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1 Introduction

This master thesis investigates the concept of crackling in nanoporous materials.

In this case, crackling refers to a jerky response of a system to changing external con-

ditions for example a driving force, a temperature or an electric or magnetic field. The

disturbance of the system through external forces results in impulsive events (avalanches)

of a variety of sizes. Crackling events can occur in different systems: crumpling pieces

of paper, magnetizing domains via jumps in magnetization (Barkhausen effect) and in tec-

tonic plate movement resulting in earthquakes, and other similar phenomena. It has been

discovered that many of those systems exhibiting crackling events show similar power-law

statistics [26].

In the case of porous materials crackling can be observed when the material is com-

pressed and avalanches occur due to the correlated nanometer-scaled pore breaking. As a

result, the sample deforms not continuously but in little jerks [4].

Recent studies (e.g. [4], [27], [23]) on selected porous materials have shown that this be-

havior can be analyzed by applying a compressive force on the sample and simultaneously

measuring the acoustic emission. An analysis of the energy distribution of the acoustic

emission activities revealed power-law characteristics with critical exponents stable over

several orders of magnitude similar to earthquake statistics. Acoustic emission is a very

sensitive technique to study crackling noise that enables the recording of acoustic waves

resulting from sample strain in the range of MHz. Acoustic emission is successful in mea-

suring collapses in porous materials and some martensite transformations but this method

faces its limits of applicability when confronted with micron-scale samples, which are im-

portant for nano-technology applications. Therefore, it has become of increasing impor-

tance to develop alternative methods that compensate the drawbacks of acoustic emission
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1 Introduction

while having a high dynamical range [30].

The main task during the work on this thesis was to analyse and introduce a new method

for studying crackling in porous materials. The most important questions were concerned

with finding out whether similar power-law behaviors of the avalanche statistics (like the

energy distribution) as in acoustic emission experiments can be obtained by measuring the

jerky evolution of the sample height. From the height changes of the sample, the square

of the time derivatives of the sample height (which are often refered to as squared drop

velocities) can be calculated. These squared drop velocities are assumed to be proportional

to the energy that is released during the collapsing of pores under compression. Then, the

calculated squared drop velocity distributions are compared to acoustic emission energy

distributions via fitting power-laws yielding estimations of critical exponents.

In the following, the resulting power-law exponents from these calculated squared drop

velocity distributions can be compared to previous studies on the same porous materi-

als. Additionally, other characteristic distributions and their exponents are investigated and

compared to references, including the exponent of the Omori’s law for earthquakes, which

concerns the rate of aftershocks. The investigations on crackling also reveal whether the

acoustic emission activity can indeed be assumed to be the energy released during pore

collapsing.

The measurements were performed using a Dynamic mechanical analyzer (DMA), which

was responsible for both applying the compressive force and measuring the sample defor-

mation. Compressive stress was applied slowly with rates of about 0.1mN/s − 10mN/s.

The samples selected were on the one hand Gelsil and Vycor, both Si02-based synthetic

materials, which have been studied previously with acoustic emission and, on the other

hand, Shale which is a natural porous sedimentary rock.

The measurement techniques of acoustic emission and strain drops in experiments, which

are done under slow compression, are of great interest for studying mechanical failure in

porous materials. In addition, strain drop experiments with the DMA have great potential

for becoming a tool to study earthquake dynamics in micron-sized materials in the labora-

tory, also at different conditions, like at high temperatures [30].
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2 Physical Background

2.1 Crackling noise

Crackling noise is a phenomenon observed in many different systems which initially do not

appear to have anything in common, like the magnetization of magnetic materials at exter-

nal fields, plastic deformation in crystals, the compression of porous materials, earthquakes

and even decision-making processes and crumpling of pieces of paper [26].

The concept of crackling is often used to refer to a jerky behavior with events of a mul-

titude of sizes as response of such a system to some external condition, for example an

applied force [26], [29].

In the case of the magnetization of magnetic materials, this means that the material mag-

netizes at applied external magnetic field not continuously but in little jumps or jerks, this

behavior is called Barkausen noise and can be explained by the flip-over of magnetic do-

mains. As the material enters an external magnetic field, the domains rearrange (in case of

e.g. an ferromagnetic material) in a way so that the field is increased, hence the domains

orientate themselves parallel to the external field. (In case of a ferromagnet each domain

prefers to point in the same direction of its neighbor domains and, in this way, the ferromag-

net gets magnetized.) Depending on the amount of disorder present in the ferromagnetic

material, this flipping process occurrs in several varieties: If the disorder is small the flip-

ping of domains occurs in form of one large avalanche spanning over the whole material.

However, if the disorder is large, many small flipping events occur as the domains react

independently from one another. Somewhere inbetween these two extremes, at the critical

disorder Rc, avalanches of these spin-flips occur in a multitude of sizes [29].

11



2 Physical Background

When it comes to plastic deformation in crystals, crackling is present in form of displace-

ment jumps. This behaviour shows up in the stress-strain-curves as ’strain jumps’ at applied

stress [26].

In porous materials the crackling is due to a collapsing of pores and cavities [26] and in

case of earthquakes the crackling results from tectonic plate movement [29].

2.1.1 Power-law behavior and scale invariance

Another example of a crackling system is the model of a sandpile from Bak, Tang, Wiesen-

feld [3], [29]. In this model, sand is added grain after grain until the sandpile has increased

enough to reach a critical height or critical point. Further adding of grains may now result

in avalanaches of sand. Once having reached this critical point, one more added grain may

cause a huge avalanche, medium-sized avalanches or just a single neighbouring grain to fall

down along the slope [3], [2]. In other words, this model acts the same at the critical point

as ferromagnetic materials magnetize in an applied external field, as explained above.

Avalanches of sand grains can occurr in a wide range of sizes. This phenomenon can

also be seen in earthquakes, where events occur in different magnitudes [29]. Gutenberg

and Richter came up with the idea of describing the magnitude-frequency relationship of

earthquakes with a power law, called the Gutenberg-Richter law [15]:

logN(M) = a− bM (2.1)

here, a and b are constants, N denotes the number of occuring earthquakes of magnitude

M in a certain region [15].

In figure 2.1 one can see a histogram of the number of earthquakes as function of their

magnitude [28]. It can be seen that earthquakes appear on different size scales and weaker

earthquakes occur much less frequently than very powerful quakes of high magnitude.

12



2.1 Crackling noise

Figure 2.1: Histogram of the number of earthquakes in 1995 as a function of their magni-
tude [28]

The number of avalanches of a certain size occurring in the sandpile model, magnetic

materials and earthquakes, that have been described so far, show all the same power law

behavior. It can be written in the form of [28]:

D(s) = s−τ (2.2)

This power law is valid over many different size scales [28]. However, the size scale one

of these systems is observed with does not matter for the occurring events, which is why

this behavior is called a scale-invariant behavior [29].

This behavior can be visualized with the help of the sandpile model: once the critical

height is reached, e.g. for a little ant and a much larger mouse living in the sandpile, their

’sandpile world’ basically looks the same, as the size of the occuring avalanches does not

depend on the size scale (assuming, of course, both the ant and the mouse are just watching

their sandpile without having any influence on the dynamics).
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2 Physical Background

So, apparently, the behaviors of these systems have a common feature, which is inde-

pendent of both the macroscopic and microscopic details of the systems [29]. Therefore, a

new term is introduced in the study of these non-linear, dynamic systems which is called

’universality’ [29], [28].

2.1.2 Universality

Universality is a concept known from continuous phase transitions.1 One example shall be

continuous phase transitions at the critical point. The critical point could be for example the

Curie point T = TC at which a ferromagnetic material looses its ferromagnetic properties

upon a temperature increase. Another example of a critical point is the starting point of

the coexistency region of a liquid and a vapor phase of a material. Corresponding critical

parameters are the critical temperature, pressure and density [8].

However, the intersting feature is that, in approaching these critial points, different sys-

tems show the same behavior, which is called universality [28]. When approaching a critical

point, certain physical quantities either diverge to infinity, as e.g. the correlation length of

spin-spin correlations or susceptibilities, or converge to zero, as e.g. the macroscopic mag-

netic moment [8].

When describing critical phenomena it has proven useful to introduce some ’order pa-

rameters’ (according to the Landau-Theory of phase transitions) which could be the density

difference of the vapor and liquid phase near the critical point, or the spontaneous mag-

netization of the ferromagnetic phase. Upon approaching the critical point, these order

paramters converge to zero in the form of [18]:

Θ ∝ |T − Tc|β (2.3)

Θ denotes an order paramter, Tc the critical temperature and the exponent β is the ’criti-

cal exponent’ which is of extreme importance for a large group of phase transitions [18].

1Continuous phase transitions are distinguished from discontinuous (or first order phase transitions) in which
the first derivative of some thermodynamical potential with respect to some thermodynamic variable
shows a discontinuity. Continuous transitions on the other hand would not show a discontinuity in the
first derivative, but at some higher order of derivative [8].

14



2.1 Crackling noise

The critical exponents of such order parameters are universal (according to Landau-

Theory) which means that their value is independent from details of the interaction, but

only dependent on more general characteristics, as for example the dimension of the sys-

tem and the range of interaction [18].

Other systems showing the same critical exponents are grouped into the same ’universal-

ity class’ and, hence, show the same long length scale behavior. In order to study universal-

ity, renormalization group methods are used [28], [29]. Scale invariance near criticality is

the reason why crackling noise is being studied while occurring in the fracture of materials

(especially porous materials) and why the results (critical exponents) can be compared with

some seemingly completely different systems.

As power-law characteristics near the critical points can be found in continuous phase

transitions, scale invariance appears in these phenomena as well. Studies have proved that

many of the crackling noise systems can be studied as critical points and therefore as some

sort of a phase transition. (Which in turn is the reason why crackling can be analyzed using

renormalization group and scaling methods - tools usually employed for studying continu-

ous phase transitions.2) [28]

Therefore, it can be deduced that there is some sort of connection between crackling

noise and phase transitions. It might seem rather farfetched to regard earthquakes as some

sort of phase transition, however, it can be explained in a more closer investigation of the

sandpile model.

2.1.3 Complex systems and self-organized criticality

As discussed above, the sandpile model arises from the idea of adding grains of sand one

after another to a pile of sand. After some time, a critical height is reached and adding one

additional grain may cause an avalanche of sand, which can be of any size within a broad

range of sizes. If the critical height is not yet reached, added grains will not cause huge

avalanches, but tend to stick where they land or close by, and their motion is described by

their physical properties. As the critical height is reached, however, something changes:

2For further information on renormalization group and scaling methods, see Sethna, 2011 [28]
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2 Physical Background

avalanches can be of any size and the behavior of the system cannot be explained with

the behavior of single grains any more. What has actually happend is that the system trans-

formed to a complex system whose properties can only be explained taking into account the

sand pile as a whole. The occurrence of such a complex system is linked to self-organized

criticality. Regarding the sandpile model it means that the sandpile has organized itself and

evolved automatically into a critical state [2].

Self organized criticality is defined as a behavior of a system that has an attractor of some

kind leading it to evolve into a state where scale-invariant events occur with power law be-

havior of the size distribution of these events [11].

