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Abstract

The aim of this master’s thesis is to shed further light on the outstanding perfor-

mance of a diversified time series momentum strategy and to implement and test ex-

tensions suggested in the literature.

To adress the former, I discuss rational and behavioural reasons for time series mo-

mentum to work and reconstruct and prolong three strategies from Baltas & Kosowski

(2013). I find that the monthly time series momentum strategy continues to perform

well in more recent years, while daily and weekly time series momentum performance

flattened out. When looking at time series momentum return characteristics I find sim-

ilar results as previous authors, although I do not find statistically significant outper-

formance in extreme markets for the monthly strategy.

To adress the latter, I implement a significant trend trading rule (TREND) and

a moving average trading rule (MAR) alongside the standard time series momen-

tum trading rule (SIGN) and a correlation adjusted time series momentum strategy

(CATSMOM). My results show that by using the TREND rule it is possible to earn

higher returns at the cost of higher risk and by implementing CATSMOM investors

can lower the risk of the strategy at the cost of higher transaction costs. The MAR rule

does not provide investors with any improvements.
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Inhalt

Das Ziel dieser Masterarbeit ist es die außergewöhnliche Performance einer diver-

sifizierten Time Series Momentum Strategie näher zu beleuchten und in der Literatur

erwähnte Erweiterungen zu implementieren und zu testen.

Dazu diskutiere ich rationale und verhaltensökonomische Ursachen die dazu führen,

dass die Strategie für Investoren gewinnbringend ist und ich rekonstruiere und verlängere

drei Strategien auf Basis von Baltas & Kosowski (2013). Die Auswertung zeigt, dass

die monatliche Time Series Momentum Strategie auch in den letzten Jahren sehr hohe

Renditen erziehlt hat, während die tägliche und wöchentliche Strategie kaum zugelegt

haben. Im Vergleich zu anderen Arbeiten finde ich ähnliche Eigenschaften der Ren-

diten, allerdings kann ich für die monatliche Time Series Momentum Strategie keine

signifikanten Überrenditen in extremen Marktphasen finden.

Als Erweiterungen implementiere ich zwei alternative Handelsstrategien zur Stan-

dardregel (SIGN) – eine auf ausschließlich signifikanten Signalen basierende Regel

(TREND) und eine Regel, die anhand des gleitenden Durchschnittspreises Kauf- und

Verkaufentscheidungen trifft (MAR) – als auch eine korrelationsadjustierte Time Series

Momentum Strategie (CATSMOM). Meine Ergebnisse zeigen, dass anhand TREND

eine höhere Rendite auf Kosten eines höheren Risikos erziehlt werden kann und dass

durch die Implementierung von CATSMOM zwar höhere Transaktionskosten entste-

hen, die Risiken der Time Series Momentum Strategie allerdings gesenkt werden. Im

Gegensatz dazu liefert MAR keinen Mehrwert für Investoren.
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1. Introduction

Modern Portfolio Theory started with the revolutionary work of Harry Markowitz and

his famous article on “Portfolio Selection” from 1952 and underwent many adaptions

and further developments since its first appearance in finance. In recent years, finan-

cial literature has performed a shift from diversifying over individual assets and asset

classes to a diversification over different risk (or style) factors. This view got increas-

ingly popular after the publication of Eugene Fama and Kenneth French’s work on

“Common risk factors in the returns on stocks and bonds” from 1993. Since then, much

work has been done to identify such risk factors for various asset classes. Some of the

most prominent of these new strategies1 are value, carry and momentum. This mas-

ter’s thesis will focus on the last, namely momentum.

Momentum strategies exist in two forms, cross sectional momentum and time series

momentum. Cross sectional momentum can be simply described as “winners minus

losers” (Jegadeesh & Titman, 1993), i.e. going long the best performers of a given basket

of assets and going short the worst performing assets. Whether an asset is bought

or sold depends on the relative performance of it compared to the other assets, no

matter how the asset performed in absolute terms. A strategy based on that is in theory

zero cost (excl. transaction cost), since the long positions can be financed by the short

positions. Time series momentum on the other hand is best described by its synonym

“trend following”, i.e. a strategy that buys an asset if the performance was positive

over a certain lookback period and sells the asset if the performance was negative, no

matter how the asset performed relative to the other assets in the basket. While cross

sectional momentum has been researched extensively over the last two decades, time

series momentum is still relatively new to academia.

1Risk factors or style factors cannot only explain excess returns of financial assets, they can also be
implemented as trading strategies to harvest the risk premias they promise. Therefore, “strategy” is a
synonym often used by authors in the financial literature for a risk factor or style factor which is imple-
mented as a trading strategy.

1



2 1. Introduction

1.1 Motivation

Time series momentum strategies have proven to deliver substantial diversification

benefits and provided impressive returns especially in extreme market environments

e.g. during the financial crisis of 2008 (Baltas & Kosowski, 2013). They are also able to

explain the high alphas of Commodity Trading Advisors (CTAs), which did very well

in the downturn following the financial crisis and attracted a huge amount of capital

thereafter.2 In comparison with cross sectional momentum strategies, which are prone

to sudden crashes, time series momentum strategies can be used as hedge against tail

events and even further are able to capture most of cross sectional momentum while

offering higher profits (Moskowitz et al., 2012). In addition, time series momentum re-

turns are statistically distinct from other risk factors such as Fama and French’s (1993)

market factor, value (HML or “high minus low”) and size (SMB or “small minus big”)

factors (Baltas & Kosowski, 2013).3 Therefore, time series momentum offers great op-

portunities to investors and is particularly interesting to implement in a well diversi-

fied portfolio. Another reason why it is worth looking at time series momentum from a

theoretical perspective is that it challenges the random walk hypothesis stemming from

Bachelier (1900) and popularized by Burton Malkiel’s book “A Random Walk Down

Wall Street” (1973). It states that stock prices move randomly and therefore cannot be

predicted, hence trends in prices should not exist. The efficient market hypothesis, for-

mulated by Fama (1970, 1991), further develops the random walk hypothesis by saying

that past market information must be useless in predicting future price moves, since all

public available information should be already reflected by prices. Accordingly, trend

following cannot be profitable in an efficient market following the definition of Fama

(1970, 1991).

In some sense, time series momentum looks too good to be true. It yields high

returns with low risk and provides substantial diversification benefits to other risk

2CTAs (or Managed Futures Funds) are a subgroup of the hedge fund industry and are primarly
trading derivatives such as options and futures – both on the long and the short side. According to
Joenväärä et al. (2012) CTAs account for around 10–15% of the total number of active hedge funds.

3The factors from Fama & French (1993) are available online on the website of Kenneth R. French http:
//mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html (access date:
2016-02-29). The market factor is given by the return of a value-weighted portfolio of all firms in the
CRSP database incorporated in the US minus the 1 month T-bill rate. HML and SMB are constructed as
market neutral long/short portfolios. Further details are available on the website.

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html


1. Introduction 3

factors especially in times of market stress, when diversification is needed the most

(Moskowitz et al., 2012). Therefore, it is worth to have a closer look at the strategy and

its extensions, to discuss the results found by other authors and to add further evidence

with more recent data on its performance and characteristics.

1.2 Goals and outline

The first goal of this master’s thesis is to provide an overview about the existing time

series momentum literature and literature that tries to explain the reasons behind its

working. Therefore, chapter 2 starts with a short summary of risk factor literature with

a focus on momentum and continues with a more comprehensive look on time series

momentum. It describes the underlying principle and reasons for its working and ad-

dresses the discrepancy of time series momentum and the efficient market hypothesis.

Chapter 3 continues by describing how the strategy is constructed in relevant pa-

pers and goes further to explain possible extensions to improve the performance of

time series momentum strategies.

Baltas & Kosowski (2013) construct three time series momentum benchmark port-

folios on daily, weekly and monthly basis, which are accessible on their website.4 Un-

fortunately, their time series stops in January 2012. Therefore, the second goal is to

prolong the time series and check, whether it is still profitable. Chapter 4 presents

and summarizes the data used in chapter 5 to reproduce the time series momentum

benchmarks from Baltas & Kosowski (2013) with the same data sample but from dif-

ferent data providers and to test, whether the strategy still works for more recent ob-

servations. This is particularly interesting, since Baltas & Kosowski (2013) find that the

rolling Sharpe Ratios of their time series momentum portfolios turn negative at the end

of the sample period. I will also reproduce the characteristics of time series momentum

described by various time series momentum papers and check, whether they are still

valid for data up to June 2015.

Time series momentum seems not to work that well in some market environments

as for example in the aftermath of the financial crisis of 2008. In chapter 6 I will adress

4http://www3.imperial.ac.uk/riskmanagementlaboratory/risklabsections/
centreforhedgefundsresearch/baltas_kosowski_factors (access date: 2016-02-29)

http://www3.imperial.ac.uk/riskmanagementlaboratory/risklabsections/centreforhedgefundsresearch/baltas_kosowski_factors
http://www3.imperial.ac.uk/riskmanagementlaboratory/risklabsections/centreforhedgefundsresearch/baltas_kosowski_factors


4 1. Introduction

this issue by implementing the extensions suggested in chapter 3 and test if and how

they affect the performance of time series momentum strategies. Baltas & Kosowski

(2012) propose a different signal for the strategy that only invests when prices are sig-

nificantly trending and Marshall et al. (2014) claim that a moving average based trad-

ing rule can significantly improve time series momentum returns. Baltas & Kosowski

(2014) modify the time series momentum strategy by incorporating an average pair-

wise correlation factor to the weighting scheme.5 Hence, the third goal of the thesis is

to improve the risk/return profile of the strategy. Chapter 7 concludes by summarizing

the findings.

5Following the methodology of Moskowitz et al. (2012), Baltas & Kosowski (2013) weight the single
assets used to construct the strategy such that their volatility is scaled to a certain target volatility. This
has many advantages as I will show later.



2. Understanding time series
momentum

Time series momentum is one of the longest pursued investment strategies in the his-

tory of the stock market. There exists written evidence that already 200 years ago

traders exploited stock momentum and even one of David Ricardo’s three golden in-

vestment rules alludes to trend following (Hurst et al., 2012). Even so, it did not get

much attention from academia until recently and is mostly covered only by literature

on technical trading.

2.1 Risk factor investing

The academic interest in risk factor investing started with Fama & French (1992) criti-

cizing the then still widely accepted Capital Asset Pricing Model (CAPM), which was

developed in the 1960s by Treynor (1962), Sharpe (1964), Lintner (1965) and Mossin

(1966). In the CAPM, expected returns are a linear function of the market beta and all

other risk is assumed to be idiosyncratic and can therefore be diversified away by hold-

ing the market portfolio. In contrast, Fama & French (1993) find three factors that can

predict returns of stocks, the market factor, firm size (SMB or “small minus big”) and

value (HML or “high minus low”). Other authors added more factors over the years,

such as momentum (Jegadeesh & Titman, 1993; Asness, 1994; Moskowitz et al., 2012),

low-beta (Black, 1972; Frazzini & Pedersen, 2014) and carry (Fama, 1984). Additionally

there exist other factors that can explain excess returns such as illiquidity (Pastor &

Stambaugh, 2003), volatility (Ang et al., 2004) or arbitrage-type trades. Most of these

factors can be found in a variety of asset classes (Asness et al., 2012; Koijen et al., 2015)

and across international markets (Fama & French, 2012) and most importantly, they are

either uncorrelated or negatively correlated with each other (Asness et al., 2015). Risk

factors play an important role in explaining excess returns, which is still one of the most

important academic playgrounds in finance. The better understanding of such return

5



6 2. Understanding time series momentum

drivers has had a big impact on asset managament over the years. Recently, practi-

tioners as well as academics get increasingly interested in combining some of these

different risk factors into strategies to improve portfolio returns and risk. Many prac-

titioners perform a shift from diversifying over individual assets and asset classes to

a diversification over different risk factors, since this has clear benefits for the risk/re-

turn profile of their portfolios.6 With such an approach, portfolio returns can be better

understood and asset managers can filter for risk they do or do not want to bear.

2.2 Momentum strategies

Momentum is one of the risk factors mentioned above and was first described by Je-

gadeesh & Titman (1993). As a reaction to their work a whole new literature branch

arose to cover this style factor. Momentum is particularly interesting for practitioners

as well as for academics. For practitioners its outstanding returns and diversification

benefits are attractive, while for academics it is another puzzle to solve, since the mech-

anisms behind it are not yet fully understood (Daniel & Moskowitz, 2013). Momentum

has been found in all possible markets, for US equity (Jegadeesh & Titman, 1993; As-

ness, 1994) and international equity (Rouwenhorst, 1998; Fama & French, 2012), in cur-

rency markets (Shleifer & Summers, 1990; Burnside et al., 2011; Menkhoff et al., 2012),

commodity markets (Miffre & Rallis, 2007; Shen et al., 2007, 2010) and futures (Pirrong,

2005) and basically everywhere (Asness et al., 2012).

The early works on momentum cover only one type of it, namely cross sectional

momentum. As its name suggests, it is a form of momentum which takes the relative

performance of an asset to determine whether a long or short position should be taken.

To construct the strategy an investor considers a basket of assets and buys those that

performed best over a certain time period while assets that performed worst are sold,

no matter on how good or bad the assets performed. Cross sectional momentum is

therefore also sometimes called “winners minus losers” (Jegadeesh & Titman, 1993).

Time series momentum on the other hand uses the absolute performance of each asset

as a decision rule for a long or short position in the asset. Whenever the performance

6See for example Asness et al. (2015) for a summary of the benefits and an implemenetation of such a
strategy.



2. Understanding time series momentum 7

was positive over a certain time period the asset is bought, if the performance was

negative it is sold, independent of the behavior of the other assets. A synonym for time

series momentum is “trend following”.

Time series momentum became popular in the academic world only recently due

to the work of Moskowitz et al. (2012). While there exists some earlier work on the

topic, it comes mostly from traders using technical analysis for trading decisions.7 This

investment style is frowned upon by the mainstream academic literature and therefore

trend following remained longtime a niche topic.

2.3 The economics of time series momentum

There has been a vivid discussion among academics about the consistency of risk fac-

tors and even though many have been discovered over the years, only a few are broadly

accepted in the academic world as well as used in practice by asset managers. A promi-

nent example is Fama and French’s 1993 size factor (SMB) which proved to be less suc-

cessful in later robustness tests and got abandoned over time (Knez & Ready, 1997).

Due to the fact that financial markets cannot be reproduced in laboratory experiments

it is hard to distinguish random correlations from robust patterns in the data, making

it difficult to prove the consistency of such patterns. Financial academics developed a

name for the process of scouring financial data for relationships that might be consis-

tent or not, namely data mining. It can be avoided by first formulating a hypothesis

and then testing it and not the other way around.8

Accordingly, it is necessary to find either rational or behavioral reasons why the

underlying principle does work and why it should continue to work after publication.

What makes it especially interesting for time series momentum though is the fact that

its existence challenges the efficient market hypothesis from Fama (1970, 1991) and

7Brock et al. (1992), Lo et al. (2000), Zhou & Zhu (2009) or Han et al. (2011) all use moving average trad-
ing rules or other technical rules as signal for trend following and report substantial returns. Menkhoff
& Taylor (2007) provide a survey of technical analysis literature for time series momentum in FX mar-
kets and Szakmary et al. (2010) compare cross sectional momentum returns with time series momentum
strategies using a dual moving average crossover rule as well as a channel rule for commodity futures. In
chapter 6.3 I implement a simple moving average trading rule that is described in chapter 3.2.1 and see
how it performs compared to other trading rules.

8This is not just a problem of the recent financial literature but was already a topic of interest for early
financial authors. Benington & Jensen (1970) provide an early work on the topic.
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finding reasons for time series momentum to work is identical with finding arguments

against the efficient market hypothesis.

2.3.1 The random walk and efficient market hypothesis

The random walk hypothesis goes back to Bachelier (1900). He argues that stock prices

move randomly and therefore cannot be predicted by past price movements. Fama

(1970, 1991) extends this notion to the so called efficient market hypothesis. He distin-

guishes three types of market efficiency. The first and weakest form states similar to the

random walk theory that future price moves cannot be predicted by past price moves.

The semi-strong form suggests that all publicly available information relevant for the

price of an asset is already priced in and therefore no advantage can be achieved by

doing fundamental research. The strongest form of market efficiency claims that not

only publicly available but also only privatly available information is already reflected

by prices, making it impossible to earn on any form of market information.9

Even the weakest form of market efficiency suggests therefore that time series mo-

mentum should not work in practice. Financial academics are still debating over the

existence of market efficiency and some studies find arguments against it while oth-

ers find supporting results. To account for all the criticism a new notion of market

efficiency has been developed that might be compatible with time series momentum

returns, a notion of market efficiency that allows for time varying risk premias.10 This

means, that above average returns are not possible without accepting above average

risk. Moskowitz et al. (2012) show however, that even such a more general version of

market efficiency is challenged by a diversified time series momentum strategy due to

its robust and stable performance over a long sample period and its high Sharpe Ra-

tio. Even further, they find that time series momentum returns seem no compensation

for crash risk, but time series momentum is rather a hedge against tail events, since it

performs best in extreme markets.

9The strong form of market efficiency is not relevant in today’s financial markets, since insider trading
is illegal.

10A good overview of the ongoing debate as well as a summary of efficient market definitions is pre-
sented in Malkiel (2003).
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If time series momentum is consistent with the efficient market hypothesis, there

must be a rational reason why it is profitable and this reason must be some form of

risk compensation. If on the other hand the reason for its working is of a behavioural

nature and due to market inefficiencies or human psychology, this would contradict

any form of market efficiency.

Another important aspect when looking at the underlying principle is the fact that

finding a rational reason for the strategy to work implies that the strategy should con-

tinue to work in the future, while behavioural reasons can be arbitraged away. A recent

article by Cliff Asness (2015) discusses this topic in detail.

2.3.2 The underlying mechanism of time series momentum

The underlying principle of time series momentum is a trend in the price of an asset.

These trends exist due to an initial under-reaction following a fundamental change in

the value of the asset and a delayed over-reaction. Hurst et al. (2013) offer a handy

illustration of the process which is reflected in figure 2.1. A catalyst, i.e. a fundamental

change in the underlying asset, causes the value of the asset to change. Investors are

slow to react and the price of the asset moves only gradually and firstly under-reacts

while overshooting later, followed by a reversal. A time series momentum strategy

positions the investor accordingly and exploits the continuation of the trend.11

2.3.3 Initial under-reaction

There exist many well researched theories that play a role for the observed under-

reaction in prices following a fundamental change in value. Edwards (1968) and Tver-

sky & Kahneman (1974) find evidence that people anchor their views on prices to his-

torical price data and are slow in reacting to new information. This price conservative-

ness causes prices to under-react (Barberis et al., 1998). There exists also evidence that

under-reaction is caused by a slow spreading of news (Hong & Stein, 1999).

11Cross sectional momentum does to some extend also gain from price trends. If the best performers
(which are bought) have a positive past performance and the worst performers (which are sold) have a
negative past performance, the investor gains from a continuation of the price trend. Note though, that
cross sectional momentum does not look at the absolute performance, which makes it possible to buy
assets that performed negative and sell assets that performed positive. In that case a continuation of the
trend could hurt the investor.
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FIGURE 2.1: Lifecycle of a trend. A catalyst, i.e. a change in the underlying asset, causes
the fundamental value of the asset to change. Investors are slow to react and the price of
the asset moves only gradually and firstly under-reacts while overshooting later, followed
by a reversal in the price. The graph is originally from Hurst et al. (2013), figure 1.

