abstractions1) that can be
found in realizations of multiple patterns.

• Pattern Instance Documentation Tool: Using the architectural primitive annotations, our
approach provides a Pattern Instance Documentation Tool which automatically suggests pos-
sible pattern instances based on the architectural component view of a system and a pattern
catalog.

• Pattern Catalog DSL: The pattern catalog contains templates of the architectural patterns
to be identified. It is customizable, reusable and integrates support for pattern variability.
Our approach leads to a reduced search space for patterns, as we search for patterns only in
the created architectural component view instead of the source code.

• Pattern Instance DSL: Identified pattern instances are documented using the Pattern In-
stance DSL which uses the artifacts defined in the Architecture Abstraction Specification
Language and the Pattern Catalog DSL to permanently store pattern instance documenta-
tions.

We automatically generate traceability links between the architectural abstractions and the source
code (more specifically, the automatically generated class models of the source code), the architec-
tural abstractions and the selected pattern instances, and the pattern instances and the pattern
catalog. When artifacts are changed, the traceability links are used to automatically check the
consistency of all the artifacts. Automated consistency checking aids the software engineers during
the incremental architecture documentation process, when new artifacts are identified and doc-
umented. For example, the system automatically detects when the pattern catalog is used to
customize an existing pattern and these changes cause an existing instance of this pattern to be no
longer valid. The consistency checks are used throughout the evolution of the documented system
and report any occurring violations within seconds.

1Today, the component and connector view (or component view for short) of an architecture is a view that is often
considered to contain the most significant architectural information [Cle+02]. Taylor et al. [Tay+10] define compo-
nents as architectural entities that encapsulate a subset of a systems functionality and/or data. Each component
has an explicitly defined interface that restricts access to the component’s functionality and data as well as explicitly
defined dependencies on its required execution context. They define a connector as an architectural building block
that is tasked with effecting and regulating interactions among components.

Chapter 6. Semi-automatic Architectural Pattern Identification and Documentation Using
Architectural Primitives 99

This chapter is structured as follows: In Section 6.2 we briefly explain architectural patterns and
architectural primitives as our background. We give an overview of our approach in Section 6.3, and
present it in detail in Section 6.4. In Section 6.5 we present three case studies of open source systems
in which we have applied our approach to test its applicability. As it is crucial for our approach
that it works smoothly in the working environment of the software designer during software design
and development, we evaluate the execution time of our prototype in Section 6.6. In Section 6.7 we
discuss lessons learned from the case studies and the performance evaluation as well as limitations
of our approach. We conclude this chapter in Section 6.8.

6.2 Background: Patterns and Architectural Primitives

A significant aspect of documenting software architectures is the representation of architectural
patterns [Bus+96; AZ05] and the closely related architectural styles [SG96]. In general, a pattern
is a problem-solution pair in a given context. A pattern does not only document ‘how’ a solution
solves a problem but also ‘why’ it is solved, i.e., the rationale behind this particular solution.
Architectural patterns help to document architectural design decisions, facilitate communication
between stakeholders through a common vocabulary, and assist in analyzing the quality attributes
of a software system.

Common approaches for modeling architectural patterns are Architecture Description Languages
(ADLs) [MT00], the Unified Modeling Language [Med+02], and formal or semi-formal approaches
for the formalization of pattern specifications [EH99; Mik98]. As discussed in detail by Zdun and
Avgeriou [ZA05], none of these approaches succeeds in effectively modeling architectural patterns,
as they (1) are too limited in their abstractions to cover the rich concepts found in the patterns
and (2) do not deal with the inherent variability of architectural patterns. To solve these problems
Zdun and Avgeriou then proposed in [ZA05] to remedy the problem of modeling architectural
patterns through identifying and representing a number of architectural primitives that can act as
the participants in the solution that patterns convey. We use the term ‘primitive’ because they are
the fundamental modeling elements in representing a pattern, and they are the smallest units that
make sense at the architectural level of abstraction (e.g. specialized components, connectors, ports,
interfaces). Our approach relies on the assumption that architectural patterns contain a number
of architectural primitives that are recurring participants in several other patterns [MM03]. These
primitives are common among the different patterns even if their semantics demonstrate slight
variations from pattern to pattern.

In the previous work of our group, we provided modeling abstractions for each type of elicited
architectural primitive [ZA05]. In this work, we propose a semi-automatic architectural pattern
identification and documentation approach based on the architectural primitives. The benefit
of using this approach during architecture documentation and architecture reconstruction efforts

Chapter 6. Semi-automatic Architectural Pattern Identification and Documentation Using
Architectural Primitives 100

is that the primitives can capture the rich concepts found in patterns as well as their inherent
variability.

In the remainder of this chapter we use the term primitive in two different contexts. First, we use
the term primitives to annotate the architectural component view with the primitive information.
In this context we use the primitives, as described above, as fundamental modeling elements.
Throughout the chapter we refer to this as primitive annotations. The second context is the
description of architectural pattern templates. In this context we use the term primitive as a
parameterizable version of the definition above to describe the properties of a pattern participant.

6.3 Approach Overview

Figure 6.1 shows the most important steps and tools in our approach. The central tool is the
Pattern Instance Documentation Tool. Its goal is to document architectural pattern instances
based on an architectural component and connectors view of a system that is annotated with
architectural primitives.

The tool is semi-automatic, as it also receives manually edited inputs developed using the Ar-
chitecture Abstraction Specification Language. In Chapter 5 we developed a basic version of this
DSL that can be used to provide architecture abstraction specifications to incrementally create
an architectural component view which abstracts over source code. In order to provide language
independence we first automatically create a UML class model from the source code and then the
software architect uses our DSL to manually create abstractions from this UML class model to
create an architectural component view. This component view is then permanently stored as a
UML components and connector model.

Traceability links between the class model and the architectural component view are automatically
generated. Essentially, the DSL supports the specification of architectural components and con-
nectors based on source code elements. In this chapter, we extended the Architecture Abstraction
Specification Language to also enable software architects to incrementally annotate the created
components and connectors with architectural primitives during architecture documentation or
reconstruction. The final input for the Pattern Instance Documentation Tool is a reusable pattern
catalog. Usually the pattern catalog is defined once and can then be reused many times. The
pattern catalog contains a number of templates for architectural patterns. For the task of creating
and editing pattern catalogs we defined the Pattern Catalog DSL (details in Section 6.4.1) that
uses architectural primitives as the basis for pattern descriptions.

Based on the information from the architectural components and the pattern catalog, the Pattern
Instance Documentation Tool (see Section 6.4.3 for details) automatically computes which patterns

Chapter 6. Semi-automatic Architectural Pattern Identification and Documentation Using
Architectural Primitives 101

Architectural component model

with primitive annotations

Pattern instance

candidates

(automatically generated)

Legend

Tool

(automatic)

User

Tool

Pattern catalog

UML class model

(automatically

generated

the source code)

Pattern Instance

Documentation Tool

Class Model Parser

Traceability Link

Generator

Models and pattern instances

Consistency Checker
Traceability

links

Selected pattern instances

Pattern Catalog DSL

Architecture

Abstraction DSL

Pattern

Instance DSL

Pattern

Identification Wizard

Figure 6.1: Overview of the approach

from the pattern catalog can be instantiated based on the architectural component view specifica-
tion. Using a Pattern Identification Wizard, all pattern instance candidates are presented to the
software architect. The software architect then chooses the candidates she wishes to document.
The created pattern instance description, as well as the pattern instance candidates, are instances
of another DSL, the Pattern Instance DSL (see Section 6.4.4 for details). This DSL uses elements
from the Pattern Catalog DSL and the Architecture Abstraction Specification Language to describe
pattern instance documentations. It is used to review and edit the documented pattern instances
and pattern instance candidates, or add missing information, e.g. within the Pattern Identification
Wizard.

Once a pattern instance is documented, it is automatically checked for consistency throughout
further iterations of architecture documentation effort and the future evolution of the system using
the Consistency Checker. Whenever the source code, the architectural components, or the pattern
catalog are changed, our tools test if any consistency rules, defined by the architectural primitives,
are violated or if any relations and constraints that are defined in the pattern catalog are no longer
satisfied. As shown in Figure 6.1 the Pattern-Architecture Traceability Generator automatically
maintains traceability links between all elements that are shared between the Pattern Catalog DSL,
the Architecture Abstraction Specification Language, and the Pattern Instance DSL. To maintain
traceability with the source code, the Code-Architecture Traceability Generator automatically
generates traceability links between the architectural components and the source code based on
the Architecture Abstraction Specification Language.

For all manual steps in the approach, our tools provide a number of features that ease the life of
the software architect. This includes code completion for the DSLs, auto-complete for names of
existing artifacts, and automatic generation of traceability links. Furthermore the system provides
detailed information about violated constraints and the violating artifacts.

Chapter 6. Semi-automatic Architectural Pattern Identification and Documentation Using
Architectural Primitives 102

*

Catalog PatternTemplate
Pattern

Description

Primitive

Specification
Constraint

Relation

Relation

Constraint

Primitive

Connector

Primitive

Component

Primitive

pattern

Templates
textual

Description

consistsOf

relations

relatedTarget

relations

constraints

primitive

primitive

1

0..1

1..*

1 ..*

1

1..*

1

*

Figure 6.2: Excerpt of the Ecore model for the Pattern Catalog DSL

6.4 Detailed Description of the Approach

Our approach introduces a reusable pattern catalog that contains architectural patterns, an ar-
chitectural component view that is annotated with architectural primitives, and pattern instances
based on the pattern catalog and the architectural component view. In this section we describe the
concepts and languages used for realizing these different parts of our approach in more detail. To
illustrate our approach, we use a running example based on the open source game FreeCol [The11]
which is a turn-based strategy game based on the old game Colonization, and similar to Civilization.
The objective of the game is to create an independent nation.

The central tool in our approach is the Pattern Instance Documentation Tool as it is responsible
for the computation of possible pattern candidates that are presented to the architect in order
to document the architectural patterns found in the source code. It is described in Section 6.4.3;
however, we describe the Pattern Catalog and the changes and extensions to the Architecture
Abstraction Specification Language first, as their concepts are important for understanding the
details of the Pattern Instance Documentation Tool.

6.4.1 Pattern Catalog

The basis of our approach are patterns that can be defined in a reusable pattern catalog. Figure
6.2 shows the most important parts of the Ecore meta-model for this Pattern Catalog DSL2. It
supports the definition of patterns based on architectural primitives.

2All our DSLs are implemented using Eclipse Xtext 2.3.1 utilizing Eclipse Xtend and Java for model-
transformation and constraint checking (using the Eclipse Xtext validation framework).

Chapter 6. Semi-automatic Architectural Pattern Identification and Documentation Using
Architectural Primitives 103

Figure 6.3: Example showing the MVC pattern in the Pattern Catalog DSL

Figure 6.3 shows an exemplary definition of the Model-View-Controller pattern as described by
Fowler et al. [Fow02]. This pattern aims at decoupling the presentation from the business logic
and the data. It consists of three different parts: The Model that holds the data, the Controller
that manipulates that data, and the View(s) that display the data. This pattern defines that the
View and the Controller have a relationship with each other and also that both have a relationship
to the Model. Please note the usage of the Grouping primitive that, in the context of the pattern
template, defines the role Controller as a group of components that together fulfill this role.

A pattern specification (i.e. the PatternTemplate in the meta-model) consists of a textual descrip-
tion of the pattern and one to many RoleDefinitions. Each RoleDefinition describes one role
and its relations to other roles that are part of the pattern. Thus an instance of RoleDefinition

has a Rolename, a ComponentPrimitive, an arbitrary number of constraints, and a number of
Relation objects. Each Relation requires a ConnectorPrimitive and a target role and optionally
holds a RelationConstraint. Currently three types of constraints are supported:

• RangeConstraint: this allows to define a lower bound (0 or greater) and an upper bound
(1 to many - which is denoted by a *) for the occurrences of a role in a pattern instance
description.

• ExclusionConstraint: this allows to define an exclusion: if a role is assigned in the pattern
instance description one or more other roles must not be assigned.

• RequiresConstraint: this allows to define a requirement: if a role is assigned in the pattern
instance description,one or more other roles have to be assigned as well.

This way RoleDefinitions can describe optional roles, by using a RangeConstraint with a lower
bound of 0. Using the RequiresConstraint it is possible that a whole group of roles can be defined
which all have to be assigned in the pattern instance documentation or none of the roles is assigned.

In Figure 6.3 three roles are shown: One with the name Model which specifies that a group of
components belongs to this pattern and that the this group has no connector to elements fulfilling
the roles View and Controller. One called View which specifies that one or more components are

Chapter 6. Semi-automatic Architectural Pattern Identification and Documentation Using
Architectural Primitives 104

Table 6.1: Overview of the defined primitives (excerpt)

Primitive
Name

Annotation
Target

DSL Key-
word

Description

Component (Component) (Component) Supertype for component primitives
Grouping Component Group Component is part of a group of components
Layering Component Layering Component belongs to a layer
Connector (Connector) connector to Supertype for connector primitives
Callback Connector is callback for Register a callback with another component
Indirection Connector indirection to Indirection to another component
Aggregation
Cascade

Connector aggregates Component aggregates other components

Composite
Cascade

Connector composition
of

Component is a composite of other components

Virtual-
Connector

Connector virtually con-
nected to

An indirect connection to another component

Shield Connector shield for Prevents direct access to a set of other compo-
nents

part of this pattern which have connectors to the Model and the View, and finally a group of
components that are named Controller with connectors to Model and View. While the version
of the MVC pattern that is shown in Figure 6.3 only allows a single controller, there might exist
versions of MVC that utilize multiple Controllers. In order to extend the pattern template to allow
this variants, only the RangeConstraint that follows after Controller has to be modified from (1) to
e.g. (1 .. *) to allow the unbounded assignment of Controllers in the pattern instance description.

6.4.2 Architecture Abstraction Specification Language

In Chapter 5 we introduced a DSL which we now extend and evolve. It is intended to describe
a software system’s architectural component view with its connectors and primitive annotations
through architectural abstraction specifications.

We now build on this approach by extending the architectural component view and allowing the
architect to (manually) annotate the abstractions for architectural components with architectural
primitive information.

Table 6.1 provides an overview of the primitives that are used in the examples and cases in this
chapter. In our prototype we have implemented all primitives defined in the previous work of our
group [ZA05].

In the FreeCol example (Section 6.5.1) we identified 10 architectural components. Figure 6.4 shows
the definition of one of these architectural components, ClientController, which contains the source
code package root.net.sf.freecol.client.control. The or-statement in the code represents the

Chapter 6. Semi-automatic Architectural Pattern Identification and Documentation Using
Architectural Primitives 105

Component ClientController

consists of

{

 Package ([...].client.control)

 or

 //[...]

}

is in Group (Controllers)

connector to Server

implemented by

 //[...]

 or

 Class([...].server.FreeColServer)

connector to GUI

connector to Model

connector to ServerModel

//[...]

Component Interpreter

consists of

{

 Class (".*Interp")

 or

 {

 Package(root.frag.core)

 }

}

is a Shield for CommandGroup

is a Shield for Parser

indirection to CommandObjects

indirection to FileCommandObjects

connector to Parser

Figure 6.4: Example for an architectural abstraction for the ClientController component of the
FreeCol system [The11] as well as an example for an architectural abstraction for the Interpreter

component of the Apache CXF [Apa] case study (Section 6.5.3).

union operation and indicates that more source code elements are contained in this component
which we do not show here for brevity reasons.

In addition, this architectural component has been manually annotated with the Grouping primitive
and been added to a group called Controllers. This definition also contains a set of connectors
for this architectural component (also abbreviated). Similar to the ball and socket notation in
UML 2, connectors in the Architecture Abstraction Specification Language have direction, as they
pertain to an architectural component and can target either a single architectural component or
a group of components that are annotated with the Grouping primitive. The connectors of the
ClientController component shown in Figure 6.4 were automatically generated based on relations
in the source code. This component, respectively the group it is annotated with, is a candidate for
the role Controller in the Model-View-Controller pattern (Figure 6.3) as this architectural com-
ponent has connectors to an architectural component GUI (which fulfills the constraints for the role
View) and to the components Model and ServerModel which form a group called ModelComponents.
This group fulfills the constraints for the role Model.

The components shown in Figure 6.4 also exemplify the annotation of architectural components
with primitives. While the ClientController component is annotated with the Grouping primitives,
which indicates that it is part of a group of components that belong together, the Interpreter

component is annotated as a Shield that shields the Parser component and a Grouping called
CommandGroup from direct access. The Xtext grammar of the Architecture Abstraction Specification
Language can be found in Appendix C.

6.4.3 Pattern Instance Documentation Tool

In this section we describe the Pattern Instance Documentation Tool of our approach. When archi-
tects intend to create a pattern instance description based on the pattern catalog, the architectural

Chapter 6. Semi-automatic Architectural Pattern Identification and Documentation Using
Architectural Primitives 106

primitive annotations are used to automatically search for possible patterns that are then pre-
sented in an Eclipse Wizard. There the architect can select the pattern she deems appropriate.
The wizard then creates a pattern instance description based on the selected pattern and prefills
all values that can be automatically determined.

The Pattern Instance Documentation Tool first reads the architectural component view and the
pattern catalog. The tool then checks for each pattern template in the pattern catalog if the
pattern’s constraints are satisfied in the architectural component view. The basic algorithm for
this task is shown in Algorithm 1. It is invoked for every pattern template in the pattern catalog
and returns a pattern candidate if the pattern’s constraints can be satisfied.

Algorithm 1 Pattern Evaluation Algorithm
1: procedure evaluatePattern(patternT emplate,model)
2: candidate := new Candidate()
3: for each primitive in patternT emplate do
4: comps := getAnnotatedComponents(model, primitive)
5: if checkComponentConstraints(primitive, comps) then
6: updateCandidate(candidate, primitive, comps)
7: else
8: return null
9: end if

10: end for
11: for each primitive in candidate do
12: if ¬checkRelationConstraints(primitive, candidate) then
13: return null
14: end if
15: end for
16: return candidate
17: end procedure

In Algorithm 1, for each architectural primitive of the type ComponentPrimitive that is used in the
pattern specification, the method getAnnotatedComponents is used to find all architectural
components that are annotated with the specified primitive. After this, the method checkCompo-
nentConstraints is used to check if the constraints for the primitive (as specified in the pattern
catalog) can be satisfied. When all component primitives of a pattern have been satisfied, the
algorithm checks if the ConnectorPrimitives defined in the pattern template and all constraints
defined for these ConnectorPrimitives are satisfied. If any constraint or primitive of a pattern
template cannot be satisfied using the primitive annotations in the architectural component view,
the evaluation of the pattern template is aborted. If all constraints are satisfied and all the pat-
tern template’s primitives exist as primitive annotations in the architectural model, the pattern
template is accepted and a candidate is created. This pattern candidate is not a complete pattern
instance description, as precomputed complete pattern instances would lead to a potentially huge
number of pattern candidates. Each pattern candidate holds information about a single pattern
template that can be found in the architecture and contains a map that holds, for each role, the
architectural components that can be assigned to this role (based on the role’s primitive and the ar-
chitectural component’s primitive annotations). Algorithm 1 has a worst-case runtime complexity
of O (N × M), i.e., in simplified form we can write O

(
N2)

. Because of the quadratic complexity

Chapter 6. Semi-automatic Architectural Pattern Identification and Documentation Using
Architectural Primitives 107

of the algorithm we performed an evaluation of our approach’s performance which is presented in
Section 6.6.

In the Model-View-Controller(MVC) example (see Figure 6.3), this means that when creating an
instance, it is necessary that the architecture abstraction specification matches the constraints for
all RoleSpecifications that were defined in the pattern template. For example, to assign the Model

role, at least one group primitive annotation needs to exist in the architecture abstraction, while
any defined component is viable for the role View. To satisfy the connector primitives for the role
View at least one architectural component is needed that has connectors to at least two distinct
groups of components. Similar requirements are necessary for the role Controller which requires
that a number of architectural components are grouped. To fulfill the role, this group needs to
have a connector to the Model components and also needs to have at least one connector to the
possible candidates for the View role. The pattern template for the MVC pattern also forbids a
relation between the model and the view as well as the model and the controller. However it is not
efficient to check for the absence of a relation during the search for possible pattern candidates.
At this time no knowledge or limited knowledge (in case of roles that can only be fulfilled by one
component or grouping) about the concrete pattern instance exists and it would be necessary to
check all possible assignments (all possible pattern instances) for the absence of this relation.

The list of accepted pattern instance candidates is then presented to the software architect together
with information about the pattern template that is the basis for the candidate. Once the software
architect selects one or more pattern instance candidates, the Pattern Instance Documentation
Tool tries to automatically assign components for the roles of the selected candidates. If not all the
roles of a pattern instance candidate can be automatically assigned, the Pattern Instance DSL is
used to present the unfinished pattern instance to the software architect and she needs to complete
the pattern instance by selecting one of the viable architectural components for each unassigned
role. Once all roles of a pattern instance are assigned, it is permanently stored for documentation
and later use – again using the Pattern Instance DSL.

To support continuous consistency checking, all the checks that were performed in the Pattern
Instance Documentation Tool during the creation of a pattern instance are performed for each
selected pattern instance both during the following iterations of the architecture documentation
and subsequent evolution of the system.

As discussed in Section 6.1 and 6.2, variability is inherent to all architectural patterns and their
implementations. Two possible examples of pattern variations are models with pattern instances
that contain additional architectural elements not described by the pattern or pattern instances
where parts of the pattern have been omitted (an example for this case is shown and discussed in
Section 6.5.3). The Pattern Instance Documentation Tool ignores additional architectural elements
by default and is only influenced by additional architectural elements if the pattern template(s) in
the pattern catalog explicitly forbid certain relations. If a pattern implementation omits parts that

Chapter 6. Semi-automatic Architectural Pattern Identification and Documentation Using
Architectural Primitives 108

Pattern Instance: ModelViewController

Model : ModelComponents

View : GUI

Controller : Controllers

Figure 6.5: Example instance of the MVC-pattern for the program “FreeCol”[The11]

are specified in the corresponding pattern template in our pattern catalog, in order for the Pattern
Instance Documentation Tool to identify the pattern, it is necessary to mark the missing part of
the pattern template as optional. We plan to support the search for incomplete implementations
using an heuristic approach in the future.

6.4.4 Pattern Instances

For creating and persisting pattern instances we implemented the Pattern Instance DSL that
references elements from the Pattern Catalog DSL and the Architecture Abstraction Specification
Language. The pattern instances hold the information which architectural components relate to
which parts (roles) of the pattern from the pattern catalog. In Figure 6.5 we show an example
instance of the Model-View-Controller pattern that we identified in the architectural components
of FreeCol. This instance uses the group Controllers (which holds the ClientController from
Figure 6.4) for the role with the same name. It assigns the Model role to the ModelComponents

group and the View role to the architectural component GUI.

For every pattern instance documentation, our Pattern Instance DSL expresses and permanently
stores traceability links between the elements from the pattern instance description, the pattern
template and its roles from the pattern catalog, as well as the architectural components from the
architectural component view that are assigned to roles. This is done implicitly as the existing
artifacts from the Architecture Abstraction Specification Language and the Pattern Catalog DSL are
directly referenced when a pattern instance is documented. For the example shown in Figure 6.5,
this means that ModelViewController is a reference to the pattern template from the pattern catalog
and Model, View, and Controller are references to the roles that are defined in this pattern template.
While ModelComponents, GUI, and Controllers are references to components or Groupings specified in
the Architecture Abstraction Specification Language. All of these traceability links are navigable by
the architect in the tool and allow a quick navigation between the different artifacts of our approach.
E.g. the architect can navigate from the documented Model-View-Controller pattern instance in
the PatternInstanceDSL to the underlying pattern template specified in the PatternCatalogDSL
by Ctrl+clicking the pattern template name in the pattern instance documentation. This also
works for roles and assigned components, where a Ctrl+click on the role View will also open the
template for the Model-View-Controller pattern, while a Ctrl+click on the assigned component
GUI will bring up the specification of this component in the architectural component view.

Chapter 6. Semi-automatic Architectural Pattern Identification and Documentation Using
Architectural Primitives 109

Based on the traceability links, our tool suite checks consistency of pattern instance descriptions
with the architectural components, which in turn are consistency checked against the source code
artifacts, as well as the underlying pattern templates. These checks also include the aformentioned
checks whether a pattern template defines constraints on the relations of its participating roles (see
Section 6.4.3). If the consistency checks detect a violation, an error is raised and the affected part
of the pattern instance description is highlighted.

6.5 Case Studies

In this section we present three open source system case studies to better illustrate our approach
and to study the practical applicability of our approach to do architecture reconstruction and
documentation for existing, non-trivial software systems. Finally, the case studies are also used as
a basis for the performance evaluations in Section 6.6. In the first case study we documented the
architecture of the open source game FreeCol, which was partly presented as a running example
before. In the second case study, Frag, we explain the documentation of the architecture of an open
source programming language implementation – which was developed in our group – for a number
of evolution steps. In the third case, we study the documentation of architectural patterns on an
open source system with approximately 390.000 lines of source code in more than 2000 classes,
namely Apache CXF.

6.5.1 Case Study: FreeCol

FreeCol is a turn-based open source multi-player game implemented in Java. The implementation
uses a Client-Server architecture. For all games the clients connect to a server to play. While
a local server is started for single-player games, a dedicated server can be used for multi-player
games.

Through our architecture reconstruction and documentation effort we identified the architecture
shown in Figure 6.8. We identified 10 components and their relationships. The client consists
of a graphical user interface ClientGUI that displays the game based on a domain model (Model).
All actions, that are executed by the user, are forwarded to the ClientController which up-
dates the model accordingly and also notifies the server about the changes. For this purpose the
ClientNetworking exposes a server API to the client. Calls to this API are then forwarded to the
server using a message-based protocol that is implemented by the Networking component. On the
server-side received messages are forwarded from the ServerNetworking to the input handler which
is part of the ServerController where MessageHandlers are used for handling the input. These
update the server’s game state which is realized in the ServerModel and notify other players if

Chapter 6. Semi-automatic Architectural Pattern Identification and Documentation Using
Architectural Primitives 110

necessary. This means that the API provided to the client actually does not have a direct coun-
terpart on the server-side as the implementation of this fuctionality is distributed on the different
MessageHandlers. On the client side, the ClientController’s InputHandler reacts to messages that
are received from the server and updates the GUI and model accordingly.

During the architecture documentation we decided to group the components that provide similar
functionality for the client and the server. One obvious choice for grouping were the ClientController

and ServerController which we grouped as Controllers. The second group we annotated was the
ModelGroup which consists of the Model and the ServerModel component. Another set of components
that together provide important functionality are all components concerned with networking which
together provide the facilities for the communication between clients and the servers. Naturally
we grouped them in a group called Networking.

During the source code study of this project we noticed that the ClientNetworking component as
well as the ServerNetworking component both use the Networking component to handle the input
they receive. Thus we annotated the connector between ClientNetworking and Networking as well
as the connector between ServerNetworking and Networking with the Indirection primitive.

Using these primitive annotations, the Pattern Instance Documentation Tool then proposed a
number of patterns from the pattern catalog. Among these are the already mentioned Model-
View-Controller (MVC) pattern, as well as the Broker [Zdu+04], Application Controller, Page
Controller, Proxy, Transform View, Template View, and Two Step View patterns (which are all
discussed by Martin Fowler [Fow02]).

After manual analysis of the architectural component model, we concluded that the MVC pattern
matches the architecture’s user-interface best, as alternatives like the Page Controller pattern are
similar to the MVC pattern but do not match FreeCol’s intended architecture. For the MVC pattern
we selected the ClientGUI as View, the Controllers grouping as Controller and the ModelGroup

grouping for the Model role. A very similar option would have been the Page Controller pattern.
Our current pattern templates for the MVC and Page Controller patterns only differ in one relation
between the role View and the role Controller which is forbidden in the Page Controller pattern
and required in the MVC pattern. As already discussed in Section 6.4.3 the absence of relations
can only be viably checked for existing pattern instances and the difference for these two patterns
cannot be detected by the Pattern Instance Documentation Tool which reports both patterns as
possible pattern candidates.

In order to demonstrate this, we also documented an instance of the Page Controller with the
same role assignments that we used for the MVC pattern. However the consistency checker raises
a constraint violation for the Model role once this pattern instance documentation is checked. This
is shown in Figure 6.6. A similar constraint violation might occur when the application changes
over time and a new dependency between two components is implemented in the source code.

Chapter 6. Semi-automatic Architectural Pattern Identification and Documentation Using
Architectural Primitives 111

Figure 6.6: FreeCol case study: Page controller pattern instance with constraint violation[The11]

This first leads to a constraint violation in the Architecture Abstraction Specification Language.
If the architect then decides that an evolution/change of the architecture is necessary (rather
then changing the source code), she adds the according connector to the architecture abstraction
specification. This, in turn, may lead to a constraint violation like the one shown before. This
works in a similar manner if dependencies between different components and thus their connectors
are removed.

After the attempt to document an instance of the Page Controller pattern we also documented
the Broker pattern [Zdu+04]. This pattern’s context are distributed objects and the transparent
invocation of remote objects. For this purpose a client-side requestor and a server-side invoker are
used that hide the implementation details of the network communication from the engineer using
a marshaller. In order to provide type-system transparency the requestor usually is a proxy for
the object that is invoked on the server.

Our pattern template, which is based on the description of Zdun et al. [Zdu+04], was able to
describe the implemented architecture. For this pattern instance the assignment of roles had to be
done manually as the Pattern Instance Documentation Tool found more than one possible option
for each role.

As the description of the Broker pattern is based on the Component primitive, the architect has
to select between all of FreeCol’s components when assigning the first role. After the role Client

was assigned to the ClientController component, the tool suggested the 3 components Model,
ClientGUI, ClientNetworking for the ClientProxy role. After the selection of the ClientNetworking

component as ClientProxy, our tool automatically suggested the Networking component for the
Transport role. For the ServerProxy role, the tool provided a choice between the ClientNetworking

and the ServerNetworking component. At the current point of time, however our tool does not use
other means than structural information and thus cannot automatically select the ServerNetworking.
The last remaining Server role was automatically assigned to the ServerController component.
This results in the following assignment for the documented pattern instance: ClientController

as Client, ClientNetworking as ClientProxy, Networking for the Transport role, ServerNetworking

Chapter 6. Semi-automatic Architectural Pattern Identification and Documentation Using
Architectural Primitives 112

Pattern Template Broker

consists of:

Client: Component

connector to ClientProxy

ClientProxy: Component

connector to Transport

Transport: Component

ServerProxy: Component

connector to Transport

Server: Component

connector to ServerProxy

Pattern Instance: Broker

Client: ClientController

ClientProxy: ClientNetworking

Transport: Networking

ServerProxy: ServerNetworking

Server: ServerController

Figure 6.7: FreeCol case study: Broker pattern template and Broker pattern instance description

Client Server

ClientGUI

ClientController

IGameControl

«Indirection»

IConnection

IHandleInput IAIPlayer

IModel

«Indirection»

IConnection

ClientNetworking

IServerAPI ISendMessage

IHandleInput

IModelIModel

IUpdateGUI
ICreateMap

Common

IConnection IModel

ModelNetworking

ServerController AI

MapGenerator

ServerModelServerNetworking

«Group»

ModelGroup

«Group»

Network

«Group»

Controller

Figure 6.8: FreeCol architecture overview [The11]

as ServerProxy, and ServerController as Server. Figure 6.7 shows the template for the Broker
pattern in the Pattern Catalog and the pattern instance documentation for the implementation
found in FreeCol.

This case study shows the applicability of our tool for a medium sized system with about 100k
lines of source code. The annotation of components with architectural primitives proved to be a
straightforward task in this case, as the chosen annotations came quite naturally during the source
code study. After the creation of the architectural component view, the documentation of the two
architectural patterns required only little effort. Both were automatically suggested by the Pattern
Instance Documentation Tool, and, while there were no alternatives found for the Broker pattern,

Chapter 6. Semi-automatic Architectural Pattern Identification and Documentation Using
Architectural Primitives 113

a number of alternatives were suggested for the MVC pattern. The case study also shows that
the distinction of similar user interface patterns like Model-View-Controller or Page Controller on
this level of abstraction can be a challenging task and requires human judgment. However, our
approach aids the software designer in selecting the appropriate patterns by providing traceability
links from the architectural information to the source code elements.

6.5.2 Case Study: Frag

Frag [Zdu11] is a dynamic programming language that is designed to be tailorable, support the
creation of DSLs, support Model-driven Development, and the Frag interpreter is embeddable in
Java, in which Frag also is written. We applied our approach to document Frag’s architecture.
We started by creating an architectural component view and pattern instance documentations for
Frag version 0.6. In this first iteration of our architecture documentation effort, we identified 4
architectural components and annotated these with primitive information.

As Frag is an interpreted language, the most important architectural component is the Interp

component. It provides two interfaces. On the one hand, it allows the embedding of Frag in any
Java program, and, on the other hand, it provides the functionality to execute the commands that
were given as input via the components Client and Shell or via the IEmbeddingFrag interface. As
the Interp uses different command objects to execute the received commands, we annotated the
involved connectors with Indirection primitives. In addition the connectors to Interp’s provided
interfaces are annotated with the Shield primitive as the Interp component shields the access to
the Parser and CommandObjs components.

Pattern Documentation

On this architectural component view we used our Pattern Instance Documentation Tool to identify
all pattern candidates. Based on our pattern catalog, our tool provided the following candidates:
Facade [AZ05], Indirection Layer [AZ05], and Interpreter [AZ05]. The Facade pattern simplifies
the access to a complex subsystem and decouples the client code from the actual implementation
of the subsystem. While Facade is often used as design pattern, it can also be used on architectural
level as sometimes access to a whole subsystem can be provided by an architectural component
that provides a simplified interface for this subsystem to the rest of the application.

An Indirection Layer differs from the Facade as it is intended to hide the actual implementation of
a subsystem and should not be bypassed, while a Facade still allows direct access to a subsystem.
Similar to a Facade, it is possible that an Indirection Layer [AZ05] holds additional logic or performs
additional tasks. The Interpreter pattern defines a class-based representation for a grammar along
with an interpreter to interpret the language defined by the grammar [Fre+04]. Although the

Chapter 6. Semi-automatic Architectural Pattern Identification and Documentation Using
Architectural Primitives 114

Shell

Frag

ParserInterp

IParser

«Shield»

IInterp

«Shield»

IEmbeddingFrag

MDD DSL FCL FMF TemplateEngine

IScript

Client

CommandObjs

«Indirection»

ICommandDispatcher

FileCommandObjs

«Indirection»

ICommandDispatcher

IDynamic

ComponentLoading

IDynamic

ComponentLoading

IDynamicScriptLoading

IDynamic

ComponentLoading

IDynamic

ComponentLoading

IDynamic

ComponentLoading

IDynamic

ComponentLoading

«Group»

CommandGroup

Figure 6.9: Architectural component view for Frag 0.91

Pattern Template

Interpreter

consists of:

Client: Component(0 .. *)

connector to Interpreter

Interpreter:Component(1)

shield for Expressions

indirection to Expressions

Expressions: Component(1 .. *)

Pattern Template

Indirection

consists of:

Client: Component

connector to Proxy

Proxy: Component

indirection to Target

shield for Target

Target: Component

Pattern Instance: Interpreter

Client : Shell

Interpreter : Interpreter

Expressions: CommandGroup

Figure 6.10: Pattern templates for the Interpreter and Indirection patterns as well as the pattern
instance of the Interpreter pattern in the Frag example

patterns have different intents, from the perspective of the Pattern Instance Documentation Tool, all
three candidates are plausible for the architectural model of Frag because the structural descriptions
of the patterns (see Figure 6.10) are similar.

