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Abstract English

High precision pointing information is a vital input for the attitude control of space telescopes.
This pointing information can be extracted from images by applying centroiding algorithms.
Such images may be obtained by dedicated fine guidance sensors or by the science instrument
itself. This thesis includes an investigation for the selection of centroiding algorithms for two
space missions, the Exoplanet Characterisation Observatory (EChO) and the CHaracterising
ExOPlanets Satellite (CHEOPS). The tool StarSim was developed to test various centroiding
algorithms based on unique mission requirements. It allows to simulate telescopic observations
of stars based on the specific instrumental features of the individual space missions. Since
noise sources in astronomical images represent random processes, a statistical evaluation of the
centroiding performance has been carried out with Monte-Carlo analyses that included tens of
thousands of simulated images.
Eight centroiding algorithms have been analysed with respect to their applicability for the fine
guidance of space telescopes. These algorithms have been categorised into centre of gravity
algorithms, correlation-based centroiding and direct fitting strategies. An analytical description,
implementations and error estimation equations have been provided for each algorithm. The
scope of applicability has been tested under various circumstances, such as in the observation
of faint stars with high noise in the images. Furthermore, the influence of cosmic ray hits on the
centroiding performance has been tested with models that were derived from real observations.
For the EChO mission, fine pointing errors below ten milliarcseconds are required to maintain
the necessary photometric stability during observations. Only two out of eight centroiding
methods have met this stringent requirement in simulated worst-case scenarios. During the
CHEOPS mission, the satellite will temporarily experience an increased rate of cosmic ray hits
during some phase of its low-Earth orbit, due to the inner Van Allen radiation belt. For this case,
three centroiding techniques have been presented that are capable of providing pointing errors
below one arcsecond. In general, this thesis serves as a compendium for the implementation of
different kinds of centroiding algorithms in astronomical space missions.
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Abstract German

Für die Ausrichtung und Nachführung von Weltraumteleskopen sind meist hochpräzise Posi-
tionsangaben des Zielobjekts notwendig. Diese Positionsinformationen können aus Bildern
durch die Anwendung von Zentrierungsalgorithmen extrahiert werden. Oftmals werden zur
Gewinnung der Bilder optische Sensoren eingesetzt, welche speziell für die Feinausrichtung des
Teleskops entwickelt wurden. Im Rahmen dieser Masterarbeit wurden für die zwei Weltraum-
missionen EChO (Exoplanet Characterisation Observatory) und CHEOPS (CHaracterising Ex-
OPlanets Satellite) Untersuchungen für die Auswahl von Zentrierungsalgorithmen zur Feinaus-
richtung durchgeführt. Die Auswahl erfolgte hierbei anhand von simulierten Beobachtungen,
in welchen auf die spezifischen Missionsanforderungen eingegangen wurde. Hierfür wurde der
Datensimulator StarSim entwickelt. Dieser ermöglicht es Teleskopbeobachtungen von Sternen,
unter Berücksichtigung spezieller Teleskopeigenschaften, zu simulieren. Da Rauschquellen
in astronomischen Bildern durch Zufallsprozesse abbildbar sind, erfolgte die Auswertung der
Zentrierungsalgorithmen mittels statistischer Methoden. Insbesondere wurden hierfür Monte-
Carlo-Simulationen durchgeführt, in welchen zehntausende, simulierte Bilder ausgewertet wur-
den.
Acht Zentrierungsalgorithmen wurden auf ihre Anwendbarkeit in der Feinausrichtung von Wel-
traumteleskopen geprüft. Es erfolgte eine Kategorisierung der Methoden in die Gruppen Mas-
senschwerpunkt-Algorithmen, Korrelationsalgorithmen und der direkte Fit von mathematis-
chen Funktionen. Es wurde pro Algorithmus eine analytische Beschreibung inklusive Möglich-
keiten zur Fehlerabschätzung angegeben. Für jede Methode wurden Implementierungen be-
reitgestellt und ihre Anwendbarkeit wurde unter verschiedensten Bedingungen getestet. Der
Einfluss von hochenergetischer, kosmischer Strahlung auf die Zentrierungsgenauigkeit wurde
mit realistischen Modellen untersucht, wobei die Modelle von echten Beobachtungen abgeleitet
wurden.
Für EChO werden Positionsangaben mit einer Genauigkeit von mindestens zehn Millibogen-
sekunden benötigt, um die photometrische Stabilität während der Beobachtungen aufrechter-
halten zu können. Nur zwei von acht Zentrierungsalgorithmen waren imstande diese Bedin-
gung in Extremfällen zu erfüllen. Aufgrund des inneren Van-Allen-Gürtels, erfährt CHEOPS
auf seiner niedrigen Umlaufbahn um die Erde, zwischenzeitlich einen erhöhten Anteil an kos-
mischer Strahlung. Unter diesen Bedingungen war es nur noch drei Zentrierungsmethoden
möglich, Positionen mit einem Fehler unter einer Bogensekunde zu liefern. Im Allgemeinen di-
ent diese Arbeit als Handbuch zur Implementierung verschiedenster Zentrierungsalgorithmen,
welche für die Feinausrichtung von Weltraumteleskopen einsetzbar sind.

7



Contents

Acknowledgements

Firstly, I want to thank my parents for all the support throughout my entire life. I would defi-
nitely not be able to live it in such a good way without the two of you.
I would like to express my sincere gratitude to my thesis advisor Franz Kerschbaum for giving
me the opportunity to work on this exciting project. I am very glad about all the things that I
learnt as a part of such an excellent work group. A special thanks goes to Roland Ottensamer
for all the discussions and helpful advices regarding my thesis. I will never forget the day when
he was worried about my code, because I was wasting a single digital bit. On that day, I finally
realised the degree of cautiousness that is needed to programme a spacecraft.
I also want to thank my fellow students Christoph, Markus and Philipp for all the fun we had on
facing challenges together. In particular thanks to Philipp for proofreading my thesis on short
notice. Last but not least, thanks to my study abroad friends Sandra, Juho, Emily, Marielle,
Eline, Laura, Sanjay, Tim and Zach for all the joy moments that we shared in New Zealand.

Parts of this work were supported by the ESA PRODEX (PROgramme de Développement
d’Expériences scientifiques) contract C4000112123 granted to the University of Vienna for the
CHEOPS Instrument Flight Software (PI. Franz Kerschbaum).

8



1. Introduction

Space telescopes are essential instruments that allow the gathering of scientific data in wave-
length bands which are absorbed by Earth’s atmosphere. Such spacecraft often need to operate
entirely autonomous for hours or days without communication with ground stations. After the
initial target identification, some telescopes must be stabilised for a long period of time, par-
ticularly in precise photometric missions. In general, an Attitude and Orbit Control System
(AOCS), which controls different kinds of actuators (e.g reaction wheels, thrusters, magnetor-
quers), is utilised to manoeuvre the vehicle during its mission. However, before changing the
orientation of a spacecraft, the current attitude must be known. The attitude estimation of space
telescopes can be obtained by star trackers (Liebe, 1992; Padgett & Kreutz-Delgado, 1997). In
addition to star trackers, space telescopes may perform fine guidance using optical sensors that
receive light from the optics of the payload instrument. This allows to compensate for the small
scaled thermoelastic deformations of the telescope in order to increase the pointing stability.
Fine guiding can be carried out using dedicated Fine Guidance Sensors (FGSs) which receive
only a fraction of the total incident light, or using the science instrument itself. For example,
three FGSs are used on the Hubble Space Telescope and additionally one of them can function
as a scientific instrument that performs astrometric measurements (Nelan et al., 1998). The fine
guidance task requires centroid estimations that reveal the target’s position on the sensor with
high precision. In the context of this thesis, I analysed and tested such centroiding algorithms
in particular for their application in fine guiding.
For most telescope observations, regardless of whether in space or on the ground, guiding is a
crucial task to obtain sharp images. In particular, for longer exposures, the telescope must be re-
aligned consistently to hold the target position fixed in the field of view. Typically, the position
of a guide star is frequently evaluated during the entire observation. One particular application
of centroiding is in ground-based observations with adaptive optics, which are used to com-
pensate for the effect of atmospheric distortions. The first step in this technique is wavefront
sensing using Shack Hartmann sensors, consisting of a two-dimensional lenslet array which
creates a spot pattern on an optical sensor. To be able to draw inferences from the spot patterns
about the incident wavefront, image centroiding must be carried out to accurately determine the
position of the spots (Thomas, 2004; Poyneer et al., 2003; Vyas et al., 2009a; Nicolle et al.,
2004; Baker & Moallem, 2007; Uhm et al., 2008). Such ground-based techniques can also be
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1. Introduction

applied to spacecraft if they meet the stringent requirement of real-time computations on space
hardware.
Within the scope of this thesis, an investigation for the selection of centroiding algorithms for
fine guiding was carried out for two space missions, the Exoplanet Characterisation Observatory
(EChO) and the CHaracterising ExOPlanets Satellite (CHEOPS). During the progress of my re-
search, another mission than EChO was selected for development by the Science Programme
Committee of the European Space Agency in February 2014, but EChO now competes for M4
under the name ARIEL. Since each space mission is unique in terms of science goals and in-
strumentation, the centroiding methods must be selected with respect to the individual mission
requirements. The biggest obstacle in implementing fine guiding techniques for a telescope that
has yet to be built, is the lack of images which are necessary for comprehensive tests. This
gave rise to the development of StarSim, a tool for simulating observations of stars incorporat-
ing specific instrumental features. By knowing the mission specific requirements and hardware
characteristics, StarSim is able to produce images that represent real telescopic observations
with high accuracy. In fact, observations of stellar fields can be simulated with respect to the
instrument’s point spread function and the sensor characteristics, such as detector size and read
noise. The resolution of the detector as well as noise are limiting factors for the centroiding per-
formance (Vyas & Vohnsen, 2013). In Chapter 2, various effects that influence image quality
are introduced together with the models that were applied in StarSim simulations. In Chapter 3,
eight centroiding algorithms are introduced. An analytical description as well as the scope of
application is provided for each centroiding method respectively and source codes are provided
in languages C and Python in the Appendix A.3. Monte Carlo simulations were performed with
tens of thousands of images, to determine the dependency of centroiding performance on indi-
vidual image components (e.g. background, photon noise etc.). With the knowledge of such
dependencies, the selection of the centroiding methods for a specific space mission becomes
easier as some of the algorithms may be excluded due to the mission requirements. The re-
maining algorithms can be tested against the exact mission requirements for further selection.
This has been done in Chapter 4 for the two space missions CHEOPS and EChO, respectively.
For CHEOPS, the impact of cosmic ray hits is a crucial topic. In order to simulate such events
as accurately as possible, the impact rate as well as other characteristics were derived from real
observations. These were obtained from the MOST (Microvariability and Oscillations of STars)
satellite and results are presented in Section 4.2.2.
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2. Data Simulation with StarSim

The data simulator StarSim was designed to simulate observations of stellar fields as observed
by real telescopes. In fact, the simulator is capable of producing images that include prede-
fined instrumental features, such as detector size, point spread function and many others that
are described in the sections below. These features are crucial for the performance analyses of
centroiding algorithms with respect to specific space missions. StarSim is capable of simulating
characteristics of charged-couple devices (CCD) like dark current, hot-pixels, bias, read-noise
and variations in pixel sensitivity. Figure 2.1 depicts sample images generated with StarSim.
The data simulator is an entirely autonomous Python-programme that can be used for any pur-
pose, although it was initially designed for centroiding problems.
The desired stellar field can be generated by specifying the position and signal of each star.
These signals are defined on sensor level in units of photons per second, which means that sig-
nal reduction caused by light passage through the optical components of the instrument (like
aperture, beam splitters, dichroics, etc.) have to be pre-calculated. The final star signals in the
image are affected by the configured quantum efficiency and exposure time.
Furthermore StarSim is able to simulate the spacecraft’s jitter and rotation. The final output
of StarSim contains the images as well as meta information primarily about preconfigured in-
strumental parameters. Output files can be generated in a compact FITS-format for further
processing. A sample simulation of a stellar field observation including thirteen stars is shown
in Figure 2.1. The image in the left panel is completely untouched, which means that no cali-
bration steps have been performed. It contains a clearly visible gradient of pixel sensitivities as
well as hot-pixels and other noise sources. Colour scales of both images were set equal for better
comparison. Additionally, the pixel positions with highest and lowest signal may automatically
be displayed on the top and at the bottom of the colour bar, respectively.

11



2. Data Simulation with StarSim

Figure 2.1.: Sample output images of StarSim showing thirteen stars and a glitch at position (70, 85). The detector’s resolution was set to
256×256 pixels and the exposure time was set to five seconds. A symmetrical point spread function with a FWHM of five pixels
was applied. The colour bar indicates the signal held by each pixel in units e–. The left image depicts a linear flat field gradient
with values increasing from position (0, 0) to position (255, 255). Additionally, it contains dark current and hot-pixels as well as
other noise sources. The image in the right panel is the result after several calibration steps were performed. The image reduction
included flat fielding as well as noise reduction via dark frames.

2.1. Stellar Field

Observations of existing stellar fields may be simulated via StarSim by specifying the position
and signal for each star. The locations are defined on a pixel-centred coordinate system, which
is illustrated in Figure 2.2. The origin of the coordinate system is defined at the bottom left
corner of the simulated image. This coordinate system was also applied for the analyses of
centroiding techniques provided in the next chapter.

Figure 2.2.: Grid illustrating the coordinate system applied by StarSim in units pixel. Each square indicates a single pixel. Integer coordinates
represent pixel centres. The cross section of the red dashed lines depicts the point (2.0, 2.0).

Images are created by convolving a star mask template with a discrete model of the point spread
function (see Section 2.2). This process involves a Fast Fourier transform (see Section 3.3.1).
The template of the star mask contains the signal with respect to the exposure time, where

12



2.2. Point Spread Function

the stars can be positioned on intra pixel scales. This can be achieved by oversampling the
star mask as well as the point spread function before the convolution is computed. However,
an alternative solution was implemented for constructing the star mask with less computation
time. Each star in the star mask is treated as a point source. If a star is situated exactly at a pixel
centre, this pixel holds the entire signal in the star mask. In any other case, the signal is spread
over the adjacent pixels. In fact, the signal is weighted by the distance between the configured
star position an the pixel centre.

2.2. Point Spread Function

The point spread function (PSF) plays a significant role in the object localisation on optical
sensors (Winick, 1986). Airy patterns are often described by a Bessel function of the first kind
and order one. Here we approximate the point spread function with a Gaussian profile. Such
approximation is reasonable as the information required for the object localisation is extracted
by regions close to the central peak.

Figure 2.3.: Left: Normalised circular point spread function with a FWHM radius of five pixels on a two-dimensional sensor area. Right:
One-dimensional cross section through the maximum of the PSF that is illustrated in the left panel (for row y = 10). A Gaussian
fit has been applied for better illustration of the PSF’s structure. Images were generated by StarSim.

The model of a two-dimensional Gaussian PSF can be defined as follows

f(x, y) =
1

2πσxσy
exp

[
−
(

(x− x0)2
2σ2

x

+
(y − y0)2

2σ2
y

)]
(2.1)

where x0 and y0 indicate the position of the central peak and σx, σy are the standard deviations
for both dimensions. Equation (2.1) represents a bivariate normal distribution with independent
variables x and y. Further treatment of multivariate normal distributions is provided by Tong
(1990) and Patel & Read (1996). The distribution is normalised to unity in order to conserve the
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2. Data Simulation with StarSim

signal on image operations. The normalisation factor 1/(2πσxσy) was obtained by integrating
over the whole profile. Such normalisation is indispensable if images are further processed for
photometry or other scientific applications. Figure 2.3 illustrates a sample PSF model created by
StarSim with Equation (2.1). In some cases the PSF may strongly differ from such a Gaussian
profile. Such a case is introduced in the description of the CHEOPS mission in Section 4.2.3.
For this reason, StarSim also offers the opportunity to import external files that describe PSF
models.

Full Width at Half Maximum and Standard Deviation

The full width at half maximum (FWHM ) is often used to describe a Gaussian PSF. It is directly
related to the standard deviation as shown below. Assume a one dimensional Gaussian function,

f(x) = A exp

[
−
(

(x− µ)2

2σ2

)]
(2.2)

where A is the normalising constant. The maximum of Equation (2.2) is located at xmax = µ.
Therefore the locations of half-maximum, xhalf , can be derived by solving:

1

2
A f(µ) = A exp

[
−
(

(xhalf − µ)2

2σ2

)]
(2.3)

Evaluating Equation (2.2) leads to 1
2
f(µ) = 1

2
.

exp

[
−
(

(xhalf − µ)2

2σ2

)]
=

1

2

−
(

(xhalf − µ)2

2σ2

)
= ln 2

xhalf = ±σ
√

2 ln 2 + µ (2.4)

The FWHM is proportional to the standard deviation, σ, and can be expressed as Equation (2.5).

FWHM = xhalf ,+ − xhalf ,− = σ
√

2 ln 2 ≈ 2.355 σ (2.5)
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2.3. Shot Noise

2.3. Shot Noise

Shot noise is introduced to imaging devices as the arrival of photons represents a random Pois-
son process (Blanter & Büttiker, 2000). Therefore, a Possion distribution was applied to simu-
late the shot noise in each pixel

P (x) =
(
√
S)x

x!
exp(−

√
S) (2.6)

where S is the signal inside the pixel. Shot noise was implemented in StarSim in such way that
the overall signal is conserved.

2.4. Background

Signals from unresolved objects can also be modelled by Equation (2.6). In this case, S rep-
resents the mean signal from the night sky per pixel. Since this signal also passes through the
entire telescope, a convolution with the point spread function must be performed. An illus-
tration of a simulated sky background is depicted in Figure 2.4. The illustrated image is not
affected by the flat field, which is simulated at a later stage. The slightly lower signal on the
edge of the frame is caused by a side effect of the convolution. This effect could be removed
by applying reflecting boundaries for the convolution of the PSF with the background instead
of using zero-value boundaries.

Figure 2.4.: The sky background simulated by StarSim for a mean background signal of 10 ph s−1 rms and an exposure time of one second.
The convolution was carried out with a Gaussian PSF model that features a FWHM of 5×5 px.
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2.5. Bias and Read Noise

The bias of the CCD camera can be configured in units of e–. It is implemented as uniform fixed
offset, whereas read noise is modelled by a normal distribution with specified standard deviation
in e– rms (root mean square). This is the on-chip read noise that is usually specified by CCD
manufacturers. Additional periodic random noise (off-chip) is introduced during the process
of converting the charges in each pixel to digital units. This task is usually carried out by an
Analog to Digital Converter (ADC). Any off-chip noise sources like reset-noise (or kTC noise),
white noise (or Johnson noise), Flicker noise (or 1/f noise) are currently not treated explicitly in
StarSim, since they can be strongly reduced by built-in camera electronics. One way to reduce
the non-periodic read noise in science frames is simply by averaging over multiple stacked
images. These images may be obtained by running StarSim several times or by configuring
multiple image output before the execution. Alternatively, there exists a built-in process for
image calibration, which uses an averaged bias frame (master bias).

2.6. Dark Current and Hot-Pixels

The total dark current in a CCD is comprised of surface dark current, depletion or bulk dark
current and diffusion dark current (Widenhorn et al., 2002). Thermal energy is the main source
of dark current, thus cooling the camera vastly improves the image quality. Nevertheless, dark
current calibrations are often necessary for long-time exposures. In StarSim, the total dark
current is modelled by applying Poisson statistics similar to Equation (2.6) as well as hot-
pixels, which feature exceptional high sensitivities to dark current. StarSim allows to specify
the amount of hot-pixels together with factors that define their increased sensitivity. The noise
originating from dark current and hot-pixels can be almost entirely reduced by the calibration
techniques that were implemented in StarSim. These techniques include the subtraction of
averaged dark frames (master darks). Figure 2.5 shows a typical dark current frame that includes
hot-pixels.
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2.7. Variations in Pixel Sensitivity

Figure 2.5.: Left: A raw frame including dark current and hot-pixels simulated by StarSim for an average dark current of three e– s−1 px−1

and one second exposure time. The amount of hot-pixels is about one percent. These pixels produce increased dark current with
values ranging from two to five times the mean dark current. Right: The distribution of dark current values in left panel conforms
to a Possion distribution. The simulated dark frame does not contain a bias or read-noise component.

2.7. Variations in Pixel Sensitivity

It is a common issue that astronomical images that are obtained by a CCD feature uneven illu-
mination. Such variations can be caused by non-uniform light transmission through the optics,
differences in pixel-gain or even by dust grains on the detector. Another effect is the variation
in quantum efficiency, due to temperature difference in individual pixels. In StarSim, variations
in pixel sensitivities are represented by a flat field model that consists of three distinct compo-
nents: random pixel-to-pixel variations, a spatial gradient and intra-pixel sensitivity variations.
Vignetting that is inevitable in some optical designs, is currently not supported. Pixel-to-pixel

variations are modelled by a normal distribution by configuring a mean pixel sensitivity be-
tween 0 and 1 and a related standard deviation. The spatial gradient is considered to be linear
on the detector and the configured lower and upper limits may slightly vary if multiple ob-
servations are simulated. The gradient’s angle can be defined in degrees, where 0◦ indicates
horizontal alignment. This feature can be seen clearly in Figure 2.1. StarSim’s post-processing
techniques include the calibration with a master flat that is composed of multiple single flat
fields for the current configuration.

Variations on Intra-Pixel Scale

The detection of a photon by a CCD-pixel depends on the impact location in the pixel (Toy-
ozumi & Ashley, 2013). Therefore, a low sampling rate of stars that is induced by small point
spread functions, may lead to significant errors in photometry and astrometry. The intra pixel
sensitivity variations are directly related to the CCD electrode structure. A three-phased design
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is the most common configuration for CCDs, where three electrodes which are aligned in strips
are assigned to each pixel. Figure 2.6 depicts measured photometric sensitivity maps of pix-
els for different filters. Additionally, simulated intra-pixel sensitivities are shown in the right
panel. Here, the sensitivity map is almost uniform for all investigated pixels. StarSim is capable
of simulating images with respect to such intra-pixel sensitivities by oversampling the images
during the generation process. In fact, an oversampled observation is multiplied with a high
resolution flat field of equal size that contains the intra-pixel sensitivity variations. After the
application of the flat field the image is downscaled to the final image size. Hereby, the factor
of oversampling is defined by the resolution of the intra-pixel sensitivity map.

Figure 2.6.: Left: The photometric sensitivity map for a 3.2×3.2 pixel array for different filters (Toyozumi & Ashley, 2013). Right: A sample
intra-pixel flat field for a 3×3 pixel grid generated by StarSim. The upper panel illustrates a sinc interpolation of the lower panel.
The size of a single pixel is illustrated by the area of the dashed white frame. Each pixel was oversampled with 3×3 intra-pixel
values in order to model the photometric sensitivity map. Colour bars indicate relative sensitivities.
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2.8. Glitches and Cosmic Rays

Astronomical images obtained by CCD detectors may contain unwanted bright spots that af-
fect single or multiple pixels (see Figure 2.1). These phenomena are described by the term
’glitches’. In general any short-lived fault in an electronic system may be referred to as a glitch.
However, this thesis particularly refers to glitches that originate from cosmic ray hits. Those
include high-energetic particles produced by our Sun as a by-product of stellar nucleosynthesis
and by solar flares. However, cosmic rays with highest energies originate in extrasolar sources
like supernovae, Active Galactic Nuclei (AGN), Quasars, Pulsars and others. These cosmic rays
are mainly composed of protons and alpha particles and are called ’primaries’ if no interaction
with other particles took place. If such particles pass interstellar gas or Earth’s atmosphere, they
interact with atoms and trigger decay processes. The result of such processes are mainly Muons
which reach Earth’s surface as ’secondaries’. Cosmic ray hits on detectors usually release a
large number of electrons, thus they significantly affect image quality. Ionizing energy can be
deposited in CCDs by x-rays, γ-rays, electrons, protons, α-particles and heavier ions (Esposito,
2002). Charge-less particles like neutrons do not trigger such effects. In general thin CCDs
are less affected by cosmic rays hits than thicker detectors (Kitchin, 2003), as the path length
of the particle penetrating the detector is crucial. Such hits may result in glitches, in form of
unwanted signal in single, or multiple pixels that are located adjacent to the point of impact.
Typical multi-pixel characteristics are trails appearing as straight lines or curve-like shapes on
images (Groom, 2004). These structures are caused by very small impact angles, which are
elongated nearly parallel to the CCD surface.
Figure 2.7 illustrates the cosmic ray flux as a function of kinetic energy. Cosmic rays cover a
broad energy spectrum ranging from 108 to 1020 eV. An upper limit for ultra-high-energy comic
rays is defined by the GZK cutoff (Greisen, 1966). The cosmic ray flux can be of heliospheric,
galactic or extragalactic nature. The flux for energies between 108 and 1010 eV is dominated
by solar cosmic rays that originate in coronal mass ejections (Starodubtsev & Usoskin, 2010).
Galactic cosmic rays are the main source for the flux within 108 and 1015 eV and extragalactic
cosmic rays with energies >1015 eV are comparatively very rare. The dotted line in Figure 2.7
represents a E−2.7 power law approximation for the cosmic ray flux as a function of kinetic en-
ergy. This approximation overestimates the flux of cosmic rays with lower energies by roughly
one decade. Additionally, electrons and protons originate from solar wind and get accelerated to
energies between 400 keV and 15 MeV. These are not included in Figure 2.7 (Esposito, 2002).

Further investigations revealed that a direct conversion of the energy of a single cosmic ray to
the related electron deposition on the detector is not feasible. The reason is that the electron
deposition depends on the length of the cosmic ray’s path through the CCD’s substrate as well
as on the hardware characteristics of the CCD. In order to accurately simulate the impact of
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cosmic ray hits on centroiding performance, I estimated the following quantities empirically:

• expected glitch rate outside the South Atlantic Anomaly

• expected glitch rate within the South Atlantic Anomaly

• distribution of deposited electrons per glitch

• ratio of single- to multi-pixel events

• expected distribution for the amount of affected pixels in all events

These estimations are based on observations of HD 189733 which had been obtained by the
MOST1 space telescope and details can be found in Section 4.2.2.

Figure 2.7.: The cosmic ray flux as function of kinetic energy combined for all particles. Combined results from HiRes, Akeno, proton and
LEAP are shown. The dottet line represents a E−2.7 power-law. (Swordy, 2001)

1MOST = Microvariability and Oscillations of STars
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2.8.1. Van Allen Radiation Belts and the South Atlantic Anomaly

The South Atlantic Anomaly (SAA) is a region related to the weak geomagnetic field in the
South Atlantic Ocean. Its geographical position lies in the south of Brazil and it is illustrated
in Figure 2.8. The SAA is spanning from -50◦ to 0◦ geographic latitude and from -90◦ to
+40◦ longitude. Satellites in low-Earth orbit that cross this region in space exhibit an increased
radiation flux compared to the radiation level outside the SAA (Heirtzler, 2002). The elonga-
tion of Earth’s magnetic field gives rise to the inner and outer Van Allen radiation belt. These
are toroidal regions containing charged particles that were captured by Earth’s magnetic field.
The inner belt spans from about 200 to 6 000 km altitude and it mainly contains protons. The
formation of these protons is triggered by the Cosmic Ray Albedo Neutron Decay (CRAND)
which is the main source for protons in low altitudes with energies up to 30 MeV (Esposito,
2002). Neutrons are created as by-product of cosmic ray interaction with atmospheric nuclei.
The radioactive decay of such neutrons leads to protons getting captured by the radiation belt.
Additionally, shock waves can inject protons with energies well above 50 MeV. The outer radi-
ation belt is dominated by electrons and it is situated at altitudes between 15 000 and 25 000 km.

Figure 2.8.: Earth’s magnetic field represented by contour lines of units nanotesla (nT). The interval between the gray contours is 1000 nT. The
centre of the SAA is located in South Brasil and corresponds to the lowest value of field intensity. Measurements were taken by
the Topex/Poseidon spacecraft at an altitude of about 1300 kilometres (Abdu et al., 2005)

.

The SAA occurs where Earth’s inner Van Allen belt is closest to the surface approximately at an
altitude of 200 kilometres. This in turn is a phenomenon produced by the tilt of 10 degrees of
Earth’s magnetic dipole with respect to its rotation axis. The higher amount of charged particles
within the SAA is accompanied by an increased number of glitch events and therefore signif-
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icantly affects image quality. In order to compare the nominal glitch rate with measurements
taken inside the SAA, an analysis of glitches in MOST observations was carried out. Both
CHEOPS and MOST pass the SAA anomaly in a similar low-Earth orbit. Therefore MOST im-
ages were used to estimate the SAA’s impact for observations performed by CHEOPS. Further
treatment of this topic is provided in Section 4.2.2.

2.8.2. Simulation of Glitches in StarSim

In StarSim, glitches are characterised by the following properties: type, spread-type, start/end-
points, width, signal and decay-factor. There are currently three supported glitch types that can
be simulated. Type ’point’ is indicating a single pixel holding the entire glitch signal. Type
’linear’ represents a line-shaped glitch on the detector, specified by start-point and end-point.
Type ’spline’ allows to simulate curve-shaped glitches by defining multiple locations on the
detector grid. In this case, the pixels between these locations are calculated using cubic-spline
interpolation. Glitches can be added automatically during the image simulation process, based
on models which describe their frequency, size and intensity. Such models have been obtained
by observations performed by the MOST satellite and are discussed in Section 4.2.2.
The two images in Figure 2.9 represent observations of the G-star HD 189733 which is host-
ing the hot Jupiter HD 189733 b. The left image shows a real observation performed by the
MOST satellite during a SAA passage and the right frame represents a reconstruction created
by StarSim. The observation includes linear glitches as well as several single-point glitches.
This illustration shall stress that StarSim is indeed capable of producing output that is largely
similar to real observations. In this case, the reconstruction has been applied by configuring
fixed glitches, but in principle the exact same image may result in automatic glitch generation
if StarSim is fed with the appropriate models.