Another effect causing under-reaction is the so called diffusion effect. Shefrin &

Statman (1985) and Frazzini (2006) find that it is a general phenomenon that investors

sell winners too early to realize profits and hold on losers too long to make up for the

losses already incurred. This causes both under-reaction in bull markets as well as in

bear markets.

Also non-profit seeking activities by certain market participants play a role for the

slow reaction to shocks. Central banks for instance try to reduce exchange rate and

interest rate volatility to stabilize markets and therefore also cause under-reaction in

market prices (Silber, 1994). Funds that mechanically rebalance to keep a certain as-

set allocation trade against trends, since winners have to be sold and losers have to be

bought to keep the weights constant (Hurst et al., 2013) and corporate hedging pro-

grams may slow down price movements (Baltas & Kosowski, 2013).

Under-reaction may also be caused by market frictions such as liquidity constraints,

regulatory constraints and bureaucratic hurdles. Capital is often only moving slowly

between assets and therefore price movements are slower to happen than they should
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(Duffie, 2010; Mitchell et al., 2012).

2.3.4 Delayed over-reaction

There exist also a number of possible causes why prices overshoot in the long run such

as herding effects and feedback trading. Bikhchandani et al. (1992) show that herding

is a phenomenon immanent to the human nature and therefore also investors are prone

to it. An asset that performed well over a certain period is more attractive for new in-

vestors due to the success other people had with it. Especially analysts are susceptible

to herding (Welch, 2000) as well as investment newsletters (Graham, 1999). Feedback

trading is a special case of herding and arises when the common signal for the direc-

tional trades by herdings investors comes from lagged returns or variables correlated

with lagged returns. Even institutional investors seem to exhibit such behaviour (Nof-

singer & Sias, 1999; De Long et al., 1999).

Wason (1960) and Tversky & Kahneman (1974) show that people are more likely to

look at information that confirms what they already believe. Past price developments

are therefore often seen as a representative of future price changes and more money is

moved into successful investments while it is withdrawn from losing positions. Over-

confidence stemming from successful trades may as well play a role in causing over-

reaction in asset prices (Daniel et al., 1998) and general market sentiment (Baker &

Wurgler, 2006).

Further, fund flows might play a role for over-reaction. While underperforming

funds experience fund outflows they have to respond by reducing their underperform-

ing positions and outperforming managers receive inflows and therefore increase their

outperforming positions even more. All this puts price pressure on asset prices and

will prolong the trend. Moreover, some risk management practices might lead to over-

reaction as for instance stop-loss orders and hedging activities can increase price pres-

sure as well (Garleanu & Pedersen, 2007). Hurst et al. (2013) list as an example an

airline company that might hedge their exposure to kerosene after a surge in prices

which in turn again puts upward pressure on future prices.
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2.3.5 The rational story

On the other hand there exist also a handful of papers that try to find a rational expla-

nation for the existence of price trends. Brown & Jennings (1989) develop a two-period

dynamic equilibrium model and show that historical prices are useful for rational in-

vestors to form demands if prices are not fully revealing. Zhou & Zhu (2014) build

a continuous-time general equilibrium model with three types of investors, informed

investors, technical traders (that follow a simple moving average strategy, i.e. trend

followers) and noise traders. In their model, technical traders earn an equilibrium re-

turn as they provide a risk-sharing function to market participants. Berk et al. (1999)

develop a model that tries to explain two of the common risk factors, value and mo-

mentum. They find that changes in a firms expected returns are predictable by past re-

alized returns, causing momentum strategies to be profitable. Similarly, Johnson (2002)

builds a simple single-firm model and finds a strong positive correlation between real-

ized and expected returns. Chordia & Shivakumar (2002) show that momentum can be

explained by a set of lagged macroeconomic variables and depend therefore on time-

varying expected returns. Moskowitz et al. (2012) find that speculators are on average

profiting from time series momentum on the expense of hedgers. This might indicate

that it is a reward for taking on risk hedgers are not willing to take.

All mentioned theories indicate that time series momentum might as well be due

to rational behavior of market participants or at least it cannot be completely ruled out,

even if the form of underlying risk is not yet fully clear. This in turn means that there

is no clear evidence against the efficient market hypothesis, at least not against a more

sophisticated notion.

2.3.6 Return and sign predictability

Time series momentum does only work if future returns can be predicted by past re-

turns or if at least the sign of future returns can be predicted by past returns. Moskowitz

et al. (2012) and Baltas & Kosowski (2013) both check for autocorrelation in their return

series and find a strong intertemporal return relation. There exists a broad literature

that confirms these results, finding positive autocorrelation for shorter horizons and
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reversals for periods longer than a year (Fama & French, 1988; Lo & MacKinlay, 1988;

Poterba & Summers, 1988). New in Moskowitz et al. (2012) and Baltas & Kosowski

(2013) is that they vary between lookback and holding period lengths and show that

even though they are not the same there exists an even stronger return predictabil-

ity. The relationship is robust and can be found in various asset classes, subperiods

and is even stronger if only sign predictability is tested, which is enough in the case

of time series momentum. Moreover, Christoffersen & Diebold (2006) and Christof-

fersen et al. (2007) show that volatility predictability and return sign predictability are

strongly linked, even when no return predictability can be found.





3. Methodology

In this section I present the methodology used to construct the time series momentum

strategies. Appendix F additionally provides the corresponding R code. The basic

methodology of time series momentum stems from Moskowitz et al. (2012) and is used

with small variations also by Baltas & Kosowski (2013) and Hurst et al. (2013). In its

simplest form, a time series momentum strategy can be constructed as following:

rTSMOM(t, t+ k) =
1

Nt

Nt∑
i=1

SIGNi,t · ri(t, t+ k), (3.1)

where ri(t, t + k) is the excess return12 of asset i between t and t + k (k is the holding

period) and is multiplied by a factor SIGN, which is defined by a specific trading rule.

For the standard version of time series momentum SIGN is +1 if the excess return of

asset i was non-negative over a given time period j (the lookback period) and−1 else:

SIGNi,t =


+1 if ri(t− j, t) ≥ 0

−1 if ri(t− j, t) < 0

(3.2)

All single asset time series momentum returns are then summed and devided by the

number of traded assets Nt to get an equally weighted portfolio. rTSMOM(t, t + k) is

then the excess return of the time series momentum strategy between t and t+ k.

3.1 Time series momentum with futures

Moskowitz et al. (2012), Baltas & Kosowski (2013) and Hurst et al. (2013) all use fu-

tures contracts to build their time series momentum strategies and this has various

benefits. First of all, futures markets are very liquid and transaction costs are fairly

small (Moskowitz et al., 2012). In addition they require only a fraction of their no-

tional amount as margin payment, which makes futures highly levered investments.

The strategy can therefore be implemented cheaply and liquidity issues usually do not

12The calculation of ri(t, t+ k) is explained in more detail in chapter 3.1.

15
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play a role. Moskowitz et al. (2012) show that the correlation between the profitability

of a time series momentum strategy and the liquidity of the underlying asset is neg-

ative, suggesting that the strategy works better for more liquid assets. Further, it is

possible to short futures, which is not possible or very expensive for other asset classes

and necessary for the proper implementation of a long/short strategy like time series

momentum. Another reason to use futures is the broad spectrum of assets covered by

such contracts and the long availability of historical data to test the strategy. Reliable

futures price history is available on various data platforms starting in the 1970s and

modern futures markets such as the Chicago Board of Trade (CBOT) or Chicago Mer-

cantile Exchange (CME) exist since the mid of the 19th century. Futures are traded on

a variety of asset classes, such as commodities, currencies, interest rates or equities but

also for more exotic products such as volatility or renewable energy certificates. A strat-

egy with futures can therefore be tested and implemented on multiple asset classes.

Futures are standardized contracts that specify the price and date a buyer agrees to

buy a certain asset from a seller. Usually there exist a couple of delivery months per

year for each asset, so buyers who do not want to end up with the asset in hand can

roll in the next contract by simply selling the old one before its expiry and buying one

with a delivery day further in the future. By rolling the futures contract one is exposed

to the so called roll yield, since futures of different delivery months usually trade at

different prices and futures prices are either above the spot price (called contango) or

below the spot price (called normal backwardation). The roll yield is therefore positive

or negative depending on whether the futures contract is in (normal) backwardation

or contango (given a long position). Over the life cycle of the futures contract its price

converges to the spot price. Figure 3.1 plots the futures price curve of the S&P 500 on

1st June 2015. All contracts are in backwardation, since they all trade below the current

spot price.

Since futures are short-lived contracts, it is not so straightforward to construct a con-

tinuous price time series. Following the method of de Roon et al. (2000), Moskowitz

et al. (2012) and subsequent authors form price series by using the most liquid contract

for each point in time, measured by traded volume. The price series is roll adjusted,

i.e. the historic price series is multiplied by the roll ratio (price of new contract divided
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FIGURE 3.1: S&P 500 futures price curve. The plot shows the spot price and S&P 500 fu-
tures price curve on 1st June 2015 including the contracts with expiry in June 2015, Septem-
ber 2015, December 2015, March 2016, June 2016, September 2016 and December 2016.

by the price of old contract) at each roll date. This means that all proceeds from selling

the old contract are invested in the new contract (for a long position) – futures con-

tracts are therefore assumed to be arbitrarily divisible. If one would roll in the new

contract without roll adjusting the price series, the return series would be manipulated

depending on whether the futures contract is in backwardation or contango.

After constructing a continuous price series for each asset, one needs to calculate

excess returns from it. Let Ft,T be the price of a futures contract with delivery date T at

time t. Mt is the balance on the margin account required to be able to trade futures at

time t, which earns the risk free rate rft , so that between t and t+ k the margin account

will grow by Mt(1 + rft ) + (Ft+k,T − Ft,T ). The excess return of the futures contract is

therefore:

ri(t, t+ k) =
[Mt(1 + rft ) + (Ft+k,T − Ft,T )]−Mt

Mt
− rft (3.3)
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To make things easier, Moskowitz et al. (2012) assume that the futures are fully collat-

eralised, i.e. Mt is equal the price of the futures contract at time t, Ft,T :13

ri(t, t+ k) =
Ft+k,T − Ft,T

Ft,T
(3.4)

Baltas & Kosowski (2013) also argue in favor for this simplification and it should not

affect the results too much, even if it abstracts from some practical properties of futures

trading such as potential margin calls, interest accrued on the margin account or the

fact that futures positions must not need to be fully collateralised.

3.1.1 Volatility scaling the return series

Having obtained return series from different futures contracts they can be used to

form a time series momentum strategy. To make different futures contracts compa-

rable though, it makes sense to scale them by their ex-ante volatility.14 Futures from

different asset classes exhibit big differences in their return distributions, especially in

the cross-sectional variation of volatilities. While commodity and equity futures exhibit

high volatilities, currencies are less volatile and interest rate futures move the least. The

WTI Oil futures contract for instance is almost 25 times as volatile as the German 2Y

government bond futures contract (Baltas & Kosowski, 2013). To take account for these

large differences it is possible to scale the excess returns by their ex-ante volatilities.

According to Hurst et al. (2013) this makes sense due to two important reasons: Firstly

to risk adjust the exposures of the strategy to each asset and to not have a few high-

volatility assets dominate the portfolio returns. Barroso & Santa-Clara (2012) show that

momentum returns are driven by a few high volatility assets if not scaled accordingly.

Secondly it ensures that the risk of single assets stays relatively stable over time which

is important to keep control in high risk periods. Barroso & Santa-Clara (2012) show

that volatility scaling is successful in reducing exposures in periods of stress.

13Gorton et al. (2007), Miffre & Rallis (2007), Pesaran et al. (2009), Fuertes et al. (2010), Baltas & Kosowski
(2012, 2014) and Hurst et al. (2013) all use the same methodology.

14The term “ex-ante volatility” is used as a synonym for “volatility estimator” in the rest of the thesis.
Moskowitz et al. (2012) and Baltas & Kosowski (2013) use the same terminology.
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Therefore, Moskowitz et al. (2012) implement a volatility scaling factor in the time

series momentum strategy from equation 3.1, which makes it possible to scale the ex-

posure to each asset i such that a predefined target volatility level σtarget is reached for

each asset:

rTSMOM(t, t+ k) =
1

Nt

Nt∑
i=1

SIGNi,t ·
σtarget

σi,t
· ri(t, t+ k) (3.5)

Equation 3.5 gives the return of a time series momentum strategy in excess of the risk

free rate between t and t + k, where k is the holding period and Nt is the number of

assets in the portfolio and SIGNi,t is either +1 or−1 for each asset i at time t, depending

on the performance of asset i over the lookback period j. All single asset positions are

scaled such that the ex-ante individual asset volatility is set to σtarget. σi,t is the ex-ante

volatility estimator of asset i at time t and is explained in more detail in the subsequent

chapter. ri(t, t+ k) is the single asset excess return over the holding period k.

Choosing σtarget is somewhat arbitrary but it makes sense to adjust it such that the

ex-post volatility of the strategy is close to the volatility of most common risk factors to

make things comparable. Hence, Moskowitz et al. (2012) use 40% as single asset target

volatility for their sample period and dataset. The aggregated time series momentum

strategy has then an annualised ex-post volatility of around 12%, which is similar to the

volatilities exhibited by other risk factors such as the ones from Fama & French (1993)

and Asness et al. (2012). Clearly, it depends on the dynamic correlation structure of

the cross-section of assets on how much smaller the aggregated volatility is compared

to the target volatility σtarget. Therefore, it is not so trivial to choose an appropriate

target volatility level. Another reason why to choose 40% is that it is equal to the av-

erage volatility of an individual stock according to Moskowitz et al. (2012). Baltas &

Kosowski (2014) address this problem with a more sophisticated approach and I will

come back to this later in chapter 3.2.2.

Baltas & Kosowski (2013) also choose 40% as target volatility level and end up with

14.88% ex-post volatility for their 12 month lookback 1 month holding period strategy,

which is close to the 15.22% volatility of the MSCI World index but slightly above the

volatility of other risk factors such as SMB (10.88%) or HML (10.64%) over the same

period.
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This leads to the following time series momentum strategy used by Moskowitz et al.

(2012), Baltas & Kosowski (2013) and Hurst et al. (2013), where SIGNi,t is defined as in

equation 3.2 and σi,t is calculated over a period of 60 days:

rTSMOM(t, t+ k) =
1

Nt

Nt∑
i=1

SIGNi,t ·
40%

σi,t
· ri(t, t+ k) (3.6)

The ex-ante volatility scaling of the single asset returns is necessary to risk adjust the

weights of each asset in the aggregate strategy. The method is also used by other cross

sectional momentum authors and is especially useful to avoid momentum crashes. Bar-

roso & Santa-Clara (2012) scale their momentum returns by the ex-ante volatility and

find that this nearly doubles the Sharpe Ratio of the strategy and effectively eliminates

crashes. In chapter 5.1 I show similar results for time series momentum.

3.1.2 The volatility estimator

In the time series momentum literature different types of volatility estimators σi,t are

used for volatility scaling. Moskowitz et al. (2012) and Hurst et al. (2013) use exponen-

tially weighted lagged squared daily returns to calculate the ex-ante volatility:

σ2
t = 261

∞∑
i=0

(1− δ)δi(rt−1−i − r̄t)2, (3.7)

where δ is chosen such that the center of mass
∑∞

i=0(1 − δ)δii = δ
1−δ is 60 days and∑∞

i=0(1− δ)δi = 1. Multiplying by 261 (the number of trading days per year) is neces-

sary to get the annualised variance and r̄t is the exponentially weighted average return

and is calculated as following:

r̄t =
∞∑
i=0

(1− δ)δirt−1−i (3.8)

Baltas & Kosowski (2013) use a more sophisticated estimator, the Yang & Zhang (2000)

volatility estimator, which is a range based estimator, i.e. it takes the intraday range

between high and low price into account. Furthermore, it also adjusts for a drift in the

stock price and accounts for the overnight price jump. Its construction is described in

appendix A.
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Range based estimators have a few advantages over simpler approaches which use

only closing price information. Firstly, they are able to detect intraday price volatility.

Baltas & Kosowski (2013) give as an example the performance of the FTSE 100 index

on 9th August 2011, when intraday prices went from −5.48% to +2.10% before finally

closing up +1.98%. Volatility calculated via the standard deviation does not account

for intraday price movement and would show a rather normal trading day. Secondly,

Baltas & Kosowski (2012) and Maillet et al. (2009) compare simple estimators such as

the sample variance with a pool of range based estimators, including driftless range

based estimators such as the Parkinson (1980) and Garman & Klass (1980) estimators,

the Rogers & Satchell (1991) estimator that allows for a drift and the Yang & Zhang

(2000) estimator, which also takes the opening jump into account. The benchmark they

use for their test is the Realized Volatility (RV). It is the sum of N squared returns of

arbitrarily small time units ∆ and is considered the best available estimator for financial

risk:

RV =
N∑
i=1

r2
i (t, t+ ∆) (3.9)

Both come to the conclusion that range based estimators are good proxies for Realized

Volatility and most importantly they are more efficient in estimating volatility than

simpler approaches, therefore needing less data to reach the same level of efficiency by

reducing the variance of the estimator. Furthermore, Alizadeh et al. (2002) show that

range based estimators are robust to microstructure noise such as the bid-ask bounce

and asynchronous trading.

Baltas & Kosowski (2014) discuss the impact of different volatility estimators on the

performance of time series momentum strategies and they find that except for the Re-

alized Volatility estimator all other estimators do not have an economically significant

impact on the performance of the strategy, measured by the Sharpe Ratio. However,

when using a more sophisticated volatility estimator the turnover is reduced by around

one tenth and this does certainly have an impact on the performance when considering

transaction costs. They find that the Yang & Zhang (2000) volatility estimator is by far

the best out of the range based estimators both in reducing turnover and in minimizing

the forcast bias regarding the Realized Volatility.
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3.1.3 Lookback and holding periods

Baltas & Kosowski (2013) test a broad variety of combinations of different lookback and

holding periods for monthly, weekly and daily returns. As mentioned in chapter 2.3.6

they find strong return predictability for shorter periods that is robust and highly sig-

nificant at the 1% level. As other momentum authors did before them, they show that

some combinations promise particular high returns and Sharpe Ratios well above 1 and

some even higher than 1.2. The strategy they find working best for daily returns is a

15 days lookback and 1 day holding period, for weekly returns it is a 8 weeks lookback

and 1 week holding period and for monthly returns a 12 month lookback and 1 month

holding period works best, confirming the findings of Moskowitz et al. (2012).15

In the rest of this paper I will focus on the same strategies as covered in Baltas &

Kosowski (2013). I will call the 15 days lookback and 1 day holding period strategy

“daily strategy”, the 8 weeks lookback and 1 week holding period strategy “weekly

strategy” and the 12 month lookback and 1 month holding period strategy “monthly

strategy” thereafter.

