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Abstract

Attention is the process of focusing our mental capacities on parts of the avail-
able information. This is because humans cannot process all available infor-
mation at once. In this thesis, we focus on the visual attention and we try to
simulate mathematically its behavior.
The diffusion of information through videos is more and more present in today’s
society though TV on demand, web-streaming, e-learning and online games,
just to name a few. The present work focuses on the following research areas:
the importance of cuts in movie sequences for visual attention, the attractive-
ness of a location in a video and the behavior of visual attention in the presence
of distortions such as jitter.

In the following, we shall concentrate on the first research area and, more
specifically, on cuts. They refer to an editing technique which leads to a strong
change of the movie scene. In particular, object locations become uncorrelated
through cuts. We initially analyze the behavior of viewers while watching a
video containing a cut, from the point of view of cognitive science. We propose
a two-step conceptual architecture and test it through eye-tracking experi-
ments. The architecture is driven by the temporal coherence of the apparent
movement, also known as optical flow and focuses on two cases: the viewer’s
reaction to a sequence without cuts and with cuts, respectively. We propose
that the viewer’s attention is attracted by novelty within a movie take not con-
taining cuts. In this case, while the global flow is coherent, local incoherence
indicates novelty. The viewer’s behavior changes if a cut is encountered. In this
case, the global flow is incoherent, signalizing the cut. The viewer’s attention
is attracted by repeated features such as repeated movement.
Mathematically, we formulate the two-step architecture as a variational optical
flow problem. We start from the Horn-Schunck functional, conveniently modi-
fied in order to include the spatio-temporal extension by Weickert-Schnörr. We
propose a decomposition of the flow into two optical fields: one characterizing
the time-coherent flow and another referring to repeated movement, also known
as oscillating pattern. In order to model the oscillating pattern, we propose a
regularizer that is non-local in time, inspired by Meyer’s book.

We delineate now the second research area, referring to the attractiveness
of a certain location in a video. The target of a visual attention model is to
estimate the attractiveness of a location for a viewer, translated numerically in
a probability of interest. A map including the probability of interest for each
point of a static image is called saliency map. In order to calculate the saliency
of dynamic sequences, the standard approach is to calculate the saliency of
each frame composing the video and the saliency of motion features, combining
them through a weighting scheme. We propose an algorithm for calculating

vii



viii Abstract

the saliency of motion features in a dynamic sequence, called dynamic saliency
map. Again, we formulate the motion features as a variational optical flow
problem. In particular, we calculate the flow of a high-dimensional sequence
composed by intensity or color channels complemented by the saliency map
of each frame. This allows us to overcome the aperture problem. Moreover,
we include a modified version of the spatio-temporal extension by Weickert-
Schnörr in our functional. Thanks to the change we propose, our model is
particularly effective in the case of occlusions. Indeed we simulate the human
behavior continuously following motion of an object through occlusion in our
dynamic saliency map.

We address the third and last research area, referring more specifically to
the behavior of visual attention in the presence of distortions such as jitter.
Humans are able to recognize shapes and objects up to a certain level of dis-
tortion. The human mind performs an automatic reconstruction of the original
image. We simulate this reconstruction process in the case of static images and
focus on a particular type of distortion, called jitter. Jitter arises when the time
interval between sampling points of the signal is incorrect. We propose varia-
tional functionals to dejitter images affected by line, line pixel and pixel jitter.

The proposed algorithms allow cognitive scientists to test theories and per-
form quantitative evaluation. Eye-tracking experiments should be designed for
testing the response of human visual attention compared to the result of our
algorithms. A further step of mathematical interest could constitute the exten-
sion of our models towards a general one, able to simulate visual attention in
all above-mentioned research areas at once. We claim that an appropriate for-
mulation of the optical flow can deliver quantitative methods for the estimation
of visual attention.



Preface

This manuscript is a cumulative dissertation, a collection of five articles, all
of which have been published or submitted to scientific journals. The articles
were written in the course of three years and are the result of a fruitful scientific
collaborative effort. The purpose of this preface is to present the structure of
this dissertation.

The present thesis is concerned with the modeling of visual attention of dy-
namic sequences. Moreover, we focus on a connection between visual attention
and variational optical flow. The thesis is structured in three parts, as follows.

The first part, the preamble, constitutes the introduction and contains three
chapters. In Chapter 1, we briefly present challenges in visual attention esti-
mation. In Chapter 2, we introduce variational optical flow as a reliable and
well-established method for motion estimation. Finally, we discuss the analyzed
challenges, explain our ideas to solve them, and summarize the contributions
of this thesis in Chapter 3.

The second part contains the five publications arranged in chapters. The
first article [7] resulted from the collaboration with Ulrich Ansorge, Shelley
Buchinger, Christian Valuch and Otmar Scherzer and is presented in Chapter 4.
The second and the fourth articles [131, 102] resulted from the collaboration
with Christian Valuch, Ulrich Ansorge and Otmar Scherzer and are presented
in Chapters 5 and 7. The third article [101] was written together with Otmar
Scherzer and is presented in Chapter 6. Finally, the fifth article [36] resulted
from joint work with Guozhi Dong, Otmar Scherzer and Ozan Öktem and is
presented in Chapter 8.

The third part is the appendix containing a single bibliography for the entire
manuscript, the German translation of the abstract and a Curriculum Vitae
with particular attention to my scientific career.
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Chapter 1

Challenges in visual attention
estimation

Humans are able to focus on and process just few visual information at once.
Visual attention can be defined as the process of focusing our mental capaci-
ties on selections of sensory inputs. This is done in order to allow the mind to
successfully process the stimulus of interest.
In the past decades, an incredible effort was made in order to properly model
visual attention. The first attempt was relative to static images [64], in which
Itti et al. suggested to analyze low-level features of an image (intensity, col-
ors and orientation) [64]. This approach is currently considered a standard
in literature. Predicting the viewer’s attention based on low-level features
alone is a challenging task and numerous different solutions were proposed
[3, 53, 63, 66, 105, 108]. We distinguish between bottom-up models, which are
task-independent and driven mainly by the intrinsic features of the visual stim-
uli, and top-down models, which are task-dependent and driven by high-level
processes (like face recognition, viewer preferences). Many attempts were made
in order to properly combine bottom-up and top-down models [99, 104, 81].
In the last years there was an increasing interest in modeling visual attention
for dynamic image sequences [42, 60, 62, 63, 77, 109]. The possibility to pre-
dict the visual attention regarding a dynamic sequence is of interest in many
fields, like computer science, marketing, and cognitive science, just to name
a few. This problem is much more challenging than for static images, due to
the quantity of information involved in a video sequence. In spite of many
attempts in literature [42, 60, 62, 63, 76, 77, 79, 81, 104, 109, 119, 148] little is
known about how to appropriately model visual attention for dynamic image
sequences.
Motion has proven to be a feature of strong attraction to the human eye in
videos. There are however other factors to be considered in order to properly
model visual attention. One of them is related to video recording techniques
like for example visual cuts. These are a particular recording technique, or
visual discontinuities, that require shifting attention from one location to an-
other. This shift is motivated by uncorrelated object locations across the cut
(see Figure 1). After a cut, current models of human attention emphasize the
importance of new information, also known as Bayesian surprise. However,
this is not necessarily true for cuts within edited videos. Evidence [7] suggests

3



4 1 Challenges in visual attention estimation

Figure 1.1: Two examples of cut

that attention is attracted by repeated visual features, when correlation be-
tween two successive images is low [20, 80].
A repeated feature that attracts visual attention is movement. Indeed, there
are movements that are smooth, like a person walking, and others that are
repeated over time, like a pendulum. Humans are perfectly able to discern
between a repeated and a smooth movement, thanks to their memory. We
aim to simulate the ability to decompose the motion into a smooth part and
a repeated one, an oscillating pattern. This motion decomposition is useful in
the presence of cuts. In particular, we focus on a particular type of cut, well
studied by cognitive scientists, called flicker [97]. When a dynamic sequence in-
cludes flicker, the observers experience the change blindness effect. In practice,
as reported by J. K. O’Regan: "Change blindness is a phenomenon in which
a very large change in a picture will not be seen by a viewer, if the change is
accompanied by a visual disturbance that prevents attention from going to the
change location". In the sequences used in our tests, each frame containing the
visual information is alternated with a blank frame as visual disturbance, so
that the viewer experiences the change blindness effect (see Figure 1.2). In this
case, classical algorithms of motion estimation [57, 122] would fail. We aim to
recognize the flicker as an oscillating pattern.

In order to consider repeated motion over time, it is necessary to consider
the time evolution of motion. This is also relevant for modeling visual atten-
tion in the case of occlusions. Again, classical algorithms of motion estimation
[27, 57, 122] would fail in presence of occlusions. Instead, humans are able
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Figure 1.2: This is a flicker example. A white frame is interleaved between the
two frames shown in a repetitive way. The area in the blue box is the area that
changes.

to follow motion of an object though occlusions [4, 45, 118]. Again, this is
thanks to human memory and human understanding of temporal coherence.
Here, we aim to include the temporal coherence in our computational model
and recognize occlusions as attractive, or salient for the viewer. The results
of the model, a so-called dynamic saliency mapping, will be compared with
eye-tracking data.
The basic framework used in this work is the motion estimation applied to
problems of interest to cognitive scientists. In order to model the motion, we
use the well-established variational optical flow estimation. Variational meth-
ods in image processing and computer vision are well known. The principal
advantage of these methods is the mathematical formalism of their assump-
tions.
If we want to model the attention relative to visual information, it is impor-
tant to consider that images are often affected by noise and distortions. They
change our scanning pattern because humans process the image in order to
recognize (or reconstruct) the original image [40, 139]. Therefore, the denois-

Figure 1.3: This is a line jitter example. In the first image (left) we show the
original image and in the second image (right) we show the line jittered version
of the original image.



6 1 Challenges in visual attention estimation

ing problem is of interest for cognitive scientists and especially for the visual
attention modeling community. It is possible to use variational methods also
for the denoising problem, in order to reconstruct the original image. In this
thesis, we focus on a special type of denoising called dejittering, that is usual for
static images. Dejittering is defined as the process of assigning pixel positions
to image data recorded with pixel displacements. Jitter is a type of distortion
which arises frequently in signal processing, when the distance (over time) be-
tween sampling points vary, rendering signal errors. There are three different
forms of jitter: line jitter, line pixel jitter and pixel jitter. Line jitter consists
of horizontal shifts of each row (line) of an image. The shift is the same for the
entire row. This may typically happen when digitizing analog video frames. In
case of line registration problems due to bad synchronization pulses, the line
jitter is present. The effect is that the image lines are (randomly) shifted with
respect to their original location (see Figure 1.3 for an example of jitter). If
pixels in a row are shifted differently, we speak about line pixel jitter. Finally,
there is pixel jitter, where one also experiences vertical shifts. Viewers are able
to reconstruct distorted images, up to a certain level of distortion [40, 139].
Here, we aim at developing a model to simulate this behavior.



