

DISSERTATION / DOCTORAL THESIS

Titel der Dissertation / Title of the Doctoral Thesis

Developing computer games in secondary schools -
The influence of Game Development on computer

science competencies

verfasst von / submitted by

Mag. Oswald Comber

angestrebter akademischer Grad / in partial fulfilment of the requirements for the degree of

Doktor der technischen Wissenschaften (Dr. techn.)

Wien, 2016

Studienkennzahl lt. Studienblatt /
degree programme code as it appears on the student
record sheet:

A 786 880

Dissertationsgebiet lt. Studienblatt /

field of study as it appears on the student record sheet:

Informatik

Betreut von / Supervisor: Ao.Univ.-Prof. Dipl.-Ing. Dr. Renate Motschnig

Table of contents

3

Table of contents

1 INTRODUCTION ... 13

2 MOTIVATION .. 14

3 RESEARCH QUESTIONS, AREAS OF RESEARCH, AND RELATED RESEARCH 17

3.1 Research questions .. 17

3.2 About games ... 17

3.2.1 What constitutes playing a game, and what is a game? ... 18

3.3 Game development toolkits .. 20

3.3.1 Educational programming languages .. 21

3.3.1.1 Scratch, Snap!, and BYOB and Squeakland eToys .. 21

3.3.1.2 Agent Sheets and AgentCubes ... 23

3.3.1.3 Blockly, Gameblox, Gamefroot, and Roberta .. 24

3.3.1.4 AntMe! ... 25

3.3.1.5 Kara .. 26

3.3.1.6 Greenfoot ... 27

3.3.2 Game programming frameworks ... 28

3.3.2.1 Tools for developing browser games ... 28

3.3.2.2 XNA Game Studio ... 30

3.3.2.3 MonoGame... 31

3.3.3 Game engines ... 32

3.3.3.1 Unity3D.. 32

3.3.3.2 iodoom3/Id tech 4 .. 33

3.3.3.3 Unreal Development Kit (UDK) .. 34

3.3.4 Licensing for educational purposes ... 36

3.4 Related research .. 37

4 DESIGN BASED RESEARCH MEETS GAME PROGRAMMING IN SCHOOLS 41

4.1 Methodology and research design .. 41

4.1.1 Practical research design .. 41

4.1.2 Research model: design-based research (DBR) .. 41

4.2 The concept and goals of Game Programming in Schools ... 42

4.2.1 Important concepts in computer science .. 43

Table of Contents

4

4.2.2 The GamePinS framework ... 44

4.2.2.1 The teacher’s role ... 44

4.2.2.2 Computer science and the learning method .. 44

4.2.3 Didactical approach .. 45

4.2.4 Expected outcome .. 47

4.2.5 Research design ... 47

4.2.5.1 General questionnaire regarding gaming and computer habits ... 48

4.2.5.2 The school, students, participation, and schedule ... 48

4.3 The GamePinS Framework ... 50

4.3.1 Practical environment conditions for GamePinS ... 50

4.3.2 The didactical approach .. 51

4.3.2.1 Curriculum topics, prior to starting with Game Development .. 52

4.3.2.2 The didactical principles .. 54

4.3.3 The structure of GamePinS .. 56

4.3.3.1 Farseer Physics Engine... 56

4.3.3.2 Map Importer ... 56

4.3.3.3 The GameLoop .. 57

4.3.3.4 GamePinS classes and hierarchy .. 58

5 RESEARCH AND RESULTS ... 63

5.1 General attitudes toward games and game development in the classroom 63

5.1.1 Statistical data ... 65

5.1.1.1 Gender distribution ... 65

5.1.1.2 Internet access .. 66

5.1.1.3 Age structure .. 67

5.1.2 Activities of students on the computer in their spare time.. 68

5.1.2.1 Time spent in front of a computer for school-related activities .. 69

5.1.2.2 Spare time spent playing computer games ... 70

5.1.2.3 Communication via social networks, chat, discussion boards, and e-mail 71

5.1.2.4 Reading articles .. 72

5.1.2.5 Programming in student spare time .. 73

5.1.2.6 Spare time spent on various other activities ... 74

5.1.2.7 Developing a computer game in computer science education is interesting 76

5.1.2.8 Game development in students’ spare time .. 77

5.1.2.9 Reasons for playing computer games ... 78

5.2 First year of game programming with XNA ... 80

5.2.1 Course and research design ... 80

5.2.2 Activities ... 81

Table of contents

5

5.2.3 Questionnaire and results .. 82

5.2.3.1 Statistical data .. 83

5.2.3.2 Activities with the personal computer or smartphone and IT skills 86

5.2.3.3 Computer usage: time spent in front of computer .. 87

5.2.3.4 Game development and IT Skills ... 90

5.2.3.5 Algorithms and software development ... 92

5.2.3.6 Engagement .. 93

5.2.3.7 Teamwork .. 95

5.2.3.8 Promoting basic concepts of computer science .. 96

5.2.3.9 Complexity of development framework ... 98

5.2.4 Summary of the first year ... 99

5.3 Second year of game programming .. 100

5.3.1 Research design updated to include GamePinS versus other software projects 100

5.3.2 Getting results with small groups .. 101

5.3.3 Quantitative data from the second year ... 101

5.3.3.1 Statistical data .. 101

5.3.3.2 IT skills self-estimation .. 102

5.3.3.3 Activities and computer usage ... 102

5.3.4 Comparing the GamePinS and software development groups 103

5.3.4.1 Actual changes in writing programs ... 103

5.3.4.2 Understanding of algorithms .. 106

5.3.4.3 Understanding software development and challenges in the development process 107

5.3.4.4 Teamwork .. 107

5.3.5 Achievements in the IT skills test ... 108

5.3.5.1 Detailed results of the IT skills test .. 114

5.3.6 Discussion of the IT skills test .. 115

5.3.7 Student feedback .. 116

5.3.8 Summary of the second year .. 118

5.4 The third and final year of game programming .. 120

5.4.1 Achievements in IT skills test ... 122

5.4.1.1 Detailed results of the IT skills test .. 123

5.4.2 Summary of the third year .. 129

6 CONCLUSIONS.. 131

Acknowledgements, Abstract

7

Acknowledgements

I heartily thank my colleagues, my students, my friends, and my family, to whom I am

thankful in so many ways.

Also, there was one particular person who made these exciting and enlightening years

of research possible. Thanks to my thesis adviser ao. Univ.-Prof. Dr. Renate Motschnig,

who was the main reason why I started, stuck to, and finished my thesis. Thank you for the

constant encouragement and support!

Acknowledgements, Abstract

9

Dedication

To my grandmother, one of my greatest teachers, for helping me learn about those

things in life that I could never learn in school!

Acknowledgements, Abstract

11

Abstract

Can the development of video games positively influence the learning of programming?

To answer this question in the context of computer science classes in an upper secondary

school with 15-year-old teenagers, separate groups of students were accompanied in their

programming learning activities in classroom via design based research. The results of

three years of research confirm that developing a computer game triggers high motivation

and engagement as long as a few key factors are met. These factors include (1) realistic

expectations regarding feasible goals that must be communicated and recognized by all

participants; (2) reduced complexity during the development process wherever possible;

and (3) preparedness of the game development environment and the teacher. To reduce

complexity and move beyond programming learning environments, I developed a

specialized framework called Game Programming in Schools (GamePinS) and used it for

three years in a secondary school.

In addition to motivation and engagement, the essential question posed was, “Can

developing a computer game boost the IT skills of students even more than other software

development scenarios?” To answer this question, students doing game development with

GamePinS were compared with students implementing their own selected software

projects with the help of a programming skills test in two subsequent school years. While

questions focused on basic programming skills showed that both groups performed

equally, students who did game programming outperformed the other students in the fields

of logic, understanding source code, and analytical thinking.

Acknowledgements, Abstract

12

Kurzfassung

Kann die Entwicklung von Computerspielen das Programmieren-lernen verbessern?

Um diese Frage im Kontext des Unterrichts von 15jährigen Schülerinnen und Schülern im

Realgymnasium zu beantworten, wurden Lernende in unterschiedlichen Gruppen mit Hilfe

eines Design-Based-Research-Ansatzes forschend begleitet. Die Resultate aus drei Jahren

Feldforschung, lieferten die Bestätigung, dass die Entwicklung von Computerspielen mit

hoher Motivation und hohem Engagement einhergeht. Als entscheidend für eine

förderliche Wirkung der Spieleentwicklung wurden drei Schlüsselfaktoren identifiziert.

Erstens, es müssen realistisch erreichbare Spieleprojektziele gesteckt werden. Dies

geschieht durch eine offene Kommunikation, welche Spiele, in welchem Umfang, im

Informatikunterricht im Bereich des Möglichen liegen und welche Spiele nicht realisierbar

sind. Zweitens, die Komplexität der Spieleentwicklung sollte soweit wie möglich reduziert

werden. Zu diesem Zweck wurde das Framework GamePinS entwickelt und über drei

Jahre hinweg im Unterricht eingesetzt und begleitend erforscht. Drittens: Eine große

Herausforderung liegt in der Vorbereitung. Um erfolgreich Spiele im Informatikunterricht

zu entwickeln, müssen die verwendeten Werkzeuge sowie die Lehrperson sehr gut

vorbereitet sein.

Neben der Erforschung der Motivation und des Engagements durch Spieleentwicklung

wurde noch einer weiteren sehr zentralen Frage nachgegangen: „Kann Spieleentwicklung

die IT-Kompetenzen der Schülerinnen und Schüler besser fördern als vergleichbare

andere Softwareentwicklungsprojekte?“. Um diese Forschungsfragen zu beantworten,

wurden über zwei Schuljahre hinweg insgesamt sechs verschiedene Gruppen an

Schülerinnen und Schülern, die von zwei unterschiedlichen Lehrern unterrichtet wurden,

verglichen. Die Resultate des IT-skills-Tests zeigten, dass bei grundlegendem

Programmierwissen keine Unterschiede auftraten. In den Bereichen der Logik, des

Verstehens von Quellcode und dem analytischen Denken erzielten jedoch die Schülerinnen

und Schüler, die mit der Spieleentwicklung beschäftigt waren deutliche bessere

Ergebnisse, als die Lernenden, die sich andere Softwareprojekte realisierten.

Introduction & Motivation

13

1 Introduction

Video games are a widespread form of entertainment and a growing economic

factor (Entertainment Software Association, 2015), but most computer games are

excitement and fun for young persons1. Playing a computer game is an engaging task that

nurtures high motivation and, in most cases, an intensive engagement. Serious games

utilize this “fascination for games” by delivering educational content in a playful way

(Halbeisen, 2011; Michael & Chen, 2005). In addition to serious games, there is another

opportunity to utilize games as a catalyst for successful learning, i.e., developing computer

games.

Developing computer games not only boosts engagement and motivation but also

covers a wide variety of computer science challenges. By using game development in a

teaching environment, many aspects of computer science can be covered. In the area of

programming, countless coding concepts can be delivered to a class via game development.

Some, but far from all, important ideas include algorithms (e.g., sorting, path finding),

modeling, and basic programming concepts (e.g., data types, loops, object-oriented

programming). Beyond programming, numerous other activities are viable scenarios for

learning, including graphics design, audio engineering, developing game concepts, logical

structures, levels or stories, coordinating teamwork, and leading software projects.

Virtually, nothing stands in the way of developing a computer game in a classroom as

long as teachers identify and allocate the correct scenarios, time, hardware equipment, and

appropriate tools. This can certainly be more difficult than it may appear to be. Therefore,

in this thesis, all the steps from the initial idea to the exploration of tools and possibilities

and the implementation and successful use of a game development framework in a school

are scientifically explored, explained, and evaluated. The reader is invited to join the

ongoing five-year research journey through the creative jungle of game development.

1 Here I refer to young persons, nevertheless, games are no longer mainly enjoyed by young

people, but are being played by people of every age and gender (Entertainment Software Association,

2015).

Introduction & Motivation

14

2 Motivation

When I asked my students, “which words come to mind when you think of games?,”

they enthusiastically flooded me with titles of their favorite games and all at once told me

about the content and stories of their games. I therefore asked them to fill out a short survey

on their gaming behavior and answer the question of why they play computer games. The

most common answers were “for fun,” “to release tension,” “otherwise I’d be bored,” and

“to feel better.”

Seeing the enormous amount of resources young people spend on competing with each

other, building cities, exploring dungeons, scoring spectacular goals, and conquering

virtual worlds, I immediately thought of channeling some of this energy for the good of

education.

Another issue that has troubled me is that my colleagues and I are primarily teaching

how to use Microsoft Office applications. The daily routine in our computer science

classrooms unfortunately consists of writing letters, performing calculations with

spreadsheets, entering data into databases, and creating PowerPoint presentations. These

topics are certainly very useful, but in terms of computer science topics covered, this

approach fails to address even the most basic aspects of what computer science is, i.e.,

information and its processing, algorithms, structures, and patterns. Further, algorithms,

structures, and patterns cannot stand alone; to make them work in the daily routine in

school and deliver a real understanding, they must be implemented using a language—in

most cases, this is a programming language.2

From the very beginning, programming itself has been another challenging issue for my

students and me because it was connected with such terms as “complicated,” “complex,”

and “boring.” There are numerous approaches and environments for reducing the

complexity of learning to program, including Scratch, Scratch derivatives such as Snap!

(Mönig & Harvey, 2013), formerly known as BYOB, Logo, NetLogo and Star Logo TNG,

Microworlds (Papert, 1987), Sqeakland eToys and AgentSheets, but despite these useful

2 Or in the case of patterns, preferably a modeling language would be used here.

Introduction & Motivation

15

approaches, it remains a challenge to foster and preserve the attention and motivation of

young students while also raising the level of complexity of the lessons to learn. Game

programming can be the key to making programming more attractive to young people.

Research questions, areas of research, and related research

17

3 Research questions, areas of research, and related research

3.1 Research questions

From initial thoughts regarding games and how to make computer science more

attractive, four main research questions are identified, all of which have in common that

not primarily playing3 but rather creating games is the central activity. These four

questions are listed below.

(Q1) Can game programming in computer science increase the engagement of

students?

(Q2) Does project-based game programming in computer science foster competence in

teamwork?

(Q3) Does game programming promote basic concepts of computer science more

effectively than typical4 software development scenarios?

(Q4) Does the complexity level of the framework have an influence on the depth of

understanding the concepts to be learned?

To answer these key questions, it is essential to develop the necessary utilities for

programming in a secondary school environment. In the most direct way, this might be

realized by deriving utilities from existing game development toolkits. In addition, it seems

vital to provide a didactical embedding. Finally, to verify the given research questions,

four assumptions are formulated and tested with the help of a multivariate approach, i.e.,

interviews, questionnaires, and a programming skills test.

3.2 About games

According to Statistics Austria, approximately one-quarter of young persons between

10 and 19 years of age play computer games for an average of 1.5 hours per day (Statistik

3 Of course, during their development, games must be played for testing purposes.

4 The first question to ask before comparing these methods is, “What are typical software development

scenarios?” (see Section 5.2.3.8).

Research questions, areas of research, and related research

18

Austria, 2010). Addressing the specific secondary school target audience directly, in a

short survey regarding computer usage habits (Comber, 2012b), approximately three-

quarters of the participants stated that they play computer games. A more extensive survey

with 302 participants in 2015 yielded the results shown in Figure 1.

Figure 1 – Results of a survey showing the number of students who play computer games

3.2.1 What constitutes playing a game, and what is a game?

In general, playing can be defined as any “activity that is not required, but is enjoyed”

(Strickland, 2001b). Play is, in most cases, autotelic, i.e., “it is engaged in for its own sake,

with the reward inherent in the activity itself” (Strickland, 2001b).

A game is indeed an interesting combination of numerous aspects. It has various

dimensions and differs from related forms of activities in at least one facet. A game

distinguishes itself from pure competition, pure entertainment, and a simple challenge by

combining all of these aspects. A detailed distinction is expressed by Crawford (2003) in

Figure 2.

No; 68; 23%

Yes; 233; 77%

No answer; 1; 0,3%

Playing computer games: PC or console games, including flash and
Facebook games

Survey amongst secondary school students in Austria (N = 302)

Research questions, areas of research, and related research

19

Figure 2 – Chris Crawford on game design (Crawford, 2003, p. 6)

Playing a game might act as a means of venting and releasing stress from our sometimes

very demanding daily routine. Although playing might build up some tensions of its own,

“the ultimate result is the reduction of tension and conflict” (Strickland, 2001b).

A survey conducted in 2012 (Comber) was distributed to secondary school students5

that fit into the target audience. In this survey, 72% of students answered the question of

playing computer or console games positively. The main reasons for playing games were

for “fun” (57), out of “boredom” (26), “to release tension” (6), and other reasons (34)6.

5 N (survey participants overall) = 140; N1 (question item age answered) = 139; Age: 93% between 13 and

17 years old, with 42% of students exactly 15 years old.

6 Multiple answers possible, total answer count: 123.

Research questions, areas of research, and related research

20

Figure 3 – Survey results showing reasons for playing computer games (Comber)7

Games in education can cover a broad variety of different approaches. First, there is the

area of serious games (Susi, Johannesson, & Backlund, 2007) that deliver educational

content in a playful and frequently entertaining way (Ritterfeld, Cody, & Vorderer, 2010).

Second, creating one’s own game offers a promising chance. Game development can be

accomplished via high-end game tools, or a game can even be implemented from scratch

using an interface like DirectX or OpenGL. While these options are possible, they are not

always feasible. In our case, creating a game with existing and adapted tools seemed the

best fit, but let us first take a closer look at the different game development toolkits below.

3.3 Game development toolkits

In this section, the overview of game development toolkits starts with learning

environments that provide a low threshold, progresses to more complex tools with a

medium threshold, and moves on to powerful game engines with a high threshold.

7 Also compare this with the broader survey described in Section 5.1.

Playing means
fun

46%Boredom
21%

Release tension
5%

Other reasons
28%

Why do you play computer games?

Survey amongst secondary school students N = 140 (91% of

Research questions, areas of research, and related research

21

3.3.1 Educational programming languages

Educational programming languages are designed with the intention of being easy to

learn, easy to stay with, and easy to use. In the subsections that follow, selected educational

programming languages are described.

3.3.1.1 Scratch, Snap!, and BYOB and Squeakland eToys

Scratch is an educational programming language that provides a low threshold to use

and is easy to learn. Scratch was developed by the Lifelong Kindergarten Group under the

lead of Mitchell Resnick at the Massachusetts Institute of Technology (Maloney, Resnick,

Rusk, Silverman, & Eastmond, 2010). The current version at the time of writing is 2.0.

While previous versions of Scratch were implemented in Squeak, a Smalltalk dialect,

Scratch 2.0 is implemented using Adobe Flash (see Scratch 2.0 Wiki ") and is shown in

Figure 4. Scratch has many aspects in common with Squeakland eToys, which was

developed 1996 by Alan Kay (2005).

A key aspect of Scratch is that programming is not done by typing in code, but rather

by dragging and dropping code blocks from a scripts area (B in the figure) to the

programming area (C in the figure). Scratch 2.0 supports new features, including Cloning

sprites at runtime, Cloud Data, and Procedures, a feature for building your own blocks

that was originally introduced by BYOB (Mönig & Harvey).8

Snap! (Mönig & Harvey, 2013) is a reimplementation of Scratch intended to extend

Scratch 1.4 with first-class lists, first-class procedures, and continuations (Mönig &

Harvey, 2013). Scratch took some of the most popular ideas from Snap! and BYOB and

implemented them in the new release of Scratch noted above. The most influential feature

was the ability to build and define one’s own blocks of code.

8 For details see the Scratch 2.0 webressources in the literature section

Research questions, areas of research, and related research

22

Figure 4 – The graphical user interface (GUI) of Scratch 2.09

As shown in Figure 5, a simple game, e.g., a game called “Zatacka,” also known as

“Achtung die Kurve!”, can be implemented very quickly using any of these three languages

(using Scratch in the figure).

Figure 5 – The “Achtung die Kurve!” game implemented using Scratch

9 Screenshot captured on August 14, 2013 from http://scratch.mit.edu/.

http://scratch.mit.edu/

Research questions, areas of research, and related research

23

Figure 6 shows the full source code of a simple version of the “Achtung die Kurve!”

game, as used in class.10

Figure 6 – Source code for the “Achtung die Kurve!” game, as used in starter lessons

3.3.1.2 Agent Sheets and AgentCubes

Agent Sheets (Repenning & Sumner, 1995) was the first programming learning

environment, which was the first learning IDE to support the idea of dragging and dropping

the parts of sourcecode (Repenning, 2014b). In the evolution of Agent Sheets the focus on

Scalable Game Design was introduced to boost motivation (Repenning, Webb, &

10 A short translation of German terms is given here: “Allgemeine Einstellungen“ means “general settings,“

“Stifteinstellungen” means “pen settings,” “Bewegung” means “movement,” “Startbereich” means

“starting area,” “Drehstärke” means “rotation,” and “Geschwindigkeit” means “speed.”

Research questions, areas of research, and related research

24

Ioannidou, 2010) and the support computational thinking by providing information about

the meaning of the program should enable deeper insights and foster computational skills

(Repenning, 2011). AgentCubes (Repenning, 2014a) is the 3D-version of AgentSheets and

comes with several features to enhanced developing, amongst them there is a possibility

to draw 2D-objects and inflate them to 3D . The only downside of the products is, that

Agent Sheets Inc. went commercial and therefore AgentCubes and AgendSheets is not

completely free like Scratch or many of the other tools.

3.3.1.3 Blockly, Gameblox, Gamefroot, and Roberta

Blockly is an open source library developed by Google that allows developers to build

visual programming editors using a block system similar to that of Scratch. Blockly is

Web-based and does not require Flash; more specifically, it is a completely client-side

application requiring only 150 KB in compressed size. Blockly offers the ability of

extension with custom blocks. Blockly also implements a feature to export code as either

JavaScript or Python (see the Blockly Website).

Figure 7 – Blockly block factory interface

Research questions, areas of research, and related research

25

Based on Blockly, game development tools Gameblox (MIT Scheller Teacher

Education Program, 2014) and Gamefroot (2013) are both toolkits focused on simple

block-based game development with a low threshold. Gamefroot offers a decent library of

game-building resources, such as graphics or tiles, for free, as well as some paid content.

In general, Gamefroot may be used for commercially developed games. Gameblox is

developed by the MIT Scheller Teacher Education Program and supports learning game

programming or even learning programming through game programming.

Figure 8 – Gamefroot game development editor

Roberta11 is a toolkit based on Blockly that allows developers to easily program robots

(Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS, n.d.).

Roberta is developed and maintained by Fraunhofer-Institut für Intelligente Analyse und

Informationssysteme (IAIS).