3.2 Extensions of time series momentum strategies

Moskowitz et al. (2012), Baltas & Kosowski (2013) and Hurst et al. (2013) find that time

series momentum is very profitable and earnes high annual returns over a long period

of time. Still, in more recent years and especially after the financial crisis of 2008, its

performance flattened out. To adress the low or negative performance of time series

momentum in times when price trends are absent, time series momentum literature

came up with two major modifications of the strategy. The first is to use a different

trading signal and the second is to adjust for the pairwise average correlation of the

individual assets.
15The performance analysis both Moskowitz et al. (2012) and Baltas & Kosowski (2013) base their strat-

egy choice on is done ex-post by using information the authors would not have had at the beginning
of the sample period (so called in-sample optimization). Therefore, the combinations of lookback and
holding periods they use in their articles are somewhat questionable and it is not fully clear, whether the
outperformance prevails. The analysis still shows that almost all tested combinations are significantly
profitable, supporting the main result that time series momentum provides investors with high excess
returns, independent of the exact choice of the periods.
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3.2.1 Using different trading rules

The time series momentum strategy constructed in chapter 3.1 uses a simple rule for

determining if an asset is bought or sold. Equation 3.2 simply looks whether the per-

formance of the asset was non-negative or negative over the lookback horizon, it does

not account whether the performance was statistically significant or not. The disadvan-

tage of such a simple SIGN rule is that there might be a lot of noise coming from assets

that perform flat and change their sign a lot but do not contribute much to time series

momentum performance. Therefore, it might be beneficial to only consider statistically

significant trends instead of all of them. Baltas & Kosowski (2012) implement a trading

signal that fits a linear trend on the futures price series Ft−j+τ for each time t over the

lookback period j using least squares:

Ft−j+τ = αt + βt · τ + et−j+τ τ = 1, . . . , j (3.10)

The t-statistic of the beta coefficient t(βt) from this regression can be used to determine

whether to buy or sell the asset:

TRENDi,t =


+1 if t(βt) > +2

−1 if t(βt) < −2

0 else

(3.11)

Newey & West (1987) t-statistics are used to account for the observed autocorrelation

and heteroskedasticity in the price process.

Baltas & Kosowski (2012) find that while the TREND signal does not significantly

change the performance of the strategy nor the Sharpe Ratio, it decreases turnover

by 66.2% resulting in much lower transaction costs. Further, for a bigger proportion

of assets TREND is equal to zero in times when the strategy does not perform well

and when time series momentum works well the TREND signal behaves similar to the

SIGN signal.

Another modification proposed by authors is to use a moving average trading rule

(MAR) instead of the SIGN rule. Marshall et al. (2014) argue that moving averages
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give earlier signals and therefore increase returns of a time series momentum strategy

significantly. While sign signals coincide with moving average (MA) direction changes,

MA signals only require the price to go above (below) the MA to give a buy (sell) signal.

The moving average is constructed as following:

MAi,t =
Ft + . . .+ Ft−j+2 + Ft−j+1

j
, (3.12)

where j is the lookback period and Ft are the futures prices. Therefore the MA signal

is

MARi,t =


+1 if Ft −MAi,t ≥ 0

−1 if Ft −MAi,t < 0

(3.13)

The SIGN rule and the MAR rule are closely related with each other. SIGN is defined

as SIGNi,t = sgn(Ft − Ft−j), where sgn is the sign function that returns the sign of a

real number (see equation 3.2). From

MAi,t −MAi,t−1 =
Ft + . . .+ Ft−j+2 + Ft−j+1 − Ft−1 − . . .− Ft−j+1 − Ft−j

j
(3.14)

follows

sgn(MAi,t −MAi,t−1) =
sgn(Ft − Ft−j)

j
=

SIGNi,t

j
(3.15)

since j is always a positive number and therefore

SIGNi,t = j · sgn(MAi,t −MAi,t−1) (3.16)

Whenever MAi,t changes direction the SIGN signal will change as well. According to

Marshall et al. (2014) this usually occurs later than the price moving below the MA or

above the MA, since the MA will only change direction after a prolongued change in

trend. Thus, they find that MAR is generally an earlier and better indicator than SIGN.

3.2.2 Pairwise correlation

Baltas & Kosowski (2013) report that CTAs that follow time series momentum strate-

gies did not perform that well anymore in the aftermath of the financial crisis, although
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achieving surprisingly high returns when the market was crashing. They also find that

capacity constraints seem not to be the reason for the loss in performance, even if CTAs

saw big inflows in those years. Moskowitz et al. (2012) look at the connection between

liquidity and market sentiment to explain time series momentum returns. They also

find no significant relationship that could explain recent underperformance. What

seems a more promising factor in explaining the variation in time series momentum

returns are cross asset correlations. Hurst et al. (2012) find that correlations across asset

classes and single assets have increased since 2007, decreasing the number of inde-

pendent trends time series momentum can profit from and therefore lowering the risk

adjusted returns.

To account for times with increased cross asset correlations Baltas & Kosowski

(2014) add a pairwise correlation factor to the strategy exploiting the relationship be-

tween volatility and correlation. Given a portfolio with N assets with weights wi for

each asset i, the portfolio volatility σp can be rewritten with the formula for the stan-

dard deviation:16

σp =

√√√√ N∑
i=1

w2
i σ

2
i + 2

N∑
i=1

N∑
j=i+1

wiwjσiσjρi,j , (3.17)

where σi is the annualised standard deviation (volatility) of asset i and ρi,j denotes the

pairwise correlation between asset i and j. According chapter 3.1.1 the weights wi are

chosen such that the volatility of each asset is set to a predetermined level, therefore

wi = σtarget/(N · σi). Substituting this into equation 3.17 yields:

σp = σtarget

√√√√ N∑
i=1

1

N2
+ 2

N∑
i=1

N∑
j=i+1

1

N2
ρi,j =

σtarget

N

√√√√N + 2
N∑
i=1

N∑
j=i+1

ρi,j (3.18)

Since
∑N

i=1

∑N
j=i+1 ρi,j is the sum of the upper triangle entries of the correlation matrix

and its number of elements is N(N − 1)/2, the average pairwise correlation can be

calculated as:

ρ̄ = 2

∑N
i=1

∑N
j=i+1 ρi,j

N(N − 1)
. (3.19)

16To simplify the notation the formula abstracts for the moment from time. σp is calculated for any
point in time t and σi and ρi,j are calculated over a certain lookback period.
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Using this, equation 3.18 simplifies to:

σp = σtarget

√
1 + (N − 1)ρ̄

N
. (3.20)

From this equation one can see how diversification benefits work on a portfolio level.

From ρ̄ ≤ 1 it follows that
√

1+(N−1)ρ̄
N ≤ 1 and therefore σp ≤ σtarget (remember σtarget

is the single asset target volatility). Whenever cross asset correlation increases, the

portfolio volatility increases as well and diversification benefits decrease. Equation 3.20

can be rearranged to

σtarget = σp

√
N

1 + (N − 1)ρ̄
(3.21)

σp can be substituted by σp,target, the portfolio target volatility. The average pairwise

correlation ρ̄ is then used to control the single asset target volatility level σtarget to de-

crease the exposure whenever ρ̄ is high and vice versa, while simultaneously targeting

the overall portfolio volatility level σp,target:

σtarget = σp,target

√
N

1 + (N − 1)ρ̄
, (3.22)

Including this into the time series momentum strategy defined in equation 3.5, one gets

the correlation adjusted time series momentum strategy (CATSMOM):

rCATSMOM(t, t+ k) =
1

Nt

Nt∑
i=1

SIGNi,t ·
σp,target

σi,t
·

√
Nt

1 + (Nt − 1)ρ̄t
· ri(t, t+ k) (3.23)

rCATSMOM(t, t + k) is the correlation adjusted return from time series momentum over

the holding period t to t + k. Nt is the number of assets traded at each time t, SIGNi,t

is the SIGN trading rule as defined in equation 3.2 and σi,t is the single asset ex-ante

volatility of asset i at time t as defined in appendix A. The portfolio volatility target

is set equal to 12% in accordance with Baltas & Kosowski (2014) and due to the same

reasons the single asset target volatility of the standard time series momentum formula

from equation 3.5 is set to 40% (see chapter 3.1.1). ρ̄t is the average pairwise correlation

calculated as in equation 3.19 and ri(t, t+ k) is the return of asset i between t and t+ k.

The correlation adjusted time series momentum strategy has the advantage that
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the portfolio volatility target σp,target can be controlled instead of the more complicated

approach of controlling the single asset target volatility σtarget. σtarget has only limited

control over the ex-post portfolio volatility. Using σp,target on the other hand is a more

direct approach and it should be a much better way to stabilize the ex-post portfo-

lio volatility. The exposure to the single assets will be reduced whenever the average

pairwise correlation increases to keep the overall portfolio volatility more stable. In

chapter 6.4 I will implement the formula and show, whether it improves the perfor-

mance of time series momentum strategy and whether the ex-post volatility is more

stable than when targeting the single asset volatility.





4. Data description and summary

The dataset I use is very similar to the dataset used by Baltas & Kosowski (2013). It

consists of daily open, high, low and closing prices as well as daily volume of 71 fu-

tures contracts: 26 commodity futures, 23 equity index futures, 7 currency futures and

15 fixed income futures. In contrast to Baltas & Kosowski (2013), who obtain their fu-

tures data from Tick Data, I download my data from Datastream. To backfill equity

index data I use Global Financial Data as source for equity index spot prices.17 The

earliest date available in the dataset is January 1949 for equity index data. The latest

available date is 30th June 2015 and therefore I use almost three and a half years more

data in comparison with Baltas & Kosowski (2013), whose last available date is 31st

January 2012. The time series for the NYSE Composite contract (September 2011), Mu-

nicipal Bond contract (March 2006) and Pork Bellies contract (July 2011) end prior due

to delisting. The EUR/USD contract is spliced with the DEM/USD contract prior to the

introduction of the Euro and the RBOB Gasoline contract is spliced with the Unleaded

Gasoline contract in November 2005.

As already mentioned in chapter 3.1, I form continuous price vectors for each as-

set by splicing together different futures contracts using the most liquid contract at

any point in time. From the daily price vectors I calculate daily, weekly (defined as

Wednesday-to-Wednesday) and monthly (end-of-month) returns for each asset to form

the time series momentum strategies described in chapter 3. Table B.1 in appendix B

provides summary statistics for the monthly return series of each futures contract.

Futures contracts exhibit large cross sectional variation in the return distributions

especially for different asset classes. While commodity and currency futures have very

diverse mean returns, all equity and bond futures exhibit positive mean returns over

the whole sample period. Only two assets are platykurtic (“fat-tailed”) and almost all

equity futures are negatively skewed, while it is very much mixed for the rest of the

futures contracts. The last column of table B.1 shows Sharpe Ratios of a simple long

17In concordance with Baltas & Kosowski (2013) I use spot prices to prolong the time series for equity
indices due to limited availability of equity futures price data. Nearest-to-delivery equity index futures
prices and spot prices are highly correlated (de Roon et al., 2000).
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strategy in the futures contracts over the whole period.

The most variation can be found in the cross sectional volatility. In line with the

results of Baltas & Kosowski (2013) and Moskowitz et al. (2012) currency, equity and

especially commodity futures are much more volatile than fixed income futures. As

mentioned in chapter 3.1.1 it is important to consider this fact when building time

series momentum strategies. Hence, the futures contracts are weighted by their ex-

ante volatility before aggregating them to the strategy portfolio.

Table B.2 lists the futures exchanges on which the futures from the dataset are

traded.



5. Performance and characteristics

In this chapter I extend the evidence for the three time series momentum strategies

from Baltas & Kosowski (2013) for daily, weekly and monthly futures returns and as-

sess their performance after January 2012, when Baltas & Kosowski (2013) stop their

analysis. Moskowitz et al. (2012), Baltas & Kosowski (2013) and Hurst et al. (2013)

all find that time series momentum did not work well anymore in the years follow-

ing the financial crisis of 2008. Therefore, I prolong the time series and discuss the

performance for more recent data. Further, I will explain important characteristics of

time series momentum returns first described in Moskowitz et al. (2012) and check,

whether I can reproduce them with my time series momentum return series. The stun-

ning performance of time series momentum and its characteristics make the strategy

very interesting for money managers. In chapter 5.3 I will use the fact that many hedge

funds apply the strategy to introduce a simple approach to model transaction costs.

Since I am reproducing the strategies from Baltas & Kosowski (2013) with a very sim-

ilar dataset, the results I get should be congruent with their results. In appendix C I

discuss this matter in more detail.

5.1 Time series momentum performance

All time series momentum strategies constructed in the literature are very profitable

and Sharpe Ratios are high and significant for almost all tested combinations of look-

back and holding periods. The monthly strategy constructed in Baltas & Kosowski

(2013) returns an average profit of 18.54% p.a. over the period January 1978 to January

2012. The weekly and daily strategies yield 15.72% and 18.44% over the same period.

The Sharpe Ratios of all three strategies are above 1.2 and the maximum drawdowns

of the strategies lie between −12.03% for the weekly strategy and −22.12% for the

monthly strategy. Thus, they are nowhere near the sometimes disastrous cross sectional

momentum crashes often exceeding 40% in only one month (Daniel & Moskowitz,

2013). Moskowitz et al. (2012) and Hurst et al. (2013) find similar results. Their strate-

gies are similarly stable and exhibit Sharpe Ratios above 1.2.
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Still, it is not clear how the performance for the three strategies in Baltas & Kosowski

(2013) continues after January 2012. Hence, I reproduce the three strategies and prolong

them until 30th June 2015. Figure 5.1 plots the log-performance of the daily, weekly and

monthly strategies and gives a first overview. In concordance with Baltas & Kosowski

(2013) I start forming the strategies in January 1978.
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FIGURE 5.1: Dollar growth of time series momentum plotted on a log scale. The black line
is the growth of 1$ in log-terms from January 1978 to June 2015 for the monthly time series
momentum strategy. The red line and the green line are the dollar growth in log-terms
for the weekly and daily strategies. The dashed vertical line indicates the last date used in
Baltas & Kosowski (2013), which was January 2012.

It is interesting that while the daily and weekly strategies seem not to perform well

anymore after the financial crisis of 2008, the monthly time series momentum strategy

gained substantially in value in the last year. Table 5.1 provides some summary statis-

tics for the overall performance and the performance between June 2009 and January

2012 as well as from February 2012 to June 2015. The first period is interesting since it is

the last three years of data in the sample of Baltas & Kosowski (2013), when time series

momentum seems not to perform that well anymore and the second period extends the

evidence of time series momentum.18

18Another extension of time series momentum was conducted by Hurst et al. (2012), who prolong the
time series used in Moskowitz et al. (2012) and Hurst et al. (2013) back to 1903. They find that trend
following is consistently profitable for over 110 years. Forming the same strategies as in Hurst et al.
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daily weekly monthly
full 09-12 12-15 full 09-12 12-15 full 09-12 12-15

Mean (%) 16.49 3.58 −2.96 14.25 3.70 0.04 17.77 5.84 15.25
Volatility (%) 13.07 12.99 11.47 11.71 12.42 9.86 13.16 12.10 11.93
Skewness 1.08 0.94 0.70 0.56 −0.35 0.33 −0.15 −0.46 0.09
Kurtosis 6.40 5.35 5.54 4.77 3.15 3.93 3.42 3.13 4.58
Sharpe Ratio 1.26 0.28 −0.26 1.22 0.30 0.00 1.35 0.48 1.28
MDD (%) 23.44 13.45 21.38 16.53 9.84 16.53 18.23 9.99 8.09
$ growth 310.24 1.10 0.90 147.83 1.10 1.00 467.39 1.16 1.62

TABLE 5.1: Performance of time series momentum. This table shows a summary of the
performance of the daily, weekly and monthly strategy for the full sample period, for June
2009 to January 2012 and for February 2012 to June 2015. The annualised return (mean),
annualised standard deviation (volatility) and maximum drawdown are displayed in per-
centage terms. The Sharpe Ratio is in annualised terms. $ growth indicates the amount an
investment of 1$ would have grown to over the relevant period.

Over the full sample period all three strategies provide high mean returns ranging

from 17.77% for the monthly strategy to 14.25% for the weekly strategy. The Sharpe

Ratios (SR) are all above 1.2 and the maximum drawdowns range from 23.44% to

16.53%. Using a target volatility σtarget of 40% per asset I reach an annualised volatility

of around 11–13% for the whole strategy, which is in line with Moskowitz et al. (2012)

and Baltas & Kosowski (2013). The skewness of the three strategies varies substantially

from a strongly positive skewness of the daily strategy to a slightly negative one for the

monthly strategy. The kurtosis of the strategies differ as well with the daily strategy

obtaining the highest value and the monthly strategy the lowest but all being greater

than 3. All results are very similar to those reported in Baltas & Kosowski (2013). Com-

pared with the performance of the MSCI World over the same time period, which was

7.67% annually with a Sharpe Ratio of just 0.49 and a drawdown of 55.37%, all three

strategies did very well.

In the period from June 2009 to January 2012 – after the financial crisis of 2008 –

time series momentum seemed not to work that well anymore. Even though obtaining

still positive returns, the Sharpe Ratios are close to zero (in a time period when the

MSCI World gained more than 20% in value with a Sharpe Ratio of around 0.5). Hurst

et al. (2012) argue that time series momentum returns after 2008 are not significantly

(2013) and aggregating them to one equally weighted portfolio they show that their strategy returned
over 20% p.a. over the whole period and performed well through recessions and expansions, stagflation
and wartimes as well as rising and falling interest rates regimes with Sharpe Ratios ranging from 0.53 to
1.89 per decade. Even further, the maximum drawdown experienced by their strategy over the whole
sample period was only −26.3% between March 1947 and March 1954.
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out of line with previous phases of lower returns and therefore they should not provide

a challenge for the strategy as a whole.

More puzzling are the results for the recent time period from February 2012 to June

2015. While monthly time series momentum returns to old strengths, daily and weekly

time series momentum perform flat or even negative. The correlations between the

strategies however are still relatively high over that time period, compared to the cor-

relation structure over the whole period (see table 5.2) even if the correlations for this

period are not monotone anymore. On the other hand, the correlations between the

different strategies decreased substantially in the period after the financial crisis. This

is particularly interesting due to the fact that the average pairwise correlation between

the single assets increased in the aftermath of the financial crisis. I will come back to

this in chapter 6.4.

full 09-12 12-15
D W M D W M D W M

D 1.00 0.55 0.21 1.00 0.28 −0.18 1.00 0.44 0.55
W 0.55 1.00 0.41 0.28 1.00 0.24 0.44 1.00 0.47
M 0.21 0.41 1.00 −0.18 0.24 1.00 0.55 0.47 1.00

TABLE 5.2: Correlation matrix for time series momentum. Displayed are the correlation
matrices over the full sample period, the period between June 2009 and January 2012 and
between February 2012 and June 2015 for the daily (D), weekly (W) and monthly (M)
strategies. The full sample period is from January 1978 to June 2015.