Figure 2.9.: The left image is an observation of HD 189733 carried by the MOST satellite in 2006 during a SAA passage. It is composed of
fourteen stacked images whereas a single image was obtained in 1.5 seconds exposure time. The image contains the primary target.
It is a 20×20 px sub-area of the full-frame image. The right image depicts a reconstruction of this observation created by StarSim
by applying a PSF-FWHM of 2×2 px.
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2.9. Conclusion

The development of the data simulator StarSim was essential in order to investigate centroiding
algorithms. The result is a highly sophisticated simulator of astronomical CCD-images, which
may be applicable in other research, as well. Therefore, it should be mentioned that StarSim

currently does not cover all features of a CCD and only simulations of monochromatic light are
supported. Front- and back-illuminated CCDs are not distinguished explicitly. Furthermore, the
following characteristics were considered to be negligible for centroiding: chip temperature,
blooming, fringing, dead pixels, charge transfer inefficiency, read-out speeds, wavelength of
incident light and dynamic properties like changes of bias in time. These characteristics may
be added manually on demand, since the code of StarSim is available as part of the CHEOPS
open-source package. Otherwise, they remain untreated until reuse of StarSim in future projects.
Additional sample images that include the spacecraft’s jitter and rotation are provided in the last
chapter, such as in Figure 4.22, which represents a simulated observation of the globular cluster
Omega Centauri. Only some of StarSim’s configuration settings were introduced in this section.
For a complete list, that includes a description of all parameters, see Appendix A.1.
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In this chapter, several centroiding methods are presented and their characteristics are discussed
based on comprehensive data simulation carried out with StarSim (see Chapter 2). Such meth-
ods allow to determine the location of stars on an optical sensor. In general, stars are not
represented by single pixels on such sensors. Usually they occupy several pixels according to
the instrument’s point spread function. The term ’centroid’ is derived from the later introduced
centre of gravity algorithms. However, in this thesis the term ’centroiding’ denotes computa-
tion of the central position of the stellar spot on the optical sensor. Therefore, the results of all
methods which estimate the centre of the stellar spot are labelled as centroids.
Most star tracking algorithms perform centroiding as first task to obtain information for atti-
tude estimation algorithms. Furthermore, if high pointing stability is required in observations, a
fine guidance sensor may be used to perform centroiding as an autonomous task. Centroids are
then usually required with higher accuracy in comparison to the initial star identification tasks.
Various centroiding techniques were analysed for their application in fine-guidance. An imple-
mentation of each method is provided in languages Python and C in the Appendix A.3. Some
of the following techniques were introduced as part of an earlier work (Ottensamer et al., 2014).
However, a complete and more detailed analysis is provided below. Mission specific tests are
provided in Chapter 4. Although the main focus of this thesis is on space applications, all the
listed centroiding techniques are applicable for ground-based telescopes as well. Magnitudes
and terms that are relevant for the analyses in this chapter are introduced below.
The centroid estimation error (CEE) (Vyas et al., 2009b) is introduced to quantify the quality
of the computed centroids. It represents the distance between estimated and true centroid and
can be defined as follows

CEE =
√

(x∗c − xc)2 + (y∗c − yc)2 (3.1)

where, (x∗c , y
∗
c ) is the true centroid and (xc, yc) is a centroid estimator. It is highly recommended

to carry out two steps prior to the execution of centroiding algorithms. The most important step
is to define the region of interest (RoI). In literature, this process is often labelled as ’window-
ing’ (Thomas, 2004). In the optimal case, the RoI only contains the target star. However, in
particular for large point spread functions, multiple stars may appear in the RoI or even over-
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lapping spots may occur in observations of crowded fields. For some algorithms it is crucial
that the star is located at the centre of the RoI (see Section 3.5.2). In order to select the RoI, an
initial centroid position has to be provided. This information may be obtained by star trackers
that carry out attitude estimation algorithms in order to align the telescope to the desired target.
After the RoI has been selected, unwanted signal may be removed by thresholding (Lee, 2002).
Particularly, for noise-sensitive algorithms, thresholding is a powerful tool to improve the ac-
curacy. These standard procedures are visualised in Figure 3.1. They are indispensable in order
to gain accurate position estimations for most centroiding techniques.
The centroiding methods were tested for different signal-to-noise ratios (SNRs). Sample im-
ages are illustrated in Figure 3.2. The SNR is defined for an aperture including N pixels, as
follows:

SNR =
SQet√

SQet+N(BQet+Dt+N2
R)

(3.2)

where S is the total target signal in photons per second, Qe is the quantum efficiency of the de-
tector, t is the exposure time in seconds, B is the average sky background in photons per second
per pixel, D is the average dark current in electrons per second per pixel and NR represents the
read noise in electrons per pixel rms (root-mean-square).
In the next section a lower boundary for the accuracy of centroid estimations on optical sensors
is derived. In the Sections 3.2, 3.3 and 3.4, eight centroiding algorithms are introduced and
an analysis of their performance for different SNRs is presented. Additional features of the
centroiding methods are compared to each other in Section 3.5.

Figure 3.1.: Illustration of standard image manipulating procedures which are carried out prior to the centroiding task. The target star is framed
by a white rectangle which determines the region of interest (RoI). Thresholds are then only applied to the RoI. Images were
generated with StarSim.
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Figure 3.2.: Circular Gaussian spots with a FWHM radius of five pixels for different SNRs. The actual value of the SNR is labelled on the top
of each image. Images were generated with StarSim.

3.1. Cramer-Rao Bounds

A general limit for optical position estimation methods on CCDs is provided in this section.
This limit is applied in later introduced analyses on the performance of the centroiding methods.
The optimal centroiding performance is limited by the CCD’s read out noise, the shot noise, the
sampling rate due to the pixel size as well as by the background. A mathematical description
including these characteristics was initially introduced by Winick (1986) and is summarised
below. The original work deals with the topic of object localisation on CCDs. However, it was
discussed and adapted by several other authors (Chen, 1987; Wernet & Pline, 1993; Chen &
Rao, 2009).
A circular Gaussian spot can be described by

S(x, y, εx, εy) =
1

2πσ2
S

exp

[−(x− εx)2
2σ2

S

]
exp

[−(y − εy)2
2σ2

S

]
(3.3)
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where εx and εy represent the centre of the spot. Equation (3.3) can be split up into a combina-
tion of two one-dimensional Gaussians

S(x, y, εx, εy) = S(x, εx)S(y, εy) (3.4)

where

S(x, εx) =
1√

2πσ2
S

exp

[−(x− εx)2
2σ2

S

]
S(y, εy) =

1√
2πσ2

S

exp

[−(y − εy)2
2σ2

S

]
Winick (1986) derived the following Cramer-Rao lower bound, which limits the variance of the
unbiased position estimator ε̂x.

E[(ε̂x − εx)2] ≥

λS

∑
ij

[g′i(εx)gj(εy)]
2

gi(εx)gj(εy) + λN/λS
−

[∑
ij

g′i(εx)gj(εy)gi(εx)g
′
j(εy)

gi(εx)gj(εy) + λN/λS

]2
∑
ij

gi(εx)g
′
j(εy)

gi(εx)gj(εy) + λN/λS





−1

(3.5)
with

gi(εx) =

∫ xi+
∆x
2

xi−∆x
2

S(x, εx) dx g′i(εx) = ∂
∂εx
gi(εx)

gj(εy) =

∫ yi+
∆x
2

yi−∆x
2

S(y, εy) dy g′j(εy) = ∂
∂εy
gi(εy) (3.6)

λS is the number of photons detected by the CCD during the integration, λN represents the
average number of electrons per pixel produced by the dark current including read out noise.
∆x is the physical size of a pixel and is set to one in order to get results in unit pixel. The
functions gi and gj are used to discretise the function S(x, y, εx, εy). Equation (3.5) represents
the minimum mean squared error of for ε̂x. Since the Gaussian spot is considered to be circular,
the estimated errors in x and y dimension are assumed to be equal. Therefore, the result can be
expressed as centroid estimation error by

CEE =
√

2 · E[(ε̂x − εx)2] (3.7)

Figure 3.3 shows the dependency of the lower bound of the centroid estimation error on the
size of the point spread function for different signal-to-noise ratios. Large image spots lead to
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Figure 3.3.: The impact of the spot size on the centroid estimation error corresponding to the Cramer-Rao bound for different signal-to-noise
ratios. The centroid was placed at (εx,εy) = (20, 20) on a 40×40 pixel array. λS was changed to obtain different signal-noise ratios
and λN was kept constant.

a lower SNR per pixel, thus the centroid estimation error increases. If the spread of the spot
falls below half the size of a pixel, accurate centroid estimation on intra-pixel scale is not pos-
sible. The magnitude of the centroid estimation error depends on the actual value of λS rather
than on the noise ratio λS/λN . Figure 3.4 depicts the minimal centroid estimation error for
different signal-to-noise ratios. It emphasizes the dependency of the centroid estimation error
on the SNR as well as on the spot size. Background signal is not included. Figure 3.5 depicts
the centroid estimation error for different intra-pixel positions. The sinusoidal characteristic of
the relative CEE is related to the integration limits in Equation (3.6), as they change if the spot
is moved along the detector’s axis. It can be seen that this effect, which occurs between pixel
edge and pixel centre, is only of order 10−9 and therefore it is negligible for the centroiding
performance limits. This does not imply that different intra-pixel positions do not change the
centroid quality in general, as the intrinsic characteristics of a centroiding method may lead to
better performance if the spot’s peak is centred in a pixel. In addition, intra-pixel flat fields
were not taken into account, which indeed have a non-negligible effect on the centroiding per-
formance (see Section 2.7 and Section 3.5.5). The background is not included in Equation (3.5),
but it also affects the lower limits for the localisation. The contribution of the background can
be eliminated by thresholding methods in most cases. An adaptation of Equation (3.5) which
includes the background is provided by Chen & Rao (2009).
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Figure 3.4.: The impact of the signal-to-noise-ratio on the centroid estimation error corresponding to the Cramer-Rao bound for different spot
sizes. Poisson noise is not included in λS/λN . The centroid was placed at (εx, εy) = (20, 20) on a 40×40 pixel array. λS was
changed to obtain different signal-noise ratios and λN was kept constant.

Figure 3.5.: The relative centroid estimation error corresponding to the Cramer-Rao bound for different intra-pixel positions for a spot size of
σS = 2 pixel and a signal-to-noise ratio of λS/λN = 10. The centroid was initially placed at (εx, εy) = (18, 20) on a 40 × 40
pixel array and was moved to position (εx, εy) = (21, 20), subsequently.
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3.2. Centre of Gravity Algorithms

The centre of gravity (CoG) or centre of mass (Uhm et al., 2008; Vyas et al., 2009b,a; Tremsin
et al., 2003) represents the simplest method to determine the target position. In this section
different variations of the centre of gravity method are discussed.

3.2.1. Standard Centre of Gravity (CoG)

The centre of gravity algorithm for object localisation is named by the eponymous principle
in mechanics. In general, the centre of gravity determines the central location of the mass
distribution of an object. The same principle can be used for computing the centroid of a stellar
spot on a detector. Instead of weighting mass particles, the charges collected by each pixel are
weighted by the pixel positions on the detector. Therefore, the CoG can be computed by

xc =

∑N
i=0

∑M
j=0 Ii,j xi∑N

i=0

∑M
j=0 Ii,j

, yc =

∑M
i=0

∑N
j=0 Ij,i yi∑N

i=0

∑M
j=0 Ii,j

, (3.8)

where N and M are the number of pixels in a single row and column respectively. The pixel
coordinates are represented by (xi, yi) and the charge held by each pixel is defined by Ii,j .
For determining the centroid, the total signal inside the region of interest has to be computed.
This may be applied in on-board photometry without introducing extra computation time, if
thresholds are applied in advance. This opportunity is further discussed in Section 4.1.

3.2.1.1. Implementation

The standard CoG may be implemented by executing the following steps,

1. Compute the total signal I by summing up all pixel values in the RoI.

2. Iterate over columns and multiply column index with collapsed row signal.

3. Iterate over rows and multiply row index with collapsed column signal.

4. Divide results of steps (2) and (3) by I in order to get xc and yc.

Implementations of the standard CoG are provided in the Appendix A.3.1 in languages C and
Python.

3.2.1.2. Error Estimation

Error estimation for centre of gravity algorithms is a well-discussed topic (Poyneer et al., 2003;
Lee, 2002; Jia et al., 2010; Baker & Moallem, 2007; van Assen et al., 2002). The following
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estimation was derived by van Assen et al. (2002) and describes the variance of the estimated
position error with respect to a Gaussian noise component.

var(c(x, y)) ≈
[(

σ2
N

∑
x,y x

2

(N µ̂ x̂CoG)2
+

σ2
N

Nµ̂2

)
x̂2CoG ,

(
σ2
N

∑
x,y y

2

(N µ̂ ŷCoG)2
+

σ2
N

Nµ̂2

)
ŷ2CoG

]
(3.9)

where c(x, y) is an unbiased estimator of the true centroid, (x̂CoG , ŷCoG) is the estimated cen-
troid provided by the CoG algorithm, µ̂ is the estimated average signal in the region of interest,
N is the number of pixels and σN represents the total Gaussian noise per pixel. I estimated
σN with the simulated read noise and dark current in later analyses. In the derivation of Equa-
tion (3.9) a constant pixel-weighting for CoG computation was considered, but van Assen et al.
(2002) did not take Gaussian weighting functions into account. Thus, Equation (3.9) is only ap-
plicable for error estimation of CoG and IWC. Error estimation for the later introduced WCoG
and IWCoG is discussed in Section 3.2.3.2.

Figure 3.6.: The dependency of the CoG algorithm on the signal-to-noise ratio. A Monte-Carlo simulation carried out by StarSim produced
a sample of 1 500 images (see Figure 3.2). The transparent black dots indicate the computed true CEE per image. The blue
line indicates the estimated mean CEE based on error estimation described in Section 3.2.1.2. Error bars represent the standard
deviation. The residuals depict the difference between mean estimated CEE and mean true CEE.
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3.2.1.3. Performance

Monte-Carlo simulations were carried out in order to produce large samples of images. The
performance of CoG was tested for different SNRs. Figure 3.6 reveals that the SNR plays an
important role for the CoG method. An increase of the SNR by a factor of ten halved the
true CEE as well as its spread. Although some results are close to the optimum, the mean
true CEE does not converge against the Cramero-Rao bound in this simulation. The estimated
CEE was computed with Equation (3.9). The systematic difference between mean estimated
and mean true CEE of about 0.1 px is revealed in the residuals. This discrepancy is caused
by a conservative noise estimation of σ2

N in Equation (3.9). Furthermore, it can be seen that
the spread size of the mean estimated CEE is too small for low SNRs. This is caused by
the missing photon noise component in the error estimation, as van Assen et al. (2002) only
considered Gaussian white noise.

3.2.1.4. Summary

The performance of the CoG was tested and compared to other methods under various con-
ditions (see Section 3.5). It turned out that the CoG is highly sensitive to any kind of noise.
Therefore, it should not be applied if centroid information is required with high accuracy in the
presence of a low SNR. In fact, Figure 3.6 depicts that the performance of CoG is far below
the optimum, which is defined by the Cramer-Rao bound. Although, the CoG does not require
an initial centroid estimation for its computation, this kind of estimation is required in order to
define the RoI within the original image (see Figure 3.22). A few things must be considered
before selecting such region. CoG is only capable of providing accurate results if the RoI con-
tains the entire stellar spot. Furthermore, the central region of the spot should be situated at the
centre of the RoI. Therefore, it is crucial that the dimensions of the RoI are odd integers. An-
other important fact is that the RoI should not contain a second star, which might be impossible
if a crowded field is observed. In the presence of a second star, the centroid estimation of CoG
is located between both stars, but it will be closer to the brighter star in general. Thresholding
is also an inevitable process too keep the CEE low, in the presence of background signal (see
Figure 3.23). In principle any signal that is not originating from the target distorts the centroid
estimation provided by CoG if it is not thresholded. Thus, cosmic ray hits such as those illus-
trated in Figure 3.24 may cause large CEEs, if centroids are computed via CoG. In comparison
to other algorithms the standard CoG is a rather simple method featuring a low processing time
(see Figure 3.28). I recommend to calibrate images with dark frames as well as flat fields prior
to the application of CoG. In particular, the reduction of a sensitivity gradient, such as the one
illustrated in Figure 2.1, is indispensable.
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3.2.2. Weighted Centre of Gravity (WCoG and IWC)

The weighted centre of gravity (WCoG) can be computed by extending the standard CoG by a
weighting function, Wi,j (Nicolle et al., 2004; Vyas et al., 2010; Vyas & Vohnsen, 2013). This
leads to a modified version of Equation (3.8).

xc =

∑N
i=0

∑M
j=0 Ii,j Wi,j xi∑N

i=0

∑M
j=0 Ii,j

, yc =

∑M
i=0

∑N
j=0 Ij,i Wi,j yi∑N

i=0

∑M
j=0 Ii,j

(3.10)

In general, it’s best if the weighting function resembles the shape of the target spot. Thus, the
point spread function represents an excellent weighting function. In most cases, the spot fea-
tures a Gaussian shape and therefore an appropriate weighting function is given by Equation
(2.1). In order to create such a weighting function, an estimation of the target position is re-
quired. This initial centroid estimation may be supplied whether by star finding algorithms (pre
science) or by previous executions of the fine-guidance task during science mode. A Gaussian
weighting function may not be applicable in the case of a highly distorted PSF, such as it is the
case in the CHEOPS mission (see Section 4.2.3). A special case of the WCoG is the intensity-
weighted centre of gravity (IWC), where the intensity function, Ii,j , is applied as weighting
function (Vyas & Vohnsen, 2013). For this particular case, no initial centroid estimation is
required. Implementations of both versions (WCoG and IWC) are provided in the Appendix
A.3.2. A two-dimensional Gaussian function was applied to generate the discrete weighting
function. Alternatively, a weighting ’template’ (e.g. PSF image) may be provided and reused
for the sake of lower computation times. In this case, the initial centroid estimation is used to
position the template inside the coordinate system of the detector. Multiple versions of PSF-
templates are required to cover intra-pixel locations. The amount of pre-computed templates
depends on the desired centroid accuracy. Prior to the execution of the centroiding task, the
template according to the given centroid estimation has to be chosen. One possibility to obtain
such templates is to downscale high resolution PSF-models to the detector resolution.

3.2.2.1. WCoG - Implementation

Implementations of WCoG are provided in the Appendix A.3.2 in languages C and Python. The
WCoG may be implemented by executing the following steps.

1. Obtain an initial centroid estimation x0, y0 (e.g. from previous centroiding runs).

2. Compute the weighting function Wi,j with respect to the initial centroid estimation. Al-
ternatively, select a pre-computed template for W , which must be of same size as I .

3. Iterate over all pixels inside the RoI and apply the weighting Ii,j := Wi,j · Ii,j .
4. Proceed with the standard CoG procedure as described in Section 3.2.1.1.
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Figure 3.7.: The dependency of the WCoG algorithm on the signal-to-noise ratio. A Monte-Carlo simulation carried out by StarSim produced a
sample of 1 500 images (see Figure 3.2). The transparent black dots indicate the computed true CEE for each image. The blue line
depicts the estimated mean CEE based on error estimation described in Section 3.2.3.2. Error bars represent the standard deviation.
The residuals depict the difference between mean estimated CEE and mean true CEE.

3.2.2.2. WCoG - Performance

Monte-Carlo simulations were carried out in order to produce a large sample of images. The
performance of WCoG was tested for different SNRs. Equation (2.1) represents the normalised
two-dimensional Gaussian function with a FWHM at five pixels in x and y. This function was
applied as weighting function in all simulations presented in this chapter. The initial centroid
estimation required for the weighting function was displaced by 0.5 pixel in x and y, which
corresponds to a total CEE of 0.71 pixel as start condition. The magnitude of the computed true
CEE in Figure 3.7 is a conspicuous feature of the WCoG algorithm. Error saturation occurs
approximately at a CEE of 0.4 pixel, which is far away from the Cramer-Rao bound. This
implies that even small displacements below one pixel in the initial centroid estimation are
sufficient to distort results of WCoG. This particular problem may be addressed by performing
multiple iterations of WCoG and is discussed further in Section 3.2.3 as a distinct centroiding
method (IWCoG). Raising the SNR by a factor of ten reduced the mean error by only thirty
percent. At the same moment, the spread of the true error values was narrowed down to one
fourth. The mean estimated CEE illustrated in Figure 3.7 is based on the error estimation
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presented in Section 3.2.3.2. It can be seen that this kind of error estimation is not applicable
for WCoG if start conditions differ from the true centroid.

3.2.2.3. WCoG - Summary

The performance of the WCoG was tested and compared to other methods under various con-
ditions (see Section 3.5). A two-dimensional Gaussian function served as weighting function
in all simulations. WCoG is much less sensitive to the presence of noise than the standard
CoG, due to the introduction of a weighting function. This weighting function acts like a filter
that truncates all signal located far away form the expected centroid position. However, this
additionally required centroid estimation represents a critical new error source. Even small de-
viations from the true centroid, cause a non-convergence behaviour of WCoG, which is clearly
illustrated in Figure 3.7. Therefore, I do not recommend its application if high precision cen-
troid estimations are required. Nevertheless, by performing multiple iterations of WCoG re-
markable results can be achieved. This is further discussed in Section 3.2.3. In general, WCoG
is capable of reaching the Cramer-Rao bound for SNRs below 100 if an optimal initial centroid
estimation is provided.
Thresholding is recommended for WCoG, although the Gaussian weighting function reduced
most of the background signal (see Figure 3.23). A significant advantage of WCoG compared
to the standard CoG is the fact that the RoI needs not be centred on the target spot. However,
this benefit is compensated by the newly introduced dependence on the position offset (see
Figure 3.22). Nevertheless, WCoG is also applicable in the presence of a second star inside the
RoI as long as the position offset is close to the target. Furthermore results were not affected by
cosmic ray hits that occurred outside the target spot, as the weighting function eliminated their
signal. This is only true if the weighting function is not overlapping with the impact location.
If the weighting templates are not precomputed, the processing time of WCoG equals multiple
computations of CoG (see Figure 3.28). I recommend to calibrate images with dark frames as
well as flat fields prior to the application of WCoG, although the impact of variations in pixel
sensitivities is much lower in comparison to the standard CoG (see Figure 2.1). In the end, I
would not recommend to implement WCoG in most cases, due to the extreme dependency on
the position offset. A different implementation of WCoG that applies a Gaussian weighting
function, which is bigger than the actual target spot, may correct this problem. Nevertheless,
this would increase the impact of background, cosmic ray hits and additional stars inside the
RoI. Thus, such an adaptation of WCoG is not taken into further consideration.
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3.2.2.4. IWC - Implementation

The IWC may be implemented by executing the following steps.

1. Iterate over all pixels and apply the intensity-weighting by computing Ii,j := Ii,j · Ii,j .
2. Proceed with standard CoG procedure as described in Section 3.2.1.1.

Implementations of IWC are provided in the Appendix A.3.2 in languages C and Python.

Figure 3.8.: The dependency of the IWC algorithm on the signal-to-noise ratio. A Monte-Carlo simulation carried out by StarSim produced a
sample of 1 500 images (see Figure 3.2). The transparent black dots indicate the computed true CEE for each image. The blue line
depicts the estimated mean CEE based on error estimation described in Section 3.2.1.2. Error bars represent the standard deviation.
The residuals depict the difference between mean estimated CEE and mean true CEE.

3.2.2.5. IWC - Performance

Monte-Carlo simulations were carried out in order to produce samples containing a large num-
ber of images. The performance of IWC was tested for different SNRs. Figure 3.8 reveals the
high influence of the SNR on the performance of IWC. An increase of the SNR by a factor of
ten lowered the mean true CEE and its spread roughly by a factor of six. It is also noticeable
that the mean true CEE is close to the Cramer-Rao bound for slightly higher SNRs (>100).
However, the spread of the true errors at low SNRs is high compared to the regular CoG. This is
caused by the application of the incoming signal as weighting function, since the whole signal is
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squared along with its noise components prior to CoG computation. The residuals in the lower
panel illustrate the remarkable quality of the error estimation provided in Section 3.2.1.2. The
Gaussian noise component, σN , was estimated for the error computation after the weighting
function was applied. The difference in the spread size of the mean estimated CEE compared to
the mean true CEE is again caused by the missing photon noise component in Equation (3.9).
The performance of the IWC changes extremely if non-optimal thresholds were applied. This
feature is discussed in Section 3.5.3 in more detail.

3.2.2.6. IWC - Summary

The performance of the IWC was tested and compared to other methods under various condi-
tions (see Section 3.5). In the SNR-analysis the performance was much better compared to the
standard CoG. In fact, the centroid estimation was already close to the Cramer-Rao bound at
a SNR of 100, as the CEE declined much faster for increased SNRs. Similar to the standard
CoG, IWC does not require an initial centroid estimation for its computation. However, it is
required for selecting the RoI, which should be centred at the stellar peak. Displacement of the
RoI distorts results of IWC, but the introduced error is generally lower compared to standard
CoG (see Figure 3.22). The impact of background signal is weaker, as well (see Figure 3.23).
However, the application of thresholds is indispensable in order to keep the error low. Further-
more, centroids computed by IWC get distorted if a second object is located inside the RoI.
In this case, the computed centroids are closer to the brighter object. Great care also must be
taken if cosmic ray hits are expected inside the RoI, as the presence of a glitch may lead to un-
usable results (see Section 3.5.4). This is a side-effect of using the detected signal as weighting
function, because the signal induced by the cosmic ray hit is squared. The performance of the
standard CoG depends on the location of the peak position on intra-pixel scale. For IWC, such
variations in the performance, between centroids located at the pixel’s edge and the pixel’s cen-
tre, only matter for very low SNRs. The reduction of a sensitivity gradient, such as illustrated in
Figure 2.1, is highly recommend (see Section 3.5.5). Anyway, I recommend to calibrate images
with dark frames and flat fields prior to the computation of IWC. One of IWC’s main benefits
is the remarkably low processing time, which is only slightly higher than for the standard CoG.
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3.2.3. Iteratively Weighted Centre of Gravity (IWCoG)

Centroid estimations provided by WCoG strongly depend on the distance between the required
initial centroid estimation to the true centroid. In order to reduce this effect, multiple consecu-
tive computations of WCoG can be performed, in which the result of each iteration is used for
centroid estimation in the subsequent computation. This procedure is called iteratively weighted
centre of gravity (IWCoG) (Baker & Moallem, 2007; Vyas et al., 2010; Vyas & Vohnsen, 2013).
In fact, by performing multiple iterations, the weighting function W is shifted towards the tar-
get position until the point of maximum overlap is reached. The number of required iterations
mainly depends on the quality of the provided centroid estimation as well as on the target sig-
nal. The change of the CEE for multiple iterations is illustrated in Figure 3.9 for three different
initial centroid estimations. The green squares, red circles and blue triangles represent an initial
distance of 10, 8 and 5 pixels to the true centroid, respectively. By comparing convergence
behaviour of shift-10 and shift-5, it is shown that starting twice as far from the true centroid
doubled the number of iterations that were required to reach the same accuracy. This is only
true if the same weighting function is applied and if it overlaps with the Gaussian spot in both
cases. Figure 3.10 depicts the IWCoG’s dependency on the target signal. Iterations were car-
ried out until the CEE was below 0.1 pixels. A fixed shift of 10 pixels was applied to the start
positions. Results show that for extremely faint star signals, a much higher number of iterations
is required to retrieve the true centroid position. Additionally, the level of the background sig-
nal has a slight impact on the number of iterations as well. Due to this diversity of parameters
the optimal number of IWCoG iterations is mission specific. I simulated worst-case scenar-
ios for the EChO mission in order to define the number of iterations (see Section 4.1.4). For
these simulations, the faintest star in the target list was chosen. Furthermore, the initial centroid
estimations provided by the star trackers as well as the jitter of the spacecraft were considered.
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Figure 3.9.: Number of IWCoG iterations required to retrieve the true centroid for different start positions. The different lines represent different
position estimations. Green squares, red circles and blue triangles indicate an initial shift to the true centroid of 10, 8 and 5 pixels.
The simulated point spread function is illustrated in 2.3. Intensity of target and noise was constant in all three simulations.

Figure 3.10.: Number of iterations necessary to reach CEEs below 0.1 pixels for different star signals. The shift in the initial centroid estimation
was set to 10 pixels. The applied point spread function is illustrated in 2.3.
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3.2.3.1. Implementation

The WCoG may be implemented by executing the following steps,

1. Obtain an initial centroid estimation x0, y0 (e.g. from previously executed centroiding
runs).

2. Compute the weighting function Wi,j with respect to x0 and y0. Alternatively, select a
pre-computed template for W . Note that W must be of same size as I .

3. Iterate over all pixels and apply the weighting by Ii,j = Wi,j · Ii,j .
4. Proceed with standard CoG procedure as described in Section 3.2.1.1.

5. Stop the execution if the maximum number of iterations is reached. Otherwise continue
with step (6) or go to step (1).

6. Optional: Compare the values of xc and yc from current and last iteration. Stop the
execution if the differences are lower than the predefined accuracy limits, otherwise go to
step (1).

Implementations of IWCoG are provided in the Appendix A.3.3 in languages C and Python.

3.2.3.2. Error Estimation

Error estimation for WCoG and IWCoG is discussed by (Nicolle et al., 2004; Baker & Moallem,
2007). They assumed a symmetric Gaussian PSF for the weighting function, where σx = σy.
Nicolle et al. (2004) derived the expected centroid estimation error for photon noise, σph , and
detector noise, σdet , respectively. Therefore, the combined error can be written as

var(x̂WCoG) = var(ŷWCoG) = σ2
ph + σ2

det (3.11)

with
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(3.13)

where Nph is the total signal inside the RoI after thresholding, NT is the FWHM of the instru-
ments point spread function in pixels, Nw is the FWHM of the weighting function in pixels, ND

is the FWHM of the diffraction limited point spread function and σN represents the standard
deviation of the Gaussian noise per pixel. In all simulations, I have set ND = 2 for Nyquist
sampling as well as NT = Nw, since best results were obtained by using the PSF as weighting
function. Equations (3.11) – (3.13) are valid for square-sized detectors only. The estimated
errors for x and y dimension are equal, due to the assumed symmetry of the PSF and weight-
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ing function. Note, that these estimators do not consider the initial centroid estimation that is
required for the computation of WCoG and IWCoG. As a consequence, the estimation is only
valid if the centre of the weighting function overlaps with the true centroid position, which is
the case after a few iterations of IWCoG. If this error estimation is applied to WCoG, it should
be dealt with great caution, as it only provides lower error boundaries which do not have to
resemble the true error range in most cases (see Figure 3.7).

Figure 3.11.: The dependency of the IWCoG algorithm on the signal-to-noise ratio. A Monte-Carlo simulation carried out by StarSim produced
a sample of 1 500 images (see Figure 3.2). 15 iterations of IWCoG were performed for each simulation. The transparent black
dots indicate the computed true CEE per image. The blue line indicates the estimated mean CEE based on error estimation
described in Section 3.2.3.2. The median values represent the most likely CEE. Error bars are symmetric as they represent the
standard deviation of the mean CEE. The residuals depict the difference between mean estimated CEE and mean true CEE.
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3.2.3.3. Performance

Monte-Carlo simulations were carried out in order to produce samples containing a large num-
ber of images. The performance of IWCoG was tested for different SNRs. Figure 3.11 reveals
that performing multiple iterations of WCoG results in a much lower dependency on the SNR.
Furthermore, it depicts that the impact of the initial centroid estimation, which significantly
affected the WCoG algorithm, is removed entirely. Additionally, it can be seen that the IWCoG
provides high-quality results with a small absolute CEE even for very low SNRs. An increase
in the SNR only by a factor of five scaled down the CEE and its spread by nearly a factor of
six. In general, the distribution of the true CEE is much smaller compared to other CoG al-
gorithms. Furthermore, the IWCoG reached the optimal accuracy, limited by the Cramer-Rao
bound, approximately at an SNR of 60. Here, the median true CEE is shown, as it differs from
the mean true CEE for low SNRs. In this case the CEE follows a Poisson distribution rather than
a normal distribution and the plotted average does not resemble the peak of the distribution any
more. However, the most likely CEE is represented by the median. Error bars are symmetric
as they illustrate the standard deviation of the mean true CEE. Error estimation was discussed
in Section 3.2.3.2 and is represented as blue line. The residuals display a non-compliance of
estimated error and true error for low SNRs. An explanation for the deviation of the error es-
timation which is based on Nicolle et al. (2004) requires further analysis. The error is also
slightly overestimated at higher SNRs. However, as it is visualised in the residuals the magni-
tude of this overestimation is negligible (< 0.05 px). Note that, even if the error estimation did
not resemble the true error perfectly, it is still an estimation of high quality as the accuracy is
below 0.3 px.

