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A B S T R A C T

RNAs play an essential role in the life cycle of every cell. RNA is not only the interme-
diate between the genetic blueprint (DNA) and the proteins produced, but also per-
forms a variety of regulatory tasks. The function of an RNA molecule is determined
by its structure, which can be reasonably well predicted following the biophysical
rules implemented in the most popular RNA structure prediction programs. I present
four projects, two of them in form of a peer-reviewed publication, the other two are
unpublished work with preliminary results.

The first publication describes how RNAs with catalytic function, ribozymes, can be
designed to concatenate multiple copies of themselves (i. e. they self-polymerize), into
longer molecules. This is important since the RNA World hypothesis claims that RNA
emerged before DNA and proteins. It has, however, been hard to imagine how suffi-
ciently long RNA molecules could exist in the RNA world. Our results suggest how
pre-biological RNA genomes may have been built up by concatenation of shorter se-
quences.

The second publication shows conformational switching of RNAs through the inter-
action of two copies. Such a conformational self-replication was so far known only from
proteins, where it forms the molecular basis of prion diseases such as Creutzfeldt-
Jakob. The artificial RNAs designed in this project could help to better understand
the mechanism of such diseases, but might also be useful as molecular sensors and
amplifiers in biotechnology.

A central challenge to both publications mentioned above are RNA-RNA interac-
tions. While we have used thermodynamic criteria combined with existing algorithms
for intramolecular folding kinetics to design sequences, we are now developing new
algorithms to model folding kinetics of interacting RNAs. This problem is much more
complicated by the fact that intermolecular base-pairing is concentration dependent.
Preliminary results to model the kinetics of small interacting RNAs are promising and
will serve as a basis for a separate, peer-reviewed publication.

The last major topic addressed in this thesis concerns the synthesis of RNA molecules
in cells, i. e. cotranscriptional folding. We first show how small metabolites can be in-
cluded into an existing algorithm to model intramolecular folding during transcrip-
tion. We have published these results also in the context of a recent book chapter
on the computational modeling of riboswitches. However, the approach is limited to
short RNA transcripts and we have now developed a faster heuristic to model cotran-
scriptional folding for longer molecules. The results presented from this new program,
DrTransformer, will also be used in a separate, peer-reviewed publication.
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Z U S A M M E N FA S S U N G

RNAs (Ribonukleinsäuren) spielen eine tragende Rolle im Lebenszyklus jeder Zelle.
Sie bilden das Bindeglied zwischen dem genetischen Bauplan (DNA) und den da-
raus erzeugten Proteinen und übernehmen eine Vielzahl von regulatorischen Auf-
gaben. Diese Aufgaben werden großteils von der Molekülstruktur bestimmt, welche
wiederum auf Grund experimenteller Daten und der daraus abgeleiteten physikalis-
chen Regeln vorhergesagt werden kann. Im Rahmen dieser Dissertation werde ich vier
Projekte vorstellen, die sich mit RNA Design und der Faltungskinetik interagieren-
der RNAs beschäftigen. Zwei der Projekte sind bereits in öffentlichen Journalen er-
schienen, für die beiden anderen werden vorläufige Resultate präsentiert die als Basis
für eine separate Publikationen dienen.

Die erste Publikation beschäftigt sich mit dem Design von RNAs mit katalytischer
Funktion, sogenannten Ribozymen. Das Augenmerk liegt dabei auf Sequenzen die
sich selbst prozessieren können, sodass mehrere Kopien des selben Moleküls aneinan-
dergehängt werden. Die Resultate zeigen das Potential von RNAs im Ursprung des
Lebens, nämlich dass präbiologische RNA-Genome aus kürzeren Sequenzen gebaut
werden konnten.

In der zweiten Publikation wurden RNAs designed, die die Möglichkeit haben
Kopien von sich selbst von einer aktiven Struktur in eine andere umzufalten. Solche
Mechanismen sind bisher nur für Proteine beschrieben worden. Die sogenannten Prio-
nen sind Auslöser neurologischer Erkrankungen, z.B. von Creutzfeldt-Jakob. Biotech-
nologish, können diese RNAs als molekulare Sensoren eingesetzt werden, aber sie kön-
nen auch dabei helfen die molekularen Mechanismen von Prionen-Krankheitserregern
besser zu verstehen.

Eine zentrale Herausforderung der oben genannten Publikationen bestand darin
RNA-RNA Interaktionen zu modellieren. Die Konzentrationsabhängikeit der beteiligten
Moleküle macht eine genaue Vorhersage der kinetischen Prozesse komplizierter als
für intramolekulare Faltung. Die Entwicklung eines Programs zur Modelierung von
intermolekluarer Faltunskinetik, ermöglicht detailierte Simulationen von kurzen inter-
agierenden RNAs.

Das letzte Kapitel betrifft die Synthese von RNA in der Zelle, i. e. co-transkriptionelle
Faltung. Anhand eines Beispiels wird beschrieben, wie man den Einfluss kleiner Metabo-
liten in die Simulation von co-transcriptioneller Faltung einbeziehen kann. Das Beispiel
wurde im Kontext eines Buchkapitels zur Modellierung von Riboswitches verwen-
det. Zusätzlich wird hier ein neues Programm präsentiert, DrTransformer, um co-
transcriptionelle Faltung auch für längere RNAs mit höherer Genauigkeit vorherzusagen,
als es bisher möglich war.
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Part I

I N T R O D U C T I O N





1
F R O M M O L E C U L A R T O S Y N T H E T I C B I O L O G Y

Our understanding of molecular biological processes increases steadily with new ex-
perimental technologies and their combination with theoretical models. Experiments
range from characterization of single and interacting molecules to large-scale analysis
of whole metabolic networks. In combination with today’s computational power, the-
oretical models can be tested in silico to analyze, formalize, and visualize the behavior
of living systems.

This thesis contributes to the field of biological engineering, which is at the interface
of molecular biology, biochemistry, physics and computer science. Biological processes
are formulated as algorithms, which requires a well defined set of assumptions and
rules in oder to predict behavior of molecules in artificial context. As it is common
practice in computer science, biological engineering lives from the debugging and prob-
lem solving after an artificial biological process has been tested experimentally. This
often reveals important little details that did not get enough attention during the initial
design process.

As the modeling of living matter always contains uncertainties arising from stochas-
tic (random) elements, errors do accumulate. However, if the details are modeled with
reasonable accuracy, then theoretical models are applicable for bigger, more complex
systems and they can be combined to explain observations that seem to be arbitrary
in the first place.

This thesis is split into two parts. First, I combine algorithms for single ribonucleic
acid (RNA) folding kinetics with thermodynamic modeling of interacting RNAs and
I develop new algorithms for modeling RNA folding kinetics during RNA synthesis.
Second, I demonstrate intrinsic RNA mechanisms that may have increased functional
diversity in the origin of life and that can be used as building blocks during metabolic
engineering. However, before providing details about the theoretical background, this
chapter presents some basic concepts in molecular biology that put the work into a
broader context.

1.1 a snapshot of life and its molecules

Three types of molecules are believed to be central for all known life forms: deoxy-
ribonucleic acids (DNAs), RNAs and proteins. The genetic blueprint DNA encodes all
the information to orchestrate a genetic program, from the first cell in a new living
species to the (controlled) cell death when sufficient time has passed. The information
to develop a human being, for instance, is encoded in a DNA double helix with roughly

3



4 from molecular to synthetic biology

three billion (3 · 109) base-pairs. In order to pack this information into human cells, the
DNA is compressed into 23 chromosomes, that have to be selectively decoded when
new information is needed.

RNA is the first layer of decoding the genetic material. It is produced from a tem-
plate DNA in a process called transcription: one or more proteins assemble at a particu-
lar chromosomal region, unpack it, unwind the double-helix structure, and then tran-
scribe the nucleotide sequence into an RNA molecule. The produced RNA molecule
can be of variable length (up to multiple thousand nucleotides), it can get chopped
into smaller pieces, it can get chemically modified, and it can have a multitude of
different functions which will be discussed below.

Proteins are synthesized from RNAs in a process called translation. Compared to
RNAs, proteins are chemically more diverse, their production requires more energy,
and their lifetime is generally longer. Proteins build complex structures for cellular
communication, energy production, recycling, chromosome packing, spacial arrange-
ments in cells, cellular transport and many more fundamental processes. Figuratively
speaking, proteins are highly specialized machines that are produced and often oper-
ated by short-lived RNAs.

The functional repertoire of an RNA is determined by two factors, (1) the sequence
can be exposed to form hybridization interactions with other molecules in the cell and
(2) the structure, i. e. the three-dimensional arrangement, can form binding pockets for
metabolites or build scaffolds to arrange other metabolites into reactive assemblies. For
instance, the sequences of messenger-RNAs (mRNAs) encode the information to pro-
duce a protein, ribosomal-RNAs (rRNAs) and transfer-RNAs (tRNAs) together translate
this information by synthesizing proteins. The rRNAs serve as a big scaffold structure
arranging mRNA and tRNAs in order to catalyze the necessary chemical reactions.

Short RNA molecules, such as the 21 nucleotide long micro-RNAs (miRNAs) regu-
late transcription and translation via RNA-RNA interactions. In particular, they direct
protein complexes to mRNAs in order to degrade the transcript before it is translated
into a protein [Cai et al., 2009]. The recently discovered (in parts engineered) guide-
RNAs (gRNAs) [Jinek et al., 2012] recruit protein complexes to genomic DNA. This
has been especially popular during the last years, as it is a new strategy to modify
genomic DNA and to transcribe selected regions in the genome [Zalatan et al., 2015].
Natural systems can employ nucleic acid hybridization as an immune defense against
viruses. Short fragments of foreign nucleic acid are integrated into the host chromo-
some and serve as a library to guide degradation complexes to the invading viral
genomes [Wiedenheft et al., 2012].

It is important to point out that the RNAs mentioned above are just a subset of
those with well characterized functions. Taken together, RNAs are molecules that are
necessary to translate the genetic material into a cellular program, but also to adapt the
genetic material and the program to environmental influences. Additionally, RNA has
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the functional repertoire to store genetic material (e. g. RNA viruses) and to catalyze
reactions (e. g. protein synthesis).

1.2 synthetic biology and artificial life

What are the essential properties of a living system? Does it require evolution, com-
munication, reproduction or self-reflection? Does it require the molecules described
above? From which point on can a life form be considered as artificial? Is it enough to
remove or replace parts in an existing organism or does it need the assembly and un-
derstanding of a new system from scratch? Can we explain and reproduce how early
life emerged on earth?

The studies of synthetic biology and artificial life raise many philosophical questions,
but the current challenges lie in the details. Synthetic biology aims for the inverse prob-
lem of modeling biological systems: designing functional parts that can be embedded
into molecular networks. This can be used to gain control over the output of natural
systems, i. e. metabolic pathways are used as a function to translate input into output
molecules. For artificial life, it is neither required to produce a living species in the first
instance, nor to have a complete understanding of underlying mechanisms. The goal is
to develop a system (from scratch) that has certain properties of living systems, e. g. a
unit that evolves, replicates or just seems more complex than the sum of its parts.

Let us come back to the title of this thesis “Control of RNA function by confor-
mational design”. We have previously discussed that RNA function emerges from a
combination of its sequence and structure and I will explain later in this thesis how
the structure can efficiently be predicted from the sequence information. For example,
it is possible to identify highly structured metabolite binding pockets, in combination
with formally unstructured regions, that are available to bind other RNAs in the envi-
ronment. Similarly, metabolite binding can induce a conformational change that alters
RNA mediated information transfer.

RNA modeling primarily supports theories about RNA function by confirming ex-
perimental observations. It is important to stress the word observation, as measure-
ments always influence the model system and even a computational model perfectly
matching experimental data cannot capture the full complexity of a real world phe-
nomenon.

RNA design is the inverse problem: to optimize RNAs with a particular function
that has to be tested experimentally. Figure 1 shows a feedback loop to design RNA
sequences. The process is essentially an in silico evolution of a sequence until it suf-
fices the design criteria. The selection criteria are evaluated with RNA modeling, thus,
build on the observation of experimental data. However, the artificial evolution process
makes RNA sequence designs so robust, that also perturbations in model parameters
may only have little effect on the designed RNA function [Dirks et al., 2004]. Along
these lines, it is often more difficult to model (confirm) an experimentally determined
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Figure 1: The process of designing a biological system. Arrows indicate an information trans-
fer that can lead to a loss of accuracy. For solid arrows, this loss of information is
avoidable or calculable, dashed lines connect theory with experiments and bear in-
herent uncertainties that are they key for understanding a real world phenomenon.
Circular arrows depict feedback loops, i. e. the process of iterative model refinement.
Bottom row: The experimental setup and its final observation lead to an initial theo-
retical model, which can be improved with new technologies. Center: Computational
modeling translates an input into output. Both input and output are inferred from
experimental findings with the prospect of simulating a real-world phenomenon. A
well trained model can also detect flaws in experimental observations. Top: RNA
design is the inverse problem of modeling. The final observation serves as input in
an artificial evolution process to find an appropriate experimental setup. The design
cycle uses modeling as selection criterion.
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function of a natural RNA molecule, while the design of such a system can be surpris-
ingly simple. In parts, because natural RNA molecules are evolved to fulfill a multitude
of different (unknown) tasks that are influenced by stress response mechanisms, alter-
native expression levels, environmental context, different cell types, or from different
stages in the cell cycle. Artificial RNAs, on the other hand, are simpler in the sense
that their desired function is mostly independent of all these influences.

However, the design methods presented in this thesis optimize RNAs with multi-
ple, combined functions and include properties that are not very well characterized in
the model. In particular, RNAs switching between different conformations, forming
catalytically active sites, or binding other metabolites. The results do not only give
feedback about the functional repertoire of nucleic acid folding but are used to estab-
lish, debug, and refine theories for molecular modeling.

1.3 a preview of this thesis

Chapter 2 provides background on existing programs for RNA modeling. This in-
cludes the chemical decomposition of nucleic acids, the biophysical energy model and
existing algorithms for modeling the thermodynamics and kinetics of single RNA fold-
ing.

Chapter 3 introduces background on thermodynamic properties of interacting RNA
molecules and then shows my own contributions for the kinetic modeling of RNA-
RNA interactions. The algorithmic work builds on coarse-grained RNA energy land-
scapes described in Chapter 2.

Chapter 4 introduces previous work on cotranscriptional folding and then continues
with my own contributions. First, I present a strategy to include the binding of small
metabolites, which has also been published as a separate book chapter [Badelt et al.,
2015b]. Second, I present a new program DrTransformer to model the folding kinetics
of larger RNAs during transcription.

Chapter 5 provides background about sequence design landscapes and their relation-
ships to RNA energy landscapes and then continues describing the most effective,
existing sequence design algorithms. In that context, I present a new RNA design
library, which is part of the newest release of the ViennaRNA package.

Chapter 6 is a standalone publication with shared first authorship [Petkovic et al.,
2015] that shows RNAs with self-processing activity. The ribozymes presented in the
study catalyze their own circularization or elongation.

Chapter 7 is a standalone publication [Badelt et al., 2015a], following up a shorter
conference paper [Badelt et al., 2014] that shows conformational self-replication. The
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RNAs induce a conformational switching between other copies of the same molecule.
A mechanism that has so far only been known from the protein world.

The structure of this thesis does not reflect the historical order of my research. In
fact, the peer-reviewed publications in Chapters 6 and 7 have raised my attention for
folding kinetics of interacting RNAs, as this is a central concept in both publications.
While it is possible to design RNAs that interact in a specified way, modeling the
kinetic processes of the interaction (as discussed in Chapter 3) is a much greater chal-
lenge. However, with the perspective of designing multi-functional, artificial networks,
it will be necessary to design more complicated RNAs such as those interacting during
transcription (Chapter 4).



Part II

R N A M O D E L I N G





2
M O D E L I N G O F S I N G L E R N A M O L E C U L E S

This chapter is written as an introduction into the basic chemistry that governs RNA
folding and a summary of how these findings have been incorporated into RNA fold-
ing algorithms. Importantly, I want to emphasize that RNA molecules are dynamic
polymers and there is never one single important conformation. Instead, to understand
the function of an RNA molecule, one has to look at an ensemble of structures. This
chapter will provide fundamental details that are necessary to understand my own
contributions to the field of RNA interactions (Chapter 3) and RNA folding kinetics
on dynamic energy landscapes (Chapter 4), as well as for the following chapters on
RNA design in Part iii.

Also, this chapter introduces a notation to formulate RNA structure prediction as
a mathematical problem. This notation will be mostly consistent with the notation
in Lorenz [2014], a recent PhD thesis that focuses on single stranded RNA structure
prediction. More detailed information about implementations of algorithms and prop-
erties of RNA energy models can be found, for example, in Lorenz [2014] and An-
dronescu [2008].

2.1 properties of rna molecules

RNA molecules can in principle form an infinite number of conformations, however,
certain chemical properties of the molecule enabled researchers to (i) infer rules for
RNA folding, (ii) define different levels of abstraction for the term RNA structure and
(iii) incorporate thermodynamics to formulate RNA folding as a physical problem of
minimizing free energy. This section is a brief summary of this process, before we
pinpoint mathematical models and their implementation.

2.1.1 Chemistry of RNA molecules

An RNA molecule is an elastic ribose-phosphate polymer chain, with the ribose being
covalently bound to one of four differently interacting nucleotides: Adenine (A), Cy-
tosine (C), Guanine (G) or Uracil (U). The chemical composition of these nucleotides
determines their possibility to interact with each other and with the RNA backbone.
The RNA backbone determines the steric flexibility, i. e. which nucleotides of an RNA
molecule can find each other for interactions.

Early observations were that single RNA molecules tend to form very characteristic
helices and that these helices are formed mainly from six canonical base-pairs AU, UA,

11
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Figure 2: Canonical properties of RNA molecules. Left panel: chemical decomposition of a
single stranded RNA Molecule with the sequence AUG in 5’ to 3’ direction. Cen-
ter: hydrogen-bonding between the three canonical base-pairs (AU, GC, UG). Right
panel: (top) yellow background indicates base-pair stacking in a helix. (bottom) base-
pair stacking in a hairpin loop.

GC, CG, GU, UG. From more recent systematic searches in reduced-redundancy lists
of experimentally determined RNA structures, these base-pairs were found to make
about 76% of the total base-pairing pattern [Stombaugh et al., 2009].

It turned out that there are two fundamental reasons why canonical base-pairs are
the driving force for RNA folding: first, these base-pairs are isosteric, i. e. they can
substitute each other by mutation without disrupting the typical helical conformation.
Second, the typical helical conformation enables nucleotides to share π-orbitales of
their aromatic rings. This mechanism is known as base-stacking and turns out to be the
main stabilizing factor for helices (see Figure 2).

In addition to the six canonical base-pairs, many other base-pairing interactions have
been discovered and can be described following a systematic nomenclature suggested
by Neocles Leontis and Eric Westhof Leontis and Westhof [2001]; Almakarem et al.
[2011], see Figure 3 for a summary.
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pairing classification, each nucleotide has three edges for interaciton. The Watson-
Crick edge (W), Hoogsteen edge (H) and Sugar edge (S). All of these edges can
interact in cis or trans, relative to the backbone orientation. Only a subset of possi-
ble pairwise interactions is shown. It is straightforward to extrapolate the remaining
possibilities as well as more complex formations of base-triplets.

2.1.2 RNA secondary structure

Before going into details on energy models, the notion of RNA structure must be
consistent. Researchers commonly distinguish three levels of abstraction:

primary structure The primary structure is the sequence of nucleotides, without
any steric information. This simple representation is often used to predict whether an
RNA encodes the information to produce a protein, or has the potential to interfere
with regulatory pathways by intermolecular base-pairing.

Definition 2.1 The primary structure of an RNA molecule is an ordered sequence of letters
σ = (N1, . . . ,Nn) where N ∈ {A,C,G,U} and n is the length of the molecule.

secondary structure The secondary structure contains the information of the
primary structure and the helices formed, but no steric information how these helices
are arranged in space. This representation of RNA structure is closely connected to the
concept of hierarchical folding [Brion and Westhof, 1997]: RNA folding is a two step
process in which first individual helices form and then they arrange relative to each
other. The secondary structure thus determines the possible 3-dimensional arrange-
ments and, thereby, the functional space of a particular RNA. A formal definition of a
pseudoknot free, canonical secondary structure will be given below and I will refer to
this definition in the remainder of this thesis.

Definition 2.2 An RNA secondary structure s is a connected graph with vertices and edges
G = {V ,E}, where the set of vertices corresponds to nucleotides, and the edges correspond to
(i) the covalently bound backbone and (ii) the hydrogen bonds forming base-pairs. The edges
representing the backbone connect every pair of consecutive bases in the sequence interval [1,n].
The edges representing the base-pairs (i · j) must fulfill the following properties:
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Figure 4: Different possibilities to display a tRNA molecule. Top: The primary structure is a
string of nucleotides. Left: The secondary structure shows the base-pairing pattern
of an RNA (visualized with forna [Kerpedjiev et al., 2015a]). Center: The tertiary
structures shown with helices as stiff green cylinders, hairpin loops as blue sticks and
the multiloop in red. Right: A more detailed representation of the tertiary structure.
Black residues with labels correspond to the secondary structure visualization. The
colors green, blue and magenta show the different loop-types seen in the secondary
structure drawing. Two of the hairpin loops are engaged in a pseudoknot interac-
tion. The structure was drawn using Pymol [Schrödinger, LLC, 2010] such that bases
are depicted as single sticks. The tertiary structures were determined with electron
microscopy, PDB-ID: 1ZO1 [Allen et al., 2005].

1. (i · j) ∈ {A ·U,U ·A,G ·C,C ·G,G ·U,U ·G}

2. if (i · j) and (k · l) and i = k then j = l

3. if (i · j) and (k · l) and i < k < j then i < l < j

4. if (i · j) and i < j then i+ 3 < j

Conditions 1–4 state that: (1) base-pairs have to be canonical, (2) bases may only form
one base-pair at a time, (3) base-pairs have to be nested, such that no pseudoknots are
possible, and (4) the minimal hairpin loop size has to span 3 unpaired nucleotides for
steric reasons. Importantly, all secondary structures within that definition are sterically
possible.

It is worth pointing out that researchers can have alternative definitions of secondary
structure, e. g. above mentioned non-canonical base-pairs can be included, as well as
base-triplets, different kinds of stacking interactions and pseudoknot structures. Fig-
ure 4 shows a secondary structure including a common pseudoknot interaction of
tRNAs.
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tertiary structure The tertiary structure is the most complete form of RNA
representation and its prediction relies heavily on the correct secondary structure. It
commonly refers to a three-dimensional model, that either depicts the steric conforma-
tion of an RNA molecule with all details about the atomic positions, or various levels
of abstractions. Figure 4 shows and example where bases are visualized with single
sticks, and the backbone is a smooth line. Other visualizations, such as used by the
coarse-grained tertiary structure prediction tool Ernwin [Kerpedjiev et al., 2015b] show
the positioning of helices relative to each other. Tertiary structure prediction is an ex-
tremely challenging research area, often with the intention to predict RNA molecules
that have been crystallized, down to Ångström resolution.

notation Unless explicitly stated otherwise, I will refer to RNA primary structure
(Definition 2.1) whenever I use the terms RNA, RNA sequence or RNA molecule, and to
the definition of RNA secondary structure (Definition 2.2) whenever the terms RNA
conformation, RNA structure or RNA secondary structure are used.

2.1.3 The nearest neighbor energy model

Thermodynamic modeling of RNA secondary structure quantifies the folding process
by the change of free energy ∆G. This change is computed as the difference between an
unfolded molecule (i. e. the open chain conformation) with a free energy of 0 kcal/mol
and the structure of interest. The free energy of a reaction is computed as

∆G = ∆H− T∆S (1)

where ∆H describes the enthalpic contribution and ∆S the entropic, temperature de-
pendent contribution of a chemical reaction. Note that the term E(s) will be used to
quantify the free energy of a structure s, which is conceptually equivalent to the free
energy difference between the structure s and the open chain.

loop decomposition The nearest neighbor (NN) energy model is based on the
realization that stacking interactions are the driving force for RNA folding. This signifi-
cantly increased the accuracy of RNA structure prediction compared to early attempts
that maximized the number of canonical base-pairs in an RNA molecule [Nussinov
and Jacobson, 1980]. The basic idea is to decompose RNA secondary structures into
unique, additive elements called loops. The energy contributions of the most common
loops are measured experimentally and tabulated in parameter-files, while energy con-
tributions for the rest are extrapolated with mathematical models. The free energy of
an RNA structure is computed by the sum of all loop free energies:

E(s) =
∑
l∈s

e(l) (2)
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Figure 5: An RNA secondary structure is decomposed into the loop types from the nearest
neighbor (NN) energy model. The sum over all loop energies yields the free energy
of the molecule.

See Figure 5 for an RNA structure decomposed into three different loop types:
Hairpin loops are enclosed by a single base-pair, interior loops are enclosed by two
base-pairs and multi loops are enclosed by more than two base-pairs. Using this loop-
decomposition, a stacking interaction between two adjacent Watson-Crick base-pairs is
a special case of an interior loop that happens to be energetically favorable. All remain-
ing single-stranded regions that are not enclosed by base-pairs (e. g. unpaired 3’ and 5’
ends) are denoted as exterior loop with the free energy contribution of 0 kcal/mol.

This loop-decomposition reveals abundant RNA structure elements that were mea-
sured by optical melting experiments and whose energies are publicly available in
the nearest neighbor parameter database [Turner and Mathews, 2009]. For example,
today’s parameter files list the free energies for every interior loop of the form: 0-0,
0-1, 1-1, 1-2, 2-2, 2-3, where these numbers correspond to the unpaired bases between
two closing base-pairs. The majority of loops have not been experimentally measured,
but are extrapolated from mathematical models. Note that the 1-1 case describes a non-
standard base-pair embedded in a canonical helix. This base-pair may slightly displace
the RNA backbone, but can still contribute hydrogen bondings and favorable stacking
interactions to the helix.

environmental and model parameters used in this thesis

• Temperature: RNA folding is a temperature dependent process and parameter
files list the free energy at 37◦C together with the enthalpy. This allows the calcu-
lation of the free energy for every other temperature following equation 1. Unless
explicitly stated otherwise, RNA folding is modeled at 37◦C in this thesis.
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• Ion concentrations: The majority of NN energy parameters is measured at a ion
concentration of 1M NaCl. The idea is that high concentrations of monovalent
ions compensates for the lack of divalent ions such as Mg2+. Recent experi-
ments demonstrate the changes in helix stability for varying ion concentrations,
and suggest to include varying ion concentrations into RNA folding e. g. Draper
[2004]; Tan and Chen [2006, 2007]. However, the theory for an efficient algorith-
mic incorporation of these parameters is complicated and remains to be devel-
oped. Until then, the experimental results can be used to reassess the energy
contribution of a particular structure, rather than predicting the structure in the
first place. Hence, results in this thesis are computed using the standard environ-
ment of 1M NaCl.

• Dangling ends: Stacking interactions do also occur in single stranded regions.
Especially engaged are those bases immediately adjacent to helix-closing base-
pairs, so-called dangling ends [Neilson et al., 1979]. Their energy contributions
have been included into RNA folding, however, the user is free to choose from
different models of how these parameters are evaluated. The default model used
in this thesis allows a single nucleotide to contribute with all its possible favor-
able interactions. Alternatively, an (algorithmically) more complex model has
been suggested in which the unpaired base can stack with at most one base pair.
Also stacking interactions between two helices emerging from the same loop
region, coaxial stacking [Walter et al., 1994] can be included.

• DNA: While RNA favors an A-helix conformation, DNA favors the very charac-
teristic B-helix. The set of canonical base-pairs is slightly different with Thymine
replacing Uracil (i. e. AT, TA, GC, CG, GT, TG). However, also DNA strands can
fold back on themselves and the principle of the NN energy model remains the
same. In general, all folding algorithms described in this thesis are easily adapt-
able to DNA modeling by switching to the appropriate NN energy parameters,
e. g. SantaLucia Jr and Hicks [2004].

2.2 rna secondary structure prediction

The number of RNA secondary structures (see Definition 2.2) grows exponentially
with sequence length (approximately 1.4848n−3/2(1.8488)n [Schuster et al., 1994]),
however, the minimum free energy (MFE) secondary structure can be computed in poly-
nomial time O(n3). Here, I will give an overview of the dynamic programming (DP) al-
gorithms to compute properties of RNA molecules, such as MFE, ensemble free energy,
and base-pair probabilities. All of these algorithms are implemented in the ViennaRNA

package [Hofacker et al., 1994; Lorenz et al., 2011], a comprehensive, well-maintained
and runtime-optimized C library that enables programmers a “plug-and-play” devel-
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Figure 6: The dynamic programming recursions for MFE secondary structure prediction as
implemented in the ViennaRNA package. Image adapted from Bompfünewerer et al.
[2008].

opment using the scripting languages Perl and Python. In later chapters, I will present
new algorithms that are using this interface.

Note that there are multiple other programs for structure prediction, design and re-
lated problems. The probably most popular examples are mfold [Zuker, 2003], UNAfold
[Markham and Zuker, 2008], RNAstructure [Reuter and Mathews, 2010], NUPACK [Dirks
et al., 2007]. These programs can have small differences in the energy model parame-
ters and also the implementations are often directed to address particular challenges
related to RNA folding.

2.2.1 Minimum free energy prediction

There is an important feature about our definition of RNA secondary structures that
makes calculation of equilibrium properties feasible in polynomial time: Every base-
pair divides a structure into two separate parts and the optimal solution for the com-
plete structure is exactly the sum of the optimal solutions for the two substructures.
This feature is described by Bellman’s Principle of Optimality and makes RNA structure
prediction solvable with DP: the MFE of the smallest sub-sequences (length 5) is calcu-
lated, tabulated, and looked up for the calculation of the next bigger sub-sequences
(length 6), and so forth, until the solution for the full-length molecule is found. Impor-
tantly, only optimal solutions are tabulated, but not the history of how these solutions
were computed. Finding the secondary structure corresponding to the MFE then re-
quires an additional backtracking routine in order to reconstruct the optimal path
through the DP matrices.

Figure 6 shows recursions to calculate the MFE for any subsequence (Fi,j). Using
DP, this problem can be solved in O(n4) time and O(n2) space, where the dominating



2.2 rna secondary structure prediction 19

factor for computation time are interior loops O(n4) followed by multi loop recursions
O(n3). The ViennaRNA package reduces time requirements by excluding interior loops
that are larger than 30 unpaired nucleotides in total. This is reasonable, as such large
interior loops are not observed in crystallized structures and there are no measured
energy parameters available. Thus, the formal time-complexity to find optimal interior
loops is reduced to O(n2), making multi loop recursions the now determining factor
for RNA folding at O(n3) runtime.

2.2.2 Ensemble properties and base-pair probabilities

The MFE secondary structure alone provides little information about the RNA molecule.
It is the most likely structure in thermodynamic equilibrium, yet it is unclear how likely
this structure is. With the equilibrium partition function of a system, it is possible to cal-
culate statistical properties considering the thermodynamic ensemble of all secondary
structures. The equilibrium partition function Z is computed as the sum over all possi-
ble structuresΩ (Definition 2.2), weighted by their energy in an Boltzmann-distributed
ensemble:

Z =
∑
s∈Ω

e
−E(s)
RT (3)

McCaskill [1990] introduced a DP algorithm to compute this partition function with
the same time complexity as computing the MFE structure. A basic requisite is a unique
decomposition of RNA secondary structures, ensuring that every structure is com-
puted exactly once (e. g. Figure 6). If these criteria are fulfilled, one can use the same
DP algorithms as described for MFE folding, but replace min with a

∑
operation and

add up the Boltzmann distributed free energies of sub-sequences.
The partition function is of particular importance to compute properties of the sec-

ondary structure ensemble. The ensemble free energy G of an RNA molecule is given
as the free energy of the partition function:

G = −RT · lnZ (4)

The difference between MFE and ensemble free energy G will be used later in this
thesis to determine the occupancy of the MFE secondary structure in thermodynamic
equilibrium. In general, if the free energy of a structure is close to the free energy of
the ensemble, then the ensemble is dominated by this structure.

The second important application for the equilibrium partition function Z is to com-
pute the probability of forming a particular secondary structure P(s)

P(s) =
e

−E(s)
RT

Z
(5)
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Also, the efficient computation of the ensemble probability of a base-pair P(i · j) or
likewise of a particular sub-structure is possible by computing a constrained partition
function Z(i·j) =

∑
s∈Ω(i·j)

e
−E(s)
RT where Ω(i·j) are all secondary structures forming the

base-pair (i · j). Hence, the probability P(i · j) is given as

P(i · j) =
Z(i·j)

Z
(6)

2.2.3 Suboptimal secondary structures

Different types of suboptimal secondary structures have been introduced for RNA fold-
ing. Zuker suboptimal structures are defined as calculating for every possible base-pair
the optimal structure given that base-pair [Zuker, 1989]. This set of structures grows
only quadratically with sequence length and can be used for heuristic approaches to
RNA folding. In practice, however, it follows that every base-pair present in the MFE

structure will regenerate the MFE structure and it is impossible to find suboptimal
structures that are composed of more than one suboptimal substructures.

