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Abstract
The observations of neutrino oscillations verify the existence of small but nonzero neu-
trino masses. However, in the Standard Model of particle physics neutrinos are assumed
massless, since only left-handed neutrinos and right-handed antineutrinos can be observed
in weak decays and cross sections. The subject of this master thesis is the implementation
of neutrino masses in the Standard Model by means of the seesaw mechanism of type I.
The particle content of the Standard Model is being extended by heavy right-handed neu-
trinos and additional scalar doublets. After a general discussion on Dirac, Majorana and
hybrid mass terms, the seesaw mechanism type I is formulated for an arbitrary number
of left and right-handed neutrinos and for an arbitrary number of scalar doublets. Since
even after this procedure some left-handed neutrinos might remain massless, radiative
corrections to the seesaw mechanism, in particular one-loop corrections, are considered.
After a general discussion of dominant one-loop corrections to the seesaw mechanism, this
knowledge is applied to two different models. In the first model, which is based on the
standard gauge group SU(2)× U(1), the mass correction for the left-handed neutrinos is
derived explicitly. Afterwards, the special case of a minimal extension within this model
is considered. In the second model, the so-called scotogenic model, an additional exact
Z2-symmetry is introduced, which causes the left-handed neutrinos to acquire mass only
at one-loop level. After the discussion of the minimal extension, this model is generalized
for arbitrary numbers of left and right-handed neutrinos, as well as a scalar doublet. In
particular, the correspondence of non-vanishing neutrino masses and terms in the scalar
potential is outlined.

Zusammenfassung
Die Beobachtungen von Neutrinooszillationen belegen, dass Neutrinos sehr kleine, aber
von Null verschiene Massen haben. Im Standardmodell der Teilchenphysik werden Neu-
trinos jedoch als masselos angenommen, da in schwachen Zerfällen und Wirkungsquer-
schnitten nur linkshändige Neutrinos und rechtshändige Antineutrinos beobachtet wer-
den können. In dieser Masterarbeit wird die Implementierung von Neutrinomassen im
Standardmodell mit Hilfe des Seesaw-Mechanismus vom Typ I behandelt. Hierbei wer-
den die Teilchen im Standardmodell durch schwere rechtshändige Neutrinos sowie durch
zusätzliche skalare Doubletts erweitert. Nach einer einführenden Diskussion über Dirac-,
Majorana-, sowie Hybridmassenterme wird der Seesaw-mechanismus für beliebige An-
zahlen von linkshändigen und rechtshändigen Neutrinos, sowie für eine beliebige Anzahl
von skalaren Doubletts formuliert. Da im Allgemeinen durch diese Methode nicht alle
linkshändigen Neutrinos Masse erhalten, werden anschließend radiative Korrekturen im
Rahmen von Einschleifen-Korrekturen zum diskutiert. Im Anschluß an die allgemeine Dis-
kussion von dominanten Einschleifenkorrekturen zum Seesaw-mechanismus werden diese
Resultate in zwei verschiedenen Modellen angewendet. Im ersten Modell, welches auf der
Standardeichgruppe SU(2) × U(1) basiert, wird die Massenkorretur der linkshändigen
Neutrions explizit berechnet, sowie der Spezialfall der minimalen Erweiterung des Stan-
dardmodells betrachtet. Im zweiten Modell wird eine zusätzliche exakte Z2-symmetrie
eingeführt, wodurch die Neutrinos ausschließlich durch die Einschleifen-Korrekturen Mas-
se erhalten. In Anschluß an den Spezialfall der minimalen Erweiterung wird auch für
dieses Modell eine Verallgemeinerung für beliebige links- und rechtshändige Neutrions
sowie für beliebig viele skalare Doubletts formuliert. Insbesondere wird der Zusammen-
hang zwischen nichtverschwindenden Neutrinomassen und Termen im skalaren Potential
hergestellt.
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Introduction

In the Standard Model of particle physics neutrinos are assumed massless, since in elec-
troweak processes only left-handed neutrinos and right-handed antineutrinos occur. Nev-
ertheless, in the last two decades numerous neutrino experiments confirmed the theory of
neutrino oscillations [1, 2], like for example the Super-Kamiokande [3], the Homestake [4],
the SAGE [5], and SNO [6] experiments and many others [7, 8, 9, 10, 11, 12, 13, 14, 15].
Therefore, neutrinos cannot be massless and lepton mixing must exist. Hence, the Stan-
dard Model has to be extended in order to include the phenomena of massive neutrinos.
Throughout the years many theoretical suggestions have been made and one of those shall
be the topic of the master thesis at hand. The seesaw mechanism of type I [16, 17, 18]
is a very promising framework not only for implementing non zero neutrino masses into
the Standard Model, but also for reproducing the smallness of these masses. For applying
this mechanism, the Standard Model is extended by right-handed neutrino fields, which
are massive but sterile. This means they do not take part in any weak interactions. Fur-
thermore, in this extension of the Standard Model additional scalar doublets are allowed.
This model exhibits three mass scales; the small mass scale below the electroweak scale,
the electroweak scale itself (∼ 100 GeV) and the even larger seesaw scale.

The extension with right-handed neutrino gauge singlets gives rise to neutrino mass
terms and the magnitude of the light neutrino masses will be reciprocal to the heavy seesaw
mass scale introduced by the right-handed neutrinos. In addition radiative corrections to
the seesaw mechanism are considered, where one-loop corrections lead to additional light
neutrino masses.

This master thesis starts with an introductory section, where a brief overview of the
Standard Model of particle physics is presented. In particular the electroweak unification
and the Higgs mechanism are discussed. In the second section the principle of different
possible neutrino mass terms is considered, i.e. the Dirac, the Majorana and the hybrid
Dirac-Majorana mass term. For each of these mass terms consequences of lepton (neu-
trino) mixing and lepton number conservation are investigated. The main part is treated
in the third section, where the seesaw mechanism type I is employed for arbitrary numbers
of left and right-handed neutrinos and afterwards also for an arbitrary number of Higgs
doublets [19]. In the last section one-loop corrections to the seesaw masses are calculated
for the most general model [20]. Furthermore, two special models are considered. The
first one [21, 22] is a minimal extension of the Standard Model with one right-handed
neutrino and one additional scalar doublet, whereas the second one [23] exhibits an ad-
ditional discrete symmetry, which leads to massless neutrinos on tree level. Finally this
second model will be generalized for arbitrary numbers of additional scalar doublets.

xi





1 The Standard Model of Particle Physics

1.1 Fundamentals

The Standard Model (SM) of particle physics is a theory to describe fundamental particles
and all their interactions, except gravity. The particle content of the SM can be divided
into three groups - leptons, quarks, and mediators, which are listed in figure 1 below.

Figure 1: Fundamental particles of the Standard Model. Reprinted from [24].

There are three generations or families of quarks and leptons (first three columns),
where one generation is consisting of an up-type and a down-type quark, a charged lepton
and its corresponding neutrino as well as one antiparticle for each of them. In addition
each quark and antiquark comes in three different colors. Therefore, the particle content
per generation sums up to sixteen fundamental particles. Equal particle types of different
generations differ by their flavor quantum numbers and their masses, which increase going
to higher generations.

Furthermore, the four types of gauge bosons are listed in the forth column which medi-
ate the electromagnetic (γ), weak (W±, Z0) and strong interaction (ga, a = 1, . . . , 8). In
addition there is the Higgs boson, which gives mass to the fundamental particles through
the Higgs mechanism. So finally we end up with 12 leptons, 36 quarks, 12 mediators and
at least one Higgs boson, which gives a minimum of 61 fundamental particles [25, p.48].
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1 THE STANDARD MODEL OF PARTICLE PHYSICS

The SM is a relativistic quantum field theory (QFT) or, more precisely, it is a collec-
tion of related theories. It contains a description of the electromagnetic forces in terms
of quantum electrodynamics (QED), the Glashow-Weinberg-Salem (GWS) theory of elec-
troweak processes, and the theory of quantum chromodynamics (QCD) to describe the
strong nuclear forces. All those fundamental interactions are derived from the requirement
of local gauge invariance [25, p.3].

In QFT one achieves a uniform description of particles and interaction forces via fields.
Quarks and leptons can be seen as field quanta, i.e. excited states of corresponding particle
fields. Forces which are already described as vector fields in classical field theories can be
represented in terms of field quanta, called gauge bosons. The Lagrangians and equations
of motions of the SM can be formulated in terms of these fields.

1.2 Fields and Field Equations

As mentioned above in QFT all particles and interaction forces are described as fields. In
this section all three types of fields are introduced as well as their field equations. Since
QFT is a relativistic theory, all equations of motion need to be Lorentz invariant1, i.e. the
corresponding Lagrangians need to be Lorentz scalars [26, p.35].

1.2.1 Klein-Gordon Equation

This equation describes the kinematics of a free spin 0 particle, i.e. a scalar field φ like
for example the Higgs field. Scalar fields behave under Lorentz transformations Λ like

φ(x)→ φ′(x) = φ(Λ−1x), (1.1)

and their gradient ∂µφ(x) transforms as a covariant vector field

∂µφ(x)→ ∂µ
(
φ(Λ−1x)

)
= (Λ−1)νµ(∂νφ)(Λ−1x). (1.2)

Thus, the Lagrangian
L = 1

2(∂µφ)2 − 1
2m

2φ2 (1.3)

transforms like a Lorentz scalar
L(x)→ L(Λ−1x), (1.4)

which is shown in [26, p.36]. Hence, the action is Lorentz invariant, since it is obtained
by integration of L over spacetime. As an immediate consequence of the principle of least
action the equation of motion is Lorentz invariant. This field equation

(� +m2)φ(x) = 0 (1.5)

is received via the Euler-Lagrange equation2 and it is called Klein-Gordon equation.
1For more detailed information on Lorentz invariance see appendix C.
2Remember the Euler-Lagrange equation is ∂L

∂φ − ∂µ
∂L

∂(∂µφ) = 0.
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1.2 Fields and Field Equations

1.2.2 Proca Equation

For a description of gauge bosons, i.e. spin 1 particles, we need vector fields V µ which
transform, according to [26, p.37], as

V µ(x)→ Λµ
νV

ν(Λ−1x). (1.6)

This type of field also carries an orientation, which must be transformed as well when the
point of evaluation of the field is changed. The Lagrangian for vector fields is given in
[27, p.5/1] or in [25, p.246] by

L = −1
4(∂µV ν − ∂νV µ)(∂µVν − ∂νVµ) + 1

2m
2VνV

ν . (1.7)

It is useful to introduce the shorthand notation

V µν ≡ ∂µV ν − ∂νV µ, (1.8)

and so the Lagrangian can be rewritten as

L = −1
4V

µνVµν + 1
2m

2V νVν . (1.9)

Again via Euler-Lagrange equation the equation of motion is received as

∂µV
µν +m2V ν = 0, (1.10)

and it is called Proca equation. Alternatively it can be also written in a way similar to
the Klein-Grodon equation,

(� +m2)V µ = 0 , (1.11)

with vanishing divergence of the vector field ∂µV µ = 0.

1.2.3 Dirac Equation

Finally we need a way to describe fermions, i.e. spin 1/2 particles. We have to find an
equation consistent with the relativistic energy-momentum formula

pµpµ −m2 = 0, (1.12)

where pµ denotes the four-momentum andm the mass of the free particle. Dirac’s strategy
was to factor the energy-momentum relation (1.12) as shown in [25, p.214ff]. In order to
do so the necessity of some anticommuting coefficients γµ arises, which have to fulfill the
relation

{γµ, γν} = 2gµν , (1.13)

with the Minkowski metric gµν . So the coefficients have to be at least 4× 4 matrices and
they are called Dirac or gamma matrices3. Since they satisfy relation (1.13), the set of
gamma matrices γµ forms a Clifford algebra, as noted in [28, p.89f].

3Properties and representations of the Dirac matrices are treated in appendix A.
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1 THE STANDARD MODEL OF PARTICLE PHYSICS

Another crucial point is a proper description of the fermion fields ψ. Since they carry
spin 1/2, the spin vector has to be changed when the field is undergoing a Lorentz transfor-
mation. Hence, fermion fields do not transform like four vectors even though they carry
four components. Fermion fields transform according to a different representation of the
Lorentz group called spinorial representation4:

ψ(x)a → ψa′(x′) = (ΛD)abψ
b(Λ−1x′), (1.14)

with ΛD = exp
(−ı̇ωµνσµν

2

)
, (1.15)

and σµν = ı̇

4[γµ, γν ]. (1.16)

Since fermion fields ψ are spinor fields, they are also referred to as Dirac spinors or bi-
spinors, as noted in [25, p.216], and their four complex components ψa are labeled with
Dirac indices a = 1, . . . , 4.

Now we are finally able to write down the Lagrangian properly as

L = ı̇ψγµ∂µψ −mψψ, (1.17)

where the Dirac adjoint spinor is denoted as

ψ = ψ†γ0. (1.18)

As usual we can receive the corresponding field equation for fermions, called the Dirac
equation, using the Euler-Lagrange formula, i.e.

(ı̇γµ∂µ −m)ψ = 0 . (1.19)

Employing the Feynman slash notation γµaµ = /a we can rewrite the Dirac Lagrangian
and the Dirac equation as

L = ψ(ı̇ /∂ −m)ψ (1.20)

(ı̇ /∂ −m)ψ = 0. (1.21)

1.2.4 Weyl Equation

Before we discuss Weyl spinors, we should discuss handedness of fermions. In order to do
this, two different properties have to be distinguished as done in [29, p.10ff]. A fermion
obeying the Dirac equation can be classified in left or right-handed (LH resp. RH) due
to the relative orientation of its spin5 Σ and its momentum p. Therefore, the helicity of
a fermion

h = Σ · p
p

(1.22)

is defined as the projection of the spin vector onto the direction of the momentum. As
a fact h has eigenvalues ±1, we call an eigenstate with eigenvalue +1 RH and one with

4A more comprehensive discussion can be found in appendix C.3.
5These spin matrices are given by Σi = εijk 1

2σjk, compare to equation (C.46).
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1.2 Fields and Field Equations

eigenvalue −1 LH. Even though helicity is invariant under rotations, it is not under boosts
for massive particles which cannot move at the speed of light. For these fermions it is
possible to transform into a frame of reference where the direction of the momentum is
changed, whereas the spin vector stays unaffected. But helicity is a conserved quantity
for a free particle, since h commutes with the Dirac Lagrangian.

The second property which can be defined is called chirality. It is a more abstract
concept where fermions are distinguished according to their behaviour under Lorentz
transformations. The spinorial representation of the Lorentz group for a Dirac spinor is
reducible and decomposes, when using the gamma matrices in the Weyl basis6, into two
irreducible representations acting on two-spinors, i.e. the transformation matrix becomes
block digaonal7. Hence, the two upper and lower components of a Dirac spinor are
decoupled under Lorentz transformations. The upper part transforms according to the LH
spinorial representation, whereas the lower part transforms according to the RH spinorial
representation. Therefore in general, a Dirac spinor can carry both, LH and RH, chirality
components and it is possible to project the fermion field onto either its LH or RH
component. Formally chirality can be defined by the fifth gamma matrix8 γ5, which has
eigenvalues ±1. Using γ5 we can define two projection operators9

PL = 1
2(14 − γ5) and PR = 1

2(14 + γ5), (1.23)

with properties (PL)2 = PL = (PL)†,

(PR)2 = PR = (PR)†,

PLPR = 0,

PL + PR = 14.

(1.24)

These projection operators act on the spinors in such a way that the Dirac spinor can be
formally decomposed into two components of different chirality

ψ =ψL + ψR,

with ψL ≡ PLψ and ψR ≡ PRψ,
(1.25)

or alternatively we can say

PLψL = ψL, PRψR = ψR,

PLψR = 0 , PRψL = 0.
(1.26)

Those components ψL and ψR are LH and RH respectively and transform as indicated
above according to the LH and RH Weyl representation10 ΛL and ΛR. Since the transfor-

6See appendix A.3.3.
7For details see appendix C.3.3 .
8We are using γ5 ≡ ı̇γ0γ1γ2γ3. For a proper definition and properties see appendix A.1.2.
9Note that in some literature different conventions could be used.

10They transform the same way under rotations, but oppositely under boosts. For details see again
appendix C.3.3.
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1 THE STANDARD MODEL OF PARTICLE PHYSICS

mation behaviour of the upper two components is decoupled from the one of the two lower
components it is possible and also useful to denote the upper resp. lower components of
ψL and ψR as two two-component spinors11 χL and ξR. So we can write the Dirac spinor12

as
ψ =

(
χL
ξR

)
, (1.27)

with ψL ≡ PLψ =
(
χL
0

)
and ψR ≡ PRψ =

(
0
ξR

)
, (1.28)

and those two independent two-spinors χL and ξR are called Weyl or chiral spinors.
Unlike helicity the property of chirality is Lorentz invariant but not conserved, because

γ5 does not commute with the mass term of the Dirac Lagrangian. Nevertheless, in the
massless limit the problem of Lorentz invariance of h disappears as well as the problem
with the conserved value of γ5, since γ5 does indeed commute with the mass-independent
term of the Dirac-Lagrangian. It can be shown13 that helicity and chirality become
equivalent14 for massless fermions. Therefore Weyl spinors are used to describe massless
fermions. Following now [30, p.51f], we insert (1.27) into the Dirac Lagrangian (1.20) we
get

L = ı̇(χL)†σµ∂µχL + ı̇(ξR)†σµ∂µξR −m[(χL)†ξR + (ξR)†χL], (1.29)

where we have introduced a new notation for the Pauli matrices

σµ = (12, σ
i) and σµ = (12,−σi). (1.30)

Having a closer look at equation (1.29), as done in [31, p.91f], we can see that both
Weyl spinors are coupled in the mass term, which means a massive fermion requires both
χL and ξR. For a massless fermion this equation decouples into two similar equations one
for each Weyl spinor:

ı̇σµ∂µχL = 0 and ı̇σµ∂µξR = 0 . (1.31)

Hence, a massless fermion can be described by one single Weyl spinor with the corre-
sponding one of the equations of motion above, which are called Weyl equations.

1.2.5 Majorana Equation

In contrast to the previous subsection we now want to return to massive fermions. We
want to know, if there are real solutions of the Dirac equation (1.19). Putting it differently
we want to investigate, if there are real spinor fields which fulfil the Dirac equation. To
discuss this, we might follow [29, p.4ff] and start with the observation that the answer
11We denote them χL and ξR to emphasize their independence from each other and to distinguish them

from the Majorana spinor, which will be discussed in the next section 1.2.5.
12This is the reason why Dirac spinors are also called bi-spinors.
13For this proof see [29, p.13].
14This equivalence can be used to define chirality on two-component Weyl spinors. Even though chirality

can not be defined on these objects, because we can not use γ5, it is possible to define helicity eigenstate
vectors in the two-component notation using Pauli matrices instead, as done in [29, p.18].
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1.2 Fields and Field Equations

depends on the used representation of the gamma matrices {γµ}. If every gamma matrix
has only purely imaginary non-zero elements, then the Dirac equation is real and therefore
we are able to find a real solution, i.e. a spinor field ψ̃ for which15

ψ̃∗ = ψ̃. (1.32)

Fortunately, it is possible to define gamma matrices in such a way that the condition
claimed above can be satisfied, namely if

γ̃µ∗ = −γ̃µ. (1.33)

This can be achieved by using the Majorana basis16 for the gamma matrices. But even
if we are using another basis we would still be able to obtain a similar condition like
(1.32) for the spinor field. Due to Pauli’s fundamental theorem17 we are able to change
to another basis of gamma matrices γµ using a unitary matrix U by

γµ = Uγ̃µU †. (1.34)

If a spinor field ψ̃ is a solution of the Dirac equation in the Majorana basis {γ̃µ}, then

ψ = Uψ̃ (1.35)

is a solution likewise in another basis {γµ}. Thus, the Majorana condition (1.32) for an
arbitrary basis is given by

ψ = UUTψ∗, (1.36)

which is easily derived from equation (1.32) and (1.35)18. Of course the matrix product
UUT is also unitary, because U is unitary. It is customary to introduce another unitary
matrix C defined19 as

UUT ≡ Cγ0T , (1.37)

which we use to rewrite the right hand side of equation (1.36) and denote it in a more
compact notation, as

ψC ≡ Cγ0Tψ∗ = Cψ
T
. (1.38)

Hence, we can achieve the Majorana condition20

ψ = ψC , (1.39)

which defines a Majorana field in any basis21.

15To prevent confusion of notation, here quantities with tilde refer to the Majorana basis.
16For an explicit display of the γ̃µ in this basis see appendix A.3.4.
17For a complete statement of the theorem and a reference to its proof see appendix A.3.1.
18From equation (1.35) we get ψ̃ = U†ψ and inserting this into (1.32) we obtain U†ψ = (U†ψ)∗ = UTψ∗

which leads to (1.36), where we used the unitarity of U .
19The reason why we use an extra factor of γ0T in the definition is discussed in appendix B.2.2.
20It can be shown that this condition is Lorentz invariant [29, p.8f].
21For the case of a Majorana basis of gamma matrices we have simply CMaj = 14 (see appendix B.2.2

equation (B.48)) and the Majorana condition has the form (1.32).
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1 THE STANDARD MODEL OF PARTICLE PHYSICS

The matrix C is also known as charge conjugation matrix and its defining relation22 is
given by

(γµ)T = −C−1γµC . (1.40)

The equation (1.38) defines the charge conjugated Dirac spinor.
So far, a Majorana fermion field in the Majorana representation has four real compo-

nents. Now we want to represent it in terms of two-component Weyl spinors analogously
to the Dirac field in equation (1.27), but now we have to take care of the Majorana con-
dition. It is interesting to see how the Majorana condition (1.39) looks in terms of the
decomposition into LH and RH Weyl spinors. Using relation (1.27) and the form of C in
the Weyl basis23 we get (

χL
ξR

)
= ψ

!= ψC

= CWeylγ
0Tψ∗

= −ı̇γ2γ02
ψ∗

=
 0 −ı̇σ2

ı̇σ2 0

((χL)∗
(ξR)∗

)

= ı̇σ2
(
−(ξR)∗
(χL)∗

)
.

(1.41)

Thus, the Majorana condition in the Weyl basis reads as

χL = −ı̇σ2(ξR)∗ (1.42)

and ξR = ı̇σ2(χL)∗ := χR. (1.43)

Since the two two-spinor components are correlated by this relation, we denote the lower
one as χR to emphasize this correlation, and hence we can write a Majorana field in the
chiral representation in the form

ψ(x) =
(
χL(x)
χR(x)

)
=
(

χL(x)
ı̇σ2(χL)∗(x)

)
(1.44)

or, since we only need one two-spinor for describing the Majorana spinor, we might use
χL =: χ for a shorter notation. Analogously to (1.25) and (1.28) for the Dirac field a
Majorana field can be defined by the sum of a spinor with distinct chirality and its charge
conjugated spinor, i.e.

ψ = ψL + (ψL)C ,

with ψL =
(
χ

0

)
,

and (ψL)C =
(

0
ı̇σ2χ∗

)
.

(1.45)

22This relation follows from (1.34) and (1.37). In formula (B.20) in appendix B.2 it is derived also in an
alternative way.

23See appendix B.2.2 equation (B.47).
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1.3 Electroweak Theory

Finally, we want to obtain the Majorana equation, as done in [30, p.207f]. First, we
establish the Dirac Lagrangian of a Majorana field in the four-component notation24

L =1
2
(
ψı̇/∂ψ −mψψ

)
=1

2

[
ψLı̇ /∂ψL + (ψL)C ı̇ /∂ (ψL)C −m

(
ψL (ψL)C + (ψL)CψL

)]
.

(1.46)

Using theWeyl decomposition and the chiral basis of gamma matrices25 we get analogously
as for the Weyl Lagrangian (1.29) the following Lagrangian for the Majorana fields:

L = ı̇

2
[
χ†σµ∂µχ+ χTσ2σµσ2∂µχ

∗ −m
(
χ†σ2χ∗ − χTσ2χ

)]
, (1.47)

where we used (σ2)† = σ2.
Furthermore, it can be shown26, as done in [29, p.22] that (σ2σµσ2)T = σµ and therefore

χTσ2σµσ2∂µχ
∗ = −∂µχ†σµχ. (1.48)

For further simplification it should be remembered that the physical important quantity
is the action S =

∫
d4xL, which has been done in [32, p.4]. Using partial integration the

derivative of the second term can be transferred form χ† to the field χ and hence

S =
∫
d4x2ı̇

[
χ†σµ∂µχ+ χTσ2σµσ2∂µχ

∗
]
− ı̇

2m
(
χ†σ2χ∗ − χTσ2χ

)
. (1.49)

Thus, we obtained the Majorana Lagrangian

L = ı̇χ†σµ∂µχ+ ı̇

2m
(
χTσ2χ− χ†σ2χ∗

)
. (1.50)

The equation of motion, i.e. the Majorana equation that follows from this Lagrangian27

is given by
σµ∂µχ−mσ2χ∗ = 0 . (1.51)

1.3 Electroweak Theory

For the purpose of this thesis it is sufficient to restrict ourselves to electroweak interac-
tion since only quarks participate in strong interaction. In the Glashow-Weinberg-Salem
(GWS) model electromagnetic and weak interactions are unified to the so-called elec-
troweak (EW) interaction that means the two elementary interactions can be seen as two
aspects of the same force.

24"The overall factor of 1/2 compared to the general Dirac Lagrangian (1.20) is usual for self-conjugate
fields, introduced to ensure a consistent normalization of the field operators in QFT" [29, p.21]. For
details of the derivation of this Lagrangian see appendix F.1.

25See appendix A.3 and note that in the Weyl basis we can use notation (1.30) and write γµ =
(

0 σµ

σµ 0

)
.

26It should be emphasized, as done in [29, p.22] that commutation of two fermion fields produces a minus
sign.

27The calculation can be found in [29, p.22] or in [30, p.208].
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1 THE STANDARD MODEL OF PARTICLE PHYSICS

1.3.1 V−A Structure of Weak Currents

As mentioned in [25, p.331], the crucial structural difference between the electromagnetic
(EM) and weak currents is that the EM current (see equation (B.65)) is purely vectorial,
whereas the weak currents exhibit vector and axial vector contributions.

It is noted in [33, p.236] that the experimental data is in accordance with the assump-
tion that interactions of leptons only appear in the following forms:

Jµ(x) =
∑
`

ψ`γµ(1− γ5)ψν`(x), (1.52)

J†µ(x) =
∑
`

ψν`γµ(1− γ5)ψ`(x), (1.53)

where ` labels the charged leptons, i.e. ` = e, µ, τ , and ν` the corresponding neutrinos.
Then, in analogy to the interaction Lagrangian of QED, we can write for the weak leptonic
interaction

LIweak(x) = gWJ
µ†(x)Wµ(x) + gWJ

µ(x)W †
µ(x), (1.54)

where gW is a dimensionless coupling constant and the fieldWµ(x) describes the mediating
particles of the (charged) weak interaction28. In [33, p.241] the V − A structure of the
current is emphasized by writing the current as the actual difference

Jµ(x) = JµV (x)− JµA(x) (1.55)

of the vector current and the axial vector current given by

JµV =
∑
`

ψ`(x)γµψν`(x), (1.56)

JµA(x) =
∑
`

ψ`(x)γµγ5ψν` . (1.57)

It is easy to see that the vector current JµV changes sign under the parity transformation29,
whereas the axial vector current JµA(x) does not. Therefore, parity is not conserved,
because the interaction Lagrangian (1.54) is not invariant under spatial inversions.

This specific structure has striking consequences for massless particles, e.g. neutrinos
in the SM, or for particles in the high energy limit. In these two cases, chirality and
helicity become equivalent and the LH chirality projector given in (1.23) appears in the
V-A current (1.55). In analogy to the property (1.26) we define the LH neutrino field
operators as

ψLν`(x) ≡ 1
2(1− γ5)ψν`(x). (1.58)

In the currents (1.52) - (1.53) only those LH operators appear, which can annihilate only
LH neutrinos and create only RH antineutrinos. Thus, RH neutrinos and LH antineutrinos
do not enter in weak interactions and only LH neutrinos and RH antineutrinos take part
in weak interactions. For the LH charged lepton fields the LH field operator ψLν` can be
28This will be discussed in detail in subsection 1.3.2.
29See appendix B.1.
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defined analogously and the leptonic current (1.52) can be written as

Jµ(x) = 2
∑
`

ψ
L

` (x)γµψLν`(x), (1.59)

where only the LH fields are involved for the neutrinos and also for the charged leptons.

1.3.2 Electroweak Gauge Theory

In appendix B.4.4 global gauge transformations for the weak interactions are discussed,
as well as the appearance of LH isodoublets ΨL

` =
(
ψLν` , ψ

L
`

)T
and RH isosinglets30 ψR` and

ψRν` . In this section we follow [33, p.268ff], while using the notation in [34]. We generalize
the SU(2)L and U(1)Y transformations discussed in appendix B.4.4 form global to local
phase transformations, like in the section B.4.1 on QED. First we discuss the local SU(2)L
transformations

U = exp (ı̇gTjωj(x)) (1.60)

under which the lepton (fermion) fields transform as

ΨL
` (x)→ exp (ı̇gTjωj(x)) ΨL

` (x), (1.61)

ΨL

` (x)→ ΨL

` (x) exp (−ı̇gTjωj(x)) , (1.62)

ψR` (x)→ ψR` (x), ψRν`(x)→ ψRν`(x), (1.63)

ψ
R

` (x)→ ψ
R

` (x), ψ
R

ν`
(x)→ ψ

R

ν`
(x). (1.64)

The ωj(x) (j = 1, 2, 3) denote arbitrary real differentiable functions of x, and g is a real
constant31. Tj = 1

2τj are the generators of the algebra, with τj denoting the Pauli matrices
defined in (A.35). To make the free Lagrangian

L0
EW = ı̇

[
ΨL

` (x)/∂ΨL
` (x) + ψ

R

` (x)/∂ψR` (x) + ψ
R

ν`
(x)/∂ψRν`(x)

]
(1.65)

invariant under these local phase transformations, we introduce the covariant derivative

∂µ → DµΨL
` (x) = ∂µ + ı̇gW µ

j (x)Tj, (1.66)

where W µ
j (x) are three real gauge fields32. Thus, the Lagrangian is modified to

L0
EW → ı̇

[
ΨL

` (x) /DΨL
` (x) + ψ

R

` (x)/∂ψR` (x) + ψ
R

ν`
(x)/∂ψRν`(x)

]
. (1.67)

Since SU(2)L is in contrast to U(1) a non-abelian gauge group the transformation of the
the gauge field is more complicated, because it has to be taken into account that the
matrices U do not commute. Hence, we get for the gauge fields

W µ
j Tj → UW µ

j TjU
−1 + i

g
(∂µU)U−1, (1.68)

30Even though RH neutrinos are not included in the SM interactions, we already introduce the RH
neutrino field operator and its transformation properties, because we will need this later on.

31This constant will be identified later in the EW unification as coupling constant.
32In contrast to QED we now need three gauge fields, since we have three generators of the group or also

three conserved charges (see appendix B.4.4).
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1 THE STANDARD MODEL OF PARTICLE PHYSICS

and the field strength tensor is given by

F j
µνTj ≡ Fµν = ∂µWν − ∂νWµ + ı̇g [Wµ,Wν ] , (1.69)

and therefore it transforms like
Fµν → UFµνU

−1. (1.70)

Analogously to QED a free part for the gauge fields has to be added to the Lagrangian,
but first we want to investigate the local U(1)Y transformations.

The local phase transformations for all the LH and RH fermion fields are

ψ(x)→ exp
[
ı̇g′
Y

2 f(x)
]
ψ(x), (1.71)

ψ(x)→ ψ(x) exp
[
−ı̇g′Y2 f(x)

]
, (1.72)

where g′ is a real number33 and f(x) is an arbitrary real differentiable function. The weak
hypercharge Y takes different values for the LH doublets and RH singlets, which are listed
in appendix B.4.4 in table 23. Since the gauge transformations associated with the weak
hypercharge are U(1) transformations, the following procedure is analogous to the QED
case. We introduce the covariant derivative

∂µ → Dµ ≡ ∂µ + ı̇g′
Y

2 Bµ(x), (1.73)

with the real gauge field Bµ(x) transforming like

Bµ(x)→ Bµ(x) + 1
g′
∂µf(x). (1.74)

The corresponding field strength tensor is simply

Bµν = ∂µBν − ∂νBµ. (1.75)

If we combine both covariant derivatives (1.66) and (1.73), i.e.

Dµ ≡ ∂µ + ı̇g ~T ~W µ(x) + ı̇g′
Y

2 B
µ(x) , (1.76)

to ensure invariance under the whole local gauge group SU(2)×U(1), the Lagrangian for
the leptons becomes

L0
EW → ı̇ΨL

` (x) /DΨL
` (x) + ψ

R

` (x) /DψR` (x) + ψ
R

ν`
(x) /DψRν`(x), (1.77)

where ~T = 1
2~τ for the LH doublets and ~T = 0 for the RH singlets and the weak hypercharge

Y = −1,−2, 0 for LH doublets, RH singlets ψ` and ψν` respectively. This Lagrangian
now contains the free lepton Lagrangian L0

EW as well as the interaction part LIEW of the
fermions with the four gauge fields, which come from the covariant derivative term, i.e.

LIEW = −gJµi (x)Wiµ(x)− g′JµY (x)Bµ(x), (1.78)

33The meaning of g′ will be determined in section 1.3.4.
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where Jµi (x) are the weak isospin currents given in equation (B.101) and JµY (x) the weak
hypercharge current given in equation (B.107).

Furthermore, like in the case of QED, we have to add a free part to the Lagrangian for
the gauge bosons Wi and B. Again we assume them to be massless and we use the Proca
Lagrangian given in (1.9) to write the gauge boson Lagrangian as

LG
EW = −1

4WµνiW
µν
i −

1
4BµνB

µν . (1.79)

So the complete Lagrangian34 for fermions and gauge bosons and their interaction is given
by

LEW = LG
EW + L0

EW + LIEW , (1.80)

where now also quark fields are included to describe the full theory, i.e.

L0
EW + LIEW =

∑
`=e,µ,τ

ı̇
[
ΨL

` (x) /DΨL
` (x) + ψ

R

` (x) /DψR` (x) + ψ
R

ν`
(x) /DψRν`(x)

]
+ (1.81)

∑
q=d,s,b

ı̇
[
ΨL

q (x) /DΨL
q (x) + ψ

R

q (x) /DψRq (x)
]

+
∑

q=u,c,t
ı̇
[
ψ
R

q (x) /DψRq (x)
]
.

1.3.3 The Higgs Field

So far we have obtained a SU(2)L × U(1)Y invariant description of EW interactions of
fermions and gauge bosons, but unfortunately the particles are still massless in this model.
As it is mentioned in [25, p.360], "the principle of local gauge invariance works beautifully
for the EM interactions" discussed in section B.4.1, since the photon is massless and the
mass term of the fermions does not destroy the U(1)EM gauge invariance of the Lagrangian.
In the EW theory the necessity arises for massive gauge bosons. This can be achieved by
the procedure of spontaneous symmetry breaking (SSB) and the Higgs mechanism35.

Spontaneous symmetry breaking appears in a theory if the state of lowest energy of
a Lagrangian is degenerate. According to [33, p.280], this means "there is no unique
eigenstate to represent the ground state. If we arbitrarily select one of the degenerate
states as the ground state, then the ground state no longer shares the full symmetry
with the Lagrangian". In the GSW model a complex scalar field φ is introduced, which
provides this property. In [25, p.362] it is emphasized that therefore SSB is no consequence
of an external agency, but rather that "the true symmetry of the system is hidden by the
arbitrary selection of a particular (asymmetrical) ground state".

The spontaneous breaking of a continuous symmetry gives rise to massless particles. In
[26, p.351] it is explained that in an O(N) symmetric theory a rotation in N dimensions
can be performed in any one of N(N − 1)/2 planes, which is the number of continuous
34Note that the Lagrangian is subscripted EW because it already contains the electromagnetic interaction

as well. It will be more obvious in the section on gauge bosons 1.3.4. Furthermore, we will have to
include a scalar field (Higgs field) in section 1.3.3. After doing all this we will be finally able to really
write down the full Lagrangian of the GSW model of the EW interaction.

35For a more elaborated discussion see appendix B.4.2 and B.4.3.
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1 THE STANDARD MODEL OF PARTICLE PHYSICS

symmetries in this theory. After SSB there remain (N − 1)(N − 2)/2 symmetries, which
correspond to rotations of (N − 1) massless fields. The number of broken symmetries is
N(N − 1)/2− (N − 1)(N − 2)/2 = N − 1, which is the difference of unbroken symmetries
before and after SSB. The massless fields are called Goldstone bosons and the general
statement that for every spontaneously broken continuous symmetry, the theory must
contain such a massless particle, is called Goldstone theorem.

Finally, to obtain massive gauge bosons we have to apply the Higgs mechanism. As
indicated in [26, p.692] a massless vector boson has only two physical polarization states,
whereas a massive vector boson must have three. In the Higgs mechanism the gauge
bosons are said to be eating the Goldstone boson and therefore they get their third degree
of freedom. Thus, the Goldstone boson itself does not appear any longer in the Lagrangian
of the theory, which would be problematic, since they do not represent physical fields.

Now we want to apply the procedure discussed above to the case of EW theory. In
order to break the SU(2) symmetry in EW theory, as mentioned in [33, p.290], a weak
isospin doublet (Higgs doublet) of complex scalar fields has to be introduced, i.e.

Φ(x) =
(
φ1(x)
φ2(x)

)
, (1.82)

where φ1(x) and φ2(x) are complex scalar fields invariant under Lorentz transformations.
This Higgs doublet transforms under the SU(2) × U(1) gauge group like the isospin
doublets ΨL

` (x) in (1.61) and (1.71):

SU(2)L :

 Φ(x)→ exp
[
ı̇gτjωj(x)

2

]
Φ(x),

Φ†(x)→ Φ†(x) exp
[
−ı̇gτjωj(x)

2

]
,

(1.83)

U(1)Y :

 Φ(x)→ exp
[
ı̇g′ Y2 f(x)

]
Φ(x),

Φ†(x)→ Φ†(x) exp
[
−ı̇g′ Y2 f(x)

]
.

(1.84)

The Lagrangian36 of this field is given by

LΦ
EW = (DµΦ)† (DµΦ) + V (Φ) , (1.85)

with the covariant derivative Dµ given in (1.76) and the potential

V (Φ) = −µ2Φ†Φ− λ
(
Φ†Φ

)2
, (1.86)

where λ and µ are real constants.
We assume λ > 0, otherwise the potential would not have any lowest energy state.

Further, for our purpose we assume µ2 < 0, because in the other case the ground state
would not be degenerate. It can be shown, as in [33, p.291] that V (Φ) possesses a minimum
at

Φ†Φ = |φ1|2 + |φ2|2 = −µ
2

2λ. (1.87)

36Compare to the Klein-Gordon Lagrangian (1.3) without the explicit mass term.
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Hence, without loss of generality, we can choose one particular vacuum state as

Φ0 =
(
φ0

1
φ0

2

)
≡
(

0
v√
2

)
, (1.88)

where the chosen vacuum expectation value (VEV) is

v =
√
−µ

2

λ
(> 0). (1.89)

Therefore, the SU(2)L×U(1)Y symmetry is spontaneously broken to U(1)EM, because af-
ter this particular choice the vacuum ground state (1.88) is, in general, not invariant under
the SU(2)L symmetry. Nevertheless, it must be invariant under U(1)EM, to ensure charge
conservation and zero mass for the photon. Assigning a weak hypercharge of YΦ = 1/2 to
the Higgs field, the lower component φ2(x) of the Higgs field is electrically neutral due
to the Gell-Mann-Nishijima formula (B.109). Hence, in case of our choice (1.88) we find
that "spontaneous symmetry breaking only occurs in the electrically neutral component
of the vacuum field (1.88), and charge conservation holds exactly" [33, p.291]. Thus, we
might denote the components of the Higgs doublet in a different way to emphasize their
EM charge as

Φ =
(
φ+

φ0

)
. (1.90)

Following [33, p.291] we parametrize the Higgs doublet in terms of its deviations from
the vacuum field Φ0 by

Φ(x) = 1√
2

(
η1(x) + ı̇η2(x)

v + h(x) + ı̇η3(x)

)
, (1.91)

where h(x) and ηi(x), i = 1, 2, 3 are four real fields. Only h(x) is a massive field, whereas
the three fields ηi are massless as predicted37, since all three generators of SU(2) are
broken equally. These Goldston bosons are unphysical fields and can be removed by
choosing a particular gauge for the Higgs doublet, called the unitary gauge, i.e.

Φ(x) = 1√
2

(
0

v + h(x)

)
, (1.92)

which no longer contains the unphysical fields ηi(x). Hence, in this particular gauge the
Lagrangian (1.85) becomes after SSB:

LΦ
EW

SSB→ 1
2 (Dµh) (Dµh)− λv2h2

(
1 + 1

2vh
)2

+ µ4

4λ2 . (1.93)

We can now easily read off the mass term of the field h(x), which we call the Higgs field,

m2
h = 2λv2 . (1.94)

37See appendix B.4.2.
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1 THE STANDARD MODEL OF PARTICLE PHYSICS

1.3.4 Gauge Boson Masses

We now want to apply the Higgs mechanism to obtain mass terms for the gauge bosons.
In doing so, we will find the real physical gauge boson fields, which will be the actual mass
eigenstates. In section 1.3.2 we found four gauge fieldsW µ

i and Bµ for the SU(2)L×U(1)Y
invariant EW theory. According to [34, p.IX.5], Bµ transforms as a SU(2) singlet and
does not couple to other gauge bosons, thus T 3

B = 0 and YB = 0. Therefore using the Gell-
Mann-Nishijima formula (B.109) we find Bµ is neutrally charged, i.e. QB = 0. The three
W µ
i bosons transform according to the adjoint representation of SU(2). However, each of

them does not couple to other gauge bosons, thus YW = 0. Using the Gell-Mann-Nishijima
formula (B.109) again, we obtain the charge matrix of the triplet

QW = T3 = (−ı̇ε3ab) = I


0 1 0
−1 0 0
0 0 0

 . (1.95)

This has eigenvalues ±1 and 0 for the eigenvectors

~e± = 1√
2
(
1, ±ı̇, 0

)T
, ~e3 =

(
0, 0, 1

)T
, (1.96)

respectively. Hence, ~W µ can be decomposed into

~Wµ = W 3
µ~e3 +W+

µ ~e+ +W−
µ ~e−, (1.97)

with the charge eigenstates of ~Wµ

W+
µ =

W 1
µ + ı̇W 2

µ√
2

, W−
µ =

W 1
µ − ı̇W 2

µ√
2

. (1.98)

We can achieve the mass terms of the gauge bosons by investigating the first term of the
Lagrangian LΦ

EW (1.85) after SSB and using the unitary gauge of Φ given in (1.92)

(DµΦ)† (DµΦ) SBB→ g2v2

4 W−
µ W

+µ + v2

8
(
−gW 3

µ + g′Bµ

) (
−gW 3µ + g′Bµ

)
, (1.99)

where the last term can be rewritten while introducing the Weinberg angle θW

cW = cos θW = g√
g2 + g′2

, sW = sin θW = g′√
g2 + g′2

. (1.100)

When doing this, we find the neutrally charged gauge bosons W 3 and B are mixed to the
physical mass eigenstates Z0 and AZ0

A

 =
cW −sW
sW cW

W 3

B

 . (1.101)

The part of the Lagrangian that gives the desired mass terms for the gauge bosons becomes

(DµΦ)† (DµΦ) SBB→ m2
WW

+
µ W

−µ + 1
2m

2
ZZµZ

µ, (1.102)
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with the masses

m2
W = g2v2

4 , m2
Z = (g2 + g′2)v2

4 , mA = 0 , (1.103)

where the following relation is valid
mW

mZ

= cos θW . (1.104)

Hence, we have obtained three massive gauge bosons for the weak interaction and one
massless gauge boson for the EM interaction, i.e. the photon. Now we are able to rewrite
the covariant derivative Dµ, defined in equation (1.76), in terms of the physical gauge
boson fields

Dµ = ∂µ + ı̇g√
2
(
T+W

+
µ + T−W

−
µ

)
+ ı̇g

cW

(
T3 − s2

WQ
)
Zµ + ı̇eQAµ, (1.105)

where we defined

T± = T1 ± ı̇T2 =


0 for singlets,0 1

0 0

 ,
0 0

1 0

 for doublets,
(1.106)

and

gsW = g′cW := e. (1.107)

The first term gives of the covariant derivative above will give the kinetic term for
the free fermions, the second term the charge weak current, the third the neutral weak
current, and the fourth term the EM current.

1.3.5 Fermion Masses

So far the fermions of the theory are still massless, since the Lagrangian LEW in equation
(1.80) does not contain any fermion mass terms. Citing [33, p.292], "to obtain non-
vanishing fermion masses, we must augment the Lagrangian by adding a suitable term",
where the fermions are coupled to the Higgs field through so called Yukawa interactions.
The Yukawa Lagrangian according to [35, p.13] is given by

−LYuk
EW =

3∑
i,j=1

(
qiLΦdjRΓ(q)

ij + qiLΦ̃uiR∆(q)
ij +DiLΦ`jRΓ(`)

ij

)
+ H.c. , (1.108)

where we introduced a different notation for the LH quark and lepton doublets, qiL and
DiL respectively, and RH quark and lepton singlets38, djR, ujR and `jR for convenience.
Γ(q)
ij , ∆(q)

ij and Γ(`)
ij are the 3 × 3 Yukawa coupling matrices of the fermion fields to the

38Note that in this theory RH neutrinos are not included.
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1 THE STANDARD MODEL OF PARTICLE PHYSICS

Higgs doublet. The charge conjugated Higgs doublet Φ̃ is defined as

Φ̃ ≡ εΦ∗ with ε = ı̇τ2 =
 0 1
−1 0

 . (1.109)

Its transformation property follows from the one of Φ given in (1.83) and from the fact
that for any U ∈ SU(2), εU∗ = Uε is valid. Thus, Φ̃ transforms under SU(2) as Φ̃→ UΦ̃,
and its weak hypercharge is of opposite sign compared to YΦ, i.e.YΦ̃ = −YΦ.

We called this the charge conjugated Higgs doublet since we derive from (1.109):

Φ̃ =
(
φ0∗

−φ−

)
SSB→ 1√

2

(
v∗ + h(x)

0

)
, (1.110)

where we used φ+∗ = φ− and also displayed its form under SSB and in unitary gauge like
Φ before in (1.92). Hence, we can see that Φ will give mass to the lower components of
the LH doublets, whereas Φ̃ will give mass to the upper components.

Following [34, p.IX.7], we achieve fermion mass terms by SSB and inserting the Higgs
doublets Φ and Φ̃ in unitary gauge in the Yukawa Lagrangian. Thus, we obtain

−LYuk
SSB→ dLMddR + uLMuuR + `LM``R + H.c. , (1.111)

with fermion mass matrices

Md = v√
2

Γ(q), Mu = v√
2

∆(q), M` = v√
2

Γ(`), (1.112)

where dL/R, uL/R and `L/R denote the vector of the down-type and up-type quark spinor
fields, as well as the vector of the charged lepton spinor fields respectively, which are still
no mass eigenfields. For obtaining these we diagonalize the mass matrices by a biunitary
transformation (theorem E.2.1):

Ud†
L MdU

d
R ≡ M̂d = diag(md,ms,mb), (1.113)

Uu†
L MuU

u
R ≡ M̂u = diag(mu,mc,mt), (1.114)

U `†
LM`U

`
R ≡ M̂`= diag(me,mµ,mτ ). (1.115)

We can now define the chiral mass eigenfields39 d′L/R, u
′
L/R, `

′
L/R as

dL/R = Ud
L/Rd

′
L/R, uL/R = Uu

L/Ru
′
L/R, (1.116)

`L/R = U `
L/R`

′
L/R, ν`L = U `

Lν
′
`L. (1.117)

Inserting all this into the Lagrangian (1.111) and using the explicit form of the physical
mass eigenfields defined according to (1.25)

d′ = d′L + d′R =


d

s

b

 , u′ = u′L + u′R =


u

c

t

 , `′ = `′L + `′R =


e

µ

τ

 , (1.118)

39Note that in the minimal SM neutrinos are only LH and massless and no lepton mixing occurs, when
ν′L is defined in this way.
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we achieve

−LYuk
EW =

∑
f

mfff

(
1 + h

v

)
, (1.119)

where f = u, c, t, d, s, b, e, µ, τ are Dirac fields, even though we started with chiral fields.

1.3.6 Electroweak Currents and Quark Mixing

Finally, we discussed all necessary Lagrangians to write down the complete Lagrangian
of the EW theory, which is given by

LEW =
∑
ψ

LψEW + LGEW + LΦ
EW − LYuk

EW , (1.120)

where we combined the Lagrangians given in (1.81), (1.79), (1.85) and (1.108). So far we
have also already calculated partially the Lagrangians LΦ

EW and LYuk
EW after SSB in unitary

gauge, where we obtained the mass terms (1.93), (1.102) and (1.119). Furthermore, we
can rewrite LGEW in terms of the physical gauge fields found in (1.98) and (1.101), which
has been done in [33, p.299], as well as in chapter two in [36].

At last we should investigate the fermion Lagrangian∑ψ LψEW, given in equation (1.81),
when we insert the covariant derivative (1.105). Beside the kinetic terms of the fermion
fields, the covariant derivative also yields the coupling of the fermion fields to the gauge
fields, i.e. the charged weak, the neutral weak and the EM currents. Citing the results in
[27, p.15/19ff] we find

LCC = − g√
2
∑
ψ

ψγµ
(
T+W

+
µ + T−W

−
µ

)
ψ, (1.121)

LNC = − g

cos θW
∑
ψ

ψγµ
(
T3 − sin2 θWQ

)
ψZµ, (1.122)

LEM = −e
∑
ψ

Qψψγ
µψAµ, (1.123)

where ψ denote all chiral quark and lepton flavor fields, which contribute to the charged,
neutral and electromagnetic interactions.

