

DIPLOMARBEIT / DIPLOMA THESIS

Titel der Diplomarbeit / Title of the Diploma Thesis

"Ist aus Torfmooren stammendes organisch gebundenes Eisen für marine Algen bioverfügbar?"

verfasst von / submitted by Hubert Wiesinger

angestrebter akademischer Grad / in partial fulfilment of the requirements for the degree of Magister der Naturwissenschaften (Mag.rer.nat.)

Wien, 2016 / Vienna, 2016

Studienkennzahl It. Studienblatt / degree programme code as it appears on the student record sheet:

Studienrichtung It. Studienblatt / degree programme as it appears on the student record sheet:

Betreut von / Supervisor:

A 190 423 445

Lehramtsstudium UF Chemie UF Biologie und Umweltkunde

ao. Univ.-Prof. Mag. Dr. Regina Krachler

Inhalt

1.Einleitung	3
1.2 Marines Phytoplankton	5
2 Marines Phytoplankton 3 Huminstoffe (HS)	
2. Ziele der Diplomarbeit	12
3. Material und Methoden	13
3.1 Setup	13
4. Ergebnisse	18
4.1 Ergebnisse von <i>C. salina</i> in unterschiedlichen Medien	18
4.2 Ergebnisse von C. salina mit unterschiedlichen HS- Konzentrationen	22
5. Zusammenfassung	28
6. Danksagung	29
7. Lebenslauf	30
Eisen Marines Phytoplankton Huminstoffe (HS) ele der Diplomarbeit aterial und Methoden Setup Experimenteller Ablauf Ergebnisse Ergebnisse von C. salina in unterschiedlichen Medien Ergebnisse von D. lutheri in unterschiedlichen Medien Bergebnisse von D. lutheri in unterschiedlichen Medien sammenfassung anksagung ebenslauf bbildungsverzeichnis	31
9. Abbildungsverzeichnis	35
10. Anhang	37

1.Einleitung

1.1 Eisen

Eisen, welches zur achten Gruppe des PSE gehört, ist das vierthäufigste Element in der Erdkruste nach Sauerstoff, Silizium und Aluminium, mit einen Gewichtsanteil von 6% (Press und Siever, 2008). Eisen ist ein essentielles Spurenelement für fast alle Organismen, nur für einige Arten von Bakterien ist nachgewiesen, dass sie Mangan statt Eisen in wichtigen Schlüsselproteinen benutzen können(Posey und Gherardini, 2000). In Organismen spielt es hauptsächlich als Fe²⁺ und Fe³⁺ eine wichtige Rolle. Der leichte Wechsel zwischen diesen beiden Oxidationszuständen:

$$Fe^{3+} + e^{-} \rightarrow Fe^{2+}$$
 $E^{0} = +0.77V$

ermöglicht es dem Eisen seine vielseitigen Rollen in biologischen Systemen zu erfüllen. Andererseits wirkt es im Überschuss durch seine Redoxeigenschaften stark toxisch, da es die Bildung von reaktiven Sauerstoffspezies katalysieren kann, wie z.B. Hydroxylradikale, welche Proteine, Lipide, Membrane und DNA schädigen (Dlouhy et al., 2013). Hauptsächlich kommt Eisen in Lösung in seiner dreiwertigen Form vor, da im basischen, aeroben Milieu Eisen schnell oxidiert wird. Dies spielt v.a. in marinen Umgebungen eine wichtige Rolle, da es essentiell für das Phytoplanktonwachstum ist (Martin und Fitzwater, 1988, DiTullio et al., 1993). Eisen tritt jedoch im marinen Oberflächengewässer nur in sehr geringen Konzentrationen auf, limitiert durch die geringe Löslichkeit von Eisen(III)hydroxid in aeroben, salinen Gewässern (Liu und Millero, 2002). Eisen erfüllt hierbei eine wichtige Rolle im Elektronentransport, im Sauerstoffmetabolismus, in der Stickstofffixierung, aber auch bei der Synthese von DNA, RNA und Chlorophyll (Weinberg, 1989).

Dies ist dadurch begründbar das im primordialen Ozean vor ca. 3*10⁹a während der Entstehung von photoautotrophen Leben, bedingt durch die reduktive Umwelt der frühen Erde und damit einhergehend einer guten Löslichkeit von Eisen im Ozean, Eisen leicht verfügbar war und somit, in Kombination mit dem leichten Wechsel zwischen den Oxidationszuständen Fe^{2+/}Fe³⁺, in wichtige basale Elektronentransportketten integriert wurde (Falkowski und Raven, 1997, Behrenfeld et al. , 2008).

Rezent haben, bedingt durch die schlechte Löslichkeit von Eisen in aerober und somit oxidativer Umgebung unter neutralem oder alkalischem pH, Zellen spezifische Strategien entwickelt das Metall zu assimilieren, wie die Reduktion von Fe(III)-Ionen zu den besser löslichen Fe(II)-Ionen oder die Bildung von Siderophoren (spezifische niedermolekulare Trägermoleküle, die eine hohe Affinität zu Fe besitzen und dieses komplexieren können) (Weinberg, 1989). Phytoplankton ist nicht in der Lage Siderophore zu bilden, jedoch Bakterien, die in enger Interaktion

mit dem Phytoplankton leben. Das Phytoplankton ist in der Lage, Siderophor gebundenes Fe aufzunehmen (Hopkins und Morel, 2009).

Durch Löslichkeitsversuche von Fe³⁺ konnte die Wichtigkeit von organischen Liganden, welche im Meerwasser in nM Bereich vorliegen, weiter untermauert werden (Wu und Luther, 1995). Es besteht ein Zusammenhang zwischen Fe-Aufnahmerate von marinen eukaryotischen Phytoplankton und der Konzentration an freien, nicht komplexierten Fe´ (Sunda und Huntsman, 1995). Bei diesem Modell bindet Fe´ an einem Oberflächenliganden an und wird anschließend durch die Plasmamembran transferiert. Die Aufnahmerate wird bestimmt durch die Rate des Ligandenaustausches zwischen der Fe-Spezies und eines Membrantransporters (Hudson und Morel, 1990).

Grundsätzlich gelangt Eisen auf verschiedene Wegen in die oberflächennahen Schichten der Ozeane: über atmosphärische Abscheidungen (z.B. Staub, vulkanische Asche, Meteoritenasche, usw.), über marine Prozesse (z.B. geschmolzenes Eis, das Aufsteigen von Tiefenwasser, usw.) oder durch Zuflüsse, wobei quantitativ v.a. Flüsse aus dem Einzugsgebiet von Mooren eine bedeutende Rolle spielen (Breitbarth et al., 2010; Krachler et al., 2010).

Ozeanisch gelöstes Fe stammt ursprünglich aus der Auflösung von eisenhaltigen Mineralien mit unterschiedlichen Quellen in und außerhalb des Ozeans. Bedingt durch die schlechte Löslichkeit und die effektive Aufnahme aus der Wassersäule sinkt der Eisengehalt drastisch, je weiter man von der Küste entfernt ist (Johnson et al., 1997). Frühe Studien identifizierten die Hauptquellen für Fe aus äolischen Transport und durch den Auftrieb von Tiefenwasser, welches eine höhere Eisenkonzentration hat als das Oberflächenwasser(Martin et. al, 1989).

Atmosphärische Langstreckentransporte durch äolischen Staub sind besonders bedeutsam für Fe, Mn und Co, welche in der Erdkruste relativ stark angereichert vorkommen. Die durchschnittliche Konzentration von gelösten Fe des atlantischen und pazifischen Ozeans ist bei 0,07 nmol kg⁻¹ und in einer Tiefe von 500m ist die Durchschnittskonzentration bei 0,76nmol kg⁻¹ (Johnson et al., 1997). In der Biomasse des Phytoplanktons wird Fe jedoch mit der Konzentration 1mmol Fe/mol C benötigt, was einer ca. 10⁶-fachen Anreicherung in der Zelle vgl. zum Medium entspricht und somit äußerst effektive Anreicherungsmechanismen voraussetzt(Morel und Price, 2003).

1.2 Marines Phytoplankton

Die Produktivität und das Wachstum von Phytoplankton sind maßgeblich von den Faktoren Licht, verschiedenen Nährstoffen und der Temperatur abhängig, wobei sich das Wachstum auf die euphotische Zone, mit einer Dicke von ca. 80 m im offenen Ozean, beschränkt, da nur hier genügend Licht für die Photosynthese vorhanden ist und somit die Photosyntheseleistung den respiratorischen Verbrauch übersteigt und somit mehr C fixiert als frei wird bzw. mehr O₂ frei als verbraucht wird. Diese dünne Schicht exportiert jedoch jährlich Milliarden an Tonnen CO₂ in die aphotische Zone, vermindert signifikant das Ausgasen von CO₂ aus aufsteigenden Tiefenwasser in die Atmosphäre und spielt durch die Abgabe von Schwefelverbindungen eine wichtige Rolle für die Wolkenbildung(Seguin et al., 2010). Es ist also eine Schicht, die großen Einfluss auf das Klima der Erde hat. So ist z.B. schon früh ein Potential als C-Senke für den südlichen Ozean vermutet worden (Wenk und Siegenthaler, 1985).

Im rezenten Ozean führt die NPP (Nettoprimärproduktion) durch marines Phytoplankton zur photosynthetischen Fixierung von ~45-50*10¹⁵g organischen Kohlenstoff pro Jahr, was ca. die Hälfte der Primärproduktion der Erde ist(~120*10¹⁵g), wovon ~16*10¹⁵g in die Tiefsee gelangen. Dieser Kohlenstofffluss ist getrieben durch eine Phytoplanktonbiomasse von ca. 10¹⁵g, was nur 0,2% der photosynthetisch aktiven Biomasse der Erde entspricht (Field et al., 1998). Somit ergibt sich eine durchschnittliche Umsatzrate von ca. einer Woche. Um diese hohe Teilungsrate aufrecht zu erhalten, die notwendig ist, um den hohen Druck der Weidegänger standzuhalten, müssen genügend essentielle Nährstoffe verfügbar sein (Falkowski et al. ,1998). Diese entsprechen dem Redfield Verhältnis mit C:N:P=106:16:1, wobei das Verhältnis von C:N:P im Plankton fast gleich ist dem umgebenden Meerwasser (Redfield, 1934) und somit wirken außerhalb der HNLC Regionen hauptsächlich N, P und Si als limitierende Faktoren. Da Phytoplankton die Basis der autochthonen Nahrungspyramide ist, erklärt sich die große Bedeutung des Redfield-Verhältnisses auf die Ozeanographie.

Zusätzlich zu C, N, P und Si (für Diatomeen) müssen jedoch noch Spurenelemente aufgenommen werden, welche mit einem Gehalt von <0,1 µM in der euphotischen Zone vorkommen. Die Konzentration sämtlicher Nährstoffe wird ebenfalls dadurch verringert, dass abgestorbene Zellen die nicht direkt abgebaut oder gefressen werden, absinken und dadurch sämtliche Nährstoffe, die sie enthalten, den oberflächennahen Wasser entzogen werden. Daraus folgt, dass sich der Gehalt an essentiellen Nährstoffe, aber auch der meisten Spurenelemente u.a. Fe verringert, bedingt durch die Primärproduktion und physikalische Prozesse, je näher man der Oberfläche kommt

(Bruland, 1980; Martin et al., 1989). Dies gilt auch für weitere Übergangsmetalle wie Kobalt, Nickel, Kupfer, Zink und Cadmium (Vraspir und Butler ,2009).

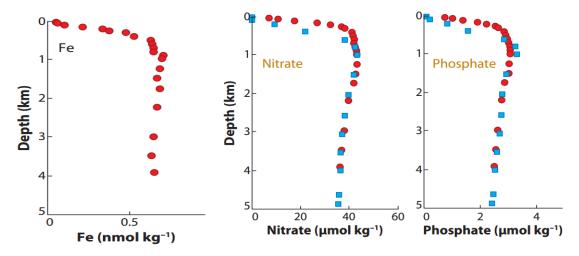


Abbildung 1:Tiefenprofil von Eisen, Nitrat und Phosphat. Daten aus dem nordpazifischen Ozean und den Golf von Alaska. Die blauen, quadratischen Datenpunkte sind von Bruland (1980), die roten Kreise von Martin et al. (1989). Graphik aus Vraspir und Butler (2009).

Das meiste organische Material, inklusive dem von Plankton produzierten mit einem Durchmesser <2µm(Picoplankton), wird an der Oberfläche remineralisiert. Essentielle Elemente werden so schnell durch Biota recycelt. Auch ein gewisser Teil der Nährstoffe, die durch den Abwärtsstrom abgestorbener Biomasse in die Tiefe gelangen, werden durch heterotrophe Bakterien remineralisiert und gelangen anschließend langsam über Diffusion wieder in die euphotische Zone (Morel und Price 2003).

Trotzdem ist Eisen der limitierende Faktor für die Primärproduktion in großen Teilen des Ozeans, den sogenannten HNLC Regionen(Martin und Fitzwater, 1988). In diesen Regionen, welche mehr als 20% der Weltmeere ausmachen, sind genug Makronährstoffe (PO₄, NO₃, SiO₃) für das Wachstum von Phytoplankton vorhanden, das Spurenelement Eisen wirkt jedoch begrenzend. Die großen HNLC Regionen befinden sich im subarktischen Ozean, im äquatorialen Pazifik und im antarktischen Ozean(südlicher Ozean)(vgl. Abb. 2 und 3).