Table 5.2 also shows that correlations between different time series momentum

strategies are not as high as their similar construction method might suggest. Hurst

et al. (2013) find for instance that the performance can be increased when combining

strategies of different lookback periods. By combining their 12 month, 3 month and 1

month lookback period and 1 week holding period strategies to an equally weighted

portfolio, they are able to achieve a Sharpe Ratio of 1.8. If I construct an equally

weighted portfolio from the daily, weekly and monthly time series momentum strate-

gies over the whole sample period I get a mean return of 16.52% with a volatility of

9.7% and a Sharpe Ratio of 1.7. An unreported subsample analysis with the same sub-

samples as in appendix D shows that the outperformance of the combined strategy

decreases over time. It is particularly high in period 1 (January 1978 to December 1987)

with a Sharpe Ratio of 3.3 but from period 3 onwards (after January 1998) the monthly
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strategy is superior.

MSCI World Index
full 09-12 12-15

D −0.15 −0.29 −0.39
W −0.11 −0.02 −0.25
M 0.12 0.46 −0.13

TABLE 5.3: Market correlation of time series momentum. The table shows the
correlation of daily (D), weekly (W) and monthly (M) time series momentum with
the monthly MSCI World Index returns over the full sample period, the period
between June 2009 and January 2012 and between February 2012 and June 2015.
https://www.msci.com/end-of-day-data-search (access date: 2016-02-29) pro-
vides daily, monthly and yearly price data for all MSCI indices. I use monthly USD end-
of-day prices to calculate monthly returns. The full sample period is from January 1978 to
June 2015.

Time series momentum strategy returns are mostly not or negatively correlated

with market returns. In table 5.3 I calculate the correlations of daily, weekly and

monthly time series momentum returns with monthly MSCI World Index returns. It is

interesting that the correlation between monthly time series momentum and the MSCI

World reaches 46% for the period between June 2009 and January 2012 when it did not

perform well, but is close to zero (but positive) over the full period and negative from

February 2012 to June 2015. The daily and weekly strategies on the other hand show a

negative correlation with the market over the full period and in both subperiods.

It seems that the volatility weighting parameter is very important for the perfor-

mance of the strategy. A simpler strategy without the weighting scheme (see equa-

tion 3.1) yields only 5.48% (SR: 0.87), 4.97% (SR: 0.84) and 5.9% (SR: 0.96) for the daily,

weekly and monthly strategy. By weighting the returns with their ex-ante volatilities

the exposure to high risk assets is reduced, which does not only increase the risk ad-

justed return (as measured by the Sharpe Ratio), but also the absolute performance is

substantially higher.

5.2 Characteristics of time series momentum

Moskowitz et al. (2012), Baltas & Kosowski (2013) and Hurst et al. (2013) build a variety

of time series momentum strategies using equation 3.6 and find some common return

characteristics, that make the strategy particularly interesting for asset managers. In

https://www.msci.com/end-of-day-data-search
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the following analysis I will present their results and add further evidence conducting

similar tests with my own return series.

5.2.1 Risk factor loadings of time series momentum

Not only are time series momentum returns very impressive and drawdowns very

small, they are also highly unrelated to other risk factors. Moskowitz et al. (2012)

regress a variety of time series momentum strategies with different lookback and hold-

ing periods on a market index, a bond index, a commodity index as well as the Fama-

French (1993) factors SMB and HML, representing size and value, and the Carhart

(1997) cross sectional momentum factor UMD (“up minus down”). They find that

the alphas of the strategies are all positive and almost all significant for lookback and

holding periods shorter than a year, not only for the aggregate strategies but also for

the single asset class strategies. Baltas & Kosowski (2013) confirm these results in a

subsample analysis.

The only beta coefficient that is significant and positive is of UMD, which is not sur-

prising due to its relatedness, even if this cross sectional momentum factor catches only

stock momentum. Still, they find that time series momentum cannot be fully explained

by cross sectional momentum due to its highly significant alpha. As a further test,

Moskowitz et al. (2012) regress the monthly strategy on the Asness et al. (2012) value

and momentum factors, since those are diversified over all asset classes and therefore

more related. The loading on the momentum factor is now highly significant but still

the strategy generates an alpha of around 1% per year.

Table 5.4 provides a similar regression of my time series momentum strategy re-

turns on a market factor, SMB, HML and UMD factor, all provided in the Kenneth R.

French data library.19

I get very similar results as Baltas & Kosowski (2013). All three strategies provide

highly significant alphas ranging from 14.45% to 20.24% in annualised terms. While for

19http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
(access date: 2016-02-29) provides the data and further details on how the factors are constructed. The
market factor is represented by the excess returns above the 1 month T-bill of a value-weighted portfolio
of all firms in the CRSP database incorporated in the US. SMB is the size factor, HML is the value factor
and UMD is a equity cross sectional momentum factor. Note that the UMD factor is called MOM on the
website.

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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daily weekly monthly
Intercept 0.015480∗∗∗ 0.011854∗∗∗ 0.011312∗∗∗

(6.422629) (7.338947) (6.577479)
Mkt-Rf −0.001833∗ −0.000640 0.001416

(−2.492510) (−0.960854) (1.788482)
SMB −0.000871 −0.000969 −0.000472

(−1.032441) (−1.558218) (−0.748275)
HML −0.000921 −0.000104 0.000773

(−1.015338) (−0.185870) (1.079992)
UMD −0.000553 0.000814∗ 0.003262∗∗∗

(−1.350132) (2.233947) (6.791512)

R2 (%) 5.27 3.02 15.01
adj. R2 (%) 4.42 2.14 14.24
Num. obs. 450 450 450
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

TABLE 5.4: Factor loadings of time series momentum returns. The daily, weekly and
monthly time series momentum strategies are regressed on risk factors provided in Ken-
neth R. French’s data library (http://mba.tuck.dartmouth.edu/pages/faculty/
ken.french/data_library.html (access date: 2016-02-29)). Newey & West (1987)
t-statistics are reported in brackets underneath the regression coefficients. Mkt-Rf repre-
sents the market factor minus the risk free rate and is constructed via a value-weighted
portfolio of all firms in the CRSP database incorporated in the US minus the 1 month T-bill
rate. SMB is the size factor, HML is the value factor and UMD is a cross sectional equity
momentum factor. The sample period is January 1978 to June 2015.

daily returns only the market factor is slightly significant (with a negative coefficient),

the cross sectional momentum factor is significant only for time series momentum of

higher periods. UMD is highly significant for the monthly strategy but the alpha is still

very high.

Moskowitz et al. (2012) look further into the relationship between cross sectional

momentum and time series momentum. To make them comparable they form a stan-

dard cross sectional momentum strategy in the style of Asness et al. (2012). A regres-

sion of time series momentum on cross sectional momentum produces a beta of 0.66

with an R2 of 44%, still leaving a highly significant alpha of around 76 basis points

per month. If cross sectional momentum is regressed on time series momentum on

the other hand, the intercept turns negative and insignificant. Further, Moskowitz

et al. (2012) decompose cross sectional momentum returns into three components, an

auto-covariance term, a cross-covariance component and a cross-sectional variation

in unconditional mean returns and time series momentum returns into two compo-

nents, an auto-covariance term and an average squared mean excess return following

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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the methodology of Lewellen (2002).20 Like this, cross sectional momentum and time

series momentum returns can be easily linked by looking at the contributions of the

single components to each factor’s returns. The results obtained by the analysis are

shown in table 5.5. Both strategies load similarly positive on the auto-covariance com-

ponent, which is the return contribution of the relationship between the past 12 month

return and the future 1 month return. This factor is the main driver for cross sectional

momentum and time series momentum returns. The cross-sectional variation in uncon-

ditional mean returns and the average squared mean excess return load also slightly

positive on both strategies, but the component for time series momentum is stronger.

The cross-covariance component from cross sectional momentum on the other hand,

which covers the cross sectional relationship between past returns and future returns,

contributes negatively to cross sectional momentum returns. Like this, it is possible

to explain why time series momentum (TSMOM) performs better than cross sectional

momentum (CSMOM).

TSMOM CSMOM
factor loading factor loading

auto-covariance term 0.54% auto-covariance term 0.53%

average squared mean ex-
cess return 0.29%

cross-sectional variation
in unconditional mean
returns

0.12%

cross-covariance compo-
nent −0.03%

TABLE 5.5: Strategy decomposition. Time series momentum returns can be decomposed
into two components, an auto-covariance term and an average squared mean excess re-
turn. Cross sectional momentum returns can be decomposed into three components, an
auto-covariance term, a cross-covariance component and a cross-sectional variation in un-
conditional mean returns. The monthly loadings are in percentage terms and from panel B
of table 5 in Moskowitz et al. (2012).

As a further check of the relationship between time series momentum and cross

sectional momentum I construct a cross sectional momentum strategy from my dataset

using equation 3.6, but with CSMOMi,t as trading rule instead of SIGNi,t:

CSMOMi,t =


+1 if ri(t− j, t) ∈ Qtop

−1 if ri(t− j, t) ∈ Qbottom

(5.1)

20The analysis is conducted for a monthly time series momentum strategy only.
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whereQtop are the 20% top performer andQbottom are the 20% worst performer over

the time period t− j to t. For simplicity I restrict my analysis to monthly returns only.
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FIGURE 5.2: Time series momentum versus cross sectional momentum. Dollar growth of a
monthly time series momentum strategy and cross sectional momentum strategy plotted
on a log scale. The black line is the growth of 1$ in log-terms from January 1978 to June
2015 for the monthly time series momentum strategy. The red line is the dollar growth in
log-terms for the monthly cross sectional momentum strategy.

Figure 5.2 plots the log-performance of both strategies and it already indicates that

time series momentum does not only perform better than cross sectional momentum,

but it is also more robust to crashes. The left panel of table 5.6 reports a few summary

statistics for cross sectional momentum and for time series momentum (similar to ta-

ble 5.1). Cross sectional momentum has a similar mean return but higher volatility,

thus obtains a lower Sharpe Ratio. The maximum drawdown is also higher than for

time series momentum. Interstingly, cross sectional momentum is “fat-tailed” while

time series momentum is leptokurtic.

The right panel of table 5.6 shows two regressions. In the left column I regress

cross sectional momentum returns on time series momentum returns. In line with

Moskowitz et al. (2012) I find that cross sectional momentum is well explained by time

series momentum and the alpha is not significant anymore. Time series momentum on

the other hand still has a significant alpha of 6.16% p.a. even if the beta coefficient of
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CSMOM TSMOM CSMOM TSMOM
Mean (%) 17.12 17.77 Intercept 0.000303 0.004995∗∗∗

Volatility (%) 15.95 13.16 (0.183106) (4.078184)
Skewness −0.27 −0.15 TSMOM 0.970184∗∗∗

Kurtosis 0.68 3.42 (20.587665)
Sharpe Ratio 1.07 1.35 CSMOM 0.660659∗∗∗

MDD (%) 23.70 18.23 (22.601543)
$ growth 379.39 467.39

R2 (%) 46.11 46.11
adj. R2 (%) 45.99 45.99
Num. obs. 450 450

∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

TABLE 5.6: Time series momentum versus cross sectional momentum. The left panel re-
ports summary statistics for the monthly cross sectional momentum strategy and monthly
time series momentum strategy from January 1978 to June 2015. The annualised return
(mean), annualised standard deviation (volatility) and maximum drawdown are displayed
in percentage terms. The Sharpe Ratio is in annualised terms. $ growth indicates the
amount an investment of 1$ would have grown to over the whole period. The right panel
shows in the left column a regression of cross sectional momentum on time series mo-
mentum and in the right column a regression of time series momentum on cross sectional
momentum. Newey & West (1987) t-statistics are reported in brackets underneath the re-
gression coefficients.

cross sectional momentum is highly significant. This indicates that time series momen-

tum is superior to cross sectional momentum since it not only captures cross sectional

momentum very well but also produces a significant positive alpha.

5.2.2 The time series momentum smile

The most prominent characteristic of time series momentum is its good performance in

turbulent market phases. Hurst et al. (2012) find that in times a classic 60/40 portfolio21

exhibited its worst drawdowns (over the period 1903–2012), time series momentum

always but once performed positively and in most cases gaining more than 25% in

value. Especially in 2008 the strategy was very lucrative and while the stock market

lost around 30% of its value, time series momentum performed very well over the same

period. This can be explained due to the often gradual occurence of such bear markets.

After some small losses, time series momentum strategies position investors correctly

to gain from a further decrease in the price of the underlying assets.

Time series momentum needs clear trends to perform well. Its payoffs are there-

fore usually higher whenever markets are turbulent, either on the downside or upside.

21The 60/40 portfolio from Hurst et al. (2012) invests 60% in the S&P 500 equity index and 40% in US
10 year bonds.
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Plotting time series momentum returns against stock market returns gives therefore

rise to a smile pattern. This is also why time series momentum returns are similar to

straddle based strategies (Moskowitz et al., 2012). On the other hand, when markets

are stagnating, time series momentum strategies are not working well. This happend

for instance after the recent crisis. When trends are absent, time series momentum per-

formance is flat or even negative. Figure 5.3 plots the returns of the three time series

momentum strategies against the returns of the MSCI World index. The blue line is a

fitted quadratic least squares model. I find that daily and weekly time series momen-

tum returns show the smile pattern discovered by Moskowitz et al. (2012), while the

monthly returns from my strategy do not display the same pattern.
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FIGURE 5.3: Time series momentum smile. The figure shows scatterplots of daily, weekly
and monthly time series momentum returns against the return of the MSCI World index
from January 1978 to June 2015. The blue lines fit a quadratic least squares model.

The regression summary in table 5.7 supports these results. The beta coefficients

of daily and weekly time series momentum returns are highly significant for squared

MSCI World returns. This implies that both are a good hedge against strong market

movements in either direction. As expected, none of the three strategy return series

can be explained by the market returns and all exhibit high and significant alphas.

Especially for monthly time series momentum the model seems not to be a good fit

due to the very low R2 and high alpha. In contrast to Moskowitz et al. (2012) and

Baltas & Kosowski (2013) I find no evidence that monthly time series momentum is a

good hedge against tail events. Unreported tests with the Mkt-Rf factor from table 5.4

and the S&P 500 index returns confirm these results.
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daily weekly monthly
Intercept 0.005163∗∗ 0.005575∗∗ 0.013306∗∗∗

(2.597577) (3.246513) (6.620530)
MSCI World −0.064699 −0.035947 0.105970

(−1.106152) (−0.677928) (1.007283)

(MSCI World)2 4.705714∗∗∗ 3.417683∗∗∗ 0.219493
(6.120742) (5.729316) (0.217393)

R2 (%) 19.02 12.23 1.37
adj. R2 (%) 18.66 11.83 0.93
Num. obs. 450 450 450
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

TABLE 5.7: Time series momentum smile. Daily, weekly and monthly time series momen-
tum returns on monthly basis are regressed on MSCI World returns and squared returns.
Newey & West (1987) t-statistics are reported in brackets underneath the regression coeffi-
cients.

5.3 Hedge fund returns and transaction costs

Time series momentum returns are able to explain the long time mysterious hedge

fund returns from CTAs or Managed Futures Funds that exhibit significant alpha if

regressed on classical risk factors. Fung & Hsieh (2001) are the first to explain hedge

fund alphas by building lookback straddle factors22, but time series momentum strate-

gies offer some advantages over such strategies. First, they are a more direct approach

to proxy hedge fund returns and can be applied in practice by trend following funds.

Second, Baltas & Kosowski (2013) show that when adding their monthly, weekly and

daily time series momentum benchmarks to the Fung & Hsieh (2004) model for hedge

fund returns, the explanatory power is increased and the significance of some of the

straddle factors is driven out. Baltas & Kosowski (2013) and Hurst et al. (2013) find

strong evidence that hedge funds engage in time series momentum strategies of vari-

ous time frames.

One way to proxy trading costs for time series momentum strategies in a very con-

servative way is therefore to assume an annual 2% management fee and 20% perfor-

mance fee subject to a high watermark (also called 2/20 fee structure), as it is usually

charged by hedge funds. After accounting for transaction costs Hurst et al. (2013) still

22A lookback straddle is an option strategy which consists of a lookback call option and a lookback put
option. The lookback call option grants its holder the right to buy an asset for the lowest price observed
over the lifetime of the option while the lookback put option grants the right to sell the asset for the highest
price observed.
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find a Sharpe Ratio of 1 for their aggregate portfolio and Baltas & Kosowski (2013) find

that the average returns are reduced to 13.22% for the monthly strategy, 11.12% for the

weekly strategy and 13.46% for the daily strategy. The Sharpe Ratios are reduced to

slightly below 0.9 for all three strategies, which is still very impressive.

Assuming a 2/20 fee structure brings trading costs to an average of 6% per year.

Hurst et al. (2012) estimate transaction costs starting in 1903 and find that they are

substantially lower now than decades ago due to increased trading volume and price

competition. Hurst et al. (2013) believe that sophisticated managers can bring transac-

tion costs down to 1–4% per year.

daily weekly monthly
Mean (%) 10.43 8.65 11.12
Volatility (%) 11.48 10.43 11.83
Skewness 0.69 0.21 −0.47
Kurtosis 2.34 1.16 0.60
Sharpe Ratio 0.91 0.83 0.94
MDD (%) 27.29 19.27 19.48
$ growth 41.69 22.43 52.53

TABLE 5.8: Time series momentum with transaction costs. The table reports summary
statistics for the daily, weekly and monthly time series momentum strategies assuming a
2/20 fee structure. At each end of month a proportional monthly share of the 2% annual
management fee and a 20% performance fee subject to a high watermark is substracted.
The annualised return (mean), annualised standard deviation (volatility) and maximum
drawdown are displayed in percentage terms. The Sharpe Ratio is in annualised terms.
$ growth indicates the amount an investment of 1$ would have grown to over the relevant
period. The sample period is from January 1978 to June 2015.

Table 5.8 reports the summary statistics for my daily, weekly and monthly time

series momentum strategies if a 2/20 fee structure is applied on monthly basis. The

strategies are still very lucrative, even if Sharpe Ratios are reduced to under 1 for all

three strategies.





6. Improving time series momentum

In this chapter I implement the extensions for time series momentum strategies that are

introduced in chapter 3.2. Baltas & Kosowski (2012) and Marshall et al. (2014) propose

different time series momentum signals to increase the performance of the strategy.

Baltas & Kosowski (2012) find that by using a significant trend rule (TREND) instead

of the SIGN rule, the turnover of the strategy can be reduced significantly but risk ad-

justed return is almost unaffected. Marshall et al. (2014) on the other hand implement

a moving average rule (MAR) and argue that it gives an earlier and therefore better

signal than the simple SIGN rule.

In chapter 5 I showed that time series momentum strategies are very profitable

over a long period of time, but in more recent years and especially after the financial

crisis of 2008 they performed not so well anymore. Baltas & Kosowski (2014) find that

the performance of time series momentum stagnates whenever diversification benefits

decrease. To adress this issue, they add an average pairwise correlation factor to the

weighting scheme of time series momentum strategies. This reduces the exposure to

the strategy when asset prices are highly correlated.

To implement the various extensions I use the dataset which I presented in chapter 4

starting in January 1978 and ending in June 2015. For reasons of better readability and

due to the fact that it is the most prominent strategy in the literature, I will focus my

analysis only on the monthly time series momentum strategy. The lookback period

used to construct the SIGN rule, as well as for the construction of the moving average

necessary for the MAR rule is 12 months. The average pairwise correlation factor is

measured over a period of 60 days in concordance with Baltas & Kosowski (2014). The

single asset volatility target is set to 40% as in the previous chapter and the portfolio

volatility target used in chapter 6.4 is set to 12%.

