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Abstract

Let M be a finite–dimensional manifold. Denote by H ⊂ TM a smooth subbundle and by
[H,H] ⊂ TM the subbundle generated by all brackets of first order among sections of H. We
say that H is bracket–generating in one step if

TM = H + [H,H].

The main results of the thesis concern generic one–step bracket–generating distributions of rank
four. First of all, we get the classification of their types. These exist in dimensions 5 ≤ n ≤ 10,
and we focus on the cases n = 8 and n = 9, which have not been treated in the literature. We
prove that there exist two generic types of (4, 8)–distributions and that each type is equivalent
to a normal parabolic geometry. Aware of this equivalence, we can read out the local invariants
for these structures from the harmonic curvature associated to the corresponding parabolic ge-
ometries, thus describing them completely from the point of view of the local geometry. The
same tools from parabolic geometry find a nice application in the description of submaximally
symmetric models of generic (4, 8)–distributions of hyperbolic type.
Using results of Tanaka and Morimoto about the prolongation procedure, which generalize a cer-
tain construction for classical G–structures to the filtered setting, we show that the (4, 9)–case is
the lowest dimensional in a countable series of one–step bracket–generating distributions which
determine a canonical linear connection on the tangent bundle TM . The torsion and curvature
of this connection, then, are local invariants for these structures.
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Introduction

Throughout the text, we consider differentiable manifolds M of finite dimension. The main
results of the thesis concern certain smooth subbundles of the tangent bundle TM , which are
bracket–generating in one step. A smooth distribution H ⊂ TM is said to be bracket–generating
if it generates, together with all iterated brackets among its sections, the tangent bundle of M .
If [H,H] ⊂ TM is the subbundle generated by all brackets of first order among sections of H,
the one–step bracket–generating condition writes as

TM = H + [H,H].

Let be dim(M) = n and let H ⊂ TM be a smooth distribution of rank k. Moreover, let
q : TM → TM/H be the canonical projection. Taking equivalence classes of Lie brackets defines
a tensorial map

L : Λ2H → TM/H, (ξ, η) 7→ q([ξ, η])

If H is bracket–generating in one step, then L is a surjective homomorphism of vector bundles.
If H ⊂ TM is a smooth distribution of corank one, then L determines in every point a skew–
symmetric bilinear form. As an open condition, one can require that Lx is non–degenerate at
each point x ∈ M . By linear algebra, this hypothesis can be satisfied only for even values of
k. The distributions of even rank and corank one satisfying this nondegeneracy condition are
one–step bracket–generating and are known as contact structures.
When studying a specific geometric structure, it is natural to focus on those local diffeomor-
phisms of M preserving the structure. Loosely speaking, we will refer to them as compatible
diffeomorphisms. Looking at a smooth distribution H ⊂ TM as a geometric structure, the com-
patible diffeomorphisms are local diffeomorphisms of M whose differential preserves H. Under
certain hypothesis of regularity, the compatible diffeomorphisms form a Lie group. In this sense,
one speaks about the automorphism group K of the structure.
From the point of view of the local geometry, we could distinguish between distributions of sta-
ble and unstable range. If every small perturbation of H originates via push–forward from a
diffeomorphism of M , then H is said to be stable. Such distributions have infinite dimensional
automorphism group and locally, they all look like a fixed model. This is exactly the content of
Pfaff theorem about contact structures, a first example of stable type. The analogous statement
for involutive distributions follows from Frobenius Theorem. There is actually not much more in
the stable range. Free distributions of length two and another class of distributions, which are
in some sense dual to contact structures, complete the list of stable one–step bracket generating
distributions (see [2]).
There exist also generic distributions which, from the point of view of the local geometry, be-
have in a completely different way. First of all they determine local invariants, similar to the
curvature of a Riemannian metric. Furthermore, they differ from the stable range for having
finite–dimensional automorphism group K. We will speak in this case about unstable range. The
classical example of this situation was studied in 1910 by E. Cartan in his “five variables paper”
([12]). For generic rank two distributions in dimension five (which are bracket generating in two
steps) Cartan constructed what is nowadays called a Cartan geometry related to the exceptional
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2. PROLONGATION PROCEDURE 2

Lie group of type G2. The class of unstable range seems thus to be much more various, so that
one can only aim to a case by case description. Many interesting examples in the unstable range
are given by bracket–generating distributions. Generic one–step bracket–generating distributions
of rank four, the main subject of the thesis, are among them.

1. Classification for the case of rank four

Let H ⊂ TM be a one–step bracket–generating distribution. Denote by k the rank of H and
by n the dimension of the underlying manifold. The Levi bracket associated to H

L : Λ2H → TM/H, (ξ, η) 7→ q([ξ, η])

is a surjective homomorphism of vector bundles. There is a natural action of the Lie group
G = GL(k,R) ×GL(n − k,R) on the set of surjective linear maps Λ2Rk → Rn−k, whose orbits
are in bijective correspondence with the GL(k,R)–orbits of their kernels in a Grassmannian.
Now Lx defines an orbit Ox at each point x ∈ M . Denoting by O a given open orbit, we will
suppose that Ox = O for all x ∈ M . If this is the case, we speak about generic one–step
bracket–generating distributions.
A more explicit description of these orbits for k = 4 is available and leads to their classification.
The wedge product Λ2R4 × Λ2R4 → Λ4R4 is a symmetric bilinear map onto a one–dimensional
vector space, which defines a conformal class of quadratic forms of signature (3, 3) on Λ2R4.
This shows the existence of a Lie group homomorphism GL(4,R)→ CO(3, 3), which restricts to
a two–fold covering between the connected components of the identities. Using this homomor-
phism, the GL(4,R)–orbits of linear subspaces P ⊂ Λ2R4 can be characterized in terms of rank
and signature of the restriction of the wedge product to P . The open orbits, in particular, corre-
spond to nondegenerate restrictions. In this way, we get the classification of the open orbits for
the case of rank four (Theorem 2) including the bidimensions (4, n) for all 5 ≤ n ≤ 10. From our
classification, then, one deduces that all cases correspond to well known types of distributions,
except for n = 8, 9. This motivates a deeper investigation of these two cases.
There are two generic types for n = 8. The corresponding generic distributions will be shown
to be equivalent to normal, regular parabolic geometries. Local invariants for the structure can
thus be deduced from the harmonic curvature of the corresponding parabolic geometries, whose
values are described by Kostant’s Theorem.
The bidimension (k, n) = (4, 9) is the lowest dimensional case in a whole class of rigid bidimen-
sions, the dual Darboux bidimensions (2s,

(
2s
2

)
− 1) of even rank for s ≥ 2. Each dual Darboux

bidimension allows a unique open orbit, hence a unique generic type of distribution. Morimoto’s
prolongation procedure ([16]) proves that certain bracket–generating distributions come together
with a canonical linear connection on TM . We show that Morimoto’s result can be applied to
any dual Darboux distribution of even rank. In particular, the torsion and the curvature of the
canonical linear connection are the basic local invariants for these structures.

2. Prolongation procedure

Morimoto’s procedure aims to construct canonical Cartan connections for certain Cartan ge-
ometries on filtered manifolds, inspired by the classical theory of G–structures. In Chapter 2, we
develop an equivalent prolongation procedure constructing linear connections on TM associated
to certain bracket–generating distributions.
Any smooth manifold of dimension n carries a natural frame bundle, which is a principal bundle
with structure group GL(n,R). A G–structure is a reduction F → M of the natural frame
bundle on M to a closed subgroup G ⊂ GL(n,R). A G–structure encodes, at the same time, the
underlying manifold M and the local diffeomorphisms compatible with the geometric structure
on M . The tangent bundle TM can be recovered, via the associated bundle construction, from
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the G–structure. The same construction assures the existence of induced linear connections on
TM . These can be thought as the linear connections which are compatible with the geomet-
ric structure on M and form an affine space. If G satisfies certain algebraic conditions, the
existence of a unique choice in the affine space is assured and this can be proved by putting
some constraint on the torsion, a so–called normalization condition. One usually refers to such
choice as the canonical linear connection on TM . The remaining components of the torsion,
together with the curvature, are invariant under the action of compatible diffeomorphisms of M .
A remarkable example of canonical linear connection is given by the Levi–Civita connection ∇
associated to a Riemannian manifold. The existence of metric linear connections on TM comes
from the associated bundle construction, which relates TM to the orthonormal frame bundle of
M . Requiring that a metric linear connection ∇ is torsion–free is the normalization condition.
Morimoto’s prolongation procedure, based on the work of Tanaka and inspired by the theory
of classical G–structures, aims to get similar results for filtered manifolds. Consider a bracket–
generating distribution H ⊂ TM and the filtration by subbundles

{0} ⊂ H = T−1M ⊂ T−2M ⊂ . . . ⊂ T−µM = TM

generated by iterating brackets among sections of H. Put T iM = TM for i ≤ −µ − 1 and
T iM = {0} for i ≥ 0. The graded vector bundle associated to the filtration is

gr(TM) = gr−µ(TM)⊕ . . .⊕ gr−1(TM), gri(TM) := T iM/T i+1M

Taking equivalence classes of brackets defines the Levi bracket

L : gr(TM)⊗ gr(TM)→ gr(TM),

a tensorial map which is homogeneous of degree zero. One first shows that for any x ∈ M , the
pair (gr(TxM),Lx) is a nilpotent graded Lie algebra generated by Hx = gr−1(TxM), which is
said to be the symbol algebra of H at x. Furthermore if x, y ∈ M are mapped to each other
by a compatible diffeomorphism, this induces an isomorphism of nilpotent graded Lie algebras
between the symbol algebras of H at x and y. We will assume that (gr(TM),L) is a locally trivial
bundle of nilpotent graded Lie algebras and we will speak about regular pairs (M,H). Under
this regularity assumption, an adapted frame bundle can be associated to (M,H). If (n, [ , ])
denotes the standard fiber of (gr(TM),L), the set Autgr(n) of grading–preserving isomorphisms
of the Lie algebra (n, [ , ]) is the structure group of the adapted frame bundle.
If we want to interpret a bracket–generating distribution H ⊂ TM as a geometric structure, we
should look for the appropriate notion of compatible linear connection. For linear connections
on H, which would be natural to consider, there is indeed no well–defined notion of torsion.
Now if (M,H) is a regular pair, induced linear connections on the associated vector bundle
gr(TM) are available. These are the linear connections compatible with the structure (M,H).
A compatible linear connection

∇ : X(M)× Γ(gr(TM))→ Γ(gr(TM))

is the direct sum of linear connections ∇i on gri(TM) satisfying

∇i+jξ L(X,Y ) = L(∇iξX,Y ) + L(X,∇jξY )

for all ξ ∈ X(M), X ∈ Γ(gri(TM)), Y ∈ Γ(grj(TM)) and i, j ≤ −1. Clearly, compatible partial
connections can be analogously defined, by allowing derivatives only along directions in a sub-
bundle of TM . Also in the filtered setting one can encode additional geometric structure, namely
by considering reductions of the adapted frame bundle to a closed subgroup G0 ⊂ Autgr(n). In
this case, the compatible linear connections may satisfy additional conditions.
The idea is to formulate a notion of graded torsion and graded curvature for partial compatible
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connections, via an inductive definition whose base step is requiring that the component in homo-
geneity zero coincides with the Levi bracket. The inductive definition is enclosed in an inductive
procedure in which, at each step, a graded component is defined and then normalized. Fix an
integer k ≥ 1. The k–th step of the inductive procedure can be briefly described as follows. Put
Xp = Γ(T pM) for p < 0 and E = gr(TM). In particular, X−1 = Γ(H). Suppose that a partial
compatible linear connection

∇ : X−k+1 × Γ(E)→ Γ(E)

and an isomorphism φ : T−kM → E−k ⊕ . . .⊕E−1 are given. Such ingredients are collected in a
frame form of length k − 1. The set of frame forms of length k extending a given frame form of
length k− 1 is proved to be an affine space A. To each element in A, one can associate a torsion
and a curvature in homogeneity k, whose sum will be denoted by Ck. Again, we will assume
that the structure group of the adapted frame bundle satisfies some algebraic conditions. Denote
by g0 ⊂ dergr(n) the Lie algebra of G0 ⊂ Autgr(n). The direct sum vector space g≤0 = n ⊕ g0

admits a graded Lie algebra structure. It is possible, indeed, to extend the brackets on n and g0,
by defining a bracket g0 ⊗ n→ n via the evaluation map. The first prolongation of (n, g0) is the
kernel in homogeneity one of the map ∂ : L(n, g≤0)→ L(Λ2n, g≤0) defined by the formula

∂Φ(X,Y ) = [X,Φ(Y )]− [Y,Φ(X)]− Φ([X,Y ]).

A normalization condition for the pair (n, g0) is a g0–invariant graded submodule

N = ⊕i≥1Ni ⊂ L(Λ2n, g≤0)

such that for all i ≥ 1:
L(Λ2n, g≤0)i = Im(∂i)⊕Ni.

Assuming the vanishing of the first prolongation and the existence of a normalization condi-
tion, one can select a unique element in A by putting a constraint on Ck. It should be noted that
the difference between torsion and curvature, compared to the classical case, is not relevant since,
in general, both have to be normalized. In the normalization procedure for filtered manifolds,
the homogeneity plays the main role.
The inductive procedure, then, produces a proper compatible linear connection on E and an
isomorphism TM ∼= E. These two ingredients together uniquely define a linear connection ∇̃
on TM such that ∇̃ξ(Xp) ⊂ Xp for all ξ ∈ X(M) and p < 0, the canonical linear connection for
(M,H).

3. Overview of the text

In Chapter 1, we give some examples of stable distributions. As a consequence of Frobenius
Theorem, unstable distributions are noninvolutive and the study of noninvolutive distributions
reduces, in some sense, to the bracket–generating case. After defining bracket–generating distri-
butions of arbitrary depth, we soon focus on the one–step case and describe the Levi bracket in
terms of orbits of surjective linear maps. Characterizing the open orbits in the case of rank four
in terms of nondegenerate restrictions of the wedge product, finally, leads to the classification of
the generic types of rank four.
Chapter 2 starts with a brief review of classical G–structures. We underline the facts which
should be taken into account to adapt the construction of canonical connections on classical G–
structures to the setting of filtered manifolds. We develop a version of Morimoto’s prolongation
procedure, using linear connections instead of Cartan connections. We show that the procedure
applies to the class of dual Darboux distributions, whose lowest dimensional case (4, 9) appears
in the classification of Chapter 1.
In the latter classification, two generic types of (4, 8)–distributions also appear and these are
the main subject of Chapter 3. For each type, we describe the model algebra as the negative
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graded part of a grading on a real form for sl(5,C). Then, we prove that both types are equiv-
alent to normal, regular parabolic geometries, which allows us to deduce the fundamental local
invariants by looking at the associated harmonic curvature. The informations obtained from the
analysis of the cohomology group H2(g−, g), containing the admissible values for the harmonic
curvature, find a further application, namely the description of submaximally symmetric models
for (4, 8)–distributions of generic hyperbolic type.





CHAPTER 1

Bracket generating distributions

A first distinction in two classes of smooth distributions depends on their behavior under
the Lie bracket operator. A smooth distribution H ⊂ TM is said to be involutive if its space of
sections is closed under the Lie bracket. The Frobenius theorem characterizes involutive smooth
distributions and shows that, at least locally, they all look like a canonical model depending
only on their rank. Conversely, in the noninvolutive range we find examples of local geometry.
The noninvolutive case, in some sense, reduces to the study of distributions whose sections,
together with their iterated Lie brackets span the whole tangent bundle. As a natural regularity
hypothesis, one can assume that the procedure determines a filtration of the tangent bundle
by smooth subbundles. Under this assumption, a tensorial map on the graded vector bundle
associated to the filtration, the so–called Levi bracket, is induced by the bracket among vector
fields. At each point x of the manifold, the Levi bracket endows the associated graded to the
tangent space with a nilpotent graded Lie algebra structure, the symbol algebra of H at the
point x. In Proposition 1, we show that the symbol algebra is the first basic invariant for the
structure. In the rest of the Chapter, we will focus on one–step bracket–generating distributions.
In this case, the isomorphism class of the symbol algebra at a given point x ∈ M can be nicely
described in terms of natural actions of general linear groups and related orbits. Assuming that
these orbits are open assures that the symbol algebras, locally around x, are isomorphic to a
fixed model. In particular, this will lead to the classification for the case of rank four.

1. Involutive distributions

Definition 1. Let M be a smooth manifold and let H ⊂ TM be a smooth distribution.

• An integral submanifold for H is a smooth submanifold N ⊂ M such that TyN = Hy

for all y ∈ N .
• H is said to be integrable if for each x ∈M there exists an integral submanifold for H

which contains x.
• H is said to be involutive if [ξ, η] ∈ Γ(H) for all ξ, η ∈ Γ(H).

It is easy to see that an integrable distribution is always involutive. Let I ⊂ Ω1(M) be a
family of one–forms such that for all x ∈M :

Hx = {ξ ∈ TxM | α(ξ) = 0 for all α ∈ I}
From the standard differential calculus formula

dα(ξ, η) = ξ · α(η)− η · α(ξ)− α([ξ, η])

for α ∈ Ω1(M) and vector fields ξ, η on M , we deduce that dα(ξ, η) = −α([ξ, η]) for ξ, η ∈ Γ(H)
and α ∈ I. If N is an integral manifold for H and i : N → M denotes the immersion, then
i∗α = 0 for α ∈ I. Then i∗dα = di∗α = 0, so that α([ξ, η]) = 0 for all ξ, η ∈ Γ(H) and α ∈ I.
Less obvious is the fact that involutivity implies integrability, which is proved by the following

Theorem 1. (Frobenius) Let M be a smooth manifold of dimension n and let H ⊂ TM be
a smooth involutive distribution of rank k. Then for each x ∈M , there exists a local chart (U, u)

7



2. BRACKET–GENERATING DISTRIBUTIONS 8

for M with x ∈ U such that u(U) = V ×W ⊂ Rn for open subsets V ⊂ Rk, W ⊂ Rn−k and for
each a ∈W the subset u−1(V × {a}) ⊂M is an integral manifold for H.

Frobenius Theorem, then, implies that any involutive distribution, locally, looks like a fixed
model. Indeed, locally around each point, an involutive distribution H of rank k is the tangent
space of the submanifold {ui = ai, i = r+ 1, . . . , n}, with ar+1, . . . , an ∈ R constant. Otherwise
put,

Hx = {ξ ∈ TxM | dui(ξ) = 0 for all i = r + 1, . . . , n}
for all x ∈ U . In order to find examples of distributions admitting local invariants, then, we shall
move to the noninvolutive case.

2. Bracket–generating distributions

Let M be a finite dimensional smooth manifold and H ⊂ TM a smooth distribution on M .
Denote by H−1 the sheaf of smooth sections of H. Define inductively a sequence of sheaves
{H−k}k≥1 by

H−k−1 := H−k + [H−k,H−1]

Observe that H−k ⊂ H−k−1 for any k ≥ 1 and [Hp,Hq] ⊂ Hp+q for all negative integers p, q.
At each point x ∈ M , the sheaf H−k generates a finite dimensional subspace in TxM , whose
dimension in general depends on the point. If it is constant for each integer k, then H generates
an increasing sequence of subbundles of TM :

(1) {0} ⊂ H = T−1M ⊂ T−2M ⊂ . . . ⊂ T−kM ⊂ . . . ⊂ TM

Definition 2. Let H ⊂ TM be a smooth distribution on a smooth manifold M .

• H is said to be regular if there exists a sequence {T−kM}k≥1 of subbundles of TM ,
such that H−k coincides with the sheaf of smooth sections of T−kM for all k.

• A regular distribution H is said to be bracket generating if there exists an integer µ ≥ 2
such that T−µM = TM . The minimal integer µ satisfying this condition is called the
depth of H and the vector (a1, . . . , aµ) with ai = rank(T−iM) is called the small growth
vector of H.

Remark 1. Frobenius Theorem implies that noninvolutive regular distributions are related
to bracket–generating distributions. Indeed, if H ⊂ TM is a noninvolutive regular distribution,
then H ( T−2M . Since M is finite–dimensional, there exists the minimal integer µ ≥ 2 such
that T−µ−1M = T−µM and the Theorem applies to the involutive subbundle T−µM ⊂ TM .
Since H ⊂ T−µM , we conclude that H is a bracket–generating distribution on each integral
submanifold for T−µM .

Consider now a bracket–generating distribution H ⊂ TM of depth µ. The sequence (1) ends
with T−µM = TM , so that iterating brackets among sections ofH determines a filtration on TM .
Put T iM = TM for i < −µ and T iM = {0} for i > −1. Now define gri(TM) := T iM/T i+1M
for all integers i. The associated graded bundle gr(TM) = ⊕igri(TM) reduces to a finite direct
sum, indexed by −µ ≤ i ≤ −1. Denote by qi : T iM → gri(TM) the natural projection maps.
By construction, the Lie bracket of vector fields is compatible with the filtration:

[ξ, η] ∈ Γ(T p+rM) for all ξ ∈ Γ(T pM), η ∈ Γ(T rM).

The previous remark assures that (ξ, η) 7→ qp+r([ξ, η]) defines a map

Γ(T pM)× Γ(T rM)→ Γ(grp+r(TM)),

whose values only depend on the equivalence classes of ξ, η in Γ(grp(TM)) and Γ(grr(TM)),
respectively. To see this, take two representatives ξ1, ξ2 ∈ Γ(T pM) of the same equivalence class
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in Γ(grp(TM)) and η ∈ Γ(T rM). Then ξ1 = ξ2 + ζ for ζ ∈ Γ(T p+1M) and since [ζ, η] is a

section of T p+r+1M , we have qp+r([ξ1, η]) = qp+r([ξ2, η]). The formula above descendes to a
map Γ(grp(TM))× Γ(grr(TM)) → Γ(grp+r(TM)). In order to show that last map is tensorial,
first recall the following formula for ξ, η ∈ X(M) and f ∈ C∞(M):

[fξ, η] = f [ξ, η]− (η · f)ξ

Now (η ·f)ξ ∈ Γ(T pM) ⊂ Γ(T p+r+1M) for all negative integers p, r, thus it projects to zero along
qp+r. Projecting the formula above along qp+r, leads finally to qp+r([fξ, η]) = fqp+r([ξ, η]).

Definition 3. The Levi bracket L : gr(TM) ⊗ gr(TM) → gr(TM) is the tensorial map
characterized by

L(qp(ξ), qr(η)) = qp+r([ξ, η]), ξ ∈ Γ(T pM), η ∈ Γ(T rM).

Since [ , ] satisfies the Jacobi identity, the same holds for L. For any x ∈ M , the pair
(gr(TxM),Lx) is a nilpotent graded Lie algebra generated by Hx = gr−1(TxM), which is said to
be the symbol algebra of H at x.

Proposition 1. Let M, M̃ be smooth manifolds of same dimension. Suppose that H and
H̃ are bracket–generating distributions of same rank on M and M̃ , respectively. Let be U ⊂M ,
Ũ ⊂ M̃ open subsets and f : U → Ũ a diffeomorphism such that Txf ·Hx = H̃f(x) for all x ∈ U .
Then for any x ∈ U , f induces an isomorphism of nilpotent graded Lie algebras

gr(Txf) : (gr(TxM),Lx)→ (gr(Tf(x)M̃), L̃f(x)).

Proof. The distributions H, H̃ induce filtrations {T iM} of TM and {T iM̃} of TM̃ , re-

spectively. Denote by qi : T iM → gri(TM) and by q̃i : T iM̃ → gri(TM̃) the natural projection

maps. Analogously, the respective Levi brackets are denoted by L, L̃. By hypothesis for each
point x ∈ U , the differential of f at x is a linear isomorphism Txf : TxM → Tf(x)M̃ . By restric-

tion, in particular, it induces an isomorphism between Hx and H̃f(x). Recall that the pullback

of ξ ∈ X(Ũ) is the vector field f∗ξ ∈ X(U) defined by (f∗ξ)x = Tf(x)f
−1 · ξf(x) ∈ TxU for all

x ∈ U . Observe that f∗ξ ∈ Γ(H) for ξ ∈ Γ(H̃). Moreover, being f a diffeomorphism, any section

of Γ(H) is the pullback of some section of Γ(H̃). If ξ, η ∈ X(Ũ), for all x ∈ U we have that

(2) Txf · [f∗ξ, f∗η]x = [ξ, η]f(x) ∈ Tf(x)Ũ

Writing last formula for sections ξ, η ∈ Γ(H̃) shows that Tf(T−2M) = T−2M̃ . From this together

with formula (2), Tf(T iM) = T iM̃ for all i = −1, . . . ,−µ follows. Since Txf is compatible with
the filtrations, it induces the map

gr(Txf) : gr(TxM)→ gr(Tf(x)M̃)

gr(Txf)(qi(v)) = q̃i(Txf · v), for v ∈ T ixM

between the associated graded vector spaces. Observe that gr(Txf) coincides with Txf on Hx.
Clearly, gr(Txf) is surjective, since it is the composition of two surjective maps. Moreover, if

v1, v2 ∈ T ixM are such that gr(Txf)(qi(v1)) = gr(Txf)(qi(v2)), then Txf ·(v1−v2) ∈ T i+1
f(x)M̃ . Now

the equality Txf(T i+1
x M) = T i+1

f(x)M̃ implies that v1 − v2 ∈ T i+1
x M . Equivalently qi(v1 − v2) =

0, hence gr(Txf) is injective. For any ξ ∈ Γ(T iM) and η ∈ Γ(T jM), we have [f∗ξ, f∗η] ∈
Γ(T i+jM). One can project (2) onto gri+j(TM̃) along q̃i+j , thus obtaining

gr(Txf)(qi+j([f
∗ξ, f∗η]x)) = L̃f(x)(q̃i(ξ), q̃j(η))
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Putting v = (f∗ξ)x ∈ T ixU and w = (f∗η)x ∈ T jxU and substituting ξf(x) = Txf · v and
ηf(x) = Txf · w in the right–hand side, last identity rewrites as

gr(Txf)(Lx(qi(v), qj(w))) = L̃f(x)(gr(Txf)(v), gr(Txf)(w))

Therefore, gr(Txf) is an isomorphism of nilpotent graded Lie algebras for any x ∈ U , which
concludes the proof. �

The symbol algebra associated to bracket–generating distributions is thus invariant under
the action of compatible diffeomorphisms.

Example 1. (Contact structures) Let V be a real vector space and ω : V × V → R a
skew–symmetric bilinear form. If ω is nondegenerate, the pair (V, ω) is said to be a symplectic
vector space. Let {e1, . . . , e2n} be the standard basis of R2n and {e∗1, . . . , e∗2n} the dual basis.
The standard symplectic vector space is the pair (R2n, ω), where ω is defined by

(3) ω =

n∑
i=1

e∗i ∧ e∗n+i

As a classical result in linear algebra, a skew–symmetric bilinear form on an odd dimensional
vector space is degenerate. Moreover, every nondegenerate skew–symmetric bilinear form on
R2n writes as ω with respect to some basis of R2n. Therefore up to isomorphism, there is a
unique structure of a nilpotent graded Lie algebra on g−1⊕g−2 = R2n⊕R such that the bracket
g−1 × g−1 → g−2 is nondegenerate, which is known as the real Heisenberg algebra h2n+1 of
dimension 2n+ 1.
Let M be a smooth manifold of odd dimension 2n + 1. If α ∈ Ω1(M) is a differential form,
then Ker(αx) ⊂ TxM is an hyperplane for any x ∈ M . Moreover, its differential gives a skew–
symmetric bilinear form dαx : TxM × TxM → R at each x ∈ M . We say that α is a contact
form on M if, for all x ∈M , the restriction of dαx to Ker(αx) is nondegenerate. Consider global
coordinates (x1, . . . , xn, z, y1, . . . , yn) on M = R2n+1 and α ∈ Ω1(M) defined by

(4) α = dz −
n∑
i=1

yidxi

Putting Hx = Ker(αx) for x ∈ M defines a smooth distribution H ⊂ TM of corank one. There
is a natural choice of local frame {ξ1 . . . , ξ2n} for H. For i = 1, . . . , n, put

ξi =
∂

∂yi
, ξn+i = yi

∂

∂z
+

∂

∂xi

Observe that dα =
∑n
i=1 dxi ∧ dyi and the smooth functions {dα(ξi, ξj) : i, j = 1, . . . , 2n}

are constant on M . More precisely, if ω denotes the standard symplectic form on R2n and
{e1, . . . , e2n} the standard basis of R2n, we have that dαx(ξi, ξj) = ω(ei, ej) for all x ∈M . This
shows that (4) defines a contact form, known as the standard contact form on R2n+1. Let M be a
smooth manifold of dimension (2n+1) and let H ⊂ TM be a smooth distribution of corank one.
We say that H is a contact structure on M if, for any x ∈M , there exists an open neighborhood
Ux ⊂M of x and a contact form α ∈ Ω1(Ux) such that Hy = Ker(αy) for all y ∈ Ux.
The Levi bracket associated to a smooth distribution H ⊂ TM of corank one, at each point
x ∈ M , gives a skew–symmetric map Lx : Hx ×Hx → Qx, where Qx := TxM/Hx. We say that
Lx is nondegenerate if for v ∈ Hx, the condition Lx(v, w) = 0 for all w ∈ Hx implies v = 0.
Moreover, we say that L is nondegenerate if Lx is nondegenerate for all x ∈ M . Suppose that
U ⊂M is an open subset and H is the kernel of the one–form α on U . At each point x ∈ U , αx
descends to a linear isomorphism ᾱx : Qx → R, which clearly depends smoothly on the point.
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Therefore, ᾱ is a local trivialization of the line bundle Q. The standard differential calculus
formula for vector fields ξ, η on M

dα(ξ, η) = ξ · α(η)− η · α(ξ)− α([ξ, η])

reduces to dα(ξ, η) = −α([ξ, η]) for ξ, η ∈ Γ(H), which shows that

(5) (dαx)|Λ2Hx = −ᾱx ◦ Lx
for any x ∈ U . Now one can easily see that L is nondegenerate if and only if H is a contact
structure. Indeed if H is a contact structure and x ∈M , then H is the kernel of a contact form
α locally around x. The restriction of dαx to Λ2Hx is nondegenerate, hence Lx is nondegenerate
by (5). Conversely, suppose that Lx is nondegenerate for all x ∈ M . Recall that any smooth
corank–one distribution can be written as the kernel of a one–form. Then for y ∈ M , consider
an open neighborhood Uy ⊂ M of y and α ∈ Ω1(Uy) such that Hx = Ker(αx) for all x ∈ Uy.
Now (5) holds on Uy, so that if Lx is nondegenerate, the same is true for (dαx)|Λ2Hx for all
x ∈ Uy. Then α is a contact form on Uy and H is a contact structure. The previous argument,
then, shows that a contact structure can be equivalently defined as a corank–one distribution,
whose symbol algebra at the point x is isomorphic to h2n+1 for each x ∈ M . As a consequence
of a classical result about contact structures, this isomorphism depends smoothly on the point.
Indeed, according to Pfaff Theorem, if H ⊂ TM is a contact structure and x ∈ M , there exists
a local coordinate system (Ux, (x

1, . . . , xn, z, y1, . . . , yn)) at x such that Hy = Ker(αy) for all
y ∈ Ux, being α ∈ Ω1(Ux) defined by (4) in the coordinates (x1, . . . , xn, z, y1, . . . , yn).

Example 2. (Pushcart) The contact structure in dimension three arises from the description
of a simple mechanical system. Consider a pushcart moving on a two–dimensional plane, which
can be thought as two wheels connected by an horizontal axis `.

x

y

(x, y)

`

θ

The instant position of the pushcart is described by the coordinates (x, y) on the plane, centered
in the midpoint of ` and by a third coordinate θ, the angle between ` and the x–axis. The
movement of the object is allowed along the directions X = ∂

∂θ and Y = − sin θ ∂
∂x + cos θ ∂

∂y .

Put Z = [X,Y ] = − cos θ ∂
∂x − sin θ ∂

∂y . Then, {X,Y } generate a distribution of codimension one

on M = R2 × S1, which is noninvolutive since {X,Y, Z} are linearly independent at each point
of M .

We can rephrase the considerations deduced in Example 1, by saying that contact structures
have no local invariants. However, there exist examples of bracket–generating distributions ad-
mitting local invariants. The first example was found by Elie Cartan. In his ”five variables” paper
[12], he investigated distributions of rank two in dimension five, which are bracket–generating
of depth two. Again, such a configuration is realized by a mechanical system, describing two
balls rolling on each other without grinding (see [1]). The instant position of this system can be
described by five real coordinates. The point of contact between the two balls is given by a point
on the surface of the first ball. The second bit of information needed to pin down the position
of the system is how the second ball sits in space. This can be recorded by a positively oriented
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orthonormal basis sitting in its center. We thus conclude that the configuration space of the
system is M = S2 × SO(3). One can show that the no–grinding condition defines a rank–two
distribution on the five–dimensional manifold M with growth vector (2, 3, 5). Using his method
of equivalence, Cartan associated to any such distribution a fundamental quartic invariant, play-
ing here the role of the Riemannian curvature in differential geometry.
Another nice example from classical mechanics is given by a car moving on a plane (a detailed
description can be found in [13]). This can be thought as two parallel axes `1 and `2 joining
the back and front wheels, respectively, whose midpoints are connected by an orthogonal axis
`. The instant position is determined by four real coordinates. Indeed, the position of the car
with respect to the plane is given by coordinates (x, y) ∈ R2 of the midpoint of `1 on the plane.
Moreover, the orientation of the car with respect to the plane is given by a third coordinate θ,
the angle between ` and the x–axis. Finally, the front wheels are allowed to rotate of an angle φ
with respect to `.

x

y
`1

(x, y)

θ

`2

`

φ

Therefore, the configuration space is a real manifold M of dimension four. The car can
reach every point of the plane, but just running along distinguished directions X,Y generating a
rank–two distribution on M with growth vector (2, 3, 4). Bracket–generating distributions with
growth vector (2, 3, 4) are also known as Engel distributions.

3. Generic one step bracket–generating distributions

The thesis investigates distributions, which are bracket generating in one step. For such
distributions of rank k, one can formulate a genericity hypothesis in terms of a smooth action
of the general linear group GL(k,R). In particular, Proposition 3 relates the GL(4,R)–orbits to
the CO(3, 3)–orbits, which are characterized by Proposition 4 in terms of linear algebra. It thus
follows that the generic types of rank four can be classified.

Definition 4. Let M be a smooth manifold of dimension n and H ⊂ TM a smooth
distribution of rank k. Denote by H−1 the set of smooth sections of H. We say that H is bracket
generating in one step if the set of smooth sections H−2 = H−1 + [H−1,H−1], in each point
x ∈M , spans the whole tangent space at x.

Observe that if H is bracket generating in one step, the regularity condition on H−2 is
automatically satisfied and the filtration (1) writes as {0} ⊂ H ⊂ TM . In terms of Definition 2,
H is a bracket–generating distribution of depth two. According to the growth vector notation,
we will also say that H is a (k, n)–distribution. Consider a (k, n)–distribution H ⊂ TM and
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denote by Q = TM/H the quotient bundle. The Levi bracket introduced in Definition 3, in
this case, writes as a unique homogeneous component that is a surjective homomorphism of
vector bundles L : Λ2H → Q. Such a distribution can only exist for some values of rank k and
dimension n, exactly those satisfying

(
k
2

)
≥ n − k ≥ 1. For values out of this range, indeed,

the set of surjective linear maps Ls(Λ
2Rk,Rn−k) is empty. For every nonnegative integer m,

the matrix–vector multiplication determines a smooth action of the Lie group GL(m,R) on Rm,
known as the standard action. This induces an action of G = GL(k,R) × GL(n − k,R) on the
set of linear maps L(Λ2Rk,Rn−k) in a natural way, by putting

(6)
G× L(Λ2Rk,Rn−k) −→ L(Λ2Rk,Rn−k)

(A,B) · F (v, w) := B · F (A−1 · v,A−1 · w)

Two linear maps are in the same G–orbit if and only if they only differ by choices of bases
of their domain and codomain. Observe that the vector subspace of surjective linear maps
Ls(Λ

2Rk,Rn−k) is G–invariant.

Proposition 2. Let k, n be nonnegative integers such that 1 ≤ n−k ≤
(
k
2

)
. Consider the nat-

ural action of G = GL(k,R)×GL(n−k,R) on the set of surjective linear maps Ls(Λ
2Rk,Rn−k).

(a) The Levi bracket L associated to a (k, n)–distribution determines, for every x ∈ M , a
G–orbit Ox ⊂ Ls(Λ

2Rk,Rn−k). These orbits are the same for two points x, y ∈ M if
and only if the symbol algebra in x and y are isomorphic.

(b) For 1 ≤ n−k <
(
k
2

)
, the G–orbits in Ls(Λ

2Rk,Rn−k) are in one–to–one correspondence

with the orbits of the induced action of GL(k,R) on the Grassmannian Gr(`,Λ2Rk),

where ` =
(
k
2

)
− n+ k.

Proof. (a) Fix x ∈ M and choose linear isomorphisms φx : Rk → Hx, ψx : Rn−k → Qx.
Observe that φx induces a linear isomorphism Λ2φx : Λ2Rk → Λ2Hx, characterized by the
formula Λ2φx(v ∧w) := φx(v)∧φx(w) for all v, w ∈ Rk. The pair (φx, ψx) defines, together with
Lx, the map Tx ∈ Ls(Λ2Rk,Rn−k) via

Tx(v ∧ w) = ((ψx)−1 ◦ Lx ◦ Λ2φx)(v ∧ w).

The set of all isomorphisms Rk ⊕ Rn−k → gr(TxM) writes as

{ (φx ◦A,ψx ◦B) | (A,B) ∈ G }.

Then, denoting by Sx : Λ2Rk → Rn−k the linear map defined by the pair (φx ◦A,ψx ◦B), for all
v, w ∈ Rk we have:

(A,B) · Sx(v ∧ w) = (A,B) · ((ψx ◦B)−1 ◦ Lx ◦ Λ2(φx ◦A))(v ∧ w)

= (A,B) · (B−1 ◦ (ψx)−1 ◦ Lx ◦ Λ2φx)(Av ∧Aw)

= Tx(v ∧ w).

hence (A,B) · Sx = Tx. We conclude that the G–orbit of Tx is independent on the choice of
isomorphism Rk ⊕ Rn−k → gr(TxM) and thus depends only on Lx.
An isomorphism F : gr(TxM) → gr(TyM) of nilpotent graded Lie algebras writes as the di-
rect sum F = (F1, F2) of linear isomorphisms F1 : Hx → Hy and F2 : Qx → Qy, satisfying
F2(Lx(ξ, η)) = Ly(F1(ξ), F1(η)) for all ξ, η ∈ Hx. First, suppose that such an isomorphism F is
given. Choose linear isomorphisms φx : Rk → Hx, ψx : Rn−k → Qx. By composition, we get
linear isomorphisms F1 ◦φx : Rk → Hy and F2 ◦ψx : Rn−k → Qy. For any v, w ∈ Rk, there exist

λ, θ ∈ Hy such that φx(v) = F−1
1 (λ) and φx(w) = F−1

1 (θ) and we have that
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((ψx)−1 ◦ Lx ◦ Λ2φx)(v ∧ w) = (ψx)−1(Lx(F−1
1 (λ), F−1

1 (θ)))

= (ψx)−1(F−1
2 (Ly(λ, θ)))

= (F2 ◦ ψx)−1 ◦ Ly ◦ Λ2(F1 ◦ φx)(v ∧ w).

Conversely, suppose that Lx,Ly generate the same orbit in Ls(Λ
2Rk,Rn−k). There exist

linear isomorphisms φx : Rk → Hx, φy : Rk → Hy and ψx : Rn−k → Qx, ψy : Rn−k → Qy such
that (ψx)−1 ◦ Lx ◦ Λ2φx = (ψy)−1 ◦ Ly ◦ Λ2φy. Define F1 := φy ◦ (ψy)−1 and F2 := φy ◦ (ψy)−1.
Then F1 : Hx → Hy and F2 : Qx → Qy are linear isomorphisms such that F2 ◦ Lx = Ly ◦ Λ2F1,
hence they define an isomorphism F = (F1, F2) : gr(TxM) → gr(TyM) of nilpotent graded Lie
algebras.

(b) An action of GL(k,R) on Λ2Rk is obtained in a natural way, by linearly extending the
definition A · (v1 ∧ v2) := A · v1 ∧ A · v2 for A ∈ GL(k,R) and v1, v2 ∈ Rk on decomposable
elements. This, in turn, induces the natural action on the Grassmannian:

GL(k,R)×Gr(l,Λ2Rk) −→ Gr(l,Λ2Rk)

A · sp{ω1, . . . , ωl} := sp{A · ω1, . . . , A · ωl}

If T ∈ Ls(Λ2Rk,Rn−k), then Ker(T ) ⊂ Λ2Rk is a linear subspace of dimension `. Otherwise
put, it is an element of Gr(l,Λ2Rk). Consider now S, T ∈ Ls(Λ2Rk,Rn−k). We show that S and
T lie in the same G–orbit if and only if Ker(S) and Ker(T ) lie in the same orbit of GL(k,R).
First, suppose that there exists (A,B) ∈ G such that T = B ◦ S ◦ Λ2A−1. Then, since B
is invertible, ω ∈ Λ2Rk lies in Ker(T ) if and only if S ◦ Λ2A−1(ω) = 0, hence if and only if
Λ2A−1(ω) ∈ Ker(S). Conversely, suppose that A ∈ GL(k,R) is such that Λ2A−1 restricts to an
isomorphism Ker(T ) → Ker(S). Put V := Ker(T ). Then, T and S ◦ Λ2A−1 descend to linear

isomorphisms Λ2Rk/V → Rn−k, say T and S ◦ Λ2A−1, which define the linear isomorphism

B := T ◦ (S ◦ Λ2A−1)−1 : Rn−k → Rn−k. Observe that by definition, B ∈ GL(n − k,R) is such
that T = B ◦ S ◦ Λ2A−1, which concludes the proof. �

Fix x ∈ M . Denote by Ox ⊂ Ls(Λ
2Rk,Rn−k) the orbit defined by Lx as in Proposition 2

(a). Suppose now that Ox is open. Then Oy = Ox for all points y in an open neighborhood of
x. Therefore, from the point of view of the local geometry, assuming that L generates the same
open orbit everywhere is not restrictive.

Definition 5. Let k, n be nonnegative integers such that 1 ≤ n− k ≤
(
k
2

)
and call (k, n) a

bidimension. Consider the natural action of the Lie group G = GL(k,R)×GL(n− k,R) on the
set Ls(Λ

2Rk,Rn−k) of surjective linear maps.

(1) The bidimension (k, n) is said to be rigid if there exist openG–orbits in Ls(Λ
2Rk,Rn−k).

(2) Let be O ⊂ Ls(Λ
2Rk,Rn−k) an open orbit. A (k, n)–distribution H ⊂ TM is said to

be generic of type O if Ox = O for all x ∈M , with Ox denoting the orbit generated by
Lx as in Proposition 2 (a).

Observe that every open orbit O of bidimension (k, n) is the type of some generic (k, n)–
distribution. To see this, first consider a nilpotent graded Lie algebra n corresponding to the
orbit O. Let N be the connected and simply connected Lie group with Lie algebra n. Then
g−1 ⊂ n generates a left–invariant distribution on N , which is generic of type O. Therefore, a
classification of generic types of (k, n)–distributions consists of a list of open orbits of bidimension
(k, n). These are a special case of rigid Carnot algebras, as defined and classified in [2]. There, it
is shown that the list of rigid bidimensions is given by three infinite series and several exceptional
cases. Put p = k +

(
k
2

)
for arbitrary integers k ≥ 2. The following bidimensions are easily seen

to be rigid:
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• Darboux bidimensions (k, k + 1). For these values of rank and dimension, we look
at orbits of surjective linear maps Λ2Rk → R, which are equivalent to nonzero skew–
symmetric bilinear forms on Rk. An open orbit of Darboux bidimension is generated by
maximally nondegenerate skew–symmetric bilinear forms, which means nondegenerate
for k even and having one–dimensional nullspace for k odd.

• dual Darboux bidimensions (k, p − 1). Let be ` ⊂ Λ2Rk the line generated by a max-
imally nondegenerate skew–symmetric bilinear form on (Rk)∗. Then ` generates an
open orbit in Gr(1,Λ2Rk) corresponding, in the sense of Proposition 2 (b), to a unique
open orbit of dual Darboux bidimension.

• free bidimensions (k, p). For these values, we look at the G–action on the set of iso-

morphisms between two real vector spaces of dimension
(
k
2

)
. It is thus clear that there

is a unique orbit of free bidimension (k, p), whose elements are isomorphisms.

The results from [2] assure that the orbits described above are the unique open orbits of
Darboux, dual Darboux and free bidimensions. Throughout the rest of the Chapter, we will
focus on the case of rank four. In principle, distributions of rank four and bracket generating in
one step may only exist on manifolds of dimension 5 ≤ n ≤ 10. The classification in [2] shows
that the bidimension (4, n) is rigid for each admissible value of n. However, the same result is
recovered through the characterization of open orbits that we are going to prove in Theorem 2.
For n = 5, 9, 10 we have, respectively, a Darboux, dual Darboux and free bidimension and each
of them corresponds to a unique open orbit. On the other hand, for n = 6, 7, 8 there exist two
distinct open orbits of exceptional bidimension (4, n). In some sense, the open orbits can be
characterized as nondegenerate restrictions of a quadratic form on Λ2R4 and this will allow us
to present the case of rank four in a uniform picture.

Proposition 3. The wedge product defines a conformal class of quadratic forms of signature
(3, 3) on Λ2R4. The resulting Lie group homomorphism GL(4,R)→ CO(3, 3) restricts to a two–
fold covering between the connected components of the identities.

Proof. The wedge product Λ2R4 × Λ2R4 → Λ4R4 is a symmetric bilinear map onto a
one–dimensional vector space. Any ordered basis {v1, . . . , v4} for R4 determines a volume form
vol = v1 ∧ v2 ∧ v3 ∧ v4, thus an isomorphism Λ4R4 ∼= R and a real quadratic form β : Λ2R4 → R
on the real vector space Λ2R4 of dimension six. Explicitely for φ ∈ Λ2R4, define β(φ) as the
unique real number such that φ∧φ = β(φ) vol. A direct computation shows that β is a quadratic
form of signature (3, 3). Denote by CO(3, 3) the conformal group of β, which is given by those
automorphisms of Λ2R4 preserving β up to a nonzero factor scale. For A ∈ GL(4,R) and wi ∈ R4,
the change rule

Aw1 ∧Aw2 ∧Aw3 ∧Aw4 = det(A)w1 ∧ w2 ∧ w3 ∧ w4

shows that β(Aφ) = det(A)β(φ) for all A ∈ GL(4,R) and φ ∈ Λ2R4. Then the GL(4,R)–
action on Λ2R4 preserves the conformal class of β and it thus defines a group homomorphism
F : GL(4,R) → CO(3, 3). The kernel of F is given by those elements in GL(4,R) acting as
the identity map on Λ2R4. The inclusion {−I, I} ⊂ Ker(F ) follows straightforwardly. Starting
with a basis of Λ2R4 of decomposable elements, the opposite inclusion can be shown by direct
computation, thus proving that Ker(F ) = {−I, I}. Then F induces an injective Lie group ho-
momorphism F̄ : GL(4,R)/{−I, I} → CO(3, 3). Since F̄ lifts to an injective homomorphism
between the respective Lie algebras, whose dimensions coincide, it actually restricts to an iso-
morphism between the connected components of the identities. �

Sylvester Theorem classifies symmetric bilinear forms, by characterizing their orbits under
the action of the general linear group. According to it, any symmetric bilinear form on Rn is
in the orbit of a canonical element. The admissible models are uniquely determined by rank
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and signature, which then characterize the orbit. A nondegenerate symmetric bilinear form is
said to be a pseudoscalar product. If n = p+ q and 〈 , 〉 is a pseudoscalar product of signature
(p, q) on Rn, the orthogonal group O(p, q) is defined as the stabilizer of 〈 , 〉. Since 〈 , 〉 is
nondegenerate, the map v 7→ 〈v, 〉 induces an isomorphism between Rn and its dual. Therefore,
the system {w1, . . . , wk} ⊂ Rn is linearly independent if and only if the (k×k)–matrix of products
(〈wi, wj〉) has nonzero determinant.

Proposition 4. Put n = p+q for integers p, q ≥ 0. Let 〈 , 〉 be a nondegenerate pseudoscalar
product of signature (p, q) on Rn and denote by O(p, q) the corresponding orthogonal group.
The O(p, q)–orbits in Gr(k,Rp+q) are then characterized in terms of rank and signature of the
restriction of 〈 , 〉 to the subspace in question. Moreover, the open orbits are those of maximal
rank.