Inserting the physical columns field d′, u′, `′, ν ′` into LCC we achieve

LCC = − g

2
√

2
[
u′γµ(1− γ5)VCKMd

′ + ν ′γµ(1− γ5)`′
]
W+
µ + H.c. , (1.124)

with a 3×3 unitary matrix VCKM called the Cabibbo-Kobayashi-Maskawa (CKM) matrix40:
VCKM = Uu†

L U
d
L . (1.125)

This matrix describes the mixing of quark flavors in charge weak interactions. It gives
the relation between the flavor eigenfields d, s, b and the physical mass eigenfields d′, s′, b′

40Sometimes it is also called just Kobayashi-Maskawa (KM) matrix.
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by 
d

s

b

 =


Uud Uus Uub

Ucd Ucs Ucb

Utd Uts Utb



d′

s′

b′

 . (1.126)

According to [25, p.321], "there are nine entries in the CKM matrix, but they are not all
independent. VCKM can be reduced to a kind of canonical form, in which there remain
just three generalized Cabibbo angles , (θ1, θ2, θ3) and one phase factor (δ):"

VCMK =


c1 s1c3 s1s3

−s1c2 c1c2c3 − s2s3e
ı̇δ c1c2s3e

ı̇δ

−s1s2 c1s2c3 + c2s3e
ı̇δ c1s2s3 − c2c3e

ı̇δ

 ,
where ci denotes cos θi and si for sin θi. In [25, p.67] it is noted that although at weak
vertices only members of the same generation are coupled, there is no flavor conservation
in weak interactions. Hence, the EW theory is sometimes called flavordynamics.

It is mentioned in [36, p.79] that "there are several different ways to parametrize the
CKM matrix. The parametrization advocated by the Particle Data Group is:

VCKM =


c12c13 s12c13 s13e

−ı̇δ13

−s12c23 − c12s23s13e
ı̇δ13 c12c23 − s12s23s13e

ı̇δ13 s23c13

s12s23 − c12c23s13e
ı̇δ13 −c12s23 − s12c23s13e

ı̇δ13 c23c13

 (1.127)

in which cij and sij are shorthand for cos θij and sin θij respectively, and the mixing angles,
θij, are experimentally known to satisfy θ13 � θ23 � θ12 � 1."

Finally we also insert the physical fields into LNC and LEM and obtain

LNC = − g

2 cos θW
∑
f

fγµ (af − bfγ5) fZµ (1.128)

LEM = −e
∑
f

Qffγ
µfAµ. (1.129)

Here f = fL+fR denotes the physical fields u′, d′, `′, ν ′` with charge Qf and the coefficients
in the neutral current interactions are given by

af = tL3 f − 2 sin2 θWQf , bf = tL3 f . (1.130)

The parameter tL3 f denotes the eigenvalue of T3 in the SU(2) doublets, which are given in
table 2 below.

f u′ d′ `′ ν ′`

af
1
2 −

4
3 sin2 θW -1

2 + 2
3 sin2 θW

1
2 -1

2 + 2 sin2 θW

bf
1
2 −1

2
1
2 −1

2

Table 2: Coefficients for neutral current weak interactions of different fermion types.
Reprinted from [27, p.15/21].
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2 Neutrino Mass Terms and Mixing Schemes

Now we want to discuss how neutrino mass terms can be included in the SM and for some
introductory remarks we will refer to the discussions done in [36, p.397f], [37, p.4], [38,
p.2ff,17], [39, p.6,28], and [2, p.678].

In the last section we have introduced an appropriate field description of the particle
content of the SM and discussed the electroweak unification. We have seen that elementary
fermions can be described by LH and RH Weyl spinors41. The crucial difference between
neutrinos and other fermions is that they enter the SM Lagrangian with just one chirality,
whereas charged leptons and quarks all come in pairs of LH and RH fields, which can be
combined to Dirac spinors ψ = ψL+ψR. Since neutrinos are electrically and color neutral
they only participate in weak interactions and therefore only one definite chirality state of
neutrinos is required in the SM. In the Goldhaber experiment [40] it has been confirmed
that only LH neutrinos take part in the weak interaction, which is in accordance with the
fact that the EW theory is a chiral theory, where parity is maximally violated due to the
V-A structure of the charged EW currents. Thus, the existence of only LH neutrinos is
strongly connected to parity violation, since the EW Lagrangian42 is not invariant under
parity transformations, which has been confirmed in the famous Wu experiment [41].

A consequence of the absence of RH neutrinos in the SM is that no Yukawa interactions
with the Higgs doublet exist for neutrinos as they do for charged leptons and quarks. Thus,
neutrino masses can not be generated by the Higgs mechanism like the other fermion
masses and they remain massless after SSB in the minimal version of the SM. The only
chance to obtain neutrino mass terms is to extend the SM and use a beyond the SM
mechanism for mass generation. Whereas gauge symmetry and Lorentz invariance need
to be maintained, there are two other properties of the SM, which might be rethought,
namely the particle content and renormalizabilty43.

The simplest approach, where renormalizability of the theory is maintained, is to work
in low energy regime (below the EW scale) and to extend the particle content of the SM
by assuming there are RH neutrinos. Those have not been observed yet, because their
interaction with other matter is too weak, as noted in [37, p.4]. So we simply introduce so-
called sterile RH neutrino fields νR, which do not enter any (EW) interaction since they are

41We will describe in the following all fields by 4-component spinors. So if we are talking about LH resp.
RH Weyl spinors we think of LH resp. RH 4-component spinors ψL, ψR like defined in (1.28).

42More precisely the charged currents cause parity violation.
43According to [42], "in the SM without RH singlet neutrino fields there are no renormalizable interactions

that give masses to the neutrinos after the SSB of the EW gauge symmetry with the Higgs mechanism.
However, there is a general belief that the SM is the low-energy manifestation of a more complete
theory [43, 44] (for reviews see [39, p.28ff] or [45, 46]). The effect of this new theory is to induce in
the Lagrangian of the SM non-renormalizable interactions which preserve the EW gauge symmetry
above the EW symmetry breaking scale, but violate the conservation of lepton and baryon numbers
(see [47] and references therein). These non-renormalizable interactions are operators of dimension
d > 5 and must be multiplied by coupling constants that have dimensionM4−d, whereM is a mass
scale characteristic of the new theory".
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assumed to be total singlets under the entire SM gauge group, i.e. Q = T = T3 = Y = 0.
In this way both helicity states for neutrinos and antineutrinos are available to form a
mass term. The number of RH neutrino fields ν`′R can be arbitrary and can exceed the
number of LH neutrinos ν`L. We will denote the number of RH neutrinos by nR, counting
by the flavor index `′ = e, µ, τ, . . . and analogously we will denote the number of LH
neutrinos by nL and count by the flavor index ` = e, µ, τ, . . .. For simplicity we might
assume in this section nR = nL = n, so the number of RH neutrinos coincides with the
number of LH neutrinos44.

Another open question is, whether neutrinos are of Dirac or Majorana nature. As
mentioned in [42, p.5f], if we impose "total lepton number conservation45, neutrinos with
definite masses are four-component Dirac particles, since L is an adequate quantum num-
ber to distinguish between particle and antiparticle. But if the total lepton number is not
conserved, massive neutrinos are truly neutral two-component Majorana particles". These
possibilities correspond to the existence of different neutrino mass terms46, as found in
the Dirac Lagrangian (1.17) and Majorana Lagrangian (1.47). These terms are Lorentz
invariant bilinears of a LH and a RH field and hence of the form mDψψ resp. mMψ

TCψ,
where mD and mM denotes the masses in a Dirac or Majorana mass term respectively .
We will discuss those mass terms and their consequences on lepton number conservation
and lepton mixing in detail in the following subsections.

2.1 Dirac Mass Term

In section 1.3.5, where we discussed mass generation for fermions, we have obtained the
desired Dirac mass terms for all charged fermions by applying the Higgs mechanism to
the Yukawa Lagrangian (1.108). Since we have added RH neutrinos to the theory we
are now able to achieve Dirac mass terms for the neutrinos in a similar way. Therefore,
like done in [2, p.679f], [37, p.4f] and [35, p.30], we introduce Yukawa interactions, which
couple RH neutrinos to the LH ones via the Higgs field. As explained in [36, p.421],
these Yukawa interaction terms are allowed, since they are gauge invariant, because the
introduced RH neutrinos are singlets under the entire gauge group. So Yukawa couplings
are the only possibility for those fields to couple to the ordinary SM particles. Thus,
the new terms added to the SM Lagrangian are Lorentz and gauge invariant and also
renormalizable47. So, besides a kinetic term for the RH neutrinos ∑`′ ı̇ν`R/∂ν`′R, we add
the mentioned Yukawa interactions to the leptonic part of Yukawa Lagrangian given in
44Of course in the SM nL = 3, but we want to discuss the following in a more general way, where more

than three lepton generations are possible.
45For details see appendix B.3.2.
46It should be emphasized like in [37, p.49] that even if the following mass terms are referred to as Dirac

and Majorana they have not much to do with the appearance of Dirac or Majorana particles, apart
from two special cases, which will be discussed in subsection 2.3.

47All terms of the Lagrangian have to be of dimension ≤ 4. For } = c = 1 we have dim(mass) = 1,
dim(length) =−1, dim(action) = 0, dim(vector field) = 1 = dim(scalar field) and dim(spinor field) =
3/2. Thus, a Dirac mass term mψψ has dimension 1 + 3/2 + 3/2 = 4.
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(1.108). Hence, we obtain

−L(`)
Yuk =

∑
`,`′=e,µ,τ,...

(
D`LΦ``′RΓ(`)

``′ +D`LΦ̃ν`′R∆(`)
``′

)
+ H.c. , (2.1)

where DL = (νL, `L)T denote again the LH lepton doublets and Γ(`),∆(`) are now n × n
Yukawa coupling matrices.

2.1.1 Mass Term

Now in analogy to section 1.3.5 we apply the Higgs mechanism by SSB of the extended
Yukawa Lagrangian (2.1) and inserting the unitary gauge for the Higgs doublet Φ and its
complex conjugate Φ̃ given in (1.92) and (1.110) respectively.

Figure 3: Neutrino Dirac Mass term generation via SSB and Higgs mechanism by coupling
to the standard Higgs doublet Φ with Yukawa coupling γD.
Adapted from [48, p.5].

This procedure, visualized in figure 3, leads to

−L(`)
Yuk

SSB→ LD = −
∑

`,`′=e,µ,τ,...
``L(M`)``′``′R + ν`L(MD)``′ν`′R + H.c. , (2.2)

where the first term for charged lepton masses is already known, but the second term is
the new Dirac mass term for neutrinos with a n× n mass matrix48,MD given by49

MD = v√
2

∆(`)†. (2.3)

So we obtain the desired Dirac mass term for neutrinos

LD = −
∑

`,`′=e,µ,τ,...
ν`′R(MD)``′ν`L + H.c. = −νRMDνL + H.c. , (2.4)

where we introduced the n−component column vectors of neutrino flavor fields

νL =


νeL

νµL

ντL
...

 , νR =


νeR

νµR

ντR
...

 . (2.5)

48The index D indicates the the mass matrix corresponds to a Dirac mass.
49We follow the convention in [35] by defining this matrix by the Hermitian conjugate of the Yukawa

coupling ∆(`).
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2 NEUTRINO MASS TERMS AND MIXING SCHEMES

Following [2, p.680] and using the same procedure as before in section 1.3.5, we diago-
nalize the mass matrix, which is assumed to be non-degenerate, by a biunitary transfor-
mation (theorem E.2.1). For doing so we introduce two n × n unitary matrices UL

D and
UR
D , such that

UL
D

†
MDU

R
D ≡ mD, (2.6)

with (mD)ik = (mD)kδik, (mD)k ≥ 0. Again we introduce chiral mass eigenfields ν ′L and
ν ′R, which are combined to physical mass eigenfields ν ′ = (νk)k with k = 1, . . . , n, i.e.

νL = UL
Dν
′
L, νR = UR

Dν
′
R, ν ′ = ν ′L + ν ′R =


ν1

ν2
...
νn

 , (2.7)

where νk(x) is the field of a neutrino with mass (mD)k. Inserting this into (2.4) we get

LD = −ν ′RmDν
′
L + H.c. = −ν ′mDν

′ = −
n∑
k=1

(mD)kνkνk. , (2.8)

We have seen that the Dirac mass matrixMD is proportional to the vacuum expectation
value (VEV)50 of the Higgs field, which is v√

2 = 174 GeV. Following the arguments of [48,
p.4], we would need Yukawa couplings that are very small (∆ν ∼ 10−12) compared to the
Yukawa couplings of the electron (Γe ∼ 3× 10−6) for example, in order to accommodate
the observed small neutrino masses mD ∼ 0.1 eV. This fact seems to be quite unnatural,
and so it is noted in [38, p.18] that, "it is very unlikely that neutrino masses are of the
same SM origin as masses of quarks and charged leptons". Furthermore, it is explained
there, that these "extremely small values of the neutrino Yukawa couplings are commonly
considered as a strong argument against this origin of neutrino masses" and hence we have
to consider models of neutrino mass generation beyond the SM.

2.1.2 Mixing Matrix

In equation (2.7), we have introduced the physical mass eigenfields. We might rewrite
these equations by carrying out the matrix multiplication more explicitly

ν`L =
n∑
k=1

(UL
D)`kνkL (` = e, µ, τ, . . .), (2.9)

ν`′R =
n∑
k=1

(UR
D)`′kνkR (`′ = e, µ, τ, . . .). (2.10)

50In [37, p.5] it is explained that "in the early universe, when the temperature was high enough that Higgs
particles were present in the primordial plasma (T > TEW ∼ 140 GeV for a Higgs mass mH ∼ 125
GeV), this interaction allowed νR-particles to participate in various different scattering processes. At
energies much below the mass of the W-boson one can in good approximation replace the Higgs field φ
by its VEV v√

2 = 174 GeV [49, 50]. [...] Thus, at T � TEW the only effect of the Yukawa interaction
is the generation of the Dirac mass term MD, and the only way how the fields νR interact with the
SM is via their mixing with νL due to MD."
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2.1 Dirac Mass Term

Hence, the n flavor fields ν`L (` = e, µ, τ, . . .) are linear unitary combinations of the
LH components νkL of n mass eigenfields of neutrinos with masses (mD)k (k = 1, . . . , n)
in the Dirac case, as noted in [42, p.6]. Even though we equivalently have (2.10), there is
no mixing of sterile and active neutrinos in this scheme, since the sterile RH fields do not
occur in the standard EW interaction Lagrangian.

Now we want to consider the lepton mixing matrix in analogy to the CKM quark
mixing matrix (1.125) discussed in section 1.3.6. As done there before we now insert
the physical neutrino fields (1.124) in the charged current Lagrangian, and obtain for the
leptonic part

L(`)
CC = − g

2
√

2
[
`′γµ(1− γ5)VPMNSν

′W−
µ + ν ′γµ(1− γ5)V †PMNS`

′W+
µ

]
, (2.11)

where we introduced in analogy to the CKM matrix the Pontecorvo-Maki-Nakagawa-
Sakata (PMNS) matrix51, which is given by

VPMNS = U `
L

†
UL
D . (2.12)

In [36, p.412] in the case of n = 3 it is discussed that that "the PMNS matrix describes
3-flavor oscillations because lepton number conservations ensures that there are only three
distinct mass eigenvalues amongst which oscillations can take place. In particular there
are no new observable oscillation effects between the neutrinos and their antiparticles,
since these are guaranteed to have exactly equal masses by the lepton symmetry".

According to [36, p.400f], [37, p.8] and also [42, p.7,10], in the case of three neutrino
flavors n = 3, the mixing matrix may be generally parametrized in terms of three mixing
angles and six phases. A convenient parametrization of the PMNS matrix is the one
proposed in [51], as VPMNS = eı̇ϕ̂V K with

eı̇ϕ̂ = diag(eı̇ϕe , eı̇ϕµ , eı̇ϕτ ), (2.13)

K = diag
(
eı̇
α1/2 , eı̇

α2/2 , eı̇
α3/2

)
, (2.14)

V = V23V13V12

=


1 0 0
0 c23 s23

0 −s23 c23




c13 0 s13e
−ı̇δ13

0 1 0
−s13e

ı̇δ13 0 c13



c12 s12 0
−s12 c12 0

0 0 1



=


c12c13 s12c13 s13e

−ı̇δ13

−s12c23 − c12s23s13e
ı̇δ13 c12c23 − s12s23s13e

ı̇δ13 s23c13

s12s23 − c12c23s13e
ı̇δ13 −c12s23 − s12c23s13e

ı̇δ13 c23c13

 ,
(2.15)

where cij = cos θij and sij = sin θij.
The three unphysical phases ϕi can be absorbed into the LH charged lepton fields in

the basis where M` is diagonal. By re-phasing these fields with `′′L = e−ı̇ϕ̂`′L the phase
factor eı̇ϕ̂ is removed from the charged current Lagrangian (2.11).
51Note the difference in the defintion to the CKM matrix: VCKM ←→ V †PMNS as emphasised in [35, p.30].
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2 NEUTRINO MASS TERMS AND MIXING SCHEMES

Comparing the matrix V with the CKM matrix in the parametrization (1.127), we see
that it is CKM-like, whereas the full PMNS matrix is different, because of the appearance
of the extra phases in the matrix K. As mentioned in [36, p.400f], "such phases are
conventionally removed from the CKM matrix by performing phase rotations on the
first- and second-generation quarks, and this is possible within the SM because the rest
of the Lagrangian conserves flavor and so is unchanged by this re-phasing. The same
rotations also remove the phases in the PMNS matrix in our case where neutrinos are
Dirac particles", because the extra phases can be absorbed by re-phasing the neutrino
fields. However, only one phase is measurable [52] and the PMNS-matrix is analogous to
the CKM-matrix and depends on four parameters„ i.e. three angles and one CP-violating
phase52 δ13.

2.1.3 Lepton Number Conservation

As outlined in [30] the Lagrangian has only one remaining global U(1) symmetry, since
a phase convention has been defined for the PMNS matrix, which fixed the parameters.
According to [2, p.680] resp. [42, p.6] it is not difficult to convince oneself that not only the
Dirac mass term but even the total Lagrangian is invariant under U(1) transformations

ν`L(x)→ eı̇Λν`L(x), ν`R(x)→ eı̇Λν`R(x),

`(x)→ eı̇Λ`(x),
(2.16)

where Λ is a constant parameter, since it is the same for all neutrino and charged lepton
fields. Then, using Noether’s theorem, on can see that the invariance of the Lagrangian
under the transformation (2.16) implies that the total lepton charge or number53 L is
conserved and therefore, L is the quantum number that distinguishes a neutrino from an
antineutrino.

This implies that the neutrino mass eigenfields νi are Dirac particles with L(νi) = 1
and L(νi) = −1 for the antineutrinos νi. The Lagrangian of the theory containing the
Dirac54 mass term (2.4) is invariant with respect to the global gauge transformations

νi(x)→ eı̇Λνi(x),

`(x)→ eı̇Λ`(x) ` = e, µ, τ, . . . ,
(2.17)

where Λ is a constant parameter and we used (2.9).
Another important fact is that the family lepton numbers L` (` = e, µ, τ, . . .) will not

be conserved in a theory with a neutrino mass term given in (2.4) if the matrix MD is

52It is mentioned in [42, p.7] that "in this parametrization the CP-violating δ13 phase is associated with
s13 and hence it is clear that CP violation is negligible in the lepton sector if the mixing angle θ13
is small. More generally, it is possible to show that if any of the elements of the mixing matrix is
zero, the CP-violating phase can be rotated away by a suitable re-phasing of the charged lepton and
neutrino fields".

53See appendix B.3.2 for definition and discussion.
54So in this case the name Dirac mass term is really justified.
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2.2 Majorana Mass Term

not diagonal. However, in case of this neutrino mass term, the total lepton charge is
conserved and hence decays like

µ+ → e+ + γ, µ→ e+ + e− + e+,

K+ → π+ + µ± + e∓, µ− + (A,Z)→ e− + (A,Z),
(2.18)

etc. are possible in a model, where neutrino mixing is given by (2.9). In the neutrino
beams oscillations of the type (—)

ν` �
(—)

ν`′ (` 6= `′) should be observed. But beside this,
as a consequence of the conservation of the total lepton charge L, neutrinoless double-β
decay

(A,Z)→ (A,Z + 2) + e− + e−, (2.19)

and decays like
µ− + (A,Z)→ e+ + (A,Z − 2),

K+ → π− + e+ + µ+,
(2.20)

etc. are forbidden.

2.2 Majorana Mass Term

As discussed before mass terms are Lorentz invariant bilinears of a LH and a RH field.
Besides the Dirac mass term discussed above, we can also obtain another type of mass
term for the LH neutrinos, called Majorana mass term, without the use of the introduced
RH neutrino singlets. In fact, it is easy to see that the charge conjugated field (ν`L)C is a
RH field55. Hence, as noted by [48, p.4], a Majorana mass term requires only one helicity
type of Weyl spinor.

As discussed in section 1.3 on the unified EW theory, Majorana masses are forbidden
for quarks and charged leptons due to color and EM gauge invariance. However in the
case of neutrinos, which are electrically and color neutral anyhow, Majorana mass terms
are possible for both active LH neutrinos and sterile RH neutrinos, which will be carried
out in detail in this section.

2.2.1 Mass Term for Sterile Neutrinos

Let us consider the easier case of the Majorana mass term for the sterile neutrinos first.
The mass term is formed by the RH fields and their LH charge conjugated fields given in
the column notation as defined in (2.5)

νR =


νeR

νµR

ντR
...

 , (νR)C =


(νeR)C

(νµR)C

ν(τR)C
...

 . (2.21)

55For a proof see appendix B.2.4 calculation (??).
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2 NEUTRINO MASS TERMS AND MIXING SCHEMES

Thus, as noted in [39, p.8] and [37, p.5], the mass term is given by:

L(R)
M = −1

2(νR)CMRνR + H.c = −1
2

∑
`′1,`
′
2=e,µ,τ,...

(ν`′1R)C(MR)`′1`′2ν`′2R + H.c, (2.22)

whereMR is a complex nR×nR matrix. It should be remembered, as in [30, p.207] that νR
are RH Majorana spinor fields and the factor 1/2 is introduced to compensate for double
counting and ensuring a proper normalization of the fields.

It is explained in [48, p.5] that this mass term does not break EW gauge symmetry,
because the RH neutrinos were introduced as sterile and hence, they are isospin singlets.
Thus, this bare mass term can in principle56 occur in the theory and, as we will see when
discussing the seesaw mechanism, the mass of the sterile neutrinos plays a crucial role
for mass generation of light LH neutrinos. Here we should note that the mass matrix
MR has to be symmetric. This can be easily shown by using the relation (B.49) and the
properties of the charge conjugation matrix (B.20), (B.31), and (B.32) (as well as the fact
that a minus sign appears when interchanging two fermionic field operators). Quoting
the arguments in [2, p.681], we have

(νR)CMRνR = −(νTRC−1MRνR)T = νTR(C−1)TMT
RνR = (νR)CMT

RνR. (2.23)

So this impliesMT
R = MR and henceMR is symmetric. Furthermore, itMR can always be

assumed to be non-degenerate and also already diagonal, such that νR are already mass
eigenfields.

2.2.2 Mass Term for Active Neutrinos

Let us now proceed with the Majorana mass term for the LH neutrinos as discussed in
[2, p.681]. The Majorana mass term is build in the same way as for RH neutrinos:

L(L)
M = −1

2(νL)CMLνL + H.c = −1
2

∑
`1,`2=e,µ,τ,...

(ν`1L)C(ML)`1`2ν`2L + H.c. , (2.24)

where we used the column notation for the fields given in (2.5) as before

νL =


νeL

νµL

ντL
...

 , (νL)C =


(νeL)C

(νµL)C

ν(τL)C
...

 , (2.25)

and where ML is a complex nL × nL matrix, which is again symmetric by the same
arguments as above in (2.23), so we also have MT

L = ML.
However, things are more complicated in this case, since the LH neutrino fields are

56It is mentioned in [48, p.5] that "in some models such a bare mass term for the RH neutrinos might be
forbidden by new physics, and MR is instead generated by the VEV of a SM Higgs triplet field S, or
by a higher-dimension operator". The necessity of such a procedure will be also discussed shortly for
the Majorana mass term of LH neutrinos.
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2.2 Majorana Mass Term

no singlets under EW gauge transformations. Therefore, this kind of mass term is, like
in the Dirac case, a priori forbidden since it would break gauge invariance and it can
be only generated in the framework of a beyond the SM physics, as noted in [38, p.20].
As explained in [42, p.10], a Majorana mass term is only possible, if the scalar sector
of the minimal SM is extended [53], in particular at tree-level a Higgs triplet is required
[54, 55, 56]. According to [48, p.5] a Majorana mass ML of the LH neutrinos can be
achieved by a coupling as illustrated in figure 4. To ensure appropriately small masses,
the Higgs triplet has to have a small Yukawa coupling γT and/or a small VEV 〈φ0

T 〉.
Besides, the possibility of "radiative mass generation at the one-loop level with a single
charged Higgs singlet (plus an additional Higgs doublet [45, 57, 58, 59, 60]) or even at the
2-loop level with a doubly charged Higgs singlet (plus an additional singly charged scalar
[61])" is mentioned in [42, p.9].

Figure 4: Left: Majorana mass term generated by a Higgs triplet. Right: Majorana mass
term generated by a higher-dimension operator. Adapted from [48, p.5].

In [48, p.5] and [37, p.7] also a different approach concerning the repeal of renormal-
izability is considered57. The Majorana mass term for the active neutrinos can be con-
structed without adding any new degrees of freedom to the SM from a higher-dimensional
operator - the so-called Weinberg operator [62]

1
2`Lφ̃f φ̃

T `CL + H.c. , (2.26)

where f is some flavor matrix of dimension mass−1.
This dimension-5 operator is not renormalizable and is constructed of two Higgs dou-

blets and a coefficient f ∼ C/M. After SSB this operator generates the mass term as
indicated in figure 4 above. In an effective field theory approach it can be understood
as the low energy limit of renormalizable operators, which are obtained after integrating
out heavier degrees of freedom. These can be very heavy Majorana sterile neutrinos (the
type I seesaw), a heavy scalar triplet (the type II seesaw [63]), a fermion triplet (the type
III seesaw [64]), or new degrees of freedom in a string theory [65].

In this thesis we will deal with low energy scales, where renormalizability is maintained
and the mass terms will be generated by heavy RH neutrino singlets, i.e. we will consider
the seesaw mechanism type I. In order to proceed analogously to the previous case of a
Dirac mass term, we diagonalize the mass matrixML and rewrite the Lagrangian in terms
of mass eigenfields.
57A more elaborate discussion can be found e.g. in [39, p.28ff].
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2 NEUTRINO MASS TERMS AND MIXING SCHEMES

It is noted in [36, p.399f] that sinceML is a symmetric matrix, it has fewer independent
entries than the quark or charged lepton mass matrix or the Dirac mass matrix and we
shall be interested in the case of non-degenerate eigenvalues. To diagonalize the mass
matrix ML we follow [2, p.681f] and apply Schur’s theorem (theorem E.2.2), which tells
us that a complex symmetric matrix can always be diagonalized with a unitary matrix
UM :

ML = (U †M)TmLU
†
M , (2.27)

where UM is a nL × nL matrix and (mL)ik = (mL)kδik, (mL)k ≥ 0 for k = 1, . . . , nL We
now insert (2.27) into (2.24) and obtain58

L(L)
M = −1

2(NL)CmLNL −
1
2NLmL(NL)C , (2.28)

where we defined chiral physical fields in analogy to (2.7) by

NL = U †MνL, (NL)C = CNL
T
. (2.29)

Here we combined similarly to (2.7) both chiral fields to

ξ = NL + (NL)C =


ξ1

ξ2
...
ξnL

 , (2.30)

and finally obtain59 the neutrino mass term in the form

L(L)
M = −1

2ξmLξ = −1
2

nL∑
k=1

(mL)kξkξk , (2.31)

where ξk is the field of a neutrino with mass (mL)k. These fields ξk satisfy the condition

ξk(x) = Cξk
T (x), k = 1, 2, . . . , nL (2.32)

which means that the ξk(x) are Majorana fields, since it is simply the Majorana condition
given in (1.39).

2.2.3 Mixing Matrix

Again following [2, p.682], we obtain from (2.29) and (2.30) the mixing which connects
the flavor fields to the mass eigenfields in the following from

νL = UMξL, (2.33)

58For a detailed derivation see appendix F.2.
59For a detailed derivation see appendix F.3.
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2.2 Majorana Mass Term

i.e. in component notation

ν`L =
nL∑
k=1

(UM)`kξkL ` = e, µ, τ, . . . . (2.34)

Hence, the LH flavor fields are linear combinations of the LH component of the fields
of Majorana neutrinos with definite masses and there are as many Majorana neutrinos as
flavor neutrinos (i.e. the number of charged leptons). There are 2nL states with different
chirality of the nL massive Majorana neutrinos, which correspond to the 2nL neutrinos
and antineutrinos (νe, νµ, ντ , νe, νµ, ντ , . . .).

As done in the section before we now insert the physical neutrino fields (1.124) in the
charged current Lagrangian, and obtain for the leptonic part

L(`)
CC = − g

2
√

2
[
`′γµ(1− γ5)VPMNSξW

−
µ + ξγµ(1− γ5)V †PMNS`

′W+
µ

]
, (2.35)

where we have introduced again in analogy to the CKM matrix the Pontecorvo-Maki-
Nakagawa-Sakata (PMNS) matrix60, which is given by

VPMNS = U `
L

†
UM . (2.36)

Now following the arguments in [36, p.400f], we note that the neutrino mass matrix
was diagonalized by redefining the neutrino fields. But there are not enough fields, which
can be independently rotated to achieve the diagonalization, because the neutrino mass
matrix does not connect different LH and RH fields. Therefore we get less independent
physical parameters from these rotations, which leads to more CP-violating phases for
leptons than for quarks.

As in the Dirac case, we consider three neutrino flavors nL = 3, where the mixing
matrix may be parametrized in terms of three mixing angles and six phases. Three of the
phases can be absorbed into the LH charged lepton fields as discussed in the Dirac case.
We want to restate the convenient parametrization of the PMNS matrix we used before
in the form61 of VPMNS = V K with K = diag

(
eı̇
α1/2 , eı̇

α2/2 , eı̇
α3/2

)
and

V = V23V13V12

=


1 0 0
0 c23 s23

0 −s23 c23




c13 0 s13e
−ı̇δ13

0 1 0
−s13e

ı̇δ13 0 c13



c12 s12 0
−s12 c12 0

0 0 1



=


c12c13 s12c13 s13e

−ı̇δ13

−s12c23 − c12s23s13e
ı̇δ13 c12c23 − s12s23s13e

ı̇δ13 s23c13

s12s23 − c12c23s13e
ı̇δ13 −c12s23 − s12c23s13e

ı̇δ13 c23c13

 ,
(2.37)

where cij = cos θij and sij = sin θij.

60Note again the difference in the defintion to the CKM matrix: VCKM ←→ V †PMNS as emphasised in [35,
p.30]

61We assume the three phases are already absorbed in the LH charged lepton fields.
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As already discussed in the Dirac case in section 2.1.2 the PMNS matrix differs form
the CKM matrix by the extra phases in the matrix K. But now in the Majorana case
we are not able to perform an appropriate re-phasing to absorb these phases. As we will
see in the next section the Majorana neutrino mass term is not invariant under lepton
number transformations and so it is not conserved by re-phasing of the LH neutrino states
as in the Dirac case before.

In [36, p.401] it is noted that "the phases δ13 and αi can have physical implications
because they introduce CP-violation into neutrino physics. Since the phase δ13 is the
direct analogue of the CP-violation phase in the CKM matrix, its effects disappear in the
limit θ13 → 0. One of the phases αi can be rotated away by making a common phase
rotation of the charged leptons (conventionally α3 is removed), and the other two are not
observable in processes which conserve total lepton number L".

2.2.4 Lepton Number Conservation

Finally we want to discuss lepton number conservation in the case of a Majorana mass
term as we did before in the case of a Dirac mass term in section 2.1.3 and we are following
again the discussion in [2, p.682f].

The mass term (2.24) can not be invariant under any global gauge transformation
and hence, in this case lepton charges are not conserved. Therefore, it is not possible to
distinguish neutrino from antineutrino and the mass eigenfields in the mass term (2.24)
are Majorana neutrinos.

The difference between the Dirac and Majorana cases can be emphasized in the follow-
ing way. It follows from (B.27) and (2.32) that the LH and the RH components of the
Majorana field ξk(x) are related by

ξkR(x) = CξkL
T (x), (2.38)

whereas in the case of a Dirac field νk(x) the LH and the RH components are independent.
In the Majorana case the charged lepton mass term and the weak currents are invariant

under global transformation of the fields ξk(x) and `(x) of the form

ξkL(x)→ ξ′kL(x) = eı̇ΛξkL(x),

`(x)→ `′(x) = eı̇Λ`(x).
(2.39)

Nevertheless, the neutrino massterm breaks this symmetry because due to (2.38) we have62

ξ′kR(x) = e−ı̇ΛξkR(x). (2.40)

Thus, in a theory with Majorana mass term (2.24) neither any of the lepton charges
L`, ` = e, µ, τ, . . . is conserved nor is the total lepton charge L = ∑

` L`. Consequently, in
this theory also (ββ)0ν decay and other similar processes are not forbidden. Furthermore,
62This is the reason why we cannot absorb the extra CP-violating phases into the neutrino fields, as

discussed in the previous section 2.2.3.
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in this case of massive Majorana neutrinos the mixing scheme also leads to oscillations in
the neutrino beams like in the Dirac case.

2.3 Hybrid Dirac-Majorana Mass Term

In the previous two sections we have discussed possible Dirac and Majorana mass terms
for neutrinos separately. However, in a theory where both, active LH neutrino fields as
well as sterile RH neutrino singlets are present, the most general mass term includes the
Dirac mass term as well as Majorana mass terms for LH and RH neutrinos. This hybrid
mass term is called Dirac-Majorana mass term and will be discussed in this section.
We consider nL active neutrinos and nR sterile neutrinos, where we take for simplicity63

nL = nR = n as before.

2.3.1 Mass Term

Again we start by writing down the possible mass term as it is done in
[42, 7.f], [39, p.8f], or [2, p.683]. For a first approach we simply sum up the Lagrangians
LD,L(L)

M and L(R)
M , we have already encountered in (2.4), (2.22) and (2.24):

LD+M =LD + L(L)
M + L(R)

M

=−
∑

`,`′=e,µ,τ,...
ν`′R(MD)``′ν`L + H.c.

− 1
2

∑
`1,`2=e,µ,τ,...

(ν`1L)CML`1`2ν`2L + H.c

− 1
2

∑
`′1,`
′
2=e,µ,τ,...

(ν`′1R)CMR`′1`
′
2
ν`′2R + H.c. .

(2.41)

The matrices MD, ML and MR are complex n× n matrices.
It is convenient and useful to rewrite this Lagrangian in a more compact form. For

doing this we introduce the LH column fields with 2n components

ωL =
(

νL
(νR)C

)
, (2.42)

where the n−component column fields are defined like in (2.5) by

νL =


νeL

νµL

ντL
...

 , (νR)C =


(νeR)C

(νµR)C

(ντR)C
...

 . (2.43)

Applying this knowledge we can rewrite64 (2.41) in terms of this LH column vector ωL
63In the next section on the seesaw mechanism we will consider also the general case of nL 6= nR.
64In [35, p.43] this derivation is done more explicit. The calculus is a bit lengthy and therefore can be

found in the appendix F.4.
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as

LD+M = −1
2(ωL)CMωL + H.c. . (2.44)

The mass matrix M is a symmetric65 2n× 2n matrix, which is built of blocks of the mass
matrices MD, ML and MR such that

M =
ML MT

D

MD MR

 . (2.45)

Now we diagonalize the matrix M like the matrix ML using Schur’s theorem (theorem
E.2.2) and assuming M to be not degenerate, which states the existence of a unitary
2n× 2n matrix U such that

M = (U †)TmU †, (2.46)

where m is the diagonal matrix

mik = mkδik, mk ≥ 0, i, k = 1, 2, . . . , 2n. (2.47)

We repeat the procedure done before and by defining the chiral physical fields

ω′L = U †ωL, (2.48)

and inserting ω′L and (2.46) into the Lagrangian (2.44), we achieve

LD+M = −1
2(ω′L)Cmω′L + H.c.. (2.49)

In the last step we introduce the physical mass eigenfields χ as

χ = ω′L + (ω′L)C =


χ1

χ2
...
χ2n

 , (2.50)

and rewrite the Lagrangian (2.49) in terms of this field to obtain

LD+M = −1
2χmχ = −1

2

2n∑
k=1

mkχkχk. (2.51)

Finally, we should note that the general Dirac-Majorana mass term (2.44) contains
some special cases and limits as discussed in [48, p.6], [37, p.9f], [36, p.414f], and [66,
p.298]. We will distinguish different scenarios due to the relative size betweenMR andMD

(in particular between their eigenvalues). For simplicity we assume only one generation
(n=1) of neutrinos66 for this discussion, where we have MD = mD, ML = mL and MR =

65This is quite obvious, because MT =
(

MT
L MT

D

(MT
D)T MT

R

)
= M , since ML and MR are symmetric.

66For this case an elaborate discussion can be found in [42, p.11f].
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2.3 Hybrid Dirac-Majorana Mass Term

mR. According to [66, p.298] we can find the following eigenvalues for M :

m1,2 = 1
2

[
(mR +mL)±

√
(mL −mR)2 + 4m2

D

]
. (2.52)

We can now consider six different cases or limits of the general Dirac-Majorana mass term
(2.44):

(i) mL = mR = 0: Here we have m1,2 = mD and (2.44) reduces to the Dirac mass term
given in (2.4) and the result a Dirac neutrinos and conserved lepton numbers. We
should, as in [37, p.49], note that in this Dirac case we are able to combine the
chiral Weyl fields into Dirac spinors, because the unbroken subgroup U(1)EM with
its associated conserved current leads to a mass matrix that allows this combination.

(ii) mD = 0 : Similarly in this case we have m1,2 = mL,mR and this limit of (2.44) leads
to the sum of the Majorana mass terms for LH and RH neutrinos we considered in
(2.24) and (2.22). In [37, p.49] it is emphasized that in this case we obtain nL + nR

(in the simplification considered here it is 2) Majorana spinors. In the simplest case,
where the mass matrices ML and MR are diagonal, we can find the mass terms
in the form of L(L)

M and L(R)
M . As we have seen in this Majorana case we have no

mixing between active LH and sterile RH neutrino fields, which are both Majorana
neutrinos and therefore there is no conservation of lepton numbers.

(iii) mD ≈mL and/or mD ≈mR: If all mass matrices are approximately the same size
this leads in general to nL + nR Majorana neutrinos with comparable masses. This
means that the sterile RH neutrinos are quite as light as the active LHn neutrinos.
In this particular case there occurs quite strong mixing between the active LH and
sterile RH fields and we call this the active-sterile mixed case.

(iv) mD �mL,mR: We call this limit the pseudo-Dirac limit, since m1,2 ≈ mD, because
the smallness of the Majorana masses mL and mR leads just to a small shift from
mD in the eigenvalues. According to [36, p.415], for nL < nR there will be 2nL
massive neutrino states participating in the weak interaction. In the general case,
where it can be nL ≥ nR or nL < nR, we have min(nL, nR) almost-degenerate pairs
of massive neutrinos plus |nL − nR| light states.

(v) mD �mL,mR: This case might be called the Pseudo-Majorana case, since the
eigenvalues are m1,2 ≈ mL,mR. The LH and RH neutrinos do not mix significantly,
and the observed neutrino oscillations are completely described by the Majorana
mass matrix mL.

(vi) mR �mD,mL: The last case considered here is the one we will consider in the rest
of this thesis and it is called the seesaw limit. As noted in [48, p.6] for nL = 1 = nR

we have one mainly sterile state, with heavy massm2 ' mR and one very light active
state. We will show in section 3 how m1 ' mL − m2

D/mR is achieved. For mL = 0,
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2 NEUTRINO MASS TERMS AND MIXING SCHEMES

this yields an elegant explanation for the smallness of the (active) neutrino masses
|m1| � mD. This specific case when mL = 0 is referred to as seesaw mechanism
type I.

2.3.2 Mixing Matrix

Following [2, p.683f] we find the relation between the flavor fields ν`L(x) and (ν`R(x))C

and the LH components of the 2n Majorana fields χk(x) by using the unitarity of the
matrix U . Then we find

ωL = Uω′L = UPLχ, (2.53)

and might denote PLχ ≡ χL. Hence, we obtain

ν`L =
2n∑
k=1

U`kχkL, (ν`′R)C =
2n∑
k=1

U`′kχkL, (2.54)

where ` = e, µ, τ, . . . (altogether n values) and the index `′ takes the n lower rows of the
mixing matrix U .

Thus, the n flavor fields ν`L(x) are linear combinations of the LH components of 2n
Majorana mass eigenfields in the hybrid mass term case. The crucial point is that the
sterile fields (ν`R(x))C are also linear combinations of the LH components of the same 2n
Majorana fields. From (2.53) we find for the RH components χR

(ωL)C = U∗PRχ, (2.55)

where we denote analogously PRχ = χR and hence we achieve

(ν`L)C =
2n∑
k=1

U∗`kχkR, ν`′R =
2n∑
k=1

U∗`′kχkR. (2.56)

Finally, we should investigate the charged current Lagrangian (1.124) in terms of the
mass eigenfields. As it is discussed in [36, p.414], it should be emphasized that in the case
of a Dirac-Majorana mass term the PMNS-matrix is no longer a square matrix67, even in
the case for nL = nR = n. The matrix U (`)

L transforming charged lepton flavor fields into
mass eigenfields is a n× n matrix, whereas the neutrino mass eigenfields are obtained by
mixing of 2n Majorana fields via the 2n× 2n matrix U , as derived above in (2.54). If we
write down the charged current Lagrangian explicitly, we find

L(`)
CC = − g√

2
∑

`=e,µ,τ,...
``Lγ

µν`LW
−
µ + H.c.

= − g√
2

∑
`=e,µ,τ,...

n∑
i=1

2n∑
k=1

`′iL(U (`)
L )∗i`γµU`kχkLW−

µ + H.c. .
(2.57)

The matrix multiplication can be carried out since the transformation into neutrino
eigenfields given in (2.54) takes only the first n rows of U and hence we achieve for the

67We will discuss this topic for nL 6= nR in section 3.1.4.
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2.3 Hybrid Dirac-Majorana Mass Term

PMNS mixing matrix
K :=

∑
`=e,µ,τ,...

(U (`)
L )∗i`U`k, (2.58)

which is now a n×2n rectangular matrix68. The crucial point in this is that "the existence
of these new mixing elements implies that the introduces RH neutrinos can contribute
due to mixing to the charged current weak interactions" [36, p.414].

Furthermore, this particular mixing leading to mass eigenfields (2.54) also has conse-
quences on the neutral current Lagrangian (1.122). In the previous cases of purely Dirac
or Majorana mass terms, where the full summation over all rows of the unitary matrices
UD resp. UM is performed, no mixing effects occur in the neutral currents in terms of
mass eigenfields. Now we find for the neutrino part of the neutral current Lagrangian
using Qν = 0 and tL3 f = 1/2 in equation (1.128):

L(ν)
NC = − g

cos θW
∑

`=e,µ,τ,...
ν`Lγ

µ
(
T3 − sin2 θWQ

)
ν`LZµ + H.c.

= − g

2 cos θW
∑

`=e,µ,τ,...
ν`Lγ

µν`LZµ + H.c.

= − g

2 cos θW
∑

`=e,µ,τ,...

2n∑
k=1

2n∑
j=1

χjLU
∗
j`γ

µU`kχkLZµ + H.c. .

(2.59)

Here the summation over ` runs only over the the first n columns of U † and the first n rows
of U , and thus the unitarity property of U cannot be applied. The matrix multiplication
is just performed for the 2n× n submatrix of U∗ and the n× 2n submatrix of U and we
obtain

Pjk :=
∑

`=e,µ,τ,...
U∗j`U`k, (2.60)

where P is a 2n× 2n matrix68.

2.3.3 Lepton Number Conservation

As noted in [2, p.683f], the mass eigenfields χ defined in (2.50) obviously satisfy the
Majorana condition

χk(x) = CχTk (x). (2.61)

Therefore, neutrinos are Majorana particles in this case and hence, as already discussed
in section 2.2, it is evident that the Dirac-Majorana mass term is not invariant in the
general case under any global gauge transformation of the neutrino fields. This implies
that in the theory under discussion no lepton charges are conserved and in a theory with
a Dirac-Majorana mass term decays like

µ+ → e+ + γ,

µ+ → e+ + e− + e+, etc.,
(2.62)

68We use the notation of [67].
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2 NEUTRINO MASS TERMS AND MIXING SCHEMES

as well as such as (ββ)0ν decay are allowed.
Besides these analogies a crucial difference can be found concerning neutrino oscilla-

tions. Whereas in the Dirac and Majorana case oscillations only occur between active
neutrinos, in the hybrid case oscillations between active and sterile neutrinos are possible.
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3 Seesaw Mechanism

We have already mentioned the seesaw limit in section 2.3.1, where we discussed several
possible cases and limits for the Dirac-Majorana mass term. We indicated there how RH
neutrino singlets added to the SM can lead to very light active neutrinos. As noted in
[37, p.11], increasing the scale mR of the eigenvalues of the Majorana mass matrix MR

gives rise to heavy69 sterile neutrinos whereas the masses of the active ones decrease. This
mechanism is therefore called seesaw mechanism. According to [19], the mass scale mR

should be more precisely70 understood as the order of magnitude of the eigenvalues of√
M †

RMR and the seesaw limit mR � mL,mD should be understood in that sense that
the eigenvalues of

√
M †

RMR are all much larger than the matrix elements of ML and MD.

3.1 Seesaw Mechanism Type I

We will concentrate in this master thesis on the seesaw mechanism of type I, which was
first considered in [68, 17, 16, 69, 18], where the SM is augmented by RH neutrinos singlets.
The addition of these RH heavy neutrino singlets leads to mass generation of neutrinos at
tree-level (see figure 5 below). We have already discussed in section 2.2.2 that a Majorana
mass term for active LH neutrinos can only be generated by extension of the scalar sector
by a Higgs triplet or by a higher dimensional operator in a non-renormalizable theory,
where a heavy virtual fermion singlet field is exchanged71. In this thesis we want to focus
on a model, as done in [19], where renormalizability is maintained and the presence of a
Higgs triplet is avoided. Hence, in the seesaw model considered here no Majorana mass
term for active neutrinos at tree-level occurs, i.e. ML = 0.

Figure 5: LH neutrino aquires small Majorana mass through seesaw mechanism via ex-
change of a virutal heavy RH neutrino. Reprinted from [70, p.280].

69Since "the Majorana mass terms need not to vanish in the limit where the EW symmetry is unbroken,
the sterile neutrinos are naturally expected to be at the weak SSB scale or larger", as it is noted in
[36, p.422]. We will discuss different mass scales in more detail in subsection 3.1.3.

70We will denote the scale of the Dirac mass matrix MD, or also here more precisely the scale of eigen-
values of

√
M†DMD by mD. The scale mL for the Majorana masses of LH neutrinos is understood

analogously.
71For a discussion of this see [38], [39] or [36].
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3 SEESAW MECHANISM

3.1.1 General Mass Term

For model building we use what we have already encountered in the previous section 2 on
neutrino mass terms, especially what we have discussed in the case of the Dirac-Majorana
mass term in section 2.3. However, here we do not longer restrict ourselves to a number
of sterile neutrinos coinciding with the number of active neutrinos. We will examine the
mass term in the most general case for nL 6= nR and discuss the consequences on mass
generation and mixing in the cases nL ≤ nR or nL > nR. We might introduce a more
useful and illustrative index notation. The flavor indices ` = 1, . . . , nL will denote the nL
LH active neutrino fields, whereas `′ = 1, . . . , nR will denote the nR RH sterile ones. The
most general Dirac-Majorana mass term is given in analogy to equation (2.41), but as
indicated before we will stick to a model where the symmetric nL × nL Majorana matrix
for the active neutrinos ML = 0. Hence, the actual mass term for the seesaw mechanism
we like to concentrate on is

LD+M =LD + L(R)
M

=−
nL∑
`=1

nR∑
`′=1

ν`′R(MD)``′ν`L + H.c.

− 1
2

nR∑
`′1,`
′
2=1

(ν`′1R)CMR`′1`
′
2
ν`′2R + H.c. .

(3.1)

The mass matrices MD and MR are complex nL × nR, nR × nR matrices, respectively.
As before in section 2.3, the Majorana mass matrix MR is symmetric, whereas it should
be noted that in the most general case for nL 6= nR the Dirac mass matrix MD will be a
rectangular and not a square matrix.

Following the procedure done before, we are able to write this mass term in a more
compact way. Using the LH column vectors ωL defined in (2.42):

ωL =
 νL

(νR)C

 }nL
}nR

, (3.2)

we can rewrite again (3.1) as

LD+M = −1
2(ωL)CMD+MωL + H.c. . (3.3)

The mass matrix MD+M is now a symmetric (nL + nR) × (nL + nR) matrix, which is
built of blocks of the Dirac mass matrix MD and the Majorana mass matrix MR for RH
neutrino singlets72:

MD+M =
 0 MT

D

︸︷︷︸
nL

MD ︸︷︷︸
nR

MR

 }nL
}nR

. (3.4)

72These are the matrices introduced in (2.3) and (2.22) discussed in the sections 2.1.1 and 2.2.1.
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3.1 Seesaw Mechanism Type I

Now we proceed by diagonalizing the mass matrix and introduce mass eigenfields like
in the section before. We will apply the notation used in [20, 21, 71]. The symmetric
mass matrix MD+M can be diagonalized by a unitary (nL + nR) × (nL + nR) matrix U
according to Schur’s theorem (theorem E.2.2) as

UTMD+MU = m̂ = diag(m1,m2, . . . ,mnL+nR), (3.5)

where the diagonal entries mi for i = 1, . . . , nL + nR are real and non-negative. The
unitary matrix U can be decomposed into two submatrices

U =
(
UL
U∗R

)
, (3.6)

where UL is a nL × (nL + nR) and UR a nR × (nL + nR) matrix. Since U is unitary, i.e.
UU † = U †U = 1nL+nR , the submatrices have to fulfil the following properties73, as noted
in [20]:

ULU
†
L = 1nL , (3.7)

URU
†
R = 1nR , (3.8)

ULU
T
R = 0nL×nR , (3.9)

U †LUL + UT
RU

∗
R = 1nL+nR . (3.10)

Applying this decomposition to equation (3.5) we get

U∗Lm̂U
†
L = 0nL×nL(= ML),

URm̂U
T
R = MR,

URm̂U
†
L = MD.

