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High-Conductive Organometallic Molecular Wires with Delocalized Electron

Systems Strongly Coupled to Metal Electrodes

Nano Letters, 14, 5932-5940 (2014)

Georg Kastlunger and Robert Stadler

Density functional theory based calculations of the transfer integral in a

redox-active single-molecule junction

Physical Review B 89, 115412 (2014)

Georg Kastlunger and Robert Stadler

Density functional theory based direct comparison of coherent tunneling and

electron hopping in redox-active single-molecule junctions

Physical Review B 91, 125410 (2015)

Florian Schwarz, Georg Kastlunger, Franziska Lissel, Carolina Egler-Lucas,

Sergey N. Semenov, Koushik Venkatesan, Heinz Berke, Robert Stadler and

Emanuel Lörtscher
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Abstract

The thesis deals with the theoretical description of electron transport through

transition metal complexes in the emerging field of single molecule electron-

ics, where the main focus was on an analysis of the structural and envi-

ronmental parameters, which are responsible for measured currents in ex-

perimental setups. The theory behind two experimental routes has been

addressed explicitly, namely electrochemical scanning tunnelling microscope

(STM) and mechanically controlled break-junctions (MCBJ) in ultra high

vacuum.

For the theoretical description of an electrochemical STM this thesis

focuses on electron transport through a Ru-complex with pyridyl anchor

groups, where a special emphasis is put on the influence of the solvent

and the redox state of the compound. Both possible transport regimes,

namely coherent transport and two-step electron hopping, are addressed,

where schemes for the simulation of a charged compound in the junction

environment have been developed and the influence of a change in the redox

state on the conductance was studied.

While the coherent tunnelling conductance is described on the basis of

the well known Landauer-Büttiker formalism, the description of an electron

hopping process had to be elaborated within the semi-classical Marcus-Hush

theory, where all relevant quantities have been calculated within density

functional theory (DFT). Three different approaches for the calculation of

the transfer integral, all of them known from quantum chemistry, have been

thoroughly tested and adapted in order to be applicable for a molecular

compound trapped between two Au surfaces.

For the interpretation of the break junction experiments of our close

collaborators at IBM Zürich a dinuclear Fe unit, {Fe}–C4–{Fe}, with an

extensive charge-delocalisation over the entire organometallic backbone with
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five different end groups was studied. In this work a special emphasis was

set on their suitability as molecular wires, based on their electronic coupling

to the electrodes, energy level alignment and conductance decay with the

molecular length.

As a second part of this collaboration, the influence of the atom type of

the metal centre and its respective interactions with the ligands in mononu-

clear Fe-, Mo- and Ru-complexes coupled to Au electrodes via thiol groups

has been investigated systematically. Although voltage-induced hysteresis

was detected experimentally for all compounds an irreversible switching of

the conductance was only found for the Mo-complex. These results could be

theoretically explained by a two channel model combining coherent electron

transport and electron hopping, where the underlying mechanism could be

identified as a charging of the molecule in the junction made possible by the

presence of a localised electronic state on the transition metal centre.
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Zusammenfassung

Thema der Dissertation ist die theoretische Beschreibung des Elektronen-

transports durch Übergangsmetallkomplexe im Bereich der Einzelmolekülel-

ektronik. Der Hauptfokus lag dabei auf einer Analyse der molekularen und

experimentellen Einflüsse, welche für die gemessenen Ströme in Versuchs-

aufbauten verantwortlich sind. Theoretische Basis dafür bildete die Dichte-

funktionaltheorie.

Zwei experimentellen Methoden, das elektrochemische Rastertunnelmi-

kroskop (STM) und mechanisch gesteuerte Bruchkontakte (MCBJ) im Ultra-

hochvakuum wurden in dieser theoretischen Arbeit explizit adressiert.

Die Beschreibung des elektrochemischen STM konzentrierte sich auf den

Elektronentransport durch einen Ru-Komplex mit Pyridyl-Ankergruppen,

wobei ein Schwerpunkt auf den Einfluss des Lösungsmittels und den Re-

doxzustand der Verbindung gelegt wurde. Dabei wurden die beiden möglich-

en Transportregime, nämlich kohärentes Tunneln und zweistufiges “electron

hopping” beschrieben. In diesem Zusammenhang wurden Methoden für die

Simulation einer geladenen Verbindung gekoppelt an zwei Metallelektroden

entwickelt.

Für die Beschreibung von “electron hopping” in einem Einzelmolekül-

kontakt wurde eine Methodik auf der Basis der semi-klassischen Marcus-

Hush Theorie entwickelt, wobei alle relevanten Parameter mittels DFT be-

rechnet wurden. Drei quantenchemische Ansätze für die Berechnung des

Transferintegrals wurden dabei ausgiebig getestet und für die Anwendung

auf eine Molekülverbindung zwischen zwei Goldoberflächen angepasst.

Für die Interpretation von Bruchkontaktexperimenten, welche von un-

seren Kollegen bei IBM Zürich durchgeführt wurden, wurden dinukleare Fe-

Komplexe mit einer Delokalisierung des π-Systems über die gesamte metal-

lorganische Brücke auf ihre Eignung als molekulare Drähte untersucht. Das

xi



Hauptaugenmerk lag dabei auf dem Einfluss der molekularen Ankergrup-

pen, wobei Komplexe mit fünf verschiedenen Endgruppen in Bezug auf ihre

elektronische Kopplung an die Elektroden, Energieniveau- Anpassung und

ihre Leitfähigkeitsabnahme mit der Moleküllänge studiert wurden.

Schliesslich wurde der Einfluss der Atomsorte des Metallzentrums in

mononuklearen Fe-, Mo- und Ru-Komplexen systematisch untersucht. In

den Experimenten in Zürich konnte für alle Verbindungen Hysterese de-

tektiert werden. Ein irreversibles Umschalten der Leitfähigkeit der Nano-

Kontakte konnte jedoch nur für den Mo-Komplex erzielt werden. Diese

Ergebnisse konnten theoretisch durch eine Kombination von kohärentem

Elektronentransport und ”electron hopping” erklärt werden, wobei der zu-

grunde liegende Mechanismus als eine Aufladung des Moleküls identifiziert

wurde, welche durch einen lokalisierten elektronischen Zustand am Über-

gangsmetallzentrum ermöglicht wird.
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1
Introduction

The evolution of information technology in the past sixty years had a tremen-

dous impact on society and technology. This started with the invention

of the transistor in 19481 paving the ground for future electronic devices.

Gordon Moore, a co-founder of Intel, described the trend in the number of

devices per integrated circuit in 1965 as an increase, where this number dou-

bles over a period of approximately eighteen months.2 This trend could be

satisfied up to the present days. Modern manufacturing techniques, such as

photolithography,3 however, soon will reach their limits in terms of minia-

turisation, which would lead to an end of an increase of devices per chip

at this rate, unless new techniques and materials could be applied. Single

molecule electronics (SME) would be a promising successor for such top-

down manufacturing methods, where it is envisioned, that single, or small

ensembles of molecules could be applied as active or passive building blocks

in electronic circuits.

The idea of employing a single molecule as an electronic component was

first conceived by Arieh Aviram and Mark Ratner in 1970.4 In their theo-

retical paper they laid the foundation of SME by proposing a molecule con-

sisting of tetrathiafulvalene (TTF) and tetracyanoquinodimethane (TCNQ)

groups, as donor and acceptor respectively, as agents inducing rectification

in electronic devices. Based on this theoretical proposition, the first exper-

imental observation of rectification based on a small ensemble of molecules

was achieved in 1988 by Aviram et. al.5 In their measurements they applied

a scanning tunnelling microscope (STM) with a Pt tip for performing an I/V

scan of a monolayer of the asymmetric molecule hemiquinone on Au(111).
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1. Introduction

Although a rectification in this measurement setup already results from the

difference in tip and substrate material and geometry a distinct difference

in the measured currents could be observed when comparing the bare Au

surface and the substrate with the adsorbed monolayer. This experiment

can be seen as the starting point for future research in the field of SME.

Besides current rectification, a variety of possible applications for molec-

ular components in electronic circuits could be identified in the past decades.

Single molecules were proposed to function as both passive (diodes,wires)6–14

and active (transistors,switches)15–31 devices in electronic components, where

their most significant benefit is that the intrinsic functionality can be pro-

vided reliably by means of chemical synthesis.

Single molecule switching mechanisms are based on either conforma-

tional changes triggered by photons15–18 or bias,19–24 spin crossover25–27 or

a redox reaction, which is performed via the introduction of oxidating or

reducing agents28 or an electrochemical setup.29–31 Historically, very promi-

nent molecular systems exhibiting such a reversible switching behaviour were

rotaxane molecules, consisting of single molecular compounds surrounded by

crown ether based rings, studied by Collier et. al.32,33 The basic mechanism

of the switching in their work was described as a change of the ring position

triggered by the oxidation when a bias of at least 0.7V is applied. A back-

reduction could then be performed through a voltage pulse of -2V. Since for

the reading process only a bias of 0.1V is needed, stable ON and OFF states

which can be switched into each other manually could be created.

An application of inorganic transition metal complexes as single molecule

switches was first investigated in the group of Jens Ulstrup.34–37 In these

studies the focus was put on complexes containing Os and Co metal centres,

which were adsorbed on Au(111) and Pt(111) surfaces via pyridyl and thiol

anchor groups respectively and the respective I/V behaviour was scanned

by applying an electrochemical STM and in situ scanning tunnelling spec-

troscopy (STS). For measurements performed at constant source-drain bias,

it could proven that the measured current is strongly dependent on the ap-

plied overpotential, therefore making the redox switching potential of the

three compounds within the junction accessible. An electron transfer ki-

netics model was derived for the explanation of the trends found in these

measurements, which is known as the Kuznetsov-Ulstrup model,35–38 and

describes the electron transport in such junctions as a two step process of

2



subsequent resonant tunnelling aided by the vibrational relaxation of the

molecular orbitals.

This thesis tries to move further in this direction by investigating the po-

tential of transition metal complexes on the basis of density functional theory

(DFT). For this purpose the electrochemical properties of a Ru(PPh2)4(C2H4)2-

bis(pyridylacetylide) (in the following referred to as the Ru-complex) are

studied. In contrast to the compounds of Ulstrup et. al.’s work the Ru-

complex in this thesis includes two pyridine anchor groups allowing for sym-

metric adsorption on both substrate and tip. This structural difference

opens the possibility for direct coherent tunnelling through the compound.

In this context the influence of a change in the redox state of the Ru-complex

on the molecular conductance was studied by elaborating a scheme, which

allows to simulate a charged complex in the junction environment.

An experimental study on similar Ru-compounds has been performed

by Kim et. al. on the basis of I/V measurements with a CP-AFM and

cross-wires for junctions of monolayers of molecules with the same molecular

backbone but cyano anchors10 on Au(111) substrates. A special emphasis

in this work has been set on the dependence of the measured current on

the length of the molecular species, where compounds containing 1,2 and

3 Ru(PPh2)4(C2H4)2 blocks were studied. Based on their results Kim et.

al. could show that the complex containing three Ru-centres (Ru3) exhibits

strong temperature dependence in its I/V properties, while the shorter com-

pounds do not. Therefore the authors proposed a temperature mediated

two step electron hopping process to be responsible for the measured con-

ductance of Ru3. Motivated by these experimental findings the transition

from the coherent tunnelling regime to two step electron hopping in the

Ru-complex was studied, where an application of Marcus theory in single

molecule junctions based on DFT was derived.

The application of transition metal complexes as molecular wires was

investigated in a close collaboration with our experimental partners at IBM

Zürich and the University of Zürich. The important characteristics for

molecular wires, namely (nearly) linear dependence of the current on the

applied bias, can, in principle, be achieved by low injection barriers, arising

from a close alignment of molecular orbitals with the Fermi energy of the

electrodes and a high degree of electronic coupling between the molecule

and the leads. Oligo(phenylene ethynylene)s (OPEs) with carbon termi-
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1. Introduction

nated anchor groups have recently been studied and proposed as the most

promising class of molecules to be used as molecular wires.6,7 Transition

metal complexes containing two metal centres connected by proper ligands

have been shown, however, to exhibit a delocalised π-system over the entire

molecular backbone,39 with the additional benefit, that the metal centre

d-states favor a close level alignment of the molecular eigenstates with the

Fermi energy of the leads. In this context complexes with a [FeC4Fe] back-

bone have been studied regarding their suitability as molecular wires with

a special emphasis on the anchor groups connected to the leads.

Migliore and Nitzan have recently proposed an explanation for hysteresis

in single molecule I/V measurements based on the interplay of coherent

tunnelling, defining the conductance, and electron hopping causing a time-

delay or hysteresis in the I/V curves.40,41 The most important ingredient

of this model is a localised state on the compound exhibiting a low degree

of electronic coupling to the electrodes. Based on this model hysteresis

effects found in mechanical break junction experiments performed by our

collaborators in Zürich was analysed. In this work three transition metal

complexes with a Fe, Ru and Mo-centre, respectively, have been studied

regarding their electronic groundstate and switching properties, where an

application of Migliore and Nitzan’s 2-channel scheme within the framework

of DFT has been elaborated.

Structure of this thesis

Chapter 2 introduces density functional theory and its practical implemen-

tations.

Chapter 3 deals with the theoretical framework for the description of phase

coherent electron transport in single molecule junctions.

Chapter 4 gives an overview of the mechanisms responsible for the energy

level alignment and level broadening in single molecule junctions, as well as

theoretical methods within DFT used for its evaluation.

Chapter 7 introduces the basic concepts of Marcus theory, which was the

framework of our choice for the description of electron hopping.

Chapters 5, 6, 8, 9 and 10 give an overview of the papers included in this

thesis, where the motivation for these studies, a detailed description of the

theoretical methods applied, as well as a summary of the results are given.

4



2
Density functional theory

For the study of the electronic structure of atoms, molecules and condensed

systems a quantum mechanical description is needed. Such a treatment

requires the determination of the electronic eigenvalue spectrum from the

application of the Hamilton operator in Schrödinger’s equation. An exact

solution of this problem is in general not known due to the correlation in the

electronic interaction making approximate approaches necessary. Through-

out this thesis density functional theory (DFT) has been applied for the

solvation of the electronic structure problem, whose basic concepts and prac-

tical aspects are presented in this section.

The chapter starts with a short outline of the history of DFT, followed

by an introduction of Schrödinger’s equation. Then the basic theorems of

DFT and the practical scheme on the basis of the Kohn Sham equations, as

well as the approximations applied for the exchange and correlation energies

are described. Finally the projector augmented wave (PAW) method for the

implementation of DFT used in this thesis is introduced, where also the

application of a localised basis set and the ∆-Self consistent field method

are outlined.
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2. Density functional theory

2.1 History of DFT

The basic concepts of density functional theory originate from a famous pa-

per by Hohenberg and Kohn (HK) published in 1964.42 The fundamental

hypothesis of their work was, that all ground state properties of an inhomo-

geneous electron gas in an external potential - in particular its ground state

total energy - are uniquely defined by the ground state electron density.

Following their proposition all ground state characteristics of a condensed

matter system composed of N electrons, can be expressed by this electron

density, which is a function dependent on one set of space coordinates and

spin only. This is in contrast to other theories, which were exclusively used

up to this point, where the basic quantity was the many body wave func-

tion, which is dependent on 4×N variables, namely the sets of space and a

spin coordinates for each of the N electrons. This reasoning was not entirely

new, since Thomas43 and Fermi44 (TF) proposed a similar concept already

in 1927, although leaving out any description of many body electron interac-

tions in their formalism. The basic assumption of TF was, that the kinetic

energy is a functional of the electron density of non-interacting electrons

in a homogeneous electron gas. In 1930 Paul Dirac added the exchange

and correlation term to this theorem by formulating the local density ap-

proximation.45 It has been shown, however, that the Thomas-Fermi-Dirac

theory, which is based on a homogeneous electron gas model, was not accu-

rate enough for useful predictions of properties in real systems in contrast

to DFT.

HK’s formulation alone, however, is not practicable for actual calcu-

lations because it does not provide a recipe for constructing the ground

state electron density. One year after HK published their theory, Kohn and

Sham46 proposed a solution for this problem by including auxiliary single

particle wavefunctions, so-called Kohn-Sham orbitals. The crucial idea of

their framework is that the manybody problem can be projected onto a sys-

tem of single particles, where the interaction between them enters through

their common Hamiltonian. The Kohn-Sham equations are the basis of

every practical DFT calculation up to the modern days.
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2.2. Schrödinger’s equation

2.2 Schrödinger’s equation

In general, the Schrödinger equation in its stationary (non-relativistic) rep-

resentation is an eigenvalue equation of the form

ĤΨ({ri}, {Rα}) = EΨ({ri}, {Rα}) (2.1)

with Ψ({ri}, {Rα}) as the wave function of the system, which is de-

pendent on the electronic coordinates ri, i = 1,N (also including the spin

degree of freedom) and the coordinates of the nuclei in the system Rα, α

= 1,Nα. By applying the Born-Oppenheimer approximation the electronic

and nuclear motion can be separated and equation (2.1) changes to

Ĥel({ri}, {Rα})Ψel({ri}) = EelΨel({ri}, {Rα}) (2.2)

with the Hamilton operator,

Ĥel = − ~
2me

∑
i

52
i +

∑
i

Vext(r) +
1

2

∑
i 6=j

e2

| ri − rj |
, (2.3)

which is composed of the kinetic energy, the electron-nuclei Coulomb

energy or external potential,

Vext(r) = −
∑
α

Zα
riα

(2.4)

and the electron-electron interaction.

Following these definitions the total electronic energy is implicitly de-

pendent on the spatial distribution of the nuclei in the system. Therefore

the ground state energy Eel,0 refers always to the lowest energy for a specific

distribution of atoms. In order to calculate the total energy of a system the

Coulomb energy between the nuclei has to be added, leading to

E0({Rα}) = Eel,0({Rα}+
∑
α<β

ZαZβ
Rαβ

(2.5)

as the ground state total energy of the given geometry.
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2. Density functional theory

2.3 Hohenberg-Kohn theorems

In principle the HK formalism is a description of an exact theory for many-

body systems, with the electron density n(r) as its basic quantity, which in

this context is defined as

n(r) =

∫
...

∫
d3r2...d

3rN |Ψel(r1, ...rN)|2 (2.6)

and has to obey the relation∫
n(r)d3r = Nel, (2.7)

where Nel is the number of electrons in the system.

Two theorems form the pillars on which HK theory is based42 and are

usually referred to as Hohenberg-Kohn-theorems:

• Theorem I: The external potential Vext(r) of a system is determined

uniquely -except for a constant- by the ground state density n0(r). As

a consequence, the respective Hamiltonian is fully defined -except for

a constant energy shift- and with the Hamiltonian also the many-body

wavefunction for the ground state is known.

• Theorem II: The ground state total energy E[n] of a system with a

particular Vext(r) is the global minimum of this functional with respect

to n(r) = n0.

By making use of these two theorems the electronic energy-functional can

be defined as a sum of the kinetic energy operator, the external potential

(see equation (2.4)) and the so called exchange correlation functional Exc.

As a consequence the energy functional takes the form

E[n] = T [n] + Exc +

∫
d3rn(r)Vext(r)

≡ FHK [n] +

∫
d3rn(r)Vext(r)

(2.8)

with

FHK [n] = T [n] + Exc (2.9)

8



2.4. Computational implementation of DFT

as an universal functional FHK [n] including the kinetic energy and the

exchange-correlation potential, where the latter will be further described in

section 2.4.2. This functional is called universal for the electronic system,

because of its sole dependency on the electronic density n(r).

A minimisation of the energy functional with respect to n(r) can now

be performed, where the total charge has to be conserved in the integration

of the density according to relation (2.7). By using the chemical potential

µ as a Lagrange parameter one can formulate

µ =
δE[n]

δn(r)
= Vext(r) +

δFHK [n]

δn(r)
. (2.10)

This formulation, although elegant, is still not sufficient for practical

calculations. In the following section the crucial step towards a practical

application of DFT namely the introduction of the Kohn-Sham equations is

carried out.

2.4 Computational implementation of DFT

2.4.1 Kohn-Sham equations

As mentioned in the outline of this chapter Kohn and Sham (KS) expanded

DFT in the year 1965 by reintroducing orbitals, i.e. projecting the inter-

acting manybody system onto a independent-particle system, where these

so called KS orbitals have to match the requirement to build up the real

ground state density by summing up their individual contributions. Every

modern DFT code solves the so called KS equations,

ĤKSφi = εiφi (2.11)

The Hamiltonian ĤKS in this definition is a sum of the single particle

kinetic energy term TS and the effective potential veff (r), which are both

acting on all individual electrons at the point r (Note from now on atomic

units will be used):

ĤKS = −1

2
52
i +veff (r) (2.12)

= −1

2
52
i +

∫
dr′

n(r′)

r− r′
+ vxc(r) + Vext(r). (2.13)

9



2. Density functional theory

From this single electron formulation the kinetic energy term and the

classical Coulomb interaction energy can be defined in analogy to Hartree-

Fock theory:

Ts = −1

2

N∑
i=1

〈φi | 52 | φi〉 = −1

2

N∑
i=1

∫
d3r| 5 φi(r)|2 (2.14)

EHartree[n] =
1

2

∫
d3r

∫
d3r′

n(r)n(r′)

|r− r′| (2.15)

with the electron density defined in HK theory:

n(r) =
∑
i

|φi(r, σ)|2 (2.16)

Applying these definition the electronic ground state energy EKS,0 can

now be rewritten in the Kohn-Sham approach as

EKS,0 =
N∑
i

εi − EHartree[n] + Exc[n]−
∫
δExc[n]

δn(r)
n(r)dr, (2.17)

where the double counting of the Hartree energy is corrected and the

single particle exchange-correlation energy is cancelled. The many body in-

teractions are captured in the exchange correlation energy Exc[n] in equation

(2.17). One can interpret this term as the universal functional

Exc[n] = FHK [n]− (Ts[n] + EHartree[n]) (2.18)

or

Exc[n] = 〈T̂ 〉 − Ts[n] + 〈V̂ee〉 − EHartree[n] (2.19)

Analogous to HK theory the total ground state energy of a given system

is calculated as a sum of the ground state electronic energy EKS,0 and the

nuclei-nuclei repulsion term.

E0 = EKS,0 + ENN (2.20)

The ground state structure of the system can now be identified by a

minimisation of the total energy term, with respect to the ion positions,

and the volume and shape of the simulation cell.

10



2.4. Computational implementation of DFT

2.4.2 Calculating the exchange-correlation energy

A crucial issue when solving the Kohn Sham equations is the approximation

used for the exchange correlation functional Exc[n]. If one would know this

functional the exact ground state of a given system could be calculated solv-

ing the KS equations, but in praxis a few common approximation techniques

have to be employed.

Due to the extraction of the one particle kinetic energy and the long

range Hartree energy from the exchange-correlation functional, only local

contributions enter Exc[n] in equation 2.19. This means it must be possi-

ble to also define the exchange-correlation energy by local or nearly local

approximations and the functional can be rewritten as

Exc[n] =

∫
drn(r)vxc([n], r) (2.21)

where vxc([n], r) is the respective single particle exchange-correlation po-

tential term at any point r, which only depends on the electronic density

n(r) around r. For the sake of simplicity the spin densities are included in

the εxc([n], r) in (2.21).

2.4.3 Exchange and correlation functionals

In principle the derivation of the KS equations given in the last section

is complete. All complications related to the electronic manybody prob-

lem, i.e. exchange and correlation, are contained in the energy functional

Exc[n
↑, n↓] and its functional derivative Vxc[n

↑, n↓], where the spin-polarised

notation has been used. In general these functionals are not known for re-

alistic systems. Therefore approximations have to be introduced for their

computation, whose quality determine the precision of a DFT calculation,

which might have different consequences depending on the nature of the sys-

tem and calculated quantity. The success of DFT shows that the common

approximations are useful for the large range of problems, but improving on

them is still a vivid field in the development of modern DFT based tech-

niques.
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2. Density functional theory

Local spin density approximation

In order to arrive at an approximation for Exc[n
↑, n↓] the exchange-correlation

functional is often derived from expressions for the homogeneous electron

gas. The most prominent example is the so called local spin density ap-

proximation (LSDA) where the densities n↑, n↓ are calculated locally and

Exc[n
↑, n↓] is determined by applying the functional, which would be exact

for the homogeneous electron gas, and which has the form

ELSDAxc [n↑, n↓] =

∫
d3r n(r)vhomxc (n↑(r), n↓(r)). (2.22)

In this expression Exc[n
↑, n↓] is defined as an integral over exchange-correlation

potentials per electron vhomxc as determined in a homogeneous electron gas,

which can be further separated into two parts, namely, vhomx and vhomc

describing the exchange (x) and correlation (c) contributions respectively.

While vhomx can be determined analytically for any given value of the den-

sity, numerical parametrisations have to be performed for the correlation

functional vhomc .

The striking advantage of the application of LSDA in any DFT code is

its simplicity and remarkable efficiency. Even though using formulations for

Exc derived from the homogeneous electron gas might seem crude at first

glance, this strategy has proven to work astonishingly well for a large number

of systems. The accuracy provided by LSDA, however, decreases when the

system under study deviates strongly from homogeneity. This occurs when

localised states such as d-states of transition metals or surface states play an

important role in the calculation, where binding energies are overestimated

by the LSDA.

Generalised gradient approximation

The suggestion of an inclusion of the gradient of the density was already

made by Kohn and Sham in their famous paper.46 Herman et. al.47 adopted

this idea and expanded the LSDA by also including the second term in a

Taylor expansion of ELSDAxc [n↑, n↓] with respect to the electron density:

EGGAxc [n↑, n↓] =

∫
d3rn(r)εxc(n

↑, n↓, | 5 n↑|, | 5 n↓|) (2.23)

The introduction of the density gradient, however, is not straightfor-
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2.4. Computational implementation of DFT

ward and therefore a variety of parametrisations exist in modern literature,

where throughout this thesis the functional of Perdew, Burke and Ernzerhof

(PBE)48 has been applied.

The gradient term within the GGA corrects for the overbinding errors

of LSDA, where for the famous example of the ground state of Fe LSDA

wrongly predicts iron to be most stable in a nonmagnetic fcc-structure. In

contrast GGA correctly predicts a ferromagnetic ground state with a bcc

structure, which is also consistent with experimental findings. A better

performance of GGA, however, is not found for every system where e.g. for

heavy atoms such as the 5d-transition metals, an application of GGA leads

to an overestimation of lattice spacings of about the same magnitude as

LSDA is underestimating them.

2.4.4 The projector augmented wave method (PAW)

All DFT-calculations presented in this thesis were performed by applying

the projector augmented wave method (PAW) implemented in the GPAW

code49,50.

The PAW formalism, first introduced by Blöchl,51 is a frozen-core method,

where all-electron (AE) wavefunctions are reconstructed from pseudo (PS)

wavefunctions after self-consistency of the electron density and the potential

in the Hamiltonian have been achieved. It therefore resembles pseudopoten-

tial methods, while still addressing some of their shortcomings by preserving

the nodal structure of orbitals, potential and density near the atomic cores.

The transformation operator T

The basic assumption of the PAW method is that the wavefunctions of a

system can be divided into core states φa,corei on the atoms a, whose shape

is fixed to that of the isolated atoms and computationally less demanding

smooth valence pseudo (PS) wavefunctions Ψ̃n(r), where the relation be-

tween them and the all electron (AE) wavefunctions Ψn(r) is given by a

linear transformation of the form

Ψn(r) = T Ψ̃n(r), (2.24)

with,
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2. Density functional theory

T = (1 +
∑
a

∑
i

(|φai r〉 − |φ̃ai r〉)〈p̃ai |). (2.25)

T is composed of the identity plus contributions centred at each atom,

which differ with the atom type and where φai (r) and φ̃ai (r) denote the AE

and the smooth PS wavefunctions, which are returned to be equal out-

side atoms-centred augmentation spheres with a certain radius rac and differ

only at r < rac . Additionally to the partial waves φ̃ai (r) so called projector

functions p̃ai (r) localised inside the augmentation sphere have to be chosen,

allowing that every pseudo wave function Ψ̃n(r) can now be expressed in

terms of φ̃ai (r) and p̃ai (r).

In a practical calculation Ψn(r) is never part of the self-consistent cy-

cle, but it is derived at its end in order to obtain observables, which are

dependent on the nodal structure of the core electronic states.

The Electron Density n(r)

In order to calculate the electron density with the PAW method in a first

step the PS density outside the augmentation spheres can be calculated as

ñ(r) =
∑
n

fn|Ψ̃(r)|2 +
∑
a

ñac (r), (2.26)

with fn being the occupation numbers ranging from 0 to 2 for each Bloch

band n, and ñac (r) as a smooth atom centred core density, which has no

physical meaning and will be removed in the end. The second step consists

of correcting ñ(r) by adding atom-centred density parts for the contribution

of the core electrons:

From the atomic density matrix, consisting of

Da
i1,i2 =

∑
n

〈Ψ̃n|p̃ai1r〉fn〈p̃ai2 |Ψ̃n〉, (2.27)

one can define the atom centred expansions of the AE and the PS den-

sities as

na(r) =
∑
i1,i2

Da
i1,i2φ

a
i1(r)φai2(r) + nac (r) (2.28)

and
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2.4. Computational implementation of DFT

ña(r) =
∑
i1,i2

Da
i1,i2 φ̃

a
i1(r)φ̃ai2(r) + ñac (r), (2.29)

respectively and finally the AE density as

n(r) = ñ(r) +
∑
a

(na(r)− ña(r)). (2.30)

The Total Energy E

Like for the wavefunctions and the electron density also the contributions

to the total energy E are divided in those arising inside and outside the

augmentation spheres, respectively,

E = Ẽ +
∑

a ∆Ea (2.31)

= Ẽkin + ẼHartree + Ẽxc + Ẽzero (2.32)

+
∑

a (∆Eakin + ∆EaHartree + ∆Eaxc + ∆Eazero)

where the first line of equation 2.32 contains the pseudo (valence) contri-

butions and the sum in the second line those attributed to the core electrons

at each atom a.

While the pseudo energy contributions can be calculated from the KS

equations according section 2.4.1 by just replacing the AE quantities by their

PS counterparts, the core related energies are calculated from expressions

containing the differences between AE and PS densities.

Additionally a so called zero energy, defined as

Ẽzero =

∫
d3rñ(r)

∑
a

va(r) (2.33)

∆Eazero = −
∫
d3rña(r)

∑
a

va(r) (2.34)

is added, which does not have a physical meaning, but does account for

the incompleteness of partial waves and projectors by adding an arbitrary

potential va(r) near the atomic cores, whose contribution to the total energy

is set to be zero outside the augmentation sphere.49,50,52
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2. Density functional theory

2.4.5 Localised basis sets in GPAW

A description of electron transport based on Non Equilibrium Greens func-

tions (NEGF) needs a localised basis in order to distinguish between the

leads and the scattering region in the transport Hamiltonian, as will be fur-

ther illustrated in chapter 3. Common basis sets for this purpose are either

linear combinations of atomic orbitals (LCAO) or starting from plane wave

(PW) descriptions, with conversion into localised Wannier functions after

convergence of the self consistent cycle.53,54 In the present thesis an LCAO

basis was chosen for reasons of practicality. On one hand a LCAO basis set

is computationally less demanding than a PW description and the Hamil-

tonian obtained from the DFT calculation can be imported into the NEGF

routine without the need of any post-processing. On the other hand the ac-

curacy provided by both basis sets is almost identical for electron transport

calculations with gold leads and organic molecules in the scattering region,

as shown by Strange et al.55

The basic principles of the PAW formulation in GPAW, as outlined in

section 2.4.4, also support the usage of a LCAO basis set:56 As for every

realisation of a LCAO basis the wave functions of the system are defined as

a linear combination of well defined localised basis functions |Φµ〉, following

|Ψ̃n〉 =
∑
µ

cµn|Φµ〉 (2.35)

where the coefficients cµn act as the variational parameters in order to

minimise the total energy and |Φµ〉 in GPAW follow the definition by Sankey

and Niklewski.57 In a next step the density matrix, with

ρµv =
∑
n

cµnfnc
∗
vn (2.36)

as its elements, can be defined, which can be used for the definition of

the pseudo electron density

ñ(r) =
∑
µv

Φ∗µ(r)Φv(r)ρµv +
∑
a

ñac (r). (2.37)

The elements of the Hamiltonian in matrix form used in an LCAO de-

scription can be defined by
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2.5. The Delta self consistent field method

Hµv = Tµv + Vµv +
∑
aij

P a∗iµ ∆Ha
ijP

a
iv, (2.38)

where

Tµv = 〈Φµ| −
1

2
∇2|Φv〉, Vµv =

∫
Φ∗µ(r)ṽ(r)Φv(r) (2.39)

and P a∗iµ ∆Ha
ijP

a
iv are the atomic contributions inside the augmentation

spheres, with P aiµ/v = 〈p̃ai |Φµ/v〉.
Finally the generalised eigenvalue problem can be written as

∑
v

Hµvcvn =
∑
v

Sµvcvnεn, (2.40)

where

Sµv = 〈Φµ|Φv〉+ P a∗iµ ∆SaijP
a
iv (2.41)

is the overlap matrix defined as the sum of the overlap in the basis

functions and the contributions near the atomic cores. Equation 2.40 is

solved for the coefficients cµn and the energies εn self-consistently in order

to calculate the ground state energy of a given system.

2.5 The Delta self consistent field method

∆SCF58,59 is a method similar to constrained DFT, which allows to define

the occupation of particular electronic states of an atom, molecule, molecular

fragment or solid as a constrained to the self consistent cycle. While con-

strained DFT makes use of a spatially defined potential to shift the electrons,

generalised ∆SCF defines the state of interest |α〉 by a linear combination

of the other Kohn-Sham states in the system

|α〉 =
∑
n

cn|Ψn〉. (2.42)

From this definition the contribution to the pseudo electron density can

be written as

∆ñα(r) =
∑
m,n

c∗mcnΨ̃∗m(r)Ψ̃n(r). (2.43)
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The electron, which is constrained to occupy |α〉 is taken from the Fermi

Level, and the total number of electrons in the system is reduced accordingly

by one in order to ensure charge neutrality. Finally the single particle energy

of |α〉 is given as

〈α|Ĥ|α〉 =
∑
m,n

c∗mcn〈Ψm|Ĥ|Ψn〉 =
∑
n

|cn|2εn (2.44)

Since the electronic structure is relaxed self consistently also the expan-

sion coefficients of the defined orbital change in each iteration step.

In practical calculations with ∆SCF two possible methods on the basis

of the PAW formalism can be applied:50

• The All Electron method:

In this scheme the shape of the constrained orbital is defined starting

from a gas phase calculation of the subsystem of interest. In a next

step the gas phase orbital, corresponding to the state, which should

be occupied or emptied in the whole system, is expanded as a linear

combination of the Kohn Sham states of the whole system, following

cn = 〈Ψn|Ψα〉 = 〈Ψ̃n|Ψ̃α〉+
∑
a,i,j

〈Ψ̃n|p̃ai 〉∆Sai,j〈p̃aj |Ψ̃α〉. (2.45)

• The Pseudo-wavefunction method:

This method defines the constrained orbital by the use of the atomic

orbitals, which leads to the possibility to define an orbital freely, by

just regarding the quantum numbers (and therefore symmetry) and

the involved atoms. The orbital is defined by specifying the basis

functions which should build up the desired state. The next step is

the same as in the AE routine, which means, that the state is expanded

as a linear combination of the Kohn Sham states in the whole system.

Both methods have their advantages and drawbacks. The AEOrbitals

scheme needs a gas phase calculation of the subsystem. As a consequence

possible polarisation effects arising from the interaction of the subsystem

with the rest of the atoms are not taken into account.

The Molecularorbitals scheme lacks accuracy if |α〉 differs strongly from

the atomic basis. This is a result of the approximative scheme used within
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2.5. The Delta self consistent field method

this method, where the overlap of the KS orbitals of the system with the

atomic basis functions is calculated as

〈Ψn|Φa
i 〉 ≈ 〈Ψ̃n|p̃ai 〉, (2.46)

which neglects the overlap between atomic sites.

In this thesis both methods have been employed. The Pseudo-wavefunction

method has been applied for constraining an additional electron on the Cl−

counterion, as it was done in Paper I,III and V in order to calculate the

transmission functions of the charged molecule in a junction environment.

In such a case the scheme is justified, since the constrained orbital is lo-

calised on a single atomic site only. For the manybody implementations of

the calculation methods for the Transfer integral in Paper III, which will be

presented in section 8.4, the AEOrbitals scheme has been applied, since the

diabatic and adiabatic states, which are constrained regarding their occu-

pancy, consist of KS orbitals delocalised over more than one atom.
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3
Phase coherent electron transport

Progress in semiconductor research in the 1980s made it possible to create

electronic components, which are so small in size that quantum effects could

be investigated in electron transport experiments. Typical systems for such

investigations were quantum dots60 and quantum point contacts,61 which

could be theoretically described as a two-dimensional electron gas and ex-

perimentally manipulated by gate electrodes. Since the size of such semicon-

ductor structures is around 1 µm, they are usually referred to as mesoscopic

systems, meaning that they consist of a limited number of atoms, where the

rules of classical physics gradually change to those of quantum mechanics

in dependence on cross-section and length of homogeneous wires. In the

last decade of the past century a profound theoretical description of such

systems has been elaborated by Landauer.62

In the following sections an approach elaborated by Landauer for metal-

lic wires in the tunnelling regime will be used as a basis for a quantum

mechanical description of electron transport. Starting from a single level

tight binding formalism the most important quantities for this Ansatz will

be introduced, followed by a generalisation to real systems, with a methodol-

ogy on an ab initio level making use of Greens’ function techniques. Finally

practical schemes and algorithms will be described, which were applied for

the calculations performed in this thesis.
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Scattering Region

(S)

Left Lead

(L)

Right Lead

(R)

μL μR

Figure 3.1: Schematic representation of a system in a description of electron
transport through a scattering region (S) connected to thermal baths via a
left (L) and a right (R) lead

3.1 Phenomenological introduction

Before starting with a detailed mathematical description of electron trans-

port, let us ask the question: What is the underlying mechanism for the

electron flow from one lead to the other in a molecular junction system?

Let us therefore consider a sole infinitely large electrode. In equilibrium this

bulk system has a well defined chemical potential µL (the index L marks the

metal as the left electrode in order to be consistent with following sections),

which is constant in time and does not experience any perturbation. If we

now couple a scattering region S to a surface of this lead a Fermi Level equili-

bration, well known from thermodynamics, of the two sub-systems happens.

This is achieved by a charge flow between the two parts of the system until

the two chemical potentials match. Adding a second electrode, with µR, on

the other side of the scattering region creates a total system consisting of

three parts, as shown in figure 3.1, and just as in the two part system the

electrons will flow until all three parts are balanced regarding their chemi-

cal potential. As a consequence of this scenario a system in equilibrium is

created with a sole chemical potential, where no current flows by itself.

Now lets take this model further and add thermal baths, which will

keep µL/R constant on a determined value. If as a first example we set the

µL = µR, the system is in equilibrium and no net current can be measured.

If we now change µL and µR into opposite directions, as it would happen for

an applied voltage, the system will constantly try to equilibrate µL, µS and
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Left Lead (L)

μL μR

Right Lead (R)Scattering Region (S)

ε

DrainSource

γLnL/ħ

γLN/ħ γRN/ħ

γRnR/ħ

Figure 3.2: Schematic picture of the flux of electrons in a single level picture
derived from rate equations.

µR by pumping electrons into S from the side with higher chemical potential

and withdrawing electrons at the side with lower µ. Since we do not allow

µL/R to change, due to our applied thermal baths, a steady-state current is

created, which can be measured.63

3.2 Electron transport through a single level

In order to derive the Landauer-Büttiker formula for the conductance it

makes sense to start from a simple example, namely a single electronic level

between to ideal electron reservoirs. As a starting point for that the net flux

from and into the two electrodes is defined as

IL(ε) = (−q)γL
~
nL(ε) + q

γL
~
N(ε)), (3.1)

IR(ε) = (−q)γR
~
nR(ε) + q

γR
~
N(ε)), (3.2)

where the first term in both equations describes the flow of electrons from

the respective electrode into the molecule and the second term describes the

flow in the opposite direction, as illustrated in figure 3.2. In this equation

−q is the charge of an electron and γ
~ is the rate constant. It is apparent

from equations 3.1 and 3.2 that the flux is proportional to the difference of

occupation of the molecular eigenstate N(ε) and the occupation in the lead

represented by the Fermi Dirac distributions nL/R(ε). For a steady state

situation no net flux is present and IL+IR = 0. By solving the equations 3.1
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and 3.2 for N(ε) one can simply derive

N(ε) =
γLnL(ε) + γRnR(ε)

γL + γR
. (3.3)

and obtain the steady state current

I = I1 = −I2 =
2q

~
γLγR
γR + γL

[nL(ε)− nR(ε)], (3.4)

where a factor of two is added to account for the different spins.

Equation 3.4 does already provide a lot of insight. The two most impor-

tant findings from this equation are the facts that no current flows, when

the Fermi levels coincide or ε is outside the gap between µL and µR.

Now the level broadening of the molecular level Dε is introduced, which is

a consequence of its coupling to the continuous density of states of the leads.

