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Abstract

Interference alignment on the K-user interference channel is a technique from infor-
mation theory that aims to avoid electromagnetic interference in wireless networks by
employing precoding matrices Vj at the transmitters and postcoding matrices Uk at the
receivers such that ∀j ̸= k : UH

k HkjVj = 0 for given channel matrices Hkj . An algorithm
by Gomadam et al. solves the interference alignment problem by iteratively optimizing Vj

and Uk at all transmitters and receivers. However, it has not yet been proved that this
iterative algorithm converges to a global optimum.

For the purpose of finding a direct and optimal solution, we reformulate the interference
alignment problem as the equivalent problem to factorize a given global channel matrix
H such that H = ŪΣ̄V̄ H, where Ū , Σ̄, and V̄ are matrices of specific sparsity patterns.
As a first step towards a direct solution to this global matrix factorization problem, we
focus on constructing Σ̄ by applying unitary Householder and Givens transformations to
H. We propose several variants of a direct algorithm that create Σ̄ with full, tridiagonal,
and bidiagonal main diagonal blocks of a block-diagonal submatrix. The bidiagonal blocks
algorithm variant accepts all input parameter values in conformance with the feasibility
criteria for interference alignment from the literature.

In consideration of the main diagonal elements that have to be equal to zero, we
argue that Ū and V̄ cannot be products of Householder and Givens matrices, and hence,
there is no direct solution to the general global matrix factorization problem solely based
on Householder reflections and Givens rotations. On the basis of numerical experiments
with a prototype implementation of the iterative algorithm, we discover that a prototype
implementation of our direct algorithm requires substantially less operations, which shows
the relevance and potential of a direct solution to the interference alignment problem.





Zusammenfassung

Interferenzausrichtung auf dem K-Teilnehmer-Interferenzkanal ist ein Verfahren der
Informationstheorie zur Vermeidung elektromagnetischer Interferenz in drahtlosen Netz-
werken durch Anwendung von Präkodierungsmatrizen Vj auf Senderseite und Postkodie-
rungsmatrizen Uk auf Empfängerseite, sodass ∀j ̸= k : UH

k HkjVj = 0 für gegebene Kanal-
matrizen Hkj . Ein Algorithmus von Gomadam u. a. löst das Interferenzausrichtungspro-
blem durch iterative Optimierung von Vj und Uk bei allen Sendern und Empfängern. Es
wurde jedoch bisher nicht bewiesen, dass dieser iterative Algorithmus gegen ein globales
Optimum konvergiert.

Um eine direkte und optimale Lösung zu finden, reformulieren wir das Interferenzaus-
richtungsproblem als das äquivalente Problem, eine gegebene globale Kanalmatrix H so
zu faktorisieren, dass H = ŪΣ̄V̄ H, wobei Ū , Σ̄ und V̄ Matrizen mit bestimmten dünn-
besetzten Strukturen sind. Als ersten Schritt in Richtung einer direkten Lösung dieses
globalen Matrizenfaktorisierungsproblems konzentrieren wir uns darauf, Σ̄ durch Anwen-
dung von unitären Householder- und Givenstransformationen auf H zu konstruieren. Wir
schlagen mehrere Varianten eines direkten Algorithmus vor, die Σ̄ mit vollen, tridiagona-
len und bidiagonalen Hauptdiagonalblöcken einer blockdiagonalen Untermatrix erzeugen.
Die Algorithmenvariante, die bidiagonale Blöcke hervorbringt, akzeptiert alle Eingabepa-
rameterwerte, die mit den Durchführbarkeitskriterien für Interferenzausrichtung aus der
Literatur übereinstimmen.

Unter Betrachtung der Hauptdiagonalelemente, die gleich null sein müssen, argumentie-
ren wir, dass Ū und V̄ keine Produkte von Householder- und Givensmatrizen sein können
und es daher keine direkte Lösung des allgemeinen globalen Matrizenfaktorisierungspro-
blems ausschließlich basierend auf Householderspiegelungen und Givensdrehungen gibt.
Auf Grundlage von numerischen Experimenten mit einer prototypischen Implementierung
des iterativen Algorithmus erkennen wir, dass eine prototypische Implementierung unseres
direkten Algorithmus beträchtlich weniger Operationen benötigt, wodurch die Bedeutung
und das Potenzial einer direkten Lösung des Interferenzausrichtungsproblems ersichtlich
ist.
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Chapter 1

Introduction

The electromagnetic spectrum—and thus also the radio frequency spectrum—is a limited
natural resource. Both human utilization and natural phenomena commonly cause distur-
bance of signals carried by radio waves. This radio frequency interference is of particular
interest for engineering applications, especially in radio communications. In the context of
wireless networks, there have been several attempts to manage radio frequency interference
in order to minimize its effect on the quality of the transmitted signals.

One of these approaches has been interference alignment, a technique from information
theory that strives to avoid interference by determining and employing appropriate trans-
mit and receive filters. In the literature, an iterative optimization algorithm for computing
matrix representations of these transmit and receive filters has been proposed. Although
this algorithm in practice seems to converge to an optimal solution, this convergence has
not yet been proved.

This thesis aims to find a direct and hence optimal solution to the interference align-
ment problem by applying specific unitary transformations—namely Householder reflec-
tions and Givens rotations. For this purpose, a global matrix formulation of the interference
alignment problem is adopted, which leads to a dense matrix factorization problem that
resembles the singular value decomposition (SVD) [GV13, pp. 76–81] in some aspects.

1.1 Research objective

The primary research objective is to develop a direct (constructive) algorithm for solving
this global matrix factorization problem for interference alignment, or to show that House-
holder and Givens transformations are insufficient for achieving this goal. The secondary
research objective is to compare the computational cost of the existing iterative and a
possible novel direct algorithm based on numerical experiments conducted for the iterative
solution.
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1.2 Chapter overview

Chapter 2 outlines necessary background from information theory and illustrates basic
principles of interference alignment. In particular, the communication channel, the inter-
ference channel, degrees of freedom, interference management, and interference alignment
on both the MIMO X channel and the K-user interference channel are introduced. Most
importantly, the conditions and feasibility criteria for interference alignment on the K-user
interference channel are specified.

Chapter 3 concisely explains fundamentals and methods which are essential for under-
standing the remainder of the thesis. This includes direct methods in contrast to iterative
methods, Householder reflections, Givens rotations, and the quantification of computa-
tional cost.

Chapter 4 precisely formulates the interference alignment problem and presents the
iterative optimization algorithm by Gomadam et al. for solving the interference alignment
problem. Besides the original algorithm, a variant for interference alignment on the sym-
metric K-user interference channel is described.

Chapter 5 reformulates the interference alignment problem as the equivalent interfer-
ence alignment decomposition problem by introducing global matrices. As a first step
towards a direct solution, the relaxed interference alignment decomposition problem, a
simplified variant of the interference alignment decomposition problem, is defined. On this
basis, various possibilities how to apply Householder reflections and Givens rotations are
investigated.

Chapter 6 suggests a direct solution to the relaxed matrix factorization problem. Three
tridiagonal blocks variants, a full blocks variant, and a bidiagonal blocks variant of a con-
structive algorithm for solving the relaxed interference alignment decomposition problem
are listed and discussed. The correctness of the algorithm is proved for the bidiagonal
blocks variant.

Chapter 7 shows that the application of Householder and Givens transformations is not
sufficient for solving the general matrix factorization problem. Furthermore, some alterna-
tive strategies for approaching a direct solution to the interference alignment decomposition
problem are mentioned.

Chapter 8 describes prototype Matlab/Octave implementations of the previously pre-
sented iterative and constructive algorithms. Apart from that, the results of two series of
numerical experiments for determining the numbers of iterations required by the iterative
implementation are illustrated, and the operations of both the iterative and the direct
implementation are counted and compared.

Chapter 9 concludes by reviewing the findings of this thesis and providing an outlook
on future work.

Appendix A lists the source code of the prototype Matlab/Octave implementations of
the iterative and constructive algorithms.
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1.3 Related work

Cadambe and Jafar introduce and describe interference alignment on the K-user time-
varying interference channel [CJ08]. They argue that this method achieves K

2 degrees of
freedom.

Gomadam, Cadambe, and Jafar present a numerical approach to interference alignment
that only requires local channel knowledge at each node [GCJ11]. They propose two
iterative algorithms, one that minimizes leakage interference and one that maximizes the
signal-to-interference-plus-noise ratio at the receivers.

González, Beltrán, and Santamaría examine the feasibility of interference alignment
on the K-user MIMO interference channel and suggest a polynomial-time feasibility test
[GBS14].

Guillaud proposes a global matrix formulation of the interference alignment problem
for developing a new algorithm [Gui12].

Trefethen and Bau as well as Golub and Van Loan provide comprehensive introductions
to numerical linear algebra [TB97; GV13]. Particularly, they explain Householder reflec-
tions, Givens rotations, and matrix factorization techniques like the LU decomposition,
the QR decomposition, and the singular value decomposition (SVD).

To the best of our knowledge, a direct factorization-based approach to solving the
global interference alignment problem has not been investigated so far.

1.4 Notation and conventions

N is the set of natural numbers without zero, and N0 := N ∪ {0}. Z, R, and C denote the
sets of integers, real numbers, and complex numbers, respectively. Cm and Cm×n are the
sets of complex vectors of length m and complex matrices of size m × n. By convention,
Cm = Cm×1, i.e., the elements of Cm are column vectors.

π and e are the familiar mathematical constants. Depending on the context, i denotes
the imaginary unit or an index. ℜ(z), ℑ(z), |z|, arg(z), and z are the real part, the
imaginary part, the absolute value, the argument, and the complex conjugate of z ∈ C.

A lowercase letter, e.g., a, denotes a scalar, a bold lowercase letter, e.g., a, denotes
a vector, and a bold uppercase letter, e.g., A, denotes a matrix. However, there are
exceptions for variables well established in the literature, e.g., K, M , and N in the context
of interference alignment. The notations a = a(x), a = a(x), and A = A(x) mean that a,
a, and A are functions of x, where x may be one or more scalars, vectors, and matrices.
⟨x, y⟩ and ⟨x, y, z⟩ are pairs and triples of scalars, vectors, and matrices.

A(i1 : i2, : ) and A( : , j1 : j2) denote the rows i1 to i2 and the columns j1 to j2 of matrix
A, respectively. A(i1 : i2, j1 : j2) is the submatrix of A at the intersection of rows i1 to i2
and columns j1 to j2. For a matrix A = (aij), aij = A(i : i, j : j) denotes the element in
row i and column j of A.
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In ∈ Cn×n or simply I is the identity matrix, ej := I( : , j : j) is a unit vector, 0mn ∈
Cm×n or simply 0 is the zero matrix, and 1m ∈ Cm is the vector of all ones. aT and
aH are the transpose and conjugate transpose of vector a. Similarly, AT and AH are the
transpose and conjugate transpose of matrix A. ∥a∥p denotes the p-norm of a. tr(A) and
rank(A) are the trace and rank of A.

O and o are the big O and small o Landau symbols. Function(x) denotes a function
call, where x stands for the function arguments.



Chapter 2

Interference alignment

This chapter aims to provide an introduction to the basic principles of interference align-
ment, in particular, interference alignment on the K-user interference channel:

Interference alignment on the K user interference channel refers to the idea
of constructing signals in such a way that they cast overlapping shadows over
one half of the signal space observed by each receiver where they constitute
interference, leaving the other half of the signal space free of interference for
the desired signal. [GCJ11, p. 3309]

Before we can fully understand the meaning of the above quotation, we have to look into
some information-theoretic fundamentals first. Section 2.1 briefly introduces the concept of
the communication channel, which is the foundation for all subsequently presented terms
and definitions. In Section 2.2 we will explain what we understand by the interference
channel, a type of communication channel with specific properties, and compare the MIMO
X channel to the K-user interference channel. Section 2.3 summarizes different approaches
for coping with interference. Sections 2.4 and 2.5 describe the main ideas of interference
alignment on the MIMO X channel and on the K-user interference channel. Finally, we
will see in Section 2.6 which parameter combinations allow a solution to the interference
alignment problem.

2.1 Communication channel

In his fundamental work from 1949, The Mathematical Theory of Communication, Claude
E. Shannon identifies the communication channel, or channel, as one of five parts of a
communication system (along with the information source, the transmitter, the receiver,
and the destination) [SW49, pp. 33–34]:

The channel is merely the medium used to transmit the signal from transmitter
to receiver. It may be a pair of wires, a coaxial cable, a band of radio frequen-
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ChannelTransmitter Receiver

Noise

Figure 2.1: The parts of a communication system around the channel.

cies, a beam of light, etc. During transmission, or at one of the terminals, the
signal may be perturbed by noise. [SW49, p. 34]

A similar model is introduced in [Ash65, p. 1]. Figure 2.1 visualizes the parts of a
communication system around the channel. In conformance with [Cio09, pp. 402–405] and
[EC80, pp. 1467–1470], the following types of communication channels can be distinguished:

• the single-user channel,

• the multiple-access channel,

• the broadcast channel, and

• the interference channel.

Figure 2.2 shows how transmitters and receivers communicate over each of these differ-
ent types of channels. The multiple-access channel, the broadcast channel and the interfer-
ence channel together form the group of multiple-user channels. The following definition
of the multiple-user channel is derived from [Cio09, pp. 404–405].

Definition 2.1 (Multiple-user channel). Assume there are KT > 0 transmitters and
KR > 0 receivers. Let

x =


x1

x2
...

xKT

, y =


y1

y2
...

yKR

, H =


H11 H12 · · · H1KT

H21 H22 · · · H2KT

...
...

. . .
...

HKR1 HKR2 · · · HKRKT

, and n =


n1

n2
...

nKR

.

x is referred to as the transmit vector, y as the receive vector, H as the channel
fade matrix, or channel matrix, and n as the noise vector. Then, the output of the
multiple-user channel is described as

y = Hx+ n.

Hereinafter, we will assume KT = KR, i.e., the number of transmitters equals the
number of receivers. Table 2.1 lists the transmit vector x, receive vector y, channel matrix
H, and noise vector n for the different types of multiple-user channels.
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(a) Single-user channel

RT2

T1

...

TK

(b) Multiple-access channel

T R2

R1

...

RK

(c) Broadcast channel

T1

T2

...

TK

R1

R2

...

RK

(d) Interference channel

Figure 2.2: Different types of communication channels with a single transmitter T or
multiple transmitters Tj , j ∈ {1, 2, . . . ,K}, and a single receiver R or multiple receivers
Rk, k ∈ {1, 2, . . . ,K}.

2.2 Interference channel

The concept of the interference channel was first introduced by Aydano B. Carleial. In
1978, he provided the following definition:

The situation often occurs where several sender-receiver pairs share a common
communication channel so that transmission of information from one sender
to its corresponding receiver interferes with communications between the other
senders and their receivers. In radio communications, for example, since the
electromagnetic spectrum is a limited resource, frequency bands are often si-
multaneously used by several radio links that are not completely isolated. A
communication channel that is shared in this manner is called an interference
channel. [Car78, p. 60]

Different variants of interference channels have been introduced over time. One distin-
guishing feature has been the number of antennas at each transmitter and receiver. While
the channel input is affected by the number of antennas at each transmitter, the channel
output is determined by the number of antennas at each receiver. We can differentiate
between the following types of interference channels [AV11, p. 2565]:
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Table 2.1: The transmit vector x, receive vector y, channel matrix H, and noise vector n
for the different types of multiple-user channels with K users.

x y H n

Multiple-access channel


x1
x2
...
xK

 y

H1 H2 · · · HK


n

Broadcast channel x


y1
y2
...
yK



H1

H2
...

HK



n1
n2
...
nK



Interference channel


x1
x2
...
xK



y1
y2
...
yK



H11 H12 · · · H1K

H21 H22 · · · H2K
...

...
. . .

...
HK1 HK2 · · · HKK



n1
n2
...
nK



• single-input single-output (SISO),

• multiple-input single-output (MISO),

• single-input multiple-output (SIMO), and

• multiple-input multiple-output (MIMO).

Figure 2.3 visualizes these four types of interference channels based on the number of
antennas at each transmitter and receiver.

2.2.1 MIMO X channel

A specific kind of interference channel that has been studied extensively in the literature
over the last years, inter alia, within the context of interference alignment (cf. Section 2.4),
is the X channel [JS08; MMK08; HCJ12; AGK13; LAS14]. Lashgari et al. describe the X
channel as follows:

The X-channel is a canonical setting for the information-theoretic study of
interference management in wireless networks. This channel consists of two
transmitters causing interference at two receivers, and each transmitter aims
to communicate intended messages to both receivers. [LAS14, p. 2180]

Maddah-Ali et al. concretize a similar description in [MMK08] by adding the following
clarification:
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(a) SISO
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(b) MISO
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...

TK
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...

RK

...
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(c) SIMO
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TK

R1
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RK

...

...

...
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(d) MIMO

Figure 2.3: The types of interference channels based on the number of antennas at each
transmitter Tj , j ∈ {1, 2, . . . ,K}, and each receiver Rk, k ∈ {1, 2, . . . ,K}.

T1

. . .

T2

. . .

R1

. . .

R2

. . .

W11

W21

W12

W22

Ŵ11

Ŵ12

Ŵ21

Ŵ22

Figure 2.4: The MIMO X channel with transmitter Tj ’s message Wkj intended for receiver
Rk, j, k ∈ {1, 2}. This figure is based on [JS08, fig. 1].

In this scenario, it is assumed that each transmitter is unaware of the other
transmitter’s data (noncooperative scenario). This system can be considered
as a combination of two broadcast channels (from the transmitters’ points of
view) and two multiple-access channels (from the receivers’ points of view).
[MMK08, p. 3457]

If each of the two transmitters and two receivers is equipped with multiple antennas,
we speak of the MIMO X channel [JS08, p. 151], as shown in Figure 2.4. The subsequent
definition is based on [MMK08, pp. 3458–3459].

Definition 2.2 (MIMO X channel). Let Mj and Nk, j, k ∈ {1, 2}, be the number of
antennas at transmitter Tj and receiver Rk, respectively. Without loss of generality,
let M1 ≥ M2 and N1 ≥ N2. Furthermore, let xj ∈ CMj×1 be the transmit vector
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of transmitter Tj , yk ∈ CNk×1 the receive vector of receiver Rk, Hkj ∈ CNk×Mj the
channel matrix that represents the channel between transmitter Tj and receiver Rk,
and nk ∈ CNk×1 the white Gaussian noise vector at receiver Rk with zero mean and
identity covariance matrix. Then the output of the MIMO X channel is described as

y1 = H11x1 +H12x2 + n1,

y2 = H21x1 +H22x2 + n2.

It is assumed that the channel matrices Hkj , j, k ∈ {1, 2}, are known by both trans-
mitters and both receivers.

2.2.2 K-user interference channel

Another well-studied type of interference channel is the K-user interference channel, an
interference channel with K transmitters and K receivers [CJ08; GJ10; BCT11; GCJ11;
RLL12; AGK13; GBS14; TAV14]. Each transmitter and receiver is equipped with one or
multiple antennas. Thus, we distinguish

• the K-user SISO interference channel,

• the K-user MISO interference channel,

• the K-user SIMO interference channel, and

• the K-user MIMO interference channel.

Subsequently, we will focus on time-varying variants of the K-user interference chan-
nel, as introduced in [CJ08]. The following three definitions of the K-user time-varying
interference channel are based on [CJ08, p. 3426] and [GJ10, p. 6042].

Definition 2.3 (K-user time-varying SISO interference channel). Let k ∈ {1, 2, . . . ,K}
be the user index and t ∈ N the time slot index. Moreover, let xk(t) ∈ C be the chan-
nel input signal of transmitter Tk, yk(t) ∈ C the channel output signal of receiver
Rk, Hkj(t) ∈ C the channel fade coefficient from transmitter Tj , j ∈ {1, 2, . . . ,K}, to
receiver Rk over the tth time slot, and nk(t) ∈ C the additive white Gaussian noise
term at receiver Rk. Then the output of the K-user time-varying SISO interference
channel at receiver Rk over the tth time slot is described as

yk(t) =

K
j=1

Hkj(t)xj(t) + nk(t).

A simplified variant of the K-user time-varying SISO interference channel is the con-
stant K-user SISO interference channel defined below.
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Figure 2.5: The K-user MIMO interference channel with transmitter Tk’s message Wk

intended for receiver Rk, k ∈ {1, 2, . . . ,K}.

Definition 2.4 (Constant K-user time-varying SISO interference channel). Let k, t,
xk(t), yk(t), and nk(t) be given as in Definition 2.3. Then the output of the constant
K-user time-varying SISO interference channel at receiver Rk over the tth time slot is
described as

yk(t) = xk(t) +
√
−1

K
j=1
j ̸=k

xj(t) + nk(t).

Hence, for the constant K-user time-varying SISO interference channel the direct chan-
nel coefficients, i.e., Hkk(t) in Definition 2.3, are always equal to 1, while the coefficients
for the interference carrying cross channels, i.e. Hkj(t), j ̸= k, are equal to

√
−1. The

subsequent definition of the symmetric K-user MIMO interference channel generalizes Def-
inition 2.3 for more than one antenna at each transmitter and receiver.

Definition 2.5 (Symmetric K-user time-varying MIMO interference channel). Let
k ∈ {1, 2, . . . ,K} be the user index, t ∈ N the time slot index, M the number of
antennas at a transmitter, and N the number of antennas at a receiver. Furthermore,
let xk(t) ∈ CM×1 be the channel input signal vector of transmitter Tk, yk(t) ∈ CN×1

the channel output signal vector of receiver Rk, Hkj(t) ∈ CN×M the channel matrix
from transmitter Tj , j ∈ {1, 2, . . . ,K}, to receiver Rk over the tth time slot, and
nk(t) ∈ C the additive white Gaussian noise vector at receiver Rk. Then the output
of the symmetric K-user time-varying MIMO interference channel at receiver Rk over
the tth time slot is described as

yk(t) =

K
j=1

Hkj(t)xj(t) + nk(t).
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Figure 2.5 visualizes the K-user MIMO interference channel. In the literature, non-
symmetric variants of the K-user MIMO interference channel, which allow a different
number of antennas for each transmitter and each receiver as well as a different number of
degrees of freedom for each user (cf. Section 2.2.3), are also studied [GBS14], but are out
of scope for this thesis.

2.2.3 Degrees of freedom

As stated by González et al., the degrees of freedom of the interference channel, also called
the multiplexing gain [CJ08, p. 3425], correspond to “the maximum number of independent
data streams that can be transmitted without interference in the channel” [GBS14, p. 1842].
More formally, if the capacity C of the interference channel can be written as

C(SNR) = d log(SNR) + o(log(SNR)),

where SNR stands for the signal-to-noise ratio, the interference channel has d degrees of
freedom [CJ08, p. 3425].

2.3 Interference management

Over the last decades, different approaches have been pursued for managing interference,
particularly with regard to wireless networks. Cadambe et al. summarize some of these
interference management schemes in [CJ08, p. 3425] and classify them in three groups.
They differentiate between techniques that

1. decode the interfering signal,

2. treat the interfering signal as noise, and

3. avoid interference by orthogonalizing channel access.

For the first group of interference management schemes, strong interference is assumed.
If this precondition is met, interference can be decoded together with the desired signal.
Whereas decoding the interfering signal may enhance the quality of the desired signal,
the decodability limits the rates for other users. Another drawback of this approach is
its usual limitation to two users. Carleial, for instance, shows in [Car75] for the two-user
interference channel that under certain conditions it is possible to achieve the same rates
with strong interference as without any interference. Other notable works in this area have
been [HK81] and [Sat81].

On the other hand, if interference is weak, the requirement for the second approach
to interference management is fulfilled. Then, the interfering signal simply can be treated
as noise, which has been widely used in practical applications. Information theorists have
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shown that introducing structure into the interference signals is of no benefit in these cases
[ETW08; MK09; SKC09; AV09].

For the third approach to interference management to be feasible, the desired signal is
required to be approximately as strong as the interfering signal. Under this condition, chan-
nel access can be orthogonalized, and time or frequency division medium access schemes
that divide the available spectrum for the purpose of interference avoidance may be ap-
plied. Interference alignment belongs to this group of interference management approaches
(cf. Sections 2.4 and 2.5).

2.4 Interference alignment on the MIMO X channel

According to [JS08, p. 154] and [BCT11, p. 1], the concept of interference alignment was
first introduced within the context of the MIMO X channel (cf. Section 2.2.1). More
specifically, Cadambe et al. state that it “evolved out of the degrees of freedom investiga-
tions on the two-user MIMO X channel” [CJ08, p. 3427]. While Maddah-Ali et al. ini-
tially proposed iterative optimization schemes that implicitly align interference [MMK06a;
MMK06b], Jafar et al. were the first to describe an approach that explicitly achieves in-
terference alignment on the MIMO X channel [JS08]. Other notable works in this area
include [MMK08] and [HCJ12].

In the setting of the MIMO X channel (cf. Definition 2.2 and Figure 2.4), transmitter
Tj , j ∈ {1, 2}, transmits an independent code word for an independent message to receiver
Rk, k ∈ {1, 2}. Thus, four independent code words are transmitted at the same time, and
each receiver Rk receives all of them. Since only two thereof are intended for a particular
Rk, the receiver shall be able to distinguish the desired signals from the unwanted ones.
The aim of interference alignment is to align the non-intended signals at each receiver for
the purpose of treating them as interference, and to separate the desired signals. Jafar
et al. summarize the essence of interference alignment as follows:

Interference alignment refers to the careful choice of beamforming directions
in such a manner that the desired signals are separable at their respective
receivers while the interference signals are aligned, i.e., the interference vectors
cast overlapping shadows. [JS08, p. 154]

Figure 2.6 visualizes how interference alignment on the MIMO X channel can be
achieved. We can see that transmitter Tj , j ∈ {1, 2}, transmits the code word xkj along the
beamforming direction Vkj to receiver Rk, k ∈ {1, 2}. The channel matrices Hkj linearly
transform the code words during transmission. At receiver R1, the vectors of the desired
signals, H11V11x11 and H12V12x12, are linearly independent, hence separable, whereas
the vectors representing the interference, H11V21x21 and H12V22x22, are linearly depen-
dent, thus aligned. The situation at receiver R2 is similar. Details on how to choose the
beamforming directions Vkj are provided in [JS08].
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Figure 2.6: Interference alignment on the MIMO X channel. This figure is based on [JS08,
fig. 2].

Based on their interference alignment schemes, Jafar et al. show that the MIMO X

channel with M > 1 antennas at each transmitter and receiver has exactly 4
3M degrees of

freedom (cf. Section 2.2.3) [JS08, pp. 159–160].

2.5 Interference alignment on the K-user interference chan-
nel

Shortly after interference alignment on the MIMO X channel was introduced (cf. Sec-
tion 2.4), Cadambe et al. proposed interference alignment schemes also for the K-user
(time-varying) interference channel (cf. Section 2.2.2) [CJ08]. Since then, the problem has
been extensively studied in the literature, and the interference alignment approach has
been applied to other scenarios [GJ10; BCT11; GCJ11; RLL12; AGK13; GBS14; TAV14].

Interference alignment on the K-user interference channel aims to “restrict all interfer-
ence at every receiver to approximately half of the received signal space, leaving the other
half interference-free for the desired signal” [CJ08, p. 3426]. This concept is illustrated
in [CJ08, pp. 3426–3427] by means of the constant K-user time-varying SISO interference
channel (cf. Definition 2.4). For a power constraint P , the channel capacity in absence
of interference is log(1 + P ). In this setting, interference alignment can be achieved by
applying the following scheme:

• When we recall that all symbols are complex, each receiver relinquishes half the signal
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Figure 2.7: Interference alignment on the three-user SISO interference channel. This figure
is based on [CJ08, fig. 1].

space by transmitting only a real Gaussian signal with power P .

• Then, every receiver can discard the interference-carrying imaginary part of the re-
ceived signal and decode the real part at a rate 1

2 log(1 + 2P ) [CJ08, p. 3426].

When applying this interference alignment scheme, both the sum rate of all K users
and the channel capacity equal to K

2 log(1 + 2P ) [CJ08, p. 3427]. Therefore, the constant
K-user time-varying SISO interference channel has K

2 degrees of freedom (cf. Section 2.2.3).

In contrast to the conjecture in [HN05], this result also holds for the (non-constant)
K-user time-varying SISO interference channel (cf. Definition 2.3) [CJ08, pp. 3427–3434].
For example, for K = 3 single-antenna users and n > 0, 3n + 1 degrees of freedom over
a 2n + 1 symbol extension can be achieved. Figure 2.7 visualizes how to accomplish
interference alignment on the three-user SISO interference channel for the simple case
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n = 1. Transmitter T1 achieves two degrees of freedom by transmitting two independent
code words x

(1)
1 , x(2)

1 along the beamforming directions v
(1)
1 , v(2)

1 to receiver R1, whereas
transmitter Tk, k ∈ {2, 3}, achieves one degree of freedom by transmitting the independent
code word xk along the beamforming direction vk to receiver Rk.