(3.11)

Using the last two results we further obtain the following useful relation:

U †RMD = m̂U †L. (3.12)

Further we can introduce again chiral mass eigenfields ω′L

ω′L = U †ωL, (3.13)

(ω′L)C = (ωL)CU †T , (3.14)

and define Majorana mass eigenfields χ by

χ = ω′L + (ω′L)C =


χ1

χ2
...

χnL+nR

 , (3.15)

PRχ = (ω′L)C , PLχ = ω′L. (3.16)

73For a proof of this see Appendix F.5.
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3 SEESAW MECHANISM

Hence, we can obtain the mass term Lagrangian in mass eigenfields:

LD+M = −1
2(ωL)CU †T m̂U †ωL + H.c.

= −1
2(ω′L)Cm̂ω′L + H.c.

= −1
2χm̂χ.

(3.17)

The crucial point here is that in the case where less RH neutrinos than LH neutrinos
are present in the model not all LH neutrinos will acquire mass by the seesaw mechanism.
This has been shown by G.C. Branco, W. Grimus and L. Lavoura in [72, p.500]. The
statement given there says, if nR ≥ nL all nL + nR Majorana neutrinos of the model are
in general massive at the tree-level and the seesaw mechanism delivers nL light and nR

heavy neutrinos. But in the case where nR < nL we will end up with (nL−nR) Majorana
neutrinos remaining massless at tree-level apart from nR heavy and also just nR light
neutrinos. But it can be shown, e.g. in [73, 74] that the massless fields acquire mass in
radiative corrections. This procedure, especially concerning one-loop corrections, will be
discussed in more detail in section 4.

3.1.2 Mass Matrix and Disentangling of Light and Heavy Masses

In this section we should investigate the neutrino mass matrix MD+M given in (3.4) in a
bit more in detail. We show how MD+M can be transformed in a block diagonal form,
where mass matrices for light and heavy neutrinos become decoupled and an effective
mass matrix for each of them is derived. This procedure74 considered by W. Grimus and
L. Lavoura [19] is done performing a unitary transformation of the neutrino fields via an
unitary (nL + nR)× (nL + nR) matrix W , which is defined by

ωL =
(

νL
(νR)C

)
= W

(
νlight

νheavy

)
L

, (3.18)

such that the transformation75 acting on the neutrino mass matrix MD+M leads to the
following block diagonal form:

W T

 0 MT
D

MD MR

W =
Mlight 0

︸︷︷︸
nL

0 ︸︷︷︸
nR

Mheavy

 }nL
}nR

, (3.19)

whereMlight andMheavy are symmetric nL×nL and nR×nR matrices, respectively. Hence,
we obtained disentangled light and heavy mass matrices and two nL×nR zero submatrices
as off-diagonal elements.

74In [19] ML 6= 0 has been assumed, but we will adapt the calculations for our assumption ML = 0.
75It should be noted that this transformation has a similar form like the diagonalizing transformation done

in (3.5). However, the matrices Mlight and Mheavy need not to be diagonal after this transformation.
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3.1 Seesaw Mechanism Type I

In [19] the following ansatz76 for the unitary (nL+nR)×(nL+nR) matrixW is suggested

W =
 √1−BB† B

−B†
√
1−B†B

 , (3.20)

where B is a nL×nR matrix and the square roots in this ansatz should be understood as
a power series.

To fix B as a function of the mass matrices MD and MR we use the vanishing off-
diagonal submatrices. For doing this we are inserting the ansatz into (3.19): Mlight 0

0 Mheavy

 = W TMD+MW (3.21)

=
 √1−B∗BT −B∗

BT
√
1−BTB∗

 0 MT
D

MD MR

 √1−BB† B

−B†
√
1−B†B


=
 √1−B∗BT −B∗

BT
√
1−BTB∗

 −MT
DB

† MT
D

√
1−B†B

MD

√
1−BB† −MRB

† MDB +MR

√
1−B†B

 .
We might perform the last step of matrix multiplication for each of the four submatrices
separately, starting with the upper right (UR) and lower left (LL), which are obliged to
be zero:

(UR) : 0 !=
√
1−B∗BTMT

D

√
1−B†B −B∗

(
MDB +MR

√
1−B†B

)
(3.22)

=
√
1−B∗BTMT

D

√
1−B†B −B∗MDB +B∗MR

√
1−B†B,

(LL) : 0 !=−BTMT
DB

† +
√
1−BTB∗

(
MD

√
1−BB† −MRB

†
)

(3.23)

=−BTMT
DB

† +
√
1−BTB∗MD

√
1−BB† −

√
1−BTB∗MRB

†.

We assume B is a power series in (mR)−1 with coefficients Bj proportional to (mR)−j and
expand the square root:

B = B1 +B2 +B3 + . . . , (3.24)√
1−BB† = 1− 1

2B1B
†
1 −

1
2(B1B

†
2 +B2B

†
1)− . . . . (3.25)

All these coefficients Bj can be determined recursively and it can be shown that all even
coefficients of B are equal to zero77. However, in this thesis we are only interested in the
lowest order of this expansion and therefore, we use√

1−BB† ≈ 1− 1
2B1B

†
1, (3.26)

76It should be noted that an equivalent ansatz has been proposed in [75]. The ansatz (3.20) is also used
in [76], but in a more restrictive way.

77For a sketch of the proof see [19].
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such that

W ≈

 1− 1
2B1B

†
1 B1

−B†1 1− 1
2B
†
1B1

 (3.27)

for further calculations.
As a first step we need to determine the first coefficient B1 as a function of the mass

matrices MR and MD. For this we insert this approximative expansion for B into the
(LL) submatrix78 (3.23), which has to be zero, and rearrange the occurring terms by their
order of mD(mR)−1:

0 != −BT
1 M

T
DB

†
1 +

(
1− 1

2B
T
1 B
∗
1

)
MD

(
1− 1

2B1B
†
1

)
−
(
1− 1

2B
T
1 B
∗
1

)
MRB

†
1 (3.28)

= −BT
1 M

T
DB

†
1︸ ︷︷ ︸

m3
D

m2
R

+MD︸︷︷︸
m1
D

m0
R

− 1
2MDB1B

†
1︸ ︷︷ ︸

m3
D

m2
R

− 1
2B

T
1 B
∗
1MD︸ ︷︷ ︸

m3
D

m2
R

+ 1
4B

T
1 B
∗
1MDB1B

†
1︸ ︷︷ ︸

m5
D

m4
R

−MRB
†
1︸ ︷︷ ︸

m1
D

m0
R

+ 1
2B

T
1 B
∗
1MRB

T
1︸ ︷︷ ︸

m3
D

m1
R

= MD −MRB
†
1︸ ︷︷ ︸

m1
D

m0
R

+ 1
2B

T
1 B
∗
1MRB

T
1 −BT

1 M
T
DB

†
1 −

1
2MDB1B

†
1 −

1
2B

T
1 B
∗
1MD︸ ︷︷ ︸

m3
D

m2
R

+ 1
4B

T
1 B
∗
1MDB1B

†
1︸ ︷︷ ︸

m5
D

m4
R

.

Since also the lowest order must fulfil the equation, we easily achieve an expression for
B1 from the condition obtained in this way 0 = MD −MRB

†
1:

B1 =
(
M−1

R MD

)†
, B†1 = M−1

R MD,

B∗1 = MT
DM

−1
R , BT

1 = M−1
R
∗
M∗

D.

(3.29)

With B1 fixed we can simply calculate the other submatrices which correspond toMlight

and Mheavy. First we start with the upper left (UL) submatrix which gives us the mass
matrix for the light neutrinos:

(UL) : Mlight = −
√
1−B∗BTMT

DB
† −B∗

(
MD

√
1−BB† −MRB

†
)

= −
√
1−B∗BTMT

DB
† −B∗MD

√
1−BB† +B∗MRB

†

≈ −
(
1− 1

2B
∗
1B

T
1

)
MT

DB
†
1 −B∗1MD

(
1− 1

2B1B
†
1

)
+B∗1MRB

†
1

= −MT
DB

†
1 + 1

2B
∗
1B

T
1 M

T
DB

†
1 −B∗1MD + 1

2B
∗
1MDB1B

†
1 +B∗1MRB

†
1

= −MT
DB

†
1 −B∗1MD +B∗1MRB

†
1︸ ︷︷ ︸

m2
D

m1
R

+ 1
2B
∗
1B

T
1 M

T
DB

†
1 + 1

2B
∗
1MDB1B

†
1︸ ︷︷ ︸

m4
D

m1
R

(3.29)
≈ −MT

DM
−1
R MD−MT

DM
−1
R MD +MT

DM
−1
R

1︷ ︸︸ ︷
MRM

−1
R MD︸ ︷︷ ︸

=0

. (3.30)

In this calculation we restricted ourselves to the lowest order of the square root expansion,
78We could have also used the UR submatrix, which would be equivalent.
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3.1 Seesaw Mechanism Type I

to the lowest order inm−1
R for fixing B1as well as to the lowest order inm−1

R of the occurring
terms in (UL) and hence we achieved the famous so-called seesaw formula for the mass
matrix of the light neutrinos:

Mlight ≈ −MT
DM

−1
R MD . (3.31)

Finally we repeat this procedure for the lower right (LR) submatrix to achieve a formula
for Mheavy:

(LR) : Mheavy = BTMT
D

√
1−B†B +

√
1−BTB∗

(
MDB +MR

√
1−B†B

)
= BTMT

D

√
1−B†B +

√
1−BTB∗MDB +

√
1−BTB∗MR

√
1−B†B

≈ BT
1 M

T
D

(
1− 1

2B
†
1B1

)
+
(
1− 1

2B
T
1 B
∗
1

)
MDB1

+
(
1− 1

2B
T
1 B
∗
1

)
MR

(
1− 1

2B
†
1B1

)
= BT

1 M
T
D −

1
2B

T
1 M

T
DB

†
1B1 +MDB1 −

1
2B

T
1 B
∗
1MDB1

+MR −
1
2B

T
1 B
∗
1MR −

1
2MRB

†
1B1 + 1

4B
T
1 B
∗
1MRB

†
1B1

= MR︸︷︷︸
m0
D

m−1
R

+BT
1 M

T
D +MDB1 −

1
2B

T
1 B
∗
1MR −

1
2MRB

†
1B1︸ ︷︷ ︸

m2
D

m1
R

− 1
2B

T
1 M

T
DB

†
1B1 −

1
2B

T
1 B
∗
1MDB1 + 1

4B
T
1 B
∗
1MRB

†
1B1︸ ︷︷ ︸

m4
D

m3
R

. (3.32)

Again we only consider the lowest order and therefore we can skip the last step we have
done before for Mlight, i.e. inserting B1 given in (3.29), and hence we find:

Mheavy ≈MR . (3.33)

Before discussing this results concerning the different possible mass scales in the next
section, we should emphasise the connection between the unitary diagonalizing transfor-
mation done by U in section 3.1.1 and the unitary transformation W introduced in this
section, which leads to block diagonalization of the mass matrix and mass scale disentan-
glement.

First we should also use the result we obtained for B1 in (3.29) and find by expand-
ing the square root into a power series and taking only the lowest order79 the following

79This means simply approximation the square root by
√
1−BB† ≈ 1.
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3 SEESAW MECHANISM

approximation for W :

W ≈

 1− 1
2B1B

†
1 B1

−B†1 1− 1
2B
†
1B1


≈

 1 M †
DM

∗
R
−1

−M−1
R MD 1

 .
(3.34)

Then we remember how we decomposed U in equation (3.6)

U =
(
UL
U∗R

)
, (3.35)

and in [77] we found the following correlation, based on results of J. Schechter and J.W.F
Valle in [75]:

U =
(
UL
U∗R

)
'

 1 M †
DM

∗
R
−1

−M−1
R MD 1

V1 0
0 V ∗2

 , (3.36)

which is U given in the leading order of the inverse of the high scale mR. At that order
the matrices nL × nL resp. nR × nR matrices V1 and V2 are defined due to diagonalizing
Mlight resp. Mheavy ≈MR:

V T
1 MlightV1 = M̂light, (3.37)

V †2 MheavyV
∗

2 = M̂heavy. (3.38)

Furthermore, it is emphasized in [77] that the matrix U is the lepton mixing matrix and
the part of the mixing matrix relevant for the light neutrinos is given by V1. But before
we consider the mixing schemes in section 3.1.4 we should discuss the seesaw formula and
mass scales for MR briefly in the next section.

3.1.3 Mass Scales

These first order approximations obtained above in equation (3.31) and (3.33) reveal quite
unambiguously the advantages of the seesaw mechanism. On the one hand we found that
of course the masses of the heavy neutrinos are mainly determined by the masses of the
introduced RH neutrino singlets. On the other hand we showed how the masses of the
light neutrinos are affected by the inverse heavy mass scale. Equation (3.31) indicates
quite illustratively how the light neutrino masses decrease when we increase the heavy
mass scale while the Dirac mass scale is fixed by a fixed Yukawa coupling, since we derived
in equation (2.3) MD ∼ ∆(`)†.

Since all parameters of the sterile neutrino masses are free, "the choice ofMR is a matter
of theoretical prejudice", as mentioned in [48, p.17]. Thus there are various combinations
for choosing MR and the Yukawa coupling, which are displayed in the diagram 6 below.

However, according to [48, p.17], in standard approaches Yukawa couplings are taken
to be ∼ 1 and mR ∼ 1010− 1015 GeV, because such Majorana masses of the RH neutrino
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3.1 Seesaw Mechanism Type I

Figure 6: Possible value of the Yukawa couplings and Majorana masses of the sterile
neutrinos in seesaw models. Adapted from [48, p.17].

singlets are much larger than the energy scale of the EW SSB, i.e. larger than the masses
W± and Z0 bosons as well as the Higgs boson. In [42, p.12] it is mentioned that this
scale could be also as low as the TeV scale, but even as high as the GUT80 scale for
mR ∼ 1015 − 1016 GeV or even the Plank scale mR ∼ 1019 GeV.

3.1.4 Mixing Matrix

Remembering (2.54) and (2.56) we are able to express the flavor eigenfields as a linear
superposition of the nL + nR physical mass eigenfields:

ν`L =
nL+nR∑
k=1

U`kPLχk, (ν`L)C =
nL+nR∑
k=1

U∗`kPRχk, (3.39)

ν`R =
nL+nR∑
k=1

U∗`′kPRχk, (ν`R)C=
nL+nR∑
k=1

U`′kPLχk, (3.40)

where the flavor indices take different values, in particular ` = 1, . . . , nL and `′ = nL +
1, . . . , nL + nR. Hence, we can apply the decomposition81 of U introduced in equation
(3.6):

ν`L =
nL+nR∑
k=1

(UL)`kPLχk, ν`R =
nL+nR∑
k=1

(UR)`′kPRχk. (3.41)

So we obtained the following mixing correlation between flavor and mass eigenfields:

νL = ULPLχ = ULω
′
L, νR = URPRχ = UR(ω′L)C . (3.42)

80GUT=Grand Unified Theory
81Here it becomes clear, why we used the complex conjugate of UR in the definition of the decomposition

of U .
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3 SEESAW MECHANISM

Like in the case of the Dirac-Majorana mass term this mixing patterns have conse-
quences for the charged and neutral current Lagrangians (1.124) and (1.122). We follow
the discussion done by [67] and [78] and adapt what we have already obtained in sec-
tion 2.3.2 for the Dirac-Majorana mass term with nL = nR = n. The charged current
Lagrangian in terms of mass eigenfields reads as

L(`)
CC = − g√

2

nL∑
`=1

``Lγ
µν`LW

−
µ + H.c.

= − g√
2

nL∑
`,i=1

nL+nR∑
k=1

`′iL(U (`)
L )∗i`γµU`kχkLW−

µ + H.c. ,
(3.43)

and we find the rectangular nL × (nL + nR) matrix

K =
nL∑
`=1

(U (`)
L )∗i`U`k, (3.44)

which can be also expressed using the decomposition introduced for U in (3.6) as

K = (U (`)
L )†UL. (3.45)

As shown e.g. in [79], K satisfies
KK† = 1, (3.46)

but K†K does not equal the identity matrix. It is mentioned in [78, p.107] that this
matrix K may be also decomposed as

K = (KL, KH), (3.47)

where KL denotes an nL×nL submatrix corresponding to light neutrinos and KH denotes
an nL × nR submatrix. The light mass eigenstates are effectively described by a mixing
matrix KL, which is non-unitary, according to [78, p.107]. Finally the charged current
interaction can be written in matrix notation as

L(`)
CC = − g

2
√

2
[
`′γµ(1− γ5)KχW−

µ + χγµ(1− γ5)K†`′W+
µ

]
. (3.48)

At last we should also discuss the neutral current interaction Lagrangian. As discussed
before for the Dirac-Majorana mass term with nL = nR = n in section 2.3.2 and according
to [78, p.107], the neutral current couplings of mass eigenstate neutrinos are no longer
diagonal, like in theories where no sterile singlet neutrinos are present. Following [67] we
find again

L(ν)
NC = − g

cos θW

nL∑
`=1

ν`Lγ
µ
(
T3 − sin2 θWQ

)
ν`LZµ + H.c.

= − g

2 cos θW

nL∑
`=1

ν`Lγ
µν`LZµ + H.c.

= − g

2 cos θW

nL∑
`=1

nL+nR∑
k=1

nL+nR∑
j=1

χjLU
∗
`jγ

µU`kχkLZµ + H.c.

(3.49)
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for the neutral current interactions in terms of mass eigenfields and also again the
(nL + nR)× (nL + nR) matrix

Pjk :=
nL∑
`=1

U∗j`U`k, (3.50)

which may be also expressed in terms of the decomposition of U given in (3.6)

P = U †LUL. (3.51)

Alternatively we may use a reformulation the definition of K in (3.44) in terms of U
nL∑
`=1

(U `
L)i`K`k = Ui`, (3.52)

we express P by
P = K†K, (3.53)

or using the decomposition for K we might write as done in [78, p.108]

P =
K†LKL K†LKH

K†HKL K†HKH .

 (3.54)

This matrix P is Hermitian,
P = P †, (3.55)

and also a projection operator, since
P 2 = P. (3.56)

Again using matrix notation we can write the neutral current Lagrangian as

L(ν)
NC = − g

4 cos θW
χγµ(1− γ5)PχZµ + H.c. (3.57)

= − g

4 cos θW
Zµχγ

µ
[
PL(U †LUL)− PR(UT

LU
∗
L)
]
χ+ H.c. , (3.58)

where the last line is the result given in [20, 71], which utilizes the property (3.10) of the
decomposition matrices UL and UR.

Finally we may cite what has been noted in [67], namely "the fact that P 6= 1 is
a statement that the GIM mechanism82 is unnatural for lepton theories with massive
neutrinos". Furthermore, it is said there that as a physical consequence the nR "heavier
neutrinos can decay in nL lighter ones and the neutral current interactions should also
show oscillation effects as a neutrino beam evolves".

3.2 Seesaw Mechanism in a Multi-Higgs Model

In the previous section we discussed the seesaw mechanism of type I at tree-level for an
arbitrary number nL of LH neutrinos and nR RH neutrinos. The Dirac mass term is
obtained via SSB of the single standard Higgs doublet. In this section the scalar sector
82Glashow-Iliopolus-Maiani mechanism
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3 SEESAW MECHANISM

shall be extended too. We introduce the multi-Higgs model, which is used in [20] and
[21]. In this model the SM is not only extended by an arbitrary number of LH and RH
neutrinos, but also by an arbitrary number nH of scalar doublets. In this section we adapt
the results for Yukawa and weak interactions for the arbitrary number of Higgs doublets.
We start in the following section by investigating the scalar mass eigenfields.

3.2.1 Scalar Mass Eigenfields

So let nL denote the number of LH neutrinos, nR the number of RH neutrinos and nH the
number of scalar doublets φk (k = 1, 2, . . . , nH) in this theoretical framework. We follow
the considerations done [20] and in [71, Appendix A] and define the doublets analogously
to the case nH = 1, where the lower component is neutral and the upper charged

φk =
(
ϕ+
k

ϕ0
k

)
, (3.59)

and we define the conjugated doublet by

φ̃k = ı̇τ2φ
∗
k. (3.60)

We assume the vacuum expectation value (VEV) of the neutral component83 to be

〈0|ϕ0
k|0〉 = vk√

2
. (3.61)

Then we can write

ϕ0
k = vk√

2
+ ϕ0

k
′
, with 〈0|ϕ0

k
′|0〉 = 0. (3.62)

We want to express φk in their physical mass eigenstates, hence we have to investigate
the quadratic terms in the scalar potential

V =
∑
i,j

µ2
ijφ
†
iφj +

∑
i,j,k,l

λijkl
(
φ†iφj

) (
φ†kφl

)
, (3.63)

with

µ2
ij =

(
µ2
ji

)∗
, λijkl = λklij, λijkl = λ∗jilk. (3.64)

In order to find all quadratic terms we insert (3.62) in a different form, where we split ϕ0
k
′

into its real and imaginary part84

ϕ0
k = vk + ρk + ı̇σk√

2
. (3.65)

Thus, we get

〈0|ρk|0〉 = 0 = 〈0|σk|0〉, ρ†k = ρk, σ†k = σk. (3.66)

83Note that it is assumed that the VEV is only acquired by the neutral components and the symmetry
of the model shall be broken again to a U(1)EM.

84Great thanks to Prof. Grimus for giving a detailed explanation of the following calculations.
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We start by investigating the µ2
ij terms, which are

∑
i,j

µ2
ijφ
†
iφj =

∑
i,j

µ2
ij(ϕ−i , ϕ0

i
∗)
(
ϕ+
j

ϕ0
j

)
(3.67)

=
∑
i,j

µ2
ij[ϕ−i ϕ+

i + 1
2(v∗i + ρi − ı̇σi)(vj + ρj + ı̇σj)]

=
∑
i,j

µ2
ij[ϕ−i ϕ+

j + 1
2(v∗i vj + v∗i ρj + ı̇v∗i σj + ρivj+ρiρj + ı̇ρiσj − ı̇σivj−ı̇σiρj + σiσj)],

where the terms contributing to the mass terms, i.e. quadratic in the fields, are underlined.
Similarly we find the quadratic terms in the λijkl part∑
i,j,k,l

λijkl
(
φ†iφj

) (
φ†kφl

)
=
∑
i,j,k,l

λijkl
(
ϕ−i ϕ

+
j + ϕ0

i
∗
ϕ0
j

) (
ϕ−k ϕ

+
l + ϕ0

k
∗
ϕ0
l

)
(3.68)

=
∑
i,j,k,l

λijkl[
(
ϕ−i ϕ

+
j

) (
ϕ−k ϕ

+
l

)
︸ ︷︷ ︸

=: l1
+
(
ϕ−i ϕ

+
j

) (
ϕ0
k
∗
ϕ0
l

)
︸ ︷︷ ︸

=: l2
+
(
ϕ0
i
∗
ϕ0
j

) (
ϕ−k ϕ

+
l

)
︸ ︷︷ ︸

=: l3
+
(
ϕ0
i
∗
ϕ0
j

) (
ϕ0
k
∗
ϕ0
l

)
︸ ︷︷ ︸

=: l4
].

The first term l1 is of course not quadratic in the scalar fields, but we can find quadratic
terms for the charged scalar fields when we insert (3.65) in terms l2 and l3 :

l2 =1
2
∑
i,j,k,l

λijkl(ϕ−i ϕ+
j )(v∗kvl + v∗kρl + ı̇v∗kσl + ρkvl + ρkρl + ı̇ρkσl − ı̇σkvl − ı̇σkρl + σkσl),

(3.69)

l3 =1
2
∑
i,j,k,l

λijkl︸ ︷︷ ︸
=λklij

(ϕ−k ϕ+
l )(v∗i vj + v∗i ρj + ı̇v∗i σj + ρivj + ρiρj + ı̇ρiσj − ı̇σivj − ı̇σiρj + σiσj).

(3.70)

If we use the symmetry property (3.64) of λijkl in l3 and rename the indices (k, l↔ i, j)
we obtain the following quadratic term of the charged scalar fields∑

i,j,k,l

λijklϕ
−
i ϕ

+
j v
∗
kvl. (3.71)

In the last term l4 we can find quadratic terms of the neutral scalar fields. We insert
again (3.65) and obtain

l4 =1
4
∑
i,j,k,l

λijkl(v∗i vj + v∗i ρj + ı̇v∗i σj + ρivj + ρiρj + ı̇ρiσj − ı̇σivj−ı̇σiρj + σiσj)

· (v∗kvl + v∗kρl + ı̇v∗kσl + ρkvl + ρkρl + ı̇ρkσl − ı̇σkvl−ı̇σkρl + σkσl)

=1
4
∑
i,j,k,l

λijklv
∗
i vj [(ρkρl + σkσl) + ı̇ (ρkσl − σkρl)]

+ 1
4
∑
i,j,k,l

λijkl︸ ︷︷ ︸
=λklij

v∗kvl [(ρiρj + σiσj) + ı̇ (ρiσj − σiρj)]

+ 1
4
∑
i,j,k,l

λijkl(v∗i ρj + ı̇v∗i σj + ρivj − ı̇σivj)(v∗kρl + ı̇v∗kσl + ρkvl − ı̇σkvl),

(3.72)
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where we used the symmetry property (3.64) of λijkl in the second sum and hence, again
by renaming the indices in the second sum (k, l ↔ i, j), we find the following quadratic
terms for the neutral scalar fields in the term l4 :

1
2
∑
i,j,k,l

λijklv
∗
i vj [(ρkρl + σkσl) + ı̇ (ρkσl − σkρl)]

+ 1
4
∑
i,j,k,l

λijkl(v∗i ρj + ı̇v∗i σj + ρivj − ı̇σivj)(v∗kρl + ı̇v∗kσl + ρkvl − ı̇σkvl).
(3.73)

Finally we collect all quadratic terms we have found in the scalar potential V :∑
i,j

µ2
ijϕ
−
i ϕ

+
j +

∑
i,j,k,l

λijklϕ
−
i ϕ

+
j v
∗
kvl+

+
∑
i,j

µ2
ij[(ρiρj + σiσj) + ı̇(ρiσj − σiρj)]+

+1
2
∑
i,j,k,l

λijklv
∗
i vj [(ρkρl + σkσl) + ı̇ (ρkσl − σkρl)]

+1
4
∑
i,j,k,l

λijkl(v∗i ρj + ı̇v∗i σj + ρivj − ı̇σivj)(v∗kρl + ı̇v∗kσl + ρkvl − ı̇σkvl).

(3.74)

From the first line we can read off the mass matrix of the charged scalars, which is a
complex and Hermitian nH × nH matrix

M2
+ = µ2 + Λ, (3.75)

where the Hermitian matrix Λ is defined as:

Λij =
∑
k,l

λijklv
∗
kvl, (3.76)

and µ2 = (µ2
ij) is also Hermitian by definition (3.64). It follows from the Hermiticity of

µ2 that Reµ2 is symmetric and Imµ2 is antisymmetric, i.e.

Reµ2
ij = Reµ2

ji, Imµ2
ij = −Imµ2

ji. (3.77)

To obtain a mass matrix for the neutral scalars we now apply this knowledge to the
second line of (3.74) some terms will vanish since the first term (ρiρj +σiσj) is symmetric
in i, j and the second term ı̇(ρiσj − σiρj) is antisymmetric .

So the only contributing terms come from the purely symmetric and purely antisym-
metric combinations, which are

1
2
∑
i,j

[
Reµ2

ij(ρiρj + σiσj)− Imµ2
ij(ρiσj − σiρj)

]
, (3.78)

or in matrix form we may write

1
2(ρT , σT )

 Reµ2 −Imµ2

(−Imµ2)T Reµ2

(ρ
σ

)
. (3.79)

It is then quite obvious that the third line in (3.74) leads to an analogous term, since
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Λ is Hermitian too and hence its real part is symmetric, whereas its imaginary part is
antisymmetric. Thus, we obtain

1
2
∑
i,j

[ReΛij(ρiρj + σiσj)− ImΛij(ρiσj − σiρj)] , (3.80)

or again in matrix form

1
2(ρT , σT )

 ReΛ −ImΛ
(−ImΛ)T ReΛ

(ρ
σ

)
. (3.81)

Finally, the forth line on (3.74) has to be discussed. Therefore, we rewrite it in the
following way

1
4
∑
i,j,k,l

[(v∗i ρj + ı̇v∗i σj)︸ ︷︷ ︸
=:a

+ (ρivj − ı̇σivj)︸ ︷︷ ︸
=:b

] · [(v∗kρl + ı̇v∗kσl)︸ ︷︷ ︸
=:c

(ρkvl − ı̇σkvl)︸ ︷︷ ︸
=:d

], (3.82)

and we rewrite the terms from ac+ bd by defining the symmetric85 matrix

Kik =
∑
j,l

λijklvjvl, (3.83)

and by suitable renaming of indices as well as using the symmetry property of the matrix,
as

1
2
∑
i,k

[ReKik(ρiρk − σiσk) + ImKik(ρiσk + σiρk)] . (3.84)

In a similar way we treat the terms from ad + bc by using the third relation of equation
(3.64) and by defining the Hermitian86 matrix

K ′il =
∑
j,k

λijklvjv
∗
k, (3.85)

and by suitable renaming of indices and taking the symmetry properties ofK ′ into account
we get

1
2
∑
i,l

[ReK ′il(ρiρl + σiσl)− ImK ′il(ρiσl − σiρl)] . (3.86)

Now we collect all reformulated results from (3.78), (3.80), (3.84) and (3.86) and rear-
range the sum of them by terms of ρiρj, σiσj and mixed terms. Hence, we achieve

1
2
∑
ij

{
Reµ2

ij + ReΛij + ReKij + ReK ′ij]ρiρj

+[Reµ2
ij + ReΛij − ReKij + ReK ′ij]σiσj

+ [−Imµ2
ij − ImΛij + ImKij − ImK ′ij]ρiσj

+ [Imµ2
ij + ImΛij + ImKij + ImK ′ij]σiρj

}
.

(3.87)

The last line can be rewritten by using again the symmetry properties of the imaginary

85This means in contrast to the matrices µ2, Λ and K ′ that ReKij = ReKji and also ImKij = ImKji.
86Hence, ReK ′ij = ReK ′ji and ImK ′ij = −ImK ′ji .

53



3 SEESAW MECHANISM

parts of the matrices, which leads to

[−Imµ2
ji − ImΛji + ImKij − ImK ′ji]ρjσi, (3.88)

and by renaming the indices in this line we can sum up the last two lines. Hence, we
achieve

1
2
∑
ij

{
Reµ2

ij + ReΛij + ReKij + ReK ′ij]ρiρj

+[Reµ2
ij + ReΛij − ReKij + ReK ′ij]σiσj

+ 2[−Imµ2
ij − ImΛij + ImKij − ImK ′ij]ρiσj

}
.

(3.89)

We introduce the real nH × nH matrices87

A =Re(µ2 + Λ +K ′) + ReK, (3.90)

B =Re(µ2 + Λ +K ′)− ReK, (3.91)

C =− Im(µ2 + Λ +K ′) + ImK, (3.92)

which determine the 2nH × 2nH mass matrix M2
0 of the neutral scalars. Together with

the mass term for the charged scalars obtained in (3.75) we can write the mass terms of
the scalar potential in the form

Vmass =
∑
i,j

ϕ−i (M2
+)ijϕ+

j + 1
2[Aijρiρj +Bijσiσj + 2Cijρiσj]. (3.93)

To find the mass eigenfields we look at the eigenvalue equations

M2
+a =m2

aa, (3.94)

M2
0

(
Re b
Im b

)
=
 A C

CT B

(Re b
Im b

)
= m2

b

(
Re b
Im b

)
, (3.95)

or equivalently for the neutral scalars(
µ2 + Λ +K ′

)
b+Kb∗ = m2

bb. (3.96)

The eigenvectors a and b = Re b + ı̇ Im b are complex nH × 1 vectors, which fulfil the
following orthonormality equations∑

k

(Re bkRe b′k + Im bkIm b′k) = Re(b†b′) = δbb′ ,
∑
k

a∗ka
′
k = a†a′=δaa′ , (3.97)

∑
a

= a∗ka
′
k =

∑
b

Re bkRe bk′ =
∑
b

Im bkIm bk′ = δkk′ ,
∑
b

Re bkIm bk′ =0. (3.98)

The physical charged scalar mass eigenstate S+
a and the physical neutral scalar mass

eigenstate S0
b are given by

S+
a =

∑
k

a∗kϕ
+
k , (3.99)

87A and B are symmetric.
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3.2 Seesaw Mechanism in a Multi-Higgs Model

S0
b =

∑
k

Re (b∗k(ρk + ı̇σk)) , (3.100)

or equivalently

φk =
( ∑

a akS
+
a

(vk +∑
b bkS

0
b )/
√

2

)
, (3.101)

and indeed one has

Vmass =
∑
a

m2
aS
−
a S

+
a + 1

2
∑
b

m2
b(S0

b )2. (3.102)

The Goldstone bosons of this multi-Higgs model correspond to zero eigenvalues of the mass
matrices of the charged and neutral scalarsM2

+ andM2
0. The corresponding eigenvectors

linked to the longitudinal modes of the W and Z vector bosons are given by

aW = 1
v


v1

v2
...
vnH

 , bZ = ı̇

v


v1

v2
...
vnH

 , (3.103)

where

v =
√
|v1|2 + |v2|2 + . . .+ |vnH |2 = 2mW

g
. (3.104)

Indeed, as it is shown in [71, p.38], maW = 0 and mbZ = 0 and we denote the Goldstone
bosons by G0 = S0

bZ
and G± = S±aW .

3.2.2 Yukawa Interactions and Mass Terms

In the multi-Higgs model the Yukawa Lagrangian reads as

LYuk =−
nH∑
k=1

nL∑
i1,i2=1

nR∑
j=1

[
φ†k`i1R(Γk)i1i2 + φ̃†kνjR(∆k)ji2

]
Di2L + H.c.

=−
nH∑
k=1

(φ†k`RΓk + φ̃†kνR∆k)DL + H.c. ,
(3.105)

where DL =
(
νL
`L

)
denote the LH lepton doublets as before. Γk is a nL × nL Yukawa

coupling matrix and ∆k is one with nR × nL. The nL × nL charged lepton mass matrix
M` is obtained as before in (1.112) as well as the nR × nL Dirac neutrino mass matrix
MD analogously88 to (2.3) via SSB

M` = 1√
2
∑
k

v∗kΓk, MD = 1√
2
∑
k

vk∆k. (3.106)

We assume M` to be already diagonal with real positive diagonal elements without loss
of generality, i.e.

M` = diag(me,mµ,mτ , . . .). (3.107)
88Note that in (2.3) MD was defined with ∆†. Here we want to stuck to the convention used in [20].
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3 SEESAW MECHANISM

The total neutrino mass term includes also a Majorana mass term for the RH neutrino
singlets νR as in (3.1) or we can write as in [20]

LD+M = −νRMDνL −
1
2νRCMRν

T
R + H.c. , (3.108)

whereMR is symmetric and non-singular as in the previous section 3.1 and C is the charge
conjugation matrix. This Lagrangian can be be written in a more compact form as in
(3.17) by introducing the (nL + nR)× (nL + nR) symmetric neutrino mass matrix MD+M

given in (3.4) by

MD+M =
 0 MT

D

MD MR

 . (3.109)

We simply follow the procedure done in 3.1, where MD+M is diagonalized by the unitary
matrix U =

(
UL
U∗R

)
defined in (3.6) such that

UTMD+MU = m̂ = diag(m1,m2, . . . ,mnL+nR). (3.110)

Further we remember that we can write the flavor neutrino fields νL and νR as linear
superpositions of the physical Majorana neutrino fields χi as done in (3.42) and in the
following,

νL = ULPLχ, νR = URPRχ. (3.111)

In the next step we like to discuss the lepton Yukawa couplings of the neutral and
charged scalar mass eigenfields S+

a and S0
b . Therefore it is useful to rewrite the Lagrangian

(3.105) in terms of the components of the scalar doublets given in (3.59):

LYuk =−
∑
k

[
`RΓk(ϕ−k , ϕ0

k
∗)
(
νL
`L

)
+ (νL, `L)

(
ϕ+
k

ϕ0
k

)
Γ†k`R

+ νR∆k(ϕ0
k,−ϕ+

k )
(
νL
`L

)
+ (νL, `L)

(
ϕ0
k
∗

−ϕ−k

)
∆†kνR

]
=−

∑
k

[
`RΓkϕ−k νL + `RΓkϕ0

k
∗
`L + νLϕ

+
k Γ†k`R + `Lϕ

0
kΓ
†
k`R

+ νR∆kϕ
0
kνL − νR∆kϕ

+
k `L + νLϕ

0
k
∗∆†kνR − `Lϕ−k ∆†kνR

]
.

(3.112)

First we want to concentrate on the couplings of the neutral scalars to the neutrinos and
extract the underlined terms from above and insert the neutral scalar mass eigenfields89

according to (3.101).
This part of the Yukawa Lagrangian gives

LνYuk(ϕ0) =−
∑
k

[
νR∆kϕ

0
kνL + νLϕ

0
k
∗∆†kνR

]
=− 1√

2
∑
k,b

[
νR∆k

(
vk + bkS

0
b

)
νL + νL

(
v∗k + b∗kS

0
b
∗)∆†kνR

]
=− 1√

2
∑
k,b

[
νvk∆kνL + νLv

∗
k∆
†
kνR

]
− 1√

2
∑
k,b

[
νR∆kbkS

0
b νL + νLb

∗
kS

0
b∆
†
kνR

]
.

(3.113)

89Note that S0
b is real per definition (3.100).
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3.2 Seesaw Mechanism in a Multi-Higgs Model

The first line simply gives the mass term with MD defined as before, but the second
line describes the Yukawa interactions of the neutral scalar mass eigenfields S0

b with the
neutrinos. We introduce the notation90

∆b =
∑
k

bk∆k, (3.114)

and insert the neutrino mass eigenfields χ given in (3.111). Thus, we obtain

LνYuk(S0
b ) =− 1√

2
∑
b

[
(νR∆bS

0
b νL)∆bS

0
b + νLS

0
b∆
†
bνR

]

=− 1√
2
∑
b

S0
b

(χPLU †R)∆b(UL︸ ︷︷ ︸
=:Ab

PLχ) + (χPRU †L)∆†b(UR︸ ︷︷ ︸
=A†

b

PRχ)

 .
(3.115)

We like to rewrite this expression by using the property P 2
L = PL of the projection operator

and the Majorana condition of the neutrino fields from which we can derive91

χAbPLχ = χPLA
T
b χ⇒ χAbPLχ = 1

2
(
χAbPLχ+ χPLA

T
b χ
)
. (3.116)

Hence, we achieve
LνYuk(S0

b ) =− 1
2
√

2
∑
b

S0
bχ
[(
U †R∆bUL + UT

L∆T
b U
∗
R

)
PL

+
(
U †L∆†bUR + UT

R∆∗bU∗L
)
PR
]
χ.

(3.117)

After we have calculated the Yukawa interaction of the neutral scalar mass eigenfields
with the Majorana neutrino mass eigenfields we want to obtain the Yukawa Lagrangian
for the charged scalar mass eigenfields too. Therefore, we extract the following terms of
(3.112): in the third line the first and third term and in the forth line the two remaining
terms. Thus, we get

LνYuk(ϕ±) =−
∑
k

[
ϕ−k (`RΓkνL − `L∆†kνR) + ϕ+

k (νLΓ†k`R − νR∆k`L)
]

=−
∑
k

[
ϕ−k (`RΓkνL − `L∆†kνR) + H.c.

]
.

(3.118)

Now we proceed similar to the neutral case by inserting the charged scalar mass eigenfields
S±a according to (3.101) and the neutrino mass eigenfields χ given in (3.111) and we
achieve92

LYuk(S±) =
∑
a

S−a `
[
PR(∆†aUR − PL(ΓaUL)

]
χ+ H.c. , (3.119)

where we defined analogously93

∆a =
∑
k

ak∆k, Γa =
∑
k

a∗kΓk. (3.120)

90For the neutral Goldstone boson G0 we have ∆bZ = ı̇g√
2mW

MD.
91For a proper demonstration of this see Appendix F.6.
92We also use the properties of the projection operator PL and PR in (1.26) and the assumption that M`

is already diagonal, i.e. ` = `L + `R are already mass eigenfields.
93For the charged Goldstone bosons G± = S±aW we therefore have

∆aW = g√
2mW

MD and ΓaW = g√
2mW

M`.
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3 SEESAW MECHANISM

3.2.3 Weak Interactions

Of course the extension of the model to arbitrary Higgs doublets affects also the masses
of the weak gauge bosons, but the procedure of SSB and therefore mass generation of
the interaction bosons is straightforward analogous to the procedure in the SM done in
section 1.3. The charged and neutral current Lagrangians also have been already derived
in the previous section in (3.43) and (3.57).
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4 One-Loop Corrections to the Seesaw Mechanism

In the previous section we discussed the seesaw mechanism of type I on tree level. In this
case we got a vanishing upper left submatrix of the mass matrix MD+M given in (3.4)
corresponding to a zero Majorana Mass term for LH neutrinos. We obtained the seesaw
formula (3.31), which is94

M tree
ν = −MT

DM
−1
R MD. (4.1)

Now we will show that one-loop corrections will lead to a nonvanishing contribution to
the upper left submatrix in MD+M , i.e.

MD+M =
δML MT

D

MD MR

 . (4.2)

4.1 One-Loop Corrected Multi-Higgs Model

First we want to follow the considerations done in [20] or [21]. In the introduction of the
latter it is indicated that at tree-level nL − nR neutrinos stay massless, what have been
already mentioned in the end of section 3.1.1. At one-loop level the remaining massless
neutrinos split up in two parts95. nL−nR−n0 of them will acquire mass and n0 neutrinos
will still stay massless96, where n0 = max(0, nL − nHnR).

4.1.1 Preliminary Considerations

According to [20], the following corrections97 at one-loop level to the light neutrino mass
matrix occur:

Mν = M tree
ν + δML. (4.3)

These corrections are obtained by taking contributions from the neutrino self-energy Σ(p)
into account. It is possible to decompose the self-energy, as in (D.85), by

Σ(p) = AL(p2)/pPL + AR(p2)/pPR +BL(p2)PL +BR(p2)PR, (4.4)

where p is the neutrino momentum and we split the coefficients into LH and RH non-
absortive parts98, which obey the relations

AL,R = A†L,R, and BL = B†R. (4.5)

94From now on we will use the notation M tree
ν instead of Mlight.

95For an elaborated proof of this see appendix F.7.
96At two-loop level even those neutrinos become massive. See [74] and [80, 61].
97Note that the full correction is given by

Mν = M tree
ν + δML − δMT

DM
−1
R MD −MT

DM
−1
R δMD +MT

DM
−1
R δMRM

−1
R MD.

But we want to concentrate in this master thesis on the correction δML. The other corrections are
discussed in more detail in [20].

98As done in [20], absorptive parts have been neglected.
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4 ONE-LOOP CORRECTIONS TO THE SEESAW MECHANISM

The self-energy itself must fulfil
Σ(p) = C [Σ(p)]T C−1, (4.6)

since it has to be consistent with the Majorana condition of the neutrino fields. Hence,
the coefficients fulfil

AL = ATR, BL = BT
L , BR = BT

R. (4.7)

The self-energy leads to a correction of the neutrino propagator like in (D.88) in QED.
Hence, the neutrino propagator has the following structure

ı̇

/p−m− A/p−B
= ı̇

(1− A)/p− (m+B) = ı̇[
/p− m+B

1−A

]
(1− A)

, (4.8)

with A = ALPL + ARPR and B = BLPL + BRPR. For one loop corrections it is only
necessary to take corrections from B to the mass into account99. If we would also allow
corrections from A this would lead to higher order corrections which would be necessary
for two-loop or higher loop calculations. Hence, we assume AL = 0 = AR for our consid-
erations of mass corrections. Furthermore, we only need to take the part BL into account,
because we know from (4.5) and (4.7) BL = B∗R. It can be easily shown100 that both
parts in Σ will lead to the same mass corrections. We also recognize that there will be no
counterterm for δML in renormalization, i.e. δcML = 0, since at tree-level we hadML = 0.
By rewriting equation (3.5) we find

δML = δ1−loopML + δcML = δ1−loopML = U∗LBL(0)U †L, (4.9)

where we assume the neutrino momentum to be p = 0, because its mass is very small in
comparison to the masses of the Z0 boson and the neutral scalars. According to [20] only
the self-energies of the neutrino caused by Z0 boson, S0

b and G0 interactions contribute
significantly to the mass corrections. Hence, we just consider the Feynman diagrams
displayed in figure 7 below.

νL (νL)C

Z0

νR (νR)C νL (νL)C

S0
b

νR (νR)C νL (νL)C

G0

νR (νR)C

Figure 7: These three Feynman diagrams for neutrino self-energies contribute to the cor-
rections of the neutrino mass matrix MD+M . They illustrate the interaction
of the chiral flavor eigenfields νL and νR. The vertex represents the Yukawa
interaction LYuk given in (3.113) and the internal neutrino line represents the
Majorana mass term of the RH neutrinos.

99The shifted mass can be written as m̂+B.
100See Appendix F.8.
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4.1 One-Loop Corrected Multi-Higgs Model

In the next sections we will calculate each of these contributions to Σ(p) separately
in the basis where the tree-level neutrino mass matrix is diagonal and using a procedure
similar to the one showed in appendix D.4 used for the photon contribution to the fermion
self-energy in QED .

4.1.2 Neutrino Self-energy from Z0

We like to start with the contribution of the Z0 boson. In equation (3.57) we have seen
how it interacts with the mass eigenfield Majorana neutrinos. Combining this with our
knowledge on the Feynman rule for this kind of vertex given in (D.62) we can reformulate
the Feynman rule for the vertex

χ
Z0
µ

χ

= i
g

2cW
γµ
(
PLU

†
LUL − PRUT

LU
∗
L

)
. (4.10)

The propagators of the boson and the neutrino can be simply taken from the list of
Feynman rules given in appendix D.3. Hence we can write for the neutrino self-energy:

χ (p) χ (k) χ (p)

Z0 (p− k)

Figure 8: Feynman diagram of the Z0 boson contribution to the neutrino self-energy, given
in neutrino mass eigenfields.

−ı̇ΣZ
ij(p) =

∑
ι

∫ ddk

(2π)d
ı̇g

2cW
γµ
(
PLU

†
LUL − PRUT

LU
∗
L

)
iι

ı̇(/k +mι)
k2 −m2

ι + ı̇ε

·
{
− ı̇gµν

(k − p)2 −m2
Z

+ ı̇(k − p)µ(k − p)ν
m2
Z

·
(

1
(k − p)2 −m2

Z

− 1
(k − p)2 − ξZm2

Z

)}

· ı̇g

2cW
γν
(
PLU

†
LUL − PRUT

LU
∗
L

)
ιj
,

(4.11)

where the summation index ι runs over all nL+nR neutrino mass eigenstates. As discussed
before, we are only interested in the part of Σ(p) not proportional to /k and therefore, we
only take the part mι of the nominator of the fermion propagator.
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4 ONE-LOOP CORRECTIONS TO THE SEESAW MECHANISM

Hence, we get

−ı̇ΣZ
ij(p)|m` =− ı̇4g2

4c2
W

∑
ι

∫ ddk

(2π)d
mι

k2 −m2
ι + ı̇ε{(

PRU
†
LUL − PLUT

LU
∗
L

)
iι
γµ

gµν
(k − p)2 −m2

Z

γν
(
PLU

†
LUL − PRUT

LU
∗
L

)
ιj

+
(
PRU

†
LUL − PLUT

LU
∗
L

)
iι
γµ
ı̇(k − p)µ(k − p)ν

m2
Z(

− 1
(k − p)2 −m2

Z

+ 1
(k − p)2 − ξZm2

Z

)
γν
(
PLU

†
LUL − PRUT

LU
∗
L

)
ιj

}
,

(4.12)

where we pulled out all constant factors, split the Z0 boson propagator and used

γµγ5 = −γ5γ
µ ⇒ γµPL = PRγ

µ. (4.13)

In the next step we contract all quantities with four-indices µ and ν. We use in particular

γµgµνγ
ν = γµγµ = d1d, (4.14)

γµ(k − p)µ(k − p)νγν = (/k − /p)2 = (k − p)2. (4.15)

So we obtain

−ı̇ΣZ
ij(p)|mι =− g2

4c2
W

∑
ι

∫ ddk

(2π)d
mι

k2 −m2
ι + ı̇ε{(

PRU
†
LUL − PLUT

LU
∗
L

)
iι

d

(k − p)2 −m2
Z

(
PLU

†
LUL − PRUT

LU
∗
L

)
ιj

+
(
PRU

†
LUL − PLUT

LU
∗
L

)
iι

(k − p)2

m2
Z(

− 1
(k − p)2 −m2

Z

+ 1
(k − p)2 − ξZm2

Z

) (
PLU

†
LUL − PRUT

LU
∗
L

)
ιj

}
.