When taking into account earthquakes, some similarities to the sandpile model can be

found: Teconic plates are moving towards each other and have an impact on one another

in form of pressures which result in instablities and quakes. The number and magnitude

(or energy) of earthquakes occurring as result of teconic plate interaction is described with

a power-law (as mentioned before according to the Gutenberg-Richter law). Therefore,

earthquakes show a scale-invariant, universal behavior like the avalanches of the sandpile

model, and because of their power law behavior earthquakes can be seen as self-organized

critical systems [1].

In his work "How nature works: the science of self-organized criticality" Per Bak ex-

plains how Earth has organized itself into a critical state by tectonic plate movements,

earthquakes, and volcanic eruptions in the course of time (over hundreds of million years).

As released earthquakes can be of any size and follow the Gutenberg-Richter law, evidence

is given to these assumptions [2].

2.2 Omori’s law

Omori discovered 1894 that after a main earthquake event, several smaller earthquakes

(aftershocks) occur and their number decreases with time in form of a power law. Omori

found this formula via studying aftershock frequencies (half-day and monthly frequencies)

of earthquakes in Japan. One of the aftershock sequences he studied was following the 1891

16



2.3 Values of critical exponents predicted by mean-field theory

Mino-Owari earthquake in central Japan [31].

This so called Omori’s law is given by [15]:

n(t) = K · (t+ c)−1 (2.4)

n(t) denotes the number of aftershocks per unit time, K and c being constants [15].

A modified version of this formula was developed by Hirano (1924) who studied daily

frequencies of aftershocks near Tokyo since the great Kanto earthquake in September 1923

[31]:

n(t) = K · (t+ c)−p (2.5)

The exponent p that is usually close to 1 [15].

2.3 Values of critical exponents predicted by

mean-field theory

The mean-field theory (MFT)3 is used for analyzing slip avalanches in crackling systems

theoretically. It derives scaling behaviors of these slip avalanches, their statistical distri-

butions and predicts values for the critical exponents. (MFT also predicts certain relations

between the critical exponents.) Using this theory various distributions can be analzyed,

not only the slip-size distribution, but also others like the avalanche duration distribution,

the energy distribution and the slip-velocity distribution [26].

Salje et al. [26] estimated some values for critical exponents for different distributions

according to MFT, see selected distributions including their exponents in tabular 2.1.

3MFT is used to study phase transitions and can be regarded as approximation for the thermodynamic
properties of a system. In this theory order parameters are assumed to be spatially constant and despite
this assumption MFT is able to predict certain quantitative properties of phase transitions correctly (in
high spatial dimensions), e.g. critical exponents [5].
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2 Physical Background

The Energy distribution is calculated from integration of the drop velocity squared values

v(t)2 over corresponding peaks [30]:

E ∝ 1

T
·
∫
T

v(t)2dt (2.6)

T denotes the time period of a slip event. The corresponding energy distribution D(E) ∼

E−ε has an exponent of 4/3 according to MFT, see second line of tabular 2.1 [26].

In case the energy is defined differently, e.g. in some acoustic emission experiments4, the

scaling behavior of the distribution changes. When considering only the maximum drop ve-

locity squared values v2m, which are the values exactly at each peak (i.e. the largest values

during an avalanche), the energy is defined as Em ∼ v2m and the distribution can be written

as D(Em) ∼ (v2m)−ε
′ [26]. The exponent values for such distributions are displayed in the

fourth and fifth line in table 2.1.

Table 2.1: Selected exponent values predicted by MFT [26]

Distribution Formula Exponent Exponent value
Size distribution D(S) ∼ S−τ τ 1.5
Energy distribution D(E) ∼ E−ε ε 1.33
Stress-integrated energy distribu-
tion

Dint(E) ∼ E−εint εint 1.67

Stress-integrated maximum
velocity squared distribution

Dint(v
2
m) ∼ (v2m)ε

′
int (ε′)int 2.0

Maximum velocity squared dis-
tribution

D(v2m) ∼ (v2m)−ε
′

ε′ 1.5

Stress-integrated exponents stem from experiments where the external stress is increased

gradually until failure, resulting in an emergence of avalanches during compression [19].

4In the DMA measurements the energy is defined with the maximum drop velocity squared values.
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2.3 Values of critical exponents predicted by mean-field theory

The exponent µ of the maximum velocity distribution D(vm) ∼ v−µm is related to the

exponent of the maximum velocity squared distribution ε′. This relation can be calculated

with the identity:

D(v2m)d(v2m) = D(vm)d(vm) (2.7)

Equation 2.7 arises from the fact that the integral of the probability density (i.e. the propa-

bility) is invariant under variable transformation of the probability density. This equation

can be rewritten with the formulas for the distributions (tabular 2.1) to:

(v2m)−ε
′
d(v2m) = v−µm d(vm) (2.8)

2 · (v2m)−ε
′
vmd(vm) = v−µm d(vm) (2.9)

2 · (vm)−2ε
′+1 = v−µm (2.10)

Thus, the relation of the exponents µ and ε′ is given in a form:

µ = 2ε′ − 1 (2.11)

Assuming ε′ to be 1.5 according to MFT, tabular 2.1, the exponent of the maximum

velocity distribution is µ = 2.
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3 Preceding work on crackling in

porous materials

Crackling noise has been studied and analyzed in different systems and fields, for ex-

ample in magnetic materials (Barkhausen noise), martensitic phase transitions, plastically

deformed small crystals, decision-making processes, stock market fluctuations and many

more [26], [29]. In this thesis, the focus has been placed on studying crackling noise in

porous materials. Porous materials show a crackling behavior upon application of an ex-

ternal force. They get compressed slowly when pores are collapsing due to the increasing

stress with a jerk-like behavior typical for crackling systems.

As explained in the previous section, different crackling systems can share the same sta-

tistical characteristics and, hence, be part of the same universality class. A comparison

can be made of these different systems with the help of critical exponents of corresponding

power laws. In this manner, by studying one system that is part of a universality class, it is

possible to get information about other systems of the same universality class. Knowledge

obtained for such a studied system can then be applied to other systems of the same uni-

versality class and, hence, predictions can be made even for systems not directly measured

themselves [26].

Understanding how porous materials respond to an external stress is an interesting re-

search topic, as the failure mechanisms in these materials play an important role in Mining,

building industry and geology. In the context of Mining, porosity of minerals might cause

severe accidents in form of landslides or collapse of mining shafts. Historic buildings may

be damaged because their porous building stones are subject to external forces [27].
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3 Preceding work on crackling in porous materials

The crackling in porous materials is due to the collapsing of pores and cavities in the sam-

ples. This collapsing of pores in the sample is gradual and progresses through the sample

in form of avalanches. The collapse of the sample is due to mechnical failure and crackling

noises often arise in acoustic form because of dynamical features that occur simultaneously

with the failure of the sample. The avalanches can then be measured in Acoustic Emission

experiments [27].

These acoustic waves result from changes of the internal structure of the material, which

leads to a sudden redistribution of internal stress. Acoustic emission occurs, as well, in e.g.

dislocation movement and twinning [12].

3.1 Crackling noise in porous Vycor

Quite recently acoustic emission experiments to investigate crackling noise were performed

in a study of Salje et al., 2011 [27] using Vycor, a porous glass material. They pointed out

that the avalanches follow power law statistics with critical exponents similar to those mea-

sured in different systems, for example in mechanical instabilities in martensites.

In their measurements, they applied a uniaxial stress and with increasing stress the sample

strain changed in steps with simultaneous emission of acoustic waves measured in acoustic

emission (AE) experiments. The AE measurements were carried out using different com-

pression rates (12.2kPa/s, 6.5kPa/s, 1.6kPa/s, 0.2kPa/s) on four Vycor sample with a

pore size of 7.5nm. The samples were prepared having a height of 5mm and different areas

ranging from approx. 29 to 13 mm2 [27].

In figure 3.1 [27] it can be seen that in the beginning of the experiment low acoustic

emission activities could be observed, but high intensities occurred both before and after

the sample collapsed due to the applied stress. The size of the collapse and the intensity of

crackling noise do not seem to be correlated with each other. The complete collapse of the

sample occurred at approx. 15.000s [27].
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3.1 Crackling noise in porous Vycor

Figure 3.1: AE activity and deformation (at a stress of 1.6kPa/s) of the sample as function
of time, inset: low AE activity in the initial part of the experiment [27]

Figure 3.2 depicts the log-log-plot of the energy distribution N(E) of the AE events and

shows that these distributions correspond to power-laws N(E) ∼ E−ε with exponents ε of

approx. −1.39. This power-law is fulfilled for experiments with a high number of recorded

signals over more than six decades of energies. Therefore, evidence is given that the failure

mechanisms under compression show avalanche criticality [27].

23



3 Preceding work on crackling in porous materials

Figure 3.2: Energy distribution of the acoustic emission signals plotted in a log-log-plot.
The four curves correspond to four different measurements using different com-
pression rates. The power law exponent of −1.39 is represented by the dashed
line [27].

3.2 Statistical similarities between compression of

porous Vycor and earthquakes

Baró et al., 2013 [4] investigated the statistical similarity between the compression of a

porous material, namely Vycor, and earthquakes. They performed uniaxial compression

experiments (with three different compression rates: 0.2kPa/s, 1.6kPa/s, 12.2kPa/s) in-

cluding the simultaneous recording of acoustic emission on this material and examined the

failure under compression. Proof was found that the four main laws of statistical seismicity

(Gutenberg-Richter law, modified Omori’s law, productivity law and unified waiting-time

scaling law) are fulfilled yielding stable critical exponents across different experiments [4].

Figure 3.3 shows the AE signal and the sample height as functions of time for one of

the compression experiments. Several jumps in the sample height are visible, which cause

acoustic emission signals measured as energy avalanches [4].
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3.2 Statistical similarities between compression of porous Vycor and earthquakes

Figure 3.3: AE avalanche energy and change in sample height for a compression experiment
with compression rate of 1.6kPa/s as functions of time [4].

The avalanche energy distribution, depicted in figure 3.4, follows a power-law p(E) ∝

E−ε with an exponent of approximately 1.39 that is constant for the whole measurement [4].

Figure 3.4: Avalanche energy distribution of the experiment with a compression rate of
1.6kPa/s and during 7 different subperiods. The straight line represents a
power-law with exponent of 1.39 [4].
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3 Preceding work on crackling in porous materials

Baró et al. also studied the aftershock sequence of the AE signals to compare it to

Omori’s law. In doing so firstly an energy range of the measured mainshocks has to be

determined in order to distinguish between mainshocks and aftershocks. Secondly, after

each mainshock the aftershock sequence is analyzed until a new mainshock appears. Fig-

ure 3.5 shows the number of aftershocks per unit of time as function of the time difference

to the mainshock. Each panel of the figure corresponds to another compression rate. Each

curve in figure 3.5 shows approximately the same behavior as the plotted Omori’s law with

an exponent of −0.75. Some curves even follow this power-law for up to 6 decades [4].