In contrast, Wuchty suboptimal structures [Wuchty et al., 1999] capture the whole sec-
ondary structure space we have previously introduced as Ω and hence grow exponen-
tially with sequence length. In practice, suboptimal structures with a low free energy
are especially interesting for RNA folding. RNAsubopt [Wuchty et al., 1999] computes
all conformations within a specified energy range above the MFE by altering the DP

backtracking routine.

2.3 rna energy landscapes and folding kinetics

While thermodynamic properties of RNA molecules provide a static, steady state im-
age of RNA folding, this section addresses the dynamics of RNA molecules when
being out of equilibrium. RNA folding kinetics often plays an important role in living
systems, either because it prevents the MFE secondary structure from being formed dur-
ing the life-time of a molecule, or because environmental changes induce a re-folding
of an RNA molecule into a different conformation with an alternative function.

This section will introduce the concept of energy landscapes and their inherent prop-
erties. It will show two-dimensional projections of these landscapes and discuss bio-
physical models to simulate the stochastic process of RNA folding kinetics.

2.3.1 RNA energy landscapes

With the previously introduced energy model E(s) and the set of suboptimal struc-
tures Ω, we have already introduced two out of three components to define an RNA
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Figure 7: The move set (neighborhood relation) of an RNA molecule that can form three differ-
ent base-pairs.

energy landscape. The last missing piece is a move setM to describe all possible folding
reactions within the set of suboptimal structures, formally:

Definition 2.3 Let L = (Ω,M,E) be the energy landscape of an RNA molecule. Ω is the set
of RNA secondary structures,M is a move-set that defines neighboring structures as those that
differ by a single base-pair and E is the NN energy model assigning a fitness value in form of a
free energy to each conformation.

Each of the three properties can be replaced for an alternative landscape definition. Single base-pair
moves are always
reversible and
ensure ergodicity

In order to make landscape analysis computationally tractable, Wuchty suboptimal
structures can be used to compute only the energetically low parts. The move-set M,
has to ensure ergodicity, i. e. that every conformation can be reached from every other
conformation. The concept of single-base-pair moves (see Figure 7) satisfies this condi-
tion. Alternative move-sets insert and break whole helices in order to explore folding
landscapes faster. This sacrifices the reversibility of moves, since the possibility of fold-
ing into particular secondary structures depends on the order of how helices have
been inserted [Flamm and Hofacker, 2008]. E. g. insertion of two helices can result in
one big helix and therefore the insertion of the second helix is not reversible. In section
2.3.5 models of well defined coarse-grained energy landscapes will be introduced that
reduce the number of conformations while keeping reversibility.

2.3.2 Walks and folding pathways

RNA folding pathways describe structural rearrangements as a sequence of moves to Folding pathways
may be direct or
indirect, but they
should be cycle-free
for computational
modeling.
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Figure 8: Direct paths connecting two structures with base-pair distance d = 5. When setting
the upper bound w = 2, only the blue and yellow structures are evaluated and
the best two (yellow) structures are selected to generate conformations in the next
distance class. Figure adapted from Flamm et al. [2001].

transform one structure si into another structure sj, we write P = (si, si+1, . . . , sn−2, sj)
for a path of length n. RNA folding is a stochastic process, thus, a typical RNA fold-
ing pathway visits the same conformations multiple times before a large structural
rearrangement takes place. For computational modeling, we are mostly interested in
cycle-free paths, i. e. a path is cycle-free if every structure sk along the path is visited
exactly once. Furthermore, we distinguish between direct and indirect paths: a path is
called direct if there is no shorter path between the start and the end structure, and
indirect otherwise. Hence, the length of a direct path is exactly the base-pair distance
between the first and last structure.

If the energy function E is taken into account, then any folding path P has a saddle
point with energy EP = maxs∈P E(s), and the energy barrier ∆G‡ between the start
structure si and the stop structure sj is determined by the lowest saddle point among
all possible paths Psi→sj

∆G‡ = min
Psi→sj

EP − E(si) = min
P

max
s∈P

E(s) − E(si) (7)

Finding the best folding path has been shown to be a NP-hard problem [Maňuch
et al., 2011]. However, there exist fast heuristics to compute near optimal direct paths
between two structures, such as the findpath [Flamm et al., 2001] breadth-first search
algorithm available in the ViennaRNA package. For every current structure sk on the
path P, a list of neighbors sl ∈ N(sk) is generated with base-pair distance d(sl, sj) =
d(sk, sj) − 1. In practice, that means that sn has a base-pair removed which is not
present in sj or a base-pair inserted which is required for the final conformation sj.
From this set of neighbors, findpath choses the energetically best w solutions for
the next round of neighbor generation (see Figure 8). With the parameter w = 1 the
method implements a greedy heuristic based on the NN energy model. For higher
search widths, findpath starts an iterative procedure initialized with w = 1 to find
an upper bound for subsequent iterations and then gradually doubles the search width
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until the specified parameter w has been reached. Hence, the upper bound of the
current iteration is determined from the previous result, at the cost of doubling the
total runtime.

walking on the landscape If the energy function E is taken into account, then
some pathways become more likely than others and we speak of so-called walks on the
energy landscape.

Definition 2.4 Take an arbitrary secondary structure sk as starting point for a walk in the Gradient walks
always chose an
energetically best
neighboring
conformation

landscape, than a random walk can take arbitrary steps, while an adaptive walk is biased
to chose only from energetically better neighbors E(sk+1) < E(sk). A gradient walk only
choses from the neighbors where E(sk+1) is minimal. Both the adaptive and the gradient walk
therefore terminate once they reach a local minimum.

2.3.3 Rates of RNA folding reactions

In terms of chemical kinetics, RNA folding is a network of isomerisation reactions
(si 
 sj) and, hence, a set of first order chemical reactions. The reaction constants are
the chemical reaction rates k, and the occupancy of a particular structure Pi(t) during
RNA folding gives the probability of observing the structure si at time t. Following
the first oder chemical master equation

dPi(t)

dt
=

∑
i 6=j

(Pj(t)kji − Pi(t)kij) (8)

the change of Pi(t) is given by the sum of influx (Pj(t)kji) minus outflux (Pi(t)kij) of
the state si. Thermodynamic equilibrium is reached when the occupancy change as a
function of time dPi(t)

dt = 0 ∀ i ∈ Ω. The chemical reaction rates kij have to be related Ergodicity and
detailed balance
ensure that
simulations end in
thermodynamic
equilibrium.

to the change in free energy and they have to satisfy detailed balance

Pikij = Pjkji (9)

as implied by the chemical master equation 8.
For single-base-pair changes, reaction rates are commonly computed based on the

Metropolis rule [Metropolis et al., 1953] from statistical physics or the Kawasaki rule
[Kawasaki, 1966] originally developed to model spin diffusion constants for time-
dependent Ising models. According to the Metropolis rule, the reaction rate is constant
for all energetically favorable reactions, otherwise the rate is calculated from the free
energy difference of the transition ∆G‡ = E(sj) − E(si)

kij =

k0 if ∆G‡ 6 0

k0e
−∆G‡
RT otherwise

(10)
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where k0 is a parameter to incorporate other physical processes, that are necessary to
convert the time units to wall clock time. Kawasaki computes all rates evenly from the
change in free energy:

kij = k0e
− 1
2
∆G‡
RT (11)

arrhenius model Reaction rates for larger structural transitions are computed
with the Arrhenius equation, which quantifies the “activation energy” for a reaction.
This activation energy is computed as the change in free energy between the starting
conformation si and the transition state ∆G‡ = E(st) −E(si) where the transition state
st is the state with the worst energy during the folding reaction

k = k0e
−∆G‡
RT , for ∆G‡ > 0 (12)

Arrhenius kinetics have also been suggested for a higher resolution modeling of
single-base-pair changes [Schmitz and Steger, 1996; Zhang and Chen, 2006a]. The free
energy is split into its entropic and enthalpic contributions, such that for base-pair
formation, the entropic penalty has to be paid, before the enthalpic energy contribu-
tion is received and vise versa. Accordingly, Zhang and Chen [2006a] formulate the
Arrhenius equation such that rates for formation of a helix (or base-pair) k+ and the
opening of a helix (or base-pair) k− are treated separately

k± = k0e
−
∆G
‡
±

RT (13)

The nucleation of a helix involves an unfavorable entropy loss ∆S before enthalpic
contributions from stacking interactions are received. The barrier is therefore entropic:

∆G
‡
+ = T∆S (14)

while the barrier for opening stacking base-pairs first involves the enthalpy increase
∆H when bonds and stacks have been disrupted, before relaxed torsional angles of the
chain have favorable entropic effects:

∆G
‡
− = ∆H (15)

The model satisfies the detailed balance condition (Equation 9) with

k+

k−
= e

(∆H−T∆S)
kT (16)

solving the chemical master equation An exact solution to the chemical
master equation can be obtained by numerical integration. One way is to use matrix
exponentials, as implemented in the program treekin [Wolfinger et al., 2004]. Given
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a population vector ~p(t) = (P1(t), . . . ,PN(t)) and a matrix of transition rates R = {kij},
the master equation can be rewritten as

d~p(t)

dt
= ~p(t)R (17)

with the benefit that the formal solution can be computed from an initial population
vector ~p(0) as

~p(t) = ~p(0)etR (18)

Using matrix decomposition methods [Moler and Van Loan, 2003], landscapes with
roughly 104 structures can be solved explicitly. Unfortunately, already the conforma-
tion space of short molecules easily exceeds this number and thus there are gener-
ally two strategies to approximate folding kinetics: stochastic simulations of statisti-
cally correct trajectories and exact solutions on coarse-grained energy landscapes. Both
strategies will be addressed in the remainder of this chapter.

2.3.4 Stochastic modeling of RNA folding kinetics

RNA folding can be modeled with a statistically correct random walk in the energy
landscape. Assuming that every structural transition is independent of the previous
transitions, the formally correct approach is based on sampling using a memoryless
Markov Chain Monte Carlo method. Potential structural transitions are chosen from
a random distribution of neighboring conformations and accepted or rejected accord-
ing to the probability of the transition. The time needed for a structural transition is
proportional to the trial and error process until a selected move has also been accepted.

The problem gets slightly more complicated for RNA energy landscapes, as the stan-
dard Markov Chain Monte Carlo assumes a constant neighborhood when sampling
trajectories. The neighborhood of RNA secondary structures is variable, i. e. dependent
on the current conformation, and has to be computed at every step in order to ensure
detailed balance. Flamm et al. [2000] therefore implemented a rejection-less, continuous-
time Markov Chain Monte Carlo method, also known as Gillespie-type simulation
[Gillespie, 1977]. The neighborhood is computed to calculate the total flux out of the
current stat si as

Φ =
∑
i 6=j

k(si → sj) (19)

where k depends on the rate model chosen from the ones discussed above. Using the
flux Φ, the rates can be corrected proportionally

k ′(si→j) =
k(si→j)

Φ
(20)
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and the neighboring conformation can be chosen from the flux-corrected distribution
using a random number rk ∈ [0, 1]. In a standard Markov Chain Monte Carlo imple-
mentation, the waiting time for accepting a move decreases exponentially during the
trial and error process. Hence, in the rejection-less method, the flux Φ can be used to
compute the waiting time before moving to the neighboring conformation as

τ =
− ln(rτ)
Φ

(21)

where rτ ∈ [0, 1] is a second random number. Using a rejection-less Markov Chain
Monte Caro is also convenient, as RNA energy landscapes are rough, i. e. they contain
lots of local minima that trap structures for a long time. The acceptance rate is therefore
very low and standard Markov Chain Monte Carlo can get stuck in a current structure
for a long time.

While Kinfold [Flamm et al., 2000] models stochastic trajectories using single base-
pair moves, Kinefold [Isambert and Siggia, 2000] models RNA folding using whole
helix transitions. More recently, Schaeffer et al. [2015] have implemented Multistrand

for stochastic modeling of multiple interacting nucleic acid molecules.

2.3.5 Reduced and coarse-grained energy landscapes

RNA energy landscapes are high-dimensional with valleys, mountains, funnels, ridges
and plateaus. In the last section we have called them rough, as structures easily get
trapped in locally optimal conformations. Now, we note degeneracy as another unfor-RNA energy

landscapes are
rough and
degenerate

tunate characteristic: multiple suboptimal structures exist on the exact same energy
level, making it impossible to pick a best structure without introducing other artificial
criteria.

We will now discuss how to chose a representative set of RNA secondary structures
and transition rates between them such that the overall kinetics on that reduced set
resembles the kinetics in the full energy landscape. Such a process is called coarse-
graining: a given set of micro-states is partitioned with respect to selected features
and the partitions form macro-states in a system. It is often convenient to have a
representative for each macro-state, e. g. the secondary structure with the lowest free
energy.

As an example, consider secondary structures without lonely base-pairs, also called
canonical secondary structures [Bompfünewerer et al., 2008] as coarse-graining for the
landscape of Wuchty suboptimal structures. The partitioning is easy: removing all
lonely base-pairs from a given suboptimal conformation (micro-state) yields the re-
spective canonical structure (macro-state). For such a moderate partitioning, it is easy
to show that representative macro-states closely resemble the dominating micro-states
and hence the kinetics on the coarse-grained energy landscape is a reasonable abstrac-
tion of the true micro-system. Canonical energy landscapes are only a small reduction,
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Figure 9: Projection of an energy landscape into a barrier tree using a flooding algorithm. A
sorted list of Wuchty suboptimal structures is processed to identify basins in the
energy landscape. A current structure is the transition state between two basins, if
it has neighbors in both basins. The vertical lines in a barrier tree show the energy
barrier separating local minimum conformations. The calculation of basin partition
functions (not shown) can be computed with minimal extra effort using (determinis-
tic) gradient walks after two basins have been merged by the flooding algorithm.

however, they are often used in practice as a top-level coarse-graining in order to re-
duce the number of suboptimal secondary structures in the first place.

gradient basins A particularly elegant way of coarse-graining has been intro-
duced with the program barriers [Flamm et al., 2000, 2002] and will serve as a basis
to coarse-grain landscapes of interacting RNA molecules in Chapter 3 and cotranscrip-
tional landscapes in Chapter 4. The partitioning works on two levels, the first level is
a flooding algorithm to identify local minimum conformations and the lowest energy
barriers separating them, the second level is a partitioning using gradient walks (see
Section 2.3.2) to ensure a unique landscape decomposition and calculate the partition
function for macro-states, so-called gradient basins.

Coarse-graining energy landscapes with a flooding algorithm works as follows: for
every structure in an energetically sorted list of suboptimals s ∈ Ω, the neighbors
N(s) are generated and compared with the set of previously processed structures.
If none of the neighbors matches a previously processed structure, then s is a new
local minimum and hence the representative structure in a new macro-state. If all
matched neighbors N+(s) belong to the same local minimum α, then s is assigned
to α and if matched neighbors are part of different local minima then s is a saddle
point in the energy landscape connecting these local minima. From that point on, the
connected local minima are merged into one macro-state represented by the former
deepest minimum.
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In order to compute the partition-function for macro-states, the basins of attraction
comprise all structures that lead there with a gradient walk. For kinetic simulations on
a gradient-basin landscape, the transition rates between macro states are calculated as
the sum over all micro-rates between the basins

k(α→ β) ≈
∑
x∈α

∑
y∈β

P(x|α)k(x→ y) (22)

where P(x|α) is computed assuming that the ensemble of structures in basin α is
instantaneously in equilibrium. Thus, the coarse-graining works well if equilibrium
within a macro-state is fast compared to transitions between macro-states.

In the program barriers, the size of gradient basins, as well as the number of
suboptimal gradient basins is adjustable. Figure 9 shows the flooding of an energy
landscape and an example barrier tree. Macro-state decomposition for the degenerate
case can be dealt with correctly [Flamm et al., 2002], but is ignored in this thesis as
it makes subsequent analysis of landscapes more complicated. For example, gradient
walks must chose randomly from all energetically best neighbors, which destroys the
deterministic computation of macro-state partition functions.



3
M O D E L I N G O F I N T E R A C T I N G R N A M O L E C U L E S

We have now studied the folding of single RNA molecules, assuming that they first
arrange into their active conformation and then interact with the environment. In a
cellular context RNA folding itself can already depend on environmental stimuli such
as interacting proteins, (small) metabolites, or simply other nucleic acid molecules
present in the vicinity. Most intermolecular binding reactions are not well character-
ized and we lack experimental energy parameters to systematically include them into
nucleic acid folding. However, interactions of two or more nucleic acid molecules are
particularly important and can be dealt with the same general methods as the folding
of single RNA molecules, although many details become more complicated.

Employing hybridization reactions in vitro led to ground breaking technologies such
as polymerase chain reaction (PCR) or reverse transcription and is a fundamental con-
cept in nucleic acid computation. In natural systems, certain classes of RNA molecules
are produced primarily to locate other nucleic acid molecules via hybridization re-
actions. Most prominent are micro-RNAs (miRNAs) that induce the degradation of
messenger-RNAs (mRNAs), and guide-RNAs (gRNAs) hybridizing to DNA and recruit-
ing enzymes or a translation complex [Zalatan et al., 2015]. Researchers more and
more use these systems for metabolic engineering and, hence, the demand for more
accurate prediction and design tools is steadily increasing.

this chapter first provides background information about thermodynamic mod-
eling of intermolecular folding in section 3.1 and then continues with my own con-
tribution to intermolecular folding kinetics starting with section 3.2. The algorithmic
work described here, as well as the results, will be adapted for publication together
with Christoph Flamm and Ivo L. Hofacker. Sources for the corresponding programs
interkin and SundialsWrapper will then be available at http://www.tbi.univie.ac.
at/software

3.1 thermodynamics of rna-rna interactions

Several methods have been proposed to deal with nucleic acid interactions, among
them Hofacker et al. [1994] showed a schematic example to compute the minimum
free energy (MFE) secondary structure of two interacting RNAs. Mathews et al. [1999]
presented OligoWalk to assess the quality of oligomer binding such as PCR primers,
Rehmsmeier et al. [2004] published RNAhybrid to find miRNA target sites in mRNAs,
and Andronescu et al. [2005] implemented PairFold to compute the MFE secondary
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structure for two interacting RNA molecules using the dynamic programming (DP)
recursions for intramolecular folding.

For molecular interactions concentration dependency becomes an issue, such that
higher concentrations of strands are expected to increase the degree of intermolecular
hybridization. This effect has been investigated for thermodynamic equilibrium using
the partition function [Applequist and Damle, 1963] and refined and applied using the
nearest neighbor (NN) energy model [Dimitrov and Zuker, 2004].

Most important for this work is RNAcofold [Bernhart et al., 2006], part of the ViennaRNA
package, which combines MFE folding, the equilibrium partition function computation,
and calculation of the monomer-dimer fractions in thermodynamic equilibrium.

It is worth mentioning at this point that Dirks et al. [2007] have extended previous
work to efficiently compute thermodynamic properties for multiple interacting nucleic
acid molecules. The algorithm is implemented in the NUPACK framework, and recently
a Gillespie-type simulator Multistrand [Schaeffer et al., 2015] was developed to model
folding kinetics of interacting nucleic acids using the same energy model [Schaeffer,
2013].

3.1.1 Intermolecular nearest neighbor interactions

In order to apply the same recursion schemes for intra- and intermolecular folding, the
two RNAs are treated as one long molecule with a missing backbone edge between
the 3’ end of the first molecule and the 5’ end of the second molecule. This missing
backbone introduces an additional loop-type to the NN energy model: the cut loop (see
Figure 10). If the cut lies in the external loop of a structure, then the two molecules
do not interact, thus, there is no entropic penalty. In every other case, intermolecular
base-pairs have formed and the (interior, hairpin, or multi-) loop energies have to be
corrected to exterior loops. Note that our definition of valid secondary structures (Def-
inition 2.2) excludes hairpin loops with less than three unpaired nucleotides for steric
reasons. This requirement is sacrificed whenever the cut is in the hairpin loop. On
the other hand, the restriction to at most 30 unpaired nucleotides in an interior loop
remains for performance reasons. A side effect of this simplified interaction model
is that some intermolecular motifs are now formally pseudoknots, such as the rather
abundant base-pairing between two hairpin loops, the kissing hairpin motif. These mo-
tifs can be predicted using e. g. RNAup [Mückstein et al., 2008], however, RNAup predicts
only one local interaction at a time, making RNAcofold the more general approach to
model RNA-RNA interactions.

We assume a well-mixed, dilute, test-tube setting where the initiation of intermolec-
ular RNA-RNA binding comes with a measurable free energy change Einit. This free
energy change quantifies the entropy-loss when forming the initial RNA-RNA inter-
action and is assumed to be independent of sequence length and composition. It has
been measured as Einit = 4.1 kcal/mol [Mathews et al., 1999; Turner and Mathews,
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Figure 10: Hairpins, interior loops and multi-loops with cuts have to be scored as exterior
loops. The cut is between two nucleotides (black ball and white ball). All possible
cases that have to be considered in the DP recursions are shown. Figure adapted
from Bernhart et al. [2006].

2009] at standard buffer conditions and is added to every conformation once, given at
least one intermolecular base-pair has formed.

The computation of the MFE secondary structure and the partition function Z enables
the calculation of all the thermodynamic properties we have previously discussed for
intramolecular RNA folding (e. g. suboptimal structures, ensemble free energy, and
base-pair probabilities) and, additionally, the concentration dependent equilibrium dis-
tributions of monomers and dimers.

For the computation of the partition function, the initiation energy Einit of the in-
termolecular contact has to be taken into account exactly once for every structure if
and only if it contains an intermolecular base-pair. This additional bookkeeping can
be avoided by introducing the term after the dynamic programming tables have been
filled. RNAcofold calculates the partition function of the full structure ensemble ZfAB
and also the partition functions of the sequence intervals [1, c− 1] and [c,n], where
n is the full sequence length and c is the index of the first nucleotide of the second
molecule. This yields the partition functions for isolated monomers ZA, ZB and we
observe the partition function for entropy-corrected dimers as

Z ′AB = (ZfAB −ZAZB)e
−Einit
RT (23)

An additional complication for homodimers is that they have to be corrected for a two-
fold rotational symmetry that reduces their conformation space by a factor of 2. Since
the partition function computations assumes two distinguishable molecules, Z ′AA is
computed as

Z ′AA =
(ZfAA −Z2A)

2
e

−Einit
RT (24)

For MFE computations and suboptimal structures, this symmetry correction is not
implemented, hence, every symmetric homodimer should get an entropic penalty of
δ = −RT · ln(2) [Dirks et al., 2007]. In order to guarantee finding the correct MFE

structure, one has to compute suboptimal structures (RNAsubopt) with an energy range
of at least δ and then add the penalty δ to all symmetric conformations.
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notation In the remainder of this chapter, we write Z ′AB for the dimer-only parti-
tion function and ZAB for all species, with dimers corrected for the entropic interaction
penalty

ZAB = Z ′AB +ZAZB (25)

and equivalently for ZAA and ZBB.

3.1.2 Concentrations at thermodynamic equilibrium

Consider a dilute solution of two nucleic acid sequences A and B with concentrations
[A] and [B]. Hybridization yields the two homodimers AA, BB and the heterodimer
AB. More complex oligomers are assumed to be disfavored by additional destabilizing
initiation entropies and neglected in the following approach. The equilibrium constant
of the chemical dimerization reaction A+B� AB is expressed as

[AB]

[A][B]
= KAB =

Z ′AB
ZAZB

(26)

and, hence, can be directly computed from the partition functions Z ′AB,ZA,ZB of the
respective molecules [Dimitrov and Zuker, 2004; Bernhart et al., 2006].

The distribution of monomers A, B and dimers AA,BB,AB at equilibrium can be
calculated using the side condition that the number of particles in the system has to
remain constant. Let [A]0 and [B]0 denote the initial concentrations of A and B in the
system, then the side conditions are given as

[A]0 = [A] + 2[AA] + [AB] (27)

[B]0 = [B] + 2[BB] + [AB]

Taken together, equations 26 and 27 form a complete set of differential equations

0 = f([A], [B]) := [A] +KAB[A][B] + 2KAA[A]
2 − [A]0 (28)

0 = g([B], [A]) := [B] +KAB[A][B] + 2KBB[B]
2 − [B]0

that can be solved by numeric integration with Newton’s iteration method and yields
the equilibrium concentrations [A], [B], [AA], [BB], [AB].

3.2 mass action folding kinetics of rna-rna interactions

Thermodynamic design has recently led to a number of synthetic devices [Green et al.,
2014; Chappell et al., 2015] that use RNA-RNA interactions to selectively perturb a
metabolic state. While the programs barriers and treekin (see Section 2.3.5) are fast
methods to model the folding kinetics of single RNA molecules, they cannot calculate
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the kinetics of concentration dependent intermolecular reactions. However, concentra-
tion dependency is generally an important aspect for metabolic engineering. Future
synthetic pathways have to be energy efficient, i. e. operate at lowest possible concen-
trations, and they have to be multi-functional. For example, a cellular stress response
mechanism leads to a variation in molecule concentrations and, thereby, to an alterna-
tive target for a synthetic RNA.

A direct solution of the master equation using matrix decomposition methods, as
implemented in treekin, cannot capture the chemical kinetics of bimolecular reactions.
Therefore, we use a more complicated approach: first the barriers method is adapted
to coarse-grain the landscapes of the interacting RNA molecules, then these landscapes
are merged into a chemical reaction graph. Finally, this graph is translated into a sys-
tem of ordinary differential equations (ODEs). Together with a vector of initial species
concentrations, the ODE system can be solved using Newton’s iteration method.

3.2.1 Theory

Coarse-graining

Let us assume the most simple scenario of RNA-RNA interactions: two RNA molecules
A and B can form the heterodimer AB, then we can write a network of the following
uni- and bimolecular chemical reactions:

Ai 
 Aj unimolecular

Bi 
 Bj unimolecular

Ak +Bl 
 ABm bimolecular

ABi 
 ABj unimolecular

whereAi 
 Aj describes the set of intramolecular structural transitions of the molecule
A between any two neighboring conformations i and j. Equivalently, k, l are any two
monomeric secondary structures that can reversibly interact to form a dimer conforma-
tionm. The structure of such a chemical reaction network is known as a directed hyper-
graph, where molecules A,B, and (often) also AB form simple, connected subgraphs
of isomerization reactions, while the bimolecular interactions introduce hyperedges
connecting the three vertices A+B+AB at once. A formal definition translating such
hypergraphs into a bipartite chemical reaction graph follows below and is depicted in
Figure 11.

Definition 3.1 Consider a chemical reaction network G composed of a set of molecules X

and a set of uni- and bimolecular chemical reactions R. Such a structure composes a directed
biparitite graph G(X,R,E), in which secondary structures X and reactions R are represented
by two different types of vertices, and the set of edges e ∈ E corresponds to educts ex→r or



34 modeling of interacting rna molecules

G
A

U

AC C

G

U

A G

G A

U

A

C

G

A

U

AC

C

G

U

A G

CG

U
A

G

G

A

U

AC C

G

U

A GG

A

U

AC C

G

U

A G
G A

U

A

C

C
G

U

A

G

G
A
U

A

C CG

U

A
G

G

A
U

A

C
C

G

U

A G

Figure 11: Graph representation of a fine-grained RNA-RNA interaction network involving the
molecules A,B,AB. Gray boxes are nodes in the network, which can, alternatively,
represent macro-states such as gradient basins of the energy landscape. Black bor-
ders separate sub-graphs of unimolecular isomerization reactions, the bimolecular
reactions are depicted in the middle with edges connecting three species at once.

products er→x with x ∈ X∧ r ∈ R. For unimolecular reactions, there is only one educt and
one product, such that we write the abbreviation ex→y with x,y ∈ X for the formal bipartite
path: ex→r, er→y.

The program barriers was adapted to process cofolded suboptimal structure out-
put, and is used to construct the graph G in a stepwise process. First, the macro-states
of monomer landscapes are added together with unimolecular isomerization reactions
(A,B,AB). This yields (at least) three disconnected components of the monomer land-
scapes which are then connected by processing the energy landscape of cofolded sec-
ondary structures. Hence, only after this last step, the graph is fully connected and
contains the bimolecular (A+B
 AB) reaction vertices.

This approach is necessary, as barriers cannot distinguish whether a reaction be-
tween two RNA secondary structures is uni- or bimolecular and it is important to
ensure that unimolecular reactions do not proceed via transition states of bimolecular
reactions. Also, the approach is very useful in practice, since molecules A and B can be
very different in length, leading to one molecule dominating the cofolded suboptimal
structures. The separate computation of unimolecular reactions balances the number
of conformations considered for each molecule, while the combined suboptimal struc-
ture space then identifies the lowest energy interaction pathways.

It is straightforward to add additional bimolecular reactions (e. g.A+A
 AA) or a
third species C. The currently limiting factors for more complicated systems are the re-
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striction to cofolded structures using the RNAcofold energy model and, in general, the
exponential structure space which limits the maximum complex size to approximately
70 nucleotides. Also, if the structure space of one of the monomers is to large, it is not
feasible to connect the unimolecular subgraphs in the cofolded energy landscape.

notation Following our previous notation of partition functions, we write the
monomeric landscapes as LA and LB, the landscape of cofolded monomers and dimers
as LAB, and the dimer-only landscape as L ′AB.

LAB is exactly the union of unimolecular reaction landscapes LAB = LA ∪ LB ∪
L ′AB, and it is the only landscape containing concentration dependent bimolecular
reactions. Recall the flooding algorithm implemented in the program barriers (Sec-
tion 2.3.5), then it is straightforward to partition the landscapes LA and LB into macro-
states and compute the partition function for the basins of attraction. Using the same
approach for L ′AB, we note an important difference: secondary structures that do
not interact, e. g. the open chain conformation of either molecule A or B, are not in
the set of valid conformations. Ergo, the landscape L ′AB is not necessarily ergodic
(e. g. Figure 11).

The suboptimal conformation space of LAB is processed separately to add vertices
and edges of bimolecular reactions. As pointed out previously, the barriers implemen-
tation does not distinguish between true dimers forming an intermolecular base-pair
and two separate monomers. Thus, in some cases, gradient walks differ in unimolec-
ular and bimolecular landscapes and we briefly address this problem to analyze the
expected impact on kinetic simulations.

Let x ∈ LA and y ∈ LB be monomer conformations in the respective monomer
landscapes, then the conformations can only form a dimer if there exits a neighbor-
ing conformation to both structures in L ′AB. For a gradient walk to lead from two
monomers into a dimer state, there must exist a dimer neighbor z ′ ∈ L ′AB with a free
energy lower or equal than the sum of both monomer structures E(z ′) 6 E(x) + E(y).
We observe that this is impossible with current energy parameters, since the entropic
dimer-initiation penalty cannot be overcome by a single-base-pair change. However, Occasionally,

single-base-pair
dimers are assigned
to monomer
gradient basins

the reverse case is possible, as single-base-pair changes can be favorable if they come
with an entropic bonus for breaking dimers into monomers. Thus, every gradient walk
starting in a conformation with a single intermolecular base-pair is likely to lead into a
gradient basin that formally describes two monomer states in the cofolded suboptimal
structures. Figure 12 shows how we can count this effect when comparing unimolec-
ular and bimolecular barrier trees. The gradient-basin partition functions of monomers
are smaller in monomer landscapes, while the gradient basin partition functions of
dimers are smaller in the landscape of cofolded monomers and dimers.
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LA

LB LAB L'AB

Figure 12: The barrier trees of four landscapes LA,LB,LAB,L ′AB. L ′AB may be a forest, for
the reasons described in the main text. The partition function of every molecule
is split into gradient basin partition functions (z) for each leaf in the barrier tree.
If the barrier trees are composed of the same set of suboptimal structures, then
ZAB = ZAZB+Z ′AB, however, the gradient basin partition functions may still differ.
Gradient walks assign dimer structures into monomer basins and hence lead to
zA · zB 6 zAB and zAB 6 z ′AB.