Chapter 2

Variational optical flow

Motion estimation is a key problem in the analysis of dynamic sequences. Hu-
mans perceive motion when consecutive frames of a recorded scene are shown.
In particular due to the nature of the human eye, viewers observe motion by
variations in intensity. These allow us to perceive also a sense of the scene
depth, e.g. when objects are occluded. However, when we observe the motion
through a camera, only the apparent motion can be observed through intensity
variations. This apparent motion is known as the optical flow [57].

In the optical flow we assume that points moving through a scene preserve
their intensity. This assumption is called brightness-constancy assumption. Let
us consider a dynamic sequence to be a time continuous recording of images.
Each image is described by a function f(�x, t), where �x = (x1, x2)t in the planar
plane Ω ⊂ �2 and t ∈ [0, 1] is the time interval in which the dynamic sequence
is taking place. The value of f(�x, t) is the recorded image intensity value at a
point �x and at a time t. In the brightness-constancy assumption this value is
considered constant along a smooth trajectory �γ(�x, t). That is:

f(�γ(�x, t), t) = f(�x0, t0) (2.1)

for some initial point �x0 and time t0. If the equation (2.1) holds, it follows by
differentiation with respect to time (see for instance [57])

df(�γ(�x, t), t)
dt

= ∇f(�γ(�x, t), t) · ∂t�γ(�x, t) + ∂tf(�γ(�x, t), t) = 0 (2.2)

must hold true for all �x ∈ Ω and for all times t ∈ [0, 1]. In (2.2) we denote
by ∇f = ( ∂

∂x1
f, ∂

∂x2
f) and ∂tf the partial derivatives in space and time of the

function f . For simplicity, let us denote by

�u(�γ(x, t), t) := ∂t�γ(x, t)

the velocity of a point moving along γ. In order to estimate the optical flow
we need to find a time-dependent vector field �u : Ω × [0, 1] → �

2 satisfying

∇f · �u + ∂tf = 0 (2.3)

for all (�x, t) ∈ Ω× [0, 1]. For the sake of brevity we have omitted the arguments
of the functions.

7



8 2 Variational optical flow

t0 t1

x

Figure 2.1: We show an example for which it does not exist a solution for the
optical flow equation (2.3). A cube of uniform color, or in other words with
∇f = 0 for the internal part, is moving from an initial position at time t0 to a
target position at time t1 (dashed in figure). We notice that the function f for
the point x and at time t1 has time derivative ∂tf �= 0 and ∇f = 0 therefore
it is not possible to calculate a solution of (2.3).

The equation (2.3) is called optical flow equation. It is equivalent to (2.1)
under suitable assumptions and with appropriate initial and boundary condi-
tions. Moreover, let us notice that equation (2.3) is linear in the unknown �u,
therefore it is reasonable for sufficiently small displacements.

Looking more carefully at equation (2.3), we realize that it is underdeter-
mined and existence and uniqueness of a solution are not guaranteed. A solu-
tion to (2.3) does not exist if ∂tf �= 0 and ∇f = 0 (see Figure 2.1). Regarding
the uniqueness we notice that a trivial solution, also called normal flow, is:

�u† =





− ∂tf

|∇f |2
∇f, if ∇f �= 0,

0, else,
(2.4)

This solution is not unique. Indeed, if we add to (2.4) a flow c ∇f(x, t)⊥ which
is orthogonal to the image gradient, this new flow solves the equation (2.3) for
every c ∈ Ω and even for every c : Ω× [0, 1] → �. In other words, from (2.3) we
can infer only the movement along the direction of the image gradient. This
issue is called aperture problem (see also the illustrations in [9, Sec. 5.3]).

Due to the above reason, the estimation of the optical flow can be inter-
preted as an ill-posed inverse problem. In [41, 116] can be found a general
treatment of inverse problems and regularisation theory, where [116] has a par-
ticular focus on imaging.

In order to solve (2.3), one has to overcome the above mentioned prob-
lems. We refer to [9, 17, 44] for an introduction and a comparison of various
techniques. Moreover, it is worth to cite the benchmark framework created
by Baker et al. [14]. The corresponding website of the Middlebury College is
an important reference point of the optical flow community for comparison of
methods.1

In this thesis, we choose a variational approach for estimation of the optical
flow. For the above-mentioned problems, the equation (2.3) cannot be solved
directly. A common approach [57] in order to obtain well-posedness of the

1http://vision.middlebury.edu/flow/
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optical flow problem, and with it uniqueness of a solution, is Tikhonov regu-
larization [126]. Using an approach as in [126] for the optical flow estimation
results in finding the unique minimizer of

�∇f · �u + ∂tf�2
L2(Ω) + αR(�u), (2.5)

where R is used to enforce smoothness of the minimizer and α > 0 is a weight
parameter. Usually, the first term of (2.5) is called data term, whereas the
second is called regularizer. Using an approach as in (2.5) we can restrict the
space of solutions to a desirable one.

In their seminal work [57], Horn and Schunck proposed to compute the
minimizer of

�∇f · �u + ∂tf�2
L2(Ω) + α |�u|2H1(Ω) , (2.6)

for one pair of frames only. The H1(Ω) Sobolev seminorm is a good choice
because penalizes first derivatives with respect to space and favors spatial reg-
ularity of the solution. In other words, the assumption is that the velocity
field should vary smoothly in space. This is perfectly reasonable if we think
for example of a rigid object moving. In this case we expect that the velocity
field values are similar for all the points of the object.
The functional in (2.6) is easy to solve numerically, but entails isotropic reg-
ularity and does not allow discontinuities in the flow field. Schnörr [117] was
the first to show the well-posedness of (2.6), making additional assumptions
on ∇f .

In order to calculate a solution to (2.6) we solve the corresponding set of
Euler-Lagrange equations following the calculus of variations [33, Chap. IV].
These equations form a system of second-order elliptic partial differential equa-
tions:

(∇f · �u + ∂tf)∇f − αΔ�u = 0 in Ω,

∂�n�u = 0 on ∂Ω.

Here, ∂�n is the normal derivative along the outward unit normal �n on ∂Ω.
Weickert and Schnörr suggested in [142] to extend the smoothness of the

flow field also in time. They proposed the functional:

�∇f · �u + ∂tf�2
L2(Ω×[0,1]) + α |�u|2H1(Ω×[0,1]) . (2.7)

The flow calculated from (2.7) is more robust because it uses all the informa-
tion available and not only the one of each pair of frames. In this way, the
authors of [142] are able to ensure time coherence of the resulting flow. The
drawback is a algorithm more demanding from a computationally point of view.
There, minimization was done by applying a semi (Euler forward) scheme to
the associated steepest descent equations.

Let us conclude this chapter with a few remarks. The above discussed
functionals are straightforward to minimize, however they present several draw-
backs. Many attempts have been proposed over the last years [122, 140], in
order to manage discontinuities in the flow field, or different data terms. For
example in [27, 149] they assume gradient constancy and not only brightness
constancy. Indeed, this last assumption for certain data is often violated. More-
over, in [27, 28, 59, 88, 149] they propose other extensions of the original for-
mulation (2.6) in order to use color data, to guarantee contrast invariance and
to implement efficiently the optical flow estimation method, but to name a few.





Chapter 3

Contributions of the thesis

Modeling visual attention is a challenging problem. We gave a brief overview
about that in Chapter 1. In this thesis we propose solutions to few of these
challenges, which aim to simulate the human behavior. In order to do so, we
therefore need to comprehend this behavior and undertake the following steps.
Initially, we analyze the behavior of human while they are watching a dynamic
sequence from a cognitive perspective. In particular, we propose a cognitive
model and perform eye-tracking experiments. Secondly, we move from the
proposed cognitive model to a mathematical model. Finally, we apply the
studied theory to the modeling of motion features in order to estimate saliency
of dynamic sequences and dejitter static images.
In this thesis we will try to answer the following questions:

• Are repeated features in edited video sequences of interest?
If yes, how do we model repeated features, like repeated movement?

• How can we model motion features in order to estimate saliency of a
dynamic sequence?

• Is it possible to reconstruct corrupted (dejittered) images?

3.1 Visual attention analysis

Let us answer the first question: Are repeated features in edited video
sequences of interest?
In [7] we proposed a two-step architecture for the modeling of visual attention
in edited dynamical images. The type of editing considered is cinematic cut.
As already explained in chapter 1, visual attention models can be divided in
bottom-up and top-down models. Bottom-up models assume that the focus
of attention is fully determined by the characteristics of the visual stimuli
[63]. Top-down models emphasize the importance of past experiences, goals,
intentions, interpretations and interests of the viewer as predictors of visual
attention [128].
We proposed an architecture that combines one bottom-up feature and several
top-down principles. The bottom-up feature is the motion information. The
top-down principles describe the relevance of new information and of repeated
one. The model is driven by the temporal coherence of the optical flow across

11



12 3 Contributions of the thesis

Figure 3.1: Whenever the global optical flow is temporally coherent, the human
gaze is steered towards novel information within movie takes. In this setting,
when new objects appear in the visual field, this is characterized by locally
incoherent flow. The situation is different in the case of a cut. Cuts are
characterized by incoherence (or temporal discontinuities) of the global optical
flow. In this situation, the human gaze is steered towards repeated information.

subsequent images. The two-step architecture proposed is shown in Figure
3.1. We indicated that the human gaze is steered toward novel information
within movie takes. In this case, attraction to novelty is achieved by down-
weighting optical flow and up-weighting temporally locally incoherent flow for
the selection of gaze directions. The situation changes in the case of a cut. Cuts
are characterized by incoherence of the global optical flow. In this situation,
the human gaze is steered towards repeated information. We motivated our
model by the following evidence:

• The visual attention is attracted by human action in general [54] and hu-
man faces in particular [46]. In these cases, actions and facial movements
are defined by local motion patterns that have regularities differing (local
incoherent flow in Figure 3.1) from the global temporally coherent opti-
cal flow. Similarly, a motion singleton among coherently moving objects
captures human attention. Let us think for example of an object enter-
ing in the scene. It will describe a motion singleton with respect to time,
more precisely a locally incoherent optical flow.

• Humans have the ability to selectively look for particular visual shapes
or combinations of shapes and colors [129]. Similarly, viewers could also
search for landmarks seen in the past and use them, after a cinematic cut,
to decide whether a visual scene continues or has changed. The ability of
viewers to learn from known stimuli or part of them is shown in Brooks
et al. [26].