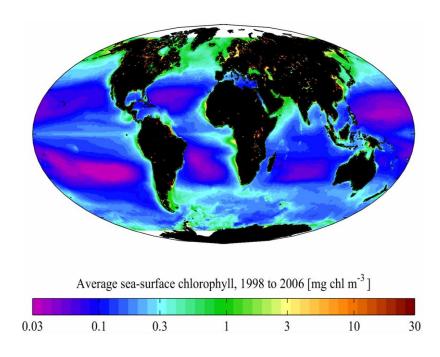


Abbildung 2: globale marine oberflächennahe Chlorophyllverteilung als Durchschnittswert von Janur 1998 bis Dezember 2006; Abb. aus World Ocean Atlas (2001) entnommen.

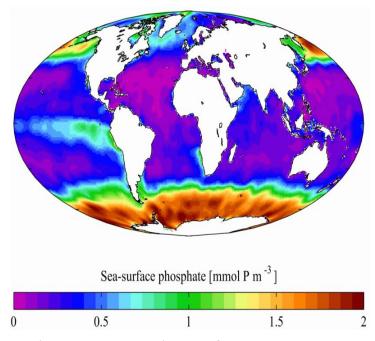


Abbildung 3:annuelles Mittel der globalen marinen oberflächennahen Phosphatkonzentration; Abb. aus World Ocean Atlas (2001) entnommen

Durch FeAXs (künstliche, mesoskale Eisenzugabe-Experimente) konnte endgültig bewiesen werden, dass Eisen der limitierende Faktor für das Phytoplanktonwachstum ist, da die Reaktion auf die Eisenzugabe zeigte, dass Fe die Dynamik des Algenwachstums kontrolliert, welche dann

den Kohlenstoff-, Stickstoff-, Silizium-, und Schwefelkreislauf beeinflusst, welche dann wiederum starke Auswirkungen auf das Klima der Erde haben.

Durch diese Experimente konnte die Auswirkung von Fe Zugabe auf die Primärproduktion und auf die Verwertung und den Export von Nährstoffen untersucht werden (Boyd et al., 2007). Die Experimente induzierten eine Diatomeen dominierte Algenblüte, begleitet von einer beachtlichen Senkung des CO₂-Gehalts des Oberflächenwassers.

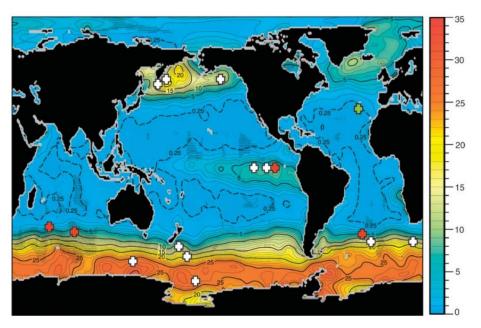


Abbildung 4: annuelles Mittel der globalen marinen oberflächennahen Nitratkonznetration in µmol l⁻¹ mit Markierungen für FeAXs (weißes Kreuz), FeNXs (rotes Kreuz) und FeeP (grünes Kreuz) (Boyd et al. ,2007).

FeAXs welche in Abb. 3 dargestellt sind: SEEDS I und SEEDS II (nordwestlicher Pazifik) SERIES (nordöstlicher Pazifik) IronEX I und IronEX II (äquatorialer Pazifik; II links von I) Eisen-Ex (polarer Atlantik) und EIFEX (südlich von Afrika), SOIREE (polare Gewässer südlich von Neuseeland), SOFEX-N (subpolare Gewässer südlich von Neuseeland) und SAGE (subpolare Gewässer, am nächsten zur Küste von Neuseeland) (Boyd et al, 2007).

Das genaue weitere Schicksal der produzierten Biomasse konnte jedoch im Rahmen der Experimente nur unzureichend aufgeklärt werden. Es gelang jedoch im südlichen Ozean ein Experiment durchzuführen, bei dem gezeigt werden konnte, dass nach dem Massenabstreben der Algen (vorwiegend Diatomeen)sich ein rasch sinkendes, schleimiges Aggregat aus verwickelten Zellen und Zellketten bildete, wobei ca. 50% als POC (partikulärer organischer Kohlenstoff) von der euphotischen Zone in eine Tiefe von 1000m absank (Smetacek et al., 2012).

Außerhalb von Algenblüten ist die Produktion und der POC Transport weitgehend entkuppelt und nur ca. 5-10% des POC gelangen in die Tiefe, wie mit Hilfe von ¹³⁴Th als Tracer herausge-

funden wurde (Buesseler, 1998). Kohlenstoff, welcher in die mesophelagische Zone(ca. 200-1000m Tiefe) oder tiefer gelangt, ist dort für Jahrzehnte bis Jahrhunderte von der Atmosphäre isoliert.

Für diese Arbeit wurde der marine Chlorophyta *Chlorella salina*, Butcher 1952 und der marine Haptophyta *Diacronema lutheri*, Droop (Basionym: *Monochrysis lutheri*, Droop 1953) verwendet. *D. lutheri* ist eine fast runde, einzellige, bewegliche Zelle mit einer gelblich grünen Plastide. Das Haptonema ist zwischen den haarigen anterioren Geißeln. Die Thylakoidlamellen sind parallel (Bendif, 2011). *C. salina* hat eine kugelförmige Gestalt, welche von einer dünnen, glatten Zellwand umgeben ist. Die Fortpflanzung erfolgt über sukzessive Teilungen der Mutterzellen in acht Tochterzellen, welche anschließend durch Aufplatzen der Zellwand freigesetzt werden. *C. salina* ähnelt morphologisch der im Süßwasser lebenden *C. vulgaris*, Beijerinck, aber die Zellwand ist dicker (Butcher, 1952).

1.3 Huminstoffe (HS)

HS sind eine komplexe und heterogene Mischung von polydispersen Materialien, welche im Boden, Sedimenten und im natürlichen Wasser durch biochemische und chemische Reaktionen während des Zerfalls und der Transformation von pflanzlichen und mikrobiellen Überresten gebildet wird (der Prozess wird Humifizierung genannt). Pflanzliches Lignin und seine Transformationsprodukte, Polysaccharide Melanin, Cutin, Proteine, Lipide, Nukleinsäuren, usw., sind wichtige Komponenten, welche an diesem Prozess teilnehmen. HS sind chemisch reaktiv, jedoch persistent gegenüber biologische Zersetzung. Man kann drei Hauptaktionen unterscheiden:

- Humine können weder mit einer starken Säure noch mit einer starken Base extrahiert werden.
- Huminsäuren (HA) und Fulvosäuren (FA) sind unter Verwendung einer starken Base aus dem Boden oder anderen festen Phasen extrahierbar. Aquatische HS enthalten nur HA und FA.
- HA sind unlöslich bei einem tiefen pH und fallen beim Ansäuern der Lösung mit HCl auf pH=1 aus (IHSS, 2007).

Für diese Arbeit ist der Eintrag durch Flüsse, welche aus Mooren kommen, von besonderem Interesse. Hierbei bilden Huminstoffe mit Metallen sehr stabile Chelatkomplexe.

Huminstoffe sind mit ca. 25% des gesamten organischen Kohlenstoffes der Erde und mit ca. 50% des gesamten organischen Kohlenstoffes in Süßgewässern und Ozeanen die häufigsten organischen Konstituenten in der terrestrischen und aquatischen Umwelt(Aiken et. al., 1985).Der

totale C-Gehalt auf der Erde in Huminstoffe ist somit mit ca. 55*10¹⁴ kg um mehr als das Zehnfache höher als der gesamte Kohlenstoff der Landbiomasse mit ca. 4,8*10¹⁴kg (Stevenson und Cole, 1999).

Huminstoffe entstehen v.a. als Abbauprodukte von terrestrischen Landpflanzen und leiten sich von der Ausgangssubstanz Lignin ab. Dies konnte durch die basische Kupferoxid-Oxidation (Ertel, 1984) oder durch die Thermochemolyse mit TMAH (Tetramethylammoniumhydroxid) (del Rio und Hatcher, 1995) gezeigt werden. Hierbei entstehen aus aquatischen Huminsubstanzen als Oxidationsprodukte phenolische Carboxylsäuren, welche dieselbe Struktur aufweisen, wie die Produkte, die bei der Oxidation von Lignin entstehen. Ebenso konnte durch die Verwendung von hochauflösender MS, also einer nicht abbauenden Methode, an einer SRFA(Suwanne River fulvic acid)-Probe die Lignin-Abstammungshypothese bestätigt werden, da viele Peaks an derselbem Masse auftraten wie bei einem abgebauten Extrakt aus Lignin (Kujawinski et al., 2002).

Die Stabilität und Löslichkeit von HS in mariner Umgebung ist stark abhängig von deren Struktur. Ebenso ist der Gehalt an HS in Flüssen unterschiedlich, wobei v.a. Flüsse, welche aus Mooren stammen und durch silikatisches Gestein fließen, einen großen Anteil an der Eisenversorgung der Meere tragen. Diese haben einen gelösten Fe-Gehalt von mehr als 8μmol L⁻¹.Unter der Annahme, dass 5% des Wassers, welches über Flüsse ins Meer gelangt, aus Mooren stammt, kommt man auf einen Eintrag von 15*10⁹ mol y⁻¹ (Krachler et al., 2005).

Es ist bekannt, dass aquatische Huminstoffe einen fördernden Effekt auf die mikrobielle Aktivität haben da sie als eine N-Quelle benutzt werden können (Hertkorn et al., 2002). Auch konnte gezeigt werden, dass zumindest manche Basidiomycota Huminstoffe unter C-limitierenden Bedingungen als C-Quelle nutzen können und das HS sich förderlich auf deren Wachstum auswirken, sowohl unter C-limitierenden als auch unter normalen Bedingungen (Klein, 2014).

Zu den in dieser Arbeit untersuchten Einfluss von HS auf das Wachstum von marinen Phytoplankton unter Fe-Mangel gibt es jedoch unterschiedliche Ergebnisse ob HS das Wachstum fördern oder hindern, je nach verwendeten HS. Bährs und Steinberg(2012) untersuchten den Einfluss von HuminFeed[®] und HS1500 an zwei verschiedenen Grünalgen und zwei Cyanobakterien. Bei diesen Untersuchungen wurde weder das Wachstum noch die Photosyntheseleistung durch die HS inhibiert sondern bei den beiden Grünalgen sogar gefördert. Ebenso stimulierten niedrige Konzentrationen HS das Wachstum besser als hohe Konzentrationen.

HS in aquatischen Flüssen, die aus Torfmooren kommen 'ist der Gehalt an "wirklich" gelösten Eisen mit ca. 3300nM mehr als 80 mal höher wie in einen durchschnittlichen Fluss, welcher ca. 40nM enthält (Krachler et al., 2010). Unter "wirklich" gelösten Eisen wird jene Fraktion ver-

standen, welche nach der Mischung mit Meerwasser noch in Lösung bleibt. Hierbei handelt es sich v.a. um Partikeln mit einer Masse von kleiner als 10kDa. Durch die Erhöhung der Salinität und des pH Wertes bei der Vermischung von Flusswasser mit Meerwasser im Mündungsgebiet werden ca. 80% des Eisen ausgefällt wie Krachler et al. (2010) durch Mischungsversuche zeigen konnten.

Das Fe, welches in Lösung bleibt, ist an starke Liganden gebunden. Auch in Versuchen mit kultivierten marinen Mikroorganismen konnten solche Chelatoren in dem Medium nachgewiesen werden. Die Komplexbildungskonstanten von Huminstoffen sind durchaus vergleichbar mit jenen von Siderophoren. Einige der Siderophore wurden charakterisiert und es wurde festgestellt, dass diese Ligandensysteme Hydroxamate und Katechole als funktionelle Gruppen enthalten (Martinez et al., 2001). Einige Siderophore besitzen lipophile Fettsäurereste mit variabler Länge und als Kopf eine α-Hydroxysäure zusätzlich zum Hydroxamat. In Abwesenheit von Fe bilden sie Mizelle, bei Zugabe von Fe kommt es zu einer spontanen Phasenumwandlung und diese Siderophore formen Vesikel (Martinez et al., 2000).

2. Ziele der Diplomarbeit

Die Hypothese war, dass zu mindestens einige Arten von marinen Phytoplankton in der Lage sind, durch Huminstoffe komplexiertes Eisen aus Torfmooren aufzunehmen und zu verwerten. Um diese Hypothese zu verifizieren, wurden Proben von *C. salina* in einem Medium ohne Eisen gegeben und mit Huminstoffen versetzt. Durch den Vergleich des Wachstums in diesem Medium mit dem Wachstum von *C. salina* mit dem künstlichen Komplexbildner EDTA und gänzlich ohne Eisen bzw. ohne EDTA können Rückschlüsse darauf gezogen werden, ob das in den Huminstoffen enthaltene Eisen verwertbar ist. Das Wachstum sollte über die Zellzahlen bestimmt werden.

Die zweite Hypothese, die überprüft werden sollte, war, ob und wie sich unterschiedliche Konzentrationen von Huminstoffen auf das Wachstum von *C. salina* auswirken. Dazu wurden unterschiedliche Konzentrationen an Huminstoffen zu den Proben gegeben (1/10, 1/5-mal so viel) und mit dem Wachstum verglichen, wenn man dieselbe Konzentration an Eisen mit EDTA zusetzt. Diese niedrigeren Konzentrationen sind auch näher an natürlich vorkommenden Konzentrationen und es ist somit interessant, auf welche Art und Weise sich die Kurven verändern, sobald man mit der Konzentration nach unten geht.

Ein weiteres Ziel war, zu überprüfen, ob die Huminstoffe auf verschiedene Phytoplanktonarten eine unterschiedliche Wirkung haben. Dazu wurde ein Versuch mit der marinen Phytoplanktonart *Diacronema lutheri* unter den gleichen Bedingungen wie zuerst mit *C. salina* durchgeführt, um anschließend die Wachstumskurven vergleichen zu können. Da *D. lutheri* dem Phylum Haptophyta entstammt, während *C. salina* ein Chlorophyta ist, kann man hier von zwei grundverschiedenen Taxa ausgehen. Gerade hinsichtlich Huminstoffen können sogar sehr eng verwandte Taxa wie z.B. *Monoraphidium convolutum* und *M. minutum*, zwei nahe verwandte Chlorophyta, sehr verschiedene Wachstumsreaktionen zeigen (Karasyova et al, 2007).