Commonly the broadening function used for this purpose is a Lorentzian

distribution centred at ε of the form

Dε(E) =
γ/2π

(E − ε)2 + (γ/2)2
, (3.5)

with γ = γL + γR. Considering the broadening of the molecular level

equation 3.4 changes to

I =
2q

~

∫ ∞
−∞

Dε(E)
γLγR
γR + γL

[nL(ε)− nR(ε)]dE, (3.6)

with an integration over the energy space in order to account for the full

molecular level. Assuming low temperatures, where nL(ε) − nR(ε) is 1 in

the energy range between µL and µR and 0 everywhere else, equation 3.6

can be simplified to

I =
2q

~

∫ µ1

µ2

Dε(E)
γLγR
γR + γL

dE =
2q

h

∫ µ1

µ2

T (E)dE. (3.7)

In equation 3.7 the transmission function T(E) has been introduced de-

fined by

T (E) = 2πDε(E)
γLγR
γR + γL

=
γLγR

(E − ε)2 + (γL + γR)2/4
. (3.8)

The electron occupation of the single level N(ε), given in equation 3.3,

now results from an integration over the energy space. For that the energy
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3.2. Electron transport through a single level

dependent electron density within the scattering region is introduced

nε(E) = Dε(E)
γLnL(E − µL) + γRnR(E − µR)

γL + γR
, (3.9)

where the electron occupation of the single level is determined by

N =

∫ ∞
−∞

dEnε(E). (3.10)

As an interesting side effect of this derivation one can now also deter-

mine the maximum of conductance a single channel can provide, namely the

conductance quantum G0. For that purpose equation 3.7 is rewritten at an

infinitesimal small applied voltage, where it can be assumed that T (E) is

constant for potentials between µL and µR:

I =
q

h
[µL − µR]T =

2q

h
[µL − µR]

γLγR
(µ− ε)2 + ((γL + γR)/2)2

(3.11)

In order to find the maximum in conductance from this formula µ =

(µL + µR)/2 is set equal to ε, creating a situation, where the molecular

level lies in the middle of the window created by the two chemical poten-

tials. Then the conductance is calculated applying Ohms law applying the

substitution µ1 − µ2 = qV , with V as the applied bias, as

G ≡ I

V
=

2q2

h

4γLγR
(γL + γR)2

. (3.12)

This equation maximises, when γL = γR resulting in a value of G0 =
2q2

h ≈ 77.5µS.

In order to build a bridge to a theoretical description of real systems the

notation is now changed slightly by introducing the Green’s function

G(E) =
1

E − ε+ (iγ/2)
. (3.13)

As a consequence to this change in notation the quantities defined in

equation 3.5 and 3.9 now become:

2πDε(E) = G(E)γG∗(E) = i(G−G∗) (3.14)
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3. Phase coherent electron transport
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Figure 3.3: Schematic picture of the flux of electrons into and from a scat-
tering region in a matrix representation.

2πnε(E) = G(E)(γLnL + γRnR)G∗(E) (3.15)

Additionally, one can now introduce the so called in-scattering function

γinL/R = γL/RnL/R, which is responsible for the contact resistance for the

transition from an electrode into the device and the out-scattering function

γoutL/R = γL/R(1− nL/R), characterising the transition from the device to the

electrodes. Applying these new definitions equation 3.6 can now be rewritten

in the form

IL/R =
2q

h

∫ ∞
−∞

dEγinL/RDε(E)− γL/Rn(E), (3.16)

with γL/R = γinL/R+γoutL/R and 2q
h

∫∞
−∞ dEγ

in
L/RDε(E) and−2q

h

∫∞
−∞ dEγL/Rn(E)

in this equation describing the in- and outflow of electrons, respectively.

3.3 The Landauer Büttiker formalism

In this section the picture introduced so far will be expanded in order to

arrive at a description of a realistic system and to derive the Landauer-

Büttiker formula. The generalisation is straightforward by substituting the

scalar quantities introduced in the last section by matrices:63
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3.3. The Landauer Büttiker formalism

ε =⇒ H Hamiltonian

γL/R =⇒ ΓL/R Broadening matrix/coupling

2πD(E) =⇒ A(E) Spectral function

2πn(E) =⇒ −iG<(E) Lesser Green′s function (Correlation function)

γinL/R =⇒ −iΣ<(E) Lesser self energy

γoutL/R =⇒ iΣ>(E) Greater self energy

After performing this transformation the definitions introduced for the

single level model have to be rewritten, starting from the most crucial quan-

tity, namely the current. The definition of IL/R in the matrix formulation

keeps its basic form as an integration over energy space as shown in equa-

tion 3.16, but with the inflow of electrons changed into −iΣ<(E)A(E) and

the outflow into −iΓL/RG<(E):

IL/R =
2qi

h

∫ ∞
−∞

dE Tr(ΓL/RG<(E))− Tr(Σ<
L/R(E)A(E)). (3.17)

After transformation of the definition of the broadening function Dε(E)

given in equation 3.14 into the spectral function,

A(E) = G(E)ΓRG†(E) + G(E)ΓLG†(E) (3.18)

and the definition of the electron density given in equation 3.15 into the

lesser Green’s function, leading to the Keldish equations,64

G<(E) = iG(E)[nL(E)ΓL + nR(E)ΓR]G†(E) (3.19)

= G(E)Σ<(E)G†(E),

the current at the left electrode can be reformulated as
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3. Phase coherent electron transport

IL =
2q

h

∫ ∞
−∞

dE Tr(−ΓLG(E)(nL(E)ΓL + nR(E)ΓR)G†(E)

−iΣ<
L (E)(G(E)ΓRG†(E)) + G(E)ΓLG†(E)))

=
2q

h

∫ ∞
−∞

dE (nL(E)− nR(E))Tr(ΓLG(E)ΓRG†(E)), (3.20)

where the substitution −iΣ<
L = ΓLnL(E) was applied according to equa-

tion 3.19. The total current through the device for a steady state (replacing

equation 3.4) can now be written as

I = IL = −IR =
2q

h

∫ ∞
−∞

dE Tr(ΓLG(E)ΓRG†(E))(nL − nR) (3.21)

=
2q

h

∫ ∞
−∞

dE T (E)(nL − nR). (3.22)

This derivation finally leads to the definition of the transmission func-

tion T (E) = Tr(ΓLG(E)ΓRG†(E)) within the Landauer-Büttiker formal-

ism.65,66 These results were originally obtained from a time dependent

Ansatz by Meir and Wingreen,67 where a different road was followed starting

from the fully interacting many body Hamiltonian including all interactions.

3.4 Conductance calculations for real systems

In this section a combination of the general transport formalism, introduced

in section 3.3, with the Kohn Sham single electron description within DFT

will be elaborated in order to achieve a description of phase-coherent elec-

tron transport on an ab initio level. A wide range of numerical methods have

been proposed for this purpose, where all of them are based on the Landauer-

Büttiker setup. Two different schemes are commonly used for the computa-

tion, where the first directly calculates the scattering wave function68,69 and

the second applies a single particle Green’s function theory,55,70–73 which

was also the method of choice for the codes used in the present thesis. In-

dependent from the applied method for the transport setup one can choose

between different levels of approximation for the electronic structure ranging

from tight binding models74 to full DFT calculations.75,76
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3.4. Conductance calculations for real systems

3.4.1 DFT based electron transport

The basic assumption in the formalism of Landauer and Büttiker is that

in the phase coherent regime electrons are quasi particles, which do not

interact and have a life time longer than the time needed to travel through

the scattering region. As a consequence the Hamiltonian of the system

can be approximated as a single-particle matrix derived from a Kohn Sham

formulation of DFT. It should be noted at this point that the Kohn Sham

Hamiltonian leads to the correct electron density with a good approximation

of Vxc, but does not lead to a quantitatively correct current,77 due to the lack

of many body interactions. In order to achieve a higher level of accuracy

one might have to employ time dependent DFT78 or expand the NEGF

formalism within many body perturbation theory as it is the case in GW

models.79–81 Both of these pathways are, however, only practicable for small

molecular systems and have proven to be unsuitable for the large junctions

investigated in this thesis. Therefore Hamiltonians on a Kohn-Sham level

have been used exclusively assuming that their accuracy is sufficient for a

correct description of the studied phenomena.

The division of the junction into the left and right leads and the scatter-

ing region requires a localised basis set for the NEGF-DFT formalism to be

applicable. This can be achieved for instance by constructing Wannier func-

tions from a plane wave basis54 or by using wavelets.82 In the present thesis

the calculations have been performed with a LCAO basis set, as introduced

in section 2.4.5, which is already atom centred by definition making it ideal

for an application within NEGF-DFT.

3.4.2 The Transport Hamiltonian

Within a localised basis set the Hamiltonian of the full system, consisting

of the electrodes L and R and the scattering region S can be divided into its

three parts. The Schrödinger equation of the whole problem now takes the

form HL τLS 0

τ †LS HS τ †RS
0 τRS HR


|ΨL〉
|ΨS〉
|ΨR〉

 = E

|ΨL〉
|ΨS〉
|ΨR〉

 , (3.23)

where the non-diagonal elements τα,β are the couplings between the scat-
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3. Phase coherent electron transport

tering region and the leads and therefore define the probability of an incom-

ing wave to be transmitted or reflected. The interaction between the two

leads is set to zero, because, as will be described later on, some surface layers

of the electrodes are included in the scattering region.

Here the Green’s function is defined as

(E −H) G(E) = I, (3.24)

with I being the identity matrix. For the sake of simplicity corrections

for a non-orthogonal basis, which would include the overlap matrix S, and

the imaginary part are not included in equation 3.24. Such a (more general)

definition would change equation 3.24 into ((E+iν)S−H)G(E) = I, with ν

being an infinitesimal number. We will, however, come to this generalisation

later in this section.

Due to its non-interacting single particle definition equation 3.24 can

also be converted to the matrix equation

E −HL −τLS 0

−τ †LS E −HS −τ †RS
0 −τRS −HR


 GL GLS GLR

GSL GS GSR

GRL GRS GR

 =

I 0 0

0 I 0

0 0 I

 .

(3.25)

From this system of equations one can easily derive the Green’s function

of the scattering region GS (also referred to as the retarded Greens function

Gr
S) by retrieving the three equations involving the second column of the

Green’s function matrix and solving it for GS :
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3.4. Conductance calculations for real systems

(E −HL)GLS − τLSGS = 0

−τ †LSGLS + (E −HS)GS − τ †RSGRS = I

(E −HR)GRS − τRSGS = 0

=> GLS = gLτLSGS with gL = (E −HL)−1

=> GRS = gRτRSGS with gR = (E −HR)−1

=> −τ †LSglτLSGS + (E −HS)GS − τ †RSgRτRSGS = I

=> GS = (E −HS − ΣL − ΣR)−1, (3.26)

where ΣL/R = τ †L/RgL/RτL/R are the (retarded) lead self energies, which

can be interpreted as the effect of the leads on the isolated scattering region

Hamiltonian upon contact creation.

Let us now define the three most important quantities, which will be

needed in the following, in a general way:

GS = ((E − iν)SS −HS −ΣL(E)−ΣR(E))−1, (3.27)

Σα(E) = ((E − iν)SαS − ταS)g0
α(E)((E − iν)S†αS − τ

†
αS)), (3.28)

g0
α(E) = ((E − iν)Sα −Hα)−1 (3.29)

where α ∈ {L,R}. From these three definitions Xue, Datta and Ratner
83 showed that the conductance formula derived in section 3.3 is valid for

non-orthogonal basis sets as they are used, when ultra-soft pseudo potentials

are applied in the DFT calculations.

Starting from these three equations the calculation of the transmission

function T (E) = Tr(ΓLGS(E)ΓRG†S(E)) is straightforward by applying the

definition of ΓL/R as the anti Hermitian of the lead self energies Σα(E)

Γα(E) = i(Σα −Σ†α). (3.30)
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Figure 3.4: Schematic representation of the splitting in the transport Hamil-
tonian. The whole system is divided into three parts, namely left lead (L),
right lead (R) and the scattering region (S), as already shown in figure 3.1.
When it comes to a practical calculation the leads are divided in so called
principle layers in order to be able to deal with the infinite size. To justify
such a treatment of the lead Hamiltonians the scattering region has to con-
tain a few electrode layers in order to achieve a bulk potential at the border
to the leads.

3.4.3 Calculation of the lead self energies

Since the definition of the self energy in equation 3.28 contains the Green’s

function of the unperturbed or in other words uncoupled infinitely large elec-

trode g0
α(E), a special scheme has to be applied in order for it to represent

the correct potential for semi-infinite leads in the transport direction. Due

to their periodicity both lead Hamiltonians Hα can be divided into regions

in the transport direction, whose size is chosen in order to guarantee that

only neighbouring sub-matrices interact (see figure 3.4). Such a division

of the (in principle) infinitely large lead Hamiltonian is justified if the pe-

riodicity of the lead potential is preserved inside of the boundaries of the

scattering region. For obtaining a system, where this condition is fulfilled,

one usually defines the scattering region as a molecule with a few layers of

the electrodes attached (also called the ”extended molecule”), as depicted

in figure 3.5. The electrode layers included in the scattering region now

contain screening effects and all perturbations arising from the presence of

the surfaces or molecule and the potential in the electrode surfaces reaches

its bulk potential. This is due to the periodicity of the DFT calculations for
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3.4. Conductance calculations for real systems

Figure 3.5: Typical setup of a scattering region in a NEGF-DFT transport
calculation, where the electron potential in transport direction is drawn on
top of the structure in order to show its rapid decay into the bulk potential
after a few surface layers.

the scattering region also in the transport direction, its boundaries, visible

in figure 3.5, touch the ones of neighbouring cells and therefore become bulk

like.

The elegance of this approach is the replacement of the infinitely large

electrodes by principle layers, which is possible because the scattering region

only interacts with the first principle layer attached to it on both sides.

Therefore the size of the Hamiltonian in equation 3.29 is drastically reduced

and the calculation of the self energy becomes practicable.

3.4.4 k-point dependence

This section is dedicated to the treatment of periodic boundary conditions

(pbc) in the space directions perpendicular to the transport direction. While

the boundaries in the transport direction are defined by a matching of the po-

tential in the extended molecule with the potentials of the principle layers of

the leads, the dimensions of all electrode layers are infinite with regard to the

transverse directions. In principle one also simulates an array of molecules

by the introduction of periodic boundary conditions in the transverse direc-

tion, where the density and interaction of the molecules is dependent on the

unit cell size in the DFT calculation of the scattering region, which might

be inappropriate for a description of the single molecule conductance. One

usually solves this issue by increasing the size of the unit cell in the trans-

verse directions in order to avoid any interaction of the molecule with its

images in neighbouring cells.
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3. Phase coherent electron transport

Since the simulation cells for all three regions are periodic for the two

lattice vectors perpendicular to the transport direction and the bulk elec-

trodes require pbc in order to extend their electronic bands in k-space the

total transmission function can be decomposed into contributions arising a

set of single k⊥-points in the corresponding part of the Brillouin zone. The

total transmission function can then be calculated as an integral over this

two dimensional Brillouin zone

T (E) =

∫
dk⊥

T (k⊥, E)

ABZ
, (3.31)

where ABZ is its area. In practice this integration is approximated by

a sum T (E) ≈ wk⊥T (k⊥), where wk⊥ are weighting factors, whose sum is

normalised to one.
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4
Energy level alignment and electronic coupling

This chapter focuses on energy level alignment (ELA) and the electron cou-

pling at the metal-molecule interface, which are the two main parameters

determining the conductance of a molecule in a junction. The energetic

ordering of the molecular eigenstates relative to the metal work function is

one of the main topics in the investigation of adsorbed organic molecules

on metal substrates for self assembled monolayers (SAM) as well as single

molecule junctions. The main issue in these studies is the change of the

electron affinity (EA) and ionisation potential (IP) of an adsorbed organic

compound with respect to the molecule in vacuum, since this defines charge

injection barriers and onset voltages in STM and mechanical break-junction

experiments.

In order to arrive at a picture of energy level alignment and electron

coupling this chapter is organised in the following way: After a short phe-

nomenological introduction the concept of level broadening due to the ad-

sorption of a molecule at a metal surface is presented, followed by an outline

of the reasons for the shift in the energy of the molecular eigenstates with

respect to the vacuum and electrode Fermi level. Finally tools for the eval-

uation and analysis of ELA within DFT are presented.
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4. Energy level alignment and electronic coupling

4.1 Phenomenological introduction

In order to motivate a physical picture of a molecule aligned in a single

molecule junction environment, the starting point of this chapter consists

of some phenomenological remarks similar to those in chapter 3. For this

purpose it makes sense to start from the bare metal surface and a molecule

situated at an infinite distance. In such a situation the metal electrode has

a well defined Fermi level EF (or chemical potential µ) and an undisturbed

work function Φ0, which is defined as the energy needed to extract an elec-

tron from the surface into the vacuum. The molecule on the other hand

is characterised by discrete electronic eigenstates, as depicted in panel a of

Figure 4.1. When the molecule now approaches the surface different effects

occur, which will be the main topic of the following sections. In this intro-

duction, however, the focus is on the aspect that the molecular eigenstates

start to broaden, as schematically shown in panel (b) of Figure 4.1. This

broadening of the MOs transforms the discrete eigenvalue spectrum of a

free molecule into a finite DOS, which is usually referred to as a projected

density of states (pDOS), since it is a projection of the full DOS of the

junction system onto the molecular subspace. The creation of a pDOS now

also implies that one can define a Fermi Level of the molecule EF,mol (also

called charge neutrality level CNL). Since a system in equilibrium can only

have a single Fermi Level, the EF,L (L marks the metal as the left electrode)

and EF,mol have to equilibrate.84 This can happen either by charge reor-

ganisation at the metal-molecule interface or by a partial emptying or filling

of the molecular HOMO or LUMO, respectively, resulting in an alignment

of the broadened eigenstates of the molecule with respect to µL. Different

mechanisms have been proposed for the energy level alignment, which will

be compared in the following section.

It has to be noted, that in addition to a shift of the molecular eigenener-

gies with respect to the vacuum level alignment of the free molecule also the

HOMO-LUMO gap is reduced as a consequence of surface polarisation,85–87

an effect commonly referred to as screening. This effect, however, is not

captured correctly in single particle descriptions based on DFT and would

rather demand for many body corrections as they are included in e.g. GW

approximations.88–90 There is, however, some degree of error-compensation

with the underestimation of the HOMO-LUMO gap for the free molecule,

36



4.2. Induced projected density of states

μL

HOMO

EF,mol

μL

LUMO
μL

EF,mol

μL EF,molipDOS CT

Relax

CT

Figure 4.1: Schematic representation of the level broadening and energy
level alignment upon adsorption of a molecule (right rectangle in each panel)
onto a metal surface (left rectangle in each panel), where four situation are
depicted, namely metal and molecule at infinite distance (a), level broad-
ening upon contact (b) and energy level equilibration in combination with
charge transfer (c and d). The yellow colour in panel b,c and d represents
an occupation of the broadened molecular eigenstates

which is why this issue is not central to the results presented in this thesis.

4.2 Induced projected density of states

As already mentioned in chapter 3 the adsorption or coupling of a molecule

on a metal surface leads to a broadening of the molecular eigenlevels. The

degree of broadening is related to the wavefunction overlap with the metal-

lic DOS of the electrodes and is directly proportional to the square of the

non-diagonal matrix elements in the transport Hamiltonian defined in equa-

tion 3.23. In the Landauer-Büttiker formalism the coupling enters via the

broadening matrix Γ, defined as the imaginary part of the lead self energy

Σ, as shown in equation 3.30. Having determined the degree of broadening

related to the electronic coupling of all eigenstates in the scattering region

and the leads one can now determine a density of states of the molecular

subspace by combining the Γ with the energetic position of the molecular

levels. This is exactly what is done in the spectral function A(E) as it is

defined in equation 3.18. The diagonal elements Aii of the spectral function

represent the contribution of the specific basis function i to the total DOS

and as a consequence the projected density of states on the molecule can be

defined as91

pDOS(E) = Tr(Amol)(E)), (4.1)

with Amol being a sub-matrix of A, containing only the molecular sub-

37



4. Energy level alignment and electronic coupling

space.

This definition of a pDOS now allows for the determination of a well

defined Fermi energy of the molecular subspace EF,mol (also referred to as

the charge neutrality level (CNL)92 in the organic electronics and the organic

semiconductor community), by integration up the number of electrons in the

molecule: ∫ EF,mol

−∞
dE pDOS(E) = N (4.2)

For a system to equilibrate the Fermi level of the metal electrodes and

the molecule coupled to it, a partial charge transfer has to occur, where the

mechanisms suitable for its description are highly dependent on the nature of

the adsorption. Two typical examples for such mechanisms will be presented

in the following.

4.3 Mechanisms for the energy level alignment

In this section the most representative models for the explanation and quan-

titative description of energy level alignment (ELA) are presented. Some

of these models come from the organic electronics community, where or-

ganic bulk materials are adsorbed onto a metal substrate rather then single

molecules, which suggests that some of them are not applicable for the

description of ELA in single molecule electronics. The understanding of or-

ganic electronics, however, has matured more than the rather new field of

single molecule electronics and therefore its elaborated models are also a

useful starting point for the understanding of ELA in single molecule elec-

tronics.

4.3.1 Pauli repulsion

At a bare metal surface electrons spill out into vacuum thereby creating an

intrinsic surface dipole. This fact was already discussed by Lang and Kohn

in 1970, who applied a jellium model for the metal electronic density within

a LDA approximation in DFT.93 This surface dipole is strongly dependent

on the nature of the metal substrate and is one of the main contributors

to its work function Φ0. When a closed shell molecule is now adsorbed

onto the metal surface, the electrons of the metal, which reach out into
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4.3. Mechanisms for the energy level alignment

Figure 4.2: Electron density change defined as the difference between the
coupled metal-molecule system and the two isolated systems, as derived from
the Ru-complex, which was the system under study in Paper I. While the
electron density changes only marginally in the centre of the molecule, the
part near the interface shows the characteristic features of Pauli repulsion.

vacuum are pushed back into the bulk. The physical reason for this so called

”pillow effect” is Pauli repulsion arising from an overlap of the electronic

wave functions of an adsorbed closed shell molecule with those of the metal

surface.94 Due to the orthogonality constraint for all Kohn-Sham orbitals

in the system, the metal electron wave functions, which spill out into the

vacuum, are now distorted95 in order to avoid this overlap, thereby raising

their kinetic energy.96 As a result the metal Fermi Level rises in energy (or

in other words Φ is reduced), which in a schematic picture such as Figure 4.1

is displayed as part of the equilibration process.

While Bertel96 and Bagus94 established this explanation of energy level

alignment through Pauli repulsion only for noble gas elements physisorbed

on a metal surface, Stadler and Jacobsen have shown that this mechanism

is also valid for the adsorption of Bipyridine on a Au(111) surface.97 In

their paper they interpreted the electron depletion at the interface between

molecule and metal as a propagation of the electrons formerly resident on the

lone pair of the nitrogen atom onto the area close to the metal surface, which

results in a partial positive charge on the molecule. This loss of electrons

near the surface leads to a decrease of the molecular eigenstate energies

with respect to the metal Fermi energy, as a consequence of electron-electron

repulsion at the molecule/metal interface. As a result of ELA for this system

the conductance of Bipyridine is determined mainly by the tails attributed
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to the molecular LUMO.

The change of the electron density distribution ∆n upon adsorption, as

it was found for the Ru(PPh2)4(C2H4)2bis(pyridylacetylide) complex, which

was the system under study in paper I, III and IV, is shown in Figure 4.2.

This change is characteristic for Pauli repulsion, where the main effect of

adsorption is an increase of electrons at the metal surface and a reduction of

electrons at the molecular anchor. On the other hand no relevant change in

the electron density distributions happens in the central part of the molecule,

which indicates that the molecular eigenstates are not filled or emptied even

though a net charge of -0.43 electrons on the molecule has been determined

via a Bader partial charge distribution analysis.98,99 This finding for pyridil

anchors is in perfect agreement with the results of Stadler and Jacobsen for

the Bipyridine molecule.

4.3.2 Partial filling of molecular eigenstates

As the second of the two mechanisms for ELA, presented in this thesis,

charge transfer from the metal to the molecule and vice versa via partial

filling or emptying of MOs is considered, which implies a direct exchange of

electrons/holes from the metal bands near the electrode Fermi energy and

the frontier orbitals of the adsorbed compound. In order for giving such

partial occupations a physically correct meaning an overlap of the molec-

ular eigenstates and the electronic bands of the metal surface is necessary,

because it allows for a hybridisation of the two. Through this hybridisation

electronic eigenstates of the full junction system are created, which depend-

ing on their spatial distribution across the whole scattering region virtually

remove/add electrons from/into the molecular HOMO/LUMO, which can be

redefined by diagonalising the molecular subspace of the transport Hamilto-

nian even for the coupled system. The main factor redefining the direction of

this partial electron exchange is the difference in electronegativity of the two

subsystems, which is related to the respective energetic position of EF,mol

and EF,L, as it has been shown by Leung et. al.100 For clarity the focus will

now be on the case, where EF,mol is lower then EF,L in order to elaborate

the final alignment of the broadened molecular level and the metal DOS

by a self consistent line of thought. In such a situation a partial negative

charge flows from the electrode onto the pDOS of the adsorbed molecule rais-

ing EF,mol according to equation 4.2. EF,L=µL on the other hand remains
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4.4. Charge transfer and Fermi Level alignment in DFT

nearly constant due to the high number of degenerate electronic states near

EF,L in the metal and the electron flux continues until both are energeti-

cally equal. The energetic position of the molecular eigenstates, however, is

strongly dependent on the number of electrons in the system and therefore

also the peaks in the pDOS start to shift, when a charge is introduced. In

our example this shift leads to an additional increase of EF,mol, because of

an increase in electron-electron repulsion. Consequently EF,mol and µL have

to be equilibrated again by a flow of electrons back into the metal and so on.

These two processes, namely charge transfer and energetic relaxation due to

the new electrons on the subsystem, now alternate self consistently until a

converged Fermi level alignment has been reached. I want to stress again,

that this kind of self consistent cycle was only a thought experiment, while

in DFT calculations self-consistency is between the Kohn-Sham and Poisson

equations, where the two processes outlined above are described implicitly

and simultaneously.

4.4 Charge transfer and Fermi Level alignment in

DFT

The relationship between charge transfer and the alignment of the molec-

ular eigenstates with the metal Fermi level can be analysed within DFT.

Since both mechanisms introduced in the last sections are involving a par-

tial transfer of electrons from or onto the molecular subspace, the possibility

to put a non-integer number of electrons on a unit cell in DFT can be used

for the analysis.

One way to quantify the charge transfer following the adsorption of a

molecule on a surface is by considering the energetic shift of the lowest

lying molecular orbital of the molecule (MO1). Since in most cases the

eigenenergy of MO1 lies far below the metallic band no hybridisation with

the lead states can be expected.97 As a consequence, the only shift MO1

experiences is due to the change in the electrostatic potential created by a

partial increase/decrease of the electronic charge on the molecular subspace.

In order to determine the eigenenergy of MO1 in a unit cell consisting of

metal electrodes and the molecule, a subdiagonalisation of the molecular

subspace in the transport Hamiltonian has to be performed. As another

ingredient for this approach the alignment of the molecular eigenstates with
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4. Energy level alignment and electronic coupling

the metal Fermi level based calculations for the two isolated subsystems is

required as will be explained in detail below.

4.4.1 Subdiagonalisation of the molecular subspace

For redefining MO energies in a junction environment the Hamiltonian ma-

trix H with matrix elements obtained form DFT calculations, is diagonalised

with respect to the basis functions centred on the molecule only, which re-

sults in a diagonal sub-matrix Hsub. H is then transformed unitarily by

Htrans = 〈c|H|c〉 (4.3)

with the transformation matrix c, being an identity matrix of the same

dimensions as H, with the subspace, corresponding to the molecular basis,

formed by the normalised eigenfunctions of Hsub.

As a result of this procedure, which is often referred to as the molecu-

lar projected self consistent Hamiltonian (MPSH) method, the part in the

transport Hamiltonian describing the molecular subspace changes its basis

vectors from a LCAO into a MO representation. The energies of the molec-

ular orbitals can now be directly related to the Fermi energy of the unit cell,

which is mainly determined by the DOS resulting from the metallic bands.

Importantly, the electronic coupling i.e. the non-diagonal elements in the

transport Hamiltonian undergo the same transformation as the eigenener-

gies, which makes a direct quantification of the coupling of the molecular

MOs to the basis functions on the electrodes possible.101,102 This provides

another important analysis tool, which will be made use of in subsequent

chapters of this thesis.

4.4.2 Vacuum level alignment

In order to be able to align the molecular eigenenergies and the Fermi level

of the metallic electrodes it has to be ensured that both are given relative to

the same reference energy. Since the reference energy in modern DFT codes

can be defined in various ways, e.g. as the average potential within the unit

cell or the average of the potential at the border of the unit cell, it is crucial

replace this reference by one, which is independent of how the unit cell is

constructed in detail. The following scheme shows a method, which can be
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4.4. Charge transfer and Fermi Level alignment in DFT

applied for the direct comparison of the MO energies and the metal’s Fermi

level:

1. Calculation of the molecular eigenenergies with respect to the vac-

uum potential: This step consists of a DFT calculation of the isolated

molecule in a unit cell, which is large in size in order to ensure the

Coulomb term in the Hamiltonian due to the molecule has decayed

sufficiently at the border of the unit cell. The molecular eigenenergies

relative to the vacuum energy are then determined as

εi,vac = εi,DFT − eVvac, (4.4)

where εi,DFT and Vvac represent the eigenenergies of the molecular

levels and the potential far away from the molecule with respect to

the arbitrary reference energy in a DFT calculation.

2. Calculation of the metal Fermi energy relative to the vacuum potential:

In this step a DFT calculation of the metal electrodes without the

molecule in between is performed. The vacuum potential can then

be determined as the potential in the gap between the two surfaces,

where usually a value in the middle of the vacuum region is taken.

The Fermi level can now be determined relative to this vacuum level

in the same way as for the molecular levels in step 1 (equation 4.4)

shown in equation 4.4, namely by forming the difference:

µL,vac = µL,DFT − eVvac, (4.5)

3. Establishing a direct relation between the molecular eigenenergies and

the metal’s Fermi level: As a last step both energetic quantities are

related to each other resulting in an alignment of the molecular MO

eigenenergies relative to the metal Fermi level:

εi,µL = εi,vac − µvac (4.6)

This scheme can be used in two ways: Having determined the energy of

the MO1 relative to the metal Fermi level one can now compare it with its

energy in the composite system determined via a subdiagonalisation of the
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4. Energy level alignment and electronic coupling

molecular subspace. In most cases the energies do not correspond, which is

due to the charge transfer between the subsystems. By the introduction of

partial charges in the unit cell within DFT it is now possible to determine

the shift of the MO1 with an introduced charge, thereby quantifying the

partial charge transfer in the composite system.73

The second way of using this analysis tool is to reproduce the energy

level alignment via this procedure, when the amount of charge transfer is

known, hence predicting the energetic peak position in the transmission

function and relating them to molecular eigenstates. This procedure starts

with a determination of the electron transfer within e.g. a Bader charge

analysis98 or a Mulliken charge analysis.103 By introducing the determined

partial charge in the calculation of the isolated molecule and subsequently

comparing the molecular eigenenergies to the metal Fermi level one can

predict the MO energies and the energies of the peaks in the transmission

function. It has, however, to be noted that such a procedure does only work

reliably for junction systems, where the molecule is only physisorbed to the

metal surface. For open shell and therefore strongly coupled compounds

the adsorption process requires also the breaking of covalent bonds within

the molecule such as the S-H bond for thiol anchors. As a consequence

the MO-spectrum of the free molecule cannot be directly compared to the

adsorbed system due to the discrepancy between the closed shell molecule

in vacuum and the biradical structure forming covalent bonds to the metal

surface upon adsorption.
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Charge localisation within DFT (Paper I)

This section is an outline of Paper I, where the applied methods and the

reasoning behind them are presented. The main purpose of Paper I was

to simulate a charged molecule inside a single molecule junction geometry

within DFT. In experiments such a situation can be created by applying

an electrochemical gate via a reference electrode embedded in a solvent,

which adds a potential to the measured system.35,104–106 Since the potential

difference between the source and drain electrodes in such an electrochemical

cell is kept fixed only the molecular eigenstates shift in energy, which results

in a change in energy level alignment and can, also lead to a change in the

redox state of the measured compound, which then carries a charge.31,106,107

This charging of the molecule results in a large change of its conductance,

an effect which is useful for the application of single molecule junctions as

memory and logic elements in future computer architectures.108,109

This chapter is organised in the following way: First the requirement

for new methods within DFT for the simulation of an electrochemical gate

is motivated. Then the problem of the self interaction error within DFT is

addressed, which makes special schemes for the localisation of a charge nec-

essary. These methods are then outlined in the remaining sections. Finally

a short summary of the results in Paper I are given.

45



5. Charge localisation within DFT (Paper I)

5.1 Motivation

In principle an electrochemical gate could be simulated by introducing a spa-

tially constraint potential in the unit cell of the DFT calculation, as it was

done in various studies of junctions in the Coulomb blockade regime.110,111

In this regime the electronic coupling between the metal surfaces and the

adsorbed compound is very small and in some cases the distance between

the conjugate molecular states and the metallic electrodes is among a few

Å. For the coherent tunnelling regime, however, the molecular eigenstates

overlap and hybridise significantly with the surface states of the leads. As

a consequence a step-like potential in the unit cell, would introduce arte-

facts, because the discontinuities of its derivative would not be in regions

with negligible electron density. Therefore a conceptually different strategy

for introducing electrochemical gating in the coherent tunnelling regime was

pursued in Paper I, where different methods for simulating a charged com-

pound, namely an oxidized Ru(PPh2)4(C2H4)2bis(pyridylacetylyde) com-

plex, in a single molecule junction within DFT had to be elaborated. In

Paper I, and also in Papers III, IV and V, we decided to use a chemically

intuitive way to create charged species in a junction, namely the introduc-

tion of a counterion in the unit cell, which due to its high electronegativity

extracts an electron from the compound. This method, however, brought its

own difficulties, where the main issue to deal with was the self interaction

error present in DFT, which makes the correct description of localised states

notoriously hard.

5.2 The Self Interaction Error (SIE)

The Self interaction Error (SIE) is an artefact arising from the mean field

description of the Hartree potential in DFT. Since EHartree, defined in equa-

tion 2.15, includes the full electron densities and their Coulomb interaction,

each electron experiences a spurious interaction with itself.112 As a conse-

quence binding energies, on-site Coulomb energies and the exchange splitting

of d- and f- states are underestimated, while the hybridisation of d- and p-

states is overestimated.113,114 This artefact was first observed by Fermi and

Amaldi in 1934, who proposed a first self interaction correction.115 Hartree

Fock theory (HF), being a mean field theory as well, does also face the SIE
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5.3. Charge localisation via solvation shells

in its Hartree term. The exact exchange energy contained in the energy

function of HF, however, corrects for it completely. Due to the approxima-

tive nature of the exchange-correlation functionals for the DFT calculations

performed in this thesis the self interaction does not vanish and has to be

accounted for, especially when dealing with localised MO’s such as its most

well-studied example, the dissociation of H+
2 ,116 or the isolated p-orbitals of

a Cl counterion as we use it in Paper I.

While various self interaction corrected exchange-correlation functionals

have been proposed in recent literature113,117–120 for the localisation of an

electron on an anion in the unit cell in Paper I we followed two alternative

paths, namely a correction of the SIE by exploiting solvation energies and

the ∆SCF method, as introduced in section 2.5.

5.3 Charge localisation via solvation shells

In their study on the quantification and reduction of the SIE, Lundberg and

Siegbahn have shown that solvent effects work against delocalisation because

the solvation energy Esolv is higher for integer charges than for delocalised

partial charge distributions.114 It can be formulated as

Esolv = −ε− 1

2ε
· Q

2

R
, (5.1)

where ε is the dielectric constant of the solvent in a continuum model,

Q is the charge on molecular fragments and R is the distance between these

fragments. According to this formula integer charges increase the stabili-

sation arising from Esolv as it was shown for the dissociation of C6H+
14 in

Reference.114

Jónsson et. al.121 have been the first to introduce a solvated counterion

in a DFT based description of the charging of a molecule adsorbed on a

metal surface in order to simulate a redox reaction in an attempt to mimic

an electrochemical STM experiment. In their paper they could show, that

a small number of solvent molecules already increases the localisation of

negative charge on the counterion notably.

Following this work one road we chose in Paper I was the simulation of

an oxidised molecule in a junction environment, where the charge on the

counterion was screened by a solvation shell. For this purpose we started
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Figure 5.1: DFT calculations of the dependence of the counterion charge
on the number of solvent molecules added in the unit cell. Calculations
performed for the Ru-complex in the gas phase are shown in black, while
the results in a junction environment are depicted in red. The charge was
determined via a Bader charge analysis, where on the ordinate the charge
on Cl and its first solvation shell is shown.

with a Ru-complex structure with an optimised geometry and a Cl counte-

rion in 7 Å distance from the metal centre. Then we added H2O molecules

gradually, relaxing their nuclear coordinates in every addition step with the

constraint that the Ru-Cl distance was kept fixed. Figure 5.1 shows how the

charge on the counterion and its surrounding water molecules increases with

the number of added solvent molecules. While a few water molecule already

have a high influence on the charge localisation and therefore the charging

of the molecule the amount of negative partial charge on Cl increases slowly

with each shell leading to convergence around 30 water molecules for the

system in vacuum and 20 for the system in a junction environment.

5.4 Charge localisation via ∆SCF

The second route we followed in Paper I, was the localisation of an electron

on the Cl-anion via the ∆SCF method58,59 introduced in section 2.5. This

is very appealing, since by directly defining the occupation of AOs no addi-

tional means are needed in order to achieve an integer charged counterion,

which saves a lot of computational effort compared to the localisation via

solvation shells, which have to be relaxed in every step as described in the

48
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Figure 5.2: Dependence of the partial charge on the counterion on the num-
ber of unoccupied electron bands in the DFT calculation. Calculations per-
formed for the Ru-complex in the gas phase are shown in black, while the
results in a junction environment are depicted in red.

last section.

An usual ∆SCF calculation for achieving an oxidised molecule requires a

unit cell, where the properly geometry optimised molecule is contained along

with the counter ion situated at a reasonable distance, where hybridisation

of compound and chlorine orbitals is not possible. In the ∆SCF framework

we use in Paper I all three 3p-orbitals of Cl are constraint to be occupied.

This high number of electron constraints is necessary due to the degeneracy

of the 3p-states and constraining only one of the three orbitals would result

in a partial dissoccupation of the other two.

The main technical issue, which arises from the formalism of ∆SCF

is that in order to be able to create the orbital, which one would like to

constrain, an appropriate number of unoccupied MO’s have to be included in

the DFT ground state calculation. This is especially the case, when a metal

surface is included in the unit cell, because a high number of electronic bands

have to be accounted for, although they contribute only small fractions to

the constraint state. The dependence of the partial charge on the Cl anion

on the number of unoccupied electronic states included in the calculation is

shown in figure 5.2. While for a gas phase calculation only a low number

of unoccupied bands is needed in order to achieve a reasonable counter-

charge on Cl, the calculation in a junction environment already needs 70
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5. Charge localisation within DFT (Paper I)

unoccupied orbitals for convergence and does only constrain 0.84 electrons

onto the anion in this case (for comparison the charge on the Cl without

the ∆SCF scheme is 0.42e). In both vacuum and junction environment,

however, the amount of charge constraint converges with an increase in

the bands included in the calculation following only asymptotically. Hence

performing a calculation, where the charge is constraint via ∆SCF one has

to deal with the trade off between having an ideal charge transfer onto the

counterion and reducing the computational effort. In Paper I we settled for

250 unoccupied bands for the junction system, which resulted in a sufficient

amount of counter-charge, namely 0.97e for the compound in vacuum and

0.94e for the junction system.

5.5 Outline of results and discussion of Paper I

In an electrochemical STM setup the electrochemical potential shifts the

molecular eigenstates with respect to the two Fermi levels of the electrodes,

which are equal for zero bias calculations. This is the effect on the transmis-

sion function we wanted to simulate by charging the Ru-complex. In order to

put a positive charge charge on a molecule in an experimental junction setup

a gate potential has to be applied, which shifts the occupied eigenstates of

the molecule towards the chemical potential of the electrodes, where in prin-

ciple, in order for a subsystem to exhibit a singly occupied state (SOMO),

the energy of the MO has to be exactly the same as the Fermi level of the

total system. Figure 2 of Paper I shows, that the goal of shifting the HOMO

peak in the transmission function towards the EF has been achieved nicely

and an increase in the zero bias conductance has been found. This increase

in conductance is due to the Fermi energy’s climbing up the peak related to

the molecular HOMO, when the corresponding eigenenergy is shifted by the

applied gate. The HOMO peak, however, is not pinned to the Fermi level

of the system as it would be expected to be for a system with a SOMO.

In order to understand this aspect one has to consider, that even though

the coupling of a molecule with pyridine anchor groups is small compared

to chemisorped compounds, as they were studied in Paper II, hybridisation

between the molecule and the electrodes still plays a role, which delocalises

the introduced charge between the molecular subspace and the electrodes.

As a consequence a partial positive charge is also introduced in the surface
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states of the leads.

