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1. Introduction 

1.1 General Information – Human ATP-binding Cassette 

(ABC) Transporters 

The ATP-binding cassette (ABC) transporter superfamily of genes is one of the 

most important membrane transport protein groups, whose main role is to 

transport diverse substances, including nutritional elements, inorganic ions, 

metabolites, etc. across membranes. As the name suggests, ABC transporters 

bind and hydrolyse ATP at the nucleotide-binding domains (NBDs) and utilize 

energy from it to translocate a large number of molecules across extra- and 

intracellular membranes. To date, there are 49 known human ABC transporters, 

which are categorized into seven subfamilies, identified as ABCA through ABCG 

by the Human Genome Organization.  

Each of the NBDs consists of the so-called Walker A and B motifs and is very 

characteristic for all ABC proteins. Additionally, a C motif, also called the 

“signature” exists and is enclosed by the Walker A and B regions (Figure 1). What 

distinguishes the ABC subfamily from other subfamilies is the amino acid 

sequences found in the NBDs. While it has been recognized that the NBDs are 

highly conserved among ABC transporters [1], transmembrane domains (TMDs), 

in contrary, vary between classes and only possess a similar structure within a 

transporter class. 
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Figure 1: Illustration of typical ABC proteins. A) ABC protein within a lipid bilayer (yellow), the 

TMDs are depicted in blue, and the NBD in red. B) Regions within an NBD, with Walker A and B 

and motif C in between. 

One unit of ABC transporter contains four functional domains, two 

transmembrane domains (TMD1 and TMD2) and two nucleotide-binding domains 

(NBD1 and NBD2) (see Figure 2). However, in some of the subfamilies there is 

only one TMD and one NBD in one unit. It is therefore known as “half-transporter” 

and requires homodimerization, as in the case of ABCG2 protein, or 

heterodimerization to function completely. The number of TM helices also differs 

between classes, typically containing 6 TM helices [1] [2]. 

 

Figure 2: General Architecture of half- and full transporters 

A common domain arrangement of a full transporter is composed of NH2-TMD-

NBD-TMD-NBD-COOH. However, other motifs such as NBD-TMD-NBD-TMD, 

TMD-NBD, and NBD-TMD also exist [2].  

The fact that ABC transporters translocate various compounds across 

membranes has been widely known for several decades. However, the detailed 

Walker 
A

Motif 
C

Walker 
B

A

B

TMD NBD TMD NBDTMD NBD

Full transporter Half transporter
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efflux mechanism is still not fully understood. Several models have been 

proposed on how ABC transporters extrude the compounds out of the cell. One 

of the early models proposed was the flippase model, in which the translocation 

of the substrates occurred from the inner leaflet and followed by a flip to the outer 

membrane leaflet of the cell membrane [3]. The next proposed model was 

hydrophobic vacuum cleaner [4]. This suggests that drugs enter into the 

membrane, in which Pgp may interact with its substrates and efflux them into the 

external medium [5] . Another possible theory considers this protein as a 

unidirectional flux [6], in which substrates are directly extruded out of the cell. This 

is the so-called membranar pore model [7] . The three proposed models are 

illustrated in Figure 3. 

 

Figure 3: Proposed different models for ABC transporters efflux: (a) membranar pore; (b) 

flippase; (c) vacuum cleaner. Taken from [7]. 

The structure of bacterial multidrug transporters has been important historically. 

The first one published was the prototypical ABC architecture of S. aureus ADP-

bound Sav1866 exporter [7]. Later on, a corrected MsbA structure from E. coli 

was available. In 2009, the first murine crystal structure of Pgp, which allows more 

insights on the MDR transporter, was published. Shortly after this publication of 

the first mouse Pgp structures, a Caenorhabditis elegans crystallographic Pgp 

structure became available, which demonstrates the different orientation of some 

of the TM helices. All mentioned crystallographic structures are depicted in the 
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Figure 4. Recently a refined structure of mouse Pgp was published in the PDB 

(PDB ID: 4M1M). 

 

Figure 4: Different crystallographic structures of ABC transporters. Taken from [7]. 

Some ABC proteins can export many structurally diverse compounds, including 

cytotoxic molecules from cells. Such transporters are referred to as multidrug 

transporters and play a very important role in cancer therapy. According to various 

clinical data, the multi-drug resistance phenotype of tumors is associated with the 

overexpression of these multidrug transporters, termed MDR Proteins [8]. MDR 

tumors are resistant to a wide range of structurally unrelated xenobiotics, 

including anti-cancer drugs, such as vinca alkaloids (vinblastine, vincristine), 

anthracyclines (doxorubicin, daunorubicin), and taxanes [5].  

1.2 ABC Multidrug Resistance Proteins - The Players 

The multiple drug resistance phenotype in tumor cells is mostly linked with an 

overexpression of certain ABC transmembrane proteins: ABCB1 (MDR1/P-

glycoprotein), ABCC1 (MRP1), and ABCG2 (MXR, BCRP) [1][2][8][9]. Both 

ABCB1 and ABCG2 are located at the apical compartment, while ABCC1 at the 

basolateral side of the plasma membrane of polarized cells [10] (Figure 5). In 
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general, these MDR transporters contribute to actively translocating a variety of 

chemically diverse amphipathic compounds including bulky lipophilic anionic, 

cationic, and neutrally charged drugs, amino acids, polysaccharides, steroids, 

peptides, toxins as well as conjugated organic anions across the membranes 

using the energy from ATP hydrolysis [5]. The expression of MDR proteins is 

mainly in organ tissues that are important for absorption (e.g. the small intestine, 

gut and lung) and distribution (the blood-brain and placental barriers), as well as 

metabolism and elimination (liver and kidney) of xenobiotics drugs [11][12]. 

Sufficient knowledge concerning the relevant physicochemical properties of 

ligands and how these ABC transporter proteins function is required and there is 

still a wide range of unanswered questions and insufficient information about the 

transport mechanism. 

 

Figure 5: List and localization of the important MDR transporter proteins. 

 1.2.1 ABCB1 (MDR1/Pgp) 

The first ABC transporter that plays a significant role in the multidrug resistance 

phenomenon is ABC transporter subfamily B member 1 (ABCB1), also known as 

Pgp (P-glycoprotein) or multidrug resistance protein 1 (MDR1). It is a 170 kDa 

transmembrane. Pgp was the first to be discovered almost 40 years ago by 

scientists in Canada [13]. See Table 1 for various Pgp substrates and inhibitors 

that have been discovered. 

Pgp BCRP

MRP1

apical 

basolateral

Gene term 
Protein name  

(abbreviations, synonyms) 

ABCB1 
P-glycoprotein (Pgp, Multidrug 

Resistance Protein 1, MDR1) 

ABCC1 
Multidrug Resistance  

Associated Protein 1 (MRP1) 

ABCG2 

Breast cancer resistance protein 

(BCRP, Mitoxantrone  

Resistance Protein, MXR)  
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Pgp seems to form a functional heterodimer and consists of 2 transmembrane 

domains (TMDs), with 12 transmembrane helices (TMHs), and two nucleotide-

binding sites (NBDs) within one polypeptide chain, as depicted in Figure 6.  It is 

located at the apical (luminal) side of many cells, including the epithelial cells of 

the intestine, the biliary canalicular membrane of hepatocytes and the proximal 

tubules of the kidney [8]. A high expression of Pgp has been found in many types 

of cancer, including renal and colon carcinomas, melanomas, and central nervous 

system tumors [5]. 

 

Figure 6: Membrane topology structures of cancer MDR-related ABC transporters.  

Taken from [8] 
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1.2.2 ABCG2 (MXR/ABCP1/BCRP) 

ATP-binding cassette subfamily G member 2 (ABCG2), also known as Breast 

cancer resistance protein (BCRP), has also been identified as playing a major 

role in multidrug resistance in cancer therapy. It is an approximately 75 kDa 

plasma membrane protein and it was named based on the fact that it was first 

isolated from the breast cancer cell lines MCF7 [14]. Additionally, ABCG2 is highly 

expressed in the placenta, hence the name ABC-Placenta (ABCP1) [15]. 

Moreover, ABCG2 is also known as mitoxantrone resistance protein (MXR) based 

on various reports, in which numerous mitoxantrone-resistant cell lines were 

found, but no indication that ABCB1 and ABCC1 are overexpressed in these cells 

[16]. Apart from the placenta, this half-size transporter is highly expressed in the 

gut and biliary tract, in the kidney, liver, small intestine, blood-brain barrier (BBB) 

and stem cells [12][17] (Table 1). 

To date, only a few potent and specific BCRP inhibitors have been developed. In 

1998, fumitremorgin C (FTC), a mycotoxin isolated from fumigates, was found to 

be extremely effective in reversing multidrug resistance in human colon 

carcinoma cells transfected with the breast cancer resistance protein [18]. Ko143, 

an analog of FTC, was later discovered [19]. It has been reported to be rather less 

toxic, and enhance the bioavailability of orally administered anticancer drugs, e.g. 

topotecan [20]. Other BCRP inhibitors include gefitinib (Iressa, ZD1839), imatinib 

(both are tyrosine kinase inhibitors) [21], and reserpine [22] (see Table 1).  

Unlike ABCB1 and ABCC1, the human ABCG subfamily in general and ABCG2 

in particular is a half-transporter, which means that this transporter only consists 

of one transmembrane domain and one ATP-binding domain. It has a different 

arrangement pattern compared to the majority of the ABC family. The NBD, in 

which ATP binding and hydrolysis takes place, locates at the N terminus and the 

TMD at the C terminus. 
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Previous studies demonstrated that this transporter forms a homodimer to 

function at the plasma membranes [5][12]. However, recent studies suggested 

that this multidrug transport protein likely exists as functional homotetramer [23], 

or even possibly as homododecamer [24]. 

ABC transporter Substrates Inhibitors Tissue distribution 

Pgp adamycin [25] 

daunorubicin [25] 

epirubicin [25] 

paclitaxel [26] 

docetaxel [26] 

vincristine [26] 

vinblastine [26] 

verapamil [26] 

cyclosporine A [26] 

PSC 8333 [26] 

tariquidar [27] [28] 

zosuquidar [29][30] 

laniquidar [31] 

ONT-093  [32] 

kidney 

liver 

intestine 

adrenal gland 

 blood-brain barrier  

BCRP natural substrates 

xenobiotics 

chemotherapeutics 

FTC [18] 

Ko143 [19] 

elacridar [33] 

tariquidar [27] [28] 

reserpine [22] 

imatinib [21] 

gefitinib [26] 

placenta cells 

hepatocyte 

intestine 

gut and biliary tract 

kidney 

blood-brain barrier 

stem cells 

Table 1: Prominent substrates, inhibitors and tissue distribution of Pgp and BCRP. 

The third MDR-related protein is called multidrug-associated protein 1 (MRP1) 

and belongs to ABC-transporter subfamily C (gene ABCC1) [34]. However, this 

protein was not analyzed in this work. 

1.3 Reversal of MDR-related ABC Transporters 

The discussed proteins are likely to cause unsuccessful cancer therapy, because 

they are able to efflux many cytotoxic drugs commonly used in chemotherapy. 

The inhibition of these proteins may thus be a promising approach to substantially 

increase the efficacy of the treatment for cancer [35]. Some strategies to supress 
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the Pgp function include transporter inhibition by co-administering chemotherapy 

drugs and modulators, development of new anti-cancer drugs that interact 

differently with Pgp and are not effluxed by it, down-regulation of the transporter 

expression, as well as blockage of its disease-related up-regulation [5]. 

From all options that can be taken under consideration, the application of co-

administered Pgp modulator with anti-cancer drugs, e.g. paclitaxel is very likely 

to be the most favoured and achievable approach to increase bioavailability of 

these drugs [5]. Therefore, many clinical trials have been conducted to investigate 

the potential of the co-administration of modulators for cancer therapy. Until now, 

Pgp inhibitors can be categorized into three generations: 

The first generation of Pgp inhibitors included compounds like verapamil, a 

calcium channel blocker, [36] and cyclosporin A, an immunosuppressant [37]. 

Various studies have revealed that co-administration of verapamil or cyclosporine 

A with antineoplastic agents results in an increased bioavailability of the drugs 

[38][39]. However, high plasma levels were required to reverse MDR in cancer 

cells, thereby enhancing the likeliness of side effects.  

Due to the limited clinical success rate of the first generation of MDR modulators, 

the second generation was developed. In 1991, the discovery of PSC8333, a non-

immunosuppressive cyclosporine D analog, also known as valspodar was 

introduced by Boesch et al. [40]. The results demonstrated that it was 10-fold 

more potent than cylosporin A (Sandimmune), suggesting to be an advantageous 

agent in inhibiting Pgp more effectively. Unfortunately, this agent also inhibited 

CYP3A4, an important enzyme involved in drug metabolism. This led to an 

increased levels of antineoplastic agents in various crucial organs for metabolism 

and excretion, including liver and kidney [41]. 

These findings point out the need of designing compounds of third generation 

modulating agents that are more potent, but less toxic for MDR reversal.  

In 1993, an acridonecarboxamide derivative GF120918, also known as elacridar, 

was developed [33]. Furthermore, a series of anthranilamide derivatives, was 
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developed by Xenova Group, Ltd [27][28]. One of the prominent members of 

these compounds is XR9576, also called tariquidar. It has been demonstrated 

that a complete reversal of several human and murine cell lines resistance was 

achieved by this anthranilamide-based compound [42]. It also has high affinity to 

bind within the binding pocket in Pgp and inhibits its function to a high degree. 