3.2.3.4. Summary

The performance of the IWCoG was tested and compared to other methods under various con-
ditions (see Section 3.5). A two-dimensional Gaussian weighting function was used like in the
simulations for WCoG. The performance of IWCoG for different SNRs is outstanding. Even
for low SNRs the centroid estimation was close to the Cramer-Rao bound. Eventually, this
limit was reached at a SNR of about 60. After a certain number of iterations the CEE does not
decrease any further. The number of iterations required to reach this error saturation depends
on the start position as well as on the target’s brightness. The main disadvantage of WCoG was
the strong dependency on the start position. This issue was solved by performing multiple iter-
ations. Therefore, IWCoG is capable of providing very accurate centroid estimations even for
poor initial conditions. However, convergence against the true centroid only occurs as long as
the weighting function (Gaussian spot) is overlapping with the target spot (see Figure 3.22). The
target spot may not necessarily be centred in the RoI. Thresholding the background may lead to
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faster convergence, but it is not a mandatory task to obtain low CEEs (see Figure 3.23). Iden-
tically to WCoG, centroid estimation is not affected by cosmic ray hits that occur outside the
target spot, as long as they are not overlapping with the weighting function (see Section 3.5.4).
If such glitches happen to be inside the target spot, the centroid estimation is distorted. IWCoG
is also applicable in crowded field observations, as long as the star position is close to the target.
In general, the processing time of IWCoG is simply the number of iterations multiplied by the
average time required for the computation of WCoG. Thus, processing times may be too large
depending on the hardware characteristics of the spacecraft. A possible approach for lower
computation times is pre-computing a set of weighting functions. Calibration with dark frames
is not necessarily required, if the occurrence of hot-pixels is low. The same applies for flat field
calibration as long as variations in the pixel sensitivity are low. However, both procedures are
suggested if high-precision centroiding is performed. In comparison to all other centroiding
algorithms, IWCoG is among the most powerful methods in terms of accuracy and stability.
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3.3. Correlation-Based Centroiding

The cross-correlation of a CCD image and a reference spot, that is often referred to as ’template’
or ’pattern’, may be used for centroid estimations as well (Vyas et al., 2010; Poyneer et al.,
2003; Uhm et al., 2008; Thomas, 2004). This method is fairly well known for the purpose
of adaptive optics with Shack Hartmann wavefront sensors. A possible application for space
telescopes is discussed in this section. The correlation-based centroiding method is currently the
only pattern matching technique that is used for centroiding tasks. The pattern should resemble
the image spot as close as possible, similar to the weighting function applied in WCoG/IWCoG
(see Section 3.2.2 and 3.2.3). Therefore, it is essential to obtain an accurate model of the
PSF. In most cases, a two-dimensional Gaussian model (see Section 2.3) is applied. Once the
cross-correlation between the image and the reference has been computed, the position of the
correlation peak reveals the centroid location. The accuracy of this estimation is limited by the
image resolution. One possible way to obtain intra-pixel centroid estimations is interpolation
subsequent to the cross-correlation. This represents the state of the art implementation for
centroiding via cross-correlation and is discussed in Section 3.3.3. Alternatively, I present a
new way to obtain intra-pixel centroid estimations in Section 3.3.4 by upsampling the image
resolution. If the reader is not familiar the with the concept of cross-correlation, I suggest to
read the section below, as it describes the underlying principles briefly.

3.3.1. Correlation and Convolution

In general cross-correlation can be applied to describe the correlation between two signals.
In the one-dimensional case it is often used do determine positions in spectral analysis, such
as locating narrow spectral lines embedded in a large spectrum. This principle can easily be
extended to solve similar two-dimensional problems like finding star positions in an image.
The cross-correlation of two discrete two-dimensional functions, f and I , is defined as follows.

C(x, y) = (f ◦ I)(x, y) =
M−1∑
m=0

N−1∑
n=0

f(m,n) I∗(x+m,x+ n) (3.14)

for −(K − 1) ≤ x ≤M − 1 and −(L− 1) ≤ y ≤ N − 1

The above equation evaluates the cross-correlation at given x and y position. The dimension
of f is M × N and the dimension of I is K × L. Therefore the resulting matrix, C, is of size
(M +K − 1)× (N + L− 1). For the purpose of centroiding, the computation of the complex
conjugate, I∗, in Equation (3.14) is not relevant, as I = I∗ because I is an image that only
holds real values. Function f is often referred to as filter, kernel or mask and holds information
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about the expected stellar shape. C is the resulting correlation matrix, where the coefficients
with highest values indicate the points of maximum correlation.
The processing of a convolution is quite similar. In fact, cross-correlation provides the same
result as convolution if the filter is flipped in both dimensions before the correlation is carried
out. The discrete two-dimensional convolution of f and I is defined as follows.

C?(x, y) = (f ∗ I)(x, y) =
M−1∑
m=0

N−1∑
n=0

f(m,n) I∗(x−m, y − n) (3.15)

for −(K − 1) ≤ x ≤M − 1 and −(L− 1) ≤ y ≤ N − 1

C? denotes the result of the convolution (not the complex conjugate). If the filter is symmetric,

convolution and correlation provide identical results. Both are shift invariant and linear oper-
ations. However, a big difference is the fact that the convolution can be calculated with less
computation time by applying the convolution theorem. This means, the convolution may be
computed by point-wise multiplication of image and filter in the Fourier domain, which can be
expressed as follows.

C? = F
{
F{f} · F{I}

}−1 (3.16)

Centroid estimations may be performed by Equation (3.16), by using a model of the PSF as
symmetric filter. For the computation of Equation (3.16) a Fast-Fourier-Transform algorithm
(FFT) may be applied. Although the overhead produced by such algorithms leads to additional
computation time, the calculation via FFT is much faster compared to direct mode in most
cases. Direct computation may only be faster for the case of very small image and filter sizes.

3.3.2. Application to Centroiding

A few things must be considered if cross-correlation is applied to obtain centroid estimations.
Keeping the window size small is crucial, as bigger RoIs lead to much higher computation
times (see Figure 3.28). Although this method was originally designed for wave-front sensing
in adaptive optics, it’s also applicable for centroiding tasks in space if sufficient CPU capacity
and clock speed are available. One big advantage of the correlation method is that no initial
centroid estimation is necessary to run the algorithm and find star positions. However, for the
case of multiple stars inside the RoI it is necessary to estimate the centroid position in order
to distinguish the target star from others. There are several options available for boundary
conditions in two-dimensional image correlation. Two types are applicable for the purpose of
centroiding. One possibility is to reflect the image array at the boundary and another option is
to set boundary values constantly to zero. I suggest to use reflecting boundaries for handling
small PSF sizes and zero-value boundaries otherwise.
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The performance of correlation-based centroiding is limited by the image resolution. In fact,
without any modification the obtained centroid information is limited to pixel scale, meaning
that intra-pixel locations cannot be determined. Modifications that solve this particular problem
are presented in the following sections.

3.3.3. Centroid Estimation by Interpolation

Poyneer et al. (2003) presented a way to obtain intra-pixel centroid estimations by interpolating
between three points across the maximum of the correlation function. The correlation between
the sub-aperture image (or RoI), S(i, j), and a reference spot, r(i, j), of Gaussian shape is com-
puted. The reference spot should be smaller than the RoI in order to get best results. Here r(i, j)
is quadratic with size N × N . The centroid estimation below is derived for the x-dimension
and can be applied for the y-dimension analogous by flipping indices. The x-estimator is repre-
sented by

E(x∗c) =
0.5(m1 −m−1)
m1 +m−1 − 2m0

(3.17)

where mk are the means of the cross-correlation

mk =
N−1∑
i=0

N−1∑
j=0

r(i− k, j)λ(i+ px, j + py) (3.18)

with (px, py) being the peak location of the correlation function. The function λ(i+ px, j + py)

represents the image, S(i, j), reduced by the Gaussian noise component. Photon noise is still
included in S in each pixel. The components m1,m0 and m−1 determine the points of interpo-
lation, where m0 is for the peak and m1,m−1 for the adjacent areas. The characteristics of this
method were analysed in Section 3.5 and are summarised in Section 3.3.3.4.

3.3.3.1. Implementation

The correlation-interpolation method may be implemented by executing the following steps,

1. Obtain a template of the point spread function and use it as reference spot r. The resolu-
tion of the spot must match the resolution of stars inside the RoI.

2. Compute the cross-correlation between RoI (S) and reference spot (r) via convolution in
Fourier domain. Dimensions of S and r may differ.

3. Evaluate the peak location of the correlation function on pixel scale in order to determine
m1,m0 and m−1 according to Equation (3.18).

4. Obtain the centroid estimator by interpolating with Equation (3.17).

Implementations of correlation-interpolation are provided in the Appendix A.3.4.
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3.3.3.2. Error Estimation

The performance of the correlation method presented in 3.3.3 was analysed by Poyneer et al.
(2003). For the case of zero shift, which means that m0 is overlapping with the peak position,
the variance due to photon noise can be expressed as

var(xc)p =
σ2
1 − σ2

−1,1
8f(m0 −m1)2

(3.19)

where f represents the quantum efficiency and (σ2
k,σ2

k,l) are the variances and covariances of the
cross-correlation expressed by

σ2
k =

N−1∑
i=0

N−1∑
j=0

r2(i− k, j)σ2
S(i, j) (3.20)

σ2
k,l =

N−1∑
i=0

N−1∑
j=0

r(i− k, j)r(i− l, j)σ2
S(i, j) (3.21)

with σ2
S = λ(i, j) + σ2

N including the variance of the Gaussian noise σ2
N .

The standard deviation associated to Equation (3.19) scales inversely with the SNR. The vari-
ance caused by the read-noise component can be expressed as

var(xc)r = σ2
N

∑N−1
i=0

∑N−1
j=0 r(i− 1, j)[r(i− 1, j)− r(i+ 1, j)]

8(m0 −m1)2
(3.22)

Combining Equations (3.19) and (3.22) leads to the total error in the centroid estimation for the
x-component. Yet again, the y-component may be computed analogous by flipping indices.

3.3.3.3. Performance

Monte-Carlo simulations were carried out in order to produce samples containing a large num-
ber of images. The performance of the correlation-interpolation method was tested for different
SNRs and results are shown in Figure 3.12. The mean true CEE approached the Cramer-Rao
bound at higher SNRs and results only slightly differ from this limit as noise was increased.
Raising the SNR by a factor of ten resulted in a decrease of the CEE nearly by a factor of five.
Additionally, the standard deviation of the mean true CEE is approximately lowered by a factor
six. The residuals reveal that the error estimation described in Section 3.3.3.2 resembles the
true error almost perfectly. The only considerable deviation is the slight underestimation of
the error at SNRs below ten. Although the plot reveals a slight dependency on the SNR, the
correlation-interpolation method is considered as a noise-insensitive method in comparison to
other centroiding techniques.
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Figure 3.12.: The dependency of the correlation-interpolation method on the signal-to-noise ratio. A Monte-Carlo simulation carried out by
StarSim produced a sample of 1 500 images (see Figure 3.2). The transparent black dots indicate the computed true CEE per
image. The blue line indicates the estimated mean CEE based on the error estimation described in Section 3.3.3.2. Error bars
represent the standard deviation. The residuals depict the difference between mean estimated CEE and mean true CEE.

3.3.3.4. Summary

The performance of the correlation-interpolation method was tested and compared to other
methods under various conditions (see Section 3.5). In contradiction to the CoG algorithms, the
performance of correlation methods is not affected by an oversized RoI. Furthermore, the com-
putation does not require an initial centroid estimation. However, such estimation is required
to define the RoI. In addition, it is necessary in the presence of a second star inside the RoI,
because two correlation peaks exist. The correlation-interpolation method features a low de-
pendency on the SNR. Although centroid estimations are very accurate for very low SNRs, the
Cramer-Rao bound is not reached entirely below SNRs of 100. Thresholding the background is
less important than for most CoG types, yet it is recommended (see Figure 3.23). In principle,
the correlation-interpolation method is invariant to displacements of the RoI as well as initial
conditions. In fact, the target spot must be embedded in the RoI entirely. Apart from that, the
spot can be shifted anywhere in the RoI without any loss in performance (see Figure 3.22). Fur-
thermore, centroid estimation is not affected by cosmic ray hits that occur outside the target spot
(see Section 3.5.4). However, impacts within the spot lead to distorted centroid estimation. The
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processing time of correlation-interpolation is much lower compared to the the later introduced
correlation-upsampling method (see Figure 3.5.6). The computation time increases with larger
PSF sizes, as bigger templates are required. In simulations where a symmetrical Gaussian PSF
with a FWHM at five pixel was used, the processing time was about the same as for WCoG and
LMA. Similar to the CoG, the correlation-interpolation method performs worse if the spot’s
peak is situated at the pixel’s edge (see Figure 3.5.5). I recommend to perform image calibra-
tion with dark frames as well as flat fields. In particular sensitivity gradients should be reduced.
In comparison to all other centroiding algorithms, correlation-interpolation is among the most
powerful methods in terms of accuracy and stability and features reasonable processing times
for space applications.

3.3.4. A New Method: Centroid Estimation by Upsampling

In this section, I present a new method of getting centroid estimators on intra-pixel scale via
cross-correlation, as an alternative to the parabolic interpolation method presented in Section
3.3.3. It has been stated earlier that the peak of the cross-correlation between image and ref-
erence spot represents a low-accuracy centroid estimation. In terms of pattern-matching, the
image is cross-correlated with a model of the point spread function in order to locate the points
of maximum overlap. These points indicate integer pixel positions of cross-correlation peaks
inside the image. At this point one can interpolate in order to acquire the intra-pixel positions
of a peak (as done in Section 3.3.3), or perform upsampling of the image and the template prior
to the correlation. In particular, upsampling means upscaling the image resolution by a certain
factor, which I refer to as upsampling factor. Figure 3.13 shows three different cases of cross-
correlation with a reference spot. The first case shows the original image and a low-resolution
PSF-model as reference spot. For the second and third case the image was upsampled and
convolved with a high-resolution PSF model leading to more precise centroid estimation on
intra-pixel scale. The third one is a special case, as spline interpolation of order one has been
performed additionally to upsampling the image. This kind of additional interpolation produced
more stable results in some cases. However, this step does not improve the accuracy and it will
not further be discussed in this thesis. It is crucial for the success of this method that the dimen-
sions of the reference spot are of odd size. In addition, the spot must be perfectly centred, like
it is illustrated in the upper right panel of Figure 3.13.
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Figure 3.13.: Three different cases of cross-correlation between image and reference spot. Panel (1) depicts the original image and a circular
Gaussian reference spot with a FWHM at five pixel. Panel (2) shows the image upsampled by a factor of ten as well as a PSF
model with ten times increased resolution as reference. Note the change in the scale of the axes. Panel (3) is a special case of (2),
where spline interpolation of order one has been performed additionally to upsampling. All images were generated with StarSim.

3.3.4.1. The Upsampling Factor

Figure 3.14 shows the CEE for different upsampling rates. It can be seen that the choice for
the optimal rate that is necessary to achieve a certain accuracy, is affected by the prevailing
SNR (see Equation (3.2)). In addition, Figure 3.14 reveals that the upsampling-correlation
method provides results of high quality, even for very low SNRs. In the absence of any noise
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sources, the mean true CEE converges against the Cramer-Rao bound for higher upsampling
factors. In the case of a very low SNR (red circles), at a certain point the CEE does not improve
any further for increased upsampling factors, as error saturation is reached. For the low-SNR
simulation illustrated in Figure 3.14 an upsampling factor greater than four does not improve
the CEE. Instead, the CEE levels off at 0.2 pixels. Unfortunately, the type of noise source plays
an important role for this phenomenon. Therefore, the total SNR does not directly correlate
with the required upsampling factor. In fact, an increased read-noise stronger influences the
performance of the upsampling-correlation method compared to enhanced background noise,
as the background noise is of uniform nature. In principle, both correlation-based centroiding
methods are not affected by any noise situated outside the target spot. The optimal upsampling
factor is mission specific and depends on the desired CEE as well as on prevailing noise-levels.

Figure 3.14.: The centroid estimation error for different upsampling factors. Red circles indicate a low SNR of 100 and green squares represent
simulations with a SNR of 1 400.

Increased upsampling factors lead to much higher computation times. For instance, an upsam-
pling factor of 10 for a 60×60 px RoI, results in a 600×600 px array. Despite the additional
computational cost of the newly introduced upsampling process, the computation time for the
FFT is at least increased by a factor of 150, due to the larger image size. This estimation is
based on the computational complexity of practical FFT algorithms. Such algorithms perform
about O(N log2N) floating-point operations, where N represents the number of pixels.
The most significant disadvantage of the upsampling-correlation method is depicted in Figure
3.15. It represents the escalation in computation time for increased upsampling rates, which
are essential for accurate centroid estimations (see Figure 3.14). A comparison with computa-
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tion times of other centroiding techniques is given in Figure 3.28. The substantial amount of
computation time is the main reason why the correlation-upsampling method is currently not
applicable for space applications. However, it might be applicable in the near future for space
telescopes with increased CPU capabilities, as it is among the group of the most powerful and
reliable centroiding techniques.

Figure 3.15.: The computation time of the upsampling-correlation method for different upsampling rates. Measurements were taken on a PC
(CPU: Intel Core i7-3630QM, 4×2.4 GHz) for the Python implementation.

3.3.4.2. Implementation

The correlation-upsampling method may be implemented by executing the following steps,

1. Obtain a template of the point spread function and use it as reference spot r. The resolu-
tion of the template is defined by the upsampling factor U .

2. Upsample the RoI S by the factor U .

3. Compute the cross-correlation between upsampled RoI (S) and upsampled reference spot
(r) via convolution in Fourier domain. Dimensions of S and r may differ.

4. Evaluate the peak location (xpeak , ypeak ) of the correlation function in order to obtain
centroid estimators.

5. Obtain centroid estimator xc by converting the peak location to the coordinate system of
the original image by applying xc = (xpeak − 0.5 · U − 0.5)/U . Compute the estimator
xc analogously.

Implementations of correlation-upsampling are provided in the Appendix A.3.4.
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3.3.4.3. Error Estimation

In addition to the error estimation presented in Section (3.3.3.2), a lower boundary for the error
estimation is provided by the upsampling factor U .

err(xc) = err(yc) ≥ (2U)−1 (3.23)

This limit is directly related to the image resolution. Without changing the resolution (U = 1),
the correlation peak may be situated anywhere inside the pixel. In fact, if the peak is located
at the border of the pixel (e.g. in x-dimension), the centroid estimator is shifted by 0.5 pixel.
The error estimator in Equation (3.23) coincides with the results presented in Figure 3.14. It is
clearly visible, that an upsampling factor of U = 2 leads to a two-dimensional CEE of about
0.355 pixel, which corresponds to a shift of 0.25 pixel in one dimension.

3.3.4.4. Performance

Monte-Carlo simulations were carried out in order to produce samples containing a large num-
ber of images. The performance of the correlation-upsampling method was tested for different
SNRs. All simulations were performed with an upsampling factor of 10, which corresponds to
a lower limit for the true CEE of 0.071 (see Section 3.3.4.3). Figure 3.16 reveals that this limit
is reached at a SNR of 50. At this point the spread of the true CEE completely vanishes. It is
a remarkable feature of this algorithm that there is absolutely no spread, once the optimal per-
formance limit is reached. Furthermore, the distribution of the mean true CEE is quite low for
small SNRs and the error is close to the Cramer-Rao bound (< 0.2 px). This method produces
most constant results and therefore it is considered as the most noise-insensitive algorithm pre-
sented in this thesis. Similar to all other algorithms twenty images were generated per SNR
value. As a consequence of the noise insensitivity and due to the discreteness of correlation-
upsampling, the centroid estimations overlap. Therefore the appearance of the black data points
in the graph is more compact compared to other algorithms. Overlapping results appear as
dark data points, whereas single non-overlapping CEEs are transparent. The residuals show
that using the lower-bound error estimation discussed in Section (3.23) resembles the true CEE
completely once a certain SNR is reached.
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Figure 3.16.: The dependency of the correlation-upsampling method on the signal-to-noise ratio. A Monte-Carlo simulation carried out by
StarSim produced a sample of 1 500 images (see Figure 3.2). The transparent black dots indicate the computed true CEE per
image. The blue line indicates the estimated mean CEE based on error estimation described in Section 3.3.4.3. Error bars
represent the standard deviation. The residuals depict the difference between mean estimated CEE and mean true CEE.
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3.3.4.5. Summary

The performance of correlation-upsampling was tested and compared to other methods under
various conditions (see Section 3.5). The accuracy of this algorithm is limited by the upsam-
pling factor in Equation (3.23). Simulations with different SNR-values revealed that the perfor-
mance is less stable for low SNRs, whereas for SNRs above 60 correlation-upsampling provided
constant values for each simulated image. Results were close to the Cramer-Rao bound, but the
CEE saturated at 0.071 px due to the upsampling factor of 10 (see Equation (3.23)). Simi-
lar to correlation-interpolation, no initial centroid estimation is required, except for selecting
the RoI and for distinguishing the target spot from others in a crowded field. Yet, there is a
slight difference to correlation-interpolation if the target spot is situated close to the RoI bor-
der (see Figure 3.22). In this case, the errors are slightly higher for correlation-upsampling
and therefore it is not entirely invariant to RoI displacement (see Figure 3.22). Thresholding
the background does not affect the performance at all and is therefore not recommended (see
Figure 3.23). The method is also invariant to cosmic ray hits that occur outside the target spot
(see Section 3.5.4). Impacts within the spot lead to distorted centroid estimation as it is the
case for any other method. However, this is only true for glitches with high energies. In fact,
correlation-upsampling is invariant to weak cosmic ray hits (with signals far below the brightest
pixel of the target). The processing time of correlation-upsampling is extraordinarily high, thus
it may not be applicable on current space hardware (see Figure 3.5.6). The computation time
mainly depends on the upsampling factor and on the size of the target spot. Simulations showed
that computations carried out with an upsampling factor of 10 for a RoI size of 20×20 pixels
take about 300 times longer than the standard CoG. This represents the main disadvantage of
correlation-upsampling. However, the processing time might be negligible in future, due to in-
creased hardware capabilities. In contradiction to the previously introduced correlation method,
the upsampling method is invariant to intra-pixel positions of the stellar peak (see Figure 3.5.5).
Anyhow, the presence of a strong sensitivity gradient distorts centroid estimations like for any
other method. In such cases, I recommend flat field calibration. Calibrations with dark frames
can be neglected if the amount of hot-pixels is low. Correlation-upsampling belongs to the most
powerful centroiding methods in terms of stability. However, high-accuracy centroid estima-
tions are generally possible, but they require long processing times.
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3.4. Direct Fitting Strategies

Another attempt to obtain centroid estimations is direct fitting of a pre-defined model (Tremsin
et al., 2003; Delabie et al., 2014; Thompson et al., 2002). In this chapter, I describe ways to
fit one-dimensional and two-dimensional Gaussian models. In most cases Gaussian models
represent the PSF with sufficient accuracy. However, there are exceptional cases such as the
CHEOPS mission, where custom PSF-models are required. This particular case is discussed
in Section 4.2.3. It is important to mention that none of the presented algorithms are restricted
to Gaussian models only. For direct fitting it is necessary to estimate the centroid position in
advance, in order to provide initial parameter estimations. This input may be provided by star
trackers or by combining centroiding techniques (hybrid-technique).

3.4.1. Gaussian Three-Point Fit (G3P)

A simple fitting technique is described by Tremsin et al. (2003) and summarised below. A
one-dimensional Gaussian model can be described as follows:

I(x) =
A

σ
√

2π
exp

[
−
(

(x− x0)2
2σ2

)]
(3.24)

where A is the amplitude, x0 is the central peak position and σ is the standard deviation. By
applying ln on both sides of Equation (3.24), it can be rewritten as

ln I(x) = −
[
x20 − 2x0x+ x2 + 2σ2 ln

σ
√

2π

A

]
/ 2σ2 (3.25)

Equation (3.25) represents a quadratic function where x0 denotes the maximum. This is the
only parameter holding centroid information. By fitting a parabola into three equidistant points
Ii−1(xi−1), Ii(xi) and Ii+1(xi+1), the maximum x0 can be expressed as

x0 = P
ln Ii+1 − ln Ii−1

2[2 ln Ii − ln Ii−1 − ln Ii+1]
+ iP (3.26)

where P denotes the fixed distance between the three points. For our application this distance
represents the size of a pixel and therefore P is set to one.
In order to obtain the centroid, the fit has to be applied in y-dimension as well. Therefore, five
points are required in total, where the central point Ii is the same for both dimensions. The
selection of these points is the most crucial step for this technique, due to fact that the centroid
cannot be obtained if it is not located within the selected points. Therefore, this method strongly
relies on the initial centroid estimation. Instead of choosing the brightest pixel, as suggested
by Tremsin et al. (2003), I recommend to use a noise and glitch insensitive strategy, such as
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correlation-based centroiding for estimating the initial centroid. In fact, correlation can be
used to determine a reliable centroid position with integer accuracy (without upsampling) and
subsequently, any kind of fit could be used to increase the accuracy to intra-pixel scale.

3.4.1.1. Implementation

The centroiding method G3P includes two one-dimensional fits of the PSF’s central peak. Each
fit is applied to obtain the centroid estimation for one dimension (x and y). This technique may
be implemented by executing the following steps,

1. Obtain an initial centroid estimation x0, y0 (e.g. from previously executed centroiding
runs).

2. Use x0 and y0 to select the three pixels Ii−1, Ii and Ii+1 for both dimensions. Since Ii
represents the central pixel in both cases, a total amount of five pixels must be selected.

3. Ensure that none of the selected pixels holds zero values. Otherwise replace zero values
with 10−8.

4. Perform the centroid estimation by Equation (3.26) with P = 1.

Implementations of G3P are provided in the Appendix A.3.5 in languages C and Python.

Figure 3.17.: The dependency of the Gaussian 3-point fitting method on the signal-to-noise ratio. A Monte-Carlo simulation carried out by
StarSim produced a sample of 1 500 images (see Figure 3.2). The transparent black dots indicate the computed true CEE per
image. The blue and green line indicate the mean and median true CEE respectively.
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3.4.1.2. Performance

Monte-Carlo simulations were carried out in order to produce samples containing a large num-
ber of images. The performance of the three point fitting technique was tested for different
SNRs. Figure 3.17 depicts the dependency of the fit described by Equation (3.26) on the SNR.
The choice of the five points that are used for the fit depends on the initial centroid estimation
which had been displaced constantly by 0.5 pixel in x and y in this simulation. Note that the
y-axis is of logarithmic scale. The green line shows the median true CEE which is mostly below
one pixel. However, in some cases the noise component caused extraordinarily high CEEs, as
only three data points are used for the fit. Results beyond the size of the RoI (21×21 px) were
not clipped in order to illustrate the possible extreme behaviour of this fit. For the investigated
SNRs, the method showed a clear offset to the Cramer-Rao bound. The mentioned extreme
behaviour did not occur at high SNRs (> 90). This is also verified by the fact that the median
values conform to the average values for such high SNRs. Due to its bad performance, this
method was not included in the comparison between the algorithms illustrated in Figure 3.20.

3.4.1.3. Summary

The performance of G3P was tested and compared to other methods under various conditions
(see Section 3.5). In simulations with different SNRs, G3P performed worse than any other
method. Large errors occurred randomly for low SNRs (<80), thus G3P is considered to be
very unstable. For larger SNRs the performance increased, but the mean CEE did not converge
against the Cramer-Rao bound. The initial centroid estimation is crucial for this method, as it
determines the pixels that are included in the fit. G3P is invariant to a displacement of the RoI,
which means that the target spot can be located anywhere inside the RoI as long as the initial
centroid estimation is accurate (see Figure 3.22). Furthermore, it is invariant to the presence of
additional objects inside the RoI. Thresholding the background is not necessarily required (see
Figure 3.23). The method is invariant to cosmic-ray hits as long as the glitch does not occur in
one of the five pixels required for the fit (see Section 3.5.4). Otherwise the provided centroid
estimation must be discarded. The introduction of random pixel sensitivities lowered the per-
formance stronger than for any other method (see Section 3.5.5). In general, dark current and
pixel sensitivity variations should be reduced via calibration processes, otherwise G3P may not
provide reasonable results. The shape of the PSF is essential for successful centroid estimations
with G3P, as it works best for radial symmetric Gaussian PSFs. In particular, G3P should not
be applied for PSFs without a central peak in the spot. The computation time was very low as
only five data points were included in the fit in any case (see Figure 3.5.6). I do not recommend
to use this method for centroiding as it requires initial centroid estimation with errors at least
below two pixels. Initial centroid estimations should not be performed by selecting the brightest
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pixels, as cosmic ray hits and hot-pixels may cause strong distortions. The variance of the mean
CEE was significantly larger compared to other methods in all simulations, therefore G3P is
considered to be highly unstable.

3.4.2. Two-Dimensional Non-Linear Least-Squares Minimisation

In order to take advantage of all pixels containing stellar signal, two-dimensional models may
be applied to fit the image data. The following equation represents a two-dimensional Gaussian
function

f(x, y) = A exp

[
−
(

(x− x0)2
2σ2

x

+
(y − y0)2

2σ2
y

)]
(3.27)

where the parameters x0 and y0 hold the centroid information. The technique described be-
low allows to fit the other parameters as well. However, σx and σy are determined by the
instrument’s PSF, thus they are well-known. Therefore, they can be treated as constants. The
amplitude, A, is proportional to the incident star signal, therefore it is also known prior to the
observation in many cases. In general, least-squares minimisation is performed to minimise the
function

S(~a) =
n∑
i=1

ri(~a)2 (3.28)

with the residuals ri(~a) = yi − f(xi,~a), where xi and yi are measured quantities and ~a holds
the parameters of the non-linear model, f(xi,~a). This allows to optimise the parameter set ~a.
Equation (3.28) is not restricted to one-dimensional problems. For instance, ri can be expressed
for two-dimensional function as ri(~a) = zi − f(xi, yi,~a). There exist numerous methods for
solving this particular problem. However, I used a well-established method which is described
in the next section.