Proof. Let 〈 , 〉 be a nondegenerate pseudoscalar product of signature (p, q) on Rn. Denote
by Is the identity matrix of size s and by Is,t the square matrix of the following block form:

Is,t =

(
Is 0
0 −It

)
Let W ⊂ Rn be a k–dimensional linear subspace. The restriction 〈 , 〉|W is a symmetric bilinear
form on W of signature (p′, q′) with rank r := p′+q′ ≤ k. Clearly, rank and signature of 〈 , 〉|AW
are the same for every A ∈ O(p, q), hence they are constant on the O(p, q)–orbit of W . We will
show that they actually characterize the O(p, q)–orbit of W in the Grassmannian Gr(k,Rp+q).
We claim that there exists a choice of basis for W , which is canonical in the following sense.
Such basis can be completed to a basis B of Rn whose matrix of scalar products assumes a
canonical form, which is uniquely determined by (p′, q′). Let N = W ∩W⊥ be the nullspace
for 〈 , 〉|W , which is a (k − r)–dimensional subspace of W . Choose a basis {w1, . . . , wk−r} of
N . By definition, 〈wi, w〉 = 0 for all w ∈ W and i = 1, . . . , k − r. Moreover, 〈 , 〉 descends
to a nondegenerate pseudoscalar product of signature (p′, q′) on W/N . The induced product
thus writes as Ip′,q′ in a basis {w̄k−r+1, . . . , w̄k} of W/N . First, choose preimages wi ∈ W of
w̄i ∈ W/N for i = k − r + 1, . . . , k, thus obtaining an orthonormal system. Then by adding the
previously chosen basis for N , complete {wk−r+1, . . . , wk} to a basis {w1, . . . , wk} of W , whose
matrix of scalar products writes in the block form

(7)

(
0 0
0 Ip′,q′

)
where the zero square block on the diagonal has size k−r. Observe that if 〈 , 〉 is nondegenerate,
it identifies Rn with its dual via the mapping v 7→ 〈v, 〉. In this picture, N⊥ identifies with
the annihilator of N in (Rn)∗, so that dim(N⊥) = n − (k − r). Moreover, N ⊂ W ⊂ N⊥

and 〈 , 〉 descends to a nondegenerate pseudoscalar product on N⊥/N of signature (p′′, q′′) =
(p − k + r, q − k + r). Since W/N ⊂ N⊥/N , we can complete {w̄k−r+1, . . . , w̄k} to a basis for
N⊥/N , say {w̄k−r+1, . . . , w̄n−k+r}, such that the scalar product restricted to N⊥/N writes as(

Ip′,q′ 0
0 Ip′′′,q′′′

)
with p′ + p′′′ = p′′ and q′ + q′′′ = q′′. Taking preimages of w̄i for i = k + 1, . . . , n − k + r,
we complete the basis {w1, . . . , wk} of W to a basis {w1, . . . , wn−k+r} for N⊥. In particular,
〈wi, wj〉 = 0 for all i = 1, . . . , k − r and j = 1, . . . , n− k + r, so that 〈 , 〉|N⊥ writes as0 0 0

0 Ip′,q′ 0
0 0 Ip′′′,q′′′


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in the basis {w1, . . . , wn−k+r}. By nondegeneracy of 〈 , 〉 on Rn, this can be in turn completed
to a basis B for Rn such that the scalar product on Rn writes as

0 0 0 Ik−r
0 Ip′,q′ 0 0
0 0 Ip′′′,q′′′ 0

Ik−r 0 0 0


and the claim is proved. By construction, W is spanned by the first k basis elements. If
W,W ′ ⊂ Rn are k–dimensional subspaces on which 〈 , 〉 restricts with same rank and signature,
we can apply the argument above to each of them. In this way, we find bases B = {w1, . . . , wn}
and B′ = {w′1, . . . , w′n} for Rn such that {w1, . . . , wk} and {w′1, . . . , w′k} are bases respectively
of W,W ′. There exists a unique A ∈ GL(n,R) such that Awi = w′i for all i = 1, . . . , n. By
construction, A maps W onto W ′. Moreover, since 〈 , 〉 coincides on {w1, . . . , wn} and on
{Aw1, . . . , Awn}, A actually lies in O(p, q). Then W and W ′ are in the same O(p, q)–orbit and
the first statement is proved.
Now consider the set Vk of linearly independent k–tuples of vectors in Rn. Then Vk identifies
with an open subset of Rnk and inherits a topology from Rnk. The function f : Vk → R, defined
by f(v1, . . . , vk) = det(〈vi, vj〉), is smooth. There is an obvious projection π : Vk → Gr(k,Rn),
which endowsGr(k,Rn) with the quotient topology. IfW ⊂ Rn is a k–dimensional subspace, then
π−1(W ) is the set of bases of W . Suppose now that 〈 , 〉|W has maximal rank k. If {w1, . . . , wk}
is a basis of W , then f(w1, . . . , wk) 6= 0, hence there exists an open neighborhood of (w1, . . . , wk)
in Vk such that f does not vanish on it. Any other basis of W writes as {Aw1, . . . , Awk} for
some A ∈ GL(n,R). Clearly, f(w1, . . . , wk) 6= 0. Hence if f is nonzero on (w1, . . . , wk), then
it is nonzero on π−1(π(w1, . . . , wk)). Thus {(w1, . . . , wk) | f(w1, . . . , wk) 6= 0} can be written
as π−1(U) for some U ⊂ Gr(k,Rn), which is open by definition of quotient topology. We thus
proved that the orbits of maximal rank are open.
Finally, we show that there are no further open orbits, by proving the following fact. If W ⊂ Rn
is a k–dimensional linear subspace and 〈 , 〉|W has rank l < k, then there exists a k–dimensional
linear subspace Wδ ⊂ Rn arbitrary close to W such that 〈 , 〉|Wδ

has rank l+1. First of all, under
our assumption the nullspace of 〈 , 〉|W is nontrivial and we can thus choose a nonzero element

w1 ∈ W ∩W⊥. Moreover, there exist w2, . . . , wl+1 ∈ W such that S = {w1, w2, . . . , wl+1} ⊂ W
is a linearly independent system and the matrix of pseudoscalar products among elements of S
writes as

M =

(
0 0
0 B

)
with B square matrix of size l with nonzero determinant. Clearly, S can be completed to a basis
{w1, . . . , wk} for W . By nondegeneracy, there exists v ∈ Rn such that 〈v, w1〉 = 1. In particular,
this implies that v /∈ W and therefore, up to apply Gram–Schmidt to the linearly independent
system {v, w2, . . . , wl+1}, we can assume that 〈v, wi〉 = 0 for all i = 2, . . . , l + 1. For any real
number δ > 0, Sδ = {w1 + δv, w2, . . . , wl+1} defines a linearly independent system, whose matrix
of pseudoscalar products writes as

Mδ =

(
δ2〈v, v〉+ 2δ 0

0 B

)
For any δ > 0, Wδ = sp{w1 + δv, . . . , wl+1, wl+2, . . . , wk} ⊂ Rn is a k–dimensional subspace. If
δ > 0 satisfies δ2〈v, v〉+ 2δ 6= 0, then Wδ is such that 〈 , 〉|Wδ

has rank l + 1. Clearly, δ can be
chosen sufficiently small such that (w1, . . . , wk), (w1 + δv, w2, . . . , wk) ∈ Vk are arbitrary close,
so that Wδ is arbitrary close to W . �
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As a consequence of Proposition 4, the open CO(3, 3)–orbits of linear subspaces in Λ2R4 are
similarly characterized, up to identifying nondegenerate signatures (p′, q′) and (q′, p′). Combining
this fact with Proposition 3, we get the classification of generic types of one–step bracket–
generating distributions of rank four.

Theorem 2. The open GL(4,R)–orbits in Gr(`,Λ2R4) are those consisting of subspaces for
which the restriction of the wedge product is nondegenerate. Hence, there is one generic type in
Darboux, dual Darboux and free bidimensions (4, 5), (4, 9) and (4, 10) and there are two generic
types in bidimensions (4, 6), (4, 7) and (4, 8).

Proof. Let b be a quadratic form on Λ2R4 in the conformal class defined by the wedge
product and let be CO(3, 3) the conformal group of b. By Proposition 4, the CO(3, 3)–orbit of
a linear subspace P ⊂ Λ2R4 is open if and only if b|P is nondegenerate. Now we know from
Proposition 3 that GL(4,R)–orbits and CO(3, 3)–orbits coincide, so that the first statement is
proved. In order to prove the second statement, we shall count the nondegenerate restrictions
of the wedge product to a linear subspace P ⊂ Λ2R4 of dimension (10− n) for n = 5, . . . , 9, up
to identification (p, s) ≡ (s, p) of nondegenerate signatures. Observe that b|P is nondegenerate if
and only if the same holds for the restriction to the orthogonal complement b|P⊥ . Therefore, it
is enough to consider the following cases:

(a) orbits of lines (n = 5, 9);
(b) orbits of two–dimensional planes (n = 6, 8);
(c) orbits of three–dimensional planes (n = 7).

On the one hand, it is clear that generic Darboux and dual Darboux types are unique, since
there is a unique nondegenerate restriction to a line. On the other hand, for each exceptional
bidimension there are two distinct open orbits. To see this, suppose that P ⊂ Λ2R4 is a linear
subspace of dimension ` = 2, 3 such that b|P is nondegenerate of signature (p, s), with p+ s = `.
Since we identify signatures up to scale, we assume that the pair (p, s) satisfies p ≥ s. In the
case (b), hyperbolic and elliptic orbits are given by signatures (1, 1) and (2, 0), while for (c) they
correspond to signatures (2, 1) and (3, 0). �

The characterization of open GL(4,R)–orbits in Gr(10− n,Λ2R4), in particular, proves the
existence of open orbits for all 5 ≤ n ≤ 9. We already know that any isomorphism of Λ2R4

generates the open orbit of free bidimension (4, 10), hence the bidimension (4, n) is rigid for
each admissible value of n. We conclude with an overview of generic types and corresponding
structures of rank four.

For n = 5 we have a Darboux bidimension. General Darboux bidimensions were discussed
above. In particular, we know that the open orbit of (4, 5)–type is generated by a nondegenerate
skew–symmetric bilinear form on R4. From the description in Example 1, we deduce that generic
distributions of (4, 5)–type are contact structures in dimension five. As discussed there, contact
structures have infinite–dimensional symmetry group and no local invariants.

The geometry in dimension ten originates open orbits of free bidimension. The Levi bracket
associated to a generic (4, 10)–distribution, indeed, determines an isomorphism at each point.
Any isomorphism of Λ2R4 is a graded bracket on the direct sum g−1 ⊕ g−2 = R4 ⊕ Λ2R4.
The resulting nilpotent graded Lie algebra is also known as the free algebra of length two with
four generators. This free algebra can be realized as the negative graded part of a grading on
g = so(9) such that the first cohomology H1(g−, g) is concentrated in negative homogeneity (see
[10, p. 430]). It follows from a general result ([10, Theorem 3.1.14 p. 271]) that any generic
(4, 10)–distribution is equivalent to a parabolic geometry. This implies, in particular, that the
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automorphism group of the structure is finite–dimensional, as well as the existence of local in-
variants.

In dimensions 6 ≤ n ≤ 9, an explicit description of model brackets comes from the char-
acterization of GL(4,R)–orbits of their kernels. Suppose that O ⊂ Ls(Λ

2R4,Rn−4) is an open
orbit. Then, O corresponds to a unique open orbit in Gr(10−n,Λ2R4), thus to a unique nonde-
generate signature (p, s) with p ≥ s and p+ s = 10−n. If the wedge product restricts to a linear
subspace P ⊂ Λ2R4 of dimension 10 − n with signature (p, s), then the canonical projection
Λ2R4 → Λ2R4/P onto the quotient is in O. In this picture, the model algebra of generic type
(4, 9) can be immediately deduced. Denote by V = R4 and observe that the restriction of the
wedge product to a line in Λ2V is nondegenerate if and only if the nonzero elements in this line
are nondegenerate as bilinear forms on V ∗. A model bracket of generic (4, 9)–type is given by
the projection Λ2V → Λ2

0V onto the kernel of a nondegenerate skew–symmetric bilinear form
on V . This generalizes to a description for generic dual Darboux types of even rank. Indeed,
denoting by (V, ω) a symplectic real vector space of dimension 2k, one can analogously define

a model bracket of type (2k, n), where n = 2k +
(

2k
2

)
− 1. Generic dual Darboux distributions

of even rank will be described at the end of next Chapter. There, it will be proved that every
such distribution determines a canonical linear connection. In particular, torsion and curvature
of the canonical connection are local invariants for the structure and the symmetry group is
finite–dimensional.

For the remaining types, we give a simpler description in terms of generalizations of the
Heisenberg algebra. Model algebras of hyperbolic and elliptic (4, 6)–types are, respectively,
the two–fold product of three–dimensional real Heisenberg algebras and the complex three–
dimensional Heisenberg algebra. The locally flat geometries of these types hence are products of
two real three–dimensional contact manifolds, respectively three–dimensional complex contact
manifolds. In particular, these have infinite–dimensional automorphism group. As shown in [7],
for each type there is a tensor whose vanishing is equivalent to local isomorphism to these mod-
els, so there are local invariants. However, there exist remarkable examples of finite type. Any
generic (4, 6)–distribution endowed with an additional almost complex structure on the subbun-
dle H, which is compatible with the Levi bracket in an appropriate sense, is in fact equivalent to a
parabolic geometry (see [10, p. 443-455]). This is related to CR–structures of CR–dimension and
codimension two, see [8] and [17]. More precisely, the two–fold product of partially integrable
almost CR–structures of hypersurface type is hyperbolic, equivalent to a parabolic geometry of
type (PSU(2, 1)× PSU(2, 1), P × P ). Here, PSU(2, 1) denotes the quotient of SU(2, 1) for its
center and P ⊂ PSU(2, 1) the stabilizer of an isotropic complex line. A complex CR–structure
is elliptic and equivalent to a parabolic geometry of type (SL(3,C), B) (see [10, p. 443-455]),
with B ⊂ SL(3,C) denoting the Borel subgroup.

Generic (4, 7)–types are realized by the imaginary part of an Hermitian form on a real algebra.
A real algebra A equipped with a nondegenerate quadratic form k satisfying k(xy) = k(x)k(y)
for all x, y ∈ A is said to be a multiplicative algebra. If A has dimension four, the admissible
nondegenerate signatures for a multiplicative form on A are (4, 0) and (2, 2). Both possibilities
are realized, namely by the quaternions with their usual norm and by the real (2× 2)–matrices
with the determinant as the quadratic form. On both algebras there is a well defined notion of
conjugation. Then, one can consider A as a right vector space on itself and introduce the concept
of Hermitian form A×A→ A. More precisely, we speak about quaternionic Hermitian forms for
A = H and split–quaternionic Hermitian forms for A = M2(R). The imaginary part of a Her-
mitian form is skew–symmetric, thus we can look at it as a real linear map Λ2R4 → R3. Elliptic
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and hyperbolic types are realized through the choices A = H and A = M2(R), respectively.
An alternative nice description in terms of orbits in Gr(3,Λ2R4), involving the Hodge opera-
tor, can be found in [14]. Every choice of a scalar product on R4 gives an Hodge operator
∗ : Λ2R4 → Λ2R4. The two eigenspaces associated to ∗ are both three-planes in Λ2R4 and we
look at their CO(3, 3)-orbits. Elliptic and hyperbolic orbits come from two different choices of a
scalar product on R4, namely of positive definite and indefinite signature (2, 2).
The corresponding generic distributions are known, respectively, as quaternionic and split–
quaternionic contact structures. Both structures are equivalent to parabolic geometries. Quater-
nionic contact structures were introduced by O. Biquard in his work about conformal infinities
of quaternionic–Kähler metrics (see [3] and [4]). The model for quaternionic contact structures,
arising in the gauge theory of four–dimensional manifolds, is the so–called instanton distribution
on S7 ⊂ H2. The seven–dimensional sphere can be easily seen as an homogeneous space of the
semisimple Lie group Sp(2, 1), as follows. For any integer n ≥ 1, we consider Hn as a right
vector space over H. We say that a bilinear form f : Hn × Hn → H is quaternionic–Hermitian
if f(v, wq) = f(v, w)q and f(w, v) = f(v, w) for all v, w ∈ Hn and q ∈ H. The standard
quaternionic Hermitian form f on H3 of signature (2, 1) is defined by

f(v, w) = v1w̄1 + v2w̄2 − v3w̄3

Let Sp(2, 1) ⊂ GL(3,H) be the group of automorphisms φ of H such that f(φ(v), φ(w)) =
f(v, w). Define the null cone as N = { v ∈ H3 | v 6= 0, f(v, v) = 0 }. Since f(v, v) is a real
number for any v ∈ H3, we can see N ⊂ R12 ∼= H3 as a real submanifold of codimension one,
which inherits the ambient metric. By putting x ∼ y if and only if there exists λ ∈ H such that
y = λx for x, y ∈ N , we define an equivalence relation on N . Let M = N/ ∼ be the set of
quaternionic lines in N and let π : N → M be the canonical projection. Consider H3 = H2 ⊕H
and each summand as a real vector space equipped with the standard norm ‖ ‖ on R4n. Write
q ∈ H3 as q = (v, w) for v ∈ R8 and w ∈ R4. Then, q ∈ N if and only if ‖v‖ = ‖w‖. In
particular, any q ∈ N has nonzero w–coordinate and ‖v‖ = 1 for elements of N of the form
q = (v, 1). It easily follows that M is isomorphic to the sphere S7 ⊂ R8 ∼= H2. Now, we see
that M is also isomorphic to the quotient Sp(2, 1)/P with P ⊂ Sp(2, 1) parabolic. Clearly, the
standard action of Sp(2, 1) on H3 leaves N invariant, hence it descends to an action on M ∼= S7.
The Sp(2, 1)–action on M is easily seen to be transitive. Then, the orbit of a null line ` ∈ M
coincides with M . A basic result concerning smooth actions of Lie groups, finally, states that
the orbit of ` is isomorphic to Sp(2, 1)/P , where P is the stabilizer of `. The seven–dimensional
manifold M , then, is an homogeneous space. The construction above also defines a distribution
of rank four on M . Let ` ∈M be a line ` ⊂ N and let x ∈ N be such that x ∈ `. Then π(x) = `
and Txπ : TxN → T`M is a surjective linear map. Since π(y) = π(x) for all y ∈ `, the map Txπ
vanishes on H ·x = `, thus induces an isomorphism TxN/H ·x ∼= T`M between real vector spaces
of same dimension, which depends on the choice of x ∈ `. Indeed, via the standard metric 〈 , 〉
of signature (2, 1) on R12, TxN identifies with the real orthocomplement of x in R12:

TxN = { v ∈ R12 | 〈x, v〉 = 0 }.

Denote by `⊥ the quaternionic (with respect to f) orthocomplement of `. Since ` is a null line,
` ⊂ `⊥. Moreover, `⊥ ⊂ TxN as a real submanifold of codimension three. Then H` := `⊥/`
defines a subspace H` ⊂ T`M of dimension four on M , which has the structure of a quaternionic
vector space carrying the induced quaternionic Hermitian form of signature one. The distribu-
tion of rank four H ⊂ TM obtained in this way is known as the instanton distribution. The real
part of such a quaternionic Hermitian form is the usual norm on H, while the imaginary part is
the bracket of elliptic (4, 7)–type.
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All generic distributions of rank four are described in the literature, except for those in
dimensions eight and nine, which are studied in detail in the thesis. While in dimension eight we
deal with a parabolic geometry, this is not the case in dimension nine, as one can deduce from
the classification of parabolic subalgebras of real semisimple Lie algebras.



CHAPTER 2

Canonical linear connections

To any smooth manifold of dimension n one can associate its linear frame bundle, which is
a principal bundle with structure group GL(n,R). Classical G–structures are reductions of the
frame bundle to a Lie subgroup G ⊂ GL(n,R), which can be viewed as encoding a geometric
structure on the manifold M . It is well known that suitable conditions on G imply the existence
of a canonical compatible linear connection on TM , whose torsion satisfies a normalization
condition. The Levi–Civita connection on the tangent bundle of a Riemannian manifold is
a remarkable example, whose existence and uniqueness follow, in this picture, from algebraic
properties of the orthogonal group.
In this Chapter, we develop a similar argument for some bracket–generating distributions H ⊂
TM to obtain analogous results on existence and uniqueness of linear connections. Our approach
is motivated by the fact that if H ⊂ TM has constant symbol algebra (n, [ , ]), then it carries an
adapted frame bundle P →M . This is a principal bundle over M with structure group Autgr(n),
the group of grading–preserving isomorphisms of the Lie algebra n. In this setting, then, one
can consider linear connections on gr(TM) induced by the associated bundle construction. We
will refer to them as compatible linear connections. We also consider G0–reductions of the
adapted frame bundle for a closed subgroup G0 ⊂ Autgr(n), which allows to make more general
statements. Some care is needed with relating geometric structures on M to such G0–reductions.
In order to point out this fact, we will discuss the example of contact structures endowed with
a subriemannian metric.
The technical core of the Chapter describes a construction for G0–reductions of the adapted
frame bundle, inspired by the construction for classical G–structures and resulting in Theorem
3. The original result is due to Morimoto and presented in ([16]) in terms of canonical Cartan
connections on principal bundles. Here, we give an equivalent description in terms of induced
linear connections. First, we define notions of graded torsion and curvature for compatible
linear connections on gr(TM). The key to our proof for G0–triples is an inductive procedure,
which normalizes the torsion and the curvature homogeneity by homogeneity and constructs an
isomorphism gr(TM) ∼= TM at the same time. Particularly interesting is that the result leads to
invariants for the structures underlying such G0–triples, expressed by torsion and curvature of
the canonical connection. In the last Section, we show that Theorem 3 applies to dual Darboux
distributions of arbitrary even rank, whose lowest dimensional case corresponds to the generic
(4, 9)–type appearing in the classification of Theorem 2.

1. Review of classical G–structures

Let P,M be finite dimensional smooth manifolds, G a Lie group acting smoothly from the
right on P. A principal bundle with structure group G (also a principal G–bundle) is a smooth
submersion π : P → M such that π(ug) = π(u) for all u ∈ P and g ∈ G. For x ∈ M , the fiber
over x is the smooth submanifold Px := π−1(x) ⊂ P. We require that the action of G on each
fiber is transitive and free, in formulas:

• π(u) = π(v) if and only if there exists g ∈ G such that v = ug;

22
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• if u, v ∈ P are such that vg = ug for some g ∈ G, then u = v.

Then for u ∈ P such that π(u) = x, the restriction of the right action g 7→ ug is a diffeomorphism
ru : G → Px. In particular, its differential at the neutral element e ∈ G is a linear injection
Teru : g → TuP. Fix u ∈ P such that π(u) = x. The differential of the projection at u
is a surjective linear map Tuπ : TuP → TxM . Denote its kernel by VuP, whose dimension
coincides with the dimension of g, the Lie algebra of the structure group G. Differentiating
g 7→ π(ug) = π(u) at e shows that Tuπ

−1(x) = Teru(g) ⊂ VuP. Since the two vector spaces have
the same dimension, we conclude that the tangent space to the fiber over x at u coincides with
VuP. The kernel of Tπ is a smooth subbundle V P ⊂ TP, called the vertical bundle. A vector
field ξ ∈ X(P) such that Tπ · ξ = 0 is said to be vertical. To every X ∈ g, one can associate a
vertical vector field ζX ∈ X(P) by putting

ζX(u) = Teru(X) =
d

dt

∣∣∣∣
t=0

(u exp(tX))

for all u ∈ P. We say that { ζX | X ∈ g } is the set of fundamental vector fields. While the
vertical bundle is a canonical subbundle, there is a priori no canonical choice for a subbundle in
TP complementary to it. Clearly, such a choice can be given as the kernel of a fibered projection
TP → V P onto the vertical bundle, which from the discussion above is the same of a g–valued
one–form φ defined on P. All this motivates the following definition.

Definition 6. A g–valued one–form φ ∈ Ω1(P, g) is said to be a connection form if

(1) φ(ζX) = X for every X ∈ g, so that it reproduces the fundamental vector fields;
(2) φ is G–equivariant, that is (rg)∗φ = Ad(g−1) · φ for all g ∈ G.

Condition (1) means that the restriction of φ(u) : TuP → g to VuP is a left inverse of Teru
for each u ∈ P. Therefore, Teru ◦ φ(u) : TuP → VuP is a projection and the vertical projection
of ξ ∈ TuP writes, in this notation, as ζφ(ξ)(u). Observe that the vertical bundle is G–invariant.
It is thus natural to require that the same holds for a complementary subbundle. This means
that the corresponding one–form φ satisfies (2).
Given a principal G–bundle π : P → M and a representation ρ : G → GL(V ) of the Lie
group G, one can consider the right action (u, v) · g = (u · g, ρ(g−1)(v)) on the product P × V .
The corresponding space of orbits is the vector bundle associated to (π, ρ), denoted by P ×ρ V
or simply by P ×G V . We denote by [[u, v]] ∈ P ×ρ V the orbit of (u, v) ∈ P × V , so that
[[u · g, ρ(g−1)(v)]] = [[u, v]] for all g ∈ G and (u, v) ∈ P × V . If A,B are representations of the
group G, there is a natural representation of G on A ⊗ B. Let E = P ×G A, F = P ×G B be
associated vector bundles. The associated bundle construction is tensorial, meaning that there
exists an isomorphism E ⊗ F ∼= P ×G (A ⊗ B), where the right term is the space of orbits
with respect to the induced G–action on the tensor product. Analogously, any representation
of G induces a representation on the dual space in a natural way and the associated bundle
construction is compatible with the duality. A linear map Φ : A → B is is said to be G–
equivariant if Φ(g · a) = g · Φ(a) for all g ∈ G and a ∈ A. Let Φ : A → B be a G–equivariant
homomorphism. Then Φ induces an homomorphism E → F of vector bundles, hence a smooth
section of E∗ ⊗ F .

Example 3. (Frame bundle) Let M be a smooth manifold of dimension n. For x ∈ M ,
define PxM as the set of linear isomorphisms φ : Rn → TxM . The disjoint union

P := ∪x∈MPx
together with the obvious projection π : P → M is a principal bundle with structure group
GL(n,R). The right action of GL(n,R) on P is given by the composition from the right. Indeed,
if φx : Rn → TxM is a linear isomorphism, then φx ◦A : Rn → TxM is also a linear isomorphism
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lying in Px for each A ∈ GL(n,R). Clearly, the action on each fiber is free and transitive, since
every two basis of Rn are mapped to each other by a unique A ∈ GL(n,R).
Consider now the standard representation of G = GL(n,R) on Rn and the associated vector
bundle E = P ×G Rn. A linear isomorphism φ : Rn → TxM is equivalent to a basis of TxM . An
n–tuple x ∈ Rn such that v = φ(x) ∈ TxM gives the coordinates of v with respect to the basis
φ and (φ, x) ∈ P × Rn as a pair basis–coordinates of v ∈ TxM in that basis. For A ∈ GL(n,R),
A−1x are the coordinates of v in the basis φ ◦ A and any basis of Rn differs from φ by right
multiplication for elements of GL(n,R). Then, we look at P ×Rn as the set of coordinates with
respect to a basis. The fact that the pairs (φ ◦A,A−1x), (φ, x) are considered equivalent, in this
picture, means that there is no preferred choice of basis for a vector space. This shows that there
is an isomorphism TM ∼= E.

Example 4. (Orthonormal frame bundle) If TM carries some addictional structure, then
it is possible to specialize the frame bundle construction. If this procedure selects a smooth
subbundle of the frame bundle, whose structure group is a closed subgroup G ⊂ GL(n,R), it is
easy to deal with it. A principal G–bundle obtained in this way is said to be a G–structure. A
classical example is given by the orthonormal frame bundle of a Riemannian manifold. If (M, g)
is a Riemannian manifold and 〈 , 〉 denotes the standard scalar product on Rn, then for x ∈M
one can consider the set Fx of linear isometric isomorphisms φ : (Rn, 〈 , 〉) → (TxM, gx). Then
F := ∪x∈MFx defines a smooth subbundle F ⊂ P, which is a principal bundle with structure
group O(n) ⊂ GL(n,R), known as the orthonormal frame bundle of (M, g). Now φ ∈ Fx
is equivalent to an orthonormal basis of TxM . Since every two orthonormal bases of Rn are
mapped to each other by a unique orthogonal linear map, O(n) acts on each fiber and the action
is free and transitive. Again, we have an isomorphism TM ∼= F ×O(n) Rn.

Let π : P → M be a principal G–bundle and ρ : G → GL(V ) a representation. Let
α ∈ Ωk(P, V ) be a V –valued differential form. We say that α is horizontal if it annihilates by
insertion of a vertical vector field. Moreover, α is said to be ρ–equivariant if (rg)∗α = ρ(g−1) ·α
for every g ∈ G, where (rg)∗ denotes the pullback of forms induced by the right G–action on
P. We denote by Ωkhor(P, V )ρ the set of horizontal and ρ–equivariant k–forms on P. For k = 0,
these are smooth functions f : P → V sending fibers in P to ρ–orbits in V . We denote by
C∞(P, V )ρ = Ω0

hor(P, V )ρ. Also, we denote by Ω0(E) the set of sections of the vector bundle
E →M and the set of k–forms with values in E by Ωk(E) = Ω0(ΛkT ∗M ⊗ E).

Proposition 5. Let π : P → M be a principal G–bundle, ρ : G → GL(V ) a finite–
dimensional representation of the Lie group G and E = P ×ρ V the associated vector bundle.
For integers k ≥ 0, denote by Ωkhor(P, V )ρ the set of k–forms on P with values in V , which are
horizontal and ρ–equivariant. There is a bijective correspondence

Ωk(E) ∼= Ωkhor(P, V )ρ

explicitely given by

σ(π(u))(Tuπ · ξ1, . . . , Tuπ · ξk) = [[u, φ(u)(ξ1, . . . , ξk)]]

for u ∈ P and ξ1, . . . , ξk ∈ TuP.

Proof. Consider σ ∈ Ωk(E). Then for u ∈ P, x ∈ π(u) and ξ1, . . . , ξk ∈ TuF , we have that
σ(π(u))(Tuπ · ξ1, . . . , Tuπ · ξk) lies in Ex, so it coincides with [[u, v]] for a unique v ∈ V . Therefore,
there exists a unique φ(u)(ξ1, . . . , ξk) ∈ V such that

(8) σ(π(u))(Tuπ · ξ1, . . . , Tuπ · ξk) = [[u, φ(u)(ξ1, . . . , ξk)]]

Observe that φ(u) : (TuP)k → V is alternating, since the same holds for σ(π(u)), and vertical.

One easily shows that φ depends smoothly on u, so that φ ∈ Ωkhor(P, V ). From π · rg = π it



1. REVIEW OF CLASSICAL G–STRUCTURES 25

follows that Tπ · Trg · ξ = Tπ · ξ hence, in turn, that

[[u · g, φ(u · g)(Trg · ξ1, . . . , T rg · ξk)]] = [[u, φ(u)(ξ1, . . . , ξk)]].

On the other hand, [[u, φ(u)(ξ1, . . . , ξk)]] = [[u ·g, ρ(g−1)(φ(u)(ξ1, . . . , ξk))]] by definition of the as-
sociated bundle. From this, we conclude that φ(u·g)(Trg·ξ1, . . . , T rg·ξk) = ρ(g−1)φ(u)(ξ1, . . . , ξk),
hence that φ ∈ Ωkhor(P, V ) is equivariant.
Conversely, an horizontal ρ–equivariant form φ on P defines σ ∈ Ωk(E) as follows. For x ∈ M ,
choose u ∈ P such that π(u) = x and define σ(x) via formula (8). The definition does not depend
on the choice of lifts of vector fields, since φ is horizontal. Smoothness of φ implies that σ(x)
depends smoothly on x. By equivariancy of φ, it is also independent on the choice of u in the
fiber of x. �

Denote by e ⊂ G the neutral element. Let Teρ : g → gl(V ) be the differential of ρ at e and

let φ ∈ Ω1(P, g) be a connection form. For ξ̃ ∈ X(P) and u ∈ P, by definition φu(ξ̃) ∈ g and it

can be inserted into Teρ, thus obtaining an endomorphism Teρ(φu(ξ̃)) ∈ gl(V ).

Proposition 6. For every ρ–equivariant smooth function f : P → V , the formula

Dφf = df + (Teρ ◦ φ) · f
defines a one–form Dφf ∈ Ω1(P, V ), which is horizontal and ρ–equivariant.

Proof. First, we prove that Dφ vanishes by insertion of a fundamental vector field. For
any X ∈ g and u ∈ P,

Dφfu(ζX) =(ζX)uf + Teρ(φu(ζX)) · f(u)

=
d

dt

∣∣∣∣
t=0

f(u exp(tX)) +
d

dt

∣∣∣∣
t=0

ρ(exp(tX)) · f(u)

By ρ–equivariancy of f and observing that ρ(exp(tX)−1) = ρ(exp(−tX)), we conclude that the
left–hand term rewrites as the negative of the right–hand term, hence that Dφ(ζX) = 0 for every
X ∈ g and Dφ it is horizontal. Now observe that

(rg)∗df = d(rg)∗f = d
(
ρ(g−1) · f

)
= ρ(g−1) · df

hence the first summand in Dφf is ρ–equivariant. For u ∈ P and ξ ∈ TuP, we have that

(rg)∗((Teρ ◦ φ) · f)u(ξ) =Teρ((rg)∗φu(ξ)) · (rg)∗uf
=Teρ(Ad(g−1) · φu(ξ)) · ρ(g−1) · fug

where the second equality comes from the equivariancy of f and φ. Using now that

(rg)∗df = d(rg)∗f = d
(
ρ(g−1) · f

)
= ρ(g−1) · df

for all X ∈ g, we see that the second term is also equivariant. �

Let E be a smooth vector bundle over M and Ω0(E) the space of its smooth sections. As
usual, the space of sections of the tangent bundle is denoted by X(M). A linear connection on E
is a bilinear map ∇ : X(M) × Ω0(E) → Ω0(E) which is C∞(M)–linear in the first variable and
satisfies the Leibnitz rule:

∇ξ(fσ) = (ξ · f)σ + f∇ξσ
for any choice of ξ ∈ X(M), f ∈ C∞(M) and σ ∈ Ω0(E). It generalizes the usual definition
of differential to an operator acting on smooth functions, whose values lie in a vector bundle
rather than in a vector space. Observe that ∇ can be equivalently seen as a differential operator
∇ : Ω0(E)→ Ω1(E) of first order. If E = P ×ρ V is an associated vector bundle, Proposition 5
assures that such an operator can be equivalently described as a map Ω0

hor(P, V )ρ → Ω1
hor(P, V )ρ.
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Definition 7. Let π : P →M be a principal G–bundle, ρ : G→ GL(V ) a finite–dimensional
representation of the Lie group G and E = P ×ρ V the associated vector bundle. Let be
σ ∈ Ω0(E) and denote by f ∈ C∞(P, V )ρ the ρ–equivariant smooth function corresponding to
σ. If φ ∈ Ω1(P, g) is a connection form, we denote by ∇φσ ∈ Ω1(E) the section corresponding
to Dφf ∈ Ω1

hor(P, V )ρ. Therefore, we have the commutative diagram

Ω0
hor(P, V )ρ

Dφ−−−−→ Ω1
hor(P, V )ρx y

Ω0(E)
∇φ−−−−→ Ω1(E)

We say that ∇φ is the linear connection induced by the connection form φ.

The study of G–structures is related to the problem of existence of canonical linear connec-
tions. To any linear connection ∇ on TM , one can associate a torsion

T∇(ξ, η) = ∇ξη −∇ηξ − [ξ, η], ξ, η ∈ X(M)

which is a tensorial map T∇ ∈ Ω2(TM). If ∇, ∇̄ are linear connections, then their difference
is tensorial in both entries. Fix a point x ∈ M . Up to isomorphism, (∇ − ∇̄)x is a linear map
Rn → gl(n,R), where n denotes the dimension of M . Let δ : (Rn)∗⊗gl(n,R)→ Λ2(Rn)∗⊗Rn be
the skew–symmetrization map in the first two components, defined on decomposable elements
as

δA(X ∧ Y ) = A(X)Y −A(Y )X for X,Y ∈ Rn, A ∈ (Rn)∗ ⊗ gl(n,R).

Here, A(X)Y denotes the standard action of A(X) ∈ gl(n,R) on Y ∈ Rn. By direct computation,

we see that (T∇ − T ∇̄)x = δ(∇− ∇̄)x. Together with the fact that δ is a surjective linear map,
then, the last identity implies that the space of torsion–free linear connections is an affine space
over Ω0(S2T ∗M ⊗ TM). Therefore, the torsion–free condition does not uniquely pin down a
linear connection on TM . Consider now a Riemannian manifold (M, g) of dimension n. The
connection forms on the orthonormal frame bundle take values in g = o(n). The induced linear
connections are compatible with the metric. Explicitely, they satisfy

ζ · g(ξ, η) = g(∇ζξ, η) + g(ξ,∇ζη)

for all ζ, ξ, η ∈ X(M). If ∇, ∇̄ are linear connections on TM induced by connection forms on
the orthonormal frame bundle, then (∇− ∇̄)x is a linear map Rn → o(n). Now o(n) ∼= Λ2(Rn)∗

canonically and δ restricts to an isomorphism (Rn)∗ ⊗ o(n) → Λ2(Rn)∗ ⊗ Rn. Using this fact,
one can modify an arbitrary metric linear connection to another one, which is torsion–free. This
proves the existence of the Levi–Civita connection. More in general, suppose that G ⊂ GL(n,R)
is a closed subgroup with Lie algebra g, such that:

• the restriction of δ to (Rn)∗ ⊗ g is injective;
• there exists a G–invariant subspace N ⊂ Λ2(Rn)∗ ⊗ Rn such that

Λ2(Rn)∗ ⊗ Rn = N⊕ Im(δ)

If M is a smooth manifold of dimension n endowed with a G–structure, N corresponds to a
subbundle of Λ2T ∗M ⊗ TM . Then, the argument above shows that there exists a unique linear
connection on TM with torsion taking values in that subbundle. In this sense, we will refer to
it as the canonical linear connection on TM .
Inspired by the classical theory of G–structures, we would like to deal with bracket–generating
distributions as geometric structures and investigate the linear connections compatible with these
structures. Now for linear connections on H, which would be natural to consider, there is no well–
defined notion of torsion in the noninvolutive case. One could then consider linear connections



2. REGULAR PAIRS AND ADAPTED G0–STRUCTURES 27

∇ on TM such that ∇ξ(Γ(H)) ⊂ Γ(H) for all ξ ∈ X(M) and require that the restriction of the
torsion to H×H coincides with L. The existence of such linear connections is assured for a class
of bracket–generating distributions described in the next Section.

2. Regular pairs and adapted G0–structures

As shown in Proposition 1, the symbol algebra associated to a bracket–generating distribu-
tion is invariant under the action of compatible diffeomorphisms. We will assume that all symbol
algebras are isomorphic to a fixed model (n, [ , ]). In this setting, a natural frame bundle for H
over M is available.

Definition 8. Let M be a finite dimensional smooth manifold, H ⊂ TM a bracket gen-
erating distribution and (n = g−1 ⊕ . . . ⊕ g−µ, [ , ]) a finite dimensional nilpotent graded Lie
algebra of depth µ generated by g−1. We say that the pair (M,H) is regular of type (n, [ , ]) if
(gr(TM),L) is a locally trivial bundle of nilpotent graded Lie algebras modeled on (n, [ , ]).

Let h2n+1 be the Heisenberg algebra of dimension (2n+ 1) and let M be a smooth manifold
of dimension (2n+ 1). In Example 1, we showed that a smooth distribution H ⊂ TM of corank
one is a contact structure if and only if, for each x ∈ M , the symbol algebra at x is isomorphic
to h2n+1. Moreover, Pfaff Theorem assures that the isomorphism gr(TxM) → h2n+1 depends
smoothly on x. Therefore, we conclude that a regular pair (M,H) of type h2n+1 is a contact
structure H ⊂ TM on a smooth manifold of dimension (2n+ 1).
Another remarkable example is given by the one–step generic case described in the previous
Chapter. The hypothesis of genericity, formulated for one step bracket–generating distributions,
implies the local triviality of the bundle (gr(TM),L). Otherwise put, every generic (k, n)–
distribution determines a regular pair. Indeed, consider a (k, n)–distribution H ⊂ TM . Put
Q := TM/H. We can choose local frames for H and Q defined on an open subset U ⊂M . These
are equivalent, respectively, to fibered isomorphisms φ : H|U → U ×Rk and ψ : Q|U → U ×Rn−k
which, in turn, define a smooth map T : U → L(Λ2Rk,Rn−k) by putting Tx := ψx◦Lx◦Λ2(φx)−1

for all x ∈ U . If H is generic, then T takes values in an open orbit O ⊂ L(Λ2Rk,Rn−k) of the
action (6). Such an open orbit is a smooth submanifold and the projection of the group G onto it,
given by acting on some fixed element in O, is a smooth surjective submersion G→ O. Choosing
a local smooth section of this submersion, we lift T to a smooth map g : U → G. Otherwise put,
there exists a linear map P in the open orbit O such that gx ·Tx = P for all x ∈ U and g depends
smoothly on x. Write g = (A,B) for A,B smooth functions on U with values in GL(k,R) and
GL(n− k,R), respectively. Then A · φ : H|U → U × Rk and B · ψ : Q|U → U × Rn−k are fibered

isomorphisms and Bx ◦ Tx ◦ Λ2A−1
x = P for all x ∈ U , which shows that P trivializes the Levi

bracket on U .

Let (M,H) be a regular pair of type (n, [ , ]). For x ∈M , define Fx as the set of isomorphisms
u : (n, [ , ])→ (gr(TxM),Lx) of nilpotent graded Lie algebras. Then

F := ∪x∈MFx

with the obvious projection π : F → M defines a principal bundle, the adapted frame bundle.
Since (gr(TM),L) is a locally trivial bundle of nilpotent graded Lie algebras, π : F → M is
a locally trivial principal bundle. The structure group of the adapted frame bundle is the Lie
group Autgr(n) of grading–preserving automorphisms of n, which acts on F by composition from
the right. Denote by G0 = Autgr(n) the structure group and by g0 = dergr(n) its Lie algebra.
Observe that the notation is consistent with the fact that both G0 and g0 act on n by linear
maps of degree zero. Otherwise put, each gi carries the standard actions of G0 and g0.
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The filtration on M induces a filtration on F , by putting T 0F := V F and T iF := (Tπ)−1(T iM)
for −µ ≤ i ≤ −1. For u ∈ F and g ∈ G0, it follows from π ◦ rg = π that

Tur
g · T iuF = T iugF

so that the filtration on F is G0–invariant. There exist canonical sections θi of L(T iF , gi). For

u ∈ F with π(u) = x, define (θi)u : T iuF → gi by putting (θi)u(ξ̃) := u−1((qi)x · Tuπ · ξ̃) for all

ξ̃ ∈ T iuF . Equivalently, the following diagram commutes:

T iuF

qi◦Tuπ
��

(θi)u

{{
gi

u // gri(TxM)

The collection θ = (θ−1, . . . , θ−µ) is known as soldering form. Every θi can be seen as a
G0–equivariant gi–valued function on T iF with kernel T i+1F .
The associated bundle construction gives isomorphisms F ×G0 gi ∼= gri(TM), which can be

explicitely written via the soldering form. For any ξ ∈ T ixM , let ξ̃ ∈ T iuF be a lift of ξ, which

satisfies Tuπ · ξ̃ = ξ. Then, the identity (qi)x(ξ) = u((θi)u(ξ̃)) follows straightforwardly from the

definition of θi and we interpret (u, (θi)u(ξ̃)) as a pair frame–coordinates, where (θi)u(ξ̃) are the
coordinates of (qi)x(ξ) in the frame u.

Finally, we observe that the adapted frame bundle construction is functorial. Let be M,M̃ two
smooth manifolds of same dimension and (M,H), (M̃, H̃) regular pairs of same type (n, [ , ]).

Denote by π : F →M , π̃ : F̃ → M̃ the adapted frame bundles for H and H̃. In the same notation
of Proposition 1, a compatible diffeomorphism f : U → Ũ between open subsets of M,M̃ defines,
by composing with gr(Tf) at the right, a local isomorphism between the adapted frame bundles.
Indeed, suppose that x ∈ U and that u ∈ π−1(x). Then u : n → gr(TxM) is an isomorphism
of nilpotent graded Lie algebras, hence also gr(Txf) ◦ u : n → gr(TxM

′) is an isomorphism of
nilpotent graded Lie algebras lying in π̃−1(f(x)). Therefore, Φ(u) = gr(Tπ(u)f) ◦ u defines a

fibered isomorphism Φ : π−1(U)→ π̃−1(Ũ) covering f and equivariant with respect to the action
of G0, hence an isomorphism of G0–bundles.

Definition 9. Let (n, [ , ]) be a nilpotent graded Lie algebra generated by g−1 and (M,H)
a regular pair of type (n, [ , ]). Denote by P → M the adapted frame bundle associated to H
and by G0 ⊂ Autgr(n) a closed subgroup.

(1) An adapted G0–structure is a smooth subbundle F ⊂ P that is a principal bundle with
structure group G0.

(2) A G0–triple (F → (M,H), n) consists of a regular pair (M,H) of type (n, [ , ]) and an
adapted G0–structure F →M .

A nice example of additional structure on a bracket–generating distribution is a subrieman-
nian metric.

Example 5. (Subriemannian manifolds) Let M be a finite dimensional smooth manifold
and H ⊂ TM a smooth distribution. A subriemannian metric S on H is a smooth assignment,
to every x ∈ M , of an inner product Sx : Hx × Hx → R. The pair (H,S) is a subriemannian
structure on M . A differentiable manifold equipped with a subriemannian structure is called
subriemannian manifold and denoted by (M,H,S). In our treatment of subriemannian mani-
folds, H will be always assumed to be bracket–generating. Let n = ⊕p<0gp be a nilpotent graded
Lie algebra generated by g−1 and let σ be an inner product on g−1. The pair (n, σ) is said to
be a subriemannian graded Lie algebra. An isomorphism of nilpotent graded Lie algebras, whose
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restriction to the bracket–generating layers is orthogonal, is an isomorphism of subriemannian
graded Lie algebras. In particular, the automorphism group of the subriemannian graded Lie
algebra (n, σ) is the closed subgroup G0 ⊂ Autgr(n) of those maps, whose restriction to g−1

preserves σ. If (M,H,S) is a subriemannian manifold, all symbol algebras of H are subrieman-

nian graded Lie algebras. Suppose that (M,H,S) and (M̃, H̃, S̃) are subriemannian manifolds of

same dimension, with H, H̃ of same rank. Let be U ⊂ M , Ũ ⊂ M̃ open subsets and f : U → Ũ
a local diffeomorphism, whose differential at the point x restricts to an isometry Hx → H̃f(x)

for any x ∈ U . Then, in the notation of Proposition 1, the induced isomorphism gr(Txf) be-
tween the symbol algebras is an isomorphism of subriemannian graded Lie algebras. Then if
F → (M,H,S) and F̃ → (M̃, H̃, S̃) are G0–triples, gr(Txf) induces an isomorphism F → F̃ of
G0–bundles.

Care is needed when relating geometric structures to G0–triples. This becomes clear by look-
ing at the example of subriemannian contact structures. Denote by ω the canonical symplectic
form on R2n given by formula (3), which is the bracket on the Heisenberg algebra h2n+1 = R2n⊕R.
Then

CSp(n,R) = {A ∈ GL(2n,R) | ∃ λ ∈ R : ω(Av,Aw) = λω(v, w) for all v, w ∈ R2n}

is the conformal symplectic group. It is easy to verify that Autgr(h2n+1) = CSp(n,R). The
standard scalar product on R2n endows h2n+1 with a structure of subriemannian graded Lie
algebra. The subset of automorphisms preserving the scalar product is the closed subgroup
G0 = O(2n) ∩ CSp(n,R) ⊂ CSp(n,R). Suppose that M is a smooth manifold of dimension
(2n + 1) and H ⊂ TM a contact structure. Let U ⊂ M be an open subset and α ∈ Ω1(U) a
contact form on U such that Hx = Ker(αx) for all x ∈ U . Then dαx : TxM × TxM → R is a
nondegenerate skew–symmetric bilinear form for any x ∈ U . If {ξ1, . . . , ξ2n} is an orthonormal
frame for H on U , then we can write (dαx(ξi, ξj))i,j=1,...,2n as a skew–symmetric square matrix of
size 2n. By linear algebra, there exists A : U → O(2n) and smooth nonzero functions a1, . . . , an
such that (dα(Aξi, Aξj))i,j=1,...,2n writes in a block form, with square blocks along the diagonal
of the form (

0 ai
−ai 0

)
and zero elsewhere. Observe that ai

aj
is pointwise invariant with respect to the action of CSp(n,R)

for all i, j = 1, . . . , n. If M admits a G0–triple, locally around each point there exists an
orthonormal frame {ζ1, . . . , ζ2n} for H such that dα(ζi, ζj) are constant functions. At each point,
the frames {Aξ1, . . . , Aξ2n} and {ζ1, . . . , ζ2n} differ by a conformal symplectic transformation.
Therefore, if there exist i, j ∈ {1, . . . , 2n} such that ai

aj
is not constant on U , the subriemannian

contact structure cannot underlie any G0–triple.

3. Tanaka prolongation

Fix a nilpotent graded Lie algebra n = g−1 ⊕ . . .⊕ g−µ generated by g−1. Let der(n) be the
algebra of linear endomorphisms φ : n→ n such that

φ([X,Y ]) = [φ(X), Y ] + [X,φ(Y )]

for all X,Y ∈ n. The elements of der(n) are also said to be derivations of the Lie algebra n.
Denote by

dergr(n) = {φ ∈ der(n) | φ(gi) ⊂ gi for all i = −1, . . . ,−µ }
the Lie algebra of grading–preserving derivations of n and by g0 ⊂ dergr(n) a Lie subalgebra.
Tanaka’s prolongation is characterized as the graded Lie algebra pr(n, g0) =

⊕
i∈Z pi satisfying

the following conditions:
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(C1) its nonpositive graded part coincides with n⊕ g0;
(C2) if X lying in a nonnegative graded homogeneous component is such that [X, g−1] = {0},

then X is zero;
(C3) pr(n, g0) is the maximal graded Lie algebra satisfying both previous conditions.

For every pair (n, g0), Tanaka showed the existence of a graded Lie algebra pr(n, g0) satisfying
(C1), (C2) and (C3) via the following explicit construction. First, define the nonpositive graded
components as

• pi := {0} for i < −µ;
• pi := gi for −µ ≤ i ≤ −1;
• p0 := g0.

Evidently, the vector space
⊕

i≤0 pi = n⊕ p0 satisfies (C1). For ϕ ∈ p0 and X ∈ n, the formula

(9) [ϕ,X] := ϕ(X) =: −[X,ϕ]

together with the brackets on n and p0, endows the vector space
⊕

i≤0 pi with a graded Lie
algebra structure. In fact, skew–symmetry of the bracket is imposed and the fact that ϕ is a
derivation of n writes as the Jacobi identity for ϕ ∈ p0 and X,Y ∈ n. Observe that p0 satisfies
(C2), since every derivation of n is completely determined by its action on g−1. Inductively for
s > 0, define the vector space

ps :=
{
ϕ ∈

⊕
p<0

g∗p ⊗ ps+p | ϕ([X,Y ]) = [ϕ(X), Y ] + [X,ϕ(Y )], X, Y ∈ n
}
.

Hence ϕ ∈ ps is a linear map ϕ : n −→ ps−µ + ... + ps−1 such that ϕ(gi) ⊂ pi+s for all
i ∈ {−µ, ...,−1}. The defining equation shows that ϕ is completely determined by its restriction
to g−1, so that ps satisfies (C2) for all s > 0. Observe that only brackets defined at the previous
inductive steps are involved in the definition of ps. Again, one defines the bracket [ϕ,X] for
ϕ ∈ ps and X ∈ n, occuring at the next step of the inductive definition, through the evaluation
map. If X ∈ gi, in particular, then [ϕ,X] ∈ ps+i. Finally, for ϕ ∈ ps, ψ ∈ pq with p, q ≥ 0 and
by induction on s+ q ≥ 0, the formula

[ϕ,ψ](X) := [[ϕ,X], ψ] + [ϕ, [ψ,X]] for all X ∈ n

defines a linear map [ϕ,ψ] ∈
⊕

p<0 g
∗
p ⊗ ps+q+p. The right term contains only brackets between

elements in homogeneous components of lower degree, thus defined at a previous step. In particu-
lar for p = q = 0, the definition coincides with the bracket between derivations in g0. Inductively,
this implies that [ϕ,ψ] ∈ ps+q. Finally, every graded Lie algebra satisfying (C1) and (C2) merges
into pr(n, g0) via a homomorphism of graded Lie algebras, so that Tanaka construction produces
the unique graded Lie algebra satisfying all three axioms.

Definition 10. The vector space ps is the s–th prolongation of the pair (n, g0). The graded
Lie algebra pr(n, g0) is the Tanaka prolongation of the pair (n, g0). If g0 = dergr(n), one usually
refers to it as the Tanaka prolongation of n, denoted by pr(n).

The pair (n, g0) is said to be of finite type if ps = {0} for some s ≥ 0, otherwise it is of
infinite type. If ps = {0} for some s ≥ 0, then also pl = {0} for all l ≥ s, as it follows from (C2).
Then the full prolongation is finite dimensional if and only if (n, g0) is of finite type.