Moreover, it has been suggested that it binds to Pgp in a different binding site 

than other Pgp substrates [35].  

However, different from the case of the previous generation of Pgp inhibitors, the 

enzyme CYP3A4 was not inhibited by third-generation modulating agents. In 

other words, despite high plasma concentrations of the third generation 

modulating agents, the plasma levels of antineoplastic agents, e.g. paclitaxel, still 

remain at therapeutically relevant concentrations [35]. 

Other third-generation inhibitors [43] that are highly potent and specific for Pgp 

inhibition include LY335979 (zosuquidar) [29][30], R101933 (laniquidar) [31], and 

ONT-093 [32] (see Table 1).  

However, to date, there is still no selective modulator against MDR proteins on 

the market as all third generation modulators failed in phase III clinical trials 

[41][44]. 

1.4 Tariquidar and Analogs 

As outlined above, tariquidar seems to be promising in inhibiting Pgp without 

causing any significant increase of plasma levels of anticancer drugs. Hence, 

after the discovery of tariquidar, a large number of experiments on structural 

modification of tariquidar in query of a more potent inhibitor of Pgp have been 

extensively carried out. It has been demonstrated in the previous studies that the 

two methoxy groups in positions 6 and 7 of the tetrahydroisoquinolinylamide 

substructure play an important role in inhibiting Pgp [45] and a tertiary amine 
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group is also important for many Pgp substrates and modulators [46]. The 

structure of tariquidar is depicted in Figure 7. 

 

 

Figure 7: Structure of Tariquidar (XR 9576, N-[2-[[4-[2-(6,7-dimethoxy-3,4-dihydro-1H-

isoquinolin-2yl)ethyl]phenyl]carbamoyl]-4,5-dimethoxyphenyl]quinoline-3-carboxamide). 

The MDR modulators tariquidar and elacridar are amongst the most potent 

inhibitors of ABC transporters. They are known to inhibit both Pgp and BCRP with 

a preference for Pgp in case of tariquidar [47]. However, it has been demonstrated 

that the introduction of the quinolone-3-carboxamide in the para substituent of the 

benzamide ring instead of in the original meta position of the tariquidar structure 

and the substitution of 3,4-dimethoxy moiety with a 4-methoxycarbonylbenzoyl 

moiety resulted in the higher affinity of the molecule towards BCRP [48]. This 

modification is shown in Figure 8. Since these findings, numerous experiments 

and measurements have been carried out for tariquidar-like modulators in 

inhibiting the function of apically localized MDR protein transporters 

[20][47][49][50][51]. 
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Figure 8: Structure of tariquidar (a) and a more potential modulator of tariquidar analog (b). 

Minimal structural modification is carried out, including the position of the quinolone-3-

carboxamide (circled in blue) in benzamide ring and 3,4-dimethoxy moiety is substituted with a 

4-methoxycarbonylbenzoyl moiety (circled in orange). Taken from [48]. 
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2. Aim of the Study 

As mentioned in the introduction section, both Pgp and BCRP are located in the 

apical (luminal) side e.g. of the epithelial cells of the intestine. However, several 

experiments revealed that a small modification of tariquidar structure influenced 

the preference of the molecule towards BCRP. Thus, the objective of this work is 

to analyze and find the structure activity relationship of tariquidar analogs and 

elucidate the molecular basis of differences encountered in the derivative’s 

affinities towards Pgp and BCRP by using both ligand- and structure-based in 

silico models 

This work focused on finding the key factors of this findings using in silico 

methods. There are two types of approaches that can be applied to 

computationally predict molecular interactions between proteins and ligands: 

ligand-based and structure-based approaches. 

Briefly, predictive models constructed in the ligand-based method do not require 

the information of the target protein, as they are only based on the structure of 

ligands in question and the corresponding biological activity measured. In 

contrast, in the structure-based approach, such as molecular docking, the 

computational structure prediction of the complexity of interactions between 

protein and ligands under study requires a high resolution structure of the protein 

and the ligand. 
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3. Ligand-based Approach 

3.1 Introduction 

To date, there is still little structural information about ABC transporters, because 

they are transmembrane proteins, and therefore difficult to crystallize. For that 

reason, ligand-based approaches have been carried out extensively. In the 

ligand-based method, the information of the target (protein) is not required. 

Therefore, it is the recommended method when the structural information of the 

protein is not well known.  

One of the methods commonly used is Quantitative Structure Activity Relationship 

(QSAR) analysis [52]. In general, QSAR is applied to form a quantitative 

connection between the chemical structure and the (biological) activity of a 

molecule [53]. The approaches include both 2D- and 3D QSAR studies. QSAR 

studies can be applied both for prediction using linear regression (e.g. partial least 

square (PLS) or partial component regression (PCR)) and nonlinear methods of 

classification (k-nearest neighbor, decision tree, random forest, etc). 

Its aim is to predict the activity from the structure in a quantitative way without 

performing in vitro or in vivo approaches, but instead in silico methods by using 

machine learning methods. In order to perform QSAR studies, the 

physicochemical properties of structures and their activity measured in an assay 

are required to make reliable, interpretable models. There are many aspects that 

can affect the models. One of them is selection of suitable descriptors, which 

represent the chemical structure. They encode chemical properties of a molecule 

as numerical descriptions. 

This is important to make the models have a high predictive reliability for new sets 

of compounds, and to prevent over-fitting of the original data. In this regard, one 



15 
 

can check on correlation matrix of the selected descriptors and exclude 

intercorrelated descriptors. 

As mentioned above, QSAR models can be constructed for prediction using linear 

regression, e.g. PLS, of calculated values of descriptors for a training set. In 

QSAR regression models, the independent variables (X) are the physicochemical 

properties of the ligands and the dependent variables (Y) are the biological 

activity. 

The aim of the ligand-based approach was to make selectivity profiling of Pgp and 

BCRP modulators with QSAR methods. The resulting information about why 

certain tariquidar analogs have a higher affinity for Pgp or BCRP is necessary to 

decide which compounds are suitable for further studies and applications.  

3.2 Methods 

The classic way of finding structure-activity relationships of compounds is by 

applying QSAR. Before starting with QSAR studies, a set of compounds was first 

selected. Subsequently, one of the many computational methods that are 

available for the ligand-based approach was then selected. The method applied 

in this work was 2D-QSAR, mainly linear regression, using the molecular 

descriptors available in MOE and also applying respective descriptors in WEKA. 

Furthermore, as already mentioned above, fingerprint descriptors calculated with 

PaDEL-Descriptors and jCMapper were also used to make models in MOE and 

WEKA. 

For data preprocessing, the fragmentation approach was also applied (explained 

later in section 3.2.1.2), where the structure is divided into multiple fragments that 

are analyzed separately and added back together.  

The workflow of the QSAR model development is shown in Figure 9. 
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Figure 9: Overview of the workflow of the QSAR model development. 

3.2.1 Data Preparation 

3.2.1.1 Fragmentation Approach 

This approach emphasised on the importance of fragmenting the ligands to gain 

more insight about the structure activity relationship. This is based on the 

observation that each of the substituent could be separately analysed for its 

contribution for the final model. By applying fragmentation, important local 

molecular features that influence the final model can be analysed. The formula 

and illustration of this approach are shown in Figure 10. 

Data preparation 

Select molecular descriptors and 

fingerprints 

Select statistical method 

Validation obtaines of the 

model 

 Compile the ABCB1 and ABCG2 datasets 

 Conversion of the activity value 

 Fragmentation approach 

 Choose 2D descriptors available in MOE 

 PLS 

 Internal validation by leave-one-out cross-

validation 
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pIC50 = a0 + ∑ acore Fcore + ∑ aS1 FS1 + ∑ aS2 FS2 + ∑ aS3 FS3 

 

Figure 10: The formula and illustration of the fragmentation approach. Tariquidar is fragmented 

into 4 parts: red encircled is the core. Blue represents S1, green S2 and orange S3. 

Before the approach was performed, the 81 compounds in the ABCG2 database 

were filtered. Some compounds that have missing fragments were removed from 

the dataset, because the result could be biased by the incomplete structures. 

Moreover, the compounds with long substituent(s) were also excluded. At the 

end, there were 55 compounds in total that have been used for this approach.  

As depicted in Figure 10, each of the molecules was divided into 4 fragments: 

core, S1, S2, and S3. In the end, there are in total of 55 compounds, containing 

11 different cores. Regarding the side chains, there are 13, 10, and 11 different 

fragments for S1, S2 and S3, respectively. 

Then, two attempts using two different sets of MOE descriptors were performed. 

The applied descriptors are listed in Table 2. 
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Attempt MOE descriptors 

1st a_acc, a_don, b_rotN, logP(o/w), TPSA 

2nd apol, logP(o/w), mr, TPSA, vdw_vol 

Table 2: BCRP models of the fragmentation approach. 

The descriptors that were used in the fragmentation approach are listed in Table 

3. 

Descriptor Definition 

logP(o/w) Log of the octanol/water partition coefficient [54].  

a_acc The number of hydrogen bond acceptor atoms [54]. 

a_don The number of hydrogen bond acceptor atoms [54]. 

apol The sum of atomic polarizabilities [54]. 

b_rotN The number of rotatable bonds. (A rotatable bond is only 

taken into account if it is not located in a heterocyclic ring, 

and has at least two heavy neighbors) [54]. 

TPSA Topological polar surface area [55].  

mr Molecular refractivity [54]. 

vdw_vol Van der Waals volume [54]. 

Table 3: Detailed descriptor list used for QSAR studies with fragmentation approach. 

In each of the attempts, the descriptors were calculated for each of the fragments. 

Subsequently, all descriptors of each of the fragments were put back together in 

one line, so that in the end each compound has 20 descriptors in total (Figure 11). 
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Figure 11: A partial example of the dataset compilation for the 2nd attempt of building models. 

Each of the encircled box depicts the 5 calculated descriptors for each of the individual 

fragment. 

After the dataset was compiled completely, the 2D-QSAR models using PLS 

regression analysis in MOE and WEKA were then constructed.  

3.2.2 Tariquidar and Analogs 

All pharmacological data for tariquidar analogs were provided by the laboratory of 

Prof. Dr. Armin Buschauer (University of Regensburg, Germany). The inhibitory 

activity of some compounds against the Pgp and BCRP transporters was 

determined in different assays as inhibitory concentration (IC50) value (explained 

below), including a flow cytometric calcein-AM efflux assay using ABCB1-

overpressing Kb-V1 cells, Hoechst 33342 microplate assay and flow cytometric 

mitoxantrone efflux assay using ABCG2-overexpressing MCF-7/Topo cells 

[50][51][47][20][56][57]. 

IC50 value is the concentration of a substance needed to reach half of the maximal 

inhibition of a biological or biochemical function and usually measured in 

nanomolar or micromolar. It is commonly used to evaluate the inhibitory capacity 

of a substance towards the target, e.g. protein. 

Unfortunately, the activity of IC50 is not reported for all compounds. Hence, the 

ligands which didn’t show activity of either Pgp or BCRP or of even both were 

excluded. 

core s1 s2 s3 
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After compiling the dataset, the IC50 value that was available in the initial dataset 

of all compounds was converted to the pIC50 scale, which is the negative log of 

the IC50 value in molar. 

𝑝𝐼𝐶50 = −𝑙𝑜𝑔10 (𝐼𝐶50) 

Subsequently, all 38 compounds of the Pgp dataset are sorted by the pIC50 value.  

At the end, there were 87 tariquidar analogs in total. All of the 87 compounds were 

then divided into three subsets, as shown in Table 4: 

Subset Contents 
Total no. of 

compounds 

1 Compounds with activity measured only for Pgp 6 

2 Compounds with activity measured only for BCRP 49 

3 Compounds with activity measured for both Pgp and BCRP 32 

Table 4: Three subsets for Pgp and BCRP datasets. 

In order to build the model for Pgp, the subset 1 and subset 3 were added together 

because in these two subsets the IC50 for Pgp is known (Table 5). The same 

approach was performed for building the model for BCRP, this time using the 

subsets 2 and 3. 

Dataset 
Total no. of 

compounds 

Range of the activity 

(pIC50) 

Pgp 38 3.98 – 6.83 

BCRP 81 4.20 – 7.37 

Table 5: Overview of the Pgp and BCRP datasets. 

3.2.3 Descriptors 

In general, descriptors represent the physicochemical properties of a ligand. In 

this work, both molecular descriptors and molecular fingerprints were used to 

build QSAR models. As mentioned in the introduction of this chapter, one of the 
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important steps in constructing a model is the selection of descriptors. Thereby a 

good, interpretable model can be built, and over-fitting of dataset can therefore 

be prevented. 

3.2.3.1 Molecular Descriptors 

The aim of a molecular descriptor is to encode chemical properties of a molecule 

as numerical descriptions. The descriptors are derived either solely from the 

chemical structure itself, e.g. sum of the halogen atoms, molecular weight 

(denoted 1D descriptors), or by taking the configuration of the molecules into 

consideration, also called 2D descriptors, or furthermore, taking the conformation 

of the respective molecule into account, as well as the 3D coordinates, the so-

called 3D descriptors. These descriptors are used to form a mathematical 

equation, along with the physio-chemical properties of a compound, e.g. solubility.  

3.2.3.2 Molecular Fingerprints 

The fingerprints methodology, in which specific substructures present in each 

molecule will be encoded, was also used in this work. For the fingerprint 

computation some programs, such as PaDEL-Descriptors [58] and 

jCompoundMapper (jCMapper) [59] were employed.  