3.4.2.1. Levenberg-Marquardt Algorithm (LMA)

The Levenberg-Marquardt algorithm (LMA) is a common tool for least-squares minimisations
of non-linear parameters. The original method of Levenberg (1944) was adapted over the years
by various authors (Marquardt, 1963; Jacobs, 1977; Press et al., 2007). An optimised imple-
mentation in C and Fortran is offered by the Minpack project (Moré et al., 1984), which evolved
to a standard library for fitting of non-linear functions over the years. I used Minpack’s routines
to solve the two-dimensional least-squares problem in order to estimate the centroid. Python
and C source code is provided in the Appendix A.3.6. It should be mentioned that Python’s
standard fitting routines use Minpack behind the scenes as well.
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There exist several methods to minimise Equation (3.28), such as the Gauss-Newton algorithm
or the method of gradient descent. The LMA combines and utilises the advantages of these
two methods. However, it still remains a plain downhill search. This represents the biggest
disadvantage of the LMA, as it converges to nearby local minima rather than prioritising the
global minimum. Therefore the choice of start parameters is very decisive in terms of finding
the solution. On the other hand, the LMA is considered to be very robust, as it converges in
most cases also if the initial parameter estimation strongly differs from their final values. The
following description of the LMA is based on Nocedal & Wright (2006).
The LMA performs multiple iterations with the goal to optimise the parameter set ~a. This is
done by modifying the parameters in each iteration by applying ~a = ~a+~δ. In order to determine
the best modification the following linearisation is applied.

f(xi,~a+ ~δ) ≈ f(xi,~a) + Ji~δ (3.29)

The component Ji represents the gradient of the model function with respect to the parameter
vector.

Ji =
∂f(xi,~a)

∂~a
(3.30)

Applying this to Equation (3.28) and using vector notation leads to

S(~a+ ~δ) ≈ ||~y − ~f(~a)− J~δ||2 = ||~r(~a)− J~δ||2 (3.31)

where J represents the Jacobian matrix and ~r are the residuals. Computing ∂S(~a+~δ)
∂~a

≡ 0 gives

(JTJ)~δ = JT~r(~a) (3.32)

By solving this set of linear equations, δ can be determined. Levenberg introduced the damping
parameter, λ, into this equation, which led to

(JTJ + λI)~δ = JT~r(~a) (3.33)

where I represents the unit matrix. Due to this modification, the method is alternatively called
damped least-squares minimisation. Later on Marquardt adapted the equation by scaling the
gradient’s components which lead to faster convergence. Eventually, this led to the LMA’s final
form. [

JTJ + λ diag(JTJ)
]
~δ = JT~r(~a) (3.34)
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3.4.2.2. Implementation

An implementation where the computation of matrix multiplication JTJ is not necessary (sin-
gular value decomposition) is provided by Nocedal & Wright (2006). Increasing λ means the
LMA resembles the gradient descent method rather than the Gauss-Newton method, whereas
decreasing λ leads to the exact opposite. The principle of the algorithm can be summarised by
the following iteration steps (see also Press et al. (2007)),

1. Compute the error S(~a).

2. Solve the linear Equations (3.34) for ~δ.

3. Compute the new error S(~a+ ~δ).

4. If the error has increased: reject the step and increase λ.

5. If the error has decreased: accept the step by setting ~a = ~a+ ~δ and decrease λ.

6. Stop iterating if the exit condition is met, otherwise go to (1).

Iterations should be stopped if the reduction of the computed error or the change in ~δ fall below
pre-defined limits. The best choice of λ depends on the initial scale of the problem. However,
Press et al. (2007) suggested to set the damping parameter initially to λ0 = 0.001 and to apply
a factor of 10 for increasing/decreasing.
Additionally, the LMA can be described as a trust-region algorithm. This means that the param-
eter choice is restricted to ||~δi|| ≤ ∆i, where ∆i is the radius of the trust-region. Trust-region
algorithms are not further discussed as they are beyond the scope of this thesis, but an ele-
mental description is provided by Nocedal & Wright (2006). Implementations of the LMA are
provided in the Appendix A.3.6 for C and Python.

3.4.2.3. Application to Centroiding

The amplitude, A, of the model function (3.27) scales with the stellar signal and can be treated
as constant for each observation. Therefore, the only remaining fitting parameter is the centroid
position. In general, it is easy to distinguish between stars and other features on the detector,
due to the PSF structure. Each star represents a local minimum, therefore it is likely that the
LMA converges against stars that are closer to the start position.
The computation time of the LMA scales linearly with the number of iterations performed. It
was found that the convergence speed of the LMA may be very slow, particularly if the best fit is
located at a narrow maximum, such as the case for small point spread functions. This problem
is illustrated by Figure 3.18 in which the first two hundred iterations are displayed. A circular
Gaussian PSF with a spread of σ ≈ 2 px was applied. The initial centroid estimation was
displaced by only two pixels in x and y-dimensions. Although the initial CEE is very low, the
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computation time is extraordinarily high, due to the slow convergence speed. However, there
exist improvements to the LMA which address this particular problem (Transtrum & Sethna,
2012). For space application the computation time is a crucial topic. Therefore, it is interesting
to know the maximum number of required iterations. I highly recommend to determine the
number of iterations for each mission individually by testing the algorithm with an accurate
PSF-model. Contrary to the IWCoG the convergence speed is not influenced by the stellar
signal.

Figure 3.18.: Convergence speed of the Levenberg-Marquardt algorithm for a small PSF. Red circles and blue triangles indicate displaced
centroid estimation by two and one pixel, respectively. Simulated images did not contain relevant noise sources.

3.4.2.4. Error Estimation

Error estimation of the fit parameters, ~a, can be obtained via the covariance matrix (JTJ)−1.
This matrix has to be scaled with the reduced chi-square

χ2 =
N∑
i=1

ri(~a)2

N − n (3.35)

where N represents the number of data points, ri are the residuals and n is the number of
parameters (elements in ~a). The standard error of the fitted parameters can be computed by
taking the square root of the diagonal elements.

~σa =
√

diag[(JTJ)−1 · χ2] (3.36)
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This kind of error estimation simply represents the error of the fit and does not even require
additional computation time. Compared to other error estimations it is more comfortable as it
does not require any kind of noise estimation.

3.4.2.5. Performance

Monte-Carlo simulations were carried out in order to produce samples containing a large num-
ber of images. The performance of the LMA for different SNRs is almost equivalent to the
performance of the IWCoG. This is further illustrated in Figure 3.20. An increase in the SNR
by a factor of five lowered the mean true CEE and its spread by a factor of five to six. The LMA
starts off close to the Cramer-Rao bound and reaches this limit approximately at a SNR of 60.
The error estimation shown in Figure 3.19 is described in Section 3.4.2.4. Although this error
estimation is simply based on the error of the fit without considering any noise estimations,
it represents the true error with sufficient accuracy. However, the residuals reveal a constant
overestimation of the CEE of about 0.05 px for SNRs above 20.

Figure 3.19.: The dependency of the LMA on the signal-to-noise ratio. A Monte-Carlo simulation carried out by StarSim produced a sample of
1 500 images (see Figure 3.2). The transparent black dots indicate the computed true CEE per image. The blue line indicates the
estimated mean CEE based on error estimation described in Section 3.4.2.4. The median values represent the most likely CEE.
Error bars are symmetric as they represent the standard deviation of the mean CEE. The residuals depict the difference between
mean estimated CEE and mean true CEE.
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3.4.2.6. Summary

The performance of the LMA was tested and compared to other methods under various con-
ditions (see Section 3.5). The two-dimensional Gaussian model described by Equation (3.27)
was applied to determine a centroid estimation. The centroiding performance of LMA is al-
most equal to the performance of IWCoG for different SNRs. Even for low SNRs the centroid
estimation was close to the Cramer-Rao bound. Eventually, this limit was reached at a SNR of
about 60. An initial centroid estimation is required for fitting the model into the RoI. At an off-
set of about 5σPSF, the LMA is not applicable, as no solution can be provided (see Figure 3.22).
For any start positions closer to the true centroid the LMA is invariant and provides optimal
results. However, the convergence speed increases for larger offsets as more iterations are re-
quired. The LMA is totally invariant to uniform background signal. Therefore thresholding is
not required (see Figure 3.23). The presence of cosmic ray hits only affects the performance
if they occur inside the stellar spot (see Section 3.5.4). For observations in a crowded field the
initial conditions must include star positions close to the target. The computation time depends
on the fit-model, the initial conditions and on the size of the RoI (see Section 3.5.6). Calibra-
tion with dark frames and flat fields are not necessarily required, as the influence of such image
components on the astrometric error is relatively low. The LMA belongs to the most powerful
methods in terms of accuracy and stability. In fact, LMA and IWCoG were slightly closer to
the Cramer-Rao bound than the correlation-based centroiding techniques in most simulations.
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3.5. Comparison of Algorithms

The impact of the SNR on the performance was presented for each algorithm separately in the
previous sections. In this section the performance of the centroiding methods is compared in
various circumstances such as cosmic ray hits, displacement of the RoI and others. Additionally,
a comparison of the computation times was carried out, since it is a crucial subject for space
applications.

Figure 3.20.: A comparison of the dependency on the SNR of various centroiding methods. A Monte-Carlo simulation carried out by StarSim
produced a sample of 1 500 images (see Figure 3.2). More detailed results are provided in the particular section of each method,
where scatter of the mean true CEE was investigated as well.

3.5.1. Dependency on Signal-to-Noise Ratio

Figure 3.20 depicts the mean true CEE for different SNRs. The SNR dependency was illus-
trated for each centroiding method respectively in the previous sections. The one-dimensional
fit described in Section 3.4.1 is not included, as its mean true CEEs are several magnitudes
higher than others. The bad performance of the WCoG algorithm is related to the initial CEE
of 0.71 pixel (see Section 3.2.2.2). The only algorithms that reached the optimal limit (Cramer-
Rao bound) within the investigated SNR range are LMA and IWCoG. On first sight, it looks like
their results perfectly overlap. Such characteristic overlap only occurs if the same function is
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used as fit-model in the LMA and for constructing the weighting function in IWCoG. However,
there is small difference for SNRs below 10, where IWCoG performed slightly better. The com-
parison of the two correlation-based centroiding methods showed, that the upsampling method
provided more accurate results than the interpolation method, until the error saturation occurred
due to the chosen upsampling factor. Although IWC is a rather simple method that does not
require multiple iterations or initial centroid estimation, the CEE of IWC were surprisingly low
for high SNRs.

3.5.2. Dependency on Region of Interest and Start Position

The behaviour of the centroiding methods was investigated for different start positions (see
Figure 3.22). The initial position estimation as well as the centre of the RoI was moved away
from the stellar centre as illustrated in Figure 3.21. Therefore, Figure 3.22 depicts the depen-
dency on two different components. Firstly, the initial centroid estimation that is required for
some algorithms may affect their performance if the distance to the true centroid is large. In
fact, such initial position estimation is necessary for all methods, as it is used to define the RoI.
Therefore, the star may be displaced from the centre inside the RoI, which affects the perfor-
mance of some methods. The simulated image included a target star with a fixed SNR of 100.
Simulations introduced in the previous sections, revealed that the noise component at such a
SNR is low enough to provide CEEs with very low scatter (e.g. see Figure 3.11). Therefore,
no Monte-Carlo simulation was performed in this case. The simulations were performed with
proper thresholds. Neglecting this process would lead to even steeper curves in Figure 3.22.
Results are now discussed for each method respectively.
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Figure 3.21.: Two simulated images of the same star with a SNR of 100. Crosses indicate results of the centroiding algorithms and the color
codes are the same as in Figure 3.22. Left: The RoI is centred at the star. Right: The RoI was displaced by 3 px in x and y, which
corresponds to a total initial CEE of 4.24 px. Images were generated with StarSim.

Figure 3.22.: The dependency of various centroiding algorithms on the initial position estimation (offset). This offset is a combination of the
offset in x and y and represents the absolute distance to the true centroid. The images shown in Figure 3.21 illustrate the applied
procedure. The lower panel simply represents a zoom on algorithms that perform well on position shifts. Shaded areas display
the ranges of the standard deviation of the circular Gaussian spot.
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CoG shows a stair-shaped profile. This step-wise increase in the CEE is related to the process
of shifting the RoI away form the spot centre (see right panel of Figure 3.21). The shift was
carried out on integer scale, which caused the characteristic stair-profile. Note that CoG does
not require any initial centroid estimation for the computation, but the placement of the RoI
strongly influences the computed centroid location. Best results are obtained if the star is cen-
tred inside the RoI.
WCoG depends even stronger on the initial offset. In contradiction to the standard CoG, the
WCoG did not result in the characteristic stair profile. This is because WCoG applies a start
position for evaluating the weighting function and the offset of the star position was gradually
increased in steps of 0.1 px in x and y. This effect completely dominated the displacement of the
RoI, which occurred on integer scale. In fact, this means that a displacement of the RoI-centre
has no impact on the CEE, as long as the start position is accurate. Results were similar to the
CoG as long as the weighting function overlapped with the stellar spot. WCoG produced worse
results if the weighting function was placed at distances farther than 2σ away from spot centre.
IWC performed much better than CoG and WCoG with CEEs below two pixels during the
entire simulation. However, a computation without thresholds would increase the slope of the
CEE significantly. IWC also features a stair shaped profile, caused by the integer shift of the
RoI. However, the zoomed plot on the lower panel of Figure 3.22 shows that the CEE is in-
creased only by 0.1 px per step, which is much lower compared to the standard CoG.
IWCoG was performed with fifteen iterations and showed entirely no dependency on the start
position up to a certain point. This characteristic point was about 5.4 σ away from the spot cen-
tre. This can be explained by looking at the weighting function. Once the weighting function is
placed at a distance where it does not overlap with the stellar spot, the IWCoG stops converging
against the true centroid even when the number of iterations is increased. This process is equal
to the multiplication of two equally sized one-dimensional Gaussian profiles shifted to each
other. If a read noise component is dominating the flanks of these Gaussians, the convergence
limit is shifted. Performing less iterations would rise the CEE’s slope for offsets below the
convergence limit. This feature has been discussed in Section 3.2.3 (see Figure 3.9).
Gauss-3P-fit is a one dimensional fit using three points in x and y respectively. Therefore the
CEE is lower than the offset only if the start position is located less than three pixels away from
the spot centre. For higher values the magnitude of the CEE is mostly about the size of the off-
set. However, some offsets produced extreme values (e.g. at an offset of five pixels), which is
one reason why this method is considered as highly unstable. Compared to the other algorithms
this method again exhibits the worst performance like in the analysis for different SNRs.
LMA performed similar to IWCoG and featured the same convergence limit. Once the fit-
model did no overlap with the stellar spot, the LMA did not provide any centroid information.
However, up to this point the CEE was constantly low, even for high offsets.
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Correlation-upsampling constantly provided results below 0.4 pixel. It featured an interesting
stair profile illustrated in the lower panel of Figure 3.22. In contradiction to the other methods
the stair profile is not related to the integer shift of the RoI. In fact, the star was moved towards
the left edge of the RoI as offsets were increased (see Figure 3.21). This affected the results of
the convolution, as some parts of the reference template were located outside the RoI. Boundary
conditions were applied so that values beyond the RoI were constantly set to zero. Thus, results
were less accurate at the border of the RoI. Alternatively, reflecting boundaries may be applied
to correct this effect.
Correlation-interpolation showed no dependence on the start position. The stellar spot may
be estimated anywhere inside the RoI, without affecting the high-precision performance of this
method.

The two correlation methods, together with LMA and IWCoG performed best for imprecise
initial centroid estimations. Therefore, these methods should be considered if centroiding is
performed on spacecraft that exhibit a strong jitter.

3.5.3. Dependency on Thresholds

Figure 3.23 depicts the dependency of various centroiding methods on background threshold-
ing. The mean true CEE was computed out of twenty images for each threshold level. The
scatter of the true CEE was not plotted to avoid overloading the figure. However, the standard
deviation of the computed true CEE was below 0.5 pixel for thresholds below 1000 for most
methods. The only exceptions are the correlation-upsampling method, which did not feature any
scatter and the Gauss-3P-fit, where the spread size was doubled. The initial centroid estimation
was constantly set to one pixel in both dimensions during the entire simulation. All images
were simulated with a SNR of 100 and they included a background signal of about 200 e–px−1.
The threshold was gradually incremented to the highest pixel values (of about 1070) in steps of
10 e–. Figure 3.23 reveals that the optimal threshold ranged from 300 to 500 e–, as the CEE was
equal to the Cramer-Rao bound for most methods in this threshold range. A minimum thresh-
old value of 300 e– was sufficient to remove the background, as well as bias and read-noise in
regions outside the spot. For thresholds above 500 e–, the outer parts of the stellar spots started
to fade away, thus the CEE increased (over-thresholding). Results are now discussed for each
method respectively.
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Figure 3.23.: The dependency of various centroiding algorithms on thresholds. The mean true CEE was computed out of twenty images for
each threshold level. The lower panel represents a zoom on the Cramer-Rao bound.

CoG displayed a strong non-linear behaviour for different thresholds. The application of a
threshold that removed half of the background, only improved the CEE by about fifteen per-
cent. Thresholding the entire background led to a performance at the Cramer-Rao bound. Over-
thresholding slightly increased the CEE up to thresholds below 1 000 e–. For even higher thresh-
olds the stellar signal was almost entirely removed which caused an escalation of the CEE.
WCoG showed almost linear dependency on thresholds. However, the computed CEE did not
reach the Cramer Rao bound, due to the displacement of the start position. This has been further
discussed in Section 3.5.2.
IWC featured a linear dependency on thresholds, as well. IWC reached the Cramer-Rao bound
faster than other methods, as it is depicted in the lower panel of Figure 3.23. For further in-
creased thresholds IWC behaved like the standard CoG.
IWCoG and LMA started off at the Cramer-Rao bound. Thus thresholding did not improve
the centroid quality of these methods. However, over-thresholding affected both methods in the
same way as the other CoG-based algorithms.
Gauss-3P-fit did not require thresholding either. The decrease of the CEE in the extreme over-
thresholded region was only caused by a favourable star position for the three-point-fit. This
does not occur in general.
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Correlation-upsampling is the only method showing absolutely no dependency on any of the
applied thresholds. It is therefore considered to be entirely invariant to uniform background
signals as well as over-thresholding. The computed CEEs correspond to the lowest possible
limit defined by the upsampling factor of ten (see Section 3.3.4).
Correlation-interpolation displayed a weak linear dependency on thresholds. I suggest to al-
ways apply thresholds for this method, as the background level could be orders of magnitude
higher in real observations.

The correlation-upsampling method, together with LMA and IWCoG performed best in the
presence of a uniform background signal. Thresholding the image is not a compulsory step for
these methods.

3.5.4. Impact of Cosmic Ray Hits

The impact of cosmic ray hits on the centroiding methods was analysed for two different sce-
narios. Figure 3.24 illustrates sample images of these scenarios. The cosmic ray hits were
distinguished by their location. In fact, it was distinguished whether they occurred outside
(type I) or inside the stellar spot (type II). The origin of cosmic ray hits and the related glitches
are discussed in Section 2.8. Note that the following analysis is restricted to the two glitch po-
sitions illustrated in Figure 3.24. An investigation including random glitch positions for various
glitch frequencies is provided in the mission specific Chapter 4.2.4.2.
Figure 3.25 and 3.26 summarise the simulation results for the two glitch scenarios. In both
scenarios, the glitch signal was gradually incremented up to 5 000 e– in steps of 100 e–. The
initial centroid estimation was constantly displaced by 0.5 pixel in both dimensions. The mean
true CEE was computed out of twenty images per glitch signal. The scatter was negligibly low
for all methods, due to the high SNR of 170. Only a few methods were affected by glitches
of type I, but all algorithms showed distortion in the second scenario. Both scenarios are now
discussed for each method respectively.
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Figure 3.24.: Both sample images depict the same star with distinct cosmic ray hits. They show the thresholded region of interest. Left: cosmic
ray hit outside the stellar spot (Type I). Right: cosmic ray hit inside the stellar spot (Type II). Crosses indicate results of the
centroiding algorithms and the color codes are the same as in Figure 3.25. Images were generated with StarSim.

Figure 3.25.: The impact of a type I glitch on the performance of centroiding algorithms. A sample image is provided in Figure 3.24. The
mean true CEE was computed out of twenty images for each glitch signal. The lower panel represents a zoom on the Cramer-Rao
bound.
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Figure 3.26.: The impact of a type II glitch on the performance of centroiding algorithms. A sample image is provided in Figure 3.24. The
mean true CEE was computed out of twenty images for each glitch signal.

CoG showed a flat linear increase of the CEE in both scenarios. In the case where the glitch
was situated farther away from the stellar spot, the impact was even stronger. This is due to the
principle of the CoG algorithm, as all signals are weighted only by their position.
WCoG exhibited a distortion only in the second scenario. This is because the weighting func-
tion cut off all the signal outside the target spot. This is only possible for precise start positions.
The initial offset in the CEE of 0.4 px was caused by the small displacement of the start posi-
tion.
IWC squares the image prior computation of the centre of gravity. Therefore the glitch signal is
also squared, thus the implications of glitches were even worse compared to the standard CoG.
IWCoG and LMA were not affected by glitches outside the target spot. Glitches inside the spot
distorted the centroid estimation, where increased glitch signals caused larger CEEs.
Gauss-3P-fit displayed no influence form the glitch in both scenarios. This can be explained
by the fact that only three pixels are used in both dimensions and none of these contained a
glitch. However, if a cosmic ray hits one of these pixels, Gauss-3P-fit is definitely not capable
of providing useful results.
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Correlation-upsampling featured a slightly different behaviour than the other methods. In the
analysis of type I glitches, correlation-upsampling provided unaltered centroid positions like
many other methods. The computed CEEs correspond to the lowest possible limit that is de-
fined by the upsampling factor of 10 (see Section 3.3.4). For glitches inside the stellar spot, this
method featured the same dependency on the glitch signal as IWCoG and LMA at first sight.
However, by looking closer at the region for glitch signals below 1500 e–, it can be seen that
correlation-upsampling was not affected by weak cosmic ray hits. In fact, type II glitches only
affected the performance for glitch signals close to or greater than the brightest pixel in the
stellar spot.
Correlation-interpolation displayed a similar behaviour than IWCoG and LMA. Glitches in-
side the stellar spot may produce large CEEs, whereas glitches outside the spot cause no distor-
tion.

Best performance was shown by the correlation-upsampling method, due to the advantage for
low glitch signals, followed by IWCoG, LMA and the correlation-interpolation method. The
IWC featured the worst performance in the presence of glitches. It should be mentioned that
no method was capable of providing accurate results near the Cramer-Rao bound in the second
scenario. Glitches are a non-negligible source of errors particularly in regions where glitch rates
are high, such as in the South Atlantic Anomaly (see Section 4.2.2). Therefore, deglitching
techniques, like applying a median filter, should be considered in order to improve the CEE in
such regions. This possibility has been analysed further in Section 4.2.4.2.
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Figure 3.27.: The centroid estimation error for different intra-pixel positions of the target. The star position was moved along the x-axis in steps
of 0.1 px. The gray shaded regions indicate the size of a pixel. Three scenarios are visualised. The panels are described from
top to bottom as follows. First panel: Images were created with uniform pixel sensitivities. Second panel: Normal distributed
pixel sensitivities were introduced with a mean sensitivity of 90 ± 5%. Third panel: A sensitivity gradient was added where
the sensitivity was increased from left to right. Fourth panel: Intra-pixel sensitivities were included according to the pixel-map
listed in the simulation parameters. Pixel sensitivities vary from 100% (centre of pixel) to 50% (edge of pixel) inside each pixel.
The Gauss-3P-fit is only shown in the first panel, as the provided CEEs were too high in the other scenarios. In fact, the results
were one order of magnitude higher compared to the other methods. A more detailed description of these simulations is provided
in the text.
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3.5.5. Flat-Field: Intra-Pixel Star Positions and Pixel Sensitivities

The dependency on different intra-pixel star positions and flat fielding was tested by simulating
the motion of the star along the CCD’s x-axis. Therefore, the star was moved from position
(12,12) to (17,12) in steps of 0.1 px. Figure 3.27 illustrates the mean CEE in four distinct cases
for each position. From top to bottom the first panel represents images without any flat-field
component, which implies that all pixels feature the same sensitivity. The second case includes
random pixel sensitivities that were represented by a normal distribution with a mean of 90%

and standard deviation of 5%. In simulations corresponding to the third panel, an additional
sensitivity gradient was introduced to the images. This gradient was applied on the whole CCD
along the x-axis with sensitivities ranging from 30 − 100% percent (left edge to right edge).
Thus, inside the RoI the pixel sensitivities were ranging from 35− 48% from left to right. The
fourth panel depicts simulations including intra-pixel sensitivities. An introduction to the topic
of intra-pixel sensitivities is provided in Section 2.7. For each star position, 25 images have
been simulated, which led to a total number of 1 300 images per sample.
No flat-field correction was performed in any case. In fact, this analysis was carried out in order
to determine the necessity of such a reduction technique. All scenarios shown in Figure 3.27
are now discussed for each method respectively.

CoG showed a strong dependency on the intra-pixel centroid positions even without the pres-
ence of a flat-field component. The mean CEE was clearly higher for positions closer to the
pixel’s edge. The introduction of random pixel sensitivities did not influence the performance.
However, the introduction of the sensitivity gradient led to the saw tooth profile that is illus-
trated in panel three. The mean CEE was remarkably higher due to the gradient, as less signal
was detected in total. By moving the star along the gradient the signal gets amplified, thus the
peaks of the mean CEE decline. On intra-pixel scale the behaviour changed as well. The mean
CEE was remarkably higher if the stellar peak was located close to the left edge of the pixel.
This effect is caused by the direction of the gradient, as it was increased from left to right. In
fact, if the peak is located on the left edge, more signal is contained in pixels on the left side.
Therefore, the point spread function’s left wing was affected stronger by the sensitivity gradi-
ent, which led to higher CEEs. A jump of the mean CEE on a pixel transition occurs directly
at the pixel’s edge, due to the gradient. This feature is slightly shifted by 0.1 px in Figure 3.27,
due to the step size of 0.1 px. Panel four reveals the expected enlargement in the variation of the
CEE, for different positions inside a pixel in the presence of additional intra-pixel sensitivities.
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WCoG featured a similar behaviour as CoG on intra-pixel centroid positions (panel one). Here,
this effect happened on a much smaller scale. Therefore it is negligible. Neither the introduction
of small-scaled random pixel sensitivities (RPS), nor the inclusion of intra-pixel sensitivities did
affect the CEE. Only the sensitivity gradient caused a hardly noticeable decrease of the CEE,
when the star was moved along the gradient. Thus intra-pixel sensitivities are negligible as well.
IWC results were overlapped by LMA and IWCoG in the first two scenarios illustrated in Fig-
ure 3.27. In the first panel IWC is located at the Cramer-Rao bound and its performance was
not affected by different intra-pixel positions. For the last two cases the behaviour was similar
to the standard CoG, except that the total CEE and its variations were much lower.
IWCoG and LMA provided identical results in all four cases. No dependency on the intra-pixel
position was observed. However, the RPS pushed the CEE slightly away from the Cramer-Rao
bound and the gradient increased the total CEE significantly. Nonetheless, the gradient did not
affect variations of the CEE on intra-pixel scale. The effect of intra-pixel sensitivities is also
negligible.
Gauss-3P-fit was not included in some panels in Figure 3.27 due to its bad performance. In
the first panel it can be seen that the method provides less accurate results if the peak is located
at pixel edges. The introduction of only small RPS was sufficient to increase the mean CEE
far beyond 0.4 px. Furthermore, the sensitivity gradient as well as the intra-pixel sensitivities
caused small changes to the CEE, but their effects were completely overlaid by the RPS.
Correlation-upsampling performed with lowest possible errors, corresponding to the upsam-
pling factor of 10 (see Section 3.3.4) in the first two cases. However, the introduction of the
gradient led to an increased CEE. Furthermore, the behaviour was inverse to IWC on intra-pixel
scale. However, the absolute CEE decreased along the gradient.
Correlation-interpolation strongly depends on the intra-pixel position of the stellar peak in all
cases. Here, it is not safe to say that the CEE is lower at the pixel centre in general, as this could
only be observed in the presence of the sensitivity gradient. Small RPS increased the total CEE
and also changed the shape of the profile and therefore they are not negligible. Furthermore,
the introduction of the gradient increased the total CEE significantly.

Best performance was achieved by LMA, IWCoG and both correlation methods in all cases.
The Gaussian-3P-fit featured the worst performance as the introduction of RPS led to extreme
CEEs. One of the most interesting outcomes of these analyses is the fact that the introduction
of a sensitivity gradient affected all centroiding methods. Therefore, steep sensitivity gradi-
ents should be reduced prior to execution of any centroiding method. The behaviour of the
algorithms for the different kinds of sensitivity variations are summarised in Table 3.1.
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3.5.6. Computation Time

The computation time was analysed for different sizes of the RoI starting from 11×11 px to
30×30 px. The mean processing time for each algorithm was computed out of twenty images
and is illustrated in Figure 3.28 for each centroiding method. It is normalised to the standard
CoG (dashed green line) in order to make the comparison easier.

Figure 3.28.: Computation times of centroiding methods for different RoI sizes. The computation time has been normalised to the mean
processing time of a standard CoG for a Roi size of 11×11 px. The RoI size was gradually increased from to 30×30 px.

CoG together with IWC displayed similar processing times. Both showed a non-linear depen-
dency on increased RoI sizes. Only the three-point fit required less computation time. Apart
from the computation time, a bigger RoI size also affects the CEE for CoG and IWC, as bigger
windows contain additional noise and background.
WCoG’s processing time increased for bigger RoIs, as the pixel-weighting is carried out on
a larger scale. The simulation revealed that WCoG required almost four times the processing
time of the standard CoG for a RoI of 20×20 px.
IWCoG was performed with fifteen iterations. This led to computation times that were exactly
fifteen times higher than for WCoG.
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Gauss-3P-fit indicated no dependency on the RoI size in terms of computation time. This can
be explained by the fact that only three pixels are applied for the fit per dimension. In this
case the size of the RoI does not matter. The mean processing time took only 6% of a standard
CoG computation. Therefore, this method represents the fastest of all investigated centroiding
algorithms.
LMA required less processing time than IWCoG, although their performance was almost iden-
tical in other analyses. The difference is mainly caused by the fact that IWCoG was carried out
with a fixed number of iterations, whereas the iterations used for the parameter optimisation in
the LMA stopped as the CEE reached a certain limit. It is not safe to say that LMA is faster
than IWCoG in general.
Correlation-upsampling was computed with an upsampling factor of 5. The computation time
was equal to about 300 computations of CoG, thus correlation-upsampling required by far the
most processing time. Apart from that, the increase in the computation time for bigger RoIs
was not linear.
Correlation-interpolation only took about 4−5 times the computation of standard CoG. It was
much faster than the upsampling method, but it also featured a slight dependency on the RoI
size.