3.3.1.4 AntMe!

AntMe! ("Website - AntMe") is both a programming learning simulation and a serious

game. It is written in C# and also uses C# to implement or modify the behavior of ants. In

11 Roberta is also known as Open Roberta or Roberta-Lab.

Research questions, areas of research, and related research

26

AntMe!, one or more colonies of ants are in search of food (e.g., sugar or apples) and must

defend themselves against bugs.

Figure 9 – AntMe! simulation with black indicating apple-searching-and-retrieving ants, red indicating warrior ants,

green indicating apples, white indicating sugar, and dark blue indicating hostile bugs

3.3.1.5 Kara

Kara (R. Reichert, 2014) is a learning environment that centers around a single entity,

i.e., a ladybug named Kara, which can be manipulated using the principles of a finite state

machine (National Institute of Standards and Technology). As shown in Figure 10, Kara

is situated in a world in which tree stumps, mushrooms, and shamrocks can be placed. In

this world, tree stumps are impassable, mushrooms can be moved, but not picked up, and

shamrocks can be collected and placed on another field. Programming Kara’s behavior is

achieved by dragging, dropping, and configuring elements of a finite state machine’s set

into the programming area.

Research questions, areas of research, and related research

27

Figure 10 – Kara exists in a simple world12 Figure

11 – Programming view of Kara13

There are also derivative versions of Kara, including Multi Kara, which offers an

introduction to concurrent programming (Burns & Davies, 1993; Snow, 1992), Lego Kara,

which provides a robot based on Lego Mindstorms ("Website - Lego Mindstorms,"), and

Turing Kara, which focuses on Turing machines (Barker-Plummer, 1995). Kara also

comes with some implementations to ease the learning of Java, JavaScript, Ruby, or

Python. For these language-specific versions of Kara, the view shown in

 Figure 11 is replaced with an interface for entering source

code directly.

3.3.1.6 Greenfoot

As shown in Figure 12, Greenfoot (Computing Education Group - University of Kent,

2014) has some similarities to Kara. Instead of a ladybug, Greenfoot’s basic configuration

features wombats and leaves. In general, in Greenfoot, any image can easily be used to

make one’s own world or game, because the base class is not a wombat, but simply an

12 Image obtained from (Swiss Educ Team).

13 Image obtained from (Swiss Educ Team).

Research questions, areas of research, and related research

28

actor. Greenfoot offers the possibility to inspect its objects and actors, i.e., the state of its

variables. Further, the class diagram is displayed in the main window and updated upon

compilation; there is also detailed documentation and tutorials (Computing Education

Group - University of Kent).

Figure 12 – Greenfoot interface with a code view (left), the world (center), and the class diagram (right)

3.3.2 Game programming frameworks

3.3.2.1 Tools for developing browser games

In the World Wide Web, the leading frameworks for creating browser games consist of

a combination of Adobe Flash and Action Script, a combination of HTML 5 and JavaScript

(addressing the Canvas element), or the XNA-Game framework in connection with

Microsoft Silverlight.

The Flash world

In the Flash realm, Adobe’s Flash Builder (Software) and, for use as an engine, the

Starling framework, both seem interesting. In general, Flash Builder is not free, although

educational institutions may apply for free licensing; however, since programming tools in

school are supposed to be easily and quickly installed and modified,

Research questions, areas of research, and related research

29

non-proprietary software better serves our purpose. Therefore, we look to FlashDevelop,

an open source integrated development environment (IDE).

Another simple game development framework written in Action Script 3 that might be

appropriate for educational use is FlashPunk (Johnston), which is an open source software

project designed to work with the Flex application framework (also open source). Another

open source framework is Flixel (Saltsman), which is known for its powerful and flexible

camera class, FlxCamera.

HTML 5 and JavaScript

In the HTML 5 world, the Canvas element can be addressed via JavaScript and used for

game programming. NetBeans (Oracle Corp.) may serve as IDE, supporting code

completion, which proves very useful for learning programming with students.

Isogenic Engine (Irrelon Software, n.d.) is a strong but not lightweight game engine.

Three reasonably simple and therefore graspable frameworks are CraftyJS (Stowasser),

LimeJS (Tiigi et. al.), and melonJS (Biot). All three are compatible with the HTML 5

specification and access the Canvas element. There are also specialties involving these

frameworks, e.g., Crafty and melon come with simple collision detection. Melon supports

loading maps generated using Tiled Map Editor (Lindeijer). Lime integrates the HTML 5

physics engine Box2D very well. Lime and Crafty are both optimized for mobile devices

and implement the Document Object Model (W3C). Crafty further supports an isometric

perspective. A summary is shown in Figure 13, which is based on a feature matrix for game

engines on GitHub (Vepsäläinen).

Research questions, areas of research, and related research

30

N
a

m
e

2
D

3
D

T
ile

-b
a

s
e

d

Is
o

m
e

tr
ic

S
o

u
n

d

C
o

lli
s
io

n
s

P
h

y
s
ic

s

A
I

N
e

tw
o

rk
in

g

M
a

p
 E

d
it
o

r

O
p

ti
m

iz
e

d
 f

o
r

M
o

b
ile

C
a

n
v
a
s

D
O

M

W
e

b
-G

L

H
T

M
L

5

Crafty X X X X X X X X

Isogenic Engine X X X X X X X X X X X X

LimeJS X X X X X X X

melonJS X X X X X X X

PropulsionJS X X X X X X

Turbulenz X X X X X X X X X

Figure 13 – Feature matrix of selected game engines14

Finally, Turbulenz and PropulsionJS are quite powerful engines but too complex to use

compared with Crafty, Lime, and melon.

3.3.2.2 XNA Game Studio

XNA (XNA’s Not Acronymed) can be used to develop games for PCs with Windows,

Windows Phone, and the Xbox. XNA is based on the .NET framework and is essentially

free, but publishing Xbox games requires an Xbox LIVE Indie Games account, which is

currently $99 per year ("Website - Xbox live - Indie Games,").

XNA Game Studio can be easily integrated into Visual Studio Express ("Website -

Microsoft Visual Studio,"), which is also free, but requires registration to obtain a free

serial number. On the technical side, XNA is based on the .NET 2.0 Framework. Further,

XNA’s libraries have the advantage of being managed libraries ("Website - XNA Game

Studio 4.0," 2011) with good performance. As shown in Figure 14, a content pipeline for

importing, loading, managing, and using content is available ("Website - Content Pipeline

Architecture,"). The content pipeline provides importers for textures (e.g., as .jpg, .png,

.bmp, or .tga files) or three-dimensional models (e.g., Autodesk fbx), DirectX files (.x), or

14 This is based on (Vepsäläinen) with some additional updates.

Research questions, areas of research, and related research

31

DirectX format-compliant effects (.fx) ("Website - Standard Content Importers and

Content Processors,"), and works seamlessly with the Common Language Runtime.

Figure 14 – Architecture of XNA's content pipeline15

Numerous sample projects and basic starter kits (Gamesm) provide the first steps, thus

making XNA quite accessible.

3.3.2.3 MonoGame

MonoGame (MonoGame Team, 2009) is a free open source implementation of

Microsoft’s XNA. MonoGame supports Android, iOS, Microsoft Windows and also

OpenGL (Kronos Group), Mac OS X, Linux, Windows Phone 8, PlayStation Mobile, and

the OUYA (OUYA Inc.) console. The development of Windows games relies on Microsoft

.NET; the development of games for Mac OS X, Linux, and Playstation mobile employs

the Mono framework ("Website - Mono - an open source implementation of Microsoft's

.NET Framework,"),16 and the creation of Android, iOS, and OUYA games requires

Xamarin (Xamarin Inc.).

15 Image obtained from ("Website - Content Pipeline Architecture,").

16 Mono is an open source implementation of Microsoft’s .NET platform.

Research questions, areas of research, and related research

32

When it comes to the choice of an IDE, MonoGame can be integrated with either

MonoDevelop ("Website - MonoDevelop "), Visual Studio, or Xamarin Studio (Xamarin

Inc.).

3.3.3 Game engines

To create games professionally and therefore with a high threshold, there are various

game engines. Among the most popular are OGRE, Unity3D (Unity Technologies), the

Blender game engine, Unreal UDK (Epic Games), and iodoom3, an Id tech 4 engine (id

Software & iodoom3). Extensive lists of game engines can be found at GPWiki and moddb

(Reismanis).

3.3.3.1 Unity3D

With an example screenshot shown in Figure 15, the Unity3D game engine is a cross-

platform game engine that supports iOS, Android, Windows, Blackberry 10, OS X, Linux,

browser games, Flash, PlayStation 3, Xbox 360, Windows Phone 8, and Wii U (Unity

Technologies). The aim of Unity3D is to simplify the development of three-dimensional

games. However, bigger projects such as Fusion Fall (Cartoon Network, n.d.), one of the

games often used to showcase Unity3D’s capabilities, still lie out of reach of a one-person

game-development team (Creighton, 2010).

Unity3D is based on Mono an open source implementation of Microsoft's .NET

framework. Unity3D is free in its basic version, but currently costs17 $1500 for the pro

version (Unity Technologies). Unity3D is very popular among mobile game developers;

in a survey of Gamasutra , 53.1% of developers reported using Unity3D. The scripting

support of Unity3D covers native C#, Boo (a language for .NET with a syntax similar to

Python) and UnityScript, which is a JavaScript-like language developed for use with

Unity3D (Unity Technologies).

17 As of August 24, 2013.

Research questions, areas of research, and related research

33

Figure 15 – Screenshot of a demo project in Unity’s IDE18

Unity3D games can also be played in a web browser; all that is required is the Unity

Web Player (Unity Technologies).

3.3.3.2 iodoom3/Id tech 4

ID Software’s well known Doom Series ("Website - Doom (series),") led to the release

of Doom 3 in 2004 using the Id tech 4 engine and was followed by the publishing of the

iodoom3 engine in 2011. The engine’s source code is available under GPL v3 from Github.

Scripting in the iodoom3 engine can be accomplished with the Id tech’s own scripting

tool, which is syntactically quite similar to C++ (iddevnet).

Although the iodoom3 project offers a Forum and some tutorials, the threshold for

beginners is higher than that of Unity3D. For example, to compile source code in Visual

Studio 2010 Express, one must follow the procedure shown in Figure 16.

18 Using Unity3D 4.2.0f2 and the Island Demo downloaded from (Unity Technologies).

Research questions, areas of research, and related research

34

Figure 16 – How to compile iodoom projects in Visual Studio 2010 Express19

3.3.3.3 Unreal Development Kit (UDK)

More straightforward to use than iodoom3 is the Unreal Development Kit (Epic Games,

n.d.-b), which originated from the third version of the game engine for the Unreal series

("Website - Unreal series,"). UDK is free of charge for education and any non-commercial

19 Tutorial obtained from (eTiTan, 2012).

Research questions, areas of research, and related research

35

projects (Epic Games, n.d.-a). For commercial projects, a license of $99 is required .

Further, if any benefit greater than $50,000 is generated, one is required to deliver 25% of

the profit over $50,000 to Epic (Epic Games). For example, if you make $60,000 with your

game, Epic asks for $2,500.

As shown in Figure 17, UDK comes with a powerful editor, in which it is even possible

to run the level directly in the editor. Game logic and behavior can implemented using

UnrealScript (Epic Games, n.d.-c), which is similar to Java and C++ and was designed to

maintain the following goals:

“To support the major concepts of time, state, properties, and networking

which traditional programming languages don't address. [...]

To provide Java-style programming simplicity, object-orientation, and

compile-time error checking. [...]

 a pointerless environment with automatic garbage collection;

 a simple single-inheritance class graph;

 strong compile-time type checking;

 a safe client-side execution “sandbox”; [...]

To enable rich, high level programming in terms of game objects and

interactions rather than bits and pixels.” (Epic Games, n.d.-c)

Research questions, areas of research, and related research

36

Figure 17 – UDK Editor (e.g., Foliage map)20

3.3.4 Licensing for educational purposes

The type of license to select eventually plays a role in the evaluation of the best tool for

game programming for educational purposes. Among eligible licenses are the GNU

General Public License (GPL), the GNU Lesser GPL (Free Software Foundation), the BSD

license (University of California Berkeley), the MIT license (Massachusetts Institute of

Technology), the Ms-PL (Open Source Initiative; "Website - Microsoft Public License

(Ms-PL),"), and the Creative Commons (CC) license (Commons).

20 Screenshot for UDK downloaded from (Epic Games, n.d.-b).

Research questions, areas of research, and related research

37

3.4 Related research

There are various approaches to using game programming in teaching, including game-

themed programming assignments (Sung with C# and XNA, as shown in Figure 18), the

development of computer games with undergraduate students using 3D-Studio Max and

C++ (Taylor & Baskett, 2009), and “Teaching Object-Oriented Programming Laboratory

Computer Game Programming” using C++ and the Microsoft Foundation Class Library

MFC (Woei-Kae & Yu Chin, 2007).

Figure 18 – Game-themed programming assignment (Sung)

Developing in Java also offers additional possibilities, e.g., in connection with the Slick

2D framework, which is based on the Lightweight Java Game Library (LWJGL). This

combination was used by Volk and described in “How to Embed a Game Engineering

Course into a Computer Science Curriculum” (Volk, 2008).

A different approach is to provide developed solutions, including the full code for a

game or a segment of a game, then leave out a clear element for implementation by students

(Youngblood, n.d.).

Another possibility is to create entire games, which can be done “step by step,” either

by implementing one game all together or by developing the same game on an individual

basis with each of the students. While developing a predefined game in a master-

apprentices setting, incorporates pedagogical value – see Situated Learning (Lave &

Wenger, 2005) and reduces the risk of failure, it might not motivate learners as much as

Research questions, areas of research, and related research

38

making their own games. Therefore, it seems promising to let students develop their own

individual games. Wang et. al (2011) successfully implemented a concept in a “Software

Architecture” course using Microsoft’s XNA, extending it with a library called

XQUEST (Bian, Wang, Strom, & Kvamme, 2009).

Because the activities described in this thesis start with C# and XNA, it seems relevant

to describe additional related research here.Shen provides a brief introduction to XNA and

describes its use in a course called “Introduction to Game Development,” which was

offered at Old Dominion University (Norfolk, Virginia) in “Teaching Game Development

Using Microsoft XNA Game Studio” (Shen, 2009). Linhoff and Settle (2005) conducted a

course in game programming called GAM 380 covering the topics shown in Figure 19.

Figure 19 – Topics covered in the GAM 380 course21

21 Screenshot from (Linhoff & Settle, 2008p. 252).

Research questions, areas of research, and related research

39

Wendel et. al. (2010) employed Unity3D in a course at the University of Darmstadt and

observed that game development had the potential to be very captivating, although students

had to handle high workloads.

Game Programming in Schools

41

4 Design Based Research meets Game Programming in

Schools

4.1 Methodology and research design

4.1.1 Practical research design

To approach a well-balanced didactical and technical framework, the plan was to

conduct research over a period of three years, not only to reach different groups, but also

to reach different cohorts. Several concepts developed in the first year were reflected upon

and improved over subsequent years. To accomplish this, a combination of questionnaires,

student interviews, and regular reflections were applied.

Using different game development environments, the courses were implemented in

Moodle (Dougiamas) to enhance traceability and provide eLearning support for students.

4.1.2 Research model: design-based research (DBR)

The setting for our research is defined as follows: game development in the classroom

with students over a period of three years, testing different game development

environments. In the process of this research, theory and practice influence one another.

General theory and our derived theory, in conjunction with the corresponding hypothesis,

serves as a foundation to providing a starting point for developing the initial research

design. Practical intervention is based on this design; after the intervention, results are

evaluated, reflected upon, and taken into account as the new design is established for the

next year.

The classroom setting makes it very difficult to establish a lab setting in which different

variables can be isolated, at least not without disturbing lessons in a way that renders the

intended activities useless. Therefore, a research model that allows interaction and

intervention without the need for an entirely controlled environment is crucial. To capture

as many aspects as possible, a mix of qualitative and quantitative methods were employed.

Meeting those demands might seem difficult at first, but design-based research (DBR)

(Anderson & Shattuck, 2012; Barab & Squire, 2004; Brown, 1992; Sandoval & Bell, 2004;

Game Programming in Schools

42

Williams, South, Yanchar, Wilson, & Allen, 2011) is a very convenient approach for

meeting these requirements. Key qualities of DBR include “being situated in a real

educational context” (Anderson & Shattuck, 2012, p.16) and “focusing on the design and

testing of a significant intervention” (Anderson & Shattuck, 2012, p.16). These qualities

are similar to action research (Altrichter & Posch, 2007; Moser, 1977), which actually

incorporates some aspects of DBR. Our practical interventions met the idea of being

pragmatic, a trait Reeves et. al. (2013) identifies as one of the cornerstone points of DBR.

Different iterations are mentioned in Anderson and Shattuck (2012). The fact that our

research model used a methodological mix is also argued and supported by Maxcy (2003).

In short, “design-based research goes beyond merely designing and testing particular

interventions,” meaning we are “constructing cumulative design knowledge” and

“developing contextualized theories of learning and teaching” (Design-Based Research

Collective, 2003, p. 6).

4.2 The concept and goals of Game Programming in Schools

The goal of Game Programming in Schools (GamePinS) is to provide a technical

framework and didactical setting for learning. The GamePinS logo is shown in Figure 20.

Here, the technical framework is both a skeleton and a boilerplate, making game

programming with XNA easier. Further, the didactical setting is implemented as a Moodle

course. Both of these aspects of GamePinS are intended to promote important concepts of

computer science effectively and in a motivating way. Further goals are to (1) develop an

approach that balances an “only user-side” approach with intense and demanding

programming requirements, (2) balance complexity and a deeper understanding with

simplicity (perhaps missing the most important ideas underlying computer science), and

(3) adjust the workload such that it falls between under-challenging and overstraining.

Figure 20 – The GamePinS Logo

GamePinS is intended to address typical computer science concepts and foster these

concepts in Austrian secondary school IT education programs with pupils ages 14 to 18.

Game Programming in Schools

43

4.2.1 Important concepts in computer science

The first step was to identify the fundamental concepts of computer science to include,

i.e., my research started with the key question, “what are the important concepts in

computer science?”

In (Dagienė, 2011), six significant concepts for computer science education are

identified as follows:

“- Information: the conception of information, its representation

(symbolic, numerical, graphical), encoding, encrypting;

Algorithms: action formalization, action description according to

certain rules;

Computer systems and their application: interaction of computer

components, development, common principles of program functionality,

search engines;

Structures and patterns: the components of discrete mathematics,

elements of combinatorics and actions with them;

Social effect of technologies: cognitive, legal, ethical, cultural,

integral aspects of information and communication technologies;

Informatics and information technology puzzles: logical games, mind

maps, used to develop technology-based skills.” (Dagienė, 2011, p. 18)

From a student’s point of view, learning and adapting to these areas of knowledge will

not only foster a deeper understanding of computer science but also contribute to problem

solving strategies in school and later life, i.e.,

“It has been agreed that on some of the main concepts to be taught in

general education, e.g., algorithms and programming (as a separate or

integral part of algorithm construction) is one of the most important

concepts of informatics.” (Dagienė, 2011, p. 18)

The main goal behind my research is therefore to address these important concepts of

computer science education via the GamePinS project.

Game Programming in Schools

44

4.2.2 The GamePinS framework

The GamePinS framework is conceptualized to support teachers in developing games

in a straightforward manner and promote essential concepts of computer science. The

technology decisions were based on actual installed software on the school network, i.e.,

Visual Studio Express 2010, and the possibility to easily install XNA. As such, students

actually write code instead of operating with drag-and-drop environments (i.e., Scratch or

Blockly). Further, the GamePinS framework should be easily evaluated and tested in

accordance with intended learning outcomes.

4.2.2.1 The teacher’s role

In general, everyone should be able to use GamePinS, but helpful skills and attitudes

for teachers include the following:

 Basic knowledge of how programming languages work.

 A deeper understanding of at least one programming language, preferably C#,

JavaScript, or Scratch.

 An awareness of basic concepts of computer science, including object-oriented

programming, variables, properties, methods (a.k.a. functions or procedures),

arrays, lists, algorithms, searching and sorting algorithms, file I/O, etc.

 The ambition to get involved with game programming and the GamePinS

framework.

 The motivation to engage in and lead project-based classes.

4.2.2.2 Computer science and the learning method

The fundamental idea underlying GamePinS is to promote concepts of computer science

in a motivating way for students. An important goal here is for the developed learning

method to have a direct impact on the understanding of computer science concepts.

Students should learn to think logically, methodically, in a structured fashion, on abstract

levels, and also at a very detailed level, thus benefitting from these learning outcomes

beyond just the computer science classroom.

Game Programming in Schools

45

One of the intents of GamePinS is to impact classroom courses such that they reach

their goals, as specified in the official curriculum of the Austrian Federal Ministry for

Education, Arts, and Culture (BMBF, p. 2):

Insights into key concepts and methods of computer science, typical

ways of thinking and working in computer science, their historical

development, technical and theoretical foundations learn the basic

principles of machines, algorithms and programs.22

Through GamePinS, a more realistic picture of game programming, computer science,

and the work of a computer scientist should be delivered to students. An anticipated

outcome here is that students with a more realistic view of informatics (as compared to

students who solely learn to use Office applications) will enroll in computer science

courses and programs at the university level, and if game programming for students indeed

turns out to be “fun,” that the number of students who enroll in computer science will

increase.

4.2.3 Didactical approach

There are various possible approaches to game programming. Game programming in

the classroom might be organized as either game-themed assignments (Sung) or as project-

based learning (Boss & Krauss, 2007). For our purpose, the project-based idea seems the

best fit, because developing a game shows typical traits of a project (Connecticut State

University; Lock, 1995; T. Reichert, 2009) and project management is also often

considered part of computer science23. In our case, game development projects are

characterized by the following phases:

 Preparation: Common for all learners, students learn the fundamentals of

programming, game programming, computer graphics, and sound editing, regardless

of their later roles in game development projects.

22 Translated from German O.C.

23 See dedicated courses in the curricula for computer science at the University of Vienna (University of

Vienna - Senate) and the Technical University of Vienna (Technical University of Vienna).

Game Programming in Schools

46

 Project start: The start of a project includes an agreement between the teacher and

students to work in groups on the project, which requires project groups to be formed,

the election of a team leader, and the assignment of different roles (e.g., project

manager, engine programmers, sound designers and programmers of sound libraries

who reduce the workload of engine programmers, graphics designers, and story

authors who are also often assigned as level designers).

 Planning: The planning phase includes initial project definition and early design

aspects, answering the question as to what kind of game should be developed (e.g.,

role playing game, jump and run game, and adventure game).

