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Introduction

The notion of ordinal definability was introduced by Kurt Gödel in
[2], where he conjectured that the collection OD of ordinal definable
sets would lead to a model of set theory, and that the axiom of choice
would be true in this model.
Following Gödel’s remarks, John Myhill and Dana Scott investigated
the collection HOD of hereditarily ordinal definable sets, and con-
firmed that HOD is indeed a model of ZFC. This yielded a somewhat
easier consistency proof for the axiom of choice than the one by means
of Gödels constructibility theory.
Unlike L, the inner model HOD is very sensitive to the surrounding
universe V , which makes it difficult to give a general analysis. Quoting
Kenneth Kunen from his classic [17], p.162:

Some mathematicians might find the definitions of
OD and HOD somewhat fishy because of their ex-
tremely non-constructive nature.

and later

[...] the non-constructive nature of OD makes it very
difficult to deal with.

Kunen’s use of the term non-constructiveness refers to the fact that
OD is about definability in the whole universe V . This is very much
unlike the case of L, where one only has to consider definability in small
set-size structures Lα. In light of Tarski’s theorem on the undefinabil-
ity of truth, it is quite a surprise that OD is indeed a definable class.
The question whether HOD has any first-order properties besides AC
was settled in the negative by Stansi law Roguski, who showed in 1976
that every model of ZFC arises as the HOD of a class-forcing extension
of the universe. (This can be paraphrased by saying that HOD has no
internal structure.)
The question about the relation between HOD and V remains a mean-
ingful one. A first result in this direction is due to Petr Vopěnka, who
showed in 1972 that every set of ordinals is contained in a generic ex-
tension of HOD. In 2012 Sy-David Friedman generalized this result to
show that indeed the whole universe V is a (class-)forcing extension of
HOD.
One may also ask whether the existence of large cardinals is reflected
in HOD. Here, the results have been exclusively negative for all but
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INTRODUCTION 4

the smallest large cardinals. It has also been shown that the cardinal
arithmetic may differ substantially between HOD and V .

About this thesis :

This thesis is divided into five chapters.

In Chapter 1, we develop the basic theory of ordinal definability. Most
of the results here are old and well-known. We have included a section
on Paris models and pointwise definability, two (less-known) concepts
related to ordinal definability.

In Chapter 2, we use forcing to prove the aforementioned result by
Roguski, and subsequently prove Vopěnka’s Theorem.

In Chapter 3, we introduce Friedman’s Stable Core and use it to gen-
eralize Vopěnka’s Theorem.

In Chapter 4, we prove that measurability is not necessarily witnessed
in HOD, and quote some related results.

Chapter 5 contains Background material. The choice about what to
include here has been somewhat random and unbalanced. If the reader
feels like something important has been left out, she can most certainly
find it in the classic introductory books such as Kunen’s [16] and Jech’s
[15].



CHAPTER 1

The basic theory of HOD

1. Ordinal definability

Let M = (M,∈M) be a model of ZF set theory. Following the usual
abuse of notation, we will identify M with its underlying set M .
A set x ∈M is called definable in M if

M |= ϕ(x) and M |= ∃!yϕ(y)

for some first-order formula ϕ ∈ LZF, the language of set theory1. A
class A ⊆M is called definable in M if for all x ∈M

x ∈ A↔M |= ϕ(x)

for some first-order formula ϕ. If A happens to be a set in M, these
two notions coincide by means of the Axiom of Extensionality.
Denote the collection of M-definable sets by Df(M). It is well known
that Df(M) is in general not definable in M: For example, consider
the case where ONM is uncountable. Then not all M-ordinals can be
definable, because there are only countably many formulas. Now if
Df(M) was definable, the least element α of ONM \ Df(M) could be
defined in M by the formula

α /∈ Df(M) ∧ ∀β < α(β ∈ Df(M))

contradicting α /∈ Df(M).
To give a more general argument, it is well-known that first-order logic
cannot capture infinite cardinalities. But Df(M) clearly has to be
countable (as viewed externally), and so it cannot be completely de-
scribed by a first-order formula.

In this section, we show that there is an M-definable class

OD(M) ⊇ Df(M)

which can be regarded as a canonical definable approximation to Df(M).
The elements of OD(M) will themelves be characterized by some gen-
eralized definability property.
The following lemma shows how large such a class must be.

1By using the notation ϕ(x), we mean to indicate that ϕ has at most one free
variable x. If ϕ is to contain parameters, this will be noted in context.

5



1. ORDINAL DEFINABILITY 6

Lemma 1.1. Let N ⊆ M be an M-definable class containing all
M-definable sets, and let A be an M-definable class with a M-definable
well-order. Then A ⊆ N .

Proof. If A\N 6= ∅, let x ∈ A\N be minimal with respect to the
well-order of A. Then x is M-definable, and so x ∈ N . Contradiction!

�

In particular, if such an N exists, it must contain the class of all
M-ordinals (and therefore fails to be countable in general).
This proof was of course just a generalization of the argument in the
first paragraph.
In light of Lemma 1.1, a natural candidate for our class OD(M) could
therefore be the union of all M-definable classes which have M-definable
well-orders. This indeed works, but we do not want to use it as the
official definition of OD(M) since it is too blatantly second order. So
let us first make one further remark.
Let A be an M-definable class, and assume there is an M-definable
well-order on A as in Lemma 1.1. We may additionally assume2 that
the well-order on A is set-like. We then can define a rank function
rkA : A→ ONM in M by recursion on A. Let ϕA(x, y) be the formula

(x ∈ A) ∧ (rkA(x) = y)

Now if a ∈ A and rkA(a) = α, then

M |= ϕA(a, α) and M |= ∃!zϕA(z, α)

And hence every set in A can be uniformly defined from only one or-
dinal parameter, namely its rank in the well-order of A.

This motivates the following definition:

Definition 1.2. A set x ∈ M is called ordinal definable in M if
there is a formula ϕ(x, y) and α ∈ ONM such that

M |= ϕ(x, α) and M |= ∃!zϕ(z, α)

Let OD(M) denote the class of all sets which are ordinal definable in
M. Of course, OD(M) ⊇ Df(M) (just discard the ordinal parameter).

Let us make two remarks on this definition.

Remark 1.3. OD(M) contains all M-definable classes with M-
definable well-orders; this follows from the previous discussion. So for
example, ONM ⊆ OD(M). This can of course also be checked directly

2If � is any well-order on A, then

x �′ y ↔ (rk(x) < rk(y) ∨ (rk(x) = rk(y) ∧ x � y))

is a set-like well-order on A. Hence a class has a definable well-order iff it has a
set-like definable well-order.



1. ORDINAL DEFINABILITY 7

from the definition of ordinal definability: Each ordinal α is defined by
the formula x = α, using α as a parameter.

Remark 1.4. The restriction to only one ordinal parameter is not
essential, for any finite number of parameters can be coded into one
using a definable pairing function.

Remark 1.5. For any α, β the following sets (as calculated in M)
are ordinal definable:

α ∩ β, αβ,P(α), Vα, H(|α|), . . .

It is now left to show that OD(M) is itself definable in M. This
will follow from the Reflection Theorem in M.
First, let us denote by Df(Vβ)M and OD(Vβ)M the definable resp. or-
dinal definable elements of V M

β as defined within M, i.e. using the
M-definable satisfaction relation for set structures in M . For example,

x ∈ Df(Vβ)M ↔M |= ∃ϕ(x) ∈ LZF(x is unique such that Vβ |= ϕ(x))

Proposition 1.6. OD(M) =
⋃

β∈ONM

OD(Vβ)M =
⋃

β∈ONM

Df(Vβ)M.

In particular, the class OD(M) is M-definable.

Proof. We first show the equality on the left side.
Let x ∈ OD(M). Then x is the unique solution in M to some formula
ϕ(x, α) with α ∈ ONM. By the Reflection Theorem (applied in M),
there is a β > α such that

M |= x is the unique solution to ϕ(x, α) in Vβ

So x ∈ OD(Vβ)M.
Conversely assume now that x ∈ OD(Vβ)M for some β ∈ ONM. Pick
ϕ ∈ (LZF)M, α ∈ ONM such that M thinks that ϕ defines x in Vβ from
the ordinal parameter α < β. Assume that ϕ = ϕn where (ϕn)n∈ωM is
an M-definable enumeration of (LZF)M. Then the formula

Vβ |= ϕn(x, α)

defines x in M from ordinal parameters α, β and n, and so x ∈ OD(M).
One can prove the equality of OD(M) and

⋃
β∈ONM

Df(Vβ)M in the same

way, using the Extended Reflection principle in M, which is proved as
Lemma 5.1 in the Background material. It says that β can always be
chosen in such a way that the ordinal parameter α becomes definable
- and therefore eliminable - in Vβ.
For the “In particular. . . ” part, one now only has to note that the
definition of OD(Vβ)M is uniform in β, and thus

x ∈ OD(M)↔M |= ∃β(x ∈ OD(Vβ))

is a definition of OD(M) inside the model M. �
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Remark 1.7. Although this proof is not difficult, there is one subtle
point to it. Namely, to argue that

⋃
β∈ONM

OD(Vβ)M is contained in

OD(M), one can not proceed as follows: “Pick ϕ ∈M,α ∈ ONM such
that M thinks that ϕ defines x in Vβ from the ordinal parameter α < β.
Then the formula

Vβ |= ϕ(x, α)

defines x in M from ordinal parameters α and β, and so x ∈ OD(M).”
The problem is that if M is an ω-nonstandard model, then the formula
ϕ ∈M might have nonstandard length, and so one cannot make sense
of Vv0 |= ϕ(x, v1) as a formula in the meta-theory. We avoided this by
coding ϕ into a (possibly nonstandard) number n ∈ ωM and using this
as an additional ordinal parameter.
(Recall also that in the definition of ordinal definability, the ordinal
parameters are ordinals “in the sense of M”.)
Now if one is only interested in standard models, all these distinctions
become void, and the theory becomes somewhat neater. It is however
still of interest that the concept of ordinal definability can be developed
in nonstandard models as well.

Remark 1.8. One may replace the Vα’s in the above lemma by
the stages of any ordinal-indexed hierarchy which has the Reflection
property with respect to V . For example, the same proof yields

OD(M) =
⋃

κ∈CardM
Df(H(κ))M

where H(κ) denotes the collection of all sets x such that | trcl(x)| < κ.

Now that we have seen that OD(M) has a first-order definition
which does not depend on the model M, we will use OD as a class
term in the way one is used to from set-theoretic practice. In partic-
ular, we write ODM for the interpretation of OD inside M, and this
yields exactly OD(M).

We now show that ODM itself has an M-definable well-order. The
proof is basically the same as for the inner model L.

Lemma 1.9. There is an M-definable surjective function F from
ONM to ODM.

Proof. Using the representation

ODM =
⋃

β∈ONM

Df(Vβ)
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each ordinal definable set in M is identified by the stage Vβ where it is
defined and the defining formula. So the function

G : ONM × ωM → ODM

G(β, n) =

{
x if M |= (x is the unique solution to ϕn in Vβ)

∅ else

- where {ϕn | n ∈ ω} is some fixed M-definable enumeration of (LZF)M

- is well-defined and surjective. Next, it is not hard to find a definable
surjection H : ONM → ONM×ωM. Then F = G◦H is as desired. �

Corollary 1.10. There is an M-definable well-order <OD of the
class ODM.

Proof. Let F be the function from Lemma 1.9. For x, y ∈ ODM

set x <OD y iff

min{α ∈ ONM | F (α) = x} < min{α ∈ OrdM | F (α) = y}
This is a well-order on ODM. �

Corollary 1.11. ODM is the smallest M-definable class which
contains all M-definable sets.

Proof. By Lemma 1.1 and Corollary 1.10. �

V = OD denotes the statement that every set is definable from
ordinal parameters. Equivalently and maybe more intuitive, V = OD
holds iff every set is definable in an initial segment of the universe (see
Lemma 1.6).

Lemma 1.12. M |= (V = OD) iff M has an M-definable well-
order.

Proof. If M |= (V = OD) then M has a definable well-order by
Corollary 1.10. Conversely, if M has an M-definable well-order then
M ⊆ ODM and so M |= (V = OD). �

Clearly, if a model has a definable well-order then it satisfies the
Axiom of Choice, and so:

Corollary 1.13. ZF ` (V = OD → AC)

From what we have proved so far, V = OD is easily seen to be
consistent:

Lemma 1.14. ZF ` L ⊆ OD

Proof. L is definably well-orderable in any model M of set theory,
and thus M |= L ⊆ OD by Lemma 1.1. �

Corollary 1.15. Con(ZF)→ Con(ZF+V = OD)

Proof. V = L implies V = OD and is consistent relative to ZF.
�
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Corollary 1.16. Con(ZF)→ Con(ZFC)

A proof for the relative consistency of AC with ZF which does not
build on results about the L hierarchy will be given later.

We will see that also the theory ZF+V 6= OD is consistent relative
to ZF. In fact, one may find models for all of the theories

ZF + L = OD 6= V

ZF + L 6= OD = V

ZF + L 6= OD 6= V

2. Some model-theoretic results

In this section, we use model-theoretic methods to prove some re-
sults about Df(M) and ODM, now seen as structures for the language
LZF with the ∈-relation inherited from M.

Definition 1.17.

(1) A substructure N ⊆M has M-definable witnesses if Df(M) ⊆ N
and whenever N |= ∃xϕ(x, a) for some formula ϕ and some
parameter a ∈ Df(M), there is an x0 ∈ Df(M) such that
N |= ϕ(x0, a).

(2) M has definable witnesses if the above holds for N = M.
Equivalently, M has definable witnesses if whenever
M |= ∃xϕ(x) for some formula ϕ, there is an x0 ∈ Df(M) such
that M |= ϕ(x0).

Lemma 1.18. Assume that N has M-definable witnesses. Then
Df(M) � N.

Proof. By the Tarski-Vaught criterion. �

Clearly, if Df(M) ⊆ N and N has an M-definable well-order, then
N has M-definable witnesses: One can always pick the least witness
with respect to that well-order. In particular:

Lemma 1.19. Df(M) � ODM

We can now give a nice model-theoretic characterization of the ax-
iom V = OD, which tells us that - loosely speaking - models of V = OD
are completely determined by their definable elements.

Lemma 1.20. M |= (V = OD) iff Df(M) �M

Proof. If M is a model of V = OD, then Df(M) �M by Lemma
1.19.
Conversely, assume Df(M) � M. Now if x ∈ Df(M), then x is
the unique solution to some formula ϕ in M. But by elementarity,
x is also the unique solution to ϕ in Df(M). Hence every element
of Df(M) is parameter-free definable in Df(M), and so in particular
Df(M) |= V = OD. But then by elementarity M |= V = OD.
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(A quicker but less informative proof is this: If M 2 V = OD, then
M |= ∃x(x /∈ OD), but this statement has no definable witness. Hence
Df(M) �M by the Tarski-Vaught-Test.) �

While having a definable well-order gives one a uniform selector of
definable witnesses to all properties ϕ, having definable witnesses seem-
ingly only yields one selector for each property ϕ. Over ZF however,
the concepts turn out to be equivalent:

Corollary 1.21. If M has definable witnesses, then M has a de-
finable well-order.

Proof. If M has definable witnesses, then Df(M) �M by Lemma
1.18, and so M |= V = OD by the previous lemma. But this means
exactly that M has a definable well-order. �

Going back to the proof of Lemma 1.20, we have seen that if
M |= V = OD, the structure Df(M) has the curious property that
all of its elements are definable in Df(M). Let us call such a struc-
ture pointwise definable. Of course, any pointwise definable model of a
countable theory has itself to be countable, and so pointwise definabil-
ity cannot be first-order expressible.

The following example of a pointwise definable model is due to Paul
Cohen.

Lemma 1.22. Let α be minimal such that Lα |= ZF (if such an α
exists). Then Lα is pointwise definable.

Proof. One easily sees that α is a limit, and so Lα |= V = L. In
particular, Lα |= V = OD, and so Df(Lα) � Lα by Lemma 1.20. By
condensation, Df(Lα) is therefore isomorphic to some Lβ, where β ≤ α.
Now since this Lβ satisfies ZF and α was chosen minimal, β cannot be
strictly smaller than α. Hence α = β, and it follows that Df(Lα) must
have been equal to Lα. �

Lemma 1.23. The following are equivalent for any M = (M,∈M):

(1) M is a pointwise definable model of ZF
(2) M is a prime model of ZF + V = OD, i.e. M is a model

of ZF + V = OD which elementary embeds into any structure
N = (N,∈N) having the same first-order theory as M

(3) M ∼= Df(N) for some N = (N,∈N) |= V = OD

Proof. (1)→(2): If M is pointwise definable, then clearly
M |= V = OD. Now if N and M share the same first-order theory,
then in particular N |= V = OD and so Df(N) is a pointwise definable
model of the same theory as N. But then Df(M) = M and Df(N)
are pointwise definable models of the same theory, and therefore easily
seen to be isomorphic. So M elementarily embeds into N.
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(2)→(3): Since M |= V = OD, Df(M) has the same first order theory
as M and so M embeds into Df(M). It follows that M is pointwise
definable (because Df(M) is), and so M = Df(M).
(3)→(1): This follows from the proof of Lemma 1.20. �

The equivalence of (1) and (3) tells us that V = OD is exactly the
first order content of pointwise definability: Any pointwise definable
model satisfies V = OD, and any first-order property consistent with
V = OD can be enjoyed by a pointwise definable model.