Figure 3.5: Number of aftershocks per unit of time as function of time difference to the
mainshock. The dashed line represents Omori’s law with exponent of −0.75.
The legend in each panel shows how the mainshocks are defined [4].
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3.3 Crackling noise in synthetic and natural Si02-based materials

3.3 Crackling noise in synthetic and natural

Si02-based materials

Nataf et al. [23] studied the acoustic emission activity and the jerky changes in sample

height of porous Si02 based materials in uniaxial compression experiments using compres-

sion rates ranging from 0.2kPa/s to 2.8kPa/s. They measured different mesoporous sil-

ica ceramics including Gelsil with pore diameters of 2.6 nm and 5 nm, which is a porous

synthetic Si02 glass material, similar to Vycor, and sandstone, which is a natural porous

sedimentary rock. The sample heights and their changes were measured with a laser exten-

someter with a nominal resolution of 100 nm [23].

Figure 3.6 shows the experimental results of Gelsil 2.6 including the (a) sample height,

(b) square of the time derivative of the sample height and (c) AE activity, each as function

of time. Inspecting figure 3.6 it seems obvious that the AE activity corresponds well with

the square of the jerk velocity (
d2h

dt2
). Therefore, the authors assume that there is a certain

relation between the AE signals and the energy dissipation resulting from crackling of the

sample including its failure [23].

It is one of the main aims of the present work to test if this correspondence between the

AE activity and measured strain drops during mechanical failure really holds true.
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3 Preceding work on crackling in porous materials

Figure 3.6: Gelsil 2.6 - (a) Sample height, (b) square of its time derivative, (c) AE activity
[23]

A comparison between AE signals and changes in sample height was also made for other

samples as Gelsil 5 and sandstones, and yielded similar results. Moreover, Nataf et al. an-

alyzed the energy distribution, the number of aftershocks and the distribution of waiting

times. The energy distribution for the data obtained for Gelsil 2.6 follows a power-law be-

havior over several decades and can be fitted with a power-law exponent of about 1.37. For

sandstone similar data were obtained and an exponent of about 1.48 was estimated. The

distribution of aftershocks plotted in Omori diagrams yielded Omori exponents of about

0.71 and 0.78 for Gelsil and sandstone, respectively [23].

Figure 3.7 shows the energy distributions of the AE events for all samples, including pre-

viously measured Vycor, as power laws. The dashed line here corresponds to an exponent

of 1.45 [23].
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3.3 Crackling noise in synthetic and natural Si02-based materials

Figure 3.7: Log-log plot of energy distribution of AE events: from top to bottom curves
correspond to Vycor, Gelsil 5nm, Gelsil 2.6nm, Light-gray sandstone, red sand-
stone and yellow sandstone, respectivelty. All curves, except for Vycor, are
shifted for clarity [23]

Tabular 3.1 shows the Omori’s exponent p and exponent of the energy distribution ε fitted

individually for the different samples of Gelsil 5nm and Gelsil 2.6nm which they studied

during their work [23]. For completion, the exponent values of Vycor measured by Baró et

al. [4] are also added in this tabular.

Table 3.1: Critical Exponents fitted for the different Gelsil samples [23] and for Vycor [4]

Samples ε p
Gelsil 2.6 (1) 1.37± 0.03 0.71± 0.04
Gelsil 5nm (1) 1.35± 0.03 0.70± 0.04
Gelsil 5nm (2) 1.37± 0.03 0.77± 0.04
Vycor 1.40± 0.05 0.75± 0.1
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4 Laboratory equipment

This chapter attempts to give an overview as well as a brief description of the used tools

and softwares for the performed measurements. For sample preparation the IsoMetTM Low

Speed Saw was used and the measurements themself were then carried out using the Perkin

Elmer Diamond DMA and the Perkin Elmer DMA series 7e. The DMA measurements were

controlled and configured via the software Pyris Muse System Software. For evaluation and

analysis of the data OriginPro 2015G was used.

4.1 Measurement tools

4.1.1 IsoMetTM Low Speed Saw

For cutting and preparation of the samples a precision sectioning saw from the company

Buehler was used. The tool itself is called IsoMetTM Low Speed Saw [20].

As the samples favored for measurements are brittle materials, it is important to pay

specific attention to their cutting. The edges of each sample should be as parallel as possible

in order to ensure an even compression during the measurements. As well, the deformation

of the material possibly occurring during the preparation should be kept to a minimum.

Therefore, a precision saw is beneficial for cutting the materials. The cutting with this

tool is rather slow using speeds up to 300rpm and the blade is a diamond wafering blade.

Therefore, the damage and deformation of the sample is rather low and the cut surface is of

good quality [21], [20].

4.1.2 Dynamic Mechanical Analyzer

A DMA is usually used to analyze the dynamic viscoelasticity (or viscosity) of a material

(usually a polymeric material or similar) [13]. This is done via a compression of the sample
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4 Laboratory equipment

under stress oscillating with time. As a result of the applied sinusoidal stress the sample

gets compressed and recovers again. This can be measured just as well as other responses

of the sample apart from its behavior under stress (constituting stress-strain experiments)

like its response to different frequencies or temperatures [22], [13].

It is also possible to measure the creep recovery and stress relaxation [13] and derive in-

formation about different moduli (like the complex and elastic moduli) [22] of the samples.

When using the DMA the force can be applied in different ways, for example, either

in a twisting motion producing a torsion of the sample or axially along one axis of the

sample [22]. In case of an applied uniaxial stress in z direction, a relationship between the

applied stress σ and the resulting strain (or deformation) of the sample ε is obtained in the

form of [16]:

E =
σ

ε
(4.1)

E being the Young’s modulus.

The applied force is generated as AC and DC force by a function generator [13] and is

then transferred to the sample via a rod of metal or quartz [16]. The differential transformer

(a so called LVDT) is then responsible for detecting the deformation of the sample [13].

The LVDT (linear variable differential transformer) is able to measure the distance varia-

tion of the rod by coils and, thus, the deformation of the sample and the Young’s modulus

can then be calculated [16]. The accuracy of the distance measurement using the Perkin

Elmer Diamond DMA is approx. 10nm. The temporal resolution is about 1s.

Regarding the sample fixture geometries of the DMA, different methods are available,

for example, fixtures for a three-point or four-point beding, or cantilever fixtures or parallel

plate fixtures [22]. (For detailed information, see Menhard, 1999, p84.)

Another property that can be analyzed using a DMA is a material’s behavior to changing

temperatures, leading to different moduli of the sample [22]. In the case of the used Pyris

Diamond DMA of the company PerkinElmer a temperature range of−150◦C to 600◦C [13]
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4.1 Measurement tools

is adjustable.

Given that for crackling noise analysis jumps in the strain during a compression of the

material are of main interest, the DMA is used in TMA mode and an increasing compres-

sive force is applied.

TMA refers to thermomechanical analysis and while using TMA mode the sample is

compressed via a static force and the deformation and dimensional changes of the sample

are being examined. Usually TMA refers to a measurement technique in which the thermal

expansion of the sample is measured [22].

Regarding the sample geometry for the experiments performed during this work, only a

parallel plate fixture was used and the force was applied axially along one axis of the sam-

ple. Besides, the force was applied at constant rate, differently to usual dynamic viscoelas-

ticity measurements with sinusoidal applied stress [22]. Using this DMA, an application

of stress till 10N is possible. A home-made holder was used in some later experiments to

increase the maximum force by a few Newtons.

Temperature variations were not of interest, therefore no settings were made in the temper-

ature control mode. Altogether, for performing these experiments the DMA was somehow

diverted from its usually intended use for soft polymeric materials to brittle and porous ma-

terials and minerals.

In figure 4.1 the fixture of the sample in the DMA can be seen. The lower plate is fixed

via four screws and the sample is placed in the center of the plate below the upper smaller

plate. The stress is applied via the upper plate.
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Figure 4.1: Fixture of the sample in a parallel plate setup in the Perkin Elmer Diamond
DMA

The dimensions of the sample and geometry using the parallel plate fixture is depicted

in figure 4.2, which is taken from the measurement condition editor of the measurement

software Pyris Muse System Software.

Figure 4.2: Dimensions of the sample in the parallel plate fixture
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4.2 Measurement & data evaluation software

For the performed measurements both the Perkin Elmer Diamond DMA and the Perkin

Elmer DMA series 7e were used. Although the Diamond DMA is a newer device, its

resolution is not as good as the resolution of the Elmer DMA 7e which features a one

order of magnitude better time resolution and distance resolution.

As the DMA 7e has such a superior resolution it is also quite sensible to vibrations and is

therefore placed on a heavy granite plate positioned on top of a rubber-like material. The

measurements are carried out using a parallel plate measuring system as well. Using the

DMA 7e a force up to 8N can be applied to the sample.

4.2 Measurement & data evaluation software

The software used for measuring with the Perkin Elmer Diamond DMA was the Pyris

Muse System Software version 3.9U (Build 716) from SII NanoTechnology Inc., 2001-2004.

The software used with the Perkin Elmer DMA series 7e was the Pyris Sotware version

8.0.0.0172 from Perkin Elmer, 2006. This Softwares are thermal analysis softwares and

while using them, different measurement methods and modes (e.g. TMA mode for stress-

strain measurements) and conditions can be used. Additionally, customized temperature

programs can be selected.

For data evaluation the software OriginPro 2015G of OriginLab Corp. was used.
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5 Samples and sample preparation

This chapter focuses on the different samples used for the measurements and their prepara-

tion. For this study, brittle, porous materials were of great interest, as introduced in chapter

3. Therefore, Shale, Vycor and Gelsil were selected.

5.1 Samples

5.1.1 Shale

Shale stone is a sedimentary stone and belongs to the group of fine-grained clastic sed-

iments, which includes for example clays and mudstones as well. These rocks are also

referred to as mudrocks or argillaceous rocks, because they consist of litte, differently

sized fragments of clay and silt. A main distinction is made between minerals able to

split along parallel planes of lamination and those not possessing this property called ’fis-

sility’. Shales belong to the group of fissile minerals, whereas mudstones show non-fissile

properties [10], [14].

The samples used for the measurements were prepared using Shale stones as can be seen

in figure 5.1. Next to the big raw Shale stones, one tiny Shale sample that has already been

prepared is (barely) visible on the image. (Its size is about 1mm x 1mm x 1mm.)
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5 Samples and sample preparation

Figure 5.1: Shale stones used for sample preparation

5.1.2 Vycor

Vycor is the trademark of a porous glass material which was found and produced seeking

for glasses with properties superior to those of ordinary glasses, especially concerning heat

shock resistance and resistance to deformation. For preparation of these glasses a rather

soft alkali-borosilicate glass is melted and then molded to the desired shape according to

standard glass processes. Afterwards it is subject to a heat treatment above the annealing

point, which leads to a phase separation. The phases formed are two glassy phases, one

(acid-soluble) phase rich in alkali and boric oxide, the other (insoluble) phase being rich

in silica. After the heat treatment the acid-soluble phase is dissolved (leaching) and the

silica-rich and porous phase remains and is further consolidated via heating it to> 1200◦C.