The lowest processing time was scored by the Gauss-3P-fit, followed by CoG and IWC. In
general, these are the fastest of the investigated centroiding methods. The highest processing
time was required for the correlation-upsampling method.
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3.6. Conclusion

The centroiding methods presented in this chapter were grouped into three different types. Cen-
tre of gravity algorithms, correlation-based centroiding and finally centroid detection by direct
fitting. A summarised description of each centroiding method is provided in their corresponding
section. Simulations revealed that there exists no ultimate centroiding algorithm that is suitable
in each and every case. The choice for the best centroiding method depends on factors like the
signal-to-noise ratio, cosmic ray hit frequency and others that were introduced in Section 3.5.
The dependency map in Table 3.1 represents a compact overview of the performance analysis
presented in this Chapter.
The impact of each component was categorised as invariant, very low, low, medium, high or
very high with respect to the relative performance of the other methods. Additionally, n/a de-
notes that the method is ’not applicable’, or more precisely it’s not capable of providing useful
results. ’SNR’ stands for signal-to-noise ratio and ’background thresholding’ represents the pro-
cess of stripping unwanted signal originating from background objects (see Sections 3.5.1 and
3.5.3). ’RoI displacement’ represents a region-of-interest that is not centred on the target. ’Posi-
tion offset’ denotes the offset of the initial centroid estimation to the true centroid, which may be
located anywhere inside the RoI (see Figure 3.22). The impact of two different types of cosmic
ray hits was analysed. A visualisation of these two types is depicted in Figure 3.24. ’Intra-pixel
positions’ were analysed in order to determine whether there is a difference in performance
if the stellar peak is situated at the pixel’s edge or centre (see Section 3.5.5). Simulations re-
garding the influence of different pixel sensitivities included, ’Random pixel sensitivities’, a
’sensitivity gradient’ as well as ’intra-pixel sensitivities’ which were introduced in Section 2.7.
Finally, the mean computation times were presented as multiples of the processing time that is
required for the standard CoG.
By looking at Table 3.1 one can identify the techniques which performed best in most analy-
ses. In fact, those are IWCoG, LMA and the correlation methods. However, these methods
also required the highest processing times. Therefore, they may not be applicable for all space
telescopes, due to the hardware limitations. However, IWC featured low processing times and
it performed really well in the absence of glitches, if appropriate thresholds were applied. A
selection of centroiding methods for the two space missions, EChO and CHEOPS is discussed
in the next Chapter.
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3
C

entroiding
A

lgorithm
s

CoG IWC WCoG IWCoGa Correlation-
interpolation

Correlation-
upsampling Gauss-3P-Fit LMA

SNR high medium medium low low low very high low

Background Thresholding very high high high very low low invariant very low very low

RoI Displacement high medium invariant invariant invariant very lowb invariant invariant

Position Offset invariantc invariantc very high
invariantd

very highe invariant invariant very high
invariantd

n/ae

Intra-Pixel Positions high very low very low very low medium invariant medium very low

Cosmic Ray Hits
Glitch Type I high very high invariant invariant invariant invariant invariant invariant

Glitch Type II medium very high high high high
invariantf

highg n/ah high

Flat-Field Components
RPSi low low low low low low very high low

Sensitivity Gradient very high very high low low medium medium very low low

Intra-pixel Sensitivities j very low very low very low very low very low very low medium very low

Computation Timesk[̄tCoG] 1 ∼1 4 12k 4-5 300 0.06 4

Table 3.1: Dependency map illustrating the impact of various components on the performance of the centroiding methods. For further understanding please read Section 3.5.
a performed with fifteen iterations.
b for star positions close to the RoI’s border, otherwise invariant.
c No initial centroid position is required for this method, except for the RoI placement.
d for offsets below 5 · σPSF.
e for offsets greater than 5 · σPSF.
f for glitch signals lower than the stellar spot’s brightest pixel.
g for glitch signals higher than the stellar spot’s brightest pixel.
h Not applicable if the glitch is affecting one of the five pixels used for the fit. Otherwise invariant.
i Random pixel sensitivities (RPS). Their impact depends on the size of the pixel sensitivity distribution.
j for high SNRs. The influence of intra-pixel sensitivities becomes more important for lower SNRs.
k for a RoI size of 20×20 pixel and a position offset of 0.5 pixel in both dimensions. IWCoG was performed with three iterations.
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4.1. EChO - Exoplanet Characterisation Observatory

The Exoplanet Characterisation Observatory had been proposed for the third medium class
launch slot (M3) for the years 2022-2024 as part of the European Space Agency (ESA) pro-
gramme Cosmic Vision. In the context of this programme several large and medium class mis-
sions as well as one small class mission CHEOPS (see Section 4.2) were specified so far. In
addition to EChO, the following mission candidates competed for the M3 launch opportunity:
PLATO (Planetary Transits and Oscillations of stars), LOFT (the Large Observatory For x-ray
Timing), MarcoPolo-R and STE-Quest (Space-Time Explorer and Quantum Equivalence prin-
ciple Space Test). Eventually, PLATO was selected by ESA’s Science Programme Committee
in February 20141. The contribution of Vienna’s Institute of Astrophysics to EChO included
the payload instrument software for the Fine Guidance Sensor (see Section 4.1.2).

4.1.1. Mission Description

A summarised mission description, including the scientific objectives and the mission require-
ments, is provided below. Mission details were taken from the EChO Assessment Study Report
(Drossart et al., 2013) if not stated otherwise.
EChO was designed to carry out spectroscopic measurements of exoplanet atmospheres in or-
der to answer questions like: Why are exoplanets as they are? What are they made of? What

are the causes for the observed diversity? Can their formation history be traced back from their

current composition and evolution? The target list covers Hot Jupiters, Neptune-like planets as
well as lower-sized planets down to super-Earths. The final target list contained a few hundred
host stars with spectral types varying from F to M and visual magnitudes ranging from 6 to
12. The list was considered to be extended by results of future instruments like the European
Extremely Large Telescope (E-ELT) or the James Webb Telescope (JWST). Observations were
planned to be carried out within four years using transmission and eclipse spectroscopy.

1ESA Media Relations Office, http://sci.esa.int/plato/53707-esa-selects-planet-hunting-plato-mission/,
accessed: 06 October 2014
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Figure 4.1.: Upper left: Optical configuration of EChO consisting of three elliptical conic mirrors in a Korsch-like assembly. Upper right:
Field of view for the different instruments. Lower left/right: Beam divided into different channels by using beam splitters and
dichroics. Eccleston et al. (2014)

The configuration of the optical system consists of the three conic mirrors illustrated in
Figure 4.1. The Korsch-like assembly leads to an effective total collecting area of 1.13 m2.
The intended range of wavelength coverage is 0.55 - 11 µm with the additional goal to extend
the range to 0.4 - 16 µm. Only a few molecules could be detected in exoplanet atmospheres
so far. The broad wavelength coverage together with EChO’s design and stability enables to
detect four times more molecules compared to current methods. This can already be achieved
with low spectral resolutions of R∼300 for λ < 3 µm and R∼30 for λ > 3 µ. Besides the
detection of atmospheric constituents, EChO will reveal the atmospheric temperature as well as
the planet’s albedo. The satellite was planned to perform operations at the Sun-Earth Lagrange
point L2.

Planet transits have to be observed in order to gain spectra of exoplanet atmospheres. An il-
lustration of such a scenario is provided in Figure 4.2. As a planet transit occurs, the stellar
light passes through the planet’s atmosphere at the terminator. Therefore the resulting spectrum
contains information about the present molecules within high-altitude layers of the planet’s
atmosphere. This information can be extracted by comparing the measurements with the un-
modified stellar spectrum (transmission spectroscopy). EChO’s goal is to measure atmospheric
features with signals at least 10−4 times lower than stellar spectral features. The planet is com-
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pletely occulted during a secondary eclipse, because the transit occurs on the backside of the
host star. The planet day-side spectrum may be obtained by comparing spectra taken during
such an eclipse with spectra observed before or afterwards (secondary-eclipse spectroscopy).
This allows to probe lower atmosphere layers with higher pressure-levels, which is not possible
with transmission spectroscopy. Additionally, more time consuming measurements are carried
out to catch planet phase variations. Such variations are caused by changes in the observed
part of the planet’s atmosphere, due to the planet’s rotation. They allow to derive details about
atmospheric dynamics. The three methods work best between optical and mid-IR wavelengths.

Figure 4.2.: Upper image: Planet orbit including transit and eclipse. Lower panel: Depicts the light curve of planet HAT-P-7b observed by
Kepler (Borucki et al., 2009). Blue and black circles indicate the planet’s day side and night side respectively. (Drossart et al.,
2013)

4.1.2. Fine Guidance Sensor

A Fine Guidance Sensor (FGS) is a spacecraft subsystem dedicated to provide high precision
pointing information for focusing, centering and guiding. A long-term photometric stability
of about ten hours is one of EChO’s most stringent mission prerequisites (Ottensamer et al.,
2014). During such operation, the mean pointing error relative to the target star should not
exceed 10 milliarcseconds. This may only be achieved by implementing a FGS, in addition to
the star trackers. Primarily two different effects contribute to the pointing errors. The drift of
the spectrum along the detector’s spectral axis (spectral jitter) and the drift along the spatial
direction (spatial jitter). As the FGS represents an additional imaging device, it may also be
used as a science instrument (Nelan et al., 1998; Doyon et al., 2012). In the particular case of
EChO it was envisaged to utilise the FGS for performing on-board photometry. The additional
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astrometric and photometric information would further improve on-ground data calibration of
the measured spectra.
As it can be seen in Figure 4.1, the main beam is divided by dichroics into four different spectral
channels (VNIR, SWIR, MWIR and LWIR). The wavelength range of each channel is depicted
in Figure 4.3. Only a fraction of light that is passed to the VNIR channel is deflected towards
the FGS (0.4 - 1.0 µm). A beam splitter divides the light into equal parts for the VNIR and
FGS subsystem. Therefore changes in the line of sight can be measured directly. However,
such an optical configuration reduces the incident signal that is reaching the FGS, significantly.
In general, this causes lowered signal-to-noise ratios, which may affect the performance of the
implemented centroiding method (see Section 3.5.1).
System specifications in particular for the distinct optical configuration of the FGS (see
Figure 4.4) are listed in Table 4.1. The star trackers are capable of locating the target with
an accuracy of 10” rms. The FGS takes over centroiding, focusing and guiding tasks as soon as
the target is positioned within the 20”×20” FGS field of view (handover task). Guiding is per-
formed at a rate of 10 Hz in a 7”×7” region-of-interest (RoI) within this field of view (science
mode). The pixel scale is about 0.1”, therefore the size of the RoI corresponds to a 70×70 pixel
array. The mission requirements demand that the mean centroid estimation error shall not ex-
ceed 10 milliarcseconds or (0.1 pixel).
The FGS consists of two distinct physical components: the FGS Control Unit (FCU) that
is mounted on the service module and the opto-mechanical box with Gregorian optics (see
Figure 4.4). Further details about these subsystems including their hardware specifications are
provided by Ottensamer et al. (2014). The FGS is only dedicated to perform astrometry, but
it does not control the attitude of the spacecraft. In fact, the centroid estimations are used as
input for the Attitude and Orbit Control Subsystem (AOCS) to maintain the required pointing
stability.
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Figure 4.3.: Left: Instrument channel configuration on the optical bench. See also schematic design given in Figure 4.1 in the lower-right panel.
Right: Operating wavelength range for each channel respectively. (Eccleston et al., 2014)

System property

Focal length 1 300 mm
Optical System length 210 mm
Internal FOV 0.33 deg × 0.33 deg (full)
F-number (total) 52
PSF size (FWHM) 50 µm × 34 µm
Mirrors 1: parabolic, 2: spherical,

flat folding mirrors
Central obscuration 8%

Table 4.1.: Properties of the FGS optics. (Ottensamer et al., 2014) Figure 4.4.: Layout of the opto-mechanical box. The mirror set-up
conforms to a Gregorian design. Eccleston et al. (2014)

4.1.3. Point Spread Function

The model of the diffraction limited PSF is illustrated in Figure 4.5. It features a FWHM at
50×34 µm, which corresponds to 3.33×2.26 pixels on sensor scale (see Section 4.1.4). The
model depicted in the lower right panel of Figure 4.5 was created with StarSim. It was applied
in the following analyses regarding the selection of the centroiding methods. The model of the
PSF may also be expressed by standard deviations as (σx, σy) = (1.42, 0.96) pixel, according to
Equation (2.5).
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Figure 4.5.: Model of the diffraction limited PSF of the FGS provided by the Polish Academy of Sciences. In the left panels cross-sections of
the PSF-model are depicted for both dimensions. The corresponding two-dimensional model is plotted in the upper right panel for
high resolution. The lower-right panel illustrates the two-dimensional model on sensor resolution for a pixel scale of 15 µm. It was
created with StarSim.

4.1.4. Centroiding in Different Operating Modes

The choice of the optimal centroiding method depends on the characteristics of the optical sen-
sor. Therefore, an analysis with respect to the planned instrument hardware was carried out.
Two possible detectors were considered for the FGS (EChO Assessment Study Design Report
EChO Consortium Study Team (2013)). These are the HAWAII-2RG from Teledyne and a
MCT device from SELEX ES. Both detectors mainly feature similar parameters. The following
simulations were performed with respect to these sensors, whereas worst-case values were con-
sidered (in terms of centroiding). Eventually, the simulated hardware features included pixel
scales of 15 µm, a read noise component of about 15 e–px−1 rms and the quantum efficiency
was set to 70%. The mean dark current at operating temperature is below 0.03 e– s−1 px−1 and
the full-well capacity (FWC) was set to 50 000 e–. The sensor was simulated with 200×200 px
according to the 20”×20” field of view. It has been assumed that the amount of hot-pixels is
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one percent on average. Observations were simulated with an exposure time of 0.1 s, as guiding
is performed in a rate of 10 Hz. Slight variations in pixel sensitivities were assumed. However,
image calibration was performed with simulated dark and flat-field frames before the centroids
were estimated. Such calibrations were performed in order to reduce bias, pixel sensitivity vari-
ations and dark current (including hot-pixels). The simulated intra-pixel sensitivities, which
featured a 60% loss of signal on pixel edges compared to the pixel centres, were not removed.
For EChO, two different centroiding tasks are required. Initially the star has to be positioned
on the detector of the FGS as soon as it enters the field of view. Later on, centroiding is per-
formed during science mode in which the centroid estimation can already be provided from
previous runs of the centroiding task. In the sections below, analyses of applicable centroiding
methods are presented for these two distinct cases. Observations of GJ 1214 were simulated as
it represents the faintest star according to the target list in the Science Requirement Document
(EChO Science Study Team, 2013). This extrasolar planetary system includes the exoplanet
GJ 1214 b, which is classified as super-Earth. The distance of GJ 1214 is 13 pc and it fea-
tures an apparent magnitude of V = 14.71. The expected total flux in the 0.4 - 0.8 µm band is
F? = 6.4·10−14 Wm−2 (EChO Science Study Team, 2013). The corresponding power on sensor
level, Pdet, can be computed by

P?,det = F? · A · FBS (4.1)

where A is the collecting area of the telescope (1.13 m2) and FBS is the amount of flux trans-
mitted by the beam splitter to the sensor (50%). It was assumed that the aperture of the FGS
subsystem is large enough to avoid an additional loss of signal. According to Equation (4.1),
the total power on sensor level for GJ 1214 is P?,det = 3.619·10−14 W. By assuming a worst-
case scenario, where all photons have short wavelengths (0.4 µm), a total amount of about
72 880 ph s−1 reach the detector. Further signal reduction, due to the quantum efficiency of the
sensor, is separately included in later simulations. The observation of GJ 1214 represents a re-
quirement defined as R-SCI-120 in the Science Requirement Document (EChO Science Study
Team, 2013). Additionally, the goal G-SCI-125 includes the observation of an even fainter
source. In particular, the observation of a M5V star with a distance of 20.6 pc and a Ks-band
magnitude of 9.8 is desired. By applying the same steps as for GJ 1214, a total photon flux on
sensor level of 23 900 ph s−1 was derived. Both targets are included in the simulations presented
in Sections 4.1.4.1 and 4.1.4.2.
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The background signal was estimated by the amount of Zodiacal light that is emitted in the
observed wavelength band. A profile of the zodiacal background is provided in the Mission
Requirements Document (EChO Team, 2013) and can be rewritten as

Z(λ) = 3.5 · 10−14 ·Bλ(5500 K) + 3.58 · 10−8 ·Bλ(270 K) (4.2)

where Z is in units of Wm−2sr−2m−1 and Bλ represents Planck’s law for given temperature.
The intensity of the zodiacal background depends on the viewing direction. Worst-case ob-
servations are performed at an elliptical latitude of 0◦ and a solar angle of 55◦. In this case,
the zodiacal background was estimated with 8Z(λ) (EChO Team, 2013). With respect to the
observed wavelength band of 0.4 - 0.8 µm, Equation (4.2) can be expressed as follows

Z(0.4µm - 0.8µm) = 3.5 · 10−14
∫ 0.8µm

0.4µm

Bλ(5500 K) dλ+ 3.58 · 10−8
∫ 0.8µm

0.4µm

Bλ(270 K) dλ (4.3)

In order to obtain the background flux per pixel, the steradians need to be converted to the
pixel scale of 0.1”×0.1”. This leads to the following final expression for an upper limit of the
background flux.

FZ = 8 · Z(0.4µm - 0.8µm) ·
[

0.1 · π
180 · 3600

]2
(4.4)

Similar to Equation (4.1) the power on sensor level can be computed by

PZ,det = FZ · A · FBS (4.5)

which leads to a maximum total power of PZ,det = 2.751·10−19 W for the zodiacal background.
In a worst-case scenario, I assume that all photons feature a low energy (0.8 µm), which leads
to a maximum photon count of 1.1 ph s−1 px−1.
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Figure 4.6.: In total 9 100 images were generated with StarSim with respect to the hardware characteristics of the FGS, where the target
was placed at a random position in each image. The dots represent the computed CEEs, where yellow dots indicate results of
correlation-interpolation and blue dots indicate results of IWC. The coloured solid lines represent the mean true CEEs for both
methods. The median values represent the most likely CEE. Error bars are symmetric as they represent the standard deviation
of the mean true CEE. The vertical dashed lines indicate the observed photon flux of the faintest targets defined in the Science
Requirement Document (EChO Science Study Team, 2013) (see also Section 4.1.4). Further details about the observation of
GJ 1214 are provided by Tinetti et al. (2015).

4.1.4.1. Handover from Star Trackers

Star trackers provide the initial centroid estimation with an error of 10” rms in the handover
task. Due to this large error, only centroiding methods which are invariant to initial position
offsets are applicable. Such algorithms may easily be identified by looking at Table 3.1, which
represents a summary of the analyses presented in Chapter 3. Therefore, the pre-selection
of algorithms for the initial handover task includes CoG, IWC, correlation-interpolation and
correlation-upsampling. In fact, CoG is not further considered as IWC resembles an improved
version of CoG, that provides more accurate results in almost any case. Furthermore, correlation-
upsampling is discarded as the processing times are too high to maintain a 10 Hz control loop.
Therefore, the two remaining methods are IWC and correlation-interpolation. A Monte-Carlo
simulation including 9 100 images was carried out to test the performance of both methods dur-
ing the handover task on simulated FGS hardware under worst-case conditions (see hardware
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description in Section 4.1.4). Figure 4.6 illustrates the centroiding performance, where each
individual point indicates the centroid estimation error (CEE) for one simulated image. The
target was placed on the sensor at random positions inside a 200×200 pixel grid. The blue
and yellow line indicate the mean true CEE for IWC and correlation-interpolation, respectively.
Thesholding was only carried out for IWC, since correlation-interpolation is invariant to such
process (see Figure 3.23). Without setting appropriate thresholds, IWC is not capable of pro-
viding useful results, otherwise large errors may occur if the star is not centred inside the RoI
(see Section 3.5.2). In this simulation, the RoI spans across the entire FGS as the star may be
located anywhere on the sensor.
Figure 4.6 reveals that IWC and correlation-interpolation are both applicable for the centroiding
task during the initial handover from the star trackers. The mean true CEE is below 0.02” for
observations of the faintest target defined by the goal G-SCI-125. Such accuracy is assumed
to be sufficient, by considering that no science data is obtained during the temporary handover
task. IWC performs slightly closer to the Cramer-Rao bound for brighter stars. However, I sug-
gest to implement correlation-interpolation instead of IWC as it provides more reliable results.
In fact, correlation-interpolation also provides accurate results in the presence of a second star
inside the RoI. Furthermore, it does not require background thresholding and it is also appli-
cable if cosmic ray hits occur (see Section 3.5). The processing times of both methods were
almost equal in the simulations. Both methods are not capable of providing results with suffi-
cient accuracy during science mode. Therefore, additional methods were analysed in the next
section.

4.1.4.2. Centroiding during Science Mode

It can be seen in Figure 4.6 that IWC, and correlation-interpolation do not fulfil the pointing
requirement of 0.01” during science mode. For this mode, LMA and IWCoG are potential
methods, as they provide more accurate results in general (see Figure 3.5.1). However, these
are not applicable for the handover task, as they require precise centroid estimations as input,
which cannot be obtained by the star trackers for the FGS. However, for guiding during science
mode the centroid estimations from the handover task may be applied as initial input to en-
able the execution of IWCoG and LMA. This can be seen in Figure 4.6, as the expected initial
centroid estimation is below 0.02”, which is significantly lower in comparison to the point-
ing error of 10” rms provided by the star trackers. In the worst-case the pointing jitter due to
spacecraft stabilisation methods is about 0.13” rms (Waldman & Pascale, 2013). Therefore the
following simulations were performed with a mean initial CEE of 0.15” (or 1.5 px). Accord-
ing to Figure 3.5.2, LMA and IWCoG are applicable for offsets below 5σPSF. Therefore, it is
assumed that even larger pointing errors up to 0.71” in x and 0.48” in y are feasible in general.
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In contradiction to the previous simulation, the random star positions are not spread across the
whole sensor area, as it is intended during science mode to keep the star’s position fixed in a
specific sensor area. Therefore, random positions were restricted to a 10”×10” area around the
detector’s centre. Furthermore, the centroid estimation was performed inside a RoI of 7”×7”.

Figure 4.7.: In total 9 100 images were generated with StarSim with respect to the hardware characteristics of the FGS. The horizontal dotted
line illustrates the fine guiding requirement of 0.01” during science mode. The target was placed at a random position in each
image. The random positions were spread across an area of 100×100 pixel around the detector’s centre. The dots represent the
computed CEEs for both methods, as results overlap in almost any case. The coloured solid lines represent the mean true CEEs.
The median values represent the most likely CEE. They overlap almost entirely for both methods, therefore the median was only
plotted for one method. Error bars are symmetric as they represent the standard deviation of the mean true CEE. The vertical
dashed lines indicate the observed photon flux of the faintest targets defined in the Science Requirement Document (EChO Science
Study Team, 2013) (see also Section 4.1.4). Further details about the observation of GJ 1214 are provided by Tinetti et al. (2015).

Figure 4.7 illustrates that LMA and IWCoG are indeed capable of fulfilling the pointing re-
quirements for the FGS. It is clearly visible that centroiding close to the Cramer-Rao bound is
possible for observations of stars similar to GJ 1214. However, the performance for the obser-
vation of a fainter star, defined by the goal G-SCI-125, is slightly worse and already close to
the limit of 0.01”. Nevertheless, it is safe to say that the goal can be reached as the performed
simulation represents a worst-case scenario. In fact, if it is not assumed that all photons feature
short wavelengths, the true photon flux is between 23 900 and 47 800 ph s−1 (for G-SCI-125).
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Within this region, the mean true CEE is clearly below 0.01” (dotted line). Certainly, based on
the presented simulations, observations of even fainter stars are not feasible with current instru-
mental parameters, as the CEEs rise significantly for lower SNRs. The characteristic overlap of
LMA’s and IWCoG’s results occurs as the same Gaussian PSF-model was used for the LMA
fit-model as well as for the weighting function in IWCoG. The largely increased mean error
of LMA for SNRs below 10 is caused by a few outliers. In this case the median error still
overlaps with results provided by IWCoG. The processing time for 10 iterations of IWCoG was
on average about 1.6 times higher than the mean computation time of LMA. No thresholding
was performed in these simulations, as IWCoG and LMA are both invariant to the presence of
background signal (see Section 3.5.3).

4.1.5. Conclusion

In order to achieve the pointing requirements for EChO, I analysed the application of centroid-
ing methods on the fine guidance sensor (FGS). The star trackers are only capable of providing
pointing information with an accuracy of 10” rms, which is too large to maintain the required
photometric stability. Therefore the necessity of the FGS is inevitable in order to achieve the
demanded fine pointing errors of about 0.01”. High precision centroiding methods were anal-
ysed for two distinct operating modes. These operations are the initial pick-up of the star by
the FGS (handover task) and observations during science mode. Monte-Carlo simulations were
carried out to create samples of 9 100 images with respect to the hardware specifications of the
FGS. The two centroiding methods IWC and correlation-interpolation were considered for the
handover task. Simulations revealed that both methods are applicable. However, the correlation
method is preferred, as it is more stable in the presence of background signal and cosmic ray
hits. Furthermore, this method is also applicable if additional stars are imaged by the FGS.
Correlation-interpolation cannot be applied in science mode as the CEE of about 0.02” is too
large. For centroiding during science observations, the centroiding techniques IWCoG and
LMA were analysed. These methods require a precise initial centroid estimation, which is al-
ready acquired by the handover task. Simulations of worst-case scenarios showed that both
methods are capable of fulfilling the goals defined in the Mission Requirements Document
(EChO Team, 2013). These goals require performance close to the Cramer-Rao bound, which
represents a theoretical limit for centroid estimation (see Section 3.1). It was assumed that cos-
mic ray hits play a less important role for centroiding, as exposure times are very short in this
mission. Detailed analyses about the impact of cosmic ray hits on centroiding performance are
presented in Section 4.2.2.
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4.2. CHEOPS - CHaracterising ExOPlanets Satellite

The CHaracterising ExOPlanets Satellite is the first small (S) class mission in ESA’s Cosmic
Vision programme. The focus of CHEOPS is to reinvestigate discovered exoplanets by ob-
serving planetary transits in front of nearby bright stars. The mission was selected by ESA in
October 2012 out of 26 proposed missions. The satellite is scheduled for launch in late 2017
and it will operate 3.5 years. Switzerland as the initiator of the original proposal is designing
the mission together with several other ESA member states.
Vienna’s Institut für Astrophysik (Institute of Astrophysics) contributes to the CHEOPS mission
by developing the Instrument Flight Software (IFSW).

4.2.1. Mission Description

A summarised mission description including the scientific objectives and the mission require-
ments is provided below. The following mission details correspond to the CHEOPS Science
Requirements Document (Ehrenreich et al., 2015) if not stated otherwise.
The main task of CHEOPS is to perform high precision photometry of transiting planets, which
allows to determine their radii with an uncertainty of about 10%. CHEOPS will focus on super-
Earth and Neptune-sized planets (1-20 MEarth) for which the mass has already been determined
by ground-based spectroscopic measurements. In fact, CHEOPS will target known exoplanet
host stars, which are located anywhere in the sky. Follow-up observations of planets discovered
by the ground-based Next-Generation Transits Survey (NGTS) are envisaged in order to im-
prove the precision of measured planet radii. This survey performs photometry up to a precision
of 1 mmag for stars with V<13 mag. It has been estimated that the NGTS will provide about
fifty new targets within the super-Earth to Neptune mass range (1-6 REarth), until CHEOPS
is launched. The observation of such targets allows to study their structure and make impli-
cations about planetary formation and evolution. The characterisation of the observed planets
includes their approximate composition, as the mass of the planet is known in advance. The
science goals of CHEOPS further involve the accurate determination of planetary mass-radius
relation and the constitution of optimal targets for spectroscopic studies with future instruments
(e.g. with JWST, E-ELT). Furthermore, CHEOPS is aiming to constrain the migration paths of
planets during their formation and evolution. Other goals involve the study of atmospheres of
planets, such as Hot-Jupiters. In order to achieve these goals photometry must be performed on
the stellar photon noise level. For an Earth-sized planet that orbits a G5 dwarf star of 0.9 REarth

with visual magnitudes 6≤V≤9 mag, the expected transit depth is 100 parts-per-million (ppm).
Depending on the revolution time of the planet, the integration time must be adapted in order to
reach the required S/Ntransit. The pointing error during transit measurements shall not exceed
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8” at 68% confidence. The operational wavelength band is ranging from 0.4-1.1 µm. The opti-
cal configuration follows the Ritchey-Chrétien style with a focal length of F/8 and an effective
aperture of 30 cm. The circular field of view of the instrument features a diameter of 0.32◦. The
satellite’s baseline orbit depicted in Figure 4.8 represents a Sun-synchronous low-Earth orbit at
an altitude of 650-800 km. The orbit is close to the terminator and the orbital period is about
101 minutes. A large external baffle is mounted on the satellite in order to reduce implications
on photometric measurements, due to Earth’s stray light. It is required that less than 10 ppm
stray light is detected in the worst case. Due to the low-Earth orbit, CHEOPS will pass the
South Atlantic Anomaly on its orbit (see Section 2.8). In the next Section, I present models that
were derived from MOST observations for the description of cosmic ray hit characteristics on a
CCD. This has been done to estimate their impact on observations and centroiding performance
(see Section 4.2.4.2).

Figure 4.8.: Illustration of the CHEOPS baseline orbit at summer and winter solstice. (Ehrenreich et al., 2015)

4.2.2. Observations in the South Atlantic Anomaly

In order to estimate the impact of glitches on observations performed during a SAA passage I
analysed images of HD 189733 which had been acquired in the MOST (Microvariability and
Oscillations of Stars) mission. A brief description of the South Atlantic Anomaly (SAA) is
given in Section 2.8. The used dataset is considered to be very well-suited for estimating the
expected glitch rate for CHEOPS observations during SAA passages, since the orbits of both
spacecraft (CHEOPS and MOST) are quite similar, as well as the CCD.
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4.2.2.1. MOST - Microvariability and Oscillations of STars

The MOST mission is a space telescope hosted by the Canadian Space Agency (CSA). It has
been launched in June 2003 and it represents the first spacecraft dedicated to measure astroseis-
mology of solar type stars, metal-poor subdwarfs and microvariability in Wolf-Rayet winds.
Photometry of giant extrasolar planets with short orbital periods is carried out as well. In fact,
MOST measures low-degree oscillations with precisions up to micromagnitudes (Walker et al.,
2003). In 2011, MOST was able to detect transits of the extrasolar planet 55 Cancri e based on
photometric measurements that were carried out in two consecutive weeks.
The satellite’s dimensions are 65×65×30 cm3 and it has as a mass of 54 kg (including 14 kg
payload). Therefore, MOST categorised as microsatellite. Attitude control and pointing sta-
bilisation are guaranteed by three-axis reaction wheels and magentotorquers. The pointing ac-
curacy must be better than half an arcminute during the observations. The telescope is built
in Rumak-Maksutov (also Rutten Maksutov-Cassegrain or RM) design with an aperture of
150 mm and a primary mirror diameter of 173 mm. The Rumak-Maksutov design is simi-
lar to a Cassegrain configuration despite that the secondary mirror is attached to a meniscus
corrector. As a consequence, coma and chromatic aberration are reduced. Before entering this
optical system the light is initially reflected by a periscope mirror tilted to the Rumak-Maksutov
(RM) configuration by 45◦. Therefore the telescope is completely shielded from the Sun. The
field of view has a diameter slightly bigger than 2◦ and is exposed by two separate CCDs, one
dedicated for science and the other for guidance tasks. A single broadband filter is restricting
observations to the wavelength band ranging from 350 - 780 nm. An array of microlenses al-
lows to observe bright targets (V≤10 mag) in Fabry mode, whereas fainter sources are imaged
directly on the science CCD at a different spot. Targets within declinations from −19◦ to +36◦

can be observed continuously for up to sixty days.
The characteristics of MOST’s polar, Sun-synchronous orbit are listed in Table 4.2 and a
schematic illustration is shown in Figure 4.9. There are three dedicated ground segments situ-
ated in Vancouver, Toronto and Vienna which are used for communication with MOST during
its orbit. Stray light from Earth significantly affects the photometric accuracy of MOST, as it
is not equipped with a baffle. As defined in Table 4.2, CHEOPS and MOST follow a similar
low-Earth orbit. In addition to MOST, CHEOPS features a large external baffle for reducing the
stray light implications.
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Orbit characteristics

Altitude of apogee 839.62 km
Altitude of perigee 825.92 km
Semimajor axis 7 210.62 km
Inclination 98.72 deg
Orbital period 6 084.90 s
Local time of ascending node (LTAN) 18:01:06 hh:mm:ss
Continuous Viewing Zone (CVS) 48.00 deg

Table 4.2.: Orbit characteristics of MOST. (Walker et al., 2003)

Figure 4.9.: Illustration of the MOST orbit including the continuous viewing zone (CVZ). (Walker et al., 2003)

4.2.2.2. Observations of HD 189733

In 2006 August, MOST observed a transit of the exoplanet HD 189733b in front of its host
star which features an apparent magnitude V = 7.67 mag. The host star is classified as K1.5V
star. In total, 10 consecutive transits could be observed within 21 days, as the orbital period is
about 2.2 days (Miller-Ricci et al., 2008). The main science objective was to find additional
planets by analysing variations in the orbital period. So far no additional planets have been con-
firmed for the planetary system HD 189733. However, the images obtained for the photometric
measurements have been reinvestigated in this study for the purpose of understanding glitches
in low-Earth orbits. As the tracking CCD of MOST failed due to a particle hit, the science
instrument was additionally used for guiding tasks. Therefore, only short exposures of 1.5 s
were carried out to avoid significant tracking errors. Furthermore, 14 consecutive images were
stacked on-board before their transmission to the ground-stations in order to reach a higher SNR
(Croll et al., 2007).
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Figure 4.10.: Both images show observations of HD 189733 carried out by the MOST satellite in 2006. Each image is a composition of fourteen
short time exposures. A sub-frame of size 20×20 pixels containing the primary target is shown. The left panel represents a typical
observation outside the SAA. The right panel depicts an observation carried out inside the SAA containing multiple distinct
glitches that are affecting the image quality.

