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1 Preface

Research fields such as economics, medicine or other natural sciences cannot be
imagined without statistical investigations. Nevertheless mathematical statis-
tics form an important sub-discipline that unfortunately have been covered
only rudimentarily in my studies at the university. This circumstance has
been my central motivation in choosing the topic which will be elaborated in
this thesis.

Linear regression is an outstanding statistical technique to analyse and pre-
dict data. Already in the beginning of the 19th century Gauß and Legendre
published papers about the least squares method. At that time their pioneer-
ing investigations were successfully applied in the orbit determination of the
dwarf planet Ceres for instance. From that point onwards linear regression
became more and more important for all science fields.

Having at least as many samples as parameters that are to be estimated is
a necessary condition in getting a unique solution in least squares estimation.

Imagine for example that we want to study the changes in climate in the
geological past. Suppose that we were given the mean global surface temper-
ature in each year from 1850 to 1998, as well as 1209 indirect indicators for
climate, such as pollen, tree-ring data or ice cores in order to reconstruct the
mean global surface temperature in the last thousand years. Thus, if we try
putting the temperatures with these indicators into a linear relation, we then
have n = 1998−1850+1 = 149 samples with the great number of 1209 param-
eters for this palaeontological problem. This is an example of high-dimensional
data that recently led to scientific controversies. Here the least squares fitting
of the model is ill-posed.

In 1996 Robert Tibshirani, a statistician at Stanford University, introduced
the LASSO, which is an acronym for least absolute shrinkage and selection
operator. It will be the main objective of this text, being an approach for the
case where one has too less information.

However, even if there are enough samples available, we are often not satis-
fied with the ordinary least squares method. Therefore it is sometimes helpful
to use the LASSO instead. On the one hand the greater the size of the data
is, i.e. the more parameters are to be estimated, interpretation of the model
becomes more complicated. On the other hand correlation of some variables
in the data may lead to high variance in the least squares method. As it will
be discussed and further explained later on, LASSO facilitates interpretation
by selecting a subset of the data and it improves the prediction accuracy.
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This thesis is organized as follows:

Section 3, entitled Preliminaries, gives an overall review of statistical meth-
ods primarily based on [14], [13], [20], [4] and [15]. Section 3.1 then introduces
the Bayesian approach. Here we follow [7] and [4].

Section 4 deals with linear regression. In Section 4.1 we will define the least
squares estimator and will prove some of its important properties. We will use
the conventions and notations of [16] and [11].

In Section 5 we discuss the general process of statistical learning. Then we
establish penalty methods in Section 5.1 as it is explained in [19]. This is
necessary to be able to define the LASSO, which will be carried out in the
end of that part. Furthermore, in Section 5.2, we will present ridge regression.
This is a method of linear regularization older than the LASSO. Later on, in
Section 5.3, we will compare these two methods.

In the last two sections we follow basically [2]. Section 6 leads to error
estimations for the LASSO. There, we firstly introduce a so-called “basic in-
equality” for the LASSO. We will show that we can get rid of its error term
with high probability. This will yield consistency. In the end we will derive
the so-called compatibility condition.

Finally we will conclude some refinements of the model for the LASSO in
Section 7. In the first subsection we will define the regression function and will
show what happens if it is by any chance not a sparse linear combination of
the vectors X(j). This leads to the definition of some oracle whose refinement
will be topic of the second subsection.

We expect the reader of this text to have basic knowledge of probability the-
ory as well as to have fundamental skills in linear algebra and mathematical
analysis of course.
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3 Preliminaries

In this section we introduce the basic statistical framework we are going to
work with. First of all note that for mathematical statistics, modelling an
experiment is essential:

Definition 3.1. One calls E = (X ,A,P) statistical model or statistical ex-
periment, if (X ,A) is a measurable space and P is a set of probablility distri-
butions on the sample space (X ,A). Briefly one says that P is a statistical
model on (X ,A).

Very often it is P = {Pϑ : ϑ ∈ Θ}, where Θ is called parameter set. For
Θ ⊂ Rk the model is called parametric.

Fundamental in statistical inference is that the experiment is described by
a probability distribution that is known except for one parameter ϑ ∈ Θ. The
goal is to estimate this parameter, or, even more generally, to estimate some
measurable and usually real-valued function g(ϑ) of this parameter. Based on
an observation x ∈ X we make a decision for ϑ or g(ϑ) respectively. This
concept leads now to the next definitions.

Definition 3.2. • A measurable space (∆,A∆) with {a} ∈ A∆ for every
a ∈ ∆ is called decision space.

• A measurable function d : (X ,A) → (∆,A∆) is called non-randomized
decision function, whereas a randomized decision function δ is a stochas-
tic kernel from X to ∆, i.e. a mapping δ : X ×A∆ → [0, 1] sucht that

1. δ(·, A) is measurable for all A ∈ A∆, and

2. δ(x, ·) is a probability measure for all x ∈ X .

We denote the set containing all non-randomized or randomized decision
functions with D and D respectively.

• A measurable mapping L : Θ×∆→ R+ is called loss function, if for all
ϑ ∈ Θ :

L(ϑ, .) : (∆,A∆)→ (R+,B+).

It measures the “amount of loss” caused by choosing a ∈ ∆ instead of the
actual value ϑ ∈ Θ, where either a = d(x) or in the case of a randomized
decision a is δ(x, ·)-distributed.

• (E ,∆, L) is called statistical decision problem, if

– E is a statistical experiment,

– (∆,A∆) is a decision space and
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– L is a loss function.

Note, that if we define for each non-randomized decision function d the
function

δd(x,A) :=

{
1 if d(x) ∈ A
0 if d(x) /∈ A

,

we achieve an injective embedding D ↪→ D by d 7→ δd. Hence it actually
suffices to observe randomized decision problems.

If the amount one loses choosing a ∈ ∆ is the squared distance between a
and the unknown ϑ, then quadratic loss is at hand. That’s the only situation
we will consider throughout this text.

As already mentioned before, we will try to estimate the unknown parameter
ϑ in the probability distribution corresponding to the statistical experiment.
For that purpose we will observe realisations xi of Xi having this distribu-
tion and merge them into a function that we will call estimator. In order to
define this exactly, we let X1, . . . , Xn be i.i.d. real valued random variables
for simplicity, each having the density function f(·, ϑ). Using the standard
convention, let us denote its observed values in small letters: x1, . . . , xn.

Definition 3.3. • For j = 1, . . . ,m, let Tj : Rn → R be measurable func-
tions that do not depend on ϑ or any other unknown quantities, and set
T = (T1, . . . , Tm)t. Then

T (X1, . . . , Xn) = (T1(X1, . . . , Xn), . . . , Tm(X1, . . . , Xn))t

is called an m-dimensional statistic.

• Any statistic T = T (X1, . . . , Xn) that is used for estimating the unknown
quantity g(ϑ) is called an estimator of g(ϑ). The value T (x1, . . . , xn) of
T for the observed values of the X ′s is called an estimate of g(ϑ).

Note that the terms estimator and estimate are often used interchange-
ably. Further it shall be mentioned that we normally write ϑ̂ for an estimator
estimating ϑ. The “hat” shall simply indicate that we are estimating the
parameter immediately beneath it.

Having already established the main statistical setting, we can introduce
some estimation methods and give a few examples keeping always the theoret-
ical background in mind.

Definition 3.4. The function Lx that maps every ϑ to the value Lx(ϑ) :=
Pϑ(x) is called Likelihood function. If it holds Lx(ϑ̂) := sup{Lx(ϑ) : ϑ ∈
Θ}, then one calls ϑ̂(x) a maximum likelihood estimation of ϑ and g(ϑ̂(x)) a
maximum likelihood estimation of g(ϑ).
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That is, the maximum likelihood method chooses that parameter for which
the likelihood function attains its supremum. Now let us have a look at some
examples involving the maximum likelihood estimator.

Example 3.5. Let X1, . . . , Xn be a N (µ, σ2)-distributed random sample with
parameter ϑ = (µ, σ2)t. Then

LX1,...,Xn(ϑ) =

(
1√

2πσ2

)n
exp

{
− 1

2σ2

n∑
i=1

(Xi − µ)2

2

}
.

We maximize this function now. We first apply the logarithm, which leads to

logLX1,...,Xn(ϑ) = −n log
√

2π − n log
√
σ2 − 1

2σ2

n∑
i=1

(xi − µ)2.

Next, we differentiate with respect to µ and σ2 and equate them to zero after-
wards:

∂

∂µ
logLX1,...,Xn(ϑ) =

n

σ2
(x̄− µ) = 0, and

∂

∂σ2
logLX1,...,Xn(ϑ) = − n

2σ2
+

1

2σ4

n∑
i=1

(xi − µ)2 = 0,

where x̄ stands for the mean 1
n

∑n
i=1 xi.

We see immediately that
µ = x̄

solves the first equation and plugging this into the second one leads to

σ2 =
1

n

n∑
i=1

(xi − x̄)2.

Finally it remains to show that this extremum is a maximum and we will get
ϑ̂ = (x̄, 1

n

∑n
i=1(xi − x̄)2). This is straightforward and we omit it.

The use of the logarithm in Example 3.5 legitimates the following definition.

Definition 3.6 (Log-Likelihood-function). The Log-Likelihood-function is given
by

l(ϑ) = logL(ϑ).

So one can clearly define the maximum-likelihood-estimator as well by

ϑ̂ML = arg max
ϑ∈Θ

l(ϑ).
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In the above example the estimator is quite natural. In order to illustrate
that there are also other ways to construct a good estimator we observe a
further example that is a discrete and quite simple one. It is well and further
described in [9]. Allegedly, variations of it were important in the Second World
War. With the help of the serial numbers of knocked out tanks the allied pow-
ers purportedly tried to estimate the number of tanks of the German Armed
Forces.

Example 3.7 (Taxi problem). Imagine a big city that has N cabs labelled with
the numbers 1, . . . , N . A pedestrian now observes n cabs with the numbers
x1, . . . , xn without repetitions. Without loss of generality we assume that x1 <
x2 < · · · < xn. Then we try to estimate N with this information.

Obviously it is N ≥ xn and PN(x) =
(
N
n

)−1
, the probability that the pedes-

trian observes exactly the n cabs x1, . . . , xn. We see that the smaller N gets,
the bigger becomes this probability. So N̂(x) = maxi xi = xn is the maximum
likelihood estimator. Since N̂(x) ≤ N this method never gives an estimation
higher than the true value N .

Another way to argue would be that due to symmetrie reasons the numbers
of unobserved cabs x1− 1 and N −xn should have in average of many samples
the same size. This idea establishes another estimator N̂1(x) = xn + x1 − 1.

A third way to construct an estimator is to replace the length of the above
gap of unobserved cabs {xn + 1, . . . , N} by the mean length of gaps between the
observations, i.e by

1

n
((x1 − 1) + (x2 − x1 − 1) + · · ·+ (xn − xn1 − 1)) =

xn − n
n

.

This approach gives another estimator: N̂2(x) = xn + xn−n
n

.

As we have seen, for one and the same problem often exist various estimators.
We are now interested in finding a way to decide whether an estimator is a good
one or not. We achieve one possible classification by looking at its expectation
value.