In general, molecular fingerprints encode particular molecular structure as a 

series of binary digits 0 or 1 that symbolize the absence or the presence, 

respectively, of a particular substructure in the molecule.  

There are two types of fingerprints used in this work, Molecular ACCess System 

(MACCS) fingerprints and extended connectivity fingerprints (ECFP) calculated 

in PaDEL-Descriptors and jCMapper, respectively. 

The MACCS fingerprints consist of a set of 166 predefined structural patterns. 

The other type of fingerprint used was ECFP fingerprints. Unlike MACCS 

fingerprints, ECFP fingerprints are not predefined, rather the keys are developed 
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from the molecule itself [60]. Each specific substructure is first transformed into 

hash codes using a hashing algorithm, resulting in a large integer value. 

Subsequently, the hash codes will be folded into smaller number bit strings, 

according to the number generation of a defined length, normally 1024. Finally, 

the absence and the presence of a particular substructure is marked as “0” and 

“1”, respectively.The implementation of ECFP in jCMapper is based on the 

description by Rogers and Hahn [61]. They described that the algorithm starts 

with the initial atom identifier of the center atom and is expanded into a circular 

substructure around this particular atom (Figure 12). This process is then 

repeated according to the defined number of iterations [59].  

 

Figure 12: A schematic explanation of ECFP. The atom number 1 is considered as the initial 

atom identifier. In iteration 0, it only contains of information about atom 1 and its bonds. In 

iteration 1, the identifier now contains information about atom 1’s direct neighbors. After two 

iterations, the circulated area has grown one atom further. “A” represents any type of atom other 

than hydrogen. Taken from [61] 

  



23 
 

3.2.4 Linear Regression 

While analyzing the activity, linear regression was applied. This statistical method 

tries to model the relationship between a set of independent variables X and 

dependent (response) variable Y in a linear way by constructing a straight line (in 

case of 2D) that fits the observed data. When there is only one independent 

variable, it is called simple linear regression. The equation of a linear regression 

line is: 

𝑌 = 𝑎 + 𝑏𝑋, 

whereas X is the independent variable, Y is the dependent variable, a describes 

the slope of the line and b is the y axis intercept when x = 0. In the case of multiple 

regression, X is a matrix, and b is a vector. 

In order to fit a regression line, there are several methods that can be chosen. 

The most common method is the least-squares method. It calculates the best-

fitting line for the sampled data that minimizes the sum of the squared differences 

between the estimated values and the actual values, denoted as sum of squared 

errors (SSE). 

3.2.5 Partial Least Square (PLS) 

As mentioned in the beginning of this chapter, this work was focused on 2D-QSAR 

to analyse the relationship between the chemical structure and the biological 

activity. The statistical method that was applied for the QSAR analysis was PLS 

regression analysis [62]. This is a linear regression method, which attempts to 

find a good predictive model that fits the observed data. PLS analysis is normally 

used when there is a large number of explanatory variables that are often 

correlated with each other [63]. In this case, models are often over-fitted, i.e. they 

achieve a good fit but use too many independent variables and are possibly 

unable to predict new data. 
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The complete list of the software that was used in this work is shown in Table 6: 

Software Function 

jCMapper  for fingerprints calculation 

PaDEL-Descriptors for fingerprints calculation 

MOE for building the models 

WEKA for building the models 

Table 6: List of the softwares used for ligand-based studies. 

3.2.6 Model Validation 

In order to view the fit of the model to the sampled data, one could plot the 

constructed regression line over the actual observations to evaluate the results.  

The result of the fit can also be shown by the root mean square error (RMSE). 

This indicates how close or far the observed data values are to the predicted 

values of the model. The coefficient of determination, denoted as r2, describes 

how well the regression fits the data. The q² value is the cross-validated value of 

r² for model validation. Both r² and q² values can vary from 0 to 1, with 1 

corresponding to an ideal fit. The closer the value to 1, the better the regression 

line fits the observed data. The q² value could be referred to as a quality 

parameter of a model. A QSAR model that has q² value greater than 0.6 could be 

regarded as satisfactory, whereas a value below 0.6 indicates a low reliability [64]. 

The formula used for the calculation for the q² value is as follows: 

𝑞2 = 1 − 
𝑃𝑅𝐸𝑆𝑆

𝑇𝑆𝑆
=  1 −

∑ (𝑦𝑖 − ŷ𝑖)2𝑛
𝑖=1

∑ (𝑦𝑖 − ӯ𝑖)2𝑛
𝑖=1

 , 

whereas the value of PRESS (Predictive Error Sum of Squares) is calculated by 

the sum of the squared difference between the actual experimental response y 

and the response predicted by the regression model. 
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The TSS (Total Sum of Squares) value can be obtained by the sum of the squared 

difference of the responses of the experiment and the average experimental 

responses. Finally, the q² value can be determined as one minus the PRESS 

divided by TSS. 

The software MOE and WEKA were used to build the models, using the 

descriptors implemented in MOE. Finally, the models undergo careful verification 

procedures in order to validate the quality and prove the reliability and predictive 

ability of the models on a test set of compounds by applying either internal 

validation or external validation.  

In the internal validation, the original dataset is divided into a training and test set. 

A model is then built using only the training set and applied to the test set in order 

to see how well it predicts the data. In contrast, external validation uses all the 

original data to build a model and the predictability of the resulting model is tested 

by applying it to a second dataset.  

For all approaches in this work, the predictability of the models is calculated by 

leave-one-out-method (LOO-method). This means that for each experiment N-1 

observations are used as the training set and the remaining observation as the 

test set. This process is then repeated until each of the samples was left out once. 

This method is very suitable in order to train on as many examples as possible, 

particularly in sparse datasets. 
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3.3 Results and Discussion 

In the first several attempts, some adequate BCRP models with a high q² value 

could be built. The equation of the best Pgp and BCRP models is shown in Table 

7. 

Model Equation 
Total no. of 

descriptors 

Total no. of 

compounds 
r2 q2 

Pgp pIC50= 
15.65285 
+10.00719 * vsa_hyd 
-8.41081 * vdw_area  
-0.74863 * diameter 
+1.57997 * bpol  
+7.19931 * a_IC  
-9.52772 * a_count  

6 38 0.56 0.39 

BCRP pIC50 = 
7.86282 
+20.60493 * a_nC  
+13.29378 * a_IC  
-21.77544 * a_hyd  
+0.53976 * a_don  
-1.04624 * a_aro  
-2.12296 * a_acc  
-20.71580 * bpol  
-10.44899 * Kier1  
+19.09126 * KierA1  
+1.26807 * logP(o/w)  
+0.40926 * PEOE_VSA_NEG  
-0.60344 * SlogP  
+4.45880 * TPSA  
+2.96313 * vsa_acc  
-2.43893 * vsa_other  
-5.58947 * vsa_pol  

16 81 0.77 0.60 

Table 7: Pgp and BCRP models. 

2D-QSAR analysis revealed the importance of the hydrophobic surface area and 

the number of hydrophobic atoms for Pgp and BCRP models, respectively.  

This is very interesting, as previous studies already suggested a strong 

correlation between the compounds' lipophilicity and their inhibitory activity on 

Pgp [65]. Our results supports this proposition. Since all compounds in the Pgp 

and BCRP datasets are tariquidar analogs, we would expect similar results in the 
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BCRP model. However, the number of hydrophobic atoms was demonstrated to 

have a negative effect in the BCRP model. This indicates that hydrophobic atoms 

may only contribute to tariquidar-like ligands binding to the protein, but are not the 

key factor for MDR-related proteins inhibition. 

 

 a_count a_IC bpol diameter vdw_area vsa_hyd 

a_count 100 99 99 92 99 100 

a_IC 99 100 99 91 100 98 

bpol 99 99 100 90 99 98 

diameter 92 91 90 100 92 92 

vdw_area 99 100 99 92 100 99 

vsa_hyd 100 98 98 92 99 100 

Table 8: Correlation matrix of the Pgp model. 

As shown in Table 8, the Pgp model was built with intercorrelated descriptors. 

This means that the models were constructed with redundant descriptors. As a 

consequence, although the models may have a q² value higher than 0.6, they 

don’t have the ability to accurately predict activities of an external test set.  

Conclusively, no good models could be created by using the molecular 

descriptors implemented in MOE. This may be due to the limited number of 

compounds in the dataset. Alternatively, one can build QSAR models in WEKA 

using embedded feature selection. 

The next method in 2D-QSAR studies was the fragmentation approach. This 

approach was focused on elucidating the influence of local physicochemical 

parameters of each fragment on the biological activity of the molecule. The best 

developed models only have a cross-validated q² value below 0.6 

The equations of the estimated linear QSAR models for the two data sets of 

descriptors are shown in Table 9:  
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Descriptor Equation r2 q2 

a_acc, a_don, b_rotN, 

logP(o/w), TPSA 

pIC50 = 
8.92025 
+0.73519 * a_acc core 
+0.93559 * a_don core 
-0.87205 * b_rotN core 
-0.54476 * logP(o/w) core 
+0.96634 * a_acc S1  
-0.89569 * b_rotN S1 
+0.33886 * logP(o/w) S1 
-0.18552 * b_rotN S2  
+0.49398 * logP(o/w) S2 
+0.29119 * TPSA S2  
+0.25302 * a_acc S3 
-0.65729 * a_don S3 
+0.13623 * b_rotN S3 

0.72 0.38 

apol, logP(o/w), mr, 

TPSA, vdw_vol  

pIC50 = 
-0.99323 
-7.95307 * apol  
+1.29559 * mr  
+6.50316 * vdw_vol 
-3.37690 * apol S1  
+2.99255 * logP(o/w) S1 
+1.27400 * mr S1  
+0.30527 * TPSA S1 S1) 
+1.24021 * vdw_vol S1  
+11.56918 * apol S2  
+3.96067 * logP(o/w) S2 
+0.24794 * mr S2  
+0.98656 * TPSA S2 
-8.39750 * vdw_vol S2 
-0.20960 * apol S3  
-0.17674 * TPSA S3  
+0.34756 * vdw_vol S3 

0.49 0.089 

Table 9: Results of the BCRP models using fragmentation approach. 

We immediately observed that q2 value is too low in the second model to usefully 

analyze it further. Hence, we focused our attention on the first model in our 

analysis. According to its data set, a_acc s1, which represents the number of 

hydrogen bond acceptor atoms of the first fragment, e.g. tetrahydroisoquinoline, 

and a_don, which represents the number of hydrogen bond donor atoms core 

fragment, are the most contributing descriptor for biological activity. The 

descriptor of apol s2, which represents the sum of atomic polarizabilities of the 

second fragment, e.g. quinolone-3-carboxamide, is the most important descriptor 

in the second data set of the BCRP model. 
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Moreover, analysis of the tendency of each of the fragments showed that 

hydrophobicity and the number of hydrogen bond donor atoms highly contribute 

to the ligand-protein interactions (Figure 13).  

Interestingly, the result showed that the 3rd fragment, which always contains 

hydrogen bond acceptor atoms, negatively contributes to the molecule interaction 

with Pgp.  

 

Figure 13: Tendency of each of the fragments. 

Finally, QSAR models were constructed in WEKA for both Pgp and BCRP. The 

methods that were applied were linear regression function, with embedded 

feature selection. For further analysis, the molecular descriptors and fingerprints 

used to build the models in WEKA were then applied in MOE. Some satisfactory 

QSAR models were found. The summary of the results for Pgp and BCRP models 

is shown in Table 10. 

  

+0.96634 * a_don

+0.93559 * a_don 

+0.49398 * logP(o/w) 

-0.65729 * a_don
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Dataset Model 
WEKA MOE 

Type of descriptor* 

r2 q2 r2 q2 

Pgp 
1st  0.54 0.29 0.54 0.41 MACCS fingerprints 

2nd 0.91 0.35 0.91 0.69 ECFP fingerprints 

BCRP 1st 0.81 -0.01 0.43 0.07 ECFP fingerprints 

Table 10: Results of the models built using PLS regression analyses and leave-one-out method 

for internal validation. 

*List of the FP descriptors is shown in Appendix. 

 

At first glance, the 2nd Pgp model’s q² value obtained from MOE seems to be 

reasonable. However, it is important to mention that the methodology used needs 

to be taken into consideration carefully, since the model was first created using 

WEKA with all available fingerprint descriptors. Subsequently, the important 

descriptors that contributed for building the model in WEKA were then selected in 

MOE instead of selecting all descriptors and building the model from them. As a 

consequence, a good result of q² value in MOE could be obtained certainly. The 

problem is that the molecular descriptors used to build the Pgp model in MOE 

were already selected in the previous attempt in WEKA. This means that the 

descriptors are already known for their role in making the best model, resulting in 

a biased, unrealistic q² value. 

The approach in selecting descriptors in MOE should also be considered 

carefully. One should bear in mind that the higher the number of descriptors 

compared to the number of compounds in the dataset, the more likely it is to select 

those that could give high q² values. Moreover, as Golbraikh and Tropsha 

highlighted in their paper, one has to be careful in using only the cross-validated 

q² value for internal validation of models. They found that there was no correlation 

between good cross-validated q² values and predictive ability for the test set [66]. 

Therefore, it is more important to apply external validation, using an external test 

set to validate the predictive ability of the model, rather than carrying out only 

internal validation. Since only a sparse dataset was used in this work, external 
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validation method using an external test set could not be applied here. In cases 

with sufficient datasets, the dataset can be split into three parts: training set, test 

set and validation set (also called external test set). While the training set is used 

to calculate the best-fitting parameters for the sampled data, the test set is used 

to assess the performance of a fully-trained model. Furthermore, a validation set 

can be used for external validation in order to see how well the model predicts a 

new dataset. 

