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Abstract

The theory of evolution, first popularized by Charles Darwin (Darwin, 1859), laid

the foundation of modern biological research. Reconstructing a phylogeny (evolu-

tionary tree) from molecular data is one approach for understanding evolutionary

relationships. The advent of high throughput and cheap sequencing technologies

has led to the explosion of genetic sequences. To keep up with the speed of data

generation, tree reconstruction methods need to be constantly improved. This

thesis presents fast and accurate methods for inferring maximum-likelihood phy-

logenies.

First, we describe a fast and effective stochastic search algorithm to find maximum-

likelihood phylogenies. Our algorithm, implemented in the phylogenetic software

IQ-TREE, employs hill-climbing search, stochastic perturbation and evolution

strategy to sample local optima in the tree space. IQ-TREE performs favorably

compared to state of the art methods such as RAxML and PhyML. If we allow the

same CPU time as RAxML and PhyML, then IQ-TREE found higher likelihoods

between 62.2% and 87.1% of the studied alignments, thus efficiently exploring the

tree space. If we use the IQ-TREE stopping rule, RAxML and PhyML are faster

in 75.7% and 47.1% of the DNA alignments and 42.2% and 100% of the protein

alignments, respectively. However, the range of obtaining higher likelihoods with

IQ-TREE improves to 73.3–97.1%.

Second, we show that popular phylogenetic inference software cannot reliably es-

timate parameters of the widely used model of sequence evolution for rate hetero-

geneity +I+Γ. The inability to infer the true parameters is caused by inaccurate

numerical optimization routines implemented in these programs. Hence, we pro-

pose an alternative optimization strategy to improve the accuracy of estimates

for the +I+Γ model. As more and more complex models of sequence evolution

are being developed, our finding emphasizes the equal importance of developing

suitable estimation methods.

Third, we present the data-driven heuristic IQ-TREE-SP to shorten the tree search

time. IQ-TREE-SP infers stable tree structures from the generated locally optimal

trees to constrain the search space. Our computational results show that IQ-

TREE-SP is up to 3.9 times faster than IQ-TREE, while at the same time produces

better results.
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Finally, we present an MPI parallelization of the IQ-TREE search algorithm which

exhibits very good scaling performance.

The described methods are implemented in the software IQ-TREE, available at:

http://www.cibiv.at/software/iqtree.

Parts of this thesis have been published:

1. L.-T. Nguyen, H.A. Schmidt, A. von Haeseler, and B.Q. Minh (2014) IQ-

TREE: A fast and effective stochastic algorithm for estimating maximum

likelihood phylogenies. Molecular Biology and Evolution.

In preparation:

2 L.-T. Nguyen, A. von Haeseler, and B.Q. Minh Complex models of sequence

evolution require accurate estimator as exemplified with the invariable site

plus Gamma model.

http://www.cibiv.at/software/iqtree


Zusammenfassung

Die von Charles Darwin aufgestellte Evolutionstheorie (Darwin, 1859) hat den

Grundstein zu moderner biologischen Forschung gelegt. Die Rekonstruktion der

Phylogenie (Stammbaum) aus molekularen Daten spielt die Hauptrolle bei der

Aufklärung evolutionären Beziehungen. Mithilfe von günstigen Sequenzierungs-

technologien werden jedes Jahr Unmengen von biologischen Daten produziert. Um

mit der Geschwindigkeit der Datengenerierung Schritt zu halten, müssen Baum-

Rekonstruktionsmethoden regelmäßig angepasst und verbessert werden. Diese Ar-

beit befasst sich mit der Entwicklung von effizienten und präzisen Algorithmen für

die Rekonstruierung von Phylogenie mittels der Maximum-Likelihood-Methode.

Als Erstes stellen wir einen schnellen und effektiven stochastischen Algorithmus

zur Schätzung der Maximum-Likelihood-Stammbaum vor. Wir zeigen, dass eine

Kombination von Bergsteigeransatz, Randomisierung und umfassende Probe der

Suchraum zu bemerkenswerter Verbesserung der Baumsuche führt. Für die meisten

getesteten Datensätzen fand unsere Software IQ-TREE bessere Bäume als die zwei

weit bekannte Software RAxML und PhyML.

Zweitens zeigen wir, dass die häufig verwendeten phylogenetische Software Pa-

rameter von der populären evolutionären Modell +I+Γ nicht verlässlich schätzen

können. Wir haben festgestellt, dass die unzureichende Genauigkeit der implemen-

tierten Optimierungsroutinen die Ursache des Problems ist. Dabei schlagen wir ei-

ne alternative Optimierungsstrategie vor, welche die Genauigkeit der Schätzungen

erheblich verbessert. Unsere Ermittlung unterstreicht die Wichtigkeit der Ent-

wicklung geeigneter Schätzverfahren, insbesondere wenn immer mehr komplexe

evolutionäre Modelle zum Einsatz kommen.

Drittens erweitern wir den IQ-TREE Suchalgorithmus um eine effiziente Beschleu-

nigungsheuristik. Wir verwenden hier einen datengetriebenen Ansatz um die stabi-

len Baumstrukturen zu erkennen. Dadurch können wir den Suchraum einschränken

und die Suchzeit bis zu 3,9 Male reduzieren.

Zum Schluss präsentieren wir eine effiziente MPI-Parallelisierung des IQ-TREE

Suchalgorithmus.
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Alle Methoden sind in der Software IQ-TREE implementiert. IQ-TREE ist auf

der folgenden Website erhältlich:

http://www.cibiv.at/software/iqtree.

Teile dieser Arbeit wurden in dem folgenden Artikel publiziert:

1. L.-T. Nguyen, H.A. Schmidt, A. von Haeseler, and B.Q. Minh (2014) IQ-

TREE: A fast and effective stochastic algorithm for estimating maximum

likelihood phylogenies. Mol. Biol. Evol.

In Vorbereitung:

2 L.-T. Nguyen, A. von Haeseler, and B.Q. Minh Complex models of sequence

evolution require accurate estimator as exemplified with the invariable site

plus Gamma model.

http://www.cibiv.at/software/iqtree
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Chapter 1

Introduction

1.1 Motivation

In his seminal work ”On the Origin of Species” (Darwin, 1859), Charles Darwin

proposed that life on Earth has evolved from a common ancestor. This lays the

foundation for the studies of evolution. Understanding evolution has since then

become an essential part of biology. Studying evolution does not only improve the

classification of species but also answers important questions in medical research

such as elucidating pathogen transmission (Grenfell et al., 2004) and unraveling

cancer development (Salipante and Horwitz, 2006). To emphasize the importance

of evolution, the prominent evolutionary biologist Theodosius Dobzhansky once

wrote ”Nothing in biology makes sense except in the light of evolution” (Dobzhan-

sky, 1973).

The inheritance of traits and accumulation of mutations in an organism leads

to diverging evolutionary paths. A phylogeny or phylogenetic tree represents the

evolutionary relationships among different organisms. Figure 1.1 shows an example

of a partial phylogenetic tree of mammals. The phylogenetic tree of a group of

species is often unknown or controversial in many cases. Reconstructing phylogeny

requires collecting data about the characteristics of each species, based on which

computational methods are often used to resolve the tree.

Advances in sequencing technologies have led to the emergence of molecular evolu-

tion research. Phylogenetic analysis are now mostly performed on molecular data.

However, genetic data are being produced at an unprecedented speed. To handle

1



Chapter 1. Introduction to phylogenetic inference 2

such massive influx of data, computational methods for inferring phylogeny need

to be constantly improved.

1.2 Organization of this thesis

This chapter presents the basic concepts of phylogeny reconstruction. We first

introduce the biological and computational aspects of molecular phylogenetics.

Subsequently, we explain in detail the fundamentals of maximum-likelihood meth-

ods for phylogenetic inference. In chapter 2, we introduce IQ-TREE, an effi-

cient stochastic algorithm for searching the maximum-likelihood tree. Chapter 3

discusses a problem current phylogenetic software encounter when dealing with

complex model of sequence evolution, namely the inaccurate estimation of model

parameters. Here, we also provide a method to resolve the problem. Chapter 4

describes a data-driven heuristic to constrain the tree space, thus speeding up the

tree search. Chapter 5 presents a coarse-grained parallelization of the IQ-TREE

algorithm using the Message Passing Interface. In chapter 6, we summarize the

main contributions of the thesis.

1.3 Molecular genetic data

Evolution is driven by changes in genetic information which is stored in the

Genome and encoded in DNA (deoxyribonucleic acid), or for some viruses in RNA

(ribonucleic acid). DNA is the building block of genes, which are then transcribed

and translated into proteins (Crick et al., 1970).

Molecular genetic data are often represented by sequences of nucleotide or amino

acid. There are five different type of nucleotides: Cytosince, Guanine, Adenine,

Thymine and Uracil. Thymine is only presented in DNA whereas Uracil is found

in RNA. Amino acids are the building block of proteins. There are 20 different

amino acids that are encoded in the genome (Table 1.1).
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Figure 1.1: A partial phylogenetic tree of mammals (source: www.biology-
forum.com).



Chapter 1. Introduction to phylogenetic inference 4

Name
3-letter 1-letter

Name
3-letter 1-letter

abbr. abbr. abbr. abbr.
Alanine Ala A Methionine Met M
Cysteine Cys C Asparagine Asn N
Aspartic acid Asp D Proline Pro P
Glutamic acid Glu E Glutamine Gln Q
Phenylalanine Phe F Arginine Arg R
Glycine Gly G Serine Ser S
Histidine His H Threonine Thr T
Isoleucine Ile I Valine Val V
Lysine Lys K Tryptophan Trp W
Leucine Leu L Tyrosine Tyr Y

Table 1.1: Twenty amino-acids (Vandamme, 2003).

1.4 Multiple sequence alignment

Genetic sequences are called homologous if they have evolved from a common

ancestral sequence. Given a set of homologous sequences, one of the most common

tasks is to identify regions of similarity by aligning the sequences.

A point mutation represents change in a single character of a sequence. There are

three types of point mutation:

• Substitution: A character is replaced by another nucleotide.

• Insertion: A extra nucleotide is added into the sequence.

• Deletion: A nucleotide is removed from the sequence.

In the process of aligning sequences, gaps are inserted in between so that ho-

mologous nucleotides are aligned in the same column. A gap represents an indel

event, meaning that either a nucleotide was deleted from the sequence or there

are insertions at the place of the gap on other sequences. Figure 1.2 illustrates

a pairwise alignment of two homologous DNA sequences. Based on predefined

scoring schemes, the sequences are aligned so that the final alignment produces

the highest score. A scoring scheme could be as simple as follows: +1 for a match,

-1 for a mismatch and -2 for an indels. The pairwise alignment in Figure 1.2 has

12 matches, 1 mismatch and 2 indels. Thus, this alignment has a total score of

7. There are efficient dynamic programming algorithms to align two sequences
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(Needleman and Wunsch, 1970; Smith and Waterman, 1981). These algorithms

can find the optimal alignment with time complexity O(nm), where n and m are

the lengths of the two sequences.

TACGGCTTTACCGA

TACCGGCTTTACCGA

TAC-GGCTTTCC-GA

TACCGGCTTTACCGA

TACGGCTTTCCGA

Figure 1.2: Pairwise alignment of two homologous DNA sequences. In de-
scendant 1, there is one insertion. In descendant 2, there are one substitution
and one deletion. The gap characters (’-’) represent either insertion or deletion

event (indel).

Multiple sequence alignment (MSA) is an alignment of three or more sequences,

which is the prerequisite of most phylogenetic analysis. To align the sequences,

one can extend the dynamic programming technique. However, this approach is

computationally intractable because the search space does not only depend on the

sequence length but it also grows exponentially with the number of sequences.

In fact, finding the optimal multiple sequence alignment is NP-Complete (Wang

and Jiang, 1994). Thus, developing efficient heuristic methods for multiple se-

quence alignment is also very challenging. Notable examples of MSA method are:

CLUSTAL W (Thompson et al., 1994), T-COFFEE (Notredame et al., 2000),

MAFFT (Katoh et al., 2002), MUSCLE (Edgar, 2004) and PRANK (Löytynoja

and Goldman, 2008). MSAs are typically used as input for phylogenetic inference.

1.5 Phylogenetic tree

A phylogenetic tree or phylogeny is often depicted as a binary tree, in which each

internal node has exact two children. Each leaf of a phylogeny represents a se-

quence (taxon) in the alignment, whereas the internal nodes correspond to extinct

ancestors. The branching pattern of a phylogenetic tree defines its topology. The

branch lengths represent the expected number of substitutions per site.
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Figure 1.3: A multiple sequence alignment of the acidic ribosomal protein
from multiple organisms (source: commons.wikimedia.org). The columns are

commonly referred to as sites.

A phylogenetic tree can be rooted (Figure 1.4a) or unrooted (Figure 1.4b). In a

rooted phylogenetic tree, the direction of evolution is given by the declaration of

a root. Whereas, an unrooted phylogenetic tree does not specify the direction of

evolution. Most phylogenetic software work on unrooted trees.

Each internal branch divides the taxon set into two non-empty, disjoint subsets.

This bipartition is called a split. For example, the tree topology in Figure 1.4 is

composed of the two splits: AB|CDE and ABC|DE.

For n taxa, there are
n∏

i=3

(2i− 5) distinct representations of unrooted binary trees

(Felsenstein, 1978b). As the number of trees grow exponentially with the number

of taxa, enumerating all possible trees for a large number of taxa is intractable.
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A B

C
D E

(a) rooted

A

B
C

E

D

(b) unrooted

root

Figure 1.4: A rooted (a) and unrooted (b) phylogenetic tree. Both trees
have the same topology. In the rooted tree, the evolution starts from the root,

whereas the direction of evolution in the unrooted tree is unknown.

1.6 Tree reconstruction methods

There are several methods to reconstruct phylogenetic tree from a multiple se-

quence alignment. Here, we briefly introduce the primary tree reconstruction

methods. For in-depth introduction of each method refer to Felsenstein (2004)

and Yang (2006).