Definition 3.8. • The bias of an estimator ϑ̂ is defined by

B
[
ϑ̂
]

= Eϑ

[
ϑ̂
]
− ϑ.

• An estimator ϑ̂ is called unbiased if its bias equals zero, i.e. if Eϑ

[
ϑ̂
]

= ϑ

for all ϑ ∈ Θ. If Eϑ

[
ϑ̂
]
6= ϑ we say that ϑ̂ is biased.
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Figure 1: positively biased estimator

It is not difficult to show that in Example 3.7, the maximum likelihood
estimator is biased and the estimators N̂1 and N̂2 are unbiased. We rather
omit this proof and give instead another example.

Example 3.9. Let X1, X2 . . . , Xn be a random sample and let E [Xi] = µ and
Var [Xi] = σ2. Then it holds

• S ′2 = 1
n

∑n
i=1(Xi − X̄)2 is a biased estimator for σ2 and

• S2 = 1
n−1

∑n
i=1(Xi − X̄)2 is a unbiased estimator for σ2.

Proof. By an elementary computation,

E
[
S ′2
]

=
1

n
E

[
n∑
i=1

(Xi − X̄)2

]
=

1

n
E

[
n∑
i=1

X2
i − 2

n∑
i=1

XiX̄ +
n∑
i=1

X̄2

]

=
1

n

(
n∑
i=1

E
[
X2
i

]
+ E

[
− 2X̄

n∑
i=1

Xi︸ ︷︷ ︸
nX̄

+nX̄2
])

=
1

n

(
n∑
i=1

(σ2 − µ2)− nE
[
X̄2
])

= (σ2 − µ2)− E
[
X̄2
]

= (σ2 − µ2) + E
[
X̄
]2 − Var

[
X̄
]

=
(n− 1)σ2

n
.

For the last equality we used that obviously it holds E
[
X̄
]

= µ and Var
[
X̄
]

=
σ2

n
for the mean X̄ = 1

n

∑n
i=1 Xi. So S ′2 is (negatively) biased. From the above

calculation follows that

E
[
S2
]

=
1

n− 1
E

[
n∑
i=1

(Xi − X̄)2

]
=

1

n− 1
(n(σ2 − µ2) + nµ2 − σ2) = σ2,
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and that’s why S2 is biased.

Clearly we prefer an estimator having also a small variance. That’s why we
introduce as well the mean square error.

Definition 3.10. The mean square error of an estimator ϑ̂ is defined as the
expectation of its squared distance to the “real” parameter.

MSE
[
ϑ̂
]

= Eϑ

[
(ϑ̂− ϑ)2

]
.

A simple calculation given below shows that the mean square error in fact
invokes the variance. First of all, observe that it holds(

ϑ̂− ϑ
)

=
(
ϑ̂− Eϑ

[
ϑ̂
])

+
(

Eϑ

[
ϑ̂
]
− ϑ
)

=
(
ϑ̂− Eϑ

[
ϑ̂
])

+B
(
ϑ̂
)

.

By squaring this equation and taking the expectation afterwards, this leads to

(1)

MSE
[
ϑ̂
]

= Eϑ

[(
ϑ̂− ϑ

)2
]

= Eϑ

[(
ϑ̂− E

[
ϑ̂
])2
]

+ 2 Eϑ

[(
ϑ̂− Eϑ

[
ϑ̂
])(

Eϑ

[
ϑ̂
]
− ϑ
)]

+ Eϑ

[(
E
[
ϑ̂
]
− ϑ
)2
]

= Varϑ

[
ϑ̂
]

+ 0 +
(

Eϑ

[
ϑ̂
]
− ϑ
)2

= Varϑ

[
ϑ̂
]

+B
[
ϑ̂
]2

.

To bring this initial subsection to an end we introduce now another impor-
tant statistical requirement on estimators making them viable.

Definition 3.11. The estimator ϑ̂n, which is calculated using a sample of size
n, is said to be a consistent estimator of ϑ, if it converges to ϑ in probability,
i.e. if for all ε > 0 and all ϑ ∈ Θ

lim
n→∞

Pϑ

[
|ϑ̂n − ϑ| > ε

]
= 0.

Consistency and unbiasedness are of course not equivalent. However, as
the following lemma shows, with a further condition an unbiased estimator
becomes consistent.

Lemma 3.12. An unbiased estimator ϑ̂n for ϑ is a consistent estimator of ϑ
if

lim
n→∞

Varϑ

[
ϑ̂n

]
= 0.
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Proof. Set σϑ̂n =

√
Var

[
ϑ̂n

]
, let ε > 0 and assume that the sample size n is

fixed. Then, by the Chebyshev inequality, using that Eϑ

[
ϑ̂
]

= ϑ,

0 ≤ P
[∣∣∣ϑ̂n − ϑ∣∣∣ > ε

]
≤

Varϑ

[
ϑ̂n

]
ε2

.

By taking n→∞ the claim follows.

3.1 Bayesian Inference

The usual procedure in statistical estimation as described above is to regard
the value of ϑ as fixed but unknown. One then uses some observations to draw
appropriate conclusions.

Now we will introduce an important different approach called Bayesian in-
ference, where ϑ is a random variable with a unknown distribution called the
prior distribution f(ϑ) that incorporates all available information about it. Af-
ter observing some data one then considers the posteriori distribution f(ϑ|x)
based on which we can construct a Bayesian estimator.

Readers who are already familiar with this topic can skip this section and
go directly to the linear regression model on page 17. We will use the meth-
ods of bayesian inference only very superficially later on but nevertheless it is
something that cannot be absent in an introduction to statistics. Basically, we
follow here [7].

The following theorem, on which the method described in this section is
based on, is a fundamental result of probability theory. The proof is known
from elementary lecture.

Theorem 3.13 (Bayes’ Rule). Let A and B be two events A,B ⊂ Ω, with
0 < P [A] ≤ 1 and P [B] > 0. Then it holds

P [A|B] =
P [B|A] P [A]

P [B]
.

Similarly, for continuous random variables X and Y

fY |X(y|x) =
fX|Y (x|y)fY (y)

fX(x)
=
fX|Y (x|y)fY (y)∫
f(X,Y )(x, y)dy

,

where fX and fY denote the densities of X and Y respectively and fY |X stands

for the conditional density of Y given X, i.e. fY |X(y|x) :=
f(X,Y )(x,y)

fX(x)
with

f(X,Y )(x, y) being the joint density of X and Y . One defines fX|Y analogously.

13



Proof. See [12], for example.

Even before any data are collected one has to determine the prior distri-
bution f(ϑ) firstly. In order to abbreviate, note that we will often call this
distribution just prior. Figure 2 illustrates that lack of information leads to a
wide, flat probability density function of the prior while lots of information give
a peaked prior that is highly concentrated about some value. After observing

Figure 2: A narrow, concentrated prior (the green one) and a wider, less infor-
mative prior (the blue one)

some data, one constructs the conditional distribution of ϑ given X = x. This
then is called posterior distribution. Here comes its exact definition:

Definition 3.14 (posterior distribution). Let X = x be the observed realiza-
tion of a random variable X with density function f(x|ϑ). After the prior
distribution with density function f(ϑ) is determined, we obtain the density
function of the posterior distribution by Bayes’ rule (see Theorem 3.13):

(2) f(ϑ|x) =
f(x|ϑ)f(ϑ)∫
f(x|ϑ′)f(ϑ′)dϑ′

.

For discrete parameter spaces one has just to replace the integral in the de-
nominator by a sum.

The denominator in (2) obviously does not depend on ϑ, so the posterior
distribution is proportional to the product of likelihood and prior distribution.
One often writes

(3) f(ϑ|x) ∝ f(x|ϑ)f(ϑ) or f(ϑ|x) ∝ L(ϑ)f(ϑ).

In the Bayesian model we use the posterior distribution for inferences about
ϑ. The following definitons show how this can be done.
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Definition 3.15. The mode of a continuous distribution f is the value x∗ that
maximizes f(x).

Note that in statistics the expression “mode” refers to other situations as
well. On the one hand, the mode of a discrete random variable X with prob-
ability distribution p(x) is that value x∗ for which p(x) is largest, i.e. it is the
most probable x value. On the other hand the mode of a numerical data set
is the value that occurs most frequently in the set.

Now the following definition makes sense:

Definition 3.16 (Estimators in Bayesian Inference). The posterior expecta-
tion value E [ϑ|x] is the expectation value of the posterior distribution f(ϑ|x):

E [ϑ|x] =

∫
ϑf(ϑ|x)dϑ.

The posterior mode Mod(ϑ|x) is the mode of the posterior distribution f(ϑ|x):

Mod(ϑ|x) = arg max
ϑ

f(ϑ|x).

The posterior median Med(ϑ|x) is the median of the posterior distribution
f(ϑ|x), i.e. the value a for which∫ a

−∞
f(ϑ|x)dϑ = 0.5 and

∫ ∞
a

f(ϑ|x)dϑ = 0.5

holds.

In order to support the developed theory about Bayesian inference, we close
this section with an example that is further described in [4].

Example 3.17. In this example we make an inference about a population
proportion p. Since p ∈ [0, 1] we chose a particular beta distribution for a
prior on p. Note that

f(x) =

{
1

B(p,q)
xp−1(1− x)q−1 if x ∈ [0, 1]

0 else

is the density function of the standard beta distribution, where B(p, q) is given
by

B(p, q) =
Γ(p)Γ(q)

Γ(p+ q)
.
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Further recall that a B(p, q)-distributed random variable X has expectation p
p+q

.
According to the data from an American survey of 1574 reported people, 803
of them incorrectly said that antibiotics kill viruses. It suggests itself that the
data can be considered being binomial Bin(n = 1574, p) distributed.

So it is not difficult to calculate the posterior distribution:

f(p|x) =
f(x|p)f(p)∫∞

−∞ f(x|s)f(s)ds
=

(
n
x

)
px(1− p)n−x Γ(a+b)

Γ(a)Γ(b)
pa−1(1− p)b−1∫ 1

0

(
n
x

)
sx(1− s)(n−x) Γ(a+b)

Γ(a)Γ(b)
sa−1(1− s)b−1ds

=

(
n
x

)
px+a−1(1− p)n−x+b−1 Γ(a+b)

Γ(a)Γ(b)(
n
x

) Γ(a+b)
Γ(a)Γ(b)

∫ 1

0
sx+a−1(1− s)n−x+b−1ds

=
px+a−1(1− p)n−x+b−1∫ 1

0
sx+a−1(1− s)n−x+b−1ds

=
px+a−1(1− p)n−x+b−1

Γ(x+a)Γ(n−x+b)
Γ(n+a+b)

∫ 1

0
Γ(n+a+b)

Γ(x+a)Γ(n−x+b)
sx+a−1(1− s)n−x+b−1ds

.

The integral in the denominator is 1, because the integrand has the form of a
standard beta probability density. Consequently it is

f(p|x) =
Γ(n+ a+ b)

Γ(x+ a)Γ(n− x+ b)
px+a−1(1− p)n−x+b−1.