• As we are going to show below in this section, in recent experiments,
participants preferentially have looked at videos bearing a high similarity
of pre-cut and post-cut images [131, 133]. There, we used two videos
presented side by side and asked participants to keep their eyes on only
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one of the videos. We applied two types of cut to the videos: cuts with a
high pre- and post-cut feature similarity and cuts with a lower pre- and
post-cut feature similarity. Moreover, the images could switch position
during the cut. In this setup, the participants showed a clear preference
for looking at images with a higher pre- and post-cut similarity.

• Another research [138] chooses to rearrange an otherwise coherent take
by introducing cuts. The resulting video was temporally incoherent and
this lead to a drastically reduced reliability of the gaze pattern.

In [131] we tested the hypothesis that visual attention is attracted in videos
by repeated information after a cut takes place. This hypothesis was tested
through an eye-tracking experiment, which consisted of participants keeping
their gaze focused on a video that was shown next to another irrelevant video.
Cuts were applied to both videos. This resulted in a low correlation of object
locations pre- and post-cut. The cuts were of two types: cuts with high pre-
and post-cut feature similarity (within scene cut, abbreviated WSC), and with
low pre- and post-cut feature similarity (between scenes cut, abbreviated BSC).
An example is shown in Figure 3.2. Moreover, the location of the videos on
the screen was randomly switched. The measurement used for the analysis of
this experiment was the saccadic reaction time (SRT). This is defined as the
latency of the first saccade towards the target video after the videos switched
position.
In Figure 3.3 we show the results of this experiment. First, we sought confir-

mation of the fact that more visual information is repeated after WSCs than
BSCs and validated it. This was done by calculating the mean Euclidean dis-

Figure 3.2: This are cuts examples. (A) Within scene cut (WSC). (B) Between
scenes cut (BSC).
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Figure 3.3: Results. (A) Distribution of mean Euclidean distances (z-
transformed) of RGB color histograms of the last pre-cut and the first post-cut
frame as a function of cut category. Values below 0 represent higher similarity,
values above 0 represent lower similarity. (B) Distribution of individual median
SRT as a function of cut category. (C) Distribution of individual median SRT
as a function of color histogram similarity across the cut.

tance of the red-green-blue (RGB) color histograms between the final pre-cut
and the first post-cut frame. In order to clarify the result, we transformed
these values, so that values below 0 represented higher similarity and low sim-
ilarity otherwise. Figure 3.3 (A) confirms that in WSCs more visual content
is repeated than BSCs. Indeed, the majority of the values of the mean eu-
clidean distance for WSCs is below 0, therefore indicating high similarity. The
opposite is true for BSCs. Secondly, we tested the connection between WSCs,
BSCs and SRT. We noticed in Figure 3.3(B) that median SRT is on average
9 milliseconds (ms) shorter in WSCs than BSCs. Finally, we categorized the
cuts into high similarity cuts if their value of mean distance, as reported in
3.3(A), was below 0 or low similarity cuts otherwise. Also this analysis, in
Figure 3.3(C) confirmed that SRTs were 23 ms shorter after High similarity
than after Low similarity cuts.
These experiments and evidence suggest that in the case of cuts, viewers benefit
from repeated information and are attracted by it.

3.2 On a spatial temporal decomposition of optical flow

Let us answer the second question: How do we model repeated features,
like repeated movement?
The two-step architecture depicted in Figure 3.1 suggests the need for an algo-
rithm able to decompose the motion information. In particular, the algorithm
should divide the repeated motion in time (not coherent in time in Figure 3.1),
from the one smooth (or coherent) in space and time. In [101], we proposed a
variational approach able to decompose the optical flow.
A first step was to analyze the equation (2.3) in case of cinematic cut. We con-
sidered in [101] a particular case of cut called flickering. In a standard flickering
experiment, the visual attention is investigated by inclusion of blank images in
a repetitive image sequence. Although, in general, these blank images are not
deliberately recognized, they change the awareness of the test persons.
We analyzed simple examples that explain the properties of the solution of
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the optical flow equation (2.3) under conditions of illumination changes, also
known as flickering and motivated the scientific approach we used below. First,
we studied the 1D optical flow equation

∂xf(x, t)u(x, t) + ∂tf(x, t) = 0 in (0, 1) × (0, 1) (3.1)

to solve for u for the specific data

f(x, t) = f̃(x)g(t) for (x, t) ∈ (0, 1) × (0, 1). (3.2)

f represents a dynamic sequence with brightness variation g over time. We
were more specific and took:

f̃(x) = x(1 − x) and g(t) = exp
�

− 1
β

(1 − t)β

�
with some 0 < β < 1 (3.3)

for (x, t) ∈ Ω̂ := (0, 1/4) × (0, 1). The optical flow is given by

u(x, t) = −x(1 − x)
1 − 2x

(1 − t)β−1.

We showed in [101] that for 0 < β < 1/2, u /∈ L2(Ω̂) but �u(·, t) =
� t

0 u(·, τ) dτ ∈
L2(Ω̂). The bottom line is that changes of illumination, such as flickering, may
result in singularities of the optical flow and a violation of standard smoothness
assumptions of the optical flow field. The potential appearance of the singulari-
ties motivated us to consider regularization terms for optical flow computations,
which allow for singularities over time, such as negative Sobolev norms or G-
norms.
From now on, let us consider functions on a two-dimensional domain �x ∈ Ω =
(0, 1)2 and in a time-interval t ∈ (0, 1). We assumed in [101] that the optical
flow field is composed of two flow field components:

�u(�x, t) = �u(1)(�x, t) + �u(2)(�x, t) =
�

u
(1)
1 (�x, t)

u
(1)
2 (�x, t)

�
+
�

u
(2)
1 (�x, t)

u
(2)
2 (�x, t)

�
.

In this case, the equation (2.3) contains four unknown (real valued) functions
u

(i)
j , i, j = 1, 2 and thus is highly under-determined. We proposed to minimize

the unconstrained regularization functional:

F(�u(1), �u(2)) := E(�u(1), �u(2)) +
2�

i=1
α(i)R(i)(�u(i)),

E(�u(1), �u(2)) :=
�

Ω×(0,1)

(∇f · (�u(1) + �u(2)) + ∂tf)2 d�xdt with α(i) > 0.

(3.4)

We introduced two regularizers R(i) in order to obtain a unique solution for
(3.4). For the sake of simplicity of presentation, we omitted the space and
time arguments of the functions u

(i)
j and f , whenever it simplifies the formulas

without possible misinterpretations. For the two regularizers we chose:



16 3 Contributions of the thesis

• a spatial-temporal regularizer [142] for �u(1)

R(1)(�u(1)) :=
�

Ω×(0,1)

ν

����∇3u
(1)
1

���
2

+
���∇3u

(1)
2

���
2
�

d�xdt, (3.5)

where ∇3 = (∂x1 , ∂x2 , ∂t) and ν : [0, ∞) → [0, ∞) is a monotonically
increasing, differentiable function. For the choice of ν we followed [142]
and took

ν(r) = �r + (1 − �)λ2
�

1 + r

λ2 , ∀r ∈ [0, ∞) , (3.6)

with 0 < � � 1 and λ > 0. The function r �→ ν(r2) is convex in r and
there exist constants c1, c2 > 0 with c1r2 ≤ ν(r) ≤ c2r2 for all r ∈ �.

• a regularizer for �u(2) that penalizes for variations in time. In particular
the regularizer that we introduced is non-local in time and is motivated
by Y. Meyer’s book [87]. We showed in this section and in [101] that
in 1D, in case of flickering, u may violate the L2 smoothness, however
not the primitive of u in time. Variations of Meyer’s G-norm were used
in energy functionals for calculating spatial decomposition of the optical
flow [1, 69]. It is a challenge to compute the G-norm efficiently, and
therefore workarounds were proposed. For instance in [98] they proposed
as an alternative of the G-norm the following realization for the H−1

norm: For a generalized function v : (0, 1) → �, they defined

�v�2
H−1 = −

� 1

0
v(t)∂−1

tt v(t)dt .

Here, we use this workaround for a realization for the temporal H−1-
norm, which we used as a regularization functional:

R(2)(�u(2)) =
2�

j=1

�

Ω

���u
(2)
j (�x, ·)

���
2

H−1
d�x. (3.7)

In [101] we minimized the functional (3.4) and we tested the proposed decom-
position on different sequences.

3.3 Dynamical optical flow of saliency maps for
predicting visual attention

Let us answer the third question: How can we model motion features in
order to estimate saliency of a dynamic sequence?
The aim of visual attention models is the identification of salient areas or ob-
jects. A location in an image is considered salient if it stands out compared
to its local surroundings. Usually, a visual attention model [64] assigns a value
of saliency for each pixel of an image resulting in a saliency map. The lit-
erature regarding calculation of saliency maps for static images is rich and
well-established [3, 53, 58, 64, 108]. However, no consensus exists on how to
compute a saliency map of a dynamic sequence. Recent work has been focused
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on saliency maps for dynamic sequences [42, 60, 62, 63, 77, 109]. These spatial-
temporal saliency maps are modeled as the weighted sum of motion features
and of static saliency maps [42, 60, 62, 63, 76, 77, 79, 81, 104, 109, 119, 148].
The motion features are usually [99] obtained from optical flow features (see
Figure 7.1) of two consecutive frames. In [102] we proposed a new dynamic
saliency map representing the motion features in a dynamic sequence. In detail:

• we calculated the flow of a high-dimensional image sequence, which con-
sisted of (i) intensity and (ii) color channels, complemented by saliency
maps, respectively;

• we also considered the complete movie (consisting of all frames) for the
computation of a dynamic saliency map.