The pore size distribution of commercial porous Vycor glass is usually quite narrow and

the average pore diameters are about 8 − 12nm. (96% of the pores are ±0.3nm from the

average pore radius.) The Company Corning Inc. produces and distributes these porous

glasses under the trademark Vycor 96% SiO2 glass. [7]

Vycor used for measurements had an average pore diameter of 7.5nm.
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5.1 Samples

5.1.3 Gelsil

Gelsil, like Vycor, is a Si02-based synthetic material, but has a different porous mesostruc-

ture. Gelsil is produced by a company named 4F International Co. from Gainesville, FL in

a sol-gel process by hydrolization of silica containing precursor liquids which is then fol-

lowed by condenstion and heat treatment. Within the hydrolized silica precursor, the silica

molecules condensate to spheres on stochastic sites. A network-like arrangment of spheres

is then obtained after gelation. In the end a material is obtained which can be imagined

as an assembly of stochatically arranged and monodisperse pure silica spheres. The voids

between these spheres exhibit a larger pore size distribution than Vycor 7390 and the mean

void diameter is about 2.6 and 5nm for Gelsil 2.6 and Gelsil 5, respectively. [16], [23]

Figure 5.2 shows Gelsil 2.6nm cylinders that were used to prepare small samples. In this

image the samples appear yellowish due to contamination with organic molecules [16]. The

samples have to be cleaned so that the pores are free of any dirt that could have influence

on the crackling behavior.

Figure 5.2: Gelsil used for sample preparation [16]
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5 Samples and sample preparation

Tabular 5.1 shows some characteristics of the studied Gelsil and Vycor samples.

Table 5.1: Characteristics of the studied Gelsil and Vycor samples according to refs [9], [17]

Sample Vycor 7.5nm Gelsil 5nm Gelsil 2.6nm
Average pore diameter (nm) 7.5 5 2.6
Porosity Φ (%) (1) 40 54 59
Density (g/cm3) 1.9 1.2 1.2
Surface area (m2/g) 70 510 590
Approx. failure stress σf (MPa) 50 10 0.5

Regarding their porous structure, Vycor and Gelsil differ slightly: Gelsil is composed of

randomly distributed spheres, whereas Vycor consists of interconnected pores and pockets.

The difference is depicted schematically in figure 5.3 [16].

Figure 5.3: Comparison between the porous mesostructures of Gelsil (left) and Vycor
(right) [16]
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5.1 Samples

Figure 5.4 shows how a typical compression experiment using this porous samples looks

like. The indicated scale labelling 7.5nm corresponds to the pore size of the used Vycor

samples [30].

Figure 5.4: Geometry of a typical compression experiment of a porous material using a
DMA [30]
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5 Samples and sample preparation

5.2 Sample preparation

For the cutting of the samples the IsoMetTM Low Speed Saw, see section 4.1.1, was used.

The pieces, which were cut from a larger Shale stone or Vycor/Gelsil piece, were then

in turn cut into small parallelepipeds using a precision hand saw with diamond wire and

further polished with a polishing paper to obtain even smaller sample sizes with edges free

of considerable surface irregularities. Figure 5.5 shows the tools and utilities that were used

for preparing the samples, inlucing a precision hand saw, fine tweezers, a digital sliding

caliper and a polishing paper. (The bluish foam material was used for cutting the samples

with the hand saw.)

Figure 5.5: Tools and utilities used for sample preparation

It is important to ensure that the sample consists of nearly parallel edges, as this lowers

the risk of influences on the measurement from a shearing of the sample under stress.
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6 Measurement procedure

This chapter covers the measurement process using the Diamond DMA (DDMA) and the

DMA 7e. All samples of Gelsil, Vycor and Shale are listed including their height and cross

section. Compression experiments were performed at constant low compression rates of

about 0.1mN/s−10mN/s and different types of compression settings were used, including

single compression ramp measurements and stress cycling measurements.

6.1 Shale

6.1.1 Samples and measurement set-ups

For the crackling measurements on Shale, various samples were prepared, each in different

sizes. For the preparation of these samples, small pieces of Shale were first cut using the

IsoMetTM Low Speed Saw and afterwards further cut with a precision hand saw and pol-

ished with a polishing paper, as explained in section 5.2.

In tab. 6.11 a list of all the Shale samples investigated can be seen. All measurements of

Shale were performed using the Perkin Elmer diamond DMA.

1The measurement uncertainty results from the (digital) sliding caliper±0.01 which was used for measuring
the dimensions of the sample.
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Table 6.1: List of Shale samples including their heights and cross sections

No. Height [mm] Cross section [mm2]
1 2.20± 0.01 1.369± 0.03
2 1.40± 0.01 1.16± 0.03
3 0.97± 0.01 1.08± 0.03
4 0.94± 0.01 1.09± 0.03

Tabular 6.2 shows the different measurement settings for the Shale measurements. (For

all measurements, the force was applied until it reached the maximum value of 10N. As the

stress is applied in downward direction, the force is actually negativ, e.g. from -10mN to

-10N.) Columns ’Stress min’ and ’Stress max’ refer to the stress at the beginning of each

compression ramp until the end. For the maximum stress always the maximum possible

stress for the DMA was used.

The column ’R’ denotes the different compression rates and the column ’mode’ refers

to the way in which the force was applied during the whole measurement: ’Cycle mea-

surement’ states a measurement in which the compression ramp was repeated once the

maximum force of 10N was reached resulting in a cycle measurement. ’Single ramp’ de-

scribes a measurement in which after reaching the maximum force the measurement was

stopped and ’Single ramp + constant force at 10N’ refers to a measurement in which after

reaching 10N the force was hold constant at its maximum value for a defined time interval

(in case of Shale for about 5000s), then set to its initial value again, and the measurement

was stopped.

Table 6.2: Measurement settings for the Shale samples of tabular 6.1

No. Stress min [mN] Stress max [mN] R [mN/min] Mode
1 10 10000 10 cycle measurement
2 10 10000 1 single ramp
3 10 10000 2 single ramp + constant force at 10N
4 10 10000 2 single ramp + constant force at 10N
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6.1 Shale

6.1.2 Shale measurements

For the first Shale measurement, the first Shale sample (see tabular 6.1) was used. Figure

6.1 shows the sample height, applied force and calculated squared drop velocity values v2m

= (dh/dt)2m which are assumed to be proportional to the released energy during the break-

ing of pores and, comparable to the energies measured in acoustic emission experiments.

The energies involved in one strain burst can be estimated by Em = Mv2m
2

. The moved

mass M is assumed to be of the order of the sample mass of about M ∝ 10−7kg. As vm

values are measured in the range of 1nm/s − 1000nm/s the estimated burst energies are

in the range of 10−5 − 101aJ . Another estimation can be made with the change in elastic

energy resulting from a crack of size a: Eel ∝ σ2·a3
E

with the applied stress σ, the Young’s

modulus E and typical crack size a. Assuming σ ≈ 1MPa, E ≈ 100GPa the elastic

energy release during the collapse of one pore of a typical pore size a ≈ 10nm (which is

an estimate for Vycor) can be estimated as Eel ≈ 10−5aJ . As these two estimations are in

good agreement, it is assumed that the elastic energy released by the collapse of pores can

be well determined by measuring the squared drop velocities [30].

It is visible in figure 6.1 that during the first Shale measurement the applied force was

not strong enough to break the sample. The green curve in figure 6.1 represents how the

sample height changes with applied stress. As the stress is set to its initial value, the sample

relaxes and with increasing stress, the sample gets compressed again.

For the squared drop velocities of figure 6.1 only negative velocity values were used,

whereas the positive values were removed from the data set as they are due to backjumps

and elastic recoveries of the sample. For the same reason, the largest peaks at the end of

each stress cycle were cut as well before conducting further calculations.
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Figure 6.1: Shale 1: Sample height (green), applied force (black) and squared drop veloci-
ties (blue) as functions of time (measured with Diamond DMA)

As expected, the sample does not get compressed uniformly and smoothly with increas-

ing stress, but in little jumps and avalanches. In figure 6.2 only the first cycle of the mea-

surement is depicted (til 5500s or approx. 1.5h of the whole experiment, 6.1). In the small

cutout, the jerk-like behavior of the compression of the Shale sample can be seen clearly.
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6.1 Shale

Figure 6.2: Sample height as function of time for the first cycle from measurement time of 0
to 58000s, inset: magnification of a selected area of the plotted curve (measured
with Diamond DMA)

The second Shale measurement investigates the second Shale sample according to tabu-

lar 6.1. Here, an attempt was made to prepare an even smaller sample than what was used

for the previous measurement. Hence, the probability of achieving a complete macroscopic

failure of the sample during the compression was increased. (It is assumed that the exponent

values deviate slightly in case the sample does not fail at the end of the compression cycles.)

In figure 6.3 the sample height, applied force and the square of the drop velocities are

depicted as functions of the time. It is notable that the velocity squared values are increasing

with time, which is probably a sign of approaching the failure point of the sample.
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Figure 6.3: Shale 2: Sample height (green), applied force (black) and squared drop veloci-
ties (blue) as functions of time (measured with Diamond DMA)

For the third measurement, once again, a new sample was prepared having the dimen-

sions according to tabular 6.1. Figure 6.4 shows the sample height, applied force and the

squared drop velocities as functions of the time. During this measurement, some larger

backjumps occurred in the sample while the stress was increased.
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6.1 Shale

Figure 6.4: Shale 3: Sample height (green), applied force (black) and squared drop veloci-
ties (blue) as functions of time (measured with Diamond DMA)

The fourth measurement concerns the sample Shale number 4 (6.1), which is described in

figure 6.5 in further detail, noting sample height, applied force and squared drop velocities

as functions of time.
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Figure 6.5: Shale 4: Sample height (green), applied force (black) and squared drop veloci-
ties (blue) as functions of time (measured with Diamond DMA)

6.2 Vycor

6.2.1 Samples and measurement set-up

Apart from previous Vycor measurements analyzed, only one sample was prepared accord-

ing to tabular 6.3 and measured as described in tabular 6.4.

Table 6.3: Vycor sample including its height and cross section

Number Height [mm] Cross section [mm2]
1 1.53± 0.01 1.21± 0.02

Table 6.4: Measurement settings for the Vycor sample of tabular 6.3

No. Stress min [mN] Stress max [mN] R [mN/min] Mode
1 10 10000 2 single ramp + constant force at 10N
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6.2.2 Vycor measurements

The first measurement including a Vycor sample applies the same conditions as were used

for the 3rd and 4th Shale measurements, described above. The evolution of sample height,

applied stress and squared drop velocities are depicted in figure 6.6.

Figure 6.6: Vycor 7.5nm: Sample height (green), applied force (black) and squared drop
velocity (blue) as functions of time (measured with Diamond DMA)

Figure 6.7 shows a previous cycle measurement of Vycor that has been performed before

the measurements for this work were done [30]. The data of this stress cycling experiment

was analyzed and this measurement was found to yield one of the best results with a well

defined power-law stable over some orders of magnitude.
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Figure 6.7: Vycor 7.5nm: Sample height (green), applied force (black) and squared drop
velocity (blue) as functions of time (measured with Diamond DMA), (With a y-
axis break from 0.12mm-0.6mm the evolution of the sample is better displayed.)

52



6.3 Gelsil

6.3 Gelsil

6.3.1 Samples and measurement set-up

Gelsil 2.6 nm and Gelsil 5nm samples of sizes according to table 6.5 were used for mea-

surements.