2.1. Paris models. It is easy to see that in a model M |= ZF, the
inclusion Df(M) ⊆ ODM is proper if and only if there is some ordinal
in M which is not definable without parameters. The extra strength
of ordinal definability compared to parameter-free definability then lies
exactly in the admission of these non-definable ordinals as parameters.
Conversely, we call M a Paris model if all of its ordinals are definable
in M. Any pointwise definable model is obviously a Paris model, but
the class of Paris models is richer. This is shown in the following
Proposition:

Proposition 1.24 (Enayat, [12]). Every consistent extension T of
ZF has a Paris model.

Proof. Let T be a consistent extension of ZF. For any formula
ϕ(x) in the language LZF of set theory, consider the formula

ϕ̄(x) ≡ ϕ(x)→ ∃y(ϕ(y) ∧ y 6= x)

which says that x is not defined by the formula ϕ. Now consider the
1-type

p(x) = {x ∈ ON} ∪ {ϕ̄(x) | ϕ ∈ LZF}
Any realization of p(x) in a model of ZF is a non-definable ordinal.
Consequently, a model of ZF is Paris if and only if p(x) is omitted in
this model. By the omitting types theorem, we are thus done if we can
show that the type p(x) is non-isolated over ZF.
Assume towards a contradiction that some formula ψ(x) isolates p,
i.e. ψ(x) is a satisfiable formula such that every witness to ψ(x) is an
undefinable ordinal. Now consider the formula

ψ0(x) ≡ x is the least witness to ψ(x)

Then ψ0(x) uniquely defines an ordinal α. This definable ordinal α is
a witness to ψ(x), contradicting the choice of ψ(x). �

In particular, it follows that there are Paris models of ZF+V 6= OD,
which therefore cannot be pointwise definable.
Just like a pointwise definable model has to be countable, a Paris model
can contain only countably many ordinals3. It follows that being Paris

3If M satisfies AC, |M| = |ONM|, and so M itself will be countable if M is
Paris.
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is not first-order expressible. Note in this context that the above Propo-
sition also shows that being Paris is first-order conservative over ZF.
There is no guarantee that the models constructed in Proposition 1.24
are well-founded, and indeed they cannot be if, for example, T contains
the sentence ¬Con(ZF). However, we have the following proposition:

Proposition 1.25. Let T be a consistent completion of ZF, and
assume that T has a well-founded model. Then any Paris model of T
is well-founded.

Proof. Assume to the contrary that the completion T has an ill-
founded Paris model M. Then there is an infinite descending sequence

α0 3 α1 3 α2 3 . . .

of ordinals in M. Since M is Paris, each αn has a defining formula ϕn.
So M is a model of the sentence

∃!x∃!y(ϕn(x) ∧ ϕn+1(y))

∧ ∀x∀y(ϕn(x) ∧ ϕn+1(y)→ y ∈ x)

for every n ∈ ω, and so the collection of these sentences is contained in
T (since T is complete). But then clearly every model N of T must be
ill-founded, since the witnesses to the ϕn’s form an infinite descending
chain in N. �

Returning to older questions, we now see:

Lemma 1.26. Let M be a model of ZF. Then Df(M) is definable in
M iff M is Paris.

Proof. If M is Paris, then Df(M) = ODM, and so Df(M) is
definable. If M fails to be Paris, i.e. if M has undefinable ordinals,
then Df(M) cannot be definable because of the paradox of the least
undefinable ordinal. �

To conclude this section, the diagram below shows the implications
between the various concepts we have discussed. We will show later
that none of the arrows is reversible (assuming Con(ZF)).

pointwise definable

vv ))

V = L

xx
Paris V = OD

��
AC
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3. The inner model HOD

In this section, we work inside inside some fixed background uni-
verse V |= ZF.
We have seen that there is a definable classOD containing exactly those
sets in V which are definable from ordinal parameters. If V 6= OD, the
first-order analysis of OD is difficult because OD then fails be tran-
sitive. This is because all the Vα, α ∈ ON are ordinal definable, and
thus OD cannot be transitive unless V = OD.
To give a more concrete example for the trouble arising with the non-
transitivity of OD, assume that not all reals in V are ordinal definable
(a situation which is easily seen to be consistent by later results). Then
both R and R ∩OD are (ordinal) definable (the latter so because OD
is a definable class), but they differ only on sets which are not ordinal
definable. So in particular, the Axiom of Extensionality can fail in OD.
One overcomes these difficulties by considering only ordinal definable
sets having the property that also their members and their members’
members etc. are ordinal definable. This is captured in the definition
below. Here, trcl(x) denotes the transitive closure of x, i.e. the smallest
transitive set containing all elements of x.

Definition 1.27. HOD = {x ∈ OD | trcl(x) ⊆ OD}

HOD is the class of hereditarily ordinal definable sets. It is defin-
able, transitive and contains all the ordinals.
Let us quickly note that

V = HOD ↔ V = OD

since if V = OD, then OD is transitive and so OD = HOD. But the
whole point of the introduction of HOD is that it has nice first-order
properties even in the case that V 6= OD.

The following easy result will be useful to check that certain sets are
in HOD.

Lemma 1.28. (x ∈ HOD ↔ x ∈ OD ∧ x ⊆ HOD).

Proof. By ∈-induction. �

For sets of ordinals x, this becomes (x ∈ HOD ↔ x ∈ OD). This
will be used often.
Some of the properties of OD discussed in the previous section easily
translate to HOD:

Corollary 1.29. There is a definable well-order <HOD of the class
HOD.
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Proof. Let F : ON → OD be the surjection defined in Lemma
1.9, and set

F ′(α) =

{
F (α) if F (α) ∈ HOD
∅ else

Then F ′ : OD → HOD is a surjection, and one can define a well-order
<HOD on HOD using F ′ just as we did for OD in Corollary 1.10. �

Proposition 1.30. All axioms of ZF are true in HOD.

Proof. HOD satisfies Extensionality because it is a transitive
class.
If x, y ∈ HOD then clearly both {x, y} and

⋃
x are ordinal definable.

But {x, y} ⊆ HOD and
⋃
x ⊆ HOD by assumption, so both are in

fact hereditarily ordinal definable by Lemma 1.28. Hence Pairing and
Union are true in HOD.
For Powerset, let x ∈ HOD and let y = P(x) ∩ HOD. Then y is
ordinal definable and all of its elements lie in HOD. So y ∈ HOD,
and y = P(x)HOD by absoluteness.
For Replacement, assume that u, v ∈ HOD and ϕ(x, y, z) is a formula
such that

∀x ∈ u∃!yϕ(x, y, v)

is true in HOD. In other words,

∀x ∈ u∃!y(y ∈ HOD ∧ ϕ(x, y, v)HOD)

is true in V , and so by Replacement and Comprehension in V there is
a set w such that

y ∈ w ↔ ∃x ∈ u(y ∈ HOD ∧ ϕ(x, y, v)HOD)

This w is definable by the formula above using parameters u, v ∈ HOD,
and so w ∈ OD, and clearly also w ⊆ HOD. So w ∈ HOD, and

∀x ∈ u∃y ∈ wϕ(x, y, v)

holds in HOD. �

The proof that all ZF axioms are true in HOD becomes almost a
triviality if one uses the following fact:

Fact 1.31. A transitive class M is an inner model of ZF iff M
is closed under Gödel operations and M is almost universal, i.e. for
every set x ⊆M there is an y ∈M such that x ⊆ y.

Now Gödel operations are absolutely definable functions, and so
OD is obviously closed under them. In fact, one can check the defining
clauses of the Gödel operations to see that they map HOD-sets to
HOD.
To check that HOD is almost universal, let x ⊆ HOD and pick an
ordinal α such that x ⊆ Vα. Then Vα ∩ HOD is an element of HOD
containing x as a subset.
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Proposition 1.32. AC is true in HOD.

Proof. Let x ∈ HOD. Then <HOD ∩ (x × x) is hereditarily or-
dinal definable, since <HOD is a definable class and x ∈ HOD. So
<HOD ∩ (x× x) is a well-order of x in HOD. �

We therefore arrive (again) at:

Proposition 1.33. Con(ZF)→ Con(ZFC)

Proof. By the general observation that inner models can be used
to yield relative consistency results. Namely, if ZFC `⊥ then ZF `⊥HOD
by Proposition 1.32, but ZF ` (⊥HOD↔⊥). So ZF `⊥. �

As promised before, this result needs neither results on L nor the
consistency of V = OD.

Remark 1.34. We have seen that HOD |= AC, and so it is com-
pletely determined by its sets of ordinals. Now these are exactly the
ordinal definable sets of ordinals (since for sets x of ordinals, being
ordinal definable and being hereditarily ordinal definable is the same).
In this sense, HOD is canonically related to the class OD: It is the
unique inner model of ZF whose sets of ordinals are exactly the ordinal
definable sets of ordinals.

The ease with which the various set existence axioms are proved in
HOD is based on the fact that the concept of ordinal definability refers
to definability in V , and not to definability in (some initial segment of)
HOD, as it is the case with the L hierarchy. So there is never a need
to relativize complex logical expressions to HOD.
It is by this reference to V -definability that HOD (and likewise, OD)
strongly depends on the surrounding universe V . So if V,W are two
models of set theory, there is no a priori reason to believe that
HODV = HODW , even if V ⊆ W and both have the same ordinals.
In particular,

Fact 1.35. It is consistent (relative to ZF) that HODHOD ( HOD.

A proof will be given later. In the situation described in Fact 1.35,
HOD fails to satisfy the statement V = OD. The intuition here is
that that although HOD consists of ordinal definable sets, it does not
necessarily see why they are ordinal definable. So moving from V to
HOD, some sets might lose their definability properties.4

4One can also arrange that HODHODHOD ( HODHOD ( HOD, and in fact
it is possible that there is even an Ord-length sequence of nested HOD’s (taking
intersections at limit points) which never stabilizes. Moreover, every model of ZFC
can be obtained by first moving to a generic extension, and then applying the HOD
operator transfinitely many times. These and other funny results have been proven
by Jech, McAloon and Zadrozny in the 70’s and early 80’s.
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Definition 1.36. Let M be an inner model5 of ZF. The ZF-theory
of M , denoted by ThZF(M), is the set of all ϕ ∈ LZF such that
ZF ` ϕM .

Speaking model-theoretically, ThZF(M) consists of all sentences
which are true in “the M of” every model of ZF. For example, Propo-
sition 1.32 says that AC ∈ ThZF(HOD).
Again, a distinction to the inner model L arises:
ThZF(L) is really just (the deductive closure of) the theory ZF+V = L.
This is because V = L is true in L by the absoluteness of the L-
hierarchy, and so consequences of V = L hold in the L of every model.
In other words, some model M of set theory is “the L of some universe”
if and only if M |= V = L.
With HOD, things are different. Although every ϕ ∈ ThZF(HOD)
certainly holds in all models of ZF + V = HOD, saying that some
structure M models ZF+V = HOD is in general stronger than saying
that M arises as the HOD of some model of ZF (see Fact 1.35). So
there are really two different concepts to consider.
In section 3.2, we will see that in fact every model of ZFC (note the
AC!) arises as the HOD of some model of ZF, and so ThZF(HOD) is
simply the deductive closure of ZFC.
Furthermore, we present a partial result on the implications of V = HOD
in section 3.1.

We conclude this section with three more characterisations of HOD.

Proposition 1.37. HOD is the largest transitive class (and there-
fore the largest inner model) which has a definable well-order.

Proof. Let M ⊆ V be a transitive class with a definable well-
order. Then M ⊆ OD. By transitivity of M , M ⊆ HOD. �

Proposition 1.38. HOD = L[A] for a V -definable class A ⊆ ON

Proof. Let {xα | α ∈ ON} be the definable enumeration of HOD
induced by its well-order. Let Γ be the canonical pairing function of
ordinals and set A = {Γ(α, β) | α ∈ xβ}.
Since A is definable, L[A] ⊆ HOD. Conversely, let x ∈ HOD. We
may assume that x is a set of ordinals, since HOD |= AC and so every
set is coded into a set of ordinals. Pick β ∈ ON such that x = xβ.
Using Replacement, we can find a limit ordinal γ > β such that Lγ is
closed under Γ and for all α ∈ ON , α ∈ xβ → α < γ.
Then x = {ξ < γ | Γ(ξ, β) ∈ A ∩ γ} is definable in (Lγ, A ∩ γ), and
therefore x ∈ L[A]. �

5We treat inner models as syntactical objects. So M is really a formula such
that the class defined by M is transitive, contains all the ordinals and satisfies the
axioms of ZF.
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Proposition 1.39. V = OD iff V = L[A] for some V -definable
class A ⊆ ON

Proof. If V = OD, then V = L[A] for a definable A ⊆ ON by the
previous proposition. Assume conversely that V = L[A] for a definable
A. Then we can define a well-order of V in the same way as one does
for L, and so V = OD follows. �

The following curious characterisation of HOD is taken from the
original paper [1] on ordinal definability. By L1 we denote the version
of the constructible hierarchy where first-order definability is replaced
by second-order definability, i.e. L1 =

⋃
α∈ON

L1
α where

L1
0 = ∅

L1
α+1 = {x ⊆ L1

α | x is second-order definable over L1
α}

L1
γ =

⋃
α<γ

L1
α for limit γ

In the definition of L1
α+1, the second-order quantifiers range over subsets

of L1
α in V . So there is no reason to expect that the L1 hierarchy is

absolute. As in the definition of L, we allow the defining formulas to
contain parameters from L1

α.

Proposition 1.40 (Myhill-Scott). AC → L1 = HOD

Proof. The proof for L1 ⊆ HOD is similar to the proof that
L ⊆ HOD.
Conversely, let A ∈ OD be a set of ordinals, and assume that A is
definable in some stage Vα from a formula ϕA(x), i.e.

x ∈ A ↔ (Vα,∈) |= ϕA(x)

We may assume6 that α is a limit. Using AC, let κ = |Vα|. We claim
that A is second-order definable in any L1

θ which contains κ as an
element. First note that any bijection F : Vα → κ induces a relation
E0 on κ such that (κ,E0) ∼= (Vα,∈). We now want to define A in L1

θ

by saying that

ξ ∈ A ↔ ϕA holds in (κ,E0) for the element corresponding to ξ

However, this uses a second-order parameter E0. So instead we will
use the formula

ξ ∈ A ↔ ∃E ((κ,E) ∼= (Vα,∈)∧
(*)

ϕA holds in (κ,E) for the element corresponding to ξ)

The rest of the proof is devoted to showing that (*) can be transformed
to a second-order statement over L1

θ.

6See Remark 1.8.
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In the following, we use uppercase letters for second order variables
throughout.