I used these observations for estimating the impact of glitches on observations that are per-
formed with optical sensors in space. Reduction pipelines for cosmic ray hits are run on ground.
Therefore, the raw data set could be investigated. The images, each composed of 14 short ex-
posures, are treated as single observations with exposure times of 21 s. A subset consisting
of 40 000 images was gathered in the first 14 days. This subset represents the basis for mod-
elling the glitches in the observations. Subsequent records were excluded, due to the increased
amount of stray light reflected by Earth during the last days of observation. The investigated
dataset included a total number of 147 SAA passages (for further information about the SAA
see Section 2.8.1) as a consequence of MOST’s short orbital period. The average time for a
flight through the SAA’s took about 15 minutes or 14.7 % of a complete orbit. On average, 30
images were obtained within this region per orbit, which led to a total number of 4 072 obser-
vations inside and 35 928 observations outside the SAA. Figure 4.10 provides an impression
for the difference between regular measurements and measurements in the SAA. The effect of
stray light implications can be seen clearly in the left panel. The most significant glitch event of
the whole sample is illustrated in the bottom left corner of Figure 4.10. This glitch is affecting
more than 15 pixels. The entire glitch has a total signal that is about 30 times higher than the
total target’s signal. Such extreme events occurred very rarely in the whole data set. However,
in addition to the large-scaled glitch, Figure 4.10 represents a regular observation inside the
SAA, which contains multiple glitches per frame. Another example for a typical observation in
the SAA is depicted in Figure 2.9.
A self-composed glitch identifying algorithm was applied to the dataset in order to detect glitch
signatures above a certain threshold. Results and statistical statements are summarised in the
next section.
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4.2.2.3. Results and Statistical Statements

The results listed below have been applied in simulations with StarSim to estimate the cen-
troiding performance in the SAA (see Section 4.2.4.2). The full size of MOST’s CCD is a
1024×1024 pixel array. In general, only small windows of size 20×20 pixels that contain
the science target are transmitted via the downlink to Earth. The pixel size of the CCD is
13×13 µm2. Therefore, the small sub-frames represent a total detector area of 260×260 µm2.
However, results are provided in units per pixel as CHEOPS features the same pixel size. Fur-
thermore, the measured signal is provided in e– by applying the gain of 6.1 e– ADU−1 (Walker
et al., 2003).

Glitch Rates

Applying the glitch detection algorithm to the dataset of 40 000 observations showed that
409 glitch events occurred during the SAA passage and only 13 events took place outside. By
correcting for the time spent in each region, it could be derived that 4.308·10−8 px−1s−1 glitches

are expected outside the SAA. The glitch rate inside the SAA is 1.196 ·10−5 px−1s−1. Therefore,
glitch events are about 278 times more likely to occur inside the SAA. It should be added that no
observation performed outside the SAA contained multiple glitches. It can be seen in Figure 2.8
that the SAA spans over a wide region with various magnetic field strengths. In general, it can
be stated that a lower magnetic field strength implies a higher glitch rate. Therefore, I also
investigated the glitch rate for a worst-case scenario, by analysing the observations performed
in regions with extraordinarily low magnetic flux densities (< 19 000 nT). Thus, within such
regions the rate of glitches is expected to be (8.7± 3.9) · 10−4 px−1s−1. Results are provided in
the Appendix in Table A.4 and A.5.

Affected Pixels per Glitch

Out of the 422 events that were identified by the glitch detection algorithm, 189 unambiguous,
non-overlapping signatures were selected for studying signature characteristics such as the elec-
tron deposition distribution. It turned out that only 23.8 % of all glitches affected single pixels.
A higher amount was expected, since multi-pixel signatures are caused by particle hits with tra-
jectories almost parallel to the CCD surface (see Section 2.8) and the particles hitting the CCD
are assumed to be distributed uniformly in space with respect to the detector surface. However,
an explanation for the ratio of single- to multi-pixel signatures being almost 1:3 can be given
based on the CCD characteristics. Particles elongated almost normal to the CCD follow a much
smaller path through the CCD substrate compared to particles with flat impact angles. Hence,
the probability for electron deposition is much higher for flat angles.
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Figure 4.11.: Distribution of number of affected pixels per glitch for the sample of 189 glitches provided in Table A.4. The data were modelled
by an exponential distribution (red line).

Figure 4.11 shows a normalised distribution for the number of affected pixels per glitch. As it
has been stated before, multi-pixel characteristics are more likely. The amount of affected pixels
per glitch was modelled with the normalised exponential distribution presented in Equation (4.6).

S(p) =

0 (p < 1, p > 20)

0.4025 · exp[−0.2984 · p] (1 ≤ p ≤ 20)
(4.6)

This equation is derived from the data presented in Figure 4.11 and represents a probability
density function (PDF). Parameter p is the number of pixels affected per glitch. The shape is
illustrated in the left panel of Figure 4.13. Glitches that affected more than 20 pixels were not
observed.

Electron Deposition per Glitch

The measured electron deposition distribution is illustrated in Figure 4.12. The total signal per
glitch was calculated and the bin-width was set to 3 700 e–. It is clearly visible that glitches with
low intensity (< 18 000 e–) are more likely to occur and they follow an exponential distribu-
tion. Additionally, the distribution features a distinct right tail, that represents the most intense
glitches, which occur less frequently. This part of the distribution should not be considered
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complete, due to the low number of samples. Nevertheless, it still provides valuable informa-
tion about the relative frequency of high energy events. A conversion of electron deposition to
the particle energy was not performed, as the electron deposition also depends on impact angle,
particle type and hardware characteristics. Due to this degeneracy, a direct conversion is not
feasible. Particularly, a flat impact angle can result in a much higher amount of electron depo-
sition, therefore the right wing of the distribution is composed of both, low and high-energetic
particles. However, it is expected that the high energy particles dominate this part of the dis-
tribution. The data were modelled using two distinct exponential distributions resulting in the
PDF given in Equation (4.7).

Figure 4.12.: Distribution of electron deposition per glitch for the sample of 189 glitches provided in Table A.4. The embedded plot shows the
same distribution with logarithmic y-axis. The data were modelled by using a combination of the two exponential distributions
e1 and e2.

E(x) =


0 (x < 150, x > 200000)

1.806 · 10−4 · exp[−2.274 · 10−4 · x] (150 ≤ x ≤ 15714)

6.868 · 10−6 · exp[−1.934 · 10−5 · x] (15714 ≤ x ≤ 200000)

(4.7)

Parameter x represents the total signal (in all pixels) per glitch. Events with less than 150 e– are
excluded, because they were not identified in the dataset, as background and noise are dominat-
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Figure 4.13.: Probability density functions that describe the number of affected pixels S(p) (left) and the total electron depositionE(x) (right)
per glitch event. These models were derived by the distributions illustrated in Figure 4.11 and 4.12.

ing such low signals. Furthermore, glitches with intensities greater than 200 000 e– are excluded
as well, due to limitations by the CCD’s capacity. The shape of this model is illustrated in the
right panel of Figure 4.13.
The two distinct distributions in Figure 4.12 could be caused by different particle sources, where
low-energy events have solar origin and high-energy events are related to galactic and extra-
galactic sources.

4.2.3. Point Spread Function

The point spread function illustrated in Figure 4.14 is caused by an intentional defocused op-
tical configuration. Therefore, the secondary maxima are significantly higher and cannot be
neglected. The purpose of defocusing is to distribute the signal across a large number of pixels.
This improves the statistical significance of observations, by lowering the impact of individual
pixel characteristics. As a consequence, the PSF has to be approximated by custom models,
instead of two-dimensional Gaussian functions (as presented in Section 4.1.3). The illustrated
model was applied in simulations regarding the selection of centroiding algorithms. In particu-
lar, it was applied for image generation with StarSim. Furthermore, it represents the weighting
function that was applied in the IWCoG.
For the Levenberg-Marquardt algorithm (LMA) a mathematical model of the PSF is required
as input. Figure 4.15 depicts a one-dimensional cross-section through the centre of the radial
symmetric PSF (see right panel of Figure 4.14). Equation (4.8) represents a mathematical de-
scription of this PSF. It was constructed by combining multiple linear fits in the one-dimensional
cross-section. In order to obtain a two-dimensional model the fit was extended by considering
radial symmetry.
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Figure 4.14.: Left: High resolution model of the point spread function of CHEOPS. Right: Downscaled model in final image resolution. Model
data were obtained in personal communication (Roland Ottensamer, September, 2014)

Figure 4.15.: Left: Cross-section through the downscaled PSF model (black data points) presented in Figure 4.14. Blue lines indicate an
approximation with combined linear fits. Right: Reconstruction of the PSF with Equation (4.8) for (x0, y0) = (20, 20).

The following Equation was derived by fitting the provided PSF data.

ψ(x, y, x0, y0, A) = ·



A · (−0.39943 ·∆ + 0.95605) (0 ≤ ∆ < 2.02)

A · (+0.23869 ·∆− 0.33329) (2.02 ≤ ∆ < 6.22)

A · (−0.11061 ·∆ + 1.83983) (6.22 ≤ ∆ < 8.91)

A · (+0.02927 ·∆ + 0.59358) (8.91 ≤ ∆ < 12.03)

A · (−0.05969 ·∆ + 1.66382) (12.03 ≤ ∆ < 13.71)

A · (−0.19274 ·∆ + 3.48786) (13.71 ≤ ∆ < 17.63)

A · (−0.02924 ·∆ + 0.60465) (17.63 ≤ ∆ ≤ 20)

A · 0.0198 (∆ < 0, ∆ > 20)

(4.8)

where
∆ =

√
(x− x0)2 + (y − y0)2 (4.9)
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The parameter ∆ represents the absolute 2D-distance to the central pixel (x0, y0), which is
used for the centroid estimation. The function is normalised in a way that the central pixel
(x0, y0) = 1, if A = 1. By changing A, the function can be adjusted to the stellar signal.
Equation (4.8) was applied to create the image in Figure 4.15, which illustrates a reconstruction
of the PSF depicted in Figure 4.14.
The Cramer-Rao bound from Section 3.1 represents a lower limit for the centroid estimation
error. In its derivation, it is assumed that the PSF is represented by a two-dimensional radial
symmetric Gaussian, which is not the case in the CHEOPS mission. However, I computed the
Cramer-Rao bound for a Gaussian PSF with the assumption that 99.73% (3σPSF) of the incident
stellar flux are located within a radius of 19 pixels around the spot centre. This assumption is
based on the size of the PSF-model that is depicted in Figure 4.14 and leads to a standard
deviation of σPSF = 6.33 px. The Cramer-Rao bound that corresponds to such a Gaussian is
applied in Section 4.2.4 to assess the centroid quality.

4.2.4. Selection of Centroiding Algorithms for Fine-Guiding

In contradiction to EChO, the fine guiding task is carried out directly on science frames. The
star trackers initiate the pick-up of the target by the Sensor Electronics Subsystem (SES) of
the spacecraft, similar to the hand-over task introduced in Section 4.1.4.1. However, they are
limited in precision as thermoelastic deformations of the telescope cannot be compensated by
the star trackers. Once the target is imaged in the science frame it will be identified via star
identification algorithms (Padgett & Kreutz-Delgado, 1997; Liebe, 1992) as multiple stars are
expected to appear in the image, in particular if the observed stellar field is crowded. Eventu-
ally, centroids shall be frequently computed and passed to the AOCS in order to maintain the
pointing stability. In fact, the pointing error shall not exceed 8” rms (Beck & Malvasio, 2015)
during a full orbit. Observations throughout the entire orbit are not possible as the payload in-
strument’s line of sight is occulted by Earth. During such payload occultations no fine-guiding
information is available for the AOCS. In the other case, the target is in the field of view of the
payload telescope. This pointing-mode is referred to as ’payload in the loop’, which demands
centroid estimation errors below 1” rms for fine guidance. This shall represent the main re-
quirement for the following selection of the centroiding methods.
According to the CHEOPS Instrument Requirements Specification (Beck & Malvasio, 2015),
the nominal detector type for the SES is the back illuminated CCD sensor model CCD47-20
AIMO (advanced inverted mode operation) with a mid-band coating. At sensor level, a single
pixel corresponds to approximately one arcsecond of the instruments field of view. The mission
parameters relevant for fine guiding as well as the sensor characteristics are summarised in Ta-
ble 4.3. The centroiding algorithms were tested with respect to these requirements. The pixel
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scale of the sensor is equal to MOST’s CCD. Therefore, the characteristics of cosmic ray hits
such as rate, size and intensity, were simulated with the models presented in Section 4.2.2.3.
The mission requirements demand a low contribution of stray light, which is achieved by ap-
plying baffles. Simulations regarding Earth’s stray light are further discussed by Kuntzer et al.
(2014). In the simulations presented below, I applied a combined background that contains
zodiacal light and stray light. As centroids are computed on science frames, the centroid up-
date frequency depends on the length of exposures. In the next sections, I present centroiding
performance analyses for short (1 s) and long (60 s) exposure times, respectively. In particular
for long time exposures, the spacecraft’s spatial jitter may lower the centroiding performance
as the shapes of the stars appear blurred on the science frames. It was assumed that a high-
frequency jitter is affecting the spacecraft’s yaw-axis and pitch-axis. This jitter component is
below 1” rms for short exposures and does not exceed 4” rms for long exposures. The rotation
of the spacecraft induces a similar blurring effect on science frames in particular at the outer
regions of the sensor. However, it is assumed that the target’s position on the detector is close
to the rotation axis. Hence, the impact of rotation as well as the roll-axis jitter is considered
to be negligible in terms of centroiding. Furthermore, it was assumed that the low-frequency
component of the jitter features a period of time that is similar to the orbital period. Therefore,
this component does not affect observations with exposure times below sixty seconds. Hot pix-
els were neglected in simulations for the centroiding performance as they can be reduced via
periodically updated hot pixel maps and their effect is supposed to be lower than the effect of
glitches. The pixel-to-pixel flat field has been modelled with a normal distribution that has a
standard deviation of 1%.
The four centroiding algorithms, IWC, IWCoG, correlation-interpolation and LMA are possible
candidates for the CHEOPS fine-guiding task as they are invariant to initial position offsets (see
Table 3.1). Such invariance is important, as the centroid estimations of the implemented star
identification algorithm will differ from the true centroid. It was assumed that these algorithms
will provide CEEs below 4 px rms. Furthermore, the spacecraft’s jitter may lead to displaced
initial centroid estimations as well. Imprecise position estimations always go ahead with a dis-
placement of the RoI, which means that the star is not centred in the window. This is mainly an
issue for the IWC algorithm, which can be counterbalanced by setting appropriate thresholds.
The performance of the preselected centroiding methods was tested under different conditions.
In particular, large samples of observations were created in Monte-Carlo simulations. In the
next sections, results are presented for simulations of different exposure times, observations of
crowded fields as well as observations inside the SAA.
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Parameter Value Source

CCD Model E2V CCD47-20 AIMO Beck & Malvasio (2015)
Full Frame 1024×1024 pxb Beck & Malvasio (2015)
Science Frame 200×200 px Beck & Malvasio (2015)
Exposure Times 1− 60 s Beck & Malvasio (2015)
Operating Temperature 233 K Beck & Malvasio (2015)
ADC 14 bit Beck & Malvasio (2015)
FWC CCD 105 e–px−1s−1 Sensor Datasheeta

FWC ADC 6 · 104 e–px−1s−1 Sensor Datasheeta

Bias Level 100 ADU Assumption
Dark Current 0.042 e–px−1s−1 Fortier (2015)
Dark Current Requirement <0.08 e–px−1s−1 Beck & Malvasio (2015)
Readout Noise 10 e–px−1 Beck & Malvasio (2015)
Flat Field Variation 1% px−1 Assumption
Flat Field Knowledge 0.1% px−1 Ehrenreich et al. (2015)
Zodiacal Background 8.35 photons−px−1s−1 Fortier (2015)
Stray Light 2 photons px−1s−1 Ehrenreich et al. (2015)
Optical bandpass 400-1100 nm Beck & Malvasio (2015)
Pixel Size 13×13 µm2 Beck & Malvasio (2015)
Pixel Scale ∼1” px−1 Beck & Malvasio (2015)
Global Throughput (QE) 65% Beck & Malvasio (2015)
Jitter <8” rms Ehrenreich et al. (2015)
Fine Guiding Error <1” rms Ehrenreich et al. (2015)
Glitch Rate Nominal <0.002 s−1 (200×200 px)−1 See Section 4.2.2.3
Glitch Rate SAA <0.5 s−1 (200×200 px)−1 See Section 4.2.2.3
Glitch Rate SAA Peak 34.8 ± 15.6 s−1 (200×200 px)−1 See Section 4.2.2.3
Faintest Target (SciReq 1.2) K-Star, V=12 mag, 63 364 photons s−1 Ehrenreich et al. (2015)c

Faintest Target (goal) K-Star, V=13 mag, 25 226 photons s−1 Ehrenreich et al. (2015)c

Table 4.3.: CHEOPS mission parameters and sensor characteristics of the chip e2v CCD47-20 AIMO.
a Sensor Datasheet: e2v technologies datasheet: A1A-100041 Issue 6, March 2006
b exclusive the dark current reference fields and overscan elements which are situated at the outer sensor border
c The photon counts are already reduced by the global throughput of the telescope. They were obtained in personal communication
(Roland Ottensamer, August, 2014).
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4.2.4.1. Nominal Observation Mode

Monte-Carlo simulations were performed in order to assess the centroiding performance with
respect to the requirements listed in Table 4.3. The nominal observations were simulated with
a glitch rate of 0.002 glitches per second and per science frame. Figure 4.16 depicts the cen-
troiding performance in the nominal observation mode for one second exposures. It can be seen
that the centre of gravity algorithms (IWC and IWCoG) do not converge against the Cramer-
Rao bound. This can be explained by the newly introduced jitter as centre of gravity based
algorithms perform worse if the image is blurred. IWCoG and LMA showed similar results in
all previous analyses. This is not the case in this analysis, because the fit-model for the LMA
differs from the pixel weighting used by the IWCoG. Best performance was clearly achieved
by the correlation-interpolation method, as it reached the Cramer-Rao bound. However, all four
methods fulfilled the fine-guiding requirement which demands pointing errors below 1” rms.
As expected, the median of the CEEs is slightly lower than the mean CEE for fainter stars. The
mean CEE of IWC is extraordinarily high at a particular photon count of 51 000 photons per
second. This statistically significant deviation is caused by the occurrence of a type I glitch in a
single image, that is illustrated in Figure 4.17. The other algorithms are not affected by this, as
they are invariant to type I glitches (see Section 3.5.4).
Figure 4.18 represents the results for the same simulation carried out with an exposure time of
sixty seconds. Due to the longer exposure time, the glitch rate increased to 0.12 glitches per
second and per science frame. This led to the frequently occurring peaks in the mean CEE
of the IWC. The performance of the other algorithms was not affected by the increased glitch
rate, as the expected rate of type II glitches is lower. The expected rate of type I glitches inside
the RoI is 0.0084 glitches per image and the expected rate of type II glitches inside the PSF
(16 pixels radius) is only 0.0024 per image. The mean CEEs of the algorithms are very low
and they are saturated at high SNRs. IWCoG’s saturation value was slightly higher than oth-
ers, as the blurred spots (caused by the jitter) differed from the non-blurred weighting function.
The outliers of IWC may be identified during observations by comparing current results with
previous centroids. By doing so, all four presented algorithms are capable of carrying out the
fine-guiding task in the nominal observation mode.
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Figure 4.16.: The centroiding performance for nominal CHEOPS observations with a constant exposure time of one second. StarSim was used
to create a sample of 10 100 images. An illustration of the images is depicted in Figure 4.17. In each image the target was placed
at a random position inside a 50×50 pixel area that is centred in the science frame. The spacecraft’s jitter was considered to be
below 1” rms. As described in Section 4.2.3, the PSF was approximated with a Gaussian to compute the Cramer-Rao bound. The
error bars are symmetric as they represent the standard deviation of the mean true CEE. The vertical dashed lines indicates the
photon counts of the faintest targets as listed in Table 4.3.

Figure 4.17.: Samples of RoIs for one second exposures for SNRs 50, 96 and 180 from left to right. Colour bar values are in unit electrons. The
central image contains a type I glitch in the upper left corner. The glitch signal is about 1 100 e–. Images appear slightly blurred
due to the simulated jitter.
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Figure 4.18.: The centroiding performance for nominal CHEOPS observations with a constant exposure time of sixty seconds. StarSim was
used to create a sample of 10 100 images. The lower panel represents a zoom on the Cramer-Rao bound. In each image the
target was placed at a random position inside a 50×50 pixel area that is centred in the science frame. The spacecraft’s jitter
was considered to be below 4” rms. As described in Section 4.2.3, the PSF was approximated with a Gaussian to compute the
Cramer-Rao bound. The error bars are symmetric as they represent the standard deviation of the mean true CEE. The vertical
dashed lines indicates the photon counts of the faintest targets as listed in Table 4.3.

4.2.4.2. Observations Inside the South Atlantic Anomaly

During the low-Earth orbit of CHEOPS the satellite will pass the SAA. In order to evaluate
the impact on fine-guiding, I simulated a worst-case scenario where the mean glitch rate is
represented by the peak rate in the SAA (see Table 4.3). For a five second exposure, a rate of
174 glitches per science frame is expected. Therefore, the expected number of type I glitches
inside the RoI is 12.7 and the expected rate of type II glitches inside the PSF (16 pixel radius)
is about 3.5 glitches per observation. The centroiding performance for such a case is depicted
in 4.19. The glitch signals are not contributing to the noise that is illustrated by the SNRs. The
median CEEs reveal that none of the four preselected algorithms was capable of fulfilling the
fine-guiding requirement. In fact, the centroid estimation errors are more than one magnitude
higher compared to the nominal mode. The scale of the error bars that represent the standard
deviation was too large to be included in the graph. Therefore, the success rate of the algorithms
was analysed by comparing the results with the fine-guiding requirement. As expected, the
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IWC showed a constantly high mean CEE due to the large number of glitches. The CEE was
below 1” only in 2.3% of all simulated observations. For the other methods, this occurred more
frequently, but in less than 50% of all cases. The exact numbers are listed in Table 4.4.

Figure 4.19.: The centroiding performance for CHEOPS observations in the SAA with a constant exposure time of five seconds. This is a
worst-case simulation where the peak glitch rate in the SAA was considered as mean glitch rate. An example of a RoI simulated
with this glitch rate is depicted in the left panel of Figure 4.20. StarSim was used to create a sample of 10 100 images. In each
image the target was placed at a random position inside a 50×50 pixel area that is centred in the science frame. As described in
Section 4.2.3, the PSF was approximated with a Gaussian to compute the Cramer-Rao bound. The vertical dashed lines indicates
the photon counts of the faintest targets as listed in Table 4.3. Error description is provided in the text.

Algorithm
no filter

CEE < 1”
median filter
CEE < 1”

IWC [%] 2.3 51.3
IWCoG [%] 27.4 93.7
LMA [%] 43.1 97.0
Corr-interpol. [%] 30.5 96.2

Table 4.4.: Illustrates the success rate of the centroiding algorithms during SAA observations with respect to the fine-guiding requirement. ’No
filter’ corresponds to the simulation illustrated in Figure 4.19 and ’median filter’ corresponds to the results depicted in Figure 4.20.

111



4. Space Applications

In order to lower the CEE, the glitches inside the RoI may be reduced with image processing
techniques. Therefore, I applied a 3×3 median filter to the RoI before the execution of the
centroiding algorithms. By doing so, each pixel value is replaced by the median computed out
of the pixel itself and its eight adjacent pixels. The result of the application of such a median
filter is illustrated in Figure 4.20. It depicts that most of the glitches could be removed except for
the large-scaled structures, which occur less frequently in the derived models (see Figure 4.11).
Figure 4.21 shows the performance of the centroiding methods for the exact same sample of
10 100 images that are were analysed in Figure 4.19, but after the application of a median filter.
It can be seen that the median CEE still differs from the mean, due to of a few outliers with large
CEEs. These outliers correspond to frames where the glitches could not be removed entirely.
However, the median values of LMA, correlation-interpolation and IWCoG are all far below
the 1” limit. For these three methods, the computed CEE did not exceed the limit in more than
93% of the simulated images (see Table 4.4). For IWC, this is only the case in about 50% of the
images. Therefore, IWC is ruled out for fine-guiding during a passage of the SAA. As the CEE
may exceed the limit in a very few cases, I suggest to estimate the centroid quality on-board by
tracking deviations with previously computed centroids.
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Figure 4.20.: Left: Sample RoI for an observation in the SAA with a mean glitch rate of 174 glitches per 200×200 px. Right: The same image
after a 3×3 median filter was applied.

Figure 4.21.: The same simulation as shown in Figure 4.19 with the only difference that a 3×3 median filter was applied to the RoI before the
centroids were computed. A sample of such median filtered RoI is depicted in the right panel of Figure 4.20. The mean CEE of
IWC was above 4” during the entire simulation and therefore it is not included in this plot. The lower panel represents a zoom on
the Cramer-Rao bound.
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4.2.4.3. Observations of Crowded Fields

In order to find out which centroiding methods are capable of providing useful results if crowded
fields are observed, I simulated an observation of Omega Centauri. The simulated full frame
is depicted in Figure 4.23 with the embedded science frame. The extracted RoI is illustrated
in Figure 4.22 including the computed centroid estimations. The target star has a brightness of
V=11.6 mag and it is partly overlapped by another star of equal brightness. This represents an
unusual observation that was selected to test the centroiding methods under extreme conditions.
As expected, both centre of gravity algorithms (IWC and IWCoG) show displaced centroids in
the bright region between the two stars. In fact, IWC always provides displaced centroids if a
second star is observed inside the RoI, even if the PSFs do not overlap. One way to improve
the behaviour of IWC in such cases is to entirely remove the additional star by thresholding.
However, this is only possible if the target is brighter than the other star. For IWCoG, the target
brightness as well as the degree of overlap are decisive for precise centroid estimations. In
this sample the degree of overlap was already too high for IWCoG. Best results were achieved
by the correlation-interpolation method and the LMA. For such observations, the correlation-
interpolation method also requires an initial centroid estimation, in order to select the peak of the
target in the correlation function. Both methods also work if a faint target is slightly overlapped
by a brighter star. Although their centroids depicted in Figure 4.22 are mispositioned by about
3”, fine-guiding may still be possible with an accuracy below 1”, as the displacement is constant
in time if the rotation is negligible. However, such observations of extensively overlapping PSFs
are assumed to be not carried out by CHEOPS.

Figure 4.22.: The region of interest (RoI) that was cut out of the science frame (white rectangle in Figure 4.23). Two stars of equal brightness
(V = 11.6 mag) are observed, where the target star is situated in the centre of the RoI. An initial CEE of 4” was assumed. The
crosses illustrate results of centroiding algorithms, where the results of the centre of gravity algorithms (green crosses) overlap
and the centroids provided by LMA (red) and correlation-interpolation (orange) overlap as well.
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Figure 4.23.: Simulated full frame of the globular cluster Omega Centauri (NGC 5139) with an exposure time of five seconds. The white rect-
angle determines the 200×200 px science frame that includes the target. The image corresponds to a field of view of about 17’.
Stars in outer regions appear blurred as the rotation of the spacecraft was simulated with 0.059◦ s−1. The star positions were ob-
tained in personal communication (Philipp Löschl, December, 2015). They originate from a SIMBAD (Strasbourg Astronomical
Data Center, 2015) query for: RA = 201.696◦ and DEC = -47.479◦.

4.2.5. Conclusion

The CHEOPS pointing stability demands fine-guiding errors below 1” rms. The four algorithms
IWC, IWCoG, correlation-interpolation and LMA were tested under various conditions with
respect to this requirement. It turned out, that the jitter of the spacecraft has no significant
impact on centroiding performance. Only for the centre of gravity algorithms, the saturation
of the CEE occurred on slightly increased values compared to the non-jittered case. All four
algorithms are applicable for nominal observations, but median filtering is suggested for IWC to
avoid extreme CEEs in longer exposures. Such filtering is indispensable for all methods during
a flight through the SAA, as glitch rates may be increased by a factor of 278. Models for glitch
intensities, sizes and rates were derived from MOST observations. All algorithms except IWC
showed a success rate of at least 93% in simulated worst-case observations in the SAA and it
is suggested that exposure times are rather low to avoid a large number of glitches in single
frames. In observations of crowded fields multiple stars may be imaged in the RoI. In such
cases IWC is not applicable if the additional stars cannot be entirely removed by thresholding.
For the extreme case of overlapping PSFs, LMA and correlation-interpolation performed best.
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However, such observations are currently not envisaged as the photometric errors may be too
high. Eventually, the algorithms can be sorted in descending order by their performance the
following way: correlation-interpolation, LMA, IWCoG and IWC. Some of the algorithms may
be too expensive in terms of computation time as fast processing is required on-board in a closed
loop. Here, I provide the mean computation times normalised to IWC as it is the fastest of all
four methods. The processing time for fifteen iterations of IWCoG is about 50 tIWC. However,
this amount of iterations was only required to reach error saturation in order to evaluate the best
performance. The fine-guiding requirement is still fulfilled if only 7 iterations are carried out.
The computation of correlation-interpolation was about 63 tIWC and it may only be lowered
by further decreasing the size of the RoI. The computation of LMA took on average 375 tIWC,
because the fit-model was rather complex. The processing time may be lowered by reducing
the accuracy in the PSF reconstruction.
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5. Conclusion

The focus of this thesis is on the investigation of centroiding techniques that are applicable
for the fine guidance of space telescopes. Any of the presented methods may be applied in
ground-based observations. In addition to its application in fine guiding, centroiding is also
an important step for star identification algorithms (Liebe, 1992; Padgett & Kreutz-Delgado,
1997). For such methods, centroiding is initially carried out to determine the star positions on
the sensor. In this case low-precision centroid estimations on pixel scale are usually sufficient.
Therefore, the standard centre of gravity algorithm (see Section 3.2) suits the needs of most star
identification techniques. However, these are beyond the scope of this thesis.