Using the notation as in section 3.2, if the frames composing a movie consisted
of gray-valued images, then we described each by a function f : Ω → �.
If the frame was completed by a spatial saliency map, then �f := (f1, f2)t :
Ω → �

2, where f1 was the recorded movie and f2 was the corresponding
saliency map. For a colored frame, �f := (f1, f2, f3)t : Ω → �

3, where each
component represented a channel of the color images; typically RGB (red-
green-blue) or HSV (hue-saturation-value) channels. A colored frame, which
was complemented by a saliency map was described by �f := (f1, f2, f3, f4)t :
Ω → �

4, where the first three components were the color channels and the
fourth component was the corresponding saliency map. In [102] we showed
that taking into account saliency maps for calculating the optical flow allows
for overcoming the aperture problem (see 7.2).
In this setting the optical flow equation (2.3) reads as follow:

J�f (�x, t) · �u(�x, t) + ∂ �f

∂t
(�x, t) = 0 for all �x ∈ �2 and t ∈ (0, 1) , (3.8)

where �u(�x, t) = (u1(�x, t), u2(�x, t)) is the optical flow and J �f , ∂ �f
∂t are the partial

derivatives in space and time of the function �f , respectively. Note that the
Jacobian J�f = ∇�f =

�
∂

∂x1
�f, ∂

∂x2
�f
�

is a (2 × 2)-dimensional matrix if it is a
saliency complemented gray-valued image, and a (4 × 2)-dimensional matrix if
a color image is complemented by a saliency map.
The complemented data allows us to overcome the aperture problem for part
of the pixels, but we still need a regularizer for the uniqueness of the solution.
We suggested to use:

�

Ω×[0,1]
Ψ(|∇3u1(�x, t)|2 + |∇3u2(�x, t)|2)d�xdt

as in [142], with the difference that the function Ψ(r2) = �r2+(1−�)λ2
�

1 + r2

λ2

was replaced by
Ψ(r2) =

�
r2 + �2 with � = 10−6 (3.9)

as in [27]. Moreover, we substituted the spatial-temporal gradient operator
in [142] with ∇3 = (∇, λ ∂

∂t ) considering λ > 1. This was done in order to
accentuate the smoothness of the solution more over time than in space. This
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Figure 3.4: The proposed approach for calculating a dynamic saliency map.

is particularly important during occlusions. Psychological evidence [4, 45, 118]
suggests that humans follow motion of an object through occlusions. From the
point of view of the optical flow scientific community, having a flow through
an occlusion is a wrong result [122]. Instead, as described above, such a result
is desired for a visual attention model.
The resulting model for optical flow computations consisted furthermore in
minimization of the functional:
�

Ω×[0,1]

�����Jf (�x, t) · �u(�x, t) + ∂ �f

∂t
(�x, t)

�����

2

B
d�xdt

+ α

�

Ω×[0,1]
Ψ(|∇3u1(�x, t)|2 + |∇3u2(�x, t)|2)d�xdt. (3.10)

where � ·�2
B was a semi-norm introduced in order to restore the contrast invari-

ance for the minimizer of the optical flow. The magnitude of the optical flow
calculated as minimizer of (3.10) is the dynamic saliency map. The algorithm
proposed is schematically depicted in Figure 3.4.

3.4 Dejittering Models

Let us answer the fourth and last question: Is it possible to reconstruct
corrupted (dejittered) images?
Humans are able to recognize objects up to a certain level of distortion [40, 139].
In [36] we simulated the ability to reconstruct distorted images for a particular
type of distortion, jitter. Jitter arises often in signal processing, when the
distance (time) between sampling points varies and leads to signal errors. In
case of jitter applied to images, let uδ : Ω → � denote a continuous jittered
image, u the original image without jittering and η(�x) : Ω → � noise. We
defined different types of jitter:

• line jitter that consists of horizontal shifts of each row (line) of an image.
In this case the shift is the same for all pixels of the same line. Formally:

uδ(�x) = u(x1 + d(x2), x2) + η(�x) , (3.11)

respectively, where d : [0, 1] → � denotes the jitter function of the y-th
component.
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• line pixel jitter that is similar to line jitter, but is characterized by dif-
ferent shifts in the same line. Formally:

uδ(�x) = u(x1 + d(�x), x2) + η(�x) , (3.12)

respectively, where d : Ω → � denotes the jitter function of the point (�x)
in x1-direction.

• pixel jitter when for each pixel the shift is not limited to be in a line, but
can be in each direction. Formally:

uδ(�x) = u(�x) + d(�x) + η(�x) , (3.13)

respectively, where d : Ω → �
2 denotes the jitter vector field at the point

(�x).

Our interest in these types of problems is not only motivated by psycholog-
ical reasons. Indeed, the algorithms that correct these jitters, or dejittering
algorithms, result in calculating a flow, similarly to what we did in the above
sections.
For line pixel jitter, we proposed in [36] to recover the dejittered image u by
minimizing the functional:

N (u) := α
1
2

�

Ω

����
uδ(�x) − u(�x)

∂x1u(�x)

����
2

d(�x) + 1
p

�

Ω

��∂k
x2u(�x)

��p d�x . (3.14)

where ∂x1 is the partial derivatives in the first component, ∂k
x2 denotes the k-th

derivative with respect to the second component, and p is a parameter. When
we use this approach to correct for line jitter, we have to consider the fact that
each pixel in a line has the same shift, which leads to

0 = ∂x1d(x2) ≈ ∂x1

�
uδ(�x) − u(�x)

∂x1u(�x)

�
.

Thus, line jitter correction can be rephrased as an unconstrained minimization
of the functional:

N (u) + β

�

Ω

�
∂x1

�
uδ(�x) − u(�x)

∂x1u(�x)

��2

d(�x) , (3.15)

where β is a penalty parameter. Instead, for pixel jitter we end up with the
functional [74, 75]:

N̂ (u) := α
1
2
��(∇u)†(uδ − u)

��2
L2(Ω) +

�

Ω
|∇u(�x)| d�x . (3.16)

where (∇u)† denotes the Moore-Penrose pseudo-inverse of ∇u. Note that in
comparison with (3.14),

�
Ω
��∂k

x2u(�x)
��p d�x was replaced with the TV -semi norm�

Ω |∇u(�x)| d�x.
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3.5 Discussion and further research

We started from psychological assumptions and moved to mathematical mod-
els for solving the challenging task of visual attention simulation. We deployed
variational optical flow as a basis for our models, that were used in order to
simulate attention in the case of repeated movement (oscillating pattern), oc-
clusions and jitter.
First, we proposed a general architecture to model human visual attention.
We presented evidence that confirms our architecture. Moreover, we proved
the importance of repeated information for the modeling of visual attention,
through eye-tracking experiments.
Second, we suggested a model able to decompose the optical flow. Our model
decomposes the flow in a repeated component, or oscillating patterns, and one
coherent over time. This model allows the analysis of dynamic sequences with
illumination changes, or flickering, which is also a particular type of cut.
Third, we addressed the problem of modeling the saliency of motion informa-
tion for dynamic sequences. We suggested an algorithm based on optical flow
of high dimensional data. Such data was composed of the video sequence and
of the saliency map of each frame. The high dimensional data allowed us to
overcome the aperture problem. Our experiments proved that the proposed
model is particularly suitable in case of occlusions. Indeed, it is highly similar
to human behavior. In practice, humans would continue to look at a moving
object, also during a temporary occlusion.
Finally, we proposed an algorithm for reconstructing images affected by jitter.
We gave a continuous formulation usable for reconstructing images affected by
line jitter, line pixel jitter and pixel jitter.
The proposed algorithms allow cognitive scientists to test theories and per-
form quantitative evaluation. Eye-tracking experiments should be designed for
testing the response of human visual attention compared to the one of our
algorithms. For example, in the case of oscillating patterns, eye-tracking ex-
periments are needed to test quantitatively (in terms of time response and eye
patterns) how repeated movements affect the viewers. It is to be noted that
an eye-tracking experiment was designed and the data collection started at the
time of writing of this thesis.
A further step of mathematical interest could constitute the extension of our
models towards a general model, able to simulate the visual attention when
all the above-mentioned situations (oscillating patterns, occlusions and jitter)
take place. Such a mathematical models would be applied to e.g. an average
movie transmitted by online movie-streaming. An average movie may easily
contain oscillating pattern, cuts and frames affected by jitter.
Finally, let us point out that the visualization of oscillating pattern and of
saliency maps regarding videos is challenging. Usually in literature, only one
frame is shown, which discards completely the time evolution. However, we
think that further research should be undertaken, in order to provide cognitive
scientists with satisfactory results. To summarize, we claim that an appropri-
ate formulation of the optical flow can deliver quantitative methods for the
estimation of visual attention.
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Abstract

Edited (or cut) dynamical images are created by changing perspec-
tives in imaging devices, such as videos, or graphical animations. They
are abundant in everyday and working life. However little is known about
how attention is steered with regard to this material. Here we propose
a simple two-step architecture of gaze control for this situation. This
model relies on (1) a down-weighting of repeated information contained
in optic flow within takes (between cuts), and (2) an up-weighting of
repeated information between takes (across cuts). This architecture is
both parsimonious and realistic. We outline the evidence speaking for
this architecture and also identify the outstanding questions.

Keywords: Attention, Eye Movements, Visual Motion, Video, Editing, Saliency.

4.1 Introduction

Our visual world is complex and rich in detail but the human mind has a finite
cognitive capacity. This is one of the reasons why humans pick up only a
fraction of the visual information from their environment. At each instance in
time, humans select only some visual information for purposes such as in-depth
recognition, action control, or later retrieval from memory, whereas other visual
information is ignored in varying degrees. This fact is called selective visual
attention.

One particularly widespread source of visual information is technical dy-
namic visual displays. These displays depict images of visual motion and are
used in computers, mobile telephones, or diverse professional imaging devices
(e.g., in devices for medical diagnosis). Importantly, the widespread use of
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technical dynamic visual displays in human daily life during entertainment
(e.g. video), communication (e.g. smart phones), and at work (e.g. com-
puter screens) significantly adds to the visual complexity of our world. An
accurate and ecologically valid model of human visual attention is essential for
the optimization of technical visual displays, so that relevant information can
be displayed in the place and at the right time in order to be effectively and
reliably recognized by the user.

One important characteristic of videos and other technical motion images
that contrasts with the dynamics of 3-D vision under more natural condi-
tions is the fact that this material is highly edited (or cut). Videos consist
of takes and cuts between takes. In this context, takes denote the phases
of spatio-temporally continuous image sequences. By contrast, cuts are the
spatio-temporal discontinuities by which two different takes (e.g., taken on dif-
ferent days, at different locations, or from different camera angles at the same
location) can be temporally juxtaposed at the very same image location. De-
spite the fact that edited material conveys a substantial part of the visual infor-
mation that competes for human selective attention, little is known about the
way that attention operates in this situation. Specifically, attention research
in this domain has almost exclusively focused on the impact of image motion
per se [23, 30, 89], without paying too much attention to the very different
cognitive requirements imposed by extracting information from takes versus
cuts. Here, we propose a two-step model in response to this demand. In this
model, within takes (between cuts) viewers would attend to novel information
and would down-weigh repeated visual input.

In the following, we will develop our arguments for this model. We start
with the simplest conceivable bottom-up model, and proceed by a brief discus-
sion of top-down factors as one additional important factor. We then introduce
our two-step model as a more realistic and yet parsimonious extension of ex-
isting bottom-up and top-down models. Next, we turn to review the evidence
that is in line with our model. Finally, we conclude with a discussion of the
outstanding questions.