(4.16)

Since we already know (4.9) we only need the part BL(p) from ΣZ
ij(p)|mι , which means we

only take the terms proportional to PL. We know from (4.4) −ı̇Σ ∝ BLPL and hence we
get

(BL)Zij(p) = ı̇g2

4c2
W

∑
`

∫ ddk

(2π)d
mι

k2 −m2
ι + ı̇ε

(UT
LU

∗
L)iι(U †LUL)ιj

{
d

(k − p)2 −m2
Z

+ (k − p)2

m2
Z

(
− 1

(k − p)2 −m2
Z

+ 1
(k − p)2 − ξZm2

Z

)}
.

(4.17)

Using (4.9) together with the unitarity of UL (3.7) and using matrix notation we achieve

δML(Z) =ı̇ g
2

4c2
W

∫ ddk

(2π)d


d

k2 −m2
Z︸ ︷︷ ︸

(Z,1)

+ 1
m2
Z

 k2

k2 − ξZm2
Z︸ ︷︷ ︸

(Z,2)

− k2

k2 −m2
Z︸ ︷︷ ︸

(Z,3)




· U∗L
m̂

k2 − m̂2 + ı̇ε
U †L,

(4.18)
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and we split this formula in three parts for the following calculations

δML(Z, 1) = ı̇
g2

4c2
W

∫ ddk

(2π)d
d

k2 −m2
Z

U∗L
m̂

k2 − m̂2 + ı̇ε
U †L, (4.19)

δML(Z, 2) = ı̇
g2

4c2
W

∫ ddk

(2π)d
1
m2
Z

k2

k2 − ξZm2
Z

U∗L
m̂

k2 − m̂2 + ı̇ε
U †L, (4.20)

δML(Z, 3) = −ı̇ g
2

4c2
W

∫ ddk

(2π)d
1
m2
Z

k2

k2 −m2
Z

U∗L
m̂

k2 − m̂2 + ı̇ε
U †L. (4.21)

We will now calculate δML(Z, 1) and δML(Z, 3) separately and in section 4.1.4 we will
discuss the term δML(Z, 2), because this part will vanish together with the contribution
from the Goldstone boson. So we start with the first part and repeat the procedure for
evaluating a loop integral as it is shown in the appendix D.4. First we use the Feynman
parametrization (E.45) for A = k2 − m̂2 + ı̇ε and B = k2 −m2

Z

δML(Z, 1) = ı̇
g2

4c2
W

∫ ddk

(2π)d
1∫

0

dxU∗L
dm̂

(xA− (1− x)B + ı̇ε)2U
†
L

= ı̇
g2

4c2
W

∫ ddk

(2π)d
1∫

0

dxU∗L
dm̂

(k2 − xm̂2 − (1− x)m2
Z + ı̇ε)2U

†
L,

(4.22)

and then we can employ the formula for Wick rotation (E.46) and get

δML(Z, 1) = ı̇2
g2

4(4π) d2 c2
W

1∫
0

dxU∗L
Γ(2− d

2)
Γ(2)

dm̂

(k2 − xm̂2 − (1− x)m2
Z)2− d2

U †L

= − g2

4 · 16π2c2
W

1∫
0

dx
(1
ε
− γE + . . .

)
U∗L(4− 2ε)m̂ (4π)ε

(xm̂2 + (1− x)m2
Z)ε︸ ︷︷ ︸

(∗)

U †L,

(4.23)

where we inserted a dimension d = 4−2ε and the expansion of Γ(ε) mentioned in (D.81).
For further calculations we rewrite again the term

(∗) = ε
ε ln( 4π

(xm̂2+(1−x)m2
Z

)ε
)

= 1 + ε ln
(

4π
(xm̂2 + (1− x)m2

Z)

)
+ . . . , (4.24)

which gives together with the factors (4m̂− 2εm̂)(1
ε
− γE + . . .) the following expression

(4m̂− 2εm̂)(1
ε
− γE + . . .) in the lowest orders in ε

(4m̂− 2εm̂)(1
ε
− γE + . . .)(1 + ε ln

(
4π

(xm̂2 + (1− x)m2
Z)

)
+ . . .)

=− 2m̂+ 4m̂
(1
ε
− γE + ln(4π)− ln(xm̂2 + (1− x)m2

Z)
)

+O(ε).
(4.25)

Therefore, we have to evaluate the following expression

δML(Z, 1) =− g2

4 · 16π2c2
W

1∫
0

dxU∗L

·
{

4m̂
[1
ε
− γE + ln(4π)− ln

(
xm̂2 + (1− x)m2

Z

)]
− 2m̂

}
U †L,

(4.26)
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where we can simply pull out the terms independent of x, such that we obtain

δML(Z, 1) =− g2

4 · 16π2c2
W

U∗L

{
4m̂

[1
ε
− γE + ln(4π)

]
− 2m̂

}
U †L

+ g2

4 · 16π2c2
W

1∫
0

dxU∗L4m̂ ln
(
xm̂2 + (1− x)m2

Z

)
U †L.

(4.27)

The remaining integration can be done by the integration formula for this type of loga-
rithmic integral given in (E.48), which gives

1∫
0

dx ln
(
xm̂2 + (1− x)m2

Z

)
= ln(m2

Z − m̂2 −m2
Z)− 1 + m2

Z

m̂2 −m2
Z

(
ln(m̂2)− ln(m2

Z)
)

= ln(m2
Z)− 1 + 1

m̂2

m2
Z
− 1

ln
(
m̂2

m2
Z

)
.

(4.28)

Furthermore, we introduce the following shorthand notations

rZ := m̂2

m2
Z

, k := −1
ε

+ γE − ln(4π)− 1. (4.29)

Thus, we get the following expression:

δML(Z, 1) = − g2

4 · 16π2c2
W

U∗L

[
4m̂

(
−k − ln(m̂2)− ln rZ

rZ − 1

)
− 2m̂

]
U †L

= − g2

4 · 16π2c2
W

U∗L(−4m̂)
(
k + ln(m̂2) + ln rZ

rZ − 1 + 1
2

)
U †L,

(4.30)

and we achieve the final result for the first part of the Z contribution to δML, given by

δML(Z, 1) = g2

16π2c2
W

U∗Lm̂

(
k + 1

2 + ln(m̂2) + ln rZ
rZ − 1

)
U †L . (4.31)

As mentioned before we postpone the discussion on δML(Z, 2) until we investigate the
contribution of the Goldstone boson in section 4.1.4. Therefore, we proceed with the
calculation of δML(Z, 3) given in (4.21) as

δML(Z, 3) = −ı̇ g
2

4c2
W

∫ ddk

(2π)d
1
m2
Z

k2

k2 −m2
Z

U∗L
m̂

k2 − m̂2 + ı̇ε
U †L. (4.32)

We use the same procedure, which we applied for δML(Z, 1). Feynman parametrization
for A = k2 − m̂2 and B = k2 −m2

Z leads to the denominator

(Ax+ (1− x)B − ı̇ε)2 = (k2 − xm̂2 − (1− x)m2
Z + ı̇ε)2. (4.33)

Hence, we get

δML(Z, 3) = −ı̇ g
2

4c2
W

1
m2
Z

∫ ddk

(2π)d
1∫

0

dxU∗L
k2m̂

(k2 − xm̂2 − (1− x)m2
Z + ı̇ε)2U

†
L

= −ı̇ g
2

4c2
W

1
m2
Z

1∫
0

dxU∗L
ı̇m̂3

(4π) d2
Γ(2− d

2)
Γ(2) (xm̂2 + (1− x)m2

Z) d2−2U †L,

(4.34)
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where we applied again Wick rotation formula (E.46) in the second step. Now we set
d = 4− 2ε and use again the expansion of Γ(ε), which gives

δML(Z, 3) = g2

4(4π)2c2
W

1
m2
Z

1∫
0

dxU∗Lm̂
3(1
ε
− γE + . . .) (4π)ε

(xm̂2 + (1− x)m2
Z)εU

†
L

= g2

4(4π)2c2
W

1
m2
Z

1∫
0

dxU∗Lm̂
3
[1
ε
− γE + ln(4π)− ln(xm̂2 + (1− x)m2

Z)
]
U †L,

(4.35)

and we used again the same trick (4.24) for rewriting and expanding the (. . .)ε term.
Finally, we integrate over dx using (E.48) and use the relation cW ·mZ = mW to obtain

δML(Z, 3) = g2

4(4π)2m2
W

U∗Lm̂
3
[1
ε
− γE + ln(4π)− ln(m̂2) + 1

− m2
Z

m̂2 −m2
Z

(
ln(m̂2)− ln(m2

Z)
)]
U †L.

(4.36)

We introduce again the shorthand notations (4.29) and achieve the following final result
for the third part of the Z boson contribution:

δML(Z, 3) = − g2

64π2m2
W

U∗Lm̂
3
(
k + ln(m̂2) + ln(rZ)

rZ − 1

)
U †L . (4.37)

4.1.3 Neutrino Self-energy from S0
b

In this section we want to calculate now the contribution of the neutral scalar mass
eigenfields to the neutrino self-energy, which corresponds to the Feynman diagram drawn
in figure 9 below.

χ (p) χ (k) χ (p)

S0
b (p− k)

Figure 9: Feynman diagram of the S0
b scalar fields contribution to the neutrino self-energy,

given in neutrino mass eigenfields.

The self-energy formula for this contribution is derived by the Feynman rules for the
fermion propagator (D.53), the propagator of the neutral scalar (D.57) and the one for
the interaction vertex (D.64), where the neutral scalar couples to the neutrino via Yukawa
interaction given in (3.117).
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Hence, we can write

−ı̇ΣS0
b
ij (p) =

∑
ι

∫ ddk

(2π)d
ı̇

(k − p)2 −m2
b + ı̇ε

· ı̇√
2
(
UbPL + U †bPL

)
iι

ı̇

/k −mι + ı̇ε

ı̇√
2
(
UbPL + U †bPL

)
ιj

=1
2
∑
ι

∫ ddk

(2π)d
1

(k − p)2 −m2
b + ı̇ε

·
(
UbPL + U †bPL

)
iι

/k +m`

k2 −m2
ι + ı̇ε

(
UbPL + U †bPL

)
ιj
,

(4.38)

where we introduced the shorthand notation Ub =
(
U †R∆bUL + UT

L∆T
b U
∗
R

)
and pulled out

all constant factors in the second step. Again we are only interested in the part for BS0
L

which is proportional to PL and independent of /k. Further we assume again /p = 0 and so
we obtain101 by

(BL)S
0
b
ij (0) = ı̇

2
∑
ι

∫ ddk

(2π)d
1

k2 −m2
b + ı̇ε

(Ub)iι
mι

k2 −m2
ι + ı̇ε

(Ub)ιj. (4.39)

We change to matrix notation and use relation (4.9) to achieve

δML(S0
b ) = ı̇

2

∫ ddk

(2π)d
1

k2 −m2
b + ı̇ε

U∗LUb
m̂

k2 − m̂2 + ı̇ε
UbU

†
L. (4.40)

Applying the properties for UL and UR given in (3.7)-(3.9) the terms remaining are

U∗LUb = U∗L
(
U †R∆bUL + UT

L∆T
b U
∗
R

)
= ∆T

b U
∗
R, (4.41)

UbU
†
L =

(
U †R∆bUL + UT

L∆T
b U
∗
R

)
U †L = U †R∆b, (4.42)

and therefore we get

δML(S0
b ) = ı̇

2

∫ ddk

(2π)d
1

k2 −m2
b + ı̇ε

∆T
b U
∗
R

m̂

k2 − m̂2 + ı̇ε
U †R∆b. (4.43)

We proceed like in the previous section and introduce Feynman parametrization (E.45)
with A = k2 − m̂2 and B = k2 −m2

b which gives a similar denominator to the previous
case

(xA− (1− x)B)2 = (k2 − xm̂2 − (1− x)m2
b + ı̇ε)2. (4.44)

Thus, we obtain

δML(S0
b ) = ı̇

2

∫ ddk

(2π)d
1∫

0

dx∆T
b U
∗
R

m̂

(k2 − xm̂2 − (1− x)m2
b + ı̇ε)2U

†
R∆b

= ı̇

2

1∫
0

dx∆T
b U
∗
Rm̂

ı̇

(4π) d2
Γ(2− d

2)
Γ(2)

1
(k2 − xm̂2 − (1− x)m2

b + ı̇ε)2− d2
U †R∆b,

(4.45)

where we applied again the Wick rotation formula (E.46) in the second line. We follow

101Note that the self-energy function is defined with a factor of −ı̇ which has to be absorbed by multiplying
by ı̇ to obtain BL.
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previous considerations setting d = 4 − 2ε and expanding the gamma function again
according to (D.81) and using the trick (4.24) to rewrite the terms (. . .)ε. Doing so we
obtain

δML(S0
b ) =− 1

2(4π)2

1∫
0

dx∆T
b U
∗
Rm̂

(1
ε
− γE + . . .

) (4π)ε
(k2 − xm̂2 − (1− x)m2

b)ε
U †R∆b

=− 1
32π2

1∫
0

dx∆T
b U
∗
Rm̂

[1
ε
− γE + ln(4π)− ln(k2 − xm̂2 − (1− x)m2

b)
]
U †R∆b

=− 1
32π2 ∆T

b U
∗
Rm̂

1
ε
− γE + ln(4π)− ln(m̂2) + 1− 1

m̂2

m2
b

(
ln(m̂2)− ln(m2

b

)U †R∆b.

(4.46)

In the last step we performed the integration over the Feynman parameter like in the
formula (E.48). Finally we rewrite the result by using some shorthand notations as the
divergent variable k defined in (4.29) and analogously to rZ we define

rb = m̂2

m2
b

(4.47)

and hence we achieve

δML(S0
b ) = − 1

32π2 ∆T
b U
∗
Rm̂

[
k + ln(m̂2) + ln(rb)

rb − 1

]
U †R∆b . (4.48)

4.1.4 Neutrino Self-energy from G0

Finally we want to investigate the contribution of the Goldstone boson. The corresponding
Feynman diagram is shown below in figure 10.

χ (p) χ (k) χ (p)

G0 (p− k)

Figure 10: Feynman diagram of the G0 scalar fields contribution to the neutrino self-
energy, given in neutrino mass eigenfields.

This can be obtained rather simple since we have already calculated δML(S0
b ) in (4.43)

and we know the Goldstone boson is the scalar G0 = S0
bZ

corresponding to the eigenvector
bZ given in (3.103). Its propagator is given in (D.59) and we noted in section 3.2.2 that

∆bZ = ı̇g√
2mW

MD. (4.49)
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Inserting all this in (4.43) and using matrix notation leads to

δML(G0) = ı̇

2

∫ ddk

(2π)d
1

k2 − ξZm2
Z

∆T
bZ
U∗R

m̂

k2 − m̂2U
†
R∆bZ

=− ı̇g2

4m2
W

∫ ddk

(2π)d
1

k2 − ξZm2
Z

MT
DU

∗
R

m̂

k2 − m̂2U
†
RMD

=− ı̇g2

4m2
W

∫ ddk

(2π)d
1

k2 − ξZm2
Z

U∗Lm̂
m̂

k2 − m̂2 m̂︸ ︷︷ ︸
m̂3

k2−m̂2

U †L,

(4.50)

where we used the relation (3.12) in the last step. This gives exactly the same contribution
up to the minus sign as the second term of the Z0 boson

δML(Z, 2) = ı̇
g2

4c2
Wm

2
Z

∫ ddk

(2π)d
1

k2 − ξZm2
Z

U∗L
k2m̂

k2 − m̂2 + ı̇ε
U †L, (4.51)

when we insert m2
W = c2

Wm
2
Z and since we can show that

U∗L
k2m̂2

k2 − m̂2U
†
L = U∗L

(k2 − m̂2)m̂+ m̂3

k2 − m̂2 U †L

= U∗Lm̂U
†
L + U∗L

m̂3

k2 − m̂2U
†
L = U∗L

m̂3

k2 − m̂2U
†
L,

(4.52)

because the first term vanishes according to the first relation in (3.11).

4.1.5 Correction δML to the Neutrino Mass

In this section we want to achieve the final equation for the one loop correction δML to
the LH neutrino masses. In the sections before we have already calculated all contributing
parts. In [20] is has been pointed out that the charged bosons W± does only contribute
to the /p dependent part AL and AR of the neutrino self-energy Σ(p) shown in figure 11
since it gives

Σ(W )
ij (p) =ı̇

∑
`

g2

2

∫ ddk

(2π)2S
W
µν(k − p)

1
k2 −m`

·
[
(U †L)i`(UL)`jγµ/kγνPL + (UT

L )i`(U∗L)`jγµ/kγνPR
]
.

(4.53)

where SWµν(k − p) is the propagator of W± with momentum k − p given in (D.56) and we
used as usual the Feynman rule (D.53) for the fermion propagator and the appropriate
vertex is given in (D.63). Because of it only contains terms dependent on /k it only
contributes to AL(p2) and AR(p2).

χ `

W±

χ χ `

S±a

χ χ `

G±

χ

Figure 11: Feynman diagrams for neutrino self-energies not contributing to neutrino mass
corrections δML.
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In [20] it is also indicated that the exchange of the charged scalar mass eigenfields S±a
and the charged Goldstone bosons G± do not contribute either, since one obtains

(BL)S
±
a
ij (p2) =− ı̇

∫ ddk

(2π)d
1

(k − p)2 −m2
a

m`

k2 −m2
`

·
[
(U †R∆a)i`(ΓaUL)`j + (UT

LΓTa )i`(∆T
aU
∗
R)`j)

]
,

(4.54)

where we used again the Feynman rules for the fermion propagator (D.53), for the charged
scalar (D.58) and the rule for the interaction vertex (D.66) resp. (D.68) as well as the
notations ∆a and Γa from (3.120). From this we get the part for the charged Goldstone
boson analogously to the case of the neutral one, by inserting the eigenvector aw corre-
sponding to G± given in (3.103) and using the Feynman rule for the charged Goldstone
boson propagator (D.60):

(BL)G±ij (p2) =− ı̇g2

2m2
W

∑
`

∫ ddk

(2π)d
1

(k − p)2 − ξWm2
W

m2
`

k2 −m2
`

·
[
mi(U †L)i`(UL)`j + (UT

L )i`(U∗L)`jmj

]
.

(4.55)

Clearly these two parts do not contribute since one has to apply (4.9) which causes
together with (3.9) these contributions to vanish.

Hence, all contributing parts have been derived in the previous sections and we sum
up all results as

δML = δML(Z) + δML(G0) +
∑
b 6=bZ

δML(S0
b ) . (4.56)

Because the correction δML has no counterterm since ML vanishes at tree level, δML

itself must be already gauge-independent and finite. We want to show this in the current
section and start with some observations we have already made. In section (4.1.2) we
split up the Z0 contribution in three parts due to the form of the boson propagator in Rξ

gauge and hence we might write

δML = δML(Z, 1) + δML(Z, 2) + δML(Z, 3) + δML(G0) +
∑
b6=bZ

δML(S0
b ). (4.57)

In section 4.1.4 we have already shown that

δML(Z, 2) + δML(G0) = 0, (4.58)

which means the parts containing the unphysical parameter ξZ cancel each other and δML

is indeed gauge-independent.

In the next step we should deal with the divergences which occur in the remaining
contributions we derived in (4.31), (4.37) and (4.48), which all contain the divergent
quantity k defined in (4.29). First we show that the infinities drop out in the sum∑

b 6=bZ
δML(S0

b ) + δML(Z, 3), (4.59)

because all terms independent of the boson masses mb and mZ cancel each other. We

69



4 ONE-LOOP CORRECTIONS TO THE SEESAW MECHANISM

might split those contributions into two parts and indicate the term dependent on mb

resp. mZ with one prime and the part independent of those masses with a double prime,
such that

δML(S0
b ) = δM ′′

L(S0
b ) + δM ′

L(S0
b ), (4.60)

δML(Z, 3) = δM ′′
L(Z, 3) + δM ′

L(Z, 3). (4.61)

To show ∑
b6=bZ

δM ′′
L(S0

b ) + δM ′′
L(Z, 3) = 0, (4.62)

we need the orthogonality relation for the eigenvectors b we had in equation (3.98). For
our purpose we write ∑

b 6=bZ
bjbk + (bZ)j(bZ)k = 0, (4.63)

with bZ defined in (3.103) and we remember the definition of ∆b given in (3.114). Thus,
we can rewrite the part of ∑b6=bZ δML(S0

b ) independent of mb in the following way:
∑
b 6=bZ

δM ′′
L(S0

b ) = 1
32π2

∑
b 6=bZ

∆T
b U
∗
Rm̂(k + ln m̂2)U †R∆b

(3.114)= 1
32π2

∑
b6=bZ

∑
k,j

bk∆T
kU
∗
Rm̂(k + ln m̂2)U †Rbj∆j

(4.63)= − 1
32π2

∑
k,j

(bZ)k∆T
kU
∗
Rm̂(k + ln m̂2)U †R(bZ)j∆j

(3.103)= 1
32π2v2

∑
k,j

vk∆T
kU
∗
Rm̂(k + ln m̂2)U †Rvj∆j

(3.106)= 1
32π2v2

√
2MT

DU
∗
Rm̂(k + ln m̂2)U †R

√
2MD

= 1
16π2v2M

T
DU

∗
Rm̂(k + ln m̂2)U †RMD.

(4.64)

To compare this result with the part of δML(Z, 3) independent of the boson mass mZ we
use the third relation in equation (3.11) in the rewritten forms

U †RMD = m̂U †L ⇔MT
DU

∗
R = U∗Lm̂, (4.65)

and the definition of v given in (3.104) . Hence, we get

δM ′′
L(Z, 3) = − g2

64π2m2
W

U∗Lm̂
3(k + ln m̂2)U †L

= − g2

64π2m2
W

U∗Lm̂m̂(k + ln m̂2)m̂U †L

= − 4
64π2v2M

T
DU

∗
Rm̂(k + ln m̂2)U †RMD

= − 1
16π2v2M

T
DU

∗
Rm̂(k + ln m̂2)U †RMD,

(4.66)

which is exactly the same up to the minus sign we obtained before from ∑
b 6=bZ δM

′′
L(S0

b ).
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Therefore, we showed (4.62). Thus, in the sum only ∑b 6=bZ δM
′
L(S0

b ) + δM ′
L(Z, 3) remain,

i.e. ∑
b 6=bZ

δML(S0
b ) + δML(Z, 3) =

∑
b 6=bZ

δM ′
L(S0

b ) + δM ′
L(Z, 3) (4.67)

= 1
32π2

∑
b6=bZ

∆T
b U
∗
Rm̂

ln rb
rb − 1U

†
R∆b −

g2

64π2m2
W

U∗Lm̂
3 ln rz
rz − 1U

†
L. (4.68)

Finally, we have to discuss the divergences in δML(Z, 1) given in (4.19). We find all
terms proportional to m̂, but not to m̂ ln m̂, vanish, since we had

U∗Lm̂U
†
L = 0 (4.69)

in the first relation of equation (3.11). Again we split δML(Z, 1) into two parts analogous
to (4.60), where the double primed part denotes the terms proportional to m̂ and obviously
get

δM ′′
L(Z, 1) = g2

16π2c2
W

U∗Lm̂(k + 1
2)U †L = 0. (4.70)

The remaining part of δML(Z, 1) is then

δM ′
L(Z, 1) = g2

16π2c2
W

U∗Lm̂

(
ln m̂2 + ln rZ

rZ − 1

)
︸ ︷︷ ︸

=:(∗∗)

U †L = g2

16π2c2
W

U∗Lm̂
rZ ln rZ
rZ − 1 U

†
L. (4.71)

The second equality can be easily shown by rewriting the factor (∗∗) in the following way

(∗∗) =m̂
(

ln m̂2 + ln rZ
rZ − 1

)

=m̂ ln m̂2 + m̂m2
Z

m̂2 −m2
Z

(ln m̂2 − lnm2
Z)

=m̂(m̂2 −m2
Z) ln m̂2 + m̂m2

Z ln m̂2

m̂2 −m2
Z

− m̂m2
Z

m̂2 −m2
Z

lnm2
Z

= m̂3

m̂2 −m2
Z

ln m̂− m̂m2
Z

m̂2 −m2
Z

lnm2
Z

= m̂m2
Z

m̂2 −m2
Z

[
m̂2

m2
Z

ln m̂2 − lnm2
Z

]

=m̂ rZ
rZ − 1

[
ln m̂2 − 1

rZ
lnm2

Z

]
.

(4.72)

Since we know U∗Lm̂U
†
L = 0, we can add and subtract terms as long as they are proportional

to m̂ and vanish due to this property. To achieve the wanted result we simply add a
suitable term

(∗∗) =m̂ rZ
rZ − 1

[
ln m̂2 − 1

rZ
lnm2

Z + 1
rZ

lnm2
Z − lnm2

Z

]
=m̂ rZ

rZ − 1
[
ln m̂2 − lnm2

Z

]
= m̂

rZ
rZ − 1 ln rZ ,

(4.73)

and this leads to the second equality in (4.71).
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Now it is quite obvious to see that

δM ′
L(Z, 1) = −4δM ′

L(Z, 3) (4.74)

using c2
Wm

2
Z = m2

W , since we have found

δM ′
L(Z, 1) = g2

16π2c2
W

U∗Lm̂
rZ ln rZ
rZ − 1 U

†
L

= g2

16π2m2
W

U∗Lm̂
3 ln rZ
rZ − 1U

†
L,

(4.75)

δM ′
L(Z, 3) = − g2

64π2m2
W

U∗Lm̂
3 ln rz
rz − 1U

†
L. (4.76)

So we achieved a final result for δML, which does not contain any divergences and is
gauge independent. We can write it in the final form

δML =
∑
b6=bZ

δM ′
L(S0

b ) + δM ′
L(Z, 1) + δM ′

L(Z, 3)

=
∑
b6=bZ

δM ′
L(S0

b )− 3δM ′
L(Z, 1)

=
∑
b6=bZ

1
32π2

∑
b 6=bZ

∆T
b U
∗
Rm̂

ln rb
rb − 1U

†
R∆b + 3g2

64π2m2
W

U∗Lm̂
3 ln rz
rz − 1U

†
L.

(4.77)

We could also rewrite the second part using equation (3.12) so we obtain

δML =
∑
b6=bZ

1
32π2 ∆T

b U
∗
Rm̂

ln rb
rb − 1U

†
R∆b + 3g2

64π2m2
W

MT
DU

∗
Rm̂

ln rz
rz − 1U

†
RMD . (4.78)

In [20] some arguments for the dominance of δML in the one-loop corrections to M tree
ν

are stated. It has been argued that the factor (16π2)−1 is the main reason for the terms of
δML to be smaller than the tree-level masses of the light neutrinos, since in the considered
multi-Higgs model the scalar masses are assumed to be of the order of the electroweak
scale. While corrections to MR are irrelevant, because the heavy neutrino masses are
free parameters of the theory, corrections δMD to MD are negligible compared to the
correction δML, since one can find102

δ1−loopMD(S±a ) ∼ Y 2mD, δ1−loopMD(S0
b ) ∼ Y 2mD, (4.79)

where Y is a typical Yukawa coupling and mD resp. mR denote the scales of MD resp.
MR.

Talking about mass scales we should also notice that in δML only terms of first order in
(mR)−1 are relevant, if we assume mR to be much larger than the EW scale. To emphasize
this we follow the considerations in [20] and introduce the approximation

UR ' (0,W ), with W †MRW
∗ ' m̃ ≡ diag(mnL+1, . . . ,mnL+nR), (4.80)

where W is a unitary nR × nR matrix whose elements are not suppressed by mD(mR)−1.
102In [20] it is mentioned that there is no Z0 contribution for the corrections to MD.
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4.2 A Special One-Loop Corrected Seesaw Models

Furthermore, we assume the mass scale of the RH neutrinos to be much larger then the
masses of the scalar mass eigenfields, i.e. mR � mb. Hence, we can write for our result
(4.78) of δML

δML =
∑
b 6=bZ

m2
b

32π2 ∆T
bW

∗
(

1
m̃

ln m̃
2

m2
b

)
W †∆b

+ 3g2

64π2c2
W

MT
DW

∗
(

1
m̃

ln m̃2

m2
Z

)
W †MD,

(4.81)

where we used again cWmZ = mW and omitted all terms not proportional to (m̃)−1, i.e.
of the scale (mR)−1. In this form the dependence of the dominant correction δML on the
different mass scales mb,mZ and mR,mD becomes more evident and we might illustrate
those dependence in a even more simplified way in terms of mass scales as

δmL ∼
1

16π2

(∑
b

m2
b

mR

ln m
2
R

m2
b

+ m2
D

mR

ln m
2
R

m2
Z

)
, (4.82)

where δmL should indicate the mass scale of δML.

4.2 A Special One-Loop Corrected Seesaw Models

In this section a special model will be discussed, where neutrino masses are generated
by one loop corrections. This model represents a minimal extensions of the SM with
one additional Higgs doublet (nH = 2) and one RH neutrino singlet (nR = 1). We also
consider only three generations LH neutrinos (nL = 3), which is in accordance with reality
and the experimental data.

This model has been discussed by W. Grimus and H. Neufeld in [22] and also in
their previous paper [21]. Here it will be explicitly shown that one light LH neutrino
gets massive via seesaw mechanism and a second one acquires mass due to one loop
corrections, whereas one neutrino still remains massless at one-loop level, as it has been
indicated before in the beginning of section 4.1.

4.2.1 Tree-level Neutrino Mass Matrix

The neutrino mass matrix on tree level103 given in (3.4) reduces in this set up to a complex
symmetric 4× 4 matrix

M
(0)
D+M =

 0 MT
D

︸︷︷︸
3

MD ︸︷︷︸
1

MR

 }3
}1

, (4.83)

where the Dirac mass matrix MD becomes a 1× 3 matrix, i.e. MT
D is a 3-vector and the

103To indicate tree-level quantities resp. one loop level quantities we will introduce superscripts (0) resp.
(1).
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4 ONE-LOOP CORRECTIONS TO THE SEESAW MECHANISM

mass matrix of the RH neutrinosMR reduces to a 1×1 matrix, i.e. a scalar number which
we will assume to be positive and real and we denote it simply by mR .

According to Schur’s theorem (theorem E.2.2) this complex symmetric 4× 4 tree-level
matrix can be diagonalized by a unitary 4× 4 matrix U (0) such that

U (0)TM
(0)
D+MU

(0) = m̂(0) = diag(m(0)
1 ,m

(0)
2 ,m

(0)
3 ,m

(0)
4 ), (4.84)

where the diagonal elements m(0)
i are nonnegative and real. In order to construct the

diagonalizing matrix U (0) we are regarding MD as linear mapping

MD : C3 → C. (4.85)

The rank-nullity theorem (theorem E.3) leads to

dim kerMD = dimC3 − dim imMD ≥ 3− 1 = 2. (4.86)

Hence, there are in general two orthonormal vectors u′1, u′2 ∈ C3, which are elements of
the kernel of MD, i.e.

MDu
′
i = 0 for i = 1, 2. (4.87)

We know104 that the columns of the diagonalizing matrix must be orthogonal and since
we also know u′1 ⊥ u′2 and

MDu
′
1 = 0 = MDu

′
2, (4.88)

there must exist a third vector u′3 ∈ C3 orthonormal to u′1, u′2, which must be of the form

u′3 = M †
D

||M †
D||

, (4.89)

where we denote ||M †
D|| =

√
MDM

†
D =: mD. Now we can make a first attempt to construct

the diagonalizing matrix, which we call V (0). Its columns must consist of four orthogonal
4 × 1 vectors which can be constructed from the u′i, for i = 1, 2, 3 by attaching a zero
in the forth component. For the vector of the forth column being orthogonal to the first
three ones we can simply take (0, 0, 0, 1)T , since MR is already a diagonal matrix because
it is just a 1× 1 matrix and we might denote it as mR. Thus, we write

V (0)TM
(0)
D+MV

(0) =


u′T1 0
u′T2 0
u′T3 0
0 1




0 0 0 MD1

0 0 0 MD2

0 0 0 MD3

MD1 MD2 MD3 MR


u′1 u′2 u′3 0

0 0 0 1



=


0 0 0 0
0 0 0 0
0 0 0 mD

0 0 mD mR

 ,
(4.90)

104See Appendix E.2.
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4.2 A Special One-Loop Corrected Seesaw Models

where we were able to eliminate some off-diagonal elements. In the next step we rotate
the lower right block matrix by a unitary matrix

W (0) :=


1 0 0 0
0 1 0 0
0 0 c s

0 0 −s c

 , (4.91)

where we introduced the shorthand notation c := cos θ and s := sin θ. We calculate

W (0)T


0 0 0 0
0 0 0 0
0 0 0 mD

0 0 mD mR

W
(0)

=


0 0 0 0
0 0 0 0
0 0 −mDcs− (mDc−mRs)s c(mDc−mRs)−mDs

2

0 0 mDc
2 − s(mRc+mDs) mDcs+ c(mRc+mDs)

 ,
(4.92)

and by enforcing vanishing off-diagonal elements we obtain a defining relation for the
rotation angle θ. If we demand the upper right entry off-diagonal entry to be zero

0 != cos(θ)(mD cos(θ)−mR sin(θ))−mD sin(θ)2

= mD(sin(θ)2 + cos(θ)2)−mR cos(θ) sin(θ)

⇔ mD

mR

= sin(θ) cos(θ)
cos(θ)2 − sin(θ)2

(E.43)= sin(θ) cos(θ)
cos(2θ)

(E.44)= 1
2

sin(2θ)
cos(2θ) = 1

2 tan(2θ),

(4.93)

and hence we achieve the following condition

tan(2θ) = 2mD

mR

. (4.94)

Using this result we can show that the diagonal entries are the eigenvalues of M (0)
D+M,

which can be calculated by

det




0 0 0 0
0 0 0 0
0 0 0 mD

0 0 mD mR

− λ14

 = 0. (4.95)

This gives us solutions

λ1,2 = 0, (4.96)

λ3,4 = mR

2 ±
√
m2
R

4 +m2
D. (4.97)
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4 ONE-LOOP CORRECTIONS TO THE SEESAW MECHANISM

Inserting (4.94) into the lower two diagonal elements (3,3) and (4,4) in (4.93) and using
the relations (E.41)-(E.44) we find

(4, 4) = mD cos(θ) sin(θ) + cos(θ)(mR cos(θ) +mD sin(θ)

= 2mD cos(θ) sin(θ) +mR cos(θ)2

= mD sin(2θ) + 1
2mR + 1

2mR cos(2θ)

= mD
tan(2θ)√

1 + tan(2θ)2
+ 1

2mR + 1
2mR

1√
1 + tan(2θ)2

= mD

2mD
mR√

1 +
(

2mD
mR

)2
+ 1

2mR + 1
2mR

1√
1 +

(
2mD
mR

)2

= 1
2mR +

√
1 + 4m

2
D

m2
R

1 + 4m
2
D

m2
R

(
2m

2
D

mR

+ 1
2mR

)

= 1
2mR +mR

√
m2
R + 4m2

D

m2
R + 4m2

D

(
2m

2
D

mR

+ 1
2mR

)

= 1
2mR +

√
m2
R + 4m2

D

m2
R + 4m2

D

1
2
(
4m2

D +m2
R

)
= 1

2mR + 1
2

√
m2
R + 4m2

D

= 1
2mR +

√
1
4m

2
R + 4m2

D = λ4,

(4.98)

(3, 3) = −mD cos(θ) sin(θ)− (mD cos(θ)−mR sin(θ)) sin(θ)

= −2mD cos(θ) sin(θ) +mR sin(θ)2

= −mD

2mD
mR√

1 +
(

2mD
mR

)2
+ 1

2mR −
1
2mR

1√
1 + tan(2θ)2

= 1
2mR +

√
m2
R + 4m2

D

m2
R + 4m2

D

mR

2

(
−4m

2
D

mR

−mR

)

= 1
2mR −

1
2

√
m2
R + 4m2

D

= 1
2mR −

√
1
4m

2
R + 4m2

D = λ3.

(4.99)

Finally we have to ensure non negative real diagonal entries, since we are interested in
mass eigenvalues. Because the eigenvalue λ3 is not positive we have to insert a factor ı̇ by

K(0) =


1 0 0 0
0 1 0 0
0 0 ı̇ 0
0 0 0 1

 , (4.100)
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such that we obtain the final result

K(0)T


0 0 0 0
0 0 0 0
0 0 1

2mR −
√

1
4m

2
R + 4m2

D 0
0 0 0 1

2mR +
√

1
4m

2
R + 4m2

D

K
(0)

=


0 0 0 0
0 0 0 0
0 0

√
1
4m

2
R + 4m2

D − 1
2mR 0

0 0 0
√

1
4m

2
R + 4m2

D + 1
2mR

 ,
(4.101)

where all diagonal entries are non-negative. Hence, we constructed the diagonalizing
matrix U as

U (0) = V (0).W (0).K(0) =
u1 u2 ı̇ cos(θ)u′3 sin(θ)v3

0 0 −ı̇ sin(θ) cos(θ)

 , (4.102)

such that

U (0)TM
(0)
D+MU

(0) =


0 0 0 0
0 0 0 0
0 0 m

(0)
3 0

0 0 0 m
(0)
4

 , (4.103)

with mass eigenvalues

m
(0)
3 =

√
1
4m

2
R +m2

D −
1
2mR, (4.104)

m
(0)
4 =

√
1
4m

2
R +m2

D + 1
2mR. (4.105)

In the seesaw limit for mR � mD we obtain by expanding the square-root the following
approximation

m
(0)
3 '

mR

2

(
1 + 1

2 ·
4m2

D

m2
R

)
− mR

2 = m2
D

mR

, (4.106)

m
(0)
4 '

mR

2

(
1 + 1

2 ·
4m2

D

m2
R

)
+ mR

2 = mR, (4.107)

which reproduces exactly what we have already found in (3.31) and (3.33). But here we
have shown also that only one light LH neutrino acquires mass via seesaw mechanism,
whereas the other two LH neutrinos remain massless on tree level.

4.2.2 One-loop Neutrino Mass Matrix

In the next step we will show that after one-loop corrections a second LH neutrino becomes
massive and only one remains massless. To show this explicitly we have to diagonalize
the corrected neutrino mass matrix given in (4.2), which reduces in our set up to the
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4 ONE-LOOP CORRECTIONS TO THE SEESAW MECHANISM

symmetric105 complex 4× 4 matrix

M
(1)
D+M =

 δML MT
D

︸︷︷︸
3

MD ︸︷︷︸
1

mR

 }3
}1

, (4.108)

where the correction δML has been derived in the previous section 4.1 and is given in
equation (4.78). For this purpose we decompose the matrix U (0) given in (4.102) in the
following way:

U (0) =
 U ′L U ′′L

︸︷︷︸
nL − nR

0 ︸︷︷︸
2nR

U ′′∗R

 }nL
}nR

, (4.109)

where U ′L is in our special case the 3× 2 matrix (u′1, u′2), U ′′L is a 3× 2 matrix and U ′′∗R is
1× 2. A straightforward calculation106 leads to

U (0)TM
(1)
D+MU

(0) =U (0)TM
(0)
D+MU

(0) + U (0)T
δML 0

0 0

U (0)

=


0 0 0 0
0 0 0 0
0 0 m3 0
0 0 0 m4

+
U ′TL δMLU

′
L U ′TL δMLU

′′
L

︸ ︷︷ ︸
2

U ′′TL δMLU
′
L ︸ ︷︷ ︸

2

U ′′TL δMLU
′′
L

 }2
}2

.

(4.110)

This second matrix, which can be considered as a perturbation of the tree-level mass
matrix, can be diagonalized by a unitary transformation V (1) as mentioned in [21], where
V (1) − 1 is of one-loop order

V (1) ' 1 + ı̇Ω, Ω = Ω†. (4.111)

The unitary matrix actually diagonalizing M (1)
D+M is constructed as the product

U = U (0)V (1), (4.112)

and the additional corrective terms to m̂(0), more exactly to m(0)
3 and m(0)

4 , due to matrix
multiplication with V (1) will be really small and hence negligible. Thus, for an appropriate
choice107 of V (1) we can achieve

UTM
(1)
D+MU ' m̂(0) +

Re
(
U ′TL δMLU

′
L

)
0

0 0



=


Re

(
u′T1 δMLu

′
1

)
Re

(
u′T1 δMLu

′
2

)
0 0

Re
(
u′T2 δMLu

′
1

)
Re

(
u′T2 δMLu

′
2

)
0 0

0 0 m3 0
0 0 0 m4

 .
(4.113)

105This is quite obvious since δML is symmetric.
106The full calculation can be found in appendix F.9.
107This procedure is discussed in general in appendix E.2.2 and more explicitly for this case in F.9.
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The remaining off-diagonal entries in the upper left submatrix U ′TL δMLU
′
L can be re-

moved by an appropriate choice of u′1 and u′2. We recognize that due to its form

δML =
∑
b 6=bZ

1
32π2 ∆T

b U
∗
Rm̂

(0) ln rb
rb − 1U

†
R∆b + 3g2

64π2m2
W

MT
DU

∗
Rm̂

ln rz
rz − 1U

†
RMD, (4.114)

obtained in (4.78), the Z0 contribution to δML, i.e. the second term, will not contribute
at all since we had MDu

′
i = 0 for i = 1, 2. So if we choose u′1 ⊥ ∆1 and u′1 ⊥ ∆2 the

remaining off-diagonal entries in (4.113) are removed since ∆b = b1∆1 + b2∆2 and we
obtain

U (0)TM
(0)
D+MU

(0) = m̂(0) +
U ′TL δMLU

′
L 0

0 0



=


0 0 0 0
0 Re

(
u′T2 δMLu

′
2

)
0 0

0 0 m
(0)
3 0

0 0 0 m
(0)
4

 .
(4.115)

Furthermore, the overall phase of u′2 can be chosen in a way such that u′T2 δMLu
′
2 is

positive. This procedure also shows that even after one-loop corrections one LH neutrino
remains massless108.

Finally, we would like to give an estimation on the order of magnitude of m(1)
2 as it is

done in [22]. An upper boundary for m(1)
2 can be found in the following way. We know

from construction of U (0) that u′2 is orthonormal to u′1 and u′3 and its phase is fixed by
the positivity of m(1)

2 . We use u′2 to define the following quantity

cα = v√
2mD

u′
T
2 ∆T

α ∈ C, (4.116)

for α = 1, 2 and with the Yukawa coupling constants ∆α and v =
√
|v1|2 + |v2|2. This

quantities fulfil the relation
v∗1c1 + v∗2c2 = 0, (4.117)

since we had MD given in equation (3.106) and mD = ||MD||. v1 and v2 denote the
VEV of the two Higgs doublets as defined in (3.61). Nevertheless, |c1|2 + |c2|2 remains
an independent parameter in this model, because we have no restrictions on u′2 and ∆α

apart from naturalness, which requires |c1|2 + |c2|2 being O(1). Above, we have found

m2 = u′
T
2 δMLu

′
2

=
∑
b6=bZ

1
32π2u

′T
2 ∆T

b U
∗
Rm̂

(0) ln rb
rb − 1U

†
R∆bu

′
2

=
∑
b6=bZ

1
32π2u

′T
2

(∑
α

bα∆T
α

)
U∗Rm̂

(0) ln rb
rb − 1U

†
R

∑
β

bβ∆β

u′2,
(4.118)

where we used ∆b = b1∆1 + b2∆2.
108However, it will become massive at two loop level as shown in [81, 82, 74].
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We can now rewrite this in terms of our newly defined quantity cα and use the Cauchy-
Schwarz inequality (E.4):

m2 =
∑
b 6=bZ

2m2
D

32π2v2

(∑
α

bαcα

)
U∗Rm̂

(0) ln rb
rb − 1U

†
R

∑
β

bβcβ


≤
∑
b6=bZ

2m2
D

32π2v2

∣∣∣∣∣U∗Rm̂(0) ln rb
rb − 1U

†
R

∣∣∣∣∣
∣∣∣∣∣∑
α

bαcα

∣∣∣∣∣
2

≤
∑
b6=bZ

2m2
D

32π2v2

∣∣∣∣∣U∗Rm̂(0) ln rb
rb − 1U

†
R

∣∣∣∣∣
(∑

α

|bα|2
)(∑

α

|cα|2
)
.

(4.119)

In (3.97) we had ||b|| = ∑
α bα = 1 and hence we get

m2 ≤
∑
b6=bZ

2m2
D

32π2v2

∣∣∣∣∣U∗Rm̂(0) ln rb
rb − 1U

†
R

∣∣∣∣∣ (|c1|2 + |c2|2
)
. (4.120)

For a more meaningful result we should simplify the factor U∗Rm̂(0) ln rb
rb−1U

†
R. This can be

done in a similar way to the procedure used for (4.81) where we assumed the 1×4 matrix
to be ( 0︸︷︷︸

2

, U ′′R︸︷︷︸
2

) = UR ' ( 0︸︷︷︸
3

, W︸︷︷︸
1

). (4.121)

In our case we have W = 1 and hence m̃ = W †mRW
∗ = mR � mb. Thus, we obtain

m2 ≤
∑
b6=bZ

m2
b

16π2v2W
∗
(

1
mR

ln mR
2

m2
b

)
W †

(
|c1|2 + |c2|2

)
. (4.122)

More explicitly we might calculate this factor by inserting UR = (0, 0,−ı̇ sin θ, cos θ) and
m̂(0) = diag(0, 0,m(0)

3 ,m
(0)
4 ). Doing so we get

U∗Rm̂
(0) ln rb
rb − 1U

†
R = m2

b

2mR

(
− sin(θ)2m

2
R

m2
D

ln
(

m4
D

m2
bm

2
R

)
+ cos(θ)2 ln

(
m2
R

m2
b

))
. (4.123)

Furthermore, we can achieve for mD � mR

cos(θ)2 = 1
2(1 + cos(2θ)) = 1

2

1 + 1√
1 +

(
2mD
mR

)2

 ≈ 1, (4.124)

sin(θ)2 = 1
2(cos(2θ)− 1) = 1

2

1 + 1√(
2mD
mR

)2
− 1

 ≈ 0, (4.125)

which leads to

U∗Rm̂
(0) ln rb
rb − 1U

†
R '

m2
b

2mR

ln
(
m2
R

m2
b

)
. (4.126)

Hence, we have achieved the following result for an upper boundary of m2 as

m2 ≤
∑
b 6=bZ

m2
D

32π2v2
m2
b

mR

ln
(
m2
R

m2
b

)(
|c1|2 + |c2|2

)
, (4.127)
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which can be used for an estimation on the order of magnitude

m
(1)
2 ∼

1
16π2m3

M2
0

v2 ln MR

M0
, (4.128)

where M0 is a generic physical neutral scalar mass.
It is also noted that for M0 ∼ v the relation m

(1)
2 � m

(0)
3 comes solely from the

numerical factor (16π2)−1 appearing in the loop integration. In [22] it has been also
stated that in general cancellations in the summation over the vectors b do not appear,
because those vectors are connected to the diagonalizing matrix of the neutral scalar mass
matrix, but these matrix elements are independent of the masses m2

b .
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5 Scotogenic Model

5.1 Original Model by E. Ma

This model, proposed by E. Ma in [23], is an extension of the SM with three RH neutrino
singlets (nR = 3 = nL) and one additional scalar doublet (nH = 2). Moreover, the theory
is supposed to exhibit an additional exact symmetry and the symmetry group is given by
SU(2)L × U(1)Y × Z2. All SM particles (DL, `R, φ) transform evenly under Z2, whereas
all new particles (νR and η) transform oddly, i.e.

DL → DL, `R → `R, φ→ φ,

νR → −νR, η → −η.
(5.1)

This symmetry is assumed to remain unbroken after SSB, i.e.

SU(2)L × U(1)Y × Z2
SSB−→ U(1)EM × Z2. (5.2)

Hence, some terms are forbidden in the Lagrangian, which has to be invariant under
Z2 transformations. In particular the Majorana mass term for the RH neutrinos given
in (2.22) is invariant. Moreover, the mass matrix of the RH neutrinos can be chosen
diagonal without loss of generality, i.e. MR = diag(mR1,mR2,mR3). The 6 × 6 neutrino
mass matrix M (0)

D+M at tree-level is a priori given according to (3.4).

5.1.1 Scalar Mass Eigenfields

For investigating the scalar sector we use the general results of section 3.2.1 and start by
adapting the scalar potential (3.63) for nH = 2, i.e.

V =
2∑

i,j=1
µ2
ijφ
†
iφj +

2∑
i,j,k,l=1

λijkl
(
φ†iφj

) (
φ†kφl

)
. (5.3)

Because of the additional symmetry terms linear and cubic in η are forbidden, since V
has to be also invariant under Z2 transformations. Therefore, we have

V =µ2
11φ
†
1φ1 + µ2

22φ
†
2φ2 + λ1111

(
φ†1φ1

)2
+ λ2222

(
φ†2φ2

)2
+ 2λ1122

(
φ†1φ1

) (
φ†2φ2

)
+ 2λ1221

(
φ†1φ2

) (
φ†2φ1

)
+ λ1212

(
φ†1φ2

)2
+ λ∗1212

(
φ†2φ1

)2
,

(5.4)

where we used the properties of λijkl given in (3.64). The inadmissibility of linear and
cubic terms in η means

µ2
12 = µ2

21 = 0, (5.5)

λ1112 = λ1222 = 0, (5.6)

and hence all λijkl = 0, with (ijkl) being permutations of (1112) and (1222), because of
(3.64).

83



5 SCOTOGENIC MODEL

Introducing the notation used in [23], we define

φ1 = φ =
(
φ+

φ0

)
, φ2 = η =

(
η+

η0

)
, (5.7)

µ2
11 = m2

1, µ2
22 = m2

2, (5.8)

λ1111 = 1
2λ1, λ2222 = 1

2λ2, λ1122 = 1
2λ3, λ1221 = 1

2λ4, λ1212 = 1
2λ5. (5.9)

Due to Hermiticity of all terms (except the last one) all coefficients are real109, i.e.

m2
1,m

2
2, λ1, λ2, λ3, λ4 ∈ R. (5.10)

Moreover λ5 ∈ R can be assumed, since a possible phase can be absorbed into the field
η, as it has been noted in [84]. Thus, the scalar potential V reads as

V =m2
1φ
†φ+m2

2η
†η + 1

2λ1
(
φ†φ

)2
+ 1

2λ2
(
η†η

)2

+ λ3
(
φ†φ

) (
η†η

)
+ λ4

(
φ†η

) (
η†φ

)
+ 1

2λ5

((
φ†η

)2
+ H.c.