For alignment of the interference vectors at the receivers, the following beamforming
vectors can be chosen [CJ08, pp. 3428–3429]:

v2 = 13 (2.1)

H12v2 = H13v3 ⇒ v3 =

H13

−1
H1213 (2.2)

H23v3 = H21v
(1)
1 ⇒ v1

(1) =

H21

−1
H23


H13

−1
H1213 (2.3)

H32v2 = H31v
(2)
1 ⇒ v1

(2) =

H31

−1
H3213 (2.4)

So far, we have only considered beamforming at the transmitters. A generalization of
the concept of beamforming in the context of the symmetric K-user time-varying MIMO
interference channel (cf. Definition 2.5) is precoding at the transmitters and postcoding at
the receivers. The subsequent definition is based on [GCJ11, pp. 3311–3312].

Definition 2.6 (Precoding and postcoding). Let M and N be given as in Def-
inition 2.5. Furthermore, let d ≤ min(M,N) denote the degrees of freedom for
each user. Then, Vj ∈ CM×d is referred to as the precoding matrix of transmit-
ter Tj , j ∈ {1, 2, . . . ,K}, and Uk ∈ CN×d as the postcoding matrix of receiver Rk,
k ∈ {1, 2, . . . ,K}.

Using precoding and postcoding matrices, we can finally formulate the conditions that
have to be satisfied for interference alignment on the symmetricK-user time-varying MIMO
interference channel [GCJ11, p. 3312]:

∀j ̸= k : UH
k HkjVj = 0, j, k ∈ {1, 2, . . . ,K}, (2.5)

rank

UH
k HkkVk


= d, k ∈ {1, 2, . . . ,K}. (2.6)

Based on [CJ08, p. 3427], Gomadam et al. summarize the main benefit of interference
alignment on the K-user interference channel as follows:

At high [signal-to-noise ratio], every user in a wireless interference network is
(simultaneously and almost surely) able to achieve approximately [ . . . ] one
half of the capacity that he could achieve in the absence of all interference.
[GCJ11, p. 3309]
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2.6 Existence of a solution

If the system of bilinear equations given by Equation 2.5 is generic in the sense of algebraic
geometry, it is possible to decide the existence of a solution to the interference alignment
problem based merely on the number of users K, the number of antennas at each trans-
mitter M , the number of antennas at each receiver N , and the degrees of freedom for each
user d [Gui12; BCT11; RLL12; GBS14]. González et al. define the following sets for the
formulation of their feasibility criteria [GBS14, pp. 1841–1842]:

Φ := {(k, l) ∈ {1, 2, . . . ,K} × {1, 2, . . . ,K} | k ̸= l}, (2.7)

ΦR := {k ∈ {1, 2, . . . ,K} | ∃l ∈ {1, 2, . . . ,K} : (k, l) ∈ Φ}, (2.8)

ΦT := {l ∈ {1, 2, . . . ,K} | ∃k ∈ {1, 2, . . . ,K} : (k, l) ∈ Φ}. (2.9)

For the general (non-symmetric) K-user MIMO interference channel, the subsequent
(necessary but not sufficient) conditions have to be satisfied for the interference alignment
problem to be feasible [GBS14, pp. 1842–1844]:

∀k ∈ ΦR 1 ≤ dk ≤ Nk ∧ ∀l ∈ ΦT 1 ≤ dl ≤Ml (2.10)

∀(k, l) ∈ Φ NkMl > dkdl (2.11)

 
k∈ΦR

Nkdk − d2k


+

 
l∈ΦT

Mldl − d2l


−


(k,l)∈Φ

dkdl ≥ 0 (2.12)

From the above conditions, we can infer the following corollary for the problem of inter-
ference alignment on the symmetric K-user MIMO interference channel (cf. Section 2.5).

Corollary 2.7 (Necessary conditions for interference alignment on the symmetric
K-user MIMO interference channel). For the existence of a solution to the interference
alignment problem on the symmetric K-user MIMO interference channel, the following
necessary but not sufficient conditions have to be satisfied:

(a) 1 ≤ d ≤ N ∧ 1 ≤ d ≤M ,

(b) NM > d2,

(c) N +M ≥ (K + 1) d.

Proof. Since M , N and d by definition are the same for all users on the symmetric K-user
MIMO interference channel, conditions (a) and (b) follow directly from Equations 2.10
and 2.11, respectively. For condition (c), we get from Equation 2.12
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|ΦR|(Nd− d2) + |ΦT |(Md− d2)− |Φ|d2 ≥ 0

⇒ (K − 1)(Nd− d2) + (K − 1)(Md− d2)− (K − 1)2d2 ≥ 0

⇒ Nd− d2 +Md− d2 − (K − 1)d2 ≥ 0

⇒ N − d+M − d− (K − 1)d ≥ 0

⇒ N +M − (K + 1)d ≥ 0

⇒ N +M ≥ (K + 1)d.

Note that conditions (a) and (b) of Corollary 2.7 together require either M > d and
N ≥ d or M ≥ d and N > d.



Chapter 3

Fundamentals and methods

This thesis should be accessible to anyone familiar with essential concepts in computer
science and scientific computing. Nonetheless, in this chapter, we are going to concisely
recapitulate some ideas and methods, notably from numerical linear algebra, which are
fundamental for understanding the subsequent chapters.

In Section 3.1, we will characterize direct and iterative methods for solving a given prob-
lem numerically. Afterwards, in Section 3.2, we are going to define and explain Householder
reflections and Givens rotations, two particular unitary operators that will be central to
our considerations in Chapters 5 to 8. Finally, in Section 3.3, we are going to outline how
to quantify the cost of a computation by counting elementary floating-point operations.

3.1 Direct and iterative methods

In numerical analysis and numerical linear algebra, direct and iterative methods can be
distinguished [SY78; JR82; TB97; Tyr97; GV13]:

The term direct method refers to a numerical procedure that can be executed in
a finite number of steps. Direct methods are in contrast to iterative methods,
which generate an infinite sequence of approximations that [ . . . ] converge to
the solution. [JR82, p. 22]

More specifically, iterative algorithms, i.e., numerical algorithms of the iterative
method, start with an initial guess and improve the approximate result in iterations, until
a convergence criterion is satisfied and the result is considered to be sufficiently accurate.
In general, iterative algorithms do not find the exact result, not even in arbitrary-precision
arithmetic.

On the other hand, direct or constructive algorithms, i.e., numerical algorithms of the
direct method, “[ . . . ] provide the exact answer [ . . . ] within a predetermined number of
steps.” [SY78, p. 180] However, Trefethen et al. underline that “[ . . . ] even direct methods
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are inexact when carried out on a computer: one hopes for answers accurate to machine
precision, no better.” [TB97, p. 247]

3.2 Householder and Givens transformations

Both Householder reflections—also referred to as Householder transformations or House-
holder matrices—and Givens rotations—also known as Givens transformations or Givens
matrices—are unitary matrices [TB97; Tyr97; GV13], i.e., matrix representations of uni-
tary transformations that are automorphisms on finite-dimensional Hilbert spaces. For a
unitary matrix U ∈ Cn×n, it holds that

U−1 = UH, (3.1)

and thus

UHU = UUH = In. (3.2)

Through multiplying a matrix A by an appropriate Householder or Givens matrix U, it
is possible to annihilate elements in the resulting matrix B = UA or B = AU, i.e., to
introduce zeros into B = UA or B = AU.

3.2.1 Householder reflections

Householder matrices have been suggested by Alston S. Householder in [Hou58b], based on
a more general unitary matrix used in [Hou58a]. The following definition for the House-
holder vector h and the Householder matrix H is inspired by [GV13, pp. 234–243].

Definition 3.1 (Householder vector h and Householder matrix H). Let z =

(z1 z2 . . . zm)
T ∈ Cm be fixed but arbitrary, with z1 = reiφ and r, φ ∈ R. Then, the

Householder vector h = h(z) ∈ Cm is defined as

h := z ± ∥z∥2e
iφe1,

and the Householder matrix H = H(z) ∈ Cm×m is defined as

H := Im − βhhH with β :=
2

hHh
.

For a fixed but arbitrary vector z ∈ Cm and the Householder matrix H = H(z) ∈
Cm×m, it holds that

Hz = ∓∥z∥2e
iφe1 (3.3)

[GV13, p. 243] and

zHH = ∓∥z∥2e
iφeT

1 . (3.4)
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Hence, all but the first components of the vectors Hz and zHH are equal to zero. For
improving numerical stability, the sign can be chosen such that ∥h∥2 is maximized for the
corresponding Householder vector h [GV13, p. 243]. As an example, let

A :=


2 3 4 5

6 7 8 9

10 11 12 13

14 15 16 17

 (3.5)

and z = (z1 z2 z3 z4)
T = (reiφ z2 z3 z4)

T := A( : , 1 : 1). Because of ∥z∥2 =√
22 + 62 + 102 + 142 =

√
336 = 4

√
21 and φ = arg(z1) = arg(2) = 0, and thus

eiφ = e0 = 1, it follows that

h = z ± ∥z∥2e
iφe1 =


2± 4

√
21

6

10

14

,

and therefore

h = h+ =


2 + 4

√
21

6

10

14

 or h = h− =


2− 4

√
21

6

10

14

.

Since ∥h+∥2 = 4


42 +
√
21 > 4


42−

√
21 = ∥h−∥2, we choose h = h+. Consequently,

it holds that

β =
2

hHh
=

2

(2 + 4
√
21)2 + 62 + 102 + 142

=
2

16(42 +
√
21)

=
1

8(42 +
√
21)

and

H = I4 − βhhH

= I4 − β


(2 + 4

√
21)2 6(2 + 4

√
21) 10(2 + 4

√
21) 14(2 + 4

√
21)

6(2 + 4
√
21) 36 60 84

10(2 + 4
√
21) 60 100 140

14(2 + 4
√
21) 84 140 196



=


− 1

2
√
21

−
√
3

2
√
7

− 5
2
√
21

−
√
7

2
√
3

−
√
3

2
√
7

1− 9
2(42+

√
21)

− 15
2(42+

√
21)

− 21
2(42+

√
21)

− 5
2
√
21

− 15
2(42+

√
21)

1− 25
2(42+

√
21)

− 35
2(42+

√
21)

−
√
7

2
√
3

− 21
2(42+

√
21)

− 35
2(42+

√
21)

1− 49
2(42+

√
21)

.
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Hence, we obtain

HA =


−4
√
21 − 92√

21
− 100√

21
−36

√
3√

7

0 38
83 −

34
√
3

83
√
7

76
83 −

68
√
3

83
√
7

−6(−133+17
√
21)

581

0 8
83 −

170
83
√
21

4(84−85
√
21)

1743 −2(−84+85
√
21)

581

0 −2(33+17
√
21)

249 −4(33+17
√
21)

249 −2(33+17
√
21)

83

,

and thus, in conformance with Equation 3.3, Hz = (−4
√
21 0 0 0)T = −∥z∥2eiφe1.

If z := A(1 : 1, : )H, a similar calculation yields ∥z∥2 = 3
√
6 and, in agreement with

Equation 3.4, zHH = (AH)(1 : 1, : ) = (−3
√
6 0 0 0) = −∥z∥2eiφeT

1 .

In many applications, only parts of a matrix shall be affected by a Householder trans-
formation (cf. Chapter 5). The following definition introduces the extended Householder
matrix for this purpose.

Definition 3.2 (Extended Householder matrix H̃). Let z ∈ Cm be fixed but ar-
bitrary and H = H(z) ∈ Cm×m the Householder matrix for z (cf. Definition 3.1).
Furthermore, let m ≤ n, 1 ≤ j1 < j2 ≤ n, and j2 − j1 + 1 = m. Then, the extended
Householder matrix H̃ = H̃(z, j1, j2) ∈ Cn×n is defined as

H̃ := In with H̃(j1 : j2, j1 : j2) := H.

Since the Householder matrix H and—trivially—also the identity matrix are unitary
matrices, it readily follows from Definition 3.2 that the extended Householder matrix H̃ is
a unitary matrix as well. Let A again be given as in Equation 3.5. If z := A(2 : 4, 1 : 1), it
holds that ∥z∥2 = 2

√
83 and, for H̃ = H̃(z, 2, 4), (H̃A)(2 : 4, 1 : 1) = (−2

√
83 0 0)T =

−∥z∥2eiφe1. Likewise, if z := A(1 : 1, 2 : 4)H, it follows that ∥z∥2 = 5
√
2 and, for H̃ =

H̃(z, 2, 4), (AH̃)(1 : 1, 2 : 4) = (−5
√
2 0 0) = −∥z∥2eiφeT

1 .

Algorithm 3.1 computes an (extended) Householder matrix H̃ according to Defini-
tion 3.2. Let A = (aij) and φ = arg(ai1,j1). Then, if j1 = j2, the algorithm returns
H̃ such that (H̃A)(i1 : i2, j1 : j1) = ∓∥A(i1 : i2, j1 : j1)∥2eiφe1. Otherwise, i.e., if i1 = i2,
the algorithm returns H̃ such that (AH̃)(i1 : i1, j1 : j2) = ∓∥A(i1 : i1, j1 : j2)∥2eiφeT

1 . Note
that Algorithm 3.1—though correct—can be improved to avoid cancellation errors [GV13,
pp. 235–236].

3.2.2 Givens rotations

Golub et al. introduce Givens rotations, which have first been proposed by J. Wallace
Givens [Giv54; Giv58], as follows:

Householder reflections are exceedingly useful for introducing zeros on a grand
scale, e.g., the annihilation of all but the first component of a vector. However,
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Algorithm 3.1 Algorithm for computing an (extended) Householder matrix.

Require: A ∈ Cµ×ν , i1, i2, j1, j2 ∈ N, (1 ≤ i1 < i2 ≤ µ ∧ 1 ≤ j1 = j2 ≤ ν) ∨ (1 ≤ i1 =
i2 ≤ µ ∧ 1 ≤ j1 < j2 ≤ ν)

1: function Householder(A, ⟨i1, j1⟩, ⟨i2, j2⟩)
2: if j1 = j2 then ▷ Premultiplication by Householder matrix
3: k1 ← i1
4: k2 ← i2
5: m← i2 − i1 + 1
6: n← µ
7: z = (z1 z2 . . . zm)

T ← A(i1 : i2, j1 : j1)
8: else ▷ Postmultiplication by Householder matrix
9: k1 ← j1

10: k2 ← j2
11: m← j2 − j1 + 1
12: n← ν
13: z = (z1 z2 . . . zm)

T ← A(i1 : i1, j1 : j2)
H

14: end if
15:
16: φ← arg(z1)
17: h ← z ± ∥z∥2eiφe1
18: β ← 2

hHh

19: H← Im − βhhH

20:
21: H̃← In
22: H̃(k1 : k2, k1 : k2)←H

23:
24: return H̃

25: end function

in calculations where it is necessary to zero elements more selectively, Givens
rotations are the transformation of choice. [GV13, p. 239]

The application of one Givens matrix G introduces exactly one zero. As an illustration,
consider the vector z ∈ C2. An appropriate Givens rotation produces GHz = (r 0)T and
zHG = (r 0), where r is a nonzero component. This principle can be generalized such
that a single element of an arbitrary vector z ∈ Cn, n ≥ 2, is annihilated. The following
definition, which is motivated by [GV13, pp. 239–244], specifies how such a Givens matrix
G is constructed.

Definition 3.3 (Givens matrix G). Let z1, z2 ∈ C be fixed but arbitrary, with z1 =

r1e
iφ1 , z2 = r2e

iφ2 , and r1, r2, φ1, φ2 ∈ R. Furthermore, let θ, φ ∈ R, φ = φ1 − φ2,
c := cos(θ) = r1√

r21+r
2
2

, s := sin(θ)eiφ = − r2√
r21+r

2
2

eiφ, and 1 ≤ j1 ̸= j2 ≤ n. Then, the
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Givens matrix G = G(z1, z2, j1, j2) = G(θ, φ, j1, j2) ∈ Cn×n is defined as

G :=



j1 j2

1 · · · 0 · · · 0 · · · 0
...

. . .
...

...
...

j1 0 · · · c · · · s · · · 0
...

...
. . .

...
...

j2 0 · · · −s · · · c · · · 0
...

...
...

. . .
...

0 · · · 0 · · · 0 · · · 1


.

It is apparent from Definition 3.3 that only two rows or two columns of a matrix A are
affected when A is multiplied by a Givens matrix G. For a fixed but arbitrary vector z =

(z1 . . . zj1 . . . zj2 . . . zn)
T ∈ Cn and the Givens matrix G = G(zj1 , zj2 , j1, j2) ∈ Cn×n, it

holds that

GHz = (z1 . . . zj1−1 r zj1+1 . . . zj2−1 0 zj2+1 . . . zn)
T (3.6)

and

zHG = (z1 . . . zj1−1 r zj1+1 . . . zj2−1 0 zj2+1 . . . zn), (3.7)

where r again is a nonzero component. To complete the picture, let us consider an example
matrix

A = (aij) :=


2 3

4 5


.

There are four possibilities to apply Givens matrices G = G(z1, z2, 1, 2) ∈ C2×2 to A,
namely

G(a11, a21, 1, 2)
HA =


1√
5

2√
5

− 2√
5

1√
5


2 3

4 5


=


2
√
5 13√

5

0 − 1√
5


,

G(a12, a22, 1, 2)
HA =


3√
34

5√
34

− 5√
34

3√
34


2 3

4 5


=

13


2
17

√
34

2
17 0

,
AG(a11, a12, 1, 2) =


2 3

4 5


2√
13
− 3√

13
3√
13

2√
13


=

√
13 0
23√
13
− 2√

13


,

and

AG(a21, a22, 1, 2) =


2 3

4 5


4√
41
− 5√

41
5√
41

4√
41


=


23√
41

2√
41√

41 0


.

As we have seen, these four applications of Givens rotations annihilate three different
elements of A. Since Definition 3.3 also allows to swap indices, a Givens matrix that
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Algorithm 3.2 Algorithm for computing a Givens matrix.

Require: A = (aij) ∈ Cµ×ν , i1, i2, j1, j2 ∈ N, (1 ≤ i1 ̸= i2 ≤ µ ∧ 1 ≤ j1 = j2 ≤ ν) ∨ (1 ≤
i1 = i2 ≤ µ ∧ 1 ≤ j1 ̸= j2 ≤ ν)

1: function Givens(A, ⟨i1, j1⟩, ⟨i2, j2⟩)
2: if j1 = j2 then ▷ Premultiplication by Givens matrix
3: k1 ← i1
4: k2 ← i2
5: n← µ
6: z1 ← ai1,j1
7: z2 ← ai2,j2
8: else ▷ Postmultiplication by Givens matrix
9: k1 ← j1

10: k2 ← j2
11: n← ν
12: z1 ← ai1,j1
13: z2 ← ai2,j2
14: end if
15:
16: if z2 = 0 then
17: c← 1
18: s← 0
19: else
20: r1 ← |z1|
21: r2 ← |z2|
22: r ←


r21 + r22

23: φ← arg(z1)− arg(z2)
24: c← r1

r
25: s← − r2

r e
iφ

26: end if
27:
28: G = (gij)← In
29: gk1,k1 ← c
30: gk1,k2 ← s
31: gk2,k1 ← −s
32: gk2,k2 ← c
33:
34: if j1 = j2 then
35: return GH

36: else
37: return G

38: end if
39: end function
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zeroes element a11 may be applied as well, for example

G(a21, a11, 2, 1)
HA =


2√
5
− 1√

5
1√
5

2√
5


2 3

4 5


=


0 1√

5

2
√
5 13√

5


.

In conformance with Definition 3.3, Algorithm 3.2 computes a Givens matrix G (if
i1 = i2, i.e., if the matrix A = (aij) is to be postmultiplied by the Givens matrix) or
GH (if j1 = j2, i.e., if A is to be premultiplied by the Givens matrix). The application
of the computed Givens matrix to A in both cases annihilates element ai2,j2 . When A

is premultiplied by GH, only the rows A(i1 : i1, : ) and A(i2 : i2, : ) are affected. Likewise,
when A is postmultiplied by G, solely the columns A( : , j1 : j1) and A( : , j2 : j2) are altered.

3.3 Computational cost

There are several possibilities to quantify the cost of a computation. In many cases,
floating-point operations (flops), i.e., additions, subtractions, multiplications, and divi-
sions, are the dominant factor. Therefore, counting these mathematical operations is a
common method to evaluate the computational cost, and we refer to it also as the opera-
tion count.

Golub et al. explain that the “[ . . . ] number of flops in a given matrix computation is
usually obtained by summing the amount of arithmetic associated with the most deeply
nested statements.” [GV13, p. 12] As an example, let A ∈ Rm×r, B ∈ Rr×n, and C ∈
Rm×n. Then, the operation count of

C ← C +AB

is 2mnr [GV13, p. 12] or, in Landau notation, O(mnr).
In this thesis, we are going to count complex operations (cf. Chapter 8). Notwith-

standing the fact that one complex addition requires two real additions, but one complex
multiplication necessitates four real multiplications and two real additions, we define one
complex operation as either a complex addition or a complex multiplication.



Chapter 4

Problem formulation and iterative
solution

In Chapter 2, the problem of interference alignment on the K-user interference channel has
been briefly introduced from the perspective of information theory. This chapter presents
an established computational solution to this problem, a distributed iterative optimization
algorithm first proposed by Gomadam et al. in [GCJ11, pp. 3313–3315].

Before the actual algorithm is discussed, the problem to be solved, hereinafter denoted
as the interference alignment problem, is precisely formulated in Section 4.1. Subsequently,
in Section 4.2, we will list and analyze the distributed iterative optimization algorithm by
Gomadam et al. We are going to distinguish two flavors of the algorithm, one for the
general (nonsymmetric) case of the interference alignment problem in Section 4.2.1, and
one derived therefrom for the (to us more relevant) symmetric case in Section 4.2.2. Finally,
we will indicate some of the algorithm’s characteristics in Section 4.3.

4.1 Problem formulation

Based on the definitions and explanations in Chapter 2, especially in Section 2.5, we now
shall appropriately define the interference alignment problem for solving it algorithmically.
The parameters K, d, M , and N , as introduced in Chapter 2, are central to the formulation
of this problem and will be input parameters for both the iterative and constructive (cf.
Chapter 6) algorithms we are going to study. Table 4.1 provides a terse summary of the
meanings of these four parameters.

Mathematically, systems of bilinear equations (cf. Equation 2.5) have to be satisfied
in order to find a solution to the interference alignment problem. The precoding and
postcoding matrices (cf. Definition 2.6) appearing in these bilinear systems are truncated
unitary matrices [Gui12, p. 1]. The concept of truncated unitary matrices particularly
proves to be expedient for reformulating the interference alignment problem as the inter-
ference alignment decomposition problem in view of finding a direct problem solution (cf.
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Table 4.1: The relevant parameters for the interference alignment problem.

Description Further details

K K users, i.e., K transmitters and K receivers, communicate
over the interference channel.

Sections 2.1 and 2.2

d The interference channel has d degrees of freedom. Section 2.2.3

M Each transmitter has M antennas. Section 2.2.2
N Each receiver has N antennas. Section 2.2.2

Chapter 5).

Definition 4.1 (Truncated unitary matrix). Let A be a unitary matrix of size m×m.
Then, a matrix B consisting of the first n < m columns of A is referred to as a
truncated unitary matrix of size m× n.

As noted in Chapter 2, a valid solution to the interference alignment problem has to
satisfy, besides the bilinear systems in Equation 2.5, the condition in Equation 2.6. How-
ever, since, according to Gomadam et al., the condition in Equation 2.6 is automatically
fulfilled [GCJ11, p. 3313], the relevant condition to satisfy is Equation 2.5. For this reason,
and in agreement with [Gui12, p. 1], we can formulate the interference alignment problem
based on the condition in Equation 2.5 along with fundamental definitions from Chapter 2
and Definition 4.1.

Definition 4.2 (Interference alignment problem). Let K ∈ N users, d ∈ N degrees
of freedom, M ∈ N antennas at each transmitter, N ∈ N antennas at each receiver
(cf. Table 4.1), and K2 channel matrices Hkj ∈ CN×M , j, k ∈ {1, 2, . . . ,K} (cf.
Definition 2.1), be given such that K ≥ 2, 1 ≤ d ≤ N , 1 ≤ d ≤ M , NM > d2, and
N + M ≥ (K + 1) d (cf. Corollary 2.7). Then, the interference alignment problem
is defined as the problem to find K truncated unitary matrices Uk ∈ CN×d, k ∈
{1, 2, . . . ,K}, i.e., K postcoding matrices, and K truncated unitary matrices Vj ∈
CM×d, j ∈ {1, 2, . . . ,K}, i.e., K precoding matrices (cf. Definition 2.6), such that

∀j ̸= k : UH
k HkjVj = 0

(cf. Equation 2.5) is satisfied.

4.2 Algorithm description

The distributed iterative optimization algorithm, as described in [GCJ11, pp. 3313–3314],
considers the general (nonsymmetric) K-user time-varying MIMO interference channel
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[GCJ11, p. 3311] (cf. Section 2.2.2), where transmitter Tj and receiver Rk are equipped
with Mj and Nk antennas and have dj and dk degrees of freedom, respectively.

Since we want to focus on the symmetric case, where each transmitter (receiver) is
equipped with M (N) antennas and has d degrees of freedom, we will not only discuss
the original algorithm by Gomadam et al. (cf. Section 4.2.1) but also its adaption to
the symmetric K-user time-varying MIMO interference channel (cf. Section 4.2.2). In
Section 4.3, we will list some of the algorithm’s characteristics and briefly explain why the
algorithm can be considered a distributed algorithm.

4.2.1 General variant

To be consistent with the condition in Definition 4.2, it is required that at each receiver
all interference is suppressed. For being able to achieve that suppression, the algorithm
follows the subsequent procedure:

• Initially, truncated unitary transmit filters (precoding matrices) Vj , j ∈ {1, 2, . . . ,K},
as well as arbitrary receive filters (postcoding matrices) Uk, k ∈ {1, 2, . . . ,K}, are
chosen.

• Then, these filters are iteratively updated such that the leakage interference at the
receivers, i.e., the power remaining in the received signals after the filters are applied,
is minimized.

The total leakage interference Ik at receiver Rk due to interference from transmitters
Tj , j ̸= k, is given by

Ik = tr(UH
k QkUk), (4.1)

where

Qk =

K
j=1
j ̸=k

Pj
dj

HkjVjV
H
j HH

kj (4.2)

is the interference covariance matrix at receiver Rk [GCJ11, p. 3313]. For the symmetric
case, Pj

dj
is substituted by Pj

d in Equation 4.2. If Ik converges to zero at each receiver Rk,
k ∈ {1, 2, . . . ,K}, interference alignment is feasible [GCJ11, p. 3313] (cf. Section 2.6).

For optimization, the algorithm considers both the original network (interference chan-
nel) with transmitters Tj , j ∈ {1, 2, . . . ,K}, and receivers Rk, k ∈ {1, 2, . . . ,K}, as well as
a reciprocal network with transmitters

←−
T j = Rj , j ∈ {1, 2, . . . ,K}, and receivers

←−
R k = Tk,

k ∈ {1, 2, . . . ,K}. Hence, in the reciprocal network, the actual transmitters act as receivers
and the actual receivers act as transmitters.

To minimize the total leakage interference, only the receivers Rk and
←−
R k in both

the original and reciprocal network update their interference suppression filters Uk and
←−
U k, respectively. Since the algorithm alternates between the original and the reciprocal
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Figure 4.1: Distributed algorithm for iterative interference alignment. This figure is based
on [GCJ11, fig. 2].

network, i.e., the algorithm constantly reverses the communication direction, not only the
receive filters but also the transmit filters are optimized. Figure 4.1 visualizes the relation
between the original and the reciprocal network and shows which filters are updated in the
particular network.

Algorithm 4.1 concretizes the aforegoing description of the distributed iterative opti-
mization algorithm. In Lines 1 to 3, the transmit filters Vj , j ∈ {1, 2, . . . ,K}, are initial-
ized. Considering that the receive filters Uk, k ∈ {1, 2, . . . ,K}, are not used before values
are assigned to them in Line 9, they do not need to be initialized. After the initialization,
the transmit and receive filters are iteratively optimized (cf. Lines 5 to 21).