We see that the posterior distribution of p is B(x+ a, n− x+ b)-distributed.
By taking the posterior mean for example, we obtain the Bayesian estimate

E [p|x] =
x+ a

n+ a+ b
=

803 + a

1574 + a+ b

for p.
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Table 1: data corresponding to Figure 3

Year 1951 1956 1961 1966 1971 1976 1981
Rate of Divorces 17.70 14.40 13.80 14.80 17.68 20.83 26.50

Year 1986 1991 1996 2001 2006 2011
Rate of Divorces 29.50 33.50 38.30 45.97 48.86 43.02

Source: [1]

4 Linear Regression

In this section we will introduce the linear regression model. It is a method
to put a dependent variable in a linear context with independent variables.
However, before defining the exact model we are going to work with, let us
have a look at an introducting example of linear regression to some statistical
data that will give us an idea of how the procedure works.

Example 4.1 (Divorce Rates in Austria). In the year 2011 a total number of
20582 divorces were filed in Austria. So far this is the highest absolute number
of divorces. In the eighties and nineties the total divorce number was between
16000 and 18000 each year.

In this example we want to analyse the total divorce rates. They indicate
the magnitude of the percentage of marriages that end by a divorce. The total
divorce rates are calculated based on the observed divorces in a year related to
the year of the corresponding marriage.

In the diagram below, each grey point corresponds to the total divorce rate in
Austria in some five years step from 1951 to 2011. Our data corresponds to a
time line which forms a special case of regression analysis. The line represents
the linear regression and is in this example given by y = 0.6195x− 1199.0872.
It is kind of an equilization of the point cloud. Aim of this section is to expplain
the method how we can obtain this.

The line here is increasing. Therefore an increase of the divorce rates in the
future is expected. However, obviously linear regression is not appropriate in
this example for long time predictions. In the year 2100 for instance, we would
expect the impossible divorce rate of 101.78. Nevertheless we get meaningful
results for the near future or for a year between 1951 and 2011 that is not
contained in the data. For the year 1994 for instance, the linear regression
gives a divorce rate of 36.12, which means a difference of 0.74 to the lower
true value that is not contained in the data. For this year, 2016, we expect a
divorce rate of 49.75.

As the above example illustrates, given n pairs of observations (xi, yi), (i =
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Figure 3: rates of divorces in Austria in the years 1951-2011

1, 2, . . . , n) we can plot them to a scatter diagram. Regression analysis then
tries to fit a smooth curve through the points such that they are as close as
possible to the curve. In our case, as the title of this section already suggests,
the curve will be a straight line.

In contrast to Example 4.1 there likewise exist pairs of variables that have
an “exact” (e.g. physical) relationship between each other. Nevertheless we
have to take fluctuations into account that are caused by measurement errors
for instance.

Statistical relationships do not imply causal correlations. However, one can
use them for further investigations in prediction.

Aside from prediction, another reason for regression analysis is testing sci-
entific hypotheses. Imagine for example that we are examining Ohm’s law. It
states that U = R · I, where I denotes the current through a resistor of R
ohms and U is the voltage across the resistor. Now, we could measure these
quantities in some way. Then, after plotting them into a scatter diagram, it
will give support to the law if they are close to a straight line through the
origin.

As we have already enough motivation, let us define the linear regression
model exactly.

Definition 4.2 (Linear Regression Model). Let (X1, Y1), . . . , (Xn, Yn) corre-

spond to the observed data, where Xi = (X
(1)
i , . . . , X

(p)
i ) ∈ Rp and Yi ∈ R for

all i = 1, . . . , n. Then the relation

(4) Yi =

p∑
j=1

βjX
(j)
i + εi, i = 1, . . . , n

is called a linear regression model. One calls the variables Xi independent
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(also predictor or regressor) variables and Yi the dependent (or response)
variables.

For simplicity we assume the errors εi to be N (0, σ2)-distributed and inde-
pendent of the regressor variables.

Sometimes it is more convenient to write this model in matrix form

Y = Xβ + ε,

where Yn×1 is the vector of responses, Xn×p the design matrix and εn×1 the
vector of measurement errors.

Furthermore it is assumed that the linear regression model holds exactly with
the parameter β0.

Note that in some slightly more general models in the literature a single β0

called the intercept, which we assume to be zero throughout this text, is added
in (4). In fact, with the intercept being non-zero one could just include β0 in

β and replace Xi =
(
X

(1)
i , . . . , X

(p)
i

)
∈ Rp by X ′i =

(
1, X

(1)
i , . . . , X

(p)
i

)
∈ Rp+1

for all i ∈ {1, . . . , n}.

4.1 The Least Squares Estimator

First of all let us consider the case where the number of unknown parameters
is at most equal to the sample size, i.e. p ≤ n, and that the matrix X has full
rank p. One method to estimate β is the least squares estimation which we
will derive right now in a geometrical way. It consists of minimizing

∑n
i=1 ε

2
i

with respect to β. So by setting ϑ = Xβ, we minimize εtε = ‖Y − ϑ‖2
2 subject

to ϑ ∈ {z : z = Xy for any y} =: Ω, the column space of X. Therefore we set
ϑ̂ = PY , where P represents the orthogonal projection onto Ω.

In the following we just use properties of orthogonal projections. We want

to show now first that ‖Y − ϑ‖2
2 ≥

∥∥∥Y − ϑ̂∥∥∥2

2
for all ϑ ∈ Ω.

(Y − ϑ̂)t(ϑ̂− ϑ) = (Y − PY )t(PY − ϑ︸︷︷︸
=Pϑ

)

= (Y − PY )tP (Y − ϑ)

= Y t (In − P )P︸ ︷︷ ︸
=P−P 2

(Y − ϑ) = Y t(P − P 2︸︷︷︸
=P

)(Y − ϑ) = 0,

and thus trivially also

(ϑ̂− ϑ)t(Y − ϑ̂) = ((Y − ϑ̂)t(ϑ̂− ϑ))t = 0.
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If we write now

Y − ϑ = (Y − ϑ̂) + (ϑ̂− ϑ),

this leads us to

‖Y − ϑ‖2
2 = (Y − ϑ)t(Y − ϑ)

= ((Y − ϑ̂) + (ϑ̂− ϑ))t((Y − ϑ̂) + (ϑ̂− ϑ))

= ((Y − ϑ̂)t + (ϑ̂− ϑ)t)((Y − ϑ̂) + (ϑ̂− ϑ))

= (Y − ϑ̂)t(Y − ϑ̂) + (Y − ϑ̂)t(ϑ̂− ϑ)︸ ︷︷ ︸
=0

+ (ϑ̂− ϑ)t(Y − ϑ̂)︸ ︷︷ ︸
=0

+(ϑ̂− ϑ)t(ϑ̂− ϑ)

=
∥∥∥Y − ϑ̂∥∥∥2

2
+
∥∥∥ϑ̂− ϑ∥∥∥2

2
≥
∥∥∥Y − ϑ̂∥∥∥2

2
.

Here equality holds clearly if and only if ϑ = ϑ̂. Since Y − ϑ̂ ⊥ Ω, it is

X t(Y − ϑ̂) = 0⇔ X tϑ̂ = X tY .

X has full rank, so X tX is positive definite and therefore invertible. It exists
a unique b̂ such that Xb̂ = ϑ̂. Therefore we get the so called normal equations

(5) X tXb̂ = X tY ,

which lead immediately to the following definition.

Definition 4.3. The least squares estimator in the linear model (4) is of the
form

b̂ := (X tX)−1X tY .

Note that we intentionally write b̂ here and in the following for the least
squares estimator instead of β̂ in order not to mix up with other estimators.

Next we analyse the prediction error one has to put up with least squares
estimation. To this end we recall two important definitions:

Definition 4.4. Let X1, . . . , Xn be identical N (0, 1)-distributed random vari-
ables. Then the sum X2

1 + · · ·+X2
n is χ2

n distributed. It has the desity function

p(x) =
1

2
n
2 Γ(n

2
)
e−

x
2x

n
2
−1,

where Γ is the usual Gamma function. The parameter n is called the number
of degrees of freedom.
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Definition 4.5. The random vector X with expectation vector µ and covari-
ance matrix Σ has multivariate normal distribution if its density function is

fX(x) =
1√

(2π)p det Σ
e−

1
2

(x−µ)tΣ−1(x−µ).

One writes X ∼ Nn(µ,Σ) as usual. Note that for n = 1 this is the common
one dimensional normal distribution.

Lemma 4.6. Let Y be Nn(µ,Σ)-distributed with Σ being positive definite.
Then

Q := (Y − µ)tΣ−1(Y − µ) has χ2
n distribution.

Proof. We can write Y = Σ
1
2Z + µ with Z ∼ Nn(0, In). Hence,

Q = ZtΣ
1
2︸ ︷︷ ︸

(Y−µ)t

Σ−1 Σ
1
2Z︸︷︷︸

Y−µ

= ZtZ =
n∑
i=1

Z2
i ∼ χ2

n

because of independence.

Theorem 4.7. If Y is N (Xβ, σ2In)-distributed, where X is a n× p matrix of
rank p, then ∥∥∥X(b̂− β0)

∥∥∥2

2

σ2
has χ2

p-distribution

Proof. One can write b̂ = (X tX)−1X tY = CY for some p × n matrix C such
that rankC = rankX = p. Therefore it has a mulivariate normal distribution.

A simple calculation gives the following equations:

(6) E
[
b̂
]

= E
[
(X tX)−1X tY

]
= (X tX)−1X t E [Y ]︸ ︷︷ ︸

Xβ

= β0

and

(7)
Var

[
b̂
]

= Var
[
(X tX)−1X tY

]
= (X tX)−1X t Var [Y ]X(X tX)−1

= σ2(X tX)−1(X tX)(X tX)−1 = σ2(X tX)−1.

In both equations one uses that ε ∼ Nn(0, Inσ2). In the second equation we
have used Var [AX] = AVar [X]At which can be derived easily.

Therefore b̂ ∼ Nn(β, σ2(X tX)−1). Now finally observe that∥∥∥X(b̂− β0)
∥∥∥2

2

σ2
=

(b̂− β0)tX tX(b̂− β0)

σ2
= (b̂− β0)t

(
Var

[
b̂
])−1

(b̂− β0) ∼ χ2
p,

by Lemma 4.6.
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The theorem means in particular that

E

[∥∥∥X(b̂− β0)
∥∥∥2

2

]
n

=
σ2

n
p.

So each paramter β0
j is estimated with an error of order σ2

n
after “reparametriz-

ing to orthonormal design”, which gives an overall squared accuracy of σ2

n
p.

Note that in the case of non linearly independent columns of X, which
always happens for example if p < n, one gets similar results working with any
generalized inverse of X tX.

Definition 4.8. • The values Xb̂ are called fitted values and we use the
notation Ŷ = (Ŷ1, . . . , Ŷn).

• The elements of the vector Y − Ŷ are called residuals which we denote
by e.

• The minimum value of εtε, namely

ete = (Y −Xb̂)t(Y −Xb̂)
= Y tY − 2b̂tX tY + b̂tX tXb̂

= Y tY − b̂tX tY + b̂t(X tXb̂−X tY )

(5)
= Y tY − b̂tX tY

= Y tY − b̂tX tXb̂,

is called the residual sum of squares. One writes RSS (β)

Observe that by the uniqueness of ϑ̂ = Xb̂ it follows that Ŷ , e and the
residual sum of squares are unique, no matter which rank X has. Further note
that the least squares method consists in nothing else than minimizing RSS (β).