3. Material und Methoden

3.1 Setup

Alle Untersuchungen wurden mit den marinenen Phytoplanktonarten *Chlorella salina* Butcher oder *Diacronema lutheri* (Droop) Bendif & Véron durchgeführt, welche aus Sammlung von Algenkulturen (SAG) von der Universität Göttingen erhalten wurde. Sämtliche Experimente wurden in sterilisiertem 35‰ künstlichem Meerwasser (Kester et al., 1967) und mit modifizierten f/2 Medium (Guillard und Ryther, 1962, Guillard, 1975) ausgeführt (s. Abb. 3 und 4).

Salz	Molekulargewicht	g/kg Lösung	mol/l
	in g mol ⁻¹		
NaCl	58,44	23,926	0,409
Na ₂ SO ₄	142,04	4,008	2,8*10-2
KCl	74,56	0,677	9,1*10 ⁻³
NaHCO ₃	84,00	0,196	2,3*10-3
KBr	119,01	0,098	8,2*10 ⁻⁴
H ₃ BO ₃	61,83	0,026	4,0*10 ⁻⁴
NaF	41,99	0,003	7,14*10 ⁻⁵
MgCl ₂ *6H ₂ O	203,33	10,831	0,053
CaCl ₂ *2H ₂ O	147,03	1,518	0,010
SrCl ₂ *6H ₂ O	266,64	0,024	9,0*10 ⁻⁵

Abbildung 5: Zusammensetzung des künstliches Meerwasser nach Kester et al. ,1967

Salz	Molekulargewicht	g/kg Stammlösung	Konzentration in mol/l	
	in g mol ⁻¹		im finalen Medium	
NaNO ₃	84,99	75	8,82*10 ⁻⁴	
NaH ₂ PO ₄ *H ₂ O	137,99	5	3,62*10 ⁻⁵	
Na ₂ SiO ₃ *9H ₂ O	284,20	30	1,06*10 ⁻⁴	
CuSO ₄ *5H ₂ O	249,68	9,8	3,93*10 ⁻⁸	
ZnSO ₄ *7H ₂ O	287,54	22	7,65*10 ⁻⁸	
CoCl ₂ *6H ₂ O	237,93	10	4,20*10 ⁻⁸	
MnCl ₂ *4H ₂ O	197,90	180	9,10*10 ⁻⁷	
NaMoO ₄ *2H ₂ O	442,86	6,3	2,60*10 ⁻⁸	

Na ₂ EDTA	372,24	4,36	1,17*10 ⁻⁵
FeCl ₃ *6H ₂ 0	270,29	3,15	1,17*10 ⁻⁵
Cyanocobalamin (Vitamin B12)	1355,38	1	3,69*10 ⁻¹⁰
Biotin (Vitamin H)	244,31	1	2,05*10 ⁻⁹
Thiamin*HCl (Vitamin B1)	337,27	0,2	2,96*10 ⁻⁷

Abbildung 6: modifiziertes f/2 Medium nach Guillard und Ryther, 1962

Für die Herstellung der Spurenelementlösung wurde jeweils 1ml der Metalllösungen zusammen mit den 3,15 g FeCl3*6H2O und den 4,36g Na2EDTA mit dest. Wasser auf einen Liter aufgefüllt. Für die Vitaminlösung wurden 200mg Thiamin*HCl zusammen mit 1ml Biotin und 1ml Cyanocobalamin mit dest. Wasser auf einen Liter aufgefüllt. Zur Herstellung des Finalmediums wurde jeweils 1ml NaNO₃, NaH₂PO₄, Na₂SiO₃, Spurenelement- und Vitaminstammlösung mit 1l künstlichem Meerwasser vermischt.

Es wurde ≥99,999% reines NaCl von Fluka verwendet (Hexacyanoferrat (II)-Gehalt ≤ 1mg/kg) für die Spurenelement-Lösung wurde Eisen(III)chloridhexahydrat (puriss. P.a. ACS;98,0-102%(RT)) ebenfalls von Fluka verwendet. Es wurde zuerst eine Lösung mit 400ml Milipore-Wasser und dem Magnesium-, Calcium- und Strontiumsalz (volumetrische Salze) hergestellt. Die restlichen Salze (gravimetrische Salze) wurden extra in 600ml Milipore-Wasser gelöst. Anschließend wurden unter kontinuierlichen Rühren die beiden Lösungen langsam vermischt, um ein Ausfallen von Carbonaten zu vermeiden.

Die Kulturen wuchsen in 250ml DURAN Glasgefäßen mit GL 45 verschlossen mit PP Schraubverschluss. In die Deckel wurde mittels Schere ein ca. 0,5 cm breites Loch gebohrt, durch welches jeweils eine Pasteurpipette zur Belüftung gesteckt wurde. In die Löcher wurden kleine Schlauchstücke(Silikon 4/6mm) gesteckt, um einen möglichst guten Abschluss zwischen Pasteurpipette und Deckel zu gewährleisten und somit die Evapotranspiration zu minimieren.

Die Pasteurpipetten wurden mittels Schlauch (Silikon 4/6mm), welcher mittels Parafilm dauerhaft mit der Pipette verbunden wurde, kontinuierlich mit gefülterter Druckluft (Filter: Sartorius stedim 0,2µm mit vorgeschalteten 20 cm langen Kunststoffrohr befüllt, mit Aktivkohle abgedichtet mit Watte; Schlauch zwischen Aktivkohlefilter und Drucklufthahn: Siltube TR 60 6*10mm) versorgt, da in Voruntersuchungen ohne Belüftung der pH Wert innerhalb von wenigen Tagen stark angestiegen ist, was Kalkausfällung zur Folge hatte.

Die Temperatur wurde mittels Wasserbad auf 22°C konstant gehalten. Die Algen wurden mittels Magnetrührer ständig gerührt und während der Experimente mit Leuchtstofflampen (Osram L 58W/77 Fluora; Lichtstrom:2250 Im) in einem 16:8 Licht:Dunkel- Zyklus bestrahlt.

3.2 Experimenteller Ablauf

Vor den Versuchen wurde der pH Wert des Meereswassers mittels 0,1M NaOH Lösung auf 8,3 eingestellt .Nach Zugabe des f/2 Mediums wurde das Meerwasser durch einen 0,45 μm Cellulose-Acetat Filter sterilisiert und jeweils 200ml pro Kultur verwendet. Aus dem Inokulum wurde so viel Volumen zu den einzelnen Kulturen zugefügt, dass eine Anfangskonzentration von 9,2*10⁴ bei *Chlorella salina* und 6,7*10⁴ bei *Diacronema lutheri* gegeben war. Sämtliche Versuche wurden in Tripletts durchgeführt. Die Gefäße wurden zuvor mittels 2M HNO₃, anschließend mit 96% Ethanol und zweimal mit Milipore-Wasser gewaschen.

Die Zellzahlen wurden mittels Zählkammer (Neubauer improved) bestimmt und anschließend nach folgender Formel berechnet:

$$Zellen\ pro\ ml = \frac{Anzahlder Zellen}{ausgez \"{a}hlte Zellen (mm^2)*Kammertie fe (mm)*Verd\"{u}nnung}*1000$$

Die *Diacronema lutheri* wurden, um sie leichter zählen zu können, da sie sich bewegen, zuvor getötet. Dazu wurde 1ml Lösung entnommen und mit 1µl Formalin-Lösung (10%, neutral gepuffert, mit ca. 4% Formaldehyd) versetzt. Nach dem Auftragen auf die Zählkammer wurde ca. 1 min gewartet, bis alle Zellen abgesunken waren und anschließend wurde ausgezählt. Zur Zählung wurde das Mikroskop Reichert Jung Neovar 2 verwendet.

Im ersten Versuch mit *Chlorella salina* (26.05.2015 bis 09.06.2015) wurden folgende Medien angesetzt:

Mediumsbezeichnung	[Fe] in in mol 1-1 im Finalme-	Komplexbildner (Name) in
	dium	mol 1-1
Ideales Medium	1,17*10 ⁻⁵	(EDTA) 1,17*10 ⁻⁵
1/5 Huminstoffe	1,17*10 ⁻⁵	(Huminstoffe)
Ohne EDTA	1,17*10 ⁻⁵	0
Ohne Eisen	0	(EDTA) 1,17*10 ⁻⁵

Im zweiten Versuch mit *Chlorella salina*(23.06.2015 bis 14.07.2015) wurden folgende Medien verwendet:

Mediumsbezeichnung	[Fe] in in mol l-1 im Finalme-	Komplexbildner (Name) in
	dium	mol l-1
Ideales Medium	1,17*10 ⁻⁵	(EDTA) 1,17*10 ⁻⁵
Huminstoffe	1,17*10 ⁻⁵	(Huminstoffe)
Ohne EDTA	1,17*10 ⁻⁵	0
Ohne Eisen	0	(EDTA) 1,17*10 ⁻⁵
1/10 Huminstoffe	1,17*10 ⁻⁶	(Huminstoffe)
1/10 Eisen	1,17*10 ⁻⁶	(EDTA) 1,17*10 ⁻⁶

Im dritten Versuch mit *Diacronema lutheri* (14.09.2015 bis 05.10.2015)wurden folgende Ansätze verwendet:

Mediumsbezeichnung	[Fe] in in mol l-1 im Finalme-	Komplexbildner (Name) in
	dium	mol l-1
Ideales Medium	1,17*10 ⁻⁵	(EDTA) 1,17*10 ⁻⁵
Huminstoffe	1,17*10 ⁻⁵	(Huminstoffe)
Ohne EDTA	1,17*10 ⁻⁵	0
Ohne Eisen	0	(EDTA) 1,17*10 ⁻⁵

Die benötigten Huminstoffe wurden gewonnen, indem 11 Moorwasser aus dem Craggy Burn Fluss (Schottland) bis fast zur Trockene einrotiert wurde (nicht ganz, da sonst die Rückstände nur schwer wieder lösbar sind). Anschließend wurden 20 ml künstliches Meerwasser zugegeben und für mindestens 24h dunkel im Kühlschrank gelagert. Darauffolgend wurde mit künstlichem Meerwasser auf 50ml aufgefüllt.

Die braune Lösung wurde durch einen 0,45 μm Cellulose-Acetat Filter laufen gelassen, um den Niederschlag zu entfernen. Dann wurden der Probe 3 ml entnommen und mit 1ml konz. Salpetersäure (69.0%; TraceSELECT; von Fluka) angesäuert, um den Eisengehalt der Probe mittels Flammen-AAS zu bestimmen.

Die filtrierten Lösungen wurden dunkel im Kühlschrank gelagert und es wurde regelmäßig kontrolliert, ob sich partikuläres Material bildet. Dabei wurden Proben mit Niederschlagsbildung verworfen, die maximale Lagerzeit überstieg nie 4 Wochen.

Aus den Ergebnissen der Flammen-AAS wurde die Eisenkonzentration berechnet und zu den Huminstoff-Proben ein Volumen an Huminstoff Konzentrat zugegeben, sodass die Eisenkonzentration der des Idealmediums entspricht (1,17*10⁻⁵ mol 1⁻¹). Die Versuchsdauer betrug 21 Tage.

4. Ergebnisse

Die Flammen-AAS Messungen führten zu folgenden Ergebnissen: Der Eisengehalt der ursprünglichen Probe aus dem Craggy Burn beträgt 2,375 mg Eisen pro Liter. Die Konzentration in den einrotierten Proben nach der Mischung mit künstlichem Meerwasser betrug zwischen 4,8 und 6,5 mg Eisen pro Liter.

4.1 Ergebnisse von C. salina in unterschiedlichen Medien

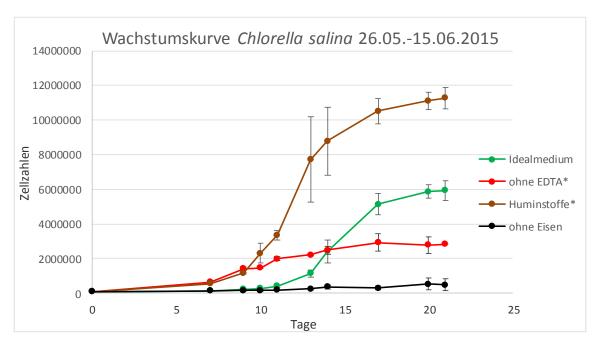


Abbildung 7: Wachstumskurve von *Chlorella salina* vom 26.05. bis 15.06.2015, wobei in brauner Farbe das Medium mit Huminstoffe(+HS;-Fe;-EDTA) dargestellt ist, in grüner Farbe das Idealmedium (+Fe;+EDTA;-HS), in roter Farbe ohne EDTA (-EDTA;+FE;-HS) und in schwarzer Farbe das Medium ohne Eisen (-Fe; +EDTA;-HS). Für die Huminstoffe und ohne EDTA wurden Dupletts verwendet, markiert durch * da ein Ausreißer gestrichen wurde(vgl. Abb. 7), sonst Tripletts.

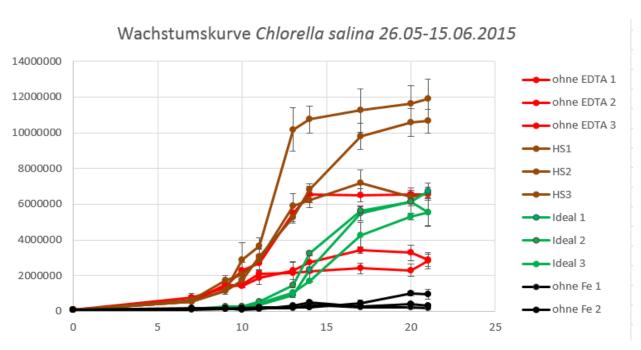


Abbildung 8: Wachstumskurve von *Chlorella salina* vom 26.05. bis 15.06.2015. Beschriftung wie in Abb. 6. Dargestellt sind die einzelnen Proben.