Tanaka prolongation was introduced in [21], a work concerning the geometry of regular dif-
ferential systems. Results of Tanaka’s work apply to the problem of equivalence of transitive
G0–structures on filtered manifolds, treated by Morimoto in [16]. The geometric counterpart is
a prolongation procedure, which is a refinement of Cartan’s method of equivalence. It generalizes
the Singer–Sternberg prolongation of usual G–structures (see [19] and [20]), corresponding in
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Tanaka’s picture to the special case of trivial filtration. A description of the geometric prolon-
gation, using a language similar to one used by Singer and Sternberg, can be found in [24]. The
thesis only deals with two different cases for the prolongation. In this chapter, we focus on the
case of vanishing of the first prolongation. Under this hypothesis, the prolongation procedure se-
lects a unique connection form on the adapted G0–structure F → (M,H) together with a unique
splitting of the filtration of TM generated by H. Through the associated bundle construction,
the selected connection form on F → (M,H) corresponds to a linear connection on gr(TM).
From the point of view of the parabolic geometry, particularly interesting is the case of n = g−
arising as the negative part of a grading on a simple Lie algebra. On this second case focuses
Tanaka’s paper [22], a work inspired by the study of CR–structures. If pr(g−, g0) is a simple
Lie algebra, then the G0–triple (F → (M,H), g−) is equivalent to a parabolic geometry. Generic
(4, 8)–distributions are an example of this situation that will be discussed in the next Chapter.

3.1. Differential map and normalization condition. Let n be a nilpotent graded Lie
algebra of depth µ generated by g−1. Consider a Lie subalgebra g0 ⊂ dergr(n) of grading–
preserving derivations of n. The direct sum vector space g≤0 = n ⊕ g0 admits a graded Lie
algebra structure. It is possible, indeed, to extend the brackets on n and g0, by defining a bracket
g0 ⊗ n → n via the evaluation map as in (9). The differential map ∂ : L(n, g≤0) → L(Λ2n, g≤0)
is the g0–equivariant homomorphism defined by the formula

(10) ∂Φ(X,Y ) = [X,Φ(Y )]− [Y,Φ(X)]− Φ([X,Y ]).

Now ∂ preserves the grading on the spaces involved, thus it splits in the sum of its restrictions
∂i between homogeneous components of degree i. In particular, the kernel of the component ∂1

in homogeneity one coincides with the first prolongation of the pair (n, g0).

Proposition 7. Let n = g−1⊕. . .⊕g−µ be a nilpotent graded Lie algebra of depth µ generated
by g−1, g0 ⊂ dergr(n) a Lie subalgebra of grading–preserving derivations and ∂ the differential
map. If the first prolongation of (n, g0) vanishes, then ∂ is injective.

Proof. Since n is generated by g−1, any map φk ∈ L(n, g≤0)k lying in an homogeneous
component and satisfying ∂φk = 0 is completely determined by its restriction to g−1. Consider
φ ∈ L(n, g≤0) such that ∂φ = 0. Write φ =

∑
k≥1 φk as sum of homogeneous components

φk ∈ L(n, g≤0)k. Then

∂φ =
∑
k≥1

∂φk.

and ∂φ = 0 if and only if ∂φk = 0 for all k ≥ 1. By hypothesis, if ∂φ1 = 0 then φ1 = 0. Observe
that φk(g−1) = {0} for k ≥ 2. Therefore ∂φk = 0 implies φk = 0 for all k ≥ 2. �

Since ∂ is a g0–equivariant homomorphism, Im(∂) ⊂ L(Λ2n, g≤0) is a g0–invariant subspace.
Subspaces complementary to it and satisfying the same properties are introduced in the following

Definition 11. A normalization condition for the pair (n, g0) is a g0–invariant complement
N to Im(∂) inside L(Λ2n, g≤0), which is compatible with the homogeneity. Explicitely,

N = ⊕i≥1Ni

is a graded g0–module such that L(Λ2n, g≤0)i = Im(∂i)⊕Ni for all i ≥ 1.

In general, the existence of a normalization condition is not assured. Finding such conditions
can be an interesting and involved problem, but we will not deal with the general problem.
Here we just mention that, under certain hypothesis on the Lie algebra g0, the existence of a
normalization condition can be proved. Such hypothesis are satisfied in the cases of interest for
us, namely dual Darboux distributions and subriemannian bracket–generating structures.
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4. Compatible linear connections

In this Section, the main result of this Chapter concerning the existence and uniqueness of
canonical linear connections is proved. The argument is summarized in the following main steps.
First, we introduce linear connections on gr(TM) associated to a regular pair (M,H), which are
compatible with the grading and the Levi bracket. Any connection form on the adapted frame
bundle induces, via the associated bundle construction, a linear connection of this type. Clearly,
compatible linear connections associated to G0–triples might satisfy additional conditions. The
linear connections of interest in the subriemannian case, for example, are also compatible with
the metric on H. For our purposes, it will be convenient to consider partial linear connections
and allow derivatives along directions in the subbundles {T−kM}k≥1 generated by H. Such
partial linear connections will be extended, via an inductive procedure, to a proper linear con-
nection. The ingredients occurring at each step of the procedure will be encoded in frame forms.
A frame form of maximal length, in particular, induces a linear connection on TM preserving
H. In Proposition 9, we associate notions of graded torsion and curvature to each frame form.
Distinguished subsets of frame forms are affine spaces over the domain of the differential map,
which controls the change of both graded torsion and curvature as the frame form varies (Propo-
sitions 8 and 10). Finally, two algebraic conditions on the symbol algebra of H and on the Lie
algebra of G0 assure the existence of a canonical linear connection on TM , as proved in Theorem
3.

Let E be a smooth vector bundle over M and Γ(E) the space of its smooth sections. Recall
that a linear connection on E is a bilinear map∇ : X(M)×Γ(E)→ Γ(E), which is C∞(M)–linear
in the first variable and satisfies the Leibnitz rule in the second variable. One can similarly define
partial linear connections Γ(V) × Γ(E) → Γ(E), by admitting only derivatives along directions
in a smooth subbundle V ⊂ TM .

Definition 12. Let M be a smooth filtered manifold, H ⊂ TM a bracket–generating
distribution and gr(TM) the graded vector bundle associated to the filtration generated by H.
Consider a linear connection

∇ : X(M)× Γ(gr(TM))→ Γ(gr(TM))

We say that ∇ is compatible with L if ∇ is the direct sum of linear connections ∇i on gri(TM),
satisfying

∇i+jξ L(X,Y ) = L(∇iξX,Y ) + L(X,∇jξY )

for all ξ ∈ X(M), X ∈ Γ(gri(TM)), Y ∈ Γ(grj(TM)) and i, j ≤ −1. In particular, such a

connection is completely determined by ∇−1 : X(M)× Γ(H)→ Γ(H).

Observe that the same definition works if we restrict the first variable to a smooth subbundle
V ⊂ TM . It thus makes sense speaking about partial linear connections on gr(TM) compatible
with L. Consider now a regular pair (M,H) of type n, the filtration {T−kM}k≥1 on TM gener-
ated by H and the associated graded bundle gr(TM). Recall that (M,H) comes together with
an adapted frame bundle P → M , whose structure group is Autgr(n), such that the associated
vector bundle P ×Autgr(n) n is isomorphic to gr(TM). Moreover, every connection form on P
induces, in the sense of Definition 7, a linear connection on gr(TM) compatible with L.
More generally, we consider G0–triples T = (F → (M,H), n) as in Definition 9 and linear connec-
tions compatible with T . These are induced by connection forms on F through the isomorphism
F ×G0

n ∼= gr(TM) and in some specific cases, they can be characterized. The compatible linear
connections related to subriemannian manifolds (M,H,S) of regular subriemannian type from
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Example 5, for instance, also satisfy

ξ · S(X,Y ) = S(∇ξX,Y ) + S(X,∇ξY )

for all X,Y ∈ Γ(H) and ξ ∈ Γ(V).
Fix a closed Lie subgroup G0 ⊂ Autgr(n) and a G0–triple (F → (M,H), n). Denote by g0 the
Lie algebra of G0, which is a subalgebra of dergr(n). Furthermore, let End0(gr(TM)) be the
space of grading–preserving endomorphisms of gr(TM), which are compatible with L. Recall
that the associated bundle construction is tensorial. Therefore, F ×G0 g0 is isomorphic to a
bundle of subalgebras E0 ⊂ End0(gr(TM)). In the rest of the Chapter, we will always denote
by E = gr(TM) the associated graded bundle, with Ei = gri(TM) its graded components and
by E≤0 = E ⊕ E0 the direct sum of vector bundles. Also, put Ei = {0} for i ≥ 1 and denote by

L(E,E≤0)k =

−1⊕
i=−µ

E∗i ⊗ Ei+k

the space of homorphisms φ : E → E≤0 such that φ(Ei) ⊂ Ei+k. Observe that L(E,E≤0)k is
isomorphic to F ×G0

L(n, g≤0)k. In order to simplify the notation, we put Xp = Γ(T pM).

Definition 13. Let n be a finite dimensional nilpotent graded Lie algebra of depth µ,
G0 ⊂ Autgr(n) a closed Lie subgroup and T = (F → (M,H), n) a G0–triple. Let 1 ≤ k ≤ µ be
an integer. A frame form of length k for T is a pair θ = (∇, π), consisting of a partial linear
connection on E

(11) ∇ : X−k × Γ(E)→ Γ(E),

induced by a connection form on F , together with a collection π = (πk−1, . . . , π
k
−µ) of fibered

maps πki : T i−kM → Ei such that πki extends the canonical projection qi : T iM → Ei for each
i = −1, . . . ,−µ.

Observe that a frame form of length µ consists of a proper compatible linear connection on
E, together with a collection of fibered maps {πi : TM → Ei, i = −1, . . . ,−µ} extending the
canonical projections. Clearly, the latter is equivalent to a splitting of the filtration of TM .
Indeed, π−µ = q−µ : TM → E−µ is surjective and TM writes as direct sum of image and kernel
of π−µ as TM ∼= E−µ ⊕ T−µ+1M . Applying the same argument for i = −µ + 1, . . . ,−1 to
the restriction of πi to T iM , which coincides by hypothesis with qi, leads to an isomorphism
TM ∼= E−µ ⊕ . . .⊕ E−1.
A frame form of length k canonically has an underlying frame form of length k−1. It thus makes
sense to talk about extensions of a given frame form of length k− 1 to a frame form of length k.
Frame forms of length µ exist, thus frame forms of arbitrary length exist. Further properties of
frame forms are collected in the following

Proposition 8. Let G0 ⊂ Autgr(n) be a closed Lie subgroup and let T = (F → (M,H), n)
be a G0–triple. Let k ≥ 1 be an integer.

(a) The space of all extensions of a given frame form of length k − 1 to a frame form of
length k for T is an affine space modelled on Γ(L(E,E≤0)k). Likewise, frame forms of
length one for T form an affine space modelled on Γ(L(E,E≤0)1).

(b) A frame form of length µ determines a linear connection on TM preserving H.

Proof. (a) Fix k ≥ 1. Consider two frame forms θ = (∇, π) and θ̃ = (∇̃, π̃) of length k for
T , both extending a given frame form of length k− 1. Considering last requirement as an empty
condition for k = 1, the following argument proves the statement for all k ≥ 1. By hypothesis,
the partial linear connections

∇, ∇̃ : X−k × Γ(E)→ Γ(E)



4. COMPATIBLE LINEAR CONNECTIONS 34

coincide on X−k+1 × Γ(E). Observe that their difference ∇ − ∇̃ is tensorial in both entries.

Therefore, the homomorphism (∇− ∇̃)ξ only depends on q−k(ξ). Moreover, since ∇ and ∇̃ are

induced by connection forms on F , we have that (∇ − ∇̃)ξ ∈ E0 for any ξ ∈ X−k. Putting all
together, there exists a smooth section Ak0 of E∗−k ⊗ E0 such that

(12) ∇ξλ− ∇̃ξλ = Ak0(q−k(ξ))(λ).

for all ξ ∈ X−k and λ ∈ Γ(E). For i < k, the maps πki , π̃
k
i : T i−kM → Ei coincide on T i−k+1M .

Therefore, their difference factorizes to a fibered homomorphism Ei−k → Ei. Otherwise put,
there exists a smooth section Aki of E∗i−k ⊗ Ei such that

(13) (πki − π̃ki )(ζ) = Aki (qi−k(ζ))

for all ζ ∈ Xi−k. The difference between two different choices of frame forms θ, θ̃ is thus described
by Ak = (Ak0 , . . . , A

k
−µ), which is a smooth section of L(E,E≤0)k.

Conversely, suppose that θ̃ = (∇̃, π̃) is a frame form of length k for T and that Aki ∈ Γ(E∗i−k⊗Ei)
for i = −µ, . . . , 0 are given, so that Ak = (Ak0 , . . . , A

k
−µ) ∈ Γ(L(E,E≤0)k). In particular,

∇̃ : X−k × Γ(E) → Γ(E) is a partial compatible linear connection and Ak0 ◦ q−k is a section of
(T−k)∗ ⊗ E0 which vanishes on X−k+1. Thus putting

∇ : X−k × Γ(E)→ Γ(E),

∇ξλ := ∇̃ξλ+Ak0(q−k(ξ))(λ) for all ξ ∈ X−k, λ ∈ Γ(E)

defines a partial compatible linear connection, which coincides with ∇̃ on X−k+1 × Γ(E). For
i < k, we have that Aki ◦ qi−k ∈ Γ((T i−k)∗ ⊗ Ei) vanishes on Xi−k+1. We thus see that putting

πki (ζ) := π̃ki (ζ) +Aki (qi−k(ζ)) for all ζ ∈ Xi−k

defines a tensorial map T i−k → Ei, which coincides with π̃ki on Xi−k+1. Therefore, θ = (∇, π) is

a frame form of length k for T such that θ and θ̃ have the same underlying frame form of length
k − 1.
(b) By definition, a frame form of length µ consists of a proper compatible linear connection
∇ on E, together with fibered projections πµi : TM → Ei for i = −1, . . . ,−µ, which will
be simply denoted by πµi = πi. The projections determine an isomorphism TM → E via
ξ 7→ (π−1(ξ), . . . , π−µ(ξ)), whose inverse will be denoted by Φ : E → TM . Now Φ defines a
linear connection ∇̄ on TM , by putting for ξ, η ∈ X(M):

∇̄ξη := Φ
(
∇ξπ(η)

)
= Φ

( −µ∑
j=−1

∇ξπj(η)
)

Both π and Φ restrict to the identity on H. Then ∇̄ξη = ∇ξη for all η ∈ Γ(H), proving that ∇̄ξ
preserves Γ(H) for all ξ ∈ X(M). �

In the following, we will write θ − θ̃ = Ak ∈ Γ(L(E,E≤0)k) for frame forms θ, θ̃ of length k
satisfying (12) and (13).

Remark 2. We underline some facts about the homomorphisms occuring in the definition of
frame forms. Fix an integer k ≥ 2. For i = −1, . . . ,−µ and t = 1, . . . , k−1, let σti : T i−tM → Ei
be a fibered map whose restriction to T iM coincides with the canonical projection qi. The
collection {σti} determines surjective fibered homomorphisms

T jM −→ Ej ⊕ . . .⊕ Ej+k−1

ξ 7→
(
qj(ξ), σ

1
j+1(ξ), . . . , σk−1

j+k−1(ξ)
)
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with kernel T j+kM , thus isomorphisms

(14) T jM/T j+kM ∼= Ej ⊕ . . .⊕ Ej+k−1.

In particular, we have an isomorphism T−kM ∼= E−k ⊕ . . .⊕E−1. Then (14) shows that for any
j = −1, . . . ,−µ and X ∈ Γ(Ej), there exists ξσ ∈ Xj satisfying qj(ξ

σ) = X and σtj+t(ξ
π) = 0

for any 1 ≤ t ≤ k − 1. By construction, ξσ is defined by X and σ up to adding ξ̃ ∈ Xj+k. In
particular, this means that ξσ is uniquely determined for −k ≤ j ≤ −1.
Now for i = −1, . . . ,−µ, choose fibered maps πki : T i−kM → Ei extending σk−1

i . Again, these
choices determine surjective homomorphisms

T jM −→ Ej ⊕ . . .⊕ Ej+k−1 ⊕ Ej+k

ξ 7→
(
qj(ξ), σ

1
j+1(ξ), . . . , σk−1

j+k−1(ξ), πkj+k(ξ)
)

with kernel T j+k+1M , so that for any X ∈ Ej there exists ξπ ∈ Xj such that qj(ξ
π) = X,

σtj+t(ξ
π) = 0 for all t = 1, . . . , k−1 and πkj+k(ξπ) = 0. In general, these conditions define ξπ ∈ Xj

up to Xj+k+1. Consider another choice of extensions π̃ki : T i−kM → Ei of σk−1
i and let ξπ̃ ∈ Xj

be such that qj(ξ
π̃) = X, σtj+t(ξ

π̃) = 0 for all t = 1, . . . , k − 1 and π̃kj+k(ξπ̃) = 0, corresponding

to the second choice of extension. Evidently, we have ξπ̃ − ξπ ∈ Xj+k by construction.

Proposition 9. Let G0 ⊂ Autgr(n) be a closed Lie subgroup, g0 the Lie algebra of G0 and
T = (F → (M,H), n) a G0–triple. Consider a frame form θ = (∇, π) for T of length k. Denote
by ξπ ∈ Xi and ηπ ∈ Xj representatives for X ∈ Γ(Ei) and Y ∈ Γ(Ej), respectively, chosen as
in Remark 2.

(a) Consider negative integers −µ ≤ i, j ≤ −1 such that i + j + k ≤ −1. For X ∈ Γ(Ei)
and Y ∈ Γ(Ej), the following formula:

(15) T kθ (X,Y ) = δ−ik ∇ξπY − δ
−j
k ∇ηπX − π

k
i+j+k([ξπ, ηπ])

defines a tensorial map Ei ⊗ Ej → Ei+j+k.
(b) Consider negative integers −µ ≤ i, j ≤ −1 such that i + j + k = 0 and X ∈ Γ(Ei),

Y ∈ Γ(Ej). For ` = −1, . . . ,−µ and Z ∈ Γ(E`), the formula

(16) Rkθ (X,Y )(Z) = ∇ξπ∇ηπZ −∇ηπ∇ξπZ −∇[ξπ,ηπ ]Z

defines a section Rkθ (X,Y )(Z) ∈ Γ(E`). Moreover, (X,Y ) 7→ Rkθ (X,Y ) defines a ten-
sorial map Ei ⊗ Ej → E0, where E0

∼= F ×G0 g0.

The union of all maps defined in (1) and (2), together with the zero maps for integers i+j+k > 0,
defines fibered maps T kθ ∈ L(Λ2E,E)k and Rkθ ∈ L(Λ2E,E0)k in homogeneity k. We will refer
to them as the torsion, respectively the curvature in homogeneity k associated to the frame form
θ.

Proof. If θ = (∇, π) is a frame form for T of length k, then ∇ : X−k × Γ(E) → Γ(E)
is a partial compatible linear connection. First of all, observe that the formula (15) is well
defined. Indeed, the first term is nonzero only for i = −k and in this case ξπ ∈ X−k is uniquely
determined by π. Therefore ∇ξπY makes sense, it lies in Ei+j+k and it does not depend on the
choice of representatives for X,Y . Analogous considerations hold for the second summand. Since
[ξπ, ηπ] ∈ Xi+j , we can insert it into πi+j+k, thus getting a section of Ei+j+k. The representatives
ξπ ∈ Xi and ηπ ∈ Xj for X and Y are defined up to Xi+k+1 and Xj+k+1, respectively, and
both [T i+k+1M,T jM ] and [T iM,T j+k+1M ] are contained in T i+j+k+1M , where πi+j+k is zero.
Therefore, the third summand does not depend on the choice of representatives for X,Y either.
Let us now prove that (15) is tensorial. Again by skew–symmetry, it is enough to verify that the
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formula is tensorial in the first variable. Apply the transformation X 7→ fX for f ∈ C∞(M)
and choose fξπ as representative for fX, thus obtaining

T kθ (fX, Y ) = f
(
δ−ik ∇ξπY − δ

−j
k ∇ηπX

)
+

− δ−jk (ηπ · f)X − πi+j+k
(
f [ξπ, ηπ]− (ηπ · f)ξπ

)
= fT k(X,Y )− δ−jk (ηπ · f)X + (ηπ · f)πi+j+k(ξπ)

The sum of the second and third terms is zero for all admissible values of i, j. Indeed, for
j = −k the last summand writes as (ηπ · f)πi(ξ

π). Now πi(ξ
π) = qi(ξ

π) since ξπ ∈ Xi and
qi(ξ

π) = X, so that the two terms in the last row are equal with opposite sign. Conversely, for
j 6= −k both terms are zero. Indeed for j + k > 0, ξπ is chosen as satisfying πi+j+k(ξπ) = 0,
while the same equality follows from the inclusion T iM ⊂ T i+j+k+1M for j + k < 0. Since the
formula is skew–symmetric, this concludes the proof of (a).
For integers −µ ≤ i, j ≤ −1 such that i+ j = −k, representatives ξπ ∈ Xi and ηπ ∈ Xj for X ∈
Γ(Ei) and Y ∈ Γ(Ej) are uniquely determined by π, as explained in Remark 2. In the following,
we will denote ξ = ξπ and η = ηπ to simplify the notation. For such values of i, j we have that
ξ, η, [ξ, η] ∈ X−k, so that the formula (16) is well defined. Since ∇ is compatible with the grading
on E, the same is true for each summand of (16), hence Rkθ (X,Y )(Z) ∈ Γ(E`) for all Z ∈ Γ(E`).
From the properties of linear connections on general vector bundles, namely C∞–linearity in
the first variable and Leibnitz rule in the second one, it follows via a direct computation that
Rkθ (X,Y )(Z) is tensorial in Z ∈ Γ(H). Therefore, (16) defines an endomorphism Φ: E → E
which preserves the grading. Moreover, since ∇ is compatible with L, for Z1 ∈ Γ(H) and Z2 ∈ Xi

with i = −1, . . . ,−µ + 1 we have that ∇[ξ,η]L(Z1, Z2) = L(∇[ξ,η]Z1, Z2) + L(Z1,∇[ξ,η]Z2) and
that ∇ξ∇ηL(Z1, Z2) writes as the sum

L(∇ξ∇ηZ1, Z2) + L(∇ηZ1,∇ξZ2) + L(∇ξZ1,∇ηZ2) + L(Z1,∇ξ∇ηZ2)

Since the sum of the second and the third summands is symmetric in {ξ, η}, we have that

∇ξ∇ηL(Z1, Z2)−∇η∇ξL(Z1, Z2) = L(∇ξ∇ηZ1 −∇η∇ξZ1, Z2)+

+ L(Z1,∇ξ∇ηZ2 −∇η∇ξZ2)

hence that

L(Rkθ (X,Y )Z1, Z2) + L(Z1, R
k
θ (X,Y )Z2) = ∇ξ∇ηL(Z1, Z2)−∇η∇ξL(Z1, Z2)+

−∇[ξ,η]L(Z1, Z2)

= Rkθ (X,Y )L(Z1, Z2),

for all Z1 ∈ Γ(H) and Z2 ∈ Xi and i = −1, . . . ,−µ+ 1. This shows that Φ is an homomorphism
of E which is compatible with L, hence that Rkθ (X,Y ) ∈ End0(gr(TM)) for any X ∈ Γ(Ei) and
Y ∈ Γ(Ej). The fact that the skew–symmetric R–bilinear map (X,Y ) 7→ Rkθ (X,Y ) is tensorial,
again, comes from the basic properties defining a linear connection. Consider now the G0–triple
T = (F → (M,H), n). Let γ ∈ Ω1(F , g0) be a connection form on F such that∇ = ∇γ is induced

by γ in the sense of Proposition 7. Let ξ̃, η̃ ∈ X(F) be lifts of ξ, η. Observe that ξh = ξ̃−ζγ(ξ̃) and

ηh = η̃− ζγ(η̃) are lifts of ξ and η such that γ(ξh) = γ(ηh) = 0. Lifts satisfying this property are

also said to be horizontal. Since [ξh, ηh] is a lift of [ξ, η], we have that an horizontal lift of [ξ, η]
is given by [ξ, η]h = [ξh, ηh] − ζγ([ξh,ηh]). In the sense of Proposition 5, Z ∈ Γ(Et) corresponds
to a unique horizontal and G0–equivariant smooth map f : F → gt. According to Definition 7,
Rkθ (X,Y )Z corresponds to

(ξh · ηh − ηh · ξh − [ξ, η]h) · f = ([ξh, ηh]− [ξ, η]h) · f = ζγ([ξh,ηh]) · f
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In the picture of Proposition 5, Rkθ (X,Y ) corresponds to the following G0–equivariant smooth

function R(ξ̃, η̃) : F → g0 with values in g0:

R(ξ̃, η̃) = γ([ξh, ηh]) = γ([ξ̃ − ζγ(ξ̃), η̃ − ζγ(η̃)])

Therefore, the endomorphism Rkθ (X,Y ) lies in a subbundle E0 ⊂ End0(gr(TM)) isomorphic to
F ×G0

g0, which concludes the proof of (b). �

Let k ≥ 1 be an integer and put Wk = L(Λ2n, n ⊕ g0)k. The sum Ckθ = T kθ + Rkθ of torsion
and curvature, defined by formulas (15) and (16), is a smooth section of L(Λ2E,E⊕E0)k, which
is isomorphic to the associated vector bundle F ×G0

Wk. We will also briefly refer to Ckθ as
the curvature of a frame form θ of length k. Observe that if N = ⊕i≥1Ni ⊆ ⊕i≥1Wi is a
normalization condition for (n, g0), by definition Ni ⊆ Wi is a G0–invariant subspace and we
thus have an inclusion of subbundles F ×G0 Ni ⊆ F ×G0 Wi for all i ≥ 1. One can thus require
that Ckθ takes values in the subbundle F ×G0

Nk.

Definition 14. Let G0 ⊂ Autgr(n) be a closed Lie subgroup and T a G0–triple. Assume
that N = ⊕i≥1Ni is a normalization condition. A frame form θ of length k ≥ 1 for T is said to
be normal if Ckθ ∈ Γ(F ×G0 Nk) ⊆ Γ(F ×G0 Wk) = Γ(End(Λ2E,E≤0)k).

Put V = L(n, g≤0) and W = L(Λ2n, g≤0). Also put g` = {0} for ` > 0. Recall the differential
map ∂ : V →W defined by (10). Now V =

⊕
k Vk is a graded vector space and we write Φk ∈ Vk

as

Φk =

k−1∑
`=−µ+k

Φk` , Φk` ∈ g∗`−k ⊗ g`

For X ∈ gi and Y ∈ gj , we have that ∂Φk(X,Y ) ∈ g≤0 and its gi+j+k–component coincides with

(17) [Φki+k(X), Y ] + [X,Φkj+k(Y )]− Φki+j+k([X,Y ]).

If A,B are G0–representations and F : A → B is a G0–equivariant linear map, then F induces
an homomorphism F ×G0 A → F ×G0 B of vector bundles, hence a tensorial map between the
respective spaces of sections. With abuse of notation, we will use the same symbol

∂ : Γ(F ×G0
V )→ Γ(F ×G0

W )

to write the differential map and the induced map between sections of the associated vector
bundles. If N is a normalization condition for (n, g0), then F×G0

N ⊆ F×G0
W is complementary

to Im(∂).

Proposition 10. Let G0 ⊂ Autgr(n) be a closed Lie subgroup and T a G0–triple. Fix an

integer k ≥ 1 and consider two frame forms θ, θ̃ of length k for T with same underlying frame
form of length k−1. Denote by Ck, C̃k the curvatures in homogeneity k of θ and θ̃, respectively.
If θ − θ̃ = Ak, then Ck − C̃k = ∂Ak.

Proof. Suppose that θ−θ̃ = Ak = (Ak0 , A
k
−1, . . . , A

k
−µ), with Aks ∈ Γ(E∗s−k⊗Es). Fix indices

−µ ≤ i, j ≤ −1 and elements X ∈ Γ(Ei), Y ∈ Γ(Ej). Our aim is evaluating (Ck − C̃k)(X,Y ).
Recall that Ck(X,Y ) is defined in terms of representatives ξπ ∈ Xi, ηπ ∈ Xj for X and Y ,
respectively, whose choice depends on the projection components πi = πki of the frame form
θ, as explained in Remark 2. Analogous representatives ξπ̃ ∈ Xi and ηπ̃ ∈ Xj , determined by
the projection components π̃i = π̃ki of θ̃, appear in the formula for C̃k(X,Y ). By construction,
ξπ − ξπ̃ ∈ Xi+k, so qi+k(ξπ − ξπ̃) ∈ Ei+k is well defined and for i+ k < 0, we get

qi+k(ξπ̃ − ξπ) = π̃i+k(ξπ̃ − ξπ) = −π̃i+k(ξπ) = −πi+k(ξπ) +Aki+k(qi(ξ
π)) = Aki+k(X)
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while qi+k(ξπ̃ − ξπ) = 0 for i+ k ≥ 0. Analogously, qj+k(ηπ̃ − ηπ) = Akj+k(Y ) if j + k < 0, while
it is equal to zero for j + k ≥ 0. First, we suppose that i, j satisfy i + j + k ≤ −1, so that we
look at the torsion components T k, T̃ k. By skew–symmetry, it will be enough to consider the
case i ≥ j. Evaluating (T k − T̃ k)(X,Y ) on X ∈ Γ(Ei) and Y ∈ Γ(Ej) gives

(18)
(T k − T̃ k)(X,Y ) =δ−ik (∇ξπY − ∇̃ξπ̃Y )− δ−jk (∇ηπX − ∇̃ηπ̃X)+

− πi+j+k([ξπ, ηπ]) + π̃i+j+k([ξπ̃, ηπ̃])

Observe that the first summand coincides with δ−ik (∇ξπ − ∇̃ξπ )(Y ), since ξπ = ξπ̃ for i = −k,

while for all other indices i both terms are zero. By (12), we can rewrite it as δi+k0 Aki+k(X)(Y ).

Analogously, the second summand is equal to δj+k0 Akj+k(Y )(X). The sum of the third and fourth
summands can be determined as follows. First, observe that

−π̃i+j+k([ξπ̃, ηπ̃]) =− π̃i+j+k([ξπ, ηπ] + [ξπ̃ − ξπ, ηπ̃] + [ξπ, ηπ̃ − ηπ])

=− πi+j+k([ξπ, ηπ]) +Aki+j+k(qi+j([ξ
π, ηπ]))+

− qi+j+k([ξπ̃ − ξπ, ηπ̃])− qi+j+k([ξπ, ηπ̃ − ηπ])

Moreover, we have that

qi+j+k([ξπ̃ − ξπ, ηπ̃]) =

{
0 i+ k ≥ 0

L(qi+k(ξπ̃ − ξ), qj(ηπ)) i+ k < 0

and analogously

qi+j+k([ξπ, ηπ̃ − ηπ]) =

{
0 j + k ≥ 0

L(qi(ξ
π), qj+k(ηπ̃ − ηπ)) j + k < 0

Therefore

−πi+j+k([ξπ, ηπ]) + π̃i+j+k([ξπ̃, ηπ̃]) =−Aki+j+k(qi+j([ξ
π, ηπ]))+

+ qi+j+k([ξπ̃ − ξπ, ηπ̃]) + qi+j+k([ξπ, ηπ̃ − ηπ])

= −Aki+j+k(L(X,Y )) +


L(Aki+k(X), Y )− L(Akj+k(Y ), X) i+ k < 0, j + k < 0

− L(Akj+k(Y ), X) i+ k ≥ 0, j + k < 0

0 i+ k ≥ 0, j + k ≥ 0

hence from (18) we see that (T k − T̃ k)(X,Y ) rewrites as

i = −k, j = −k : Ak0(X)(Y )−Ak0(Y )(X)−Ak−k(L(X,Y ))

i = −k, j + k < 0 : Ak0(X)(Y )− L(Akj+k(Y ), X)−Akj (L(X,Y ))

i+ k < 0, j + k < 0 : L(Aki+k(X), Y )− L(Akj+k(Y ), X)−Aki+j+k(L(X,Y ))

i+ k > 0, j + k > 0 : −Aki+j+k(L(X,Y ))

i+ k > 0, j + k < 0 : −L(Akj+k(Y ), X)−Aki+j+k(L(X,Y ))

Compare now the last formula with (17) to see that it coincides with ∂Ak(X,Y ). The
statement is thus proved for the torsion components.
Now fix integers −µ ≤ i, j ≤ −1 satisfying i + j + k = 0 and consider X ∈ Γ(Ei), Y ∈ Γ(Ej).
Then i > −k and j > −k, hence both T iM and T jM are contained in T−k+1M and the
representative ξπ ∈ T iM for X is defined by the underlying frame form of length k − 1 of θ,
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which coincides by hypothesis with the underlying frame form of length k − 1 of θ̃. For these
values of i, j, we thus have that ξπ̃ = ξπ and ηπ̃ = ηπ, which will be simply denoted by ξ, η.
Then, (Ck − C̃k)(X,Y ) ∈ E0 and its action on E writes as

Rk(X,Y )Z − R̃k(X,Y )Z =∇ξ(∇− ∇̃)ηZ + (∇− ∇̃)ξ∇̃ηZ − ∇̃η(∇− ∇̃)ξZ+

− (∇− ∇̃)η∇ξZ − (∇− ∇̃)[ξ,η]Z

Observe that the same hypothesis on the underlying frame forms implies that ∇ and ∇̃ coincide
on X−k+1 × Γ(E). Then, all terms in the equation above vanish except the last one, which
rewrites as −Ak0(q−k([ξ, η])) by (12). This coincides with ∂Ak(X,Y ) for the considered values of
i, j, as it can be seen by comparing with the explicit formula (17). Indeed, the terms Φki+k and

Φkj+k showing up there, by definition, are zero for i+ k = −j > 0 and j + k = −i > 0. �

The results collected in this Section can be now applied at each step of an inductive procedure,
leading to the following

Theorem 3. Let n be a nilpotent graded Lie algebra of depth µ generated by g−1. Moreover,
let G0 ⊂ Autgr(n) be a closed Lie subgroup with Lie algebra g0 and let T = (F → (M,H), n)
be a G0–triple. Suppose that N ⊂ L(Λ2n, g≤0) is a normalization condition and that the first
prolongation of the pair (n, g0) is trivial. Then, there exists a unique normal frame form of length
µ for T and this defines a canonical linear connection on TM preserving H.

Proof. Fix an integer k ≥ 1 and put Vk = L(n, g≤0)k, so that F ×G0
Vk ∼= End(E,E≤0)k.

Consider an arbitrary frame form θ̃ of length k for T and write its curvature C̃k in homogeneity
k as the sum

C̃k = C̃Im(∂k) + C̃Nk

of C̃Im(∂k) ∈ Γ(F ×G0
Im(∂k)) and C̃Nk

∈ Γ(F ×G0
Nk). By hypothesis ∂k is injective, thus one

can look at its left inverse

∂−1
k : Γ(F ×G0

Im(∂k))→ Γ(F ×G0
Vk)

Now put P := −∂−1
k ◦ C̃Im(∂k) ∈ Γ(F ×G0

Vk) ∼= Γ(End(E,E≤0)k). Then, by Proposition 8 (a),

θ = θ̃ + P is a frame form of length k with same underlying frame form of length k − 1. By
Proposition 10, the curvature in homogeneity k of the modified frame form θ is

Ck = C̃kNk
∈ Γ(F ×G0

Nk),

hence θ is normal. Moreover, the normal frame form θ of length k is uniquely determined by Ck.
Indeed, suppose that both θ, θ̃ are normal frame forms of length k with same underlying frame
form of length k − 1. Then, denote by Ck = CkNk

and by C̃k = C̃Nk
the respective curvatures,

both lying in Γ(F ×G0 Nk). By Proposition 8 (a), there exists P ∈ Γ(F ×G0 Vk) such that

θ = θ̃ + P and again by Proposition 10, we have Ck − C̃k = ∂kP . The right and left terms of
the last equation are sections of two complementary subbundles of End(Λ2E,E≤0)k, therefore

the equation is satisfied if and only if P = 0 and Ck = C̃k.
The argument above can be applied at each step of an inductive procedure. First of all, we
consider the set of frame forms for T of length one. For k = 1, the argument shows that there
exists a unique normal frame form of length one. For k ≥ 2, we can suppose that a normal
frame form of length k − 1 is fixed. Then, the argument above shows that this can be uniquely
prolonged to a frame form of length k, by normalizing the curvature in homogeneity k. After a
finite number of steps, we obtain a unique normal frame form of length µ. This determines, by
Proposition 8 (b), a connection on TM preserving H. �
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Consider the G0–reduction F → M . If γ ∈ Ω1(F , g0) denotes a connection form and
α ∈ Ω1(F , n) the soldering form, then ω = α + γ ∈ Ω1(F , n ⊕ g0) is a Cartan connection for
F → M . The formula dω + [ω, ω] defines a two–form on F with values in g0 ⊕ n, which is
said to be the curvature of the Cartan connection ω. Let θ be a frame form of length k for
the G0–triple and let Ckθ be its curvature in homogeneity k. Through the associated bundle
construction, Ckθ corresponds to the curvature in homogeneity k of a Cartan connection ω of
the form above. This explains why we also refer to Ckθ as the curvature in homogeneity k,
denomination which seems to be misleading at a first glance, since Ckθ is the sum of two tensors
defined in Proposition 9 as torsion and curvature of degree k. However, there is a deeper reason
to adopt this denomination which concerns a difference between the normalization procedure
for classical G–structures and the normalization procedure applied in Theorem 3. Connection
forms on classical G–structures induce linear connections on TM . To any such linear connection,
one can associate a torsion and a curvature. The curvature does not depend tensorially on the
change of linear connection and one always normalizes the torsion. Then, the remaining torsion
and the curvature of the canonical linear connection plays the role of a fundamental invariant.
In the filtered setting, the distinction between torsion and curvature is much less important than
the distinction between homogeneities. There are examples, like CR–structures, in which one
can choose between normalizing torsion only or normalizing a mix of torsion and curvature. The
same happens with dual Darboux distributions, as we will see in the next Section. However, in
general, there are no normalization conditions which concern only torsion and leave the curvature
completely free.
By looking at the torsion and curvature of the canonical linear connection, one can determine
the isomorphism class of the structures satisfying the hypothesis of Theorem 3. In particular,
let T = (F → (M,H), n) be a G0–triple satisfying the hypothesis of Theorem 3 and let ∇
be the corresponding canonical linear connection. Let T∇ ∈ Ω2(TM) be the torsion and let
R∇ ∈ Ω2(T ∗M ⊗TM) be the curvature of ∇. Then, T∇ and R∇ are both identically zero if and
only if T is isomorphic to the homogeneous model of same type (n, g0) (Proposition 1.5.2, [10]).

Example 6. We conclude by discussing a nice application of last result, namely the existence
of canonical subriemannian linear connections associated to structures of generic subriemannian
type, which was proved by Morimoto in [15]. Suppose that (n, σ) is a subriemannian graded
Lie algebra (see Example 5). Denote by G0 ⊂ Autgr(n) the closed subgroup of those grading–
preserving automorphisms of n which restrict to an isometry of (g−1, σ) and by g0 ⊂ dergr(n) the
Lie algebra of G0. Every map in g0 restricts to an endomorphism of the vector space g−1 that
is skew–symmetric with respect to σ. Morimoto considers subriemannian manifolds (M,H,S)
of regular subriemannian type (n, σ), hence G0–triples (F → M, n) and the set of connection
forms on F → M . The associated vector bundle F ×G0

g0 is isomorphic to the subalgebra E0

of grading–preserving endomorphisms F : gr(TM) → gr(TM) whose components on gr−1(TM)
are skew–symmetric with respect to S. We say that ∇ is a subriemannian linear connection on
TM if ∇ζ(Γ(H)) ⊂ Γ(H) for all ζ ∈ X(M) and satisfies

ζ · S(ξ, η) = S(∇ζξ, η) + S(ξ,∇ζη)

for all ξ, η ∈ Γ(H) and ζ ∈ X(M). Any connection form on F → M induces a subriemannian
linear connection on gr(TM) and this, together with an isomorphism gr(TM) ∼= TM , induces a

subriemannian linear connection. If ∇, ∇̃ are both subriemannian linear connections, then they
both satisfy the formula above, whose left–hand term does not depend on any choice. Then,

S((∇− ∇̃)ζξ, η) = −S(ξ, (∇− ∇̃)ζη)

hence (∇− ∇̃)ζ ∈ Γ(E0) for all ζ ∈ X(M).
Observe that σ induces inner products on Λ2g−1. Moreover, gi identifies with a quotient of
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g−1 ⊗ gi+1 through the bracket. Therefore, g−2 carries an induced inner product, which in turn
induces an inner product on g−1 ⊗ g−2, hence on g−3 and so on. Also g0 ⊂ g∗−1 ⊗ g−1 inherits
an inner product and they all are g0–invariant. We thus have a g0–invariant inner product on
L(Λ2n, g≤0). Taking the orthogonal complement N := Im(∂)⊥, then, defines a normalization
condition. Now [15, Prop. 1] proves that the first prolongation of (n, g0) vanishes. The existence
of a canonical subriemannian linear connection on TM , then, follows from Theorem 3.

5. Dual Darboux distributions

In Chapter 1, we focused on generic types of distributions of rank t in dimension n, which
correspond to open orbits of bidimension (t, n). A classification of such open orbits appears in [2]
and contains the class of so–called dual Darboux bidimensions, namely pairs of the form (t, n(t))
with n(t) = t +

(
t
2

)
− 1 for an integer t ≥ 3. There exists a unique open orbit of dual Darboux

bidimension (t, n(t)), generated by linear maps whose kernel is a maximally nondegenerate line
in Λ2Rt. For t = 2k even, the nondegeneracy condition suggests an explicit description of the
model algebra. We will refer to it as the dual Darboux algebra D2k of dimension n(2k). Ob-
serve that the lowest dimensional case D4 corresponds to the generic (4, 9)–type, appearing in
the classification of Theorem 2. With analogous terminology, we will refer to one–step bracket–
generating distributions of type D2k as dual Darboux distributions of even rank.
In the rest of the Chapter, we prove that a canonical linear connection is associated to any
dual Darboux distribution of even rank. A simple argument shows that g0 = dergr(D2k) is a
reductive Lie algebra. The existence of a normalization condition, in particular, follows from
the characterization of finite–dimensional completely reducible representations of reductive Lie
algebras. Then, we compute the first prolongation g1 of D2k. On the one hand, our computa-
tions show that g1 is trivial. On the other hand, from the same computations one can explicitly
derive a normalization condition in homogeneity one. In homogeneity two, where also curvature
components show up, there are two nice choices of a normalization condition, the first on the
torsion and the second one on the curvature. Once a choice is made it encodes, together with
the normalization condition in homogeneity one, the admissible values for torsion and curvature
of the canonical linear connection from Theorem 3.

Let V be a real vector space and ω : V × V → R a skew–symmetric bilinear form. By linear
algebra, ω may be nondegenerate only if V has even dimension. If ω is nondegenerate, the pair
(V, ω) is said to be a symplectic vector space. The automorphisms of V which preserve ω up to
scale form the conformal symplectic group CSp(V ). We will denote by csp(V ) the corresponding

Lie algebra. For an integer k ≥ 2, put n = 2k +
(

2k
2

)
− 1. Consider a symplectic vector space

(V, ω) of dimension 2k. The kernel of ω, seen as a linear map Λ2V → R, is a linear subspace
Λ2

0V ⊂ Λ2V of codimension one. Since ω is nondegenerate, it uniquely defines an isomorphism
V → V ∗ by mapping v 7→ ω(v,−). Similarly, the inverse isomorphism V ∗ → V corresponds
to a symplectic form on V ∗, say ω̄ ∈ Λ2V . Since ω̄ satisfies ω(ω̄) = ν 6= 0, it generates a line
R · ω̄ ⊂ Λ2V such that Λ2V = Λ2

0V ⊕ R · ω̄ is a direct sum of CSp(V )–modules. The projection
Π : Λ2V → Λ2

0V onto the first factor writes, explicitly, as

(19) Π(v ∧ w) = v ∧ w − 1

ν
ω(v ∧ w)ω̄ for all v, w ∈ V.

Clearly, Λ2
0V
∼= Λ2V/R · ω̄ and the kernel of Π coincides with R · ω̄, which is a nondegenerate

line in Λ2V . Therefore, Π is a surjective linear map of generic dual Darboux type (2k, n).
Put g−1 = V , g−2 = Λ2

0V and n = g−1 ⊕ g−2. Then [v, w] := Π(v ∧ w) defines a bracket
[ , ] : g−1 × g−1 → g−2, which endows n with a graded nilpotent Lie algebra structure. We
will refer to (n, [ , ]) as the dual Darboux algebra D2k of dimension n. The standard action of
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CSp(V ) on V induces an action on Λ2V which preserves Λ2
0V . More precisely, CSp(V ) could

be equivalently defined as the subgroup of GL(V ) whose induced action on Λ2V preserves the
decomposition Λ2V = Λ2

0V ⊕ R · ω̄. Adopting this definition, CSp(V ) is easily seen to be the
invariance group of the linear map Π. We thus have that Autgr(n) = CSp(V ), hence that
dergr(n) = csp(V ). Since D2k generates an open orbit of dual Darboux bidimension (2k, n)
and any such orbit can be realized as type of some (2k, n)–distribution, the existence of generic
distributions of type D2k is assured. We will refer to a (2k, n)–distribution H ⊂ TM of type
D2k as a dual Darboux distribution of rank 2k on M .
Let D2k = (n,Π) be the dual Darboux algebra. Denote by g0 = dergr(D2k) = csp(V ) the algebra
of grading–preserving derivations and put g≤0 = n ⊕ g0. In this section, we shall compute
explicitly the differential map ∂ : L(n, g≤0) → L(Λ2n, g≤0) defined by the formula (10). The
computations will involve some notions of tensorial calculus that we are now going to introduce.
Given a finite–dimensional vector space V with dual vector space V ∗, one can consider tensor
products of the form T st = V ⊗ . . .⊗ V ⊗ V ∗ ⊗ . . .⊗ V ∗, containing s copies of V and t copies of
V ∗. An element of T st can be thought as a map V t×(V ∗)s → R which is linear in each argument
(a so–called (s+ t)–linear map), and it is said to be a tensor of type

(
s
t

)
(shortly, a

(
s
t

)
–tensor).

In particular T 0
1 = V ∗, T 1

0 = V and we put T 0
0 = R. There are two basic operations on tensors,

the tensor product and the contraction. Given a
(
s
t

)
–tensor h and a

(
s′

t′

)
–tensor f , one can define

a tensor h⊗ f of type
(
s+s′

t+t′

)
. Inserting the first arguments in h, the second arguments in f and

then multiplying the resulting values in R defines a (s+s′+t+t′)–linear map, which is said to be
the tensor product of h and f and denoted by h⊗ f . Furthermore, there is a natural evaluation
map V ⊗ V ∗ → R, sending v ⊗ φ to φ(v). This can be extended to a map T st → T s−1

t−1 for any
choice of s, t both nonzero, usually called contraction, by evaluating a copy of V ∗ in a copy of V
and leaving all other entries untouched.
In abstract index notation, the elements of T st are denoted by hi1... is

j1...jt
, with s upper indices

and t lower indices used to indicate their type and their contractions. Hence, we write vi for
a vector, φj for a linear functional, A j

i for a
(

1
1

)
–tensor and A i

i for its contraction. There are

isomorphisms V ∗ ⊗ V → L(V, V ) and V ∗ ⊗ V → L(V ∗, V ∗), explicitly given by A(v)j = A j
i v

i

for all vi ∈ V and A(φ)i = A j
i φj for all φj ∈ V ∗. The identity map (on V or on V ∗) defines

then a canonical element in V ∗⊗V , which is usually denoted by δ ji . We thus have the identities

δ ji v
i = vj and δ ji φj = φi, which will often occur in our computations.

Symmetrization and alternating maps are also fundamental ingredients of tensorial calculus that
we will apply. Recall that S2V ∗ ⊂ V ∗ ⊗ V ∗ and Λ2V ∗ ⊂ V ∗ ⊗ V ∗ denote the subspaces of
bilinear forms on V which are symmetric, respectively skew–symmetric. The symmetrization
map V ∗ ⊗ V ∗ → S2V ∗ associates to any

(
0
2

)
–tensor f the tensor h of same type, defined by

h(v, w) = 1
2 (f(v, w) + f(w, v)) for all v, w ∈ V . The alternating map V ∗ ⊗ V ∗ → Λ2V ∗ is

analogously defined, by subtracting the second summand rather than adding it. In abstract index
notation, the symmetrization and the alternation of f writes, respectively, as 1

2 (fij + fji) and
1
2 (fij − fji). In general, one can symmetrize or alternate over more than two entries of the same
type. Denote by ⊗tV ∗ the tensor product of t copies of V ∗. Let St be the set of permutations of
the set {1, . . . , t}. A transposition is a permutation which exchanges two elements of {1, . . . , t}
and fixes all other elements. Any σ ∈ St can be written as the composition of a finite number `
of transpositions. Although, in general, such an expression for σ is not unique, the parity of ` is
uniquely determined. Otherwise put, σ writes as product of an even number or an odd number
of transpositions. For σ ∈ St, we put

(−1)σ =

{
1 if ` even

− 1 if ` odd
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The symmetrization and skew–symmetrization operators are defined by

Sym: ⊗t V ∗ → ⊗tV ∗,

Sym(h)j1...jt =
1

t!

∑
σ∈St

hjσ(1)...jσ(t)

and
Alt : ⊗t V ∗ → ⊗tV ∗,

Alt(h)j1...jt =
1

t!