4.2 Related work

To understand how selective visual attention works in humans, one can inves-
tigate gaze direction, visual search performance, and visual recognition. The
relationship between these three measures will be explained next. To start
with, we know that gaze direction is tightly linked to interest, attention, and
recognition. Eye movements are an objective index of the direction of visual
attention. This assumption is well supported by research on recognition dur-
ing saccade programming [35].It is therefore not surprising that eye movements
provide important cues to the personal intentions and interests of another per-
son.When observing another individual, we use direction of fixation (when the
eyes are still), of saccades (when the eyes move quickly from one location to
another), or of smooth pursuit eye movements (when the eyes track a moving
object in the environment) as a window into the other individual’s mind.

Of course, gaze direction is not perfectly aligned with attention and does
not always tell us what another person sees [107]. For this reason, in attention
research, one cannot rely on fixation directions alone. If one wants to under-
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stand, where attention is directed, one has to equally draw on conclusions from
visual search and visual recognition performance [129].

The Bottom-Up Model
What is true of attention in general is also true of the so called bottom-up
model of visual attention. The bottom-up model is supported by both vi-
sual search behavior [125] and eye-tracking [64], and its charms lie in its sim-
plicity and parsimony. Bottom-up models rely on one simple principle: “the
strength of the visual signal” to explain where humans direct their visual at-
tention. These models disregard different human goals, interests, and other
top-down influences, such as prior experiences of an individual, or also task-
and situation-specific factors. Instead, bottom-up models define the princi-
ples of visual attention in simple objective terms and assume that the focus
of attention is fully determined by the characteristics of the momentary visual
stimuli in the environment [47, 63].

Beyond Bottom-Up Influences
Despite the evidence supporting the bottom-up model, this model is not sat-
isfying because humans do not all look in a task-unspecific way at the same
locations [128]. But how could individual goals influence visual attention?
Top-down models explain this. They emphasize past experiences, goals, in-
tentions, interpretations, and interests of the viewer as predictors of visual
attention [128, 143]. Top-down principles can influence seeing and looking
in two ways: They either boost the subjectively interesting image features or
they deemphasize the subjectively uninteresting image features for the summed
salience. Top-down models assign different weights to specific features [143] or
locations [128]. Thus, top-down models are suited for accommodating the influ-
ence of subjective interests and goals. They can bridge the gap between model
behavior and subjective influences for an improved prediction of eye movements
and visual recognition into more realistic predictions of visual attention.

What is lacking so far is a convincing top-down model of visual attention for
edited dynamically changing visual displays. Given the fact that humans spend
much of their time viewing edited videos (on the Internet, television, or in the
cinema), it is unfortunate that even the approaches that tried to model top-
down influences mostly operated on static images without considering visual
changes over time. Progress in this direction has been made in the form of a
surprise-capture or novelty-preference model. Researchers observed that during
watching of movies, human attention is captured by surprising or novel visual
information [61]. In the surprise model, stimulus information that repeats over
time is deemphasized as an attractor of attention. The surprise model is also
parsimonious because it requires just one principle of visual memory of what
has been seen in the recent past for an explanation of the creation of goal
templates.

However, the surprise model is too rigid. It is incorrect to consider vi-
sual feature repetition as always being disadvantageous for the attraction of
attention. Many experiments have shown that repeated features attract atten-
tion [16, 80].
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4.3 Two-step model

We suggest that a two-step model of visual attention offers a realistic descrip-
tion of how attention is allocated in videos and other edited dynamic images
(e.g. animated computer graphics, or even medical imaging devices). In the
two-step model, surprise capture towards novel information and feature prim-
ing towards repeated visual information as the two major top-down principles
driving visual attention will take turns as a function of one shared steering
variable: the temporal coherence of the optic flow across subsequent images
(see Figure 4.1). With the two-step model we thereby seek to overcome exist-
ing limitations of (1) bottom-up models that fail to account for inter-individual
variability of visual attention, (2) too rigid forms of top-down models of atten-
tion that incorporate only one of the two top-down principles, and (3) models
that fail to consider the specificities of edited dynamically changing visual im-
ages at all. This two-step model is based on empirical observations. It also
allows deriving new testable hypotheses that can be investigated with the help
of psychological experiments.

To start with, attraction of attention by repeated features (as in feature
priming) conflicts with the finding of Itti and Baldi (2009) that repeated fea-
tures do not attract attention. Attraction of attention by feature repetition
can, however, be reconciled with the findings of Itti and Baldi by the two-step
model. Itti and Baldi based their conclusions on gaze directions recorded dur-
ing the viewing of edited video clips and video games. How this could have
masked repetition priming across cuts can be understood if one takes into ac-
count the specificities of the high temporal resolution of the surprise model
that was set to the level of single frames. For each frame, a prior and a new
probability distribution were computed and their difference was tested for its
potential to attract the eyes. This resulted in a higher number of model tests
between cuts (or within takes) of the videos than model tests across cuts (or
between takes), even in the highly edited video clips with relatively many cuts.
Between-cuts events encompassed 30 frames/second because monitor frequency
was set to 60.27 Hz (and assumed that videos were displayed in half frames).
However, by definition, each across-cut event consisted of only two frames.
Therefore, between-cuts events by far outweighed across-cut events in the test
of the model of Itti and Baldi (2009).

Importantly, between cuts (or within takes), the correlation between suc-
cessive feature or stimulus positions is high, whereas across cuts (or between
takes) it is lower. To understand this, think firstly of an example of a take
(i.e., a between-cuts event), such as the filming of a moving object in front of
a static background. Here the background objects and locations are correlated
for all frames of the take. In fact, they would be the same (see Figure 4.2,
for a related example). Now secondly think of what happens across a cut (or
between takes). Here, the correlation between successive features or stimulus
positions must be lower, simply because of occasional cutting between takes of
completely different scenes (or at least different camera angles within the same
scene). With temporal juxtaposition of different scenes by a filmic cut, no stim-
ulus contained in the take preceding the cut needs to be repeated after the cut.
Basically, this low take-by-take correlation across cuts in videos is exactly what
corresponds best to the conditions of the experiments demonstrating feature
priming: In psychological experiments, a low correlation between positions and
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Figure 4.1: According to the model, within takes the human gaze is steered to-
ward novel information. This mode is supported by the presence of temporally
coherent global optic flow (see center of Figure) and an attraction to novelty is
achieved by down-weighting global optic flow and up-weighting local incoherent
flow for the selection of gaze directions because per definition, the information
contained in the global flow field relates present to past information whereas
local incoherencies form new features themselves and are diagnostic of the ap-
pearance of new objects in the visual field. The situation changes if a cut is
encountered. Cuts are signaled by incoherencies of the global flow field. In this
situation, the human gaze is steered towards repeated information. For further
information, refer to the text.

even colors of relevant to-be searched-for target stimuli between trials has been
the way to prevent anticipation of target positions and target features [80]).
This low correlation corresponds much better to effects across cuts. Basically,
in our two-step model we will therefore assume that across cuts, the surprise
model of attention would be falsified and a feature priming model would be
confirmed, whereas between cuts a preference for novel information holds.

The two-step model comprises three components: one spatially organized
representation of the visual image as its input and two internal top-down rep-
resentations of visual features. The input representation is the same as in
standard bottom-up models [63]. The two alternative internal top-down rep-
resentations of the two-step model are (1) search templates of scene- or take-
specific object-feature matrices that a viewer can retrieve from visual memory,
and (2) a track record of the temporal coherence of the optic flow within the
image that the viewer applies online while watching a video.

The two-step model’s visual memory contains representations of visual fea-
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Figure 4.2: An image from a sequence of a man shutting the back of his car on
the left and a schematic representation of the regions of the highest movement
(in black) on the right. As compared to the coherent null vector of optic flow
in the background, the optic flow of the moving man would be less coherent
and, within a take, should capture human attention.

ture combinations (e.g. edge representations) for objects and for scenes (or
takes). If such a representation is retrieved, this memory representation can
be used as a template to up-weigh repeated feature combinations as relevant
during visual search. This conception of a retrieved search template is very
similar to that of other top-down models of attention [143, 147]. In contrast to
past feature-search template models, however, as in the surprise model, in the
two-step model the content of the visual memory will be empirically specified:
What a particular person looks at is stored in visual memory [82]. The two-step
model thus uses gaze direction for segmentation and stores objects as a vector
of visual features at a fixated position, and each scene or take within a video
as a matrix of the vectors of the looked-at objects within a take. Each take-
specific matrix will be concluded when a minimum of the temporal coherence
of optic flow indicates a change of the scene (see below), and matrices will be
successively stored in the order of their storage until a capacity limit of visual
working memory has been reached [78]. In this manner, the two-step model
adapts to interindividual variation of looking preferences and keeps track of
them, without having to make additional assumptions.

Related but operating on a different time scale, for the two-step model optic
flow will be continually calculated as a mathematical function that connects
one and the same individual features or objects at subsequent locations in space
and time by one joint spatio-temporal transformation rule that is characteristic
of the change of the larger part of the image for a minimal duration [100]. More-
over, the temporal coherence of the optic flow will be continuously tracked. We
calculate the temporal coherence of optic flow as the similarity of the optic flow
across time. In the two-step model, an increasing temporal coherence of optic
flow will thus be reflected in a descending differential function. This coherence
signal can be topographically represented in image coordinates and directly
feeds into one visual filter down-weighing those image areas characterized by
the temporally coherent optic flow. In this way, the two-step model instanti-
ates the surprise-capture principle and filters out the repeated visual features
proportional to the duration and area of uniform optic-flow (see Figure 4.2).

By contrast to this, the local minima of the coherence of optic flow (or the
maxima of the differential function) are used as signals indicating cuts that
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trigger the retrieval of a search template, and the resultant up-weighing of the
repeated features of the image representation resembling the search template.

The two-step model is more realistic than the surprise model because it
incorporates feature priming of attention, too. Yet, the two-step model is
parsimonious because it couples the two top-down principles of attention to
the same shared steering value of optic flow coherence, and, as in the surprise
model, most of two-step models free parameters (the content of the visual mem-
ory) will not be arbitrarily chosen or have to be specified by task instructions
as in standard top-down models (e.g., [92]) but will be specified on the basis
of empirical observation (i.e., will be measured as the feature values at fixated
positions).

4.4 Evidence

Weighting Coherent Optic Flow
The surprise-capture principle outperforms the bottom-up model when predict-
ing fixations within animated video games and movies [61]. According to the
two-step model, this surprise-capture effect reflects the suppression of coherent
optic flow. Optic flow denotes the global commonality or unifying mathemat-
ical rule of the global visual motion signal across the image that is frequently
due to the cameras (or the observers) self-motion. Optic flow is tied to vi-
sual feature repetition because across time, like other types of visual motion,
too, optic flow reflects a track record of repeated features and objects found at
different places.

