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Abstract 

Bacterial secretion systems, as crucial virulence factors, can be of major interest, when analysing new 

genomic or metagenomic data. As the amount of generated genomic data increases heavily, a 

sophisticated way of analysing (meta-) genomic sequences is of high importance. Thus, we have to find 

some way of a “high-throughput-analysis” for genomic data to gain information out of the cavalcade 

of provided data. As there is currently a lack of secretion-related genome annotation, secondary 

databases, as the one presented in this work, have to provide sophisticated tools and carefully curated 

data. Thus, we designed an approach, based on machine learning techniques. It is a computational 

method that uses binary classification to make a clear decision, whether there is a functional secretion 

system or not. 

Therefore we used the PICA framework, based on a support vector machine, which only uses the 

sequence information, to train one model each for the types III, IV and VI of the bacterial secretion 

systems. As the major questions of our work, we had to find on the one hand, a sufficient number of 

already verified secretion system occurrences, to train our models correctly and on the other hand, we 

had to look for a sophisticated genotype representation. Within our approach, the genomic 

information is represented by clusters of orthologous groups (COGs). Calculating the models in such 

way, gives us the opportunity to understand which COGs contribute mostly to the classification as well 

as, which (unexpected) organisms show the specific trait.  

To provide not only the created models for the secretion system prediction, but a sophisticated and 

comprehensive web tool, we embedded our approach under the name EffectiveS346 within the 

database EffectiveDB (http://effectivedb.org). Additionally, we achieved several adaptations of the 

already existing effective website. There was an update of the training datasets of the effector 

predicting applications EffectiveT3 and EffectiveELD. Furthermore, the new type III effector prediction 

method EffectiveCCBD, based on the detection of a conserved 1B chaperone binding domain was 

implemented. To expand the databases scope to type IV secreted effectors, we also integrated the 

existing web tool T4SEpre. Finally, to complete a coherent and extensive analysis of secretion specific 

information, we added the Predotar web tool, which indicates possible target sites of the effectors 

within the eukaryotic host. All of these predictions were applied on 1677 genomes, available from the 

EggNOG 4.0 database, on beforehand and their results are stored and provided to the users.  

Although our predictions are not free of all inconsistencies, just like taxonomic bias or partly 

imbalanced training datasets, we are able to predict the occurrence of bacterial secretion systems in 

more than 90% (standard deviation below 4.5%) of the cases. 

http://effectivedb.org/
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With our tool, users will be able to gain extensive information about intact secretion systems and 

putative secreted proteins of more than 1677 genomes on the one hand and secondly be able to 

interpret the prediction results of their own sequence data, easily.  
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Kurzfassung 

Bakterielle Sekretionssysteme sind wichtige Virulenzfaktoren und als solche von großem Interesse bei 

der Analyse von neuen Genom- oder Metagenomdaten. Da die Menge an produzierten Genomdaten 

stetig zunimmt, ist es von großer Wichtigkeit, eine zielgerichtete und intelligente 

„Hochdurchsatzmethode“ zu finden um mit der Flut an Daten umzugehen und daraus die nötige 

Information zu generieren. Nachdem es momentan keine Bestrebungen oder Richtlinien zur 

sekretionsbezogenen Genomannotation gibt, ist es umso wichtiger, dass Datenbanken, wie die 

Vorgestellte, ausgefeilte Werkzeuge und sorgfältig kuratierte Daten zur Verfügung stellen. Mit 

unserem Vorhersageansatz, basierend auf dem Konzept des maschinellen Lernens, haben wir eine 

computerbasierte Methode gefunden, die, mittels binärer Klassifikation, eine eindeutige Entscheidung 

trifft, ob ein intaktes Sekretionssystem vorliegt, oder nicht.  

Zur Umsetzung nutzten wir das PICA framework, basierend auf einer support-vector-machine, welche 

ausschließlich die Sequenzinformation verwendet, um je ein Modell für die Typen III, IV und VI der 

bakteriellen Sekretionssysteme zu entwickeln. Dabei stellten sich, als größte Fragen im 

Modellierungsprozess, auf der einen Seite die Suche nach einer ausreichenden Anzahl an belegten 

Vorkommen von Sekretionssystemen und andererseits, die sinnvolle Repräsentation des Genotyps, 

dar. In unserem Ansatz entschieden wir uns für die Darstellung des Genotyps, in Form von „clusters of 

orthologous groups“ (COGs). Diese Umsetzung ermöglichte es uns herauszufinden, welche COGs eine 

maßgebliche Rolle bei der Klassifikation spielten, beziehungsweise, welche, unter Umständen 

unerwarteten, Organismen den gesuchten Phänotyp aufweisen.  

Um nicht nur die besagten Vorhersagemodelle für Sekretionssysteme zu veröffentlichen, sondern 

außerdem auch ein umfangreiches Webtool zur Verfügung zu stellen, wurden die Vorhersagemodelle 

unter dem Anwendungsnamen EffectiveS346 in die Datenbank EffectiveDB (http://effectivedb.org) 

eingebettet. Zusätzlich wurden einige Adaptionen an der bereits existierenden effective-Website 

durchgeführt. Es wurden die Trainingsdatensätze der Effektorvorhersagemethoden EffectiveT3 und 

EffectiveELD upgedatet. Außerdem haben wir die neue Typ III-Effektorvorhersage EffectiveCCBD 

implementiert. Diese basiert primär auf der Erkennung einer hoch-konservierten Bindestelle für 1B 

Chaperone. Um das Spektrum der Datenbank auch in Bezug auf Typ IV sezernierte Proteine zu 

erweitern, wurde das bereits verfügbare Werkzeug T4SEpre ebenso integriert. Letztlich, um die 

umfassende Analyse sekretionsspezifischer Daten abzurunden, wurde die Predotar-Anwendung, 

welche mögliche Zielorganellen der Effektoren in der eukaryotischen Wirtszelle angibt, eingefügt. Jede 

der erwähnten Vorhersagemethoden wurde vorab an 1677, via EggNOG 4.0 verfügbaren Genomen 

angewandt und die Vorhersageresultate dem User zur Verfügung gestellt. 

http://effectivedb.org/
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Obwohl unsere Vorhersagen nicht gänzlich frei von Inkonsistenzen, wie taxonomischer 

Fehlinterpretationen oder nicht ganz ausgewogenen Trainingsdatensätzen, sind, ist es uns möglich, 

funktionelle bakterielle Sekretionssysteme mit einer Genauigkeit von über 90% (Standardabweichung 

unter 4.5%) vorherzusagen.  

Unsere Datenbank, ermöglicht es dem User, umfangreiche Informationen über funktionelle 

Sekretionssysteme, sowie mögliche sezernierte Proteine, für mehr al 1677 Genome zu erhalten. 

Außerdem hat er die Möglichkeit der Vorhersage und einfachen Interpretation seiner eigenen 

Sequenzdaten.  
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1 Introduction 

This chapter should give the reader a brief overview of the scientific area of bacterial secretion in 

general and insights into the usage of computational methods in regard to phenotype prediction. 

There will be explained why we think that our work relevantly contributes to the current state of 

scientific research. We raise the question of using machine learning techniques for phenotype 

prediction and try to introduce the reader to our approach of giving the answer.  

1.1 Host-pathogen interaction 

Bacterial secretion is a key virulence factor of pathogenicity in general. Especially, the interaction 

between a bacterium and its host is closely related to this attribute (1). Thus, one needs to understand 

how the manifold protein apparatuses work in interaction with both, the bacterium and the eukaryotic 

host. Additionally, the secreted proteins itself can give insights into the processes of secretion. 

Within the group of gram-negative bacteria there are, up to now, eight different types of secretion 

system plus the chaperone-usher pathway, known (2, 3). Although those secretion systems are quite 

well conserved among different bacterial genera, they are difficult to identify due to their diversity and 

genetic modularity. Moreover it is getting more and more obvious that our knowledge is quite limited 

in this field, yet (3). Nevertheless, we have to find a way of extracting the essential information of our 

current knowledge to make a meaningful phenotype prediction of the different types of secretion 

systems. Therefore, it is of crucial importance to understand as many facts and attributes of the distinct 

secretion systems as possible, to consider them for our prediction-models.  

Whereas the types II, V and VIII, plus the already mentioned usher pathway, always depend on the 

presence of the so called “Sec-protein complex” or the “twine arginine transporter”, to transfer 

substances across the inner cell membrane, all the others can act without those transporters (2), 

((4):277). In other words, the type I, III, IV, VI and VII secretion systems have the ability to cross both 

bacterial cell membranes (or the cell membrane plus the mycomembrane, respectively) within a single 

step to export effector proteins or in some cases even DNA, for example (5). Within this group of 

secreting protein complexes, our work focusses specifically on the types III, IV and VI.  

1.2 Properties of the distinct secretion systems 

The three already mentioned types III, IV and VI, commonly share the ability to not only bridge the 

inner and outer membrane of the microbe within a single step. They are also able to inject the secreted 

substance directly into the cytosol of the host organism (1) (Figure 1).  
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Beside this connecting feature, there are major differences between those three systems. It is crucial 

to understand the features and abilities that characterise each system individually, to be able to create 

an analytical approach as ours. 

 Structure proteins 

It seems to be obvious that only those secretion systems, which contain the most important structure 

giving proteins, can have the ability of a functional effector secretion. Therefore, we had a look at the 

structure proteins suggested by KEGG (6). The most of them could be “translated” into the format of 

our genotypic representation called COGs (1.4.3 Genotype abstractions). We would expect those 

proteins, or classifying features, within our predictions. Table 1 shows a list of the KEGG structure 

proteins for each of the three systems and the assigned COG number and description. The numbers in 

the second column are also mentioned in the above introduced Figure 1. Although, those presented 

proteins are of crucial importance, they are not the only classifying factor. Within our approach it is 

necessary to find features within a phenotypic trait that are very typical and unique. The DotU protein, 

for example, is a factor of both, the type IV and the type VI secretion system. This makes it hard to 

distinguish between those two types just by the presence or absence of proteins like DotU. Thus, we 

are also dependent on further features like effectors, regulatory factors or other associated proteins. 

Regarding the T6SS, I want to explicitly mention the presence of the so called “putative cytoplasmic 

components”. Although, they actually do not belong to the structure of the protein complex itself, they 

are very much associated with it (7). Within the presented Table 1 and Figure 1 they are marked by the 
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Figure 1 Components of the bacterial secretion systems type III, IV and VI. The 
three types of bacterial secretion systems, our work is focusing on, are able to 
not only span the inner membrane (IM), the periplasm (PP) and the outer 
membrane (OM) of the bacterium, but also the host membrane (HM) to inject 
putative effectors directly into the hosts cytosol. The numbers and letters, 
shown in the figure, correspond to the compound descriptions in Table 1. 
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letters “a” to “g” to clearly highlight them, compared to the KEGG structure proteins. Because of the 

strong interaction of those proteins with the secretion process, this group of proteins turned out to be 

very important for our classification. Finally, one can say that finding the structure proteins of the 

distinct systems within the group of classifying features, gives a strong indication of the correctly found 

trait (=secretion system). On the other hand, it does not need to be problematic, if the list of features 

lacks the structure proteins in the top ranks, as they are not necessarily the most important factors for 

the correct classification.  

Table 1 Structure proteins of the bacterial secretion systems type III, IV and VI. This table shows the different structure 
proteins of the three secretion system apparatuses and their corresponding COGs and COG-descriptions. We would expect to 
find those within our predictions. Having an in depth look at table, we can say that if we find those type specific and typical 
proteins (or more precise: their assigned COGs) within the list of features that contribute to our classifying decision, we have 
a serious indication that the trait was correctly captured.   

 # Protein COG/NOG Description 

T3SS 1 YscF COG0659 Sulfate transporter 

 2 YscO - - 

 3 YscP - - 

 4 YscX - - 

 5 YscC COG1450 General secretion pathway protein D 

 6 YscW - - 

 7 YscJ COG4669 Type iii secretion 

 8 YscR COG4790 Type III secretion system protein 

 9 YscS COG4794 Protein secretion 

 10 YscT COG4791 Type iii secretion 

 11 YscU COG4792 Type iii secretion 

 12 YscV COG4789 Type III secretion 

 13 YscN COG1157 Flagellum-specific ATP synthase 

 14 YscQ COG1157 Flagellum-specific ATP synthase 

 15 YscL COG1317 Flagellar assembly protein 

T4SS 1 VirB1 - - 

 2 VirB2 COG3838 Conjugal transfer protein, TrbC 

 3 VirB3 COG3702 Type IV secretion system protein 

 4 VirB5 COG3701 Conjugal transfer protein 

 5 VirB7 - - 

 6 VirB9 COG3504 Transfer protein TrbG 

 7 VirB6 COG3704 Type IV secretion system protein 

 8 VirB8 COG3736 Type IV secretion system protein VirB8 
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 9 VirB10 COG2948 Conjugation trbi family protein 

 10 VirB4 COG3451 Type IV secretion system protein 

 11 VirB11 COG0630 Type II secretion system protein 

 12 VirD4 COG3505 Trag family 

T6SS 1 VgrG COG3501 Rhs element vgr protein 

 2 Hcp COG3157 Type VI secretion system effector, hcp1 family 

 3 Lip COG3521 Type VI secretion 

 4 IcmF COG3523 Type VI secretion protein (IcmF) 

 5 DotU COG3455 Type IV VI secretion system protein, DotU family 

 6 ClpV COG0542 ATP-dependent CLP protease, ATP-binding subunit 

 7 Fha1 COG3456 Fha domain containing protein 

 8 PpkA COG0515 Serine Threonin protein kinase 

 9 PppA COG0631 Phosphatase 

 a TssB COG3516 Type VI secretion protein, VC_A0107 family 

 b TssC COG3517 Type VI secretion protein, EvpB VC_A0114 family 

 c TssK COG3522 Type VI secretion protein, VC_A0114 family 

 d TssG COG3520 Type VI secretion protein, VC_A0111 family 

 e TssF COG3519 Type VI secretion protein, 

 f TssA COG3515 Type VI secretion-associated protein, 

 g TssE COG3518 Type VI secretion system, lysozyme-related protein 

 

 Type III secretion system 

Bacteria which show the very frequently observed type III secretion system (T3SS) can be found among 

the group of gram-negatives. They can interact with their eukaryotic hosts, plants as well as animals, 

as pathogens or as mutualists (8).  

Originally, the so called “injectisome” is homologous to the flagellum, which also acts as a kind of T3SS 

(9). Difficulties occur, in regard to the precise identification of the non-flagellar T3SS apart from the 

flagellum. Furthermore, it is getting more complicated, because the type III injectisome requires up to 

25 different proteins, of which only nine are highly conserved. Eight out of those nine are also 

conserved within the flagellar apparatus (8). It appears to be obvious that a clear distinction between 

those two complexes is very difficult. Structurally, the needle complex is organised in different 

partitions (base, needle, inner rod, inner membrane export apparatus, cytosolic components, needle 

tip and the translocon) which are assembled in a gradual manner (10). Especially the so called 

“cytosolic components” might be of interest in connection to our approach. Although their 
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organisation and their interaction is only poorly understood, the genotypic information is highly 

conserved across many different T3SS (10). As our approach is not limited to structural proteins, those 

components might provide crucial information and therefore, essentially contribute to the decision of 

classification.  

 Type IV secretion system  

Whereas T3SS are closely related to the flagellum (9), type IV secretion systems (T4SS) are assembled 

from core components of the conjugational machine (11). Moreover, it can be said that this type, 

among the other bacterial secretion systems, is the most variable and versatile one, regarding its 

interaction partners or putatively secreted proteins (12). It can be further categorised into three 

different subfamilies:  

1. Conjugational system 

It is the major subgroup of T4SS and can be found within both, the gram-positive and gram-

negative bacteria as well (12) and even within some archaea (13). As it is responsible for the 

transfer of DNA-protein substrates into eukaryotes like fungi, plants or even human cells (14), 

it is a crucial factor for drug resistance (15). Other researches have shown that the 

conjugational system also has an influence on biofilm formation (16).  

2. DNA uptake and release system 

This subfamily also provides DNA exchange, which contributes to genetic plasticity, as the first 

one, mentioned above. Opposed to the conjugational system, it is independent of direct cell 

contact (12).  

3. Effector translocation system 

The third family seems to have the biggest impact on pathogenicity as it has the ability to 

directly inject potential pathogenic proteins into plant or mammalian host cells (12) via an 

injectisome, which is similar to the already mentioned T3SS. 

 Type VI secretion system 

The secretion systems, we already dealt with above, all evolved from non-virulent bacterial 

compartments. Whereas type III and IV derived from flagellum and conjugational apparatus, 

respectively, the type VI secretion system (T6SS) seem to be evolutionarily related to the phage 

injection machinery (17). The gene clusters for T6SS contain between 12 and more than 20 genes and 

there can be more than one copy of a cluster (18).  

Opposed to the T4SS, only gram-negative bacteria seem to have the ability to express a T6SS (19). 

Furthermore, this type of secretion system does not only show virulent abilities. It is suggested by 

other studies that type VI secretion is also required by plants for efficient root colonisation and 

nitrogen fixation, for example (20).   
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 Secreted proteins – “effectors” 

Effectors are proteins, which are transported out of the bacterial cytosol into the cell environment or 

even directly into the host, mediated by bacterial secretion systems (21). As the name already 

indicates, they can cause manifold effects within a host, such as a change of the immune response, for 

example (22). Although it is quite difficult to characterise these proteins, due to their high diversity, it 

is possible to detect them, if secreted by a T3SS, by searching for a signal peptide within their N-

terminal region (23). 

Type III secreted effectors can also show a specific class 1B chaperone binding site within their N-

terminal 70 amino acids. Such 1B chaperones mediate the unfolding of putatively secreted proteins, 

to enable their transport through the narrow type III injectisome and therefore, are of crucial 

importance for a successful secretion (24).  

Opposed to type III dependent secreted proteins, we also had a look at type IV assigned effectors. 

Although, there has been found quite a number of type IV effectors experimentally, it is difficult to 

identify them because most of them are spread over the genome, rather than being clustered in a 

specific genomic region. Nevertheless, the combination of the information extracted from the 

sequence of the C-terminal region, the position and composition of amino-acids and the motifs and 

structure, seems to make it possible to identify type IV secreted effectors (25). 

Another interesting possibility of identifying effectors, is the secretion system type independent 

approach of eukaryotic-like domains. In that case, effectors might show the presence of protein 

domains which are usually found within eukaryotes (e.g.(26)). Those protein domains show a higher 

frequency within bacteria that are host-associated, compared to those which do not interact with a 

eukaryote and thus, seem to be an indication of functional secretion. As every protein domain, which 

is found as well within eukaryotes as within pathogens and at the same time is absent in non-

pathogens is a potential “eukaryotic-like domain”, it is quite difficult to identify them. Computational 

similarity-based approaches just as EffectiveELD (3.2.2 Workflow) therefore, are of crucial 

importance(23).  

1.3 Sources and Methods for the prediction of bacterial secretion systems 

By asking if there is a scientific relevance of our work, we have to find interesting biological sources for 

our data. Thus the field of metagenomics offers us an interesting source of genome data. Facing the 

large amount of data, generated by metagenomic approaches, we have to use data mining techniques 

to gain new information.   
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 Metagenomics 

Beside the host-pathogen interaction, another interesting application area is the field of 

metagenomcs. This topic firstly came up in 1998 and describes a function based and culture 

independent way of analysing biological samples (27). It was a ground-breaking new approach, as 

currently, only less than one percent of the microbial biodiversity can be cultured (28). Finding a way 

of bypassing the culturing step within sample processing, opened the way for understanding the 

interaction of different taxa with each other and their environment. Considering the knowledge of 

metagenomics for almost 20 years, might raise the question why our approach should be of any 

scientific interest or significance, yet. Answering this, I want to point out the major achievements in 

bioinformatics over the last years. Nowadays it is possible to extract almost complete genomic bins 

from a metagenomic sample, due to improvements in genome sequencing, assembling and annotation 

(29, 30). Consequently, the extreme wide range of possible habitats and the huge amount of genomic 

data makes it difficult to extract meaningful information about functionality, attributes or lifestyle, just 

by using the sequence information (30). It seems to be obvious that this gain of information cannot be 

achieved by analysing the data manually. In fact, there is an inevitable need of computational methods!  

 Data mining and machine learning methods 

During the last few decades of history, people got overwhelmed with data and there is no end in sight. 

As computers getting more powerful and memory capacities become larger and larger, we gained the 

ability to produce practically never ending data streams and save everything. But simply accumulating 

and saving data does not imply any gain of information. Especially, the field of genetics, or more 

specific “genomics”, emerged through the last years to a scientific area with great achievements in 

DNA-sequencing for example. What appears to be crucial to handle such comprehensive data, is a 

sophisticated pattern search, we call “data mining” ((31):5). It is not possible any longer to simply look 

at some data to find out what they might tell us. We rely on the calculative power of computers to 

discover those patterns within the data.  