)
.

(5.11)

Finding VEV’s in this potential is only possible if V is bounded from below, because
only if V does not tend to minus infinity anywhere, the potential has stable minima, which
has been discussed in [84] or [85, p.90f]. This leads to some constraints for the coupling
coefficients λi, which have been investigated in [85, 84, 86, 87]:

λ1 > 0, λ2 > 0, λ3 > −
√
λ1λ2, λ3 + λ4 − |λ5| > −

√
λ1λ2. (5.12)

Without loss of generality it can be assumed that λ5 ≥ 0, as done in [23]. Furthermore
in [84] the requirements of the parameters m2

i for a stable Z2 symmetric vacuum can be
divided in two classes:

(a) m2
2 ≥ 0 if m2

1 ≥ 0⇔ 〈φ0〉2 = 0 = 〈η0〉2, (5.13)

(b) m2
2 ≥

λ3 + λ4 + λ5

λ1
m2

1 if m2
1 < 0⇔ 〈φ0〉2 = −m

2
1

λ1
, 〈η0〉2 = 0. (5.14)

In Ma’s scotogenic model [23] the case m2
1 < 0 and m2

2 > 0 has been considered, which
is included in case (b) above. Therefore, the new scalar doublet η has vanishing VEV and
for the standard Higgs doublet we can choose its usual VEV, c.f. equation (1.89),

v2 ≡ 〈φ0〉2 =
(
v1√

2

)2

= −m
2
1

λ1
. (5.15)

Because of only one nonvanishing VEV, v can be chosen real, according to [26, 84, 85].
A simplified plot of the potential with this constraints is shown in figure 12 below,

where we only considered the real parts of the neutral component of the scalar doublets.

109This has been also mentioned in [83, p.242]
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5.1 Original Model by E. Ma

Figure 12: This is a simplified plot, done with Mathematica 10, of the scalar potential as
a function of the real part of the neutral components of the scalar fields, i.e.
V = − (Re(φ0))2 + (Re(η0))2 + (Re(φ0))4 + (Re(η0))4 − (Re(φ0))2 (Re(η0))2.

(a) (b)

Figure 13: Here two different cross sections of the potential V (Re(φ0),Re(η0)) are illus-
trated using Mathematica 10. In (a) the cross section of the Re(η0) = 0 plane
and in (b) the one of Re(φ0) = 0 is shown respectively. Apparently the VEV
of Re(φ0) is degenerate whereas the VEV for Re(η0) is zero.

In order to find the masses of the scalar mass eigenfields we can use again the results
of section 3.2.1. To apply the equations found there we need the matrices µ2 as well as
Λ, K and K ′ given in equation (3.76),(3.83) and (3.85) respectively in terms of our model
here. We find

µ2 =
m2

1 0
0 m2

2

 ,
K = v2

λ1 0
0 λ5

 ,
Λ = v2

λ1 0
0 λ3

 ,
K ′ = v2

λ1 0
0 λ4

 .
(5.16)
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(a) (b)

Figure 14: Now the complex valued scalar potential V (φ, η) has been plotted in Mathe-
matica 10 for (a) η0 = 0 and (b) φ0 = 0 respectively. The shape of (a) clearly
shows a whole circle of minima, i.e. the VEV is infinitely degenerate, whereas
in (b) one global minimum appears at zero; c.f. figure 22 in appendix B.4.2.

Hence, we can apply equation (3.75) to find the masses of the charged scalar mass
eigenfields φ± and η±

M2
+ =

m2
1 + λ1v

2 0
0 m2

2 + λ3v
2

 . (5.17)

Taking (5.15) into account we obtain

m2(φ+) = 0, m2(η+) = m2
2 + λ3v

2. (5.18)

For the masses of the neutral scalar mass eigenfields we need the matrices A, B and
C given in (3.90), (3.91) and (3.92) respectively. Since all coefficients are real we get
C = 02×2 and

A =
m2

1 + 3λ1v
2 0

0 m2
2 + (λ3 + λ4 + λ5)v2

 , (5.19)

B =
m2

1 + λ1v
2 0

0 m2
2 + (λ3 + λ4 − λ5)v2

 . (5.20)

The formula for the neutral scalar masses is given in (3.95) resp. (3.96) and hence, using
(5.15), we achieve

m2(
√

2Reφ0) = 2λ1v
2, m2(

√
2Reη0) = m2

2 + (λ3 + λ4 + λ5)v2, (5.21)

m2(
√

2Imφ0) = 0, m2(
√

2Imη0) = m2
2 + (λ3 + λ4 − λ5)v2. (5.22)

The scalar doublets can be parametrized by their mass eigenfields analogously to (3.101)
as follows

φ =
(

0
v1+h√

2

)
, η =

(
η+

ρ+ı̇σ√
2

)
, (5.23)
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where we used the notation h =
√

2Re(φ0), ρ =
√

2Re(η0) and σ =
√

2Im(η0). This is
the parametrization in the unitary gauge, since we have chosen the VEV of φ0 in the
appropriate form given in (5.15). Therefore φ± and g = Im(φ0) are massless, i.e. the
Goldstone bosons of the theory. FurthermoreM2

0 in (3.95) is already diagonal, as shown
in (5.19) above, which mean the fields φ±, η± as well as h, g, ρ and σ are already the scalar
mass eigenfields since no mixing occurs. Thus, the 2×1 eigenvectors b for the scalar mass
eigenfields h, g, ρ, σ have to be the complex unit vectors

b(h) =
(

1
0

)
, b(g) =

(
ı̇

0

)
, b(ρ) =

(
0
1

)
, b(σ) =

(
0
ı̇

)
. (5.24)

Since φ is the SM Higgs doublet, the real part of its neutral component becomes the
Higgs field after SSB and its imaginary part remains massless and represents the Goldstone
boson, which will give mass to the gauge boson Z0 via the Higgs mechanism discussed in
section 1.3.4. The charged component of φ remains also massless due to the particular
choice of the VEV, i.e. the unitary gauge, and it will give mass to the gauge bosons
W± via the Higgs mechanism. So we end up with one massive real neutral scalar mass
eigenfield h from the Higgs doublet as usual.

However, the second scalar doublet η leads to three additional mass eigenfields η±,Reη0

and Imη0. In particular we recognize from (5.21) and (5.22) above that the masses of Reη0

and Imη0 differ by 2λ5v
2. If the coupling coefficient λ5 = 0, the real and imaginary part

of η0 have the same mass, i.e. m2(Re(
√

2η0)) = m2(Im(
√

2η0)) which means the mass
eigenvalue is two-fold degenerate.

5.1.2 Yukawa Interactions

Now considering the Yukawa Lagrangian we find that some terms there are also forbidden
due to the additional symmetry, since LYuk has to be also invariant under Z2 transforma-
tions. Applying the result (3.105) for the Yukawa Lagrangian in a multi-Higgs model in
section 3.2.2 to our special case nH = 2, nR = 3 we find

−LYuk =
2∑

k=1

3∑
i1,i2,j=1

[
φ†k`i1R(Γ(k))i1i2 + φ̃†kνjR(∆(k))ji2

]
Di2L + H.c.

=
2∑

k=1
(φ†k`RΓ(k) + φ̃†kνR∆(k))DL + H.c. .

(5.25)

Here φ1 is identified with the standard Higgs doublet φ and the additional scalar doublet
φ2 will be called η. Hence, we obtain

−LYuk =(φ†`RΓ(φ) + φ̃†νR∆(φ))DL + (η†`RΓ(η) + η̃†νR∆(η))DL + H.c.

=
(
(φ−, φ0∗)`RΓ(φ) + (φ0,−φ+)νR∆(φ)

)(ν`L
`L

)

+
(
(η−, η0∗)`RΓ(η) + (η0,−η+)νR∆(η)

)(ν`L
`L

)
+ H.c. .

(5.26)
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Because of the Z2 symmetry all terms linear in the new fields νR and η are forbidden.
Thus, we get

−LYuk =`RΓ(φ)
(
φ−νL + φ0∗`L

)
+ νR∆(η)

(
η0νL − η+`L

)
+ H.c.

=Γ(φ)
ij `iRφ

−νjL + Γ(φ)
ij `iRφ

−φ0∗`jL

+ ∆(η)
ij νiRη

0νjL −∆(η)
ij νiRη

+`jL + H.c. ,

(5.27)

for ∆(φ) = 0 and Γ(η) = 0. This restrictions on the 3× 3 Yukawa coupling matrices take
into account the Z2 symmetry. The second term in the second line will give the charge
lepton masses as in the SM, since the standard Higgs doublet acquires VEV v 6= 0.

But there is no Dirac mass term for the neutrinos, since we have MD = 0 according
to equation (2.3) and 〈η0〉 = 0. Hence, in this model no neutrino masses are generated
at tree-level via the seesaw mechanism since the seesaw formula, we derived in (3.31),
gives M (0)

light = 0. Moreover, no mixing of the RH and LH neutrinos occurs since M (0)
D+M

is already diagonal, because the only nonzero submatrix is MR, which has been assumed
to be already diagonal. Thus, νR and νL are already chiral mass eigenfields, which means
ωL = ω′L in equation (2.48) and the diagonalizing matrix is simply

U (0) = 16. (5.28)

Nevertheless, neutrino masses will be generated at one-loop analogously to section 4.1.
In the following section we will use the results we achieved before and therefore, we have
to rewrite the Yukawa Lagrangian in terms of scalar mass eigenfields, which are of course
all real. Hence the part of the Yukawa Lagrangian concerning neutrino-neutral scalar
couplings is given by

−L(ν)
Yuk = νR∆(η)η0νL + νLη

0∗∆(η)†νR

= 1√
2

[
νR∆(η)

(
b

(ρ)
2 ρ+ b

(σ)
2 σ

)
νL + νL

(
b

(ρ)
2
∗
ρ+ b

(σ)
2
∗
σ
)

∆(η)†νR

]
= 1√

2

[
νR∆(η) (ρ+ ı̇σ) νL + νL (ρ− ı̇σ) ∆(η)†νR

]
.

(5.29)

We used that the parametrization for φ0
k given in (3.101) reduces in this model to what

was given in (5.23), i.e.∑
b

1√
2
(
v2 + b2S

0
b

)
= 1√

2
[
(v2 + b

(ρ)
2 ρ) + (v2 + b

(σ)
2 σ)

]
= 1√

2
(ρ+ ı̇σ), (5.30)

since v2 = 0 and the eigenvectors b are given above in (5.24).

5.1.3 One-Loop Neutrino Masses

The light neutrino masses will be generated at one-loop in this model by exchange of the
neutral scalar field η0 and the heavy sterile RH neutrinos νR according to the Feynman
diagram in figure 15 below.
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νL (νL)C

η0

νR (νR)C
+

η0

φ0

η0

φ0

=
νL νR (νL)C(νR)C

η0 η0

φ0 φ0

Figure 15: The one-loop Feynman diagram for the scotogenic model is a composition of
the one-loop correction of the neutrino propagator via a η0 selfexchange and
the crossinteraction of the neutral scalar fields φ0 and η0. The mass eigen-
fields σ and ρ contribute to the first diagram with opposite sign, whereas the
crossinteraction (λ5-term) leads to the splitting of the masses of ρ and σ.

The one-loop corrected 6× 6 neutrino mass matrix according to (4.2) will be

M
(1)
D+M =

δML 0
0 MR

 , (5.31)

since MD = 0 in Ma’s scotogentic model. We simply apply the result for δML found in
(4.78), again noticing that the second term vanishes since MD = 0. Hence, we get

δML =
∑
b 6=bZ

1
32π2 ∆T

b U
∗
Rm̂

ln rb
rb − 1U

†
R∆b

= 1
32π2

∆T
b(ρ)U

∗
Rm̂

ln
(
m̂2

m2
ρ

)
m̂2

m2
ρ
− 1

U †R∆b(ρ) + ∆T
b(σ)U

∗
Rm̂

ln
(
m̂2

m2
σ

)
m̂2

m2
σ
− 1

U †R∆b(σ)

 .
(5.32)

The matrices ∆b were defined in (3.114) and reduce in this model to

∆b =
∑
k

bk∆k = b2∆(η). (5.33)

Since we know U (0) = 16 from equation (5.28), the submatrix of the decomposition given
in (3.6) is

U∗R =


0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 . (5.34)

Thus, we obtain

U∗Rm̂ ln
(
m̂2

m2
ρ

)
1

m̂2

m2
ρ
− 1

U †R = m̃(ρ)= δijm
(ρ)
ij = diag(m(ρ)

1 ,m
(ρ)
2 ,m

(ρ)
3 ), (5.35)

U∗Rm̂ ln
(
m̂2

m2
σ

)
1

m̂2

m2
σ
− 1

U †R = m̃(σ)= δijm
(ρ)
ij = diag(m(σ)

1 ,m
(σ)
2 ,m

(σ)
3 ), (5.36)

with diagonal entries mi for i = 1, 2, 3 given by

m
(ρ)
i = mRi ln

(
m2
Ri

m2
ρ

)
m2
ρ

m2
Ri −m2

ρ

, m
(σ)
i = mRi ln

(
m2
Ri

m2
σ

)
m2
σ

m2
Ri −m2

σ

. (5.37)
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Inserting all this in to δML above becomes

δML = 1
32π2

[
b

(ρ)
2 ∆(η)T m̃(ρ)b

(ρ)
2 ∆(η) + b

(σ)
2 ∆(η)T m̃(σ)b

(σ)
2 ∆(η)

]
, (5.38)

or alternatively in matrix component notation and using (5.35) and (5.36) we obtain

(δML)il = 1
32π2

3∑
j,k=1

(b(ρ)
2

)2

︸ ︷︷ ︸
12

(
∆(η)T

)
ij
δjkm̃

(ρ)
jk

(
∆(η)

)
kl

+
(
b

(σ)
2

)2

︸ ︷︷ ︸
(−ı̇)2

(
∆(η)T

)
ij
δjkm̃

(σ)
jk

(
∆(η)

)
kl


= 1

32π2

3∑
j=1

[(
∆(η)

)
ji
m̃

(ρ)
j

(
∆(η)

)
jl
−
(
∆(η)

)
ji
m̃

(σ)
j

(
∆(η)

)
jl

]
. (5.39)

Therefore, the final result for the correction to the neutrino mass matrix at one-loop in
the scotogenic model is

(δML)il = 1
32π2

3∑
j=1

(
∆(η)

)
ji

(
∆(η)

)
jl
mRj

·
[
ln
(
m2
Rj

m2
ρ

)
m2
ρ

m2
Rj −m2

ρ

− ln
(
m2
Rj

m2
σ

)
m2
σ

m2
Rj −m2

σ

]
,

(5.40)

where m2
ρ and m2

σ are the masses of
√

2Re(η0) and
√

2Im(η0) respectively, hence using
(5.21) and (5.22) we know

m2
ρ = m2

2 + (λ3 + λ4 + λ5)v2 (5.41)

m2
σ = m2

2 + (λ3 + λ4 − λ5)v2. (5.42)

Apparently, if λ5 = 0 and therefore m2
ρ = m2

σ, the neutrinos will remain massless also
at one-loop level, since the two terms in (5.40) will cancel. Hence, only non-degenerate
mass eigenvalues of the neutral scalar field give rise to massive LH neutrinos at one-loop.

The effects of this mass shift between Re(η0) and Im(η0) will be now investigated.
First, we define the mean value and shift as

m2
0 =

m2
ρ +m2

σ

2 , δm2 =
m2
ρ −m2

σ

2 = λ5v
2, (5.43)

and clearly
m2
ρ = m2

0 + δm2, m2
σ = m2

0 − δm2. (5.44)

Furthermore, the terms110 in (5.40) can be considered as a function

f(x) = x

x− a
ln
(
x

a

)
, (5.45)

with x = m2
ρ, m2

σ and a = m2
Rj, such that

(δML)il = 1
32π2

3∑
j=1

(
∆(η)

)
ji

(
∆(η)

)
jl
mRj

[
f(m2

ρ)− f(m2
σ)
]
. (5.46)

110Hence, we like to follow the notation in [23], we took the reciprocal value of the fraction in the logarithm
and compensate the appearing minus sign in the nominator of the factor.
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For writing δML in terms of m2
0 we expand the function f(x) around x0 = m2

0 as

f(x) = f(x0) + df

dx

∣∣∣∣∣
x0

(x− x0) + . . . . (5.47)

Since an expansion up to first order will be sufficient, we calculate the first derivative

df

dx
= x− a− x

(x− a)2 ln
(
x

a

)
+ x

x− a
= 1
x− a

1−
a ln

(
x
a

)
(x− a)

 . (5.48)

Applying all this to (5.40) and inserting our proper variables for a, x and x0 gives

(δML)il = 1
32π2

3∑
j=1

(
∆(η)

)
ji

(
∆(η)

)
jl
mRj

·

f(m2
0) + df

dm2
ρ

∣∣∣∣∣
m2

0

(m2
ρ −m2

0)− f(m2
0)− df

dm2
σ

∣∣∣∣∣
m2

0

(m2
σ −m2

0)


= 1
32π2

3∑
j=1

(
∆(η)

)
ji

(
∆(η)

)
jl
mRj

 df

dm2
ρ

∣∣∣∣∣
m2

0

δm2 − df

dm2
σ

∣∣∣∣∣
m2

0

(−δm2)


=2δm2

32π2

3∑
j=1

(
∆(η)

)
ji

(
∆(η)

)
jl
mRj

df

dm2
ρ

∣∣∣∣∣
m2

0

.

(5.49)

By inserting the derivative (5.48) in terms of our proper variables we achieve our final
result:

(δML)il = λ5v
2

16π2

3∑
j=1

(
∆(η)

)
ji

(
∆(η)

)
jl

mRj

m2
0 −m2

Rj

1−
m2
Rj ln

(
m2

0
m2
Rj

)
(m2

0 −m2
Rj)

 . (5.50)

5.1.4 Special Limits

Now we like to discuss some possible limits comparing the mass ranges of the mean value
of the neutral scalar masses m2

0 and the masses of the RH neutrinos mRj.

(i) mRj �m2
0:

For the limit m2
0

m2
Rj
→ 0, where the mass of the RH neutrino is much heavier than

the mean value of the masses of the LH neutrinos. Thus, we rewrite (5.50) in the
following way:

(δML)il = λ5v
2

16π2

3∑
j=1

(
∆(η)

)
ji

(
∆(η)

)
jl

1
mRj

1
m2

0
m2
Rj
− 1

1− 1
m2

0
m2
Rj
− 1

ln
(
m2

0
m2
Rj

)
→ λ5v

2

16π2

3∑
j=1

(
∆(η)

)
ji

(
∆(η)

)
jl

1
mRj

[
−1− ln

(
m2

0
m2
Rj

)]
.

(5.51)

(ii) mRj �m2
0:

Here, where the mass of the RH neutrino is much lighter than the mean value of the
masses of the LH neutrinos, i.e. the limit m2

Rj

m2
0
→ 0, we rewrite (5.50) analogously.
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Hence, we obtain

(δML)il = λ5v
2

16π2

3∑
j=1

(
∆(η)

)
ji

(
∆(η)

)
jl

mRj

m2
0

1
1− m2

Rj

m2
0

1−
m2
Rj

m2
0

1
m2
Rj

m2
0
− 1

ln
(
m2

0
m2
Rj

)
→ λ5v

2

16π2

3∑
j=1

(
∆(η)

)
ji

(
∆(η)

)
jl

mRj

m2
0
.

(iii) mRj 'm2
0:

To calculate δML in the limit (mRj−m2
0)→ 0 we will expand the logarithm according

to ln(1 + x) = x − x2

2 + . . ., since the second order will be sufficient. For a clearer
calculation we display the structure of the summands of (5.50) as

1
x− y

[
1− y

x− y
ln
(
x

y

)]
= 1
δ

[
1− y

δ
ln
(
y + δ

y

)]
, (5.52)

where x = m2
0 and m2

Rj = y and for δ := x− y we will take the limit δ → 0:

lim
δ→0

1
δ

[
1− y

δ
ln
(
y + δ

y

)]
= lim

δ→0

1
δ

[
1− y

δ
ln
(

1 + δ

y

)]

= lim
δ→0

1
δ

[
1− y

δ

(
δ

y
− 1

2
δ2

y2 + . . .

)]

= lim
δ→0

1
δ

[
1− 1 + 1

2
δ

y
+ . . .

]
= 1

2y .

(5.53)

Thus, we get

(δML)il = λ5v
2

16π2

3∑
j=1

(
∆(η)

)
ji

(
∆(η)

)
jl

mRj

m2
0

1
1− m2

Rj

m2
0

1−
m2
Rj

m2
0

1
m2
Rj

m2
0
− 1

ln
(
m2

0
m2
Rj

)
→ λ5v

2

32π2

3∑
j=1

(
∆(η)

)
ji

(
∆(η)

)
jl

1
mRj

. (5.54)

It should be noted that the results obtained in this thesis differ by a factor of 1/2 from
the original results in [23]. As discussed in [88] this additional factor is necessary due to
rescaling the real scalar fields by a factor of 1/√2.

A general feature of this model with three massive RH neutrinos is that all three
LH neutrinos become massive at one-loop level, if all Yukawa couplings are nonzero.
Moreover, the masses of the LH neutrinos are appropriately small (∼ 1 eV) due to

(i) the loop factor 1
16π2 ,

(ii) the small Yukawa couplings,

(iii) small coupling λ5 (∼ 10−4),

(iv) and the large seesaw scale mR ∼ 109 GeV.
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Of course the one-loop corrected mass matrix M (1)
D+M has to be diagonalized to write

down the mass eigenfields of the neutrinos. In the case of the scotogenic model this is a
rather simple task, since MR has been assumed diagonal and MD = 0. Hence, U (0) = 16

and the procedure done in section 4.2 simplifies to finding a matrix Ω of one-loop order,
according to

U = U (0)V (1) = (1 + ı̇Ω), (5.55)

such that
UTM

(1)
D+MU = m̂(1) = diag(mL1,mL2,mL3,mR1,mR2,mR3). (5.56)

Besides, this model also gives rise to dark matter candidates111. These can be fermionic
or bosonic, since the RH neutrinos or the real or imaginary part of the neutral component
of the scalar doublet η might be the lightest, but still very heavy, stable particle (LSP),
as pointed out in [23]. There, Ma briefly discussed the two possible scenarios, whether if
one of the RH neutrinos or one of the neutral scalars is the LSP.

(a) Let mR1 < mR2 < mR3 and mR1 < mρ,mσ, then νR1 is LSP and

η± → `±νR1,2,3, νR2 → `±`∓νR1, νR3 → `±`∓νR1,2,

will be observable decays.

(b) If otherwise mρ,mσ < mR1,2,3, observable decays will be

νR1,2,3 → `±η∓, η∓ → η0 +W∓.

Since ρ must be slightly heavier (δm2 = λ5v
2), this case would explain their coanni-

hilation in the early universe, according to [23].

5.2 Generalization of the Scotogenic Model

Now, in this last section the scotogenic model by E. Ma [23] will be generalized for
arbitrary numbers of scalar doublets

φk =
(
φ+
k

φ0
k

)
for k = 1, . . . , nH , (5.57)

ηk′ =
(
η+
k′

η0
k′

)
for k′ = 1, . . . , nη, (5.58)

where nH and nη denote the number of scalar doublets φk and ηk′ respectively. Analo-
gously to the special case discussed in the previous section, they transform evenly resp.
oddly under Z2, i.e.

φk → φk, ηk′ → −ηk′ (5.59)

for all k = 1, . . . , nH and all k′ = 1, . . . , nη.
111Hence, Ma proposed that neutrino masses are due to the existence of dark matter. Therefore the name

scotogenic means caused by darkness.
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5.2.1 Generalized Scalar Sector and Yukawa Interactions

Again analogously, we assume the VEV’s to be

〈0|φ0
k|0〉 = vk√

2
for k = 1, . . . , nH , (5.60)

〈0|η0
k′ |0〉 = 0 for k′ = 1, . . . , nη, (5.61)

and hence, we find the following parametrization for the neutral components:

φ0
k =vk + hk + ı̇gk√

2
for k = 1, . . . , nH , (5.62)

η0
k′ =ρk

′ + ı̇σk′√
2

for k′ = 1, . . . , nη. (5.63)

For the full scalar potential we generalize the one given in (5.11) according to the general
form we derived in (3.63). Thus, we obtain

V =
nH∑
i,j=1

m2(1)
ij φ

†
iφj +

nH∑
i,j,k,l=1

λ
(1)
ijkl

(
φ†iφj

) (
φ†kφl

)

+
nη∑

i′,j′=1
m2(2)

i′j′η
†
i′ηj′ +

nη∑
i′,j′,k′,l′=1

λ
(2)
i′j′k′l′

(
η†i′ηj′

) (
η†k′ηl′

)

+2
nH∑
i,j=1

nη∑
k′,l′=1

λ
(3)
ijk′l′

(
φ†iφj

) (
η†k′ηl′

)
+ 2

nH∑
i,l=1

nη∑
j′,k′=1

λ
(4)
ij′k′l

(
φ†iηj′

) (
η†k′φl

)

+
 nH∑
i,k=1

nη∑
j′,l′=1

λ
(5)
ij′kl′

(
φ†iηj′

) (
φ†kηl′

)
+ H.c.

 ,

(5.64)

where all coefficients fulfil conditions similar to (3.64). In particular, to ensure Hermiticity
of the terms in the potential, they obey the following relations112:

m2(1)
ij =

(
m2(1)

ji

)∗
, λ

(1)
ijkl = λ

(1)
klij, λ

(1)
ijkl =

(
λ

(1)
jilk

)∗
, (5.65)

m2(2)
i′j′ =

(
m2(2)

j′i′

)∗
, λ

(2)
i′j′k′l′ = λ

(2)
k′l′i′j′ , λ

(2)
i′j′k′l′ =

(
λ

(2)
j′i′l′k′

)∗
, (5.66)

λ
(3)
ijk′l′ =

(
λ

(3)
jil′k′

)∗
, λ

(4)
ij′k′l =

(
λ

(4)
lk′j′i

)∗
, λ

(5)
ij′kl′ = λ

(5)
kl′ij′ . (5.67)

All terms in this potential have to be invariant under Z2 transformations, therefore
all terms linear or cubic in ηk′ have to vanish, which means the corresponding coupling
constants have to be zero. The superscripts of the couplings indicate their correspondence
to the constants used in (5.11). Note that there is no mixing of φk and ηk′ doublets to
scalar mass eigenfields, because of the Z2 symmetry. Therefore, the only mass terms for
the φk doublets come from the first line of the potential and the procedure is analogous to
section 3.2.1. The mass terms for the ηk′ doublets originate from the remaining lines of the
potential. Only the second term in the second line will not contribute since 〈0|η0

k′ |0〉 = 0.

112Note that especially λ(3)
ijk′l′ , λ

(4)
ij′k′l and λ

(5)
ij′kl′ fulfil not exactly the same conditions given in (3.64), since

interchanging of primed and unprimed indices is not possible, because they indicate the different fields
φk and ηk′ respectively.
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The mass terms for the η0
k′ are

V (η0)
mass = 1

2

nη∑
i′,j′=1

m2(2)
i′j′ [(ρi′ρj′ + σi′σj′) + ı̇ (ρi′σj′ − σi′ρj′)]

+ 1
2

nH∑
i,j=1

nη∑
k′,l′=1

λ
(3)
ijk′l′v

∗
i vj [(ρk′ρl′ + σk′σl′) + ı̇ (ρk′σl′ − σk′ρl′)]

+ 1
2

nH∑
i,l=1

nη∑
j′,k′=1

λ
(4)
ij′k′lv

∗
i vl [(ρj′ρk′ + σj′σk′) + ı̇ (ρj′σk′ − σj′ρk′)]

+ 1
4


nH∑
i,k=1

nη∑
j′,l′=1

λ
(5)
ij′kl′v

∗
i v
∗
k [(ρj′ρl′ − σj′σl′) + ı̇ (ρj′σl′ + σj′ρl′)] + H.c.

 .

(5.68)

In the next step we rename the indices of the last three lines to match the notation in the
first one to collect terms quadratic in the fields ρi′ , ρj′ and σi′ , σj′ as well as mixed terms
properly. Hence, we find

V (η0)
mass = 1

2

nη∑
i′,j′=1

m2(2)
i′j′ [(ρi′ρj′ + σi′σj′) + ı̇ (ρi′σj′ − σi′ρj′)]

+ 1
2

nH∑
k,l=1

nη∑
i′,j′=1

λ
(3)
kli′j′v

∗
kvl [(ρi′ρj′ + σi′σj′) + ı̇ (ρi′σj′ − σi′ρj′)]

+ 1
2

nH∑
k,l=1

nη∑
i′,j′=1

λ
(4)
kj′i′lv

∗
kvl [(ρi′ρj′ + σi′σj′) + ı̇ (ρi′σj′ − σi′ρj′)]

+ 1
4


nH∑
k,l=1

nη∑
i′,j′=1

λ
(5)
ki′lj′v

∗
kv
∗
l [(ρi′ρj′ − σi′σj′) + ı̇ (ρi′σj′ + σi′ρj′)]

+
nH∑
k,l=1

nη∑
i′,j′=1

(
λ

(5)
ki′lj′

)∗
vkvl [(ρi′ρj′ − σi′σj′)− ı̇ (ρi′σj′ + σi′ρj′)]

 ,

(5.69)

and rearranging the terms gives

V (η0)
mass = 1

2

nη∑
i′,j′=1

[
m2(2)

i′j′ + v∗kvl
(
λ

(3)
kli′j′ + λ

(4)
kj′i′l

)
+ 1

2
(
λ

(5)
ki′lj′v

∗
kv
∗
l +

(
λ

(5)
ki′lj′v

∗
kv
∗
l

)∗)]
ρi′ρj′

+ 1
2

nH∑
k,l=1

nη∑
i′,j′=1

[
m2(2)

i′j′ + v∗kvl
(
λ

(3)
kli′j′ + λ

(4)
kj′i′l

)
− 1

2
(
λ

(5)
ki′lj′v

∗
kv
∗
l +

(
λ

(5)
ki′lj′v

∗
kv
∗
l

)∗)]
σi′σj′

+ ı̇

2

nH∑
k,l=1

nη∑
i′,j′=1

[
m2(2)

i′j′ + v∗kvl
(
λ

(3)
kli′j′ + λ

(4)
kj′i′l

)
+ 1

2
(
λ

(5)
ki′lj′v

∗
kv
∗
l −

(
λ

(5)
ki′lj′v

∗
kv
∗
l

)∗)]
ρi′σj′

+ ı̇

2

nH∑
k,l=1

nη∑
i′,j′=1

[
−m2(2)

i′j′ − v∗kvl
(
λ

(3)
kli′j′ + λ

(4)
kj′i′l

)
+ 1

2
(
λ

(5)
ki′lj′v

∗
kv
∗
l −

(
λ

(5)
ki′lj′v

∗
kv
∗
l

)∗)]
σi′ρj′ .

We introduce, similarly to (5.16) in the special case before, the matrices

M2(2) =
(
m2(2))

i′j′
,

K ′
(η)
i′j′ =

nH∑
k,l=1

λ
(4)
kj′i′lvkv

∗
l ,

Λ(η)
i′j′ =

nH∑
k,l=1

λ
(3)
kli′j′v

∗
kvl,

K
(η)
i′j′ =

nH∑
k,l=1

λ
(5)
ki′lj′v

∗
kv
∗
l ,

(5.70)
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withM2(2), Λ(η) and K ′(η) being Hermitian and K(η) being symmetric due to the relations
(5.65) of the coefficients. Thus, we know

ReM2(2)
i′j′ = ReM2(2)

j′i′ , ImM2(2)
i′j′=− ImM2(2)

j′i′ , (5.71)

ReΛ(η)
i′j′ = ReΛ(η)

j′i′ , ImΛ(η)
i′j′ =− ImΛ(η)

j′i′ , (5.72)

ReK ′(η)
i′j′ = ReK ′(η)

j′i′ , ImK ′(η)
i′j′ =− ImK ′(η)

j′i′ , (5.73)

ReK(η)
i′j′ = ReK(η)

j′i′ , ImK(η)
i′j′ = ImK(η)

j′i′ . (5.74)

Furthermore, we can simplify the terms with λ(5)
ki′lj′ , because

nH∑
k,l=1

(
λ

(5)
ki′lj′v

∗
kv
∗
l +

(
λ

(5)
ki′lj′v

∗
kv
∗
l

)∗)
= K

(η)
i′j′ +K

(η)
i′j′
∗

= 2ReK(η)
i′j′ (5.75)

nH∑
k,l=1

(
λ

(5)
ki′lj′v

∗
kv
∗
l −

(
λ

(5)
ki′lj′v

∗
kv
∗
l

)∗)
= K

(η)
i′j′ −K

(η)
i′j′
∗

= 2ı̇ImK(η)
i′j′ . (5.76)

We use this knowledge on symmetry behaviour in the next step and recognize that the
field part of the first two lines in V (η0)

mass above is symmetric in i′ ↔ j′, whereas the one of
the last two lines is antisymmetric. So the contributing parts come from purely symmetric
or antisymmetric combinations and the potential reduces to:

V (η0)
mass = 1

2

nη∑
i′,j′=1

[
ReM2(2)

i′j′ + ReΛ(η)
i′j′ + ReK ′(η)

i′j′ + ReK(η)
i′j′

]
ρi′ρj′

+ 1
2

nη∑
i′,j′=1

[
ReM2(2)

i′j′ + v∗kvlReΛ(η)
i′j′ + ReK ′(η)

i′j′ − ReK(η)
i′j′

]
σi′σj′

+ ı̇2

2

nη∑
i′,j′=1

[
ImM2(2)

i′j′ + ImΛ(η)
i′j′ + ImK ′(η)

i′j′ + ImK(η)
i′j′

]
ρi′σj′

+ ı̇2

2

nη∑
i′,j′=1

[
−ImM2(2)

i′j′ − ImΛ(η)
i′j′ − ImK ′(η)

i′j′ + ImK(η)
i′j′

]
σi′ρj′ .

(5.77)

In the next step we can use the symmetry properties of the real and imaginary parts of
the matrices (5.71) and rewrite the last line as

+ ı̇2

2

nη∑
i′,j′=1

[
ImM2(2)

j′i′ + ImΛ(η)
j′i′ + ImK ′(η)

j′i′ + ImK(η)
j′i′

]
σi′ρj′ . (5.78)

If we rename the indices i′ ↔ j′ in this line, then we can sum up the last two lines and
obtain

V (η0)
mass = 1

2

nη∑
i′,j′=1

[
ReM2(2)

i′j′ + ReΛ(η)
i′j′ + ReK ′(η)

i′j′ + ReK(η)
i′j′

]
ρi′ρj′

+ 1
2

nη∑
i′,j′=1

[
ReM2(2)

i′j′ + v∗kvlReΛ(η)
i′j′ + ReK ′(η)

i′j′ − ReK(η)
i′j′

]
σi′σj′

+ 2ı̇2
2

nη∑
i′,j′=1

[
ImM2(2)

i′j′ + ImΛ(η)
i′j′ + ImK ′(η)

i′j′ + ImK(η)
i′j′

]
ρi′σj′ .

(5.79)
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Finally, we introduce again matrices A, B and C as

A =Re(M2(2) + Λ(η) +K ′
(η)) + ReK(η), (5.80)

B =Re(M2(2) + Λ(η) +K ′
(η))− ReK(η), (5.81)

C =Im(M2(2) + Λ(η) +K ′
(η)) + ImK(η) (5.82)

in analogy to (3.90)-(3.92) in section 3.2.1. Note that the matrices A and B are real and
symmetric per definition, whereas C is just real. Using this notation, the mass term of
the potential can be written in a very compact form as

V (η0)
mass = 1

2

nη∑
i′,j′=1

Ai′j′ρi′ρj′ +Bi′j′σi′σj′ + 2Ci′j′ρi′σj′ , (5.83)

and the mass matrix for the neutral scalar fields of η−type is given by

M2
η =

 A C

CT B

 . (5.84)

The mass eigenvalue equation is also given analogously to (3.95) by

M2
0

(
Re b
Im b

)
=
 A C

CT B

(Re b
Im b

)
= m2

b

(
Re b
Im b

)
, (5.85)

wherem2
b denote the masses of the neutral real scalar mass eigenfields generated by mixing

of the η0
k′ fields. The eigenvectors b are nη × 1 complex vectors and if none of the 2nη

mass eigenvalues m2
b is degenerate, i.e. there are 2nη neutral scalar mass eigenfields, there

are of course also 2nη eigenvectors b.
The generalization of the Yukawa Lagrangian in (5.25) is then given by

−LYuk =
nH∑
k=1

(φ†k`RΓ(φk) + φ̃†kνR∆(φk))DL + H.c.

+
nη∑
k′=1

(η†k′`RΓ(ηk′ ) + φ̃†kνR∆(ηk′ ))DL + H.c. .
(5.86)

Now only considering the neutrino part of this Lagrangian the only terms remaining are
analogously to (5.29)

−L(ν)
Yuk =

nη∑
k′=1

νR∆(ηk′ )η0
k′νL + νLη

0
k′
∗∆(ηk′ )†νR, (5.87)

where the Z2 symmetry again leads to vanishing couplings ∆(φk) and hence MD = 0.

5.2.2 One-Loop Neutrino Masses

Therefore, the one-loop correction to the neutrino masses is given by the formula (4.78),
but since MD = 0 the second term does not contribute. Moreover, only the neutral scalar
mass eigenfields from the ηk′ doublets contribute to the first part, because the φk doublets
do not contribute since ∆(φk) = 0.
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Hence, the final result in the generalized scotogenic model for the one-loop corrections
to the neutrino masses is given by

δML =
∑
b

1
32π2 ∆(η)T

b U
∗
Rm̂

ln rb
rb − 1U

†
R∆(η)

b , (5.88)

with rb = m̂2

m2
b
and ∆(η)

b = ∑
k′ bk′∆(ηk′ ) defined analogously to (4.47) and (3.114). As in

the previous section, it can be assumed that the diagonalized tree-level neutrino mass
matrix m̂ equals the undiagonalized mass matrix M (0)

D+M, if MR is assumed diagonal and
m̂ = diag(m1R,m2R,m3R).

Finally it should be investigated what happens, if the couplings λ(5)
ij′kl′ are zero. It has

been discussed before in the special case nH = 1 = nη, a vanishing Yukawa coupling
λ5 causes a degeneracy of the mass eigenvalues, i.e. there is only one mass eigenvalue.
Therefore, no one-loop corrections to the neutrino masses appear and the neutrinos remain
massless. It will be shown in the following that this is also true in the generalized model.

If λ(5)
ij′kl′ = 0, then K = 0 and hence

A = Re(µ2 + Λ +K ′) = B. (5.89)

Per definition we know that A and B are real and symmetric nη × nη matrices, whereas
C is a real and in this case also an antisymmetric nη × nη matrix. The mass eigenvalue
equation then can be written as

M2
0

(
Reb
Imb

)
=
 A C

−C A

(Reb
Imb

)
= m2

b

(
Reb
Imb

)
. (5.90)

Thus,M2
0 is a real symmetric 2nη × 2nη matrix and fulfils the following equation113

STM2
0S =M2

0, (5.91)

for the anti-symmetric matrix

S =
 0 1nη

−1nη 0

 , (5.92)

SST = 12nη . (5.93)

If b = x+ ı̇y is eigenvector ofM2
0 to the eigenvalue m2

b then we find

M2
0

(
−y
x

)
= M2

0S

(
x

y

)
(5.93)= SSTM2

0S

(
x

y

)
(5.91)= SM2

0

(
x

y

)
(5.90)= Sm2

b

(
x

y

)
= m2

b

(
−y
x

)
. (5.94)

Thus, if b = x + ı̇y is eigenvector to m2
b then b′ = −y + ı̇x is also eigenvector to the

113Great thanks to Prof. Grimus for these crucial observations.
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same eigenvalue and they are linear independent, since they are orthogonal(
x

y

)
·
(
−y
x

)
= 0. (5.95)

Hence, the eigenvalue m2
b is at least two-fold degenerate and the eigenspace Eb has at

least dimension 2. The pairs of eigenvectors b = x+ ı̇y and b′ = −y + ı̇x are related via

S

(
x

y

)
=
(
−y
x

)
, b′ = ı̇b. (5.96)

They form a complete set of orthonormal vectors spanning the eigenspaces and hence, all
eigenspaces have even dimension. As we will see in the following those pairings will cause
vanishing one-loop contributions to the neutrino masses.

Now we can express the Yukawa Lagrangian (5.87) in terms of scalar mass eigenfields.
Adapting the result in (3.101) we obtain

η0
k = 1√

2

(∑
b

bkS
0
b +

∑
b′
b′kS

0
b′

)
=
∑
b,b′

(
bkS

0
b + ı̇bkS

0
b′

)
, (5.97)

where we used the relation (5.96) above. Then we achieve in the Yukawa Lagrangian

−L(ν)
Yuk = 1√

2

nη∑
k=1

∑
b,b′

νR∆(ηk)
(
bkS

0
b + ı̇bkS

0
b′

)
νL + H.c.

= 1√
2
∑
b,b′

νR
(
∆(η)
b S0

b + ı̇∆(η)
b S0

b′

)
νL + H.c. ,

(5.98)

where we used again the definition of ∆b given in (3.114).
If we now apply all this to the formula for the one-loop mass correction (4.78) resp. to

the result we achieved before in (5.88) and use m2
b = m2

b′ , we get

δML =
∑
b

1
32π2 (∆(η)

b )TU∗Rm̂
ln rb
rb − 1U

†
R∆(η)

b

+
∑
b′

1
32π2 (ı̇∆(η)

b )TU∗Rm̂
ln rb′
rb′ − 1U

†
Rı̇∆

(η)
b

=
∑
b

1
32π2 (∆(η)

b )TU∗Rm̂
ln rb
rb − 1U

†
R∆(η)

b

+
∑
b′

1
32π2 (ı̇∆(η)

b )TU∗Rm̂
ln rb
rb − 1U

†
Rı̇∆

(η)
b

=
∑
b

1
32π2 (∆(η)

b + ı̇∆(η)
b )TU∗Rm̂

ln rb
rb − 1U

†
R(∆(η)

b + ı̇∆(η)
b )

=
∑
b

1
32π2 (1 + ı̇)2︸ ︷︷ ︸

=0

∆(η)
b

T
U∗Rm̂

ln rb
rb − 1U

†
R∆(η)

b = 0.

(5.99)

Hence, it has been shown that for vanishing Yukawa couplings λ(5)
ijkl in the generalized

model there are no one-loop mass corrections and the neutrinos remain massless even at
one-loop level.
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5.2.3 Generalized Fermion Sector

In the last step this model will be generalized for arbitrary numbers of LH neutrinos nL
and RH neutrinos nR. The Yukawa Lagrangian (5.87) for the neutrinos can be adapted
in the following way;

−L(ν)
Yuk =

nη∑
k′=1

nL∑
i=1

nR∑
j=1

νRj∆(ηk′ )
jiη

0
k′νLi + H.c. , (5.100)

where the Yukawa couplings114 ∆(ηk′ ) are now nR × nL matrices as in section 3.2.2.
In the case of arbitrary nL and nR we like to find a formula to describe the numbers of

neutrinos remaining massless at one-loop level, analogously to (F.50). First we recognize
of course, due to the Z2 symmetry the nR× nL Dirac mass matrix MD is zero and hence,
the number of neutrinos remaining massless at tree-level is nL in contrary to the model
without this symmetry, where this number is nL − nR.

In the generalized scotogenic model the tree-level neutrino mass matrix M (0)
D+M = m̂ is

diagonal, since we can assume MR to be diagonal. Hence, no diagonalization at tree-level
is necessary and the diagonalizing matrix is simply U (0) = 1nL+nR . In this case we can
not apply the approximation (F.70) for calculating one-loop masses, but we can easily
diagonalize the one-loop corrected neutrino mass matrix

M
(1)
D+M =

δML 0

︸︷︷︸
nL

0 ︸︷︷︸
nR

MR

 }nL
}nR

, (5.101)

via Schur’s theorem (theorem E.2.2) by a (nL + nR)× (nL + nR) unitary matrix

U (1) =
U (1)

L 0
0 1nR

 , (5.102)

with U (1)
L being a unitary nL × nL matrix per construction, such that

U (1)TM
(1)
D+MU

(1) = diag(mL1, . . . ,mLnL ,mR1, . . . ,mRnR). (5.103)

Thus, the interesting part is the upper left nL × nL block matrix, where

U
(1)
L

T
δMLU

(1)
L = diag(mL1, . . . ,mLnL). (5.104)

To find the number of neutrinos remaining massless at one-loop level we investigate the
column vectors uLi for i = 1, . . . , nL of U (1)

L , which give

uTLiδMLuLi = mLi. (5.105)

The nL × nL one-loop correction matrix δML in the most general scotogenic model is

114We only considered here the neutrino part of the Yukawa Lagrangian, but in the general Yukawa
Lagrangian ∆(φk) = 0nR×nL and the couplings of the charged leptons Γ(φk) and Γ(ηk′ ) are nL × nL
matrices.
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analogous to (5.88)

δML =
∑
b

1
32π2 ∆(η)T

b U
∗
Rm̂

ln rb
rb − 1U

†
R∆(η)

b , (5.106)

but now ∆(η)
b are nR × nL matrices, U∗R is nR × (nL + nR) and m̂ is of course

(nL + nR)× (nL + nR). Hence, the matrix structure of δML is analogously to (F.46)

δML =
∑
b

nη∑
k=1

∆(ηk)T m̃b∆(ηk), (5.107)

and therefore

mLi = uLi
T δMLuLi =

∑
b

nη∑
k=1

uLi
T∆(ηk)T m̃b∆(ηk)uLi. (5.108)

The LH neutrino masses mLi remain zero at one-loop level, if the column vectors
uLi ∈ ker(∆ηk) for all k = 1, . . . , nη and if all Yukawa couplings ∆(ηk) are assumed
linearly independent. Therefore, we can apply the same procedure as done in appendix
F.7 in equations (F.51)-(F.55) and we find analogously

n0 = max(0, nL − nRnη) , (5.109)

as the number of neutrinos remaining massless after one-loop correction in the most
general scotogenic model.

It should be noted that in this model the number of scalar doublets φk does not have
any effect on the number of massive neutrinos. Furthermore, we can also see that for
example in the case nL = 3, nR = 2 and nη = 2 all LH neutrinos will acquire mass after
one-loop corrections.
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6 Summary

In this thesis we discussed extensions of the SM, to explain neutrino masses. In the most
general set up we considered nL active LH neutrinos and extended the particles content
of the SM by nR sterile RH neutrinos and nH Higgs doublets. In section 2 it has been
discussed that in such a model a Majorana mass term for the RH neutrinos is allowed.
Furthermore, since RH neutrinos have been included, the Yukawa Lagrangian leads to a
Dirac neutrino mass term analogously to the mass term for the charged leptons in the
SM. In this thesis we focused on the seesaw mechanism of type I, and hence we excluded
a Majorana mass term for the LH neutrinos. To be able to employ this mechanism, the
masses of the RH neutrinos are assumed to be much larger than the EW scale. The
general mass term is then given in (3.3) and the neutrino fields are Majorana fields. The
neutrino mass matrix MD+M is the symmetric (nL + nR)× (nL + nR) matrix

MD+M =
 0 MT

D

︸︷︷︸
nL

MD ︸︷︷︸
nR

MR

 }nL
}nR

. (6.1)

where the block matrices are the Dirac mass matrix MD and the Majorana mass matrix
MR for RH neutrino singlets.

It has been shown in section 3.1.2 that light (LH) and heavy (RH) neutrino masses can
be disentangled such that the neutrino mass matrix appears as a block diagonal matrixMlight 0

0 Mheavy

 , (6.2)

with Mlight being the nL × nL mass matrix of the light neutrinos and Mheavy the nR × nR
mass matrix of the heavy neutrinos. It has been shown that in the lowest order of the
inverse seesaw scale, i.e. m−1

R , the light neutrino mass matrix is given by the seesaw
formula

Mlight ≈ −MT
DM

−1
R MD, (6.3)

whereas Mheavy is just the RH neutrino mass matrix MR in this approximation. Since the
RH neutrinos are assumed to be very heavy, which means the eigenvalues of MR are of
the order of the very large seesaw scale, the seesaw formula shows that the masses of the
light neutrinos will be very light indeed.

Nevertheless, if nL > nR, then there are at least nL−nR neutrinos remaining massless
at tree level, but including radiative corrections will lead to more massive LH neutrinos.
Therefore, one-loop corrections to the seesaw mechanism have been the focus of this thesis.
It has been shown that the corrected neutrino mass matrix is given by

MD+M =
δML MT

D

MD MR

 . (6.4)
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6 SUMMARY

The correction δML has been derived in equation (4.78) as

δML =
∑
b 6=bZ

1
32π2 ∆T

b U
∗
Rm̂

ln rb
rb − 1U

†
R∆b + 3g2

64π2m2
W

MT
DU

∗
Rm̂

ln rz
rz − 1U

†
RMD. (6.5)

The correction has contributions from the scalar mass eigenfields as well as from the Z0

boson. In terms of mass scales this result means

δmL ∼
1

16π2

(∑
b

m2
b

mR

ln m
2
R

m2
b

+ m2
D

mR

ln m
2
R

m2
Z

)
, (6.6)

with neutral scalar masses mb and the mass of the Z0 boson mZ . Besides the factor
(16π2)−1 and the logarithmic structure, which come from the one-loop calculations, the
m−1
R dependence should be noticed. The factors m2

b

mR
and m2

D

mR
are both of the same order

as the scale of the light neutrino masses given by the seesaw formula. In general, includ-
ing one-loop corrections leads to n0 = max(0, nL − nRnH) massless neutrinos, whereas
(nL − nR − n0) are massive at one-loop level, which has been shown in appendix F.7.
These results have been examined by employing them to a special model with nL = 3 and
a minimal extension nR = 1 and nH = 2. In this special case one neutrino acquires mass
at tree-level, a second one at one-loop level and the third one will remain massless.