 Monitoring and control: Crucial to project success is monitoring to ensure that the

project and team members are proceeding as intended or, if not, determining how to

get help them to make progress.

 Project finish: In this final phase, students present their games, participate in free

reflection about the work, and answer a questionnaire regarding the project and the

project-based game development process.

In general, the role of the teacher is as a consultant, bringing in expertise on project

management and game development. From my own experience, it is not enough to be a

coach; one must also be an expert in all areas that are important to game programming.

The teacher in this case must be able to fully understand the process of game development

and be able to develop such a game by him or herself. Simply coaching and hoping that

pupils succeed might work out, but this approach can result in complete failure. After a

first survey about game development, many similar statements pointed out the importance

of the help of at least one person who has knowledge in the area of game development, for

example:

“In the beginning I was highly motivated, [but] when we started, I

experienced how difficult it is.“ (Students comment on game development)

Overall, it is crucial that a framework that includes a curriculum plan is fully developed

such that an average student can accomplish the required game programming tasks without

being overstressed. Further, the teacher must be able to assume her or his role without

being overburdened.

Game Programming in Schools

47

4.2.4 Expected outcome

The expected outcome was that GamePinS would make computer science in school

more attractive to students, i.e., increase motivation (Boekaerts, 2002; Reeve, 2009) and

engagement (Corno & Mandinach, 1983) in the subject, foster teamwork competencies

(Lingard & Barkataki, 2011; Motschnig-Pitrik & Figl, 2007), and promote important

concepts of computer science. To verify the expected outcome, the following four

assumptions, based on the research questions, were formulated:

(A1) Game development in computer science increases the engagement of students.

(A2) Project-based game programming in computer science fosters teamwork

competencies.

(A3) Game programming promotes basic concepts of computer science more

effectively than other typical software development scenarios.

(A4) The complexity level of the framework used influences the depth of

understanding of the concepts to be learned.

4.2.5 Research design

Research regarding game programming follows a certain scheme, which is applied to

all three years of research. Before the school year started, the learning goals, learning

materials, course content, and design for the entire year were planned and implemented in

Moodle. At the beginning of the first semester, students were asked to fill out a

questionnaire regarding their computer usage, attitudes toward gaming and developing

games, and expectations with respect to game programming in school. Then, students

learned C# programming and how to use Visual Studio Express, how to create sounds in

Audacity, and how to create graphics in the Gnu Image Manipulation Program (GIMP).

These game programming activities ranged over two semesters, i.e., an entire school year.

At the end of the second semester, students were asked to fill out another questionnaire

regarding their computer usage, attitudes toward gaming and developing games, and how

their view and motivation has changed. The questionnaire also includes a self-assessment

regarding the development of their own IT skills, covering programming, understanding

Game Programming in Schools

48

of algorithms, project management, and team skills, as well as the development of

motivation.

A chat interview with selected students conducted and evaluated in a qualitative manner

was also employed to obtain further data for interpreting the information collected in the

questionnaires.

To obtain relevant data regarding computer usage and attitudes toward gaming and

developing games, a general survey targeting all pupils not involved in GamePinS

activities or any other activities surrounding GamePinS (i.e., a control group) was

conducted.

4.2.5.1 General questionnaire regarding gaming and computer habits

A general questionnaire regarding gaming and computer habits was incorporated into

all years of game development to gather general data about the target group and determine

student attitudes toward game programming, including whether game development is of

any interest to young persons at all. The hypothesis here is that game development is more

attractive to students than the regular curriculum.

The general questionnaire included a simple set of items or questions. These items were

stored in a MySQL Database (Oracle Corp. et. al.). With the help of PHP, the survey was

generated and delivered to students as HTML pages within their respective browsers.24

4.2.5.2 The school, students, participation, and schedule

All research took place in an AHS25, i.e., the GRG 16 Maroltingergasse 69-71 in the

16th district of Vienna, Austria. In general, students enter this type of school at the age of

10 and finish it with the “Reifeprüfung” at the age of 18. In total, there are over 1100

students attending the GRG 16 and over 120 teachers working in this school.

As summarized in Figure 21, the research schedule allowed a four-year research span

with an initial phase (i.e., pre-research regarding game development), three iterations of

24 For the source of the questionnaire-tool/the PHP-Code see (Comber, 2008)

25 “Allgemeinbildende höhere Schule”

Game Programming in Schools

49

each research cycle, and a dedicated development phase after year one of game

development. During the student interactive research span from September 2011 to July

2015, 302 students were included in the general research, of which 90 students participated

actively in the game development activities.

 Research and practical activities Starting

date

 Approval from the Board of Education to conduct research in

school

Mar 2011

Y
e
a

r
1

Initial questionnaire about game programming (I1) Sep 2011

Game programming year 1 – two groups, both with C# and XNA Sep 2011

Final questionnaire and statements about game programming

(F1)

Jun 2012

Evaluation of year 1, reflection, improvement of concept Jul 2012

 Development of the GamePinS framework and online courses Jan 2013

Y
e
a

r
2

Initial questionnaire about game programming (I2) Sep 2013

Game programming year 2 – GamePinS (evolved from year one) Sep 2013

Final questionnaire and statements about game programming

(F2)

Jun 2014

Evaluation of year 2, reflection, improvement of framework Jul 2014

Y
e
a

r
3

Initial questionnaire about game programming (I3) Sep 2014

Game programming year 3 – working with the improved

framework

Sep 2014

IT skills test with two different teachers and four groups (F3) Jun 2015

Evaluation of year 3, reflection, improvement of framework Jun 2015

 Final processing, analysis, and evaluation of all gathered data Jul 2015

 Research finished, submission of thesis Dec 2015

Figure 21 – Schedule of the GamePinS project

Game Programming in Schools

50

4.3 The GamePinS Framework

Game development covers numerous areas of computer science. The development

process involves planning, specifying, developing, testing, and distribution. The

development process also covers graphic design, level design, sound design, story and

game concept design, and engine programming. For all tasks in the development process,

there many tools, and the choice of tools is not always easy and is often limited by the lab

environment; more specifically, preinstalled software works in favor of specific tools. Note

that the technical preconditions for three years of game development in a computer science

classroom is covered in the next chapter.

4.3.1 Practical environment conditions for GamePinS

The preconditions in the school in which game development activities took place were

Windows-based PCs with the following software, relevant for game development, already

installed:

 Windows 7

 Visual Studio Express 2010

 .NET-Framework 4.0

 XNA Game Studio 4.0

 GIMP 2.6 (Kimball et. al., 2014)

 Audacity 2.0.2

The game development process employed many of these preinstalled tools.

Programming was done using Visual Studio Express C# 2010 and XNA 4.0 as an interface.

Further, audio engineering occurred via Audacity 2.0.2, while game graphics and tiles for

maps were designed using GIMP 2.6. Only in the field of Level Editing was it necessary

to download an additional free tool and run it from the local drive; this tool was the Tiled

Map Editor (Lindeijer & Cook, 2013), shown in Figure 22.

Game Programming in Schools

51

Figure 22 – Tiled Map Editor screenshot with sample tiles from Liberated Pixel Cup (2013)

Other functionality, including the map import and game physics tools, was implemented

using libraries that were embedded in the GamePinS samples (see Section 4.3.3 for more

details regarding The structure of GamePinS).

4.3.2 The didactical approach

Game development activities were always embedded within an entire school year of

computer science education, which did not exclusively include game development. The

majority of students already enjoyed one hour of computer science per week in their

previous year and two hours in their first year. The curriculum primarily was covered in

the classroom, but this was also backed by a Moodle course (Comber, 2013). The template

of the Moodle course, MC_Comber, is available online for guests with the correct

password26. This curriculum included a brief review of Office applications, a glance at

26 For the password see the reference section of this document

Game Programming in Schools

52

Scratch, including its limitations for game programming, graphics design and creation

using GIMP, audio editing with Audacity, creating game levels with Tiled, and learning

the basics of C#.

4.3.2.1 Curriculum topics, prior to starting with Game Development

In Microsoft Word, students were required to design a flyer for an event of their own

choice. Further, young learners created a professional template for their “prescientific high

school graduation thesis27.” This professional template task included correct formatting,

i.e., the importance of using proper styles and formatting, the routine of specifying headers

and footers, including automated document information, especially page numbering, the

theory and practice of sections and section breaks, the correct definition of captions and

cross-references, and the automatic generation of a table of contents and a list of figures.

In PowerPoint, students repeated their presentation techniques and had to plan a trip

around the world for their teacher, who fictionally won the lottery, donated a major part of

the winnings to charity, and had approximately $150,000 left to travel around the world.

In Microsoft Excel, students were encouraged to understand basic spreadsheet

principles and implemented a time table of their weekly activities, including time in school,

with friends, homework, sports, watching TV, on a PC, console, or smartphone, sleeping,

and travel times to and from such activities. Personal statistics were represented via

diagrams to visually identify time wasted and see how much percentage of time each

activity consumed per week.

Other topics, including file management, HTML, and the history of computer science

were covered in the previous classes, but omitted to provide more time for game

development tools and GamePinS itself.

With GIMP, students first learned how to use and configure GIMP to establish a smooth

workflow. Next, students integrated the concept of layers and mastered multi-layer

techniques with such assignments as creating a movie poster for any movie of their choice

27 Translated from (Lasselsberger, Gschwendtner, & Bundesministerium für Bildung und Frauen, 2015).

Game Programming in Schools

53

and manipulating and integrating their own appearance, e.g., their face, into the movie

poster. After accomplishing these tasks successfully, students designed tiles to build their

levels, as shown in Figure 23. Lastly, students designed their game characters using GIMP.

Figure 23 – Sample tiles for a platform-based game

With Tiled Editor, students used tiles created in GIMP to assemble levels for their games.

No matter what their choice of game was, students first had to create a platformer/side-

scroller and one top-view game level.

With Audacity, students dove directly into recording and engineering their sounds for

their games. They learned about the basic options of Audacity, how to copy, cut, and paste,

and how to export audio projects in the proper formats.

Students gained fundamental knowledge of programming using C# by writing programs

for the console via Visual Studio 2010 Express. Tasks started with basic input/output

programs28, such as greeting the user and asking for his or her name, then storing it in a

variable and making nice comments about the user’s name. Other programs included

arithmetical operations, conditionals, and introducing a countdown program with the help

of a “for” loop. After introducing more techniques, including random number generators,

students used “while” loops to implement a program called “The Matrix” that displayed

random numbers floating down the screen, as shown in Figure 24. Further, students took

on the challenge of creating a dice game that included handling of errors and invalid inputs.

28 First of all with a traditional “Hello World” program.

Game Programming in Schools

54

Figure 24 – Output of a program that used randomly generated numbers and loops to create “The Matrix”

4.3.2.2 The didactical principles

The development of computer games can be a fertile learning experience for various

school subjects. In particular, it certainly is promising for computer science. Both

theoretically and practically, a game development project can span an entire computer

science curriculum in Austria, e.g., see the curriculum at the Ministry of Education

(BMBF, 2004). When it comes to programming itself, key concepts were successfully

employed in the most recent year of my programming routine. Freely nameable terms of

source code were named in the local language, i.e., German, while commands and

predefined methods and interfaces were in English. What seemed here an awkward mashup

at first glance had some didactical advantages. The German naming of a variable, for

example, emphasizes the programmer’s choice of the name, thereby making it easier for

students to grasp the concept of classes and instances and prevent such mistakes as trying

to refer to a variable by typing its class instead of its name, e.g.,

string input;

Game Programming in Schools

55

string = Console.ReadLine(); /* common mistake */

Based on feedback from students and a thorough observation of the research setting,

three principles were formulated. These principles help make game development with a

class of teenagers more productive and rewarding.

The first principle is to set reachable goals, being firm and clear about exaggerated

expectations. Further, it is vital to focus on realistically feasible game projects. Feasible

games that qualify include simple jump and run or platformer games, adventure games,

certain role playing games, top-view racing games, and puzzle games. At any rate, it is

very important to avoid frustration among students and teachers. Unrealistic goals can also

lead to losing oneself in the details during planning and wasting time even before anything

is accomplished (Comber & Motschnig, 2015).

The second principle is to reduce complexity wherever possible. Students in an early

year of game development working only with C# in Visual Studio 2010 Express and XNA

stated that their main source of dissatisfaction was the complexity of game programming.

The complexity in the first year of game development caused actual student motivation to

lag behind their anticipated motivation. The solution to this challenge was to provide a

simplified framework, but still have students write source code to embed a physics

simulation. Out of this, GamePinS was born and employed successfully for the two years

that followed.

The third principle emphasizes being extremely well-prepared. There are two reasons

why being well-prepared is critical. First, there is a high learning threshold for computer

science. There are approaches to projects that work well in other classes (e.g., history,

geography, language, and arts); for example, teachers may set up stimulating environments

with plenty of resources, books, colored pens, flipcharts, and fancy objects to tinker with;

as a result, students in our school are able to complete excellent project work by

themselves. In computer science, unfortunately, this approach fails. When it comes to

transforming ideas into real results, the threshold is usually too high to accomplish these

goals alone in computer science. Beyond this, technical problems might occur in the PC

Game Programming in Schools

56

lab. These problems can be minimized through advance testing. Stating that “yesterday, it

did work!” does not count as being extremely well-prepared. Excellent preparation further

includes being an expert on what you want the students to understand and achieve. Relying

solely on ingenious hackers in class is not a reasonable option. Further, aside from the

individual qualities and principles that every lecturer and teacher brings to the classroom,

these three principles are vital for successful game development with young learners

(Comber & Motschnig, 2015).

4.3.3 The structure of GamePinS

GamePinS itself is a template with two sample projects that integrates useful libraries

and importers, such as the Farseer Physics Engine and Tiled Map Importer. GamePinS

implements a class hierarchy that is included in the GamePinS solution packages and can

be modified directly if students need or wish to do so.

4.3.3.1 Farseer Physics Engine

Among the embedded libraries, one particularly useful library is the Farseer Physics

Engine. The “Farseer Physics Engine is a collision detection system with realistic physics

responses” (Weber, 2013). In detail, Farseer provides continuous collision detection with

a time-of-impact solver, the appropriate callbacks for interaction, convex and concave

polygons, and circles and multiple shapes per body. Farseer features collision groups and

categories, friction and restitution, several joint types, controllers for gravity and force

generators, tools to decompose concave polygons, factories to simplify the creation of

bodies, and plenty of other features (Weber, 2013).

4.3.3.2 Map Importer

As a map importer, Squared.Tiled (Gadd, 2009) was employed. The source code was

slightly modified to fit the needs of GamePinS and is included in the GamePinS template

and samples. Maps are best saved as .tmx file with gzip compression and can be imported

by creating a new instance of a map, i.e.,

// Load map. Parameters: Content Pipeline, World and Tileset

 Karte = new cKarte();

Game Programming in Schools

57

 Karte.Laden(this.Content, Welt, “Landschaft”);29

Parameters for loading the map in this example are the Content Pipeline, the world

(“Welt”) for our physics simulation, and the name of the tileset. The map name must be

specified in the cKarte class.

4.3.3.3 The GameLoop

Shown in Figure 25, the game loop was derived from XNA’s GameLoop and simplifies

the code structure. Students are encouraged to understand the difference between console

programming and game programming.

Figure 25 – The Game Loop as described in GamePinS for students

Source code for the game loop includes basic elements, such as a constructor, initialize

and load methods, a draw method, an update routine, and a method to unload content30.

29 German instance names for didactical reasons (see Section 4.2.3).

30 Although the UnloadContent routine is rarely used

Game Programming in Schools

58

Some code snippets, such as Draw and UnloadContent, are collapsed. Source code for the

Game Loop with translated comments but original class names is as follows:

namespace GamePinS

{

 public class Spiel : Microsoft.Xna.Framework.Game

 {

 // Constructor

 public Spiel()

 {

 // Basic settings

 }

 protected override void Initialize()

 {

 // Initalize, e.g., Camera, Physics, Map

 }

 void InhalteLaden()

 {

 // Load the game characters, levels, ...

 }

 protected override void UnloadContent()

 {

 // Unload the content, if necessary

 }

 protected void Aktualisieren(GameTime paGameTime)

 {

 // Update, e.g., collision detection

 // play sounds

 }

 protected void SpielelementeZeichnen(GameTime pGameTime)

 {

// Draw the players, the level, everything that needs to be drawn

 }

 }

}

4.3.3.4 GamePinS classes and hierarchy

For easier orientation of students and to teach object-oriented programming, GamePinS

consists of a class hierarchy, as summarized in Figure 26. The class hierarchy offers

options that keep game programming simpler in the beginning.

Game Programming in Schools

59

class name description

cAnimiertessprite animated sprite

cAudio audio class

cBaustein brick - level building

cDebuginfos debug infos

cEbene layer of a level/map

cEinstellungen settings class

cKamera camera class

cKarte class for the map

cPhysiksprite physics sprite

cSpielerDraufsicht player topview

cSpielerSeite player sideview

cSprite sprite class

cText class for displaying text

Figure 26 – Class names and descriptions of classes used in GamePinS

Nonetheless, students can step into the class source code at any time if they feel the

need to make modifications. The techniques for creating basic objects is covered in the

lessons, and students learn how to create a sample object, i.e., an elephant, in the

classroom; this class is defined as follows:

public class cElefant : cSpielerSeite

{

 public void Laden(ContentManager pInhaltsmanager, World pWelt)

 {

Spielergrafik = “Elefant”;

Geschwindigkeit = 140;

this.Startposition.X = 500f;

this.Startposition.Y = -100f;

float Masse = 12f;

base.Laden(pInhaltsmanager, Spielergrafik, pWelt, this.Startposition.X,

this.Startposition.Y, 1, Masse, BodyType.Dynamic);

 }

}

Elefant is derived from the player's cSpielerSeite class and can be created with very few

extra values. Here, the load method gets the ContentManager and the world for the physics

engine as parameters. The name of the player’s graphic is set using Spielergrafik. The word

Geschwindigkeit means speed and determines how fast the elephant can run. The

Startposition.X and Startposition.Y values are set to coordinates on the top of the screen.

XNA uses a right-handed coordinate system in which the center is in the middle of the

screen. Masse determines the mass of the elephant for the physics simulation, and

base.Laden() calls the base method with the ContentManager, the player sprite, the world,

Game Programming in Schools

60

and the starting positions. The next parameter is the parameter for the body form in the

physics simulation and is either a circle (i.e., 0) or a rectangle (i.e., 1)31. The BodyType can

either be static (i.e., a level element) that does not move or dynamic. This applies to all

elements (i.e., players, balls, boxes, and so on) that are included in the physics simulation.

As shown in Figure 27, the class hierarchy takes two aspects into consideration, i.e.,

simplicity and performance. Therefore, the topmost parent class is a sprite class (i.e.,

cSprite), which has three child classes, i.e., an animated sprite, a class for a map element,

and a class for the background. The animated sprite class has the physics sprite as a child

and the physics sprite leads to the player’s class, the (non-player) creature class, and other

physics object classes.32

Figure 27 – Excerpt of the class hierarchy of GamePinS

From the class hierarchy, one might wonder why there is another step from the animated

sprite class to the physics sprite class. As mentioned above, performance is important and

as every physics object needs resources, there is the possibility of making some animated

objects, e.g., birds in the background, that do not consume extra resources.

31 The values 0 and 1 here are relics and will have proper constants defined in the next version.

32 For the complete list of classes, see Figure 26 – Class names and descriptions of classes used in

GamePinS.

Game Programming in Schools

61

Figure 28 – Example of using the class hierarchy for a two-dimensional platformer game with physics simulation

In other words, there are no restrictions at the bottom level of the hierarchy. In fact,

students were encouraged to use whatever class they wanted to reach their goals. If the

young programmers do not need physics in their role playing game, they may also derive

everything from the animated sprite class and perform their collision detection with the

help of the map objects of the map class.

Figure 29 - Example of using the class hierarchy in a top-view role playing game

Research and Results

63

5 Research and Results

5.1 General attitudes toward games and game development in the classroom

“Developing a computer game? That’s what you’re doing with students?

Aren’t they already, enough sitting in front of their computers,

wasting their time with digital stuff?” (Anonymous teacher in an

Austrian Secondary school on Game Programming, 2013)

This quote is typical when I tell my teacher colleagues or others not in the IT area what

I have been doing in my research. Confronted with the issue of spending too much time in

front of a computer, my intentions are the following:

“I don’t want students to spend more time in front of the computer,

but I want to encourage them to use their time differently. I try to

excite them, get them to move from being just consumers of games to actual

game creators, which can be a source of plenty of fun and development,

but also an original and valuable learning experience.”

Below, I address the basic ideas of the GamePinS activities in response to the attitude

noted above, thus describing how spare time activities of students connect with electronic

media. Further, I elaborate on the role of game development and the general attitudes

toward game development.33

The quote from the colleague at the beginning of this section, aside all other intentions,

surely raises the question as to how much time students spend in front of digital media and

what they are doing. A study from the Statistics Austria (Statistik Austria, 2010) exists

regarding the spare time of juveniles; this survey helps to obtain a picture of the specific

target audience and answer such questions as “how much time are students spending with

digital media?” and “what are they doing in front of their devices?” Another goal of this

survey was to determine the attitudes of young learners toward game development in the

classroom.

33 This part of the research was general research with a larger sample size; to see its illustrated role, refer

to Figure 44 – Research approach using questionnaires and .

Research and Results

64

To address the noted issues, I wanted to state that game development is not intended to

add extra hours in front of the PC to the students’ spare time, but instead to playfully and

energetically foster their IT skills in class. If students are willing to do something at home,

the goal is to lead them from simply consuming games and videos for fun to actually

creating games during their time in front of the PC. This is still time with digital media,

but seems a very valuable addition to their other digital media spare time activities.

Arguing that GamePinS enhances programming skills is one aspect of this, but as an IT

teacher, enforcing programming instead of concentrating only on Office applications, I

often hear the response that “students surely won’t all be programmers, so not all them will

need this programming stuff.”

Aside from the fact that more diversified education means more chances and, further,

that IT skills are perceived as vitally important in most leading countries, e.g. see the recent

TechHire initiative from the US-president (Obama), IT skills can be very useful for general

problem solving in numerous fields. Analytical thinking, modeling problems and solutions,

abstraction, going from theory to implementation of solutions, and logical thinking are just

some aspects that are enhanced by programming (Shein, 2014).

Back to the original enquiry, aside from standard demographic data, students answered

questions to help determine what they were doing with computers in their spare time and

what students were expecting from game development.

Research and Results

65

5.1.1 Statistical data

5.1.1.1 Gender distribution

As shown in Figure 30, the number of female and male students differed in the target

audience, with 105 female participants and 191 male participants.