“Learning”, on the other hand, is a term which is a little bit difficult to explain in regard to computers. 

Machine learning in our comprehension is nothing else but “techniques for finding and describing 

structural patterns in data, as a tool for helping to explain the data and make predictions from it” 

(28:8). It means that the algorithm does not give a clear definition of the specific trait one is interested 

in, on beforehand. The machine learning algorithm learns by examples to find its own rules and 

definitions through “experience”. 
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To render the term of machine learning more precisely, we want to state the following three 

techniques of machine learning in a nutshell (Figure 2):  

Unsupervised learning  

Unsupervised learning is practically used to handle typical clustering problems. It means that one does 

not know any labeling of the data, but can group it by the parameters of their occurrence. ((32):3) 

Supervised learning  

In supervised learning, each training sample is labeled explicitly to a certain class. Most supervised 

learning problems follow the concept of classification. It is their aim to learn certain rules from the 

classification of the labeled instances and afterwards precisely assign a new, unlabeled instance to a 

specific class (29:179). The rules are generated by summarising and comparing the information beyond 

the attributes of the known samples. ((32):3) 

Semi-supervised learning  

Semi-supervised learning is a kind of abstraction of the supervised learning technique. For such 

classification problems you know the labels of some of your data and additionally you also have 

unlabeled data. As it can be seen in Figure 2, this might lead to another separation border for 

classification as if supervised learning is used. ((31):294) 

1.4 Genome based prediction of phenotypes 

Supervised learning is exactly what our approach does, in regard to bacterial secretion systems. Let us 

face the particular problem, very briefly, by introducing the terms “support vector machine”, “cross-

validation” and “clusters of orthologous groups”. 

 Support vector machine  

The support vector machine (SVM) is one possible application of the concept of supervised learning. 

The classification by using an SVM requires samples, which we call “instances” (=strains of bacterial 

species) that are unambiguously labeled, which means they belong to exactly one of two possible 

classes (at least in regard to binary classification). In our particular example it means that they show 

Figure 2 Three different machine learning techniques. The unsupervised learning does not require any labelling 
information to solve clustering problems. In supervised learning, we need the a priori classification of samples, to classify 
unknown samples. Semi-supervised learning kind of extends the supervised learning. Therefore, it additionally contains 
unlabled data. 
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the specific trait or phenotype (=bacterial secretion system) or they lack it. Every instance is 

represented by a number of features (=COGs). Knowing the features of the labeled instances, allows 

the SVM to learn certain rules for the correct classification of new unlabeled instances. To cut a long 

story short, one can say that a sufficient number of correctly labeled data allows the SVM to learn how 

to classify unlabeled data. ((32):326) 

Figure 3 shows a theoretical abstraction of the principle of operation of an SVM. It should be noticed 

that each sample is an instance (blue triangle or square) but each feature represents one dimension. 

In other words, this approach is highly dimensional in its computational effort. The depicted hyper 

plane is linear, because of the linearly chosen kernel of our SVM. Although it is not mandatory to use 

a linear kernel with our approach ((33):45ff), it offers us a very helpful opportunity: The arrows in 

Figure 3, pointing from the most critical, red highlighted instances, we call “support vectors”, to the 

dividing hyper plane, indicate the position of the instance within the feature space. As already pointed 

out, each sample is composed of features that are dimensions. By using a linear Kernel, we now have 

the opportunity to calculate back to the feature with the highest influence, quite easily. Therefore, we 

use the distance of each sample to the hyper plane, in every dimension. At this point, we created the 

so called SVM rank file (3.1.2 Genotype representation), which is a crucial output of our approach. It 

helps us to understand, which of the available features affords the biggest contribution to the decision 

of classification.  

Finally, the conclusive output of the SVM, of our approach, is a binary classification decision 

(Phenotype available? → YES/NO)! This explicit result was a crucial factor, why we decided to use this 

method. In order to offer this approach to biologists, who usually do not have sophisticated experience 

or additional skills with computer scientific methods, we were dependent on providing results that do 

not have to be post-processed furthermore.  

Figure 3 Concept of a support vector machine. It 
demonstrates the way of how a support vector machine 
comes to a classifying decision. The dark-red line is the 
dividing hyperplane that lies within a margin, as brought 
as possible. The instances, lying closest to the hyperplane 
are the so called “support vectors”.  
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 Cross-validation 

But how can we estimate, how well the created model of the SVM works? One possibility would be to 

apply the model on a new dataset that was not part of the model training, but which is already labeled. 

Although this would be an elegant solution, it is quite uncommon in practice. When working with an 

SVM, each single instance is of crucial importance. Leaving instances out is a luxury, one cannot afford. 

Therefore, we performed the concept of cross-validation to get a hint of the quality of our models.  

In cross-validation, the dataset gets divided into equally sized parts. All parts, except one, are used for 

model training. The remaining unused division is used for testing. To improve the output, this 

procedure is repeated several times, until at least, each part was once used for testing ((32):33). At the 

end, one gets a clue about the instances, which are classified correctly in the different runs by 

interpreting the mean balanced accuracy and its standard deviation.  

𝐵𝑎𝑙𝐴𝑐𝑐 =
1

2
∗ (

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
+

𝑇𝑁

𝑇𝑁 + 𝐹𝑃
) 

We used the balanced accuracy to compensate the disequilibrium among our datasets, which usually 

do not contain an equal number of positive and negative samples. 

 Genotype abstractions 

It is our aim to predict a phenotype, in our case the presence of a bacterial secretion system, by using 

an analytical approach. Therefore, it is necessary to somehow find a way of describing and quantifying 

the trait, we are interested in. First of all, we know, as this is a supervised learning approach, if the 

phenotype is present or not (=”class” or “label”). This information can be represented by a vector 

consisting of zeroes (=absence) and ones (=presence) (Figure 4, right side of the equation).  

A much more difficult question is it, to find a representation of the genotype (3.1.2 Genotype 

representation). There are different levels of depth and different kinds of representation for describing 

the genomic information. Thus, it is crucial to find a mode that provides all the information that is 

needed to make a sophisticated prediction on the one hand, but restricts nonessential data on the 

other hand. Additionally, it is necessary to find a notation which allows us to unambiguously identify 

and directly compare features from different samples. By using the so called “clusters of orthologous 

Figure 4 Theoretical approach abstraction. This very abstract description of 
our approach depicts the connection between genotype and phenotype 
represented by a matrix and a vector. 
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groups” (COGs) we found an abstraction of the genome that fulfills these preconditions. As “Orthologs 

are direct evolutionary counterparts related by vertical descent” (34), an orthologous group consists of 

sets of proteins that all belong to one common ancestor (35). The various proteins contained in a COG 

can be found within taxonomically widely spread species due to several speciation events. Usually, 

orthologous proteins share a very similar architecture and function. Therefore, it is possible to transfer 

the attributes of well-studied organisms to those that are not so commonly known, if they share the 

same COG-profile (34). Theoretically, this hypothesis leads to the idea that the sum of all available 

COGs is limited in its size by the complete genome of a “last universal common ancestor” (LUCA), which 

was firstly termed by Patrick Forterre (36), ((37):254f). 

Furthermore, the EggNOG 4.0 (38) database, we use, also provides NOGs beside the already mentioned 

COGs. Those “non-supervised orthologous groups” build some kind of extension to the COGs, as they 

are fully automatically created from those genes, that cannot be assigned to already known COGs (39). 

Summarising this, we can say that each COG (or NOG) represents one feature of a sample and thus, is 

one dimension of our approaches feature space.  

As an alternative representation of the genotypic information, we used the so called “Protein Families” 

(PFAMs). In this case, proteins are grouped by the domains they contain. It is assumed that the function 

of a domain within different proteins is very similar and therefore might give insights into the behavior 

of the protein (40). Although, the resolution level of PFAMs is more coarse grained compared to COGs, 

we wanted to try, if there can be a sophisticated phenotype prediction by using this genotypic 

representation. As an extension to this kind of genome abstraction, there is also the possibility of 

grouping proteins by their domain organisations, the so called “architectures”. Those groups can 

contain more than one kind of PFAM, or more copies of the same PFAM. As the combination of 

different attributes might lead to a more precise result, we also tried to apply this kind of genome 

description to our approach (3.1.2 Genotype representation).  

Additionally, we were interested in providing our results to a broad community of users, such as 

biologists, geneticists or computer scientifically skilled method developers, as there is a strong need in 

secretion related genome annotation.  

1.5 Scientific relevance  

After explaining our aims and the approach in the chapters above, we have to face the question, if 

there is a serious need in those data. It would not make any sense to repeat data that is already 

available for the user. As there are several databases and (online) tools available, which deal with the 

topic of bacterial secretion, we analysed their offers and tools carefully to avoid useless redundancies. 

Regarding the secretion systems, the databases SecReT4 (41) and SecReT6 (42) show specific insights 

into the particular secretion system types. Within their predictions, these databases are focusing on 
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the presence or absence of structure proteins. Additionally the user gets a sophisticated physical map 

containing information about the number and position of the secretion system. Very similarly 

T346Hunter (43) covers the prediction of the same three types of bacterial secretion systems as we 

do. This database additionally gives a percentage of the found components. Although this might offer 

a hint for interpretation, it is in the users responsibility to interpret the results correctly. Neither of 

those three databases gives a binary decision of the prediction. They do not give any indication about 

the intactness or functionality of the identified secretion systems.  

To go beyond the scope of the secretion system focused databases, EffectiveDB also takes the secreted 

proteins, or effectors, into account. Although, there are already existing databases like BEAN 2.0 (44) 

or T3SEdb (45) which deal with, at least effectors of T3SS, we also included effector specific information 

to provide comprehensive insights into the whole process of secretion. Additionally, the former 

effective database already contained the tools EffectiveT3 and now called EffectiveELD (46) to make 

sophisticated predictions. We updated and implemented those tools into the new EffectiveDB. There 

is also an additional way of identifying type III secreted proteins, by finding a specific sequence pattern 

within their chaperone binding domain. Although, this prediction method was already found in the 

year 2012 (24), it can provide additional information because of its distinguishable approach. Type IV 

effector prediction is a more complicated topic as the T4SS, with its various subtypes, is highly modular. 

Nevertheless, the combination of the amino acid composition, the dipeptide composition, a position-

specific scoring matrix composition and the auto covariance transformation of a position-specific 

scoring matrix can lead to a useful prediction of type IV assigned effectors (47). Another source for 

type IV effector prediction is T4SEpre (25). This tool focusses on the C-terminal domain of a putatively 

secreted protein and combines various features. We included parts of this method into our choice of 

prediction tools. When understanding bacterial secretion as a putative virulence mechanism and factor 

of pathogenicity, it is also interesting to have a look at online sources like PATRIC (48). This database 

provides various data concerning bacterial behavior and pathogenicity. It covers fields like antibiotic 

resistance or diverse occurrences of protein-protein interactions. Nevertheless, the combination of 

information about functional secretion systems and corresponding effectors are currently not 

available by a single, freely available source. 

Unfortunately, currently, there is a lack of secretion specific annotation. Although, it would be of major 

impact to include this automatically into genome annotations, there is no indication of such efforts, 

yet. Moreover, there are no generally valid standards scheduled (49). 

Therefore, it is very important to provide secretion specific databases that carefully curate, offer and 

maintain their data. Complementing the offer of already existing databases, we faced the challenge of 
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providing a “one-stop-shop” user-friendly prediction-tool, embedded in a comprehensive database for 

functional secretion systems and their related effectors.  

Finally, being aware of the attributes of secretion systems, the features and advantages of machine 

learning methods, especially the support vector machine and the awareness of the need of this data 

leads us to the following scientific question, this work raises: 

“Is it possible to make a clear an easily understandable prediction of bacterial 

secretion systems as a phenotypic trait, by using machine learning techniques, 

especially a support vector machine?” 
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2 Methods 

This chapter introduces the actual design, practices and applied methods to the reader. 

2.1 Model design 

To provide a sophisticated prediction of bacterial secretion systems, we used the PICA framework 

((50), Version 1.0.1) and its support vector machine (SVM) including the adaptations of Roman 

Feldbauer (33). The whole process of the approach design consists of a training phase and the actual 

application of the model on new data to predict the occurrence of secretions systems within a group 

of unclassified bacterial strains (Figure 5). 

 Training 

It is of major importance to find reliable and well characterised input training data. Therefore we used 

the information of the following databases (3.1.1 Finding sufficient Training Data): 

 SEED (51) 

 T3SEdb (45) 

 SecReT4 (41) 

 AtlasT4SS (52) 

 SecReT6 (42) 

Additionally, we used up to 18 strains of Chlamydiales regarding T3SS. Their sources come from the 

literature. The complete training datasets can be found in Suppl.-Table 1.  

Figure 5 Concept and workflow of the PICA approach. This figure shows the modelling workflow of the PICA approach. The 
left side focusses on the training phase, which includes the data acquisition, its processing and the model construction. On the 
right side one can see the application of the approach that leads to a binary decision.  
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All of the above mentioned samples are part of the positive dataset, which means that they contain at 

least one functional secretion system. But using an SVM for binary classification also requires a 

negative dataset. Finding verified training data, which lack the phenotype of interest, is unlikely more 

complicated. Obviously, we do not have any database that provides data regarding missing secretion 

systems. Therefore, we decided to compose our negative training dataset by restriction. Thus, we used 

all bacterial genomes, available in EggNOG 4.0 (38) and restricted them by all genera, which are 

contained in the positive set. In regard to type III and VI, we only used the gram-negative bacteria as 

basic set, as those two types do not appear within gram-positives. Moreover, we only used randomly 

chosen samples from the resulting pool of data. To further process the input data and create a valid 

list (“phenotype.txt”), which can be used by PICA, the phenotypic labels of the different samples were 

assigned in the following manner: 

taxid T3SS 
1016998 YES 
115713 YES 
155864 YES 
688270 NO 
272630 NO  
391008 NO 
 
Thereby, it is crucial to assign the “name” of the phenotype in the header of the second, tab-separated 

column.  

To achieve a useful genotype-representation, we used clusters of orthologous groups (COGs) (1.4.3 

Genotype abstractions). Those clusters can be directly downloaded for all genomes, available in 

EggNOG 4.0. Samples which are not included in EggNOG, had to be manually calculated. Their COG-

profiles were generated by COGnitor (35). Combining all the distinct genotypes, results in a file 

containing one genome per line. The first item always needs to be a kind of identifier, in our case we 

used the taxonomy id (53). Afterwards, each single COG is tab-separated listed within the same line 

(“genotype.txt”).  

502801 COG0001 COG0002 COG0004 COG0005 
454166 COG0001 COG0002 COG0003 COG0004 
454169 COG0001 COG0002 COG0004 COG0005 
 
Using the prepared data as representation of phenotype and genotype, enables us to do a five-fold 

cross-validation (1.4.2 Cross-validation). Results of over 90% mean balanced accuracy and a standard 

deviation below 4.5% were used for further model building calculations. 

Therefore, the PICA script “crossvalidate.py” was used the following way: 

python crossvalidate.py -s genotype.txt -c phenotype.txt -t "T3SS" –o 
crossvalidation.output > crossvalidation.log 
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To run the script correctly, it is important to write the name of the trait after the switch “-t” exactly 

the same way as in the header of the phenotype.txt file. 

Models of the three described traits (1.2.2 Type III secretion system - 1.2.4 Type VI secretion system) 

were generated by an SVM of the type “classification” with the default parameters C=5, gamma=0 and 

a linear kernel, done by train.py. The resulting final models can be found in 3.1.3 Final models. 

python train.py -s genotype.txt -c phenotype.txt -t T3SS -o model.txt 
 
With the help of the constructed models, we additionally calculated the feature ranking, to verify if 

the SVM has captured the correct phenotypic trait (Suppl.-Table 2 - Suppl.-Table 4). 

Therefore, the extending script svmFeatureRanking.py by Roman Feldbauer ((33):38) was used. For a 

correct run of the script one has to define the correct model and a file (in our case: NOG.description.txt) 

which assigns the COG/NOG identifiers to the descriptions.  

python svmFeatureRanking.py model.txt -d NOG.description.txt > svm_rank.txt 
 

PFAMs 

Using PFAMs (1.4.3 Genotype abstractions) as an alternative form of a possible genotype 

representation, decreased the calculation time considerably. This happens due to a smaller number of 

features on the one hand and additionally, because the PFAM-profile is already created within the 

calculations of EffectiveELD (3.2.2 Workflow). In that case the very time consuming step of generating 

a COG/NOG-profile by COGnitor (35) is omitted. Instead, a PFAM-profile, created by Interproscan ((54), 

version 5.11-51.0), is generated in the following manner: 

1002804 PF00239 PF00248 PF01051 PF01420 
1005048 PF00004 PF00005 PF00006 PF00009 
1005090 PF00004 PF00005 PF00006 PF00009 
 

PFAM-architectures 

Additionally, we used a third type of genotype representation, the PFAM-architectures. Those 

components can contain one or more PFAMs in different copy numbers. This combination might lead 

to a higher specificity and therefore create a more precise description than the single PFAMs. 

Therefore, the genotypic profile was created by using the script genotype_pfam_architecture.py 

(Suppl.-Script 2 Source code for EffectiveDB pipeline) to generate an input-file of the following format: 

1002804 PF11074 PF02661 PF01656 PF00248 
1005048 PF10590|PF01243 PF02779|PF00456|PF02780 PF00691|PF04972 PF01865 
1005090 PF00456|PF02779|PF02780 PF00146 PF01197 PF03099 
 
Regardless of the actually used kind of representation, the process of model training remains the same 

as PICA does not give any restrictions to the type of a feature format. 



30   Methods 
 

Feature selection 

Another option of seriously reducing the calculation time, was to decrease the problems 

dimensionality, drastically. Therefore, we tried to restrict the feature space to a sufficient number of 

features instead of using all the features that represent the whole genome.  

To achieve a proper selection of the most important features, we firstly had to train an optimal model, 

as it is shown in the first paragraph of this chapter. Afterwards, we used the optimised models 

18_93_202 (T3SS), 22_57_100 (T4SS) and 28_151_200 (T6SS) which can be found online at the 

EffectiveDB web-portal. To restrict the size, we chose only the top members of the ranked features. 

The model of T3SS was restricted to the 500, T4SS to 5000 and T6SS to 2000 top ranked COGs. Those 

COGs/NOGs were again used to train a new model for each phenotype. Thereby, the genotype files 

contained only the preselected COGs/NOGs. 

Because there were no satisfying results of the runs using PFAMs (detailed results can be found in 3.1.2 

Genotype representation), we decided to only use the COG/NOG-profiles for our further work. 

Unfortunately, also the feature selection did not lead to the simplification, we hoped for (3.1.2 

Genotype representation). Nevertheless, we had to handle the time consuming step of the COG/NOG 

profile creation. Therefore, we decided to do the calculations of submitted jobs with the help of a 

queuing system on our grid (3.2.2 Workflow).     

 Model application 

To apply the created models on new datasets, we again had to create the necessary genotypic profiles 

by using COGnitor(35) in our case. After that, the PICA script “test.py” was performed, using the new 

genotype.txt file and the already provided, model of choice (model.txt is an output of the former 

performed train.py).  

python test.py -s genotype.txt -m model.txt -t T3SS > test.txt 
 

2.2 Application implementation 

The three models created in the chapter above are part of the EffectiveS346 application for the 

prediction of functional secretion systems. This tool is embedded in a database and web application 

EffectiveDB, which is exclusively designed for secretion specific investigations of bacterial genomes. 

This chapter should give the reader insights in the actual implementation of the procedural pipeline 

and the different applications. As the code is mainly written by Dr. Thomas Nussbaumer, I just want to 

give an overview of the distinct steps of the pipeline and a brief description of the EffectiveS346 

application.  

Beside the construction of the new prediction pipeline, the database and the already existing 

applications EffectiveT3 and EffectiveELD were updated. Therefore, new training datasets were 



Methods   31 
 

generated. This work was mainly done by Dr. Alexander Platzer, Dr. Thomas Nussbaumer and Marc-

André Jehl.  

The actual pipeline consists of the following ten steps, which are displayed to the user by a progress 

bar. If an Error occurs, the progress bar automatically switches to step 10 and the run is finished. 

Because of the occasionally long computing time, especially when enabling the genome mode, the 

user has the option to leave his e-mail address and receives a message, when the job is finished. After 

submitting a job, it is assigned to a unique RUN-ID and stored for the chosen steps of processing. 

The following table (Table 2) should provide a structured overview of the ten different steps of the 

prediction pipeline. Each section should give the answer to the following questions: 

 What happens and which shell-script is used that for? 

 Which input information (files, parameters, etc.) is necessary to successfully run the current 

step? 

 What kind of errors are handled? Which error-information is provided to the user? 