For both patterns in Figure 6.10 a number of possible variants for the description of the patterns
exist. For the Interpreter pattern one variant would be that the Expressions that implement
the language are grouped into one architectural component instead of a group of components.
Another variant could be that the Expressions are implemented in the architectural component
that fulfills the Interpreter role and the Expressions role is omitted. In the same way, variants of
the Indirection Pattern are possible where e.g. the Shield might not be necessary.

Chapter 6. Semi-automatic Architectural Pattern Identification and Documentation Using
Architectural Primitives 115

The pattern instance we selected from these candidates is the Interpreter pattern because of
multiple reasons. The first indication is the name of the reconstructed Interpreter component,
and secondly this architectural component dispatches to the component, containing command
objects, and this execution of commands matches the Interpreter pattern better than it matches
the Facade or Indirection pattern.

After this selection, the Pattern Instance Documentation Tool automatically uses the Interpreter

component for the role Interpreter from the pattern template and the Shell component as the role
Client. The role Expressions had to be assigned manually as more then one possible assignment
exists in our architectural component view. For the role Expressions we did select the component
CommandObjects.

Architecture Evolution

In order to study consistency checking during architecture evolution, we then updated Frag’s
source code to version 0.7 and let the Consistency Checker test for inconsistencies. In a first
step, our Consistency Checker reported a number of classes that existed in the source code but
were not considered in the architectural abstraction as well as a package that was referenced in the
architecture abstraction specification but no longer existed (as it had been renamed). The renamed
package resulted in an update in the architecture specification where the reference to the package
was changed accordingly. After a source code study of these new classes, we introduced four
additional components to the architecture abstraction called FileCommandObjects, MDD, DSL, and
FCL. Furthermore we added a connector from Interpreter to FileCommandObjects, one between
FileCommandObjects each of the other new components. In addition our source code study had
revealed that the Interpreter acted as a Shield for the FileCommandObjects and that the Interpreter

now also used this component to execute commands. While the FileCommandObjects component
utilized the other new components using dynamic loading. This is why we added a Shield and an
Indirection primitive annotation for the FileCommandObjects component.

After these changes the Consistency Checker reported that the new components were not part of
any documented pattern instances and suggested the FileCommandObjects as another participant of
the documented Interpreter pattern. Specifically the component was suggested to be also assigned
to the Expressions role of the documented Interpreter.

We then continued this process until we reached Frag’s current version 0.91. In version 0.8 the
Consistency Checker again reported new classes, which led to another two new components in the
architecture abstraction specification that are connected to the FileCommandObjects component, as
well as a package that had been renamed. This required an update to the architecture abstraction
specification. After updating the source code from version 0.8 to version 0.91 the consistency

Chapter 6. Semi-automatic Architectural Pattern Identification and Documentation Using
Architectural Primitives 116

Table 6.2: The number of traceability links created or deleted by the Traceabiliy Link Generator
during each evolution step.

Version change Number of created
traceability links

Number of deleted
traceability links

Frag 0.6 → 0.7 122 113
Frag 0.7 → 0.8 53 22
Frag 0.8 → 0.9 59 91

checker did not report any inconsistencies as all new classes were already covered by the architecture
specification and thus no changes to the architecture were necessary.

Traceability

Whenever we changed the architecture abstraction specification, the Tracebility Link Generator
recalculated all traceability links. As shown in Table 6.2, for each evolution step (version change)
the generator created and removed a substantial number of traceability links. This is also true for
the evolution step from Frag version 0.8 to Frag version 0.91 where the changes to the source code
resulted in 59 new and 91 deleted traceability links although no changes to the architecture ab-
straction specification had occurred. Keeping these traceability links manually up-to-date requires
a substantial effort by the software architect or developer.

Summary

During multiple iterations we identified a total number of 10 architectural components and their
connectors. The final architectural component view for Frag is shown in Figure 6.9.

This case illustrates that annotation with primitives can easily be done while documenting a
systems architecture using our DSL-based approach. It shows how the consistency checks support
the architect during the future evolution of a system once it’s architecture has been documented
using our approach.

6.5.3 Case Study: Apache CXF

Apache CXF is an open source Web services framework that is developed in Java and supports a
wide variety of protocols like e.g. SOAP and RESTful HTTP. We used the architecture overview
that is available at the CXF web-site3 as a basis, and incrementally improved and annotated the
architectural component view.

3http://cxf.apache.org/docs/cxf-architecture.html

http://cxf.apache.org/docs/cxf-architecture.html

Chapter 6. Semi-automatic Architectural Pattern Identification and Documentation Using
Architectural Primitives 117

Interceptor

Front-end

Service Model
Pluggable Data

Bindings

ServiceMetaData

ServiceImpl

InterceptorChain

«Shield»

DoInterceptMessage

SerializeData

HandleMessage

Protocol Binding

CreateMessage

EndPoint MessageObserver

OnMessage

Transport

Transport

Message

ServiceImpl

«Callback»

Transport

Response

creates

Figure 6.11: Apache CXF architecture overview [Apa]

The architecture of CXF 2.4.3 is built around an interceptor chain that is configured to handle
all incoming request and outgoing responses on the server-side and on the client-side. As already
mentioned it supports different protocols by allowing different protocol bindings and uses different
transports to send and receive messages. This means that whenever Apache CXF receives the
request to call a specific service the interceptor chain is configured to contain the necessary inter-
ceptors for the protocol and so on. The invocation is forwarded through the chain until finally
one interceptor in the chain calls the service that was discovered using the service model and then
another interceptor uses a conduit on the transport to send the result of the service call to the
requesting client as a reply.

During our architecture documentation, we identified a number of cases where components realized
characteristics of architectural primitives and annotated the components accordingly.

In particular, the InterceptorChain is the only component that accesses the interceptors in the
architectural component Interceptor and thus was annotated as a Shield for the Interceptor

component. Here, we combined all Interceptors that are implemented in Apache CXF into the
Interceptor component. Another possibility (i.e., possible variant of the architectural primitive
model) would have been to treat each Interceptor as an individual component and use the Grouping
primitive annotation to combine them. The resulting architectural component view is shown in
Figure 6.11.

During the source code study, we also found that the Transport Response connector between the
Interceptor and the Transport components is actually a callback and thus was annotated with the
Callback primitive.

Chapter 6. Semi-automatic Architectural Pattern Identification and Documentation Using
Architectural Primitives 118

After we finished the documentation and annotation of the abstracted components with architec-
tural primitive information, our Pattern Instance Documentation Tool automatically found possible
candidates for the patterns Facade [Gam+95] and Interceptor [AZ05; Cur+04]. The Interceptor
pattern’s [AZ05; Cur+04] intent is to increase a system’s flexibility and extensibility by allowing
to transparently updating the services offered by a framework [AZ05]. Applications can register
interceptors by adding or removing interceptors to or from a dispatcher at runtime. The dispatcher
then notifies the interceptors of events that are sent by the framework’s core.

The Facade pattern actually is a design pattern that is used on an architectural level in different
variants throughout the literature [AZ05; Fow02; Sch+00]. Selecting the Facade pattern, defined
as a Client that uses a Shield to access a specific group of architectural components, is an option
in this case, as the Interceptor component is actually hidden in a Facade-style. However, in this
case, the more sophisticated Interceptor pattern seemed the better choice, as (1) indicated by
the component names and (2) obvious after closely inspecting the intent of the respective com-
ponents and classes. While creating the new pattern instance, we discovered that our description
of the Interceptor pattern was too narrow. Our description consisted of a Caller component, a
ChainHandler, one or more Interceptor components that are “shielded” by the ChainHandler and
a Callee. When creating the pattern instance documentation, we started to assign the roles as
follows: the Interceptor component to the Interceptors role, the InterceptorChain as ChainHan-
dler role, and EndPoint as Caller. However after the assignment of the ChainHandler role, the
automatic consistency checks detected a constraint violation with respect to the pattern template.
The role Callee was still unassigned. However when looking at the architectural component view,
no suitable candidate for the Callee role could be identified and thus additional time was invested
in studying the implementation of the pattern in the source code. This manual study, during
which we made extensive use of the automatically generated traceability links, came to the result
that Apache CXF’s implementation of the Interceptor pattern does not include a Callee, as the
Interceptor Chain handles all the logic. So, we modified our template of the pattern by allowing
zero to one Callee instead of exactly one.

In the implementation of Apache CXF, the client and the server both use an instance of the in-
terceptor chain, although they configure different interceptors. This required us to assign both
the EndPoint and the MessageObserver for the Caller role which resulted in another constraint
violation as our pattern template that was based on the literature only allowed to assign one
Caller. In order to account for this, we updated the pattern template to allow multiple callers
in the pattern description by adding a multiplicity of (1..*) to the Caller role. Once the de-
scription was updated, we assigned the roles like this: The architectural components Endpoint and
MessageObserver as Callers, the InterceptorChain was assigned the role of ChainHandler and the
Interceptor component was assigned to the role with the same name. The role Callee was not
assigned.

Chapter 6. Semi-automatic Architectural Pattern Identification and Documentation Using
Architectural Primitives 119

We expected that, using our approach, we would also find an instance of the Broker pattern
[Zdu+04]. However, we did not identify this pattern – neither using the Pattern Instance Docu-
mentation Tool nor by manual identification of participating architectural components. The cause
is that the structural aspect of the Broker pattern, as documented so far in our pattern catalog,
does not exist in Apache CXF, because it does not use a static setup for handling requests and re-
sponses. Apache CXF uses its InterceptorChain on the client and on the server and configures the
Interceptors accordingly. So while it shows the behavior of a Broker pattern this is not reflected
in its structure. As a result, we extended our pattern catalog further to also include this variant
of the Broker, and finally selected both Broker and Interceptor using the Pattern Instance Docu-
mentation Tool. We note that the Broker pattern could potentially be identified more precisely,
if we would also include behavior information. We will investigate the problem how to integrate
behavior information with our approach in future works.

This case illustrates, for an open source system with a substantial number of classes, how the
annotation with architectural primitives can be performed during the documentation of a systems
architecture using our DSL-based approach. It also illustrates how the pattern catalog is incre-
mentally improved and extended (here one improvement of the Interceptor pattern description and
one new variant of the Broker pattern have been explained), to show how our approach can deal
with pattern variability. In our future work, we plan to extend our approach with a distributed
pattern repository, in which all user updates are stored, so that different users of our approach can
benefit from pattern variants documented by others.

6.6 Performance Evaluation of the Pattern Instance Documenta-
tion Tool

For the practical applicability of our approach it is crucial that it works smoothly in the work-
ing environment of the software designer during software design and development. To test the
applicability of our approach in practice, we measured the time it takes our Pattern Instance Doc-
umentation Tool to find pattern instances for our case studies and in 5 larger (with respect to
number of components) synthetic component models. For the synthetic component models we
used the basic structure of the Apache CXF case study and created multiples of the number of
components from the case with varying component names and some additional random intercon-
nections. Measurements indicate that the time required to search for pattern candidates increases
with the size of the component model. However our prototype is able to search for patterns in syn-
thetic component models with more than 350 components in reasonable time while the component
models in our case studies do not exceed the number of 12 components.

For all the examples we used the same pattern catalog and primitives (explained above) which
contained templates for 15 architectural patterns from the literature [Zdu+04; Fow02; Bus+96;

Chapter 6. Semi-automatic Architectural Pattern Identification and Documentation Using
Architectural Primitives 120

Table 6.3: Results of the performance measurements for the case studies and larger synthetic
models (in milliseconds, each executed 1000 times)

Example Number of Arch. Components σ Average Median
Frag 10 0.84 1.37 1
FreeCol 10 1.52 7.21 7
Apache CXF 12 1.02 8.96 9
Synthetic model 1 24 1.73 11.23 11
Synthetic model 2 48 2.64 11.18 11
Synthetic model 3 96 4.58 19.46 19
Synthetic model 4 192 4.88 34.50 33
Synthetic model 5 384 5.42 70.59 69
Synthetic model 6 768 93.38 331.66 321
Synthetic model 7 1536 148.14 1334.02 1302

AZ05] which includes architecture patterns like MVC, Broker, ApplicationController, PageCon-
troller, Interpreter, Layers, and WrapperFacade. We measured the time it takes to run the Pattern
Instance Documentation Tool a thousand times for each of the case studies and synthetic models.
To obtain realistic results in a software developer environment, the measurement was performed
on a developer notebook (Intel i7 L620, 8 Gb RAM) running Fedora 20 using Eclipse Kepler 4.3,
Oracle Java 7. In Table 6.3 we present the number of architectural components, the standard
deviation σ, the average, and median values of the execution time for all test cases. We do not
report minimal and maximal values as the standard deviation is small compared to means and
medians.

Our results indicate that our approach is usable even for larger component models (usually com-
ponent models have not more than 5-20 components) on an average developer machine. We did
not test varying the sizes of the pattern catalog, as our Pattern Instance Recovery Tool iterates
through the pattern catalog with a loop, calling Algorithm 1 for each loop iteration, meaning that
the performance of this complete loop is directly proportional to the size of the pattern catalog.

6.7 Discussion

In this section we briefly discuss the lessons learned from the three case studies and the performance
evaluation.

6.7.1 Lessons Learned From the Case Studies

The three case studies show the applicability of our approach for three different types of software
and different kinds of architectures. While FreeCol [The11] is a multiplayer game with a graphical
user interface and a client server architecture, Apache CXF [Apa] is a web-service framework with

Chapter 6. Semi-automatic Architectural Pattern Identification and Documentation Using
Architectural Primitives 121

an architecture based on an interceptor chain. The third case study, Frag [Zdu11], is a dynamic
scripting language implemented in Java that is built around an Interpreter architecture. The cases
also vary in size as Frag has about 10.000 lines of code, while FreeCol is much bigger and has about
100.000 lines of code. The biggest system in the example cases is Apache CXF, which has about
350.000 lines of code. While all three case studies have about the same number of architectural
components in the component view, they differ in the abstraction level on which architectural
patterns are documented.

Before applying our approach to the three case studies, we manually created our initial pattern
catalog based on architecture patterns from the literature. The process of creating a pattern
template for a documented pattern consisted of the time necessary to understand the pattern
(which is always necessary) and the effort to describe the pattern’s structure using our Pattern
Catalog DSL. In our experience, the description of the pattern with the Pattern Catalog DSL
required about fifteen minutes per pattern. Ideally the pattern catalog is publicly available and
maintained by the community in order to be reused and adapted by individual users.

During our case studies we had to evolve and improve our pattern catalog twice, giving us the
opportunity to test the effort required for adapting or creating a new pattern (variant). The
necessary effort to create a new pattern variant consists of selecting the original template and then
modifying the new variant which in total required not more than a few minutes for the Broker
variant. A simple relaxing of constraints as discussed for the Interpreter pattern required only a
single change in the pattern catalog without any need for closing and restarting our tool, as changes
to the pattern catalog are automatically propagated.

For us the source code studies of the example systems naturally led to the architectural primitive
annotations we reported, and no additional effort was required to specifically search for possible
options to add primitive information. However, somebody without knowledge about architectural
primitives probably requires initial effort to learn about the architectural primitives and their
functions before the annotation of architectural primitives during architecture reconstruction and
documentation. Compared to the manual identification of architectural patterns, our approach also
requires the architect to execute a source code study in order to create an architectural component
view and thus could potentially require the same amount of effort. However, the case studies
(Section 6.5) showed that the identification of architectural components in source code can be
done in an iterative fashion and does not require the architect to study the complete source code
at once, while manually identifying architectural patterns in the source code often requires to
study a huge amount of classes at once and hence is more challenging than our approach where
the architectural patterns are identified in the architectural component view. This is also shown in
the case studies where the number of source code artifacts that are related to the implementation
of the architectural patterns ranges from 169 to 2340 (see Table 6.4).

Chapter 6. Semi-automatic Architectural Pattern Identification and Documentation Using
Architectural Primitives 122

Table 6.4: Number of source code artifacts (classes and interfaces) compared to architecture
artifacts (components and connectors) which need to be considered during architectural pattern

identification.

Arch. Pattern Source code artifacts Architecture level artifacts
MVC (FreeCol) 459 10 components and 13 connectors
Broker (FreeCol) 169 10 components and 13 connectors
Interceptor (Apache CXF) 2340 12 components and 19 connectors
Interpreter (Frag) 174 10 components and 10 connectors

Once the architectural components and patterns are documented, our approach provides the soft-
ware architect with automatically generated traceability links and automatic consistency checking.
As already discussed in Section 6.5.2 and shown in Table 6.2, even for the Frag case study, the
number of traceability links that needed to be updated with each new version was between 75 and
235. Manually creating and updating these traceability links would be a tedious and error prone
task.

Table 6.4 shows the discrepancy in the number of elements that have to be considered when
identifying architectural patterns on the level of source code and on the level of architectural
components for our case studies.

Once the architectural components were documented and annotated with architectural primitive
information, the documentation of architectural patterns based on this primitive information re-
quired only two manual steps: The selection of suitable pattern candidates from the list of pattern
candidates that were automatically provided by the Pattern Instance Documentation Tool and
then assignment of all the pattern roles which could not be automatically assigned by the tool.

Regarding our detailed research questions we can draw the following result:

RQ 6.1 Regarding the semi-automatic identification of patterns during architecture reconstruc-
tion, we could show the feasibility of our approach through the implementation of our
prototype and through our case studies which exemplify the documentation of archi-
tectural patterns during architecture reconstruction. However, this approach requires a
reusable pattern catalog as its basis. While we created an initial pattern catalog based
on the literature, the creation and maintenance of this catalog require some effort which
might hinder the adoption of this approach. Thus tools for sharing and maintaining
pattern catalogs are required to ease the adoption of this approach.

RQ 6.2 Regarding the maintenance of architectural patterns during the evolution of a recon-
structed architecture, we can state that our approach supports further architecture evolu-
tion once patterns are documented. This is exemplified in Case Study 6.5.2. As discussed
in the limitations below, while our personal experience from the execution of the case
studies indicates a reduced effort for documenting and maintaining architectural patterns

Chapter 6. Semi-automatic Architectural Pattern Identification and Documentation Using
Architectural Primitives 123

during the evolution of a system, we currently cannot not provide scientific evidence that
our approach reduces the required effort. We will conduct a controlled experiment to
investigate this topic further in the future.

RQ 6.3 In our case studies, we have shown the applicability of the approach for three different
types of existing real-life systems with different project sizes. Therefore it is likely that our
approach can be generalized to other similar cases. However, the component models in
our case studies all have a similar number of components. As discussed in the limitations
below, a significantly higher number of components in the component models might lead
to a high number of pattern candidates and thus diminished benefit for the users of the
approach during the identification of patterns.

RQ 6.4 Regarding the efficiency of the actual pattern instance matching algorithms, the perfor-
mance evaluation in Section 6.6 shows that our prototype is sufficiently efficient to be
used for architectural pattern identification on common developer computers for artifi-
cial component models with 300 and more architectural components and thus should be
efficient for day-to-day use.

RQ 6.5 With respect to the adequacy of the primivites and the adaptable pattern catalog to
handle the variability of architectural patterns, we can state that our case studies show
that the concept of primitives can be applied to document architectural patterns and, as
already discussed in Section 6.5.3, that only a small effort was necessary for evolving our
pattern catalog during the case studies. Furthermore, during the creation of the initial
pattern catalog and throughout the case studies, we were able to express all patterns
based on the primitives in our Pattern Catalog DSL.

The case studies of FreeCol and Apache CXF showed a limitation of the current approach which
is based on structural information only. For some patterns like the Page Controller and MVC
patterns, which only differ in one relation, that is required in the MVC pattern and forbidden in the
Page Controller pattern, it is hard to distinguish the structural differences during the computation
of pattern candidates. This is because the forbidden relations cannot be taken into account during
the creation of pattern candidates; however, later in our tool chain, our consistency checks for
the documented pattern instances would have detected the constraint violation. The problem of
distinguishing structurally similar patterns will be improved in our future work by also considering
behavioral models of architectural patterns.

The pattern templates in our initial pattern catalog are based on the pattern descriptions from
various sources in the literature (e.g., [Zdu+04; Fow02; Bus+96; AZ05]). Sometimes the templates
from the literature are appropriate, and sometimes manual modifications are required. For example,
during our case studies we could directly use the templates of the MVC, Broker, and Interpreter
patterns we created based on the available literature, while it was necessary to modify the template

Chapter 6. Semi-automatic Architectural Pattern Identification and Documentation Using
Architectural Primitives 124

for the Interceptor pattern and to create a new variant of the Broker pattern that was suitable to
describe its implementation in Apache CXF.

While our approach supports the software architect during the source code study with information
on which source artifacts in the architecture abstraction specification are not yet covered and pro-
vides traceability links for source artifacts that are already covered, it does work semi-automatically
and still requires the software designer to perform a source code study. While automatic approaches
try to free the developer of this burden, they usually discover a substantial number of false posi-
tives that have to be checked and corrected by the software designer. This leads to the necessity
of doing a source code study anyway. Our approach on the other hand focuses on supporting the
architect during the documentation of the architecture with tool support for the documentation
as well as partial automation of the documentation steps. This includes the automatic generation
of connectors between architectural components based on the relations between the components
in the source code as well as the automatic suggestion of architectural patterns that match the
structure implemented in the documented system. While these suggestions also contain false posi-
tives, they do not consist of complete instances (e.g. a suggestion that holds all possible instances
of the MVC pattern), but only a list of patterns and if the software architect selects a pattern
for documentation, our prototype of the approach supports the software architect during the as-
signment of roles. This includes providing a list of possible role-assignments based on the already
existing role-assignments as well as automatically assigning roles where possible (see Section 6.5.1
for examples).

Later on, during the evolution of a system, automatic approaches usually have to start from
scratch, while an architecture that is documented using our approach, is automatically checked
against the system’s source code without any additional effort. While we cannot provide any
quantitative data on the benefits of consistency checks, they have been proposed and used in
different contexts for almost 20 years now [Xu+13; Hei+96; MS97]. In addition our approach
provides automatically generated traceability links for the documented architecture. In a recent
controlled experiment [JZ14], traceability links between architectural component models and the
source code have proven to be highly beneficial for architecture understanding.

While the main use case of our approach are systems without existing architecture documentation,
it can also be used to formally document other existing (informal) architecture documentation to
check if all consistency constraints are fulfilled. A combination with other complimentary forms of
architecture documentation like architectural decisions is possible as well.

6.7.2 Threats to Validity

In addition to the limitations already discussed above as lessons learned from our case studies, our
case studies and performance evaluations have the following main threats to validity:

Chapter 6. Semi-automatic Architectural Pattern Identification and Documentation Using
Architectural Primitives 125

• The case study might not be representative to show the general applicability of the approach.
As already discussed in the lessons learned, we tried to mitigate this threat by choosing cases
from different application areas with varying sizes.

• As our approach requires input about the architectural primitives from the software designers,
our results strongly depend on the quality of information provided by the software designers.
We strive to improve the input quality by providing tools that support the software designer
during the software architecture documentation, but ultimately our approach relies on the
assumption that it is substantially easier to model with or detect the architectural primitives
than patterns. Our experience so far shows that this assumption is justified.

• At this point we did not perform an evaluation of the applicability of the approach with other
users, however we present three extensive case studies that showcase the applicability of the
approach for three already existing systems.

• The synthetic models used in the performance evaluation might not be representative. We
tried to mitigate this threat by using a real world model as a basis and created multiples of
the case with custom component names and additional randomly created interconnections.
In addition, we also measured the performance for our three case studies which are existing,
realistic systems of varying size and which yield similar results.

• The pattern catalog used in the performance evaluation might not be representative. In order
to reduce this risk, we used the pattern catalog that we initial created based on architectural
patterns from the literature and that included all changes that were discussed in the example
cases. As Algorithm 1 is executed for each pattern template, the execution time has a direct
relation to the size of the pattern catalog.

• The effort necessary to create and maintain a useful pattern catalog might be large enough to
hamper the usage of our approach. We tried to mitigate this risk by making the manipulation
of the pattern catalog easy. The pattern catalog DSL is straightforward to use and the only
required knowledge is the same as the one required to use our approach – knowledge about
pattern primitives. However, we cannot fully eliminate this risk and other approaches faced
this kind of problem before.

• The possiblity remains that the benefits do not outway the costs in the real world. A compar-
ison in a controlled environment would be needed to contrast our appraoch’s effort and the
effort required to manually perform the same tasks. While we intend to perform this com-
parison as a controlled experiment in the future, our personal qualitative experience from
performing the case studies shows an initial effort that is slightly higher than purely manual
documentation for documenting the architectural patterns and a significantly reduced effort
in maintaining the documented patterns during architecture evolution through the automatic
consistency checking and the automatically maintained traceability links. This initial higher

Chapter 6. Semi-automatic Architectural Pattern Identification and Documentation Using
Architectural Primitives 126

effort stems from the requirement to gain an understanding of the primitives as well as the
need to learn to use our three DSLs. However this additional effort is only required when
applying the approach for the first time. For our controlled experiment, we will follow the
guidelines proposed by Kitchenham and Wohlin [Woh+12; Kit+02]. The planned experiment
will consist of a control group and a treatment group. While the control group will perform
at least one architectural recovery and at least one architectural evolution task manually
(using only an IDE but not our approach), the treatment group will perform the same tasks
using our approach in addition to using an IDE.

• We applied the approach in three case studies that describe systems of different sizes. How-
ever, their architectural component models all consist of about ten components. A thread
to validity of this approach is that this approach might not scale to systems which have a
much higher number of architectural components, contain more architecture patterns, or are
much larger in terms of source code size (like large-scale industrial systems). In this chapter,
we only studied this scalability aspect in terms of the performance measurements for our
Algorithm 1 which indicate acceptable performance for synthetic architectural component
models with up to 350 components. However, the threat to validity that a huge number
of components, combined with a high number of primitive annotations, might lead to too
many possible patterns and thus leads to a diminished benefit for the users of the approach,
remains.

6.8 Conclusion

In this chapter we have presented an approach for the semi-automatic documentation of archi-
tectural patterns based on architectural primitives. While other approaches automatically detect
design patterns in the source code, we require the architect to semi-automatically create an abstrac-
tion of a architectural component view that is annotated with architecture primitive information.
This raises the abstraction level of the input on which we automatically search for patterns. It
also reduces the number of found pattern candidates as well as the search space for our automatic
Pattern Instance Documentation Tool, as the number of architectural components is significantly
smaller then the number of objects in a system. As we use architectural primitives as the basis for
our pattern templates in our pattern catalog and in the architectural component view, our search
can make use of this additional architectural information and the constraints that are captured by
these primitives. Once a pattern instance is documented, our approach subsequently performs au-
tomatic consistency checking. We applied our approach in three open source systems case studies
to show the applicability of the approach. Our pattern catalog supports the definition of patterns
based on primitives, is reusable, supports pattern variability, and can be customized and is extensi-
ble. To use our approach, an initial investment in creating a pattern catalog (patterns and pattern

Chapter 6. Semi-automatic Architectural Pattern Identification and Documentation Using
Architectural Primitives 127

variants) is required. Our performance evaluation results show that the approach is applicable on
a typical developer machine during software design and development, even for very large model
sizes.

Our case studies (Section 6.5) show that the concept of architectural primitives can be applied
to document architectural patterns during architecture reconstruction (RQ6.1) and support the
further architecture evolution once they are documented (RQ6.2, as exemplified in the Frag case
study in Section 6.5.2).

As we could apply our approach for three systems which all implement different types of applica-
tions with different project sizes, it is likely that our results can be generalized to other similar
cases (RQ6.3). We could show the feasibility of the approach with the implementation of our
prototype which was used to perform the case studies described in this chapter (RQ6.1, RQ6.2)
and is described in detail in Section 6.4. In addition to this, the performance evaluation of our
prototype (see Section 6.6) shows that algorithms for semi-automatic identification of architectural
patterns are sufficiently efficient to be used for architectural pattern identification on common
developer computers and thus should be sufficiently efficient for day-to-day use (RQ6.4). With
respect to RQ6.5 we found only a small effort was necessary for evolving our pattern catalog dur-
ing the case studies. This leads us to answer Research Question 3, where we asked whether we
could support the software architect in the identification and documentation of architectural pat-
terns during implementation and throughout the evolution of a system: Our approach helps the
software architect in the identification and documentation of patterns and aids in keeping the doc-
umented pattern instances consistent during the evolution of a software system through automatic
consistency checks and through traceability links between the documented architectural pattern
instances, the architectural component model, and the source code.

We also plan to further investigate approaches for collaboratively editing and sharing the pattern
catalog among users and in the community. At the moment we only support structural primitives
that either annotate components or their connectors but no behavioral information. The additional
integration of behavior primitives, as for instance introduced by Kamal et al. [KA08], is a topic for
future research.

7
Supporting Software Evolution by Integrating

DSL-based Architectural Abstraction and
Understandability Related Metrics

7.1 Introduction

Software systems must evolve constantly or they will become obsolete [Leh89]. During the evolution
of software systems, software architectures tend to erode as requirements change or new features are
implemented [Par94] (also known as architectural erosion). In addition, the intended, documented
architecture and the implemented architecture of a system often drift apart during the system’s
evolution [Jan+07] (also known as architectural drift).

To address the problems of architectural erosion and architectural drift, many approaches have
been proposed [Men+02; Mur+95b; Egy04]. In Chapter 5 we propose a semi-automatic approach
for keeping the architecture and source code consistent throughout the software evolution. In this
approach, we use a Domain Specific Language (DSL) that allows architects to specify architectural
abstraction specifications. These architecture abstraction specifications enable the architects to
define architectural components based on the source code. Based on the architecture abstraction
specifications we then automatically generate an architectural component view of the system and
its current state.

While the approach from Chapter 5 addresses the consistency of architecture and source code, it
does not offer any solutions to prevent the architectural component models from degrading over
time and become less and less understandable. For instance, some architecture design models tend
to grow in size over time, as new features are added to the system, until they become at some stage
hard to understand.

Clements et al. [Cle+02] stated that it is essential that an architecture is documented well in
order to communicate it. Reduced understandability hampers the possibility to communicate the
architecture well and thus probably leads to further architectural erosion and drift. This is why we
consider the understandability of an architecture as essential to the future evolution of a software
system.

129

Chapter 7. Supporting Software Evolution by Integrating DSL-based Architectural Abstraction and
Understandability Related Metrics 130

In this chapter we propose to integrate our DSL-based architecture evolution approach from Chap-
ter 5 with empirically evaluated understandability metrics. We suggest to use understandability
metrics for the architectural component view as a whole as well as understandability metrics that
focus on single architectural components. This way, while using our Architecture Abstraction Spec-
ification Language to create architectural component views, the architect is automatically informed
when the understandability of the architecture in the component models that are created through
architecture abstraction specifications is reduced during the evolution of the software system and
can take measures to improve the architecture’s understandability. The metrics we use are empiri-
cally evaluated by Stevanetic et al. [Ste+14a; SZ14] with regard to the understandability of either
the whole component view or the individual components. A precondition for the application of the
metrics (i.e., for the accurate and successful metrics calculations) is an “up-to-date” component
view that reflects the source code of the examined system. The main contributions of this chapter
are the conceptual integration of the two approaches and the integration into our DSL-based tool
support.

The remainder of this chapter is organized as follows: We give an overview of the proposed inte-
grated approach in Section 7.2. Section 7.3 describes the details of the given integrated approach.
We present a case study in which we have studied the applicability of our approach in Section 7.4.
We conclude this chapter in Section 7.5.

7.2 Integrated Approach Overview

The approach that we present in this chapter represents an extension of the previously explained
approach for supporting semi-automated architectural abstractions of a software system from the
source code using a DSL that we call Architecture Abstraction Specification Language. The pro-
posed extension of the approach is related to the integration of software metrics that can support
the understandability of architectural component views generated using the previously explained
approach. The understandability related software metrics are empirically evaluated by Stevanetic
et al. [Ste+14a; SZ14] and can further support the maintainability of the continuously evolved
architecture.

Namely, they did a series of studies where they tried to empirically evaluate and prove the usefulness
of software metrics in assessing the understandability of architectural component views. Their goal
was to produce a set of guidelines as best practices for architectural component view design.
The metrics that are shown, are collected at the level of individual components [SZ14] as well as
at the level of the whole architecture [Ste+14a]. They include three size metrics related to the
number of components, the number of connectors and the total number of elements (summing up
the number of components and the number of connectors) in the architecture and four metrics
related to individual components: the number of classes in a component, the number of incoming

Chapter 7. Supporting Software Evolution by Integrating DSL-based Architectural Abstraction and
Understandability Related Metrics 131

dependencies of a component, the number of outgoing dependencies of a component, and the
number of internal dependencies of a component.

Regarding the three architecture level size metrics, Stevanetic et al. showed that middle values of
those metrics significantly increase the architectural understandability compared to high or low
values [Ste+14a]. The indicated thresholds/guidelines for using the metrics are roughly predicted
and need to be investigated further (they are defined below in Section 7.3). More precisely they
showed that the component diagrams (visual representations of the component views) with very
high numbers of elements usually suffer from mixing of several concerns which might lead to
ambiguity and less precision [Ste+14a]. Very low numbers of components, links, and elements
are not sufficient to model all relevant concerns of the architecture [Ste+14a]. The four metrics
at the level of individual components are shown to be useful in predicting the effort required
to understand an individual component, measured through the time that participants spent on
studying a component [SZ14]. They have shown either a statistically significant correlation with
the effort required to understand a component or can be used in the prediction models obtained
using the multivariate regression analysis, to predict the given effort.

The integration of the given metrics in the workflow of the Architecture Abstraction Specification
Language is shown in Figure 7.1. In order to more easily distinguish the part related to the
integration of the given metrics we marked it red in the figure. Firstly, the metrics calculations
are extracted from both the class model and the component view. The obtained metrics values
then need to be evaluated with regard to different metrics constraints, i.e., it is checked if the
calculated metrics values satisfy required metrics constraints. Metrics constraints represent a set
of rules defined on metrics values that need to be satisfied. In our case, they are defined based on
the aforementioned empirical evaluations and also take into account some additional reasonable
considerations. Namely, for the architectural level metrics the obtained middle values that increase
the architectural understandability can be realized as constraints (thresholds/guidelines are shown
in Section 7.3). For the metrics at the level of individual components we did not examine any
specific values/thresholds that can be specified as constraints but the information related to the
obtained prediction models and the statistically significant correlations can be useful in providing
the relative values that might be used for identifying critical components which require more effort
to be understood (see Section 7.3 for more details). All given constraints and considerations can
be further refined with regard to the architects’ and developers’ specific experience and more
specific requirements in the certain domain. In case that some metrics values do not satisfy the
corresponding constraints the architectural abstraction specification or the source code have to be
improved in order to resolve the inconsistencies that occurred.

Chapter 7. Supporting Software Evolution by Integrating DSL-based Architectural Abstraction and
Understandability Related Metrics 132

UML Class

Model

UML

Component

View

UML Component

View

(existing/previous

version)

Delta

automatic extraction

Compare

automatic

transformation

mapping

model versions

consistency

Metrics

Constraints

Metrics

Calculations

2. evaluate

Architecture

Abstraction DSL

3. improve

mapping

1. calculate

1. calculate

Source Code

design-code

consistency

checks

3. improve

Figure 7.1: Integration of the understandability related metrics in the DSL-based architecture
abstraction approach

7.3 Integrated Approach Details

In this section, we explain the technical details of our approach. In Section 7.3.1 we discuss the
metrics we use in our approach and in Section 7.3.2 we present the details about the DSL-based
architecture abstraction approach and its integration with the given metrics.

7.3.1 Understandability Related Metrics

Regarding the empirical studies for supporting the understandability of architectural component
views utilize the results from three studies by Stevanetic et al. [Ste+14a]. The first two studies
examine to which extent the software architecture could be conveyed through architectural compo-
nent views (16 different component diagrams were studied) and they are based on the participants’
subjective ratings while the third one examines the relationships between the effort required to un-
derstand an individual component, measured through the time that participants spent on studying
a component, and some component level metrics that describe component’s size, complexity and
coupling.