In line with the assumed down-weighting of coherent optic flow, visual
search for a stationary object is facilitated if it is presented in an optic flow
field as compared to its presentation among randomly moving distractors [111].
Likewise, objects moving relative to the flow field pop out from the back-
ground [112]. A tendency to discard optic flow as a function of its coherence
over time and space in dynamic visual scenes also accounts for many instances
of attention towards human action in general [54] and human faces in par-
ticular [46]. In these situations, actions and facial movements are defined by
local motion patterns that have regularities differing from the larger back-
ground’s coherent flow field. Equally in line with and more instructive for
the present hypothesis are the cases in which one motion singleton among
coherently moving distractors captures human attention [2, 21]. To perform
further analysis in this direction we are developing a decomposition procedure
of the motion in dynamic image sequences. For example, on the web-page
http://www.csc.univie.ac.at/index.php?page=visualattention a movie
presenting the projection of a cube moving over an oscillating background can
be viewed. The optical flow computed between the sixteenth and the seven-
teenth frame of the sequence is visualized in Figure 4.3. The motion can be
decomposed in global movement of the cube depicted in U1 and in the back-
ground movement in U2.

Templates Combining Features
Selectively attending to the relevant visual features for directing the eyes and
for visual recognition is one way by which humans select visual information in
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Figure 4.3: Flow visualization of a dynamic image sequence showing a projec-
tion of a cube moving over an oscillating background. U1 and U2 depict the
global and the background movement respectively (http://www.csc.univie.
ac.at/index.php?page=visualattention).

a top-down fashion [143]. For example, informing the participants prior to a
computer experiment about the color of a relevant searched-for target helps the
participants in setting up a goal template representation to find the relevantly
colored target object and ignoring irrelevantly colored distractors (e.g., to find
red berries in green foliage during foraging; [38]. Equally important and well
established is the human ability to selectively look-for particular visual shapes
or for specific combinations of shapes and colors [129]. In this way human
viewers could also search for landmarks that they have seen in the past to re-
orient after a cinematic cut, and to decide whether a visual scene continues or
has changed.

In line with this assumption, participants learn to adjust the search tem-
plates to the visual search displays that they have seen in the past. During
contextual cueing, for example, participants benefit from the repetition of spe-
cific search displays later in a visual search experiment [26]. Similar advantages
have been demonstrated in the context of visual recognition under more natural
conditions, with static photographs of natural scenes [82, 132].

In the study of [132], for example, participants first viewed a variety of pho-
tographs for later recognition of the learned photographs among novel pictures.
Critically, during recognition participants only saw cutouts from scene images.
Cutouts from the learned scenes were either from a previously fixated area(see
Figure 4.4) or they were from an at least equally salient non-fixated area of
the learned images(see Figure 4.5). In line with an active role of fixations for
encoding and successful recognition, the participants only recognized cutouts
that they fixated during learning. In contrast, the participants were unable
to recognize cutouts showing areas that were not fixated during learning with
better than chance accuracy (see Figure 4.6).

Reorienting After Cinematic Cuts
We consider re-orienting between subsequent visual images as one of the most
fundamental tasks for the human viewer. Under ecological conditions, orienting
is required in new environments, as well as when time has passed between
successive explorations of known environments. During the viewing of edited
videos, orienting is required to make sense of temporally juxtaposed images
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Figure 4.4: Cutouts from old images were selected contingent upon the partici-
pants gaze pattern. Old/fixated cutouts showed the location of longest fixation.
Old/control cutouts showed a nonfixated but highly salient location. Copyright
by AVRO [132]

Figure 4.5: Cutouts from new images showed highly salient scene regions or
were randomly chosen. Copyright by AVRO [132]

with a low correlation of objects or their locations. The latter situation is
typical of all technical imaging devices for dynamically changing visual images.
Think of video cuts in which the image before the cut does not have to bear
any resemblance to the image after the cut.

In line with the assumed role of repetition priming on eye movements,
Valuch et al. observed that participants preferentially looked at videos baring
a high similarity of pre-cut and post-cut images [131]. These authors used two
videos presented side by side and asked participants to keep their eyes on only
one of the videos. Critically, during two kinds of cuts, the images could switch
positions: cuts with a high pre- and post-cut feature similarity and cuts with
a lower pre- and post-cut feature similarity. For example, participants were
asked to look at a ski video and to quickly saccade to the ski video if the video
switched from the left to the right side. In this situation, the participants
showed a clear preference to look at the more similar images. Saccade latency
was much lower in the similar than in the dissimilar condition (see Figure 4.7).

Repetition priming would also explain why participants fail to notice so-
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Figure 4.6: Rate of correct responses in percent as a function of cutout type in
the transfer block. Copyright by AVRO [132]

called matching cuts. Participants fail to register matching cuts, such as cuts
within actions (with an action starting before the cut and being continued
after the cut), as compared to non-matching cuts from one scene to a different
scene [121]. This is because with matching cuts, that is, cuts within the same
scene, the overall changes in visual image features between two images are
smaller than with cuts that connect two different scenes [34].

Repeated vs. Novel Features
When researchers rearranged an otherwise coherent take by cutting it and re-
arranging the take into a new and incoherent temporal sequence, the reliability

Figure 4.7: Two videos showing different content were presented side by side
and participants were asked to follow only one content with their eyes. Videos
could switch position during two kinds of cuts: (1) high and (2) low pre- and
post-cut feature similarity cuts. The participants showed a clear preference to
look at the more similar images.
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of the gaze pattern was drastically reduced [138]. These authors argued that
their participants kept track of objects within takes and reset this search ten-
dency after a cut. This interpretation is in line with our view that participants
apply different strategies within than between takes.

4.5 Open questions and potential Applications

Regarding our two-step architecture many open questions remain. Most criti-
cally, it is unclear whether the coherence of optic flow is indeed down-weighted
for attention. To address this question, one would need to correlate the decom-
position of optical flow [1] into bounded variation and an oscillating component
with viewing behavior in natural images. One would also have to test whether
changes for novel versus repeated features are characteristic of phases of low
global coherence of the flow pattern.

Another open question concerns the impact of top-down search templates
for features in natural scenes. This influence is relatively uncertain. Most of
the evidence for the use of color during the top-down search for targets stems
from laboratory experiments with monochromatic stimuli [29]. This is very
different from the situation with more natural images, such as movies, where
each color stimulus is polychromatic and consists of a spectrum of colors. In
addition, a lot more questions than answers arise with regard to the storage
and usage of different take-specific topdown templates.

Among the open questions, the potential applications of the model are
maybe the most interesting ones. The model should be useful for improving
the prediction of visual attention in more applied contexts, such as clinical
diagnosis based on visual motion (e.g., in ultrasound imaging), QoE (quality
of experience) assessment and videos coding in entertainment videos.

In medical imaging, much as with cuts, the optical flow of an image sequence
can be interrupted by noise or by changes of perspective. For example in case
of angiography, a new perspective of the vessels can be suddenly shown.

Also, due to a lack of contact between imaging devices and body (e.g., dur-
ing ultrasound diagnosis), noise or blank screens can interrupt medical image
sequences. These examples illustrate that the two-step model is applicable to
medical imaging and that it captures a new angle on these problems. During
medical imaging, pervasive eye-tracking could be used to extract visual feature
vectors at the looked-at image positions. After an interruption of the imaging
sequence, these vectors could then be convolved with post-interruption images
for a highlighting of those regions baring the closest resemblance with the input
extracted before the interruption. Likewise, in the area of video coding and
compression, scene cuts represent an important challenge.

4.6 Conclusion and comparative evaluation

With a simple two-step model of down-weighting redundant information con-
tained in optic flow versus up-weighting repeated information contained in two
images divided by a cut, we proposed a framework for studying attention in
edited dynamic images. This model is very parsimonious because it does not
require many assumptions and it can be empirically falsified. In comparison to
a bottom-up model the two-step model is able to accommodate inter-individual
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viewing differences but has more free parameters and is therefore less econom-
ical. In comparison to existing top-down models the two-step model takes the
particularities of visual dynamics into account and used empirical observations
to specify many of its free parameters. Although this model nicely explains a
variety of different findings, future studies need to address many outstanding
questions concerning the model.
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Abstract

Understanding the factors that determine human attention in videos
is important for many applications, such as user interface design in in-
teractive television (iTV), continuity editing, or data compression tech-
niques. In this article, we identify the demands that cinematic cuts im-
pose on human attention. We hypothesize, test, and confirm that after
cuts the viewers’ attention is quickly attracted by repeated visual con-
tent. We conclude with a recommendation for future models of visual
attention in videos and make suggestions how the present results could
inspire designers of second screen iTV applications to optimise their in-
terfaces with regard to a maximally smooth viewing experience.

Keywords: Attention, Eye Movements, Visual Motion, Video, Editing, Saliency.

5.1 Introduction

Designing successful applications for online and interactive television (iTV)
requires a proper understanding of the factors that determine the user’s ex-
perience. Working towards this objective, HCI research has been using eye
tracking as a means of evaluating user interfaces [106]. For instance, in mul-
tiple screen applications [18] users frequently shift their gaze between at least
two locations [56]. The presence of the second screen can distract the viewer
from the main content of the show [18]. Understanding which factors determine
the viewer’s attention in such situations would allow designers to optimize their
applications in favor of a maximally smooth viewing experience. To investigate
these questions on a more general level – with a broad range of applications,
such as video coding [113], or continuity editing [121] – we looked at gaze shifts
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after cinematic cuts. Human attention is closely related to eye movements.
Saccades -– abrupt gaze shifts between two locations — are a direct conse-
quence of shifting attention to a new location [71]. Accordingly, by looking at
the properties of saccades, it is possible to formulate and test theories about
attention.

Current models of human attention and gaze behavior in videos emphasize
the role of novelty, or Bayesian surprise. They assume that visual content
that is maximally dissimilar from the viewer’s prior visual experience is the
best predictor of human attention and gaze direction. Indeed, eye tracking
confirmed that human gaze direction in continuous videos is better explained
by Bayesian surprise than by alternative models [61]. However, this is not
necessarily true for cuts within edited videos. Existing evidence suggests that
attention is attracted by repeated visual features in situations where location
correlations between two successive images are low [20, 80].

Edited videos frequently contain hard cuts, i.e. visual discontinuities that
require shifting attention from one location to another because object locations
are uncorrelated across the cut. Moreover, making sense of narratives and
content across cuts implicitly requires deciding whether the post-cut scene is
a continuation of the pre-cut scene [121]. Here, within scene cuts (WSCs)
continue with the same scene from a different angle; between scenes cuts (BSCs)
continue with a different scene (see Figure 5.1). Orienting attention to repeated
visual features could enable viewers’ quick and efficient recognition of content
that connects the cut images (in the case of WSCs).