 Which results (files, information, etc.) are produced to go on with further steps or to 

contribute to a meaningful final result.   

Table 2 Stepwise pipeline description. The table shows the sequential workflow of the EffectiveDB pipeline. 

Step 1 - Multiple FASTA file check 

What happens  Check if any input sequence is provided. 

 Check if the typical FASTA format is fulfilled by running 
check_seq.py 

Input Parameters/Files Multiple FASTA input file 

Errors raised  ERROR: Wrong format of FASTA, Multiple Fasta 
Sequences 

 ERROR: Proteins are provided in the wrong format 
(e.g. *.fasta) 

Output  status.TXT 

 PROTEINS.FILTERED 
 PROTEINS.IGNORED 

 

Step 2 - Predotar 

What happens   Effector targeting by running Predotar.jar 

Input Parameters/Files  Enabled Predotar 

 animal (default) or plant mode 

 PROTEINS.FILTERED 
Errors raised ERROR: Modus is invalid either ‘p’ (plant) or ‘a’ 

(animal) mode 
Output  Predotar_output_modelANIMAL.TXT 

 Predotar_output_modelPLANT.TXT 
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Step 3 – EffectiveT3 

What happens   Type III effector prediction by using java TTSS_GUI-latest.jar  

Input Parameters/Files  Enabled EffectiveT3 

 minimal score 

 New (default) or old model 

 PROTEINS.FILTERED 
Errors raised  ERROR: Invalid value for EffectiveT3 new model 

 ERROR: Invalid value for EffectiveT3 old model 
Output  status.TXT 

 EffectiveT3.NEW.OUT 
 EffectiveT3.OLD.OUT 

 

Step 4 - EffectiveCCBD 

What happens   Type III effector prediction by running find_CCBD.py 

Input Parameters/Files  Enabled EffectiveCCBD 

 PROTEINS.FILTERED 
Errors raised - 

Output  status.TXT 
 PROTEINS.CHAPERONES.TXT 

 

Step 5 – T4SEpre 

What happens   Type IV effector prediction by running predict_T4SS.py 

Input Parameters/Files  Enabled T4SEpre 

 score  

Errors raised ERROR: Parameter in T4SEpre has to be a float-number 

Output  status.TXT 

 

Step 6 - EffectiveELD 

What happens   Effector prediction by running eld_filter.py 

Input Parameters/Files  Enabled EffectiveELD 

 Z-score  

 PROTEINS.FILTERED 
 iprscan_pfam.tsv (created by running mask_gi.py and 

interproscan.sh on beforehand) 

Errors raised ERROR: Invalid value for EffectiveELD 

Output  status.TXT 
 PROTEINS.ELD.TXT 

 

Steps seven to nine are only relevant, if the genome mode is enabled! 



Methods   33 
 

Step 7 – CheckM 

What happens Check for genome completeness by running parse_checkM.py 

Input Parameters/Files  Enabled genome mode 

 Enabled CheckM 

 CheckM_COMPLETENESS (threshold of completeness, 
default=80) 

 PROTEINS.FILTERED 
Errors raised  ERROR: checkM – genome completeness check failed 

 ERROR: Invalid value for CheckM-COMPLETENESS 
parameter 

Output  status.TXT 

 checkM_output.TXT 
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 Step 8 COGnitor and Step 9 EffectiveS346 

 

 

In regard to the steps 8 and 9, I want to describe the source code a little bit more in depth because this 

section deals with the prediction of the secretion systems, which is the main part of this work. The 

secretion system prediction is the major section of the so called genome mode, which can be obtained 

when submitting an almost complete genome to the prediction pipeline.  

Enabling the genome-mode and also EffectiveS346 (line 521), automatically starts the COGnitor run 

(line 528), if the almost complete genome is provided as protein sequence. In this case, COGnitor 

creates a COG/NOG-profile of the whole genome, to run EffectiveS346 successfully. After that, step 

eight is finished. 
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Alternatively, it is possible to provide an own genotype file containing a COG/NOG profile (line 535). 

In this case, the time consuming COGnitor run (step 8) is omitted. Additionally, the provided data is 

checked for validity by running check_genotype.py. In case of an invalid input, the message 

“ERROR: Invalid Genotype file” is thrown and the submitted job is directly led to step 10.   

Independently of the chosen source of the genotype file, EffectiveS346 can be started by running 

automate_SecPred.py (line 545). This simple shell script uses the created models and checks 

sequentially for gram-negativity, T3SS, T4SS and finally T6SS. All the results are summarised and 

displayed in a simple table. Within step 9 the results are processed by running compare_top100.py 

(line 548) and compare_kegg.py (line 549). Within these two comparisons, the occurrence of typical 

structure proteins, as suggested by KEGG and of the top 100 COGs/NOGs, of the formerly calculated 

SVM rank-file, are made.      

Step 10 finish Effective run 

What happens  Provide results and finish job by running merge_results.py 
and summary.py 

 Send email if address is stated 
 

Input Parameters/Files  EMAIL (optional) 

Errors raised - 

Output  status.TXT 

 merge_results.html 
 summary.TXT 

 

After finishing Step 10, the user is directly guided to the results page and the finally processed output-

files are downloadable in diverse formats. It is also possible to return to the results page of a specific 

job ID later on.  
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3 Results and Discussion 

This section deals with the results of this work in the focus of the actual PICA models, their application 

EffetiveS346 and its web-oriented background and the comparison of our method to existing methods 

provided by others.  

3.1 PICA models 

Regarding the design of our experiment, we firstly had to deal with two major questions. On the one 

hand, we had to find a sufficient number of reliable training data, on the other hand it was essential 

to find the optimal way of a genotypic representation. 

 Finding sufficient Training Data 

The first step of our work was to train a proper model for each phenotype we are interested in. 

Therefore, we needed samples consisting of two components. On the one hand we need to know, if a 

bacterial strain (=sample) shows the specific phenotype. Secondly, it is essential to have the actual 

genome sequence of each sample. Ideally, more than 30 (personally experienced threshold of Roman 

Feldbauer) samples of each, positively and negatively proven phenotypic expressions, can be found. 

To find such samples, there are a few different approaches: 

 Using the data of working groups, specialised in the field of interest 

 Text-mining, for example within the PubMed database (53)  

 Using specialised databases  

It went out to be challenging, to find a sufficient number of experimentally proven data within the 

literature and additionally, the proper sequence data, just by manually searching. Doing an automatic 

text search approach would have probably also led to a satisfying result, as already done for the SecReT 

databases (41, 42), but was not tried by us. Our search was terminated by the usage of established 

databases. Nevertheless, we had to choose our sources responsibly. It might not have been sufficient 

to use in-silico predictions of other databases or prediction tools as “verified” data. Additionally, it 

appears to be almost impossible to find verified negative data. There is no database that contains any 

data about species that were proven to not contain a specific secretion system. On the other hand, the 

fact that one did not find any secretion system, might not be evidence enough for the real absence of 

such a system. This is the reason why we selected our negative dataset by blacklisting the positive 

genera from the species that are available in EggNOG. To generate a reliable positive dataset, we 

decided to use samples from the following databases. Please note that some of the samples are found 

not only by one, but several sources. 
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SEED 

Within SEED (51) the annotation is done manually by an expert curator. He uses subsystems that are 

found across many different genomes. Afterwards, protein families are extracted from those 

subsystems and furthermore used as so called “core components” for automated annotation. 

Although, the use of subsystems does not give us any indication of functionality in general, we decided 

to use this data because of the work of the expert curators. We assume that the experts from the field 

have the knowledge to assign only those genomes to be functional, which really show the trait of 

interest. Using only the proteins from those subsystems to find new ones, should give a true indication 

of functionality, even though we cannot find any evidence in literature.  

In total, we found 173 positive samples (for all three systems) in the SEED database. (Suppl.-Table 1) 

T3SEdb 

T3SEdb (45) gives a clear indication whether a sample is experimentally validated or not. To identify 

such proven data, they did an NCBI Entrez Protein database (55) text search. Afterwards the different 

samples were manually checked and assigned to their experimental validation status. Although this 

database is developed in regard to type III secreted effectors, we used the data as some kind of indirect 

indication of a functional secretion system. We made the assumption that effector specific 

experiments can only be made, if the species of interest has the ability to functionally secret. We used 

17 samples of the status “E” for the positive dataset of T3SS. 

SecReT4  

SecReT4 (41) is a database which is specialised to T4SS. In this case a text mining approach of PubMed 

entries was the underlying source of data. The very detailed references of SecReT4 (as well as SecReT6) 

to sources in the literature gave us the indication of reliable data that can be used as valid positive 

samples. Although we only used the experimentally validated samples to build our training data set, 

SecReT4 also makes own predictions. In such cases, all of the 18 previously identified core components 

have to be identified. If there was a core component availability of at least 30% the distinct sample 

was manually annotated. 35 of our type IV specific positive training samples derived from SecReT4. 

Species that were predicted by SecReT4 to have a secretion system, were used for comparison with 

our predictions (3.3.1 SecReT4 and SecReT6). 

AtlasT4SS 

In regard to T4SS we had to face that only very few samples are currently known. Thus, we also added 

samples of this database. Unfortunately AtlasT4SS (52) does not give any indication about the 

completeness of a secretion system. It is rather focusing on the presence of individual components 

than on functionality. Nevertheless it is manually curated. We added 19 samples that show a minimal 

threshold of 20 components. 
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SecReT6 

SecReT6 (42) works very similarly to SecReT4. The only major difference is that a full set of T6SS 

describing components consists of 13 COGs. The threshold for manual curation is defined by a 

minimum set of five COGs. As already mentioned in relation to SecReT4, the accurate literature based 

search of experimentally verified samples let us assume real functionality. We gained 40 samples from 

this database. 

At the end, the combination of the different input data sources enabled us, to create sufficient and 

diverse datasets to train our models.  

 Genotype representation 

The second, quite challenging, part of modelling our traits, was to find an optimal representation of 

the genotypic information. A genome can be represented in various levels of depth. It is possible to 

describe it for example by its nucleotide sequence, proteome or by theoretically constructed entities 

like protein families or orthologous groups, for example. The following three different representations 

were tested by us (1.4.3 Genotype abstractions): 

 COGs/NOGs  

 PFAMs 

 PFAM-domain architectures 

It was our aim to find a way of preserving the genotypic information we need, but contrariwise reduce 

the amount of data efficiently, to optimise the computational effort, by using those different entities.  

To verify the quality of the representation, we made use of two features: 

 Mean balanced accuracy and standard deviation of each calculated model (1.4.2 Cross-

validation) 

 Occurrence of already known structure proteins (1.2.1 Structure proteins) 

SVM rank-files 

To verify, if the chosen depth of representation is sufficient to transport the classifying information, 

we made use of the so called “SVM rank files”. Those output files of PICA, which are a representation 

of the contributing classifying features, are of crucial importance in regard to the optimisation of the 

classification models. Investigating the ranking of the features gives us insights, if the SVM has 

“captured” the trait we were looking for. If so, we would expect to find the most important structure 

proteins (1.2.1 Structure proteins) within the top ranked features. It happened several times that our 

cross-validation showed a very promising mean balanced accuracy, but further analysis of the rank-file 

showed, that the trait of interest was not found. (e.g. run 16_97_200: mean balanced accuracy 87,2%; 
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top 20 of SVM rank-file can be found in Suppl.-Table 5). This Phenomenon might occur due to 

imbalanced datasets. In already mentioned run 16_97_200 we added 18 samples of the order 

Chlamydiales. Unfortunately, seven samples belong to the species Chlamydia trachomatis (Figure 6). 

This experiment indicates that a lack of far related, widely spread organisms, causes some bias. In this 

case the SVM did not find the specific trait (as it can be seen in the rank file), but focused on basic 

features that are independent of secretion.  

Another very important aspect, which is offered by the SVM rank file, is the identification of proteins 

that have not been assigned to the specific trait, yet. Within the top 10 ranks of an SVM rank file, we 

typically find the COGs/NOGs that can be assigned to the particular system (those COG/NOG, PFAMs 

and PFAM-domains are depicted in the “expected”-columns of the following three Tables). The 

presence of those features gives us the indication that the correct trait was found. The score, which is 

stated in the fourth column shows the relative importance of the feature in the classification. In other 

Figure 6 Taxonomy of positive dataset run 16_97_200. This krona-chart (75) shows a taxonomical overview of the positive 
dataset of run 16_97_200. It can be seen that almost 20% of the dataset belongs to the Chlamydiales (blueish part). 
Furthermore, within this order 39% of the samples even belong to the same species Chlamydia trachomatis. 
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words, the feature that has the highest score (= rank 1), plays the most important role for the 

classifying prediction. Although the score becomes lower and lower when moving down the list, those 

features do also contribute to the decision of classification. Such lower sorted features can represent 

chaperones, for example, or other supporting proteins. But even proteins which are unknown or which 

have never been associated with the trait, might be found in this manner. Those unexpected 

occurrences might be an interesting starting point for further investigation. Especially in regard to the 

exact specification and separation of different secretion systems, their subsystems, or even the 

detection of new secretion systems and their contributing factors, those features are of major 

importance.  

Moreover, it can happen that features are assigned to a negative score in the rank-file, which indicates 

the absence of the specific feature. This can also be a revealing information. For instance the prediction 

of obligate intracellular lifestyle, investigated by Roman Feldbauer (33), significantly relies on such 

negative scores.     

Using the SVM rank files as a kind of descripting tool, we tested the following types of genome 

representations: 

COG/NOG 

In general, the SVM of the PICA framework can deal with manifold types of information. There is no 

specific need of using COG/NOG profiles. Nevertheless, previous experiences of our colleges, for 

example the work of Roman Feldbauer (56) showed that the usage of COGs and NOGs seem to be at 

least a meaningful way of starting our experiments. Additionally, within the PICA framework originally 

EggNOG2.0 (57) was used, which gave us the indication that using COGs/NOGs might work with our 

approach too. Nevertheless we are aware of the fact that an alternative source of input data might not 

only be possible, but could even improve the results. For example it would be interesting if the usage 

of the OMA database (58), for instance, might show different results. 

It turned out, when using COGs/NOGs, the very highly ranked, most significant classification features, 

belong to the group of manually curated COGs. The SVM rank-file of classifying features, which is part 

of the automatically produced output of PICA, also contains the in-silico generated NOGs (e.g. 

observed rank #8 in Table 3), but in our case, those clusters do not seem to have such a big influence 

on the classification decision. 

We used the structure proteins for secretion systems, suggested by KEGG (6, 59), to get an impression 

of expectable COGs. Seven of the type III assigned, corresponding COGs were found within the top ten 

ranked features (Table 3). 
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Table 3 Comparison of expected vs. observed COGs of T3SS. The table gives a descriptive overview of the top ten ranks of the 
SVM rank file for a COG-represented genotype. 

COG/NOG T3SS run 18_93_202 

rank exp obs Score Group_description 

1 COG4791 COG4791 0.0451327093871 type iii secretion 

2 COG4669 COG4669 0.03911983819 type iii secretion 

3 COG4789 COG4789 0.037949732826 Type III secretion 

4 COG4790 COG4790 0.0340518828083 Type III secretion system protein 

5 COG4794 COG4794 0.0304019478839 type iii secretion 

6 COG4792 COG4792 0.0269867899847 type iii secretion 

7 COG1450 COG1450 0.0191699922235 general secretion pathway protein D 

8 COG0659 NOG00650 0.0180774117106 major facilitator superfamily 

9 COG1157 COG2032 0.0158158211414 Destroys radicals which are normally 
produced within the cells and which 
are toxic to biological systems (By 
similarity) 

10 COG1317 COG0791 0.0155378363758 NLP P60 protein 

 

Single PFAM-domains 

Especially in regard to the implementation of the PICA models into the online application of 

EffectiveDB, we had to face that calculating the whole COG-profile, by COGnitor (35) for each uploaded 

genome sample, would be of quite high computing effort. To find a possibility of bypassing this step, 

we were interested in using the protein family domains, created by Pfam 28.0 (40) as representing 

format of our genotype. Not only the decreasing degree of dimensionality of the SVM seemed to be 

convincing. Another simplifying fact was that the PFAM-domains are already calculated within 

EffectiveDB to provide the eukaryotic-like domains as part of EffectiveELD. Thus, using Pfam-domains 

would not have caused additional computational effort.  

Nevertheless, the usage of Pfam-domains instead of COGs did not show the results we hoped for. Run 

31_90_71 was a small test run, based on the optimised model 18_93_202, containing 161 strains 

altogether. We wanted to see, if there is a significant pattern of Pfam-domains within the SVM rank-

file. If so, we would have been able to refine the model and its samples to optimise the output. 

Unfortunately, the rank file did not show any connection to secretion systems. The mean balanced 

accuracy of over 89%, and the quite small standard deviation below 6% suggested a proper result, 

whereas the rank-file at least showed quite the opposite (Table 4). Using the COG profiles showed us 

that secretion systems in general are more likely to be found by the presence of specific COGs than by 
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their absence. If we take a look at Table 4, we see that 6 out of the first 10 PFAM-domains are tagged 

to be absent (indicated by “-“), to “predict” a T3SS.  

If we have an in depth look at the specific, highly ranked PFAMs, our impression gets confirmed. Some 

of the top ten features can be assigned to very general helicases. Rank 9 is of unknown function. 

We explained this result because PFAMs are quite general in their description and annotation. So we 

decided to repeat the experiment by using PFAM-domain architectures instead of single domains. This 

could probably show us a more precise result and a better resolution regarding the secretion systems, 

we are looking for. 

Table 4 Comparison of expected vs. observed PFAMs of T3SS. The table gives a descriptive overview of the top ten ranks of 
the SVM rank file for a PFAM-represented genotype. 

PFAM T3SS run 31_90_71 

rank Exp obs Score PFAM Description of observed feature 

1 PF01311 -PF01051 -0.121285762356 Initiator Replication protein 

2 PF01514 PF03677 0.106714168712 Uncharacterised protein family 
(UPF0137) 

3 PF00771 PF00772 0.0923447703281 DnaB helicase N-terminal domain 

4 PF00813 PF03796 0.0923447703281 DnaB helicase C-terminal domain 

5 PF01313 -PF07724 -0.0903603395021 AAA domain (Cdc48 subfamily)  

6 PF01312 -PF02086 -0.0901953813472 TrkA-C domain 

7 PF00263 -PF05973 -0.0854245868448 Phage derived protein Gp49-like 
(DUF891) 

8 PF09392 PF05475 0.0850469983972 Chlamydia virulence protein PGP3-D 

9 PF01052 -PF11074 -0.0836164979248 Domain of unknown function(DUF2779) 

10 PF06188 -PF01856 -0.0824338815473 Helicobacter outer membrane protein 

 

PFAM-domain architectures 

To generate a sufficient map of PFAM-domain architectures and proteins, we mapped all the 

associated PFAM-domains to the different proteins of all input samples. In other words, each occurred 

protein was then represented by one or more PFAM-domains. (Source code can be found in the 

Supplement. Suppl.-Script 2 Source code for EffectiveDB pipeline) The PICA run 32_90_71 was based 

on the same dataset as the run of single PFAM-domains (31_90_71), except the “new” genotypic 

profile. 

Again, the results were not satisfying. Almost the same domains were ranked up highly. Additionally, 

complex architectures were not that relevant and again, single PFAMs came first (Table 5).  
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Although run 32_90_71 shows a proper accuracy of 89.9% and a quite low standard deviation below 

5%, we could not find any connection between the PICA results and the trait of a T3SS.  

Both experiments with Pfam-domains led to the assumption that the bad results can be explained by 

the higher variability of domains compared to the orthologous groups. It seems that within the same 

ortholog there can be different domain architectures that might lead to a different genotypic profile.  

To verify this hypothesis, we had a deeper look in the results of the two strains Desulfovibrio vulgaris 

Hildenborough (taxid: 882) and Desulfovibrio vulgaris ‘Miyazaki F’ (taxid: 883).  

Both of them share 1292 domain architectures and there are additional 685 more architectures that 

are only present in one of them. It caught our attention that the shared domains in most cases (874) 

are single-protein domains. Opposed to that, 406 out of 685 specific architectures consist of at least 

two domains. 

Compared to the genotypic profile generated by COGs we see again that there are 1492 shared 

COGs/NOGs and 1016 specific orthologous groups. It seems that again there is a similar property of 

shared and specific items which makes us believe that the crucial difference lies within the domains 

and architectures itself.  

Table 5 Comparison of expected vs. observed PFAM-architectures of T3SS. The table gives a descriptive overview of the top 
ten ranks of the SVM rank file for a PFAM-architecture-represented genotype. 