Table 6.5: List of Gelsil samples including their void size, height and cross section

No. Void size Height [mm] Cross section [mm2]
1 5nm 1.14± 0.01 3.73± 0.04
2 5nm 0.71± 0.01 1.13± 0.02
3 2.6nm 2.19± 0.01 1.93± 0.02
4 2.6nm 1.58± 0.01 5.06± 0.05
5 2.6nm 1.48± 0.01 5.64± 0.06
6 2.6nm 5.17± 0.01 5.21± 0.06
7 2.6nm 5.02± 0.01 5.16± 0.06
8 2.6nm 5.02± 0.01 4.66± 0.05
9 2.6nm 5.16± 0.01 1.30± 0.02
10 2.6nm 5.24± 0.01 4.03± 0.04
11 2.6nm 5.02± 0.01 5.16± 0.05
12 2.6nm 1.67± 0.01 2.85± 0.03
13 2.6nm 1.86± 0.01 3.50± 0.04
14 5nm 3.04± 0.01 2.22± 0.03
15 2.6nm 5.24± 0.01 4.03± 0.04
16 5nm 3.62± 0.01 2.02± 0.02

The measurement settings for the Gelsil samples of tabular 6.5 are described in tabular

6.6. Measurements carried out until a maximum force of 8N were performed using the

DMA 7e. For measurements number 15 and 16 an additional weight was added as explained

in chapter 4.1.2.
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Table 6.6: Measurement settings for the Gelsil samples of tabular 6.5

No. Stress min [mN] Stress max [mN] R [mN/min] Mode
1 100 8000 7 single ramp
2 100 8000 60 single ramp
3 100 8000 6 single ramp
4 10 8000 200 single ramp
5 10 8000 200 single ramp
6 10 8000 15 single ramp
7 10 10000 5 single ramp
8 10 10000 50 cycle measurement
9 10 10000 20 cycle measurement
10 10 10000 20 cycle measurement
11 10 10000 5 single ramp
12 10 10000 100 single ramp
13 10 10000 10 single ramp
14 10 10000 40 cycle measurement
15 10 10000 40 cycle measurement
16 10 10000 40 cycle measurement

6.3.2 Gelsil measurements

The following images are examples of Gelsil measurements. Experiments number 15 and

16 were chosen because they yielded the best results. Each image shows the squared drop

velocities, sample deformation and applied stress, see figure 6.8 and figure 6.9

During the performance of the experiments, it was detected that stress cycles measurements

yielded best results. Moreover, in each of those cycle measurements power-laws stable over

more than three orders of magnitudes have been found. Measurements performed with

single stress ramp did not yield good results in most cases.
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Figure 6.8: Gelsil 2.6: Sample height (green), applied force (black) and squared drop ve-
locity (blue) as functions of time (measured with Diamond DMA)
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Figure 6.9: Gelsil 5: Sample height (green), applied force (black) and squared drop veloci-
ties (blue) as functions of time (measured with Diamond DMA), (With a y-axis
break from 1.8mm-3.5mm the evolution of the sample is better displayed.)

Figure 6.10 shows a measurement of Gelsil 5nm with single stress ramp, which has been

performed pevious to the measurements done for this work [30]. An analysis of these data

revealed a roughly defined power-law in the squared drop velocity distribution. Power-laws

found in stress cycling are much better defined, which suggests that cycle measurements

are indeed superior to single stress ramp measurements.
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Figure 6.10: Gelsil 5: Sample height (green), applied force (black) and squared drop veloc-
ities (blue) as functions of time (measured with Diamond DMA)

Measurements done with the DMA 7e yielded results that were not as good as expected.

Although the resolution of this device is superior to that of the Diamond DMA, the data

included a considerable amount of noise. It is likely that the crackling events perish in

the noise produced by the force motor. The DMA 7e is much more sensible to vibrations

than the Diamond DMA and might, therefore, be entirely inefficient when used for such

measurements. Figure 6.11 shows an example of the DMA 7e measurement.
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Figure 6.11: Gelsil 2.6: Sample height (green), applied force (black) and squared drop ve-
locities (blue) as functions of time (measured with DMA 7e)

In the following diagrams, namely figure 6.12 and figure 6.13, comparisons of the sample

deformation measured by Diamond DMA and DMA 7e are shown. Clearly the DMA 7e

measurements cannot be used for determining the crackling behavior of the selected sam-

ples, as the measured sample height does not consist of nice defined jerks as in the images

from Diamond DMA measurements. The squared drop velocity distribution of the DMA 7e

measurements did not show any power-law behavior, as expected due to the noise present

in the data.
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6.3 Gelsil

Figure 6.12: Gelsil 2.6: Changes of sample height under compression measured by Dia-
mond DMA, R=40mN/s (left) and DMA 7e, R=200mN/s (right)

Figure 6.13: Gelsil 5: Changes of sample height under compression measured by Diamond
DMA, R=40mN/s (left) and DMA 7e, R=60mN/s (right)
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7 Analysis of data

7.1 First evaluation method - ’searching for

power-laws in the wrong region’

When analyzing the data, it is most interesting to calculate the distributions for obtaining

the exponent of the maximum velocity distribution and the exponent of the maximum

velocity squared distribution. For these exponents either the absolute values of the veloc-

ities or the velocity squared values are used for calculation.

In case of a cycle measurement, each cycle can be examined individually (to compare

the exponents of each) or all of them can be analyzed collectively after removing the large

events due to the release of the force followed by increasing force at the start of the next

cycle.

For the following evaluation example, the data for all cycles of the first Shale measure-

ment was used. For all cycles all values of the absolute values of the velocity from 0 to

approx. 195.000s (which is at the end of all cycles) were considered. After cropping the

largest velocity values all positive velocity values were removed as well, because they cor-

respond to backjumps and relaxation of the sample and only the negative values were used.

Out of these, the absolute values were evaluated.

Then, using a ’peak analyzer’ in Origin the number, position and values of the peaks in

the spectrum were indentified with the Local Maximum method. To find local maxima, two

neighbouring points were included [25].
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7 Analysis of data

With the information of the peak positions (as absolute values of velocities) it is possi-

ble to plot a histogram1 and thence establish a distribution curve. An example of such a

histogram is depicted in figure 7.1 for the data of all cycles. The distribution of the peak

velocity values is visible there.

To construct a histogram, Origin divides the data set of the velocity values into several

sets (or intervals) of the same size and counts the number of values that happen to be in

same data set [24]. This method is referred to as ’binning’. Therefore, the histogram shows

the counts for each bin as function of the velocity values.

In order to get a smoother distribution, the ’bin size’ can be changed manually.

In case of power-law distributions, logarithmic binning is usually used, since it has the

advantage of reducing the number of zero and low count bins at larger velocity values [30].

Figure 7.1: Shale 1: Histogram - shows the distribution of the absolute values of peak ve-
locities, constant logarithmic bin width = 0.05 (Binning is done logarithmically)

1The histogram represents the frequency distribution of the absolute values of velocities in this case.
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7.1 First evaluation method - ’searching for power-laws in the wrong region’

For further evaluation of the histograms, ’bin centers’ (which are the velocity values at

the center of each bin) are utilized for counting the number of events within each bin.

With these values, a distribution curve is plotted, as can be seen in figure 7.1 and 7.2.

The corresponding power-law exponent is usually determined from a linear regression of a

corresponding log-log plot.

If the diagram is plotted linearly the critical exponent µ for the peak velocity distribution

can be evaluated using a power-law in the form of N(vm) ∝ v−µm
2, or in case of the maxi-

mum squared velocity distributionN(v2m) ∝ (v2m)−ε
′ . As the velocity squared values are as-

sumed to be proportional to the released energy E of the corresponding avalanches, and the

counts N are proportional to probability P, this formula can also be written as P (E) ∝ E−ε
′ .

In a log-log plot, this distribution corresponds to a straight line because taking the loga-

rithm of this formula yields ln[P (E)] ∝ ε′ln(E) + constant [6].

It is, however, important to note, that such a procedure bears some pitfalls. One of them is

that for logarithmic binning, the so determined power-law exponent is given by ε′+1 instead

of ε′. (This logarithmic binning issue is well explained in a work of White et al. [32].)

When beginning to conduct the experiments described in this thesis, the logarithmic binning

problem was certainly an issue. As the exponents were determined incorrectly, the power-

laws were searched for in the wrong region. Figure 7.2 shows an example of such an

incorrect fitting procedure.

2vm denotes the maximum velocity values, N the number of events with a given velocity, i.e. the counts.
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7 Analysis of data

Figure 7.2: Shale 1: Maximum velocity distribution

Using this flawed evaluation method, the critical exponent of the maximum velocity dis-

tribution, labelled µ, would yield for the first Shale measurement µ = 2.59 ± 0.15. It is

visible that this fit does not show the expected power-law behaviour - it is not well defined

over several orders of magnitude and is far too high for a maximum velocity distribution

according to tabular 2.1.

Additional data points occur at high velocity values that cannot be included in the fit.

When applying this flawed evaluation method to the other samples, similar incorrect results

are obtained.

In the beginning of the experiments, the poor results of the power-laws were attributed to

the DMA device, as the logarithmic binning issue had not been taken into account. There-

fore, additional experiments were carried out using the DMA 7e, a far more accurately

measuring device than the Diamond DMA. As a results, it appeared clear that little might

be gained from using the DMA 7e, and the distribution curves did not satisfy power-law be-
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7.2 New evaluation method - Logarithmic binning transformed to linear

haviors over several orders of magnitude, as indicated already in chapter 6.3. Therefore, the

evaluation routine had to be questioned, and logarithmic binning was discovered to require

a much more careful use.

7.2 New evaluation method - Logarithmic binning

transformed to linear

As the first evaluation method resulted in incorrect exponents, a different new routine for

analyzing the data was applied.

The logarithmic binning problem arises because of the logarithmic binning of the veloc-

ity and velocity squared values during the data evaluation to obtain a histogram.

Logarithmic binning is used for plotting the histograms, because in case of a linear binning,

many counts are at low values and the bin size cannot be set small enough to obtain enough

counts at high values to construct a histogram. (This is due to the power-law distribution

of the data.) This means that linear binnning leads to a large number of zero and low count

bins, especially at high values of vm or v2m.

In power-law distributions, logarithmic binning reduces this number of zero and low

count bins at larger x values, because the linear width of a bin increases linearly with x [32]:

wi = xi(e
b − 1) (7.1)

b being the constant logarithmic width: b = log(xi+1)− log(xi).3 Therefore, the number

of counts for each bin depends not only on x but also on the linear width of the bin and,

hence, the slope of the distribution curve is ε+ 1 instead of ε, which would be obtained for

linear binning [32].

3In this reference log is used for the natural logarithm. Therefore, when applying this formula to the loga-
rithm to the base 10 the exponential function in equation 7.1 has to be replaced by 10.
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7 Analysis of data

In order to deal with this problem the diagram is rescaled so that the slope of the dis-

tribution curve yields the exponent value of ε even when logarithmic binning is used. The

rescaling factor can be estimated with the identity:

P (log(x))dlog(x) = P (x)dx (7.2)

P (log(x))
dx

x · ln(10)
= P (x)dx (7.3)

P (log(x))

x · ln(10)
= P (x) (7.4)

As the probability P is proportional to the Counts N, this rescaling factor can be used

for rescaling the y-axis of the distribution curve obtained after drawing the histogram with

Origin. In order for the units to be correct, a factor with the unit of x has to be multiplied

on the left side of the equation.