A major part of this thesis was the development of StarSim. This tool, which initially has been
designed for testing centroiding algorithms, represents a sophisticated data simulator that may
also be used to simulate telescopic observations of stars for other purposes, such as for photo-
metric studies or for the analysis of star identification algorithms. The code of StarSim can be
provided on request and is part of the CHEOPS open-source software.
The models that were applied to describe glitches on optical sensors which are associated to
cosmic ray hits, may be extended by measurements from other satellites. In fact, the current
models may overestimate the glitch rates at higher altitudes as the strength of Earth’s magneto-
sphere declines. Furthermore, the results may also differ if observations are performed with a
different sensor model.

The analysis of the centroiding methods was targeted on their reliability as well as on the pro-
cessing times, which are essential characteristics in most space missions. However, the im-
plementations that are provided in the Appendix will be adapted and used for CHEOPS data
processing unit. The next steps for the CHEOPS mission include the implementation of the
selected centroiding methods on the prototype flight software. Subsequently, centroiding will
be tested in a closed loop, where a simulation of the attitude control of the satellite is embedded
as well. Although EChO was not selected, it was revised and competes as one of three missions
for the ESA M4 mission under the name ARIEL (The Atmospheric Remote-Sensing Infrared
Exoplanet Large-survey). Therefore, the centroiding performance analysis for the FGS (as done
in Section 4.1) will be continued in the context of ARIEL.
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5. Conclusion

This thesis serves as a handbook for the implementation of various centroiding techniques. In
order to simplify the selection of centroiding methods, a compact overview of the characteristics
of eight methods is provided in Table 3.1. It should be pointed out, that there is no default
centroiding algorithm which is applicable in all cases. In fact, each of the investigated methods
is capable of providing centroid estimations that are close to the analytically derived limits
(Winick, 1986; Chen, 1987), if favourable conditions prevail.
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A.1. Configuration of StarSim

Simulation parameters can be configured by manipulating the files stars_config.xml and
datasim_config.xml. For settings of type ’boolean’, the values ’True’, ’False’, ’0’ and
’1’ are supported.

A.1.1. Entries of stars_config.xml

The simulated stellar field can be specified in this configuration file. Each star must be defined
individually.

Setting Name Type Description

star Xml-tag Xml-entry that specifies a single star. The attributes ’pos_x’, ’pos_y’, ’sig-
nal’ and ’is_target’ must be specified per entry.

pos_x float The x-position of the star on the detector area in pixels.
pos_y float The y-position of the star on the detector area in pixels.
signal float The total signal of the star on sensor level prior to the reduction of quantum

efficiency, gain, etc. in photons per second.
is_target boolean Specifies whether this entry is the target in the simulated observation. The

final position of this star will be included in the output files.

Table A.1.: List of settings in stars_config.xml.

A.1.2. Entries of datasim_config.xml

This is the main configuration file of StarSim, where hardware and observational parameters
can be specified.
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Setting Name Type Description

detector_x integer The total number of pixel-columns on the sensor.
detector_y integer The total number of pixel-rows on the sensor.
flat_mean float The mean value for pixel sensitivities. Allowed

value range: 0.0-1.0. Note that the simulated flat
field is clipped at 1.0 per pixel.

flat_sigma float The standard deviation of the pixel sensitivities. Al-
lowed value range: 0.0-1.0. Note that the simulated
flat field is clipped at 1.0 per pixel.

flat_grad_lower_limit float A lower limit for the linear sensitivity gradient (start
value). Allowed value range: 0.0-1.0.

flat_grad_upper_limit float A upper limit for the linear sensitivity gradient (end
value). Allowed value range: 0.0-1.0.

flat_grad_changes float Changes of the upper and lower limits of the sensi-
tivity gradient in multiple image generation mode.
Allowed value range: 0.0-1.0.

flat_grad_angle float The angle of the sensitivity gradient in degrees. Al-
lowed value range: 0-360

subpixelflat custom The intra-pixel flat field. Columns are delimited
by ’/’ and rows are delimited by ’//’. Exam-
ple: 0.6/0.8/0.6//0.8/1.0/0.8//0.6/0.8/0.6 represents a
3×3 intra-pixel flat field. This corresponds to an
oversampling factor of 3.

flatfield_count integer Number of flat field frames that are used for calibra-
tion if ’calibrate_image’ is true.

psf Xml-tag Xml-entry that combines settings for the instru-
ment’s PSF. The following six settings must be spec-
ified within this tag.

plot_psf boolean Indicates if the PSF is plotted during the simulation.
psf_mode string Allowed values are ’read’ and ’generate’.
psf_filename string If ’psf_mode’ is ’read’, this is the name of the text

file, where the PSF is defined. Input file directory is
specifed in setting ’data_input_directory’.

psf_is_oversampled boolean If ’psf_mode’ is ’read’, this indicates if the PSF file
is oversampled or in final sensor resolution. The
oversampling factor is defined by the resolution of
the provided subpixelflat.

psf_fwhm_x float If ’psf_mode’ is ’generate’, this value defines the
FWHM in x-dimension for the simulated Gaussian-
PSF in units pixel.

psf_fwhm_y float If ’psf_mode’ is ’generate’, this value defines the
FWHM in y-dimension for the simulated Gaussian-
PSF in units pixel.

bias float Fixed bias value, that is included in the final image.
bias_count integer Number of bias frames that are used for calibration

if ’calibrate_image’ is true. These frames include
read noise.
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Setting Name Type Description

readout_noise float The mean read noise of a pixel in electrons per sec-
ond.

exposure_time float The exposure time for the observation in seconds.
background_signal float The mean background of a pixel in photons per sec-

ond.
QE float The fixed quantum efficiency of the sensor. This set-

ting may only be used if flat_mean is not 1. Allowed
value range: 0.0-1.0.

full_well_capacity integer The maximum value that is allowed for single pixels.
Higher values will be truncated.

dark_average float The mean dark current in a pixel in electrons per
second.

dark_count integer Number of dark frames that are used for calibration
if ’calibrate_image’ is true. These frames include
bias and read noise.

hotpixel_amount float The fraction of hotpixels of all sensor pixels. These
are randomly selected during the simulation. Al-
lowed value range: 0.0-1.0.

hotpixel_lower_limit float A lower limit for the factor that is used to compute
the increased dark values of hotpixels.

hotpixel_upper_limit float An upper limit for the factor that is used to compute
the increased dark values of hotpixels.

calibrate_image boolean Indicates if calibration steps for dark current, read
noise, bias and flat field shall be performed.

plot_subpixflat boolean Used to visualise the intra-pixel flat field.
plot_flat boolean Used to visualise the flat field.
plot_bias boolean Used to visualise the bias frame.
plot_starmask boolean Used to visualise the bias frame.
plot_background boolean Used to visualise the background frame.
plot_final_image boolean Used to visualise the final image that contains all

noise sources.
plot_reduced_image boolean Used to visualise the calibrated image (if ’cali-

brate_image’ is true).
plot_masterflat boolean Used to visualise the calibration frame for the flat

field.
plot_masterbias boolean Used to visualise the calibration frame for the bias.
plot_hotpixel boolean Used to visualise current hotpixels only.
plot_dark boolean Used to visualise the dark frame.
plot_masterdark boolean Used to visualise the calibration frame for the flat

field.
show_on_screen boolean If true, images are shown via pop-up during the sim-

ulation.
use_same_calibration_data boolean If true, the same bias, dark and flat frames are reused

in simulations, where multiple images are generated.
save_image boolean If true, the images are saved as ’.png’ in the specified

output directory.
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Setting Name Type Description

save_data boolean If true, the images are saved as numpy-binaries in
the specified output directory.

save_image_as_fits boolean If true, the final images are written into a single out-
put file of type FITS in the specified output directory.

fits_file_name string The name of the FITS-output file.
data_input_directory string Input directory of the PSF in mode ’read’
data_output_directory string Directory that contains all the output generated by

StarSim.
Rotation Xml-tag Xml-entry that holds information about the rotation

of the instrument.
angle_speed float The speed of the rotation in degrees per second. Al-

lowed value range: 0-360.
rotation_direction string Direction of the rotation. Only ’anticlockwise’ and

’clockwise’ are allowed.
rotation_axis_pos_x float x-position of the rotation axis on the sensor.
rotation_axis_pos_y float y-position of the rotation axis on the sensor.
ignore_target_star boolean If true, the target star is not affected by rotation (only

used for special analyses).
Jitter Xml-tag Xml-entry that holds information about the jitter of

the instrument.
apply_jitter boolean If true, jitter is included in the simulation.
input_file string Absolute path to the jitter file. The jitter file must

contain three columns. One column for the current
time in seconds starting from zero. And two other
columns for defining current pitch and yaw in units
pixel.

jitter_mode string Allowed values ’random_starttime’ and
’fixed_starttime’.

jitter_starttime float If ’jitter_mode’ is set to ’fixed_starttime’, this time
defines the start point in the input jitter file.

MultipleImages Xml-tag Xml-entry that combines settings for multiple image
generation within single runs.

image_count integer This amount of final images will be created as out-
put.

place_target_on_random_position boolean If true, the specified position for the target is ignored
and a random position is computed for each itera-
tion.

mul_imgs_per_iteration integer The amount of images for the current target posi-
tion/signal. Only useful, if the next two settings are
specified.

pos_step float If not zero, the target is moved along the x-axis dur-
ing the simulation. This has been used for centroid-
ing analyses.

signal_steps float If not zero, the targets signal is increased in each it-
eration. This has been used for centroiding analyses.
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Setting Name Type Description

Glitches Xml-tag Xml-entry that combines settings for cosmic ray
hits.

glitch_rate_average float For random glitch generation. The mean glitch rate
per pixel and per second. Allowed value range: 0.0-
1.0.

glitch_rate_sigma Xml-tag For random glitch generation. The standard devia-
tion of the glitch rate per pixel and per second. Al-
lowed value range: 0.0-1.0.

glitch Xml-tag Xml-entry that specifies a glitch on a fixed position.
type string Glitch-setting. Determines the shape of the glitch.

Possible values: ’linear’ - The glitch is represented
by linear line on the detector between two points.
’spline’ - The glitch is will be created by a spline
interpolation through the specified points. ’point’ -
The glitch is located only at a single point.

spread_type string Glitch-setting. Determines how fast the glitch val-
ues decrease with the distance from the glitch cen-
tre. Possible values: ’gaussian’ – Values fall off
smoothly from an intra-pixel interpolation line that
is considered as centre. ’hard’ - The glitch value de-
creases in steps of 50% with increased distances to
the glitch center.

points floats Glitch-setting. The x and y position of the glitch
on the detector. Multiple points can be specified for
types ’linear’ and ’spline’.

width float Glitch-setting. The width of the glitch in pixels.
signal float Glitch-setting. The total signal of the glitch in elec-

trons.
decay float Glitch-setting. Determines how glitch values change

from start to endpoint in width and intensity. Al-
lowed value range: 0.0-1.0. For 0.0, the glitch has a
constant width/intensity from start to endpoint.

Table A.2.: List of settings in datasim_config.xml.
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A.2. Abbreviations

ADC Analog-to-Digital Converter
AOCS Attitude and Orbit Control System
ARIEL Atmospheric Remote-Sensing Infrared Exoplanet Large-survey
CCD Charge-Coupled Device
CEE Centroid Estimation Error
CHEOPS CHaracterising ExOPlanets Satellite
CoG Centre of Gravity
Corr-interpol. Correlation-interpolation
Corr-upsampl. Correlation-upsampling
EChO Exoplanet Characterisation Observatory
FGS Fine Guidance Sensor
FITS Flexible Image Transport System
FWC Full-Well Capacity
FWHM Full Width at Half Maximum
G3P Gaussian Three-Point Fit
IFSW Instrument Flight Software
IWC Intensity-Weighted Centre of Gravity
IWCoG Iteratively-Weighted Centre of Gravity
JWST James Webb Space Telescope
LMA Levenberg-Marquardt Algorithm
MOST Microvariability and Oscillations of Stars
NGST Next Generation Space Telescope
ph photons
ppm parts per million
PSF Point Spread Function
px pixel
rms root mean square
RoI Region of Interest
RPS Random Pixel Sensitivities
SAA South Atlantic Anomaly
SNR Signal-to-Noise Ratio
WCoG Weighted Centre of Gravity

124



A.3. Implementations of Centroiding Algorithms

A.3. Implementations of Centroiding Algorithms

A.3.1. Centre of Gravity

Implementation in Python

1 """ Author: Roman Ferstl """
2 import numpy as np
3
4 """
5 Calculates the centre of gravity (or centre of mass) for given image
6 without applying weights.
7
8 Parameters
9 ----------

10 image -- 2D numpy array, the given image for which CoG will be
11 computed.
12
13 returns centroid information (x,y) as floats.
14 """
15 def CoG(image):
16
17 total_intensity = np.sum(image)
18 if (total_intensity == 0):
19 print "Warning: Could not calculate CoG!"
20 print "Total intensity in given image is zero."
21 return 0,0
22 # center[0] = x-coordinate.
23 # center[1] = y-coordinate.
24 center = [0,0]
25
26 # calculate y coordinate
27 for i in range (image.shape[0]) :
28 center[1] += np.sum(image[i,:]) * i
29 center[1] = center[1] / total_intensity
30
31 # calculate x coordinate
32 for j in range (image.shape[1]) :
33 center[0] += np.sum(image[:,j]) * j
34 center[0] = center[0] / total_intensity
35
36 return center[0], center[1]
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Implementation in C

1 /* Author: Roman Ferstl */
2 /* Calculates the centre of gravity for given image.
3 *
4 * Parameters
5 * ----------
6 * int size_x: Size of image in x.
7 * int size_y: Size of image in y.
8 * double **img: The centroid will be calculated for this two
9 * dimensional image data.

10 */
11 position CoG(int size_x, int size_y, double **img)
12 {
13 int i, j;
14 double total_intensity = 0.0;
15 double rowsCollapsed[size_x], colsCollapsed[size_y];
16 position pos = {0.0, 0.0};
17
18 /* calculate y position of centroid */
19 for (i=0; i<size_y; i++)
20 {
21 colsCollapsed[i]=0;
22 for (j=0; j<size_x; j++)
23 {
24 colsCollapsed[i] += img[i][j];
25 }
26 pos.y += colsCollapsed[i] * (i+1);
27 total_intensity += colsCollapsed[i];
28 }
29
30 pos.y = pos.y / total_intensity - 1;
31 /* -1 cause centre of first cell is defined as position zero. */
32
33 /* calculate x position of centroid */
34 for (i=0; i<size_x; i++)
35 {
36 rowsCollapsed[i]=0;
37 for (j=0; j<size_y; j++)
38 {
39 rowsCollapsed[i] += img[j][i];
40 }
41 pos.x += rowsCollapsed[i] * (i+1);
42 }
43 pos.x = pos.x / total_intensity - 1;
44
45 return pos;
46 }
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A.3.2. Weighted Centre of Gravity

Implementation in Python

1 """ Author: Roman Ferstl """
2 """
3 Calculates the Weighted Centre of Gravity (WCoG) by using specified
4 weighting function. Also supports Intensity Weighted CoG (IWC).
5
6 Parameter
7 ----------
8 image -- the given image for which CoG will be calculated.
9 mode -- function_weighted: the intensity distribution will be

10 weighted by a weighting function. Addtiionally,
11 parameter weighting_mode has to be set.
12 intensity_weighted: the intensity distribution itself
13 is the weighting function.
14 psf_weighted: The given PSF template file located at
15 psf_location will be used.
16 weighting_function --
17 ’gauss’ -- A 2 dimensional gauss function. The spot center has
18 to be estimated.
19 ’psf’ -- A psf template will be used for the weighting function.
20 Parameter psf_location has to be specified.
21 psf_location -- Location of the psf file (for mode psf_weighted).
22 estimated_star_pos -- (x,y) float coordinates representing an
23 initial guess of the star position.
24
25 returns x,y of the center of mass as floats.
26 """
27 cog_mode_function_weighted = ’function weighted’
28 cog_mode_intensity_weighted = ’intensity_weighted’
29 cog_weighting_mode_gauss = ’gauss’
30 cog_weighting_mode_psf = ’psf’
31 def WCoG(self, image, mode, weighting_function, psf_location = None,

estimated_star_pos=None):
32
33 if mode == cog_mode_function_weighted:
34 if weighting_function == cog_weighting_mode_psf:
35 pass
36 # read your psf template file here
37 #psfweighting = self.get_psf_weighting(psf_location,

image.shape, estimated_star_pos)
38 #image = image * psfweighting
39 elif weighting_function == cog_weighting_mode_gauss:
40 gaussweighting = generate_2D_gauss(estimated_star_pos[0],

estimated_star_pos[1], self.psf_fwhm_x, self.psf_fwhm_y,
image.shape)

41 image = image * gaussweighting # weighting function is a
gaussian with estimated center x0,y0

42 else:
43 raise Exception("Unknown weighting mode.")
44 elif mode == cog_mode_intensity_weighted:
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45 image = image * image # weighting function is the intensity
distribution itself.

46
47 return CoG(image)
48
49 """
50 This function can be used to generate a 2 dimensional gaussian
51 distribution (e.g. on detector area).
52
53 Parameters
54 ----------
55 pos_x0: The x position of the gaussian centre. float value
56 pos_y0: The y position of the gaussian centre. float value
57 fwhm_x: The FWHM size in x direction given in pixel. float value
58 fwhm_y: The FWHM size in y direction given in pixel. float value
59 shape: The two dimensional shape of the resulting area.
60 evaluation_limit:
61 If the shape of the resulting area is large it is useful to
62 evaluate the gauss function only near the center (spot) to
63 safe performance. This limit defines up to which pixel the
64 gauss function will be evaluated counted in pixel from spot
65 center (pos_y0, pos_y0). integer values.
66
67 Returns a 2 dimensional array containing the gaussian spot.
68 """
69 def generate_2D_gauss(pos_x0, pos_y0, fwhm_x, fwhm_y, shape,

evaluation_limit = None):
70
71 gauss_array = np.zeros(shape)
72 upper_limit_x = shape[1] - 1
73 upper_limit_y = shape[0] - 1
74 # calculates the range for the gauss function
75 new_upper_limit_x = transform_to_zerobased(upper_limit_x,

upper_limit_x)
76 new_upper_limit_y = transform_to_zerobased(upper_limit_y,

upper_limit_y)
77
78 x0 = transform_to_zerobased(pos_x0, upper_limit_x)
79 y0 = transform_to_zerobased(pos_y0, upper_limit_y)
80
81 sx = utils.fwhm_to_sigma(fwhm_x)
82 sy = utils.fwhm_to_sigma(fwhm_y)
83
84 if evaluation_limit is None:
85 for i in range (upper_limit_x+1) :
86 for j in range (upper_limit_y+1) :
87 if i >= 0 and i <= upper_limit_x and j >= 0 and j <=

upper_limit_y:
88 gauss_array[j,i] = Gauss2D(x0, y0, sx, sy,

i-new_upper_limit_x, j-new_upper_limit_y)
89 else:
90 for i in range (int(pos_x0) - evaluation_limit, int(pos_x0) +

evaluation_limit+1) :
91 for j in range (int(pos_y0) - evaluation_limit, int(pos_y0) +

evaluation_limit+1) :
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92 if i >= 0 and i <= upper_limit_x and j >= 0 and j <=
upper_limit_y:

93 gauss_array[j,i] = Gauss2D(x0, y0, sx, sy,
i-new_upper_limit_x, j-new_upper_limit_y)

94
95 # normalize Gauss to 1.0
96 gauss_array = gauss_array / np.sum(gauss_array)
97
98 return gauss_array
99

100 """
101 Generates a 2 dimensional gaussian spot. If sx and sy are equal, the spot
102 is circular. The function area is normalized to 1.
103
104 Parameters
105 ----------
106 x0 -- x position of the center
107 y0 -- y position of the center
108 sx -- sigma x = deviation in x direction
109 sy -- sigma y = deviation in y direction
110 x,y -- position of the spot that will be evaluated
111 """
112 def Gauss2D(x0, y0, sx, sy, x, y):
113
114 norm = 1./(sx*sy*2.*math.pi)
115 return norm * np.exp(-( ((x-x0)**2.0)/(2.0*(sx**2.0)) +

((y-y0)**2.0/(2*(sy**2.0))) ))
116
117 """
118 Transforms to a new coordinate system with detector center as (0,0).
119 Example: 0 to 256 --> -128 to +128
120
121 Parameters
122 ----------
123 pos -- The position of in old coordinate system
124 (index based position starting with zero)
125 old_upper_limit -- upper limit of the old coordinate system
126 (e.g. 255) (index based)
127
128 returns the position in the center based coordinate system
129 """
130 def transform_to_zerobased(pos, old_upper_limit):
131
132 new_upper_limit = float(old_upper_limit / 2.0)
133 return pos - new_upper_limit
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Implementation in C

1 /* Author: Roman Ferstl */
2
3 #define M_PI 3.141592653589793
4 #define FWHM_TO_SIGMA 0.424660900144010
5
6 /* Calculates the Weighted Centre of Gravity (WCoG) or Intensity
7 * Weighted Centre of Gravity (IWC) for given image.
8 *
9 * Parameters

10 * ----------
11 * int size_x: Size of image in x.
12 * int size_y: Size of image in y.
13 * double **img: The centroid will be calculated for this
14 * two dimensional image data.
15 * wcog_mode mode: GAUSS or IWC.
16 * double estimated_x: estimated star position in x.
17 Required in all weighting modes.
18 * double estimated_y: estimated star position in y.
19 Required in all weighting modes.
20 * double gauss_fwhm_x: Only required in more ’GAUSS’.
21 FWHM of 2D Gaussian function in x dimension.
22 * double gauss_fwhm_y: Only required in more ’GAUSS’.
23 FWHM of 2D Gaussian function in y dimension.
24 */
25 position WCoG(int size_x, int size_y, double **img, wcog_mode mode, double

estimated_x, double estimated_y, double gauss_fwhm_x, double
gauss_fwhm_y)

26 {
27 int i, j;
28 double **weights;
29
30 if (mode == GAUSS)
31 {
32 /* Weighting template is obtained by evaluation of analytical 2D

Gaussian function */
33 weights = generate2DGauss(estimated_x, estimated_y, gauss_fwhm_x,

gauss_fwhm_y, size_x, size_y, -1, -1);
34 }
35 else if (mode == IWC)
36 {
37 /* Weighting template is the intensity function */
38 weights = img;
39 }
40
41 /* In order to save performance, this loop can be moved into method

CoG. */
42 for (i=0; i<size_y; i++)
43 {
44 for (j=0; j<size_x; j++)
45 {
46 weights[i][j] *= img[i][j];
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47 }
48 }
49
50 /* see separate implementation of CoG */
51 return CoG(size_x, size_y, weights);
52 }
53
54 /* This function can be used to generate a 2 dimensional
55 * gaussian distribution (e.g. on detector area).
56 *
57 * Parameters
58 * ----------
59 * double pos_x0: The x position of the gaussian centre.
60 * double pos_y0: The y position of the gaussian centre.
61 * double fwhm_x: The FWHM size in x direction given in pixel.
62 * double fwhm_y: The FWHM size in y direction given in pixel.
63 * int size_x: The size in x of the resulting 2d-array
64 * containing the gaussian spot.
65 * int size_y: The size in y of the resulting 2d-array
66 * containing the gaussian spot.
67 * evaluation_limits:
68 * CURRENTLY NO IMPLEMENTED (can be used to increase performance)
69 * If the shape of the resulting area is large it is useful to
70 * evaluate the gauss function only near the center (spot) to safe
71 * performance. This limit defines up to which pixel the gauss
72 * function will be evaluated counted in pixel from spot center.
73 *
74 * Returns a pointer to 2 dimensional double array containing the
75 * gaussian spot.
76 */
77 double **generate2DGauss(double pos_x0, double pos_y0, double fwhm_x,

double fwhm_y, int size_x, int size_y, int eval_limit_x, int
eval_limit_y)

78 {
79 int upper_limit_x, upper_limit_y, i, j;
80 double x0, y0, sx, sy, new_upper_limit_x, new_upper_limit_y, total_sum;
81 double **result = (double **) malloc(sizeof(double *)*size_y);
82
83 upper_limit_x = size_x - 1;
84 upper_limit_y = size_y - 1;
85 /* transform to zero based coordinate system */
86 new_upper_limit_x = (double)(upper_limit_x - (double)(upper_limit_x /

2.0));
87 new_upper_limit_y = (double)(upper_limit_y - (double)(upper_limit_y /

2.0));
88 x0 = (double)(pos_x0 - upper_limit_x / (double)2.0);
89 y0 = (double)(pos_y0 - upper_limit_y / (double)2.0);
90 sx = fwhm_x * FWHM_TO_SIGMA;
91 sy = fwhm_y * FWHM_TO_SIGMA;
92 total_sum = 0;
93
94 for (j=0; j<=upper_limit_y; j++)
95 {
96 result[j] = (double *) malloc(sizeof(double)*size_x);
97
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98 for (i=0; i<=upper_limit_x; i++)
99 {

100 if (i <= upper_limit_x && j >= 0 && j <= upper_limit_y)
101 {
102 result[j][i] = gauss2D(x0, y0, sx, sy,

i-new_upper_limit_x, j-new_upper_limit_y);
103 total_sum += result[j][i];
104 }
105 }
106 }
107 /* normalization must not be performed if gauss2D is normalized */
108 /* normalizeImage(size_x, size_y, result, total_sum); */
109
110 return result;
111 }
112
113 /*
114 * Evaluates a 2 dimensional Gaussian function. If sx equals sy,
115 * the function is circular symmetric around x0, y0.
116 * The function is normalized to 1.
117 *
118 * Parameters
119 * ----------
120 * x0 -- x position of the center
121 * y0 -- y position of the center
122 * sx -- sigma x = standard deviation in x direction
123 * sy -- sigma y = standard deviation in y direction
124 * x,y -- position of the spot that will be evaluated
125 * Requires
126 * --------
127 * #include <math.h>
128 */
129 double gauss2D(double x0, double y0, double sx, double sy, double x,

double y)
130 {
131 return (double)1.0/(sx*sy*2.0*M_PI) * exp(-(

(pow((x-x0),2))/(2.0*(pow(sx, 2))) + (pow((y-y0),2.0)/(2*(pow(sy,
2)))) ));

132 }
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A.3.3. Iteratively Weighted Centre of Gravity

Implementation in Python

1 """ Author: Roman Ferstl """
2 """
3 Iteratively Weighted Centre of Gravity (IWCoG)
4 Calculates the CoG iteratively by using centroid estimations.
5
6 Parameter
7 ----------
8 iterations -- integer, indicates how many iterations
9 shall be performed.

10 see method ’WCoG’ for documentation of other parameters.
11
12 returns x,y of the center of mass as floats.
13 """
14 def calc_iterative_CoG(image, iterations, weighting_function,

psf_location, estimated_star_pos, actualStarPosition = None, minError =
None):

15
16 x = estimated_star_pos[0]
17 y = estimated_star_pos[1]
18
19 for i in range(1,iterations+1):
20 x, y = CoG(image, const.cog_mode_function_weighted,

weighting_function, psf_location, (x,y))
21 if minError != None:
22 xtmp, ytmp = x,y
23 xtmp, ytmp = self.backtransform_coords(xtmp, ytmp)
24 cee = math.sqrt((xtmp-actualStarPosition[0])**2 +

(ytmp-actualStarPosition[1])**2)
25
26 if (cee <= minError):
27 iterations = i
28 break
29
30 return x,y
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Implementation in C

1 /* Author: Roman Ferstl */
2 /* Calculates the Iteratively Weighted Centre of Gravity (IWCoG) for
3 * given image. The number of iterations has to be specified. Centroid
4 * results form previous results are used to improve the position of
5 * the weighting function.
6 *
7 * Parameters
8 * ----------
9 * int iterations: integer, indicates how many iterations

10 * shall be performed.
11 */
12 position IWCoG(int size_x, int size_y, double **img, wcog_mode mode,

double estimated_x, double estimated_y, double gauss_fwhm_x, double
gauss_fwhm_y, int iterations)

13 {
14 int i;
15 position centroid;
16
17 centroid.x = estimated_x;
18 centroid.y = estimated_y;
19
20 for (i=0; i<iterations; i++)
21 {
22 centroid = WCoG(size_x, size_y, img, mode, centroid.x, centroid.y,

gauss_fwhm_x, gauss_fwhm_y);
23 printf("iteration %d - centroid: (%f, %f)\n", i+1, centroid.x,

centroid.y);
24 }
25 return centroid;
26 }
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A.3.4. Correlation-based Centroiding

Implementation in Python

1 """ Author: Roman Ferstl """
2 import math
3 import numpy as np
4 import scipy
5
6 """
7 Calculates the spot of best correlation (centroid) between the image
8 and a reference template. The reference template can be created within
9 this method by given psf parameters or it can be read from file.