As shown in Table 9 and Table 10, all models constructed with different types of 

descriptors are quite poor or insignificant. This may be due the fact that many of 

the compounds in the Pgp and BCRP datasets are both Pgp and BCRP inhibitors 

and are therefore difficult to distinguish.  

In future studies, one could also apply selectivity index for this purpose, whereby 

the yielded models could be interpreted specifically for the determination of Pgp 

or BCRP preference. Moreover, the number of ligands in the dataset should be 

sufficient in order to achieve a high degree of correlation of the measured data 

and the ligands. 
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4. Structure-based Approach 

4.1 Introduction 

Unlike the ligand-based approach, the structural information of the target protein 

is required in structure-based studies. 3D structural data of the protein can be 

determined using various methods, including X-ray crystallography and nuclear 

magnetic resonance (NMR) spectroscopy. The problem with ABC transporters in 

general, and ABCB1 (MDR1/Pgp) and ABCG2 (MXP/BCRP) in particular is that 

they are embedded in the membrane [67]. Such membrane-bound proteins are 

difficult to crystallize. In order to circumvent this problem, a so-called ‘homology 

model’ from a protein with a high sequence identity to human Pgp is built and 

used for molecular docking instead of an actual human Pgp. Possible templates 

of such proteins can be found in Protein Data Bank (PDB), e.g. mouse Pgp. The 

first X-ray structures of mouse Pgp have been resolved in 2009 (PDB Code: 

4G5U, 3.8 Å) [68] and then refined in 2014 (PDB Code: 4M1M, 3.8 Å) [69]. Since 

then, homology models built using the structure could be applied for docking 

studies. However, in case of BCRP, there is no sufficient sequence identity 

(>20%) of the transmembrane (TM) domain with any existing ABC structure 

available in PDB. For this reason, only homology models for human Pgp are 

available for in silico studies. 

The objective of the structure-based approach is to gain more valuable 

information about the drug binding and transport mechanism of tariquidar analogs 

in Pgp. 
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4.2 Methods 

4.2.1 Homology Model 

In order to circumvent the problem that there is no high-resolution X-ray protein 

structure available, there are some different techniques that can be applied to 

predict protein structures (i.e. building a 3D protein model):  

1) Comparative modeling,  

2) de novo method and  

3) Protein threading or fold recognition.  

Depending on the information available from the known structure database, the 

appropriate approach is applied. When there are similar or identical sequences of 

known structures available in the protein data bank (PDB) that the target protein 

can be compared to, the method applied is comparative building, also known as 

homology modeling. 

In the cases where there is no homologous protein with known structure available, 

both de novo and protein threading method are available.  

De novo method, which can only be applied for very small peptide chains, can be 

further subdivided into two different methods: ab initio and knowledge-based, 

which have a rather high complexity and are computationally very expensive [70].  

Protein threading, also known as fold recognition, is suitable in cases where there 

is only low sequence identity between target structure and potential templates. It 

tries to compare the common folds of target sequences and that of proteins of 

known structures through amino acids alignment. This technique is comparatively 

fast and computationally inexpensive compared to the de novo method. 

In short, homology modeling tries to predict structures similar to the target protein 

by comparing the sequence of the known homologous protein structure and target 
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sequence. Based on the assumption that two proteins with high sequence identity 

would share similar structures, a homology model can be generated, in which a 

known protein structure sharing a high sequence identity with the target protein 

sequence could be identified and used as a template. Ideally, the sequence 

identity of the 3D structure of the template to the target protein should be at least 

50% to build a reliable structural model [71]. 

As depicted in Figure 14, the homology modeling steps include search for 

homologous sequences of the target protein, identification of the template 

structure based on the sequence identity with the query protein, the alignment of 

the target and template sequences, building the homology model, and finally 

evaluating the model. If the model is not satisfactory, the steps following the 

finding of the homologous sequence can be repeated again until an acceptable 

model is obtained. 

  



35 
 

 

Figure 14 : Homology modeling workflow. Taken from [72]. 
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In March 2009, the X-ray structure of mouse Pgp was available for the first time 

(PDB Code: 3G5U, resolution 3.8 Å) [68]. This structure is a good template for 

homology modeling due to its high sequence identity of 87% to human Pgp. Since 

then, a large number of structure-based studies using this 3D structure have been 

carried out intensively to gain more insight about the molecular mechanism of 

Pgp-mediated drug transport [73][37][74]. 

Since January 2014, a refined structure of mouse Pgp is available (PDB Code: 

4M1M, resolution 3.8 Å) [69], in which the inward open conformation of Pgp 

structure is more closed which reveals a slightly different structure than the 

previous one, resulting in different potential binding sites. 

4.2.2 Model Building 

In this work, a sequence of human Pgp was first retrieved from the National 

Center of Biotechnology Information (NCBI) protein database. The sequence 

acquired was then used to PSI-BLAST against the PDB Database to find the most 

suitable structural templates. With 88% sequence identity to human Pgp, 4M1M 

was used as the template. Sequence alignment of query and template was 

performed using ClustalX version 2.1. In total, 10 models were generated using 

MODELLER version 9.13.  

After the models were created, each of their Discrete Optimized Protein Energy 

(DOPE) and GA341 scores were analyzed to select the best model according to 

their energy levels. 

The GA341 scores range from 0.0 to 1.0. The closer the score is to 1, the more 

likely the model is native-like. Models with the highest GA341 score or with the 

lowest DOPE score have the most stable minimized energy. However, the DOPE 

score values are more favorable to identify good models with the highest quality 

[75]. The result of the assessment scores are shown in Table 11.  
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No. of model Molpdf DOPE score GA341 score 

1 5325.57471 -148136.04688 1.00000 

2 5486.13477 -147680.07812 1.00000 

3 5364.56543 -148017.43750 1.00000 

4 5415.12842 -147936.70312 1.00000 

5 5444.74658 -146939.23438 1.00000 

6 5419.91162 -148036.26562 1.00000 

7 5446.01318 -148182.35938 1.00000 

8 5859.42627 -147211.87500 1.00000 

9 5237.12646 -147866.64062 1.00000 

10 5279.91504 -148173.87500 1.00000 

Table 11: Summary of successfully generated models. 

Since all models were assessed with the highest possible GA341 score of 1, the 

model no. 7 with the lowest DOPE assessment score was selected for further 

protein structure analysis.  

4.2.3 Model Validation and Optimization 

4.2.3.1 Ramachandran Plot 

After the best model was selected, the evaluation of the stereochemical quality of 

the model regarding the outliers were checked with PROCHECK, which is 

included in the PDBsum analysis [76]. The PROCHECK tool used for the final 

model structure analysis is in form of a diagram, called Ramachandran Plot, and 

the related G-factors. 

In general, Ramachandran plot statistics are used to represent the final 

distributions of stereochemical parameters of the final model structure, which are 

two dihedral angles (φ and ψ) in the backbone of a protein. Additionally, sterically 

allowed regions for these angles can also be identified [77]. 
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The evaluation of the homology model is done by looking at the percentage 

distribution of the four important regions: most favoured, additional allowed, 

generously allowed, and disallowed regions. The higher the percentage 

distribution in the most favoured area, the better the quality of a 3D structure is. 

Typically, 90% in most-favoured is desired.  

The G-factors show how usual or unusual the stereochemical parameters 

distribution of the protein main-chain is. While G-factor values below -0.5 indicate 

unusual properties of the protein structure, values above -0.5 are therefore 

normally desired. 

4.2.3.2 Protein Optimization 

After evaluating the model with Ramachandran plot statistics, the structure can 

be refined in order to ensure chemical correctness and to optimize the protein 

structures. The Maestro Protein Preparation Wizard can be applied to assign 

bond orders, add missing hydrogens, and change the protonation state of the 

residues. The settings for the minimization was left default, using the OPLS 2005 

force field with an RMSD cut-off of 0.3 Å. 

4.2.4 Docking 

The objective of the docking studies is to find out the key molecular factors that 

determine the activity of inhibitors at Pgp. In order to generate conformations and 

orientations of a ligand in the binding pocket of a protein, molecular docking could 

be performed. The aim is to obtain a pose of a ligand, in terms of how a ligand 

lies within the protein pocket or to ‘discover’ a new binding hypothesis. Many 

software packages can be used to perform docking studies, and they differ from 

each other by their algorithm to create a pose of a ligand, the generation of the 

grid and the type of scoring function. In the docking studies of this work, 5 

compounds were selected. Prior to docking studies, there are some essential 
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steps to be done, including ligand preparation and grid-generation. Finally, the 

molecular docking of selected compounds was performed. 

4.2.4.1 Ligand Preparation 

4.2.4.1.1 Selected Pgp Modulators 

In order to investigate the putative binding sites of tariquidar analogs, five 

compounds were selected based on their pIC50 value (see chapter 3.2.2). 

Compound (Cpd) 5, Cpd 6 and Cpd 94 (tariquidar) which show the highest pIC50 

value, as well as Cpd 52 and Cpd 53 that have the lowest pIC50 value were chosen 

for further docking studies  (Figure 15). In general, all five compounds share a 

common structure, which is tetrahydroisoquinoline-ethyl-phenylamine as 

substructure connected to the anthranilamide nucleus. However, different 

substituents at the central anthranilamide ring can also be observed. 
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Figure 15: Chemical structure of compounds selected for docking experiments. 

The first subset containing three compounds with the highest pIC50 value were 

then regarded as active compounds and the second subset, which includes two 

compounds with the lowest pIC50 value, were regarded as inactive compounds 

(Table 12). 
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Compound Name pIC50 value Regarded as 

Cpd 53 3.99 inactive compound 

Cpd 52 4.02 inactive compound 

Cpd 94 (tariquidar) 6.65 active compound 

Cpd 6 6.74 active compound 

Cpd 5 6.84 active compound 

Table 12: plC50 value of the 5 compounds of Pgp dataset selected for docking studies. 

The 3D structure generation of all five compounds was obtained using CORINA 

with the default settings [78]. Then, database minimization was performed in 

MOE. The RMS gradient, which indicates the deviation from an optimized 

structure, was changed to 0.1, and the existing chirality was preserved. 

The charge state of the nitrogen atom was checked on the public web resource 

developed by ChemAxon [79], and it was suggested that the protonated type of 

the nitrogen in the tetrahydroisoquinoline of each of the tariquidar-like modulators 

predominates under physiological conditions. Hence, it was regarded as being 

protonated throughout the docking studies. 

The ligands were then prepared with the LigPrep protocol in Schrödinger. All of 

the settings were left to default, including generation of possible ionization states 

at a target pH of 7.0 ± 2,0, tautomers, and possible stereoisomers of each ligand. 

The generation of the low energy conformations was set to 1 per ligand. 

4.2.4.2 Grid-Generation 

In this work, for the determination of the drug-binding region in Pgp Glide from 

Schrödinger [80] was used. The receptor grid for binding poses for the ligands 

was defined by coordinates (X=22,4349 , Y=64,5613 and Z=10,7297). All other 

settings were kept as default. Figure 16 depicts the grid generation for the docking 

studies. 
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Figure 16: Grid generation for the molecular docking; left side: front view, right side: upper-side 

view. 

Several docking experiments of Pgp inhibitors also used this approximate drug 

binding region [73][81] These findings are in agreement with some possible 

binding sites found using the site finder tool in MOE, which are depicted in Figure 

17. 
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(a)      (b) 

Figure 17: Some possible active sites of P-glycoprotein calculated by site finder tool of MOE (a) 

front view (b) upper-side view. 

Some important residues, obtained from SiteFinder, that are involved in the 

ligand-protein interactions, can be seen in the Appendix. 
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4.2.4.3 Docking 

Before the docking protocol was carried out, the ASN/GLN/HIS flip state was 

determined with the web application MolProbity [82]. The docking experiments of 

five selected compounds were performed with the default settings. 

The standard-precision procedure was used because extremely enriched 

precision was not required for this work. The other type of precision is Glide extra-

precision (XP), which allows the top-scoring 10%-30% of the generated ligand 

poses to be examined more thoroughly with an advanced scoring [83].  

For the output quantity and file type, the settings were specified as follows: 100 

poses per ligands to be written out at most, and the number of poses per ligand 

to include was set to 100. 

4.2.5 Common Scaffold Clustering 

In order to identify groups of objects in a dataset so that members of the group 

are more similar to each other in specified ways, one can apply clustering analysis 

[84]. Unique individuals are divided into subgroups, also called clusters, according 

to specified variables. There are several ways to form clusters. One of them is the 

hierarchical clustering method, which can be further divided in agglomerative 

hierarchical clustering and divisive hierarchical clustering. Agglomerative 

hierarchical clustering is also called a bottom-up approach, because each of the 

objects in a dataset starts as its own cluster. Two clusters with the shortest 

distance to each other (again, according to specified variables) are merged into a 

single new cluster containing both previous clusters. Depending on the 

characteristics of these clusters at successive steps, the process is repeated until 

all objects are in one cluster. At the end, a dendogram with a defined cut-off point 

can be produced. The cut-off point can be defined by desired height, which stands 

for the distance metrics, e.g. RMSD value between the clusters. 
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In contrast to the bottom-up approach, the divisive hierarchical clustering begins 

with a single cluster containing all data entries, and subsequently splits it into 

smaller clusters. This step can be repeated until each data entry is a cluster on 

its own. Hence, this method is called a top-down approach. Figure 18 illustrates 

both agglomerative and divisive clustering. 