In order to understand the ELA and to investigate its physical nature

we also examined the neutral and charged system in terms of electronega-

tivity theory,122–124 where the main focus was on the charge transfer ∆N

between the Au electrodes and the Ru-complex. Therefore we studied ∆N

in dependence on the size of the metallic slab the molecule is adsorbed on

starting from a single Au atom on both terminals of the complex up to the

slabs for the large metal surface we also used in the simulation with periodic

boundary conditions.

For single Au atom electrodes a large fraction of a positive charge, in-

troduced as an external parameter in the cluster setup, is situated on the

molecule. An increase in slab size, however, leads to a nearly complete ab-

sorption of the electron hole in the high number of metal bands near Ef and

none of the additional charge can be found on the molecule. The charging

via a counterion on the other side localises a substantial amount of the pos-

itive partial charge on the molecular subspace, which makes a calculation of

the conductance of a charged species in a junction environment possible.

For further details, I would like to refer the reader to Paper I included

in this thesis.
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6
Anchor group variation in molecular wires (Paper

II)

The main topic of Paper II was the investigation of the influence of terminal

groups of dinuclear Fe-compounds125 on the conductance in a single molecule

junction. For this purpose the -CN,-NCS,-NCSe,-CC- and -CCCC- anchored

molecules were systematically studied both on a theoretical level and via

mechanically controlled break junction experiments (MCBJ) performed by

our collaborators at IBM Zurich. Apart from potential candidates for active

electronic building blocks such as switches16,19,20,31,106 (as also studied in

Paper V), in single molecule electronics passive elements such as molecular

wires are required.6–9 Two main parameters determine if a molecule is

suitable as a molecular wire, namely its conductance which should be high

both at infinitely small and high bias voltages and its ideally quite moderate

decrease with the length of the compound.9–14

This chapter is organised in the following way: First our motivation for

Paper II is given, followed by an analysis of both the energy level alignment

and the electronic coupling strength of the different molecular wires under

study. Then it will be concluded with a short outline of our results in Paper

II and a comparison with the experimental results of our coworkers.
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Figure 6.1: Examples for the relation between I/V characteristics and the
width of the MO peaks in the transmission function, with the single MO
transmission functions (black) defined according to equation 3.8, with γL =
γR set to 0.1 eV (solid line) and 0.5 eV (dotted line) and ε=2 eV. The current
for these two values of γL(R) calculated via equation 6.4 is shown in red.

6.1 Motivation

Due to its dependence on the transmission function in single molecule junc-

tions the electronic conductance is not independent of the source drain volt-

age, as it is the case in macroscopic systems, because of Ohm’s law.71 In

other words, this means that the measured current does not depend lin-

early on the applied bias, but can increase strongly when a MO peak is

approached by the voltage and on the other hand can be nearly constant

when no transmission channels are energetically near the bias window de-

fined by the metal’s chemical potential and the applied voltage. The amount

of current increase when approaching a molecular eigenstate is dependent on

the electronic coupling between the compound and the metal surface, which

is related to the width of the corresponding peak created in the transmis-

sion function as illustrated in Figure 6.1. From that we conclude, that wide

peaks in the transmission function are desirable for molecular wires due

to the larger area below them and the higher current passing through the

junction at a given voltage, accordingly.

The influence of the anchor groups on the conductance of a molecule is
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6.2. Energy level alignment

Figure 6.2: Molecular wire backbone structure of the dinuclear iron com-
plexes studied in Paper II, where X denotes the anchor groups, which have
been varied between -CN,-NCS,-NCSe,-CC- and -CCCC-.

twofold. On one side these groups are responsible for the electronic coupling

strength between the metal electrodes and the central part of the compound

and therefore determine the degree of hybridisation and peak broadening

of the molecular eigenstates. Secondly, there is also an influence on the

energy level alignment as was already explained in section 4.3. In Paper II

we studied both physisorbed and chemisorbed molecules, where both Pauli

repulsion and charge reorganisation decided about the final alignment of the

molecular eigenstates.

6.2 Energy level alignment

While one might intuitively assume that the differences in the conductances

of the studied molecules in Paper II arise mainly from the differences in elec-

tronic coupling between the compounds and the electrode’s surface states,

the ELA has to be discussed too, since it also has a part in defining the con-

ductance.126 The studied X(PP)2FeC4Fe(PP)2X (PP = Et2PCH2CH2PEt2)

molecular wires , shown in figure 6.2, with the different anchoring schemes

are good examples for the two mechanisms of ELA described in section 4.3.

While the -CN, -NCS, and -NCSe terminated molecules are closed shell

systems, which do only physisorb on the surface, the carbon terminated

compounds represent an example of chemisorption including strong hybridi-

sation.

The eigenenergies of the complexes in vacuum relative to the metal work

function before the adsorption processes are shown in the left panel of fig-

ure 6.3. All five compounds exhibit frontier orbitals, which are located above

the metal Fermi energy by 1.4-1.7 eV, with the sequence εHOMO,−CC− >
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Figure 6.3: Molecular eigenvalues relative to the electrode’s Fermi level.
Left panel: MOs of uncharged compounds in the gas phase, Middle panel:
MO energies of the compounds in the gas phase with partial charges as
determined from calculations in the junction environment calculated in gas
phase, Right panel: MO energies of the studied complexes in the junction
environment determined by a subdiagonalisation of the molecular subspace
in the transport Hamiltonian.
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-CN -NCS -NCSe -CC- -CCCC-

Charge on compound [e] 0.46 0.38 0.43 0.41 0.23

Table 6.1: Partial charges on the adsorbed dinuclear Fe-complexes studied
in Paper II, calculated via a Bader analysis98

εHOMO,NCS > εHOMO,NCSe ≈ εHOMO,CN > εHOMO,−CCCC−. Therefore

an electron transfer from the molecular subspace onto the electrodes can

be expected in order for the chemical potentials of the two subsystems to

equilibrate. This was also the result gotten from performing a Bader charge

analysis98 of the adsorbed species as shown in Table 6.1.

Introducing the determined partial charges into the DFT unit cells for

the gas phase calculations and relating it to the electrodes’ Fermi energy,

following the procedure described in section 4.4.2, the respective MO en-

ergy spectrum of the five compounds in the junction could be reproduced,

as shown in the middle panel of figure 6.3. The procedure worked aston-

ishingly well for the three weakly coupled compounds. For the two carbon

terminated compounds, however, the energy level alignment resulting from

this technique could only approximately recreate the situation in the junc-

tion. The reason for that lies in the high degree of hybridisation of the

molecular eigenstates and the metallic surface states making a distinction

of the molecular subspace and the electrodes on the basis of the electron

density difficult for the Bader analysis.

In the junction environment, the energetic ordering of the frontier or-

bitals, shown in the right panel of figure 6.3, changes. While the -CC-

anchor still exhibits the highest εHOMO, with respect to the metal Fermi

level, the HOMO of -CCCC- formerly being the lowest in energy now comes

second, followed by εHOMO,NCSe, εHOMO,NCS and finally εHOMO,CN . This

new order can be attributed to the respective differences in the mechanisms

behind the energy level alignment. The carbon anchors mainly lose their

electrons due to a charge reorganization between the molecule and the elec-

trodes’ surface states, while the three closed shell compounds additionally

show the characteristic behaviour of Pauli repulsion, as it was described

in section 4.3.1. As a result the occupied orbitals of these compounds are

pushed further away from the metal Fermi level as it is common for adsorp-

tions including Pauli repulsion.97
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6.2.1 Excursion: The Scissor operator

One of the main problems for a direct comparison of conductances computed

from single particle DFT and determined experimentally is a systematic dis-

crepancy in absolute values. While important parameters unknown from the

experiment, such as contact geometry, bonding sites and the electrode sur-

face’s detailed atomic structure, are possible reasons for the quantitative

disagreement with the calculations, where all these structural details are

idealised by assuming high symmetry as a starting point for energy min-

imisation, a possible reason in terms of the theoretical methodology is the

gap problem within DFT, which also has an impact on calculated transmis-

sion functions. In order to address this issue in Paper II we applied a so

called scissor operator (SO) approach,89,90,127 which expands the single par-

ticle HOMO-LUMO gap, by correcting it with the many body contributions

contained in calculated total energies.

Such a correction starts from the ionisation potential I0 determined in a

gas phase calculation, which can be calculated based on DFT total energies,

as

I0 = Eq=+1 − Eq=0 (6.1)

In a simplest approximation the eigenenergy of the molecular orbitals in

the transport Hamiltonian can be corrected as

εi,SO = εi ∓ Σ0 (6.2)

with

Σ0 = −(εHOMO + I0), (6.3)

where Σ0 is added or subtracted to the frontier orbitals in such a way that

the molecular HOMO-LUMO gap is increased by pushing the unoccupied

states energetically up and the occupied states down.

As a second part of the correction an image charge contribution is added,

which accounts for the polarisation of the molecular subsystem by the metal

electrodes127,128 (which will be further discussed in section 9.2.2). Com-

bining these two corrections the molecular HOMO-LUMO gap is increased,

shifting the frontier orbitals further away from the electrodes Fermi level
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-CN -NCS -NCSe -CC- -CCCC-

Γ [eV] 2.1 · 10−3 2.0 · 10−3 2.1 · 10−3 1.1 · 102 9.2 · 10−3

Table 6.2: Electronic coupling Γ determined from the width of the peak
in the single level transmission function shown in figure 6.4 by applying
equation 3.8.

and therefore the molecular conductance is scaled down thereby achieving a

more quantitatively comparable result. One, however has to be aware, that

such a correction can only be applied for weakly coupled systems such as the

closed shell compounds in Paper II, because the approximation of taking the

gas phase HOMO-LUMO gap as a reference cannot be applied for strongly

hybridised metal molecule systems.

6.3 Difference in couplings

Although the differences in ELA, discussed in the previous section are quan-

titatively important, the electronic coupling of the molecular frontier orbitals

with the metal surface bands is responsible for most of the structure depen-

dence of the conductances found in Paper II. While the -CN,-NCS and -NCSe

anchored compounds exhibit comparatively narrow peaks in the transmis-

sion function, the carbon terminated complexes show wider peaks with a

higher transmission at the metal Fermi level.

Figure 6.4 shows single level transmission functions calculated only from

the molecular HOMO’s contribution to the junction’s conductance. The ap-

parent ordering in peak width is Γ−CC− ≈ Γ−CCCC− > Γ−NCSe ≈ Γ−NCS ≈
Γ−CN . Applying equation 3.8 one can now determine values for the peak

width of the five compounds representing a measure for the electronic cou-

pling, which are listed in table 6.2.

The differences in electronic coupling and therefore peak width can be

rationalised as follows: While the main difference arises from the type of

adsorption, namely chemisorption for the -CC- and -CCCC- compounds and

physisorption for the -CN,-NCS and -NCSe terminated molecules, slighter

differences such as the difference between -CC- and -CCCC- arise from a

difference in molecular length. While both compounds, in principle, have

the ability to bond covalently to the metal surface, the molecular HOMO

of the -CCCC- molecule is delocalised over a wider area due to the overall
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Figure 6.4: Tight binding transmission functions of the molecules studied
in Paper II, where only the molecular HOMO has been regarded for the
compounds transmission.

higher length of the compound and therefore has a lower amplitude on the

C-atom directly connected to the Au-electrodes. This results in a lower

wavefunction overlap and therefore also in a lower electronic coupling and

peak width when compared to the -CC- terminated compound.

Regarding the slight difference in conductance between the selenium and

sulphur anchors the length dependence argument does not hold. In this

case no argument, that would explain, why the electronic coupling of -NCSe

might be higher then for -NCS anchors, is apparent. The two terminal

atoms are isoelectronic, therefore the number of valence electrons cannot be

responsible for the observed difference in conductance. While a vast number

of experimental studies on sulphur (mainly thiol) terminated molecules have

been performed,129–134 the data on selenium anchors is more limited,135–138

even for chemisorbed species. It was, however shown, that the bonding of

benzeneselenol monolayers on Au(111) is stronger than for corresponding

thiophenol,139 consistent with STM-results on terthiophene molecules.135

On the other side Samant et. al. have shown that the chemisorption of

docosanethiol on Au(111) is stronger than that of docosaneselenol.140 Ac-

cording to our transmission functions shown in figure 6.4 (as well as figure 4
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of Paper II) and regarding the findings in the experimental studies it can be

concluded, that the difference in conductance found for the -NCS and -NCSe

anchored molecules does arise from the difference in energy level alignment

rather than in electronic coupling, which is consistent with the finding of

Patrone et. al.,137 who arrived to a similar result on the basis of ultra-

violet photoelectron spectroscopy (UPS) of adsorbed S and Se terminated

oligothiophenes on gold.

Finally, the conductance of the -CN terminated molecule comes last in

the studied series of compounds. The same argument as given in the previous

paragraph also holds for this complex. While the electronic coupling of the

molecular HOMO is nearly identical to the values for -NCS and -NCSe, as

shown in table 6.2, its different energy level alignment leads to a lower zero

bias conductance.

6.4 Outline of results and discussion of Paper II

As already stated in the previous sections, the zero bias conductance order

we calculated is G−CC− > G−CCCC− > G−NCSe > G−NCS > GCN (exact

numbers can be found in figure 5 of Paper II). This was in good qualitative

agreement with the experimentally determined order from break junction

measurements performed under ultra high vacuum, although the computed

values are systematically higher. This overestimation is around two orders

of magnitude for -NCS and -NCSe terminated compounds and around one

order of magnitude for the two chemisorbed species. Such an overestimation

is common in single particle GF-DFT calculations for the conductances 127

and as mentioned at least partially due to DFT’s gap problem. In order to

account for the underestimation of the HOMO-LUMO gap we also performed

corrections in the transport Hamiltonian based on a scissor operator (SO),

introduced in section 6.2.1. Although decreasing the determined zero bias

conductance for the physisorbed compounds, a quantitative agreement could

not be achieved for the conductances, which, however, is not expected from

such a crude ad-hoc correction. A better agreement would be achieved by

applying methods going beyond DFT such as the GW approximation.79,80,88

All the compounds studied in Paper II exhibit inversion symmetry, which

means there is no dipole moment in the transport direction. As a conse-

quence, the frontier orbitals of the compounds are shifted with respect to
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6. Anchor group variation in molecular wires (Paper II)

the electrodes’ Fermi energy only by a second order Stark effect when a

bias is applied. Hence, instead of accounting for the bias dependence of

the transmission function explicitly the current was determined in a linear

response regime with symmetric coupling to the two electrodes, which is

defined as an integration over the zero bias transmission function

I(V ) = G0

∫ ∞
−∞

T (E = V )(nL − nR)dV = G0

∫ V/2

−V/2
T (E = V )dV. (6.4)

The IV-curves determined by applying this scheme are shown in figure

4c of Paper II. An excellent correspondence regarding the onset voltages

between theory and experiment could be achieved, showing no relevant onset

voltages for the carbon terminated wires, while the -CN,-NCS and -NCSe

terminated molecules exhibit no meaningful current for up to 0.25-0.5 V.

This conduction gap in the experimental dI/dV curves is directly related to

both level alignment and electronic coupling of the frontier MOs as derived

from the theoretical findings in the investigation.

For a more detailed analysis of experimental data and comparison with

the theoretical results, as well as a study on the length dependence for

comparing the studied complexes with other proposals for molecular wires,

I would like to refer the reader to Paper II, which is included in this thesis.
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7
Incoherent electron transport

One of the main objectives of this thesis was to establish a theoretical de-

scription of sequential electron hopping in an electrochemical STM junction

environment based on parameters obtained from DFT calculations. In this

chapter the fundamental framework of Marcus theory is presented, which is

the formalism employed for this purpose.

While the description of coherent electron transport in single molecule

junctions is already well established, a treatment of incoherent sequential

electron hopping in the literature is still mostly limited to molecular elec-

tron donor-acceptor systems or adsorbed molecules on a single surface as

they were first proposed in a series of articles by Rudolph Marcus.141 An

adaptation of the formalism for electron hopping based on Marcus’ earlier

work for single molecule junctions has been addressed by e.g. Ulstrup and

Kuznetsov142,143 and has been further developed by Nitzan and co-workers

recently.144 Both groups, however, did not address the determination of

the key parameters in a junction environment from DFT calculations, but

rather used model systems, such as spheres between two metallic electrodes.

This chapter is organised as follows: First a short overview of the history

of Marcus theory and its original formalism is given. Then an adaptation of

the definition of the key parameters for electron hopping in order to describe

redox reactions at metallic electrodes is provided in order to build a bridge

to the work performed in Paper IV and V.
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7. Incoherent electron transport

7.1 History of Marcus theory

In 1956 Rudolph A. Marcus published an article, where he proposed a for-

malism for the explicit calculation of the rates of electron transfer reac-

tions,145 which in its initial formulation considered only reactions between

two iron cations, namely Fe2+ and Fe3+. In such a so called outer sphere

electron transfer reaction no internal structural changes during the process

are required and the surrounding solvent was described by a homogeneous

medium characterised only by its dielectric constant. In subsequent publica-

tions Marcus and Hush extended this formalism in order to include the effect

of the distance between the reactants and a relaxation of the surrounding sol-

vent, where the donor and acceptor are surrounded by solvation shells141,146

up to the point where electron transfer reactions at electrodes have been

described.147

The striking novelty of Marcus’ outer sphere theory compared to other

reaction theories such as Eyring’s transition state theory, was that no adia-

batic transition state, defined as an activated complex of donor and acceptor

is required, but the reaction is driven by the thermally induced reorganisa-

tion of the surroundings of the weakly coupled reactants, while the theory

still assumes an Arrhenius form for the transfer rates. Along this line of

thought the key quantities responsible for electron hopping are simply the

reorganisation energy λ of the surrounding medium, which describes the

energetics of the solvent related to its adaptation to the dislocation of a

transferred charge, the overall driving force of the reaction ∆G0, that is the

reaction free enthalpy, and the transfer integral HAB, which is the electronic

coupling between the initial and final state of the reaction.

R.A. Marcus was honoured with the Nobel Prize in Chemistry in 1992

for this theory, because it provides a formalism for the description of a high

number of chemical and biological processes, where electron transfer reac-

tions play a crucial role. The most famous and counter-intuitive consequence

of Marcus theory is the so called “Marcus inverted region”, where a reduc-

tion of the electron transfer rates with increasing exothermic character of

a reaction is predicted, which was also experimentally verified in 1984 by

Miller et al.148
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7.2. Classical Marcus theory

7.2 Classical Marcus theory

7.2.1 Outer sphere reactions

In an outer sphere reaction there are no vibrational degrees of freedom for

the reacting species, leaving only the reorganisation (or polarisation when

formulated for a dielectric continuum) of the solvent driving the reaction.

Therefore the Gibbs energy of the system only has contribution from the

electronic energies of the reactants ε1 and ε2, the solvation Gibbs energy

Gsolv and a Coulomb interaction term, e1e2/εsR between donor and accep-

tor, with ei being their respective charges, εs the dielectric constant of the

solvent and R their distance. While ε1,ε2 and the Coulomb interaction are

straightforward to evaluate in terms of ab initio calculations, where partial

charges can be obtained from a Mulliken103 or Bader98 analysis and single

particle energies can be attributed to MO’s of the reactants, the calculation

of the solvation energy from the related change of the dielectric polarisation

function requires more demanding calculation schemes such as molecular dy-

namics (MD) and QM/MM simulations. Marcus’ original work145 did not

aim at an explicit description of the solvent and he simply applied Born’s

model,149 where the reactants or inner shells are treated as spheres with a

radius a and a charge ei, and the surrounding solvent is described as a di-

electric continuum. In such a treatment the Gibbs energy of solvation takes

the simple form150

Gsolv = − e
2

2a

(
1− 1

εs

)
. (7.1)

Combining all the contributions named above, the Gibbs free energies of

both the reactants and the products can be defined as

GK = ε1,K + ε2,K −
e2

1,K

2a1,K

(
1− 1

εs

)
−

e2
2,K

2a2,K

(
1− 1

εs

)
+
e1,Ke2,K

εsR
(7.2)

with K∈{r,p} denoting the reactant or the product state (Note that the

distance R between the reactants is constant on this level of theory).

In a next step a reaction coordinate q is introduced, where one can inter-

pret q as the shortest path from the reactant state to the product state on

the Potential energy surface, which is spanned by considering all vibrational
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qr q‡ qp

λ

ΔG0
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GrΔG‡

Figure 7.1: Schematic representation of the two Marcus parabolas and their
intersection in the fully non-adiabatic regime, showing also the basic quan-
tities of the classical Marcus theory formalism.

and translational degrees of freedom. On this reaction pathway qr and qp

represent the geometry of the reactant and product state in their respective

equilibrium configurations considering both the reacting species and the sol-

vent, while q‡ denotes the nuclear configurations at the intersection point of

the two Gibbs free energy parabolas, which is defined by the condition

Gr(q
‡) = Gp(q

‡). (7.3)

The challenge now is to calculate the change in GK at any point q be-

tween qr and qp. From thermodynamics it is known that this change can

be calculated from the reversible work carried out from q to qK , but one

has to find an appropriate path. Marcus solved this problem by proposing a

thought experiment, where he first charges the reactants to a hypothetical

charge e0, quantifying the work required for that, and then discharges the

system again, but only allowing the electronic (high frequency) polarisation

of the solvent to adapt, while the static contributions remain in the charged

state. Following these two steps, he was able to define the Gibbs energy

change from the equilibrium to the non-equilibrium system as
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7.2. Classical Marcus theory

∆Gsolv,K =

[
(e1,K − e0,1,K)2

2a1,K
+

(e2,K − e0,2,K)2

2a2,K
(7.4)

+
(e1,K − e0,1,K)(e2,K − e0,2,K)

R

](
1

εop
− 1

εs

)
,

with εop being the optical (high frequency) dielectric constant. The

Gibbs energies at the intersection point can now be written as

GK(q‡) = GK(qK) + ∆Gsolv,K (7.5)

and from the definition of the Gibbs free energy of the reaction ∆G0 and

equation 7.3 follows

∆G0 = Gp(qp)−Gr(qr) = ∆Gsolv,r −∆Gsolv,p. (7.6)

By minimising ∆Gsolv,r while imposing the condition given in equa-

tion 7.3 via Lagrangian multipliers, Marcus could derive an expression for

the Gibbs Free energy of activation:

∆G‡solv = ∆G‡ =
λout

4

(
1 +

∆G0

λout

)2

=

(
λout + ∆G0

)2
4λout

(7.7)

where

λout = ∆e2

(
1

2a1
+

1

2a2
− 1

R

)(
1

εop
− 1

εs

)
(7.8)

is the so called (outer shell) reorganisation energy of the solvent in its

description as a dielectric continuum.

With this definition for the Gibbs free energy of activation the exponen-

tial part of the reaction rate is now be obtained with the Arrhenius type

form:

kET = A · e−
∆G‡
kbT = A · e−

(λ+∆G0)
2

4λkbT . (7.9)

7.2.2 Atomistic description of inner spheres

In a more microscopic picture, i.e. when the spheres used for the reactants

in the original theory are replaced by atomistically described systems leads
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to further development of Marcus’ transfer rates, by including the change

in reactant’s geometries during the process of electron hopping. When de-

veloping his theory from hard spheres representing ionic atoms in a solvent

(Fe2+/Fe3+), as described in the previous section, Marcus in a first step also

included their first solvation shell. With more than a single ion for each

reactant vibrational degrees of freedom, as well as changes in the reactant’s

size and geometry now become important, while the constraint that at the

transition point, in contrast to the respective equilibrium configurations, the

geometry and Gibbs free energy of the reactant and product state have to

be identical (see equation 7.3) remains valid.

For the definition of ∆G‡ one now has to change ∆G0 and λ accordingly:

For ∆G0 as the energy difference between the reactant and product equilib-

rium states regarding both charge and geometry, the change is trivial since

it only leads to a minor change of the terms in GK (see equation 7.2) and

in the electronic energies. λ on the other side, which is responsible for the

slope of the Gibbs free energy parabolas, an adaptation is required in order

to account explicitly for the vibrational degrees of freedom or the relaxation

of the reactant geometries to those of the product state.

In a paper published in 1965 Marcus established a formalism for the

calculation of the inner sphere reorganisation energy with its dependency

on the vibration modes of the reactants given as147,151

λin =
∑
j

f rj f
p
j

f rj + fpj
(∆qj)

2 , (7.10)

where fKj are the force constants of the jth normal modes and ∆qj

represents the change of the reaction coordinate relative to the equilibrium

structure. The total reorganisation energy now adds up to

λ = λin + λout (7.11)

7.2.3 The preexponential factor

The preexponential factor in equation 7.9 corresponds to the frequency of

electron jumps when the system is at the transition point. In Marcus theory

it is defined according to Fermi’s golden rule147,152,153
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kET =
2π

~
|〈p|H|r〉|2FC, (7.12)

where |〈p|H|r〉| defines a coupling element of the perturbed Hamiltonian

between the reactant (r) and product (p) state and FC is the Franck Condon

factor describing the probability of the system to arrive at the transition

point, where FC in a Marcus theory notation takes the form

FC =
1√

4πλkbT
e
− (λ+∆G0)2

4λkbT (7.13)

With this preexponential factor an extension of classical Marcus the-

ory into a quantum mechanical description is taking place, where now the

electronic interaction or coupling between the initial and final state at the

transition point determines the frequency of the electron transfer reaction.

Combining the classical part of k given in equation 7.9 with this transition

coefficient leads to the final form of the transition rate

kET =
2π

~
H2
rp

1√
4λkbT

· e−
(λ+∆G0)

2

4λkbT , (7.14)

where in this equation Hrp is the transfer integral between the reactant

and product state. In the picture of figure 7.1, Hrp changes the nature of the

crossing point of the two diabatic parabolas at q‡ into an adiabatic reaction

pathway with a saddle point at q‡, where ∆G‡ is lowered according to Hrp.

The calculation of Hrp within DFT for single-molecule junctions was the

main topic of Paper III of this thesis.

7.3 Electron hopping at metal surfaces

7.3.1 Adaptation of the transfer rate

When describing electron transfer reactions for an atom or molecule ad-

sorbed at an electrode surface, it is crucial to account for the large number

of electronic bands near the metal’s Fermi level. Therefore, kET has to be

changed by describing the various possible electron donor/acceptor states re-

placing the picture of the two intersecting parabolas with multiples of them,

as indicated in figure 7.2. Each of the parabolas describes one electronic

state of the resulting manifold, where the probability of finding it in one
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Figure 7.2: Schematic representation of the Gibbs free energy surfaces and
their intersections for electron transfer reaction between a metal electrode
and an adsorbed molecule.

of them is defined by the Fermi Dirac distribution of the electrode. As a

consequence the Gauss-like expression in equation 7.14 has to be modified

into an error function, accounting for the high number of metal bands which

can participate in the reaction.144,154,155 For a reduction and an oxidation

reaction, the transfer rate can then be expressed as

kred =
2π

~
1√

4λkbT
·
∫ ∞
−∞

H2
DA(ε)e

−(λ−∆G0+ε)
2

4λkbT f(ε)dε, (7.15)

and

kox =
2π

~
1√

4λkbT
·
∫ ∞
−∞

H2
mk(ε)e

−(λ+∆G0+ε)
2

4λkbT [1− f(ε)] dε, (7.16)

respectively, with the Fermi-Dirac distribution of the electrode

f(ε) =
1

eε−EFermi/kbT + 1
(7.17)

taking into account the thermal broadening of the Fermi levels of the

leads at finite temperatures. f(ε) is the same in both equations 7.15 and
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7.3. Electron hopping at metal surfaces

7.16 because in the oxidation reaction only the unoccupied states of the left

lead can provide a positive charge (hole) and only the occupied states of the

right lead can absorb it for the reduction reaction.

The electronic coupling Hmk between the molecular eigenstate m and

the metallic band i, is energy dependent because of the difference in overlap

of the molecular eigenstate participating in the electron transfer reaction,

with the various electronic bands of the electrode, so that144,156

Hmk(ε)
2 =

∑
k

|Hmk|2δ(ε− εk). (7.18)
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8
Coherent conductance based on the Transfer

integral (Paper III)

The aim of Paper III was to establish a formalism for the calculation of

the transfer integral HDA suitable for a single molecule junction setup. For

this purpose three methods known from quantum chemistry, namely the

energy gap approach,157 Migliore’s scheme using the molecular expansion

coefficients,158 and Larsson’s formula159–161 have been tested and adapted

to describe the transfer integral for a molecule trapped between two metallic

surfaces. The testing and comparison was performed on the level of a tight

binding Hamiltonian, as well as for molecular benchmark systems. Addi-

tionally, an extension of the techniques for the description of their k-space

dependence for a metallic DOS, has been introduced. Finally the zero bias

conductance for coherent tunnelling was determined in terms of HDA and

compared with the results of Paper I.

This chapter is organised in the following way: After a short motiva-

tion for Paper III, the three calculation schemes are presented as they were

derived and applied in recent literature. In the following sections the ap-

proaches are applied with a tight binding Hamiltonian and for exemplary

molecular systems with a description within DFT. Finally, their application

in a junction system is addressed and a scheme for the determination of

conductance in the coherent tunnelling regime in terms of HDA is presented.
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8.1 Motivation

Paper III was meant as a first approach towards the description of incoher-

ent electron transport in single molecule junctions by addressing the explicit

calculation of one of the three key parameters of Marcus theory, namely the

transfer integral HDA. Numerous calculation schemes for HDA are known

for inter- and intramolecular charge transport in the quantum chemical lit-

erature.157–170 For the description of electron hopping reactions in single

molecule junctions, however, these schemes often are not applicable due to

their reliance on accurate methods for treating excited states or have to be

adapted in order to account for k-space dispersion. Additionally, in order

to describe coherent and incoherent electron transport on the same level of

theory, as it is necessary for the comparison of the two regimes in Paper IV,

schemes have to be checked for their suitability in this context. Therefore we

chose three known approaches from quantum chemistry and adapted them

in order to be applicable for single molecule junction systems. In order to

be able to benchmark the three methods with NEGF-DFT calculations the

zero bias conductance for coherent tunnelling was determined from HDA,

where the two metallic surfaces play the roles of the donor and acceptor

states, while the compound’s MOs contribute as bridging channels mediat-

ing between the two.

By applying the schemes in that way we were able to compare the zero

bias conductance with the results of Paper I, and could determine the specific

contributions of frontier orbitals to it.

8.2 Calculation methods

8.2.1 The energy gap approach

The energy gap approach, which is based on Koopman’s theorem, is a widely

used method for the calculation of the transfer integral in quantum chem-

istry.157,165–167 Its basic idea is to exploit the fact, that at the transition

point (q=0 in figure 7.1) the splitting of the two diabatic Gibbs energy

parabolas into two adiabatic curves is directly proportional to the electronic

coupling between the donor and acceptor states. Hence, the transfer integral

can be calculated from the relation
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∆Eα,β,q=0 = 2HDA. (8.1)

This expression follows directly from the diagonalisation of the 2-state

Hamiltonian matrix

H2st =

(
εD HDA

HDA εA

)
, (8.2)

where εD and εA refer to the onsite energies of the diabatic donor and

acceptor states, respectively, and HDA is the electronic coupling between

them. By solving the eigenvalue problem for H2st it can be shown easily,

that the energy splitting of the resulting two adiabatic states α and β is

given by

∆Eα,β =
√

(εD − εA)2 + 4H2
DA. (8.3)

At the transition point (εD = εA) HDA is defining the adiabatic splitting

completely, as already stated in equation 8.1, and therefore the transfer

integral can be determined from the difference of the adiabatic eigenenergies

alone.

In order to define Hgap
DA (the superscript denotes the applied method) at

q6=q‡ equation 8.3 has to be applied. In such a case, however, an orthonormal

basis has to be used for A and D, or otherwise of a Löwdin transformation171

has to be performed.157

While, in rigorous terms, the energy gap method is only correct in a 2-

state approximation, the scheme can still be used in a good approximation,

when states bridging donor and acceptor are included. The requirements

for that are that the adiabatic eigenenergies are selected correctly and that

the coupling to the bridge states is small, as it was shown for a 3-state tight

binding Hamiltonian in Paper III.

8.2.2 The expansion coefficient method

In contrast to the energy gap approach, which relies directly on the adia-

batic states of the D-A system, the expansion coefficient method is based

on their relation to the expansion coefficients a, b defining them in linear

combinations of the diabatic donor and acceptor states
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8. Coherent conductance based on the Transfer integral (Paper III)

|Ψα〉 = a|ΦD〉+ b|ΦA〉
|Ψβ〉 = a|ΦD〉 − b|ΦA〉 (8.4)

where in a 2-state model the condition a2 + b2 = 1 has to be fulfilled.

This method has been developed comparatively recently by Migliore et

al.158,168,172 and has not yet been used by other authors that frequently.173,174

In his paper172 Migliore derived, that the coefficients a and b in equation 8.4

can be written as

a = 〈ΨD|Ψα〉 ∼= eiθ

√
1

2

(
1− εD − εA

∆Eα,β

)
(8.5)

and

b = 〈ΨA|Ψα〉 ∼= seiθ

√
1

2

(
1 +

εD − εA
∆Eα,β

)
, (8.6)

where eiθ is a phase factor and s=sgn(HDA). Combining equation 8.3

with equation 8.5 or 8.6 it follows, that

|HDA| ∼=
∣∣∣∣a (εD − εA)

2a2 − 1

∣∣∣∣√1− a2 (8.7)

and

|HDA| ∼=
∣∣∣∣b (εD − εA)

2b2 − 1

∣∣∣∣√1− b2, (8.8)

which by using the 2-state model condition a2 + b2 = 1 finally leads to

the definition172

|Hcoeff
DA | ∼=

∣∣∣∣ ab

a2 − b2 (ε1 − ε2)

∣∣∣∣ . (8.9)

for an orthogonal basis.

For atomistic descriptions, especially within a PAW framework, the used

basis set is not orthonormal by definition. Therefore an orthogonalisation

via the inclusion of the overlap matrix elements between donor and acceptor

(SDA = 〈ΨD|ΨA〉) becomes necessary and the final definition of Hcoeff
DA is

then given by
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Hcoeff
DA =

∣∣∣∣ ab

a2 − b2 (εD − εA)

(
1 +

a2 + b2

2ab
SDA

)
1

1− S2
DA

∣∣∣∣ , (8.10)

as it was applied for all DFT calculations of transfer integrals in Paper

III.

Although this formalism was derived for a 2-state system, the effect of

bridging states between donor and acceptor can be accounted for. In such

a case equation 8.4 changes into

|Ψα〉 = a|ΦD〉+ b|ΦA〉+ c|ΦB〉, (8.11)

with ΦB containing all the bridge states mediating between A and D.

The corresponding Hamiltonian takes the form

H3st =

 εD VDB VDA

VDB εB VBA

VDA VBA εA

 , (8.12)

where for the sake of simplicity an orthonormal basis is assumed. By

solving the secular equation HC = ESC for this three state model one can

now derive, that HDA in such a system can be calculated as172

HDA = H2st
DA +

([
sgn(a)c

|a|+ |b|

]
−
[
sgn(a)c

|a|+ |b|

]
q=0

)
VDB, (8.13)

where it was assumed that VDB=VBA. From that one can see that the

influence of c onto HDA is that of a perturbation term, which increases in

size with the distance of the reaction coordinate q to the transition point.

Since in Paper III we were only interested in the electronic coupling at (or

in the vicinity of) the transition point, the definition from the 2-state model

Hamiltonian has proven to be a good approximation for the calculation of

HDA.

8.2.3 The effective coupling scheme

The basic idea of the effective coupling scheme is that, the coupling of a

donor (D) and an acceptor (A) HDA connected by bridge states (B) can

be substituted by an effective coupling Heff
DA between D and A.159–161 The
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simplest model system for the determination of Heff
DA is a 3-state tight bind-

ing Hamiltonian as shown in equation 8.12. By applying perturbation

schemes159,175 the D-B-A system can now be substituted by a two-state

effective Hamiltonian of the form

Heff (E) =

(
εeffD Heff

DA

Heff
DA εeffA

)
=

(
εD VDA

VDA εA

)
+

(
VDB

VBA

)
1

E − εB

(
VDB VBA

)
.

(8.14)

Solving equation 8.14 for Heff
DA leads to the definition

Heff
DA (E) = VDA −

VBAVDB
εB − E

, (8.15)

which in a good approximation can be expressed as

Heff
DA ≈ VDA −

VBAVDB

εB − εD+εA
2

. (8.16)

Moving from a 3-state system to a case containing N bridge states, the

reduction of the corresponding Hamiltonian now has the size (N+2)×(N+2)

and the reduction leading to Heff can not be performed in a single step,

as it was done in equation 8.14. By a step wise reduction the Hamilto-

nian following the shown procedure and assuming the bridge states to be

orthogonal, however, one arrives at the definition

Heff
DA ≈ VDA −

N∑
i=1

ViAVDi

εi − εD+εA
2

, (8.17)

where the bridge states influence the effective coupling as independent

additive terms in a series.

8.3 Transfer integral on a tight binding level

As a first test of the three calculation schemes for HDA presented above

for a system, where donor and acceptor are connected via a single bridging

state, it is convenient to start with a simple tight binding Hamiltonian,

where the relevant quantities are just replaced by typical numbers and the

diabatic states are assumed to be orthogonal. For that purpose the three

state Hamiltonian introduced in equation 8.12 is applied and its elements
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8.3. Transfer integral on a tight binding level

are set to εA = εD=0,εB=1,VDA=-0.01,VDB=VBA=-0.1.

Solving the eigenvalue problem for H3st leads to the adiabatic states

Ψα = 0.7005ΦD + 0.1361ΦB + 0.7005ΦA,

Ψβ = 0.7071ΦD − 0.7071ΦA, (8.18)

Ψγ = 0.0962ΦD + 0.9907ΦB + 0.0962ΦA,

with their respective eigenvalues εα = -0.0294, εβ = 0.01 and εγ = 1.0194.

For applying the energy gap formalism for the calculation of HDA, it

is now important to select the appropriate two eigenstates of the system,

which form the relevant energy gap. In this case the selection is fairly easy

since Ψγ does exhibit an almost complete localisation on the bridging state.

As a consequence Hgap
DA can easily be calculated as

Hgap
DA =

εβ − εα
2

(8.19)

resulting in a value of 0.0197. The rather small deviation from the cor-

rect transfer integral (including the effect of the bridge orbital) of 0.02 for

this TB Hamiltonian arises from the fact that a three state model has been

applied and as a consequence ΦB also contributes to Ψα. One can account

for this deviation by transforming H3st into an effective 2-state Hamilto-

nian, according to the definition in the effective coupling scheme shown in

equation 8.14. For this particular example the effective Hamiltonian takes

the form

Heff =

(
−0.01 −0.02

−0.02 −0.01

)
. (8.20)

A Diagonalisation of Heff now leads to the effective states

Ψeff
α = 0.7071ΦD + 0.7071ΦA,Ψ

eff
β = 0.7071ΦD − 0.7071ΦA,

with their respective eigenvalues εeffα = -0.03 and εeffβ = 0.01, which

leads to Hgpap,eff
DA =0.02.

The usage of the effective coupling technique in this TB study is rather

straightforward. By making use of equation 8.16 one arrives at a value of
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0.02, which is not surprising since the method is almost identical to the

scheme for Hgap,eff
DA , with the only difference lying in the fact that Heff

DA is

calculated explicitly, while in the corrected energy gap method it is implicitly

contained in the adiabatic eigenvalues.

When applying Migliore’s expansion coefficient method the system has to

be slightly moved away from the transition point in its reaction coordinate,

due to the divergence of the method for a = b. Therefore the parameters

used in the TB Hamiltonian are changed slightly by shifting the energies of

donor and acceptor with respect to each other. In the following εD = −εA=-

0.01 is used. Solving the eigenvalue problem for this new Hamiltonian Hq 6=q‡

leads to the following eigenstates and energies:

Ψα = 0.8448ΦD + 0.1321ΦB + 0.5185ΦA, with εα = −0.0318

Ψβ = −0.5265ΦD + 0.0327ΦB + 0.8495ΦA with εβ = 0.0123

Ψγ = −0.0953ΦD + 0.9907ΦB − 0.0972ΦA, with εγ = 1.0194

By applying equation 8.9 one can now calculate Hcoeff
DA to be 0.0197,

which is within an acceptable accuracy compared with the results from the

other two methods.

8.4 Application within DFT

A physical meaningful calculation of the transfer integral from DFT has

to account for the single particle character of the Kohn Sham eigenstates,

where the presented methods can be used in two ways: The first is a direct

application of the Hamiltonian resulting from the self consistent cycle, where

typical DFT problems such as the HOMO-LUMO gap underestimation are

directly affecting the results. The second way is to calculate HDA from total

energies resulting from DFT, which in principle is more correct, but creates

the necessity for all three methods, to be applied on this level of theory.

For the application within this level of accuracy in Paper III, the energy

gap method and expansion coefficient method have been combined with a

∆SCF based procedure for the calculation of the systems total energies. The

effective coupling method does not have a variation, which could be used on

a many body level, since it makes direct use of the matrix elements in the
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Kohn Sham Hamiltonian.