Transition rates

The computation of effective transition rates between two gradient-basins α,β has
been introduced in section 2.3.5, and is computed as

k(α→ β) =
∑
x∈α

∑
y∈β

P(x|α)k(x→ y) (22)

where P(x|α) assumes that the ensemble of structures in basin α is instantaneously in
equilibrium. Micro-rates kx→y are computed using the Metropolis rule (Section 2.3.3)
with free energy differences calculated from single base-pair transitions. The rates
for uni- and bimolecular reactions are assigned to corresponding reaction vertices (or
edges) in the previously defined reaction graph G and enable the formulation of a
system of ODEs. In particular, the macro state Aα reacts with the macro-state Aβ with
forward and backward reaction rates kf and kb

Aα
kf−⇀↽−
kb
Aβ equilibrium: kf[Aα] = kb[Aβ] (29)

where [Aα] and [Aβ] denote molar concentrations. The first order ODEs derived from
this reaction, calculate the change in concentration for [Aα] (and likewise [Aβ]) within
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time t, starting with an initial concentration and ending in thermodynamic equilib-
rium given sufficient time t→∞.

d[Aα]

dt
= kb[Aβ] − kf[Aα]

d[Aβ]

dt
= kf[Aα] − kb[Aβ]

The bimolecular reactions follow the same rules

Aα +Bβ
kf−⇀↽−
kb
ABγ equilibrium: kf[Aα][Bβ] = kb[ABγ] (30)

however, they lead to concentration-dependent second order ODEs

d[Aα]

dt
= kb[ABγ] − kf[Aα][Bβ]

d[Bβ]

dt
= kb[ABγ] − kf[Aα][Bβ]

d[ABγ]

dt
= kf[Aα][Bβ] − kb[ABγ]

with d[Aα]
dt =

d[Bβ]
dt =

d[ABγ]
dt = 0 at thermodynamic equilibrium.

3.2.2 Implementation

The above concepts are realized in the Python/Perl pipeline interkin/SundialsWrapper
that writes and compiles C code for an intermolecular RNA folding kinetics simulation
software (Algorithm 1). interkin first computes suboptimal structures with RNAsubopt

[Wuchty et al., 1999], then coarse-grains the energy landscape using barriers [Flamm
et al., 2002] and merges the output into the previously described bipartite graph G (see
Definition 3.1). Upon coarse-graining from RNAsubopt-barriers runs for monomers,
dimers and combined energy landscapes, the graph G is translated into a system
of ODEs and written into ready-to-compile C code for numeric integration using the
Sundials CVODE integrator [Hindmarsh et al., 2005; Cohen and Hindmarsh, 1996].

Computing the isomerization reactions within a dimer complex is done via filter-
ing of the cofolded suboptimal structure output. All non-interacting structures are
removed and only conformations with at least one intermolecular base-pair are pro-
cessed with barriers. In order to support cofolded RNA structure input, the barriers

neighbor generation routine had to be adapted to find hairpin loops with 0-2 unpaired
nucleotides, which is the only case where the new intermolecular cut-loop violates the
previous definition of single secondary structures 2.2. This new feature is activated
automatically when reading cofolded RNAsubopt output in barriers-v1.6.

Suboptimal structures are sorted by energy and lexicographically, in order to ensure
a consistent macro-state decomposition for degenerate landscapes. Hence, barriers
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Algorithm 1 interkin pipeline
1: S = set of single RNA molecules; . Input
2: G = (); . Empty reaction graph
3: for all x ∈ S do . Monomers
4: G← G∪ coarse_grain(x, regular)

5: end for
6: for all {x,y} ∈ S do . Dimers for cofolding
7: G← G∪ coarse_grain(x&y, filter) . ’&’ connects two monomers
8: G← G∪ coarse_grain(x&y, total)

9: end for
10: print ODEs(G)

11:

12: procedure coarse_grain(x, mode)
13: Ω← RNAsubopt(x) . single or cofolded suboptimals
14: if mode=filter then
15: Ω← filter_true_dimers(Ω)

16: end if
17: Ω← sort(Ω) . 1: energetically, 2: lexicographically
18: L← barriers(Ω) . print and parse the rate matrix
19: if mode=total then
20: G← add_bi_rates(L) . connect subgraphs
21: else
22: G← add_uni_rates(L) . add subgraphs
23: end if
24: return G

25: end procedure
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always selects the same conformation as a representative for the respective gradient
basin, independently of whether the full landscape or the unimolecular subsets are
coarse-grained. In order to assess the quality of kinetic folding simulations, the ex-
pected equilibrium distributions (including coarse-graining errors mentioned previ-
ously) can be directly computed from gradient basin partition functions of unimolec-
ular and cofolded energy landscapes.
barriers returns rates in form of arbitrary time units−1. interkin translates these

rates into wall-clock time (seconds−1) with the constant scaling factor k0 = 2 · 105. This
value will be explained in detail in the context of cotranscriptional folding in section
4.1.2.

SundialsWrapper

We have decoupled the process of translating the reaction-graph into a ready-to-compile
C code as a standalone, Perl module: Chemistry::SundialsWrapper. SundialsWrapper
comes with template C source-code files using the Sundials CVODE library [Hindmarsh
et al., 2005; Cohen and Hindmarsh, 1996]. A reaction-graph, such as produced from
interkin, is translated it into a system of ODEs and combined with the CVODE-templates
to produce simulation software. For convenience, the programs have the same com-
mand line interface as the simulator for isomerization reactions treekin.

3.2.3 Results C
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As a first example, we investigate the folding kinetics of a rationally designed pair
of RNA molecules. Both sequences are short, 25 and 17 nucleotides, and they are de-
signed to mimic the behavior of riboswitches. The sequence of 25 nucleotides is a
switch-RNA, forming either a stable hairpin structure (off) or not (on). In the absence
of the 17 nucleotide trigger-RNA, the equilibrium is dominated by the off state, oth-
erwise, the trigger-RNA unfolds the switch-RNA from off to on conformation. This
mechanism is generally called on-switch, while off-switches start in on-conformation
and are turned off by a trigger molecule. The 17 nucleotide sequence is mostly un-
structured but complementary to the riboswitch in order to favor the conformational
switching.

Figure 13 shows the calculated equilibrium distributions of all possible monomer
and dimer species as a function of molar concentrations. The switch RNA is in com-
paratively low concentrations, while the trigger RNA is supplied in excess. The distri-
butions are computed from the partition functions using RNAcofold. As the sequences
are rather short, high concentrations are needed to yield dimerization in the first place,
e. g. 1mM of the trigger-RNA converts about 50% of the switch monomer into a switch-
trigger dimer.
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Figure 13: Equilibrium concentrations of a designed pair of RNA molecules. The switch-
RNA A and the trigger-RNA B shown at their respective monomer concentra-
tions, ([A], [B]) and dimer concentrations ([AA], [BB], [AB]). As molecules are mostly
present in different concentrations, the plots show every species relative to the initial
concentration of A, i. e. [A]0 and the initial concentration of B, i. e. [B]0. Increasing
the molar concentrations leads to a higher yield of dimers in equilibrium, e. g. when
0.1 mol/l of B are present, the relative concentration of [BB] nearly approaches the
maximum of 50%. Due to the high differences of concentrations shown in the first
two plots, AB is generally not populated with respect to [B]0, but reaches close
to 100% relative to [A]0. The vertical dashed line in the third plot marks the ex-
pected equilibrium of species in the kinetic simulation shown in Figure 14. Plots
were drawn using seaborn [Waskom et al., 2014] and matplotlib [Hunter, 2007].

In Figure 14, we show the corresponding kinetic simulation, when both molecules
are present in 1 mM concentration. The simulations start the folding process in the
open chain conformation (i. e. with free energy of 0 kcal/mol). Intramolecular folding
is fast, the molecules reach intramolecular thermodynamic equilibrium after less than
one second. However, the formation of the heterodimer starts after only more than
ten seconds and reaches the predicted 40 % occupancy (see Figure 13) after about 30
minutes.
barriers allows the user to reduce the number of macro-states by adjusting the

minimum barrier height that separates a local minimum from its neighboring basins.
Merging basins in bimolecular landscapes, however, can lead to a mixture of monomer
and dimer basins, which are then assumed to be in instant equilibrium during kinetic
simulations. The simulation in Figure 14 has been computed from landscapes with
only 10−3 kcal/mol minimum basin height, in order to keep this effect as small as
possible. Alternative values for basin heights and their influence on the equilibrium
concentrations can be seen in Figure 15. The concentrations at thermodynamic equilib-
rium are calculated from the partition functions of all gradient basins in the respective
barrier trees. The low barrier height of 10−3 kcal/mol only slightly increases the con-
centrations of monomers relative to the dimer formation, which is an expected side-
effect of the barriers algorithm applied to cofolded secondary structures. Raising the
barrier height to 1 kcal/mol does not make a larger difference, as the separation of
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Figure 14: A folding simulation of two rationally designed RNA molecules (see main text). The
expected equilibrium distribution can be seen in Figure 13. The switch-RNA (blue)
and the trigger-RNA (red) are both present with a concentration of 10−3 mol/l. At
this concentrations, no homo-dimers do form. Simulations start with both molecules
being initially “unstructured”, i. e. in their open chain conformation. Intramolecular
equilibrium is reached in less than one second, with two populated structures for
the switch-RNA and three populated conformations for the trigger-RNA. Note that
the open chain conformation still has considerable occupancy when reaching equi-
librium. The formation of the AB dimer MFE structure, black trajectory, starts after
about 10 seconds and takes up to 2 · 103 seconds, i. e. roughly 30 minutes to reach
the equilibrium occupancy of 40%.
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(c) basin height = 2 kcal/mol, maximum number of basins = 500

Figure 15: Equilibrium concentrations of monomers [A], [B] and dimers [AA], [BB], [AB] at dif-
ferent concentrations. The sequences are the same as in Figure 13, but this time
the equilibrium distributions are computed from the partition functions in cofolded
barrier-trees. (a) A low minimum barrier height only leads to small differences com-
pared to the previously shown calculations using RNAcofold. The findings fit well
to the corresponding kinetic simulation shown in Figure 14. (b) Raising the barrier
height to 1 kcal/mol has no visible effect on thermodynamic equilibrium, as the
separation of monomers and dimers in the coarse-grained landscape is the same as
for 0.001 kcal/mol. (c) A barrier of 2 kcal/mol substantially influences the accuracy
of simulations. The formation of dimers is now favored, indicating that monomer
basins of attraction have been merged into dimer basins while flooding the energy
landscape.
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toehold
interactions

Figure 16: Schematic of the toehold mechanism used in nucleic acid design and computation.
Arrows mark the direction from the 5’ to the 3’ end of the RNA. Left: The toehold
(red) is an originally single-stranded region in both molecules that is available for
intermolecular base-pairing. It is supposed to accelerate the rate for intermolecular
conformational refolding. Right: the toehold mechanism as usually drawn for RNA
switches to unwind a present helix.

monomers and dimers into different basins is still intact. In contrast, a further increase
of the minimum barrier height to 2 kcal/mol destroys the separation of monomers and
dimers, apparently leading to monomer basins being merged into dimer basins during
the flooding of the energy landscape. As a consequence, dimers are overrepresented
in thermodynamic equilibrium.

Toeholds to reduce refolding times

Kinetic analysis is a time consuming process and therefore, modern nucleic acid se-
quence design uses ad-hoc criteria as an alternative. With interkin it is now possible
to analyze some of these strategies, in order to assess their efficiency. One popular
design strategy is to make use of toeholds (see Figure 16). Toeholds are single stranded
regions that lower the energy barriers for structural rearrangements. More detailed,
different requirements for toehold design depend on the research question.

In many successful RNA sequence design studies [Isaacs et al., 2004; Green et al.,
2014; Chappell et al., 2015], toeholds mediate conformational switching. Their primary
function is to stabilize intermolecular RNA-RNA binding, before the actual refolding
takes place. In this case, the toehold is designed to form a strong interaction that also
contributes thermodynamically to the switching effect.

For nucleic acid computation, toehold-binding has to be reversible. The interaction
must be strong enough to overcome entropic penalties for intermolecular base-pairing,
but weak enough to dissociate again if there are no additional base-pairs formed. The
efficiency of reversible toeholds has been studied experimentally [Yurke and Mills Jr,
2003; Zhang and Winfree, 2009; Srinivas et al., 2013], however, only recently compu-
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tational methods have been used to enhance the understanding of the underlaying
biophysical processes [Srinivas et al., 2013].

sequence design We now show comparisons of folding times for three slightly
larger RNA switch/trigger pairs, with 32 and 17 nucleotides. In contrast to the previ-
ous example, two of the designs have toeholds to initiate molecular interactions. All
of the following switch-trigger pairs are designed to be similar with respect to equilib-
rium properties (see Figure 17), which enables us to analyze kinetic effects only, rather
than differences visible at thermodynamic equilibrium.

• Cliffhanger-design (Figure 17a): is a pair of sequences that uses a toehold for
refolding.

• Conan-design (Figure 17b): is a pair of sequences not using a toehold for switch-
ing, i. e. the trigger-RNA needs to bind and unfold the hairpin of the switch-RNA
at the same time. It is worth pointing out that in an experimental setting, the
hairpin loop of the switch-RNA can serve as a toehold as well. This effect can be
ignored in our models, as we only consider pseudoknot free transition states.

• Hulk-design (Figure 17c): is a pair of sequences that can chose between refolding
with or without a toehold.

Note that Hulk-design had a rather complicated design objective, which required
three competing stable conformations. Also sequences are short to make them applica-
ble for analysis with low minimal basin heights. As a consequence, again, high concen-
trations of molecules are required to observe intermolecular interactions. For kinetic
simulations, we specify a concentration of 1µM switch-RNA and 1mM trigger-RNA,
to switch approximately 50% of the switch-RNA at thermodynamic equilibrium (see
Figure 17). Relaxing the design requirements mentioned above allows the optimiza-
tion of sequences with a higher tendency toward dimerization. All designs were made
using a new nucleic acid sequence design library RNA::Design, that will be explained
briefly in Chapter 5.

folding kinetics All sequence designs are expected to form only monomers and
heterodimers at the specified concentrations and, therefore, we can assume that homo-
dimers will not influence the intermolecular folding behavior. We have used this fact
to reduce the size of the ODE system and compute folding simulations for heterodimer
formation only. Figure 18 shows a comparison of folding times for Cliffhanger, Conan
and Hulk designs. All simulations are shown in comparison to expected equilibrium
distributions.

The results for Cliffhanger and Conan support the use of toeholds for riboswitch
design, as Cliffhanger designs switch faster by an order of magnitude. The initial
interaction in form of toehold binding forms long before the trigger/switch dimer
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Figure 17: Three different pairs of riboswitches together with trigger molecules. The nucleotide
sequences, as well as their intended mechanism of dimerization can be seen in the
top row (a-c), while the expected yield of dimers at thermodynamic equilibrium as a
function of concentration can be seen below (d-f). (a) Cliffhanger design uses a clas-
sical toehold as initial interaction. Two available single stranded regions (red) form
base-pairs (blue) before the green intramolecular helix is opened. (b) Conan design
does not have a toehold for refolding. In an experimental setting, one would have
to consider that also the (blue) hairpin region may serve as a toehold, however, this
interaction is considered as a pseudoknot in the cofolding energy model and there-
fore cannot enhance refolding rates. (c) Hulk design can chose whether it refolds
with or without the toehold. Both pathways lead to a helix of similar energy, form-
ing 14 base-pairs. The final conformation is then either the same structure formed
by Cliffhanger or Conan. (d-f) Concentrations at thermodynamic equilibrium are
roughly the same for all three sequence designs. At 1 mM trigger-RNA (dashed
line), 50% of the switch-RNA has folded into the AB dimer. Plots were drawn us-
ing forna [Kerpedjiev et al., 2015a], seaborn [Waskom et al., 2014] and matplotlib

[Hunter, 2007].
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10−6 10−5 10−4 10−3 10−2

[B]0 [mol/l]

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

R
el

at
iv

e 
co

nc
en

tr
at

io
ns

[A]0 = 10
−9 mol/l

Species

[A]/[A]0

[AB]/[A]0

[B]/[B]0

[AB]/[B]0

10−6 10−5 10−4 10−3 10−2

[B]0 [mol/l]

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

R
el

at
iv

e 
co

nc
en

tr
at

io
ns

[A]0 = 10
−9 mol/l

Species

[A]/[A]0

[AB]/[A]0

[B]/[B]0

[AB]/[B]0

(b) Cliffhanger equilibrium
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(c) Conan simulation
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(d) Conan equilibrium
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(f) Hulk equilibrium

Figure 18: Differences in refolding times of Cliffhanger, Conan and Hulk designs and their
expected equilibrium distributions. Left column: the kinetic simulations using
interkin, center: exact equilibrium distributions calculated from RNAcofold parti-
tion functions, right column: expected equilibrium distributions calculated from
the sum over all gradient basins in cofolded energy landscapes. (a) Cliffhanger: the
toehold interaction forms fast, between 10−3 and 10−2 seconds, the unfolding of
the switch-RNA from off into on conformation takes up to 10 seconds. (b) The
equilibrium calculated from RNAcofold differs from the equilibrium observed in the
kinetic simulation, while the equilibrium calculated from gradient basins in the co-
folded energy landscapes (right) fits well with the observed equilibrium. (c) Conan:
folding into the heterodimer is slower by 1-2 orders of magnitude, i. e. 10 to 103 sec-
onds. (d) The simulation finishes roughly as expected from both the RNAcofold par-
tition function and the sum-of-gradient basins partition function. (e) Hulk: similar
to Cliffhanger design, Hulk forms the toehold after a few milliseconds, the folding
into the MFE heterodimer takes longer than Cliffhanger, but is still faster than Co-
nan. The heterodimer helix not using the toehold interaction (green) populates faster
than the toehold-containing conformation (red). (f) The simulations differ from the
exact equilibrium calculated from RNAcofold, but they end approximately in the
equilibrium distribution calculated from gradient basins.
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folds into the designed on state. The same can be observed for Hulk design, however,
the trigger/switch ground states are reached at a slower rate compared to Cliffhanger.
Surprisingly, from both populated conformations in equilibrium, the conformation not
containing the toehold forms first, or at least at the same rate as the conformation
containing the toehold.

This is in contrast to our initial intention: showing that the toehold containing struc-
ture populates first, and only then refolds into the equilibrium distribution. The toe-
hold, however, enhanced the rate of both refolding pathways, although it was inten-
tionally designed to favor only one of them.

3.2.4 Discussion

We have observed an additional important aspect during the sequence design and
kinetic analysis process to produce the results shown. The main factor to determine
reaction rates is the energy of the transition state, i. e. the energy barrier separating the
conformations. Often this energy barrier occurs when forming the first intermolecular
contact. In this case a toehold improves the rate of dimerization. However, we have
initially planned to present switch-RNAs with hairpins known to terminate transcrip-
tion, which will be discussed in more detail in the context of cotranscriptional folding
in Chapter 4. The difference is that these conformations have stable tetra-loop motifs
contributing a lot of folding free energy. In that case, the reaction rate is determined
by unfolding the hairpin loop, not by the initial opening of the stem. This makes it
possible to generate Conan designs (no toehold) that are faster than corresponding
Cliffhanger designs (with toehold).

Our examples for toehold mediated interactions confirm these results. While we
have demonstrated how toeholds are functional for increasing dimerization rates, the
mode of action is more flexible than initially thought. Toehold regions do not need
to be part of the final dimer structure, they are only required for establishing the
initial contact. From there, intramolecular folding rates dominate the conformational
rearrangements, and in the case of Hulk design, the transition state toward the non-
toehold interaction is actually the same as that toward the toehold structure. The true-
dimer barrier tree in Figure 19 visualizes this effect.

During the analysis of results, we realized that some of the simulations (e. g. Cliffhanger
in Figure 18) do not reach the expected equilibrium distributions predicted from
RNAcofold. In order to exclude accumulating errors from numerical instabilities we
have reduced the problem to only heterodimer formation. However, the effect on the
results was negligible, as homodimer species are not forming at the specified con-
centrations. We then calculated the equilibrium distributions directly from gradient
basin partition functions in the coarse-grained cofolded energy landscapes. These new
distribution fit better, as the macro-states are also used to calculate transition rates.
A less well measurable factor inaccuracies is that transition rates between gradient
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Figure 19: A dimer-only barrier tree from the Hulk sequence design. The red and green con-
formation correspond to local minimum 2 and 1 and differ by 0.10 kcal/mol. The
depicted toehold interaction corresponds to local minimum 3. The three states
are separated by the same transition states, thus have the same refolding barriers:
∆G
‡
3→2 = ∆G‡3→1 = 9.70 kcal/mol, ∆G‡2→1 = 10.20 kcal/mol.

basins can be prone to numerical errors, e. g. posterior evaluation of cliffhanger reac-
tion rates showed that not all rates perfectly obeyed detailed balance, with the effect
for the dimer-only landscape

∑
α,β∈L ′AB

P(α)kα→β − P(β)kβ→α = 0.59s−1. We hope
to reduce this effect in the future by scaling the values appropriately.

It is also important to mention that dimers with a single intramolecular base-pair,
i. e. the ones that are often assigned into monomer basins, are the transition states
for bimolecular reactions. In Figure 20 we show this effect in the context of transiton
rate computations: ideally, all bimolecular reactions proceed with a rate for forming
or breaking a single intermolecular base-pair. However, if the gradient walk assigned
a dimer structure into a monomer basin, then the probability P(x|α) becomes worse,
and the reaction rate is spontaneous (kx→y = k0 s

−1, see Section 3.2.1). In the re-
verse reaction, P(y|β) will be overestimated, but now the reaction rate quantifies the
formation of a single intermolecular base-pair conformation rather than being spon-
taneous. A future implementation of barriers could circumvent this problem at the
cost of increased runtime by keeping track of which cofolded structures correspond to
monomers and dimers.
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Figure 20: Schematic of a coarse-graining error and its impact on kinetic simulations. A and
B are two cofolded RNA molecules coarse-grained using barriers. When the two
molecules A,B react to form a dimer AB, the reaction has to proceed via the tran-
sition state forming a single base-pair A-B. The reaction into the transition state is
always slow, while the subsequent reaction is spontaneous. The circles show macro-
states that are modeled to be in instant equilibrium. The red circle (right) shows the
proper way of separating monomers and dimers using gradient basins. In that case
all AB dimers are in instant equilibrium. The blue circle (left) shows the problem
when barriers assigns a transition state into monomer basins. Now the reaction
reaction rate toward dimer formation is fast, while the backward reaction, forming
monomers, is slow.





4
C O T R A N S C R I P T I O N A L R N A F O L D I N G

RNA molecules are synthesized from DNA templates in a complex and tightly regu-
lated process called transcription. The central molecule is the protein RNA polymerase
that produces the RNA molecule while reading the DNA template. Additional tran-
scription factors may stabilize the complex between RNA polymerase and DNA and
they may assist in unwinding of the double stranded DNA helix structure [Larson
et al., 2011; Dangkulwanich et al., 2014].

The rate for RNA synthesis has been found to vary between 10 to 100 nucleotides
per second [Chamberlin and Ring, 1973; Bremer and Dennis, 1996; Larson et al., 2008],
while the formation of single base-pairs in a helix can be on the order of 10−6 to 10−8

seconds [Pörschke and Eigen, 1971; Pörschke, 1974]. The RNA structures forming dur-
ing transcription can alter the conformation found at the end of transcription, but they
can also terminate the transcription process itself. For example, it has been shown
that cotranscriptional folding can lead to significant changes in secondary structure
[Kramer and Mills, 1981; Xayaphoummine et al., 2007], that it can speed up the fold-
ing into the MFE structure by sequential folding [Heilman-Miller and Woodson, 2003;
Zhang et al., 2009] and that transcriptional pausing assists for folding large molecules
[Wong et al., 2007]. Interactions with small metabolites can induce early transcription
termination by mediating the formation of terminator hairpin structures [Wickiser et al.,
2005; Mandal and Breaker, 2004; Lemay et al., 2011; Wachsmuth et al., 2013; Chappell
et al., 2015].

in this chapter we model RNA folding kinetics during transcription. Section
4.1 introduces previous work on cotranscriptional folding, including a number of ex-
isting programs and their strategies to relate folding simulations to wall-clock time.
Section 4.2 describes folding on dynamic energy landscapes as implemented in the
original BarMap program [Hofacker et al., 2010] and my own contributions to improve
and adapt BarMap-v2.0 for metabolite binding riboswitches. Parts of this section have
been published in a recent book chapter on computational modeling of riboswitches
[Badelt et al., 2015b]. We predict the termintation of premature transcripts after about
70 nucleotides have been transcribed. Section 4.3 describes a new heuristic for co-
transcriptional folding prediction implemented in the program DrTransformer. We
compare different programs and show simulations of experimentally confirmed 200
and 660 nucleotide RNA molecules. The text will be adapted for publication together
with Peter Kerpedjiev and Ivo L. Hofacker. Peter contributes visualization solutions
for cotranscriptional folding [Kerpedjiev, 2016].
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4.1 folding on dynamic energy landscapes

RNA molecules can sense and react to environmental stimuli, such as a change in
temperature, a change in ion concentrations, or a change of present interaction part-
ners. These environmental influences alter the energy landscape of the RNA molecule,
e. g. ligands stabilize RNA binding pockets and lead to conformational rearrangements.
Cotranscriptional folding is a quite drastic form of changing the energy landscape,
since it grows exponentially with every newly transcribed nucleotide. The MFE sec-
ondary structure at a particular molecule length is often not a substructure of the full
length MFE conformation. Hence, predictions of cotranscriptional folding dynamics
may help to increase the accuracy of secondary structure prediction methods in terms
of which conformations are actually formed during the lifetime of a molecule.

4.1.1 Previous work on cotranscriptional folding

Present algorithms fall into three categories: Stochastic simulations (Kinfold [Flamm
et al., 2000], Kinefold [Xayaphoummine et al., 2005], RNAkinetics [Danilova et al.,
2006]), master equation methods (BarMap [Hofacker et al., 2010], theoretical work
from Zhao et al. [2011]) and deterministic prediction of a single folding trajectory
(Kinwalker [Geis et al., 2008]).

Stochastic simulations model single folding trajectories through the energy land-
scape and provide detailed information about microscopic pathways. They are gener-
ally easy to adapt for cotranscriptional folding, as unpaired 3’ nucleotides are added
whenever the simulation time exceeds the time-threshold for chain elongation. At the
single-base-pair resolution, the Gillespie-type simulator Kinfold has been adapted to
compute single statistically correct cotranscriptional folding trajectories. In practice,
however, a single folding trajectory in the high dimensional energy landscape gives
very little information, and while a set of e. g. 104 trajectories for RNA molecules of 30
nucleotides length can be considered as a correct result, for longer molecules the simu-
lations become time intensive and potentially important parts of the energy landscape
may still never have been observed.

Xayaphoummine et al. [2007] used the stochastic simulator Kinefold to design,
model, and experimentally confirm RNA sequences with cotranscriptionally trapped
folding pathways. Kinefold uses a move set based on whole-helix transitions, which
lowers the chances of getting trapped in transient local minimum conformations. This
makes their program applicable for longer RNA molecules, at the cost of ignoring parts
of the energy landscape. Kinefold combines the stacking energies from the NN energy
model with an analytic approximation of entropic loop penalties, enabling them to
support pseuoknotted folding pathways [Isambert and Siggia, 2000].
RNAKinetics Danilova et al. [2006] is a stochastic Gillespie-type simulator using the

standard NN free energy parameters. It uses a move set based on whole helix transi-
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tions, combined with an alternative approach to compute transition rates. Kinefold
and RNAKinetics are available as web-interfaces, however, unfortunately both pro-
grams are closed source.

Exact methods using the chemical master equation consider the complete ensemble
of conformations and account for the average kinetic effect of each and every transition.
In this case, the number of RNA secondary structures increases exponentially with
chain length. However, clustering or coarse-graining methods have been developed to
make the problem of RNA folding computationally tractable.

Zhang and Chen [2002] use the master equation in combination with a statistical
mechanical energy model for RNA hairpin formation. Based on this energy model
they developed a clustering approach to identify rate-limiting steps during hairpin
formation [Zhang and Chen, 2006a,b] and simulate cotranscriptional folding using a
helix-transition move set [Zhao et al., 2011].
BarMap [Hofacker et al., 2010] simulates cotranscriptional folding using the previ-

ously introduced coarse-graining of energy landscapes into barrier trees (Section 2.3.5).
A mapping between the changing energy landscapes during transcription is used to
transfer populations of dominant secondary structures. Algorithmic details will be ex-
plained in section 4.2. As every secondary structure in the low parts of the energy
landscape is considered, BarMap is rarely applicable for sequences of more than 70
nucleotides length.

In contrast to previous methods, Kinwalker [Geis et al., 2008] is a deterministic ap-
proach to compute a single, best folding trajectory from the DP matrices filled during
MFE folding. In particular, a series of metastable structures are constructed from a com-
bination of thermodynamically optimal fragments. Selection of the next structure, as
well as the time needed for a structural transition depends on the energy barrier. The
estimation of barriers is done explicitly with either the Morgan-Higgs heuristic [Mor-
gan and Higgs, 1998] or alternatively, the findpath algorithm [Flamm et al., 2001]. Both
heuristics search for the lowest energy barrier within all shortest paths (see Section
2.3.2). Coarse-graining based on thermodynamic criteria makes Kinwalker applicable
for sequences of more than 600 nucleotides.
CoFold [Proctor and Meyer, 2013] is an attempt to model cotranscriptional folding

only with thermodynamic modeling and essentially predicts MFE secondary structures
with a penalty on long-range base-pairs. While this reduces asymptotic complexity to
that of standard MFE folding, it is hard to argue that the model actually addresses the
dynamic aspects of cotranscriptional folding.

4.1.2 Base-pair transitions at wall-clock time

In order to adjust the time period for kinetic simulations during transcription, com-
putational RNA folding speed has to be related to the real-time speed of the RNA
polymerase. Transcription has mostly been reported on a timescale between 10 to 100
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nucleotides per second [Chamberlin and Ring, 1973; Bremer and Dennis, 1996], while
RNA folding is faster than 105 base-pairs per second during the formation of helices
[Pörschke and Eigen, 1971; Pörschke, 1974]. This discrepancy allows small hairpin
structures (about 25 bases) to fold even within the transcription bubble in order to
stall the polymerase and terminate transcription, e. g. Larson et al. [2008].

A common approach for calculating folding rates is to find the (lowest) energy bar-
rier for a structural transition (∆G‡) and compute the rate using the Arrhenius equa-
tion

k = k0e
−∆G‡
RT , for ∆G‡ > 0 (12)

where k0 is a constant to adjust the free energy change to wallclock time. Detailed
balance holds, if spontaneous reactions with ∆G‡ 6 0 occur with the same rate k0
according to Metropolis (see Section 2.3.3).

Early experiments from Poerschke [Pörschke and Eigen, 1971; Pörschke, 1974] showed
that the formation of the nucleation site (i. e. the first 1-2 base-pair stacks) determines
the rate for hairpin folding. The subsequent zipping of the adjacent stacks is compar-
atively fast. This effect is consistent with the parameters of the NN energy model, as it
requires two or three base-pairs to compensate for entropic penalties of a hairpin loop
closure. Kinfold uses the Metropolis or Kawasaki model, (see Section 2.3.3) to com-
pute folding trajectories at unit time, i. e. k0 = 1. Thus, the time for chain elongation is
specified in arbitrary time units, and the user can freely adjust the conversion factor
to seconds.

Methods using helix kinetics often approximate the rate for helix formation based
on the energetically best nucleation point. Kinefold inserts a nucleus of length 3 and
computes the rates using the Arrhenius law, Zhang and Chen [2006a] use their (kinetic)
clustering approach to identify the rate-limiting entropic or enthalpic effects during
hairpin formation.

The model used in RNAKinetics is based on the assumption that the formation of
a helix is proportional to the probability of forming the first stacking base-pair and
that every stack in a helix can serve as the nucleation point. Hence, the number of
transition states is equal to the number of stacking pairs in the helix. The energy
barrier is determined by the entropic penalty1

keffform = κcNhe
T∆S
kT

with κc between 10−6 to 10−8 (according to Poerschke’s results) and Nh is the number
of stacks in a helix. For spontaneous decay (keffdiss), the enthalpic free energy contribu-
tion has to be paid such that detailed balance holds.
Kinwalker also uses Poerschke’s experiments to adjust the folding speed. The NN

free energies are used to determine the energetically best transition state and barrier

1 http://bioinf.fbb.msu.ru/RNA/kinetics/theory.html
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heights translate into first-passage times using the relation t(∆G‡) = 10−7e
∆G‡
kT seconds

for ∆G > 0 [Geis et al., 2008].
Sauerwine and Widom [2013] have concluded that (randomly distributed) Kinfold

steps correspond to 5 · 10−6 seconds and, hence, 4000 monte-carlo steps on average
lead to the measured real-time RNA folding rate during transcription. We have used
this as reference point in Badelt et al. [2015b] since BarMap and Kinfold are based on
the same energy model. Also, their result is on the order of early work from Schmitz
and Steger [1996], who observe an Arrhenius-prefactor k0 = 3.34 · 106 from calibration
according to their previous work [Randles et al., 1982].