PFAM-architecture T3SS run 32_90_71  

rank exp Obs Score PFAM-architecture 
description of observed 
feature 

1 PF01311|PF01391 -PF1051 -0.12351134544 Inititator Replication 
protein 

2 PF01514|08345 PF00589 0.116888965041 Phage integrase family 

3 PF00771|PF00771 PF03677 0.10896169784 Uncharacterised protein 
family (UPF0137) 

4 PF00813 -PF02086 -0.0962120973865 DNA methyltransferase 

5 PF01313 PF03796|PF00772 0.0954470478667 DNA helicase 

6 PF01312 -PF07804 -0.095205230544 HipA-like C-terminal 
domain 

7 PF00263 -PF11074 -0.0923076368499 Domain of unknown 
function(DUF2779) 

8 PF09392 -PF01856 -0.0915418766171 Helicobacter outer 
membrane protein 

9 PF01052|PF01052 -PF07804|PF16948 -0.0915418766171 HipA-like C-terminal 
domain protein 

10 PF06188 -PF09491 -0.0915418766171 AlwI restriction 
endonuclease 
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Feature selection 

A completely different approach, with the aim of reducing the computational time, was to only use the 

most important and not all of the classifying features. This results in a much shorter problem 

dimensionality.  

Therefore, in regard to T3SS, we only used the top 500 features of model 18_93_202. After testing 

species of interest with the restricted genotype of 500 items per maximum, in 100% of the cases, the 

prediction turned out to be “NO”. We explained this by the expectancy of the SVM that a sample 

should contain about 20.000 features. If this is not the case the SVM, with its global view on the 

genotype, will respond with a not fulfilled expectancy and classifies the sample as “NO”. 

As a second experiment, we used the 500 highest ranks to retrain a model that only uses the restricted 

pool of features. After testing the restricted genomes with the “smaller” model, we received the 

astonishing cross-validation result of a mean balanced accuracy of 99.9% and a standard deviation of 

only 0.5%. 

We expanded this experiment on the types IV and VI and therefore used different numbers of 

restricted features. Regarding type VI our best model 28_151_200 was restricted to only 200 items. 

Firstly, it showed the resulting accuracy of 98.1% and a standard deviation of only 1.4%. Unfortunately, 

having a deeper look at the SVM rank-file does not show a connection to our trait.  

Obviously, using only 200 items is far too less for a significant prediction. At the end, we found the 

following minimum numbers that still enable a reliable classification (Table 6). 

Table 6 Results feature selection for optimised models. Overview of the accuracies and standard deviations for the final, 
optimised prediction models and assigned feature selection runs. 

Secretion 
system 

Run Mean 
balanced 
accuracy 

Standard 
deviation 

Number of 
selected 
features 

Mean 
balanced 
accuracy 
(fs) 

Standard 
deviation 
(fs) 

T3SS 18_93_202 91.5% 4.2% 500 99.9% 0.5% 

T4SS 22_57_100 92.4% 4.5% 5000 97.8% 2.9% 

T6SS 28_151_200 90.7% 2.9% 2000 98.9% 1.2% 

 

As one can see within the table above, the mean balanced accuracies of the cross-validations are much 

higher after feature selection than concerning the complete models. Although this might lead to the 

assumption of very good models, we have to explain this high accuracy by other disturbing 

phenomena. One explanation might be the reduced problem complexity because of a smaller number 

of features. This idea is underlined by the results of Roman Feldbauer ((33):48).  



46   Results and Discussion 
 

Nevertheless an increase from 91.5% to 99.9% seems to be too high to be ascribed only to this 

behaviour. Another explanation might be that within the SVM, the independent variables are given a 

higher weight ((33):38). By restricting the feature space, we created an artificial independence of the 

different features that might additionally cause such a high accuracy.     

The feature selection experiment showed a significant decrease of dimensions for T3SS. In order to 

T6SS and T4SS we found out, that it is necessary to have at least 2000 and 5000 features respectively, 

available. This reduction will on the one hand still allow a sophisticated prediction model, on the other 

hand the decrease of the computing time will not be sufficient to use those methoods for the 

integration of our application into EffectiveDB.  

Finally, we used the original COG/NOG-profiles from EggNOG 4.0 as genotypic representations. To 

handle the challenge of the quite high computing time, we decided to calculate the genotypic profiles 

of online submitted samples on our grid system (3.2.2 Workflow).  

 Final models 

The finally used and optimized models can be overviewed in Table 7. All of them show a mean balanced 

accuracy of over 90% and a standard deviation below 4.5%. Additionally, their trait specific affiliation 

gets explained by their SVM rank-files. Detailed information about the training datasets and the rank-

files can be found in  

Suppl.-Table 1 - Suppl.-Table 4. The models can be obtained from the EffectiveDB web portal. 

Table 7 Overview of the three finally used, optimised models of the PICA approach. All of the accuracies are above 90% and 
the standard deviations below 4.5%. The top ten ranks are compared to the expected structure proteins from KEGG (6, 59). 
The dark-red colour highlights mismatches of expected and observed COGs. T6SS consist of only 9 structure proteins, which is 
the reason for the empty field for rank number 10. 

 T3SS T4SS T6SS 

runs 18_93_202 22_57_100 28_151_200 

 m bal acc std dev m bal acc std dev m bal acc std dev 

 91.5% 4.2% 92.4% 4.5% 90.7% 2.9% 

rank exp obs Exp obs exp obs 

1 COG4791 COG4791 COG3505 COG3505 COG3523 COG3516 

2 COG4669 COG4669 COG3451 COG3451 COG3501 COG3517 

3 COG4789 COG4789 COG2948 COG2948 COG3157 COG3522 

4 COG4790 COG4790 COG3736 COG736 COG3455 COG3455 

5 COG4794 COG4794 COG3504 COG3504 COG0515 COG3520 

6 COG4792 COG4792 COG3702 COG2919 COG0542 COG3522 

7 COG1450 COG1450 COG3704 COG1125 COG3456 COG3519 

8 COG0659 NOG00650 COG3838 COG1174 COG0631 COG3515 

9 COG1157 COG2032 COG3701 COG1732 COG3501 COG3501 

10 COG1317 COG0791 COG0630 COG0630 - COG3518 
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Concerning the types III and IV we see a quite good overlap of the expected and the observed COGs. 

The observed ranks 7, 8 and 9 of T4SS belong to ABC-Transporter which are indirectly connected to 

bacterial secretion.  

What appears to be suspicious is the low overlap (7 mismatches out of 9 COGs) of observed and 

expected COGs in regard to T6SS. Moreover, even the very most important features in the top 3 ranks 

are not matching with KEGG structure proteins (1.2.1 Structure proteins). This can be explained by 

having a deeper look into the descriptions of the specific COGs (Suppl.-Table 4). Five of them belong 

to a complex so called the “putative cytoplasmic components”, the two remaining features COG3516 

(TssB) and COG3517 (TssC) can be found in a complex together with the ClpV protein which is 

represented by COG0542 (7) (Figure 7) Thus, we can directly assign our results to the type VI secretion, 

although the structure proteins of KEGG do not have such a significant influence on the classification. 

 Limitations and advantages of using a support vector machine for phenotype prediction 

Although each of the models shows a mean balanced accuracy of more than 90% and a standard 

deviation below 4.5% (Table 7), we have to face the challenges that occur, when using an SVM. 

Regarding the training data it is absolutely crucial to find independent data for an optimal model 

building. Obviously it is impossible to find completely independent data in regard to taxonomic 

Figure 7 COG occurrence concerning T6SS. The T6SS interacts 
with proteins called „putative cytoplasmic components”. The five 
COGs representing them, seem to have crucial influence on the 
classifying decision of the SVM. Additionally, we found COGs of 
the proteins TssB (COG3516) and TssC (COG3517) that form a 
complex together with ClpV.  
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relationships between the distinct chosen strains. Furthermore there should be some far related 

strains, to create a more or less broad representation of the overall taxonomy and not only a short 

part of it. Additionally it is also important to have positive and negative samples of closely related 

strains. Those samples are important to train the SVM for the slight differences within the genotypes 

of taxa that show the phenotype or not. If there is a lack of such closely related samples, the approach 

might only predict the taxonomic relation itself and not the presence or absence of the trait of interest. 

To omit these kind of mispredictions, we also created datasets that contain “true negatives”, found in 

the literature (Table 8). Unfortunately, those runs did not show the results we hoped for. It went out 

that although these models showed the specific trait within their rank files, they showed a rather bad 

accuracy of their cross-validations and additionally a higher standard deviation than the optimised 

models.  

Table 8 True-negatives containing models. Comparison of the mean balances accuracy and the standard deviation of the 
finally used models to the models containing manually added “true negative” samples that do not show the trait of interest. 

Secretion 
system 

Run M. bal. acc. Std dev Run incl. TN M bal acc 
incl. TN 

Std dev incl. 
TN 

T3SS 18_93_202 91.5% 4.2% 12_54_813 82.1% 7.5% 

T4SS 22_57_100 92.4% 4.5% 30_57_107 83.4% 6.4% 

T6SS 28_151_200 90.7% 2.9% 29_149_305 87.1% 4.9% 

 

This effect might have occurred because of false “true negatives”, which means that they have the 

specific phenotype, but it is currently unknown. Another interpretation might be that there were too 

less examples of them and the training data was not well-balanced. In this case the few additional 

examples would have disturbed the actual negative dataset. Although this actions should work against 

the probable taxonomic over-fitting of the training data, we were not able to include them because 

they would have confused the classifying parameters too much. On the other hand, we showed that it 

is possible to minimise the over-fitting of the training data, focusing on one single species in the 

dataset. 

Correct classification of virulent and non-virulent Escherichia coli strains 

For the model of T3SS, we wanted to find out, if it is possible to reduce the taxonomic bias just for one 

single species. If so, we might be able to reduce the effect of predicting the taxonomic relation instead 

of the trait of interest, at least for this specific taxon. This experiment worked quite well in regard to 

Escherichia coli. We added two, well known non-pathogenic strains to the negative dataset (run 

17_51_102 (incl. taxa 199310, 316385)). Recognising a decrease of the balanced accuracy from 92.3 % 

(run 15_51_100, same datasets except TN) to 90.6 % (Table 9), all, except one (taxid469008), of the 

expected nonpathogenic samples of E. coli from the EggNOG test set, were classified correctly.  
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Table 9 Comparison of the type three dependent results of run 15_51_100 and 17_51_102. The number of positive 
predictions of E. coli decreased slightly. Whereas in run 15_51_100 all of the eight E. coli strains were tagged “YES”, in run 
17_51_102 there is a separation between a positive and a negative fraction. All samples of the K-12 strain were correctly 
predicted as “NO”. Only 3 out of 8 samples remained being predicted as “YES”. 

Taxid name 15_51_100 17_51_102 expected 

155864 Escherichia coli O157:H7 str. EDL933 51  YES YES YES 

199310 Escherichia coli CFT073 77  YES NO NO 

316385 Escherichia coli str. K-12 substr. DH10B 8  YES NO NO 

316407 Escherichia coli str. K-12 substr. W3110 167  YES NO NO 

362663 Escherichia coli 536 48  YES NO NO 

469008 Escherichia coli BL21(DE3) YES YES NO 

481805 Escherichia coli ATCC 8739 44  YES YES YES 

511145 Escherichia coli str. K-12 substr. MG1655 YES NO NO 

 

Although the experiment showed a satisfying result, we did not extend it on the models for type IV 

and VI, because it would lower the mean balanced accuracy and its standard deviation and additionally 

influence the overall independency of the approach. This is the reason why, for instance in regard to 

E. coli K-12 DH10B the results of applying our models and therefore also the output of EffectiveDB 

show the correct result “NO” in regard to T3SS but the probably incorrect prediction “YES” concerning 

T4SS and T6SS.  

Difficulties in testing the approach 

An additional disadvantage of the SVM is that each single instance is absolutely crucial for an optimised 

model training. Therefore we integrated every well proven, positive sample into our training dataset. 

Unfortunately this means that there is no independent, well known dataset left to test the created 

model. This makes it, for obvious reasons, quite difficult to verify the models quality properly. 

Although, we did a 5-fold cross-validation (1.4.2 Cross-validation) with each of our models, there was 

no actual testing on unused data.  

To gain a hint of the predicting power of our method, we tried to find a way to compare our results to 

those of other, already existing tools. This cannot be interpreted as a typical testing of an SVM-model. 

Therefor we would have to know the correct answers of the prediction on beforehand. What we did is 

to compare our results to the predicted results of others. The results can be found within section 

Comparison to existing prediction methods. 

Advantages of the support vector machine 

Being aware of all the challenges when working with an SVM might lead us to scrutinise the method 

itself. Why should we need an SVM as classification method? This question can be answered by the 
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fact that the result of this supervised learning approach is a clear YES/NO prediction. Our aim was it to 

find a method that makes it easy for the user (mostly biologists, not computer scientists!) to handle 

the gained results. Offering a probability threshold or a number of available proteins is already 

sophisticatedly provided by other databases such as T346Hunter(43). Unfortunately, such results do 

not make any statement in regard to functionality or completeness of a secretion system. Showing a 

clear answer if the trait occurs or not, makes it much easier for the user to handle the results of the 

prediction. 

Furthermore, there is no limitation in regard to the chosen trait. The PICA framework is designed for 

phenotype prediction in general and, as already shown by Feldbauer et al. (56) the traits can be 

manifold. The only precondition that needs to be satisfied, is to find a sufficient number of 

independent training data. Once achieving this, there seems to be practically no limitation.  

Another important advantage is the proper calculation of the feature ranking. Using a linear kernel, as 

we did, makes it quite easy to make conclusions regarding the influence of the contributing features.  

Choosing a support vector machine as predictive tool for phenotype expression, gives us the 

opportunity to provide intuitively understandable results and additional information about the 

importance of the classifying features.  

3.2 EffectiveDB 

Bacterial secretion is a crucial factor of pathogenicity within the interaction of pathogen and host. 

Thus, investigations according both, the secreted proteins, as well as the secretion systems might open 

new perspectives to researchers. Thereby, bioinformatic approaches, especially those, using machine 

learning techniques, enlarge the scientists’ scope of action by disclosing information, gained from large 

amounts of data. The challenge we faced, is to bridge the gap between the biological problem and the 

computer scientific answer. It became our aim to enable biologists to use those computational 

approaches without any further knowledge. Additionally, it is crucial for us to provide intuitively 

understandable results that are easy to interpret. Although there are a few very interesting and freely 

available online tools that deal with the different topics of secretion, we wanted to provide a one-stop-

shop to the user. Until the update of EffectiveDB, there was no tool that showed an overview of the 

secretome, investigated by distinct, each other complementing, applications, the presence and 

functionality of different types of secretion systems, and the targeting of putative secreted proteins 

within the eukaryotic host cell. All of these features are combined within our database and thus create 

a new package of information.  

To make our approach freely available for others, we decided to integrate it into 

http://www.EffectiveDB.org (formerly known under “http://www.effectors.org”). Until September 



Results and Discussion   51 
 

 
 

2015, this database was specialised to effector secretion prediction within bacterial cells. Adding the 

PICA approach under the applications name “EffectiveS346” broadened the databases scope in regard 

to bacterial secretion systems. Additionally, we made some further dataset updates for the already 

existing methods and also integrated additional prediction features such as EffectiveCCBD, for 

example. The new EffectiveDB is a comprehensive and intuitively usable database that enables 

biologists to use the advantages of computer scientific tools without further knowledge. 

 Database design 

As already mentioned, we had to ask ourselves what kind of information is needed by biologists on the 

one hand and by computer scientists as users, on the other hand. To understand the different needs 

in a better way, we build our conceptual design based on the following four use cases: 

Table 10 Use cases. The four described use cases helped us to verify the needs and requirenments of our database. 

Use Case Use genome mode prediction 

Actor Biologist 

Description A biologist uploads his own genome information via the web interface and 
submits it for predictional processing. 

Pre-conditions The data needs to be in multi-FASTA protein format. 

Post-conditions The user is directed to the results-page of his calculations. 

Main Success Scenario 1. The user selects „Job submission“. 
2. A form opens and the user uploads his data by selecting 

“Durchsuchen”. 
3. Diverse features can be en/-disabled, “Genome mode” MUST be 

enabled. 
4. User submits the job, which is stored under a unique calculation-

ID, for processing 
5. The system forwards the submitted job to the grid system. 

Extensions  The user can alternatively upload a precalculated COG-profile to 
decrease the calculation time considerably. 

 The user can state his e-mail address to get informed when the 
job is finished. 

Priority High 

Performance Target Complete full prediction pipeline within hours 

 

Use Case Use protein mode prediction 

Actor Biologist 

Description A biologist uploads his own protein information (single proteins or groups 
of proteins) via the web interface and submits it for predictional 
processing. 

Pre-conditions The data needs to be in (multi-)FASTA protein format. 

Post-conditions The user is directed to the results-page of his calculations. 
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Main Success Scenario 1. The user selects „Job submission“. 
2. A form opens and the user uploads his data by copy-and-paste. 
3. Diverse features can be en/-disabled, “Genome mode” MUST be 

disabled. 
4. User submits the job, which is stored under a unique calculation-

ID, for processing 
5. The system forwards the submitted job to the grid system. 

Extensions The user can state his e-mail address to get informed when the job is 
finished 

Priority High 

Performance Target Complete full prediction pipeline within minutes 

 

Use Case Browse database entries 

Actor Method developer 

Description A method developer uses the precalculated and provided data to use it for 
his purposes in finding new, or improving existing methods in 
bioinformatics. 

Pre-conditions none 

Post-conditions none 

Main Success Scenario 1. The user selects „Browse“ 
2. The user selects the genome of interest by text search and 

follows the link. 
3. Sample-specific information is displayed 
4. Additional files can be downloaded 
5. The obtained data can be saved 

Extensions The user also has the opportunity to download additional data concerning 
training sets and source code. 

Priority normal 

Issues How to handle inconsistent results? 

 

Use Case Provide and Maintain the database 

Actor Administrator 

Description The administrator takes care of the currentness of the data and 
applications. He conducts updates and informs users about them. 

Pre-conditions The administrator must have logged-in his account 

Post-conditions The changes and updates are completed successfully. 

Main Success Scenario 1. Do changes regarding static texts 
2. Supply database with updated datasets 
3. Provide system updates 

Extensions The administrator can also send a newsletter and manage a mailing list. 
Additionally, the administrator has the possibility to submit a test-job to 
monitor the automatic deletion of the provided jobs. 

Priority high 
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Facing those four scenarios, we made the following design decisions: 

Java vs. Drupal 

When extending the diverse applications and updating the training data sets of the EffectiveDB web-

portal, we also considered about the usability, appearance and maintenance of the website. 

One of the major adaptations was the switch from JSP (“JavaServer Pages”); a software development 

technology, created by Sun Microsystems (Oracle Corporation) to Drupal (Drupal is a registered 

trademark of Dries Buytaert.), an open source content management platform.  

This comes along with advantages in regard to the website administration. Whereas Java needs to be 

compiled to a binary file and afterwards run on the JVM, with Drupal no source code compilation is 

necessary. This means that static parts of a website, such as paragraphs of text, etc. can be adapted 

very fast, directly within the source file. Furthermore the web-based administration interface enables 

the designer to implement a newsletter or mailing list, very easily. Those advantages seem to fulfill the 

administrative requirements a lot better than the originally used JSP. 

Layout and Logo 

After the new layout of our divisions website in June 2015, we decided to adapt the new EffectiveDB 

in the same style. A new logo was created, based on the CUBE-logo. It shows a microbial cell, containing 

a secretion system on its surface. On top, some secreted proteins are signified (Figure 8). 

Additionally we changed the colouring scheme of the whole webpage. The combination of a medium 

shade of gray, petrol blue and dark red should create a better readability and higher contrast than the 

yellowish design of the old version.  

Another adaptation was the decision to change the old name “Effective” to “EffectiveDB”. This should 

allow an easier detection of the webpage on the internet. Additionally, we could obtain the new URL: 

www.effectivedb.org which reflects the name much better that the old www.effectors.org. 

Structure 

The new EffectiveDB web-portal consists of three major partitions (Figure 9). 

Figure 8 The new EffectiveDB Logo. It is compared to the former version of the databases logo (source: old web-
page www.effectors.org, June, 5th 2015) and pictures an effector secreting, bacterial cell. 
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 “Browse”, represents the database section of EffectiveDB. In this part, the results of 1,677 

precalculated genomes from EggNOG 4.0 are stored. All of them went through several of our 

prediction tools. Moreover, there are ongoing additions of genomes, derived from NCBI 

RefSeq (60). 

 “Job submission”, contains the complete predicting pipeline including several offered features. 

All of our web applications can be obtained exclusively or combined in this section. 

 “Methods” shows all the important information about the algorithms and theoretical 

considerations of the distinct tools.    

Moreover, we also provide a download section where the user has access to supplementary 

information, such as training datasets, models, source code and archived results, respectively, and a 

“Help” section containing brief tutorials. 