Finally, in section 5, all general results have been used to investigate a special type
of SM extension, i.e. the scotogenic model by E. Ma. An additional exact Z2 symmetry
does not allow Dirac mass terms and all LH neutrinos remain massless at tree-level.
Nevertheless, at one-loop level light neutrino masses are generated. In the original model
of Ma, the SM with nL = 3 is extended by three RH neutrinos nR = 3 and one scalar
doublet η. The added particles transform oddly under Z2, whereas the SM particles
transform evenly. Because of the Z2 symmetry, only the two scalar mass eigenfields of
η contribute to the one-loop neutrino mass correction. The scalar mass eigenfields are
exactly the real and imaginary part of η and their masses only differ by their λ5 couplings.
This means the mass split is given by λ5v, where v is the VEV of the Higgs doublet.
Therefore, only if λ5 6= 0 the neutrinos become massive at one-loop level.

This model has been generalized for an arbitrary numbers of RH neutrinos nR and of
scalar doublets of the SM Higgs doublet-type nH , which transform evenly under Z2, as
well as for an arbitrary number nη of scalar doublets of η-type, which transform oddly
under Z2. It has been shown that if the λ5-type couplings are zero, there will be no
massive neutrinos at one-loop level, analogous to the special case. This happens because
the scalar mass eigenfields split exactly into pairs, such that their contributions to the
one-loop mass correction cancel. Besides, for the generally extended fermion sector it has
been found in (5.109) that the number of neutrinos remaining massless at one-loop level
is given by n0 = max(0, nL − nRnη), analogously to the result obtained before.
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A Appendix - Gamma Matrices

This section is a summary of the most relevant facts on gamma matrices found in
[25, p.215f, 224, 239], [26, p.40ff, 50, 133ff], [28, p.89ff] and [33, p.327ff]. For a better
understanding of the more mathematical aspects of the Clifford algebra, which is formed
by the Dirac matrices, we like to refer to some literature by D. Hestenes [89],[90] and [91].

A.1 Definition

A.1.1 The Set of Dirac Matrices

When deriving the Dirac equation the necessity of some anticommuting objects occurs,
which satisfy

γ0γ1 = −γ1γ0, γ0γ2 = −γ2γ0, γ0γ3 = −γ3γ0, (A.1)

γ1γ2 = −γ2γ1, γ1γ3 = −γ3γ1, γ2γ3 = −γ3γ2, (A.2)

and also
(γ0)2 = +14, (A.3)

(γi)2 = −14. (A.4)

This can be written in a more compact form

{γµ, γν} = γµγν + γνγµ = 2gµν , (A.5)

where we used the notation {A,B} = AB+BA for the anticommutator and the Minkowski
metric115 gµν = diag(1,−1,−1,−1). "A set of objects γµ (clearly d of them in d-
dimensional spacetime, in our case d = 4) satisfying this anticommutation relation is
said to form a Clifford algebra" [28, p.90].

Furthermore, the Dirac matrices can be normalized such that γ0 is Hermitian while γi

for i = 1, 2, 3 is anti-Hermitian116, i.e.
(γ0)† = +γ0, (A.6)

(γi)† = −γi, (A.7)

which can be also expressed by the Hermiticity condition

(γµ)† = γ0γµγ0 ∀µ. (A.8)

115Note that a different convention for the Minkowski metric requires a difference in normalization
for the Dirac matrices. As mentioned in [36, p.519], in the chiral basis the relationship is
γµBjorken Drell = ı̇γµPauli. The Bjorken Drell convention is the mostly minus convention, which is used
in this thesis. The Pauli convention is also called mostly plus since the metric tensor is then defined
as gµν = diag(−1,+1,+1,+1) [36, p.518].

116Note that when Pauli convention for the Minkowski metric is used, γ0 is anti-Hermitian, whereas γi
are Hermitian [36, p.519].
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A APPENDIX - GAMMA MATRICES

So far the γ-matrices have been defined in their contravariant form. We now define the
corresponding covariant matrices by the relation

γµ = gµνγ
ν = {+γ0,−γ1,−γ2,−γ3}. (A.9)

A.1.2 The Fifth Gamma Matrix

A fifth anticommuting γ-matrix is defined117 by

γ5 ≡ ı̇γ0γ1γ2γ3, (A.10)

and γ5 has the properties
{γµ, γ5} = 0 ∀µ, (A.11)

(γ5)2 = 1, (A.12)

γ5† = γ5. (A.13)

We can also define the covariant form of the fifth matrix γ5 through

γ5 ≡
ı̇

4!ελµνπγ
λγµγνγπ = γ5, (A.14)

"where the completely antisymmetric alternating symbol ελµνπ is equal to +1 for (λ, µ, ν, π)
an even permutation of (0, 1, 2, 3), is equal to −1 for an odd permutation, and vanishes
if two or more indices are the same" [33, p.329]. It satisfies the following contraction
identities:

εαβµνεαβστ = −2(δµν δντ − δµτ δνσ), (A.15)

εαβγνεαβγτ = −6δντ , (A.16)

εαβγδεαβγδ = −24. (A.17)

A.2 Properties

In calculations, where γ-matrices are involved it is very useful to know the algebraic
identities below, which can be easily derived from the anticommutation relation (A.5):

A.2.1 Contraction Theorems

γµγ
µ = 4, (A.18)

γµγ
νγµ = −2γν , (A.19)

γµγ
νγλγµ = 4gνλ, (A.20)

γµγ
νγλγσγµ = −2γσγλγν , (A.21)

γµγ
αγβγνγδγµ = 2(γδγαγβγν + γνγβγαγδ). (A.22)

117As noted in [36, p.520], the sign of this matrix is convention dependent, but not a consequence of a
particular choice of Minkowski metric .

106



A.3 Representations

A.2.2 Trace Theorems

Tr(γαγβ . . . γµγν) = 0 if (. . .) contains an odd number of γ−matrices, (A.23)

Tr(1) = 4, (A.24)

Tr(γµγν) = 4gµν , (A.25)

Tr(γµγνγλγσ) = 4(gµνgλσ − gµλgνσ + gµσgνλ), (A.26)

Tr(γ5γµ) = Tr(γ5γµγνγλ) (A.23)= 0, (A.27)

Tr(γ5) = 0, (A.28)

Tr(γ5γµγν) = 0, (A.29)

Tr(γ5γµγνγλγσ) = 4ı̇εµνλσ. (A.30)

A.3 Representations

So far we have discussed the γ-matrices in a representation-free way, relying only on the
anticommutation relation (A.5) and the Hermiticity condition (A.8) of the γ-matrices.
There are infinitely many ways of writing γµ (µ = 0, . . . , 3) as 4 × 4 matrices such that
equations (A.5) and (A.8) hold. Nevertheless, there exists, up to an equivalence given
by a similarity transformation, only one unique complex matrix representation , which is
irreducible.

A.3.1 Pauli’s Fundamental Theorem

The similarity transformation for this equivalence of representations is stated in Pauli’s
fundamental theorem for gamma matrices, which can be found e.g. in [92, p.54f]

Theorem A.3.1: If γµ (µ = 0, . . . , 3) and γ̃µ (µ = 0, . . . , 3) are two sets of matrices,
which both satisfy the anticommutation relation(A.5), i.e. {γµ, γν} = 2gµν = {γ̃µ, γ̃ν},
then the there exists a nonsingular matrix S (called the similarity transformation) such
that

γ̃µ = SγµS−1 , (A.31)

and S is unique up to a multiplicative constant118.
If the two sets of matrices fulfil also the Hermiticity condition (A.8), then the similarity

transformation S can be chosen to be unitary and the transformation can be written as

γ̃µ = SγµS†. (A.32)

Proof. For a proof see e.g. [93, p.17f].

Thus, since −γµT and γµ† also satisfy the condition (A.5), there exist matrices C and

118And hence we can always choose detS = +1.
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A APPENDIX - GAMMA MATRICES

A such that

−γµT = C−1γµC, (A.33)

γµ† = A−1γµA, (A.34)

where C appears as charge conjugation matrix in the discussion on Majorana spinors
in section 1.2.5. Finally we shall introduce three particular representations for Dirac
matrices which are useful in practice119. All of them are written in terms of the Pauli
2× 2 spin matrices

σ1 =
0 1

1 0

 , σ2 =
0 −ı̇
ı̇ 0

 , σ3 =
1 0

0 −1

 . (A.35)

Note that in these three representation γ0 is not only Hermitian but also symmetric, i.e.

γ0 = γ0T . (A.36)

A.3.2 Dirac-Pauli Representation

In this representation the Dirac γ-matrices can be written as

γ0 =
12 0

0 −12

 , γi =
 0 σi

−σi 0

 , γ5 =
 0 12

12 0

 . (A.37)

A.3.3 Weyl or Chiral Representation

This is another common and very convenient choice where γ5 is diagonal

γ0 =
 0 12

12 0

 , γi =
 0 σi

−σi 0

 , γ5 =
12 0

0 −12

 . (A.38)

A.3.4 Majorana Representation

There is also a third kind of basis in which the Dirac matrices are purely imaginary,
whereas the spinors in the Majorana representation are real:

γ0 =
 0 σ2

σ2 0

 , γ1 =
ı̇σ3 0

0 ı̇σ3

 ,
γ2 =

 0 −σ2

σ2 0

 , γ3 =
−ı̇σ1 0

0 −ı̇σ1

 , γ
5 =

σ2 0
0 −σ2

 . (A.39)

119A elaborated discussion can be found in [94, p.85ff]
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B Appendix - Symmetries in Particle Physics

B.1 Parity Transformation

B.1.1 Motivation and Definition

A discussion of this topic can be found in [25, p.125f] and [26, p.65f]. First, one should
distinguish between reflections and inversions. Through reflections we produce mirror
images, where the plane of reflection, i.e. the mirror, can be chosen arbitrarily, whereas
through inversions "every point is carried through the origin to the diametrically opposite
location" [25, p.125]. This difference is visualized in figure 16 below. An inversion can be
also understood as a reflection followed by a rotation by 180◦. For our purpose we will use

Figure 16: Reflections and inversions. Reprinted from [25, p.126].

inversions to be able to discuss parity of objects like spinors, since inversion of a spinor
fields means reversing the momentum of a particle without flipping its spin. This causes
a change of chirality of the spinor field, i.e. under inversions a LH spinor is transformed
into a RH spinor and vice versa120.

Mathematically inversions can be described by a unitary linear operator P , called the
parity operator, which can be represented by a 3× 3 or 4× 4 matrix P acting on objects
in the three dimensional euclidean space E3 or in the four dimensional spacetime M4

respectively. For those three and four dimensional representations P the following holds:

PP † = P †P = 1, (B.1)

P = diag(−1,−1,−1) for E3, (B.2)

P = diag(1,−1,−1,−1) forM4. (B.3)

120Hence, since weak interaction is chiral, it is not invariant under parity, whereas strong and electromag-
netic exhibit such an invariance.
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The transformation of an object Θ in terms of the operator P is written as PΘP−1,
whereas for the matrix P acting on an object we simply write PΘ.

Furthermore, it is clear that applying the operator resp. the matrix twice leads to the
initial object

P2 = 1, resp. P 2 = 1, (B.4)

and hence it follows that the eigenvalues of P resp. P are ±1.

B.1.2 Parity in E3 of Scalars and Vectors

Now we should consider the behaviour of some customary objects like scalars and vectors
in three dimensions. In doing so, we find that we have to distinguish two types of each of
them. One kind is transforming in the ordinary way under parity, whereas the other one
is not. Therefore we will call the latter pseudoscalars or pseudovectors. Mathematically
we can distinguish them whether they have eigenvalue +1 (scalars and pseudovectors) or
eigenvalue −1 (vectors and pseudoscalars) and their transformation behaviour is shown
below in table 17.

Scalar : P (s) = s
Pseudoscalar : P (p) = − p
Vector (or polar vector) : P (~v) = − ~v
Pseudovector (or axial vector) : P (~a) = ~a

Table 17: Scalars and vectors under P -transformation. Reprinted from [25, p.127].

We should note that the cross product of two vectors is a pseudovector, and the dot
product of two vectors does not change sign under P whereas the dot product of a vector
and a pseudovector does. In a theory with parity invariance, we must never add a vector
to a pseudovector121. We might want to classify some well-known quantities according to
this property in table B.1.2 below.

Scalar Pseudoscalar Vector Pseudovector
time helicity position angular momentum
mass magnetic charge momentum magnetic field
energy magnetic flux electric field magnetization

Table 18: Examples of some physical quantities and their behaviour under P .

121This is exactly the reason why the theory of weak interactions exhibits no invariance under parity
transformations.
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B.2 Charge Conjugation

B.1.3 Parity in M4 of Four-Vectors and Spinors

Finally, we should discuss the behaviour of four-vectors and spinors under parity trans-
formations. In order to ensure Lorentz invariance of the transformation we are obliged to
use the Lorentz covariant conjugate122 P . . .P−1 of the operator P .

The behaviour under P of four-vectors can be written down straight forward, whereas
the parity transformation of a spinor field ψ and its Dirac adjoint ψ can be obtained
through claiming that they have to satisfy the parity transformed Dirac equation. So in
their transformation behaviour 123 are shown in table 19 below.

Four-vector : PvµP−1 = (v0,−~v)T
Pseudo-four-vector : PwµP−1 = (w0, ~w)T
Dirac spinor : Pψ(t, ~x)P−1 = ηγ0ψ(t,−~x) =: ψP

Adjoint Dirac spinor : Pψ(t, ~x)P−1 = η∗γ0ψ(t,−~x) =: ψP

Table 19: Four-vectors and spinors under P-transformation.

In various calculations the transformation behaviour of the various Dirac field bilinears
under parity transformations will be important. Those bilinears are124:

ψψ, ψγµψ, ı̇ψ[γµ, γν ]ψ, ψγ5γµψ, ı̇ψγ5ψ. (B.5)

For the first two bilinears we obtain the behaviour of a scalar and vector respectively
under parity transformation, i.e.

PψψP−1 =|η|2ψγ0γ0ψ(t,−~x) = +ψψ(t,−~x), (B.6)

PψγµψP−1 = ψγ0γµγ0ψ(t,−~x) =

 +ψγµψ(t,−~x) for µ = 0,
−ψγµψ(t,−~x) for µ = 1, 2, 3.

(B.7)

Similarly we find for the last two bilinears a pseudoscalar and a pseudovector behaviour
respectively, i.e.

P ı̇ψγ5ψP−1 = ı̇ψγ0γ5γ0ψ(t,−~x) = −ı̇ψγ5ψ(t,−~x), (B.8)

Pψγµγ5ψP−1 =ψγ0γµγ5γ0ψ(t,−~x) =

 −ψγ
µγ5ψ(t,−~x) for µ = 0,

+ψγµγ5ψ(t,−~x) for µ = 1, 2, 3.
(B.9)

B.2 Charge Conjugation

Another important discrete symmetry is the particle-antiparticle symmetry, which is dis-
cussed e.g. in [25, p.128f], [26, 70f], [28, 97f] or [95, p.26ff,299ff].

122As it is used e.g. in [26, p.65]
123η are possible phases, which can be set to 1.
124The factors of ı̇ have been chosen to make all these quantities Hermitian.
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B.2.1 Charge Conjugation Operator

We should mention here briefly as it is done in [25, p.128f] that such a charge conjugation
operator C acting on the Fock space of particle states is a generalization of the notion of
changing the sign of the charge, under which classical electrodynamics is invariant and
can be implemented as a unitary linear operator like P . Charge conjugation not only
changes the sign of the electric charges but it rather flips the sign of all internal quantum
numbers (charge Q, baryon number B, lepton number L, leptonic family numbers L`,
strangeness s, charm c, beauty b, truth t) while leaving mass m, energy E, momentum p,
angular momentum J , spin Σ and helicity h untouched.

Most particles in nature are not eigenstates of C, in contrast to the parity operator P .
Nevertheless, there are particle states which are identical to their antiparticle state. This
is only possible for neutral particles and so these are the only possible eigenstates of the
charge conjugation operator C.

B.2.2 Charge Conjugation Matrix

After this discussion in terms of Hilbert space and state vectors we should investigate the
meaning of charge conjugation in terms of Dirac spinor theory. We want to discuss how
the operation of charge conjugation, CψC−1, can be performed on Dirac spinor fields and
we are searching for an appropriate definition of a charge conjugated Dirac spinor, which
we will denote by ψC . There are some authors like [28, p.97f], [30, p.71], [94, p.101ff],
[95, p.299f] and [96, p.108f], who have chosen a similar and quite accessible approach,
which we will follow here.

Quoting [94, p.101ff] we start by the fact that "the Dirac theory implies the existence of
particles and antiparticles", and hence the Dirac equation (1.19) must be invariant under
a symmetry, which interchanges particles and antiparticles, i.e. the transformation called
charge conjugation

ψ → ψC , (B.10)

which flips the sign of the charge q of the Dirac spinor field ψ. The fermion field ψ satisfies
the following equation125

[γµ (ı̇∂µ − qAµ)−m]ψ = 0, (B.11)

where Aµ denotes the electromagnetic vector potential. Hence, the charge conjugated
field ψC has to obey the same equation, but with the opposite sign of charge q

[γµ (ı̇∂µ + qAµ)−m]ψC = 0. (B.12)

Now we want to rewrite equation (B.11) for ψ to achieve such a form as in (B.12). If

125This equation for a Dirac field coupled to a EM vector potential is derived in appendix B.4.1 equation
(B.61). It is simply the Dirac equation (1.19) plus the interaction of the fermion and the EM vector
potential, i.e. the current.
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we take the complex conjugate of equation (B.11), we get

[−γµ∗ (ı̇∂µ + qAµ)−m]ψ∗ = 0. (B.13)

This equation has already the right sign of charge, but differs from the typical form of
the Dirac equation because we have −γµ∗.

This actually means we are in a different basis of Dirac matrices and we already know
from Pauli’s fundamental theorem (theorem A.3.1) that we are able to find a unitary
matrix S to switch into another Dirac matrix representation. For reasons, which will get
clearer later, we like to denote the matrix S as (Cγ0T ) and so we achieve the change of
the basis by

−γµ∗ =
(
Cγ0T

)−1
γµ
(
Cγ0T

)
. (B.14)

Now we proceed by multiplying equation (B.13) by this matrix (Cγ0T ) from the left
and use the relation (B.14) above to achieve(

Cγ0T
)

[−γµ∗ (ı̇∂µ + qAµ)−m]ψ∗ = 0,(
Cγ0T

) [(
Cγ0T

)−1
γµ
(
Cγ0T

)
(ı̇∂µ + qAµ)−m

]
ψ∗ = 0,

[γµ (ı̇∂µ + qAµ)−m]
(
Cγ0T

)
ψ∗ = 0,

(B.15)

which has the form we were looking for. Comparing (B.15) with the equation (B.12) for
the charge conjugated spinor we find

ψC =
(
Cγ0T

)
ψ∗, (B.16)

which tells us how the charge conjugated field is connected to the initial field. To empha-
sise this we may rewrite this result in terms of the adjoint spinor field (1.18)

CψC−1 = ψC =
(
Cγ0T

)
ψ∗ = Cψ

T
, (B.17)

and we call C the charge conjugation matrix.
Its defining property can be derived from equation (B.14), where we have introduced

the matrix C by rewriting it like

Cγ0Tγµ∗γ0T︸ ︷︷ ︸
(γ0γµ†γ0)T

C−1 = −γµ. (B.18)

Now we use the Hermiticity condition of the Dirac matrices (A.8) in a rewritten form:

γµ = γ0 (γµ)† γ0. (B.19)

Thus, inserting this in relation (B.18), we obtain the defining relation for C in any repre-
sentation of Dirac matrices as

(γµ)T = −C−1γµC . (B.20)

The calculation above, in order to obtain this defining relation in such a concise form,
explains why we have introduced the matrix C with a γ0T attached before.
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Besides this derivation of the charge conjugation matrix done above, we should also
reconsider how we introduced it in the section on the Majorana equation 1.2.5. In relation
(1.37), i.e.

UUT ≡ Cγ0T , (B.21)

we introduced the matrix C also with a γ0T attached, where U was the unitary matrix
introduced to perform the change of basis from the Majorana representation to an arbi-
trary representation of Dirac matrices where γµ need not to be purely imaginary. We had
in equation (1.34)

γµ = Uγ̃µU †, (B.22)

where γ̃µ denote the Dirac matrices in the Majorana representation and therefore they
fulfil the relation

γ̃µ∗ = −γ̃µ. (B.23)

We should show that the matrix C defined in (1.37) in section 1.2.5 is the same one we
have introduced here above. Thus we prove C defined via U must fulfil the same defining
relation (B.20). We start by expressing γ̃µ and taking the complex conjugate of equation
(1.34)

γ̃µ = U †γµU,

(γ̃µ)∗ = UT (γµ)∗U∗,

−γ̃µ = UT (γµ)∗U∗,

(B.24)

and in the last step we used relation (B.23). Now we can insert again (B.24) and use the
unitarity of U , i.e. UTU∗ = 1 = U∗UT to get

−U †γµU = UT (γµ)∗U∗,

U∗U †γµUUT = −(γµ)∗,

(UUT )†γµUUT = −(γµ)∗,

(UUT )−1γµUUT = −(γµ)∗,

(B.25)

where we used the fact that if U is unitary UUT is also unitary. Finally we insert the
relation (1.37) where we have introduced C and express −γµ by using the unitarity of
(CγT0 ):

(CγT0 )−1γµ(CγT0 ) = −(γµ)∗

−γµ = (CγT0 )(γµ)∗(CγT0 )−1.
(B.26)

This equation is actually the same as (B.18), if we remember the properties of γ0 given
in (A.3) and (A.6). Hence, the last steps to obtain the defining relation for C are the
same as above and we showed that the C matrix defined in (1.37) in section 1.2.5 ist the
charge conjugation matrix defined in this appendix.

Furthermore, we can also obtain from the defining relation (B.20)

C−1γ5C = γT5 . (B.27)
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Proof. We rewrite the defining relation (B.20) by

γµC = −C(γµ)T (B.28)

to see explicitly how to interchange the charge conjugation with a Dirac matrix.
Thus, for interchanging γ5 with C we obtain by using equation (B.28) four times:

γ5C = ı̇γ0γ1γ2γ3C = −ı̇γ0γ1γ2Cγ3T

= ı̇γ0γ1Cγ2Tγ3T = −ı̇γ0Cγ1Tγ2Tγ3T

= +ı̇Cγ0Tγ1Tγ2Tγ3T = Cγ5T .

(B.29)

It might be also useful to note that consequently we get

C−1γµγ5C = C−1γµCC−1︸ ︷︷ ︸ γ5C = −γµTγ5
T = − (γ5γ

µ)T = (γµγ5)T , (B.30)

where we used the anticommutator relation (A.11) in the last step.
Finally, we want to discuss some matrix properties of the charge conjugation matrix

C, which are also valid in any basis of Dirac matrices. The C is per definition a unitary
4× 4 matrix

C−1 = C†, (B.31)

and it can be shown from (B.20) that C has to be also antisymmetric

CT = −C. (B.32)

Proof. First we transpose the defining relation for C (B.20) and get

CTγµTC−1T = −γµ, (B.33)

and we express −γµT , which is also expressed in (B.20). Thus, we get

CTγµCT−1 = −γµT = C−1γµC. (B.34)

Hence, we can rewrite this as
CCT−1

γµ = γµCCT−1
, (B.35)

and find that the matrix CCT−1 commutes with all Dirac matrices. Therefore it also
commutes with all 16 linear independent matrices Γ = {14, γ5, γ

µ, γµγ5, σµν}, since these
matrices are all products of Dirac matrices (see (C.44)). The set of these matrices spans
the space of 4 × 4 matrices and thus, if CCT−1 commutes with all all of them, it has to
commute with all 4 × 4 matrices. This is only possible if CCT−1 is proportional to the
identity matrix, i.e.

CCT−1 = λ14, (B.36)

for λ ∈ C a priori. But we can find by multiplying the equation above with CT from the
right

C = λCT , (B.37)
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and by transposing and multiplying with C from the left we get

CT = λC. (B.38)

Thus, we obtain by inserting (B.38) into (B.37)

C = λ2C ⇒ λ2 = 1 ⇔ λ = ±1. (B.39)

To find the right sign for λ we multiply all nontrivial matrices from the spanning set
with C from the right and take the transposed:

(γµC)T = CTγµT
(B.38)= λCγµT C−1C︸ ︷︷ ︸(B.20)= −λγµC, (B.40)

(γ5C)T = CTγT5
(B.38)= λCγT5 C

−1C︸ ︷︷ ︸ (B.27)= λγ5C. (B.41)

For the other two more complicated matrices we apply the same procedure:

(γµγ5C)T (B.38)= λCγT5 C
−1︸ ︷︷ ︸CγµTC−1︸ ︷︷ ︸C (B.38)=

(B.20)
−λγ5γ

µC
(A.11)= λγµγ5C, (B.42)

(σµνC)T = CTσTµν
(C.44)=
(B.38)

ı̇

2λC
[
γTν , γ

T
µ

]
= ı̇

2λ
(
CγTν C

−1︸ ︷︷ ︸CγTµC−1C︸ ︷︷ ︸−CγTµC−1︸ ︷︷ ︸CγTν C−1︸ ︷︷ ︸C
)

= ı̇

2λ (γνγµC − γµγνC) = −λ ı̇2 [γµ, γν ]C = −λσµνC.

(B.43)

If we now assume λ = 1, we end up with ten linear independent antisymmetric 4 × 4
matrices form (B.40) and (B.43), which is a contradiction since there can be only six
linear independent antisymmetric 4×4 matrices. Thus we must have λ = −1 which leads
to just six linear independent antisymmetric 4 × 4 matrices given in (B.41) and (B.42).
So finally with λ = −1 we obtained C = −CT from (B.37) and hence, we showed that
the charge conjugation matrix is antisymmetric in any basis of Dirac matrices.

B.2.3 Charge Conjugation Matrix in Different Representations

Now we want to investigate the actual appearance of the matrix C in the different bases
and hence we shall follow [94, p.102ff] in this subsection, since an elaborated discussion
is given there. Initially in [94, p.102] it is noted that "it suffices to construct the charge
conjugation matrix in some particular representation of the gamma matrices; the unitary
transformation which transforms to another representation the gives the matrix C in this
new representation". It is noted in [28, p.89] that in the Weyl basis as well as in the Dirac
basis, only γ2 is imaginary. Hence, it follows from (B.18) that Cγ0T commutes with γ2

but anticommutes with the other three Dirac matrices. So we might choose126

C = −ı̇γ2γ0 . (B.44)

126Note that other authors might use different conventions, also depending on the Minkowski metric they
use . For example when the Pauli metric is used the charge conjugation matrix is defined as C = ı̇γ2γ0

[36, p.520] or even definitions like C = γ2γ0 can be found.
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In this definition C is real and thus it fulfils

C−1 = C† = CT = −C, (B.45)

according to the relations (B.31) and (B.32).

(i) Dirac Representation
Using the Dirac representation of gamma matrices we obtain the charge conjugation
matrix C explicitly in the form

CDirac = −ı̇γ2γ0 = −ı̇
 0 −σ2

−σ2 0

 =
 0 ı̇σ2

ı̇σ2 0

 . (B.46)

A proof for CDirac fulfilling all properties of a charge conjugation matrix (B.20),
(B.31), and (B.32), can be found in [94, p.102-107].

(ii) Weyl Representation
Using now the Weyl representation of gamma matrices (or alternatively performing
a unitary transformation on C to change the basis) we obtain the charge conjugation
matrix C explicitly in the form

CWeyl = −ı̇γ2γ0 = −ı̇
σ2 0

0 −σ2

 =
−ı̇σ2 0

0 ı̇σ2

 . (B.47)

Again a proof for CWeyl fulfilling all properties of a charge conjugation matrix (B.20),
(B.31), and (B.32), can be found in [94, p.107-108].

(iii) Majorana Representation
According to [31, p.97] in the Majorana basis, where the gamma matrices are purely
imaginary, we have simply

CMajorana = 14 . (B.48)

B.2.4 Charge Conjugated Dirac Bilinears

Finally we should investigate how the charge conjugation operator acts on Lorentz bilin-
ears of spinor fields. In section B.2.2 we found how a charge conjugation is performed on
a spinor. For the following we need to know how charge conjugation on the Dirac adjoint
spinor performed. Using its definition (1.18) and how charge conjugation acts on a spinor
ψ = (ψ1, ψ2, ψ3, ψ4)T according to (B.17) we derive

CψC−1 = Cψ†γ0C−1 = C(ψ∗1, ψ∗2, ψ∗3, ψ∗4)γ0C−1

= (Cψ∗1C−1, Cψ∗2C−1, Cψ∗3C−1, Cψ∗4C−1)γ0 =
(
Cγ0Tψ∗

)†
γ0

= ψTγ0∗C†γ0 = ψTγ0∗C†γ0C︸ ︷︷ ︸
−γ0T

C−1 = −ψTC−1 = (ψ)C ,

(B.49)
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where we used in the last step the defining relation for C (B.20) together with the unitarity
of C (B.31) as well as the Hermiticity of γ0 (A.6).

So now we are able to investigate how the various Lorentz bilinears of Dirac spinors
transform under charge conjugation. We may start with a general discussion given in
[97, p.259ff] of the procedure we will need to use for that. We use the transformation
behaviour of the Dirac spinor and the adjoint Dirac spinor obtained in (B.17) resp. (B.49)
and have a look at an arbitrary Dirac bilinear ψAψ, where A stands for a product of Dirac
matrices. This bilinear transforms under charge conjugation as

C
(
ψAψ

)
C−1 = −ψTC−1ACψ

T
. (B.50)

If we take the transposed of the right hand side and take into account the exchange of
two fermion fields by an extra minus sign we get

C
(
ψAψ

)
C−1 = ψ

(
C−1AC

)T
ψ. (B.51)

Hence, we know of course all possible cases for (C−1AC), where A can be γµ, γ5, γ
µγ5

from the relations (B.20), (B.29) and (B.30).

Investigating the scalar ψψ, where A = 1 we find that middle part (C−1AC) is trivial,
if we remember that the charge conjugation matrix is unitary. Hence, we have

CψψC−1 = ψ
(
C−1

1C
)T
ψ = ψψ. (B.52)

For the vector ψγµψ, where A = γµ, we use (B.20) and therefore we get

CψγµψC−1 = ψ
(
C−1γµC

)T
ψ = −ψγµψ. (B.53)

In case of the pseudoscalar ψγ5ψ we have A = γ5 and use relation (B.29) to obtain

Cψγ5ψC−1 = ψ
(
C−1γ5C

)T
ψ = ψγ5ψ. (B.54)

And finally we apply this procedure for the pseudovector ψγµγ5ψ where A = γµγ5 and
we can apply relation (B.30) to get

Cψγµγ5ψC−1 = ψ
(
C−1γµγ5C

)T
ψ = ψγµγ5ψ. (B.55)

Therefore, we have found that just the vector is odd under charge conjugation whereas
the scalar, pseudoscalar and pseudovector transform even under C.

B.2.5 Charge Conjugation and Chirality

Finally we want to show how charge conjugation changes the chirality or handedness of a
Weyl spinor and thus of a Majorana particle. Hence we like to show that the RH projector
acting on a charge conjugated LH spinor gives PR(ψL)C = (ψL)C , which shows that (ψL)C

is indeed a RH spinor.
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Proof.

PR(ψL)C (B.17)= PR
(
Cγ0Tψ∗L

)
= 1

2
(
14 + γ5

)
Cγ0Tψ∗L

= 1
2
(
Cγ0Tψ∗L

)
+ 1

2
(
γ5Cγ0Tψ∗L

) (B.29)= 1
2C

(
14 + γ5T

)
γ0Tψ∗L

(A.11)= 1
2Cγ

0T
(
14 − γ5T

)
ψ∗L

(A.13)= Cγ0T
(1

2
(
14 − γ5

)
ψL

)∗
= Cγ0TPLψ

∗
L

(1.26)= Cγ0Tψ∗L (B.56)

B.3 Flavor Symmetry

In section 1.1 all fundamental particles of the Standard Model have been presented. The
different types of quarks and leptons are said to have a specific flavor. This means the
different species of fermions possess specific flavor quantum numbers, which are used to
describe and distinguish them. As indicated in section 1.1 quarks and leptons come in six
flavors each. In this section we want to discuss some flavor quantum numbers and their
conservation in interactions.

B.3.1 Quark Flavor

In six flavors of quarks are introduced, which are classified according to EM charge (Q),
strangeness (s), charm (c), beauty or bottomness127 (b), and truth or topness (t). For
consistency we might include upness (u) and downness (u). The values of these quantum
numbers and the baryon number for particular quarks are shown in table 20. The Baryon
number B is defined as

B = 1
3 (nq − nq) , (B.57)

where nq denotes the number of quarks and nq the number of antiquarks. Hence Baryons,
which consist of three quarks, have a baryon number B = 1, and antibaryons B = −1.
Mesons, which consist of a quark and a antiquark, have baryon number B = 0. All these
quantum numbers are displayed in table B.3.1 below for the different quarks.

q Q B u d c s t b
u 2/3

1/3 1 0 0 0 0 0
d -1/3

1/3 0 -1 0 0 0 0
c 2/3

1/3 0 0 1 0 0 0
s -1/3

1/3 0 0 0 -1 0 0
t 3/3

1/3 0 0 0 0 1 0
b −1/3

1/3 0 0 0 0 0 -1

Table 20: Quark flavor classification. Adapted from [25, p.47] and [98, p.8].

127Sometimes quark flavors are all denoted by capital letters, but then bottomness should be denoted by
B’ to distinguish it from the baryon number B. Here we are using the notation from [98, p.8].
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As mentioned in [25, p.74], "flavor is conserved at strong or EM vertices, but not at
weak vertices". But the flavors are said to be conserved approximately, since the weak
forces are so weak.

B.3.2 Lepton Number

As noted in [25, p.47], similarly to the classification of quarks, the six flavors of leptons
can be classified according to their EM charge (Q) and their family lepton number, i.e.
the electronic number (Le), the muonic number (Lµ), and the tauonic number (Lτ ). And
again we want to display the value for this quantum numbers for each elementary lepton
in the following table 21.

` Q Le Lµ Lτ
e -1 1 0 0
νe 0 1 0 0
µ -1 0 1 0
νµ 0 0 1 0
τ -1 0 0 1
ντ 0 0 0 1

Table 21: Lepton classification. Reprinted from [25, p.47].

In addition a total lepton number is defined as

L = Le + Lµ + Lτ . (B.58)

As discussed in [25, p.74], "the strong forces do not touch leptons at all and in EM
interaction the same particle comes out as went in. The weak interaction in the SM
(without massive and RH neutrinos) only mix together leptons form the same generation,
so the electron, muon and tau numbers are all conserved". There is no similar conservation
of generation types for quarks, because due to CKM mixing quark generations are mixed
in the weak interaction.

B.4 Gauge Symmetry

B.4.1 Quantum Electrodynamics

First we should consider the simplest case and part of the SM gauge theory, thus we follow
[33, p.77f, 262f] in this subsection. In quantum electrodynamics (QED) we want the free
Dirac fields ψ, describing all fermions q and `, to couple to the electromagnetic (EM)
field in order to describe electromagnetic interaction. This can be formally achieved by
minimal coupling or substitution . In QED the interaction of the Dirac fields and the four-
vector EM potential Aµ(x) = (φ, ~A) is obtained by introducing the covariant derivative
as

∂µ ≡
∂

∂xµ
→ Dµ = [∂µ + ı̇eQAµ(x)] , (B.59)
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where e is the elementary charge and Q the charge of the fermion field in units of e. Fur-
thermore, we have to add also a kinetic part for the free four-vector potential Aµ to achieve
the full QED Lagrangian. This self coupling is described by the Proca Lagrangian (1.9),
but without the mass term, which would break the gauge invariance of the Lagrangian.
Hence, the Lagrangian of QED for a single fermion128 can be written as

LQED = −1
4FµνF

µν + ψ (ı̇γµDµ −m)ψ , (B.60)

with the electromagnetic field strength tensor Fµν = ∂µAν − ∂νAµ. And we note that the
equation of motion for the single fermion field coupled to the EM potential is given by

(ı̇ /∂ − eQ /A−m)ψ = 0. (B.61)

Now we want to discuss the gauge invariance of the Lagrangian. According to
[25, p.348], the free Dirac Lagrangian (1.17) is invariant under the abelian gauge group129

U(1)EM. The Dirac fields transform under this global gauge transformations as

ψ → exp(ı̇θ)ψ,

ψ → exp(−ı̇θ)ψ.
(B.62)

But if the phase factor θ = θ(x) is a function of spacetime xµ, the Lagrangian will be not
invariant under such a local gauge transformation since we pick up an extra term from
the derivative of θ. This local gauge transformation can be written as

ψ → exp(−ı̇Qλ(x))ψ,

ψ → exp(ı̇Qλ(x))ψ,
(B.63)

where it is convenient to introduce the notation θ(x) = −Qλ(x). Hence, to obtain local
gauge invariance of the complete Lagrangian, it is necessary to add a coupling to a gauge
field Aµ, which transforms under local gauge transformation according to

Aµ → Aµ + 1
e
∂µλ(x). (B.64)

This gauge field Aµ is identified with the electromagnetic four-vector potential. As men-
tioned above, for the full Lagrangian we have to add a free term of this gauge field. This
gauge field must be massless (mA = 0), because even though the field strength tensor F µν

is invariant under (B.64), the mass term AνAν will break the gauge symmetry.

Due to Noether’s theorem the invariance under the U(1)EM gauge group leads to a
conserved EM current

JµEM(x) = Qψγµψ, (B.65)

128For a QED Lagrangian describing the full particle content of all quarks and leptons we can simply sum
over all possible flavors q, `, noticing different charges Qq and Q` for different fermion fields.

129The subscript EM is just to indicate the correspondence to EM interaction and thus to the EM charge,
which generates this group, as we well see in this section.
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where Q denotes the charge of the fermion field and the current satisfies indeed

∂µJ
µ
EM(x) = 0. (B.66)

This current coupled to the Aµ is exactly the minimal coupling interaction introduced by
the covariant derivative. Hence, the interaction part of the Lagrangian can be written as

LIQED = Qψ(x)γµψ(x)Aµ(x). (B.67)

Thus, the complete Lagrangian is given by

LQED = L0
QED + LIQED, (B.68)

where the free part of the Lagrangian is

L0
QED ≡ LDirac + LProca, (B.69)

with mA = 0. Hence, we achieve the conservation law for the EM charge (operator) Q̂,

Q̂ =
∫
d3xJ0

EM = Q
∫
d3xψ†(x)ψ(x), (B.70)

which is the generator of the Lie group U(1)EM of gauge transformations.

B.4.2 Spontaneous Symmetry Breaking

In this section we want to discuss the procedure of spontaneous symmetry breaking (SSB)
following [33, p.281]. The simplest example of a field theory exhibiting spontaneous
symmetry breaking is the Goldstone model. Its Lagrangian is given by

L(x) = (∂µφ∗) (∂µφ)− µ2 (φ∗φ)− λ (φ∗φ)2 . (B.71)

We assume λ > 0, otherwise the potential would not have any lowest energy state. Fur-
thermore, for our purpose we assume µ2 < 0, because otherwise the ground state would
not be degenerate as shown in figure 22.

Figure 22: The potential of the scalar field V (|Φ|). Reprinted from [33, p.282].
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Since φ is a complex scalar field we can decompose it into its real and imaginary part

φ = 1√
2

(φ1 + ı̇φ2) , (B.72)

and therefore, the Lagrangian can be written as

L0
φ = 1

2 (∂µφ1) (∂µφ1) + 1
2 (∂µφ2) (∂µφ2)− 1

2µ
2
(
φ2

1 + φ2
2

)
− 1

4λ
(
φ2

1 + φ2
2

)2
. (B.73)

It can be easily seen that the potential has a whole circle of absolute minima at

φmin(x) = −µ
2

2λe
ı̇θ, 0 ≤ θ < 2π, (B.74)

with a phase angle θ determining the direction in the complex (φ1, φ2)-plane. Obviously
the ground state is not unique and the Lagrangian exhibits a U(1) symmetry. Thus, we
are free to choose one particular direction, e.g. θ = 0 such that

φ0 = −µ
2

2λ = 1√
2
v (> 0). (B.75)

is real. Now we introduce two real fields σ(x) and η(x), which measure the deviations of
the field φ(x) from the chosen vacuum state φ0. Inserting the scalar field in term of these
real fields, i.e.

φ(x) = 1√
2

[v + σ(x) + ı̇η(x)] , (B.76)

into the Lagrangian (1.85), we obtain

Lφ =1
2 (∂µσ) (∂µσ)− 1

2(2λv2)σ2 + 1
2 (∂µη) (∂µη) (B.77)

− λvσ
[
σ2 − η2

]
− 1

2λ
[
σ2 + η2

]2
+ µ4

4λ2 . (B.78)

Having a closer look at the Lagrangian we find a mass term for the σ field and see that
the η field is massless since no term quadratic in η appears. Thus we get

mσ =
√

2λv2, (B.79)

mη = 0, (B.80)

and η is the predicted Goldstone boson.

B.4.3 Higgs Mechanism

For an example of the procedure of the Higgs mechanism we follow again [33, p.284f].
The Lagrangian (B.71) can be made invariant under U(1) gauge transformations in a
similar way as done before for the free Dirac Lagrangian (B.60). A gauge field Aµ(x) is
introduced by inserting the covariant derivative

Dµ = φ [∂µ + ı̇qAµ(x)]φ(x). (B.81)
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Again we have to add the term for the free gauge field to the Lagrangian

−1
4Fµν(x)F µν(x), (B.82)

where

Fµν(x) = ∂νAµ(x)− ∂µAν(x). (B.83)

Thus, we achieve the Lagrangian

L = (Dµφ)∗ (Dµφ)− µ2φ∗φ− λ (φ∗φ)2 − 1
4FµνF

µν , (B.84)

which defines the Higgs model. This Lagrangian is invariant under the U(1) gauge trans-
formations

φ(x)→ φ(x)e−ı̇qf(x), (B.85)

φ∗(x)→ φ∗(x)eı̇qf(x), (B.86)

Aµ(x)→ Aµ(x) + ∂µf(x). (B.87)

We follow the procedure of SSB shown in the previous chapter and obtain a circle of
minima and choose φ0 as in (B.75) for the vacuum state130. We define the real fields σ
and η like in (B.76). Hence, the Lagrangian is written as

LΦ =1
2 (∂µσ) (∂µσ)− 1

2(2λv2)σ2

− 1
4FµνF

µν + 1
2(qv)2AµA

µ

+ 1
2 (∂µη) (∂µη)

+ qvAµ∂µη + interaction terms.

(B.88)

Here the interaction terms, which are cubic and quartic in the fields, and an insignificant
constant term has been skipped. Nevertheless, it is not obvious that the second and
third lines describes a massive vector boson and a massless scalar boson, because the
product term of Aµ and η indicates that they are not independent normal coordinates.
An analysis of the degrees of freedom131 of equation (B.84) and (B.88) leads to the insight
that the second Lagrangian must contain an unphysical field, which does not represent
real particles. It can be eliminated by a particular choice of gauge - called unitary gauge,
where φ is transformed into a real field of the form

φ(x) = 1√
2

(v + σ(x)) . (B.89)

130Note that the vector field Aµ must vanish for the vacuum.
131(B.84) has 4 degrees of freedom; two from the complex scalar field and two from the real massless

vector field. Whereas (B.88) has five, the two real scalar fields give one each and the real massive
vector field gives three.
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Inserting this in the Lagrangian (B.88) we obtain

L =1
2 (∂µσ) (∂µσ)− 1

2(2λv2)σ2

− 1
4FµνF

µν + 1
2(qv)2AµA

µ

− λvσ3 − 1
4λσ

4 + 1
2q

2AµA
µ
(
2vσ + σ2

)
.

(B.90)

The first line of this equation describes a real Klein-Gordon field with mass
√

2λv2 and
the second a neutral vector boson with mass |qv|. Now the number of degrees of freedom
is four as in equation (B.84) and one of the two degrees of freedom of the complex scalar
field has been eaten up by the vector field Aµ which has become massive in this process.
The remaining degree of freedom form φ shows up as the real scalar field σ, which is called
Higgs boson or Higgs scalar.

B.4.4 Weak Isospin and Hypercharge

To develop a gauge theory of weak interactions it is necessary and helpful to introduce
two important quantities, called weak isospin and weak hypercharge. In doing so we
might follow [33, p.264ff] and [96, p.292ff] and use the same systematics as for QED in
subsection B.4.1. We want to find a set of gauge transformations which leaves the free-
lepton Lagrangian invariant and leads to conservation of the weak currents Jµ(x) and
J†µ(x) in equation (1.52) and (1.53). We start at the free-lepton Lagrangian for massless
leptons given by

L0
EW = ı̇

[
ψ`(x)/∂ψ`(x) + ψν`(x)/∂ψν`(x)

]
, (B.91)

where ` = e, µ, τ is understood as summation over all lepton flavors.
We rewrite this Lagrangian taking into account that only LH leptons enter the inter-

action given in (1.54). Hence, we use the chiral projection operators (1.23) to split the
Dirac spinors in its RH and LH components like in (1.26). Thus, we obtain

L0
EW = ı̇

[
ΨL

` (x)/∂ΨL
` (x) + ψ

R

` (x)/∂ψR` (x) + ψ
R

ν`
(x)/∂ψRν`(x)

]
, (B.92)

where we combined the LH fields ψL` and ψLν` into a two-component field 132

ΨL
` =

ψLν`
ψL`

 , (B.93)

and correspondingly
ΨL

` =
(
ψ
L

ν`
, ψ

L

`

)
. (B.94)

We find that the bilinear terms formed by the two-component spinor field are invariant
under SU(2) transformations. This gauge group is generated by three 2 × 2 Hermitian
matrices, i.e. 1/2 the Pauli spin matrices τk given in (A.35).

132We shall see shortly, why it is useful to write the Lagrangian in such a unsymmetrical way.
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They satisfy the commutation relation

[τi, τj] = 2ı̇εijkτk, (B.95)

where εijk is the usual completely antisymmetric tensor. Any transformation of SU(2)
can be represented by a unitary matrix

U(α) ≡ exp
(
ı̇αjτj

2

)
, (B.96)

for any three real numbers α = (α1, α2, α3). Hence, for the transformation of the two-
component field we get

ΨL
` (x)→ U(α)ΨL

` (x) ≡ exp
(
ı̇αjτj

2

)
ΨL
` (x), (B.97)

ΨL

` (x)→ ΨL

` (x)U †(α)≡ΨL

` (x) exp
(−ı̇αjτj

2

)
, (B.98)

which leaves the bilinear term of ΨL
` in (B.92) invariant. This two-component field is

also called weak isospinor, due to its behaviour under the SU(2) transformation. Thus,
we might classify quantities according to their transformation property under SU(2).
Furthermore, we find that the RH lepton fields are weak isoscalars, i.e. they are invariant
under SU(2) transformations:

ψR` (x)→ψR` (x), ψRν`(x)→ψRν`(x), (B.99)

ψ
R

` (x)→ψR` (x), ψ
R

ν`
(x)→ψRν`(x). (B.100)

The full Lagrangian (B.92) remains unchanged, i.e. it is invariant, under these SU(2)
transformations. Hence, we obtain three conserved currents

Jµi (x) = 1
2ΨL

` (x)γµτiΨL
` (x), i = 1, 2, 3, (B.101)

which are called weak isospin currents and we also have three conserved quantities

TWi =
∫
d3xJ0

i (x) = 1
2d

3sΨL

`

†
(x)τiΨL

` (x), i = 1, 2, 3, (B.102)

which are called the weak isospin charges and generate an SU(2)L algebra133

[Ti, Tj] = ı̇εijkTk. (B.103)

According to [33, p.266], "the leptonic currents Jµ(x) and Jµ†(x) in (1.52) and (1.53)
can be written as linear combinations of the conserved weak isospin currents Jµ1 (x) and
Jµ2 (x)" as

Jµ(x) = 2 [Jµ1 − ı̇Jµ2 (x)] (B.104)

Jµ†(x) = 2 [Jµ1 + ı̇Jµ2 (x)] . (B.105)

133The subscript L is to remind us that the weak isospin current couples only LH fermions.
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But besides, there is still a third conserved current, given by

Jµ3 (x) = 1
2
[
ψ
L

ν`
(x)γµψLν`(x)− ψL` (x)γµψL` (x)

]
. (B.106)

Since this current only couples electrically neutral leptons, or electrically charged leptons,
this current is called a neutral current. The currents Jµ(x) and Jµ† are charged currents,
since they couple electrically neutral with electrically charged leptons. Hence, we can
define the weak hypercharge current JµY (x) by

1
2J

µ
Y (x) = 1

e
JµEM(x)− Jµ3 (x). (B.107)

Following [33, p.267], "the corresponding charge

Y =
∫
d3xJ0

Y (x) (B.108)

is called the weak hypercharge. We see from (B.107) that Y is related to the electric charge
QEM and the weak isocharge TW3 by the Gell-Mann-Nishijima formula134

Y

2 = Q− TW3 . (B.109)

The conservation of the electric charge QEM and of the weak isocharge TW3 implies conser-
vation of the weak hypercharge Y ". But its conservation also follows from the invariance
of the Lagrangian under U(1)Y transformations

U(β) = exp
(
ı̇β
Y

2

)
, (B.110)

since the lepton fields transform as

ΨL
` (x)→ e(ı̇β

Y
2 )ΨL

` (x), ΨL

` (x)→ ΨL

` (x)e(−ı̇β
Y
2 ), (B.111)

ψR` (x)→ e(ı̇β
Y
2 )ψR` (x), ψ

R

` (x)→ ψ
R

` (x)e(−ı̇β
Y
2 ), (B.112)

ψRν`(x)→ e(ı̇β
Y
2 )ψRν`(x), ψ

R

ν`
(x)→ ψ

R

ν`
(x)e(−ı̇β

Y
2 ). (B.113)

In order to determine the weak hypercharge, we need the values of the third component
of the weak isospin T3 for each field. As we have seen so far and as it is mentioned in
[99, p.151], in the theory of weak interactions the leptons (and quarks) are divided into
isospinors and isoscalars. The isospinors are formed by LH isodoublets, which are assigned
with values T = 1/2 and T3 = ±1/2 of the isospin and its third component, whereas the
isoscalars are formed by RH isosinglets, which are assigned with values T = 0 and T3 = 0.
Now we can calculate the values for the weak hypercharge easily via the Gell-Mann-
Nishijima formula (B.109). In the following table 23 all values of Q, T , T3, Y for all
fermion fields are summarized. There, u and d refer to up-type quarks (u, c, t) and down-
type quarks (d, s, b).