In [5] there is a proof given to the important and famous Gauß-Markov-
theorem.

Theorem 4.9 (Gauß-Markov). In the linear regression model with regressor
matrix X, the least squares estimator b̂ is the minimum variance linear un-
biased estimator of β. For any vector of constants w, the minimum variance
linear unbiased estimator of w′β in the regression model is w′b̂, where b̂ is the
least squares estimator.
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Proof. We already know, that the least squares estimator b̂ is a linear unbiased
estimator (see proof of Theorem 4.7). We show now, that any other linear
unbiased estimator of β has a larger variance.

Let â = CY be another linear unbiased estimator of β, where C is a K × n
matrix. By â being unbiased it is

E [CY |X] = E [(CXβ + Cε)|X] = β,

which implies that CX = I.
Now set D = C − (X tX)−1X t, so that DY = â− b̂. Then it is

Var [â|X] = σ2((D + (X tX)−1X t)(D + (X tX)−1X t)t)

= σ2DDt + σ2D((X tX)−1X t)t

+ σ2(X tX)−1X tD + σ2(X tX)−1X t((X tX)−1X t)t

= σ2DDt + σ2DX(X tX)−1 + σ2(X tX)−1X tD + σ2(X tX)−1.

Furthermore we see that DX must equal 0, because CX = I = DX +
(X tX)−1(X tX) and thus

Var [â|X] = σ2(X tX)−1 + σ2DDt = Var
[
b̂|X

]
+ σ2DDt.

Since σ2DDt is nonnegative definite, every quadratic form in Var [â|X] is larger

than the corresponding quadratic form in Var
[
b̂|X

]
.

As well, the second claim now follows immediately since the variance of
w′b is a quadratic form in Var [b|X], and likewise for any â and proves that
each individual slope estimator b k is the best linear unbiased estimator of
βk. To see this let w be the zero vector that has just a single 1 in the kth
coordinate.

The Gauss-Markov theorem together with the derivation in (1) implies that
the least squares estimator has the smallest mean square error of all linear
estimators with no bias.

Of course, this does not say that there do not exist a biased estimator (which
of course are also commonly used) with smaller mean square error. As we will
discuss in section 5, such an estimator would trade a little bias while reducing
its variance. Every estimator that shrinks or sets to zero some of the least
squares coefficients may be a biased one.
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5 Methods in Supervised Statistical Learning

We discuss how to handle statistical data in order to learn from it. The gen-
eral process works as follows: Usually one tries to predict a quantitative or
categorical outcome measurement based on a set of features, which are called
in the regression model predictor variables, independent or regressor variables
(see Definition 4.2). Analogously the outcome measurement corresponds to the
dependent or response variables. With a training set of data we can observe
the outcome and feature measurements for a set of objects. Then we construct
a so called learner. This is a prediction model with the aid of which we pre-
dict the outcome for new objects. A learner is said to be good if it accurately
predicts an outcome. In this text we only treat supervised problems which
means that we also deal with outcome measurements. In unsupervised learn-
ing problems just the features are observed and the task is rather to describe
how the data is organized or clustered. Statisticians speak about regression
when quantitative outputs shall be predicted, and classification refers to the
prediction of qualitative outputs.In this section we mostly follow [6] and [8].

Aim of the previous section was to discuss the linear regression model (4)
which is usually fitted by using least squares. For some reasons we now try to
extend the linear model framework:

The least squares estimates often have low bias (in our situation even no
bias) but large variance. So on the one hand, there is the prediction accurracy
that we want to improve by shrinking or setting some of the coefficients to
zero. Thereby we sacrifice a little bias but we can reduce the variance of the
predicted values at the same time. This results in an improvement of the
overall prediction accurracy.

On the other hand we seek a better or easier way of interpretation. In many
cases some predictor variables play a less important role than others. With
a large number of variables we often want to determine a smaller subset that
exhibits the strongest effects. For that purpose we sacrifice some details in
order to get a better overview.

For some investigations it might happen that there are more parameters
in the linear regression model in (4) to be estimated than there are available
samples, i.e. p > n. We already know that in other cases the least squares
method has a unique solution, but in this scenario that is no longer true. One
should either try somehow to get more observations or use some regularization
penalty.

Here we discuss two classes of methods using least squares:

• Subset selection: The name of this class of methods is already self-
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explanatory. One tries to reduce the set of variables on which one then
fits a model.

• Shrinkage: As an alternative to the discrete process of subset selection
we can use all p predictor variables. This model is “more continous”: It
shrinks the coefficient estimates towards zero and does not suffer much
from high variability.

One method that shall be mentioned here is the best subset selection. This
approach finds for each k ∈ {0, 1, . . . , p} the subset of size k that gives the
smallest RSS.

But instead of going more into detail here we will explain the theory about
regularization next in order to be able to define the LASSO and ridge regres-
sion.

5.1 Penalty Methods for the Case p > n and Definition of
the LASSO

Now let us analyse the case where in the linear regression model it is p > n,
i.e. there are more parameters to be estimated than available samples. Then
there is no longer a unique least squares coefficient estimate. The idea is now
constraining to a subset of coefficients:

Definition 5.1. The set of all the indices for which β0
j is not equal to zero,

S0 := {j : β0
j 6= 0},

is called active set. Its cardinal number s0 := |S0| is the sparsity index of β0.

“Believing” that in fact only s0 of the β0
j are non-zero, we get similarly to

before (see page 22) the overall squared accuracy σ2

n
s0, if we only take those

variables X(j) into account with j ∈ S0. The problem is that in general we
don’t know the active set.

Recall that we obtained the least squares estimator by minimizing RSS (β).
The LASSO does the same subject to

∑p
j=1 |βj| ≤ t, where t ≥ 0 is a so called

tuning parameter.

For being able to define the LASSO estimator as a penalized least squares
procedure, one needs some basic knowledge about optimization. More precisely
it is important to understand the aim of penalty methods that form an helpful
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concept in constraint optimization, i.e. problems of the form:

(8)

minimize f(x)
with the constraints g1(x) ≤ 0

g2(x) ≤ 0
...

gp(x) ≤ 0,
where f : Rn → R and gi : Rn → R, i = 1, . . . , p.

As described in [19], their idea consists of solving a sequence of unconstrained
optimization problems, that are formed by adding penalty terms to the objec-
tive function. These penalty terms are weighted by a positive parameter - the
penalty parameter. The penalty problems have the form

min
x
f(x) + απ(x)

with the penalty parameter α > 0 and the penalty-function π : Rn → R,
π(x) = 0 on X and π(x) > 0 on Rn \X. Here one calls the set X containing
all x ∈ Rn for which the constraints are fulfilled permissible range.

It was not mentioned yet what a penalty-function exactly is.

Definition 5.2. A map π : R→ R is a penalty function for the optimization
problem as in (8) if these three conditions are fulfilled:

1. π is continuous

2. π(x) ≥ 0 ∀x ∈ Rn

3. π(x) = 0 if and only if x is feasible, i.e. if gi(x) ≤ 0 for all i ∈ {1, . . . , p}.

In [3] there is a good example given that introduces the `1-penalty:

Example 5.3. Let the functions h1(x) := x − 2, h1 : R → R and h2(x) :=
−(x+ 1)3, h2 : R→ R be given. We want that h1(x) ≤ 0 and h2(x) ≤ 0 hold.
That is the case for all x ∈ [−1, 2]

h+
1 (x) := max (0, h1(x)) =

{
0 if x ≤ 2

x− 2 otherwise

h+
2 (x) := max (0, h2(x)) =

{
0 if x ≥ −1

−(x+ 1)3 otherwise

26



Here the penalty-function becomes

π(x) = h+
1 (x) + h+

2 (x) =


x− 2 if x > 2

0 if − 1 ≤ x ≤ 2

−(x+ 1)3 if x < −1

So `1-penalty refers to a absolute value penalty function of the form
∑p

i=1 |hi(x)|,
where the the summation is taken over all constraints that are violated at x.
This is exactly the `1-norm. Analogously one defines `p-penalty for p ≥ 2.

Back to our situation we now define the LASSO estimator.

Definition 5.4 (The LASSO estimator). A good choice for the needed regu-
larization penalty is `1-penalty, i.e. the LASSO is defined by

(9) β̂(λ) = arg min
β

(
‖Y −Xβ‖2

2

n
+ λ ‖β‖1

)
.

with ‖Y −Xβ‖2
2 =

∑n
i=1(Yi − (Xβ)i)

2, ‖β‖1 =
∑p

j=1 |βj| and where λ is a
penalty parameter.

The acronym LASSO stands for “Least absolute shrinkage and selection op-
erator”. Namely we will see that the LASSO combines both shrinkage and
variable selection.

5.2 The Ridge Regression

Ridge regression is a shrinkage method that imposes a penalty on the size of
the regression coefficient which shrinks them. Let us have a look at its exact
definition.

Definition 5.5. The ridge regression estimator is defined as

β̂ridge = arg min
β
{

n∑
i=1

(yi −
p∑
j=1

xijβj)
2 + λ

p∑
j=1

β2
j }.

So in the ridge regression, instead of `1-penalty, `2 penalty is used.

Similarly as in the model for the LASSO, we have here a penalty term λ ≥ 0.
The larger the value of λ is, the greater becomes the amount of shrinkage
towards zero. Alternatively one can write

(10) β̂ridge = arg min
β

{ N∑
i=1

(yi −
p∑
j=1

xijβj)
2

}
, subject to

p∑
j=1

β2
j ≤ t.
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The case of correlation of some predictor variables leads to high variance in the
“ordinary” linear regression model. For example, a very large positive coeffi-
cient on one variable can be cancelled by a similarly large negative coefficient
on another predictor variable that is correlated. The size constraint in the
regression model as in (10) can solve this problem.

Another way to define the ridge regression is to write it in matrix form.
With

RSS(λ) = (y −Xβ)t(y −Xβ) + λβtβ,

the ridge regression solutions are easily seen to be

β̂ridge = (X tX + λI)−1X ty,

where I is here the p× p identity matrix. The addition of a positive constant
to the diagonal elements of X tX makes the problem nonsingular. This was
the main motivation for introducing the ridge regression in statistics in 1970
by Hoerl and Kennard.

In statistics it is often very useful to apply the singular value decomposition,
which we abbreviate in the following by SVD. The reader is recommended at
this point to read the relevant pages of [17] (p. 364 ff.). A better insight of
what is happening in ridge regression is attained using the SVD. The SVD of
the n× p matrix X reads

X = UDV t,

where U and V are n × p and p × p orthogonal matrices respectively. The
columns of U span the column space of X and the columns of V span the row
space. D is a p×p diagonal matrix. Its diagonal entries d1 ≥ d2 ≥ · · · ≥ dp ≥ 0
are called singular values of X. If there is a value dj = 0, then X is singular.