Figure 30 – Distribution of female and male participants in the game development survey

The female/male distribution was not due to participation itself (i.e., that more males

chose to participate), because in all classes, almost all students agreed to complete the

survey, but the classes happened to be composed of more males than females. To explain

the classroom composition, a look at gender roles and subjects might clarify this

composition. Boys and girls in secondary school are still slightly influenced by traditional

roles. In the target school34, boys tend to choose natural and technical science-related

subjects more often than girls. Girls statistically tend to favor languages over science and

technology.

34 GRGORG 16, Maroltingergasse 69-71, 1160 Wien

Female
35%

Male
63%

Not stated
2%

Distribution of female and male participants

Survey amongst secondary school students in Austria (N = 302)

Research and Results

66

In GRGORG16, computer science was part of the natural/technical curriculum branch

in third and fourth grades. In the language curriculum branch, students did not have

computer science as a subject in third and fourth grades at all. Only in fifth grade did all

students from all curriculum branches independently take computer science classes. The

above led to an overall breakdown in the game development questionnaire of 105 female

and 191 male participants35.

5.1.1.2 Internet access

As shown in Figure 31, of the 302 participants, 298 or 97.7% had Internet access at

home; in one case, it was not stated, and only two participants noted that they did not have

Internet access at home. This result correlates well with the values found in Statistics

Austria (Statistik Austria, 2014), where 95.5% of households with one adult and children

have Internet access, and 97.8% of households with two adults and children have Internet

access. On average, in Austria, 81% of households have Internet access.

35 In six instances, the participant’s gender was not stated.

Research and Results

67

Figure 31 – Internet access of students in the targeted secondary school

5.1.1.3 Age structure

As shown in Figure 32, most students (i.e., 106) who answered the questionnaire were

14 years old. Not surprisingly, that is the age most students are when they reach fifth grade,

where every student has a mandatory computer science class at GRGORG 16. Of the rest,

68 students were 13 years old, and 81 students were 15 years old. In general, secondary

schools in Austria are required to have two hours per week of computer science at the

minimum (BMBF, 2003). If a school has permission for an autonomously designed

curriculum, more than two hours of computer science per week are allowed in an entire

school year. In this case, those two hours do not have to be in the fifth grade (BMBF,

2003). Otherwise, only the mentioned two hours of computer science education are held

in the fifth grade, i.e., the first advanced level grade (BMBF, 2004).

GamePinS is designed for 13-year-old students and upward. The age of participants in

the questionnaire and that of the target group of GamePinS matched well; therefore, an

estimation as to whether GamePinS would be accepted by young learners was performed

using the following questions.

Yes
98%

No
1%

Not stated
1%

Internet access at home

Survey amongst secondary school students in Austria (N = 302)

Research and Results

68

Figure 32 – Age of students from the target audience for game development

5.1.2 Activities of students on the computer in their spare time

As shown in Figure 33, student activities during their spare time on a computer emerged

in an interesting pattern. For communication, surfing, and reading articles on the Internet,

activities for school, and other activities, the time spent per week was primarily between

not at all and less than 2 hours, then dropped considerably; however, for playing games,

the curve did not drop so rapidly, with 46 students playing more than 10 hours per week.

17

68

106

81

15

7 7

0

20

40

60

80

100

120

younger 13 years 14 years 15 years 16 years 17 years older

Age

Survey amongst secondary school students in Austria (N = 302)

Research and Results

69

Figure 33 – Activities of students on the computer in their spare time

5.1.2.1 Time spent in front of a computer for school-related activities

As shown in Figure 34, 27 students did not use any of their time in front of a computer

for school-related activities. The number of students who spent from a few minutes up to

two hours per week was 169. A further 80 students spent between two and six hours of

their time per week on the computer for school. Only 22 young learners used six to ten

hours per week for school, and five students worked more than ten hours per week for

school on a computer.

0

20

40

60

80

100

120

140

160

180

not at all < 2h 2 - 6h 6 - 10h > 10h

Various spare time activities on the computer compared (hours per week)

Communication: social
networks, chats,
discussion boards, e-
mail

Surfing, Reading
articles on the internet
(e.g. news, magazines)

Playing computer
games: PC- or console
games including flash-
and facebookgames

Other activities with the
computer

Activities for school

Activities

Survey amongst secondary school students in Austria (N = 302)

Research and Results

70

Figure 34 – Spare time spent for school-related activities in front of a computer

5.1.2.2 Spare time spent playing computer games

As shown in Figure 35, playing games was popular among young people.

Approximately 77% of students stated that they played computer games regularly or at

least occasionally. Within the group of these game-playing students, one-third limited their

playing time to less than two hours per week, another third played between two and six

hours per week, and the remaining third more than six hours per week, including the 20%

who played more than 10 hours per week. The collected values were obtained during the

semester with validity for the semester. One student added that during holidays, he played

much more than during the semester.

27

169

80

22

5 4

0

20

40

60

80

100

120

140

160

180

not at all < 2h 2 - 6h 6 - 10h > 10h no answer

Survey amongst secondary school students in Austria (N = 302)

Time spent for school related activities in spare time on a computer (hours per week)

Research and Results

71

Figure 35 – Spare time spent playing computer games

Compared with the time spent mandatorily for school, gaming has huge potential to

involve students both inside and outside of the classroom. The willingness to spend time

with games may be due to the effect of intrinsic motivation (Deci & Ryan, 2005;

Przybylski, Weinstein, Murayama, Lynch, & Ryan, 2012), perceived autonomy (Ryan,

Rigby, & Przybylski, 2006), a principle of amplification and rewards (Yee, 2006) based

on simple conditioning (Skinner, 1953; Watson & Rayner, 1920), or most likely a

combination of these phenomena.

5.1.2.3 Communication via social networks, chat, discussion boards, and e-mail

Interestingly, 25 students did not spend any time chatting, sending e-mail, using

discussion boards, or on social networks36. For 108 students, the time spent with social

networks, chats, discussion boards, and e-mail was less than two hours per week. A further

85 students communicated from two to six hours per week. There was an interesting gap

36 The alternatives of calling via phone or sending text messages were not counted in this item; therefore,

this does not imply that those students did not communicate via any digital devices.

68
72

79

36

46

1

0

10

20

30

40

50

60

70

80

90

not at all < 2h 2 - 6h 6 - 10h > 10h no answer

Survey amongst secondary school students in Austria (N = 302)

Time spent for playing games (hours per week)

Research and Results

72

between spending time communicating moderately and more extensively, i.e., only 33

students spent six to ten hours per week, whereas 48 students used social networks, chats,

discussion boards, and e-mail more than ten hours per week.

Figure 36 – Time used to communicate via social networks, chats, discussion boards, and e-mail

5.1.2.4 Reading articles

Students spent less time reading articles than reading messages from friends. As shown

in Figure 37, 93 students did not read any articles, journals, or news at all. A further 141

spent less than two hours per week, and 49 spent between two and six hours per week.

Eight students read between six and ten hours per week, and seven for more than ten hours

per week.

25

108

85

33

48

3

0

20

40

60

80

100

120

not at all < 2h 2 - 6h 6 - 10h > 10h no answer

Survey amongst secondary school students in Austria (N = 302)

Sparetime spent for communication: social networks, chats, discussion boards, e-mail

Research and Results

73

Figure 37 – Time spent reading articles on the Internet

5.1.2.5 Programming in student spare time

While it was no surprise that 70% of students did not code at all in their spare time, it

was indeed surprising that 29% of these young learners used their spare time to program37.

Even more surprising is that programming for school was excluded, i.e., this item asked

specifically for programming out of one’s own interest and not for school.38

37 Note that 1% provided no answer.

38 German item text: Programmieren aus eigenem Interesse (also nicht für die Schule)

93

141

49

8 7 6

0

20

40

60

80

100

120

140

160

not at all < 2h 2 - 6h 6 - 10h > 10h no answer

Survey amongst secondary school students in Austria (N = 302)

Reading articles on the Internet (e.g., news, magazines)

Research and Results

74

Figure 38 – Programming in spare time out of one’s own interest

5.1.2.6 Spare time spent on various other activities

Aside time spent playing games, on social networks, surfing, reading, activities for

school, and a little bit of programming39, on average, students spent very little time on

other activities on the computer. As shown in Figure 39, 42% spent less than two hours per

week, 22% spent between two and six hours per week, and 26% did not spend any time on

any other activities aside from the aforementioned activities.

39 See Sections 5.1.2.1 through 5.1.2.5 and Figure 33.

211

59

21

3 4

0

50

100

150

200

250

not at all < 2h 2 - 6h 6 - 10h > 10h

Survey amongst secondary school students in Austria (N = 302)

Programming in sparetime - not for school

Research and Results

75

Figure 39 – Amount of spare time spent on various other activities on the computer

Students were also asked to name some of the other activities not covered by the

questionnaire. Answers ranged from producing videos for their own YouTube channel and

just watching Youtube or other movies to collecting, organizing, and listening to their own

music collections to viewing questionable videos on questionable Web sites40 to clearly

stating consuming pornography. The Internet has introduced a new dimension to the topic

of pornography, reviving an old discussion (Gernert, 2010; Magdalena Mattebo, Tydén,

Häggström-Nordin, Nilsson, & Larsson, 2013; Owens, Behun, Manning, & Reid, 2012;

Zillich, 2011).

The numerous answers from the students were collected as free text and clustered into

groups afterwards, summarized in Figure 40. The distribution of time spent on other

activities displayed an affinity for videos. Approximately one-quarter of students stated

40 …whatever that means?

79

128

65

10
15

5

0

20

40

60

80

100

120

140

not at all < 2h 2 - 6h 6 - 10h > 10h no answer

Survey amongst secondary school students in Austria (N = 302)

Sparetime spent on other activities

Research and Results

76

that they were “watching or editing YouTube videos,” with 18% watching videos

elsewhere. The next activity was listening, collecting, or organizing music, followed by

searching for information (e.g., “Google things”).

After music and search, the next activity was online shopping, which seemed small, but

is on the rise in Austria (Statistik Austria, 2013) and also an economically (Limayem,

Khalifa, & Frini, 2000) and socially (Overby & Lee, 2006) important matter around the

globe, especially for teenagers (Alam, Bakar, Ismail, & Ahsan, 2008; Thomson & Laing,

2003).

Figure 40 – Distribution of “other” activities on the computer

5.1.2.7 Developing a computer game in computer science education is interesting

To analyze the potential for game development in school, students were asked if they

agreed with the statement, “Developing a computer game in computer science education

is interesting.” The majority of students (i.e., 80%) agreed that developing a game was

interesting. As shown in Figure 41, 51% fully agreed, 29% agreed, 7% showed a neutral

attitude, 7% disagreed, and 5% fully disagreed.

Watching or editing
youtube videos

22%

Watching movies/shows
(other than Youtube)

18%

Listening to music,
organizing music, iTunes

12%

Online Shopping
5% Image Editing

3%

Searching/Googling
"things" (terms)

6%

Various (Giving support
to others, Sports, trying

cell phone tools,
Education, Working,
Pornography, Writing

(stories, poems, a
book)…)

34%

Other activities on the computer

Survey amongst secondary school students in Austria (N = 302)

Research and Results

77

Figure 41 – Survey results regarding whether developing a computer game in computer science education is interesting

5.1.2.8 Game development in students’ spare time

Game development is a time- and resource-consuming endeavor that is “Harder Than

You Think” (Blow, 2004). In contrast, time in computer science class seems always to be

too short, even if teachers and students have more than two weeks (Rankin, Gooch, &

Gooch, 2008). One idea here was to see if students were also ready to use their spare time

to further develop a computer game. As described in Section 5.1, it should not be a goal

for students to spend even more time with digital devices, but instead to use their time in

different ways to become creators rather than merely consumers.

When it comes to spare time, students seem to be more careful before agreeing to a

statement in which they are asked whether they would use their spare time for game

development. As shown in Figure 42, 45% agreed with the statement, “for developing a

computer game, I'm ready to use my spare time outside of time spent in school.” A further

40% disagreed, and 15% were neutral.

153

88

22 22
15

2

0

20

40

60

80

100

120

140

160

180

fully agreed agreed neutral disagreed fully
disagreed

no answer

Survey amongst secondary school students in Austria (N = 302)

Developing a computer game in computer science education is interesting

Research and Results

78

Figure 42 – Survey results in response to, “For developing a computer game, I'm ready to use my spare time outside of

time spent in school”

5.1.2.9 Reasons for playing computer games

I have always been fascinated by video games and am aware of several reasons for this

strange but familiar force of attraction. For single-player games, in my case, the aspect of

diving into a different world was always the key reason for enjoying a game. For

multiplayer games, the leading reason was the challenge of competing, either alone or even

better as a part of a team, with friends or other people I did not even know. Both aspects

were connected with a pleasant satisfying feeling, with an overall connotation of a great

deal of fun. The question then is: is this also true for the average young player?

 To find out what attracts students to playing computer games, their free text

comments were evaluated, counted, and clustered; the results are shown in Figure 43.

57

74

46

59

64

2

0

10

20

30

40

50

60

70

80

fully agreed agreed neutral disagreed fully
disagreed

no answer

Survey amongst secondary school students in Austria (N = 302)

To develop a computer game, I'm ready to use sparetime besides the time spent in school

Research and Results

79

Figure 43 – Survey results regarding reasons for playing computer games

Primarily, playing computer games translates simply to fun. Approximately one-quarter

play out of boredom and another quarter for various reasons. Interestingly, only 3% noted

they play computer games to release tension. The fun young gamer’s experience might

come from the group experience (e.g., “ich dabei abschalten kann und es Spaß macht

allein oder vorallem mit Freunden.” - “I can switch off and have fun alone or with

friends.”) and from the escapism in traveling to other worlds and being able to be a

different character (e.g., “Ich spiele oft Compuerspiele (meistens Online Spiele), weil man

selbst einfach auch in eine andere Rolle schlüpfen kann und so sein kann wie man will.” -

“I often play computer games (mostly online games), because you can dive into another

role and be whoever you like.”).

Playing means fun
47%

Boredom
26%

Release tension
3%

Other reasons
24%

Why do you play computer games?

Survey amongst secondary school students in Austria (N = 302)

Research and Results

80

5.2 First year of game programming with XNA

In the first year41 of game programming, there was no GamePinS framework, only the

intention to use game programming in schools to increase learning by providing lessons in

the interesting and motivating field of computer science. In that first year, students used

the following tools to create their games:

 Microsoft Visual Studio C# 2010 Express

 XNA Game Studio 4.0

 GIMP 2.4

 Audacity

5.2.1 Course and research design

The initial research design consisted of a general questionnaire and a post-GamePinS

questionnaire, as illustrated in Figure 44. First, groups A and B had to complete the general

questionnaire before beginning the game programming activities. Next, GamePinS

activities followed. At this time, GamePinS was more of a didactical framework describing

the structure of two semesters of computer science with game programming. The game

programming itself was realized using Visual Studio C# 2010 Express and “plain” XNA.

At the end of the second semester, students in both groups filled out the given survey again.

In addition, the general questionnaire targeted a group of students (i.e., group C) who were

not involved in game development, thus helping to determine attitudes toward game

development.

41 The first year started in September 2011 and ended in June 2012.

Research and Results

81

Figure 44 – Research approach using questionnaires and three groups in the first year

The general questionnaire contained the same questions for groups A, B, and C.

Nevertheless, groups A, B, and C were evaluated separately. For groups A and B, it was

important to compare expectations about game programming with the experiences students

had after one year of game programming. Group C was included to obtain data to generate

a bigger sample for determining attitudes toward game development.

5.2.2 Activities

During the first semester42, students started with programming lessons in C#, which

covered basic input/output operations (e.g., Console.ReadLine(), Console.WriteLine()),

conversion operations (e.g., int.Parse()), conditionals, SWITCH statements, and loops

(i.e., FOR, WHILE). Further, the necessary tasks for creating game graphics using GIMP

were discussed and practiced, as was audio editing with Audacity.

42 September 2011 through February 2012.

Group C

General

questionnaire

Group A

GamePinS

activities

Post-GamePinS

questionnaire

General

questionnaire

Group B

GamePinS

activities

Post-GamePinS

questionnaire

General

questionnaire

Start of

year

End of

year

Research and Results

82

In the second semester43, students formed two game programming groups. Groups

consisted of three or four core engine programmers, one or two graphics artists, one or two

sound engineers, and one project manager. The two teams worked on two separate game

projects, one was a jump-and-run project in which a paperclip must navigate through a

hostile office environment, the second was centered on a robo-hobo44 in a futuristic

dystopian scenario on a wasted earth seeking revenge and justice. Game programming was

implemented only using XNA, which was more flexible than DirectX programming.

Finally, a sample XNA project was introduced to provide an easier start for the students.

5.2.3 Questionnaire and results

The questionnaire for the game programming activities consisted of various questions

using ordinal scaled answer types and free text answers. Each question was equipped with

certain answer possibilities. In addition, the design of the questionnaire provided the

possibility to skip certain questions, which resulted in a “not stated” entry.

The group of items using nominal and ordinal scales comprised the following answer

types45:

 Yes/No question: “Yes”; “No”

 Gender: “Female”; “Male”

 Levels of Agreement: “completely agree”; “agree“; “undecided”; “disagree”;

“completely disagree”

 Time per week A: “no time“; “up to 2h“; “2+ to 6h“; “6+ to 10h“; “10h+”

 Time per week B: “up to 5h“; “5+ to 10h“; “10+ to 15h“; “15+ to 20h”; “20h+”

 Changes: “strongly reduced“; “reduced”; “stayed the same”; “increased”; “strongly

increased”

 IT skills level: “Beginner”; “Intermediate”; “Adept”; “Power user”; “Expert”

 Age: “younger”; “13”; “14”; “15”; “16”; “17”; “older”

43 Middle of February 2012 through the end of June 2012.

44 This term refers according to the students to a decommissioned robot who roams around the envisioned

world.

45 Only answer types listed were used in the survey.

Research and Results

83

 Activities on Computer: “Communication (Facebook46, Chats, e-mail)”;

“Browsing the Internet”; “Playing games”47; “Activities for school”; “Other

activities”48

5.2.3.1 Statistical data

Statistical data was calculated to look into further details in cases of irregularities within

answers or as baseline data in support of new findings that might not be relevant to our

current purpose here (i.e., possibly leading to new findings in different contexts, e.g.,

“gender and computer games”).

Gender

Question text: Geschlecht

Translation: Gender

Possible answers: “Female”; “Male”

As shown in Figure 45, the female/male distribution of participants was not even (i.e.,

three females and 22 male students). Gender studies in the context of information

technology (Demetrulias, 1985; Shashaani, 1994) is also an interesting research area49, but

gender questions are not covered in this thesis, since the answers did not show significant

differences, although there might be differences in the way problems were solved by girls

versus boys.

46 “Social” activities on Facebook, without Facebook games.

47 Games, including Facebook games.

48 Activities not mentioned in the previous categories.

49 This applies to both the gaming context and for me personally.

Research and Results

84

Figure 45 – Distribution of female and male participants involved in GamePinS year 1 (N = 26)

Internet Access

Question text: Ich habe zu Hause einen Internetzugang.

Translation: I have Internet access at home.

Possible answers: “Yes”; “No”

As shown in Figure 46, the question regarding Internet access showed that most students

(i.e., 24 participants) had Internet access. There were no negative answers, but two students

did not state anything in response to this question.

Female; 3; 11%

Male; 22; 85%

Not stated; 1;
4%

Distribution of female and male participants

Survey amongst secondary school students aged 13 to 17 years (N = 26)

Research and Results

85

Figure 46 – Internet access at home (N = 26)

Age

Question text: Alter

Translation: Age

Possible answers: “younger”; “13”; “14”; “15”; “16”; “17”; “older”

As shown in Figure 47, the student ages ranged from 13 to 16 years old, which might

be somewhat surprising since the survey targeted one cohort, i.e., the fifth grade of AHS-

secondary school (i.e., which equals the ninth level counted from the first grade in primary

school).50

Students are typically 14 years old when they enter the fifth grade, turning 15 at some

point during the academic year. Younger students (i.e., 13-year-olds) started primary

school at the age of five instead of six, in most cases because they were born in autumn

and were ready for school (BMUKK, n.d.-a) as determined by the headmaster of primary

schools. The students aged 15 and 16 repeated any grade once or twice during their school-

career.51

50 For more information about the Austrian school system, see (BMUKK, n.d.-c) and (BMUKK, n.d.-b).

51 In the sample, there was also one 17-year-old student, but he did not fill out the survey due to his being

absent from class that day.

Yes; 24; 92%

No; 0; 0%

Not stated; 2;
8%

Internet access at home

Survey amongst secondary school students aged 13 to 17 years (N = 26)

Research and Results

86

Figure 47 – Age distribution of students participating in GamePinS

5.2.3.2 Activities with the personal computer or smartphone and IT skills

Question text: Meine Computerkenntnisse bewegen sich auf folgendem Niveau

Translation: My computer-skills match the following level

Possible answers: “Beginner”; “Intermediate”; “Adept”; “Power user”; “Expert”

As shown in Figure 48, there were no students who classified themselves as a

“Beginner.” Interestingly, most students (15 out of 26) counted themselves as

“Intermediate” users, raising the question as to why students saw themselves at a lower

level than I originally expected52.

Since there can be many reasons (e.g., recent experiences with complicated software, a

weak classification system, low self-esteem) why one sees him or herself in the middle of

the skill scale, students were asked to discuss the meaning of the classification in groups,

presenting their results later. This approach should enforce anonymity as compared to

52 The expectation here was “Adept.”

0

5

17

3

1

0 0
0

2

4

6

8

10

12

14

16

18

younger 13 years 14 years 15 years 16 years 17 years older

Survey amongst secondary school students aged 13 to 17 years (N = 26)

Age

Research and Results

87

asking single students for their self-classification, then asking them for their reasons.

Results showed that students agreed that adepts, power users, and experts had to be able to

use every software package that they worked with “fluently” (i.e., much like speaking a

language fluently) without the help of the Internet, reading manuals, or trial-and-error

techniques.

Figure 48 – IT skills of students involved in GamePinS

Remarkably, although students agreed to define “Adept” and above as “operating a

program fluently,” there was also a consensus that even experts cannot know everything

in the software world and are allowed to “Google” information without losing their expert

status.

5.2.3.3 Computer usage: time spent in front of computer

Question text: Wie viele Stunden verbringst du pro Woche vor dem Computer?

Translation: How many hours do you spent in front of a computer per week?