∑
σ∈St

(−1)σhjσ(1)...jσ(t)

We define StV ∗ ⊂ ⊗tV ∗ and ΛtV ∗ ⊂ ⊗tV ∗ as the image of Sym and Alt, respectively. We
will also briefly write h(a1...ak) = Sym(h)a1...ak and h[a1...ak] = Alt(h)a1...ak . Finally, consider

ω̄ij ∈ Λ2V and φij ∈ S2V . The following formulas

(fij + fji)φ
ij = (fijφ

ij + fjiφ
ji) = 2fijφ

ij , (fij − fji)φij = (fijφ
ij − fjiφji) = 0

(fij − fji)ω̄ij = (fijω̄
ij + fjiω̄

ji) = 2fijω̄
ij , (fij + fji)ω̄

ij = (fijω̄
ij − fjiω̄ji) = 0

describe the behaviour of symmetric and skew–symmetric objects under contraction.
Let k ≥ 2 be an integer and let (V, ω) be a symplectic vector space of dimension 2k. Recall that
if n = g−1 ⊕ g−2 is the vector space underlying the dual Darboux algebra and g0 = dergr(n), by
definition g∗−1⊗ g0 = V ∗⊗ csp(V ). Since g∗−1⊗ g0 ⊂ L(n, g≤0)1, the tensor product V ∗⊗ csp(V )
will show up in the explicit computation of the first prolongation of the dual Darboux algebra.
Denote by ωij ∈ Λ2V ∗ the symplectic form. If ω̄ps ∈ Λ2V is the inverse of ωij , we have
ωij ω̄

js = δ si . Up to the isomorphism V ∗ ⊗ V ∼= L(V, V ), we can write the elements of csp(V )
as φ i

j satisfying φ i
j ωi` +ωjiφ

i
` = λ ωj` for some λ ∈ R. In particular, the symplectic form gives

a canonical g0–isomorphism sp(V ) ∼= S2V ∗. Explicitely, φ ∈ sp(V ) uniquely defines a symmetric
bilinear form

(20)
fφ : V × V → R
fφ(X,Y ) = ω(X,φ(Y )) for X,Y ∈ V.

which writes as φ i
j ωi` = φ i

` ωij . In general, for φ i
j ∈ csp(V ) we have

λ =
1

2k
λ ωj` ω̄

`j =
1

2k
(φ i
j δ

j
i + δ `i φ

i
` ) =

1

k
φ i
i

Therefore, the contraction φ i
j 7→ φ i

i defines a surjective csp(V )–homomorphism csp(V ) → R
with kernel sp(V ) ⊂ csp(V ).
Denote by µ : V ∗⊗V ∗⊗V → Λ2V ∗⊗V the alternating map in the first two components, explicitly
given by (µA) c

ab = A c
[ab] = 1

2 (A c
ab −A c

ba ). In particular, we can restrict µ to V ∗ ⊗ csp(V ). The

condition for A c
ab to be in V ∗ ⊗ csp(V ) writes as

(21) A i
ab ωic −A i

ac ωib =
1

k
A j
aj ωbc

and multiplying both terms of the last equation by ω̄ab, we obtain

(22) A i
ab ω̄

abωic = A i
ac ωib ω̄

ab +
1

k
A j
aj ωbc ω̄

ab = −A i
ic +

1

k
A i
ci .

Since ω̄ab is skew–symmetric, the left–hand term coincides with A t
[ab]ω̄

abωtc. Then, last

equation expresses the following fact. Up to the isomorphism V ∼= V ∗ given by the symplectic
form, inserting ω̄ in µA is a linear combination of the two contractions one can apply to an
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element A ∈ V ∗ ⊗ csp(V ).

Lemma 1. Let k ≥ 2 be an integer, (V, ω) a symplectic vector space of dimension 2k and let
csp(V ) be the corresponding conformal symplectic algebra. There exists a direct sum decomposi-
tion

V ∗ ⊗ csp(V ) =

4⊕
i=1

Vi

into csp(V )–irreducible components. Writing A j
ab ∈ V ∗ ⊗ csp(V ) and putting Cabc = A j

ab ωjc,
the irreducible components are explicitly described as follows:

• A j
ab ∈ V1 if and only if A j

ab = 1
2kµaδ

j
b for µa ∈ V ∗;

• A j
ab ∈ V2 if and only if C(abc) = Cabc;

• A j
ab ∈ V3 if and only if A j

ab = 1
2k+1 (µc ωba ω̄

cj − µbδ j
a ) for µs ∈ V ∗;

• A j
ab ∈ V4 if and only if Cabc = Ca(bc), Cabc ω̄

ab = 0 and C(abc) = 0.

Proof. Put g0 = csp(V ). Define

V1 :=
{
A j
ab =

1

2k
µaδ

j
b | µa ∈ V ∗

}
⊂ V ∗ ⊗ csp(V )

Take µs ∈ V ∗ and observe that A j
ab = 1

2kµaδ
j
b defines an element of V ∗ ⊗ csp(V ) such that

A i
ai = µa. The contraction A i

ab 7→ A i
ai is a surjective g0–homomorphism V ∗ ⊗ csp(V ) → V ∗,

thus it gives a g0–invariant decomposition

V ∗ ⊗ csp(V ) = V1 ⊕ V ∗ ⊗ sp(V ), V1
∼= V ∗.

Then, recall that A j
ab 7→ Cabc = A j

ab ωjc defines an isomorphism V ∗ ⊗ sp(V ) ∼= V ∗ ⊗ S2V ∗.
Denote by Sym: V ∗ ⊗ S2V ∗ → S3V ∗ the restriction of the symmetrization map. Again, this is
a surjective map and gives a g0–invariant decomposition

V ∗ ⊗ S2V ∗ = V2 ⊕Ker(Sym), V2
∼= S3V ∗.

In particular, V2 is an irreducible representation of g0. Now consider the g0–homomorphism

iω̄ : V ∗ ⊗ S2V ∗ → V ∗

Cabc 7→ Cabc ω̄
ab

Since ω̄ is skew–symmetric, iω̄ vanishes on V2 and descends to a map Ker(Sym)→ V ∗. Put

V3 :=
{
A j
ab =

1

2k + 1
(µt ωba ω̄

tj − µbδ ja ) | µs ∈ V ∗
}
⊂ V ∗ ⊗ csp(V )

Let be A j
ab ∈ V3. Then, Cabc = A j

ab ωjc = µc ωba + µb ωca is symmetric in {b, c}, so
that 3C(abc) = Cabc + Cbca + Ccab. One can easily verify that Cabc + Ccab + Cbca = 0, so that

Cabc ∈ Ker(Sym). Moreover, Cabc ω̄
ab = µc. We thus see that the restriction of iω̄ to Ker(Sym)

is surjective, hence that

Ker(Sym) = V3 ⊕
(
Ker(Sym) ∩Ker(iω̄)

)
, V3

∼= V ∗.

Finally, V4 := Ker(Sym) ∩ Ker(iω̄) can be seen to be irreducible. More precisely, if λi denotes
the i–th fundamental weight of sp(V ) and λ = λ1 + λ2, then V4 is the irreducible representation
of highest weight λ. �

Lemma 2. The map

Λ2(Λ2
0V
∗) −→ S2V ∗, Fbcde 7→ Fbcde ω̄

cd

is a surjective g0–homomorphism. Moreover,
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(1) F ij
bc ωid ωej ∈ Λ2

0V
∗ ⊗ Λ2

0V
∗ for any F ij

bc ∈ Λ2
0V
∗ ⊗ Λ2

0V ;

(2) (F ij
bc ωid ωej − F ij

de ωib ωcj)ω̄
cd = 2P(be), where Pbe = F ij

bi ωje and P(be) is the sym-
metrization of Pbe.

Proof. An element Fbcde ∈ Λ2
0V
∗ ⊗ Λ2

0V
∗ satisfies

(23)


Fcbde = −Fbcde = Fbced

Fbcde ω̄
bc = 0

Fbcde ω̄
de = 0

and lies in Λ2(Λ2
0V
∗) if it satisfies the additional symmetry property Fdebc = −Fbcde. If this is

the case, then

Fecdb ω̄
cd = −Fdbec ω̄cd = −Fbdce ω̄cd = Fbdce ω̄

dc

holds, showing that Fbcde ω̄
cd is a symmetric

(
0
2

)
–tensor for any Fbcde ∈ Λ2(Λ2

0V
∗). To see that

Fbcde 7→ Fbcde ω̄
cd defines a g0–homomorphism, it is enough to prove that

V ∗ ⊗ V ∗ → R, λcd 7→ λcd ω̄
cd

is a g0–homomorphism. But this is clear, since it is the dual map of ω : V ⊗ V → R and g0 is
defined as the invariance algebra of ω. For φij = φ(ij) ∈ S2V ∗, put

Fbcde = φbd ωce − φcd ωbe − φbe ωcd + φce ωbd.

One easily verifies that Fbcde satisfies the conditions characterizing the elements of Λ2(Λ2
0V
∗).

Moreover,

Fbcde ω̄
cd = −φbd δ de − φcd ω̄cdωbe + 2k φbe − φce δ cb = (2k − 2)φbe

shows that Fbcde 7→ Fbcde ω̄
cd defines a surjective homomorphism Λ2(Λ2

0V
∗)→ S2V ∗.

Now F ij
bc ∈ Λ2

0V
∗ ⊗ Λ2

0V satisfies the analogous conditions as in the first and second rows of

(23) and, in addition, F ij
bc ωij = 0. For such an element, we compute

F ij
bc ωid ωejω̄

de = F ij
bc ωid δ

d
j = F ij

bc ωij = 0

which is enough to conclude that (1) holds. Finally,

(F ij
bc ωid ωej − F ij

de ωib ωcj)ω̄
cd = F ij

bc ωej(−δci )− F
ij

de ωib(−δdj )

= −F ij
bi ωej + F ij

je ωib

= F ij
bi ωje + F ji

ej ωib

proves (2). �

Let D2k = (n,Π) be the dual Darboux algebra, put g0 = csp(V ) and g≤0 = n ⊕ g0. The
differential map ∂ defined by the formula (10) is an homomorphism of graded g0–modules. Each
component in homogeneity i of ∂ is a g0–equivariant linear map, denoted by ∂i. Since n is of
depth two, we have that L(n, g≤0)` = {0} for all ` ≥ 3, hence that the positive graded part
of L(n, g≤0) reduces to homogeneity one and two and ∂ = ∂1 + ∂2. According to Definition
11, a normalization condition for the pair (D2k, g0) is a graded g0–module N = N1 ⊕ N2 such
that L(Λ2n, g≤0)i = Im(∂i) ⊕Ni is the direct sum of g0–modules for i = 1, 2. Observe that g0

is reductive and its center acts diagonalizable on both domain and codomain of ∂i, which are
thus completely reducible representations of g0. This assures the existence of a normalization
condition for the dual Darboux algebra which, as we are going to show, can be made explicit. In
the next Proposition, we analyze ∂1.
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Proposition 11. Let k ≥ 2 be an integer and let (V, ωij) be a symplectic vector space of
dimension 2k defining the dual Darboux algebra D2k = (n = g−1⊕ g−2,Π). Put g0 = csp(V ) and
g≤0 = n ⊕ g0. The first prolongation of D2k is trivial. Moreover, there exists a normalization
condition N1 ⊂ L(Λ2n, g≤0)1 in homogeneity one. Writing L(Λ2n, g≤0)1 as

Λ2g∗−1 ⊗ g−1 ⊕ g∗−1 ⊗ g∗−2 ⊗ g−2 = (Λ2V ∗ ⊗ V )⊕ (V ∗ ⊗ Λ2
0V
∗ ⊗ Λ2

0V )

and denoting by (T t
ij , τ

de
abc ) with T t

ij ∈ Λ2V ∗⊗V and τ de
abc ∈ V ∗⊗Λ2

0V
∗⊗Λ2

0V its elements,
the following conditions characterize N1:

• T t
ij = 0;

• τ st
abs ωtc = τ st

acs ωtb;
• τ st

abc ωsdωet = τ st
ade ωsbωct.

Proof. First, let us analyze the domain and the codomain of the differential map in homo-
geneity one ∂1 : L(n, g≤0)1 → L(Λ2n, g≤0)1. As we saw in the proof of Lemma 1, the contraction
A i
ab 7→ A i

ai gives a g0–invariant direct sum decomposition V ∗⊗csp(V ) = V1⊕
(
V ∗⊗sp(V )

)
with

V1
∼= V ∗. Moreover, recall that the symplectic form determines a g0–isomorphism sp(V ) ∼= S2V ∗

as in (20). Using these facts, we write the domain of ∂1 as direct sum of g0–modules

(24)
L(n, g≤0)1 = (V ∗ ⊗ csp(V ))⊕ (Λ2

0V
∗ ⊗ V )

∼= V ∗ ⊕ (V ∗ ⊗ S2V ∗)⊕ (Λ2
0V
∗ ⊗ V ).

By (1) of Lemma 2, the map

ε : V ∗ ⊗ Λ2
0V
∗ ⊗ Λ2

0V → V ∗ ⊗ Λ2(Λ2
0V
∗),

F ij
abc 7→ F ij

abc ωid ωej − F ij
ade ωib ωcj

is well defined. Also consider the map J : V ∗ ⊗ Λ2(Λ2
0V
∗) −→ V ∗ ⊗ S2V ∗, defined by applying

the identity on the first component and the map from Lemma 2 on the remaining components.
In particular, Lemma 2 shows that J ◦ ε is surjective. We thus get the g0–invariant direct sum
decomposition

V ∗ ⊗ Λ2
0V
∗ ⊗ Λ2

0V = U⊕Ker(J ◦ ε), U ∼= (V ∗ ⊗ S2V ∗)

and, in turn, an isomorphism of g0–modules

(25)
L(Λ2n, g≤0)1 = (Λ2V ∗ ⊗ V )⊕ (V ∗ ⊗ Λ2

0V
∗ ⊗ Λ2

0V )

∼= V ∗ ⊕ (Λ2
0V
∗ ⊗ V )⊕ (V ∗ ⊗ S2V ∗)⊕Ker(J ◦ ε)

The subspace N1 := Ker(J ◦ ε) ⊂ g∗−1 ⊗ g∗−2 ⊗ g−2 is g0–invariant, since it is the kernel
of a g0–homomorphism. By comparing formulas (24) and (25), we see that the direct sum of
L(n, g≤0)1 and N1 is isomorphic to L(Λ2n, g≤0)1.
Write Φ = (A,B) ∈ L(n, g≤0)1 according to the decomposition L(n, g≤0)1 = ⊕2

i=1g
∗
−i ⊗ g−i+1.

Also write ∂1 = E ⊕ F for

E : L(n, g≤0)1 → Λ2g∗−1 ⊗ g−1

E(A,B)(X ∧ Y ) = µA(X ∧ Y )−B ◦Π(X ∧ Y ), X, Y ∈ g−1 = V

and

F : L(n, g≤0)1 → g∗−1 ⊗ g∗−2 ⊗ g−2

F(A,B)(X,Ψ) = A(X) ·Ψ + Π(X ∧B(Ψ))

= TA(X,Ψ) + SB(X,Ψ), X ∈ g−1 = V, Ψ ∈ g−2 = Λ2
0V.



5. DUAL DARBOUX DISTRIBUTIONS 47

Here, · denotes the induced action of A(X) ∈ csp(V ) on Λ2
0V and Π: Λ2g−1 → g−2 the

bracket (19) on the dual Darboux algebra. Now (Id ⊕ J ◦ ε) ◦ ∂1 = E ⊕ (J ◦ ε ◦ F ) is a g0–
homomorphism

(V ∗ ⊗ csp(V ))⊕ (Λ2
0V
∗ ⊗ V )→ (Λ2V ∗ ⊗ V )⊕ (V ∗ ⊗ S2V ∗)

(A,B) 7→ (E(A,B), J ◦ ε ◦ F(A,B))

between isomorphic g0–modules. We now prove that (Id ⊕ J ◦ ε) ◦ ∂1 is injective, hence an
isomorphism. A pair (A,B) satisfies E(A,B) = 0 if and only if µA = B ◦ Π. Hence, for such a
pair (A,B), we see that B is completely determined by A which also satisfies µA(ω̄) = 0. In
abstract index notation, we see from (22) that µA(ω̄) = 0 explicitly writes as

−A i
ie +

1

k
A i
ei = 0.

In the second equation J◦ε◦F(A,B) = 0, we can insert the identity B(Ψ) = B◦Π(Ψ) = µA(Ψ)

for all Ψ ∈ Λ2
0V . We now write J ◦ ε ◦ F(A,µA) = 0 in abstract index notation. First, we analize

separately the two summands F(A,µA) = TA + SµA. Since the induced action is defined as

A(X) · (vb ∧ vc) = A(X)(vb) ∧ vc + vb ∧A(X)(vc), one has

TA(X,Ψ)ij = XaΨbc
(
δ jc A

i
ab − δ ic A

j
ab

)
for all X = (Xa) ∈ V and Ψ = (Ψbc) ∈ Λ2

0V . In the equation above, Ψbc is contracted
with the expression between brackets, which is evidently skew–symmetric in the indices {i, j}
but not in {b, c}. Since Ψbc is skew–symmetric, alternating the content of the brackets in {b, c}
and contracting it with Ψbc gives the same result. In this way, we get the formula

(26) (TA) ij
abc =

1

2

(
δ jc A

i
ab − δ ic A

j
ab − δ

j
b A

i
ac + δ ib A

j
ac

)
which defines an element of V ∗ ⊗ Λ2

0V
∗ ⊗ Λ2

0V . Let us now look at the second summand
SµA(X,Ψ) = Π(X ∧ µA(Ψ)). With respect to our conventions, the trace–free part (19) of
φ = (φij) ∈ Λ2V writes as Π(φ)ij = φij + 1

2kφ
apωap ω̄

ij . Applying Π to

φij =
(
X ∧ µA(Ψ)

)ij
=

1

2

(
XiµA(Ψ)j −XjµA(Ψ)i

)
=

1

2
Ψbc
(
XiA j

[bc] −X
jA i

[bc]

)
and taking into account, once more, that φ[ap]ωap = φapωap, one gets

(
Π(X ∧ µA(Ψ))

)ij
=

1

2
Ψbc
[
XiA j

[bc] −X
jA i

[bc] +
1

k

(
XaA p

[bc]

)
ωap ω̄

ij
]

thus

(27) (SµA) ij
abc =

1

2

(
δiaA

j
[bc] − δ

j
aA

i
[bc] +

1

k
A p

[bc]ωap ω̄
ij
)

and we get the formula for F = F(A,µA):

F ij
abc = (TA) ij

abc + (SµA) ij
abc

=
1

2

(
δ jc A

i
ab − δ ic A

j
ab − δ

j
b A

i
ac + δ ib A

j
ac

)
+

+
1

2

(
δiaA

j
[bc] − δ

j
aA

i
[bc] +

1

k
A p

[bc]ωap ω̄
ij
)
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This can be inserted in the explicit formula for J ◦ ε deduced from (2) of Lemma 2, thus
obtaining

(28)

(J ◦ ε ◦ F )a(be) = F ij
abi ωje + F ij

aei ωjb

= (1− k)(A j
ab ωje +A j

ae ωjb)+

+
1

2
(A j

[ba]ωje +A j
[ea]ωjb)−

1

2
(A i

[bi]ωae +A i
[ei]ωab)

Recall that A j
ab ω̄

ab = 0. Then

(J ◦ ε ◦ F )a(be)ω̄
ab = (1− k)A j

ae (−δ aj ) +
1

2

(
A j

[ea](−δ
a
j ) +A i

[bi]δ
b
e + 2kA i

[ei]

)
= (k − 1)A j

je +
1

2
k
(
A i
ei −A i

ie

)
= (

1

2
k − 1)A i

ie +
1

2
kA i

ei

The matrix of coefficients associated to the homogeneous linear system
−A i

ie +
1

k
A i
ei = 0

(
1

2
k − 1)A i

ie +
1

2
kA i

ei = 0

has nonzero determinant for any integer k ≥ 2, so that A i
ie = A i

ei = 0. Therefore, the solutions
of the system {

µA(ω̄) = 0

J ◦ ε ◦ F(A,µA) = 0

are A c
ab ∈ V ∗⊗ csp(V ) such that A i

ie = A i
ei = 0. Looking at the decomposition into irreducible

components from Lemma 1, we see that there are only two possibilities left for A j
ab , namely

that it lies in V2 or in V4. In both cases, Cabc = A j
ab ωjc is symmetric in the indices {b, c} and

therefore 3C(abc) = Cabc + Cbca + Ccab. Put 2Pa(bc) = (J ◦ ε ◦ F )a(bc). For A c
ab ∈ V4, we have

that Ccab = −Cbca − Cabc and (28) rewrites as

2Pa(bc) =(1− k)(Cabc + Cacb) +
1

4
(Cbac − Cabc + Ccab − Cacb)

=2(1− k)Cabc +
1

4
(Cbac − 2Cabc + Ccab)

=2(1− k)Cabc +
1

4
(Cbac − 2Cabc − Cbca − Cabc)

=(2− 2k − 3

4
)Cabc

If Pa(bc) = 0, then also Pa(bc) + Pb(ac) = 0, which is equivalent to the fact that Cabc is skew–
symmetric in the indices {a, b}. Since Cabc is also symmetric in {b, c}, this condition forces Cabc to
be zero. For A c

ab ∈ V2, the formula (28) rewrites as Pa(bc) = (1−k)Cabc and this vanishes if and
only if Cabc = 0. We thus proved that (Id⊕J ◦ε)◦∂1 is injective, hence a g0–isomorphism. From
this, it follows that the kernel of ∂1, which is by definition the first prolongation of D2k, is trivial
and that N1 = Ker(J ◦ ε) ⊂ V ∗⊗Λ2

0V
∗⊗Λ2

0V is a normalization condition in homogeneity one.
Finally, the explicit formulas for the elements of N1 follow straightforwardly from the definition
of J ◦ ε. �
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Proposition 12. Let k ≥ 2 be an integer and (V, ω) a symplectic vector space of dimension
2k defining the dual Darboux algebra D2k = (n,Π). Denote by g0 = csp(V ) and put g≤0 = n⊕g0.
There exists a normalization condition N2 ⊂ L(Λ2n, g≤0)2 in homogeneity two. Writing the
elements of L(Λ2n, g≤0)2 as

(τ d
abc , T

t
ij` , λ

e
abcd ) ∈

(
Λ2V ∗ ⊗ csp(V )

)
⊕
(
Λ2

0V
∗ ⊗ V ∗ ⊗ V

)
⊕
(
Λ2(Λ2

0V
∗)⊗ Λ2

0V
)

the following constraints characterize N2:

• T t
ijt = 0;

• T b
ija ωbc = −T b

ijc ωba.

Together with the normalization condition N1 in homogeneity one from Proposition 11, we get a
normalization condition N = N1 ⊕N2 for the pair (D2k, g0) on the torsion components.

Proof. Since n = g−1 ⊕ g−2, an element of L(n, g≤0)2 is a linear map n → g≤0 which is
zero on g−1 and restricts to a linear map g−2 → g0. Therefore, L(n, g≤0)2 = g∗−2⊗g0. Moreover,
observe that

L(Λ2n, g≤0)2 =
(
Λ2g∗−1 ⊗ g0

)
⊕
(
g∗−2 ⊗ g∗−1 ⊗ g−1

)
⊕
(
Λ2g∗−2 ⊗ g−2

)
Since g0 = dergr(D2k), restricting f ∈ g0 to g−2 defines a linear map g0 → g∗−2 ⊗ g−2. This
can be tensorized at the left with the identity of g∗−2 and then composed from the left with the
alternating map g∗−2 ⊗ g∗−2 ⊗ g−2 → Λ2g∗−2 ⊗ g−2, thus obtaining χ : g∗−2 ⊗ g0 → Λ2g∗−2 ⊗ g−2.
Consider A ∈ g∗−2 ⊗ g0. By definition, ∂A consists of a g0–valued component

∂A(X,Y ) = −A(Π(X ∧ Y )), X, Y ∈ g−1

and the following components assuming values, respectively, in g−1 and g−2

∂A(Ψ, X) = A(Ψ) ·X, Ψ ∈ g−2, X ∈ g−1

∂A(Ψ,Φ) = A(Ψ) · Φ−A(Φ) ·Ψ, Ψ,Φ ∈ g−2

Putting all together, ∂2 writes as

(29)
∂2 : g∗−2 ⊗ g0 →

(
Λ2g∗−1 ⊗ g0

)
⊕
(
g∗−2 ⊗ g∗−1 ⊗ g−1

)
⊕
(
Λ2g∗−2 ⊗ g−2

)
A 7→

(
−A ◦Π , A , χ(A)

)
From the description of g0 = csp(g−1) given by formula (20), we see that there is a g0–invariant
decomposition g∗−1 ⊗ g−1 = g0 ⊕ V with φ i

j ∈ V if and only if φ t
t = 0 and φ i

j ωi` = −φ i
` ωij .

Therefore,
(
g∗−2⊗g0

)
⊕
(
g∗−2⊗V

)
= g∗−2⊗g∗−1⊗g−1 and looking at the formula (29), we deduce

that

N2 =
(
Λ2g∗−1 ⊗ g0

)
⊕
(
g∗−2 ⊗ V

)
⊕
(
Λ2g∗−2 ⊗ g−2

)
is a normalization condition in homogeneity two. The explicit formulas for the elements of N2,
then, follows straightforwardly from the formulas defining V. �

Remark 3. A normalization condition for a pair (n, g0), in general, is not unique. Looking
at formula (29), one can easily see that

N2 =
(
R · ω̄ ⊗ g0

)
⊕
(
g∗−2 ⊗ g∗−1 ⊗ g−1

)
⊕
(
Λ2g∗−2 ⊗ g−2

)
is also a normalization condition in homogeneity two for D2k. In this case, we put a condition
on the curvature rather than on the torsion component.

Propositions 11 and 12 show that any dual Darboux distribution of rank 2k satisfies the
hypothesis of Theorem 3. We thus have the following

Corollary 1. Let H ⊂ TM be a dual Darboux distribution of even rank. Then, there exists
a canonical linear connection ∇ on TM preserving H.
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Let H ⊂ TM be a dual Darboux distribution of rank 2k and let ∇ be the canonical linear
connection from Corollary 1. As we saw in the proof of Theorem 3, one of the ingredients
obtained from the normalization procedure and defining ∇ is an isomorphism TM ∼= gr(TM)
which is given, together with the canonical projection q : TM → TM/H, by a fibered projection

πH : TM → H. If T∇ ∈ Ω2(TM) is the torsion of ∇, we can project T∇ along πH onto H and
along q onto TM/H to obtain graded torsion components T k ∈ Γ(F ×G0 Nk). In particular,
Propositions 11 and 12 give the explicit formulas for T 1 and T 2, respectively. The torsion and
the curvature of ∇ express the local isomorphism of (M,H) to the homogeneous model of dual
Darboux type D2k, which we are going to describe explicitly.
Let N be the connected and simply connected Lie group with Lie algebra D2k = (n,Π). Clearly,
g−1 ⊂ n generates, via the push–forward along left–translations by elements of N , a left–invariant
distribution D ⊂ TN of type D2k. Denote by G0 the automorphism group of N . Define the
group G0 oN as the cartesian product of G0 and N endowed with the following multiplication
rule:

(φ, n)(ψ, h) = (φ ◦ ψ, n · φ(h))

Here, ◦ denotes the usual composition of group homomorphisms, while · is the group multi-
plication in N . The operation is easily seen to be associative:

((φ, n)(ψ, h))(ϕ, k) = (φ ◦ ψ, n · φ(h))(ϕ, k)

= ((φ ◦ ψ) ◦ ϕ, n · φ(h) · (φ ◦ ψ)(k))

= (φ ◦ (ψ ◦ ϕ), n · φ(h · ψ(k)))

= (φ, n)((ψ, h)(ϕ, k))

The neutral element is (idN , eN ) and (φ−1, φ−1(n−1)) is the inverse element of (φ, n). There are
obvious surjective projections pr1 : G0 oN → G0 and pr2 : G0 oN → N , which can be used to
define a differentiable structure on G0 oN such that the group multiplication defined above is
smooth. Otherwise put, G0 o N has a natural Lie group structure. The elements of the form
(ψ, eN ) for ψ ∈ G0 form a closed subgroup of G0 oN isomorphic to G0 and

rψ(φ, n) := (φ, n)(ψ, eN ) = (φ ◦ ψ, n)

defines a smooth right action of G0 on G0 o N such that pr2(rψ(φ, n)) = pr2((φ, n)) for all
ψ ∈ G0. Since G0 = Aut(n), it is easy to see that the action on each fiber of pr2 is transitive,
hence pr2 : G0 oN → N is a principal bundle with structure group G0.
Let G be a Lie group with Lie algebra g and denote by `g : G → G the left–multiplication by
g ∈ G. Recall that G carries the Maurer–Cartan form ω ∈ Ω1(G, g), defined by

ωg(ξ) = Tg`g−1 · ξ
for all g ∈ G and ξ ∈ TgG. For X ∈ g, denote by LX ∈ X(G) the left–invariant vector field
on G generated by X. For g ∈ G, denote by `∗g and (rg)∗ the pull–back along left and right
translations, respectively. It is a well known fact that the Maurer–Cartan form satisfies the
following conditions:

(1) ω(LX) = X for all X ∈ g;
(2) `∗gω = ω for all g ∈ G;
(3) ωg : TgG→ g is a linear isomorphism for all g ∈ G;
(4) (rg)∗ω = Ad(g−1) ◦ ω for all g ∈ G;

Moreover, ω satisfies the Maurer–Cartan equation

dω(ξ, η) + [ω(ξ), ω(η)] = 0

for all ξ, η ∈ X(G). Consider now the Lie group G = G0 oN and the Maurer–Cartan form ω of
G from above. Then, (pr2 : G0 o N → N,ω) is the homogeneous model for Cartan geometries
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of type (G,G0) and N carries a dual Darboux distribution of rank 2k. Clearly, the Lie algebra
of G coincides with g = g0 ⊕ n and the direct sum decomposition is invariant with respect to
the action of G0 = Aut(n). Therefore, if we write ω = γ + θ ∈ Ω1(G, g0 ⊕ n) according to the
decomposition of g, we see that each term has to be G0–equivariant. From conditions (1) and
(3), we see that γ ∈ Ω1(G, g0) trivializes the vertical bundle of pr2 : G0 o N → N and that
θ ∈ Ω1(G, n) annihilates by insertion of a vertical vector field, hence it induces isomorphisms
TnN → n for n ∈ N . In particular, γ ∈ Ω1(G, g0) is a connection form on G inducing a linear
connection on TN preserving D, whose torsion and curvature in positive homogeneity vanish.



CHAPTER 3

Generic rank four distributions in dimension eight

In Chapter 1, we classified the generic types of one–step bracket–generating distributions
H ⊂ TM of rank four. In particular, Theorem 2 proves the existence of two distinct generic
types for dim(M) = 8, corresponding to the cases of indefinite and definite nondegenerate qua-
dratic form on a real two–dimensional plane. According to the usual terminology for quadratic
forms, we will speak about hyperbolic and elliptic (4, 8)–distributions.
The main subject of the present Chapter is the description of hyperbolic and elliptic (4, 8)–
distributions. The model algebra for each type will be described as the negative graded part
of a |2|–grading on a real form of sl(5,C). In particular, we will underline properties of the
model algebra which correspond, via the associated bundle construction, to intrinsic proper-
ties of the distributions. An argument of parabolic geometry allows to completely determine
the fundamental invariants of the distribution. First, we will show that such structures are
equivalent to normal, regular parabolic geometries. As we know from the general theory, to
any such parabolic geometry one can associate a harmonic curvature which uniquely determines
the fundamental invariants of the underlying structure. Kostant’s Theorem describes the tar-
get space of the harmonic curvature, thus giving the list of invariants for each generic type of
(4, 8)–distributions. Finally, the results from parabolic geometry will be applied to another inter-
esting problem, namely the explicit description of submaximally symmetric models of hyperbolic
(4, 8)–distributions.

1. A grading on sl(5,C)

Consider the complex simple Lie algebra g = sl(5,C). The following

(30)

 g0 g1 g2

gE−1 g0 g1

g−2 gF−1 g0


with g0 divided in three square blocks of size two-one-two, describes a |2|–grading g =

⊕2
i=−2 gi.

In particular, g−1 = gE−1 ⊕ gF−1 is the direct sum of two–dimensional subspaces. An element of
g0 writes as A 0 0

0 −tr(A+B) 0
0 0 B


for some A,B ∈ gl(2,C). We will denote it by (A,B) ∈ g0. Moreover, we will think about
elements e ∈ gE−1

∼= (C2)∗ and f ∈ gF−1
∼= C2, respectively, as row and column vectors. Elements

of g−1 and g−2 will be briefly denoted, respectively, by (e, f) ∈ gE−1 ⊕ gF−1 and by Y ∈ gl(2,C).
Consider Xj = (ej , fj) ∈ g−1 for j = 1, 2. The bracket restricts to a surjective bilinear map

(31) g−1 × g−1 → g−2, [X1, X2] = [(e1, f1), (e2, f2)] = f1 ⊗ e2 − f2 ⊗ e1

In particular, observe that

[gE−1, g
E
−1] = 0 = [gF−1, g

F
−1], g−2

∼= gE−1 ⊗ gF−1
∼= gl(2,C).

52
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Moreover,
g0 × g−1 → g−1, [(A,B), (e, f)] = (−λe− eA, λf +Bf)

g0 × g−2 → g−2, [(A,B), Y ] = BY − Y A
where λ = tr(A+ B). In particular, g−1 = gE−1 ⊕ gF−1 is a direct sum of g0–modules, which can
be seen as the direct sum of the standard representation of gl(2,C) and of its dual. Moreover,
the bracket restricted to the subalgebra g0 ⊂ g is given by the formula

g0 × g0 → g0, [(A1, B1), (A2, B2)] = ([A1, A2], [B1, B2])

which shows that the adjoint representation of g0 coincides with the direct sum of the adjoint
representation of gl(2,C) and its dual.

Recall the classification for the generic types of (4, n)–distributions from Theorem 2 of Chap-
ter 1. Let V,W be real four–dimensional vector spaces. The generic types in dimension eight are
the open orbits of surjective linear maps Λ2V → W for the natural action of GL(V )×GL(W ),
equivalent to the open GL(V )–orbits of their kernels in a Grassmannian. Theorem 2 character-
izes the open GL(V )–orbits of linear subspaces of Λ2V in terms of nondegenerate restrictions of
the wedge product, thus proving the existence of two distinct open orbits of (4, 8)–type, corre-
sponding to the cases of indefinite and definite nondegenerate quadratic form in dimension two.
According to the usual terminology for quadratic forms, we will refer to them as hyperbolic and
elliptic types.
Each type will be described in the following sections. First, we describe a model algebra that
is a representative for the orbit. Both hyperbolic and elliptic models come from the choice of a
|2|–grading on a real form for sl(5,C), respectively the split–real form sl(5,R) and the real form
su(3, 2). Then, we will characterize the orbit via some properties which, finally, will be shown to
extend to the corresponding distributions. We start dealing with the hyperbolic case.

2. Hyperbolic case

2.1. Model algebra. Since g = sl(5,R) is the split–real form for sl(5,C), the grading (30)
on the complex simple Lie algebra sl(5,C) is the complexification of a grading on g admitting a
completely analogous description. By replacing C with R, the same remarks about the grading
(30) from Section 1 hold for the grading on the real algebra g. The bracket–generating layer is
the direct sum g−1 = gE−1⊕gF−1 of real two–dimensional g0–modules, where g0 is a real reductive
Lie algebra with two–dimensional center and semisimple part gss0

∼= sl(2,R) ⊕ sl(2,R). Both
g−1, g−2 ⊂ g are four–dimensional real subspaces. Let {v1, v2} ⊂ R2 be the standard basis and
let {v∗1 , v∗2} ⊂ (R2)∗ be the dual basis. In the same notation as in (31), we write the elements in
g−1 as (e, f) ∈ gE−1 ⊕ gF−1

∼= (R2)∗ ⊕ R2. There are standard bases

{E1, E2} = {(v∗1 , 0), (v∗2 , 0)}, {F1, F2} = {(0, v1), (0, v2)}
for the g0–submodules gE−1, g

F
−1 ⊂ g−1, respectively. The kernel of the bracket Λ2g−1 → g−2 is

a linear subspace P ⊂ Λ2g−1 of dimension two and formula (31) shows that

P = sp{E1 ∧ E2} ⊕ sp{F1 ∧ F2} = Λ2gE−1 ⊕ Λ2gF−1.

Let us look at the restriction of the wedge product to P . As shown in the proof of Proposition
3, the wedge product Λ2g−1 × Λ2g−1 → Λ4g−1 together with a choice of volume form defines
a quadratic form β on Λ2g−1. Consider the volume form vol = E1 ∧ E2 ∧ F1 ∧ F2 and the
corresponding quadratic form β. Then Λ2gE−1,Λ

2gF−1 ⊂ P are null lines for β such that Λ2gE−1 ∧
Λ2gF−1 is nonzero, which shows that β|P has signature (1, 1). We thus see that g− ⊂ sl(5,R) is a
model for the hyperbolic (4, 8)–type appearing in the classification of Theorem 2. In particular
if (M,H) is a regular pair of type g−, then H ⊂ TM is an hyperbolic (4, 8)–distribution.
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For later use, we explicitely describe a basis of g−1. Again, {v1, v2} ⊂ R2 denotes the standard
basis and {v∗1 , v∗2} ⊂ (R2)∗ the dual basis. The following set gives a basis of g−1:

(32)

Y1 = (v∗1 , v1)

Y2 = (v∗1 ,−v1)

Y3 = (v∗2 , v2)

Y4 = (v∗2 ,−v2)

For Z ∈ g−1, denote by ad(Z) : g−1 → g−2 the restriction of the adjoint action. The basis
above, then, satisfies

I = Im(ad(Y1)) = Im(ad(Y2)) and J = Im(ad(Y3)) = Im(ad(Y4)).

With respect to the choice of coordinates on g−2:(
y1 y2

y3 y4

)
the three–dimensional planes I and J are respectively given by {y4 = 0} and {y1 = 0}.

Moreover, J = sp{[Y2, Y3], [Y2, Y4], [Y3, Y4]} and the following bracket relations hold:

[Y1, Y3] = −[Y2, Y4], [Y1, Y4] = −[Y2, Y3].

2.2. Characterization of the hyperbolic orbit.

Definition 15. Let V,W be real four–dimensional vector spaces and F : Λ2V → W a
surjective linear map. To a nonzero element X ∈ V , we associate the linear map

iXF : V →W, iXF (Y ) := F (X ∧ Y ) for all Y ∈ V.
Denote by Im(iXF ) ⊂ W the linear subspace given by the image of iXF . We will shortly refer
to the dimension of Im(iXF ) as the rank of X with respect to F .

Recall the grading on g = sl(5,R) described in 2.1. In the same notation introduced there, let
{E1, E2} and {F1, F2} be the standard bases for the g0–submodules gE−1, g

F
−1 ⊂ g−1, respectively.

Using formula (31), we easily see that all elements of the basis {E1, E2, F1, F2} for g−1 are of
rank two with respect to the restriction [ , ] : Λ2g−1 → g−2 of the bracket of g. For X ∈ g−1, we
see that iX = ad(X) : g−1 → g−2 is the restriction of the adjoint action of X to g−1. The same
formula shows that the basis (32) of g−1 is given by elements of rank three with respect to [ , ].
Let V,W be real four–dimensional vector spaces and let F : Λ2V → W be a surjective linear
map. Since iXF (X) = F (X ∧X) = 0 for X ∈ V , the kernel of iXF is nontrivial, hence every
nonzero element X ∈ V has at most rank three. It is easy to see that if the wedge product
is nondegenerate on KerF ⊂ Λ2V , the admissible values for the rank of a nonzero element
X ∈ V are two and three. Indeed, if X1 is a nonzero vector of V of rank one for F , it can
be completed to a basis {X1, . . . , X4} of V such that iX1F (X2) = iX1F (X3) = 0. Otherwise
put, B = {X1 ∧ X2, X1 ∧ X3} is a basis of P = KerF . Put vol = X1 ∧ X2 ∧ X3 ∧ X4 and as
in Proposition 3, denote by β : Λ2V → R the quadratic form defined by φ ∧ φ = β(φ)vol for
φ ∈ Λ2V . Then, β|P computed in the basis B is zero, hence degenerate, which is a contradiction.
The notion of rank allows to formulate the characterization of the hyperbolic orbit in Theorem
4. To prove the Theorem, we will need the following preliminary result.

Proposition 13. Let V be a real four–dimensional vector space, P ⊂ Λ2V a linear subspace
of dimension two and consider the induced action of GL(V ) on the Grassmannian Gr(2,Λ2V )
(see Proposition 2). If P is in the hyperbolic GL(V )–orbit, there exists a basis {X1, . . . , X4} of
V such that P = sp{X1 ∧X2} ⊕ sp{X3 ∧X4}.
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Proof. If P ⊂ Λ2V is a two–dimensional hyperbolic plane, then P contains two isotropic
lines `1, `2 such that P = `1⊕ `2 and ω1 ∧ω2 is nonzero for every choice of generators ω1 and ω2

for `1 and `2, respectively. Let {Y1, . . . , Y4} be a basis of V . Then Q = sp{Y1∧Y2}⊕ sp{Y3∧Y4}
is an hyperbolic linear subspace Q ⊂ Λ2V of dimension two. By Proposition 4, there exists
φ ∈ O(3, 3) such that φ · Q = P . Since φ preserves the scalar products, it sends the null line
generated by Y1 ∧ Y2 in one of the two null lines contained in P . We can thus suppose that `1 is
generated by φ · (Y1 ∧ Y2) and that `2 is generated by φ · (Y3 ∧ Y4). Now by Proposition 3, the
action of φ is the induced action of an element of GL(4,R). Therefore, there exists A ∈ GL(4,R)
such that

P = `1 ⊕ `2 = sp{AY1 ∧AY2} ⊕ sp{AY3 ∧AY4}.
Clearly, putting Xi = AYi for i = 1, . . . , 4 we obtain a basis {X1, . . . , X4} of V proving the
statement. �

Theorem 4. (Isotropic subspaces of rank–two elements) Let V,W be real four–dimensional
vector spaces and let F : Λ2V → W be a surjective linear map. If KerF ⊂ Λ2V is hyperbolic,
there exist Y,Z ∈ V linearly independent of rank two with respect to F such that

V = Ker(iY F )⊕Ker(iZF ).

Moreover, the rank–two elements in V are exactly the elements of the two subspaces.

Proof. If KerF ⊂ Λ2V is hyperbolic, by Proposition 13 there exists a basis B = {X1, . . . , X4}
of V such that KerF = sp{X1∧X2}⊕sp{X3∧X4}. The identities F (X1∧X2) = 0 = F (X3∧X4)
follow straightforwardly and imply that every Xi is a rank–two element, as well as the direct
sum decomposition

V = sp{X1, X2} ⊕ sp{X3, X4} = Ker(iX1
F )⊕Ker(iX3

F ).

The following argument shows that the decomposition is canonical. Every element lying in one
of the subspaces Ker(iX1

F ) = sp{X1, X2} and Ker(iX3
F ) = sp{X3, X4} has evidently rank two.

Moreover, every rank–two element of V lies in one of these two subspaces. To see this, first write
S ∈ V as

S = aX1 + bX2 + cX3 + dX4.

Then, observe that E = {F (X1 ∧X3), F (X1 ∧X4), F (X2 ∧X3), F (X2 ∧X4)} is a basis of W and
iSF : V →W writes with respect to B, E as

−c 0 a 0
−d 0 0 a
0 −c b 0
0 −d 0 b


If S is a rank–two vector, all (3 × 3)–minors from the matrix above have zero determinant.
Imposing this condition leads to the following system of equations on the indeterminates a, b, c, d:

a2c = 0

a2d = 0

b2c = 0

b2d = 0

whose solutions (a, b, c, d) must satisfy at least one of the two following systems:{
a = 0

b = 0
and

{
c = 0

d = 0
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If (a, b, c, d) satisfies the first linear system, then S ∈ Ker(iX3F ), while S ∈ Ker(iX1F ) if (a, b, c, d)
satisfies the second linear system, thus proving the statement. �

Proposition 14. Let V,W be real vector spaces of dimension four and F : Λ2V → W a
surjective linear map of hyperbolic type. Let Y, Z ∈ V be linearly independent elements of rank
two with respect to F such that

V = Ker(iY F )⊕Ker(iZF )

is the direct sum decomposition from Theorem 4 and denote by [ , ] : Λ2g−1 → g−2 the bracket
on the hyperbolic model algebra g− = g−1 ⊕ g−2 ⊂ sl(5,R) from 2.1. Then, there exist linear
isomorphisms φ : g−1 → V and ψ : g−2 →W such that

ψ−1 ◦ F ◦ Λ2φ = [ , ]

and φ maps gE−1 ∪ gF−1 to Ker(iY F ) ∪Ker(iZF ).

Proof. If F : Λ2V → W is hyperbolic, by Proposition 13 there exists a basis B =
{X1, . . . , X4} of V such that Ker(F ) = sp{X1 ∧ X2} ⊕ sp{X3 ∧ X4}. Consider the standard
bases of rank–two elements {E1, E2} and {F1, F2} for the g0–submodules gE−1, g

F
−1 ⊂ g−1, re-

spectively, from 2.1. Recall that

Ker([ , ]) = sp{E1 ∧ E2} ⊕ sp{F1 ∧ F2} = Λ2gE−1 ⊕ Λ2gF−1.

For i = 1, 2 put X̃i = Ei and X̃i+2 = Fi. Now define φ : g−1 → V by putting φ(X̃i) = Xi. By
construction, φ maps gE−1 ∪ gF−1 to Ker(iY F )∪Ker(iZF ). Furthermore, Λ2φ restricts to a linear
isomorphism Ker([ , ])→ Ker(F ) and it thus descends to an isomorphism

Λ2φ : Λ2g−1/Ker([ , ])→ Λ2V/Ker(F ).

Clearly, F and [ , ] descend to linear isomorphisms

F : Λ2g−1/Ker([ , ])→ g−2, [ , ] : Λ2V/Ker(F )→W.

Then, putting

ψ := F ◦ Λ2φ ◦ [ , ]
−1
.

defines a linear isomorphism ψ : g−2 →W such that ψ−1 ◦ F ◦ Λ2φ = [ , ]. �

As a Corollary of Proposition 14, any grading–preserving isomorphism of the hyperbolic
model algebra g− ⊂ sl(5,R) is the adjoint action of an element of G0, where G0 is the connected
and simply connected Lie group whose Lie algebra is the component g0 ⊂ sl(5,R) of degree zero.
Passing to the Lie algebra level, we obtain the following

Corollary 2. Let be g = sl(5,R) and let g =
⊕2

i=−2 gi be the grading described in 2.1.
Then, the adjoint action of g0 on g− defines an isomorphism g0

∼= dergr(g−).

Let H ⊂ TM be a (4, 8)–distribution and let L : Λ2H → Q be the Levi bracket associated
to H. Consider a point x0 ∈ M . Recall that L determines, by Proposition 2 (a), an orbit
Ox0 ⊂ Ls(Λ

2R4,R4) for the natural action of GL(4,R) × GL(4,R) on the set Ls(Λ
2R4,R4) of

surjective linear maps. We say that H is hyperbolic (respectively elliptic) if Ox is the hyperbolic
(respectively elliptic) orbit for all x ∈M .
In order to discuss the local properties of generic (4, 8)–distributions, it will be useful to introduce
the following terminology. Let H ⊂ TM be a generic (4, 8)–distribution, U ⊂M an open subset
and let ξ ∈ Γ(H) a local smooth section defined on U . Let be k ∈ {2, 3}. We say that ξ is a
section of rank k on U if ξ(x) has rank k with respect to Lx : Λ2Hx → Qx for all x ∈ U . Suppose
that ξ is a section of rank k on U and denote by iξL : H → Q the vector bundle homomorphism
obtained by inserting ξ as first variable in L. Then, Im(iξL) ⊂ Q is a smooth subbundle of rank
k defined on U .
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Proposition 15. Let H ⊂ TM be an hyperbolic (4, 8)–distribution. Then, locally around
each point x ∈ M , there exist smooth subbundles E,F ⊂ H of rank two such that H = E ⊕ F
and Ker(L) = Λ2E ⊕ Λ2F ⊂ Λ2H.

Proof. Denote by [ , ] : Λ2g−1 → g−2 the bracket (31) on the hyperbolic model algebra
g− ⊂ sl(5,R) from 2.1. Let be x0 ∈ M . By Proposition 14, there exist linear isomorphisms
φx0 : g−1 → Hx0 and ψx0 : g−2 → Qx0 such that

ψx0
([X,Y ]) = Lx0

(φx0
(X), φx0

(Y )), X, Y ∈ g−1.

Let {Y1, . . . , Y4} be the basis (32) for g−1, whose elements are of maximal rank three. Recall
that the chosen basis satisfies two linearly independent conditions, namely

[Y1, Y3] = −[Y2, Y4], [Y1, Y4] = −[Y2, Y3].

Let {ξ1, . . . , ξ4} be a local frame for H, defined around x0, such that

φx0(Yi) = ξi(x0), i = 1, . . . , 4.

Then, each ξi(x0) ∈ Hx0
is an element of maximal rank three with respect to iξiLx0

. Fix
i ∈ {1, . . . , 4}. By construction, the set

{L(ξi, ξj) | j 6= i}

consists of three sections of Q, whose values in x0 are linearly independent. Therefore, their
values at each point of an open neighborhood Ui ⊂ M of x0 are linearly independent, so that
the set above is a frame for the smooth subbundle Ii := Im(iξiL) ⊂ Q of rank three defined on

Ui. Put U =
⋂4
i=1 Ui. Then, we defined subbundles I1, . . . , I4 ⊂ Q of rank three on U .

Several remarks follow straightforwardly from the properties of the basis {Y1, . . . , Y4}. First of
all, the identities I1(x0) = I2(x0) and I3(x0) = I4(x0) follow from (33). Moreover, the subset

{L(ξ2, ξ3),L(ξ2, ξ4),L(ξ3, ξ4)} ⊂ Γ(Q)

evaluated at x0 coincides with a basis for the three–dimensional vector space I3(x0) = I4(x0),
hence its elements are linearly independent around x0. Up to shrinking U , we can thus suppose
that the subset of Γ(Q) above defines a smooth subbundle W ⊂ Q of rank three on U . Observe
that I1 ∩W ⊂ Q is a smooth subbundle of rank two on U . Indeed, since L is surjective, the sum
I1 +W generates the whole quotient bundle Q on U . Using this fact and Grassmann formula,
for x ∈ U we see that

dim((I1)x ∩Wx) = dim((I1)x) + dim(Wx)− dim(Qx) = 2.

Now we modify the initial frame {ξ1, . . . , ξ4} to another frame for H of rank–two sections, defined
locally around x0. Consider ζ1, ζ2 local smooth sections of I1 ∩W such that

(33)

{
ζ1(x0) = Lx0

(ξ2, ξ3) = −Lx0
(ξ1, ξ4)

ζ2(x0) = Lx0
(ξ2, ξ4) = −Lx0

(ξ1, ξ3)

Since {ζ1(x0), ζ2(x0)} is a basis for I1(x0) ∩ W(x0) we can suppose, up to shrinking U , that
{ζ1, ζ2} is a local frame for I1 ∩W on U . There exist smooth functions (gij) : U → R for i = 1, 2
and j = 1, 2, 3 such that the conditions ζ1, ζ2 ∈ Γ(W) write as an homogeneous linear system of
two equations

ζi = gi1 L(ξ2, ξ3) + gi2 L(ξ2, ξ4) + gi3 L(ξ3, ξ4), i = 1, 2.