In a first step (cf. Lines 6 to 12), the optimization in the original network is performed,
i.e., the minimization problem

∀k ∈ {1, 2, . . . ,K} : min
Uk∈CNk×dk ,UH

k Uk=Idk

Ik (4.3)

is solved. Put differently, receiver Rk “chooses its interference suppression filter Uk to
minimize the leakage interference due to all undesired transmitters. The dk-dimensional
received signal subspace that contains the least interference is the space spanned by the
eigenvectors corresponding to the dk smallest eigenvalues of the interference covariance
matrix Qk.” [GCJ11, p. 3313]
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Algorithm 4.1 Distributed iterative optimization algorithm for solving the interference
alignment problem (general variant). This algorithm is based on [GCJ11, alg. 1].

1: for all j ∈ {1, 2 . . . ,K} do ▷ Initialization
2: let Vj ∈ CMj×dj be arbitrary such that V H

j Vj = Idj
3: end for
4:
5: repeat
6: for all k ∈ {1, 2, . . . ,K} do ▷ Optimization original network
7: Qk ←

K
j=1,j ̸=k

Pj

dj
HkjVjV

H
j HH

kj

8: for all i ∈ {1, 2, . . . , dk} do
9: Uk( : , i : i)← Eigenvector(Qk, i)

10: end for
11:

←−
V k ← Uk

12: end for
13:
14: for all j ∈ {1, 2, . . . ,K} do ▷ Optimization reciprocal network
15:

←−
Qj ←

K
k=1,k ̸=j

←−
P k
dk

←−
Hjk
←−
V k
←−
V H
k

←−
HH

jk

16: for all i ∈ {1, 2, . . . , dj} do
17:

←−
U j( : , i : i)← Eigenvector(

←−
Qj , i)

18: end for
19: Vj ←

←−
U j

20: end for
21: until convergence

Therefore, the dk columns of Uk, k ∈ {1, 2, . . . ,K}, can be obtained by

∀k ∈ {1, 2, . . . ,K} : ∀i ∈ {1, 2, . . . , dk} : Uk( : , i : i) = Eigenvector(Qk, i), (4.4)

where Eigenvector(A, i) denotes the eigenvector corresponding to the ith smallest eigen-
value of a matrix A. After the computation of Qk in Line 7 of Algorithm 4.1, the just
characterized method is used to get the columns of Uk in Lines 8 to 10. In the final state-
ment of the first step, the updated receive filter Uk is assigned to

←−
V k as input for the

second step (cf. Line 11).
The second step of the optimization iteration (cf. Lines 14 to 20) follows the same

procedure for the reciprocal as the first step for the original network. First,
←−
Qj is computed

(cf. Line 15), then the columns of
←−
U j are obtained (cf. Lines 16 to 18), and finally the

updated
←−
U j is assigned to Vj (cf. Line 19). The iteration ends when a defined convergence

criterion, e.g., a certain leakage interference precision, is fulfilled, or a maximum number
of iterations is reached.

4.2.2 Symmetric variant

As previously stated, our concern in the context of this thesis is interference alignment on
the symmetric K-user (time-varying) MIMO interference channel rather than the general
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Algorithm 4.2 Distributed iterative optimization algorithm for solving the interference
alignment problem (symmetric variant). This algorithm is based on Algorithm 4.1.

1: for all j ∈ {1, 2, . . . ,K} do ▷ Initialization
2: let Vj ∈ CM×d be arbitrary such that V H

j Vj = Id
3: end for
4:
5: repeat
6: for all k ∈ {1, 2, . . . ,K} do ▷ Optimization original network
7: Qk ←

K
j=1,j ̸=k

Pj

d HkjVjV
H
j HH

kj

8: for all i ∈ {1, 2, . . . , d} do
9: Uk( : , i : i)← Eigenvector(Qk, i)

10: end for
11:

←−
V k ← Uk

12: end for
13:
14: for all j ∈ {1, 2 . . . ,K} do ▷ Optimization reciprocal network
15:

←−
Qj ←

K
k=1,k ̸=j

←−
P k
d

←−
Hjk
←−
V k
←−
V H
k

←−
HH

jk

16: for all i ∈ {1, 2, . . . , d} do
17:

←−
U j( : , i : i)← Eigenvector(

←−
Qj , i)

18: end for
19: Vj ←

←−
U j

20: end for
21: until convergence

(nonsymmetric) K-user MIMO interference channel. In Chapter 8, we will compare an
implementation of our constructive algorithm to one of the iterative algorithm for the
symmetric case as described in this section.

The adaption of Algorithm 4.1 to the symmetric K-user MIMO interference channel
requires only minor modifications, as we can see in Algorithm 4.2. In essence, the descrip-
tion in Section 4.2.1 is also valid for the symmetric case. Since now all transmitters Tj ,
j ∈ {1, 2, . . . ,K}, and receivers Rk, k ∈ {1, 2, . . . ,K}, have M (instead of Mj) and N

(instead of Nk) antennas, respectively, and d (instead of dj and dk) degrees of freedom, the
dimensions of the matrices Hkj =

←−
HH

jk ∈ CN×M , Uk =
←−
V k ∈ CN×d, Vj =

←−
U j ∈ CM×d,

Qk ∈ CN×N , and
←−
Qj ∈ CM×M are the same for all users. Apart from that, the algorithm

works the same as before.

4.3 Algorithm characteristics

To complete our discussion of the distributed iterative optimization algorithm by Gomadam
et al., we want to take a brief look at some of its properties. One aspect we have excluded
so far is to clarify in what way the algorithm can be considered distributed:

The reciprocal property of the wireless channels, combined with the fact that
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the interference covariance matrices can be naturally learnt at the receivers,
enables a distributed implementation of the above algorithm. [GCJ11, p. 3315]

Accordingly, although the interference covariance matrices Qk and
←−
Qj , j, k ∈

{1, 2, . . . ,K}, depend on the channel and precoding matrices of all users (cf. Equation 4.2
and Lines 7 and 15 of Algorithms 4.1 and 4.2), they can be estimated in a distributed
manner [GCJ11, p. 3315].

Another important property is the algorithm’s convergence characteristics. Gomadam
et al. show that the algorithm reduces the leakage interference at every iteration and, for
this reason, is guaranteed to converge [GCJ11, pp. 3314–3315], but due to the noncon-
vex nature of the interference optimization problem not necessarily to a global minimum
[GCJ11, p. 3315]. Consequently, solutions computed by the algorithm may not be optimal.
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Chapter 5

Problem reformulation and direct
solution approaches

After we have studied an iterative solution to the interference alignment problem in Chap-
ter 4, we want to approach a direct solution in this chapter. In contrast to the iterative
solution, a direct solution guarantees to find a global optimum. For this purpose, we will
analyze global matrix factorization schemes based on Householder and Givens transforma-
tions (cf. Chapter 3) and illustrate how they can be of avail for developing a direct solution
to the problem at hand.

In order to obtain a global matrix formulation appropriate for applying Householder
reflections and Givens rotations, we will reformulate the interference alignment problem as
the equivalent interference alignment decomposition problem in Section 5.1. Subsequently,
in Section 5.2, we will define a related problem that removes some constraints from the
interference alignment decomposition problem. This simplified problem will help us to
understand the matrix factorization techniques introduced in Section 5.3.

5.1 Problem reformulation

The original formulation of the interference alignment problem (cf. Definition 4.2) has
been well-suited for finding an iterative solution like the distributed iterative optimization
algorithm we have discussed in Chapter 4. For developing a direct solution on the basis of
Householder and Givens transformations, we need to adapt this formulation such that we
obtain a single system of bilinear equations to be solved by applying appropriate matrix
factorization schemes. In this context, the meanwhile well-known parameters K, d, M ,
and N (cf. Table 4.1) will again be fundamental to our considerations.

For a proper reformulation of the interference alignment problem, the following defini-
tion introduces the global channel matrix H as the concatenation of all channel matrices
Hkj , j, k ∈ {1, 2, . . . ,K}, as well as the global postcoding matrix U and the global precod-
ing matrix V as concatenations of all postcoding matrices Uk, k ∈ {1, 2, . . . ,K}, and all
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precoding matrices Vj , j ∈ {1, 2, . . . ,K}, respectively [Gui12, p. 1].

Definition 5.1 (Global channel matrix H, global postcoding matrix U , and global
precoding matrix V ). Let Hkj ∈ CN×M , be the channel matrix from transmitter Tj ,
j ∈ {1, 2, . . . ,K}, to receiver Rk, k ∈ {1, 2, . . . ,K} (cf. Definition 2.1). Furthermore,
let Uk ∈ CN×d be the postcoding matrix at receiver Rk, k ∈ {1, 2, . . . ,K}, and
let Vj ∈ CM×d be the precoding matrix at transmitter Tj , j ∈ {1, 2, . . . ,K} (cf.
Definition 2.6). Then, the global channel matrix H ∈ CKN×KM , the global postcoding
matrix U ∈ CKN×Kd, and the global precoding matrix V ∈ CKM×Kd are defined as

H :=


H11 H12 · · · H1K

H21 H22 · · · H2K

...
...

. . .
...

HK1 HK2 · · · HKK

,

U :=


U1 0

U2

. . .

0 UK

, and V :=


V1 0

V2

. . .

0 VK

.

Based on the global channel matrix H, the global postcoding matrix U , and the global
precoding matrix V , we now define the global interference alignment matrix Σ, which will
be central to the reformulation of the interference alignment problem.

Definition 5.2 (Global interference alignment matrix Σ). Let H ∈ CKN×KM be the
global channel matrix, U ∈ CKN×Kd the global postcoding matrix, and V ∈ CKM×Kd

the global precoding matrix (cf. Definition 5.1). Then, the global interference alignment
matrix Σ ∈ CKd×Kd is defined as

Σ := UHHV .

Like the postcoding matrices Uk, k ∈ {1, 2, . . . ,K}, and the precoding matrices Vj ,
j ∈ {1, 2, . . . ,K}, the global postcoding matrix U and the global precoding matrix V

are truncated unitary matrices [Gui12, p. 1] (cf. Definition 4.1). By concatenation of any
orthonormal bases of their null column spaces, U and V can be extended to (square)
unitary matrices Ū and V̄ [Gui12, p. 2], which have the important property of being
invertible.

Definition 5.3 (Extended global postcoding matrix Ū and extended global precoding
matrix V̄ ). Let U ∈ CKN×Kd be the global postcoding matrix and V ∈ CKM×Kd the
global precoding matrix (cf. Definition 5.1). Moreover, let Ũ ∈ CKN×K(N−d) denote
any orthonormal basis of the null column space of U and Ṽ ∈ CKM×K(M−d) any
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orthonormal basis of the null column space of V . Then, the extended global postcoding
matrix Ū ∈ CKN×KN and the extended global precoding matrix V̄ ∈ CKM×KM are
defined as

Ū :=

U Ũ


and

V̄ :=

V Ṽ


.

Similar to the definition of the global interference alignment matrix Σ based on the
global postcoding matrix U and the global precoding matrix V (cf. Definition 5.2), we
define the extended global interference alignment matrix Σ̄ based on the extended global
postcoding matrix Ū and the extended global precoding matrix V̄ .

Definition 5.4 (Extended global interference alignment matrix Σ̄). Let H ∈
CKN×KM be the global channel matrix (cf. Definition 5.1), Ū ∈ CKN×KN the ex-
tended global postcoding matrix, and V̄ ∈ CKM×KM the extended global precoding
matrix (cf. Definition 5.3). Then, the extended global interference alignment matrix
Σ̄ ∈ CKN×KM is defined as

Σ̄ := ŪHHV̄ .

Due to the close relations of Ū and V̄ to U and V (cf. Definition 5.3), there is a close
relationship between Σ̄ and Σ as well. The comparison of Definitions 5.2 and 5.4 readily
unveils

Σ̄ =


Σ A

B C


, (5.1)

where A = UHHṼ ∈ CKd×K(M−d), B = ŨHHV ∈ CK(N−d)×Kd, and C = ŨHHṼ ∈
CK(N−d)×K(M−d).

In Definitions 5.1 to 5.4, we have introduced all global matrices we need for reformu-
lating the interference alignment problem. Since U , H, and V are concatenations of Uk,
Hkj , and Vj , respectively (cf. Definition 5.1), j, k ∈ {1, 2, . . . ,K}, and because of the
condition

∀j ̸= k : UH
k HkjVj = 0 (5.2)

(cf. Definition 4.2), it follows that Σ = UHHV ∈ CKd×Kd (cf. Definition 5.2) has to be
a block-diagonal matrix, i.e., a matrix with all but the K diagonal blocks of size d × d
being equal to 0 [Gui12, p. 1] (note that A, B, and C in Equation 5.1 are matrices of no
particular structure [Gui12, p. 2]). This insight eventually enables us to reformulate the
interference alignment problem (cf. Definition 4.2) as the equivalent interference alignment
decomposition problem.
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Definition 5.5 (Interference alignment decomposition problem). Let K ∈ N users,
d ∈ N degrees of freedom, M ∈ N antennas at each transmitter, N ∈ N antennas
at each receiver (cf. Table 4.1), and a global channel matrix H ∈ CKN×KM (cf.
Definition 5.1) be given such that K ≥ 2, 1 ≤ d ≤ N , 1 ≤ d ≤ M , NM > d2,
and N + M ≥ (K + 1) d (cf. Corollary 2.7). Then, the interference alignment de-
composition problem is defined as the problem to find an extended global postcoding
matrix Ū ∈ CKN×KN , an extended global precoding matrix V̄ ∈ CKM×KM (cf. Defi-
nition 5.3), and an extended global interference alignment matrix Σ̄ ∈ CKN×KM (cf.
Definition 5.4) such that

ŪHHV̄ = Σ̄

and

Σ = Σ̄(1 :Kd, 1 :Kd) =


Σ1 0

Σ2

. . .

0 ΣK

,
where Σk ∈ Cd×d, k ∈ {1, 2, . . . ,K}.

Since the extended global postcoding and precoding matrices Ū and V̄ are unitary and
thus invertible matrices, Definition 5.5 implies that a given global channel matrix H can
be factorized as

H = ŪΣ̄V̄ H (5.3)

for finding a direct solution to the interference alignment decomposition problem.

5.2 Problem relaxation

According to Definition 5.5, we have to find both Ū and V̄ as well as Σ̄ in order to solve
the interference alignment decomposition problem. While Ū and V̄ have to be sparse
block matrices (cf. Definitions 5.1 and 5.3), the matrix Σ = Σ̄(1 :Kd, 1 :Kd) must be of
block-diagonal form (cf. Definition 5.5). However, in Section 5.3 and Chapter 6, we will
be content with constructing the block-diagonal submatrix Σ of the matrix Σ̄.

For this reason, we are going to define the relaxed interference alignment decomposition
problem, which is a first step towards a direct solution to the interference alignment de-
composition problem. Although solutions to this simplified problem cannot be considered
solutions to the problem described in Chapter 2, a direct solution to the relaxed inter-
ference alignment decomposition problem offers valuable insights for a direct solution to
the interference alignment decomposition problem. Therefore, we will, within the context
of the relaxed interference alignment decomposition problem, still talk about K users, d
degrees of freedom, M antennas at each transmitter, N antennas at each receiver, the
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global channel matrix H, and even the global interference alignment matrix Σ and the
extended global interference alignment matrix Σ̄, but always keep in mind that these are
just names for mathematical objects.

Definition 5.6 (Relaxed interference alignment decomposition problem). Let K ∈ N
users, d ∈ N degrees of freedom, M ∈ N antennas at each transmitter, N ∈ N antennas
at each receiver, and a global channel matrix H ∈ CKN×KM be given such that
K ≥ 2, 1 ≤ d ≤ N , 1 ≤ d ≤ M , NM > d2, and N +M ≥ (K + 1) d. Then, the
relaxed interference alignment decomposition problem is defined as the problem to find
an extended global interference alignment matrix Σ̄ ∈ CKN×KM and unitary matrices
Û ∈ CKN×KN and V̂ ∈ CKM×KM such that

ÛHHV̂ = Σ̄

and

Σ = Σ̄(1 :Kd, 1 :Kd) =


Σ1 0

Σ2

. . .

0 ΣK

,
where Σk ∈ Cd×d, k ∈ {1, 2, . . . ,K}.

Because the newly introduced matrices Û and V̂ by definition are unitary matrices, a
given global channel matrix H, analogous to Equation 5.3, can be factorized as

H = ÛΣ̄V̂ H (5.4)

for finding a direct solution to the relaxed interference alignment decomposition problem.

5.3 Direct solution approaches

As we already know from Chapter 1, the objective of this thesis is to find, if possible, a
direct solution, i.e., a constructive algorithm, for the interference alignment decomposition
problem by applying only Householder reflections and Givens rotations (cf. Chapter 3).
Considering our reformulation of the problem in Section 5.1, this means that our algo-
rithm has to factorize a given global channel matrix H by applying a composition of
Householder and Givens transformations such that Equation 5.3 is satisfied. However, in
this section, we will discuss approaches towards finding a direct solution to the relaxed
interference alignment decomposition problem, i.e., we will examine the possibilities of ap-
plying Householder reflections and Givens rotations such that H is decomposed according
to Equation 5.4.

For being able to systematically analyze the effects of Householder and Givens transfor-
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mations, we are going to introduce the concept of decomposition steps, which is applicable
to both the interference alignment decomposition problem and the relaxed interference
alignment decomposition problem.

Definition 5.7 (Decomposition steps). A decomposition step is defined as exactly one
application of a Householder or Givens transformation (cf. Section 3.2).

Σ̄(0) := H

denotes the matrix to be decomposed before the first decomposition step and Σ̄(λ) the
matrix to be decomposed after the λth decomposition step. Furthermore, Λ ∈ N0 is
defined as the total number of decomposition steps. If there is a direct solution to the
interference alignment decomposition problem (or the relaxed interference alignment
decomposition problem), Λ is a finite number and

Σ̄(Λ) = Σ̄

(cf. Definitions 5.5 and 5.6).

Both an (extended) Householder matrix H̃ (cf. Definition 3.2) and a Givens matrix G

(cf. Definition 3.3) can be multiplied from the left side, i.e., premultiplied, and from the
right side, i.e., postmultiplied. It follows that there are, in accordance with Definition 5.7,
exactly four alternatives for the λth decomposition step:

Σ̄(λ) = H̃Σ̄(λ−1), (5.5)

Σ̄(λ) = Σ̄(λ−1)H̃, (5.6)

Σ̄(λ) = GΣ̄(λ−1), and (5.7)

Σ̄(λ) = Σ̄(λ−1)G. (5.8)

The following lemma asserts that ÛH and V̂ (cf. Definition 5.6) are products of (extended)
Householder and Givens matrices.

Lemma 5.8 (ÛH and V̂ are products of (extended) Householder and Givens matri-
ces). Let ∆ = {1, 2, . . . ,Λ} be the set of decomposition step indices with Σ̄(Λ) = Σ̄

(cf. Definition 5.7) and U(λ), λ ∈ ∆, the (extended) Householder or Givens ma-
trix multiplied by Σ̄(λ−1) in the λth decomposition step. Furthermore, let ∆′ =

{δ′1, δ′2, . . . , δ′m} ⊆ ∆ with δ′k < δ′k+1 be the set of decomposition step indices where
Σ̄(λ) = U(λ)Σ̄(λ−1), λ ∈ ∆, and let ∆′′ = {δ′′1 , δ′′2 , . . . , δ′′n} ⊆ ∆ with δ′′k < δ′′k+1 be the
set of decomposition step indices where Σ̄(λ) = Σ̄(λ−1)U(λ), λ ∈ ∆. Then

ÛH = U(δ′m)U(δ′m−1) . . .U(δ′2)U(δ′1) and
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V̂ = U(δ′′1 )U(δ′′2 ) . . .U(δ′′n−1)U(δ′′n).

Proof. By definition, the only two allowed distinct types of decomposition steps are

Σ̄(λ) = U(λ)Σ̄(λ−1), λ ∈ ∆, and

Σ̄(λ) = Σ̄(λ−1)U(λ), λ ∈ ∆.

Hence, ∆′ ∩ ∆′′ = ∅ and ∆′ ∪ ∆′′ = ∆. Since Σ̄(0) = H (cf. Definition 5.7), the first
decomposition step is

Σ̄(1) = U(1)H = U(δ′1)H or

Σ̄(1) = HU(1) = HU(δ′′1 ).

Because of

Σ̄(Λ) = Σ̄ = ÛHHV̂

(cf. Definition 5.6) and either

Σ̄(Λ) = U(Λ)Σ̄(Λ−1) = U(δ′m)Σ̄(Λ−1) or

Σ̄(Λ) = Σ̄(Λ−1)U(Λ) = Σ̄(Λ−1)U(δ′′n),

it holds that

ÛHHV̂ = U(δ′m)Σ̄(Λ−1) or

ÛHHV̂ = Σ̄(Λ−1)U(δ′′n)

and thus by induction

ÛHHV̂ = U(δ′m)U(δ′m−1) . . .U(δ′2)U(δ′1)HU(δ′′1 )U(δ′′2 ) . . .U(δ′′n−1)U(δ′′n).

It follows the assertion.

Definition 5.6 requires Û and V̂ to be unitary matrices. The following corollary con-
firms that Û and V̂ are unitary matrices when solely Householder and Givens transforma-
tions are applied for solving the relaxed interference alignment decomposition problem.

Corollary 5.9 (Û and V̂ are unitary matrices). Let there be Λ decomposition steps
such that Σ̄(Λ) = Σ̄ (cf. Definition 5.7). Then, Û and V̂ (cf. Definition 5.6) are unitary
matrices.

Proof. Since a product of unitary matrices is unitary itself, and (extended) Householder
and Givens matrices are unitary matrices (cf. Chapter 3), it readily follows from Lemma 5.8
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(b) Targeted Σ̄

Figure 5.1: The global channel matrix H and Σ̄ as targeted during the decomposition of
H for K = 2, d = 2, M = 4, and N = 4.

that ÛH and V̂ are unitary matrices. As the conjugate transpose of a unitary matrix is
unitary, Û is a unitary matrix, too.

Figure 5.1a visualizes the global channel matrix H for K = 2, d = 2, M = 4, and
N = 4. In this example, H is of dimension KN ×KM = 8× 8. Each of the black squares
represents one (not necessarily, but potentially) nonzero matrix element hij ∈ C of H,
i ∈ {1, 2, . . . ,KN}, j ∈ {1, 2, . . . ,KM}. The corresponding matrix Σ̄, also of dimension
KN ×KM = 8× 8, that is targeted during the decomposition of H, i.e., by multiplying
H with (extended) Householder and Givens matrices, is shown in Figure 5.1b. Again,
the black squares represent nonzero matrix elements σ̄ij ∈ C of Σ̄, i ∈ {1, 2, . . . ,KN},
j ∈ {1, 2, . . . ,KM}, while the white space represents (strictly) zero elements. As we can
see, Σ, the top-left Kd × Kd = 4 × 4 submatrix of Σ̄, is a block-diagonal matrix with
blocks of size d × d = 2 × 2. For a correct solution, the elements of Σ̄ shown as nonzero
elements may (partly) also be zero elements.

5.3.1 Application of Householder reflections

Since H = Σ̄(0) is a dense matrix, and Householder reflections in contrast to Givens rota-
tions are able to introduce several zeros at once into a matrix (cf. Chapter 3), we are first
going to examine decomposition steps in which (extended) Householder matrices are pre-
multiplied or postmultiplied. Figure 5.2 depicts some examples for Σ̄(1) = H̃Σ̄(0). In each
of the three illustrations, a different (extended) Householder matrix H̃ is premultiplied, re-
sulting in different columns or parts of columns being annihilated. The annihilated (part of
a) column of Σ̄(1), including the nonzero top element (highlighted in gray), is equal to H̃z,
where z denotes the column vector of corresponding elements of Σ̄(0) (cf. Definition 3.1).

According to Figure 5.3, the situation for Σ̄(1) = Σ̄(0)H̃ is very similar. The only
difference is that rows instead of columns are annihilated, which means that the annihilated
(part of a) row of Σ̄(1), including the nonzero leftmost element (again highlighted in gray),
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Figure 5.2: The global channel matrix H premultiplied by (extended) Householder matri-
ces that annihilate different columns or parts of columns.
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Figure 5.3: The global channel matrix H postmultiplied by (extended) Householder ma-
trices that annihilate different rows or parts of rows.

is equal to zHH̃, where zH denotes the row vector of corresponding elements of Σ̄(0). For
this reason, we can focus on the case Σ̄(λ) = H̃Σ̄(λ−1), our conclusions will be equally
valid for the case Σ̄(λ) = Σ̄(λ−1)H̃.

As we have seen, we can annihilate any column or row of Σ̄(0) (except for the top or
leftmost element) by premultiplying or postmultiplying an appropriate (extended) House-
holder matrix. Since we want Σ̄(Λ)(1 :Kd, 1 :Kd) = Σ̄(1 :Kd, 1 :Kd) = Σ to be of block-
diagonal form (cf. Definition 5.6), we need to know which exact matrix elements have to
be annihilated.

Lemma 5.10 (Zero elements of Σ̄). Let Σ̄ = (σ̄ij) ∈ CKN×KM be the extended
global interference alignment matrix with Σ = Σ̄(1 :Kd, 1 :Kd) ∈ CKd×Kd being a
block-diagonal matrix with the main diagonal blocks Σk ∈ Cd×d, k ∈ {1, 2, . . . ,K}
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(cf. Definitions 5.5 and 5.6). Then, it holds that

∀κ ∈ {1, 2, . . . ,K − 1} : ∀δ ∈ {1, 2, . . . , d} :

σ̄κd+1,(κ−1)d+δ = σ̄κd+2,(κ−1)d+δ = · · · = σ̄Kd,(κ−1)d+δ = 0

and

∀κ ∈ {1, 2, . . . ,K − 1} : ∀δ ∈ {1, 2, . . . , d} :

σ̄(κ−1)d+δ,κd+1 = σ̄(κ−1)d+δ,κd+2 = · · · = σ̄(κ−1)d+δ,Kd = 0,

and there is no other element of Σ̄ that is required to be equal to zero.

Proof. For Σ to be a block-diagonal matrix, all elements of Σ except for the elements of
the main diagonal blocks Σk, k ∈ {1, 2, . . . ,K}, are required to be equal to zero. It follows
that the elements of Σ below and right of each main diagonal block Σk, k ∈ {1, 2, . . . ,K},
need to be equal to zero. Since each element left of or above Σk′ , k′ ∈ {2, 3, . . . ,K}, is an
element below or right of one Σk′′ , k′′ ∈ {1, 2, . . . , k′ − 1}, it is sufficient to consider the
elements of Σ below and right of each main diagonal block Σk, k ∈ {1, 2, . . . ,K}.

The elements of Σ below Σ1 = Σ(1 : d, 1 : d) = Σ̄(1 : d, 1 : d) are the elements of Σ(d+

1 :Kd, 1 : d) = Σ̄(d+ 1 :Kd, 1 : d), i.e.,

∀δ ∈ {1, 2, . . . , d} : σ̄d+1,δ, σ̄d+2,δ, . . . , σ̄Kd,δ,

and the elements of Σ right of Σ1 are the elements of Σ(1 : d, d + 1 :Kd) = Σ̄(1 : d, d +

1 :Kd), i.e.,

∀δ ∈ {1, 2, . . . , d} : σ̄δ,d+1, σ̄δ,d+2, . . . , σ̄δ,Kd.

Similarly, the elements of Σ below Σ2 = Σ(d+ 1 : 2d, d+ 1 : 2d) = Σ̄(d+ 1 : 2d, d+ 1 : 2d)

are the elements of Σ(2d+ 1 :Kd, d+ 1 : 2d) = Σ̄(2d+ 1 :Kd, d+ 1 : 2d), i.e.,

∀δ ∈ {1, 2, . . . , d} : σ̄2d+1,d+δ, σ̄2d+2,d+δ, . . . , σ̄Kd,d+δ,

and the elements of Σ right of Σ2 are the elements of Σ(d + 1 : 2d, 2d + 1 :Kd) = Σ̄(d +

1 : 2d, 2d+ 1 :Kd), i.e.,

∀δ ∈ {1, 2, . . . , d} : σ̄d+δ,2d+1, σ̄d+δ,2d+2, . . . , σ̄d+δ,Kd.

By induction, a similar argument applies for all Σκ = Σ((κ−1)d+1 :κd, (κ−1)d+1 :κd) =

Σ̄((κ− 1)d+1 :κd, (κ− 1)d+1 :κd), κ ∈ {1, 2, . . . ,K − 1}. Since there are no elements of
Σ below and right of ΣK = Σ((K − 1)d+ 1 :Kd, (K − 1)d+ 1 :Kd), the assertion of the
lemma is true.