• Maximum parsimony method: For a given tree topology, one computes

the minimum number of character changes required to explain the observed

variations in the alignment. This number is referred to as parsimony score

of the tree, which can be computed efficiently using the algorithm proposed

by Fitch (1971). In maximum parsimony, the goal is to search for trees with

the lowest parsimony score.

• Distance method: The pairwise distances among the sequences are first

computed from the MSA. The distance between two sequences can be as

simple as the number of character differences per site (observed distance).

However, this measure of distance does not account for multiple substitutions

per site. Therefore, pairwise distances are typically inferred by maximum-

likelihood methods, given an evolutionary model. The pairwise distances

are stored in a distance matrix. The MSA is discarded and the distance

matrix is now used as input for the tree reconstruction step. The objective
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of distance methods is to find a tree, whose branching patterns and lengths

best reflect the estimated distances. Popular distance methods are: least

squares (L. L. Cavalli-Sforza, 1967), minimum evolution (Rzhetsky and Nei,

1992) and neighbor joining (Saitou and Nei, 1987).

• Maximum-likelihood (ML) method: Maximum likelihood is a popular

methodology in statistics to estimate parameters of statistical models from

data (Harris and Stöcker, 1998). In the context of phylogenetic inference,

the parameters are the tree topology, branch lengths, and parameters of the

evolutionary model. The multiple sequence alignment is the data. The ML

method searches for trees with the highest likelihood given the data. The

likelihood of a phylogenetic tree is computed as the probability of the data

having evolved according to the tree and an evolutionary model.

• Bayesian method: Bayesian inference of phylogeny is closely related to

the maximum-likelihood method in the sense that it also relies on the com-

putation of tree likelihood. However, Bayesian methods try to compute the

(posterior) probability of the trees and not just their likelihoods. Bayesian

methods typically sample the distribution of trees with high probability us-

ing Markov chain Monte Carclo methods.

Maximum parsimony, maximum likelihood and distance method use optimality

criteria to search for the best trees, whereas Bayesian method perform sampling

on the tree posterior distribution. The advantage of distance and maximum par-

simony over maximum likelihood and Bayesian method is their computational

efficiency in evaluating trees. However, they suffer several shortcomings. Distance

method might not work well on highly divergent sequences because estimates of

large distances are often subject to high sampling error (Yang and Rannala, 2012).

Maximum parsimony method might be affected by the long-branch attraction prob-

lem (Felsenstein, 1978a) because it does not account for multiple substitutions at

the same site. Maximum likelihood and Bayesian methods typically do not have

the deficiencies observed in maximum parsimony and distance method. They also

work well if the observed sequences evolve under the assumed model (Hall, 2005).

Despite their demanding computational requirements, maximum-likelihood and

Bayesian method have gained massive popularity in the recent years, thanks to

the advances in computational algorithms and computing hardware.
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1.7 Phylogenetic inference by maximum likeli-

hood

Inferring phylogeny by maximum likelihood requires the assumption of an evolu-

tionary model, based on which the likelihood of a phylogenetic tree is computed.

Hereafter, we discuss different types of evolutionary models, how to efficiently

compute the tree likelihood and heuristic search techniques.

1.7.1 Substitution models

A substitution model defines the rates of change of each character in a genetic

sequence. Moreover, the following assumptions are often made (Felsenstein, 2004;

Strimmer and von Haeseler, 2009):

• Markov property : The rate of change of character i to j does not depend on

the prior state of i.

• Time-homogeneous : The substitution rates stay constant over time.

• Time-continuous : Substitutions can happen at any point in time.

• Time-reversible: The rate of change does not depend on the direction of

evolution.

• Stationary : The relative frequency of each character is at equilibrium.

Substitution models are presented in the form of a so-called instantaneous substi-

tution rate matrix Q. Each entry Qij of the matrix specifies the number of substi-

tutions taking place between sequence character i and j per evolutionary time unit.

For example, the instantaneous substitution rates of the four nucleotides A, C, G

and T are described by the following Q matrix of the General Time-Reversible

Model (GTR) (Tavaré, 1986):

Q =


−
∑

i 6=AQAi aπC bπG cπT

aπA −
∑

i 6=C QCi dπG eπT

bπA dπC −
∑

i 6=GQGi fπT

cπA eπC fπG −
∑

i 6=T QT i)
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a, b, c, d, e, f are the rate parameters. πA, πC , πG and πT are the equilibrium fre-

quencies of the nucleotides A, C, G and T, respectively. The entries Qii on the

diagonal are specified so that each row sums up to zero.

The GTR model represents the most general form of DNA substitution model

under the aforementioned assumptions. Simpler substitution models are created

by enforcing constraints on the GTR model. For instance, the JC69 model (Jukes

and Cantor, 1969) assumes that all equilibrium frequencies are equal (πA = πC =

πG = πT = 0.25) and all substitution type occur at the same rate (a = b = c = d =

e = f = 1). The K2P model proposed by Kimura (1980) differentiates between two

substitution types: transition and transversion (Figure 1.5). Felsenstein (1981)

introduced the F81 model with different nucleotide frequencies. Hasegawa et al.

(1985) combined the characteristics of K2P and the F81 model into the HKY

model.

Figure 1.5: Different substitution types for nucleotides.

Substitution models for protein sequences are described by 20x20 rate matrices.

While in most DNA substitution models the rate parameters are estimated for

each individual dataset, using the same approach for protein substitution model

is computationally demanding because of the vast number of parameters involved.
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For that reason, rate parameters of protein substitution models are often estimated

empirically in advance using large number of sequence data.

Based on the instantaneous rate matrix Q, the probability of change from one

character to another for a time period t can be calculated. These probabilities are

stored in the transition matrix P (t) which can be obtained by exponentiating the

Q matrix:

P (t) = eQt (1.1)

Numerical methods for calculating the transition matrix P (t) are described in von

Haeseler (1999) and Yang (2006).

1.7.2 Rate heterogeneity models

It has been observed that substitution rates for sequences evolving under func-

tional or structural constraints might vary among sites (reviewed in Swofford et al.

(1996) and Yang (1996)). This phenomenon is called rate heterogeneity. Substi-

tution models described previously work under the assumption that substitution

rates among sites are the same. This simplified assumption may cause inaccurate

estimation of phylogenetic distances and phylogenies (Palumbi, 1989; Jin and Nei,

1990; Li et al., 1990; Tateno et al., 1994). Different models were suggested to

accommodate rate heterogeneity (Fitch and Margoliash, 1967; Uzzell and Corbin,

1971; Olsen, 1987; Yang, 1993; Meyer and von Haeseler, 2003).

The gamma distribution is most commonly used to model rate heterogeneity

(Uzzell and Corbin, 1971; Yang, 1993). The description of the resulting model

often has the suffix +Γ, e.g. JC+Γ or GTR+Γ. Here, each site is assigned a rate

parameter, whose value is assumed to follow a gamma distribution with mean α/β

and variance α/β2 where α and β are the shape and scale parameter of the gamma

distribution, respectively (α, β > 0). To reduce the number of parameters, β is

set equal to α. Thus, the gamma distribution has mean 1 and variance 1/α. Fig-

ure 1.6 shows the shapes of the gamma distributions for different α’s. Depending

on the value of α, the gamma distribution can be either bell-shaped (α > 1) or

L-shaped (α < 1). This allows great flexibility in modeling rate variation.
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Figure 1.6: Probability density functions of gamma distributions having dif-
ferent shape parameters.

The shape parameter α of the gamma distribution is typically estimated from

the alignment using maximum likelihood. However, the likelihood calculation

under a continuous gamma distribution is impractical for trees with more than

10 taxa (Yang, 2006). As a result, the discrete gamma model is mostly used

to approximate the continuous gamma distribution (Yang, 1994). The discrete

gamma distribution is comprised of equal-percentile and equal-probability rate

categories. The mean or median of each category is used to represent all rates

in that category (Yang, 1994). Figure 1.7 shows an example of a discrete gamma

distribution with four rate categories and α = 0.5. Although discrete gamma

models with higher number of rate categories provides better approximation of the
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continuous gamma model (Mayrose et al., 2005), four rate categories are typically

used to reduce computational requirement.
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Figure 1.7: A discrete gamma model of rate heterogeneity to approximate a
continuous gamma distribution with shape parameter α = 0.5. The vertical
dashed lines are the 25th, 50th and 75th percentiles of the distribution dividing
the density into four equal-probability categories. Rates in each category are

equals and computed as the mean of the category.

Every biological sequence might have conservative regions, which cannot change

due to functional constraints. Thus, having an evolutionary model that includes

invariability for some portion of the sequence is sensible and biologically ap-

pealing (Fitch and Margoliash, 1967; Hasegawa et al., 1985). This model is

called invariable-site model, which is often denoted by the suffix +I. Gu et al.

(1995); Waddell and Steel (1997) suggested combining the gamma model and the
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invariable-site model into the mixture +I+Γ model. Most phylogenetic software

use the discrete gamma model to implement the +I+ discrete Γ model. Compared

to the discrete gamma model, the +I+ discrete Γ model has one additional rate

category with zero rate.

1.7.3 Likelihood calculation

Given a multiple sequence alignment D and a hypothesis H consisting of a phylo-

genetic tree and an evolutionary model, the likelihood of H is:

L(H) = P (D|H),

where P (D|H) is the probability of D having evolved according to H. The likeli-

hood is calculated under the following assumptions (Felsenstein, 1981):

• Evolution of sites along the alignment is independent.

• The sites are identically distributed.

• All sites evolve according to the same tree.

Because sites evolve independently and identically, the likelihood of the hypothesis

H is the product of the likelihoods of each site Di:

L(H) =
∏
i

Li =
∏
i

P (Di|H)

We illustrate the calculation of the site likelihood using an example of a rooted

four-taxon tree (Figure 1.8). The likelihood of the tree is the sum of the probabili-

ties of all possible nucleotides appearing at the internal nodes. Let A be the set of

all possible characters (for our example in Figure 1.8 we have A = {A,C,G, T}).
The likelihood of site Di is:

P (Di|H) =
∑
x

∑
y

∑
z

P (A,G,C,C, x, y, z|H)

=
∑
x

∑
y

∑
z

P (x)Pxy(t1)Pxz(t2)PyA(t3)PyG(t4)PzC(t5)PzC(t6)
(1.2)

where x, y, z represent the possible nucleotides at node V0, V1, V2, respectively

(x, y, z ∈ A). Pij(t) is the probability of character i mutating to j after time
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A
C

G

C

t3 t4

t1

V0

t2

t5 t6

V1
V2

Figure 1.8: A rooted phylogenetic tree of four sequences, whose characters at
a alignment site i are A, G, C and C.

t. Pij(t) is the entry of the transition matrix computed according to Equation 1.1.

P (x) is the probability of each nucleotide, whose value is assumed to be the equi-

librium frequency πx of the nucleotide.

Equation 1.2 requires the summation of a huge number of terms. For a four-taxon

tree, one has to sum over 43 = 64 terms. This number grows exponentially as

the number of taxa increases, rendering the calculation intractable. Felsenstein

(1981) introduced a dynamic programming approach coined pruning algorithm

that makes the likelihood computation feasible. By placing the summation sign

in Equation 1.2 directly before the related term we can rewrite the equation as

follows:

P (Di|H) =
∑
x

P (x)

(∑
y

Pxy(t1)PyA(t3)PyG(t4)

)

×

(∑
z

Pxz(t2)PzC(t5)PzC(t6)

) (1.3)

This reformulation suggests that we can compute the tree likelihood in a bottom

up fashion, starting from the leaves. For each subtree with root V , the pruning

algorithm computes a so-called partial likelihood Li
V (s), which is the probability of

the observed characters in the subtree’s leaves, conditional on V having character
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s. For example, the term PyA(t3)PyG(t4) is the partial likelihood of V1 having

character y.

For each subtree we can compute the partial likelihood of every possible character

at the subtree’s root using the following recursive formula:

Li
V0

(x) =

(∑
y

Pxy(t1)L
i
V1

(y)

)(∑
z

Pxz(t2)L
i
V2

(z)

)
(1.4)

where Li
V (x) is the partial likelihood of node V having character x; V0 is the root

of the subtree, and V1 and V2 are its two immediate descendants.

These partial likelihoods need to be computed only once and can be reused for

the calculation of other partial likelihoods. This is the dynamic programming

approach used in the pruning algorithm which reduces the time complexity from

exponential to linear.

If V is a leaf then:

Li
V (z) =

1, if z = Di
V

0, otherwise
(1.5)

where Di
V is the observed character at site Di in the sequence represented by V .

t1

t2

t5

t6

V1
V2t0

virtual root v0

V4

V3
V5

V6

Figure 1.9: Example of an unrooted tree.
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The site likelihood of the tree in Figure 1.8 is then computed as

Li =
∑
y

∑
z

∑
x

P (x)Pxy(t1)Pxz(t2)L
i
V1

(y)Li
V2

(z) (1.6)

In the previous example, we used a rooted tree to compute the likelihood. Spec-

ifying the root requires knowledge about the direction of evolution. Fortunately,

the assumption about time-reversibility in the substitution process makes the tree

likelihood calculation independent of the placement of the root. This is called the

pulley principle (see Felsenstein (1981) for more details). Thus, for an unrooted

tree we can place a virtual root at any internal node. Figure 1.9 shows an unrooted

tree with two internal nodes V1 and V2. Here, we can assume a virtual root V0 at

V1 and compute the site likelihood Li as follows

Li =
∑
y

∑
x

P (x)Pxy(t0)L
i
V1

(x)Li
V2

(y) (1.7)

If a discrete model of site rate heterogeneity is used (see section 1.7.2), one needs

to compute the partial likelihoods for each rate category:

Li
V0

(x, j) =

(∑
y

Pxy(t1rj)L
i
V1

(y, j)

)(∑
z

Pxz(t2rj)L
i
V2

(z, j)

)
(1.8)

where rj is the rate of the j-th category. Similar to Equation 1.7, the site likelihood

for each category is computed as

Li(j) =
∑
y

∑
x

P (x)Pxy(t0rj)L
i
V1

(x, j)Li
V2

(y, j) (1.9)

The final site likelihood is then the weighted sum of the site likelihoods for all rate

categories:

Li = pinvL
i(r0) + (1− pinv)

1

n

n∑
j=1

Li(j) (1.10)

where pinv is the proportion of invariable sites (0 ≤ pinv < 1) with rate r0 = 0 and

n is the number of rate categories for variable sites.