Figure 9 Homepage of EffectiveDB. This screenshot shows the structure and design of the web-portal (source:  
www.effectivedb.org, October 10th 2015). 
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 Workflow 

Figure 10 depicts the overall workflow of the EffectiveDB prediction pipeline. It consists of two major 

parts, the genome mode, if almost complete genomes are uploaded and the protein mode, as part of 

the genome mode, which also works for smaller datasets or even single proteins. 

Components 

Table 11 shows the diverse calculations that can be done after submitting a proper genome file. 

Additionally all of those results are already available for the precalculated strains that can be found in 

the “Browse” section.  

Table 11 Required pipeline preconditions. The table shows the different applications of EffectiveDB and their preconditions 

application  T3 T4 T6 

gram positive   ●   

gram negative ● ● ● 

EffectiveS346 ● ● ● 

EffectiveELD ● ● ● 

Figure 10 EffectiveDB workflow. The user can upload a multiFASTA file with his set of proteins. Immediately the pipeline will 
check it for validity in regard to FASTA formatting. Proteins that do not fulfill the requirements will be stored transparently 
within an “ignored” file. All of the other proteins can be checked with further applications. In the protein mode there are three 
differently focused programs (EffectiveT3, EffectiveCCBD and EffectiveELD) that will predict putative secreted proteins for type 
III secretion. Additionally we added an application (T4SEpre) that predicts type IV secretion assigned effectors. If a protein is 
predicted to be secreted, it is possible to track it within the host-cell by Predotar. Furthermore, users can also upload an 
(almost) complete genome and enable the genome mode. In this case, beside the applications of the protein mode, the input 
file firstly will be checked for completeness (CheckM). Afterwards a COG profile will be generated by COGnitor. At last, 
EffectiveS346 calculates, if the sample contains secretion systems. The ELD score will be then calculated for all putative 
sequences instead of using only significantly enriched ones.  
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EffectiveCCBD ●     

EffectiveT3 ●     

Predotar ○ ○ ○ 

○…only significant if protein is secreted  

The first part of our prediction pipeline is the sample division into gram-positive and gram-negative 

bacteria, respectively. This can be achieved by a PICA model of Roman Feldbauer (33) that shows a very 

valuable balanced accuracy of 98.9% and standard deviation of only 1.4%. Primarily this step was not 

included in our prediction pipeline, but the secretion system prediction was done right at the beginning. 

The results we got with this strategy were not comprehensible from a biological point of view. It 

happened several times that T3SS or T6SS were identified within the group of gram-positives, which 

seems to be impossible from the current state of knowledge. To avoid this kind of misprediction, we 

included the gram-staining prediction before the secretion system prediction. Considering this, it is 

possible to predict T4SS within the gram-positives and the gram-negatives and T3SS and T6SS 

exclusively within the group of gram-negatives.  

Only if we are able to identify at least one single type of secretion system, we start further calculations 

about putative secreted proteins. In this case we have the opportunity to make predictions by four 

differently focused calculation procedures (EffectiveT3, EffectiveCCBD, EffectiveELD, T4SEpre), each 

described in the following section. 

The last part of our extensive calculation is the possibility of tracking putative effectors into the target 

cell, by using Predotar. This tool might help users to analyse and understand the host-bacterium 

interaction a lot better. For a correct interpretation of the result it is crucial to assume that the protein 

of interest is secreted, which can be checked by the already mentioned applications. The Predotar tool 

does not give any indication about the possibility of secretion itself. 

 Secretion System prediction   

o EffectiveS346 (61) 

This novel application opens the user the opportunity to predict functional bacterial 

secretion systems of the types III, IV and VI. The most remarkable feature is the prediction 

by binary classification. This is expressed in a YES/NO decision that should unburden the 

user when being confronted with possible difficulties of the results interpretation. Further 

details regarding the experimental design or the modelling can be found within 2.1 Model 

design and 3.1 PICA models, respectively.   

 Prediction of putative secreted proteins 

o EffectiveT3 (23) 
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EffectiveT3 is one of two possible tools for the prediction of putative secreted proteins 

exclusively in regard to type III secretion. It was also available on the “old” Effective 

webpage. This method searches for N-terminal signal peptides. It is now updated by the 

usage of a new, much bigger training data set.  

o EffectiveCCBD (24) 

This application was designed with the help of the work of Costa et al., 2012. (24). It looks 

for a specific “conserved chaperone binding domain” consisting of the following sequence: 

(LMIF)1XXX(IV)5XX(IV)8X(N)10 

The underlying idea is that the injection tube of the T3SS is quite narrow and lots of 

secreted proteins seem to be too big to pass through, without being unfolded. The 

chaperones of type IB, we are interested in, help such proteins to become unfolded and 

thus are able to get through the tunnel.  

Although this can be a useful tool in regard to find putative secreted proteins, our results 

show less hits than expected, which leads to the assumption that the sequence might be 

too specific to identify all putative effector candidates.  

o EffectiveELD ((23), Version 5.0) 

Opposed to the three other effector predicting methods provided by EffectiveDB, 

EffectiveELD is independent of the type of the secretion system. Its predictions are only 

based on the occurrence of eukaryotic-like domains (ELDs), which can be found in 

eukaryotes and host-associated bacteria.  

There is a difference between the application of EffectiveELD in genome- or protein-mode. 

Regarding a small set of proteins, EffectiveELD only reports those ELDs that show a 

significant enrichment in one or more of the host-associated genomes that can be found 

in the genome collection of EffectiveDB. On the other hand, if users upload a whole 

genome to be investigated, the enrichment score of ELDs in several proteins of the 

genome, is calculated. This can show new, even unexpected ELDs to be predicted.   

o T4SEpre (25) 

This prediction tool is specialised on the identification of putative type IV secreted proteins 

by their C-terminal features. In its original version it contains multiple models which 

represent sequential and position specific amino acid compositions, motifs, and structure 

based features. The integration of T4SEpre in EffectiveDB does not contain the latter one 

for calculation time optimising reasons.  

 Effector targeting  

o Predotar (62) 
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Predotar is an external webtool, based on neural networks, we integrated into our 

database. Although the tool was updated in 2003 for the last time, there is currently no 

other comparable application to identify putative N-terminal targeting sequences. It has 

already been suggested that organelles might act as targets of bacterial secreted 

proteins(63). Thus Predotar offers the user the opportunity to check after gaining 

information about putative secreted proteins, if they might be located whether in 

mitochondria, endoplasmic reticulum or plastids of a eukaryote (plant or animal). This 

might elucidate the specific host-bacterium-interaction a little bit more.     

Job submission 

The following paragraph should give the reader insights on the actual handling of the website. It also 

deals with practical instructions of how to submit a valid job on the online submission form. 

Parameters and sequence files that are submitted by the user are stored under a unique calculation 

identifier. The shell script effective_pipeline.sh (Suppl.-Script 2) covering all program commands is run 

on a Sun Grid Engine (SGE) batch queue. If the particular node is busy due to other calculations, those 

jobs are arrested and restarted after the preferred EffectiveDB-job is finished. The programs for 

secretion system prediction, effector prediction and target sight identification are run in serial and the 

results files are displayed on the webpage after all steps are finished. Running the whole genome 

mode, which includes all predictions might take several ours, whereas the protein mode is finished 

within a few minutes (Table 12). 

Table 12 Pipeline time estimation. The table depicts the time measurement of submitted jobs with different sizes and 
calculation modes, always using default parameters 

E. coli O157:H7 
str. EDL933 

Sample size Accession number/ 
number of proteins 

time note 

Protein mode Single protein WP_061069282.1 2 minutes  

Protein mode Whole genome 
(5.6394Mb) 

5530  39 minutes  

Genome mode  Whole genome 
(5.6394Mb) 

5530 12 hours, 
55 minutes 

Including: 

 CheckM  

 Cognitor 

 EffectiveS346 

 

The first box of the submission form (Figure 11) contains the main input information for the 

calculations. With EffectiveDB it is possible to have a single multi-FASTA protein file as one and only 

input data to run all provided predicting methods.  
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Within the workflow of EffectiveDB, there are two major parts (protein mode / genome mode), which 

can be enabled either separately or combined. It depends on the number of submitted proteins, which 

of the two modes is appropriate. 

If one submits a single protein or a small group of proteins, the protein mode should be used. 

EffectiveDB is then able to predict whether the uploaded proteins are putatively secreted (EffectiveT3, 

T4SEpre, EffectiveCCBD, and EffectiveELD). Additionally, if enabled by the user, Predotar, provides 

information about the target location in the specific host-cell. Each of the prediction methods can be 

manually en/disabled, according to the interests of the user (Figure 12) 

The genome mode is disabled by default, due to its long calculation time. If it is enabled, the user must 

upload the (whole) genomic information of an organism.  

Figure 11 Main input. The option of stating an e-mail address is useful, especially when enabling the time consuming “genome 
mode”. The major box in the center should contain the data that is going to be analysed. It can be either a single protein, a 
group of proteins and/or proteins from a whole genome in multi-FASTA protein format. Source: www.effectivedb.org, October 
22nd 2015.   

Figure 12 Enabling/Disabling. Functions like EffectiveCCBD, for instance, can be manually en-/disabled. Source: 
www.effectivedb.org, October 22nd 2015. 
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Although it is more time consuming than secretion prediction, also predictions of bacterial secretion 

systems (EffectiveS346) can be obtained. The genome mode has to be enabled for that purpose. The 

genome mode assumes that the submitted proteins represent an entire genome, which is as complete 

as possible. This can optionally be checked by CheckM (64). Although the user has the opportunity to 

change the minimal threshold of genomic completeness, our recommendation is 85% (Suppl.-Figure 

1). 

As an additional feature, to reduce the calculation time substantially, there is the option to upload an 

already prepared genotype-file containing the COG/NOG-profile of the organism of interest (arrow in 

Figure 13). It is crucial to upload it in the proper format: 

 Only COGs/NOGs from EggNOG 4.0 that are present in the interested genome are valid input 

data 

 All COGs/NOGs must be on root level. It is not possible to upload bactNOG, for example. 

 Only one single COG/NOG accession per line is allowed. 

There can be an optional second column in the genotype-file that contains the protein names. In this 

case, the possible number of secretion systems can be estimated from the proteins associated to the 

most relevant COGs/NOGs. 

If a valid COG/NOG profile is uploaded, the time consuming COGnitor run is omitted automatically. 

Thus, no additional disabling is necessary. 

Figure 13 Choosing the genome mode. It must be manually enabled. It searches for type III, IV and VI bacterial secretion 
systems within the uploaded genome. Additionally the user can check the input data for genomic completeness, done by 
CheckM. When enabling the genome mode, automatically the Z-score of EffectiveELD will be refined. Source: 
www.effectivedb.org, October 22nd 2015. 
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 Database content description 

Overview of predictions 

 Bacterial secretion system predictions 

The final models (3.1.3 Final models) of the three different bacterial secretion systems were 

applied on the dataset of all bacterial genomes, which can be found in EggNOG 4.0. The results 

came up with our expectations. We found 164 T3SS and 266 T6SS within the gram-negative 

bacteria. Figure 14 does not show any predictions for those two types within the gram-

positives. As this group of bacteria does not seem to have the ability of expressing such 

secretion systems, we excluded them on beforehand. Therefore, we prohibited such cases, by 

previously predicting gram-negativity itself. This was done by using the same PICA framework 

and a model, predicting gram-negativity, trained by Roman Feldbauer (33).  

In regard to T4SS we included the gram-positive dataset because of the possible occurrence of 

type IV subsystems, such as those for conjugation or DNA-uptake and –release (1.2.3 Type IV 

secretion system). In fact we predicted 52 T4SS within those groups.  

 Comparison of the three types of type III effector-prediction 

If we compare the three different tools for the prediction of secreted proteins, we recognise 

that they complement each other due to their different approaches. All three applications 

were used to analyse the 1,677 different bacterial genomes, contained by EggNOG4.0 (Figure 

15).  

Figure 14 Identified bacterial secretion systems. This figure shows the 729 bacterial 
secretion systems, predicted by PICA models, which were applied on the 1677 bacterial 
genomes of EggNOG 4.0. 
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The comparison of the different numbers, underlines the suspicion that the pattern search of 

EffectiveCCBD is highly specific and that the 3,390 hits do not show the entire secretome of 

the investigated species.  

Sample specific predictions for Escherichia coli O157:H7 str. EDL933 

To give an insight of how the results can look from the users perspective, the following section deals 

with E. coli O157/H7 str. EDL933 as an example of use.  

 

 

 

 

 

 

 

 

 

 

 

Figure 15 Comparison of type III effector prediction methods. The Venn-diagram 
shows the overlap of the three different methods for effector prediction in type III 
secreted samples. 32 secreted proteins can be detected by all of them. 
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The overview provided by EffectiveDB immediately shows, which among the three different types of 

secretion systems, is available (Figure 16, arrow). Users have the oportunity to gain deeper insights of 

the results by following the organims link. To understand which of the calculations are done, we have 

a closer look at the input parameters, which are depicted at the very bottom of the results page (Figure 

17).  

All of the applications of EffectiveDB, including EffectiveS346 from the genome mode are enabled in 

this particular case, which can be seen by the capital letter T (=TRUE) (lower arrow, Figure 17). In our 

pre-calculations we used the COG/NOG-profile that was extracted from the EggNOG 4.0 database. All 

of the application specific parameters are set to their default values. In detail, this means that the 

results of EffectiveT3 are selectively chosen by a minimal score of 0.9999. In other words, only hits 

with a very high secretion probability are selected. The results of Predotar are shown with respect to 

the interaction with animals as hosts (upper arrow, Figure 17). Results for plant-hosts are shown in the 

Figure 16 Overview Escherichia coli O157:H7 str. EDL933. Selection of Escherichia coli O157:H7 str. EDL933 within the 
“Browse” section. 
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output within brackets “()”. The check for completeness, done by CheckM, was disabled, as the 

genomes of the organisms for our pre-calculations are complete.     

Using the above-described parameters for the calculations, leads to the following results (Figure 18). 

Primarily, the user gets confronted with an overview of the different calculations. The first line shows 

the overall amount of putative secreted proteins. This is not necessarily the same number as summing 

up the numbers of all of the effector predicting methods. There might be some proteins that are 

detected by more than one method. By providing different approaches for effector predictions, we 

want to find as many putative effectors as possible. One should be aware of the fact that not every 

secreted protein is detected by all methods! 

Figure 18 Summary Escherichia coli O157:H7 str. EDL933. Combination of the pre-calculated results for Escherichia coli 
O157:H7 str. EDL933. Source: www.effectivedb.org, January 4th 2016. 

Figure 17 Input parameters Escherichia coli O157:H7 str. EDL933. The figure depicts the default 
input parameters which were used for the precalculated predictions of Escherichia coli O157:H7 
str. EDL933. Source: www.effectivedb.org, January 4th 2016. 
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Figure 19 shows the protein-based results of the EffectiveDB predictions. Again it can be seen that for 

instance Protein 155864.Z3464 is predicted to be an effector not only by EffectiveT3, but also by 

EffectiveCCBD. Proteins that are not predicted to be secreted are not contained in the output table. 

To further analyse the diverse results of EffectiveDB, the user may also download the combined results 

as .csv or .html format, listed below the table. Moreover, the specific results of each protein-based 

prediction can be obtained separately as downloadable files.  

Regarding the results of the genome based approach of EffectiveS346, it is firstly summarised if there 

are one or several intact secretion systems predicted within the genomic sequence, or not (Figure 20). 

In this genome, intact Type III, IV and VI secretion systems have been predicted. Otherwise the 

prediction would be NO (not available) or N.D. (not defined). The latter might occur within the group 

of gram-positive bacteria. Those organisms are known to lack the type III or VI secretion systems at all. 

Therefore, we disabled the respective models for gram-positive bacteria.  

Figure 19 Protein based results Escherichia coli O157:H7 str. EDL933. The example of Escherichia coli O157:H7 str. EDL933 
shows that the protein 155864.Z3464 for example, is predicted to be secreted by EffectiveT3 and EffectiveCCBD. The results 
are ranked by their significance. Proteins that are predicted to be secreted by more than one method are ranked on top. 
Source: www.effectivedb.org, January 4th 2016. 
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Within the brackets, beside the actual prediction, the FDR (=false discovery rate) gives the user an 

additional indication of the reliability of the result.  

The estimated copy number can assign the actual number of structural proteins (as represented in 

KEGG) to the significant COGs. This can be an indication of how many secretion systems of this type 

are present in the particular sample. 

It is very important to conscientiously further investigate these numbers, as they do not directly belong 

to our actual prediction. Therefore we recommend to use the database T346Hunter. For genomes that 

are covered by T346Hunter and EffectiveDB, we provide a direct link to their results at the end of our 

results page.  

Sample specific predictions for Burkholderia pseudomallei K96342 

As a second, interesting example from the genome repository of EffectiveDB, Burkholderia 

pseudomallei K96342 should be mentioned. The results of the protein mode can be viewed in Figure 

21. We find several putatively type III secreted proteins, detected by EffectiveT3 and EffectiveCCBD. 

Additionally there are 102 hits of T4SEpre that indicate putative type IV secreted effectors.  

 

Figure 20 Genome based results Escherichia coli O157:H7 str. EDL933. The Output of genome based calculations contain a 
short summary if the distinct secretion systems are available and diverse download options. Source: www.effectivedb.org, 
January 4th 2016. 
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Thus, at first, it does not seem to be surprising that the genome-based prediction for T4SS is “YES” 

Figure 22. 

Being aware of that fact, it is even more suspicious that the estimated copy number for the KEGG 

proteins is 0.0. In other words, there was not a single protein found within the sequence that has a 

structure building function as it is suggested by KEGG(6, 59). 

To understand these circumstances a bit better, we had an in depth look at the corresponding features 

and their descriptions (Table 13). 

Table 13 Classifying COGs Burkholderia pseudomallei K96243. This table shows the essential features (COGs) for the T4SS 
prediction. In Burkholderia pseudomallei K96243 the COGs for the ranks number six to nine are present (indicated by “1”). 

rank Conserved 
Orthologous 
Group 

SVM prediction  
score 

COG present  
in provided  
sequence 

COG description 

1 COG3505 0.0232919560811 0 trag family 

2 COG3451 0.022727598531 0 type IV secretion system protein 

3 COG2948 0.0192692357999 0 conjugation trbi family protein 

Figure 21 Summary Burkholderia pseudomallei K96243. This excerpt from the precalculated 
results for Burkholderia pseudomallei K96243 gives an overview of the protein based 
prediction results. EffectiveT3 and EffectiveCCBD are specialised to find type III secreted 
proteins, T4SEpre identified 102 type IV effectors and the results of EffectiveELD are 
independent of the type of secretion system. Source: www.effectivedb.org, January 4th 2016. 

Figure 22 Genome based results Burkholderia 
pseudomallei K96243. Prediction of the presence 
of all three types of secretion systems. 
Interestingly, in regard to type IV, we do not have 
identified a single KEGG Protein although the 
prediction is “YES”. Source: www.effectivedb.org, 
January 4th 2016. 



68   Results and Discussion 
 

4 COG3736 0.0191766768433 0 Type IV secretion system protein 
VirB8 

5 COG3504 0.0190196608164 0 transfer protein TrbG 

6 COG2919 0.0184093890533 1 Essential cell division protein. May 
link together the upstream cell 
division proteins, which are 
predominantly cytoplasmic, with the 
downstream cell division proteins, 
which are predominantly periplasmic 
(By similarity) 

7 COG1125 0.018117026252 1 (ABC) transporter 

8 COG1174 0.0177722193227 1 (ABC) transporter 

9 COG1732 0.0177722193227 1 (ABC) transporter 

10 COG0630 0.0176452172704 0 type II secretion system protein 

 

The SVM rank file might give an indication, why there is a positive prediction of T4SS, whereas none of 

the KEGG structure proteins can be found. As already mentioned in chapter 3.1.3 Final models, those 

structure proteins are not the only features that contribute to the classifying decision. The support 

vector machine takes a lot more features into account. Especially ABC transporters (ranks #7, #8 and 

#9), which mediate the protein transport through the cell membrane seem to play a crucial role for 

our prediction of T4SS. Those three examples, as well as a couple of other crucial proteins are present 

within the sequence. On the other hand those proteins do not belong to the actual structure proteins 

mentioned by KEGG. Nevertheless, the evidence for a functional T4SS is quite thin. This result might 

be false positive. This is also underlined by the results of T346Hunter(43). This database identifies 

different types of T3SS and T6SS on two different loci, whereas there was no T4SS found on any of 

them.  

This phenomenon leads us to a critical discussion of a putative refinement of our method. We thought 

about the implementation of weights to the different features. This could be a way of telling the SVM 

which features are of major importance. For example the structure protein representing COGs could 

be assigned as crucial features. One can assume that there cannot be any successful secretion, if the 

structure of the secretion system is not present. Nevertheless, in my opinion, such a restriction of a 

completely analytical approach as ours, would influence the independency of the results in a 

manipulating manner. Facing an analytically created result, gives the researcher the opportunity to 

critically interpret and analyse the data, even if the result seems to be wrong. A weighting of features 

would create an intransparency of the approach and results that cannot be handled seriously. 