6.1 Turnover dynamics

Before implementing the extensions mentioned above I want to introduce a new mea-

sure that is helpful in comparing different time series momentum strategies and is also

45
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used in Baltas & Kosowski (2014). A very important aspect of asset management are

transaction costs and therefore turnover plays an important role for determining if a

strategy is feasible or not and whether one strategy is superior to another by decreas-

ing the turnover and therefore increasing the net performance. The average annual

portfolio turnover for the monthly strategy is calculated as following:

turnover =
total purchases

number of average portfolio holdings
· 12

number of total months
(6.1)

In my sample the number of total months is equal to 450. The number of average port-

folio holdings is the average number of all absolute monthly portfolio holdings (long

and short). The total purchases are defined as the sum of all absolute differences in the

weights over all time periods t and assets i. For the standard time series momentum

strategy with the SIGN signal this is equal to

total purchasesSIGN =
T∑
t=1

Nt∑
i=1

(
SIGNi,t+1

σi,t+1
− SIGNi,t

σi,t
), (6.2)

where T is the number of total months andNt is the number of assets traded in period t.

SIGNi,t is defined as in equation 3.2. The total purchases of the TREND signal and MAR

signal are defined similarly but by replacing SIGNi,t with the trading rules TRENDi,t

and MARi,t (see equation 3.11 and equation 3.13).

The turnover of the correlation adjusted time series momentum strategy can be

defined in the same manner but the total purchases are then given by

total purchasesCATSMOM =
T∑
t=1

Nt∑
i=1

(
SIGNi,t+1

σi,t+1
zt+1 −

SIGNi,t

σi,t
zt), (6.3)

with the signal SIGNi,t from equation 3.2. zt is defined as

zt =

√
Nt

1 + (Nt − 1)ρ̄t
, (6.4)

where ρ̄t is the average pairwise correlation at time t, which is defined in equation 3.19.
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The average annual portfolio turnover is a measure of how much of the total pur-

chases are traded on average over a whole year relative to the number of average port-

folio holdings. The higher the turnover, the higher are usually the transaction costs.

This relationship must not always hold though, since trading costs do also depend on

the volume per transaction, the agreement between broker and asset manager or the

bid/ask spread of the particular asset. The simple measure of average annual portfolio

turnover I use here abstracts from all those factors, but since I only compare similarly

constructed trading strategies, all this other influences should somewhat even out.

There are two factors affecting the turnover for the SIGN, TREND and MAR trad-

ing rules, i.e. the change in ex-ante volatility σi,t and the change in the trading signal

SIGNi,t, TRENDi,t or MARi,t. While the ex-ante volatility weighting scheme improves

the performance of time series momentum as mentioned in chapter 5.1, it also strongly

increases the strategy turnover. The change from +1 to−1 and vice versa of the trading

signal has by definition an effect of 2 on portfolio turnover. The correlation adjusted

time series momentum strategy has an additional factor zt that influences portfolio

turnover. Whenever average pairwise correlation increases among the assets, the ex-

posure to all futures contracts is reduced. Note that the constant factor in the weight-

ing scheme of the strategies constructed in chapter 3, σtarget
Nt

or σp,target
Nt

, is eliminated by

dividing the total purchases with the number of average portfolio holdings (see equa-

tion 3.5).

The average annual portfolio turnover is defined relative to the average monthly

portfolio holdings of the strategy. Therefore, if two strategies have the same average

annual portfolio turnover, but one of the two has less total purchases and a lower num-

ber of average monthly portfolio holdings, this strategy is clearly more favorable than

the other, since trading costs should be smaller as well. To account for this, I will also

report the number of average monthly portfolio holdings when comparing different

strategies in the following sections.

Annual turnover is in general quite high for time series momentum strategies. For

the standard monthly time series momentum strategy (using SIGN as the trading sig-

nal) I get an average annual portfolio turnover of 339.78%. This is not only due to

the volatility weighting scheme. A strategy that does not scale the positions by their
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ex-ante volatility still produces an annual turnover of 233.85%.

6.2 Implementing a significant TREND trading signal

Baltas & Kosowski (2012) propose a more sophisticated trading rule than the simple

SIGN signal from equation 3.2. They find that time series momentum is profitable

whenever prices are trending but does not work well when clear trends are missing.

To adress this issue they introduce a significant trend trading rule, that only invests

whenever prices exhibit a significant trend and does not invest, when this is not the

case. From equation 3.11 one can see that Newey & West (1987) t-statistics of greater

than +2 or smaller than−2 are needed to trigger a buy or sell signal for the asset, which

means that the trend should be significant at approximately the 95% level.
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FIGURE 6.1: Number of traded contracts for SIGN and TREND signal. The black line rep-
resents the number of assets the SIGN signal trades at any point in time. By construction
it is always equal to the number of all available assets. The red line shows the number of
assets the TREND signal trades.

Figure 6.1 plots the number of held assets in the portfolio for the SIGN signal and
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TREND signal. The SIGN signal is always invested in all contracts available by con-

struction, while the TREND signal does only invest in assets whose price trend is sta-

tistically significant. The figure shows that the TREND signal is much less active in

some periods.
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FIGURE 6.2: Performance comparison of different time series momentum strategies plot-
ted on a log scale. The black strategy uses the TREND signal, the red strategy the SIGN
signal, the blue strategy the MAR signal and the green line represents the correlation ad-
justed time series momentum strategy (CATSMOM). The plot shows the return of 1$ in
log-terms over the period January 1978 to June 2015 for all four strategies.

Figure 6.2 plots the log-performance of the strategy using the TREND signal in

comparison with the strategy using the SIGN signal. It seems that the TREND signal

is able to improve the return of time series momentum. Table 6.1 shows that the mean

return can be increased to almost 20% if the TREND signal is used instead of the SIGN

signal. The risk adjusted return on the other hand is slightly lower due to the increase

in volatility and the maximum drawdown experienced over the whole sample period is

also bigger. It seems that the TREND signal makes the strategy more lucrative because

it excludes assets that do not exhibit a clear price trend but this in turn decreases the

diversification among assets and therefore increases risk. The annualised turnover is

also lower for the TREND signal and the average portfolio holdings are reduced by

almost 30% compared to the time series momentum strategy using the SIGN signal.
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When restricting my sample period until January 2012 I get similar results as Baltas

& Kosowski (2012). As mentioned in chapter 3.2.1 they find that the Sharpe Ratios

are very similar for both strategies but portfolio turnover is significantly reduced. It

seems that the TREND rule performs especially well in the last couple of years. The

subsample analysis in appendix D confirms these results.

SIGN TREND MAR CATSMOM
Mean (%) 17.77 19.54 17.60 17.35
Volatility (%) 13.16 16.31 13.37 12.86
Skewness −0.15 −0.26 −0.18 −0.05
Kurtosis 3.42 3.78 4.33 3.78
Sharpe Ratio 1.35 1.20 1.32 1.35
MDD (%) 18.23 24.86 16.24 15.81
$ growth 467.39 818.72 443.36 408.84
turnover (%) 339.78 327.30 402.41 529.76
avg. holdings 650.14 467.25 651.48 716.52

TABLE 6.1: Summary statistics for time series momentum extensions. This table shows
a summary of the performance of the monthly time series momentum strategy when us-
ing the SIGN signal, TREND signal, MAR signal and correlation adjusted time series mo-
mentum (CATSMOM) from January 1978 to June 2015. The annualised return (mean),
annualised standard deviation (volatility) and maximum drawdown are displayed in per-
centage terms. The Sharpe Ratio is in annualised terms. $ growth indicates the amount
an investment of 1$ would have grown to over the full period. The turnover is annualised
and in percentage terms (see chapter 6.1 for the definition) and the average holdings are
the monthly average holdings summed over all assets in absolute terms (long and short).

6.3 Implementing a moving average MAR trading signal

Marshall et al. (2014) propose to use a moving average trading rule (MAR) instead of

the SIGN rule from Moskowitz et al. (2012), Baltas & Kosowski (2013) and Hurst et al.

(2013). They argue that moving averages give better and earlier signals and therefore

are able to increase returns of time series momentum strategies. In chapter 3.2.1 I show

that the SIGN signal coincides with MA direction changes, but the MAR signal only

requires the price to go above or below the MA to give a buy or sell signal, which

makes the MAR in theory a better signal. In contrast, table 6.1 reveals that the summary

statistics of the MAR rule are very similar to the ones produced by the SIGN rule.

The major difference is that turnover is higher for the MAR signal, making it more

expensive to pursue.

The results indicate that the price moves much more often above or below the MA
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than a MA direction change takes place, causing the sign to switch too often from pos-

itive to negative and vice versa and therefore causing unnecessary turnover. This is

also confirmed in appendix D. The MAR trading rule adds no additional value to time

series momentum. It performs very similar but has a higher turnover in all subsamples

considered.

6.4 Implementing pairwise correlation

As a last extension, Baltas & Kosowski (2014) introduce an average pairwise correla-

tion factor to the weighting scheme of time series momentum strategies.23 They argue

that time series momentum does not perform well whenever the correlation among all

assets in their sample increases.
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FIGURE 6.3: Average pairwise correlation. The figure plots the average pairwise correla-
tion factor calculated as in equation 3.19 with ρi,j measured over a period of 60 days for
all assets where data exists at each point in time. The blue horizontal line is the ex-post
mean which is equal to 0.0924. The sample period is January 1978 to June 2015.

Figure 6.3 shows the average pairwise correlation over the whole sample period

from January 1978 to June 2015. It can be seen that especially in the late 1970s and

23Equation 3.19 shows how to calculate the average pairwise correlation factor.
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TSMOM
Intercept 0.023970∗∗∗

(5.845859)
avg. pairwise correlation −0.103174∗

(−2.530267)

R2 (%) 1.4
adj. R2 (%) 1.18
Num. obs. 450
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

TABLE 6.2: Average pairwise correlation and time series momentum returns. Monthly
time series momentum returns using the SIGN signal are regressed on the average pair-
wise correlation factor calculated as in equation 3.19. ρi,j is measured over a period of 60
days for all assets where data exists at each point in time. Newey & West (1987) t-statistics
are reported in brackets underneath the regression coefficients. See appendix E for a dis-
cussion of the methodology. The sample period is January 1978 to June 2015.

beginning of the 1980s as well as after the crisis of 2008 the pairwise correlation is above

the ex-post average, represented by the blue horizontal line. However, the high average

pairwise correlation at the beginning of the time series should be observed with caution

due to only limited data availability (see Appendix B) and higher correlation might

paricularly stem from the fact that one third of the available futures contracts at that

time are currency futures.

To check whether correlation among contracts has a significant influence on time se-

ries momentum, I regress monthly time series momentum returns on the average pair-

wise correlation factor. Table 6.2 shows that the coefficient is significant at the 5% level

and negative, indicating that the higher the average pairwise correlation, the lower the

return of the strategy. Note, though, that the independent variable is constructed by

using overlapping data, which could introduce inaccurancy in statistical inference test-

ing (Harri & Brorsen, 2009).24 Appendix E discusses the problem in detail and argues

in favor for the results I obtain. As mentioned above, average pairwise correlation is

biased upwards at the beginning of the period due to fewer available contracts. Re-

stricting the sample to observations after January 1985 – when more than 60% of the

contracts become available – shows an even stronger relationship. The coefficient be-

comes significant at the 1% level and decreases to −0.189, while leaving the intercept

almost unchanged.

24By using return data over 60 days to construct the average pairwise correlation factor, two subsequent
values share around 60–70% of the same return data, therefore causing overlapping regressors.
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Figure 6.2 and table 6.1 show that while the mean return and risk adjusted per-

formance of the correlation adjusted time series momentum strategy is very similar to

that of the standard time series momentum strategy using the SIGN rule, the maxi-

mum drawdown is reduced by 2.42% (in absolute terms) and is the best in comparison

with the other strategies. The correlation adjusted time series momentum strategy has

the lowest volatility among all four strategies and its skewness is almost zero. On the

other hand it also has the least dollar growth over the sample period. In the subsam-

ple analysis in appendix D I find that correlation adjusted time series momentum does

sometimes outperform the standard time series momentum strategy. Especially be-

tween June 2009 and June 2015 the strategy is able to reduce the maximum drawdown

and volatility compared to the SIGN signal. Still, the correlation adjusted time series

momentum strategy has a much higher turnover causing the strategy to be much more

expensive.
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FIGURE 6.4: Ex-post portfolio volatility. The figure plots the ex-post portfolio volatility of
the monthly standard SIGN time series momentum strategy (red) and the ex-post portfolio
volatility of the monthly correlation adjusted time series momentum strategy (black) over
a rolling window of 36 months. The red dashed horizontal line is the mean of the ex-post
portfolio volatility of the monthly standard SIGN time series momentum strategy which
is equal to 12.92% and the black dashed horizontal line is the mean of the ex-post portfolio
volatility of the monthly correlation adjusted time series momentum strategy (CATSMOM)
which is equal to 12.56%. The sample period is January 1978 to June 2015.
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The correlation adjusted time series momentum strategy targets the overall portfo-

lio volatility level instead of the per asset volatility level and should therefore be better

in keeping the portfolio volatility low and steady over time. Figure 6.4 plots the ex-post

36 months running portfolio volatility of the time series momentum strategy using the

SIGN signal in red and and the ex-post 36 months running portfolio volatility of the

correlation adjusted time series momentum strategy in black. Surprisingly, the stan-

dard SIGN time series momentum strategy is better in keeping the ex-post portfolio

volatility smooth and it has an annualised standard deviation of only 5.94% while the

ex-post annualised portfolio volatility of the correlation adjusted time series momen-

tum strategy exhibits an annualised standard deviation of 8.89%. Still, the mean ex-post

volatility of the correlation adjusted time series momentum strategy is at 12.56% and

therefore lower and closer to the portfolio volatility level of 12% than the one for the

standard SIGN time series momentum strategy at 12.92%.



7. Conclusion

Time series momentum is not without reason one of the trading strategies longest pur-

sued by stock market investors. Hurst et al. (2012) show that a well diversified strategy

– build with futures contracts and scaled by the single asset ex-ante volatilities – pro-

vides trend followers with annual double digit returns and very low risk for over 100

years now.

According to the efficient market hypothesis from Fama (1970, 1991), time series

momentum should not be profitable, since trends in prices should not exist. Still, they

might be consistent with a more sophisticated version of market efficiency and various

rational theories try to explain why trend followers are able to collect risk premias from

other market participants, such as price hedgers. On the other hand, there exists as well

a broad literature on behavioural reasons for price trends. Finding out more about the

underlying mechanism of time series momentum and whether price trends are due

to rational behaviour of market participants or solely due to market inefficiencies and

human irrationality is an important task for future research. Only then investors know

for sure if the strategy will continue to work in the future or if it might disappear in

more efficient markets.

By reproducing and prolonging the time series momentum strategies from Baltas

& Kosowski (2013) I find that the daily and weekly time series momentum strategies

do not perform well anymore with more recent observations, but the monthly time

series momentum strategy continues to deliver impressive excess returns, even when

accounting for transaction costs. I find similar return characteristics as Moskowitz et al.

(2012). The factor loadings of other risk factors are insignificant except for the cross sec-

tional momentum factor for the weekly and monthly time series momentum strategy.

A deeper investigation shows that cross sectional momentum and time series momen-

tum are closely related, but time series momentum is superior since it captures most

of cross sectional momentum and produces a significant alpha. Also, cross sectional

momentum is prone to crashes and has a lower Sharpe Ratio. Time series momen-

tum returns are able to explain the high returns of CTAs, which performed particularly

55
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well during the financial crisis of 2008, when most other funds lost money. Baltas &

Kosowski (2013) show that time series momentum is a good hedge against tail events

since its returns form a smile when plotted against a market index. I only find the so

called “momentum smile” for the daily and weekly strategy, but not for the monthly

time series momentum strategy.

To improve the performance of time series momentum, I implement three exten-

sions suggested in the literature. The first is to only consider significantly trending

assets when constructing the strategy (Baltas & Kosowski, 2012). I find that this in-

creases the return substantially and lowers turnover, but it comes with the cost of

higher volatility and worse drawdowns. The second extension I test is to use a moving

average trading rule instead of the SIGN rule. Marshall et al. (2014) show that MAR

should give earlier and therefore better signals than SIGN. I cannot confirm their find-

ings over the full period and also a subsample analysis shows that while the return

and Sharpe Ratio is almost unaffected by the change in trading signal, the turnover is

on average higher for the MAR rule, making the strategy more expensive to apply in

practice. Lastly, I implement an average pairwise correlation factor to the weighting

scheme of the strategy. Baltas & Kosowski (2014) find that time series momentum does

not perform well whenever the correlation between assets increases. In a regression I

can confirm this result. The correlation adjusted time series momentum strategy does

indeed improve the return statistics in some periods by lowering the volatility and

improving the maximum drawdown, but it also increases the turnover substantially,

which makes the strategy very expensive. Interestingly, I do not find that correlation

adjusted time series momentum does better in keeping the ex-post portfolio volatility

stable, even if it targets the portfolio volatility directly.

In my analysis I do not account for the bid/ask spread of futures contracts. This

could be considered in a future study on the topic.



A. Yang & Zhang (2000) volatility
estimator

The Yang & Zhang (2000) volatility estimator is the first unbiased range based volatility

estimator in the literature that accounts for a drift in the price process as well as the

opening jump. It is a linear combination of the Rogers & Satchell (1991) estimator, the

ordinary standard deviation estimator of daily log-returns and a similar estimator that

uses normalised opening prices instead of close to close log-returns. Denote the daily

opening, high, low and closing log-prices by O(t), H(t), L(t), C(t) and calculate:

normalised opening price: o(t) = O(t)− C(t− 1) (A.1)

normalised closing price: c(t) = C(t)−O(t) (A.2)

normalised high price: h(t) = H(t)−O(t) (A.3)

normalised low price: `(t) = L(t)−O(t) (A.4)

daily close-to-close return: r(t) = C(t)− C(t− 1) (A.5)

LetD be the number of days over which the volatility is calculated and 261 the number

of trading days per year. The standard deviation estimator (STDEV), opening jump

estimator (OPEN) and Rogers & Satchell (1991) estimator (RS) are defined as follows:

σ2
STDEV(t,D) =

261

D

D−1∑
i=0

[r(t− i)− r̄(t)]2 (A.6)

σ2
OPEN(t,D) =

261

D

D−1∑
i=0

[o(t− i)− ō(t)]2 (A.7)

σ2
RS(t,D) =

261

D

D−1∑
i=0

[h(t− i)(h(t− i)− c(t− i)) + `(t− i)(`(t− i)− c(t− i))] (A.8)
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where r̄(t) = 1
D

∑D−1
i=0 r(t − i) and ō(t) = 1

D

∑D−1
i=0 o(t − i). The Yang & Zhang (2000)

volatility estimator can be calculated combining all three estimators:

σ2
YZ(t,D) = σ2

OPEN(t,D) + kσ2
STDEV(t,D) + (1− k)σ2

RS(t,D), (A.9)

where k is chosen such that the variance of the estimator is minimized, which is achieved

in practice for k = 0.34
1.34+D+1

D−1

(Yang & Zhang, 2000). In accordance with Moskowitz et al.