To avoid numerical underflow when taking the product of all site likelihoods, one

computes the natural logarithm of each site likelihood Li = log(Li). The final tree
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log-likelihood is then the sum of all site log-likelihoods:

L =
∑
i

Li (1.11)

1.7.4 Parameter optimization

In the previous section, we described the likelihood calculation on a fixed tree

topology assuming that all other parameters are known. However, the goal of

the maximum-likelihood method is to find a parameter set that maximizes the

likelihood. To this end, all parameters have to be optimized. Our parameter set

consists of the parameters of the evolutionary model and the branch lengths of the

tree. We treat the tree topology as a special parameter, whose optimization will

be discussed in section 1.7.5.

Because the tree likelihood can be computed for any given parameter set, one

can use many general purpose numerical optimization methods to find the opti-

mal parameter values. Although a multidimensional optimization method can be

used to simultaneously optimize all parameters, this approach is slow and hard to

implement (Swofford et al., 1996). Therefore, parameters are often estimated sep-

arately. Yang (2000) proposed a heuristic for fast estimation of substitution model

parameters and branch lengths on a fixed tree topology. This approach consists of

two steps. First, substitution model parameters are simultaneously optimized by

the BFGS method (Gill et al., 1981), while all branch lengths are fixed. Second,

branch lengths are optimized one after another in several tree traversals using the

Newton-Raphson method (Press, 2007). The optimization of model parameters

and branch lengths is performed alternatively until the likelihood improvement is

smaller than a predefined threshold.

The aforementioned optimization heuristic is implemented in IQ-TREE (Nguyen

et al., 2015). Nevertheless, there has not been a consensus on the best practice

for estimating model parameters and branch lengths. Each phylogenetic software

provides its own heuristic for this procedure. While most optimization heuristics

seem to work well for the most basic models, it is unclear how well the estimation

of parameter-rich models works in modern phylogenetic software. In chapter 3 we

will discuss the reliability of parameter estimation for the parameter-rich model

+I+G.



Chapter 1. Introduction to phylogenetic inference 19

1.7.5 Heuristic tree searches

Finding the tree topology with highest likelihood is the most challenging problem

in phylogenetic inference by maximum likelihood. Not only one has to estimate

the parameters and branch lengths for each possible topology, but the number of

topologies to examine is also astronomically large (there are
n∏

i=3

(2i− 5) possible

topologies for a set of n taxa). Thus, the computation required for inferring the

maximum-likelihood tree is extremely demanding.

Because finding the optimal tree by exhaustive search is intractable for a large

number of taxa, heuristic methods are mostly used (Strimmer and von Haeseler,

1996; Guindon and Gascuel, 2003; Vinh and von Haeseler, 2004; Zwickl, 2006;

Stamatakis, 2006). Most of them employ tree rearrangement operations to search

through tree space. In maximum-likelihood phylogenetic inference, the tree rear-

rangement operations Nearest Neighbor Interchange (NNI) and Subtree Pruning

and Regrafting (SPR) are widely used. In NNI, each internal branch defines a

quartet of four subtrees and a subtree is swapped with one of the other two sub-

trees on the other side of the branch (Figure 1.10a). In SPR, a subtree is pruned

and regrafted into a different branch of the tree (Figure 1.10b).

Most phylogenetic software implement hill-climbing searches, using either NNI

or SPR moves. The NNI and SPR neighborhood of an unrooted tree with n

taxa consist of 2(n − 3) and 2(n − 3)(2n − 7) trees, respectively (Caceres et al.,

2013). An SPR hill-climbing algorithm often has higher chance of finding better

trees than its NNI counterpart because it can search in a larger neighborhood.

Consequently, SPR hill-climbing algorithms require substantially more computing

time. However, hill-climbing algorithms are prone to get stuck in local optima. In

chapter 2 we will discuss about different tree search techniques and introduce our

efficient stochastic algorithm IQ-TREE which bypasses the typical drawbacks of

hill-climbing algorithms.
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Figure 1.10: Tree rearrangement operations: Nearest Neighbor Interchange
(NNI) and Subtree Pruning and Regrafting (SPR).



Chapter 2

IQ-TREE: A Fast and Effective

Stochastic Algorithm for

Estimating Maximum-Likelihood

Phylogenies

Large phylogenetic data sets require fast tree inference methods, especially for

maximum-likelihood (ML) phylogenies. Fast programs exist, but due to inherent

heuristics to find optimal trees, it is not clear whether the best tree is found. Thus,

there is need for additional approaches that employ different search strategies to

find ML trees and that are at the same time as fast as currently available ML

programs. In this chapter, we show that a combination of hill-climbing approaches

and a stochastic perturbation method increase the effectiveness of the tree search.

2.1 Introduction

Phylogenetic inference by maximum likelihood (ML) is widely used in molecular

systematics (Felsenstein, 1981, 2004). It involves the estimation of substitution

model parameters, branch lengths and tree topology. These parameters are usually

estimated one after another with the tree topology being the main parameter

of interest. While efficient numerical methods for estimating substitution model

parameters and branch lengths on a fixed tree exist (Yang, 2000), finding the

21
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optimal tree topology is an NP-hard combinator optimization problem (Chor and

Tuller, 2005). Therefore, one has to rely on search heuristics to find the “best”

tree.

ML tree searches apply inter alia local tree rearrangements such as nearest neighbor

interchange (NNI), subtree pruning and regrafting (SPR), or tree bisection and

reconnection (TBR) to improve the current tree (Guindon et al., 2010; Swofford,

2003; Stamatakis, 2006). Here, only modifications that increase the tree likelihood

(“uphill” moves) are allowed. Such approaches are prone to be stuck in local

optima (e.g., (Swofford et al., 1996)). The problem becomes more severe if the

local tree rearrangement method can only generate a small number of trees in

neighborhood of the current tree. As a result, SPR algorithms often find trees

with higher likelihoods than those that are based on NNI (Morrison, 2007; Whelan

and Goldman, 2001; Money and Whelan, 2012). TBR is not often used due to its

high computational demand.

Stochastic algorithms were developed to overcome the problem of local optima

encountered by hill-climbing algorithms. Current ML implementations of stochas-

tic algorithms allow “downhill” moves (Salter and Pearl, 2001; Vos, 2003; Vinh

and von Haeseler, 2004) or maintain a population of candidate trees (Lewis, 1998;

Zwickl, 2006; Helaers and Milinkovitch, 2010) to avoid local optima. However, in

terms of both likelihood maximization and computation time such implementa-

tions have been found not to perform as well as SPR-based hill-climbing algorithms

(Stamatakis, 2006; Morrison, 2007). The large variety of techniques makes it dif-

ficult to combine them into effective and efficient stochastic algorithms. While

the possibilities to enhance a hill-climbing algorithm are limited, the potential to

improve the effectiveness and efficiency of stochastic algorithms is not yet fully

explored.

Here we present a fast and effective stochastic algorithm for finding ML trees.

The core idea is to perform an efficient sampling of local optima in the tree space.

Here, the best local optimum found represents the reported ML tree. To this end,

we combine elements of hill-climbing algorithms, random perturbation of current

best trees, and a broad sampling of initial starting trees. Comparative analyses

for many large DNA and amino acid (AA) multiple sequence alignments retrieved

from TreeBASE (Sanderson et al., 1994) showed that our new search strategy

often achieves higher likelihoods compared with RAxML (Stamatakis, 2006) and

PhyML (Guindon et al., 2010).
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2.2 Methods

In the following, we describe the ingredients of the fast tree reconstruction method

that are implemented in IQ-TREE. We first describe our fast hill-climbing NNI

algorithm that is used throughout the tree search. Subsequently, we will explain

the initial tree generation and the stochastic NNI process. For likelihood and

parsimony computations, we used the phylogenetic likelihood library (Flouri et al.,

2015).

2.2.1 Hill-Climbing NNI

For the determination of locally optimal trees, we implemented a fast hill-climbing

NNI search. Our approach is based on the work of Guindon and Gascuel (2003)

where they applied several NNIs simultaneously. The hill-climbing NNI is a central

element of the search strategy (Figure 2.1 box c).

NNI is a local tree rearrangement operation that swaps two subtrees across an in-

ternal branch. Each inner branch defines two distinct NNIs. Thus, for an unrooted

bifurcating tree with n taxa, there are 2(n−3) NNI-trees in the NNI-neighborhood

of that tree.

For a given tree (current tree), we first compute the approximate likelihoods of

each NNI-tree by optimizing the respective inner branch and the four adjacent

branches. We only consider NNIs that increase the tree likelihood compared with

the current tree. We then create a list of so-called non-conflicting NNIs. Two NNIs

are considered conflicting if they operate on the same inner branch or adjacent

branches. The list is initialized with the best NNI. We then add the next best

NNI to the list if it does not conflict with any existing NNI in the list, otherwise

we discard it. We repeat this procedure until all NNIs have been processed.

Afterwards, we simultaneously apply all NNIs in the list to the current tree and

compute the likelihood of the resulting tree by doing one tree traversal of ML

branch length optimization. If the likelihood of the resulting tree is worse than

the likelihood of the best NNI-tree, we discard all topological modifications except

that of the best NNI. Thus, if the list is not empty, a new tree with higher likelihood

will always be found. This tree will replace the current tree, completing one round

of hill-climbing optimization. If the list is empty, we stop the hill-climbing search
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Figure 2.1: Flowchart for the stochastic search algorithm. The variable count
counts the number of random perturbations (box b and box c) as a new best

tree was found
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because no further improvement can be made. Otherwise, we continue with the

next round of hill-climbing optimization.

To reduce computing time in the next optimization rounds, we apply a heuristic

that works as follows. We tag the inner branches on the new current tree on which

NNIs were applied in the previous hill-climbing round. Instead of evaluating the

full NNI-neighborhood we only evaluate likelihoods of NNI-trees induced by inner

branches that are at most two branches away from the tagged branches. The

remaining steps, starting with the initialization of the non-conflicting NNIs, are

performed as previously described.

2.2.2 Initial Tree Generation

Tree search heuristics typically start with a quickly built initial tree that is sub-

sequently improved. For example, PhyML starts with a BIONJ tree (Gascuel,

1997) whereas RAxML starts with a MP tree constructed by stepwise addition

(Farris, 1970; Fitch, 1971) and further improved by SPR tree rearrangements. To

get a representative sample of plausible initial trees, we generate 100 parsimony

trees using the same strategy as RAxML. From the 100 trees, we collect all unique

topologies and compute their approximate likelihoods by doing one tree traversal

of ML branch length optimization. From the ranked list of ML values, we select

the top 20 parsimony trees and perform hill-climbing NNI on each tree to obtain

the locally optimal ML trees. We then retain the top five topologies with highest

likelihood in the so-called candidate tree set C for further optimization.

2.2.3 Optimization by stochastic and hill-climbing NNI

Trees in the candidate set C are randomly perturbed so that new locally optimal

trees can be found. To this end, we introduce a so-called stochastic NNI step

(Figure 2.1 box b). Here, we perform (n−3)/2 random NNIs on a tree T randomly

drawn from C, where n − 3 is the number of inner branches. Then, we apply

hill-climbing NNI to the perturbed tree to obtain a new locally optimal tree T ∗

(Figure 2.1 box c).

If T ∗ has a higher likelihood than the best tree in C, we replace that tree by

T ∗. Moreover, the stochastic NNI successfully found a better tree, we then set
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the counter (count) of the number of perturbations to zero. If T ∗’s likelihood is

higher than the likelihood for the worst tree in C, then that tree is replaced by

T ∗. Finally, C does not change if the likelihood of T ∗ is smaller than the smallest

likelihood for the trees in C. In the last two cases, the tree with the highest

likelihood did not change and count is increased by one.

The tree search stops, if the current best tree has not changed after count = 100

random perturbations. The flowchart of our stochastic tree search is summarized

in Figure 2.1.

2.3 Results

2.3.1 Benchmark Setup

Here, we compared the performance of our approach (implemented in IQ-TREE

1.0) with with the default tree searches implemented in PhyML 3.1 (Guindon

et al., 2010) and RAxML 7.3.5 (Stamatakis, 2006). To that end, we downloaded

multiple sequence alignments from TreeBASE ((Sanderson et al., 1994); accessed

December 1, 2012) fulfilling the following criteria. First, the number of sequences

must be between 200 and 800 for DNA and between 50 and 600 for AA alignments.

Second, the alignment length must be at least four (or two) times the number of

sequences in DNA (or AA) alignments. Third, the proportion of gaps/unknown

characters must be less or equal than 70%. Identical sequences were discarded from

the alignments keeping only one. We obtained 70 DNA and 45 AA alignments (see

supplementary tables S1 and S2, Appendix A). The DNA alignment lengths range

from 976 to 61,199 sites. The AA alignment lengths were between 126 and 22,426

sites.

For all programs, we used the substitution model GTR (Lanave et al., 1984) and

WAG (Whelan and Goldman, 2001) for DNA and AA alignments, respectively.

Rate heterogeneity followed the discrete Γ model (Yang, 1994) with four rate cat-

egories, where relative rates are computed as the mean of the portion of the Γ

distribution falling in the respective category. To avoid numerical discrepancies

between different implementations of the likelihood function, we used PhyML to

recompute the log-likelihoods of the final trees based on parameters produced by

each program. We note that, for 92% of the trees the differences in log-likelihoods
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computed by IQ-TREE and PhyML are smaller than 0.01 and the maximal differ-

ence is only 0.05 (supplementary Figure A.1, Appendix A). Thus, the numerical

discrepancies in the log-likelihood calculation between the programs are negligible.

All analyses were performed on the Vienna Scientific Cluster (VSC-2, vsc.ac.at).