10 Upsampling has to be performed in order to reach subpixel accuracy.
11 The reference spot and the image will have the same sampling before
12 the correlation is performed.
13
14 Parameters
15 ----------
16 image -- 2dim numpy array. The given image that will be
17 correlated with the template in order to find the star
18 position. Can be the whole detector image or only a
19 defined region of interest. Computational effort
20 is very high if the operation is performed for the
21 whole detector size.
22 isWindow -- boolean. Indicates if the given image is only a small
23 section of the whole image (region of interest).
24 If yes, the calculated coordinates will be re-
25 transformed to the original coordinate system of
26 the whole image.
27 mode -- ’upsampling’ or ’interpolate’
28 upsampling -- integer. Defines the factor that will be used for
29 upsampling the original image.
30 boundary_type -- string. The boundary condition type as string.
31 available options: ’nearest’, ’constant’,
32 ’mirror’, ’reflect’, ’wrap’
33 boundary_val -- float. This parameter is only used in combination
34 with boundary_type = ’constant’
35 psf_mode -- ’generate’: template psf will be generated
36 using a 2D-Gauss function.
37 -- ’read’: template will be read from file.
38 psf_location -- string. Path to template file that will be used
39 for correlation including file name.
40
41 returns the position of best correlation as float values.
42 """
43 def calc_correlation(self, image, isWindow, mode, upsampling,

boundary_type, psf_mode, psf_location, boundary_val = 0.0):
44
45 if psf_mode == "generate":
46 # generate psf template
47 if (mode == "upsampling"):
48 fwhm_x = self.psf_fwhm_x * upsampling
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49 fwhm_y = self.psf_fwhm_y * upsampling
50 else:
51 fwhm_x = self.psf_fwhm_x
52 fwhm_y = self.psf_fwhm_y
53
54 psf_frame_width = int(math.ceil(fwhm_x * 2))
55 psf_frame_height = int(math.ceil(fwhm_y * 2))
56 # force uneven pixel counts for psf template (for centering)
57 if psf_frame_width % 2 == 0:
58 psf_frame_width += 1
59 if psf_frame_height % 2 == 0:
60 psf_frame_height += 1
61 # determine the centre of the image
62 psf_pos_x0 = int((psf_frame_width-1) / 2.0)
63 psf_pos_y0 = int((psf_frame_height-1) / 2.0)
64 #for definition of generate_2D_gauss: see code section of
65 #’Weighted Centre of Gravity’
66 psf = glob.generate_2D_gauss(psf_pos_x0, psf_pos_y0, fwhm_x,

fwhm_y, (psf_frame_height, psf_frame_width))
67 elif psf_mode == "read":
68 psf = np.loadtxt(psf_location, delimiter="\t")
69 psf = np.around(psf, decimals=5)
70 psf = scipy.ndimage.zoom(psf, upsampling, order=0)
71
72 # upsampling of the original image to determine sub-pixel accuracy
73 upsampled_image = image
74 if mode == "upsampling" and upsampling > 1:
75 upsampled_image = scipy.ndimage.zoom(upsampled_image,

upsampling, order=0)
76
77 # compute the correlation function
78 output = scipy.ndimage.filters.correlate(upsampled_image, psf,

mode=boundary_type, cval=boundary_val)
79
80 # get coordinates of peak correlation function
81 maxIndexTuple = np.unravel_index(np.argmax(output), output.shape)
82
83 if mode == "upsampling":
84 x = glob.transform_to_original(maxIndexTuple[1], upsampling)
85 y = glob.transform_to_original(maxIndexTuple[0], upsampling)
86 xerr = 1.0 / float(upsampling*2.0)
87 yerr = 1.0 / float(upsampling*2.0)
88 elif mode == "interpolate":
89 x, xerr = self.get_correlation_centroid_and_error(upsampled_image,

psf, noise_estimator, maxIndexTuple[1], maxIndexTuple[0],
dim=’x’)

90 y, yerr = self.get_correlation_centroid_and_error(upsampled_image,
psf, noise_estimator, maxIndexTuple[1], maxIndexTuple[0],
dim=’y’)

91
92 if isWindow:
93 x, y = self.backtransform_coords(x, y)
94
95 return x, y, xerr, yerr
96
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97 """
98 Transforms from oversampled coordinates to the actual detector sized
99 coordinate system.

100 """
101 def transform_to_original(pos, oversampling):
102
103 if oversampling == 1:
104 return pos
105 return (pos - (oversampling / 2.0 - 0.5)) / oversampling
106
107 """
108 Back-transform from ROI coordinates to original coordinates.
109 window_position: x and y pos. of window in original coord. system.
110 """
111 def backtransform_coords(self, x, y):
112
113 x_orig = x + self.window_position[0]
114 y_orig = y + self.window_position[1]
115 return x_orig, y_orig
116
117 """
118 Based on ’Correlation wave-front sensing algorithms for Shack-
119 Hartmann-based Adaptive Optics using a point source’ (Poyneer, 2003)
120 Solutions had to be adapted for zero shift, as size of reference spot
121 is not equal to size of image.
122 Zero shift is assumed to be at provided centroid estimation.
123
124 Parameters
125 ----------
126 image -- 2d numpy array, the image containing the target
127 pattern -- 2d numpy array, the template used for cross-correlation
128 (e.g. psf model)
129 noise_estimator -- float, average Gaussian noise inside a pixel.
130 est_x -- estimated centroid x position based on cross-
131 correlation result. Assumed to be zero shift position.
132 est_y -- estimated centroid y position based on cross-
133 correlation result. Assumed to be zero shift position.
134 """
135 def get_correlation_centroid_and_error(self, image, pattern,

noise_estimator, est_x, est_y, dim):
136
137 m0 = 0
138 m1 = 0
139 mm1 = 0
140 sig_one_square = 0
141 sig_mone_square = 0
142 rnterm = 0
143
144 # transform to zero shift
145 dx = est_x - pattern.shape[1]//2
146 dy = est_y - pattern.shape[0]//2
147
148 if dim == ’x’:
149 for i in range (pattern.shape[1]-1) :
150 for j in range (pattern.shape[0]-1) :

137



A. Appendix

151 m0 += pattern[j,i]*image[dy+j,dx+i]
152 mm1 += pattern[j,i+1]*image[dy+j,dx+i]
153 m1 += pattern[j,i-1]*image[dy+j,dx+i]
154 sig_one_square += pattern[j,i-1]**2*noise_estimator**2
155 sig_mone_square +=

pattern[j,i+1]*pattern[j,i-1]*(noise_estimator**2)
156 rnterm = pattern[j,i-1]* (pattern[j,i-1] - pattern[j,i+1])
157
158 centr = 0.5 * (m1 - mm1) / (m1 + mm1 - 2*m0)
159 centr = est_x - centr
160 elif dim == ’y’:
161 for i in range (pattern.shape[1]-1) :
162 for j in range (pattern.shape[0]-1) :
163 m0 += pattern[j,i]*image[dy+j,dx+i]
164 mm1 += pattern[j+1,i]*image[dy+j,dx+i]
165 m1 += pattern[j-1,i]*image[dy+j,dx+i]
166 sig_one_square += pattern[j-1,i]**2*noise_estimator**2
167 sig_mone_square +=

pattern[j+1,i]*pattern[j-1,i]*(noise_estimator**2)
168 rnterm = pattern[j-1,i]* (pattern[j-1,i] - pattern[j+1,i])
169
170 centr = 0.5 * (m1 - mm1) / (m1 + mm1 - 2*m0)
171 centr = est_y - centr
172
173 var = (sig_one_square - sig_mone_square)/(8*(m0-m1)**2) +

noise_estimator**2*rnterm/(8*(m0-m1)**2)
174 err = np.sqrt(var)
175
176 return centr, err

A.3.5. Gaussian Three-Point Fitting

Implementation in Python

1 """ Author: Roman Ferstl """
2 import numpy as np
3 """
4 Performs a Gaussian fit to 3 points in order to determine the star
5 position and returns the positions x,y of the maximum of the Gaussian
6 curves.
7
8 Parameter
9 ----------

10 image -- 2D numpy array. Given image for which the Gaussians
11 will be fitted.
12 collapse_cells-- boolean. If ’True’ the 2d image will be collapsed to
13 a single row/column.
14 estimated_pos -- integer tuple, containing estimated centroid
15 position (x,y).
16 isWindow -- indicates if the given image is only a small section
17 of the whole image (region of interest). If ’true’
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18 the calculated coordinates will be re-transformed to
19 the original coordinate system of the whole image.
20
21 returns best fit in x and y.
22 """
23 def calc_gauss_3point_fit_center(self, image, collapse_cells,

estimated_pos, isWindow = False):
24
25 bPixX = estimated_pos[0]
26 bPixY = estimated_pos[1]
27 if collapse_cells == True:
28 collapsedImgForX = collapseTo1D(image, collapse_rows)
29 collapsedImgForY = collapseTo1D(image, collapse_cols)
30
31 if collapse_cells == True:
32 x = fit_gauss_3points(collapsedImgForX[bPixX-1],

collapsedImgForX[bPixX], collapsedImgForX[bPixX+1], bPixX)
33 y = fit_gauss_3points(collapsedImgForY[bPixY-1],

collapsedImgForY[bPixY], collapsedImgForY[bPixY+1], bPixY)
34 else:
35 x = fit_gauss_3points(image[bPixY, bPixX-1], image[bPixY, bPixX],

image[bPixY, bPixX+1], bPixX)
36 y = fit_gauss_3points(image[bPixY-1, bPixX], image[bPixY, bPixX],

image[bPixY+1, bPixX], bPixY)
37
38 if isWindow:
39 # for implementation of backtransform_coords see code for
40 # correlation-based centroiding’
41 x, y = self.backtransform_coords(x, y)
42
43 return x, y
44
45 """
46 Performs a Gaussian fit to 3 points.
47 If the 3 points lie on a Gaussian curve. The solution is a 2nd grade
48 polynomial represented by the given formula (for equal pixel/point
49 distances). Returns the position of maximum of the Gaussian curve
50 as x,y coordinate.
51
52 Parameter
53 ----------
54 leftCell -- the value of the 1st (left) point of Gaussian fit
55 middleCell -- the value of the 2nd (middle) point of Gaussian fit
56 rightCell -- the value of the 3rd (right) point of Gaussian fit
57 middleCellCoordinate -- the coordinate of the point in the middle.
58
59 returns the position x0 (maximum of Gaussian fit) as float
60 """
61 def fit_gauss_3points(self, leftCell, middleCell, rightCell,

middleCellCoordinate):
62 if rightCell <= 0.0 or leftCell <= 0.0 or middleCell <= 0.0:
63 print "WARNING: Cannot fit Gaussian curve if a fit point is zero.

Set fit point to 0.01"
64 rightCell = 0.01 if rightCell <= 0.0 else rightCell
65 middleCell = 0.01 if middleCell <= 0.0 else middleCell
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66 leftCell = 0.01 if leftCell <= 0.0 else leftCell
67
68 return (np.log(rightCell) - np.log(leftCell)) /

(2.0*(2.0*np.log(middleCell) - np.log(leftCell) -
np.log(rightCell))) + middleCellCoordinate

69
70 """
71 Collapses a 2 dimensional numpy array to a single row or column.
72 In this case collapse means that the sum of all pixel
73 e.g in one column will be represented by a single cell in the new array.
74
75 Parameters
76 ----------
77 source -- 2D numpy array. Represents the image.
78 collapse_type -- string. Can be "rows" or "cols".
79 "rows" -- Array rows will be collapsed to a single row.
80 "cols" -- Array columns will be collapsed to a single column.
81
82 returns a 1D numpy array.
83 """
84 collapse_rows = "rows"
85 collapse_cols = "cols"
86 def collapseTo1D(source, collapse_type = collapse_rows):
87
88 if collapse_type == collapse_rows:
89 resultSize = source.shape[1]
90 elif collapse_type == collapse_cols:
91 resultSize = source.shape[0]
92
93 result = np.zeros(resultSize)
94 for i in range (resultSize) :
95 if collapse_type == collapse_cols:
96 result[i] = np.sum(source[i,:])
97 elif collapse_type == collapse_rows:
98 result[i] = np.sum(source[:,i])
99

100 return result
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A.3.6. Levenberg-Marquardt Algorithm

Implementation in Python

1 """ Author: Roman Ferstl """
2 import numpy as np
3 import scipy
4 import math
5 """
6 Performs a least square fit on the given image to find the star position.
7 The two dimensional Gaussian which is also used for PSF generation can be
8 used for the fit. Alternatively a fit function designed for CHEOPS can be
9 used. The method uses the function scipy.optimize.curve_fit which copmutes

10 the Levenberg-Marquardt-algorithm.
11
12 Parameter
13 ----------
14 image -- 2D numpy array. The given image for which the fit
15 will be performed.
16 useKnownPsfSize -- boolean. If ’True’ the unknown fit parameters will
17 only be x0 and y0 and the algorithm will be
18 faster. Otherwise sigma x and sigma y will also be
19 determined by the fit.
20 estimated_star_pos -- (x,y) float coordinates representing an initial
21 guess of the star position. The coordinates has
22 to be given in correct coordinate system.
23 fit_mode -- ’gauss’ -- A two dimensional gauss function will
24 be used for the fit. If useKnownPsfSize is True:
25 FWHM in x and y must be provided.
26 -- ’cheops’ -- A fit function specificilly designed
27 for the CHEOPS psf will be used.
28 isWindow -- indicates if the given image is only a small section
29 of the whole image (region of interest). If ’true’
30 the calculated coordinates will be re-transformed to
31 the original coordinate system of the whole image.
32
33 returns the expected star position x,y obtained by fit parameters.
34 """
35 def calc_least_squares(self, image, fit_mode, useKnownPsfSize,

estimated_star_pos=None, isWindow=False):
36
37 #1. normalize the image to 1
38 image = image / np.sum(image)
39
40 #2. prepare data for fit: x, y, z have to be separate arrays
41 xsize = image.shape[1]
42 ysize = image.shape[0]
43 # for x:
44 xcoords = np.tile(np.arange(xsize), ysize)
45 # for y:
46 # use alternative implementation instead of iterating to avoid
47 # performance issues.
48 ycoords = np.empty_like(xcoords)
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49 j = 0
50 for i in range(ycoords.shape[0]):
51 if i % (xsize) == 0 and i > 0:
52 j = j + 1
53 ycoords[i] = j
54 # for z:
55 zcoords = image.flatten()
56
57 #3. combine x and y again to one single parameter in order to use

curve_fit.
58 xy = np.array([xcoords, ycoords])
59
60 #4. get initial guess of the star position
61 initial_guess = estimated_star_pos
62
63 #5. fit the data
64 if fit_mode == ’gauss’:
65 if useKnownPsfSize == True:
66 popt, pcov =

scipy.optimize.curve_fit(Gauss2D_for_curvefit_psfknown, xy,
zcoords, p0=initial_guess)

67 else:
68 if initial_guess is not None:
69 initial_guess = (initial_guess[0], initial_guess[1],

fwhm_to_sigma(self.psf_fwhm_x),
fwhm_to_sigma(self.psf_fwhm_y))

70 popt, pcov = scipy.optimize.curve_fit(Gauss2D_for_curvefit,
xy, zcoords, p0=initial_guess)

71 elif fit_mode == ’cheops’:
72 if initial_guess is not None:
73 initial_guess = (initial_guess[0], initial_guess[1])
74 popt, pcov =

scipy.optimize.curve_fit(cheops_psf_fit2D_for_curvefit, xy,
zcoords, p0=initial_guess)

75 else:
76 raise Exception("calc_least_squares: unsupported fit_mode!")
77
78 #6. get errors
79 x = popt[0]
80 y = popt[1]
81
82 perr = np.sqrt(np.diag(pcov))
83 print "ERROR x0: ", str(perr[0])
84 print "ERROR y0: ", str(perr[1])
85
86 if isWindow:
87 # for implementation of backtransform_coords see code for
88 # correlation-based centroiding’
89 x, y = self.backtransform_coords(x, y)
90
91 return x,y
92
93 """
94 This function is a wrapper of ’Gauss2D’ for the use of scipy.optimize.
95 curve_fit. The function is normalized to 1. PSF size will be fitted as
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96 well. For definition of function ’Gauss2D’ see code section of
97 ’Weighted Centre of Gravity’.
98 """
99 def Gauss2D_for_curvefit(self, xy, x0, y0, sx, sy) :

100 return Gauss2D(x0, y0, sx, sy, xy[0], xy[1])
101
102 """
103 This function is a wrapper of ’Gauss2D’ for the use of scipy.optimize.
104 curve_fit. Function can be used when PSF size is known. For definition
105 of function ’Gauss2D’ see code section of ’Weighted Centre of Gravity’.
106 """
107 def Gauss2D_for_curvefit_psfknown(self, xy, x0, y0) :
108 sx = fwhm_to_sigma(self.psf_fwhm_x)
109 sy = fwhm_to_sigma(self.psf_fwhm_y)
110 return Gauss2D(x0, y0, sx, sy, xy[0], xy[1])
111
112 """
113 Converts full width half maximum to standard deviation.
114 """
115 def fwhm_to_sigma(fwhm):
116 return fwhm / (2*math.sqrt(2*np.log(2)))

Implementation in C

1 /* Author: Roman Ferstl */
2 /* Calculates centroid by solving 2D non-linear least squares problem.
3 * A Levenberg-Martquardt algorithm is carried out using the MINPACK
4 * implementation.
5 *
6 * Parameters
7 * ----------
8 * int size_x: Size of image in x.
9 * int size_y: Size of image in y.

10 * double **img: The centroid will be calculated for this two
11 * dimensional image data.
12 * lq_fit_mode mode: ’LQ_GAUSS’: a 2D gauss function will be fit
13 * (sig_x and sig_y must be provided).
14 * ’LQ_CHEOPS_MODEL’: The provided fit function
15 * has been derived from cheops psf model.
16 * double estimated_x: star position in x. Required in all modes.
17 * double estimated_y: star position in y. Required in all modes.
18 * double sig_x: Only required in more ’LQ_GAUSS’. STDEV of the
19 * 2D Gaussian function in x dimension.
20 * double sig_y: Only required in more ’LQ_GAUSS’. STDEV of the
21 * 2D Gaussian function in y dimension.
22 * double amplitude: Used to adjust the amplitude of the fitting
23 * function (this is crucial for a good fit).
24 * Required in all modes.
25 */
26 position leastSquaresFit(int size_x, int size_y, double **img, lq_fit_mode

mode, double estimated_x, double estimated_y, double sig_x, double
sig_y, double amplitude)
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27 {
28 const int n = 2, m = size_x * size_y;
29 int iwa[n], lwa=m*n+5*n+m, info = 0;
30 real tol, fnorm, par[n], fvec[m], wa[lwa];
31 position centroid;
32 minimize_function_data_t data;
33
34 par[0] = estimated_x;
35 par[1] = estimated_y;
36 tol = sqrt(__cminpack_func__(dpmpar)(1));
37 data.imgdata = img;
38 data.xsize = size_x;
39 data.ysize = size_y;
40 data.amplitude = amplitude;
41 if (mode == LQ_GAUSS)
42 {
43 data.sigma_x = sig_x;
44 data.sigma_y = sig_y;
45 info = __cminpack_func__(lmdif1)(minimize_gauss2D, &data, m, n,

par, fvec, tol, iwa, wa, lwa);
46 }
47 else if (mode == LQ_CHEOPS_MODEL)
48 {
49 info = __cminpack_func__(lmdif1)(minimize_cheops_psf_model, &data,

m, n, par, fvec, tol, iwa, wa, lwa);
50 }
51 if (info != 1) {
52 /* info = 0 improper input parameters. */
53 /* info = 1 algorithm estimates that the relative error */
54 /* in the sum of squares is at most tol. */
55 /* info = 2 algorithm estimates that the relative error */
56 /* between x and the solution is at most tol. */
57 /* info = 3 conditions for info = 1 and info = 2 both hold. */
58 /* info = 4 fvec is orthogonal to the columns of the */
59 /* jacobian to machine precision. */
60 /* info = 5 number of calls to fcn has reached or */
61 /* exceeded 200*(n+1). */
62 /* info = 6 tol is too small. no further reduction in */
63 /* the sum of squares is possible. */
64 /* info = 7 tol is too small. no further improvement in */
65 /* the approximate solution x is possible. */
66 printf("leastSquaresFit: exit parameter - %10i\n\n", info);
67 }
68
69 fnorm = __cminpack_func__(enorm)(m, fvec);
70 centroid.x = par[0];
71 centroid.y = par[1];
72
73 return centroid;
74 }
75
76 /* This is the function called by Levenberg Marquarth algorithm of
77 * MINPACK (lmdif1). This function header is defined by MINPACK and
78 * must not be changed. The function points to evaluate are provided
79 * as pointer in p. Those are not used within MINPACK (only here).
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80 * This function must provide the difference between fmodel(x,y) to
81 * fmeasured(x,y) and NOT THE SQUARES.
82 *
83 * Here x[0], x[1], x[2] = x0, y0, Amplitude
84 *
85 * MINPACK DOCUMENTATION:
86 * ---------------------
87 * calculate the functions at x and return the values in fvec[0]
88 * through fvec[m-1]. The value of iflag should not be changed by fcn
89 * unless the user wants to terminate execution of lmdif_
90 * (or lmdif1_). In this case set iflag to a negative integer.
91 *
92 * m is a positive integer input variable set to the number of functions.
93 * n is a positive integer input variable set to the number of variables.
94 * n must not exceed m.
95 * x is an array of length n. On input x must contain an initial estimate
96 * of the solution vector. On output x contains the final estimate of the
97 * solution vector.
98 * fvec is an output array of length m which contains the functions
99 * evaluated at the output x.

100 */
101 int minimize_gauss2D(void *p, int m, int n, const real *x, real *fvec, int

iflag)
102 {
103 int i, j, k=0;
104 double **img = ((minimize_function_data_t*)p)->imgdata;
105 const int xsize = ((minimize_function_data_t*)p)->xsize;
106 const int ysize = ((minimize_function_data_t*)p)->ysize;
107 const double sig_x = ((minimize_function_data_t*)p)->sigma_x;
108 const double sig_y = ((minimize_function_data_t*)p)->sigma_y;
109 const double A = ((minimize_function_data_t*)p)->amplitude;
110 (void)iflag;
111
112 assert(m == xsize * ysize);
113 for (i = 0; i < ysize; ++i) /* i -> y position */
114 {
115 for (j = 0; j < xsize; ++j) /* j -> x position */
116 {
117 fvec[k] = img[i][j] - gauss2D_withAmpl(x[0], x[1], A, sig_x,

sig_y, j, i);
118 ++k;
119 }
120 }
121 return 0;
122 }
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A.4. Data Tables on Cosmic Ray Hit Analysis

Glitch No. Exposure No.
Pixels

affected
Total Signal [ADU] Brightest Pixel [ADU] In SAA

1 924 6 34879 13614 yes
2 924 1 2828 2828 yes
3 924 2 1014 552 yes
4 924 1 515 515 yes
5 924 1 607 607 yes
6 924 1 2252 2252 yes
7 924 1 9949 9949 yes
8 2359 2 527 200 yes
9 2359 1 232 232 yes

10 2359 4 1777 870 yes
11 2359 1 549 549 yes
12 2359 4 1401 423 yes
13 2359 7 4466 2546 yes
14 2359 17 95619 15753 yes
15 2363 15 3708 561 yes
16 2363 15 5355 235 yes
17 2363 1 400 400 yes
18 2363 2 1473 1111 yes
19 2363 2 580 487 yes
20 2363 5 2010 886 yes
21 2363 4 1082 417 yes
22 2585 1 189 189 yes
23 2585 1 389 389 yes
24 2585 1 244 244 yes
25 2585 3 471 200 yes
26 2585 3 556 329 yes
27 2585 9 1854 504 yes
28 2585 4 537 200 yes
29 2585 1 162 162 yes
30 2585 1 114 114 yes
31 5614 6 17948 9149 yes
32 5614 5 778 274 yes
33 5614 9 3085 680 yes
34 5614 11 1885 282 yes
35 5614 2 342 251 yes
36 7005 11 18894 11792 yes
37 7005 2 386 257 yes
38 7005 1 168 168 yes
39 7005 6 1635 588 yes
40 7005 2 288 171 yes
41 7005 1 110 110 yes
42 7005 4 1035 371 yes
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Glitch No. Exposure No.
Pixels

affected
Total Signal [ADU] Brightest Pixel [ADU] In SAA

43 7005 1 391 391 yes
44 7005 4 878 347 yes
45 7005 1 345 345 yes
46 7005 1 154 154 yes
47 7005 10 1774 416 yes
48 7222 10 15602 5552 yes
49 7222 4 2468 1622 yes
50 7222 12 3243 611 yes
51 7222 3 896 611 yes
52 7222 2 733 441 yes
53 7222 3 406 204 yes
54 7222 1 121 121 yes
55 7222 3 745 363 yes
56 7222 4 399 122 yes
57 7222 2 645 452 yes
58 7222 3 320 128 yes
59 8445 17 60756 14495 yes
60 8445 1 150 150 yes
61 8445 5 1069 326 yes
62 8445 4 637 206 yes
63 8445 2 342 188 yes
64 8445 2 432 237 yes
65 8445 2 854 583 yes
66 8445 1 321 321 yes
67 8445 1 584 584 yes
68 8445 2 253 142 yes
69 8445 4 582 256 yes
70 8445 7 963 259 yes
71 8445 2 434 321 yes
72 9836 3 643 420 yes
73 9836 4 547 163 yes
74 9836 3 786 337 yes
75 9836 2 289 229 yes
76 10054 8 13767 6870 yes
77 10054 1 1319 1319 yes
78 10054 5 1284 390 yes
79 10054 2 430 239 yes
80 10054 7 2092 762 yes
81 10054 7 2777 940 yes
82 10054 1 152 152 yes
83 10054 1 262 262 yes
84 10054 1 177 177 yes
85 10054 5 895 203 yes
86 10054 2 270 138 yes
87 10054 6 1507 479 yes
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Glitch No. Exposure No.
Pixels

affected
Total Signal [ADU] Brightest Pixel [ADU] In SAA

88 11699 4 13231 6203 yes
89 11699 1 191 191 yes
90 11699 2 249 151 yes
91 11699 1 112 112 yes
92 18012 4 9443 4899 yes
93 18012 5 1712 793 yes
94 18012 8 2972 1047 yes
95 18012 1 120 120 yes
96 18012 3 506 222 yes
97 20620 7 18398 8700 yes
98 20620 3 864 322 yes
99 20620 1 163 163 yes

100 20620 2 549 365 yes
101 20620 2 934 750 yes
102 20620 2 1001 807 yes
103 20620 3 1489 1013 yes
104 20620 2 456 296 yes
105 20629 7 6164 3561 yes
106 20629 5 8517 7726 yes
107 20629 3 1422 846 yes
108 22657 1 173 173 yes
109 22657 7 8515 3807 yes
110 22657 2 230 118 yes
111 22657 2 246 136 yes
112 22657 1 352 352 yes
113 22657 1 288 288 yes
114 22657 2 325 185 yes
115 22657 1 168 168 yes
116 25482 1 160 160 yes
117 25482 17 48409 2122 yes
118 25482 2 1614 1274 yes
119 30198 12 55169 15729 yes
120 30198 8 2355 1112 yes
121 30198 2 431 336 yes
122 30198 2 857 675 yes
123 30198 5 2109 1276 yes
124 30198 2 208 114 yes
125 30198 4 537 162 yes
126 30198 1 283 283 yes
127 30198 3 786 324 yes
128 30198 1 159 159 yes
129 31578 2 474 280 yes
130 31578 1 164 164 yes
131 31578 17 5373 438 yes
132 31578 4 659 424 yes
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Glitch No. Exposure No.
Pixels

affected
Total Signal [ADU] Brightest Pixel [ADU] In SAA

133 31578 1 166 166 yes
134 31578 2 631 550 yes
135 31578 4 906 342 yes
136 31578 4 619 254 yes
137 31578 12 1793 821 yes
138 31578 10 2069 813 yes
139 31578 2 188 134 yes
140 31578 1 208 208 yes
141 31578 3 260 100 yes
142 31578 4 303 110 yes
143 31578 7 1187 287 yes
144 33016 3 308 124 yes
145 33016 4 944 650 yes
146 33016 9 5726 3052 yes
147 33016 3 506 341 yes
148 33016 12 4974 218 yes
149 33016 13 3759 1430 yes
150 33016 1 230 230 yes
151 33016 13 1906 505 yes
152 33016 2 376 282 yes
153 33016 2 233 122 yes
154 33016 1 122 122 yes
155 33016 3 300 156 yes
156 33016 3 1287 1119 yes
157 33228 2 188 115 yes
158 33228 1 234 234 yes
159 33228 3 474 194 yes
160 33228 14 2752 698 yes
161 33228 11 25738 11542 yes
162 33228 2 520 367 yes
163 33228 8 1126 244 yes
164 33228 1 88 88 yes
165 33246 2 372 223 yes
166 33246 4 893 325 yes
167 33246 8 10344 5760 yes
168 33246 9 2289 555 yes
169 37889 1 520 520 yes
170 37889 3 499 300 yes
171 37889 3 237 117 yes
172 37889 2 285 147 yes
173 37889 7 9380 4079 yes
174 38102 17 68103 5304 yes
175 38102 3 1165 899 yes
176 38102 5 919 339 yes
177 327 3 1310 842 no
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Glitch No. Exposure No.
Pixels

affected
Total Signal [ADU] Brightest Pixel [ADU] In SAA

178 2024 4 1657 719 no
179 5021 5 2637 1266 no
180 5272 5 2281 812 no
181 13355 2 332 207 no
182 18907 8 14861 9006 no
183 21957 9 4177 1287 no
184 22490 2 1092 974 no
185 27753 3 617 412 no
186 33694 8 3216 815 no
187 34440 6 9122 5339 no
188 35680 8 5645 3312 no
189 36764 3 1612 802 no

Table A.4.: List of identified glitches in observations of HD 189733 carried out by MOST.

150



A.4. Data Tables on Cosmic Ray Hit Analysis

Exposure No. Latitude [◦] Longitude [◦] Altitude [m]
Magnetic Field
Strength [nT ]

In SAA Glitches

924 -18.08 -53.22 824760 16642 yes 7
2359 -17.61 -46.3 831884 16699 yes 7
2363 -7.8 -44.01 831949 17368 yes 7
2585 -31.6 -75.29 831327 18492 yes 9
5614 -7.34 -64.39 831516 18010 yes 5
7005 -29.07 -40.65 825399 17233 yes 12
7222 -29.75 -65.82 825416 17431 yes 11
8445 -14.78 -35.86 831189 17207 yes 13
9836 -21.63 -12.33 825547 18838 yes 4

10054 -20.68 -37.93 825557 17063 yes 12
11699 -2.87 -53.61 830857 18312 yes 4
18012 -15.72 -72.16 830078 17450 yes 4
20620 -14.04 -16.15 829824 18686 yes 9
20629 -28.74 -19.83 829395 18272 yes 3
22657 -32.56 -65.98 826624 17792 yes 8
25482 -34.91 -35.04 826862 17909 yes 3
30198 -32.94 -57.09 828119 17409 yes 10
31578 -21.4 -28.94 827727 17601 yes 8
32010 -26.03 -78.49 827670 18190 yes 7
33016 -19.17 -23.21 828241 18017 yes 13
33228 -10.3 -46.49 828317 17121 yes 8
33246 -39.67 -54.3 827585 18436 yes 4
37889 -11.82 -46.83 828501 16989 yes 5
38102 -19.05 -70.48 828429 17207 yes 3

327 71.21 -13.25 822610 38321 no 1
2024 3.06 175.11 824284 23362 no 1
5021 -72.3 -145.33 826093 40041 no 1
5272 -18.69 159.62 825177 31590 no 1

13355 44.24 -74.97 824072 37048 no 1
18907 -56.78 172.34 827942 42766 no 1
21957 -66.39 169.51 827109 43837 no 1
22490 49.74 -62.56 824777 37303 no 1
27753 54.1 -113.9 825907 39560 no 1
33694 -60.8 -115.19 826686 33807 no 1
34440 36.72 -12.86 826527 29349 no 1
35680 -67.88 -128.77 826442 37579 no 1
36764 -72.45 111.61 826340 42327 no 1

Table A.5.: List of images obtained by MOST during observation of HD 189733. Only images that contain glitches above a certain threshold
are listed.
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