 

Figure 18: An illustration of hierarchical agglomerative and divisive clustering. 

In this work, the clustering of docking results was performed by applying the 

agglomerative hierarchical clustering and using common scaffold clustering 

(CSC) [73]. The aim of this method is to group a large number of orientations of 

ligands with various substituents but with a common core structure (scaffold). This 

means that compounds with the same scaffold are expected to have a common 

binding mode. With this approach, highly active compounds and lower active 

compounds can be distinguished. The concept of common binding mode is based 

on the idea that active compounds demonstrate a certain binding pose, which 

inactive compounds don’t share. 

First, the common scaffold structure for all obtained poses was constructed using 

MOE (see Figure 19). Then, an in-house SVL script was applied to extract the 

common scaffold of each of the docking poses. Subsequently, the distance matrix 

for all generated data was calculated using another SVL script in which the heavy 

atoms RMSD of the common core are calculated. Finally, an in-house R script 

Agglomerative

Divisive

a, b, c, d, e

c, d, e

a, b
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a b c d e



46 
 

was used to perform the hierarchical clustering. The docking poses are clustered 

based on the RMSD matrix of the heavy atoms of the common scaffold as defined 

by the user and is measured in Å. 

In this work, the docking poses were clustered at different intracluster distances, 

ranging from 1 to 7Å. An important assumption in using common scaffold 

clustering is that all ligands should have the same binding mode [73]. 

 

Figure 19: The structure in common with all compounds in the dataset. 

Based on the assumption that a common binding pose exists for these five 

compounds, only those clusters will be considered in further analysis, in which all 

five compounds were present. Various orientations of the substructures of the 

compounds that were not part of the common scaffold were then analysed to gain 

information regarding the molecular differences and the respective measured 

activity.  

4.2.6 Scoring and Rescoring 

The assessment process for the generated clusters of the docking poses was 

done by a combination of the scoring functions in Schrödinger and MOE as well 

as published experimental mutagenesis data [68] for prioritizing the ligand-protein 

binding hypotheses [85]. 
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4.2.6.1 Scoring Functions 

In order to evaluate the generated docking pose of a ligand in the binding pocket, 

scoring functions have to be applied, which rank obtained ligand poses. There are 

three different basic types of scoring functions: force-field based, empirical and 

knowledge-based scoring functions. 

Force-field based scoring functions evaluate the affinity between two binding 

partners by calculating the energy of intermolecular van der Waals and 

electrostatic interactions between atoms of the protein and the ligand with a 

particular distance cut-off to reduce the computational costs [86]. The energy 

parameters of this type of functions are derived both from the data of complexes 

and ab initio quantum mechanical calculations [87]. Several force-field based 

scoring functions (although there is sometimes a mild transition to empirical 

scoring functions) include London dG, GBVI/WSA dG and Affinity dG, which are 

used among others for the docking studies in this work. 

Empirical scoring functions estimate the free energy of binding for a protein–

ligand complex. Various energy terms such as van der Waal interaction, 

electrostatics, number of hydrogen bonds, hydrophobicity, etc. are derived by 

fitting experimental data of a protein-ligand complex to known binding affinities 

[88][89]. Due to simple energy terms, this type of scoring functions is 

computationally faster than force-field based scoring functions. An example of an 

empirical scoring function is Glide SP/XP [90], which is applied in this work. 

The last class of the scoring functions is knowledge-based, or also known as 

statistical-potential based scoring functions. Energy potentials are derived from 

large crystal-structure data and the frequency of occurrences of the complexes is 

observed to calculate the statistical potential for the evaluation of ligand-protein 

binding [87]. Furthermore, a consensus scoring could also be applied, which 

combines several functions in order to overcome any potential limitations of each 

of the above discussed scoring functions [91]. 
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In this work, consensus scoring was applied. For this, both Glide and MOE scoring 

functions were used.  

For all scoring functions, more favourable poses are indicated with lower score. 

An overview of the applied scoring functions is shown in Table 13. 

 

Name of the 

scoring function 
Software Type of scoring function 

GlideScore Schrödinger 
Empirical scoring function. It approximates the ligand 

binding free energy 

London dG MOE 
Force-field based scoring function. It attempts to 

estimate the binding free energy from a given pose 

GBVI/WSA dG MOE 
Force-field based. It estimates the free energy of binding 

of the ligand from a given pose 

ASE MOE 
Shape-based method [92]. It uses a simple Gaussian 

overlap scoring function 

Affinity dG MOE 
Force-field based scoring function. It attempts to 

estimate the binding free energy from a given pose 

Alpha HB MOE 
Shape-based method [92]. It combines geometric fit plus 

a hydrogen bond term [93] 

Table 13 : Overview of applied scoring functions. 

4.2.7 Protein-Ligand Interaction Fingerprint (PLIF) 

One of the methods that can be applied to analyse the important residues for the 

interactions between the ligand and protein is the Protein-Ligand Interaction 

Fingerprint (PLIF). The individual interactions, such as hydrogen bonds both in 

the sidechain and backbone, ionic interactions and surface contacts, can be 

displayed and observed visually, and transformed into a binary fingerprint 

scheme. This is organised in bits, in which the present interactions will be marked 

as designated letter and the absence of the corresponding interaction will be 

annotated as “-“.Table 14 shows the list of the ligand-protein interactions by PLIF. 

This analysis was done after the common scaffold clustering was performed. 
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Annotated letter Type of interaction 

D Sidechain hydrogen bond donor 

A Sidechain hydrogen bond acceptor 

d Backbone hydrogen bond donor 

a Backbone hydrogen bond acceptor 

O Solvent hydrogen bond 

I Ionic interaction 

c Surface contact 

Table 14: List of the ligand-protein interactions in PLIF. 

4.3 Results and Discussion 

The inward-facing human Pgp homology model built based on the new X-ray 

structure of Pgp was validated with Ramachandran Plot Statistics. Subsequently, 

a docking protocol was carried out on this model using five selected compounds 

that include active and inactive compounds. Then, all obtained ligand poses were 

clustered using common scaffold clustering (CSC) in order to group similar 

compounds into clusters. The clusters were analysed until the maximum 

intracluster distance of 7 Å. 33 of the 1643 clusters were investigated further. 

Items in the clusters were ranked with both Schrödinger and MOE and only the 

six clusters that got the same internal ranking were kept. Finally, the analysis of 

the studied-ligands’ poses was carried out in order to generate more insights 

about potential binding areas for these compounds.  

4.3.1 Homology Model - Model Validation 

The model with the lowest DOPE score was further evaluated with the 

Ramachandran Plot Statistics. 93.8 % of the residues are to be found in most 
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favoured regions, 4.2 % in additional allowed regions, 1.3 % in generously allowed 

regions and only 0.7 % in disallowed regions (see Figure 20). 

 

Figure 20 : Ramachandran plot of the selected homology model. 

The selected homology model was then loaded into the Maestro Protein 

Preparation Wizard. After the restrained minimization was completed, the result 

of the final homology model was then again analysed with PROCHECK. 
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In the Ramachandran Plot for the minimized protein 92.8 % of the residues are to 

be found in most favoured regions, 5.4 % in additional allowed regions, 1.3 % in 

generously allowed regions and only 0.6 % in disallowed regions (see Figure 21). 

 

Figure 21 : Ramachandran plot of the final homology model after the restrained minimization. 

The residues that are in the disallowed regions include Lys 359, Ser 373, Asp 

659, Glu 955, Asn 1079, Asp 1087 and Asn 1164. After the restrained 

minimization was performed, some of the residues in the disallowed regions in 

the previous model were shifted to other regions. In the refined homology model, 
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5 residues from the previous model, including Lys 359, Ser 373, Glu 955, Asp 

1087 and Asn 1164, are still in the disallowed regions and additionally, Val 611 is 

now also in the disallowed region. Further investigation reveals that all residues 

in the disallowed regions are mainly located in the nucleotide-binding domains 

(NBDs), which are not the binding regions of Pgp modulators. All previously 

mentioned residues are depicted in Figure 22.

 

Figure 22: Homology Model before the minimization; (b) Homology model after the minimization. 

4.3.2 Docking 

After ligand preparation, 2 isomers for each of the active compounds (Cpd 5, 6 

and Cpd 94 (tariquidar)) and inactive compounds (Cpd 52 and 53) were 

generated, resulting in 10 ligands in total. After the docking process, in total 981 

poses were obtained. 

Lys359 Lys359

Ser373 Ser373
Asp1087 Asp1087

Asn1164 Asn1164

Glu955

Asn1079 Asn1079

Asp659

Val611

(a) (b)
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In terms of the chemical structure of the 5 ligands under study, it is important to 

note that the shift of the quinolone-3-carbonylamino moiety from position 2 (ortho) 

to position 3 (meta) results in a less inhibitory activity of Cpd 52 and Cpd 53 

towards Pgp (see Figure 15). 

All compounds under investigation bind in the common drug-binding pocket. This 

region is comparable with the “lower” binding site of QZ59-SSS in the x-ray 

structure [69] and with the possible mechanism of drug transport of Pgp. 

Moreover, numerous results from cross-linking and photoaffinity labeling, 

combined with site-directed mutagenesis studies are also in agreement with this 

location.  

In order to comprehend the transport mechanism of Pgp, it is important to identify 

the binding site of the protein. Knowledge from previous studies regarding the 

important residues that may be crucial for protein-ligand interactions could be a 

helpful guidance for docking experiments. It has been suggested that the 

probable binding site(s) is (are) centralized in the cavity within the plasma 

membrane [94], and it has been also demonstrated in various experimental 

studies using different methods [95][73]. Moreover, site-directed mutagenesis 

experiments and chemical cross-linking studies have identified some residues 

that are potentially important for substrate transport. Cross-linking experiments 

with the thiol-reactive substrate tris-(2-maleimidoethyl)amine (TMEA) in SDS-

polyacrylamide gel electrophoresis on the human Pgp demonstrated that L339 

(TM6) and V982(TM12) are important to bind the substrate [96]. Moreover, 

ATPase activity of the respective mutants was inhibited by cross-linking with 

TMEA, and some Pgp substrates (Cyclosporin A, Vinblastine, Colchicine, and 

Verapamil) inhibited cross-linking by TMEA. 

Site-directed mutagenesis of 6 residues with cysteine, including Tyr307 (TM5), 

Phe343 (TM6), Gln725 (TM7), Phe728 (TM7), Phe978 (TM12) and Val982 

(TM12) showed that some Pgp substrates and modulators (QZ59S-SSS, 

cyclosporine A, tariquidar, valinomycin and 5’-[p-

(fluorosulfonyl)benzoyl]adenosine (FSBA) failed to inhibit the labelling of Pgp with 
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the substrate [(125)I]-Iodoarylazidoprazosin, when Tyr307, Gln725 and Val982 

are mutated. However, ATPase activity of the mutant Pgps was not decreased, 

showing that there is more than one active binding site for each substrate 

available for the transport [97]. Furthermore, it has also been shown by the same 

research group a couple of years later that at least two different substrates could 

bind in the drug-binding pocket of the protein at the same time [98]. Another site-

directed labelling approach with a thiol-reactive substrate also demonstrated that 

Lys339 is important for the inhibition of the transport function of Pgp. [99][100] 

Other studies using MTS-Verapamil (a thiol-reactive methanathiosulfonate-

verapamil) also suggested that the ATPase activity of MTS-verapamil labelled 

mutant Ile306Cys significantly increased (8-fold higher than untreated controls) 

[101]. Similar results could also be observed in the cysteine-scanning 

mutagenesis studies with the thiol-reactive substrate dibromobimane (dBBn) on 

human Pgp. Some mutants (L339C, A342C, L975C, V982C, and A985C) were 

protected from inhibition by dBBn with administration of Verapamil, Vinblastine 

and Colchicine [102]. Findings from other studies [103] showed that the ATPase 

activity in the MTS-rhodamine labelled mutant Phe343Cys was enhanced 5.8-

fold. Moreover, the ATP hydrolysis also increased by adding Verapamil to the 

MTS-rhodamine-treated mutant. Other studies with MTS-Verapamil also 

emphasized the significance of residues Phe728, Ile306, Phe343 for contributing 

to drug binding. The apparent Verapamil affinity decreased when Phe728 is 

mutated to Cys. However, the ATPase activity of the MTS-verapamil-labelled 

Phe728Cys mutant was further enhanced by 11.5-fold than those of untreated 

controls [104]. 

Taken together, these results suggest that the binding pocket for drug-protein 

interactions is formed in the interface between TM5, TM6, TM7 and TM12. All 

above mentioned residues are listed in Table 15 and depicted in Figure 24. 
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Suggested important residues Residues in homology model 

Tyr307 Tyr277 

Phe343 Phe313 

Gln725 Gln641 

Phe978 Phe894 

Val982 Val898 

Leu339 Leu309 

Ile306 Ile276 

Arg342 Arg312 

Leu975 Leu891 

Arg985 Arg901 

Table 15: Suggested critical residues from mutagenesis experiments for Pgp inhibition. 

These various experiments with verapamil and analogs are of importance, as 

verapamil shares a common structure with tariquidar (Figure 23). This 

observation was also pointed out by a previous studies with tariquidar-like Pgp 

modulators [105]. 

 

Figure 23 : The structure of tariquidar and verapamil shows common substituent of 

dimethoxyphenyl moieties and tertiary amine. Taken from[105]. 
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Figure 24 : Critical residues based on various mutagenesis experiments. 