Chapter 7. Supporting Software Evolution by Integrating DSL-based Architectural Abstraction and
Understandability Related Metrics 133

As Stevanetic et al. [Ste+14a] state, the statistical evaluation of the results from the first two
studies shows that metrics such as the number of components, number of connectors, number of
elements, and number of symbols used in the diagrams can significantly decrease architectural
understandability when they are above and below a certain, roughly predicted threshold. Also,
their results indicate that architectural understandability is linearly correlated with the perceived
precision and general understandability of the diagrams (please refer to [Ste+14a] for more details
about the terms precision, general understandability, and architectural understandability). The
conclusions form these two studies are summarized below [Ste+14a]:

• Any measures that increase the general understandability and precision of architectural com-
ponent views directly help to improve the architectural understandability.

• Measures to increase the domain knowledge are helpful to increase the understanding of
architectural component views in general.

• From a certain size on (in terms of number of elements), architectural component views get
hard to understand in general because of the high cognitive load and human perception limits.

• Middle values of the number of components, links, elements, and symbols in the diagram
significantly increase the architectural understandability compared to high or low values. The
diagrams with very high numbers of elements usually suffer from mixing of several concerns
which might lead to ambiguity and less precision. Very low numbers of components, links,
and elements are not sufficient to model all relevant concerns of the architecture. These
dependencies might also deserve to be investigated further, especially it would be interesting
to indicate the thresholds of maximum (minimum) numbers of components, links, elements,
and symbols that should be depicted in one diagram more precisely. So far, we consider the
thresholds we found as rough indicators.

From these 2 studies we consider three metrics: the number of components, the number of connec-
tors and the total number of elements (summing up the number of components and the number
of connectors) in the architecture. As mentioned above, they observed that the middle values of
those metrics significantly increase the understandability of the architecture. Therefore the corre-
sponding metrics’ constraints can be realized (based on the thresholds that are roughly indicated
in our previous study [Ste+14a]). Table 7.1 summarizes the considered architecture level metrics
together with the corresponding constraints. The number of symbols is not considered because
it is related to the visual representation of the component views that we do not support at the
moment. Also we do not consider the first two items in the above mentioned conclusions because
we did not examine the appropriate measures for it. Those items are related to the measures of the
precision, the general understandability, and the domain knowledge contained in the component
views. Some aspects of these measures are automatically taken into account when the Architecture

Chapter 7. Supporting Software Evolution by Integrating DSL-based Architectural Abstraction and
Understandability Related Metrics 134

Abstraction Specification Language is specified like for example the names of the components. In-
formative and coherent names can increase the precision and convey the domain semantics of the
system. However, more studies are necessary to define and examine the appropriate measures and
the corresponding constraints for these aspects.

Regarding the third study four metrics related to individual components the number of classes in a
component, the number of incoming dependencies of a component, the number of outgoing depen-
dencies of a component, and the number of internal dependencies of a component are considered.
Stevanetic et al. [Ste+14a] state that the results of their analysis show a statistically significant
correlation between three of the metrics, number of classes, number of incoming dependencies, and
number of internal dependencies, on one side, and the effort required to understand a component,
on the other side. In a multivariate regression analysis they obtained 3 reasonably well-fitting
models that can be used to estimate the effort required to understand a component.

For the metrics at the level of individual components we did not examine any specific values/thresh-
olds that can be specified as constraints. The information related to the obtained correlations and
prediction models can be used to provide more relative values (rather than evaluating a design by
giving absolute values) that might be used for identifying critical components which require more
effort to be understood. Those components can be further simplified and/or reorganized together
with other components in the system to satisfy the given understandability requirements. For ex-
ample, Bouwers et al. found that the components should be balanced in size in order to facilitate
the system’s analyzability (location of possible failures/bugs in the system) [Bou+11]. In our case
the similar reasoning can be applied. Balanced values for the components’ understandability effort
can facilitate the analyzability of the whole system in terms that all components require the same
effort to be understood which can facilitate the location of possible bugs/failures in the system
(see Section 7.4 for an illustrative example). Furthermore for the component level metrics the
architects/developers can adopt the specific ranges for them based on their concrete experiences
and requirements.

The component level metrics together with the prediction models and the identified correlations
to the measured understandability effort are shown in Table 7.2. The Spearman’s correlation
coefficients are shown. They are widely used for measuring the degree of relationship between two
variables and take a value between -1 and +1. A positive correlation is one in which the variables
increase (or decrease) together. A negative correlation is one in which one variable increases as
the other variable decreases. The coefficient for the number of outgoing dependencies metric is not
shown because it is not statistically significant.

Chapter 7. Supporting Software Evolution by Integrating DSL-based Architectural Abstraction and
Understandability Related Metrics 135

Metric Description Metric’s constraint

Number of
Components

(NCOM)

Total number of components in the
architecture 5 < NCOM < 15

Number of
Connectors
(NCONN)

Total number of connectors in the
architecture (regardless whether the
connector is one-way or two-ways)

3 < NCONN ≤ 17

Number of
Elements
(NELEM)

Total number of elements in the architecture
(summing up the number of components

and the number of connectors)
11 < NELEM ≤ 25

Table 7.1: Architecture level metrics [Ste+14a]

Metric Description
Spearman’s
correlation
coefficient

Number of Classes
(NC)

Total number of classes inside a component
r=0.74

Number of Incoming
Dependencies (NID)

Total number of dependencies between the classes
outside of a component and the classes inside a

component that are used by those outside classes r=0.26

Number of Outgoing
Dependencies

(NOD)

Total number of dependencies between the classes
inside a component and the classes outside of a
component that are used by those inside classes

-

Number of Internal
Dependencies

(NIntD)

Total number of dependencies between the classes
within a component r=0.66

Prediction Models

Model 1:~4.85+1.52*NC-0.53*NID

Model 2:~4.58+1.46*NC-0.52*NID+0.12*NOD

Model 3:~5.32+1.42*NC-0.58*NID

Table 7.2: Component level metrics and the obtained prediction models [Ste+14a]

0

5

10

15

20

25

30

C1 C2 C3 C4

Understandability Effort

(component view 1)

0

5

10

15

20

25

30

C1 C2 C3 C4 C5 C6

Understandability Effort

(component view 2)

Figure 7.2: Understandability effort for both component views

Chapter 7. Supporting Software Evolution by Integrating DSL-based Architectural Abstraction and
Understandability Related Metrics 136

7.3.2 Architecture Abstraction Approach and Metrics Integration

Our consistency checks that were mentioned above and are discussed in detail in Chapter 5 sup-
ports the evolution of the software system in such a way that it enables consistency checking
between different versions of software and also between different artifacts of the same software ver-
sion (for example between the component view and the corresponding class view). The integrated
empirically evaluated metrics provide an additional consistency checking possibility. Namely, ac-
cording to the discussion above the integrated metrics can provide a valuable support in assessing
the understandability of architectural component views which plays a key role in managing and
maintaining the overall system. Different versions of the software can be compared using the given
metrics set that can be used to argue about the understandability level of both the architectures
and the individual components contained in them. Based on the obtained values critical points
can be recognized, for example the components that have significantly increased the effort to be
understood can be identified. Also different architecture abstractions can be compared in order
to generate the one with the reasonable understandability level. The integrated metrics benefit
from the architecture abstraction tool in the way that the later provides an “up-to-date” archi-
tectural component view that reflects the source code (i.e. all source code classes are mapped
to their respective components) that is necessary for the metrics calculations. This way, the ar-
chitects/developers can gradually improve the architecture by making the changes in the source
code or in the Architecture Abstraction Specification Language and judge the understandability
of the architecture created with the DSL. The metrics calculations are integrated using the Xtext
validation framework which triggers their execution/recalculation whenever the source code or the
architecture component view is changed. The corresponding warnings are reported whenever the
metrics values violate the respective set of metrics constraints.

encrypt/
decript

googlePlayBilling

androidBus/
storeInfo

storage
Manager

storeAssets

assetsInfo

StoreAssets (C4)

DatabaseServices (C2)StoreControler (C3)

GooglePlayBilling (C1)

Figure 7.3: Soomla Android store component view 1

Chapter 7. Supporting Software Evolution by Integrating DSL-based Architectural Abstraction and
Understandability Related Metrics 137

7.4 Case Study

In this section we present a small case study that illustrates how the previously explained approach
can be used to localize possible undesirable effects in the design, in this case the observed fluc-
tuations in the understandability effort of architectural components. The studied system is the
Soomla Android store Version 2.01, an open source framework for supporting virtual economy in
mobile games. Namely, we show two architectural component views of the system that differ in
the number of components and the number of classes that the components contain. In both cases
we calculate the understandability effort required to understand each component based on the pro-
vided prediction models. In the first case, the understandability effort is unevenly distributed over
the components, i.e., some components require very low, while some others require very high effort
to be understood (see Figure 7.2). After studying the first component view the new component
view is generated that better distributes the understandability effort over the components. Thanks
to the architecture abstraction tool all source code classes are mapped to their respective compo-
nents which is a precondition for the accurate and successful metrics calculations. Furthermore
the second component view is easily created from an architectural abstraction of the first one by
simply relocating the classes in the DSL code from one component to the other. This step, of
course, requires human expertize and manual effort. However, please note that the migration to
the new view can be done incrementally, by performing small changes in the DSL and observing
the change of the metrics with each change in the DSL. In general a large, inherently complex
system will have lower understandability because the identified metrics (i.e. NCOM etc.) will be
higher, than a small, simple system, regardless of the quality of the architecture abstractions used.
In that case the aim of the approach is to adapt the inherently high complexity to the extent that
is acceptable using the explained incremental changes.

Figure 7.3 shows the first component view obtained by studying the given software system. The
visualization of both component views is separately created in the form of a UML component
diagram. Figure 7.4 shows the second component view created to support better distributed un-
derstandability effort between the components in order to facilitate their analyzability (see Section
7.3 for more details). The understandability efforts are shown in Figure 7.2.

From Figure 7.2 we see that the Components C1 and C3 of the first component view require a
pretty high effort to be understood while the Component C2 requires much less effort. In the
second component view the components require more or less balanced effort to be understood, and
it is lower than the effort required for the Components C1 and C3 in the first design. This small
case illustrates how the given metrics provide a useful feedback in the explained context.

1see: http://project.soom.la/

Chapter 7. Supporting Software Evolution by Integrating DSL-based Architectural Abstraction and
Understandability Related Metrics 138

obfuscator

shared
Preferences

googlePlayBilling

androidBus/
storeInfo

storage
Manager

storeAssets

price

assetsInfo

StoreAssets (C5) PriceModels (C6)

DatabaseServices (C3)DatabaseServices (C3)DatabaseServices (C3)StoreControler (C4)

GooglePlayBilling (C1)

Security (C2)

Figure 7.4: Soomla Android store component view 2

7.5 Conclusions and Future Work

In this chapter we presented an approach that uses empirically evaluated understandability metrics
to support the software architect during architecture documentation and evolution. It is built
on architectural component views that are generated from architecture abstraction specifications.
We automatically calculate a number of different metrics whenever the architecture abstraction
specification or the source code are updated. If the metrics exceed defined thresholds the prototype
notifies the software architect of the potential understandability problem who should revise the
architecture abstraction specification and the source code to improve the understandability of the
architectural component view. The improved understandability then eases the future evolution of
the systems as it reduces the risks of misunderstandings and thus the risk of changes that affect
the quality of the architecture in a negative way. The main contributions of this chapter lie in the
integration of the two approaches and proposing a set of metrics-based guidelines for component
model design that are derived from our previous empirical studies.

The approach presented in this chapter aids in answering Research Question 4, as it integrates the
means to automatically check the understandability of an architecture document with the approach
we introduced in Chapter 5.

A limitation of our approach is that we currently consider only understandability metrics as a
measure for quality. In our future work we plan to integrate other quality metrics that can be used
to prevent architecture erosion and drift.

Part III

Consistency Managment During
Software Evolution

139

8
Reconciling Software Architecture and Source

Code in Support of Software Evolution

8.1 Introduction

In this chapter, we extend on the ideas presented in Chapters 5 and 6, as we integrate our ap-
proaches for documenting architectural components and architectural patterns with the concept
of documented architectural decisions and evolution styles [Bar+12] to improve the support for
evolving software architecture and source code in a consistent manner. As Cuesta el al. state
[Cue+13], SA is an artifact for the evolution because it can be used as a shared mental model
that guides the planning and restructuring of the software [Hol02], but it is also an artifact of the
evolution, because it must be evolved itself [Bar+08]. Several approaches have been proposed that
use SA as an artifact of and for the evolution, including different proposals following the Evolution
Styles approach [Bar+12; Le +08; NT10; Tam+06]. Authors claim that the evolution from an
initial to a target architecture should be carried out by planning and analyzing different Evolution
Paths, so that the risks and problems during the evolution can be avoided or at least mitigated.

Despite the undoubted advantages that such an approach has, without tight integration with the
software development activities it is unlikely to be put into practice. As Ozkaya et al. [Ozk+07]
found out during their interview study, developers in practice do not use architecture-centered
practices to manage evolution decisions. They just focus on the coding efforts when evolution needs
arise, so that finally architects must cope with architectural erosion or architectural drift [PW92b].
Better support for developers for integrating their work with the SA is needed to avoid architectural
erosion and architectural drift. This is also pointed out in a recent study of 705 official releases of
nine open-source software projects by Neamtiu et al. [Nea+13]. Amongst other results, Neamtiu
et al. reported that developers should not only focus on the implementation but also on carrying
out proactive actions, such as reverse engineering, to avoid the development of code that is difficult
to evolve.

The fact that developers only pay attention to code is especially common in Open Source (OS)
projects where the attention on planning or modeling is often even non-existent. An example in this
sense is Moodle, one of the most widely used platforms for e-learning. It has a wide community of

141

Chapter 8. Reconciling Software Architecture and Source Code in Support of Software Evolution142

Architectural Reconstruction

Evolution Styles

Architectural Knowledge
Software Architecture

Code

co‐evolution

Figure 8.1: Main foundations of this chapter

developers, as well as a properly described development process. Moreover, it also has had major
changes along its evolution process [MR13] as well as large numbers of issues filed for specific
versions [Tra]. However, there is not a clear description of the architecture, the planned evolution,
its traces to code, and so on. That is, if we have a look, for example, on Moodle’s roadmap for
the latest Version 2.7 [Moo], we find that it is described just textually in terms of new components
to be developed (e.g. a new events system or a new framework for logging and reporting) or
components to be changed (e.g. changes to bootstrap themes). This lack of architectural guidance
can lead to a misalignment between the architecture as planned by (some of) its developers and
the concrete architecture (implementation) really coded by the developers. But even when the
architecture is clearly described, this misalignment between code and software architecture can
also happen. For instance, Nakagawa et al. [Nak+08] present a case study that clearly shows that
the severe differences between the conceptual architecture of a system and its concrete architecture
were accidently or inevitably inserted as the code evolved. Moreover, as these authors claim,
these differences had a very negative impact on the system evolution affecting important quality
attributes, such as functionality, maintainability, and usability.

All the previous issues, led us to the research question (RQ 5) already mentioned in Chapter 2:
How to reconcile the different points of view that software architects and developers have when the
software is being evolved and how to enforce the integration of software architecture and source
code? This chapter claims that a positive answer to this question can be provided by integrating
three different approaches (see Figure 8.1), namely Evolution Styles, Architectural Knowledge and
Architectural Reconstruction. In particular, we suggest using evolution styles to guide the stepwise
architecture evolution in a number of incremental evolution steps. In each evolution step, we sug-
gest using an architecture reconstruction tool to enforce the evolution of architecture and source
code keeping both in sync. The reconstruction tool uses an architecture abstraction specification to
generate a component view from the implemented source code. We suggest realizing each evolution
step by (a) transforming the architectural abstraction specification for the architectural reconstruc-
tion to contain the architectural changes and (b) developing the source code accordingly. After
both, the evolution of the architecture and the code have happened, we automatically reconstruct
the architecture using our reconstruction tool. The tool now can detect inconsistencies between the
architecture specification and the source code. Such inconsistencies are the result of violations in
the architecture, the transformation or the source code. These artifacts are incrementally refined

Chapter 8. Reconciling Software Architecture and Source Code in Support of Software Evolution143

architecture

abstraction DSL code (t)

Reconstruction

tool

Reconstruction

tool

M2M

Transformation

Engine

M2M

Transformation

Engine

IDE IDE

{#} {#}

code (t+3)

check for

violations

check for

violations

ADDX ADDX

transform transform

component view (t+2)

develop develop

{#} {#}

code (t)

Software

Architect

Software

Architect

Developers

time

architecture

abstraction DSL code (t+1)

generate generate

architecture

violations(t+4)

[no violations]

[Violation in the ADDx made] || [Violation in the transformation]

[Violation in the implementation]

Figure 8.2: Carrying out an evolution step

until no more violations occur. The result is that the evolution step is carried out and that the
architecture and the source code are in sync.

This chapter is structured as follows. After this introduction, Section 3.3 describes the main
foundations of this approach, as well as analyses the related work. Section 8.2 provides an overview
of our approach and Section 8.3 describes the technical details of the tool support of our approach.
Then, four case studies are described in Section 8.4 to illustrate how our work can be put into
practice. Finally, the conclusions drawn as well as our future work are presented in Section 8.5.

8.2 Our approach: Code and Software Architecture Evolution

As described in Section 8.1, our approach relies on three previous proposals in the research field.
Mainly, the approach uses Evolution Styles [Bar+12] to help the architect to plan and execute
the evolution from an initial architecture to a target architecture following one of the different
evolution paths available. It also takes into account AKdES [Cue+13] so that each evolution step
is traced from a specific ADD that describes how it must be carried out, keeping the history of the
evolution process. However, it differs from both of them in how these evolution steps are carried
out. Specifically, it extends the definition of both proposals to provide software architects and
developers with support for the evolution of both artifacts.

As Figure 8.2 illustrates, in our approach, an evolution step does not focus only on the architectural
transformation or the architectural decision made but also on the code as well. In particular, our

Chapter 8. Reconciling Software Architecture and Source Code in Support of Software Evolution144

approach considers an evolution step as an iterative process that entails several tasks, artifacts
and tools. The assumption of our approach is that the component view of the architecture is
not manually created, but that the Architecture Reconstruction Tool (see Section 8.3) is used
to automatically create the component view based on the architecture specification made in the
Architecture Abstraction Specification Language and on the source code.

Provided that we are in an instant t of the evolution, when we have made a description of the
architecture using Architecture Abstraction Specification Language, an Architecture Design Deci-
sion (ADDX) to be applied in the next evolution step, and a snapshot of the code to be evolved,
the following tasks should be carried out:

1. First, the software architect evolves the architecture into a new version in order to apply
the ADDX made. Following the ideas presented in [Bar12; Lyt+13b; NC08], this evolution
is carried out by applying Model-To-Model (M2M) transformations, that is, every ADD is
mapped to an architectural transformation. This means that the evolution graph is really
described as a graph of architectural transformations. This helps to improve the maintain-
ability of the evolution graph because it can be re-generated/updated in an automatic way
whenever it is necessary.

2. Once the architecture has been evolved, the software architect generates, using the tool that
we created for the approach in Chapter 5 (for the remainder of this chapter we refer to this as
Reconstruction Tool), a UML component view from the software architecture specification.
Developers are provided with this component view because, as discussed in Chapter 4, it
helps to improve the design understandability.

3. Then, the developers develop a new version of the code using both the component view as
well as the ADDX that also describes how the evolution step should be carried out, from
the code point of view. In other words, the specification in the transformed Architecture
Abstraction Specification Language can be seen as coding guidelines for the changes that
need to be made to the source code in order to realize the ADDX.

4. Once, the code evolution has been finished, the software architect uses the Reconstruction
Tool to check whether any misalignment between the code and the planned architecture
exists.

The software architect analyzes the results of the Reconstruction Tool and determines whether any
one of the following violations has happened:

• A violation in the implementation. Developers failed to apply the required ADDX or the
coding guidelines provided in the Architecture Abstraction Specification Language properly.

Chapter 8. Reconciling Software Architecture and Source Code in Support of Software Evolution145

Thanks to the facilities provided by the Reconstruction Tool, the software architect knows
which areas of the code fail in the implementation step, and provide developers with the
necessary warnings. Then, a new iteration would be carried out by the developers in order
to solve the detected problems in the implementation.

• A violation in the ADDX was made. When the software architect evaluates the violation, he
can also conclude that it was a problem in the decision made as it cannot be properly traced
to the code. Therefore, a new decision must be made (ADDY) that guides the developers
properly and considers the knowledge gained during the implementation of ADDX. The
previous decision ADDX should be marked as inhibited, establishing the rationale behind
that decision. A new iteration of the evolution step would then be carried out by software
architects and developers to apply the new decision made.

• A violation in the architecture abstraction specification. Finally, the software architect can
conclude that the architecture abstraction specification created as result of applying the
ADDX was not appropriate and a correction of the coding guidelines provided through the
Architecture Abstraction Specification Language is needed in order to properly align ADDX
and the corresponding source code.

If no violations are detected during the checking task, the evolution step was successful and a
new version of both the source code and a corresponding architecture abstraction specification is
available for realizing the next evolution step of the evolution path.

As can be observed, both software architects and developers can reconcile the different views
they have of the software evolution, software architecture and code, respectively. Thanks to the
introduction of the Evolution Styles, software architects can plan and analyze the evolution of the
software architecture. Then, by using the AK they can convey the idea behind each evolution step
to the developers and also keep the history of all the decisions they made. Finally, thanks to the
Architectural Reconstruction approach, both software architects and developers are notified if any
kind of problems exists during the on-going evolution step. As a result of the integration of the
three approaches, Evolution Styles, AK and Architectural Reconstruction, both software architects
and developers are closely cooperating in the process of evolving code and software architecture.
In the following section, the approach details and the tool support of the approach are described.
Next, in Section 8.4, several case studies are used to present how the approach can be put into
practice.

Chapter 8. Reconciling Software Architecture and Source Code in Support of Software Evolution146

8.3 Approach Details

In this section we describe the technical aspects of our approach and especially the tool support
for our approach in more detail. Our approach assumes that ADDs have been made and doc-
umented before an evolution step happens. Any ADD documentation tool can be used for this
task. In our work, we use the ADvISE1 tool for this task. We now utilize a variant of the Archi-
tecture Abstraction Specifiacation Language discussed in Chapter 5 to describe the architecture
specification.

During the evolution of a system, after an architecture has been specified, every ADD that is
made, requires us to change the architecture specification. We specify changes to the architecture
abstraction specification in terms of QVT-o transformations2. QVT-o allows us to define trans-
formations for any form of EMF Models. As our architecture specification is implemented as an
Xtext DSL, no setup for QVT-o was required. We implemented QVT-o transformations for the
following changes3 to the architecture specification:

• addComponent: Creation of a new architectural component. The implementation is shown
in Section 8.4.1 in Figure 8.3.

• deleteComponent: Removal of an architectural component. Its source code is shown in
Appendix D in Figure D.2.

• addConnector: Creation of a new connector between two architectural components. The
implementation is shown in Appendix A in Figure D.3.

• deleteConnector: Removal of a connector between two architectural components. Figure D.4
and Figure D.5 in Appendix D show the QVT-o code for this transformation.

• updateAbstractionSpecification: This transformation is used to replace the existing architec-
ture abstraction specification of a component with a new specification. The transformation’s
implementation is shown in Appendix D in Figure D.1.

As an example for these transformations (see Appendix D for their specification) we show the
transformation for adding a new component to the architecture specification in Figure 8.3. The
addComponent transformation takes two input models: one is the existing architecture specification
and the second model contains the component to be added. This transformation then generates
the modified architecture specification as an output model. These transformation enable us to
make all the necessary changes to the architecture, so that each evolution step is retraceable.

1 https://swa.univie.ac.at/Architectural_Design_Decision_Support_Framework_%28ADvISE%29
2 https://www.eclipse.org/mmt/?project=qvto
3 As the Architecture Abstraction Specification Language currently does not support the definition of ports, no

transformations for creating or deleting ports in the architecture specification have been defined at the moment.

Chapter 8. Reconciling Software Architecture and Source Code in Support of Software Evolution147

modeltype DSL uses 'http://www.univie.ac.at/cs/swa/component/

architectureabstraction/ArchitectureAbstractionDSL';

transformation addComponentTransformation

(in componentview:DSL, in newComp:DSL , out output:DSL);

main() {

componentview.rootObjects()[DSL::Transformation]-> map

addComponent(newComp.rootObjects()[DSL::Transformation]

->asOrderedSet()->first().map getComponent());

}

mapping DSL::Transformation::addComponent(in inputComp:DSL::ComponentDef):

DSL::Transformation {

result.name:=self.name;

result.components:=self.components->including(inputComp);

}

mapping DSL::Transformation::getComponent () : ComponentDef {

init {

result := self.components->asOrderedSet()->first();

}

}

Figure 8.3: QVT-o transformation for adding a component to the architecture specification

Once the architecture specification has been changed, the Reconstruction Tool, which is built
around our Architecture Abstraction Specification Language, transforms our architecture speci-
fication into a UML component view (using Xtend4 for generating the model). In addition the
Reconstruction Tool performs a number of consistency checks on the architecture specification and
source code and any resulting issues are listed in a consistency report. This report is implemented
as warnings and errors in the user interface for our Architecture Abstraction Specification Lan-
guage. For example, among many other verifications, it checks for connectors between components
that exist in the source code but do not exist in the architecture specification and parts of the ar-
chitecture specification that do not relate to any source code artifacts. Whenever the source code
changes, the checking can automatically be executed and a new consistency report is generated.
This supports the software developer during and the software architect after the implementation
step of our approach when they need to confirm whether the evolution of architecture and code
was successful or whether inconsistencies between architecture specification and code still exist.
An example for a consistency report is shown below in Section 8.4.1, Figure 8.7.

8.4 Case Studies

In this section we illustrate our approach in four case studies. Two of them are related to the
open source project Apache CXF5 which is a framework for implementing Web services. It is
implemented in Java and is built around a central Interceptor Chain which is used to handle
incoming and outgoing messages on the client- and on the server-side. In our first case study,
described in Section 8.4.1, we used our approach to retrace the changes from Apache CXF Version

4 http://www.eclipse.org/xtend/
5 https://cxf.apache.org/

Chapter 8. Reconciling Software Architecture and Source Code in Support of Software Evolution148

2.6 to Version 2.7. In the second case study, illustrated in Section 8.4.2, we retraced the changes
from Apache CXF Version 2.7 to Version 3.0. In the two other case studies we applied our approach
in the architectural evolution of Soomla. The Soomla6 framework is an open-source framework
for in-app purchases in Android. In Case Study 3, described in Section 8.4.3 we retraced the
architectural changes between version 3.2 and version 3.3 using our approach. Finally, in the last
case study, which we describe in Section 8.4.4, we used our approach to add support for a new
payment method to the Soomla framework.

8.4.1 Case Study 1: Evolving From Apache CXF 2.6 to Apache CXF 2.7

We used our approach to retrace the changes from Apache CXF Version 2.6 to Version 2.7. In
total this version change raised the number of lines of Java source code from about 480.000 to more
than 513.000 and consisted of 867 modified classes, 121 new classes, and 7 removed classes. For
this case study, we created three architectural component views of the CXF architecture using our
Architecture Abstraction Specification Language. These views consist of a high-level overview of
the complete architecture as well as two detailed views, one for the architecture of CXF transports
and one for the architecture of CXF front-ends. While a CXF transport implements a specific
protocol that is used to send messages, CXF front-ends define and implement the different types
of supported services like e.g. JAX-WS, JAX-RS.

In Figure 8.4 we show a detailed view for the architecture of Apache CXF transports (showing
only a subset of all supported transports). In Apache CXF, transports are used to abstract from
the protocols used to send messages from the client to the server and back. Each transport
has to provide implementations for the following three concepts: Conduits represent a channel
for sending a message, Destinations represent the location of a service (a ServiceEndpoint), and
TransportFactories are used to obtain transports for specific URLs.

As we studied the evolution of Apache CXF from Version 2.6 to Version 2.7 we discovered a
number of architectural changes to the different views which are summarized in Table 8.1. In order
to illustrate our approach in detail, we picked the change with ID 2, that is, the architectural
changes necessary to add support for the UDP protocol. The implementation of a new protocol
might be necessary when using Apache CXF in a restricted environment or when a new protocol
should be supported. In Apache CXF this was the case for Version 2.7 where a new UDP transport
was implemented.

In this case, we study the architectural evolution of the given architecture when the ADD to
support a new protocol has been taken. As we focus on studying the architectural evolution, we
first created an architecture abstraction specification for Apache CXF Version 2.6 which we used
as the basis for our approach (the architecture specification at t in Figure 8.2). Our approach

6 http://soom.la/

Chapter 8. Reconciling Software Architecture and Source Code in Support of Software Evolution149

Transport

Servlet

Conduit

Core

transport Message transport Response

onMessage

Destination

Transport

Factory

HTTP

Conduit

Destination

Transport

Factory

JMS

Conduit

Destination

Transport

Factory

Local

Conduit

Destination

Transport

Factory

TransportFactory

getTransportForAddress

Uses the

Conduit to

send a message

Uses the Destination to obtain a

BackChannelConduit to send a

response

Informs registered Message

Observer (Service or Client) of

received messages

Figure 8.4: A simplified view of the architecture of Apache CXF transports

ID Architectural change Affected view Arch. transformations

1 Added support for service discovery architecture
overview

addComponent
addConnector

2 Added support for sending messages using
UDP protocol

transport
view

addComponent
addConnector

3 Added support for sending SOAP messages
using the UDP protocol

transport
view

addComponent
addConnector

4 Added support for asynchronous messages
over HTTP

transport
view

addComponent
addConnector (used
twice)

5 Partial support for JAX-RS v2.0 (support for
JAX RS v1.1 already existed) frontend view updateAbstraction Spec-

ification

Table 8.1: Overview of all architectural changes from Apache CXF Version 2.6 to Apache CXF
Version 2.7

Chapter 8. Reconciling Software Architecture and Source Code in Support of Software Evolution150

Figure 8.5: Documented architectural decision to implement UDP transport support for Apache
CXF using the online version CoCoAdvise of the Advise Tool

assumes that this documented architecture already exists. If no initial architecture documentation
exists, the semi-automatic architecture reconstruction approach (summarized in Section 8.3 and
described in detail in Chapter 5) or other existing architectural reconstruction approaches can be
used to obtain an architectural description of a system in its current state. In the following, it is
described how an iteration over the evolution step presented in Section 8.2 was carried out:

• Transform step: After the ADD to implement this new protocol was documented (see in
Figure 8.5), we executed the transform-step of our approach. In our example, we first used
the addComponent transformation to add a component named UDP to the architecture
specification for the CXF transports. We exemplarily show the QVT-o transformation for
adding a component in Figure 8.3. All other QVT-o transformations used throughout the case
studies can be found in Appendix D. The added component with its architecture abstraction
specification is shown in Figure 8.6. We use Eclipse Launch configurations in conjunction
with the QVT-o transformations to record all the architectural changes carried out during a
transformation step (see Appendix D for an example of the launch configuration for adding
the new UDP component). We defined this architecture abstraction specification in the
following way: using the Architecture Abstraction DSL, we first specified that source code
for this component should be part of the Package org.apache.cxf.transport.udp (specified
by the UDP component’s first Package rule in Figure 8.6) and second, we defined that
this package and, thus, the component needs to contain an implementation of the interfaces

Chapter 8. Reconciling Software Architecture and Source Code in Support of Software Evolution151

Component Core

consists of

{

Package (org.apache.cxf.transport, excludeChildren)

or

Package (org.apache.cxf.transport.common)

}

Component UDP

consists of

Package (org.apache.cxf.transport.udp)

or

{

Package (org.apache.cxf.transport.udp)

and

{

InstanceOf (org.apache.cxf.transport.ConduitInitiator)

or

InstanceOf (org.apache.cxf.transport.Conduit)

or

InstanceOf (org.apache.cxf.transport.Destination)

}

}

//[…]

Figure 8.6: Excerpt of the architecture specification showing the Core component of the transport
view as well as the new architectural component that was added during the first transformation

step of our case study with syntax highlighting for reported inconsistencies

Figure 8.7: Consistency report for the new architectural component that was added during the
first transformation step in our case study (as shown in Figure 8.6)

ConduitInitiator (which is the interface for the Transport Factory), Conduit, and Destination
(specified by the UDP component’s second Package rule and the InstanceOf rules in Figure
8.6). Therefore, the consistency checks of our Reconstruction Tool can evaluate whether the
transport fulfills all the requirements that Apache CXF defines for its transports, that is, it
enables architects to check all the constraints imposed by the style (see Section 3.3.1). At
this point, we finished the transform-step and reached the architecture specification shown
in Figure 8.2 at time (t+1).

• Generate step: Based on this architecture specification we used our Reconstruction Tool to
generate a UML component view similar to the one already shown in Figure 8.4. However, the
new component view also contains the new architectural component for the UDP transport.
In addition, our Reconstruction Tool provides a consistency report that lists the issues the
tool detected after the architecture specification was transformed. Initially, this report, as
shown in Figure 8.7, consisted of multiple errors stating that no source code elements could be
detected that adhered to the different elements in the architecture abstraction specification
of the UDP component. This happens because no package org.apache.cxf.transport.udp
existed in the source code yet and no realization of the interfaces Conduit, Destination, and

Chapter 8. Reconciling Software Architecture and Source Code in Support of Software Evolution152

ConduitInitiator could be found for the UDP component. After the generate step, we have
successfully created the UML component view as shown in Figure 8.2 at time (t+2).

• Implementation step: Based on the ADD, the UML component view, and the list of issues,
the implementation step (of this iteration) follows. As we are studying an already existing
system, instead of implementing the new component, we updated the Apache CXF source
code from Version 2.6 to Version 2.7 which concluded our implementation step and brought
us to time (t+3) in Figure 8.2.

• Check for violations step: In this step, we used the Reconstruction Tool to check whether
the aforementioned issues still remained. While the Reconstruction Tool did not report any
issue regarding the UDP component itself, it reported that there was a connection between
the Core and the UDP component in the source code that was not covered in the architec-
ture specification. After a short investigation, we decided that the detected violation was a
violation in the ADD that occurred because a connector between those two components in
the architecture was necessary.

We started a new iteration of our approach which led us back to iterate over the evolution step,
applying every one of the identified steps Figure 8.2. During this second iteration, we first updated
the ADD and then, in the transformation step, used the addConnector transformation (see Ap-
pendix A, Figure D.3) to create a new connector in the architecture specification that connects the
Core component with the before added UDP component. After this, we skipped the implemen-
tation step, because it was not necessary to change the code, and again used the Reconstruction
Tool to check for issues in the check for violations step. As no issues were reported any more, we
finished this architecture evolution step.

8.4.2 Case Study 2: Apache CXF 2.7 to Apache CXF 3.0

In this case study, we retraced the version change from Apache CXF 2.7 to 3.0 using our approach.
In this version change, the number of lines of source code grew to about 560.000 and consisted of
1224 modified, 296 new, and 111 removed classes. Figure 8.8 shows the high-level architectural
component view of Apache CXF 2.7 before any changes were performed. This major update con-
tained a number of changes to CXF that affect the implemented architecture. Among these changes
are two new supported transports for which we performed the same architecture transformation
steps as for the new UDP transport in the previous case study.