We first show that for a second-order variable E, the statement

(κ,E) ∼= (Vα,∈)

is definable by a second-order formula ∃RΓ(E,R, κ, α). The additional
second order variable R will describe a rank function on (κ,E). All
first-order quantifiers in Γ(E,R) (we suppress the parameters α, κ from
now on) will be bounded to κ, E or R, and so basic absoluteness
arguments will show that Γ(E,R) works inside L1

θ as expected. The
formula Γ(E,R) is given as

E is an extensional binary relation on κ with minimal element 0

∧ R is a function from κ to α

∧ Φ(R,E)

where Φ(R,E) is some yet to be determined formula which says that
R is a rank function for (κ,E) making this structure isomorphic to
(Vα,∈). To define Φ(R,E), recall that non-zero ranks are always suc-
cessor ordinals. For any x ∈ κ, denote by predE(x) the definable class
{y ∈ κ | E(y, x)}. We now imitate the recursive definition of the Vα
hierarchy for the structure (κ,E):

Φ(R,E) ≡ ∀x ∈ κR(x) = (
⋃
{R(y) | E(y, x)}) + 1

∧ ∀β < α∀Y ⊆ κ(∀y ∈ Y (R(y) ≤ β)→ ∃x ∈ κ(Y = predE(x)))

Φ(R,E) says that every node in (κ,E) has as predecessors elements
of lower R-rank, and for every collection Y of elements of bounded R-
rank there is a node having exactly the elements of Y as predecessors.
The essential point of the proof is that second-order logic allows as
to quantify over all subsets Y ⊆ κ (and not only over those in L1

θ),
thereby guaranteeing that the structure (κ,E) is as rich as (Vα,∈).
So assume Γ(E0, R0) holds for some E0, R0 ⊆ L1

θ and let π denote the
Mostowski collapse on E0. Clearly π : (κ,E0) ∼= (Vα,∈). Moreover
π preserves ranks: R0(x) = ξ iff rk(π(x)) = ξ (where rk denotes the
∈-rank). In particular, if (E1, R1) is another pair such that Γ(E1, R1)
then there is an isomorphism ι : (κ,E1) ∼= (κ,E2) and for all x ∈ κ,
R0(x) = R1(ι(x)).
Let ord(x) be any first-order formula defining the ordinals in (Vα,∈),
and define a relation =E on κ× α via

x =E ξ :↔ R(x) = ξ ∧ (κ,E) |= ord(x)

=E is (L1
θ, E,R)-definable end expresses that the element x in the struc-

ture (κ,E) corresponds to the ordinal ξ in (Vα,∈): If Γ(E0, R0) and
L1
θ |= (x =E ξ), then R0(x) = rk(π(x)) = ξ and Vα |= ord(π(x)), and
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thus π(x) = ξ.
Furthermore, for ξ ∈ α and any formula ϕ(x) we define

(κ,E) |=ord ϕ(ξ) :↔ ∃x ∈ κ(x =E ξ ∧ (κ,E) |= ϕ(x))

(κ,E) |=ord ϕ(ξ) says that ϕ holds in (κ,E) for the element correspond-
ing to the ordinal ξ.
The relation |=ord is independent of the choice of E: That is, if Γ(E0, R0)
and Γ(E1, R1), then (κ,E0) |=ord ϕ(ξ) iff (κ,E1) |=ord ϕ(ξ). To see this,
assume that (κ,E0) |=ord ϕ(ξ) and pick an x ∈ κ such that R0(x) = ξ
and (κ,E0) |= ord(x) ∧ ϕ(x). Let ι : (κ,E0) ∼= (κ,E1) be an isomor-
phism. Then R1(ι(x)) = ξ and (κ,E1) |= ord(ι(x)) ∧ ϕ(ι(x)), and so
(κ,E1) |=ord ϕ(ξ).
Finally, we can define A in L1

θ by saying

ξ ∈ A↔ ∃E∃R(Γ(E,R) ∧ (κ,E) |=ord ϕA(ξ))

This completes the proof.
�

Remark 1.41. Without AC, HOD can be strictly larger than L1.
This is shown in [11].

4. Forcing and ordinal definability

We now investigate the relation between ordinal definability in the
ground model and in some generic extension7.
First, an easy observation shows us that being (not) ordinal definable
is not an intrinsic property of a set.

Lemma 1.42. Let x ∈ V be a set. Then there is a generic extension
V [G] ⊇ V such that x is ordinal definable in V [G].

Proof. It suffices to show this when x is a set of ordinals. We may
further assume that the GCH holds up to a sufficiently large cardinal,
since this can be forced.
Pick x ⊆ λ, and let (κα)α<λ be an increasing enumeration of λ-many
infinite regular cardinals. For each α < λ, let Cα be the usual partial
order which forces 2κα = κ++

α . We now let P be the Easton-support
product of (Pα)α<λ, where Pα = Cα if α ∈ x and Pα = {∅} otherwise.
Let G be P -generic over V . By Easton’s theorem, V [G] has the same
cofinalities and cardinals as V , and furthermore for each α < λ,

(2κα)V [G] =

{
κ++
α if α ∈ x
κ+α if α /∈ x

7Unless noted otherwise, forcing and generic always mean set-forcing and set-
generic.
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This obviously makes x definable from the sequence (κα)α<λ in V [G].
Now one just has to chose (κα)α<λ sufficiently definable; for example,
one can take

(κα)α<λ = the first λ-many infinite regular cardinals

which is definable from λ (both in V and V [G], by cofinality preser-
vation) and therefore makes x ordinal definable in the generic exten-
sion. �

Remark 1.43. We say that in the situation of the above proof, x
gets coded into the continuum pattern. This technique will be used for
proving various results, and we will omit the details from now on.
If one wants to make certain sets ordinal definable without messing up
the continuum pattern, different techniques have to be used. One of
them is the �∗-coding described in [14].

Remark 1.44. If one can arrange (κα)α<λ to be definable without
parameters in V [G], then so will be x. For example, x is a real number,
one can code x into the continuum pattern from ℵ0 up to the definable
cardinal ℵω, and this will make x definable without parameters in V [G].

Remark 1.45. By a slightly different method, we can make an
arbitrary set x ⊆ κ of ordinals definable in V [G]. Assume that the
characteristic function of x has the course of values

a0a1 . . . aξaξ+1 . . .

where aξ ∈ {0, 1} for all ξ < κ. Then one can code the sequence

a0a0a1a1 . . . aξaξaξ+1aξ+1 . . . 01

into the GCH pattern starting at ℵ0. Then the place where the coding
of the aξ’s ends can be defined in V [G] as the smallest even ordinal α
such that the GCH holds at ℵα but not at ℵα+1. So the sequence

a0a0a1a1 . . . aξaξaξ+1aξ+1 . . . 01

is definable in V [G] without parameters, and it follows that x is defin-
able in V [G] without parameters.

Remark 1.46. Clearly, we can modify this method further to make
any finite list

x0, x1, . . . , xn ∈ V
of sets definable in a generic extension V [G]. It is not clear how to
extend this into the transfinite, and indeed there is a natural limit to
this coding: We clearly cannot make uncountably many (as viewed
externally) x ∈ V definable in V [G]. If V itself is countable, it is
possible to make all x ∈ V definable in a generic extension V [G]; see
Proposition 2.12.
Turning to the case of ordinal definability, we will prove that a “generic
iteration” of the coding method does produce an extension V [G] in
which all sets are ordinal definable; this is Theorem 2.2.
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Our second main technique for proving independence results about
ordinal definability uses the concept of weak homogenity.

Definition 1.47. A partial order P is called weakly homogeneous
if for any p, q ∈ P there is an automorphism i of P such that i(p) is
compatible with q.

The following result about weakly homogeneous forcings is well-
known.

Lemma 1.48. Let P be a weakly homogeneous forcing, and let G be
V -generic over P . Then for all statements ϕ of the forcing language
which contain only check names, ∃p ∈ P (p  ϕ) iff 1  ϕ.

Proof. Assume p  ϕ for some p ∈ P , and let q be any other
condition. Pick an automorphism i of P such that i(p) is compatible
with q. Let r ≤ i(p), q. Since ϕ contains only check names, i(p)  ϕ,
and so r  ϕ. Since q was arbitrary, it follows that the collection
{s ∈ P | s  ϕ} is dense, and so 1  ϕ. �

This means in particular that the first-order theory of a generic
extension by P is independent of the choice of the generic and definable
in V .

Proposition 1.49. Let P be an ordinal definable and weakly ho-
mogenous forcing and let G be a V -generic filter over P . Then if
x ∈ ODV [G] and x ⊆ V , it follows that x ∈ ODV . In particular,
HODV [G] ⊆ HODV .

Proof. Let x ⊆ V be ordinal definable in V [G]. Choose a formula
ϕ(v, w) and ordinals α, ξ such that x = {y ∈ (Vα)V | V [G] |= ϕ(y, ξ)}.
Let ẋ be a name for x.
For all y ∈ (Vα)V we have

y ∈ x⇔ V [G] |= ϕ(y, ξ)⇔ ∃p ∈ G(p  ϕ(y̌, ξ̌))⇔ 1  ϕ(y̌, ξ̌)

where the last equivalence is by Lemma 1.48, since ϕ(y̌, ξ̌) contains
only ground model parameters. Therefore

x = {y ∈ Vα | 1  ϕ(y̌, ξ̌)}

Note that the forcing relation  for the formula ϕ is ordinal definable in
V since P is. Thus it follows from this representation that x is ordinal
definable in V .
HODV [G] has consequently no new sets of ordinals, and since
HODV [G] |= AC, this suffices to show that HODV [G] ⊆ HODV . �

Lemma 1.50. Let P be an ordinal definable and weakly homogenous
forcing and let G be a V -generic filter over P . Then HODV [G] is a V -
definable class. In particular, HODV [G] does not depend on G.
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Proof.

x ∈ HODV [G] ↔ x ∈ V ∧ 1 P x̌ ∈ HOD
�

Remark 1.51. Note that the forcing P from Lemma 1.42 which
makes x definable is a product of weakly homogeneous forcings, and
therefore itself weakly homogeneous. This is consistent with Lemma
1.49, since P is defined from x, and so usually P /∈ OD. In fact,
P ∈ OD ↔ x ∈ OD.

Remark 1.52. It follows immediately that one cannot force V = OD
by an ordinal definable weakly homogeneous forcing (unless V = OD
already holds in the ground model).

It is now easy to show from Proposition 1.49 that V 6= HOD is
consistent:

Proposition 1.53. Con(ZF)→ Con(ZF +V 6= HOD)

Proof. Let P be any nontrivial definable forcing which is weakly
homogeneous, for example Cohen forcing. Then if G is V -generic over
P ,

HODV [G] ⊆ HODV ⊆ V $ V [G]

and therefore V [G] |= (V 6= HOD). �

Remark 1.54. Assume V = L, and let P be an ordinal definable
weakly homogeneous forcing. Then HODV [G] = HODV , since

L = LV [G] ⊆ HODV [G] ⊆ HODV = L

We now combine the continuum coding technique and weak ho-
mogenity to give an example where the HOD of a generic extension is
properly contained in the HOD of the ground model.

Lemma 1.55. There is a model V and a generic extension W ⊇ V
such that HODW ( HODV .

Proof. Let P be Cohen forcing and g a real which is P -generic
over L. Of course, g /∈ L. Now in L[g], let Q be the Easton poset
which codes g into the continuum pattern below ℵω. Let G be Q-
generic over L[g]. Then g ∈ HODL[g][G] . Finally, let H be generic for
Coll(ω, λ) where λ is some cardinal larger than |P ∗Q|. We claim that
g /∈ HODL[g][G][H]. To see this, note that P ∗Q∗Coll(ω, λ) ∼= Coll(ω, λ)
by a well-known result of Levy, since the former is a forcing of size λ
which collapses λ. Hence there is a Coll(ω, λ)-generic filter J which
does the same as g ∗G∗H. But Coll(ω, λ) is weakly homogeneous, and
so

L = HODL[J ] = HODL[g][G][H]
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Hence g /∈ HODL[g][G][H], but g ∈ HODL[g][G].

L

Coll(ω,λ)

66
P // L[g]

Q // V := L[g][G]
Coll(ω,λ)

// W := L[g][G][H]

g /∈ OD g ∈ OD g /∈ OD

�

We may isolate an idea of the previous proof to get the following:

Lemma 1.56. Assume x ∈ HOD and x remains hereditarily ordinal
definable in any extension by forcings of the form Coll(ω, α). Then x
remains hereditarily ordinal definable in any set generic extension.

Proof. Assume x is as in the assumption, and let V [G] be a
generic extension of V by the forcing poset P . Pick an α > |P |. Then
P ∗ Coll(ω, α) ∼= Coll(ω, α). Choose a V [G]-generic H ⊆ Coll(ω, α)
and a V -generic H ′ ⊆ Coll(ω, α) such that V [G][H] = V [H ′]. By as-
sumption, x ∈ HODV [H′] = HODV [G][H]. Now by the weak homogenity
of Coll(ω, α), x ∈ HODV [G]. �

In [8], it is asked which x remain hereditarily ordinal definable in
every set-generic extension. The collection of all such elements is there
called gHOD, the generic HOD. gHOD is a definable class, since

x ∈ gHOD ↔ ∀P∀p ∈ P (p P x̌ ∈ HOD)

Proposition 1.57 (Fuchs-Haminks-Reitz). gHOD is an inner
model of ZFC.

Proof. Denote by Hα the HOD of V [G], where G is any V -generic
filter on Coll(ω, α). This is well defined because of Lemma 1.50. Fur-
thermore, the above equivalence shows that Hα is uniformly definable
in the parameter α. If α < β, then Coll(ω, α)×Coll(ω, β) ∼= Coll(ω, β),
and so Hβ = (Hβ)V [G] whenever G is V -generic over Coll(ω, α). Since
Coll(ω, β) is weakly homogeneous, it follows that Hβ ⊆ Hα. So
(Hα)α∈ON is a descending sequence of models of ZFC.
By Lemma 1.56, gHOD =

⋂
α

Hα. gHOD is therefore transitive and

contains all the ordinals.
We now show that gHOD is almost universal. So let x ⊆ gHOD
and pick an ξ such that x ⊆ Vξ. We are done if we can show that
Vξ ∩ gHOD ∈ gHOD. Since Vξ is a set, we can use Replacement to
find an α0 such that Vξ ∩ gHOD = Vξ ∩ Hα0 . Now if α ≥ α0, then
Vξ ∩Hα0 = Vξ ∩Hα ∈ Hα. If α < α0, then Vξ ∩Hα0 ⊆ Vξ ∩Hα ∈ Hα

by the monotonicity of the sequence (Hα)α. This together shows that
Vξ ∩Hα0 ∩ gHOD.
We have thus shown that gHOD |= ZF. For AC, Let x ∈ gHOD
and let U be the collection of all well-orders on x. Since U is a
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set, we can again use Replacement to find an α ∈ ON such that
U ∩ gHOD = U ∩Hα. So U ∩ gHOD 6= ∅, since Hα |= ZFC. �



CHAPTER 2

The advanced theory

1. V = OD by forcing

We have already seen that V = OD holds in L and in all models of
the form L[A] where A is a definable class of ordinals. In this section,
we show how one can start with an arbitrary model V and get an ex-
tension W ⊇ V satisfying V = OD by the method of forcing. There is
some flexibility in this approach which allows us to code parts of V into
the extension W . For example, if V contains a measurable cardinal κ
then W can be chosen such that κ remains measurable in W . This
yields the relative consistency of “V = OD + ∃κ measurable”.
Lemma 1.42 showed how one makes a single set ordinal definable. One
imaginable way of forcing V = OD is to use this method in an iterated
forcing construction, using a bookkepping function which will eventu-
ally list all sets. Of course, the iteration will add new sets, and the
bookkepping would have to take care of these new sets as well.
It turns out that such a rather complicated bookkeeping is not needed:
One can basically take any ON -length iteration of a forcing which po-
tentially codes sets (say, into the continuum pattern), and then use a
genericity argument to show that indeed all sets get coded. This is the
approach we will follow here.

Definition 2.1. Let (P,≤P ), (Q,≤ Q) be forcing posets. The di-
rect sum (P⊕Q,≤P⊕Q) of P and Q is the forcing given by the following
data:

• The underlying set of P ⊕Q is the disjoint union of P and Q
together with a new element 1
• ≤P⊕Q=≤P ∪ ≤Q ∪{(x, 1) | x ∈ P ∪Q}

In other words, elements from the P -part and from the Q-part of
P⊕Q are incompatible, and within P and Q everything stays as before.
If G ⊆ P ⊕Q is a generic filter, then either G ∩ P 6= ∅ or G ∩Q 6= ∅.
In the first case, G∗ := G\{1} ⊆ P and G∗ is P -generic. In the second
case, G∗ ⊆ Q and G∗ is Q-generic.
The direct sum of two forcings is usually not weakly homogeneous. For
example, work in L and consider the definable forcing P ⊕ Q where
P = {1P} is trivial, and Q = Add(ω,ℵ2). Let q ∈ Q be arbitrary.
Then q P⊕Q 2ℵ0 = ℵ2, while 1P P⊕Q 2ℵ0 = ℵ1. So the first-order
theory of L[G] depends on the choice of G, and thus P ⊕Q cannot be
weakly homogeneous by Lemma 1.48.

26
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Proposition 2.2. Let M be a countable transitive model of ZFC.
For any cardinal η in M , there is a class-generic extension M [G] ⊇M
such that H(η)M [G] = H(η)M and M [G] |= (V = OD).

Proof. Let λ = η+. We may assume that the GCH holds above
λ since this can be forced without changing Vλ. Now for each regular
κ > λ, let Qκ denote the partial order which forces 2κ = κ++, and let
T denote some trivial forcing. Our forcing P is the Easton iteration of
Qκ ⊕ T for all regular κ > λ.

So let G ⊆ P be M -generic. First, since P is λ+-closed, V
M [G]
λ = Vλ.