In previous studies it has been assumed that tariquidar has the same binding 

mode as the Pgp substrate Hoechst 33342 [50][35]. Moreover, this finding is in 

accordance with other studies that revealed some putative drug binding sites of 

Pgp for flavonoids [67] and propafenone derivatives [73] which share some 

common structure with tariquidar (tetrahydroisoquinoline substructure). The 

placement of the grid in this step was therefore based on those studies, which 

suggest that the binding sites are near to the central cavity of Pgp (see Figure 

16). The other two possible binding sites calculated by the Sitefinder tool in MOE 

were disregarded because no evidence was found in the literature that they could 

be part of putative binding pockets (Figure 17).  
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4.3.3 Common Scaffold Clustering 

As described in the Methods section, a common scaffold clustering (CSC) was 

performed, and the results of the clustering were analysed up to an intracluster 

distance of 7 Å. For the analysis, only clusters containing poses of all five ligands 

were kept. As there are no cluster in the first group (i.e. maximum intracluster 

distance of 1 Å) which fulfilled this requirement, the analysis started from the 

distance of 2 Å (see Table 16). 

Maximum 

intracluster 

distance (Å) 

Total 

clusters 

Remaining clusters 

after elimination 

1 657 0 

2 388 1 

3 236 2 

4 149 7 

5 98 7 

6 66 7 

7 49 9 

Total 1643 33 

Table 16 : Summary of the clusters of obtained docking poses. 

4.3.4 Scoring and Rescoring 

Prior to analysis, scoring of the poses in all the remaining clusters was done in 

Schrödinger, using Glidescore, and the rescoring in MOE, using London dG, 

GBV/WSA dG, ASE, Affinity dG and Alpha HB scoring functions. According to the 

results of the rescoring, the rank of each of the ligands within a cluster is not 

always consistent with the measured activity. With the assumption that active 

compounds are supposed to be better scored than inactive compounds, only 

those clusters were further analysed, in which the ligands are correctly scored by 

the six scoring functions. An example of the rescoring can be seen in Table 17: 
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Maximum 

intracluster 

distance (Å) 

Cluster 
No. of 

poses 

Glide 

SP 

London 

dG 

GBVI/WSA 

dG 
ASE Affinity 

Alpha 

HB 

5 1 46 - - - - - - 

 7 43       

 8 32 - - - - - ~ 

 19 21       

 28 32 -  ~ ~ ~ ~ 

 49 31 -  ~ - ~ - 

 55 39 - ~ ~ - - ~ 

Table 17: Rescoring of the maximum intracluster distance of 5Å. 

 = ranking preserved 

- = incorrectly ranked 

~ = ranking moderately preserved 

 

All the clusters in the maximum intracluster distance (MID) of 2-5 Å were rescored 

with the above mentioned scoring functions. This resulted in six remaining 

clusters that were used for a more detailed investigation regarding the ligand 

poses, which are shown in Table 18: 

MID (Å) Cluster No. of poses Cluster ID 

2 54 8 I 

3 39 11 II 

4 7 25 III 

 33 16 IV 

5 7 43 V 

 19 21 VI 

Table 18: Summary of the 6 selected clusters to be further analysed. 
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The predicted important residues for the protein-ligand interactions were 

calculated by PLIF. The binding site consists of predominantly amino acids in the 

TM α-helical regions 3, 5, 6, 11 and 12 (see Figure 25). 

Figure 26 depicts the corresponding residues for the active and inactive 

compounds in the protein. 

 

Figure 25: PLIF for all poses of the 6 remaining clusters. Important residues for protein 

interaction with A) inactive compounds and Panel B) active compounds. 

According to the PLIF results, Gln165, Gln862 and Met865 were found to be 

important residues of Pgp involved in tariquidar binding. These 3 amino acid 

residues are located near the common scaffold. Thus, interactions with these 

residues were observed. However, interactions with Ile276, Tyr280, Phe313 and 

Gln906 only exist with active compounds. It can be observed that there is only a 
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small number of poses showing interactions with these residues. Interestingly, 

those poses have a higher docking score compared to other active compounds 

that don’t show interaction with these residues, e.g. a ligand pose that shows 

interaction with Tyr280 has a higher score than the ligand pose that doesn’t show 

interaction with this residue. Some important residues obtained from the docking 

experiments, including Ile276, Phe313 and Gln906 (Ile306, Phe343 and Gln986 

in the murine Pgp structure, respectively), are in agreement with mutagenesis 

data. Tyr280 is located near the molecules, indicating that a hydrogen bond 

between Tyr280 and the carbonyl group of the ligands could be formed, as 

demonstrated in previous studies [73]. 

 

 

Figure 26: All important residues calculated by PLIF; green: residues for active compounds; 

blue: important residues for inactive compounds. 
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The 124 poses of the 6 clusters under study include 30 poses of inactive 

compounds and 94 poses of active compounds. 

Further analysis was done for cluster V (Table 18), which is cluster 7 of maximum 

intracluster distance of 5 Å. In the hierarchical agglomerative clustering, the closer 

the cut-off point to the top, the more data points are merged into one cluster 

(Figure 18). Thus, cluster V, which is in the highest level of the tree, includes also 

some poses from the lower maximum intramolecular distance. Moreover, cluster 

V also has the highest population. Cluster V contains 11, 10 and 15 poses for Cpd 

5, 6 and 94, respectively. Additionally, 5 and 2 poses for Cpd 52 and 53, 

respectively, were included in this cluster. A common ligand binding orientation 

exists for all tariquidar-like compounds, both inactive compounds (e.g. Cpd 52 

and 53) as well as active compounds (Cpd 5 and 6). Interestingly, two different 

ligand binding orientations were observed for Cpd 94 (tariquidar). Finally, the 

ligand poses with the highest score for each of the compounds in the cluster V 

were taken as the final binding mode for further analysis.  

4.3.5 Analysis of the Poses 

In general, the presence of two dimethoxy groups, which are hydrophobic 

substituents, in positions 6 and 7 of the tetrahydroisoquinolinylamide substructure 

is important for Pgp inhibition, as it has been shown in previous studies [45]. 

Moreover, a tertiary amine group also plays a role for many Pgp substrates and 

modulators [46]. 

Tariquidar has been extensively analysed since the discovery that the shift of the 

quinolone-3-carbonylamino substituent of the benzamide ring from para to meta 

changed the affinity of tariquidar, rendering it more active at BCRP than at Pgp. 

The three suggested binding sites for tariquidar include the QZ59 binding sites, 

Hoechst 33342 (Hoechst 33342, H-site) and rhodamine-123 (R123, R-site) [7]. 

Several exhaustive experiments on tariquidar putative binding modes in an 

inward-facing Pgp homology model revealed that the location of tariquidar is near 
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to the lower QZ59 ligand, but also covers the upper site partially and also the H-

site [106]. 

4.3.5.1 Binding Modes of Cpd 5, Cpd 6 and Cpd 94 (tariquidar) 

The putative binding modes of Cpd 5, Cpd 6 and Cpd 94 (tariquidar) are shown 

in Figure 28. In general, the ligand orientation of tariquidar is comparable to the 

other two active compounds, Cpd 5 and 6. Some polar amino acids were found 

within 4.5 Å from the molecule. They are predominantly located in TM helix 3 

(Q165 and S166), TM helix 5 (Y280), TM helix 6 (Q317 and S319), TM helix 11 

(Q862) and TM helix 12 (Q906 and S909). Additionally, hydrophobic interactions 

are found in TM helix 3 (I269), TM helix 5 (I276), TM helix 6 (F313), TM helix 11 

(M865) and TM helix 12 (F899, M902 and F910).  

Interestingly, a second binding mode also was observed for tariquidar, suggesting 

that it also binds in the lower position (See Panel B in Figure 27). While the first 

binding mode includes 5 poses, the second binding mode includes 22 poses. 

According to the docking score, the difference between the two binding modes is 

not significant. This indicates that there is a possibility that tariquidar 

simultaneously binds to different sites. This finding is in agreement with other 

studies, which showed that there are more than one multiple transport-active 

binding sites for Pgp substrates and inhibitors [97]. This observation has also 

been suggested by other in silico studies [7][107]. Additionally, it has also been 

proposed that Pgp has both primary and secondary sites for each of the R site 

and H site [108]. 
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Figure 27: Two different tariquidar poses. Panel A: tariquidar pose that is comparable with Cpd 5 

and Cpd 6. Panel B: another tariquidar pose which lies more to the lower position. 

PLIF calculation of the two binding modes of tariquidar demonstrated that Gly905 

and Ser909 are important residues for ligand-protein interaction only in the 

second binding mode (Table 19). Some site-directed mutagenesis studies of 

these residues have been published [109]. However, no studies specifically used 

tariquidar for the experiments. Thus, further experiments regarding this are 

needed to confirm this hypothesis. The putative binding mode of all active 

compounds, including the second tariquidar binding mode, is depicted in Figure 

28. 

Binding mode 1 Binding mode 2 

Phe313 Phe313 

Gln317 Gln317 

Met865 Met865 

Met902 Met902 

Gln906 Gln906 

 Gly905 

 Ser909 

Table 19: Calculated PLIF for the two binding modes of tariquidar. 
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Figure 28: All active compounds, including the second tariquidar binding mode (blue). Cpd 5 

(light green), Cpd 6 (dark green), first binding mode of Cpd 94 (cyan). Residues in grey are 

calculated by PLIF and residues in brown are important residues from mutagenesis data which 

lie within 4.5 Å around the ligand. 

Two of the important residues demonstrated by various mutagenesis experiments 

were found in all binding poses. They are F343 (F313 in chain A of the model) 

and I306 (I276 in chain A of the model), which directly participated in interactions 

with the poses. Furthermore, six other residues are located within a range of 4.5 

Å from the compounds, including Y307 (Y277 in chain A of the model), Q725 

(Q641 in chain B of the model), F728 (F644 in chain B of the model), F978 (F894 

in chain B of the model), V982 (V898 in chain B of the model), and L339 (L309 in 

chain B of the model).  

Moreover, H-bond interactions between Y280 and Y277 with the molecule were 

not found. However, both residues are located within a distance of 4.5 Å from the 

molecule. The loss of the interactions could be explained by the fact that some 

residues of the refined mouse Pgp structure (PDB ID: 4M1M) are significantly 

shifted from the previous one (PDB ID: 3G5U), including Y277 and V898. In the 

case of Q641, the side-chain is flipped from the previous structure (see Figure 

29). 
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Figure 29: Comparison of some superimposed important residues for Pgp inhibition 

demonstrated by mutagenesis experiments. Cyan: 3G5U, light pink: 4M1M, rose: Pgp homology 

model. Tyr303 (Tyr277 in chain A of the model), Tyr306 (Tyr280 in chain A of the model), 

Gln721 (Gln641 in chain B of the model) and Val978 (Val898 in chain B of the model) for the 

transport of Pgp.  

Despite the above mentioned fact, π–π stacking interactions between Cpd 5 with 

F644, Cpd 6 with F313 and Cpd 94 with F313 could still exist with a distance of 

3.64Å, 3.32Å and 4.28Å, respectively (Figure 29). As shown in Figure 30, the 

location of the Cpd 5, 6 and 94 (tariquidar) are in the hydrophobic binding pocket.  
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Figure 30: Surface maps of Cpd 5, 6 and 94. The hydrophilicity is depicted in pink and 

lipophilicity in green. 

4.3.5.2 Binding Modes of Cpd 52 and Cpd 53 

The shift of the quinolone-3-carbonylamino substituent of the benzamide moiety 

to the meta-position reduces the affinity for Pgp compared to tariquidar. 

Additionally, this modification changes the specificity of both Cpd 52 and 53 from 

Pgp to BCRP. This manner of modification at the substitution position revealed 

an important factor for determining the selectivity of tariquidar analogs towards 

Pgp and BCRP.  

Moreover, it can be observed that the orientation of the quinolone-3-

carbonylamino substituent of Cpd 52 and Cpd 53 is pointing towards the internal 

cavity of the plasma membrane, due to the meta-position of the benzamide moiety 

substituent. This caused the substituent to be highly exposed to water and may 

contribute to a lower inhibitory activity of these Pgp transporters (see Figure 31 

and Figure 32). In comparison to the active compounds of 5, 6 and 94 (Figure 33 

and Figure 34), the substituent of the inactive compounds is clearly exposed to 

water.  



67 
 

  

Figure 31: A) Putative binding site of Cpd 52 and 53. Residues in grey are calculated by PLIF 

and residues in brown are important residues from mutagenesis data which lie within 4.5Å 

around the ligand. B) Surface maps of Cpd 52 and 53. The hydrophilicity is depicted in pink and 

lipophilicity in green. 

 

Figure 32: 2D visualization of the inactive compounds in the binding region. High exposure of 

the quinolone-3-carbonylamino substituent of the benzamide moiety to water. A) Cpd 52. B) Cpd 

53. 
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Figure 33: 2D visualization of the active compounds in the binding region. Small exposure of the 

quinolone-3-carbonylamino substituent of the benzamide moiety to water. 

 

Figure 34: 2D visualization of Cpd 94 (tariquidar) in the binding region. Small exposure of the 

quinolone-3-carbonylamino substituent of the benzamide moiety to water. A) Binding mode 1. B) 

Binding mode 2. 
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4.4 Summary and Conclusion 

In summary, the docking experiments in this study focused on identification of the 

molecular basis of Pgp inhibition by tariquidar-like modulators. The docking 

studies were carried out with the inward-facing structural model of human Pgp 

based on the refined crystal structure of mouse Pgp. First, five ligands that 

represent the most active and least active compounds in the data set were 

selected for the study. Both binding sites defined by the Sitefinder tool in MOE as 

well as putative binding sites from various studies were taken into consideration. 