(2012), Baltas & Kosowski (2013) and Hurst et al. (2013) I set D = 60 days.



B. Summary statistics of futures
contracts

Exchange Start Mean (%) Vola (%) Skew Kurt SR
AUD/USD CME Jan-1987 3.25 11.58 −0.39 4.65 0.28
CAD/USD CME Jan-1973 0.15 6.73 −0.36 7.39 0.02
CHF/USD CME Jan-1973 0.66 12.43 0.10 3.92 0.05
EUR/USD CME Dec-1972 0.15 11.56 0.04 3.71 0.01
GBP/USD CME Oct-1975 1.05 10.46 0.03 5.00 0.10
JPY/USD CME Jan-1973 −0.38 11.53 0.56 4.84 −0.03
Dollar Index ICE Nov-1985 −2.15 8.88 0.35 3.50 −0.24
DJIA CBOT Jan-1949 6.04 14.22 −0.45 5.08 0.42
NASDAQ 100 CME Jan-1985 9.89 24.80 −0.38 4.65 0.40
NYSE Composite ICE Jun-1964* 4.81 15.25 −0.49 5.13 0.32
S&P 500 CME Jan-1949 5.83 14.36 −0.40 4.57 0.41
S&P 400 MidCap CME Jan-1981 9.23 16.78 −0.75 5.83 0.55
Russell 2000 ICE Dec-1978 8.99 19.55 −0.81 5.70 0.46
DJ Stoxx 50 EUREX Dec-1986 5.43 16.39 −0.87 5.13 0.33
Eurostoxx 50 EUREX Dec-1986 5.53 18.61 −0.66 4.54 0.30
FTSE 100 NYSE LIFFE Dec-1983 4.65 15.87 −0.84 6.52 0.29
DAX EUREX Sep-1959 4.25 19.42 −0.34 5.01 0.22
CAC 40 Euronext Jul-1987 4.88 20.17 −0.32 4.27 0.24
IBEX 35 MEFF Jan-1987 5.46 21.93 −0.49 4.84 0.25
AEX Euronext Jan-1983 7.30 20.23 −0.79 5.58 0.36
SMI EUREX Jan-1988 8.29 16.17 −0.36 3.81 0.51
MIB 30 BI Dec-1992 4.75 22.79 0.15 3.45 0.21
S&P Canada 60 MX Jan-1982 6.16 15.30 −0.70 6.15 0.40
Nikkei 225 CME May-1949 6.00 20.52 −0.19 4.26 0.29
TOPIX OSE Dec-1952 5.50 18.25 −0.18 4.72 0.30
ASX SPI 200 ASX May-1992 4.72 13.31 −0.63 3.52 0.35
Hang Seng SEHK Nov-1969 10.79 32.84 0.23 9.68 0.33
KOSPI 200 KRX Jan-1990 3.14 30.89 0.80 8.35 0.10
MSCI Taiwan SGX Dec-1987 6.17 33.23 0.49 5.35 0.19
MSCI EAFE NYSE LIFFE Dec-1981 6.50 17.45 −0.36 3.82 0.37
US 2Y CBOT Jun-1990 1.52 1.68 0.19 3.57 0.90
US 5Y CBOT May-1988 2.87 4.12 0.06 3.78 0.70
US 10Y CBOT May-1982 4.72 6.94 0.20 3.98 0.68
US 30Y CBOT Aug-1977 3.24 11.18 0.27 4.76 0.29
Municipal Bonds CBOT Jan-1986* 5.00 8.08 −0.56 4.44 0.62
GER 2Y EUREX Oct-1998 0.81 1.33 0.14 3.90 0.61
GER 5Y EUREX Oct-1998 2.38 3.19 −0.01 2.72 0.74
GER 10Y EUREX Oct-1998 3.37 5.23 0.14 2.86 0.64
GER 30Y EUREX Sep-2005 5.10 12.52 0.76 4.54 0.41
AUS 3Y ASX May-1988 0.65 1.40 −0.15 5.08 0.46

Continued below
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Exchange Start Mean (%) Vola (%) Skew Kurt SR
AUS 10Y ASX Dec-1984 0.50 1.31 −0.37 4.69 0.39
UK 10Y NYSE LIFFE Nov-1982 2.49 7.53 0.09 4.24 0.33
CAN 10Y MX Sep-1989 3.75 6.02 0.00 3.31 0.62
JPN 10Y OSE Dec-1986 3.05 5.08 −0.07 8.81 0.60
KOR 3Y KRX Sep-1999 2.53 3.15 0.40 5.38 0.80
WTI NYMEX Mar-1983 −0.35 24.12 −0.36 6.84 −0.01
Brent ICE Sep-2003 3.37 30.84 −0.46 4.31 0.11
Heating Oil NYMEX Nov-1978 7.09 30.90 0.87 6.20 0.23
Natural Gas NYMEX Apr-1990 −12.61 55.60 0.96 6.02 −0.23
RBOB Gasoline NYMEX Dec-1984 6.54 24.66 −0.06 5.53 0.27
Copper COMEX Jul-1988 6.98 26.17 0.09 5.85 0.27
Gold COMEX Aug-1977 2.55 19.33 0.54 6.61 0.13
Palladium NYMEX Nov-1977 5.18 35.57 0.21 6.38 0.15
Platinum NYMEX Feb-1973 2.04 27.21 0.52 8.11 0.07
Silver COMEX Aug-1973 0.34 35.22 0.82 16.74 0.01
Feeder Cattle CME Jul-1978 1.99 14.07 0.10 5.16 0.14
Live Cattle CME Jan-1979 1.86 13.95 −0.13 3.97 0.13
Lean Hogs CME Jan-1979 −3.17 25.38 0.13 4.20 −0.13
Pork Bellies CME Jan-1979* −6.49 36.19 0.43 4.37 −0.18
Corn CBOT Jan-1973 −4.00 26.57 1.02 8.02 −0.15
Oats CBOT Apr-1978 −1.35 29.92 2.74 26.93 −0.05
Soybean Oil CBOT Dec-1977 −3.73 25.86 0.54 6.10 −0.14
Soybean Meal CBOT Jan-1978 6.14 26.13 0.40 4.42 0.23
Soybean CBOT Feb-1973 1.45 27.75 0.96 9.10 0.05
Wheat CBOT Jan-1978 −5.79 25.62 0.46 5.00 −0.23
Cocoa ICE Oct-1977 −6.75 29.00 0.61 4.27 −0.23
Coffee ICE Nov-1977 −6.21 37.89 1.12 6.01 −0.16
Cotton ICE Oct-1977 −0.43 23.96 0.26 4.92 −0.02
Lumber CME Feb-1978 −7.11 24.86 0.22 3.64 −0.29
Orange Juice ICE Aug-1977 −2.42 24.56 1.04 7.19 −0.10
Sugar ICE Oct-1977 −6.55 37.59 1.26 8.29 −0.17

TABLE B.1: Summary statistics of futures contracts. The table provides summary statistics
for all 71 futures contracts using monthly returns calculated from the earliest available date
for each contract. The annualised return (mean) and annualised standard deviation (vola)
are displayed in percentage terms. Also calculated are the skewness (skew), kurtosis (kurt)
and annualised Sharpe Ratio. The start dates indicate from which date on data is available
for each contract. All but three contracts have data until 30th June 2015. The time series for
the NYSE Composite contract (Sept-2011), Municipal Bond contract (Mar-2006) and Pork
Bellies contract (Jul-2011) are indicated by * and end prior due to delisting. The EUR/USD
contract is spliced with the DEM/USD contract prior to Mar-1999 and the RBOB Gasoline
contract is spliced with the Unleaded Gasoline contract prior to Nov-2005 as in Baltas &
Kosowski (2013).
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Exchange Full Name Location
ASX Australian Securities Exchange Sydney
BIX Borsa Italiana Milan
CME Chicago Mercantile Exchange Chicago
CBOT Chicago Board of Trade Chicago
COMEX Commodity Exchange New York
EUREX European Exchange Frankfurt
Euronext Euronext Amsterdam
ICE Intercontinental Exchange Atlanta
KRX Korea Exchange Seoul
MEFF Mercado Espanol de Futuros Financieros Madrid
MX Montreal Exchange Montreal
NYMEX New York Mercantile Exchange New York
NYSE LIFFE New York Stock Exchange – London In-

ternational Financial Futures and Op-
tions Exchange

London

OSE Osaka Stock Exchange Osaka
SEHK Hong Kong Stock Exchange Hong Kong
SGX Singapore Exchange Singapore

TABLE B.2: List of futures exchanges. The table lists the full names and locations of the
futures exchanges from the dataset.





C. Congruence of time series
momentum returns

Since I am building the same time series momentum strategies as Baltas & Kosowski

(2013) with a very similar data sample but from different data providers, I want to

compare the return series from my strategies with the ones from Baltas & Kosowski

(2013).25
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FIGURE C.1: Comparing time series momentum performances. The figures plot the
monthly dollar growth of the daily, weekly and monthly time series momentum strate-
gies from Baltas & Kosowski (2013) (in black) versus the dollar growth of my strategies (in
red) on a log scale. The sample period is January 1978 to January 2012.

First, one needs to account that the sample is slightly different due to different avail-

abilities of some data. For most contracts I have a different starting date compared

with the ones from Baltas & Kosowski (2013), which negatively impacts the fit at the

beginning of the time series. Further, Baltas & Kosowski (2013) write that data for the

Korea 3Y government bond futures contract is no longer available after June 2011. I

have data for it up to June 2015 from Datastream. Instead, my time series for the NYSE

Composite index futures contract ends in September 2011, while Baltas & Kosowski

(2013) have data up until January 2012. The splicing dates of the equity index futures

contracts, the EUR/USD futures contract and the RBOB Gasoline futures contract dif-

fer and the end date of the Municipial Bond contract is also slightly different.26 The

25The return series of the daily, weekly and monthly strategies from Baltas & Kosowski
(2013) are publicly available on http://www3.imperial.ac.uk/riskmanagementlaboratory/
risklabsections/centreforhedgefundsresearch/baltas_kosowski_factors (2015-10-15).

26For the exact details please compare Baltas & Kosowski (2013), Table I, and table B.1 from appendix B.
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discrepancies in data availability surely have an effect on the fit of the return series,

even if it should not be too pronounced.

Even so, a first comparison of the return series of my strategies and the ones stem-

ming from Baltas & Kosowski (2013) shows, that they do not fit as well as they should.

Figure C.1 plots the log-performances of the daily, weekly and monthly strategies from

both me and Baltas & Kosowski (2013) up to January 2012. The black line represents the

dollar growth of the time series momentum strategies from Baltas & Kosowski (2013)

and the red line the dollar growth of mine (both on a log scale). The correlation of daily

and weekly time series momentum returns is 83% and of monthly 79%.
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FIGURE C.2: Spread of time series momentum returns. The figures plot the daily,
weekly and monthly absolute spread in time series momentum returns between Baltas
& Kosowski (2013) and my strategies. The blue line indicates the linear trend. The sample
period is January 1978 to January 2012.

Figure C.2 plots the absolute spreads of the return series with a linear trend line in

blue. Even if the spread narrows over time for all three strategies, the average differ-

ence between my time series momentum returns and the ones from Baltas & Kosowski

(2013) over the whole period is still at 1.7% for the daily returns, 1.4% for the weekly

returns and 1.8% for the monthly returns. In the last year of data, from February 2011

to January 2012, the spread narrows to a mean of 0.4%, 0.7% and 0.9% respectively.

To test whether the discrepancies are data related I use a subsample of 60 futures

contracts from Bloomberg for January 2012 to June 2015 and compare the time series

momentum strategy returns from that data sample with the ones I obtain from my

original sample from Datastream (using the same subsample).27 Figure C.3 plots the

27The time period and subsample are chosen to maximize data availability and quality. The subsample
does exclude data from the Municipial Bond contract, Japan 10Y government bond contract, Korea 3Y
government bond contract, NYSE Composite index contract, Eurostoxx 50 index contract, DAX index
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absolute spread of the three return series for daily, weekly and monthly time series

momentum for the Datastream dataset and the Bloomberg dataset. The blue line repre-

sents the mean which is equal to 0.4% for the daily returns, 0.6% for the weekly returns

and 0.7% for the monthly returns, comparable with the averages I got for the spreads

in the last year of data from Baltas & Kosowski (2013) from above.
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FIGURE C.3: Spreads from using different data providers. The figures plot the daily,
weekly and monthly absolute spread in time series momentum returns between data from
Datastream and Bloomberg. The blue line indicates the mean. The sample period is Jan-
uary 2013 to June 2015.

It seems that time series momentum returns are very sensitive to differences in the

data sample, especially due to the volatility weighting factor. The factor is calculated

by using daily opening, high, low and closing prices and data quality does differ espe-

cially for the first three variables among data providers. Still, time series momentum

yields high positive mean returns for all tested data samples, indicating that the per-

formance of time series momentum is robust for different data samples.

contract, MIB 30 index contract, TOPIX index contract, ASX SPI 200 index contract, KOSPI 200 index
contract and Pork Bellies contract.





D. Subsample analysis for time
series momentum extensions

A subsample analysis of the different time series momentum strategies is helpful in

assessing, whether the extensions are really useful to improve time series momentum

performance. In table D.1 I split the period between January 1978 to June 2015 in five

subperiods. The first three subsamples are approximately ten year periods: from Jan-

uary 1978 to December 1987 (period 1), from January 1988 to December 1997 (period 2)

and from January 1998 to May 2009 (period 3). The last two periods are the ones also

considered in chapter 5.1, from June 2009 to January 2012 (period 4) and from February

2012 to June 2015 (period 5). Both cover approximately two and a half years of data.

The first period is interesting since monthly time series momentum seems not to per-

form that well anymore in those years after the financial crisis of 2008 and the second

period are the additional years of data I add to the analysis of Baltas & Kosowski (2013).

SIGN TREND MAR CATSMOM
Period 1 Jan–1978 to Dec–1987
Mean (%) 24.39 25.12 26.94 19.60
Volatility (%) 14.83 19.01 15.63 13.11
Skewness −0.53 −0.68 −0.70 −0.62
Kurtosis 3.50 4.26 5.16 4.41
Sharpe Ratio 1.64 1.32 1.72 1.50
MDD (%) 11.66 22.61 16.24 12.99
Dollar growth 8.87 9.40 10.87 5.99
turnover (%) 366.37 364.91 407.67 1059.44
avg. holdings 266.30 188.49 268.55 127.53

Period 2 Jan–1988 to Dec–1997
Mean (%) 18.21 17.83 16.96 19.11
Volatility (%) 12.87 16.35 12.45 13.55
Skewness 0.16 0.06 0.03 0.13
Kurtosis 3.19 3.29 3.24 3.41
Sharpe Ratio 1.42 1.09 1.36 1.41
MDD (%) 14.88 24.86 11.02 14.37
Dollar growth 5.33 5.16 4.79 5.75
turnover (%) 324.55 335.87 388.74 406.40
avg. holdings 649.60 467.70 651.22 790.08

Period 3 Jan–1998 to May–2009
Mean (%) 15.60 19.06 15.12 17.44
Volatility (%) 12.46 14.81 12.96 13.27
Skewness −0.08 −0.12 0.24 0.20
Kurtosis 3.20 3.21 4.01 3.46

Continued below
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SIGN TREND MAR CATSMOM
Sharpe Ratio 1.25 1.29 1.17 1.32
MDD (%) 15.40 16.01 14.78 15.81
Dollar growth 5.23 7.33 4.99 6.27
turnover (%) 322.78 317.52 405.81 752.81
avg. holdings 792.51 562.39 793.52 619.35

Period 4 Jun–2009 to Jan–2012
Mean (%) 5.84 8.73 8.51 4.64
Volatility (%) 12.10 14.34 12.46 9.63
Skewness −0.46 −0.26 −0.38 −0.45
Kurtosis 3.13 2.11 2.13 3.24
Sharpe Ratio 0.48 0.61 0.68 0.48
MDD (%) 9.99 19.65 9.23 8.15
Dollar growth 1.16 1.25 1.24 1.13
turnover (%) 315.53 375.59 378.20 291.97
avg. holdings 798.12 544.09 798.12 1391.92

Period 5 Feb–2012 to Jun–2015
Mean (%) 15.25 19.59 9.72 16.36
Volatility (%) 11.93 14.22 10.23 10.96
Skewness 0.09 0.08 −0.54 −0.05
Kurtosis 4.58 3.37 2.87 3.51
Sharpe Ratio 1.28 1.38 0.95 1.49
MDD (%) 8.09 6.55 6.90 6.71
Dollar growth 1.62 1.84 1.37 1.68
turnover (%) 384.10 270.41 401.32 481.14
avg. holdings 1196.33 912.52 1196.33 2041.18

TABLE D.1: Subsample analysis for time series momentum extensions. This table shows a
summary of the performance of the monthly time series momentum strategy when using
the SIGN signal, TREND signal, MAR signal and correlation adjusted time series momen-
tum (CATSMOM) from January 1978 to December 1987 (period 1), from January 1988 to
December 1997 (period 2), from January 1998 to May 2009 (period 3), from June 2009 to
January 2012 (period 4) and from February 2012 to June 2015 (period 5). The annualised
return (mean), annualised standard deviation (volatility) and maximum drawdown are
displayed in percentage terms. The Sharpe Ratio is in annualised terms. $ growth indi-
cates the amount an investment of 1$ would have grown to over the relevant period. The
turnover is annualised and in percentage terms (see chapter 6.1 for the definition) and the
average holdings is the number of monthly average holdings summed over all assets in
absolute terms (long and short).

Baltas & Kosowski (2012) claim that by using the TREND rule instead of the SIGN

rule, time series momentum returns should increase, since only assets that are signifi-

cantly trending are traded. The idea is that in times of less available trends, time series

momentum does not perform well and therefore the exposure to the strategy is reduced

by investing in less assets. Also, the turnover can be substantially lowered by only in-

vesting in significantly trending assets. In chapter 6.2 I show that this holds true for the

whole period, but comes with the cost of higher volatility due to less diversification

benefits – causing the Sharpe Ratio to decrease. The subsample analysis from table D.1

confirms my findings for the full period. The return of the TREND signal is higher in

almost all subperiods compared to the SIGN signal and turnover as well as the average



Appendix D. Subsample analysis for time series momentum extensions 69

holdings are lower. Surprisingly, I find that also the Sharpe Ratio is higher in three of

the five subsamples, especially in the last two periods. The maximum drawdown on

the other hand is almost always substantially worse for the TREND signal.

Marshall et al. (2014) claim that using the MAR rule instead of the SIGN rule should

also improve time series momentum performance, since it gives earlier signals. In

chapter 3.2.1 I show that the MAR rule changes sign, whenever the price of an asset

moves above or below the MA. The SIGN rule on the other hand changes sign, when-

ever the MA changes direction, which happens less often. Over the whole period this

seems not to work according to the results from chapter 6.3. The subsample analy-

sis confirms also in this case what I find in the full sample. The MAR rule adds no

additional value to time series momentum. It performs very similar compared to the

SIGN rule and is in some periods slightly better and in some periods slightly worse.