During this version change, two central components of the system, the CORE and the API com-
ponents, have been merged into a single CORE component and the WSDL-related functionality
has been split off into a component of its own called WSDL. Therefore, using our approach, we
performed two evolution steps:

Chapter 8. Reconciling Software Architecture and Source Code in Support of Software Evolution153

Other CXF Components

Interceptor

Front-end

Service Model
Pluggable Data

Bindings

ServiceMetaData

Service Impl

InterceptorChain

doInterceptMessage

creates

serializeData

handle

Message

Protocol Binding

Create Message

EndPoint MessageObserver

onMessage

Transport

transport

Message

Service Impl

transport

Response

Core API

Figure 8.8: Architecture overview of Apache CXF 2.7

1. During the first evolution step, we documented the ADD to describe that the two components
were merged (see Figure 8.9). In this ADD, we documented the problem, the outcome of the
decision, named different possible solutions and arguments pro and contra these solutions, as
well as related this decision to other affected decisions. Then we enacted the iterative process
described in Section 8.2 as follows:

• Transform step: We first updated the architecture abstraction specification of the
CORE component by applying the updateAbstractionSpecification-transformation that
is shown in Appendix D (Figure D.1). This merged the architecture specification of
the API component and the CORE component and caused the automated consistency
checks of our tool to report an architectural inconsistency as the architecture abstraction
specification of the components now overlapped. We then applied the deleteComponent
(see Appendix D, Figure D.2) transformation to delete the API component which solved
the aforementioned architectural inconsistency but also required us to apply deleteCon-
nector (see Appendix D, Figure D.4 and Figure D.5) for every connector that expressed a
dependency to the API component. Then we searched the components whose connectors
had been deleted to replace them with new connectors that expressed the dependency
on the modified CORE component. However, all of the components already expressed
this dependency so that no new connectors were necessary.

• Generate step: Based on this updated architecture specification we used our Recon-
struction Tool to generate a UML component view of Apache CXF and obtained a

Chapter 8. Reconciling Software Architecture and Source Code in Support of Software Evolution154

Figure 8.9: Documented architectural decision to merge the Components Core and API

consistency report that lists the issues the tool detected after the architecture specifi-
cation was transformed. This list includes one message for each class that should be
moved from the API to the CORE components.

• Implementation step: Similarly to the case study presented in the previous section, the
implementation step (of this evolution step) follows and was based on the ADD, the
UML component view, and the list of issues. As we are studying an already existing
system, instead of implementing the new component, we updated the Apache CXF
source code from Version 2.7 to Version 3.0 which concluded our implementation step
and brought us to time (t+3) in Figure 8.2.

• Check for violations step: We again used the Reconstruction Tool to identify any re-
maining inconsistencies. While the list of issues from the Generate step were all fixed,
a number of classes were identified as being misplaced. These were the classes that pro-
vide the WSDL functionality in Apache CXF which were separated from the new Core
component and moved into a separate WSDL component. Until this point, we had not
updated our architecture description with respect to this change. In order to deal with
this change, we went back and performed the second transformation step described in
the following paragraphs.

2. During the second evolution step, we first documented the ADD shown in Figure 8.10 to
describe that the WSDL-related functionality was moved to a new component and then
carried out the evolution as follows:

Chapter 8. Reconciling Software Architecture and Source Code in Support of Software Evolution155

Figure 8.10: Documented architectural decision to separate the WSDL related functionality from
the Core component

Component RTWSDL

consists of

{

Package (root.org.apache.cxf.wsdl)

or

Package (root.org.apache.cxf.wsdl11)

}

and not

Package (root.org.apache.cxf.wsdl.http)

Figure 8.11: The WSDL component that now holds WSDL relevant functionality in Apache CXF
3.0

• Transform step: In this step, we used the addComponent and the updateAbstraction-
Specification transformations to create the new WSDL component (shown in Figure
8.11) according to the abstraction specification and to remove those classes implement-
ing the new component from the abstraction specification of the CORE component,
respectively.

• Generate step: we regenerated the UML component model and, as we are applying the
process to an existing system, we skipped the implementation step and directly checked
for violations.

• Check for violations step: Once the above-mentioned changes to the architecture were
carried out, no more violations were detected by the Reconstruction Tool and we finished
the retrace of the version change from Apache CXF 2.7 to 3.0.

Chapter 8. Reconciling Software Architecture and Source Code in Support of Software Evolution156

IABPayment

«database»

SQLLiteDatabase
StoreController

StoreAssets

DatabaseServices

storageManager

CryptDecrypt

storeAssets

assetsInfo

obfuscatorsharedPreferences

GooglePlayBilling

obfuscator

googlePlayBillingAccess

GooglePayment

BillingProvider

GoogleBillingProvider

obfuscator

billingAccess

GooglePayment

AmazonBillingProvider

AmazonPayment

IABPayment

Figure 8.12: Soomla Architecture Overview showing the architecture for version 3.2 and the
changes for version 3.3. Remove elements have a hatched background and new elements have a

colored background.

8.4.3 Case Study 3: Soomla Store Version 3.2 to 3.3

For this case study we retraced the architectural changes for the Soomla Store from version 3.2 to
version 3.3. Soomla is a framework that, in newer versions, helps implementing In-App purchases
in Android, iOS, and Unity applications but was originally developed purely for Android. For this
reason, the Soomla framework in version 3.2 only supported one payment method: Google Play
Store. However, the requirement to also support payment via Amazon arose. Since payment via
Google was so far “hardcoded” into the framework, this required to change Soomla’s architecture to
support multiple payment providers and thus introducing an abstract representation of payments
and payment providers instead of using the ones provided by Google. Soomla’s architecture and
the changes applied in this case study are shown in Figure 8.12.

Therefore, using our approach, we again performed multiple evolution steps. During the first evo-
lution step, first, we used our approach for the ADD to introduce a provider independent payment
representation. In the second evolution step, we employed our approach for the introduction of the
new Google payment provider and in the third evolution step we carried the ADD to add support
for payment via Amazon. In the following we provide details for each one of these steps. Figure
8.13 shows the architecture abstraction specification for the new components. We have summarized

Chapter 8. Reconciling Software Architecture and Source Code in Support of Software Evolution157

Component Billing

consists of

Package (root.com.soomla.store.billing, excludeChildren)

Component GooglePlayBilling

consists of

Package(root.com.soomla.store.billing.google) or

{

Package(root.com.soomla.store.billing.google)

and

InstanceOf(root.com.soomla.store.billing.IIabService)

}

Component AmazonBilling

consists of

Package(root.com.soomla.store.billing.amazon) or

{

Package(root.com.soomla.store.billing.amazon)

and

InstanceOf(root.com.soomla.store.billing.IIabService)

}

Figure 8.13: Architecture abstraction specification for the new provider independent Soomla
Billing component and the new components that implement the payment providers for Google and

Amazon

ID Evolution
Step Architectural change Arch. transformations

1 1
Added new Google-
independent Billing-
Provider component

addComponent
addConnector (used multiple times - for all
components that used have a connector to
the old Billing component

2 1
Removing the old –
Google-specific Billing
component

deleteComponent
deleteConnector (used multiple times - to
delete all connectors to and from the old
Billing component)

3 2

Adding the new Google-
PlayBilling component
that integrates with the
new BillingProvider

addComponent
addConnector (to create a connector be-
tween BillingProvider and GooglePlay-
Billing)

4 3

Adding the new Ama-
zonBilling component that
integrates with the new
BillingProvider

addComponent
addConnector (to create a connector be-
tween BillingProvider and AmazonBilling)

Table 8.2: List of the architectural changes performed for the architecture evolution from Soomla
v3.2 to Soomla v3.3.

all necessary architectural changes for this version change in Table 8.2. In the following, these three
steps are described in detail.

1. During the first evolution step, we documented the ADD to replace the Google-specific billing
component with a provider-independent billing component (see Appendix C, Figure D.7) and
then enacted the iterative process described in Section 3 as follows:

• Transform step: We first used the addComponent-transformation to create a new com-
ponent named BillingProvider with a new architecture abstraction specification. Then,

Chapter 8. Reconciling Software Architecture and Source Code in Support of Software Evolution158

we used the deleteConnector-transformation and the addConnector-transformation to
replace all connectors to the old Billing component with connectors to the new Billing-
Provider component before using the deleteComponent-transformation to remove the
old Google-specific Billing component.

• Generate step: Based on this updated architecture specification we used our Reconstruc-
tion Tool to generate a UML component view of Soomla’s architecture and obtained a
consistency report that lists the issues the tool detected after the architecture speci-
fication was transformed. In this case, these warnings were that the new component
BillingProvider and the updated connectors were not present in the source code and
that the implementation of the old Billing component still existed in the source code of
the system.

• Implementation step: Similarly to the case studies presented in the previous sections,
the implementation step (of this evolution step) follows and was based on the ADD, the
UML component view, and the list of issues. As we are studying an already existing
system, instead of implementing the new component, we updated the Soomla source
code from Version 3.2 to Version 3.3 which concluded our implementation step and
brought us to time (t+3) in Figure 8.2.

• Check for violations step: We again used the Reconstruction Tool to identify any remain-
ing inconsistencies. All issues from the Generate step were fixed and the first evolution
step was finished.

2. During the second evolution step, we documented the ADD to (re-)add support for pay-
ment via Google Play (see Appendix D, Figure D.8) and then enacted the iterative process
described in Section 8.2 as follows:

• Transform step: We used the addComponent-transformation to create a new compo-
nent called GoogleBillingProvider which is connected to the BillingProvider component.
Figure 8.13 shows the architecture abstraction specification for the new BillingProvider
and GooglePlayBilling components.

• Generate step: Based on this updated architecture specification we used our Reconstruc-
tion Tool to generate a UML component view of Soomla’s architecture and obtained a
consistency report that lists the issues the tool detected after the architecture specifi-
cation was transformed. In this case, these warnings were that the new component and
the new connectors were missed in the source code.

• Implementation step: Again, as we are studying an already existing system, instead
of implementing the new component, we updated the Soomla source code by adding
the module for payment via Google, which is developed in a separate repository since
Soomla supports multiple payment providers. In fact, both currently supported payment

Chapter 8. Reconciling Software Architecture and Source Code in Support of Software Evolution159

providers are developed as separate modules and the Soomla framework itself does not
contain any payment provider-specific code.

• Check for violations step: As before, we used the Reconstruction Tool to identify any
remaining inconsistencies. All issues from the Generate step were fixed and the evolution
step to (re-)add support for payment via Google Play was finished.

3. During the third evolution step, we documented the architectural decision to add support
for payment via Amazon (shown in Appendix C, Figure D.9). In this ADD we noted only
one position – the one to implement support for payment via Amazon using the new Billing
architecture. We also documented the other related decisions, in this case the decision to
utilize the provider-independent billing architecture and the decision to re-implement the
payment via Google using this architecture. In the case of needing to revise the question on
how to implement this AmazonBillingProvider, the related questions probably also need to
be revised. Then we enacted the iterative process described in Section 8.2. As this consisted
of exactly the same steps as in evolution step 2, we skip the details at this point. We have
already shown the architecture abstraction specification for the Amazon-specific payment
component in Figure 8.13 and its integration into the architecture in Figure 8.12. Like the
Google-specific code, the code for payment via Amazon is also developed in a separate module
that was added in the implementation step. No inconsistencies were found during the check
for violations step and once we finished with this evolution step, we had also completed the
architecture evolution of Soomla from version 3.2 to version 3.3.

8.4.4 Case Study 4: Soomla v3.3 Implementation of a New Custom Payment
Provider for Payment via Carrier

In this case study, instead of analyzing an evolution already carried out, we implemented a new
payment option for the Soomla framework that supports payment via a custom local payment
provider that offers payment via a Restful API. Again, we first documented the ADD to add this
functionality (see Appendix D, Figure D.10) and then used our approach:

• Transform step: We first used the addComponent-transformation to create a new component
named RestfulBillingProvider with a new architecture abstraction specification (shown in
Figure 8.14) and only one connector to the BillingProvider component.

• Generate step: Based on this updated architecture specification we used our Reconstruc-
tion Tool to generate a UML component view of the Soomla’s architecture and obtained a
consistency report that lists the issues the tool detected after the architecture specification
was transformed. In this case, these issues were that the new component (RestfulBilling-
Provider) and the new connectors were not present in the source code. More specifically that

Chapter 8. Reconciling Software Architecture and Source Code in Support of Software Evolution160

Component Billing

consists of

Package (root.com.soomla.store.billing, excludeChildren)

Component GooglePlayBilling

consists of

Package(root.com.soomla.store.billing.google) or

{

Package(root.com.soomla.store.billing.google)

and

InstanceOf(root.com.soomla.store.billing.IIabService)

}

Component AmazonBilling

consists of

Package(root.com.soomla.store.billing.amazon) or

{

Package(root.com.soomla.store.billing.amazon)

and

InstanceOf(root.com.soomla.store.billing.IIabService)

}

Figure 8.14: Architecture abstraction specification for the RestfulBilling component.

Figure 8.15: Consistency report created in the Generate step for the new RestfulBilling Compo-
nent

no package com.soomla.store.billing.restful existed and that no classes existed in this package
that implemented the IIabService interface which is defined by the BillingProvider (shown in
Figure 8.15).

• Implementation step: In this step we tackled the issues reported by the tool one by one
and first implemented the code to provide the desired functionality by implementing the
interfaces defined by the BillingProvider. The most important of these interfaces is the
IIabService which is the new provider-independent interface used throughout the Soomla
store. As required in the architecture abstraction specification, we placed our code in the
package com.soomla.store.billing.restful.

• Check for violations step: We then used the Reconstruction Tool to check for any remaining
inconsistencies. However all issues from the Generate step were fixed and the evolution step
was complete.

Chapter 8. Reconciling Software Architecture and Source Code in Support of Software Evolution161

8.4.5 Discussion

These case studies illustrate the application of our iterative approach for the evolution of two
existing software systems. Several advantages and strengths of our approach have been confirmed
while they were carried out. First, they demonstrate the evolution of all artifacts of the software
engineering process ranging from ADDs over the architectural component view down to the level
of the source code. Second, we were able to ensure that changes to the architecture that are
undertaken based on ADDs are recorded using QVT-o transformations to apply these changes and
by providing traceability between different versions of the architecture abstraction specification.

Other strength that the case studies show is how software architect and software developer are
supported by automatically providing feedback on the consistency of the architecture and the
source code through the Reconstruction Tool which includes reports about missing or misplaced
source code as well as the automatic checking of constraints that the software architect defines for
the architecture of the system. In this way, our tool enables to check automatically the constraints
related to the evolution style. For instance, in Section 8.4.1 it was shown that one of the constraints
of the style imposes the implementation of specific interfaces. The use of the approach presented
enables both architects to establish these constraints and developers to check whether the code
satisfies them. Moreover, the second case study shows how the approach handles changes to the
source code that are not previously documented in the architecture description of the software
system. In addition, we are able to capture how and why specific evolution steps have happened
as every evolution step was described by means of an ADD using ADvISE.

As already stated in the introduction, this is an important information for future evolution that
the Reconstruction Tool lacks, if used on its own.

It is also important to mention the limitations of our approach so that it can be evaluated from
a practical point of view. One of them, which we initially did not consider to be relevant, is
that ADvISE and the Reconstruction Tool are currently two separate tools. An integration of
those tools, which we plan in our future work, would improve the user experience for the software
architect.

Another limitation of the approach, which it shares with all approaches that invest effort in the
architecture documentation, is that it is not really applicable for small software systems as in these
cases the source code often is enough for understanding the software architecture. However, this
does not extend to middle and large scale systems where architecture documentation is necessary.

Finally, a limitation of the first three case studies is that they retrace the architectural evolution
of a system instead of using the approach during the evolution itself. However, this allowed us to
study real systems of considerable size instead of showcasing the application on artificial examples.
Conversely, in the fourth case study we did not retrace architectural evolution but applied our

Chapter 8. Reconciling Software Architecture and Source Code in Support of Software Evolution162

approach to perform architecture evolution by integrating an additional payment provider into
the Soomla framework, in order to gain the view of a developer. This last case study allowed us
to identify how valuable the information of the ADDs and consistency reports were to guide our
implementation.

8.5 Conclusions and Future Work

In this chapter we introduce an approach for the joint evolution of software architecture and source
code. By integrating our approach for documenting and maintaining architectural component views
(Chapter 5) and architectural pattern instances (Chapter 6) with AK and evolution styles, we are
able to support the evolution of a system not only on an architectural level, but also let the software
architect provide the software developer with guidelines on how to adapt the source code in order
to conform to the changed architecture and the constraints imposed by the architectural style. We
are then able to perform automated consistency checking between the architectural specification
and the source code. It is also noteworthy that all the different types of architectural changes,
such as add component, delete component, etc., were automated by using QVT-operational, so
that they can be easily traced and undone.

Moreover, we have also presented four case studies based on two real systems: Apache CXF and
Soomla. They show the support for incremental changes to the architecture and the underlying
source code provided by our approach. With this aim, it has been shown, how the software architect
can check whether the architecture specification and the source code are consistent. Otherwise, we
provide the software architect with an iterative workflow to reach a state such that the documented
architecture and the code have been changed according to the architectural decisions and are
consistent with each other. According to this conclusion, we can positively answer the research
question that we stated in the introduction, as both software architects and developers can work
together throughout the evolution process described keeping software architecture and code in
sync.

In our future work we plan to automatically modify existing architecture specification guidelines
between architectural component views and source code when the architectural component view is
modified. Furthermore, we want to investigate if approaches for estimating the cost of architectural
changes can be integrated with our approach.

9
Architecting for Decision Making About Code

Evolution

9.1 Introduction

SA evolution is a complex activity, especially for large software projects with multiple development
teams that might be located in different countries that work on different parts of the project in
parallel, so there is a clear need to manage properly who is in charge of each requested change and
how and when it will be carried out. In this chapter we propose an approach that attempts to
solve Research Question 6, which we discussed in Section 2.1.

To support stakeholders with methods and tools to help in the evolution process, we have devel-
oped a DSL for making decisions about the evolution that provides architects with expressive power
to describe which implementation tasks must be performed by the development team and which
temporal dependencies exist among these tasks. Once the architect has specified these implemen-
tation tasks with the DSL, by using a model-to-text transformation, they are translated to Alloy
[Jac11] to evaluate which are the possible decisions for realizing the architecture evolution in terms
of the specified implementation tasks. We have integrated this approach with our Architecture
Abstraction Specification Language introduced in Chapter 5, so that architects and/or developers
can automatically update the specification of the architecture once an implementation task has
been completed. This helps keeping two important assets of a software project (the SA and the
source code) in sync. More specifically, we use a newer variant of the Architecture Abstraction
Specification Language that supports explicit description of connectors like the variant used in
Chapter 6 but without the support for pattern primitive annotations as they are not relevant for
this chapter. This variant also has a simplified syntax for writing component definitions.

This way, our approach does not only allow to evolve SA and source code in sync, but also re-
quires to define the architectural changes only once (when defining the implementation task) and
the architecture description is updated automatically. Furthermore, we can use the Architecture
Abstraction Specification Language’s features. This proposal provides several advantages:

163

Chapter 9. Architecting for Decision Making About Code Evolution 164

• First, it provides the software architect with facilities to automatically generate decision
alternatives for carrying out the implementation tasks so that they can be easily distributed
among the teams or team members.

• Second, it releases the software architect from the burden to manually update the architec-
tural description because the defined implementation tasks are used to automatically update
the architecture specification. This is very important as it helps to avoid the architectural
drift and architectural erosion that usually emerge during the evolution.

• Third, the defined implementation tasks serve for the purpose of creating a documentation
of the evolution. This is a very important question as several studies [Bra+00; Ozk+10b]
carried out with subjects from both industry and academia have concluded that using the
architectural documentation the time necessary to carry out the change-tasks could be short-
end.

This chapter is structured as follows. In Section 9.2, we first present the DSL we have developed,
and then we discuss the support for deciding on implementation steps. A case study that illustrates
the feasibility of the approach is shown in Section 9.3. Finally, Section 9.4 concludes this chapter.

9.2 Architecting for Code Evolution

Whenever the code is being developed, the coding tasks are usually carried out in an iterative
manner, so that no new component is developed from its very beginning to its end, but usually
different components can be developed in parallel. However, the main problem is that there usually
are internal dependencies among them that must be identified and considered whenever a system
is being developed. These internal dependencies impose mainly temporal constraints, in terms of
when the different features supported by each component should be developed. Let us illustrate
this problem with a scenario, which we will use as a running example in the remainder of this
chapter. As shown in Figure 9.1(a), initially two components ComponentA and ComponentB
communicate with each other directly through a connector. Now let us assume that, due to new
requirements, a distribution of these two components on different servers is necessary. This leads
to an Architectural Design Decision (ADD) to implement a version of the broker pattern1 between
these two components. This architectural change is shown in Figure 9.1(b).This ADD leads to a
number of design decisions and thus a number of different implementation tasks, whose timing is
constrained by internal dependencies, as shown in Figure 9.2. Specifically, the following tasks need
to be implemented in order to complete the implementation of this ADD.

• For using the Broker itself, a suitable middleware framework must be set up and configured.
1The broker pattern is a pattern for communication between distributed objects.

Chapter 9. Architecting for Decision Making About Code Evolution 165

Component A Component B

Component A Component B

Proxy A Proxy BBroker

(a)

(b)

Figure 9.1: Architecture changes in the broker scenario

Implement Broker pattern: dependencies

AddProxyA

ConnectA2ProxyA

(AddBroker or SelectBroker)

AddProxyB

ConnectProxyA2BrokerConnectB2ProxyBConnectProxyB2Broker

depends on

Figure 9.2: Planning an Evolution Step

• The above mentioned proxies for the two components need to be created.

• The proxies need to be wired to the broker. Moreover, the components need to be changed
in order facilitate the new communication form. The direct connector needs to be removed
and the usage of the proxies needs to be implemented. If dependency injection (DI) is used,
at least the DI configuration needs to be changed, even if no changes to the components’
implementation are necessary.

All of these tasks need to be completed in order to fully comply with the ADD to implement the
broker pattern. Even in this small example, a number of temporal dependencies exist between the
tasks at hand. The implementation of the proxies requires that the middleware for the Broker
is set up and configured, the changes to Component A require the existence of the proxy for
Component A, and the wiring of Component A with its proxy requires that the changes to the
Component A itself are completed. The same or at least similar dependencies exist for Component
B. These dependencies impose some order in which these tasks need to be completed. In a real
world scenario with multiple development teams and more than two components involved in an
architectural decision, this problem’s complexity grows much further.

In our approach, a software architect defines the tasks and the constraints on the timing of the
tasks (e.g. proxy must be implemented before proxy can be connected and used) in a domain
specific language especially designed for planning code evolution, called Evolution DSL. This DSL
allows the architect to specify: (i) a textual description of the implementations task, including
any references to relevant ADDs; (ii) the temporal constraints or dependencies of the task; (iii) as

Chapter 9. Architecting for Decision Making About Code Evolution 166

well as the changes to the system’s architectural description based on the Architecture Abstraction
Specification Language. We describe the technical details and the Evolution DSL in Section 9.2.1.

Based on these task definitions, our approach supports the architect and the developers during
the evolution by automating the complex task of creating the possible decision alternatives for
executing the given implementation tasks. We utilize the Alloy2 model finder for automatically
providing multiple possible alternatives for the order of the implementation tasks. These models
are provided in graphical and textual form by Alloy. While the textual form supports an automatic
interpretation, the graphical form shows which tasks do not have any dependencies to other tasks
and thus can be implemented in a parallel fashion without running into any dependency issues. It
also supports easy identification of crucial tasks that need to be completed early, as well as sets of
implementation tasks that do not have dependencies outside the given set.

In our running example, two such sets can be identified: The first contains all tasks related to
Component A and the second contains all tasks related to Component B, while the set up and
configuration of the middleware of the Broker qualifies as a crucial task that might hinder further
work as both identified sets depend on this task. The sets around Component A and Component
B are good candidates for being developed by the same development team, because this team
then can work independently from the other team(s) and is not hindered by any dependencies to
tasks that are implemented elsewhere once the set up and configuration of the middleware of the
Broker component is completed. Furthermore, the automatically generated decision alternatives
ensure that no implementation tasks are started, before their dependencies are fulfilled. Finally,
the defined implementation tasks are used to automatically update the architecture description and
serve for the purpose of creating a documentation of the evolution. The technical details of this
support are provided in Section 9.2.1.

9.2.1 DSL for Specifying the Code Evolution

In this section we describe the concepts and implementation of our Evolution DSL in detail. An
important feature of the Evolution DSL is the tight integration with the architecture description
itself, which enables to automatically apply the changes, specified in an implementation task to the
architecture description, once it is completed. This releases the software architect from the burden
to manually update the architectural description after an implementation task is completed.

This is why we have integrated the Evolution DSL, which was implemented in Xtext [Eclb], with
the Architecture Abstraction Specification Language that we discussed and presented in Chapter
5.

2 Alloy [Jac11] is a language to formally describe structures and a solver that takes the constraints of a model
and finds structures that satisfy them.

Chapter 9. Architecting for Decision Making About Code Evolution 167

ImplementationTask:

'Task' name=ID ':'

('status:' status=STATUS)?

('description:' description=STRING)?

// temporal rules

('precedes' precedes+=[ImplementationTask] (',' precedes+=[ImplementationTask])*)?

('directly precedes' directlyprecedes+=[ImplementationTask] (',' directlyprecedes+=[ImplementationTask])*)?

('henceforth requires' requires+=LogicRule (',' requires+=LogicRule)*)?

('in parallel with' inParallelWith+=[ImplementationTask] (',' inParallelWith+=[ImplementationTask])*)?

('succeeds' succeeds+=[ImplementationTask] (',' succeeds+=[ImplementationTask])*)?

('directly succeeds' directlysucceeds+=[ImplementationTask] (',' directlysucceeds+=[ImplementationTask])*)?

(optional?='is optional')?

('is incompatible with' prevents+=[ImplementationTask] (',' prevents+=[ImplementationTask])*)?

architectureChange=ArchitectureChange;

ArchitectureChange:

AddFeatureTask | AddConnectorTask | RemoveFeatureTask | RemoveConnectorTask | AddComponentTask |

RemoveComponentTask | ModifyComponentTask | ComplexTask;

ComplexTask:

'consists of:'

tasks+=TaskReference (',' tasks+=TaskReference)*;

AddComponentTask:

'architecture changes:'

'add component to' transformation=[archDSL::Transformation|TASKS_QUALIFIED_NAME]

componentToAdd=ComponentDef;

Figure 9.3: Excerpt of the Xtext grammar for the Evolution DSL shoing the rule for an imple-
mentation task, the different tpyes of tasks and two of the rules for specific tasks.

In order to facilitate the understanding of this chapter, Figure 9.3 shows an excerpt of the grammar
for the definition of implementation tasks and the temporal rules for implementation tasks as
well as the architectural changes supported. In the rule definition AddComponentTask, we can
see that the Architecture Abstraction Specification Language’s rules are reused. This enables
the automatic application of the architectural changes from completed implementation tasks to
the architectural description. This has been implemented as an Eclipse wizard that enables the
architect to select which implementation tasks have been already completed and then, using a
model-to-model transformation written in Xtend2 [Ecla], to update the architecture description.

An example of different tasks expressed in the DSL is presented in Figure 9.8. In this example,
the complex task of adding a Broker between two Components A and B is divided into multiple
subtasks, which consist of implementing the Broker itself (AddBrokerFeature), implementing the
Proxies for Components A and B(AddProxyA, AddProxyB) and wiring all the components together.
Some of these tasks have (temporal) dependencies. In this example, ConnectA2Proxy requires that
ProxyA has been implemented before Component A can be wired to ProxyA. Also, ConnectA2Proxy
is itself a complex task that consists of two subtasks, which should be carried out in close succession.
In Figure 9.4 we skipped the tasks regarding Component B as they are very similar to the tasks
regarding Component A.

Other dependencies that stem from organizational requirements (e.g. that the tasks will be split
between independent teams of developers) can be modeled in the same way as constraints resulting

Chapter 9. Architecting for Decision Making About Code Evolution 168

Task AddBroker:

description: "Tasks necessary for adding

the new broker to the architecture"

consists of:

AddBrokerFeature,

AddProxyA,

AddProxyB,

ConnectA2Proxy,

ConnectProxyA2Broker,

ConnectB2ProxyB,

ConnectProxyB2Broker

Task AddBrokerFeature:

description: "implement the broker functionality"

architecture changes:

add component to Frag

Component Broker consists of

Package("univie.swa.example.broker")

Task UpdateComponentA:

directly precedes ConnectA2Proxy

architecture changes:

replace feature Frag.ComponentA :

Package_univie_swa_example_original_package

with new feature:

Package("univieswa.example.A.usingBroker")

after Frag.ComponentA.Package_univie_swa_example_original_package

Task ConnectA2ProxyA:

description: "implement the conn. between comp. A and proxy A"

precedes ConnectB2ProxyB

succeeds AddProxyA

architecture changes:

add connector to Frag.ComponentA

connector to AddProxyA.ProxyA

Task ConnectProxyA2Broker:

description: "wire the proxy and the broker together"

succeeds AddProxyA,AddBrokerFeature

architecture changes:

add connector to AddProxyA.ProxyA

connector to AddBrokerFeature.Broker

Task AddProxyA:

description:"implement the proxy that hides the broker from comp. a"

architecture changes:

add component to Frag

Component ProxyA consists of

Package("univie.swa.example.proxyA")

Task ConnectA2Proxy:

succeeds AddProxyA

consists of:

UpdateComponentA,

ConnectA2ProxyA

Figure 9.4: Excerpt from the implementation tasks of the example for adding a broker.

from the implementation itself.

9.2.2 Generating Decision Alternatives for Evolution

Once the tasks are defined, we use the features provided by Xtext to automatically execute a
model-to-text transformation that creates an Alloy model, which is used to generate the possible
decision alternatives. Alloy [Jac11] is a structural modeling language based on first-order logic
for expressing complex structural constraints and behavior. The Alloy Analyzer is a constraint
solver that provides fully automatic simulation and checking. It allows us to define the concepts of
basic and complex implementation tasks, the definition of specific implementation tasks and their
constraints based on the abstract concepts, as well as the following (summarized) constraints that
need to hold for all implementation task models:

• An implementation task is followed by a set of implementation tasks (next relation).

• A complex implementation task is an implementation task that consists of a set of imple-
mentation tasks (consistsOf relation).

• All defined implementation tasks need to be acyclic with respect to the next relation as well
as the consistsOf relation.

• All defined implementation tasks need to exist in the solution and must be reachable. Either
they are part of the initial tasks or they are reachable through an initial task.

• A complex implementation task is immediately followed by one of its subtasks.

Chapter 9. Architecting for Decision Making About Code Evolution 169

//…

fact AcyclicImplementationTasks {

no task: ImplementationTask| task in task.^next

}

fact AcyclicComplexImplementationTasks {

no task: ComplexImplementationTask | task in task.^consistsOf

}

// …

one sig AddProxyA extends ImplementationTask {}

one sig ConnectA2ProxyA extends ImplementationTask {}

// …

pred show {

//..

all s1: AddProxyA, s2: ConnectA2ProxyA | s2 in s1.^next

}

run show for 5

Figure 9.5: Excerpt of the Alloy code for the introduced Broker example

RemoveOldDirectconnector AddBroker AddProxyA ConnectA2Proxy

UpdateComponentA ConnectA2ProxyA AddBrokerFeature ConnectProxyA2Broker

AddProxyB ConnectB2ProxyB ConnectProxyB2Broker

Figure 9.6: Decision alternative generated by Alloy for the Broker example.

• A complex implementation tasks precedes all its subtasks.

• Each implementation task can only be part of zero or one complex implementation tasks.

We show an excerpt of the Alloy code that was generated for the Broker example in Figure 9.5. In
particular, we show the constraints that ensure that: (i) a task only occurs once, (ii) a task cannot
be part of itself, (iii) the definition of the tasks AddProxyA and ConnectA2ProxyA as implemen-
tation tasks, (iv) finally, AddProxyA needs to be executed before the task ConnectA2ProxyA.

We then use the Alloy tool (version 4.2) to create multiple possible decision models that adhere to
the identified constraints. These models are provided in a textual and a graphical representation
by the tool. Figure 9.6 shows a possible order of the implementation tasks for the Broker example
generated by Alloy.

Please note that a limitation of this approach arises through the use of Alloy, which, as a model
finder that uses SAT solving for finding model instances, requires a suitable scope, as within this
scope, the search for a model is complete, while the search itself is incomplete. For all our models,
we chose a default scope of 5, because it was enough to find multiple solutions for all our generated
models. Due to the size of architectural component models and due to the fact that our Alloy

Chapter 9. Architecting for Decision Making About Code Evolution 170

models do not have free variables, our experience shows that for this subset of models a model
instance can be found. If no model instance is found, the bound can be raised.

It is worth noting that this approach has been designed for evolving architecture and code in sync.
When the code is changed first, the features of the Abstraction DSL can aid in ensuring consistency
between architecture and code.

9.3 Case Study

In this section we describe our case study of Soomla, an open source framework for virtual economy
operations in a single, cross-platform, SDK mainly used for mobile games [SOO]. In our case study,
we describe the changes that were implemented from Version 3.2 to Version 3.3. Figure 9.7 shows
an overview of Soomla’s architecture and the respective changes to the architecture. In Version
3.2 Soomla’s billing system only integrated the Billing API for Android provided by Google which
was directly used throughout the system. However, since the need arose to support other billing
providers as well, this was no longer suitable and the system needed to be evolved.

We described this evolution as a set of implementation tasks which replace the original provider-
dependent GooglePlayBilling component with a new provider-independent billing component, and
then (re-)implement the provider-specific parts based on the new billing infrastructure. The de-
tailed implementation tasks and their architectural changes are shown in Figure 9.8.

Based on our description of the implementation tasks, an Alloy model was automatically generated
by our model-to-text transformation implemented in Xtend. We then used the Alloy model finder
to create the decision alternatives for executing the implementation tasks without violating any
constraints. This was computed by Alloy in 149 ms and resulted in multiple possible alternatives
for executing the implementation tasks at hand. This order ensures that all constraints are satisfied
throughout the execution of the different implementation tasks

Once the implementation tasks were completed, we automatically added the architectural changes
from the implementation tasks to the architectural description of Soomla using our wizard (see
Figure 9.9), which we integrated into the DSL user-interface. This wizard then uses Xtend [Ecla]
to apply the changes to the architecture description written in the Architecture Abstraction Spec-
ification Language.

This case study, as well as the running broker example, shows the applicability of the approach
with respect to feasibility. The time required for finding suitable plans with Alloy was around
150ms for all presented examples on a Lenovo Thinkpad X240 with i5 Processor and 8 Gb RAM
and a Samsung Evo 840 SSD. We think that in large projects with multiple developer teams, the
effort necessary to use our approach is outweighed by the benefits of having a plan for executing

Chapter 9. Architecting for Decision Making About Code Evolution 171

IABPayment

«database»

SQLLiteDatabase
StoreController

StoreAssets

DatabaseServices

storageManager

CryptDecrypt

storeAssets

assetsInfo

obfuscatorsharedPreferences

GooglePlayBilling

obfuscator

googlePlayBillingAccess

GooglePayment

BillingProvider

GoogleBillingProvider

obfuscator

billingAccess

GooglePayment

AmazonBillingProvider

AmazonPayment

IABPayment

Figure 9.7: Architecture overview of Soomla with changes between version 3.2 and version 3.3.

the given tasks that shows which tasks can be executed in parallel, as well as which tasks are
prerequisites to other tasks and thus should be prioritized.