Hofacker et al. [2010] compared slow and fast transcription with BarMap using unit
time (i. e.k0 = 1). At slow transcription rate, 77 nucleotides were transcribed in 105

arbitrary time units, fast transcription finished in 104 arbitrary time units. This corre-
sponds roughly to 100 and 1000 time units per nucleotide, i. e. a transcription speed of
200 and 2000 nucleotides per second when using Sauerwine’s relation.

In conclusion, it is not easy to find a consistent factor for the Arrhenius model that
converts unit time to wall-clock time, since there is little experimental data for mi-
croscopic rate models. Nevertheless, present experimental findings agree that folding
speed is in the order of 10−6 to 10−8 s−1 and we use the conversion factor k0 = 2 · 105
to translate from arbitrary time units (atu) into seconds, for example:

1 atu/nuc = 5 · 10−6 sec/nuc

2 · 105 atu/nuc = 1 sec/nuc

4000 atu/nuc = 0.02 sec/nuc 50 nuc/sec

1000 atu/nuc = 0.005 sec/nuc 200 nuc/sec

4.2 mass-action kinetics of metabolite-binding riboswitches

Riboswitches are RNA molecules that translate environmental signals into a genetic
program, in particular, the riboswitches discussed in this chapter can terminate their
own transcription process when sensing a small metabolite. Such mechanisms are cru-
cial for altered gene expression under stress conditions, e. g. high temperature, low
nutrition, or immune defense. In the context of this work, design of riboswitches to-
gether with a trigger mechanism gives synthetic biologists a remote control for gene
expression after a cell is successfully transfected. Figure 21 shows a cotranscriptional ri-
boswitch inserted in the 5’-untranslated regions of a protein-coding transcript to sense
the presence of a metabolite and toggle the formation of a transcription termination
hairpin. See Serganov and Nudler [2013] for a review of other strategies to embed
riboswitches into mRNA transcripts.
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Figure 21: A blueprint to design a cotranscriptional riboswitch. The switch is inserted before
the protein coding region in an RNA transcript. If the trigger molecule, e. g. a small
ligand, is present, then an anti-terminator structure competes with the terminator
hairpin and the polymerase can proceed to transcribe the subsequent protein coding
region. Otherwise, the terminator stem blocks the polymerase and transcription
terminates. The mechanism described here is an on-switch, as the ligand switches
the RNA from off to on conformation, however, also off-switches use essentially the
same principle.
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Figure 22: Schematic figure of the BarMap approach. The three programs RNAsubopt, barriers
and treekin are used to simulate folding of a growing RNA transcript. BarMap finds
a mapping between subsequent barrier trees and uses the information to transfer
populations between treekin simulations. In this figure, 30 vertical gray lines in
the BarMap simulation (right) show the time points of chain elongation, i. e. the time
of mapping between landscapes. The following plots in this thesis only show the
last vertical line to indicate the end of transcription. Simulations start in the MFE

structure of the first energy landscape, usually the open chain conformation, the
legend refers to the index of a local minimum in the last barrier tree.

4.2.1 BarMap

BarMap was published as a set of Perl scripts to build pipelines for simulating kinetics
on various kinds of dynamic energy landscapes [Hofacker et al., 2010]. The program
barriers [Flamm et al., 2002] is used to coarse-grain the energy landscapes into basins
of attraction and saddle points connecting them (see Section 2.3.5), and the program
treekin [Wolfinger et al., 2004] to compute chemical kinetics on the coarse-grained
landscape using the master equation (see Equation 8, Section 2.3.3).

Applied to cotranscriptional folding, the algorithm can be decomposed into sev-
eral steps: (i) coarse-grain every energy landscape for the growing RNA transcript
(ii) find a mapping between local minima of consecutive landscapes (short: barmaps),
and (iii) simulate folding kinetics starting in the first landscape and use barmaps to
transfer populations between consecutive landscapes. The idea is that barrier trees and
barmaps have to be constructed only once, and the kinetic analysis (e. g. with variable
transcription speed) is independent of the computationally expensive coarse-graining.
A correct mapping between two consecutive landscapes is crucial, and described below
for the case of cotranscriptional folding:

notation Recall that the three descriptors (Ω,M,E) define an energy landscape
(Definition 2.3). We write L for the fine-grained energy landscape with all subopti-
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Figure 23: Mapping between local minima of consecutive landscapes. The events are possible,
(i) two minima merge into one, (ii) a new minimum appears and (iii) a one to one
mapping between landscapes. Case (iv) shows the mapping to a local minimum
that has been merged in the new landscape, hence, BarMap has to ensure that the
correct new gradient basin is found.

mal structures, single-base-pair transitions, and the NN energy model, and B for the
gradient-basin landscape with transition rates between macro states and basin free
energies according to the NN energy model.

Denote Li as the energy landscape at transcript length i, then the mapping be-
tween consecutive landscapes Li−1 → Li is trivial: Every structure in Li−1 is directly
mapped to one structure in Li by attaching an unpaired nucleotide at the 3’ end. In
gradient basin landscapes, the mapping Bi−1 → Bi is a two step process: First, an
unpaired nucleotide is added to the local minimum conformations, then the gradient
walk function g(x) yields the (new) gradient basin conformation in Bi.

Thus, a simple one-to-one mapping in gradient basin landscape B is not always pos-
sible. In fact, three events can happen (see Figure 23): (i) Two or more local minima
merge into one, (ii) a new local minimum appears and (iii) a one-to-one correspon-
dence between minima. In practice, there is also a forth case: (iv) a gradient walk does
not result in the structure representing a local minimum. This forth case generally ap-
pears whenever multiple gradient basins are merged into the lowest one during land-
scape flooding. The original BarMap algorithm then maps this structure to the basin
with the least base-pair distance. This enables a fast and simple population transfer be-
tween local minima that have been merged during barrier tree construction or between
(negligible) disconnected valleys high up in the energy landscape.

barmap-v2 .0 It is worth pointing out that point (iv) has complicated the atomiza-
tion of the mapping process. In particular, the user has to be aware of certain pit-
falls, when analyzing landscapes at the limits of computational tractability (above
106 Wuchty suboptimal structures). In the worst case, populations are mapped across
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large energy barriers. BarMap-v2.0 now directly accesses the coarse-graining infor-
mation computed by barriers and always maps to the correct gradient basin. The
program terminates if populations get lost during subsequent simulations. Also, the
reimplementation (1) combines features of the previous scripts in a Python library to
automate the computation of a cotranscriptional folding simulation from single se-
quence input, and (2) updates the I/O interface to the latest releases of barriers-v1.6
and treekin-v0.4. While the latest release of treekin-v0.4 comes with important
performance improvements, barriers-v1.6 is essential to directly access the coarse-
graining information for a given structure. The source code is available at http://www.
tbi.univie.ac.at/software.

4.2.2 RNA-ligand interactions

Binding of small metabolites to RNA molecules is one of the most direct reactions
of a cell to environmental stimuli. Unfortunately, many metabolite binding pockets
span regions of more than 200 nucleotides and involve pseudoknot conformations.
Still, there are examples of small binding pockets (e. g. Theophylline [Jenison et al.,
1994; Jucker et al., 2003; Gouda et al., 2003], Tetracycline [Berens et al., 2001; Müller
et al., 2006], Adenine [Mandal and Breaker, 2004]) that only require small local binding
pockets to form. The ligands stabilize these pockets with an experimentally measured
dissociation constant

Kd =
[L][R]

[LR]
(31)

where [L] is the concentration of the ligand and [R] is the concentration of the RNA.
Toghether with the formula to convert an equilibrium constant into Gibbs free energy
∆G = −RT ln(K) we can compute the free energy of ligand binding as

Gb = −RT · ln(Kb) = −RT · 1

ln(Kd)
(32)

This binding free energy can then be included into the RNA energy evaluation as an
additional stabilization term, i. e. added to every conformation that contains a ligand
binding pocket. The effect of adding ligand binding free energies to the secondary
structure ensemble can nicely be visualized with barrier trees, see Figure 24. Multi-
ple conformations that have previously been merged into the basins of energetically
better neighbors are now representative local minimum conformations. The best one,
which has before been the suboptimal minimum number 31 is now the energetically
third best local minimum conformation and part of whole subtree in the barriers rep-
resentation. Unfortunately, the method assumes infinite concentration of the ligand
and more realistic models such as described for nucleic acid only interactions (see
Chapter 3) await to be developed.

http://www.tbi.univie.ac.at/software
http://www.tbi.univie.ac.at/software
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Figure 24: A comparison of two energy landscapes for the same molecule. States marked in
red form the theophylline binding pocket. The numbers correspond to the index of
the local minimum in an energetically sorted list. (a) the best theophylline binding
conformation is number 31 (b) the best theophylline binding conformation is num-
ber 3. We model a theophylline binding event to stabilize the respective pocket with
−8.86 kcal/mol [Badelt et al., 2015b].

4.2.3 Results

In order to model termination of transcription we use the experimental results from
Wachsmuth et al. [2013, 2015], Figure 25. Nine variants of cotranscriptional theophylline
binding riboswitches have been analyzed in Escherichia coli by measuring the expres-
sion of β-Galactosidase reporter genes. The sequences are designed using the same
theophylline binding pocket and differ only in their terminator hairpin loop. The
switches, shown in their unbound, transcription terminating conformation, are turned
on upon binding of theophylline. The coarse-grained energy landscapes from Fig-
ure 24 show a particularly effective riboswitch (Figure 25: RS10). The MFE secondary
structure remains the same, independently of whether the ligand is bound, such that
thermodynamic methods cannot explain the function of RS10. However, experimental
findings show a 2-3 fold activation of the reporter gene product (in Miller Units) upon
presence of the ligand.

The simulations of cotranscriptional folding kinetics shown in Figure 26 explain the
experimental results. Without theophylline, two secondary structures are populated at
the end of riboswitch transcription, i. e. before the β-Galactosidase gene is transcribed.
Both of these structures correspond to a conformation where the terminator hairpin
is completely formed. In presence of theophylline, again two structures are populated,
now forming the anti-terminator structure including the ligand binding pocket. Forma-
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Figure 25: Experimental data on different variants of transcription terminating riboswitches.
The red and blue regions are constant, only the hairpins vary in the tested examples.
The red region contains the theophylline binding pocket (not shown), forming an
anti-terminator structure upon a binding event. Although the ground states of the
molecules do not change, see e. g. Figure 24, the experimental results show basically
all possible variations of efficiency. Figure copied with permission from Wachsmuth
et al. [2015].
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tion of the terminator needs on the order of 10 seconds, hence a time period where the
polymerase has already moved on transcribing about 500 more nucleotides.

While RS10 is in good agreement with experimental results, the behavior of ri-
boswitches depends on many more factors than one particular ligand, and other
present interaction partners are not included in the simulation. Hence, the simula-
tions do not always confirm the experimental results. A particular extreme case is RS8,
(also in Figure 25). The binding of theophylline does not improve the signal in an
experimental setting.

The simulations shown in Figure 27, however, suggest that RS8 is as effective as the
previously shown RS10 riboswitch and also the barrier trees (not shown) are similar
to RS10. It is worth pointing out that at much higher transcription speed and in the
absence of theophylline an alternative structure to the terminator hairpin forms (as
also observed with Kinwalker in Wachsmuth et al. [2015]). This might help to explain
why there is no additional activation in presence of theophylline, but it cannot explain
why the absolute activation of RS10 is better than for RS8.

In order to reduce the effects of coarse-graining on folding kinetics, we have pro-
duced all results with a low barrier height of 1 kcal/mol and allowing a maximum of
104 local minima. The latter is sufficiently large such that it does not limit the accuracy
of simulations.

Discussion

We have shown that it is possible to model RNA-ligand interactions during cotran-
scriptional folding using coarse-grained energy landscapes. The results confirm and
explain the trigger mechanism that had been assumed during the sequence design
process in Wachsmuth et al. [2013]. As the method cannot include all environmental
and experimental parameters, not all of the simulations exactly reproduce the tested
riboswitch efficiency. However, BarMap can be used to select candidates for experimen-
tal fine-tuning, such as shown in Figure 25. Varying the transcription speed can help
to further select for switches that are particularly stable in their folding behavior.

It is worth pointing out that the length of riboswitches presented here is close to
the limit of BarMap modeling. The main problem is the high energy barrier separating
a ligand-stabilized binding pocket from the unbound conformations. For this reason,
we had to calculate a large number of suboptimal structures and reduce the volume
by excluding conformations with lonely base-pairs. This introduces an artificial neigh-
borhood relation, which is not properly compensated by the program barriers. In
particular, two base-pairs are formed at a time during the nucleation of helices leading
to a lower energy barrier than if the formation of a helix proceeds via a single-base-
pair change. In order to assess the impact on BarMap simulations, we have calculated
cotranscriptional folding from the full suboptimal structures (including lonely base-
pairs) up to the length of 50 nucleotides. This includes the complete binding pocket
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Figure 26: Cotranscriptional folding of the riboswitch RS10 in presence and absence of the
trigger molecule theophylline. (a) Three structures that correspond to the local min-
ima in the simulations (b,c). Local minimum 1 and 2 form a terminator hairpin,
local minimum 31 (b) or 3 (a) forms an antiterminator structure stabilized by theo-
phylline. (b, c) Simulations with a transcription speed of 50 nucleotides per second.
The vertical line marks the end of transcription and starts a logarithmic timescale.
Numbers in the legend correspond to indices in the barrier tree shown in Figure
24, the most important ones are also shown in (a). Without theophylline, the switch
is in equilibrium at the end of transcription and both dominating secondary struc-
tures have formed the terminator hairpin. In presence of theophylline, the switch
is out-of-equilibrium at the end of transcription, forming the anti-terminator with
the theophylline binding pocket. At the time the system equilibrates, about 10 sec-
onds, the polymerase has already moved on to transcribe the protein-coding region.
lmin 0 indicates that a metastable structure could not be mapped to a local mini-
mum in the final barrier tree. However, the population of this structure decreased
below the threshold before it had to be transferred, otherwise BarMap-v2.0 stops the
calculation.
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Figure 27: Cotranscriptional folding of the riboswitch RS8 in presence and absence of the
trigger molecule theophylline. The results are very much comparable to RS10 (Fig-
ure 26). (a) In absence of theophylline, the switch forms only transcription termina-
tion structures (those with long terminator hairpins). (b) In presence of theophylline
only anti-terminator structures have formed and the formation of terminators takes
in the order of 10 seconds.

but not the terminator stem and we observe that the effects are negligible compared
to the shown RS10 and RS8 examples without lonely base-pairs.

4.3 cotranscriptional folding of large rnas

As introduced in section 4.1, present algorithms fall into three categories: stochastic
simulations, master equation methods, and deterministic prediction of single trajecto-
ries. With the program DrTransformer, short for “DNA to RNA Transformer”, we have
implemented a heuristic that bridges the gap between master equation methods like
BarMap that are rarely applicable for sequences longer than 70 bases and single trajec-
tory prediction Kinwalker, which only selects one most populated secondary structure
at each transcription step.

We will show that the results of DrTransformer compare well to statistically correct
sampling of folding trajectories of short sequences using Kinfold, effectively making
cotranscriptional folding of 200 nucleotide sequences easily tractable. The accuracy of
simulations as well as the limits of sequence length in practice are heavily dependent
on structural diversity, cotranscriptional folding traps, and on the parameters cho-
sen. For example, it is possible to model artificially designed cotranscriptional RNA-
origami sequences [Geary et al., 2014] with more than 1000 nucleotides.
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Option Default Unit Algorithm Explanations

mfree 6 bases 3 minimum freed base-pairs during helix
breathing

occut 1 % 5 minimal occupancy to keep structures af-
ter a kinetic simulation

effd 10−10 mol/l 4 minimal rate to accept a new neighbor

fpwi 10 4 upper bound for findpath search

k0 2 · 105 4 convert arbitrary time units to seconds

t0 1 · 10−6 sec 2 first output time of the simulation

t8 2 · 10−2 sec 2 transcription speed, here 50 nuc/sec

tX 3.6 · 103 sec 2 simulation time after transcription stop
(10 hours )

Table 1: Default parameters for DrTransformer. Detailed explanations are provided in the con-
text of the individual procedures in the main text.

4.3.1 Theory and Implementation

Our model approximates an energy landscape with a conformation graph, such that
structures (vertices) are connected with transition rates (edges). Whenever a nucleotide
is added during transcription this graph is updated, i. e. every present structure gets
an initially unpaired nucleotide attached and then its neighborhood is searched for
new, energetically better conformations. A kinetic simulation redistributes occupancy
according to the transition rates and structures with low occupancy are removed from
the system.

This section will explain how our implementation, DrTransformer, finds favorable
neighboring structures using constrained MFE folding, calculates transition rates be-
tween the currently dominant structures and their neighborhood, and computes the ki-
netics of isomerization reactions with treekin [Wolfinger et al., 2004] or SundialsWrapper
(see Section 3.2.2). The output of DrTransformer can be fine-tuned by a number of pa-
rameters that are summarized in Table 1. The most important procedures are explaied
in Algorithms 2, 3, 4, and 5.

notation We formulate an energy landscape as a directed, strongly connected
graph G(S,K) with vertices s ∈ S representing the different structures and edges k ∈ K

connecting neighboring conformations. Every vertex s ∈ S has some non-negative
population assigned that can flow along the edges. The edges k ∈ K are directed and
weighted by the rate of a folding reaction between two neighboring structures.
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Algorithm 2 DrTransformer – core algorithm
1: procedure DrTransformer (sequence Σ, options . . . )
2: G = () . Empty reaction graph
3: ViennaRNA.noLP← True . no lonely base-pairs
4: for i = [1, . . . , length(s)] do
5: σ = Σ[1, i]
6: m← ViennaRNA_mfe(σ)

7: S← G.vertices
8: for all s in S do
9: AddTransitionEdges(G,σ, s,m, -) . effd, fpwi, k0, only direct path

10: for all n ∈ BreathingNeighbors(σ, s) do . mfree
11: AddTransitionEdges(G,σ, s,n, -) . effd, fpwi, k0, only direct path
12: end for
13: end for
14: if i < n then
15: simulate(G, t0, t8) . treekin
16: G← GraphPruning(G,σ) . occut, effd, fpwi, k0
17: else
18: simulate(G, t0, tX) . treekin
19: end if
20: end for
21: end procedure
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The reaction graph is expanded whenever a nucleotide is transcribed, followed by
a simulation to transfer the populations within the graph, and finally the graph is
pruned to remove secondary structures with to little population (see Algorithm 2).
At the start of RNA synthesis, the reaction graph G is small and the transition rates
are high such that the majority of the population transfers quickly into the current
MFE structure(s). At a later stage, populated structures define the active hubs within
the network and serve as starting points to explore new areas in the growing energy
landscape.

To ensure that simulations reach thermodynamic equilibrium eventually, the graph
has to be ergodic, i. e. every state has to be reachable from every other state and de-
tailed balance has to hold. Dependent on cotranscriptional folding dynamics, popu-
lated secondary structures can occupy parts of the energy landscape that evolved to
be separated by high energy barriers. Hence, the transition rates become exponentially
smaller leading to numeric instabilities in subsequent simulations, i. e. we say the land-
scape is effectively disconnected. Also, the MFE secondary structure might be effectively
disconnected from the populated landscape at some point during transcription. As
these effects violate the laws of thermodynamics they are highly unsatisfactory and
DrTransformer employs a number of tricks to keep the landscape ergodic, if possible.

4.3.1.1 Neighbor generation

Exhaustive exploration of the full neighborhood in a conformation graph is time con-
suming. However, folding of secondary structures during transcription changes the
conformation graph only in comparatively small areas, while the majority remains
constant. A newly transcribed nucleotide can only interact with the exterior loop of a
present conformation, otherwise the secondary structure would become pseudoknot-
ted. The neighbor generation described here uses this property for finding potentially
better secondary structures and searches only in exterior loops and in immediately
adjacent helices.

A definition of helices able to breath (Figure 28) follows below and serves as a basis
to explain the move set for finding favorable structural transitions:

Definition 4.1 We define helices that only consist of one or more consecutive base-pair stacks
as stacked helices. Such helices are flanked by bulges, mismatched interior loops, hairpin,
multi, or exterior loops. A secondary structure s ∈ S is called a canonical secondary structure
[Bompfünewerer et al., 2008] if and only if every base-pair is part of a stacked helix. Stacked
helices with a base-pair toward the exterior loop of a secondary structure are said to be able to
breathe.

In order to reduce conformations to canonical secondary structures, the ViennaRNA

package option no-lonely-base-pairs excludes base-pairs that are not involved in stack-
ing interactions. We may argue that these base-pairs are highly reactive and opened
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Figure 28: Helices able to breathe. Breathing helices are marked with red base-pairs, they share
a base-pair with the exterior loop.

as a consequence. Then, one breathing helix is opened at a time and the remaining
structure becomes a constraint for MFE folding. If that constrained folding results in a
different conformation than the starting structure, then we have found an energetically
better or equal conformation.

Stacked helices can vary greatly in length, starting with at least two base-pairs. Our
method uses a parameter to choose the minimum amount of bases freed by helix
breathing. As a default, we choose 6, which, for instance, corresponds to a stack of two
base-pairs and a loop region of 2 nucleotides. If less bases are freed and there exists
a nested stacked helix, this helix is considered to breathe as well. We further assume
that breathing helices can compete with each other. Thus, one additional neighbor is
generated by opening all breathing helices at once for constrained folding (see Algo-
rithm 3). It is worth noting that also constrained MFE folding takes O(n3) time, with n
being the sequence length. In practice, we only fold the exterior loop of the remaining
conformations and merge the result with the constraint. Rates are computed in both
directions to ensure ergodicity and detailed balance.

4.3.1.2 Connecting conformations with folding pathways

Reaction rates between two structures are computed using the Arrhenius model. Hence,
the rate of a transition is directly proportional to the energy barrier separating two
conformations. In order to find the lowest possible energy barrier among the set of
all shortest refolding paths, the findpath algorithm [Flamm et al., 2001] from the
ViennaRNA library is applied (see Section 2.3.2).

Depending on the settings of neighbor generation, the move set can allow structural
transitions with high energy barriers. While spontaneous reactions take 5 · 10−6 sec-
onds, passing an energy barrier of 2 kcal/mol takes 10−4 seconds and a barrier of
say 20 kcal/mol takes 6 · 108 seconds (i. e. 19 years) to be passed. Such differences can
lead to numeric instabilities and to effectively disconnected components. In order to
avoid this effect, transition rates (and the corresponding neighborhood relation) are
rejected below a certain threshold (Default 10−10k0 per second). The determination
of refolding barriers to compute a transition rate is the most time consuming part of
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Algorithm 3 DrTransformer – neighbor generation
1: procedure BreathingNeighbors (sequence σ, structure s)
2: N← {} . set of neighbors
3: m← s

4: OpenHelices(N, σ, s, m, mfree)
5: N← N∪m
6: for all n ∈ N do
7: n← fold_exterior_loop(σ,n) . see main text
8: end for
9: return N

10: end procedure
11: procedure OpenHelices(neighbors N, sequence σ, structure s, neighbor m, mfree

mfree )
12: b← {breathable(s)} . set of base-pairs at exterior loop
13: for all (x,y) ∈ b do
14: n← s

15: (p,q)← (x,y)
16: loop← 0

17: open← 0

18: add← True

19: while p < q and (loop = 0 oropen < mfree) do
20: if (p,q) /∈ s then . Multiloops
21: OpenHelices(N, σ[p : q], n[p : q], m, mfree− open)
22: add← False

23: break . exit while loop
24: end if
25: n← n \ (p,q) . remove base-pair
26: m← m \ (p,q) . remove base-pair
27: open = open+ 2

28: loop← 0

29: while unpaired(p← p+ 1) and p < q do
30: loop← loop+ 1

31: end while
32: while unpaired(q← q− 1) and p < q do
33: loop← loop+ 1

34: end while
35: open← loop+ open

36: end while
37: N← N∪n if add
38: end for
39: end procedure
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DrTransformer. Hence, every computed energy barrier is stored for future calculations.
Looking at Algorithm 4, we note that there is a second mode for transition rate compu-
tation, which is important for graph pruning. In particular, during pruning, transition
rates are never rejected, but computed as the minimum over the currently best energy
barrier via the transition state and the direct path barrier.

Algorithm 4 DrTransformer – computing transition rates
1: procedure AddTransitionEdges (Graph G, sequence σ, structure s2, structure s1,

structure st)
2: sE← findpath(σ, s2, s1,w)
3: if st then . transition state specified
4: tsE← findpath(σ, s2, st,w)
5: tsE2← findpath(σ, st, s1,w)
6: tsE← max(tsE2, tsE)
7: sE← min(tsE, sE)
8: end if
9: ∆GT ← sE− get_energy(σ, s2)

10: ks2→s1 ← Arrhenius(k0,∆GT ) . see Equation 12

11: ∆GT ← sE− get_energy(σ, s1)
12: ks1→s2 ← Arrhenius(k0,∆GT ) . see Equation 12

13: if st or ks2→s1 > k0 · c then
14: G.add_edge(s2, s1,k21)
15: G.add_edge(s1, s2,k12)
16: return 1
17: else
18: return 0
19: end if
20: end procedure

4.3.1.3 Simulating folding kinetics

Selecting neighbors of populated structures and connecting them with findpath yields
a connected directed graph. In order to compute the population flow, the graph can be
translated into a system of first order ODEs which are solved by numeric integration.
The population of every vertex remains constant when thermodynamic equilibrium
is reached, i. e. the populations of structures satisfy the previously discussed chemical
master equation:

dPi(t)

dt
=

∑
i 6=j

(Pj(t)kji − Pi(t)kij) = 0 (8)
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It is worth noting at this point that computing the folding kinetics using treekin is
notably faster than SundialsWrapper. However, the latter turned out to be more stable
for simulations on effectively disconnected landscapes and is used whenever treekin
simulations fail.

4.3.1.4 Discarding conformations

After the simulation, the populations of individual secondary structures have changed
and many of these structures have to be discarded in order to keep the system com-
putationally tractable. This is known as a graph-pruning step, where all vertices with
a population smaller than a particular cutoff are discarded. As long as ergodicity is
of no concern, graph pruning is simple. A higher cutoff leads to smaller graphs and
increasing population loss from the discarded vertices. The population loss can be
distributed among remaining vertices, proportional to their present population.

In our approach (see Algorihtm 5), ensuring ergodicity during graph pruning is
necessary, since identification and reconnection of disconnected subgraphs is com-
putationally expensive and important intermediate states can get lost otherwise. We
process an energetically descending list of unpopulated vertices and reconnect their
energetically best neighbor to all the remaining neighbors. In order to avoid that the
information of an important transition state is lost, the rate for new transitions is com-
puted as the minimum over the direct path barrier and the indirect path barrier via
the removed vertex. Denote kab as the rate from a to b, and ka→b the rate from the
direct path a→ b, then

ka→b = min{ka→b,ka→i→b} (33)

where ka→i→b is the rate computed from the energy barrier of the two direct paths
ka→i and ki→b. Vertices that only have energetically worse neighbors are considered
as still reachable and kept for the next round. However, they are excluded from neighbor
generation as long as they remain populated below the threshold.
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Algorithm 5 DrTransformer – graph pruning
1: procedure GraphPruning (Graph G, sequence σ)
2: ne ← n.energy
3: for all s in sort(G.vertices) do . decreasing energy
4: p← s.population
5: continue if (p > occut)
6: e← s.energy
7: N← sort(s.neighbors) . increasing energy
8: m← N[0]

9: me ← m.energy
10: continue if (ne > e) . still reachable
11: for all n ∈ N \N[0] do
12: AddTransitionEdges(G,σ,n,m, s) . see Algorithm 4

13: end for
14: G.delete(s)
15: end for
16: end procedure
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4.3.2 Results

We start with testing the quality of cotranscriptional folding predictions comparing
DrTransformer with Kinfold, BarMap, and Kinwalker for random sequences. In the
second part we use DrTransformer to model experimentally tested cotranscriptional
folding-traps presented in Xayaphoummine et al. [2007] and long RNAs that are ex-
pected to fold into a particular RNA Origami shape [Geary et al., 2014].

Random sequences

The data set consists of 200 random sequences with the length of 30, 40, 50, 60 and 70

nucleotides, i. e. 1000 sequences in total. In order to find sequences with potential co-
transcriptional folding traps all sequences were sorted by the maximum barrier height
between any two structures in the full-length energy landscape. Only the top 20 of each
length were used for comparisons. Although we cannot guarantee that the maximum
barrier is also a cotranscriptional folding trap, this way we were able to remove pre-
dominantly unstructured molecules where all programs have similar results, i. e. the
MFE structure of the molecule.

We compare three of the methods discussed before, all using the same energy model:
Kinfold does statistically correct sampling of trajectories and can be considered as the
gold standard for short sequences. BarMap calculates cotranscriptional folding kinetics
of the complete, coarse-grained secondary structure ensemble and therefore should
perform well for RNAs up to a length of roughly 70 nucleotides. Kinwalker is a heuris-
tic applicable to long RNA molecules, but only returns a single trajectory. All of the
programs start transcription with the first nucleotide. Additional parameters were cho-
sen to be similar to standard parameters of BarMap and DrTransformer.

• Kinfold: Time was set to unit time (k0 = 1). The chain grows every 4000 time
units, which corresponds to 50 nuc/sec. The total simulation time is 4000n,
where n is the sequence length. Simulations use the Metropolis rule and stan-
dard single-base-pair moves. The logarithmic multi-loop evaluation was disabled
to ensure the same energy model as for the other methods. Every sequence was
evaluated with 104 trajectories.

• BarMap: Time was set to unit time (k0 = 1). The time for chain elongation and
the last simulation t8 = tX = 4000 time units, which corresponds to 50 nuc/sec.
Simulations were done using an energy range resulting in roughly 9 · 106 subop-
timal secondary structures, a minimal barrier height of 1 kcal/mol, at most 9999
lowest minima per energy landscape (a value that is usually not reached at this
length). The threshold to transfer occupancy between the landscapes was set to
0.01. Simulations are based on the Metropolis rule and standard single-base-pair
moves.
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• DrTransformer: Time was set to unit time (k0 = 1). Transcription starts at the
first nucleotide. The time for chain elongation and the last simulation t8 = tX =

4000 time units, which corresponds to 50 nuc/sec. The occupancy threshold to
keep secondary structures during graph pruning was set to 0.01. Simulations are
based on Arrhenius kinetics, the findpath routine to find best direct paths has
an upper bound of 10.

• Kinwalker: The transcription time was set to 50 nuc/sec. We used the findpath

routine with an upper bound of 10 for finding energy barriers.

Comparing the results of the different programs is complicated due to the fact that
each program uses a different coarse-graining for the secondary structure ensemble.
Multiple conformations returned by one method can be represented by a single sec-
ondary structure of another method, and vice versa. While Kinfold can in principle
return every secondary structure, BarMap returns the populated leaves of the final
barrier tree. Less well defined are the results of DrTransformer and Kinwalker. The
sequences are assembled from thermodynamically optimal fragments, depending on
the history of the simulation.

As a consequence, only barrier trees seem suitable to compare simulations, because
every output structure can be mapped into its local minimum basin. This yields the
same coarse-graining for all methods and enables the comparison of final population
vectors ~pAn ,~pBn, where A and B denote the respective method and n is the index of the
local minimum in the barrier tree. The similarity s is calculated as

s =
∑
n

√
~pAn~p

B
n (34)

For example, Kinwalker will always have a population vector with only one local
minium populated at the maximum of 1, while the remaining entries are 0.