Lemma 5.10 specifies the minimum set of zero elements for Σ̄ being in conformance
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with Definitions 5.5 and 5.6. As previously mentioned, other elements of Σ̄ may also
be zero for a valid result. Let us now discuss if there is a preferred sequence of column
annihilations. For this purpose, it is advantageous to agree on a notation for (extended)
Householder and Givens matrices that annihilate specific elements when applied to a Σ̄(λ),
λ ∈ {0, 1, . . . ,Λ− 1}.

Definition 5.11 (Specific Householder and Givens transformations in decomposition
steps). Let Σ̄(λ−1) ∈ CKN×KM , λ ∈ {1, 2, . . . ,Λ}, be the matrix to be decomposed
in the λth decomposition step (cf. Definition 5.7) and Σ̄(λ) =


σ̄
(λ)
ij


∈ CKN×KM

the matrix resulting from the λth decomposition step. Then, H
i1,j
i2,j
∈ CKN×KN ,

1 ≤ i1 < i2 ≤ KN , 1 ≤ j ≤ KM , denotes the (extended) Householder matrix
(cf. Definition 3.2) that affects the rows Σ̄(λ)(i1 : i2, : ) for annihilating the elements
σ̄
(λ)
i1+1,j , σ̄

(λ)
i1+2,j , . . . , σ̄

(λ)
i2,j

in the decomposition step

Σ̄(λ) = H
i1,j
i2,j

Σ̄(λ−1),

while H
i,j1
i,j2
∈ CKM×KM , 1 ≤ i ≤ KN , 1 ≤ j1 < j2 ≤ KM , is defined as the

(extended) Householder matrix that affects the columns Σ̄(λ)( : , j1 : j2) for annihilating
the elements σ̄(λ)i,j1+1, σ̄

(λ)
i,j1+2, . . . , σ̄

(λ)
i,j2

in the decomposition step

Σ̄(λ) = Σ̄(λ−1)Hi,j1
i,j2
.

Likewise, Gi1,j
i2,j
∈ CKN×KN , 1 ≤ i1 ̸= i2 ≤ KN , 1 ≤ j ≤ KM , denotes the Givens

matrix (cf. Definition 3.3) that affects the rows Σ̄(λ)(i1 : i1, : ) and Σ̄(λ)(i2 : i2, : ) for
annihilating the element σ̄(λ)i2,j

in the decomposition step

Σ̄(λ) = G
i1,j
i2,j

Σ̄(λ−1),

while G
i,j1
i,j2
∈ CKM×KM , 1 ≤ i ≤ KN , 1 ≤ j1 ̸= j2 ≤ KM , is defined as the Givens

matrix that affects the columns Σ̄(λ)( : , j1 : j1) and Σ̄(λ)( : , j2 : j2) for annihilating the
element σ̄(λ)i,j2

in the decomposition step

Σ̄(λ) = Σ̄(λ−1)Gi,j1
i,j2
.

Based on the notation introduced in Definition 5.11, we now want to demonstrate how
the order of Householder matrix applications influences the resulting matrix. Figure 5.4
illustrates Σ̄(λ), λ ∈ {1, 2, 3}, for the simple sequence

Σ̄(1) = H
2,2
8,2Σ̄

(0),

Σ̄(2) = H
3,3
8,3Σ̄

(1), and

Σ̄(3) = H
1,1
8,1Σ̄

(2),
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(a) Σ̄(1) = H
2,2
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(c) Σ̄(3) = H
1,1
8,1Σ̄

(2)

Figure 5.4: Σ̄(λ), λ ∈ {1, 2, 3}, for a sequence of Householder transformations with inap-
propriate element annihilations.

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

(a) Σ̄(1) = H
1,1
8,1Σ̄
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(b) Σ̄(2) = H
2,2
8,2Σ̄
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(c) Σ̄(3) = H
3,3
8,3Σ̄

(2)

Figure 5.5: Σ̄(λ), λ ∈ {1, 2, 3}, for a sequence of Householder transformations with appro-
priate element annihilations.

while Figure 5.5 visualizes Σ̄(λ), λ ∈ {1, 2, 3}, for

Σ̄(1) = H
1,1
8,1Σ̄

(0),

Σ̄(2) = H
2,2
8,2Σ̄

(1), and

Σ̄(3) = H
3,3
8,3Σ̄

(2).

In these two example sequences, we are considering applications of Householder transfor-
mations such that always i1 = j for Σ̄(λ) = H

i1,j
8,j Σ̄

(λ−1), λ, i1, j ∈ {1, 2, 3}. Under this
assumption, the preferred sequence of column annihilations is achieved when we choose
λ = i1 = j, i.e., when we start with the first column, proceed to the second, then the third,
and so on. If we disregard this order as in the example shown in Figure 5.4, the process of
column annihilations is reversed for all columns right of the one that is annihilated in the
respective decomposition step (cf. Figure 5.4c).

Would it help us to allow i1 ̸= j for Σ̄(λ) = H
i1,j
i2,j

Σ̄(λ−1), λ ∈ {1, 2, . . . ,Λ}, i1 ∈
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(a) Σ̄(1) = H
1,1
8,1Σ̄
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(b) Σ̄(2) = H
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(c) Σ̄(3) = H
2,3
8,3Σ̄

(2)

Figure 5.6: Σ̄(λ), λ ∈ {1, 2, 3}, for a sequence of Householder transformations with a
nondecreasing number of annihilated elements per column.
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(a) Σ̄(1) = H
1,2
8,2Σ̄
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(c) Σ̄(3) = H
3,1
8,1Σ̄
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Figure 5.7: Σ̄(λ), λ ∈ {1, 2, 3}, for a sequence of Householder transformations with a
decreasing number of annihilated elements per column.

{1, 2, . . . ,KN − 1}, i2 = KN , j ∈ {1, 2, . . . ,KM}? If we wanted the d× d main diagonal
blocks of the global interference alignment matrix Σ = Σ̄(1 :Kd, 1 :Kd) to consist only of
strictly nonzero elements, it seemed reasonable to regard (extended) Householder matrices
which annihilate the elements of Σ specified by Lemma 5.10 (and potentially other elements
of Σ̄ where appropriate). Corresponding decomposition steps for i2 = KN and all κ ∈
{1, 2, . . . ,K − 1} are

Σ̄((κ−1)d+1) = H
κd,(κ−1)d+1
KN,(κ−1)d+1Σ̄

((κ−1)d),

Σ̄((κ−1)d+2) = H
κd,(κ−1)d+2
KN,(κ−1)d+2Σ̄

((κ−1)d+1),

...

Σ̄((κ−1)d+d) = H
κd,(κ−1)d+d
KN,(κ−1)d+dΣ̄

((κ−1)d+d−1).
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However, by considering the sample sequence

Σ̄(1) = H
1,1
8,1Σ̄

(0),

Σ̄(2) = H
2,2
8,2Σ̄

(1), and

Σ̄(3) = H
2,3
8,3Σ̄

(2),

as shown in Figure 5.6, we notice that the application of Householder reflections is not suf-
ficient for being able to achieve this. As soon as after Hi1,j

i2,j
in a subsequent decomposition

step H
i′1,j

′

i2,j′
with i1 ≥ i′1 and j ̸= j′ is applied, a fill-in occurs in column j, i.e., previously

annihilated elements become nonzero again. We can see this behavior in Figures 5.6b
and 5.6c.

For further clarification, Figure 5.7 utilizes the sample sequence

Σ̄(1) = H
1,2
8,2Σ̄

(0),

Σ̄(2) = H
2,3
8,3Σ̄

(1), and

Σ̄(3) = H
3,1
8,1Σ̄

(2)

to illustrate that the significant aspect for preventing a fill-in is the increasing number
of top elements that are not annihilated in a column and not the order of column anni-
hilations. Nonetheless, since we want to bring the top-left Kd × Kd submatrix of Σ̄(λ),
λ ∈ {0, 1, . . . ,Λ−1}, to block-diagonal form, the annihilation of columns from the leftmost
to the rightmost is beneficial to us.

When we algorithmize the pattern indicated by the example of Figure 5.5, we obtain
the QR factorization method based on Householder transformations [GV13, pp. 248–249]
[TB97, p. 73]. As shown in Figure 5.8a, the result of the QR factorization method is an
upper triangular matrix. A similar algorithmic pattern can be utilized to bring a matrix to
tridiagonal and even bidiagonal form [GV13, pp. 284–285]. Instead of only premultiplying
Householder matrices, they are, in both cases, alternately premultiplied and postmultiplied.
The results are illustrated in Figures 5.8b and 5.8c.

Clearly, these resulting matrices and their submatrices are not block-diagonal matrices.
But can we apply Householder reflections in a comparable manner to obtain Σ in block-
diagonal form? Let us again assume that K = 2, d = 2, M = 4, and N = 4. Figure 5.9a
shows the result after bidiagonalization we already have seen, but highlights the (only)
nonzero element that has to be annihilated in this example. If we start the bidiagonalization
process with postmultiplying a Householder matrix, the outcome is not anymore an upper
but a lower bidiagonal matrix, as the illustration in Figure 5.9b shows. However, there
still is one nonzero element that needs to be annihilated in our example. But if we try
to achieve this with a Householder transformation, we face the problem we have discussed
by means of Figure 5.6. The resulting matrix, which contains four nonzero elements to be
annihilated, is depicted in Figure 5.9c.
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(c) Bidiagonalization

Figure 5.8: Results of the QR factorization, tridiagonalization, and bidiagonalization meth-
ods based on Householder transformations.
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Figure 5.9: An attempt to utilize an approach similar to the bidiagonalization method
based on Householder transformations for obtaining the block-diagonal submatrix Σ of Σ̄
for K = 2, d = 2, M = 4, and N = 4.

5.3.2 Application of Givens rotations

We have to conclude that the application of Householder transformations is not sufficient
for overcoming this problem. For this reason, we want to analyze if Givens transformations
(cf. Chapter 3) provide a feasible solution. Because of only two affected rows or columns
per transformation, a major benefit of Givens rotations is that they allow elements to
be annihilated more selectively. Despite this, the briefly presented QR decomposition
[GV13, pp. 252–253], tridiagonalization, and bidiagonalization methods can also be based
on Givens rotations.

As our first example that takes advantage of Givens rotations, we consider a sequence
of Householder and Givens transformations that starts like the Householder-based bidiag-
onalization method leading to a lower bidiagonal matrix, in particular

Σ̄(1) = Σ̄(0)H
1,1
1,8,
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(a) Σ̄(3) = Σ̄(2)H
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(b) Σ̄(4) = G
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3,2Σ̄
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(c) Σ̄(5) = G
5,2
4,2Σ̄

(4)

Figure 5.10: Transformation of the global channel matrix H = Σ̄(0) to Σ̄ = Σ̄(5) by
premultiplying Givens matrices after a series of Householder reflections.
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(a) Σ̄(3) = H
2,2
8,2Σ̄

(2)

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

(b) Σ̄(4) = Σ̄(3)G
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(c) Σ̄(5) = Σ̄(4)G
2,5
2,4

Figure 5.11: Transformation of the global channel matrix H = Σ̄(0) to Σ̄ = Σ̄(5) by
postmultiplying Givens matrices after a series of Householder reflections.

Σ̄(2) = H
2,1
8,1Σ̄

(1),

Σ̄(3) = Σ̄(2)H
2,2
2,8,

Σ̄(4) = G
4,2
3,2Σ̄

(3), and

Σ̄(5) = G
5,2
4,2Σ̄

(4).

Figure 5.10 visualizes the last three decomposition steps of the above sequence of transfor-
mations. In Figures 5.10a and 5.10b, the elements σ̄(3)3,2 and σ̄

(3)
4,2 of Σ̄(3) and the elements

σ̄
(4)
4,2 and σ̄(4)5,2 of Σ̄(4) are highlighted to indicate which elements are central to the following

Givens rotation. For K = 2, d = 2, M = 4, and N = 4, the top-left Kd × Kd = 4 × 4

submatrix of the resulting KN ×KM = 8× 8 matrix Σ̄(5) is a block-diagonal matrix with
blocks of size d× d = 2× 2 (cf. Figure 5.10c). Therefore, in this particular example and in
agreement with Lemma 5.10, it holds that Σ̄(5) = Σ̄.
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As another example, we want to look at the sequence

Σ̄(1) = H
1,1
8,1Σ̄

(0),

Σ̄(2) = Σ̄(1)H
1,2
1,8,

Σ̄(3) = H
2,2
8,2Σ̄

(2),

Σ̄(4) = Σ̄(3)G
2,4
2,3, and

Σ̄(5) = Σ̄(4)G
2,5
2,4,

which starts just as the bidiagonalization method based on Householder transformations
that leads to an upper bidiagonal matrix. Figure 5.11 illustrates the last three decomposi-
tion steps of this sequence of applications of Householder reflections and Givens rotations.
The elements central to the subsequent Givens rotation, σ̄(3)2,3 and σ̄

(3)
2,4 of Σ̄(3) as well as

σ̄
(4)
2,4 and σ̄

(4)
2,5 of Σ̄(4), are highlighted again (cf. Figures 5.11a and 5.11b). We can easily

see that, if K = 2, d = 2, M = 4, and N = 4, the equation Σ̄(5) = Σ̄ also holds for this
example’s resulting matrix (cf. Figure 5.11c).

In this section, we have, by means of selected examples, examined strategies for solv-
ing the relaxed interference alignment decomposition problem. Eventually, we have seen
that, at least for our examples, appropriate combinations of applications of Householder
reflections and Givens rotations allow the factorization of the global channel matrix H in
conformance with Equation 5.4 in a finite number of decomposition steps. As required
by Definition 5.6, the resulting global interference alignment matrix Σ = Σ̄(1 :Kd, 1 :Kd)

then is of block-diagonal form. In the following chapter, we will generalize and algorithmize
these approaches and apply various combinations of Householder and Givens transforma-
tions with distinct properties.
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Chapter 6

Direct solution to the relaxed matrix
factorization problem

Based on the techniques developed in Chapter 5, we want to discuss an actual algorithm
that applies Householder reflections and Givens rotations to find a direct solution to our
problem of factorizing the global channel matrix H into a product of two unitary matrices
and the extended global interference alignment matrix Σ̄. We will introduce and evaluate
various variants of a constructive algorithm with different advantages and disadvantages
for solving the relaxed interference alignment decomposition problem.

First, in Sections 6.1.1 to 6.1.3, we will look at algorithm variants that adapt the tridi-
agonalization method briefly outlined in Chapter 5 for the relaxed interference alignment
decomposition problem. The next variant of the algorithm, as presented in Section 6.1.4,
constructs Σ̄ such that the diagonal of its submatrix Σ consists of full blocks. In Sec-
tion 6.1.5, a variant that produces bidiagonal blocks is explained. Finally, in Section 6.2,
we will prove the constructive algorithm’s correctness and examine some of its character-
istics.

6.1 Algorithm description

In Chapter 5, we referred to the tridiagonalization method based on Householder transfor-
mations (cf. Figures 5.5 and 5.8). We also explained how to utilize Givens rotations after
a sequence of Householder reflections in order to obtain a block-diagonal submatrix (cf.
Figures 5.10 and 5.11).

In this section, we want to derive, illustrate, and analyze variants of a constructive
algorithm that combine those two approaches. The result of these algorithm variants is
the extended global interference alignment matrix Σ̄ with the blocks of its block-diagonal
submatrix Σ being in tridiagonal form. Similar to Section 5.3, the special structures of the
extended global postcoding and precoding matrices Ū and V̄ (cf. Definitions 5.1 and 5.3)
are not taken into consideration, i.e., we expect the products of the Householder and Givens
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matrices used for transforming H to Σ̄ only to yield the unitary matrices Û and V̂ (cf.
Lemma 5.8 and Corollary 5.9). Consequently, our algorithm variants are supposed to solve
the relaxed interference alignment decomposition problem (cf. Definition 5.6).

6.1.1 Basic tridiagonal blocks variant

CRIAD(t′′), the algorithm variant we want to discuss first, closely follows the concepts
explained in Chapter 5 (“CRIAD” is an acronym for “Constructive Relaxed Interference
Alignment Decomposition”, while “t” stands for a tridiagonal blocks variant). In each
decomposition step, exactly one Householder or Givens transformation is performed (cf.
Definition 5.7). Elements are annihilated column- and row-wise from top-left to bottom-
right such that all but the last d× d main diagonal block of the resulting Kd×Kd matrix
Σ = Σ̄(1 :Kd, 1 :Kd) are in tridiagonal form.

To achieve this, the following rough strategy is pursued for each of these blocks in the
respective columns and rows of the current Σ̄(λ), λ ∈ {0, 1, . . . ,Λ − 1}, where Λ ∈ N0

denotes the total number of decomposition steps (cf. Definition 5.7):

1. Annihilate all possible elements below the block’s diagonal in the first (leftmost)
column by premultiplying a proper Householder matrix without reversing previous
element annihilations.

2. Annihilate all possible elements right of the block’s diagonal in the first (topmost) row
by postmultiplying an appropriate Householder matrix without reversing previous
element annihilations.

3. Repeat the previous two decomposition steps for the second, third, . . . , (d − 1)th

column and row, respectively.

4. Annihilate all possible elements below the block in the last (rightmost) column by
premultiplying a series of proper Givens matrices without reversing previous element
annihilations.

5. Annihilate all possible elements right of the block in the last (lowermost) row by
postmultiplying a series of appropriate Givens matrices without reversing previous
element annihilations.

Figure 6.1 illustrates this strategy with the help of an example for K = 3, d = 3,
M = 7, and N = 5. Similar to Chapter 5, each (potentially) nonzero matrix element is
represented by a small black square. Strictly zero elements of the matrix appear as white
space. The global channel matrix H and thus the initial matrix Σ̄(0) (cf. Definition 5.7) is
shown in Figure 6.1a. The first three phases of the strategy outlined above are depicted in
Figures 6.1b to 6.1e for the first (top-left) d×d block of our example matrix. The elements



6.1. Algorithm description 55

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

(a) Σ̄(0) := H
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(b) Σ̄(1) = H
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(c) Σ̄(2) = Σ̄(1)H
1,2
1,21

Figure 6.1: Selected intermediary results Σ̄(i), i ∈ {0, 1, . . . , 56}, of the tridiagonal blocks
algorithm variant CRIAD(t′′) for K = 3, d = 3, M = 7, and N = 5.
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(d) Σ̄(3) = H
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(e) Σ̄(4) = Σ̄(3)H
2,3
2,21
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(f) Σ̄(5) = G
5,3
4,3Σ̄

(4)

Figure 6.1: Selected intermediary results Σ̄(i), i ∈ {0, 1, . . . , 56}, of the tridiagonal blocks
algorithm variant CRIAD(t′′) for K = 3, d = 3, M = 7, and N = 5.
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(g) Σ̄(6) = G
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(h) Σ̄(15) = G
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(i) Σ̄(16) = Σ̄(15)G
3,5
3,4

Figure 6.1: Selected intermediary results Σ̄(i), i ∈ {0, 1, . . . , 56}, of the tridiagonal blocks
algorithm variant CRIAD(t′′) for K = 3, d = 3, M = 7, and N = 5.
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(j) Σ̄(17) = Σ̄(16)G
3,6
3,5
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(k) Σ̄(32) = Σ̄(31)G
3,21
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(l) Σ̄(33) = H
5,4
14,4Σ̄

(32)

Figure 6.1: Selected intermediary results Σ̄(i), i ∈ {0, 1, . . . , 56}, of the tridiagonal blocks
algorithm variant CRIAD(t′′) for K = 3, d = 3, M = 7, and N = 5.



6.1. Algorithm description 59

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

(m) Σ̄(34) = Σ̄(33)H
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(n) Σ̄(35) = H
6,5
14,5Σ̄

(34)
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(o) Σ̄(36) = Σ̄(35)H
5,6
5,20

Figure 6.1: Selected intermediary results Σ̄(i), i ∈ {0, 1, . . . , 56}, of the tridiagonal blocks
algorithm variant CRIAD(t′′) for K = 3, d = 3, M = 7, and N = 5.
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(p) Σ̄(37) = G
8,6
7,6Σ̄
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(q) Σ̄(38) = G
9,6
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(r) Σ̄(43) = G
14,6
13,6Σ̄

(42)

Figure 6.1: Selected intermediary results Σ̄(i), i ∈ {0, 1, . . . , 56}, of the tridiagonal blocks
algorithm variant CRIAD(t′′) for K = 3, d = 3, M = 7, and N = 5.
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(s) Σ̄(44) = Σ̄(43)G
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(t) Σ̄(45) = Σ̄(46)G
6,9
6,8
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(u) Σ̄ = Σ̄(56) = Σ̄(55)G
6,20
6,19

Figure 6.1: Selected intermediary results Σ̄(i), i ∈ {0, 1, . . . , 56}, of the tridiagonal blocks
algorithm variant CRIAD(t′′) for K = 3, d = 3, M = 7, and N = 5.
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in the first two columns and rows below and right of the block’s diagonal are annihilated
by the sequence

Σ̄(1) = H
2,1
15,1Σ̄

(0),

Σ̄(2) = Σ̄(1)H
1,2
1,21,

Σ̄(3) = H
3,2
15,2Σ̄

(2), and

Σ̄(4) = Σ̄(3)H
2,3
2,21

of Householder matrix applications.

Figures 6.1f to 6.1h demonstrate three decomposition steps that annihilate elements in
the last column below the first d× d block by applying the sequence

Σ̄(5) = G
5,3
4,3Σ̄

(4),

Σ̄(6) = G
6,3
5,3Σ̄

(5),

Σ̄(7) = G
7,3
6,3Σ̄

(6),

...

Σ̄(14) = G
14,3
13,3Σ̄

(13), and

Σ̄(15) = G
15,3
14,3Σ̄

(14)

of Givens rotations, which corresponds to the fourth phase of our strategy. As we can see
in Figures 6.1f to 6.1h, the nonzero element of the two elements relevant for each of these
applications of Givens matrices is shifted down to element σ̄(15)15,3 in the last row of matrix
Σ̄(15), i.e., almost all elements below the block, with the exception of element σ̄(15)15,3, are
annihilated.

The fifth phase of our strategy is accomplished by applying the sequence

Σ̄(16) = Σ̄(15)G
3,5
3,4,

Σ̄(17) = Σ̄(16)G
3,6
3,5,

Σ̄(18) = Σ̄(17)G
3,7
3,6,

...

Σ̄(31) = Σ̄(30)G
3,20
3,19, and

Σ̄(32) = Σ̄(31)G
3,21
3,20

of Givens transformations, which partly is illustrated in Figures 6.1i to 6.1k. Now, nearly
all elements right of the top-left d × d block, except for element σ̄(32)3,21 in the last column
of matrix Σ̄(32), are annihilated (cf. Figure 6.1k). Therefore, the first block is finished and
we can repeat our strategy for the second d× d block.

In a similar way to the initial row and column annihilations for the first block, we apply
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Householder transformations to annihilate all possible elements in the first and second
columns and rows below and right of the diagonal of the second block. The decomposition
steps

Σ̄(33) = H
5,4
14,4Σ̄

(32),

Σ̄(34) = Σ̄(33)H
4,5
4,20,

Σ̄(35) = H
6,5
14,5Σ̄

(34), and

Σ̄(36) = Σ̄(35)H
5,6
5,20

are shown in Figures 6.1l to 6.1o. In contrast to the Householder-based element annihi-
lations for the first block, the elements in the last row and last column of matrix Σ̄(λ),
λ ∈ {33, 34, 35, 36}, cannot be annihilated to avoid fill-ins, i.e., to prevent zero elements
from becoming nonzero again (cf. Chapter 5).

Subsequently, analogous to the first block, Givens rotations are applied for annihilating
the elements in the last column and row below and right of the second block. While the
sequence

Σ̄(37) = G
8,6
7,6Σ̄

(36),

Σ̄(38) = G
9,6
8,6Σ̄

(37),

Σ̄(39) = G
10,6
9,6 Σ̄(38),

...

Σ̄(42) = G
13,6
12,6Σ̄

(41), and

Σ̄(43) = G
14,6
13,6Σ̄

(42)

of Givens transformations, as in part shown in Figures 6.1p to 6.1r, performs element
annihilations in the last column below the second block, the decomposition steps

Σ̄(44) = Σ̄(43)G
6,8
6,7,

Σ̄(45) = Σ̄(44)G
6,9
6,8,

Σ̄(46) = Σ̄(45)G
6,10
6,9 ,

...

Σ̄(55) = Σ̄(54)G
6,19
6,18, and

Σ̄(56) = Σ̄(55)G
6,20
6,19

annihilate all possible elements in the last row right of the second d × d block. Three of
these decomposition steps are visualized in Figures 6.1s to 6.1u.

Since the top-left Kd ×Kd submatrix of Σ̄(56) has the form aimed at for solving the
(relaxed) interference alignment decomposition problem (cf. Chapter 5), it holds that
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Σ̄ = Σ̄(56).

The third (last) d × d block is not yet in tridiagonal form. We could apply the same
techniques we have used before for the first and second block again for the third block to
bring it to tridiagonal form, but due to our already accomplished objective of solving the
relaxed interference alignment decomposition problem, we will refrain from doing that.

The approach we just have studied by means of a specific example can be generalized
for (almost) arbitrary values of K, d, M , and N (cf. Table 6.1). Algorithm 6.1 lists the
CRIAD(t′′) tridiagonal blocks algorithm variant that utilizes this procedure for solving the
relaxed interference alignment decomposition problem. While the variable Σ̄ always holds
the most current Σ̄(λ), λ ∈ {0, 1, . . . ,Λ}, during decomposition of the given global channel
matrix H, ÛH is the product of all premultiplied Givens and Householder matrices, and
V̂ is the product of all postmultiplied Givens and Householder matrices (cf. Lemma 5.8).

First, in Lines 2 to 4, the variable Σ̄ is initialized to H = Σ̄(0), and ÛH as well as
V̂ are initialized to identity matrices of appropriate sizes. Then, in Lines 6 and 7, the
thresholds τ1 and τ2 are computed, where τ1 and τ2 define the lowermost row and the
rightmost column to be included in the element annihilation process, respectively. This
algorithm variant considers the whole KN × KM matrix for element annihilations, but
this will be different for other algorithm variants we will discuss later.

Next, in Lines 9 to 43, the algorithm considers one d × d block κ of the Kd × Kd

submatrix Σ of Σ̄ at a time, i.e., in the body of the outer loop all required element
annihilations for exactly one d × d block are performed. Let us examine this loop body
in more detail. As we have seen in our example, we want to perform the appropriate
Householder and Givens transformations in order to annihilate the elements below and
right of the regarded d× d block.

To achieve this, we need to compute the correct indices for these operations. These
indices are held by the variables φ, χ1, χ2, χ, and ψ. In Lines 10 and 11, the indices χ1

and χ2 are computed. χ1 and χ2 are the indices of the lowermost row and the rightmost
column for column and row annihilations by Householder transformations. For the first
(top-left) d × d block, χ1 and χ2 have their maximum values τ1 and τ2. For every other
d× d block, the values of the variables χ1 and χ2 are decremented.

The loop in Lines 13 to 24 applies suitable Householder reflections to the columns and
rows of Σ̄(λ) which contain the current d × d block, one column and row at a time. In
Line 14, the index ψ of the current column and the current row for element annihilations
is computed. Subsequently, in Line 15, the index φ is calculated. φ identifies the topmost
row for column annihilations and the leftmost column for row annihilations. It is the index
of element z1 of vector z in Definition 3.1. Hence, that element is not equal to zero after
multiplying an appropriate Householder matrix. To obtain the d × d block in tridiagonal
form, it holds that φ = ψ + 1.

While in Lines 17 and 18 the proper elements of the current column are annihilated
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Algorithm 6.1 Constructive algorithm for solving the relaxed interference alignment de-
composition problem (basic tridiagonal blocks variant).