134Note that some authors use a different scale for Y like [33], where Y = Q− TW3 .
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B APPENDIX - SYMMETRIES IN PARTICLE PHYSICS

Fermion Q T T3 Y

νL` 0 1/2
1/2 -1

`L −1 1/2 −1/2 -1

`R −1 0 0 -2

uL 2/3
1/2

1/2
1/3

dL −1/3
1/2 −1/2

1/3

uR 2/3 0 0 4/3

dR −1/3 0 0 −2/3

Table 23: Weak isospin and hypercharge quantum numbers of fermions. Reprinted from
[96, p.295].
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C Appendix - Lorentz Transformations

According to [26, p.16], "the Lagrangian formulation of field theory is particularly suited
to relativistic dynamics because all expressions are explicitly Lorentz invariant". Hence,
it is useful to remember some facts on Lorentz transformations and four-vector notation,
which will be done in this appendix.

C.1 Lorentz Transformation and Four-Vectors

The following can be found for example in [100, p.293, 312] and [101, p.12ff].
A four-vector x with ct = x0 is given by

x ≡ (xµ) =
 x0

~x

 . (C.1)

The Minkowski metric tensor135 g for the Minkowski spacetimeM4

g = (gµν) =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 , g−1 = (gµν) =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 , (C.2)

with gµνgνρ = δµρ, where δµρ denotes the Kronecker delta136. Using the metric we
can achieve covariant four-vectors from contravariant four-vectors and express the scalar
product of four-vectors as

xµ = gµνx
ν =

 x0 for µ = 0,
−xµ for µ = 1, 2, 3,

(C.3)

(x, y) = x · y = gµνx
µyν = xµyµ = xµy

µ. (C.4)

In order to transform a four-vector from one inertial reference frame to another, we can
make the following ansatz without loss of generality:

x′µ = aµfµ(x), (C.5)

fµ(x = 0) = 0, (C.6)

where the fµ(x) are yet undetermined functions of x and a = (aµ) is a constant four-
vector. It is easy to see that because of homogeneity of time and a Euclidean structure
of space, fµ(x) must be homogeneous, linear functions. Hence, we achieve

x′µ = Λµ
νx

ν + aµ, (C.7)

135Note that other authors might use a different convention. In this thesis the Bjorken and Drell or
mostly minus convention is used. The other common convention is the Pauli or mostly plus metric,
where gµν = diag(−1,+1,+1,+1) [36, p.518].

136This is valid, however only for a Cartesian basis and not for the general case.
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where the constants Λµ
ν can be written in the compact form of a 4× 4 matrix Λ = (Λµ

ν).
In [93, p.13f] it is noted that

x′µx′µ = Λµ
νΛα

µx
νxα := xµxµ, (C.8)

which implies

Λµ
νΛµ

α = ΛT α
µΛµ

ν = δαν = gαν . (C.9)

This shows that

ΛT α
µ = Λ−1α

µ, (C.10)

and hence, Λ is an orthogonal transformation, i.e.

(Λ−1)αµ = (ΛT )αµ = Λαµ. (C.11)

Therefore, we can rewrite (C.9) as

(ΛT )αµΛµ
ν = (ΛT )αµg

µβΛβν = gαν , (C.12)

or in matrix notation as

ΛTgΛ = g . (C.13)

This relation (C.13) is often used as the definition of a Lorentz transformation Λ. Fur-
thermore, we know

ΛT = Λ−1, (C.14)

and hence, we can also write ΛgΛT = g and the metric can be written as

gαβ = gµνΛµ
αΛν

β = ΛναΛν
β = Λν

αΛβν . (C.15)

C.2 Lorentz Group

In this subsection we will follow [101, p.15ff] and [102, p.49-52, 143ff].
The transformations that correspond to a transition from one inertial frame to another,

as seen above, form a group known as the inhomogeneous Lorentz group or Poincaré
group137. We will call these group elements (Λ, a) and they are defined by

(Λ, a) : xµ 7−→ x′µ = Λµ
νx

ν + aµ, (C.16)

with a = (aµ) being an arbitrary constant four-vector and Λ satisfying (C.13). So the
group is given as the following set:

L = {Λ ∈M4|ΛTgΛ = g} ≈ O(1, 3). (C.17)

As mentioned in [101, p.16], "the transformations, which leave the coordinate origin unal-
137It is indeed a group, since it fulfils all four group conditions.
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tered likewise form a subgroup of the Poincaré group, which is called the (homogeneous)
Lorentz group. A general element of this group has the form (Λ, 0)", i.e.

(Λ, 0) : xµ 7−→ x′µ = Λµ
νx

ν . (C.18)

From (C.13) it follows that Lorentz transformations fulfil

(det Λ)2 = 1⇒ det Λ = ±1, (C.19)

(Λ0
0)2 ≥ 1⇒ Λ0

0 ≥ 1 or Λ0
0 ≤ −1. (C.20)

Hence we can introduce the following notation for the special subgroups

L+ = {Λ ∈ L | det Λ = 1}, (C.21)

L ↑ = {Λ ∈ L |Λ0
0 ≥ 1}, (C.22)

where L+ is called proper Lorentz group and L ↑ orthochronous Lorentz group. As we can
see the group is not connected, and decomposes into four separated connected components:

L ↑
+ = {Λ ∈ L | det Λ= 1, Λ0

0≥ 1} ≈SO(1, 3), (C.23)

L ↑
− = {Λ ∈ L | det Λ=−1, Λ0

0≥ 1} ≈ PL ↑
+, (C.24)

L ↓
+ = {Λ ∈ L | det Λ= 1, Λ0

0≤−1} ≈ TL ↑
+, (C.25)

L ↓
− = {Λ ∈ L | det Λ=−1, Λ0

0≤−1} ≈ PTL ↑
+, (C.26)

where L ↑
+ = L+ ∩ L ↑ is called proper orthochronous Lorentz group. The symmetry

operators are defined as

T = diag(−1, 1, 1, 1)∈ L (time reversal), (C.27)

P = diag( 1,−1,−1,−1)∈ L (spatial parity). (C.28)

C.3 Representations of the Lorentz Group

As mentioned in [102, p.134], "for a systematic investigation of all possible representations
it is, however, necessary to study the Lorentz group itself more closely, since the structure
of the group has implications on the structure of the set of all its representations". In the
previous section we learned that Lorentz transformations are homogeneous transforma-
tions satisfying the (pseudo)orthogonality relations (C.13). Since we know gµν = gνµ, we
have ten relations, which restrict the sixteen matrix elements of Λ. Furthermore, we can
only choose six matrix elements independently, because those relations are independent
from each other. It can be shown that the Lorentz Group is also a Lie group [102, p.136].

Now we will follow the discussion on this done by [103]. Let us denote the infinitesimal
generators of the Lorentz group O(1, 3) by Jµν . Their commutation relation

[Jµν , Jρσ] = ı̇(ηνρJµσ − ηµρJνσ − ηνσJµρ + ηµσJνρ) (C.29)

defines the associated algebra. Hence, an arbitrary element Λ of the Lorentz group can
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be represented by
Λ = exp

(
− ı̇ωµνJ

µν

2

)
, (C.30)

where ωµν denote the parameters of the transformation. According to [103], "the Lorentz
group has both finite-dimensional and infinite-dimensional representations. However, it
is non-compact, therefore its finite-dimensional representations are not unitary (the gen-
erators are not Hermitian). The generators of the finite-dimensional representation can
be chosen to be Hermitian".

It is sufficient for our purpose to restrict ourselves to the finite-dimensional represen-
tations of the restricted Lorentz group SO(1, 3). "These representations act on finite-
dimensional vector spaces (the base space). Elements of these vector spaces are said to
transform according to the given representation", as noted in [103].

C.3.1 Trivial Representation

The one-component objects, which transform according to this representation, denoted
by (0,0), are called Lorentz scalars. The transformation is given by

φ
Λ→ ΛS · φ = φ, (C.31)

with ΛS = exp
(
−ı̇ωµνJµν

2

)
= 1 where Jµν = 0. Hence, the matrices representing the

Lorentz transformation acting on this one-dimensional vector space R are simply 1 × 1
matrices. For scalar fields φ(x) the transformation is analogous, apart from the necessity
for a transformation of the spacetime variable x, i.e.

φ(x)→ φ′(x′) = φ(Λ−1x). (C.32)

C.3.2 Vector Representation

This representation is denoted by (1
2 ,

1
2) and the generators J µν are 4× 4 matrices given

by
(J µν)ρσ = ı̇(gµρδνσ − gνρδµσ). (C.33)

Hence, this representation is the fundamental representation of the Lorentz group, because
it can be shown that the elements of SO(1, 3) are exactly those matrices J µν . Therefore,
the transformation of the 4-component objects in R4, called Lorentz four-vectors, is given
by

V ρ Λ→ (ΛV )ρσV ρ, (C.34)

where (ΛV )ρσ = exp
(
−ı̇ωµνJ µν

2

)ρ
σ
is the usual Lorentz transformation matrix.

Again one can express the transformation for vector fields analogous, but like in the
scalar case a transformation of the spacetime variable is necessary. Thus, we get

V ρ(x) Λ→ (ΛV )ρσV ρ(Λ−1x). (C.35)
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C.3.3 Spinoraial Representation

It can be shown that the proper orthochronous Lorentz group SO(1, 3) is the double
cover of the SL(2,C), i.e.

L↑+ ∼= SL(2,C)/{12,−12}. (C.36)

Hence we can construct two two-dimensional representations of the SO(1, 3). On the
one hand we have the fundamental representation of SL(2,C), which we will denote by
(1

2 , 0). The Lorentz transformations act on the complex two-component objects ψ, called
LH Weyl spinors, according to

ψα
Λ→ (ΛL)αβψβ, (C.37)

where ΛL = exp
(
−ı̇ωµνσµν

2

)
. The generators σµν = Jµν are 2×2 matrices such that in this

representation rotation and boost generators (in the Weyl basis) appear as

σij ≡ 1
2ε

ijkσk, (C.38)

and σ0i ≡ − ı̇2σ
i. (C.39)

On the other hand we can construct a second spinorial representation, i.e. the con-
tragradient reperesenation of SL(2,C), denoted by (0, 1

2). This representation acts on
so-called RH Weyl spinors, according to

ψα
Λ→ (ΛR)αβψβ, (C.40)

where ΛR = exp
(
−ı̇ωµνσµν

2

)
. The rotation and boost generators (in the Weyl basis) are

now
σij ≡ 1

2ε
ijkσk again, (C.41)

but now σ0i ≡ ı̇

2σ
i. (C.42)

According to [103], "by taking the direct sum (1
2 , 0)⊗(0, 1

2) of the two representations, we
obtain a 4-dimensional (reducible) representation of the Lorentz group which acts upon
complex four-component objects called Dirac spinors". Those Dirac spinors transform
according to

Ψa
Λ→ (ΛD)abΨb , (C.43)

where ΛD = exp
(
−ı̇ωµνσµν

4

)
. Now the generators σµν are 4× 4 matrices138,139 given by

σµν = ı̇

2[γµ, γν ], (C.44)

and satisfy
σµν† = γ0σµνγ0. (C.45)

138Note that in other literature a different convention might be used, where for Λ a factor of 1/4 is
introduced, because σµν is defined with a factor of 1/2

139Those are the remaining six basis elements of the four-dimensional Clifford algebra. All together, the
basis has dimension 16, Γ = {14, γ

5, γµ, γ5γµ, σµν} [28, p.91f].
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Here the generators for rotations and boots140 are actually the direct sum of the 2× 2
matrices for the left-handed and right-handed Weyl spinors:

σij = 1
2ε

ijk

σk 0
0 σk

 ≡ εijkΣk, (C.46)

and σ0i =− ı̇2

σi 0
0 −σi

 for gamma matrices in Weyl basis, (C.47)

resp. σ0i = ı̇

2

 0 σi

σi 0

 for gamma matrices in Dirac basis. (C.48)

Thus, as noted in [34, p.VI.5], a Dirac spinor (also called bispinor) transforms like
(
ψL
ψR

)
where ψL and. ψR are LH or RH Weyl spinors respectively for gamma matrices in the
Weyl basis.

In [34, p.VI.5] a more detailed discussion is given, where the the coefficients ωµν are
given explicitly. As before it is recognized that the spinors in proper orthochronous
Lorentz group transform according to double cover of the SL(2,C). Let be A ∈ SL(2,C),
then a Dirac spinor in the Weyl basis transforms according to

ψ =
(
ψL
ψR

)
→
(

AψL
A−1†ψR

)
= ΛDψ, (C.49)

where ΛD is given by

ΛD =
A 0

0 A−1†

 , (C.50)

and A denotes a matrix of the fundamental representation and A−1† one of the contra-
gradient representation of the SL(2,C) resp. of the Lorentz group141.

Hence, we see that the spinorial representation is reducible and that the two blocks
correspond to the different transformation behaviour of the LH and RH Weyl spinors,
where the LH ones transform according to the fundamental representation of the SL(2,C)
and the RH according to the contragradient representation.

They can be written as

A = exp
(
−ı̇(~α− ı̇~u) · ~σ

2

)
, A−1† = exp

(
ı̇
(~α− ı̇~u) · ~σT

2

)
, (C.51)

where ~u, ~α ∈ R3 denoting the parameters for boosts and rotations of the Lorentz trans-
formation induced by the matrices A resp. A−1†. Comparing this to the general results
for ΛL and ΛR given before, we now found the coefficients in an explicit form.

140The rotation generator σij is just the spinor transformation matrix in the two-dimensional representa-
tion of the rotation group replicated twice. The boost generators σ0i are not Hermitian, and thus our
implementation of boots ist not unitary (this was also true for the vector representation). In fact the
Lorentz group, being noncompact , has no faithful, finite-dimensional representations that are unitary
[26, p.41] .

141These two representations are equivalent, while the fundamental and the complex conjugated repre-
sentation are not (see appendix E.1.2).
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For an arbitrary basis of Dirac matrices ΛD is given as before by

ΛD = exp
(
−ı̇σµνω

µν

4

)
, (C.52)

with
σµν = ı̇

2[γµ, γν ]. (C.53)

The generators ωµν can now be written down explicitly by

ωµν =


0 −u1 −u2 −u3

u1 0 α3 −α2

u2 −α3 0 α1

u3 α2 −α1 0

 , (C.54)

with ~u, ~α ∈ R3 again denoting the parameters for boosts and rotations.
Finally we recognize, according to [33, p.335] that the nonsigular 4×4 matrix ΛD fulfils

γν = Λν
µΛDγ

µΛ−1
D (C.55)

and
Λ−1
D = γ0Λ†Dγ0. (C.56)

The covariance of the Dirac equation (1.19) is established by (C.43). Furthermore, we
can obtain the transformation behaviour of the adjoint spinor via (C.56) and (C.43) and
it is given by

Ψ(x)→ Ψ′(x′) = Ψ(x)Λ−1
D . (C.57)

C.4 Bilinear Lorentz Covariants - Dirac Bilinears

According to [33, p.335f] we can obtain from (C.43), (C.55) and (C.57) five basic bilinear
covariants of the Dirac theory. Under a Lorentz transformation

ψψ

ψγµψ

ψσµνψ

ψγ5γµψ

ψγ5ψ


transforms as a



scalar,
vector,
antisymmetric second− rank tensor,
pseudo (or axial)− vector,
pseudo− scalar.

(C.58)

"The terms pseudo-vector and pseudo-scalar arise from the fact that these quantities
transform as a vector and scalar respectively under continuous Lorentz transformations,
but with an additional sign change under parity transformation" [26, p.49].

Now we want to prove what is claimed above. For this purpose we will follow
[31, p.88f,95] for the rest of this section and quote what has been shown there.[31]

Claim C.4.1: ψψ is a Lorentz scalar, i.e. it transforms under a Lorentz transformation
like a scalar field (C.32).
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Proof. In order to investigate how this term behaves under a Lorentz transformation, we
use the spinorial representation of the Lorentz transformations derived in section C.3.3
as well as the fact that

Λ†D = exp
(1

2ωµνσ
µν†
)

= γ0Λ−1
D γ0, (C.59)

because of (C.45). So we can conclude the following:

ψ(x)ψ(x) = ψ†(x)γ0ψ(x)

→ ψ†(Λ−1x)Λ†Dγ0ΛDψ(Λ−1x)
(C.59)= ψ†(Λ−1x)γ0ψ(Λ−1x)ψ

= ψ(Λ−1x)ψ(Λ−1x).

(C.60)

Hence, the term is a Lorentz scalar, because it transforms like (C.32).

Claim C.4.2: ψγµψ is a Lorentz vector, which means that142

ψ(x)γµψ(x)→ Λµ
νψ(Λ−1x)γνψ(Λ−1x). (C.61)

Proof. Suppressing the x argument, under a Lorentz transformation we have,

ψγµψ → ψΛ−1
D γµΛDψ. (C.62)

If ψγµψ is to transform as a vector, we must have

Λ−1
D γµΛD = Λµ

νγ
ν . (C.63)

To show this we will work infinitesimally, so that143

Λ = exp
(1

2ωρσM
ρσ
)
≈1+1

2ωρσM
ρσ+ . . . , (C.64)

ΛD = exp
(1

2ωρσσ
ρσ
)
≈1+1

2ωρσσ
ρσ + . . . . (C.65)

So the requirement (C.63) becomes

−[σρσ, γµ] = (Mρσ)µνγν , (C.66)

where we have suppressed the α, β indices on γµ and σρσ, but otherwise left all other
indices explicit. In fact equation (C.66) follows from

[σµν , γρ] = γµηνρ − γνηρµ (C.67)

which is has been proven in [31, p.84]. To see this, we write the right-hand side of (C.66)

142This equation means that we can treat the µ = 0, 1, 2, 3 index on the γµ as a true vector index. In
particular we can form Lorentz scalars by contracting it with other Lorentz indices.

143Mρσµν = ηρµησν − ησµηρν = ηρµδσν − ησµδρν denote the six antisymmetric 4 × 4 matrices which are
called the generators of the Lorentz transformations [31, p.82].
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by expandingM,

(Mρσ)µνγν = (ηρµδσν − ησµδρν)γν = ηρµγµ − ησµγρ, (C.68)

which means that the proof follows, if we can show

−[σρσ, γµ] = ηρµγσ − ησµγρ, (C.69)

which is exactly what was claimed in (C.67).

Claim C.4.3: ψγµγνψ transforms as a Lorentz tensor. More precisely, the symmetric
part is a Lorentz scalar, proportional to ηµνψψ, while the antisymmetric part is a Lorentz
tensor, proportional to ψσµνψ.

Proof. This is analogous to proof of claim C.4.2

Claim C.4.4: ψγ5ψ transforms as a pseudo Lorentz scalar and ψγ5γµψ transforms as a
pseudo Lorentz vector or axial Lorentz vector.

Proof. This is again analogous to proof of claim C.4.2 and taking in account their be-
haviour under parity transformation (B.8) and (B.9).
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When discussing one-loop corrections to the seesaw mechanism ourselves to one-loop
corrections of the fermion propagator, i.e. fermion self-energies.

In the first three sections we introduced the basics of the SM and different possible
mass terms as well as the seesaw mechanism just on tree level. This means we have only
taken into account the lowest order of perturbation theory. As it is indicated in [33,
p.175], "on taking higher orders into account, one expects corrections of the order of the
fine structure constant α to the lowest-order results, known as radiative corrections" and
in particular one-loop corrections.

First, we should introduce the path integral formalism and correlation functions, which
will be used in the following sections. Then we briefly discuss perturbation theory in this
framework to calculate the fermion self-energy using dimensional regularization. Finally,
we will discuss renormalization of the QED and give a more or less complete list of
Feynman rules, which will be useful in section 4. In doing so we will follow [27] throughout
the following sections.

D.1 Correlation Functions and Path Integral Formalism

D.1.1 Scalar Field

First of all we should define the correlation function or n-point function of a real scalar
field φ, as done in [27, p.1/8ff].

Definition D.1.1: A n-point function or correlation function is a vacuum expectation
value of time-ordered products of scalar field operators

〈0|Tφ(x1) . . . φ(xn)|0〉, (D.1)

where T denotes the time ordering operator given by

Tφ(x1) . . . φ(xn) = φ(xi1) . . . φ(xin), (D.2)

for permutations i1, . . . , in of 1, . . . , n, such that the operators are rearranged descending
in times xoi1 > . . . > xoi1 .

One very important case of the correlation function is the the two-point function

〈0|Tφ(x)φ(y)|0〉, (D.3)

which plays a central role in perturbation expansion of interacting theories. The two-point
function is translation invariant, i.e.

〈0|Tφ(x)φ(y)|0〉 = 〈0|Tφ(x− y)φ(0)|0〉, (D.4)
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and defines the free propagator of the boson144 by

4(x) := ı̇〈0|Tφ(x)φ(0)|0〉, (D.5)

which can be interpreted as the probability amplitude of a particle propagating from 0 to
x in spacetime. This propagator is a Green’s function of the field equation, which in case
of a scalar field the Klein-Gordon equation (1.5), i.e.

(� +m2)4(x) = δ(4)(x). (D.6)

Thus, the Green’s function can be written as the following Fourier integral:

4(x) =
∫ d4x

(2π)4
e−ı̇px

m2 − p2 − iε
. (D.7)

Here, we have taken into account the Feynman boundary conditions by m2 → m2 − ı̇ε,
which ensures heaving only positive frequency solutions for x0 > 0 and only negative
frequency solutions for x0 < 0.

When introducing path integral formalism, we find that n-point functions are given by
such a basic path integral formula:

〈0|Tφ(x1) . . . φ(xn)|0〉 = 1
N

∫
[dϕ]eı̇S[ϕ]ϕ(x1) . . . ϕ(xn), (D.8)

with commuting c-number fields ϕ and a normalization factor N given by

N =
∫

[dϕ]eı̇S[ϕ], (D.9)

and S[ϕ] should be the classical action of the model for the free scalar field, i.e.

S[ϕ] =
∫
d4x[∂µϕ(x)∂µϕ(x)−m2ϕ(x)2]. (D.10)

The integration measure [dϕ] can be understood in the following way; The metric
allows us to define a volume element

ds2 =
∫
d4x[dϕ], (D.11)

which can be seen as the distance between two neighbouring field configurations145. It
can be easily shown that the integration measure is translation invariant, i.e.

[dϕ] = [dϕ′] for ϕ(x) = ϕ′(x) + k(x), (D.12)

for an arbitrary function k(x).

144Similarly we find the propagator for a complex scalar field as 4(x) := ı̇〈0|Tφ(x)φ†(y)|0〉.
145In QM the fields would be various paths of particle trajectories. The volume element thus would

be a distance between two paths and that’s why this formalism is called path integral method. An
introductory discussion can be found in [28, p.7ff] .
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The generating functional is given by

Z[f ] = 1
N

∫
[dϕ]eı̇S[ϕ]eı̇

∫
d4xf(x)ϕ(x)

=
∞∑
n=0

ı̇n

n!

∫
d4x1 . . . d

4xnf(x1) . . . f(xn)〈0|Tφ(x1) . . . φ(xn)|0〉

=: 〈0|Teı̇
∫
d4xf(x)φ(x)|0〉,

(D.13)

and so the n-point functions can be obtained as functional derivations of Z[f ] as

〈0|Tφ(x1) . . . φ(xn)|0〉 = 1
ı̇n

δnZ[f ]
δf(x1) . . . f(xn)

∣∣∣∣∣
f=0

. (D.14)

We can compute the generating functional for the scalar field by recognizing a Fresnel
type integral and find

Z[f ] ={0|Teı̇
∫
d4xf(x)φ(x)|0〉

= exp
(
ı̇

2

∫
d4xd4yf(x)f(y)4(x− y)

)
.

(D.15)

With this and applying Wick’s theorem (theorem D.3.1) it can be shown that one can
decompose every n-point function in a product of two-point functions, i.e.

〈0|Tφ(x1) . . . φ(xn)|0〉 =
∑

pairings

1
ı̇
4(xi1 − xi2) . . . 1

ı̇
4(xin−1 − xin)

=
∑

pairings

1
ı̇
〈0|Tφ(xi1)φ(xi2)|0〉 . . . 〈0|Tφ(xin−1)φ(xin)|0〉.

(D.16)

D.1.2 Dirac Field

All considerations above are similar for fermion operators. The two-point function of
Dirac fields is given by

〈0|ψa(x)ψb(y)|0〉 = 1
ı̇
(ı̇ /∂x −m)ab4(x− y)) =: 1

ı̇
S(x− y), (D.17)

where S(x−y) is called the Dirac propagator. It is a Green’s function of the Dirac equation
(1.19), since

(m− ı̇ /∂x)S(x− y) = δ(4)(x− y), (D.18)

with Feynman boundary conditions. Its Fourier representation is written as

S(x− y) =
∫ d4k

(2π)4 e
−ı̇k(x−y) /k +m

m2 − k2 − ı̇ε
=
∫ d4k

(2π)4
e−ı̇k(x−y)

m− /k − ı̇ε
. (D.19)

It can be shown that the two following types of two-point functions vanish:

〈0|ψa(x)ψb(y)|0〉 = 0, (D.20)

〈0|ψa(x)ψb(y)|0〉 = 0. (D.21)
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Therefore, we only get nonvanishing results for the general case of a n-point function only
if the number of ψ’s equals the number of ψ’s, since it can be decomposed as a product
of two-point functions, similarly to the bosonic case by

〈0|Tψa1(x1)ψb1(y1) . . . ψan(xn)ψbn(yn)|0〉

=
∑
σ∈Sn

(−1)σ 1
ı̇
Sa1bσ(1)(x1 − yσ(1) . . .

1
ı̇
Sanbσ(n)(xn − yσ(n)),

(D.22)

with

(−1)σ =

 +1 if σ is an even permutation of 1, . . . , n,
−1 if σ is an odd permutation of 1, . . . , n.

(D.23)

The fermionic path integral is a bit more complicated since fermionic variables are
elements of a Grassmann algebra, i.e. they are anticommuting objects. A discussion on
this can be also found in [27, p.4/1ff] and it is also discussed in [28, p.121ff]. But after
some considerations we obtain the generating functional as a functional of two Grassmann
variables η and η given by

Z[η, η] ={0|T exp
(
ı̇
∫
d4x[η(x)ψ(x)− ψ(x)η(x)]

)
|0〉

= 1
N

∫
[dψ, dψ] exp

(
ı̇
∫
d4x[S[ψ] + η(x)ψ(x)− ψ(x)η(x)]

)
,

(D.24)

with a translation invariant integration measure [dψ, dψ] of Grassmann variables. We can
compute the generating functional for the free Dirac field similarly as before and get

Z[η, η] ={0|T exp
(
ı̇
∫
d4xd4y[η(x)S(x− y)η(y)]

)
|0〉

= 1
N

∫
[dψ, dψ] exp

(
ı̇
∫
d4xd4y[ηS(x− y)η(x)]

)
,

(D.25)

which leads to the pairing rules stated above.

D.1.3 Vector Field

In the case of a (real) massive vector field the two-point function can be also obtained
from the propagator of the vector boson given by

〈0|TV µ(x)V ν(y)|0〉 = ı̇4µν(x− y), (D.26)

where the propagator is a Green’s function of the Proca equation (1.10). Its Fourier
representation is written as

4µν(x) =
∫ d4k

(2π)4 e
−ı̇kx gµν − kµkν

M2

M2 − k2 − ı̇ε
. (D.27)

For a complex vector field we get analogously

〈0|TVµ(x)V †ν (y)|0〉 = ı̇4µν(x− y), (D.28)
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but it should be noted that other two-point functions vanish

〈0|TVµ(x)Vν(y)|0〉 = 0, (D.29)

〈0|TV †µ (x)V †ν (y)|0〉 = 0. (D.30)

Again, we obtain the generating functional, which is in this case given by

Z[J ] ={0|Te−ı̇
∫
d4xV µ(x)Jµ(x)|0〉

= 1
N

∫
[dV µ] exp

(
ı̇
∫
d4x[S[V µ]− V µJµ]

)
,

(D.31)

where Jµ(x) is an external current and the integration [dV µ] is translation invariant.
Computing the generating functional for the real vector field leads to

Z[J ] = exp
(
− ı̇2

∫
d4xd4yJµ(x)4µν(x− y)Jν(y)

)
, (D.32)

and similarly we get for the complex vector field

Z[J, J∗] = exp
(
−ı̇
∫
d4xd4yJ ∗µ (x)4µν(x− y)Jν(y)

)
. (D.33)

D.1.4 Gauge Field

Finally we should also discuss the propagator of an abelian gauge field, i.e. the photon field,
which is a massless vector field, since a mass term is forbidden by the gauge invariance of
the Lagrangian. In order to derive the Fourier representation of the propagator, we can
find the Green’s function only by adding a gauge fixing term containing a gauge parameter
ξ. In [26, p.732ff] an elaborated discussion can be found. We utilize the conventions there
and state the result for the gauge fixed Lagrangian of the interacting photon

Leff = −1
4FµνF

µν︸ ︷︷ ︸
free photon

− 1
2ξ (∂µAµ)2

︸ ︷︷ ︸
gauge fixing

− JµAµ︸ ︷︷ ︸
interaction

. (D.34)

The derivation can be found in [27, p.6/1ff] and here we just want to state the result for
the photon propagator:

Dµν(x) =
∫ d4k

(2π)4 e
−ı̇kx −ı̇

k2 + ı̇ε

[
gµν − (1− ξ) k

µkν

k2

]
. (D.35)

As it is mentioned in [83, p.150], the gauge fixing parameter is an arbitrary real non-
negative number. In the Landau gauge we have ξ = 0, in the Feynman-’t Hooft gauge
ξ = 1 and in the unitary gauge ξ = ∞. It is important to be aware of the fact that
physically meaningful quantities have to be independent of the gauge parameter. In any
gauge where the propagator falls off with 1

k2 "the perturbation theory will be renormal-
izable, in the sense that the divergences are removed by a finite set of counterterms", as
is mentioned in [26, p.738]. Thus, we call these gauges Rξ gauges to indicate the corre-
sponding parameter ξ and their renormalizability. As it is noted in [70, p.35ff], this more
general framework of gauges is more convenient to use if we would like to calculate Feyn-
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man diagrams beyond tree level. Even though in unitary gauge the physical structure
becomes more obvious, renormalizability becomes obscure, since propagators behave as
O(1) rather than O(k−2) for large k.

At last we state the result for the generating functional of the photon field

Z[J ] = exp
(
− ı̇2

∫
d4xd4yDµν(x− y)Jµ(x)Jν(y)

)
, (D.36)

which is indeed independent of the gauge parameter ξ for a conserved current J , as it is
shown in [27, p.6/4ff].

It should be only noted here that the propagators for the other gauge bosons can be
found similarly, as done e.g. in [83, p.148ff]. Here we will simply state the results obtained
there in the section D.3 on Feynman rules.

D.2 Perturbation Theory and the S-Operator

In this section we will briefly state some important results and considerations found in
[27, p.7/1ff]. If we deal with interactions, which are small in some sense, perturbation
theory can be employed. We might decompose the Hamiltonian146 of the theory in a free
and interacting part, i.e.

H = H0 +Hint. (D.37)

We are working in the interaction picture (IP), where time evolution of operators is defined
as

AIP(t) := eı̇H0tASe
−ı̇H0 , (D.38)

where the index S indicates an operator in the Schrödinger picture. If we want to calculate
a S-matrix element in a scattering process, we use

〈χ out|φ in〉 = 〈χ|S|φ〉, (D.39)

where S denotes the S-operator defined as

S := Te−ı̇
∫
d4xHIP

int . (D.40)

This is the starting point for perturbative expansion as we will see.
If one does some explicit calculations of S-matrix elements, a specific structure becomes

apparent . All S-matrix elements exhibit the form

(2π)4δ(4)

∑
i

pin
i −

∑
j

qout
j

 ı̇M(pin
1 , p

in
2 , . . .→ qout

1 , qout
2 , . . .), (D.41)

and we call ı̇M(pin
1 , p

in
2 , . . .→ qout

1 , qout
2 , . . .) the invariant matrix element, which contains

all relevant physical information of the scattering process. This invariant matrix element
can be easily written down, if one uses Feynman rules, which we will discuss in the next
section.

146or respectively the Lagrangian
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But before, we should consider two-point functions in an interacting theory as it is done
in [27, p.16/1ff]. Let |Ω〉 denote the vacuum of the interacting theory and we assume that

〈Ω|φ(0)|Ω〉 = 0.

Then we achieve for the two-point function of a scalar field

〈Ω|φ(x)φ(0)|Ω〉 =Z
ı̇
4(x;mph) + . . .

=Z
ı̇

∫ d4k

(2π)4
e−ı̇kx

m2
ph − k2 − ı̇ε

+ . . . ,
(D.42)

where we focused on one particle states with momentum p and the dots indicate continuum
contributions for particles n ≥ 2. The pole of this two-point function determines the
physical mass mph and the field renormalization constant Z is given by

√
Z = 〈Ω|φ(0)|p〉. (D.43)

Analogously, we can obtain the two-point function of fermions in an interacting theory as

〈Ω|Tψ(x)ψ(0)|Ω〉 =Z
ı̇
S(x;mph) + . . .

=Z
ı̇

∫ d4k

(2π)4
e−ı̇kx

mph − /k − ı̇ε
+ . . . ,

(D.44)

with the renormalization constant Z given by

〈Ω|ψ(0)|p, s〉 =
√
Zu(p, s;mph), (D.45)

〈p, s|ψ(0)|Ω〉 =
√
Zu(p, s;mph), (D.46)

〈p, s|ψ(0)|Ω〉 =
√
Zv(p, s;mph), (D.47)

〈Ω|ψ(0)|p, s〉 =
√
Zv(p, s;mph). (D.48)

In order to calculate the perturbative expansion in first order, we note what is men-
tioned in [27, p.18/1ff]. The action can be decomposed in a free and interaction part

S[ϕ] = S0[ϕ] + Sint[ϕ], (D.49)

and ϕ denotes the fields present in the theory (e.g. ϕ = ψ, ψ,Aµ, . . .). We like to rewrite
the n-point function of the interacting theory using path integral formalism. Thus, when
splitting S into these two parts, we obtain

〈Ω|Tφ(x1) . . . φ(xn)|Ω〉 =
∫

[dϕ]eı̇S[ϕ]ϕ(x1) . . . ϕ(xn)∫
(dϕ]eı̇S[ϕ]

=〈〈e
ı̇Sint[ϕ]ϕ(x1) . . . ϕ(xn)〉〉
〈〈eı̇Sint[ϕ]〉〉

,

(D.50)

where 〈〈. . .〉〉 denotes the Gaussian mean value, which is defined as

〈〈F [ϕ]〉〉 =
∫

[dϕ]eı̇S0[ϕ]F [ϕ]∫
[dϕ]eı̇S0[ϕ] , (D.51)
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for a functional F . To perform perturbative expansion we insert the power series expan-
sion of the exponential function, and obtain

eı̇Sint[ϕ] =
∞∑
n=0

ı̇n

n! (Sint[ϕ])n. (D.52)

D.3 Feynman Rules

Theorem D.3.1: Let A1, . . . , An be a set of n creation and annihilation operators, then
we can evaluate their product in a systematic way:

A1 . . . An = : A1 . . . An : +

+ : A1A2A3A4 . . . An : + . . . one contraction

+ : A1A2A3A4 . . . An : + . . . two contractions

+ . . . ,

where a Wick contraction means A1A2 := 〈0|A1A2|0〉 and : ... : denotes the normal
ordering of the creation and annihilation operator, which means rearranging the product
in a way such that all creation operators stand on the left side of all annihilation operators.

Proof. A proof of this theorem is done in [27, p.10/2ff].

This Wick contraction theorem can be now used to give a list of all Feynman rules we
need.

D.3.1 Propagators

Here we like to give a comprehensive list of Feynman rules of the propagator of all particles
considered in this thesis. We start with the fermion propagator derived in section D.1.2
and the photon propagator we already mentioned in section D.1.4 in Rξ gauge.

Similarly, the propagators of the weak interaction bosons can be found and will just
be stated here. Finally, for sake of completeness, we present also the propagators of the
scalars (including the Goldstone bosons), which will be useful in calculations for the loop
corrections to the seesaw mechanism in section 4. Those propagators can be found in [83,
p.150f, 158], where ξA, ξZ and ξW denote the different gauge parameters corresponding to
the gauge bosons A,Z0 andW± of the EW theory. The Feynman rules for the propagators
are listed on the next page.
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k
(f ): = i

/k +mf

k2 −m2
f

, (D.53)

k
(γ): = −igµν

k2 + (1− ξA)ikµkν
k4 , (D.54)

k
(Z0): = −igµν

k2 −m2
Z

+ ikµkν
m2
Z

(
1

k2 −m2
Z

− 1
k2 − ξZm2

Z

)
, (D.55)

k
(W±): = −igµν

k2 −m2
W

+ ikµkν
m2
W

(
1

k2 −m2
W

− 1
k2 − ξWm2

W

)
, (D.56)

k
(S0

a): = i

k2 −m2
a

, (D.57)

k
(S±b ): = i

k2 −m2
b

, (D.58)

k
(G0): = i

k2 − ξZm2
Z

, (D.59)

k
(G±): = i

k2 − ξWm2
W

. (D.60)

D.3.2 Vertices

Furthermore, we want to give a list of all interaction vertices needed in this master thesis,
i.e. EW interactions of leptons with the gauge bosons, which can be found in [83, p.159]:

f
Aµ

f

= −ieqfγµ, (D.61)

f
Z0
µ

f

= i
g

cW
γµ

(
−1

2PL + s2
w

)
,

ν
Z0
µ

ν

= i
g

2cW
γµPL, (D.62)

ν
W−
µ

f

= i
g√
2
γµPL,

f
W+
µ

ν

= i
g√
2
γµPL. (D.63)
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In addition, the vertices for the Yukawa interactions of the neutral and charged scalar
mass eigenfields with the neutrino mass eigenfields will be needed. They are given in [83,
p.160], but we already note them in the notation, which is needed in section 4.1 and has
been introduced there:

χ
S0
b

χ

= − i√
2
([
U †R∆bUL + UT

L∆T
b U
∗
R

]
PL +

[
U †L∆†bUR + UT

R∆∗bU∗L
]
PR
)
, (D.64)

χ
G0

χ

= − i√
2
([
U †R∆bZUL + UT

L∆T
bZ
U∗R
]
PL +

[
U †L∆†bZUR + UT

R∆∗bZU
∗
L

]
PR
)
,(D.65)

`
S+
a

χ

= ı̇
[
(U †R∆a)PR − (U †LΓ†a)PL

]
, (D.66)

χ
G+

`

= ı̇
[
(U †R∆aW )PR − (U †LΓ†aW )PL

]
, (D.67)

χ
S−a

`

= ı̇
[
PR

(
∆†aUR

)
− PL (ΓaUL)

]
, (D.68)

`
G−

χ

= ı̇
[
PR

(
∆†aWUR

)
− PL (ΓaWUL)

]
. (D.69)

D.4 Fermion Self-Energy

D.4.1 Fermion Two-Point Function at One-Loop

A discussion on this can be also found in [26, p.217], but we follow again [27, p.18/1ff] and
use the path integral formalism for the perturbative expansion of the Green’s function
to compute the one-loop correction to the fermion propagator. The two-point function is
given by

〈Ω|Tψa(x)ψb(y)|Ω〉 = 〈〈e
ı̇Sintψa(x)ψb(y)〉〉
〈〈eı̇Sint〉〉

, (D.70)
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where we insert the QED interaction part of the action (q = −e for e−)

Sint = −q
∫
d4xψ(x) /A(x)ψ(x). (D.71)

Inserting the perturbative expansion into the denominator , we obtain

〈〈eı̇Sintψa(x)ψb(y)〉〉 = 〈〈(1 + ı̇Sint + ı̇2

2!S
2
int + . . .)ψa(x)ψb(y)〉〉. (D.72)

We recognize that the first term (0th order) simply gives the fermion propagator at tree-
level and the second (1st order) term vanishes since gauge condition leads to 〈〈Aµ〉〉 = 0.
The third terms (2nd order) yield the additional one-loop corrections and we use Wick’s
theorem (theorem D.3.1) to find all possible contractions. The only one which contributes
to the one loop corrections is the fermion self-energy shown in figure 24 below.

f (p) f (p− k) f (p)

γ (k)

Figure 24: Fermion self-energy - photon loop

After some calculations we achieve the corrected two-point function in the following
form:

〈Ω|Tψ(x)ψ(y)|Ω〉
∣∣∣
1−loop

= +

=
∫ d4p

(2π)4 e
−ı̇p(x−y)

{
ı̇

/p−m+ ı̇ε
+ ı̇

/p−m+ ı̇ε
(−ı̇Σ(p)) ı̇

/p−m+ ı̇ε

}
,

(D.73)

with the self-energy function Σ of the fermion given by the loop-integral

−ı̇Σ(p) = −e2
∫ d4k

(2π)4γµ
/p− /k +m

(p− k)2 −m2 + ı̇ε
γµ

1
k2 + ı̇ε

. (D.74)

D.4.2 Regularization

This loop integral (D.74) exhibits not only an IR-divergence but also an UV-divergence.
The first on can be easily fixed by adding a small photon mass mγ to the photon prop-
agator. The latter could be treated in different ways, but here we choose dimensional
regularization. This means we introduce a (higher) space-time dimension d such that the
loop integral is convergent.
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Thus, we make the following substitutions:∫
d4x→

∫
ddx,

∫ d4k

(2π)4 →
∫ ddk

(2π)d , gµµ = 4, γµ/aγ
µ = (2− d)/a. (D.75)

Hence, we obtain the following form for fermion self-energy:

−ı̇Σ(p) = −e2
∫ ddk

(2π)d
(2− d)(/p− /k) + dm

(p− k)2 −m2 + ı̇ε

1
k2 −m2

γ + ı̇ε
. (D.76)

In the next step we employ Feynman parametrization (E.45) to contract the two denom-
inators and we obtain

−ı̇Σ(p) = −e2
1∫

0

∫ ddk

(2π)d
(2− d)(/p− /k) + dm

{x[(k − p)2 −m2 + ı̇ε] + (1− x)[k2 −m2
γ + ı̇ε]} . (D.77)

After completing the square in the polynomial denominator, we perform a formal shift
of the integration variable k by introducing k = k − xp, and hence we end up with an
integral

−ı̇Σ(p) = −e2
1∫

0

∫ ddk

(2π)d
(2− d)(1− x)/p+ dm

k2 + x(1− x)p2 − xm2 − (1− x)m2
γ + ı̇ε

. (D.78)

Now, the integration over k can be performed by Wick rotation and using formula (E.46)
with α = 2 and thus we obtain

−ı̇Σ(p) =− e2
1∫

0

[(2− d)(1− x)/p+ dm]
ı̇Γ(2− d

2)
(4π) d2 Γ(2)

[xm2 + (1− x)m2
γ − x(1− x)p2 − ı̇ε] d2−2.

(D.79)

Since Γ(z) has poles at z = 0,−1,−2, . . . we see that Σ(p) has poles at d = 4, 6, 8, . . .. To
investigate the behaviour of Σ in the vicinity of the physical relevant spacetime dimension
d = 4 we set d = 4 − 2ε for ε → 0 such that d → 4. Inserting d of this form into the
equation above we get

−ı̇Σ(p) →
d→4
− e2

1∫
0

[(−2 + 2ε)(1− x)/p+ (4− 2ε)m]

ı̇Γ(ε)
(4π)2(4π)−ε [xm2 + (1− x)m2

γ − x(1− x)p2 − ı̇ε]−ε.

(D.80)

Finally, we use the following expansion of the gamma function Γ:

Γ(ε) = 1
ε

+Γ′(ε)︸ ︷︷ ︸
−γE

+O(ε), (D.81)

where γE denotes the Euler-Mascheroni constant. Furthermore, we rewrite and expand
the term of the power −ε in the following way:

a−ε = ε−ε ln(a) = 1− ε ln(a) +O(ε2). (D.82)
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Applying all this to formula (D.80) and only taking into account the two lowest orders in
ε of the expansion we achieve

−ı̇Σ(p) =− ı̇e2

(4π)2

{[1
ε
− γE + ln(4π)

]
(−/p+ 4m) + /p− 2m

−
1∫

0

[−2(1− x)/p+ 4m] ln[xm2 + (1− x)m2
γ − x(1− x)p2 − ı̇ε]

 .
(D.83)

Introducing an arbitrary mass scale µ to reintroduce d instead of ε quite nicely147 we can
finally achieve

Σ|
/p=m = e2m

(4π)2µ
d−4

−6
[ 1
d− 4 −

1
2 (Γ′(1) + ln(4π))

]
︸ ︷︷ ︸

=:Λd

− 3 ln
(
m2

µ2

)
+ 4

 . (D.84)

D.4.3 Structure and Interpretation

As it is mentioned in [27, p.18/20], the fermion self energy can be decomposed into two
parts

Σ(/p) = A(p2)/p+B(p2)m. (D.85)

When we take a closer look at the final result in (D.84) we see that of course we always
have a part proportional to /p and one proportional to m, if we take into account148 that

/p
n =

 pn−1/p for odd n,
pn for even n,

(D.86)

where n ≥ 1, because Σ can only depend on powers of /p.
Besides this structure, we like to discuss the structure of the propagator in more detail,

as it is done in [27, p.18/19ff] and also in [26, p.220f]. We find that the corrected fermion
propagator in momentum space, i.e. the Fourier transformed two-point function, can be
written as∫

d4x〈Ω|Tψ(x)ψ(0)|〉eı̇px = ı̇

/p−m
+ ı̇

/p−m
(−ı̇Σ) ı̇

/p−m
+O

(
Σ

/p−m

)2

(D.87)

= ı̇

/p−m− Σ , (D.88)

where we noticed the expansion to be a geometric series149. We recognize that the pole
of the two-point function (in momentum space) is no longer at /p = m, but shifted to the

147Note that µ−2ε 1
ε = 1

ε − lnµ2 and [e2] = 4− d = 2ε.
148Great thanks to my college Maximilian Löschner for his very helpful note.
149We are able to write the series in this compact form because the the right sign appears in the de-

nominator. This is the reason for defining the self-energy with a factor of −ı̇. Thanks to my college
Maximilian Löschner for pointing this out.
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physical mass /p = mph, which is given by corrections to the bare mass m as

mph = m+ Σ|
/p=mph

+ corrections of higher order. (D.89)

The behaviour of the one-loop propagator in the vicinity of the physical mass p2 = m2
ph

can be obtained by the expansion of

/p−m− Σ(p) = /p−m− Σ(p)|
/p=mph

− ∂Σ
∂/p

∣∣∣∣∣
/p=mph

(/p−mph). (D.90)

Inserting this result in (D.88), we get
ı̇

/p−m− Σ(p) →
p2→m2

ph

ı̇Z2

/p−mph
(D.91)

, where we introduced the notation

Z2 = 1 + ∂Σ
∂/p

∣∣∣∣∣
/p=mph

, (D.92)

which is called the wave function renormalization constant of the electron field. Inserting
the result for Σ we obtained in (D.84), we get

Z2|1−loop = 1 + ∂Σ
∂/p

∣∣∣∣∣
/p=m

= 1 + e2

(4π)2µ
d−4

(
2Λd + ln

(
m2

µ2

)
− 4− 2 ln

(
m2
γ

m2

))
, (D.93)

for the renormalization constant at one-loop150.

D.5 Renormalization of QED

We have seen in the last section that the one-loop correction to the fermion propagator151

leads to a shift in the pole, i.e. a shift in mass. When renormalizing QED, we want so
establish renormalized quantities (ψr, Aµr ) and physical parameters (mphys, ephys) in the
Lagrangian (B.60) instead of the bare quantities and parameters (ψ,Aµ,m, e). Those
quantities are connected by

ψ =
√
Z2ψr, Aµ =

√
Z3A

µ
r , eZ2

√
Z3 = ephys

√
Z1, (D.94)

and we introduce the notations

δm = (Z2m−mphys), δ3 = (Z3 − 1), δ2 = (Z2 − 1). (D.95)

Therefore, we obtain the Lagrangian in the following form

LQED =− 1
4FrµνF

µν
r + ψr(ı̇∂ −mphys)ψr + ephysψrγµψrA

µ
r

− 1
4δ3FrµνF

µν
r + ψr(ı̇δ2∂ − δm)ψr − ephysδ1ψrγµψrA

µ
r .

(D.96)

150Note that in the last term the IR-divergence shows up, since the logarithm would explode for mγ = 0.
151In case of the photon propagator and the interaction vertex one can employ a similar procedure and

obtain corrections and renormalization constants Z3 resp. Z2.
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The first two terms in the first line represent the free Lagrangian L0, the third term in the
first line is the EM interaction and the terms in the second line are called counterterms.
We can also define Feynman rules for these conterterms by

k
µ ν = −i

(
gµνk2 − kµkν

)
δ3, (D.97)

p = i
(
/pδ2 − δm

)
, (D.98)

= iephysγ
µδ1. (D.99)

Their coefficients are fixed by renormalization conditions, e.g. the coefficients δ2 and
δm are fixed by

Σ̃(/p = mphys) = 0, ∂

∂/p
Σ̃(/p)

∣∣∣
/p=mphys

= 0, (D.100)

with the renormalized self-energy Σ̃ given by

−ı̇Σ̃(p) = −ı̇Σ(p) + ı̇(/pδ2 − δm). (D.101)

The renormalized fermion propagator is composed of the tree-level contribution, the one-
loop contribution (i.e. self-energy) as well as the counterterm. This can be visualized
by

= + + . (D.102)
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E Appendix - Mathmatical Tools

E.1 Algebraic Structures

In this section some useful definitions and properties of groups, Lie groups, and Lie
algebras are summarized using [102], [104], [105], [106], and [107].