	0	7	9	10	11	13	14	17	20	21
ohne EDTA 1	92000	610000	1392500	2285417	2710417	5487500	6550000	6487500	6550000	6550000
ohne EDTA 2	92000	520000	1505000	1422500	1875000	2291667	2727778	3434152	3269444	2858333
ohne EDTA 3	92000	760000	1337500	1505208	2115972	2156250	2233333	2412500	2293333	2825000
HS1	92000	522500	1192500	2899148	3637500	10175000	10750000	11250000	11633333	11895833
HS2	92000	627500	1735000	2058333	2897917	5925000	6225000	7175000	6400000	6583333
HS3	92000	560000	1125000	1729167	3072222	5272917	6816667	9800000	10600000	10650000
Ideal 1	92000	110000	212500	287500	350000	910000	2313333	5487500	6150000	6750000
Ideal 2	92000	145000	277500	285000	540000	1440000	3258333	5637500	6116667	5533333,33
Ideal 3	92000	142500	212500	240000	440000	1060000	1670000	4269643	5316667	5516667
ohne Fe 1	92000	95000	122500	165000	182500	195000	373333	202500	200000	190000
ohne Fe 2	92000	170000	187500	105000	142500	330000	513333	272500	406667	316667
ohne Fe 3	92000	150000	145000	182500	207500	205000	223333	442500	1000000	963333

Tabelle 1: Gezählte Zellzahlen von Chlorella salina von 26.05-15.06.2015

	0	7	9	10	11	13	14	17	20	21
Ci	92000	132500	234167	270833	410830	1136667	2413889	5131548	5861111	5933333
ohne EDT	92000	640000	1421250	1463854	1995486	2223958	2480556	2923326	2781389	2841667
HS	92000	541250	1158750	2314157	3354861	7723958	8783333	10525000	11116667	11272917
ohne Fe	92000	138333	151667	150833	177500	243333	370000	305833	535556	490000

Tabelle 2: Zellzahlen von Chlorella salina, wobei hier jeweils der Mittelwert der Tripletts angegeben ist.

Man erkennt, dass nach einer Woche Wachstum sich die Zellzahlen der Proben ohne EDTA und mit HS sich von der Anfangskonzentration von 9,2*10⁴ auf ca. 60*10⁴ erhöht haben was einer Zunahme um das ca. 6,5fache entspricht, wobei die Zellen ohne EDTA sich am stärksten vermehrt haben. Die Kulturen mit dem Idealmedium und ohne Eisen haben währenddessen stagniert. Dieses Veralten setzt sich bis zum Tag 10 fort. Hier bildet sich dann der erste signifikante Unterschied zwischen den Zellzahlen im Idealmedium und dem Medium ohne Fe , die Zellzah-

len im Idealmedium beginnen ab hier stärker zu steigen. Die Phase des exponentiellen Wachstums ist bei den HS-Medium zwischen Tag 9 und 15, während bei den Medien ohne EDTA nur lineares Wachstum stattfindet, mit der Ausnahme der –EDTA Probe 1, die zwischen 10. und 13. Tag sehr stark wächst. Man erkennt, dass nach dem Tag 15 die Konzentrationen der Algen innerhalb der Standardabweichung relativ konstant bleiben. Die Algenkonzentration im Idealmedium und im HS-Medium bilden sigmoide Kurven, während die Wachstumskurve ohne EDTA eher linear ausfällt. Die Endkonzentration nach 21 Tagen ist bei den HS Proben bei 11,3*10⁶ und beim Idealmedium bei 5,9*10⁶, es entspricht also ca. der halben Konzentration der HS. Ohne EDTA ist die Endkonzentration bei 2,8*10⁶,also ca. der Hälfte des Idealmediums und bei der Probe ohne Fe bei 0,49*10⁶ ,also weniger als einem Zehntel bezogen auf das Idealmedium. Auffällig ist, dass die Wachstumskurven von –EDTA- und HS-Medium gut korrelieren, das Wachstum ohne EDTA jedoch nach ca. 10 Tagen einbricht und stagniert. Das Idealmedium beginnt hier erst zu wachsen, die Kurve ist nach rechts verschoben. Eine –Fe Kultur wächst in den letzten 2 Tagen noch von 0,30*10⁶ auf 4,9*10⁶.Da dieses Wachstum v.a. aus dem Wachstum einer einzelnen Probe resultiert, ist hier eine Kontamination mit Fe aus der Umgebung wahrscheinlich.

Diskussion

Anhand der Daten dieses Versuches lässt sich auf jeden Fall feststellen, dass *Chlorella salina* fähig ist, in einem Medium, in welchem das FeCl₃ und das Na₂EDTA durch Fe-HS ersetzt ist, zu wachsen, d.h. das Fe muss auf irgendeine Art und Weise für diese Phytoplanktonart bioverfügbar sein.

Da *C. salina* in den Kulturen mit HS sowohl deutlich schneller gewachsen ist, als auch höhere Konzentrationen erreicht haben, ist davon auszugehen, dass die HS eine wachstumsfördernde Wirkung haben. Wodurch genau dieser Effekt zustande kommt, kann nicht gesagt werden. Dass es im Medium ohne EDTA ebenfalls zu einem Wachstum kommt, kann unterschiedliche Gründe haben:

- *C. salina* kann das Fe intrazellulär speichern und an die Tochtergeneration weitergeben. Dies würde jedoch im Widerspruch dazu stehen, dass die Kultur ohne Fe überhaupt nicht gewachsen ist. Sämtliche Zellen wurden ja zuvor in einem Vollmedium gehalten und somit müssten die Speicher aufgefüllt sein und es müsste zumindest zu Beginn im Medium ohne Fe ein ähnliches Wachstum wie bei den anderen Kulturen zu beobachten sein.
- Das Fe ist in der Lösung enthalten, auch wenn kein Komplexbildner enthalten ist. Es fällt zwar als Niederschlag aus, ist aber noch immer im Gleichgewicht mit der Lösung.

Es kann dann sein, dass *C. salina* der Lösung diese geringen Eisenkonzentrationen beständig entziehen kann und sich das Fe aus dem Niederschlag wieder löst bis sich das Löslichkeitsgleichgewicht wieder eingestellt hat. Da die Lösung stark gerührt wird und das Volumen mit 200ml relativ gering ist, ist es durchaus möglich, dass die Algen zumindest bis zu einer gewissen Zellzahl Fe aus der Lösung gewinnen können.

Da es sich um eine axenische Kultur (SAG 8.86 Chlorella salina) handelt, sollte zumindest eine Kontamination mit Bakterien, welche Siderophore bei Eisenmangel synthetisieren, ausgeschlossen werden könne.

Man kann weiters sehen, dass sowohl ein Mangel an Fe als auch an Komplexbildner zu einer Inhibition des Wachstums führt. Dies würde auch gut mit den Ergebnissen von Kuma und Matsunaga übereinstimmen, die bei Versuchen mit Diatomeen und marinen Flagellaten feststellten, dass das Wachstum mit Fe-EDTA ca. doppelt so gut war wie mit amorphen Fe₂O₃*xH₂O. Ohne Fe und mit Zugabe von FeOOH wurde ebenfalls fast kein Wachstum gemessen. Sie schlussfolgerten, dass die Verfügbarkeit von kolloidalen Fe als Eisenressource für Phytoplankton von der thermodynamischen Stabilität und kinetischen Labilität der kolloidalen Eisenoxid-Phase abhängt(Kuma und Matsunaga, 1995).

Da das bei den Versuchen verwendete FeCl₃*6H₂O nach der Zugabe zum künstlichen Meerwasser zu Fe(H2O)₆³⁺ hydratisiert wird und anschließend durch Hydroxid-Ionen hydrolisiert zum Fe(OH)₃, welches dann fortlaufend durch Dehydration und Kristallisation altert über FeOOH zu Fe₂O₃*9H₂O und abschießend zuFe₂O₃, wobei die Löslichkeit fortlaufend sinkt (Kendall et al., 2012). Durch die zunehmend schlechtere Löslichkeit der Fe-Spezies würde sich die Abnahme des Wachstums der –EDTA-Lösung erklären lassen.

4.2 Ergebnisse von C. salina mit unterschiedlichen HS- Konzentrationen

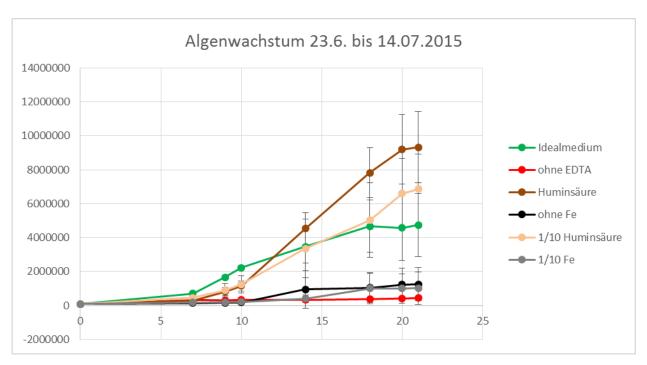


Abbildung 9: Wachstumskurve von *Chlorella salina* vom 26.05. bis 15.06.2015 wobei in brauner Farbe das Medium mit Huminstoffe(+HS;-Fe;-EDTA) dargestellt ist, in grüner Farbe das Idealmedium (+Fe;+EDTA) in roter Farbe ohne EDTA (-EDTA;+FE) und in schwarzer Farbe das Medium ohne Eisen (-Fe; +EDTA), in grauer Farbe 1/10 Fe (bezogen auf das Idealmedium) und in orange 1/10 HS(bezogen auf volle HS Konzentration).

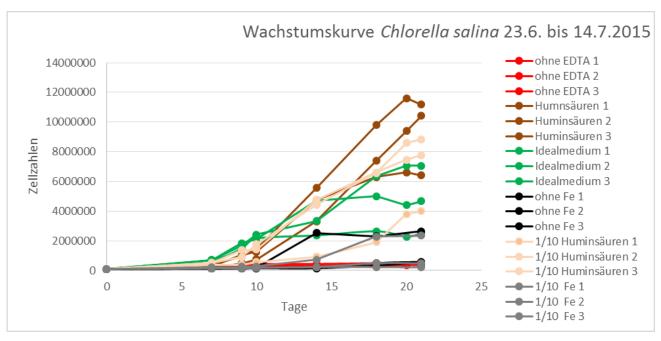


Abbildung 10: Wachstumskurve von *Chlorella salina* vom 23.06. bis 14.07.2015. Beschriftung wie in Abb. 9. Dargestellt sind die einzelnen Proben.

	0	7	9	10	14	18	20	21
ohne EDTA 1	92000	350000	222500	235000	235000	310000	367500	357500
ohne EDTA 2	92000	300000	327500	330000	330000	332500	397500	400000
ohne EDTA 3	92000	295000	375000	432500	440000	497500	492500	550000
HS1	92000	357500	940000	1460417	5566667	9800000	11600000	11183333,3
HS2	92000	192500	485000	747500	3300000	7383333	9400000	10416667
HS3	92000	295000	1035000	1256250	4733333	6300000	6600000	6400000
Ideal 1	92000	705000	1832500	2125000	4718750	5000000	4406250	4668750
Ideal 2	92000	722500	1490000	2155833	2366667	2641667	2287500	2516667
Ideal 3	92000	700000	1655833	2412500	3333333	6375000	7050000	7050000
ohne Fe 1	92000	172500	127500	222500	2525000	2306250	2575000	2643750
ohne Fe 2	92000	132500	195000	172500	187500	500000	580000	587500
ohne Fe 3	92000	112500	150000	155000	155000	345000	552500	550000
1/10 HS 1	92000	362500	400000	567500	923333	1913889	3800000	4008333
1/10 HS 2	92000	532500	907500	1764583	4416667	6566667	8583333	8833333
1/10 HS 3	92000	507500	1362500	1407500	4750000	6600000	7450000	7766667
1/10 Fe 1	92000	150000	127500	187500	236667	496667	500000	480000
1/10 Fe 2	92000	220000	195000	182500	233333	233333	273333	213333
1/10 Fe 3	92000	167500	257500	282500	733333	2283333	2225000	2358333

Tabelle 3: Gezählte Zellzahlen von Chlorella salina vom 26.05. bis 15.06.2015

	0	7	9	10	14	18	20	21
Ci	92000	709167	1659444	2231111	3472917	4672222	4581250	4745139
ohne EDTA	92000	315000	308333	332500	335000	380000	419167	435833
HS	92000	281667	820000	1154722	4533333	7827778	9200000	9333333
ohne Fe	92000	139167	157500	183333,333	955833	1050417	1235833	1260417
1/10 HS	92000	467500	890000	1246528	3363333	5026852	6611111	6869444
1/10 Fe	92000	179167	193333	217500	401111	1004444	1004444,44	1017222

Tabelle 4: Zellzahlen von Chlorella salina, wobei hier jeweils der Mittelwert der Tripletts angegeben ist.

Man erkennt, dass nach einer Woche Wachstum sich die Konzentration im Idealmedium von 9,2*10⁴ auf 70,1*10⁴ erhöht hat, was einer Zunahme um das 7,6fache entspricht und deutlich ausgeprägter ist als im ersten Versuch mit einer Zunahme um das 1,4fache. Die Zellzahlen im –EDTA-Medium haben um das 3,4fache zugenommen, was weniger ist als im ersten Versuch, ebenso im HS Medium (3,1fache). Die Kulturen ohne Fe sind nur um das 1,5fache gewachsen. Ebenfalls schwaches Wachstum zeigten die Zellen mit 1/10 Fe (1,9fache), während die Zellzahl mit 1/10 HS innerhalb der ersten Woche deutlich stärker zugenommen hat (5,1fache).