The Present Study

We tested the hypothesis that after cuts, attention is more strongly attracted
by repeated visual content than by novel, or surprising content. We conducted
an eye tracking experiment, in which participants had to watch and keep their
gaze on a video that was shown next to another, irrelevant video. Both videos
contained hard cuts and unforeseeably kept or switched their locations at the
cuts. This manipulation created a low correlation of object locations as is
typical of cuts. Presenting two videos side by side also allowed us to measure
influences of repeated versus novel content on saccades, during which attention
and eye movements are tightly coupled [71]. If locations switched, participants
had to saccade to the new location of the video they were instructed to follow
(similar to shifting gaze between two screens).

We analyzed saccadic reaction time (SRT) as a measure of viewers’ re-
orienting of attention to the post-cut scene after a location switch. Following
our hypothesis, we predicted shorter SRT after cuts where much visual content
was repeated (WSCs, or cuts with high image-image similarity) and longer
SRT after cuts where less visual content was repeated (BSCs, or cuts with
low image-image similarity).1 In the remaining sections of this paper we give
details on our method, results, and discuss implications for further research
and improvements of iTV applications.

1This prediction is the opposite of that of the Bayesian surprise model which generally
predicts a shorter SRT for less similar than for more similar image content.
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Figure 5.1: Example cuts. (A) Within scene cut (WSC). (B) Between scenes
cut (BSC). Screenshots derived from videos by QParks.com, available under
CC BY 3.0 at vimeo.com/89901459 and vimeo.com/89248621.

5.2 Method

Participants
Forty-two students (34 female) with a mean age of 23 years took part in an eye
tracking experiment. Informed consent was obtained from all participants.

Stimuli
We used 20 sports videos in which we deliberately inserted new cuts. Each
video showed the same sport throughout (e.g., skiing). Videos were edited
in pairs, resulting in ten sets of two videos. The sport in the first video was
always different from the sport in the second video (e.g., skiing vs. surfing).
Cuts always occurred simultaneously in both videos. Average video duration
was 2.5 minutes and the complete set contained 212 cuts. Cuts were assigned
to either a WSC or a BSC condition. Whenever major visual changes, e.g. in
scenery, actors, or ongoing actions occurred with the cut, the cut was coded as
a BSC. In contrast, cuts that connected two images showing the same scene,
action, and actors were coded as WSCs. Figure 5.1 shows examples. We
assumed that more visual content is repeated after WSCs than after BSCs.

To validate this, we compared the similarity of color histograms of the last
pre-cut and the first post-cut frame and, based on this measure, assigned each
cut to a High similarity or a Low similarity condition. We used color similarity
because color contributes to gaze and attention preferences for repeated infor-
mation [80], allows visual recognition after location and/or perspective shifts
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[123], and conveys information useful for cut detection [49].

Apparatus
Gaze data were recorded using an EyeLink 1000 Desktop Mount eye tracker
(SR Research Ltd., Kanata, Ontario, Canada) at a sampling rate of 1000 Hz.
The eye tracker was calibrated to each viewer’s dominant eye using a 5-point
calibration. Every time the videos switched locations, the exact timestamp
was saved to the eye tracking data file, which allowed analyzing the latency of
the first saccade to the target video with millisecond precision. Stimuli were
displayed on a 19-in. color CRT monitor (Sony Multiscan G400) with a reso-
lution of 1,280 × 1,024 pixels and a refresh rate of 60 Hz. The experimental
procedure was implemented in MATLAB (MathWorks, Natick, MA, USA) us-
ing the Psychophysics Toolbox [25, 103] and the Eyelink toolbox [31]. Viewing
distance to the monitor was 72 cm supported by chin and forehead rests. The
viewable screen area subtended 28◦ × 21◦. The apparent size of the 400 × 300
pixel videos was 8.75◦ × 6.15◦ and they were shown vertically centered at a
horizontal eccentricity of 6.56◦.

Procedure and Design
The experiment consisted of 20 blocks in which two videos were presented
on the screen. Importantly, participants were instructed to view only one of
the videos (the target video) while ignoring the other (the distractor video).
At the beginning of each block, the starting location of the target video was
announced by a green rectangle. Participants were informed that the videos
switched locations at random intervals, and instructed to relocate their gaze as
fast as possible to the target video’s new location once the videos had switched
locations. Throughout the experiment, each block was presented twice so that
either of the videos was serving as the target in the first and as the distractor
in the second half of the experiment (or vice versa).

Data Analysis
Saccades were identified as sample periods where the change in gaze direction
was larger than 0.1◦, eye movement velocity exceeded 30◦/s, and acceleration
exceeded 8000◦/s2. The main dependent variable was SRT, defined as the la-
tency of the first saccade towards the target video after the videos switched
locations. SRT was analyzed as a function of the type of cut (WSC vs. BSC) in
the target video, and the similarity of RGB color histograms across cuts (High
similarity vs. Low similarity) – for further details see Stimuli and Results. We
expected shorter SRTs (faster gaze relocation) after WSCs than BSCs. Simi-
larly, we expected shorter SRTs after High similarity than after Low similarity
cuts.

Gaze data were preprocessed in MATLAB and statistical tests were run
in R [124]. Out of 8,904 collected data points (i.e. 212 cuts for each of the
42 participants), 8,397 (94.3 %) contained valid SRTs and were subjected to
statistical analyses. Data were excluded if no saccade to the target video was
identified within a time-window of 3 s after the location switch or if gaze was
already at the new location shortly ahead of the switch. Figure 5.2 depicts the
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Figure 5.2: Distribution of valid saccadic reaction times (i.e. the latencies of
the first saccade to the target video after a location switch).

Figure 5.3: Results. (A) Distribution of mean Euclidian distances (z-
transformed) of RGB color histograms of the last pre-cut and the first post-cut
frame as a function of cut category. Values below 0 represent higher similarity,
values above 0 represent lower similarity. (B) Distribution of individual median
SRT as a function of cut category. (C) Distribution of individual median SRT
as a function of color histogram similarity across the cut.

distribution of valid SRTs. Individual median SRTs per condition were tested
for within-participant differences by t-tests. We report Pearson correlation
coefficients as measures of effect sizes. For all statistical tests, we set α at 0.05.

5.3 Results

Image Similarity Across Cuts
To validate that more visual content is repeated after WSCs than BSCs, we
calculated the mean Euclidian distance of the RGB color histograms between
the final pre-cut and the first post-cut frame. For better interpretability, we
z-transformed these values, so that values below 0 represent higher similarity
(indicated by the smaller Euclidian distance), and values above 0 represent
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lower similarity (indicated by the greater Euclidian distance). A Welch two
sample t-test indicated significantly higher color similarity in WSCs than BSCs,
t(148.3) = 2.86, p<.01, r = .23 (see also Figure 5.3A).

Saccadic Reaction Time After Location Switches
In a first analysis, we tested whether the a priori categories of WSCs and
BSCs could explain any variance in SRTs. Using a paired t-test, we found that
median SRT was on average 9 ms shorter in WSCs than BSCs, t(41) = -2.03,
p<.05, resulting in a medium-sized effect of r = .30 (see also Figure 5.3B).

For a second analysis, we categorized the cuts into either a High similarity or
a Low similarity condition, depending on whether the z-transformed similarity
measure for these cuts was below or above 0. Again, we tested for significant
differences in SRTs between these conditions. A paired t-test of median SRTs
confirmed that on average SRTs were 23 ms shorter after High similarity than
after Low similarity cuts, t(41) = -6.83, p<.001, representing a large effect of
r = .73 (see also Figure 5.3C).

5.4 Discussion

Our data suggest that after cuts viewers are able to re-orient their attention
more quickly if visual content is repeated from the pre-cut scene: Following
WSCs or High similarity cuts, saccades to the target video were initiated sig-
nificantly faster than after BSCs, or Low similarity cuts. Results confirmed
viewers’ preference for repeated features during reorienting after cuts with low
object-position correlations. The following limitations apply.

First, our results seem to conflict with the assumption that novel or surpris-
ing information is the best predictor of attention and gaze direction in videos
[61]. However, we argue that an advantage for repeated information character-
izes only a short time frame following cuts. During this period, viewers search
for familiar visual content for deciding whether the previous scene continues,
or not. Soon after, a preference for novel or surprising information should take
over but future models should account for the effect of cuts on attention, too.

Second, in an effort to precisely measure the speed of attentional orienting
after cuts we presented two videos simultaneously. This enabled us to elicit
and record saccades of comparable start/end points for each cut. This is good
because saccades are valid reflections of attention. However, the surprise model
was supported during viewing of single videos. Viewing single videos is a situ-
ation that we ultimately also want to understand. Therefore, future research
should aim to replicate our findings under single video viewing conditions.

Third, motivated by previous research [20, 80, 49, 123], we validated the
stronger repetition of visual content across WSCs as compared to BSCs based
on color similarity only. However, other descriptors that do not rely on color
might also sufficiently explain the observed differences in SRTs. Also, we are
unable to isolate color-repetition effects operating on a short timescale from
the viewers’ long-term knowledge about object-associated colors that possibly
contributed to the color repetition effect (e.g., the knowledge that snow is
white). These questions are open to debate and should be studied in future
experiments, possibly by including control conditions with black and white
videos.
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Implications for iTV Applications
To conclude, we think a preference for repeated visual content applies in all sit-
uations in which the location of objects is uncorrelated across successive views.
This is relevant for improving user interfaces in iTV. To give just one example,
with second screen applications a second screen showing information that is
visually unrelated to the main screen might distract the viewer [18]. Following
from the present study, we would recommend that designers of second screen
applications should include visual elements that repeat across both screens to
minimize the time necessary for shifting attention between the two screens and
assure a maximally smooth user experience. Even more interesting applications
could become possible once eye tracking becomes widely available in consumer
electronics. Then, it will be possible to dynamically adapt the content on a
second device based on what was just looked at on the primary screen. Finally,
we would like to stress that the methods presented in this paper can be easily
adapted to study the effects of particular second screen iTV applications on
human attention.

5.5 Conclusion

Our paper presents evidence that after cinematic cuts viewers quickly re-orient
their attention to visual content that is repeated from the pre-cut scene. A
preference for repeated visual content after cuts should be incorporated into
models of human attention which currently assume that novelty or Bayesian
surprise is the best predictor of human attention and gaze direction in videos.
We also discussed implications of our results for the improvement of iTV ap-
plications.
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Abstract

In this paper we present a spatial-temporal variational decomposi-
tion algorithm for computation of the optical flow of a dynamic image
sequence. We consider several applications, such as the extraction of
temporal motion patterns of different scales and motion detection in
dynamic sequences under varying illumination conditions, such as they
appear for instance in psychological flickering experiments. For the nu-
merical implementation we are solving an integro-differential equation
by a fixed point iteration. For comparison purposes we use the standard
time dependent optical flow algorithm, which in contrast to our method,
constitutes in solving a spatial-temporal differential equation.