2.3.2 Comparison with Equal Running Times

Because RAxML and PhyML are considered as the two high-performance ML tree-

inference programs, we first benchmarked IQ-TREE by restricting the running

time of IQ-TREE to that required by each RAxML and PhyML run. This is

done to study how efficiently IQ-TREE uses its search time compared with the

other programs. For each alignment, we ran RAxML ten times and PhyML once

(because the default tree search in PhyML is deterministic). Subsequently, we

ran IQ-TREE ten times for each alignment with the restricted CPU time. Then,

we compared for each alignment the average log-likelihood of trees produced by

IQ-TREE with those by the other two programs.

Figure 2.2: Performance of IQ-TREE for fixed CPU times: (a, b) Display
frequencies of log-likelihood differences for IQ-TREE minus RAxML for 70 DNA
(a) and 45 AA (b) alignments. (c) and (d) show the same if IQ-TREE is
compared with PhyML. IQ-TREE’s CPU times were limited to those required
by RAxML and PhyML, respectively. The percentages on the dashed line in
(b) and (d) represent the fraction of alignments where log-likelihood differences

are smaller than 0.01.
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Figure 2.2 (and supplementary Figure A.2, Appendix A) displays the pairwise

log-likelihood difference distributions for IQ-TREE versus RAxML (Figure 2.2 a

and b) and PhyML (Figure 2.2 c and d). Trees inferred with IQ-TREE for DNA

alignments had in 87.1% of the instances a higher likelihood than RAxML-trees or

PhyML-trees (Figure 2.2 a and c). Although these percentages are identical, the

alignments for which IQ-TREE found better trees if compared with RAxML or

PhyML are not the same (see supplementary Figure A.2, Appendix A). For 12.9%

of the alignments, RAxML or PhyML found better trees.

For the AA alignments, IQ-TREE found higher likelihoods in 62.2% if compared

with RAxML (Figure 2.2 b) and in 66.7% if compared with PhyML (Figure 2.2 d).

In 22.2% of the alignments, RAxML and IQ-TREE found trees with negligible log-

likelihood differences (smaller than 0.01). This number is 13.3% when comparing

PhyML with IQ-TREE. In only 15.6% and 20% of the AA alignments, RAxML

and PhyML performed better (with respect to tree log-likelihoods) than IQ-TREE,

respectively.

We note that the distributions in Figure 2.2 a, c, and d are skewed to the right.

Thus, our tree search strategy sometimes produced substantially better likelihoods.

In summary, based on the analysis of a large collection of alignments, we demon-

strate that IQ-TREE shows higher likelihoods in approximately three-quarters of

the analyzed data. The improvement is almost the same compared with RAxML

or PhyML. Because we fixed IQ-TREE’s running time to the time the other pro-

grams needed, we conclude that the employed search strategy explores tree-space

more efficiently.

2.3.3 Comparison with Different Running Time

We now discuss the performance of IQ-TREE if the CPU time is not determined

by RAxML or PhyML but rather by the default stopping rule. Thus, we compared

the differences in CPU time and the differences in log-likelihoods (Figure 2.3 and

supplementary Figure A.3, Appendix A). Again, the analyses were based on aver-

age of ten independent IQ-TREE and RAxML runs. Figure 2.3 is organized like

Figure 2.2 (RAxML vs. IQ-TREE results in the first row, PhyML vs. IQ-TREE

results in the second row, DNA alignments left column, and AA alignments right

column).
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Figure 2.3: Performance of IQ-TREE for variable CPU times: The upper
plots (a, b) show the performance of IQ-TREE against RAxML using the 70
DNA (a) and 45 AA (b) alignments. The lower plots (c, d) show the same
against PhyML. Each dot in the main diagrams represents for one alignment
the mean differences of the CPU times (y axis) and of the mean differences of
log-likelihoods (x axis) of the reconstructed trees by the programs compared.
The whiskers at each point show the standard errors of the differences. The
histograms at the top and the side present the marginal frequencies. Dots to the
right of the vertical dashed line represent alignments where IQ-TREE found a
higher likelihood. If a dot is below the horizontal dashed line, the reconstruction
by IQ-TREE was faster. Percentages in the quadrants of histograms denote the
fraction of alignments in that region. Percentages on the dashed line reflect the
number of alignments where log-likelihood differences are smaller than 0.01 (see

[b] and [d]).
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By allowing variable CPU time, the number of the alignments for which IQ-TREE

found higher-likelihood trees than RAxML or PhyML increases. For 97.1% of the

DNA alignments, the likelihood is improved compared with RAxML (Figure 2.3

a). The maximal log-likelihood difference is 109.5 (TreeBASE ID: M7964). For two

DNA alignments, IQ-TREE obtained trees with lower likelihoods than RAxML

with log-likelihood differences up to -8.9 (M2534).

This success in finding higher likelihoods comes at a cost; IQ-TREE required longer

CPU times than RAxML for 75.7% of the DNA alignments. However, the situation

is complicated; the differences in average CPU times are highly variable, and for

some alignments, one program is much faster than the other. For example, for the

alignment M7024 IQ-TREE needed 4.2 h more than RAxML to finish, whereas

RAxML required 8.3 h more to produce an ML tree for M14582. To finish all ten

repetitions for the 70 DNA alignments, IQ-TREE needed 2,020 CPU hours (∼ 87

CPU days), whereas RAxML needed 1,870 CPU hours (∼ 78 CPU days). This is

an average CPU time difference of less than 13 min per run.

Figure 2.3b displays the results for the 45 AA alignments. For ten AA alignments

(22.2%, cf. supplementary Figure A.3b, Appendix A), IQ-TREE and RAxML

inferred trees with likelihood differences smaller than 0.01 for all ten runs. For

73.3% of the AA alignments, IQ-TREE obtained higher likelihoods than RAxML

with a maximal log-likelihood difference of 21.9 (M11012). And for only 4.4%

of the AA alignments, the results were in favor of RAxML, with a maximum

log-likelihood difference of -8.9 (M3114). In terms of computing time, IQ-TREE

obtained the result faster than RAxML in 57.8% of the AA alignments, whereas

RAxML was faster in 42.2%. In total, IQ-TREE needed 2,042 CPU hours to

complete all 450 runs, whereas RAxML required 2,380 CPU hours. This is an

excess of 16.6% compared with the CPU time of IQ-TREE. Thus, on average

RAxML needed 45 CPU minutes more per run. The run time ratios between IQ-

TREE and RAxML range from 0.6 to 3.2 for DNA and from 0.5 to 1.9 for protein

alignments.

Finally, Figure 2.3c and d display the results of IQ-TREE and PhyML for the

DNA and AA alignments, respectively. IQ-TREE obtained higher likelihoods than

PhyML for 91.4% of the DNA and 77.8% of the AA alignments. PhyML obtained

higher likelihoods in 8.6% and 2.2% for DNA and AA, respectively. Notably, the

maximal log-likelihood differences in favor of IQ-TREE were 280.5 (M4794) and
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621.1 (M8630) for DNA and AA, respectively. The maximal differences in favor

of PhyML were -6.3 (M9143) and -0.27 (M8175) for DNA and AA, respectively.

With respect to computing time, PhyML was faster in 47.1% of the DNA and for

all AA alignments, whereas IQ-TREE was faster in 52.9% of the DNA alignments.

PhyML spent 357 and 61 CPU hours for all DNA and AA alignments, respectively.

Whereas IQ-TREE needed, on average, 202 and 204 hours. However, in the shorter

run time PhyML produced lower likelihoods for 77.8% of the AA alignments. The

run time ratios between IQ-TREE and PhyML range from 0.3 to 2.5 (DNA) and

from 2 to 7.5 (protein).

In addition, we ran PhyML ten times per alignment using a random starting tree

and SPR search strategy. Supplementary Figure A.4 in Appendix A shows the

results. In terms of computing time, PhyML ran slower than IQ-TREE for 98.6%

DNA alignments but still faster than IQ-TREE for all AA alignments. With

respect to log-likelihoods, IQ-TREE produced higher likelihoods than PhyML for

88.6% DNA and 93.3% AA alignments (an increase by 2.8% for PhyML on DNA,

but a decrease by 15.5% on AA). Hence, IQ-TREE performed better than PhyML

under both the default and random starting tree options.

2.4 Discussion

We have combined well-known phylogenetic and combinatorial optimization tech-

niques into a fast and effective tree search algorithm. The success of IQ-TREE

results from two factors. First, the new tree search strategy helps to escape local

optima efficiently and, thus, leads to trees with high likelihood. Second, the use of

the phylogenetic likelihood library (Flouri et al., 2015) reduces the computing time

of the likelihood. Given the same amount of CPU time, the efficient IQ-TREE

implementation of hill-climbing and stochastic NNI operations (see Materials and

Methods) computed trees with higher likelihood than RAxML or PhyML in the

majority of cases (up to 87.1% of the benchmark data). This improvement is fur-

ther boosted if the internal stopping rule was used (up to 97.1%). The success

of IQ-TREE in finding trees with higher likelihoods is somehow at odds with the

discussion in the literature about the inferior effectiveness of NNI compared with

SPR (Hordijk and Gascuel, 2005; Guindon et al., 2010; Whelan and Money, 2010).

One explanation for the very good performance of IQ-TREE is the introduction
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of the stochastic NNI. This random perturbation of locally optimal trees helps

to escape local optima. The perturbed trees are then optimized by hill-climbing

NNI, thus allowing for the possibility of finding new and higher local optima. The

combination of random perturbation with hill-climbing search was also employed

in (Vos, 2003) and (Vinh and von Haeseler, 2004) for ML tree searches. In fact,

this simple technique was first proposed in the computer science literature and is

not commonly refer to as iterated local search (Lourenco et al., 2003).

In addition, we employed evolution strategies (Rechenberg, 1973) to allow for a

broader exploration of the tree space. To this end, we maintain a small population

(candidate tree set) of locally optimal trees initially generated from a large number

of maximum parsimony (MP) trees. Throughout the ML tree search, we continu-

ously update the candidate tree set with better trees. Using a pool of candidate

trees allows the search to escape local optima more effectively than having a single

candidate tree.

We also observed that the improvement in log-likelihood differences is positively

skewed for all comparative analyses with the exception of the time constrained

IQ-TREE versus RAxML for AA data (Figure 2.2b). Thus, not only the average

log-likelihood improved with IQ-TREE but also for some alignments, the improve-

ment is substantial. It would be interesting to find out the characteristics of such

alignments to further improve ML tree reconstruction methods. Moreover, by us-

ing many large alignments we show that the very good performance of our search

strategy is not limited to a few alignments. Based on our benchmark results, we

are confident that IQ-TREE will generally work very well.

We would like to point out that it is not enough to run phylogenetic programs

with a stochastic component only once. RAxML and IQ-TREE showed some

variation in the log-likelihoods, if they were run several times (here ten times) on

the same alignment (Figure 2.3 and supplementary Figure A.3, Appendix A). This

observation implies that both programs still finish sometimes in local optima and

one should rerun the programs as many times as possible. In addition, we also offer

the possibility to run IQ-TREE longer by adjusting the corresponding parameter

of the stopping rule or by applying the statistical stopping rule suggested by (Vinh

and von Haeseler, 2004). Compared with other programs, our results show that

with the standard setting of the stopping rule IQ-TREE can produce very good

results, with a moderate increase in running time.
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To further facilitate large phylogenetic analyses, we also consider future develop-

ment of IQ-TREE for distributed computing platforms. The highly independent

components of our stochastic search algorithm would allow us to implement an ef-

ficient parallelization strategy (cf. (Minh et al., 2005) with near-optimal speedup.

Thus, the running time of very large phylogenetic analyses would then be greatly

reduced.

In conclusion, IQ-TREE is a time and search efficient ML-tree reconstruction pro-

gram. It complements the collection of available ML-programs and shows a better

performance with respect to the ML search than RAxML or PhyML. However, as

IQ-TREE is not always better than the other programs, we recommend using all

three programs.





Chapter 3

Complex models of sequence

evolution require accurate

estimators as exemplified with the

invariable site plus Gamma model

This chapter examines the unreliable parameter estimates observed in popular

phylogenetic inference programs for the invariable site plus Gamma model. We

show that the inability to infer the correct parameters is caused by insufficiently

effective numerical optimization routines. To overcome this problem, we propose

a simple optimization strategy to improve accuracy for maximum-likelihood meth-

ods and we recommend exercising care when implementing estimation routines for

complex evolutionary models.

3.1 Introduction

In model based phylogenetic analysis, the invariable site plus Γ model (Yang,

1994; Gu et al., 1995), thereafter referred to as I+Γ, is widely used to model

rate heterogeneity among sites, because it often fits the data better than the Γ

model or the invariable-sites model alone (Sullivan and Swofford, 1997). Thus,

the I+Γ model is frequently selected by MODELTEST (Posada and Crandall,

1998). The I+Γ model has two parameters: the proportion of invariable sites pinv

35
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(0 ≤ pinv < 1) and the shape parameter α of the Γ distribution. A small α (< 1)

indicates strong rate heterogeneity, whereas a large α (> 1) corresponds to weak

rate heterogeneity. Under certain conditions pinv and α can compete with each

other for the same phylogenetic signals. For example, α ≤ 1 already accounts

for sites with low rates; that interferes with pinv and causes a correlation between

the parameters making reliable estimation of those parameters difficult (Sullivan

et al., 1999; Mayrose et al., 2005; Yang, 2014). Consequently, some phylogenetic

practitioners discourage the use of the I+Γ model (Jia et al., 2014; Stamatakis,

2015; Yang, 2014). This recommendation is at odds with the recent result that the

GTR+I+ continuous Γ model is identifiable for an unrooted phylogenetic tree with

three or more distinct interspecies distances (Rogers, 2001; Allman and Rhodes,

2008; Chai and Housworth, 2011).

Since the I+ continuous Γ model is identifiable, reliable parameter estimation for

this model should be possible for sufficiently long multiple sequence alignments.