Evaluating the system above at x0, we deduce from (33) the value of the matrix (gij) at x0:

(34) (gij(x0)) =

(
1 0 0
0 1 0

)
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The left-hand minor m of order two of (gij) has determinant 1 in x0. Possibly shrinking U ,
we can thus suppose that m is invertible on U . Therefore, multiplying both sides of the linear
system at the left by m−1 and recalling that ζi ∈ I1 leads to

L(ξ2, ξ3)+A L(ξ3, ξ4)

L(ξ2, ξ4)+B L(ξ3, ξ4)

}
∈ I1

with A,B : U → R smooth functions, whose value at x0 is zero. Now put

ξ̃2 := ξ2 +Bξ3 −Aξ4
thus obtaining a section of H with the property that Ĩ2 ⊂ I1, where Ĩ2 := Im(iξ̃2L) ⊂ Q. Since

ξ̃2(x0) = ξ2(x0) is an element of rank three, we see that up to shrinking U once more, ξ̃2 is a

section of rank three on U such that Ĩ2 = I1 on U .
Denote byW ′ ⊂ Q the subbundle generated by {L(ξ1, ξ4),L(ξ2, ξ4),L(ξ1, ξ2)}. Starting with the

intersection I3 ∩ W ′, one can argue in the same way to get a rank–three section ξ̃4 of H such
that ξ̃4(x0) = ξ4(x0) and Ĩ4 := Im(iξ̃4L) = I3 on U . Without loss of generality, we can thus

assume that {ξ1, ξ2, ξ3, ξ4} is a frame for H of rank–three sections defined on U , which satisfies
(33) and which determines the pair of hyperplanes

(35) I2 = I1, I4 = I3

and
Q = I1 ⊕R34

= I3 ⊕R12

hold on U . Here, Rij denotes the line bundle generated by L(ξi, ξj).
For each hyperplane from (35), we find ζ1, ζ2 ∈ Γ(H) of rank two such that Im(iζiL) is contained
in the hyperplane for both i = 1, 2, as we are going to show. This will be proved now for I2 = I1.
The argument should be repeated analogously for the second choice I4 = I3 of hyperplane.
Since I2 = I1, there exist smooth functions a, b, c, d, e, f : U → R such that{

L(ξ2, ξ3) = a L(ξ1, ξ2) + b L(ξ1, ξ3) + c L(ξ1, ξ4)

L(ξ2, ξ4) = d L(ξ1, ξ2) + e L(ξ1, ξ3) + f L(ξ1, ξ4)

holds. Now (33) shows that a, b, d, f vanish at x0, while c(x0) = e(x0) = −1. Therefore, the
sections of H

ξ̄3 = ξ3 + aξ1

ξ̄4 = ξ4 + dξ1

are still of rank three around x0 and {ξ1, ξ2, ξ̄3, ξ̄4} is a local frame for H, satisfying two inde-
pendent linear conditions, namely

(36)

{
L(ξ2, ξ̄3) = c L(ξ1, ξ̄4) + b L(ξ1, ξ̄3)

L(ξ2, ξ̄4) = f L(ξ1, ξ̄4) + e L(ξ1, ξ̄3)

To simplify the notation, rename by {ξ1, . . . , ξ4} := {ξ1, ξ2, ξ̄3, ξ̄4} the local frame for H of
rank–three elements around x0, which satisfies I2 = I1 and (36) with c(x0) = −1 = e(x0)
and b(x0) = 0 = f(x0). Mapping ξ4 7→ cξ4 preserves all the properties satisfied by the frame
{ξ1, . . . , ξ4}. For this reason, we can assume that the system (36) writes as

(37)

{
L(ξ2, ξ3) = L(ξ1, ξ4) + b L(ξ1, ξ3)

L(ξ2, ξ4) = f L(ξ1, ξ4) + ec L(ξ1, ξ3)
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with ec(x0) = 1. Last system shows that

θ1 = ξ2 ∧ ξ3 − ξ1 ∧ ξ4 − b ξ1 ∧ ξ3
θ2 = ξ2 ∧ ξ4 − f ξ1 ∧ ξ4 − ec ξ1 ∧ ξ3

is a frame for Ker(L) ⊂ Λ2H. The volume form ξ1 ∧ ξ2 ∧ ξ3 ∧ ξ4 induces a smooth section of
S2(Λ2H∗), whose restriction to Ker(L) writes in the frame {θ1, θ2} as(

−2 −f + b
−f + b 2ec

)
The determinant of the matrix above is a smooth function on U , which is strictly negative by
our hypothesis on the signature. Equivalently,

D = ec+
(−f + b

2

)2
> 0

at each point of U . Let H ′ ⊂ H be the smooth subbundle defined by {ξ1, ξ2}. For η ∈ Γ(H ′)
and ξ ∈ Γ(H), L(η, ξ) ∈ I1 and its equivalence class in I1/R12 only depends on the equivalence
class of ξ in H/H ′. Therefore, putting

`η(ξ modH ′) := L(η, ξ) modR12, ξ ∈ Γ(H)

defines an homomorphism of vector bundles `η : H/H ′ → I1/R12. Let be η ∈ Γ(H ′) and
x1, x2 : U → R smooth functions such that η = x1ξ1 + x2ξ2. Then, compute `η and substitute
(37), thus obtaining

ξ3 7→ x1 L(ξ1, ξ3) + x2

[
L(ξ1, ξ4) + b L(ξ1, ξ3)

]
ξ4 7→ x1 L(ξ1, ξ4) + x2

[
f L(ξ1, ξ4) + ec L(ξ1, ξ3)

]
Clearly, {ξ3, ξ4} and {L(ξ1, ξ3),L(ξ1, ξ4)} are frames for H/H ′ and I1/R12, respectively. With
respect to these frames, `η writes as a matrix of functions with determinant

det(`η) = (x1 + bx2)(x1 + fx2)− ecx2
2

= x2
1 + (b+ f)x1x2 + (bf − ec)x2

2

The existence of a rank–two η ∈ Γ(H ′) is equivalent to the vanishing of the determinant of a
matrix representing `η. For η nonzero, one coefficient between x1, x2 is nonzero. Now det(`η) = 0
is a quadratic form in x1, x2 and we can thus rewrite it as an equation of degree two in one
variable. The discriminant associated to it

∆

4
= ec+

(−f + b

2

)2

= D

is strictly positive everywhere and

η+ = Λ+η1 + η2, η− = Λ−η1 + η2, Λ± = −−b+ c

2
±
√

∆

4

are two local sections of H ′ of rank two around x0. Once we found η1 ∈ Γ(H ′) of rank two, the
kernel of iη1L : H → Q is a smooth subbundle E := Ker(iη1L) ⊂ H of rank two and we can
choose a section η2 such that {η1, η2} is a frame for E. Repeating the argument from (35) for
I4 = I3, one gets a frame {η3, η4} for the subbundles F := Ker(iη3L) ⊂ H of rank–two elements.
By construction, H = E ⊕ F and Ker(L) = Λ2E ⊕ Λ2F locally around x0, which concludes the
proof. �

Let be g = sl(5,R) and let g =
⊕2

i=−2 gi be the grading described in 2.1, so that g− ⊂ sl(5,R)
is the hyperbolic model algebra. The fact that (M,H) is a regular pair of type g− is easily seen to
be equivalent to the existence of local decompositions for H as in Proposition 15. First, consider
a regular pair (M,H) of type g−. Denote by F → M the adapted frame bundle associated to
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(M,H) and by G0 = Autgr(g−) the structure group of F → M . Recall that H ∼= F ×G0 g−1

and that L : Λ2H → TM/H corresponds to the bracket [ , ] : Λ2g−1 → g−2 via the associated
bundle construction. Now recall from 2.1 that

Ker([ , ]) = Λ2gE−1 ⊕ Λ2gF−1

and observe that, by Corollary 2, gE−1 and gF−1 are G0–submodules of g−1. Therefore they
correspond, via the associated bundle construction, to smooth subbundles E,F ⊂ H of rank two
such that H = E ⊕ F and Ker(L) = Λ2E ⊕ Λ2F . Conversely, if subbundles E,F ⊂ H of rank
two satisfying the conditions above exist, they determine a trivialization of (gr(TM),L) with
standard fiber g− ⊂ sl(5,R). If this is the case, indeed, using the first condition we write Λ2H
as the direct sum

Λ2H = Λ2E ⊕ E ⊗ F ⊕ Λ2F

Since L : Λ2H → TM/H is a surjective homomorphism of vector bundles with kernel Λ2E⊕Λ2F ,
it descends to a fibered isomorphism TM/H ∼= E ⊗ F . Therefore, (gr(TM),L) is locally trivial
with standard fiber g− ⊂ sl(5,R).
Aware of this equivalence, we can thus rephrase the result of Proposition 15 by saying that if
H ⊂ TM is an hyperbolic (4, 8)–distribution, then (M,H) is a regular pair of type g− ⊂ sl(5,R).

Theorem 5. Let H ⊂ TM be a (4, 8)–distribution. Then H is hyperbolic if and only if
locally around each point there exist two smooth subbundles of H of rank two, say E and F , such
that H = E ⊕ F and satisfying the following properties:

• [ξ1, ξ2] ∈ Γ(H) for every ξ1, ξ2 ∈ Γ(E)
• [η1, η2] ∈ Γ(H) for every η1, η2 ∈ Γ(F )
• The Levi bracket induces an isomorphism E ⊗ F ∼= TM/H

Equivalently, H is hyperbolic if and only if (M,H) is a regular pair of type g− ⊂ sl(5,R) described
in 2.1.

Proof. Suppose that H is hyperbolic. By Proposition 15, there locally exist smooth sub-
bundles E,F ⊂ H of rank two satisfying H = E ⊕ F and Ker(L) = Λ2E ⊕ Λ2F , so that L
descends to an isomorphism TM/H ∼= E ⊗ F . By definition of L, the second condition just
means that the bracket of any two smooth sections of E lies in Γ(H) and the analogous state-
ment for F . Conversely, the existence of such a local decomposition for H is equivalent to the fact
that (M,H) is a regular pair of hyperbolic type g− ⊂ sl(5,R), which concludes the proof. �

3. Elliptic case

Let p, q ≥ 0 be integers such that n = p + q ≥ 1 and let W be a complex vector space of
dimension n. A Hermitian form on W is a map 〈 , 〉 : W ×W → C which is linear in the first

argument, anti–linear in the second argument and satisfying 〈z, w〉 = 〈w, z〉 for all z, w ∈ W .
Observe that if 〈 , 〉 is a complex Hermitian form, then β(z) := 〈z, z〉 ∈ R for all z ∈ W defines
a quadratic form on the real vector space underlying W . If β is a quadratic form of signature
(2p, 2q), we say that 〈 , 〉 is a complex Hermitian form of signature (p, q). Let 〈 , 〉 be a complex
Hermitian form on W = Cn of signature (p, q). The set of linear isomorphisms φ : Cn → Cn such
that 〈φ(z), φ(w)〉 = 〈z, w〉 for all z, w ∈ Cn is a group. If we represent any linear isomorphism φ
preserving 〈 , 〉 via a matrix A ∈ GLn(C) and we require, in addition, that A has determinant
one, we select a Lie subgroup of GLn(C), the so–called special unitary group of signature (p, q).
Now if {e1, . . . , en} is a basis of Cn, putting Jij := 〈ei, ej〉 for i, j = 1, . . . , n defines J ∈ Mn(C)

and 〈 , 〉 can be written via matrix–vector multiplication as 〈z, w〉 = zt · J · w for all z, w ∈ Cn.
The real vector space

su(p, q) = {M ∈ gl(n,C) | tr(M) = 0, M∗J = −JM},
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endowed with the usual commutator, is a real Lie algebra and coincides with the Lie algebra of
the special unitary group of signature (p, q). Here, M∗ denotes the conjugate transpose matrix
of M . It is a well known fact that for all integers p, q ≥ 0 such that n = p + q ≥ 1, su(p, q) is
a real form for sl(n,C), which is non–isomorphic to the split–real form sl(n,R) (see pag. 207,
[10]).
Let V be a real vector space. Putting z(v ⊗ q) := v ⊗ (zq) for all v ∈ V and z, q ∈ C defines a
multiplication for complex scalars, hence a structure of complex vector space, on the real vector
space V ⊗R C. We will denote it by V C = V ⊗R C and we will refer to it as the complexification
of V . Clearly, V identifies via v 7→ v ⊗ 1 with a real linear subspace of V C and any real
endomorphism of V extends to a unique C–linear endomorphism of V C.
Let g be a real Lie algebra. Its complexification gC admits a natural structure of complex Lie
algebra, obtained by extending the bracket on g to a C–bilinear map. Moreover, g is semisimple
if and only if gC is semisimple. A finite–dimensional real representation of g is an homomorphism
of real Lie algebras g → glR(V ), where V is a finite–dimensional real vector space. A complex
representation is a real homomorphism g → glC(W ), where W is a finite–dimensional complex
vector space. Otherwise put, g acts on V by C–linear maps. Any real representation ρ : g →
glR(V ) induces a complex representation g→ glC(V C) by extending the R–linear map ρ(X) : V →
V , for X ∈ g, to a C–linear endomorphism of V C. If S ⊂ V is a subspace which is invariant
under the action of g, then SC ⊂ V C is also g–invariant. In particular, if V C is g–irreducible the
same holds for V , while the opposite implication is not true in general. Furthermore, there is a
bijective correspondence between complex representations of the real Lie algebra g and complex
representations of the complex Lie algebra gC.

3.1. Real and complex structures. Let W be a finite–dimensional complex vector space.
A real structure on W is a conjugate linear map R : W → W such that R2 = idW . If R is a
real structure on W , the induced map Λ2R : Λ2W → Λ2W is a real structure on Λ2W . Let V
be a finite–dimensional real vector space. The complexification W = V C carries a natural real
structure R : W →W , characterized by R(v⊗z) = v⊗z̄. Clearly, (Λ2V )C = Λ2W and the natural
real structure on (Λ2V )C coincides with the induced real structure Λ2R. From now on, we will
simply denote by R both real structures on W and on Λ2W , so that R(v1∧v2) = R(v1)∧R(v2) for
all v1, v2 ∈W . The wedge product Λ2W ×Λ2W → Λ4W is a symmetric C–bilinear map. Again,
R(ω1 ∧ ω2) = R(ω1) ∧ R(ω2) for all ω1, ω2 ∈ Λ2W coincides with the natural real structure on
Λ4W = (Λ4V )C. By first applying R to the second variable and then forming the wedge product,
we thus get a map which is C–linear in the first variable and conjugate linear in the second and
satisfying

ω2 ∧R(ω1) = R(ω1) ∧ ω2 = R(ω1 ∧R(ω2))

for all ω1, ω2 ∈ Λ2W .
Suppose now that W has complex dimension four. Recall that any choice of volume form
determines an explicit isomorphism Λ4W ∼= C. Let B = {v1, . . . , v4} be a basis for V and
vol = v1 ∧ . . . ∧ v4 ∈ Λ4V . We can look at B as a basis for W and vol ∈ Λ4W such that
R(vol) = vol. Then, putting

(38) H : Λ2W × Λ2W → C, ω1 ∧R(ω2) = H(ω1, ω2)vol

defines an Hermitian form. Indeed, we see from above that H is C–linear in the first variable
and conjugate linear in the second. Moreover,

H(ω2, ω1)vol = ω2 ∧R(ω1) = R(ω1 ∧R(ω2)) = H(ω1, ω2)R(vol) = H(ω1, ω2)vol

shows that H(ω2, ω1) = H(ω1, ω2). Since H is Hermitian, H(ω, ω) ∈ R for all ω ∈ Λ2W .
Therefore, if we look at ω as an element of the real vector space underlying Λ2W , H(ω, ω)
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defines a real quadratic form. Writing ω = φ⊗ 1 + ψ ⊗ i for φ, ψ ∈ Λ2V , we compute

ω ∧R(ω) = (φ⊗ 1 + ψ ⊗ i) ∧ (φ⊗ 1− ψ ⊗ i) = (φ ∧ φ+ ψ ∧ ψ)⊗ 1

which shows that H(ω, ω) = β(φ) + β(ψ) where β : Λ2V → R is the quadratic form defined by
vol as in Proposition 3. If H(ω, ω) is nonzero, then β restricts to a definite quadratic form on
the real vector space underlying the complex line generated by ω.
Let V be a finite–dimensional real vector space. A complex structure on V is an endomor-
phism J : V → V such that J2 = −idV . Then, the C–linear extension JC : V C → V C of J is
diagonalizable with eigenvalues ±i. The complexification of V writes as the direct sum

V C = V (1,0) ⊕ V (0,1)

of the eigenspaces of eigenvalue +i and −i for JC, respectively. Elements of the form v ⊗
1− J(v)⊗ i and v ⊗ 1 + J(v)⊗ i for v ∈ V generate, respectively, V (1,0) and V (0,1). Taking the
conjugate defines a real structure R : V C → V C mapping V (1,0) and V (0,1) to each other.
Observe that if J is a complex structure on V , the same is true for −J . The eigenspaces of
eigenvalue +i and −i for −J coincide, respectively, with the eigenspaces of eigenvalue −i and +i
for J .
Let V be a real representation of g equipped with a complex structure J : V → V such that
J(X · v) = X · J(v) for all X ∈ g and v ∈ V . This is equivalent to the fact that both eigenspaces
of JC are invariant under the g–action on V C. Suppose that J : V → V is a complex structure
and V C = V (1,0)⊕ V (0,1) the eigenspace decomposition for JC. Since J2 = −idV , the linear map
Λ2J : Λ2V → Λ2V induced by J via Λ2J(v ∧ w) := J(v) ∧ J(w) satisfies (Λ2J)2 = idΛ2V and
it is thus diagonalizable with eigenvalues ±1. Let us denote by Λ2V = E1 ⊕ E−1 the direct sum
decomposition into the corresponding eigenspaces. Observe that E−1 is generated by elements of
the form

J(v) ∧ J(w)− v ∧ w v,w ∈ V.
Moreover, we have the direct sum decomposition

(Λ2V )C = Λ2V C = Λ2V (1,0) ⊕
(
V (1,0) ⊗ V (0,1)

)
⊕ Λ2V (0,1)

Now suppose that V has real dimension four. Then V (1,0), V (0,1) ⊂ V C are both two–dimensional
complex subspaces and ` = Λ2V (0,1) is a complex line whose conjugate R(`) coincides with
Λ2V (1,0). Moreover, any element of `⊕R(`) is an eigenvector of eigenvalue −1 for Λ2JC, so that
`⊕R(`) is contained in the complexification of E−1. Since evidently V (1,0) ⊗ V (0,1) ⊂ (E1)C, we
conclude that (E−1)C = `⊕R(`), hence that E−1 has real dimension two.

3.2. Model algebra. In the previous section, we described the model for the symbol al-
gebra of hyperbolic (4, 8)–distributions as the negative part of a grading on sl(5,R). An elliptic
model can be realized, analogously, inside another real form for sl(5,C), namely su(3, 2). An
appropriate choice of Hermitian form on C5 leads to a description of su(3, 2), which can be easily
compared to the hyperbolic model from the previous section. Write x ∈ C2 as x = (x1, x2) and
(x, y, z) ∈ C2 ⊕ C⊕ C2. The last summand appearing in the formula

〈(x, y, z), (x′, y′, z′)〉 = x1z̄′1 + x2z̄′2 + z1x̄′1 + z2x̄′2 + yȳ′

is the canonical positive definite Hermitian form on C and the sum of the remaining terms
defines an Hermitian form of signature (2, 2) on C2 ⊕ C2. We thus see that the formula defines
an Hermitian form on C5 of signature (3, 2). Consider the corresponding algebra t = su(3, 2).
Denote by I2 the identity matrix of size two and by

J =

 0 0 I2
0 1 0
I2 0 0


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the matrix representing 〈 , 〉 in the standard basis. Writing the condition M∗J = −JM for
M ∈ gl(5,C), we get the explicit description of t as the set of block matrices

t =

{−A∗ −v B
−w̄t is v̄t

C w A

 | A ∈ gl(2,C), s = −2Im(tr(A)), B, C ∈ u(2), v, w ∈ C2

}
with blocks of same size as in the description of the hyperbolic model. Here, v∗ ∈ (C2)∗ denotes
the element dual to v ∈ C2 and A∗ the conjugate transpose of A ∈ gl(2,C).
The description above shows that there exist isomorphisms of real vector spaces t−1

∼= C2,

t−2
∼= u(2) and t0 ∼= gl(2,C). We thus get a |2|–grading t =

⊕2
i=−2 ti such that if g =

⊕2
i=−2 gi

is the grading on g = sl(5,R) described in the previous section, then

dimR(ti) = dimR(gi) and tCi = gCi for all i = −2, . . . , 2.

The natural complex structure on t−1, namely the multiplication for i ∈ C, determines the direct

sum decomposition tC−1 = t
(1,0)
−1 ⊕ t

(0,1)
−1 . Since t0 acts on t−1 by C–linear maps, the action is

compatible with the complex structure. Then, t
(1,0)
−1 , t

(0,1)
−1 ⊂ tC−1 are both t0–submodules.

Recall from Section 1 that the complexification of the graded component g−1 ⊂ g = sl(5,R)
admits a decomposition

gC−1 = gE−1 ⊕ gF−1

into gl(2,C)–irreducible components, namely the subspaces of rank–two elements for the com-
plexification of the bracket, such that Ker([ , ]C) = Λ2gE−1 ⊕ Λ2gF−1. Since tC−1 = gC−1 and

t0 ∼= gl(2,C), this is a decomposition of tC−1 as the direct sum of t0–irreducible components. On

the other hand, the decomposition of tC−1 into eigenspaces for the natural complex structure is
also a decomposition into t0–irreducible components. Since such a decomposition is unique up to

the order of the summands, we can suppose that gE−1 = t
(1,0)
−1 and gF−1 = t

(0,1)
−1 = R(gE−1), which

shows that

Ker([ , ]) = E−1

is the eigenspace of eigenvalue −1 for Λ2i. If ` := Λ2gE−1, we thus have that

` ∧R(`) = Λ2gE−1 ∧ Λ2gF−1

is nonzero. Therefore, the Hermitian form (38) is nonzero on ` and it thus restricts to an elliptic
quadratic form on the two–dimensional real vector space underlying `, which is E−1. We will
refer to t− ⊂ su(3, 2) as the model algebra for the elliptic (4, 8)–type.
In the same notation of (31), we write the elements of t−1 as (−w̄t, w) with w ∈ C2. Also, we
will write X ∈ t−2

∼= u(2) and (−A∗, A) ∈ t0 with A ∈ gl(2,C). The bracket on t restricts to the
negative graded components t−1 × t−1 → t−2 as

[(−v̄t, v), (−w̄t, w)] = −v ⊗ w̄t + w ⊗ v̄t

that is the imaginary part of an Hermitian form t−1 × t−1 → (t−2)C, namely

C2 × C2 → gl(2,C), (v, w) 7→ w ⊗ v̄t

This is equivalent to the fact that

[J(−v̄t, v), J(−w̄t, w)] = [(−v̄t, v), (−w̄t, w)]

for all v, w ∈ C2, where J : t−1 → t−1 denotes the natural complex structure. [18] proves that ±J
are the only complex structures on t−1 satisfying this compatibility condition with the bracket.
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Corollary 3. Let be t = su(3, 2) and let t = ⊕2
i=−2ti be the grading described in 3.2. Then,

the adjoint action of t0 on t− defines an isomorphism t0 ∼= dergr(t−). In particular, any grading–
preserving derivation of t− restricts to an homomorphism of t−1 which is compatible with the
complex structure.

Proof. Put g = sl(5,R) and consider the grading g = ⊕2
i=−2gi from 2.1. Recall that

the grading t = ⊕2
i=−2ti is such that tCi = gCi for all i = −2, . . . , 2. The adjoint action of

t0 on t− is an injective homomorphism of Lie algebras t0 → dergr(t−), hence it defines a real
representation of t0 which can be naturally extended to a complex representation of t0. Suppose
that ψ ∈ dergr(t−) and that φ : t−1 → t−1 is the restriction of ψ. By Corollary 2, the C–linear

extension φC : tC−1 → tC−1 preserves the direct sum decomposition tC−1 = t
(1,0)
−1 ⊕ t

(0,1)
−1 , which is

equivalent to the fact that φ is complex linear on t−1. Up to isomorphism, φ can be thus seen as
an element of gl(2,C) and we know that gl(2,C) ∼= t0. On the other hand, φ uniquely determines
ψ thus showing that t0 → dergr(t−) is also surjective, hence t0 ∼= dergr(t−). In particular, the
action of dergr(t−) on t−1

∼= C2 is compatible with the natural complex structure. �

3.3. Characterization of the elliptic orbit.

Theorem 6. (Existence of a complex structure) Let V be a real four–dimensional vector
space, P ⊂ Λ2V a linear subspace of dimension two and consider the induced action of GL(V )
on the Grassmannian Gr(2,Λ2V ) (see Proposition 2). Then P is in the elliptic GL(V )–orbit if
and only if there exists a complex structure J on V such that

P = sp{Jv ∧ Jw − v ∧ w | v, w ∈ V }
is the eigenspace of eigenvalue −1 for Λ2J .

Proof. Consider a volume form vol ∈ Λ4V , the Hermitian form H and the real quadratic
form β : Λ2V → R defined by vol and the wedge product as in (38).
First, suppose that J is a complex structure on V such that P = E−1 is the eigenspace of
eigenvalue −1 for Λ2J . Then PC = Λ2V (1,0) ⊕ Λ2V (0,1) and ` := Λ2V (0,1) ⊂ PC is a complex
line such that

PC = `⊕R(`)

and H|` = β|P . For v ∈ V , put v(1,0) = v⊗ 1− J(v)⊗ i. Let {v, w} ⊂ V be linearly independent

vectors such that {v(1,0), w(1,0)} is a basis for V (1,0). Then ω = v(1,0) ∧w(1,0) = φ⊗ 1 +ψ⊗ i ∈ `
with

φ = J(v) ∧ J(w)− v ∧ w and ψ = J(v) ∧ w + v ∧ J(w) = J(J(w)) ∧ J(v)− J(w) ∧ v
Since {v, J(v), w, J(w)} ⊂ V is a basis of V , vol = J(v) ∧ J(w) ∧ v ∧ w ∈ Λ4V is nonzero and

ω ∧R(ω) = (φ ∧ φ+ ψ ∧ ψ)⊗ 1 = −4 vol⊗ 1

is nonzero. ThereforeH|` is nonzero, thus a definite Hermitian form on a line and sinceH|` = β|P ,
P is elliptic.
Conversely, suppose that P is elliptic. Consider the natural complex structure ·i on V C and
the corresponding direct sum decomposition V C = V (1,0) ⊕ V (0,1) into eigenspaces for ·i. Since
V ∩ V (1,0) = {0}, the projection V C → V (1,0) descends to an isomorphism V ∼= V (1,0), which
induces a complex structure J : V → V such that JC = ·i and V (1,0), V (0,1) are the eigenspaces
for JC. Denote by E−1 ⊂ Λ2V the eigenspace of eigenvalue −1 for Λ2J . From the first part of
the proof, we know that E−1 ⊂ Λ2V is an elliptic linear subspace of dimension two. Since both
P and E−1 are elliptic, by Proposition 4 there exists φ ∈ O(3, 3) such that φ · E−1 = P . Now by
Proposition 3, the action of φ is the induced action of an element of GL(4,R). Therefore, there
exists A ∈ GL(V ) such that

Λ2A · E−1 = P.



3. ELLIPTIC CASE 65

Observe that if J is a complex structure on V and A ∈ GL(V ), then K = AJA−1 is a complex
structure on V . Recall that the typical element of E−1 writes as φ = J(v) ∧ J(w) − v ∧ w for
some v, w ∈ V . For φ ∈ E−1, we thus have

Λ2A(φ) = AJ(v) ∧AJ(w)−Av ∧Aw = K(x) ∧K(y)− x ∧ y

where x = Av and y = Aw. Otherwise put, Λ2A(φ) ∈ ν−1 for any φ ∈ E−1, where ν−1 ⊂ Λ2V
denotes the eigenspace of eigenvalue −1 for Λ2K. This shows that P ⊂ ν−1. Since both spaces
have dimension two, we have that P = ν−1, which concludes the proof. �

Corollary 4. Let V,W be real four–dimensional vector spaces and let F : Λ2V →W be a
surjective linear map. Then F is elliptic if and only if there exists a complex structure J on V
such that F (Jv ∧ Jw) = F (v ∧ w) for all v, w ∈ V .

Proof. The result follows by applying Theorem 6 to P = Ker(F ). �

3.4. The relation to almost CR–structures. Let M be a smooth manifold of dimension
n = 2k + d and let H ⊂ TM be a smooth distribution of rank 2k. An almost complex structure
on H is a vector bundle endomorphism J : H → H such that J2 = −idH . We will also say that
(H,J) is an almost CR–structure on M of CR–dimension k and CR–codimension d. If (H,J)
is an almost CR–structure, the complexified bundle HC ⊂ TCM decomposes as the direct sum
of complex vector bundles

HC = H(1,0) ⊕H(0,1).

In particular, H(0,1) is generated by the sections of the form ξ + iJξ for ξ ∈ Γ(H) and H(1,0) is
the conjugate of H(0,1). Put Q = TM/H. The Levi bracket L : H ×H → Q uniquely extends
to an homomorphism of complex vector bundles LC : HC ×HC → QC. An almost CR–structure
on H is said to be partially integrable if L(Jξ, Jη) = L(ξ, η) for all ξ, η ∈ Γ(H). Observe that
partial integrability is equivalent to the fact that the following expression

LC(ξ + iJξ, η + iJη) = L(ξ, η)− L(Jξ, Jη) + i
(
L(Jξ, η) + L(ξ, Jη)

)
vanishes for all ξ, η ∈ Γ(H), hence that [H(0,1), H(0,1)] ⊂ HC and [H(1,0), H(1,0)] ⊂ HC. Also,
partial integrability is equivalent to the fact that a complex multiple of the map

H(0,1) ×H(0,1) → QC, (ζ1, ζ2) 7→ qC([ζ1, ζ2])

is Hermitian. If this is the case, then L coincides with the imaginary part of this Hermitian
map. If (H,J) is a partially integrable almost CR–structure, then both [ξ, η] − [Jξ, Jη] and
[Jξ, η] + [ξ, Jη] are smooth sections of H for all ξ, η ∈ Γ(H). Therefore, to any such structure
we can associate the Nijenhuis tensor

N : Λ2H → H, (ξ, η) 7→ [ξ, η]− [Jξ, Jη] + J
(
[Jξ, η] + [ξ, Jη]

)
A partially integrable almost CR–structure is called integrable if the bundles H(0,1) and H(1,0)

are involutive and this is equivalent to the vanishing of N .
Let us consider partially integrable almost CR–structures which are one–step bracket–generating.
In particular, this makes sense for partially integrable almost CR–structures of CR–dimension
k and CR–codimension k2 for any integer k ≥ 2. Such structures are investigated in [18], where
they are referred to as free CR–distributions. For k = 2, these are (4, 8)–distributions equipped
with a partially integrable almost complex structure. A (4, 8)–distribution carries, locally, such
a complex structure if and only if it is elliptic, as we are going to show in the following.
Let be t = su(3, 2) and let t = ⊕2

i=−2ti be the grading described in 3.2. As usual, denote by
t− ⊂ t the negative part, which is the elliptic model algebra. The notions of regular pair of type
t− and of free CR–distribution of CR–dimension two are easily seen to be equivalent.
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First, suppose that (M,H) is a regular pair of type t−. Denote by F → M the adapted frame
bundle associated to (M,H) and by T0 = Autgr(t−) the structure group of F →M . Recall that

H ∼= F ×T0
t−1

and that L : Λ2H → TM/H corresponds to the bracket [ , ] : Λ2t−1 → t−2 via the associated
bundle construction. Corollary 3 shows that Lie(T0) = t0 and we know that t0 ∼= gl(2,C). Then,
the natural complex structure on t−1

∼= C2 is T0–invariant, thus it corresponds to an almost
complex structure J : H → H, which defines smooth subbundles of rank two

H(1,0), H(0,1) ⊂ HC such that HC = H(1,0) ⊕H(0,1).

The T0–submodules t
(1,0)
−1 , t

(0,1)
−1 ⊂ tC−1 correspond, via the associated bundle construction, to the

subbundles H(1,0), H(0,1) ⊂ HC. Since Ker([ , ]C) = Λ2t
(1,0)
−1 ⊕ Λ2t

(0,1)
−1 , we have that

Ker(LC) = Λ2H(1,0) ⊕ Λ2H(0,1) i.e. Ker(L) = E−1,

where E−1 ⊂ Λ2H denotes the smooth subbundle defined by the eigenspaces of eigenvalues −1
associated to Λ2Jx for x ∈M . The condition Ker(L) = E−1 evidently means that J is partially
integrable.
Conversely, if J : H → H is a partially integrable almost complex structure, we have that
Ker(L) = E−1. In particular, L descends to an isomorphism Q ∼= E1. Moreover, denoting
by HC = H(1,0) ⊕ H(0,1) the induced direct sum decomposition, L is the imaginary part of an
Hermitian form obtained as a complex multiple of

H(0,1) ×H(0,1) → QC, (ζ1, ζ2) 7→ qC([ζ1, ζ2])

Any local frame of H, then, determines a local trivialization of (gr(TM),L) with standard fiber
t− ⊂ su(3, 2). We thus showed that regular pairs of type t− ⊂ su(3, 2) and free CR–distributions
of CR–dimension two are equivalent.

Proposition 16. Let H ⊂ TM be an elliptic (4, 8)–distribution. Then, locally around each
point x ∈M , there exists a partially integrable almost complex structure J on H.

Proof. Let H ⊂ TM be an elliptic (4, 8)–distribution and denote by LC : Λ2HC → QC

the C–linear extension of the Levi bracket. Let be x ∈ M . By Corollary 4, there exists a
complex structure Jx : Hx → Hx such that Lx(Jxv, Jxw) = Lx(v, w) for all v, w ∈ Hx. Write
as HC

x = Ex ⊕ Fx the decomposition into eigenspaces for JC
x . In particular, we have that

Ker((LC)x) = Λ2Ex ⊕ Λ2Fx. Then, HC
x = Ex ⊕ Fx coincides with the decomposition into rank–

two elements for (LC)x and (gr(TC
xM), (LC)x) is isomorphic to the complex nilpotent graded Lie

algebra g− ⊂ sl(5,C) described in Section 1. Starting from this isomorphism, one can prove as
in Proposition 15 that complex rank–two smooth subbundles E,F ⊂ HC such that HC = E⊕F
and Ker(LC) = Λ2E⊕Λ2F are defined on a neighborhood of x. On the same neighborhood, one
can define an homomorphism K : HC → HC by requiring that K(ξ) = iξ for all ξ ∈ Γ(E) and
K(η) = −iη for all η ∈ Γ(F ). By definition, Kx = (JC)x. Since the real subbundle H ⊂ HC

has trivial intersection with E, the projection of HC onto E restricts to an isomorphism H ∼= E.
This induces a complex structure J on H such that JC = K. The expression for Ker(LC) just
says that J is partially integrable, which concludes the proof. �

Proposition 16 proves that any elliptic (4, 8)–distribution, locally, is a free CR–distribution
of CR–dimension two. The next result, then, easily follows.

Theorem 7. Let H ⊂ TM be a (4, 8)–distribution of generic type. Then H is elliptic if and
only if, locally, (M,H) is a free CR–distribution of CR–dimension two. If this is the case and
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HC = H(1,0) ⊕ H(0,1) is the local decomposition determined by the almost complex structure of
Proposition 16, then a complex multiple of

H(0,1) ×H(0,1) → QC, (ξ, η) 7→ qC([ξ, η])

is an Hermitian form, whose imaginary part gives the Levi bracket associated to H and (M,H)
is a regular pair of type t− ⊂ su(3, 2).

Proof. The first implication was proved in Proposition 16. Conversely, the existence of a
partially integrable almost complex structure on H is equivalent to the fact that (M,H) is a
regular pair of type t− ⊂ su(3, 2), hence H is elliptic. �

4. Equivalence to parabolic geometries

In this Section, we show that generic (4, 8)–distributions are equivalent to certain parabolic
geometries. Let g be a semisimple Lie algebra and let k > 0 be an integer. A |k|–grading on g
is a decomposition g = g−k ⊕ · · · ⊕ gk into a direct sum of subspaces such that

• [gi, gj ] ⊂ gi+j , where we agree that gi = {0} for |i| > k;
• the subalgebra g− = g−k ⊕ · · · ⊕ g−1 is generated by g−1;
• g−k and gk are both nonzero

The choice of grading is equivalent to the choice of a standard parabolic subalgebra p ⊂ g, which
coincides with the sum of the nonnegative graded components (see Section 3 of Appendix A).
By definition, the sum g− of the negative graded components is a nilpotent graded subalgebra
of g generated by g−1 such that g = g− ⊕ p. Putting gi = ⊕kj=igj for i = −k, . . . , k defines a

filtration of the form gk ⊂ · · · ⊂ g−k = g.
Let G be a Lie group with Lie algebra g and let P ⊂ G be a subgroup with Lie algebra p. Then
P ⊂ G is a parabolic subgroup for the given |k|–grading on g, which means that if we restrict
the natural adjoint action Ad: G → Aut(g) to P , we obtain an action of P on g by filtration–
preserving maps. In particular, last condition implies that P ⊂ G is a closed subgroup. Now P
writes, according to the direct sum decomposition p = g0 ⊕ p+, as the semidirect product of a
reductive Levi subgroup G0 ⊂ P and a nilpotent normal subgroup P+. Via the adjoint action,
G0 acts on g by maps preserving the grading on g.
Let M be a smooth manifold and {T iM}−ki=−1 a filtration on M . For i = −k, . . . ,−1, suppose

that rank(T iM) = dim(gi/p). Let p0 : E → M be a G0–bundle. Put T 0
uE = Ker(Tup0) and

T iuE := Tup
−1
0 (T iM) for any u ∈ E and i = −k, . . . ,−1. Then T 0E ⊂ TE is the vertical bundle

of p0 : E →M and {T iE}−ki=0 is a G0–invariant filtration of TE. Suppose that θi ∈ Γ(L(T iE, gi))
are partially defined differential forms for i = −k, . . . ,−1, satisfying:

• θi(u) : T iE → gi is surjective with kernel T i+1
u E for all u ∈ E and i = −k, . . . ,−1;

• (rg)∗θi = Ad(g−1) ◦ θi for all g ∈ G0

and put θ = (θ−1, . . . , θ−k). The collection T = ({T iM}, p0 : E → M, θ) is said to be an
infinitesimal flag structure of type (G,P ). Suppose now that the bracket of vector fields is
compatible with the filtration on M , i.e. [ξ, η] ∈ Γ(T i+jM) for all ξ ∈ Γ(T iM) and η ∈ Γ(T jM).
Then, the analogous compatibility condition is satisfied by vector fields on E with respect to the
G0–invariant filtration of TE introduced above. An infinitesimal flag structure T of type (G,P )
is said to be regular if

(39) θi+j([λ, ζ]) = [θi(λ), θj(ζ)]

for all λ ∈ Γ(T iE) and ζ ∈ Γ(T jE) with i, j < 0 and i+ j ≥ −k.
A remarkable example of regular infinitesimal flag structure of type (G,P ) is given, in the
language of Definition 9, by a G0–triple (F → (M,H), g−) equipped with the soldering form
described in Section 2 of Chapter 2. To see this, first observe that the filtration {T iM} originating
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from a bracket–generating distribution H ⊂ TM satisfies the condition of compatibility with the
bracket of vector fields by definition. Moreover, since g− is a nilpotent graded Lie algebra,
the notion of a regular pair (M,H) of type g− makes sense. This always comes together with
an adapted frame bundle P → (M,H) with structure group Autgr(g−). There, we showed
that for i = −1, . . . ,−k, sections θi of L(T iP, gi) with kernel T i+1P, which are Autgr(g−)–
equivariant, are naturally defined and we called θ = (θ−1, . . . , θ−k) the soldering form. It follows
straightforwardly from the definition that the soldering form satisfies (39). Recall that if G0 ⊂
Autgr(g−) is a closed subgroup a G0–triple consists, by definition, of a regular pair (M,H) of
type g− and an adapted G0–structure F →M . If p0 : F → (M,H) is an adapted G0–structure,
then each θi restricts to a G0–equivariant section of L(T iF , gi) with kernel T i+1F . We thus
seethat T = ({T iM}, p0 : F →M, θ) is a regular infinitesimal flag structure of type (G,P ).
Let G be a semisimple Lie group and let P ⊂ G be a parabolic subgroup. A parabolic geometry
is a Cartan geometry (p : G → M,ω) of type (G,P ) (definitions and properties of Cartan
geometries can be found in Section 6 of Appendix A). Any parabolic geometry (p : G → M,ω)
of type (G,P ) induces an infinitesimal flag structure of same type. Indeed, since P+ acts freely
on G, we can form the space of orbits G0 = G/P+ and p : G → M factorizes to a G0–bundle
p0 : G0 →M . The remaining data are deduced from the grading on g and the Cartan connection
ω. Consider the filtration gk ⊂ · · · ⊂ g−k = g. By definition, the Cartan connection gives an
isomorphism ω(u) : TuG → g at each u ∈ G. The filtration of g, in turn, defines a filtration
of TG by putting T iG := ω−1(gi). Denote by π : G → G0 the canonical projection. Since the
filtration of g is P–invariant and ω is P–equivariant, the filtration of TG satisfies Trg(T iG) = T iG
for all g ∈ P and i = −k, . . . , k. It can thus be pushed down along π and p to filtrations
T 0G0 ⊂ · · · ⊂ T−kG0 = TG0 and T−1M ⊂ · · · ⊂ T−kM = TM . The filtration on G0, in
particular, is G0–invariant. We can now prove the following

Proposition 17. Let (p : G → M,ω) be a parabolic geometry of type (G,P ), where P ⊂ G
is a parabolic subgroup corresponding to the grading g = g−k ⊕ · · · ⊕ gk of the Lie algebra g
of G. Let G0 ⊂ P be the Levi subgroup and p0 : G0 → M the underlying G0–bundle. For
each i = −k, . . . ,−1, the Cartan connection ω descends to ω0

i ∈ Γ(L(T iG0, gi)) such that if
ω0 = (ω0

−1, . . . , ω
0
−µ), then (p0 : G0 →M,ω0) is an infinitesimal flag structure of type (G,P ).

Proof. Fix an index i ∈ {−k, . . . ,−1}. Let be u0 ∈ G0 and ξ ∈ T iu0
G0. Then, choose u ∈ G

and ξ̃ ∈ TuG such that π(u) = u0 and Tuπ · ξ̃ = ξ. By construction, ξ̃ ∈ T iuG and therefore

ω(ξ̃) ∈ gi = gi⊕ . . .⊕gk. We can thus define ωi0(ξ) as the gi–component of ω(ξ̃). For u fixed, two

different choices of ξ̃ ∈ TuG as above differ by an element of the kernel of Tuπ, which coincides
with T 1

uG. We thus see that the choice of ξ̃ does not effect the gi–component of ω(ξ̃). A different
choice of u ∈ π−1(u0) writes as u ·g for some g ∈ P+. This writes as g = exp(Z) for some Z ∈ p+.

Deriving the identity π ◦ rg = π, we see that also Tur
g · ξ̃ ∈ T iu·gG is a lift of ξ. The equivariancy

of ω implies that ω(u · g)(Tur
g · ξ̃) = ead(−Z)ω(u)(ξ̃). Now ad(Z)(gi) ⊂ gi+1 for Z ∈ p+ shows

that the gi–component of ωu(ξ̃) does not depend on the choice of u ∈ π−1(u0). We thus get a
well–defined map ωi0 : T iG0 → gi.
If σ : G0 → G is a local smooth section of π, we can restrict σ∗ω : TG0 → g to T iG0 and then
take its gi–component, thus defining a smooth section of L(T iG0, gi). By construction, this maps
ξ ∈ T iu0

G0 to the gi–component of ω(σ(u0))(Tu0
σ · ξ), which coincides with ωi0(ξ). We thus

showed that each ωi0 is smooth.

Observe that ξ ∈ T iG0 satisfies ωi0(ξ) = 0 if and only if ξ admits a lift ξ̃ ∈ T iG such that

ωu(ξ̃) ∈ gi+1 for all u ∈ G. This is equivalent to the fact that ξ̃ ∈ T i+1G, hence that ξ ∈ T i+1G0.
Finally, note that since P+ ⊂ P is a normal subgroup, the projection π is G0–equivariant.

Therefore, given a tangent vector ξ ∈ T iu0
G0, a lift ξ̃ ∈ TuG and g ∈ G0, we have that Trg · ξ̃ is a
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lift of Trg · ξ. In this way, we see that the equivariancy of ω with respect to the P–action implies
the equivariancy of each ωi0 under the action of G0. �

We say that (p0 : G0 →M,ω0) from Proposition 17 is the infinitesimal flag structure of type
(G,P ) underlying the parabolic geometry (p : G →M,ω).
The curvature form K ∈ Ω2(G, g) associated to the parabolic geometry (p : G →M,ω) is defined
by the formula

K(ξ, η) := dω(ξ, η) + [ω(ξ), ω(η)], ξ, η ∈ X(G).

It is a well known fact that K measures the obstruction to local isomorphism to the homogeneous
model of same type (G,P ) (see also Section 6 of Appendix A for more details). Now K can be
equivalently encoded by the curvature function κu(X,Y ) = K(ω−1

u (X), ω−1
u (Y )) for u ∈ G and

X,Y ∈ g. Since K vanishes under insertion of a vertical vector field, the curvature function can
be seen as a smooth map κ : G → Λ2(g/p)∗⊗g. The adjoint action of P on g induces a filtration–
preserving action on Λ2(g/p)∗⊗ g in a natural way and one can verify that κ is equivariant with
respect to this action (see [10, Lemma 1.5.1 p. 72]). A parabolic geometry is said to be regular
if its underlying infinitesimal flag structure is regular. This turns out to be equivalent to the
following condition on κ, which can be thus taken as the definition of regularity for parabolic
geometries.

Definition 16. Let (G → M,ω) be a parabolic geometry of type (G,P ) with curvature
function κ, g = g−k ⊕ · · · ⊕ gk the grading on g corresponding to P and gk ⊂ · · · ⊂ g−k = g the
induced filtration. Then (G →M,ω) is regular if and only if κ(gi, gj) ⊂ gi+j+1 for all i, j < 0.

We now recall a construction of the Lie algebra cohomology specialized to the setting of
graded semisimple Lie algebras. The construction will be applied to select a subclass of parabolic
geometries, usually said to be normal. A more general definition of the Lie algebra cohomology
and of its properties can be found in Section 5 of Appendix A.
Let g = g−k ⊕ · · · ⊕ gk be a graded semisimple Lie algebra and p = g0⊕ p+ a standard parabolic
subalgebra. The Killing form of g induces isomorphisms g ∼= g∗ and (g/p)∗ ∼= p+ of P–modules,
so that Λn(g/p)∗ ⊗ g identifies with the dual of Cn(p+, g) = Λnp∗+ ⊗ g as P–modules. Also, the
Killing form defines an isomorphism (g−)∗ ∼= p+ of g0–modules. Clearly, g/p and g− identify as
g0–modules, but only g/p carries the structure of a p–module.
The Lie algebra cohomology differential ∂ : Cn(g−, g)→ Cn+1(g−, g), defined by the formula

(40)

∂Φ(X0, . . . , Xn) =

n∑
i=0

(−1)i[Xi,Φ(X0, . . . , X̂i, . . . , Xn)]+

+
∑
i<j

(−1)i+jΦ([Xi, Xj ], X0, . . . , X̂i, . . . , X̂j , . . . , Xn)

for Φ ∈ Cn(g−, g) and X0, . . . , Xn ∈ g− is a G0–homomorphism such that ∂ ◦ ∂ = 0. One can
also consider the Lie algebra cohomology differential ∂p : Cn(p+, g) → Cn+1(p+, g), which is
an homomorphism of P–modules. Then, ∂p dualizes to the boundary operator ∂∗ defining the
homology H∗(p+, g

∗) (see Section 5 of Appendix A for the explicit formula for the boundary
operator). Using the isomorphisms of P–modules given by the Killing form, ∂∗ can be seen as a
P–homomorphism

∂∗ : Λn+1(g/p)∗ ⊗ g→ Λn(g/p)∗ ⊗ g

such that ∂∗ ◦ ∂∗ = 0. We call ∂∗ the Kostant codifferential. From the explicit formula for the
boundary operator, one can see that ∂∗ preserves the natural filtrations on the spaces involved. It
thus induces a grading–preserving homomorphism gr0(∂∗) between the associated graded vector
spaces. On these spaces, P+ acts trivially and gr0(∂∗) is thus an homomorphism of G0–modules.
Actually, the explicit formula for ∂∗ shows that ∂∗ also preserves the gradings associated to the
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natural filtrations, so that gr0(∂∗) and ∂∗ are given by the same formula. Now one can define
the Kostant Laplacian

�n := ∂ ◦ gr0(∂∗) + gr0(∂∗) ◦ ∂ : Cn(g−, g)→ Cn(g−, g),

which leads to the Hodge decomposition Cn(g−, g) = Im(gr0(∂∗)) ⊕ Ker(�n) ⊕ Im(∂) (the role
played by the Hodge decomposition in the proof of Kostant’s Theorem is discussed in 5.1 of
Appendix A). This, in turn, shows the existence of a natural identification of G0–modules

Hn(g−, g) ∼= Ker(�n) ∼= Hn(p+, g),

which endows the cohomology groups Hn(g−, g) with the structure of p–modules such that the
p+–action is trivial. Since the grading on the spaces of cycles, which is induced by the grading on
g, is preserved by ∂∗, we have that Hn(g−, g) carries a natural grading. From the identification
above, we can see the grading as given by the homogeneous degree of multilinear maps between
graded vector spaces. For i ∈ Z, we will denote by Hj(g−, g)i the graded component of degree i
of Hj(g−, g) and by Hj(g−, g)t = ⊕i≥tHj(g−, g)i for t ∈ Z the associated filtration.
Let us show how the considerations above apply to the study of parabolic geometries. Let
(p : G → M,ω) be a parabolic geometry of type (G,P ). Then, p : G → M is a principal P–
bundle and P acts on g by restriction of the adjoint action. We can thus form the associated
bundle AM = G ×P g, the so–called adjoint tractor bundle. The P–invariant filtration of g
induces a filtration by subbundles

AkM ⊂ Ak−1M ⊂ . . . ⊂ A−kM = AM

such that AiM = T iM for all i ≤ −1. The graded vector bundle associated to the filtration will
be denoted by gr(AM). The Lie algebra differential (40) defines a map

∂ : Λngr(T ∗M)⊗ gr(AM)→ Λn+1gr(T ∗M)⊗ gr(AM)

between the associated vector bundles. These are graded vector bundles which depend only on
the underlying infinitesimal flag structure, so that they can be viewed as G0 ×G0

Cn(g−, g) and
∂ is homogeneous of degree zero with respect to the considered grading.
Since TM = G ×P g− and the associated bundle construction is natural, we also have that
T ∗M = G ×P p+. The Kostant codifferential induces an homomorphism

∂∗ : Λn+1T ∗M ⊗AM → ΛnT ∗M ⊗AM

between the associated vector bundles, thus a tensorial operator Ωj+1(M,AM) → Ωj(M,AM)
that will be denoted with the same symbol ∂∗. Recall that the Kostant codifferential preserves
the P–invariant filtration on the spaces Λnp+ ⊗ g of cycles. Therefore, ∂∗ preserves the natural
filtrations on the bundles ΛnT ∗M ⊗AM and it thus descends to a homomorphism

gr0(∂∗) : Λn+1gr(T ∗M)⊗ gr(AM)→ Λngr(T ∗M)⊗ gr(AM)

between the associated graded bundles, which depends only on the underlying infinitesimal flag
structure. The maps ∂ and gr0(∂∗) lead to an analogous of the Hodge decomposition for the
vector bundles Λngr(T ∗M)⊗gr(AM) as the direct sum of subbundles, which depend only on the
underlying infinitesimal flag structure. The P–submodules Im(∂∗) ⊂ Ker(∂∗) ⊂ Λn(g/p)∗ ⊗ g
correspond to smooth subbundles Im(∂∗) ⊂ Ker(∂∗) ⊂ ΛnT ∗M ⊗ AM . The quotient bundles
Ker(∂∗)/Im(∂∗) are associated to representations with trivial P+–action, hence they are associ-
ated to G0. Explicitly,

Ker(∂∗)/Im(∂∗) ∼= G0 ×G0 H
n(g−, g).