Figure 29 shows the similarity scores of final population vectors using the barrier
tree coarse-graining. The results show that DrTransformer compares well to the sta-
tistically exact method Kinfold and, surprisingly, often compares better than Kinfold

to BarMap. However, it is important to point out that all methods are merged into the
BarMap coarse-graining, but not the other way around. Hence, BarMap has generally
the broadest range of conformations populated which systematically worsens the sim-
ilarity score. Also, we have introduced a threshold of 1% population at the end of
transcription in order to be considered for comparison. All structures exceeding this
population threshold were normalized such that the total population is 100%. While in
practice this has no effect on short sequences (30, 40 nucleotides) it can be problematic
for the longer cases. Both Kinfold and DrTransformer occasionally predict structures
that exceed the suboptimal structure range used in BarMap. Also, Kinfold returns a
high diversity of conformations, such that for longer sequences only a few are popu-
lated above the 1% threshold. Subsequent normalization to 100% then overestimates
their population and results in examples with no similarity to other methods.
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Figure 29: Four algorithms in a pairwise comparison of the results. The programs are in order
of their expected prediction accuracy (Kinfold (KF), BarMap, (BM), DrTransformer
(DT), Kinwalker (KW)) and the compared sequences are grouped into their length
(20-70 nucleotides). Each box-plot contains the top 20 sequences with respect to
the maximum barrier in the energy landscape, i. e. a potential cotranscriptional fold-
ing trap. The similarity is measured by comparing population vectors using coarse-
graining of barrier trees (see Equation 34). Top row: all programs are compared
to the gold standard Kinfold. The results of DrTransformer are more similar to
Kinfold than both other programs BarMap and Kinwalker. It is important to point
out that the results of Kinfold get highly diverse for sequences of length 60 and
70, such that even upon simulation of 104 trajectories only very few structures have
been populated with more than 1%. For that reason, especially structures with co-
transcriptional folding traps show sometimes no similarity between modeling with
BarMap. Third row: DrTransformer is compared to all other programs. Indepen-
dent of the sequence length, only the most accurate modeling with Kinfold com-
pares well with DrTransformer, while both BarMap and Kinwalker have only little
similarity for longer sequences. Second row/Last row: For the sake of complete-
ness, also BarMap and Kinwalker are compared to all other programs. Interestingly,
DrTransformer also has the highest similarity compared to Kinwalker, suggesting
that those results where DrTransformer differs from Kinfold are close to the results
of Kinwalker.
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Modeling cotranscriptional folding traps

A very beautiful experimental test of cotranscriptional folding traps was shown by
Xayaphoummine et al. [2007]. Three RNA sequences have been designed, two are
composed of the exact same (palindromic) sub-sequences (A,B,C,D) in forward and
reverse order (ABCD and DCBA). A third sequence (DCB’A) differs from DCBA only
by a single point mutation in B. The sequences demonstrate how the order of helix
formation determines which structure is formed at the end of transcription. In particu-
lar, ABCD has been shown to fold almost exclusively into the MFE structure, while the
reverse sequence DCBA is cotranscriptionally trapped in a metastable state. The single-
base-mutation in DCB’A decreases the effect of the cotranscriptional folding trap and
yields roughly 50% of the MFE structure at the end of transcription.

Figure 30 shows a comparison of the three sequences using DrTransformer. The
results exactly reproduce the experimental findings, and are largely independent of
the transcription speed. ABCD folds almost exclusively into a two-helix conformation
at the end of transcription, while BCDA folds into the metastable state with only
one long hairpin. It then requires on the order of 107 seconds (115 days) to fold into
the MFE conformation. DCB’A, on the other hand, folds with around 50% into both
conformations, where the exact ratio depends on the transcription speed.

Modeling of long sequences

A particularly challenging example for RNA design is the synthesis of cotranscrip-
tional RNA origami [Geary et al., 2014]. Sequences of multiple hundred nucleotides
length have to be designed to fold directly into a particular shape. While the designs
presented in Geary et al. [2014] are first successful demonstrations of polygon shaped
RNAs, it is only a matter of time until experimenters attempt to design more complex
structures, such as long-non-coding RNA scaffolds or artificial ribosomes.

The design of sequences has to either avoid cotranscriptional folding traps in the first
place, or use them in an intentional way to guide the folding of the full-length tran-
script. The crucial question for RNA Origami is therefore not whether the sequence
folds thermodynamically into the MFE structure, but to identify candidates that ef-
ficiently fold into the MFE structure during transcription. Using DrTransformer, we
chose to model their largest Origami sequence (6H-AO, Geary et al. [2014]), that folds
correctly using a mica annealing protocol, but does not form the correct structure with
the cotransriptional assembly protocol.

The Origami consists of 3 tiles, each 661 nucleotides with a high sequence similarity.
It is important to note that the designs involve kissing-loop interactions, which are not
captured by the standard secondary structure energy model. Hence, DrTransformer
can only predict the desired folding trajectory if it forms even without the stabilization
energies from kissing loops. We may argue that kissing loops predominantly orient
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Figure 30: Cotranscriptional folding of three different sequences. Left column: simulations at
a transcription speed of 100 nuc/sec are shown. A second y-axis divides the plot
into a linear scale (during transcription) and a logarithmic scale (after transcription).
Black trajectories correspond to intermediates during transcription, blue and red
trajectories correspond to the shape shown in the respective RNA secondary struc-
ture representations. Multiple lines of the same color indicate small differences such
as single base-pair variations. Right column: Change in occupancy as a function of
transcription speed. The data ranges from from 20 to 400 nuc/sec and shows that
only DCB’A shows variations dependent on the transcription speed. For experimen-
tal results confirming these observations see Xayaphoummine et al. [2007], Figures
2 and 3.
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the origami into its well defined tertiary shape, rather than being essential for the
formation of the secondary structure.

Figure 31 shows the results from DrTransformer modeling. Simulations at a tran-
scription speed of 50 nucleotides per second suggest that two of the three tiles are
highly effective, forming predominantly the MFE secondary structure after only few
seconds. Only 6AO-C needs more than an hour to reach 40 % of MFE structure occu-
pancy. At 250 nucleotides/second transcription speed, two out of three tiles need more
than an hour to fold into their desired shape.

It is important to point out that the simulations for the Origami tiles are parameter
dependent and prone to numeric instabilities. The simulations shown in Figure 31 use
standard parameters, most importantly, a findpath upper bound of 10 and a minimal
rate of k0 · 10−10 s−1. Both parameters influence the results, e. g. raising the findpath

bound to 50 suggests that all tiles form within 10 seconds after transcription indepen-
dently of transcription speed. Lowering the minimal rate to k0 · 10−5 seconds then
again slows down the formation of intended Origami shapes. Hence, drawing final
conclusions why the cotranscriptional folding does not work in the experimental set-
ting is impossible without additional experimental data.

4.3.3 Discussion

We have presented DrTransformer, a new approach to model cotranscriptional folding
using heuristic folding kinetics. The program is a hybrid between master equation
methods on the full landscape (BarMap) and single trajectory computation as done by
Kinwalker. Conceptually, the method is similar to a Kinwalker implementation that
allows suboptimal transition states at each chain length. The comparison of different
methods for cotranscriptional folding is not easy to interpret, but we have shown that
DrTransformer is more accurate than single trajectory prediction from Kinwalker, and
it performs better then BarMap in a direct comparison with Kinfold.

The method is easily applicable to sequences of up to 200 nucleotides. For the mod-
eling of longer sequences, the cotranscriptional folding traps may limit the accuracy,
and greatly reduce the time for simulations. However, the program can be used to de-
termine the folding efficiency for molecules that have been optimized for folding along
specific trajectories. In that case, also simulations of 660 nucleotide Origami takes only
about 10 minutes computation time on a single core of a personal computer (Intel
i5-3570K).
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Figure 31: Cotranscriptional folding of RNA Origami at a transcription speed of 50 nu-
cleotides/second (left) and 250 nucleotides/second (right). Three tiles are investi-
gated (6AO-A, 6AO-B, 6AO-C from Geary et al. [2014]). The vertical dashed lines
mark three time points, (1) the end of transcription, (2) 15 minutes and (3) one hour
after transcription started. Only the blue trajectory corresponds to the desired RNA
Origami shape, while black trajectories are not further discussed misfolded variants.
Left column: at a transcription speed of 50 nucletides/second, the sequences 6AO-A
and 6AO-B populate the desired Origami shape after about 20 seconds, while 6AO-
C needs more than an hour to populate the conformation at 40 %. Right column: at
a transcription speed of 250 nucleotides/second and 15 minutes total time, 6AO-A
is populated at 20%, 6AO-B is populated at 80% and 6AO-C is populated at 20%.
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5
D E S I G N O F R N A M O L E C U L E S

The design of sequences is the inverse of the previously discussed RNA folding prob-
lem. Multiple designed riboswitches or miRNAs can form a logic regulatory networks
and be used to control the information of which RNA or protein is expressed at what
time point in a cell. For example, Xie et al. [2011] have used miRNAs to sense diverse
disease-related phenotypes in order to trigger the expression of tumor-suppressor
genes.

The remainder of this thesis, however, is about methods to design RNAs with a
more diverse functional repertoire. In Chapter 6, RNAs are considered as a central
molecule in the origins of life. In such a setting of extreme environmental conditions,
RNA may have had a very different behavior than in todays sterile test-tubes. The
method to design RNA prions presented in Chapter 7 introduces a novel self-switching
mechanism. The design method optimizes a molecule to switch conformations if a
particular concentration is reached.

this chapter explains why it is possible to design RNAs that adopt one or more
common secondary structure motifs, although the problem is formally NP-hard [Schnall-
Levin, 2011]. We continue with algorithmic approaches toward RNA design and intro-
duce a new Perl library shipped with the current ViennaRNA package-v2.2. The main
advantage over existing methods is that it allows to formulate different design prob-
lems as simple scripts and it is available through the ViennaRNA web-services1.

5.1 properties of rna design landscapes

In order to get a complete picture of the RNA design problem, we come back to the
concept of landscapes as previously introduced for folding kinetics in Section 2.3.

Definition 5.1 Let D = (Σ,M,O) be the design landscape for an RNA molecule. σ ∈ Σ is a
set of RNA sequences, M is a set of sequence mutations that defines neighboring sequences and
O(σ) is the design objective function assigning a fitness value to each sequence.

The size of the design landscape is 4n where n is the sequence length, but there are
many sequences which are not compatible with a given secondary structure constraint.
Specifically, every specified base-pair dictates that the involved nucleotides are chosen
from the set of canonical base-pairs. Hence, a sequence constraint reduces the solution
space and therefore also design algorithms mutate only among these valid solutions.

1 http://rna.tbi.univie.ac.at/rnadesign
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This has the interesting effect that a random sequence given a structure constraint has a
higher probability of containing Guanine and Uracil in helical regions, than Adenine
and Cytosine. The remainder of this section compares the sequence space with the
structure space of RNA molecules, while Section 5.2 will discuss the inverse folding
problem for uni-, bi-, and multistable sequences as well as present common objective
functions.

In the previous century, a number of intrepid researchers have characterized the
RNA folding problem in the context of evolution, using a map between landscapes
of sequences (genotypes) and secondary structures (phenotypes) [Schuster et al., 1994;
Huynen et al., 1996; Reidys et al., 1997]. Three findings are especially important for
sequence design and seem to be insensitive to whether the folding algorithm is ther-
modynamic, kinetic, maximum matching or whether one considers one MFE structure
or the entire Boltzmann ensemble [Huynen et al., 1996]. First, the mapping is often
redundant, as there are many more sequences than structures. Second, some structures
are realized much more frequently than others. As a consequence of these two proper-
ties, many mutations in the sequence space are neutral in a sense that they preserve the
secondary structure. Third, the sequence to structure mapping is sensitive, such that
already small changes of a sequence can lead to large changes of the structure.

For RNA design (or RNA evolution), this means that every random sequence is lo-
cated in the proximity of a common secondary structure, and, on the other hand, it is
possible to change (evolve) the entire sequence following neutral networks, i. e. following
mutation pathways without disrupting the secondary structure [Reidys et al., 1997].
These characteristics make computational RNA design of sequences folding into a par-
ticular structure surprisingly easy, even though finding the formally best solution is
NP-hard [Schnall-Levin, 2011].

5.2 inverse rna folding

In its most simple form, the inverse folding problem computes a sequence such that
a target conformation is the MFE structure of this sequence. Based on the previous
findings on sequence-structure maps, inverse folding can be modeled with simple
adaptive walks in the design landscape. This basic idea is implemented in RNAinverse

[Hofacker et al., 1994]. A decomposition of the target structure into smaller substruc-
tures reduces the computation time compared to a naive approach where the full
sequence has to be evaluated in every step. A more efficient decomposition scheme
has been implemented in RNA-SSD [Andronescu et al., 2004; Aguirre-Hernández et al.,
2007] and eventually enabled Zadeh et al. [2011] to reduce the runtime to formally 4/3
of the RNA folding problem as implemented in NUPACK. An alternative design strategy
is used by INFO-RNA [Busch and Backofen, 2006]: first the sequence with minimal free
energy for the target structure is computed exactly, and then this sequence serves as
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Figure 32: Visualization of dependency pathways of bistable sequences. Both structure con-
straints are shown in three different representations. Left: A common secondary
structure visualization. Top right: The corresponding dot-bracket-strings used as
standard ViennaRNA input format. Center: The corresponding circular secondary
structure diagrams. Bottom right: The superposition of both circular diagrams re-
veals the dependency pathways and hence the move-set for sequence mutations.

starting point for adaptive walks to minimize the distance between the target structure
and the MFE of the sequence.

Design of multistable sequences using dependency graphs

More complicated designs, such as presented in Chapters 6 and 7, require two or more
target structures in order to toggle between states with different functions. In this case,
every structure constraint reduces the number of feasible solutions. A visualization of
this effect using dependency graphs can be seen in Figure 32. The enforced base-pairs
form connected components in the dependency graph, i. e. a mutation of one base
(usually) affects all other bases in the connected component.

Reidys et al. [1997] have proven that it is always possible to find a sequence com-
patible with two structural constraints. However, for more than two structures this is
not the case. In order to determine whether a sequence is compatible with structure
input, all connected components must be replaceable with a sequence of alternating
purines and pyrimidines (“RYRYRYRY”, e. g. “AUGCGUAU”). Formally, if the con-
nected components are bipartite, then there exists a sequence compatible with the
structural constraints and the number of possible solutions can be calculated explicitly
[Höner zu Siederdissen et al., 2013].
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Flamm et al. [2001] have shown an efficient dynamic programming (DP) algorithm
to enumerate the sequence space of bistable molecules and enable statistically cor-
rect sampling of sequences in the reduced design landscape. This is important, as only
statistically correct adaptive walks ensure a sufficient diversity of solutions at a reason-
able sample size and non-structure constraints may significantly reduce the number of
satisfactory solutions. A generalization of this algorithm for multistable sequence de-
sign problem has been implemented in RNAdesign [Höner zu Siederdissen et al., 2013]
or MODENA [Taneda, 2015].

It is important to point out that also sequence constraints reduce the design space,
such as constrained promoter regions, metabolite binding pockets, catalytically ac-
tive sites (Chapter 6) and pseudoknot motifs (Chapter 7). Other design strategies in-
volve reduced alphabets in order to avoid local interactions, e. g. ’AUC’ rich regions are
unlikely to form stable structures by themselves. Later in this chapter we will intro-
duce a design library that properly addresses sequence contsraints within dependency-
graphs.

Objective functions for thermodynamic optimizations

Formulation of an objective function is the most important step for the success of
designing RNA molecules. On the one hand, calculations have to be fast, as they will
typically be repeated hundreds or thousands of times before a solution is returned.
On the other hand, the objective function can include multiple additional constraints
and weight them according to their importance. In this section, a few popular objective
functions will be presented. They are also often referred to as cost functions, because
they are minimized during the sequence design process.

notation We write σ ∈ Σ for a sequence in the set of all sequences, s ∈ Ω for a
structure in the ensemble of secondary structures sT for the target secondary structure
and sM = f(σ) is the MFE secondary structure of the sequence σ. The functions e(σ, sT ),
p(σ, sT ), and g(σ) compute the free energy of a structure, the probability of a structure,
and the ensemble free energy of a sequence.

Let us have a look at typical objective functions for designing a sequence folding into
a single target conformation sT . The first variant requires the computation of the MFE

conformation and the calculation of the base-pair distance between two structures.
The base-pair distance is calculated as d(si, sj) = |(si ∪ sj) \ (si ∩ sj)|, where si and
sj denote a set of base-pairs forming a secondary structure. The objective function
minimizes the base-pair distance between the current MFE structure sM and the target
conformation sT

O(σ) = d(sM, sT ) = d(f(σ), sT ) (35)
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Alternatively, the objective function can be formulated to maximize the probability
of forming the target structure in the secondary structure ensemble.

O(σ) = e(σ, sT ) − g(σ) = −RT · lnp(σ, sT ) (36)

While equation 35 cannot guarantee that sM will dominate the ensemble of struc-
tures Ω, equation 36 assumes that any structure si 6= sT is equally distant from the
target structure sT . The two objective function above have therefore been combined by
Dirks et al. [2004] and are now known as the ensemble defect of a sequence implemented
in the NUPACK sequence design framework [Zadeh et al., 2011].

O(σ) =
∑
si∈Ω

p(σ, si) · d(si, sT ) (37)

Thus, the ensemble defect calculates the distance between every conformation in the
ensemble si ∈ Ω and the target conformation sT , weighted by the probability of ob-
serving si. The ensemble defect can alternatively be formulated as the mean base-pair
distance between a random structure in the ensemble and the target structure.

O(σ) =
∑
i,j∈sT

(1− pij) +
∑
i,j/∈sT

(pij) (38)

where pij is a matrix of base-pair probabilities, which can be computed with the same
asymptotic time complexity as MFE folding.

A comparison of objective functions 35, 36 and 37 shows that both maximizing the
probability of a structure, as well as the ensemble defect computation are similar in
efficiency and better than only the minimization of base-pair distance [Dirks et al.,
2004].

Multistable designs follow the same principle, but require additional terms to balance
the free energy for the specified structures, e. g. Equation 36 for the bistable sequence
optimization yields the objective function presented by Flamm et al. [2001] for bistable
sequence design

O(σ) = e(σ, sT1) + e(σ, sT2) − 2g(σ) +α(e(σ, sT1) − e(σ, sT2) + δ)2 (39)

where α is an optional weighting factor for the second term and δ adjusts the free
energy difference between the two target conformations sT1 and sT2.

Objective functions can also be used to include other constraints that are not strictly
enforced by dependency graphs. For example, deviations from a desired GC-content,
as well as particular sequence motifs can be penalized when evaluating the design
objective function. Also kinetic properties, such as direct-path barriers between two
conformations are applicable for RNA design [Flamm et al., 2001].

Taken together, optimization functions are composed of O(n) operations such as
computing the free energy of a given structure e(σ, s) or the base-pair distance between
two structures d(si, sj) andO(n3) methods such as the calculation of the ensemble free
energy g(σ), the minimum free energy f(σ), the probability p(σ, sT ).
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Figure 33: The impact of sequence constraints on the sequence space. Top row: Enumeration
of the constrained sequence space as implemented in RNA::Design. An input for
sequence design contains secondary structures in dot-bracket notation and an (op-
tional) sequence constraint in IUPAC nomenclature. The Input is first translated into
a dependency graph, then the sequence constraint is updated according to the de-
pendencies (R: purine, Y: pyrimidine). The number of solutions for each dependency
path (and cycle) are shown on the very right. There are only 24 sequences compat-
ible with the input. Bottom left: If there is no sequence constrained specified, the
base-pairs alone reduce the sequence space from 1048576 to 3456 possible solutions.
Bottom right: Exhaustive representation of the dependency paths for the constraint
“UAURYR”. The number of leaves yields the number of possible sequences.

5.3 plug and play rna design

The sequence designs presented in Chapters 7 and 6, were optimized using adapted
versions of the switch.pl method discussed before. However, a number of ongoing
side-projects showed that every sequence design task requires different numbers of
sequence and structure constraints, as well as different types of objective functions.
We have therefore written a Perl library RNA::Design to write different design tasks
as simple scripts. The main features and performance improvements compared to
switch.pl are described below. The library is distributed with the current release of
the ViennaRNA package-v2.2 and used in the new ViennaRNA sequence design web-
interface at http://rna.tbi.univie.ac.at/rnadesign.

RNA design problems optimize a sequence from the following input: (1) One or
more secondary structures, (2) an optional sequence constraint (3) an objective func-

http://rna.tbi.univie.ac.at/rnadesign
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tion and (4) additional parameters. Each of these inputs can be flexible and will be
addressed below:

(1) secondary structures The secondary structure input can be used in two
different ways. Either the conformations determine dependency paths for sequence
mutations, or they are addressed in the objective function. Besides the standard dot-
bracket notation, secondary structures may contain the following special characters:

• ’&’ connects two sequences to design a pair of interacting RNAs. We have used
this feature to produce the sequences for Chapter 4.

• ’x’ is only supported for structures that are used in the objective function and
allows the computation of the accessibility of nucleotides (i. e. the probability of
being unpaired).

The number of secondary structures is not restricted which enables the design of mul-
tistable RNAs such as shown in Figure 33. However, RNA::Design avoids difficulties
of multstable designs where a single nucleotide has more than two dependencies. In
that case, base-pair constraints are not added to the dependency graph, however, the
constraints are still evaluated in the cost function.

(2) sequence constraint A sequence constraint may be specified in IUPAC
nomenclature and enforced during the optimization process. While unconstrained de-
pendency pathways are enumerated and sampled exactly using the DP algorithm of
switch.pl, the constrained pathways are sampled by an exhaustive approach shown
in Figure 33. We have realized recently that this exhaustive approach can also be solved
exactly using DP, which will implemented in future versions of the design library.

(3) objective function The objective function can be customized using a sim-
ple interface to the functions of the ViennaRNA package. In particular, every input sec-
ondary structure can serve as full target conformation or structure constraint. The ob-
jective function currently supports to compute the free energy of a target structure, the
(constrained) ensemble free energy, the (conditional) probabilities of secondary struc-
ture elements, the accessibility of subsequences and the direct-path barriers between
two structures. All of these terms exist for linear, circular, and cofolded molecules,
as well as for custom specified temperatures. A more detailed documentation can be
found at http://rna.tbi.univie.ac.at/rnadesign.

(4) additional parameters The user may select a desired GC-content of target
sequences and choose to avoid specific sequence motifs such as repetitions of the same
nucleotide. These terms are then included into the optimization with the objective
function.

http://rna.tbi.univie.ac.at/rnadesign
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5.4 design of kinetic properties

The incorporation of kinetic simulations into RNA design is complicated by the fact
that they are to time consuming. However, it is possible to infer ad-hoc rules to get
reasonably accurate fast predictions. The probably simplest form are previously men-
tioned direct-path barriers.

For example, in Chapter 7 we compute the direct path barriers using the findpath

method during the optimization, and then rank the best candidate molecules again
using exact solutions from barriers. Similarly, one can specify dedicated intermediate
states to optimize indirect folding pathways composed from multiple direct pathways.

As we have shown in Chapter 3, also structure constraints in form of toeholds are
commonly used to lower kinetic folding barriers. Whenever applicable, this is an even
faster alternative to heuristic evaluations with the cost-function, but should be used in
combination with a thorough post-evaluation.

Computing accessibilities of unpaired regions can be used for cotranscriptional se-
quence designs. The sequence forming the nucleation point of a helix can be optimized
to be unstructured before the binding partner is transcribed.
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ABSTRACT

Reversible chemistry allowing for assembly and disassembly of molecular entities is important for biological self-organization.
Thus, ribozymes that support both cleavage and formation of phosphodiester bonds may have contributed to the emergence of
functional diversity and increasing complexity of regulatory RNAs in early life. We have previously engineered a variant of the
hairpin ribozyme that shows how ribozymes may have circularized or extended their own length by forming concatemers.
Using the Vienna RNA package, we now optimized this hairpin ribozyme variant and selected four different RNA sequences
that were expected to circularize more efficiently or form longer concatemers upon transcription. (Two-dimensional) PAGE
analysis confirms that (i) all four selected ribozymes are catalytically active and (ii) high yields of cyclic species are obtained.
AFM imaging in combination with RNA structure prediction enabled us to calculate the distributions of monomers and self-
concatenated dimers and trimers. Our results show that computationally optimized molecules do form reasonable amounts of
trimers, which has not been observed for the original system so far, and we demonstrate that the combination of theoretical
prediction, biochemical and physical analysis is a promising approach toward accurate prediction of ribozyme behavior and
design of ribozymes with predefined functions.

Keywords: AFM; circularization; computational design; hairpin ribozyme; RNA; self-processing

INTRODUCTION

RNA processing plays a fundamental role in the cellular life
cycle. RNA molecules are permanently synthesized, modi-
fied, edited, truncated, or abolished. In viruses, viroids, and
satellite RNAs with circular RNA genomes, replication fol-
lows a rolling circle mechanism, thus initially producing lin-
ear concatemeric versions of the RNA genome (Flores et al.
2011). Further processing is required to convert the conca-
temers back to monomers that subsequently are cyclized to
yield the final replication product: a cyclic RNA complemen-
tary to the template. This processing is dependent on specific
RNA structural motifs that support reaction at the site of
cleavage and ligation (Hampel and Tritz 1989; DeYoung
et al. 1995). Among those, the hammerhead and the hairpin
ribozyme are probably the best studied small RNAs with cat-
alytic activity (Hammann et al. 2012; Müller et al. 2012).

Hairpin ribozyme catalyzed RNA cleavage and ligation re-
actions follow a transesterification mechanism (Cochrane
and Strobel 2008). Cleavage occurs by nucleophilic attack
of the 2′-oxygen on the neighboring phosphorous resulting
in a trigonal-bipyramidal intermediate. Upon release of the
5′-OH-group, a 2′,3′-cyclic phosphate is formed. Ligation
follows the same reaction path in opposite direction and
proceeds via ring opening of the cyclic phosphate, exclusive-
ly delivering the natural 3′,5′-phosphodiester (Scheme 1).
Ligation is enthalpically favored over cleavage, because ring
strain energy is released when opening the cyclic phosphate.
Entropically, ligation is disfavored, owing to the decrease in
degrees of conformational freedom. However, the entropic
cost of ligation is rather small and can be compensated by
the favorable enthalpic contribution (Hegg and Fedor 1995,
Nahas et al. 2004). In addition, ligation is about two times
faster than cleavage (Liu et al. 2007). Thus, the internal equi-
librium of the hairpin ribozyme is shifted toward ligation.
Translated into practical use this means that the two activities5Shared first authorship.

Corresponding authors: smueller@uni-greifswald.de,
ivo@tbi.univie.ac.at, stephan.block@chalmers.se
Article published online ahead of print. Article and publication date are at

http://www.rnajournal.org/cgi/doi/10.1261/rna.047670.114. Freely available
online through the RNA Open Access option.

© 2015 Petkovic et al. This article, published in RNA, is available under a
Creative Commons License (Attribution 4.0 International), as described at
http://creativecommons.org/licenses/by/4.0/.

RNA 21:1249–1260; Published by Cold Spring Harbor Laboratory Press for the RNA Society 1249

design of self-processing rna 93



can be controlled by structural modulation. Hairpin ribo-
zymes that form a stable structure, such that fragments re-
main bound, favor ligation, whereas hairpin ribozymes that
are less stable, such that cleavage fragments can easily disso-
ciate, favor cleavage (Fedor 1999, Welz et al. 2003). These
characteristic features distinguish the hairpin ribozyme
from other small ribozymes, and we have shown in previous
work that structural manipulation of hairpin ribozyme vari-
ants allows tuning of cleavage and ligation activity (Welz et al.
2003; Ivanov et al. 2005; Vauleon et al. 2005; Drude et al.
2007, 2011; Pieper et al. 2007; Petkovic and Müller 2013,
Balke et al. 2014). Among these variants is a hairpin ribozyme
that can cleave off its 5′- and 3′-end (Pieper et al. 2007). The
cleaved product has two reactive ends that can ligate to circu-
lar species or concatemers of two or more molecules.

Herein we address the question whether it is possible to de-
sign entirely self-reactive RNAs to efficiently circularize OR
polymerize to large RNA entities. In contrast to previous
work, our purpose was to optimize RNA sequences for par-
ticular conformations favoring monomeric variants or multi-
merization, rather than tuning the cleavage and ligation rate
itself. Self-reactive RNA molecules changing their properties
by circularization or increasing their length by polymeriza-
tion provide a good case-study to exploit the repertoire of
state of the art computational design algorithms and to im-
prove them by experimental verification. Good heuristics to
embed catalytic activity into RNA molecules with desired
functions are highly amendable for synthetic biology, since
RNA cleaving or ligating ribozymes constitute an additional
layer of gene regulation. Additionally, successful designs
would have direct implications on the RNA world theory to
explain the emergence of RNA genomes in an early RNA
world.

Using the ribozyme CRZ-2 (Scheme 2), which was devel-
oped previously (Pieper et al. 2007) and recently analyzed in
detail (Petkovic and Müller 2013), as template, we computa-
tionally optimized sequences using the program switch.pl
(Flamm et al. 2001) of the Vienna RNA package (Lorenz
et al. 2011). Four variants with different behavior according
to our scoring functions were selected and analyzed in detail
by polyacrylamide gel electrophoresis (PAGE) and atomic

force microscopy (AFM). We present high resolution AFM
images of the reaction mixtures, visualizing even the rather
short 83mer RNA fragment.

RESULTS

Computer-aided sequence design

Compared with manual design that we had applied in previ-
ous work (Pieper et al. 2007; Petkovic and Müller 2013),
computer-aided design is a more sophisticated way toward
control of self-processing activity of RNA species. Therefore,
we have started a bioinformatics approach to evolve hairpin
ribozyme derived RNAs with self-processing activity. We
have designed two classes of ribozyme species: Members of
the first class should process themselves efficiently into circu-
lar monomers, whereas members of the second class would
maximize the yield of ligation competent dimers. The design
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SCHEME 1. Hairpin ribozyme mechanism (from left to right) nucleo-
philic attack followed by intermediate formation and release of newly
formed 5′- and 3′-termini (see text for details); (R1, R2) oligonucleotide
chain, (B1, B2) nucleobase, (A) acid, (B

−) base.

SCHEME 2. RNA self-processing pathway of CRZ-2. The pathway also
applies to designed sequence variants PBD1 to PBD4 (see below). Note
that fragment lengths differ for PBD3 and PBD4. RNAs are pro-
grammed to fold in two distinct conformations (top). Both conforma-
tions favor cleavage, such that either the 5′-terminus (green) or the
3′-terminus (blue) can be cleaved off, resulting in a 94- or 92mer (mid-
dle). These intermediates can refold in the conformation required for
cleavage of the remaining 3′- or 5′-end, respectively. The final cleavage
product is always an 83mer, which can undergo intramolecular ligation
to a circular species (bottom, left) or self-concatemerize by intermolec-
ular ligation (bottom, middle). In addition, the fragments resulting
from the first cleavage contain either the 2′,3′-cyclic phosphate or the
5′-OH group required for ligation, such that they can also oligomerize
with each other or with one or more 83mers (bottom, right).
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process is complicated by the fact that multiple constraints
exist on both sequence and structure level. On the sequence
level we included two well-conserved interior loop regions
from the hairpin ribozyme (Berzal-Herranz et al. 1993), as
well as a T7 RNA promotor sequence at the 5′-end for exper-
imental implementation. On the structural level, the con-
structs have to be bistable, forming two distinct catalytic
centers to cleave off both the 5′- and 3′-ends as depicted in
Figure 1 and Supplemental Figure S1. Our approach is a
two-step process that first computes a large set of RNA se-
quences with catalytic properties, and second scores these se-
quences to select for ribozymes with the desired behavior.
Previously, we have shown that the efficient design of bistable
molecules is surprisingly easy (Flamm et al. 2001). The algo-
rithm, implemented in the program switch.pl of the Vienna
RNA package, mutates initially random sequences into bista-
ble switches via consistent mutations guided by a dependency
graph. The mutations are meant to increase the probability of
forming catalytically active structures and influence the con-
formations formed upon dimerization of the individual spe-

cies. Using switch.pl, ∼10,000 bistable RNA molecules
conforming to the above design objective were designed
and ranked according to two scoring functions κ1 and κ2
(Equations 2 and 4 in Materials and Methods) that evaluate
the probabilities of forming reactive structures and the frac-
tion of circular species in equilibrium. Results of the scoring
function for all four sequences and the reference system
CRZ-2 can be seen in Table 1. A lower κ1-value indicates
high catalytic activity of all monomeric variants; a lower κ2
indicates a high probability of forming catalytically active
homo-dimers. Hence, κ2 was used to discriminate between
ribozymes that are meant to favor formation of cyclic dimers
(lower κ2) and those that do not (higher κ2). Detailed expla-
nation and formulas can be found in Materials and Methods
and Supplemental Figure S2a,b. Figure 1 shows four bistable
ribozyme sequences (PBD1 to PBD4) that were selected for
experimental validation in comparison to the reference sys-
tem CRZ-2. Table 1 summarizes their expected properties
and the results from the scoring functions (rounded to two
decimal figures).
Compared with the reference RNA CRZ-2, PBD1–4 differ

by various base replacements in the nonconserved regions
(Fig. 1). However, the new designed ribozymes were meant
to undergo the same cleavage cascade reaction as described
for CRZ-2 previously (Petkovic andMüller 2013) and depict-
ed in Scheme 2. Dimerization of the hairpin ribozyme has
been demonstrated previously (Butcher and Burke 1994),
and is an essential prerequisite for the formation of conca-
temers by CRZ-2. We therefore assumed that sequences
forming catalytically active, intermolecular ligation com-
petent dimers favor concatemerization (PBD1 and PBD3),
while sequences that have lower tendency to form these
structures, are assumed to predominantly form cyclic mono-
mers (PBD2 and PBD4). Our scoring functions furthermore
indicate that PBD1 and PBD2 show increased efficiency to
form cyclic monomers (Table 1, κ1) compared with PBD3
and PBD4.