However, most phylogenetic software only implement the I+ discrete Γ (Yang,

1994) model. The discrete Γ model is widely used because it requires less comput-

ing time than the continuous Γ model. Moreover, there is no reason to prefer the

continuous Γ model to the discrete Γ model because none of them has strong bi-

ological justifications (Yang, 2014). The identifiability of the GTR+I+ discrete Γ

model is unproven (Chai and Housworth, 2011) and it is unclear how well popular

phylogenetic software estimate parameters of the I+ discrete Γ model.

Thus, we assessed the accuracy of the I+ discrete Γ estimators implemented in

commonly used model-based phylogenetic software.

3.2 Results

We investigated how accurate RAxML (Stamatakis, 2014), PhyML (Guindon

et al., 2010), MrBayes (Ronquist et al., 2012) and IQ-TREE (Nguyen et al., 2015)

infer invariable proportion, shape of the Γ distribution and tree length for long

simulated alignments with 100,000 sites, that guaranteed to recover the correct

tree topology.

Figure 3.1, 3.2, 3.3 and 3.4 display the average of shape parameters α̂, the fractions

of invariable sites ˆpinv and the tree lengths estimated for alignments simulated from
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trees with 6, 24 and 96 taxa assuming a JC+I+Γ4 model and different combina-

tions of α and pinv by PhyML, RAxMl, MrBayes and IQ-TREE, respectively. The

red boxes indicate parameter combinations where the estimates deviate more than

25% from the true values. Yellow rectangles indicate a medium deviation from the

true values (10 − 25%), while the green rectangles show correctly estimated pa-

rameters (< 10% deviation).

None of the tested programs estimated all parameter combinations correctly for

the 6-taxon alignments. For extreme rate heterogeneity (α = 0.1), PhyML and

MrBayes recovered the true parameters for pinv ≤ 0.5 and pinv ≥ 0.5, respectively,

whereas estimates by IQ-TREE and RAxML were all incorrect. For strong rate

heterogeneity (α = 0.5) the accuracy of the estimates improved. However, the

results of the programs differ unsystematically. IQ-TREE and MrBayes estimated

six parameter combinations correctly, whereas for RAxML and PhyML only four

and two estimates were correct, respectively. For small rate variation (α = 1.0),

PhyML, RAxML and MrBayes failed for some α and pinv combinations, whereas

IQ-TREE estimated all combinations correctly.

With increased taxon sampling (24- and 96-taxon alignments), we observed sub-

stantially more correct estimates. These results corroborate a previous study

(Sullivan et al., 1999) showing that increased taxon sampling leads to reliable

estimates. However under extreme rate heterogeneity, only MrBayes estimated

the parameter combinations correctly.

We also noted that inaccurate estimates of α and pinv could lead to a substantial

overestimation of the tree lengths. For instance, on the 96-taxon alignments simu-

lated from α = 0.1 and pinv = 0.8 (true tree length = 18.9) estimated tree lengths

produced by PhyML and IQ-TREE were 125.85 and 333.75, respectively. Simi-

larly, MrBayes and RAxML produced tree lengths that were many times longer

than the true values for alignments simulated from the 96 taxon tree with α = 1.0

and pinv = 0.9 and from the 24 taxon tree with α = 0.1 and pinv = 0.3, respectively.

In terms of computing times, MrBayes needed on average 50 minutes, 3 days and

13 days for the 6-, 24-, and 96-taxon alignments, respectively. In contrast, the

ML programs were much faster. For instance, PhyML only needed 25 seconds, 20

minutes and 2 hours for the respective alignments. Computing time of RAxML

and IQ-TREE is also of the same order.
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                 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

0.00 0.10 0.20 0.27 0.39 0.55 0.87 0.89 0.90 0.90 Est. 
0.10 0.10 0.10 0.07 0.09 0.10 0.59 0.54 0.21 0.13 Est. 
0.90 0.90 0.90 0.87 0.88 18.85 1.99 1.78 5.89 0.40 Est. tree length
0.19 0.18 0.18 0.17 0.27 0.37 0.45 0.50 0.75 0.90 Est. 
0.82 0.62 0.47 0.36 0.35 0.33 0.28 0.21 0.27 0.50 Est. 
0.90 0.90 0.90 0.89 0.88 0.88 0.86 0.78 1.08 1.09 Est. tree length
0.13 0.19 0.19 0.19 0.18 0.17 0.18 0.30 0.46 0.90 Est. 
1.66 1.45 0.97 0.67 0.46 0.31 0.21 0.17 0.14 1.02 Est. 
0.90 0.90 0.90 0.90 0.90 0.88 0.85 0.80 0.73 0.89 Est. tree length

0.64 0.66 0.66 0.72 0.74 0.54 0.61 0.70 0.80 0.93 Est. 
0.72 0.63 0.52 0.32 0.30 0.13 0.09 0.10 0.11 0.21 Est. 
6.31 7.17 11.03 45.18 46.16 13.72 19.59 5.60 3.73 6.74 Est. tree length
0.01 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 Est. 
0.51 0.50 0.50 0.50 0.50 0.50 0.49 0.50 0.49 0.50 Est. 
4.49 4.50 4.50 4.50 4.50 4.50 4.53 4.51 7.02 4.53 Est. tree length
0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 Est. 
1.01 1.01 1.00 0.99 0.99 1.00 0.99 1.00 1.00 6.43 Est. 
4.51 4.50 4.50 4.50 4.50 4.50 4.51 4.51 7.57 161.62 Est. tree length

0.28 0.43 0.49 0.55 0.62 0.50 0.62 0.73 0.90 0.93 Est. 
0.23 0.27 0.28 0.28 0.28 0.10 0.13 0.17 0.32 0.19 Est. 

15.01 13.87 13.98 13.93 13.99 19.00 18.43 21.72 125.85 28.48 Est. tree length
0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.75 0.89 Est. 
0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.31 0.47 Est. 

18.88 18.89 18.87 18.90 18.96 19.02 19.00 19.17 9.32 17.48 Est. tree length
0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 Est. 
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.01 1.04 Est. 

18.90 18.90 18.90 18.86 18.86 18.91 19.03 18.74 19.00 35.51 Est. tree length
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Figure 3.1: Estimates of pinv, α and tree lengths by PhyML on alignments
simulated from 6-, 24- and 96-taxon trees. Estimates are colored according to
their differences from the true values: red (more than 25% deviation), yellow
(10% to 25% deviation) and green (less than 10% deviation). For the estimated

is green if , yellow if and red if .
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                 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

0.71 0.74 0.77 0.79 0.82 0.84 0.86 0.89 0.90 0.94 Est. 
4.79 3.86 2.98 2.11 1.27 0.82 0.58 0.56 0.32 0.32 Est. 
0.93 0.95 0.98 1.05 1.23 1.81 2.08 1.76 3.25 0.50 Est. tree length
0.30 0.36 0.40 0.46 0.51 0.57 0.64 0.73 0.82 0.91 Est. 
1.33 1.22 1.08 0.96 0.84 0.75 0.67 0.65 0.72 0.83 Est. 
0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.91 Est. tree length
0.16 0.23 0.30 0.37 0.45 0.53 0.62 0.71 0.80 0.90 Est. 
1.91 1.79 1.63 1.48 1.38 1.26 1.18 1.15 1.14 1.03 Est. 
0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 Est. tree length

0.64 0.67 0.70 0.72 0.66 0.71 0.77 0.82 0.88 0.94 Est. 
0.72 0.64 0.57 0.31 0.15 0.15 0.18 0.24 0.24 0.30 Est. 
6.33 7.22 8.54 51.38 35.24 36.78 28.85 10.93 7.63 3.00 Est. tree length
0.01 0.11 0.21 0.30 0.40 0.50 0.60 0.70 0.80 0.90 Est. 
0.51 0.51 0.51 0.51 0.51 0.51 0.50 0.50 0.50 0.51 Est. 
4.50 4.50 4.50 4.50 4.50 4.50 4.51 4.50 4.52 4.52 Est. tree length
0.01 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 Est. 
1.02 1.02 1.01 1.01 1.00 1.00 1.00 1.00 1.00 1.00 Est. 
4.50 4.50 4.50 4.50 4.50 4.50 4.50 4.50 4.50 4.51 Est. tree length

0.37 0.43 0.49 0.65 0.62 0.68 0.74 0.80 0.87 0.94 Est. 
0.27 0.27 0.28 0.62 0.28 0.28 0.27 0.25 0.26 0.29 Est. 

13.86 13.89 13.93 13.40 14.02 14.08 14.19 16.01 15.07 11.19 Est. tree length
0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 Est. 
0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 Est. 

18.89 18.90 18.90 18.90 18.90 18.90 18.90 18.90 18.90 18.92 Est. tree length
0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 Est. 
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Est. 

18.90 18.90 18.90 18.90 18.89 18.90 18.89 18.90 18.92 18.99 Est. tree length
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Figure 3.2: Estimates of pinv, α and tree lengths by RAxML
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                 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

0.08 0.14 0.24 0.32 0.40 0.50 0.60 0.70 0.80 0.90 Est. 
0.59 0.36 0.33 0.17 0.12 0.10 0.10 0.10 0.10 0.11 Est. 
0.90 0.91 0.91 0.91 0.91 0.90 0.90 0.92 0.99 0.84 Est. tree length
0.10 0.14 0.21 0.29 0.38 0.48 0.59 0.69 0.69 0.76 Est. 
0.65 0.59 0.54 0.51 0.48 0.48 0.49 0.48 0.32 0.16 Est. 
0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.77 0.56 Est. tree length
0.04 0.09 0.17 0.25 0.37 0.45 0.55 0.63 0.69 0.70 Est. 
1.14 1.01 0.95 0.90 0.95 0.90 0.89 0.86 0.71 0.17 Est. 
0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.89 0.84 0.68 Est. tree length

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 Est. 
0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 Est. 
4.48 4.51 4.50 4.51 4.51 4.51 4.52 4.56 5.33 4.63 Est. tree length
0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.86 Est. 
0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.22 Est. 
4.50 4.50 4.50 4.50 4.50 4.50 4.51 4.51 4.53 4.44 Est. tree length
0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.64 Est. 
1.01 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.06 Est. 
4.50 4.50 4.50 4.50 4.50 4.50 4.50 4.51 4.51 12.70 Est. tree length

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 Est. 
0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 Est. 

18.85 18.92 18.93 18.95 18.93 18.94 19.00 19.06 19.11 18.90 Est. tree length
0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.77 0.87 Est. 
0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.38 0.34 Est. 

18.88 18.90 18.90 18.90 18.91 18.91 18.92 18.92 12.91 13.18 Est. tree length
0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.88 Est. 
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.88 0.70 Est. 

18.90 18.90 18.90 18.90 18.90 18.90 18.90 18.91 17.32 99.26 Est. tree length
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Figure 3.3: Estimates of pinv, α and tree lengths by MrBayes
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                 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

0.72 0.74 0.77 0.79 0.82 0.84 0.86 0.89 0.90 0.93 Est. 
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0.93 0.95 0.98 1.04 1.22 1.75 2.06 1.75 2.54 0.44 Est. tree length
0.19 0.25 0.31 0.37 0.43 0.51 0.60 0.71 0.81 0.91 Est. 
0.82 0.78 0.70 0.64 0.56 0.53 0.52 0.52 0.57 0.75 Est. 
0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.87 0.74 Est. tree length
0.01 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 Est. 
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1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 Est. 

18.90 18.90 18.91 18.91 18.92 18.94 18.96 19.02 19.15 19.62 Est. tree length
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Figure 3.4: Estimates of pinv, α and tree lengths by IQ-TREE
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Because the tested programs performed quite differently with respect to parameter

estimation, the number of taxa cannot be the only reason for the lack of accuracy.

We suspected that the optimization heuristics as implemented in the programs

drive the accuracy of the parameter estimation. Depending on the simulated pa-

rameter combinations, we observed that the optimization routines were sometimes

stuck in local optima resulting in estimates that differ dramatically from the true

combinations (data not shown). Thus, we changed the optimization strategy cur-

rently implemented in IQ-TREE to account for plateaus observed in the likelihood

surfaces (Sullivan et al., 1999). To this end, we developed IQ-TREE-Improved in

which optimization routine is restarted from ten evenly spaced initial α ∈ [0.1, 1.0]

This extended search found the correct parameter estimates for almost all param-

eter combinations (Figure 3.5). The computational costs and the improvements in

log-likelihoods of the new optimization strategy compared to the old strategy are

displayed in Figure 3.6. Here, we observed that the log-likelihoods of IQ-TREE-

Improved were always better or equal to the old strategy. This substantiates our

assumption that the incorrect estimation of the parameters is caused by insuf-

ficient optimization. Fortunately, the improvement of the parameter estimation

with a more complex optimization heuristic only increased the total computing

time by a factor of 1.17.

3.3 Discussion

Our simulations revealed a major issue for parameter estimation of the I+ dis-

crete Γ model as implemented in many phylogenetic software. Despite using very

long alignments, none of the tested programs recovered the true α, pinv and tree

length for all parameter combinations. Often, the estimates deviated heavily from

the true values and different programs estimated different values for the same

simulated evolutionary parameters, although all of them inferred the true tree.

Thus, the optimization heuristics in ML programs are responsible for the varying,

sub-optimal estimates. The good performance of MrBayes is likely attributed to

the Bayesian sampling of the parameter space that can escape local optima more

effectively. However, it comes at a cost of excessive computing time.



Chapter 3. Accurate parameter estimation for complex model 43

                 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90
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Figure 3.5: (a) Estimates of α, pinv and tree lengths by the improved version
of IQ-TREE. The color code is explained in Figure 3.1.
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Figure 3.6: Run time ratios and log-likelihood differences when IQ-TREE-
Improved was compared with IQ-TREE. Each open circle represents the average
log-likelihood differences and run time ratios computed from the 100 alignments

simulated for each pair of α and pinv.

We showed that a more thorough exploration of the parameter space lead to correct

ML estimates. Thus, one may speculate that the GTR+I+ discrete Γ model is

also identifiable like the GTR+I+ continuous Γ model.