8.4.1 Implementation on a single particle level

The single particle Hamiltonian (HKS) based application of the three schemes

is rather straightforward and follows the same procedures described in sec-

tion 8.2. However, it has to be accounted for that contrarily to the atomic

orbitals in a simple TB-model the donor and acceptor states in DFT calcula-

tions consist of more than a single basis function, and are rather hybridised

fragment orbitals of the whole system. Therefore, in a first step HKS needs

to be transformed so that suitable donor, acceptor and bridge states form its

basis vectors, explicitly. This can be done by subsequent subdiagonalisations

for the full system as described in section 4.4.1. After such a procedure the

eigenfunctions of HKS
trans explicitly reflects the donor-bridge-acceptor setup

and the three described schemes can be applied in the following way:

Energy gap method

The application of the energy gap approach consists of solving the eigen-

value problem for HKS
trans and a subsequent identification of the two created

adiabatic states and their respective energies, in order to apply equation 8.3

for the calculation of HDA. This identification is achieved by sorting states

formed by hybridisation according to their amplitudes on the donor and

acceptor, determined via

a = 〈ΦD|Ψα〉, b = 〈Ψα|ΦA〉, (8.21)

with α denoting the respective selected adiabatic state.

From the eigenenergies of the two selected adiabatic states, which rep-

resent the bonding and antibonding hybrid of D and A linked by the bridge

states, the adiabatic energy splitting can be determined.

Expansion coefficient method

Similar to the calculation of Hgap
DA, the expansion coefficient scheme starts

with solving the eigenvalue problem for HKS
trans and a subsequent identifi-

cation of the bonding and antibonding states attributed to the donor and

acceptor. In a second step one of the two adiabatic states is chosen for the
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determination of the expansion coefficients a and b via equation 8.21. Fi-

nally, HDA is calculated from equation 8.10, with εA and εD being the onsite

energies of the donor and acceptor states in HKS
trans, respectively.

Effective coupling method

The application of the effective coupling method directly uses the matrix

elements of HKS
trans, where the HDA can be calculated directly from equa-

tion 8.17, with VDi and ViA being the non-diagonal matrix elements 〈ΨD|HKS
trans|Ψi〉

and 〈Ψi|HKS
trans|ΨA〉 and εi the onsite energy of the respective bridge state

i, obtained from respective diagonal elements of HKS
trans.

8.4.2 Implementation based on a many body level

For a many body implementation of the schemes it is crucial that all the

energies used in the formalism are total energies resulting from DFT calcu-

lations. In order to be able to calculate these energies the ∆SCF scheme

introduced in section 2.5 has been applied, since it is the ideal tool for manip-

ulating the occupation of diabatic as well as adiabatic states of the system.

Many body applications for both the energy gap method and the expansion

coefficient scheme have been developed, where the ∆SCF procedure has to

be applied differently in each of them as described in detail in the following

paragraphs.

Energy gap method

The crucial part of a many body application of the energy gap scheme is

the identification of the bonding and antibonding adiabatic states, result-

ing from a hybridisation of the diabatic donor and acceptor states. The

corresponding ∆Eαβ is the difference in total energy of the integer charged

molecule with the excess electron (hole) residing in the bonding and the

antibonding MO, respectively. For forming these two many body states the

∆SCF routine can be applied, where it can be defined explicitly from which

MO the transferred electron is taken out and the total energies of the re-

spective many body states can be evaluated accordingly, where the transfer

integral is then obtained from equation 8.1.
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Expansion coefficient method

For the determination of HDA via the expansion coefficient method, three

DFT total energy calculations are needed. These consist of a DFT-calculation

of the system at the transition point q‡ for the definition of the adiabatic

state, and two calculations, where the electron(hole) resides in one of the

diabatic states, respectively. This is required because one needs the total

energies for these three systems, as well as the expansion coefficients of both

the adiabatic and the diabatic states in terms of the applied basis functions

in order to apply equation 8.9. In order to determine the total energy of

the two diabatic states the ∆SCF method is applied, where the excess elec-

tron(hole) is constraint to one of the two diabatic eigenstates, respectively.

The expansion coefficients are again calculated, via equation 8.21, but in

contrast to the single particle Hamiltonian based scheme the Ψα, ΦD and

ΦA as well as the total energies are determined from three different DFT

calculations.

8.5 Transfer integral in a single molecule junction

For the situation, where the transfer integral is calculated for two metal

surfaces bridged by a molecule, it has to be accounted for the fact that not

only a single donor and acceptor state are involved in the electron transport

but rather all the metallic bands contributing to the respective densities of

states of the two metal surfaces. For this purpose the picture developed in

the last section has to be extended again in order to account for the resulting

higher number of possible donor and acceptor states.

In Paper III we were mainly interested in the zero bias conductance

within the coherent tunnelling regime arising from HDA(EF ), in order to be

able to compare with the results from Paper I as a benchmark. Hence the

first task was to identify the surface states, which give a non-zero contribu-

tion to the DOS at the Fermi energy. This can be done by first performing

three subsequent subdiagonalisation runs, as described in section 4.4.1 in

order to create Hsp
trans, whose basis vectors consist of donor (left metal sur-

face),bridge (molecule) and acceptor (right metal surface) fragment orbitals.

In a next step the contribution of each metallic eigenstate (ρ) to the total

DOS at EF is determined by broadening the states with a Gaussian function
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ρi(j)(EF ) =
e
−
(
εi(j)−EF√

kbT

)2

√
πkbT

, (8.22)

where the subscripts i and j refer to the two metallic surfaces respectively

and T denotes the electronic temperature, which in Paper III has been

chosen to be room temperature.

The relevant metallic bands are used as the donor and acceptor states

and the transfer integral between each of the donor (ΨDi)-acceptor (ΨAj )

pairs can now be calculated applying the three schemes in a single particle

description described in the previous sections. In order to deal with the

high number of donor and acceptor states, the transfer integrals for each

pairing is then calculated explicitly on sub-matrices Hsp
trans,Di,Aj

, with the

size (N+2)×(N+2), containing only the selected donor and acceptor state

but the whole range of N bridging states between them. As a result every

pairing of Di and Aj has its own transfer integral HDiAj , where the con-

tribution of all bridge states is included. In a final step the total transfer

integral between the two metallic surfaces is calculated by weighting HDiAj

with the contribution of Di and Aj to the total DOS at the Fermi energy:

HDA,k(EF ) =

∑N
i,j=1HDiAj ,k(EF )(ρ(EF )i,k + ρ(EF )j,k)∑N

i,j=1 ρi,k(EF ) + ρj,k(EF )
. (8.23)

The subscript k in equation 8.23 refers to the k-point dependency of

HDA,k(EF ), which arises because the donor and acceptor states are metal-

lic bands. In order to include their band dispersion in the calculation of

HDA a k-space integration is performed, following the definition by Gosavi

and Marcus176 and substituting the integral over the wave vectors k by a

discretised sums over the weighted contributions for each pairing:

HDA(EF ) =

∑
kHDA,k(EF )

∑N
i,j=1 ρi,k(EF ) + ρj,k(EF )∑

k

∑N
i,j=1 ρi,k(EF ) + ρj,k(EF )

(8.24)
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8.6 Relationship between Transfer integral and tun-

nelling conductance

The relation between HDA and the conductance in the coherent tunnelling

regime used in Paper III is based on a formulation by Abraham Nitzan.177–179

In his papers he developed this relationship for a system consisting of a donor

and an acceptor, connected by a bridge, which is segmented into a chain of N

states, and where the whole system is adsorbed on metallic leads. Therefore

in his model the transfer integral for the electron hopping reaction takes the

form

HDA(E) = VD1VNAG1N (E), (8.25)

where VD1 and VNA are the coupling matrix elements between the donor

state and the first state in the bridge, and between the last bridge state and

the acceptor state. The part inside the bridging chain is described by the

non-diagonal element G1N (E) of the bridge’s Green’s function.

Accordingly one can also define a conductance based on the Landauer’s

formula65 in the weak coupling regime or by applying Fermi’s golden rule,

which has the form

g(E) = G0|GDA(E)|2ΓLD(E)ΓRA(E), (8.26)

and where G0 is the conductance quantum, and Γ
L/R
A/D(E) are the broad-

ening matrix elements related to the coupling of the donor and acceptor to

the metallic leads (see section 3.3). In the specific case of Paper III this

directly corresponds to the imaginary part of the lead self energies ΣL/R

arising from the system setup, which consists of lead (L),scattering region

(S) and right lead (R), following the picture shown in figure 3.4. GDA is

a matrix element of the scattering region’s Green’s function related to the

donor-acceptor interaction, where the molecular bridge states have been ac-

counted for by a projection onto the molecular subspace.177

By using the correspondence between equations 8.25 and 8.26 the rela-

tion between GDA(E) and HDA can now be formulated as177,179
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GDA(E) =
VD1VNAG1N (E)

(E − ED − ΣD(E))(E − EA − ΣA(E))
(8.27)

=
HDA(E)

(E − ED − ΣD(E))(E − EA − ΣA(E))
. (8.28)

Finally, by combining equation 8.26 and 8.28, the conductance for co-

herent tunnelling can be expressed as a function of the transfer integral:

g(E) = G0
|HDA(E)|2ΓD(E)ΓA(E)

((E − ED)2 + (ΓD(E)/2)2)((E − EA)2 + (ΓA(E)/2)2
. (8.29)

In Paper III we were only interested in the conductance at zero bias and

could therefore simplify equation 8.29 by setting E=ED=EA=EF . Addition-

ally, we also assumed ΓA(E) and ΓD(E) to be equal due to the symmetry of

the scattering region in the transport direction and chose a value of 0.5eV

within a wide band approximation for it, which is reasonable for the coupling

strength between gold layers in a bulk structure.72 With these simplifica-

tions equation 8.29 becomes the simple relation

g(EF ) ≈ 64G0|HDA(EF )|2, (8.30)

which for a comparison of the results from Paper III and I, was used

in order to transform the conductance obtained from NEGF-DFT into a

transfer integral HG
DA(EF ).

8.7 Outline of results and discussion of Paper III

In Paper III the presented methods for the calculation of HDA have been

applied to four different systems with step wise increase in complexity com-

bined with benchmarking at every level. The first example shown is the

application on a tight binding Hamiltonian as it was also used in section 8.3

in order to present the methods as well as their strengths and weaknesses

decoupled from any higher level ab initio issues. The next system was an

ethylene dimer as it was studied by Valeev et.al157 in order to benchmark the

approaches to real systems, but without any molecular bridge between donor

and acceptor. In order to introduce bridge states within a rather simple ex-
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ample, the next system we investigated was a tetrathiafulvalene-diquinone

anion (Q-TTF-Q−) as it was also studied by Wu and van Voorhis.169 Fi-

nally, the schemes were applied for a single molecule junction setup, where

the results from the transfer integral calculations for the conductance in co-

herent tunnelling were compared with those obtained from NEGF-DFT in

Paper I.

When applying the three calculation methods for the junction system of

Paper I we used three different setups, namely a molecule between two Au

pyramids and the periodic junction with both only the Γ-point and a set of

8 transversal k-points in the irreducible Brillouin zone. The latter two cases

were then directly compared with the values of the transfer integral calcu-

lated from the NEGF-DFT zero bias conductance and using equation 8.30,

where an excellent agreement could be achieved between NEGF-DFT and

the three quantum chemical schemes for the calculation of HDA.

As an additional benefit the contribution from the frontier orbitals of

the molecular bridge could be explicitly evaluated from the effective cou-

pling method, where it could be nicely shown that in the neutral state of

the studied molecule the main contributor to the zero bias conductance is

the molecular LUMO, with the influence of the HOMO and HOMO-1 being

negligible. In the charged molecule, which we created by using the ∆SCF

based method, described in section 5.4, on the other hand the conductance

is mainly determined by the molecular HOMO-1. The HOMO’s contribu-

tion is only minor in both cases, which is due to its rather high degree of

localisation on the molecular centre and its resulting low coupling to both

metallic surfaces.
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9
Electron hopping in single molecule junctions

(Paper IV)

The topic of Paper IV was a study of electron hopping as a mechanism for

electron transport in a single molecule junction and a quantitative compar-

ison with coherent tunnelling for the interpretation of the measured current

in STM or MCBJ experiments. Various factors determine, which of the

two processes is dominant for the conductance of a compound, where in

our work we focused on a transition between the coherent tunnelling regime

and incoherent electron hopping in dependence on the length of molecular

wires with a varying number of Ru(PPh2)4(C2H4)2 monomers trapped be-

tween two metal electrodes via pyridyl anchor groups and the effect of an

electrochemically applied gate voltage.

The chapter starts with a short introductory section, where the motiva-

tion for the paper is given, followed by a description of the methods used

for the calculation of the quantities needed within Marcus theory for the

definition of a two step hopping conductance in a single molecule junction

environment, namely the driving force ∆G0, the reorganisation energy λ

and the transfer integral HAu−Mol. Then an adequate expression for the

transfer rates for such a scenario will be derived. Finally an outline of the

results of Paper IV and a short discussion of them is given.
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9.1 Motivation

The main goal of the paper was a direct comparison of both transfer regimes

in dependence on the molecular length and the influence of a gate potential.

While coherent tunnelling is mostly described within Landauer theory, as

it was presented in chapter 3 and where its treatment is well established

the community, a complete description of electron hopping as an electron

transport regime in single molecule electronics on the basis of atomistic

methods has not been achieved before. Therefore one task for the work

presented in Paper IV was the development of calculation schemes for the

main quantities in Marcus theory, namely the transfer integral HDA, the

reorganisation energy λ and the driving force ∆G0 of the reaction. In order

to be able to directly compare the two respective conductance values for

coherent tunnelling and electron hopping it also had to be ensured, that both

theories are treated on the same level of approximation, where Landauer

theory is usually applied on a single particle level within DFT. Therefore

we also adapted our description of electron hopping in such a way that

this single particle description is matched in order to make a quantitative

comparison reasonable. The starting point of this comparison was the Ru-

complex also studied in Paper I and III.

9.2 Calculation schemes for the key parameters of

Marcus theory

9.2.1 Driving force

The driving force ∆G0 within Marcus theory is generally defined as the

difference of the minima of the Marcus parabolas, which corresponds to the

ground state energy of the initial and final state of the reaction in their

respective equilibrium geometries. According to this definition one could, in

principle, calculate ∆G0 in a single molecule junction setup by comparing

the ionisation potential of the compound in its neutral and charged state

and relate it to the work function of the metal electrodes in both states.

Such a procedure, however, would not include screening effects during the

adsorption process, which lead to a shift of the molecular eigenstate energies

relative to the Fermi level of the metal µ and a possible change in the HOMO-
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LUMO gap size. Therefore, we decided to apply a method which includes

these effects directly and is also consistent with our description of coherent

tunnelling.

Since the first of the two subsequent redox reactions in the transport

through the junction we studied is an oxidation of the molecular compound,

we defined the driving force of the reaction as the energy needed to take out

an electron from the molecular HOMO,

Eox,mol = εHOMO − Evac (9.1)

and to then add it to the electrode’s Fermi level EF . Combining the two

energetic contributions leads to the simple expression

∆G0 = εHOMO − µ. (9.2)

Such a definition is valid on a single particle level, where the relaxation

of the other molecular eigenstates as a consequence of the missing electron

is not included, and the respective change in the Fermi level of the metal is

on the other side negligible due to the high number of electronic bands in

the relevant energy range near EF .

Another interpretation of this definition is that ∆G0 corresponds to the

change in the electrode’s Fermi level via an applied bias or the change of

the HOMO’s eigenenergy via an applied gate potential needed for achieving

resonance between the molecular state and the metallic Fermi level. Such a

definition is adequate for the comparison we wanted to make in our paper

and also allows for a straightforward implementation of an electrochemical

gate within a rigid-band approximation, in which the effect of a gate is

simply described by a rigid shift of the molecular eigenvalues with respect

to EF .

9.2.2 Reorganisation energy

In a single molecule junction setup an additional contribution has to be

added to the definition of the reorganisation energy given in section 7.2,

namely the image contribution arising from the screening of the charge due

to the presence of the metallic surfaces,142,143,147 which can be simply added

to λtot:
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λtot = λin + λsolv + λimage. (9.3)

The calculation of λin is straightforward, since it is the energy, which

is required to relax the nuclei from the systems equilibrium state, namely

the uncharged molecule in the junction setup, to its oxidised state, i.e. the

positively charged compound between the surfaces or vice versa. Because

during the reaction no structural rearrangement of the infinitely large metal

electrodes can be expected, only changes in the molecular geometry change

have to be considered. Therefore, λin,if for the molecular oxidation reac-

tion can be calculated as the total energy difference of the neutral (initial)

molecule in the equilibrium structure of the charged (final) state E0(qf ) and

its relaxed (initial) geometry E0(qi). For the second reaction, which is a

reduction of the charged molecular compound, λin,fi is defined accordingly,

namely as the difference of the total energies of the charged system in the

nuclear arrangement of the neutral system E+1(qi) and its own equilibrium

geometry E+1(qf ). According to Marcus theory the curvature of both Gibbs

energy parabolas should be identical (see figure 7.1). In practical calcula-

tions, however, the respective values can differ slightly,180 and that is why

we calculated the inner part of the reorganisation energy as

λin =
λin,if + λin,fi

2
=
E0(qf )− E0(qi) + E+1(qi)− E+1(qf )

2
. (9.4)

For the computation of λsolv we employed a solvent continuum model

based on the generalised Born approximation,149 where the main ingredients

for the calculation of the solute-solvent electrostatic polarisation (Gpol) are

the so called atomic Born radii αi, which were calculated via an analytical

method established by Qui et.al.181 The derivation of this method starts

with the calculation of the atomic contribution to the polarisation energy,

which assumes a unit charge on the atoms of the solute and a high dielectric

constant of the surrounding medium

G′pol,i =
1

RvdW,i + φ+ P1
+

1,2∑
j

P2Vj
r4
ij

+

1,3∑
j

P3Vj
r4
ij

+

1,≥4∑
j

P4VjCCF

r4
ij

, (9.5)
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with RvdW,i being the van der Waals radius of atom i (as taken from

the definition of the OPLS force field182 in our work), φ the dielectric offset,

P1-P4 empirical scaling factors as derived by Xie and Haijan,183 and CCF

the close contact function for nonbonding interactions, which is defined as

CCF = 1.0 if

(
rij

Rvdw,i +RvdW,j

)2

>
1

P5
(9.6)

and otherwise

CCF =

[
1

2

[
1.0− cos

[(
rij

RvdW,i +RvdW,j

)2

P5π

]]]2

(9.7)

with P5 as an empirical cutoff parameter.

The atomic volumes Vj used in equation 9.5 are defined as the spherical

atomic volumes obtained from the respective van der Waals radii minus the

part of this volume with overlap to neighbouring atoms, resulting in

Vj =
4

3
πR3

vdW,j −
∑
k

1

3
πh2

jk (3RvdW,j − hjk) (9.8)

where hjk is the deviation of the vector from the centre to the outer

border of atom j from RvdW,j due to the intersection with other atoms k,

hjk = RvdW,j

(
1 +

R2
vdW,k −R2

vdW,j − r2
jk

2RvdW,jrjk

)
. (9.9)

The atomic Born radius of atom i with a charge of 1e can now be calcu-

lated by

αi =
1

G′pol,i
. (9.10)

I has to be noted, that in both equation 9.5 and 9.10 the coulomb con-

stant has been set to one, since it cancels out.

With this definition of the atomic Born radii the outer shell reorganisa-

tion energy λsolv,GB can now be calculated as the difference of the electronic

polarisation Gibbs Free energy ∆Gpol between the neutral system and the

oxidised one:
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Figure 9.1: Schematic representation of the image charges created by a
positive charge between the two parallel planes at a distance L, where their
respective positions and distances to the original charge are shown explicitly.
The corresponding terms in the sum of equation 9.14 are shown in brackets
at the corresponding distances.

λsolv,GB = ∆Gpol =
1

8πε0

(
1

ε∞
− 1

εs

)∑
i

∑
j

∆qi∆qj
fGB

, (9.11)

with184

fGB =

√
r2
ij + α2

ije
−

r2
ij

2α2
ij (9.12)

and

αij =
√
αiαj . (9.13)

where ε∞ and εs are the optical and static permittivities of the solvent,

respectively, and ∆qi(j) are partial charge differences for each atom between

the neutral and the oxidised compounds in vacuum, which were obtained

from a Mulliken charge analysis within DFT.103

The last contribution to λtot in equation 9.3, namely λimage was calcu-

lated from an image charge model consisting of an infinite sum of Coulomb

interactions between the partially charged molecule caused by an infinite

number of mirror images to the charge due to the 2-electrode setup127,128

(see figure 9.1):
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λimage = −1

2
(

1

ε∞
− 1

εs
)

N∑
i,j

∆qi∆qj × (9.14)

∞∑
n=1

[
1√

(zi + zj − 2nL)2 +R2
ij

+
1√

(zi + zj + 2(n− 1)L)2 +R2
ij

− 1√
(zi − zj + 2nL)2 +R2

ij

− 1√
(zi − zj − 2nL)2 +R2

ij

]
,

where R2
ij = (xi−xj)2+(yi−yj)2 and xi,j , yi,j , zi,j are the positions of the

atoms of the molecule, with the z coordinate being the transport direction.

9.2.3 Transfer integral

The determination of the transfer integral HDA was also the main topic

of Paper III, where we have shown that the conductance for coherent tun-

nelling, which is usually determined from Landauer theory can also be calcu-

lated via a formalism based on the transfer integral. For a two-step electron

hopping reaction, however, the required transfer integral is a different one,

where one is only interested in the direct coupling between one electrode

and the molecule for each of the two reactions.

In Paper III we have shown, that the transfer integral is in principle

both energy and k-point dependent, because it is related to the density of

states in the metallic electrode. In order to make the comparison between

our coherent and incoherent transport results as consistent as possible, a

simplified scheme compared with the definitions in Paper III on the basis of

Landauer theory was applied as it was already deduced and used in a pub-

lication by Stadler and Marcussen.72 This scheme exploits the fact that the

width of a peak in a single MO transmission function calculated in Landauer

theory is directly related to HDA on a single particle level. Accordingly, for

a given molecular orbital MOX HDA can be computed by a numerical fit of

a Lorentzian function of the form

TMOX(E) =
4H2

DA,MOX

4H2
DA,MOX + (E − εMOX)2

. (9.15)
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9. Electron hopping in single molecule junctions (Paper IV)

9.3 Incoherent single molecule conductance

For a direct comparison of the conductance for a particular compound from

coherent tunnelling and electron hopping, an appropriate definition of it

for both regimes is necessary. In our work we limited the descriptions to

the case of an infinitesimally small source-drain voltage in order to exclude

finite bias effects. Within Landauer theory this zero bias conductance Gcoh

is defined as a product of the conductance quantum G0 and the value of

the dimensionless transmission function T (E) = Tr(GdΓLG
†
dΓR), where Gd

is the Green’s function of the device and ΓL/R is the imaginary part of the

lead self energies, as it was described in chapter 3.

The calculation of the conductance in Marcus theory, on the other side, is

based on two consecutive hopping reactions, i.e. an electron (hole) jump onto

and a subsequent jump from the molecule onto the other electrode. In Paper

IV the first reaction consists of an oxidation of the molecule, which creates

a positively charged compound followed by a reduction on the second metal

surface, thereby creating the measured current by two consecutive jumps.

In each of the two reactions only the transfer integral of one of the two

metallic electrodes is involved, while the second electrode only contributes

to ∆G0 and λ. Therefore the reaction rates describing the electron jump at

one of the two electrodes can be calculated according to equations 7.15 and

7.16, where the key parameters have to be determined with respect to the

full junction system, as discussed in section 9.2.

In order to calculate the conductance one has to evaluate the reaction

rates for both hopping steps and combine them according to kinetic the-

ory. Migliore et al. have shown that the zero bias conductance based on

incoherent two-step hopping can be calculated as144

Ghop,0V =
e2

kbT

kox,Lkred,R
kox,L + kred,L + kox,R + kred,L

. (9.16)

where the direction of the electron transport has been chosen to be from

the left (L) to the right (R) electrode.

For the case studied in our work the junction is symmetric regarding the

electrodes and molecular structure in the transport direction, therefore re-

sulting in identical electrode band structures and transfer integrals HAu,Mol

on both sides. As a consequence, also the reaction rates are symmetric, that
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9.3. Incoherent single molecule conductance

is kox,L = kox,R and kred,L = kred,R, and the conductance in equation 9.16

can be simplified to

Ghop =
e2

2kbT

koxkred
kox + kred

. (9.17)

9.3.1 Influence of an electrochemical gate

One of the main advantages of an electrochemical cell in an experimental

setup is that a gate potential can be applied in a single molecule junc-

tion without a third electrode on the nanoscale.35,36,185 An overpotential

η introduced via a third electrode, being part of the macroscopic setup of

the electrochemical cell, however, can still be applied, which changes the

conductance by shifting the molecular eigenstates’ energies relative to the

electrode’s Fermi level, thus moving them into the bias window scanned

in the experiments (for a more detailed description see the introduction of

chapter 5). In a single particle description such a shift is achieved by a direct

change of ∆G0, as it was first shown by Ulstrup et al.,142 which redefines

the transfer rates into

kred,η =
2π

~
1√

4λkbT
·
∫ ∞
−∞

H2
DA(ε)e

−(λ−∆G0
η+ε)

2

4λkbT f(ε)dε, (9.18)

and

kox,η =
2π

~
1√

4λkbT
·
∫ ∞
−∞

H2
DA(ε)e

−(λ+∆G0
η+ε)

2

4λkbT [1− f(ε)] dε, (9.19)

with ∆G0
η = ∆G0 + eη.

Figure 9.2 shows how the applied overvoltage influences the reaction

rates in the junction as well as the resulting conductance for a two step hop-

ping reaction. As expected from equations 9.18 and 9.19, the transfer rates

shown in the left panel take the form of error functions. These error func-

tions cross at −∆G0 and their inflection point is shifted by ∓λ with respect

to −∆G0. The mirroring of the two error functions arises from the Fermi-

Dirac distributions, which determine whether the occupied or unoccupied

metal bands participate in the reaction. Relating this functional behaviour
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Figure 9.2: Gate dependence of the reaction rates, defined in equations 9.18
and 9.19 (left panel), and the conductance according to equation 9.17 (right
panel) shown at two different values for λ, where the solid lines correspond
to a calculation with λ=0.1eV and the dotted lines represent λ=0.3 eV. ∆G0

has been set to 0.5eV and the electrodes have been approximated by a wide
band limit in both panels. In the left panel kox and kred , shown in red and
black respectively, are normalised by setting 2π

~ H
2
DA=1.

to the two-step hopping conductance reveals a maximum in the conduc-

tance, when eη cancels ∆G0 completely, i.e. for ∆G0
η = 0. The absolute

value of the conductance in the right panel of figure 9.2 at this resonance

gate potential on the other side depends on the value of the reorganisation

energy, which is responsible for the outward shift of kox,η and kred,η with

respect to −∆G0. The influence of the electronic coupling was neglected in

figure 9.2 by setting the super exchange rate 2π
~ H

2
DA to one. In a practi-

cal system, however this preexponential factor scales the reaction rates and

changes their maximum to 2π
~ H

2
DA. This scaling is directly projected onto

the conductance accordingly.

9.4 Outline of Results and Discussion of Paper IV

The most striking finding in Paper IV is that, while the conductance in the

coherent tunnelling regime exhibited an exponential decay of conductance

as expected, we found that the conductance resulting from electron hopping

does even rise with the length of the molecular wire for small lengths. The

reason for this initial increase is that the reduction of the molecular HOMO-

LUMO gap with the number of contained atoms results in a decrease of

∆G0 and therefore an increase in the exponential function in kox/red. In ad-

dition, the reorganisation energy is also lower for higher molecular lengths,
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Figure 9.3: Molecular length dependence of the single molecule conductance
from coherent tunnelling Gcoh (shown in blue) and two step electron hop-
ping Ghop (marked in red). The conductance, which would be accessible
to experiments for such molecular wires, being Gcoh+Ghop, is represented
by the black line. The coloured dots on each line refer to the values di-
rectly calculated from DFT for up to three Ru-centres, while the values for
higher molecular lengths, marked with black dots, have been determined
via extrapolation of the key parameters in Marcus theory and assuming ex-
ponential decay for Gcoh. The respective evolution of the transfer integral
H2
DA (purple line) and the remaining factor Ghop/H2

DA (green line), which
is exclusively defined by ∆G0 and λ are shown in the inset.

which can be attributed to the added charge being delocalised over a wider

area. The electronic coupling, however, decreases rapidly with the molecu-

lar length, which dominates the behaviour of Ghop at large molecular wire

lengths.

We further extrapolated our results in order to determine, where the

two conductance values corresponding to electron hopping and coherent

tunnelling, respectively, cross. The result of this extrapolation is shown

in Figure 9.3. We could determine that the molecular length corresponding

to the crossing point is at 5.76 nm, which is in good agreement with other

transition lengths for similar molecular wires found in the literature.186–189
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Figure 9.4: Extension of the length dependence shown in figure 9.3 into a
second dimension with an applied gate potential as an additional coordinate,
where the contour plots contain Gcoh (a), Ghop (b) and Gcoh+Ghop (c).
The numbers given in the colour code on the side of the panels refer to a
logarithmic scale and should be understood as powers of ten. The black
dashed line in panel (c) represents the crossover point between Gcoh and
Ghop.

Finally we examined the gate dependence of this conductance crossing

point. The result is shown in Figure 9.4. We found that the change in the

critical molecular length is minor when an electrochemical gate voltage is

introduced into the junction. The reason for that is that both coherent tun-

nelling and electron hopping depend on the energetic position of the molec-

ular HOMO with respect to the metal’s Fermi level. Therefore a shift of the

eigenstates arising from a gate potential influences both conductances in

the same direction, but slightly favouring electron hopping at negative gate

potentials (a HOMO shift towards EF ) due to the faster decay of the Gaus-

sian tails compared with the typical Lorentzian form in coherent tunnelling.

As a consequence a slight almost linear shift of the critical length towards

shorter molecular lengths has been found. For a more detailed discussion of

the results, which have been shortly summarised in this section, I refer to

Paper IV included in the thesis.
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10
Redox switching in single molecule junctions

(Paper V)

The aim of Paper V was the identification and characterisation of the mech-

anism behind hysteresis features observed in the current-voltage curves in

break junction experiments performed by our collaborators at IBM Zürich.

The molecular compounds within the junctions under study for this task

were three transition metal complexes differing in the species of the central

metal atom (see figure 10.1).

While all three compounds exhibited hysteresis features in the I/V-

measurements, only the Mo-complex has shown an abrupt switching in the

conductance, which could be preserved even when the bias was turned back

to low values. We elaborated a model which explains these hysteresis effects

as well as the abrupt switching of the conductance with electron hopping

reactions between two redox states with different coherent tunnelling con-

ductances. In order to enable this kind of hysteresis a molecular eigenstate,

only weakly coupled to the electrodes has to be present on the molecule

in the junction. This MO does not (or only marginally) contribute to the

conductance, but is crucial for the electron hopping reactions, which are

responsible for the switching.

This chapter is organised in the following way: First calculations for

the ground state of the three molecules are presented, where our reasoning

leading to the selection of the model is also explained. Then the applied

formalism is introduced and our choices for its different parameters are mo-

tivated and discussed. Finally, an outline of the results of Paper V including

a comparison with the experiments of our partners is given.
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MoRuFe

Figure 10.1: Chemical structures of the three compounds stud-
ied in Paper V, namely trans − (SC6H4C ≡ C)2M(1, 2 −
bis(diphenylphosphino)ethane)2 (M = Mo,Ru) and trans − (SC6H4C ≡
C)2M(1, 2− bis(diethylphosphino)ethane)2 (M = Fe), where the junction
configuration is shown.

10.1 Motivation

Encouraged by the appearance of hysteresis in some of the experiments

performed in Paper II, Paper V is the result of an application of similar

transition metal complexes as single molecule switches. For this purpose

the molecular structure has been simplified by substituting the dinuclear

iron compounds, with complexes containing only one metal atom, which

was varied to be Fe, Ru or Mo, respectively. Performing MCBJ based I/V

sweeps on the three compounds revealed, that all of them exhibit hysteresis,

but only the Mo-complex has the ability to switch into a 1000 times higher

conducting state irreversibly.

From a theory perspective it was now a challenge to identify the switch-

ing mechanism responsible for these experimental findings. From differences

in the electronic structure for the three compounds an explanation could be

proposed combining coherent tunnelling and electron hopping, whose imple-

mentation within DFT has not been achieved before to our best knowledge.

10.2 Electronic ground states calculated within DFT

One of our main findings in Paper V was that the nature of the electronic

ground state of the Mo-complex compared with the Fe/Ru-compounds, as

illustrated in figure 10.1, is crucial for explaining its unique ability to exhibit

irreversible switching behaviour. In this section the electronic structure de-

tails defining the MO eigenvalues and occupations for the three molecules

in vacuum and in the junction environment are provided. For this pur-

pose both predictions from Ligand Field Theory (LFT)190 as well as DFT

electronic structure calculations are presented and compared.
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Figure 10.2: Energetic ordering and electron occupations of the d-orbitals
in an octahedral ligand field according to Ligand Field Theory for the three
studied compounds, where the symmetry of the respective d-states is de-
noted explicitly.

10.2.1 Predictions from Ligand Field Theory

As a starting point for our investigation of the ground state of transition

metal complexes we analysed the nuclear configurations of the three com-

pounds with an emphasis on the symmetry of the ligand shells around the

metal cores. The studied complexes consist of the transition metal, with

four ligands, namely 1,2-bis(diphenylphosphino)ethane for the Mo- and Ru-

compounds and 1,2-bis(diethylphosphino)ethane for the Fe-molecule, situ-

ated quadratically in a plane perpendicular to the transport direction. Addi-

tionally, two ligands in transport direction are bound covalently with shorter

Me-C distances completing the overall octahedral ligand structure and al-

lowing for a delocalisation of the molecular π-system from lead to lead. A

prediction of the energetic MO ordering in such a geometry can be made via

LFT including Jahn Teller distortion in transport (z) direction, where the

corresponding relative ordering of MO eigenenergies is shown in figure 10.2.

The model predicts a lower lying dxy orbital, with respect to dxz and dyz,

while the eg orbitals, namely dx2−y2 and dz2 are situated higher in energy.

In the lowspin state, which has been determined to be the ground state

of all three systems by DFT total energy calculations, the filling of the

respective eigenstates with electrons leads to an occupation of the t2g or-

bitals, with four and six electrons for MO(II) and Fe(II)/Ru(II) respectively.

Hence, a singlet state is predicted to be the ground state for the iron and

ruthenium compounds, while the Mo-complex exhibits a net spin moment of

1 and therefore has a paramagnetic triplet state as its most stable electronic

configuration.
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Figure 10.3: Molecular eigenvalues for the neutral and charged state of the
three transition metal complexes as obtained from the junction setup by sub-
diagonalisation of the molecular subspace of the transport Hamiltonian with
respect to the metal Fermi energy. The spin up and spin down eigenvalues
have been marked by black and red circles, respectively

10.2.2 DFT results

The respective ground state MO spectra computed from DFT calculations in

a junction environment with a subsequent subdiagonalisation of the molec-

ular subspace of the transport Hamiltonian are shown in figure 10.3. These

results are in perfect agreement with the predictions given in the last section

exhibiting no spin splitting in the ground state of the Fe(II) and Ru(II) com-

pounds, while in the Mo(II) complex only the lower lying dxy-orbital is fully

occupied as a result of the spin polarisation of the Kohn-Sham orbitals. Fur-

thermore, the energy splitting between the spin up and spin down orbitals of

the Mo(II)-complex changes the sequence, resulting in the dxy orbital now

becoming the molecular HOMO.
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dyz

dxz

dxy

dx2y2

Figure 10.4: Spatial shape of the respective MOs containing contributions
from the transition metal d-orbitals found in all three compounds, but with
different energetical ordering.

The spatial distributions of the frontier orbitals, situated near the Fermi

Level of the electrodes in a junction setup, are shown in Figure 10.4. It

can be seen clearly that the dxz and dyz metal AOs hybridise with the

C-ligands resulting in conjugated MOs, whose contribution to the phase

coherent conductance is most likely decisive. On the other side, the dx2−y2

and dxy orbitals are not oriented along the transport direction, therefore

not contributing to a conductance based on coherent tunnelling. Their very

low (but still finite) coupling to the metallic bands, however, makes them

still accessible for electron hopping reactions onto/from them, which could

explain hysteresis or switching features in I/V measurements, if a so created

charged state would exhibit a long enough lifetime.

10.3 The redox hysteresis model

10.3.1 Model setup

The model for the description of hysteresis features and switching events,

which we applied in Paper V is based on the theoretical considerations of

Migliore and Nitzan,40 who identified a possible reason for hysteresis in the

occurrence of two electron transfer reactions, which can happen simultane-

ously, but on different time scales. While the faster reaction in this so called

two channel model is defining the measured conductance, the slower one is
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the reason for an observed hysteresis or switching. Translating this frame-

work into a single molecule junction setup the coherent electron transport is

mainly responsible for the conductance, therefore being the ”fast channel”.

The most reasonable mechanism for the switching in conductance for the

molecules in figure 10.1 has been determined to be a change in the redox

state via electron hopping onto a localised state on the molecule.

10.3.2 The transition rate

With a redox reaction as the source of the observed hysteresis features, the

definition of the corresponding rates can be calculated as electron transfer

rates according to Marcus theory. For their definition, the formalism estab-

lished in Paper IV can be applied, but it has to be extended in order to

account for measurements performed at finite bias:

Rox,L(V ) =
2π

~
H2
X,L

1√
4πλkbT

∫
e
− (λ−∆G0

X+ε+eV/2)2

4λkbT (1− f(ε))dε (10.1)

Rred,L(V ) =
2π

~
H2
X,L

1√
4πλkbT

∫
e
− (λ+∆G0

X+ε+eV/2)2

4λkbT f(ε)dε, (10.2)

Rox,R(V ) =
2π

~
H2
X,R

1√
4πλkbT

∫
e
− (λ−∆G0

X+ε−eV/2)2

4λkbT (1− f(ε))dε (10.3)

Rred,R(V ) =
2π

~
H2
X,R

1√
4πλkbT

∫
e
− (λ+∆G0

X+ε−eV/2)2

4λkbT f(ε)dε. (10.4)

The form of the driving force ∆G0
X and the transfer integrals HX,K

follow the respective definitions given in section 9.2 with X denoting the

MO involved in the reaction. The reorganisation energy λ, on the other side,

has to be adapted to the experimental setup, where no solvent is present in

the MCBJ measurements, which is simply achieved by excluding the solvent

polarisation term leading to

λtot = λin + λimage. (10.5)

10.3.3 Hysteresis in a two-channel model

The simplest way to introduce our scheme for the description of redox-

based switching is with a tight binding model system consisting of two MOs
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in a junction setup, which in the following will be denoted as |α〉 and |β〉.
While |α〉 exhibits a high degree of electron coupling to the electrodes there-

fore being the exclusively responsible for the conductance measured for the

modelled junction, |β〉 is localised on the core of the molecule, therefore cou-

pling only weakly to the electrodes and not contributing to coherent electron

transport.

In the following εα denotes the energetic position of |α〉 with respect

to the Fermi level of the metal, which also defines the peak centre in the

transmission function of the model system. The respective coupling values

Hα,K characterise the width of this peak, leading to the following definition

of the transmission function:

T (E) = G0 ×
4Hα,LHα,R

(Hα,L +Hα,R)2 + (ε− εα)2
. (10.6)

Finally the corresponding I/V curve is defined by an integration over

equation 10.6, where finite bias effects are not considered for this simple

model system:

I = G0 ×
∫ ∞
−∞

T (E)(f(ε, V/2)− f(ε,−V/2))dε. (10.7)

In this equation f(ε,∓V/2) = 1/(e
ε±V/2
kbT + 1) are the Fermi-Dirac distri-

butions for the metallic leads.

In order to describe hysteresis effects and switching, two different I/V

curves are needed, one corresponding to the system before and one to that

after the redox reaction has occurred. Within the present TB model these

can be easily incorporated by a definition of two different eigenenergies εα,0

and εα,1, resulting in two different T(E) and therefore changed I/V curves.

In principle, also a modification of Hα,K due to the redox reaction could be

included,144 but for the sake of simplicity it is neglected within this model.

The corresponding I/V curves, describing the oxidised and reduced state

of the molecule, respectively, serve as outer borders for the I/V curves ap-

pearing in measurements. As a next step the hopping reaction based on

the weakly coupled MO (|β〉) has to be analysed regarding its time scale,

in order to determine if and how often redox reactions happen within the

time needed for the measurement of one current value in the experiment.

Since only the net oxidation/reduction frequency is important for the de-
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scription of a hysteresis effects in the measurement, the definition of the

rates is simplified to Rox = Rox,L +Rox,R and Rred = Rred,L +Rred,R in the

following.

In contrast to the approach by Migliore and Nitzan of Ref.,40 where

the mean results of a certain number of bias sweeps was calculated in their

equation 32, in our model as applied in Paper V the system was only allowed

to reside in one of the oxidation states at any given point in time, which

corresponds to the description of individual sweeps. Hence, the next step

consists in the definition of a probability P(V ) for a redox state change for

any given external voltage. For that purpose, two types of time intervals are

defined, namely ∆t, the experimental integration time used for obtaining the

current for one point in the I/V-curves, and dt, which is a mere convergence

parameter in our simulations, and which defines the time the system has for

a single redox reaction. The definition of dt is important, since more than

one redox reaction is possible within ∆t and due to the integration of the

number of electrons over this time interval only a mean current is measured.

Introducing dt << ∆t, according to

∆t = ndt (10.8)

the time resolution inside a specific ∆t window for the simulations is

defined.