1: function CRIAD(t′′)(H,K, d,M,N)
2: ÛH ← IKN
3: Σ̄←H
4: V̂ ← IKM
5:
6: τ1 ← KN
7: τ2 ← KM
8:
9: for all κ ∈ {1, 2, . . . ,K − 1} do

10: χ1 ← τ1 − κ+ 1
11: χ2 ← τ2 − κ+ 1
12:
13: for all δ ∈ {1, 2, . . . , d− 1} do
14: ψ ← (κ− 1)d+ δ
15: φ← ψ + 1
16:
17: H̃← Householder(Σ̄, ⟨φ,ψ⟩, ⟨χ1, ψ⟩)
18: Σ̄← H̃Σ̄
19: ÛH ← H̃ÛH

20:
21: H̃← Householder(Σ̄, ⟨ψ,φ⟩, ⟨ψ, χ2⟩)
22: Σ̄← Σ̄H̃

23: V̂ ← V̂ H̃

24: end for
25:
26: ψ ← κd
27:
28: for all χ ∈ {κd+ 2, κd+ 3, . . . , χ1} do
29: φ← χ− 1
30:
31: G← Givens(Σ̄, ⟨χ, ψ⟩, ⟨φ,ψ⟩)
32: Σ̄← GΣ̄
33: ÛH ← GÛH

34: end for
35:
36: for all χ ∈ {κd+ 2, κd+ 3, . . . , χ2} do
37: φ← χ− 1
38:
39: G← Givens(Σ̄, ⟨ψ, χ⟩, ⟨ψ,φ⟩)
40: Σ̄← Σ̄G

41: V̂ ← V̂ G

42: end for
43: end for
44:
45: return ⟨Û , Σ̄, V̂ ⟩
46: end function
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by premultiplying a suitable Householder matrix, the corresponding row annihilation is
performed by postmultiplying an applicable Householder matrix in Lines 21 and 22. The
Householder matrices are obtained through the Householder function listed in Algo-
rithm 3.1. The lines

H̃← Householder(Σ̄, ⟨φ,ψ⟩, ⟨χ1, ψ⟩)

Σ̄← H̃Σ̄

are equivalent to our previous notation

Σ̄(λ+1) = H
φ,ψ
χ1,ψ

Σ̄(λ).

Similarly, the lines

H̃← Householder(Σ̄, ⟨ψ,φ⟩, ⟨ψ, χ2⟩)

Σ̄← Σ̄H̃

have the same meaning as
Σ̄(λ+1) = Σ̄(λ)H

ψ,φ
ψ,χ2

.

In accordance with Lemma 5.8, ÛH is premultiplied by the previously obtained Householder
matrix H̃ in Line 19 and V̂ is postmultiplied by the appropriate Householder matrix H̃

in Line 23.

As we have seen in our example, a sequence of Givens rotations performs the final
element annihilations for each d×d block after the Householder transformations have been
applied. These Givens matrices are supposed to affect the column and row of Σ̄(λ) equal
to the last column and row of the d × d block. Therefore, in Line 26, the index ψ is set
to the index κd of the last column and row of the current d× d block. In Lines 28 to 34,
a sequence of Givens transformations is applied to elements of the respective column of
Σ̄(λ). Concretely, the elements with the row indices φ = κd + 1, κd + 2, . . . , χ1 − 1 are
annihilated. Likewise, in Lines 36 to 42, another sequence of Givens transformations is
applied to elements of the respective row of Σ̄(λ). Here, the elements with the column
indices φ = κd+ 1, κd+ 2, . . . , χ2 − 1 are annihilated.

The appropriate Givens matrices are obtained through the Givens function (cf. Algo-
rithm 3.2). Analogous to our notation for Householder transformations, the lines

G← Givens(Σ̄, ⟨χ, ψ⟩, ⟨φ,ψ⟩)

Σ̄← GΣ̄

correspond to
Σ̄(λ+1) = G

χ,ψ
φ,ψΣ̄

(λ),
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and the lines

G← Givens(Σ̄, ⟨ψ, χ⟩, ⟨ψ,φ⟩)

Σ̄← Σ̄G

have the same effect as
Σ̄(λ+1) = Σ̄(λ)G

ψ,χ
ψ,φ.

Similar to Householder matrices, the applied Givens matrices as well are appropriately
postmultiplied by ÛH and premultiplied by V̂ to satisfy Lemma 5.8 (cf. Lines 33 and 41).

After the end of the outer loop in Line 43, Σ̄ has the form required by the (relaxed)
interference alignment decomposition problem and all but the last (bottom-right) d × d
block of the submatrix Σ of Σ̄ are tridiagonal matrices. To bring the last d× d block also
to tridiagonal form, the meanwhile well-known techniques could be applied. But this is,
as already previously stated, no requirement by the problem we want to solve. Finally, in
Line 45, the triple ⟨Û , Σ̄, V̂ ⟩ is returned.

6.1.2 Enhanced tridiagonal blocks variant

With the CRIAD(t′′) algorithm that we have discussed in the last section, we have already
found a direct solution to the relaxed interference alignment decomposition problem. This
first variant of our algorithm annihilates elements in the first d − 1 columns and rows of
Σ̄ below and right of each d × d block of the submatrix Σ of Σ̄ by utilizing Householder
transformations. The element annihilations in the last column and row below and right of
each of these d×d blocks are performed by applying Givens rotations. In general, this leads
to significantly more multiplications with Givens matrices than with Householder matrices.
Since Householder reflections in contrast to Givens rotations allow the annihilation of more
than one matrix element in one transformation, we want to substitute as many Givens
rotations as possible with Householder reflections in our next algorithm variant CRIAD(t′).

For the purpose of showing how we can achieve this, we are going to return to our
example for K = 3, d = 3, M = 7, and N = 5 as illustrated in Figure 6.2. As we are
already acquainted with the general mechanisms, we will concentrate on the differences
between CRIAD(t′′) and CRIAD(t′). The first four decomposition steps are the same for
both algorithm variants. Figure 6.2a visualizes the intermediary result after the fourth
decomposition step. However, the next decomposition steps for annihilating the elements
below the last column and right of the last row of the first (top-left) d×d block are different.
Instead of the sequence

Σ̄(5) = G
5,3
4,3Σ̄

(4),

Σ̄(6) = G
6,3
5,3Σ̄

(5),

...
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(a) Σ̄(4) = Σ̄(3)H
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(b) Σ̄(5) = H
4,3
15,3Σ̄

(4)
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(c) Σ̄(6) = Σ̄(5)H
3,4
3,21

Figure 6.2: Selected intermediary results Σ̄(i), i ∈ {0, 1, . . . , 16}, of the enhanced tridiago-
nal blocks algorithm variant CRIAD(t′) for K = 3, d = 3, M = 7, and N = 5.
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(d) Σ̄(7) = G
15,3
4,3 Σ̄(6)
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(e) Σ̄(8) = Σ̄(7)G
3,21
3,4
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(f) Σ̄(13) = H
7,6
14,6Σ̄

(12)

Figure 6.2: Selected intermediary results Σ̄(i), i ∈ {0, 1, . . . , 16}, of the enhanced tridiago-
nal blocks algorithm variant CRIAD(t′) for K = 3, d = 3, M = 7, and N = 5.
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(g) Σ̄(14) = Σ̄(13)H
6,7
6,20
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(h) Σ̄(15) = G
14,6
7,6 Σ̄(14)
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(i) Σ̄ = Σ̄(16) = Σ̄(15)G
6,20
6,7

Figure 6.2: Selected intermediary results Σ̄(i), i ∈ {0, 1, . . . , 16}, of the enhanced tridiago-
nal blocks algorithm variant CRIAD(t′) for K = 3, d = 3, M = 7, and N = 5.
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Algorithm 6.2 Constructive algorithm for solving the relaxed interference alignment de-
composition problem (enhanced tridiagonal blocks variant).

1: function CRIAD(t′)(H,K, d,M,N)
2: ÛH ← IKN
3: Σ̄←H
4: V̂ ← IKM
5:
6: τ1 ← KN
7: τ2 ← KM
8:
9: for all κ ∈ {1, 2, . . . ,K − 1} do

10: χ1 ← τ1 − κ+ 1
11: χ2 ← τ2 − κ+ 1
12:
13: for all δ ∈ {1, 2, . . . , d} do
14: ψ ← (κ− 1)d+ δ
15: φ← ψ + 1
16:
17: H̃← Householder(Σ̄, ⟨φ,ψ⟩, ⟨χ1, ψ⟩)
18: Σ̄← H̃Σ̄
19: ÛH ← H̃ÛH

20:
21: H̃← Householder(Σ̄, ⟨ψ,φ⟩, ⟨ψ, χ2⟩)
22: Σ̄← Σ̄H̃

23: V̂ ← V̂ H̃

24: end for
25:
26: G← Givens(Σ̄, ⟨χ1, ψ⟩, ⟨φ,ψ⟩)
27: Σ̄← GΣ̄
28: ÛH ← GÛH

29:
30: G← Givens(Σ̄, ⟨ψ, χ2⟩, ⟨ψ,φ⟩)
31: Σ̄← Σ̄G

32: V̂ ← V̂ G

33: end for
34:
35: return ⟨Û , Σ̄, V̂ ⟩
36: end function
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Σ̄(15) = G
15,3
14,3Σ̄

(14),

Σ̄(16) = Σ̄(15)G
3,5
3,4,

Σ̄(17) = Σ̄(16)G
3,6
3,5,

...

Σ̄(32) = Σ̄(31)G
3,21
3,20,

that is applied by CRIAD(t′′) (cf. Section 6.1.1), CRIAD(t′) utilizes the transformations

Σ̄(5) = H
4,3
15,3Σ̄

(4),

Σ̄(6) = Σ̄(5)H
3,4
3,21,

Σ̄(7) = G
15,3
4,3 Σ̄(6), and

Σ̄(8) = Σ̄(7)G
3,21
3,4 ,

as shown in Figures 6.2b to 6.2e. We notice that, while CRIAD(t′′) needs 32 decomposition
steps for annihilating the elements below and right of the first d × d block, CRIAD(t′)

produces the same intermediary result after only eight decomposition steps. The element
annihilations for the second d × d block follow the same scheme (cf. Figures 6.2f to 6.2i).
Hence, the final result, which is visualized in Figure 6.2i, is obtained after only sixteen
decomposition steps. CRIAD(t′′) needs in total 56 decomposition steps for the same result.

Algorithm 6.2 generalizes the approach we have outlined in our recent example. When
we compare Algorithm 6.2 to Algorithm 6.1, we recognize many similarities between them.
Only Line 13 and Lines 26 to 32 of Algorithm 6.2 are different from Algorithm 6.1. The
inner loop in Lines 13 to 24 iterates over δ = 1, 2, . . . , d instead of δ = 1, 2, . . . , d− 1 as in
Algorithm 6.1. Hence, elements below all columns and right of all rows of the current d×d
block, which includes, in contrast to Algorithm 6.1, the last column and the last row, are
annihilated by Householder transformations. After the sequence of 2d Householder matrix
applications, only two Givens transformations are required per d × d block (cf. Lines 26
to 32), one to annihilate the element directly below the last column and one to annihilate
the element directly right of the last row of the d× d block.

6.1.3 Further enhanced tridiagonal blocks variant

Both algorithm variants we have considered so far, CRIAD(t′′) and CRIAD(t′), annihilate
more elements than necessary for solving the (relaxed) interference alignment decomposi-
tion problem. Since we only require the Kd×Kd submatrix Σ of the KN ×KM matrix
Σ̄ to be in block-diagonal form (cf. Definition 5.6), we may adjust the unitary transfor-
mations utilized by the CRIAD(t′) algorithm in order to minimize the number of elements
that are annihilated.

Algorithms 6.1 and 6.2 introduce the thresholds τ1 := KN and τ2 := KM , which define
the lowermost row and the rightmost column of Σ̄ for element annihilations. Thus, these
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(b) Σ̄(2) = Σ̄(1)H
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Figure 6.3: Selected intermediary results Σ̄(i), i ∈ {0, 1, . . . , 16}, of the further enhanced
tridiagonal blocks algorithm variant CRIAD(t) for K = 3, d = 3, M = 7, and N = 5.
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(d) Σ̄(4) = Σ̄(3)H
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(e) Σ̄(5) = H
4,3
11,3Σ̄
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(f) Σ̄(6) = Σ̄(5)H
3,4
3,11

Figure 6.3: Selected intermediary results Σ̄(i), i ∈ {0, 1, . . . , 16}, of the further enhanced
tridiagonal blocks algorithm variant CRIAD(t) for K = 3, d = 3, M = 7, and N = 5.



6.1. Algorithm description 75

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

(g) Σ̄(7) = G
11,3
4,3 Σ̄(6)
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(h) Σ̄(8) = Σ̄(7)G
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(i) Σ̄ = Σ̄(16) = Σ̄(15)G
6,10
6,7

Figure 6.3: Selected intermediary results Σ̄(i), i ∈ {0, 1, . . . , 16}, of the further enhanced
tridiagonal blocks algorithm variant CRIAD(t) for K = 3, d = 3, M = 7, and N = 5.
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variants of our algorithm set τ1 to the index of the last row and τ2 to the index of the
last column of Σ̄. As we have observed for our strategy in Section 6.1.1, the indices of the
lowermost (χ1 in Algorithms 6.1 and 6.2) and the rightmost (χ2 in Algorithms 6.1 and 6.2)
elements that actually can be annihilated have to be decremented for every d× d block of
Σ to prevent previously annihilated elements to become nonzero again. For this reason,
exactly one additional row and column below and right of Σ per d × d block (except for
the last one) is needed for element annihilations, i.e., in total K − 1 additional rows and
columns. Considering this, we can define the threshold

τ := τ1 := τ2 := Kd+K − 1

= K(d+ 1)− 1
(6.1)

for our further enhanced tridiagonal blocks algorithm variant CRIAD(t).

Before we discuss the general algorithm, we want to demonstrate the changes through
our already familiar example for K = 3, d = 3, M = 7, and N = 5. Figures 6.3a
to 6.3h show the eight decomposition steps required for annihilating the elements below
and right of the first (top-left) d× d block. These decomposition steps are very similar to
the decomposition steps applied by our previous algorithm variant CRIAD(t′). However,
the indices used for the Householder and Givens transformations are different due to our
new threshold τ . For instance, instead of

Σ̄(1) = H
2,1
15,1Σ̄

(0)

the first decomposition step of our new algorithm variant CRIAD(t) is

Σ̄(1) = H
2,1
11,1Σ̄

(0),

and instead of

Σ̄(8) = Σ̄(7)G
3,21
3,4

the Givens transformation

Σ̄(8) = Σ̄(7)G
3,11
3,4

is applied. Analogous to our previous algorithm variants, the same strategy can as well be
executed for the second d×d block, which leads to the result illustrated in Figure 6.3i. As we
have seen, the number of element annihilations performed by our algorithm is considerably
reduced when we adjust the threshold τ appropriately.

The general procedure is listed in Algorithm 6.3, which introduces very few changes
in comparison to Algorithm 6.2. For defining the threshold τ as in Equation 6.1, Lines 6
and 7 of Algorithm 6.2 are replaced by Line 6 of Algorithm 6.3. Since we now only have
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Algorithm 6.3 Constructive algorithm for solving the relaxed interference alignment de-
composition problem (further enhanced tridiagonal blocks variant).

1: function CRIAD(t)(H,K, d,M,N)
2: ÛH ← IKN
3: Σ̄←H
4: V̂ ← IKM
5:
6: τ ← K(d+ 1)− 1
7:
8: for all κ ∈ {1, 2, . . . ,K − 1} do
9: χ← τ − κ+ 1

10:
11: for all δ ∈ {1, 2, . . . , d} do
12: ψ ← (κ− 1)d+ δ
13: φ← ψ + 1
14:
15: H̃← Householder(Σ̄, ⟨φ,ψ⟩, ⟨χ, ψ⟩)
16: Σ̄← H̃Σ̄
17: ÛH ← H̃ÛH

18:
19: H̃← Householder(Σ̄, ⟨ψ,φ⟩, ⟨ψ, χ⟩)
20: Σ̄← Σ̄H̃

21: V̂ ← V̂ H̃

22: end for
23:
24: G← Givens(Σ̄, ⟨χ, ψ⟩, ⟨φ,ψ⟩)
25: Σ̄← GΣ̄
26: ÛH ← GÛH

27:
28: G← Givens(Σ̄, ⟨ψ, χ⟩, ⟨ψ,φ⟩)
29: Σ̄← Σ̄G

30: V̂ ← V̂ G

31: end for
32:
33: return ⟨Û , Σ̄, V̂ ⟩
34: end function
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one threshold τ , the variable χ can be put in place of both χ1 and χ2 (cf. Line 9 of
Algorithm 6.3).

6.1.4 Full blocks variant

With the algorithm variants discussed in Sections 6.1.1 to 6.1.3, we have learned how
to solve the relaxed interference alignment decomposition problem by reducing the d × d
blocks of the global interference alignment matrix Σ to tridiagonal form. In this section, we
want to attain the goal of transforming the global channel matrix H to the extended global
interference alignment matrix Σ̄ with the d×d blocks of its submatrix Σ being full matrices.
Although there is no such requirement imposed by the relaxed interference alignment
decomposition problem, the solution in consideration of this additional constraint may
offer deeper insight into the inner workings of our constructive algorithm. Particularly, we
will better recognize the effects on the acceptable values for the parameters K, d, M , and
N . This will lead us to the bidiagonal blocks variant of the constructive algorithm, which
will be introduced in Section 6.1.5.

For understanding the necessary modifications to the tridiagonal blocks algorithm vari-
ant CRIAD(t) (cf. Section 6.1.3) in pursuance of our objective to obtain a comparable full
blocks algorithm variant CRIAD(f), we will once again turn back to our meanwhile well-
known example for K = 3, d = 3, M = 7, and N = 5. As before, we will transform Σ̄(λ),
λ ∈ {0, 1, . . . ,Λ − 1}, with Σ̄(0) = H and Σ̄(Λ) = Σ̄, solely by pre- or postmultiplying
a Householder or Givens matrix. In contrast to the tridiagonal blocks algorithm variants
(and also the bidiagonal blocks algorithm variant, as we will see in the next section), we
assume d ≥ 2 instead of d ≥ 1. This allows a slightly optimized CRIAD(f) algorithm with
a better threshold τ and is no real limitation because the CRIAD(t) algorithm naturally
produces full blocks, i.e., 1× 1 “blocks”, for d = 1.

At first, we want to focus on the unitary transformations required for annihilating the
elements below and right of the first (top-left) d × d block. Since we already know the
relevant techniques (cf. Chapter 5 and Sections 6.1.1 to 6.1.3), we can readily identify the
first four decomposition steps

Σ̄(1) = H
3,1
13,1Σ̄

(0),

Σ̄(2) = Σ̄(1)H
1,3
1,13,

Σ̄(3) = H
4,2
13,2Σ̄

(2), and

Σ̄(4) = Σ̄(3)H
2,4
2,13,

as partly illustrated in Figures 6.4a and 6.4b. To achieve the full d × d block form, the
top and left indices for the Householder transformations here are greater than the indices
that previously have been used by the tridiagonal blocks algorithm variants. Therefore,
there already is an unwanted (potentially) nonzero element in both the second column and
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(b) Σ̄(4) = Σ̄(3)H
2,4
2,13
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(c) Σ̄(5) = G
13,2
4,2 Σ̄(4)

Figure 6.4: Selected intermediary results Σ̄(i), i ∈ {0, 1, . . . , 20}, of the full blocks algorithm
variant CRIAD(f) for K = 3, d = 3, M = 7, and N = 5.



80 Chapter 6. Direct solution to the relaxed matrix factorization problem

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

(d) Σ̄(6) = Σ̄(5)G
2,13
2,4
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(e) Σ̄(7) = H
4,3
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(f) Σ̄(8) = Σ̄(7)H
3,4
3,12

Figure 6.4: Selected intermediary results Σ̄(i), i ∈ {0, 1, . . . , 20}, of the full blocks algorithm
variant CRIAD(f) for K = 3, d = 3, M = 7, and N = 5.
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(g) Σ̄(9) = G
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(h) Σ̄(10) = Σ̄(9)G
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(i) Σ̄ = Σ̄(20) = Σ̄(19)G
6,10
6,7

Figure 6.4: Selected intermediary results Σ̄(i), i ∈ {0, 1, . . . , 20}, of the full blocks algorithm
variant CRIAD(f) for K = 3, d = 3, M = 7, and N = 5.
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second row after applying this sequence of four Householder matrix multiplications (cf.
Figure 6.4b). By utilizing the Givens rotations

Σ̄(5) = G
13,2
4,2 Σ̄(4) and

Σ̄(6) = Σ̄(5)G
2,13
2,4 ,

these nonzero elements can be shifted down and to the right, respectively (cf. Figures 6.4c
and 6.4d).

Hence, we have applied two Householder and two Givens transformations for annihilat-
ing all elements below and right of the second column and row that have to be strictly zero.
The same scheme can be put into use for annihilating the elements below and right of the
third (and thus last) column and row of the first d×d block. These two more Householder
and two more Givens matrix multiplications bring the top-left d× d block to the intended
form, as shown in Figures 6.4e to 6.4h.

Altogether, six Householder reflections (one per column and one per row) and four
Givens rotations (one per column and one per row except for the first column and row)
have been required for the appropriate element annihilations below and right of the first
d×d block. Because of the two premultiplied Givens matrices for shifting nonzero elements
down, two more rows below the Kd×Kd submatrix Σ are needed for the first d×d block.
Likewise, two more columns right of Σ are necessary for the first d× d block.

The same approach can be pursued for annihilating the elements below and right of
the second d×d block. After these ten more decomposition steps, it holds that Σ̄(20) = Σ̄,
as the illustration in Figure 6.4i indicates. Similar to our observation for the first d × d
block, there need to be two more rows below and two more columns right of Σ available
for the second d × d block. In general, the KN ×KM matrices H and Σ̄ must be large
enough to provide at least d−1 rows below and d−1 columns right of the top-left Kd×Kd
submatrix for each but the last d × d diagonal block of this submatrix, i.e., for in total
K − 1 blocks.

It follows immediately the threshold (cf. Section 6.1.3)

τ = Kd+ (K − 1) (d− 1) (6.2)

for the full blocks algorithm variant. If we allowed d = 1, the method for annihilating the
elements below and right of the first column and row of each d×d block would be the same
as for the other columns and rows, i.e., two additional Givens rotations per d × d block
would be necessary. This would lead to the threshold τ = Kd+ d (K − 1) = d (2K − 1).

When comparing Equation 6.1 to Equation 6.2, we deduce that τ for the further en-
hanced tridiagonal and the full blocks algorithm variants is equal if and only if d = 2.
Because of d ≥ 2, the threshold τ for the full blocks algorithm variant always is greater
than or equal the threshold τ for the further enhanced tridiagonal blocks algorithm variant.
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Algorithm 6.4 Constructive algorithm for solving the relaxed interference alignment de-
composition problem (full blocks variant).

1: function CRIAD(f)(H,K, d,M,N)
2: ÛH ← IKN
3: Σ̄←H
4: V̂ ← IKM
5:
6: τ ← Kd+ (K − 1)(d− 1)
7:
8: for all κ ∈ {1, 2, . . . ,K − 1} do
9: φ← κd

10: χ← τ − (κ− 1)(d− 1)
11: ψ ← (κ− 1)d+ 1
12:
13: H̃← Householder(Σ̄, ⟨φ,ψ⟩, ⟨χ, ψ⟩)
14: Σ̄← H̃Σ̄
15: ÛH ← H̃ÛH

16:
17: H̃← Householder(Σ̄, ⟨ψ,φ⟩, ⟨ψ, χ⟩)
18: Σ̄← Σ̄H̃

19: V̂ ← V̂ H̃

20:
21: φ← κd+ 1
22:
23: for all δ ∈ {2, 3, . . . , d} do
24: χ← τ − (κ− 1)(d− 1)− δ + 2
25: ψ ← (κ− 1)d+ δ
26:
27: H̃← Householder(Σ̄, ⟨φ,ψ⟩, ⟨χ, ψ⟩)
28: Σ̄← H̃Σ̄
29: ÛH ← H̃ÛH

30:
31: H̃← Householder(Σ̄, ⟨ψ,φ⟩, ⟨ψ, χ⟩)
32: Σ̄← Σ̄H̃

33: V̂ ← V̂ H̃

34:
35: G← Givens(Σ̄, ⟨χ, ψ⟩, ⟨φ,ψ⟩)
36: Σ̄← GΣ̄
37: ÛH ← GÛH

38:
39: G← Givens(Σ̄, ⟨ψ, χ⟩, ⟨ψ,φ⟩)
40: Σ̄← Σ̄G

41: V̂ ← V̂ G

42: end for
43: end for
44:
45: return ⟨Û , Σ̄, V̂ ⟩
46: end function
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Moreover, since τ has to be a valid column and row index of the KN ×KM matrices H

and Σ̄, i.e., KM ≥ τ and KN ≥ τ , the further enhanced tridiagonal algorithm variant
CRIAD(t) may be able to handle a larger number of combinations of the parameters K, d,
M , and N than the full blocks algorithm variant CRIAD(f). The two different thresholds
τ can easily be seen for our example when contrasting Figures 6.3i and 6.4i.

Algorithm 6.4 lists the generalized full blocks variant CRIAD(f) of the constructive
algorithm for solving the relaxed interference alignment decomposition problem. Both
the general structure and the occurring variables are similar to the algorithm variants
CRIAD(t′′), CRIAD(t′), and CRIAD(t) (cf. Algorithms 6.1 to 6.3). In Line 6 of Algo-
rithm 6.4, the threshold τ is initialized according to Equation 6.2. Within the body of the
outer loop in Lines 8 to 43, the elements below and right of precisely one d× d block are
annihilated. Analogous to our previous algorithm variants, ψ defines the current column
and row for element annihilations, while φ and χ denote both the indices of the first and
last elements affected by Householder transformations and the indices of the elements al-
tered by Givens rotations in each of these current columns and rows (cf. Lines 9 to 11 and
Lines 21, 24, and 25).

Like in our example, the elements below the first column of the d× d block are annihi-
lated by a single Householder reflection (cf. Lines 13 to 15). In Lines 17 to 19, the elements
right of the first row of the d×d block are annihilated by another appropriate Householder
transformation. The proper element annihilations below and right of the second to last
columns and rows of the d×d block are achieved by the unitary transformations within the
body of the inner loop in Lines 23 to 42. First, in Lines 27 to 33, two Householder matrix
multiplications annihilate elements in the respective column and row. Then, in Lines 35
to 41, two Givens rotations shift the position of two unwanted nonzero elements down and
to the right, respectively.

6.1.5 Bidiagonal blocks variant

In Section 6.1.4, we have noticed that, due to a smaller threshold τ , the tridiagonal blocks
algorithm variant CRIAD(t) may find solutions for more combinations of K, d, M , and N
than the full blocks algorithm variant CRIAD(f). According to Corollary 2.7, which states
necessary but not sufficient conditions for the existence of a solution to the interference
alignment problem on the symmetric K-user time-varying MIMO interference channel,
either

(M = d ∧ N > d) or (6.3)

(M > d ∧ N = d) (6.4)

may be allowed. Although the relaxed interference alignment decomposition problem is a
different problem, we still want to review our constructive algorithm variants for support
of the input parameters d, M , and N in agreement with Equations 6.3 and 6.4. From
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(b) Σ̄(4) = Σ̄(3)H
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(c) Σ̄(5) = H
3,3
9,3Σ̄

(4)

Figure 6.5: Selected intermediary results Σ̄(i), i ∈ {0, 1, . . . , 14}, of the bidiagonal blocks
algorithm variant CRIAD(b) for K = 3, d = 3, M = 7, and N = 5.
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(d) Σ̄(6) = Σ̄(5)H
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(e) Σ̄(7) = Σ̄(6)G
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(f) Σ̄ = Σ̄(14) = Σ̄(13)G
6,10
6,7

Figure 6.5: Selected intermediary results Σ̄(i), i ∈ {0, 1, . . . , 14}, of the bidiagonal blocks
algorithm variant CRIAD(b) for K = 3, d = 3, M = 7, and N = 5.
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Equations 6.1 and 6.2, it follows for both the tridiagonal and full blocks algorithm variants
that Kd < τ ≤ KM and Kd < τ ≤ KN . Thus, the input parameters have to fulfill
M > d and N > d. We have to conclude that our previous algorithm variants cannot find
a solution for d, M , and N that comply with Equation 6.3 or Equation 6.4.

Is there a way to improve our algorithm in order to support either M or N being equal
to d? Since the tridiagonal blocks algorithm variant in this regard provides better results
than the full blocks algorithm variant, we will attempt to push this approach further by
bidiagonalizing the d× d blocks of the submatrix Σ of Σ̄. For this purpose, let us return
a last time to our example for K = 3, d = 3, M = 7, and N = 5. When we remember
Chapter 5, in particular Figures 5.9a and 5.9b, we know that in general there are two
alternatives for bidiagonalizing a matrix. We may annihilate all elements below the main
diagonal and keep one element right of each main diagonal element, or vice versa. For our
example, we select the former alternative. As partly illustrated in Figures 6.5a to 6.5d, the
first decomposition steps thus are the Householder transformations

Σ̄(1) = H
1,1
9,1Σ̄

(0),

Σ̄(2) = Σ̄(1)H
1,2
1,11,

Σ̄(3) = H
2,2
9,2Σ̄

(2),

Σ̄(4) = Σ̄(3)H
2,3
2,11,

Σ̄(5) = H
3,3
9,3Σ̄

(4), and

Σ̄(6) = Σ̄(5)H
3,4
3,11.