In the following diagrams it has been accounted for this logarithmic binning error in defin-

ing N as [30]:

N(x) ≡ N̂(log10x)/x (7.5)

Another problem that occurred during the evaluation was the noise present in the data,

an issue which was initially not taken into account, as the researchers had not been aware

of the problem.

As an example, an older cycle measurement of Vycor (see measurement details in figure

6.7) is picked. With the wrong evaluation method, a distribution curve as depicted in figure

7.34 (logarithmic binning) was fitted with an exponent ε′ = 2.0 ± 0.01 using the formula

N(v2m) ∝ (v2m)−ε
′ . It can be seen in this diagram that everything on the left side of the peak

was attributed to noise and the power-law was evaluated only using a small region on the

right side of the peak.

4The label bin: 0.06 refers to the constant logarithmic bin width b of equation 7.1. In each of the following
figures of the distribution curves the constant logarithmic width b is denoted in an analogous manner.
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7.2 New evaluation method - Logarithmic binning transformed to linear

A closer inspection of the semi-logarithmic plot reveals quite a large tail at larger velocity

values. It turns out that this tail contains the actual power-law information of the squared

drop velocity distribution. Apart from the wrong fitting of the curve, the estimated slope of

the curve is actually ε+ 1 because logarithmic binning is used for drawing this distribution

curve. This would give a slope of about ε = 3 which is too high compared to exponents

estimated in previous work, e.g. [19], [23], [4]. Baró et al. estimated the exponent of the

distribution of avalanche energies for Vycor to be about ε ∼ 1.4 [4], as mentioned in chapter

3.2.
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7 Analysis of data

Figure 7.3: Vycor 7.5nm: Semi-logarithmic plot (upper figure) and log-log plot (lower
image) of the (incorrectly evaluated) distribution of maximum drop velocity
squared values; the inset shows a magnification of the fitted part in log-log scale
(stress cycling measurement)
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7.2 New evaluation method - Logarithmic binning transformed to linear

Figure 7.4 shows the diagram rescaled by dividing the Number of events N by the veloc-

ity squared values as shown in equation 7.5.

The rescaling of the y-axis reveals the behavior of the data hidden in the ’tail’ of the semi-

logarithmic plot, 7.3. This diagram demonstrates very clearly that for large velocity squared

values one obtains a rather nice power-law behavior with an exponent of 1.41 that is stable

for about three orders of magnitude.

In figure 7.4 a non-power-law region can be seen in the left part of the distribution curve.

On the one hand, this could be due to noise from the DMA or due to overlapping a number

of avalanches as a result of the poor time resolution of the DMA. On the other hand, it might

also arise from smaller cracks appearing out of large cracks or even from cracks coming

from the surface. This part at low velocity squared values do not yield a correct power-law

exponent. In the old evaluation of figure 7.3 actually the right part of the non-power-law

part of the distribution was fitted and, hence, the estimated exponent was incorrect and too

high. Another indication for a flaw in the previously estimated exponent is that it was only

valid in a narrow size range for merely about one order of magnitude.

Figure 7.4: Vycor 7.5nm cycle measurement: Log-log plot of the distribution of maximum
drop velocity squared values
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7 Analysis of data

In order to examine whether this assumption about the actual power-law data being hid-

den in the ’tail’ of the semi-logarithmic plot of the squared drop velocity distribution is

correct, the number of aftershocks following a mainshock is plotted, see figure 7.5. The

Omori’s plot is obtained using the time when consecutive jerk events occur. This is done

with a time bin, i.e. a histogram of the time of velocity squared peaks. For Omori’s plot,

the non-power-law part has to be removed from the data set, in order for the remaining

data (which actually show power-law behavior) to reveal an Omori’s law. For fitting the

modified Omori’s law for the number of aftershocks AS rAS is used:

rAS(t) = k · (t+ c)−p (7.6)

In this formula c denotes some constant, t=time and p the Omori’s exponent [30]. The

Omori’s exponent was estimated to be approximately about p = 0.6 for Vycor and Gelsil,

figure 7.5. (Usually the exponent p is in the range of 0.6-1.)

This exponent corresponds perfectly well with the Omori’s exponent of reference [4].
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7.2 New evaluation method - Logarithmic binning transformed to linear

Figure 7.5: Number of aftershocks per unit time rAS as a function of time distance to the
main shock calculated from different long time experiments of Vycor and Gel-
sils. The red fit corresponds to Omori’s law with c=0 and p = 0.6± 0.08. In the
inset a stress cycle experiment of Vycor is depicted.

If the non-power-law part in the squared drop velocity distribution is not cut sufficiently,

an equally distributed histogram in time instead of Omori’s behavior of aftershocks is ob-

tained. This was checked and evaluated for Gelsil 5nm, see figure 7.6. (This data set stems

from an older Gelsil 5nm measurement, see figure 6.10.) It becomes clear that the shape of

the time histogram changes considerably after cutting the non-power-law part and follows

an Omori’s law with exponent of about p = 0.6. Diagram 7.7 shows that the power-law

part follows a nice Omori’s law, as in the previous figure, and the inset shows only the

non-power-law part, which does not follow any Omori’s law.
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7 Analysis of data

Figure 7.6: Gelsil 5nm: Time histograms of the squared drop velocity events with and with-
out non-power-law part present

Figure 7.7: Gelsil 5nm: Time histogram of the squared drop velocity events without the
non-power-law part, the inset shows the time histogram of the non-power-law
part only
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7.2 New evaluation method - Logarithmic binning transformed to linear

Figure 7.8 depicts the distribution curve for this Gelsil measurement done with the im-

proved evaluation method. This curve yields a critical exponent of about 1.40 which is in

comparatively good agreement with reference [23], see 3.3, they reported for their Gelsil 5

nm samples exponent values of 1.35± 0.03 and 1.37± 0.03.

Figure 7.8: Gelsil 5nm: Log-log plot of the distribution of maximum drop velocity squared
values.

Another measurement yielding a very good exponent value is an old Gelsil 2.6nm. The

according distribution curve is depicted in figure 7.9 and is fitted with a power-law ε′ ≈

1.41. The inset reveals that this Gelsil sample was studied in a cycle measurement.
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7 Analysis of data

Figure 7.9: Gelsil 2.6: Log-log plot of the distribution of maximum drop velocity squared
values, the inset shows the sample evolution, force and squared drop velocities
during the measurement

These comparisons between the measurements carried out by DMA and the previously

performed measurements with acoustic emission suggest a better agreement in critical ex-

ponents and the improved evaluation method appears to work rather accurately.

In the following, the results of applying this improved evaluation method to the mea-

surements performed during the work is shown. For the fourth Shale measurement the

distribution curve, in figure 7.10, can be fitted to obtain a power-law behaviour valid over

several orders of magnitude.

74



7.2 New evaluation method - Logarithmic binning transformed to linear

Figure 7.10: Shale 4: Maximum velocity squared distribution

The distribution curve for the first experiment on Shale, which was a short cycle mea-

surement, is visible in figure 7.11. (Velocity squared values of all cycles were used for this

distribution curve.) It shows a rather well defined power-law with exponent of 1.25, which

is slightly higher than the exponent evaluated for the previous non-cycle measurement.

Again the cycle measurement yields a far better defined power-law as the one stress ramp

measurement. The individual cycles of this Shale measurement yield smaller exponent val-

ues when compared to considering the four cycles altogether: for cycle 1 ε′ = 1.14± 0.05,

for cycle 2 ε′ = 1.20 ± 0.05 and for cycle 3 ε′ = 1.20 ± 0.05. The power-laws for each

individual cycle are not as well-defined as for all cycles together.

For the squared drop velocity exponent of Shale, a value similar to Vycor was expected,

however, as no references for comparison exist, it might be argued that Shale behaves

slightly differently than Gelsil and Vycor, as it has a different porous structure and is not a

synthetic but rather a natural material.
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7 Analysis of data

Figure 7.11: Shale 1: Maximum velocity squared distribution

Figure 7.12 shows the squared drop velocity distribution for a cycle measurement (see

figure 6.8) of Gelsil 2.6nm. (Data points of all cycles were used to calculate this distribution

curve.) A power-law is rather well defined, stable over several orders of magnitude with

estimated exponent of about 1.58.
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7.2 New evaluation method - Logarithmic binning transformed to linear

Figure 7.12: Gelsil 2.6nm: Maximum velocity squared distribution

As already suggested, the cycle measurements yielded the best estimates for exponent

values and most stable and well defined power-laws. An example of a distribution curve

of a one stress ramp measurement can be examined in figure 7.13. A power-law at high

velocity squared values is more or less visible but not nicely defined.
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7 Analysis of data

Figure 7.13: Vycor 7.5nm: Maximum velocity squared distribution

Regarding the maximum velocity distribution, three examples are shown in figure 7.14,

figure 7.15 and figure 7.16 below. The exponent values are slightly lower than expected

from mean-field-theory, see section 2.3, expect for the Gelsil 2.6 measurement.
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7.2 New evaluation method - Logarithmic binning transformed to linear

Figure 7.14: Shale 1: Maximum velocity distribution (short stress cycling measurement)

Figure 7.15: Vycor 7.5nm: Maximum velocity distribution (stress cycling measurement)
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7 Analysis of data

Figure 7.16: Gelsil 2.6nm: Maximum velocity distribution (stress cycling measurement)

Altogether, it can be concluded that the results of the DMA measurements are in good

agreement with the AE experiments. Acoustic emission experiments, on the one hand, yield

an energy exponent of about ε = 1.39 (e.g. [4]), which is consistent with the mean-field

value of ε = 1.33 (see tabular 2.1). Concerning the DMA measurements, on the other hand,

the exponent of the squared drop velocity distribution N(v2m) is estimated to be not too far

from ε′ = 1.5 (for Gelsil and Vycor) which corresponds rather well with the mean-field

value of ε′ = 1.5 (see tabular 2.1).
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8 Acoustic emission data for Vycor

7.5nm

In a study of Nataf et al. [23] not only the acoustic emission activities were measured, but

also the jerky changes of samples height, using a laser extensometer with a nominal reso-

lution of 100nm. The squared drop velocities (calculated from the sample deformation) as

function of time were reported to correspond rather well with the measured acoustic emis-

sion activities, as shown in figure 3.6. In order to learn more about the correspondence

between the AE activities and the calculated squared drop velocities, an example of an AE

measurement was analyzed.

An original data set from a previous study of Vycor done by Baró et al. [4] was requested

in order to compare the AE activities to the squared drop velocities. The data are from a

Vycor experiment performed under uniaxial compression with simultaneously measuring

the evolution of the sample height and the acoustic emission activities.

The time resolution of AE experiments is some orders of magnitude better than DMA

experiments, as usually AE is done in the range of MHz. The AE data of Vycor were cu-

mulated every 10ms.