9.4 Conclusion

In this chapter we present an approach for ensuring consistency between two important assets of
a software project, namely software architecture and source code, during the evolution of a (large)
system by describing an evolution as a set of implementation tasks. We provide a DSL that supports
the description of implementation tasks based on their effects on a system’s architecture, as well as
the (temporal) constraints that exist between different implementation tasks. Besides the value of

Chapter 9. Architecting for Decision Making About Code Evolution 172

Task ProviderIndependentBilling:

consists of:

ImplementBillingComponent,

WireBillingComponent,

SubstituteBillingInStoreController,

ImplementNewGoogleBillingProvider,

RemoveOldGoogleBillingProvider

Task ImplementBillingComponent:

description: "Implement a new abstract billing provider that is independent from any actual

billing providers"

architecture changes:

add component to Soomla

Component Billing

consists of Package("root.com.soomla.store.billing",excludeChildren)

Task WireBillingComponent:

succeeds ImplementBillingComponent

architecture changes:

add connector to ImplementBillingComponent.Billing connector to Soomla.CryptDecrypt

Task SubstituteBillingInStoreController:

succeeds ImplementBillingComponent

consists of:

ConnectToAbstractBilling,

RemoveConntectorGooglePlayBilling

Task ConnectToAbstractBilling:

architecture changes:

add connector to Soomla.StoreController connector to ImplementBillingComponent.Billing

Task RemoveConntectorGooglePlayBilling:

precedes RemoveOldGoogleBillingProvider

architecture changes:

remove connector from Soomla.StoreController : connector_GooglePlayBilling

Task ImplementNewGoogleBillingProvider:

succeeds ImplementBillingComponent

architecture changes:

add component to Soomla

Component GoogleBilling

consists of

{

Package("root.com.soomla.store.billing.google")

or {

Package("root.com.soomla.store.billing.google")

and

InstanceOf("root.com.soomla.store.billing.IIabService")

}

}

connector to ImplementBillingComponent.Billing

Task RemoveOldGoogleBillingProvider:

architecture changes:

remove component Soomla.GooglePlayBilling

Figure 9.8: Implementation tasks for Soomla v3.2 to v3.3.

this DSL for documentation of architecture evolution, our approach supports tool-based guidance
throughout the implementation tasks necessary for performing evolution. That is, based on the
implementation task descriptions, we use Alloy models to calculate possible decision alternatives
for code evolution under the given constraints that ensure the consistency of the evolution or warn
the software developer if no viable code evolution decisions can be found. The integration with
the architecture description helps keeping software architecture and source code in sync, avoiding
drift and erosion. We show the applicability of the approach in a running example based on
the implementation of the Broker pattern in an application as well as a real-life scenario for the
evolution of the open-source in-app-purchase framework Soomla. This leads us to the conclusion
that we have found a positive answer to Research Question 6, as this approach is able to support the
architect during the evolution of a system by automatically providing possible plans for performing
the different implementation tasks (evolution steps) that have to be completed during the evolution
of a system and that are specified by the architect using our Implementation Task DSL.

This chapter contributes to an aspect of software evolution that is not discussed in the chapters

Chapter 9. Architecting for Decision Making About Code Evolution 173

Figure 9.9: Wizard integrated into the DSL user-interface to add the architectural changes.

before, but provides the architect with an additional tool to ease the complex task of changing
(evolving) a software system.

Part IV

Conclusions

175

10 Conclusions and Future Work

In this chapter we conclude this thesis by summarizing our contributions and discussing them with
respect to the research questions identified in Chapter 2. In this context we also summarize the
limitations of the approaches introduced in this thesis and finalize this thesis with a short discussion
of open research challenges and possible future work.

10.1 Conclusions & Limitations

This thesis contributes to different topics in the area of software architecture evolution and doc-
umentation. It provides empirical evidence that component diagrams are beneficial to the under-
standing of novice software architects if they provide additional information that is not directly
visible from the source code (Chapter 4). As expected, component diagrams did not lead to sig-
nificant benefits if the same information was visible from the source code or if the component
diagrams provided only vague guidance. With respect to Research Question 1, where we asked if
architectural component views (in the form of UML component diagrams) have a positive effect
during the understanding of a software system, we can state that our controlled experiment indi-
cates a positive answer. However, in order to find a definite answer, more controlled experiments
with other audiences like seasoned architects are needed. In an experiment with more experienced
architects, it is possible, that component diagrams with vague guidance might also yield significant
results.

In Chapter 5 we introduced an approach for documenting architectural component views, based on
architectural abstraction specifications that allow relating architectural components with source
code and keeping architecture and code consistent during a system’s evolution. This approach is
geared towards Research Question 2, and we can say that we can support the architect during the
documentation of a system’s architecture and a system’s evolution. Our approach aids in keeping
architecture and code consistent and thus reduces the risk of architecture drift and erosion. While
we evaluated our approach on 5 different case studies of open source systems of different types, we
did not perform a controlled experiment that compares the required effort with the benefits of the
approach and thus we cannot completely negate the risk that the approach, although aiding with

177

Chapter 10. Conclusions and Future Work 178

consistency and documentation, might require more effort than the benefits it provides. In our
experience, however, the positive effects in the long run outweigh the additional effort to create
the architectural abstraction specifictions.

With respect to Research Question 3, where we asked whether we could support the software archi-
tect during the documentation of architectural patterns based on pattern primitives and keeping
the documented pattern instances consistent with the source code during a system’s evolution, we
can state that our approach, based on pattern primitives, allows the semi-automatic identification
and documentation of architectural patterns and, as it is integrated with Architecture Abstrac-
tion Specification Language from Chapter 5, it also aids during system evolution by providing
consistency checking between the documented architectural pattern instances and the architecture
components as well as between the architectural components and the source code. Similar to the
Architecture Abstraction Specification Language, we also evaluated this approach on three differ-
ent case studies using open source systems, but did not perform a controlled experiment or an
industrial case study and thus, although our experience has shown that the effort for keeping a
system consistent during evolution is signficantly reduced, we cannot completely eliminate the risk
that the required effort of the approach are higher then the provided benefits.

In Chapter 7 we try to find answers to Research Question 4, which asked whether an integra-
tion and automatic calculation of understandability metrics during the creation and evolution of
architectural component views was possible. Our proposed approach integrates the automatic cal-
culation of different understandability metrics related to architectural components as well as source
code classes and thus provides means to automatically ensure a minimum level of understandabil-
ity. However, this approach is currently limited to understandability metrics, while additional,
different quality metrics could also be considered.

In Chapter 8 we presented an iterative approach for evolving architecture and source code in-sync
that also considers important architectural knowledge in the form of documented architectural
design decisions. This approach is geared towards Research Question 5 and integrates our Ar-
chitecture Abstraction Specification Language from Chapter 5 with Evolution Styles that were
introduced by Barnes et al. [Bar+12] and with AKdES from Cuesta et al. [Cue+13]. Again, we
evaluated our approach on 4 case studies of open source systems. A limitation of the first three
case studies is that they retrace the architectural evolution of a system instead of using the ap-
proach during the evolution itself. However, this allowed us to study real systems of considerable
size instead of showcasing the application on artificial examples. Conversely, in the fourth case
study we did not retrace architectural evolution but applied our approach to perform architecture
evolution by integrating an additional payment provider into the Soomla Android framework, in
order to gain the view of a developer. This last case study allowed us to identify how valuable the
information of the ADDs and consistency reports were to guide our implementation.

Chapter 10. Conclusions and Future Work 179

Another limitation of the approaches in this thesis, which they share with all approaches that
invest effort in architecture documentation, is, that it might not make good economic sense for
small software systems as in these cases the source code often is enough for understanding the
software architecture. However, this does not extend to middle and large scale systems where
architecture documentation is necessary to ease the understanding of a system’s architecture.

The last research question, Research Question 6 asked whether it was possible to aid the architect
in the description of the different, necessary evolution steps and their dependencies and provide
plans for the specific evolution steps during the evolution of a software system. In Chapter 9, we
propose an approach that aids the architect in the description of the different, necessary evolution
steps (in the Chapter they are referred to as implementation tasks) and their dependencies in a way
that integrates with our Architecture Abstraction Specification Language from Chapter 5 (existing
software architecture documentation) and utilizes the Alloy model finder [Jac11] to automatically
provide plans for the specific evolution steps during the evolution of a software system. As the
approach from Chapter 9 is based on a SAT-solver, it only finds plans of a size smaller then
the upper bound (but is complete within this bound). An unbounded search might lead to an
indefinite long runtime of the SAT solver and would render the approach unusable. While a number
of approaches exist that provide planing of interdependent tasks, to the best of our knowledge,
these are not tightly integrated into the tools for architecture documentation and thus do not
allow to specify the architectural changes resulting from each evolution step, while our approach
supports the specification of architectural changes and furthermore allows for an adaptation of the
software architecture documentation by automatically applying these architectural changes to the
documented architecture.

10.2 Future Work

While this thesis contributes to the aforementioned research questions, additional work is required
to completely solve those questions.

While our results show that architectural component diagrams are helpful for understanding cer-
tain aspects of a system, a definite answer to Research Question 1 requires additional work in this
direction. This includes performing studies with more experienced participants as well as with
other forms of architecture documentation in general and also with other representations of archi-
tectural component views (e.g. interactive and navigable ones like our Architecture Abstraction
Specification Language).

The approach we presented in Chapter 6 currently supports the description of the structure of a
system. While Kamal and Avgeriou proposed primitives for specifying behavioral patterns, the
description of the behavior of architectural patterns and their semi-automatic identification still

Chapter 10. Conclusions and Future Work 180

presents open challenges. This includes providing additional architectural views that allow the
architect to describe other aspect than the system’s structure and structural architecture patterns,
but also providing views that for example allow the description of a system’s behavior. These views
also need to relate to a systems source code and integrate with the architectural component view
and architectural patterns provided in this thesis.

Another interesting challenge in the area of (architectural) pattern identification that remains,
is the handling of partially implemented patterns. While our approach allows the definition of
pattern variants by supporting optional pattern participants as well as multiple similar pattern
participants, it currently does not provide ways to identify only partially implemented patterns.
Interesting results might be achievable by applying heuristic or fuzzy approaches to this problem.

Additional research work is needed to explain why approaches proposed by academia for document-
ing architectural patterns are not yet or seldom adopted in industry. This relates to additional
work regarding our approaches which we plan to apply in additional case studies performed by
practitioners in an industrial environment.

Another topic of our future work will be the integration of automatic clustering approaches with
our Architecture Abstraction Specification Language from Chapter 5, which would greatly improve
the applicability of our approach in the field of architecture recovery, as the software could suggest
one or more initial mappings which the architect can use as a starting point in our DSL and when
the architect gains more knowledge about the system, she can refine the documented architecture.

In the future, we plan a better tool-support for our approach proposed in Chapter 8, as in its current
form, we use a separate tool for documenting the architecture design decisions. An integration of
this tool with our prototypes would improve usability as the architect could navigate from a design
decision to the corresponding evolution steps, and from there, via the architectural description, to
the source code that is affected by the architectural design decision.

Appendices

181

A
Controlled Experiment on the Supportive Effect

of Architectural Component Diagrams for Design
Understanding of Novice Architects

In Table A.1 shows the raw data for the controlled experiment presented in Chapter 4. It lists, in
anonymized form, the participants group, their score for the different questions, as well as their
total score.

Table A.1: Raw data that contains all participants group affiliation (C for control group, E for
experiment group), score per question, and total score

ID Group Q1 Q2 Q3 Q4 Q5 Q6 Q7 SUM

1 C 5 10 4 8 0 10 1 38
2 C 8 10 5 5 10 8 1 47
3 E 9 8 3 5 8 10 3 46
4 E 7 4 1 2 5 5 1 25
5 C 9 10 6 8 10 7 1 51
6 E 7 3 2 4 2 10 0 28
7 E 4 5 3 2 3 7 0 24
8 C 5 10 4 3 4 9 1 36
9 C 3 5 0 4 4 10 1 27
10 C 8 9 7 9 3 7 4 47
11 C 5 6 4 4 6 7 1 33
12 C 8 8 0 3 1 7 1 28
13 E 6 10 5 6 6 10 7 50
14 E 9 10 5 7 7 10 2 50
15 E 6 10 8 7 10 10 2 53
16 E 10 10 7 4 8 9 2 50
17 E 7 10 5 3 7 8 2 42
18 E 9 10 7 3 8 6 1 44
19 C 6 10 5 3 4 9 1 38
20 E 9 7 8 8 5 10 3 50

183

Appendix A. Empirical Data for the Controlled Experiment on the Supportive Effect of
Architectural Component Diagrams 184

ID Group Q1 Q2 Q3 Q4 Q5 Q6 Q7 SUM

21 E 5 3 3 0 0 5 1 17
22 C 2 1 0 3 1 6 0 13
23 C 8 9 6 5 6 7 0 41
24 C 9 9 7 7 10 8 0 50
25 C 8 9 7 4 1 9 0 38
26 C 7 9 3 4 2 10 2 37
27 C 4 10 7 2 2 10 1 36
28 E 8 4 10 6 10 10 3 51
29 E 8 2 0 3 1 7 1 22
30 E 7 10 4 6 6 10 2 45
31 C 8 8 3 6 1 7 1 34
32 C 6 3 2 3 0 3 1 18
33 E 10 10 8 10 10 9 6 63
34 C 5 4 3 4 1 10 0 27
35 C 7 9 5 6 5 10 2 44
36 E 5 4 0 0 0 3 0 12
37 E 4 1 2 3 0 4 0 14
38 C 3 7 2 4 3 4 1 24
39 C 8 1 2 4 3 9 1 28
40 E 6 9 3 3 0 9 0 30
41 C 4 7 0 3 0 10 1 25
42 C 4 4 2 5 3 8 0 26
43 E 9 8 5 3 7 10 3 45
44 E 9 4 7 5 6 10 4 45
45 C 9 9 3 3 10 10 0 44
46 E 7 8 3 2 10 0 3 33
47 E 9 10 7 5 5 10 1 47
48 C 7 10 2 6 3 8 0 36
49 C 10 10 5 2 7 7 0 41
50 E 7 10 4 6 7 10 5 49
51 E 6 10 5 3 2 10 1 37
52 C 7 10 6 2 3 10 0 38
53 E 10 10 7 8 10 10 10 65
54 E 10 10 0 3 2 8 3 36
55 C 8 2 2 2 1 0 0 15
56 E 3 7 0 1 2 8 0 21
57 E 4 1 0 1 0 3 1 10

Appendix A. Empirical Data for the Controlled Experiment on the Supportive Effect of
Architectural Component Diagrams 185

ID Group Q1 Q2 Q3 Q4 Q5 Q6 Q7 SUM

58 C 5 7 7 3 1 9 0 32
59 C 7 7 5 3 1 9 7 39
60 E 3 1 3 2 3 10 0 22
61 E 10 6 4 7 0 7 1 35
62 C 2 7 3 1 2 7 0 22
63 C 7 10 4 5 3 10 3 42
64 E 4 1 1 2 3 8 0 19
65 E 6 7 1 1 2 8 0 25
66 C 4 9 3 1 5 10 1 33
67 C 10 2 1 7 1 9 0 30
68 C 4 5 4 4 2 8 3 30
69 E 7 10 7 7 10 8 7 56
70 E 8 10 7 5 7 10 6 53

B
Xtext Grammar of the Architecture Abstraction

DSL

Listing 4 shows the complete Xtext grammar of our architectural abstraction DSL that we present
in Chapter 5.

The source code for our proof-of-concept implementation can be found at https://git.swa.

univie.ac.at/component-model/component-model-source (only for registered users) and is avail-
able under the MIT license.

grammar at.ac. univie .cs.swa. component . architectureabstraction .
ArchitectureAbstractionDSL

with org. eclipse .xtext. common . Terminals

generate architectureAbstractionDSL
"http :// www. univie .ac.at/cs/swa/ component / architectureabstraction /

ArchitectureAbstractionDSL "
import "http :// www. eclipse .org/uml2 /4.0.0/ UML" as umlMM
import "http :// www. eclipse .org/emf /2002/ Ecore" as ecore

Transformation :
name= STRING
components +=(ComponentDef)+;

QUALIFIED_NAME returns ecore :: EString :
ID ("." ID)*;

ComponentDef returns ComponentDef :
'Component ' name=ID
'consists of ' (expr= OrComposition)
connectors += ConnectorAnnotation *;

ConnectorAnnotation :
{ ConnectorAnnotation }
'connector to' targets +=[ComponentDef] (',' targets +=[ComponentDef])*
('implemented by ' (implementingExpression += OrComposition)?
('relation : ' implementingRelations +=[umlMM :: Dependency | QUALIFIED_NAME]
(',' implementingRelations +=[umlMM :: Dependency | QUALIFIED_NAME])*)?)?;

187

https://git.swa.univie.ac.at/component-model/component-model-source
https://git.swa.univie.ac.at/component-model/component-model-source

Appendix B. Xtext Grammar of the Architecture Abstraction DSL 188

OrComposition returns Expression :
ExcludeComposition ({ OrComposition .left= current } 'or' right= ExcludeComposition)

*;

ExcludeComposition returns Expression :
AndComposition ({ ExcludeComposition .left= current } 'and not ' right= Primary)*;

AndComposition returns Expression :
Primary ({ AndComposition .left= current } 'and ' right= Primary)*;

Primary returns Expression :
NameFilter | RelationFilter | ExtensionFilter | '{' OrComposition '}';

NameFilter : PackageNameFilter | ClassNameFilter ;

RelationFilter : ContainedInPackage | UsesFilter | UsedByFilter |
ChildOfFilter | Supertype | InstanceOf | IsClass | SpecificInterface ;

PackageNameFilter : 'Package ' '(' regEx= STRING ')';

ClassNameFilter : 'Class ' '(' regEx= STRING ')';

UsesFilter :
'Uses ' '(' relatedTo =[umlMM :: Classifier | QUALIFIED_NAME] ')';

UsedByFilter :
'UsedBy ' '(' relatedTo =[umlMM :: Classifier | QUALIFIED_NAME] ')';

ChildOfFilter :
'ChildOf ' '(' relatedTo =[umlMM :: Class| QUALIFIED_NAME] ')';

Supertype :
'Supertype ' '(' relatedTo =[umlMM :: Class| QUALIFIED_NAME] ')';

ContainedInPackage :
'Package ' '(' relatedTo =[umlMM :: Package | QUALIFIED_NAME] (',' excludeChildren ?= '

excludeChildren ')? ')';

IsClass :
'Class ' '(' relatedTo =[umlMM :: Class| QUALIFIED_NAME] ')';

InstanceOf :
'InstanceOf ' '(' relatedTo =[umlMM :: Interface | QUALIFIED_NAME] (','

excludeInterface ?= 'excludeInterface ')? ')';

SpecificInterface :
'Interface ' '(' relatedTo =[umlMM :: Interface | QUALIFIED_NAME] ')';

Appendix B. Xtext Grammar of the Architecture Abstraction DSL 189

ExtensionFilter :
JavaExtensionFilter | XtendExtensionFilter ;

JavaExtensionFilter :
'Java ' '(' staticMethod = STRING ')';

XtendExtensionFilter :
'Xtend ' '(' function = STRING ')';

Listing 4: Complete Xtext grammar of our architectural abstraction DSL

C
Xtext Grammar of the Architecture Abstraction
DSL (Modified Variant for the Identification of

Architecture Patterns Based on Primivites)

Listing 5 shows the complete Xtext grammar of our modified architectural abstraction DSL that
we present in Chapter 6. This version supports the annotation of architectural components and
connectors with pattern primitives.

grammar at.ac. univie .cs.swa. component . architectureabstraction .
ArchitectureAbstractionDSL

with org. eclipse .xtext. common . Terminals

generate architectureAbstractionDSL
"http :// www. univie .ac.at/cs/swa/ component / architectureabstraction /

ArchitectureAbstractionDSL "
import "http :// www. eclipse .org/uml2 /4.0.0/ UML" as umlMM
import "http :// www. eclipse .org/emf /2002/ Ecore" as ecore
import "http :// www.ac.at/ univie /cs/swa/ pattern / catalog / PatternCatalogDSL " as

patcat

Transformation :
name= STRING
components +=(ComponentDef)+;

QUALIFIED_NAME returns ecore :: EString :
ID ("." ID)*;

ComponentDef returns ComponentDef :
'Component ' name=ID
'consists of '
(expr= OrComposition)
annotations += ComponentAnnotation *
connectors += ComponentConnector *;

OrComposition returns Expression :
ExcludeComposition ({ OrComposition .left= current } 'or ' right= ExcludeComposition)

*;

191

Appendix C. Xtext Grammar of the Architecture Abstraction DSL (Modified Variant for the
Identification of Architecture Patterns Based on Primivites) 192

ExcludeComposition returns Expression :
AndComposition ({ ExcludeComposition .left= current } 'and not ' right= Primary)*;

AndComposition returns Expression :
Primary ({ AndComposition .left= current } 'and ' right= Primary)*;

Primary returns Expression :
NameFilter |
RelationFilter |
ExtensionFilter |
'{' OrComposition '}';

NameFilter :
PackageNameFilter | ClassNameFilter ;

RelationFilter :
ContainedInPackage | UsesFilter | UsedByFilter | ChildOfFilter | Supertype |

InstanceOf | IsClass | SpecificInterface ;

PackageNameFilter :
'Package ' '(' regEx= STRING ')';

ClassNameFilter :
'Class ' '(' regEx= STRING ')';

UsesFilter :
'Uses ' '(' relatedTo =[umlMM :: Classifier | QUALIFIED_NAME] ')';

UsedByFilter :
'UsedBy ' '(' relatedTo =[umlMM :: Classifier | QUALIFIED_NAME] ')';

ChildOfFilter :
'ChildOf ' '(' relatedTo =[umlMM :: Class| QUALIFIED_NAME] ')';

Supertype :
'Supertype ' '(' relatedTo =[umlMM :: Class| QUALIFIED_NAME] ')';

ContainedInPackage :
'Package ' '(' relatedTo =[umlMM :: Package | QUALIFIED_NAME] ((',' excludeChildren ?= '

excludeChildren ')? & (',' excludeNestedElements ?= 'excludeNestedElements ')?) ')'
;

IsClass :
'Class ' '(' relatedTo =[umlMM :: Class| QUALIFIED_NAME] (',' excludeChildren ?= '

excludeChildren ')? ')';

InstanceOf :

Appendix C. Xtext Grammar of the Architecture Abstraction DSL (Modified Variant for the
Identification of Architecture Patterns Based on Primivites) 193

'InstanceOf ' '(' relatedTo =[umlMM :: Interface | QUALIFIED_NAME] (','
excludeInterface ?= 'excludeInterface ')? ')';

SpecificInterface :
'Interface ' '(' relatedTo =[umlMM :: Interface | QUALIFIED_NAME] (',' excludeChildren

?= 'excludeChildren ')? ')';

ExtensionFilter :
JavaExtensionFilter | XtendExtensionFilter ;

JavaExtensionFilter :
'Java ' '(' staticMethod = STRING ')';

XtendExtensionFilter :
'Xtend ' '(' function = STRING ')';

/* primitive annotations */
PrimitiveAnnotation :
name=ID;

MyPrimitiveAnnotation returns PrimitiveAnnotation :
ConnectorAnnotation |
ComponentAnnotation ;

ComponentAnnotation returns PrimitiveAnnotation :
GroupingAnnotation | LayeringAnnotation ;

ConnectorAnnotation :
AggregationCascadeAnnotation | CompositeCascadeAnnotation | CallbackAnnotation |

IndirectionAnnotation | VirtualConnectorAnnotation | SimpleConnectorAnnotation
| ShieldAnnotation | TypingAnnotation ;

ComponentConnector :
{ ComponentConnector }
annotation = ConnectorAnnotation
('connector name: ' connectorName =ID)?
('implemented by '
// implementationExpression =[umlMM :: Relationship | QUALIFIED_NAME]
(implementingExpression += OrComposition)?
('relation : ' implementingRelations +=[umlMM :: Dependency | QUALIFIED_NAME]
(',' implementingRelations +=[umlMM :: Dependency | QUALIFIED_NAME])*)?)?;

GroupingAnnotation returns PrimitiveAnnotation :
{ GroupingAnnotation } 'is in Group (' groupId =ID ')';

LayeringAnnotation returns GroupingAnnotation :
{ LayeringAnnotation } 'is at Layer (' groupId =ID ')';

Appendix C. Xtext Grammar of the Architecture Abstraction DSL (Modified Variant for the
Identification of Architecture Patterns Based on Primivites) 194

ShieldAnnotation returns ConnectorAnnotation :
{ ShieldAnnotation }
"is a Shield for" (targets +=[PatternInstancePrimitiveTarget] (',' targets +=[

PatternInstancePrimitiveTarget])*)?;

TypingAnnotation returns ConnectorAnnotation :
{ TypingAnnotation }
"is Typing for" (targets +=[PatternInstancePrimitiveTarget] (',' targets +=[

PatternInstancePrimitiveTarget])*)?;

SimpleConnectorAnnotation returns ConnectorAnnotation :
{ SimpleConnectorAnnotation }
'connector to' (targets +=[PatternInstancePrimitiveTarget] (',' targets +=[

PatternInstancePrimitiveTarget])*)?;

VirtualConnectorAnnotation returns ConnectorAnnotation :
{ VirtualConnectorAnnotation }
'virtually connected to ' (targets +=[PatternInstancePrimitiveTarget] (',' targets

+=[PatternInstancePrimitiveTarget])*)?;

IndirectionAnnotation returns ConnectorAnnotation :
{ IndirectionAnnotation }
'indirection to ' (targets +=[PatternInstancePrimitiveTarget] (',' targets +=[

PatternInstancePrimitiveTarget])*)?;

CallbackAnnotation returns ConnectorAnnotation :
{ CallbackAnnotation }
'callback with ' target =[PatternInstancePrimitiveTarget] 'trigger interface '

triggerInterface =[umlMM :: Interface | QUALIFIED_NAME] 'callback interface '
callbackInterface =[umlMM :: Interface | QUALIFIED_NAME];

CompositeCascadeAnnotation returns AggregationCascadeAnnotation :
{ CompositeCascadeAnnotation }
'composition of:' targets +=[ComponentDef] (','targets +=[ComponentDef])*;

AggregationCascadeAnnotation returns IndirectionAnnotation :
{ AggregationCascadeAnnotation }
'aggregation of:' targets +=[ComponentDef] (','targets +=[ComponentDef])*;

PatternInstancePrimitiveTarget : ComponentDef | GroupingAnnotation ;

Listing 5: Excerpt of the Xtext grammar of our architectural abstraction DSL

D
Reconciling Software Architecture and Source

Code in Support of Software Evolution

D.1 Complete Specification of QVT-operational Transformations

In the following figures, the different transformations to apply the architectural changes are de-
scribed. All of them have been implemented by means of QVT-operational and enable architects to
retrace the architectural changes carried out during the evolution. As already described in Chapter
8 Section 8.3, each figure depicts one of the following transformations:

• updateAbstractionSpecification. As Fig. D.1 shows, this transformation modifies the archi-
tecture abstraction specification that defines how an architectural component relates to the
source code.

• deleteComponent. Fig. D.2 depicts how an architectural component is eliminated from the
architecture abstraction specification.

• addConnector. Fig. D.3 describes how a new connector between two architectural compo-
nents can be created.

• deleteConnector: Fig. D.4 and Fig. D.5 show how a connector between two architectural
components is deleted.

195

Appendix D. Reconciling software architecture and source code in support of software evolution196

Figure D.1: QVT-o transformation for updating the architecture specification of a component

Figure D.2: QVT-o transformation for deleting a component

Appendix D. Reconciling software architecture and source code in support of software evolution197

Figure D.3: QVT-o transformation for adding a new connector to the architecture specification
of a component

Appendix D. Reconciling software architecture and source code in support of software evolution198

Figure D.4: QVT-o transformation for deleting a connector (part 1 of 2)

Appendix D. Reconciling software architecture and source code in support of software evolution199

Figure D.5: QVT-o transformation for deleting a connector (part 2 of 2)

D.2 Exemplary Launch Configuration for Executing QVT-operational
Transformations

Figure D.6: Exemplary launch configuration for adding the new UDP component to CXF archi-
tecture abstraction specification.

Appendix D. Reconciling software architecture and source code in support of software evolution200

D.3 Documented Architectural Decisions for the Soomla Case
Studies

D.3.1 Case Study 3

In the following figures, the ADDs related to the Case Study 3, described in Section 8.4.3, are
illustrated.

Figure D.7: Architectural decision to implement provider independent billing in the Soomla
framework

Appendix D. Reconciling software architecture and source code in support of software evolution201

Figure D.8: Documented architectural decision to re-add support for Google Play Billing

Figure D.9: Documend architectural decison to add support for payment via Amazon.

D.3.2 Case Study 4

The following figure shows the ADDs related to the Case Study 4, described in Section 8.4.4, are
illustrated

Appendix D. Reconciling software architecture and source code in support of software evolution202

Figure D.10: Architectural decision to add support for our custom payment provider using a
Restful service

Bibliography

[Abr+00] Fernando Brito e Abreu, Gonçalo Pereira, and Pedro Sousa. “A Coupling-Guided
Cluster Analysis Approach to Reengineer the Modularity of Object-Oriented Sys-
tems.” In: Proceedings of the Conference on Software Maintenance and Reengineer-
ing. CSMR ’00. Washington, DC, USA: IEEE Computer Society, 2000, pp. 13–. isbn:
0-7695-0546-5. url: http://dl.acm.org/citation.cfm?id=518900.795263.

[AG97] Robert Allen and David Garlan. “A formal basis for architectural connection.” In:
ACM Trans. Softw. Eng. Methodol. 6.3 [July 1997], pp. 213–249. issn: 1049-331X. doi:
10.1145/258077.258078. url: http://doi.acm.org/10.1145/258077.258078.

[Ahm+14] Aakash Ahmad, Pooyan Jamshidi, and Claus Pahl. “Classification and comparison
of architecture evolution reuse knowledge-a systematic review.” In: J. Softw. Evol.
Process 26.7 [2014], pp. 654–691. issn: 20477473. doi: 10.1002/smr.1643. url:
http://doi.wiley.com/10.1002/smr.1643.

[Aln+13] Awny Alnusair, Tian Zhao, and Gongjun Yan. “Automatic Recognition of Design Mo-
tifs Using Semantic Conditions.” In: Proceedings of the 28th Annual ACM Symposium
on Applied Computing. SAC ’13. Coimbra, Portugal: ACM, 2013, pp. 1062–1067. isbn:
978-1-4503-1656-9. doi: 10.1145/2480362.2480564.

[Apa] Apache CXF. http://cxf.apache.org. 2011.

[Are+04] G. Arevalo, F. Buchli, and O. Nierstrasz. “Detecting Implicit Collaboration Pat-
terns.” In: Reverse Engineering, 2004. Proceedings. 11th Working Conference on. 2004,
pp. 122–131. doi: 10.1109/WCRE.2004.18.

[AZ05] Paris Avgeriou and Uwe Zdun. “Architectural Patterns Revisited - A Pattern Lan-
guage.” In: Proceedings of 10th European Conference on Pattern Languages of Pro-
grams (EuroPlop 2005). Irsee, Germany, July 2005, pp. 1–39.

[Bab+07] Muhammad Ali Babar, Len Bass, and Ian Gorton. “Factors influencing industrial
practices of software architecture evaluation: an empirical investigation.” In: Pro-
ceedings of the International Conference on the Quality of Software Architectures.
QoSA’07. Medford, MA: Springer-Verlag, 2007, pp. 90–107. isbn: 3-540-77617-6, 978-
3-540-77617-8.

203

http://dl.acm.org/citation.cfm?id=518900.795263
http://dx.doi.org/10.1145/258077.258078
http://doi.acm.org/10.1145/258077.258078
http://dx.doi.org/10.1002/smr.1643
http://doi.wiley.com/10.1002/smr.1643
http://dx.doi.org/10.1145/2480362.2480564
http://cxf.apache.org
http://dx.doi.org/10.1109/WCRE.2004.18

Bibliography 204

[Bar+08] Olivier Barais, Anne Françoise Le Meur, Laurence Duchien, and Julia Lawall. “Soft-
ware Architecture Evolution.” In: Softw. Evol. Ed. by Tom Mens and Serge Demeyer.
Springer Berlin Heidelberg, 2008, pp. 233–262. isbn: 978-3-540-76439-7.

[Bar+12] Jeffrey M. Barnes, David Garlan, and Bradley R. Schmerl. “Evolution styles: foun-
dations and models for software architecture evolution.” In: Softw. Syst. Model. 13.2
[Nov. 2012], pp. 649–678. issn: 1619-1366. doi: 10.1007/s10270-012-0301-9. url:
http://link.springer.com/10.1007/s10270-012-0301-9.

[Bar+13] Jeffrey M Barnes, Ashutosh Pandey, and David Garlan. “Automated planning for
software architecture evolution.” In: 28th IEEE/ACM Int. Conf. Autom. Softw. Eng.
(ASE 2013). IEEE, Nov. 2013, pp. 213–223. isbn: 978-1-4799-0215-6. doi: 10.1109/

ASE.2013.6693081. url: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.

htm?arnumber=6693081.

[Bar12] Jeffrey M Barnes. “NASA’s advanced multimission operations system.” In: 8th Int.
ACM SIGSOFT Conf. Qual. Softw. Arch. (QoSA ’12). New York, New York, USA:
ACM Press, 2012, pp. 3–12. isbn: 9781450313469. doi: 10.1145/2304696.2304700.
url: http://dl.acm.org/citation.cfm?doid=2304696.2304700.

[Bas+03] Len Bass, Paul Clements, and Rick Kazman. Software Architecture in Practice (2nd
Edition). Addison-Wesley Professional, 2003.

[Ber+80] Edward H. Bersoff, Vilas D. Henderson, and Stanley G. Siegel. Software configura-
tion management. An investment in product integrity. New York, New York, USA:
Addison-Wesley, 1980.

[BF03] Z. Balanyi and R. Ferenc. “Mining Design Patterns from C++ Source Code.” In:
Software Maintenance, 2003. ICSM 2003. Proceedings. International Conference on.
2003, pp. 305–314. doi: 10.1109/ICSM.2003.1235436.

[BG05] Sami Beydeda and Volker Gruhn. Model-Driven Software Development. Secaucus, NJ,
USA: Springer-Verlag New York, Inc., 2005. isbn: 354025613X.

[BG09] Roberto Almeida Bittencourt and Dalton Dario Serey Guerrero. “Comparison of
Graph Clustering Algorithms for Recovering Software Architecture Module Views.”
In: Proceedings of the 2009 European Conference on Software Maintenance and Reengi-
neering. Washington, DC, USA: IEEE Computer Society, 2009, pp. 251–254. isbn:
978-0-7695-3589-0. doi: 10 . 1109 / CSMR . 2009 . 28. url: http : / / dl . acm . org /

citation.cfm?id=1545011.1545446.

[Bha+12] Pamela Bhattacharya, Marios Iliofotou, Iulian Neamtiu, and Michalis Faloutsos. “Graph-
based analysis and prediction for software evolution.” In: ICSE’12. 2012, pp. 419–429.

http://dx.doi.org/10.1007/s10270-012-0301-9
http://link.springer.com/10.1007/s10270-012-0301-9
http://dx.doi.org/10.1109/ASE.2013.6693081
http://dx.doi.org/10.1109/ASE.2013.6693081
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6693081
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6693081
http://dx.doi.org/10.1145/2304696.2304700
http://dl.acm.org/citation.cfm?doid=2304696.2304700
http://dx.doi.org/10.1109/ICSM.2003.1235436
http://dx.doi.org/10.1109/CSMR.2009.28
http://dl.acm.org/citation.cfm?id=1545011.1545446
http://dl.acm.org/citation.cfm?id=1545011.1545446

Bibliography 205

[Bif+08] Stefan Biffl, Muhammad Ali Babar, and Dietmar Winkler. “Impact of experience and
team size on the quality of scenarios for architecture evaluation.” In: Proceedings of the
12th international conference on Evaluation and Assessment in Software Engineering.
EASE’08. Bari, Italy: British Computer Society, 2008, pp. 1–10.