For the moment, we are ignoring how the appropriate thresholds τ1 and τ2 have been
chosen. We will get back to that shortly.

In Figure 6.5d, we can immediately identify element σ̄(6)3,4 as the only element that
remains to be annihilated for the first (top-left) d × d block. Similar to the tridiagonal
and full blocks algorithm variants, a Givens rotation can shift the position of the nonzero
element to the right. After the decomposition step

Σ̄(7) = Σ̄(6)G
3,11
3,4 ,

the matrix has the shape depicted in Figure 6.5e. Hence, only six Householder and one
Givens transformation have been necessary for annihilating the elements below and right
of the first d× d block, which now is in bidiagonal form. The same pattern can be applied
to the second d × d block. Following another seven decomposition steps, we obtain the
final result shown in Figure 6.5f.

As we already have for the tridiagonal blocks algorithm variants, we abstain from
reducing the last (bottom-right) d × d block. Although the bidiagonalization of the last
d× d block can easily be accomplished by three more Householder reflections or four more
Givens rotations, there is no benefit in applying these transformations for solving the
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relaxed interference alignment decomposition problem.

For bidiagonalizing the d× d blocks, we can start by either premultiplying or postmul-
tiplying an appropriate Householder matrix. The only difference is whether the resulting
d × d blocks are upper or lower bidiagonal matrices (cf. Figures 5.9a and 5.9b). Further-
more, this determines if the Givens matrices have to be premultiplied or postmultiplied to
annihilate the last nonzero element below or right of every d× d block. If the first House-
holder matrix is premultiplied, the Givens matrices have to be postmultiplied, and vice
versa. Hence, in one execution of the algorithm, Givens matrices are either premultiplied
or postmultiplied.

The general bidiagonal blocks algorithm variant CRIAD(b) is listed in Algorithm 6.5.
In Lines 6 and 7, the thresholds τ1 and τ2 are initialized such that

τ1 = Kd and (6.5)

τ2 = Kd+K − 1. (6.6)

Accordingly, threshold τ1 is equal to the index of the last row or column of the Kd×Kd
submatrix Σ, while threshold τ2 adds K − 1 rows or columns, i.e., one row or column
per d× d block, except for the last (bottom-right) one. As we have seen in Sections 6.1.1
to 6.1.4 as well as in our recent example that demonstrates the approach followed by the
CRIAD(b) algorithm, an additional row or column outside of the submatrix Σ is requisite
for every Givens transformation. Since, as noted above, the Givens matrices are either
premultiplied or postmultiplied, it is sufficient that either the row or column threshold is
greater than Kd, which justifies Equations 6.5 and 6.6.

We have not yet specified which of the thresholds τ1 and τ2 is the row threshold and
which is the column threshold. Considering that our algorithm is supposed to be able to
find solutions for the largest possible set of combinations of the input parameters K, d,
M , and N , including Equations 6.3 and 6.4, it is advisable to decide based on the given
input parameters whether τ1 is the row or column threshold. Concretely, τ1 shall be the
row threshold if and only if the given global channel matrix H has more columns than
rows, i.e., if KN < KM , or, equivalently, if N < M . Hence, when τ1 is the row threshold,
the Givens matrices have to be postmultiplied, and thus the first Householder matrix has
to be premultiplied. In Algorithm 6.5, Lines 19 to 25 and Lines 38 to 40 are appropriate
when τ1 is the row threshold, while Lines 27 to 33 and Lines 42 to 44 are proper for τ1 as
column threshold.

The other parts of Algorithm 6.5 follow the scheme familiar from Algorithms 6.1 to 6.4.
In each iteration of the outer loop in Lines 10 to 46, the elements below and right of exactly
one d×d block are annihilated. For this reason, the elements below and right of all but the
last (bottom-right) d×d block are annihilated after the (K−1)th iteration. In the body of
the inner loop in Lines 13 to 35, a suitable Householder transformation is applied for each
of the d columns and d rows of the current d × d block. Subsequent to the Householder
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Algorithm 6.5 Constructive algorithm for solving the relaxed interference alignment de-
composition problem (bidiagonal blocks variant).

1: function CRIAD(b)(H,K, d,M,N)
2: ÛH ← IKN
3: Σ̄←H
4: V̂ ← IKM
5:
6: τ1 ← Kd
7: τ2 ← Kd+K − 1
8: χ1 ← τ1
9:

10: for all κ ∈ {1, 2, . . . ,K − 1} do
11: χ2 ← τ2 − κ+ 1
12:
13: for all δ ∈ {1, 2, . . . , d} do
14: ψ ← (κ− 1)d+ δ
15: φ1 ← ψ
16: φ2 ← ψ + 1
17:
18: if N < M then
19: H̃← Householder(Σ̄, ⟨φ1, ψ⟩, ⟨χ1, ψ⟩)
20: Σ̄← H̃Σ̄
21: ÛH ← H̃ÛH

22:
23: H̃← Householder(Σ̄, ⟨ψ,φ2⟩, ⟨ψ, χ2⟩)
24: Σ̄← Σ̄H̃

25: V̂ ← V̂ H̃

26: else
27: H̃← Householder(Σ̄, ⟨ψ,φ1⟩, ⟨ψ, χ1⟩)
28: Σ̄← Σ̄H̃

29: V̂ ← V̂ H̃

30:
31: H̃← Householder(Σ̄, ⟨φ2, ψ⟩, ⟨χ2, ψ⟩)
32: Σ̄← H̃Σ̄
33: ÛH ← H̃ÛH

34: end if
35: end for
36:
37: if N < M then
38: G← Givens(Σ̄, ⟨ψ, χ2⟩, ⟨ψ,φ2⟩)
39: Σ̄← Σ̄G

40: V̂ ← V̂ G

41: else
42: G← Givens(Σ̄, ⟨χ2, ψ⟩, ⟨φ2, ψ⟩)
43: Σ̄← GΣ̄
44: ÛH ← GÛH

45: end if
46: end for
47:
48: return ⟨Û , Σ̄, V̂ ⟩
49: end function
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matrix multiplications, a proper Givens rotation is put into use (cf. Lines 37 to 45). The
variables φ1, φ2, χ1 (which depends on the threshold τ1), χ2 (which depends on τ2), and
ψ have similar functions as in our previous algorithm variants (cf. Sections 6.1.1 to 6.1.4)
and are computed appropriately (cf. Lines 8, 11, and 14 to 16).

6.2 Algorithm correctness and characteristics

In the last section, we have described several variants of a constructive algorithm for solving
the relaxed interference alignment decomposition problem. Although we have argued why
these algorithm variants actually solve the problem, we have not yet proved that. In
this section, we want to prove the correctness of the most advanced of the variants we
have discussed, the CRIAD(b) algorithm (cf. Section 6.1.5). Apart from that, we will
summarize the different preconditions for our five constructive algorithm variants. Finally,
we will analyze how many decomposition steps the algorithm variants need until they have
constructed a solution.

Theorem 6.1 (Correctness of the CRIAD(b) algorithm). Let K ∈ N, d ∈ N, M ∈ N,
N ∈ N, and H ∈ CKN×KM be given as algorithm input such that K ≥ 2, 1 ≤ d ≤ N ,
1 ≤ d ≤ M , NM > d2, and N +M ≥ (K + 1) d. Then, the CRIAD(b) algorithm (cf.
Algorithm 6.5) solves the relaxed interference alignment decomposition problem (cf.
Definition 5.6) and terminates.

Proof. The relaxed interference alignment decomposition problem is solved if and only if
the following three conditions are satisfied for Σ̄ = (σ̄ij) ∈ CKN×KM , Û ∈ CKN×KN , and
V̂ ∈ CKM×KM (cf. Definition 5.6):

1. ÛHHV̂ = Σ̄,

2. Û and V̂ are unitary matrices, and

3. Σ = Σ̄(1 :Kd, 1 :Kd) is a block-diagonal matrix with main diagonal blocks Σk ∈
Cd×d, k ∈ {1, 2, . . . ,K}.

The second condition is satisfied if ÛH and V̂ are products of (extended) Householder and
Givens matrices (cf. Lemma 5.8 and Corollary 5.9). The third condition is satisfied if at
least the elements of Σ̄ specified by Lemma 5.10 are equal to zero.

We are going to show that four loop invariants, which are derived from the above
conditions, are maintained at iteration δ ∈ {1, 2, . . . , d−1} of the inner loop in Lines 13 to 35
and at iteration κ ∈ {1, 2, . . . ,K − 1} of the outer loop in Lines 10 to 46 of Algorithm 6.5.
The first two loop invariants are exactly the first two of the above conditions. The third
and fourth loop invariants are based on Lemma 5.10. For the inner loop, the third loop
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invariant is

∀κ′ ∈ {1, 2, . . . , κ} : ∀δ′ ∈ {1, 2, . . . , δ} :

σ̄κ′d+1,(κ′−1)d+δ′ = σ̄κ′d+2,(κ′−1)d+δ′ = · · · = σ̄Kd,(κ′−1)d+δ′ = 0,

and the fourth loop invariant is

∀κ′ ∈ {1, 2, . . . , κ} : ∀δ′ ∈ {1, 2, . . . , δ} :

σ̄(κ′−1)d+δ′,κ′d+1 = σ̄(κ′−1)d+δ′,κ′d+2 = · · · = σ̄(κ′−1)d+δ′,Kd = 0.

For the outer loop, the third loop invariant is

∀κ′ ∈ {1, 2, . . . , κ} : ∀δ ∈ {1, 2, . . . , d} :

σ̄κ′d+1,(κ′−1)d+δ = σ̄κ′d+2,(κ′−1)d+δ = · · · = σ̄Kd,(κ′−1)d+δ = 0,

and the fourth loop invariant is

∀κ′ ∈ {1, 2, . . . , κ} : ∀δ ∈ {1, 2, . . . , d} :

σ̄(κ′−1)d+δ,κ′d+1 = σ̄(κ′−1)d+δ,κ′d+2 = · · · = σ̄(κ′−1)d+δ,Kd = 0.

After the initialization of ÛH, Σ̄, and V̂ in Lines 2 to 4 of Algorithm 6.5, it holds that

ÛHHV̂ = IKNHIKM = H = Σ̄.

ÛH = Û = IKN as well as V̂ = IKM are trivially unitary and no elements of Σ̄ = H are
required to be equal to zero.

Let κ ∈ {1, 2, . . . ,K − 1} be fixed but arbitrary. Assume that the four loop invariants
for the inner loop are satisfied at iteration δ − 1 of the inner loop. Then, the conditions

σ̄κd+1,(κ−1)d+δ = σ̄κd+2,(κ−1)d+δ = · · · = σ̄Kd,(κ−1)d+δ = 0 (6.7)

and

σ̄(κ−1)d+δ,κd+1 = σ̄(κ−1)d+δ,κd+2 = · · · = σ̄(κ−1)d+δ,Kd = 0 (6.8)

have to be true for satisfying the third and fourth loop invariant at iteration δ ∈
{1, 2, . . . , d− 1} of the inner loop.

First, assume N < M . Lines 19 and 20 of Algorithm 6.5 are equivalent to

Σ̄←H
φ1,ψ
χ1,ψ

Σ̄ (6.9)

(cf. Algorithm 3.1 and Definition 5.11), where

H
φ1,ψ
χ1,ψ

= H
ψ,ψ
τ1,ψ

= H
(κ−1)d+δ,(κ−1)d+δ
Kd,(κ−1)d+δ ∈ CKN×KN .
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It follows that

σ̄(κ−1)d+δ+1,(κ−1)d+δ = σ̄(κ−1)d+δ+2,(κ−1)d+δ = · · · = σ̄Kd,(κ−1)d+δ = 0 (6.10)

(cf. Definition 5.11) after iteration δ of the inner loop. Because of

(κ− 1)d+ δ + 1 ≤ (κ− 1)d+ (d− 1) + 1 = (κ− 1)d+ d = κd < κd+ 1,

Equation 6.7 is satisfied. Lines 23 and 24 are equivalent to

Σ̄← Σ̄H
ψ,φ2

ψ,χ2
(6.11)

(cf. Algorithm 3.1 and Definition 5.11), where

H
ψ,φ2

ψ,χ2
= H

ψ,ψ+1
ψ,τ2−κ+1 = H

(κ−1)d+δ,(κ−1)d+δ+1
(κ−1)d+δ,Kd+K−1−κ+1 = H

(κ−1)d+δ,(κ−1)d+δ+1
(κ−1)d+δ,Kd+K−κ ∈ CKM×KM .

It follows that

σ̄(κ−1)d+δ,(κ−1)d+δ+2 = σ̄(κ−1)d+δ,(κ−1)d+δ+3 = · · · = σ̄(κ−1)d+δ,Kd+K−κ = 0 (6.12)

(cf. Definition 5.11) after iteration δ of the inner loop. Because of

(κ− 1)d+ δ + 2 ≤ (κ− 1)d+ (d− 1) + 2 = (κ− 1)d+ d+ 1 = κd+ 1

and

Kd+K − κ ≥ Kd+K − (K − 1) = Kd+ 1 > Kd,

Equation 6.8 is satisfied. Due to the precondition

1 ≤ d ≤ N ∧ 1 ≤ d ≤M ∧ NM > d2,

which implicates

(M ≥ d ∧ N > d) ∨ (M > d ∧ N ≥ d),

and the assumption that N < M , it holds that M ≥ d+ 1 and thus

Kd+K − κ ≤ Kd+K − 1 = K(d+ 1)− 1 ≤ KM − 1 < KM, (6.13)

i.e., the column indices are within valid bounds. Since the first and second loop invariants
hold at iteration δ − 1 of the inner loop, and thus

Σ̄(φ1 :χ1, 1 :ψ − 1) = Σ̄((κ− 1)d+ δ :Kd, 1 : (κ− 1)d+ δ − 1) = 0 (6.14)

and
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Σ̄(1 :ψ − 1, φ2 :χ2) = Σ̄(1 : (κ− 1)d+ δ − 1, (κ− 1)d+ δ + 1 :Kd+K − κ) = 0, (6.15)

no fill-ins occur due to the Householder transformations in Equations 6.9 and 6.11 (cf.
Sections 3.2 and 5.3). Hence, if N < M , the third and fourth loop invariants are satisfied
at iteration δ of the inner loop. Equations 6.9 and 6.11 combined are equivalent to

Σ̄←H
φ1,ψ
χ1,ψ

Σ̄H
ψ,φ2

ψ,χ2
. (6.16)

Together with

ÛH ←H
φ1,ψ
χ1,ψ

ÛH, (6.17)

V̂ ← V̂ H
ψ,φ2

ψ,χ2
(6.18)

(cf. Lines 21 and 25), and the validity of ÛHHV̂ = Σ̄ at the beginning of iteration δ,
it follows that, if N < M , the first loop invariant is satisfied at iteration δ of the inner
loop. Because of Corollary 5.9 and Lines 21 and 25, the second loop invariant is satisfied
as well at iteration δ of the inner loop, if N < M . For N ≥ M and Lines 27 to 33 of
Algorithm 6.5, an analogous argumentation applies. Therefore, all four loop invariants are
satisfied at iteration δ of the inner loop.

Assume now that the four loop invariants are satisfied at iteration κ − 1 of the outer
loop and at iteration d − 1 of the inner loop in iteration κ of the outer loop. Then, the
conditions

σ̄κd+1,(κ−1)d+d = σ̄κd+2,(κ−1)d+d = · · · = σ̄Kd,(κ−1)d+d = 0 (6.19)

and

σ̄(κ−1)d+d,κd+1 = σ̄(κ−1)d+d,κd+2 = · · · = σ̄(κ−1)d+d,Kd = 0 (6.20)

have to be true for satisfying the third and fourth loop invariant at iteration κ ∈
{1, 2, . . . ,K − 1} of the outer loop. Assume again N < M . Then, it follows from Equa-
tion 6.10 and

(κ− 1)d+ δ + 1 = (κ− 1)d+ d+ 1 = κd+ 1 (6.21)

that Equation 6.19 is satisfied after iteration d of the inner loop in iteration κ of the outer
loop. From Equation 6.12 and

(κ− 1)d+ δ + 2 = (κ− 1)d+ d+ 2 = κd+ 2,

we deduce that σ̄(κ−1)d+d,κd+1 (cf. Equation 6.20) not necessarily is equal to zero after
iteration d of the inner loop in iteration κ of the outer loop. Lines 38 and 39 of Algorithm 6.5
are equivalent to

Σ̄← Σ̄G
ψ,χ2

ψ,φ2
(6.22)
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(cf. Algorithm 3.2 and Definition 5.11), where

G
ψ,χ2

ψ,φ2
= G

ψ,τ2−κ+1
ψ,ψ+1 = G

(κ−1)d+δ,Kd+K−1−κ+1
(κ−1)d+δ,(κ−1)d+δ+1 = G

(κ−1)d+d,Kd+K−κ
(κ−1)d+d,(κ−1)d+d+1 ∈ CKM×KM .

Because of Equation 6.21 and Definition 5.11, it follows that σ̄(κ−1)d+d,κd+1 = 0. Thus,
Equation 6.20 is satisfied after iteration κ of the outer loop. Due to Equation 6.13, the
column indices are within valid bounds again. Because of Equations 6.14 and 6.15, the
Householder and Givens transformations in Equations 6.9, 6.11, and 6.22 do not cause fill-
ins (cf. Sections 3.2 and 5.3). Therefore, if N < M , the third and fourth loop invariants are
satisfied at iteration κ of the outer loop. Equations 6.16 and 6.22 combined are equivalent
to

Σ̄←H
φ1,ψ
χ1,ψ

Σ̄H
ψ,φ2

ψ,χ2
G
ψ,χ2

ψ,φ2
.

Together with Equations 6.17 and 6.18 as well as

V̂ ← V̂ G
ψ,χ2

ψ,φ2

(cf. Line 40), and the validity of ÛHHV̂ = Σ̄ after iteration d − 1 of the inner loop in
iteration κ of the outer loop, it follows that, if N < M , the first loop invariant is satisfied at
iteration κ of the outer loop. Due to Corollary 5.9 and Line 40, the second loop invariant
too is satisfied at iteration κ of the outer loop, if N < M . For N ≥ M and Lines 42
to 44 of Algorithm 6.5, an analogous argumentation applies again. Therefore, all four loop
invariants are satisfied at iteration κ of the outer loop.

It follows that after iteration K − 1, i.e., after the last iteration, of the outer loop, the
loop invariants

∀κ ∈ {1, 2, . . . ,K − 1} : ∀δ ∈ {1, 2, . . . , d} :

σ̄κd+1,(κ−1)d+δ = σ̄κd+2,(κ−1)d+δ = · · · = σ̄Kd,(κ−1)d+δ = 0

and

∀κ ∈ {1, 2, . . . ,K − 1} : ∀δ ∈ {1, 2, . . . , d} :

σ̄(κ−1)d+δ,κd+1 = σ̄(κ−1)d+δ,κd+2 = · · · = σ̄(κ−1)d+δ,Kd = 0

are satisfied. These are exactly the conditions required by Lemma 5.10. Hence, the three
conditions of Definition 5.6 are fulfilled and the CRIAD(b) algorithm solves the relaxed
interference alignment decomposition problem. Since K and d are finite numbers, the
algorithm always terminates.

As we have shown in Theorem 6.1, the CRIAD(b) algorithm supports all combinations
of the input parameters d, M , and N in conformance with Equations 6.3 and 6.4. Since
this is not true for CRIAD(f) and CRIAD(t), CRIAD(b) is the only algorithm variant that
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Table 6.1: Minimal values of K, d, M , and N (cf. Table 4.1) as input parameters for the
constructive algorithm variants CRIAD(f), CRIAD(t), and CRIAD(b).

CRIAD(f) CRIAD(t) CRIAD(b)

(cf. Algorithm 6.4) (cf. Algorithm 6.3) (cf. Algorithm 6.5)

K ≥ 2 ≥ 2 ≥ 2

d ≥ 2 ≥ 1 ≥ 1

M ≥ 2d− 1− d−1
K ≥ d+ 1 ≥


d, if N ≥ d+ 1

d+ 1, otherwise

N ≥ 2d− 1− d−1
K ≥ d+ 1 ≥


d, if M ≥ d+ 1

d+ 1, otherwise

supports all parameter combinations that are valid for the relaxed interference alignment
decomposition problem (cf. Definition 5.6). Table 6.1 summarizes the minimal values of
K, d, M , and N as input parameters for the algorithm variants CRIAD(f), CRIAD(t), and
CRIAD(b).

After having solved our example problem for K = 3, d = 3, M = 7, and N = 5 with
five different constructive algorithm variants in Section 6.1, we shall compare the number
of decomposition steps required for factorizing H according to Definition 5.6. Because of

Σ̄(14) = Σ̄

(cf. Figure 6.5f), the bidiagonal blocks algorithm variant CRIAD(b) needs fourteen decom-
position steps. In contrast, the tridiagonal and full blocks algorithm variants CRIAD(t′′),
CRIAD(t′), CRIAD(t), and CRIAD(f) necessitate 56 (cf. Figure 6.1u), sixteen (cf. Fig-
ure 6.2i), again sixteen (cf. Figure 6.3i), and twenty (cf. Figure 6.4i) decomposition steps,
respectively. Therefore, the bidiagonal blocks algorithm variant requires the least number
of decomposition steps.

In general, the bidiagonal blocks algorithm variant CRIAD(b) applies one Householder
reflection per row and another one per column of each d× d block. Moreover, one Givens
rotation per d× d block is utilized.

Lemma 6.2 (Decomposition steps of the CRIAD(b) algorithm). The CRIAD(b) al-
gorithm (cf. Algorithm 6.5) needs (K − 1) (2d + 1) decomposition steps (cf. Defini-
tion 5.7) for solving the relaxed interference alignment decomposition problem (cf.
Definition 5.6).

Proof. In each of the d iterations of the inner loop in Lines 13 to 35 of Algorithm 6.5,
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exactly two Householder reflections are applied (either in Lines 19 to 25 or in Lines 27
to 33). Hence, there are 2d Householder reflections per iteration of the outer loop in
Lines 10 to 46. Additionally, exactly one Givens rotation is applied in each of the K − 1

iterations of the outer loop (either in Lines 38 to 40 or in Lines 42 to 44). In total,
2d (K − 1) Householder reflections and K − 1 Givens rotations are utilized. Thus, the
CRIAD(b) algorithm needs 2d (K−1)+K−1 = (K−1) (2d+1) decomposition steps.

Analogous considerations result in (K−1) (2d+2) and (K−1) (4d−2) decomposition
steps for the further enhanced tridiagonal algorithm variant CRIAD(t) and the full blocks
algorithm variant CRIAD(f), respectively.



Chapter 7

Direct solution to the general matrix
factorization problem

In Chapter 4, we have formulated the interference alignment problem based on the general
problem introduction in Chapter 2 and have analyzed an iterative solution to this prob-
lem. Next, in Chapter 5, we have reformulated the interference alignment problem as the
equivalent interference alignment decomposition problem and have defined the related but
simpler relaxed interference alignment decomposition problem. Then, in Chapter 6, we
have proposed a direct solution to the latter problem by applying Householder and Givens
transformations.

The remaining question to be discussed in this chapter is whether there exists a direct
solution to the interference alignment decomposition problem on the basis of Householder
reflections and Givens rotations. In Section 7.1, we will argue that products of Givens and
Householder matrices in general do not have the form required by the interference alignment
decomposition problem, and thus the application of solely these unitary transformations
cannot lead to a direct solution to this problem. Subsequently, in Section 7.2, we will
briefly sketch some approaches that may be worth investigating in the future.

7.1 Solution based on Householder and Givens transforma-
tions

For finding a solution to the interference alignment decomposition problem, a given global
channel matrix H ∈ CKN×KM (cf. Definition 5.1) is to be factorized such that

H = ŪΣ̄V̄ H (7.1)

(cf. Equation 5.3), where Σ̄ ∈ CKN×KM is the extended global interference alignment
matrix (cf. Definition 5.4), and Ū ∈ CKN×KN and V̄ ∈ CKM×KM are the extended
global postcoding and precoding matrices, respectively (cf. Definition 5.3). Both U =



98 Chapter 7. Direct solution to the general matrix factorization problem

Ū( : , 1 :Kd) and V = V̄ ( : , 1 :Kd) have to be sparse block matrices (cf. Definition 5.1),
while Σ = Σ̄(1 :Kd, 1 :Kd) has to be a block-diagonal matrix (cf. Definition 5.5). In
Chapter 6, we have developed an algorithm for obtaining the factorization

H = ÛΣ̄V̂ H, (7.2)

where the submatrix Σ of Σ̄ is of block-diagonal form. However, ÛH ∈ CKN×KN and V̂ ∈
CKM×KM are products of (extended) Householder and Givens matrices (cf. Definitions 3.2
and 3.3) and therefore general unitary matrices. In particular, we have not yet attempted
to bring Û( : , 1 :Kd) and V̂ ( : , 1 :Kd) to the sparse block form postulated for U and V .
It follows that Û ̸= Ū and V̂ ̸= V̄ .

But is it possible to apply Householder reflections and Givens rotations such that H

is decomposed as in Equation 7.1 with U , V , and Σ being matrices of the required sparse
block forms? In this section, we are going to argue that, in general, this is impossible. Since
we understand how Householder and Givens matrices are constructed and how matrices
are multiplied, our intuition tells us that products of several (extended) Householder or
Givens matrices are supposed to be dense matrices, no matter which strategy is chosen for
introducing zeros into the given matrix. This is particularly clear for Householder matrices,
as they generally are dense matrices themselves.

For the purpose of providing a mathematically sound and thus more convincing ar-
gument, we want to focus on the strictly zero main diagonal elements of Ū and V̄ in
comparison to the main diagonal elements of (extended) Householder and Givens matri-
ces. The following definition will be expedient for our considerations.

Definition 7.1 (Zero main diagonal elements of a matrix). Let A be a matrix. Then,
ζA denotes the number of main diagonal elements of A that are equal to zero.

The submatrix U of Ū is a matrix of size KN ×Kd with blocks Uj , j ∈ {1, 2, . . . ,K},
of size N × d such that

U =


U1 0

U2

. . .

0 UK

 (7.3)

(cf. Definition 5.1). We are regarding Ū for K ≥ 2 and N > d ≥ 1 (cf. Table 4.1). Fig-
ure 7.1 shows a few examples of Ū , in which (potentially) nonzero elements are illustrated
as black squares and strictly zero elements as white space. Strictly zero main diagonal
elements are highlighted in gray. The smallest possible matrix Ū for our parameters K,
d, and N is visualized in Figure 7.1a. It has one strictly zero main diagonal element.
Figures 7.1a to 7.1f indicate that the number of strictly zero main diagonal elements is, at
least approximately, directly proportional to the size of Ū . The following lemma states a
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(e) K = 4, d = 3, N = 4,
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(f) K = 4, d = 3, N = 5,
ζŪ ≥ 8

Figure 7.1: Main diagonal elements of the extended global postcoding matrix Ū that are
equal to zero.

lower bound for ζŪ , which depends on K, d, and N .

Lemma 7.2 (Zero main diagonal elements of Ū). Let K ≥ 2 and N > d ≥ 1 (cf.
Table 4.1). Then, it holds for the extended global postcoding matrix Ū ∈ CKN×KN

(cf. Definition 5.3) that

ζŪ ≥
K
k=2

d−max(0, kd− (k − 1)N) > 0

(cf. Definition 7.1).

Proof. According to Definitions 5.1 and 5.3, all elements of the submatrix U ∈ CKN×Kd

of Ū ∈ CKN×KN except for the blocks Uk ∈ CN×d, k ∈ {1, 2, . . . ,K}, are equal to zero.
All (potentially) nonzero elements in one row or column of U are elements of exactly one
Uk. Since we assume N > d, each main diagonal element ūii of Ū , i ∈ {1, 2, . . . ,KN}, is
either a (potentially) nonzero element of or a strictly zero element above the Uk in column
i of Ū .
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As each Uk has d columns, there are at most d main diagonal elements of Ū above each
Uk. Again because of N > d, there is at least one main diagonal element of Ū above each
Uk, with the exception of the top-left block U1, which always contains the first d main diag-
onal elements of Ū . If N ≥ 2d, the d main diagonal elements ūd+1,d+1, ūd+2,d+2, . . . , ū2d,2d

are strictly zero elements above U2. Put differently, if d < N < 2d, exactly 2d −N main
diagonal elements of Ū are elements of U2. Hence, there are d−max(0, 2d−N) strictly
zero main diagonal elements of Ū above U2.