Additional remark: Only the time when not in school

Possible answers: “up to 5h”; “5+ to 10h”; “10+ to 15h”; “15+ to 20h”; “20h+”

0

15

5

4

2

0

2

4

6

8

10

12

14

16

Beginner Intermediate Adept Poweruser Expert

Survey amongst secondary school students aged 13 to 17 years (N = 26)

IT-skills

Research and Results

88

As shown in Figure 49, most students (i.e., 85%) involved in the GamePinS project

spent more than five hours per week in front of a computer. The remark “Only the time

when not in school” should ensure that only the students’ spare time was counted.

Figure 49 – Time spent (hours per week) using a computer

When the same students were asked how much of the time spent in front of the computer

was for “activities for school,” three students answered “not at all” and 14 answered “less

than 2 hours”53 (Comber, 2012c). A detailed comparison, including four common

activities, is shown in Figure 50.

53 Note that 10 students answered “2 to 6 hours” and one answered “6 to 10 hours.”

4

6 6

5 5

0

1

2

3

4

5

6

7

< 5h 5 - 10h 10+ - 15h 15+ - 20h > 20h

Survey amongst secondary school students aged 13 to 17 years (N = 26)

Time spent in hours in front of a computer

Research and Results

89

Figure 50 – Time spent for different activities in front of a computer

Eleven students spent less than two hours per week of their time communicating on the

computer, nine students spent from two to six hours, four students spent six to ten hours,

and two students spent more than ten hours (Comber, 2012c).

The question regarding other activities with the computer revealed the following results:

 not at all: 5

 <2 h: 11

 2–6 h: 7

 6–10 h: 1

 >10 h: 1

 no answer: 1

0

5

10

15

20

25

not at all < 2h 2 - 6h 6 - 0h > 10h

Computer usage: various activities compared

Activities for school

Playing computer
games: PC- or console
games including flash-
and facebookgames
Surfing, Reading articles
on the internet (e.g.
news, magazines)

Writing programs for
oneself (not for school)

Survey amongst secondary school students aged 13 to 17 years (N = 26)

Activities

Research and Results

90

If participants checked “other activities,” they were asked to describe these other

activities. Clustering was performed on the given answers, with results summarized in

Figure 51.

Figure 51 – Other activities in front of the computer

5.2.3.4 Game development and IT Skills

The possible answers for the following items were: “completely agree”; “agree”;

“neutral”; “disagree”; and “completely disagree.”

Question text: Durch die Spieleprogrammierung habe ich gelernt besser zu

programmieren!

Translation: Through game programming, I've improved at writing programs.

This item specifically targeted skills for writing programs; the results are shown in

Figure 52. On the one hand, many students perceived an improvement in their

programming skills, but seven students felt their programming skills decreased. At first

glance, that seems to be a paradox, but this perceived decrease is not a paradox, but rather

a result of a sharper self-awareness. Programming skills did not actually decrease, but the

knowledge of what students did not know before increased, and this fact led to a seemingly

paradoxical result here.

Watching
videos/video clips

44%

Listening to music
16%

Image Editing
12%

Others (art with
drawing tablets,
search pictures,

reading mangas…)
28%

Other activities with a computer

Survey amongst secondary school students aged 13 to 17 years (N = 26)

Research and Results

91

Figure 52 – Perceived improvement in programming skills

Question text: Durch die Spieleprogrammierung verstehe ich besser wie Programme

ablaufen! (IT2)

Translation: Through game programming, I better understand how programs work.

As shown in Figure 53, similar results were evident for this question, where the logic

of programs was tested. As with writing programs, a greater knowledge of how programs

work went hand in hand with an enhanced knowledge of all the things the students did not

know about this topic.

0

7

4 4

9

2

0

1

2

3

4

5

6

7

8

9

10

strongly
decreased

decreased no change increased strongly
increased

no answer

Survey amongst secondary school students aged 13 to 17 years (N = 26)

Through game development, my skills in programming increased/decreased

Research and Results

92

Figure 53 – Changes in the understanding of the logic of programs

5.2.3.5 Algorithms and software development

Items (IT1-3) addressed the understanding of algorithms and software development.

Again the categories here were: “completely agree”; “agree”; “neutral”; “disagree”;

and “completely disagree.” Figure 54 summarizes the results.

Question text: Durch die Spieleprogrammierung verstehe ich besser was ein Algorithmus

ist! (IT1)

Translation: Through game programming, I better understand what an algorithm does.

Question text: Durch die Spieleprogrammierung verstehe ich besser wie

Softwareprojekte ablaufen! (IT2)

Translation: Through game programming, I better understand how software development

projects work.

Question text: Durch die Spieleprogrammierung welche Probleme beim Entwickeln von

Software auftreten! (IT3)

Translation: Through game programming, I better understand the problems and

challenges that occur during the development process.

0

7

2

7

9

1

0

1

2

3

4

5

6

7

8

9

10

strongly
decreased

decreased no change increased strongly
increased

no answer

Survey amongst secondary school students aged 13 to 17 years (N = 26)

Through game development, my understanding of the logic of programs increased

Research and Results

93

Figure 54 – Understanding of algorithms and software development

5.2.3.6 Engagement

(A1) Game programming in computer science increases the engagement of students.

While there are many studies focused on engagement in computer games—e.g.,

Boyle et al. conducted a meta-study that covered engagement in playing digital

entertainment games (Boyle, Connolly, Hainey, & Boyle, 2012)—there have been far

fewer reported studies on engagement in the development of computer games by students,

and there is a scientifically unexplored area in the scope of secondary school computer

science education aimed at fostering the understanding of programming, modeling, and

algorithms.

The attitude of students toward game programming seemed promising (see Figure 55),

but did not meet student expectations following the completion of their game development

projects (see Figure 56).

0

2

4

6

8

10

12

fully agreed agreed neutral disagreed fully
disagreed

no answer

Understanding of algorithms, software development, and challenges

Through game
programming I understand
better, what an algorithm
does!

Through game
programming I understand
better how software
development projects work!

Through game
programming I understand
better which
problems/challenges occour
in the develping process!

Survey amongst secondary school students aged 13 to 17 years (N = 26)

Research and Results

94

Figure 55 – Attitude of students to the development of a computer game in class

Figure 56 – Change of motivation of students through game development project

9

7 7

1

2

0

1

2

3

4

5

6

7

8

9

10

fully agreed agreed neutral disagreed fully disagreed

Survey amongst secondary school students aged 13 to 17 years (N = 26)

The chance to develop a computer game was motivating

2

14

4 4

2

0

2

4

6

8

10

12

14

16

fully agreed agreed neutral disagreed fully disagreed

Survey amongst secondary school students aged 13 to 17 years (N = 26)

The actual development of a game was motivating

Research and Results

95

5.2.3.7 Teamwork

(A2) Project-based game programming in computer science fosters teamwork

competencies.

Project-based learning can improve the teamwork skills of students (Huang, 2010). For

our particular case, we investigated whether teamwork skills improved due to GamePinS

activities. As shown in Figure 57, especially in secluded afternoon lessons, where there

was a tendency among some students to miss class (which was criticized by other

students54) and where some students did not appropriately participate in the projects55, it

seems interesting to determine if teamwork competencies can still be improved.

Figure 57 – Changes of teamwork skills through game development

54 “I did not like the fact that most students did not appear”; “Nearly no teamwork occurred, because

the half [half of the pupils, O.C.] missed [the lessons in the afternoon, O.C.]” (Comber, 2012a).

55 “The others mostly listened to music and did not contribute much to the work” (Comber, 2012a).

0

2

11

9

4

0
0

2

4

6

8

10

12

strongly
decreased

decreased no change increased strongly
increased

no answer

Survey amongst secondary school students aged 13 to 17 years (N = 26)

Teamwork competences increased compared the regular curriculum

Research and Results

96

5.2.3.8 Promoting basic concepts of computer science

(A3) Game programming promotes basic concepts of computer science more effectively

than other typical software development scenarios.

After formulating assumption (A3), the first question was, “what are typical software

development scenarios?” Certainly, not all possible alternative scenarios can be tested

against game programming. Implementing an example scenario in the style of “Mister

Smith owns a small company and he wants an employee to implement a sorting algorithm

for customer orders by priority, which is represented by a whole number” seemed to

produce too much bias, because such problems appeared boring to students. Therefore, it

made sense to specify together with students similar software projects in terms of similar

dimensions, workload, and structure.

How did the first round of game development take place? In the first weeks of the school

year, students learned about the basics of image processing and programming in guided

lessons as a group, i.e., every student listened to the same lecture and performed the same

task, such as writing the aforementioned program called “The Matrix.” Later, the first steps

with C# and XNA were undertaken. In these lessons, loading and displaying our created

images (i.e., created in GIMP), resizing, and moving them were covered.

While motivation remained high (Comber), the understanding of algorithms did not

significantly change, as shown in Figure 58.

Research and Results

97

Figure 58 – Changes in the understanding of algorithms in comparison to regular curriculum

As shown in Figure 59, the understanding of the logic of programming increased,

though which aspects students referred to here is a subject for further research. In verbal

feedback, “object-oriented concepts” and “how to properly address properties and use

methods of objects” was mentioned.

2

3

11

8

1 1

0

2

4

6

8

10

12

strongly
decreased

decreased no change increased strongly
increased

no answer

Survey amongst secondary school students aged 13 to 17 years (N = 26)

Through game development, my understanding of algorithms increased or decreased
in comparison to regular curriculum

Research and Results

98

Figure 59 – Changes in the understanding of the logic of programs in comparison to the regular curriculum

5.2.3.9 Complexity of development framework

(A4) The complexity level of the framework used influences the depth of understanding

of the concepts to be learned.

At first glance, it might seem apparent that simple frameworks, such as Scratch (Mitchel

Resnick et. al.), Logo (Logo Foundation, 2011), AntMe ("Website - AntMe "), Greenfoot

("Website - Greenfoot,"), and KidsProgrammingLanguage (KPL) ("Website -

KidsProgrammingLanguage KPL ") (now Phrogram (Phrogsoft, 2012)), are easier to learn

and leave more time to attend to concepts of computer science, but on the other hand, the

simplicity might hide pathways to deeper understanding. More complex frameworks, such

as C# and XNA or JavaScript and the HTML 5 Canvas element, not only require a deeper

understanding as to how to properly use them, but also offer more flexibility. The price for

this is a steeper learning curve (p. 46). The positively stated assumption is tested to prevent

double negation. Both results lead to helpful and interesting conclusions that can serve as

a starting point for further investigation.

0

7

2

7

9

1

0

1

2

3

4

5

6

7

8

9

10

strongly
decreased

decreased no change increased strongly
increased

no answer

Survey amongst secondary school students aged 13 to 17 years (N = 26)

Through game development, my understanding of the logic of programs increased or decreased
in comparison to the regular curriculum

Research and Results

99

5.2.4 Summary of the first year

The first year of game programming was conducted using Microsoft Visual Studio

Express 2010, the programming language C#, and XNA 4.0 Game Creators Studio. The

challenge here was the complicated code necessary just to create a sprite that can then be

moved around using the arrow keys. These circumstances caused the motivation in the

actual programming to be lower than the anticipated motivation.

Figure 60 – Expectations and motivation versus actual programming in practice and motivation

As shown in Figure 60, from this unsatisfying situation and specific feedback from

students, the seemingly high complexity had a negative impact on actual motivation, which

led to the decision to simplify the framework by implementing another layer of methods

that would allow the loading and controlling of sprites to be much easier. Thus, the

GamePinS framework was born.

0

2

4

6

8

10

12

14

16

fully agreed agreed neutral disagreed fully
disagreed

Expectations and motivation vs. reality and motivation

The chance to
develop a
computer game
was motivating!

The actual
development of a
game was
motivating

Survey amongst secondary school students aged 13 to 17 years (N = 26)

Research and Results

100

5.3 Second year of game programming

In the second year, the GamePinS framework was introduced to students. GamePinS

and corresponding preparation activities started in January 2014 and ended in June 2014.

From September 2013 through December 2013, other substitute teachers held non-game

programming lessons, which varied from how to use Office applications to programming

with Visual Basic.

5.3.1 Research design updated to include GamePinS versus other software

projects

In the second year, not only was the GamePinS framework introduced, but also an

evolution in the research design occurred. Changes were based on the following

considerations. In the first year, students involved in game development were asked what

differences they experienced between game development and the regular curriculum. This

approach had the advantage that the same persons could provide data, and thus it was

possible to avoid any bias that arises out of different group compositions. In contrast, there

was no means to compare learning outcomes concerning IT skills, because students were

going through the regular curriculum56 in the first place, then were introduced to game

development. Thus, every benefit that might stem from game development could also have

originated from previously working on the other programming activities.

In recognition of the fact that it would be impossible to obtain useful information about

the effect of the program on the students’ IT skills if all of the students were in the same

group, it was decided to form two groups to allow for a comparison to be made. Both

groups learned the same basics in the same way and were only divided after acquiring such

56 Such content included programming tutorials, assignments, and everyday problems in IT, i.e., console

programming, input/output, calculations, randomizing, Windows programming, and projects chosen by

students that ranged from an outfit advising program (e.g., answering “which part of clothing (e.g.,., a dress)

matches other parts of clothing well (e.g.,., shoes, bag)?”) to how to calculate the correct value for Alpine

ski binding based on physical data and ski drivers skills.

Research and Results

101

basic skills into one GamePinS group doing game programming and another group focused

on software development.

5.3.2 Getting results with small groups

Group A consisted of six participants, while group B had seven participants. Therefore,

no elaborate statistical testing57 was planned. The data (see Section 5.3.3) was instead used

to identify tendencies and perform a triangulation together with written statements from

students to obtain a detailed picture.

Feedback from the questionnaire and statements from students were very helpful, but

to truly answer the question of whether game development can boost IT skills, an IT skills

test was conducted with the students (see Section 5.3.5).

5.3.3 Quantitative data from the second year

In the following subsections, selected data is presented, with complete datasets available

online for 2012 (Comber, 2012b) and 2014 (Comber, 2014).

5.3.3.1 Statistical data

In the second year, there were two groups of seven students that were supposed to

participate in the evaluation, but not all were present at the final questionnaire session. The

GamePinS group (i.e., group A) was represented by six students, while the Software

Projects Development group (i.e., group B) was represented by seven students.

In the GamePinS group, there were six participants between 14 and 15 years old and

one 17-year-old student (five male, one not stated) in the survey and the IT skills test. In

the other software projects group, seven students participated, with six between 14 and 15

years old and one 13-year-old student (three males, two females, and two not stated) in the

survey and IT skills test. All students in both groups stated that they had Internet access at

home – see the figures online (Comber, 2014).

57 As described in numerous statistical manuals, e.g. (Field, 2009).

Research and Results

102

5.3.3.2 IT skills self-estimation

As shown in Figure 61, the IT skills self-estimation results were quite evenly

distributed, with most students estimating themselves as intermediate or adept.

Figure 61 - Distribution of computer IT skills for groups A and B (2014)

5.3.3.3 Activities and computer usage

Regarding time spent in front of the computer, with answers of “communicating via

social networks, chats, discussion boards, e-mail,” “playing computer games via PC or

console games, including Flash, and Facebook games,” “activities for school,” and

“surfing, reading articles on the Internet (e.g., news, magazines),” the results did not

reveal any significant deviations from the larger sample of all collected attitudes.

0

2

4

0 0 0

1

3 3

0 0 0
0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

Beginner Intermediate Adept Poweruser Expert no answer

Survey amongst secondary school students aged 13 to 17 years (N1 = 6, N2 = 7)

IT skills self-estimation for group A (dark blue) versus group B (light blue)

Research and Results

103

5.3.4 Comparing the GamePinS and software development groups

As shown in Figure 62, improvements to understanding “how programming works”

were measured via self-estimation and showed similar results for programming and other

software projects.

Figure 62 - Improvements to understanding how programs work

5.3.4.1 Actual changes in writing programs

As shown in Figure 63, actual improvements in writing programs were expected to be

in correlation with the improvements of understanding programs (i.e., Figure 62), but they

were not. The GamePinS group perceived a significant improvement, whereas the other

project group that recreated the “2048” puzzle based on a Windows forms project

experienced a decrease in actual programming skills.

1

4

1

0 0 0

1

3

2

0 0

1

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

fully agreed agreed neutral disagreed fully
disagreed

no answer

Survey amongst secondary school students aged 13 to 17 years (N1 = 6, N2 = 7)

Through game programming (dark blue) versus other software projects (light blue),
I have improved my understanding of how programming works

Research and Results

104

Figure 63 – Actual perceived changes of programming skills

At first glance, an explanation here might be that students from the second group knew

more about the things they actually did not know after programming (i.e., recognizing how

much more there is to learn). This would also be true for the GamePinS group, because

knowledge also increased in this group, but this was not the case. A straightforward

explanation for the fact that students working on the other software projects experienced a

decrease in understanding of programing skills is that they did not perform as efficiently

as they expected to. This might be caused by several reasons, one being that game

programming was more interesting and students did not give up so easily given a variety

of challenges. For this theory, though, there is only weak support because the motivation

in the GamePinS group was only slightly higher, as shown in Figure 64.

3

2

1

0 0 00

1 1 1

3

1

0

0,5

1

1,5

2

2,5

3

3,5

fully agreed agreed neutral disagreed fully
disagreed

no answer

Survey amongst secondary school students aged 13 to 17 years (N1 = 6, N2 = 7)

Through game programming (dark blue) versus other software projects (light blue),
I have improved my ability to write programs

Research and Results

105

Figure 64 – Results showing how interesting game development was for the GamePinS group versus that experienced

by the other software projects group

Another possibility here is that without a supporting structure or framework, jumping

into the Windows forms programming (even with a thoughtfully chosen project) is too

complex and difficult.

Actual changes in writing programs were measured via self-estimation, but this self-

estimation showed a correlation with the IT skills test in which the students from the

GamePinS group also performed significantly better than the other software projects group

(see Figure 68 and Figure 74); however, the gap in the improvement in programming is

very interesting, and it was decided that the results from year two would be cross-checked

with the results from year three (once they were obtained).

3

2

1

0 0 0

1

4

1

0 0

1

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

fully agreed agreed neutral disagreed fully
disagreed

Survey amongst secondary school students aged 13 to 17 years (N1 = 6, N2 = 7)

Developing a computer game (dark blue) versus other software projects (light blue) is interesting

Research and Results

106

5.3.4.2 Understanding of algorithms

As shown in Figure 65, students from the GamePinS group perceived a slightly better

improvement in the understanding of algorithms than students in the other software

projects group.

Figure 65 – Results regarding student understanding of algorithms

2 2

1 1

0 00

4

1 1

0

1

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

fully agreed agreed neutral disagreed fully
disagreed

no answer

Survey amongst secondary school students aged 13 to 17 years (N1 = 6, N2 = 7)

Through game programming (dark blue) versus other software projects (light blue),
I better understand what an algorithm does

Research and Results

107

5.3.4.3 Understanding software development and challenges in the development

process

Students from both groups, i.e., the GamePinS group and the group working on other

software projects, stated that their understanding of how software development projects

work increased, but no significant difference between the groups was identified, as shown

in Figure 66.

 Figure 66 – Results regarding student understanding of software development projects and the challenges of the

development process

5.3.4.4 Teamwork

As shown in Figure 67, teamwork skills increased in both groups. Compared to the

regular curriculum, game development showed better teamwork performance, as

expected.

1

4

0

1

0 00

4

1 1

0

1

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

Through game programming (dark blue)
versus other software projects (light blue), I

better understand how software development
projects work

Survey amongst secondary school students
aged 13 to 1 7 years (N1 = 6, N2 = 7)

0

3

2

0 0

1

0

4

1 1

0

1

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

Through game programming (dark blue)
versus other software projects (light blue), I

better understand the problems and
challenges that occur in the develpment

process

Survey amongst secondary school students
aged 13 to 17 years (N1 = 6, N2 = 7)

Research and Results

108

Figure 67 – Changes in teamwork skills

Comparing GamePinS and the other software projects group, teamwork improved more

with the latter group than with GamePins. Better teamwork is clearly an attribute of how

the learning was organized, namely project-based learning, and is not a specific

characteristic of game development.

5.3.5 Achievements in the IT skills test

The IT skills test was implemented as a test in Moodle with the help of the Moodle Quiz

tool (GAMING, 2005). The test relied on C#, since this was the language used to

implement all game programming for group A and all software development project work

for group B. Each quiz item had a certain amount of points assigned, with the total amount

of points set to 34.

As shown in Figure 68, the overall IT skills test results average was 25.47 points for the

GamePinS group and 10.86 points for the other software projects group. Details of these

results are discussed in Section 5.3.5.1.

0

1

3

1 1

0 0

2

3

1

0

0,5

1

1,5

2

2,5

3

3,5

strongly
decreased

decreased no change increased strongly
increased

Survey amongst secondary school students aged 13 to 17y (N1=6, N2=7)

Changes of teamwork skills

Research and Results

109

Figure 68 – Total IT skills test scores for the GamePinS and other software projects groups

Q1 – Data types (4 points)

Shown in Figure 69, Question 1 tested basic knowledge of data types. The exercise here

was to assign the appropriate data type to the corresponding values.

Figure 69 – Match the data types to the corresponding values

 (Translation) Assign the corresponding data types to the following values.

Feedback after the test was finished included the correct and incorrect answers, as well

as information regarding the correct answer.

 -

 5,00

 10,00

 15,00

 20,00

 25,00

 30,00

GamePinS Other software projects

25,47

10,86

Total IT skills test scores for GamePinS (dark blue) versus other student projects
(light blue)

Survey amongst secondary school students aged 13 to 17 years (N1 = 6, N2 = 7)
Max. possible score: 34 points

Research and Results

110

The correct answers are: true ↔ bool

456 ↔ int

12.3456756 ↔ double

“Halli Hallo!” ↔ string

Q2 – Logical conditions (8 points)

Shown in Figure 70, this question determines if students have learned to think logically

and transform their logical solutions into correct source code. The task was to formulate a

logical condition, which was embedded in a while loop, under which the squirrel continues

to search for food.

Figure 70 – Testing logical thinking and the ability to transform results into correctly written source code

The story for this test item was centered on a squirrel that was introduced earlier in

different examples during lessons, thus students were familiar with the squirrel’s sample

character, so they did not have to wonder about biological, or any other, circumstances and

could therefore concentrate solely on the solution.

Research and Results

111

(Translation) The squirrel Hansi is terribly hungry. Luckily, Hansi knows a place where

plenty of food is available. The problem is a hunting cat that lurks around the food and

has already devoured some squirrels.

Fill in the blank space in the WHILE-loop such that the squirrel collects food as long

as it has not collected enough already and also as long as there is no danger.

bool collectedEnough = false;

bool Danger = false;

while ()

{

 // The function LookoutforDanger() returns true if danger is detected

 Danger = Hansi.LookoutforDanger();

 // The function CollectFood() lets Hansi collect food

 // it retuns true if enough food was collected

 collectedEnough = Hansi.CollectFood();

}

Possible correct answers were: while(!collectedEnough && !Danger) and

while(collectedEnough==false && Danger==false). Any similar

permutations, such as while(!Danger && !collectedEnough), also counted as

correct answers.