After the docking protocol, subsequent analysis of the obtained orientation of the 

ligands included hierarchical agglomerative clustering, protein ligand interaction, 

and consensus scoring to rank the ligand poses. The method used for clustering 

was Common Scaffold Clustering (CSC). This implies that compounds are 

supposed to have a common binding mode when a common scaffold exists. 

Finally, further analysis was based on the “protein ligand interaction fingerprint” 

(PLIF). The residues that are described to play an important role in protein-ligand 

interactions were investigated. The resulting 124 poses were visually analysed to 

distinguish the different orientations between active and inactive compounds. 

Results of the structure-based approach propose that the shift of the quinolone-

3-carbonylamino from para to meta position of the benzamide ring leads to 

limitation of the sterical freedom of the benzamide moiety. This may result in a 

lower inhibitory activity of the compounds towards Pgp. Another reason for the 

low activity may be the high exposure of the previously mentioned substituent to 

water. 

However, due to this modification, the specificity of both meta-substituted 

quinolone-3-carbonylamino analogs changed from Pgp to BCRP. This revealed a 

key factor for profiling the structural determinants for the selectivity of Pgp and 

BCRP of tariquidar-like modulators. This is in agreement with the observed 
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selectivity of meta-substituted tariquidar derivatives for ABCG2 transporters (see 

Appendix: Figure 35).  

Other docking experiments with tariquidar analogous revealed some putative 

binding modes with several critical amino acid residues [105]. These results 

include Tyr307, Gln725, and Val982, which are in agreement with mutagenesis 

experiments (see section 4.3.2). Additionally, other in silico experiments with 

propafenone derivatives also demonstrated a H-bond interaction of residue 

Tyr310 of the protein with the molecule [73]. These docking studies were carried 

out with a human Pgp homology model based on the old X-ray structures of 

murine Pgp (PDB ID: 3G5U). The structures show a large internal cavity open to 

the cytoplasmic surface and the membrane inner leaflet, with a high degree of 

separation between the two NBDs [68].  

It is highly interesting that different results were obtained in this study. Apart from 

different methods that were applied, it is important to note that the refined 

structures of murine Pgp (PDB ID: 4M1M) was chosen to build the homology 

model. Both might explain the different results compared with the previous in silico 

studies.  

With regard to the methods, it may be that the applied methods were not 

appropriate for analysing the interaction, as was previously thought. The selection 

of methods was based on previous successful studies [73]. Method selection has 

to be considered in detail for further studies, especially those that use the new X-

ray structures.  

In future studies, the number of conformations per compound should be increased 

to cover all binding pose possibilities and further analysis of important residues 

for the transport should consider various rotamers of charged or polar amino acid 

residues to reveal more possible interactions of protein residues with the 

molecule. Furthermore, the unprocessed complexes could be energetically 

minimized e.g. using LigX. 
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Another interesting experiment would be to alternatively use GlideScore XP for 

docking score function. As it is a more precise and strict method, it is 

computationally more expensive. Therefore, one should apply the SP method 

first, and the subsequent docking of the top-scoring ligands can be done using 

XP mode. This will provide higher improvements to the scoring and detection of 

various interactions, including hydrogen bonds, π–cation and π–π stacking. 

Subsequently, molecular dynamic (MD) studies for this particular binding mode 

can be done to reveal the relative binding energies. Moreover, the molecular 

interactions and molecular features of active and inactive compounds can also be 

understood in a better way. 

Another suggestion would be MD studies without ligands to see how good the 

homology model is. 

Alternatively, one could apply the induced fit docking protocol of the Schrödinger 

Suite [110] to increase the protein flexibility and thus to obtain more binding pose 

possibilities. Thereby, the specificity of Pgp and the distinction between active 

and inactive compounds may be understood to a greater degree by the molecular 

features. Moreover, if a structure of BCRP would be available, docking of the 

same compounds in it would allow gaining more clues regarding the specificity of 

the compounds. 

In conclusion, docking studies provide some hypotheses to better understand the 

structure and function of P-glycoprotein. However, the approximate proposed 

position of ligand binding only partially corresponded with the suggested 

mechanism of Pgp inhibition, as well as with reports from cross-linking and site-

directed mutagenesis experiments. More exhaustive docking studies and 

mutagenesis experiments are necessary to confirm the putative binding modes 

found in this study. The result of this study at least strengthened the importance of 

residues Gly905 and Ser909 for tariquidar binding to Pgp. 
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5. Conclusions and Outlook 

Despite the fact that a large number of exhaustive and thorough experiments have 

been carried out since the crystallographic murine Pgp structure was solved in 

2009, the big question regarding the polyspecificity of Pgp remains elusive. One 

still cannot explain the molecular basis of the ligand-protein interactions. Once 

the key factors regarding mechanism of Pgp drug efflux function are revealed, the 

efficacy of many cancer therapies would be dramatically increased. This is 

because of the vital role Pgp plays in cancer phenotypes. Various ligand-based 

and structure-based studies have been carried out in order to have a better 

comprehension of which molecular properties a ligand should have to be able to 

inhibit the function of Pgp. Some highly potent third generation Pgp or BCRP 

modulators have been discovered, holding promise to scientists and physicians 

that the long awaited fundamental questions (i.e. how Pgp attracts its substrates 

to bind or which structural features are responsible for substrate and inhibitor 

affinity) might finally be answered.  

This work focused on finding the selectivity profiling of Pgp and BCRP modulators 

analogs to tariquidar. It comprises both ligand and structure-based approaches to 

gain a deeper insight about the molecular basis of ligand-protein interaction. 

The 2D-QSAR analysis demonstrated the importance of the hydrophobic surface 

area and the number of hydrophobic atoms for Pgp and BCRP inhibitory activity, 

respectively. However, the number of hydrophobic atoms was demonstrated to 

have a negative effect on BCRP inhibition. This indicates that hydrophobic atoms 

may contribute binding to the protein, but are not the key factor for transporter 

inhibition. 

Several 2D-QSAR models were also constructed in WEKA for both Pgp and 

BCRP datasets. The methods that were applied were linear regression function 

with embedded feature selection. By using various methods to build the models, 

the result don't clearly indicate the importance of hydrophobicity. 
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The next approach in the ligand-based studies was the fragmentation approach, 

whose main objective is to exploit local information which may not be captured by 

using the whole structure. In other words, this approach uses local features 

instead of global ones to identify important molecular features responsible for 

biological activity. The results showed that the number of hydrogen bond acceptor 

atoms of the first fragment, e.g. tetrahydroisoquinoline, and the number of 

hydrogen bond donor atoms of the core fragment, are the most contributing 

descriptors for biological activity at BCRP.  

In regard to the dataset studied in this work, one should note that between the 

two groups (i.e. active and inactive compounds) selected for docking 

experiments, only approximately two to three orders of magnitude difference in 

activity exists. Hence, it cannot be assumed that the important descriptors found 

can be specifically taken as key factors to distinguish active from inactive 

compounds.  

The docking experiments revealed a very important factor for determining the 

selectivity of tariquidar analogous towards Pgp and BCRP. This is in agreement 

with the data of the research group that demonstrated that the shift of the 

quinolone-3-carbonylamino substituent of the benzamide ring from para to meta 

position changed the affinity of tariquidar from Pgp to BCRP [48].  

Moreover, two tariquidar poses suggested that tariquidar may change its 

conformation while entering the protein without losing its affinity, and that multiple 

transport-active binding sites might indeed exist, as suggested in previous studies 

[97]. Two residues Gly905 and Ser909 were found to be essential for tariquidar-

Pgp interaction. Both structure-based and ligand-based studies in this work 

suggested that the hydrophobicity of ligands does not play an important role in 

Pgp inhibition, but is only important for binding to Pgp.  

The results of this work serve as a contribution to reveal the predominant factor 

in determining Pgp/BCRP-ligand interactions for a set of tariquidar analogs. This 

has implications for future studies on targeted cancer therapies. Once the missing 
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piece of the puzzle is solved, it may provide a therapeutic benefit for cancer 

patients.  
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7. Appendix 

Abstract 

The ATP-driven drug efflux transporters P-glycoprotein (Pgp, ABCB1) and breast 

cancer resistance protein (BCRP, ABCG2) play an important role in multidrug 

resistance (MDR) of a wide range of malignancies. The MDR modulator tariquidar 

is amongst the most potent inhibitors of these ABC transporters. However, 

several experiments and measurements revealed that some of its analogs appear 

to be even more potent inhibitors for BCRP than of Pgp. 

The aim of this work is to describe the structure-activity relationship of tariquidar 

analogs and to elucidate the molecular basis of differences encountered in the 

derivative’s affinities towards Pgp and BCRP by using both ligand- and structure-

based in silico models. 

In ligand-based studies, 2D-QSAR studies were carried out to build models. 

Protein homology modeling was the method of choice for structure-based studies 

as ABC transporters are embedded in the membrane and thus difficult to 

crystallize. The newly available refined structure of mouse Pgp (PDB ID: 4M1M) 

was used in this work. 

Two potential binding hypotheses that are able to distinguish the different 

orientation between the active and inactive ligands of Pgp were revealed. 

Moreover, two putative binding modes of tariquidar were hypothesised. Another 

finding is that the analysed compounds interacted differently with the new mouse 

Pgp compared to the old structure.  
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Zusammenfassung 

Die ATP-getriebenen Efflux-Transporter P-Glykoprotein (Pgp, ABCB1) und das 

Brustkrebs-Resistenz-Protein, (eng. Breast Cancer Resistance Protein, BCRP, 

ABCG2) spielen eine wichtige Rolle in der Multidrug-Resistenz (MDR) von 

verschiedenen Arten von Krebszellen. Der MDR-Modulator Tariquidar gehört zu 

den hochwirksamen Inhibitoren dieser beiden ABC-Transporter. Jedoch zeigten 

Experimente, dass einige der modifizierten Tariquidar Analoga noch potentere 

Inhibitoren für BCRP als für Pgp zu sein scheinen.  

Das Ziel der vorliegenden Diplomarbeit ist die Ermittlung der Struktur-Aktivität-

Beziehungen von Tariquidar Analoga und deren Präferenz für Pgp oder BCRP 

mit Hilfe von in silico Modellen. Sowohl liganden-basierte als auch struktur-

basierte computergestützte Ansätze wurden angewendet.  

In ligand-basierten Studien wurden 2D-QSAR Studien durchgeführt, um die 

Modelle zu bauen. Proteinhomologiemodellierung war die Methode der Wahl für 

die struktur-basierten Studien, da ABC-Transporter in die Membran eingebettet 

sind und deshalb die Kristallisation eines solchen Proteins erschwert ist. Die neu 

verfügbare, verbesserte Struktur des Maus-Pgp wurde in dieser Arbeit verwendet.  

Zwei potenzielle Bindungshypothesen, die in der Lage sind, die Orientierungen 

der aktiven und inaktiven Verbindungen zu unterscheiden, wurden gezeigt. 

Außerdem wurden zwei potenzielle Bindungshypothesen von Tariquidar 

postuliert. Die in dieser Arbeit gezeigten Ergebnisse sind unter anderem 

deswegen relevant, da sie den Ergebnissen anderer Studien, die allerdings die 

alte Mouse-Pgp-Struktur verwenden, widersprechen. Das deutet darauf hin, dass 

die Ergebnisse auf Unterschiede in den Strukturen zurückzuführen sind. 
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List of Abbreviations 

ABC  ATP-binding cassette 

BCRP  Breast cancer resistance protein 

Cpd  Compound 

DOPE  Discrete Optimized Protein Energy 

FP  Fingerprints 

jCMapper JCompoundMapper 

IC50  half maximal inhibitory concentration 

MD  Molecular dynamics 

MDR  Multidrug resistance 

MID  Maximum Intracluster Distance 

MMFF94x Merck molecular force field 94x 

MOE  Molecular operating environment 

Molpdf Molecular probability density function 

MRP1  Multidrug-resistance associated proteins 1 

NBD  Nucleotide-binding domain 

NMR  Nuclear magnetic resonance 

OPLS  Optimized potentials for liquid simulations 

pIC50  the negative log of the IC50 value in molar 

PDB  Protein Data Bank 

Pgp  P-glycoprotein 
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PLS  Partial least squares 

PSI-Blast Position-specific iterated BLAST 

q²  Predicted variance 

r²  Coefficient of determination 

RMSD  Root-mean-square deviation 

TMD  Transmembrane domain 

TMH  Transmembrane helix 

WEKA Wakaito environment for knowledge analysis 

 

 



 

Fingerprints descriptors for building Pgp and BCRP models 

Model 
WEKA MOE  

Descriptor. 