Das Wachstum im HS Medium ist dann jedoch im Zeitraum von Tag 7 bis 20 sehr stark, wobei die Konzentration um ca. 686 000Zellen/d steigt, was viel mehr ist als im Idealmedium mit 297 853 Zellen/d.

Die Endkonzentration nach 21 Tagen ist im HS-Medium wieder ca. doppelt so hoch wie im Idealmedium. Die Konzentration der 1/10 HS ist das 1,4 fache der Zellkonzentration im Idealmedium und das 6,8 fache des 1/10 Fe-Mediums. Das Wachstum im –EDTA Medium war verglichen mit dem ersten Experiment sehr schlecht, wobei die Endkonzentration unter einer halben Million blieb und sogar nur weniger als die Hälfte der Konzentration des –Fe-Mediums. Das Medium

mit 1/10 Fe zeigte unter Berücksichtigung der Standardabweichung keinen Unterschied zu dem Medium ohne Fe.

Diskussion

Verglichen mit dem ersten Versuch setzt das Wachstum des Idealmediums früher ein, die Zellzahlen nach 21 Tagen sind auch etwas niedriger. Vergleicht man jedoch das Verhältnis der Zellzahlen am Ende des Experiments vom HS zum Idealmedium, erhält man ähnliche Ergebnisse, es ist wieder ca. die doppelte Zelldichte im HS Medium. 1/10 der Fe-Konzentration des Idealmediums ist scheinbar nicht ausreichend, um genügend Fe für das Algenwachstum zur Verfügung zu stellen. Dies ist v.a. insofern interessant, da *C. salina* im Medium mit 1/10 HS, welches auch nicht mehr Fe enthält, sogar besser als das Idealmedium gewachsen ist. Hier ist offenbar das Fe, welches durch HS komplexiert besser bioverfügbar als das Fe, welches durch EDTA chelatiert wird. Es scheint, dass v.a. bei niedrigen Fe Konzentrationen die Art des Chelatliganden großen Einfluss auf das Algenwachstum hat. Diese Ergebnisse stimmen somit auch überein mit den Beobachtungen von Bährs und Steinberg(2012).

4.3 Ergebnisse von D. lutheri in unterschiedlichen Medien

Wachstumskurve Diacronema lutheri 14.09-02.10.2015

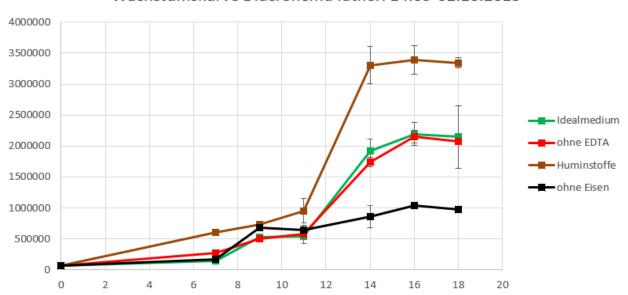


Abbildung 11: Wachstumskurve von *Diacronema lutheri* vom 14.09. bis 02.10.2015 wobei in brauner Farbe das Medium mit Huminstoffe(+HS;-Fe;-EDTA) dargestellt ist, in grüner Farbe das Idealmedium (+Fe;+EDTA) in roter Farbe ohne EDTA (-EDTA;+FE) und in schwarzer Farbe das Medium ohne Eisen (-Fe; +EDTA).

Wachstumskurve Diacronema lutheri 14.09-02.10.2015

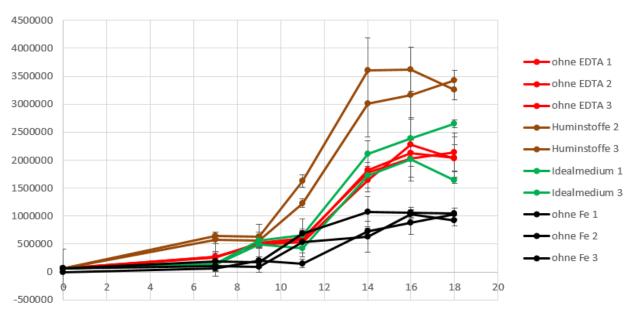


Abbildung 12: Wachstumskurve von *Diacronema lutheri* vom 14.09. bis 02.10.2015. Beschriftung wie in Abb. 11. Dargestellt sind die einzelnen Proben.

	0	7	9	11	14	16	18
ohne EDTA 1	67500	275000	485000	540000	1641667	2283333	2033333
ohne EDTA 2	67500	262500	520000	606667	1775000	2033333	2141667
ohne EDTA 3	67500	275000	507500	576667	1816667	2125000	2041667
HS2	67500	642500	627500	1628333	3606250	3625000	3258333
HS3	67500	580000	560000	1230000	3006250	3162500	3425000
Ideal 1	67500	137500	497500	425000	1725000	2008333	1641667
Ideal 3	67500	150000	557500	656667	2116667	2383333	2650000
ohne Fe 1	67500	105000	95000	533333	633333	1033333	923333
ohne Fe 2	67500	192500	170000	680000	1066667	1063333	1043333
ohne Fe 3	67500	195000	150000	720000	883333	1036667	970000

Tabelle 5: Zellzahlen von Diacronema lutheri von 14.09.-02.10.2015

	0	7	9	11	14	16	18
Ci	67500	143750	527500	540833	1920833	2195833	2145833
ohne EDTA	67500	270833	504167	574444	1744444	2147222	2072222
HS	67500	611250	730000	952778	3306250	3393750	3341667
ohne Fe	67500	164167	678889	644444	861111	1044444	978889

Tabelle 6: Zellzahlen von Diacronema lutheri wobei hier jeweils der Mittelwert der Tripletts angegeben ist.

Bei diesem Versuch mit *D. lutheri* ist eine HS und eine Idealkultur überhaupt nicht gewachsen, und deshalb musste hierbei mit Dupletts gearbeitet werden.

Diskussion

Die Zellzahlen im Idealmedium und mit HS sind nach 18 Tagen niedriger als bei den gleichen Setup mit *C. salina*. Die Zellzahlen im Medium ohne Fe entsprechen ca. denen des 2. Versuches mit *C. salina*. Auffällig ist das viel stärker ausgeprägte Wachstum von *D. lutheri* ohne EDTA im Vergleich zu *C. salina*, v.a. wenn man die niedrigeren Zellzahlen der Idealkultur berücksichtigt. Das Wachstum im –EDTA-Medium und im Idealmedium war unter Einbeziehung der Standardabweichung gleich stark ausgeprägt, d.h. der Zusatz des Chelatkomplexbildners hatte keinen Einfluss auf das Wachstum.

Da auch bei diesem Versuch das Wachstum im-Fe Medium stark verlangsamt ist, ist auch für *D. lutheri* Fe im Medium notwendig und es genügt nicht das interzellulär gespeicherte Fe. Bei *D. lutheri* handelt es sich um eine nicht axenische Kultur (SAG 926-1 *Diacronema lutheri*), wodurch es durchaus möglich ist, dass in der Kultur enthaltene Bakterien oder Pilze Siderophore in das Medium abgeben, die anschließend das Fe komplexieren und von *D. lutheri* als Eisenquelle benutzt werden können.

Eine weitere Möglichkeit ist das das Phytoplankton das Fe direkt aus der Lösung aufnehmen kann, da das ausgefallene Fe nicht entfernt wird. Wenn hierbei *D. lutheri* eine effektivere Strate-

gie hat als *C. salina* würde dies die höheren Zellzahlen im – EDTA Medium erklären. Es könnte auch sein das D. lutheri weniger Fe benötigt wobei eindeutig anhand des Zellwachstums im-Fe Medium gezeigt wurde, dass auch *D. lutheri* eine gewisse Fe-Zufuhr benötigt.

5. Zusammenfassung

An Hand der beiden mariner Phytoplanktonarten *Chlorella salina*, Butcher und *Diacronema lutheri*, Droop wurde die Bioverfügbarkeit von durch Huminsubstanzen komplexiertem Eisen für marines Phytoplankton getestet werden. Um diese zu überprüfen wurde *C. salina* unter Zugabe unterschiedlicher Konzentrationen an Huminstoffen (HS) gezüchtet. Als Kontrollprobe dient eine Lösung mit dem künstlichen Komplexbildner Ethylendiamintetraacetat(EDTA) und Eisen(Fe), eine Probe ohne Fe und eine Probe ohne EDTA dafür mit Fe. Um die natürlichen Bedingungen im Meer zu simulieren und gleichzeitig die genaue Zusammensetzung des Mediums zu kennen wurde künstliches Meerwasser benutzt. Als Medium für die Algen wurde das "Enriched Seawater Medium f/2" verwendet. Die Zelldichte der Algen wurde über Zählkammern(Neubauer improved) ausgewertet. Die Messungen wurden über den Testzeitraum(21d)periodisch wiederholt um die Wachstumskurven in Abhängigkeit vom Medium zu erhalten. Dabei konnte gezeigt werden das *C. salina* ca. doppelt so hohe Zellzahlen in einem Medium erreicht welches anstatt EDTA Huminstoffe als Komplexbildner enthält. Senkt man die Konzentration an Fe auf 1/10 sinkt das Wachstum stark ab. Wenn man unter diesen Bedingungen HS verwendet ist das Wachstum jedoch wieder fast so gut wie unter Idealbedingungen.

Dass die HS das Wachstum fördern wurde ebenfalls an *D. lutheri* bestätigt. Hier zeigte sich derselbe deutliche wachstumsfördernde Effekt wie bei *C. salina*. Bei den Kontrollproben ohne Fe war das Wachstum bei allen Versuchen inhibiert.

6. Danksagung

Herzlichen Dank für die Vergabe und Betreuung der Diplomarbeit an Ao. Univ. Prof. Mag. Dr. Regina Krachler. Sie unterstütze mich bei auftretenden Problemen und hatte immer wieder praktische Tipps zur Durchführung.

Weiters speziellen Dank an Mag. Dr. Franz Jirsa für die fortlaufende Unterstützung bei den Versuchen mit dem Phytoplankton und zahlreichen Ideen zur Verbesserung der Experimente.

Ebenfalls herzlichen Dank an Ewelina Orlowska, BSc, MSc die eine große Hilfe bei der Vorbereitung und Durchführung bei einige der Versuche war,

Sämtlichen KollegInnen der Arbeitsgruppe Umweltchemie und allen anderen KollegInnen mit denen ich arbeiten durfte.

Herzlichen Dank an meine Eltern für die finanzielle Unterstützung und Ermutigungen. Zuletzt noch herzlichen Dank an meine Freunde für die aufmunternde Unterstützung.

7. Lebenslauf

Angaben zur Person

Wiesinger Hubert

Buchberg 9,3571 Gars (Österreich)

Mobil.: 06802214228

Email: hubert.wiesinger@gmx.at

Schul-und Berufsbildung

09/2001-06/2009 Wirtschaftskundl. Realgymnasium, Krems/Donau

06/2009 **Matura**

07/2009-04/2010 **Zivildienst, Caritas**, Schrems (Österreich)

04/2010-06/2010 Behindertenbetreuer, Caritas, Schrems (Österreich)

10/2010- heute Universität Wien, Lehramtsstudium UF Chemie und UF Biologie und

Umweltkunde

Kenntnisse und Qualifikationen

Sprachen Deutsch (Erstsprache)

Englisch (fließend in Wort und Schrift)

Französisch (erweiterte Grundkenntnisse)

Führerschein B

Software Microsoft PowerPoint, Microsoft Word, Microsoft Excel

8. Quellen

- 1. Aiken, G.R., McKnight, D.M., Wershaw, R.L. MacCarthy, P. (1985). Isolation and concentration techniques for aquatic humic substances. Humic Substances in Soil, Sediment and Water. John Wiley & Sons New York S.363-385
- 2. Archer, D.E., Johnson, K. (2000). A model of the iron cycle in the ocean. Global Biogeochemical cycle 14(1), S.269-279
- Bährs H., Steinberg, C.E.W. (2012). Impact of two different humic substances on selected coccal green algae and cyanobacteria—changes in growth and photosynthetic performance. Environ Sci Pollut Res Vol. 19, S. 335-346
- 4. Behrenfeld, M.J., Halsey, K.H., Milligan, A.J. (2008). Evolved physiological responses of phytoplankton to their integrated growth environment. Phil. Trans. R. Soc. B 363, S. 2687-2703
- 5. Bendif, El Mahdi, Probert, Ian, Hervé, Annie, Billard, Chantal, Goux, Didier, Lelong, Christophe, Cadoret, Jean-Paul, Véron, Benoît. (2011). Integrative Taxonmy of the Pavlovophyceae (Haptophyta): A Reassessment. Protist, Vol. 162, S.738-761
- Boyd, P.W., Jickells, T., Law, C.S., Blain, S., Boyle, E.A., Buesseler, K.O., Coale, K.H., Cullen, J.J., de Baar, H.J.W., Follows, M., Harvey, M., Lancelot, C., Levasseur, M., Owens, N.P.J., Pollard, R., Rivkin, R.B., Sarmiento, J., Schoemann, V., Smetacek, V., Takeda, S., Tsuda, A., Turner, S., Watsn, A.J. (2007). Mesoscale Iron Enrichment Experiments 1993-2005:Synthesis and Future Directions. Science Vol.315(5812), S.612-617
- 7. Breithbarth, E. et al. (2010). Iron biogeochemistry across marine systems- progress from the past decade. Biogeosciences 7, S.1075-1097
- 8. Bruland, K.W. (1980).Oceanographic distributions of cadmium, zinc, nickel, and copper in the North Pacific. Earth Planet Sci Lett.Vol.47 S.176–98.
- 9. Buesseler, K.O. (1998) The decoupling of production and particulate export in the surface ocean. Global Biogeochem. Cycles Vol.12, S.297-310
- Butcher, R.W. (1952). Contributions to knowledge of the smaller marine algae in Journal of the Marine Biological Association of the United Kingdom Vol. 31 S.175-191.
- 11. Del Rio, J.C., Hatcher, P.G. (1995). Structural characterization of humic substances using thermochemolysis with tetramethylammonium hydroxide. American Chemical Society S.79-95