Q3 - Understanding what an algorithm does (8 points)

For Question 3, the task was to analyze what the algorithm shown in Figure 71 does.

Figure 71 – Test item of understanding what an algorithm does

Research and Results

112

(Translation) Take a closer look at this function:

int Calculate(int p)

{

 if (p > 0) return p + Calculate(p - 1);

 else return 0;

}

Which result does this function produce, if it is called like this:

Calculate(4);

Given four as an example value, during the IT skills test, random values between two

and five were used, with the correct result automatically calculated by the quiz tool using

the formula
𝑛 (𝑛+1)

2
 . This formula is reminiscent of Carl Friedrich Gauß (GAMING, 2005).

Indeed, the formula itself is of even older origin, going back to the Pythagoreans (Thomas

W Malone & Lepper, 1987); however, in the context of solving this problem from the

student’s perspective, the student’s level of knowledge with respect to the formula did not

have any effect.

After the student answered this question, feedback here was an explanation of what the

function calculates:

(Translation) This function calculates the sum from p down to 1 in a recursive way.

Example: p = 4;

The function calculates: 4 + 3 + 2 + 1

Result: 10

Q4 – Variables (6 points)

Shown in Figure 72, the task of Question 4 was to switch the values of two variables.

The use of a temporary variable was not only allowed, but requested.

Research and Results

113

Figure 72 – Switching the values of two variables with the help of a temporary variable

(Translation) Given the following variables:

int a;

int b;

int c;

On program start, the user enters the value for a and another value for b.

Type in the necessary source code to switch the values of a and b. Important: Please

do not use spaces in your source code58.

The solution is: c=a;

 a=b;

 b=c;

The recommendation not to use the extra spaces was stated, because the automatic

processing of the test and automatically generated feedback was easier to specify without

any deliberate number of spaces. After the test, together with the students, a review to

correct the points for correct answers marked as incorrect by the Moodle quiz system took

place.

Q5 – Mathematical/analytical thinking (8 points)

For Question 5, shown in Figure 73, students had to switch two variables without the

help of a temporary variable. To achieve this, an arithmetical solution is the best approach;

however, a hint that a mathematical approach leads to the solution was not given to

58

Research and Results

114

students, so students had to think analytically to find the approach, and then perhaps do an

exemplary calculation in their heads to verify the concept. To grasp the concept in full

detail, students also had to think analytically to answer the question, “which variable has

which value at which time?” Further, a basic understanding of an algorithm was necessary

to succeed. Those numerous demands on various levels are the reason why this item was

worth eight points, whereas Question 4 was only worth six points.

Figure 73 – Switching the values of two integer variables without using a temporary variable

(Translation) Given are the following variables:

int a;

int b;

On program start, the user enters the value for a and another value for b.

Type in the necessary source code to switch the values of a and b without the use of a

temporary variable. Important: Please do not use spaces in your source code.

A solution here is a=a+b;

b=a-b;

a=a-b;

5.3.5.1 Detailed results of the IT skills test

Shown in Figure 74, the results of the IT skills test were rather surprising. Although

scientifically, various different outcomes were anticipated, such a strongly significant

difference between the GamePinS group (i.e., group A) and the other software projects

Research and Results

115

group (i.e., group B) was not expected. While for the data type question (i.e., Question 1),

groups A and B scored nearly the same, all other questions showed a huge gap. For

example, for Question 2, regarding logical conditions, students undergoing the GamePinS

curriculum earned nearly twice as many points as students in the other group. Similarly for

Question 3, regarding the recursive function, students from the GamePinS group

performed twice as well. For Question 4, regarding the switching of variables with a

temporary variable, the GamePinS group showed significantly better results. To

successfully complete the last question (i.e., Question 5), regarding the switching of

variables without the use of a temporary variable, analytical and mathematical thinking

were required; the GamePinS group earned an average score of 5.67, which was more than

10 times higher than that of the other software projects group, who had an average score

of 0.46.

Figure 74 – Scores from the IT skills test: GamePinS versus other software projects

5.3.6 Discussion of the IT skills test

The IT skills test was designed to determine the skills of students in selected areas of

computer science; however, the design of the IT skills test had some limitations. One of

4,00

5,33

6,67

3,80

5,67

3,86

2,29 2,29
1,98

0,46

 -

 1,00

 2,00

 3,00

 4,00

 5,00

 6,00

 7,00

Q1 - Data types Q2 - Logical
conditions

Q3 - Functions Q4 -Variables Q5 - Analytical
thinking

Survey amongst secondary school students aged 13 to 17 years (N1 = 6, N2 = 7)
Max. possible score: Q1: 4, Q2: 8, Q3: 8, Q4: 6, Q5: 8

Scores from the programming IT skills test: GamePinS (dark blue) and the
other software projects group (light blue)

Research and Results

116

these limitations was the amount of time allocated to the test in school, given a maximum

of 50 minutes per lesson without a break. This had to take into account that students needed

to enter the lab, log in to their PCs, then start the test (i.e., approximately five minutes).

Explanation of the test took another five minutes. The buffer for technical difficulties was

also five minutes. This meant that the net test time was limited to only 35 minutes.

Except for the data types question, the underlying goal of the test was not to determine

how students reproduce previously learned material, but rather to let them approach and

solve new test items that they have never specifically seen before, an approach I call the

“riddle approach.” Compared with simple regurgitation of material, solving the given

riddles requires more thinking, creativity, and time. To provide the necessary time to let

students tinker with and think about solutions, the number of items had to be limited.

The necessary time/workload balance was estimated with the help of a student that was

not part of GamePinS or the other software projects groups; this student completed the test

separately. I was aware that too few items on the test would influence the validity of the

skills to be tested in a problematic way, so more research here to support the results is a

possible next step; however, through the limited item approach, nonetheless, comparative

results showing how each student group performed was determined.

5.3.7 Student feedback

How did you experience the game programming?

Overall, game programming was noted as being fun (e.g., “It was fun and I also learned

something,” “It was fun, but we didn't get so far,” “In the beginning, I missed many

lessons, but when I attended regularly, the lessons were fun”). Game programming was

also described as interesting, astonishing, and a great experience (e.g., “It was interesting

to create a game,” “It was interesting to see how a simple game was created, but we also

talked too much, which was on the other hand motivating,” “Programming was an

astonishing thing, it was a great experience”). All feedback from students was positive

and had “fun” and/or “interesting” in their statements. Since learning is very effective when

it is fun (GAMING, 2005; Lonati, Monga, Morpurgo, & Torelli, 2011; Thomas W Malone

& Lepper, 1987; Thomas W. Malone, 1980) and/or interesting (Hidi, 1990; Renninger,

Research and Results

117

Hidi, & Krapp, 2014), game programming is clearly a promising means to making learning

more effective.

Can game development increase motivation?

All students agreed that game development increases the motivation to learn

programming. One student stated the importance of motivation when doing things from

one’s own will (i.e., “Yes, but you have to be motivated if you want to do it yourself out of

your own will”). Another student pointed out that one source of motivation also stems from

the improved understanding of programming itself (i.e., “I think ‘Yes,’ because you

understand better how to program”). A third student pointed out that “…it depends on

what you program.”

One student emphasized that the practical work compelled him to think more

independently (i.e., “Yes, I think so, because you work more practically and because of

this, you think more by yourself”).

Another student stated that “game programming is not that interesting for me.” This

statement interestingly was from the student who answered the first item with “In the

beginning, I missed many lessons, but when I attended regularly, the lessons were fun.”

Either there is a contradiction between these two statements or the student had game

programming in mind when stating that “game programming is not that interesting” and

was thinking of other aspects of the lessons when stating “…when I attended regularly,

the lessons were fun.” Certainly, not everyone has to like games or game development, but

if the outcome of the lessons is sufficient, it might be seen a success.

(Can game development increase the motivation?) Was this the case in this class?

Why? Why not?

One student found the aspect of teamwork motivating, stating, “Through working in

teams, Yes!” Another student was generally interested in learning how to write programs

(i.e., “Yes, because I'm interested in learning how to write programs.” A third stated “Yes,

in any case and because I and nearly all others play games on the PC.” Another student

mentioned that he wanted to do some game programing anyway and pointed out, “Yes,

Research and Results

118

because, when you want to do something by yourself and accomplish it, it is satisfying.”

Another student declared, “I was mostly (except when I was tired) very motivated, because

the lessons were designed to be rich in variety.” Only the student that stated that game

programming was not interesting in the previous item left this field blank.

Would you prefer a more detailed structure for the project-based approach?

Aside from wondering if more examinations59 would be more effective than talking

through material from previous lessons, there was no call for a more detailed project plan

(e.g., “Does not have to,” “No, and it was more interesting than in other subjects,” “I

think you (the teacher) had a specific plan”).

What I want added

For this question, students primarily pointed out again that the lessons equated to fun

and that they also gained some experience in programming (e.g., “The lessons meant a lot

of fun and one learns from it,” “I thought the lessons were fun,” “I want to learn more

about programming,” “The lessons were the funniest and most interesting of all subjects.

Please stay like that so that other students might have fun in your lessons”).

Another student pointed out that although he likes computer science, other students

might prefer other subjects; he stated, “I like computer science. Another one likes Spanish.

Eaten was a peafowl.60 You are a good teacher and fun!” Also, one request was made to

do more with robots, especially Lego Mindstorms ("Website - Lego Mindstorms,") (e.g.,

“but I also wanted to work with Lego Mindstorm robots”), which is also well-known for

being used to motivate students in computer science lessons.

5.3.8 Summary of the second year

Activities in the second year took place from January 2014 through June 2014. This was

a shorter period than planned. The school year ranged from September 2013 to June 2014,

but as the responsible teacher, I returned to school after paternity leave in January 2014

59 A student stated that “perhaps some more examinations, but continuing talking was motivating”.

60 Not during the IT lessons, but rather by an ice bear in the zoo.

Research and Results

119

and started the curriculum anew. Although the overall time was less than in the previous

year of game development, students were more satisfied with the game programming

activities in the first year without GamePinS (compare to Section 5.2.4).

The GamePinS group estimated their improvement in programming to be considerably

higher than that of the other software projects group. Students working with GamePinS

performed more than twice as well as the other group in the IT skills test. In general, the

GamePinS group was as motivated as the other group, but learned more than the other

group.

A possible bias here could have been the aforementioned previous activities in computer

science classes. In particular, one group worked only with end-user Office applications,

and the other group had some programming lessons with Visual Studio 2010 and Visual

Basic, so they had an advantage in already knowing the Visual Studio development

environment. Surprisingly, the group with the Visual Studio/Visual Basic advantage,

which was group B (i.e., the other software projects group), performed weaker on the IT

skills test. Group A (i.e., the later GamePinS group) were working only with Office

applications, but performed much better on the IT skills test.

Research and Results

120

To summarize, the GamePinS activities led to higher scores on the tested IT skills than

in the other scenario, while overall, students were highly motivated.

5.4 The third and final year of game programming

Results from the previous year led to some interesting questions. In particular, one

question arose in several academic and research discussions, i.e., “are the better results of

the game development group really caused by a process within game development itself,

or are the outcomes caused by consequences of experimenter bias?” The question

regarding the causality of the intervention and outcomes is a legitimate and very delicate

question, because in our setting, I served as both the teacher who introduced GamePinS

and also the one who developed and employed it. Further, the experimenter was also the

teacher and had expectations61 regarding the outcome. To summarize, the question as to

the real cause of the observed improved performance of the GamePinS group had to be

explored.

The question of the cause of the performance improvement of the GamePinS is certainly

reminiscent of a standard problem of experimental design (Strickland, 2001a); there were

independent variables (i.e., the GamePinS curriculum versus the other software projects

curriculum), corresponding dependent variables (i.e., the performance of the students in

both groups), and many confounding variables (i.e., learning history or experience, skills

in the field of programming, the general intelligence and capabilities of students). While

such factors as experience, skills, and intelligence were estimated to be neutralized or at

least toned down within the sample, it seemed critical to extract the influence of the

teacher.

The influence of an experimenter can have a significant confounding impact. In

addition, if the experimenter is also the teacher, a possible bias must not be ignored and

has to be examined. To test the teacher’s influence, the classical control group design

seemed appropriate. Therefore, the focus of the last year was on researching how the

61 Expectations that I was consciously aware of and tried to take into account, but there is always a chance

to cause bias.

Research and Results

121

students of a comparable teacher performed with and without GamePinS. Out of the control

group design, as shown in Figure 75, a setting with four groups of students and two teachers

was developed, i.e., Teacher X – GamePinS (XA), Teacher X – OSCP62(XB), Teacher Y

– GamePinS (YA), and Teacher Y – OSCP (YB).

Figure 75 - Experimental design of the GamePinS versus other student chosen activities with control groups

Each teacher coached one group doing GamePinS and another group doing other

programming projects. The initial questionnaire was used to determine student attitudes

toward game development. Results are discussed in Section 5.1.

62 Other Student Chosen Projects

Teacher Y Teacher X

Group XA

GamePinS

activities

IT skills

Test

General

questionnaire

Group XB

GamePinS

activities

IT skills

Test

General

questionnaire

Group YA

GamePinS

activities

IT skills

Test

General

questionnaire

Group YB

GamePinS

activities

IT skills

Test

General

questionnaire

Research and Results

122

5.4.1 Achievements in IT skills test

Achievements in the field of IT skills were again determined by five different

assessments in an IT skills test. To check for bias, teacher X analyzed midterm grades and

assigned the group with the better grades to other student software projects, while the group

with the lower grades were assigned to GamePinS. Thus, this year, the GamePinS group

was also tested against the other group, with better-performing students in computer

science class in the previous midterm. For teacher Y, the average of the grades in two

groups were the same, so students were assigned randomly to either the GamePinS group

or the other group.

As shown in Figure 76, students of teacher X, i.e., the teacher who conducted GamePinS

the previous year, achieved better results for GamePinS (i.e., a total average of 22.04) than

for other student software projects (i.e., a total average of 14.25). The groups taught by the

teacher who joined the GamePinS activities in the actual school year yielded the following

results: GamePinS (21.60) and other student software projects (5.46). The maximum

number of possible points on the IT skills test was 36. For the total average, the total scores

of the individual students were added and divided by the number of students.

0,00

5,00

10,00

15,00

20,00

25,00

Teacher X -
GamePins

Teacher X -
OSCP

Teacher Y -
GamePinS

Teacher Y -
OSCP

22,04

14,25

21,60

5,46

Survey amongst secondary school students aged 13 to 17 years (NXA = 14, NXB = 10, NYA = 14, NYB = 13)
Max. possible score: 34 points

Total avg. score GamePinS (dark blue) versus other student projects (light blue)

Research and Results

123

Figure 76 – Achievements in the IT skills test, with two teachers and two groups per teacher

5.4.1.1 Detailed results of the IT skills test

The single items of the IT skills test were also analyzed. Students had to answer

questions regarding data types, logical conditions, algorithms, variables, and analytical

thinking. The outcomes for the single items contributed to a total score, though each

question was not equally weighted. On some test tasks, students of both groups from

teacher X performed similarly (e.g., data types and variables), while on other items,

students performed quite differently (e.g., logical conditions, algorithms, and analytical

thinking). For newly joined teacher Y, the differences were significant for all five parts.

Q1 – Data types

Question 1 regarding data types was again a question that required students to map

content to the most appropriate data types (see Section 5.4.1.1).

Figure 77 – Scores of student groups on Question 1 regarding data types

As shown in Figure 77, students of teacher X performed nearly equally, with the

interesting fact that the non-GamePinS group performed slightly better, which was likely

3,21

3,50

2,64

1,38

0,00

0,50

1,00

1,50

2,00

2,50

3,00

3,50

4,00

Teacher X -
GamePinS

Teacher X - OSCP Teacher Y -
GamePinS

Teacher Y - OSCP

Survey amongst secondary school students aged 13 to 17y (NXA=14, NXB=10, NYA=14, NYB=13)
Max. possible score: 4 points

Q1 - Data types - GamePinS (dark blue) versus other student projects (light blue)

Research and Results

124

caused by the generally better IT performance of the other group from teacher Y.63 For

teacher Y, the GamePinS students performed slightly better than the other student projects

group. The 2015 results confirmed the findings of the previous year. In the particular field

of data types, there were no large differences between GamePinS and other student projects

groups.

Q2 – Logical conditions

As shown in Figure 78, the question to examine student knowledge and skills with loops

and logical conditions showed a significant advantage for students working with

GamePinS (i.e., with a score of 4.57) with teacher X as compared with the other group

(i.e., with a score of 1.20) from teacher X. For teacher Y, this question yielded lower results

for this specific item, but the GamePinS group (i.e., with a score of 1.71) also performed

significantly better than the other group (i.e., with a score of 0.62).

63 For an explanation of the fact that the second group from teacher X had better results than last year,

see Section 5.4.1.1.

Research and Results

125

Figure 78 – Scores of student groups on Question 2 regarding logical conditions

Q3 - Understanding what an algorithm does

As shown in Figure 79, understanding what an algorithm does did not show huge

differences in the groups of teacher X, although the GamePinS group did perform better

once again, with 4.57 points, whereas the other group earned 3.20 points. Again, the

interpretation of the lower difference here seems to be due to the generally better-

performing other projects group. For teacher Y, with randomly assigned groups, the

GamePinS group, with a score of 6.86, clearly outperformed the other projects group with

a score of 2.46.

4,57

1,20

1,71

0,62

0,00

0,50

1,00

1,50

2,00

2,50

3,00

3,50

4,00

4,50

5,00

Teacher X -
GamePinS

Teacher X - OSCP Teacher Y -
GamePinS

Teacher Y - OSCP

Survey amongst secondary school students aged 13 to 17 years (NXA = 14, NXB = 10, NYA = 14, NYB = 13)
Max. possible score: 8 points

Q2 - Logical conditions - GamePinS (dark blue) versus other student projects (light blue)

Research and Results

126

Figure 79 – Scores for student groups on Question 3 regarding understanding what an algorithm does

Q4 – Working with variables

For solving Question 4, students had to work with variables and switch the values of

two variables. The use of a third variable as a temporary variable was allowed and also

encouraged by a hint in the test item. As shown in Figure 80, results for both groups of

teacher X were almost the same, whereas the groups of teacher Y showed a large

difference.

4,57

3,20

6,86

2,46

0,00

1,00

2,00

3,00

4,00

5,00

6,00

7,00

8,00

Teacher X -
GamePinS

Teacher X - OSCP Teacher Y -
GamePinS

Teacher Y - OSCP

Survey amongst secondary school students aged 13 to 17 years (NXA = 14, NXB = 10, NYA = 14, NYB = 13)
Max. possible score: 8 points

Q3 - Understanding what an algorithm does
GamePinS (dark blue) versus other student projects (light blue)

Research and Results

127

Figure 80 – Scores for student groups on Question 4 regarding variable swapping with a temporary variable

Q5 – Variables and mathematical/analytical thinking

To correctly solve Question 5, students needed knowledge of variables, but also a

certain amount of mathematical, analytical, and algorithmic thinking. Here, two integer

variables had to be switched without the use of a temporary variable (see Section 5.4.1.1).

For teacher X, both groups performed as expected, whereas for teacher Y, all students in

the other projects group failed the test item, as shown in Figure 81 – Scores of student

groups for the mathematical/analytical thinking.

Failing this test item required further inspection. The first theory was that since

Question 5 was the last item, the lesson ended and the item was forfeited, but this was not

the case, since logs showed that the test was started at the beginning of class and ended

well before class ended. The available time was 30 minutes. The second theory, i.e.,

technical problems, could also be dismissed. Therefore, two question remained, i.e., “did

these students understand the question?” and “did the students understand the process

and states of switching variables?”

4,44 4,51

4,90

1,00

0,00

1,00

2,00

3,00

4,00

5,00

6,00

Teacher X -
GamePinS

Teacher X - OSCP Teacher Y -
GamePinS

Teacher Y - OSCP

Survey amongst secondary school students aged 13 to 17 years (NXA = 14, NXB = 10, NYA = 14, NYB = 13)
Max. possible score: 6 points

Q4 – Working with variables - GamePinS (dark blue) versus other student projects (light blue)

Research and Results

128

Before we look for possible mistakes, let us first look at the solution process and the

knowledge required to solve this problem. The short yet elegant solution a = a + b; b = a

- b; a = a - b; involves the following knowledge64:

 Basic knowledge of variables: What is a variable? How are its values assigned?

 Very basic math skills

 Importantly, knowledge of when values are used in an operation:

o One appropriate representation of what happens with the values of the

variables is:
5
𝑎

<==

=
5
𝑎

+
+

10
𝑏

o It is important to understand that the value 5 in a is overwritten by the

sum a + b, which is 15.

To answer the matter of understanding the question and the process, students were asked

if or how they understood the question and how they were trying to solve it. The outcomes

of this questioning was that students very well understood the goal to be achieved in the

item, but the process of the simple algorithm to solve it remained unclear. For illustration

purposes, two common mistakes are as follows:

1. Some students did not understand the direction for an assignment process

correctly. They thought, for example, that a = b and inserted the value from a

into b. So, if a is 5 and b is 10, a = b, then a = 5 and b = 5.

2. Other students tried to solve it as in math class, i.e., when asked, “What does a

= a + b do?”

o 𝑎 = 𝑎 + 𝑏 | − 𝑎

o 𝑎 = 𝑎 + 𝑏

o Their answer: a stays 5 and 𝑏 = 0

The mistakes of having the wrong idea of value assignment in variables and/or trying to

apply a pure mathematical approach were discovered in connection with the inquiry of the

group in which all members failed to answer the question correctly. Interestingly, those

mistakes where not a single trait of teacher Y, but were also made by students in the better-

64 The necessary skills are described in Section 4.10.1.1.

Research and Results

129

performing group. To summarize, the reasons for the zero-score of individuals was

discovered, but the performance of the entire group was a statistical outlier of the Y-OSCP

group, which opens another interesting path to follow in further research.