What can be an option of improving the approach, is the usage of semi-supervised machine learning 

techniques. Especially in regard to T4SS we face the problem of a very limited sample space. Adding 

unlabeled samples to the training datasets might offer new possibilities.  
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3.3 Comparison to existing prediction methods 

As an implicit characteristic of an SVM, the result consists of an explicit binary prediction (YES/NO). 

There is no numeric factor of predictional accuracy. The only measurable values we can deal with, are 

the mean balanced accuracy and the standard deviation, obtained from the model creation. Obviously 

this value is the same for each of the predicted instances.  

To our knowledge, EffectiveS346 of EffectiveDB is the only prediction method for bacterial secretion 

systems that provides such a clear, easily interpretable result. Therefore, it is difficult to compare our 

results to those of other databases, which provide a threshold or a number of occurring proteins, 

without any indication of functionality.   

Nevertheless we tried to compare at least the overlap of the different predictions with each other, 

always lacking the information whose prediction is “correct”. It must be said insistently that this section 

does not try to “test” the created models of EffectiveS346. We do not have any evidence for the in-

silico predictions of the other databases, or at least of ours. It should only give an overview of the 

distinct applications and a hint of the predictional overlap of the different methods. 

Additionally, we have to say that our way of predicting secretion systems has limitations in regard to 

the localisation of the predicted clusters. We neither give any information about the distinct 

chromosomes (if there are more than one), nor the explicit location of a secretion system within a 

chromosome. As this kind of prediction was not part of our scope of providing a user-friendly, database 

that shows an overview of many aspects of secretion, we truly recommend the additional usage of 

other databases such as T346Hunter. This database, as well as the two SecReT (41, 42) databases, give 

very good insights into detailed mapping of secretion systems.  

 SecReT4 and SecReT6 

The SecReT4 ((41), Version 1.0) and SecReT6 ((42), Version 2.0) databases contain a broad collection 

of information concerning the bacterial T4SS and T6SS, respectively. They present a pool of 

experimentally validated examples from the literature and additionally in-silico predictions found by 

their approach (3.1.1 Finding sufficient Training Data). Within a “Browse-section” each genome can be 

directly tracked to the NCBI Taxonomy database (53, 65) via its taxonomy-ID.  

Furthermore, a list of putative effectors, if available, is presented. SecReT6 also gives an additional 

column to indicate putative immunity proteins.  

Moreover, the user can find not only the number of found secretion systems but also a label if the 

specific secretion system is experimentally validated. The results are not only presented tabularly, but 

can also be found as a genome-map containing the locations of the distinct proteins.  
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Beside the functions of the lists in “Browse”, users also have the opportunity to “search” directly for 

effectors, immunity and component proteins or a specific species within the database.  

The tools which are used for the detection, search and prediction can be separately used directly within 

the “Tools-section”. Protein and gene sequence information can be downloaded in FASTA format.    

The information of those two databases was also used as input for our training datasets. Only those 

samples that are marked as “data derived from experimental literature” are used for the model 

training. All of the other samples, occurring in SecReT4 and SecReT6 are predicted to have at least one 

bacterial secretion system of the specific type. In other words, the SecReT databases do not make a 

binary classification decision, but all of the samples that can be found in the databases are predicted 

to show one or more secretion systems. 

If we have a look at the general overlap of the genome repositories of those two databases with ours 

(Table 14), we see that only a quite small number of genomes is shared. This discrepancy is explained 

by the underlying data. Whereas EffectiveS346 is based on the genomes of EggNOG 4.0, the SecReT 

databases use text-mining as their input information (41, 42). Afterwards the putative samples are 

manually curated.  

Concerning the databases overlap, it has to be noted that the 1677 genomes of EffectiveDB contain 

positive and negative predictions, whereas SecReT4 identifies 444 hits and the SecReT6, 515 hits of 

only positively predicted samples. Negatively predicted samples are not shown within those two 

databases. Within the shared genomes between SecReT4 and EffectiveDB, 60% of the predictions for 

T4SS are found commonly by both detection methods. In regard to T6SS, altogether 74% can be found 

by both tools. Nevertheless, there are several predictions of SecReT that cannot be found by 

EffectiveS346 and vice versa. 

Table 14 Genome repositories SecReT. Comparison of the databases EffectiveDB, SecreT4 and SecReT6. 

 SecReT4 SecReT6 

Contained genomes 444 515 

Shared genomes 235 203 

Shared positive predictions 141 151 

Pos. predictions unfound by S346 94 52 

Additional pos. predictions by S346 158 115 

 

This might be explained by the different algorithms that are used. In SecReT4 only 30% of 18 core-

components must be found to further inspect the genomes by manual curation. In regard to T6SS, 

SecReT6 expects 5 of 13 COGs for further investigation. It might be the case that an untypical candidate 
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of the specific secretion system might be found because of the in depth analysis of an expert. Regarding 

our systematical approach it seems to be quite unlikely that such a sample could be identified as “YES”.  

On the other hand, EffectiveS346 reaches a bigger genome repository. Thus there are 273 additional 

putative secretion systems type IV and VI predicted, which are outside the scope of SecReT. This also 

means that the predictional overlap which seemed to be quite low at first sight, actually is not so bad. 

47% of the type IV predictions and 57% of those concerning type VI, found by EffectiveS346 are also 

found by the SecReT databases.    

 T346Hunter 

The direct comparison of our database and T346Hunter(43) is much more difficult. Actually it is more 

or less impossible as the authors of T346Hunter explicitly underline that the final decision, if there is a 

secretion system or not, completely stays in the users responsibility (43). 

Nevertheless, it might be of interest that 405 genomes are shared by both databases (Figure 23). 

T346Hunter gives a very good insight into the secretion systems of the contained genomes. It separates 

the information into the results for 2,997 chromosomes and 2,164 plasmids. Predicted clusters can be 

directly accessed by choosing a species of interest. Users have a direct insight into a genomic map, in 

which secretion systems of all three types are shown in different colors. Moreover there is a lot of 

further information regarding the genomic context and the found clusters. 

In our opinion, the information provided by T346Hunter complements the results of EffectiveS346 in 

a reasonable manner. Therefore, we included direct links between the shared genomes of the two 

databases. Users now have the opportunity to profit from both sources in an optimal way. 

Although, all of the above described databases provide sophisticated and often detailed insights into 

the topic of secretion systems, EffectiveDB plays a more complementing than competing role. It was 

our focus to simplify not only the results format but also to enable the users to run all the distinct 

Figure 23 Genome repository T346Hunter. The overlap of the 
genome repositories of T346Hunter and EffectiveDB shows 405 
shared genomes. 
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prediction tools just by providing a simple multi-FASTA protein file. Of course there must be some 

restrictions in regard to the resolution of the results. With our method it is not possible to give any 

information about the location of the secretion system or any mapping of specific proteins to the 

specific secretion system. Nevertheless, we provide a one-stop shop to the user, where it is possible 

to gain extensive information of the secretome of the sample. Afterwards, users might know where to 

look for further information or how to start an in depth investigation.   

3.4 Pipeline application on metagenomic data from sponges  

Metagenomes, as a currently highly investigated topic in biology, can be an interesting application of 

our prediction pipeline. In classical biological approaches, samples are chosen due to a specific 

interesting feature and cultivated for further investigations, regarding possible habitats, for example. 

In many cases, biologists have a lot of information about their samples a priori. Unfortunately, only a 

very few species can be cultivated efficiently. On the other hand, metagenomic data confronts 

scientists with a completely new situation. Usually, the habitat is more or less the only information 

that is available from metagenomes. There is neither information about the species that live in it, nor 

about the attributes they have. It also can happen that there are species present in the metagenome, 

which are already unknown. Having insights on the potential occurrence of pathogens, for example, 

within the metagenome could be of major importance. Additionally, it can be interesting to somehow 

make a high throughput analysis with all traits that are already modelled to get an overview of putative 

sample features.    

As one of the first examples of using our approach in context with metagenomic data, the EffectiveDB 

pipeline was applied on 18 bins of the sponge Rhopaloeides odroabile from the Great Barrier Reef. This 

sponge is an example of a holobiont (a Greek term, which describes the physical association between 

a eukaryotic host and its integrated biont organisms and their microbiota (66)). Applying our pipeline 

might provide new information regarding the interactions between the different symbionts in such a 

stable symbiont community.   

Rhopaloeides odroabile specifically hosts very high microbial diversity (67). The 18 most complete bins 

that where generated from the metagenome of three biological replicates of Rhopaloeides, are 

investigated here. In general, applying the Effective pipeline on metagenomic data, can give insights 

into the interaction of putative hosts and symbionts. In this particular case we wanted to know, which 

of the bacterial symbionts (represented by the 18 bins in Table 15) is interacting with the sponge via 

bacterial secretion.  

There are five bins highlighted in dark-red, which did not pass the completeness check with a minimal 

threshold of 75%. Within the sufficient complete genomes, there is one gram-positive bin 

(metabat_verysensitive_12aug2015.23). In this case only T4SS prediction was done. The results of the 
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secretion system prediction, done by EffectiveS346 did not show any bin to have any functional 

secretion system of the three types at all. According to that, no additional effector prediction 

(EffectiveT3, EffectiveCCBD or T4SEpre) was done. Regarding the refined identification of eukaryotic-

like domains, as it is done by EffectiveELD, in the genome mode, there are several PFAMs that showed 

a very high score of 10000. Those PFAMs are listed in the very last column of the table. None of them 

shows a connection to secretion. In the EffectiveELD database we only find PF01222 as a domain 

connected to pathogenicity in general.  

A specific search after PF09619 “Type III secretion system lipoprotein chaperone (YscW) “, PF06541 

“Putative ABC-transporter type IV” and PF14113 “Type VI secretion system (T6SS), amidase effector 

protein 4“, as examples for typical secretion specific ELDs also remained unsuccessfully.  

Finally, we can say that there is no indication for type III, IV or VI secretion within those data. Secretion 

system prediction, as well as the investigation of eukaryotic-like domains, did not show positive results 

in any of the bins.  
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4 Conclusion and Outlook 

With the presented work, we showed that it is possible to make a sophisticated phenotype prediction 

of bacterial secretion systems, only based on the sequence information. Although bacterial secretion 

systems are highly modular and diverse protein complexes, a phenotype prediction that uses 

comparative genomics shows a satisfying result. By using the machine learning technique of a 

classifying support-vector machine, we provide a binary classification decision whether the phenotypic 

trait, in our case the bacterial secretion systems of the types III, IV and VI, is present or not. Although 

the algorithm should be improved furthermore, by specifying the training datasets more precisely and 

most of all enlarging them, the already achieved predictions show an accuracy of at least 90% (standard 

deviation below 4.5%) in all three cases. 

With our method it is possible to not only find new species that were not thought to show the trait of 

interest. Due to the clear depiction of the weights of the classifying features, we are also able to 

identify unexpected proteins that contribute to the identification of a particular phenotype.  

The updated EffectiveDB provides extensive secretion specific information for more than 1677 

genomes, yet. It provides data regarding secreted effector proteins, the absence or presence of three 

different types of bacterial secretion systems and putative effector target sites within the eukaryotic 

host cell. The user has the opportunity to analyse and compare the precalculated results or to submit 

his own sequence data for processing. As secretion specific genome annotation is currently not 

considered, our database and tools give the opportunity to facilitate the research of host-pathogen-

interactions for example.  

With our approach it is not only possible to investigate single genomes. The PICA framework has 

already been tested successfully on metagenomic data of a biogas fermenter by Roman Feldbauer 

((33):71), for example. He tested his data for several different phenotypes. Additionally, the whole 

Effective pipeline was applied on a sponge metagenome, provided by Nicole Webster (67). 

The exploding amount of genomic data, passed through lots of methodic improvements during the 

past years. Thus, it is possible to create (meta-) genomic data with a high quality of almost complete 

bins that make a sophisticated phenotypic prediction possible. Additionally, our method can be the 

basis for a high-throughput analysis of newly generated sequence data. It does no longer need to be 

an idealistic dream of the future, to automatically analyse uncovered data for phenotypic traits. This 

is also not limited to bacterial secretion systems. As Roman Feldbauer already showed in his work (33), 

manifold phenotypes can be investigated by our approach. The only requirement is to find data of a 

sufficient number and quality to train the model on beforehand. Afterwards, the increase of data 

makes it easy to improve the training datasets furthermore. 
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To not only hold the current state of accuracy, but also increase the quality furthermore, it is essential 

to maintain and thus also update the databases contend, frequently. As it is already started, it clearly 

makes sense to go on with integrating more and more genomes from RefSeq database (55), for the 

section of the precalculations. Otherwise, it would be an avoidable limitation of our databases scope 

to only use the currently quite limited number of genomes from EggNOG 4.0 (38). Secondly, I would 

insistently recommend to frequently update and enlarge the training datasets of the distinct models. 

As research from the field of secretion (or any other trait) moves on and provides new data, the 

number of genomes from the training dataset can be enlarged and even refined. At last, there is the 

possibility of integrating new information about putative structure proteins within an updated version. 

On the one hand it can be illuminating if a protein of currently unknown function is understood in a 

better way and can be taken into account when analysing the feature rank file. On the other hand it 

might make sense to integrate some kind of weight to specific features, if they are known as crucial 

predicting features. Summarising the manifold options of updating and enlarging this approach, a 

frequent maintenance appears to be obvious to preserve the predictional power and scientific 

relevance.  
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Supplement 

Training datasets  

Suppl.-Table 1 Training datasets of all three types. 

TAXID T3SS SOURCE TAXID T4SS SOURCE TAXID T6SS SOURCE 

1016998 YES T3SEdb 163164 YES SecReT4 155864 YES SEED 

115713 YES (68) 190486 YES SecReT4 160488 YES SEED 

155864 YES SEED 205920 YES SecReT4 176299 YES SecReT6 

182082 YES SEED 208963 YES SecReT4 177416 YES SecReT6 

187410 YES SEED 211110 YES SecReT4 187272 YES SEED 

190485 YES SEED 212042 YES SecReT4 187410 YES SEED 

190486 YES SEED 224308 YES SecReT4 190486 YES SEED 

198214 YES T3SEdb 224914 YES SecReT4 199310 YES SecReT6 

205918 YES SEED 227377 YES SecReT4 203122 YES SEED 

208963 YES SEED 234826 YES SecReT4 205918 YES SecReT6 

208964 YES SEED 257313 YES SecReT4 205922 YES SEED 

209261 YES T3SEdb 272624 YES SecReT4 208964 YES SEED 

214092 YES SEED 283165 YES SecReT4 214092 YES SecReT6 

216591 YES SEED 283166 YES SecReT4 216591 YES SecReT6 

216595 YES SEED 297245 YES SEED 216595 YES SEED 

218491 YES SEED 297246 YES SecReT4 216596 YES SEED 

218497 YES (69) 314565 YES SecReT4 216895 YES SEED 

220341 YES SEED 340100 YES SecReT4 218491 YES SEED 

223283 YES SEED 340184 YES SEED 220341 YES SEED 

223926 YES SEED 351745 YES SecReT4 220664 YES SEED 

224911 YES SEED 382640 YES SecReT4 223283 YES SecReT6 

227941 YES (69) 391295 YES SecReT4 223926 YES SecReT6 

243160 YES SEED 400673 YES SecReT4 224911 YES SEED 

243265 YES SEED 430066 YES SecReT4 234267 YES SEED 

243365 YES SEED 434131 YES SecReT4 235279 YES SecReT6 

257310 YES SEED 434922 YES SecReT4 243090 YES SEED 

257313 YES SEED 434923 YES SecReT4 243160 YES SecReT6 

264201 YES (70) 434924 YES SecReT4 243231 YES SEED 

264202 YES (69) 454169 YES SEED 243265 YES SEED 

264730 YES SEED 484021 YES SecReT4 243277 YES SecReT6 
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266835 YES SEED 512562 YES SecReT4 243365 YES SEED 

267608 YES SEED 529507 YES SecReT4 246197 YES SecReT6 

269482 YES SEED 563041 YES SecReT4 252305 YES SEED 

272560 YES SEED 570508 YES SecReT4 257310 YES SecReT6 

295319 YES SEED 66084 YES SecReT4 264198 YES SEED 

300267 YES T3SEdb 661367 YES SecReT4 264730 YES SEED 

300268 YES T3SEdb 85962 YES SecReT4 266264 YES SEED 

300269 YES T3SEdb 85963 YES SecReT4 266835 YES SEED 

314565 YES SEED 160492 YES AtlasT4SS 267608 YES SecReT6 

316273 YES SEED 176299 YES AtlasT4SS 269482 YES SEED 

321314 YES SEED 190485 YES AtlasT4SS 269799 YES SEED 

325240 YES SEED 205918 YES AtlasT4SS 272559 YES SecReT6 

331113 YES (71) 216596 YES AtlasT4SS 272560 YES SecReT6 

331636 YES (69) 223283 YES AtlasT4SS 272620 YES SEED 

338187 YES SEED 224911 YES AtlasT4SS 272943 YES SEED 

339670 YES SEED 266264 YES AtlasT4SS 290398 YES SEED 

342109 YES T3SEdb 266265 YES AtlasT4SS 298386 YES SEED 

343509 YES SEED 266779 YES AtlasT4SS 306254 YES SEED 

349521 YES SEED 266834 YES AtlasT4SS 312309 YES SEED 

349746 YES T3SEdb 266835 YES AtlasT4SS 314230 YES SEED 

350701 YES SEED 272560 YES AtlasT4SS 314262 YES SEED 

363253 YES SEED 279238 YES AtlasT4SS 314264 YES SEED 

382245 YES SEED 288000 YES AtlasT4SS 314278 YES SEED 

391774 YES SEED 323097 YES AtlasT4SS 314282 YES SEED 

393305 YES T3SEdb 347834 YES AtlasT4SS 314283 YES SEED 

394 YES T3SEdb 357244 YES AtlasT4SS 314292 YES SEED 

397945 YES SEED 391896 YES AtlasT4SS 316273 YES SEED 

399739 YES SEED 400668 NO  316275 YES SEED 

423368 YES T3SEdb 281689 NO  318167 YES SEED 

439843 YES T3SEdb 484018 NO  318586 YES SEED 

454166 YES T3SEdb 262724 NO  338187 YES SEED 

454169 YES T3SEdb 391595 NO  338963 YES SEED 

471472 YES T3SEdb 563192 NO  339670 YES SEED 

471473 YES T3SEdb 504474 NO  345073 YES SEED 

476213 YES T3SEdb 408672 NO  349163 YES SEED 
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481805 YES T3SEdb 331636 NO  349521 YES SEED 

498217 YES T3SEdb 762903 NO  350701 YES SEED 

502347 YES T3SEdb 755731 NO  351348 YES SEED 

502801 YES T3SEdb 221109 NO  351746 YES SEED 

521000 YES T3SEdb 561230 NO  360104 YES SEED 

544404 YES T3SEdb 515620 NO  362663 YES SEED 

550537 YES T3SEdb 269796 NO  376619 YES SecReT6 

550538 YES T3SEdb 396513 NO  376686 YES SecReT6 

553480 YES T3SEdb 365044 NO  380703 YES SEED 

554290 YES T3SEdb 665029 NO  382245 YES SEED 

568708 YES T3SEdb 314275 NO  384676 YES SEED 

573235 YES T3SEdb 596151 NO  390235 YES SEED 

574521 YES T3SEdb 875328 NO  392500 YES SEED 

580049 YES T3SEdb 568817 NO  395019 YES SEED 

585395 YES T3SEdb 525254 NO  395495 YES SEED 

585396 YES T3SEdb 62977 NO  397945 YES SecReT6 

588858 YES T3SEdb 498217 NO  398578 YES SEED 

634464 YES T3SEdb 880072 NO  399739 YES SEED 

637382 YES T3SEdb 535289 NO  399741 YES SEED 

637385 YES T3SEdb 525146 NO  400668 YES SEED 

637910 YES T3SEdb 1111676 NO  438753 YES SEED 

672161 YES T3SEdb 596324 NO  448385 YES SEED 

716544 YES (72) 745277 NO  498217 YES SecReT6 

765952 YES (73) 393480 NO  529507 YES SecReT6 

882 YES SEED 37692 NO  575788 YES SEED 

883 YES SEED 314256 NO  62928 YES SecReT6 

887712 YES (74) 411902 NO  62977 YES SecReT6 

99287 YES SEED 445974 NO  634503 YES SecReT6 

199310 NO  634956 NO  716541 YES SecReT6 

316385 NO  317655 NO  76869 YES SEED 

688270 NO  398767 NO  857087 YES SecReT6 

272630 NO  207559 NO  99287 YES SEED 

391008 NO  641112 NO  150340 YES SEED 

298386 NO  272943 NO  196600 YES SEED 

404589 NO  388413 NO  208963 YES SecReT6 
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575614 NO  263358 NO  209261 YES SEED 