Since the curvature function κ : G → Λ2(g/p)∗ ⊗ g associated to the parabolic geometry is
a P–equivariant smooth function it corresponds, through the associated bundle construction, to
an element of Ω2(M,AM) that will be also denoted by κ.
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Definition 17. Let (G → M,ω) be a parabolic geometry of type (G,P ) with curvature
function κ ∈ Ω2(M,AM). We say that (G →M,ω) is normal if ∂∗κ = 0. In this case, the image
of κ into the space of sections of G0 ×G0

H2(g−, g) is called harmonic curvature and denoted by
κH .

The equivalence between the categories of normal, regular parabolic geometries and regular
infinitesimal flag structures of same type (G,P ) is a fundamental result in parabolic geometry.
A proof of the equivalence result can be found in [10] (Theorem 3.1.16, p. 277). In the case of
interest for us, namely if g is simple, the equivalence result can be formulated in the following
way.

Theorem 8. Let g be a simple Lie algebra and g = g−k ⊕ · · · ⊕ gk a |k|–grading such
that H1(g−, g)1 = {0}. Suppose that G is a Lie group with Lie algebra g, denote by P ⊂ G
the parabolic subgroup corresponding to the grading and by G0 ⊂ P the Levi subgroup. Then
any G0–triple of type g− equipped with the tautological form is the underlying infinitesimal flag
structure of a regular, normal parabolic geometry of type (G,P ), which is uniquely determined
up to isomorphism.

Put g = sl(5,R) and t = su(3, 2). Let g = ⊕2
i=−2gi and t = ⊕2

i=−2ti be the gradings from

2.1 and 3.2. In Example 14 of Appendix A, we verify that H1(g−, g)1 = {0} and H1(t−, t)
1 =

{0}. Theorem 5 and Theorem 7 assure that the adjoint action restricted to the homogeneous
component of degree zero induces respective isomorphisms g0

∼= dergr(g−) and t0 ∼= dergr(t−).
Equivalently, H1(g−, g)0 = {0} and H1(t−, t)0 = {0}. Such an isomorphism lifts a Lie group
isomorphism between a Levi subgroup and the grading–preserving automorphism group of the
model algebra. Then, the fundamental equivalence result implies the following

Corollary 5. Hyperbolic and elliptic (4, 8)–distributions are equivalent to parabolic geome-
tries. More precisely, let (M,H) be a generic (4, 8)–distribution and g = ⊕2

i=−2gi the grading
from 2.1, respectively from 3.2, describing the corresponding generic type. Let G = Aut(g) be
the set of automorphisms of the Lie algebra g, denote by P = Autfilt(g) the parabolic subgroup
P ⊂ G of filtration–preserving homomorphisms and by G0 ⊂ P the Levi subgroup. Then (M,H)
is equivalent to a unique normal, regular parabolic geometry of type (G,P ).

In the last part of the Section, we show that the assumption on the first cohomology group is
related to the Tanaka prolongation of (g−, g0). By definition of grading, g− is a nilpotent graded
Lie algebra generated by g−1 and g0 acts on g− by grading–preserving derivations via the adjoint
action. Therefore, if the adjoint action restricts to an injective homomorphism g0 → dergr(g−),
we can look at g0 as a subalgebra g0 ⊂ dergr(g−), hence to the Tanaka prolongation of (g−, g0).
We have the following

Proposition 18. Let g be a simple Lie algebra and g = g−k ⊕ · · · ⊕ gk a |k|–grading on g.

(1) For i ≤ 1 we have that [gi, g−1] = gi−1.
(2) For i ≥ 1 we have that [gi−1, g1] = gi.
(3) If i ≥ 0 and A ∈ gi such that [A, g−1] = {0}, then we have that A = 0.
(4) Let H1(g−, g) = ⊕i∈ZH1(g−, g)` be the Lie algebra cohomology of g− with coeffi-

cients in g and let pr(g−, g0) = ⊕i∈Zpi be the Tanaka prolongation of (g−, g0). Then
H1(g−, g)` = {0} for all ` ≥ 1 if and only if g` ∼= p` for all ` ≥ 1. Moreover,
H1(g−, g)0 = {0} if and only if g0

∼= dergr(g−).

Proof. (1) By definition of grading, g− is a nilpotent graded Lie algebra generated by g−1

and this condition writes as [gi, g−1] = gi−1 for i ≤ −1. Putting D(X) = jX for X ∈ gj and
j = −k, . . . , k defines a derivation D : g → g. Now g is simple, thus D has to be an inner
derivation. This means that there exists Z ∈ g such that D(X) = [Z,X] for all X ∈ g. Since
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D preserves the grading, Z ∈ g0 is such that [Z,X] = −X for all X ∈ g−1, which proves the
statement for i = 0. Finally, observe that

[g1, g−1]⊕
⊕
i6=0

gi

is an ideal in g, which is nontrivial. Being g simple, we conclude that this ideal coincides with
g, hence that [g1, g−1] = g0 and the statement is proved also for i = 1.
(2) The fact that [gi−1, g1] = gi for i ≥ 1 is deduced by applying (1) to the opposite grading on
g.
(3) Let B = Bg be the Killing form of g, i ≥ 0 and A ∈ gi such that [A, g−1] = {0}. For any
X ∈ g−1 and Y ∈ g−i+1 we have

0 = B([A,X], Y ) = B(A, [X,Y ])

which means that A is orthogonal to [g−1, g−i+1]. But the last space equals g−i for (1) and we
know that the restriction of B to gi × g−i is nondegenerate. We thus conclude that A = 0.
(4) By definition, the nonpositive graded parts of pr(g−, g0) and of g coincide. This tells us that
g satisfies the first of the three conditions defining pr(g−, g0), namely the condition (C1) from
Section 3. Using inductively [gi, g−1] ⊂ gi−1, we see that gi ⊂ pi for all i ≥ 0. Moreover, (3) says
that every nonnegative graded component gi satisfies the condition (C2) defining pr(g−, g0). By
maximality, we conclude that there always exists an injective homomorphism g→ pr(g−, g0) of
graded Lie algebras for g simple.
Recall that the complex defining H1(g−, g) writes as follows:

0→ C0(g−, g)
∂−→ C1(g−, g)

∂−→ C2(g−, g)→ . . .

with C0(g−, g) = g and C1(g−, g) = L(g−, g). The compatibility of ∂ with the natural grading
on the spaces Cj(g−, g) implies that the complex splits in graded components as

0→ g`
∂0
`−→ C1(g−, g)`

∂1
`−→ C2(g−, g)` → . . .

and H1(g−, g)` = Ker(∂1
` )/Im(∂0

` ). Since ∂0
` is injective, we have that g` ∼= Im(∂0

` ). Observe
that φ ∈ L(g−, g)` is a linear map φ : g− → g such that φ(gi) ⊂ gi+` for all i = −k, . . . ,−1.
Hence, φ takes values in g−k⊕ . . .⊕g`−1 ⊂ g and it thus can be equivalently considered as a map
g− → g−k ⊕ . . . ⊕ g`−1. Now if φ = ∂0

`X for some X ∈ g`, then φ(Y ) = [Y,Z] for all Y ∈ g−.
If φ ∈ L(g−, g)` is such that ∂1

`φ = 0, then it satisfies ϕ([X,Y ]) = [ϕ(X), Y ] + [X,ϕ(Y )] for all
X,Y ∈ g−. Hence, by definition dergr(g−) = Ker(∂1

0) and the fact that H1(g−, g)0 = {0} if and
only if g0 and dergr(g−) are isomorphic follows straightforwardly from the definitions.
Recall that p0 = g0 by definition and for ` ≥ 1, the `–th Tanaka prolongation of (g−, g0) is given
by

(41) p` :=
{
ϕ ∈

⊕
p<0

g∗p ⊗ p`+p | ϕ([X,Y ]) = [ϕ(X), Y ] + [X,ϕ(Y )], X, Y ∈ g−
}

and p` := (p`−1)1 can be equivalently defined as the first prolongation of p`−1 by induction on
` ≥ 1. Suppose that g` ∼= p` for all ` ≥ 1. Fix ` ≥ 1. Using the isomorphisms g`+p ∼= p`+p for
p < 0 in (41), we see that p` = Ker(∂1

` ) and since g` ∼= Im(∂0
` ), we have that H1(g−, g)` = {0}.

Conversely if H1(g−, g)` = {0} for all ` ≥ 1, in particular H1(g−, g)1 = {0} and since g0 = p0,
this implies that p1 = Ker(∂1

1), hence that g1
∼= p1. If ` ≥ 2, using the isomorphism g`−1

∼= p`−1

we show that

g` = (g`−1)1
∼= (p`−1)1 = p`

and the result follows by induction. �
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Consider a |k|–grading g = g−k ⊕ · · · ⊕ gk on a simple Lie algebra. From (4) of Proposition
18, we see that the grading satisfies H1(g−, g)1 = {0} if and only if g ∼= pr(g−, g0) as graded
Lie algebras. If the same cohomology group also vanishes in homogeneity zero, then g ∼= pr(g−).
The condition H1(g−, g)0 = {0} is usually expressed by saying that H1(g−, g) is concentrated
in negative homogeneity. Now suppose that H1(g−, g)0 = {0}. Let G be a Lie group with Lie
algebra g, let P ⊂ G be the parabolic subgroup corresponding to the grading and G0 ⊂ P the
Levi subgroup. The assumption implies that the adjoint action restricts to an automorphism
G0
∼= Autgr(g−). Parabolic geometries of type (G,P ) are then completely determined, in the

sense of Theorem 8, by a regular filtration by subbundles on the underlying space. Generic
(4, 8)–distributions are examples of such geometries.

5. Invariants for generic (4, 8)–distributions

In the previous section, we saw that generic (4, 8)–distributions are equivalent to certain
normal, regular parabolic geometries. The parabolic type (G,P ) of such geometries is determined
by a grading g = ⊕2

i=−2gi on a real graded simple Lie algebra g, described in 2.1 and 3.2, such

that gC = ⊕2
i=−2g

C
i is the grading on sl(5,C) described in Section 1. This equivalence allows

to deduce the local invariants for these distributions from the curvature of the corresponding
parabolic geometries, as we are going to explain.
Let (G →M,ω) be a regular parabolic geometry of type (G,P ). Recall that the curvature form
K ∈ Ω2(G, g) associated to (p : G →M,ω) is given by the formula

K(ξ, η) = dω(ξ, η) + [ω(ξ), ω(η)], ξ, η ∈ X(G).

and the curvature function κu(X,Y ) = K(ω−1
u (X), ω−1

u (Y )) for u ∈ G and X,Y ∈ g. Now the
curvature function can be seen as a P–equivariant smooth function κ : G → Λ2(g/p)∗ ⊗ g. Such
a map corresponds, through the associated bundle construction, to an element of

Ω2(M,AM) = Γ(Λ2(T ∗M)⊗AM)

that we will also denote by κ. The P–invariant filtration gk ⊂ · · · ⊂ g−k = g induces filtrations
by subbundles

T−1M ⊂ T−2M ⊂ . . . ⊂ T−kM = TM

and
AkM ⊂ Ak−1M ⊂ . . . ⊂ A−kM = AM

such that AiM = T iM for all i ≤ −1. The filtrations above induce a filtration of the space
of homomorphisms Λ2TM → AM and, in turn, of the space of its sections. The regularity
assumption writes as

κ(T iM,T jM) ⊂ Ai+j+1M

for all i, j < 0. We can thus consider the corresponding section gr1(κ) of the associated graded
vector bundle

gr1(Λ2T ∗M ⊗AM) = L(Λ2gr(TM), gr(AM))1.

Consider i, j < 0 and ξ ∈ T iM , η ∈ T jM . Let ξ̃ ∈ T iG and η̃ ∈ T jG be lifts for ξ and η,
respectively. Denote by qs : AsM → grs(AM) the canonical projections. For x ∈ M , let be
u ∈ p−1(x). Then

(42) gr1(κ)
(
qi(ξ), qj(η)

)
(x) := qi+j+1

(
Tup · ω−1

u κu(ω(ξ̃), ω(η̃))
)
.

Observe that since the curvature form is horizontal, the formula above does not depend on the
choice of lifts of ξ and η. More precisely, the regularity assumption implies that the right–hand
term only depends on qi(ξ) and on qj(η). Furthermore, the equivariancy of κ and ω implies
that the right–hand term of the formula does not depend on the choice of u ∈ p−1(x). Suppose
now that the parabolic geometry is regular and normal. From the general theory, we have the
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following facts. As in Definition 17, there is a notion of harmonic curvature κH associated to the
parabolic geometry. This is a smooth section of the bundle

Ker(∂∗)/Im(∂∗) ∼= G0 ×G0 H
2(g−, g)

which is a fundamental invariant for the geometry. In particular, recall that a normal, regular
parabolic geometry of type (G,P ) is locally isomorphic to the model of same type, namely the
canonical projection G → G/P equipped with the Maurer–Cartan form on G, if and only if
κH = 0 identically. Now gr1(κ) is a section of Ker(�2) which coincides, up to the identification
Ker(�2) ∼= Ker(∂∗)/Im(∂∗) determined by the Hodge decomposition, with the homogeneous
component of degree one of the harmonic curvature κH (see [10, Theorem 3.1.12 p. 265]).

Proposition 19. Let (M,H) be a generic (4, 8)–distribution and let (p : G → M,ω) be
the normal, regular parabolic geometry of type (G,P ) equivalent to (M,H) (see Corollary 5).
Denote by κ the curvature function and by κH the harmonic curvature associated to the parabolic
geometry (p : G →M,ω). Then, the graded curvature in homogeneity one

gr1(κ) ∈ Γ((Λ2H∗ ⊗H)⊕ (H∗ ⊗Q∗ ⊗Q))

from (42), where Q = TM/H denotes the quotient bundle, is equivalent to κH .

Proof. Let g = ⊕2
i=−2gi be the real graded simple Lie algebra describing the model algebra

for (M,H) as in 2.1 for the hyperbolic type, respectively as in 3.2 for the elliptic type. In
Example 13 of Appendix A, we saw that H2

C(gC−, g
C) = H2

C(gC−, g
C)1. Moreover, H2

C(gC−, g
C)

is the complexification of H2
R(g−, g) (see Proposition 26 of Appendix A) and it thus follows

that H2
R(g−, g) = H2

R(g−, g)1, which implies that κH reduces to its homogeneous component of
degree one. By [10, Theorem 3.1.12 p. 265] this homogeneous component coincides, up to the
identification Ker(�2) ∼= Ker(∂∗)/Im(∂∗), with gr1(κ) which is a section of

L(Λ2gr(TM), gr(AM))1 = (Λ2H∗ ⊗H)⊕ (H∗ ⊗Q∗ ⊗Q).

�

Recall that H2(gC−, g
C) has a natural structure of gC0 –module. By realizing it as a gC0 –

submodule of skew–symmetric bilinear maps gC− × gC− → gC, Kostant’s Theorem makes the
decomposition into irreducible components explicit, namely

H2(gC−, g
C) =

⊕
w∈Wp(2)

V−w·λg

where w · λg denotes the affine action of w ∈W p(2) on the highest root λg of g and V−w·λg
the

irreducible representation of lowest weight −w ·λg (see Theorem 14 of Appendix A). In Example
13 of Appendix A, we compute the set {−w · λg | w ∈ W p(2)} which consists of four distinct
weights, represented in the Dynkin diagram notation as follows:

(43)

×o × o
0 4 −3 −1

×o × o
−1 −3 4 0

×o × o
−3 3 0 −2

×o × o
−2 0 3 −3

Observe the symmetry in the diagram (43), which is due to the structure of the representations
involved. Using basic notions of representation theory, we can easily deduce the gC0 –irreducible
components H2(gC−, g

C) of lowest weights from (43).

Let h ⊂ gC be the standard Cartan subalgebra and ∆0 = {α1, . . . , α4} ⊂ h∗ the standard simple
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root system. The considered |2|–grading on gC is induced, via the notion of Σ–height, by the
choice Σ = {α2, α3} of subset of simple roots. In particular, gC−1 decomposes into the direct sum

gC−1 = gE−1 ⊕ gF−1 of two–dimensional complex gC0 –modules with ∆(gE−1) = {−α1 − α2,−α2} and

∆(gF−1) = {−α3,−α3 − α4}. The sum −α2 + (−α2 − α1) is the highest weight of Λ2gE−1. This
writes, in Dynkin diagram notation, as

×o × o
1 −2 1 0

+
(

×o × o
1 −2 1 0

+ ×o × o
−2 1 0 0 )

= ×o × o
0 −3 2 0

and its negative is the lowest weight of the one–dimensional module Λ2(gE−1)∗. Moreover, the

lowest weight of gF−1 is −α3 − α4, which has to be added to the lowest weight of Λ2(gE−1)∗:

×o × o
0 3 −2 0

+ ×o × o
0 1 −1 −1

= ×o × o
0 4 −3 −1

to obtain the lowest weight of Λ2(gE−1)∗ ⊗ gF−1, which is therefore the irreducible gC0 –component

whose lowest weight is the first one in (43). Analogously, one shows that the irreducible gC0 –
component of lowest weight the second weight in (43) is Λ2(gF−1)∗ ⊗ gE−1.

Observe that S2gE−1⊗ (gE−1)∗⊗gF−1⊗ (gF−1)∗ contains the irreducible g0–representation of highest
weight

2(−α2) + (α1 + α2) + (−α3) + (α3 + α4) = α1 − α2 + α4 = ×o × o
3 −3 0 2

The irreducible g0–representation of lowest weight the third weight in (43) is thus contained in
S = S2(gE−1)∗ ⊗ gE−1 ⊗ (gF−1)∗ ⊗ gF−1. Let us denote it by

(S2(gE−1)∗ ⊗ gE−1)0 ⊗ sl(gF−1) ⊂ S
and describe it explicitly as the joint kernel of two contraction maps, as follows.
Put V = gE−1 and W = gF−1. Fix bases {x1, x2} ⊂ V and {y1, y2} ⊂ W and denote by {x∗1, x∗2},
respectively by {y∗1 , y∗2}, the dual bases. Denote by idV : V → V and by idW : W → W the
identity maps. Define the trace maps

(44)

trV : L(S2V ⊗W,V ⊗W )→ L(V ⊗W,W ),

trV (g)(v ⊗ w) =

2∑
i=1

(x∗i ⊗ idW )(g(xi � v ⊗ w))

for g ∈ L(S2V ⊗W,V ⊗W ), v ∈ V , w ∈W and

(45)

trW : L(S2V ⊗W,V ⊗W )→ L(S2V, V ),

trW (g)(v1 � v2) =

2∑
j=1

(idV ⊗ y∗j )(g(v1 � v2 ⊗ yj))

for g ∈ L(S2V ⊗W,V ⊗W ), v1, v2 ∈ V . Furthermore, denote by

(46)

cV : L(S2V, V )→ L(V,R),

cV (a)(v) =

2∑
i=1

x∗i (a(xi � v))

for a ∈ L(S2V, V ), v ∈ V . Observe that the definitions of trV , trW and cV do not depend
on the choice of basis. This can be easily seen, after observing that if the change of basis is
described by the invertible matrix A, the respective dual bases differ by multiplication for A−1.
Clearly, the three maps introduced above can be equivalently described, as we are going to
do in the following, as linear maps between tensor products of copies of V,W and their duals.
Elements of such tensor products will be represented in abstract index notation, denoting the
copies of V and V ∗ by roman letters and the copies of W and W ∗ by greek letters. Let be
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f sβ
ijα ∈ S = S2V ∗ ⊗W ∗ ⊗ V ⊗W such that f sβ

jiα = f sβ
ijα . Clearly, the trace maps can be

equivalently viewed as contractions

trV : S → V ∗ ⊗W ∗ ⊗W, f sβ
ijα 7→ f pβ

pjα

trW : S → S2V ∗ ⊗ V, f sβ
ijα 7→ f sα

ijα

cV : S2V ∗ ⊗ V → V ∗, a s
ij 7→ a j

ij .

For b β
jα ∈ V ∗ ⊗W ∗ ⊗W , putting f sβ

ijα = δ si b
β

jα + δ sj b
β

iα defines an element of S such that

f pβ
pjα = 3b β

jα , which shows that trV is surjective.

For a s
ij ∈ S2V ∗ ⊗ V , putting f sβ

ijα = a s
ij δ

β
α defines an element of S such that f sα

ijα = 2a s
ij ,

which shows that trW is surjective.
Clearly, the three maps above are equivariant with respect to the action of gl(2,C), hence of gC0 .
The joint kernel of the two maps trV and trW , in particular, is a gC0 –invariant subspace of S that
will be denoted by

(47) (S2V ∗ ⊗ V )0 ⊗ sl(W ).

Clearly, (S2W ∗ ⊗W )0 ⊗ sl(V ) can be defined analogously by exchanging the roles of V and W ,
thus obtaining the irreducible representation of gC0 whose lowest weight is the fourth weight in
(43). We thus completely described all gC0 –irreducible components of H2(gC−, g

C).

Let us compute explicitly the projection of S onto (S2V ∗⊗V )0⊗ sl(W ). For f sβ
ijα ∈ S, putting

(48) g sβ
ijα = f sβ

ijα − 1

6

(
f pγ
pjγ δ si + f pγ

piγ δ sj
)
δ βα

defines an element of S such that g iα
ijα = 0. Now observe that putting

(49) a s
ij = −1

2
g sα
ijα , b β

jα = −1

3
g pβ
pjα

defines a t
ij ∈ S2V ∗⊗V and b β

jα ∈ V ∗⊗W ∗⊗W such that a j
ij = b α

jα = 0. With the data from

(48) and (49), the formula

(50) T sβ
ijα = g sβ

ijα +
(
δ si b

β
jα + δ sj b

β
iα

)
+ a s

ij δ
β
α

defines an element of S which satisfies the following identities:

T pβ
pjα = g pβ

pjα + 3b β
jα + a p

pj δ
β
α = g pβ

pjα − g pβ
pjα = 0

and
T sα
ijα = g sα

ijα +
(
δ si b

α
jα + δ sj b

α
iα

)
+ 2a s

ij = g sα
ijα − g sα

ijα = 0,

showing that T sβ
ijα ∈ (S2V ∗ ⊗ V )0 ⊗ sl(W ). Combining (48) and (49), we obtain

(51)

a s
ij δ

β
α = −1

2
g sγ
ijγ δ βα

= −1

2

(
f sγ
ijγ − 1

6

(
f pγ
pjγ δ si 2 + f pγ

piγ δ sj 2
))
δ βα

= −1

2
f sγ
ijγ δ βα +

1

6

(
f pγ
pjγ δ si + f pγ

piγ δ sj
)
δ βα

and

δ si b
β

jα = −1

3
δ si g

rβ
rjα

= −1

3
δ si
(
f rβ
rjα − 1

6

(
f pγ
pjγ 2δ βα + f pγ

prγ δ rj δ
β
α

))
= −1

3
δ si f

rβ
rjα +

1

6
f pγ
pjγ δ si δ

β
α
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and symmetrizing last equation in i, j we obtain

(52) δ si b
β

jα + δ sj b
β

iα = −1

3

(
δ si f

rβ
rjα + δ sj f

rβ
riα

)
+

1

6

(
f pγ
pjγ δ si + f pγ

piγ δ sj
)
δ βα

Inserting (48), (51) and (52) in (50), we finally obtain the explicit formula

(53) T sβ
ijα = f sβ

ijα − 1

3

(
δ si f

rβ
rjα + δ sj f

rβ
riα

)
+

1

6

(
f pγ
pjγ δ si + f pγ

piγ δ sj
)
δ βα −

1

2
f sγ
ijγ δ βα

for the projection of S onto (S2V ∗ ⊗ V )0 ⊗ sl(W ). Looking at elements of S as linear maps in
L(S2V ⊗W,V ⊗W ), (53) writes as
(54)

T (v1 � v2 ⊗ w) = f(v1 � v2 ⊗ w)− 1

3

(
v1 ⊗ trV (f)(v2 ⊗ w) + v2 ⊗ trV (f)(v1 ⊗ w)

)
+

+
(1

6

(
cV ◦ trW (f)(v1) · v2 + cV ◦ trW (f)(v2) · v1

)
− 1

2
trW (f)(v1 � v2)

)
⊗ w

for v1, v2 ∈ V and w ∈W .

In Example 13 of Appendix A, we showed that H2
C(gC−, g

C) = H2
C(gC−, g

C)1. This means that

H2
C(gC−, g

C) can be realized as a subset of graded maps gC− × gC− → gC of degree one. Since gC

is |2|–graded, any such map can be seen as a graded map gC− × gC− → gC− which splits into the

sum of two components gC−1× gC−1 → gC−1 and gC−1× gC−2 → gC−2. The irreducible representations
described above should be interpreted as subspaces of maps of this kind.
We can thus easily deduce the decomposition of the real g0–module V = H2(g−, g) for the real
graded Lie algebra g associated to a generic (4, 8)–distribution. First, consider the real graded
simple Lie algebra g = ⊕2

i=−2gi from 2.1 describing the hyperbolic model. There, we saw that

gCj = gj ⊕ igj for all j = −2, . . . , 2. Then H2
C(gC−, g

C) = V ⊕ iV, so that the g0–irreducible

components of V admit a completely analogous description as the gC0 –irreducible components
of VC, obtained by replacing V,W with two–dimensional real vector spaces. As in 2.1, write
g−1 = gE−1 ⊕ gF−1 as the direct sum of real g0–modules of dimension two. Put V = gE−1 and

W = gF−1. We thus have two distinct components Λ2V ∗⊗W and Λ2W ∗⊗V inside Λ2g∗−1⊗g−1.
Moreover, recall that the bracket gives an isomorphism g−2

∼= V ⊗W . We thus see that the
components (S2V ∗ ⊗ V )0 ⊗ sl(W ) and (S2W ∗ ⊗W )0 ⊗ sl(V ) are contained in g∗−1 ⊗ g∗−2 ⊗ g−2.

Now let g = ⊕2
i=−2gi be the real graded simple Lie algebra from 3.2 describing the elliptic

model. Since g0
∼= gl(2,C) is the underlying real Lie algebra of a complex Lie algebra, the com-

plexification consists of the sum of two copies of the same Lie algebra. The explicit formulas for
the bracket show that conjugating the g0–representations gC−1 and gC−2 corresponds to swapping

the two summands gC−1 = gE−1 ⊕ gF−1. In particular, this shows that the complex cohomology

H2
C(gC−, g

C) is given by two pairs of lowest weights such that for each pair, the two weights are
different but conjugate to each other. This readily shows that they can only come from the
complexification of one complex representation, since real representations always lead to weights
which are self-conjugate (see sections 2.3.14 and 2.3.15 of [10] for the details). According to
Proposition 3.3.6 in [10], we conclude that H2(g−, g) = V1 ⊕ V2 is the direct sum of two irre-
ducible g0–components. Denote by R : gC → gC the conjugate map. If T : gj × g` → gj+`+1

is a bilinear map and TC : gCj × gC` → gCj+`+1 denotes the complex linear extension of T , then

TC = T1 + T2 for complex linear maps T1 : gCj × gC` → gCj+`+1 and T2 : gCj × gC` → gCj+`+1 such
that

T1(v, w) = R(T2(R(v), R(w)))
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for all v, w ∈ gC−1. Recall that there is a natural complex structure J on g−1, which determines

the decomposition gC−1 = g
(1,0)
−1 ⊕g

(0,1)
−1 as direct sum of eigenspaces for JC of eigenvalues ±i. Both

V = g
(1,0)
−1 and W = g

(0,1)
−1 are complex g0–submodules of gC−1 of dimension two. If R : gC−1 → gC−1

denotes the conjugate map, we have V = R(W ). There is one irreducible component of V
contained in Λ2g∗−1⊗ g−1. Its elements are skew–symmetric bilinear maps T : g−1× g−1 → g−1,
whose complexification TC is the sum of T1 : V × V →W and T2 : W ×W → V and we have

(55)
4T (x, y) = T (2x, 2y) = T1(x− iJx, y − iJy) + T2(x+ iJx, y + iJy)

= T1(x− iJx, y − iJy) +R(T1(x− iJx, y − iJy)) = 2Re(T1(x− iJx, y − iJy))

for all x, y ∈ g−1. Analogously, there is a component T : g−1×g−2 → g−2, whose complexification
splits into the components T1 : gC−1 × gC−2 → gC−2 and T2 : gC−1 × gC−2 → gC−2, which are of type
(S2V ∗⊗V )0⊗ sl(W ) and (S2W ∗⊗W )0⊗ sl(V ), respectively. Recall that the complex structure
J on g−1 is partially integrable and this implies that

[x− iJ(x), y + iJ(y)] = 2[x, y] + 2i[x, J(y)] = R([x+ iJ(x), y − iJ(y)])

for all x, y ∈ g−1. We can thus write
(56)

4T (x1, [x2, y]) = T (2x1, 2[x2, y])

= T1(x1 − iJ(x1), [x2, y] + i[x2, J(y)]) + T2(x1 + iJ(x1), [x2, y]− i[x2, J(y)])

= T1(x1 − iJ(x1), [x2, y] + i[x2, J(y)]) +R(T1(x1 − iJ(x1), [x2, y] + i[x2, J(y)]))

= 2Re(T1(x1 − iJ(x1), [x2, y] + i[x2, J(y)]))

= Re(T1(x1 − iJ(x1), [x2 − iJ(x2), y + iJ(y)]))

for all x1, x2, y ∈ g−1.

Proposition 20. Let H ⊂ TM be an hyperbolic (4, 8)–distribution and H = E⊕F the local
direct sum decomposition from Theorem 5. The following formulas define tensorial maps:

(1) Λ2E → F , P1(ξ1, ξ2) = [ξ1, ξ2]F for ξ1, ξ2 ∈ Γ(E), where [ξ1, ξ2]F denotes the compo-
nent along F of the bracket.

(2) Λ2F → E, P2(η1, η2) = [η1, η2]E for η1, η2 ∈ Γ(F ), where [η1, η2]E denotes the compo-
nent along E of the bracket.

Proof. By Theorem 5, H locally writes as the direct sumH = E⊕F of rank–two subbundles
such that the bracket among sections of E, respectively among sections of F , is a section of H.
Since [ξ1, ξ2] ∈ Γ(H) for ξ1, ξ2 ∈ Γ(E), the bracket uniquely writes as the sum

[ξ1, ξ2] = [ξ1, ξ2]E + [ξ1, ξ2]F

of its components along E and F . Clearly, the analogous statement holds for brackets of the
form [η1, η2] with η1, η2 ∈ Γ(F ). For p ∈ C∞(M), we have that

[pξ1, ξ2] = p[ξ1, ξ2]− ξ2(p) · ξ1
and therefore that [pξ1, ξ2]F = p[ξ1, ξ2]F . Since the formula is skew–symmetric, this is enough
to prove the statement for (1). The proof of formula (2) is completely analogous. �

Proposition 21. Let H ⊂ TM be an hyperbolic (4, 8)–distribution and H = E ⊕ F the
local direct sum decomposition from Theorem 5. Choose a linear connection ∇E on E and define
Φ : Γ(E)⊗ Γ(E)⊗ Γ(F )→ Γ(Q) by

(57) Φ(ξ1, ξ2, η) := L(∇Eξ1ξ2, η) + L(∇Eξ2ξ1, η)− q([ξ1, [ξ2, η]])− q([ξ2, [ξ1, η]])

for ξ1, ξ2 in Γ(E) and η ∈ Γ(F ). Then there is a well defined totally tracefree part of Φ, which is
tensorial in all entries and independent of the choice of ∇E and thus defines a section T1 of the
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bundle (S2E∗⊗E)0⊗ sl(F ) which is intrinsically associated to the distribution H. Similarly, by
choosing a linear connection ∇F on F and putting

Ψ(η1, η2, ξ) := L(∇Fη1η2, ξ) + L(∇Fη2η1, ξ)− q([η1, [η2, ξ]])− q([η2, [η1, ξ]])

for ξ in Γ(E) and η1, η2 ∈ Γ(F ), one obtains a section T2 of the bundle (S2F ∗ ⊗ F )0 ⊗ sl(E)
intrinsically associated to H.

Proof. Let ∇E : X(M) × Γ(E) → Γ(E) be a a linear connection on E and define Φ as in
(57). Direct computations show that this is linear over smooth functions in ξ1 and ξ2, while

Φ(ξ1, ξ2, fη)− fΦ(ξ1, ξ2, η) = 2
(
(ξ1 · f)L(ξ2, η) + (ξ2 · f)L(ξ1, η)

)
for f ∈ C∞(M). Using the isomorphism Q ∼= E ⊗ F determined by L as in Theorem 5, we see
that there exists a contraction cA : E∗⊗Q→ F . Now cA is a tensorial map and defines, together
with Φ, a map

Γ(E∗)× Γ(E)× Γ(E)× Γ(F )→ Γ(F )

(λ, ξ1, ξ2, η) 7→ cA(λ⊗ Φ(ξ1, ξ2, η))

which is linear over smooth functions in the E and E∗-entries and symmetric in the E-entries.
Hence there is a unique contraction of one E and one E∗ component and forming this, we obtain
a map Ψ : Γ(E) × Γ(F ) → Γ(F ) which is linear over smooth functions in the E–component.
Choose a frame {θ1, θ2} ⊂ Γ(E) and denote by {θ∗1 , θ∗2} ⊂ Γ(E∗) the dual frame. Then, the
formula

Ψ(ξ, η) :=

2∑
i=1

cA(θ∗i ⊗ Φ(θi, ξ, η)) =

2∑
i=1

(θ∗i ⊗ idF )(Φ(θi, ξ, η))

can be easily seen to be independent on the choice of frame. For f ∈ C∞(M), we have that

Ψ(ξ, fη)− fΨ(ξ, η) =

2∑
i=1

(θ∗i ⊗ idF )(Φ(θi, ξ, fη)− fΦ(θi, ξ, η)))

=

2∑
i=1

(θ∗i ⊗ idF )
(

2
(
(θi · f)L(ξ, η) + (ξ · f)L(θi, η)

))
= 2
( 2∑
i=1

θ∗i (ξ)θi · (f)
)
η + 2(ξ · f)

2∑
i=1

θ∗i (θi)η

= 6(ξ · f)η

Therefore, mapping (ξ1, ξ2, η) to

FΦ(ξ1, ξ2, η) := Φ(ξ1, ξ2, η)− 1

3

(
L(ξ1,Ψ(ξ2, η)) + L(ξ2,Ψ(ξ1, η)

)
the result will be trilinear over smooth functions, hence it defines FΦ : S2E ⊗ F → Q tensorial
which depends on ∇E . Again, the isomorphism Q ∼= E ⊗F shows the existence of a contraction
cB : F ∗ ⊗ Q → E. One can apply cB to FΦ, thus obtaining a tensorial map χ : S2E → E.
Choose a frame {α1, α2} ⊂ Γ(F ) and denote by {α∗1, α∗2} ⊂ Γ(F ∗) the dual frame. Then, the
formula

χ(ξ1, ξ2) :=

2∑
j=1

cB(α∗j ⊗ FΦ(ξ1, ξ2, αj))

is easily seen to be independent on the choice of frame. Finally, putting

GΦ(ξ1, ξ2, η) := FΦ(ξ1, ξ2, η)− 1

2
L(χ(ξ1, ξ2), η)
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defines a map in (S2E∗ ⊗E)0 ⊗ sl(F ). Now we can easily see that this map does not depend on
the choice of linear connection. Indeed, any other connection on E is of the form

∇̂Eξ1ξ2 = ∇Eξ1ξ2 +A(ξ1, ξ2)

for some tensorial map A : E ⊗ E → E. But this readily says that if Φ̂ is defined by ∇̂, then

Φ̂(ξ1, ξ2, η)− Φ(ξ1, ξ2, η) = L(A(ξ1, ξ2) +A(ξ2, ξ1), η)

and therefore

Ψ̂(ξ, η)−Ψ(ξ, η) =

2∑
i=1

cA(θ∗i ⊗ (Φ̂− Φ)(θi, ξ, η))

=

2∑
i=1

cA(θ∗i ⊗ (L(A(θi, ξ) +A(ξ, θi), η))

thus

(F Φ̂ − FΦ)(ξ1, ξ2, η) = (Φ̂− Φ)(ξ1, ξ2, η)− 1

3

(
L(ξ1, (Ψ̂−Ψ)(ξ2, η))+

L(ξ2, (Ψ̂−Ψ)(ξ1, η)
)

and it thus follows that GΦ(ξ1, ξ2, η) = GΦ̂(ξ1, ξ2, η), so that we obtain a map T1 ∈ (S2E∗ ⊗
E)0⊗sl(F ). Clearly, one can analogously prove the existence of a map T2 ∈ (S2F ∗⊗F )0⊗sl(E)
by exchanging the roles of E and F . �

Let (p : G → M,ω) be the normal, regular parabolic geometry of type (G,P ) equivalent
to an hyperbolic (4, 8)–distribution (M,H), as in Corollary 5. Denote by κ ∈ Ω2(M,AM) the
two–form corresponding to the curvature function and by

gr1(κ) ∈ Γ((Λ2H∗ ⊗H)⊕ (H∗ ⊗Q∗ ⊗Q))

the graded curvature in homogeneity one. We will now to prove that the tensorial maps from
Propositions 20 and 21 are (up to multiples) the components of gr1(κ). Recall from Section 4 that
the filtration of g induces a filtration of TG by smooth subbundles, by putting T iG := ω−1(gi).
For u ∈ G, one can restrict the linear isomorphism ωu : TuG → g to T iuG and then compose it
with the projection onto the quotient gi → gi. In this way, we obtain a smooth section ωi of
L(T iG, gi) which vanishes on T i+1G. The Cartan connection splits, then, into the sum

ω = ω−2 + . . .+ ω2

Each negative graded component vanishes under insertion of vertical vector fields. As observed
in Proposition 17, the sum of the nonpositive graded components is equivalent to the sum of a
soldering form and a connection form on the adapted frame bundle for (M,H). In particular if
G0 ⊂ P denotes the Levi subgroup, ω0 descends to a G0–equivariant one–form ω0

0 on G0 = G/P+.
This corresponds, through the associated bundle construction, to a linear connection on gr(TM)
(see Definition 7 of Chapter 2 for the explicit formula of an induced linear connection).

Proposition 22. Let H ⊂ TM be an hyperbolic (4, 8)–distribution and H = E⊕F the local
decomposition from Theorem 5. Let (p : G → M,ω) be the normal, regular parabolic geometry
of type (G,P ) equivalent to (M,H) (see Corollary 5) and let κ be the curvature function for the
geometry. Then, the following formulas completely describe the graded curvature in homogeneity
one:

(1) gr1(κ)
(
ξ1, ξ2

)
= −[ξ1, ξ2]F for ξ1, ξ2 ∈ Γ(E), where [ξ1, ξ2]F denotes the component

along F of the bracket. In particular, this component vanishes if and only if the sub-
bundle E ⊂ TM is involutive.
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(2) gr1(κ)
(
η1, η2

)
= −[η1, η2]E for η1, η2 ∈ Γ(F ), where [η1, η2]E denotes the component

along E of the bracket. In particular, this component vanishes if and only if the sub-
bundle F ⊂ TM is involutive.

(3) gr1(κ)
(
ξ1,L(ξ2, η)

)
= − 1

2T1(ξ1, ξ2, η) for ξ1, ξ2 ∈ Γ(E) and η ∈ Γ(F ), where T1 is the
map defined in Proposition 21.

(4) gr1(κ)
(
η1,L(ξ, η2)

)
= − 1

2T2(η1, ξ, η2) for ξ ∈ Γ(E) and η1, η2 ∈ Γ(F ), where T2 is the
map defined in Proposition 21.

Proof. Let g− ⊂ sl(5,R) be the model algebra of hyperbolic (4, 8)–type. From Proposition
19, we know that the nontrivial components of gr1(κ) are associated to the g0–irreducible com-
ponents of H2(g−, g). We thus see that the nontrivial components write as Λ2E∗⊗F , Λ2F ∗⊗E,
(S2E∗ ⊗E)0 ⊗ sl(F ) and (S2F ∗ ⊗ F )0 ⊗ sl(E), according to the local direct sum decomposition
of H. Observe that the tensorial maps from Propositions 20 and 21 are of these types. In the
following, we will show that such tensorial maps coincide, up to the sign, with the components
of gr1(κ). Due to the symmetry of the formulas, it is enough proving the statement for (1) and
(3). Formulas (2) and (4), then, will be deduced from (1) and (3) by exchanging the roles of E
and F .
Denote by κ the curvature function. Let be ξ1, ξ2 ∈ Γ(E) and let ξ̃1, ξ̃2 ∈ Γ(G) be lifts of ξ1 and

ξ2, respectively. Now the component Λ2E∗ ⊗ F corresponds to the gF−1–component of κ(ξ̃1, ξ̃2).

Since the decomposition g−1 = gE−1 ⊕ gF−1 is g0–invariant and ω−1 is g0–equivariant, we have

that ω−1 = ωE−1 + ωF−1 with ωE−1 and ωF−1 both g0–equivariant taking values in gE−1 and gF−1,

respectively. Since ξ1 is a section of E, we get ω−1(ξ1) = ωE−1(ξ1) and likewise for ξ2. First, the

g−1–component of κ(ξ̃1, ξ̃2) is given by

κ−1(ξ̃1, ξ̃2) = dω−1(ξ̃1, ξ̃2) + [ω0(ξ̃1), ω−1(ξ̃2)]− [ω0(ξ̃−1), ω−1(ξ̃2)]

Observe that the second and the third terms take values in gE−1. The first summand rewrites, by
using the defining formula for the differential, as

ξ̃1 · ω−1(ξ̃2)− ξ̃2 · ω−1(ξ̃1)− ω−1([ξ̃1, ξ̃2]).

We thus see that the gF−1–component of κ(ξ̃1, ξ̃2) coincides with −ωF−1([ξ̃1, ξ̃2]). This corresponds,
through the associated bundle construction, to −[ξ1, ξ2]F and the statement (1) is thus proved.

Consider now ξ1, ξ2 ∈ Γ(E) and η ∈ Γ(F ). Choose local lifts ξ̃1, ξ̃2 and η̃ for ξ1, ξ2 and η,

respectively. By definition ω−2 vanishes on all of them, (ω−1)u(ξ̃i) ∈ gE−1 for i = 1, 2 and

(ω−1)u(η̃) ∈ gF−1 for all u ∈ G. We have to compute the component in g−2 of κ(ξ̃1, [ξ̃2, η̃]), which
is given by

κ−2(ξ̃1, [ξ̃2, η̃]) = dω−2(ξ̃1, [ξ̃2, η̃]) + [ω0(ξ̃1), ω−2([ξ̃2, η̃])] + [ω−1(ξ̃1), ω−1([ξ̃2, η̃])].

Since ω−2(ξ̃1) = 0, the first term equals ξ̃1 · ω−2([ξ̃2, η̃]) − ω−2([ξ̃1, [ξ̃2, η̃]]). Therefore, we can

rewrite κ−2(ξ̃1, [ξ̃2, η̃]) as

ξ̃1 · ω−2([ξ̃2, η̃]) + [ω0(ξ̃1), ω−2([ξ̃2, η̃])]− ω−2([ξ̃1, [ξ̃2, η̃]]) + [ω−1(ξ̃−1), ω−1([ξ̃2, η̃])]

Now the third term obviously represents −q([ξ1, [ξ2, η]]). Since ω0 descends to a principal con-
nection form on G0, it gives rise to linear connections on E and F and hence on Q ∼= E ⊗ F .

In particular, this shows that ξ̃1 · ω−2([ξ̃2, η̃]) + [ω0(ξ̃−1), ω−2([ξ̃2, η̃])] represents ∇Qξ1L(ξ2, η) =

L(∇Eξ1ξ2, η) + L(ξ2,∇Fξ1η).

So it remains to interpret the term [ω−1(ξ̃−1), ω−1([ξ̃2, η̃])]. By Proposition 19, the component
gE−1 ⊗ gF−1 → g−1 of κ is identically zero, which implies that

0 = dω−1(ξ̃2, η̃) + [ω0(ξ̃−2), ω−1(η̃)]− [ω0(η̃), ω−1(ξ̃2)].
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Inserting the definition of the exterior derivative and bringing the bracket term to the other side
we obtain

ω−1([ξ̃2, η̃]) = ξ̃2 · ω−1(η̃)− η̃ · ω−1(ξ̃2) + [ω0(ξ̃−2), ω−1(η̃)]− [ω0(η̃), ω−1(ξ̃2)]

which represents ∇Fξ2η−∇
E
η ξ2. Observe that the first term corresponds to the component in gF−1

and the second to the one in gE−1. Since ω−1(ξ̃1) ∈ gE−1, we conclude that [ω−1(ξ̃−1), ω−1([ξ̃2, η̃])]

represents −L(ξ1,∇Fξ2η). Putting all together, we see that κ−2(ξ̃1, [ξ̃2, η̃]) represents

L(∇Eξ1ξ2, η) + L(ξ2,∇Fξ1η)− q([ξ1, [ξ2, η]])− L(ξ1,∇Fξ2η).

Finally, we use once more that the lowest homogeneous component of κ is harmonic. This implies
that κ−2(ξ̃1, [ξ̃2, η̃]) is symmetric in the ξ̃’s and totally trace–free. Now the summand

L(ξ2,∇Fξ1η)− L(ξ1,∇Fξ2η)

is evidently skew–symmetric in ξ1, ξ2 and therefore

1

2
(κ−2(ξ̃1, [ξ̃2, η̃]) + κ−2(ξ̃2, [ξ̃1, η̃])) = −1

2
Φ(ξ1, ξ2, η),

where Φ is the map defined in (57) of Proposition 21. Clearly, the totally trace–free part of the
terms in the last equality coincide, proving (3).
Finally, if (M,H) is locally isomorphic to the homogeneous model, gr1(κ) is identically zero.
The fact that (1) and (2) vanish implies, respectively, that E and F are involutive subbundles
of H. �

Let (M,H) be an elliptic (4, 8)–distribution. By Proposition 16, H carries a partially inte-
grable almost complex structure J , locally defined up to sign around each point. Recall from 3.4
that since J is partially integrable, [ξ, η]− [Jξ, Jη] and [Jξ, η] + [ξ, Jη] are sections of H for all
ξ, η ∈ Γ(H) and we can thus define the Nijenhuis tensor

N : Λ2H → H, (ξ, η) 7→ [ξ, η]− [Jξ, Jη] + J
(
[Jξ, η] + [ξ, Jη]

)
The subbundles H(1,0), H(0,1) ⊂ HC, corresponding to anti–holomorphic and holomorphic sec-
tions of HC, are conjugate to each other. Furthermore, N vanishes identically if and only if
H(1,0) and H(0,1) are involutive subbundles of HC. If this is the case, (H,J) is said to be an
integrable CR–structure.

Proposition 23. Let H ⊂ TM be an elliptic (4, 8)–distribution and J a local partially
integrable almost complex structure on H (see Proposition 16). Let (p : G → M,ω) be the
normal, regular parabolic geometry of type (G,P ) equivalent to (M,H) (see Corollary 5) and let
κ be the curvature function for the geometry. Then, the following formulas completely describe
the graded curvature in homogeneity one:

(1) gr1(κ)
(
ξ, η
)

= − 1
4N(ξ, η) for all ξ, η ∈ Γ(H), where N denotes the Nijenhuis tensor

associated to (H,J). In particular, this component vanishes if and only if (H,J) is
integrable and thus a CR–structure.

(2) For ξ1, ξ2, η ∈ Γ(H) put ζt = ξt − iJ(ξt) ∈ Γ(H(1,0)) and λ = η + iJ(η) ∈ Γ(H(0,1)).
Then

gr1(κ)
(
ξ1,L(ξ2, η)

)
= −1

8
Re
(
T1(ζ1, ζ2 ⊗ λ)

)
,

where

T1 ∈ (S2(H(0,1))∗ ⊗H(0,1))0 ⊗ sl(H(1,0))
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is defined by choosing a linear connection ∇ : X(M)×Γ(H)→ Γ(H) such that ∇J = 0
(equivalently, ∇ξJη = J∇ξη for all ξ, η ∈ Γ(H)) and taking the totally trace–free part
of

Φ(ζ1, ζ2, λ) := LC(∇ζ1ζ2, λ) + LC(∇ζ2ζ1, λ)− qC([ζ1, [ζ2, λ]])− qC([ζ2, [ζ1, λ]])

as in Proposition 21.

Proof. Put t = su(3, 2) and consider the grading t = ⊕2
i=−2ti from 3.2. The description

of H2(t−, t), together with the associated bundle construction, assures the existence of two
nontrivial components of gr1(κ). Using the fact that their complexification coincides with the
complexification of those described in Proposition 22, they can be easily deduced. Consider the
local decomposition

HC = H(1,0) ⊕H(0,1)

as direct sum of rank–two complex vector subbundles H(1,0), H(0,1) ⊂ HC from Theorem 7. Put
E = H(0,1) and F = H(1,0). Let R : HC → HC be the conjugation map. There is a component
Λ2H → H of gr1(κ), whose complexification is the sum of X1 : Λ2E → F and X2 : Λ2F → E
given by (1) and (2) of Proposition 22 and satisfying

X1(ζ1, ζ2) = R(X2(R(ζ1), R(ζ2)))

for all ζ1, ζ2 ∈ Γ(E). Recall that for ξ, η ∈ Γ(H):

z = −[ξ + iJξ, η + iJη] = −
(
[ξ, η]− [Jξ, Jη]

)
− i
(
[Jξ, η] + [ξ, Jη]

)
∈ Γ(HC)

Writing z = z(1,0) + z(0,1) ∈ F ⊕ E, we deduce the formula for X1 from (1) of Proposition 22:

X1(ξ + iJξ, η + iJη) = z(1,0) =
1

2
(z − iJC(z)) = −1

2
N(ξ, η) +

1

2
iJ(N(ξ, η))

and by (55) we have

gr1(κ)
(
ξ, η
)

=
1

2
Re
(
X1(ξ + iJξ, η + iJη)

)
= −1

4
N(ξ, η)

which proves (1).
Observe that a linear connection ∇ : X(M) × Γ(H) → Γ(H) such that ∇J = 0 defines linear
connections

Γ(TCM)× Γ(E)→ Γ(E), Γ(TCM)× Γ(F )→ Γ(F )

which will be denoted with the same symbol. These define tensorial maps

P1 ∈ (S2E∗ ⊗ E)0 ⊗ sl(F ), P2 ∈ (S2F ∗ ⊗ F )0 ⊗ sl(E)

as in Proposition 21, satisfying

P1(ζ1, ζ2 ⊗ λ) = R(P2(R(ζ1), R(ζ2)⊗R(λ)))

for all ζ1, ζ2 ∈ Γ(E). There is a second component of gr1(κ) of type H∗ ⊗ Q∗ ⊗ Q. By (3)
of Proposition 22, the complexification of this component coincides with − 1

2 (P1 + P2). Using
formula (56), we thus have

gr1(κ)
(
ξ1,L(ξ2, η)

)
= −1

2

1

4
Re
(
P1(ζ1, ζ2 ⊗ λ)

)
for all ξ1, ξ2, η ∈ Γ(H), where ζ1 = ξ1 − iJξ1, ζ2 = ξ2 − iJξ2 and λ = η + iJη, which proves
(2). �
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Remark 4. Proposition 23 recovers a more general result (Theorem 1, p.16 [18]), describing
the fundamental invariants of free CR–distributions of dimension k on manifolds of dimension
2k+k2 for integers k ≥ 2. In [18], it is observed that the case k = 2 corresponding to our elliptic
(4, 8)–distributions is exceptional, in the following sense. For each integer k ≥ 2, the symbol
algebra for free CR–distributions of dimension k can be realized as the negative graded part of
a |2|–grading on g = su(k+ 1, k). Furthermore, it is shown that any such structure is equivalent
to a normal parabolic geometry and the associated curvature is analyzed. In higher dimensions,
all nontrivial components of the curvature are of type g∗−1 ⊗ g∗−2 ⊗ g−2 and the Nijenhuis tensor
of the partially integrable almost complex structure always vanishes. In particular, any free
CR–distribution of CR–rank k for k ≥ 3 is integrable, while this is not the case for k = 2.