Figure 81 – Scores of student groups for the mathematical/analytical thinking question

5.4.2 Summary of the third year

The third and final year confirmed that GamePinS is boosting IT skills in the covered

area of computer science better than other student software projects. As shown in Figure

82, the GamePinS activities outcompeted the circumstances that the projects of the other

group were self-selected and therefore increased student motivation. GamePinS led to

better average and total results in the IT skills test. The two teacher and four group scenario

showed that it was not primarily the teacher who boosts performance of students, but rather

the game development. Even the highly skilled other software group, with excellent grades

in the previous semester, was outperformed by the GamePinS group in the IT skills test.65

65 OSCP: 14.25 points, GamePinS: 22.04

5,24

3,04

5,49

0,00
0,00

1,00

2,00

3,00

4,00

5,00

6,00

Teacher X -
GamePinS

Teacher X - OSCP Teacher Y -
GamePinS

Teacher Y - OSCP

Survey amongst secondary school students aged 13 to 17 years (NXA = 14, NXB = 10, NYA = 14, NYB = 13)
Max. possible score: 8 points

Q5 – Variables and mathematical/analytical thinking

Research and Results

130

Figure 82 –Total score of the GamePinS and OSCP groups of both teachers combined

0,00

5,00

10,00

15,00

20,00

25,00

GamePinS OSCP

21,82

9,86

Survey amongst secondary school students aged 13 to 17y (N = 51, NGamePinS=28, OSCP=23)

Combined total score GamePinS (dark blue) versus other student projects (light blue)

Conclusions

131

6 Conclusions

In this study, students across three different school years developed computer games in

the classroom. The results of the game development research supported our basic

assumptions and also revealed some additional phenomena. Assumption (A1), i.e., that

game development in computer science increases engagement and motivation of students,

was proved to be accurate through student feedback and questionnaires; however, an

interesting gap between each student’s anticipated motivational boost and actual

motivational level was discovered. In fact, the reality of game programming was harder

than most students anticipated. This gap was especially clear in the first year in which no

special set of tools was used (i.e., only “plain” XNA was employed).

The observation of motivational disparities went hand in hand with the complexity of

the framework. The corresponding Assumption (A4), i.e., “the complexity level of the

framework influences the depth of understanding of the concepts to be learned,” was

vindicated by the observation that motivation increased with reduced complexity by

employing GamePinS and easy-to-use tools. Interestingly, the concept of more complexity

forcing students to generate a deeper understanding only proved true at the very beginner

levels.

When it came to game programming, exactly the opposite effect was observed, i.e.,

above the total beginner level, higher complexity led most students not to better

understanding, but rather to not understanding the concepts at all. With the less complex,

but still complex enough, GamePinS framework, students showed a deeper understanding

than with plain XNA. Another dimension of complexity or maybe just an option overload

could be determined when comparing the GamePinS group to the other student projects

group. Students working with GamePinS clearly performed better at the IT skills test than

the other group.

Teamwork did increase, as compared to the regular curriculum; however, the increase

was not specifically characteristic of game development, but rather a mechanism caused

by project-based learning. Accordingly, Assumption (A2), i.e., “project-based game

Conclusions

132

programming in computer science fosters teamwork competencies,” was true for game

development, but also for the other student software projects.

Assumption (A3), i.e., “game programming promotes basic concepts of computer

science more effectively than other typical software development scenarios,” was

positively verified for understanding of algorithms, logical conditions, variables, and

mathematical/analytical thinking, but not for understanding of data structures, where both

groups performed equally well. This verification was done by a systematically repeated IT

skills test with six different groups doing GamePinS and other student software projects.

The groups were under the supervision of two different teachers to identify and manage

any possible experimenter bias. Further, the assumption that game programming promotes

basic concepts of computer science more effectively was also confirmed by the self-

estimation of the students.

In addition to these distinct research results, some useful principles for making game

development more productive were identified. These principles included setting attainable

goals, reducing complexity, and being extremely well prepared. In our case, the goals were

set by talking about the resources necessary for big triple titles, such as having 1000 times

more time and at least four times the core crew with plenty of experience in game

development, as well as millions of dollars for outsourced tasks. Still, there are enough

relatively small but absorbing games, such as jump and run games, adventure games, and

small racing games to work on.

Reducing complexity was the second principle, and indeed the complexity of game

development with decent physics embedding was a huge challenge for our case at first, but

the complexity was successfully tamed via GamePinS. Finally, the attitude of being

extremely well prepared is particularly vital in computer science, because we have a high

threshold, as well as a good change of technical difficulties, and there should be at least

one expert on the scene who knows how to deal with both this high threshold and the

technical challenges.

Game development is an engaging and motivating means to enhance effective learning of

programming and to boost IT skills, and goes far beyond merely writing source code.

Conclusions

133

The employment of a specialized framework, such as GamePinS, is helpful, but it is not

mandatory to developing one’s own customized solution. It is more important to employ

tools that make the development process straightforward, lucid, and ensure a low threshold

for beginners. Therefore, the game development tools and course concepts should aim to

reduce complexity and support attaining realistically set goals. An inspiring and satisfying

game development process supported by a well-prepared teacher and optional existing

features, such as a physics simulation, has the potential to unleash a burst of motivation

and lead to a rapid improvement in student IT skills.

Figures

135

Figures

Figure 1 – Results of a survey showing the number of students who play computer games

 .. 18

Figure 2 – Chris Crawford on game design (Crawford, 2003, p. 6) 19

Figure 3 – Survey results showing reasons for playing computer games (Comber) 20

Figure 4 – The graphical user interface (GUI) of Scratch 2.0 .. 22

Figure 5 – The “Achtung die Kurve!” game implemented using Scratch 22

Figure 6 – Source code for the “Achtung die Kurve!” game, as used in starter lessons .. 23

Figure 7 – Blockly block factory interface ... 24

Figure 8 – Gamefroot game development editor .. 25

Figure 9 – AntMe! simulation with black indicating apple-searching-and-retrieving ants,

red indicating warrior ants, green indicating apples, white indicating sugar, and dark blue

indicating hostile bugs .. 26

Figure 10 – Kara exists in a simple world Figure 11 – Programming view of Kara 27

Figure 12 – Greenfoot interface with a code view (left), the world (center), and the class

diagram (right) .. 28

Figure 13 – Feature matrix of selected game engines .. 30

Figure 14 – Architecture of XNA's content pipeline .. 31

Figure 15 – Screenshot of a demo project in Unity’s IDE ... 33

Figure 16 – How to compile iodoom projects in Visual Studio 2010 Express 34

Figure 17 – UDK Editor (e.g., Foliage map) .. 36

Figure 18 – Game-themed programming assignment (Sung) .. 37

Figure 19 – Topics covered in the GAM 380 course ... 38

Figures

136

Figure 20 – The GamePinS Logo ... 42

Figure 21 – Schedule of the GamePinS project .. 49

Figure 22 – Tiled Map Editor screenshot with sample tiles from Liberated Pixel Cup (2013)

 .. 51

Figure 23 – Sample tiles for a platform-based game .. 53

Figure 24 – Output of a program that used randomly generated numbers and loops to create

“The Matrix” .. 54

Figure 25 – The Game Loop as described in GamePinS for students 57

Figure 26 – Class names and descriptions of classes used in GamePinS 59

Figure 27 – Excerpt of the class hierarchy of GamePinS ... 60

Figure 28 – Example of using the class hierarchy for a two-dimensional platformer game

with physics simulation .. 61

Figure 29 - Example of using the class hierarchy in a top-view role playing game 61

Figure 30 – Distribution of female and male participants in the game development survey

 .. 65

Figure 31 – Internet access of students in the targeted secondary school 67

Figure 32 – Age of students from the target audience for game development 68

Figure 33 – Activities of students on the computer in their spare time 69

Figure 34 – Spare time spent for school-related activities in front of a computer 70

Figure 35 – Spare time spent playing computer games .. 71

Figure 36 – Time used to communicate via social networks, chats, discussion boards, and

e-mail .. 72

Figure 37 – Time spent reading articles on the Internet ... 73

Figures

137

Figure 38 – Programming in spare time out of one’s own interest 74

Figure 39 – Amount of spare time spent on various other activities on the computer 75

Figure 40 – Distribution of “other” activities on the computer .. 76

Figure 41 – Survey results regarding whether developing a computer game in computer

science education is interesting .. 77

Figure 42 – Survey results in response to, “For developing a computer game, I'm ready to

use my spare time outside of time spent in school” ... 78

Figure 43 – Survey results regarding reasons for playing computer games 79

Figure 44 – Research approach using questionnaires and three groups in the first year .. 81

Figure 45 – Distribution of female and male participants involved in GamePinS year 1 (N

= 26).. 84

Figure 46 – Internet access at home (N = 26) .. 85

Figure 47 – Age distribution of students participating in GamePinS 86

Figure 48 – IT skills of students involved in GamePinS .. 87

Figure 49 – Time spent (hours per week) using a computer .. 88

Figure 50 – Time spent for different activities in front of a computer 89

Figure 51 – Other activities in front of the computer ... 90

Figure 52 – Perceived improvement in programming skills .. 91

Figure 53 – Changes in the understanding of the logic of programs 92

Figure 54 – Understanding of algorithms and software development 93

Figure 55 – Attitude of students to the development of a computer game in class 94

Figure 56 – Change of motivation of students through game development project 94

Figure 57 – Changes of teamwork skills through game development 95

Figures

138

Figure 58 – Changes in the understanding of algorithms in comparison to regular

curriculum ... 97

Figure 59 – Changes in the understanding of the logic of programs in comparison to the

regular curriculum .. 98

Figure 60 – Expectations and motivation versus actual programming in practice and

motivation ... 99

Figure 61 - Distribution of computer IT skills for groups A and B (2014) 102

Figure 62 - Improvements to understanding how programs work 103

Figure 63 – Actual perceived changes of programming skills 104

Figure 64 – Results showing how interesting game development was for the GamePinS

group versus that experienced by the other software projects group 105

Figure 65 – Results regarding student understanding of algorithms 106

Figure 66 – Results regarding student understanding of software development projects and

the challenges of the development process .. 107

Figure 67 – Changes in teamwork skills .. 108

Figure 68 – Total IT skills test scores for the GamePinS and other software projects groups

 .. 109

Figure 69 – Match the data types to the corresponding values 109

Figure 70 – Testing logical thinking and the ability to transform results into correctly

written source code ... 110

Figure 71 – Test item of understanding what an algorithm does 111

Figure 72 – Switching the values of two variables with the help of a temporary variable

 .. 113

Figures

139

Figure 73 – Switching the values of two integer variables without using a temporary

variable ... 114

Figure 74 – Scores from the IT skills test: GamePinS versus other software projects .. 115

Figure 75 - Experimental design of the GamePinS versus other student chosen activities

with control groups ... 121

Figure 76 – Achievements in the IT skills test, with two teachers and two groups per teacher

 .. 123

Figure 77 – Scores of student groups on Question 1 regarding data types 123

Figure 78 – Scores of student groups on Question 2 regarding logical conditions 125

Figure 79 – Scores for student groups on Question 3 regarding understanding what an

algorithm does .. 126

Figure 80 – Scores for student groups on Question 4 regarding variable swapping with a

temporary variable .. 127

Figure 81 – Scores of student groups for the mathematical/analytical thinking question

 .. 129

Figure 82 –Total score of the GamePinS and OSCP groups of both teachers combined

 .. 130

References

141

References

Alam, Syed Shah, Bakar, Zaharah, Ismail, Hishamuddin Bin, & Ahsan, MN. (2008).

Young consumers online shopping: an empirical study. Journal of Internet

Business, 5(1), 81-98.

Altrichter, Herbert, & Posch, Peter. (2007). Lehrerinnen und Lehrer erforschen ihren

Unterricht. Unterrichtsentwicklung und Unterrichtsevaluation durch

Aktionsforschung (4., überarb. u. erw. Aufl. ed.). Bad Heilbrunn: Klinkhardt.

Anderson, Terry, & Shattuck, Julie. (2012). Design-Based Research: A Decade of

Progress in Education Research? Educational Researcher, 41(1), 16-25. doi:

10.3102/0013189x11428813

Autodesk 3ds Max. Retrieved 2012, September 2, from http://usa.autodesk.com/3ds-

max/

Barab, Sasha, & Squire, Kurt. (2004). Design-Based Research: Putting a Stake in the

Ground. Journal of the Learning Sciences, 13(1), 1-14. doi:

10.1207/s15327809jls1301_1

Barker-Plummer, David (1995). Turing Machines. Retrieved 2013, August 21, from

http://plato.stanford.edu/entries/turing-machine/

Bian, Wu, Wang, A. I., Strom, J. E., & Kvamme, T. B. (2009, 25-28 Aug. 2009).

XQUEST used in software architecture education. Paper presented at the Games

Innovations Conference, 2009. ICE-GIC 2009. International IEEE Consumer

Electronics Society's.

Biot, Olivier Website - melonJS. Retrieved 2012, October 7, from

http://www.melonjs.org/

Blender (2012). Blender game engine. Retrieved 2012, June 24, from

http://www.blender.org/

Blow, Jonathan. (2004). Game Development: Harder Than You Think. Queue, 1(10), 28-

37. doi: 10.1145/971564.971590

BMBF (2003). Änderung der Verordnung über die Lehrpläne der allgemein bildenden

höheren Schulen Retrieved 2015, August 24, from

https://www.bmbf.gv.at/schulen/lehrdr/gesetze_verordnungen/VO_LP_AHS03_9

431.pdf?4dzi3h

BMBF (2004). Austrian Federal Ministry of Education and Women's Affairs. Curriculum

of Computer Sciene in Austria - Lehrplan Informatik für die AHS Oberstufe.

Retrieved 2014, August 3, from

https://www.bmbf.gv.at/schulen/unterricht/lp/lp_neu_ahs_14_11866.pdf?4dzgm2

BMUKK (n.d.-a). Aufnahme in die Volksschule. Retrieved 2013, September 2, from

http://www.bmukk.gv.at/schulen/service/schulinfo/aufnahme_vs.xml

References

142

BMUKK (n.d.-b). The Austrian Education System. Retrieved 2013, August 31, from

http://www.bmukk.gv.at/medienpool/17684/bw2013_e_grafik.pdf

BMUKK (n.d.-c). Schools and Education. Retrieved 2013, August 31, from

http://www.bmukk.gv.at/enfr/school/schools.xml

Boekaerts, Monique. (2002). Motivation to learn. Brussels: International Academy of

Education.

Boss, Suzie, & Krauss, Jane. (2007). Reinventing project-based learning : your field

guide to real-world projects in the digital age / Suzie Boss, Jane Krauss (1st ed.).

Eugene, Or.: International Society for Technology in Education.

Boyle, Elizabeth A., Connolly, Thomas M., Hainey, Thomas, & Boyle, James M. (2012).

Engagement in digital entertainment games: A systematic review. Computers in

Human Behavior, 28(3), 771-780. doi: 10.1016/j.chb.2011.11.020

Brown, Ann L. (1992). Design Experiments: Theoretical and Methodological Challenges

in Creating Complex Interventions in Classroom Settings. Journal of the

Learning Sciences, 2(2), 141-178. doi: 10.1207/s15327809jls0202_2

Burns, A., & Davies, G. (1993). Concurrent programming: Addison Wesley Longman

Publishing Co., Inc.

Cartoon Network (n.d.). Fusion Fall. Retrieved 2013, August 29, from

http://fusionfall.cartoonnetwork.com/splashpage.php

Comber, Oswald. (2008). eLearning an Schulen. Master Thesis. University of Vienna,

Vienna.

Comber, Oswald (2012a). SSurvey Results: Student Feedback - Game Programing in

School. One schoolyear of game programming in Secondary school. (username:

gameprog, password: 2012GamePin$) Retrieved 2012, August 8, from

www.comber.at/research/results2012/statements.html

Comber, Oswald (2012b). Survey Results: Attitudes towards "Game Programing in

School" - A survey amongst Secondary School students (username: gameprog,

password: 2012GamePin$) Retrieved 2012, August 8, from

http://www.comber.at/research/results2012/SurveyA_2012.htm

Comber, Oswald (2012c). Survey Results: Game Programing in School - One schoolyear

of game programming in Secondary school. A survey amongst students

(username: gameprog, password: 2012GamePin$) Retrieved 2012, August 8,

from http://www.comber.at/research/results2012/SurveyB_2012.htm

Comber, Oswald (2013). Ressource: MC Comber - a Moodle course for Computer

Science and Game Programming. Guest access key: CS&GamePinS*Comber.

Retrieved 2015, September 09, from

http://www4.edumoodle.at/g16slsz/course/view.php?id=19

Comber, Oswald (2014). Game Programing in School - The second schoolyear of game

programming in Secondary school. A survey amongst students (username:

References

143

gameprog, password: 2012GamePin$) Retrieved 2014, June 19, from

http://www.comber.at/research/results2014/SurveyAandB_2014.htm

Comber, Oswald, & Motschnig, Renate. (2015). Challenges and opportunities in

employing game development in computer science classes. Paper presented at the

EdMedia: World Conference on Educational Media and Technology 2015,

Montreal, Quebec, Canada. http://www.editlib.org/p/151464

Commons, Creative Creative Commons Licenses. Retrieved 2012, October 28, from

http://creativecommons.org/

Computing Education Group - University of Kent Greenfoot documentation and

tutorials. Retrieved 2013, August 21, from http://www.greenfoot.org/doc

Computing Education Group - University of Kent (2014). Greenfoot. Retrieved 2014,

August 8, from http://www.greenfoot.org/

Connecticut State University Project Management. Retrieved 2012, August 8, from

http://www.ct.edu/it/project/

Corno, Lyn, & Mandinach, Ellen B. (1983). The role of cognitive engagement in

classroom learning and motivation. Educational psychologist, 18(2), 88-108.

Crawford, Chris. (2003). Chris Crawford on game design. Indianapolis, Ind.: New

Riders.

Creighton, Ryan Henson. (2010). Unity 3D Game Development by Example: Beginner's

Guide: Packt Publishing.

Cup, Liberated Pixel (2013). Retrieved 2013, March 22, from http://lpc.opengameart.org/

Dagienė, Valentina. (2011). Informatics Education for New Millennium Learners.

Informatics in Schools. Contributing to 21st Century Education. In I. Kalaš & R.

Mittermeir (Eds.), (Vol. 7013, pp. 9-20): Springer Berlin / Heidelberg.

Dannenberg, Roger, & Mazzoni, Dominic (2014). Audacity, a free audio editor.

Retrieved 2014, August 4, from http://audacity.sourceforge.net/

Deci, EL, & Ryan, RM. (2005). Intrinsic motivation inventory (IMI). Retrieved July, 23,

2006.

Demetrulias, Diana Mayer. (1985). Gender Differences and Computer Use. Educational

Horizons, 63(3), 133-135.

Design-Based Research Collective. (2003). Design-Based Research: An Emerging

Paradigm for Educational Inquiry. Educational Researcher, 32(1), 5-8. doi:

10.3102/0013189x032001005

Dougiamas, Martin Moodle - Modular Object-Oriented Dynamic Learning Environment.

Retrieved 2013, January 8, from https://moodle.org/

Entertainment Software Association (2015). Essential Facts About the Computer and

Video Game Industry. Retrieved 2015, August 28, from

References

144

http://www.theesa.com/wp-content/uploads/2015/04/ESA-Essential-Facts-

2015.pdf

Epic Games UDK Commercial Licensing. from

http://www.unrealengine.com/udk/licensing/

Epic Games (n.d.-a). UDK Licensing. from http://www.unrealengine.com/udk/licensing/

Epic Games (n.d.-b). Unreal Development Kit. Retrieved 2013, August 25, from

http://www.udk.com/

Epic Games (n.d.-c). Unreal Scripting. Retrieved 2013, August 25, from

http://udn.epicgames.com/Three/UnrealScriptReference.html

eTiTan (2012). iodoom3 Forum - [Tutorial] Compile in Visual Studio 2010 Express.

Retrieved 2013, August 24, from http://www.iodoom3.org/forums/topic/tutorial-

compile-in-visual-studio-2010-express/

Field, Andy. (2009). Discovering statistics using SPSS: Sage publications.

Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS (n.d.).

Website - Roberta – Lernen mit Robotern. Retrieved 2015, September 9, from

http://www.open-roberta.org/

Free Software Foundation GNU Lesser GPL. Retrieved 2012, October 28, from

http://www.gnu.org/copyleft/lesser.html

Free Software Foundation (n.d.). GNU General Public License. Retrieved 2012, October

28, from http://www.gnu.org/licenses/gpl.html

Gadd, Kevin (2009). Squared.Tiled. Retrieved 2015, September 9, from

http://luminance.org/

Gamasutra Mobile game developer survey leans heavily toward iOS, Unity. Retrieved

2013, August 24, from

http://www.gamasutra.com/view/news/169846/Mobile_game_developer_survey_

leans_heavily_toward_iOS_Unity.php#.UFze0I1lTAE

Gamefroot (2013). Gamefroot. Retrieved 2015, August 30, from http://gamefroot.com/

Gamesm, Xbox Live Indie Website - XNA Starterkits. Retrieved 2013, August 22, from

http://xbox.create.msdn.com/en-US/education/starterkits/

GAMING, BACKGROUND OF. (2005). Games: Making learning fun. Annual Review

of Nursing Education Volume 3, 2005: Strategies for Teaching, Assessment, and

Program Planning, 165.

Gernert, Johannes. (2010). Generation Porno: Jugend, Sex, Internet: Fackelträger-

Verlag.

Glass et. al., Kevin (n.d.). Slick 2D Game Library. Retrieved 2012, September 2, from

http://slick.cokeandcode.com/index.php

Google Inc. Website - Blockly. from https://blockly-games.appspot.com

References

145

GPWiki (n.d.). List of game engines. Retrieved 2012, October 28, from

http://en.wikipedia.org/wiki/List_of_game_engines

GRGORG 16 (n.d.). Stundentafel des GRGORG 16, Maroltingergasse 69-71. Retrieved

2015, August 24, from http://www.g16.at/node/9

Halbeisen, Sarah. (2011). Ernste Spiele? Eine Systematisierung von Serious Games.

Hidi, Suzanne. (1990). Interest and its contribution as a mental resource for learning.

Review of Educational research, 60(4), 549-571.

Huang, Jun. (2010, 24-27 Aug. 2010). Improving undergraduates' teamwork skills by

adapting project-based learning methodology. Paper presented at the Computer

Science and Education (ICCSE), 2010 5th International Conference on.

id Software, & iodoom3 (2013). iodoom3 - Id Tech 4 engine (Doom 3 Engine).

Retrieved 2014, August 3, from http://www.iodoom3.org/

iddevnet Making Doom3 Mods - Scripting. Retrieved 2013, August 24, from

http://www.iddevnet.com/doom3/script.php

Irrelon Software (n.d.). Isogenic Engine. Retrieved 2012, October 7, from

http://www.isogenicengine.com/

Johnston, Chevy Ray FlashPunk. Retrieved 2012, October 28, from http://flashpunk.net/

Kay, Alan. (2005). Squeak etoys, children & learning. online article, 2006.

Kimball et. al., Spencer (2014). GIMP - The GNU Image Manipulation Program.