During ∆t the applied voltage V is constant and as a consequence also

Rox/red(V), resulting in P(V) being defined by the simple product

P (V ) = Rox(V )dt or P (V ) = Rred(V )dt (10.9)

depending on the redox state of the compound at the beginning of each

time interval dt.

At this point the stochastic nature of the approach becomes important.

From its definition in equation 10.9 P(V) could in principle have any values

between 0 and infinity. Therefore, in order to define it as a proper probability

with values between 0 and 1 one has to adjust dt accordingly, which does

not qualitatively change the obtained results as will be shown in the next

section.

In a next step P(V) is compared with a random number x ranging from

0 to 1 in order to decide if a reaction takes place, allowing it only for P(V)
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> x.

Finally, the current measured at each experimental bias point V within

a time interval ∆t can be obtained from our simulations by:

I(V )∆t =
1

n

n∑
i=1

I(V, si) (10.10)

with

I(V, si) = (1− si) · Iox(red)(V ) + si · Ired(ox)(V ) (10.11)

where si ∈ {0,1} represents the redox state the system is in at the end

of each dt window.

Influence of the values of dt and n

While at first glance the results of the formalism described in this section

seem to depend on the choice of n and dt, it can be easily shown, that their

influence is only that of a convergence parameter. For this purpose it is

convenient to use a simple example, where dt is changed, while all other

parameters in the model are kept constant:

For both examples in the following ∆t will be kept fixed at 1s. During

∆t also V is constant and therefore also Rox and Rred, which are set to

1s−1. All in all, one would expect one hopping reaction to happen within

∆t with this parameters, since RK∆t=1. Now instead we split the interval

into 100 substeps, i.e. n = 100, dt = 1/100s. For this case P(V)=0.01, which

makes it probable (but not certain) that from 100 possible reactions only

one electron jump and associated change of the redox state of the compound

takes place. The precise moment within ∆t, at which this reaction happens

is completely dependent on the random number x and so is the final value

of I(V)∆t.

Modifying dt to 1/1000s and therefore also n to 1000, changes the value

of P(V) to 1/1000 accordingly, which means that while the probability of an

electron jump is ten times lower, there are also ten times more possibilities

for it to occur. Hence, it is still most likely, that only one hopping reaction

happens during ∆t. The difference to the first parameter set is that now

more intermediate values between Ired and Iox are possible due to the higher

time resolution, which identifies dt as a mere convergence parameter, which

is still crucial for the quality of the number obtained from our simulations.
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10.4 Description of hysteresis and switching with

parameters obtained from DFT

When replacing the two-state TB model by a description based on DFT,

the model needs to be modified. The most prominent difference is that

the I/V curves for the neutral and charged state are not determined for

chosen parameters anymore, but are based on the transmission functions

of the two states, as obtained from NEGF-DFT calculations. Therefore,

the outer borders in resulting I/V curves, defined by Iox/V and Ired/V,

are now directly related to the eigenvalue spectrum of the compounds with

respect to the metal’s chemical potential. In Paper V the corresponding

I/V curves have been calculated from an integration over T(E) calculated

within Landauer theory, as described in chapter 3. This is straightforward

for the neutral state and in order to determine the transmission function

of the charged state, the charging scheme developed in Paper I has been

applied.

In addition to the changes for the “fast channel” also the description of

the slow channel needs to be modified for real systems. The key parameters

for electron hopping now have to be determined based on the atomistic

results, where in Paper V a single particle DFT description was chosen

as it was also applied in Paper IV and the corresponding quantities were

determined accordingly.

Finally, the sweeping parameters, namely ∆t,∆V,Vmax and T, are de-

termined from the experimental setup. This leaves only n or dt (related via

equation 10.8) to be freely chosen in the simulation, where it has been shown

earlier, that their only purpose is to function as convergence parameters in

the simulation.

10.5 Outline of results and discussion of Paper V

10.5.1 Experimental results

For all three compounds hysteresis effects in the MCBJ measurements per-

formed with UHV at 50K have been observed, where they differ in the

sense that for the Fe-complex these effects were measured in 85% , for the

Ru-complex in 80% and for the Mo-compound in 95% of the individual mea-
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surements. In all three compounds hysteresis, denoted as type I switching

in Paper V, occurs when forward and backward sweeping rate are chosen

differently. This kind of hysteresis does not affect the conduction gap and

exhibits a continuous transition between the I/V curves for the neutral and

charged state.

For the Mo-complex, however, a second type of hysteresis was observed,

which is characterised by an abrupt irreversible switching in conductance

(denoted as type II switching) at higher voltages. These measured curves

exhibit ON currents, which are 100 times lower than for the ones in the I/V

curves described in the last paragraph and this behaviour is only found at

the longest elongated junction shortly before the breaking point.

While for type I hysteresis ratios between ON and OFF states around

1.5 to 20 could be determined, the type II switching in the Mo-compound

led to ratios between the currents for the two states of the molecular switch

exceeding 1000.

10.5.2 Theoretical results

By applying the model described in the last sections, we were able to repro-

duce the key characteristics of the experimentally determined I/V-curves,

namely hysteresis features for the Fe- and the Ru-complexes and both re-

versible and irreversible switching for the Mo-complex.

The differences in measurements for the three investigated compounds

has been identified to arise from corresponding differences in the nature of

the ground states of the molecules, where the Mo-complex was the only one

of the three exhibiting spin polarisation. This results in a shift of the highly

localised dxy into the range which is accessible for an applied bias, and allows

for redox reactions with a very low hopping rate possible.

For the other two compounds, the HOMO-1 exhibiting the dyz orbital

symmetry on the metal centre has been identified as the slow channel for

the hopping reaction. Its electronic coupling to the electrodes, however, has

been determined to be two orders of magnitude higher than the one for the

dxy orbital of the Mo-complex. Therefore, the redox reactions for Fe and

Ru only cause a small delay in the response of the system to an applied

voltage. In principle, such a delay does not result in hysteresis effects, for

a constant sweeping rate, but pockets can be found in the I/V-curves when

the forward and backward sweeping rate differ, as it was the case for the
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Ru

Mo

Fe

Figure 10.5: Calculated I/V curves using a combination of NEGF-DFT and
the model described in section 10.3, where only the positive bias branch is
shown since in the model system a complete symmetry regarding the bias
direction is assumed as justified by the inversion symmetry of the molecules.

experiments carried out by our partners. Applying our model the formation

of pockets in the I/V curves could be reproduced nicely, when the sweeping

rates depended on the sweeping direction, as can be seen from the simulation

results shown in figure 10.5.

The same kind of pocket formation was also found for the Mo-complex

adsorbed in hollow position at equilibrium distance, as shown by the red/orange

curves in the right panel of figure 10.5. In order to simulate a situation,

where the system is stretched and near the rapture point, we also analysed

the junction setup for an elongated S-Au distance, where we found that the

electronic coupling is further reduced by an order of magnitude. Applying

our hysteresis model to this junction system led to the appearance of type

II switching in the simulation, as shown by the blue/cyan curves in the right

panel of figure 10.5. Additionally the reduction in measured current could

be reproduced by the simulations for such an elongated setup, which is a

further consequence of the decrease in electronic coupling to the electrodes,

but now directly affecting the phase coherent electron transport, i.e. the

”fast channel”.

It has to be noted, however, that in order to achieve a correspondence

of experimental and theoretical result, we had to scale the electronic cou-
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pling of the slow channel down by a factor of 100 for all three systems. We

attributed this necessity to two causes, namely to the self interaction error

within DFT, which tends to increase the spatial extension of localised or-

bitals, therefore increasing the through vacuum coupling and on the other

hand the highly symmetric setup used in the simulations with two perfectly

planar Au(111) surfaces, which is in distinct contrast with the much more

disordered junction geometry expected for the MCBJ experiments.

Overall, the results from theory and experiment have shown an excellent

qualitative agreement and further experimental details as well as further

analysis can be found in Paper V included in this thesis.
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75 P. Tröster, P. Schmitteckert, and F. Evers, “Transport calculations based on density functional theory,

Friedel’s sum rule, and the Kondo effect,” Phys. Rev. B, vol. 85, p. 115409, Mar 2012.

76 L. Yan, E. J. Bautista, and J. M. Seminario, “Ab initio analysis of electron currents through benzene,

naphthalene, and anthracene nanojunctions,” Nanotechnology, vol. 18, no. 48, p. 485701, 2007.

77 G. C. Solomon, J. R. Reimers, and N. S. Hush, “Single molecule conductivity: The role of junction-orbital

degeneracy in the artificially high currents predicted by ab initio approaches,” The Journal of Chemical

Physics, vol. 121, no. 14, pp. 6615–6627, 2004.

78 G. Stefanucci and C.-O. Almbladh, “Time-dependent quantum transport: An exact formulation based on

TDDFT,” EPL (Europhysics Letters), vol. 67, no. 1, p. 14, 2004.

79 F. Aryasetiawan and O. Gunnarsson, “The GW method,” Reports on Progress in Physics, vol. 61, no. 3, p. 237,

1998.

80 K. S. Thygesen, “Impact of Exchange-Correlation Effects on the IV Characteristics of a Molecular Junction,”

Phys. Rev. Lett., vol. 100, p. 166804, Apr 2008.

118



BIBLIOGRAPHY

81 J. Xia, B. Capozzi, S. Wei, M. Strange, A. Batra, J. R. Moreno, R. J. Amir, E. Amir, G. C. Solomon,

L. Venkataraman, and L. M. Campos, “Breakdown of Interference Rules in Azulene, a Nonalternant Hydro-

carbon,” Nano Letters, vol. 14, no. 5, pp. 2941–2945, 2014. PMID: 24745894.

82 K. S. Thygesen, B. M. V., and K. W. Jacobsen, “Conductance calculations with a wavelet basis set,” Phys.

Rev. B, vol. 67, p. 115404, 2003.

83 Y. Xue, S. Datta, and M. A. Ratner, “First-principles based matrix Green’s function approach to molecular

electronic devices: general formalism,” Chemical Physics, vol. 281, no. 2–3, pp. 151 – 170, 2002.

84 X. Crispin, V. M. Geskin, C. Bureau, R. Lazzaroni, W. Schmickler, and J. L. Brédas, “A density functional

model for tuning the charge transfer between a transition metal electrode and a chemisorbed molecule via

the electrode potential,” The Journal of Chemical Physics, vol. 115, no. 22, pp. 10493–10499, 2001.

85 J. M. Garcia-Lastra, C. Rostgaard, A. Rubio, and K. S. Thygesen, “Polarization-induced renormalization of

molecular levels at metallic and semiconducting surfaces,” Phys. Rev. B, vol. 80, p. 245427, Dec 2009.

86 R. Hesper, L. H. Tjeng, and G. A. Sawatzky, “Strongly reduced band gap in a correlated insulator in close

proximity to a metal,” EPL (Europhysics Letters), vol. 40, no. 2, p. 177, 1997.

87 S. Y. Sayed, J. A. Fereiro, H. Yan, R. L. McCreery, and A. J. Bergren, “Charge transport in molecular

electronic junctions: Compression of the molecular tunnel barrier in the strong coupling regime,” Proceedings

of the National Academy of Sciences, vol. 109, no. 29, pp. 11498–11503, 2012.

88 K. S. Thygesen and A. Rubio, “Nonequilibrium GW approach to quantum transport in nano-scale contacts,”

The Journal of Chemical Physics, vol. 126, no. 9, pp. –, 2007.

89 P. Darancet, J. R. Widawsky, H. J. Choi, L. Venkataraman, and J. B. Neaton, “Quantitative Current-Voltage

Characteristics in Molecular Junctions from First Principles,” Nano Letters, vol. 12, no. 12, pp. 6250–6254,

2012. PMID: 23167709.

90 J. B. Neaton, M. S. Hybertsen, and S. G. Louie, “Renormalization of Molecular Electronic Levels at Metal-

Molecule Interfaces,” Phys. Rev. Lett., vol. 97, p. 216405, Nov 2006.

91 C. Rostgaard, K. W. Jacobsen, and K. S. Thygesen, “Fully self-consistent GW calculations for molecules,”

Phys. Rev. B, vol. 81, p. 085103, Feb 2010.

92 H. Vázquez, W. Gao, F. Flores, and A. Kahn, “Energy level alignment at organic heterojunctions: Role of

the charge neutrality level,” Phys. Rev. B, vol. 71, p. 041306, Jan 2005.

93 N. Lang and W. Kohn, “Theory of metal surfaces: charge density and surface energy,” Phys. Rev. B, vol. 1,

p. 4555, 1970.
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To adjust the charging state of a molecular metal complex in the context of a density functional theory
description of coherent electron transport through single-molecule junctions, we correct for self-interaction
effects by fixing the charge on a counterion, which in our calculations mimics the effect of the gate in an
electrochemical scanning tunneling microscope setup, with two competing methods, namely, the generalized
�self consistent field (�SCF) technique and screening with solvation shells. One would expect a transmission
peak to be pinned at the Fermi energy for a nominal charge of +1 on the molecule in the junction, but we find
a more complex situation in this multicomponent system defined by the complex, the leads, the counterion, and
the solvent. In particular the equilibrium charge transfer between the molecule and the leads plays an important
role, which we investigate in relation to the total external charge in the context of electronegativity theory.
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I. INTRODUCTION

Most studies in the vibrant field of single-molecule elec-
tronics focus on the low bias current flow through rather
small benchmark molecules anchored to metal leads in
ultrahigh vacuum (UHV) at very low temperatures. Under
those restrictions the underlying electron-transport problem is
now straightforwardly accessible to a computational treatment
with a nonequilibrium Green’s function (NEGF) approach1 in
combination with a density functional theory (DFT)–based
description of the electronic structure of the separate and
combined components of the junction, namely, the leads and
the scattering region.2–5 This method allows for an atomistic
interpretation of associated UHV experiments on such bench-
mark systems in a mechanical break-junction or scanning
tunneling microscope (STM) setup,6–9 thereby contributing
to the fundamental understanding of the dependence of the
electronic conductance of the junction on the details of its
structure within the boundary conditions of a low-pressure
and low-temperature regime.

For single-molecule junctions to be useful as molecular
devices, however, their operability at room temperature is
required, and the presence of a solvent allows for elec-
trochemical gating, which makes it possible to avoid the
potentially destructive effect of the rather high local electric
fields, which otherwise would be needed for inducing a
larger current.10 Experimentally, these ambient conditions can
be achieved with an electrochemical STM,10–13 where the
nanojunction is an integral part of an electrochemical cell and
the investigated molecules usually have a redox-active center
with an oxidation state which can be regulated via gating.10

Depending on the setup as well as the structural details of
the system, two competing electron-transport mechanisms
have to be considered for a theoretical description of such
experiments, namely, electron hopping, which is a thermally
induced multiple-step process, and coherent tunneling, which
is the standard one-step phenomenon known from benchmark
molecules without a redox-active center and relatively strongly
coupled to metallic electrodes at temperatures close to 0 K.
In both cases an atomistic description of the process under

electrochemical conditions provides a formidable challenge
for a DFT-based theory. For the former, the difficulty lies in a
simplified and compact but nevertheless sufficiently accurate
description of the nuclear vibrations of the molecule and
solvent which drive the electron flow. For the latter it becomes
necessary to adjust the oxidation state of the redox-active
center in the scattering region and therefore deal with the issue
of charge localization in a multicomponent system, which is
the topic we address in this paper.

The correct description of localized charges is notoriously
hard to achieve within a DFT framework because the Coulomb
and exchange parts of the interaction of an electron with itself
do not cancel out exactly in a standard Kohn-Sham (KS)
Hamiltonian and the corresponding self-interaction (SI) errors
result in an artificial tendency towards delocalization.14–17

As has been shown recently, both for a continuum solvation
model18 and for an explicit description of a periodic cell with
its vacuum part filled with H2O molecules,19 a polar solvent
has a screening effect on the Coulomb potential which reduces
SI errors and stabilizes localized charges within DFT. Another
way to enforce localization is based on the generalized �self
consistent field (�SCF) technique,20,21 where an arbitrary
integer value between 0 and 2 for the occupation number
of a particular crystal eigenstate or linear combination of
crystal orbitals can be defined as a boundary condition to the
self-consistency cycles determining the electronic structure of
a given system.

In our paper we pursue both avenues for a study of the
coherent electron transport through the Ru(PPh2)4(C2H4)2

bis(pyridylacetylide) complex in Fig. 1, which we will often
refer to as just the “Ru complex” in the following since
it is the only system we investigate here and where for
experiments in an aqueous solution with chlorine counterions
the oxidation state of the redox-active ruthenium atom can be
switched between +II and +III by varying the electrochemical
potential of the cell corresponding to an overall charge of 0
and +1 on the molecular complex, respectively. We chose this
particular system because it was used in previous conductance
measurements22,23 as a monomer of chains, albeit with
different anchor groups, where it was found that depending
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FIG. 1. (Color online) Geometry of the Ru(PPh2)4(C2H4)2

bis(pyridylacetylide) complex studied throughout our paper bonded
to adatoms on Au fcc (111) surfaces within an aqueous solvent and
containing a Cl counterion.

on the chain length either coherent transport or electron
hopping is observed.22 In addition spectroscopic and quantum
chemical studies on similar Ru complexes24–28 suggest that
this molecular species offers the possibility to easily link
two carbon-rich chains to each other for the formation of
reversible redox systems29–31 with distinct optical transition
properties,32,33 thereby serving as a starting point for the
investigation of chains with multiple redox-active centers.27 In
contrast to Ref. 22 we use pyridyl groups as anchors to the leads
because they provide peaks in the transmission function which
are narrow enough to assume that a charge on the complex has
an impact on the conductance but broad enough to avoid the
Coulomb blockade regime.34–36

While reports of conductance calculations on redox-active
complexes have been published before,37,38 our paper presents
a DFT-based study of coherent electron transport through
such a molecular complex which explicitly investigates the
influence of the formal oxidation state of its central metal
atom on the resulting transmission function. There have been
previous studies on the impact the solvent has on smaller
benchmark molecules without a redox center,39–42 where some
of them40,42 have found a “chemical gating” effect, i.e., a
shift in the transmission function induced by the surrounding
molecules, which was explained by dipole fields. We do not
consider configurational fluctuations of the solvent molecules
in our paper, not only because of the high computational
demands this would generate for our rather large junction but
also because it would lead to fluctuations in the charge on the
Ru complex, whereas the main aim in this work is to keep it
fixed and to study its influence in a systematic way.

It has to be stressed that by this restriction we neglect
an important solvent effect, which would modify electron
transport due to the related electron-phonon coupling. While
this effect is crucial for electron hopping, which is not the
topic of this paper, we believe our omission to be justified
in the context of coherent tunneling where the solvent’s main
influence is of an electrostatic nature and the statistics for
the positions of water nuclei should change the transmission
function and conductance of the junction only to a small extent.
The main electrostatic screening effect of the solvent in our
calculations, namely, the localization of the charge on the
counterion, can also be mimicked in a more technical way
by fixing the charge on a Cl atom with the �SCF technique,
and in this paper we compare the results of this approach with
that of the explicit presence of the solvent.

This paper is organized as follows: In the next section we
present transmission functions and conductances for the Ru
complex at charging states of 0 and +1 (i.e., with the Ru atom
in its formal oxidation states +II and +III, respectively), where
in order to mimic the gate potential generating the +1 state
in experiments, the countercharge is localized on a chlorine
ion, and we assume that a Cl atom oxidizes the complex
and is thereby reduced to an anion. We do not suggest that
this redox process necessarily takes place in the actual STM
experiments, but rather use it as a convenient tool to simulate
the effect of electrochemical gating, namely, charging the Ru
complex in the junction, in our calculations. The two ways of
reducing SIE mentioned above, i.e., employing the generalized
�SCF technique and introducing H2O molecules explicitly as
a solvent, are used to make sure that the Cl atom is indeed
charged with a whole electron in our setup. In Sec. III we
investigate the shift in projected molecular eigenvalues with
both methods in terms of the distribution of partial charges
throughout the junction, which is a multicomponent system in
the sense that implementing the gate means not only that the
charge on the Ru complex and counterion can vary but also
that the gold leads and aqueous solvent can and do lose or gain
fractions of electrons. For an analysis of this complex behavior
in Sec. IV we start with cluster models within the simplified
picture of electronegativity (EN) theory,43 and from their
direct comparison with our full calculations on the junctions
represented by Fig. 1 we derive the nature of the driving forces,
which define the charge-density distributions we observe. We
conclude with a brief summary of our results.

II. ELECTRON-TRANSPORT CALCULATIONS FOR THE
NEUTRAL AND CHARGED COMPLEXES

All calculations of transmission probabilities T (E) in this
paper were performed within a NEGF-DFT framework2−5

with the GPAW code,44,45 where the core electrons are described
with the projector augmented wave (PAW) method and the
basis set for the KS wave functions can be optionally chosen
to be either a real-space grid or a linear combination of atomic
orbitals (LCAO), and we opted for the latter on a double-
zeta level with polarization functions (DZP) for all of our
electron-transport and electronic-structure calculations. The
sampling of the potential-energy term in the Hamiltonian is
always done on a real-space grid when using GPAW, where we
chose 0.18 Å for its spacing and a Perdew-Burke-Ernzerhof
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(PBE)46 parametrization for the exchange-correlation (XC)
functional throughout this paper.

Within NEGF the transmission function T (E) is defined
by T (E) = Tr(Gd�LG

†
d�R), where Gd = (E − Hd − �L −

�R)−1 represents the Green’s function of the device containing
the self-energy matrices �L/R due to the left/right lead, �L/R =
i(�L/R − �

†
L/R), and Hd is the Hamiltonian matrix for the

device region, which contains not only the Ru complex but
also three to four layers of the aligned Au surface on each side.
Due to the rather large size of the central molecule (Fig. 1), we
had to use gold slabs with a 6 × 6 unit cell in the surface plane
in order to ensure that neighboring molecules do not interact.
With the two Au adatoms directly coupling to the molecule
(Fig. 1), the device region contains a total of 254 Au atoms in
addition to the atoms of the complex itself and up to 64 H2O
molecules. As a consequence, Hd reached a size which was
beyond our computational capabilities to handle efficiently
for electron-transport calculations and therefore needed to be
reduced.

Since it is known that the solvent does not contribute to
the peak structure in T (E),42 but instead adds a baseline
conductance with a rather small energy dependence,47 we cut
out the lines and rows indexing H2O basis functions in the
matrix Hd , which we initially obtained from an electronic-
structure calculation for the full device region. In a second
effort towards memory reduction we cut out very high- and
very low-lying MOs from Hd after subdiagonalizing it with
respect to molecular basis functions,48,49 where we assumed
that molecular eigenstates which are more than 5 eV apart
from EF would have no effect on the conductance or on the
transmission function on the much smaller energy range on
which we show them.

To ensure overall charge neutrality in the unit cell of our
device region, which is a necessity for a charged junction when
applying periodic boundary conditions for electronic-structure
calculations, the countercharge to the positively charged Ru
complex has to be an explicit part of the cell, and we represent
it by a Cl counterion. There are two methods we exploit in
this paper to overcome the SI problem, which leads to an
artificial delocalization of otherwise localized charges in DFT:
(i) We make explicit use of the findings of other groups18,19

that a polar solvent, H2O in our case, stabilizes localized
charges because the solvation enthalpy and therefore also the
total energy of the system become more negative the more
pointlike the charges on the solutes are distributed; (ii) we
also employ the generalized �SCF technique,20,21,45 which has
been previously used as a feature of GPAW to correctly describe
excitation processes in molecules adsorbed on surfaces19,20 and
of electron hopping between layers of oxides.50,51

In practical terms the first scheme starts with the relaxation
of the nuclear positions of the isolated Ru complex towards
the convergence criterium of 0.02 eV/Å for the average force.
Then we add the Cl counterion with a fixed Ru-Cl distance
of 7 Å and embed the resulting system in a solvent shell of
46 molecules by making use of the graphical interface of the
GHEMICAL code,52 which places H2O molecules in the cell
with a high degree of artificial translational symmetry. In a
next step we relax the nuclei of the system now comprising
the complex, the counterion, and the solvation shell in order to
create a more natural distribution of water molecules, where

hydrogen bonds create a network structure, but we keep the
Ru-Cl distance constant as a boundary condition for avoiding
hybridization between the Ru complex and the chlorine ion,
which is statistically unlikely in nature but might happen in
our relatively small unit cell. During this relaxation process
we regularly probe the charge distribution in the system. Once
we achieve a one-electron charge on the Ru complex, i.e., a
formal oxidation state of +III on the Ru atom, we stop the
relaxation and align the whole system between two gold fcc
(111) surfaces with adatoms, and the nitrogen of the pyridyl
anchors at a distance of 2.12 Å to establish the direct electronic
contact.35 For this system we then calculate the transmission
function as described above.

In our second approach based on the generalized �SCF
method, we make use of its flexibility to define the spatial
expansion of an orbital forced to contain an electron as an
arbitrary linear combination of Bloch states.20,21 By extracting
one electron from the system and inserting it into a predefined
orbital in the beginning of every iteration step, the self-
consistency cycle progresses as usual, but with the electron
density of this particular orbital as a contribution to the external
potential. In this way we can fix the electron occupation of
the Cl counterion manually, which solves the self-interaction
problem implicitly and makes this method ideal for charge
localization as needed in the present work. When applying
this technique, we chose the nuclear positions relaxed for the
neutral complex aligned between the gold surfaces, where
one counterion was added with one supplementary electron
constrained to completely fill its p shell. This procedure also
had the benign consequence that the calculation of T (E)
was reduced significantly in terms of computational demand
because we do not need an explicit solvent here and therefore
do not have to remove the respective states from the transport
Hamiltonian.

Figure 2 shows the transmission function calculated for
the neutral Ru complex and with a positive charge put on

-1 0
E-E

Fermi 
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0.0001

0.01

1
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FIG. 2. (Color online) Transmission function of the neutral Ru
complex (solid black line) and that with a charge of +1, which was
adjusted with two different methods, i.e., (i) �SCF (solid green line)
and (ii) solvent screening (dashed green line). In both methods a Cl
atom was used as a counterion to extract an electron from the Ru
complex. The k-point sampling was performed on a 4 × 4 × 1 mesh
for all three curves.
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TABLE I. Conductance of the Ru complex corresponding to the
curves in Fig. 1 as calculated by NEGF-DFT and with the conductance
quantum G0 as its unit.

Neutral molecule +1 (�SCF) +1 (solvent)

G (G0) 1.6 × 10−5 1.2 × 10−4 4.6 × 10−4

the junction with the two methods described above. One
would expect the charged complex corresponding to a Ru
atom with an oxidation number of +III to have a higher
conductance than the neutral one (oxidation number +III)
due to a supposedly half-filled molecular orbital (MO) at the
Fermi level. While no Fermi-level pinning can be observed
in Fig. 2, the conductance of the +1 state is indeed distinctly
higher than that of the neutral junction, as shown in Table I,
but the respective numbers obtained from the two methods for
applying the charge differ by a factor of 4.

The main reason for this disagreement is illustrated in
Fig. 2, where we find that the incompleteness in decoupling
the H2O orbitals from the transport Hamiltonian, conceding
that LCAO basis functions located on specific atoms also
contribute to the description of their surrounding, creates a
“transmission baseline” which fits the behavior previously
investigated in theoretical studies of the conductance of water47

and is absent in the �SCF calculations. In this line of argument,
the difference of the transmission function and conductance for
the +1 state calculated with �SCF and solvent screening is
caused by the solvent retaining some presence in one of the
transport Hamiltonians because electrons in the solvent are,
to some extent, described by basis functions localized on the
complex and therefore contribute to the transport.

III. CHARGE-DENSITY DISTRIBUTION AND ITS IMPACT
ON THE PROJECTED MO EIGENENERGIES

In order to understand the peak structure in Fig. 2 in more
detail we now study the electronic structure of the junction by
investigating the electronic states of the device in terms of the
molecular eigenenergies and their shape. Since the coupling of
the Ru complex to the Au surface leads to a hybridization of the
respective electronic states, it is necessary for the projection
of molecular eigenvalues localized on the Ru complex from
the Hamiltonian matrix to eliminate their coupling to the
surface states in a subdiagonalization procedure.48,49 The
MO-eigenvalue distributions obtained in this way are shown
in Fig. 3. The MO eigenenergies are calculated by decoupling
the basis functions localized on the molecule from that of
the surface states with a subdiagonalization of the transport
Hamiltonian for the neutral complex for panel C0.4 and for a
complex with a charge of +1 applied by �SCF and the solvent
screening method for panels C0.8 and C0.89, respectively.
The energies in panels A0, A0.4, A0.8, and A0.89 result from
vacuum-level alignment of separate calculations for the Ru
complex and the Au slab, where the numbers in the panel
labels refer to a positive charge of that size on the complex. For
panel A(Cl)0.95 a chlorine atom is added to the Ru complex
for the alignment. By inspecting the shape of the two relevant
orbitals for coherent transport through the Ru complex in both
charging states, namely, the highest occupied molecular orbital

(HOMO) and HOMO-1, which we show as insets in Fig. 3, we
find that both MOs are characterized by a conjugated π system,
which is delocalized over the whole bridge of the complex, and
their respective energies match the double-peak structure in the
transmission function in Fig. 2. While HOMO-1 in Fig. 3 has
a high localization at the interface region, the HOMO does
not, which explains the relative proportions of the widths of
the two merged peaks in Fig. 2.

For very weak coupling between the leads and a molecule
one would expect that charging the molecule to its +1 state
would extract one electron from the complex’s HOMO, leading
to a singly occupied MO (SOMO), which by definition is
situated at the Fermi energy EF . In the composite junction
we investigate in this paper, however, where the degree of
electronic coupling is intermediate and we can only obtain
molecular orbitals by projecting them out of lead/complex
hybrid states via a dehybridization procedure, the situation is
less clear-cut, and in Fig. 3 we find the HOMO always below
the junctions’ Fermi level, which is mostly defined by the
leads due to their metallic character and the large number of
gold atoms in the device region. The key to understanding the
peak positions in the transmission function and the Fermi-level
alignment of the corresponding MOs in such a scenario lies
in understanding the zero-bias charge transfer, as has been
demonstrated in Refs. 53–55 for bipyridine and other similarly
small organic molecules. The present case, however, is more
difficult because here we have to deal with a four-component
system containing the Ru complex, the Cl ion, the solvent,
and the leads, where for a detailed charge-density distribution
analysis we use the Bader method for the definition of the

FIG. 3. (Color online) MO eigenvalue spectrum of the device
region, where the spatial shapes of the HOMO and HOMO-1
are shown as insets, where the C panels are obtained from a
subdiagonalization of the transport Hamiltonian and the A panels
are obtained from a vacuum-level alignment of the isolated molecule
and leads. The numbers in the panel descriptions refer to the charge
on the complex; further technical details are described in the main
text.
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TABLE II. Distribution of the partial charges in the junction as calculated from a Bader analysis for the neutral complex and the complex
with one positive charge applied by fixing the countercharge on a Cl ion with �SCF and solvent screening, respectively, where numbers from
calculations without a Au slab are also shown in parentheses for comparison. All values are given in fractions of electrons.

Au H2O Cl H2O + Cl Ru complex Ru

Neutral complex 0.39 −0.43 −0.21
�SCF −0.16 0.94 0.94 (0.97) −0.80 (−0.97) −0.25 (−0.35)
Solvent (1 Cl/46 H2O) −0.21 0.37 (0.28) 0.71 (0.70) 1.08 (0.98) −0.90 (−0.98) −0.24 (−0.33)

electronic charges belonging to particular nuclei56,57 in the
following.

In Table II we present the charge distribution for both the
neutral and charged junctions, where values from separate
simulations for the Ru complex without Au leads but for the
charged case including the counterion and solvent are given in
parentheses for comparison, and they are also highlighted in
Table III and compared with values calculated with the Becke
three-parameter Lee-Yang-Parr (B3LYP) hybrid functional. In
the absence of the Au surface the charge values on the Ru
complex can be adjusted rather precisely with both applied
charge localization methods with the only difference between
them being that with solvent screening, 28% of the negative
countercharge is found on the solvent and �SCF by definition
puts a whole electron on the chlorine. We also illustrate in
Table III that a small admixture of Hartree-Fock exchange,
contained in the B3LYP functional with the aim of reducing
SI effects, does not necessarily help us obtain the physically
correct charge localization, as has been discussed by one of us
in the context of electron coupling in a recent paper,17 and the
functional is impractical for a treatment of the whole junction
in terms of computational expediency.

While gold creates a new reference energy for the molecular
eigenstates, it also plays the role of an electron donor or
acceptor, meaning, that it can accept charge from both the
complex and the counterion/solvent system. We also note in
this context that for pyridyl anchors on gold surfaces Pauli
repulsion leads to an electron depletion on the complex,
which lowers its eigenstates energetically53. This is exactly
what we also find for the neutral complex in the composite
junction here, where it loses electrons to the Au surface, and
Fig. 4 shows that the charge transfer happens mostly at the
interface, with the rest of the junction not contributing to
it in a significant way, while for the charged junction the
gold bulk absorbs some of the positive charge, as shown in
Table II.

TABLE III. Partial charges on a Cl ion (and if applicable also on
the solvent) sharing the same cell with the complex in the absence of
the Au leads in units of fractions of an electron. Both the solvent
screening method and �SCF generate the correct result of one
electron, while B3LYP underestimates charge localization in the same
way as PBE.

Uncorrected Solvent �SCF

B3LYP PBE PBE PBE

Countercharge 0.41 0.42 0.98 0.97

Whether this latter charge absorption is due to SI artifacts
in the calculations or is a realistic result for the investigated
system is a delicate question. While we deal explicitly with the
SI error for the charge localization on the chlorine counterion,
the charge distribution between the Ru complex and the gold
slab is not necessarily strongly localized anywhere. The Ru
atom is embedded into the complex by rather strong covalent
bonds with its carbon ligands, and as a consequence, it contains
only a fraction of a positive charge in both the neutral and
charged complexes (i.e., for its formal oxidation numbers +II
and +III), regardless of whether the complex is attached to
the surface or not, as can be seen from the values in Table II.
Also the electronic coupling at the interface is of intermediate
strength, as indicated by the rather broad peak shape in the
transmission functions. This does not contradict the fact that
the bonding between the pyridyl anchor group and gold atom
is rather weak35 because in the case of Pauli repulsion the
coupling with filled MOs produces bonding and antibonding
states.53 So the charge distribution we find in Table II could be
physically correct, although it is not what one would attribute
to the system when writing down its redox equations. To
investigate further the issue of whether the charge distribution
in the junction is realistic, we employ electronegativity theory
in the next section, where we reduce the complexity of
the investigated four-component system by replacing the
chlorine ion and solvent by an external charge for our
analysis.

At this point we just use the partial charges computed
with Bader’s method and given in Table II to analyze the
contributions defining the projected MO eigenenergies in
Fig. 3 in the way established in Ref. 53. In panel A0 we
align vacuum potentials between the isolated Au slab and the
isolated Ru complex without any charging of the components,

FIG. 4. (Color online) Charge-density difference between the
coupled system and the isolated complex and gold slab (black curve)
and between the isolated complex in its charged and neutral states
(red curve), where pseudodensities in terms of the PAW formalism
have been used for the densities in order to eliminate artificial peaks
near the nuclei.
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which results in the HOMO and HOMO-1 being energetically
higher than the Fermi level of the gold leads. If we consider the
changes in the respective vacuum potentials due to the negative
charge on the Au slab (+0.39 electrons) and the positive
one on the complex (−0.43 electrons), we arrive at the level
positions given in panel A0.4 with the HOMO and HOMO-1
well below EF , which almost exactly match the projections
from the composite junctions, which are also shown in panel
C0.4. This good agreement is somewhat surprising given that
while the Paul repulsion effect depletes electrons mainly from
the pyridyl anchor groups of the Ru complex, a partial charge
externally put on the isolated complex is distributed evenly
because it is achieved by emptying the HOMO, as can be
seen by comparing the black and red curves in Fig. 4. The
situation becomes more complicated for charging state +1 of
the junction, where there is an apparent mismatch between
MO projections from the composite system (panels C0.8
and C0.89 for �SCF and solvent screening, respectively)
and their analogons from the vacuum alignment of the
separated Au slab and Ru complex (panels A0.8 and A0.89),
where the partial charges from Table II have been applied
externally.

Although it is natural that panels A0.8 and A0.89 exhibit
lower eigenenergies of MOs than panel A0.4 due to the
increased binding of electrons in more strongly positively
charged molecules, the HOMO has to be close to EF , i.e.,
within the range of the Fermi width, because it is partially
emptied for charging state +1, which is indeed the case for
the projections in panels C0.8 and C0.89. The solution to
this conundrum can be found when considering the role of
the counterion, which also influences the vacuum potential if
now the Ru complex and the chlorine are considered to be one
component in the alignment process, with the Au slab being the
other one. This scenario is depicted in panel A(Cl)0.95, where
we perform the level alignment starting from a calculation with
a chlorine charged with an electron by �SCF and extracting the
countercharge from the complex as the molecular component.
Unfortunately, we can define our constraints within �SCF
only for integer charges, but a hypothetical A(Cl)0.8 would
result in slightly higher MO eigenenergies compared to panel
A(Cl)0.95 and therefore be in perfect agreement with panel
C0.8 in Fig. 3. The distinct rise in energies going from
panel A0.8 to A(Cl)0.95 is intuitively clear because we are
replacing the vacuum potential of a strongly positively charged
component with that of a strongly polarized but overall neutral
one. We note that in all cases HOMO and HOMO-1 switch
their respective energetic positions, as indicated by the colors
used in Fig. 3, which can be readily explained by their different
localization patterns at the interface, which we referred to at
the beginning of this section.

IV. INTERPRETATION OF THE CHARGE DISTRIBUTION
IN TERMS OF ELECTRONEGATIVITY THEORY

In order to find explanations for the charge-density distribu-
tions described in the last section, we now analyze the junction
in terms of electronegativity theory following the concepts of
Parr and Pearson.43 The key quantities in this approach are the
electronegativity μ and the hardness ν, where the first is based

on Mulliken’s definition of electronegativity,58 i.e.,

μ =
(

∂E

∂N

)
q

= I + A

2
, (1)

and the latter is defined as

ν = 1

2

(
∂2E

∂N2

)
q

= I − A

2
, (2)

with I being the ionization potential, calculated as the total
energy difference of the N and N − 1 systems, and A being
the electron affinity, defined as E(N + 1) − E(N ).

When two different systems are brought into contact, the
charge transfer from one to the other can be calculated as

�N = μ2 − μ1

2(ν1 + ν2)
, (3)

where both the electronegativities and hardnesses of the
separate components have an impact on the amount of charge
transfer between them.43

The ionization potential I and the electron affinity A are
commonly defined for the neutral state of the individual
subsystems, but as shown by Balbas et al.,59 their role of
defining the electronegativity and hardness is also valid for
ions, which allows us to describe also the charge distribution in
the junction with a charging state of +1 in terms of EN theory.
As discussed in the previous sections, we fixed the charges
on the counterion and solvent manually, and therefore in this
section we are mostly interested in understanding the charge
distribution between the Au slab and the Ru complex. For this
purpose we adjust their respective charging states by putting
an external charge q on the subsystems in separate calculations
without periodic boundary conditions, where the charge in the
simulation cell can be defined by the total number of electrons
without having to worry about electrostatic interactions with
neighboring cells. The definitions of μ and ν in Eqs. (1) and
(2) as functions of such an external charge q is unusual but not
in contradiction to the basic assumptions of EN theory.

It requires, however, some statistics for taking into account
the possible starting points for the charge transfer. In the
case without external charge only one such initial electron
configuration of the components has to be dealt with, i.e.,
a neutral gold slab and a neutral complex. Raising the
external charge to +1|e| allows for two different starting
points for the charge transfer, namely, Ru complex+1/Au0

and Ru complex0/Au+1. In principle the calculation of �N for
both should lead to identical predictions for the final charge
distribution in the composite system with a total charge of +1,
but imperfections in our DFT-based total-energy calculations
such as SI errors and the approximative nature of the XC
functional lead to deviations, as shown in Table IV. Averaging
�N over all possible integer configurations should provide
an improvement with regard to such errors. Hereby special
emphasis has to be put on the reference point for �N , i.e.,
the subsystem with index 1 in Eq. (3). Since the Ru complex
and the gold slab enter this equation at charged states, the
calculated μi , νi , and �N also refer to these charged states.
In order to obtain the change of electrons relative to the
neutral subsystems the related integer charges have to be
subtracted.
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TABLE IV. (Color online) Illustration of the statistics in our EN
theory predictions for charged states, which arises from the possibility
of different initial charge configurations on the subsystems before
they are brought into contact. The point of reference for �N is the
Ru complex in its charging state 0.

Starting charges

Number of gold atoms Ru complex Au cluster �N �N

2 +1 0 −0.69 −0.66
0 +1 −0.64

+2 0 −1.28 −1.17
+1 +1 −1.29

0 +2 −0.95

254 +1 0 −0.24 +0.29
0 +1 −0.34

+2 0 −0.52 +0.51
+1 +1 −0.50

0 +2 −0.50

To understand the role of the size of the gold slab for
the charge distribution we model the gold component in our
EN theory analysis with clusters of different sizes, starting
with the adatom and reaching the full gold surface used in
the junction, as shown in Fig. 5, where we computed the
electronegativities and hardnesses for charging states from 0 to
+2 for each cluster size in a setup without periodic boundary
conditions and calculated �N averaged over initial electron
configurations as described above. Although only charging
states 0 and +1 correspond to the experimentally relevant
oxidation states for the Ru atom, +II and +III, respectively,
we nevertheless go to higher positive charges in this study
in order to investigate the distribution between lead surface
and metal complex in more general and systematic terms. In
Table IV we show the related statistical spread for the smallest
and largest of our cluster sizes. Although we find that the devi-
ations increase with both the external charge and the size of the
Au cluster, their overall values are reasonably small, indicating
that our predictions for �N from EN theory are not particularly
limited in their accuracy by SIE or our choice of XC
functional.