Moreover, we want to emphasize that developing good parameter estimation method

is equally important to proposing new and complex models of sequence evolution.

It is not enough to recover the true tree, if one wants to understand how evo-

lutionary forces shaped contemporary genomes. The effect of wrong parameter



Chapter 3. Accurate parameter estimation for complex model 45

estimates for the substitution model on the total tree length is sometimes dra-

matic (see Figure 3.1, 3.2, 3.3 and 3.4). Thus, one should critically scrutinize the

heuristics implemented in popular programs and a more thorough evaluation of

phylogenetic inference programs allowing for very complicated models of sequence

evolution is necessary, but beyond the scope of this thesis.

3.4 Materials and Methods

We used Seq-Gen (Rambaut and Grass, 1997) to simulate 100,000-bp alignments

along three balanced trees containing 6, 24 and 96 taxa, each has equal branch

lengths of 0.1 substitutions per site. We assumed the Jukes-Cantor model (Jukes

and Cantor, 1969) and the rate heterogeneity model I+ discrete Γ using four

rate categories. For each tree and each combination of α and pinv where pinv ∈
0.0, 0.1, ..., 0.9 and α ∈ 0.1, 0.5, 1.0 we simulated 100 alignments. For each align-

ment, we performed tree reconstruction with RAxML version 8.2.2, IQ-TREE ver-

sion 1.3.7 and MrBayes version 3.2.2 (compiled with the BEAGLE library (Ayres

et al., 2012)), using the JC+I+Γ model. We used the default tree search options

in IQ-TREE, RAxML and PhyML. The IQ-TREE-Improved version is invoked

via the -test param option. With MrBayes we ran one million generations using

four chains. We then computed the mean of the 100 estimates for α, pinv and tree

lengths (sum of branch lengths)





Chapter 4

IQ-TREE-SP: A data-driven

heuristic for constraining tree

space

4.1 Introduction

The influx of biological data generated by Next Generation Sequencing technolo-

gies has created many new challenges in the so-called phylogenomic era. Multi-

ple sequence alignments containing hundreds thousands sites are being used to

resolve long-standing phylogenetic uncertainties (e.g. McCormack et al. (2013);

Misof et al. (2014)). Although such large datasets help to improve the accuracy of

phylogenetic inference by providing more phylogenetic signals, they require enor-

mous amount of computing time. It would be of benefit if the added information

can also be used to improve the time efficiency of maximum likelihood methods.

Many heuristics for speeding up the maximum-likelihood tree inference have been

introduced over the years. Guindon and Gascuel (2003) proposed the simultaneous

NNI modification in PhyML that substantially reduced the computing time of the

NNI search. Stamatakis (2006) used many computational shortcuts and low-level

optimization techniques to economize the SPR search in RAxML. Also in the

realm of SPR search, Hordijk and Gascuel (2005) used the maximum parsimony

method to quickly filter out non-promising SPR moves, thus reducing the number

of moves needed to be evaluated by the maximum-likelihood method.

47
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Unlike RAxML or PhyML which produces a single SPR-optimal tree, IQ-TREE

samples many NNI-optimal trees. It is reasonable to assume that trees with high

likelihood cluster together. In other words, they share common splits with the

maximum-likelihood tree. To this end, we propose IQ-TREE-SP, a complementary

data-driven heuristic for the IQ-TREE algorithm. IQ-TREE-SP infers so-called

stable splits that are present in the best locally optimal trees and use those splits

to constrain the search space. In what follows, we describe in detail the mechanism

of IQ-TREE-SP.

4.2 Methods

Let T be the set of the current 20 best locally optimal trees. A split is considered

stable if it is present in at least 90% of the trees in T. We denote by S the set

of stable splits. T and S are continuously updated during the tree search. The

general idea of IQ-TREE-SP is to avoid doing NNI on the stable splits. Here, we

only perform NNIs on the stable splits with probability of 10% and the number

of random NNIs performed in the stochastic NNI is reduced from (n − 3)/2 to

(n− 3− |S|)/2, where n is the number of taxa.

In addition, we also employ techniques from the tabu search (Glover, 1989). Here,

we maintain a list B of so-called tabu splits. When a random NNI is performed,

we add the new split into B. In the first round of the hill-climbing NNI step, we

do not perform NNIs on the tabu splits. In the next rounds, we empty B so that

the tabu restriction is abolished. The rational for using the tabu list is as follows.

The number of random NNIs performed in the stochastic step becomes smaller

when |S| gets larger. Thus, if a only small number of random NNIs is applied,

the subsequent hill-climbing NNI has little chance of escaping the current local

optima. In fact, it will likely undo the random NNIs and the search will return

to the previous local optimum. The tabu list B prevents the hill-climbing NNI to

prematurely undo the random NNIs and help the search move far away from the

current local optimum.

The following pseudo-code describes how IQ-TREE-SP is integrated into the main

IQ-TREE algorithm:
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Initial tree generation step

1. Initialize T with the 20 locally optimal trees generated in the initial

tree generation step.

2. Initialize S with stable splits derived from T.

Stochastic NNI step

1. Set i = 0; B = ∅.

2. Randomly choose an internal branch b:

• IF b /∈ B AND s /∈ S:

(a) Perform a random NNI on b.

(b) Add b to B.

(c) Set i = i+ 1.

• IF b /∈ B and s ∈ S: do (a)-(c) with probability 10%.

• ELSE go to 2.

3. STOP if i = (n − 3 − |S|)/2 where n is the number of taxa; otherwise

go to 2.

Hill-climbing NNI step

1. For each internal branch b:

• IF b /∈ B AND s /∈ S:

Evaluate the likelihood of the two NNI-trees.

• IF b /∈ B AND s ∈ S:

Evaluate the likelihood of the two NNI-trees with probability 10%.

2. IF no improving NNI found:

• IF B 6= ∅: GOTO 4.

• ELSE: set B = ∅ AND GOTO 1.

3. Apply all improving NNIs; set B = ∅ and GOTO 1.

4. If the likelihood of the current tree is better than that of the worst tree

in T:

• Replace the worst tree in T with the current tree.

• Update S based on the new T
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ID Type # Taxa # Sites Source

1 DNA 128 29,198 (Stamatakis and Alachiotis, 2010)
2 DNA 180 14,912 (van der Linde et al., 2010)
3 DNA 237 43,834 (Nyakatura and Bininda-Emonds, 2012)
4 DNA 298 5,074 (Bouchenak-Khelladi et al., 2008)
5 DNA 372 61,199 (Springer et al., 2012)
6 DNA 404 13,158 (Stamatakis and Alachiotis, 2010)
7 DNA 435 16,016 (Hinchliff and Roalson, 2013)
8 DNA 767 5,714 (Pyron et al., 2011)
9 AA 69 8,546 (Dell’Ampio et al., 2014)
10 AA 70 11,789 (Dell’Ampio et al., 2014)
11 AA 72 12,548 (Dell’Ampio et al., 2014)

Table 4.1: Benchmark alignments

4.3 Results

We tested the performance of IQ-TREE-SP against the standard version IQ-TREE

on 11 large alignments (Table 4.1). For each alignment, we ran each version

ten times, always assuming the same evolutionary model (GTR+G for DNA and

LG+G for amino acids). We then measured the average speedups obtained by

IQ-TREEE-SS over IQ-TREE for each alignment. In addition, we compared the

tree log-likelihoods produced by each method.

To account for the stochastic nature of the stopping rule which leads to varying

running time, for each alignment we used the average computing time for one

search iteration as a basis for comparison:

time(version) =
1

10

10∑
i=1

ti
ni

,

where ti and ni is the CPU time and the number of iterations required for each

run, respectively. The speedup provided by IQ-TREE-SP is then computed as

time(iq-tree)/time(iq-tree-ss).

Figure 4.1 shows the average speedup obtained by IQ-TREE-SP over IQ-TREE.

We found an average speedup of 2.4 times, ranging from 1.6 to 3.9 times. The

median speedup is 2.2 times. For alignments 1 DNA, 4 DNA, 5 DNA IQ-TREE-

SP achieved substantial speedup of more than 3 times.
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Figure 4.1: Speedup provided by IQ-TREE-SP over IQ-TREE
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Figure 4.2: Log-likelihood comparison between IQ-TREE and IQ-TREE-SP
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To compare the log-likelihoods among different alignments, we normalized the log-

likelihood as follows. First, we computed the average log-likelihood from the 20

runs (10 for each IQ-TREE version) for each alignment. We computed then for

each IQ-TREE version and for each of the 10 inferred trees the deviation of the

corresponding log-likelihood from the global mean (Figure 4.2).

For four alignments (1 DNA, 9 AA, 10 AA and 11 AA), IQ-TREE and IQ-TREE-

SP produced trees with same log-likelihood. IQ-TREE-SP produced better log-

likelihoods than the standard algorithm on five alignments: 3 DNA, 4 DNA, 6 -

DNA, 7 DNA and 8 DNA. Moreover, IQ-TREE-SP found trees with the highest

log-likelihood on those alignments. On the two alignments 2 DNA and 5 DNA,

the log-likelihoods produced by IQ-TREE are more congruent than those found

in IQ-TREE-SP. However, the best log-likelihoods were found by both IQ-TREE

and IQ-TREE-SP for those alignments.

4.4 Conclusions

We have proposed an improvement heuristic for the IQ-TREE search algorithm to

make the tree search more efficient. Our heuristic employs a data-driven approach

for constraining the search space. We use the topological congruency among the

locally optimal trees as an indication for the strength of the phylogenetic signals

provided by the data. Therefore, we avoid doing tree rearrangements on splits

shared by the best trees. Moreover, the new heuristic helps to navigate the tree

search in a more systematic way, which increases the chance of finding better

trees. Our idea was inspired by the technique termed reduction proposed by Lin

and Kernighan (1973) in their seminal paper on the traveling salesman problem.

For the test alignments, the new heuristic achieved speedups of up to 3.9 times

while the obtained tree log-likelihoods are equal or better than those produced by

the standard IQ-TREE algorithm.





Chapter 5

IQ-TREE-MPI: An efficient

parallel tree search algorithm

using the Message Passing

Interface

5.1 Introduction

With the advent of cheap and ubiquitous multi-core and multi-processor comput-

ers, more and more phylogenetic software have utilized parallelization to shorten

the computing time. Approaches to parallelization often fall under the follow-

ing three categories: fine-grained, coarse-grained, and embarrassing parallelism

(Foster, 1995). These types of parallelism differ in the amount of communica-

tion taking place among the processes. Fine-grained parallelism requires the most

communication, whereas there is no communication in embarrassing parallelism.

In phylogenetic inference, fine-grained parallelism is employed by distributing the

calculation of site likelihoods to different processes (Stamatakis and Ott, 2008).

The results are then collected to compute the final likelihood. Implementation of

this approach is straightforward. With the help of application programming inter-

face such as OpenMP, adding fine-grained parallelization to existing software can

be accomplished with very little coding. However, fine-grained parallelization does

not scale very well (Stamatakis, 2015). During tree search, likelihood calculation
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is performed millions of times. Every time the tree likelihood is computed, com-

munication among the processes is required. Thus, if many processes are involved,

communication overhead will eventually outweighs computing time, diminishing

the advantage of using parallel computing.

Coarse-grained parallelism typically requires refactoring the tree search algorithm

into large and independent computational subtasks so that communication over-

head is minimized. Thus, not every search algorithm can be efficiently parallelized

using the coarse-grained approach. Because of the moderate communication re-

quirement, a well designed coarse-grained parallel algorithm might achieve very

good scaling performance (Minh et al., 2005).

Embarrassing parallelism is often used to execute multiple tree searches or perform

non-parametric bootstrap analysis (Felsenstein, 1985) that involves tree inferences

for a large number of pseudo-replicated alignments. Because of its simplicity,

embarrassing parallelism is widely used (Zwickl, 2006; Pfeiffer and Stamatakis,

2010; Guindon et al., 2010).

The memory consumption of a coarse-grained or embarrassing parallel program is

often proportional to the number of processes, whereas a fine-grained parallel pro-

gram needs only the same amount of memory as the sequential version. Therefore,

the requirements of the phylogenetic analysis and the capacity of the computing

platform are the deciding factors for choosing the most suitable parallelization

scheme. Since fine-grained parallelization can be added to any existing tree search

algorithm, one can also employ a hybrid approach (Rabenseifner, 2003) that com-

bines fine-grained with coarse-grained parallelism to increase parallel efficiency.

The IQ-TREE algorithm is well suited for coarse-grained parallelization because

it mainly consists of loosely coupled computing components, whose task is to

sample local optima in the tree space. In this chapter, we present IQ-TREE-MPI,

an efficient parallel tree search algorithm for IQ-TREE.

5.2 Methods

We used the Message Passing Interface (MPI) to distribute the computations of

the parsimony and locally optimal trees among the processes. When a new tree is

computed by a process, its topology and likelihood are sent to other processes so
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that every process has the same copy of the generated trees. To avoid idle time, we

use asynchronous messaging. Every process has a so-called inbox, in which trees

received from other processes are stored. When a message is sent, it goes directly

into the recipient’s inbox and no immediate response is required. Thus, the sending

process can quickly resume its current activity and computation in the receiving

process is not interrupted. Figure 5.1 and Figure 5.2 show the parallelization

schemes for the initial tree generation and optimization step, respectively (see

also Section 2.2.2 and 2.2.3).

Asynchronous communication 

with other processors 

Initial tree generation

Construct initial parimony tree

Optimize model parameters

Construct (𝟏𝟎𝟎 −𝒎)/𝐦
parsimony trees

Exchange parsimony trees

Exchange NNI-optimal trees

Do hill-climbing NNI on 𝟐𝟎/𝒎
best parsimony trees

Select 5 best NNI-optimal trees 

for the candidate set 

Figure 5.1: Parallelization scheme for the initial tree generation step (m is
the number of processes).

In the initial tree generation step, the computations of the 100 parsimony and

initial NNI-optimal trees are distributed equally among the processes. First, each

process generates an initial parsimony tree and performs model optimization on
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Asynchronous communication 

with other processors 

Optimization by stochastic and hill-climbing NNI

Do hill-climbing NNI

Exchange NNI-optimal tree

Stop?