351348 NO  290402 NO  216592 YES SecReT6 

556263 NO  340099 NO  216597 YES SecReT6 

517722 NO  706434 NO  216599 YES SEED 

696125 NO  391589 NO  229193 YES SEED 

395494 NO  349520 NO  269483 YES SEED 

983544 NO  718255 NO  271848 YES SecReT6 

1005048 NO  715225 NO  272563 YES SEED 

240016 NO  330214 NO  273123 YES SEED 

224324 NO  688269 NO  273526 YES SecReT6 

742821 NO  713887 NO  291331 YES SEED 

398580 NO  1074889 NO  295319 YES SEED 

59374 NO  547042 NO  300269 YES SEED 

865938 NO  871585 NO  320372 YES SEED 

259536 NO  702438 NO  320373 YES SEED 

679190 NO  376686 NO  320388 YES SEED 

1008459 NO  940190 NO  320389 YES SEED 

546268 NO  411477 NO  321314 YES SEED 

272943 NO  306537 NO  331109 YES SEED 

228410 NO  888052 NO  331111 YES SEED 

553219 NO  981222 NO  331112 YES SEED 

314271 NO  688246 NO  331271 YES SEED 

290339 NO  903510 NO  331272 YES SEED 

485918 NO  754027 NO  340184 YES SEED 

679191 NO  189518 NO  342109 YES SEED 

252305 NO  262768 NO  349101 YES SEED 

300852 NO  756067 NO  349746 YES SEED 

395965 NO  290315 NO  349747 YES SecReT6 

254945 NO  680198 NO  360094 YES SEED 

439497 NO  649638 NO  360102 YES SEED 

759914 NO  491915 NO  364106 YES SEED 

655815 NO  196164 NO  377628 YES SEED 

572544 NO  626523 NO  381754 YES SEED 

434131 NO  633147 NO  386656 YES SEED 

225937 NO  451757 NO  400667 YES SecReT6 
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743721 NO  411467 NO  401614 YES SecReT6 

317655 NO  679197 NO  405955 YES SEED 

469610 NO  762983 NO  412022 YES SEED 

355276 NO  439493 NO  423368 YES SEED 

547042 NO  122586 NO  439843 YES SecReT6 

58051 NO  553175 NO  439851 YES SecReT6 

391603 NO  342451 NO  454166 YES SEED 

387093 NO  886872 NO  454169 YES SEED 

638303 NO  879305 NO  502800 YES SecReT6 

592015 NO  445973 NO  550538 YES SecReT6 

163164 NO  394503 NO  554290 YES SEED 

498742 NO  469371 NO  557600 YES SEED 

221988 NO  237727 NO  557722 YES SEED 

669262 NO  522306 NO  585034 YES SEED 

190650 NO  517418 NO  588858 YES SecReT6 

382464 NO  525244 NO  1266738 YES SecReT6 

575588 NO  577650 NO  595536 NO  

292414 NO  552531 NO  484019 NO  

314260 NO  338963 NO  439235 NO  

997352 NO  537007 NO  366602 NO  

709797 NO  553219 NO  402881 NO  

272624 NO  360105 NO  1036674 NO  

335543 NO     638300 NO  

633131 NO     526224 NO  

258594 NO     156889 NO  

381764 NO     393595 NO  

585543 NO     634500 NO  

435590 NO     316058 NO  

570417 NO     489653 NO  

742159 NO     367737 NO  

709032 NO     983545 NO  

273121 NO     342610 NO  

416591 NO     546262 NO  

1046627 NO     582744 NO  

553171 NO     198214 NO  
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391587 NO     258594 NO  

795359 NO     717785 NO  

543728 NO     506534 NO  

313603 NO     481448 NO  

531844 NO     314607 NO  

315456 NO     688269 NO  

1033810 NO     666681 NO  

380749 NO     888741 NO  

487797 NO     592316 NO  

743722 NO     309807 NO  

702113 NO     391600 NO  

62928 NO     867900 NO  

983328 NO     579138 NO  

509190 NO     381764 NO  

649349 NO     522373 NO  

261292 NO     236097 NO  

287752 NO     444612 NO  

323097 NO     292805 NO  

228399 NO     595537 NO  

484019 NO     316057 NO  

349163 NO     269796 NO  

406817 NO     396595 NO  

645512 NO     757424 NO  

354242 NO     471854 NO  

472759 NO     290315 NO  

158190 NO     445932 NO  

393480 NO     391615 NO  

395495 NO     641118 NO  

483215 NO     709032 NO  

519441 NO     983920 NO  

281689 NO     367336 NO  

619693 NO     643562 NO  

156889 NO     242619 NO  

745277 NO     388413 NO  

675812 NO     266779 NO  
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457424 NO     352165 NO  

888741 NO     323098 NO  

573065 NO     222891 NO  

755732 NO     313590 NO  

340101 NO     349124 NO  

491952 NO     1082931 NO  

644107 NO     880070 NO  

761193 NO     281689 NO  

504728 NO     326442 NO  

693979 NO     205914 NO  

352165 NO     224914 NO  

521045 NO     600809 NO  

85962 NO     638303 NO  

357244 NO     335284 NO  

744979 NO     363253 NO  

314724 NO     886377 NO  

706436 NO     426355 NO  

335283 NO     572477 NO  

388739 NO     272951 NO  

545695 NO     888832 NO  

582402 NO     272843 NO  

575611 NO     264462 NO  

637616 NO     634499 NO  

487796 NO     760011 NO  

573413 NO     741091 NO  

391595 NO     583355 NO  

290317 NO     658187 NO  

937774 NO     653733 NO  

485915 NO     866771 NO  

987059 NO     760192 NO  

756272 NO     688270 NO  

123214 NO     391009 NO  

331104 NO     243274 NO  

525373 NO     331635 NO  

283165 NO     629741 NO  
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714995 NO     880072 NO  

526218 NO     237727 NO  

313596 NO     283942 NO  

553174 NO     537011 NO  

1002804 NO     706191 NO  

749222 NO     246200 NO  

270374 NO     743525 NO  

207949 NO     403833 NO  

394221 NO     443254 NO  

426355 NO     926562 NO  

469613 NO     526227 NO  

216432 NO     553177 NO  

1005090 NO     525373 NO  

375451 NO     398580 NO  

314266 NO     546268 NO  

399795 NO     557723 NO  

1045858 NO     888057 NO  

391598 NO     264731 NO  

306263 NO     366394 NO  

506534 NO     717959 NO  

760142 NO     869210 NO  

391589 NO     420662 NO  

679897 NO     319225 NO  

391596 NO     355276 NO  

638300 NO     566466 NO  

293614 NO     573413 NO  

471881 NO     384765 NO  

367737 NO     545695 NO  

1085623 NO     1005057 NO  

349124 NO     553171 NO  

222891 NO     619693 NO  

575590 NO     596323 NO  

596320 NO     414684 NO  

323848 NO     637910 NO  

575587 NO     765910 NO  
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857571 NO     469595 NO  

272843 NO     911045 NO  

469618 NO     501479 NO  

563192 NO     869209 NO  

391624 NO     189518 NO  

522373 NO     762903 NO  

714943 NO     272561 NO  

177437 NO     411154 NO  

319795 NO     592015 NO  

338969 NO     76114 NO  

272947 NO     207954 NO  

868864 NO     565045 NO  

234826 NO     700598 NO  

572477 NO     391587 NO  

471854 NO     445987 NO  

411154 NO     523791 NO  

880072 NO     643867 NO  

1000565 NO     324925 NO  

661367 NO     316056 NO  

862515 NO     762983 NO  

      641491 NO  

      313603 NO  

      314260 NO  

      344747 NO  

      983548 NO  

      667128 NO  

      887898 NO  

      243275 NO  

      290512 NO  

      545694 NO  

      565034 NO  

      633131 NO  

      205920 NO  

      158190 NO  

      313598 NO  
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      59196 NO  

      634504 NO  

      257363 NO  

      313594 NO  

      198628 NO  

      590409 NO  

      56780 NO  

      87626 NO  

      795359 NO  

      457405 NO  

      387092 NO  

      649761 NO  

      316055 NO  

      296591 NO  

      314287 NO  

      760142 NO  

      331869 NO  

      1007104 NO  

      445970 NO  

      580340 NO  

      156578 NO  

      862719 NO  

      557598 NO  

      1002339 NO  

      290338 NO  

      555217 NO  

      521010 NO  

      992406 NO  

      404589 NO  

      595494 NO  

      313628 NO  

      227941 NO  

      547045 NO  

      582899 NO  

      1045855 NO  
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      392499 NO  

      331104 NO  

      575611 NO  

      317025 NO  

      243161 NO  

      52598 NO  
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Top 20 ranks SVM rank files 

Suppl.-Table 2 Excerpt from SVM rank file of run 18_93_200. Classifying features of final model for T3SS prediction. 

GROUP_ID SCORE CLASS GROUP_DESCRIPTION 

COG4791 0.0451327093871 YES type iii secretion 

COG4669 0.03911983819 YES type iii secretion 

COG4789 0.037949732826 YES Type III secretion 

COG4790 0.0340518828083 YES Type III secretion system protein 

COG4794 0.0304019478839 YES type iii secretion 

COG4792 0.0269867899847 YES type iii secretion 

COG1450 0.0191699922235 YES general secretion pathway protein D 

NOG00650 0.0180774117106 YES major facilitator superfamily 

COG2032 0.0158158211414 YES Destroys radicals which are normally 

produced within the cells and which 

are toxic to biological systems (By 

similarity) 

COG0791 0.0155378363758 YES NLP P60 protein 

NOG01689 0.0146552131488 YES Integrase 

COG1232 0.014347805546 YES protoporphyrinogen oxidase 

COG2172 0.014051688392 YES anti-sigma regulatory factor serine 

threonine protein kinase 

COG5613 0.013671493175 YES secretion system, effector 

COG4643 0.0132207300428 YES DNA primase 

COG4146 -0.0127433592072 NO solute carrier family 5 (sodium 

glucose cotransporter), member 

COG2208 0.0125923720554 YES protein serine threonine phosphatase 

COG1773 0.0124415108768 YES rubredoxin 

COG3524 -0.0123493465423 NO Capsule polysaccharide export 

COG1324 0.0122919844008 YES tolerance protein 

 

Suppl.-Table 3 Excerpt from SVM rank file of run 22_57_100. Classifying features of final model for T4SS prediction. 

GROUP_ID SCORE CLASS GROUP_DESCRIPTION 

COG3505 0.0232919560811 YES trag family 

COG3451 0.022727598531 YES type IV secretion system protein 

COG2948 0.0192692357999 YES conjugation trbi family protein 

COG3736 0.0191766768433 YES Type IV secretion system protein VirB8 

COG3504 0.0190196608164 YES transfer protein TrbG 
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COG2919 0.0184093890533 YES Essential cell division protein. May 

link together the upstream cell 

division proteins, which are 

predominantly cytoplasmic, with the 

downstream cell division proteins, 

which are predominantly periplasmic 

(By similarity) 

COG1125 0.018117026252 YES (ABC) transporter 

COG1174 0.0177722193227 YES (ABC) transporter 

COG1732 0.0177722193227 YES (ABC) transporter 

COG0630 0.0176452172704 YES type II secretion system protein 

COG2902 0.017544830854 YES Dehydrogenase 

COG1388 -0.0164846038448 NO domain protein 

COG1286 0.0159094564474 YES Colicin v production protein 

COG0648 -0.0158704228352 NO Endonuclease IV plays a role in DNA 

repair. It cleaves phosphodiester 

bonds at apurinic or apyrimidinic 

sites (AP sites) to produce new 5'-

ends that are base-free deoxyribose 5-

phosphate residues. It preferentially 

attacks modified AP sites created by 

bleomycin and neocarzinostatin (By 

similarity) 

COG3443 0.0153618038197 YES ABC superfamily ATP binding cassette 

transporter, binding protein 

COG3568 0.0153393749118 YES Endonuclease Exonuclease Phosphatase 

NOG01101 0.015111658312 YES Transporter 

COG0420 -0.0149420778259 NO Exonuclease 

COG1002 0.0148689950218 YES Type II restriction enzyme, methylase 

COG2021 -0.0147511978223 NO homoserine O-acetyltransferase 

 

Suppl.-Table 4 Excerpt from SVM rank file of run 28_151_200. Classifying features of final model for T6SS prediction. 

GROUP_ID SCORE CLASS GROUP_DESCRIPTION 

COG3516 0.0425164462853 YES Type VI secretion protein, VC_A0107 

family 
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COG3517 0.0418079769225 YES type VI secretion protein, EvpB 

VC_A0108 family 

COG3522 0.0397014013243 YES type VI secretion protein, VC_A0114 

family 

COG3455 0.0377501211729 YES Type IV VI secretion system protein, 

DotU family 

COG3520 0.0374393778864 YES type VI secretion protein, VC_A0111 

family 

COG3523 0.0363881503917 YES Type VI secretion protein (IcmF) 

COG3519 0.0361119585846 YES type VI secretion protein 

COG3515 0.0343441617219 YES type VI secretion-associated protein 

COG3501 0.0304316610475 YES Rhs element vgr protein 

COG3518 0.0293999907274 YES type VI secretion system, lysozyme-

related protein 

COG3157 0.0236613954176 YES type VI secretion system effector, 

hcp1 family 

COG3456 0.0200054698176 YES fha domain-containing protein 

COG2055 -0.0197827667087 NO malate L-lactate dehydrogenase 

COG4104 0.0196263923158 YES PAAR repeat-containing protein 

COG2156 0.0173677809751 YES One of the components of the high-

affinity ATP-driven potassium 

transport (or KDP) system, which 

catalyzes the hydrolysis of ATP 

coupled with the exchange of hydrogen 

and potassium ions. The C subunit may 

be involved in assembly of the KDP 

complex (By similarity) 

NOG15161 -0.0172684862238 NO amino acid AbC transporter 

COG2216 0.0172084674859 YES One of the components of the high-

affinity ATP-driven potassium 

transport (or KDP) system, which 

catalyzes the hydrolysis of ATP 

coupled with the exchange of hydrogen 

and potassium ions (By similarity) 

COG3521 0.0169361072211 YES Type VI secretion 

COG2268 0.0164988058383 YES Band 7 protein 
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COG3049 0.0164156848883 YES Choloylglycine hydrolase 

 

Suppl.-Table 5 Excerpt from SVM rank file of run 16_97_200. 

GROUP_ID SCORE CLASS GROUP_DESCRIPTION 

COG0267 0.134637148888 YES 50S ribosomal protein L33 

COG0222 0.132302194399 YES Seems to be the binding site for 

several of the factors involved 

in protein synthesis and appears 

to be essential for accurate 

translation (By similarity) 

NOG195154 -0.131993358027 NO mce related protein 

NOG119397 0.129860390097 YES  

NOG146408 -0.118384703116 NO  

NOG82409 0.102694281854 YES  

NOG65661 0.0997831268883 YES  

NOG52272 -0.0951958804896 NO  

COG0462 -0.092391285244 NO Phosphoribosyl pyrophosphate 

synthase 

COG2973 -0.0862628987616 NO This protein is an aporepressor. 

When complexed with L- tryptophan 

it binds the operator region of 

the trp operon (5'- ACTAGT-'3') 

and prevents the initiation of 

transcription. The complex also 

regulates trp repressor 

biosynthesis by binding to its 

regulatory region (By similarity) 

COG0134 -0.0850245451428 NO indole-3-glycerol phosphate 

synthase 

COG0547 -0.0847424387036 NO Anthranilate 

phosphoribosyltransferase 

COG3844 -0.0844843410104 NO Catalyzes the cleavage of L-

kynurenine (L-Kyn) and L-3- 

hydroxykynurenine (L-3OHKyn) into 

anthranilic acid (AA) and 3- 
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hydroxyanthranilic acid (3-OHAA), 

respectively (By similarity) 

COG0133 -0.0813352879225 NO The beta subunit is responsible 

for the synthesis of L- 

tryptophan from indole and L-

serine (By similarity) 

COG0159 -0.0801606054135 NO The alpha subunit is responsible 

for the aldol cleavage of 

indoleglycerol phosphate to 

indole and glyceraldehyde 3- 

phosphate (By similarity) 

COG0135 -0.080076454393 NO N-(5'-

phosphoribosyl)anthranilate 

isomerase 

NOG14237 -0.0758925846894 NO Massive surface protein 

NOG114019 -0.0746281601891 NO perforin 

COG0001 0.0688058503482 YES Glutamate-1-semialdehyde 

aminotransferase 

NOG37965 0.0575957403065 YES mce related protein 

 

Genotype profile with PFAM architectures 

Suppl.-Script 1 Source code to create a genotypic profile with PFAM architectures 

#!/usr/bin/python 
import os 
path = 
"/scratch/eichinger/PhenPred/Interpro/Pfam_architecture/T3SS/mapped_Pfam" 
genotypePfamDict={} 
##reads in .faa.tsv files 
directory=os.listdir(path) 
for file in directory: 
    if file.endswith(".faa.tsv"): 
        proteinPfamDict={}  
        inputData=open (file, "r") 
 print("inputfile "+file+" has been read") 
        ##reads proteins and pfams into dictionary 
        for line in inputData: 
            columns = line.split("\t") 
            protein= columns[0] 
            pfam=columns[4] 
            if protein in proteinPfamDict: 
                proteinPfamDict[protein].add(pfam) 
            else: 
                proteinPfamDict[protein] = set([pfam]) 
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        ##finds taxid from filename         
        base=os.path.basename(file) 
        taxidExt=os.path.splitext(base)[0]      
        taxid=os.path.splitext(taxidExt)[0]      
        genotypePfamDict[taxid] =set() 
        for protein in proteinPfamDict: 
            
genotypePfamDict[taxid].add(frozenset(proteinPfamDict[protein]))                 
taxids=sorted(list(genotypePfamDict)) 
##creates string for outputlist 
taxidPfamPair="" 
for taxid in taxids: 
    taxidPfamPair+=taxid+"\t" 
    sorted(genotypePfamDict[taxid]) 
    print("create output for "+taxid) 
    for pfams in genotypePfamDict[taxid]: 
        sorted(pfams) 
        for pfam in pfams: 
            taxidPfamPair+=pfam+"|" 
        taxidPfamPair=taxidPfamPair[:-1]#substring removes last char     
        taxidPfamPair+="\t" 
    taxidPfamPair+="\n” 
##writes outputfiles 
print("write outputfile") 
genotypePfamFile = open("genotype_pfam_architecture.txt", "w") 
genotypePfamFile.write(taxidPfamPair) 
genotypePfamFile.close()   
 

Shell-script EffectiveDB pipeline 

Suppl.-Script 2 Source code for EffectiveDB pipeline. 