Since H(η) is definable from η inside Vλ (in any universe), it follows
that H(η) is preserved as well.
We have to show that each set in M [G] is ordinal definable. Since
M |= AC, it suffices to show this for some set of ordinals x ∈ M [G].
Given such, pick a regular κ ⊇ x. Since P≥κ is κ+-closed, x must
have been added in the intermediate extension M [G � P<κ]. Now
arguing in M [G � P<κ], we claim that it is dense that x gets coded
into the continuum function above κ by the tail forcing P≥κ. To see
this, let p ∈ P≥κ be arbitrary and let α = sup(dom(p)). Now p can be
extended to a condition p̄ with support in α + κ by setting p̄ � α = p
and p̄(α+ ξ) ∈ Qα+ξ arbitrary if ξ ∈ x and p̄(α+ ξ) ∈ T if ξ /∈ x. Then
p̄ forces that the continuum function codes x.
By genericity, G picks such a condition p̄, and so in the final model
M [G], x can be read off from the continuum function starting at some
ordinal γ > κ. Hence x is definable from γ. �

Corollary 2.3. If ZFC + ∃κ measurable is consistent, then so is
ZFC + V = OD + ∃κ measurable.

Proof. Let κ be measurable in M and let λ = (2κ)+. Now ap-
ply the above theorem to get M [G] ⊇ M satisfying V = OD and
H(λ)M [G] = H(λ)M . Because of the latter, M [G] has no new < κ-
sequences of subsets of κ, and so any κ-complete ultrafilter on κ in M
remains < κ-complete in M [G]. �

The only thing we needed to know for this corollary was that the
measurability of κ is absolute for any sufficiently large H(λ). So there
is a more general phenomenon behind this, which we will discuss next.
We start with an observation of Azriel Lévy.

Lemma 2.4 (Lévy). Assume AC. For every uncountable λ, H(λ) �1 V .

Proof. Assume ∃xϕ(x, a) holds for some ∆0-formula ϕ and a ∈ H(λ).
By ∆0-absoluteness, it suffices to show that there is an u ∈ H(λ) such
that ϕ(u, a) holds.
By the reflection principle, we can find a Vα �1 V such that trcl({a}) ⊆ Vα
(choose Vα such that it reflects the formula defining Σ1-truth). Now,
using AC, construct an elementary submodel M � Vα of size < λ which
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contains trcl({a}). This is possible because λ > ω and | trcl({a})| < λ
by assumption. It follows that M �1 V . Let M ′ be the Mostowski col-
lapse of M . M ′ is transitive and of size < λ and therefore M ′ ∈ H(λ).
Furthermore a was not collapsed since trcl(({a}) ⊆ M . So a ∈ M ′

and M ′ �1 V , hence there is an u ∈ M ′ ⊆ H(λ) such that ϕ(u, a)
holds. �

Lemma 2.5. Assume AC and let ϕ ∈ LZF. Then ϕ is ΣZF
2 iff

(*) ϕ ↔ ∃λ > ωH(λ) |= ϕ

Proof. Assume first that ϕ ∈ ΣZF
2 .

If ϕ is true, then ϕ holds in some H(λ) by the Reflection Theorem.
Conversely, assume that H(λ) |= ϕ for some uncountable λ, and write
ϕ as ∃xψ(x) where ψ ∈ ∆ZF

0 . Then there is an a ∈ H(λ) such that
H(λ) |= ψ(a). By Lemma 2.4, ψ(a) is true in V , and therefore also ϕ.
For the other direction, assume now that ϕ is a formula satisfying (*).
We argue that the right-hand side of the equivalence is ΣZF

2 . To see this,
note that the relations Card(y) and x = H(y) are Π1. The satisfaction
relation |= is ∆0 since all quantifiers are bounded to the domain of the
structure in question. Thus ϕ is equivalent to the Σ2 statement

∃x∃y∃ϕ(Card(y) ∧ y > ω ∧ x = H(y) ∧ x |= ϕ).

�

The Σ2 properties of set theory are therefore sometimes called lo-
cally verifiable. Proposition 2.2 shows that we can force V = OD over
models of ZFC while preserving arbitrary large H(λ)’s, and thus we
can force V = OD while preserving any particular locally verifiably
property. This is summed up in the following Proposition:

Proposition 2.6 (Roguski). V = OD is Π2-conservative over
ZFC. Equivalently, whenever ϕ ∈ ΣZFC

2 and Con(ZFC + ϕ), then
Con(ZFC + V = OD + ϕ).

Proof. Assume that ϕ ∈ ΣZFC
2 holds in M |= ZFC. Pick an un-

countable cardinal λ in M such that H(λ)M |= ϕ. Now using Proposi-
tion 2.2, we can find a class-generic extension M [G] |= V = OD which
has the same H(λ) (here we use the assumption that M |= AC). By
the absoluteness of the satisfaction relation, (H(λ) |= ϕ)M [G], and so
M [G] |= ϕ by Lemma 2.5. �

Corollary 2.7. The following statements are ΣZFC
2 and therefore

consistent with V = OD:

(1) There is a measurable cardinal
(2) ¬GCH
(3) V 6= L
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Proof. The easiest way to show that the statements are Σ2 is by
showing that they are locally verifiable in the sense of Lemma 2.5. For
example, if V 6= L, then there is a non-constructible set x in some
H(λ). Then x /∈ LH(λ) = L ∩H(λ), and so H(λ) |= V 6= L. �

Remark 2.8. The proposition is optimal in the sense that V = OD
is not Π2-conservative over ZFC: the sentence ϕ ≡ ∃x(x ⊆ ω∧x /∈ OD)
is consistent with ZFC and is a ΠZFC

2 sentence.1

Remark 2.9. Similarly, V = OD is not Π2-conservative over ZF
(without Choice), since AC is a ΠZF

2 -statement implied by V = OD.

1.1. Intermezzo. Let us quickly recall the diagram of implica-
tions

pointwise definable

vv ))

V = L

xx
Paris V = OD

��
AC

We can now easily show that none of the arrows is invertible, assuming
some mild consistency assumptions about ZF.

• Paris but not pointwise definable: Consider a Paris model of
V 6= OD. Such a model exists by Lemma 1.24, but it cannot
be pointwise definable.
• V = OD but not pointwise definable: Consider any uncount-

able model of V = OD.
• AC but not V = OD: Consider L[g] where g is Cohen generic

over L. L[g] satisfies AC, but ODL[g] = L by the weak ho-
mogenity of Cohen forcing.
• V = OD but not V = L: Start with a model of V 6= OD, and

consider the model V [G] from Proposition 2.2.

2. Pointwise definability by forcing

We now use the method of the previous section to generically extend
a given countable transitive model M of ZFC to a pointwise definable
model M [G] ⊇M . Since pointwise definable models are countable, the
countability of the ground model M is essential for the proof. This

1ϕ is equivalent to

∀y (y = P(ω)︸ ︷︷ ︸
Π1

→ ∃x ∈ y ∀α∀z(z = Vα︸ ︷︷ ︸
Π1

→ x /∈ Df(Vα))︸ ︷︷ ︸
∆1

)

︸ ︷︷ ︸
Π2

)

︸ ︷︷ ︸
Π2
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is unlike in many forcing proofs, where the countability of the ground
model only plays a minor technical role.
Let A ⊆ M . We say that (M,A) is pointwise definable if every set in
M is definable in a formula in the language {∈, A}.

Proposition 2.10. Let M be a countable transitive model of ZFC.
There is a set A ⊆ M such that (M,A) is a pointwise definable and
(M,A) |= ZFC.

Proof. Note first that the statement is trivial if one does not re-
quire (M,A) |= ZFC, since if A is any well-order of M in order type
ω, then every set in M will be definable from its rank in A, which is
a standard natural number and therefore definable. So clearly (M,A)
will be pointwise definable. But (M,A) fails to satisfy Replacement,
since A gives rise to an unbounded map ω →M .
The A we use will be class-generic over M for a set-closed class forcing,
and so (M,A) |= ZFC will follow from the Forcing Theorem.
Since M |= ZFC, it suffices to make all sets of ordinals definable in
(M,A). In fact, every set x in M can be decoded from a map ax ∈ 2<ON

which ends with two consecutive 1’s and has value 0 at all odd places
apart from that. We will restrict our attention to those a for technical
reasons.
Denote by P the partial order (2<ON ,⊇)M . Using the countability of
M , let {xn | n ∈ ω} and {Dn | n ∈ ω} be enumerations of M and
all parametrically definable dense subsets of P in M respectively. For
each n, let ϕn be a defining formula of Dn. By choosing the sequence
{Dn | n ∈ ω} appropriately, we may assume that the parameters in ϕn
are among x0, . . . , xn−1 (ϕ0 is parameter-free, so for example D0 could
be P ).
The desired class A is the union of conditions (pn)n∈ω, where the pn
are defined inductively as follows:

(1) p0 = ∅
(2) For even n > 0, pn is the minimal-length extension of pn−1 to

a condition in Dn (if there are multiply such pn, take the least
with respect to the lexicographical ordering)

(3) For odd n > 0, pn is the concatenation of pn−1 with the se-
quence ax.

It follows from (2) that A is P -generic over M and so (M,A) |= ZFC.
We now show that (M,A) is pointwise definable by giving definitions
of p2m, p2m+1, axm and xm in the language {∈, A} for every m via (ex-
ternal) induction. Assume that such definitions have been found for all
n < m. Then:

(1) If m = 0, then p0 = ∅. Otherwise,
(2) p2m is the minimal-length and lexicographically least extension

of pm−1 to an initial segment of A such that M |= ϕ(pm)
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(3) p2m+1 is the length-minimal extension of p2m−1 to an initial
segment of A which ends with two consecutive 1’s

(4) axm is the tail segment of p2m+1 given by removing the initial
segment p2m

(5) xm is the set coded by axm

Note that in (2), all M -parameters in ϕn are among x0, . . . , xm−1 which
are definable by induction hypothesis. Apart from that, it is clear
that the clauses (1) − (5) give rise to parameter-free definitions of
p2m, p2m+1, axm and finally xm in (M,A). �

Remark 2.11. We remark that the constructed definition of xm in
(M,A) is by no means uniform in m, since the defining formulas of the
various Dn’s are incorporated into the definition of xm.

Proposition 2.12. Let M be a countable transitive model of ZFC.
There is a generic extension M [G] ⊇ M such that M [G] is pointwise
definable.

Proof. Using the previous Proposition, we first find a class A ⊆M
such that (M,A) |= ZFC and (M,A) is pointwise definable. Next, we
use an (M,A)-definable forcing Q which forces V = OD and simul-
taneously makes A definable. This can be achieved by modifying the
construction in Proposition 2.2 such that any generic H ⊆ Q uses one
definable unbounded class of regular cardinals to force V = OD and a
disjoint definable unbounded class of regular cardinals to code A (by
using a class-version of Lemma 1.42). We omit the details here.
So in the resulting model M [H], V = OD holds and A is a defin-
able class. It follows that M is also definable in M [H], since it is
the collection of all sets which are coded into A. Now since (M,A) was
pointwise definable, it follows that every set in M is definable in M [H].
In particular, all ordinals are definable in M [H] (i.e. M [H] is a Paris
model), and since M [H] |= V = OD, it follows that M [H] is pointwise
definable. �

3. The theory of HOD

We have seen that the axiom of choice holds in the HOD of any
model of ZF. In this section we show that this is already the only
example of a statement which provably holds in HOD.

Proposition 2.13 (Roguski). Let M be a countable transitive model
of ZFC. Then M has a class-generic extension M [G] ⊇ M such that
HODM [G] = M .

This can be paraphrased as saying that HOD has no internal struc-
ture, since every model of ZFC can arise as the HOD of some other
model.
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Corollary 2.14. For any sentence ϕ ∈ LZF, ZF ` ϕHOD iff
ZFC ` ϕ, and so the theory of HOD is just (the deductive closure
of) ZFC.

Proof. If ZFC ` ϕ then certainly ZF ` ϕHOD, since the HOD of
any model of ZF satisfies ZFC.
Assume conversely that ZFC 0 ϕ, and let M |= ZFC +¬ϕ. By Propo-
sition 2.13 there is a generic extension N ⊇M such that M = HODN .
ThenN |= ZF butN 2 ϕHOD, since (ϕHOD)N ↔ ϕM . Hence ZF 0 ϕHOD.

�

We first need some extensions and class versions of previous results.
Let (M,A) be a model of ZF(A). OD(M,A) is the class of all sets
definable in (M,A) from ordinal parameters. HOD(M,A) is defined in
the obvious way.

Lemma 2.15.

(1) HOD(M,A) is (M,A)-definable
(2) There is an (M,A)-definable class K ⊆ ON such that

HOD(M,A) = L[K]

Proof. By straighforward generalizations of the proofs of Lemmas
1.19 and 1.38. �

Lemma 2.16. Let P ⊆ M be a class forcing which preserves ZF
and assume that the forcing relation for P is (M,A)-definable. If P is
weakly homogeneous an G is V -generic, then

HOD(M [G],A,M) = HOD(M,A)

Proof. By generalizing the proof of Lemma 1.49. �

We are now set to prove the proposition.

Proof of Proposition 2.13. Let M be a countable transitive
model of ZFC. First, let P be the set-closed forcing which adds a global
well-order to M , and let G be P -generic. Then

(M,G) |= ZFC(G) + V = HOD(M,G)

We now flatten the continuum function to do some coding in the next
step. Let Q ⊆ M be the class size partial order which forces GCH,
and let H be Q-generic over (M,G). Then by the weak homogenity of
H,

(M [H], G,M) |= ZFC(G,M) +M = HOD(M [H],G,M)

Note that we do not add H as a predicate. Using AC in M [H] and
Lemma 2.15, pick an (M [H], G,M)-definable class A ⊆ ON such that
M = HOD(M [H],G,M) = L[A]. Finally, let R be the (M [H], G,M)-
definable forcing which codes the class A into the continuum pattern.
Let I be R-generic over (M [H], G,M), and let N = M [H][I]. Then



4. VǑPENKA’S THEOREM 33

N |= ZFC, and we claim that HODN = M .
First, A can be read off the continuum function in N , and so

M = L[A] ⊆ HODN

Conversely,

HODN ⊆ HOD(N,G,M,M [H])

since adding predicates makes more sets definable, and

HOD(N,G,M,M [H]) = HOD(M [H],G,M)

by the weak homogenity ofR, andHOD(M [H],G,M) = M by the previous
discussion. So HODN = M and the Proposition is proved. �

4. Vǒpenka’s Theorem

In this section, we give a proof that every set of ordinals is generic
over HOD.
We start with some easy observations. Let X ∈ OD be any set.
P(X) ∩ OD, the collection of ordinal definable subsets of X, con-
tains ∅ and X and is closed under finite intersections and comple-
ments. In other words, it forms a subalgebra of P(X). Furthermore,
P(X) ∩ OD is OD-complete: if A ⊆ P(X) ∩ OD is ordinal definable,
then

⋂
A ∈ P(X) ∩OD.

Let Q(X) denote the set P(X) ∩ OD \ {∅}, viewed as a forcing poset
with the partial order ≤=⊆. This forcing has lots of atoms, namely all
singletons {x} where x ∈ OD, and so G(x) := {p ∈ Q | x ∈ p} is an
ordinal definable generic filter for each such x. If x /∈ OD, we can still
define the filter G(x) := {p ∈ Q | x ∈ p} in V as above. This is like a
principal filter, only that the generating element is not in Q.

Lemma 2.17. G(x) intersects all OD-definable maximal antichains
in Q.

Proof. If A ∈ OD is an antichain, i.e. A consists of pairwise
disjoint sets, then

⋂
p∈A

X \ p is ordinal definable and disjoint from any

set in A. So if A is maximal,
⋂
p∈A

X \ p cannot be a condition in Q, so

it has to be the empty set. In other words,
⋃
A = X. It follows that x

is contained in some element of A, and thus G(x) intersects A by the
definition of G(x). �

This is already the main ingredient of Vǒpenka’s proof. We just
need a transfer principle from OD to HOD.

Lemma 2.18. Let A be an ordinal definable first-order structure in
a finite language, and assume that all elements of the universe of A
are ordinal definable. Then there is a B ∈ HOD such that A ∼= B.



4. VǑPENKA’S THEOREM 34

Proof. Note first that it follows from the assumptions that all rela-
tions and functions of A are ordinal definable. Now let F : OD → ON
be a definable injection. We define the universe of B as B := F ′′(A),
where A is the universe of A. Then B is an ordinal definable set of
ordinals, so B ∈ HOD. Now do likewise for functions and relations in
A. Then F : A ∼= B. �

Theorem 2.19 (Vǒpenka). Every set of ordinals is generic over
HOD.