 

Type of descriptor r2 q2 r2 q2 

Pgp 0.54 0.29 0.54 0.41 MACCSFP32 

MACCSFP53 

MACCSFP99 

MACCS fingerprints 

0.91 0.35 0.91 0.69 HASH-7 

HASH-32 

HASH-33 

HASH-54 

HASH-116 

HASH-138 

HASH-355 

HASH-361 

HASH-523 

HASH-789 

HASH-825 

HASH-847 

HASH-930 

ECFP fingerprints 

BCRP 0.81 -0.01 0.43 0.07 HASH-32 

HASH-99 

HASH-123 

HASH-144 

HASH-147 

HASH-208 

HASH-255 

HASH-332 

HASH-388 

HASH-455 

HASH-466 

HASH-473 

HASH-658 

HASH-682 

HASH-687 

HASH-706 

HASH-828 

HASH-969 

HASH-995 

ECFP fingerprints 
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SiteFinder output 

LEU35 MET39 PHE42 PHE170 PHE174 LEU189 SER192 LEU195 GLY196 ALA199 ILE269 ALA272 

PHE273 ILE276 TYR277 TYR280 PHE306 LEU309 ILE310 ALA312 PHE313 VAL315 GLY316 GLN317 

GLN641 PHE644 MET865 TYR869 PHE894 PHE899 MET902 ALA903 GLN906 

 

Scripts 

Common scaffold clustering 

 

#svl 

 

#set main 'substructures' 

#set author 'lars & freya'  

 

 

 

function substructures mdb 

 

// 21.01.2009 

 

//////////////// EINGABE ///////////////////////// 

local mol_field = 'ligand_minimized'; 

// Ph scaffold 

local Scaffold = 'n1cccc([#6])c1-a1aaa(aa1)[#6]Nc1ccc(ac1)C'; 

local subs = [Scaffold]; 

local subs_fields = ['Scaffold']; 

 

///////////////////////////////////////////////// 

 

local db = dbv_DefaultView []; 

local entries = db_Entries db; 

local entry; 

 

 

local sub; 

db_EnsureField [db, 'Scaffold','molecule']; 

 

for entry in entries loop 

 

 Close[force:1]; 

 local lig = cat db_ReadFields [db,entry,mol_field]; 

 mol_Create lig; 

 

 

 // Substructures 
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 local i=1; 

 for sub in subs loop 

 

  local aKeys = uniq cat sm_MatchAtoms[sub,Atoms[]]; 

   

 

  local data = [mol_Extract aKeys]; 

  db_Write [db,entry,tag [subs_fields(i),data] ]; 

 

 i = i+1; 

 endloop 

 

endloop 

 

endfunction 
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R_clustering_centroids.R 

 

# This script applies hierarchical clustering on the previously obtained 

RMSD-matrix. 

# It cuts the output dendrogram at a defined "niveau" (parameter of the 

script) and delivers the cluster centroids. 

# All files located in the defined _path_ will be considered. 

# The output consists of .csv-files with information about 

#  - amount of cluster 

#  - clustersize 

#  - centroids 

# additional informations are located in the defined _directory of the 

logfiles_ 

# 

# Use as input: a square matrix with comma separated values 

# 

# Starting the script within R: 

# source ("/home/phi_employee/Scripts/R_clustering_centroids.R") 

 

# Problem: the 'height' component of the output 'tree' can have ties (2 

clusters could potentially be merged at the same distance). To cut the tree 

we need a well sorted tree (no ties), that is why the trick of round(,6) was 

applied to increase the precision in the distances: 

# see: http://tolstoy.newcastle.edu.au/R/e4/help/08/05/12735.html 

# or: http://www.mail-archive.com/r-help@r-project.org/msg21360.html 

 

# if the package is not installed: type install.packages() and select... 

 

 

 

library(clv) 

 

### Definition of the niveau, where the cluster-tree should be cut 

### corresponds to the maximal distance within a cluster in Angstrom, 

### if the clustering algorithm is set to 'complete-linkage' 

### TO CUSTOMIZE 

niveau=3 

 

### Definition of the paths ### 

### TO CUSTOMIZE 

path <- "/home/daria/data/R/" 

 

### INITIAL CLUSTERING AFTER DOCKING (NIVEAU=1) ### 

 

#matrixfiles <- "2_matrix/" 

#clusterfiles <- "3_cluster/" 

#centroidfiles <- "4_centroids/" 

#logfiles <- "clusterlogs/" 

 

### CLUSTERING AFTER MINIMISATION ### 

 

matrixfiles <- "matrix/" 

#clusterfiles <- "cluster/" 

#centroidfiles <- "centroids/" 

#logfiles <- "clusterlogs/" 

 

### CLUSTERING WITHOUT SUBDIRECTORIES ### 

 

#matrixfiles <- "/" 
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clusterfiles <- "matrix/" 

centroidfiles <- "matrix/" 

logfiles <- "matrix/" 

 

 

### Assignment of the paths 

 

pathmatrixfiles <- gsub(" ", "", paste(path,matrixfiles)) 

pathclusterfiles <- gsub(" ","",paste(path,clusterfiles)) 

pathcentroidfiles <- gsub(" ","",paste(path,centroidfiles)) 

pathlogfiles <- gsub(" ","",paste(path,logfiles)) 

 

### Load of data 

 

files <- list.files(pathmatrixfiles, pattern="_matrix.csv") 

print(files) 

 

ende = length(files) 

 

anzahl = 1 

 

for ( anzahl in 1 : ende ) 

{ 

 

### Read the RMSD matrix, compute and save the clusters 

### NB: the output of the hclust includes something called "height" which is 

not an integer corresponding to the level in the tree BUT a distance 

### corresponding to the latest merge between 2 clusters at that given level. 

Check http://stat.ethz.ch/R-manual/R-patched/library/stats/html/hclust.html 

### for more information!! 

 matrixfile=gsub (" ", "", paste (pathmatrixfiles, files[anzahl])) 

 inputmatrix=read.csv(matrixfile, header=T, sep=",", row.names=1) 

 matrix=as.dist(inputmatrix)  ## properly format our input RMSD matrix 

 cluster=hclust(matrix, method="complete")  ## matrix is the squared 

RMSD distance matrix between all poses 

 cluster$height<-round(cluster$height, 6)  ## precision (rounding at 6 

numbers after the comma for the distances) DO NOT CHANGE, IT IS NOT A PARAMETER 

YOU SHOULD TWEAK 

 outputcluster = cutree(cluster, h=niveau)  ## Cuts the tree into several 

groups by specifying the cut height 

 clusterfile = gsub ("_matrix.csv","_cluster.csv", files[anzahl]) 

 clusterpath = gsub(" ","",paste (pathclusterfiles, clusterfile)) 

 write.table(outputcluster, clusterpath, quote=FALSE, sep=";", 

col.names="index_matrix;Cluster")  ## saves a table ID;cluster assignment in 

the file ending with "_cluster.csv" 

 

### Computation of the centroid matrix 

 

 temp_centroids=cls.attrib(inputmatrix, outputcluster)  ## Return a list 

of Means, centers of each cluster, numbers of objects in each cluster 

 centroidmatrix=t(temp_centroids$cluster.center)  ## extract the 

centers 

 centroidmatrixfile = gsub ("_cluster.csv","_centroidmatrix.csv", 

clusterfile) 

 centroidmatrixpath = gsub(" ","",paste 

(pathlogfiles,centroidmatrixfile)) 

 write.table(centroidmatrix, centroidmatrixpath, quote=FALSE, sep=";", 

col.names=TRUE, row.names=FALSE)  ## writes a table n_poses * n_clusters with 

distances to center  

 

### Fusion of the cluster assignment table and the distance to center table 
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 clust=read.table(clusterpath, sep=";", header=T) 

        temp=read.csv(clusterpath) 

        write.table(temp,clusterpath, quote=FALSE, sep=";", 

col.names="index_matrix;ID;cluster")  ## adds a column with an ID to the 

cluster assignment file 

 cent=read.table(centroidmatrixpath, sep=";", header=T) 

 clust_cent=cbind(clust,cent)   ## joins the tables from the cluster 

assignment and the distances to cluster centers 

 clustercentroidpath = gsub 

("_centroidmatrix.csv","_clusters_and_centers.csv", centroidmatrixpath) 

 write.table(clust_cent, clustercentroidpath, quote=FALSE, sep=";", 

col.names=TRUE, row.names=FALSE) 

 

### Computation of the cluster informations 

 

 clusterinfo = cls.scatt.diss.mx(inputmatrix, outputcluster)  ## compute 

6 most popular intercluster distances and intracluster distances 

 clusterstats = 

cbind(t(clusterinfo$intracls.complete),t(clusterinfo$intracls.average),clus

terinfo$cluster.size)  ## extracts the intracluster "complete" and "average" 

distances 

 clusterdistancepath = gsub 

("_centroidmatrix.csv","_cluster_dists.csv", centroidmatrixpath) 

 write.table("complete;average;size", clusterdistancepath, quote=FALSE, 

col.names=FALSE, row.names=FALSE) 

 write.table(clusterstats, clusterdistancepath, append=TRUE, 

quote=FALSE, sep=";", col.names=FALSE, row.names=FALSE)  ## writes a table 

n_clusters*3 with complete intracluster distance, 

## average intracluster distance and size of cluster into file finishing in 

'_cluster_dists.csv' 

 

### Cleanup variables 

 

 rm(tmp) 

 rm(fin) 

 rm(out) 

 

### Extrahieren und Ausgabe der Centroide 

 

 i=1 

 for (i in 1 : max(clust_cent[,2])) 

 { 

  cent=cbind(clust_cent[,1], clust_cent[,2], clust_cent[,i+2]) 

  tmp=cent[order(cent[,3]),] 

 

  if (i==1) { fin=cbind(tmp[1,]) } 

  else { fin=cbind(fin,tmp[1,]) } 

  i=i+1 

 } 

 

 centroidpath = gsub ("_centroidmatrix.csv","_centroids_tmp.csv", 

centroidmatrixpath) 

 write.table("index_matrix;Cluster;dist_to_centroid", centroidpath, 

quote=FALSE, row.names=FALSE, col.names=FALSE) 

 write.table(t(fin),centroidpath, append=TRUE, quote=FALSE, sep=";", 

col.names=FALSE, row.names=FALSE) 

 cent_export=read.table(centroidpath, sep=";", header=T) 

 cent_dists=read.table(clusterdistancepath, sep=";", header=T) 

 

 finalcentroidfile = gsub ("_matrix.csv","_centroids.csv", 

files[anzahl]) 
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 finalcentroidpath = gsub(" ","",paste 

(pathcentroidfiles,finalcentroidfile)) 

 finalcentroids=cbind(cent_export,cent_dists) 

 write.table(finalcentroids, finalcentroidpath, quote=FALSE, sep=";", 

col.names=TRUE, row.names=FALSE) 

 

 clust_stat_head=cbind("Datei","Niveau","nCluster","nPosen") 

# clust_stat_head="Datei;Niveau;nCluster;nPosen" 

 clust_stat_data=cbind(files[anzahl],niveau,length(clusterinfo$cluster

.size),length(outputcluster)) 

 cluststatfullpath = gsub 

("_centroidmatrix.csv","_clust_stats.csv",centroidmatrixpath) 

 write.table(clust_stat_head, cluststatfullpath, quote=FALSE, sep=";", 

col.names=FALSE, row.names=FALSE) 

 write.table(clust_stat_data, cluststatfullpath, append=TRUE, 

quote=FALSE, sep=";", col.names=FALSE, row.names=FALSE) 

 

print(t(c(anzahl,"/",ende, files[anzahl])), quote=FALSE) 

 

 anzahl=anzahl+1 

} 
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rmsd-matrix 

 

#svl 

 

#set main 'rmsd_distanz_matrix' 

 

function mol_RMSD; 

 

function rmsd_distanz_matrix [] 

 

load '/home/daria/data/scripts/mol_rmsd.svl'; 

 

//////////////// EINGABE ////////////////////////// 

local db_field = 'carbonized'; 

local label_field = 'index'; 

//////////////////////////////////////////////////// 

 

local db = db_KeyList[]; 

local entries = db_Entries db; 

 

 

// indexierung 

 

local ent_Aussen =1; 

for length entries loop 

 local mol_ref = cat db_ReadFields [db, entries(ent_Aussen),db_field]; 

 local field_name = totok db_ReadFields [db, 

entries(ent_Aussen),label_field]; 

 db_EnsureField [db, field_name,'float'];  

 

 local ent_Innen=1;  

 for length entries loop 

 

  local mol_target = cat db_ReadFields 

[db,entries(ent_Innen),db_field]; 

   

  local rms = mol_RMSD [mol_ref, mol_target]; 

  db_Write [db,entries(ent_Innen),tag [field_name,rms]]; 

 ent_Innen = ent_Innen+1; 

 endloop 

 

ent_Aussen=ent_Aussen+1; 

endloop 

 

endfunction 

 

 

function rmsd_distanz_matrix_mol_in_MOE [] 

 

// RMSD-Matrix zu Molekuel in MOE 

 

 

//////////////// EINGABE ////////////////////////// 

local db_field = 'carbonized'; 

local label_field = 'index'; 

//////////////////////////////////////////////////// 

 

local db = db_KeyList[]; 

local entries = db_Entries db; 
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// indexierung 

 

//local ent_Aussen =1; 

//for length entries loop 

 

db_EnsureField [db, label_field, 'float']; 

 

local mol_ref = mol_Extract Atoms[]; 

local field_name = label_field;  

 

 local ent_Innen=1; 

 for length entries loop 

 

  local mol_target = cat db_ReadFields 

[db,entries(ent_Innen),db_field]; 

   

  local rms = mol_RMSD [mol_ref, mol_target]; 

  db_Write [db,entries(ent_Innen),tag [field_name,rms]]; 

 ent_Innen = ent_Innen+1; 

 endloop 

 

//ent_Aussen=ent_Aussen+1; 

//endloop 

 

endfunction 
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Pgp-Database 

 

Figure 35: Pgp database. 
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Figure 36: Pgp database (cont’d). 
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BCRP-Database 

 

Figure 37: BCRP database. 
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Figure 38: BCRP database (cont’d). 

 



102 
 

 

Figure 39: BCRP database (cont’d). 
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Figure 40: BCRP database (cont’d). 
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Figure 41: BCRP database (cont’d). 