Biochemical analysis of the self-processing
behavior of the designed sequences

The five RNAs, CRZ-2 and PBD1 to PBD4 were prepared by
in vitro transcription with T7 RNA polymerase (see Supple-
mental Material) and incubated at conditions favoring self-
cleavage followed by ligation (Petkovic and Müller 2013).

FIGURE 1. (A) Secondary structures of CRZ-2 and PBD 1–4 shown in
one of the two possible conformations (cf. Scheme 2). Sequence changes
in comparison to the reference RNA CRZ-2 are shown in red. (B)
Sequence alignment of the four designed RNAs PBD1–4 with the refer-
ence system CRZ-2. Green interior loop areas are reported to be essen-
tial for cleavage/ligation activity and were therefore fixed during the
design process. The orange colored T7 RNA promoter sequence was
needed for experimental implementation. The secondary structure in
dot-bracket notation below shows the constraints on a structural level.

TABLE 1. Summarized properties of the designed sequences

RNA Full length Fragment length κ1 κ2

CRZ-2 103 11 + 83 + 9 19.24 37.58
PBD1 103 11 + 83 + 9 9.38 13.71
PBD2 103 11 + 83 + 9 9.84 28.71
PBD3 105 8 + 83 + 14 12.14 18.77
PBD4 105 8 + 83 + 14 12.13 31.23

Self-processing RNA

www.rnajournal.org 1251

design of self-processing rna 95



First, reaction products were analyzed using denaturing poly-
acrylamide gels (Figs. 2, 3, 4). Bands in the gel were visualized
by ethidium bromide staining. Table 2 shows the lengths
(in number of bases) of products that theoretically can be
formed; Figure 2 shows an overview of reactions of all self-
processing ribozymes (CRZ-2, PBD1–PBD4). For compari-
son, the linear 83mer (l-83mer) resulting from two cleavage
events in CRZ-2 and being incapable of further cleavage was
isolated and incubated at identical conditions (Fig. 2, lane 7).
The behavior of this 83mer was analyzed in detail recently
(Petkovic and Müller 2013), such that the band pattern pro-
duced by the l-83mer could be used as guideline to navigate
through the PAA gel and, with the aid of the 2D-gel electro-
phoresis results (see below), to assign the obtained bands to
individual RNA species. This becomes especially important,
since chemical modifications at RNA ends (such as OH,
phosphate or cyclic phosphate), RNA sequence itself, and
RNA structures formed in spite of denaturation can affect
the migration behavior of RNA molecules. The standard
length marker (lane 2) can only serve as an approximate
guideline for higher ligation products.

Full-length transcripts (a—103/105mers)

The 103 (CRZ-2, PBD1 and PBD2) or 105mers (PBD3 and
PBD4) are typically located below the 100 nt size standard
mainly due to the triphosphate at the 5′-end resulting from
in vitro transcription of the ribozymes (Fig. 2; Supplemental

Fig. S3). The 103mer of CRZ-2 and PBD1 is barely detect-
able after ribozyme reaction (Fig. 2, lanes 1 and 3), whereas
full length transcripts of PBD2 to PBD4 (lanes 4, 5, and 6)
are still visible. This implies that CRZ-2 and PBD1 exhibit
higher activity in cleaving off the 5′- or the 3′-end or both,
and producing the shortened fragments denoted with b
and c (Table 2; Fig. 2).

Cleavage products (b—97, 94, 92, 91mer and c—linear 83mer)

In CRZ-2, PBD1 and PBD2, a 92mer and a 94mer are pro-
duced as intermediates upon the first cleavage. These two in-
termediates occur as one band, since the 94mer carries
additional charges from the triphosphate at the 5′-end. For
CRZ-2 and PBD2 (Fig. 2, lanes 1, 4), a prominent 92/94mer
band is visible, PBD1 shows none of these species. PBD3
and PBD4 produce a 91mer and a 97mer, with the 91mer car-
rying the triphosphate. Both systems show 91mers, whereas
the 97mer is only detectable for PBD4 (lanes 5, 6, and gel
pieces shown on the right). The final cleavage product of
all test systems is a linear 83mer. Lane 7 shows the 83mer
from CRZ-2 used as an additional size standard (Petkovic
and Müller 2013). Interestingly, only CRZ-2 shows a band
corresponding to the final cleavage product, while linear
83mers of PBD1-PBD4 are not detectable, suggesting an im-
mediate consumption in ligation reactions.

Intramolecular monomeric ligation (d—cyclic 83mer)

From all produced monomers (l-83mer, 91mer, 92mer,
94mer, 97mer, 103mer, and 105mers) the linear 83mer is
the only RNA that may perform cyclization due to the chem-
ical constitution at its 3′- and 5′-end. However, the migration
behavior of an unknown cyclic species in a PAA gel is impos-
sible to predict by common size markers, since the overall

FIGURE 2. Analysis of self-processing reactions of sequences PBD1-4,
CRZ-2, and the linear 83mer (l-83mer) in a 15% denaturing polyacryl-
amide gel, lane 2: RNA size standard. For better visualization of individ-
ual bands, self-processing reactions of PBD1–PBD4 were analyzed
separately with a higher amount of sample loaded onto the gel (separate
lanes left and right to the gel. Note that large scale analysis was carried
out separately for each of the designed RNAs PBD1–PBD4. Therefore,
the relative positions of bands are not directly comparable between in-
dividual gels. Compare also Supplemental Figure S3. Bands were as-
signed as follows: full-length transcripts (a); cleavage intermediates
(5′- or 3′-truncated transcripts) (b); final cleavage product (5′- and
3′-truncated transcripts) (c); cyclic RNA resulting from intramolecular
ligation of species c (d); concatemers resulting from intermolecular liga-
tion of species b and c (e).

FIGURE 3. Two-dimensional gel electrophoretic analysis of PBD1 (A),
PBD2 (B), PBD3 (C), and PBD4 (D). All samples were mixed with a lin-
ear RNA size standard prior to subjecting onto the gel. The first dimen-
sion gel of the respective system is implemented in each panel. The
diagonal marks the linear RNAs; circular species are denoted by an
arrow.
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shape and the migration behavior of the cyclic RNA strongly
depend on the sequence (Grabowski et al. 1984; Sigurdsson
and Eckstein 1996). Previously, we have set up a two-di-
mensional-PAA gel electrophoresis assay (see Experimental
section of the Supplemental Material, and Petkovic and
Müller 2013) to identify cyclic species by means of their non-
linear movement at different PAA concentrations. While
linear species move on a diagonal in the second dimension,
cyclic species are expected to show irregular movement.
Full-length CRZ-2 appears to form, if at all, only traces of a
circular 83mer (Fig. 2, lane 1; cf. also Supplemental Fig.
S4), while incubation of the isolated linear 83mer of CRZ-2
alone (lane 7) clearly produces the cyclic species. The cyclic
83mer is located approximately at the 150 nucleotide size
standard. For PBD1-PBD4, identification of cyclic species
was possible by 2D gel electrophoresis (Fig. 3). Interestingly,
all newly designed RNAs (PBD1-PBD4, lanes 3–6) do show
circular 83mers, while not showing any linear 83mers. In
case of PBD4, the cyclic species is not represented by a dis-
crete band, but rather appears as a smear.

Higher noncyclic ligation products (e—dimers, trimers,
concatemers)

Intermolecular backbone ligation can only occur upon dime-
rization of the 83mer and/or the intermediate cleavage prod-
ucts, carrying the required termini (5′-OH and 2′,3′-cyclic
phosphate). A summary of these species
can be seen in Table 2.
Identification of monomeric cleavage

products was straight forward since they
move roughly according to their size.
Identification of higher ligation prod-
ucts is challenging, because their move-
ment can be irregular (Cruz-Reyes et al.
1998). However, by means of the l-
83mer marker (Fig. 2, lane 7) we know
that the species moving ∼150 nt length
is actually the circular 83mer, while the
covalently linked linear 166mer (83 +
83) is located roughly at 120 nt length.

Bands above the 200 bases ladder correspond most likely to
249mers (83 + 83 + 83) and even longer molecules. In com-
parison, we do see multiple species between 100 and 200 nt in
the full-length CRZ-2 lane (Fig. 2, lane 1). We can clearly
identify the 166mer at the same height as the 166mer in
the lane of the l-83mer reference marker (lane 7). Shortly
above is a stronger band indicating intermolecular ligation
of the 83mer with a 92/94mer, or of the 92mer with the
94mer, respectively. The ratio between linear 166mer and
175/177mer would also be similar to the observed ratio be-
tween 83mer (c in lane 1) and 92/94mer (b in lane 1). The
bands further up are hard to interpret and might show a little
of c83mer and 186mer (92 + 94), as well as a 258/260mer (83
+ 83 + 92/94) next to the 300 bases ladder.
Assignment of bands becomes more difficult for PBD1 to

PBD4. PBD1 (lane 3), our most efficient ribozyme concern-
ing 5′- and 3′-end cleavage, shows two bands in addition to
the c83mer, which most likely correspond to the linear
166mer (83 + 83) and 249mer (83 + 83 + 83), respectively.
PBD2 (lane 4) shows four species between the 105mer (a)
and the c83mer (d). Since we can see a clear band for 92/
94mers (b) we suggest that these species took part in inter-
molecular ligation reactions with 83mers resulting in a
diverse set of dimers (e). However, we cannot exclude that
a low running trimer is present as well. PBD3 and PBD4
(lane 5, 6) show mostly the same species with different inten-
sities. Analogous to PBD1 they show noncircular species that
most likely represent the homo-dimer (83 + 83) and possibly
hetero dimers and/or a trimer.

Cyclic dimer formation

With the purpose of identifying cyclic dimers in the reaction
mixture we designed and synthesized an inactive dimer
(CRZ∗) which should mimic the behavior of its CRZ-2
equivalent (Supplemental Material). Figure 4 shows two ver-
sions of nonreactive CRZ∗, the linear species at ∼166 nt
length and the enzymatically ligated circular version at a
height of ∼800 bases (lanes 1 and 3). By comparison with
the results shown in Figure 2, a band at comparable height
(∼800 bases), is detected only in the l-83mer marker (lane

FIGURE 4. Enzymatic ligation of the inactive 166mer and treatment
with exonuclease RNase R. Lane 1: ligation mixture composed of liga-
tion product and remaining nonligated linear transcript; lane 2: RNA
size standard, 100 bases, 200 bases, 300 bases, 400 bases, 600 bases,
800 bases, and 1000 bases; lane 3: ligation product mixture after treat-
ment with RNase R (for details see Supplemental Material).

TABLE 2. Lengths of possible cleavage and ligation products upon RNA self-processing

RNA
Full

length (a)a
Cleavage

products (b, c)a

Ligation products
composed of only
83mers (d + e)a,b

Ligation products
of mixed

composition (e)a,b

PBD1 103 83 (c), 92, 94 (b) c83 (d), 166, c166, 249 (e) 175, 177, 186
PBD2 103 83 (c), 92, 94 (b) c83 (d), 166, c166, 249 (e) 175, 177, 186
PBD3 105 83 (c), 91, 97 (b) c83 (d), 166, c166, 249 (e) 174, 180, 188
PBD4 105 83 (c), 91, 97 (b) c83 (d), 166, c166, 249 (e) 174, 180, 188
CRZ-2 103 83 (c), 92, 94 (b) c83 (d), 166, c166, 249 (e) 175, 177, 186

a(a) Full-length transcript, (b) cleavage intermediates, (c) final cleavage product, (d) cyclic
monomer, (e) concatemers; compare also legend of Figure 2.
bNote that in addition to dimers and trimers also longer concatemers can be formed.
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7), although being rather weak. All other ribozymes do not
exhibit measurable amounts of circular dimers in PAA gels.

AFM measurements

To obtain deeper insight into the self-processing behavior of
the designed RNAs and in particular into chain lengths distri-
bution, we supplemented the biochemical analysis by Atomic
Force Microscopy (AFM). AFM imaging is able to visualize
RNA chains on single molecule level (Henn et al. 2001), al-
lowing to characterize even rarely produced RNA species
that are difficult (if not impossible) to observe in gel electro-
phoretic experiments. We analyzed four candidates out of the
investigated self-processing RNAs with AFM imaging under
semidenaturing conditions: CRZ-2, PBD1, PBD4, and the
isolated linear 83mer of CRZ-2. These reaction mixtures
showed high diversity upon biochemical analysis (Fig. 2,
lanes 1, 3, 6, 7), with PBD1 forming predominantly cyclic
83mers, linear 166mers, and 249mers, and PBD4 expressing
a plethora of dimeric and of multimeric species.

Figures 5 and 6 show representative examples for tapping
mode (TM) AFM images of ribozymes (recorded in air after
RNA immobilization on mica and drying). The observed
RNA chains adopt either a coiled (see white arrow in Fig.

5A), or uncoiled conformation which consists of rod-like
segments, connected by kinks. Hence, for the uncoiled con-
formation it is possible to measure the lengths of the consti-
tuting segments as well as the contour length of the whole
chain. That allows a comparison of the observed molecules
with secondary structure prediction of the species listed in
Table 2. Immobilized under native conditions, all observed
molecules had a coiled conformation (data not shown), while
semidenaturing conditions resulted mostly in uncoiled con-
formations having the rod-kink-motif. Hence, the majority
of the AFM measurements were done on RNA chains pre-
pared under semidenaturing conditions (see Figs. 5, 6 for a
representative overview). Histograms showing both the con-
tour lengths and the segment lengths for all four analyzed ri-
bozymes can be seen in Supplemental Figures S5 and S6,
contour-length results are summarized in Table 3. These his-
tograms are in agreement with the expected values from sec-
ondary and tertiary structure prediction: All single-molecule
ribozyme species (83mer–105mer) are expected to form a re-
active structure with two stiff helical regions (segments) con-
nected with a flexible kink. If we assume a typical pitch of 0.3
nm per base pair (Arnott et al. 1973; Henn et al. 2001), the
83mer consists of two stiff regions with 5.4 and 6.3 nm length
plus a kink of about five bases. The contour length would

therefore be ∼11.7 nm plus the kink re-
gion. Monomers that have noncleaved
ends would form the same helices but
have additional single stranded regions
in the kink region or sticking out from
one of the helices. Based on these single
stranded regions, different monomer
variants would be hardly distinguishable
with AFM imaging. Accordingly, differ-
ent dimer species are expected to fold
into a conformation where ∼166 bases
are involved in successive helical regions
(166 × 0.15 nm = 24.9 nm), trimers
with 249 bases resulting in 37.35 nm
and so on.
The contour-length histogram of the

linear 83mer shows three contour-length
peaks at 13.4, 24.5, and 36.5 nm, as well
as very few molecules with even higher
lengths (Supplemental Fig. S6a). These
peaks closely map to expected values for
regularly folded monomers, dimers and
trimers, respectively, making an inter-
pretation straightforward. The segment
lengths, representing individual helical
regions, showed peaks at 5.9, 8.5, and
13.8 nm (Supplemental Fig. S5a), which
most likely correspond to the monomer
helices and dimer-variants of these heli-
ces. AFM imaging reveals that the mono-
mer of the l-83mer typically consists of

FIGURE 5. Tapping mode (TM) AFM phase images (range: 0°–30°) of the reaction products re-
sulting from incubation of the l-83mer (isolated from CRZ-2 system) in cleavage/ligation buffer.
For AFM analysis, samples were precipitated and resolved in 25 mMEDTA and 3.5 M urea (semi-
denaturing conditions). Scale bars: 50 nm (A), 10 nm (B–D). The overview scan (A) shows RNA
chains in coiled (white arrow) and unwrapped conformation. High-resolution TM images (B–D)
allow investigation of the internal structure of 83mers (B), dimers (C), and trimers (D). For con-
venience, schematics have been included on the right side to help with the interpretation of the
AFM images. The corresponding height images are given in Supplemental Figure S7.
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one “short” and one “long” segment, which enclose an angle
of∼110° (Fig. 5B). The dimer may be composed of two, three
or even four segments (Fig. 5C, left to right), while the trimer
shows typically a very complicated internal structure (Fig.
5D). Hence, a large variety of possible conformations is ob-
served for dimers and trimers in the AFM images.
Full-length CRZ-2, as well as PBD1 and PBD4 show an

even wider spectrum of contour-length peaks and chain con-
formations (see Supplemental Figs. S5, S6), which is expected
from the computational design and the biochemical analysis.
In the AFM measurements, full-length CRZ-2 creates pre-
dominantly species being shorter than 24 nm (Supplemental
Fig. S6b). This “cut-off” shifts to 36 nm for PBD1, while
much longer RNA chains (up to ∼80 nm) are observed for
PBD4. Hence, the population shifts progressively to longer
RNA products from CRZ-2 over PBD1 to PBD4, which is
in agreement with the gel electrophoretic analysis. All struc-
tures show contour-length peaks at expected values close to
those from the l-83mer, which makes an identification of
monomers, dimers, and trimers straightforward. Monomers

appear mostly in a rod-like conformation, and a kink (similar
to the l-83mer monomers) is rarely resolvable (Fig. 6, a3, a4,
b3, b4, c3, c4). Dimers adopt L- and Z-like conformations
(Fig. 6, a7, a8, b7, b8, c7, c8). Higher ligation products (tri-
mers, etc.) are currently only observed for PBD4, which
can lead (similar to the l-83mer) to very complicated and ir-
regularly shaped internal chain structures (c9–c14 in Fig. 6).
However, besides these species, also additional peaks are
found at contour lengths that are (i) shorter than the expect-
ed value for a regularly folded monomer (6.5 and 9.0 nm,
observed for CRZ-2, PBD1 and PBD4), (ii) between the
monomer and dimer length (17.2 nm for CRZ-2, 19.0 nm
for PBD1, and 20.0 nm for PBD4), or (iii) between the dimer
and trimer length (31.7 nm for PBD1, 29.6 nm for PBD4).
We can exclude that cleaved ends from processed full-length
ribozymes would have a length of 6.8 nm or 9.5 nm in the
AFM images (for the measurement conditions used in the
experiments). Instead, we can show that the smaller peaks
match very well to segment length measurements (Supple-
mental Fig. S5), suggesting that only one of the two helices
is resolved by AFM imaging. Accordingly, we know that the
catalytically active structure involves tertiary interactions to
closely orient both helices to each other. Uncleaved structures
with single stranded regions in the kink region might favor
the back folding of the helices despite semidenaturing condi-
tions, which are meant to destroy tertiary base pairs. The
AFM images further support this interpretation: Species
having a contour length ∼18.7 ± 1.4 nm (i.e., between the
monomer and dimer length) typically show an L-like confor-
mation. Complementing this chain structure with a third seg-
ment (which might be irresolvable in the images due to back
folding of one helix) having a length of 6.6 ± 0.4 nm (first
peak in the segment length histograms, see Supplemental

FIGURE 6. AFM images of RNA: CRZ-2 (A, a1–a8), PBD1 (B, b1–b8),
and PBD4 (C, c1–c14). Scale bars: 100 nm (A–C), 10 nm (a1–c14);
height scale 1 nm in all images. RNA chains have typically a height of
∼0.4 nm in the AFM images. Overview scans (A–C) show a mixture
of RNA chains of different contour length LC for all three sequences in-
vestigated. Analysis of contour-length histograms (see Supplemental
Fig. S5 and S6) for CRZ-2, PBD1, and PBD4 allowed association of
most of the observed RNA chains with the species listed in Table 2 (as
indicated in the figure). This procedure failed for two shortest species
(a–c 1,2) and the one having a contour length ∼18.7 nm (a–c 3,4), as
the calculated numbers of bases did not match any entry of this table
(see text for a detailed discussion).

TABLE 3. AFM contour-length measurements and their
implications on the ratio between monomers (M), dimers (D) and
trimers (T)

Species length
AFM contour-length measurements (nm)

Number of bases
CRZ-2
l-83mer CRZ-2 PBD1 PBD4

M (83–103/105) – 6.8 ± 0.7 6.2 ± 0.7 6.3 ± 0.7
– 9.5 ± 0.4 9.3 ± 0.7 8.3 ± 0.9
13.4 ± 1.9 12.3 ± 1.1 13.8 ± 1.3 14.2 ± 1.0

D (166–186/188) – 17.2 ± 0.4 19.0 ± 1.7 20.0 ± 1.0
24.5 ± 1.7 22.7±0.6 24.5 ± 1.0 24.0 ± 0.9

T (249–269/271) – – 31.7 ± 0.9 29.6 ± 0.7
36.5 ± 3.2 – 36.5 ± 0.7 34.8 ± 0.5

Ratio (M:D:T) 2:1.5:1 7.4:1:0 10:2.8:1 4.5:1:1
Bold ratio only
(M:D:T)

2:1.5:1 6:1:0 9.5:4:1 2.5:1:1

Bold values correspond to contour lengths exactly matching ex-
pected values. Given are average values ± standard deviation of
the Gaussian fits in the contour-length histograms (see
Supplemental Fig. S6).
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Fig. S6) gives a Z-like conformation with a total contour
length of 25.3 ± 1.8 nm, matching well the expected value
for a regularly folded dimer (24.9 nm). Using the same rea-
soning, the peaks ∼6.4 ± 0.3 and 9.0 ± 0.6 nm may be inter-
preted as “partially back folded” monomer and the one
∼30.7 ± 1.5 nm as a “partially back folded” trimer.

To compare the AFM findings with the computational de-
sign and the results of the biochemical analysis, we calculated
the number frequency of each species from the contour-
length histograms. The ratio between observed monomers,
dimers, and trimers are given in the last two lines of Table
3: One line calculates the ratios regarding all peaks and one
line regards only those peaks in the contour-length histo-
grams that exactly matched the expected contour lengths.
However, both lines show very similar ratios, indicating
that using the “backfolding hypothesis” does not affect the fi-
nal conclusions of the AFM measurements.

DISCUSSION

Taken together, the results of the biochemical analysis in
combination with AFM imaging confirm the predicted
behavior of the self-processing RNAs CRZ-2, PBD1, PBD2,
PBD3, and PBD4. All RNAs undergo two initial cleavage
events that truncate the full length transcript at the 5′- and
3′-end to a linear 83mer with 5′-hydroxyl group and 2′,3′-cy-
clic phosphate required for ligation. The subsequent intra-
molecular ligation delivers exclusively cyclic versions of the
83mer, whereas intermolecular ligation produces dimers
and longer concatemers, which apart from PBD4, have no
or rather low tendency toward cyclization. This implies that
formation of cyclic dimers is extremely unfavored, since it re-
quires the ligation at two sites simultaneously. The same ap-
plies to longer concatemers that are rather rare anyway.

Comparing experimental results with theoretical predic-
tions, we observed two major points, as discussed in detail
below. (i) All designed species are highly efficient in circular-
ization or ligation of cleavage products (optimized with the
scoring function κ1). Thermodynamic optimization, howev-
er, resulted in less efficient cleavage reactions compared to
CRZ-2, since the cleaved ends remain tightly bound and
equilibrium is shifted toward ligation. (ii) PBD1–PBD4
vary in the formation of monomers and multimers (as in-
tended by scoring function κ2), but interestingly, molecule
optimization for stable dimers reduced the variety of dimer
species and did not lead to a higher yield of trimers. Figure
7 shows a detailed analysis for each ribozyme and will serve
as a guideline to discuss observed results from PAA gel elec-
trophoresis and AFM. During the cleavage cascade, we can
distinguish three types of reaction steps: (i) formation of re-
active structures, (ii) dissociation of cleaved ends after ribo-
zyme reaction, and (iii) refolding of an unbound reaction
product into a new reactive structure. In Figure 7, each of
these steps is characterized by an activation free energy (see
Supplemental Material for details).

Full-length transcripts (a—103/105mers)

Our theoretical analysis shows that dissociation of the cleaved
ends from computationally optimized ribozymes (PBD1–4)
has to overcome a higher energy barrier than in the case of
manually designed CRZ-2 (Fig. 7). This is due to the fact
that designed molecules are optimized to fold primarily into
catalytically active conformations, and therefore also the
cleaved conformationswith tightly bound ends are very stable.
It is known that tightly bound fragments shift equilibrium to-
ward ligation (Fedor 1999), and this would explain whywe see
full-length product for three of our four designed ribozyme
species (PBD2, PBD3, and PBD4), but not for CRZ-2. Here,
the 5′-end is efficiently cleaved off, and the resulting transient
fragments tend to accumulate as 92mers (Fig. 2, lane 1). The
full-length transcript PBD1 (103mer) is completely con-
sumed despite its high dissociation barriers, indicating that
in agreement with theoretical analysis, the dissociation of
cleaved ends is an irreversible step at experimental conditions.

Cleavage products (b—97, 94, 92, 91mer,
and c—linear 83mer)

The cleavage cascade can start with either of two reactive con-
formations resulting in cleavage of the 5′- or 3′-end. In the
case of CRZ-2, none of these conformations correspond to
the ground state of the molecule, rather they are 4.2 and
8.5 kcal/mol above the ensemble free energy. Cleavage of
the 5′-end is the favored reaction, but results in a structure
that has to overcome a high barrier to fold into the reactive

FIGURE 7. Cleavage cascades of molecules CRZ-2 and PBD1-4. Black
numbers correspond to the length of the molecules or to the fragment to
be cleaved (5′- and 3′-end). Superscripts 5′, 3′, c, or l mark molecules in
a reactive conformation to cleave the 5′-end, the 3′-end, to circularize, or
to linearize, respectively. Reversible cleavage reactions are indicated by
double arrows, bent arcs denote refolding steps that are considered as
irreversible. The line width of arcs is proportional to the refolding
rate; red numbers denote the corresponding energy barriers (limiting
the refolding rate). The line width of green boxes is proportional to
the equilibrium probability of a reactive conformation; green numbers
in parentheses denote the corresponding difference between the free en-
ergy of the reactive structure and the ensemble free energy.
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92mer conformation for 3′-end cleavage. In equilibrium, the
reactive structure is sparsely populated, since it is 7.2 kcal/
mol above the ensemble free energy. We therefore expect
that the prominent band b in the CRZ-2 lane in Figure 2 is
mostly 92mer, since the 94mer is (i) the less favored cleavage
product and (ii) more likely to undergo the following-up
cleavage reaction. PBD3 and PBD4 enable a clear separation
of cleavage products on the gel picture, due to their differ-
ently sized ends. Both molecules differ by only two point mu-
tations in one hairpin loop of the reactive conformations
(Fig. 1). Since this hairpin remains closed in all reactive spe-
cies as well as on the most favorable refolding paths between
the species, all important free energies differ by a constant
factor (1.4 kcal/mol), and the barrier heights and structure
ensemble probabilities are the same. The distribution of mo-
nomeric species should therefore be exactly the same for
PBD3 and PBD4. Both molecules favor to cleave first the
3′-end, and second the 5′-end. This is in accordance with ex-
perimental results, showing mainly the 91mer as favored in-
termediate product. The 97mer is observed, particularly for
PBD4, when higher amounts of RNA are subjected onto
the gel (Fig. 2; Supplemental Fig. S3d).

Higher noncyclic ligation products (e—dimers,
trimers, concatemers)

All hairpin-ribozyme variants can form two long helices, both
of which have the possibility to form stable dimers that pre-
serve the feature of catalytic activity. PBD1 and PBD3 have
self-complementary hairpin loops,which results in a generally
stronger tendency to dimerize, and a higher probability to re-
tain catalytic activity upon dimerization. Since PBD1 is ex-
tremely efficient during the monomeric cleavage cascade, it
shows onlyminor amounts of intermediate cleavage products
(Fig. 2; Supplemental Fig. S3a) that could form dimers.
Accordingly, the only dimer species we see is the 166mer (e
in lane 3). CRZ-2 and PBD2 show the greatest variety of con-
catemeric species. In the case of CRZ-2, we see stable 92-/94-
and 83mer cleavage products (Fig. 2, bands b and c in lane 1).
The probabilities to ligate their reactive ends are higher than
the probabilities to cleave off the remaining terminal sequence
patches,which corresponds to the fact thatweobserve avariety
of concatemeric species. PBD2 shows only the 92-/94mer
band b and no band for the 83mer c (Fig. 2, lane 4), but it
has the highest probabilities (after PBD1) to ligate intermedi-
ate cleavage products, and, in contrast to PBD1, a low proba-
bility to cleave reactive ends upon dimerization.
PBD3 and PBD4 differ only in the self-complementarity of

one hairpin loop and thus should be the best systems to study
the influence of such mutations. Resulting from perfect self-
complementarity, PBD3 has both higher probabilities to li-
gate intermediate products and higher probabilities to cleave
ends from dimer species. However, the only detectable cleav-
age intermediate on gel pictures for PBD3 is the 91mer,
which cannot ligate with itself to a higher species. Accord-

ingly, we see exclusively the linear 166mer (dimer). For
PBD4 also the 97mer is detectable (Fig. 2; Supplemental
Fig. S3d). Interestingly, PBD4 shows more multimeric spe-
cies, suggesting that design toward stable dimers (PBD3)
leads to a lower diversity of multimers.

AFM visualization of RNA molecules

RNA species are identified using differences in their contour
length, which however, can cause ambiguities if species differ
only by a few nanometers. Hence, it was not possible to dis-
tinguish linear and cyclic species (same contour length), dif-
ferent monomeric cleavage products from the full length
transcript (contour lengths differ by <2 nm), or to distin-
guish, which type of dimer, trimer, etc. is observed in the
AFM image. However, AFM resolved structural features (he-
lices, loop regions) and observed segment and contour
lengths that match with secondary structure prediction for
monomers, dimers, and trimers. In the case of the linear
83mer of CRZ-2 (which can only form multiples of itself)
the typical pitch of 0.30 ± 0.02 nm per base pair in a helix
(Arnott et al. 1973; Henn et al. 2001) matches exactly our ob-
served segment and contour lengths. Contour lengths that do
not match the values of regularly folded monomers, dimers,
and trimers can be explained by spatial proximity of two ad-
jacent segments, such that two segments appear as one.
Supporting this hypothesis, adding a single segment from
the segment length histogram to truncated RNA species
would lead to expected contour lengths.
We furthermore observed that, although the samples were

dried before imaging, the RNA chains kept most of the initial
helical conformation. This was also observed in earlier stud-
ies (Bonin et al. 2000; Henn et al. 2001; Abels et al. 2005), and
indicates that the RNA chain structure is sufficiently con-
served to yield meaningful results using AFM imaging in air.
Tip convolution, which may lead to a systematic overestima-
tion of the contour lengths, introduces only minor distur-
bances. Using typical experimental parameters (tip radius
<5nm, RNA chain height <0.4 nm), tip convolution increases
the lateral chain extension by <3 nm (measured as full-width
half maximum/FWHM) (Ortinau et al. 2010), which is <20%
of the monomeric contour length, <10% of the dimeric
one, etc. However, the good quantitative agreement suggests
that tip convolution effects (i.e., the effective tip radius) are
smaller than expected for tip radii extracted from calibration
measurements as described in Materials and Methods.
Taken together, the results of AFMmeasurements confirmed
and complemented the conclusions drawn from the gel elec-
trophoretic analysis. While smaller fragments are dominating
for CRZ-2, a tendency toward larger constructs is seen for
PBD1, and for PBD4 a majority of rather complex structures
is detected (Fig. 6). Comparing the outcome of the AFM anal-
ysis for PBD4 with the gel shown in Figure 2, these complex
structures are either cyclic species of varying lengths or folded
concatemers, since theymost likely correspond to the smearof
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bands in the area of d (Fig. 2, lane 4, cf. also Fig. 3D;
Supplemental Fig. S4d), and thus show an anomalous migra-
tion behavior as typically observed for cyclic or folded RNA
species (Grabowski et al. 1984; Sigurdsson andEckstein1996).

We obtain clear results from contour-length measure-
ments counting relative amounts of monomers, dimers,
and trimers (Table 3). Regardless of whether we compare ra-
tios of theoretically expected peaks only, or include the peaks
corresponding to partly unresolved molecules, we observe
more dimeric and trimeric species for our newly designed
species PBD1 and PBD4, which is in agreement with our de-
sign objective. Furthermore, PBD1 tends to form dimer spe-
cies, again in agreement with our design goal, while PBD4,
which was theoretically optimized to form cyclic monomers,
shows the highest multimer variety both on PAA gel electro-
phoresis and AFM imaging.