[BJ94] Kent Beck and Ralph E. Johnson. “Patterns Generate Architectures.” In: Proceed-
ings of the 8th European Conference on Object-Oriented Programming. ECOOP ’94.
London, UK, UK: Springer-Verlag, 1994, pp. 139–149. isbn: 3-540-58202-9.

[Boe+09] Remco C. de Boer, Patricia Lago, Alexandru Telea, and Hans van Vliet. “Ontology-
driven visualization of architectural design decisions.” In: Jt. Work. IEEE/IFIP Conf.
Softw. Archit. Eur. Conf. Softw. Archit. (WICSA/ECSA 2009). IEEE, Sept. 2009,
pp. 51–60. isbn: 978-1-4244-4984-2. doi: 10.1109/WICSA.2009.5290791. url: http:

//dblp.uni-trier.de/db/conf/wicsa/wicsa2009.html\#BoerLTV09.

[Bos04] Jan Bosch. “Software Architecture: The Next Step.” In: 1st Eur. Work. Softw. Archit.
Heidelberg: Springer, 2004, pp. 194–199.

[Bou+10] Nelis Boucké, Danny Weyns, and Tom Holvoet. “Composition of architectural mod-
els: Empirical analysis and language support.” In: J. Syst. Softw. 83.11 [Nov. 2010],
pp. 2108–2127. issn: 0164-1212.

[Bou+11] Eric Bouwers, Jose P. Correia, Arie Deursen, and Joost Visser. “Quantifying the Ana-
lyzability of Software Architectures.” In: 2011 Ninth Working IEEE/IFIP Conference
on Software Architecture. Boulder, CO, USA: IEEE, June 2011, pp. 83–92. isbn: 978-
1-61284-399-5. doi: 10.1109/wicsa.2011.20. url: http://dx.doi.org/10.1109/

wicsa.2011.20.

[BP00] Federico Bergenti and Agostino Poggi. “Improving UML Designs Using Automatic
Design Pattern Detection.” In: In Proc. 12th. International Conference on Software
Engineering and Knowledge Engineering (SEKE 2000). 2000, pp. 336–343.

[Bra+00] Lars Bratthall, Enrico Johansson, and Björn Regnell. “Is a Design Rationale Vi-
tal when Predicting Change Impact? – A Controlled Experiment on Software.” In:
2nd Int. Conf. Prod. Focus. Softw. Process Improv. (PROFES 2000). Springer, 2000,
pp. 126–139.

[Bre+12] Hongyu Pei Breivold, Ivica Crnkovic, and Magnus Larsson. “A systematic review of
software architecture evolution research.” In: Inf. Softw. Technol. 54.1 [2012], pp. 16–
40. issn: 09505849. doi: 10.1016/j.infsof.2011.06.002. url: http://linkinghub.

elsevier.com/retrieve/pii/S0950584911001376.

http://dx.doi.org/10.1109/WICSA.2009.5290791
http://dblp.uni-trier.de/db/conf/wicsa/wicsa2009.html\#BoerLTV09
http://dblp.uni-trier.de/db/conf/wicsa/wicsa2009.html\#BoerLTV09
http://dx.doi.org/10.1109/wicsa.2011.20
http://dx.doi.org/10.1109/wicsa.2011.20
http://dx.doi.org/10.1109/wicsa.2011.20
http://dx.doi.org/10.1016/j.infsof.2011.06.002
http://linkinghub.elsevier.com/retrieve/pii/S0950584911001376
http://linkinghub.elsevier.com/retrieve/pii/S0950584911001376

Bibliography 206

[Bro+09] Fabian Brosig, Samuel Kounev, and Klaus Krogmann. “Automated extraction of pal-
ladio component models from running enterprise Java applications.” In: Proceedings of
the Fourth International ICST Conference on Performance Evaluation Methodologies
and Tools. VALUETOOLS ’09. Pisa, Italy: ICST (Institute for Computer Sciences,
Social-Informatics and Telecommunications Engineering), 2009, 10:1–10. isbn: 978-
963-9799-70-7. doi: http://dx.doi.org/10.4108/ICST.VALUETOOLS2009.7981.
url: http://dx.doi.org/10.4108/ICST.VALUETOOLS2009.7981.

[Bro13] Simon Brown. Software Architecture for Developers. Vancouver, BC, Canada: Lean-
pub, 2013.

[Bru+06] Bernd Bruegge, Andrea De Lucia, Fausto Fasano, and Genoveffa Tortora. “Support-
ing Distributed Software Development with fine-grained Artefact Management.” In:
ICGSE. IEEE, 2006, pp. 213–222. isbn: 0-7695-2663-2.

[Bus+96] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and Michael
Stal. Pattern-Oriented Software Architecture: A System of Patterns. New York, NY,
USA: John Wiley & Sons, Inc., 1996, p. 497. isbn: 0-471-95869-7.

[CC79] Thomas D Cook and Donald T Campbell. Quasi-Experimentation: Design and Anal-
ysis Issues for Field Settings. Houghton Mifflin, 1979.

[CL+09] José A. Cruz-Lemus, Marcela Genero, M. Esperanza Manso, Sandro Morasca, and
Mario Piattini. “Assessing the understandability of UML statechart diagrams with
composite states–A family of empirical studies.” In: Empirical Softw. Engg. 14.6 [Dec.
2009], pp. 685–719. issn: 1382-3256. doi: 10.1007/s10664-009-9106-z.

[Cle+01] Paul Clements, Rick Kazman, and Mark Klein. Evaluating Software Architectures:
Methods and Case Studies. Addison-Wesley Professional, 2001. Chap. 2. Evaluat,
p. 368. url: http://www.amazon.ca/exec/obidos/redirect?tag=citeulike09-

20\&path=ASIN/020170482X.

[Cle+02] Paul Clements, David Garlan, Len Bass, Judith Stafford, Robert Nord, James Ivers,
and Reed Little. Documenting Software Architectures: Views and Beyond. Pearson
Education, 2002. isbn: 0201703726.

[Cle96] Paul C. Clements. “A Survey of Architecture Description Languages.” In: Proceedings
of the 8th International Workshop on Software Specification and Design. IWSSD ’96.
Washington, DC, USA: IEEE Computer Society, 1996, pp. 16–. isbn: 0-8186-7361-3.
url: http://dl.acm.org/citation.cfm?id=857204.858261.

[Cor+02] R. Correia, C. Matos, M. El-Ramly, R. Heckel, G. Koutsoukus, and L. Andrade.
Software Engineering at the Architectural Level: Transformation of Legacy Systems.
Tech. rep. University of Leicester, 2002.

http://dx.doi.org/http://dx.doi.org/10.4108/ICST.VALUETOOLS2009.7981
http://dx.doi.org/10.4108/ICST.VALUETOOLS2009.7981
http://dx.doi.org/10.1007/s10664-009-9106-z
http://www.amazon.ca/exec/obidos/redirect?tag=citeulike09-20\&path=ASIN/020170482X
http://www.amazon.ca/exec/obidos/redirect?tag=citeulike09-20\&path=ASIN/020170482X
http://dl.acm.org/citation.cfm?id=857204.858261

Bibliography 207

[Cor+10] Anna Corazza, Sergio Di Martino, and Giuseppe Scanniello. “A Probabilistic Based
Approach towards Software System Clustering.” In: Proceedings of the 2010 14th Eu-
ropean Conference on Software Maintenance and Reengineering. CSMR ’10. Wash-
ington, DC, USA: IEEE Computer Society, 2010, pp. 88–96. isbn: 978-0-7695-4321-5.
doi: 10.1109/CSMR.2010.36.

[Cue+13] Carlos E. Cuesta, Elena Navarro, Dewayne E. Perry, and Cristina Roda. “Evolution
styles: using architectural knowledge as an evolution driver.” In: J. Softw. Evol. Pro-
cess 25.9 [Sept. 2013], pp. 957–980. issn: 20477473. doi: 10.1002/smr.1575. url:
http://doi.wiley.com/10.1002/smr.1575.

[Cur+04] E. Curry, D. Chambers, and G. Lyons. “Extending Message-Oriented Middleware Us-
ing Interception.” In: 3rd International Workshop on Distributed Event-Based Systems
(DEBS’04). Edinburgh, Scotland, UK, May 2004, pp. 32–37.

[DB11] Markus von Detten and Steffen Becker. “Combining clustering and pattern detection
for the reengineering of component-based software systems.” In: Proceedings of the
joint ACM SIGSOFT conference – QoSA and ACM SIGSOFT symposium – ISARCS
on Quality of software architectures – QoSA and architecting critical systems – IS-
ARCS. QoSA-ISARCS ’11. Boulder, Colorado, USA: ACM, 2011, pp. 23–32. isbn:
978-1-4503-0724-6. doi: http://doi.acm.org/10.1145/2000259.2000265. url:
http://doi.acm.org/10.1145/2000259.2000265.

[Dee+90] Scott C. Deerwester, Susan T. Dumais, Thomas K. Landauer, George W. Furnas,
and Richard A. Harshman. “Indexing by Latent Semantic Analysis.” In: Journal of
the American Society of Information Science 41 [1990], pp. 391–407.

[Det+10] Markus Von Detten, Matthias Meyer, and Dietrich Travkin. “Reclipse-A Reverse En-
gineering Tool Suite.” In: Analysis [2010]. url: http://www.fujaba.de/uploads/

tx_sibibtex/2010_TechReport_tr-ri-10-312_vDMT.pdf.

[Det11] Markus von Detten. “Towards Systematic, Comprehensive Trace Generation for Be-
havioral Pattern Detection Through Symbolic Execution.” In: Proceedings of the 10th
ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools. PASTE
’11. Szeged, Hungary: ACM, 2011, pp. 17–20. isbn: 978-1-4503-0849-6. doi: 10.1145/

2024569.2024573.

[Die+08] Jens Dietrich, Vyacheslav Yakovlev, Catherine McCartin, Graham Jenson, and Man-
fred Duchrow. “Cluster analysis of Java dependency graphs.” In: Proceedings of the
4th ACM symposium on Software visualization. SoftVis ’08. Ammersee, Germany:
ACM, 2008, pp. 91–94. isbn: 978-1-60558-112-5. doi: http://doi.acm.org/10.

1145/1409720.1409735. url: http://doi.acm.org/10.1145/1409720.1409735.

http://dx.doi.org/10.1109/CSMR.2010.36
http://dx.doi.org/10.1002/smr.1575
http://doi.wiley.com/10.1002/smr.1575
http://dx.doi.org/http://doi.acm.org/10.1145/2000259.2000265
http://doi.acm.org/10.1145/2000259.2000265
http://www.fujaba.de/uploads/tx_sibibtex/2010_TechReport_tr-ri-10-312_vDMT.pdf
http://www.fujaba.de/uploads/tx_sibibtex/2010_TechReport_tr-ri-10-312_vDMT.pdf
http://dx.doi.org/10.1145/2024569.2024573
http://dx.doi.org/10.1145/2024569.2024573
http://dx.doi.org/http://doi.acm.org/10.1145/1409720.1409735
http://dx.doi.org/http://doi.acm.org/10.1145/1409720.1409735
http://doi.acm.org/10.1145/1409720.1409735

Bibliography 208

[Din+14] Wei Ding, Peng Liang, Antony Tang, and Hans van Vliet. “Knowledge-based ap-
proaches in software documentation: A systematic literature review.” In: Inf. Softw.
Technol. 56.6 [June 2014], pp. 545–567. issn: 09505849. doi: 10.1016/j.infsof.

2014.01.008. url: http://linkinghub.elsevier.com/retrieve/pii/S0950584914000196.

[DL+06] A. De Lucia, R. Oliveto, F. Zurolo, and M. Di Penta. “Improving Comprehensibility
of Source Code via Traceability Information: a Controlled Experiment.” In: Program
Comprehension, 2006. ICPC 2006. 14th IEEE International Conference on. 2006,
pp. 317–326. doi: 10.1109/ICPC.2006.28.

[DL+10] A. De Lucia, V. Deufemia, C. Gravino, and M. Risi. “Improving Behavioral Design
Pattern Detection through Model Checking.” In: Software Maintenance and Reengi-
neering (CSMR), 2010 14th European Conference on. 2010, pp. 176–185. doi: 10.

1109/CSMR.2010.16.

[DL+11] Andrea De Lucia, Massimiliano Di Penta, and Rocco Oliveto. “Improving Source
Code Lexicon via Traceability and Information Retrieval.” In: IEEE Trans. Softw.
Eng. 37.2 [Mar. 2011], pp. 205–227. issn: 0098-5589. doi: 10.1109/TSE.2010.89.
url: http://dx.doi.org/10.1109/TSE.2010.89.

[DP+07] Massimiliano Di Penta, Antonella Santone, and Maria Luisa Villani. “Discovery of
SOA Patterns via Model Checking.” In: 2nd International Workshop on Service Ori-
ented Software Engineering: In Conjunction with the 6th ESEC/FSE Joint Meeting.
IW-SOSWE ’07. Dubrovnik, Croatia: ACM, 2007, pp. 8–14. isbn: 978-1-59593-723-0.

[DP09] S Ducasse and D Pollet. “Software Architecture Reconstruction: A Process-Oriented
Taxonomy.” In: IEEE Trans. Softw. Eng. 35.4 [2009], pp. 573–591. issn: 0098-5589.
doi: 10.1109/TSE.2009.19. url: http://ieeexplore.ieee.org/lpdocs/epic03/

wrapper.htm?arnumber=4815276.

[Eas+08] Steve Easterbrook, Janice Singer, Margaret-Anne Storey, and Daniela Damian. “Se-
lecting Empirical Methods for Software Engineering Research.” In: Guide to Advanced
Empirical Software Engineering. Springer London, 2008, pp. 285–311.

[Ecla] Eclipse. Xtend. url: https://www.eclipse.org/xtend.

[Eclb] Eclipse. Xtext. url: https://eclipse.org/Xtext.

[Eff+12] Sven Efftinge, Moritz Eysholdt, Jan Köhnlein, Sebastian Zarnekow, Robert von Mas-
sow, Wilhelm Hasselbring, and Michael Hanus. “Xbase: implementing domain-specific
languages for Java.” In: Proceedings of the 11th International Conference on Genera-
tive Programming and Component Engineering. GPCE ’12. Dresden, Germany: ACM,
2012, pp. 112–121. isbn: 978-1-4503-1129-8. doi: 10.1145/2371401.2371419. url:
http://doi.acm.org/10.1145/2371401.2371419.

http://dx.doi.org/10.1016/j.infsof.2014.01.008
http://dx.doi.org/10.1016/j.infsof.2014.01.008
http://linkinghub.elsevier.com/retrieve/pii/S0950584914000196
http://dx.doi.org/10.1109/ICPC.2006.28
http://dx.doi.org/10.1109/CSMR.2010.16
http://dx.doi.org/10.1109/CSMR.2010.16
http://dx.doi.org/10.1109/TSE.2010.89
http://dx.doi.org/10.1109/TSE.2010.89
http://dx.doi.org/10.1109/TSE.2009.19
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4815276
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4815276
https://www.eclipse.org/xtend
https://eclipse.org/Xtext
http://dx.doi.org/10.1145/2371401.2371419
http://doi.acm.org/10.1145/2371401.2371419

Bibliography 209

[Egy04] Alexander Egyed. “Consistent Adaptation and Evolution of Class Diagrams during
Refinement.” In: Fundamental Approaches to Software Engineering, 7th International
Conference, FASE 2004, ETAPS 2004 Barcelona, Spain. Vol. 2984. Lecture Notes in
Computer Science. Springer, 2004, pp. 37–53. isbn: 3-540-21305-8.

[EH99] A. H. Eden and Y. Hirshfeld. “LePUS – Symbolic Logic Modeling of Object Oriented
Architectures: A Case Study.” In: Second Nordic Workshop on Software Architecture
- NOSA’99. Ronneby, Sweden, Apr. 1999, pp. 1–14.

[Eig+03] Markus Eiglsperger, Michael Kaufmann, and Martin Siebenhaller. “A topology-shape-
metrics approach for the automatic layout of UML class diagrams.” In: Proceedings
of the 2003 ACM symposium on Software visualization. SoftVis ’03. San Diego, Cali-
fornia: ACM, 2003, 189–ff. isbn: 1-58113-642-0.

[Eli10] M.O. Elish. “Exploring the Relationships between Design Metrics and Package Un-
derstandability: A Case Study.” In: Program Comprehension (ICPC), 2010 IEEE 18th
International Conference on. June 2010, pp. 144–147. doi: 10.1109/ICPC.2010.43.

[Ell+03] John Ellson, Emden R. Gansner, Eleftherios Koutsofios, Stephen C. North, and Gor-
don Woodhull. Graphviz and Dynagraph – Static and Dynamic Graph Drawing Tools.
Tech. rep. Florham Park NJ 07932, USA, 2003, p. 23.

[Fal+10] Davide Falessi, Muhammad Ali Babar, Giovanni Cantone, and Philippe Kruchten.
“Applying empirical software engineering to software architecture: challenges and
lessons learned.” In: Empirical Softw. Engg. 15.3 [June 2010], pp. 250–276.

[Fei+09] Martin Feilkas, Daniel Ratiu, and Elmar Jurgens. “The loss of architectural knowledge
during system evolution: An industrial case study.” In: 17th IEEE Int. Conf. Progr.
Compr. IEEE Computer Society Press, May 2009, pp. 188–197. isbn: 978-1-4244-
3998-0. doi: 10.1109/ICPC.2009.5090042. url: http://ieeexplore.ieee.org/

lpdocs/epic03/wrapper.htm?arnumber=5090042.

[Fer+10] Remo Ferrari, James A. Miller, and Nazim H. Madhavji. “A controlled experiment to
assess the impact of system architectures on new system requirements.” In: Requir.
Eng. 15.2 [June 2010], pp. 215–233. issn: 0947-3602.

[FM06a] Tie Feng and Ji Maletic. “Applying dynamic change impact analysis in component-
based architecture design.” In: Seventh ACIS Int. Conf. Softw. Eng. Artif. Intell.
Networking, Parallel/Distributed Comput. SNPD 2006. [2006]. doi: 10.1109/SNPD-

SAWN . 2006 . 21. url: http : / / ieeexplore . ieee . org / xpls / abs \ _all . jsp ?

arnumber=1640665.

http://dx.doi.org/10.1109/ICPC.2010.43
http://dx.doi.org/10.1109/ICPC.2009.5090042
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5090042
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5090042
http://dx.doi.org/10.1109/SNPD-SAWN.2006.21
http://dx.doi.org/10.1109/SNPD-SAWN.2006.21
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1640665
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1640665

Bibliography 210

[FM06b] Tie Feng and Jonathan I. Maletic. “Applying Dynamic Change Impact Analysis
in Component-based Architecture Design.” In: Proceedings of the Seventh ACIS In-
ternational Conference on Software Engineering, Artificial Intelligence, Networking,
and Parallel/Distributed Computing. SNPD-SAWN ’06. Washington, DC, USA: IEEE
Computer Society, 2006, pp. 43–48. isbn: 0-7695-2611-X. doi: 10.1109/SNPD-SAWN.

2006.21. url: http://dx.doi.org/10.1109/SNPD-SAWN.2006.21.

[FO00] Norman E. Fenton and Niclas Ohlsson. “Quantitative Analysis of Faults and Fail-
ures in a Complex Software System.” In: IEEE Trans. Softw. Eng. 26.8 [Aug. 2000],
pp. 797–814. issn: 0098-5589.

[Fow02] Martin Fowler. Patterns of Enterprise Application Architecture. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 2002. isbn: 0321127420.

[Fow10] Martin Fowler. Domain-Specific Languages (Addison-Wesley Signature Series (Fowler)).
1st ed. Addison-Wesley Professional, 2010. isbn: 0321712943.

[Fre+04] Elisabeth Freeman, Eric Freeman, Bert Bates, and Kathy Sierra. Head First Design
Patterns. O’ Reilly & Associates, Inc., 2004. isbn: 0596007124.

[Fri06] Jeffrey Friedl. Mastering Regular Expressions. O’Reilly Media, Inc., 2006. isbn: 0596528124.

[FS+12] Ana M. Fernández-Sáez, Marcela Genero, and Michel R. V. Chaudron. “Does the level
of detail of UML models affect the maintainability of source code?” In: Proceedings of
the 2011th international conference on Models in Software Engineering. MODELS’11.
Wellington, New Zealand, 2012, pp. 134–148. isbn: 978-3-642-29644-4. doi: 10.1007/

978-3-642-29645-1_15.

[Gal11] Matthias Galster. “Dependencies, traceability and consistency in software architec-
ture: towards a view-based perspective.” In: Proceedings of the 5th European Con-
ference on Software Architecture: Companion Volume. ECSA ’11. Essen, Germany:
ACM, 2011, 1:1–1:4. isbn: 978-1-4503-0618-8. doi: 10.1145/2031759.2031761. url:
http://doi.acm.org/10.1145/2031759.2031761.

[Gam+95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Boston, MA, USA: Addison-Wesley
Longman Publishing Co., Inc., 1995. isbn: 0-201-63361-2.

[Gar+09] David Garlan, Jeffrey M. Barnes, Bradley R. Schmerl, and Orieta Celiku. “Evolution
styles: Foundations and Tool support for Software Architecture Evolution.” In: Jt.
Work. IEEE/IFIP Conf. Softw. Archit. Eur. Conf. Softw. Archit. (WICSA/ECSA
2009). IEEE, 2009, pp. 131–140. isbn: 978-1-4244-4984-2. doi: 10 . 1109 / WICSA .

2009.5290799. url: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?

arnumber=5290799.

http://dx.doi.org/10.1109/SNPD-SAWN.2006.21
http://dx.doi.org/10.1109/SNPD-SAWN.2006.21
http://dx.doi.org/10.1109/SNPD-SAWN.2006.21
http://dx.doi.org/10.1007/978-3-642-29645-1_15
http://dx.doi.org/10.1007/978-3-642-29645-1_15
http://dx.doi.org/10.1145/2031759.2031761
http://doi.acm.org/10.1145/2031759.2031761
http://dx.doi.org/10.1109/WICSA.2009.5290799
http://dx.doi.org/10.1109/WICSA.2009.5290799
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5290799
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5290799

Bibliography 211

[GC09] Varun Gupta and Jitender Kumar Chhabra. “Package coupling measurement in object-
oriented software.” In: J. Comput. Sci. Technol. 24.2 [Mar. 2009], pp. 273–283. issn:
1000-9000. doi: 10.1007/s11390-009-9223-6. url: http://dx.doi.org/10.1007/

s11390-009-9223-6.

[GC12] Varun Gupta and Jitender Kumar Chhabra. “Package level cohesion measurement
in object-oriented software.” In: J. Braz. Comp. Soc. 18.3 [2012], pp. 251–266. url:
http://dblp.uni-trier.de/db/journals/jbcs/jbcs18.html#GuptaC12.

[Gen+08] Marcela Genero, José A. Cruz-Lemus, Danilo Caivano, Silvia Abrahão, Emilio Insfran,
and José A. Carsí. “Assessing the Influence of Stereotypes on the Comprehension of
UML Sequence Diagrams: A Controlled Experiment.” In: Proceedings of the 11th inter-
national conference on Model Driven Engineering Languages and Systems. MoDELS
’08. Toulouse, France: Springer-Verlag, 2008, pp. 280–294. isbn: 978-3-540-87874-2.
doi: 10.1007/978-3-540-87875-9_20.

[GJ01] Yann-Gaël Guéhéneuc and Narendra Jussien. “Using explanations for design-patterns
identification.” In: proceedings of the 1 st IJCAI workshop on Modeling and Solving
Problems with Constraints. AAAI Press, 2001, pp. 57–64.

[Gra+00] Todd L. Graves, Alan F. Karr, J. S. Marron, and Harvey Siy. “Predicting Fault
Incidence Using Software Change History.” In: IEEE Trans. Softw. Eng. 26.7 [July
2000], pp. 653–661. issn: 0098-5589.

[Gro09] Richard C. Gronback. Eclipse Modeling Project: A Domain-Specific Language (DSL)
Toolkit. 1st ed. Addison-Wesley Professional, 2009. isbn: 0321534077, 9780321534071.

[Gru05] Lars Grunske. “Formalizing architectural refactorings as graph transformation sys-
tems.” In: Proc. - Sixth Int. Conf. Softw. Eng., Artif. Intell. Netw. Parallel/Distributed
Comput. First ACIS Int. Work. Self-Assembling Wirel. Netw., SNPD/SAWN 2005.
Vol. 2005. 2005, pp. 324–329. isbn: 0769522947. doi: 10.1109/SNPD-SAWN.2005.37.

[GS09] David Garlan and Bradley Schmerl. “??vol: A tool for defining and planning ar-
chitecture evolution.” In: Proc. - Int. Conf. Softw. Eng. 2009, pp. 591–594. isbn:
9781424434527. doi: 10.1109/ICSE.2009.5070563.

[Guo+99] George Yanbing Guo, Joanne M. Atlee, and Rick Kazman. “A Software Architecture
Reconstruction Method.” In: Proceedings of the TC2 First Working IFIP Conference
on Software Architecture (WICSA1). Deventer, The Netherlands, The Netherlands:
Kluwer, B.V., 1999, pp. 15–34.

[HA10] Uwe van Heesch and Paris Avgeriou. “Naive architecting - understanding the reasoning
process of students: a descriptive survey.” In: Proceedings of the 4th European con-
ference on Software architecture. ECSA’10. Copenhagen, Denmark: Springer-Verlag,
2010, pp. 24–37. isbn: 3-642-15113-2, 978-3-642-15113-2.

http://dx.doi.org/10.1007/s11390-009-9223-6
http://dx.doi.org/10.1007/s11390-009-9223-6
http://dx.doi.org/10.1007/s11390-009-9223-6
http://dblp.uni-trier.de/db/journals/jbcs/jbcs18.html#GuptaC12
http://dx.doi.org/10.1007/978-3-540-87875-9_20
http://dx.doi.org/10.1109/SNPD-SAWN.2005.37
http://dx.doi.org/10.1109/ICSE.2009.5070563

Bibliography 212

[HA11] Uwe van Heesch and Paris Avgeriou. “Mature Architecting - A Survey about the Rea-
soning Process of Professional Architects.” In: Proceedings of the 2011 Ninth Working
IEEE/IFIP Conference on Software Architecture. WICSA ’11. Washington, DC, USA:
IEEE Computer Society, 2011, pp. 260–269. isbn: 978-0-7695-4351-2.

[Hai+15a] Thomas Haitzer, Elena Navarro, and Uwe Zdun. “Architecting for Decision Making
About Code Evolution.” In: Proceedings of the 2015 European Conference on Software
Architecture Workshops. ECSAW ’15. Dubrovnik, Cavtat, Croatia: ACM, 2015, 52:1–
52:7. isbn: 978-1-4503-3393-1. doi: 10.1145/2797433.2797487. url: http://doi.

acm.org/10.1145/2797433.2797487.

[Hai+15b] Thomas Haitzer, Elena Navarro, and Uwe Zdun. “Reconciling software architecture
and source code in support of software evolution.” submitted. Oct. 2015.

[Haj+06] Elnar Hajiyev, Mathieu Verbaere, and Oege de Moor. “CodeQuest: scalable source
code queries with datalog.” In: Proceedings of the 20th European conference on Object-
Oriented Programming. ECOOP’06. Nantes, France: Springer-Verlag, 2006, pp. 2–
27. isbn: 3-540-35726-2, 978-3-540-35726-1. doi: 10.1007/11785477_2. url: http:

//dx.doi.org/10.1007/11785477_2.

[Han+11] Klaus Marius Hansen, Kristjan Jonasson, and Helmut Neukirchen. “Controversy Cor-
ner: An empirical study of software architectures’ effect on product quality.” In: J.
Syst. Softw. 84.7 [July 2011], pp. 1233–1243. issn: 0164-1212.

[Har+07] Neil B. Harrison, Paris Avgeriou, and Uwe Zdun. “Using Patterns to Capture Archi-
tectural Decisions.” In: IEEE Softw. 24.4 [2007], pp. 38–45.

[Har+95] David R. Harris, Howard B. Reubenstein, and Alexander S. Yeh. “Reverse engineer-
ing to the architectural level.” In: Proceedings of the 17th international conference
on Software engineering. ICSE ’95. Seattle, Washington, United States: ACM, 1995,
pp. 186–195.

[Hee+12] Uwe van Heesch, Paris Avgeriou, Uwe Zdun, and Neil Harrison. “The supportive
effect of patterns in architecture decision recovery - A controlled experiment.” In: Sci.
Comput. Program. 77.5 [May 2012], pp. 551–576. issn: 0167-6423.

[Hei+11] W. Heijstek, T. Kuhne, and M. R V Chaudron. “Experimental Analysis of Tex-
tual and Graphical Representations for Software Architecture Design.” In: Empirical
Software Engineering and Measurement (ESEM), 2011 International Symposium on.
2011, pp. 167–176. doi: 10.1109/ESEM.2011.25.

[Hei+96] Constance L. Heitmeyer, Ralph D. Jeffords, and Bruce G. Labaw. “Automated Consis-
tency Checking of Requirements Specifications.” In: ACM Trans. Softw. Eng. Methodol.
5.3 [July 1996], pp. 231–261. issn: 1049-331X. doi: 10.1145/234426.234431.

http://dx.doi.org/10.1145/2797433.2797487
http://doi.acm.org/10.1145/2797433.2797487
http://doi.acm.org/10.1145/2797433.2797487
http://dx.doi.org/10.1007/11785477_2
http://dx.doi.org/10.1007/11785477_2
http://dx.doi.org/10.1007/11785477_2
http://dx.doi.org/10.1109/ESEM.2011.25
http://dx.doi.org/10.1145/234426.234431

Bibliography 213

[Her+13] Israel Herraiz, Daniel Rodriguez, Gregorio Robles, and Jesus M Gonzalez-Barahona.
“The evolution of the laws of software evolution.” In: ACM Comput. Surv. 46.2 [Nov.
2013], pp. 1–28. issn: 03600300. doi: 10.1145/2543581.2543595. url: http://dl.

acm.org/citation.cfm?doid=2543581.2543595.

[Heu+03] Dirk Heuzeroth, Thomas Holl, Gustav Högström, and Welf Löwe. “Automatic Design
Pattern Detection.” In: Proceedings of the 11th IEEE International Workshop on Pro-
gram Comprehension. IWPC ’03. Washington, DC, USA: IEEE Computer Society,
2003, pp. 94–104. isbn: 0-7695-1883-4.

[Hev+04] Alan R. Hevner, Salvatore T. March, Jinsoo Park, and Sudha Ram. “Design science
in information systems research.” In: MIS Q. 28.1 [Mar. 2004], pp. 75–105. issn: 0276-
7783.

[HH04] Ahmed E. Hassan and Richard C. Holt. “Using Development History Sticky Notes
to Understand Software Architecture.” In: Proceedings of the 12th IEEE Interna-
tional Workshop on Program Comprehension. IWPC ’04. Washington, DC, USA:
IEEE Computer Society, 2004, pp. 183–.

[HM76] J. W. Hunt and M. D. McIlroy. An Algorithm for Differential File Comparison. Tech.
rep. CSTR 41. Murray Hill, NJ: Bell Laboratories, 1976.

[Hof+00] Christine Hofmeister, Robert Nord, and Dilip Soni. Applied Software Architecture.
Addison-Wesley, 2000.

[Hol02] Ric Holt. “Sofware Architecture as a Shared Mental Model.” In: Proc. ASERC Work.
Softw. Archit. Ed. by University of Alberta. 2002.

[Hol05] Steve Holzner. Ant: The Definitive Guide, Second Edition. 2nd ed. O’Reilly Media,
Inc., 2005. isbn: 978-0-596-00609-9.

[Hol98] Richard C. Holt. “Structural Manipulations of Software Architecture Using Tarski
Relational Algebra.” In: Proceedings of the Working Conference on Reverse Engineer-
ing (WCRE’98). WCRE ’98. Washington, DC, USA: IEEE Computer Society, 1998,
pp. 210–. isbn: 0-8186-8967-6.

[Hun+04] Bruce C. Hungerford, Alan R. Hevner, and Rosann W. Collins. “Reviewing Software
Diagrams: A Cognitive Study.” In: IEEE Trans. Softw. Eng. 30.2 [Feb. 2004], pp. 82–
96. issn: 0098-5589. doi: 10.1109/TSE.2004.1265814. url: http://dx.doi.org/

10.1109/TSE.2004.1265814.

[Hun+08] Sascha Hunold, Matthias Korch, Björn Krellner, Thomas Rauber, Thomas Reichel,
and Gudula Rünger. “Transformation of Legacy Software into Client/Server Applica-
tions through Pattern-Based Rearchitecturing.” In: 32nd Annu. IEEE Int. Comput.
Softw. Appl. Conf. IEEE, 2008, pp. 303–310. isbn: 978-0-7695-3262-2. doi: 10.1109/

COMPSAC.2008.158. url: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.

htm?arnumber=4591573.

http://dx.doi.org/10.1145/2543581.2543595
http://dl.acm.org/citation.cfm?doid=2543581.2543595
http://dl.acm.org/citation.cfm?doid=2543581.2543595
http://dx.doi.org/10.1109/TSE.2004.1265814
http://dx.doi.org/10.1109/TSE.2004.1265814
http://dx.doi.org/10.1109/TSE.2004.1265814
http://dx.doi.org/10.1109/COMPSAC.2008.158
http://dx.doi.org/10.1109/COMPSAC.2008.158
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4591573
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4591573

Bibliography 214

[HW03] Gregor Hohpe and Bobby Woolf. Enterprise Integration Patterns: Designing, Build-
ing, and Deploying Messaging Solutions. Boston, MA, USA: Addison-Wesley Long-
man Publishing Co., Inc., 2003. isbn: 0321200683.

[HZ12] Thomas Haitzer and Uwe Zdun. “DSL-based Support for Semi-automated Architec-
tural Component Model Abstraction Throughout the Software Lifecycle.” In: Pro-
ceedings of the 8th International ACM SIGSOFT Conference on Quality of Software
Architectures. QoSA ’12. Bertinoro, Italy: ACM, 2012, pp. 61–70. isbn: 978-1-4503-
1346-9. doi: 10.1145/2304696.2304709.

[HZ13] Thomas Haitzer and Uwe Zdun. “Controlled Experiment on the Supportive Effect of
Architectural Component Diagrams for Design Understanding of Novice Architects.”
English. In: Software Architecture. Ed. by Khalil Drira. Vol. 7957. Lecture Notes
in Computer Science. Springer Berlin Heidelberg, 2013, pp. 54–71. isbn: 978-3-642-
39030-2. doi: 10.1007/978-3-642-39031-9_6.

[HZ14] Thomas Haitzer and Uwe Zdun. “Semi-automated architectural abstraction specifi-
cations for supporting software evolution.” In: Sci. Comput. Program. 90 [Sept. 2014],
pp. 135–160. issn: 01676423. doi: 10.1016/j.scico.2013.10.004.

[HZ15] Thomas Haitzer and Uwe Zdun. “Semi-automatic Architectural Pattern Identification
and Documentation Using Architectural Primitives.” In: J. Syst. Softw. 102.C [Apr.
2015], pp. 35–57. issn: 0164-1212. doi: 10.1016/j.jss.2014.12.042.

[Iee] IEEE Standard Glossary of Software Engineering Terminology. Tech. rep. 1990, pp. 1+.
doi: 10.1109/ieeestd.1990.101064. url: http://dx.doi.org/10.1109/ieeestd.

1990.101064.