E.1.1 Defnitions

Definition E.1.1: A group G is a set of elements {g1, g2, . . .} together with a binary
operation · (group law or operation) which satisfies the following group properties

(G1) Closure: If g1, g2 ∈ G ⇒ g1 · g2 ∈ G

(G2) Associativity: (g1 · g2) · g3 = g1 · (g2 · g3) ∀g1, g2, g3 ∈ G

(G3) Identity: ∃e ∈ G such that e · g = g · e = g ∀g ∈ G

(G4) Inverse: ∀g ∈ G ∃g−1 ∈ G such that g−1 · g = g · g−1 = e

A group is called an abelian group, if their group elements satisfy also

(G5) Commutativity: g1 · g2 = g2 · g1 ∀g1, g2 ∈ G

Definition E.1.2: A subset H of a group G (H ⊆ G) is called a subgroup if it satisfies
the following conditions

(H1) Closure: If h1, h2 ∈ H ⇒ h1 · h2 ∈ H

(H2) Identity: ∃e ∈ H

(H3) Inverse: ∀h ∈ H ⇒ h−1 ∈ H

and we denote this by H ≤ G. The so-called induced operation on H is defined via the
group operation on G and hence it satisfies (G2). Furthermore, every group G obviously
has two trivial subgroups, namely G itself and {e}.

Definition E.1.3: Let be (G, ·) and (G ′, ∗) two groups then a mapping ϕ : G → G ′

satisfying the condition

ϕ(g1 · g2) = ϕ(g1) ∗ ϕ(g2) (E.1)

for all g1, g2 ∈ G is called a group homomorphism. If this mapping is bijective, it is
called a group isomorphism and we write G ∼= G ′.
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Definition E.1.4: A set K assigned with two binary operations (K,+, ·) is called a field,
if the following conditions are satisfied:

(F1) (K, ·) forms an abelian group with neutral element 0

(F2) (K,+) forms an abelian group with neutral element 1

(F3) Distributivity: a · (b+ c) = a · b+ a · c. and (a+ b) · c = a · c+ b · c ∀a, b, c ∈ K

Definition E.1.5: A set V is called a vector space over a field (K,+, ·), if the two binary
operations vector addition ⊕ : V×V → V and scalar multiplication � : V×V → V satisfy
the following properties ∀u, v, w ∈ V and α, β ∈ K

(V1) Associativity: u⊕ (v ⊕ w) = (u⊕ v)⊕ w

(V2) Identity: ∃0V ∈ V ∀v ∈ V such that u⊕ 0V = 0V ⊕ v = v

(V3) Inverse: ∀v ∈ V ∃ − v ∈ V such that v ⊕ (−v) = (−v)⊕ v = 0V

(V4) Commutativity: v ⊕ u = u⊕ v ∀u, v ∈ V

(S1) Left distributivity: α� (u⊕ v) = (α� u)⊕ (α� v)

(S2) Right distributivity: (α + β)� v = (α� v)⊕ (β � v)

(S3) Associativity: (α · β)� v = α� (β � v)

Definition E.1.6: Let V and W be two K-vector spaces. A map f : V → W is called
linear map or vector space homomorphism, if it is homogeneous and additive, i.e.
it satisfies the following conditions for all x, y ∈ V and a ∈ K.

f(a�V x) = a�W f(x) (E.2)

f(x⊕V y) = f(x)⊕W f(y) (E.3)

Definition E.1.7: A K-vector space A equipped with an additional binary operation
∗ : A×A → A is called a algebra over a field K (or K-algebra), if the binary operation
is bilinear, i.e. it satisfies the following properties ∀x, y, z ∈ A and ∀α, β ∈ K

(A1) Left distributivity: (x⊕ y) ∗ z = x ∗ z ⊕ y ∗ z

(A2) Right distributivity: x ∗ (y ⊕ z) = x ∗ y ⊕ x ∗ z

(A3) Compatibility with scalars: (α · x) ∗ (β · y) = (α · β)(x ∗ y)

If the binary operation ∗ also fulfils

(A4) Associativity: x ∗ (y ∗ z) = (x ∗ y) ∗ z

A is called a associative algebra over a field K.
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Definition E.1.8: Let A and B be two algebras over a field K. A map φ : A → B is said
to be a algebra homomorphism, if it fulfils for all k ∈ K and x, y ∈ A

φ(k ∗A x) = k ∗B φ(x) (E.4)

φ(x⊕A y) = φ(x)⊕B φ(y) (E.5)

φ(x�A y) = φ(x)�B φ(y) (E.6)

If in addition φ is bijective it is called an algebra isomorphism.

Definition E.1.9: A Lie group is a smooth manifold G endowed with a group structure
with smooth152 operation. This means that we have a smooth operation µ : G × G → G,
an inversion ν : G → G and a unit element e ∈ G such that the group axioms (G1)-(G4)
are satisfied. We will write g1 · g2 for µ(g1, g2) and g−1 for ν(g) for g, g1, g2 ∈ G.

Definition E.1.10: If H is a subgroup and also a submanifold of the Lie group G, then
H ⊂ G is called a Lie subgroup of G and H itself is also a Lie group.

Definition E.1.11: A homomorphism of Lie groups G and G ′ is a smooth map
ϕ : G → G ′ which is a group homomorphism.

Definition E.1.12: A Lie algebra over K = R or C is a K−vector space g together
with a bilinear map [ , ] : g× g→ g, called the Lie bracket of g, which is skew symmetric,
i.e.

[Y,X] = −[X, Y ] ∀X, Y ∈ g (E.7)

and satisfies the Jacobi identity, i.e.

[X, [Y, Z]] = [[X, Y ], Z] + [Y, [X,Z]] ∀X, Y, Z ∈ g (E.8)

The Lie algebra of a Lie group G ist the tangent space g := TeG.

Definition E.1.13: Let (g, [ , ]) be a Lie algebra. A Lie subalgebra of g is a linear
subspace h ⊂ g which is closed under the Lie bracket, i.e. such that [X, Y ] ∈ h for all
X, Y ∈ h. We write h ≤ g if h is a Lie subalgebra of g. Of course, in this case (h, [ , ]) is
a Lie algebra, too.

Definition E.1.14: If g and h are Lie algebras, then a homomorphism of Lie alge-
bras ϕ : g → h is a linear mapping which is compatible with the Lie brackets, i.e. such
that for all X, Y ∈ g

[ϕ(X), ϕ(Y )] = ϕ([X, Y ]). (E.9)

If such a homomorphism is bijective, we call the mapping an isomorphism of Lie
algebras and we write g ∼= h.

152Smooth means infinitely differentiable (C∞).
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Proposition E.1.15: Let G andH be Lie groups with Lie algebras g and h. If ϕ : G → H
is a smooth homomorphism, then ϕ′ = Teϕ : g → h is a homomorphism of Lie algebras,
i.e. ϕ′([X, Y ]))[ϕ′(X), ϕ′(Y )] for all X, Y ∈ g.

Proof. See [105, p.5]

E.1.2 Representations

Definition E.1.16: A representation of a group G on a vector space V is a homo-
morphism ρ : G → GL(V ) and GL(V ) is the general linear group of all automorphism of
V .

Definition E.1.17: A n-dimensional matrix representation of a group G is a homo-
morphism R : G → GLn(K), where K is a field and GLn(K) is the general linear group
of all invertible n × n matrices with coefficients in K. All representations of a group on
a finite dimensional vector space can be reduced to matrix representations.

Definition E.1.18: Two representations of a group G ρ : G → GL(V ) on the K-vector
space V and π : G → GL(W ) on the K-vector space W are called equivalent or
isomorphic, if there exists a vector space isomorphism α : V → W so that for all g ∈ G,

α ◦ ρ(g) ◦ α−1 = π(g) (E.10)

Definition E.1.19: Let K be a field and A a K-algebra. An algebra homomorphism
π : A → L(V) is said to be a representation of an algebra A, where V is a K-vector
space and L(V) denotes the algebra of linear operators on V .

Definition E.1.20: Let A be a K-algebra and V1 and V2 two K-vector spaces. Two
algebra representations π1 : A → V1 and π2 : A → V2 are said to be equivalent (π1 ∼ π2),
if there exists a vector space isomorphism T : V1 → V2 such that for all a ∈ A

π1(a) = T−1 ◦ π2 ◦ T. (E.11)

Definition E.1.21: A representation of a Lie group G on a finite dimensional vector
space V is a smooth homomorphism ϕ : G → GL(V ). A representation of a Lie
algebra g on V is a Lie algebra homomorphism ϕ′ : g → L(V, V ), where L(V, V ) is the
space of all linear maps form V to V . In particular, for any representation ϕ of a Lie group,
one obtains a representation ϕ′. Now any Lie group G has a canonical representation on
its Lie algebra, called the adjoint representation.

Definition E.1.22: Given representations of G on V and W , a linear map f : V → W is
called a morphism or G-equivalent if f(g · v) = g · f(v) for all g ∈ G. An isomorphism
of representations is a G-equivalent linear isomorphism f : V → W . If such an
isomorphism exists, then we say that V and W are isomorphic and write V ∼= W .
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Definition E.1.23: Given representations of a Lie group G on V1 and V2 then there is
an representation V1 ⊕ V2 defined by

g · (v1, v2) := (g · v1, g · v2). (E.12)

This construction is referred to as the direct sum of representations. Of course, the
natural inclusion of the two summands into V1 ⊕ V2 are G-equivalent.

Definition E.1.24: A representation V of G is called decomposable if it is isomorphic
to a direct sum V1 ⊕ V2 with dim(V1), dim(V2) > 0. If this ist not the case, then the
representation is called indecomposable.

Definition E.1.25: Quite analogously, given two representations of a Lie algebra g on
vector spaces V and W , there is an obvious representation on the direct sum V ⊕ W ,
defined by

X · (v, w) := (X · v,X · w). (E.13)

This is called the direct sum of the representations V andW . Similarly, we can construct
a natural representation on the space L(V,W ). Namely, for ϕ : V → W and X ∈ g we
define

(X · ϕ)(v) := X · (ϕ(v))− ϕ(X · v). (E.14)

Definition E.1.26: Let V be a representation of G. A linear subspace W ⊂ V is called
G-invariant or a subrepresentation if g · w ∈ W for all g ∈ G and w ∈ W . In that
case, we obtain representations of G onW and on V/W , defined by restriction respectively
by

g · (v +W ) := (g · v) +W (E.15)

Definition E.1.27: for any representation of G on V , the subspaces {0} and V of V are
evidently invariant. If these are the only invariant subspaces the the representation is
called irreducible.

Definition E.1.28: To obtain decomposability of a representation, one dose not only
need a nontrivial invariant subspace but also a complementary subspace, which is in-
variant, too. A representation of G is called completely reducible if any G-invariant
subspace W ⊂ V admits a G-invariant complement.

Proposition E.1.29: If a representation is completely reducible, then V is a direct sum
of irreducible subrepresentations.

Proof. See [105, p.38]

Definition E.1.30: A representation of G on V is called unitary, if there is a positive
definite inner product 〈 , 〉 on V (Hermitian if V is complex) which is G-invariant in the
sense that 〈g · v, g · w〉 = 〈v, w〉 (E.16)

for all g ∈ G and v, w ∈ V .
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Proposition E.1.31: Any unitary representation is completely reducible.

Proof. See [105, p.39]

Definition E.1.32: A trivial representation of a (Lie) group G (or even a Lie algebra
g on V is a representation on which all elements of G (or g) act as the identity mapping
of V .

Definition E.1.33: Let be ρ a representation of G on a vector space V , then the dual
or contragradient representation ρ̃ is defined over the dual vector space Ṽ as ρ̃(g) =
ρ(g−1)T for all g ∈ G.

Definition E.1.34: For a representation ρ of group G on a complex vector space V the
complex conjugate representation ρ is defined over the complex conjugate153 vector
space V such that ρ(g) is the complex conjugate of ρ(g) for all g ∈ G.

Definition E.1.35: A complex conjugate contragradient representation of a group on a
vector space is simply the combination of the two definitions above.

E.2 Matrix Diagonalization

E.2.1 General Theorems

In this section two theorems on matrix diagonalization should be stated, which are found
in [108, p.1056] and are of great use for diagonalization of fermion mass matrices. First
we state a theorem for the most general case of an arbitrary complex square matrix. This
transformation is called biunitary transformation.

Theorem E.2.1: LetM be an arbitrary complex n×n matrix. Then there exist unitary
n× n matrices UL and UR, such that

M̂ = U †LMUR (E.17)

is diagonal, real and non-negative.

Proof. See [108, p.1056f] proof of theorem III.

Note that this proof uses another theorem on matrix diagonalization, which tells us
the obviously Hermitian matrixM †M can be diagonalized by an unitary matrix V . Thus,
the eigenvalues of M̂ in the theorem above correspond to the eigenvalues of the matrix
M †M .

153Note that in mathematics complex conjugations is mostly denoted by x whereas in physics complex
conjugation is mostly denoted by V ∗, which may be confused with the V ∗ indicating a dual space in
mathematics
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The second theorem, which applies for example for Majorana mass matrices, is a bit
more specific, since it applies for symmetric matrices.

Theorem E.2.2: Let M be a complex symmetric n × n matrix. Then there exists a
unitary n× n matrix U , such that

M̂ = UTMU (E.18)

is diagonal, real and non-negative.

Proof. See [108, p.1056] proof of theorem II.

This theorem was first stated implicitly by I. Schur in his paper on quadratic forms
[109], therefore we will refer to this theorem in this thesis also as Schur’s theorem (on
matrix diagonalization), although this type of factorization is also known as Takagi’s
factorization (see e.g. [110, p.204f] ). Besides, it should be emphasized that the diagonal
elements of M̂ are the non-negative square roots of the eigenvalues of the Hermitian
matrix MM † and the columns of U are the corresponding eigenvectors154. Finally, it
should be noted that this kind of factorization is no eigendecomposition of M .

E.2.2 Corrective Diagonalization

Let M0 be a n× n matrix, which has been diagonalized as above. Hence we have

U (0)TM0U
(0) = m̂(0) = diag(m(0)

1 , . . . ,m(0)
n ), (E.19)

with real mi ≥ 0 for i = 1, . . . , n. Let U (0) consist of n column vectors u(0)
i with n entries,

i.e.

U (0) = (u(0)
1 , . . . , u(0)

n ), (E.20)

and since U (0) is unitary its column vectors form an orthonormal system (ONS) which
means

u
(0)
i

†
u

(0)
j = δij or

∣∣∣u(0)
i

∣∣∣2 = 1. (E.21)

We can rewrite (E.19) as

M0u
(0)
i = miu

(0)
i

∗
, (E.22)

which is the analogue to an eigenvalue equation in the case of diagonalization via Schur’s
theorem. Now we want to consider a small correction155 to M0, such as

M = M0 + λM1, (E.23)

154A proof of this is given in [110, p.205] and it should be noted that it can be shown that the eigenvectors
to different eigenvalues of a Hermitian matrix are pairwise orthogonal.

155Great thanks to Prof. Grimus for his helpful advice concerning the following considerations.
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with small λ ∈ R. The corrected matrix M then can be diagonalized again according
to Schur’s theorem by a unitary matrix U = (u1, . . . , un). The columns ui will be are a
linear combination of the u(0)

i since they form an ONS. Furthermore, the ui will be close
to u(0)

i since we consider a very small correction. Hence we get approximately

ui ' ciu
(0)
i + u

(1)
i , (E.24)

with a complex factors ci and a small correction u(1)
i being of the order of λ. Those u(1)

i

are also linear combinations of the ONS {u(0)
i } and we assume u(1)

i ⊥ u
(0)
i . To ensure the

ui being normalized we find

1 != |ui|2 =
∣∣∣ciu(0)

i

∣∣∣2 +
∣∣∣u(1)
i

∣∣∣2 = |ci|2
∣∣∣u(0)
i

∣∣∣2 +
∣∣∣u(1)
i

∣∣∣2 ∝ |ci|2 + λ2 ' |ci|2 . (E.25)

Thus, ci must be a phase factor eı̇αi ' (1 + ı̇αi) with small156 phase αi.
The small correction to M0 will cause a small correction to the mass eigenvalues such

that we can write approximately

mi ' m
(0)
i +m

(1)
i . (E.26)

Under this considerations the eigenvalue equation analogue for the corrected matrix M
can be written as

Mui = (M0 + λM1)(ciu(0)
i + u

(1)
i ) = (m(0)

i + λm
(1)
i )(ciu(0)

i + u
(1)
i )∗. (E.27)

Multiplication with
(
u

(0)
j

)T
from the left leads to(

u
(0)
j

)T
(M0 + λM1)(ciu(0)

i + u
(1)
i ) =

(
u

(0)
j

)T
(m(0)

i + λm
(1)
i )(ciu(0)

i + u
(1)
i )∗. (E.28)

Using the condition (E.21) as well as relation (E.22) and its transposed, the left hand side
gives (

u
(0)
j

)T
(M0 + λM1)((1 + ı̇αi)u(0)

i + u
(1)
j )

=(1 + ı̇αi)
(
u

(0)
j

)T
M0u

(0)
i +

(
u

(0)
j

)T
M0u

(1)
i

+ λ(1 + ı̇αi)
(
u

(0)
i

)T
M1u

(0)
i + λ

(
u

(0)
j

)T
M0u

(1)
i

'(1 + ı̇αi)m(0)
j δji +m

(0)
j

(
u

(0)
j

)†
u

(1)
i + λ

(
u

(0)
j

)T
M1u

(0)
i

(E.29)

where we only considered terms of maximal order λ. Analogously we get for the right
hand side (

u
(0)
j

)T
(m(0)

i + λm
(1)
i )((1 + ı̇αi)u(0)

i + u
(1)
i )∗

=(1− ı̇αi)
(
u

(0)
j

)T
m

(0)
i

(
u

(0)
i

)∗
+
(
u

(0)
j

)T
m

(0)
i

(
u

(1)
i

)∗
+ λ(1− ı̇αi)

(
u

(0)
j

)T (
u

(0)
i

)∗
+ λ

(
u

(0)
j

)T
m

(1)
i

(
u

(1)
j

)∗
'(1− ı̇αi)m(0)

i δji +m
(0)
i

(
u

(0)
j

)T (
u

(1)
i

)∗
+ λm

(1)
i δji.

(E.30)

156We have 1 =
∣∣eı̇αi ∣∣2 +

∣∣∣u(1)
i

∣∣∣2 ' |(1 + ı̇αi|2 + λ2) = 1− |αi|2 + λ2. Hence, αi is of the order of λ.
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Therefore we have

(1 + ı̇αi)m(0)
j δji +m

(0)
j

(
u

(0)
j

)†
u

(1)
i + λ

(
u

(0)
j

)T
M1u

(0)
i

= (1− ı̇αi)m(0)
i δji +m

(0)
i

(
u

(0)
j

)T (
u

(1)
i

)∗
+ λm

(1)
i δji.

(E.31)

In the case i = j this leads to

(1 + ı̇αi)m(0)
i + λ

(
u

(0)
i

)T
M1u

(0)
i = (1− ı̇αi)m(0)

i + λm
(1)
i (E.32)

where we used the assumption u
(1)
i ⊥ u

(0)
i . We obtain the following expression for the

correction to the diagonal matrix m̂

λm
(1)
i =2ı̇αim(0)

i + λ
(
u

(0)
i

)T
M1u

(0)
i

=λRe
((
u

(0)
i

)T
M1u

(0)
i

)
+ ı̇

(
Im

((
u

(0)
i

)T
M1u

(0)
i

)
+ 2αim(0)

i

) (E.33)

Since m(1)
i has to be real the phase αi has to be such that the two last imaginary terms

cancels, namely

αi =
Im

((
u

(0)
i

)T
M1u

(0)
i

)
2m(0)

i

. (E.34)

Therefore we find as final result

mi = m
(0)
i + λm

(1)
i = m

(0)
i + λRe

((
u

(0)
i

)T
M1u

(0)
i

)
. (E.35)

In the case of i 6= j we get

m
(0)
j

(
u

(0)
j

)†
u

(1)
i + λ

(
u

(0)
j

)T
M1u

(0)
i = m

(0)
i

((
u

(0)
j

)†
u

(1)
i

)∗
. (E.36)

Introducing the notation Aji =
(
u

(0)
j

)†
u

(1)
i and Bji =

(
u

(0)
j

)T
M1u

(0)
i we obtain(

m
(0)
j −m

(0)
i

)
Re(Aji) + ı̇

(
m

(0)
j +m

(0)
i

)
Im(Aji) = −Re(Bji)− ı̇Im(Bji) (E.37)

and therefore we get(
u

(0)
j

)†
u

(1)
i = Re(Aji) + ı̇Im(Aji) = − Re(Bji)(

m
(0)
j −m

(0)
i

) − ı̇ Im(Bji)(
m

(0)
j +m

(0)
i

) . (E.38)

This gives us also a relation for the correction of the columns u(0)
i .

163



E APPENDIX - MATHMATICAL TOOLS

E.3 Rank-Nullity Theorem

Theorem E.3.1: Let V and W be vector spaces over a field and A a linear mapping
A : V → W , then the following holds:

dim V = dim(imA)− dim(kerA)

where the image and the kernel of the mapping A are defined as

imA = {w ∈ W |Av = w for some v ∈ V }

kerA = {v ∈ V |Av = 0}

E.4 Cauchy-Schwarz Inequality

Let be V a n-dimensional C vector space with inner product 〈., .〉 and norm ||.||. For two
vectors x = (xi)i, y = (yi)i ∈ V the Cauchy-Schwarz inequality tells us

|〈x, y〉| ≤ ||x|| · ||y||. (E.39)

In component notation we may write∣∣∣∣∣
n∑
i=1

xiy
∗
i

∣∣∣∣∣
2

≤
n∑
j=1
|xi|2 ·

n∑
k=1
|yi|2 (E.40)

where ∗ denotes complex conjugation. Note that for z ∈ C the absolute value is |z| = zz∗.

E.5 Trigonometric Functions

In this section we will briefly state some properties and relations of trigonometric func-
tions, especially sine and cosine. The following relations are valid:

cos(θ)2 = 1
2(1 + cos(2θ)), (E.41)

sin(θ)2 = 1
2(1− cos(2θ)), (E.42)

cos(2θ) = cos(θ)2 − sin(θ)2, (E.43)
1
2 sin(2θ) = sin(θ) cos(θ). (E.44)
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E.6 Integration Tricks for Loop-Integrals

E.6.1 Feynman Parametrization

According to [26, p.189f], this useful trick enables us to squeeze different denominator
factors into a single quadratic polynomial. After performing a shift of the integration vari-
able, we can complete the square in this polynomial and evaluate the remaining spherically
symmetric integral. In the simplest case we consider two different denominators,

1
AB

=
∫ 1

0
dx

1
[xA+ (1− x)B]2 , (E.45)

but this can be extended straight forward for n denominators157. Nevertheless, this version
will be sufficient for our purpose. The parameter x is called Feynman parameter.

E.6.2 Wick Rotation

Another very useful trick is Wick Rotation. It can be used to evaluate integrals of a
specific form, which appear in loop calculations. For those integrals we can use∫ ddk

(2π)d
1

(k2 − a+ ı̇ε)α =
ı̇(−1)αΓ(α− d

2)
(4π) d2 Γ(α)

(a− ı̇ε) d2−α, (E.46)

where the Gamma function is defined as

Γ(n) = (n− 1)!. (E.47)

E.6.3 Logarithmic Integrals

In our one-loop calculations we have to solve the following specific integral:
1∫

0

dx ln(ax+ b) = a+ b

a
ln(a+ b)− 1− b

a
ln b

= ln(a+ b)− 1 + a

b
(ln(a+ b)− ln a) .

(E.48)

157This formula can be found in [26, p.190] .
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F Appendix - Calculations and Derivations

For the sake of completeness all more or less lengthy computations and derivations, which
have been skipped in the main part of this thesis for a more fluent legibility, have been
summarized in this appendix.

F.1 Majorana Lagrangian for Chiral Fields

We like to rewrite the Majorana field in the form defined in (1.45) using the properties
(1.25) and (1.26), hence we can write

ψ = PLψL + PR (ψL)C . (F.1)

Inserting this in the Dirac Lagrangian (1.46) gives

L =1
2

[(
PLψL + PR (ψL)C

)
ı̇ /∂
(
PLψL + PR (ψL)C

)
− m

(
PLψL + PR (ψL)C

) (
PLψL + PR (ψL)C

)]
=1

2
[(
ψLPR + (ψL)C PL

)
ı̇ /∂
(
PLψL + PR (ψL)C

)
− m

(
ψLPR + (ψL)C PL

) (
PLψL + PR (ψL)C

)]
=1

2
[(
ψLγ

µPL + (ψL)C γµPR
)
ı̇∂µ

(
PLψL + PR (ψL)C

)
− m

(
ψLPR + (ψL)C PL

) (
PLψL + PR (ψL)C

)]
.

(F.2)

For achieving this we used the anticommutation relation (A.11) for γ5 as well as the fact
that

PLψL = ψ†LP
†
Lγ

0 = ψ†LPLγ
0 = ψ†Lγ

0PR = ψLPR, (F.3)

and hence

ψ =
(
PLψL + PR (ψL)C

)
= ψLPR + (ψL)C PL. (F.4)

This can be achieved by using the properties of the chiral projection operators given in
(1.24), which also cause terms of the type PLPR to vanish in the Lagrangian. Noticing
this and reabsorbing the projection operators in the fields according to (1.25) leads to

L =1
2

[
ψLı̇ /∂P

2
LψL + (ψL)C ı̇ /∂P 2

R (ψL)C −m
(
ψLP

2
R (ψL)C + (ψL)CP 2

LψL

)]
=1

2

[
ψLı̇ /∂ψL + (ψL)C ı̇ /∂ (ψL)C −m

(
ψL (ψL)C + (ψL)CψL

)]
.

(F.5)
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F.2 Majorana Mass Lagrangian for Chiral Physical Fields

From (2.29) and the unitarity of UM (i.e. U∗MUT
M = 1 = UT

MU
∗
M) we get νL = UMnL.

Hence, we obtain

νL = (UMNL) = NLU
†
M ⇒NL = νLUM ,

(νL)C = CνTL = C(U †M)TNT
L = U∗M(NL)C ⇒(NL)C = UT

M(νL)C ,

(νL)C = (U∗M(NL)C) = (NL)CUT
M ⇒(NL)C = (νL)C(U †M)T .

Now being aware of this, the computation is done easily as follows:

L(L)
M = −1

2
[
(νL)CMLνL + νLM

†
L(νL)C

]
= −1

2
[
(νL)C(U †M)TmLU

†
MνL + νLUMm

†
LU

T
M(νL)C

]
= −1

2(NL)CmLNL −
1
2NLmL(NL)C (F.6)

F.3 Majroana Mass Lagrangian for Physical Fields

To achieve the Majorana mass term for the LH fields in terms of the physical fields, we
simply use ξ = PLξ + PRξ and PLξ = NL resp. PRξ = (NL)C . Thus, we get

L(L)
M = −1

2(NL)CmLNL −
1
2NLmL(NL)C=− 1

2(PRξ)mLPLξ −
1
2(PLξ)mLPRξ

= −1
2(PLξ + PRξ)mL(PRξ + PLξ) =− 1

2ξmLξ. (F.7)

F.4 General Dirac-Majorana Lagrangian in Compact Notation

In this section we want to do the calculations explicitly as done in [35, p.43] for obtaining
the Dirac-Majorana mass Lagrangian in terms of the LH 2n column field ωL, which has
been defined in (2.42) as

ωL =
(

νL
(νR)C

)
. (F.8)

We want to show how the Lagrangian (2.44) is obtained form (2.41), which is given as
the sum of the Dirac mass term and the Majorana mass term for LH and RH neutrinos
as

LD+M = LD + L(L)
M + L(R)

M

=
[
−νRMDνL −

1
2(νL)CMLνL −

1
2(νR)CMRνR

]
+ H.c. .

(F.9)

We will need the following relations, which can be obtained from relations of the charge
conjugated spinors as well as from the defining relation for the charge conjugation matrix
C, which we have already discussed in section B.2.4 and B.2.2.
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These relations are

(νL/R)C ≡ C(νL/R)T , (F.10)

ν∗L/R = −C−1γ0(νL/R)∗, (F.11)

(νL/R)CC = νL/R, (F.12)

νL/R = νCCL/R = −
[
(νL/R)C

]T
C−1, (F.13)

γ0TC−1γ0 = −C−1. (F.14)

Furthermore, we should be aware of

νRMDνL = νTLMDν
T
R = (νL)CMD

T (νR)C , (F.15)

where we used according to (B.49)

(νL/R)C = −νTL/RC−1. (F.16)

Thus, we can rewrite the Dirac mass term in the form

LD = −νRMDνL + H.c.
(F.13)=

[
(νR)C

]T
C−1MDνL + H.c.

= 1
2

{[
(νR)C

]T
C−1MDνL + νTLC

−1MT
D(νR)C

}
+ H.c.

= −1
2
[
νRMDνL + (νL)CMT

D(νR)C
]

+ H.c. ,

(F.17)

and also the Majorana mass term for RH neutrino singlets as

L(R)
M = 1

2

{
νTRC

−1M∗
RνR +

(
νTRC

−1M∗
RνR

)†}
=

(1
2ν

T
RC
−1M∗

RνR

)†
+ H.c.

= 1
2ν
†
RCMRν

∗
R + H.c.

(F.11)= 1
2
[
−C−1γ0(νR)C

]T
CMR

[
−C−1γ0(νR)C

]
+ H.c.

= 1
2
(
νCR
)T (

γ0
)T (
−C−1

)T
MRC

(
−C−1

)
︸ ︷︷ ︸

−1

γ0νCR + H.c.

= −1
2
(
νCR
)T (

γ0
)T
C−1MRγ

0νCR + H.c.

= 1
2
[
(νR)C

]T (
−γ0TC−1γ0

)
MR(νR)C + H.c.

(F.14)= 1
2
[
(νR)C

]T
C−1MR(νR)C

= −1
2
[
(νR)C

]C
MR(νR)C + H.c.

= −1
2νRMR(νR)C + H.c. .

(F.18)
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Of course we can rewrite the Majorana mass term for LH neutrinos in a complete analogous
way by

L(L)
M =

(1
2ν

T
LC
−1M∗

LνR

)†
+ H.c.

= 1
2
[
(νL)C

]T
C−1ML(νL)C + H.c.

= −1
2νLML(νL)C + H.c. .

(F.19)

Now we like to compare this results with (2.44) inserting the adjoint and charge conjugated
LH column vector ωL, which can be written as

(ωL)C = −ωTLC−1 = −
(
νTLC

−1,
[
(νR)C

]T
C−1

)
=
(
(νL)C .νR

)
, (F.20)

Applying this as well as (F.10) and (F.16) we obtain,

LD+M = −1
2(ωL)CMωL + H.c.

= −1
2
(
(νL)C , νR

)ML MT
D

MD MR

( νL
(νR)C

)
+H.c.

= −1
2
(
(νL)CML + νRMD, (νL)CMT

D + νRMR

)( νL
(νR)C

)
+H.c.

= −1
2
[
(νL)CMLνL + νRMDνL + (νL)CMT

D(νR)C + νRMR(νR)C
]

= −1
2
[
νRMDνL + (νL)CMT

D(νR)C
]

︸ ︷︷ ︸
LD

−1
2νRMR(νR)C︸ ︷︷ ︸

L(R)
M

−1
2(νL)CMLνL︸ ︷︷ ︸

L(L)
M

+ H.c. ,

(F.21)

and these terms are exactly those obtained in (F.17), (F.18) and (F.19).

F.5 Properties of the Diagonalization Matrix U

In section 3.1 we introduced the unitary matrix U to diagonalize the neutrino mass matrix
MD+M , i.e.

UTMD+MU = m̂ = diag(m1,m2, . . . ,mnL+nR), (F.22)

where mi are real and non-negative. We decomposed U into two submatrices

U =
(
UL
U∗R

)
, (F.23)

and hence

U † = (U †L, UT
R ). (F.24)

Of course unitarity means

U †U = 1(nL+nR)×(nL+nR) = UU †. (F.25)

170



F.6 Yukawa Interactions of Neutral Scalar Mass Fields

Thus, the first equation gives

1(nL+nR)×(nL+nR) = U †U = (U †L, UT
R )
(
UL
U∗R

)
= (U †LUL + UT

RU
∗
R), (F.26)

and the second one
1(nL+nR)×(nL+nR) = UU † =

(
UL
U∗R

)
(U †L, UT

R ) =
ULU †L ULU

T
R

U∗RU
†
L U∗RU

T
R

 ,
1nL×nL 0nL×nR

0nR×nL 1nR×nR

 =
ULU †L ULU

T
R

U∗RU
†
L U∗RU

T
R

 .
(F.27)

So we can simply extract the relations for the submatrices and get

1nL×nL = ULU
†
L, 1nR×nR = URU

†
R, 0nR×nL = U∗RU

†
L. (F.28)

Furthermore, we can show that applying this decomposition to equation (F.22) leads to

MD+M = U∗m̂U †, 0 MT
D

MD MR

 =
(
U∗L
UR

)
m̂(U †L, UT

R ),
(F.29)

where we can after performing the matrix multiplication on the right hand side simply
read off the submatrices:

U∗Lm̂U
†
L = 0nL×nL(= ML), (F.30)

URm̂U
T
R = MR, (F.31)

URm̂U
†
L = MD. (F.32)

Using the last two results we also obtain the following useful relation:

U †RMD = U †RURm̂U
†
L = (1nL+nR − UT

LU
∗
L)m̂U †L = m̂U †L. (F.33)

F.6 Yukawa Interactions of Neutral Scalar Mass Fields

In equation (3.116) of section 3.2.2 we indicated that we used the Majorana condition
χC = χ to obtain

χAPLχ = χPLA
Tχ. (F.34)

Here we want to give an elaborated derivation of this property. We start with the left
hand side of the relation above and employ the Majorana condition:

χAPLχ = (CγT0 χ∗)†γ0APL(CγT0 χ∗)

= χTγT0 C
†γ0APLCγ

T
0 χ
∗

= χTγT0 C
†γ0

︷ ︸︸ ︷
CC−1APLCγ

T
0 χ
∗

= χTγT0 C
†γ0C︸ ︷︷ ︸
−γT0

AC−1PLC︸ ︷︷ ︸
PTL

γT0 χ
∗
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= −χTγT0 γT0︸ ︷︷ ︸
1

AP T
L γ

T
0 χ
∗

= −χTAP T
L γ

T
0 χ
∗

= −χiaP T
L abAijγ

T
0 bcχ

∗
ij

= χ∗jcγ0cbA
T
jiPLbaχia

= χPLA
Tχ, (F.35)

where we switched in the third last step to index notation with Dirac indices a, b, c and
flavor indices i, j. We commute the numbers to obtain the second last line, but have to
take into account that the fermion fields χ are Grassmann variables, i.e. they anticommute.
Hence, we get an additional minus sign when interchanging them.

F.7 Number of Neutrinos Remaining Massless on Tree and
One-Loop Level

It has been shown in [72] that the number of neutrinos remaining massless at tree-level
is nL − nR if nL > nR. More generally one can say the number of neutrinos remaining
massless at tree-level is max(0, nL − nR). To prove this we investigate the entries of the
diagonalized neutrino mass matrix given in (3.110). For this purpose we construct the
diagonalizing matrix U by the following observations as done in [21].

The nR × nL matrix MD can be regarded as linear mapping MD : CnL → CnR . The
rank-nullity theorem (theorem E.3) tells us

dim(kerMD) = dim(CnL)− dim(imMD) = nL − nR, (F.36)

and therefore we can find nL − nR orthonormal vectors u′i ∈ CnL spanning the kernel of
MD, i.e. the subspace kerMD = {u ∈ CnL|MDu = 0} ⊆ CnL . Hence, for 1 ≤ i ≤ nL−nR
we have

MDu
′
i = 0. (F.37)

If we append nR zeros to these vectors, we obtain nL − nR orthonormal vectors ui =(
u′i
0

)
∈ CnL+nR and we can find 2nR vectors vj such that the set {u1, . . . unL−nR , v1, . . . v2nR}

forms an orthonormal system of CnL+nR . Since U is unitary its column vectors have to
form an ONS and we choose158 the system constructed above as those columns.

Now we decompose U in four block-matrices, as

U =
 U ′L U ′′L

︸︷︷︸
nL − nR

0 ︸︷︷︸
2nR

U ′′R
∗

 }nL
}nR

, (F.38)

where
U ′L = (u′1, . . . , u′nL−nR) (F.39)

158We can choose any appropriate U since the Takagi- or Schur-factorization is not unique in general.
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(
U ′′L
U ′′R
∗

)
= (v1, . . . , v2nR). (F.40)

Therefore, equation (3.110) gives

m̂ = UTMD+MU =
 0 U ′L

TMT
DU

′′
R
∗

U ′′R
†MDU

′
L U ′′L

TMT
DU

′′
R
∗ + U ′′†RMDU

′
L + U ′′R

†MRU
′′
R
∗

 . (F.41)

The off-diagonal submatrices vanish since per construction we have MDU
′
L = 0. For the

lower right submatrix being diagonal, U ′′R
∗ and U ′′L have to be chosen appropriately. This

means we find a suitable choice for the column vectors vi, such that

U ′′R
†
MDU

′′
L + U ′′L

T
MT

DU
′′
R
∗ + U ′′R

†
MRU

′′
R
∗ = M̂ ′. (F.42)

In this way we can achieve

diag(mL1, . . . ,mLnL ,mR1, . . . ,mRnR) =
 0 0

︸︷︷︸
nL − nR

0 ︸ ︷︷ ︸
2nR

M̂ ′

 }nL
}nR

. (F.43)

From this equation above it is obvious that at tree-level nL−nR neutrinos remain massless,
since mLi = 0 for all i = 1, . . . nL − nR. This number of massless neutrinos coincides per
construction with the dimension of the kernel of the linear mapping MD given in (F.36).

This is valid if nL ≥ nR, but otherwise if nL < nR we have dim(kerMD) ≤ 0 and since
the dimension of a subspace must be non-negative we get dim(kerMD) = 0. This means
the kernel is the subspace {0} ⊆ CnL and hence there exists no such nontrivial u′i ∈ Cnl

such that MDu
′
i = 0 and therefore also no orthonormal vectors u′i spanning the kernel.

This leads to all LH neutrinos becoming massive on tree level.
In the next step we derive the number of neutrinos remaining massless even at one-loop

level. In [21] this number has been denoted by

n0 = max(0, nL − nRnH), (F.44)

which is dependent on the number of scalar doublets (nH) and RH neutrino singlets (nR).
To show this, as done in [21], we use the result for the one-loop corrected masses, which
will be shown in (F.70), i.e.

m
(1)
i = Re

(
u′i

T
δMLu

′
i

)
, (F.45)

for i = 1, . . . , nL−nR. Hence, we want show how manym(1)
i = 0. Therefore, we investigate

the matrix structure of δML given in (4.78), which is of the form

δML =
∑
b

nH∑
k=1

∆T
k m̃b∆k +MT

Dm̃ZMD, (F.46)

where we introduced the shorthand notations

m̃b = 1
32π2U

∗
Rm̂

ln rb
rb − 1U

†
R, (F.47)

m̃Z = 3g2

64π2m2
W

U∗Rm̂
ln rz
rz − 1U

†
R (F.48)
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with U∗R = (0, U ′′R
∗). Then we find

u′i
T
δMLu

′
i =

∑
b

nH∑
k=1

u′i
T∆T

k m̃b∆ku
′
i + u′i

T
MT

Dm̃ZMDu
′
i

=
∑
b

nH∑
k=1

u′i
T∆T

k m̃b∆ku
′
i,

(F.49)

because MDu
′
i = 0 per construction of the column vectors u′i.

Finding the number of neutrinos remaining massless at one-loop level, i.e. m(1)
i = 0

means searching for the number of vectors u′i such that

0 =
∑
b

nH∑
k=1

u′i
T∆T

k m̃b∆ku
′
i. (F.50)

Assuming no relations among the Yukawa couplings ∆k or excluding them, leads to the
following condition to ensure the equation above. For all i = 1, . . . , nL − nR it has to be

∆ku
′
i = 0, (F.51)

for all k = 1, . . . , nH . This means for m(1)
i = 0 the vector u′i is an element of the kernels

of all linear maps ∆k, i.e.

u′i ∈
nH⋂
k=1

ker ∆k = ker ∆′nH , (F.52)

where the map ∆′nH is constructed in the following way:

Let us consider the simple case of nH = 2. Then, we can write

ker ∆1 ∩ ker ∆2 = {v ∈ CnL|∆1v = 0 ∧∆2v = 0}

= {v ∈ ker ∆1|∆2v = 0} = ker (∆2 |ker ∆1 ) .
(F.53)

The dimension of this subspace can be derived as before by the rank-nullity theorem
(theorem E.3) by

dim(ker (∆2 |ker∆1 )) = dim(ker ∆1)− dim(im ∆2) = nL − 2nR. (F.54)

Repeating this procedure until we reach ∆nH restricted to the kernel of ∆nH−1 restricted
to the kernel of ∆nH−2 and so on until ∆1. The dimension of the intersection of all kernels
is then analogously derived as

dim
(
nH⋂
k=1

ker ∆k

)
= nL − nHnR, (F.55)

which is the number of orthonormal vectors spanning this subspace. Since we want
these vectors to give us m(1)

i = 0, those vectors have to be the column vectors u′i of the
diagonalizing matrix U .

To achieve this we have to ensure u′i ∈ ker ∆1, which is the starting point of our proce-
dure above. According to [21], this can be obtained by performing a basis transformation
on the scalar doublets such that v1 6= 0 and vk = 0 for 2 ≤ k ≤ nH . In this basis the
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Dirac mass matrix reduces to

MD = 1√
2
v1∆1, (F.56)

and since u′i ∈ kerMD per construction it follows u′i ∈ ker ∆1. Since the u′i form an ONS
they span the kernel ker ∆′nH . Hence, the dimension of this kernel is the number of the
orthonormal column vectors u′i for which (F.50) holds.

So the number of neutrinos remaining massless at one-loop level is given by the number
n0 = nL − nHnR for the case nL > nHnR. In the case nL ≤ nHnR the intersection of the
kernel will be the zero space {0} which has dimension zero, hence n0 = 0 in this case.
Thus the formula (F.44) is valid.

F.8 One-Loop Mass Corrections from BR

In section 4.1.2 equation (4.16) we obtained the following result for the Z0-Boson contri-
bution to neutrino self-energy:

−ı̇ΣZ
ij(p)|m` =− g2

4c2
W

∑
`

∫ ddk

(2π)d
m`

k2 −m2
` + ı̇ε{(

PRU
†
LUL − PLUT

LU
∗
L

)
i`

4
(k − p)2 −m2

Z

(
PLU

†
LUL − PRUT

LU
∗
L

)
`j

+
(
PRU

†
LUL − PLUT

LU
∗
L

)
i`

(k − p)2

m2
Z(

− 1
(k − p)2 −m2

Z

+ 1
(k − p)2 − ξZm2

Z

) (
PLU

T
LU

∗
L − PRU

†
LUL

)
`j

}
.

(F.57)

We also know from (4.4) −ı̇Σ ∝ BRPR and hence we might take the PR terms instead of
the ones proportional to PL, which gives us

(BR)Zij(p) = ı̇g2

4c2
W

∑
`

∫ ddk

(2π)d
m`

k2 −m2
` + ı̇ε

(U †LUL)j`(UT
LU

∗
L)`i (F.58)

·
{

4
(k − p)2 −m2

Z

+ (k − p)2

m2
Z

(
− 1

(k − p)2 −m2
Z

+ 1
(k − p)2 − ξZm2

Z

)}
.

From (4.5) and (4.7) we have the relation BL = B∗R, which is obviously true, if we compare
the result for BR above with the form of BL given in (4.17). This is also the case for all
other boson contributions to the neutrino self-energy. The correction to the mass matrix
δML is computed analogously but with an additional complex conjugation

δML = U∗LBR(0)∗U †L (F.59)

which gives exactly the same mass correction.
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F.9 Diagonalization of the Tree-Level and One-Loop Corrected Mass
Matrix

In this appendix detailed calculations will be given, which have been skipped in section
4.2. There we have constructed the unitary 4 × 4 matrix U (0), which diagonalizes the
tree-level neutrino mass matrix M (0)

D+M. We showed

U (0)TM
(0)
D+MU

(0) = m̂(0) = diag(0, 0,m(0)
3 ,m

(0)
4 ), (F.60)

for

M
(0)
D+M =

 0 MT
D

MD MR

 , (F.61)

and

U (0) =
 U ′L U ′′L

0 U ′′∗R

 =
u′1 u′2 ı̇cu′3 su′3

0 0 −ı̇s c

 , (F.62)

where u′i, i = 1, 2, 3 are orthogonal 3-vectors with u′1, u
′
2 ⊥ MD and u′3 = MD

mD
and

s = sin(θ) and c = cos(θ). The rotation angle θ is defined via tan(2θ) = 2mD
mR

. Further-
more, we showed in section 4.1 that one-loop corrections enter into the neutrino mass
matrix in the form

M
(1)
D+M = M

(0)
D+M +

δML 0
0 0

 , (F.63)

and hence we have

U (0)TM
(0)
D+MU

(0) =U (0)TM
(0)
D+MU

(0) + U (0)T
δML 0

0 0

U (0)

=m̂(0) +
U ′TL δMLU

′
L U ′TL δMLU

′′
L

U ′′TL δMLU
′
L U ′′TL δMLU

′′
L

 .
(F.64)

The second matrix of the second line can be easily calculated as

U (0)T
δML 0

0 0

U (0) =
U ′TL 0
U ′′TL U ′′†R

δML 0
0 0

U ′L U ′′L

0 U ′′∗R


=
U ′TL U ′′TL

0 U ′′†R

δMLU
′
L δMLU

′′
L

0 0

 (F.65)

=
U ′TL δMLU

′
L U ′TL δMLU

′′
L

U ′′TL δMLU
′
L U ′′TL δMLU

′′
L



=


u′1

T δMLu
′
1 u′1

T δMLu
′
2 ı̇c.u′1

T δMLu
′
3 s.u′1

T δMLu
′
3

u′2
T δMLu

′
1 u′2

T δMLu
′
2 ı̇c.u′2

T δMLu
′
3 s.u′2

T δMLu
′
3

ı̇c.u′3
T δMLu

′
1 ı̇c.u′3

T δMLu
′
2 −c2.u′3

T δMLu
′
3 ı̇cs.u′3

T δMLu
′
3

s.u′3
T δMLu

′
1 s.u′3

T δMLu
′
2 ı̇sc.u′3

T δMLu
′
3 s2.u′3

T δMLu
′
3

 .
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If we choose u′1 ⊥ ∆1,∆2, we get vanishing entries in the first line and first column, i.e.

U (0)T
δML 0

0 0

U (0) =


0 0 0 0
0 u′2

T δMLu
′
2 ı̇c.u′2

T δMLu
′
3 s.u′2

T δMLu
′
3

0 ı̇c.u′3
T δMLu

′
2 −c2.u′3

T δMLu
′
3 ı̇cs.u′3

T δMLu
′
3

0 s.u′3
T δMLu

′
2 ı̇sc.u′3

T δMLu
′
3 s2.u′3

T δMLu
′
3

 . (F.66)

This is the matrix, which has to be diagonalized with a suitable matrix V (1). This matrix
must be unitary and hence can be represented by

V (1) = eı̇Ω ' 1 + ı̇Ω, (F.67)

with Ω Hermitian and of one-loop order. To find a suitable choice of Ω, we can use the
considerations done in appendix E.2.2. The diagonalizing matrix U of the corrected mass
matrix M (1)

D+M = M
(0)
D+M + δM is according to (4.112) given as

U = U (0)V (1) = U (0) + ı̇U (0)Ω, (F.68)

and hence

m̂(1) = UTM
(1)
D+MU

= (U (0) + ı̇U (0)Ω)T (M (0)
D+M + δM)(U (0) + ı̇U (0)Ω)

' m̂(0) + ı̇m̂(0)Ω + ı̇(m̂(0)Ω)T + U (0)T δMU (0).

(F.69)

Now applying the results of appendix E.2.2, we obtain for the corrected diagonalized mass
matrix

m
(1)
i = m

(0)
i + Re

(
u′

(0)
i

T
δMLu

′(0)
i

)
, (F.70)

or more explicitly

m
(1)
1 = 0 + Re

(
u′1

(0)T
δMLu

′
1

(0)
)

= 0 (F.71)

m
(1)
2 = 0 + Re

(
u′2

(0)T
δMLu

′
2

(0)
)

= Re
(
u′2

(0)
δMLu

′
2

(0)) (F.72)

m
(1)
3 = m

(0)
3 + Re

(
−c2.u′3

(0)T
δMLu

′
3

(0)
)
' m2

D

mR

(F.73)

m
(1)
4 = m

(0)
4 + Re

(
s2.u′3

(0)T
δMLu

′
3

(0)
)
' mR. (F.74)

We used the resultsm(0)
3 andm(0)

4 given in (4.106) and (4.107), which are both very large in
comparison to the corrections, which are therefore negligible. The lightest neutrino mass
m

(1)
1 remains zero, since we have chosen u′1 ⊥ ∆1,∆2. Thus, we achieved two massive LH

neutrinos at one-loop level.
The matrix Ω = −ı̇U (0)†U can be determined by (E.38), which fixes all off-diagonal

elements. The matrix Bji, which has been introduced for this result, is in this case
exactly given in (F.65) above. The diagonal elements of Ω are all zero, since we assumed
u

(0)
i ⊥ u

(1)
i , i.e. u(0)

i

†
u

(1)
i = 0.
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