To summarize, imaging ribozymes on the single-molecule
level using AFM provides information that complements re-
sults obtained from the gel electrophoretic analysis and the
computation analysis (and vice versa), making a combination
of these techniques promising and very powerful. Our study
revealed that (i) self-processing activity can be programmed
into RNA structures, (ii) self-processing activity can be pre-
dicted and optimized by computer-aided design, and (iii)
AFM turned out to be a powerful technique to image the re-
action products at the single molecule level, even for short
RNAs (<100mer). Dynamic processes like self-induced to-
pology changes and oligomerization and their sensitivity
upon sequence variation are essential for biological self-orga-
nization and evolution. Moreover, a large number of publica-
tions over the past two years have shown that biological
processing of RNA into circular species with often still un-
known function is widespread in nature. Thus, nowadays
the emergence of circular RNAs and their cellular function-
alities are actively investigated (Hansen et al. 2011; Abe
et al. 2012; Danan et al. 2012; Jeck et al. 2013; Liu et al.
2013), making the development of in vitro techniques for
RNA circularization and the study of models mimicking
the processing into circular species even more important.

MATERIALS AND METHODS

Computational ribozyme design

To have a consistent, length-independent annotation for all possible
RNA species that can emerge from a starting (full-length) ribozyme,
we introduce the following notation: We denote the 5′- and 3′-ends
of the full-length molecule as L (left) and R (right), respectively, and
the linear core as C (center). An initial ribozyme species therefore
consists of three parts and can be abbreviated as “LCR” molecule.
Additionally we introduce the term O for the circular version of
C. Despite the ability of C to form a circular O, multiple copies of
C can ligate to one long strand that itself can form a maxi-cycle
(e.g., CCC↔C3↔O3).

The following two scoring functions (κ1 and κ2) were used to
select for ribozymes which are able to process themselves efficiently

into cyclic monomers (κ1) and to differentiate between those,
which predominantly form catalytically active or inactive dimers
(κ2). Both functions estimate rates for cleavage reactions by com-
puting the probabilities of catalytic secondary structures, hence fol-
lowing two hypotheses: First, a cleavage/ligation rate is proportional
to the equilibrium probability of a catalytically active secondary
structure; second, the cleavage reaction leads to dissociation of
the shorter fragment and is therefore irreversible. Equilibrium
probabilities of RNA molecules can be calculated from the equilib-
rium partition function (Z); Z can be calculated using the McCaskill
algorithm (McCaskill 1990) implemented in RNAfold of the
Vienna RNA package (Lorenz et al. 2011). Let Z(LCR) be the equi-
librium partition function over all feasible secondary structures
compatible with the molecule LCR, and Z(LCRL) be the con-
straint partition function over all reactive secondary structures in
which L can be cleaved off, then the probability P(LCRL) can be
computed as

P(LCRL) = Z(LCRL)
Z(LCR) (1)

All computations were done using the Vienna RNA package
Version 2.1.6 with standard energy parameters at 37°C. Supplemen-
tal Figure S2a shows ourmodel of the cleavage cascade yielding cyclic
monomers. It starts with a full-length molecule (LCR) that can pro-
cess itself into the linear catalytic core in two parallel ways. Either the
5′-end (L) of the sequence is cleaved first and the resulting truncated
version (CR) cleaves the 3′-end (R), or vice versa. For both of these
parallel, two-step reaction pathways we are interested in the rate lim-
iting step which determines the speed of the cascade. Since we ap-
proximate cleavage rates from probabilities of catalytic secondary
structures, the rate limiting cleavage reaction is the minimum of
both probabilities, and the total rate is the sum of both parallel cleav-
age pathways. The yield of circular reaction products is computed as
the fraction of circular molecules in equilibrium (Z(O)/(Z(O) + Z
(C))) resulting in the following scoring function:

k1 = − ln min
P(LCRL)
P(CRR)

{
+min

P(LCRR)
P(LCL)

{( )
· Z(O)

Z(O)+ Z(C)

( )
(2)

Our model of the cleavage/ligation cascade which forms circular
dimers is shown in Supplemental Figure S2b. It follows the assump-
tion that dimerization between full-length molecules happens first,
then an intramolecular cleavage cascade is triggered, and finally the
system equilibrates between all dimeric cleavage products. While
monomers have one reactive ground state with two conserved inte-
rior loops to cleave one of their ends, dimers can form up to two re-
active centers in three different ways to cleave one end (see
Supplemental Fig. S2b). The two interior loops needed for a reaction
are commonly called loop A (harboring the reactive site) and loop
B. Our computations to score the dimer-cleavage cascade require
at least one of these loop regions to be formed intermolecularly,
since κ1 already scores the molecules according to their intramolec-
ular cleavage efficiency. The probability to cleave both 5′-ends (L)
from a LCR dimer P(LCR2L

d ) can therefore be computed as

P(LCR2L
d ) = Z(LCR2L

d )

Z(LCRd)
, (3)

where Z(LCR2L
d ) is the sum of two distinct sets of structures in

which loop B is either formed intramolecularly or intermolecularly.
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Similar to κ1, the yield of circular dimers is computed as the frac-
tion of circular dimers in equilibrium (Z(O2)/(Z(CC) + Z(C2) + Z
(O2))) with CC and C2 denoting noncovalently and covalently
bound dimers, respectively. The second scoring function κ2 is there-
fore computed as

k2 = − ln
[LCRd]u
[LCR]u

min
P(LCR2L

d )

P(CR2R
d )

{
+min

P(LCR2R
d )

P(LC2L
d )

{( )
·

(

Z(O2)

Z(CC)+ Z(C2)+ Z(O2)

)
, (4)

where the first term [LCRd]θ/[LCR]θ computes the equilibrium ratio
between dimers and monomers at a given concentration θ (here 100
nM) for the LCR molecule following Bernhart et al. (2006) The
scoring function only maximizes the probabilities for catalytically
active homo-dimers; pathways that involve dehybridization of
partially cleaved species are not included. This corresponds to the
assumption that intramolecular cleavage reactions as well as intra-
molecular folding kinetics are faster than intermolecular structural
rearrangements.

Self-processing reactions

RNAs (11.25 pmol) were solved in Tris–HCl buffer (10 mM, pH =
7.5). After denaturation for one minute at 90°C, RNA folding was
allowed for 10 min at room temperature. To initiate the cleavage re-
action, MgCl2 hexahydrate to a final concentration of 10 mM was
added and reaction was allowed to proceed for 2 h at 37°C. To favor
ligation, Mg2+ concentration was increased up to 50 mM, and reac-
tion proceeded for additional 2 h at 37°C. Reaction was stopped us-
ing an equal volume of stop mix composed of urea (7 M) and EDTA
(50 mM) for the following PAGE analysis.

Two-dimensional electrophoresis

Identification of circular RNAs by 2D electrophoresis is based on the
fact that the migration of linear and circular nucleic acids is dis-
tinctly dependent on the gel pore size (Sigurdsson and Eckstein
1996; Umekage and Kikuchi 2009). To enrich the samples with lin-
ear RNAs for better identification of the circular species, a commer-
cially available RNA size standard (RiboRuler low-range RNA
ladder; Fermentas) being composed exclusively of linear RNAs was
added. Each individual mixture was separated in the first dimension
gel. Then, the gel piece corresponding to the entire lane was cut out
and used for electrophoresis in the second dimension, upon which
linear RNAs are supposed to form a diagonal. Covalently closed cy-
clic RNAs possess reduced degrees of freedom, thus migrating in
nonlinear dependence on the linear species and occurring beyond
the diagonal (Pasman et al. 1996).
All ribozyme variants (11.25 pmol) were analyzed using 2D PAGE

(for polyacrylamide gel composition, buffers and staining see
“PAGE analysis”). First dimension: denaturing conditions (7 M
urea) 15% polyacrylamide; second dimension: 17.5% denaturing
polyacrylamide or 15% native polyacrylamide.

RNA preparation for AFM analysis

Ribozyme reactions were carried out as described above using 400
nM RNA. After reaction, the product mixture was diluted 1:10,

and 5 µL of this solution were lyophilized. The pellet was taken
up in 50 µL of semidenaturing buffer (25 mM EDTA, 3.5 M urea)
to a final RNA concentration of 4 nM for imaging. Resolved RNA
samples were frozen in liquid nitrogen until use.

Atomic force microscopy (AFM)

AFM imaging was performed in air using a Multimode atomic
force microscope (Veeco/Digital Instruments) equipped with a
Nanoscope IIIa controller. The AFM piezo scanner was calibrated
using calibration gratings TGZ01 (rectangular 26 nm SiO2 steps
on silicon wafer; MicroMasch) and PG (chessboard-like pattern
on silicon, 100 nm depth and 1 µm pitch; manufacturer: Digital
Instruments).
RNA samples were prepared by placing a small droplet of RNA

solution onto freshly cleaved mica (SPI Supplies). For the investigat-
ed RNA constructs, adsorption times of 30 sec to 2 min were suf-
ficient to obtain a suitable RNA surface coverage on the mica
substrate. After adsorption, the RNA samples were rinsed in Milli-
Q water (Millipore) and dried in a laminar flow hood, followed
by AFM imaging.
The images were recorded with conventional Tapping Mode in

air using standard tapping mode cantilevers (OMCL-AC160TS,
Olympus). Before usage the cantilevers were tested with a Nioprobe
self-imaging sample (Aurora Nanodevices) and only cantilevers
with tip radius <5 nm were used for imaging. To reduce tip contam-
ination by RNA uptake during imaging process, cantilevers were
functionalized with 3-aminopropyldimethyl-ethoxysilane (APDES)
from ABCR (Karlsruhe) one day prior usage.
In contrast to DNA samples, whose structure often remains un-

changed even after storage periods of several months (as judged
by their spatial properties in AFM imaging), samples had to be im-
aged within few days after preparation. The highest resolutions were
always obtained directly after preparation, while storing in air often
led to post-preparational RNA chain degradation already after few
weeks.
Images were analyzed using the software supplemented with the

AFM. The shape of an RNA chain was “retraced” in terms of a se-
quence of connected straight segments, which allowed to calculate
the contour length as sum of Euclidean distances (Rivetti et al.
1996). As shown by Rivetti and Codeluppi (2001) (who numerically
assessed the accuracy of different methods for contour-length deter-
mination) this approach has an intrinsic error <1%. The main
source of error in the contour-length determination is therefore giv-
en by the lateral resolution of the AFM, which is on the order of few
nanometers (see Discussion for details).

SUPPLEMENTAL MATERIAL

Supplemental material is available for this article.
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a Circular RNA with
Prionlike Behavior

Stefan Badelt**
Christoph Flamm**,†

Ivo L. Hofacker*,**,†,‡

University of Vienna

Keywords
RNA structure, sequence design,
self-replication, folding kinetics

Abstract RNA molecules engineered to fold into predefined
conformations have enabled the design of a multitude of functional
RNA devices in the field of synthetic biology and nanotechnology.
More complex designs require efficient computational methods,
which need to consider not only equilibrium thermodynamics but
also the kinetics of structure formation. Here we present a novel
type of RNA design that mimics the behavior of prions, that is,
sequences capable of interaction-triggered autocatalytic replication
of conformations. Our design was computed with the ViennaRNA
package and is based on circular RNA that embeds domains
amenable to intermolecular kissing interactions.

1 Introduction

During the last decade, the field of synthetic biology has impressively illustrated that nucleic acids
and in particular RNA molecules are reliable materials for the design and implementation of func-
tional circuits as well as nano-scale devices and objects [18, 24, 1, 23]. The reasons for this success
are grounded in the facts that for RNA (i) an experimentally measured energy model exists, (ii)
regulation at the level of RNA molecules is faster than via the production of proteins, and (iii) design
questions are more readily expressed in the discrete framework of binary base pairing than in con-
tinuous interactions between, say, the amino acids in proteins.

1.1 RNA Design
RNA molecules have been extensively engineered in the classical context of gene regulation. Suc-
cessful designs include Boolean networks with miRNAs [27, 34, 47], synthetic RNA switches [22,
40, 17], and artificial ribozymes [43, 13]. In general, the RNA is optimized to switch conformations
upon a hybridization interaction, in order to toggle between an ON and an OFF state. Turberfield et al.
[38] showed for DNA that such hybridization reactions are reversible by a mechanism called toehold
exchange, which was later used to design reversible logic circuits [14] as well as transcriptional oscil-
lators [25] and transcription regulators [37]. Recently, multiple toehold switches have been integrated
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in vivo to activate gene expression in response to endogenous RNAs [17]. Cascading of strand-
displacement reactions allows for the construction of multi-component chemical reaction networks,
exhibiting complex computational and information-processing abilities [50, 41].

DNA and RNA hybridization effects are essential features for algorithmic self-assembly [36, 48]
in nanotechnology. RNA nanoparticles have been constructed from smaller self-assembling units
[6, 5, 16]. Small RNA motifs, such as complementary kissing hairpins, can be used to assemble
complex 1D, 2D, and 3D shapes (for a recent review see [15]). Cayrol et al. [5] have found natural
self-assemblies of the small RNA DsrA in E. coli, suggesting concentration-dependent RNA regu-
latory mechanisms via self-assembly.

The inherent complexity of nucleic-acid-based self-assembling systems makes it necessary to
optimize hand-crafted designs computationally. Several energy-directed computational methods
have been devised for the rational design of nucleic acid molecules that fold into single [20] or
multiple [11, 21] predefined conformations or that form ensembles of interacting nucleic acid
strands [49, 44]. While these methods carefully model equilibrium properties of the designed
RNAs, they provide rudimentary or no support for designing kinetic properties, such as refolding
times, which are much more expensive to compute and thus remain a challenge for computational
design methods.

1.2 Prions
The protein-only hypothesis for the scrapie agent (for a review see [2]) proposes that a prion protein,
with an altered (infectious) h-sheet-rich conformation, starts an autocatalytic cascade that uses the
normally folded prion proteins as a substrate, converting them to the infectious form. This altered
conformation then either self-assembles into fibers, which is the usual phenotype upon prion infec-
tion, or catalyzes the refolding of the remaining normally folded prions. A high activation energy
between the normal and the infectious conformation prevents spontaneous conversion at detectable
rates. The formation of a normal–infectious heteromeric complex lowers the activation energy bar-
rier to convert the normally folded protein into a infectious species. This conversion leads to further
recruitment of normally folded proteins in an autocatalytic process. In essence, a single infectious
prion protein in a population of normally folded ones is enough to convert the whole population via
autocatalytic structure replication into an all-infectious protein population, which self-assembles into
long fibers.

1.3 Artificial Life
Prions represent a form of conformational self-replication that is so far not observed in the context
of RNA biology. Minimal self-switching RNA prions can serve as a model for (i) a new class of
riboswitches that provide exponential feedback, or (ii) self-induced nano-units that assemble or
disassemble upon stimulation. Importantly, the computational design aspect allows for context-
sensitive optimization, which is necessary for applications in synthetic biology and nanotechnology.
Previous research in the field of bottom-up synthetic biology has already introduced designs of small
self-assembling (for a recent review see [1]), self-replicating [35], and self-polymerizing [33] systems.
While all of these results are valuable in showing that such designs are indeed possible, many designs
are still done by intuition and hardly adjustable to a context-sensitive implementation such as pro-
spective artificial life forms. Along those lines we recently submitted an experimentally verified
computational design of multiple self-polymerizing ribozymes in order to study the dynamics of self-
interactive systems [32].

This contribution was motivated by the question of whether RNA molecules can be designed in
silico to exhibit the aforementioned prionlike behavior. We show that it is indeed possible to design
such an RNA prion; whether the suggested sequence really shows the exponential refolding charac-
teristics awaits experimental verification. The RNA prion presented here is a 49-nt-long, circular
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RNA, designed as a bistable molecule. It thermodynamically favors one structure (S1) if present as a
monomer and the other structure (S2) if present as a dimer.

2 Thermodynamics and Kinetics of RNA Prions

RNA secondary structure is a good approximation for the real RNA structure because, in contrast to
proteins, RNA secondary structure captures the majority of the folding free energy. Furthermore, a
well-established energy model for RNA secondary structures exists that is extensively parameterized
via melting experiments [39]. On the computational side, algorithms have been developed for
the thermodynamic and kinetic characterization of RNA secondary structures [28]. In particular,
the energetically optimal structure as well as properties of the structural ensemble at thermodynamic
equilibrium can be computed efficiently. The topology of the discrete folding landscape [12], which
has a strong influence on the folding kinetics, can be analyzed in detail. Several approaches model
the folding kinetics of RNA secondary structure as a stochastic process with different resolution
of the folding landscape [9, 45, 26] (for a review see [10]). Recently these approaches have been
extended to operate on folding landscapes that change with time, as in the case of folding during
transcription [19].

2.1 Thermodynamics
Let the set V of RNA secondary structures be restricted to those that are formed from nested
isosteric base pairs (GC, AU, GU), which have a minimal hairpin loop size of 3 nt and a maximum
interior loop size of 30 nt. These restrictions are broad enough to include the vast majority of known
pseudoknot-free RNA conformations, and they define a set of structures for which an experimen-
tally determined energy model E exists [29]. Most importantly from the computational perspective,
these definitions allow us to compute the structure of minimum free energy (MFE) and the equi-
librium partition function (Z) in O(n3) time, where n is the sequence length.

For RNA design, a fast computation of the equilibrium partition function Z is of particular
interest, since it allows for computing the probability P(S) of forming a secondary structure S and
the ensemble free energy G. Let Z be the sum of all Boltzmann-weighted energy contributions in
the ensemble of RNA secondary structures V,

Z ¼
X
S2V

e−
E Sð Þ
RT (1)

Then we can compute the probability of any secondary structure as

P Sð Þ ¼ e−
E Sð Þ
RT

Z
(2)

and the free energy of the ensemble as

G ¼ −kT⋅ ln Zð Þ (3)

2.2 Kinetic Folding
Let us denote an RNA energy landscape as ℒ = (X, ℳ, E), where V is the previously introduced
set of secondary structures, ℳ is a move set comprising all possible transitions between structures,
and E is an energy function assigning a fitness value for each secondary structure. For an ergodic
move setℳ, we choose the simplest reversible modification of an RNA structure, the opening and
closing of a single base pair. If we have the full landscape ℒ, we can calculate folding kinetics as a
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continuous-time Markov process where the influx and outflux rates, kij and kji respectively, between
every two neighboring structures Si and Sj determine the population ki(t ) of a structure Si at time
point t. This transition process can be formulated with the master equation

dpi tð Þ
dt

¼
X
j≠i

pj tð Þkji−pi tð Þkij
� �

(4)

An RNA energy landscape as defined above grows exponentially with sequence length, making
exact folding simulations infeasible for molecules longer than 30 to 40 nucleotides. However, refold-
ing times between two conformations correlate with the smallest energy barrier h separating them.
Formally, any folding path P has a saddle point with energy EP ¼ maxs2PE sð Þ, and the energy
barrier separating two minima S1 from S2 is determined by the lowest among all possible paths
PS1→S2 :

bS1→S2 ¼ min
PS1→S2

EP−E S1ð Þ ¼ min
P

max
s2P

E sð Þ−E S1ð Þ (5)

Finding the best folding path has been shown to be a NP-hard problem [30]. However, there
exist fast heuristics to compute direct (shortest) paths between two structures, such as the find-
path [11] method available in the ViennaRNA package, or RNAtabupath [7]. For sequences
shorter than about 100 nt, paths with a minimal energy barrier can be computed exactly with
RNAsubopt [46] and barriers [12]. The first program computes a list of all RNA secondary
structures within a certain energy range; barriers processes a sorted list of these conformations
to compute all local minima and the saddle points connecting them by a flooding algorithm.

2.3 Landscapes of RNA Prions
RNA prions are bistable molecules that favor one structure (S1) if present as a monomer and the
other structure (S2) upon dimerization. To avoid spontaneous refolding between S2 and S1, the en-
ergy barrier bS2→S1 has to be very high (see Figure 1).

In our design, S2 forms two 10-nt hairpins that are prone to hybridize via a kissing interaction as
reported for the HIV-DIS loop [8], a highly conserved stem–loop sequence found in many retro-
viruses. Importantly, S2 should not only stabilize other molecules in S2 conformation at high con-
centrations, but actively lower the energy barrier to refold S1 into S2 (see Figure 1).

If these landscape properties are fulfilled, it ensures that an initial population of only S1 molecules
will not refold into S2 unless the refolding is triggered by an external mechanism. However, as soon
as a small population of molecules in S2 conformation is present, they can catalyze the refolding of
S1 molecules into S2.

3 Design of an RNA Prion

RNA molecules with complex energy landscapes can be designed in a two-step process. First, a fast
heuristic is used to generate and select promising candidates according to a cost function C that
specifies thermodynamic aspects of the design objective. Second, minimal refolding barriers are
computed for the set of candidate molecules and contribute to the final ranking of molecules
(see Figure 2 for the prion design pipeline).

3.1 Cost Function
The cost function used for RNA prion design consists of two parts: C ¼ Cℳ þ CD. Here Cℳ is the
cost function to optimize bistable molecules (see Figure 1) without considering the refolding barrier:

Cℳ ¼ E S1ð Þ−G þ a E S1ð Þ−G1ð Þ þ E S2ð Þ−G2ð Þð Þ þ a E S1ð Þ−E S2ð Þ þ �ð Þ2 (6)
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where G is the ensemble free energy (see Equation 3), G1 and G2 are constrained ensemble free
energies over all structures that form base pairs exclusively possible for S1 and S2 respectively
(see Figure 3), � specifies the desired energy difference between S1 and S2, and a is a constant
to weight the terms. Thus, the first term ensures that S1 is the ground state, while the next two
terms optimze for sequences that have few alternative structures in the vicinity of S1 and S2.

Figure 1. Schematic requirements for an RNA prion. Red and blue parts of the molecule are complementary and can
form an intermolecular hybridization reaction. Upper panel: S1 and S2 are stable conformations that do not refold into
each other, since the conformations are separated by a high energy barrier in the energy landscape. Lower panel: S2
destabilizes S1 with a HIV-Dis type kissing loop interaction. The energy barrier for the S1 • S2 complex to refold into the
S2 • S2 complex is low and therefore allows spontaneous refolding.

Figure 2. Programs used to design RNA prions. The initial input consists of two secondary structures in dot–bracket
notation (i.e., every unpaired nucleotide is represented by a dot, and base pairs are shown as matching parentheses; see
Figure 6 for the same structures shown in a graphical representation) and a sequence constraint for the kissing
interaction. switch.pl returns a set of candidate molecules, which are analyzed with RNAsubopt and
barriers to compute the minimum barrier height for monomer refolding (M) and dimer refolding (D).
findpath is used to approximate the initial hybridization interaction of two monomers in structures S1 and S2 (H).
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CD optimizes the dimer landscape, so that the energy of the transition state formed by the initial
intermolecular hybridization interaction (S1 • S2) lies approximately half way between the energy of
single molecules E(S1) + E(S2) and the ground state of the kissing dimer interaction (S2 • S2):

CD ¼ E S2 � S2ð Þ þ E S1ð Þ þ E S2ð Þð Þ
2

−E S1 � S2ð Þ
� �2

(7)

Finally, we rank the molecules by the difference of refolding barriers Dh for monomers and dimers.
Since refolding of dimers is a two-step process composed of (i) the initiation of the kissing action
and (ii) the subsequent intramolecular refolding (see Figure 3), we only consider the rate-limiting
step, that is, the one with the larger of the two barriers:

Db ¼ bS2→S1−max bS1þS2→S1�S2 ; bS1�S2→S2�S2
� �

(8)

3.2 Energy Evaluation
RNA kissing interactions go beyond normal pseudoknot-free secondary structures as defined
above, since they comprise non-nested base pairs, and their energies can therefore not be computed
from the standard energy model. While we expect the energies of the intermolecular helix to be well
described by standard energy parameters, it is less predictable how the (mostly entropic) contribu-
tion of the hairpin loops involved in the kiss will change. Thermodynamic stabilities of kissing
interactions similar to the HIV–DIS loop, which features a 6-nt intermolecular interaction with a
9-nt hairpin loop, were studied in detail by Weixlbaumer et al. [42]. By varying the loop sequence

Figure 3. Upper box: Constraints for the monomer landscape. Among all structures that can form, the base pairs shown
(S1 or S2) should be the best. The base pairs are chosen such that no structures can fulfill both constraints. Lower box:
Optimization parameters for the dimer landscape. The energy of the hybridization complex S1 • S2 should be half way
between the sum of the monomer energies and the kissing complex S2 • S2. The barrier heights h determine the ranking
of final candidates.
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they demonstrated that normal stacking energies can indeed be used for the intermolecular helix.
More importantly, they found kissing interactions to be surprisingly more stable than other hybrid-
ization structures. Based on the measurements in [42], we compute the energy of kissing hairpins as
the energy of the intermolecular helix without energy bonuses for single-base stacking of adjacent
unpaired bases (dangling ends) and add a loop energy of −4.2 kcal/mol. In contrast, other inter-
molecular hybridization structures are penalized by the usual intermolecular initiation energy of
+4.1 kcal/mol, also confirmed by Weixlbaumer et al. [42].

These energy parameters enable us to accurately evaluate the energy of S2 • S2, but, unfortunately,
they are not sufficient for creating a consistent energy model for all intermediate conformations

along the refolding paths PS1þS2→S1�S2 and PS1�S2→S2�S2. We therefore approximate the energy barrier

bS1þS2→S1�S2 with the findpath heuristic and compute the best energy barrier bS1�S2→S2�S2 , using
the RNAsubopt–barriers approach with two different energy models that serve as an upper

and a lower bound (see Figure 4).

The upper bound dimer energy model Eu to find the lowest energy barrier bS1�S2→S2�S2 is com-

puted from the energy of the structure formed from monomers 1 and 2—E(M1) and E(M2),
respectively—and the energy of the duplex interaction is stabilized by a bonus of −4.2 kcal/mol:

Eu Dð Þ ¼ E M1ð Þ þ E M2ð Þ þ E dup12
� �

−4:2 (9)

This approach implicitly adds a penalty for unpaired loop regions, which are actually involved in the
hybridization interaction, and therefore underestimates the actual energy of S2 • S2.

Figure 4. Two energy models to score the hybridization reactions also depicted in Figure 1. Eu is the sum of energies for
S1, S2, and the hybridization reaction; El transforms the molecule into a hybrid that can be scored with standard energy
parameters.
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Alternatively, the kissing interaction can be modeled as a regular intramolecular helix. If both
molecules are cut after the 50-AA of the interacting loops and connected to the beginning of the
respective other strand, this results in a circular hybrid monomer that can be evaluated by standard
energy parameters. Since the free-energy bonus for kissing interactions (−4.2 kcal/mol) approxi-
mately compensates for the entropic penalty of intermolecular interactions (+4.1 kcal/mol), S2 • S2
is closer to the energy according to Weixlbaumer et al. [42]. Using this energy model, we increment
the degree of loops involved in the kissing interaction as if a regular helix were formed, and thereby
increase the entropic loop penalty. The interior loop of S1 becomes a multi-loop, and the hairpin loop
of S2 becomes an interior loop. We have

El Dð Þ ¼ E HybridM1�M2

� �
(10)

All optimization steps are based on the energy model Eu, for analysis of the best sequences both
energy models were applied, and we await experimental feedback to decide which model is better.

The barrier for the initiation of the intermolecular hybridization bS1þS2→S1�S2 is computed by first
finding the best path for opening the competing helix in S1 and second computing the energy barrier
for the intermolecular hybridization reaction using the standard penalty of +4.1 kcal/mol. The
bonus energy of −4.2 kcal/mol is added once the full kissing region is formed, to be consistent
with the energy model Eu. The energy barrier for the initiation of the duplex formation is therefore
usually either the last base pair in the process of unfolding the competing helix, or the first inserted
base pair towards the kissing interaction.

3.3 switch.pl
switch.pl [11] of the ViennaRNA package [28] was used to design bistable molecules and was
modified to support the novel cost function composed of Equations 6 and 7 as well as the folding of
circular RNAs. The algorithm first builds a dependence graph in order to efficiently and fairly sample
RNA sequences that are compatible with both structural constraints. Since switch.pl can only
design bistable and not tristable sequences, the structural constraint for the kissing interaction was
specified indirectly as a sequence constraint. This reduces the number of candidate molecules, but
ensures that they always have a experimentally validated, stable kissing interaction.

The chosen sequences for the kissing interaction have a similar free hybridization energy to that
of the best kissing interaction examples shown in Weixlbaumer et al. [42], but differ by point
mutations to be compatible with structural constraints for S1 and S2. Importantly, (i) the kissing
hairpins cannot form intramolecular base pairs that would compete with the formation of an inter-
molecular kissing interaction, and (ii) the two complementary regions forming the kissing interaction
should not form an intramolecular helix in S1, which would make them inaccessible for intra-
molecular interactions. The asymmetric design shown in Figure 1 allows S2 to open a shorter helical
region that has a less stable free energy than the subsequent formation of the kissing interaction.

Alternatively, one could use RNAdesign [21], which can build dependence graphs for multiple
structural constraints and therefore increases the search space, allowing for novel kissing inter-
actions. This more general design attempt will be implemented upon experimental feedback for
the design presented here.

3.4 RNAsubopt, barriers, findpath
The candidate molecules computed by switch.pl are subsequently ranked by the difference of
barrier heights for single-molecule refolding and kissing-dimer refolding. Computation for monomer
refolding is straightforward, by computing the suboptimal structures for the monomer using RNA-
subopt followed by evaluation of the minimal barrier height bS2→S1 with barriers. For the
kissing-dimer interaction, suboptimal structures were computed for both energy models described
above. When using the energy model Eu (see Equation 9), suboptimals were computed with the
constraint that the region involved in the kissing interaction of S1 (red in Figure 1) is unpaired (i.e.,
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involved in the kissing interaction); according to the energy model El (see Equation 10), suboptimal
structures were computed for the hybrid, with the constraint that the kissing region is paired, while
the part corresponding to molecule 2 was kept constant in conformation S2. The barrier for the initiation
of the intramolecular hybridization is computed using findpath for opening the competing helix
in S1 and subsequently adding the duplex energies for formation of the kissing interaction.

4 Results

Out of all possible sequences that are compatible with the sequence and structure constraints shown
in Figure 2, 158 different sequences were returned from switch.pl using 1000 individual runs
with each 2 × 106 optimization steps. After postprocessing with RNAsubopt, barriers, and
findpath to compute the final ranking of the generated designs, 69 sequences either turned out
not to fold exactly into the ground state structures specified as input for switch.pl, or had a
higher barrier for dimer refolding than for monomer refolding and were therefore excluded from
further analysis. In the remaining pool of 89 sequences, 23 showed differences between monomer
and dimer refolding barriers higher than 4 kcal/mol according to Eu (see Equation 9) for dimers.
These sequences were visually inspected, and we selected a candidate (ACCUGGGAACCGGC-
GACCCAGGUUUUCGGAACCAACGUCGGAGGUUCCU) for demonstration of prion behav-
ior, that has (i) a very high refolding barrier for monomer refolding with +16.70 kcal/mol, and (ii) an
energy landscape with as few as possible competing local minima to S1 and S2. The dimer refolding
barriers are +11.60 and +8.60 kcal/mol for Eu and El, respectively. In comparison, the molecule
presented in Badelt et al. [3] has the same barrier for monomer refolding (+16.70 kcal/mol), but
+13.60 and +9.80 kcal/mol for prion-induced refolding.

Figure 5 shows the equilibrium between the two stable conformations S1 and S2 as a function of
RNA concentration. The concentrations of monomers [M ] and dimers [D ] in equilibrium can be
computed by the equilibrium partition function Z (see Equation 1):

K ¼ D½ �
M½ �2 ¼

ZD

Z2
M

(11)

The equilibrium partition function of the monomer (ZM) can be computed directly using the McCaskill
algorithm [31] implemented in RNAfold; ZD can be approximated as

ZD ¼ Zc1⋅Zc2⋅Zdup (12)

with Zc1 and Zc2 denoting the partition functions of two monomers under the constraint that the blue
(c1) or red (c2) interaction region (see Figure 3) is unpaired and thus available for forming an inter-
molecular (kissing) interaction. Zdup is the partition function of the intermolecular duplex formed
between the two molecules. This model follows the assumption that dimerization can only involve
an interaction between the strands of the kissing interaction.

Since we are interested in the conformations formed upon monomerization and dimerization, we
divided the total partition function ZM into three parts: ZS1, ZS2, and Zo. Here ZS1 and ZS2 contain all
conformations constrained to form base pairs that can only be formed in structure S1 or S2, respec-
tively, whereas Zo contains all other conformations, that is, conformations that are not compatible
with both constraints. Constraints are chosen such that (i) the helices formed by S1 and S2 are pre-
served and (ii) there are no structures fulfilling both constraints (see Figure 3). We computed the
relative concentration of S1 in monomers and dimers as

S1½ � ¼ ZS1

ZM
⋅ M½ � þ ZS1þc1

Zc1
þ ZS1þc2

Zc2

� �
⋅ D½ � (13)
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where ZS1þc1 stands for a partition function that has both the constraint to fold into structure 1 (S1)
and the constraint to be unpaired in interaction region 1 (c1). Relative concentrations of S2 were
computed accordingly and can be seen in Figure 5.