To build a bridge between the predictions for the charge
distribution from EN theory and the actual ones we find in
the periodic systems we use as device regions in the transport
calculations, we also performed cluster calculations containing
both subsystems. The charge distributions in the resulting
cluster cells were analyzed according to Bader,56,57 where we
imposed external charges for varying the charging state as we
did for the subsystems for the EN predictions. The appeal of
this intermediate step towards the periodic system calculation
is that it allows us to distinguish between effects which come
from the electronegativity differences of the components,
others which have their origin in the spatial polarization of the
subsystem, when they are actually brought into contact in a
given geometry,54,60 and, finally, those related to the particular
method we employ to adjust the charging state.

As shown in Fig. 5(a), the results from the EN prediction
and the Bader analysis of the composite systems depending on

FIG. 5. (Color online) Electron loss on the complex when brought
into contact with Au clusters of varying size and an external charge of
up to +2|e| is applied. (a) The values predicted from electronegativity
theory (red) and from calculations where the complex is coupled to
gold clusters in a composite system and the charge distribution is
analyzed with the Bader analysis (black). (b) The �N values from
these two sets of model calculations are compared with calculations
of the device region, where the external charge was imposed as
a countercharge localized on Cl ions with and without periodic
boundary conditions (pbc), which are shown as solid and dashed
green lines.

the Au cluster size differ. In this comparison when we apply
EN theory, the charge transfer is slightly underestimated for an
external charge q = 0|e|. Raising q to finite values leads to an
overestimation of �N with respect to the Bader analysis for
the composite system. The deviation at high external charges
is small for fewer than four gold atoms on both junction sides
but increases with the Au cluster size.

Figure 5(b) puts a different perspective on these qualitative
differences when we compare the charge distributions obtained
from both EN theory and the Bader analysis of the cluster
calculations with the results for the periodic device region
(see also Table II). While in the latter case the charge on the
molecule increases almost linearly with the countercharge, the
two models do not predict this behavior for a cluster of 254 gold
atoms. The reason can be found in the details of the charging-
state definition, where for the model calculations an external
charge is imposed, which is distributed homogeneously, and
for the subsystem the introduced charge delocalizes over all
the atoms in the cluster, leading to just a minor increase in
its electronegativity with increasing q. This is a consequence
of the hardness, as the derivative of the electronegativity [see
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FIG. 6. (Color online) Electron density difference between the Ru
complex in charging states +2 and 0, where the charge was put on the
cluster by an external charge (top panel) or Cl ions, with the negative
countercharge localized by �SCF (bottom panel). In both cases we
show results from cluster calculations with an isovalue threshold of
2 × 10−4e, where a loss of electronic charge is depicted in blue and
a gain is red.

Eqs. (1) and (2)] becomes smaller with cluster size. On the
other hand, the energy needed to extract an electron from the
much smaller Ru complex increases strongly with its charging
state compared to gold. As a consequence, the external charge
is mostly absorbed by the Au cluster, leading to rather modest
charging of the molecule with an increasing external charge in
the cluster models.

If, on the other hand, we adjust the charging state also in
the composite cluster calculations in the same way we did for
the periodic cells, namely, by localizing the countercharge on
a chlorine ion, the situation changes, as can be seen from the
dashed green curve in Fig. 5(b). Instead of a globally defined
external charge we now have one or two point charges of
opposite sign situated around the cluster. As a consequence,
a local Coulomb attraction term makes a localization of the
positive charge on the Ru complex and the Au surface rather
than the bulk regions more favorable. Figure 6 shows the
charge-density difference between the +2 state and the neutral
junction for the charging state defined by an external charge
(top panel) and by chlorine atoms with charge localization
enforced by �SCF (bottom panel). Without counterions the
introduced positive charge is localized mostly on the gold
atoms in the leads. Due to the nonperiodic setup of the cell

fractional positive charges propagate to the outward-pointing
surfaces of the gold cluster because of their mutual repulsion.
If the charging state is defined by chlorine counterions, on the
other hand, the introduced positive charge is mostly localized
on the Ru complex and the lead surface because it is attracted
by the counterions. Fractions of positive charge are, however,
still localized on the outer parts of the gold bulk since they
are not hindered by the presence of a neighboring cell in a
nonperiodic setup, and Fig. 5(b) shows that therefore periodic
boundary conditions even increase the positive charge on the
Ru-complex region.

V. SUMMARY

The aim of this paper was the description of coher-
ent electron transport through a single-molecule junction
containing a redox-active center with an emphasis on its
charging. The correct description of the charge distribution
within DFT is essential in this context, and we applied two
independent methods for correcting the self-interaction error,
namely, solvent screening and �SCF, where in both cases the
countercharge is localized on a Cl ion, where this setup is
meant to mimic the effect of a gate in an electrochemical STM
setup. We found that the actual charge on the Ru complex
in a charging state of +1 (i.e., corresponding to the formal
oxidation state of +III of the Ru atom) is smaller than 1 when
it is coupled to a gold surface, which might indeed be realistic
since some of the charge can be absorbed by the leads. In order
to investigate this issue we made predictions for model systems
of varying size of the gold component within electronegativity
theory, which we supplemented with cluster calculations. This
analysis led us to the conclusion that some part of the charge
should indeed be absorbed by the leads, but most of it remains
on the complex due to Coulomb attraction, where the vicinity
of the localized charge on the counterion has a stabilizing
effect. Therefore, we assume that the charge distributions we
find in our calculations for the device region are realistic in
physical terms.

ACKNOWLEDGMENTS

G.K. and R.S. are currently supported by the Austrian Sci-
ence Fund FWF, Project No. P22548. We are deeply indebted
to the Vienna Scientific Cluster (VSC), whose computing
facilities were used to perform all calculations presented in
this paper (Project No. 70174) and where we were provided
with extensive installation and mathematical library support by
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ABSTRACT: Besides active, functional molecular building blocks such as diodes or switches, passive components, for example,
molecular wires, are required to realize molecular-scale electronics. Incorporating metal centers in the molecular backbone
enables the molecular energy levels to be tuned in respect to the Fermi energy of the electrodes. Furthermore, by using more
than one metal center and sp-bridging ligands, a strongly delocalized electron system is formed between these metallic “dopants”,
facilitating transport along the molecular backbone. Here, we study the influence of molecule−metal coupling on charge
transport of dinuclear X(PP)2FeC4Fe(PP)2X molecular wires (PP = Et2PCH2CH2PEt2); X = CN (1), NCS (2), NCSe (3),
C4SnMe3 (4), and C2SnMe3 (5) under ultrahigh vacuum and variable temperature conditions. In contrast to 1, which showed
unstable junctions at very low conductance (8.1 × 10−7 G0), 4 formed a Au−C4FeC4FeC4−Au junction 4′ after SnMe3 extrusion,
which revealed a conductance of 8.9 × 10−3 G0, 3 orders of magnitude higher than for 2 (7.9 × 10−6 G0) and 2 orders of
magnitude higher than for 3 (3.8 × 10−4 G0). Density functional theory (DFT) confirmed the experimental trend in the
conductance for the various anchoring motifs. The strong hybridization of molecular and metal states found in the C−Au
coupling case enables the delocalized electronic system of the organometallic Fe2 backbone to be extended over the molecule−
metal interfaces to the metal electrodes to establish high-conductive molecular wires.

KEYWORDS: Molecular Wire, Single-Molecule Junctions, Electronic Transport, Break-Junctions, Organometallic Compounds,
Density Functional Theory

Molecular electronics aims at employing single molecules
as functional building blocks in electronic circuits.

Besides such active components which provide, for example,
current rectifying or switching properties, also passive
components such as molecular wires are required for the
realization of molecular-scale electronics. Generally, an ideal
wire has lowest resistance with almost linear (ohmic) and
length-independent (ballistic) transport properties. For molec-
ular wires, the required high conductance can in principle be
achieved if low injection barriers for charge-carriers are present
at the molecule−metal interfaces, if molecular orbitals (MOs)
are available close to the Fermi energy of the electrodes, and if a
large degree of electronic conjugation across the backbone is
present. Already the first task seems to be difficult to achieve as
the most frequently used thiol anchoring1,2 suffers from an
electronically weak molecule−metal coupling. Additionally,
multiple bonding sites available on the Au surface for the

thiol bond give rise to alternating energy barriers for charge-
carrier injection and result in large fluctuations in the transport
properties. Therefore, other anchoring schemes such as
nitriles,3 isocyanides,4 amines,5 and pyridines6 were inves-
tigated. Dithiocarbamates7 were demonstrated to increase the
molecule−metal coupling compared to previously used single-
bond anchors by at least 1 order of magnitude and to
simultaneously reduce fluctuations. The use of fullerenes as
anchors8−10 seems promising, because of the larger molecule−
metal interface and the affinity of fullerenes for precious
metals.11 However, it turned out that the transport-limiting
barriers shifted from the molecule−metal interfaces onto the
molecular backbone, independently of the specific connection
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scheme to the fullerene.12 In contrast to fullerenes with many,
but weak, sp2 “bonds”, the direct C−Au bond showed
unprecedented high conductances for oligophenyls up to 0.9
G0,

13 (for one phenyl ring) close to the theoretical maximum of
1 G0 (with G0 = 2e2/h ≃ 77 μS the conductance quantum).
The C−Au bond can be established either by extrusion of a
trimethyltin moiety13 or post deprotection of a trimethylsilyl
moiety.14 Currently, the direct C−electrode bond seems to be
the most promising coupling scheme also for graphene
electrodes15,16 if polymerization via the free termini can be
prevented.
Oligo(phenylene ethynylene)s (OPEs) were considered as

one class of molecular wires as their conjugated backbone
enables electron transport. In that respect, C−Au coupled
OPEs are currently the highest conductive molecular wires13,14

with an exponential conductance decay due to tunneling of
approximately 1 order of magnitude per phenyl ring. Organo-
metallic molecules17 with incorporated metal centers form

delocalized electron systems between two or more metal
centers if appropriate ligand connections over unsaturated C
bridges are chosen.18 Furthermore, the MO levels can be tuned
by the metal centers to better align with the Fermi energy of
the leads. Motivated by this seminal idea, we have devised
dinuclear Fe complexes19 X(PP)2FeC4Fe(PP)2X consisting of a
[FeC4Fe] backbone with highly delocalized electronic
systems.20 To investigate the effect of molecule−metal coupling
on transport across the [FeC4Fe] backbone and its influence on
the delocalized electronic system, we varied only the end
groups coordinatively or covalently bonded to the [FeC4Fe]
unit. All compounds can be considered as rigid-rod like
structures with reduced conformational degrees of freedom.
Figure 1 C shows compounds 1−3 bound coordinatively via
terminal CN, NCS, and NCSe end-groups to Au, whereas the
SnMe3 end-capped compounds 4 and 5 (Figure 1D and 1E)
allow for different covalent bonding motifs (see Supporting
Information), for example, to form a direct covalent C−Au σ

Figure 1. (A) Operation principle of a mechanically controllable break-junction. (B) Scanning electron microscope (SEM) image of a
microstructured sample. (C) Compounds 1−3 with corresponding reaction schemes upon coupling to Au electrodes. In contrast to compounds 1−
3, the SnMe3 end groups of 4 and 5 cleave off and direct C−Au bonds are formed yielding the Au−4′−Au (D) and the Au−5′−Au junction (E),
respectively.

Nano Letters Letter

dx.doi.org/10.1021/nl5029045 | Nano Lett. 2014, 14, 5932−59405933

140



bond after extrusion of the SnMe3 groups. The loss of the
−SnMe3 capping leads to a reduction in length of the anchoring
groups and hence a shorter electrode−electrode distance for
the resulting Au−molecule−Au system. The junction’s length,
however, determines also the direct electron-tunneling
contribution between the electrodes, a non-negligible electron
path parallel to the molecular-mediated one.21 Accordingly, we
couple C4−SnMe3 end groups to the Fe centers to achieve a
length of 2.322 nm (distance between binding Au atoms) for
the Au−4′−Au junction that is comparable to the one of the

Au−2−Au (2.257 nm) and Au−3−Au (2.328 nm) junctions. In
order to investigate length-effects on the molecule−electrode
coupling, we have designed additionally compound 5 with
shorter C2−SnMe3 end groups, which forms the Au−5′−Au
system with an electrode separation comparable to Au−1−Au.
All [FeC4Fe] compounds exhibit a high charge-delocalization
between the two metal centers and can be oxidized or reduced
reversibly in solution with up to three oxidation states at
relatively low potentials (<1.0 V).19,20 (see Supporting
Information).

Figure 2. Density plots of the differential conductance vs voltage, GDiff−V, characteristics acquired upon repeated opening of the junction at 300 K
for compounds 2 (A), 3 (C), 4′ (E), and 5′ (G) upon opening of the junction at 300 K. Individual GDiff−V curves (raw data) are plotted in
transparent blue to display the functional behavior of an individual curve. Corresponding conductance histograms extracted at ±1.0 V are displayed
for 2 (B), 3 (D), 4′ (F), and 5′ (H). The blue area signals the smallest electrode separations that can either lead to a direct Au−Au contact (and
hence a QPC) or multimolecule junctions. The maximum conductance accumulation is labeled in red with a fwhm estimation for the peak width.
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To perform transport measurements, we use electron-beam-
structured break-junctions (Figure 1 B) that are mechanically
actuated in a three-point bending mechanism (Figure 1 A)
operated in an ultrahigh vacuum environment (UHV; pressure
p < 2 × 10−9 mbar) and at variable temperature (10 K <T <
300 K)22 (see Supporting Information for details). Statistical
data acquisition is performed by taking several hundred I−V
characteristics curves in subsequent junction forming and
breaking cycles.22 Due to microscopic surface reconfigurations
under the applied high fields and at elevated temperatures, only
the opening data is considered. We first report on the transport
properties of the compounds 1−5 taken at room-temperature
(300 K). The measurement of compound 1 upon initial
junction closing and subsequent opening and closing cycles
under a fixed bias of 50 mV resulted in histograms that showed
less distinct molecular signatures with a small conductance
accumulation located at around 8.1 × 10−7 G0 (see Supporting
Information). I−V data acquisition was not possible due to
highly unstable junctions. In contrast, compounds 2, 3, 4, and 5
(transformed into 4′, and 5′ respectively, upon attachment to
the Au electrodes) gave reproducible I−V data upon repeated
opening of the junction. The I−V data gathered was then
mathematically derived to obtain (differential) conductance vs
voltage, GDiff−V, curves. The entity of all these opening curves
is displayed as a “density plot” in the left column of Figure 2
with the color code representing the grade of accumulation.
The data contains 1033 I−V characteristics taken for 2 (with a
junction forming probability of 70%), 812 for 3 (70%), 636 4
(98%), and 1929 for 5 (70%) as acquired during the identical
measurement protocols of comparable cycle numbers. On the
basis of the most probable accumulations, we have selected
individual GDiff−V characteristics (transparent blue curves) to
display the functional behavior of individual curves. In addition,

conductance histograms were constructed by taking the
conductance data at ±1.0 V from the opening curves (see
Supporting Information for histograms extracted at other
voltages and in absence of molecules). According to our
measurement approach, the electrodes are brought in very close
contact (approximately 0.1 nm) during every cycle, which
results either in the formation of a direct Au−Au contact or
multimolecular junctions, depending primarily on the diffusion
of surface Au atoms under the applied high field. Hence, the
close-contact or high-conductance regime of (0.08−5.0) G0,
therefore, is considered as not appropriately controlled at room
temperature and henceforth indicated by a blue shaded
background in the right column of Figure 2.
Figure 2A shows one broad and two narrow accumulations of

GDiff−V data for 2. The corresponding conductance peaks in
the histogram are located at 0.95 G0, 1.5 × 10−1 G0, and 7.9 ×
10−6 G0 as displayed in Figure 2B. The first distribution
represents Au−Au QPCs that are formed repeatedly during the
measurement process. The most dominant and, hence, most
probable distribution at 7.9 × 10−6 G0 is attributed to the
formation of a Au−2−Au junction. In contrast, transport
measurements of compound 3 reveal no clear accumulation in
the G−V data (Figure 2 C). Instead, a spread in the GDiff−V
data from 10−5 G0 to 10−2 G0 is found. The conductance
histogram confirms this finding by a broad peak located at 3.8 ×
10−4 G0. Much more distinct are the results for compound 4,
where three peaks are found at 0.86 G0, 8.9 × 10−3 G0, and 9.6
× 10−7 G0 (Figure 2 F), as could also be presumed from the
G−V distribution (Figure 2 E). Here, the first peak again
originates from Au−Au metal junctions, whereas the second
and third one are due to the formation of a Au−4′−Au
junction. From the peak height, that is, the relative occurrence,
we preliminarily conclude that the most probable conductance

Figure 3. I−V and GDiff−V characteristics taken at low temperatures upon repeated opening the junction for 2 in (A) and (B), and for 4′ in (C) and
(D), respectively. For 2, resonant transport through molecular orbitals gives rise to conductance peaks at specific voltages that are symmetric in
respect to bias. In contrast, 4′ reveals exclusively monotonic curves without the appearance of discrete MOs. Furthermore, current levels are 3 orders
of magnitude higher for the high-bias regime of 4′, and 4 orders of magnitude higher for the low-bias regime due to the appearance of a conductance
gap of approximately 0.8 V for 2.
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Figure 4. (A) Transmission functions for compounds 1 to 5′ as calculated by DFT (color coding according to (B)). (B) Energetic positions of the
HOMO and HOMO-1 of compounds 1 to 5′ represented as dots with different colors for the different systems with respect to the Fermi energy of
the electrodes. Also given are the respective spatial distributions of these HOMO and HOMO-1. The slight shift of the transmission peaks toward
the electrode Fermi Level results from the hybridization of the MOs with the gold bands, which is removed by the subdiagonalization process used
to obtain the molecular states in the composite system. (C) Calculated I−V curves obtained from the transmission functions T(E) in a rigid band
approximation where the bias dependence of T(E) is disregarded.
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is 7.9 × 10−6 G0 for 2, 3.8 × 10−4 G0 for 3, and 8.9 × 10−3 G0

for 4′ (all taken at 1 V). Besides the difference in the
conductance maxima, also the spread in conductance differs
clearly for the three different anchor groups being studied. For
NCS and NCSe anchoring, the widths of the conductance
histograms are approximately 3−4 orders of magnitude (e.g.,
G3,high/G3,low = 4 × 103, estimated from the full width at half
max (fwhm) of a Gaussian-like peak), and much less for direct
C−Au anchoring, approximately 1−2 orders of magnitude
(G4,high/G4,low = 2.5 × 10). This smaller conductance variation
is also found for the second C−Au coupled and shorter Au−
5′−Au system as displayed in Figure 2G and H, which show an
even higher conductance of 1.3 × 10−2 G0.
At room temperature, the MOs energy level are usually

broadened and the Fermi energy of Au is broadened too,
leading to rather monotonic and continuous I−V characteristics

as displayed in Figure 2 for all compounds. In contrast, the
MOs usually become apparent in G−V characteristics at low
temperatures, typically at less than 100 K, because of the
reduced thermal broadening. Therefore, we investigated the
transport properties exemplarily for 2 and 4′ at low
temperatures (Figure 3). The data exhibits a symmetric
conductance gap of approximately 0.8 V for 2, independent
of the temperature (the data contains 120 I−V characteristics,
40 taken at 30 K, 50 and 100 K each). In the low-voltage range
up to ±0.25 V, no MOs are available for electrons to tunnel
through. At higher bias, however, the current starts to increase
as frontier MOs (according to DFT the HOMO, see below) get
into resonance. As can be seen best in the G−V representation,
where the resonant MOs are represented by peaks, they are
located at −0.85 V, −0.39, 0.39, and 0.87 V. They are spaced
symmetrically with respect to bias polarity, as it is expected for

Figure 5. (A) Calculated Au−Au distances of the resulting molecular junctions for compounds 1 to 5′. (B) Comparison of conductances for all
compounds determined by experiment (300 K; 200 mV, 1.0 V) and DFT (0 K, zero bias, with and without scissor operator (SO) corrections). The
experimental data point for 1 was achieved by low-bias measurements (50 mV). Schematic representation of the Au−2−Au (C) and the Au−4′−Au
junction (D). The strong hybridization of metal and molecular states in the case of Au−4′−Au as evidenced by the difference in the HOMO′s
amplitude on the bonding site as obtained from DFT (gray circles), leads to the formation of a strong molecule−metal bond and enables to extend
the delocalized electronic system between the two Fe centers over the molecule−electrode interfaces, in contrast to the weakly bonded Au−2−Au
system.
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symmetric molecules and symmetric coupling. In addition to
the conductance gap and the appearance of discrete MO
resonances in 2, many I−V characteristics with the appearance
of hysteretic conductance switching are found (see Supporting
Information). All these findings differ strongly to those for
compound 4′, where only monotonous curves without a
conductance gap were recorded at low temperatures. Figure 3
shows 100 I−V (C), and GDiff−V (D) characteristics of 4′,
taken at 50 K (similar data for 30 and 100 K); besides the
absence of discrete MO peaks, the transport properties are
more linear and the current levels are 3 to 4 orders of
magnitude higher.
To study the MO alignment and landscape, we performed

density functional theory (DFT) calculations with a PBE XC-
functional within a NEGF-DFT framework23−25 using the
GPAWcode26,27 to compute transmission probabilities, T(E).
In order to account for self-interaction errors and image charge
effects present in DFT with local XC-functionals we applied a
scissor operator (SO), according to Quek et al.,5 to the weaker
coupled molecules 1 to 3 (see Supporting Information). All
DFT calculations were carried out without treating spin
polarization as a degree of freedom because previous tests on
Fe complexes with the same ligand field revealed the low spin
configuration to be the ground state. The results of the DFT
calculations for the transmission functions T(E) and
eigenenergies of the respective orbitals HOMO and HOMO-
1 relative to EF are presented in Figure 4A and B for the
compounds 1 to 5′. Figure 4C displays calculated I−V curves
that were obtained from the transmission functions T(E) in a
rigid band approximation where the bias dependence of T(E) is
disregarded, as I = (2e/h)∫ −∞

+∞T(E)[f1(E) − f 2(E)]dE with f1,2
as the respective Fermi functions for the two electrodes at 50 K
and their chemical potentials shifted by ± eV/2. The figure
illustrates the relation between the energetic position of those
two MOs and the characteristic double peaks in the
transmission. Furthermore, it shows the spatial distribution of
these two MOs. Both the eigenvalues and the shape of the
relevant MOs are similar for all systems, consisting of π-orbitals
delocalized over the entire molecular backbone and containing
equal amounts of both Fe d states. For each system, the
HOMO and HOMO-1 differ only in the sense that they are
rotated by 90° to each other, which might indicate an energetic
degeneracy of the two states. However, the rotational symmetry
is slightly disturbed by the (PP)2 ligands on the Fe centers
explaining the small energetic splitting and therefore the
appearance of a double-peak structure in the transmission
function. The conductance at zero bias, which is given in Figure
5 B) and compared to experimental findings, is mainly
influenced by the tails of the HOMO and HOMO-1 peaks,
leading to quite different values among the compounds
investigated. Although the metal−molecule coupling is quite
high for all anchor groups, the two CAu end groups surpass
the others with rather strong covalent bonding, which leads not
only to broad peaks in the transmission function but also to a
more distinct energy shift of the peaks toward EF caused by
hybridization of the MOs and the lead bands. It can be seen
that the aligned MO eigenenergies for the different anchor
schemes are rather similar to the exception of compound 1,
thereby ruling out structural variations in the charge trans-
fer28−30 as a possible source for the differences in the
transmission peak energies for compound 2−5′, and leaving
only variations in the hybridization strengths as explanation. As
a consequence, even the rather long C4 anchors of 4′ lead to a

higher conductance than the coordinatively bonding end
groups CN, NCS, and NCSe, although the rate of coherent
tunneling decreases rapidly with the AuAu distance in a
molecular junction. Similar to the arguments for the superior
conductance provided by the C−metal end groups, also the
conductance ordering for the thiol and selenium anchors can be
rationalized by the fact that the electronic coupling strength of
SeAu exceeds that of SAu31,32 due to a larger overlap of
the wave functions. We start the discussion of experimental and
theoretical findings with compound 1. The presence of only
weak and rather unlikely molecular signatures (of 8.1 × 10−7 G0
at 50 mV bias) in the low-bias transport data of compound 1,
can have several reasons: first, the conductance of compound 1
is either below our experimental resolution (≪1.0 × 10−8 G0);
second, the CN binding to Au is weak and the resulting Au
1Au junction is not stable under high bias; or third, the bulky
ligands prevent the terminals to bind to the Au electrodes due
to the short distance to the Fe center. For compounds 2, 3, 4′,
and 5′, the room-temperature experiments worked reprodu-
cibly and the conductance data displayed in Figure 2 shows
values that range from slightly larger than 1 G0 down to 10−8

G0. Hence, it is ensured that all possible configurations during
the junction forming and breaking procedure, from fully open
Au contacts to AumoleculeAu junctions and direct Au
Au QPCs were probed. The QPC peak at 1 G0 confirms that
the electrodes completely touched (at least in some of the
cycles) in the required gentle way, that is, not fusing the contact
entirely. The data gathered, noticeably, represents conductan-
ces of all possible electrode distances. In case of 2, a broad peak
with a maximum at 7.9 × 10−6 G0 is formed. The fluctuations
giving rise to this broad peak are typically generated by
variations in the SAu bond as multiple bonding sites (top,
hollow, bridge, etc.) are available on the Au surface. An even
wider peak is found for the SeAu bond of compound 3,
indicating multiple bonding sites with fast binding kinetics and
low transition states for site exchange that do not necessarily
need thermodynamic activation for the weaker SeAu
(binding energy of 0.516 eV compared to 0.669 eV for S
Au) bond. For both CAu coupled compounds 4′ and 5′,
much narrower conductance accumulations are found. In the
DFT calculations, the top position was identified to be the
energetically most stable configuration. As a consequence, the
CAu anchors of compounds 4′ and 5′ are supposed to be in
their equilibrium bonding-site configuration even under
mechanical manipulation of the junction, which results in
narrow conductance histogram peaks. In the transport data of
compound 4′ (and weaker also in case of 5′), a second, broader
but smaller peak compared to the main peak at 8.9 × 10−3 G0 is
found at 9.6 × 10−7 G0. The appearance of a second peak at a
lower average conductance for 4′ (and similar also for 5′) is
presumed to originate from the various bonding scenarios of
the C end group: incomplete cleavage of the SnMe3 capping,
formation of chemically reasonable alkynyl vinylidene trime-
thyltin species [(CC)(SnMe3)CC)] upon binding to
the gold electrode resulting in the formation of a carbene type
bond to the Au electrode ([AuC4FeC4FeCC(SnMe3)-
CCAu] = Au4″Au) (see Supporting Information),
transport through one of the bis(diethylphosphino)ethane
ligands (as one or two arms of the phosphine ligands could lift-
off to form FePCH2CH2P → Au) and noncleaved end
groups cappings. Alternatively in our understanding, also
reductive CC coupling forming a dimerized Au
C4FeC4FeC8FeC4FeC4Au (Au4′4′Au) junctions
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(similarly for 5′) can occur. As such details of the junction
configuration are experimentally not directly accessible, the
conductances of the Au4′4′Au and Au5′5′Au
dimer junctions and the vinylidene-coupling case were
exemplarily calculated (see Supporting Information). A
conductance of 1.05 × 10−5 G0 was found for the dimer
junction Au4′4′Au. In the transmission function of the
dimer, the slope at the Fermi level is relatively high, which
means that a small energy shift of 0.1 eV would result in a lower
calculated conductance. This notion is in agreement with the
experimental finding as such a small shift in energy could also
be argued to arise from deficiencies of DFT such as gap
underestimation. Due to the good agreement between DFT
and experiments for both the “monomer” and the “dimer”
compounds, we conclude that spontaneous dimerization is
most likely the origin for the low-conductance peaks of
compounds 4 (and also 5), in agreement with the observation
of dimerization in SnMe3-capped oligophenyls with CAu
anchors.13 A dimerization explains further why the contacting
traces for molecular signatures are 5−7 times longer for the
low-conductance I−Vs compared to the high-conductance I−
Vs (see Supporting Information).
When comparing the main peaks in the conductance data at

high bias (1.0 V) or low bias (0.2 V, see Supporting
Information) of 2, 3, 4′ and 5′ measured at 300 K, a good
qualitative agreement with DFT at zero-bias is found as directly
compared in Figure 5 B). The zero-bias conductance according
to DFT and the low-bias current in the experiments are both
much higher for 4′ or 5′ than for 2 and 3, which indicates that
the LDOS is much higher for the C−Au coupled systems than
that of the others. The orbital distribution indicates that a
strong hybridization of MOs and metal states takes places at the
molecule−metal interfaces in the C−Au coupled system as
evidenced by the difference in the HOMO’s amplitude on the
bonding site as obtained from DFT data highlighted by circles
in Figure 5 D. This hybridization shifts HOMO and HOMO-1
closer to EF, leading to an earlier onset in electron transport as
evidenced by the low-temperature transport properties where
the conductance gap has even vanished (Figure 3). Injection
barriers estimated from minima in the transition-voltage-
spectroscopy representation (ln(I/V2) − (1/V); see Supporting
Information) reveal a similar barrier height of (1.75 ± 0.3) 1/V
for 4′ and (1.85 ± 0.3) 1/V for 5′ in contrast to (4.2 ± 1.5) 1/
V for 3, and (5.5 ± 1.5) 1/V for 2 at 300 K. The strong
hybridization of metal and molecular states established by the
C−Au coupling might further be the reason why the hysteretic
switching behavior found at low temperatures for the weakly
coupled compound 2 (see Supporting Information) was not
revealed in the strong C−Au coupled compound 4′ as the MOs
are more pinned and intrinsic functionality might be prohibited.
The energetic positions of the frontier MOs found for
compound 2 at around ±0.4 V at low temperatures are in
quantitative agreement with the energetic difference between
HOMO and EF calculated by DFT to be around 0.25−0.30 eV
as illustrated in Figure 4B. These values are around 100 meV
smaller than the MO energies in Figure 3B, which is due to the
mean field character of DFT with semilocal exchange
correlation functionals that do not capture many body
effects.33,34

Compared with trimethylsilyl-14 or trimethyltin-capped
oligophenyls with a direct Au−benzene attachment,35 the
conductance of compound 4′ is more than 10-fold higher if
similar wire lengths, l, (approximately 2 nm) are taken into

account. When comparing with organometallic ruthenium(II)
bis(σ-arylacetylide) complexes with SCN-Au coupling,36,37 the
conductance of 4′ is more than 1 order of magnitude higher.
For trimethyltin-capped polyphenyls with additional carbon
atoms in the Au−C−benzene bonds,13 a conductance of 1.4 ×
10−2 G0 was found for four phenyl units, similarly high as the
one of compound 4′. When taking the dimer system Au−4′−
4′−Au into account, we can create a preliminary length-
dependence for the conductance decrease with wire length (G
∝ e−β/l) of the Fe-based organometallic wires to compare with
state-of-the-art molecular wires (see Supporting Information).
The decay constants of β = 4.4 nm−1 (determined by
experimental values at 200 mV or 1.0 V) and β = 3.5 nm−1

(DFT at zero bias) are both higher than for the organometallic
ruthenium(II) bis(σ-arylacetylide) complexes36,37 (β = 1.02−
1.64 nm−1) or purely organic oligothiophenes38 (β = 1.0 nm−1)
with lowest decay constants reported so far. The values
estimated and calculated are closer to decay constants for
phenyls coupled via C−Au13 (β = 4.0−6.0 nm−1). A full
experimental study of oligomeric organometallic molecules with
one to four repeating Fe units, however, has to confirm this
preliminary estimation.
In summary, we have theoretically and experimentally

investigated the influence of molecule−metal coupling on the
electron transport properties of dinuclear Fe complexes. We
varied the molecule−metal coupling systematically by using
different anchoring schemes, such as CN, NCS, NCSe,
C2SnMe3, and C4SnMe3 with the latter two end groups leading
to a direct C−Au bond after SnMe3 extrusion. Whereas the CN
termination did not result in stable junctions, all other end
groups yielded reproducible transport junctions that enabled
the determination of the room-temperature coupling strengths,
which follow the order ΓNCS−Au < ΓNCSe−Au < ΓC4−Au < ΓC2−Au,
in qualitative agreement with DFT calculations. Moreover, the
reproducible binding of the C−Au motif upon extrusion or
migration of the SnMe3 end-group was demonstrated to occur
also at low temperatures (50 K), leading to the formation of
high-conductive molecular wires. Overall, the class of organo-
metallic compounds with delocalized electron systems between
two and more metal centers is a promising concept to achieve
long and highly conductive wires due to an extension of the
electronic system of the [FeC4Fe] unit over the molecule−
metal interfaces to the electrodes by strong hybridization.
Beyond that, organometallic compounds are an attractive
framework for the integration of intrinsic functionality for
future applications such as redox activity for conductance
switching and memory application.
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(9) Fock, J.; Sørensen, J. K.; Lörtscher, E.; Vosch, T.; Martin, C. A.;
Riel, H.; Kilsa,̊ K.; Bjørnholm, T.; van der Zant, H. Phys. Chem. Chem.
Phys. 2011, 13, 14325−14332.
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There are various quantum chemical approaches for an ab initio description of transfer integrals within the
framework of Marcus theory in the context of electron transfer reactions. In our paper, we aim to calculate transfer
integrals in redox-active single molecule junctions, where we focus on the coherent tunneling limit with the metal
leads taking the position of donor and acceptor and the molecule acting as a transport mediating bridge. This setup
allows us to derive a conductance, which can be directly compared with recent results from a nonequilibrium
Green’s function approach. Compared with purely molecular systems we face additional challenges due to the
metallic nature of the leads, which rules out some of the common techniques, and due to their periodicity, which
requires k-space integration. We present three different methods, all based on density functional theory, for
calculating the transfer integral under these constraints, which we benchmark on molecular test systems from
the relevant literature. We also discuss many-body effects and apply all three techniques to a junction with a
Ruthenium complex in different oxidation states.

DOI: 10.1103/PhysRevB.89.115412 PACS number(s): 73.63.Rt, 73.20.Hb, 73.40.Gk

I. INTRODUCTION

In ultrahigh vacuum and at very low temperatures, the
electron transport problem in single-molecule junctions is
nowadays straightforwardly accessible to a computational
treatment with a nonequilibrium Green’s function (NEGF)
approach [1] in combination with a density functional theory
(DFT) based description of the electronic structure of the
separate and combined components of the junction, namely the
leads and the scattering region [2–5]. The theoretical modeling
of experiments with an electrochemical scanning tunneling
microscope (STM) [6–9] is more challenging, because here
depending on the setup as well as structural details of the
system, two competing electron transport mechanisms have to
be considered, namely, electron hopping, which is a thermally
induced multiple step process and coherent tunneling, which
is the standard one-step phenomenon known from benchmark
molecules relatively strongly coupled to metallic electrodes
at temperatures close to 0 K. In both cases, an atomistic
description of the process under electrochemical conditions
provides a formidable challenge for a DFT based theory. For
the former, the difficulty lies in a simplified and compact but
nevertheless sufficiently accurate description of the nuclear
vibrations of the molecule and solvent which drive the electron
flow. For the latter, it becomes necessary to adjust the oxidation
state of the redox active center in the scattering region and
therefore deal with the issue of charge localization in a
multicomponent system, which we addressed in a recent
publication [10] where we also established a connection
to our earlier work on electronegativity theory, Fermi level
alignment, and partial charge distributions within a single-
molecule junction [11–13].

In our current paper, we focus on calculating the transfer
integral [14] in a single molecule junction, which is a key
ingredient in the semiclassical Marcus theory often used for the
description of electron hopping in purely molecular systems.

*robert.stadler@univie.ac.at

This is a first step in treating hopping and coherent tunneling on
the same theoretical level, which enables a direct comparison
of the coherent tunneling conductance calculated from Marcus
theory with that obtained from a NEGF approach and lays the
ground for a description of electron hopping in our future work,
where the reorganization energy and driving force will also
have to be considered. For the quantum chemical description
of the transfer integral, there are two types of commonly used
frameworks: (1) those that look for the minimum adiabatic
state splitting, which is estimated either through Koopman’s
theorem [15] or by tuning energy differences with external
perturbations [14], and (2) those that depend on defining the
diabatic states, such as the Mulliken-Hush method [16] and its
generalization [17], the block diagonalization method [18],
and the fragment charge difference method [19]. Because
Slater determinant based techniques are rather unsuitable
for the description of metallic systems (this holds also for
parametrized approaches, which are very popular for the
description of electron transfer processes in organic solids
[20]), methods for both (i) and (ii) have also been developed
within the framework of DFT more recently.

We use three of these methods in our article. Within
category 1, we employ an energy gap approach [14,21],
where we define the splitting of adiabatic states in a single
particle version as the energy difference between suitably
selected Kohn-Sham (KS) orbitals of our system and in a many
body version, where we use the generalized �SCF technique
[22–25] for localizing a charge in particular orbitals, thereby
including also electronic relaxation effects in our estimation of
the energy splitting of adiabatic states at the transition point.
For exploiting category 2, namely, the derivation of transfer
integrals via the definition of diabatic states, we use two fun-
damentally different approaches. One is based on calculating
explicitly the coefficients for the expansion of adiabatic into
diabatic states [26–28], where we introduce again a single
particle and a many-body version. The other is Larsson’s
formula for the estimation of an effective coupling [19,29],
which is a multistate approach, where the contributions of all
bridging molecular orbitals (MOs) are summed up. This last

1098-0121/2014/89(11)/115412(9) 115412-1 ©2014 American Physical Society
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approach we use only with KS orbitals, because we could not
find a meaningful many body implementation within DFT.

The paper is organized as follows. In the next section,
we introduce the three different methods for calculating the
transfer integral in our article by applying them to a 3 × 3
tight-binding (TB) Hamiltonian, which was also previously
used by others for demonstration purposes [30]. In Sec. III,
we describe how we combine the three techniques with
DFT calculations, which we perform by using the GPAW
code [31,32] and benchmark our approaches by comparing
our results for molecular systems previously studied by
other groups, namely, for intermolecular hole transport in
a diethylene dimer [33] and for intra-molecular electron
transport in a tetrathiafulvalene-diquinone anion (Q-TTF-Q−)
[34]. In Sec. IV, we employ all techniques for the evaluation
of the transfer integral in a single molecule junction with two
gold electrodes connected by a Ru-complex with transport
mediating MOs around the Fermi level. Here, we study
the influence of the representation of the leads, starting
with four-atom gold clusters and ending up with a periodic
slab description of the surface, where k point integration
becomes an important issue [35]. By using Nitzan’s equations
[36,37], we relate the conductance to the transfer integral
in Marcus theory, where for the coherent tunneling limit at
low bias the reorganization energy and driving force can be
disregarded, and we get reasonable quantitative agreement
with our previous results, where we used a NEGF-DFT
technique to calculate transmission functions for the same
system [10].

II. THREE METHODS FOR THE EVALUATION
OF THE TRANSFER INTEGRAL

In this section, we introduce all three methods used in this
article for calculating transfer integrals by applying them to
the diabatic Hamiltonian H of order 3 × 3,

H =
⎛
⎝

εD VDB VDA

VDB εB VBA

VDA VBA εA

⎞
⎠ , (1)

where εD , εB , and εA are the onsite energies of a donor, a bridge
and an acceptor state, respectively, and VDB , VDA, and VBA the
respective electronic couplings between them. When we now
specify the parameters in this Hamiltonian with εA = εD =
0, εB = 1,VDB = VBA = −0.1 and VDA = −0.01, which is
representative for typical molecular donor/bridge/acceptor
systems and identical with the setup studied in Ref. [30] a
diagonalization of H results in the adiabatic states,

ψ1 = 0.701φD + 0.136φB + 0.701φA, ε1 = −0.029,

ψ2 = 0.701φD − 0.701φA, ε2 = 0.010,

ψ3 = 0.096φD − 0.991φB + 0.096φA, ε3 = 1.019.

(2)

If we use the energy gap method [14,21] for evaluating the
transfer integral, we obtain the expression

H
gap
DA = (ε2 − ε1)/2, (3)

where it is important to note that the eigenenergies of the
adiabatic states ψ1 and ψ2 have been selected in this definition
because of their high amplitudes on the donor and acceptor
states, while the third adiabatic state ψ3, which is mostly

localized on the bridge state can be disregarded. In praxis, as
we will also discuss in the following sections, there are always
two distinct adiabatic states which can be used for forming
the energy difference in Eq. (3) even for larger Hamiltonians
as long as the donor and the acceptor are characterized by a
single state on each side [21].

Another definition of the transfer integral can be obtained
by Larsson’s formula for the derivation of an effective coupling
[19,29]

H effect
DA = VDA − �N

i=1
VDiViA

εA,D − εi

, (4)

where the direct coupling between donor and acceptor VDA

as well as the contributions from all N bridge states in an
arbitrary system are added up explicitly and N = 1 for the
3 × 3 Hamiltonian in Eq. (1).