A similar argument holds for U3. If 2N ≥ 3d, the d main diagonal elements
ū2d+1,2d+1, ū2d+2,2d+2, . . . , ū3d,3d are strictly zero elements above U3. Thus, there are
d − max(0, 3d − 2N) strictly zero main diagonal elements of Ū above U3. Therefore,
by induction, there are d−max(0, kd− (k − 1)N) strictly zero main diagonal elements of
Ū above Uk, k ∈ {2, 3, . . . ,K}, and in total

K
k=2

d−max(0, kd− (k − 1)N)

strictly zero main diagonal elements of Ū . Since other main diagonal elements of Ū may
also be equal to zero, it holds that

ζŪ ≥
K
k=2

d−max(0, kd− (k − 1)N).

Because of N > d, k ≥ 2, and

kd− (k − 1)N = kd− kN +N

= kd− kN +N + 2d− 2d+N −N

= 2d−N − (kN − kd− 2N + 2d)

= 2d−N − (k − 2)(N − d),

it follows that
kd− (k − 1)N ≤ 2d−N < 2d− d = d

and thus
d−max(0, kd− (k − 1)N) > 0.

Hence, the assertion of the lemma holds.

For decomposing H as in Equation 7.1 solely through applications of Householder and
Givens transformations, H is premultiplied by a product of (extended) Householder and
Givens matrices that must be equal to ŪH (cf. Lemma 5.8, which analogically shows that
ÛH is a product of Householder and Givens matrices). Hence, we are actually interested
in the number of strictly zero main diagonal elements of ŪH. The following corollary
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transfers the result of Lemma 7.2 to ζŪH .

Corollary 7.3 (Zero main diagonal elements of ŪH). Let K ≥ 2 and N > d ≥ 1

(cf. Table 4.1). Then, it holds for the conjugate transpose ŪH of the extended global
postcoding matrix Ū ∈ CKN×KN (cf. Definition 5.3) that

ζŪH ≥
K
k=2

d−max(0, kd− (k − 1)N) > 0

(cf. Definition 7.1).

Proof. Since the main diagonal elements of ŪH are the complex conjugates of the main
diagonal elements of the square matrix Ū , and the complex conjugate of zero is zero, the
assertion readily follows from Lemma 7.2.

Because the submatrix V of V̄ is a matrix of size KM × Kd with blocks Vj , j ∈
{1, 2, . . . ,K}, of size M × d such that

V =


V1 0

V2

. . .

0 VK

 (7.4)

(cf. Definition 5.1), and we are considering V̄ for K ≥ 2 and M > d ≥ 1 (cf. Table 4.1), the
extended global postcoding and precoding matrices Ū and V̄ have similar characteristics.
For this reason, Figure 7.1 and Lemma 7.2 analogously apply to V̄ .

Corollary 7.4 (Zero main diagonal elements of V̄ ). Let K ≥ 2 and M > d ≥ 1 (cf.
Table 4.1). Then, it holds for the extended global precoding matrix V̄ ∈ CKM×KM

(cf. Definition 5.3) that

ζV̄ ≥
K
k=2

d−max(0, kd− (k − 1)M) > 0

(cf. Definition 7.1).

Proof. As stated in Definitions 5.1 and 5.3, the extended global precoding matrix V̄ ∈
CKM×KM is defined similarly to the extended global postcoding matrix Ū ∈ CKN×KN ,
the only difference is the replacement of N by M . Thus, the assertion readily follows from
Lemma 7.2.

Due to Corollaries 7.3 and 7.4, we are familiar with the lower bounds of ζŪH and ζV̄ .
In particular, we understand that ŪH and V̄ always contain at least one strictly zero
main diagonal element for K ≥ 2, M > d ≥ 1, and N > d ≥ 1. Let us now turn to the



102 Chapter 7. Direct solution to the general matrix factorization problem

main diagonal elements of a Givens matrix G = G(θ, φ, j1, j2) ∈ Cn×n, where θ and φ are
angles, and j1 and j2 are the indices of the elements affected by the Givens rotation (cf.
Definition 3.3).

Lemma 7.5 (Zero main diagonal elements of G). Let the rotation angle θ ̸= 2a+1
2 π,

a ∈ Z, be given. Moreover, let 1 ≤ j1 ̸= j2 ≤ n. Then, it holds for the Givens matrix
G = G(θ, φ, j1, j2) ∈ Cn×n (cf. Definition 3.3) that

ζG = 0

(cf. Definition 7.1).

Proof. It follows directly from Definition 3.3 for each main diagonal element gjj of G,
j ∈ {1, 2, . . . , n}, that

gjj = 1 ∨ gjj = cos(θ).

Because of
∀a ∈ Z : ∀θ ̸= 2a+ 1

2
π : cos(θ) ̸= 0,

the assertion of the lemma holds.

According to Lemma 7.5, ζG = 0 if the rotation angle θ ̸= 2a+1
2 π for a ∈ Z. However,

the Givens transformation GHA = B for matrices A, B, and G = G(θ, φ, j1, j2) with θ =
2a+1
2 π, a ∈ Z, i.e., cos(θ) = 0 and sin(θ) = 1, implies that B(j1 : j1, : ) = −A(j2 : j2, : )e

iφ

and B(j2 : j2, : ) = A(j1 : j1, : )e
−iφ, while the other rows of A and B are pairwise equal

to each other. Likewise, AG = B means that B( : , j1 : j1) = −A( : , j2 : j2)e
−iφ and

B( : , j2 : j2) = A( : , j1 : j1)e
iφ for θ = 2a+1

2 π, a ∈ Z, while the other columns of A and
B are pairwise equal to each other. Therefore, and since zeiφ ̸= 0 and ze−iφ ̸= 0 for all
z ̸= 0, no zeros are introduced for the rotation angle θ = 2a+1

2 π, a ∈ Z. It follows that
such Givens matrices most likely serve no purpose for solving the interference alignment
decomposition problem.

The subsequent lemma concerns the main diagonal elements of an extended House-
holder matrix H̃ = H̃(z, j1, j2) ∈ Cn×n, where z is the vector for element annihilations,
and j1 and j2 are the indices of the first and last elements involved in the Householder
transformation (cf. Definition 3.2).

Lemma 7.6 (Zero main diagonal elements of H̃). Let z = (z1 z2 . . . zm)
T ∈ Cm

with z1 = reiφ and r, φ ∈ R be given such that

|z1 ± ∥z∥2eiφ|
∥z ± ∥z∥2eiφe1∥2

̸= 1

4
and ∀j ∈ {2, 3, . . . ,m} : |zj |

∥z ± ∥z∥2eiφe1∥2
̸= 1

4
.

Furthermore, let m ≤ n, 1 ≤ j1 < j2 ≤ n, and j2 − j1 + 1 = m. Then, it holds for the
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extended Householder matrix H̃ = H̃(z, j1, j2) ∈ Cn×n (cf. Definition 3.2) that

ζ
H̃

= 0

(cf. Definition 7.1).

Proof. In agreement with Definition 3.1, H = H(z) ∈ Cm×m is defined as

H := Im − βhhH,

where β := 2
hHh

and h = (h1 h2 . . . hm)
T := z ± ∥z∥2eiφe1. It follows for each main

diagonal element hjj of H, j ∈ {1, 2, . . . ,m}, that

hjj = 1− βhjhj = 1− 2

hHh
|hj |2.

Hence, hjj ̸= 0 if and only if

1− 2

hHh
|hj |2 ̸= 0

⇔ |hj |2

hHh
̸= 1

2

⇔ |hj |
∥h∥2

̸= 1

4
.

Because of |h1| = |z1 ± ∥z∥2eiφ|, |hj | = |zj | for j ∈ {2, 3, . . . ,m}, and ∥h∥2 = ∥z ±
∥z∥2eiφe1∥2, it holds that

∀j ∈ {1, 2, . . . ,m} : hjj ̸= 0.

Since the main diagonal elements of H̃ that are not main diagonal elements of H are equal
to one (cf. Definition 3.2), the assertion of the lemma is true.

All elements of the given global channel matrix H ∈ CKN×KM are completely arbitrary.
For this reason, all elements of each vector z = H(j1 : j2, k : k), 1 ≤ j1 < j2 ≤ KN ,
1 ≤ k ≤ KM , or z = H(k : k, j1 : j2)

H, 1 ≤ j1 < j2 ≤ KM , 1 ≤ k ≤ KN , are completely
arbitrary as well. Therefore, in almost all cases, the conditions of Lemma 3.1 for z are met,
and the extended Householder matrix H̃ = H̃(z, j1, j2) ∈ CKN×KN or H̃ = H̃(z, j1, j2) ∈
CKM×KM that is applied first does not contain any main diagonal elements that are equal
to zero. Since the elements of H are arbitrary, the elements of Σ̄(λ), λ ∈ {1, 2, . . . ,Λ} (cf.
Definition 5.7), can also be considered arbitrary (except for the elements that have been
annihilated in decomposition steps 1, 2, . . . , λ−1, which most likely are not affected by any
further Householder transformation). Thus, in almost all cases, all extended Householder
matrices utilized for factorizing a given H do not contain any main diagonal elements that
are equal to zero.

As previously noted, ŪH, and for the same reason V̄ , have to be products of (extended)
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Householder and Givens matrices when these are the only allowed transformations for
factorizing H according to Equation 7.1. For a product AB = C, where A = (aij) ∈ Cn×n,
B = (bij) ∈ Cn×n, and C = (cij) ∈ Cn×n are matrices with ζA = ζB = 0, it holds that
cii =

n
j=1 aijbji and aiibii ̸= 0. It follows that cii = 0 if and only if

n
j=1
j ̸=i

aijbji = −aiibii, (7.5)

where −aiibii ̸= 0. If A and B themselves are products of (extended) Householder and
Givens matrices, it is very unlikely that Equation 7.5 is fulfilled for any i ∈ {1, 2, . . . , n}.
For example, let A = GH = G(θ, φ, j1, j2)

H (cf. Definition 3.3). Then, we get

cii =


bj1,j1 cos(θ)− bj2,j1 sin(θ)eiφ, if i = j1

bj2,j2 cos(θ) + bj1,j2 sin(θ)e
−iφ, if i = j2

bii ̸= 0, otherwise.

(7.6)

Based on these considerations, it is plausible to assume that in almost every case rele-
vant for solving the interference alignment decomposition problem, products of (extended)
Householder and Givens matrices, which are highly dependent on the completely arbitrary
input matrix H, do not contain a single main diagonal element that is equal to zero.

Because of Corollaries 7.3 and 7.4, which state that ŪH and V̄ contain at least one, and
in most cases even more, strictly zero main diagonal elements, we deduce that in general
ŪH and V̄ cannot be products of (extended) Householder and Givens matrices. For this
reason, there is no general direct solution to the interference alignment decomposition
problem (cf. Definition 5.5) solely based on Householder and Givens transformations.

7.2 Possible alternatives

Alternatively, or in addition to applying Householder reflections and Givens rotations,
other strategies may be pursued that could lead to a direct solution to the interference
alignment decomposition problem. These include, but are not limited to, the following:

• apply unitary transformations other than Householder and Givens transformations,

• if the condition number can be estimated, apply non-unitary bijective linear trans-
formations, and

• combine these approaches.

Another (part of a) strategy could be to apply Householder reflections and Givens
rotations in two stages. At least for certain values of K, d, M , and N , the results Û ,
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Σ̄, and V̂ of Algorithms 6.1 to 6.5 could be input parameters for another CRIAD(b)-like
algorithm that factorizes Û and V̂ H such that Û = AŪB and V̂ H = CV̄ HD, and thus

H = AŪBΣ̄CV̄ HD, (7.7)

where A, B, C, and D are unitary matrices, and Ū and V̄ are unitary matrices in
accordance with Definition 5.3. However, by itself, this result is not advantageous, but it
could be combined with other approaches, for example in a hybrid strategy that integrates
a direct with an iterative algorithm in order to reduce the number of iterations until the
iterative algorithm converges.



106 Chapter 7. Direct solution to the general matrix factorization problem



Chapter 8

Implementation and experiments

This chapter describes prototype Matlab/Octave implementations of the previously dis-
cussed iterative and constructive algorithms for solving the interference alignment problem
and the relaxed interference alignment decomposition problem (cf. Chapters 4 and 6). De-
spite the fact that these algorithms only solve a related and not the same problem, the
operation counts of their implementations—based on numerical experiments for the iter-
ative algorithm—are compared in order to show the relevance and potential of a direct
solution to the interference alignment decomposition problem.

In Sections 8.1 and 8.2, these iterative and direct implementations, the source code
of which is listed in Appendix A, as well as some critical implementation aspects are
explained. Subsequently, in Section 8.3, the results of two series of numerical experiments
with the iterative implementation are illustrated. Eventually, in Section 8.4, the iterative
implementation is contrasted with the direct implementation in respect of operation counts
for particular input parameters.

8.1 Iterative implementation

In Chapter 4, we have studied an algorithm that provides an iterative solution to the
interference alignment problem. The corresponding iterative prototype implementation
consists of two Matlab/Octave source code files:

• iterative.m (cf. Listing A.1) requests user input for the parameters K, d, M , and
N , specifies the maximum remaining leakage interference and the maximum number
of iterations, generates random complex channel matrices, calls the function which
implements the iterative algorithm, and visualizes the results (cf. Listing A.13), while

• iia.m (cf. Listing A.2) is the actual implementation of the symmetric variant of the
distributed iterative optimization algorithm for solving the interference alignment
problem (cf. Algorithm 4.2).
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Convergence is achieved if and when the remaining leakage interference

K
k=1

|Ik|, (8.1)

where Ik is the total leakage interference at receiver Rk (cf. Equation 4.1), is less than
or equal the specified maximum remaining leakage interference. As a second stopping
criterion, a maximum number of iterations is utilized. Hence, the iteration stops in any
case, even if the leakage interference remains too high after the defined maximum number
of iterations.

8.2 Direct implementation

Another Matlab/Octave prototype has been implemented on the basis of the constructive
algorithm for solving the relaxed interference alignment decomposition problem (cf. Chap-
ter 6). This direct implementation encompasses the following Matlab/Octave source code
files:

• direct.m (cf. Listing A.3) lets the user decide which algorithm variant and input
parameters K, d, M , and N to use, generates a random complex global channel
matrix, calls the function which implements the appropriate constructive algorithm,
and visualizes the results (cf. Listing A.13),

• criadt__.m (cf. Listing A.4) is the implementation of the basic tridiagonal blocks
constructive algorithm variant CRIAD(t′′) (cf. Algorithm 6.1),

• criadt_.m (cf. Listing A.5) is the implementation of the enhanced tridiagonal blocks
constructive algorithm variant CRIAD(t′) (cf. Algorithm 6.2),

• criadt.m (cf. Listing A.6) is the implementation of the further enhanced tridiagonal
blocks constructive algorithm variant CRIAD(t) (cf. Algorithm 6.3),

• criadf.m (cf. Listing A.7) is the implementation of the full blocks constructive algo-
rithm variant CRIAD(f) (cf. Algorithm 6.4),

• criadb.m (cf. Listing A.8) is the implementation of the bidiagonal blocks constructive
algorithm variant CRIAD(b) (cf. Algorithm 6.5),

• prehouse.m (cf. Listing A.9) premultiplies a matrix by an (extended) Householder
matrix,

• posthouse.m (cf. Listing A.10) postmultiplies a matrix by an (extended) Householder
matrix,

• pregivens.m (cf. Listing A.11) premultiplies a matrix by a Givens matrix, and
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• postgivens.m (cf. Listing A.12) postmultiplies a matrix by a Givens matrix.

For applying a Householder reflection, the Householder vector h and the factor β (cf.
Definition 3.1) are obtained through a Matlab/Octave library function, which performs a
numerically stable computation that differs from Algorithm 3.1. Furthermore, in confor-
mance with [GV13, p. 236], the structure of Householder matrices is exploited in order to
reduce the number of operations required for a Householder matrix premultiplication or
postmultiplication.

Likewise, for applying a Givens rotation, the matrix coefficients c, s, and −s (cf. Def-
inition 3.3) are computed by a Matlab/Octave library function. By exploiting the simple
structure of a Givens matrix, the elements of only two rows or two columns are multiplied
by these Givens matrix coefficients [GV13, p. 241].

8.3 Numerical experiments

After briefly describing the iterative implementation in Section 8.1, two series of numerical
experiments with this implementation and their results shall be presented in this section.
The parameter values for these numerical experiments are listed in Table 8.1. In all ex-
perimental runs, the elements of the channel matrices were uniformly distributed random
complex numbers z with ℜ(z) ∈ (−10, 10) and ℑ(z) ∈ (−10, 10). As stated in Table 8.1,
the maximum remaining leakage interference was set to 10−5, i.e., the iteration did not
stop until

K
k=1

|Ik| ≤ 10−5 (8.2)

(cf. Equation 8.1). The maximum number of iterations was set to a value large enough
so that Equation 8.2 was always fulfilled before the maximum number of iterations was
reached.

Table 8.1: The parameter values for the numerical experiments with the iterative imple-
mentation.

First series Second series

K 4 6

d 2 4

M 4 12

N 6 16

Maximum remaining leakage interference 10−5 10−5

Maximum number of iterations 50000 500000

Experimental runs 1000 100
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Figure 8.1: The number of iterations required to reach remaining leakage interference of
less than or equal 10−5 for each experimental run.

The purpose of the numerical experiments has been to find out how many iterations are
required until Equation 8.2 is satisfied. Let ι1 ∈ N1000 and ι2 ∈ N100 denote the numbers
of iterations measured in the first and second series of experimental runs. Figure 8.1
illustrates these measured values per experimental run. Histograms with bin widths of
1000 and 10000 numbers of iterations for the first and second experimental series are
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Figure 8.2: Histograms of the number of iterations required to reach remaining leakage
interference of less than or equal 10−5.
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Table 8.2: Summary statistics of the number of iterations required to reach remaining
leakage interference of less than or equal 10−5.

First series Second series

Minimum min(ι1) = 152 min(ι1) = 5179

Maximum max(ι1) = 17629 max(ι2) = 245935

Arithmetic mean ῑ1 ≈ 1798 ῑ2 ≈ 52699

Lower quartile Q1(ι1) = 864 Q1(ι2) ≈ 32367

Median Q2(ι1) = 1338 Q2(ι2) = 43740

Upper quartile Q3(ι1) = 2116 Q3(ι2) ≈ 62758

Interquartile range IQR(ι1) = 1252 IQR(ι2) = 30391

Variance σ2(ι1) ≈ 2679534 σ2(ι2) ≈ 1187985596

Standard deviation σ(ι1) ≈ 1637 σ(ι2) ≈ 34467

shown in Figure 8.2. The histograms reveal a skewed right and presumably unimodal data
distribution. Table 8.2 lists summary statistics for ι1 and ι2. It follows that, on average,

ι1 = 1798± 1637 (8.3)

numbers of iterations are required for K = 4, d = 2, M = 4, and N = 6. Similarly, we can
see that, again on average,

ι2 = 52699± 34467 (8.4)
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Figure 8.3: Box plots of the number of iterations required to reach remaining leakage
interference of less than or equal 10−5.
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numbers of iterations are necessary for K = 6, d = 4, M = 12, and N = 16. Hence,
about thirty times the number of iterations are needed for increasing K from 4 to 6, d
from 2 to 4, M from 4 to 12, and N from 6 to 16. The lower quartiles, medians, upper
quartiles, and interquartile ranges—as listed in Table 8.2—are visualized in the box plots
in Figure 8.3. The lower and upper whiskers in these box plots represent the minima and
Q3(ιj) + 1.5 IQR(ιj), j ∈ {1, 2}, respectively. The points above the upper whiskers can be
considered outliers.

8.4 Operation counts

In this section, we are going to determine the computational cost of the iterative imple-
mentation (cf. Section 8.1) and the direct implementation (cf. Section 8.2) by counting
complex operations (cf. Section 3.3). Based on the experimental results for the iterative
implementation (cf. Section 8.3), we will then calculate and compare the particular oper-
ation counts for the parameter values K = 4, d = 2, M = 4, and N = 6 as well as K = 6,
d = 4, M = 12, and N = 16.

First, we are going to count the operations of the iterative implementation (cf. List-
ing A.2). In general, the matrix operation A + B, where A,B ∈ Cm×n, requires mn
complex additions, while the matrix operation AB, where A ∈ Cm×r and B ∈ Cr×n,
necessitates mn(r − 1) complex additions and mnr complex multiplications. Table 8.3
lists operation counts for single lines of the iterative implementation. It follows that the
initialization in Lines 54 to 56 of Listing A.2 requires

ωi := 2Kd2M (8.5)

operations. The first computation of Qk in Lines 58 to 63 needs

αi := K(K − 1)(2dMN − dN +MN2 −MN) (8.6)

additions and

µi := K(K − 1)(2dMN +MN2) (8.7)

multiplications. Furthermore, the optimization of the original network in Lines 70 to 79
necessitates

ωo := 25KN3 (8.8)

operations per iteration. The optimization of the reciprocal network in Lines 82 to 94
requires

αr := K(K − 1)(2dMN − dM +M2N −MN) (8.9)
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Table 8.3: Operation counts for single lines of the iterative implementation (cf. Listing A.2).

Line of Listing A.2 Operation count

55 2d2M [GV13, p. 255]

61, 101 NN +Nd(M − 1) +NM(d− 1) +NN(M − 1)

= 2dMN − dN +MN2 −MN additions and

NdM +NMd+NNM

= 2dMN +MN2 multiplications

73 25N3 [GV13, p. 391]

85 MM +Md(N − 1) +MN(d− 1) +MM(N − 1)

= 2dMN − dM +M2N −MN additions and

MdN +MNd+MMN

= 2dMN +M2N multiplications

88 25M3 [GV13, p. 391]

104 d− 1 + dN(N − 1) + dd(N − 1)

= d2N − d2 + dN2 − dN + d− 1 additions and

dNN + ddN

= d2N + dN2 multiplications

105 1 addition

additions,

µr := K(K − 1)(2dMN +M2N) (8.10)

multiplications, and

ωr := 25KM3 (8.11)

further operations, i.e., further additions and multiplications, per iteration. Finally, the
computation of the remaining leakage interference in Lines 98 to 106 needs

αl := K

(K − 1)(2dMN − dN +MN2 −MN) + d2N − d2 + dN2 − dN + d


(8.12)

additions and

µl := K

(K − 1)(2dMN +MN2) + d2N + dN2


(8.13)

multiplications per iteration. Hence, we know how many complex additions and multipli-
cations both the initialization and each iteration require. For ι iterations, summing up the
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Table 8.4: Operation counts for single lines of the direct implementation (bidiagonal blocks
variant, cf. Listing A.8).

Line of Listing A.8 Operation count

30 1 multiplication

31, 38 2 additions and 1 multiplication

35 2 additions
40 1 addition

43 3Kd+d+1
2 + 2 · 4Kd+d+1

2 KM (average)

= 4K2dM + 4KdM + 3
2Kd+ 4KM + 3

2d+
3
2

44 3Kd+K+d−1
2 + 2 · 4KN Kd+K+d−1

2 (average)

= 4K2dN + 4K2N + 4KdN + 3
2Kd− 4KN + 3

2K + 3
2d−

3
2

46 3Kd+d+1
2 + 2 · 4KN Kd+d+1

2 (average)

= 4K2dN + 4KdN + 3
2Kd+ 4KN + 3

2d+
3
2

47 3Kd+K+d−1
2 + 2 · 4Kd+K+d−1

2 KM (average)

= 4K2dM + 4K2M + 4KdM + 3
2Kd− 4KM + 3

2K + 3
2d−

3
2

52 20 + 2 · 6KN
= 12KN + 20

54 20 + 2 · 6KM
= 12KM + 20

above yields

αi + ιαr + ιαl = K

(K − 1)


(2ι+ 1)(2d− 1)MN + (ι+ 1)(MN2 − dN) +

ι(M2N − dM)

+ ιd(dN − d+N2 −N + 1)

 (8.14)

additions,

µi + ιµr + ιµl = K

(K − 1)


(4ι+ 2)dMN + (ι+ 1)MN2 + ιM2N


+

ιd(dN +N2)
 (8.15)

multiplications, and

ωi + ιωo + ιωr = K

2d2M + 25ι(N3 +M3)


(8.16)

further operations for the iterative implementation.

After having determined the operation count for the iterative implementation, we are
going to count the complex operations of the direct implementation, in particular the im-
plementation of the bidiagonal blocks algorithm variant CRIAD(b). Generally, computing
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Table 8.5: Operation counts for the iterative implementation (cf. Listing A.2) and the direct
implementation (bidiagonal blocks variant, cf. Listing A.8) for two examples: K = 4, d = 2,
M = 4, N = 6, ι = 1798 (first example) and K = 6, d = 4, M = 12, N = 16, ι = 52699
(second example).

Operation count

First example Second example

Iterative implementation 68804128 ≈ 6.9 · 107 72751451400 ≈ 7.3 · 1010

Direct implementation 12214 ≈ 1.2 · 104 419174 ≈ 4.2 · 105

the Householder vector h and the factor β (cf. Definition 3.1) for z ∈ Cm requires about
3m complex operations, and applying a Householder matrix H to a matrix A ∈ Cm×n

needs 4mn complex operations [GV13, p. 236]. The computation of the coefficients of a
Givens matrix G requires about twenty complex operations (if we define a square root as
four operations). Premultiplying or postmultiplying a matrix A ∈ Cm×n by G necessitates
6n or 6m complex operations [GV13, p. 241].

Table 8.4 lists (average) operation counts for single lines of Listing A.8 based on these
general operation counts. The maximum length of the Householder vector h in Lines 43
and 46 is Kd (if κ = 1 and δ = 1), the minimum length is d+ 1 (if κ = K − 1 and δ = d).
Hence, and since all lengths d + 1, d + 2, . . . ,Kd are assumed exactly once, the average
length is Kd+d+1

2 . Similarly, the maximum length of h in Lines 44 and 47 is Kd+K − 2

(if κ = 1 and δ = 1), and the minimum length again is d + 1 (if κ = K − 1 and δ = d).
The (approximate) average length thus is Kd+K+d−1

2 . Therefore, we count

(K − 1)


d


4K2dM + 4K2dN + 4K2N + 4KdM + 4KdN + 3Kd +

4KM − 4KN +
3

2
K + 3d+ 4


+ 12KN + 22


+ 4

(8.17)

(if N < M) or

(K − 1)


d


4K2dM + 4K2dN + 4K2M + 4KdM + 4KdN + 3Kd −

4KM + 4KN +
3

2
K + 3d+ 4


+ 12KM + 22


+ 4

(8.18)

(if N ≥M) operations for the bidiagonal blocks direct implementation.

On the basis of the experimentally determined numbers of iterations required by the
iterative implementation (cf. Equations 8.3 and 8.4), we are now able to compare the oper-
ation counts for the iterative and direct implementations for selected examples. Table 8.5
contrasts the operation counts of these two implementations for K = 4, d = 2, M = 4,
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N = 6, and ι = 1798, as well as K = 6, d = 4, M = 12, N = 16, and ι = 52699. The
results reveal that the iterative implementation needs orders of magnitude more operations
than the direct implementation. We want to emphasize again that the iterative and the
direct implementation solve a related but distinct problem. Hence, the comparison of the
operation counts can only provide a hint towards the potential of a direct solution to the
interference alignment decomposition problem.



Chapter 9

Conclusion

After we have introduced the method of interference alignment on the K-user interference
channel, we have defined the interference alignment problem based on the condition for
interference alignment from the literature. Next, we have reviewed an iterative optimiza-
tion algorithm by Gomadam et al. for solving the interference alignment problem. Since
there is no proof that this algorithm converges to a global optimum, we subsequently have
pursued the objective of finding a direct and optimal solution to the interference alignment
problem.

For this purpose, we have adopted a reformulation of the interference alignment problem
as an equivalent global matrix factorization problem. As a first step towards a general
direct solution, we have discussed several variants of a direct (constructive) algorithm that
solve the related but simplified relaxed interference alignment decomposition problem.
These algorithm variants apply Householder reflections and Givens rotations in order to
construct the global interference alignment matrix with bidiagonal, tridiagonal, and full
main diagonal blocks. In contrast to the other algorithm variants, the bidiagonal blocks
variant, which we have proved to solve the relaxed matrix factorization problem, is able to
accept all input parameters values that conform to the feasibility criteria for interference
alignment.

Afterwards, we have argued that, because of the required sparsity patterns, the ex-
tended global precoding and postcoding matrices cannot be products of Householder and
Givens matrices, and hence, there is no direct solution to the interference alignment decom-
position problem solely based on Householder reflections and Givens rotations. Eventually,
we have determined the operation counts for prototype Matlab/Octave implementations
of the iterative and direct algorithms. Based on numerical experiments with the iterative
implementation, we have discovered that the direct implementation needs considerably
less operations than the iterative implementation, which is another motivation for finding
a direct solution to not only the relaxed but also the general matrix factorization problem.