Update candidate set

Select a candidate tree

END

Do stochastic NNI

Figure 5.2: Parallelization scheme for the optimization step.

that tree. Then, it will compute
⌈
(100−m)/m

⌉
parsimony trees, where m is the

number of processes. The processes then exchange the parsimony trees with each

other until each of them has the same copy of the 100 parsimony trees. We then

divide up the computations of the initial 20 NNI-optimal trees (from the top 20

parsimony trees) among the processes. The resulting NNI-optimal trees are then

sent around so that in the end each process has the same copy of the candidate

set.

In each iteration of the optimization step, each process performs the stochastic

and hill-climbing NNI on a randomly selected candidate tree like in the sequential

algorithm. Afterwards, the new NNI-optimal tree is sent to other processes and

trees in the inbox are collected. Each process then updates its candidate set with

better trees, if found. We use a so-called master process to keep track of the

stopping condition. It increases the iteration counter every time a new tree is

generated or received from other process. We use the same stopping condition
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as in the sequential version. The search is stopped if a predefined number of

iterations is reached or no better tree is found in the last 100 iterations. If one of

the stopping conditions is met, the master process will send out a stop message to

other processes informing them to finish.

5.3 Results

We benchmarked the performance of IQ-TREE-MPI using one DNA (218 taxa,

4182 sites) and one amino acid (74 taxa, 4013 sites) alignment. For both align-

ments we performed ten independent tree searches using IQ-TREE-MPI and the

sequential IQ-TREE. To avoid running time fluctuation caused by the default stop-

ping rule, the number of iterations is set to 1000. The speedup of IQ-TREE-MPI

was computed as the ratio between the average run time of IQ-TREE and that

of IQ-TREE-MPI. The computations were performed on computational nodes of

the Vienna Scientific Cluster 3. Each node has two processors and each processor

has eight cores. We tested IQ-TREE-MPI using 2, 4, 8, 16 and 32 cores.

Figure 5.3 shows an almost linear speedup of IQ-TREE-MPI. With 32 CPU cores,

IQ-TREE-MPI is 26.4 and 28 times faster than the sequential version for the

DNA and amino acid alignment, respectively. Moreover, we observed minimal

communication overheads among the processes. Figure 5.4 shows the percentage

of wall-clock time spent on communication with regard to the total running time

for different number of CPU cores. As expected, the communication time rises

with the number of CPU cores. However, it only makes up a negligible portion of

the total running time. With 32 CPU cores the percentage of communication time

for the DNA and amino acid alignment was only 0.08% and 0.022%, respectively.

Thus, the efficiency of our parallel algorithm is not affected by the communication

overhead.

We also investigated the performance of IQ-TREE-MPI with regard to the ob-

tained tree log-likelihoods. Figure 5.5 compares the log-likelihood produced by

IQ-TREE-MPI with different number of CPU cores with that by the sequential

version. For the DNA alignment, IQ-TREE-MPI produced higher median log-

likelihood in most settings. Only in the runs with 4 CPU cores, the median

log-likelihood of IQ-TREE-MPI was lower than that of the sequential version.
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Figure 5.3: Speedups by IQ-TREE-MPI using different number of CPU cores.
The dotted line represents the theoretical linear speedups

However, in these runs IQ-TREE-MPI found the log-likelihood. For the amino

acid alignment, all versions produced the same results.

5.4 Discussions

We have presented an efficient parallelization of the IQ-TREE search algorithm.

IQ-TREE-MPI provides very good speedup which scales well with the number

of CPU cores. With regard to the tree log-likelihood, it also exhibited better

performance than the sequential algorithm in most test instances. This result is
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Figure 5.4: Percentage of communication time over the total running time
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Figure 5.5: Comparison of tree log-likelihoods produced by IQ-TREE using
different numbers of CPU cores. Each box plot displays the distribution of the

log-likelihoods produced by ten replicate runs.
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in accordance with previous studies showing that parallel evolutionary algorithm

can be more effective than its sequential counterpart in solving combinatorial

optimization problems (Alba and Tomassini, 2002).

We note that the performance of our parallel algorithm depends on the technical

configuration of the underlying computer system. Since the memory consumption

of IQ-TREE-MPI grows proportionally with the number of processes, care must be

taken when running IQ-TREE-MPI on shared memory multi-core processors. For

large alignments, the computer might run out of memory if too many processes

are used. Even with sufficient main memory, runtime performance can still be

negatively affected if a large portion of the cache memory is share among the

processors. Moreover, as observed by Stamatakis and Ott (2008), using MPI on

shared memory computers could result in degrading performance because many

MPI implementations are not optimized for such systems. A hybrid parallelization

might be most beneficial to shared memory machines. Therefore, we are planning

to implement the hybrid parallelization in the next release of IQ-TREE.





Chapter 6

Summary

I have presented four contributions to the field of maximum-likelihood phylogenetic

inference:

The IQ-TREE algorithm (Chapter 2)

I proposed the stochastic search algorithm IQ-TREE for the maximum like-

lihood framework. I showed that NNI tree rearrangement can be used ef-

fectively when coupled with a properly designed search strategy. IQ-TREE

employs both up-hill and down-hill NNI moves to examine the tree space and

at the same time avoid being stuck in local optima. Moreover, the search

technique is embedded within an evolutionary algorithm so that the search

space can be explored more efficiently. With extensive computational exper-

iments, I show that IQ-TREE performs favorably other against state of the

art methods (RAxML and PhyML), while requiring comparable computing

time.

Accurate estimation of rate heterogeneity (Chapter 3)

I showed that conventional methods for estimating parameters of the rate

heterogeneity model +I+Γ are not accurate. More specifically, the opti-

mization routines implemented in most phylogenetic software fail to find the

maximum likelihood estimates. Given the popularity of the +I+Γ model,

having a resolution for the problem is crucial. To this end, I proposed an

alternative optimization strategy that can effectively infer the correct pa-

rameters. While the use of complex models of sequence evolution is gaining

momentum, my finding substantiates the importance of developing accurate

estimation methods.

65
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IQ-TREE-SP (Chapter 4)

The massive influx of biological data generated every year keeps pushing

phylogenetic methods to the boundary. This fact motivated me to further

improve the IQ-TREE search algorithm. Here, I extended the IQ-TREE

algorithm with the heuristic IQ-TREE-SP. IQ-TREE-SP constraints the

search space based on the concept of stable splits. It speeds up the tree

search up to 3.9 times while delivering comparable or better results than the

standard algorithm.

IQ-TREE-MPI (Chapter 5)

As multi-core and multi-processor computing systems are becoming ubiq-

uitous, phylogenetic software need to be adapted to take advantage of the

added computing power. Here, I developed IQ-TREE-MPI, a coarse-grained

parallelization of the IQ-TREE algorithm. IQ-TREE-MPI shows very good

scaling performance and also improves the search quality.

All methods described in this thesis were implemented in the phylogenetic software

IQ-TREE, which can be freely downloaded at:

http://www.cibiv.at/software/iqtree

IQ-TREE is a command-line program supporting all three major operating sys-

tems: Linux, Windows and MAC OS X. We also provide an user-friendly web

interface (Figure 6.1) available at:

http://iqtree.cibiv.univie.ac.at

http://www.cibiv.at/software/iqtree
http://iqtree.cibiv.univie.ac.at
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Figure 6.1: Screen shot of the IQ-TREE web interface.
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Supplementary data for chapter 2

A.1 Supplementary tables
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Table S1 TreeBASE DNA alignments and average log-likelihoods. In bold face are the highest log-likelihood found for 
each alignment. 

TreeBASE ID  #Taxa  #Sites 
% Gaps / 

ambiguous 
characters 

IQ‐TREE with default 
stopping rule  RAxML 

IQ‐TREE 
restricted to 
RAxML time 

PhyML  IQ‐TREE restricted 
to PhyML time 

M214  295  1836  13.32  ‐38,670.97  ‐38,681.75  ‐38,678.08  ‐38,687.82  ‐38,679.68 
M667  218  1002  4.67  ‐45,048.88  ‐45,052.75  ‐45,049.03  ‐45,060.45  ‐45,048.88 
M980  249  1604  19.23  ‐19,611.37  ‐19,619.88  ‐19,614.52  ‐19,629.07  ‐19,613.97 

M1110  330  1711  10.14  ‐56,377.21  ‐56,382.67  ‐56,377.39  ‐56,379.22  ‐56,377.21 
M1224  210  8235  40.95  ‐241,142.99  ‐241,162.43  ‐241,143.12  ‐241,163.34  ‐241,144.92 
M1838  228  1131  2.1  ‐76,967.34  ‐77,073.62  ‐76,971.09  ‐77,041.43  ‐76,972.60 
M2307  318  1434  3.87  ‐35,722.34  ‐35,737.57  ‐35,726.57  ‐35,745.25  ‐35,724.83 
M2534  207  976  10.23  ‐23,626.38  ‐23,617.43  ‐23,627.83  ‐23,665.68  ‐23,634.39 
M2902  220  1117  1.14  ‐7,206.09  ‐7,212.21  ‐7,210.28  ‐7,204.67  ‐7,207.63 
M2931  229  4722  23.7  ‐54,290.51  ‐54,310.48  ‐54,291.02  ‐54,294.23  ‐54,290.86 
M3031  276  1518  14.47  ‐20,237.53  ‐20,249.97  ‐20,243.53  ‐20,266.95  ‐20,245.69 
M3198  216  2578  11.09  ‐147,473.15  ‐147,498.71  ‐147,478.56  ‐147,483.62  ‐147,475.27 
M3514  217  3665  41.73  ‐141,010.38  ‐141,030.79  ‐141,037.88  ‐141,063.13  ‐141,044.94 
M3605  260  5315  34.05  ‐55,863.43  ‐55,870.86  ‐55,865.33  ‐55,876.41  ‐55,864.25 
M3777  363  1707  3.44  ‐19,365.75  ‐19,378.47  ‐19,365.80  ‐19,364.62  ‐19,365.76 
M4170  258  2559  5.51  ‐16,585.71  ‐16,602.40  ‐16,594.25  ‐16,592.69  ‐16,590.74 
M4324  206  4543  25.32  ‐117,989.19  ‐118,026.61  ‐118,003.45  ‐118,098.31  ‐117,992.93 
M4326  227  4055  9.73  ‐29,395.83  ‐29,411.69  ‐29,396.27  ‐29,400.38  ‐29,395.86 
M4399  205  8913  57.25  ‐59,907.83  ‐59,915.50  ‐59,915.65  ‐59,918.08  ‐59,912.89 
M4720  201  2899  30.81  ‐53,732.74  ‐53,744.97  ‐53,732.74  ‐53,734.79  ‐53,732.74 
M4727  350  6464  52.26  ‐206,129.75  ‐206,208.32  ‐206,132.97  ‐206,150.81  ‐206,130.16 
M4794  204  12113  52.47  ‐148,388.80  ‐148,434.07  ‐148,453.76  ‐148,669.35  ‐148,413.50 



TreeBASE ID  #Taxa  #Sites 
% Gaps / 

ambiguous 
characters 

IQ‐TREE with default 
stopping rule  RAxML 

IQ‐TREE 
restricted to 
RAxML time 

PhyML  IQ‐TREE restricted 
to PhyML time 

M4806  222  3995  26.7  ‐73,850.56  ‐73,865.86  ‐73,850.56  ‐73,851.22  ‐73,850.56 
M4850  328  2166  6.15  ‐23,425.32  ‐23,427.86  ‐23,425.57  ‐23,426.00  ‐23,425.01 
M4900  206  3074  31.27  ‐62,389.10  ‐62,403.73  ‐62,389.11  ‐62,388.47  ‐62,389.10 
M4927  268  1275  37.89  ‐15,275.77  ‐15,302.56  ‐15,289.19  ‐15,314.22  ‐15,288.21 
M4938  213  1250  8.13  ‐36,243.38  ‐36,261.75  ‐36,245.11  ‐36,258.73  ‐36,244.48 
M5078  265  9768  14.48  ‐317,361.67  ‐317,382.43  ‐317,361.69  ‐317,370.73  ‐317,362.15 
M5235  298  11596  67.51  ‐66,573.65  ‐66,588.26  ‐66,580.11  ‐66,592.51  ‐66,577.79 
M5381  413  3632  10.42  ‐224,667.49  ‐224,712.33  ‐224,685.74  ‐224,733.80  ‐224,668.63 
M5731  242  9626  62.94  ‐79,593.92  ‐79,608.95  ‐79,594.80  ‐79,596.64  ‐79,594.50 
M5931  298  4948  47.67  ‐71,241.57  ‐71,261.17  ‐71,251.78  ‐71,281.02  ‐71,250.53 
M6134  219  5158  28.53  ‐30,201.02  ‐30,265.32  ‐30,228.78  ‐30,266.62  ‐30,222.20 
M6414  209  2000  29.9  ‐36,707.55  ‐36,717.07  ‐36,709.87  ‐36,713.05  ‐36,709.22 
M6625  247  1812  32.17  ‐17,190.07  ‐17,203.34  ‐17,193.05  ‐17,205.32  ‐17,193.46 
M7024  767  5814  66.73  ‐381,126.07  ‐381,168.90  ‐381,161.16  ‐381,269.87  ‐381,135.11 
M7054  222  6237  35.63  ‐79,139.05  ‐79,143.97  ‐79,143.80  ‐79,155.57  ‐79,141.71 
M7165  357  4475  17.65  ‐76,166.48  ‐76,177.78  ‐76,168.62  ‐76,168.94  ‐76,167.32 
M7210  204  1701  64.48  ‐14,803.61  ‐14,810.03  ‐14,804.95  ‐14,804.61  ‐14,804.49 
M7211  201  1519  50.61  ‐16,465.75  ‐16,470.14  ‐16,465.85  ‐16,466.11  ‐16,466.29 
M7292  213  7572  44.14  ‐192,598.51  ‐192,629.55  ‐192,601.89  ‐192,673.02  ‐192,604.30 
M7929  428  15016  57.7  ‐410,939.26  ‐410,983.84  ‐410,949.34  ‐411,028.18  ‐410,945.26 
M7964  640  25260  41.43  ‐1,327,204.51  ‐1,327,314.04  ‐1,327,210.58  ‐1,327,375.92  ‐1,327,202.44 
M8012  213  2333  5.76  ‐67,060.36  ‐67,070.90  ‐67,060.78  ‐67,072.40  ‐67,060.36 
M8385  212  19972  63.57  ‐347,340.89  ‐347,360.26  ‐347,376.10  ‐347,515.64  ‐347,353.57 
M8619  246  11829  65.9  ‐93,597.01  ‐93,606.25  ‐93,597.01  ‐93,600.99  ‐93,597.29 
M8692  395  3583  14.73  ‐24,993.81  ‐25,033.99  ‐25,014.37  ‐25,014.32  ‐25,009.85 
M8703  215  1038  0.31  ‐17,399.39  ‐17,416.29  ‐17,399.58  ‐17,403.57  ‐17,399.41 