For the third technique, we employ for calculating the
transfer integral, we follow the work of Migliore [26–28] and
use the amplitudes on the donor and acceptor sites, i.e., the
expansion coefficients aD,1 and aA,1, respectively, of the wave
function for the adiabatic state with the lowest energy (the
ground state ψ1) in Eq. (1) to formulate

H coeff
DA = aD,1aA,1

a2
D,1 − a2

A,1

(εA − εD). (5)

Since the diabatic states in Eq. (1) are orthogonal to each other
by definition, we do not need to apply the orthogonalization
procedure detailed in Refs. [26–28] at this point, but we applied
it to the DFT calculations, which we will present in the next
section. In contrast to the energy gap and effective coupling
techniques, where εA = εD has been assumed because the
energies of the initial and final state need to be equal at
the transition point where the transfer integral is defined in
dependence on the reaction coordinate q, for the expansion
coefficient method Eq. (5) has a discontinuity at this point, as
is illustrated in the concrete example of Eq. (2), which gives
aA,1 = aD,1 = 0.701. As it has been shown in the appendixes
of Refs. [26] and [27], this discontinuity can be eliminated
leading to the expected correct result at the transition state
coordinate but the closer the transition state is approached the
higher the demands on the computational accuracy become.
This leads to a trade off, where Eq. (5) is used close to but
not at the transition point and for the model Hamiltonian in
Eq. (1), q can be varied by varying εD−εA.

It is illustrative to compare the values obtained for HDA

from the three methods described in this section numerically
for the Hamiltonian defined in Eq. (1) for the set of parameters
which result in the adiabatic wave functions in Eq. (2). This
is done in Table I, where it can be seen that H coeff

DA converges
towards 0.02 for small values of εD−εA, while H

gap
DA = 0.0195

and H effect
DA = 0.02. As discussed in Ref. [21], the applicability

of the effective coupling method depends on |εB − εA,D| being
reasonably large and all couplings being reasonably small.
In order to be more quantitative with this statement, we
use the Hamiltonian in Eq. (1) with εA = εD = VDA = 0.0
and VDB = VBA to derive H effect

DA = −V 2
DB/εB and H

gap
DA =

0.5(0.5εB −
√

2V 2
DB + 0.25ε2

B ) for this special case, which
we both plot in dependence on VDB and εB in Fig. 1. It
can be seen that the agreement between both methods is

115412-2
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TABLE I. Transfer integral H coeff
DA as calculated with the expan-

sion coefficient method [26–28] in Eq. (5) for the Hamiltonian in
Eq. (1) with the parameters εB = 1, VDB = VBA = −0.1, and VDA =
−0.01. For the same parameters one can derive H

gap
DA = 0.0195 from

Eq. (3) and H effect
DA = 0.02 from Eq. (4) with εA = εD = 0.

εD εA εD-εA aA,1 aD,1 H coeff
DA

0.0 0.0 0.0 0.701 0.701 divergent
−0.01 0.01 0.02 0.845 0.518 0.0197
−0.1 0.1 0.2 0.991 0.093 0.0189
−0.5 0.5 1.0 0.998 0.017 0.0167

ideal for |εB − εA,D| above 0.2 eV and |VDB | below 0.1 eV.
Most systems we investigate in this article have Hamiltonians
broadly within this range, but from Fig. 1 it can be also seen
that the results from the two methods move away from each
other only gradually for larger couplings or smaller on-site
energy differences.

III. DFT CALCULATIONS OF THE TRANSFER INTEGRAL
FOR MOLECULAR BENCHMARK SYSTEMS

We now want to benchmark the three methods for evalu-
ating HDA, which we have introduced in the last section on
real molecular systems instead of just TB matrices, where
we choose two systems for which HDA has been studied
extensively in the literature. The first is an ethylene dimer,
where inter molecular hole transfer occurs between the local
highest occupied MOs (HOMOs) of two ethylene molecules
[33], which represent the diabatic initial and final state of the
process, respectively, and form the two adiabatic bonding and
antibonding states through their hybridization as we illustrate
in Fig. 2. The second test system is a Q-TTF-Q− anion, where
intra molecular electron transfer between two quinone rings
is mediated by a bridge [34] and the lower lying adiabatic
state is shown in Fig. 3. This latter case is more challenging
to describe correctly, since (i) it is not obvious whether the
sulfur atoms should be seen as part of the initial/final state
or as part of the bridge and (ii) due to the direct covalent
connection between the donor/acceptor states and the bridge
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 0.1 0.2
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FIG. 1. (Color online) H effect
DA and H

gap
DA for the Hamiltonian in

Eq. (1) with εA = εD = VDA = 0.0 and VDB = VBA.

FIG. 2. (Color online) Molecular orbitals for a dimer of ethylene
molecules as studied in Ref. [33], where the initial state ψD for hole
transport is the HOMO of the left molecule, and the final state ψA

the HOMO on the right one, and these orbitals form the adiabatic
bonding and antibonding states, ψ+ and ψ−, respectively, through
their hybridization.

states the self interaction (SI) problem of DFT, which results in
an artificial tendency towards charge delocalization, becomes
an issue [38–41].

All DFT calculations in this article were performed with the
GPAW code [31,32], where the core electrons are described
with the projector augmented wave (PAW) method and the
basis set for the KS wave functions can be optionally chosen
to be either a real space grid or a linear combination of atomic
orbitals (LCAO), and we used both for the benchmarking
calculations in the following, where the LCAO basis set has
been applied on a double ζ level with polarization functions
(DZP). The sampling of the potential energy term in the
Hamiltonian is always done on a real space grid when using
GPAW, where we chose 0.18 Å for its spacing and the
same value when the grid also defines the basis set. For the
XC functional we use the semilocal Perdew-Burke-Ernzerhof
(PBE) [42] parametrization but we compare it with the hybrid
functional B3LYP [43] for the cases where we find an
indication for an artificial delocalization of electronic states.
A tool of GPAW we also use extensively in the following is
the generalized �SCF method, where the spatial expansion
of an orbital enforced to contain a charge can be defined
as an arbitrary linear combination of Bloch states [22,23].
By extracting or adding one electron from the system and
inserting the corresponding charge into a predefined orbital
in the beginning of every iteration step, the self-consistency
cycle progresses as usual but with the charge density of this
particular orbital as a contribution to the external potential.

For the evaluation of the transfer integral with the energy
gap method for the hole transport in the ethylene dimer, one
can, in principle, just obtain the two adiabatic states as the
HOMO and HOMO-1 from a standard DFT calculation and
insert their respective KS eigenenergies into Eq. (3). We refer

FIG. 3. (Color online) The SOMO of Q-TTF-Q−, which is the
energetically lower lying adiabatic state for intra-molecular electron
transfer in this system.
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TABLE II. Transfer integral HDA for the ethylene dimer in Fig. 2
calculated with three different techniques, which are applied in single
particle (SP) and many-body (MB) variants, where the results are
compared with those from Ref. [33] and are given in eV.

H
gap

DA H effect
DA H coeff

DA

basis set SP MB SP SP MB HDA (Lit.)

LCAO 0.030 0.026 0.033 0.033 0.043 0.046
grid 0.050 0.043 – – 0.068 (Ref. [33])

to this as a single-particle (SP) approach in the following.
Alternatively, one can use the �SCF method in two separate
calculations where an electron has been removed from either
one or the other of these two orbitals in order to obtain total
energies values whose insertion into Eq. (3) should ensure
that H

gap
DA calculated this way also contains contributions from

the relaxation of all other electrons in reaction to this charge
[44,45]. This is what we call the many-body (MB) approach in
the remainder of this article. In Table II, we compare SP and
MB values of H

gap
DA for the ethylene dimer, where we calculated

both with a LCAO as well as a grid basis set.
For the definition of H effect

DA a subdiagonalization procedure
[46,47] is required, where a Hamiltonian is obtained that
contains a block with the on-site energies of orbitals localized
on the left ethylene molecule and another block of states
belonging to the right one with the couplings between left
and right as nondiagonal elements. Since the ethylene dimer
does not contain bridge states, only the direct coupling element
between initial and final state, i.e., the first term on the right
side of Eq. (4) is needed to obtain H effect

DA for this system. For
this method, we only define a SP mode, and consider MB
calculations to be impractical.

While H
gap
DA and H effect

DA have to be calculated at the ground
state of the system with respect to the coordinates of the
nuclei which corresponds to a reaction coordinate q = 0,
H coeff

DA diverges at this point as illustrated in the last section
in the discussion of Table I. In order to define a suitable q
in terms of nuclear coordinates, we followed the procedure
in Ref. [34], where the ground-state coordinates R0 for the
positively charged dimer are supplemented by relaxations for
the charged initial and final states (with the charge localized
through �SCF on the left or right molecule, respectively)
resulting in the sets of coordinates R−1 and R1 for q =
−1 and 1, respectively, and the interpolation formula Rq =
0.5q(q + 1)R1 − (q − 1)(q + 1)R0 + 0.5q(q − 1)R−1 can be
applied to obtain the coordinates for an arbitrary value of
q. In the following, we show results from calculations for
q = 0.2 wherever it is not stated otherwise. For calculating
H coeff

DA in a SP mode, we make use of the same block
diagonalization of KS states already mentioned in connection
with H effect

DA in the paragraph above, where the local HOMOs
of the separate ethylene molecules in the dimer now have
different energies due to the asymmetry of the system at
q = 0.2 and a finite energy difference can be obtained for
Eq. (5). By forming and diagonalizing a 2 × 2 Hamiltonian
from these two local HOMOs and the direct coupling between
them, the expansion coefficients aA,1 and aD,1 can also be
straightforwardly derived. In MB mode εA and εD are the
total energies of the initial and final states, respectively, and

therefore �SCF calculations constraining the positive charge
on the left ethylene molecule at q = −1 and at the right one
at q = 1 have to be performed. The expansion coefficients
aA,1 and aD,1 on the other hand are again quantities related
to the transition point, and we use the wave-function overlap
within the projector augmented wave (PAW) formalism [32] to
obtain them at q = 0.2, where the coefficients of the expansion
of adiabatic into diabatic states are equivalent to those for
the expansion of constrained diabatic states into KS states
if normalized correctly. We also tested the orthogonalization
procedures for the energy gap and the expansion coefficient
methods suggested in Refs. [26–28,33], respectively, and
found them to have no numerical effect for any system studied
in this paper, where all states in the definitions we chose were
orthogonal already.

From Table II, it can be seen that for the ethylene dimer all
three methods agree perfectly with each other in SP mode,
where only the energy gap technique can be applied also
with a grid basis set, while for the other two approaches the
LCAO basis is needed for the subdiagonalization procedure
of KS states [46,47]. There is a bit more fluctuation of results
in MB mode but overall the deviations are moderate, where
more accuracy tends to deliver slightly higher values assuming
that the grid basis is better converged than the LCAO basis
and that MB in general gives an improvement over SP. We
also show the number obtained by Bredas and co-workers
for the same system in Ref. [33], which matches perfectly
with our MB values of H coeff

DA with a LCAO and H
gap
DA with

a grid basis. One might wonder why the MB values do
not differ more when compared with their SP counterparts
given that electronic relaxation provides a factor of two when,
e.g., comparing the addition energy of a H2 molecule in a
junction with the molecules KS-HOMO/LUMO gap [44]. This
discrepancy is best understood by focusing on Eq. (3) for the
calculation of H

gap
DA from two separate total energy calculations

with a positive charge in first the energetically lower and
than the higher of the two adiabatic states in Fig. 2, which
are the global HOMO and HOMO-1 of the dimer. Contrarily
to the bonding HOMO and antibonding LUMO of H2, which
differ considerably in their respective spatial distribution, the
HOMO and HOMO-1 of the ethylene dimer mostly differ in
their phase, i.e., their minima and maxima are at exchanged
positions for the second ethylene molecule. This is, however,
irrelevant for the electron density that is formed from these
orbitals where the minima and maxima both give local peaks
and the effect of the relaxation of the other electrons in
the system should be similar for both states, thereby almost
canceling out when the difference in Eq. (3) is formed. In
general, such a good agreement between the SP and MB mode
of the energy gap method can always be expected because
transfer integrals are usually below 0.1 eV in value, which
corresponds to a rather low level of hybridization between the
donor and acceptor states and therefore to rather similar spatial
distributions of the bonding and antibonding adiabatic states.

It has to be stressed that the ethylene dimer is a rather
unchallenging system in the sense that the initial and final
states are not connected to each other by covalent bonds and
therefore no bridge states exist. The difficulties that can arise
in the presence of a bridge are illustrated for the Q-TTF-
Q− anion in Table III, where HDA has been calculated in
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TABLE III. Transfer integral HDA for the Q-TTF-Q− anion in
Fig. 3 calculated with all three techniques in SP mode, where the
Sulfur atoms are taken as part of the initial and final states in the first
row, and as part of the bridge states in the second row. All numbers
in this table have been calculated with a LCAO basis set and are
given in eV.

H
gap
DA (MO) H

gap
DA (diag.) H effect

DA H coeff
DA

S on donor/acceptor 0.031 0.023 0.023 0.023
S on bridge 0.031 0.042 0.064 0.057

SP mode with all three methods. Although like in the dimer
case, also for the anion the energy difference of the SOMO
and LUMO from the standard DFT calculation can be used
directly for determining H

gap
DA for electron transfer, there is an

ambiguity here because the initial and the final state have not
been explicitly defined and, in principle, several diabatic states
localized on the two quinone rings could contribute to what we
take as the adiabatic states. This ambiguity can be overcome
by block-diagonalizing the KS Hamiltonian over the donor,
bridge and acceptor areas, selecting one state in the donor area
as initial and one in the acceptor area as final state, keeping
all N bridge states, and then diagonalizing the resulting (N +
2) × (N + 2) Hamiltonian, where the two adiabatic states for
forming the energy difference can be chosen by the criterion
of a high amplitude at the initial and final state as discussed
in the previous section. We distinguish between these two
ways of deriving H

gap
DA in SP mode just described by referring

to them as H
gap
DA (MO) and H

gap
DA (diag.). The latter becomes

especially important in the next section, where we have the
Bloch states of the gold leads as initial and final states and their
selection becomes a crucial issue for the transfer integral. The
same (N + 2) × (N + 2) Hamiltonian is also relevant for the
derivation of H effect

DA , where now the first term in Eq. (4) gives
only a negligible contribution and the N bridge states are all
entering into the sum. Also H coeff

DA we obtain by diagonalizing a
(N + 2) × (N + 2) Hamiltonian for the expansion coefficients
but this one now represents the electronic structure for the
nuclear coordinates corresponding to q = 0.2.

The most important question if a molecular bridge exists
between the donor and acceptor states is the decision which
atoms are still part of the initial/final state and which atoms
should be assigned to the bridge. Although this decision is in
principle arbitrary if all parts of the system are connected by
covalent bonds, for some systems there are natural choices as
we discuss in the next section where the initial and final states
are on the gold leads and the molecule is the bridge. For the
Q-TTF-Q− anion, there is no a priori way to make a superior
assignment for the sulfur atoms and we compare the results
for both possibilities in Table III. For H

gap
DA (MO), there is

no difference because we do not describe our initial and final
states explicitly as stated above and therefore do not specify
where their location starts and ends. For all other methods, the
values for the transfer integral vary between the two choices
of what is the bridge as they should. The correct value of HDA

has to depend on the exact definition of A and D or in other
words the transfer integral for two quinone rings with sulfur
ends connected by an ethylene bridge is different from the

TABLE IV. Transfer integral for the Q-TTF-Q− anion (at q = 0
and 0.2 for H

gap
DA and H coeff

DA , respectively) calculated with PBE and
B3LYP functionals in MB mode. All results in this table have been
obtained with a grid basis set and are given in eV. The result of
Ref. [34] for this system is also shown for comparison.

H
gap
DA H coeff

DA HDA (Lit.)

PBE 0.026 0.117 (0.157) 0.130
B3LYP 0.036 0.053 (0.035) (Ref. [34])

one for two quinone rings connected by an ethylene tetrathiol
bridge. More interestingly, while all three methods give the
same result with the S atoms as part of donor and acceptor,
they exhibit quite a spread of results if these atoms are part
of the bridge. This finding can be explained by coming back
to the discussion around Fig. 1 where it has been shown that
the methods only give the same results for reasonably small
couplings and reasonably large energy differences. If the S
atoms are considered to be part of the bridge, the couplings
reach values of up to 0.8 eV and therefore the methods slightly
diverge for this case.

In Table IV, we show HDA for the Q-TTF-Q− anion
calculated with the energy gap and expansion coefficient
techniques in MB mode. The main numbers for H coeff

DA have
been calculated with the sulfur atoms as part of the initial and
final state, while a definition with the S atoms being part of
the bridge has been used for the numbers in parantheses. All
results we presented so far have been produced with a PBE [42]
parametrization of the XC functional, while in Table IV we also
compare with data using the hybrid functional B3LYP [43]
instead. It can be seen that the PBE version of H coeff

DA deviates
from all the other values we have calculated for the transfer
integral in the Q-TTF-Q− anion by an order of magnitude but
interestingly is almost equal to the value found in Ref. [34].
The explanation of this deviation can be found in the SI
problem, which makes the expansion coefficients aD,1 and aA,1

almost equal even if asymmetry is induced by setting q = 0.2.
This artefact can be even more highlighted by calculating the
expansion coefficients at q = −1, where one of them should
be close to 0 and the other one close to 1, which is indeed the
case for B3LYP (aD,1 = 0.95, aA,1 = 0.001) but not for PBE
(aD,1 = 0.77, aA,1 = 0.64). This problem does not occur for
the PBE calculations of H coeff

DA for the ethylene dimer presented
in Table II where aD,1 = 0.99 and aA,1 = 0.10, because in this
case there is no bridge linking the donor and acceptor [41].
Since in the expansion method the diabatic states are defined as
a linear combination of the adiabatic states, the SI error cannot
lead to an artificial overdelocalization where the charges are
already maximally delocalized over donor and acceptor (as is
the case for the ethylene dimer) but it has an effect on the
Q-TTF-Q− anion where the charge can spill onto the bridge.

In summary, we can conclude from this section that all
three methods agree with each other quite well for the chosen
benchmark systems and that results from single particle and
many body calculations are of the same order of magnitude.
We therefore restrict our study to the SP mode in the remainder
of this article.
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FIG. 4. (Color online) Geometry of the Ru(PPh2)4(C2H4)2

bis(pyridylacetylyde) complex bonded to ad-atoms on Au fcc
(111) surfaces, where the conductance has been studied within the
framework of NEGF for the neutral and oxidized complex in Ref. [10].

IV. CALCULATION OF THE TRANSFER INTEGRAL FOR
A REDOX ACTIVE SINGLE MOLECULE JUNCTION

In a recent paper, we studied the coherent electron transport
through the Ru(PPh2)4(C2H4)2 bis(pyridylacetylyde) complex
in Fig. 4 by using a NEGF formalism for the conductance,
and where we switched the oxidation state of the redox
active ruthenium atom between +II and +III corresponding
to an overall charge of 0 and +1 on the molecular complex,
respectively [10]. The +1 charge on the complex we achieved
by fixing the charge on a Cl counter ion with the �SCF
technique [22,23] and ensuring overall charge neutrality in the
unit cell of our device region, so that the negative charge on the
chlorine anion resulted in a compensating positive charge on
the complex. In Ref. [10], we also tested a second method for
charge localization, which made use of solvent screening and
was computationally more expensive but in the current article
no water molecules were added to our cell, because the more
efficient approach based on �SCF achieved equivalent or even
better results. We chose this particular Ru-complex because it
was used in previous conductance measurements [48,49] as a
monomer of chains, where depending on the chain length either
coherent transport or electron hopping was observed [48], and
because this molecular species is in general considered to be a
good starting point for the investigation of chains with multiple
redox active centers [50]. In contrast to Ref. [48], we use
pyridil groups as anchors to the leads because they provide
peaks in the transmission function, which are narrow enough
to assume that a charge on the complex has an impact on the
conductance but broad enough to avoid the Coulomb blockade
regime [51–53].

In the present article we relate the conductance G of the
molecular junction in Fig. 4 to the transfer integral, where the
electrodes play the role of the initial and the final state in a one-
step electron transfer reaction and the redox-active molecule
acts as a mediating bridge. The relation between HDA and G

was explicitly described by Nitzan [36,37], where adopted to
our definition of HDA the conductance was expressed as

G(EF ) = H 2
DA	A	DG0[

(EF − ED)2 + 	2
D/4

][
(EF − EA)2 + 	2

A/4
] ,

(6)

with G0 being the conductance quantum, and 	D and 	A the
widths of the donor and acceptor levels due to their couplings
to the left and right metal leads, respectively. In such a setup,
only metallic surface states close to EF are relevant for the
conductance through the junction and if only such bands are
considered as the initial and final states of the corresponding
electron transfer reaction the energy differences EF − ED and
EF − EA vanish in Eq. (6), which can now be simplified to

G(EF ) = H 2
DA

16

	D	A

G0. (7)

By using this expression and setting 	D = 	A = 0.5eV , which
is reasonable for the coupling width of gold leads [54], the
transfer integral can be obtained from the conductance as
HG

DA ≈ √
G(EF )/8, where in Table V, we list the values we

derive in this way from the conductances in Ref. [10] as a
benchmark for the three methods introduced in the current
article.

In order for Eq. (7) to be valid, only metal bands, which
contribute to the density of states (DOS) at the Fermi level,
can be considered as donor and acceptor states. Therefore we
calculated HDA,k for all relevant donor-acceptor pairs weighted
with a k-point-resolved DOS,

HDA,k =
∑N

i=1 HDA,i,k ∗ ρ(EF )i,k∑N
i=1 ρ(EF )i,k,

, (8)

where ρ is the density and finally integrated HDA,k over k
space following the procedure of Marcus and co-workers [35].
Another aspect that has to be considered for the proper choice
of initial and final states is their localization on the gold
adatoms, which couple directly to the molecular bridge, since
only those can contribute significantly to the electron transfer
reaction. Bulk bands, that are close to the Fermi level but have
no connection to the molecule would lower HDA in Eq. (8)
artificially, where the statistical weight is only defined by the
DOS. Therefore we introduced the exclusion criterion that the
metallic states entering Eq. (8) have a coupling with one of the
two most relevant MOs (the HOMO-1 and the LUMO), which
is larger than 10−3.

In theory, the initial and the final states in our calculations
should have the same energy for each donor/acceptor pair,
because the junction in Fig. 4 has a high symmetry and
the transfer integral has to be defined at the transition point
of the corresponding reaction. In practice, however, small
asymmetries introduced by the torsional degrees of freedom
in the molecular bridge can lead to differences in diabatic
energies in the range of 10−3 eV. Since the HDA values in
this section are in the order of 10−4 eV, we corrected Eq. (3)
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TABLE V. Transfer integrals for the junction in Fig. 4 calculated with energy gap, effective coupling and expansion coefficient methods in
SP mode. The gold leads are small clusters of four atoms on each side in the Au pyramid columns and the periodic surfaces from Ref. [10]
everywhere else, where 	 point only calculations are also compared with the average over 8 k points in the irreducible Brillouin zone. HG

DA

has been defined as
√

G(EF )/8, where the values of G(EF ) have been taken from Ref. [10]. All results are given in eV.

Au pyramid 	 point only 8 k points

Charge H
gap
DA H effect

DA H coeff
DA H

gap
DA H effect

DA H coeff
DA HG

DA H
gap
DA H effect

DA H coeff
DA HG

DA

0 3.57×10−3 3.63×10−3 3.65×10−3 2.95×10−4 3.05×10−4 3.05×10−4 4.41×10−4 1.06×10−3 1.02×10−3 1.02×10−3 4.96×10−4

+1 3.16×10−3 3.26×10−3 3.18×10−3 4.28×10−4 4.72×10−4 4.69×10−4 1.00×10−3 1.95×10−3 1.65×10−3 1.25×10−3 1.37×10−3

to account for these asymmetries following the procedure
of Bredas and co-workers [33], where the differences of the
diabatic energies are explicitly subtracted,

H
gap
DA =

√
(ε1 − ε2)2 − (εA − εD)2

2
. (9)

For the application of the expansion coefficient method, it is
an advantage that small energy differences between donor and
acceptor states exist, because here we can interpret them as
finite values of q, since this technique cannot be applied at
the transition point as discussed in detail in the previous two
sections. The effective coupling method can be corrected by
replacing the denominator εA,D − εi of the second term in
Eq. (4) with (εD + εA)/2 − εi [21]. Another consequence of
the asymmetry in the junction are artificial deviations between
the couplings of each MO to the two gold surfaces, which we
corrected for by using a mean value for the coupling to both
surfaces for all three techniques.

In Table V, we present HDA values for the junction in Fig. 4
for a neutral (0) and charged (+1) complex calculated with all
three methods at only the 	 point as well as averaged over
the eight k points in the irreducible Brillouin zone obtained
from a 4 × 4 × 1 grid. The values HG

DA are obtained from
the conductances in Ref. [10] for the same system and also
given for comparison. While all the remaining numbers refer
to the periodic junction also used in Ref. [10], for the first
three columns (Au pyramid), small clusters of four gold
atoms on each side in a tetrahedral configuration have been
used as electrodes in order to assess the effect of a proper
description of the gold leads on the numbers. The overall
agreement of the three methods for calculating HDA amongst
themselves is excellent, which is not surprising because all
relevant couplings between the MOs of the bridge and the
surface states are in the range 10−3–10−2 and the molecular
eigenenergies have at least a distance of 0.2 eV from EF .
When compared with HG

DA the important aims are fulfilled,
namely the order of magnitude is the same, and the transfer
integral for the neutral state is always considerably smaller
than that for the charged one. A better agreement could not

TABLE VI. Individual contributions of the MOs in Fig. 5 to
H effect

DA . All values are given in eV.

Charge HOMO-1 HOMO LUMO LUMO + 1

0 3.4×10−4 3.3×10−5 1.1×10−3 −5.8×10−4

+1 1.4×10−3 4.4×10−5 6.2×10−4 −4.7×10−4

have been expected given that the values for HDA are rather
small and the approximative nature of the assumptions we
made in deriving HG

DA from G (EF ). This is in particular true
for the underestimation of the k point dependence of HG

DA in
Table V, which stems from the fact that 	D and 	A in Eq. (7)
depend on the density of states of the lead and should therefore
be different for each k point, which is not considered in our
treatment, where we set both to 0.5 eV globally throughout the
reciprocal space of the system. Only the results we obtained
for the transfer integral with small clusters as gold leads are
wrong, both in their order of magnitude and in the ranking with
regard to 0 and +1 charge, where both can be easily explained.
The small cluster size is responsible for a larger amplitude of
the initial/final state on the Au adatom, thereby enhancing the
coupling to all MOs [54] and resulting in artificially high values
of HDA. The charged complex does not have higher transfer
integrals then the neutral one because for nonperiodic leads
the charge introduced by the chlorine ion is mostly localized
on the Au clusters as we investigated in detail in Ref. [10].

An important finding from the comparison of conductances
of the two charging states of the Ru-complex in Ref. [10]
was that for the neutral molecule it was determined by the
molecular LUMO and LUMO + 1, with the contribution from
the LUMO being distinctly larger. In the charged case, the
molecular HOMO and HOMO-1 are shifted close to the
Fermi energy of the metal leads, which makes them primarily
responsible for the molecular conductance. The effective
coupling method provides a good way to analyze whether the
same holds true for the respective transfer integrals because
the contributions from the MOs are additive in Eq. (4). In
Table VI, we list the terms in the sum coming from the four
MOs closest to EF , where indeed it can be seen that the LUMO

FIG. 5. (Color online) Molecular orbitals close to EF for the
junction in Fig. 4.
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dominates for charge 0 and the HOMO-1 for charge +1. The
HOMO adds only an amount which is two orders of magnitude
smaller for both oxidation states, because it is mostly localized
in the center of the molecule and only to a much lesser extent
on the anchor groups as can be seen from Fig. 5. This results in
rather low coupling of this orbital to the metal leads, which we
also found from the NEGF calculations for the transmission
functions in Ref. [10]. The contribution from the LUMO + 1 is
also independent of the charging state but of larger magnitude
than that of the HOMO, and for both systems its sign is
different from that of the other MOs indicating destructive
interference.

V. SUMMARY

The aim of this article was to identify suitable methods for
calculating the transfer integral—which is a crucial quantity
in Marcus theory—within a DFT framework for a setup where
metallic leads act as donor and acceptor and a molecule in
between them mediates electron or hole transport as a bridge.
We found three techniques fit for that purpose, namely, (i) the
energy gap method where HDA is derived from the total energy
difference of adiabatic states, (ii) Larsson’s formula which
adds up the contributions from each MO of the molecular
bridge, and (iii) a expansion coefficient approach where the
amplitudes of the adiabatic states in a diabatic basis are used
explicitly. For this assessment, we proceeded in three steps.
First, we compared the three methods on an abstract level
by applying them to 3 × 3 tight-binding matrices, where we

found good agreement between all of them for small couplings
between the bridge and the donor/acceptor states and large
respective on-site energy differences. In a second step, we
benchmarked our DFT implementation of the three techniques
for purely molecular systems with and without a bridge, which
have been studied by other groups, where we also established
that a many body approach gives only negligible corrections
compared to single particle descriptions. Finally, we calculated
HDA for a single molecule junction where a Ru complex is
coupled to two gold surfaces by pyridyl anchor groups using
all three methods and assuming that surface states of the two
leads act as donor and acceptor states, thereby describing
coherent tunneling. Our results for HDA were in excellent
agreement with those derived from the conductance computed
with a NEGF formalism for the same system in two different
oxidation states.
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To define the conductance of single-molecule junctions with a redox functionality in an electrochemical cell,
two conceptually different electron transport mechanisms, namely, coherent tunneling and vibrationally induced
hopping, compete with each other, where implicit parameters of the setup such as the length of the molecule
and the applied gate voltage decide which mechanism is the dominant one. Although coherent tunneling is most
efficiently described within Landauer theory and the common theoretical treatment of electron hopping is based on
Marcus theory, both theories are adequate for the processes they describe without introducing accuracy-limiting
approximations. For a direct comparison, however, it has to be ensured that the crucial quantities obtained from
electronic structure calculations, i.e., the transmission function T (E) in Landauer theory and the transfer integral
V, the reorganization energy λ, and the driving force �G0 in Marcus theory, are derived from similar grounds, as
pointed out by Nitzan and coworkers in a series of publications. In this paper our framework is a single-particle
picture, for which we perform density functional theory calculations for the conductance corresponding to both
transport mechanisms for junctions with the central molecule containing one, two, or three Ruthenium centers,
from which we extrapolate our results in order to define the critical length of the transition point of the two
regimes which we identify at 5.76nm for this type of molecular wire. We also discuss trends in the dependence
on an electrochemically induced gate potential.

DOI: 10.1103/PhysRevB.91.125410 PACS number(s): 73.63.Rt, 73.20.Hb, 73.40.Gk

I. INTRODUCTION

Electron transport through single-molecule junctions in
ultrahigh vacuum (UHV) and at very low temperatures is
commonly described with a nonequilibrium Green’s function
(NEGF) approach [1] in combination with a density functional
theory (DFT) based description of the electronic structure
of the leads and the scattering region of the junction [2–5].
The modeling of the conductance and current/voltage (I /V )
characteristics of single molecules at ambient conditions,
at which an electrochemical scanning tunneling micro-
scope (STM) [6–10] operates and which are necessary for
the practicability of devices, is more challenging, because
here two competing electron transport mechanisms have to be
considered, namely, electron hopping and coherent tunneling.
It depends on the adjustment of an electrochemical gate voltage
as well as on structural details of the system which of these
two mechanisms dominates the accumulated transfer rate of
electrons. The distinction between the two is important for the
design of molecular wires, where coherent tunneling prevails
at short lengths regardless of the chemical structure but decays
exponentially and then at some structure-dependent crossover
point in molecular length gives way to the Ohmic behavior of
electron hopping, which is crucial for making a wire of any
use in real life [11]. The application of a gate potential for,
e.g., implementing transistor properties [12] or optimizing the
conductance properties of a wire is also easier to achieve in
an electrochemical setup where no third electrode has to be
placed close to the leads for source and drain and no strong
local electric fields are required [13].

There have been a variety of experiments aimed at direct
detection of the crossover length in molecular wires where

*robert.stadler@tuwien.ac.at

coherent tunneling is replaced by hopping. In a pioneering
series of papers Ratner, Wasielewski, and coworkers [12–
15] investigated the intramolecular electron transfer from a
donor to an acceptor moiety via a bridge which consisted
of oligo(phenylene vinylene) (OPV) molecules of increasing
length, where optical absorption spectra allowed the derivation
of charge separation and recombination rates and a switch in
the transfer mechanism was detected when the bridge consisted
of more than two monomers. More recently, Choi et al. mea-
sured the conductance of monolayers of oligophenyleneimine
(OPI) thiolates adsorbed on a gold substrate with their length
varying between 1.5 and 7 nm by using a STM and found
the transition point at ∼4 nm [16], while single-molecule
measurements on the corresponding dithiolates in a break
junction setup placed this crossover point in the range of 5.2–
7.3 nm [17]. Lu et al. studied monolayers of oligo(phenylene
ethynylene) (OPE) wires, where a transition from tunneling to
hopping was observed at a molecular length of ∼2.75 nm [18],
while a transition length of about 3 nm was found for a series
of oligo(arylene ethynylene) (OAE) derivatives in single-
molecule measurements by Wandlowski and coworkers [19].

All theoretical attempts to identify and characterize the
length of the transition between tunneling and hopping so
far [20–24], to the best of our knowledge, suffer from
two severe limitations which are also related to each other:
(i) Hopping is characterized by model or tight-binding Hamil-
tonians in which crucial parameters such as on-site energies
of monomer sites or the coupling between them are just set
to some reasonable values and not derived from ab initio
or any other type of electronic structure calculations, which
would reflect their dependence on any details of the molecular
structure under investigation. (ii) As a consequence, only
N -step hopping could be investigated, in which it is assumed
that the electron hops from one monomer to the other until it
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reaches the final N th one. This is a reasonable assumption for
simulations on DNA wires, on which, indeed, the theoretical
articles quoted above focused, but the assumption is not
justified at all for the highly conjugated OPV, OPI, OPE, and
OAE wires, which have been in the experimental spotlight
recently due to their higher conductance, and or for the
wires with redox-active centers, which we describe further
below. For conjugated systems in general one expects two-step
hopping [15], in which an electron hops from the donor (or
left lead) to the bridge (or central molecule) in the first step
and then on to the acceptor (or right lead) in the second one.

While coherent tunneling is now routinely described within
the single-particle framework of NEGF-DFT [2–5], with
which we have recently shown that the oxidation state of
the redox-active center in the scattering region can also be
adjusted in two different ways [25], no ab initio procedure
for the description of electron hopping in single-molecule
junctions has so far been proposed. Our understanding of
the hopping process in general relies on Marcus’s theory of
electron transfer reactions [26–28], which are the rate-limiting
step in many redox reactions and for which the activation
can be achieved thermally, photochemically, or by applying
an external potential. The key parameters in this theory,
namely, the transfer integral V, the reorganization energy λ,
and the driving force �G0, are usually derived from quantum-
chemical techniques for intramolecular [29] and intermolecu-
lar electron transfer [30], but defining and deriving them in the
context of a single-molecule junction causes various technical
and more fundamental issues to arise, and addressing these
issues is one of the main achievements of this paper.

We carried out DFT calculations for both electron transport
regimes, namely, coherent tunneling and hopping, for the three
single-molecule junctions depicted in Fig. 1. We chose these
particular types of molecules due to their high all-through
conjugation and therefore high conductivity, as well as the
presence of redox-active Ru centers which allow for efficient
electrochemical gating. They also offer the possibility to alter
their local redox state independently, which would require
some structural modifications, but that is not the topic of this
paper. Because of these benign properties of the displayed Ru
complexes, conductance measurements and optical absorption
experiments have been carried out on them in which thiol [31]
and cyano anchors [32] have been used instead of the pyridyl

linkers in this work, which we prefer because of their stability
under ambient conditions and their high junction-formation
probability and because they do not require protecting groups
during the adsorption process on the electrodes [19].

This paper is organized as follows: In the next section we
give a detailed account of our theoretical framework for the
two different electron transport regimes with an emphasis on
how to obtain crucial parameters and quantities from DFT.
In the following sections we use these methods to derive the
crossover point in the molecular length dependence of the
conductance for the systems in Fig. 1 from first principles and
also discuss the effect of an electrochemical gate potential. In
the last section we provide a summary of our results.

II. THEORETICAL FRAMEWORK AND
COMPUTATIONAL DETAILS

Up to now the theoretical understanding of electron hopping
in single-molecule junctions has been driven by the phe-
nomenological models of Kuznetsov and Ulstrup [33–36] and
some earlier work by Schmickler [37], while more recently,
Nitzan addressed the relation between the conductance as
the quantity calculated by the NEGF-DFT formalism for
coherent tunneling and the transfer rate in Marcus’s theory of
electron hopping from a formal perspective [38,39]. Migliore
et al. also developed a single-particle framework for two-step
hopping [40], which is distinct from the usual picture based on
enthalpies and total energies and therefore allows for an orbital
interpretation. We make use of this framework heavily in our
work, as discussed further below, but while in Ref. [40] general
formal relationships are established and some typical values
of V, λ, and �G0 are used as a means of illustration without
referring to a particular molecular system, the aim in our work
is to derive these quantities for the junctions in Fig. 1 from first
principles. In Marcus’s theory the electron transfer process is
described as a chemical reaction, whereas in our specific case
it is an oxidation of the ground state of the molecules which in
a quantum-chemical picture corresponds to the removal of an
electron from the highest occupied molecular orbital (HOMO).

In our modeling of electron hopping we assumed a two-step
process, in which a positive charge jumps from the left
lead to the HOMO of the molecule, which we know to be
conjugated throughout the whole molecule from our previous

FIG. 1. (Color online) (top) Atomic structures and (bottom) chemical formulas of ruthenium bis(pyridylacetylide) complexes with one,
two, and three Ru(PPh2)4(C2H4)2 centers, which are coupled to gold leads via pyridyl-anchor groups. For all junctions in this figure NEGF-
DFT calculations for coherent tunneling (as indicated by the wiggly line below the formulas) as well as DFT calculations of the two-step
electron-hopping process following the recipe given in the main text (the two arrows above the formulas) have been carried out. In the top
panels, the respective HOMOs for all structures, which are crucial in both transport regimes, are also shown on top of the molecular structures.
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work [25,41], and then from there on to the right lead in the
second step. Ratner and coworkers have pointed out that the
situation might get more complicated even in conjugated wires
due to torsional degrees of freedom, and electron transfer rates
might be affected by their thermal activation [15,42]. While
the phenyl groups separating two adjacent Ru centers in the
structures shown in Fig. 1 are quite efficiently trapped by steric
repulsion to the bulky substituents on ruthenium, the pyridyl
anchors have, indeed, some flexibility which could break
the conjugation ranging otherwise from the left lead to the
right one. We performed DFT-based total-energy calculations,
which showed that the energy barriers are 274 and 90 meV
for rotating the phenyl ring in the middle and the pyridyl
groups at the ends of the molecule, respectively. Since room
temperature corresponds to only 25 meV, we can still assume
that the conjugation is more or less undisturbed at ambient
conditions if present from the beginning, i.e., if conformers
have been successfully separated after chemical synthesis.

We calculated Ghop for room temperature and Gcoh for
0 K. This might seem counterintuitive since Ghop depends
considerably on the temperature because this type of electron
transport is thermally activated, or, in other words, at 0 K there
is no conductance due to hopping. By contrast, Gcoh does
not depend on the temperature in a first-order approximation
and is affected by electron-phonon coupling only as a second-
order effect. So our assumption was that we should model
room-temperature behavior, which we treat explicitly for the
hopping, but we neglect thermal effects for coherent tunneling.

A. Electronic structure calculations

All electronic structure calculations in this paper were
performed with the GPAW code [43,44], in which the core elec-
trons are described with the projector augmented wave (PAW)
method and the basis set for the Kohn-Sham wave functions
has been chosen to be a linear combination of atomic orbitals
(LCAO) on a double-zeta level with polarization functions
(DZP) for all electronic structure calculations. The sampling
of the potential energy term in the Hamiltonian is done on a
real-space grid when using GPAW, for which we chose 0.18
Å for its spacing and a Perdew-Burke-Ernzerhof (PBE) [45]
parametrization for the exchange-correlation (XC) functional
throughout this paper.

B. Coherent tunneling

Within NEGF-DFT [2–5] the transmission function T (E)
for coherent tunneling is defined by T (E) = Tr(Gd�LG

†
d�R),

where Gd = (E − Hd − �L − �R)−1 represents the Green’s
function of the device containing the self-energy matrices
�L/R due to the left/right lead, �L/R = i(�L/R − �

†
L/R), and

Hd is the Hamiltonian matrix for the device region, which
contains not only the Ru complex but also three to four layers
of the aligned Au surface on each side. Due to the rather large
size of the central molecules, we had to use gold slabs with
a 6×6 unit cell in the surface plane in order to ensure that
neighboring molecules did not interact. For the same reason
we used a 2×2×1 k-point grid corresponding to only two k

points in the irreducible Brillouin zone for all transmission
functions discussed in this paper.