Proof. Let x be a set of ordinals and pick some x ⊆ κ. Let Q
be the forcing P(P(κ)) ∩ OD \ ∅ ordered by ⊆. Note that Q ∈ OD
(but usually Q /∈ HOD). Now applying the above lemma, let Q′ be an
isomorphic forcing in HOD. Working in V , let Gx = {p ∈ Q | x ∈ p},
and let G′x := F ′′Gx be the corresponding filter in Q′. Every maximal
antichain A′ ⊆ Q′ in HOD corresponds to a maximal antichain A ⊆ Q
in OD which is met by Gx by the discussion above, and so G′x meets
all maximal antichains in HOD. Furthermore,

α ∈ x ↔ {u ⊆ κ | α ∈ u} ∈ Gx ↔ F ′′({u ⊆ κ | α ∈ u}) ∈ G′x
so that x and G′x are mutually definable (note that the collection
{u ⊆ κ | α ∈ u} is ordinal definable). Thus HOD[G′x] = HOD[x]. �

Corollary 2.20. Assume V = L[x] for some set x of ordinals.
Then V is a set-generic extension of HOD.
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The stable core

In this section, we show that the whole universe is generic over
HOD for a forcing which is definable in V . More generally, we give
a sufficient condition for an inner model to be only “one class forcing
away” from V .
To this end, we define the stability predicate S ⊆ V and show that for
any definable inner model M , V is generic over the extended model
(M [S], S). The smallest such model (L[S], S) is called the stable core
of V . It is consistent that L[S] ( HOD.
Since S is definable, HOD[S] = HOD. We can therefore conclude that
V is class-generic over HOD for a forcing definable in V .

All material in this section is taken from [6].
We always assume that AC holds in V .

1. Proof outline

Vǒpenka’s theorem can be rephrased in the following way: If V = L[A]
for some set of ordinals A, then V is generic over HOD. The proof
proceeded by finding a partial order in HOD such that the set A itself
(up to some definable bijection) was a generic for this poset.
Turning to the class case, we have seen (12.1.1) that V can always
be written as V = L[F ] where F is (the characteristic function of) a
V -generic class of ordinals. Our aim is now to devise a forcing P such
that F is M -generic over P for any inner model M ⊆ V in which P is
definable.
Since we have restricted ourselves to conditions which are sets, we
cannot directly use the same forcing as in the proof of Vopenka’s the-
orem. Instead we take a more syntactical approach, where a condition
is a statement in an infinitary logic (defined in M) describing how an
imagined function Ḟ : ON → 2 “could behave” on set-many values (it
will be one of our tasks to determine what this “could behave” should
mean).
Let P ⊆ M denote this informally described forcing. Working in V ,
we identify F with the class

GF = {ϕ ∈ P | ϕ is true when Ḟ is replaced by F}
which is a filter on P . Of course our dream is that GF is M -generic
on P . So consider an M -definable antichain A ⊆ P . Let Ā be the

35
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conjunction of {¬ϕ | ϕ ∈ A}. If GF does not intersect A, then F
makes Ā true. This should qualify Ā as a statement about Ḟ which
“could be possible” from M ’s point of view, because we have found the
witness F in the outer model V ⊇ M . So Ā is a condition in P and
hence A was not maximal.
The problem with this reasoning is that if A is a proper class, then
Ā contains class-many informations about Ḟ and therefore is too big
to be a condition. We can resolve this by using a reflection argument.
Namely, assume the antichain A is Σn-definable in V and pick an α
such that

(*) (Vα, F ∩ Vα) �n (V, F )

Such an α exists because (V, F ) models Replacement. Then F inter-
sects A iff F intersects A ∩ Vα, which is a set. We will use this fact to
refine our forcing P to a forcing which has set-size antichains, and for
which the genericity argument sketched above works.
Since this refined P is defined using (*), it seems to be only definable in
inner models which have access to F . This would of course be useless,
since F already codes all of V . However, we can work with much less
information about V :
The key idea is that we can always choose the generic class F in such a
way that for a large V -definable class C of α, H(α) �n V already im-
plies (H(α), F � α) �n (V, F ). We call such an F stability-preserving.
Now to define P , our inner model only has to to have access to V ’s
stability relation on the class C.

2. The stability predicate

Let us start with some definitions.
For the reflection argument we are aiming at it suffices that F is
stability-preserving on an unbounded class of ordinals. For techni-
cal reasons, we restrict ourselves to the class of cardinals β such that
H(α) ∈ H(β) for all α < β.
For α, β ∈ C we say that α is n-Stable in β if α < β are limit points of
C and (H(α), C ∩ α) �n (H(β), C ∩ β). We say that α is n-stable in
ON if (H(α), C ∩ α) �n (V,C).
We call α n-Admissible if (H(α), C ∩α) is a model of Σn-Replacement.
If α is n-Stable in some β, it follows that α is n-Admissible1.
For our purpose, the n-Admissibility of α is used a an indicator that

1Assume f : a → H(α) is Σn-definable over (H(α), C ∩ α), and α is n-Stable
in β. By elementarity, the relation f(x) = y is absolute between (H(α), C ∩ α)
and (H(β), C ∩ β). Thus (H(β), C ∩ β) |= ∀x ∈ a∃!y ∈ H(α)(f(x) = y), and so in
particular (H(β), C ∩ β) |= ∃D∀x ∈ a∃!y ∈ D(f(x) = y). The latter statement is
Σn, and so it holds in (H(α), C ∩ α) as well by elementarity. But this means that
f is bounded in H(α).
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an n-Stability relation holds between α and some larger β.
Finally we define the Stability predicate:

S = {(α, β, n) | α is n-Stable in β and β is n-Admissible}

3. Forcing a stability-preserving predicate

We now show how one can find a generic F : C → 2 which codes
the universe (i.e. V = L[F ]) and which is stability-preserving, meaning
that whenever

(H(α), C ∩ α) �n (H(β), C ∩ β)

it follows that

(∗) (H(α), C ∩ α, F � α) �n (H(β), C ∩ β, F � β)

F will be generic over a forcing P which refines the tree forcing (2<ON ,⊇).
The key idea is to chose P in such a way that the initial segments

F � α of F have to be sufficiently generic for H(α). Namely every Σn

statement ϕ about (H(α), C ∩α, F � α) should be decided by a proper
initial segment F � α′ ⊆ F � α. It will then be possible to speak about
the predicate F � α inside H(α) by means of the forcing relation  and

a name ḟ only, and so the predicate F � α becomes eliminable.

The forcing P is defined as
⋃
α∈C

P (α), where the sets P (α) are defined

by induction on α ∈ C. Every P (α) consists of functions from C ∩ α
to 2.
If α is an successor of some β ∈ C, we simply let P (α) be all possible
extensions of maps from P (β), i.e. P (α) consists of all f : C ∩ α → 2
such that f � α ∈ P (β).
So let α be a limit, and assume that P (β) has been defined for all
β < α. We let P (< α) be the union of all the P (β)’s, β < α, and view
this as a class forcing in H(α), where the order is inclusion.
We assume that P (< α) is extendible, meaning that for each p ∈ P (γ)
and γ < β < α (all in C), p can be extended to a condition in P (β).
We postpone a proof until later.
Under this assumption, P (< α) adds a generic function from α ∩C to

2 whose canonical name we denote by ḟα.
We say that f : α ∩ C → 2 is n-generic for P (< α) if for any forcing

statement ϕ ∈ Σn(H(α), C ∩ α, ḟα), there is a β < α such that f � β
decides ϕ in P (< α).
We now define P (α) to be the collection of all f : α∩C → 2 such that

(1) f � β ∈ P (β) for all β ∈ C ∩ α
(2) f is n-generic for P (< α) for all n such that α is n-Admissible

Again, extendibility of P (< α) will tell us that there are indeed f
satisfying (2).
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Lemma 3.1. For any ϕ ∈ Σn(H(α), C ∩ α, ḟα), the forcing relation
f  ϕ derived from P (< α) is Σn-definable over (H(α), C ∩ α).

Proof. Note that the forcing P (< α) does not add sets to H(α),
and so any forcing statement f  ϕ is essentially just a statement
about the graph of ḟ : C ∩ α → 2, where ḟ extends f . If for example
ϕ is Π1, then f � ϕ if for all g ⊃ f in P (< α) and all transitive sets M
with ord(M) = dom(f), (M,C ∩M, g) |= ϕ. This relation is Π1.
The full result follows by induction on n. �

Now let F ⊆ P =
⋃

α∈ON
P (α) be a generic class.

Lemma 3.2. Let α, β ∈ C such that α is n-stable in β, and assume
that β is n-Admissible. Then (H(α), F � α) �n (H(β), F � β).

Proof. First note that both α and β are n-Admissible. Assume
(H(α), F � α) |= ϕ for some ϕ ∈ Σn(H(α), ḟ). By construction, F � α
is then an n-generic class for the forcing P (< α), and so by the Forcing
Theorem for P (< α) there exists an α0 < α such that

H(α) |= (F � α0  ϕ)

This statement is Σn over H(α) by Lemma 3.1, and so by elementarity
it follows that

H(β) |= (F � α0  ϕ)

which in turn implies that (H(β), F � β) |= ϕ since F � β is an n-
generic class for P (< β) which contains the condition F � α0. �

Proposition 3.3 (Extendibility). Let α < β be cardinals in C.
Then every condition in P (α) can be extended to a condition in P (β).

Proof. By induction on β. So let α < β and p ∈ P (α). If β is a
successor of some γ ∈ C, we can just extend p to a condition q in P (γ)
by the induction hypothesis and then arbitrarily extend q to a condi-
tion in P (β) (since in the recursive definition of P (β) for successors,
no restrictions are made). So let us assume that β is a limit.
The general strategy for producing an extension in P (β) is this: We
first pick an cofinal increasing sequence (βi) of elements of (C∩β) such
that β0 > α, and then we successively extend p to conditions qi in
P (βi). Finally we set q =

⋃
i

qi.

If we have found an extension of p in P (βi), the existence of a further
extension in P (βi+1) is guaranteed by the induction hypothesis since
βi+1 < β. Now assume that i is a limit and we have already found
extensions p ≥ q0 ≥ q1 ≥ . . . ≥ qj ≥ qj+1 ≥ . . . for all j < i. We
want to set qi =

⋃
j<i

qj. However by the definition of P (βi), this qi is

only a condition if it is n-generic for P (< βi) for every n such that βi
is n-Admissible. The rest of the proof shows that this situation can
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always be arranged by choosing the sequence (βi) carefully.

Case 1: β is not 1-Admissible
The failure of 1-Admissibility implies the existence of an unbounded in-
creasing sequence (βi)i<δ in C∩β which is ∆1-definable2 in (H(β), C∩β),
where δ < β. We may assume that δ and all parameters in the definition
of (βi)i<δ are contained in H(β0) (otherwise, switch to an appropriate
tail segment of (βi)i<δ). Whenever βj is a limit of the sequence, it fol-
lows by ∆1-absoluteness that the restriction of (βi)i<δ to values below
βj is ∆1-definable in H(βj, C ∩ βj), and so this subsequence witnesses
the failure of 1-Admissibility for (H(βj), C ∩ βj).
It then follows from the definition of P that for each limit βj < β
and for β itself, P (βj) and P (β) are simply the set-union of the var-
ious P (βi) below. We can therefore extend p successively to condi-
tions q0, q1, . . . , qi, . . . where qi ∈ P (βi), taking unions at limit points.
q =

⋃
i<δ

qi is then the desired extension of p in P (β).

Case 2: For some 0 < n < ω, β is n-Admissible, but not (n + 1)-
Admissible
Let us first assume that in addition, there are cofinally many ξ < β such
that ξ is n-Stable in β. Then a similar reasoning as in Case 1 yields:
There is an increasing unbounded sequence (βi)i<δ in C ∩ β, now con-
sisting of n-Stables in β, which is ∆n+1-definable over (H(β), C ∩ β).
For each limit βj, it follows from the ∆n+1-definability of (βi)i<δ com-
bined with the n-Stability of βj in β that the restriction of (βi)i<δ to
values below βj is ∆n+1-definable in H(βj, C ∩ βj), and so βj is not
(n+ 1)-Admissible. Now extend p successively to a sequence of qi’s as
in Case 1. At limit points βj, qj is n-generic for P (< βj) since βj is a
limit of n-Stables. So qj is indeed a condition in P (βj).
Assume now that β is not a limit of n-Stables. Then β must have cofi-
nality ω: Otherwise, we could use the n-Admissibility of H(β) to close
substructures of (H(β), C ∩ β) under Σn-Skolem functions, producing
cofinally many n-Stables. It suffices to prove that p can be extended
to decide any given collection of Πn(H(β), C ∩ β, ḟ) sentences of size
less than β. Once we have done that, we can extend p in ω steps to a
condition in P (β) which is n-generic. Let (ϕi)i<δ, δ < β be an enumer-
ation of such a collection of Πn-sentences, where δ < β. Furthermore,
let D be the club of all γ < β such that γ is a limit of (n− 1)-Stables
in β and large enough so that H(γ) contains p and the enumeration
(ϕi)i<δ. We now define by induction sequences (βi) of ordinals below β
and (qi) conditions in P (βi). β0 is the least element of D, and q0 is an
extension of p in P (β0). Now given βi and qi, we let βi+1 be the least
element of D above βi such that D contains an extension of qi which

2Note that for functions, Σn+1 and ∆n+1 are the same: If the relation f(x) = y
is Σn+1, then so is f(x) 6= y, since this is equivalent to ∃z(f(x) = z ∧ z 6= y)
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decides ϕi. Let qi+1 ≤ qi be such an extension. Finally for limit i, we
let βi =

⋃
j<i

βj and qi =
⋃
j<i

qj. qj is indeed a condition in P (βj), since

βj fails to be n-Admissible and qj is a limit of (n− 1)-Stables.
Case 3: β is n-Admissible for every n
This means that (H(β), C ∩ β) satisfies full Replacement. It is then
easy to construct a cofinal sequence (βi) of elements of C ∩β such that
every limit βi is the limit of n-Stables for every n ∈ ω. We can then
extend p successively to conditions qi ∈ P (βi), taking unions at limit
steps. This works since if βi is a limit, then for every n, βi is n-generic
because it is a limit of n-Stables.

�

4. Truth in outer models

In this section we show that a model M can reason about truth in
its outer models N ⊇M , at least for statements of some fixed bounded
complexity. We are interested in the case where the outer model is of
the form L[F ] for some class function F : ON → 2. Thus statements
about N are essential statements about the function F .
We start by defining an infinitary language L in M which describes a
function Ḟ : ON → 2. The atomic sentences of L are

Ḟ (α) = 0

Ḟ (α) = 1

where Ḟ is a fixed symbol and α ∈ ONM , and inductively setting∨
Φ ∈ L∧
Φ ∈ L

whenever Φ ∈ M is a set of L-formulas. We may think of ϕ ∈ L as
being coded as a tree of finite height and set-size width. We make the
harmless technical assumption that if all ordinals mentioned in ϕ ∈ L
are bounded below some α, then ϕ ∈ H(α). Intuitively, each ϕ ∈ L
contains set-many information about the function Ḟ .
Let o(ϕ) denote the set of ordinals occuring in ϕ, and let 2<ON be
the set of all functions from some ordinal to 2. If f ∈ 2<ON and
dom f ⊇ o(ϕ), one can define f |= ϕ in the natural way, that is ϕ holds
when Ḟ is replaced by f . For definiteness, let f |= ϕ be true when
dom f + o(ϕ). For ϕ, ψ ∈ L we also consider ¬ϕ and ϕ → ψ to be
part of L, using the obvious semantics.

The relation f |= ϕ is ∆0(f, ϕ) (infinite junctions over Φ become
quantifiers bounded by Φ), so it can be evaluated in every transitive
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model containing f, ϕ. Keeping this in mind, we say that ϕ is valid,
written

` ϕ
if for all set-generic extensions N ⊇M and all f ∈ N , f |= ϕ.

Lemma 3.4. The relation ` is M-definable.

Proof. This follows from the definability of the forcing relation:
ϕ is valid if and only if

∀P∀p ∈ P (p P ∀f(f |= ϕ))

Note that on the right side of  there is really only one formula in
which P and ϕ act as parameters. �

Lemma 3.5. Let ϕ ∈ L and let N ⊆ be any outer model of M .
Then ϕ is valid in N if and only if ϕ is valid in M .

Proof. Assume that ϕ is not valid in N . So there is a generic
extension W ⊇ N such that W |= ∃f(f |= ¬ϕ)). By further forcing if
necessary, we may assume that ϕ is countable inW . Then ∃f(f |= ¬ϕ))
is Σ1(H(ω1), ϕ) in W , and so it holds in all inner models of W which
contain a real coding ϕ by Shoenfield’s absoluteness theorem. In partic-
ular, since ϕ is countable in M [G], we have that M [G] |= ∃f(f |= ¬ϕ),
and so ϕ is not valid in M .
Conversely, assume that there is a counterexample to ϕ in a set-generic
extension of M . By further forcing if necessary, we may assume that
this extension is of the form M [G] where G is Levy collapse generic over
M . Pick a condition p in the Levy collapse which forces ∃f(f |= ¬ϕ).
Now if H is Levy collapse generic over N and contains p,
N [H] |= ∃f(f |= ¬ϕ). So ϕ is not valid in N . �

Lemma 3.6. Let α ∈ ON and Φ ⊆ H(α) be a set of L-formulas. If
Φ is Σn-definable over H(α) and f : α → 2, then the notion f |=

∧
Φ

is Σn over (H(α), f).