Retrieved 2012, August 9, from http://www.gimp.org

Kölbl, Doris Austrian Federal Ministry for Education, Arts and Culture - Ordinance

governing the principles of project centered teaching. Retrieved 2012, July 3,

from http://www.bmukk.gv.at/medienpool/6788/pu_erl_engl.pdf

Kronos Group OpenGL. Retrieved 2013, August 28, from 2013, August 28

Lasselsberger, Anna, Gschwendtner, Ferdinand, & Bundesministerium für Bildung und

Frauen (2015). VWA - Vorwissenschaftliche Arbeit. Retrieved 2016, Jan 1, from

http://www.ahs-vwa.at/

Lave, Jean, & Wenger, Etienne. (2005). Situated learning legitimate peripheral

participation (1. publ., reprint. ed.). Cambridge [u.a.]: Cambridge Univ. Press.

Limayem, Moez, Khalifa, Mohamed, & Frini, Anissa. (2000). What makes consumers

buy from Internet? A longitudinal study of online shopping. Systems, Man and

Cybernetics, Part A: Systems and Humans, IEEE Transactions on, 30(4), 421-

432.

Lindeijer, Thorbjørn Tiled Map Editor. Retrieved 2012, October 7, from

http://www.mapeditor.org/

Lindeijer, Thorbjørn, & Cook, Daniel (2013). Tiled map editor. Retrieved 2013, March

19, 2013, from http://www.mapeditor.org/

References

146

Lingard, R., & Barkataki, S. (2011, 12-15 Oct. 2011). Teaching teamwork in engineering

and computer science. Paper presented at the Frontiers in Education Conference

(FIE), 2011.

Linhoff, Joe, & Settle, Amber. (2008). Teaching game programming using XNA. ACM

SIGCSE Bulletin, 40(3), 250-254.

Lock, Dennis. (1995). Project management (5. ed., reprint. ed.). Aldershot, Hants. [u.a.]:

Gower.

Logo Foundation (2011). Logo. Retrieved 2014, June 23, from

http://el.media.mit.edu/logo-foundation/logo/index.html

Lonati, Violetta, Monga, Mattia, Morpurgo, Anna, & Torelli, Mauro. (2011). What’s the

Fun in Informatics? Working to Capture Children and Teachers into the Pleasure

of Computing. Informatics in Schools. Contributing to 21st Century Education. In

I. Kalaš & R. Mittermeir (Eds.), (Vol. 7013, pp. 213-224): Springer Berlin /

Heidelberg.

Magdalena Mattebo, RNM, Tydén, Tanja, Häggström-Nordin, Elisabet, Nilsson, Kent

W, & Larsson, Margareta. (2013). Pornography Consumption, Sexual

Experiences, Lifestyles, and Self-rated Health Among Male Adolescents in

Sweden.

Malone, Thomas W, & Lepper, Mark R. (1987). Making learning fun: A taxonomy of

intrinsic motivations for learning. Aptitude, learning, and instruction, 3(1987),

223-253.

Malone, Thomas W. (1980). What makes things fun to learn? heuristics for designing

instructional computer games. Paper presented at the Proceedings of the 3rd

ACM SIGSMALL symposium and the first SIGPC symposium on Small systems,

Palo Alto, California, USA.

Maloney, John, Resnick, Mitchel, Rusk, Natalie, Silverman, Brian, & Eastmond, Evelyn.

(2010). The Scratch Programming Language and Environment. Trans. Comput.

Educ., 10(4), 1-15. doi: 10.1145/1868358.1868363

Massachusetts Institute of Technology The MIT License Retrieved 2012, November 11,

from http://opensource.org/licenses/MIT

Maxcy, S.J. (2003). Pragmatic threads in mixed methods research in the social sciences:

The search for multiple modes of inquiry and the end of the philosophy of

formalism. Handbook of mixed methods in social and behavioral research, 51-89.

Michael, David R, & Chen, Sandra L. (2005). Serious games: Games that educate, train,

and inform: Muska & Lipman/Premier-Trade.

MIT Scheller Teacher Education Program (2014). Gameblox. Retrieved 2015, September

9, from https://gameblox.org/

Mönig, Jens, & Harvey, Brian BYOB - Build Your Own Blocks. Retrieved 2013, April

1, from http://byob.berkeley.edu/

References

147

Mönig, Jens, & Harvey, Brian (2013). Website - Snap! - formerly known as BYOB.

Retrieved 2013, March 30, 2013, from http://snap.berkeley.edu/

MonoGame Team (2009). MonoGame - An open source implementation of Microsoft's

XNA. Retrieved 2013, April 1, from http://monogame.codeplex.com/

Moser, Heinz. (1977). Praxis der Aktionsforschung ein Arbeitsbuch. München: Kösel.

Motschnig-Pitrik, R., & Figl, K. (2007, 10-13 Oct. 2007). Developing team competence

as part of a person centered learning course on communication and soft skills in

project management. Paper presented at the Frontiers In Education Conference -

Global Engineering: Knowledge Without Borders, Opportunities Without

Passports, 2007. FIE '07. 37th Annual.

National Institute of Standards and Technology Finite State Machine. Retrieved 2013,

August 21, from http://xlinux.nist.gov/dads/HTML/finiteStateMachine.html

Nischewitzer, Alexander, Reimers, Christian, Smith, David, Zistler, Elisabeth, & Zistler,

Saphir Programming Skills Development in Secondary Education by means of

Modern Educational Programming Languages. Retrieved 2013, January 2, from

http://virtuelleschule.bmukk.gv.at/fileadmin/pskills/pSkills-Scratch.pdf

Obama, Barack TechHire Initiative. Retrieved 2015, August 14, from

https://www.whitehouse.gov/issues/technology/techhire

OGRE Object-Oriented Graphics Rendering Engine. Retrieved 2012, June 24, from

http://www.ogre3d.org/

Open Source Initiative Microsoft Public License (Ms-PL). Retrieved 2013, August 24,

from http://opensource.org/licenses/MS-PL

Oracle Corp. Netbeans Integrated Development Environment. Retrieved 2012, October

28, from http://netbeans.org/

Oracle Corp. et. al. MySQL - The world's most popular open source database. Retrieved

2013, August 30, from http://www.mysql.com/

OUYA Inc. Website - OUYA console. Retrieved 2013, August 28, from

http://www.ouya.tv/

Overby, Jeffrey W, & Lee, Eun-Ju. (2006). The effects of utilitarian and hedonic online

shopping value on consumer preference and intentions. Journal of Business

Research, 59(10), 1160-1166.

Owens, Eric W, Behun, Richard J, Manning, Jill C, & Reid, Rory C. (2012). The impact

of internet pornography on adolescents: a review of the research. Sexual

Addiction & Compulsivity, 19(1-2), 99-122.

Papert, Seymour. (1987). Microworlds: transforming education. Paper presented at the

Artificial intelligence and education.

Phrogsoft (2012). Phrogram. Retrieved 2013, August 13, from http://phrogram.com/

References

148

Przybylski, A. K., Weinstein, N., Murayama, K., Lynch, M. F., & Ryan, R. M. (2012).

The Ideal Self at Play: The Appeal of Video Games That Let You Be All You

Can Be. Psychological Science, 23(1), 69-76. doi: 10.1177/0956797611418676

Rankin, Yolanda, Gooch, Amy, & Gooch, Bruce. (2008). The impact of game design on

students' interest in CS. Paper presented at the Proceedings of the 3rd

international conference on Game development in computer science education,

Miami, Florida.

Reeve, Johnmarshall. (2009). Understanding motivation and emotion (5. ed. ed.).

Hoboken, N.J.: Wiley.

Reeves et. al., Thomas C. What is Design-based Research? Retrieved 2013, January 6,

from What is Design-based Research?

Reichert, Raimond (2014). Website - Kara. Retrieved 2014, August 8, from

http://www.swisseduc.ch/informatik/karatojava/index.html

Reichert, Thorsten. (2009). Projektmanagement. Die häufigsten Fehler, die wichtigsten

Erfolgsfaktoren. Freiburg: Haufe Verlag.

Reismanis, Scott moddb. Retrieved 2012, October 28, from

http://www.moddb.com/engines

Renninger, Ann, Hidi, Suzanne, & Krapp, Andreas. (2014). The role of interest in

learning and development: Psychology Press.

Repenning, Alexander. (2011). Making programming more conversational. Paper

presented at the VL/HCC.

Repenning, Alexander, & Agent Sheets Inc. (2014a). AgentCubes. Retrieved 2015, April

18, from http://www.agentsheets.com/agentcubes/index.html

Repenning, Alexander, & Agent Sheets Inc. (2014b). AgentSheets. Retrieved 2015, April

18, from http://www.agentsheets.com/

Repenning, Alexander, & Sumner, Tamara. (1995). Agentsheets: A medium for creating

domain-oriented visual languages. Computer, 28(3), 17-25.

Repenning, Alexander, Webb, David, & Ioannidou, Andri. (2010). Scalable game design

and the development of a checklist for getting computational thinking into public

schools. Paper presented at the Proceedings of the 41st ACM technical

symposium on Computer science education.

Resnick et. al., M. Research | Scratch Documentation Site - Academic publications &

presentations. Retrieved 2012, February 18, from

http://info.scratch.mit.edu/Research

Resnick et. al., Mitchel Scratch. Retrieved 2012, June 23, from http://scratch.mit.edu/

Resnick et. al., Mitchel. (2009). Scratch: programming for all. Commun. ACM, 52(11),

60-67. doi: 10.1145/1592761.1592779

References

149

Resnick, Mitchel, Malony, J., Rusk, N. , Silverman, B., & Eastmond, E Scratch.

Retrieved 2012, June 23, from http://scratch.mit.edu/

Ritterfeld, Ute, Cody, Michael, & Vorderer, Peter. (2010). Serious games: Mechanisms

and effects: Routledge.

Ryan, Richard M, Rigby, C Scott, & Przybylski, Andrew. (2006). The motivational pull

of video games: A self-determination theory approach. Motivation and emotion,

30(4), 344-360.

Saltsman, Adam Flixel (Flash Game Engine). Retrieved 2012, October 28, from

http://flixel.org/

Sandoval, William A., & Bell, Philip. (2004). Design-Based Research Methods for

Studying Learning in Context: Introduction. Educational Psychologist, 39(4),

199-201. doi: 10.1207/s15326985ep3904_1

Shashaani, Lily. (1994). Gender-differences in computer experience and its influence on

computer attitudes. Journal of Educational Computing Research, 11(4), 347-367.

Shein, Esther. (2014). Should <i>everybody</i> learn to code? Commun. ACM, 57(2),

16-18. doi: 10.1145/2557447

Shen, Yuzhong. (2009). Teaching game development using microsoft XNA game studio.

Paper presented at the Proceedings of the 2009 Spring Simulation

Multiconference, San Diego, California.

Skinner, B. F. (1953). Science and human behavior: The B.F. Skinner Foundation.

Snow, CR. (1992). Concurrent programming (Vol. 26): Cambridge University Press.

Software, Adobe Flash Builder. Retrieved 2012, September 12, from

http://www.adobe.com/products/flash-builder.html

Sperl, Daniel, & Weissböck, Holger The Starling Framework - An open source game

engine for Flash. Retrieved 2012, September 12, from http://gamua.com/starling/

Statistik Austria (2010). Zeitverwendungserhebung der Statistik Austria. Freizeit in

Österreich [Sparetime in Austria]. Retrieved 2012, April 7, from

http://www.statistik.at/web_de/presse/052105

Statistik Austria (2013). IKT-Einsatz in Haushalten 2013. Retrieved 2016, April 12, from

http://www.statistik.at/web_de/statistiken/informationsgesellschaft/ikteinsatz_in_

haushalten/index.html

Statistik Austria (2014). Haushalte mit Internetzugang 2014. from

https://www.statistik.at/web_de/statistiken/energie_umwelt_innovation_mobilitae

t/informationsgesellschaft/ikt-einsatz_in_haushalten/022213.html

Stowasser, Louis CraftyJS "Crafty, code like a fox". Retrieved 2012, October 7, from

http://craftyjs.com/

Strickland, Bonnie. (2001a). Experimental Design. In B. Strickland (Ed.), The Gale

Encyclopedia of Psychology (2nd ed. ed., pp. 234). Detroit: Gale.

References

150

Strickland, Bonnie. (2001b). Play. The Gale Encyclopedia of Psychology, 503-504.

http://go.galegroup.com/ps/i.do?id=GALE%7CCX3406000503&v=2.1&u=43wie

n&it=r&p=GVRL&sw=w

Sung, Kelvin The Game-Themed Introductory Programming Project. Retrieved 2012,

June 24, from

http://depts.washington.edu/cmmr/Research/XNA_Games/index.php

Susi, Tarja, Johannesson, Mikael, & Backlund, Per. (2007). Serious games: An overview.

Swiss Educ Team Website - Kara Screenshots. Retrieved 2013, August 21, from

http://www.swisseduc.ch/informatik/karatojava/kara/screenshots.html

Taylor, M. J., & Baskett, M. (2009). The science and art of computer games development

for undergraduate students. Comput. Entertain., 7(2), 1-9. doi:

10.1145/1541895.1541904

Technical University of Vienna Curriculum for the bachelor studies computer science.

Retrieved 2012, August 29, from

http://www.informatik.tuwien.ac.at/lehre/studienplaene/informatik-

archiv/informatik-studienplan-2011

Thomson, Elizabeth S, & Laing, Angus W. (2003). “The Net Generation”: Children and

Young People, the Internet and Online Shopping. Journal of Marketing

Management, 19(3-4), 491-512.

Tiigi et. al., Tõnis LimeJS. Retrieved 2012, October 7, from http://www.limejs.com/

Unity Technologies Unity3D - Island Demo. Retrieved 2013, August 29, from

http://download.unity3d.com/gallery/demos/demos/IslandDemo.zip

Unity Technologies Unity - Creating And Using Scripts. Retrieved 2013, August 24,

from

http://docs.unity3d.com/Documentation/Manual/CreatingAndUsingScripts.html

Unity Technologies Unity - Multiplatform. Retrieved 2013, August 24, from

http://unity3d.com/unity/multiplatform/

Unity Technologies Unity - Store. Retrieved 2013, August 24, from

https://store.unity3d.com/

Unity Technologies Unity game engine. Retrieved 2013, August 24, from

http://unity3d.com/

Unity Technologies Unity Web Player. Retrieved 2013, August 29, from

http://unity3d.com/webplayer

University of California Berkeley BSD License. Retrieved 2012, October 28, from

http://opensource.org/licenses/BSD-2-Clause

University of Vienna - Senate, Commission for the curriculum Curriculum for the

bachelor studies computer science. Retrieved 2012, August 29, from

http://www.univie.ac.at/mtbl02/2005_2006/2005_2006_193.pdf

References

151

Vepsäläinen, Juho Game engine feature matrix. 2012, October 28, from

https://github.com/bebraw/jswiki/wiki/Game-engine-feature-matrix

Volk, Daniel. (2008). How to embed a game engineering course into a computer science

curriculum. Paper presented at the Proceedings of the 2008 Conference on Future

Play: Research, Play, Share, Toronto, Ontario, Canada.

W3C DOM - Document Object Model. Retrieved 2012, October 28, from

http://www.w3.org/DOM/

W3C Website - HTML 5 - Canvas element Retrieved 2012, October 28, from

http://www.w3.org/TR/html5/the-canvas-element.html#the-canvas-element

Wang, Alf Inge, & Wu, Bian. (2011). Using Game Development to Teach Software

Architecture. International Journal of Computer Games Technology, 2011. doi:

10.1155/2011/920873

Watson, J. B., & Rayner, R. (1920). Conditioned emotional reactions. Journal of

Experimental Psychology, 3, 1-14.

Weber, Jeff (2013). Farseer Physics Engine. Retrieved 2013, August 13, from

https://farseerphysics.codeplex.com/

Website - .NET framework. Retrieved 2013, August 14, from

http://www.microsoft.com/net

Website - Achtung die Kurve! Retrieved 2013, August 14, from

http://en.wikipedia.org/wiki/Achtung,_die_Kurve!

Website - AntMe Retrieved 2013, January 2, from http://antme.net/

Website - Content Pipeline Architecture. Retrieved 2013, August 22, from

http://msdn.microsoft.com/en-US/library/bb447745(v=xnagamestudio.10).aspx

Website - Doom (series). Retrieved 2013, August 24, from

http://en.wikipedia.org/wiki/Doom_(series)

Website - Greenfoot. Retrieved 2013, January 2, from http://greenfoot.org/

Website - iodoom3 - Open source, cross platform Doom 3 (GPLv3). Retrieved 2013,

August 24, from https://github.com/iodoom/iod3

Website - iodoom3 FAQ - What is iodoom3? Retrieved 2013, August 24, from

http://www.iodoom3.org/faq/

Website - KidsProgrammingLanguage KPL Retrieved 2013, January 2, from

http://www.kidspl.de/lang/examples/grafik.php

Website - Lego Mindstorms. Retrieved 2013, January 2, from

http://mindstorms.lego.com/en-us/default.aspx

Website - Microsoft Public License (Ms-PL). Retrieved 2013, August 24, from

http://www.microsoft.com/en-us/openness/licenses.aspx

Website - Microsoft Visual Studio. Retrieved 2013, August 14, from

http://www.microsoft.com/visualstudio/eng/downloads

References

152

Website - Mono - an open source implementation of Microsoft's .NET Framework.

Retrieved 2013, August 24, from http://www.mono-project.com/Main_Page

Website - MonoDevelop Retrieved 2013, August 19, from http://monodevelop.com/

Website - Scratch 1.4 Infos on ScratchWiki. Retrieved 2013, August 20, from

http://wiki.scratch.mit.edu/wiki/1.4

Website - Scratch 2.0 - Cloning. Retrieved 2013, August 20, from

http://wiki.scratch.mit.edu/wiki/Cloning

Website - Scratch 2.0 - Cloud Data. Retrieved 2013, August 20, from

http://wiki.scratch.mit.edu/wiki/Cloud_Data

Website - Scratch 2.0 - Procedures/Own Blocks. 2013, August 20, from

http://wiki.scratch.mit.edu/wiki/Procedures

Website - Scratch 2.0 Wiki Retrieved 2013, August 20, from

http://wiki.scratch.mit.edu/wiki/Scratch_2.02

Website - Squeak. Retrieved 2013, August 20, from http://www.squeak.org/

Website - Standard Content Importers and Content Processors. Retrieved 2013, August

22, from http://msdn.microsoft.com/en-

us/library/bb447762(v=xnagamestudio.42).aspx

Website - Unreal series. Retrieved 2013, August 25, from

http://en.wikipedia.org/wiki/Unreal_(series)

Website - What is Scratch? Retrieved 2013, August 14, from

http://wiki.scratch.mit.edu/wiki/Scratch

Website - Xbox live - Indie Games. from http://xbox.create.msdn.com/en-

us/home/about/how_it_works

Website - XNA Game Studio 4.0. Retrieved 2012, June 24, from

http://www.microsoft.com/en-us/download/details.aspx?id=23714

Website - XNA Game Studio 4.0. (2011). Retrieved 2013, August 22, from

http://msdn.microsoft.com/en-us/library/bb200104(v=xnagamestudio.40).aspx

Wendel, Daniel (project manager) (2010). Star Logo TNG. Retrieved 2013, January 2,

from http://education.mit.edu/drupal/starlogo-tng

Wendel, Viktor, Göbel, Stefan, & Steinmetz, Ralf. (2010). Game Design und Game

Development in einer Serious Games Vorlesung. Paper presented at the Mensch

& Computer Workshopband.

Wilensky, Uri NetLogo. Retrieved 2012, June 23, from

http://ccl.northwestern.edu/netlogo/

Williams, David, South, Joseph, Yanchar, Stephen, Wilson, Brent, & Allen, Stephanie.

(2011). How do instructional designers evaluate? A qualitative study of

evaluation in practice. Educational Technology Research and Development,

59(6), 885-907. doi: 10.1007/s11423-011-9211-8

References

153

Woei-Kae, Chen, & Yu Chin, Cheng. (2007). Teaching Object-Oriented Programming

Laboratory With Computer Game Programming. Education, IEEE Transactions

on, 50(3), 197-203. doi: 10.1109/te.2007.900026

Xamarin Inc. Website - Xamarin. Retrieved 2013, August 28, from http://xamarin.com/

Xamarin Inc. Website - Xamarin Studio. Retrieved 2013, August 28, from

http://xamarin.com/studio

Yee, Nick. (2006). The labor of fun how video games blur the boundaries of work and

play. Games and Culture, 1(1), 68-71.

Youngblood, G. Michael (n.d.). Using XNA-GSE Game Segments to Engage Students in

Advanced Computer Science Education Retrieved 2012, September 2, from

ftp://ftp.research.microsoft.com/pub/carlat/N14_Using%20XNA-

GSE%20game%20segments%20to%20Engage%20Students.pdf

Zillich, Norbert. (2011). Pornography Consumption among Juveniles and Flexibilization

of Gender Roles. ZEITSCHRIFT FUR SEXUALFORSCHUNG, 24(4), 312-325.

Appendix

154

Appendix

Game development was embedded into a Moodle course. This course can be

downloaded from http://comber.at/gamepins/mc_gamepins.mbz (September 30, 2015).

The GamePinS sample projects, which include the template structures and necessary files,

are available at http://comber.at/gamepins/Beispiele/GamePinS.zip (September 30, 2015).

The Moodle course can be visited online and accessed as a guest. The course can be

found under http://www.comber.at/gpmoodle (September 30, 2015), and the password for

guest access is MC_GamePinS_T3mplate.

Data and feedback from the 2012 game development

Results and original feedback from students can be found online. The username and

password for all supplements are the same, i.e., username is gameprog and password is

2012GamePin$.

General Questionnaire 2012 – 2015:

http://www.comber.at/research/results/fragebogen_allg.htm (October 30, 2015)

Game Development with XNA 2012:

http://www.comber.at/research/results2012/SurveyB_2012.htm (October 30, 2015)

Statements of students 2012:

http://www.comber.at/research/results2012/statements.html (October 30, 2015)

Game Development 2014:

http://www.comber.at/research/results2014/SurveyAandB_2014.htm (October 30, 2015)

Thank you for checking out the digital supplements above and helping to save paper!

http://comber.at/gamepins/mc_gamepins.mbz
http://comber.at/gamepins/Beispiele/GamePinS.zip
http://www.comber.at/gpmoodle
http://www.comber.at/research/results/fragebogen_allg.htm
http://www.comber.at/research/results2012/SurveyB_2012.htm
http://www.comber.at/research/results2012/statements.html
http://www.comber.at/research/results2014/SurveyAandB_2014.htm