C. Electron hopping

In order to describe electron hopping in single-molecule
junctions, the famous Marcus-Hush formula [27,46,47] for
the transfer rate in intra- or intermolecular electron transfer
reactions needs to be modified because the initial and final
states have to be replaced by the manifold of all occupied and
unoccupied surface states in the lead with the right symmetry.
This was first recognized by Chidsey [48], who modified the
Marcus-Hush formula by introducing an integral over all metal
states. In the present case we are dealing with a two-step
reaction, in which in the first step we oxidize the molecule
by charging it with a hole which is supposed to come from
the left lead and in the second step we decharge the molecule
again, i.e., reduce it, where the corresponding hole moves
onto the right electrode. The overall conduction process is
then described by the transfer rates of the corresponding two
separate electron transfer reactions:

kox = 2π

�
V 2 1√

4πλkbT

∫
e
− (λ+�G0+ε)2

4λkbT [1 − f (ε)]dε, (1)

kred = 2π

�
V 2 1√

4πλkbT

∫
e
− (λ−�G0+ε)2

4λkbT f (ε)dε, (2)

where f (ε) = 1/(eε/(kbT ) + 1) is the Fermi function, which is
part of both equations because in the oxidation reaction only
the unoccupied states of the left lead can provide a positive
charge (hole) and only the occupied states of the right lead
can absorb it in the reduction of the molecule, where the
thermal broadening of the Fermi levels of the leads at finite
temperatures is also built into f (ε).

To calculate the overall conductance of the junction in
the hopping regime, Migliore et al. derived an expression
containing both kox and kred to include the effect of both steps
of the process [40], which in our symmetric case with the same
electrode material and surface orientation as well as the same
anchor group on both sides of the junction becomes

Ghop = e2

2kbT

koxkred

kox + kred
, (3)

where the quantities V , λ, and �G0 need to be defined on
a single-particle level in order for us to be able to make a
direct comparison with the conductance for coherent tunneling
Gcoh, which can be simply obtained by taking the value of the
transmission function T (E) as computed with NEGF-DFT at
the Fermi energy. We note that Eq. (3) applies only in the limit
of zero bias, i.e., for an infinitesimally low potential difference
between the source and drain electrodes. It is, however, fully
applicable for finite electrochemical gate voltages, where the
respective potential is just added to the value of �G0 in
Eqs. (1) and (2).

1. Transfer integral

In a recent article we showed that the transfer integral
VAu-Au between the metal electrodes bridged by the molecule
can also be used to determine the conductance for coherent
tunneling [41]. In the context of electron hopping, however,
the conductance is defined by two consecutive reactions, where
for both another transfer integral VAu-Mol is needed which
describes the electronic coupling between the molecule and
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one of the leads. In contrast to VAu-Au, which we calculated
only at the Fermi energy EF in order to define Gcoh, for
electron hopping we need VAu-Mol to be integrated over all
energies. This information can be neatly retrieved from the
peak in T (E) corresponding to the HOMO as calculated
with NEGF-DFT for coherent tunneling because the width of
this peak and VAu-Mol are directly related on a single-particle
level. In practice, we cut the couplings to all other molecular
orbitals and generate a transmission function containing only
the contribution of the HOMO and then use THOMO(E) =
4V 2/[(E − εHOMO)2 + 4V 2] [49], where we obtain THOMO(E)
and εHOMO as direct results from NEGF-DFT and derive the
transfer integral V from a numerical fit.

2. Driving force

In principle the driving force �G0 in the electron transfer
reaction we describe (where the respective Ru complex is
neutral in the initial state and has a positive charge in the
final state, while the corresponding counter charge on the
leads is assumed to be taken from the Fermi level of a metal
surface with macroscopic dimensions) could be formulated
by relating the ionization potential (IP) of the complex as
calculated from total-energy differences of the charged and
uncharged free molecules to the work function (WF) of the
gold surfaces [40]. Such a definition, however, would neglect
the effect of the adsorption of the molecule on the metal, i.e.,
Fermi level alignment and charge equilibration [50–52], since
both the metallic WF and the molecular IP would be computed
for the leads and molecule separately. Therefore we use the
HOMO’s position relative to the Fermi level of the surface
in the composite system [25] as a definition of �G0 instead,
where the level alignment is accounted for correctly. As an
additional benefit we can make a direct comparison between
I /V curves for electron hopping calculated in this way and the
transmission function for coherent tunneling, where both are
derived on a single-particle level and a gate potential can be
applied in a rigid-band approximation.

3. Reorganization energy

The total reorganization energy used in the Eqs. (1) and (2)
is defined as the sum of inner and outer contributions,

λtot = λin + λout = λin + λBorn + λimage, (4)

where the latter can be further divided into a Born term
accounting for the interaction of the charged molecule with
the solvent and an image contribution, which describes the
screening of the charge due to the vicinity of the metallic
leads [53]. The inner reorganization energy λin, i.e., the energy
gain due to the relaxation of the nuclear positions of the
molecule as a consequence of charging, can be calculated
either as the respective total-energy difference of the charged
complex in its own equilibrium configuration minus a charged
complex in the equilibrium configuration of the neutral
molecule or, alternatively, as the total-energy difference from
two calculations in which no charge is put on the two different
equilibrium geometries. In practice, we take the average of
these two possibilities.

For λBorn, we employ a solvent continuum model as
already suggested by Marcus [26–28], who used the Born

approximation to calculate the solvation energy of spherical
ions [54]. For the Ru complexes in our paper, we need to extend
this to the generalized Born approximation (GBA) [55],

λBorn =
(

1

ε∞
− 1

εs

) N∑
i,j

�qi�qj

fGB

, (5)

where ε∞ and εs are the optical and static permittivities of
the solvent, respectively, and �qi,j are the partial charge
differences between the neutral and the oxidized states of the
free molecule in vacuum, which were calculated as Mulliken
charges from DFT, and where the van der Waals radii entering
fGB according to Ref. [55] have been taken from Ref. [56].

4. Screening by the leads

Within an image charge model, the contribution of the
screening of the charge on the molecule between two planar
metal surfaces to the reorganization energy can be described
by an infinite sum of Coulomb interactions between the partial
charges on the molecule and their infinite number of image
charges in the electrodes [53,57,58],

λimage = −1

2

(
1

ε∞
− 1

εs

) N∑
i,j

�qi�qj

×
∞∑

n=1

⎡
⎣ 1√

(zi + zj − 2nL)2 + R2
ij

− 2√
(zi − zj + 2nL)2 + R2

ij

+ 1√
(zi + zj + 2(n + 1)L)2 + R2

ij

⎤
⎦ , (6)

where R2
ij = (xi − xj )2 + (yi − yj )2 and xi,j , yi,j , zi,j are the

positions of the atoms of the molecule, with the z direction
being the transport direction.

III. RESULTS AND DISCUSSION

A. Direct comparison of the conductance from coherent
tunneling and electron hopping

In Table I we show all the results we derived for the
structures in Fig. 1 directly from DFT calculations, i.e.,
the conductances Gcoh and Ghop for coherent tunneling
and electron hopping for zero bias and zero gate voltage,
respectively, as well as the values for kox/kred, V, �G0, and
λ, which define Ghop through Eqs. (1)–(3). While Gcoh decays
exponentially with the length of the molecule as expected,
Ghop shows an increase with molecular length at least for the
three molecules under investigation. The transfer integral V
decreases as the amplitude of the HOMO at the anchor group
diminishes with a rise in molecular size. The reorganization
energy also decreases with the size of the molecule because
both the relaxations of internal degrees of nuclear freedom
and the polarization of the solvent become energetically easier
for a larger molecular volume. Finally, the driving force
�G0 also decreases with the molecular length because the
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TABLE I. All quantities directly calculated from DFT for the three systems in Fig. 1, where Gcoh and Ghop are given in units of G0, kox/kred

is in units of s−1, and V, �G0, and all contributions to λ are presented in eV.

Gcoh Ghop kox/kred V �G0 λin λout (λBorn/λimg) λtot

Ru1 2.0×10−5 1.2×10−25 3.1×10−12/2.4×109 1.35×10−3 1.250 0.177 0.421 (0.661/−0.240) 0.597
Ru2 8.0×10−7 1.4×10−17 3.5×10−4/2.4×108 4.50×10−4 0.707 0.083 0.322 (0.495/−0.172) 0.407
Ru3 1.6×10−8 5.4×10−16 1.3×10−2/6.5×107 8.03×10−5 0.576 0.059 0.315 (0.446/−0.131) 0.374

HOMO-LUMO gap becomes smaller with the length of a
semiconducting wire and therefore the HOMO moves closer
to EF .

The transfer rates kox and kred in Table I are completely
defined by the parameters V, λ, and �G0 through Eqs. (1)
and (2) and because of their dependence on the gate voltage
behave like error functions, where kred increases when kox

decreases with a crossing point at �G0. Therefore a product
of the transfer rates as in Eq. (3) results in a peak around
�G0 since one of the two factors is always minimal at larger
energetic distances from �G0. A reduction of �G0 with the
length of the molecule leads to a shift of this peak towards
the Fermi level, resulting in an increase of Ghop at zero gate
voltage. An increase in the reorganization energy λ on the
other side results in a widening and lowering of this peak
because it leads to a shift of kox and kred in opposite directions
because of the difference in their respective dependence on the
gate voltage.

In Fig. 2 we directly compare the transmission function
T (E) for coherent tunneling as obtained from NEGF-DFT
with the hopping conductance as a function of gate voltage or
an overpotential. While for the former it is assumed that Vgate

is equal to the kinetic energy of incoming electrons E, for
the latter, a zero gate voltage means that �G0 = −εHOMO, as
obtained by a subdiagonalization procedure from the transport
Hamiltonian of the composite junction, where for a finite
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FIG. 2. (Color online) The transmission functions T (E) for co-
herent tunneling for the three structures in Fig. 1 (black lines) are
directly compared with the voltage dependent behavior of Ghop (blue
lines), where for the description of the effect of an electrochemical
gate the respective voltage is simply added to �G0 in Eqs. (1) and (2)
as an overpotential. The dotted red line shows T (E) for electrons
mediated only by the HOMO as described in detail in the main text.

voltage the applied potential is just added to �G0 in Eqs. (1)
and (2) as a scalar. Both assumptions are just implementations
of a rigid-band approximation within a single-particle picture.
While for T (E) the transmission peak corresponding to
the HOMO (red dotted line) that is slightly offset due to
hybridization effects moves ever closer to EF as the length
of the molecule increases, it also becomes narrower since V
is decreasing at the same time, where the accumulated effect
is the exponential decay of Gcoh. The blue peak illustrating
the gate-voltage dependence of Ghop is also moving towards
the Fermi level with an increase in molecular size, where its
maximum is always at the energetic position of εHOMO = �G0,
representing zero overpotential. Its width and height, on the
other hand, are defined by λ and V, and a continuous rise in
the zero bias and zero gate Ghop is found when moving from
Ru1 to Ru3.

B. Dependence of the conductance on molecular length
and crossover point between the two transport regimes

In Table I it can also be seen that, although the values of Gcoh

and Ghop approach each other when going from Ru1 to Ru3,
no crossover point between the two regimes can be reached
within the scope of these three molecules. Since the junction
with the Ru3 complex in Fig. 1 defines the limit of what can
still be calculated with DFT in terms of the computational
costs, we used exponential fits for Gcoh and �G0 as well as
power-law fits for V and λ for an extrapolation of Gcoh, Ghop,
and Gcoh + Ghop, where the results for a wire length ranging
up to 10 nm are shown in Fig. 3.

The exponential decay for Gcoh is a well-known property
of coherent tunneling, where we evaluated a decay constant
β of 2.7 nm−1, which matches what is usually found in
experiments for conjugated molecular wires well [19]. For
the length dependence of Ghop we find an increase up to six
Ru centers, but the roughly linear decay expected for Ohmic
transport sets in for molecular wires longer than that.

We chose the particular functions we used for to fit V , λ,
and �G0 because they gave the best representation of our data,
but their overall behavior has an intuitive physical explanation.
At very small molecular lengths (the first two points in Fig. 3)
both �G0 and λ are rather large, and since they enter the
exponents in Eqs. (1) and (2) with a negative sign, this results
in small values of kox, kred, and Ghop. The larger the molecular
length is, the smaller λ and �G0 become, and therefore the
larger Ghop becomes. The reason for the drastic increase in
Ghop and its subsequent stabilization is that we define �G0

as the distance from the HOMO to the Fermi level, which
becomes smaller with the molecular length (as can be seen
from the peak shift in Fig. 2) and then converges to zero
asymptotically. The behavior of λ points in the same direction,
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FIG. 3. (Color online) Extrapolation of the molecular length de-
pendence of Gcoh (red line) with an exponential fit and the length
dependence of V, λ, and �G0, where the first two quantities
were fitted with power laws and the third one was fitted with an
exponential function, for the definition of Ghop (green line). The
blue line represents the sum Gcoh + Ghop, which corresponds to the
conductance accessible to experiments for this type of molecular wire.
The colored dots on each line refer to the values directly calculated
from DFT for Ru1, Ru2, and Ru3, respectively, while at all higher
lengths the extrapolations have been taken and marked with black
dots. The inset shows the respective length-dependent evolutions
of the contributions to Ghop from V2 (red line) and the remaining
factor (green line), which is exclusively defined by �G0 and λ and is
obtained by dividing Ghop by V2.

where the screening by the solvent decreases if a charge of
one electron is spread out over larger molecular volumes, and
this effect also has an asymptotic limit. At some point the

continuous decrease of V 2 in Eqs. (1) and (2) determines the
further length dependence of Ghop. In the inset of Fig. 3 we
show the two factors which determine Ghop in Eqs. (1) and (2)
separately, where V2 decays with the inverse of the length
(red line) and the exponential containing �G0 and λ (green
line) rises sharply for small lengths but then approaches 1 at
8–10 nm.

From Fig. 3 we can identify the crossover or transition point
from coherent transport to electron hopping where Gcoh =
Ghop and find it at a molecular length of 5.76 nm. This is
in the same range as the 5.6–6.8 nm for polythiophenes [59]
and 5.2–7.3 nm for oligofluorene-based molecular wires [17]
found in recent experiments but is somewhat higher than the
∼3 nm for pyridyl-terminated OAEs [19], the ∼2.75 nm for
a series of amine-terminated OPEs [18], and the ∼4 nm for
thiol-anchored oligophenyleneimines [16], which were also
recently measured.

C. Application of an electrochemical gate potential

Finally, we discuss the dependence of Gcoh, Ghop, and
Gcoh + Ghop on an electrochemically applied gate potential
as depicted in Figs. 4(a), 4(b), and 4(c), respectively, where
we chose a relatively small range of potentials because we use
a rigid-band approximation for both transport regimes which
assumes that the electronic structure is undisturbed by the
applied voltage. In Ref. [60] it was found experimentally that
increasing the gate voltage in one direction leads to a rapid
increase in the conductance, while a voltage with the opposite
sign had no effect. This was interpreted as a reduction of
the complex with a negative potential, but in terms of our
Fig. 2 it can also be seen as a climbing up of the peak
related to the HOMO in both transport regimes. As pointed out
earlier, there is a marked difference between the two regimes,
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FIG. 4. (Color online) Color contours for the two-dimensional dependence of (a) Gcoh, (b) Ghop, and (c) Gcoh + Ghop on the molecular
length and on an electrochemical gate potential, where the color code is given on the side of the panels with the numbers referring to x in 10x .
In (c) a black dashed line is drawn where Gcoh = Ghop.
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where the peak is rather narrow for coherent transport and
the range of voltages we chose is not sufficient for generating
any clear trends in Fig. 4(a) but a negative voltage distinctly
increases Ghop in Fig. 4(b), which reflects the broader peak for
hopping found in Fig. 2. In Fig. 4(c) we also draw a black line
where Gcoh = Ghop and find that the transition point between
coherent tunneling and hopping is moving to smaller wire
lengths for negative potentials in this two-dimensional picture.
This finding provides additional means for experiments to
shift the length range of Ohmic behavior towards smaller
molecules. In many cases this could make the transition point
accessible for experimental studies when longer wires are hard
to synthesize or difficult to handle in measurements.

IV. SUMMARY

We performed DFT calculations for the conductance of a
series of single-molecule junctions with redox-active molecu-
lar wires containing one, two, and three Ru atoms, where we
treated both coherent tunneling and electron hopping within
the same single-particle framework, which allowed for a direct
quantitative comparison of the two electron transport regimes.
An extrapolation of our ab initio results made it possible
to identify a molecular length for a transition point between
them at 5.76 nm, which is rather close to the values reported

from measurements on similar wires. We also investigated the
dependence of this transition length on an electrochemically
applied gate voltage, and we found that it can be shifted
by an external potential, which provides experimentalists
with another tool to study the crossover between transport
regimes. This is also of technological relevance because only
hopping has the Ohmic length dependence required for wire
applications, and according to our finding, a gate voltage can
move its onset towards shorter wires.
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and the Austrian Chemical Society GÖCH. We gratefully
acknowledge helpful discussions with T. Albrecht, M. Inkpen,
and T. Wandlowski.

[1] Y. Meir and N. S. Wingreen, Phys. Rev. Lett. 68, 2512 (1992).
[2] M. Brandbyge, J. L. Mozos, P. Ordejon, J. Taylor, and

K. Stokbro, Phys. Rev. B 65, 165401 (2002).
[3] Y. Xue, S. Datta, and M. A. Ratner, Chem. Phys. 281, 151

(2002).
[4] A. R. Rocha, V. M. Garcia-Suarez, S. W. Baily, C. J. Lambert,

J. Ferrer, and S. Sanvito, Nat. Mater. 4, 335 (2005).
[5] K. S. Thygesen and K. W. Jacobsen, Chem. Phys. 319, 111

(2005).
[6] T. Albrecht, K. Moth-Poulsen, J. B. Christensen, A. Guckian,

T. Bjrnholm, J. G. Vos, and J. Ulstrup, Faraday Discuss. 131,
265 (2006).

[7] T. Albrecht, A. Guckian, J. Ulstrup, and J. G. Vos, Nano Lett. 5,
1451 (2005).

[8] W. Haiss, H. van Zalinge, S. J. Higgins, D. Bethell,
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Field-induced conductance switching by charge-
state alternation in organometallic single-molecule
junctions
Florian Schwarz1†, Georg Kastlunger2,3†, Franziska Lissel4, Carolina Egler-Lucas4, Sergey N. Semenov4,
Koushik Venkatesan4, Heinz Berke4, Robert Stadler2,3 and Emanuel Lörtscher1*

Charge transport through single molecules can be influenced by the charge and spin states of redox-active metal centres
placed in the transport pathway. These intrinsic properties are usually manipulated by varying the molecule’s
electrochemical and magnetic environment, a procedure that requires complex setups with multiple terminals. Here we
show that oxidation and reduction of organometallic compounds containing either Fe, Ru or Mo centres can solely be
triggered by the electric field applied to a two-terminal molecular junction. Whereas all compounds exhibit bias-dependent
hysteresis, the Mo-containing compound additionally shows an abrupt voltage-induced conductance switching, yielding
high-to-low current ratios exceeding 1,000 at bias voltages of less than 1.0 V. Density functional theory calculations
identify a localized, redox-active molecular orbital that is weakly coupled to the electrodes and closely aligned with the
Fermi energy of the leads because of the spin-polarized ground state unique to the Mo centre. This situation provides an
additional slow and incoherent hopping channel for transport, triggering a transient charging effect in the entire molecule
with a strong hysteresis and large high-to-low current ratios.

Switching an electric signal from a low- to a high-current state is
one of the key elements in an electric circuit with applications
in signal processing, logic data manipulation or storage. In

current Si-based technologies with device dimensions approaching
the sub-5 nm range, it becomes increasingly difficult to maintain
large high-to-low current ratios mainly because of leakage currents.
Therefore alternative switching mechanisms are needed. In single-
molecule electronics, a variety of intrinsic conductance-switching
mechanisms1 exists: gating of the molecular orbitals (MOs) by elec-
trostatic2 or electrochemical means3, which requires a third elec-
trode, or modifying specific photoactive molecular structures, for
example by optically irradiating the molecule to form or break
bonds4–7. Mechanically induced changes in the molecule–metal
coupling8 can also lead to conductance alternations. Another
trigger is the electric field inherently present in a molecular trans-
port junction: conformational changes due to interactions
between the electric field and molecular dipoles were demonstrated
to alternate the conductance of single-molecule junctions9–11 by up
to a factor of 70.

Mechanisms that have the potential to be more powerful exploit
intrinsic molecular quantum phenomena related to spin and charge
states. An early example of addressing the spin state of a single mol-
ecule12–14 revealed Kondo resonances using cobalt (Co) metal
centres15. More recently, a spin cross-over was induced by an electric
field in iron (Fe)-based molecular nanoclusters16 (with high-to-low
ratios of ∼2), and in a coupled spin pair of two Co atoms17 (with
high-to-low ratios of 2–3). Regarding intrinsic charge states, Coulomb
blockade peaks were reported in ruthenium (Ru)-containing wires18,
but not confirmed in self-assembled monolayers19. On the single-mol-
ecule level, Ru-basedmolecules showed conformation-induced changes

in the conductance20 rather than changes due to intrinsic redox mech-
anisms. Two Rumetal centres in a photochromatic compound demon-
strated reversible light-induced conductance switching in ensemble
junctions21,22. In another study, the importance of the copper (Cu)
coordination on the conductance was demonstrated23.

Placing individual metal centres in the transport pathway
Earlier we studied dinuclear organometallic Fe compounds with
various anchoring schemes24,25 and discovered indications of field-
induced conductance switching in the case of weak molecule–
metal coupling. Motivated by these findings, we have developed
mononuclear organometallic compounds of the type
(MeCOSC6H4-C≡C-)2M(P∩P)2 (M = Fe; P∩P = 1,2-bis(diethylpho-
sphino)ethane: (1); M = Ru, Mo (Molybdenum); P∩P = 1,2-
bis(diphenylphosphino)ethane: (2), (3)) using weak thiol coup-
ling26,27 to preserve molecule-internal spin and charge degrees of
freedom for the solid-state molecular junctions. Fe, Ru and Mo
were chosen as metal centres. The synthetic strategy aims to place
the metal centres within the transport pathway (Fig. 1a,b) to
achieve an optimal influence on transport and maximum inter-
action with the electric field. We used identical acetylenic backbones
to constrain the variable parameters to the metal centres and their
ligand fields. To prevent dimerization, the sulphur end groups
were acetyl-protected, with the protection groups being hydrolysed
in situ, forming the metal–molecule–metal junctions Au–1′–Au,
Au–2′–Au, and Au–3′–Au (Fig. 1c). For the Fe metal centre, we
used the bidentate phosphine ligand depe (depe = 1,2-bis(diethyl-
phosphino)ethane) and for the Ru28 and Mo centres, dppe (dppe =
1,2-bis(diphenylphosphino)ethane) chelate ligands. To extend the
molecular length to 2.5 nm (S–S distance), we chose phenylene
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Figure 1 | Organometallic single-molecule junctions bearing Ru, Fe and Mo metal centres to provide charge and spin degrees of freedom. a, Addressing
spin (green) and charge (orange) states of a molecular junction through manipulating the electric field present by means of the bias applied in a two-terminal
geometry. b, Anatomy of the organometallic molecular junction with one metal centre placed directly in the charge–transport pathway. c, Mononuclear
compounds of type trans-(MeCOSC6H4-C≡C-)2M(P∩P)2 (M= Fe; P∩P = 1,2-bis(diethylphosphino)ethane: (1); M= Ru, Mo; P∩P = 1,2-bis(diphenylphosphino)
ethane: (2), (3)). The representative transport junctions Au–1′–Au, Au–2′–Au and Au–3′–Au are also shown. d, 50 representative I–V characteristics taken at
50 K. The Fe 1 and Ru 2 compounds both show a continuous splitting of the I–V curves, providing a hysteresis region (blue background). Here, no change in the
conductance gap or in the high-bias conductance is found. The same type of curve (labelled I) is found also for the Mo compound 3 (blue curves) with a
slightly larger hysteresis regime. In addition, there is a second type of curve (labelled II; orange curves) that reveals an abrupt switching accompanied by a large
change in the conductance gap (violet background). Type II curves are acquired just before breaking the Au-3′-Au junction (upon gradually increasing the
electrode distance). e, Schematic representation of the two types of hysteresis (blue shading) with continuous type I (Fe, Ru and Mo compounds 1, 2, and 3)
and abrupt switching type II (Mo compound 3 only).
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spacers as conducting backbones. The synthesis of 2 was reproduced
using a previously reported procedure28,29, whereas new synthetic
protocols were established for 1 and 3 (see Supplementary
Information for details).

Conductance switching in single-molecule junctions
First, we perform current–voltage I–V data acquisition by repeatedly
forming and breaking the junction30 (see Supplementary
Information). In the entire dataset, we find a substantial number
of curves (∼90%) that all exhibit distinct features differing from con-
ventional non-linear molecular transport, namely, curves with hys-
teretic behaviour. Here, the curves acquired for sweeps from
negative to positive bias are separated in a given voltage range
from those acquired in the opposite direction. For the Au–1′–Au
junction, around 85% of the curves show hysteresis, for Au–2′–Au
80%, and for Au–3′–Au 95%. Figure 1d shows 50 representative
I–V curves taken at 50 K (see Supplementary Information
Sections 10, 16–18 for statistics, sampling rate and temperature
dependence). The hysteretic behaviour of the three compounds
differs in the voltage range and the transition between the two envel-
opes. Accordingly, we categorized the I–V curves into two types.
Type I curves are found for all compounds and are characterized
by a small hysteresis that affects only a particular section of the
voltage (blue backgrounds in Fig. 1d), whereas the curves for the

low- and high-bias regimes are nominally identical. The conduc-
tance gap (as defined by the onset in transport) is not altered, and
the transition between the curves is continuous. Type II curves
are only found for the Mo compound and differ from type I
curves by an approximately 100× lower current and an abrupt
switching between two distinct curves, accompanied by a hysteresis.
Here, the conductance gaps change substantially (from 0.15 to 0.85 V,
for example). Figure 1e summarizes the experiments schematically,
further providing the sweep directions. When analysing the
occurrences of type I and type II curves, we find that they depend
on the junction configuration: type II curves are found just before
breaking the molecular junction and show a switching between
two distinct states (Fig. 2a). When extracting the maximum high-
to-low ratio in the hysteresis region and plotting it versus the corre-
sponding voltage (Fig. 2b), we find that type I curves display a
narrow energy distribution, whereas type II curves seem to
depend non-linearly on energy, with an increasing ratio for increas-
ing bias. The high-to-low current ratios are 1.5 to 20 for type I
switching consistently for all compounds, and exceed 1,000 for
type II switching.

Coherent tunneling and decoherent hopping transport
In principle, several possible explanations exist for the hysteretic
curves at smaller junction distances (type I) and the abrupt

a

1.5

1.0

0.5

0.0

−0.5

−1.0

−1.5
−1.0 −0.5 0.0 0.5

3.0

0.0

−3.0

1.5

−1.5

50 K

50 K

Sample 1

Sample 2

b

1.0

−1.0 −0.5 0.0 0.5 1.0

102

103

Fe

101

100

102

103

101

100

102

103

104

101

100

V (V)
0 1

Ru

Mo

II

IIIII

I

I

|I| (nA)

|I| (nA)

V (V)

V (V)

M
ax

 (I
hi

gh
/I

lo
w

 )
M

ax
 (I

hi
gh

/I
lo

w
 )

M
ax

 (I
hi

gh
/I

lo
w

 )

II

II

II

II

Au–2’–Au

Au–1’–Au

Au–3’–Au

Au–3’–Au

Au–3’–Au

Counts
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Au–3′–Au, revealing an abrupt switching from a low- to a high-conductance regime (50 K). Two datasets measured on fully independent samples are
plotted, with typical differences for single-molecule experiments regarding the current amplitude and switching voltages. b, Statistics on maximum high-to-
low current ratios extracted in the hysteresis regime for type I and type II curves for all compounds. Whereas type I ratios vary from 1.5 (Fe compound 1) to
20 (Mo compound 3), the type II switching found only for compound 3 attains 2,500 at a bias of less than 0.6 V. The ratio seems to follow a voltage
dependence as indicated by the black dotted line.
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switching at larger junction distances (type II). As the ground state
of the Mo compound 3 and some of the excited states of the Fe com-
pound 1 and the Ru compound 2 are magnetic, a high-spin/low-spin
(HS/LS) crossover is suggested, given the observed switching in
similar systems16,17. There, the HS/LS crossover caused a drastic
change in the electronic structure across the entire electron wave-
length spectrum that accompanied the switching between two dis-
tinct electronic states. In our experimental data, however, we do
not find such drastic changes, for example there is no change in
the conductance gap for type I curves and almost identical curves
for certain voltage regimes for both types. Moreover, the nuclei of
the molecules would adapt to that and thereby preclude hysteresis
simply because there is nothing that could cause a time delay. In
contrast, an oxidation or reduction of the transition metal com-
pounds would enable a potential observation of hysteresis, as pro-
posed theoretically31–33. Those authors argued that if the charging
rate is similar to the bias sweeping rate, a time delay required for
a memory effect could occur, making the charging visible in the
I–V curves. Here, the conductance is governed by a coherent tunnel-
ling channel mediated by a delocalized molecular orbital (MO) (‘fast
channel’), whereas hysteresis is related to charging of a localized MO
in an electron-hopping channel (‘slow channel’) (Fig. 3a). The prob-
ability that the localized MO is occupied determines the respective
conductance contributions from the two charging states at every
bias increase.

To simulate transport through single molecules, these charging
probabilities were implemented in a stochastic approach. For

calculating I–V curves, we combine proposed algorithms33 with
data from density functional theory (DFT) calculations for the
transmission (defining coherent tunnelling) and the transfer inte-
gral, reorganization energy and driving force (describing electron
hopping34–36). First, we demonstrate that by varying the ratio
between the bias sweeping rate and the charging/hopping rate, the
abrupt switching shown in Fig. 1c can be qualitatively reproduced
for a simple two-MO tight-binding model. In Fig. 3b, we show
I–V curves simulated for forward and reverse bias sweeps for
various coupling strengths, γ, and fixed voltage sweeping rates, u.
For the strongest coupling, γ/u = 1012 V−1, a statistical average of
multiple switching events is observed, and as a consequence, the
forward and backward sweeps fall together with the average of the
two limiting I–V curves obtained from the integration of the trans-
mission functions of the reduced and the oxidized systems (shown
as orange and gray dotted lines in Fig. 3b, respectively). When low-
ering the coupling to γ/u= 104 V−1, averaging covers a smaller
number of redox processes per integration time, Δt, resulting in
fringes. For γ/u = 100V−1, there is roughly one jump in each inte-
gration interval, and for the weakest coupling, γ/u = 0.5V−1, only
a single jump happens during a full sweep. Going from the strongest
to the weakest coupling step by step (Fig. 3b), the voltage range
where both sweeps follow the lower curve for low bias and the
upper one for high bias becomes larger because ever higher voltages
are needed to increase the likelihood of jumps. In the wide range of
couplings from γ/u = 1012 to 100 V–1, however, the forward and
backward I–V curves still follow the same path, although our
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stochastic approach creates uncertainties or line-thickening for
ratios of γ/u smaller than 108 V–1. Only when γ/u is as low as 1 V–1

does an irreversible switching or a ‘lock-in’ process take place,
where the forward sweep follows the lower limiting curve for the
reduced state and the backward sweep the upper one for the
oxidized state; a scenario that qualitatively explains the type II

curves for the Mo junction. Figure 3c displays the hopping rates
for oxidation (Rox) and reduction (Rred), showing that the lower
the ratio, the later Roxand Rred cross the horizontal line defining
the sweeping rate. Rox determines the probability of charging the
compounds, whereas the stability of this oxidized state depends
inversely on Rred. Therefore, as can be seen from the left-hand

a Ru (Au–2’–Au) Mo (Au–3’–Au) b

10 1 0.50 0.0
Transmission (G0)Transmission (G0) Transmission (G0)

E-
E F

er
m

i (
eV

)

0.0

−0.4

−0.8

0.4

0.8

0.0
Bias (V)

0.4 1.20.8 0.0
Bias (V)

0.4 1.20.8 0.0
Bias (V)

0.4 1.20.8

C
ur

re
nt

 (A
)

10−5

10−6

10−7

10−8

10−9

C
ur

re
nt

 (A
)

10−5

10−6

10−7

10−8

10−9

c

Ihigh/Ilow: 3

Ihigh /Ilow

Ihigh/Ilow: 200

Ihigh/Ilow: 3.7
Ihigh/Ilow: 1.9

Fe (Au–1’–Au)

Delocalized
MO (dxz)

Delocalized
MO (dyz)

Localized
MO (dxy)

dyz

II

I

I

Neutral

Charged

Neutral

ChargedCharged

Fe, Ru and Mo compounds 1, 2 and 3

1

10

100

Ihigh /Ilow

1

10

100

Ihigh /Ilow

1

10

100
II Charged Charged

Neutral Neutral

Neutral
+0.5 Å

+0.5 Å

dxz

dxz

dyz

dxy

dxy

Ru (Au–2’–Au) Mo (Au–3’–Au)Fe (Au–1’–Au)

HOMO
(dxz)

HOMO
(dxz)

HOMO-1
(dyz)

HOMO-1
(dyz)

Figure 4 | DFT-derived transmission and molecular orbitals as well as transport characteristics calculated under finite bias. a, Total transmission functions
(grey and green curves) and selected MO eigenenergies (dots) with respect to EFermi,Au obtained from a subdiagonalization of the transport Hamiltonian, and
the respective transmission functions calculated with NEGF-DFT; the two are plotted separately for spin-up and spin-down electrons for Mo compound 3
because of the latter’s spin-polarized ground state (green lines). b, Spatial distributions of the MOs with the delocalized HOMO and HOMO-1 and a
localized MO (with dxy symmetry) found only for the Mo compound to lie in the relevant energy window. c, I–V curves calculated by a NEGF-DFT approach
combined with a hopping description for the charging of the slow channel36 by using the hysteresis formalism33. The top row shows uncorrected I–V curves
using the parameters given in Table 1, whereas for the calculations in the lower panels, the transfer integral is scaled down by a factor of 100 for reasons
given in the main text. For Mo compound 3 a weaker coupling results in the abrupt switching curves. The red curves provide the ratio between high and low
currents for the two types of hysteresis. All I–V curves were simulated from 100 bias steps in each direction with integration times of 0.01 s for the forward
and 0.1 s for the backward sweeps.

NATURE NANOTECHNOLOGY DOI: 10.1038/NNANO.2015.255 ARTICLES

NATURE NANOTECHNOLOGY | ADVANCE ONLINE PUBLICATION | www.nature.com/naturenanotechnology 5

© 2015 Macmillan Publishers Limited. All rights reserved
177



panel of Fig. 3c, the bias necessary for reaching the charged state is
inversely proportional to the coupling strength. Rred, in contrast,
decreases with the coupling strength, which makes a reduction
even at lower biases less likely, finally enabling the occurrence of a
lock-in process during bias sweeps.

Let us now look at the electronic structures of the transport junc-
tions as obtained from DFT calculations (Fig. 4). Energetic positions
of the MOs and their spatial distributions, as well as the correspond-
ing transmission functions, are computed by a nonequilibrium
Green’s function (NEGF) DFT formalism37–39 with the GPAW
code40,41. Because Mo compound 3 is the only compound among
the three with a spin-polarized ground state, we show its MO eigen-
energies and transmission functions for spin-up and spin-down
separately (green curves in Fig. 4a). The magnetic property of the
Mo system is the reason why a very localized MOwith dxy symmetry
on the metal atoms (where z is the transport direction) moves close
to the Fermi level for one spin orientation (violet dots). In contrast,
this MO lies far outside of any reasonable bias window for Fe com-
pound 1 and Ru compound 2. As a high degree of localization of a
MO results in a very weak coupling to the electrodes, this MO can be
considered the slow channel for the Mo compound, while for the
Fe and Ru compounds the HOMO-1 (dyz) plays this role. For all
three systems, the fast channel is provided by the delocalized
HOMO dxz (Fig. 4b).

To calculate the hopping rates for the oxidation/reduction that
govern the switching between neutral and charged compounds,
we follow an approach developed earlier36. Table 1 lists all relevant
parameters for both charging states for all three systems at the equi-
librium distance. For the Mo compound, it also gives those values at
an elongation of the bonding distance between the anchor group
and the electrodes by 0.5 Å on both sides according to the exper-
imental findings that type II curves are found for elongated junc-
tions just before rupture. The driving force ΔG0, which is defined
by the energy difference of the slow-channel MO and the Fermi
energy (EFermi), is lower for Mo than for Fe and Ru by a factor
of 2–3. Its transfer integral is two orders of magnitudes smaller
and even three orders of magnitude smaller at the elongated
distance. Because of the self-interaction problem of DFT, which
becomes more severe for localized states, the calculations over-
estimate the spatial extension of the respective orbital and thereby
also the transfer integral. Additionally, we have to account for the
fact that the binding of the molecule to the metal surfaces is
idealized in our DFT calculations, where we use perfectly planar
Au(111) surfaces and symmetric bonding of the compounds at
equilibrium distances. To account for these aspects, all calculated
transfer integrals are consistently scaled down by a factor of 100
for the calculated I–V curves in the lower panels of Fig. 4c. In all
panels, different sweeping rates are used for the forward and back-
ward sweep, in agreement with the experimental situation (see
Supplementary Information). Whereas for the Au–1′–Au and the
Au–2′–Au junctions, an elongated configuration reveals only a
minor influence on the hysteresis and the functional behaviour,

the Au–3′–Au junction shows an abrupt transition at the weaker
coupling conditions induced by elongation. This situation perfectly
reproduces the experimental findings in terms of switching energy,
relative current levels, type of hysteresis and drastic change in the
conductance gap. Furthermore, DFT calculations can also repro-
duce the high-to-low current ratios, which are around 1.5–4.5 for
type I hysteresis and around 200 for type II hysteresis with abrupt
switching (Fig. 4c).

Conclusions
In summary, we have experimentally and theoretically investigated
the transport properties of organometallic molecules containing
Fe, Ru and Mo metal centres in their transport pathway. We find
hysteretic transport properties with continuous transitions for all
three transport junctions, and additionally an abrupt switching
for the Mo compound. Comprehensive DFT modelling, taking
into account bias-driven charging, indicates an oxidation/reduction
mechanism mediated by a weakly coupled, localized MO that is
unique to the Mo compound because of its spin-polarized ground
state. This MO gives rise to abrupt switching with high-to-low
current ratios of greater than 1,000, outperforming all previously
explored molecular-intrinsic conductance-switching mechanisms,
for example magnetoresistance42. DFT combined with a two-
channel transport model qualitatively agrees with experiments
regarding the functional behaviour of the hysteresis. We therefore
conclude that intrinsic redox functionality is maintained in
weakly coupled solid-state organometallic junctions, remains acces-
sible at feasible electric fields in a two-terminal geometry, and can be
controlled by tuning the voltage sweeping rate in respect to the
intrinsic oxidation and reduction rates. Moreover, by bias-induced
charge-state alternations, a conductance switching with technologi-
cally relevant high-to-low current ratios exceeding 1,000 at voltages
of 1.0 V could be achieved in a single-molecule building block.
Although technological parameters such as fatigue, switching
speed, non-volatility and so on remain to be determined in real
device geometries, such small-scale building blocks could in
principle fulfill future requirements for memory by providing
reasonably low operational fields, speed, and large high-to-low
current ratios.

Methods
Methods and any associated references are available in the online
version of the paper.
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Methods
Chemical synthesis. The synthetic steps and full characterization of all compounds
can be found in the Supplementary Information.

Transport measurements. Electron-beam-structured break junctions are
mechanically actuated in a three-point bending mechanism operated under
ultra-high-vacuum conditions (UHV; pressure p < 2 × 10−9 mbar) at 50 K30.
Molecules are deposited from a highly diluted solution in dry tetrahydrofuran
(THF; 4 × 10−5 m/L). Electrical characterization is carried out with a
Hewlett-Packard Semiconductor Parameter Analyzer HP4156B on repeated
opening and closing of the molecular junction (more details can be found in the
Supplementary Information).

Computational details. All calculations of transmission probabilities T(E) and I–V
curves were performed within a NEGF-DFT framework37–39 with the GPAW
code40,41. We chose a linear combination of atomic orbitals (LCAO) on a double zeta
level with polarization functions (DZP) for the basis set and a Perdew–Burke–
Ernzerhof (PBE) parameterization for the exchange–correlation (XC) functional.

The MO eigenenergies were calculated by decoupling the basis functions localized
on the molecule from those of the surface states via a subdiagonalization of the
transport Hamiltonian34.

For the redox process, we combine a recent formalism33 with a coherent
tunnelling description based on NEGF-DFT for the calculation of the I–V
characteristics of the reduced and oxidized states and a hopping description of the
redox reaction based on Marcus theory36. By calculating the bias-dependent reaction
rates of oxidation and reduction, a probability P can be determined that describes the
probability of the system being in one of the respective charge states after a given
integration time Δt. To simulate single I–V sweeps, we apply a stochastic approach,
in which we trap the system into one distinct charge state in every step. By
calculating the change of probability dP, defined by either dP = Roxdt or
dP = Rreddt, between two time steps t and t + dt, where dt ≪ Δt, and comparing
dP defined in this way with a random number between 0 and 1, we create a
criterion for the switching between the two states. The overall current is
then calculated from a mean value I(V) = (1/n)

∑n
i=1 I(V , i), averaging

over all n current values, with Δt = ndt. More details can be found in the
Supplementary Information.
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