If T is an L-theory (which may be a proper class) and ϕ ∈ L, we
say that T implies ϕ if for some set T0 ⊆ T the sentence

∧
T0 → ϕ is

valid. ϕ is consistent with T if T does not imply ¬ϕ.

We now extend the predicate |= to proper classes. Let N |= ZF−

and F : N → 2 be a class function. Assume that Φ ⊆ N ∩ L is
Σn-definable over (N,F ) and (N,F ) satisfies at least Σn-Replacement.
Then we can define (N,F ) |= Φ by

∀ϕ ∈ Φ(F �ord(ϕ)|= ϕ)

This notion is again Σn over (N,F ).
There is an obvious forcing P (L) definable from L. First, we identify
two sentences ϕ, ψ if ϕ↔ ψ is valid. Now discard the equivalence class
of ⊥ (i.e. take any ϕ such that ¬ϕ is valid and discard the equivalence
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class of ϕ). Then order the remaining equivalence classes by [ϕ] ≤ [ψ]
iff ` ϕ→ ψ.

Lemma 3.7. Let F : ON → 2 be a function which is definable in
an outer model N ⊇ M and let GF = {ϕ ∈ P (L) | F |= ϕ}. Then GF

is a filter on P (L).

Proof. This is straightforward. For example, assume ϕ ∈ GF and
ϕ ≤ ψ. Let α be the supremum of all ordinals occuring in ϕ and ψ.
By definition, ϕ→ ψ is valid, so in particular it holds for the function
F � α in the outer model N . Since F � α |= ϕ by assumption, it follows
that F � α |= ψ and so ψ ∈ GF . �

Lemma 3.8. Let F : ON → 2 be a function and let

GF = {ϕ ∈ P (L) | F |= ϕ}
. Then GF is a filter on P (L). Furthermore no set-size antichain
A ⊆ P (L) which is disjoint from GF is maximal.

Proof. It is easy to see that GF is a filter on P (L). Now given
a set-size antichain A, we may form Ā =

∧
{¬ϕ | ϕ ∈ A}. Since

GF ∩A = ∅ we know that F |= Ā, so Ā is satisfiable in an outer model
of M and therefore belongs to P (L). But Ā is incompatible with every
element of A, so A was not maximal. �

This does not tell us much because one easily sees that many an-
tichains in P (L) are proper classes.

5. Applying V ’s reflection principle

We now want to make the reflection argument sketched in the proof
outline available to our inner model M ⊆ V = L[F ]. All the informa-
tion needed for this is coded in V ’s stability predicate S.
Choose an r ∈ ω such that both M [S] and S are r-definable in V .
We therefore work in the model (M [S], S) and refine the forcing P (L)
from the last section.
Let T be the L-theory consisting of all sentences of the form∧

(Φ ∩H(α)M [S])→
∧

(Φ ∩H(β)M [S])

where

(1) Φ is a set of L-sentences
(2) For some n ∈ ω, Φ is Σn-definable over H(α)M [S]

(3) α is n+ r-Stable in β and β is (n+ r)-Admissible (in V )

T is (M [S], S)-definable precisely because the stability relations needed
in (3) are coded into S.

Lemma 3.9. If Φ is Σn-definable over H(α)M [S], then Φ is Σn+r-
definable over H(α)V .
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Proof. Recall that (iα = α)V . Since this is downwards absolute,

(iα = α)M [S] and so H(α)M [S] = V
M [S]
α = V V

α ∩M [S]. Furthermore
V V
α ∩M [S] = (M [S])Vα is Σr-definable in Vα, and it follows that Φ is

Σn+r-definable over Vα = H(α). �

Corollary 3.10. T is true in (V, F ).

Proof. This follows from Lemmas 3.6, 3.9 and the fact that F
is stability preserving: If

∧
(Φ ∩ H(α)M [S]) →

∧
(Φ ∩ H(β)M [S]) is a

formula in T , then (Vα, F � α) �n+r (Vβ, F � β). �

Now let Q consist of all sentences ϕ ∈ P (L) which are consistent
with T , meaning that there is no set T0 ⊆ T such that

∧
T0 → ¬ϕ is

valid. ONer Q by ϕ ≤ ψ iff ϕ∧¬ψ is not consistent with T . It follows
that ϕ, ψ ∈ Q are incompatible iff ϕ ∧ ψ is not consistent with T .
Now in V , we let G = {q ∈ Q | F |= q}. This is a filter on Q, which is
proved in a straightforward manner using the fact that in V , F |= T .

Lemma 3.11. G intersects all maximal antichains A ⊆ Q which are
sets.

This is the same argument as in the proof of Vopenka’s theorem.
Let A ∈ M [S] be an antichain and consider Ā = {¬ϕ | ϕ ∈ A}. Since
Ā is a set we may form the conjunction

∧
Ā. Assume that G does not

intersect A. Then F |=
∧
Ā by the definition of G and hence

∧
Ā is

consistent with T . Thus
∧
Ā is a condition in Q which is incompatible

with every element of A. So A is not maximal.

Lemma 3.12. All (M [S], S)-definable antichains in Q are sets.

Let A ⊆ Q be an (M [S], S)-definable antichain which might be a
proper class in M [S]. Again, consider the class Ā = {¬ϕ | ϕ ∈ A}.
Pick an n ∈ ω such that Ā is Σn-definable over (M [S], S) and α ∈ ON
which is n-Stable in V and big enough for H(α)M [S] to contain all
parameters in the definition of Ā. Then Ā ∩H(α)M [S] is Σn-definable
over H(α)M [S], using the same defining formula.
Whenever β > α is n-Stable in V one has that α is n-Stable in β. Thus
it is an axiom of T that∧

(Ā ∩H(α)M [S])→
∧

(Ā ∩H(β)M [S])

Since there are arbitrarily large such β, T together with the sen-
tence

∧
(Ā ∩ H(α)M [S]) implies every statement in Ā. It follows that

A = A ∩H(α)M [S]:
Assume otherwise that ϕ ∈ A \ A ∩ H(α)M [S]. Since A is an an-
tichain, ϕ implies

∧
Ā ∩ H(α)M [S]. ¬ϕ ∈ Ā, so it is implied by

T +
∧

(Ā ∩ H(α)M [S]). Hence T + ϕ implies ¬ϕ, contradicting the
fact that ϕ is consistent with T .
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Corollary 3.13. G is Q-generic over (M [S], S) and M [S][G] = V .
Hence, V is a class-generic extension of (M [S], S) by a forcing defin-
able in V .

Proof. The genericity of G follows from Lemmas 3.11 and 3.12.
Since M [S] and G are V -definable, M [S][G] ⊆ V . On the other hand,
V = L[F ] and F is definable from G, and so V ⊆M [S][G]. �

This finishes the proof of the main result.
To conclude this section, we sketch a proof that the Stable Core can
be smaller than HOD.

Lemma 3.14. It is consistent that L[S] ( HOD.

Sketch of Proof. Using a variant of Jensen’s technique for cod-
ing the universe into a real, one can find a class-generic extension L[r]
of L where r is real not set-generic over L and L[r] has the same sta-
bility predicate as L. It follows that inside the model L[r], L[S] equals
L, and so r is not set-generic over L[S]L[r]. But r is set-generic over
HODL[r] by Vǒpenka’s Theorem 2.19, and so (L[S] 6= HOD)L[r]. �



CHAPTER 4

Large cardinal witnessing

1. A measurable cardinal which is not measurable in HOD

In this section, we show that measurability is not witnessed in
HOD, i.e. it is possible that for some measurable κ, κ is not mea-
surable in HOD.
The proof is a modification of a result due to Kunen, which we will
prove first.

Theorem 4.1 (Kunen). Let κ ∈ V be measurable. Then there is a
forcing extension of V in which κ fails to be measurable, but becomes
measurable again after forcing with Add(κ, 1).

Proof. We may assume that the GCH holds in V , since this can
be forced while preserving the measurability of κ. To fix some nota-
tion, let P be the Easton-support iteration which adds a Cohen generic
subset to every inaccessible cardinal below κ, and let Qκ = Add(κ, 1)
be the forcing to add a Cohen generic subset to κ itself.
Let G be P -generic over V , and let g ⊆ κ be Qκ-generic over V [G]. We
claim that (1) κ is not measurable in V [G] and (2) κ is measurable in
V [G][g].
Claim 1: κ is not measurable in V [G]
Assume to the contrary that κ remains measurable in V [G], and let
j : V [G] � M̄ be the corresponding ultrapower embedding. The
statement that V [G] is a forcing extension of V by P is first-order
definable in some parameter over V [G] (see []), and so by elementar-
ity we can conclude that M̄ = M [j(G)] for some M̄ -definable inner
model M ⊆ M̄ where j(G) is j(P )-generic over M . Also by elemen-
tarity, j(P ) is the forcing in M which adds a Cohen subset to every
M -inaccessible cardinal below j(κ). Now for cardinals λ ≤ κ, M -
inaccessible means the same as inaccessible in V because V M

κ = Vκ. It
follows that j(P ) = P ∗Qκ ∗Ptail where the tail forcing Ptail is κ-closed
in M . Since each condition p ∈ P has size < κ, j(p) = p and therefore
j”G = G. So j(G) splits as G ∗ g ∗Gtail where g ⊆ κ is Qκ-generic over
M [G].
P(κ)V ⊆ M , since if x ∈ P(κ)V , then j(x) ∈ P(j(κ))M by elemen-
tarity, and so x = j(x) ∩ κ ∈ M . Using the fact that every set in
H(κ+)V can be coded into a subset of κ, it follows that H(κ+)V ⊆M .
Every x ∈ P (κ)V [G] has a (code of a) P -name ẋ in H(κ+)V . So ev-
ery x ∈ P (κ)V [G] has a name in M by the previous discussion, and

45
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so P (κ)V [G] ⊆ M [G]. In particular, M [G] contains g, which is absurd
since g was generic over M [G].

V

P

��

M

P
��

M [G]

Qκ
��

M [G][g]

Ptail

��
V [G] �

�

j
// M̄ = M [G][g][H]

Claim 2: κ is measurable in V [G][g]
Let j : V �M be the ultrapower embedding given by some κ-complete
ultrafilter on κ. We show that j can be lifted to V [G][g] in a definable
way.
By elementarity, j(P ) is the forcing in M which adds a Cohen subset
to every M -inaccessible cardinal below j(κ). Now for cardinals λ ≤ κ,
M -inaccessible means the same as inaccessible in V because V M

κ = Vκ.
It follows that j(P ) = P ∗ Qκ ∗ Ptail where the tail forcing Ptail is κ-
closed in M . Since each condition p ∈ P has size < κ, j(p) = p and
therefore j”G = G, which is also P -generic over M since M ⊆ V .
We first construct a V [G][g]-definable lifting of j to V [G]. For this we
have to find a filter in V [G][g] which is j(P )-generic over M and ex-
tends G. By the product lemma, this amounts to finding a filter which
is Qκ ∗ Ptail-generic over M [G].
So let us work in V [G][g]. For the Qκ-part of Qκ ∗ Ptail, we may just
take g, which is generic over V [G] and so also over M [G]. For the tail
forcing Ptail we make the following observations:
Subclaim 2.1: |P(Ptail)

M [G][g]| = κ+
Ptail has size j(κ), and so |P(Ptail)

M [G][g]| = (2j(κ))M [G][g], which equals
(2j(κ))M since the forcing P ∗Qκ does not affect the cardinal arithmetic
at j(κ). Now (2j(κ))M = |j(2κ)|V = |j(κ+)|V by elementarity and the
GCH in V . Furthermore (|j(κ+)| = (κ+))V by a basic property of the
ultrapower embedding, and this remains true in the subsequent exten-
sion V [G][g].
Subclaim 2.2: M [G][g] is ≤ κ-closed
M is ≤ κ-closed in V by a basic property of the ultrapower embedding.
By an argument similar to the one in the proof of (1), it then follows
that M [G][g] is ≤ κ-closed in V [G][g].
It follows from Claim 2.1 that we can list all dense subsets of Ptail in
M [G][g] in a κ+-sequence. We now construct a descending sequence
of conditions in Ptail which hits every dense subset. The limit steps are
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handled using Claim 2.2. The filter H generated by this sequence is
Ptail-generic over M [G][g].

We have thus shown that j can be lifted to j : V [G] → M [G][g][H].
To lift j fully to V [G][g], we have to find a j(Qκ) = Qj(κ)-generic filter
over M [G][g][H] which extends g. To do so, one repeats the arguments
of Claim 1 and Claim 2 to show that one can construct in V [G][g] de-
scending sequences of conditions in Qj(κ) hitting all the dense sets in
M [G][g][H]. g can be viewed as a condition in Qj(κ); so take a sequence
starting with g which hits all dense sets in M [G][g][H], and let h be
the filter generated by this sequence. Then h ⊃ g and h is M [G][g][H]-
generic, and so we can lift j to j : V [G][g] → M [G][g][H][h], proving
that κ is measurable in V [G][g].

V �
�

j
//

P

��

M

P
��

M [G]

Qκ
��

M [G][g]

Ptail

��
V [G]

Qκ
��

� �

j
// M [G][g][H]

Qj(κ)
��

V [G][g] �
�

j
// M [G][g][H][h]

�

Proposition 4.2. Let κ ∈ V be measurable. Then there is a forcing
extension of V in which κ is measurable, but not measurable in HOD.

Proof. We modify the construction in Theorem 4.1 in the follow-
ing way: After adjoining the P -generic filter G to V , we do a further
forcing R which codes (P(P(κ)))V [G] into the continuum pattern suf-
ficiently high above κ. Namely, R should not add any new collections
of subsets of κ. Let I be R-generic over V [G]. Finally (as in Theorem
4.1), we add a Cohen generic subset g ⊆ κ. We will show that the
resulting model V [G][I][g] is as desired.

Claim 1: κ is not measurable in W := HODV [G][I][g]

In the proof of Theorem 4.1, we showed that κ is not measurable in
V [G]. This carries over to V [G][I] since R preserves (P(P(κ)))V [G]. So
for the non-measurability of κ in W , it suffices to show that W and
V [G][I] have the same P(P(κ)).
By the weak homogenity of Qκ, it follows that W ⊆ V [G][I], and so
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(P(P(κ)))W ⊆ (P(P(κ))V [G][I]. On the other hand, every set
x ∈ (P(P(κ))V [G][I] is contained in V [G] since R does not add subsets
to κ, and so x can be read off the continuum function in V [G][I]. This
remains so in the final model V [G][I][g], and hence x ∈ W .

Claim 2: κ is measurable in V [G][I][g]
The forcing Add(κ, 1) is the same in V [G] and in V [G][I], and so we
can form the model V [G][g]. We have seen in Theorem 4.1 that κ is
measurable in V [G][g]. Now in V [G], R is ≤ κ-closed and Add(κ, 1)
is κ+-cc, and so by Easton’s lemma R remains ≤ κ-distributive in
V [G][g]. It follows that R does not add subsets of κ to V [G][g], and so
κ remains measurable in V [G][g][I] = V [G][I][g]. �

2. Further results

The paper [9] contains many more constructions of models where
large cardinals fail to be large in HOD.
For example, the following result strengthens Proposition 4.2:

Proposition 4.3 ([9], p. 3f). Assume that κ is measurable in V .
There is a forcing extension in which κ is still measurable, but not
weakly compact in HOD.

And another variation on the same theme:

Proposition 4.4 ([9], p. 4f). Assume that κ is supercompact in
V . There is a forcing extension in which κ is still supercompact, but
not weakly compact in HOD.

Using class forcing, one can get the following global result:

Proposition 4.5 ([9], p.10f). There is a class forcing extension of
V such that

(1) The supercompact cardinals of the extension are exactly the
supercompact cardinals of V

(2) All supercompact cardinals fail to be weakly compact in the
HOD of the extension

(3) There are no supercompact cardinals in the HOD of the ex-
tension.

W. Hugh Woodin conjectures that there is a limit to these kinds of
results, namely:

Conjecture 4.6 (Woodin). If there is a supercompact cardinal,
then there is a measurable cardinal in HOD.

This conjecture is based on Woodin’s HOD dichotomy. For the
statement of this result, recall that a cardinal δ is called extendible
if for every η > δ there is a θ > η and an elementary embedding
j : Vη+1 → Vθ+1 such that crit(j) = δ and j(δ) > η.
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Proposition 4.7 ([13]). Assume that there is an extendible cardi-
nal δ. Then exactly one of the following holds:

(1) For every singular cardinal γ > δ, γ is singular in HOD and
(γ+)HOD = γ+.