[IK04] Igor Ivkovic and Kostas Kontogiannis. “Tracing Evolution Changes of Software Arti-
facts through Model Synchronization.” In: Proceedings of the 20th IEEE International
Conference on Software Maintenance. Washington, DC, USA: IEEE Computer Soci-
ety, 2004, pp. 252–261. isbn: 0-7695-2213-0. url: http://dl.acm.org/citation.

cfm?id=1018431.1021433.

[ISO11] ISO/IEC/IEEE. “Systems and software engineering – Architecture description.” In:
ISO/IEC/IEEE 42010:2011(E) (Revision of ISO/IEC 42010:2007 and IEEE Std
1471-2000) [Jan. 2011], pp. 1 –46. doi: 10.1109/IEEESTD.2011.6129467.

[Ive+04] James Ivers, Paul Clements, David Garlan, Robert Nord, Bradley Schmerl, and Jaime
Rodrigo Oviedo Silva. Documenting Component and Connector Views with UML 2.0.
Tech. rep. CMU/SEI-2004-TR-008. Software Engineering Institute (Carnegie Mellon
University), 2004.

[Jac11] Daniel Jackson. Software Abstractions. Logic, Language and Abstractions. MIT Press,
2011.

http://dx.doi.org/10.1145/2304696.2304709
http://dx.doi.org/10.1007/978-3-642-39031-9_6
http://dx.doi.org/10.1016/j.scico.2013.10.004
http://dx.doi.org/10.1016/j.jss.2014.12.042
http://dx.doi.org/10.1109/ieeestd.1990.101064
http://dx.doi.org/10.1109/ieeestd.1990.101064
http://dx.doi.org/10.1109/ieeestd.1990.101064
http://dl.acm.org/citation.cfm?id=1018431.1021433
http://dl.acm.org/citation.cfm?id=1018431.1021433
http://dx.doi.org/10.1109/IEEESTD.2011.6129467

Bibliography 215

[Jam+13] Pooyan Jamshidi, Mohammad Ghafari, Aakash Ahmad, and Claus Pahl. “A Frame-
work for Classifying and Comparing Architecture-centric Software Evolution Re-
search.” In: 2013 17th Eur. Conf. Softw. Maint. Reengineering. IEEE, Mar. 2013,
pp. 305–314. isbn: 978-0-7695-4948-4. doi: 10.1109/CSMR.2013.39. url: http:

//ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6498478.

[Jan+07] Anton Jansen, Jan van der Ven, Paris Avgeriou, and Dieter K. Hammer. “Tool Support
for Architectural Decisions.” In: Proceedings of the Sixth Working IEEE/IFIP Confer-
ence on Software Architecture. WICSA ’07. Washington, DC, USA: IEEE Computer
Society, 2007, pp. 4–. isbn: 0-7695-2744-2. doi: http://dx.doi.org/10.1109/

WICSA.2007.47. url: http://dx.doi.org/10.1109/WICSA.2007.47.

[JB05] Anton Jansen and Jan Bosch. “Software Architecture as a Set of Architectural Design
Decisions.” In: Proceedings of the 5th Working IEEE/IFIP Conference on Software
Architecture. WICSA ’05. Washington, DC, USA: IEEE Computer Society, 2005,
pp. 109–120. isbn: 0-7695-2548-2.

[JZ14] Muhammad Atif Javed and Uwe Zdun. “The Supportive Effect of Traceability Links
in Architecture-Level Software Understanding: Two Controlled Experiments.” In: 2014
IEEE/IFIP Conference on Software Architecture, WICSA 2014, Sydney, Australia,
April 7-11, 2014. 2014, pp. 215–224. doi: 10.1109/WICSA.2014.43.

[KA08] Ahmad Waqas Kamal and Paris Avgeriou. “Modeling Architectural Patterns’ Behav-
ior Using Architectural Primitives.” In: Proceedings of the 2nd European conference
on Software Architecture. ECSA ’08. Paphos, Cyprus: Springer-Verlag, 2008, pp. 164–
179. isbn: 978-3-540-88029-5. doi: 10.1007/978-3-540-88030-1_13.

[Kac+06a] O. Kaczor, Y. Guéhéneuc, and S. Hamel. “Efficient Identification of Design Pat-
terns with Bit-vector Algorithm.” In: Software Maintenance and Reengineering, 2006.
CSMR 2006. Proceedings of the 10th European Conference on. 2006, 10 pp.–184. doi:
10.1109/CSMR.2006.25.

[Kac+06b] Olivier Kaczor, Yann Gaël Guéhéneuc, and Sylvie Hamel. “Efficient identification
of design patterns with bit-vector algorithm.” In: Proc. Eur. Conf. Softw. Maint.
Reengineering, CSMR [2006], pp. 175–184. issn: 15345351. doi: 10 . 1109 / CSMR .

2006.25.

[Kan+08] Ananya Kanjilal, S. Sengupta, and S. Bhattacharya. “CAG: A Component Architec-
ture Graph.” In: TENCON, IEEE Region 10 International Conference. 2008. doi:
10.1109/TENCON.2008.4766419.

[Kel+99] Rudolf K. Keller, Reinhard Schauer, Sébastien Robitaille, and Patrick Pagé. “Pattern-
Based Reverse-Engineering of Design Components.” In: Proceedings of the 21st inter-
national conference on Software engineering. ICSE ’99. Los Angeles, California, USA:
ACM, 1999, pp. 226–235. isbn: 1-58113-074-0. doi: 10.1145/302405.302622.

http://dx.doi.org/10.1109/CSMR.2013.39
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6498478
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6498478
http://dx.doi.org/http://dx.doi.org/10.1109/WICSA.2007.47
http://dx.doi.org/http://dx.doi.org/10.1109/WICSA.2007.47
http://dx.doi.org/10.1109/WICSA.2007.47
http://dx.doi.org/10.1109/WICSA.2014.43
http://dx.doi.org/10.1007/978-3-540-88030-1_13
http://dx.doi.org/10.1109/CSMR.2006.25
http://dx.doi.org/10.1109/CSMR.2006.25
http://dx.doi.org/10.1109/CSMR.2006.25
http://dx.doi.org/10.1109/TENCON.2008.4766419
http://dx.doi.org/10.1145/302405.302622

Bibliography 216

[Kit+02] Barbara A. Kitchenham, Shari Lawrence Pfleeger, Lesley M. Pickard, Peter W. Jones,
David C. Hoaglin, Khaled El Emam, and Jarrett Rosenberg. “Preliminary Guidelines
for Empirical Researchin Software Engineering.” In: IEEE Trans. Softw. Eng. 28.8
[Aug. 2002], pp. 721–734. doi: 10.1109/TSE.2002.1027796.

[Kle99] Jon M. Kleinberg. “Authoritative sources in a hyperlinked environment.” In: J. ACM
46 [5 1999], pp. 604–632. issn: 0004-5411. doi: http://doi.acm.org/10.1145/

324133.324140. url: http://doi.acm.org/10.1145/324133.324140.

[Kno+06] Jens Knodel, Dirk Muthig, Matthias Naab, and Mikael Lindvall. “Static Evaluation
of Software Architectures.” In: Software Maintenance and Reengineering, European
Conference on [2006], pp. 279–294.

[Kon+13] Marco Konersmann, Zoya Durdik, Michael Goedicke, and Ralf H Reussner. “Towards
Architecture-centric Evolution of Long-living Systems (the ADVERT Approach).” In:
Proc. 9th Int. ACM Sigsoft Conf. Qual. Softw. Archit. 2013, pp. 163–168. isbn: 978-
1-4503-2126-6. doi: 10.1145/2465478.2465496. url: http://doi.acm.org/10.

1145/2465478.2465496.

[Kos03] Rainer Koschke. “Software visualization in software maintenance, reverse engineering,
and re-engineering: a research survey.” In: Journal of Software Maintenance 15.2 [Mar.
2003], pp. 87–109. issn: 1040-550X. doi: 10.1002/smr.270. url: http://dx.doi.

org/10.1002/smr.270.

[KP] Mark Kofman and Erik Perjons. MetaDiff - a Model Comparison Framework. metadiff.

sourceforge.net/docs/metadiff.pdf.

[KP96] Christian Krämer and Lutz Prechelt. “Design Recovery by Automated Search for
Structural Design Patterns in Object-Oriented Software.” In: Proceedings of the 3rd
Working Conference on Reverse Engineering (WCRE ’96). WCRE ’96. Washington,
DC, USA: IEEE Computer Society, 1996, pp. 208–216. isbn: 0-8186-7674-4.

[Kru+06] Philippe Kruchten, Patricia Lago, and Hans van Vliet. “Building Up and Reason-
ing About Architectural Knowledge.” In: Quality of Software Architectures. Ed. by
Christine Hofmeister, Ivica Crnkovic, and Ralf Reussner. Vol. 4214. Lecture Notes in
Computer Science. Springer Berlin / Heidelberg, 2006, pp. 43–58.

[Kru95] Philippe Kruchten. “The 4+1 View Model of Architecture.” In: IEEE Softw. 12.6
[Nov. 1995], pp. 42–50. issn: 0740-7459. doi: 10 . 1109 / 52 . 469759. url: http :

//dx.doi.org/10.1109/52.469759.

[KZ10a] Patrick Könemann and Olaf Zimmermann. “Linking design decisions to design models
in model-based software development.” In: Proceedings of the 4th European conference
on Software architecture. ECSA’10. Copenhagen, Denmark: Springer-Verlag, 2010,
pp. 246–262. isbn: 3-642-15113-2, 978-3-642-15113-2. url: http://dl.acm.org/

citation.cfm?id=1887899.1887920.

http://dx.doi.org/10.1109/TSE.2002.1027796
http://dx.doi.org/http://doi.acm.org/10.1145/324133.324140
http://dx.doi.org/http://doi.acm.org/10.1145/324133.324140
http://doi.acm.org/10.1145/324133.324140
http://dx.doi.org/10.1145/2465478.2465496
http://doi.acm.org/10.1145/2465478.2465496
http://doi.acm.org/10.1145/2465478.2465496
http://dx.doi.org/10.1002/smr.270
http://dx.doi.org/10.1002/smr.270
http://dx.doi.org/10.1002/smr.270
metadiff.sourceforge.net/docs/metadiff.pdf
metadiff.sourceforge.net/docs/metadiff.pdf
http://dx.doi.org/10.1109/52.469759
http://dx.doi.org/10.1109/52.469759
http://dx.doi.org/10.1109/52.469759
http://dl.acm.org/citation.cfm?id=1887899.1887920
http://dl.acm.org/citation.cfm?id=1887899.1887920

Bibliography 217

[KZ10b] Patrick Könemann and Olaf Zimmermann. “Linking design decisions to design models
in model-based software development.” In: Lect. Notes Comput. Sci. (including Subser.
Lect. Notes Artif. Intell. Lect. Notes Bioinformatics) 6285 LNCS [2010], pp. 246–262.
issn: 03029743. doi: 10.1007/978-3-642-15114-9_19.

[Leh80] M.M. Lehman. “Programs, life cycles, and laws of software evolution.” In: Proc. IEEE
68.9 [1980], pp. 1060–1076. issn: 0018-9219. doi: 10.1109/PROC.1980.11805. url:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1456074.

[Leh89] M. M. Lehman. “Uncertainty in Computer Application and Its Control Through the
Engineering of Software.” In: Journal of Software Maintenance 1.1 [Sept. 1989], pp. 3–
27.

[Leh96] Meir M Lehman. “Laws of software evolution revisited.” In: 5th Eur. Work. Softw.
Process Technol. Nancy: Springer Berlin Heidelberg, 1996, pp. 108–124. doi: 10 .

1007/BFb0017737.

[Li+13] Zengyang Li, Peng Liang, and Paris Avgeriou. “Application of knowledge-based ap-
proaches in software architecture: A systematic mapping study.” In: Inf. Softw. Tech-
nol. 55.5 [May 2013], pp. 777–794. issn: 09505849. doi: 10.1016/j.infsof.2012.11.

005. url: http://linkinghub.elsevier.com/retrieve/pii/S0950584912002315.

[LM10] Jeff Linwood and Dave Minter. Beginning Hibernate, Second Edition. 2nd. Berkely,
CA, USA: Apress, 2010. isbn: 1430228504, 9781430228509.

[LN95] Danny B. Lange and Yuichi Nakamura. “Interactive Visualization of Design Patterns
Can Help in Framework Understanding.” In: Proceedings of the tenth annual con-
ference on Object-oriented programming systems, languages, and applications. OOP-
SLA ’95. Austin, Texas, USA: ACM, 1995, pp. 342–357. isbn: 0-89791-703-0. doi:
10.1145/217838.217874.

[Luc+07] Andrea De Lucia, Fausto Fasano, Rocco Oliveto, and Genoveffa Tortora. “Recover-
ing Traceability Links in Software Artifact Management Systems using Information
Retrieval Methods.” In: vol. 16. New York, NY, USA: ACM, 2007. doi: 10.1145/

1276933.1276934.

[Lun+06] Mircea Lungu, Michele Lanza, and Tudor Girba. “Package Patterns for Visual Ar-
chitecture Recovery.” In: Proceedings of the Conference on Software Maintenance and
Reengineering. CSMR ’06. Washington, DC, USA: IEEE Computer Society, 2006,
pp. 185–196.

[LW07] Kung-Kiu Lau and Zheng Wang. “Software Component Models.” In: IEEE Trans.
Softw. Eng. 33.10 [Oct. 2007], pp. 709–724. issn: 0098-5589. doi: 10.1109/TSE.

2007.70726. url: http://dx.doi.org/10.1109/TSE.2007.70726.

http://dx.doi.org/10.1007/978-3-642-15114-9_19
http://dx.doi.org/10.1109/PROC.1980.11805
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1456074
http://dx.doi.org/10.1007/BFb0017737
http://dx.doi.org/10.1007/BFb0017737
http://dx.doi.org/10.1016/j.infsof.2012.11.005
http://dx.doi.org/10.1016/j.infsof.2012.11.005
http://linkinghub.elsevier.com/retrieve/pii/S0950584912002315
http://dx.doi.org/10.1145/217838.217874
http://dx.doi.org/10.1145/1276933.1276934
http://dx.doi.org/10.1145/1276933.1276934
http://dx.doi.org/10.1109/TSE.2007.70726
http://dx.doi.org/10.1109/TSE.2007.70726
http://dx.doi.org/10.1109/TSE.2007.70726

Bibliography 218

[Lyt+13a] Ioanna Lytra, Holger Eichelberger, Huy Tran, Georg Leyh, Klaus Schmid, and Uwe
Zdun. “On the Interdependence and Integration of Variability and Architectural Deci-
sions.” In: Proceedings of the Eighth International Workshop on Variability Modelling
of Software-Intensive Systems. VaMoS ’14. Sophia Antipolis, France: ACM, 2013,
19:1–19:8. isbn: 978-1-4503-2556-1. doi: 10.1145/2556624.2556634. url: http:

//doi.acm.org/10.1145/2556624.2556634.

[Lyt+13b] Ioanna Lytra, Huy Tran, and Uwe Zdun. “Supporting Consistency between Archi-
tectural Design Decisions and Component Models through Reusable Architectural
Knowledge Transformations.” In: 7th Eur. Conf. Softw. Arch. (ECSA 2013). Springer
Berlin Heidelberg, 2013, pp. 224–239. doi: 10.1007/978-3-642-39031-9_20.

[Ma+06] Yutao Ma, Keqing He, Dehui Du, Jing Liu, and Yulan Yan. “A Complexity Metrics
Set for Large-Scale Object-Oriented Software Systems.” In: Proceedings of the Sixth
IEEE International Conference on Computer and Information Technology. CIT ’06.
Washington, DC, USA: IEEE Computer Society, 2006, pp. 189–. isbn: 0-7695-2687-X.
doi: 10.1109/CIT.2006.3. url: http://dx.doi.org/10.1109/CIT.2006.3.

[Mac77] Alan K. Mackworth. “Consistency in Networks of Relations.” In: Artificial Intelligence
8.1 [1977], pp. 99–118. issn: 0004-3702. doi: http://dx.doi.org/10.1016/0004-

3702(77)90007-8.

[Mar03] Robert C. Martin. Agile software development: principles, patterns, and practices.
Prentice Hall PTR, 2003. url: http://dl.acm.org/citation.cfm?id=515230.

[MB07] Onaiza Maqbool and Haroon Babri. “Hierarchical Clustering for Software Architec-
ture Recovery.” In: IEEE Trans. Softw. Eng. 33 [11 2007], pp. 759–780. issn: 0098-
5589. doi: 10.1109/TSE.2007.70732. url: http://dl.acm.org/citation.cfm?id=

1314036.1314083.

[MC08] Parastoo Mohagheghi and Reidar Conradi. “An empirical investigation of software
reuse benefits in a large telecom product.” In: ACM Trans. Softw. Eng. Methodol.
17.3 [June 2008], 13:1–13:31. issn: 1049-331X. doi: 10.1145/1363102.1363104. url:
http://doi.acm.org/10.1145/1363102.1363104.

[McV+11] Andrew McVeigh, Jeff Kramer, and Jeff Magee. “Evolve: tool support for architecture
evolution.” In: 2011 33rd Int. Conf. Softw. Eng. [2011], pp. 1040–1042. issn: 0270-5257.
doi: 10.1145/1985793.1985990.

[MD00] Yashwant K. Malaiya and Jason Denton. “Module Size Distribution and Defect Den-
sity.” In: Proceedings of the 11th International Symposium on Software Reliability En-
gineering. ISSRE ’00. Washington, DC, USA: IEEE Computer Society, 2000, pp. 62–.
isbn: 0-7695-0807-3.

http://dx.doi.org/10.1145/2556624.2556634
http://doi.acm.org/10.1145/2556624.2556634
http://doi.acm.org/10.1145/2556624.2556634
http://dx.doi.org/10.1007/978-3-642-39031-9_20
http://dx.doi.org/10.1109/CIT.2006.3
http://dx.doi.org/10.1109/CIT.2006.3
http://dx.doi.org/http://dx.doi.org/10.1016/0004-3702(77)90007-8
http://dx.doi.org/http://dx.doi.org/10.1016/0004-3702(77)90007-8
http://dl.acm.org/citation.cfm?id=515230
http://dx.doi.org/10.1109/TSE.2007.70732
http://dl.acm.org/citation.cfm?id=1314036.1314083
http://dl.acm.org/citation.cfm?id=1314036.1314083
http://dx.doi.org/10.1145/1363102.1363104
http://doi.acm.org/10.1145/1363102.1363104
http://dx.doi.org/10.1145/1985793.1985990

Bibliography 219

[ME12] Patrick Mäder and Alexander Egyed. “Assessing the effect of requirements traceability
for software maintenance.” In: ICSM. IEEE Computer Society, 2012, pp. 171–180.
isbn: 978-1-4673-2313-0.

[Mec04] Robert Mecklenburg. Managing Projects with GNU Make (Nutshell Handbooks). O’Reilly
Media, Inc., 2004. isbn: 0596006101.

[Med+02] Nenad Medvidovic, David S. Rosenblum, David F. Redmiles, and Jason E. Robbins.
“Modeling software architectures in the Unified Modeling Language.” In: ACM Trans.
Softw. Eng. Methodol. 11.1 [2002], pp. 2–57.

[Med+03] Nenad Medvidovic, Alexander Egyed, and Paul Grünbacher. “Stemming Architectural
Erosion by Coupling Architectural Discovery and Recovery.” In: Proc. of the 2nd
International Software Requirements to Architectures Workshop(STRAW). Portland,
Oregon, 2003, pp. 61–68.

[Men+02] Kim Mens, Tom Mens, and Michel Wermelinger. “Maintaining software through in-
tentional source-code views.” In: Proceedings of the 14th international conference on
Software engineering and knowledge engineering. SEKE ’02. Ischia, Italy: ACM, 2002,
pp. 289–296. isbn: 1-58113-556-4. doi: 10.1145/568760.568812. url: http://doi.

acm.org/10.1145/568760.568812.

[Mey06] Eric A Meyer. CSS: The Definitive Guide. O’Reilly Media, Inc., 2006. isbn: 0596527330.

[Mik98] T. Mikkonen. “Formalizing Design Patterns.” In: Proceedings of the 20th international
conference on Software engineering. Kyoto, Japan: IEEE Computer Society, 1998,
pp. 115–124.

[Mil+10] James A. Miller, Remo Ferrari, and Nazim H. Madhavji. “An exploratory study of
architectural effects on requirements decisions.” In: J. Syst. Softw. 83.12 [Dec. 2010],
pp. 2441–2455. issn: 0164-1212.

[MM01] Jonathan I. Maletic and Andrian Marcus. “Supporting Program Comprehension Using
Semantic and Structural Information.” In: Proceedings of the 23rd International Con-
ference on Software Engineering. ICSE ’01. Toronto, Ontario, Canada: IEEE Com-
puter Society, 2001, pp. 103–112. isbn: 0-7695-1050-7.

[MM03] N. R. Mehta and N. Medvidovic. “Composing Architectural Styles From Architectural
Primitives.” In: Proceedings of the 9th European software engineering conference held
jointly with 10th ACM SIGSOFT international symposium on Foundations of software
engineering. Helsinki, Finland: ACM Press, 2003, pp. 347–350.

[Moh+04] Parastoo Mohagheghi, Reidar Conradi, Ole M. Killi, and Henrik Schwarz. “An Em-
pirical Study of Software Reuse vs. Defect-Density and Stability.” In: Proceedings of
the 26th International Conference on Software Engineering. ICSE ’04. Washington,
DC, USA: IEEE Computer Society, 2004, pp. 282–292. isbn: 0-7695-2163-0.

http://dx.doi.org/10.1145/568760.568812
http://doi.acm.org/10.1145/568760.568812
http://doi.acm.org/10.1145/568760.568812

Bibliography 220

[Moo] Moodle. Moodle. url: http://docs.moodle.org/dev/Roadmap [visited on 04/15/2014].

[Moo+08] Oege Moor, Damien Sereni, Mathieu Verbaere, Elnar Hajiyev, Pavel Avgustinov, Tor-
björn Ekman, Neil Ongkingco, and Julian Tibble. “Generative and Transformational
Techniques in Software Engineering II.” In: ed. by Ralf Lämmel, Joost Visser, and
João Saraiva. Berlin, Heidelberg: Springer-Verlag, 2008. Chap. .QL: Object-Oriented
Queries Made Easy, pp. 78–133. isbn: 978-3-540-88642-6. doi: 10.1007/978-3-540-

88643-3_3. url: http://dx.doi.org/10.1007/978-3-540-88643-3_3.

[MR13] Héctor J. Macho and Gregorio Robles. “Preliminary lessons from a software evo-
lution analysis of Moodle.” In: First Int. Conf. Technol. Ecosyst. Enhancing Mul-
ticult. - TEEM ’13. New York, New York, USA: ACM Press, 2013, pp. 157–161.
isbn: 9781450323451. doi: 10.1145/2536536.2536560. url: http://dl.acm.org/

citation.cfm?doid=2536536.2536560.

[MR47] H. B. Mann and Whitney D. R. “On a Test of Whether One of Two Random Variables
is Stochastically Larger than the Other.” In: Annals of Mathematical Statistics 18.1
[1947], pp. 50–60.

[MS95] Salvatore T. March and Gerald F. Smith. “Design and Natural Science Research on
Information Technology.” In: Decis. Support Syst. 15.4 [Dec. 1995], pp. 251–266. issn:
0167-9236. doi: 10.1016/0167-9236(94)00041-2. url: http://dx.doi.org/10.

1016/0167-9236(94)00041-2.

[MS97] Rohit Mahajan and Ben Shneiderman. “Visual and Textual Consistency Checking
Tools for Graphical User Interfaces.” In: IEEE Trans. Softw. Eng. 23.11 [Nov. 1997],
pp. 722–735. issn: 0098-5589. doi: 10.1109/32.637386.

[MT00] Nenad Medvidovic and Richard N. Taylor. “A Classification and Comparison Frame-
work for Software Architecture Description Languages.” In: IEEE Trans. Softw. Eng.
26.1 [Jan. 2000], pp. 70–93. issn: 0098-5589. doi: 10.1109/32.825767. url: http:

//dx.doi.org/10.1109/32.825767.

[Mur+95a] Gail C. Murphy, David Notkin, and Kevin Sullivan. “Software reflexion models.” In:
ACM SIGSOFT Softw. Eng. Notes 20.4 [1995], pp. 18–28. issn: 01635948. doi: 10.

1145/222132.222136.

[Mur+95b] Gail C. Murphy, David Notkin, and Kevin Sullivan. “Software reflexion models: bridg-
ing the gap between source and high-level models.” In: SIGSOFT Softw. Eng. Notes
20 [4 1995], pp. 18–28. issn: 0163-5948. doi: http://doi.acm.org/10.1145/222132.

222136. url: http://doi.acm.org/10.1145/222132.222136.

http://docs.moodle.org/dev/Roadmap
http://dx.doi.org/10.1007/978-3-540-88643-3_3
http://dx.doi.org/10.1007/978-3-540-88643-3_3
http://dx.doi.org/10.1007/978-3-540-88643-3_3
http://dx.doi.org/10.1145/2536536.2536560
http://dl.acm.org/citation.cfm?doid=2536536.2536560
http://dl.acm.org/citation.cfm?doid=2536536.2536560
http://dx.doi.org/10.1016/0167-9236(94)00041-2
http://dx.doi.org/10.1016/0167-9236(94)00041-2
http://dx.doi.org/10.1016/0167-9236(94)00041-2
http://dx.doi.org/10.1109/32.637386
http://dx.doi.org/10.1109/32.825767
http://dx.doi.org/10.1109/32.825767
http://dx.doi.org/10.1109/32.825767
http://dx.doi.org/10.1145/222132.222136
http://dx.doi.org/10.1145/222132.222136
http://dx.doi.org/http://doi.acm.org/10.1145/222132.222136
http://dx.doi.org/http://doi.acm.org/10.1145/222132.222136
http://doi.acm.org/10.1145/222132.222136

Bibliography 221

[Nak+08] Elisa Yumi Nakagawa, Elaine Parros Machado de Sousa, Kiyoshi de Brito Murata,
Gabriel de Faria Andery, Leonardo Bitencourt Morelli, and José Carlos Maldonado.
“Software Architecture Relevance in Open Source Software Evolution: A Case Study.”
In: 32nd Annu. IEEE Int. Comput. Softw. Appl. Conf. (COMPSAC 2008) [2008],
pp. 1234–1239. doi: 10.1109/COMPSAC.2008.171. url: http://ieeexplore.ieee.

org/lpdocs/epic03/wrapper.htm?arnumber=4591757.

[Nav+13] Elena Navarro, Carlos E. Cuesta, Dewayne E. Perry, and Pascual González. “Antipat-
terns for Architectural Knowledge Management.” In: Int. J. Inf. Technol. Decis. Mak.
12.3 [2013], pp. 547–589. doi: http://dx.doi.org/10.1142/S0219622013500211.
url: http://www.dsi.uclm.es/personal/ElenaNavarro/research_publications\

_International_Journals.html.

[NC08] Elena Navarro and Carlos E Cuesta. “Automating the Trace of Architectural Design
Decisions and Rationales Using a MDD Approach.” In: Second Eur. Conf. Softw.
Arch. (ECSA 2008). Springer, 2008, pp. 114–130. doi: 10.1007/978-3-540-88030-

1_10. url: http://www.springerlink.com/content/v116347218g6816g/http:

//dl.acm.org/citation.cfm?id=1434560.

[NC09] Ariadi Nugroho and Michel R. Chaudron. “Evaluating the Impact of UML Modeling
on Software Quality: An Industrial Case Study.” In: Proceedings of the 12th Interna-
tional Conference on Model Driven Engineering Languages and Systems. MODELS
’09. Denver, CO: Springer-Verlag, 2009, pp. 181–195. isbn: 978-3-642-04424-3. doi:
10.1007/978-3-642-04425-0_14. url: http://dx.doi.org/10.1007/978-3-642-

04425-0_14.

[Nea+13] Iulian Neamtiu, Guowu Xie, and Jianbo Chen. “Towards a better understanding of
software evolution: an empirical study on open-source software.” In: J. Softw. Evol.
Process 25.3 [2013], pp. 193–218. issn: 20477473. doi: 10.1002/smr.564. url: http:

//doi.wiley.com/10.1002/smr.564.

[NT10] Joost Noppen and Dalila Tamzalit. “ETAK: Tailoring Architectural Evolution by
(re-)using Architectural Knowledge.” In: ICSE Work. Shar. Reusing Archit. Knowl.
(SHARK ’10). New York, New York, USA: ACM Press, 2010, pp. 21–28. isbn:
9781605589671. doi: 10.1145/1833335.1833339. url: http://portal.acm.org/

citation.cfm?doid=1833335.1833339.

[OD04] Mari Carmen Otero and JosÃ© Javier Dolado. “Evaluation of the comprehension of
the dynamic modeling in UML.” In: Information and Software Technology 46.1 [2004],
pp. 35 –53. issn: 0950-5849. doi: 10.1016/S0950-5849(03)00108-3.

[Ozk+07] Ipek Ozkaya, Rick Kazman, and Mark Klein. “Quality-attribute based economic val-
uation of architectural patterns.” In: First Int. Work. Econ. Softw. Comput. ESC’07.
2007. isbn: 0769529550. doi: 10.1109/ESC.2007.8.

http://dx.doi.org/10.1109/COMPSAC.2008.171
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4591757
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4591757
http://dx.doi.org/http://dx.doi.org/10.1142/S0219622013500211
http://www.dsi.uclm.es/personal/ElenaNavarro/research_publications_International_Journals.html
http://www.dsi.uclm.es/personal/ElenaNavarro/research_publications_International_Journals.html
http://dx.doi.org/10.1007/978-3-540-88030-1_10
http://dx.doi.org/10.1007/978-3-540-88030-1_10
http://www.springerlink.com/content/v116347218g6816g/ http://dl.acm.org/citation.cfm?id=1434560
http://www.springerlink.com/content/v116347218g6816g/ http://dl.acm.org/citation.cfm?id=1434560
http://dx.doi.org/10.1007/978-3-642-04425-0_14
http://dx.doi.org/10.1007/978-3-642-04425-0_14
http://dx.doi.org/10.1007/978-3-642-04425-0_14
http://dx.doi.org/10.1002/smr.564
http://doi.wiley.com/10.1002/smr.564
http://doi.wiley.com/10.1002/smr.564
http://dx.doi.org/10.1145/1833335.1833339
http://portal.acm.org/citation.cfm?doid=1833335.1833339
http://portal.acm.org/citation.cfm?doid=1833335.1833339
http://dx.doi.org/10.1016/S0950-5849(03)00108-3
http://dx.doi.org/10.1109/ESC.2007.8

Bibliography 222

[Ozk+10a] Ipek Ozkaya, Peter Wallin, and Jakob Axelsson. “Architecture knowledge manage-
ment during system evolution.” In: 2010 ICSE Work. Shar. Reusing Arch. Knowl.
(SHARK ’10). Helsinki: ACM Press, 2010, pp. 52–59. isbn: 9781605589671. doi:
10.1145/1833335.1833343. url: http://portal.acm.org/citation.cfm?id=

1833335.1833343.

[Ozk+10b] Ipek Ozkaya, Peter Wallin, and Jakob Axelsson. “Architecture Knowledge Manage-
ment during System Evolution – Observations from Practitioners.” In: SHARK’10
[2010], pp. 52–59. issn: 02705257. doi: 10.1145/1833335.1833343.

[Paa+00] Jukka Paakki, Anssi Karhinen, Juha Gustafsson, Lilli Nenonen, and A. Inkeri Verkamo.
“Software Metrics by Architectural Pattern Mining.” In: in Proceedings of the Inter-
national Conference on Software: Theory and Practice (16th IFIP World Computer
Congress. 2000, pp. 325–332.

[Pah+09] Claus Pahl, Simon Giesecke, and Wilhelm Hasselbring. “Ontology-based modelling of
architectural styles.” In: Inf. Softw. Technol. 51.12 [Dec. 2009], pp. 1739–1749. issn:
09505849. doi: 10 . 1016 / j . infsof . 2009 . 06 . 001. url: http : / / linkinghub .

elsevier.com/retrieve/pii/S0950584909000846.

[Pal+12] F. Palma, H. Farzin, Y. Gueheneuc, and N. Moha. “Recommendation System for
Design Patterns in Software Development: An DPR Overview.” In: Recommendation
Systems for Software Engineering (RSSE), 2012 Third International Workshop on.
June 2012, pp. 1–5. doi: 10.1109/RSSE.2012.6233399.

[Par94] David Lorge Parnas. “Software Aging.” In: Proceedings of the 16th International Con-
ference on Software Engineering. ICSE ’94. Sorrento, Italy: IEEE Computer Society
Press, 1994, pp. 279–287. isbn: 0-8186-5855-X. url: http://dl.acm.org/citation.

cfm?id=257734.257788.

[Pas+10] Leonardo Passos, Ricardo Terra, Marco Tulio Valente, Renato Diniz, and Nabor
das Chagas Mendonca. “Static Architecture-Conformance Checking: An Illustrative
Overview.” In: IEEE Softw. 27 [5 2010], pp. 82–89. issn: 0740-7459. doi: 10.1109/

MS.2009.117.

[PG02] Martin Pinzger and Harald Gall. “Pattern-Supported Architecture Recovery.” In: Pro-
ceedings of the 10th International Workshop on Program Comprehension. IWPC ’02.
Washington, DC, USA: IEEE Computer Society, 2002, pp. 53–62.

[Phi+03] Ilka Philippow, Detlef Streitferdt, and Matthias Riebisch. “Design Pattern Recov-
ery in Architectures for Supporting Product Line Development and Application.” In:
Modelling Variability for Object-Oriented Product Lines. BookOnDemand Publ. Co,
2003, pp. 42–57.

http://dx.doi.org/10.1145/1833335.1833343
http://portal.acm.org/citation.cfm?id=1833335.1833343
http://portal.acm.org/citation.cfm?id=1833335.1833343
http://dx.doi.org/10.1145/1833335.1833343
http://dx.doi.org/10.1016/j.infsof.2009.06.001
http://linkinghub.elsevier.com/retrieve/pii/S0950584909000846
http://linkinghub.elsevier.com/retrieve/pii/S0950584909000846
http://dx.doi.org/10.1109/RSSE.2012.6233399
http://dl.acm.org/citation.cfm?id=257734.257788
http://dl.acm.org/citation.cfm?id=257734.257788
http://dx.doi.org/10.1109/MS.2009.117
http://dx.doi.org/10.1109/MS.2009.117

Bibliography 223

[Pin+05] Martin Pinzger, Harald Gall, and Michael Fischer. “Towards an Integrated View on
Architecture and its Evolution.” In: Electronic Notes in Theoretical Computer Science
127.3 [2005], pp. 183 –196.

[Pur+01] Helen C. Purchase, Linda Colpoys, Matthew McGill, David Carrington, and Carol
Britton. “UML class diagram syntax: an empirical study of comprehension.” In: Pro-
ceedings of the 2001 Asia-Pacific symposium on Information visualisation - Volume 9.
APVis ’01. Sydney, Australia: Australian Computer Society, Inc., 2001, pp. 113–120.
isbn: 0-909925-87-9.

[PW92a] Dewayne E. Perry and Alexander L. Wolf. “Foundations for the study of software
architecture.” In: SIGSOFT Softw. Eng. Notes 17.4 [Oct. 1992], pp. 40–52. issn: 0163-
5948.

[PW92b] Dewayne E. Perry and Alexander L. Wolf. “Foundations for the Study of Software
Architecture.” In: ACM Softw. Eng. Notes 17.4 [1992], pp. 40–52. doi: 10.1145/

141874.141884.

[Qin+05] Li Qingshan, Chu Hua, Hu Shengming, Chen Ping, and Zhao Yun. “Architecture
Recovery and Abstraction from the Perspective of Processes.” In: Proceedings of the
12th Working Conference on Reverse Engineering. WCRE ’05. Washington, DC, USA:
IEEE Computer Society, 2005, pp. 57–66.