Figure 8.1 suggests a good correspondence between the acoustic emission activities and

the squared drop velocities. For further calculation of the energy distribution, energy signals

below 0.5aJ have been discarded to reduce noise.
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8 Acoustic emission data for Vycor 7.5nm

Figure 8.1: AE Vycor: Evolution of the sample height (green) and acoustic emission activ-
ities (blue) - upper figure - and accordingly square drop velocities (blue) - lower
figure - as functions of time
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Figure 8.2 represents how the energy distribution of the acoustic emission signals can

be fitted with a power-law of exponent 1.37. This power-law is stable over more than six

orders of magnitude and shows that even for time cumulated energy values the exponent is

rather stable and close to the expected value of 1.39, as evaluated by Baró et al., compare

figure 3.4. This distribution curve is obtained via logarithmic binning of the cumulated en-

ergy values, after discarding signals below 0.5aJ. (Besides, the correct power-law behavior

indicates that the improved evaluation method considering the logarithmic binning problem

and the compensation of this error by rescaling the y-axis is indeed correct.)

Figure 8.2: AE Vycor: Energy distribution of acoustic emission events (with the improved
evaluation method)

The squared drop velocity distribution as shown in figure 8.3, is calculated from the

measured sample height during their acoustic emission experiment. For this distribution

curve the local maximum method was not used to find local velocity squared maxima,

but a histogram is plotted with logarithmized velocity squared values. For drawing the

distribution curve, again, the logarithmic binning error is taken into account.
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8 Acoustic emission data for Vycor 7.5nm

The distribution curve appears to have a flat kink and fitting the curve as a whole would

lead to a rather low exponent of about 1. Only considering a part of the curve at high ve-

locity squared values, a power-law with exponent 1.36 can be fitted. This exponent value

corresponds very nicely with the estimated exponent of the acoustic emission energy distri-

bution, figure 8.2. Apparently, measuring the sample height with a laser extensometer with

a resolution of about 100nm also yields quite well results.

Figure 8.3: AE Vycor: Maximum squared drop velocity distribution (with the improved
evaluation method)
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9 Conclusion

This thesis presents an analysis of crackling behavior of nanoporous materials in slow uni-

axial compression experiments with the help of a recently developed measurement tech-

nique [30]. This new method includes measuring the evolution of the sample height and

correlating the changes of height under compression to the elastic strain energy released

upon sample deformation.

The measurements were carried out with very low compression rates in the range of

0.1mN/s− 10mN/s with a DMA. The sample deformed due to the applied external stress

in a sequence of jerky events and avalanches. These result from breaking of nanometer-

scaled pores (Vycor: 7.5nm, Gelsil: 2.6nm and 5nm). With the statistical information

about the velocities corresponding to the jerky changes in sample height, the statistics of

these crackling events were investigated. In doing so, distribution curves were calculated as

the maximum drop velocity squared distribution, and their scaling behavior was analysed.

It was discovered that critical exponents of distributions, like the maximum squared drop

velocities D(v2m) ∼ (v2m)−ε
′ and the maximum drop velocities D(vm) ∼ (vm)−µ, hold

for more than three orders of magnitude and are even in good agreement with the ex-

pected exponent values estimated by mean-field-theory ( [26], [23]). Additionally, the expo-

nents showed good correspondence with the exponents from acoustic emission experiments

( [27], [4]), although acoustic emission is a much more mature and precise measurement

technique.

The main drawback of the DMA method is its poor time resolution of about 1s, however,

the DMA is able to apply the force uniformly with a resolution of 2mN and the changes in

sample height can be measured rather precise with an accuracy of about 10nm.
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9 Conclusion

For these experiments, much smaller samples than those used in acoustic emission ex-

periments had to be prepared, because this specific DMA (Diamond DMA, PerkinElmer)

used for measurements during this work is restricted to applying a force of 10N .

For a more precise and comprehensive investigation using the DMA method, it is possi-

ble to switch to another DMA device, which is able to apply a larger stress and to increase

the sampling rate. The samples have to be prepared as small as possible so that the available

applied stress is high enough for macroscopic failure to be achievable in the porous samples.

Nevertheless, once these drawbacks of the DMA method can be eliminated, it presents

a new possibility to analyze failure dynamics in nanoporous materials. Therefore, it might

eventually become a sufficient alternative tool to acoustic emission experiments, especially

when it comes to investigating crackling behavior under different conditions, for example

at high temperatures.

86



Bibliography

[1] P Bak. Self-organized criticality. Physica A: Statistical Mechanics and its Applica-

tions, 163(1):403-409, 1990.

[2] P. Bak. How nature works: the science of self-organized criticality. Springer Verlag,

New York, 1996.

[3] P Bak, C Tang, and K Wiesenfeld. Self-organized criticality. Physical Review A

38(1):364-374, 1988.

[4] J. Baro, A Corral, X. Illa, A. Planes, E. K. H. Salje, W. Schranz, D. E. Soto-Parra,

and E. Vives. Statistical similarity between the compression of a porous material and

earthquakes. Physical Review Letters, 110(8):088702, 2013.

[5] P. M. Chaikin and T. C. Lubensky. Principles of condensed matter physics. Cambridge

University Press, Great Britain, 1995.

[6] A. Clauset, R. Shalizi, and M. E. J. Newman. Power-law distributions in empirical

data. SIAM Review, 51(4):661-703, 2009.

[7] T. H. Elmer. Engineered Materials Handbook 4, Ceramic and Glasses. ASM Interna-

tional, Ohio, USA, 1992.

[8] M. E. Fisher. The theory of equilibrium critical phenomena. Reports on Progress in

Physics 30(2):615-730, 1967.

[9] A. Ghaffar. Confinement-Induced Structural Changes of Alkali Metals in Nanoporous

Systems. University of Vienna, Vienna, 2014.

[10] J.T. Greensmith. Petrology of the sedimentary rocks. Unwin Hyman Ltd, London,

UK, 1989.

87



Bibliography

[11] S. Hergarten. Self-Organized Criticality in Earth Systems. Springer Verlag, Berlin,

Heidelberg, 2002.

[12] M. Huang, L. Jiang, P. Liaw, C. R. Brooks, R. Seeley, and D. L. Klarstrom. Using

acoustic emission in fatigue and fracture materials research. http://www.tms.

org/pubs/journals/JOM/9811/Huang/Huang-9811.html accessed:

2015-11-26.

[13] SII NanoTechnology Inc. Pyris Diamond DMA - Dynamic Mechanical Analyzer (In-

strument Manual). SII NanoTechnology Inc., 2003, Document no. 0503-511-088E.

[14] R. L. Ingram. Fissility of mudrocks. Bulletin of the geological society of america,

1963; Vol.64; PP. 869-878.

[15] H. Kanamori and E. E. Brodsky. The physics of earthquakes. Reports on Progress in

Physics 67:1429-1496, 2004.

[16] J. Koppensteiner. The glass transition in nanoscaled confinement probed by dynamic

mechanical spectroscopy. University of vienna, Vienna, 2009.

[17] J. Koppensteiner, Schranz W., and M. A. Carpenter. Revealing the pure confinement

effect in glass-forming liquids by dynamic mechanical analysis. Physical Review B

81, 024202, 2010.

[18] G. Krey. Phasenuebergaenge und kritische Phaenomene. Vieweg, Braunschweig,

Wiesbaden, 1980.

[19] M. LeBlanc, L. Angheluta, K. Dahmen, and N. Goldenfeld. Universal fluctuations

and extreme statistics of avalanches near the depinning transition. Physical Review E,

87(2):022126, 2013.

[20] Buehler Ltd. IsoMet Low Speed Saw - Precision sectioning saw. Buehler, Illinois,

USA, 2005. 25M0305 FN00874 Rev. 2.

[21] Buehler Ltd. IsoMet Low Speed Saw - Precision sectioning saw. Buehler, Illinois,

USA, 2013. FN00874 1013.

[22] K. P. Menhard. Dynamical Mechanical Analysis - A Practical Introduction. CRC

Press LLC, Boca Raton, Florida, 1999.

88

http://www.tms.org/pubs/journals/JOM/9811/Huang/Huang-9811.html
http://www.tms.org/pubs/journals/JOM/9811/Huang/Huang-9811.html


Bibliography

[23] G. F. Nataf, P. O. Castillo-Villa, J. Baro, X. Illa, E. Vives, A. Planes, and Ek. K. H.

Salje. Avalanches in compressed porous si02-based materials. Physical Review E,

90(2):022405, 2014.

[24] Origin. Histogram. http://www.originlab.com/doc/Origin-Help/

Create-Histogram, accessed: 2015-11-03.

[25] Origin. Peak analyzer. http://www.originlab.com/doc/Origin-Help/

PeakAnalyzer-FindPeaks, accessed: 2015-11-02.

[26] E. K. H. Salje and K.A. Dahmen. Crackling noise in disordered materials. Annual

Review Condensed Matter Physics 5:233-54, 2014.

[27] E. K. H. Salje, D. E. Soto-Parra, A. Planes, E. Vives, M. Reinecker, and W. Schranz.

Failure mechanism in porous materials under compression: crackling noise in meso-

porous sio2. Philosophical Magazine Letters, 91(8):554-560, 2011.

[28] J. P. Sethna. Entropy, Order Parameters, and Complexity. Clarendon Press, Oxford,

UK, 2011.

[29] J. P. Sethna, K. A. Dahmen, and C. R. Myers. Crackling noise. Nature,

410(6825):242-250, 2001.

[30] V. Soprunyuk, S. Puchberger, W. Schranz, A. Tröster, E. Vives, and E. K. H. Salje.

Towards a quantitative analysis of crackling noise by strain drop measurements.

Springerbook: Avalanches in functional materials and geophysics; E. Salje, A. Sax-

ena, A. Planes; submitted, 2016.

[31] T. Utsu, Y. Ogata, and R. S. Matsu’ura. The centenary of the omori formula for a

decay law of aftershock activity. Journal of physics of the earth, 43(1):1-33, 1995.

[32] E. P. White, B. J. Enquist, and J. L. Green. On estimating the exponent of power-law

frequency distributions. Ecology, 89(4):905-12, 2008.