The least squares fitted values have now the form

Xb̂ = X(X tX)−1X tY = UDV t((UDV t)tUDV t)−1(UDV t)tY =

= UDV t(V DU tUDV t)−1V DU tY = UDV t(V D2V t)−1V DU tY

= UU tY

We see that the least squares method computes the coordinates of Y with
respect to the orthonormal basis U .

The ridge solutions are

Xβ̂ridge = X(X tX + λI)−1X tY = UDV t((UDV t)tUDV t + λI)−1(UDV t)tY

= UDV t(V D2V t + λV V t)−1V DU tY = UD(D2 + λI)−1DU tY .
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D is a diagonal matrix and thus also D(D2 +λI)D. That is why we can write
the ridge regression fitted values as

Xβ̂ridge =

p∑
j=1

uj
d2
j

d2
j + λ

utjY ,

where uj stands for the j-th column of U .

It holds
d2j

d2j+λ
≤ 1, because λ ≥ 0. Ridge regression computes the coordi-

nates of Y with respect to the orthonormal basis U and shrinks then these

coordinates by the factors
d2j

d2j+λ
aferwards. Therefore, as dj gets small, the

amount of shrinkage becomes greater. The small singular values dj correspond
to directions in the column space of X, which have small variance. Ridge re-
gression shrinks these directions the most. Indeed, if we analyse the principal
components of the variables in a centred matrix X, we will see that. The SVD
of X gives us

X tX = V D2V t.

The eigenvectors vj that are the columns of V are called principal compo-
nents directions of X. That is why above expression is called eigen decom-
position of X tX. The first principal component direction v1 has the largest
variance among all normalized linear combinations of the columns of X. It is

Var [Xv1] = Var [u1d1] =
d2

1

N
.

The variable Xv1 is called first principal component wherefore one calls u1

normalized first principal component. Subsequent principal components Xvj
are orthogonal to the previous ones and have therefore maximum variance

dj
N

.
The last principal component has minimum variance.

Definition 5.6. The monotone increasing function

df(λ) = tr
[
(X tX + λI)−1X t

]
=

p∑
i=1

d2
i

d2
i + λ

is called effective degrees of freedom of the ridge regression fit.

Observe, that if λ = 0, which means that no regularization happens, it holds
df(λ) = p. Further it is obviously df(λ)→ 0 as λ→∞.

Finally let us now interpret the ridge regression model geometrically. Figure
4 shows the case where p = 2. Here the constraints correspond to the blue
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circle and the ellipses to the contours of residual sum of squares. The RSS
of the inner ellipse is smaller than the RSS of the outer one. It is minimized
at the ordinary least squares (OLS) estimate. The ridge regression method
intends to minimize the ellipse size and circle simultanously. Its estimate is
the point that has the circle in common with the ellipse.

Figure 4: Geometric Interpretation of Ridge Regression
Source: https://onlinecourses.science.psu.edu/stat857/node/155

5.3 Ridge Regression versus LASSO

Even though the orthonormal case will never occur in practise, we consider
this very unlikely scenario anyway in order to get an insight about the nature
of shrinkage. So if the matrix X is orthonormal, both procedures have explicit
solutions and apply a simple transformation to the least squares estimate b̂.
In the previous subsection we have seen that both methods apply a simple
transformation to the least squares estimate β̂j. Ridge regression does a pro-
portional shrinkage, whereas LASSO translates each coefficient by a constant
factor λ and truncates at zero.

The use of `1-penalty makes the solutions nonlinear in the Yi. That is why
for the LASSO there do not exist any closed form expression as for ridge re-
gression.

The LASSO in fact does some kind of continuous subset selection. If one
chooses t to be sufficiently small then some of the coefficients will be exactly
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zero. In cotrast, if t is chosen larger than the `1-norm of the least squares
estimate b̂, then the LASSO-estimates are exactly the b̂j’s.

Let us now have a look at the illustration of the LASSO. In Figure 5 we
see that in contrast to the case of ridge regression, the constraint now forms a
rhombus. The LASSO-estimate corresponds to the point where the ellipse hits
the diamond. We have to distinguish between two cases, because compared to
the circle in the ridge regression model, the rhombus has corners. If the solution
occurs at a corner, then it has one parameter βj equal to zero. Assuming an
higher dimensional model, the equilateral quadrilateral becomes a rhomboid.
It has a lot of corners, faces and flat edges. So there are much more possibilities
for the ellipse to intersect at a corner, i.e. there are more parameters that
possibly equal zero.

Figure 5: Geometric Interpretation of the LASSO. In this diagram w is used
instead of β. Apart from that it is convenient for our situation.

Source:
http://www.cmat.edu.uy/~mordecki/modelos/

pdf_files/cours_Montevideo_1.pdf

As the observations above already let us guess, we can generalize LASSO
and ridge regression with the following criterion

β̃ = arg min
β
{

n∑
i=1

(yi − β0 −
p∑
j=1

xijβj)
2 + λ

p∑
j=1

|βj|q},

with q ≥ 0. Clearly, q = 1 corresponds to the LASSO and the case q = 2
to ridge regression. With q = 0 variable subset selection is at hand. Because
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then just parameters that are non-zero are counted.

Now, we want to give a Bayesian interpretation of the above criterion. To
this end, let us have a look at the case of ridge regression for instance and
suppose that the regression coefficients βj are independent and normally dis-
tributed with mean 0 and variance τ 2. Furthermore we work with a Gaus-
sian sampling model Y ∼ N (Xβ, σ2I) as usual. We go on now with the
Bayes’inference procedure as it is described in Section 3.1. As in equation (3)
there, it holds

f(β|Y ) ∝ f(Y |β)f(β),

for the prior density function f and the corresponding posterior density.

For appropriate constants C1 and C2 then it is

f(β) = C1 exp

{
−‖β‖

2
2

2τ 2

}
, and f(Y |β) = C2 exp

{
−‖Y −Xβ‖

2
2

2σ2

}
.

In consequence, the posterior distribution has the form

f(β|Y ) = C3 exp

{
−
‖Y −Xβ‖2

2 + σ2

τ2
‖β‖2

2

2σ2

}

for a suitable constant C3. Now we set λ = σ2

τ2
, take the negative logarithm of

the above posterior distribution to obtain

− log f(β|Y ) = − logC3 +
‖Y −Xβ‖2

2 + λ ‖β‖2
2

2σ2
.

Thus, for the constant C4 = −2σ2 logC3, this can be written as

N∑
i=1

(
Yi −

p∑
j=1

βjXj

)2

+ λ

p∑
i=1

β2
i + C4.

Taking the mode of the posterior density means to minimize the negative log-
posterior density. Therefore the ridge regression estimate is in fact the mode
of the posterior distribution.

Similarly, the LASSO estimate can be shown to be the Bayes posterior mode
for independent double exponentially distributed (i.e. Laplace distributed)
priors with parameters µ = 0 and γ = 1

λ
. Recall that this means that the

priors have the density

f(βj) = λ
1

2
exp {−λ |βj|} .
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It is to mention that as well subset selection can be seen as a Bayesian esti-
mate, also derived as some posterior mode.

Figure 6 shows the contours of `q-norms in three dimensions for various
values of q. We see that as the value of q gets smaller, the size of the corre-
sponding `q-ball decreases as well.

Figure 6: `p ball in three dimensions
Source: http://www.stat.ucla.edu/~ybzhao/teaching/stat101c/,

modified graphic

Now let us consider the case where q has a value different to 0, 1 or 2. For a
value q ∈ (1, 2) we expect some kind of compromise between the LASSO and
ridge regression. The case q > 1 makes |βj| differentiable at 0, which is why no
coefficient will be set exactly to zero as LASSO does. In 2005 Zou and Hastie
introduced a possible way out of this problem.

Definition 5.7 (Elastic Net Penalty). The estimator defined via “elastic net
penalty” is given by

β̂en := λ

p∑
j=1

(
αβ2

j + (1− α) |βj|
)

.

The elastic net penalty is a good alternative to LASSO and ridge regression.
It selects variables like the LASSO, while it shrinks the coefficients of corre-
lated predictor variables like the ridge regression model. Furthermore it has
considerable computational advantages. Figure 7 compares `1-, `2- and the
Elastic Net Penalty. The latter one has sharp (i.e. non-differentiable) corners,
while penalty for q > 1 does not.
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Figure 7: Comparison of three penalty types
Source: http://scikit-learn.org/stable/modules/sgd.html

6 Error Estimations for the LASSO

In this section we first introduce the so called “basic inequality” based on
which we obtain a consistency result and will be able to estimate the error of
the LASSO. For that purpose we will establish the commonly named “compat-
ibility condition”, which we will use to prove a certain bound for the `1-error
as well as an estimation for the prediction error.

Recall that in the following it is assumed that the linear model given in
Definition 4.2 holds exactly with the parameter β0.

Lemma 6.1 (Basic Inequality). We have∥∥∥X(β̂ − β0)
∥∥∥2

2

n
+ λ

∥∥∥β̂∥∥∥
1
≤ 2εtX(β̂ − β0)

n
+ λ

∥∥β0
∥∥

1

Proof. By the definition of β̂, it clearly holds∥∥∥Y −Xβ̂∥∥∥2

2

n
+ λ

∥∥∥β̂∥∥∥
1
≤ ‖Y −Xβ

0‖2
2

n
+ λ

∥∥β0
∥∥

1
.
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By plugging in for Y = Xβ0 + ε, this is equivalent to∥∥∥−X(−β0 + β̂) + ε
∥∥∥2

2

n
+ λ

∥∥∥β̂∥∥∥
1
≤ ‖ε‖

2
2

n
+ λ

∥∥β0
∥∥

1
.

We expand the term
∥∥∥−X(−β0 + β̂) + ε

∥∥∥2

2
and obtain∥∥∥−X(β̂ − β0)

∥∥∥2

2

n
− 1

n
(X(β̂ − β0))tε− 1

n
εt(X(β̂ − β0))︸ ︷︷ ︸

− 2εt(X(β̂−β0))
n

+
‖ε‖2

2

n
+ λ

∥∥∥β̂∥∥∥
1

≤ ‖ε‖
2
2

n
+ λ

∥∥β0
∥∥

1
.

Finally, this is equivalent to∥∥∥X(β̂ − β0)
∥∥∥2

2

n
+ λ

∥∥∥β̂∥∥∥
1
≤ 2εtX(β̂ − β0)

n
+ λ

∥∥β0
∥∥

1
,

which is the required inequality.

Now let us have a look back again at the basic inequality given in Lemma
6.1 above. The term that contains the measurement error, that is

2εtX(β̂ − β0)

n
,

is called “empirical process” part in the case of quadratic loss. It clearly holds

2|εtX(β̂ − β0)| ≤ ( max
1≤j≤p

2|εtX(j)|)
∥∥∥β̂ − β0

∥∥∥
1

.

In order to get rid of this random part somehow, we now define the set

J :=

{
max
1≤j≤p

2εtX(j)

n
≤ λ0

}
and assume that 2λ0 ≤ λ. On J the basic inequality now reads

(11)

∥∥∥X(β̂ − β0)
∥∥∥2

2

n
+ λ

∥∥∥β̂∥∥∥
1
≤ λ0

∥∥∥β̂ − β0
∥∥∥

1
+ λ

∥∥β0
∥∥

1

Before we are able to prove the next Lemma, we need a probabilistic estima-
tion. Readers that are familiar with Markov inequality arguments can skip the
following Proposition.
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Proposition 6.2 (Gaussian Tail Estimate). Let X be N (0, 1) distributed.
Then for a > 0 it holds

P [X ≥ a] ≤ e−
a2

2 .