- 12. DiTullio, G.R., Hutchins D.A. Bruland K.W. (1993). Interaction of iron and major nutrients controls phytoplankton growth and species composition in the tropical North Pacific Ocean. Limnol Oceanogr Vol.38 S.495-508
- 13. Dlouhy, A.C., Outten, C.E. (2013). The Iron Metallome in Eukaryotic Organisms In: (Hg. Lucia Banci):Metallomics and the cell S.242-274
- 14. Ertel, J.R., Hedges, J.I., Perdue, E.M.(1984). Lignin signature of aquatic humic substances. Science, v. 223, S. 485-487
- 15. Falkowski, P.G., Barber, R.T., Smetacek, V.(1998). Biogeochemical controls and feedbacks on ocean primary production. Science Vol. 281(5374), S. 200-215
- Falkowski, P.G., Raven, J.A. (1997). Aquatic photosynthesis. Malden, MA: Blackwell Scientific
- 17. Field, C.B., Randerson, J.T., Behrenfeld, M.J., Falkowski, P., Randerson, J.T. (1998). Primary production of the biosphere: Integrating terrestrial and oceanic components. Science Vol. 281 (5374), S.237-240)
- 18. Guillard, R.R.L. (1975). Culture of phytoplankton for feeding marine invertebrates. pp Smith W.L. and Chanley M.H (Eds.) Culture of Marine Invertebrate Animals. Plenum Press, New York, USA. S. 26-60
- Guillard, R.R.L., Ryther, J.H. (1962). Studies of marine planktonic diatoms. I. Cyclotella nana Husted and Dentonula conferyacea Cleve. Can. J. Microbiol. Vol.8 S.220-239
- 20. Hertkorn, N., Claus, H., Schmitt-Kopplin, P.H., Perdue, E.M., and Filip, Z. (2002). Utilization and transformation of aquatic humic substances by autochthonous microorganisms. Environmental Science and Technology Vol.36 S.4334-4345.
- 21. Hopkins, B.M., Morel, F.M.M. (2009). The role of siderophores in iron acquisition by photosynthetic marine microorganism. BioMetals Vol. 22(4) S.659-669
- 22. Hudson, R.J.M., Morel,F.M.M. (1990). Iron transport in marine phytoplankton: Kinetics of cellular and medium coordination reactions. Limnol. Oceanogr. Vol. 35 S.1002-1020
- 23. IHSS (2007): http://www.humicsubstances.org/whatarehs.html (11.11.2015)
- 24. Johnson, K, Gordon, M.R., Coale, K.H. (1997). What controls iron concentrations in the world ocean?. Mar. Chem. Vol.57 S.137-161
- 25. Karasyova, T.A., Steinberg, C.E.W., Klose, E.O., Menzel, R. (2007). Natural Organic Matter Differently Modulates Growth of Two Related Coccal Green Algal Species. Env. Sci. Pollut. Res. Vol. 14 S.88-93

- 26. Kendall, B., Anbar, A.D., Kappler, A., Konhauser, K.O. (2012). The Global Iron Cycle. Fundamentals of Geobiology, Wiley, S.65-92
- 27. Kester, R. D., Duedall, I.W., Connors, D.N., Pyktowicz, R.M. (1967). Preparation of Artificial Seawater. Limnology and Oceanogrphy 12(1), S.176-179
- 28. Klein, O. I., Isakova, E.P., Deryabina Y.I., Kulikova, N.A., Badun, G.A., Chernysheva, M.G., Stepanova, E.V., Koroleva, O.V.(2014). Humic Substances Enhance Growth and Respiration in the Basidiomycetes Trametes Maxima Under Carbon Limited Conditions. Journal of Chemical Ecology Vol.40 S.643-652
- 29. Krachler, R. et al. (2010). Relevance of peat-draining rivers fort he riverine input of dissolved iron into the ocean. Science of the total environment 408,S.2402-2408
- 30. Krachler, R., Jirsa, F., Ayromlou, S. (2005). Factors influencing the dissolved iron input by river water to the open ocean. Biogeosciences 2 S. 311-315
- 31. Kujawinski, E.B., Hatcher, P.G., Freitas, M.A. (2002). High-Resolution Fourier Transform Ion Cyclotron Resonance Mass Spectrometry of Humic and Fulvic Acids: Improvements and Comparisons. Analytical Chemistry, Vol. 74, S.413-419
- 32. Kuma, K., Matsunaga, K. (1995). Availability of colloidal ferric oxides to coastal marine phytoplankton. Mar. Biol. Vol. 122 S.1-11
- 33. Liu, X.W., Millero, F.J. (2002). The solubility of iron in seawater, Mar. Chem., 77(1), S.43-54
- 34. Martin J.H., Gordon R.M., Fitzwater S., Broenkow W.W. (1989) Vertex: phytoplankton iron studies in the Gulf of Alaska. Deep-Sea Res Oceanogr Res Papers.Vol.36 S.649–80.
- 35. Martin J.H.; Fitzwater, S.E. (1988). Iron deficiency limits phytoplankton growth in the north-east Pacific subarctic. Nature, 331(6154), S.341-343
- 36. Martinez, J.S., Haygood, M.G., Butler, A.(2001). Identification of a natural desferrioxamine siderophore produced by a marine bacterium. Limnology and Oceanography Vol. 46(2) S.420-424
- 37. Martinez, J.S., Zhang, G.P., Holt, P.D., Carrano, C.J., Haygood, M.G., Butler, A. (2000). Self-Assembling Amphiphilic Siderophores from Marine Bacteria. Science Vol. 287(5456), S.1245-1247
- 38. Morel, F., Price, N. (2003). The biogeochemical cycles of trace metals in the oceans. Science Vol. 300(5621), S.944-947
- 39. Posey, J.E., Gherardini, F.C. (2000).Lack of a Role for Iron in the Lyme Disease Pathogen. Science, 288, S.1652-1653

- 40. Press, F., Siever, R.(2008). Allgemeine Geologie, Spektrum Akademischer Verlag, Heidelberg (5. Auflage) S. 12
- 41. Redfield, A.C. (1934). On the proportions of organic derivatives in sea water and their relation to the composition of plankton. Johnstone Memorial Volume S.177-192
- 42. SAG 8.86 Chlorella salina: http://sagdb.uni-goettingen.de/detailedList.php?str_number=8.86 (17.01.2016)
- 43. SAG 926-1 Diacronema lutheri: http://sagdb.uni-goettingen.de/detailedList.php?str_number=926-1 (17.01.2016)
- 44. Scheffer & Schachtschabel. (2010). Lehrbuch der Bodenkunde. Spektrum Akademischer Verlag.
- 45. Seguin, A.M., Norman, A., Eaton, S., Wadleigh, M., Sharma, S. (2010). Elevated biogenic sulphur dioxide concentrations over the North Atlantic. Atmospheric Environment, Vol. 44, S. 1139-144
- 46. Smetacek, V., Klaas, C., Strass, V.H., Assmy,P., Montresor,M., Cisewski,B., Savoye,n., Webb, A., D'ovidio,F., Arrieta, J.M., Bathmann,U., Bellerby, R., Berg, G.M., Croot,P., Gonzalez, S., Henjes J., Herndl, G.J., Hoffmann, L.J., Leach, H., Losch, M., Mills, M.M., Neill, C., Peeken,I., Röttgers, R., Sachs, O., Sauter E., Schmidt,M.M., Schwarz, J., Terbrüggen, A., Wolf-Gladrow,D. (2012). Deep carbon export from a Southern Ocean iron-fertilized diatom bloom. Nature Vol. 487(/407), S.313-319
- 47. Stevenson, F.J., Cole, M.A. (1999). Cycles of soil. Carbon, nitrogen, phosphorus, sulfur, micronutrients. Zweite Auflage. John Wiley & Sons, Inc., New York, S.427
- 48. Sunda, W.G., Huntsman, S.A. (1995). Iron uptake and growth limitation in oceanic and costal phytoplankton. Mar. Chem. Vol. 50 S.189-206
- 49. Vraspir, J.M., Butler, A. (2009). Chemistry of Marine Ligands and Siderophores. Ann Rev Mar Sci. Vol. 1 S. 43-63
- 50. Weinberg, E.D. (1989). Cellular regulation of iron assimilation. The Quarterly Review of Biology Vol.64 S.261-290
- 51. Wenk,T, Siegenthaler, U. (1985). The high-latitude ocean as a control of atmospheric CO₂ in Natural Variations Archean to Presen. Geophys. Monogr. Ser. Vol.32 S.185-194
- 52. Wu, J., Luther, G.W.(1995). Complexation of Fe(III) by natural organic ligands in the Northwest Atlantic Ocean by a competitive ligand equilibration method and a kinetic approach. Marine chemistry Vol.50 S.159-177

9. Abbildungsverzeichnis

Abbildung 1: Tiefenprofil von Eisen, Nitrat und Phosphat. Daten aus dem nordpazifischen Ozean und den Golf von Alaska. Die blauen, quadratischen Datenpunkte sind von Bruland (1980), die roten Kreise von Martin et al. (1989). Graphik aus Vraspir und Butler (2009).

Abbildung 2: globale marine oberflächennahe Chlorophyllverteilung als Durchschnittswert von Janur 1998 bis Dezember 2006; Abb. aus World Ocean Atlas (2001) entnommen

Abbildung 13:annuelles Mittel der globalen marinen oberflächennahen Phosphatkonzentration; Abb. aus World Ocean Atlas (2001) entnommen

Abbildung 14: annuelles Mittel der globalen marinen oberflächennahen Nitratkonznetration in µmol l-1 mit Markierungen für FeAXs (weißes Kreuz), FeNXs (rotes Kreuz) und FeeP (grünes Kreuz) (Boyd et al. ,2007).

Abbildung 5: Zusammensetzung des künstlichen Meerwassers nach Kester et al. ,1967

Abbildung 6: modifiziertes f/2 Medium nach Guillard und Ryther, 1962

Abbildung 7: Wachstumskurve von Chlorella salina vom 26.05. bis 15.06.2015, wobei in brauner Farbe das Medium mit Huminstoffe(+HS;-Fe;-EDTA) dargestellt ist, in grüner Farbe das Idealmedium (+Fe;+EDTA;-HS), in roter Farbe ohne EDTA (-EDTA;+FE;-HS) und in schwarzer Farbe das Medium ohne Eisen (-Fe; +EDTA;-HS). Für die Huminstoffe und ohne EDTA wurden Dupletts verwendet, markiert durch * da ein Ausreißer gestrichen wurde(vgl. Abb. 7), sonst Tripletts.

Abbildung 8: Wachstumskurve von Chlorella salina vom 26.05. bis 15.06.2015. Beschriftung wie in Abb. 6. Dargestellt sind die einzelnen Proben.

Abbildung 9: Wachstumskurve von Chlorella salina vom 26.05. bis 15.06.2015 wobei in brauner Farbe das Medium mit Huminstoffe(+HS;-Fe;-EDTA) dargestellt ist, in grüner Farbe das Idealmedium (+Fe;+EDTA) in roter Farbe ohne EDTA (-EDTA;+FE) und in schwarzer Farbe

das Medium ohne Eisen (-Fe; +EDTA), in grauer Farbe 1/10 Fe (bezogen auf das Idealmedium) und in orange 1/10 HS(bezogen auf volle HS Konzentration).

Abbildung 10: Wachstumskurve von Chlorella salina vom 23.06. bis 14.07.2015. Beschriftung wie in Abb. 8. Dargestellt sind die einzelnen Proben.

Abbildung 15: Wachstumskurve von Diacronema lutheri vom 14.09. bis 02.10.2015 wobei in brauner Farbe das Medium mit Huminstoffe(+HS;-Fe;-EDTA) dargestellt ist, in grüner Farbe das Idealmedium (+Fe;+EDTA) in roter Farbe ohne EDTA (-EDTA;+FE) und in schwarzer Farbe das Medium ohne Eisen (-Fe; +EDTA).

Abbildung 16: Wachstumskurve von Diacronema lutheri vom 14.09. bis 02.10.2015. Beschriftung wie in Abb. 11. Dargestellt sind die einzelnen Proben.

Tabellen

Tabelle 1: Gezählte Zellzahlen von Chlorella salina

Tabelle 2: Zellzahlen von *Chlorella salina*, wobei hier jeweils der Mittelwert der Tripletts angegeben ist.

Tabelle 3: Gezählte Zellzahlen von *Chlorella salina* vom 26.05. bis 15.06.2015

Tabelle 4: Zellzahlen von *Chlorella salina*, wobei hier jeweils der Mittelwert der Tripletts angegeben ist.

Tabelle 5: Zellzahlen von Diacronema lutheri

Tabelle 6: Zellzahlen von *Diacronema lutheri* wobei hier jeweils der Mittelwert der Tripletts angegeben ist.