89

http://www.originlab.com/doc/Origin-Help/Create-Histogram
http://www.originlab.com/doc/Origin-Help/Create-Histogram
http://www.originlab.com/doc/Origin-Help/PeakAnalyzer-FindPeaks,
http://www.originlab.com/doc/Origin-Help/PeakAnalyzer-FindPeaks,




List of Figures

2.1 Histogram of the number of earthquakes in 1995 as a function of their mag-

nitude [28] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1 AE activity and deformation (at a stress of 1.6kPa/s) of the sample as func-

tion of time, inset: low AE activity in the initial part of the experiment [27] . 23

3.2 Energy distribution of the acoustic emission signals plotted in a log-log-

plot. The four curves correspond to four different measurements using dif-

ferent compression rates. The power law exponent of −1.39 is represented

by the dashed line [27]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3 AE avalanche energy and change in sample height for a compression exper-

iment with compression rate of 1.6kPa/s as functions of time [4]. . . . . . 25

3.4 Avalanche energy distribution of the experiment with a compression rate of

1.6kPa/s and during 7 different subperiods. The straight line represents a

power-law with exponent of 1.39 [4]. . . . . . . . . . . . . . . . . . . . . . 25

3.5 Number of aftershocks per unit of time as function of time difference to

the mainshock. The dashed line represents Omori’s law with exponent of

−0.75. The legend in each panel shows how the mainshocks are defined [4]. 26

3.6 Gelsil 2.6 - (a) Sample height, (b) square of its time derivative, (c) AE

activity [23] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.7 Log-log plot of energy distribution of AE events: from top to bottom curves

correspond to Vycor, Gelsil 5nm, Gelsil 2.6nm, Light-gray sandstone, red

sandstone and yellow sandstone, respectivelty. All curves, except for Vycor,

are shifted for clarity [23] . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.1 Fixture of the sample in a parallel plate setup in the Perkin Elmer Diamond

DMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2 Dimensions of the sample in the parallel plate fixture . . . . . . . . . . . . 34

91



List of Figures

5.1 Shale stones used for sample preparation . . . . . . . . . . . . . . . . . . . 38

5.2 Gelsil used for sample preparation [16] . . . . . . . . . . . . . . . . . . . . 39

5.3 Comparison between the porous mesostructures of Gelsil (left) and Vycor

(right) [16] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.4 Geometry of a typical compression experiment of a porous material using a

DMA [30] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.5 Tools and utilities used for sample preparation . . . . . . . . . . . . . . . . 42

6.1 Shale 1: Sample height (green), applied force (black) and squared drop

velocities (blue) as functions of time (measured with Diamond DMA) . . . 46

6.2 Sample height as function of time for the first cycle from measurement time

of 0 to 58000s, inset: magnification of a selected area of the plotted curve

(measured with Diamond DMA) . . . . . . . . . . . . . . . . . . . . . . . 47

6.3 Shale 2: Sample height (green), applied force (black) and squared drop

velocities (blue) as functions of time (measured with Diamond DMA) . . . 48

6.4 Shale 3: Sample height (green), applied force (black) and squared drop

velocities (blue) as functions of time (measured with Diamond DMA) . . . 49

6.5 Shale 4: Sample height (green), applied force (black) and squared drop

velocities (blue) as functions of time (measured with Diamond DMA) . . . 50

6.6 Vycor 7.5nm: Sample height (green), applied force (black) and squared

drop velocity (blue) as functions of time (measured with Diamond DMA) . 51

6.7 Vycor 7.5nm: Sample height (green), applied force (black) and squared

drop velocity (blue) as functions of time (measured with Diamond DMA),

(With a y-axis break from 0.12mm-0.6mm the evolution of the sample is

better displayed.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.8 Gelsil 2.6: Sample height (green), applied force (black) and squared drop

velocity (blue) as functions of time (measured with Diamond DMA) . . . . 55

6.9 Gelsil 5: Sample height (green), applied force (black) and squared drop ve-

locities (blue) as functions of time (measured with Diamond DMA), (With

a y-axis break from 1.8mm-3.5mm the evolution of the sample is better

displayed.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.10 Gelsil 5: Sample height (green), applied force (black) and squared drop

velocities (blue) as functions of time (measured with Diamond DMA) . . . 57

92



List of Figures

6.11 Gelsil 2.6: Sample height (green), applied force (black) and squared drop

velocities (blue) as functions of time (measured with DMA 7e) . . . . . . . 58

6.12 Gelsil 2.6: Changes of sample height under compression measured by Dia-

mond DMA, R=40mN/s (left) and DMA 7e, R=200mN/s (right) . . . . . . 59

6.13 Gelsil 5: Changes of sample height under compression measured by Dia-

mond DMA, R=40mN/s (left) and DMA 7e, R=60mN/s (right) . . . . . . . 59

7.1 Shale 1: Histogram - shows the distribution of the absolute values of peak

velocities, constant logarithmic bin width = 0.05 (Binning is done logarith-

mically) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

7.2 Shale 1: Maximum velocity distribution . . . . . . . . . . . . . . . . . . . 64

7.3 Vycor 7.5nm: Semi-logarithmic plot (upper figure) and log-log plot (lower

image) of the (incorrectly evaluated) distribution of maximum drop velocity

squared values; the inset shows a magnification of the fitted part in log-log

scale (stress cycling measurement) . . . . . . . . . . . . . . . . . . . . . . 68

7.4 Vycor 7.5nm cycle measurement: Log-log plot of the distribution of maxi-

mum drop velocity squared values . . . . . . . . . . . . . . . . . . . . . . 69

7.5 Number of aftershocks per unit time rAS as a function of time distance to the

main shock calculated from different long time experiments of Vycor and

Gelsils. The red fit corresponds to Omori’s law with c=0 and p = 0.6±0.08.

In the inset a stress cycle experiment of Vycor is depicted. . . . . . . . . . 71

7.6 Gelsil 5nm: Time histograms of the squared drop velocity events with and

without non-power-law part present . . . . . . . . . . . . . . . . . . . . . 72

7.7 Gelsil 5nm: Time histogram of the squared drop velocity events without the

non-power-law part, the inset shows the time histogram of the non-power-

law part only . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

7.8 Gelsil 5nm: Log-log plot of the distribution of maximum drop velocity

squared values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

7.9 Gelsil 2.6: Log-log plot of the distribution of maximum drop velocity squared

values, the inset shows the sample evolution, force and squared drop veloc-

ities during the measurement . . . . . . . . . . . . . . . . . . . . . . . . . 74

7.10 Shale 4: Maximum velocity squared distribution . . . . . . . . . . . . . . . 75

7.11 Shale 1: Maximum velocity squared distribution . . . . . . . . . . . . . . . 76

93



List of Figures

7.12 Gelsil 2.6nm: Maximum velocity squared distribution . . . . . . . . . . . . 77

7.13 Vycor 7.5nm: Maximum velocity squared distribution . . . . . . . . . . . . 78

7.14 Shale 1: Maximum velocity distribution (short stress cycling measurement) 79

7.15 Vycor 7.5nm: Maximum velocity distribution (stress cycling measurement) 79

7.16 Gelsil 2.6nm: Maximum velocity distribution (stress cycling measurement) 80

8.1 AE Vycor: Evolution of the sample height (green) and acoustic emission ac-

tivities (blue) - upper figure - and accordingly square drop velocities (blue)

- lower figure - as functions of time . . . . . . . . . . . . . . . . . . . . . . 82

8.2 AE Vycor: Energy distribution of acoustic emission events (with the im-

proved evaluation method) . . . . . . . . . . . . . . . . . . . . . . . . . . 83

8.3 AE Vycor: Maximum squared drop velocity distribution (with the improved

evaluation method) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

94



List of Tables

2.1 Selected exponent values predicted by MFT [26] . . . . . . . . . . . . . . . 18

3.1 Critical Exponents fitted for the different Gelsil samples [23] and for Vycor [4] 29

5.1 Characteristics of the studied Gelsil and Vycor samples according to refs

[9], [17] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6.1 List of Shale samples including their heights and cross sections . . . . . . . 44

6.2 Measurement settings for the Shale samples of tabular 6.1 . . . . . . . . . . 44

6.3 Vycor sample including its height and cross section . . . . . . . . . . . . . 50

6.4 Measurement settings for the Vycor sample of tabular 6.3 . . . . . . . . . . 50

6.5 List of Gelsil samples including their void size, height and cross section . . 53

6.6 Measurement settings for the Gelsil samples of tabular 6.5 . . . . . . . . . 54

95





Abstract

This master thesis investigates the concept of crackling in nanoporous materials (especially

Gelsil and Vycor, both Si02-based synthetic materials).

In this case, crackling refers to a jerky response of a system to changing external conditions

like a driving force. The disturbance of the system through external forces results in impul-

sive events (avalanches) of a variety of sizes. Crackling events can occur in different sys-

tems ranging from crumpling pieces of paper to earthquakes and it has been discovered that

many of those systems exhibiting crackling events show similar power-law statistics [26].

In the case of porous materials crackling can be observed when the material is compressed

and avalanches occur due to the correlated nanometer-scaled pore breaking. Recent stud-

ies (e.g. [4], [27], [23]) on selected porous materials have shown that this behavior can be

analyzed by applying a compressive force on the sample and simultaneously measuring the

acoustic emission (AE).

The main task during the work on this thesis was to analyse and introduce a new method

for studying crackling in porous materials [30]. This new method included experiments

performed with a Dynamic mechanical analyzer (DMA), which was responsible for both

applying a compressive force rather slowly in rates of 0.1mN/s− 10mN/s and measuring

the sample deformation. It was of utmost importance to find out whether similar power-law

behaviors of the avalanche statistics as in AE experiments can be obtained by measuring

the jerky evolution of the sample height.

It was discovered that critical exponents of such avalanche distributions hold for more than

three orders of magnitude and are even in good agreement with the expected exponent

values estimated by mean-field-theory. Additionally, the exponents showed good corre-

spondence with the exponents from AE experiments.
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Zusammenfassung

Diese Masterarbeit untersucht das Konzept von ’Crackling’ in nanoporösen Materialien (im

Speziellen Gelsil und Vycor, beides Si02-basierte synthetische Materialien).

’Crackling’ bezieht sich hier auf eine ruckartige Antwort eines Systems auf eine veränder-

liche äußere Bedingung, wie eine antreibende Kraft. Die Störung des Systems durch die

äußere Kraft resultiert in ruckartigen Ereignissen (Lawinen) in einer Vielzahl von Größen.

Solche ’Crackling’-Ereignisse können in verschiedenen Systemen auftreten, vom Zerknüllen

von Papierstücken bis hin zu Erdbeben. Aktuelle Arbeiten zeigen, dass vielen dieser Sys-

teme, in denen solch ruckartige Ereignisse auftauchen, ähnliche Potenzgesetze zugrunde

liegen [26].

Im Fall von porösen Materialien kann ’Crackling’ beobachtet werden, wenn das Material

zusammengepresst wird und Lawinen, durch korreliertes Brechen von nanometergroßen

Poren, auftreten. Dadurch verformt sich die Probe nicht gleichmäßig sondern in kleinen

Sprüngen. Neue Studien (z.B. [4], [27], [23]) an porösen Materialien haben gezeigt, dass

dieses Verhalten analysiert werden kann, indem auf eine Probe eine Druckspannung aus-

geübt wird und gleichzeitig die Schallemission gemessen wird.

Die Hauptaufgabe während dieser Arbeit war es eine neue Methode für die Untersuchung

von ’Crackling’ in porösen Materialien zu analysieren [30]. Diese neue Methode beinhal-

tet Experimente mit einem dynamischen mechanischen Analysator, mit welchem sowohl

die Druckkraft auf die Probe langsam in Raten von etwa 0.1mN/s − 10mN/s aufge-

bracht wurde, als auch die Veränderungen der Probenhöhe gemessen wurden. Tatsächlich

wurden ähnliche Potenzgesetze der ’Crackling’-Ereignisse wie in Schallemissionsexper-

imenten gefunden, deren Exponenten auch mit den berechneten Werten der Molekular-

feldtheorie übereinstimmen.
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