Proof. By Markov’s inequality it is

P [X ≥ a] = P
[
etX ≥ eta

]
≤ E

[
etX
]
e−ta ∀t > 0.

X is a standard normal random variable, so E
[
etX
]

= e
t2

2 . Thus the above
inequality now reads

P [X ≥ a] ≤ e
t2

2 e−ta.

Since this holds ∀t > 0 we can minimize e
t2

2
−ta which means to minimize t2

2
−ta.

This expression attains its minimum at t = a. Therefore

P [X ≥ a] ≤ e
a2

2
−a2 = e−

a2

2 .

This completes the proof.

Dealing with Gaussian errors, the target is to prove the following lemma
which states that J has large probability.

Lemma 6.3. Let Σ̂jj, j = 1, . . . , p denote the diagonal elements of the scaled

Gramian matrix Σ̂ := X tX 1
n

. Suppose that they all equal 1. Then for all t > 0

and for λ0 := 2σ
√

t2+2 log p
n

it holds

P [J ] ≥ 1− 2e−
t2

2

Proof. The diagonal entries of Σ̂ have the form 1
n

∑n
i=1(X

(j)
i )2 = 1 for all

1 ≤ j ≤ p, which obviously means
∑n

i=1(X
(j)
i )2 = n for all 1 ≤ j ≤ p. Define

Vj := εtX(j)
√
nσ2

. By a simple calculation one can see that this is standard normal
distributed. Indeed, it is

E [Vj] = E

[
εtX(j)

√
nσ2

]
= E

[∑n
i=1 εiX

(j)
i√

nσ2

]
=

1√
nσ2

n∑
i=1

X
(j)
i E [εi]︸ ︷︷ ︸

=0

= 0,
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and

Var [Vj] = E
[
V 2
j

]
− E [Vj]︸ ︷︷ ︸

=0

2 = E

[∑n
i=1 εiX

(j)
i

∑n
i=1 εiX

(j)
i√

nσ2
√
nσ2

]

=
1

nσ2
E

[
n∑
i=1

ε2
i (X

(j)
i )2 +

∑
1≤i 6=k≤n

εiεkX
(j)
i X

(j)
k

]

=
1

nσ2

n∑
i=1

Var [εi] (X
(j)
i )2 +

1

nσ2

∑
1≤i 6=k≤n

E [εi]︸ ︷︷ ︸
=0

E [εk]︸ ︷︷ ︸
=0

X
(j)
i X

(j)
k

=
1

nσ2
σ2

n∑
i=1

(X
(j)
i )2 =

1

n
n = 1.

So it is

P [J c] = P

[
max
1≤j≤p

2|εtX(j)|
n

> λ0

]
= P

max
1≤j≤p

2|εtX(j)| > 2
√
nσ
√
t2 + 2 log p︸ ︷︷ ︸

=nλ0


= P

[
max
1≤j≤p

|εtX(j)|√
nσ2

>
√
t2 + 2 log p

]
= P

[
max
1≤j≤p

|Vj| >
√
t2 + 2 log p

]
≤ pP

[
|Vj| >

√
t2 + 2 log p

]
= 2pP

[
Vj >

√
t2 + 2 log p

]
≤ 2p exp

[
−t

2 + 2 log p

2

]
= 2p exp

[
−t

2

2

]
exp [− log p]︸ ︷︷ ︸

= 1
p

= 2e−
t2

2 ,

which is equivalent to

P [J ] ≥ 1− 2e−
t2

2 .

This completes the proof.

We now obtain a consistency result for the LASSO:

Corollary 6.4 (Consistency of the LASSO). Assume that Σ̂jj = 1 for all j.

For some t > 0 define λ := 4σ̂
√

t2+2 log p
n

, where σ̂ is some estimator of σ.

Further define α := 2e−
t2

2 + P [σ̂ ≤ σ]. Then we have

2
∥∥∥X(β̂ − β0)

∥∥∥2

2

n
≤ 3λ

∥∥β0
∥∥

1

with probability at least 1− α.
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Proof. Clearly on J with 2λ0 ≤ λ it holds∥∥∥X(β̂ − β0)
∥∥∥2

2

n
+ λ

∥∥∥β̂∥∥∥
1
≤ λ0

∥∥∥β̂ − β0
∥∥∥

1︸ ︷︷ ︸
≤ 1

2
λ‖β̂−β0‖

1

+λ
∥∥β0
∥∥

1
.

This is equivalent to

2
∥∥∥X(β̂ − β0)

∥∥∥2

2

n
+ 2λ

∥∥∥β̂∥∥∥
1
≤ λ

∥∥∥β̂ − β0
∥∥∥

1
+ 2λ

∥∥β0
∥∥

1

≤ λ
∥∥∥β̂∥∥∥

1
+ λ

∥∥β0
∥∥

1
+ 2λ

∥∥β0
∥∥

1︸ ︷︷ ︸
=3λ‖β0‖1

.

So in the end we now get

2
∥∥∥X(β̂ − β0)

∥∥∥2

2

n
+ λ

∥∥∥β̂∥∥∥
1︸ ︷︷ ︸

≥2
‖X(β̂−β0)‖22

n

≤ 3λ
∥∥β0
∥∥

1
.

For the following, recall that on page 25 we defined S0 to be the active set.
It is the set of indices for which β0

j is nonzero. We call its cardinal number s0

the corresponding sparsity index.
Let us introduce now some notation. To exploit sparsity of β0, we write

βj,S := βj1j∈S for an index S ⊂ {1, . . . , p} and hence βj,Sc := βj1j /∈S. Then
obviously β = βS + βSc .

Lemma 6.5. On J it holds with λ ≥ 2λ0

2
∥∥∥X(β̂ − β0)

∥∥∥2

2

n
+ λ

∥∥∥β̂Sc0∥∥∥1
≤ 3λ

∥∥∥β̂S0 − β0
S0

∥∥∥
1

.

Proof. On J the basic inequality with λ ≥ 2λ0 reads

2
∥∥∥X(β̂ − β0)

∥∥∥2

2

n
+ 2λ

∥∥∥β̂∥∥∥
1
≤ 2

1

2
λ
∥∥∥β̂ − β0

∥∥∥
1

+ 2λ
∥∥β0
∥∥

1
.

By the above definition of βj,Sc it is∥∥∥β̂∥∥∥
1

=
∥∥∥β̂S0

∥∥∥
1

+
∥∥∥β̂Sc0∥∥∥1

.
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Here we now apply the reverse triangle inequality to get∥∥∥β̂∥∥∥
1
≥
∥∥β0

S0

∥∥
1
−
∥∥∥β̂S0 − β0

S0

∥∥∥
1

+
∥∥∥β̂Sc0∥∥∥1

.

On the right side of the basic inequality one uses∥∥∥β̂ − β0
∥∥∥

1
=
∥∥∥β̂S0 − β0

S0

∥∥∥
1

+
∥∥∥β̂Sc0∥∥∥1

.

Obviously it is ∥∥β0
∥∥

1
=
∥∥β0

S0

∥∥
1

,

so the required inequality follows.

We now want to derive the so called “compatibility conditions” on the de-
sign matrix X. The idea behind it is to discard the `1-term on the right hand
side of the above equation incorporating it into the `2-term on the left side.

In general it is well known that for p-norms on n-dimensional vector spaces
with 1 ≤ p ≤ r ≤ ∞ it holds

‖x‖r ≤ ‖x‖p ≤ n
1
p
− 1
r ‖x‖r

by the Cauchy-Schwarz-inequality.
That is why in our case we can write∥∥∥β̂S0 − β0

S0

∥∥∥
1
≤
√
s0

∥∥∥β̂S0 − β0
S0

∥∥∥
2

being just interested in the s0 non-vanishing coordinates.

Again let Σ̂ = 1
n
X tX be the scaled Gramian matrix, then∥∥∥X(β̂ − β0)

∥∥∥2

2

n
= (β̂ − β0)tΣ̂(β̂ − β0).

Let now hold

(12)
∥∥∥β̂S0 − β0

S0

∥∥∥2

2
≤ (β̂ − β0)tΣ̂(β̂ − β0)

Φ2
0

for some constant and positive Φ0. Then it is possible to appropriately proceed
with the chain of inequalities. We then may restrict to J where by the basic
inequality from Lemma 6.1 it is∥∥∥β̂Sc0∥∥∥1

≤ 3
∥∥∥β̂S0 − β0

S0

∥∥∥
1

,

because requiring (12) for all β would need Σ̂ to be non-singular.
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Definition 6.6 (Compatibility Condition). We say that the compatibility
condition is met for the set S0, if for some Φ0 > 0 and for all β satisfying∥∥βSc0∥∥1

≤ 3 ‖βS0‖1 it holds that

‖βS0‖
2
1 ≤ (βtΣ̂β)

s0

Φ2
0

.

One calls Φ2
0 compatibility constant of the matrix Σ̂.

Theorem 6.7. Suppose that the compatibility condition holds for S0. Then on
J we have for λ ≥ 2λ0,∥∥∥X(β̂ − β0)

∥∥∥2

2

n
+ λ

∥∥∥β̂ − β0
∥∥∥

1
≤ 4λ2s0

Φ2
0

.

Proof. First observe that it holds

2
∥∥∥X(β̂ − β0)

∥∥∥2

2

n
+ λ

∥∥∥β̂ − β0
∥∥∥

1

=
2
∥∥∥X(β̂ − β0)

∥∥∥2

2

n
+ λ

∥∥∥β̂S0 − β0
S0

∥∥∥
1

+ λ
∥∥∥β̂Sc0∥∥∥1

.

By Lemma 6.5 this is bounded from above by

λ
∥∥∥β̂S0 − β0

S0

∥∥∥
1

+ 3λ
∥∥∥β̂S0 − β0

S0

∥∥∥
1

= 4λ
∥∥∥β̂S0 − β0

S0

∥∥∥
1

.

By the compatibility condition, Definition 6.6, this is again bounded from
above by

4λ

√
(β̂ − β0)tΣ̂(β̂ − β0)s0

Φ2
0

=
4λ
√
s0

∥∥∥X(β̂ − β0)
∥∥∥

2√
nΦ0

.

Now we use that 4uv ≤ u2 + v2 (with u =
‖X(β̂−β0)‖

2√
n

and v =
λ
√
s0

Φ0
), which

holds by being equivalent to 0 ≤ u2 − 4uv + 4v2 = (u − 2v)2. So the above
expression is once more bounded from above by∥∥∥X(β̂ − β0)

∥∥∥
2

n
+

4λ2s0

Φ2
0

.
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This yields ∥∥∥X(β̂ − β0)
∥∥∥2

2

n
+ λ

∥∥∥β̂ − β0
∥∥∥

1
≤ 4λ2s0

Φ2
0

,

which is exactly the inequality that was to be proven.