TreeBASE ID  #Taxa  #Sites 
% Gaps / 

ambiguous 
characters 

IQ‐TREE with default 
stopping rule  RAxML 

IQ‐TREE 
restricted to 
RAxML time 

PhyML  IQ‐TREE restricted 
to PhyML time 

M8975  405  3027  1.78  ‐92,430.53  ‐92,454.00  ‐92,431.41  ‐92,525.99  ‐92,431.59 
M8982  297  6954  42.72  ‐141,323.67  ‐141,349.66  ‐141,323.67  ‐141,328.39  ‐141,323.67 
M8984  201  3931  29.43  ‐21,997.97  ‐22,004.58  ‐21,999.10  ‐22,005.05  ‐21,999.24 
M9033  300  1394  7.1  ‐23,867.40  ‐23,871.18  ‐23,869.91  ‐23,869.90  ‐23,870.76 
M9142  235  1854  9.07  ‐18,985.30  ‐18,985.57  ‐18,989.29  ‐18,987.18  ‐18,992.48 
M9143  228  1223  11.52  ‐8,917.67  ‐8,917.71  ‐8,923.28  ‐8,911.35  ‐8,917.71 
M9915  504  2757  54.26  ‐483,690.03  ‐483,684.95  ‐483,720.07  ‐483,795.81  ‐483,738.35 

M10243  203  1771  0.4  ‐16,344.85  ‐16,348.02  ‐16,344.91  ‐16,344.57  ‐16,344.86 
M10434  544  5681  7.2  ‐139,349.11  ‐139,362.30  ‐139,352.27  ‐139,363.43  ‐139,352.25 
M10467  202  4074  45.87  ‐91,948.98  ‐91,962.16  ‐91,949.77  ‐91,952.53  ‐91,949.00 
M10933  229  2696  22.58  ‐94,316.14  ‐94,342.72  ‐94,323.67  ‐94,362.75  ‐94,320.81 
M11113  344  9778  15.7  ‐487,985.38  ‐488,032.50  ‐487,987.70  ‐488,019.47  ‐487,992.29 
M11745  316  1494  49.58  ‐19,004.08  ‐19,014.98  ‐19,005.73  ‐19,015.87  ‐19,004.84 
M11762  208  2468  0.06  ‐20,050.65  ‐20,061.46  ‐20,050.65  ‐20,048.61  ‐20,050.65 
M12051  699  6914  40.96  ‐384,988.31  ‐385,007.09  ‐385,032.28  ‐385,081.21  ‐384,987.48 
M12098  231  4108  38.01  ‐129,824.04  ‐129,830.33  ‐129,824.09  ‐129,841.30  ‐129,824.07 
M12388  324  1405  42.11  ‐9,609.98  ‐9,620.77  ‐9,610.81  ‐9,612.25  ‐9,610.15 
M13718  235  2309  37.25  ‐100,203.82  ‐100,215.25  ‐100,206.13  ‐100,224.21  ‐100,202.73 
M14164  204  5549  59.37  ‐40,356.16  ‐40,367.22  ‐40,358.50  ‐40,371.17  ‐40,357.91 
M14165  204  5611  41.84  ‐144,455.80  ‐144,476.21  ‐144,458.86  ‐144,467.93  ‐144,456.17 
M14582  372  61199  68.64  ‐656,241.64  ‐656,332.90  ‐656,243.70  ‐656,312.55  ‐656,241.69 
M14678  225  2673  25.51  ‐47,166.74  ‐47,182.26  ‐47,167.72  ‐47,174.37  ‐47,167.41 

 
 
 



Table S2 TreeBASE protein alignments and average log-likelihoods. In bold face are the highest log-likelihood found for 
each alignment. 

TreeBASE ID  #Taxa  #Sites 
% Gaps / 

ambiguous 
characters 

IQ‐TREE with 
default 

stopping rule 
RAxML 

IQ‐TREE 
restricted to 
RAxML time 

PhyML  IQ‐TREE restricted 
to PhyML time 

M510  57  430  9.38  ‐8,164.14  ‐8,165.75  ‐8,164.14  ‐8,175.26  ‐8,164.17 
M1118  137  348  26.31  ‐12,837.91  ‐12,840.76  ‐12,838.72  ‐12,845.97  ‐12,839.32 
M1726  50  1000  37.18  ‐68,153.56  ‐68,154.33  ‐68,153.61  ‐68,167.93  ‐68,154.15 
M2358  55  714  20.72  ‐14,670.25  ‐14,670.31  ‐14,670.25  ‐14,677.96  ‐14,670.25 
M2593  56  386  2.98  ‐8,945.24  ‐8,948.11  ‐8,945.25  ‐8,948.04  ‐8,948.29 
M2926  105  899  43.08  ‐85,026.88  ‐85,026.90  ‐85,026.90  ‐85,027.77  ‐85,026.94 
M3113  77  9918  55.33  ‐361,280.00  ‐361,297.06  ‐361,281.64  ‐361,347.19  ‐361,294.78 
M3114  77  11234  55.77  ‐434,506.92  ‐434,504.13  ‐434,519.03  ‐434,614.68  ‐434,525.05 
M3807  82  591  41.38  ‐38,706.56  ‐38,709.34  ‐38,706.87  ‐38,722.00  ‐38,707.97 
M3810  55  271  21.31  ‐11,061.54  ‐11,061.76  ‐11,061.54  ‐11,061.55  ‐11,063.98 
M4249  153  455  45.47  ‐57,701.68  ‐57,704.83  ‐57,702.29  ‐57,718.75  ‐57,703.21 
M4318  78  2295  3.97  ‐185,004.73  ‐185,004.73  ‐185,004.73  ‐185,058.96  ‐185,005.08 
M4325  73  230  1.05  ‐21,106.15  ‐21,106.15  ‐21,106.15  ‐21,112.61  ‐21,106.55 
M4539  59  12428  19.66  ‐473,611.99  ‐473,622.19  ‐473,611.99  ‐473,662.13  ‐473,622.59 
M4780  90  583  45.96  ‐45,725.34  ‐45,726.37  ‐45,725.36  ‐45,742.72  ‐45,726.26 
M4860  62  11544  18.61  ‐426,418.62  ‐426,418.62  ‐426,418.62  ‐426,418.65  ‐426,418.62 
M4884  50  11827  34.80  ‐242,169.69  ‐242,169.69  ‐242,169.69  ‐242,174.90  ‐242,173.32 
M5379  60  7776  13.91  ‐279,270.38  ‐279,270.36  ‐279,270.39  ‐279,299.37  ‐279,282.01 
M6416  57  126  7.10  ‐5,181.98  ‐5,182.79  ‐5,182.93  ‐5,186.26  ‐5,184.03 
M7078  77  12457  13.04  ‐379,457.82  ‐379,463.94  ‐379,458.13  ‐379,477.72  ‐379,459.36 
M7729  62  2973  29.31  ‐110,353.19  ‐110,361.23  ‐110,353.19  ‐110,379.37  ‐110,353.20 
M8175  194  665  29.40  ‐26,504.23  ‐26,506.99  ‐26,504.27  ‐26,503.94  ‐26,504.89 
M8461  89  5699  29.89  ‐307,038.70  ‐307,047.10  ‐307,040.16  ‐307,126.42  ‐307,056.90 



TreeBASE ID  #Taxa  #Sites 
% Gaps / 

ambiguous 
characters 

IQ‐TREE with 
default 

stopping rule 
RAxML 

IQ‐TREE 
restricted to 
RAxML time 

PhyML  IQ‐TREE restricted 
to PhyML time 

M8569*  164  383  44.67  ‐40,594.84  ‐40,595.64  ‐40,595.27  ‐40,595.81  ‐40,596.53 
M8630  50  21154  0.22  ‐588,675.92  ‐588,675.92  ‐588,675.92  ‐589,298.44  ‐588,831.51 
M9973  60  327  3.42  ‐13,077.17  ‐13,077.98  ‐13,077.19  ‐13,077.18  ‐13,077.26 

M10236  59  164  62.23  ‐5,113.01  ‐5,113.90  ‐5,113.93  ‐5,117.14  ‐5,114.20 
M10273  169  11009  17.16  ‐650,541.12  ‐650,541.12  ‐650,541.12  ‐650,541.14  ‐650,541.12 
M10372  169  22426  15.93  ‐1,359,736.89  ‐1,359,736.90  ‐1,359,736.89  ‐1,359,796.74  ‐1,359,736.90 
M10866  88  3329  3.26  ‐150,463.11  ‐150,463.11  ‐150,463.11  ‐150,463.12  ‐150,463.11 
M11012  55  11500  19.55  ‐495,773.15  ‐495,787.73  ‐495,778.73  ‐495,824.51  ‐495,778.26 
M11013  55  8741  19.14  ‐251,347.86  ‐251,347.86  ‐251,347.86  ‐251,347.87  ‐251,347.86 
M11335  99  696  27.19  ‐41,474.35  ‐41,475.04  ‐41,474.41  ‐41,499.34  ‐41,476.80 
M11336  95  268  0.00  ‐14,847.24  ‐14,849.76  ‐14,847.24  ‐14,847.24  ‐14,853.97 
M11338  100  567  48.18  ‐32,213.69  ‐32,217.12  ‐32,215.33  ‐32,251.85  ‐32,217.06 
M11341  100  699  26.36  ‐53,103.85  ‐53,105.13  ‐53,104.67  ‐53,131.42  ‐53,113.88 
M11342  91  323  0.00  ‐24,050.26  ‐24,050.42  ‐24,050.26  ‐24,056.54  ‐24,050.26 
M11344  84  691  50.36  ‐42,681.83  ‐42,683.91  ‐42,681.85  ‐42,687.96  ‐42,683.34 
M11595  66  463  12.87  ‐27,727.92  ‐27,727.92  ‐27,727.92  ‐27,727.92  ‐27,727.92 
M11596  62  439  17.46  ‐34,244.66  ‐34,244.66  ‐34,244.66  ‐34,244.66  ‐34,244.66 
M11740  138  4427  2.62  ‐376,122.31  ‐376,125.26  ‐376,121.96  ‐376,125.96  ‐376,128.09 
M12103  97  199  0.00  ‐17,447.60  ‐17,448.40  ‐17,449.18  ‐17,448.93  ‐17,459.79 
M12104  93  349  0.00  ‐16,139.84  ‐16,144.58  ‐16,140.05  ‐16,144.77  ‐16,145.06 
M12376  116  327  37.23  ‐20,453.87  ‐20,454.54  ‐20,453.88  ‐20,455.30  ‐20,453.91 
M13804  78  1889  16.89  ‐113,431.86  ‐113,433.54  ‐113,431.86  ‐113,439.18  ‐113,431.86 

 
* We removed the sequence Homo_sapiens_GSTA3 from the original multiple sequence alignment because it was obviously unaligned.  
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A.2 Supplementary figures
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Figure A.1: Distribution of differences between log-likelihood computed by
PhyML and IQ-TREE for the same tree and model parameters. Trees and

model parameters are taken from results used in Figure 2.3
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Figure A.2: Log-likelihood differences for IQ-TREE with equal CPU times
as RAxML times (a,b) or PhyML times (c,d): Subfigure a and b show the log-
likelihood differences of IQ-TREE against RAxML using the 70 DNA and 45 AA
alignments. Subfigure c and d show the same against PhyML. The alignments
are ordered by the average log-likelihood differences. The whiskers at each point
show the standard errors of the differences. If the log-likelihood differences are
smaller than 0.01 the results are regarded as being equal. Subfigure a to d relate

to the subfigure a to d in Figure 2.2 in the main text.
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Figure A.3: Log-likelihood differences for IQ-TREE with CPU times deter-
mined by its stopping rule: Subfigure a and b show the log-likelihood differences
of IQ-TREE against RAxML using the 70 DNA and 45 AA alignments. Subfig-
ure c and d show the same against PhyML. The alignments are ordered by the
average log-likelihood differences. The whiskers at each point show the standard
errors of the differences. If the log-likelihood differences are smaller than 0.01
the results are regarded as being equal. Subfigure a to d relate to the subfigures

in Figure 2.3 in the main text.
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Figure A.4: Performance of IQ-TREE versus PhyML with random starting
trees for 70 DNA (a) and 45 AA (b) alignments. Each dot in the main diagrams
represents for one alignment the mean differences of the CPU times (y-axis)
and of the mean differences of log-likelihoods (x-axis) of the reconstructed trees
by the programs compared. The whiskers at each point show the standard
errors of the differences. The histograms at the top and the side present the
marginal frequencies. Dots to the right of the vertical dashed line represent
alignments where IQ-TREE found a higher likelihood. If a dot is below the
horizontal dashed line the reconstruction by IQ-TREE was faster. Percentages
in the quadrants of histograms denote the fraction of alignments in that region.
Percentages on the dashed line reflect the number of alignments where log-
likelihood differences are smaller than 0.01. To allow this analysis (--rand -

start --n rand start=1 --s spr) the source code of PhyML had to be fixed
to perform and output a proper tree search from a random starting tree.
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