[Qus+11] A. Qusef, G. Bavota, R. Oliveto, A. De Lucia, and D. Binkley. “SCOTCH: Test-to-
code traceability using slicing and conceptual coupling.” In: Software Maintenance
(ICSM), 2011 27th IEEE International Conference on. 2011, pp. 63–72. doi: 10.

1109/ICSM.2011.6080773.

[Qus+12] Abdallah Qusef, Gabriele Bavota, Rocco Oliveto, Andrea De Lucia, and David Bink-
ley. “Evaluating test-to-code traceability recovery methods through controlled ex-
periments.” In: Journal of Software: Evolution and Process [2012], n/a–n/a. issn:
2047-7481. doi: 10.1002/smr.1573. url: http://dx.doi.org/10.1002/smr.1573.

[RD99] Tamar Richner and Stéphane Ducasse. “Recovering High-Level Views of Object-
Oriented Applications from Static and Dynamic Information.” In: Proceedings of the
IEEE International Conference on Software Maintenance. ICSM ’99. Washington,
DC, USA: IEEE Computer Society, 1999, pp. 13–.

[Ric+07] F. Ricca, M. Di Penta, Marco Torchiano, P. Tonella, and M. Ceccato. “The Role of
Experience and Ability in Comprehension Tasks Supported by UML Stereotypes.”
In: Software Engineering, 2007. ICSE 2007. 29th International Conference on. 2007,
pp. 375–384. doi: 10.1109/ICSE.2007.86.

http://dx.doi.org/10.1145/141874.141884
http://dx.doi.org/10.1145/141874.141884
http://dx.doi.org/10.1109/ICSM.2011.6080773
http://dx.doi.org/10.1109/ICSM.2011.6080773
http://dx.doi.org/10.1002/smr.1573
http://dx.doi.org/10.1002/smr.1573
http://dx.doi.org/10.1109/ICSE.2007.86

Bibliography 224

[RM11] Ghulam Rasool and Patrick Mader. “Flexible Design Pattern Detection Based on Fea-
ture Types.” In: Proceedings of the 2011 26th IEEE/ACM International Conference
on Automated Software Engineering. ASE ’11. Washington, DC, USA: IEEE Com-
puter Society, 2011, pp. 243–252. isbn: 978-1-4577-1638-6. doi: 10.1109/ASE.2011.

6100060.

[Ros+11] Jacek Rosik, Andrew Le Gear, Jim Buckley, Muhammad Ali Babar, and Dave Con-
nolly. “Assessing architectural drift in commercial software development: a case study.”
In: Softw. Pract. Exp. 41.1 [Jan. 2011], pp. 63–86. issn: 00380644. doi: 10.1002/spe.

999. url: http://doi.wiley.com/10.1002/spe.999.

[Ros+13] Dominik Rost, Matthias Naab, Crescencio Lima, and Christina von Flach Garcia
Chavez. “Software Architecture Documentation for Developers: A Survey.” English.
In: Software Architecture. Ed. by Khalil Drira. Vol. 7957. Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 2013, pp. 72–88. isbn: 978-3-642-39030-2. doi:
10.1007/978-3-642-39031-9_7. url: http://dx.doi.org/10.1007/978-3-642-

39031-9_7.

[RR02] Claudio Riva and Jordi Vidal Rodriguez. “Combining Static and Dynamic Views for
Architecture Reconstruction.” In: Proceedings of the Sixth European Conference on
Software Maintenance and Reengineering. CSMR ’02. Washington, DC, USA: IEEE
Computer Society, 2002, pp. 47–.

[RW05] Nick Rozanski and Eóin Woods. Software Systems Architecture: Working With Stake-
holders Using Viewpoints and Perspectives. Addison-Wesley Professional, 2005. isbn:
0321112296.

[San+05] Neeraj Sangal, Ev Jordan, Vineet Sinha, and Daniel Jackson. “Using dependency
models to manage complex software architecture.” In: Proceedings of the 20th annual
ACM SIGPLAN conference on Object-oriented programming, systems, languages, and
applications. OOPSLA ’05. San Diego, CA, USA: ACM, 2005, pp. 167–176. isbn: 1-
59593-031-0. doi: 10.1145/1094811.1094824. url: http://doi.acm.org/10.1145/

1094811.1094824.

[Sar01] K. Sartipi. “A software evaluation model using component association views.” In:
Program Comprehension, 2001. IWPC 2001. Proceedings. 9th International Workshop
on. 2001, pp. 259–268. doi: 10.1109/WPC.2001.921736.

[Sar03] Kamran Sartipi. “Software Architecture Recovery based on Pattern Matching.” In:
Proceedings of the International Conference on Software Maintenance. ICSM ’03.
Washington, DC, USA: IEEE Computer Society, 2003, pp. 293–. isbn: 0-7695-1905-9.

http://dx.doi.org/10.1109/ASE.2011.6100060
http://dx.doi.org/10.1109/ASE.2011.6100060
http://dx.doi.org/10.1002/spe.999
http://dx.doi.org/10.1002/spe.999
http://doi.wiley.com/10.1002/spe.999
http://dx.doi.org/10.1007/978-3-642-39031-9_7
http://dx.doi.org/10.1007/978-3-642-39031-9_7
http://dx.doi.org/10.1007/978-3-642-39031-9_7
http://dx.doi.org/10.1145/1094811.1094824
http://doi.acm.org/10.1145/1094811.1094824
http://doi.acm.org/10.1145/1094811.1094824
http://dx.doi.org/10.1109/WPC.2001.921736

Bibliography 225

[SB03] Douglas C. Schmidt and Frank Buschmann. “Patterns, Frameworks, and Middleware:
Their Synergistic Relationships.” In: Proceedings of the 25th International Conference
on Software Engineering. ICSE ’03. Portland, Oregon: IEEE Computer Society, 2003,
pp. 694–704. isbn: 0-7695-1877-X. url: http://dl.acm.org/citation.cfm?id=

776816.776917.

[Sca+10] Giuseppe Scanniello, Anna D’Amico, Carmela D’Amico, and Teodora D’Amico. “An
approach for architectural layer recovery.” In: Proceedings of the 2010 ACM Sympo-
sium on Applied Computing. SAC ’10. Sierre, Switzerland: ACM, 2010, pp. 2198–2202.
isbn: 978-1-60558-639-7. doi: http://doi.acm.org/10.1145/1774088.1774551.
url: http://doi.acm.org/10.1145/1774088.1774551.

[Sch+00] Douglas C. Schmidt, Michael Stal, Hans Rohnert, and Frank Buschmann. Pattern-
Oriented Software Architecture: Patterns for Concurrent and Networked Objects. 2nd.
New York, NY, USA: John Wiley & Sons, Inc., 2000. isbn: 0471606952, 9780471606956.

[SG96] M. Shaw and D. Garlan. Software Architecture: Perspectives on an Emerging Disci-
pline. Addison-Wesley, 1996.

[SG98] Jochen Seemann and Jürgen Wolff von Gudenberg. “Pattern-based Design Recovery of
Java Software.” In: Proceedings of the 6th ACM SIGSOFT International Symposium
on Foundations of Software Engineering. SIGSOFT ’98/FSE-6. Lake Buena Vista,
Florida, USA: ACM, Nov. 1998, pp. 10–16. isbn: 1-58113-108-9.

[Sha+09] Arun Sharma, P. S. Grover, and Rajesh Kumar. “Dependency analysis for component-
based software systems.” In: SIGSOFT Softw. Eng. Notes 34.4 [July 2009], pp. 1–6.
issn: 0163-5948. doi: 10.1145/1543405.1543424. url: http://doi.acm.org/10.

1145/1543405.1543424.

[Shu+96] F.J. Shull, W. Melo, and V.R. Basili. An Inductive Method for Discovering Design
Patterns from Object-oriented Software Systems. Computer science technical report
series. University of Maryland, 1996.

[SOO] SOOMLA. Open source framework version 3.1. url: http://soom.la/ [visited on
04/24/2015].

[Soy11] Soyatec. eUML2. http://www.soyatec.com/euml2/. 2011.

[Spi11] Diomidis Spinellis. UMLGraph. http://www.umlgraph.org. 2011.

[Sta+06] Miroslaw Staron, Ludwik Kuzniarz, and Claes Wohlin. “Empirical assessment of using
stereotypes to improve comprehension of UML models: A set of experiments.” In: J.
Syst. Softw. 79.5 [May 2006], pp. 727–742. issn: 0164-1212. doi: 10.1016/j.jss.

2005.09.014. url: http://dx.doi.org/10.1016/j.jss.2005.09.014.

http://dl.acm.org/citation.cfm?id=776816.776917
http://dl.acm.org/citation.cfm?id=776816.776917
http://dx.doi.org/http://doi.acm.org/10.1145/1774088.1774551
http://doi.acm.org/10.1145/1774088.1774551
http://dx.doi.org/10.1145/1543405.1543424
http://doi.acm.org/10.1145/1543405.1543424
http://doi.acm.org/10.1145/1543405.1543424
http://soom.la/
http://www.soyatec.com/euml2/
http://www.umlgraph.org
http://dx.doi.org/10.1016/j.jss.2005.09.014
http://dx.doi.org/10.1016/j.jss.2005.09.014
http://dx.doi.org/10.1016/j.jss.2005.09.014

Bibliography 226

[Ste+14a] Srdjan Stevanetic, Muhammad Atif Javed, and Uwe Zdun. “Empirical Evaluation of
the Understandability of Architectural Component Diagrams.” In: Proceedings of the
WICSA 2014 Companion Volume. WICSA ’14 Companion. Sydney, Australia: ACM,
2014, 4:1–4:8. isbn: 978-1-4503-2523-3. doi: 10.1145/2578128.2578230.

[Ste+14b] Srdjan Stevanetic, Thomas Haitzer, and Uwe Zdun. “Supporting Software Evolution
by Integrating DSL-based Architectural Abstraction and Understandability Related
Metrics.” In: Proceedings of the 2014 European Conference on Software Architecture
Workshops. ECSAW ’14. Vienna, Austria: ACM, 2014, 19:1–19:8. isbn: 978-1-4503-
2778-7. doi: 10.1145/2642803.2642822.

[Ste+15] Srdjan Stevanetic, Muhammad Atif Javed, and Uwe Zdun. “The Impact of Hierarchies
on the Architecture-level Software Understandability - A Controlled Experiment.”
In: 24th Australasian Software Engineering Conference. Sept. 2015. url: http://

eprints.cs.univie.ac.at/4423/.

[Ste46] S. Stevens. “On the theory of scales of measurement.” In: Science 103.2684 [1946],
677––680.

[SW05] D. Sun and K. Wong. “On evaluating the layout of UML class diagrams for program
comprehension.” In: Program Comprehension, 2005. IWPC 2005. Proceedings. 13th
International Workshop on. 2005, pp. 317–326. doi: 10.1109/WPC.2005.26.

[SW08] K Stencel and P Wegrzynowicz. “Detection of Diverse Design Pattern Variants.” In:
Softw. Eng. Conf. 2008. APSEC ’08. 15th Asia-Pacific. 2008, pp. 25–32. doi: 10.

1109/APSEC.2008.67.

[SW65] S. S. Shapiro and M. B. Wilk. “An analysis of variance test for normality (complete
samples).” In: Biometrika 3.52 [1965].

[SZ05] George Spanoudakis and Andrea Zisman. “Software Traceability: A Roadmap.” In:
Handbook of Software Engineering and Knowledge Engineering. Ed. by S. K. Chang.
Vol. 3. World Scientific Publishing Co., 2005.

[SZ14] Srdjan Stevanetic and Uwe Zdun. “Exploring the Relationships Between the Un-
derstandability of Components in Architectural Component Models and Component
Level Metrics.” In: Proceedings of the 18th International Conference on Evaluation and
Assessment in Software Engineering. EASE ’14. London, England, United Kingdom:
ACM, 2014, 32:1–32:10. isbn: 978-1-4503-2476-2. doi: 10.1145/2601248.2601264.
url: http://doi.acm.org/10.1145/2601248.2601264.

[TA01] Paolo Tonella and Giuliano Antoniol. “Inference of object-oriented design patterns.”
In: Journal of Software Maintenance 13.5 [2001], pp. 309–330.

[TA05] Jeff Tyree and Art Akerman. “Architecture Decisions: Demystifying Architecture.”
In: IEEE Software 22 [2005], pp. 19–27.

http://dx.doi.org/10.1145/2578128.2578230
http://dx.doi.org/10.1145/2642803.2642822
http://eprints.cs.univie.ac.at/4423/
http://eprints.cs.univie.ac.at/4423/
http://dx.doi.org/10.1109/WPC.2005.26
http://dx.doi.org/10.1109/APSEC.2008.67
http://dx.doi.org/10.1109/APSEC.2008.67
http://dx.doi.org/10.1145/2601248.2601264
http://doi.acm.org/10.1145/2601248.2601264

Bibliography 227

[TA99] P. Tonella and G. Antoniol. “Object Oriented Design Pattern Inference.” In: Soft-
ware Maintenance, 1999. (ICSM ’99) Proceedings. IEEE International Conference
on. 1999, pp. 230–238. doi: 10.1109/ICSM.1999.792619.

[Tam+06] Dalila Tamzalit, Mourad C. Oussalah, Olivier Le Goaer, and Abdelhak-Djamel Seriai.
“Updating software architectures : A style-based approach.” In: Int. Conf. Softw. Eng.
Res. Pract. (SERP 2006). Las Vegas: CSREA Press, 2006, pp. 313–318.

[Tan+06] Antony Tang, Ali Babar Muhammad, Ian Gorton, and Jun Han. “A survey of ar-
chitecture design rationale.” In: J. Syst. Softw. 79.12 [2006], pp. 1792–1804. issn:
01641212. doi: 10.1016/j.jss.2006.04.029. url: http://dblp.uni-trier.de/

db/journals/jss/jss79.html\#TangBGH06.

[Tan+07] Antony Tang, Ann E Nicholson, Yan Jin, and Jun Han. “Using Bayesian belief net-
works for change impact analysis in architecture design.” In: J. Syst. Softw. 80.1
[2007], pp. 127–148. issn: 01641212. doi: 10 . 1016 / j . jss . 2006 . 04 . 004. url:
http://dblp.uni-trier.de/db/journals/jss/jss80.html\#TangNJH07.

[Tar07] Pentti Tarvainen. “Adaptability Evaluation of Software Architectures: A Case Study.”
In: 31st Annu. Int. Comput. Softw. Appl. Conf. - Vol. 2 - (COMPSAC 2007). IEEE,
July 2007, pp. 579–586. isbn: 0-7695-2870-8. doi: 10.1109/COMPSAC.2007.240. url:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4291181.

[Tay+10] Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy. Software Architecture
- Foundations, Theory, and Practice. Wiley, 2010, pp. I–XXIV, 1–712. isbn: 978-0-
470-16774-8.

[Tek+07] Bedir Tekinerdogan, Christian Hofmann, and Mehmet Aksit. “Modeling Traceability
of Concerns for Synchronizing Architectural Views.” In: Journal of Object Technology
6.7 [2007], pp. 7–25. url: http://doc.utwente.nl/60276/.

[Ter+13] Ricardo Terra, Marco Tulio Valente, Krzysztof Czarnecki, and Roberto S. Bigonha.
“A recommendation system for repairing violations detected by static architecture
conformance checking.” In: Softw. Pract. Exp. [Sept. 2013], n/a–n/a. issn: 00380644.
doi: 10.1002/spe.2228. url: http://doi.wiley.com/10.1002/spe.2228.

[TH03] Scott Tilley and Shihong Huang. “A qualitative assessment of the efficacy of UML
diagrams as a form of graphical documentation in aiding program understanding.” In:
Proceedings of the 21st annual international conference on Documentation. SIGDOC
’03. San Francisco, CA, USA: ACM, 2003, pp. 184–191. isbn: 1-58113-696-X. doi:
10.1145/944868.944908. url: http://doi.acm.org/10.1145/944868.944908.

[Tib+10] Chouki Tibermacine, Régis Fleurquin, and Salah Sadou. “A family of languages for
architecture constraint specification.” In: J. Syst. Softw. 83.5 [May 2010], pp. 815–
831. issn: 01641212. doi: 10.1016/j.jss.2009.11.736. url: http://linkinghub.

elsevier.com/retrieve/pii/S016412120900315X.

http://dx.doi.org/10.1109/ICSM.1999.792619
http://dx.doi.org/10.1016/j.jss.2006.04.029
http://dblp.uni-trier.de/db/journals/jss/jss79.html\#TangBGH06
http://dblp.uni-trier.de/db/journals/jss/jss79.html\#TangBGH06
http://dx.doi.org/10.1016/j.jss.2006.04.004
http://dblp.uni-trier.de/db/journals/jss/jss80.html\#TangNJH07
http://dx.doi.org/10.1109/COMPSAC.2007.240
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4291181
http://doc.utwente.nl/60276/
http://dx.doi.org/10.1002/spe.2228
http://doi.wiley.com/10.1002/spe.2228
http://dx.doi.org/10.1145/944868.944908
http://doi.acm.org/10.1145/944868.944908
http://dx.doi.org/10.1016/j.jss.2009.11.736
http://linkinghub.elsevier.com/retrieve/pii/S016412120900315X
http://linkinghub.elsevier.com/retrieve/pii/S016412120900315X

Bibliography 228

[Tic+00] Sander Tichelaar, Stéphane Ducasse, and Serge Demeyer. “FAMIX and XMI.” In:
Proceedings of the Seventh Working Conference on Reverse Engineering (WCRE’00).
WCRE ’00. Washington, DC, USA: IEEE Computer Society, 2000, pp. 296–.

[Tof+14] Dan Tofan, Matthias Galster, Paris Avgeriou, and Wes Schuitema. “Past and Future
of Software Architectural Decisions – a Systematic Mapping Study.” In: Inf. Softw.
Technol. [Mar. 2014]. issn: 09505849. doi: 10.1016/j.infsof.2014.03.009. url:
http://linkinghub.elsevier.com/retrieve/pii/S0950584914000706.

[Tor04] Marco Torchiano. “Empirical assessment of UML static object diagrams.” In: Pro-
gram Comprehension, 2004. Proceedings. 12th IEEE International Workshop on. 2004,
pp. 226–230. doi: 10.1109/WPC.2004.1311064.

[Tsa+06] N. Tsantalis, A. Chatzigeorgiou, G. Stephanides, and S.T. Halkidis. “Design Pattern
Detection Using Similarity Scoring.” In: Software Engineering, IEEE Transactions on
32.11 [2006], pp. 896–909. issn: 0098-5589. doi: 10.1109/TSE.2006.112.

[UM12] Raoul-Gabriel Urma and Alan Mycroft. “Programming language evolution via source
code query languages.” In: Proceedings of the ACM 4th annual workshop on Evalua-
tion and usability of programming languages and tools. PLATEAU ’12. Tucson, Ari-
zona, USA: ACM, 2012, pp. 35–38. isbn: 978-1-4503-1631-6. doi: 10.1145/2414721.

2414728. url: http://doi.acm.org/10.1145/2414721.2414728.

[Ump+06] David A. Umphress, T. Dean Hendrix, James H. Cross II, and Saeed Maghsoodloo.
“Software visualizations for improving and measuring the comprehensibility of source
code.” In: Science of Computer Programming 60.2 [2006], pp. 121 –133. issn: 0167-
6423. doi: 10.1016/j.scico.2005.10.001.

[VK07] Vijay K Vaishnavi and William Kuechler. Design Science Research Methods and Pat-
terns: Innovating Information and Communication Technology. Auerbach, 2007.

[Was+09] Hironori Washizaki, Kazuhiro Fukaya, Atsuto Kubo, and Yoshiaki Fukazawa. “De-
tecting Design Patterns Using Source Code of Before Applying Design Patterns.” In:
Proceedings of the 2009 Eigth IEEE/ACIS International Conference on Computer and
Information Science. ICIS ’09. Washington, DC, USA: IEEE Computer Society, 2009,
pp. 933–938. isbn: 978-0-7695-3641-5. doi: 10.1109/ICIS.2009.209.

[Wen+01] Lothar Wendehals, Jörg Niere, and Jörg P. Wadsack. Design Pattern Recovery Based
on Source Code Analysis with Fuzzy Logic. Tech. rep. University of Paderborn, 2001.

[Wen03] L. Wendehals. “Improving Design Pattern Instance Recognition by Dynamic Analy-
sis.” In: Proc. of the ICSE 2003 Workshop on Dynamic Analysis (WODA), Portland,
USA. 2003, pp. 29–32.

[Whe09] David Wheeler. SLOCcount. 2009. url: http://www.dwheeler.com/sloccount/.

http://dx.doi.org/10.1016/j.infsof.2014.03.009
http://linkinghub.elsevier.com/retrieve/pii/S0950584914000706
http://dx.doi.org/10.1109/WPC.2004.1311064
http://dx.doi.org/10.1109/TSE.2006.112
http://dx.doi.org/10.1145/2414721.2414728
http://dx.doi.org/10.1145/2414721.2414728
http://doi.acm.org/10.1145/2414721.2414728
http://dx.doi.org/10.1016/j.scico.2005.10.001
http://dx.doi.org/10.1109/ICIS.2009.209
http://www.dwheeler.com/sloccount/

Bibliography 229

[Woh+03] Claes Wohlin, Martin Höst, and Kennet Henningsson. “Empirical Research Methods
in Software Engineering.” In: Empirical Methods and Studies in Software Engineering.
Vol. 2765. Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2003,
pp. 7–23. doi: 10.1007/978-3-540-45143-3_2.

[Woh+12] Claes Wohlin, Per Runeson, Martin Höst, Magnus C. Ohlsson, Björn Regnell, and
Anders Wesslén. Experimentation in Software Engineering. 1st ed. Berlin, Heidel-
berg: Springer Berlin Heidelberg, 2012. isbn: 978-3-642-29043-5. url: http://link.

springer.com/10.1007/978-3-642-29044-2.

[WP10] Stefan Winkler and Jens Pilgrim. “A survey of traceability in requirements engineering
and model-driven development.” In: Softw. Syst. Model. 9.4 [Sept. 2010], pp. 529–565.
issn: 1619-1366. doi: 10.1007/s10270-009-0145-0. url: http://dx.doi.org/10.

1007/s10270-009-0145-0.

[Wuy98] R. Wuyts. “Declarative Reasoning about the Structure of Object-Oriented Systems.”
In: Technology of Object-Oriented Languages, 1998. TOOLS 26. Proceedings. 1998,
pp. 112–124. doi: 10.1109/TOOLS.1998.711007.

[Xu+13] Chang Xu, YePang Liu, S.C. Cheung, Chun Cao, and Jian Lv. “Towards context
consistency by concurrent checking for Internetware applications.” English. In: Science
China Information Sciences 56.8 [2013], pp. 1–20. issn: 1674-733X. doi: 10.1007/

s11432-013-4907-5.

[Yan+04] Hong Yan, David Garlan, Bradley Schmerl, Jonathan Aldrich, and Rick Kazman.
“DiscoTect: A System for Discovering Architectures from Running Systems.” In: Pro-
ceedings of the 26th International Conference on Software Engineering. ICSE ’04.
Washington, DC, USA: IEEE Computer Society, 2004, pp. 470–479.

[ZA05] Uwe Zdun and Paris Avgeriou. “Modeling architectural patterns using architectural
primitives.” In: ACM SIGPLAN Not. 40.10 [Oct. 2005], p. 133. issn: 03621340. doi:
10.1145/1103845.1094822. url: http://portal.acm.org/citation.cfm?doid=

1103845.1094822.

[ZA08] Uwe Zdun and Paris Avgeriou. “A catalog of architectural primitives for modeling
architectural patterns.” In: Inf. Softw. Technol. 50.9-10 [Aug. 2008], pp. 1003–1034.
issn: 0950-5849. doi: 10.1016/j.infsof.2007.09.003. url: http://dx.doi.org/

10.1016/j.infsof.2007.09.003.

[Zac87] John A. Zachman. “A Framework for Information Systems Architecture.” In: IBM
Syst. J. 26.3 [Sept. 1987], pp. 276–292. issn: 0018-8670. doi: 10.1147/sj.263.0276.
url: http://dx.doi.org/10.1147/sj.263.0276.

[Zdu+04] Uwe Zdun, Michael Kircher, and Markus Völter. “Remoting Patterns.” In: IEEE In-
ternet Computing 8.6 [2004], pp. 60–68.

http://dx.doi.org/10.1007/978-3-540-45143-3_2
http://link.springer.com/10.1007/978-3-642-29044-2
http://link.springer.com/10.1007/978-3-642-29044-2
http://dx.doi.org/10.1007/s10270-009-0145-0
http://dx.doi.org/10.1007/s10270-009-0145-0
http://dx.doi.org/10.1007/s10270-009-0145-0
http://dx.doi.org/10.1109/TOOLS.1998.711007
http://dx.doi.org/10.1007/s11432-013-4907-5
http://dx.doi.org/10.1007/s11432-013-4907-5
http://dx.doi.org/10.1145/1103845.1094822
http://portal.acm.org/citation.cfm?doid=1103845.1094822
http://portal.acm.org/citation.cfm?doid=1103845.1094822
http://dx.doi.org/10.1016/j.infsof.2007.09.003
http://dx.doi.org/10.1016/j.infsof.2007.09.003
http://dx.doi.org/10.1016/j.infsof.2007.09.003
http://dx.doi.org/10.1147/sj.263.0276
http://dx.doi.org/10.1147/sj.263.0276

Bibliography 230

[Zdu11] Uwe Zdun. The Frag Language. http://frag.sourceforge.net/. 2011.

[Zha+02] Jianjun Zhao, Hongji Yang, Liming Xiang, and Baowen Xu. “Change impact analysis
to support architectural evolution.” In: Journal of Software Maintenance 14.5 [Sept.
2002], pp. 317–333. issn: 1040-550X. doi: 10.1002/smr.258. url: http://dx.doi.

org/10.1002/smr.258.

[Zim+07] Olaf Zimmermann, Thomas Gschwind, Jochen Küster, Frank Leymann, and Nelly
Schuster. “Reusable architectural decision models for enterprise application develop-
ment.” In: Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect.
Notes Bioinformatics) 4880 LNCS [2007], pp. 15–32. issn: 03029743. doi: 10.1007/

978-3-540-77619-2_2.

[Zim+08] Olaf Zimmermann, Uwe Zdun, Thomas Gschwind, and Frank Leymann. “Combining
pattern languages and reusable architectural decision models into a comprehensive
and comprehensible design method.” In: 7th IEEE/IFIP Work. Conf. Softw. Archit.
WICSA 2008 [2008], pp. 157–166. doi: 10.1109/WICSA.2008.19.

[Zim+09] Olaf Zimmermann, Jana Koehler, Frank Leymann, Ronny Polley, and Nelly Schus-
ter. “Managing architectural decision models with dependency relations, integrity
constraints, and production rules.” In: Journal of Systems and Software 82.8 [2009],
pp. 1249–1267.

[De +09] Andrea De Lucia, Rocco Oliveto, and Genoveffa Tortora. “Assessing IR-based trace-
ability recovery tools through controlled experiments.” In: Empir. Softw. Eng. 14.1
[2009], pp. 57–92. issn: 13823256.

[Ecl11a] Eclipse Foundation. EMF Compare. http://www.eclipse.org/emf/compare/. 2011.

[Ecl11b] Eclipse Foundation. Xtext. http://www.eclipse.org/Xtext/. 2011.

[Le +08] Olivier Le Goaer, Dalila Tamzalit, Mourad Chabane Oussalah, and Abdelhak-Djamel
Seriai. “Evolution styles to the rescue of architectural evolution knowledge.” In: 3rd
Int. Work. Shar. Reusing Archit. Knowl. New York, New York, USA: ACM Press,
2008, pp. 31–36. isbn: 9781605580388. doi: 10.1145/1370062.1370071. url: http:

//portal.acm.org/citation.cfm?doid=1370062.1370071.

[M. 11] M. Doliner, J. Erdfelt, J. Lewis, G. Lukasik, J. Mareš, and J. Thomerson. Cobertura.
http://cobertura.sourceforge.net. 2011.

[Obj10] Object Management Group. UML 2.3 Superstructure. 2010. url: http://www.omg.

org/spec/UML/2.3.

[The11] The Freecol Team. FreeCol. http://freecol.org. 2011.

[Tra] Tracker Moodle. Tracker Moodle. url: https://tracker.moodle.org/ [visited on
04/15/2014].

http://frag.sourceforge.net/
http://dx.doi.org/10.1002/smr.258
http://dx.doi.org/10.1002/smr.258
http://dx.doi.org/10.1002/smr.258
http://dx.doi.org/10.1007/978-3-540-77619-2_2
http://dx.doi.org/10.1007/978-3-540-77619-2_2
http://dx.doi.org/10.1109/WICSA.2008.19
http://www.eclipse.org/emf/compare/
http://www.eclipse.org/Xtext/
http://dx.doi.org/10.1145/1370062.1370071
http://portal.acm.org/citation.cfm?doid=1370062.1370071
http://portal.acm.org/citation.cfm?doid=1370062.1370071
http://cobertura.sourceforge.net
http://www.omg.org/spec/UML/2.3
http://www.omg.org/spec/UML/2.3
http://freecol.org
https://tracker.moodle.org/

	Declaration of Authorship
	Abstract
	Zusammenfassung
	Acknowledgements
	List of Publications
	Vita
	Contents
	List of Figures
	List of Tables
	Abbreviations
	I Foundations and Research Overview
	1 Introduction
	1.1 Key Concepts and Terminology
	1.1.1 Software Architecture Documentation
	1.1.2 Software Architecture Recovery
	1.1.3 Design Pattern and Architectural Pattern
	1.1.4 Domain Specific Language
	1.1.5 Architectural Design Decision (ADD)

	2 Problem Analysis and Research Approach
	2.1 Problem Statement
	2.2 Research Methods
	2.2.1 Design Science Research
	2.2.2 Case Study
	2.2.3 Controlled Experiment

	3 State of the Art
	3.1 Approaches Focusing on Software Architecture Reconstruction
	3.1.1 Software Architecture Reconstruction Approaches Based on Automatic Clustering
	3.1.2 Model-based Approaches for Creating Architecture Abstractions and Views
	3.1.3 Hybrid and Other Approaches

	3.2 Identification and Documentation of Patterns
	3.2.1 Approaches Based on Architectural Patterns
	3.2.2 Approaches Based on Design Patterns
	3.2.2.1 Approaches Based on Logic Oriented Programming / Formal Methods
	3.2.2.2 Graph-based Approaches
	3.2.2.3 Miscellaneous Design Pattern Identification Approaches

	3.3 Software Architecture Evolution
	3.3.1 Techniques for Evolving Architectures
	3.3.2 Managing Architectural Knowledge
	3.3.3 Approaches That Focus on Traceability and/or Change Impact Analysis

	3.4 Understandability of Software Architecture Documentation
	3.5 Empirical Studies Researching Software Architecture and Design Understanding
	3.5.1 Empirical Studies Related to Architecture Design
	3.5.2 Empirical Studies Focusing on Other Aspects of Components
	3.5.3 Studies and Approaches on Design Understanding
	3.5.4 Studies Focusing on UML Diagram Understandability
	3.5.5 Studies Focusing on Traceability Links

	II Supporting the Architect During Evolution: Semi-automated Architectural Component Model Abstraction and Pattern Identifaction
	4 Controlled Experiment on the Supportive Effect of Architectural Component Diagrams for Design Understanding of Novice Architects
	4.1 Introduction
	4.2 Experiment Description
	4.2.1 Goal and Hypotheses
	4.2.2 Parameters and Variables
	4.2.3 Experiment Design
	4.2.4 Execution

	4.3 Analysis
	4.3.1 Descriptive Statistics
	4.3.2 Data Set Reduction
	4.3.3 Hypotheses Testing

	4.4 Discussion of the Post-study Questions
	4.5 Validity Evaluation
	4.6 Conclusions

	5 Semi-automated Architectural Abstraction Specifications for Supporting Software Evolution
	5.1 Introduction
	5.2 Research Problem
	5.3 Approach Overview
	5.4 Domain Specific Language for Specifying Architectural Abstractions
	5.4.1 Illustrative Example
	5.4.2 Automatic Generation of Traceability Links
	5.4.3 Consistency Checking During Model Transformation

	5.5 Evaluation
	5.5.1 Detailed Cases of Architectural Abstraction Evolution
	5.5.1.1 Case 1: Apache CXF
	5.5.1.2 Case 2: Frag
	5.5.1.3 Case 3: Cobertura
	5.5.1.4 Case 4: Hibernate
	5.5.1.5 Case 5: Freecol

	5.5.2 Performance Evaluation

	5.6 Discussion
	5.6.1 Lessons Learned
	5.6.2 Limitations and Open Issues

	5.7 Conclusion

	6 Semi-automatic Architectural Pattern Identification and Documentation Using Architectural Primitives
	6.1 Introduction
	6.2 Background: Patterns and Architectural Primitives
	6.3 Approach Overview
	6.4 Detailed Description of the Approach
	6.4.1 Pattern Catalog
	6.4.2 Architecture Abstraction Specification Language
	6.4.3 Pattern Instance Documentation Tool
	6.4.4 Pattern Instances

	6.5 Case Studies
	6.5.1 Case Study: FreeCol
	6.5.2 Case Study: Frag
	6.5.3 Case Study: Apache CXF

	6.6 Performance Evaluation of the Pattern Instance Documentation Tool
	6.7 Discussion
	6.7.1 Lessons Learned From the Case Studies
	6.7.2 Threats to Validity

	6.8 Conclusion

	7 Supporting Software Evolution by Integrating DSL-based Architectural Abstraction and Understandability Related Metrics
	7.1 Introduction
	7.2 Integrated Approach Overview
	7.3 Integrated Approach Details
	7.3.1 Understandability Related Metrics
	7.3.2 Architecture Abstraction Approach and Metrics Integration

	7.4 Case Study
	7.5 Conclusions and Future Work

	III Consistency Managment During Software Evolution
	8 Reconciling Software Architecture and Source Code in Support of Software Evolution
	8.1 Introduction
	8.2 Our approach: Code and Software Architecture Evolution
	8.3 Approach Details
	8.4 Case Studies
	8.4.1 Case Study 1: Evolving From Apache CXF 2.6 to Apache CXF 2.7
	8.4.2 Case Study 2: Apache CXF 2.7 to Apache CXF 3.0
	8.4.3 Case Study 3: Soomla Store Version 3.2 to 3.3
	8.4.4 Case Study 4: Soomla v3.3 Implementation of a New Custom Payment Provider for Payment via Carrier
	8.4.5 Discussion

	8.5 Conclusions and Future Work

	9 Architecting for Decision Making About Code Evolution
	9.1 Introduction
	9.2 Architecting for Code Evolution
	9.2.1 DSL for Specifying the Code Evolution
	9.2.2 Generating Decision Alternatives for Evolution

	9.3 Case Study
	9.4 Conclusion

	IV Conclusions
	10 Conclusions and Future Work
	10.1 Conclusions & Limitations
	10.2 Future Work

	Appendices
	A Controlled Experiment on the Supportive Effect of Architectural Component Diagrams for Design Understanding of Novice Architects
	B Xtext Grammar of the Architecture Abstraction DSL
	C Xtext Grammar of the Architecture Abstraction DSL (Modified Variant for the Identification of Architecture Patterns Based on Primivites)
	D Reconciling Software Architecture and Source Code in Support of Software Evolution
	D.1 Complete Specification of QVT-operational Transformations
	D.2 Exemplary Launch Configuration for Executing QVT-operational Transformations
	D.3 Documented Architectural Decisions for the Soomla Case Studies
	D.3.1 Case Study 3
	D.3.2 Case Study 4

	Bibliography