The above theorem is yielding for two reasons. On the one hand it gives us
the bound ∥∥∥β̂ − β0

∥∥∥
1
≤ 4λs0

Φ2
0

for the `1-error, but it also leads to this estimation for the prediction error:∥∥∥X(β̂ − β0)
∥∥∥

2

n
≤ 4λ2s0

Φ2
0

.

A further result that follows immediately from this theorem is the following:

Corollary 6.8. Assume that σ̂2
j = 1 for all j and that the compatibility

condition holds for S0 with Σ̂ normalized in this way. For some t > 0 de-

fine λ := 4σ̂
√

t2+2 log p
n

, where σ̂2 is some estimator of σ2. Furthermore let

α := 2e−
t2

2 + P [σ̂ ≤ σ]. Then with probability at least 1− α we have∥∥∥X(β̂ − β0)
∥∥∥2

2

n
+ λ

∥∥∥β̂ − β0
∥∥∥

1
≤ 4λ2s0

Φ2
0
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7 Refinements of the Model

7.1 Linear Approximation of the Truth

We search now a function f(X) for predicting Y given values of the regressor
X. Therefore we assume that X and Y have the joint distribution Pr(X, Y ).
The expected squared prediciton error then reads

EPE (f) = E [Y − f(X)]2 .

By conditioning on X it is possible to rewrite this to

EPE (f) = EXEY |X([Y − f(X)]2|X).

It suffices to minimize EPE pointwise:

arg min
c

EY |X([Y − c]2|X = x),

where the solution is given by

f(x) = E [Y |X = x] .

This is called the regression function. In this section we briefly discuss the
case where we assume the regression function E [Y ] := f 0 possibly not to be
a sparse linear combination of the vectors X(j). The next lemmas will show,
that there are very similar results to the theory established in the previous
section.

Lemma 7.1 (General Basic Inequality). For any vector β∗ it is∥∥∥Xβ̂ − f 0
∥∥∥2

2

n
+ λ

∥∥∥β̂∥∥∥
1
≤ 2εtX(β̂ − β∗)

n
+ λ ‖β∗‖1 +

‖Xβ∗ − f 0‖2
2

n
.

Proof. By the definition of β̂ it clearly holds∥∥∥Y −Xβ̂∥∥∥2

2

n
+ λ

∥∥∥β̂∥∥∥
1
≤ ‖Y −Xβ

∗‖2
2

n
+ λ ‖β∗‖1

for any vector β∗. Now by plugging in for Y = f 0 + ε this inequality reads∥∥∥f 0 + ε−Xβ̂
∥∥∥2

2

n
+ λ

∥∥∥β̂∥∥∥
1
≤ ‖f

0 + ε−Xβ∗‖2
2

n
+ λ ‖β∗‖1 .
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This is equivalent to∥∥∥−(Xβ̂ − f 0)
∥∥∥2

2

n
−(Xβ̂ − f 0)tε

n
− εt(Xβ̂ − f 0)

n︸ ︷︷ ︸
−2εt(Xβ̂−f0) 1

n

+
‖ε‖2

2

n
+ λ

∥∥∥β̂∥∥∥
1

≤ ‖Xβ
∗ − f 0‖2

2

n
+ λ ‖β∗‖1 +

(Xβ∗ − f 0)tε

n
+
εt(Xβ∗ − f 0)

n︸ ︷︷ ︸
2εt(Xβ∗−f0) 1

n

+
‖ε‖2

2

n
+ λ ‖β∗‖1 .

And this now becomes∥∥∥Xβ̂ − f 0
∥∥∥2

2

n
+ λ

∥∥∥β̂∥∥∥
1

≤ ‖Xβ
∗ − f 0‖2

2

n
+2εt(Xβ∗ − f 0)

1

n
+ 2εt(Xβ̂ − f 0)

1

n︸ ︷︷ ︸
2εt(Xβ̂−Xβ∗)

n

+λ ‖β∗‖1 .

The above Lemma shows that in our further derivations we have to take into
account the approximation error

‖Xβ∗ − f 0‖2
2

n

as for instance in the next Lemma.
Therefore we firstly define S∗ := {j : β∗j 6= 0}. Bear in mind that this set

depends on the arbitrary vector β∗.

Lemma 7.2. On J it holds for any vector β∗

4
∥∥∥Xβ̂ − f 0

∥∥∥2

2

n
+ 3λ

∥∥∥β̂Sc∗∥∥∥
1
≤ 5λ

∥∥∥β̂S∗ − β∗S∗

∥∥∥
1

+
4 ‖Xβ∗ − f 0‖2

2

n

with λ ≥ 4λ0.

Proof. The proof of this lemma works analogously to the proof of Lemma 6.5.
On J the general basic inequality reads with λ ≥ 4λ0

4
∥∥∥Xβ̂ − f 0

∥∥∥2

2

n
+ 4λ

∥∥∥β̂∥∥∥
1
≤ 4

1

4
λ
∥∥∥β̂ − β∗∥∥∥

1
+ 4λ ‖β∗‖1 +

4 ‖Xβ∗ − f 0‖2
2

n
.
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By the same argument as in the proof of Lemma 6.5 it is∥∥∥β̂∥∥∥
1
≥
∥∥β∗S∗

∥∥
1
−
∥∥∥β̂S∗ − β∗S∗

∥∥∥
1

+
∥∥∥β̂Sc∗∥∥∥

1

and on the right hand side one gets∥∥∥β̂ − β∗∥∥∥
1

=
∥∥∥β̂S∗ − β∗S∗

∥∥∥
1

+
∥∥∥β̂Sc∗∥∥∥

1
.

Plugging this two observations into the above inequality and observing that∥∥β∗S∗

∥∥
1

= ‖β∗‖1 leads to the inequality that was to be proven.

In order to get similar results as before we have to get rid of this error term
somehow. Therefore let us now distinguish between the following two cases:

(13)
I) λ

∥∥∥β̂S∗ − β∗S∗

∥∥∥
1
≥ ‖Xβ

∗ − f 0‖2
2

n
, and

II) λ
∥∥∥β̂S∗ − β∗S∗

∥∥∥
1
<
‖Xβ∗ − f 0‖2

2

n
.

So one can derive from the inequality of the previous lemma, that either in
case I it holds

4
∥∥∥Xβ̂ − f 0

∥∥∥2

2

n
+ 3λ

∥∥∥β̂Sc∗∥∥∥
1
≤ 9λ

∥∥∥β̂S∗ − β∗S∗

∥∥∥
1

,

or in case II it holds

4
∥∥∥Xβ̂ − f 0

∥∥∥2

2

n
+ 3λ

∥∥∥β̂Sc∗∥∥∥
1
≤ 9 ‖Xβ∗ − f 0‖2

2

n
,

or both hold.
In the first case we find again

∥∥∥β̂Sc∗∥∥∥
1
≤ 3

∥∥∥β̂S∗ − β∗S∗

∥∥∥
1

and we can go on

similarly as before with the

Definition 7.3 (Compatibility Condition for general sets). We say that the
compatibility condition holds for the set S of the form {j : β∗j 6= 0} for general
β∗, if for some constant Φ(S) > 0 and for all β with ‖βSc‖1 ≤ 3 ‖βS‖1 one has

‖βS‖2
1 ≤

(βtΣ̂β)|S|
Φ2(S)

.

We will denote a collection of sets S for which the compatibility condition is
fulfilled by S.
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In the second case we already reached a quite good inequality for a well-
chosen β∗:

Definition 7.4. The oracle β∗ is defined as

β∗ = arg min
β:Sβ∈S

{‖Xβ − f
0‖2

2

n
+

4λ2sβ
Φ2(Sβ)

},

where Sβ := {j : βj 6= 0} and sβ := |Sβ|.

Note, that it would also be possible to minimize over all β with the con-
vention that Φ(S) = 0 if S infringes the compatibility conditions. If the “true
regression function” f 0 = f 0

β is linear we take S = {S0}.

For a given set S we are interested in the best approximation of f 0 using
only non-zero coefficients inside the set S:

bS := arg min
β=βS

∥∥Xβ − f 0
∥∥

2
.

Theorem 7.5. Assume that σ̂2
j = 1 for all j and that the compatibility con-

dition is fulfilled for all S ∈ S, with Σ̂ normalized in this way. For t > 0 let

λ = 8σ̂
√

t2+2 log p
n

where σ̂2 is some estimator of σ2 and α := 2e−
t2

2 +P [σ̂ ≤ σ].

Then with probability at least 1− α, we have

2
∥∥∥Xβ̂ − f 0

∥∥∥2

2

n
+ λ

∥∥∥β̂ − β∗∥∥∥
1
≤ 6 ‖Xβ∗ − f 0‖2

2

n
+

24λ2s∗
Φ2
∗

Proof. For the proof of this theorem, we have to analyse each of the two cases
in (13) separately.

Let us now start with Case I: On J , whenever λ
∥∥∥β̂S∗ − β∗S∗

∥∥∥
1
≥ ‖

Xβ∗−f0‖2
2

n
,

we have

4
∥∥∥Xβ̂ − f 0

∥∥∥2

2

n
+ 3λ

∥∥∥β̂Sc∗∥∥∥
1
≤ 9λ

∥∥∥β̂S∗ − β∗S∗

∥∥∥
1

,

as already observed. So by using

(14)
∥∥∥β̂ − β∗∥∥∥

1
=
∥∥∥β̂S∗

∥∥∥
1

=
∥∥∥β̂S∗ − β∗S∗

∥∥∥
1

+
∥∥∥β̂Sc∗∥∥∥

1
,
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this is equivalent to

4
∥∥∥Xβ̂ − f 0

∥∥∥2

2

n
+ 3λ

∥∥∥β̂ − β∗∥∥∥
1
≤ 12λ

∥∥∥β̂S∗ − β∗S∗

∥∥∥
1

Def.7.3

≤
12λ
√
s∗

∥∥∥X(β̂ − β∗)
∥∥∥

2√
nΦ∗

4−inequ.
≤

12λ
√
s∗

∥∥∥X(β̂ − f 0)
∥∥∥

2√
nΦ∗

+
12λ
√
s∗ ‖X(β∗ − f 0)‖2√

nΦ∗

(?)

≤ 18λ2s∗
Φ2
∗

+
2
∥∥∥Xβ̂ − f 0

∥∥∥2

2

n
+

6λ2s∗
Φ2
∗

+
6
∥∥∥Xβ̂ − f 0

∥∥∥2

2

n

=
24λ2s∗

Φ2
∗

+
2
∥∥∥Xβ̂ − f 0

∥∥∥2

2

n
+

6 ‖Xβ∗ − f 0‖2
2

n

By subtraction of the term
2‖X(β̂−f0)‖2

2

n
in this inequality we hence get

2
∥∥∥Xβ̂ − f 0

∥∥∥2

2

n
+ 3λ

∥∥∥β̂ − β∗∥∥∥
1
≤ 6 ‖Xβ∗ − f 0‖2

2

n
+

24λ2s∗
Φ2
∗

.

In (?) we just used for each term of the sum the inequalities 12uv ≤ 18u2 +2v2

and 12uv ≤ 6u2+6v2 which hold by being equivalent to 0 ≤ 18u2−12uv+2v2 =
2(9u2 − 6uv + v2) = 2(3u − v)2 and 0 ≤ 6u2 − 12uv + 6v2 = (

√
6u −

√
6v)2,

respectively.