(2) Every regular cardinal above δ is measurable in HOD.

In [13], it is conjectured that (2) fails.



CHAPTER 5

Background material

1. The extended Reflection principle

For each formula ϕ(x) with one free variable, let us denote by
ExRefϕ(α) the formula

∃β(α ∈ Df(Vβ) ∧ ∀x ∈ Vβ(ϕ(x)Vβ ↔ ϕ(x)))

(where α is a free parameter). The Extended Reflection principle for
ϕ, denoted by ExRefϕ, is the sentence

∀αExRefϕ(α)

Lemma 5.1. For all formulas ϕ(x), ExRefϕ is provable in ZF.

Proof. Assume there is a ϕ(x) for which ExRefϕ fails, and let α0

be the least witness to this failure.
Now consider the formula

α is minimal such that ¬ExRefϕ(α)

which we will denote by Φ(α). α is treated as a free ordinal parameter
again. By assumption, Φ(α0).
Now using the ordinary Reflection principle in ZF, pick β such that
Vβ reflects both Φ(α) and ϕ(x). Then α0 is the unique solution to
Φ(α) in Vβ by elementarity, and so α0 ∈ Df(Vβ). But Vβ reflects ϕ(x),
contradicting the choice of α0. �

2. Coding sets into sets of ordinals

We give a proof that in the presence of the axiom of choice, every
set can be coded into a set of ordinals. This often allows us to prove
properties of the universe by proving them for sets of ordinals only.

Lemma 5.2. Assume M is a transitive model of ZFC. Let x be a set.
Then there is a set of ordinals ax ∈ M which codes x in the following
way: whenever N is a transitive model of ZF containing ax, then N
already contains x.

Proof. Using the axiom of choice, let κ = | trcl({x})| and pick
a bijection f : trcl({x}) → κ. Define a relation R on κ by setting
f(u)Rf(v)↔ u ∈ v (so that f : (trcl({x}),∈) ∼= (κ,R)). Finally let π
be a ∆1-definable pairing function of ordinals, and define ax := π′′(R).

50
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Now if ax ∈ N and N is a transitive model of ZF, then N can re-
construct R, since π and its inverse are definable in N . The supremum
of all ordinals occuring as a component in R is exactly κ. Now (κ,R)
is a well-founded relation in N , since it was well-founded in M and
this is absolute. So N can perform the Mostowski collapse on (κ,R)
to yield an isomorphic structure (T,∈) ∈ N where T is transitive.
But now (T,∈) ∼= (trcl({x}),∈) and so T = trcl({x}). It follows that
x = sup(T ) ∈ N . �

Corollary 5.3. Let M,N be two transitive models of ZFC. If M
and N have the same sets of ordinals, then M = N .

Proof. Since the statement is symmetric in M,N , it suffices to
show that M ⊆ N . So let x ∈ M . Since M |= AC, x has an ordinal
code aX which is contained in N by assumption. But then x ∈ N by
the previous Lemma. �

3. Basic forcing facts

Forcing is a method to adjoin sets to a given countable transitive
model M of ZFC (called the ground model) while preserving the ZFC
axioms. There has already been a notion of adjointment in the pre-
forcing time of set theory, namely by means of relative constructibility.
We briefly discuss a special case of this: If Lα |= ZF and G /∈ Lα is
a real, a structure Lα[G] can be defined by iterating definability up to
α - as one does for Lα - but now with an additional predicate for the
set G. It is then easy to see that Lα[G] is a transitive superset of Lα
containing G as an element. Furthermore, if Lα[G] |= ZF, then it is
the smallest model of ZF with this property.
The bad news is that Lα[G] often fails to be a model of ZF. For exam-
ple, if Lα is countable, G can code an enumeration of α in order type
ω. Then Lα[G] contains an enumeration of its ordinal height, and so
Replacement fails in Lα[G].
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It was proved by Paul Cohen that if G has a special property, called
genericity, then all ZF axioms are preserved in Lα[G]. The assumption
that the ground model satisfies V = L turned out to be unneccessary
for the theory: Starting from any transitive model M of ZF, one can
construct a larger model M [G] |= ZF by adjoining a generic set G.
Apart from the ZF axioms, the first-order theory of M [G] largely de-
pends on the choice of the generic G.
We give a quick overview on the general theory. M is always a transi-
tive model of ZF.
Let P ∈ M be a quasi-order with maximal element 1. A P -name is a
set of tuples (π, p) where p ∈ P and π is a P -name (this is of course
a recursive definition). The class of P -names in M is denoted by MP .
Given σ ∈MP and any set G ⊆ P , we recursively define

σ[G] = {π[G] | (π, p) ∈ σ ∧ p ∈ G}

σ[G] is called the evaluation of σ by G. For every x ∈M we can define
the check name x̌ recursively by

x̌ = {(y̌, 1) | y ∈ x}.

Clearly, if 1 ∈ G, then x̌[G] = x. Furthermore, we set

M [G] = {σ[G] | σ ∈MP}

If 1 ∈ G, then M ⊆ M [G], and G ∈ M [G] since G is the evaluation of
the name {(p̌, p) | p ∈ P}. One may also check that M [G] is transitive
and closed under some basic set-theoretic operations like pairing. To
get more structure, we have to put more restrictions on G.
First, call a set D ⊆ P dense if for all p ∈ P , there is a q ≤ p such
that q ∈ D. We now call a set G P -generic over M if G is a filter on
P and G intersects all dense sets D ∈M .

Lemma 5.4. Assume that M is countable. Then for every p ∈ P ,
there is a P -generic filter G containing p. Furthermore, if P is non-
atomic1, then G /∈M .

Proof. List all dense subsets of P in M as D1, D2, D3, . . . Now
define a sequence (pn)n∈ω by letting p0 = p and choosing pn+1 ≤ pn
such that pn+1 ∈ Dn+1. This is possible because Dn+1 is dense. Then
the filter G generated by the pn’s is generic.
If P is non-atomic, then P \G is a dense set not intersected by G, and
so P \ G cannot be contained in M if G is generic. It follows that G
cannot be contained in M either. �

1i.e. ∀p ∈ P∃q, r ∈ P (q, r ≤ p ∧ ¬∃v ∈ P (v ≤ q ∧ v ≤ r))
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For p ∈ P , any formula ϕ(x0, . . . , xn) and σ0, . . . , σn ∈ MP we
define the forcing relation

p P ϕ(σ0, . . . , σn) :⇔
M [G] |= ϕ(σ0[G], . . . , σn[G]) for all P -generic G

The subscript P is often dropped when clear from context. The essen-
tial results about forcing are the Definability Theorem and the Forcing
Theorem.

Theorem 5.5 (Definability Theorem). For any formula ϕ(x0, . . . , xn),
the class

{(P, p, σ0, . . . , σn) | p ∈ P , σ1, . . . , σn ∈MP and p P ϕ(σ0, . . . , σn)}

is definable in M .

Proof. See [16, p. 251f]. �

Theorem 5.6 (Forcing Theorem). Assume that G is P -generic
over M . Then for any formula ϕ(x0, . . . , xn) and any names σ0, . . . , σn ∈MP

M [G] |= ϕ(σ0[G], . . . , σn[G]) ⇔ ∃p ∈ G(p  ϕ(σ0, . . . , σn))

Proof. See [16, p.257f]. �

Using both theorems, it is not too hard to prove that M [G] satisfies
ZF:

Theorem 5.7. Assume that G is P -generic over M . Then M [G] |= ZF.
If M satisfies AC, then so does M [G].

Proof. See [16, p.252f]. (Very) roughly speaking, the proof pro-
ceeds as follows: To show that a certain set x exists in M [G], one uses
the Definability Theorem to cook up a name σ for it, and then uses
the Forcing Theorem to show that indeed τ [G] = x. �

4. Some forcings

Let x, y be sets and κ be a cardinal. Fnκ(x, y) denotes the set of
all partial functions of size < κ from x to y. We make this set into a
partial order by setting

p ≤ q :↔ p ⊇ q

for p, q ∈ Fnκ(x, y).
Any bijection π : x → x of the set x induces an automorphism π̃ of
Fnκ(x, y) via π̃(p) = p ◦ π. It follows that Fnκ(x, y) is weakly homoge-
neous.
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4.1. Cohen forcing. For regular κ and some cardinal λ we set

Add(κ, λ) := Fnκ(κ× λ, 2)

Add(κ, λ) is κ-closed and has the (2<κ)+-cc by a ∆-system argument.
A standard density argument shows that

1 Add(κ,λ) 2κ ≥ |λ|

4.2. The Levy Collapse. For infinite regular cardinals κ < λ we
set

Coll(κ, λ) := Fnκ(κ, λ)

Coll(κ, λ) is κ-closed and has the (λ<κ)+-cc by a ∆-system argument.
By a density argument,

1 Coll(κ,λ) |λ| ≤ κ

Coll(ω, κ) has a nice uniqueness property by the following classic
result:

Proposition 5.8. Let P be a forcing of size κ which collapses κ
to a countable ordinal. Then P and Coll(ω, κ) are forcing equivalent:
There is a forcing P ′ such that both P and Coll(ω, κ) can be densely
embedded into P ′.

Proof. See [18, p. 129]. �

We define Coll(κ,< λ) to be the κ-product of all Coll(κ, α), where
κ < α < λ is a cardinal. It follows that

Coll(κ,<λ) λ = κ+

so that λ is collapsed to the successor of κ.

If λ<κ = λ, Coll(κ, λ) preserves all cardinals up to κ (by κ-closure)
and above λ (by λ+-cc), while λ is collapsed to κ.



5. EASTON FORCING 55

ωV5 ω
V [G]
5

ωV4 ω
V [G]
4

ωV3

��

ω
V [G]
3

ωV2

$$

ω
V [G]
2

ωV1 ω
V [G]
1

ω0 ω0

Coll(ωV1 ,ω
V
3 )

55

ωV5 ω
V [G]
5

ωV4 ω
V [G]
4

ωV3 ω
V [G]
3

ωV2

$$

ω
V [G]
2

ωV1 ω
V [G]
1

ω0 ω0

Coll(ωV1 ,<ω
V
3 )

55

4.3. Forcing the GCH. We may use a product of collapses to
force the GCH in a (class-)generic extension. For this, we take P to be
the Easton product of Coll(ωα, < 2ωα), which collapses 2ωα to ω+

α for
all α ∈ ON .

5. Easton forcing

An Easton index function is a function E defined on a set of regular
cardinals such that for all κ, λ ∈ dom(E)

• E(κ) is a cardinal
• κ < λ→ E(κ) ≤ E(λ)
• cof(E(κ)) > κ

Intuitively, E is a possibility of how the continuum function could be-
have on dom(E).
In the following, fix some Easton index function E.
Easton forcing is the partial order which forces 2κ = E(κ) for all
κ ∈ dom(E), assuming that the ground model satisfies the GCH. It
is defined in the following way:
First, consider the (full) product R =

∏
κ∈dom(E) Add(κ,E(κ)). For a

condition p ∈ R, let supp(p) = {κ ∈ dom(E) | p(κ) 6= ∅}. We now
let PE be the subposet of R consisting of all conditions p such that
supp(p) is bounded below any regular cardinal κ (not necessarily from
dom(E)). This condition is only then non-trivial when κ is a limit, i.e.
when κ is an inaccessible cardinal.
For a regular cardinal cardinal λ, let P≤λE = {p ∈ PE | supp(p) ⊆ λ∪{λ}}
and P>λ

E = {p ∈ PE | supp(p) ∩ λ = ∅}. Then PE = P≤λE × P>λ
E .
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Lemma 5.9. P≤λE is (λ+)-cc and P>λ
E is ≤ λ-closed.

Proof. See [15, p. 233]. �

The proof for the (λ+)-cc is where the bound on the supports is
needed.

Proposition 5.10. Let G×H be V -generic over a product P ×Q,
where P is ≤ κ-closed and Q is (κ+)-cc. Then P is ≤ κ-distributive
in V [H].

Proof. See [15, p. 234]. �

Corollary 5.11. PE preserves cardinals.

Proof. It suffices to show that PE preserves regular cardinals. As-
sume to the contrary that this fails, i.e. there is a regular cardinal κ
such that for some PE-generic G, V [G] has a cofinal map f : λ → κ
where λ < κ is regular in V [G], and therefore also in V .

By factorizing PE into P>λ
E × P≤λE , we can write V [G] as a two-step

extension V [G0][G1] where G0 is P>λ
E -generic over V and G1 is P≤λE -

generic over V [G0]. Now using Lemma 5.9 and Proposition 5.10, we
conclude that f must already exist in V [G0], and so κ fails to be regular

in V [G0]. But this cannot be, since κ was regular in V and P≤λE has
the (λ+)-cc.

�

Corollary 5.12. Let G be PE-generic. Then in V [G], 2κ = E(κ)
for all κ ∈ dom(E).

6. Automorphisms of partial orders

Let P be a forcing poset. A map i : P → P is an automorphism of
P if is bijective, i(1) = 1 and p ≤ q ⇔ i(p) ≤ i(q) holds for all p, q ∈ P .

Every automorphism i of P induces a bijection i∗ on the class of P -
names by setting

i∗(σ) = {(i∗(τ), i(p)) | (τ, p) ∈ σ}

Note that i∗(x̌) = x̌ for all check names x̌. The relevance of automor-
phisms to the theory of forcing lies in the following Lemma, which can
be proved by an induction on formulas.

Lemma 5.13. Let i be an automorphism of P . Then for all formulas
ϕ(x0, . . . , xn), σ0, . . . σn ∈MP and all p ∈ P

p  ϕ(σ0, . . . , σn) ⇔ i(p)  ϕ(i∗(σ0), . . . , i
∗(σn))

Proof. See [16, p. 270f]. �
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7. The Lévy hierarchy

In the following, L is some fixed recursive extension of the language
of set theory.
By ∆0 we denote the class of L-formulas in which all quantifiers are
bounded, i.e. of the form ∀x ∈ t or ∃x ∈ t for some L-term t. Set
Σ0 = Π0 = ∆0.
We inductively define the classes Σn and Πn for n > 0.
A formula is Σn if it is of the form

∃x0 . . . ∃xkϕ

for some k ∈ ω and ϕ ∈ Πn−1. A formula is Πn if it is of the form

∀x0 . . . ∀xkϕ

for some k ∈ ω and ϕ ∈ Σn−1.

Let now T be an L-theory. By ΣT
n we denote the class of all L

formulas which are T -provably equivalent to some Σn-formula, that is
the class of all ϕ for which there is a ψ ∈ Σn such that T ` (ϕ↔ ψ).
Πn is defined analogously.
Finally, we set ∆T

n = ΣT
n ∩ ΠT

n .
With this notation, it is easy to see that (for any T ) every formula is
contained in some ΣT

n . Furthermore, the class ΠT
n consists exactly of

the negations of formulas in ΣT
n and vice versa. If T contains some

basic set theory including the Pairing axiom, then every ΣT
n -formula

has a representation of the form

∃x0∀x1 . . . Qxn−1ψ

where Q = ∀ if n is even and Q = ∃ otherwise, and π is ∆0.
Given a model M of (some fragment of) ZF, we say that ϕ is Σn over
M if there is is a Σn formula ϕ̄ such that M |= ϕ ↔ ϕ̄. If a ∈M, we
say that ϕ is Σn(a) if in the language extended by a constant for a, ϕ
is Σn over M.

8. Arithmetization and truth predicates

Every set-theoretic formula ϕ has a natural definable representation
within any model of ZF, which we will also denote by ϕ.
(The converse is not true: If ϕ is a formula in the sense of some model
M |= ZF, it might not correspond to a formula in the metatheory.
This happens exactly if M contains non-standard natural numbers,
and therefore formulas of non-standard length.)
A predicate T is called a truth predicate if for all ϕ ∈ LZF

ZF ` ϕ↔ T (ϕ)
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T is called a Σn truth predicate for Σn if the above equivalence holds
at least for all ϕ ∈ ΣZF

n .

Lemma 5.14. For each natural number n there is a definable truth
predicate for Σn. In more detail, there is a formula SATn(w, x̄) such
that for each ϕ(x̄) ∈ Σn

∀x̄(ϕ(x̄)↔ SATn(ϕ, x̄))

SATn is itself Σn for every n > 0, and SAT0 is ∆1.