# ------------------------------------------------------------------ 
. /etc/profile 
# for Predotar 
module unload java 
module load java/1.8.0_51 
while getopts "A:B:C:D:E:FGHI:J:KL:M:N:O:" opt; do 
  case $opt in 
    A) 
      EFFECTIVE_T3_OLD=$OPTARG   
        ;; 
    B) 
      EFFECTIVE_T3_NEW=$OPTARG 
       ;; 
    C) 
      PREDOTAR_ANIMAL_OR_PLANT=$OPTARG 
      ;; 
    D) 
      PROTEINS=$OPTARG 
      ;; 
    E) 
      MODUS=$OPTARG 
      ;; 
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    F) 
      RUN_PREDOTAR=T 
      ;; 
    G) 
      RUN_EFFECTIVE_T3=T 
      ;; 
    H) 
      RUN_EFFECTIVE_CCBD=T 
      ;; 
    I) 
      RUN_EFFECTIVE_ELD=$OPTARG 
      ;; 
    J) 
      CheckM_COMPLETENESS=$OPTARG 
      ;; 
    K) 
      RUN_EffectiveS346=T 
      ;; 
    L) 
      GENOTYPE=$OPTARG 
      ;; 
    M) 
      OUTPUTFILE=$OPTARG 
      ;; 
    N) 
      EMAIL=$OPTARG 
      ;; 
    O) 
      RUN_T4SEpre=$OPTARG 
  esac 
done  
 
# ------------------------------------------------------------------ 
 
if [ -z ${RUN_T4SEpre} ] 
then 
 echo -e "INFO: T4SEpre run disabled" 
else 
 echo ${RUN_T4SEpre} | grep "^[0-9]*[.][0-9]*$" 
 val=`echo $?` 
 if [[ $val == 0 ]] 
 then 
  echo "INFO: T4SEpre parameter is valid" 
 else 
         echo -e "10\tStep 10 ERROR - Parameter in T4SEpre has to be 
a float-number" >> ${RUN_ID}/status.TXT 
  error_msg 
  exit 
 fi 
fi 
 
if [ -z ${OUTPUTFILE} ] 
then 
 RANDOMSTRING=`strings /dev/urandom | grep -o '[[:alnum:]]' | head -
n 30 | tr -d '\n';` 
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        RUN_ID=${RANDOMSTRING} 
else 
        RUN_ID=${OUTPUTFILE} 
fi 
echo -e "Data is stored in following directory: $RUN_ID" 
mkdir -p $RUN_ID 
cp $PROTEINS ${RUN_ID}/PROTEINS 
touch ${RUN_ID}/status.TXT 
# ------------------------------------------------------------------ 
error_msg(){ 
        if [ -z ${EMAIL} ] 
        then 
                echo "INFO: No email will be sent" 
        else 
                ./notify_error.py ${EMAIL} $(basename ${RUN_ID}) 
                echo "INFO: Email is sent to ${EMAIL}" 
        fi 
} 
# ------------------------------------------------------------------ 
if [ -z $PROTEINS ] 
then 
 echo "ERROR: No Proteins were provided" 
 echo -e "10\tStep 10 ERROR - No Proteins were provided" >> 
${RUN_ID}/status.TXT 
 error_msg 
 exit; 
fi 
if [ -z $MODUS ] 
then 
 echo "ERROR: No Modus selected (protein-genome)" 
        echo -e "10\tStep 10 ERROR - No Modus selected (protein-genome)" >> 
${RUN_ID}/status.TXT 
 error_msg 
 exit; 
fi 
# -------------------------------------------------------------------------
--------- 
if [ "$MODUS" = "protein" ] || [ "$MODUS" = "genome" ] 
then 
        echo "INFO: Calculation of model: $MODUS" 
else 
        echo "ERROR: Modus is invalid either 'protein' or 'genome' mode" 
        echo -e "10\tStep 10 ERROR - Modus is invalid either 'protein' or 
'genome' mode" >> ${RUN_ID}/status.TXT 
 error_msg 
        exit; 
fi 
# -------------------------------------------------------------------------
--------- 
if [ -z "$PREDOTAR_ANIMAL_OR_PLANT" ] 
then 
 echo "INFO: No Predotar run will be performed" 
else 
 if [ "$PREDOTAR_ANIMAL_OR_PLANT" = "p" ] || [ 
"$PREDOTAR_ANIMAL_OR_PLANT" = "a" ] 
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 then 
         echo "INFO: Calculation of Predotar model: 
$PREDOTAR_ANIMAL_OR_PLANT" 
 else 
         echo "ERROR: Modus is invalid either 'p' (plant) or 'a' 
(animal) mode" 
         echo -e "10\tStep 10 ERROR - Modus is invalid either 'p' 
(plant) or 'a' (animal) mode" >> ${RUN_ID}/status.TXT 
  error_msg 
         exit; 
 fi 
fi 
# -------------------------------------------------------------------------
--------- 
if [ -z ${EFFECTIVE_T3_OLD} ] 
then 
 echo "INFO: No EffectiveT3 old calculation" 
else 
 if [ "$EFFECTIVE_T3_OLD" = "sensitive" ] || [ "$EFFECTIVE_T3_OLD" = 
"selective" ] 
 then 
         echo "INFO: Calculation of EffectiveT3 Old: 
$EFFECTIVE_T3_OLD" 
 else 
  if [ "$EFFECTIVE_T3_OLD"" -eq "$EFFECTIVE_T3_OLD"" ] 
2>/dev/null 
  then 
   EFFECTIVE_T3_OLD=cutoff=$EFFECTIVE_T3_OLD 
  else 
   echo "ERROR: Invalid value for EffectiveT3 old 
model" 
          echo -e "10\tStep 10 ERROR - Invalid value for 
EffectiveT3 old model" >> ${RUN_ID}/status.TXT 
   error_msg 
   exit; 
  fi 
 fi 
fi 
# -------------------------------------------------------------------------
--------- 
if [ -z ${EFFECTIVE_T3_NEW} ]; 
then 
        echo "INFO: No EffectiveT3 new calculation" 
else 
 if [ "$EFFECTIVE_T3_NEW" = "sensitive" ] || [ "$EFFECTIVE_T3_NEW" = 
"selective" ] 
 then 
         echo "INFO: Calculation of EffectiveT3 New: 
$EFFECTIVE_T3_NEW" 
 else 
         if [ "$EFFECTIVE_T3_NEW"" -eq "$EFFECTIVE_T3_NEW"" ] 
2>/dev/null 
         then 
                 EFFECTIVE_T3_NEW=cutoff=$EFFECTIVE_T3_NEW 
         else 
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                 echo "ERROR: Invalid value for EffectiveT3 new 
model" 
                 echo -e "10\tStep 10 ERROR - Invalid value for 
EffectiveT3 new model" >> ${RUN_ID}/status.TXT 
   error_msg 
                 exit; 
         fi 
 fi 
fi 
# -------------------------------------------------------------------------
--------- 
if [ "$MODUS" = "genome" ] 
then 
 if [ -z ${CheckM_COMPLETENESS} ] 
 then 
  echo "INFO: No CheckM here will be performed" 
 else 
  if [ "$CheckM_COMPLETENESS" = "T" ] 
  then 
   CheckM_COMPLETENESS=80 
  else 
          if [ "$CheckM_COMPLETENESS" -eq 
"$CheckM_COMPLETENESS" ] 2>/dev/null 
   then 
    echo "INFO: At least ${CheckM_COMPLETENESS} 
% of genes are needed" 
   else 
    echo "ERROR: Invalid value for 
CheckM_COMPLETENESS parameter" 
                                echo -e "10\tStep 10 ERROR - Invalid value 
for CheckM_COMPLETENESS parameter" >> ${RUN_ID}/status.TXT 
    error_msg 
    exit; 
   fi 
  fi 
 fi 
fi 
# -------------------------------------------------------------------------
--------- 
if [ -z ${RUN_EFFECTIVE_ELD} ] 
then 
 echo "INFO: No EffectiveELD run will be performed" 
else 
 if [ "$RUN_EFFECTIVE_ELD" -eq "$RUN_EFFECTIVE_ELD" ] 2>/dev/null 
        then 
                echo "INFO: EffectiveELD run is enabled" 
        else 
                echo "INFO: Invalid value for EffectiveELD" 
  echo -e "10\tStep 10 ERROR - Invalid value for 
EffectiveELD" >> ${RUN_ID}/status.TXT 
  error_msg 
                exit; 
        fi 
fi 
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if [ ${MODUS} == "genome" ] 
then 
 if [ -z ${RUN_EffectiveS346} ]   
 then 
  echo "INFO: No EffectiveS346 run will be performed"  
 else 
  if [ -z ${GENOTYPE} ] 
  then 
   echo -e "INFO: No Genotype file was provided" 
  else 
   python check_genotype.py ${GENOTYPE}  
   if [ $? = 0 ] 
   then 
    echo "ERROR: Invalid Genotype file" 
                  echo -e "10\tStep 10 ERROR - Invalid 
Genotype file" >> ${RUN_ID}/status.TXT 
    error_msg 
    exit; 
   fi 
   echo "INFO: Genotype file - consistency check 
successful" 
  fi 
 fi 
fi 
# ------------------------------------------------------------------ 
show_time(){ 
 date2=$(date +"%s") 
 diff=$(($date2-$1)) 
 echo " $(($diff / 60)) minutes and $(($diff % 60)) seconds 
elapsed." 
} 
# ------------------------------------------------------------------ 
WEB_DIR=$(basename $(dirname ${PROTEINS})) 
WEB_FILE=$(basename ${PROTEINS}) 
WEBFILE="<a 
href='http://effectors.org/sites/eff/files/effective/${WEB_DIR}/${WEB_FILE}
'>Input proteins</a>" 
if [ -z ${GENOTYPE} ] 
then 
 echo "INFO: No Link to define for Genotype file" 
else 
 WEB_DIR_GENOTYPE=$(basename $(dirname ${GENOTYPE})) 
 WEB_FILE_GENOTYPE=$(basename ${GENOTYPE}) 
 WEBFILE_GENOTYPE="<a 
href='http://effectors.org/sites/eff/files/effective/${WEB_DIR_GENOTYPE}/${
WEB_FILE_GENOTYPE}'>COG profile</a>" 
fi 
echo -e "==========================================================" > 
${RUN_ID}/Parameters.TXT 
echo -e "EFFECTIVE_T3_OLD=${EFFECTIVE_T3_OLD}" >> ${RUN_ID}/Parameters.TXT 
echo -e "EFFECTIVE_T3_NEW=${EFFECTIVE_T3_NEW}" >> ${RUN_ID}/Parameters.TXT 
echo -e "PREDOTAR_ANIMAL_OR_PLANT=${PREDOTAR_ANIMAL_OR_PLANT}" >> 
${RUN_ID}/Parameters.TXT 
echo -e "PROTEINS=${WEBFILE}" >> ${RUN_ID}/Parameters.TXT 
echo -e "MODUS=${MODUS}" >> ${RUN_ID}/Parameters.TXT 
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echo -e "RUN_PREDOTAR=${RUN_PREDOTAR}" >> ${RUN_ID}/Parameters.TXT 
echo -e "RUN_EFFECTIVE_T3=${RUN_EFFECTIVE_T3}" >> ${RUN_ID}/Parameters.TXT 
echo -e "RUN_T4SEpre=${RUN_T4SEpre}" >> ${RUN_ID}/Parameters.TXT 
echo -e "RUN_EFFECTIVE_CCBD=${RUN_EFFECTIVE_CCBD}" >> 
${RUN_ID}/Parameters.TXT 
echo -e "RUN_EFFECTIVE_ELD=${RUN_EFFECTIVE_ELD}" >> 
${RUN_ID}/Parameters.TXT 
echo -e "CheckM_COMPLETENESS=${CheckM_COMPLETENESS}" >> 
${RUN_ID}/Parameters.TXT 
echo -e "RUN_EffectiveS346=${RUN_EffectiveS346}" >> 
${RUN_ID}/Parameters.TXT 
if [ -z ${GENOTYPE} ] 
then 
 echo "INFO: No Genotype information in the Parameters file" 
else 
 echo -e "GENOTYPE=${WEBFILE_GENOTYPE}" >> ${RUN_ID}/Parameters.TXT 
fi 
#echo -e "OUTPUTFILE=${OUTPUTFILE}" >> ${RUN_ID}/Parameters.TXT 
echo -e "EMAIL=${EMAIL}" >> ${RUN_ID}/Parameters.TXT 
echo -e "==========================================================" >> 
${RUN_ID}/Parameters.TXT 
# ------------------------------------------------------------------ 
date1=$(date +"%s") 
# ------------------------------------------------------------------ 
# FASTA-Validation 
echo "FASTA-Validation..." 
 
if [ $(mimetype -b "${RUN_ID}/PROTEINS") == "text/plain" ] 
then 
 echo "INFO: Protein provided in correct format" 
else 
 echo "ERROR: Proteins are provided in the wrong format (e.g. 
*.fasta)" 
        echo -e "10\tStep 10 ERROR - Proteins are provided in the wrong 
format (e.g. *.fasta)" >> ${RUN_ID}/status.TXT 
 error_msg 
fi 
python check_seq.py ${RUN_ID}/PROTEINS ${RUN_ID}/PROTEINS.FILTERED 
${RUN_ID}/PROTEINS.IGNORED 
if [ $? = 1 ] 
then 
 echo "ERROR: Wrong format of FASTA, Multiple Fasta Sequences" 
 echo -e "10\tStep 10 ERROR - Wrong format of FASTA, Multiple Fasta 
Sequences" >> ${RUN_ID}/status.TXT 
 error_msg 
 exit 
fi 
echo -e "1\tStep 1 finished Multiple FASTA file check" >> 
${RUN_ID}/status.TXT 
show_time $date1 
# ------------------------------------------------------------------ 
if [ -z ${RUN_PREDOTAR} ] 
then 
 echo "INFO: No Predotar run" 
else 
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 echo "Predotar..." 
 if [[ "${PREDOTAR_ANIMAL_OR_PLANT}" = "a" ]]; 
 then 
  java -cp "./Predotar" Predotar ${PREDOTAR_ANIMAL_OR_PLANT} 
${RUN_ID}/PROTEINS.FILTERED > ${RUN_ID}/Predotar_output_modelANIMAL.TXT  
 else 
                java -cp "./Predotar" Predotar ${PREDOTAR_ANIMAL_OR_PLANT} 
${RUN_ID}/PROTEINS.FILTERED > ${RUN_ID}/Predotar_output_modelPLANT.TXT 
 fi 
 echo -e "2\tStep 2 finished Predotar" >> ${RUN_ID}/status.TXT 
 show_time $date1 
fi 
# ------------------------------------------------------------------ 
if [ -z ${RUN_EFFECTIVE_T3} ] 
then 
 echo "INFO: No EffectiveT3 run" 
else 
 echo "EffectiveT3" 
 cd EffectiveT3 
 if [[ "${RUN_ID}" = /* ]];  
 then 
  F_A=${RUN_ID}/PROTEINS.FILTERED  
  F_B=${RUN_ID}/PROTEINS.NEW.EFFECTIVET3 
                F_C=${RUN_ID}/PROTEINS.OLD.EFFECTIVET3 
  F_D=${RUN_ID}/status.TXT 
  F_E=${RUN_ID}/EffectiveT3.NEW.OUT 
                F_F=${RUN_ID}/EffectiveT3.OLD.OUT 
 else 
                F_A=../${RUN_ID}/PROTEINS.FILTERED 
                F_B=../${RUN_ID}/PROTEINS.NEW.EFFECTIVET3 
                F_C=../${RUN_ID}/PROTEINS.OLD.EFFECTIVET3 
  F_D=../${RUN_ID}/status.TXT 
  F_E=../${RUN_ID}/EffectiveT3.NEW.OUT 
                F_F=../${RUN_ID}/EffectiveT3.OLD.OUT 
 fi 
 if [ -z ${EFFECTIVE_T3_NEW} ] 
 then 
  echo "INFO: No EffectiveT3 run with new model" 
 else 
  java -Xmx1024m -jar TTSS_GUI-latest.jar -f ${F_A} -m 
TTSS_COMBINED-latest_2015_08_27.jar -t ${EFFECTIVE_T3_NEW} -o ${F_E} -q > 
${F_B} 
 fi 
        if [ -z ${EFFECTIVE_T3_OLD} ] 
 then 
  echo "INFO: No EffectiveT3 run with old model" 
 else 
  java -Xmx1024m -jar TTSS_GUI-latest.jar -f ${F_A} -m 
TTSS_STD-latest.jar -t ${EFFECTIVE_T3_OLD} -o ${F_F} -q > ${F_C} 
 fi 
 echo -e "3\tStep 3 finished EffectiveT3" >> ${F_D} 
 cd .. 
 show_time $date1 
fi 
# ------------------------------------------------------------------ 
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if [ -z ${RUN_EFFECTIVE_CCBD} ] 
then 
 echo "INFO: No EffectiveCCBD run" 
else 
 echo "EffectiveChaperone..." 
 python EffectiveCCBD/find_CCBD.py ${RUN_ID}/PROTEINS.FILTERED > 
${RUN_ID}/PROTEINS.CHAPERONES.TXT 
 echo -e "4\tStep 4 finished EffectiveCCBD" >> ${RUN_ID}/status.TXT 
 show_time $date1 
fi 
if [ -z ${RUN_T4SEpre} ] 
then 
        echo "INFO: No T4SEpre run" 
else 
        echo "T4SEpre..." 
 
 python T4SEpre/predict_T4SS.py ${RUN_ID} ${RUN_T4SEpre} 
        echo -e "5\tStep 5 finished T4SEpre" >> ${RUN_ID}/status.TXT 
        show_time $date1 
fi 
# ------------------------------------------------------------------ 
if [ -z ${RUN_EFFECTIVE_ELD} ] 
then 
 echo "INFO: No EffectiveELD run" 
else 
        echo "EffectiveELD..." 
        IPRSEQTMP=$(mktemp) 
        cat ${RUN_ID}/PROTEINS.FILTERED | EffectiveELD/mask_gi.py 
>$IPRSEQTMP 
 /localmirror/monthly/interpro/interproscan-*/interproscan.sh -appl 
Pfam -f TSV -i $IPRSEQTMP -o ${RUN_ID}/iprscan_pfam.tsv -T /tmp 
        rm -f $IPRSEQTMP 
 if [ "$MODUS" = "genome" ] 
 then 
  cat ${RUN_ID}/iprscan_pfam.tsv | EffectiveELD/eld_filter.py 
g ${RUN_EFFECTIVE_ELD} > ${RUN_ID}/PROTEINS.ELD.TXT 
 else 
                cat ${RUN_ID}/iprscan_pfam.tsv | EffectiveELD/eld_filter.py 
p ${RUN_EFFECTIVE_ELD} > ${RUN_ID}/PROTEINS.ELD.TXT 
 fi 
        echo -e "6\tStep 6 finished EffectiveELD" >> ${RUN_ID}/status.TXT 
        show_time $date1 
fi 
# ------------------------------------------------------------------ 
if [ $MODUS = "genome" ] 
then 
 # -----------------------------------------------------------------
- 
 if [ -z "$CheckM_COMPLETENESS" ] 
 then 
  echo "INFO: No CheckM run will be performed" 
 else 
  mkdir ${RUN_ID}/BIN_IN 
  cp ${RUN_ID}/PROTEINS.FILTERED 
${RUN_ID}/BIN_IN/PROTEINS.faa 
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  ./checkM/run.sh ${RUN_ID}/BIN_IN ${RUN_ID}/BIN_OUT 
${RUN_ID}/checkM_output.TXT  
  python ./checkM/parse_checkM.py ${RUN_ID}/checkM_output.TXT 
${CheckM_COMPLETENESS} 
  if [ $? = 1 ] 
  then 
   echo -e "ERROR\tcheckM - genome completeness check 
failed" 
                 echo -e "10\tStep 10 ERROR - checkM - genome 
completeness check failed" >> ${RUN_ID}/status.TXT 
   error_msg 
   exit; 
  fi 
         echo -e "7\tStep 7 finished CheckM" >> ${RUN_ID}/status.TXT 
 fi 
        # -----------------------------------------------------------------
- 
        if [ "${RUN_EffectiveS346}" = "T" ] 
        then 
  if [ -z ${GENOTYPE} ] 
  then 
                        echo "COGnitor run..." 
                        ./COGNITOR/cognitor_V2.sh ${RUN_ID} 
                 echo -e "8\tStep 8 finished COGnitor" >> 
${RUN_ID}/status.TXT 
   python EffectiveS346/extract_protein_COG_pairs.py 
${RUN_ID} > ${RUN_ID}/PROTEINS.genotype.txt 
  else 
   cp ${GENOTYPE} ${RUN_ID}/PROTEINS.genotype.txt 
   echo -e "INFO\tThank you for providing a genotype, 
COGnitor run is not needed here" 
  fi 
  echo "EffectiveS346..." 
  COG_FILE=$(mktemp) 
  less ${RUN_ID}/PROTEINS.genotype.txt | cut -f 1 | uniq | 
sed '1 i\genome' | sed ':a;N;$!ba;s/\n/\t/g' > ${COG_FILE} 
  python 
EffectiveS346/application/scripts/automate_SecPred.py ${RUN_ID} ${COG_FILE} 
                if [ $? = 1 ] 
  then 
   python EffectiveS346/compare_top100.py ${RUN_ID} 
   python EffectiveS346/compare_kegg.py ${RUN_ID} 
  fi 
  show_time $date1 
  cp ${COG_FILE} ${RUN_ID}/COG_FILE.CHECK 
  rm ${COG_FILE} 
         echo -e "9\tStep 9 finished EffectiveS346" >> 
${RUN_ID}/status.TXT 
 fi 
        # -----------------------------------------------------------------
- 
fi 
# ------------------------------------------------------------------ 
python merge_results.py ${RUN_ID} > ${RUN_ID}/merge_results.html 
python summary.py ${RUN_ID} > ${RUN_ID}/summary.TXT 
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# ------------------------------------------------------------------ 
echo -e "\nAnalysis has been finished!" 
if [ -z ${EMAIL} ] 
then 
        echo "INFO: No email will be sent" 
else 
        ./notify.py ${EMAIL} $(basename ${RUN_ID}) 
        echo "INFO: Email is sent to ${EMAIL}" 
fi 
echo -e "10\tStep 10 finished Effective run" >> ${RUN_ID}/status.TXT 
 

 

Recommended genome completeness 

 

 

 

Suppl.-Figure 1 Recommended genome completeness. We recommend a genome completeness of at least 85% as the number 
of identified secretion systems decreases slightly (especially for T6SS), when staying beyond that limit. 