6. The gap problem for normal, regular parabolic geometries

Fix a Lie group G and a closed subgroup H ⊂ G. Recall that the set of automorphisms of a
Cartan geometry (G →M,ω) of type (G,H) forms a group, usually denoted by Aut(G, ω). The
set of infinitesimal symmetries of (G →M,ω) is defined as

inf(G, ω) = { ξ ∈ X(G) | (rh)∗ξ = ξ for all h ∈ H, Lξω = 0 }

The set of infinitesimal symmetries is related to the automorphism group of a Cartan geometry,
according to the following fundamental result (see [6] for a proof):

Theorem 9. Let M be a connected manifold and let (G → M,ω) be a Cartan geometry of
type (G,H).

(1) The automorphism group Aut(G, ω) can be made into a Lie group of dimension lower
or equal than the dimension of G, whose Lie algebra aut(G, ω) consists of all complete
vector fields lying in inf(G, ω).

(2) For ξ, η ∈ inf(G, ω) the formula

ω([η, ξ]) = [ω(ξ), ω(η)]− κ(ω(ξ), ω(η))

holds. Here, κ denotes the curvature function associated to (G →M,ω). For any point
u ∈ G, the map ξ 7→ ω(ξ(u)) induces an injection inf(G, ω) → g. Denoting by f(u) its
image, the Lie bracket on inf(G, ω) is mapped to the operation

(X,Y ) 7→ [X,Y ]f(u) = [X,Y ]− κu(X,Y ).

In the following, we will always consider Cartan geometries with connected base space M .
The gap problem is formulated as follows. Given a Lie group G and a closed subgroup H ⊂ G, one
aims to determine the submaximal value S of dim(inf(G, ω)) over the set of Cartan geometries
(G → M,ω) of type (G,H). Theorem 9 (1) states that the maximal value for dim(inf(G, ω))
coincides with dim(G). Moreover, it is a well known fact that the Cartan geometry (G →M,ω)
is such that dim(inf(G, ω)) = dim(G) if and only if it is locally isomorphic to the flat model of
type (G,H). Then, the problem is solved by maximizing dim(S) over the subset of non–flat
Cartan geometries of same type, where S = inf(G, ω) denotes the set of infinitesimal symmetries.
[11] investigates the gap problem for normal, regular parabolic geometries. In this setting, non–
flatness means that the harmonic curvature is nonzero. The main result of the article is the
realization of the submaximally symmetric model, for almost all complex parabolic types (G,P )
and the corresponding split real types, as a locally homogeneous space. First, we recall the
argument developed in [11]. Then, we describe explicitly the submaximally symmetric models
of hyperbolic (4, 8)–distributions. In particular, we will see that the symmetry algebra of such
models has dimension 14, while for the flat model it coincides with the dimension of g = sl(5,C)
which is 24.
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6.1. Preliminaries from algebra.

Definition 18. (Refinement of Tanaka prolongation) Let g = g−k ⊕ · · · ⊕ gk be a graded
semisimple Lie algebra and let a0 ⊂ g0 be a Lie subalgebra. Define prg(g−, a0) ⊂ g graded
subalgebra by putting:

• a≤0 = g≤0;
• ak := { X ∈ gk | [X, g−1] ⊂ ak−1 } for k ≥ 1.

Observe that if H1(g−, g)1 = {0}, then Proposition 18 (4) shows that prg(g−, a0) coincides with
the Tanaka prolongation pr(g−, a0).

From the representation theory of parabolic subalgebras, we get the following facts. Let g
be a complex semisimple Lie algebra. Fix a Cartan subalgebra h ⊂ g and a simple root system
∆0 = {α1, . . . , αn} ⊂ h∗. Recall that a subset Σ ⊂ ∆0 corresponds to a unique choice of grad-
ing g = g−k ⊕ · · · ⊕ gk and this, in turn, to a unique choice of standard parabolic subalgebra
p ⊂ g such that p = ⊕i≥0gi is the nonnegative graded part for the grading. Now fix a grading
g = g−k ⊕ · · · ⊕ gk. The subalgebra g0 ⊂ g is reductive. Therefore, it writes as the direct sum
g0 = z(g0)⊕gss0 of its center z(g0) ⊂ h and its semisimple part gss0 . Moreover, h = z(g0)⊕h′′ such
that h′′ is a Cartan subalgebra. The grading corresponds to the decomposition in eigenspaces of
the adjoint action of an element Z ∈ z(g0), which is said to be the grading element.
Let be −µ ∈ h∗ and put −µ0 := −µ|h′′ ∈ (h′′)∗. Suppose that −µ is p–dominant and p–
algebraically integral. Then, Corollary 7 of Appendix A assures that there exists a unique
irreducible g0–module V∗−µ of highest weight −µ0 such that the diagonalizable action of z(g0) is
given by −µ|z(g0). This corresponds, by duality, to a unique irreducible g0–module Vµ of lowest
weight µ0 with z(g0)–action given by µ|z(g0). In the following, we will always denote by Vµ the
irreducible g0–module of lowest weight µ0. Let {ω1, . . . , ωn} be the fundamental weights for g.
We know that there exist nonpositive integers a1, . . . , an such that −µ =

∑n
i=1 aiωi. Then, −µ0

writes as −µ0 =
∑
i/∈Σ aiωi.

Let U be a finite dimensional representation of g. The coboundary operators defining the co-
homology complexes (C∗(g−,U), ∂) and (C∗(p+,U∗), ∂p) are g0–homomorphisms, hence their
kernels and images are g0–modules and the quotient of a g0–module is a g0–module (see Section
5.1 of Appendix A for more details). Therefore, the Lie algebra cohomologies Hn(g−,U) and
Hn(p+,U∗) admit natural structures of g0–modules. Both are realized, via the Hodge decompo-
sition, as subspaces of skew–symmetric bilinear maps g− × g− → U. The same decomposition
shows that the two cohomology groups are reciprocally dual g0–modules. Kostant’s Theorem
determines the highest weights of the irreducible components of Hn(p+,U∗) (see Theorem 14
of Appendix A). By duality, these uniquely correspond to the lowest weights of the irreducible
components of Hn(g−,U). We will be mainly interested in the case n = 2.
Define the annihilator of φ ∈ H2(g−,U) as

a0 := ann(φ) = { X ∈ g0 | X · φ = 0 }.

The relation

X ·H · φ = −[H,X] · φ+H ·X · φ = 0

for H ∈ h and X ∈ a0 shows that a0 ⊂ g0 is an h–invariant vector subspace.
Since a0 ⊂ g0 is a subalgebra, we can define aφ = prg(g−, a0) for φ ∈ H2(g−,U). We want to
estimate

U := max
{

dim(aφ) | φ ∈ H2(g−,U), φ 6= 0
}
.

Put I = {µ | Vµ ⊂ H2(g−,U)}, so that

H2(g−,U) = ⊕µ∈IVµ.
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Write φ ∈ H2(g−,U) as

φ =
∑
µ∈I

φµ, φµ ∈ Vµ.

For X ∈ g0, we have that X · φ =
∑
µ∈I X · φµ is the sum of terms lying in different g0–

irreducible components. Therefore X · φ = 0 if and only if X · φµ = 0 for all µ ∈ I, which tells
that ann(φ) ⊂ ∩µann(φµ). In particular, dim(aφ) ≤ dim(aφµ) for all µ ∈ I and we can thus
compute U as

U = max{Uµ | µ ∈ I}, where Uµ = max
{

dim(aφ) | φ ∈ Vµ, φ 6= 0
}
.

Therefore, we only need to estimate Uµ for a p–dominant and p–algebraically integral weight −µ.
We thus reduced the general problem to the case of estimating the maximum of dim(aφ) over
the set of those φ contained in a given irreducible component Vµ ⊂ H2(g−,U).
Let φ0 ∈ Vµ be a lowest weight vector of weight µ0. Now φ0 is defined by µ0, hence by µ, up to
scale and ann(λφ0) = ann(φ0) for any λ ∈ C. Hence, ann(φ0) ⊂ g0 only depends on µ and the
notation a(µ) = aφ0 is consistent.

Remark 5. Let g be a complex simple Lie algebra. The highest root of g is the highest weight
of the adjoint representation of g on itself. We will denote it by λg. Also recall that W p(2) is
the subset of the Weyl group of elements of length two mapping g–dominant and g–algebraically
integral weights to p–dominant and p–algebraically integral weights (see also Section 4 for more
details). From Kostant’s Theorem, it follows that

I = {µ | Vµ ⊂ H2(g−, g)} = {−w · λg | w ∈W p(2)},

where · denotes the affine action of the Weyl group on the set of weights. More precisely, I and
W p(2) are in bijective correspondence. To underline this fact, we adopt the notation a(w) := a(µ)
for µ = −w ·λg and w ∈W p(2). Let ∆0 = {α1, . . . , αn} be a simple root system for g and denote
the root vectors by eα ∈ gα for α ∈ ∆. An element of W of length two writes as the product
of two reflections with respect to simple roots. We will denote the reflection with respect to the
simple root αj as σj and the composition σj ◦ σk as (jk). If w = (jk) ∈W p(2), then

Φw = w(−∆+) ∩∆+ = {αj , σj(αk)}

and if V−w·λg
⊂ H2(g−, g), then

φ0 = eαj ∧ eσj(αk) ⊗ ew(−λ)

is the unique (up to scale) lowest weight vector in V−w·λg
. Let H2(g−, g)1 ⊂ H2(g−, g) be the

submodule of positive homogeneity. Then, V−w·λg
⊂ H2(g−, g)1 if and only if w ∈W p

+(2), where

W p
+(2) = {w ∈W p(2) | Z(−w · λg) ≥ 1}.

The next result is a consequence of the Borel fixed point Theorem (see [11] for a proof).

Lemma 3. Let G be a complex semisimple Lie group with Lie algebra g = g−k⊕· · ·⊕ gk and
G0 ⊂ G the Levi subgroup corresponding to the grading. Let Vµ be an irreducible G0–module and
let φ0 ∈ Vµ be a lowest weight vector. Then

dim(aφ) ≤ dim(aφ0)

for all φ ∈ Vµ. Moreover, dim(aφ) = dim(aφ0) if and only if φ differs from φ0 for multiplication
for a complex scalar multiple. It thus follows that

Uµ = dim(a(µ)).
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From now on, then, we investigate the structure of a(µ) = aφ0 for a p–dominant and p–
algebraically integral weight −µ. Put

Jµ = {j ∈ ∆0 \ Σ | 〈µ, αj〉 6= 0} = {j ∈ ∆0 \ Σ | σj(µ) 6= µ}
Since Jµ is a subset of a simple root system for gss0 , the Jµ–height of roots defines a grading on
gss0 , which we will denote by gss0 = g0,−m ⊕ . . .⊕ g0,m.

Proposition 24. Let −µ a p–dominant and p–algebraically integral weight, let Vµ be the
irreducible G0–module of lowest weight µ0 and let φ0 ∈ Vµ be the lowest weight vector. Then
a0 = ann(φ0) writes as

a0 = {H ∈ h | µ(H) = 0} ⊕
⊕

γ∈∆(g0,≤0)

gγ

where ∆(g0,≤0) ⊂ ∆(g0) denotes the subset of roots with nonpositive Jµ–height.

Proof. Recall that for the grading defined through the Σ–height of roots, where Σ = Σp,
we have that the component of degree zero writes as

(58) g0 = h⊕
⊕

α∈∆+(g0)

(gα ⊕ g−α).

Any α ∈ ∆+(g0) writes as linear combination of simple roots from ∆0 \ Σ with nonnegative
integer coefficients. Since a0 is h–invariant as a vector subspace, a0 writes as the direct sum

a0 = a0 ∩ h⊕
⊕

α∈∆+(g0)

(
a0 ∩ gα ⊕ a0 ∩ g−α

)
.

By definition, a0 ∩ h = {H ∈ h | µ0(H) = 0}. Recall that h = z(g0) ⊕ h′′, where h′′ ⊂ gss0 is a
Cartan subalgebra which writes as h′′ = {Hα | α ∈ ∆0 \Σ}. Since µ and µ0 differ for an element
which is linear combination of elements of Σ, we have that 〈µ−µ0, α〉 = 0 for α ∈ ∆0 \Σ, hence
that µ(Hα) = 〈µ, α〉 = 〈µ0, α〉 = µ0(Hα) and

a0 ∩ h = {H ∈ h | µ(H) = 0}.
By definition of lowest g0–weight vector, X ·φ0 = 0 for all X ∈ g−α with α ∈ ∆+(g0), hence

a0∩g−α = g−α for the same α. Now for α ∈ ∆+(g0), consider Hα = [Xα, X−α] and observe that

µ(Hα)φ0 = Hα · φ0 = Xα ·X−α · φ0 −X−α ·Xα · φ0 = −X−α ·Xα · φ0.

Therefore Xα ∈ a0 ∩ gα if and only if 〈µ, α〉 = µ(Hα) = 0, which means that htJµ(α) = 0. �

Denote by ∆0 = {α1, . . . , αn} a simple root system for g and by {H1, . . . ,Hn} the dual basis
for h. In particular, we know that {Hi | αi ∈ Σ} is a basis for z(g0) and that Hi acts on the
irreducible g0–module Vµ by scalar factor Hi(µ) for all i ∈ Σ. In particular, the elements in

Iµ = {i ∈ Σ | 〈µ, αi〉 = 0}
correspond to generators Hi of z(g0) acting trivially on Vµ. We put Iw := I−w·λg

for g simple.
For the grading g = g−k⊕ . . .⊕gk, any gj is invariant with respect to the adjoint action of g0 and
it thus decomposes into g0–irreducible components. Let g1i ⊂ g1 be a g0–irreducible component.
Now g0,0 ⊂ g0 is a subalgebra and g1i , considered as g0,0–module, might be reducible. Hence,
g1i decomposes into g0,0–irreducible components. The decompositions above can be described
via the notation that we are going to introduce. For S ⊂ {1, . . . , n}, put ZS =

∑
i∈S Hi ∈ h and

Z̃S = (Hi)i∈S .

Theorem 10. Let −µ a p–dominant and p–algebrically integral weight and a = a(µ). Then

(1) The positive graded part a+ of a writes as direct sum of root spaces
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(2) The decomposition of g1 into g0–irreducible components writes as

g1 =
⊕
i∈Σ

g1i , ∆(g1i) = {α ∈ ∆(g1) | Hi(α) = 1}.

(3) For i ∈ Σ, the decomposition of g1i into g0,0–irreducible components is

g1i =
⊕
A≥0

g1i,A, ∆(g1i,A) = {α ∈ ∆(g1i) | Z̃Jµ(α) = A},

where A ≥ 0 means that all entries of A are nonnegative with respect to the ordering
on ∆.

(4) a+ = {0}, equivalently a = g− ⊕ a0, if and only if Iµ = ∅. Moreover if Iµ 6= ∅, then
∆(a1) = {α ∈ ∆(g1) | ZIµ(α) = 1, ZJµ(α) = 0}.

(5) a1 generates all brackets aj and ∆(aj) = {α ∈ ∆(gj) | ZIµ(α) = j, ZJµ(α) = 0} for all
j ≥ 1.

Proof. (1) Recall that aj = {X ∈ gj | [X, g−1] ⊂ aj−1} for all j ≥ 1 and a+ = ⊕j≥1aj .
We prove by induction that aj is h–invariant for all j ≥ 0, which implies the statement. First,
the fact that a0 is h–invariant follows from the definition. Fix now j ≥ 1 and suppose that aj−1

is h–invariant. Using the Jacobi identity, then, one can easily see that also aj is h–invariant.
Indeed, for H ∈ h, X ∈ aj and Y ∈ g−1, the formula

[[H,X], Y ] = [[H,Y ], X] + [H, [X,Y ]]

shows that [[H,X], Y ] ∈ aj−1, hence that [H,X] ∈ aj . In particular, each aj is the sum of root
spaces corresponding to roots in the subset ∆(aj) ⊂ ∆(gj).
(2) Fix i ∈ Σ. Let be ∆(g1i) = {α ∈ ∆(g1) | Hi(α) = 1} and let g1i ⊂ g1 be the direct sum
of root spaces gα corresponding to α ∈ ∆(g1i). Observe that β ∈ ∆(g1i) writes as β = αi + γ
with γ ∈ ∆+(g0). Therefore, αi is the lowest root of ∆(g1i). Moreover, if we write β as linear
combination of simple roots, αi is the unique element of Σ showing up. From a basic result
of representation theory of semisimple Lie algebras, namely the description of the weights of a
finite–dimensional irreducible representation, it is thus clear that g1i ⊂ g1 is a g0–irreducible
component and that g1i 6= g1s for i 6= s. Indeed, ∆(g1i) is defined as the set of weights of the
irreducible gss0 –representation generated by the lowest weight vector of weight αi.
(3) The set ∆0(g0,0) = {αi ∈ ∆0 \ Σ | 〈µ, αi〉 = 0} is a simple root system for the semisimple
part of g0,0. Note that α + β ∈ ∆(gi1,A) for all α ∈ ∆(gi1,A) and β ∈ ∆0(g0,0). Indeed,

Hi(α + β) = Hi(α) = 1 for i ∈ Σ and Z̃Jµ(α + β) = Z̃Jµ(α) = A, since 〈µ, β〉 = 0. Then,
∆(g1i,A) is defined as the set of weights of the irreducible gss0,0–module g1i,A ⊂ g1i generated by
its lowest weight vector.
(4) Denote by B the Killing form of g. Recall that for γ ∈ ∆ ⊂ h∗, there exists a unique
Hγ ∈ h such that γ(H) = B(Hγ , H) for all H ∈ h. Each root space gγ is one–dimensional
and one can choose generators Xγ of gγ for each γ ∈ ∆ such that [Xγ , X−γ ] = cγHγ , where
cγ = B(Xγ , X−γ) 6= 0. Consider now Xα for α ∈ ∆(g1). Let us see which conditions Xα must
verify to be in a1. Then, this will be translated in conditions verified by α ∈ ∆(a1). If β ∈ ∆(g1),
then [Xα, X−β ] ∈ g0 and we have three possibilities:

• if β = α, then [Xα, X−α] = cαHα ∈ h. By Proposition 24, Hα lies in a0 if and only if
µ(Hα) = 〈µ, α〉 = 0

• for β 6= α, we have two distinct cases. If α − β /∈ ∆, then [Xα, X−β ] = 0, which puts
no conditions on α. If α−β ∈ ∆, then [Xα, X−β ] = fα,βXα−β with fα,β 6= 0 and again
by Proposition 24, Xα−β lies in a0 if and only if α− β ∈ ∆(g0,≤0).

Define T1 = {α ∈ ∆(g1) | 〈µ, α〉 6= 0} and T2 = {α ∈ ∆(g1) | ∃β ∈ ∆(g1) : α − β ∈ ∆(g0,+)}.
The argument above shows that ∆(a1) = ∆(g1) \ (T1 ∪ T2).
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Consider the g0,0–module decomposition from (3). Fix i ∈ Σ. a1 is a g0,0–module and from
Schur’s Lemma follows that either g1i,A ⊂ a1 or a1 ∩ g1i,A = {0}. It is enough to verify whether
the lowest root of g1i,A lies in ∆(a1) or not. Suppose that at least one entry of A is strictly
positive (we will write this condition as A > 0). Let α ∈ ∆(g1i,A) be the lowest root. Since
A > 0, α 6= αi, hence α is not the lowest root of g1i . However, since g1i is an irreducible
g0–module containing g1i,A, α is a weight of the g0–module g1i . Hence, the lowest root of g1i,A

can be obtained by subtracting a finite number of times simple roots for g0. In formulas, there
exist j1, . . . , jm ∈ ∆0 \ Σ such that

α− αj1 − . . . αjm = αi.

In particular, since htΣ(β) = htΣ(α) = 1, we see that β = α−αj1 ∈ ∆(g1). Clearly, β /∈ ∆(g1i,A),
since this would be a contraddiction with the choice of α as the lowest root. Subtracting αj1 from

α, then, modifies the A–component. Otherwise put, Z̃Jµ(β) 6= Z̃Jµ(α), hence j1 ∈ Jµ. Together
with the fact that α ∈ ∆(g0,+), this implies that α ∈ T2, hence α /∈ ∆(a1). We thus showed that
∆(a1) ⊂

⋃
i∈Iµ ∆(g1i,0). Consider now the case A = 0. The lowest root of ∆(g1i,0) is αi, which

evidently does not lie in T2. Therefore, i /∈ Iµ if and only if αi ∈ T1 and we obtain

∆(a1) =
⋃
i∈Iµ

∆(g1i,0),

which concludes the proof of (4).
(5) Consider j ≥ 2 and γ ∈ ∆(aj) ⊂ ∆(gj). By Proposition 18 (2), g1 is bracket–generating
in g+. This implies the existence of α ∈ ∆(gj−1) and β ∈ ∆(g1) such that γ = α + β. Now
γ ∈ ∆(aj) implies that α = γ−β ∈ ∆(aj−1) and since a is graded, we have that [aj , a−(j−1)] ⊂ a1

thus β = γ − α ∈ ∆(a1). For S1, S2 ⊂ ∆, define a subset S1 u S2 ⊂ ∆ by putting S1 u S2 =
{α+ β | α ∈ S1, β ∈ S2} ∩∆. Then, the argument above proves that

∆(aj) ⊆ ∆(aj−1)u∆(a1)

and the characterization of ∆(a1) from (4) leads to

∆(aj−1)u∆(a1) ⊆ {α ∈ ∆(gj) | ZIµ(α) = j, ZJµ(α) = 0} =: Sj .

Conversely, take γ ∈ Sj and β ∈ ∆(g1). If α = γ−β ∈ ∆, then α ∈ ∆(gj−1). Since ZΣ\Iµ(γ) = 0,
then ZIµ(β) = 1 and ZJµ(β) = 0, so β ∈ ∆(a1). Thus, ZIµ(α) = r − 1 and ZJµ(α) = 0, so by
the induction hypothesis, α ∈ ∆(ar−1) and γ ∈ ∆(ar). �

Fix a semisimple Lie group G and a parabolic subgroup P ⊂ G. Let g be the Lie algebra
of G and p ⊂ g the Lie algebra of P . Consider the grading g = g−k ⊕ . . . ⊕ gk corresponding
to the parabolic subalgebra p ⊂ g. The grading is equivalent to a filtration of g denoted by
{gi}. Let (p : G →M,ω) be a normal, regular parabolic geometry of type (G,P ). By regularity,
the curvature function κ : G → Λ2(g/p)∗ ⊗ g associated to the parabolic geometry satisfies
κu(gi, gj) ⊂ gi+j+1 for all u ∈ G and i, j ≤ −1. The harmonic curvature κH : G0 → H2(g−, g),
then, takes values in the submodule H2(g−, g)1 ⊂ H2(g−, g) of positive homogeneity.
Fix u ∈ G such that κH(u) 6= 0. Let S = inf(G, ω) be the set of infinitesimal symmetries and
let be ξ ∈ S. The equivariancy property (rh)∗ξ = ξ for h ∈ P assures that ξ is completely
determined by its value in a point. Therefore, the linear map h : S → g given by ξ 7→ ω(ξ(u)),
which was considered in (2) of Theorem 9, is an injection. The image of h, denoted by f(u) ⊂ g,
is a vector subspace of g, in general not a subalgebra. Let be ξ, η ∈ S and put X = ω(ξ(u)) and
Y = ω(η(u)), so that X,Y ∈ f(u). From Theorem 9 (2), we know that the bracket of ξ, η in S
(which is by definition the negative of the bracket of vector fields) is mapped by h to

(59) [X,Y ]f(u) = [X,Y ]− κu(X,Y ).
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Since [ , ]f(u) is induced by the bracket of vector fields, it defines a bracket on f(u). Otherwise
put, f(u) equipped with the bracket above is a Lie algebra. Since (p : G → M,ω) is regular,
restricting the filtration of g to f(u) makes f(u) into a filtered Lie algebra, whose associated
graded algebra is isomorphic to a graded Lie subalgebra of g. Indeed, f(u) inherits a filtration
from g by putting fi(u) := f(u) ∩ gi. Clearly, the bracket [ , ]f(u) defined by (59) is compatible

with the filtration of f(u). If si(u) = fi(u)/fi+1(u), then

s(u) = ⊕ki=−ksi(u) ⊂ g

is a graded vector subspace. Since [ , ]f(u) preserves the filtration of f(u), it induces a graded
bracket si(u)⊗sj(u)→ si+j(u) by taking equivalence classes of brackets. The regularity assump-
tion κu(gi, gj) ⊂ gi+j+1 implies that the second summand in the right–hand term of (59) does
not contribute to the induced graded bracket, which therefore coincides with the restriction of
[ , ] : gi⊗gj → gi+j to the subspace s(u) ⊂ g. The graded Lie algebra associated to the filtration
of f(u) is thus a graded subalgebra s(u) ⊂ g. In particular, we have the following

Lemma 4. The component in homogeneity zero of s(u) satisfies s0(u) ⊂ ann(kH(u)) ⊂ g0.

Proof. Suppose that ξ ∈ S is such that Y = ω(ξ(u)) ∈ p. Then ξ(u) = ζY (u) is a vertical
tangent vector and its flow is given by φt(u) = d

dt

∣∣
t=0

u · exp(tY ). Now κH is horizontal and
P–equivariant, so that

0 = (ξ · κH)(u) =
d

dt

∣∣∣∣
t=0

(κH(φt(u))) =
d

dt

∣∣∣∣
t=0

exp(−tY ) · κH(u) = −Y · κH(u)

Complete reducibility of H2(g−, g)1 (where the values of κH lie) implies that the action above
only depends on Ymod p+, which is defined up to f1(u) by ξ, thus the statement. �

Let be x ∈M and let u ∈ G be such that p(u) = x. For ξ ∈ S and h ∈ P , we have

Ad(h−1) ◦ ωu(ξ) = (rh)∗ωu(ξ) = ωuh(Tur
h · ξu) = ωuh(ξuh)

which shows that ω(ξ(u)) ∈ gi if and only if ω(ξ(uh)) ∈ gi. Therefore, there is an isomorphism
f(u) ∼= f(ug) of filtered vector spaces, hence an isomorphism s(u) ∼= s(ug) of graded vector spaces.
The Lie algebra structure on s(u), up to isomorphism, only depends on the base point p(u) = x.
In order to emphasize this fact, we introduce the notation s(x) for x ∈M .

Definition 19. A point x ∈ M is said to be regular if it admits a neighborhood Nx ⊂ M
such that dim(sj(y)) = dim(sj(x)) for all −k ≤ j ≤ k and all y ∈ Nx.

One can prove that the subset of regular points is open and dense in M (see Lemma 4.2.4,
[11]). Let (p : G → M,ω) be a normal, regular parabolic geometry of type (G,P ). If the
geometry is not locally flat, the existence of regular points is assured. In this case, indeed,
N = {x ∈ M | κH(u) 6= 0 ∀u ∈ p−1(x)} is a non–empty and open subset of M which, by the
density statement above, must contain a regular point.

Proposition 25. [11] Let x ∈ M be a regular point and let be u ∈ p−1(x). Then for all
i ≥ 1, the relation [si(u), g−1] ⊂ si−1(u) holds. In particular, si(u) ⊂ pi for all i ≥ 1, where pi
denotes the homogeneous component of p = prg(g−, s0(u)) of degree i.

Fix a regular point x ∈ M and u ∈ p−1(x). Proposition 25 proves that there exists an
inclusion s(u) = g− ⊕ s≥0(u) ⊆ prg(g−, s0(u)) of graded Lie algebras. Lemma 4 tells us that
s0(u) ⊂ ann(κH(u)), which implies the inclusion

prg(g−, s0(u)) ⊂ aκH(u) = prg(g−, ann(κH(u)))

of graded subalgebras. Therefore, s(u) ⊆ aκH(u) is a graded subalgebra and we conclude that

dim(S) = dim(s(u)) ≤ dim(aκH(u)),
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hence that S ≤ U < dim(g).
Now if S = U, then any submaximally symmetric model is locally homogeneous around a non–flat
regular point. Indeed, suppose that S = U. Let (p : G → M,ω) be a normal, regular parabolic
geometry (p : G → M,ω) of type (G,P ) with infinitesimal symmetry algebra S of maximal
dimension S and let x ∈M be a regular point. Then, there exists an open neighborhood Nx ⊂M
of x and µ ∈ I = {γ | Vγ ⊂ H2(g−, g)1} such that s(y) is isomorphic to the prolongation a(µ) for
all y ∈ Nx. In particular, the negative graded part of the graded Lie algebra s(y) coincides with
g− for all y ∈ Nx. Let be u ∈ p−1(x). Consider the unique connected and simply connected Lie
groups F, F≥0, G− with respective Lie algebras f(u), f(u)≥0 and g−. Then F≥0 ⊂ F is a closed
subgroup and G− ∼= F/F≥0 is an homogeneous space diffeomorphic to Nx ⊂M .
We saw that for (G,P ) given, in general, U is an upper bound for S. [11] shows that S = U is
verified up to a finite number of exceptions, hence that the upper bound is almost always sharp.
We briefly recall the argument.
Consider µ ∈ I = {γ | Vγ ⊂ H2(g−, g)1} and φ0 ∈ Vµ ⊂ H2(g−, g)1 a lowest g0–weight vector.
The Hodge decomposition shows that H2(g−, g)1 can be seen as a subspace of Λ2g∗− ⊗ g, hence
φ0 as a skew–symmetric bilinear map g− × g− → g. Suppose now that Im(φ0) ⊂ a ⊂ g, where
we put a = a(µ) to simplify the notation. Since Λ2g∗− ⊗ a merges into Λ2a∗ ⊗ a, we can consider
φ0 as a skew–symmetric bilinear map a× a→ a which vanishes by insertion of elements of a∩ p.
Define a Lie algebra f, whose underlying space coincides with a and equipped with the bracket

(60) [ ·, · ]f := [ ·, · ]a − φ0( ·, · )

Observe that (f≥0, [ ·, · ]f) = (a≥0, [ ·, · ]a).

Remark 6. Let g be a complex simple Lie algebra with highest root λg. The condition
w(−λg) ∈ ∆− assures that Im(φ0) ⊂ a, so that formula (60) defines a map a × a → a. By
analyzing the set of roots ∆ (see Lemma 4.3.2 in [11]), one shows that this condition is satisfied
for almost all pairs (g, p) with a finite number of exceptions. The case of interest for us, namely
the grading on g = sl(5,C) from Example 1, is not among these exceptions.

If Im(φ0) ⊂ a, one can explicitly construct a normal, regular parabolic geometry with con-
stant harmonic curvature φ0, which therefore satisfies

S ≥ dim(S) = dim(s(u)) = dim(aκH(u)) = Uµ.

Lemma 5. Let g be a complex simple Lie algebra with root system ∆ and highest root λg.
Let p ⊂ g be a parabolic subalgebra and w ∈ W p(2). Suppose that w(−λg) ∈ ∆−. Let φ0 be the
lowest weight vector of V−w·λg

and a = a(w). Then Im(φ0) ⊂ a and the bracket defined in (60)
satisfies the Jacobi identity.

Proof. Given an orientation on the root system, the set of negative roots writes as the
disjoint union ∆− = ∆−(g−)t∆−(g0) of those negative roots corresponding to root spaces con-
tained in g− and in g0, respectively. Since φ0 vanishes outside g−, all root vectors corresponding
to ∆−(g0) annihilate φ0.
Let us now verify that [ ·, · ]f satisfies the Jacobi identity. From the explicit description of
φ0 (see Remark 5), we see that Im(φ0) ⊂ a. By Theorem 3.5.1 in [11], we can assume that
a, whose underlying vector space coincides with the vector space underlying f by definition, is
prolongation–rigid, namely a = g− ⊕ ann(φ0). For X,Y, Z ∈ f,

[[X,Y ], Z]f = [[X,Y ], Z]− φ0([X,Y ], Z)− [φ0(X,Y ), Z] + φ0(φ0(X,Y ), Z)

where the bracket at the right–hand side is the bracket of g. If at least two elements are in a0,
then [[X,Y ], Z]f = [[X,Y ], Z]. Suppose that X,Y ∈ g− and Z ∈ ann(φ0). The Jacobi identity
reduces then to

Jacf(X,Y, Z) = [Z, φ0(X,Y )]− φ0([Z,X], Y )− φ0([Y,Z], X) = (Z · φ0)(X,Y ) = 0.



6. THE GAP PROBLEM FOR NORMAL, REGULAR PARABOLIC GEOMETRIES 92

Finally, suppose that X,Y, Z ∈ g−. Now φ0 is ∂–closed and (∂φ0)(X,Y, Z) = 0 rewrites as

(61)
(∂φ0)(X,Y, Z) =[X,φ0(Y,Z)]− [Y, φ0(X,Z)] + [Z, φ0(X,Y )]+

−φ0([X,Y ], Z) + φ0([X,Z], Y )− φ0([Y,Z], X) = 0

Observe that all terms are brackets of g restricted to a. Using (61) and the fact that the bracket
of a satisfies the Jacobi identity, we get

(62) Jacf(X,Y, Z) = φ0(φ0(X,Y ), Z) + φ0(φ0(Y,Z), X) + φ0(φ0(Z,X), Y )

Recall from Remark 5 that w ∈W p(2) writes as the composition w = σj ◦ σk of reflections with
respect to simple roots and

φ0 = eαj ∧ eσj(αk) ⊗ ew(−λ)

is the unique (up to scale) lowest weight vector in V−w·λg
. If w(−λg) ∈ {−αj ,−σj(αk)}, we

get the contraddiction λg ∈ ∆−. Therefore w(−λg) /∈ {−αj ,−σj(αk)}, which implies that each
term showing up in (62) is zero and concludes the proof. �

Let g be a complex simple Lie algebra and let n ⊂ g be the split–real form, equipped with a
grading n = n−k ⊕ . . . ⊕ nk. The description of real n0–irreducible components of H2(n−, n) is
completely analogous to the description of the complex g0–irreducible components of H2(g−, g).
In particular, each n0–irreducible component admits a lowest weight, whose explicit expression
is the same as in Remark 5 for the complex case and the Jacobi identity for the split–real case
can be proved analogously as in Lemma 5. The following result proved in [11] holds in both
complex and split–real cases.

Theorem 11. Let G be a complex or split–real simple Lie group, P ⊂ G a parabolic subgroup,
g the Lie algebra of G with highest root λg. Put µ = −w · λg for w ∈ W p

+(2) and denote by
φ0 ∈ Vµ a lowest g0–weight vector. If w(−λg) ∈ ∆−, there exists a normal, regular parabolic
geometry (G → M,ω) of type (G,P ) with inf(G, ω) containing a subalgebra isomorphic to f and
with harmonic curvature φ0. In particular, dim(aut(G, ω)) ≥ dim(a(w)).

Corollary 6. Let G be a complex or split–real simple Lie group, P ⊂ G a parabolic sub-
group, g the Lie algebra of G with highest root λg. Put µ = −w · λg for w ∈ W p

+(2). If
w(−λg) ∈ ∆−, then Sµ = Uµ = dim(a(w)) and any submaximally symmetric model is locally
homogeneous around a non–flat regular point.

We focus now on the description of the submaximally symmetric models for hyperbolic
(4, 8)–distributions.

Submaximally symmetric models of hyperbolic (4, 8)–distributions. By Corollary
5, generic (4, 8)–distributions are equivalent to certain normal, regular parabolic geometries,
whose parabolic type (G,P ) is determined by a grading g = ⊕2

i=−2gi on a real graded simple

Lie algebra g such that gC = ⊕2
i=−2g

C
i is the grading on sl(5,C) described in Section 1. Aim

of this section is the explicit description of the submaximally symmetric models of hyperbolic
(4, 8)–distributions, arising from the choice of grading on the split–real form sl(5,R) ⊂ sl(5,C).

Consider the real simple Lie algebra g = sl(5,R) and the |2|–grading on g described in 2.1. In
particular, recall that g0

∼= gl(2,R)⊕gl(2,R) is a reductive Lie algebra and that g−1 decomposes
into the direct sum g−1 = E ⊕ F of two–dimensional real g0–modules. The explicit description
of the lowest weights of the g0–irreducible components of H2(g−, g), given in Section 5, can be
briefly summarized in the following diagram. At the left side, we represent the set of weights
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{−w · λg | w ∈ W p
+(2)} in the Dynkin diagram notation. For each weight −w · λg, we write the

g0–irreducible representation of lowest weight −w · λg at the right–hand side:

×o × o
0 4 −3 −1

Λ2E∗ ⊗ F

×o × o
−1 −3 4 0

Λ2F ∗ ⊗ E

×o × o
−3 3 0 −2

(S2E∗ ⊗ E)0 ⊗ sl(F )

×o × o
−2 0 3 −3

(S2F ∗ ⊗ F )0 ⊗ sl(E)

As it follows from Kostant’s Theorem, these are the irreducible components of the g0–submodule
H2(g−, g)1 ⊂ H2(g−, g), whose harmonic representatives can be thought as skew–symmetric
bilinear graded maps g− × g− → g− of degree one. The first and second weights in the list
correspond to subsets of maps g−1 × g−1 → g−1, while the third and fourth ones to subsets
of maps g−1 × g−2 → g−2. We thus drew a clear picture for H2(g−, g)1, which is the space
encoding the values of the harmonic curvature of a normal, regular parabolic geometry of type
(G,P ) corresponding to the grading on the split–real algebra g. Lemma 4.3.2 in [11] shows that
w(−λg) ∈ ∆− for all w ∈ W p

+(2) and therefore Corollary 6 applies. The infinitesimal symmetry
algebra of the submaximally symmetric models of type (G,P ) admits the explicit construction
from the previous section, which we briefly recall.
Suppose that µ = −w · λg for some w ∈ W p

+(2) and that φ0 is a lowest weight vector in the
irreducible g0–module Vµ ⊂ H2(g−, g)1. The prolongation a(w) = prg(g−, ann(φ0)) can be
determined, by Theorem 10, by looking at the Dynkin diagram of µ. Put f := a(w). As shown
in Lemma 5, the condition w(−λg) ∈ ∆− guarantees that putting

[ , ]f := [ , ]− φ0

defines a bracket on f, hence a Lie algebra structure (f, [ , ]f). Now any Lie algebra (f, [ , ]f) of
dimension

d := max{dim(a(w)) | w ∈W p
+(2)},

obtained as above is isomorphic to the infinitesimal symmetry algebra of maximal dimension for a
non flat normal, regular parabolic geometry of type (G,P ), whose harmonic curvature coincides
with φ0. Therefore, we shall first compute dim(a(w)) for all w ∈ W p

+(2) and then describe
explicitely the homogeneous space resulting from the choice of w such that dim(a(w)) = d.
Because of the symmetry of the set of such weights, we only need to compute the prolongation
for the cases Λ2E∗ ⊗ F and (S2E∗ ⊗ E)0 ⊗ sl(F ). In both cases the full prolongations have
dimension 14, thus they both originate a submaximally symmetric model. In the first case, the
first prolongation of g− ⊕ ann(φ0) is trivial, while in the second case a1 is one–dimensional and
the full prolongation reduces to g− ⊕ ann(φ0)⊕ a1. Let us now check it directly.
In the same notation of Example 1, we write elements of g− as

Yi = (ψi, ei, fi) ∈ g−2 ⊕ E ⊕ F ∼= gl(2,R)⊕ (R2)∗ ⊕ R2

for i = 1, 2. Recall that the bracket g−1 × g−1 → g−2 descends to an isomorphism g−2
∼= E ⊗ F

and that we write elements of g0 as a pair (U, V ) ∈ gl(E)⊕gl(F ). In our notation, the g0–action
on g− looks like

(63) [(U, V ), (ψi, ei, fi)] =
(
V ψi − ψiU , −λei − Uei , λfi + V fi

)
.

where λ = tr(U+V ). Also recall that we look at φ0 as a skew–symmetric bilinear map g−×g− →
g. For X ∈ g0, being in the annihilator ann(φ0) writes as

(64) [X,φ0(Y1, Y2)]− φ0([X,Y1], Y2)− φ0(Y1, [X,Y2]) = 0

for all Y1, Y2 ∈ g−.



6. THE GAP PROBLEM FOR NORMAL, REGULAR PARABOLIC GEOMETRIES 94

Lowest weight vector in Λ2E∗⊗F . A lowest weight vector Φ0 ∈ Λ2E∗⊗F writes as Φ0 = ωf0

for a symplectic form ω : E × E → R and a fixed non–zero f0 ∈ F . If X ∈ ann(φ0), then X
satisfies (64) for all Y1 = e1, Y2 = e2 ∈ E. Observe that in this formula, in the first term X acts
on an element of F , while in the remaining terms X acts on elements of E. By (63), then, the
condition for X = (U, V ) ∈ gl(E)⊕ gl(F ) to be in ann(φ0) writes as

0 = λω(e1, e2)f0 + ω(e1, e2)V f0 − (ω(−λe1 − e1U, e2) + ω(e1,−λe2 − e2U))f0

= (3λ+ tr(U))ω(e1, e2)f0 + ω(e1, e2)V f0

for all e1, e2 ∈ E with λ = tr(U + V ). A nontrivial solution (U, V ) of the last equation satisfies
V f0 = −(3λ + tr(U))f0 = (−3tr(V ) − 4tr(U))f0. This gives two linear conditions on V , hence
ann(φ0) ⊂ g0 is a six–dimensional subalgebra. Choosing f0 the first vector of the standard basis
for F , one can explicitely describe ann(φ0) as the set

a0 := ann(φ0) = { (U, V ) | U ∈ gl(2,C), V =

(
−3a− 4tr(U) ∗

0 4tr(U) + 4a

)
, a ∈ R }

We can now compute the first prolongation a1 of (g−, a0) using (4) of Theorem 10. For a
weight µ, the elements of

Iµ = {i ∈ Σ | 〈µ, αi〉 = 0}

correspond to the crossed nodes in the Dynkin diagram of µ with a zero coefficient. Recall that
the weight µ of φ0 is

×o × o
0 4 −3 −1

so that Iµ = ∅. This is equivalent to a1 = {0}, hence a(w) = g− ⊕ a0 is the vector space
underlying f, which therefore has dimension 14.
Let us write [ , ]f = [ , ]−φ0 explicitly. Since the deformation term is a map φ0 : g−1×g−1 → g−1,
it only affects the bracket between negative graded components. For every Y1, Y2, Y3, Y ∈ g−1,
writing Yi = (ei, fi) with ei ∈ E and fi ∈ F , we obtain:

[Y1, Y2]f = (f1 ⊗ e2 − f2 ⊗ e1, 0,−ω(e1, e2)f0)

[Y3, [ Y1, Y2]f]f = (ω(e1, e2)f0 ⊗ e3, 0, 0)

[Y, [ Y3, [ Y1, Y2]f]f]f = (0, 0, 0)

The formulas above show that (f−, [ , ]f) is a nilpotent graded Lie algebra of depth three.
In particular, f−1 determines a left–invariant two–step bracket generating distribution on the
connected and simply connected Lie group K, whose Lie algebra is f−. The Baker-Campbell-
Hausdorff formula leads to the group multiplication law for K. In fact, for g, h in K, there exist
vectors Y1, Y2 ∈ f such that g1 = eY1 and g2 = eY2 . Hence g1g2 = eZ , where

Z = Y1 + Y2 +
1

2
[Y1, Y2]f +

1

12
[Y1, [Y1, Y2]f]f −

1

12
[Y2, [Y1, Y2]f]f

is given by the mentioned formula. Explicitely:

Z =
(
ψ1 + ψ2 +

1

2
(f1 ⊗ e2 − f2 ⊗ e1) +

1

12
ω(e1, e2)f0 ⊗ (e1 − e2),

e1 + e2,

f1 + f2 −
1

2
ω(e1, e2)f0

)
.
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Lowest weight vector in (S2E∗ ⊗E)0 ⊗ sl(F ). Let us consider now the lowest weight vector

φ0 ∈ (S2E∗ ⊗ E)0 ⊗ sl(F ).

Since E is two–dimensional, Λ2E is one–dimensional and there exists an isomorphism

ψ : E → L(E,Λ2E), v 7→ (w 7→ v ∧ w).

Therefore, idS2E∗ ⊗ ψ : S2E∗ ⊗ E → S2E∗ ⊗ E∗ ⊗ Λ2E is also a linear isomorphism, which
descends to

(S2E∗ ⊗ E)0
∼= S3E∗ ⊗ Λ2E.

Fix bases {e1, e2} and {f1, f2} of E and F . Clearly, ψ(e2) = e∗1 ⊗ e1 ∧ e2. Suppose that e1 and
f1 are highest weight vectors of E and F , respectively. Using the isomorphism above and the
usual notation for the dual basis, we can write

φ0 = e∗1 � e∗1 � e∗1 ⊗ e1 ∧ e2 ⊗ f∗1 ⊗ f2.

Seen as a map φ0 : g−1 × g−2 → g−2, we have that φ0(e1, f1 ⊗ e1) = f2 ⊗ e2 and it vanishes on
the others elements of the induced basis of g−1 × g−2. With the same notation as before, using
(63) the condition (64) for X = (U, V ) ∈ a0 writes as

(65) V · φ0(Y1, Y2)− φ0(Y1, Y2) · U − φ0(−Y1 · (U + λid), Y2)− φ0(Y1, V · Y2 − Y2 · U) = 0

for all Y1 ∈ E and Y2 ∈ g−2
∼= E⊗F with λ = tr(U+V ). Now inserting Y1 = ei and Y2 = fj⊗ek

for i, j, k = 1, 2 in the last equation leads to three nonempty conditions. Clearly, we can write
any M ∈ gl(2,R) as M = M j

i fi ⊗ ej , so this will be done for U and V . First, for Y1 = e1 and
Y2 = f2 ⊗ e1, (65) reduces to the fourth summand, hence it rewrites as

0 = −φ0(e1, V · (f2 ⊗ e1)− (f2 ⊗ e1) · U) = V 2
1 e
∗
1 ⊗ e1 ∧ e2 ⊗ f2

which is satisfied if and only if V 2
1 = 0. Secondly, for Y1 = e1 and Y2 = f1 ⊗ e1, (65) rewrites as

0 = V · (f2 ⊗ e2)− (f2 ⊗ e2) · U + (U1
1 + λ)f2 ⊗ e2 − V 1

1 f2 ⊗ e2 + U1
1 f2 ⊗ e2

= V 2
1 f1 ⊗ e2 − U1

2 f2 ⊗ e1 + (V 2
2 − U2

2 + (U1
1 + λ)− V 1

1 + U1
1 )f2 ⊗ e2

where we wrote e2 rather than e∗1 ⊗ e1 ∧ e2, aware of the fact that they correspond to each other
along the isomorphism ψ. Third, for Y1 = e2, (65) rewrites as

φ0((U + λid) · e2, Y2) = 0

which is a nonempty condition only if Y2 = f1 ⊗ e1. For this value of Y2, we evidently obtain
U2

1 = 0. The three conditions
V 2

1 = 0

V 2
2 − U2

2 + 2U1
1 − V 1

1 + λ = 3U1
1 + 2V 2

2 = 0

U2
1 = 0

are linearly independent, thus showing that a0 has dimension five. The system gives an explicit
matrix presentation of a0.
Recall that the weight µ of φ0 is

×o × o
−3 3 0 −2

so that Iµ = {α3} is nonempty. Then (4) of Theorem 10 tells us that

∆(a1) = {α ∈ ∆(g1) | ZIµ(α) = 1, ZJµ(α) = 0},
where

Jµ = {j ∈ ∆0 \ Σ | 〈µ, αj〉 6= 0}.
Since Jµ = {α1, α4} and ∆(g1) = {α1 + α2, α2, α3, α3 + α4}, the simple root α3 is the unique in
∆(g1) having ZIµ–height one and zero ZJµ–height and we thus have that ∆(a1) = {α3}. We thus
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see that a1 is one–dimensional and (5) of Theorem 10 shows that a2 = {0}, hence we conclude
that aφ0 = g− ⊕ a0 ⊕ a1 is the full prolongation, which has dimension 14.
Let us write [ , ]f = [ , ]−φ0 explicitly. Since the deformation term is a map φ0 : g−1×g−2 → g−2,
it only affects the bracket between negative graded components. The modified bracket between
elements Yi ∈ f−1 looks like the following:

[Y1, Y2]f = (f1 ⊗ e2 − f2 ⊗ e1 − φ0(e1, ψ2) + φ0(e2, ψ1), 0, 0)

Since [Y1, Y2]f has trivial g−1–component, [Y, [ Y1, Y2]f]f = (0, 0, 0) for all Y1, Y2, Y ∈ f−1, so that
iterating the bracket gives zero. Let K be the connected and simply connected Lie group with
Lie algebra f−. Hence f−1 generates a distribution on K, which is one–step bracket–generating.
Again, the Baker-Campbell-Hausdorff formula leads to the group multiplication law for K. Let
be g, h ∈ K and let X1, X2 ∈ f be such that g1 = eX1 and g2 = eX2 . Hence g1g2 = eZ , where

Z =
(
ψ1 + ψ2 +

1

2
(f1 ⊗ e2 − f2 ⊗ e1 − φ0(e1, ψ2) + φ0(e2, ψ1)),

e1 + e2,

f1 + f2

)
Clearly, the formula is polynomial and differs from the formula for the bracket on g only for

the term 1
2 (−φ0(e1, ψ2) + φ0(e2, ψ1)).