In Section 7.2 of Chapter 7, we have outlined a few possible approaches for finding such
a direct solution in future work. Apart from that, other interesting future tasks include the
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development of a more efficient iterative algorithm for solving the interference alignment
problem and the parallelization of the algorithms discussed in this thesis. It may also be
worthwhile to provide and benchmark efficient implementations of these algorithms.



Appendix A

Source code

This appendix lists the source code of prototype Matlab/Octave implementations of the
algorithms discussed in the previous chapters. The implementations are described in Chap-
ter 8.

Listing A.1: iterative.m

1 % The implementation is based on [Gui12, pp. 1−2].
2
3 K = input('K := ');

4 d = input('d := ');

5 M = input('M := ');

6 N = input('N := ');

7 fprintf('\n');

8
9 % Maximum remaining leakage interference

10 max_leak = 1e−10;
11
12 % Maximum number of iterations

13 max_iter = 1e5;

14
15 % Interval (a, b) for random numbers

16 a = −1e1;
17 b = 1e1;

18
19 % Random channel matrices

20 H = cell(K);

21 for k = 1 : K

22 for j = 1 : K

23 Re_H_kj = a + (b − a) * rand(N, M);

24 Im_H_kj = a + (b − a) * rand(N, M);

25 H{k, j} = Re_H_kj + 1i * Im_H_kj;

26 end

27 end
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28
29 % Iterative interference alignment

30 [U, V, leak, iter] = iia(H, K, d, M, N, max_leak, max_iter);

31
32 % Global matrix formulation

33 U_ = zeros(K * N, K * d);

34 H_ = cell2mat(H);

35 V_ = zeros(K * M, K * d);

36
37 for k = 1 : K

38 U_((k − 1) * N + 1 : k * N, (k − 1) * d + 1 : k * d) = U{k};

39 V_((k − 1) * M + 1 : k * M, (k − 1) * d + 1 : k * d) = V{k};

40 end

41
42 U_bar = [U_ null(U_')];

43 V_bar = [V_ null(V_')];

44
45 Sigma_bar = U_bar' * H_ * V_bar;

46
47 % Visualization of result

48 visualize(U_bar, 1e−13, 'U_bar');

49 visualize(Sigma_bar, 1e−5, 'Sigma_bar');

50 visualize(V_bar, 1e−13, 'V_bar');

51
52 if iter >= max_iter

53 disp('maximum number of iterations');

54 else

55 disp([num2str(iter) ' iterations']);

56 end

57
58 disp(['remaining leakage interference: ' num2str(leak)]);

Listing A.2: iia.m (cf. Algorithm 4.2)

1 function [U, V, leak, iter] = iia(H, K, d, M, N, max_leak, max_iter)

2 % IIA Distributed iterative optimization algorithm for solving the interference

3 % alignment problem (symmetric variant).

4 %

5 % [U, V, leak, iter] = IIA(H, K, d, M, N, max_leak, max_iter) returns the

6 % K x 1 cells U and V of N x d postcoding and M x d precoding matrices such

7 % that U{k}' * H{k, j} * V{j} is approximately equal to 0 for j ~= k. H is a

8 % K x K cell of N x M channel matrices, d is the degrees of freedom, M is the

9 % number of antennas at each transmitter, N is the number of antennas at each

10 % receiver, max_leak is the maximum remaining leakage interference, and

11 % max_iter is the maximum number of iterations.

12 %
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13 % The implementation is based on [GCJ11, alg. 1].

14
15 if nargin < 5

16 error('required: H, K, d, M, N');

17 elseif nargin < 7

18 max_iter = 1e4;

19
20 if nargin < 6

21 max_leak = 1e−4;
22 end

23 end

24
25 if K < 2 || d < 1

26 error('required: K >= 2, d >= 1');

27 elseif M < d || N < d

28 error('required: M >= d, N >= d');

29 elseif N * M <= d^2

30 error('required: N * M > d^2');

31 elseif N + M < (K + 1) * d

32 error('required: N + M >= (K + 1) * d');

33 elseif ~iscell(H)

34 error('required: iscell(H)');

35 elseif size(H, 1) ~= K || size(H, 2) ~= K

36 error('required: size(H, 1) == K, size(H, 2) == K');

37 end

38
39 for k = 1 : K

40 for j = 1 : K

41 if size(H{k, j}, 1) ~= N || size(H{k, j}, 2) ~= M

42 error('required: size(H{k, j}, 1) == N, size(H{k, j}, 2) == M');

43 end

44 end

45 end

46
47 Q = cell(K, 1);

48 U = cell(K, 1);

49 V = cell(K, 1);

50 U_rec = cell(K, 1);

51 V_rec = cell(K, 1);

52
53 % Initialization

54 for j = 1 : K

55 V{j} = orth(rand(M, d) + 1i * rand(M, d));

56 end

57
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58 for k = 1 : K

59 Q{k} = 0;

60 for j = setdiff(1 : K, k)

61 Q{k} = Q{k} + H{k, j} * V{j} * V{j}' * H{k, j}';

62 end

63 end

64
65 leak = realmax;

66 iter = 0;

67
68 while leak > max_leak && iter < max_iter

69 % Optimization original network

70 for k = 1 : K

71 % Q{k} already computed

72
73 [eig_vec, eig_val] = eig(Q{k});

74 [~, ind] = sort(diag(eig_val));

75 eig_vec = eig_vec(:, ind);

76 U{k} = eig_vec(:, 1 : d);

77
78 V_rec{k} = U{k};

79 end

80
81 % Optimization reciprocal network

82 for j = 1 : K

83 Q_rec_j = 0;

84 for k = setdiff(1 : K, j)

85 Q_rec_j = Q_rec_j + H{k, j}' * V_rec{k} * V_rec{k}' * H{k, j};

86 end

87
88 [eig_vec, eig_val] = eig(Q_rec_j);

89 [~, ind] = sort(diag(eig_val));

90 eig_vec = eig_vec(:, ind);

91 U_rec{j} = eig_vec(:, 1 : d);

92
93 V{j} = U_rec{j};

94 end

95
96 % Remaining leakage interference

97 leak = 0;

98 for k = 1 : K

99 Q{k} = 0;

100 for j = setdiff(1 : K, k)

101 Q{k} = Q{k} + H{k, j} * V{j} * V{j}' * H{k, j}';

102 end
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103
104 I_k = trace(U{k}' * Q{k} * U{k});

105 leak = leak + abs(I_k);

106 end

107
108 iter = iter + 1;

109 end

110
111 end

Listing A.3: direct.m

1 variant = input('CRIAD [f, t'''', t'', t, b]: ', 's');

2 K = input('K := ');

3 d = input('d := ');

4 M = input('M := ');

5 N = input('N := ');

6 fprintf('\n');

7
8 % Zero if absolute value smaller than epsilon

9 epsilon = 1e−13;
10
11 % Interval (a, b) for random numbers

12 a = −1e1;
13 b = 1e1;

14
15 % Random global channel matrix

16 Re_H = a + (b − a) * rand(K * N, K * M);

17 Im_H = a + (b − a) * rand(K * N, K * M);

18 H = Re_H + 1i * Im_H;

19
20 % Constructive relaxed interference alignment decomposition

21 switch variant

22 case 'f'

23 [U_hat, Sigma_bar, V_hat] = criadf(H, K, d, M, N);

24 case 't'''''

25 [U_hat, Sigma_bar, V_hat] = criadt__(H, K, d, M, N);

26 case 't'''

27 [U_hat, Sigma_bar, V_hat] = criadt_(H, K, d, M, N);

28 case 't'

29 [U_hat, Sigma_bar, V_hat] = criadt(H, K, d, M, N);

30 case 'b'

31 [U_hat, Sigma_bar, V_hat] = criadb(H, K, d, M, N);

32 otherwise

33 error(['unknown: ' variant]);

34 end
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35
36 % Visualization of result

37 visualize(U_hat, epsilon, 'U_hat');

38 visualize(Sigma_bar, epsilon, 'Sigma_bar');

39 visualize(V_hat, epsilon, 'V_hat');

40
41 % Correctness of result

42 if norm(U_hat * Sigma_bar * V_hat' − H) / norm(H) < epsilon

43 disp('result correct');

44 else

45 disp('result not correct');

46 end

Listing A.4: criadt__.m (cf. Algorithm 6.1)

1 function [U_hat, Sigma_bar, V_hat] = criadt__(H, K, d, M, N)

2 % CRIADT__ Constructive algorithm for solving the relaxed interference alignment

3 % decomposition problem (basic tridiagonal blocks variant).

4 %

5 % [U_hat, Sigma_bar, V_hat] = CRIADT__(H, K, d, M, N), where H is the KN x KM

6 % global channel matrix, d is the degrees of freedom, M is the number of

7 % antennas at each transmitter, and N is the number of antennas at each

8 % receiver.

9 %

10 % See also PREHOUSE, POSTHOUSE, PREGIVENS, POSTGIVENS.

11
12 if nargin < 5

13 error('required: H, K, d, M, N');

14 end

15
16 [KN, KM] = size(H);

17
18 if K < 2 || d < 1

19 error('required: K >= 2, d >= 1');

20 elseif M <= d || N <= d

21 error('required: M > d, N > d');

22 elseif K * N ~= KN || K * M ~= KM

23 error('required: size(H, 1) == K * N, size(H, 2) == K * M');

24 end

25
26 U_hat_H = eye(KN);

27 Sigma_bar = H;

28 V_hat = eye(KM);

29
30 tau_1 = KN;

31 tau_2 = KM;
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32
33 for kappa = 1 : K − 1

34 chi_1 = tau_1 − kappa + 1;

35 chi_2 = tau_2 − kappa + 1;

36
37 for delta = 1 : d − 1

38 psi = (kappa − 1) * d + delta;

39 phi = psi + 1;

40
41 [Sigma_bar, U_hat_H] = prehouse(Sigma_bar, phi, chi_1, psi, U_hat_H);

42 [Sigma_bar, V_hat] = posthouse(Sigma_bar, psi, phi, chi_2, V_hat);

43 end

44
45 psi = kappa * d;

46
47 for chi = kappa * d + 2 : chi_1

48 phi = chi − 1;

49
50 [Sigma_bar, U_hat_H] = pregivens(Sigma_bar, chi, phi, psi, U_hat_H);

51 end

52
53 for chi = kappa * d + 2 : chi_2

54 phi = chi − 1;

55
56 [Sigma_bar, V_hat] = postgivens(Sigma_bar, psi, chi, phi, V_hat);

57 end

58 end

59
60 U_hat = U_hat_H';

61
62 end

Listing A.5: criadt_.m (cf. Algorithm 6.2)

1 function [U_hat, Sigma_bar, V_hat] = criadt_(H, K, d, M, N)

2 % CRIADT_ Constructive algorithm for solving the relaxed interference alignment

3 % decomposition problem (enhanced tridiagonal blocks variant).

4 %

5 % [U_hat, Sigma_bar, V_hat] = CRIADT_(H, K, d, M, N), where H is the KN x KM

6 % global channel matrix, d is the degrees of freedom, M is the number of

7 % antennas at each transmitter, and N is the number of antennas at each

8 % receiver.

9 %

10 % See also PREHOUSE, POSTHOUSE, PREGIVENS, POSTGIVENS.

11
12 if nargin < 5
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13 error('required: H, K, d, M, N');

14 end

15
16 [KN, KM] = size(H);

17
18 if K < 2 || d < 1

19 error('required: K >= 2, d >= 1');

20 elseif M <= d || N <= d

21 error('required: M > d, N > d');

22 elseif K * N ~= KN || K * M ~= KM

23 error('required: size(H, 1) == K * N, size(H, 2) == K * M');

24 end

25
26 U_hat_H = eye(KN);

27 Sigma_bar = H;

28 V_hat = eye(KM);

29
30 tau_1 = KN;

31 tau_2 = KM;

32
33 for kappa = 1 : K − 1

34 chi_1 = tau_1 − kappa + 1;

35 chi_2 = tau_2 − kappa + 1;

36
37 for delta = 1 : d

38 psi = (kappa − 1) * d + delta;

39 phi = psi + 1;

40
41 [Sigma_bar, U_hat_H] = prehouse(Sigma_bar, phi, chi_1, psi, U_hat_H);

42 [Sigma_bar, V_hat] = posthouse(Sigma_bar, psi, phi, chi_2, V_hat);

43 end

44
45 [Sigma_bar, U_hat_H] = pregivens(Sigma_bar, chi_1, phi, psi, U_hat_H);

46 [Sigma_bar, V_hat] = postgivens(Sigma_bar, psi, chi_2, phi, V_hat);

47 end

48
49 U_hat = U_hat_H';

50
51 end

Listing A.6: criadt.m (cf. Algorithm 6.3)

1 function [U_hat, Sigma_bar, V_hat] = criadt(H, K, d, M, N)

2 % CRIADT Constructive algorithm for solving the relaxed interference alignment

3 % decomposition problem (further enhanced tridiagonal blocks variant).

4 %
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5 % [U_hat, Sigma_bar, V_hat] = CRIADT(H, K, d, M, N), where H is the KN x KM

6 % global channel matrix, d is the degrees of freedom, M is the number of

7 % antennas at each transmitter, and N is the number of antennas at each

8 % receiver.

9 %

10 % See also PREHOUSE, POSTHOUSE, PREGIVENS, POSTGIVENS.

11
12 if nargin < 5

13 error('required: H, K, d, M, N');

14 end

15
16 [KN, KM] = size(H);

17
18 if K < 2 || d < 1

19 error('required: K >= 2, d >= 1');

20 elseif M <= d || N <= d

21 error('required: M > d, N > d');

22 elseif K * N ~= KN || K * M ~= KM

23 error('required: size(H, 1) == K * N, size(H, 2) == K * M');

24 end

25
26 U_hat_H = eye(KN);

27 Sigma_bar = H;

28 V_hat = eye(KM);

29
30 tau = K * (d + 1) − 1;

31
32 for kappa = 1 : K − 1

33 chi = tau − kappa + 1;

34
35 for delta = 1 : d

36 psi = (kappa − 1) * d + delta;

37 phi = psi + 1;

38
39 [Sigma_bar, U_hat_H] = prehouse(Sigma_bar, phi, chi, psi, U_hat_H);

40 [Sigma_bar, V_hat] = posthouse(Sigma_bar, psi, phi, chi, V_hat);

41 end

42
43 [Sigma_bar, U_hat_H] = pregivens(Sigma_bar, chi, phi, psi, U_hat_H);

44 [Sigma_bar, V_hat] = postgivens(Sigma_bar, psi, chi, phi, V_hat);

45 end

46
47 U_hat = U_hat_H';

48
49 end
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Listing A.7: criadf.m (cf. Algorithm 6.4)

1 function [U_hat, Sigma_bar, V_hat] = criadf(H, K, d, M, N)

2 % CRIADF Constructive algorithm for solving the relaxed interference alignment

3 % decomposition problem (full blocks variant).

4 %

5 % [U_hat, Sigma_bar, V_hat] = CRIADF(H, K, d, M, N), where H is the KN x KM

6 % global channel matrix, d is the degrees of freedom, M is the number of

7 % antennas at each transmitter, and N is the number of antennas at each

8 % receiver.

9 %

10 % See also PREHOUSE, POSTHOUSE, PREGIVENS, POSTGIVENS.

11
12 if nargin < 5

13 error('required: H, K, d, M, N');

14 end

15
16 [KN, KM] = size(H);

17
18 if K < 2 || d < 2

19 error('required: K >= 2, d >= 2');

20 elseif M < 2 * d − 1 − (d − 1) / K || N < 2 * d − 1 − (d − 1) / K

21 error('required: M >= 2 * d − 1 − (d − 1) / K, N >= 2 * d − 1 − (d − 1) / K');

22 elseif K * N ~= KN || K * M ~= KM

23 error('required: size(H, 1) == K * N, size(H, 2) == K * M');

24 end

25
26 U_hat_H = eye(KN);

27 Sigma_bar = H;

28 V_hat = eye(KM);

29
30 tau = K * d + (K − 1) * (d − 1);

31
32 for kappa = 1 : K − 1

33 phi = kappa * d;

34 chi = tau − (kappa − 1) * (d − 1);

35 psi = (kappa − 1) * d + 1;

36
37 [Sigma_bar, U_hat_H] = prehouse(Sigma_bar, phi, chi, psi, U_hat_H);

38 [Sigma_bar, V_hat] = posthouse(Sigma_bar, psi, phi, chi, V_hat);

39
40 phi = kappa * d + 1;

41
42 for delta = 2 : d

43 chi = tau − (kappa − 1) * (d − 1) − delta + 2;

44 psi = (kappa − 1) * d + delta;
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45
46 [Sigma_bar, U_hat_H] = prehouse(Sigma_bar, phi, chi, psi, U_hat_H);

47 [Sigma_bar, V_hat] = posthouse(Sigma_bar, psi, phi, chi, V_hat);

48 [Sigma_bar, U_hat_H] = pregivens(Sigma_bar, chi, phi, psi, U_hat_H);

49 [Sigma_bar, V_hat] = postgivens(Sigma_bar, psi, chi, phi, V_hat);

50 end

51 end

52
53 U_hat = U_hat_H';

54
55 end

Listing A.8: criadb.m (cf. Algorithm 6.5)

1 function [U_hat, Sigma_bar, V_hat] = criadb(H, K, d, M, N)

2 % CRIADB Constructive algorithm for solving the relaxed interference alignment

3 % decomposition problem (bidiagonal blocks variant).

4 %

5 % [U_hat, Sigma_bar, V_hat] = CRIADB(H, K, d, M, N), where H is the KN x KM

6 % global channel matrix, d is the degrees of freedom, M is the number of

7 % antennas at each transmitter, and N is the number of antennas at each

8 % receiver.

9 %

10 % See also PREHOUSE, POSTHOUSE, PREGIVENS, POSTGIVENS.

11
12 if nargin < 5

13 error('required: H, K, d, M, N');

14 end

15
16 [KN, KM] = size(H);

17
18 if K < 2 || d < 1

19 error('required: K >= 2, d >= 1');

20 elseif M < d || N < d || (M == d && N == d)

21 error('required: M >= d, N > d or M > d, N >= d');

22 elseif K * N ~= KN || K * M ~= KM

23 error('required: size(H, 1) == K * N, size(H, 2) == K * M');

24 end

25
26 U_hat_H = eye(KN);

27 Sigma_bar = H;

28 V_hat = eye(KM);

29
30 tau_1 = K * d;

31 tau_2 = K * (d + 1) − 1;

32 chi_1 = tau_1;
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33
34 for kappa = 1 : K − 1

35 chi_2 = tau_2 − kappa + 1;

36
37 for delta = 1 : d

38 psi = (kappa − 1) * d + delta;

39 phi_1 = psi;

40 phi_2 = psi + 1;

41
42 if N < M

43 [Sigma_bar, U_hat_H] = prehouse(Sigma_bar, phi_1, chi_1, psi, U_hat_H);

44 [Sigma_bar, V_hat] = posthouse(Sigma_bar, psi, phi_2, chi_2, V_hat);

45 else

46 [Sigma_bar, V_hat] = posthouse(Sigma_bar, psi, phi_1, chi_1, V_hat);

47 [Sigma_bar, U_hat_H] = prehouse(Sigma_bar, phi_2, chi_2, psi, U_hat_H);

48 end

49 end

50
51 if N < M

52 [Sigma_bar, V_hat] = postgivens(Sigma_bar, psi, chi_2, phi_2, V_hat);

53 else

54 [Sigma_bar, U_hat_H] = pregivens(Sigma_bar, chi_2, phi_2, psi, U_hat_H);

55 end

56 end

57
58 U_hat = U_hat_H';

59
60 end

Listing A.9: prehouse.m

1 function [A, L] = prehouse(A, i_1, i_2, j, L)

2 % PREHOUSE Premultiply a matrix by an (extended) Householder matrix.

3 %

4 % A = PREHOUSE(A, i_1, i_2, j) returns A = H * A, where H is the (extended)

5 % Householder matrix computed by gallery('house', A(i_1 : i_2, j)).

6 %

7 % [A, L] = PREHOUSE(A, i_1, i_2, j, L) returns A = H * A and L = H * L, where

8 % H is the (extended) Householder matrix computed by

9 % gallery('house', A(i_1 : i_2, j)).

10 %

11 % The implementation is based on [GV13, p. 236].

12 %

13 % See also GALLERY, POSTHOUSE, PREGIVENS.

14
15 if nargin < 4
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16 error('required: A, i_1, i_2, j');

17 end

18
19 [m, n] = size(A);

20
21 if m < 2 || n < 2

22 error('required: size(A, 1) >= 2, size(A, 2) >= 2');

23 elseif i_1 >= i_2 || i_1 < 1 || i_1 > m || i_2 < 1 || i_2 > m

24 error('required: i_1 < i_2, 1 <= i_1 <= size(A, 1), 1 <= i_2 <= size(A, 1)');

25 elseif j < 1 || j > n

26 error('required: 1 <= j <= size(A, 2)');

27 end

28
29 [h, beta] = gallery('house', A(i_1 : i_2, j));

30
31 A(i_1 : i_2, :) = A(i_1 : i_2, :) − (beta * h) * (h' * A(i_1 : i_2, :));

32
33 if nargin >= 5

34 if size(L, 1) ~= m || size(L, 2) ~= m

35 error('required: size(L, 1) == size(L, 2) == size(A, 1)');

36 end

37
38 L(i_1 : i_2, :) = L(i_1 : i_2, :) − (beta * h) * (h' * L(i_1 : i_2, :));

39 end

40
41 end

Listing A.10: posthouse.m

1 function [A, R] = posthouse(A, i, j_1, j_2, R)

2 % POSTHOUSE Postmultiply a matrix by an (extended) Householder matrix.

3 %

4 % A = POSTHOUSE(A, i, j_1, j_2) returns A = A * H, where H is the (extended)

5 % Householder matrix computed by gallery('house', A(i, j_1 : j_2)').

6 %

7 % [A, R] = POSTHOUSE(A, i, j_1, j_2, R) returns A = A * H and R = R * H, where

8 % H is the (extended) Householder matrix computed by

9 % gallery('house', A(i, j_1 : j_2)').

10 %

11 % The implementation is based on [GV13, p. 236].

12 %

13 % See also GALLERY, PREHOUSE, POSTGIVENS.

14
15 if nargin < 4

16 error('required: A, i, j_1, j_2');

17 end
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18
19 [m, n] = size(A);

20
21 if m < 2 || n < 2

22 error('required: size(A, 1) >= 2, size(A, 2) >= 2');

23 elseif i < 1 || i > m

24 error('required: 1 <= i <= size(A, 1)');

25 elseif j_1 >= j_2 || j_1 < 1 || j_1 > n || j_2 < 1 || j_2 > n

26 error('required: j_1 < j_2, 1 <= j_1 <= size(A, 2), 1 <= j_2 <= size(A, 2)');

27 end

28
29 [h, beta] = gallery('house', A(i, j_1 : j_2)');

30
31 A(:, j_1 : j_2) = A(:, j_1 : j_2) − (A(:, j_1 : j_2) * h) * (beta * h)';

32
33 if nargin >= 5

34 if size(R, 1) ~= n || size(R, 2) ~= n

35 error('required: size(R, 1) == size(R, 2) == size(A, 2)');

36 end

37
38 R(:, j_1 : j_2) = R(:, j_1 : j_2) − (R(:, j_1 : j_2) * h) * (beta * h)';

39 end

40
41 end

Listing A.11: pregivens.m

1 function [A, L] = pregivens(A, i_1, i_2, j, L)

2 % PREGIVENS Premultiply a matrix by a Givens matrix.

3 %

4 % A = PREGIVENS(A, i_1, i_2, j) returns A = G * A, where G is the Givens

5 % matrix computed by givens(A(i_1, j), A(i_2, j)).

6 %

7 % [A, L] = PREGIVENS(A, i_1, i_2, j, L) returns A = G * A and L = G * L, where

8 % G is the Givens matrix computed by givens(A(i_1, j), A(i_2, j)).

9 %

10 % The implementation is based on [GV13, p. 241].

11 %

12 % See also GIVENS, POSTGIVENS, PREHOUSE.

13
14 if nargin < 4

15 error('required: A, i_1, i_2, j');

16 end

17
18 [m, n] = size(A);

19
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20 if m < 2 || n < 2

21 error('required: size(A, 1) >= 2, size(A, 2) >= 2');

22 elseif i_1 == i_2 || i_1 < 1 || i_1 > m || i_2 < 1 || i_2 > m

23 error('required: i_1 ~= i_2, 1 <= i_1 <= size(A, 1), 1 <= i_2 <= size(A, 1)');

24 elseif j < 1 || j > n

25 error('required: 1 <= j <= size(A, 2)');

26 end

27
28 G = givens(A(i_1, j), A(i_2, j));

29
30 for j_ = 1 : n

31 a_1 = A(i_1, j_);

32 a_2 = A(i_2, j_);

33 A(i_1, j_) = G(1, 1) * a_1 + G(1, 2) * a_2;

34 A(i_2, j_) = G(2, 1) * a_1 + G(2, 2) * a_2;

35 end

36
37 if nargin >= 5

38 if size(L, 1) ~= m || size(L, 2) ~= m

39 error('required: size(L, 1) == size(L, 2) == size(A, 1)');

40 end

41
42 for j_ = 1 : m

43 l_1 = L(i_1, j_);

44 l_2 = L(i_2, j_);

45 L(i_1, j_) = G(1, 1) * l_1 + G(1, 2) * l_2;

46 L(i_2, j_) = G(2, 1) * l_1 + G(2, 2) * l_2;

47 end

48 end

49
50 end

Listing A.12: postgivens.m

1 function [A, R] = postgivens(A, i, j_1, j_2, R)

2 % POSTGIVENS Postmultiply a matrix by a Givens matrix.

3 %

4 % A = POSTGIVENS(A, i, j_1, j_2) returns A = A * G, where G is the Givens

5 % matrix computed by givens(conj(A(i, j_1)), conj(A(i, j_2)))'.

6 %

7 % [A, R] = POSTGIVENS(A, i, j_1, j_2, R) returns A = A * G and R = R * G,

8 % where G is the Givens matrix computed by givens(conj(A(i, j_1)),

9 % conj(A(i, j_2)))'.

10 %

11 % The implementation is based on [GV13, p. 241].

12 %
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13 % See also GIVENS, PREGIVENS, POSTHOUSE.

14
15 if nargin < 4

16 error('required: A, i, j_1, j_2');

17 end

18
19 [m, n] = size(A);

20
21 if m < 2 || n < 2

22 error('required: size(A, 1) >= 2, size(A, 2) >= 2');

23 elseif i < 1 || i > m

24 error('required: 1 <= i <= size(A, 1)');

25 elseif j_1 == j_2 || j_1 < 1 || j_1 > n || j_2 < 1 || j_2 > n

26 error('required: j_1 ~= j_2, 1 <= j_1 <= size(A, 2), 1 <= j_2 <= size(A, 2)');

27 end

28
29 G = givens(conj(A(i, j_1)), conj(A(i, j_2)))';

30
31 for i_ = 1 : m

32 a_1 = A(i_, j_1);

33 a_2 = A(i_, j_2);

34 A(i_, j_1) = a_1 * G(1, 1) + a_2 * G(2, 1);

35 A(i_, j_2) = a_1 * G(1, 2) + a_2 * G(2, 2);

36 end

37
38 if nargin >= 5

39 if size(R, 1) ~= n || size(R, 2) ~= n

40 error('required: size(R, 1) == size(R, 2) == size(A, 2)');

41 end

42
43 for i_ = 1 : n

44 r_1 = R(i_, j_1);

45 r_2 = R(i_, j_2);

46 R(i_, j_1) = r_1 * G(1, 1) + r_2 * G(2, 1);

47 R(i_, j_2) = r_1 * G(1, 2) + r_2 * G(2, 2);

48 end

49 end

50
51 end

Listing A.13: visualize.m

1 function visualize(A, epsilon, name)

2 % VISUALIZE Visualize the sparsity pattern of a matrix.

3 %

4 % VISUALIZE(A, epsilon, name) prints nonzero elements of matrix A as 'X' and
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5 % zero elements, i.e., elements with absolute values smaller than epsilon, as

6 % '0'.

7
8 if nargin < 3

9 error('required: A, epsilon, name');

10 end

11
12 B = abs(real(A)) > epsilon | abs(imag(A)) > epsilon;

13 B = num2str(B);

14 B(B == '1') = 'X';

15
16 fprintf('%s =\n\n', name);

17 disp(B);

18 fprintf('\n');

19
20 end
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