Figure 6 shows the energy profiles of the best refolding paths between S1 and S2, either for
a single RNA monomer or for an RNA engaged in kissing interaction with another molecule. Since
S1 is the thermodynamically favored state in monomers, we show the refolding path from

Figure 5. Conformational switching upon change of concentration. The transition from monomer to dimer conformations
between 1 AM and 10 mM goes together with a switch from structure S1 to S2.

Figure 6. Energy profiles along the refolding path between structures S1 and S2. Top panel: refolding of a monomer; bottom
panel: refolding while interacting with a second molecule. Blue- and red-colored regions are designed to form
intermolecular base pairing. The lower panel shows a comparison between two energy models that differ in the
energy contribution of the loop regions involved in the intermolecular pairing. In either case, the relative energy of
refolding is lower than for the monomer.
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S2 (−13.70 kcal/mol) to S1 (−16.00 kcal/mol) in the top panel. The barrier of this refolding path is
16.70 kcal/mol, making a non-induced switching of conformations unlikely.

The bottom panel of Figure 6 shows the energy profile for a scenario where an intermolecular
interaction is first formed between one molecule in conformation S1 and a second in S2, followed
by intramolecular refolding of the first molecule from S1 into S2. S2 is now the favored confor-
mation, since it is stabilized by the kissing interaction. In contrast, S1 is destabilized, since one
helix cannot be formed together with the intermolecular duplex. Theoretically, there would be a
second possible duplex interaction that required S1 to open eight base pairs in two helices, but
since this interaction is not thermodynamically favored, it is not depicted in Figure 6.

For the initiation of the kissing interaction, all competing intramolecular base pairs of S1 have to
open first, and then the intermolecular base pairs can form. The energy barrier for this interaction is
8.90 kcal/mol and leads to a new local minimum conformation at −34.50 kcal/mol.

For the intramolecular refolding from S1 to S2, we compare the two energy models discussed
above. The energy model Eu returns a barrier of 11.60 kcal/mol, while the energy model El results in
a barrier of 8.60 kcal/mol. Note that also the folding path itself is different, due to the different
modeling of involved loop regions.

5 Conclusion

In this contribution we have shown that the computational design of RNAmolecules that exhibit prion-
like behavior is feasible, and that the computational machinery is developed enough for a rigorous
analysis of the behavior of the resulting sequences. As in the original prion system, the misfolded con-
formation forms, via a kissing interaction, a heterodimeric complex with the native conformation. This
interaction destabilizes the native conformation and triggers refolding into the misfolded conformation.
Hence, we demonstrated, at least in silico, that RNA molecules possess the necessary structural capa-
bilities for conformational replication. The calculations show that the kissing interaction drastically
lowers the activation energy for refolding. Furthermore, the misfolded conformation can oligomerize.
In principle, the oligomerization could inhibit the exponential growth characteristics of the misfolded
conformation. Experimental results from fiber-forming dynamic combinatorial libraries [4] show that
mechanical forces lead to fiber breaking, restoring the exponential growth characteristics. One difficulty
in our computational design is the lack of energy parameters for complex interaction structures that
occur as folding intermediates. The design process is, however, flexible and can incorporate feedback
from wet lab results. We therefore envision that practical RNA designs should be refined in a few
rounds of wet lab testing and adaptation of the computational models.

Conformational replication constitutes a novel regulatory mechanism possessing highly nonlinear
dynamic characteristics. This type of behavior is necessary for the construction of signal-enhancing
molecular circuits. Such amplifying devices are usually hard to construct with RNA. Our design
could easily be coupled with interaction sites for an external signal molecule that triggers the initial
refolding event. Such a device could detect a single molecular event and translate it into a large, easily
detected signal. In a prospective artificial metabolism, the infectious conformation may be used to
trigger transcriptional or translational riboswitches, and, if it were regulating its own transcripition,
the self-switching mechanism could be used for time-delayed feedback loops. The aspect of self-
assembly to long fibers—which initially does not seem of particular interest, since it limits expo-
nential growth—may provide a basic model towards the design of an RNA-based cytoskeleton.
However, the current challenge is the synthesis of the RNA molecule in one particular conformation
in vivo, which, for example, may be approached using techniques involving the tRNA ligase.
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Part IV

C O N C L U D I N G R E M A R K S





8
F O L D I N G K I N E T I C S A N D R N A D E S I G N

This thesis presented several individual projects that may be combined in order to
address a diverse set of current challenges in bioengineering. We have (i) modeled the
kinetics of pairwise RNA-RNA interactions in Chapter 3, (ii) included RNA-ligand in-
teractions into RNA folding during transcription and modeled cotranscriptional fold-
ing of large RNAs in Chapter 4, (iii) designed ribozyme cleavage/ligation cascades
in Chapter 6, and (iv) designed an (exponential) RNA self-switching mechanism trig-
gered at high concentrations in Chapter 7.

From a bird eyes perspective, all projects relate to the prediction and design of inter-
acting RNAs that are out-of-equilibrium. We have chosen different methods to coarse-
grain energy landscapes and presented a new way to describe bimolecular reactions
in the context of such energy landscapes. The models presented here are adaptable for
experimental parameters. For example, one can and differ between uni- and bimolec-
ular reactions using different scaling factors for transition rates, or one can model the
free energy gain from a backbone formation when ribozymes ligate a substrate. In this
chapter, I will focus on the central aspect of RNA-RNA interactions and its implica-
tions for all of the other projects.

Folding kinetics of interacting ribozymes (i) + (iii)

We have designed a ribozyme interaction network using the catalytic core of the hair-
pin ribozyme. A cascade of chemical reactions was formulated as objective function
for sequence design, and self-circularization and self-polymerization was successfully
confirmed by in vitro experiments. We found that simplified reaction schemes (Chap-
ter 6, Figure 7) were able to qualitatively explain many of the differences between the
five RNAs that were experimentally tested. However, simulations of larger reaction
networks with more intermediates and including folding kinetics did not improve the
quantitative match. In particular, our simulations required significantly higher RNA
concentrations for concatemer formation than observed in experiments. Our method
for computing RNA-RNA interactions now presents a more general way to model
bimolecular reactions of nucleic acids. For future studies, the method can be trained
with experimental data, e. g. derived from melting experiments, and then be applied
to dynamic RNA energy landscapes that change due to cleavage/ligation events.

Figure 34 shows a two-dimensional pattern that in principle can be constructed
from ribozymes, although steric considerations would require additional refinements.
Parameters to improve the kinetic models of RNA-RNA interactions can be used to
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Figure 34: Theoretical networks of ribozyme self-processing. Left: Two monomers (black and
red) can interact in three different ways to form a dimer. Right: Without paying re-
spect to steric considerations, theses combinations yield networks of multiple inter-
acting ribozymes forming regular shaped polygons composed of (multiple) circular
ribozyme species.

simulate self-polymerizing RNAs, but also to simulate and design networks of multi-
ple interacting catalytic RNA molecules. The regular shapes shown in Figure 34 could
then be improved to dynamically assemble and disassemble more flexible scaffold
structures in a cell. With respect to RNA functional diversity, one can model hairpin
ribozymes that are capable of exponential self-replication, such as shown by Robertson
and Joyce [2014]. Their approach used in vitro evolution, rather than in silico evolution
presented in this work.

The main challenge for more robust design of self-circularization is the reversibility of
the reaction. It is not clear whether the mechanism presented here can be used to pro-
duce stable circular RNA. Our experiments showed that the molecules are degraded
by exonuclease RNase R, which indicates that the molecules equilibrate fast between
their circular and linear version. However, overcoming this problem would allow the
transcription of RNA molecules that circularize right after transcription and are then
more stable against degradation.

Folding kinetics of interacting RNA-prions (i) + (iv)

Chapter 7 describes the thermodynamic design of a 49 nucleotide circular RNA molecule,
that can propagate (self-replicate) a non-optimal, infectious conformation. A misfolded
infectious RNA-prion can convert the other correctly folded RNA species into the in-
fectious agent. We formalized the approach and showed that the design-space (i. e. the
number of such prionlike RNAs) is much larger than expected. However, experimen-
tal feedback is essential to refine the method and utilize the mechanism for biological
engineering. In combination with coarse-grained modeling of intermolecular folding
kinetics, the response time of such switches could be adjusted. While fast response
times result in an efficient signal amplification, delays in folding times can be impor-
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tant to ensure proper timing in molecular response. The design method for circular
RNA-prions may also be adapted to develop particularly stable, reversible triggers of
riboswitches. At low concentrations, RNA-prions are enhancers of their own transcrip-
tion, at high concentrations, RNA-prions trigger the response of a different transcript.
Such basic feedback loops are used for molecular timing in natural cell-cycles. Alter-
natively, the kissing interactions used in RNA-prions allow the assembly of multiple
copies. On the one hand, this limits the exponential nature of switching, on the other
hand, it may serve as a primitive form of a dynamic cytoskeleton.

Nucleic acid interactions during transcription (i) + (ii)

We have modeled RNA-ligand interactions during transcription, assuming infinite
RNA and ligand concentrations. However, our methods can easily be generalized to
consider actual concentrations. RNA logic circuits composed of riboswitches and bac-
terial small RNAs can be used to identify whether a small RNA interaction site is
accessible during transcription. At a slow transcription rate the transcription termi-
nates due to limited substrate resources, while at fast transcription rate, the mRNA is
translated into a protein. Simulations of RNA-RNA interactions allow the prediction
of alternative targets, the response time, and how much miRNA is needed to degrade a
substantial fraction of transcripts. The method may also be adapted for larger systems,
e. g. in combination with the heuristics used in DrTransformer.

Design of multi-responsive riboswitches (i) + (ii) – inverse

Wachsmuth et al. [2015] showed that concatenation of multiple theophylline riboswitches
yields a higher termination efficiency. The idea is appealing, as logic gates (AND, OR,
NOT) can then be encoded using a single transcript instead of multiple interacting
RNA. Our simulations of cotranscriptional ligand binding events now also enable the
design of single riboswitches that have competing binding pockets. The presented
BarMap approach is restricted to rather short molecules, however, DrTransformer com-
bined with ligand binding would allow the design of larger logic gates in a single
riboswitch.

Interactions of multiple RNAs (i)

Coarse-grained modeling of RNA-RNA interactions should also be applicable to sim-
ulating folding kinetics of multiple interacting RNAs, e. g. using the algorithm imple-
mented in the NUPACK framework Dirks et al. [2007]. While investigating single RNA
interactions in eukaryotes is crucial to develop RNA based medication [Andries et al.,
2014], bigger logical circuits are expected to improve diagnostics. In vitro such logical
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circuits can be used to enable a fast and cheap setup for diagnostic tests [Jung and
Ellington, 2014] and are therefore also of economic interest. A profound understand-
ing of molecular mechanisms will be crucial for this field and the methods developed
in this project are adaptable and can incorporate experimental feedback.

The End
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Experimental 

 

 

General remarks and chemicals 

Deoxynucleotide triphosphates (dNTPs), nucleotide triphosphates (NTPs), Klenow buffer, 

DNase I, T7 RNA polymerase, Klenow fragment exo-, RiboLock™, RiboRuler™ low range RNA 

ladder and polynucleotide kinase were purchased from Fermentas Company (Schwerte, 

Germany); T4 RNA Ligase 2 (T4 RnL2) and the appropriate buffer was obtained from New 

England Biolabs (Frankfurt am Main, Germany). DNA primers were provided by Biomers.net 

(Ulm, Germany). RNase R including the required buffer was obtained from epicenter 

(Oldendorf, Germany). All chemicals and reagents were of analytical grade and filtered 

through a 0.2 µm polyvinyl difluoride membrane before use. Upon electrophoresis, all gels 

were stained for 5 to 10 min with ethidium bromide. Final concentration of ethidium 

bromide in 1xTBE was 0.5 µg/ml. All UV spectra were recorded on a NanoDrop ND 1000 

spectrophotometer. Stained gels (agarose or polyacrylamide) were visualized using Chemi-

Smart 2000 WL/LC 26M or VWR GenoView. 

 

 

RNA preparation 

Klenow primers (for sequences see Supplemental Table S2) with 20 bp overlap (27 bp for the 

inactive dimer) were used in Klenow reactions with Klenow exo- polymerase following the 

manufacturer's protocol, and stopped by precipitation from ethanol at -20 °C overnight. DNA 

was isolated from native agarose gels (1.5%, EtBr stained). Product containing bands were 

cut out and DNA was isolated using QIA quick gel extraction kit (Qiagen, Venlo, The 

Netherlands). Since only one product was detectable after Klenow reaction, in later 

preparations the gel extraction step was skipped. Instead, after ethanol precipitation of the 

Klenow reaction product, the pellet was solved in 100 µl water, and 5 µl were used for 

subsequent in vitro transcription. RNAs were synthesized by in vitro transcription of double 

stranded DNA templates (1 µM concentration, or as mentioned above 5 µl of the Klenow 

product resolved in water after precipitation) with T7 RNA polymerase in the presence of the 

four ribonucleoside triphosphates (2 mM) and 1 U/µl RiboLock™ in 1x HEPES buffer (Na-

HEPES 50 mM, MgCl2*6H2O 12 mM, Spermidin 2 mM, pH = 7.5) in a total reaction volume of 

50 µl for 3 h at 37 °C. DNA template was hydrolyzed adding 2 µl DNase I directly to the 

transcription mixture and left at 37 °C for additional 30-45 min. Final purification was 

achieved by electrophoresis on 15% denaturing polyacrylamide gels (for composition see 

subchapter PAGE analysis below), elution of the product-containing bands with sodium 

acetate (0.3 M, pH= 7, 3 times for at least two hours and overnight for the final elution step, 

shaking at approximately 500 rpm, at 10 °C) and precipitation with 250 vol.-% ethanol at -20 

°C overnight.  
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PAGE analysis 

For RNA species analysis or purification, denaturing (7 M urea) polyacrylamide gel 

electrophoresis (acrylamide: bisacrylamide 19:1 100 ml, ammonium persulfate 10 % w/v, 1 

ml, N,N,N′,N′-Tetramethylethane-1,2-diamine 50 µl) was applied, using 1xTBE buffer as 

running buffer and stop mix (7 M urea, 50 mM EDTA, bromophenol blue and xylene cyanol 

each 5 vol-%) for sample loading. After mixing samples and/or RNA size standard with buffer, 

RNAs were denatured at 90 °C for 2 min and directly loaded onto the gel. Loading buffer for 

the RNA size standard was provided by Fermentas (Schwerte, Germany).  
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Design, preparation and analysis of an inactive cyclic dimer 

 

Design of the inactive cyclic dimer 

Circular monomers have been successfully identified for CRZ-2 in our previous work 

(Petkovic and Muller 2013) however, the formation of circular dimers could not be shown. 

Since the size of cyclic RNAs is not assessable in PAA gels according to standard size markers, 

we designed an inactive circular dimer (CRZ*) as a reference. The cyclic reference dimer 

should be as similar as possible to the circular dimer of CRZ-2 and therefore help to identify 

this species in a PAA gel. However, due to its inactivity, the linear version of the reference 

dimer (produced by in vitro transcription) has to be ligated enzymatically to the desired 

cyclic product. 

In particular, the design of an inactive circular dimer has to fulfill the following constraints 

with respect to the reference circular dimer (CRZ): (i) the secondary structure ensemble 

associated with the RNA has to be similar, (ii) the nucleotide content has to be equal, (iii) the 

sequence must not be symmetric, (iv) all conserved catalytic centers have to be destroyed 

and (v) a T7 promotor region is needed. Points (i) and (ii) shall insure a similar migration 

pattern on a polyacrylamide gel, whereas points (iii), (iv) and (v) are necessary for 

experimental implementation. Asymmetry insures that only the defined 3'-terminal regions 

of Klenow primers overlap to obtain specific dsDNA of the desired length as template for 

RNA synthesis, and inactivity is necessary to avoid cleavage/ligation reactions after and 

during in vitro transcription. As a first step we preset the residual T7 RNA promotor 

sequence 5'-GGG AGA-3' as a non-mutable hexanucleotide at the 5'-end of the ribozyme. 

These bases will inevitably occur in the in vitro transcribed RNA due to usage of T7 RNA 

polymerase. Since this pre-processing step harms condition no. (ii), we mutated different 

helical regions to compensate for inequalities in the nucleotide content. Next, we randomly 

flipped base pairs within all helical regions (apart from the residual T7 RNA promotor region) 

and randomly shuffled the nucleotides from all loop regions to obtain loss of catalytic 

activity. With this approach we designed roughly 500 RNA species that fulfill conditions (ii), 

(iii), (iv) and (v). To ensure similar folding behavior, the sequence should not only have the 

same ground state as the CRZ-2 dimer, also the whole structure ensemble should be similar. 

Therefore, we first selected for those sequences that have the smallest mean base pair 

distance within the equilibrium structure ensemble. This mean base pair distance (D) can be 

computed as  

 

                       𝐷(𝐶𝑅𝑍, 𝐶𝑅𝑍∗) = ∑ 𝑃𝑖𝑗
𝐶𝑅𝑍(1 − 𝑃𝑖𝑗

𝐶𝑅𝑍∗) + 𝑃𝑖𝑗
𝐶𝑅𝑍∗(1 − 𝑃𝑖𝑗

𝐶𝑅𝑍)𝑖𝑗                            [5] 

 

With 𝑃𝑖𝑗
𝐶𝑅𝑍 denoting the probability of a single base pair between position i and j for the 

molecule CRZ. From the top 20 designed molecules, we selected a sequence (shown in Table 

S2, Supporting Information) that has a comparable minimal free energy (MFE). 
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Preparation of the inactive cyclic dimer by transcription priming with GMP 

To obtain the inactive linear dimer (in-l-166mer), with 5'-terminal monophosphate, GMP was 

added to the NTP mix following the protocol of Harris and Christian for incorporation of 

guanosine monophosphorothioate.(Harris and Christian 1999) A 4.8:1 ratio of GMP:GTP was 

used, and the double stranded Klenow DNA, buffer, RiboLock™ and polymerase were added 

as described above. In vitro transcription was stopped after 3 hours at 37 °C, and double 

stranded DNA template was hydrolyzed using DNase I following manufacturer’s protocol. 

The reaction mixture was blended with 100 vol-% stop mix (7 M urea and 50 mM EDTA) and 

directly used for purification on a 15% denaturing polyacrylamide gel. After PAGE, elution of 

the desired RNA and ethanol precipitation as described above, RNAs were used for ligation.  

Enzymatic ligation in the double stranded region of the in-l-166mer to generate the cyclic 

species in-c-166mer was conducted using T4 RnL2 in a total reaction volume of 20 µl at 37 °C 

for 4 hrs following the suppliers protocol. RNA was purified using the RNA Clean & 

Concentrator™-5 kit (ZymoResearch, Freiburg, Germany) following the general protocol for 

total RNA purification. Elution of RNA was carried out with 50 µl desalted and purified 

millipore water. After addition of 50 µl stopmix, ligation products were analyzed on a 15% 

denaturing polyacrylamide gel. 

 

Digestion with RNase R 

10 µl of T4 RNA ligase 2 reaction mixture were used directly for hydrolysis using RNase R. 

MgCl2 to a final concentration of 5 mM, RNase R buffer and water up to 17 µl were mixed 

and denatured at 90 °C for 5 min. The mixture was cooled down to 50 °C for 1 min before 

addition of 1 µl of an 1:1 freshly with water diluted RNase R solution. Hydrolysis occurred at 

50 °C for 10 min. Reaction was stopped using an equal volume of stop mix, which is also used 

as loading buffer for electrophoresis, and the mixture was immediately frozen in liquid 

nitrogen. Reaction products were analyzed by electrophoresis through a 15% denaturing 

polyacrylamide gel. 
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Figure S1: a: Two alternative cleavage-favoring conformations of the reference self-processing RNA 

CRZ-2, b: Schematic presentation of self-processing products. 
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Figure S2: Models of (a) the monomer and (b) dimer cleavage cascade  

Red and blue colored regions mark cleavable 5-’ and 3’-ends, respectively. A 
cleavage/ligation reaction can only occur when tertiary interactions between loop A and 
loop B are formed. In black we show structure constraints needed for such reactions, while 
yellow regions should be flexible without impairing catalytic activity. Importantly, every 
structure constraint defines a non-overlapping set of structures such that the probability of 
forming a reactive molecule can be computed from the sum of the constraint partition 
functions. RNA secondary structures were drawn using jViz (1). 
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Figure S3: Self-processing products of the four designed RNAs PBD1 to 4 analyzed with a 
15% denaturing polyacrylamide gel (preparative scale). 

 
a: PBD1 self-processing products upon reaction at PBD1 starting concentration of 2.5 µM;  
b: PBD2 self-processing products upon reaction at PBD2 starting concentration of 3 µM;  
c: PBD3 self-processing products upon reaction at PBD3 starting concentration of 2 µM;  
d: PBD4 self-processing products upon reaction at PBD4 starting concentration of 2 µM. For 
better visualization, the boxed area is shown slightly magnified and at higher contrast on the 
left.  
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Figure S4:  Identification of cyclic RNA from l-83mer and from full-length CRZ-2 by 2D-

PAGE. 

 

a: Self-processing of l-83mer analyzed on a 15% denaturing polyacrylamide gel. Lane 1: self-

processing products denoted with Greek letters  to Lane self-processing products 
mixed with linear RNA size standard. Lane 3: linear RNA size standard. b: Second-dimension 
denaturing (left, to improve resolution polyacrylamide concentration was increased to 
17.5%) and native (right, 15%) polyacrylamide gels. Lane 1 of the gel shown in panel (a) was 
cut off and used as "starting slot" for the native gel in second dimension (b, right), lane 2 of 
the gel shown in panel (a) was equally used for the denaturing gel in second dimension (b, 

left). Species (marked by an arrow) appears beyond the diagonal in both gels, implying its 
cyclic nature. c: Self-processing of full length CRZ-2 (103mer) analyzed on a 15% denaturing 

polyacrylamide gel. Lane 4: self-processing products denoted with Greek letters  to 

mixed with linear RNA size standard. Lane 5linear RNA size standard. Lane 6: self-

processing products denoted with Greek letters  to . d: Second-dimension denaturing 
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(left, to improve resolution polyacrylamide concentration was increased to 17.5%) and 
native (right, 15%) polyacrylamide gels. Lane 4 of the gel shown in panel (c) was cut off and 
used as "starting slot" for the denaturing gel in second dimension (d, left), lane 6 of the gel 
shown in panel (c) was equally used for the native gel in second dimension (d, right). The 

two blurry spots  and marked by arrows in the denaturing gel in panel (d) might 
correspond to cyclic RNAs. However, the corresponding native gel on the right reveals that 
both RNAs do not migrate as fast as would be expected for cyclic species according to the 
analysis of l-83mer shown in panel (b).  
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Figure S5: RNA segment length histograms of references: (a) l-83mer, and (b) CRZ-2and 
test sequences (c) PBD1 and (d) PBD4 

 

In tapping mode AFM images the RNA chains typically consist of rod-like segments, which 
are connected via kinks (see Figs 5 and 6). From the AFM images, the length of these 
segments can be measured with nm accuracy, showing several well-resolvable peaks at 
(average ± standard deviation as averaged over the 4 different RNA sequences) 6.6±0.4 nm, 
9.0±0.3 nm, 12.0±0.4 nm, and 13.8±0.1 nm. Assuming a double helical conformation of the 
rod-like segments and therefore a typical pitch of 0.3 nm per base pair, these peaks 
correspond to segments consisting of 22±1 bp, 30±1 bp, 40±1 bp, 46±0.3 bp. These 
histograms include the length of (a) 212, (b) 127, (c) 342 and (d) 423 segments. 
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Figure S6:  Contour length histograms of RNA chains for (a) l-83mer, (b) CRZ-2, (c) PBD1, 

and (d) PBD4.  
 
For the linear 83mer, the histogram gives three peaks at 13.4, 24.5, and 36.5 nm. Assuming 

again a double helical conformation and therefore a typical pitch of 0.3 nm per base pair (= 

0.15 nm per base), these peaks correspond to 89, 163 and 243 bases and can be identified as 

final cleavage products (83mer) and higher ligation products (dimer = 166mer; trimer = 

249mer). (b-d) As the other RNA constructs additionally create intermediate cleavage 

products, their contour length histograms exhibit a more complicated peak structure. 

Generally, peaks are observed in all histograms at similar values allowing averaging the 

determined peak position over the three different RNA sequences. This yield the following 

values (average ± standard deviation of the respective peak position): 6.4±0.3 nm (first 

peak), 9.0±0.6 nm (second peak), 13.4±1.0 nm (third peak), 18.7±1.4 nm (fourth peak), 

23.7±0.9 nm (fifth peak), and for PBD1 and PBD4 at 30.7±1.5 nm (sixth peak), and 

35.7±1.2 nm (seventh peak). Note that the first two peaks coincide with the first two peaks 

of the segment length histograms in Figure S5. Hence, it is very likely that these peaks 

correspond to RNA chains, for which only one of the constituting segments was resolvable in 

the AFM image (e.g., if two neighbouring segments enclose an angle of approximately 180° 

and therefore appear as a single segment in the measurement). These histograms include 

the contour length of (a) 73, (b) 100, (c) 218 and (d) 256 RNA chains. 
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Figure S7:  Comparison of AFM height and phase images of the l-83mer products. 
 
Tapping mode (TM) AFM height images (height scale: 0.7 nm) and phase images (range: 0 – 

30°) of the reaction products resulting from incubation of the l-83mer (isolated from CRZ-2 

system) in cleavage/ligation buffer. Shown are 83mers (a), dimers (b) and trimers (c); scale 

bars correspond to 10 nm. For convenience, schematics have been included on the right side 

to help with the interpretation of the AFM images. For AFM analysis, samples were 

precipitated and resolved in 25 mM EDTA and 3.5 M urea (semi-denaturing conditions). 

In most TM images, height and phase channels gave very similar results, i.e., they were in 

principle identical regarding RNA chain shape and regarding the obtained resolution. This 

holds for AFM tips with curvature radii down to approximately 4 nm (which was estimated 

from the resolution of the recorded AFM images) and applies for the majority of the 

measurements on CRZ-2, PDB-1, and PDB-1, so that for these ribozymes height images were 

given in the manuscript (Fig. 6). However, some AFM tips appeared to have a smaller 
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effective curvature radius, as indicated by a higher resolution in the phase channel and the 

tendency to deform/squeeze the ribozyme in the height image (compare the ribozyme 

structure at the positions indicated with red arrows in Fig. S7). The latter is understandable 

by the increased local pressure acting on the ribozyme if the interaction area is reduced (due 

to the reduction of the effective tip curvature radius). With these AFM tips the highest 

resolutions were achieved in this study, but with the sacrifice that sometimes parts of some 

ribozymes have been strongly deformed and are hard to see in the height channel, while the 

entire ribozyme is very well resolvable in the phase shift channel. As the l-83mer forms in 

principle only 3 products, such highly resolved images were obtained for all 3 products and 

therefore the phase images were given in the manuscript (Fig. 5), which enable the reader to 

get an impression of the ribozyme conformation with true nm resolution. 
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Estimation of activation energies (Figure 7, main text) 
Figure 7 in the main paper shows a comprehensive view of the cleavage cascade for each of 

the experimentally tested ribozymes. We can distinguish three types of reaction steps (i) 

formation of reactive structures, (ii) dissociation of cleaved ends after ribozyme reaction, (iii) 

refolding of an unbound reaction product into a new reactive structure. Each of these steps 

is characterized by an activation free energy.  

For (i) the Boltzmann probability of forming a reactive state is given by exp(−𝐸𝑅 𝑅𝑇⁄ ) 𝑍⁄ , 

where 𝐸𝑅 denotes the energy of the reactive state and Z is the partition function (see 

Equation [1], main text). Thus, the corresponding activation energy is the difference 

between the free energy of the reactive state and the ensemble free energy (−𝑅𝑇ln(𝑍)). 

This activation energy is optimized through cost function𝜅1, energies to form reactive 

structures are therefore lower for all PBD molecules than for CRZ-2.  

For (ii) and (iii) we approximate the best refolding path from the product conformation 

(reactive RNA dimer) to the next reactive species in the cascade. Finding the best refolding 

pathways is a computationally hard problem. The best direct refolding paths (i.e. paths of 

minimal length) can be estimated using the findpath heuristic (2). In order to get a better 

estimate of the energy barriers, we consider not only direct refolding paths but also detours 

via low-lying minima in the energy landscape. We computed low-lying minima of RNA 

landscapes with the program barriers (3) and selected the minimum free energy (MFE) 

conformation and up to three of the main alternative conformations. We then computed the 

direct refolding paths from the product conformation to each of these low-lying minima, 

from each low lying minimum the other and finally from each low-lying minimum to the 

reactive structure. The barriers along direct paths are computed as the difference between 

the worst energy along the refolding path the energy of the starting structure, the activation 

barriers (ii) and (iii) are selected such that the barrier of the total path is minimal. The 

dissociation barrier (ii) corresponds to the energy needed to dissociate the cleaved end, the 

refolding barrier (iii) describes the pathway from the unbound reaction product to the new 

reactive structure. The resulting values show that designed molecules often have to 

overcome higher dissociation barriers than CRZ-2. 
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Table S2: Klenow primer sequences for generation of double-stranded DNA templates to 
be used for enzymatic synthesis of RNAs and of an inactive dimer 

 Klenow primer 1 including T7 
RNA promoter sequence (in 
italics) 

Klenow primer 2 

PBD1 5’-TAA TAC GAC TCA CTA 
TA  GGG AGA GCA CAG 

TCG GAG TTG CCG CGT 

TAG CGG CGG TTC TAG 

AAG TGC CCC GCA-3’ 
 

5’-GGT TGG CAC TGA GCT 
  TTT TCC CGC GTA ATA 

  TAC GCC ATA TGG CTG 

  TTT CTG CGG GGC ACT 

  TCT AGA ACC G-3’ 

PBD2 5’-TAA TAC GAC TCA CTA 
TA  GGG AGA GAA CAG 

TCG GTG GTG CCC CGT 

AAG GGG CGT CGC CAG 

AAG TTC GGA CCA G-3’ 
 

5’-TCG CCG ACT GTT CTT 
  TTT GGA CCG TAA TAT 

  ACG CCT TTT GGC TGT 

  TTC TGG TCC GAA CTT 

  CTG GCG ACG-3’ 

PBD3 5’-TAA TAC GAC TCA CTA 
TA  GGG AGA CAG TCC 

GGT TTA CCG CTA ATG 

CGG TGG GTC GAG AAG 

TCT GAG CGA GAA A-3’ 
 

5’ -TTT TGG TGC CGG ACT 
  GCC TTT ATG GAG CGG 

  TAA TAT ACC AGT ATA 

  CTG TGT TTC TCG CTC 

  AGA CTT CTC GAC C-3’ 

PBD4 5’-TAA TAC GAC TCA CTA 
TA  GGG AGA CAG TCC 

GGT TTA CCG CTA ATG 

CGG TGG GTC GAG AAG 

TCT GAG CGA GAA ACA-3’ 
 

5’ -TTT TGG TGC CGG ACT 
  GCC TTT ATG GAG CGG 

  TAA TAT ACC AGT GTC 

  CTG TGT TTC TCG CTC 

  AGA CTT CTC G-3’ 

Inactive dimer 5’-TAA TAC GAC TCA CTA 
TA  GGG AGA GGT GTT  

TCA GAC TCG AGA ACC 

AGA GAA TGA CAC GTA 

TGT GCA GGA TTA ACT 

GGT AAA ACT CTC ACA 

GCT GAA ACA CCT CTT 

TCG G-3’ 
 

5’-GGT CTA CGA GGA TGG 
  TCA GGA TAA GGT CGC 

  AAG GTT GGT GGC AGC 

  ACG CAT TAG GAC CTT 

  GAC TTC GCT CAC AGA 

  CCG AAA GAG GTG TTT 

  CAG CTG TGA GAG-3’ 

Full length RNA sequence 
of the inactive dimer 

5’-GGG AGA GGU GUU UCA GAC UCG AGA ACC AGA GAA 
UGA CAC GUA UGU GCA GGA UUA ACU GGU AAA ACU 

CUC ACA GCU GAA ACA CCU CUU UCG GUC UGU GAG 

CGA AGU CAA GGU CCU AAU GCG UGC UGC CAC CAA 

CCU UGC GAC CUU AUC CUG ACC AUC CUC GUA GACC-3’ 
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