Otherwise, if Case II holds, then on J , whenever λ
∥∥∥β̂S∗ − β∗S∗

∥∥∥
1
<
‖Xβ∗−f0‖2

2

n
,

we have

4
∥∥∥Xβ̂ − f 0

∥∥∥2

2

n
+ 3λ

∥∥∥β̂Sc∗∥∥∥
1
≤ 9 ‖Xβ∗ − f 0‖2

2

n
,

as already observed and by the equation in (14), also that∥∥∥β̂Sc∗∥∥∥
1

=
∥∥∥β̂ − β∗∥∥∥

1
−
∥∥∥β̂S∗ − β∗S∗

∥∥∥
1
>
∥∥∥β̂ − β∗∥∥∥

1
− 1

λ

‖Xβ∗ − f 0‖2
2

n
.

Together this yields

4
∥∥∥Xβ̂ − f 0

∥∥∥2

2

n
+ 3λ

∥∥∥β̂ − β∗∥∥∥
1
< 12

‖Xβ∗ − f 0‖2
2

n
.

Bear in mind that in both cases we have proven some slightly stronger results.
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7.2 Handling Smallish Coefficients

Target of this subsection will be to refine the oracle that we defined in the
previous subsection. There the oracle contains the approximation error and
some `0-penalty as well as the compatibility constant. Here we now want the
refined oracle to combine `0 and `1 penalties.

With this new oracle we will prove Theorem 7.8. This will lead to a result
that gives us both consistency as well as the oracle result like the previous
subsection.

To begin with, we start to define the trade off that includes both `0 and `1

penalties.

Definition 7.6. For each set S, we define

Ssub := arg min
S◦⊂S

{
3λ2 |S◦|
Φ2(S◦)

+ λ
∥∥(bS)S\S◦

∥∥
1

}
.

This means that smaller coefficients bSj go into the `1-penalty, and the larger
ones in the `0-penalty. One can show that putting fewer coefficients into the
`0-penalty will increase the value of the compatibility constant Φ(S◦).

Now let us define the refined oracle.

Definition 7.7 (Definition of the Oracle). Let

S∗ := arg min
S∈S

{3 ‖fS − f 0‖2
2

n
+

12λ2
∣∣Ssub

∣∣
Φ2(Ssub)

+ 4λ
∥∥(bS)S\Ssub

∥∥
1
}.

The oracle is defined as β∗ := bS∗ and we use the notation ssub
∗ :=

∣∣Ssub
∗
∣∣ as

well as Φsub
∗ := Φ(Ssub

∗ ).

Theorem 7.8. For λ ≥ 4λ0 it holds on the set J :=
{

max1≤j≤p
2εtX(j)

n
≤ λ0

}
that

2
∥∥∥Xβ̂ − f 0

∥∥∥2

2

n
+ λ

∥∥∥β̂ − β∗∥∥∥
1
≤ 6 ‖Xβ∗ − f 0‖2

2

n
+

24λ2ssub
∗

(Φsub
∗ )2

+ 8λ
∥∥∥β∗S∗\Ssub

∗

∥∥∥
1

.

Proof. Throughout the proof of this theorem, we assume operating just on J .
By the basic inequality it is∥∥∥Xβ̂ − f 0

∥∥∥2

2

n
+ λ

∥∥∥β̂∥∥∥
1
≤ λ0

∥∥∥β̂ − β∗∥∥∥
1

+ λ ‖β∗‖1 +
‖Xβ∗ − f 0‖2

2

n
.
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Therefore it is

(15)

∥∥∥Xβ̂ − f 0
∥∥∥2

2

n
+ λ

∥∥∥β̂Sc∗∥∥∥
1

+ λ
∥∥∥β̂Ssub

∗

∥∥∥
1

+ λ
∥∥∥β̂S∗\Ssub

∗

∥∥∥
1

≤ λ0

∥∥∥β̂Sc∗∥∥∥
1

+ λ0

∥∥∥β̂Ssub
∗
− β∗Ssub

∗

∥∥∥
1

+ λ0

∥∥∥β̂S∗\Ssub
∗

∥∥∥
1

+ λ
∥∥∥β∗Ssub

∗

∥∥∥
1

+ (λ+ λ0)
∥∥∥β∗S∗\Ssub

∗

∥∥∥
1

+
‖Xβ∗ − f 0‖2

2

n
.

After taking the terms λ0

∥∥∥β̂Sc∗∥∥∥
1

and λ0

∥∥∥β̂S∗\Ssub
∗

∥∥∥
1

to the left side of the above

inequality and taking λ
∥∥∥β̂Ssub

∗

∥∥∥
1

to the right side, we apply the reverse triangle

inequality as follows

λ
∥∥∥β∗Ssub

∗

∥∥∥
1
− λ

∥∥∥β̂Ssub
∗

∥∥∥
1
≤ λ

∥∥∥β̂Ssub
∗
− βSsub

∗

∥∥∥
1

,

the inequality (15) now reads∥∥∥Xβ̂ − f 0
∥∥∥2

2

n
+ (λ− λ0)

∥∥∥β̂Sc∗∥∥∥
1

+ (λ− λ0)
∥∥∥β̂S∗\Ssub

∗

∥∥∥
1

≤ (λ+ λ0)
∥∥∥β̂Ssub

∗
− β∗Ssub

∗

∥∥∥
1

+ (λ+ λ0)
∥∥∥β∗S∗\Ssub

∗

∥∥∥
1

+
‖Xβ∗ − f 0‖2

2

n
.

(16)

Using the inequality∥∥∥β̂S∗\Ssub
∗
− β∗S∗\Ssub

∗

∥∥∥
1
≤
∥∥∥β̂S∗\Ssub

∗

∥∥∥
1

+
∥∥∥β∗S∗\Ssub

∗

∥∥∥
1

on the left hand side, we then get∥∥∥Xβ̂ − f 0
∥∥∥

2

n
+ (λ− λ0)

∥∥∥β̂(Ssub
∗ )c − β∗(Ssub

∗ )c

∥∥∥
1

≤ (λ+ λ0)
∥∥∥β̂Ssub

∗
− β∗Ssub

∗

∥∥∥
1

+ 2λ
∥∥∥β∗S∗\Ssub

∗

∥∥∥
1

+
‖Xβ∗ − f 0‖2

2

n
.

And now we use the assumption that λ ≥ 4λ0. So the inequality reads now

4
∥∥∥Xβ̂ − f 0

∥∥∥2

2

n
+ 3λ

∥∥∥β̂(Ssub
∗ )c − β∗(Ssub

∗ )c

∥∥∥
1

≤ 5λ
∥∥∥β̂Ssub

∗
− β∗Ssub

∗

∥∥∥
1

+ 8λ
∥∥∥β∗S∗\Ssub

∗

∥∥∥
1

+
4 ‖Xβ∗ − f 0‖2

n
.
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Let us now analyse the following two cases:
It either holds case I:

λ
∥∥∥β̂Ssub

∗
− β∗Ssub

∗

∥∥∥
1
≥ 2λ

∥∥∥β∗S∗\Ssub
∗

∥∥∥
1

+
‖Xβ∗ − f 0‖2

n
,

or case II:

λ
∥∥∥β̂Ssub

∗
− β∗Ssub

∗

∥∥∥
1
< 2λ

∥∥∥β∗S∗\Ssub
∗

∥∥∥
1

+
‖Xβ∗ − f 0‖2

n
.

If case I is true, then it holds

4
∥∥∥Xβ̂ − f 0

∥∥∥2

2

n
+ 3λ

∥∥∥β̂(Ssub
∗ )c − β∗(Ssub

∗ )c

∥∥∥
1
≤ 9λ

∥∥∥β̂Ssub
∗
− β∗Ssub

∗

∥∥∥
1

.

Otherwise, if case II is true, then it holds

4
∥∥∥Xβ̂ − f 0

∥∥∥2

2

n
+ 3λ

∥∥∥β̂(Ssub
∗ )c − β∗(Ssub

∗ )c

∥∥∥
1
≤ 10λ

∥∥∥β∗S∗\Ssub
∗

∥∥∥
1

+
9 ‖Xβ∗ − f 0‖2

2

n
,

or both. In case I we can use the same argument as in Proof of Theorem 7.5.
In case 2, we have

4
∥∥∥Xβ̂ − f 0

∥∥∥2

2

n
+ 3λ

∥∥∥β̂ − β∗∥∥∥
1
≤ 16λ

∥∥∥β∗S∗\Ssub
∗

∥∥∥
1

+
12 ‖Xβ∗ − f 0‖2

2

n
.

So as already stated, by replacing Ssub for some S by the suboptimal choice
S◦ := ∅, this theorem gives

2
∥∥∥Xβ̂ − f 0

∥∥∥2

2

n
+ λ

∥∥∥β̂ − bS∥∥∥
1
≤

6
∥∥XbS − f 0

∥∥2

2

n
+ 8λ

∥∥bS∥∥
1

for all S,

which implies consistency.

On the other hand, replacing Ssub for some S by the suboptimal choice
S◦ := S leads to

2
∥∥∥Xβ̂ − f 0

∥∥∥2

2

n
+ λ

∥∥∥β̂ − bS∥∥∥
1
≤

6
∥∥XbS − f 0

∥∥
2

n
+

24λ2 |S|
Φ2(S)

for all S.

In other words, Theorem 7.8 cobines a consistency result with an oracle result.
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Abstract

This master’s thesis gives an overview of statistical methods related to linear
regression.

Its main objective is to analyse the LASSO. This is a method that uses an
`1-penalty for the case where one has more parameters that are to be estimated
than samples.

LASSO is an acronym that stands for “least absolute shrinkage and selection
operator”. This means that it both shrinks the coefficient estimates towards
zero as well as by the nature of the `1-penalty some coefficients are shrunken
exactly to zero. That is it performs variable selection.

In this text the LASSO is compared to ridge regression, which is another,
slightly older, shrinkage method that relates to an `2-penalisation. Moreover
several of the properties of the LASSO such as consistency are proven.

The LASSO was firstly introduced by Robert Tibshirani in 1996.
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Zusammenfassung

Diese Masterarbeit gibt einen Überblick über statistische Methoden in Bezug
auf lineare Regression.

Das Hauptziel ist es, den LASSO zu untersuchen. Dieser ist eine Methode,
die ein `1-Strafverfahren verwendet für den Fall, in dem mehr zu schätzende
Parameter zur Verfügung stehen als Stichproben.

LASSO ist eine Abkürzung die für “least absolute shrinkage and selection op-
erator” steht. Das bedeutet, dass Koeffizienten sowohl gegen Null geschrumpft
werden als auch einige exakt zu Null. Also leistet er auch Variablen-Selektion.

In diesem Text wird der LASSO mit Ridge Regression verglichen, was eine
weitere, ein wenig ältere Schrumpfmethode ist, bei der es sich um ein `2-
Strafverfahren handelt. Außerdem werden einige Eigenschaften des LASSO
bewiesen wie zum Beispiel Konsistenz.

Der LASSO wurde erstmals von Robert Tibshirani im Jahr 1996 veröffentlicht.
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