Still, turnover is always higher given almost the same average holdings, causing the

strategy to be more expensive than time series momentum constructed with the SIGN

rule.

Time series momentum does not perform well whenever the average pairwise cor-

relation between assets increases. In chapter 6.4 I argue that the correlation adjusted

time series momentum strategy (which reduces the exposure to the strategy whenever

the average pairwise correlation factor from equation 3.19 increases) successfully low-

ers the maximum drawdown but leaves the Sharpe Ratio unchanged. On the other

hand, correlation adjusted time series momentum increases turnover and is therefore

more costly than time series momentum using the SIGN rule. The subsample analysis

shows that correlation adjusted time series momentum does in some periods add ad-

ditional value to time series momentum. Due to its much higher turnover and average

holdings over all subperiods it is a very expensive strategy, but is able to reduce the

maximum drawdown and volatility in almost all periods and most substantially in the

last two subsamples.





E. OLS with overlapping data

The average pairwise correlation factor is built by using overlapping data and thus

its usage as regressor in a standard OLS model can cause biased results in statistical

inference testing (Harri & Brorsen, 2009). The factor is constructed with daily returns

over a lookback period of 60 days (see equation 3.19), which implies that when using

month-end values as regressors in table 6.2, around 60–70% of the return time series

used to construct the correlation factor is overlapping for two subsequent values.
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FIGURE E.1: Time series momentum versus average pairwise correlation. The figure plots
monthly time series momentum retuns against the average pairwise correlation factor,
which is measured over a 60 day period and calculated at each month-end. The blue line
indicates the linear trend. The sample period is January 1978 to June 2015.

Most literature discussing the overlapping data problem covers different and mainly

simpler forms of overlapping regressors, such as for instance yearly returns that are cal-

culated from January to December, February to January and so on and is therefore not

much of a help in my case. Harri & Brorsen (2009) show for example that OLS in combi-

nation with Newey & West (1987) t-statistics provides asymptotically valid hypothesis

tests when dealing with overlapping observations in the aforementioned simpler form.
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The OLS coefficient estimates are unbiased and consistent but inefficient. They find that

OLS and Newey & West (1987) t-statistics provide a good fit to the true parameters only

if the number of observations is sufficiently large (more than 500) and the number of

overlapping observations is not too high (close to 1). Still, the standard deviation is

generally underestimated and therefore true null hypotheses are rejected too often by

Newey & West (1987).
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FIGURE E.2: Autocorrelation and partial autocorrelation function of regression residuals.
The plot shows the autocorrelation function of the residuals from the regression in table 6.2
on the left and its partial autocorrelation function on the right. The confidence interval is
95% and is given by the dashed blue line. The sample period is January 1978 to June 2015.

Figure E.1 plots the relationship between monthly time series momentum returns

and the average pairwise correlation factor. The blue line is the linear fit according to

table 6.2. The negative relationship is evident from the plot and not driven by out-

liers, even if the observations are quite dispersed. Further, the plot shows a relatively

symmetric distribution of the observations around the fitted line.

To check whether the results from table 6.2 are biased, it is necessary to conduct

some residual diagnostics from the regression. Gilbert (1986) shows that overlapping

observations create a MA error term, that causes biased statistical inference testing.

Figure E.2 plots the autocorrelation and partial autocorrelation function of the residuals

from the regression. There is no obvious structure visible from the plots, even if some

lags do exceed the boundary. Further, an unreported regression of the residuals on

their first lags does not indicate any autocorrelation. To adress the hypothesis that the

residuals follow a MA process, I estimate MA(q) models with varying order q for the

residuals using a maximum likelihood procedure, but do not find a good fit.28

28This analysis is also unreported.



Appendix E. OLS with overlapping data 73

TSMOM
Intercept 0.022842∗∗∗

(6.482758)
avg. pairwise correlation (20 days) −0.094550∗∗

(−2.655855)

R2 (%) 1.58
adj. R2 (%) 1.36
Num. obs. 450
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

TABLE E.1: Average pairwise correlation and time series momentum returns for 20 days
lookback period. Monthly time series momentum returns using the SIGN signal are re-
gressed on the average pairwise correlation factor calculated as in equation 3.19, but ρi,j is
measured over a period of 20 days instead of 60 days for all assets where data exists at each
point in time, to avoid the problem of overlapping data. Newey & West (1987) t-statistics
are reported in brackets underneath the regression coefficients. The sample period is Jan-
uary 1978 to June 2015.

Another robustness check for the result is to eliminate the overlapping data prob-

lem by reducing the time period over which the average pairwise correlation parameter

is calculated from 60 days to 20 days. The coefficient in table E.1 is of almost the same

size but even more significant, thus supporting the conclusion I draw in chapter 6.4

and indicating even more that inference in the original model is correct.





F. Code

In the following section I present the code I use to construct the time series momentum

strategies. The code is written in R.

F.1 Data preparation

To construct the time series momentum strategies I obtain daily open, high, low and

closing prices as well as daily volume of 71 futures contracts from Datastream. The data

is imported into R from a csv-file. The equity index spot prices I use to backfill equity

index futures prices come from Global Financial Data are imported in the same way. It

is necessary to bring the data into a useful format as well as to reorganize the column

headers in a way such that the futures contracts can be organized chronologically. To

handle time-based data in a simple and efficient ways I use the xts package.

requi re ( x t s )

c u r r e n c i e s<−c ( ”AUDUSD” , ”CADUSD” , ”CHFUSD” , ”EURUSD” , ”GBPUSD” , ”JPYUSD” , ”
Dol lar Index ” )

i n t e r e s t r a t e s<−c ( ”US2Y” , ”US5Y” , ”US10Y” , ”US30Y” , ”Muni” , ”GER2Y” , ”GER5Y
” , ”GER10Y” , ”GER30Y” , ”AUS3Y” , ”AUS10Y” , ”UK10Y” , ”CAN10Y” , ”JPN10Y” , ”
KOR3Y” )

e q u i t i e s<−c ( ”DJIA” , ”NASDAQ100” , ”NYSE Composite” , ”S&P500” , ”S&P400
MidCap” , ” Russe l l2000 ” , ”DJ Stoxx50 ” , ” Eurostoxx50 ” , ”FTSE100” , ”DAX” , ”
CAC40” , ”IBEX35” , ”AEX” , ”SMI” , ”MIB30” , ”S&P Canada60” , ” Nikkei225 ” , ”
TOPIX” , ”ASX SPI200 ” , ”Hang Seng” , ”KOSPI200” , ”MSCI Taiwan” , ”MSCI
EAFE” )

commodities<−c ( ”WTI” , ” Brent ” , ” Heating Oil ” , ” Natural Gas” , ”RBOB
Gasoline ” , ”Unleaded Gasoline ” , ”Copper” , ”Gold” , ” Palladium ” , ”
Platinum ” , ” S i l v e r ” , ” Feeder C a t t l e ” , ” Live C a t t l e ” , ”Lean Hogs” , ”Pork

B e l l i e s ” , ”Corn” , ”Oats” , ”Soybean Oil ” , ”Soybean Meal” , ”Soybeans” , ”
Wheat” , ”Cocoa” , ” Coffee ” , ” Cotton ” , ”Lumber” , ”Orange J u i c e ” , ”Sugar” )

s e c u r i t i e s<−c ( currenc ies , i n t e r e s t ra te s , e q u i t i e s , commodities )

s e c u r i t y<−s e c u r i t i e s [ i ]

# i mp or t p r i c e d a t a f o r e a c h s e c u r i t y
data<−read . csv ( paste ( s e c u r i t y , ” . csv ” , sep=”” ) , header=TRUE, sep=” ; ” )

The column headers are reorganized such that the first six positions list the delivery

year and month of the contract. Due to the fact that the headers are very heterogenous

this step must be done by hand for each contract i. The position of the year and month
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varies for each futures contract, so the code from below is just an example and does not

fit for all contracts.

des<−colnames ( data ) [−1] # e x t r a c t h e a d e r t o r e o r d e r
des<−gsub ( ” . . ” , ” . ” , des , f i x e d=TRUE) # remove m u l t i p l e d o t s
des<−s t r s p l i t ( des , ” \\ . ” ) # s p l i t h e a d e r s
year<−sapply ( des , func t ion ( x ) x [ 6 ] ) # s a v e y e a r
mon<−sapply ( des , func t ion ( x ) x [ 5 ] ) # s a v e month
mon<−months (mon) # t r a n s f o r m month t o number
des<−paste ( paste ( year , mon, sep=”” ) , sapply ( des , func t ion ( x ) x [ 7 ] ) , sapply

( des , func t ion ( x ) x [ 8 ] ) , sep=” . ” )
colnames ( data )<−c ( ” date ” , des ) # add upda t ed h e a d e r s

The function “months” is defined as following:

months <− func t ion (mon) {
mo. name<−c ( ”JAN” , ”FEB” , ”MAR” , ”APR” , ”MAY” , ”JUN” , ”JUL” , ”AUG” , ”SEP” , ”

OCT” , ”NOV” , ”DEC” )
mo.num<−c ( ”01” , ”02” , ”03” , ”04” , ”05” , ”06” , ”07” , ”08” , ”09” , ”10” , ”11” , ”

12” )
pos<−match (mon,mo. name)
mon<−mo.num[ pos ]
re turn (mon)

}

Now that the column headers are in a more useful format the futures contracts

can be reorganized chronologically and saved in the xts-format. For contracts that are

spliced together (such as the EUR/USD contract with the DEM/USD contract and the

RBOB Gasoline contract with the Unleaded Gasoline contract) I merge both price data

tables.

data<−data [ , order ( subs t r ( names ( data ) , 1 , 6 ) ) ] # o r d e r c h r o n o l o g i c a l l y
t imes<−as . Date ( data[−nrow ( data ) , ncol ( data ) ] , ”%d.%m.%Y” ) # s a v e t i m e s

from d a t a t a b l e
data<−apply ( apply ( data [ ,− ncol ( data ) ] , 2 , gsub , p a t t =” , ” , r e p l a c e=” . ” )

, 2 , as . numeric ) # r e p l a c e comma by d o t and make numeric
data<−as . x t s ( data , order . by=times ) # s a v e as x t s

In the next step I split up “data” into separate tables for the open, high, low and

closing prices as well as the volume of each contract.

pr<−ass ign ( paste ( s e c u r i t y , ” c l o s e ” , sep=” . ” ) , data [ , seq ( 1 , ncol ( data ) ,
5 ) ] ) # s a v e as pr and s e p a r a t l y f o r e a c h s e c u r i t y

ass ign ( paste ( s e c u r i t y , ”open” , sep=” . ” ) , data [ , seq ( 2 , ncol ( data ) , 5 ) ] )
ass ign ( paste ( s e c u r i t y , ” high ” , sep=” . ” ) , data [ , seq ( 3 , ncol ( data ) , 5 ) ] )
ass ign ( paste ( s e c u r i t y , ”low” , sep=” . ” ) , data [ , seq ( 4 , ncol ( data ) , 5 ) ] )
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vol<−ass ign ( paste ( s e c u r i t y , ”volume” , sep=” . ” ) , data [ , seq ( 5 , ncol ( data ) ,
5 ) ] )

F.2 Calculation of the return series

The variables “pr” and “vol” are used to construct the daily, weekly and monthly return

series for each futures contract by always holding the contract with the highest traded

volume29 and by reinvesting the full amount. “w” is the ratio between the price of the

old contract (currently held) and the price of the new contract (which will be bought). If

the old contract is sold at a higher price than the one from the new contract, more than

one new contract is bought and vice versa. It is assumed that contracts are arbitrarily

divisible.

# o v e r w r i t e NAs in d a i l y volume t a b l e
vol [ i s . na ( vol ) ] <− 0

# f i n d most t r a d e d c o n t r a c t f o r e a c h t ime i :
i n v e s t<−as . x t s ( matrix (NA, nrow=nrow ( pr ) , ncol =1) , order . by=index ( pr ) )
j<−1
f o r ( i in 1 : ( nrow ( pr )−1) ) {

i f ( as . numeric ( vol [ i , j ] )>=as . numeric ( vol [ i , j +1 ] ) && ! i s . na ( pr [ i +1 , j
] ) ) {

i n v e s t [ i , 1 ]<−subs t r ( colnames ( vol [ i , j ] ) , 1 , 6 )
} e l s e {

i n v e s t [ i , 1 ]<−subs t r ( colnames ( vol [ i , j +1 ] ) , 1 , 6 )
j<− j +1}

}
i n v e s t [ nrow ( i n v e s t ) ]<−i n v e s t [ nrow ( i n v e s t )−1] # f i l l l a s t row f o r w a r d
ass ign ( paste ( s e c u r i t y , ” i n v e s t ” , sep=” . ” ) , i n v e s t )

# S p l i c e p r i c e v e c t o r t o g e t h e r
w<−1
pf<−as . x t s ( matrix (NA, nrow=nrow ( pr ) , ncol =1) , order . by=index ( pr ) )
pf [ 1 ]<−w∗pr [ 1 , which ( subs t r ( colnames ( pr ) , 1 , 6 ) ==as . c h a r a c t e r ( i n v e s t [ 1 ] )

) ]
f o r ( i in 2 : nrow ( pr ) ) {

i f ( as . c h a r a c t e r ( i n v e s t [ i ] ) ==as . c h a r a c t e r ( i n v e s t [ i −1]) ) {
pf [ i ]<−w∗pr [ i , which ( subs t r ( colnames ( pr ) , 1 , 6 ) ==as . c h a r a c t e r ( i n v e s t

[ i ] ) ) ]
} e l s e {

w<−as . numeric (w∗pr [ i , which ( subs t r ( colnames ( pr ) , 1 , 6 ) ==as . c h a r a c t e r
( i n v e s t [ i −1]) ) ] / pr [ i , which ( subs t r ( colnames ( pr ) , 1 , 6 ) ==as .
c h a r a c t e r ( i n v e s t [ i ] ) ) ] )

29After rolling forward in the next contract it is not possible to jump back in the old one. If the traded
volume of the next contract does not exceed the volume of the currently held contract until its expiration,
the contract is rolled forward at the last trading day.
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pf [ i ]<−w∗pr [ i , which ( subs t r ( colnames ( pr ) , 1 , 6 ) ==as . c h a r a c t e r ( i n v e s t
[ i ] ) ) ]

}
}
colnames ( pf )<−paste ( s e c u r i t y , sep=”” )
r e t<−d i f f ( pf ) / lag ( pf , 1 ) # c a l c u l a t e d a i l y r e t u r n s
ass ign ( paste ( ” r e t . d” , s e c u r i t y , sep=” . ” ) , r e t )
r e t [ 1 ]<−0
ass ign ( paste ( ” per f ” , s e c u r i t y , sep=” . ” ) , cumprod(1+ r e t ) ) # c a l c u l a t e

p e r f o r m a n c e
ass ign ( paste ( ” r e t .m” , s e c u r i t y , sep=” . ” ) , d i f f ( apply . monthly ( get ( paste ( ”

per f ” , s e c u r i t y , sep=” . ” ) ) , l a s t ) ) / lag ( apply . monthly ( get ( paste ( ” per f
” , s e c u r i t y , sep=” . ” ) ) , l a s t ) , 1 ) ) # c a l c u l a t e monthly r e t u r n s

ass ign ( paste ( ” r e t .w” , s e c u r i t y , sep=” . ” ) , d i f f ( get ( paste ( ” per f ” , s e c u r i t y
, sep=” . ” ) ) [ . indexwday ( get ( paste ( ” per f ” , s e c u r i t y , sep=” . ” ) ) ) %in%
3 ] ) / lag ( get ( paste ( ” per f ” , s e c u r i t y , sep=” . ” ) ) [ . indexwday ( get ( paste ( ”
per f ” , s e c u r i t y , sep=” . ” ) ) ) %in% 3 ] , 1 ) ) # c a l c u l a t e wee k l y r e t u r n s

F.3 Calculation of the Yang & Zhang (2000) volatility estimator

From the daily open, high, low and closing prices I calculate the Yang & Zhang (2000)

volatility estimator. The daily log-prices are normalized according to the definition

and then spliced together to a single vector, so that for each point in time I extract the

relevant value according to the then held contract. The estimator is calculated over a

period of 60 days. For missing values I interpolate linearly.

# n o r m a l i z e d a i l y log−p r i c e s
ass ign ( paste ( s e c u r i t y , ”norm . open” , sep=” . ” ) , log ( get ( paste ( s e c u r i t y , ”

open” , sep=” . ” ) ) )−log ( lag ( get ( paste ( s e c u r i t y , ” c l o s e ” , sep=” . ” ) ) , 1 ) ) )
ass ign ( paste ( s e c u r i t y , ”norm . c l o s e ” , sep=” . ” ) , log ( get ( paste ( s e c u r i t y , ”

c l o s e ” , sep=” . ” ) ) )−log ( get ( paste ( s e c u r i t y , ”open” , sep=” . ” ) ) ) )
ass ign ( paste ( s e c u r i t y , ”norm . high ” , sep=” . ” ) , log ( get ( paste ( s e c u r i t y , ”

high ” , sep=” . ” ) ) )−log ( get ( paste ( s e c u r i t y , ”open” , sep=” . ” ) ) ) )
ass ign ( paste ( s e c u r i t y , ”norm . low” , sep=” . ” ) , log ( get ( paste ( s e c u r i t y , ”low

” , sep=” . ” ) ) )−log ( get ( paste ( s e c u r i t y , ”open” , sep=” . ” ) ) ) )
ass ign ( paste ( s e c u r i t y , ”norm . c . c ” , sep=” . ” ) , log ( get ( paste ( s e c u r i t y , ”

c l o s e ” , sep=” . ” ) ) )−log ( lag ( get ( paste ( s e c u r i t y , ” c l o s e ” , sep=” . ” ) ) , 1 ) )
)

norm . open<−norm . c l o s e<−norm . high<−norm . low<−norm . c . c<−as . x t s ( matrix (
NA, nrow=nrow ( pr ) , ncol =1) , order . by=index ( pr ) )

# s p l i c e n o r m a l i z e d d a i l y log−p r i c e s t o g e t h e r
f o r ( i in 2 : nrow ( pr ) ) {

norm . open [ i ]<−get ( paste ( s e c u r i t y , ”norm . open” , sep=” . ” ) ) [ i , which (
subs t r ( colnames ( pr ) , 1 , 6 ) ==as . c h a r a c t e r ( i n v e s t [ i ] ) ) ]

norm . c l o s e [ i ]<−get ( paste ( s e c u r i t y , ”norm . c l o s e ” , sep=” . ” ) ) [ i , which (
subs t r ( colnames ( pr ) , 1 , 6 ) ==as . c h a r a c t e r ( i n v e s t [ i ] ) ) ]
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norm . high [ i ]<−get ( paste ( s e c u r i t y , ”norm . high ” , sep=” . ” ) ) [ i , which (
subs t r ( colnames ( pr ) , 1 , 6 ) ==as . c h a r a c t e r ( i n v e s t [ i ] ) ) ]

norm . low [ i ]<−get ( paste ( s e c u r i t y , ”norm . low” , sep=” . ” ) ) [ i , which ( subs t r
( colnames ( pr ) , 1 , 6 ) ==as . c h a r a c t e r ( i n v e s t [ i ] ) ) ]

norm . c . c [ i ]<−get ( paste ( s e c u r i t y , ”norm . c . c ” , sep=” . ” ) ) [ i , which ( subs t r
( colnames ( pr ) , 1 , 6 ) ==as . c h a r a c t e r ( i n v e s t [ i ] ) ) ]