Finally, we can see how the construction of a submaximally symmetric model does not
work out analogously, in general, for real parabolic types. This can be easily seen for the real
parabolic type corresponding to elliptic (4, 8)–distributions. Let be t = su(3, 2) and t = ⊕2

i=−2ti
the grading from 3.2. Recall that t−1

∼= C2 and there are only two complex structures J on t−1,
namely the multiplication for i and its negative, such that [JX, JY ] = [X,Y ] for all X,Y ∈ t−1.
Moreover, H2(t−, t)

1 = V1 ⊕ V2 is the direct sum of two irreducible complex t0–modules, with
V1 ⊂ Λ2t∗−1 ⊗ t−1 and V2 ⊂ t∗−1 ⊗ t∗−2 ⊗ t−2. In the following, we see that the bracket modified
by subtracting a lowest weight vector φ0 ∈ V1 does not satisfy Jacobi.
Write X ∈ gl(2,C) ∼= t0, v ∈ C2 ∼= t−1 and M ∈ u(2) ∼= t−2. The t0–action on t− writes as

t0 × t−1 → t−1, [X, v] = X · v + λv

t0 × t−2 → t−2, [X,M ] = XM − (XM)∗

where λ = −2iIm(tr(X)), · denotes the standard action of gl(2,C) on t−1
∼= C2 and (XM)∗

denotes the conjugate transpose of XM .
A lowest t0–weight vector φ0 ∈ V1 writes as φ0 = ωt for a non–degenerate skew–symmetric
antilinear form ω : t−1 × t−1 → C and a fixed nonzero vector t ∈ t−1. The condition (64) for
X ∈ ann(φ0) ⊂ t0 writes as

ω(v, w)(X · t+ λt)− ω(X · v + λv,w)t− ω(v,X · w + λw)t = 0,

for all v, w ∈ t−1. Choose a basis {v, w} ⊂ t−1 such that ω(v, w) = 1. By antilinearity, evaluating
the equation above on v, w gives

(λ− λ̄− λ̄− tr(X̄))t+X · t = 0

which are two C–linearly independent conditions on X. This shows that ann(φ0) ⊂ t0 has real
dimension 4. Setting t = (0, 1)t, the two conditions on X write as{

X2
1 = 0

X2
2 = 5iIm(tr(X)) + Re(tr(X))
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giving the explicit description of a0 := ann(φ0) as the set of matrices

a0
∼= { X ∈ gl(2,C) | X =

(
−4iIm(tr(X)) 0

∗ 5iIm(tr(X)) + Re(tr(X))

)
}

Recall that t1 ∼= (C2)∗. More precisely, we identify0 −v̄ 0
0 0 v∗

0 0 0

 ∈ t1

with v∗ ∈ (C2)∗. In this notation, the bracket t1 × t−1 → t0 writes as [v∗, w] = −w ⊗ v∗.
Therefore, if a1 denotes the first prolongation of (t−, a0), we have that

a1
∼= { v∗ ∈ (C2)∗ | w ⊗ v∗ ∈ a0 ∀ w ∈ C2 } = {0}

Let us write v∗ = (v1, v2) ∈ (C2)∗ and the condition w ⊗ v∗ ∈ a0 for all w = (w1, w2)t ∈ C2

explicitly. For w = (1, 0)t we obtain {
v2 = 0

v1 = −4iIm(v1)

which implies that v1 is pure imaginary. For w = (i, 0)t, we obtain{
iv2 = 0

iv1 = −4iIm(iv1) = −4iRe(iv1)

which implies that v1 ∈ R. But v1 can be pure imaginary and real at the same if and only
if v1 = 0. We thus conclude that a1 = {0}, hence that the full prolongation a = t− ⊕ a0 has
dimension 12.
Denote by f the vector space underlying the graded subalgebra a ⊂ t. Since a− = t− and
Im(φ0) ⊂ t−1, we have that Im(φ0) ⊂ a. This assures that putting

[ , ]f := [ , ]− φ0

defines a skew–symmetric bilinear operation [ , ]f : f× f→ f. Now there are no results from the
general theory, as in the split–real case, assuring that [ , ]f satisfies the Jacobi identity and this
is indeed not the case. Let us verify it by direct computation. From the proof of Lemma 5, we
see that [ , ]f verifies the Jacobi identity if and only if

Jacf(X,Y, Z) = φ0(φ0(X,Y ), Z) + φ0(φ0(Y,Z), X) + φ0(φ0(Z,X), Y ) = 0

for all X,Y, Z ∈ t−1. Observe that

Jacf(X,Y, Z) = φ0(ω(X,Y )t, Z) + φ0(ω(Y, Z)t,X) + φ0(ω(Z,X)t, Y )

= φ0(t, ω(X,Y )Z + ω(Y,Z)X + ω(Z,X)Y )

Suppose that {X,Y } ⊂ t−1 is a basis, so that there exist a, b ∈ C such that Z = aX + bY . Then

ω(X,Y )Z + ω(Y,Z)X + ω(Z,X)Y = ω(X,Y )(aX + bY ) + ω(Y, aX)X + ω(bY,X)Y

= (a− ā)ω(X,Y )X + (b− b̄)ω(X,Y )Y

= 2Im(a)ω(X,Y )X + 2Im(b)ω(X,Y )Y

Clearly, we can choose a basis {X,Y } ⊂ t−1 such that ω(X,Y ) = 1. Now t = cX + dY for some
c, d ∈ C which are not both zero and therefore

Jacf(X,Y, Z) = φ0(t, 2Im(a)X + 2Im(b)Y )

= ω(t, 2Im(a)X + 2Im(b)Y )t

= (−2Im(a)d̄+ 2Im(b)c̄)t
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This shows that if we choose a, b such that (−2Im(a)d̄+ 2Im(b)c̄) 6= 0, then Z = aX + bY ∈ t−1

is a nonzero vector such that Jacf(X,Y, Z) 6= 0.



APPENDIX A

Basics on parabolic geometries

Following [10], we recall the basic theory of representations of semisimple Lie algebras and
completely reducible representations of parabolic subalgebras. Applying such results in the
setting of Cartan geometries is the basic idea of the parabolic geometry theory. Definition and
basic properties of Cartan geometries are collected in the last section of this Appendix.

1. Representations of complex semisimple Lie algebras

Let g = (g, [ , ]) be a finite dimensional Lie algebra over K = R,C. Define g(1) := g and
g(k+1) for k ≥ 1, inductively, by g(k+1) := [g(k), g(k)]. Now g is said to be:

- solvable if the derived series ends for some k ∈ N with g(k) = {0};
- semisimple if it has no nonzero solvable ideals;
- simple if g = [g, g] and it has no proper ideals.

Let g be a finite dimensional Lie algebra. The bracket on g defines the adjoint representation
ad : g→ gl(g), a finite dimensional representation of g on itself. The kernel of ad is a commutative
ideal in g, hence solvable. Therefore if g is semisimple, ad is injective and it induces a Lie algebra
isomorphism between g and the algebra der(g) ⊂ gl(g) of derivations of the Lie algebra g. Observe
that an ideal of a Lie algebra g, by definition, is a vector subspace which is invariant under the
adjoint action. It is thus clear that g is simple if and only dim(g) > 1 and the adjoint action of
g on itself is irreducible. The symmetric bilinear form on g, defined by

B(X,Y ) := tr(ad(X) ◦ ad(Y)), for X,Y ∈ g

is the Killing form of g. An element X ∈ g is called semisimple if ad(X) ∈ gl(g) is diagonalizable.
A Cartan subalgebra of g is a maximal commutative Lie subalgebra h ⊂ g, whose elements
are semisimple. It turns out that any semisimple Lie algebra g contains semisimple elements.
Furthermore, any complex semisimple Lie algebra g admits a Cartan subalgebra and any two
Cartan subalgebras of g are conjugated by an inner automorphism of g (see Theorem 2.2.2. [10],
p. 163 for a proof).

Example 7. The Lie algebra of complex trace–free square matrices g = sl(n,C) is simple.
The subalgebra of diagonal matrices in g is the standard choice of Cartan subalgebra h ⊂ g.

Now if ρ : g → gl(V ) is a complex finite dimensional representation of g semisimple and
h ⊂ g is a Cartan subalgebra, F = {ρ(H) | H ∈ h} ⊂ gl(V ) is a family of diagonalizable
endomorphisms of V which are mutually commuting. An argument from linear algebra shows
that all elements of F are simultaneously diagonalizable with eigenvalues determined by a linear
functional on h. If λ : h→ C is a linear functional, then

Vλ := {X ∈ V | ρ(H)X = λ(H)X ∀ H ∈ h}
is a vector subspace of V . If it is nonzero, then it is an eigenspace for F and the corresponding
eigenvalue λ is said to be a weight of V . The dimension of Vλ is the multiplicity of the weight λ
in V . We denote by wt(V ) the set of all such weights, so that the decomposition of V into the
direct sum of joint eigenspaces for F writes as V = ⊕λ∈wt(V )Vλ. Applying this to the adjoint

99
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representation leads to the root decomposition of the semisimple Lie algebra g. For ρ = ad,
the nonzero weights are called roots and the set of roots is usually denoted by ∆. The Cartan
subalgebra is the eigenspace of weight zero and the root decomposition writes as

g = h⊕
⊕
α∈∆

gα.

One can prove that the restriction of the Killing form B to h×h is nondegenerate and this allows
to define a symmetric complex bilinear form 〈 , 〉 on h∗. For λ ∈ h∗, there is a unique Hλ ∈ h
such that λ(H) = B(H,Hλ) for all H ∈ h. Thus for λ, µ ∈ h∗ we define 〈λ, µ〉 := B(Hλ, Hµ).
For α ∈ ∆, also −α ∈ ∆, so that one can make a choice to split ∆ = ∆+ t∆− into the disjoint
union of positive and negative subsystems. Since ∆ generates h∗, this is actually equivalent to
the choice of positivity on the subspace h∗0 ⊂ h∗ of real–valued functionals on h. Once a choice
is done, one can further select a subset of positive roots with special properties, as follows. The
set of simple roots ∆0 ⊂ ∆+ is given by those positive roots, which cannot be written as a sum
of two distinct positive roots. Then ∆0 is a basis for h∗ and every positive root writes as a linear
combination of simple roots, with nonnegative integer coefficients written in terms of 〈 , 〉. This
follows from the consideration that 〈β, α̌〉 is an integer for every α, β ∈ ∆, where α̌ = 2 α

〈α,α〉 .

Observe that α̌ is well defined, since the complex bilinear form 〈 , 〉 restricts to a scalar product
on h∗0, which coincides with the real vector space generated by the simple roots.

Example 8. A root system for the standard Cartan subalgebra of g = sl(n,C) is given by

∆ = { ei − ej | 1 ≤ i, j ≤ n, i 6= j }
where ei : h→ C denotes the linear functional, extracting the i–th entry of a trace–free diagonal
matrix. A usual choice of positive root system is realized by taking all elements of ∆ with i < j.
With respect to these choices, the simple root system is given by

∆0 = { αi = ei − ei+1 | 1 ≤ i ≤ n− 1 }
Consider h0 ⊂ h the real subalgebra of diagonal matrices with all real entries. Then all simple
roots assume real values on h0, hence every element in the real space generated by them. Now
if H1 and H2 are diagonal matrices, tr(H1H2) coincides with the standard scalar product in Cn
between their diagonals. It follows, that the scalar product satisfies 〈ei, ej − ek〉 = δij − δik, thus
the scalar product between the simple roots writes as

〈αi, αj〉 =


2 if j = i

− 1 if j = i+ 1 or j = i− 1

0 otherwise

For α ∈ ∆, the root reflection sα : h∗0 → h∗0 is the reflection with respect to the hyperplane
orthogonal to α, explicitely defined by sα(λ) = λ − 〈λ, α̌〉α. The group generated by such
reflections is known as Weyl group, a subgroup W = W (g, h) ⊂ O(h∗0) of the orthogonal group.
It is easy to see that W is actually generated by the reflections corresponding to the simple
roots. Since every such reflection preserves ∆, the Weyl group can be also seen as a subgroup
of bijections of the finite set ∆. Every w ∈ W can be written as a composition of a finite
number of simple reflections, thus it is an involutive endomorphism of h∗0. The length of w is
the minimal number of simple root reflections required to write w and it is denoted by l(w).
Clearly, the determinant of w as an endomorphism of h∗0 depends on the length of w, via the
identity det(w) = (−1)l(w). The Weyl group acts on the set wt(V ) of weights of a complex finite
dimensional representation of g. Understanding the action of W on wt(V ) is the key ingredient
to understand the representations of parabolic subalgebras p ⊂ g, playing an important role in
the description of parabolic geometries.
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Example 9. Let α = ei − ej ∈ ∆ in the root system An−1 for g = sl(n,C), which has been
described in the previous example. One easily verifies that sα : h∗0 → h∗0 permutes ei with ej and
leaves all remaining ek’s invariant. The Weyl group of An−1 is thus the permutation group Sn

of n elements.

2. The theorem of highest weight

2.1. Weights of a finite dimensional representation of g. Let V be a finite dimensional
representation of a complex semisimple Lie algebra g. A linear functional λ ∈ h∗ is said to be
algebraically integral if 〈λ, α̌〉 is an integer for every root α ∈ ∆. It is actually enough to check
this property just for simple roots α, to conclude that the same holds for all roots. The weights
of a complex finite dimensional representation of g are algebraically integral, in particular they
lie in the real subspace h∗0 ⊂ h∗ of real–valued functionals.
Denote by ∆0 = {α1, . . . , α`} ⊂ h∗ a simple root system for h. Then define the set of fundamental
weights {ω1, . . . , ω`} ⊂ h∗ by 〈ωi, α̌j〉 = δij . We clearly get in this way a new basis of h∗; the
transition matrix between {αj} and {ωi} is called Cartan matrix. The set of linear combinations
with integer coefficients of fundamental weights coincides with the set of algebraically integral
elements, the weight lattice of g. Then one can represent every weight λ, by writing the integer
number 〈λ, α̌i〉 on the node of the Dynkin diagram of g corresponding to the root αi. This is
exactly the coefficient multiplying ωi in the expression of λ as linear combination of fundamental
weights, hence in this way we draw all elements in the weights lattice.
If λ is a weight of V and w is in the Weyl group, then w(λ) is also a weight of V , occurring with
the same multiplicity as λ. The Weyl group thus acts on the set of weights. Since it is a finite
set, there is a maximal weight λ0 of V with respect to the chosen total ordering on h∗0. We call
λ0 the highest weight of V . The highest weight is algebraically integral and dominant, meaning
that 〈λ0, αi〉 ≥ 0 for all simple roots αi.

Theorem 12 ([10], p. 184). (Theorem of the highest weight) If g is a finite dimensional
complex semisimple Lie algebra, then for any dominant algebraically integral weight λ ∈ h∗0 there
is a (up to isomorphism) unique finite dimensional irreducible representation with highest weight
λ.

By definition, a simple Lie algebra is irreducible under the adjoint representation. The cor-
responding highest weight is the highest root of g.
The following remark often applies to the decomposition of tensor products into irreducible com-
ponents. The i–th fundamental representation of the semisimple Lie algebra g is the irreducible
representation, whose highest weight is ωi. Let us denote it by Vi and suppose that all funda-
mental representations V1, . . . , V` of g are known. Then the irreducible representation of highest
weight a1λ1 + . . . + a`λ` is contained in the tensor product of the symmetric tensorial powers
Sa1(V1)⊗ . . .⊗ Sa`(V`).

Example 10. One easily shows that ωi =
∑i
j=1 ej is the i–th fundamental weight and ΛiCn

is the i–th fundamental representation for g = sl(n,C). Moreover, the highest root for this

classical simple Lie algebra is λg =
∑n−1
i=1 αi = e1 − en. Recalling that the trace–free condition

writes as −en =
∑n−1
i=1 ei = ωn−1, we see that λg can be written in terms of the fundamental

weights as ω1+ωn−1. Recall that the i–th simple root writes as linear combination of fundamental
weights and the coefficients can be read off the i–th column of the Cartan matrix. Using this
fact, we compute

(66)

sα1
(ω1) = ω1 − α1 = ω1 − 2ω1 + ω2 = −ω1 + ω2

sαi(ωi) = ωi − αi = ωi − (−ωi−1 + 2ωi − ωi+1) = ωi−1 − ωi + ωi+1

sαn−1(ωn−1) = ωn−1 − αn−1 = ωn−1 − 2ωn−1 + ωn−2 = −ωn−1 + ωn−2
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3. Representations of parabolic subalgebras

3.1. Borel and parabolic subalgebras. A Borel subalgebra of a complex semisimple Lie
algebra g is a maximal solvable subalgebra. The standard Borel subalgebra b = h ⊕ n+ is the
direct sum of a Cartan subalgebra and the nilpotent algebra n+, given by the sum of all positive
root spaces. A parabolic subalgebra is a subalgebra containing a Borel subalgebra. A standard
parabolic subalgebra is a subalgebra containing the standard Borel subalgebra. Every parabolic
subalgebra is a standard parabolic subalgebra with respect to an appropriate choice of Cartan
subalgebra and positive roots. Therefore it is enough to focus on standard parabolic subalgebras
p, obtained from b by adding some negative root spaces. Let us consider a standard parabolic
subalgebra p ⊂ g and denote by Φ the set of positive roots α such that g−α ⊂ p. Then p is the
direct sum

p = b⊕
⊕
α∈Φ

g−α

Now Φ is completely determined by those simple roots lying in it. Define the subset of simple
roots Σp := ∆0 \ (∆0 ∩ Φ). Conversely, given a subset Σ of simple roots, one can consider all
positive roots α which are linear combination of elements of ∆0\Σ. The sum of the corresponding
root spaces g−α, together with b, is a standard parabolic subalgebra pΣ. The assignments

p 7→ Σp, Σ 7→ pΣ

are inverse to each other, thus giving a bijective correspondence between subsets of ∆0 and
standard parabolic subalgebras of g.

3.1.1. Parabolic subalgebras and gradings on g.

Definition 20. Let g be a semisimple Lie algebra and let k > 0 be an integer. A |k|–grading
on g is a decomposition g = g−k ⊕ · · · ⊕ gk of g into a direct sum of subspaces such that

• [gi, gj ] ⊂ gi+j, where we agree that gi = {0} for |i| > k;
• the subalgebra g− = g−k ⊕ · · · ⊕ g−1 is generated by g−1;
• g−k and gk are both nonzero

Fix a subset Σ ⊂ ∆0 = {α1, . . . , αl} and denote by p = pΣ the corresponding parabolic
subalgebra. For every α ∈ ∆, there exist uniquely determined integer coefficients such that

α =
∑l
i=1 aiαi. The Σ–height of α, defined as htΣ(α) =

∑
i∈Σ ai, induces a grading on g. For

0 6= i ∈ Z, define gi as the sum of those root spaces gα such that htΣ(α) = i. Put also g0 equal
to the direct sum of the Cartan subalgebra h and of those root spaces gα, corresponding to roots
α of Σ–height zero. Clearly, g is the direct sum of vector spaces

g = g−k ⊕ · · · ⊕ gk,

where k denotes the maximal value for the Σ–height on ∆, hence gk, g−k 6= 0. The Lie bracket
on g is compatible with the gradation, thus g admits a structure of |k|–graded Lie algebra.
Therefore g0 is a subalgebra of g, every gi is a g0–module under the adjoint action and the
parabolic subalgebra p coincides with the direct sum of all non–negative graded components. As
consequence of the non–degeneracy of the Killing form, h admits a basis {Hi | i = 1, . . . , l} dual
to ∆0, such that sp(Hi) = [g−αi , gαi ]. We can split the Cartan subalgebra into the direct sum
h = h′ ⊕ h′′, where

(67)
h′ = { H ∈ h | α(H) = 0 ∀ α ∈ ∆0 \ Σ },
h′′ = { Hi | αi ∈ ∆0 \ Σ }

Observe that the dual spaces of h′ and h′′ are characterized, in term of the inner product,
as the subspaces of h∗ orthogonal to ∆0 \ Σ and to Σ, respectively. Let us now focus on the
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subalgebra g0 and denote by z(g0) ⊂ g0 its center, an abelian ideal of g0. Evidently h′ ⊂ z(g0)
and it is easy to see that any solvable ideal of g0 has to be contained in h′. Then g0 is a reductive
Lie algebra and in particular z(g0) = h′, thus the dimension of the center coincides with the
number of elements of Σ. Any reductive Lie algebra writes as the direct sum g0 = z(g0) ⊕ gss0
between its center and its semisimple part gss0 = [g0, g0]. Clearly, h′′ is a Cartan subalgebra of
gss0 . The set of positive roots splits

(68) ∆+ = ∆+(g0) t∆+(p+)

where ∆+(g0) is a positive root system for h′′. Recall that all derivations of a semisimple Lie
algebra g are inner. Observe that X 7→ jX for X ∈ gj and −k ≤ j ≤ k is a gradation–preserving
derivation of g. Then there exists an element Z ∈ g, the so–called grading element, such that
ad(Z)(X) = jX for all X ∈ gj and −k ≤ j ≤ k. Now Z commutes with all elements of g0,
so that Z ∈ z(g0). Clearly, the grading on g corresponds to the decomposition into eigenspaces
for the adjoint action of Z. If {H1, . . . ,Hn} ⊂ h denotes the basis dual to ∆0 = {α1, . . . , αn}
and Σ ⊂ ∆0 is the subset corresponding to the grading on g, then the grading element writes as
Z =

∑
i∈ΣHi. For λ ∈ h∗, the homogeneity of λ is the real number Z(λ). The homogeneity of

λ, then, can be computed by writing λ as linear combination of simple roots and by taking the
sum of the coefficients corresponding to roots in Σ.

3.1.2. Dynkin diagram notation. Let g be a complex semisimple Lie algebra. Fix a Cartan
subalgebra and a set of positive roots ∆+. We represent the parabolic subalgebra p = pΣ,
corresponding to the subset Σ ⊂ ∆0, by putting a cross on every node of the Dynkin diagram of
g corresponding to a simple root in Σ. Removing the crossed nodes gives the Dynkin diagram
for the semisimple Lie algebra gss0 . We also adopt the following notation to encode the weights
of the representations of gss0 on the Dynkin diagram. Any such weight λ writes as a linear
combination of fundamental weights ωi defined by a simple root system for gss0 , hence with
indices i corresponding to simple roots in ∆0 \Σ. The coefficients of any such linear combination
are nonnegative integers. We can thus represent λ =

∑
i∈∆0\Σ aiωi by putting the nonnegative

integer ai on the uncrossed node corresponding to the simple root αi on the Dynkin diagram.

Example 11. Let ∆0 = {α1, . . . , α4} be a simple root system for g = sl(5,C). The subset
Σ = {α2, α3} ⊂ ∆0 is drawn on the Dynkin diagram as

×o × o

Then, Σ ⊂ ∆0 corresponds to a choice of a grading on g. The dimension of z(g0) coincides with
the number of crossed nodes denoting p on the Dynkin diagram of g, hence in our situation it
has dimension two. Removing the crossed nodes from the Dynkin diagram of g, then, we obtain
the Dynkin diagram of gss0 , which is thus isomorphic to sl(2,C)⊕ sl(2,C).
There are four distinct negative roots of Σ–height 1, namely

{ α2, α1 + α2, α3, α3 + α4 }.

Analogously,

{ α2 + α3, α1 + α2 + α3, α2 + α3 + α4, α1 + α2 + α3 + α4 }

are four distinct negative roots of Σ–height 2. Therefore, both g−1 and g−2 are complex vector
spaces of dimension four and g− = g−1 ⊕ g−2 is the nilpotent graded Lie algebra generated by
g−1.
Let h ⊂ g be the standard Cartan subalgebra of diagonal matrices, let ei : h → C be the linear
functional associating to each H ∈ h the i–th entry on the diagonal of H. Put αi = ei− ei+1 for
i = 1, . . . 4 and denote by ∆0 = {α1, . . . , α4} the standard simple root system for g. The grading
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on g, seen as an algebra of matrices, can be explicitely described in terms of ∆0 as g0 g1 g2

gE−1 g0 g1

g−2 gF−1 g0


with g0 divided in three square blocks of size two-one-two and g−1 = gE−1⊕gF−1 is the direct sum
of two–dimensional subspaces.
The highest root λg = ω1 + ω4 of g writes, in the Dynkin diagram notation, as

×o × o
1 0 0 1

From formula (66), we deduce the reflection of an arbitrary weight with respect to the i–th
simple root, hence we see how to represent this operation in Dynkin diagram notation. Let ai
the coefficient on the i–th node of λ. The picture for sαi(λ) is obtained by λ changing the sign
to ai on the i–th node and by adding ai to the coefficients on the adjacent nodes.

4. Completely reducible representations of p

Let g be a semisimple Lie algebra and let p ⊂ g be a parabolic subalgebra. Recall from
Section 3 that p ⊂ g corresponds to the choice of a grading on g such that p = g0 ⊕ p+ is
the direct sum of the nonnegative graded components. Every representation of p restricts to
a representation of its subalgebra g0, which is reductive. A finite dimensional representation
of a reductive Lie algebra g0 is completely reducible if and only if z(g0) acts diagonalizable on
it. Clearly, extending a completely reducible representation of g0 trivially on p+, one gets a
completely reducible representation of p. However, this is not an exceptional case:

Theorem 13 ([10], p. 316). Any completely reducible representation W of p is obtained
by trivially extending a completely reducible representation of g0 to p. Moreover, the grading
element Z ∈ z(g0) acts by a scalar on each irreducible component of W .

From now on, we will focus exclusively on representations of p which are completely reducible.
We saw in (67) that ∆0 \ Σ is a simple root system for a Cartan subalgebra h′′ ⊂ gss0 . The
irreducible representations of gss0 are therefore determined, in the sense of the Theorem of the
highest weight, by weights σ : h′′ → C which are dominant and algebraically integral with respect
to such simple system. We say that λ ∈ h∗ is p–dominant (respectively, p–algebraically integral)
if 〈λ, αi〉 ≥ 0 for every αi ∈ ∆0 \ Σ (respectively, if 〈λ, α̌i〉 is an integer for every αi ∈ ∆0 \ Σ).
Let λ ∈ h∗ be a p–dominant and p–algebraically integral weight. Clearly, λ restricts to a linear
functional λ|z(g0) : z(g0) → C. Moreover, λ|h′′ : h′′ → C is a linear functional dominant and

algebraically integral with respect to ∆0 \ Σ. These two ingredients are equivalent to a unique
irreducible representation of the reductive Lie algebra g0 hence, by Theorem 13, to an irreducible
representation of p. Since h = z(g0)⊕h′′, such a pair of linear functionals z(g0)→ C and h′′ → C
uniquely define a p–dominant and p–algebraically integral weight λ. We thus obtain the following

Corollary 7. The isomorphism classes of finite–dimensional complex irreducible represen-
tations of p are in bijective correspondence with p–dominant and p–algebraically integral weights.

Let λ ∈ h∗ a p–algebraically integral and p–dominant weight and let V be the irreducible
representation of g0 of highest weight λ. Denote by Z ∈ z(g0) the grading element and by Z(λ)
the homogeneity of λ. Then, Z(λ) is the factor scale describing the diagonalizable action of Z
on V. This can be computed by writing λ as linear combination of fundamental weights, then
multiply the vector of coefficients for the inverse of the Cartan matrix and make the sum of
all coefficients along the roots αi ∈ Σ, which correspond to the crossed nodes on the Dynkin
diagram of λ.
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Recall that a subset Φ ⊂ ∆+ is said to be saturated if, for every two elements α, β ∈ Φ such
that α+ β ∈ ∆, also α+ β ∈ Φ. For w ∈ W = Wg, put Φw := w(∆−) ∩∆+. Then Φw ⊂ ∆+ is
saturated with ∆+ \Φw saturated and w 7→ Φw is a bijection between W and the set of saturated
subsets of ∆+ having saturated complement in ∆+. The Weyl group Wp := W (gss0 , h

′′) identifies
with a subgroup of W = W (g, h), namely the subgroup generated by the simple reflections sαi
for αi ∈ ∆0 \Σ. It is possible to characterize Wp in the picture of the bijection above. For this,
recall the decomposition (68) of ∆+. In terms of the mentioned bijection, Wp identifies with the
subset of elements w ∈ W such that Φw ⊂ ∆+(g0). We define the Hasse diagram of p as the
subset

W p = { w ∈W | Φw ⊂ ∆+(p+) } ⊂W
The Hasse diagram of p can be characterized as the subset W p ⊂ W of elements sending g–
dominant weights to p–dominant weights. Indeed, since w ∈ W acts orthogonally on h∗0, for
λ ∈ h∗0 and α ∈ ∆+ we have 〈w(λ), α〉 = 〈λ,w−1(α)〉. This identity shows that w(λ) is a p–
dominant weight for any g–dominant weight λ if and only if w−1(α) ∈ ∆+ for all α ∈ ∆+(g0),
hence if and only if w ∈ W p. It thus follows from Corollary 7 that if λ is an algebraically
integral and g–dominant weight and w ∈ W p, there exists an irreducible representation of p of
highest weight w(λ). By Theorem 13, this can be also seen as an irreducible representation of
g0 on which z(g0) acts diagonalizable. We will denote by W p(r) ⊂W p the subset of elements of
length r. We will see soon that W p(r) occurs in the description of the Lie algebra cohomology
Hr(g−,V) given by Kostant’s Theorem.
The Weyl group W = Wg admits a structure of directed labeled graph. For w,w′ ∈W we draw
an arrow from w to w′ if l(w′) = l(w) + 1 and there exists a positive root α such that w′ = sαw.
Moreover, we put w ≤ w′ if either w = w′ or there exists a finite sequence of arrows from w to
w′. This defines the Bruhat order, a partial order on W with respect to which the comparable
elements are those connected by a finite directed path in the graph defined above. This, in turn,
induces a structure of directed graph on W p. Let δp =

∑
i∈Σ ωi the lowest form adapted to

the given standard parabolic. One can prove that mapping w ∈ W to w−1(δp) restricts to a
bijection between W p and the W–orbit of δp. A graph of the orbit of δp, hence of W p, is thus
obtained by applying simple reflections to δp. To avoid redundant branches, we will not apply
twice consequently the same simple reflection. From this graph, one can easily deduce W p from
the graph of the orbit, namely as the composition of the simple reflections labelling the arrows
in the opposite direction.

Example 12. We perform the procedure to find W p in the case p ⊂ g = sl(5,C) discussed
in Example 11. Recall the properties of the standard simple root system ∆0 = {α1, . . . , α4}
from Example 8. The lowest form for the parabolic subalgebra is δp = α2 + α3. The root
reflection sαi : h∗0 → h∗0 is given by sαi(λ) = λ− 〈λ, α̌i〉αi for all λ ∈ h∗0, where α̌i = 2 αi

〈αi,αi〉 . In

Example 11, we explained how to represent weights and sαi in the Dynkin diagram notation. We
will now represent the orbit of δp in the same notation. All elements of W p can be obtained as
compositions of simple root reflections, whose action on the orbit of δp is free. Since 〈λ, α̌i〉 = 0 if
and only if sαi(λ) = λ, at each step we only need to apply reflections with respect to simple roots
which are not orthogonal to the weight λ from the previous step. Such roots correspond to those
nodes in the Dynkin diagram of λ which are labelled with a nonzero coefficient. In order to avoid
loops, it is enough to apply root reflections corresponding to nodes labelled with a strictly positive
coefficient. We will not draw the whole graph for the orbit of δp below, performing only the first
two steps will be enough for our purposes. Indeed, the reader will have enough informations to
understand how the procedure works, and we will be able to deduce the element of W p of length
one and two. Each arrow labelled by i represents to the action of sαi . Reading the labels on the
arrows, we deduce that W p(1) = {sα2

, sα3
} and W p(2) = {sα2

sα1
, sα2

sα3
, sα3

sα2
, sα3

sα4
}.
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×o × o
−1 0 2 0

×o × o
1 −1 2 0

1

55

3 // ×o × o
1 1 −2 2

δp = ×o × o
0 1 1 0

2

55

3

))

×o × o
0 2 −1 1 2 //

4

))

×o × o
2 −2 1 1

×o × o
0 2 0 −1

5. Lie algebra cohomology and Kostant’s theorem

Let g be a finite dimensional Lie algebra and V a finite dimensional representation of g. For
n ≥ 0 integer, define the space Cn(g,V) := Λng⊗ V of n–chains on g with coefficients in V and
the boundary operator b : Cn(g,V)→ Cn−1(g,V) by putting

b(X1 ∧ . . . ∧Xn ⊗ v) =

n∑
i=1

(−1)iX1 ∧ . . . ∧ X̂i ∧ . . . ∧Xn ⊗ (Xi · v)+

+
∑
i<j

(−1)i+j [Xi, Xj ] ∧X1 ∧ . . . ∧ X̂i ∧ . . . ∧ X̂j ∧ . . . ∧Xn ⊗ v

A direct computation shows that b2 = 0, hence that the differential defines a chain complex.
One can thus define the quotient vector space

Hn(g,V) :=
Ker(b : Cn(g,V)→ Cn−1(g,V))

Im(b : Cn+1(g,V)→ Cn(g,V))

known as the n–th homology group of the Lie algebra g with coefficients in V. For n ≥ 0
integer, define the space Cn(g,V) = Λng∗ ⊗ V of n–cochains on g with coefficients in V and the
coboundary operator ∂ : Cn(g,V)→ Cn+1(g,V) via the formula

(69)

∂Φ(X0, . . . , Xn) =

n∑
i=0

(−1)iXi · Φ(X0, . . . , X̂i, . . . , Xn)+

+
∑
i<j

(−1)i+jΦ([Xi, Xj ], X0, . . . , X̂i, . . . , X̂j , . . . , Xn)

A direct computation shows that ∂2 = 0, hence that the differential defines a cochain complex.
One can thus define the quotient vector space

Hn(g,V) :=
Ker(∂ : Cn(g,V)→ Cn+1(g,V))

Im(∂ : Cn−1(g,V)→ Cn(g,V))

known as the n–th cohomology group of the Lie algebra g with coefficients in V.
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5.1. Kostant’s theorem. Suppose that g = g−k⊕· · ·⊕gk is a |k|–grading on a semisimple
Lie algebra, corresponding to the choice of parabolic subalgebra p = ⊕ki=0gi = g0 ⊕ p+ of g. As
usual, denote by g− = g−k ⊕ · · · ⊕ g−1 the negative graded part of the grading. The Killing
form of g gives an isomorphism (g/p)∗ ∼= p+ of p–modules and an isomorphism (g−)∗ ∼= p+ of
g0–modules. Clearly, g/p and g− identify as g0–modules, but only g/p carries the structure of a
p–module.
Let V be a finite–dimensional representation of g. Both g0 and g− are subalgebras in g, so that
V can be also seen as a representation of g0 and of g−. It thus makes sense to consider the
Lie algebra differential ∂ : Cn(g−,V) → Cn+1(g−,V) introduced in the previous section. The
spaces of cochains carry a natural g0–module structure and ∂ can be easily seen to be a g0–
homomorphism. Recall that ∂ defines the cohomology group H∗(g−,V) of g− with coefficients
in V, which is naturally a g0–module. On the other hand, also p+ ⊂ g is a subalgebra and we
can thus consider V∗ as a p+–module and the cohomology complex (C∗(p+,V∗), ∂p) defining
H∗(p+,V∗). Now ∂p are p–homomorphisms and the maps ∂∗ dual to ∂p write as

∂∗ : Cn+1(p+,V)→ Cn(p+,V)

and they can be explicitly computed (see [10], p. 341). The explicit formula shows that ∂∗ = b
is the boundary operator of the homology complex defining H∗(p+,V). Using the isomorphism
(g−)∗ ∼= p+ given by the Killing form, we can look at the maps ∂∗ as g0–homomorphisms
∂∗ : Cn+1(g−,V) → Cn(g−,V). One can put a positive definite scalar product on every space
Cn(g−,V) such that ∂ and ∂∗ are adjoint and define the Kostant Laplacian

�n := ∂ ◦ ∂∗ + ∂∗ ◦ ∂ : Cn(g−,V)→ Cn(g−,V).

This leads to the Hodge decomposition

Cn(g−,V) = Im(∂∗)⊕Ker(�n)⊕ Im(∂)

as direct sum of g0–invariant submodules. Here, the sum of the first two summands coincides
with Ker(∂∗), while the sum of the second and the third summands gives Ker(∂). This shows
the existence of a natural identification of g0–modules

Hn(g−,V) = Ker(∂)/Im(∂) ∼= Ker(�n) ∼= Ker(∂∗)/Im(∂∗) = Hn(p+,V),

which endows each space Hn(g−,V) with the structure of a p–module on which p+ acts triv-
ially. Equivalently, Hn(g−,V) is a completely reducible g0–module. Clearly, the identification
above also rewrites as an isomorphism Hn(g−,V) ∼= (Hn(p+,V∗))∗ of g0–modules. The highest
weight of a g0–irreducible component contained in Hn(p+,V∗) is thus the lowest weight of a
g0–irreducible component in Hn(g−,V).
The decomposition into g0–irreducible components for these cohomologies can be made explicit.
Clearly, an analogous construction as above defines a g0–endomorphism �n of Cn(p+,V), hence
an isomorphism Hn(p+,V) ∼= Ker(�n) saying how Hn(p+,V) sits inside Cn(p+,V). It is clear
from the dualities above that the descriptions of Hn(g−,V) and Hn(p+,V) thus obtained are
equivalent.
Let V be a finite–dimensional representation of g. Consider the isomorphism of g0–modules
Hn(p+,V) ∼= Ker(�n). The g0–actions on p+ and on V induce a g0–action on the set of alter-
nating multilinear maps p+× . . .×p+ → V, hence on the tensor product Cn(p+,V) = Λnp∗+⊗V.
The weights of the induced representation on Cn(p+,V) write as difference between weights of
V and of p+. One can compute the action of the Laplacian �n on irreducible components of
Cn(p+,V). The weights ν of the g0–module Hn(p+,V) correspond to the zero eigenvalue for the
Laplacian �n, thus they can be expressed as solution of an equation involving the scalar product
induced by the Killing form on the set of weights. Writing down the details leads to the following
result, known as the Kostant’s version of the Bott–Borel-Weil Theorem.



5. LIE ALGEBRA COHOMOLOGY AND KOSTANT’S THEOREM 108

Theorem 14 ([10], p. 351). Let g be a complex semisimple Lie algebra, p = g0 ⊕ p+ a
standard parabolic subalgebra, W p the Hasse diagram of the parabolic p and δ the lowest form of
g. Suppose that V is a finite–dimensional irreducible representation of g with highest weight λ
and that ν is a g0–dominant weight. Denote by H∗(p+,V)ν the isotypical component of highest
weight ν for the natural g0–representation on the cohomology. Then

(1) H∗(p+,V)ν 6= {0} if and only if there exists an element w ∈ W p such that ν = νw :=
w · λ, where w · λ = w(λ+ δ)− δ denotes the affine action on the set of weights of V.

(2) For any w ∈W p, H∗(p+,V)νw is irreducible and even the multiplicity of νw as a weight
of C∗(p+,V) is one.

(3) For w ∈ W p, H∗(p+,V)νw is contained in the space H l(w)(p+,V), where l(w) denotes
the length of w.

All informations about cohomologies can thus be deduced by analyzing the W p–orbits for
the affine action on the set of weights. The computation of the cohomology H∗(g−, g) can be
always reduced to the case of g simple. At this stage, a finite number of cases should be taken in
exam. In this way one gets a complete list, showing that H1(g−, g) is concentrated in nonpositive
homogeneity, apart from few exceptional cases. The second cohomology groups H2(g−, g) can
be similarly classified. [23] classifies the gradings such that H2(g−, g) is not concentrated in
nonpositive homogeneity.
An important application of Kostant’s theorem to parabolic geometries is the decomposition of
H2(g−, g), since this encodes the admissible values for the harmonic curvature. If g is a simple
Lie algebra, it acts irreducibly on itself under the adjoint representation. There is just one orbit
for the affine action of the Weyl group, namely the orbit of the highest root λg of the simple
Lie algebra g. Let Z ∈ z(g0) be the grading element. For λ ∈ h∗, the homogeneity of λ is the
real number Z(λ). The homogeneity of λ is computed by writing λ as linear combination of
simple roots and by taking the sum of the coefficients corresponding to roots in Σ. Consider the
following subsets of W p(r):

W p
t (r) := {w ∈W p(r) | Z(−w · λg) = t}, W p

+(r) := {w ∈W p(r) | Z(−w · λg) ≥ 1}

The results of Kostant’s Theorem write as follows:

Hr(g−, g)t =
⊕

w∈Wp
t (r)

V−w·λg
, Hr(g−, g)1 =

⊕
w∈Wp

+(r)

V−w·λg

where w · λg denotes the affine action of W on h∗. Otherwise put, the irreducible components
of Hr(g−, g)t are indexed on W p

t (r). For regular parabolic geometries, the harmonic curvature
takes values in the g0–submodule H2(g−, g)1 ⊂ H2(g−, g) of positive homogeneity.

Example 13. In Example 12, we computed W p(1) and W p(2) for p ⊂ g = sl(5,C) discussed
in Example 11. The highest root λg = ω1 + ω4 and the lowest form δ = ω1 + ω2 + ω3 + ω4 of g.
Using formula (66) for sαi(ωi) and the fact that sαi(ωj) = ωj for i 6= j, we compute w · λg for
w ∈W p(1):

sα2
· λg = sα2

(λg + δ)− δ = +2ω1 + sα2
(ω2) + ω3 + 2ω4 − δ = +2ω1 − 2ω2 + ω3 + ω4

sα3
· λg = sα3

(λg + δ)− δ = +2ω1 + ω2 + sα3
(ω3) + 2ω4 − δ = +ω1 + ω2 − 2ω3 + 2ω4

A direct computation shows that W p
+(1) = {0}, hence H1(g−, g)1 = {0}. Similarly, we can

compute the affine action w ·λg for w ∈W p(2) = {sα2
sα1

, sα2
sα3

, sα3
sα2

, sα3
sα4
}, thus obtaining
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the following weights:

×o × o
0 −4 3 1

×o × o
1 3 −4 0

×o × o
3 −3 0 2

×o × o
2 0 −3 3

By Kostant’s Theorem, these are the highest weights of the irreducible g0–representations, whose
direct sum coincides with the g0–module H2(p+, g). Again, a direct computation shows that the
opposite weights have all homogeneity one. More precisely, each weight can be represented as
linear combination of simple roots, by multiplying the vector of coefficients above by the inverse
of the Cartan matrix. The homogeneity of each weight, then, is the sum of the components
along α2 and α3. In this way one can verify that W p(2) = W p

1 (2), which implies that the second
cohomology group is concentrated in homogeneity one. In formulas H2(g−, g) = H2(g−, g)1,
which means that the harmonic curvature corresponds to torsion in homogeneity one.

Kostant’s Theorem describes the cohomology for g complex graded semisimple. Relating the
cohomologies associated to real graded semisimple and their complexifications leads to results
for the real case. Let g = g−k ⊕ · · · ⊕ gk be a real graded Lie algebra. The grading on g induces
the grading gC = gC−k ⊕ · · · ⊕ gCk on the complexification of g. From the definition of the Lie
algebra cohomology, one easily deduces the following

Proposition 26. Let g be a real graded semisimple Lie algebra with complexification gC.

(1) Let V be a complex representation of g. Then, the real cohomology spaces H∗R(g−, V ) are
naturally complex vector spaces and H∗R(g−, V ) ∼= H∗C(gC−, V ) as a module over g0 ⊂ gC0 .

(2) If V is a real representation of g, then we have

H∗C(gC−, V ⊗ C) ∼= H∗R(g−, V )⊗ C

Example 14. Let g = ⊕2
i=−2gi be a real graded Lie algebra such that gC = ⊕2

i=−2g
C
i is the

grading on sl(5,C) described in Example 1. Then, Proposition 26 shows that H∗C(gC−, g
C) is the

complexification of H∗R(g−, g). From the analysis of the weights and using Kostant’s Theorem,
one can verify that H1(gC−, g

C)0 = {0} (see Example 13 of Appendix A). We thus also have that
H1(g−, g)0 = {0}. Moreover, we have the isomorphism

H2
C(gC−, g

C) ∼= H2
R(g−, g)⊗ C.

The condition H1(g−, g)0 = {0} is equivalent to the fact that g0
∼= dergr(g−) via the adjoint

action.

6. Cartan geometries

Let G be a Lie group and H ⊂ G a closed subgroup. The projection G → G/H on the
quotient is the simplest example of principal bundle with structure group H. The quotient space
G/H is usually said to be an homogeneous space. Recall that the tangent space of a Lie group
looks like the same in every point. The trivialization of TG via left–translations is encoded by
a one–form ωG ∈ Ω1(G, g) on G, known as Maurer–Cartan form. In particular, ωG satisfies the
Maurer–Cartan equation:

dωG +
1

2
[ωG, ωG] = 0

The automorphisms of the homogeneous model are group automorphisms of G which lift auto-
morphisms of G/H, namely

Aut(G,ωG) = {φ : G→ G | φ(gh) = φ(g)h g ∈ G, h ∈ H, φ∗ωG = ωG}
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One can show that Aut(G,ωG) = G. The notion of Cartan geometry is introduced to encode, at
the same time, informations about a geometric space and about the diffeomorphisms preserving
the structure of the space.

Definition 21. Let G be a Lie group with Lie algebra g and H ⊂ G be a Lie subgroup in it.
A Cartan geometry of type (G,H) on a manifold M is a H–principal fiber bundle p : G → M ,
endowed with a g–valued one–form ω ∈ Ω1(G, g) satisfying the following conditions:

• (rh)∗ω = Ad(h−1) ◦ ω for all h ∈ H;
• ω(ζX(u)) = X for all u ∈ G and X ∈ g;
• ωu : TuG → g is a linear isomorphism for all u ∈ G.

We will also say that ω is H–equivariant, it reproduces the vertical vector fields and, finally,
that it trivializes the tangent bundle TG (or that it defines an absolute parallelism). In particular,
TM ∼= G ×H (g/h), where the representation H → GL(g/h) is induced by the restriction to H
of the adjoint representation.

The curvature form K ∈ Ω2(G, g) of a Cartan geometry (p : G → M,ω) is defined, for
ξ, η ∈ X(G), by

K(ξ, η) := dω(ξ, η) + [ω(ξ), ω(η)]

In this language, saying that the homogeneous model (G → G/H,ωG) satisfies the Maurer–
Cartan equation exactly means that has zero curvature. Through the isomorphism given by the
Cartan connection, one can rather look at the curvature function κ : G → Λ2g∗ ⊗ g, defined by
κu(X,Y ) = K(ω−1

u (X), ω−1
u (Y )) for all X,Y ∈ g. Since K annihilates by insertion of vertical

vector fields, we can look at the curvature function as a map κ : G → Λ2(g/h)∗ ⊗ g. The
restriction of the adjoint action Ad : h→ GL(g) induces an action on Λ2(g/h)∗ ⊗ g in a natural
way. One can verify that κ is equivariant with respect to this natural action.
A morphism between two Cartan geometries (p : G → M,ω), (p′ : G′ → M ′, ω′) of same type
(G,H) is a principal bundle morphism φ : G → G′ such that φ∗ω′ = ω. The set of automorphisms
of a Cartan geometry, in particular, is a group and we denote it by Aut(G, ω). It has dimension at
most equal to the dimension of G and they are equal if and only if the Cartan geometry is locally
isomorphic to the homogeneous model. The following result concernes the role of fundamental
invariant played by the curvature in the description of Cartan geometries.

Proposition 27 ([10], p. 74). The curvature of a Cartan geometry (p : G → M,ω) is
identically zero if and only if for every x ∈ M , there exists an open neighborhood U such that
(p−1(U) → U, ω) is isomorphic to the restriction of the homogeneous model (G → G/H,ωG) to
an open neighborhood of the identity.



Zusammenfassung

SeiM eine endlich–dimensionale glatte Mannigfalltigkeit. Bezeichne mitH ⊂ TM eine glatte
Distribution und mit [H,H] ⊂ TM jenes Teilbündel, das von Lie Klammern erster Ordnung von
Schnitten von H erzeugt wird. Man nennt H in einem Schritt klammererzeugend wenn

TM = H + [H,H].

Die Hauptresultate in der Dissertation betreffen generische, klammererzeugende Distributionen
vom Rang 4. Zunächst wird eine vollständige Klassifikation ihrer Typen bewiesen. Diese zeigt,
dass solche Distributionen genau in den Dimensionen 5 ≤ n ≤ 10 existieren, und wir betrachten
die Fälle n = 8 und n = 9, da diese in der Literatur noch nicht behandelt wurden. Für (4, 8)-
Distributionen beweisen wir, dass es zwei verschiedene generische Typen gibt, die beide zu einer
normalen parabolischen Geometrie äquivalent sind. Aufgrund dieser Äquivalenz können wir die
lokalen Invarianten dieser Struktur aus der harmonischen Krümmung der korrespondierenden
parabolischen Geometrie herauslesen, was eine vollständige Beschreibung bezüglich der lokalen
Geometrie liefert. Dieselben Werkzeuge aus der Theorie der parabolischen Geometrie liefern
eine Anwendung in der Beschreibung von submaximalen symmetrischen Modellen von gener-
ischen (4, 8)-Distributionen vom hyperbolischen Typ.
Unter der Verwendung von Resultaten von Tanaka und Morimoto über die Verlängerungsproze-
dur, die eine bestimmte Konstruktion für klassische G-Strukturen auf Filtrierungen verallgemein-
ert, zeigen wir, dass der (4, 9)-Fall der niedrigstdimensionale in einer abzählbaren Serie von in
einem Schritt klammererzeugenden Distributionen ist, die eine kanonische lineare Konnexion auf
dem Tangentialbündel TM bestimmt. Die Torsion und die Krümmung dieser Konnexion sind
dann lokale Invarianten für diese Strukturen.
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[9] A. Čap, G. Schmalz, Partially integrable Almost CR Manifolds of CR Dimension and Codimension

two, Advanced Studies in Pure Mathematics 37, 45–77, 2002.
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ordre, Ann. Ec. Normale 27, 109-192, 1910.
[13] P. W. Michor, Topics in differential geometry, Graduate Studies in Mathematics, 93. American Math-

ematical Society, Providence, RI, 2008.

[14] R. Montgomery, A Tour of Subriemannian Geometries, Their Geodesics and Applications, Math.
Surveys and Monographs, vol. 91, AMS, 2002.

[15] T. Morimoto, Cartan connection associated with a subriemannian structure, Differential Geom. Appl.
26, 75-78, 2008.

[16] T. Morimoto, Geometric structures on filtered manifolds, Hokkaido Math. J. 22, 263-347, 1993

[17] G. Schmalz, J. Slovák, The geometry of hyperbolic and elliptic CR–manifolds of codimension two,
Asian J. Math. 4 No. 3, 565–598, 2000.

[18] G. Schmalz, J. Slovák, Free CR–distributions, Central European Journal of Mathematics, Volume 10,

Issue 5, 1896–1913, October 2012.
[19] I.M. Singer, S. Sternberg, The infinite groups of Lie and Cartan. I. The transitive groups, J. Analyse

Math. 15, 1–114, 1965.

[20] S. Sternberg, Lectures on differential geometry, Prentice–Hall, Inc., Englewood Cliffs, N.J., 1964.
[21] N. Tanaka, On differential systems, graded Lie algebras and pseudogroups, Hokkaido Math. J. 10,

1-82, 1970.

[22] N. Tanaka, On the equivalence problem associated with simple graded Lie algebras, Hokkaido Math. J.
8, 23-84, 1979.

[23] K. Yamaguchi, Differential systems associated with simple graded Lie algebras, Advanced Studies in
Pure Mathematics 22, 413-494, 1993.

[24] I. Zelenko, On Tanaka’s prolongation procedure for filtered structures of constant type, SIGMA 094,

vol. 5, 21pp., 2009.

112