10. Anhang
Daten von Chlorella salina 26.05.2015- 15.06.2015

26.05.2015		Ideal1		Ideal 2		Ideal 3	Mittelwer
Tag 7	120000	110000	130000	145000	270000	142500	132500
	90000		140000		120000		
	100000	SD	140000	SD	90000	SD	SD
	130000	15811	170000	15000	90000	74624	15943
		ohne EDTA 1	L	ohne EDTA 2		ohne EDTA	١3
	510000	610000	470000	520000	770000	760000	630000
	610000		570000		740000		
	600000	SD	520000	SD	750000	SD	SD
	720000	74498	520000	35355	780000	15811	98995
		HS1		HS2		HS3	
	460000	522500	500000	627500	600000	560000	570000
	410000		630000		570000		
	520000	SD	760000	SD	600000	SD	SD
	700000	109630	620000	92026	470000	53385	43445
		ohne Fe 1		ohne Fe 2		ohne Fe 3	
	90000	95000	320000	170000	170000	150000	138333
	190000		200000		170000		
	60000	SD	70000	SD	80000	SD	SD
	40000	57663	90000	99750	180000	40620	31710

28.05.2015		ideal1		Ideal 2		Ideal 3	Mittelwert
Tag 9	210000	212500	320000	277500	90000	212500	234167
	190000		250000		340000		
	220000	SD	310000	SD	200000	SD	SD
	230000	14790,2	230000	38324,27	220000	88706	30641
		ohne EDTA	<u>\ 1</u>	ohne EDTA	2	ohne EDT	4 3
	1350000	1392500	1630000	1505000	1370000	1337500	1411667
	1310000		1640000		1420000		
	1540000	SD	1510000	SD	1310000	SD	SD
	1370000	87856,4	1240000	161322,7	1250000	63786,8	69712
		HS1		HS2		HS3	
	1160000	1192500	1320000	1735000	1430000	1125000	1350833,3
	1170000		1660000		1130000		
	1150000	SD	2130000	SD	980000	SD	SD
	1290000	56734	1830000	292788,3	960000	187949	273041
		ohne Fe 1		ohne Fe 2		ohne Fe 3	
	150000	122500	230000	187500	100000	145000	151666,67
	100000		260000		210000		
	130000	SD	140000	SD	80000	SD	SD
	110000	19202,9	120000	58896,09	190000	55901,7	26952

29.05.2015		Ideal1		Ideal 2		Ideal 3	Mitt	telwert
Tag 10	370000	287500	250000	285000	160000	240000		270833
	210000		340000		400000			
	250000	SD	240000	SD	180000	SD	SD	
	320000	61796	310000	41533	220000	94868		21826
		ohne EDTA	L	ohne EDTA 2	2	ohne EDTA 3		
	2550000	2285417	1340000	1422500	1512500	1505208		1737708
	2875000		1300000		1300000			
	1883333	SD	1500000	SD	1575000	SD	SD	
	1833333	442624	1550000	104970	1633333	125947		388757
		HS1		HS2		HS3		
	4500000	2899148	1850000	2058333	2083333	1729167		2228883
	2437500		2016667		1883333			
	2454545	SD	2050000	SD	1550000	SD	SD	
	2204545	929515	2316667	167290	1400000	269097		492632
		ohne Fe 1		ohne Fe 2		ohne Fe 3		
	110000	165000	110000	105000	80000	182500		150833
	160000		90000		90000			
	250000	SD	110000	SD	230000	SD	SD	
	140000	52202	110000	8660	330000	103773		33187

30.05.2015		ideal1		Ideal 2		Ideal 3	Mittelwert
Tag 11	390000	350000	480000	540000	430000	440000	443333
	250000		550000		370000		
	320000	SD	530000	SD	540000	SD	SD
	440000	71764	600000	43012	420000	62048	77603
		ohne EDTA 1		ohne EDTA 2		ohne EDTA 3	
	2625000	2710417	1520000	1875000	1562500	1762500	2115972
	3350000		1280000		1737500		
	2500000	SD	2200000	SD	1750000	SD	SD
	2366667	380395	2500000	494039	2000000	155875	422837
		HS1		HS2		HS3	
	3850000	3637500	2725000	2897916,67	2450000	2681250	3072222,222
	2925000		2750000		2700000		
	4200000	SD	3216667	SD	2525000	SD	SD
	3575000	467206	2900000	195822	3050000	231419	409382
		ohne Fe 1		ohne Fe 2		ohne Fe 3	
	200000	182500	140000	142500	190000	207500	177500
	180000		200000		140000		
	160000	SD	90000	SD	180000	SD	SD
	190000	14790	140000	38971	320000	67592,5	26771

01.06.2015		ideal1		Ideal 2		Ideal 3	Mittelwert
Tag 13	1110000	910000	1540000	1440000	1040000	1060000	1136667
	800000		1590000		1080000		
	840000	SD	1280000	SD	1020000	SD	SD
	890000	119791	1350000	128647	1100000	31623	223060
		ohne EDTA	\ 1	ohne EDTA	1 2	ohne EDT	4 3
	5750000	5487500	2625000	2291667	3200000	2156250	3311806
	5400000		1516666,7		1700000		
	6000000	SD	2800000	SD	1850000	SD	SD
	4800000	450521	2225000	493605	1875000	606314	1539441
		HS1		HS2		HS3	
	9550000	1E+07	6250000	5925000	5350000	5272917	7124305,556
	10000000		4850000		5750000		
	10800000	SD	6000000	SD	4791666,7	SD	SD
	10350000	458939	6600000	656220	5200000	342954	2173531
		ohne Fe 1		ohne Fe 2		ohne Fe 3	
	250000	195000	380000	330000	220000	205000	243333,3333
	160000		360000		150000		
	150000	SD	230000	SD	260000	SD	SD
	220000	41533	350000	58737	190000	40311	61418

02.06.2015		ideal1		Ideal 2		Ideal 3	Mit	telwert
Tag 14	1150000	1285000	1540000	1440000	1040000	1060000		1261667
	1120000		1590000		1080000			
	1430000	SD	1280000	SD	1020000	SD	SD	
	1440000	150416	1350000	128647	1100000	31623		156009
		ohne EDTA 1	-	ohne EDTA 2	2	ohne EDTA 3		
	5750000	5487500	2625000	2291667	3200000	2156250		3311806
	5400000		1516667		1700000			
	6000000	SD	2800000	SD	1850000	SD	SD	
	4800000	450521	2225000	493605	1875000	606314		1539441
		HS1		HS2		HS3		
	9750000	10750000	6250000	6225000	5350000	5272916,67		7415972
	1E+07		5550000		5750000			
	1,2E+07	SD	6400000	SD	4791667	SD	SD	
	1,1E+07	761577	6700000	422049	5200000	342954		2389340
		ohne Fe 1		ohne Fe 2		ohne Fe 3		
	250000	195000	380000	330000	220000	205000		243333
	160000		360000		150000			
	150000	SD	230000	SD	260000	SD	SD	
	220000	41533	350000	58737	190000	40311		61418

03.06.2015			ideal1		Ideal 2		Ideal 3	Mittelwert
Tag 15		2220000	2313333	3050000	3258333	1330000	1670000	2413889
Daten von Ev	welina	2700000		2950000		1650000		
		2020000	SD	3775000	SD	2030000	SD	SD
			285346		367612		286124	652321
			ohne EDTA	۱ 1	ohne EDT	A 2	ohne EDTA 3	
		6800000	6550000	3216667	2727778	2533333	2233333,333	3837037
		6100000		2350000		1983333		
		6750000	SD	2616667	SD	2183333	SD	SD
			318852		362433		227303	1928945
			HS1		HS2		HS3	
		10050000	1E+07	6600000	6250000	6300000	6816667	7750000
		8500000		5400000		7300000		
		12000000	SD	6750000	SD	6850000	SD	SD
			1431976		604152		408928	1736109
			ohne Fe 1		ohne Fe 2		ohne Fe 3	
		280000	373333	420000	513333	410000	223333	370000
		290000		630000		110000		
		550000	SD	490000	SD	150000	SD	SD
			124989		87305		133000	118415

05.06.2015		ideal1		Ideal 2		Ideal 3	Mittelwer
17	5500000	5487500	5950000	5637500	4250000	4269643	5131548
	5250000		5500000		3500000		
	6150000		5400000		5400000		
	5050000	414390	5700000	210283	3928571	704765	
		ohne EDTA	.1	ohne EDTA	A 2	ohne EDTA 3	
	6400000	6487500	3642857	3434152	2425000	2412500	4111384
	6000000		3156250		2000000		
	7050000		3531250		2850000		
	6500000	374792	3406250	180965	2375000	301299	
		HS1		HS2		HS3	
	10350000	11250000	8050000	7175000	8800000	9800000	9408333
	9750000		6250000		9500000		
	12600000		7750000		10150000		
	12300000	1223213	6650000	746241	10750000	727152	
		ohne Fe 1		ohne Fe 2		ohne Fe 3	
	240000	202500	260000	272500	320000	442500	305833
	170000		280000		780000		
	190000		300000		320000		
	210000	25860	250000	19203	350000	195240	

08.06.2015		ideal1		Ideal 2		Ideal 3	Mittelwert
Tag 20	6500000	6150000	5100000	6116666,667	5400000	5316667	5861111
	5900000		7050000		5050000		
	6050000		6200000		5500000		SD
		254951		798262		192931	385221
		ohne EDTA	1	ohne EDTA 2		ohne EDT	A 3
	5950000	5666667	2733333,33	3269444,444	2130000	2293333	3743148
	5650000		3850000		1966667		
	5400000		3225000		2783333		SD
		224846		456959,2196		352840	1417308
		HS1		HS2		HS3	
	12100000	11633333	6400000	6400000	1,2E+07	1,1E+07	9544444,444
	10250000		6750000		1,1E+07		
	12550000		6050000		9700000		SD
		995266,6		285774		778888	2263124
		ohne Fe 1		ohne Fe 2		ohne Fe 3	
	270000	200000	520000	406666,6667	870000	1000000	535555,5556
	170000		330000		1150000		
	160000		370000		980000		SD
		49666		81786		115181	339076

09.06.2015		ideal1		Ideal 2		Ideal 3	Mittelwert
21	7250000	6750000	5850000	5533333	5350000	5516666,667	5933333
	6200000		4450000		6450000		
	6800000		6300000		4750000		SD
		430116		787753		703957	577511
		ohne EDTA 1		ohne EDTA 2		ohne EDTA 3	
	6600000	6550000	2400000	2858333,33	3300000	2825000	4077778
	6750000		3175000		2225000		
	6300000		3000000		2950000		SD
		187083		331872		447679	1748178
		HS1		HS2		HS3	
	1,3E+07	11895833	6300000	6583333	1E+07	10650000	9709722
	1,1E+07		6350000		1E+07		
	1,2E+07		7100000		1,2E+07		SD
		1123069		365908		672062	2268444
		ohne Fe 1		ohne Fe 2		ohne Fe 3	
	250000	190000	190000	316666,667	670000	963333	490000
	230000		440000		900000		
	90000		320000		1320000		SD
		71181		102089		269114	338668

Daten von Chlorella salina 23.06.2015- 14.07.2015

30.06.2015		ideal1		Ideal 2		Ideal 3	Mitt	elwert
Tag 7	690000	705000	920000	722500	810000	700000		709167
	890000		570000		650000			
	600000	SD	690000	SD	630000	SD	SD	
	640000	111467	710000	125971	710000	70000		9647
		ohne EDTA 1		ohne EDTA 2		ohne EDTA 3		
	220000	350000	350000	300000	300000	295000		315000
	440000		270000		270000			
	420000	SD	280000	SD	320000	SD	SD	
	320000	87750	300000	30822	290000	18028		24833
		HS1		HS2		HS3		
	360000	357500	220000	192500	280000	295000		281667
	290000		130000		250000			
	400000	SD	240000	SD	340000	SD	SD	
	380000	41458	180000	42057	310000	33541		68018
		ohne Fe 1		ohne Fe 2		ohne Fe 3		
	150000	172500	110000	132500	50000	112500		139167
	220000		200000		140000			
	160000	SD	100000	SD	140000	SD	SD	
	160000	27726	120000	39607	120000	36997		24944
		1/10 HS 1		1/10 HS 2		1/10 HS 3		
	320000	362500	610000	532500	490000	507500		467500
	180000		480000		530000			
	530000	SD	480000	SD	470000	SD	SD	
	420000	128914	560000	55396	540000	28614		74944
		1/10 Fe 1		1/10 Fe 2		1/10 Fe 3		
	140000	150000	230000	220000	110000	167500		179167
	130000		240000		170000			
	170000	SD	220000	SD	170000	SD	SD	
	160000	15811	190000	18708	220000	38971		29744

01.07.2015		ideal1		Ideal 2		Ideal 3	Mit	telwert
Tag 9	1750000	1832500	1460000	1490000	1866667	1655833,33		1659444
	2500000		1550000		1410000			
	1230000	SD	1420000	SD	1716667	SD	SD	
	1850000	451574	1530000	52440	1630000	165267		139848
		ohne EDTA 1		ohne EDTA 2		ohne EDTA 3		
	180000	222500	470000	327500	410000	375000		308333
	290000		280000		320000			
	150000	SD	310000	SD	350000	SD	SD	
	270000	58896	250000	84963	420000	41533		63716
		HS1		HS2		HS3		
	970000	940000	470000	485000	1160000	1035000		820000
	860000		400000		930000			
	1240000	SD	530000	SD	1040000	SD	SD	
	690000	199875	540000	55902	1010000	82614		240035
		ohne Fe 1		ohne Fe 2		ohne Fe 3		
	110000	127500	280000	195000	170000	150000		157500
	100000		100000		170000			
	170000	SD	330000	SD	80000	SD	SD	
	130000	26810	70000	111915	180000	40620		28062
		1/10 HS 1		1/10 HS 2		1/10 HS 3		
	410000	400000	870000	907500	1450000	1362500		890000
	500000		860000		1280000			
	390000	SD	880000	SD	1260000	SD	SD	
	300000	71063	1020000	65336	1460000	92837		393134
		1/10 Fe 1		1/10 Fe 2		1/10 Fe 3		
	110000	127500	200000	195000	200000	257500		193333
	100000		180000		160000			
	170000	SD	280000	SD	310000	SD	SD	
	130000	26810	120000	57228	360000	80739		53085