Proof. We state the definition of SATn(x̄, z) by (meta-)induction
on n. It will be clear that the formulas work as espected.
Note first that all syntactial notations like x is a formula, x has n free
variables etc. can be written as ∆0 formulas using some reasonable
encoding.
For n = 0, recall that ∆0-formulas are absolute for all transitive classes.
Therefore we can set

SAT0(ϕ, x̄) ≡ ∃M(M = trcl({x̄}) ∧M |= ϕ(x̄))

or equivalently,

SAT0(ϕ, x̄) ≡ ∀M(M = trcl({x̄})→M |= ϕ(x̄))

Clearly, SAT0 is ∆1.
Assume now that for some n ∈ ω, SATn is a truth predicate for Σn

which is itself Σn (or ∆1 if n = 0). First note that any ϕ ∈ Σn+1

is ZF-provably equivalent to a formula in prenex normal form where
all blocks of quantifiers are contracted into a single quantifier. So we
may assume that ϕ ∈ Σn+1 is of the form ∃vψ(v, x) where ψ(v, x) is
Πn. Now using the equivalence ϕ(x)↔ ¬∀v¬ψ(v, x) and the fact that
¬ψ(v, x) is Σn, we can set

SATn+1(ϕ, x) ≡ ¬∀vSATn(¬ψ, v, x)

which is Σn+1 as desired. �

Corollary 5.15. For every n ∈ ω, there is a club of α’s such that
Vα �n V .

Proof. Apply the Reflection Theorem to SATn. �

In what follows, we tacitly assume Con(ZF).

Lemma 5.16. No Σn truth predicate can be Πn-definable.

Proof. Assume to the contrary that T is a Πn-definable truth
predicate for Σn. ZF is strong enough to prove Gödel’s fixed point
lemma. So there is a sentence ϕ satisfying

ϕ↔ ¬T (ϕ)



10. ELEMENTARY EMBEDDINGS AND ULTRAPOWERS 59

Now if T was Πn, then ϕ would be a Σn-sentence which could be
evaluated using the predicate T . But this leads immediately to the
contradiction

T (ϕ)↔ ϕ↔ ¬T (ϕ).

�

Corollary 5.17. The Lévy hierarchy is proper:

ΣZF
0 ( ΣZF

1 ( ΣZF
2 ( . . .

Proof. For every n ∈ ω, SATn+1 is Σn+1 but not Σn. �

Corollary 5.18 (Tarski). There is no universal truth predicate.
That is, there is no formula SAT (w, x̄) such that for all ϕ ∈ LZF

∀x̄(ϕ(x̄)↔ SAT (ϕ, x̄))

Proof. Otherwise, the Lévy hierarchy would collapse to the com-
plexity of SAT , contradicting the previous corollary. �

9. Filters, ultrafilters and measurable cardinals

Let κ be an uncountable regular cardinal.
A filter U on κ is a non-empty collection of subsets of κ which is
closed under taking supersets and under taking finite intersections. To
avoid trivialities, one furthermore requires that U contains no bounded
subsets of κ.
U is called principal if it is of the form U = {X ⊆ κ | A ⊆ X} for some
A ⊆ κ. Otherwise, U is called non-principal.
U is an ultrafilter on κ if for all X ⊆ κ, either X ∈ U or κ \X ∈ U .
Principle ultrafilters are too simple to be of interest.
Let λ be a cardinal. We say that U is λ-complete if U is closed under
intersections of size < λ. Countably complete means the same as ω1-
complete. So every filter U is ω-complete by definition, and in the
natural situation that U contains all tail intervals [α, κ) for α < κ, it
follows that U can be at most κ-complete because

⋂
α<κ

[α, κ) = ∅ /∈ U .

κ is called measurable if there is a non-principal, κ-complete ultrafilter
on κ. This turns out to be a large cardinal notion:

Proposition 5.19. Every measurable cardinal is inaccessible.

Proof. See [18, p. 26]. �

10. Elementary embeddings and ultrapowers

10.1. Elementary embeddings. LetM,N be structures for some
first-order language L.
A map j : M → N is called an (L−)elementary embedding if for all
L-formulas ϕ(v0, . . . , vn) and all a0, . . . , an ∈M

M |= ϕ(a1, . . . , an) ⇔ N |= ϕ(j(a1), . . . , j(an))
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j :M→ N is called a Σn-elementary embedding if the above equiva-
lence holds for all ϕ ∈ Σn.
In any case, it follows that j is an injective L-homomorphism.
We write j : M � N to denote that j is an elementary embedding
from M to N . We write M � N if such a j exists. Similarly, one
defines j :M�n N and M�n N .
We are mostly interested in the case where M,N are transitive class
models of ZF(C). In this case, the concept of elementary embeddabil-
ity as stated above is not definable in the language of set theory. It
is however possible to express the statement M�1 N , and we take
M� N to mean exactly that in this context. This is justified by the
observation that if M�1 N and M,N |= ZF, then in fact M�n N
for every natural number n in the meta-theory (see [18, p. 45f]).

10.2. Ultrapowers. LetM be an L-structure, X a set and U an
ultrafilter on X. Then MU is the L-structure given by the following
data:

(1) The universe of MU is the set of all functions from X to M
modulo the equivalence relation

f ∼ g ⇔ {x ∈ X | f(x) = g(x)} ∈ U
. As usual, let [f ] denote the equivalence class of f : X →M
under ∼.

(2) If R is an unary relation symbol in L, then

[f ] ∈ RMU ⇔ {x ∈ X | f(x) ∈ RM} ∈ U
. Similary for n-ary R where n > 0.

(3) If F is an unary function symbol in L, then FM
U

:MU →MU

is the coordinate-wise application of FM. More explicitly,
FM

U
([f ]) = [(FM(f(x)))x∈X ].

Proposition 5.20 ( Los). Let M be an L-structure, κ a cardinal
and U an ultrafilter on κ. Then for every L-formula ϕ(v0, . . . , vn) and
functions f0, . . . , fn : κ→M
MU |= ϕ([f0], . . . , [fn]) ⇔ {α < κ | M |= ϕ(f0(α), . . . , fn(α)} ∈ U

Under the above assumptions, one sees that the map j :M→MU

which sends an m ∈ M to the equivalence class of the constant func-
tion f : κ → {m} is an elementary embedding, called the canonical
ultrapower embedding (given by U).

10.3. Ultrapowers of V. The ultrapower construction can be
carried out inside a class model V of set theory by a slight modifica-
tion of the above construction. Let κ ∈ V be a cardinal and U ∈ V
an ultrafilter over κ. Instead of working with the full eqivalence classes
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[f ] (which are now class-size) one now picks a V -definable set of rep-
resentatives for [f ] and defines V U to be the collection of all these sets
of representatives. This yields a V -definable class model V U ⊆ V and
a V -definable elementary embedding j : V � V U .
As usual, we want to work with transitive models.

Lemma 5.21. If U is countably complete, then VU is well-founded
and therefore isomorphic to a transitive model.

Proof. Assume there is an infinite descending chain

[f0] 3 [f1] 3 [f2] 3 . . .
in V U . This means that for each i ∈ ω there is a set Ui ∈ U such
that fi(α) 3 fi+1(α) for all α ∈ Ui. By countable completeness, pick
an α ∈

⋂
Ui 6= ∅. Then f0(α) 3 f1(α) 3 f2(α) 3 . . . is an infinite

descending chain in V , which is absurd.
Of course V U is also extensional by elementarity. So V U is isomorphic
to a transitive inner model M ⊆ V by Mostowski’s collapsing theorem.

�

The situation is summed up by

j : V � V U ∼= M ⊆ V

For x ∈ V , we usually identify j(x) with its collapse in M .
Let crit(j) be the least α such that j(α) 6= α, if such an α exists. By
elementarity, crit(j) is also an ordinal.

Proposition 5.22. Let U be a κ-complete ultrafilter on κ and let
j : V � V U ∼= M be the corresponding ultrapower embedding. Then:

(1) crit(j) = κ.
(2) j(x) = x for every x ∈ Vκ.
(3) 2κ ≤ (2κ)M < j(κ) < (2κ)+.
(4) M is closed under taking κ-sequences.

Proof. See [18, p. 50]. �

Proposition 5.23. If M is an inner model an j : M � V , then
crit(j) is a measurable cardinal.

Proof. See [18, p. 49f]. �

11. Lifting elementary embeddings

Let j : V �M be an elementary embedding. Now assume we have
a partial order P ∈ V and a V -generic G ⊆ P . By elementarity, j(P )
is a partial order in M , and j”G ⊆ j(P ). What follows is the basic
observation about lifting of elementary embeddings.

Lemma 5.24. Let H ⊆ j(P ) be generic over M . The following are
equivalent:
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(1) j”G ⊆ H
(2) There is an elementary embedding j+ : V [G] � M [H] such

that j+ �V = j and j+(G) = H

Proof. For the backward direction, if p ∈ G then j+(p) ∈ j+(G)
by elementarity, and j+(p) = p, j+(G) = H by the assumptions.
Conversely, assume that j”G ⊆ H. For x = σG ∈ V [G], we try to set
j+(x) = j(σ)H . To see that this is well-defined, assume that σG = τG

and pick p ∈ G forcing this. By elementarity, j(p)  j(σ) = j(τ) in M .
Now j(p) ∈ j”G ⊆ H and so j(σ)H = j(τ)H in M [H].
The elementarity of j+ is proved similarly: If V [G] |= ϕ(x) then pick
p ∈ G forcing ϕ(ẋ). By elementary j(p)  ϕ(j(ẋ)) in M and so
M [H] |= ϕ(j(x)) since j(p) ∈ H. If V [G] 2 ϕ(x), then V [G] � ¬ϕ(x)
and one can use exactly the same argument as before to conclude that
M [H] 2 ϕ(j(x)).

If x ∈ M , then x = x̌G and so j+(x) = j(x̌)H . But j(x̌) = ˇj(x) by

absoluteness, and so j+(x) = j(x̌)H = ˇj(x)
H

= j(x).
Finally let Ġ be the canonical P -name for G. Then j(Ġ) = Ḣ by
elementarity and so j+(G) = H by the definition of j+. �

It is important to note that j+ does not need to be V [G]-definable,
in fact M [H] does not even need to be contained in V [G].
Thus if j is the ultrapower embedding induced by some measurable
cardinal κ ∈ V , it does not follow in the above situation that j+ wit-
nesses the measurability of κ in V [G].

Let us discuss a special case where the forcing P satisfies the following:

• j(P ) ∼= P ∗Q for some partial order Q ∈ V
• j”G = G

For example, consider the case that j is an ultrapower embedding and
crit(j) = κ. Let P be an iteration of forcings Pα, α < κ such that
|Pα| < κ. By elementarity, j(P ) is an iteration of length j(κ), and for
α < κ, j(Pα) = Pα by the size restriction on Pα. Thus j(P ) splits as
P ∗Qtail for some tail iteration Qtail.
If we require additionally that the supports of conditions in P are
bounded, i.e. of size < κ, then j � P = id and therefore j”G = G.
Let now G be P -generic over V . Since M ⊆ V , G is also P -generic over
M . Furthermore let K be Q-generic over V [G]. Again, K is also Q-
generic over M [G]. By the product lemma, H = G ∗K is j(P )-generic
over V (and therefore over M) and thus Lemma 5.24 applies.

12. Class forcing

In Class forcing, one forces with a partial order P which is a proper
class in the ground model. There are some technical obstacles to make
this work, and several distinctions to set forcing arise.
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We will deal with structures of the form (M,A1, . . . , An) where M is
a transitive model of some set theory and Ai ⊆ M for each i ≤ n. A
class U ⊆ M is called (M,A1, . . . , An)-definable if it is definable in M
from set parameters and the classes A1, . . . , An (viewed as predicates).
We say that (M,A1, . . . , An) |= ZF if M |= ZF and the Replacement
scheme holds in M for formulas mentioning the Ai’s as predicates.
Since each finite number of classes A1, . . . An can be definably coded
into a single class A, we will from now on restrict ourselves to the case
that n = 1. So fix some ground model (M,A) |= ZF.
A class forcing P ⊆M is a (M,A)-definable class quasi-order with
maximal element 1. Given such, one defines the class MP ⊆ M of
P -names as in the set forcing case (in particular, names are still sets).
One does not have a name for the generic object, since this would have
to be a proper class. However, for each α one can set

Ġα = {(p̌, p) | p ∈ P ∩ Vα}

as an approximation.
Given any G ⊆ P , M [G] is defined as in set forcing, and likewise we
have to impose some structure on G to achieve that M [G] satisfies more
than just the most elementary set theory. The right generalization here
is this: We say that G is P -generic over (M,A) if G intersects every
dense (M,A)-definable subclass of P .
There is some flexibility in what one actually takes to be the generic
extension by G. One may either look at the structure M [G] only, or
at the expanded structures (M [G], G) or even (M [G],M,A,G). Just
for the moment, let M denote one of these choices. The point is that
we want to have M |= ZF, which means exactly that M [G] |= ZF and
that the Replacement scheme holds for all M-definable classes.
The following is the class-version of Lemma 5.4:

Lemma 5.25. Assume that (M,A) is countable. Then for every
p ∈ P , there is a P -generic filter G over (M,A) containing p. Further-
more, if P is non-atomic, then G is not definable in (M,A).

Of course, G is definable in (M [G], G) just by definition. The point
is that if (M [G], G) |= ZF - i.e. Replacement holds in M [G] even for
formulas mentioning G as a predicate - we may work with G in M [G]
as freely as with any M [G]-definable class. In this sense, one can say
that the forcing P adds a class G.
The bad news is that the analogues for the Definability and the Forcing
Theorem can fail for proper class-size P , and M may not satisfy ZF.
To give an easy example, consider the class-size forcing P consisting of
finite functions from ω into the ordinals, ordered by reverse inclusion.
Any P -generic filter gives rise to a cofinal map G : ω → Ord, and so
Replacement fails in M [G] relative to the predicate G.
Several sufficient conditions on a class forcing P for the definability of
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the forcing relation and for the preservation of the ZF(C) axioms are
present in the literature. One of them is the notion of tameness, as
developed by Sy Friedman in [7].

The blackbox assumption in this thesis is that all described class forc-
ings are sufficiently well-behaved to make the argument at hand work.
In particular, the Definability and Forcing Theorem holds for the three
class forcings which are described in the next section.

12.1. Some examples of class forcings.
12.1.1. Adding a generic class of ordinals. In this forcing, condi-

tions are functions f : αf → 2, where αf is some ordinal (different f ’s
may have different ordinal domains). The ordering is inclusion.
If G is a generic for this forcing, then F :=

⋃
G is the characteristic

function of a subclass of ON , as one can see by checking the usual den-
sity arguments. The forcing is κ-closed for every κ (we also say that
the forcing is set-closed). Hence if V |= AC, it follows that no sets are
added: V = V [F ] = V [G].
By another density argument, any set-length sequence of zeros and
ones in V occurs at some place in F . It follows that any set of ordinals
in V can be read off from the class F , and so if we assume V |= AC,
then V = L[F ].
Now by the Forcing Theorem, for a generic class F any true statement
in (V, F ) is forced by a condition in G, or equivalently, by an initial
segment F � α of F . So deciding truth in (V, F ) is simply checking if
F ⊇ f for various f : α→ 2.

12.1.2. Easton Forcing. This is like the forcing described in Sec-
tion 5, only that the domain of the function F is now the class of all
regular cardinals.

12.1.3. Forcing Global Choice. Here conditions are functions
f : αf → V , ordered by reverse inclusion. This forcing is set-closed. If
G is a generic, then F :=

⋃
G is a function from ON onto V . One can

thus read off a well-order of V from the function F . In other words, the
generic extension (V [G], G) satisfies the axiom of Global Choice GC.
Assuming AC, no sets are added, which shows that GC is first-order
conservative over ZFC.
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Abstract

This thesis in the area of set theory summarizes a couple of results
on ordinal definability. A set is called ordinal definable if it can be
described by a formula of set theory using ordinal parameters. This
notion was first suggested by Kurt Gödel. Dana Scott, John Myhill and
others began to study the related inner model HOD of hereditarily
ordinal definable sets and used it to prove (among other things) the
relative consistency of the axiom of choice.
We give an introduction to the general theory and then prove some
classic results by Myhill, Scott, Vǒpenka and Roguski, followed by
more recent results of Friedman, Hamkins and others.
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Zusammenfassung (German Abstract)

Diese Masterarbeit aus dem Bereich der Mengenlehre fasst mehrere
Ergebnisse über Ordinalzahl-Definierbarkeit zusammen. Hierbei heißt
eine Menge ordinalzahl-definierbar, wenn sie durch eine Formel in der
Sprache der Mengenlehre mit Ordinalzahlen als Parametern eindeutig
beschrieben werden kann. Dieses Konzept wurde von Kurt Gödel er-
funden. Dana Scott, John Myhill und andere untersuchten später
das innere Modell HOD, welches gerade aus den erblich ordinalzahl-
definierbaren Mengen besteht, und bewiesen damit (unter anderem)
die relative Konsistenz des Auswahlaxioms.
Wir beginnen mit einer Einführung in die allgemeine Theorie und be-
weisen dann einige grundlegende Ergebnisse von Myhill, Scott, Vǒpenka
und Roguski. Anschließend besprechen wir aktuelle Ergebnisse von
Friedman, Hamkins und anderen Mathematikern.