}
norm . open<−ass ign ( paste ( s e c u r i t y , ”norm . open” , sep=” . ” ) , na . approx ( norm .

open , method = ” l i n e a r ” , na . rm = FALSE , maxgap=2) )
norm . c l o s e<−ass ign ( paste ( s e c u r i t y , ”norm . c l o s e ” , sep=” . ” ) , na . approx (

norm . c lose , method = ” l i n e a r ” , na . rm = FALSE , maxgap=2) )
norm . high<−ass ign ( paste ( s e c u r i t y , ”norm . high ” , sep=” . ” ) , na . approx ( norm .

high , method = ” l i n e a r ” , na . rm = FALSE , maxgap=2) )
norm . low<−ass ign ( paste ( s e c u r i t y , ”norm . low” , sep=” . ” ) , na . approx ( norm .

low , method = ” l i n e a r ” , na . rm = FALSE , maxgap=2) )
norm . c . c<−ass ign ( paste ( s e c u r i t y , ”norm . c . c ” , sep=” . ” ) , na . approx ( norm . c .

c , method = ” l i n e a r ” , na . rm = FALSE , maxgap=2) )

# c a l c u l a t e YZ v o l a t i l i t y e s t i m a t o r
D<−60
k<−0 . 3 4 / ( 1 . 3 4 + (D+1) / (D−1) )

var . stdev<−var . open<−var . r s<−as . x t s ( matrix (NA, nrow=nrow ( pr ) , ncol =1) ,
order . by=index ( pr ) )

f o r ( i in (D+1) : nrow ( get ( paste ( s e c u r i t y , ”norm . open” , sep=” . ” ) ) ) ) {
var . stdev [ i ]<−261 /D∗sum ( ( norm . c . c [ i : ( i −(D−1) ) ]−mean( norm . c . c [ i : ( i −(

D−1) ) ] ) ) ˆ 2 )
var . open [ i ]<−261 /D∗sum ( ( norm . open [ i : ( i −(D−1) ) ]−mean( norm . open [ i : ( i
−(D−1) ) ] ) ) ˆ 2 )

var . r s [ i ]<−261 /D∗sum( norm . high [ i : ( i −(D−1) ) ] ∗ ( norm . high [ i : ( i −(D−1) )
]−norm . c l o s e [ i : ( i −(D−1) ) ] ) +norm . low [ i : ( i −(D−1) ) ] ∗ ( norm . low [ i : ( i
−(D−1) ) ]−norm . c l o s e [ i : ( i −(D−1) ) ] ) )

}
var . yz<−var . open+k∗var . stdev +(1−k ) ∗var . r s

ass ign ( paste ( s e c u r i t y , ” var . yz” , sep=” . ” ) , var . yz )

The code is run for each of the 71 futures contracts to get a daily, weekly and

monthly return and performance series and the corresponding Yang & Zhang (2000)

volatility estimator.

F.4 Calculation of time series momentum returns

To calculate time series momentum returns the return, volatility and performance data

is merged together. Some adjustments are necessary before splitting the data for the

daily, weekly and monthly strategies. The start date is fixed as 1st January 1978 and

the end date as 30th June 2015.
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s t a r t<−as . Date ( ”1978−01−01” ) # s t a r t d a t e
end<−as . Date ( ”2015−06−30” ) # end d a t e
period<−paste ( s t a r t −1,” / ” , end , sep=”” )

# a g g r e g a t e s f o r r e t u r n data , v o l a t i l i t y d a t a and p e r f o r m a n c e d a t a
agg . r e t . d<−agg . vol<−agg . vol . stdev<−agg . vol .mop<−agg . per f<−x t s ( order .

by=time . d )
agg . r e t .w<−x t s ( order . by=time .w)
agg . r e t .m<−x t s ( order . by=time .m)
f o r ( i in 1 : length ( s e c u r i t i e s ) ) {

agg . r e t . d<−merge ( agg . r e t . d , get ( paste ( ” r e t . d” , s e c u r i t i e s [ i ] , sep=” . ” )
) )

agg . r e t .w<−merge ( agg . r e t .w, get ( paste ( ” r e t .w” , s e c u r i t i e s [ i ] , sep=” . ” )
) )

agg . r e t .m<−merge ( agg . r e t .m, get ( paste ( ” r e t .m” , s e c u r i t i e s [ i ] , sep=” . ” )
) )

agg . vol<−merge ( agg . vol , get ( paste ( s e c u r i t i e s [ i ] , ” var . yz” , sep=” . ” ) ) )
agg . per f<−merge ( agg . perf , get ( paste ( ” per f ” , s e c u r i t i e s [ i ] , sep=” . ” ) ) )

}
colnames ( agg . vol )<−s e c u r i t i e s

# b r i n g monthly d a t a t o s t a n d a r d f o r m a t ( omit m u l t i p l e days p e r month )
agg . r e t .m<−na . approx ( agg . r e t .m, method = ” constant ” , na . rm = FALSE ,

maxgap=3)
agg . r e t .m<−apply . monthly ( agg . r e t .m, mean)

f o r ( i in 1 : ncol ( agg . r e t . d ) ) { # r e p l a c e NAs which were i n t r o d u c e d
from merging ( on ly f o r i n b e t w e e n NAs)

r e t . na<−which ( i s . na ( agg . r e t . d [ min ( which ( ! i s . na ( agg . r e t . d [ , i ] ) ) ) : max
( which ( ! i s . na ( agg . r e t . d [ , i ] ) ) ) , i ] ) ) +min ( which ( ! i s . na ( agg . r e t . d [ ,
i ] ) ) )−1

agg . r e t . d [ r e t . na , i ]<−0
r e t . na<−which ( i s . na ( agg . r e t .w[ min ( which ( ! i s . na ( agg . r e t .w[ , i ] ) ) ) : max

( which ( ! i s . na ( agg . r e t .w[ , i ] ) ) ) , i ] ) ) +min ( which ( ! i s . na ( agg . r e t .w[ ,
i ] ) ) )−1

agg . r e t .w[ r e t . na , i ]<−0
r e t . na<−which ( i s . na ( agg . r e t .m[ min ( which ( ! i s . na ( agg . r e t .m[ , i ] ) ) ) : max

( which ( ! i s . na ( agg . r e t .m[ , i ] ) ) ) , i ] ) ) +min ( which ( ! i s . na ( agg . r e t .m[ ,
i ] ) ) )−1

agg . r e t .m[ r e t . na , i ]<−0
}

# s a v e p e r f o r m a n c e s e p a r a t e l y
agg . per f<−na . approx ( agg . perf , method = ” constant ” , na . rm = FALSE ,

maxgap=3) # f i l l p e r f o r m a n c e f o r w a r d
agg . per f . d<−agg . per f
agg . per f .w<−agg . per f [ index ( agg . r e t .w) ] # e x t r a c t wee k l y p e r f o r m a n c e
agg . per f .m<−agg . per f [ index ( agg . r e t .m) ] # e x t r a c t monthly p e r f o r m a n c e

# s a v e v o l a t i l i t y e s t i m a t o r s e p a r a t e l y
agg . vol . d<−na . approx ( agg . vol , method = ” constant ” , na . rm = FALSE ,

maxgap=3) # f i l l NAs f o r w a r d which were i n t r o d u c e d from merging (
on ly f o r i n b e t w e e n NAs)

agg . vol . d<−agg . vol . d [ period ]
agg . vol .w<−agg . vol . d [ index ( agg . r e t .w) ]
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agg . vol .m<−agg . vol . d [ index ( agg . r e t .m) ]

# s a v e r e t u r n s from t t o t +1 ( f o r s t r a t e g y )
lag . agg . r e t . d<−lag ( agg . r e t . d,−1) # r e t u r n f o r t t o t +1
lag . agg . r e t .w<−lag ( agg . r e t .w,−1)
lag . agg . r e t .m<−lag ( agg . r e t .m,−1)
lag . agg . r e t . d<−lag . agg . r e t . d [ period ]
lag . agg . r e t .w<−lag . agg . r e t .w[ period ]
lag . agg . r e t .m<−lag . agg . r e t .m[ period ]

agg . r e t . d<−agg . r e t . d [ period ]
agg . r e t .w<−agg . r e t .w[ period ]
agg . r e t .m<−agg . r e t .m[ period ]

F.4.1 Time series momentum signals

The standard time series momentum strategy is constructed by looking whether the

return of the strategy was positive or negative over the lookback period. This can be

easily checked by comparing the two corresponding entries in the performance time

series.

###SIGN c o n s t r u c t i o n f o r d a i l y , we ek l y and monthly s t r a t e g y
s ign . d<−s ign ( agg . per f . d−lag ( agg . per f . d , 1 5 ) )
s ign . d<−s ign . d [ period ]
s ign . d<−s ignzero ( s ign . d ) # use f u n c t i o n s i g n z e r o t o i n v e s t i f

p e r f o r m a n c e i s z e r o
s ign .w<−s ign ( agg . per f .w−lag ( agg . per f .w, 8 ) )
s ign .w<−s ign .w[ period ]
s ign .w<−s ignzero ( s ign .w)
sign .m<−s ign ( agg . per f .m−lag ( agg . per f .m, 1 2 ) )
s ign .m<−s ign .m[ period ]
s ign .m<−s ignzero ( s ign .m)

# s a v e number o f h e l d c o n t r a c t s
ex . r e t . d<−abs ( s ign ( s ign . d ) ) #1 i f d a t a e x i s t s and f u t u r e s c o n t r a c t i s

t r a d e d , 0 e l s e
ex . r e t .w<−abs ( s ign ( s ign .w) )
ex . r e t .m<−abs ( s ign ( s ign .m) )
ex . r e t . d<−ex . r e t . d [ period ]
ex . r e t .w<−ex . r e t .w[ period ]
ex . r e t .m<−ex . r e t .m[ period ]

The function “signzero” is defined in the following way:

s ignzero <− func t ion ( x ) {
zeros<−which ( x==0 , a r r . ind=T )
i f ( length ( zeros ) ! =0) {
f o r ( i in 1 : nrow ( zeros ) ) {

r<−zeros [ i , 1 ]
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c<−zeros [ i , 2 ]
x [ r , c ]<−1

}}
re turn ( x )

}

For the construction of the TREND signal I use the packages “sandwich” and “lmtest”

to calculate Newey & West (1987) t-statistics.

requi re ( ”sandwich” )
requi re ( ” lmtes t ” )

#TREND
s i g . s ign .m<−as . x t s ( matrix (NA, nrow=nrow ( agg . per f .m) , ncol=ncol ( agg . per f

.m) ) , order . by=index ( agg . per f .m) )
trend<−seq ( 1 , 1 2 , 1 )
f o r ( i in 1 : ncol ( agg . per f .m) ) {

k<−min ( which ( ! i s . na ( agg . per f .m[ , i ] ) ) )−1
f o r ( j in ( min ( which ( ! i s . na ( agg . per f .m[ , i ] ) ) ) +11) : max( which ( ! i s . na (

agg . per f .m[ , i ] ) ) ) ) {
span<−as . vec tor ( agg . per f .m[ ( 1 + k ) : j , i ] )
t e s t<−lm ( span ˜ trend )
s i g n i f<−c o e f t e s t ( t e s t , vcov=NeweyWest ( t e s t , lag=NULL, a d j u s t =TRUE,

prewhite=FALSE) ) [ 2 , ” t value ” ]
i f ( i s . f i n i t e ( s i g n i f ) & abs ( s i g n i f )>=2){

s i g . s ign .m[ j , i ]<−s ign ( s i g n i f )
} e l s e {

s i g . s ign .m[ j , i ]<−0
}
k<−k+1

}
}
s i g . s ign .m<−s i g . s ign .m[ period ]

# s a v e number o f h e l d c o n t r a c t s
s i g . ex . r e t .m<−abs ( s ign ( s i g . s ign .m) )
s i g . ex . r e t .m<−s i g . ex . r e t .m[ period ]

#MAR
ma. sign .m<−as . x t s ( matrix (NA, nrow=nrow ( agg . per f .m) , ncol=ncol ( agg . per f .

m) ) , order . by=index ( agg . per f .m) )
f o r ( i in 1 : ncol ( agg . per f .m) ) {

k<−min ( which ( ! i s . na ( agg . per f .m[ , i ] ) ) )−1
f o r ( j in ( min ( which ( ! i s . na ( agg . per f .m[ , i ] ) ) ) +11) : max( which ( ! i s . na (

agg . per f .m[ , i ] ) ) ) ) {
avg<−mean( agg . per f .m[ ( 1+ k ) : j , i ] )
i f ( ( agg . per f .m[ j , i ]−avg ) ! =0) {

ma. sign .m[ j , i ]<−s ign ( agg . per f .m[ j , i ]−avg )
} e l s e {

ma. sign .m[ j , i ]<−0
}
k<−k+1

}
}
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ma. sign .m<−ma. sign .m[ period ]

# s a v e number o f h e l d c o n t r a c t s
ma. ex . r e t .m<−abs ( s ign (ma. s ign .m) )
ma. ex . r e t .m<−ma. ex . r e t .m[ period ]

To construct the CATSMOM strategy I additionally calculate the average pairwise

correlation factor from daily returns of all 71 contracts over a lookback period of 60

days.

avg cov . d<−as . x t s ( matrix (NA, nrow=nrow ( agg . r e t . d ) , ncol =1) , order . by=
index ( agg . r e t . d ) )

f o r ( i in 6 0 : nrow ( agg . r e t . d ) ) {
corr<−agg . r e t . d [ ( i −59) : i , ]
# c o r r [ i s . na ( c o r r ) ]<−0
corr<−cor ( corr , use=” pairwise . complete . obs” )
n<−ncol ( corr [ , colSums ( i s . na ( corr ) ) ! =nrow ( corr ) ] )
corr<−sum( corr [ upper . t r i ( corr , diag = FALSE) ] , na . rm=TRUE)
avg cov . d [ i ]<−2∗ corr / ( n∗ ( n−1) )

}
avg cov . d<−avg cov . d [ period ]
avg cov .m<−avg cov . d [ index ( agg . r e t .m) ]

F.4.2 Time series momentum returns

By using the different signals as well as the average pairwise correlation factor for

CATSMOM it is now possible to calculate the time series momentum returns. The

single asset target volatility is set to 40% and the target portfolio volatility to 12%.

vol . t a r g e t<−0 . 4
pf . vol . t a r g e t<−0 . 1 2

#SIGN
TSMOM. d<−lag ( as . x t s (1 / rowSums ( ex . r e t . d , na . rm=T ) ∗rowSums ( sign . d∗ lag .

agg . r e t . d∗vol . t a r g e t / s q r t ( agg . vol . d ) , na . rm=T ) , order . by=index ( agg .
r e t . d ) ) , 1 ) # r e t u r n s from t−1 t o t

TSMOM.w<−lag ( as . x t s (1 / rowSums ( ex . r e t .w, na . rm=T ) ∗rowSums ( sign .w∗ lag .
agg . r e t .w∗vol . t a r g e t / s q r t ( agg . vol .w) , na . rm=T ) , order . by=index ( agg .
r e t .w) ) , 1 )

TSMOM.m<−lag ( as . x t s (1 / rowSums ( ex . r e t .m, na . rm=T ) ∗rowSums ( sign .m∗ lag .
agg . r e t .m∗vol . t a r g e t / s q r t ( agg . vol .m) , na . rm=T ) , order . by=index ( agg .
r e t .m) ) , 1 )

#TREND
s i g .TSMOM.m<−lag ( as . x t s (1 / rowSums ( s i g . ex . r e t .m, na . rm=T ) ∗rowSums ( s i g .

s ign .m∗ lag . agg . r e t .m∗vol . t a r g e t / s q r t ( agg . vol .m) , na . rm=T ) , order . by=
index ( agg . r e t .m) ) , 1 )

#MAR



84 Appendix F. Code

ma.TSMOM.m<−lag ( as . x t s (1 / rowSums (ma. ex . r e t .m, na . rm=T ) ∗rowSums (ma. s ign
.m∗ lag . agg . r e t .m∗vol . t a r g e t / s q r t ( agg . vol .m) , na . rm=T ) , order . by=
index ( agg . r e t .m) ) , 1 )

#CATSMOM
CATSMOM.m<−lag ( x t s (1 / rowSums ( ex . r e t .m, na . rm=T ) ∗ s q r t ( rowSums ( ex . r e t .m,

na . rm=T ) / ( 1+ ( rowSums ( ex . r e t .m, na . rm=T )−1)∗avg cov .m) ) ∗rowSums ( sign
.m∗ lag . agg . r e t .m∗pf . vol . t a r g e t / s q r t ( agg . vol .m) , na . rm=T ) , order . by=
index ( agg . r e t .m) ) , 1 )

F.4.3 Cross sectional momentum returns

In chapter 5.2.1 I compare monthly time series momentum returns with monthly cross

sectional momentum returns. The CSMOM strategy is calculated by using the package

Matrix.

requi re ( Matrix )

s ign .CSMOM.m<−as . x t s ( matrix (NA, nrow=nrow ( agg . per f .m) , ncol=ncol ( agg .
per f .m) ) , order . by=index ( agg . per f .m) )

colnames ( s ign .CSMOM.m)<−colnames ( agg . per f .m)
ranks<−( agg . per f .m−lag ( agg . per f .m, 1 2 ) ) / lag ( agg . per f .m, 1 2 )
ranks<−as . x t s ( t ( apply ( ranks , 1 , rank , t i e s . method=”random” , na . l a s t =”

keep” ) ) ) #71 i s b e s t p e r f o r m a n c e
numbers<−as . x t s ( apply ( ranks , 1 , nnzero , na . counted = FALSE) )
f o r ( i in 1 : nrow ( numbers ) ) {

i f ( numbers [ i ]>10){
cut<−numbers [ i ] / 5
f o r ( j in 1 : ncol ( ranks ) ) {

i f ( ! i s . na ( ranks [ i , j ] ) ) {
i f ( ranks [ i , j ]<=cut ) {

s ign .CSMOM.m[ i , j ]<−s ign (−1)
} e l s e {

i f ( ranks [ i , j ]>=(4∗ cut ) ) {
s ign .CSMOM.m[ i , j ]<−s ign ( 1 )

}
}

}
}}

}
s ign .CSMOM.m<−s ign .CSMOM.m[ period ]

# s a v e number o f h e l d c o n t r a c t s
CSMOM. ex . r e t .m<−abs ( s ign ( s ign .CSMOM.m) )
CSMOM. ex . r e t .m<−CSMOM. ex . r e t .m[ period ]

CSMOM.m<−lag ( as . x t s (1 / rowSums (CSMOM. ex . r e t .m, na . rm=T ) ∗rowSums ( sign .
CSMOM.m∗ lag . agg . r e t .m∗vol . t a r g e t / s q r t ( agg . vol .m) , na . rm=T ) , order . by
=index ( agg . r e t .m) ) , 1 )
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