02.07.2015		ideal1		Ideal 2		Ideal 3	Mittelwert
Tag 10	2500000	2125000	1430000	2155833,33	2725000	2412500	2231111
	1725000		2583333		2316667		
	2150000	SD	2500000	SD	2375000	SD	SD
	2125000	274431	2110000	455561	2233333	187315	128878
		ohne EDTA 1		ohne EDTA 2		ohne EDTA 3	
	330000	235000	330000	330000	540000	432500	332500
	180000		230000		610000		
	110000	SD	400000	SD	350000	SD	SD
	320000	93408	360000	62849	230000	150727	80648
		HS1		HS2		HS3	
	1516666,67	1460417	800000	747500	1325000	1256250	1154722
	1525000		740000		1020000		
	1280000	SD	680000	SD	1400000	SD	SD
	1520000	104206	770000	44371	1280000	142976	299770
		ohne Fe 1		ohne Fe 2		ohne Fe 3	
	240000	222500	190000	172500	140000	155000	183333
	280000		220000		130000		
	90000	SD	150000	SD	190000	SD	SD
	280000	78222	130000	34911	160000	22913	28602
		1/10 HS 1		1/10 HS 2		1/10 HS 3	
	530000	567500	1616667	1764583,33	1070000	1407500	1246527,78
	620000		2000000		1150000		
	540000	SD	1616667	SD	1550000	SD	SD
	580000	35620	1825000	160335	1860000	318306	501788
		1/10 Fe 1		1/10 Fe 2		1/10 Fe 3	
	170000	187500	230000	182500	220000	282500	217500
	180000		150000		430000		
	200000	SD	110000	SD	270000	SD	SD
	200000	12990	240000	54486	210000	88141	46007

06.07.2015		ideal1		Ideal 2		Ideal 3	Mit	telwert
14	4375000	4718750	2225000	2366667	4000000	3333333		3472917
	4500000		2450000		2800000			
	4850000	SD	2425000	SD	3200000	SD	SD	
	5150000	303817		100692		498887,652		965293
		ohne EDTA 1		ohne EDTA 2		ohne EDTA 3		
	330000	235000	330000	330000	540000	440000		335000
	180000		230000		610000			
	110000	SD	400000	SD	350000	SD	SD	
	320000	93408	360000	62849	260000	140890		83766
		HS1		HS2		HS3		
	5600000	5566667	3725000	3300000	5200000	4733333		4533333
	5100000		3100000		4450000			
	6000000	SD	3075000	SD	4550000	SD	SD	
		368179		300694		332499		936107
		ohne Fe 1		ohne Fe 2		ohne Fe 3		
	2225000	2525000	200000	187500	130000	155000		955833
	2675000		150000		170000			
	2275000	SD	280000	SD	80000	SD	SD	
	2925000	289396	120000	60570	240000	58523		1109648
		1/10 HS 1		1/10 HS 2		1/10 HS 3		
	870000	923333	5150000	4416667	4700000	4750000		3363333
	950000		4200000		4400000			
	950000	SD	3900000	SD	5150000	SD	SD	
		37712		532812		308221		1730699
		1/10 Fe 1		1/10 Fe 2		1/10 Fe 3		
	200000	236667	200000	233333	780000	733333		401111
	280000		220000		780000			
	230000	SD	280000	SD	640000	SD	SD	

10.07.2015		ideal1		Ideal 2		Ideal 3	Mit	telwert
Tag 18	4150000	5000000	2450000	2641667	9250000	6375000		4672222
	4900000		2750000		4800000			
	5250000	SD	2725000	SD	5075000	SD	SD	
	5700000	566789		135913		2036030		1541649
		ohne EDTA 1		ohne EDTA 2		ohne EDTA 3		
	380000	310000	350000	332500	540000	497500		380000
	250000		240000		380000			
	270000	SD	290000	SD	450000	SD	SD	
	340000	52440	450000	78222	620000	90657		83591
		HS1		HS2		HS3		
	10650000	9800000	7100000	7383333	6450000	6300000		7827778
	9650000		6850000		6150000			
	9100000	SD	8200000	SD	6300000	SD	SD	
		641613		586420		122474		1463022
		ohne Fe 1		ohne Fe 2		ohne Fe 3		
	2300000	2306250	390000	500000	370000	345000		1050417
	2975000		540000		400000			
	1925000	SD	440000	SD	400000	SD	SD	
	2025000	409792	630000	92466	210000	78899		890260
		1/10 HS 1		1/10 HS 2		1/10 HS 3		
	1716667	1913889	6450000	6566667	6050000	6600000		5026852
	1525000		6900000		7200000			
	2500000	SD	6350000	SD	6550000	SD	SD	
		421765		239212		470815		2201239
		1/10 Fe 1		1/10 Fe 2		1/10 Fe 3		
	530000	496667	200000	233333	2600000	2283333,33		1004444
	470000		220000		2200000			
	490000	SD	280000	SD	2050000	SD	SD	
		24944		33993		232140		910679

13.07.2015		ideal1		Ideal 2		Ideal 3	Mit	telwert
20	4025000	4406250	2225000	2287500	9150000	7050000		4581250
	4325000		2425000		5600000			
	4650000	SD	2450000	SD	6400000	SD	SD	
	4625000	254568	2050000	100692		1520417		1948216
		ohne EDTA 1		ohne EDTA 2		ohne EDTA 3		
	220000	367500	380000	397500	610000	492500		419167
	280000		200000		430000			
	430000	SD	640000	SD	540000	SD	SD	
	540000	125574	370000	157222	390000	87285		53281
		HS1		HS2		HS3		
	11400000	11600000	8250000	9400000	6550000	6600000		9200000
	12150000		9900000		7200000			
	11250000	SD	10050000	SD	6050000	SD	SD	
		393700		815475		470815		2046135
		ohne Fe 1		ohne Fe 2		ohne Fe 3		
	3125000	2575000	630000	580000	590000	552500		1235833
	2450000		570000		470000			
	2325000	SD	540000	SD	540000	SD	SD	
	2400000	320644	580000	32404	610000	54025		947000
		1/10 HS 1		1/10 HS 2		1/10 HS 3		
	3625000	3800000	8150000	8583333	7200000	7450000		6611111
	3825000		8400000		7850000			
	3950000	SD	9200000	SD	7300000	SD	SD	
		133853		447834		285774		2040894
		1/10 Fe 1		1/10 Fe 2		1/10 Fe 3		
	510000	500000	320000	273333	2175000	2225000		999444
	540000		290000		2400000			
	450000	SD	210000	SD	2100000	SD	SD	
		37417		46428		127475		871525

14.07.2015		ideal1		Ideal 2		Ideal 3	Mit	telwert
21	4375000	4668750	2675000	2516667	9150000	7050000		4745139
	4850000		2450000		5600000			
	4950000	SD	2425000	SD	6400000	SD	SD	
	4500000	238075		112423		1520417		1851514
		ohne EDTA 1		ohne EDTA 2		ohne EDTA 3		
	530000	357500	480000	400000	380000	550000		435833
	200000		500000		670000			
	320000	SD	280000	SD	510000	SD	SD	
	380000	118822	340000	92736	640000	115109		82572
		HS1		HS2		HS3		
	11500000	11183333,3	9750000	10416667	7250000	6400000		9333333
	11150000		10900000		6050000			
	10900000	SD	10600000	SD	5900000	SD	SD	
		246080		487055		604152		2097662
		ohne Fe 1		ohne Fe 2		ohne Fe 3		
	2225000	2643750	620000	587500	560000	550000		1260417
	2875000		540000		430000			
	2725000	SD	510000	SD	680000	SD	SD	
	2750000	248354	680000	66849	530000	89163		978284
		1/10 HS 1		1/10 HS 2		1/10 HS 3	•	
	3825000	4008333	9800000	8833333	7400000	7766667		6869444
	4175000		8150000		8300000			
	4025000		8550000		7600000	SD	SD	
		143372		702772		385861		2069446
		1/10 Fe 1		1/10 Fe 2		1/10 Fe 3		
	450000	480000	220000		2450000	2358333		1017222
	500000		190000		2325000			
	490000		230000		2300000		SD	
		21602		16997		65617		954537

Daten von Diacronema lutheri 14.09.-02.10.2015

21.09.2015		ideal1		Ideal 2		Ideal 3	Mittelwert
Tag 7	130000	137500	keine Zellen e	rkennbar	190000	150000	143750
	100000				180000		
	150000	SD			110000	SD	SD
	170000	25860			120000	35355	6250
		ohne EDTA 1		ohne EDTA 2		ohne EDTA 3	
	270000	275000	150000	262500	190000	275000	270833
	180000		210000		410000		
	340000	SD	350000	SD	210000	SD	SD
	310000	60208	340000	85257	290000	86458	5893
		HS1		HS2		HS3	
	keine Zellen e	rkennbar	550000	642500	540000	580000	611250
			640000		520000		
			760000	SD	540000	SD	SD
			620000	75622	720000	81240	31250
		ohne Fe 1		ohne Fe 2		ohne Fe 3	
	80000	105000	90000	192500	300000	195000	164167
	210000		220000		190000		
	70000	SD	150000	SD	150000	SD	SD
	60000	61033	310000	81968	140000	63443	41850

23.09.2015		ideal1		Ideal 2		Ideal 3	Mittelwert
9	510000	497500	keine Zellen e	rkennbar	540000	557500	527500
	480000				640000		
	410000	SD			420000	SD	SD
	590000	64566			630000	88424	30000
		ohne EDTA 1		ohne EDTA 2		ohne EDTA 3	
	430000	485000	470000	520000	630000	507500	504167
	540000		570000		480000		
	480000		520000		540000		SD
	490000	39051	520000	35355	380000	90933	14482
		HS1		HS2		HS3	
	keine Zellen e	rkennbar	500000	627500	600000	560000	593750
			630000		570000		
			760000	SD	600000	SD	SD
			620000	92026	470000	53385	33750
		ohne Fe 1		ohne Fe 2		ohne Fe 3	
	90000	95000	320000	170000	170000	150000	138333,333
	190000		200000		170000		
	60000	SD	70000	SD	80000	SD	SD
	40000	57663	90000	99750	180000	40620	31710

25.09.2015		ideal1		Ideal 2		Ideal 3	Mittelwert
Tag 11	390000	425000			640000	656667	540833
	310000				700000		
	510000	SD			630000	SD	
	490000	80467				30912	115833
		ohne EDTA 1		ohne EDTA 2		ohne EDTA 3	
	720000	540000	640000	606667	620000	576667	574444
	630000		610000		570000		
	270000		570000		540000		
		194422		28674		32998	27262
		HS1		HS2		HS3	
			1625000	1628333	1230000	1230000	952778
			1500000		1320000		
			1760000		1140000		
				106171		73485	199167
		ohne Fe 1		ohne Fe 2		ohne Fe 3	
	560000	533333	760000	680000	720000	720000	644444
	440000		720000		810000		
	600000		560000		630000		
		67987		86410		73485	80247

28.09.2015		ideal1		Ideal 2		Ideal 3	Mittelwert
Tag 14	1775000	1725000			1800000	2116667	1920833
	1750000				2300000		
	1650000	SD			2250000	SD	
		54006				224846	195833
		ohne EDTA 1		ohne EDTA 2		ohne EDTA 3	
	1500000	1641667	1800000	1775000	1700000	1816667	1744444
	1825000		2125000		1733333		
	1600000		1400000		2016667		
		135913		296507		142075	74639
		HS1		HS2		HS3	
			3225000	3606250	2775000	3006250	3306250
			3050000		3950000		
			4550000		2350000		
			3600000	579972	2950000	586935	300000
		ohne Fe 1		ohne Fe 2		ohne Fe 3	
	550000	633333	700000	1066667	750000	883333	861111
	725000		1125000		950000		
	625000		1375000		950000		
		71686		278638		94281	177604

30.09.2015		ideal1		Ideal 2		Ideal 3	Mittelwert
Tag 16	1700000	2008333			2250000	2383333	2195833
	1775000				2900000		
	2550000	SD			2000000	SD	
		384238				379327	187500
		ohne EDTA 1		ohne EDTA 2		ohne EDTA 3	
	2150000	2283333	2000000	2033333	1850000	2125000	2147222
	2450000		2075000		2425000		
	2250000		2025000		2100000		
		124722		31180		235407	103265
		HS1		HS2		HS3	
			3125000	3625000	2475000	3162500	3393750
			4200000		3125000		
			3725000		3450000		
			3450000	394097	3600000	432471	231250
		ohne Fe 1		ohne Fe 2		ohne Fe 3	
	1020000	1033333	1120000	1063333	1200000	1036667	1044444
	910000		940000		1180000		
	1170000		1130000		730000		
		106562		87305		217000	13426

02.10.2015		ideal1		Ideal 2		Ideal 3	Mittelwert
Tag 18	1700000	1641667			2550000	2650000	2145833
	1575000				2675000		
	1650000	SD			2725000	SD	
		51370				73598	504167
		ohne EDTA 1		ohne EDTA 2		ohne EDTA 3	
	2375000	2033333	1850000	2141667	1825000	2041667	2072222
	1875000		1950000		1725000		
	1850000		2625000		2575000		
		241810		344198		379327	49222
		HS1		HS2		HS3	
			3300000	3258333	3675000	3425000	3341667
			3025000		3250000		
			3450000		3350000		
				175989		181430	83333
		ohne Fe 1		ohne Fe 2		ohne Fe 3	
	780000	923333	1180000	1043333	980000	970000	978889
	1010000		1010000		1090000		
	980000		940000		840000		
		102089		100775		102307	49391