Keywords: Optical Flow, Decomposition, Oscillating patterns.

6.1 Introduction

Analyzing the motion in a dynamic sequence is of interest in many fields of
applications, like human computer interaction, medical imaging, psychology,
to mention but a few. In this paper we study the extraction of motion in dy-
namic sequences by means of the optical flow, which is the apparent motion of
objects, surfaces, and edges in a dynamic visual scene caused by the relative
motion between an observer and the scene. There have been proposed several
computational approaches for optical flow computations in the literature. In
this paper we emphasize on variational methods. In this research area the first
method is due to Horn & Schunck [57]. Like many alternatives and general-
izations, this methods calculates the flow from two consecutive frames. Here,
we are calculating the optical flow from all frames simultaneously. Spatial-
temporal optical flow methods were previously studied by Weickert & Schnörr
[141, 142], [24], [137] and [6], to name but a few. However, in contrast to these
paper we emphasize on the decomposition of the optical flow into appropriate
components.

Variational modeling of patterns in stationary images has been initialized
with the seminal book of Y. Meyer [87]. In the context of total variation
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regularization, reconstructions of patterns was studied first in [134]. Here, we
are implementing similar ideas as have been used before for variational image
denoising [8, 11, 13, 10, 12, 39, 135] and optical flow decomposition [1, 70,
144, 146, 145]. However, a conceptual difference is that we aim for extracting
temporal patterns, and in all the mentioned papers the decomposition was with
respect to the space component. We emphasize that the proposed method is
one of very few variational optical flow algorithms in a space-time regime.
Within this class, this algorithm is the only spatial-temporal decomposition
algorithm.

The outline of this paper is as follows: In Section 6.2 we review the optical
flow equation. In Section 6.3 we present analytical examples of the optical flow
equation in case of illumination disturbances. In Section 6.4 we introduce the
new model for spatial-temporal optical flow decomposition. We formulate it as
a minimization problem and derive the optimality conditions for a minimizer.
In Section 6.5 we make calculations, which help to understand the decomposi-
tion algorithm from an analytical point of view. In Section 6.6 we derive a fixed
point algorithm for numerical minimization of the energy functional. Finally
in Section 6.7 and Section 6.8 we present experiments, results and a discussion
of them.

6.2 Registration and optical flow

The problem of aligning dynamic sequences f(·, t) can be formulated as the
operator equation, of finding a flow Ψ of diffeomorphisms,

Ψ(·, t) : Ω → Ω, ∀t ∈ [0, T ],

such that
f(Ψ(�x, t), t) = f(�x, 0), ∀�x ∈ Ω and t ∈ [0, T ]. (6.1)

For natural images, in general, it is not possible to solve equation (6.1) subject
to the constraint that Ψ is a diffeomorphism for every t, because of occlusions,
illumination changes, noise, and information gain/loss in the movie over time.
Thus the optical flow and image registration community typically do not con-
sider this constraint, in contrast to the shape registration community (see for
instance [19, 65]).

Differentiation of (6.1) with respect to t for a fixed �x gives

∇f(Ψ(�x, t), t) ·∂tΨ(�x, t)+∂tf(Ψ(�x, t), t) = 0, ∀�x ∈ Ω and t ∈ [0, T ]. (6.2)

Switching from a Lagrangian to an Eulerian description allows to define the
optical flow equation (OFE) on Ω:

∇f(�x, t) · �u(�x, t) + ∂tf(�x, t) = 0, ∀�x ∈ Ω and t ∈ [0, T ]. (6.3)

In particular this means that (6.3) is not well-motivated on subsets of Ω which
are not met by a characteristic curve in space and time starting from t = 0.
This problem is less relevant if the optical flow equation is considered for just
two consecutive frames, which is the standard optical flow approach in the
literature. In this case, a characteristic originates always at some point Ω
through the re-initialization at each pair of frames. Instead of solving (6.3)
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usually the relaxed problem is considered, which consists in minimizing the
functional

S(�u) :=
�

Ω
(∇f(�x, t) · �u(�x, t) + ∂tf(�x, t))2 d�x → min, , ∀t ∈ [0, T ] (6.4)

subject to appropriate constraints.

6.3 The optical flow equation in case of illumination
disturbances

In this section we are showing simple motivating examples explaining properties
of the solution of the optical flow equation (6.3) under changing illumination
conditions.

Example 1. We consider the 1D optical flow equation, to solve for u in

∂xf(x, t)u(x, t) + ∂tf(x, t) = 0 in (0, 1) × (0, 1) (6.5)

for the specific data

f(x, t) = f̃(x)g(t) for (x, t) ∈ (0, 1) × (0, 1). (6.6)

f represents a dynamic sequence with brightness variation, g over time. We
are more specific and take:

f̃(x) = x(1 − x) and g(t) = 1 − t. (6.7)

The function f and the level lines are plotted in Figure 6.1 and the optical flow
can be explicitly calculated:

u(x, t) = x(1 − x)
1 − 2x

1
1 − t

indicates a transport of intensities from outside to the center 1/2. We observe
that u(1/2, t) and u(x, 1) are singularities of the optical flow. From the defini-

Figure 6.1: f(x, t) = x(1−x)(1−t) from (6.7). Level lines of f are parametrized
by (Ψ(x, t), t).

tion of u it follows that

û(x, t) :=
� t

0
u(x, τ) dτ = −x(1 − x)

1 − 2x
log(1 − t),
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and thus
�û�2

L2((0,1)2) =
� 1

0

x2(1 − x)2

(1 − 2x)2 dx

� 1

0
log2(1 − t) dt

=2
� 1

0

x2(1 − x)2

(1 − 2x)2 dx = ∞,

or in other words u /∈ L2((0, 1)2). In contrast, constraining the equation to a
compact domain C of (0, 1/2) in space u ∈ L2(C × (0, 1)).

The deformation Ψ of the non-linear optical flow equation is given by

Ψ(x, t) = 1
2 ±

�
1
4 − x(1 − x)

1 − t
for t ≤ 4

�
x − 1

2

�2
,

where the branch of Ψ with + is active if x > 1/2 and the other branch holds
for x < 1/2. Moreover, we have

∂tΨ(x, t) = ∓ x(1 − x)�
1 − t − 4x(1 − x)

1
(1 − t)3/2 .

This shows that the flow has a singularity (endpoint) at t = 1 − 4x(1 − x).
In Figure 6.2 there are shown u and ∂tΨ. Along characteristics (initiated

at t = 0) the optical flow equation produces the same results as the registration
equation. However, note that Ψ(x, t) satisfies the equation

∂xf(Ψ(x, t), t)∂tΨ(x, t) + ∂tf(Ψ(x, t), t) = 0,

which in comparison to (6.3) evaluates f at space locations Ψ(x, t) instead of x
and ∂tΨ and u have to be compared at different space positions in the domain,
which are covered by characteristics.

0.1 0.2 0.3 0.4

−10

10

20

x values

u
∂tΨ

Figure 6.2: Linear versus non-linear optical flow: u and ∂tΨ at t = 1/4. Note
that ∂tΨ is only defined in the interval [0, 1/4], which is plotted, while u is
defined for [0, 1/2).

We expect that a collapse of characteristics manifest itself in less smoothness
of the optical flow. In fact such situations appear in practical situations when
occlusions are recorded.
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Example 2. We consider input data f of the form (6.6) with

f̃(x) = x(1 − x) and g(t) = exp
�

− 1
β

(1 − t)β

�
with some 0 < β < 1 (6.8)

for (x, t) ∈ Ω̂ := (0, 1/4) × (0, 1). The optical flow is given by

u(x, t) = −x(1 − x)
1 − 2x

(1 − t)β−1.

Integrating this function over time gives

û(x, t) :=
� t

0
u(x, τ) dτ = x(1 − x)

1 − 2x

1
β

((1 − t)β − 1),

and consequently with

Figure 6.3: g(t) = exp
�

− 1
β (1 − t)β

�

C := 1
β2

� 1/4

0

x2(1 − x)2

(1 − 2x)2 dx < ∞ ,

we get

�u�2
L2(Ω̂) = C

� 1

0
t2β−2 dt =

�
C 1

2β−1 if β > 1
2 ,

∞ else .

�û�2
L2(Ω̂) = C

� 1

0
t2β − 2tβ + 1 dt =

�
C
�

1
2β+1 − 2

β+1 + 1
�

if β > − 1
2 ,

∞ else .

This shows that for 0 < β < 1/2 u /∈ L2(Ω̂) but û ∈ L2(Ω̂).

The bottom line of these examples is that illumination changes, such as flick-
ering, may result in singularities of the optical flow and a violation of standard
smoothness assumptions of the optical flow field. The potential appearance of
the singularities motivates us to consider regularization terms for optical flow
computations, which allow for singularities over time, such as negative Sobolev
norms or G-norms.
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6.4 Optical flow decomposition: basic setup and
formalism

In this paper we derive an optical flow model for decomposing the flow field
into spatial and temporal components. We consider the frames defined on a
two-dimensional domain and in order to minimize the number of constants we
take in (6.3) the time-interval (0, 1) and Ω = (0, 1)2. We assume that the
optical flow field to be a compound of two flow field components

�u(�x, t) = �u(1)(�x, t) + �u(2)(�x, t) =
�

u
(1)
1 (�x, t)

u
(1)
2 (�x, t)

�
+
�

u
(2)
1 (�x, t)

u
(2)
2 (�x, t)

�
.

Because there appears a series of indices and variables it is convenient to specify
the notation first:

�x = (x1, x2) Euclidean space
∂k = ∂

∂xk
Differentiation with respect to spatial variable
xk

∂t = ∂
∂t Differentiation with respect to time

∇ = (∂1, ∂2)T Gradient in space
∇3 = (∂1, ∂2, ∂t)T Gradient in space and time

∇· = ∂1 + ∂2 Divergence in space
∇3· = ∂1 + ∂2 + ∂t Divergence in space and time

�n normal vector to Ω
f input sequence

f(·, t) movie frame
�u(i) optical flow module, i = 1, 2

�u = �u(1) + �u(2) optical flow
u

(i)
j j-th optical flow component of the i-th module

Ψ(i) components of deformation,
Ψ = Ψ(1) + Ψ(2) total deformation

�u(·, t) =
� t

0 u(·, τ) dτ Primitive of u
��u(·, t) = −

� 1
t
�u(·, τ) dτ 2nd Primitive of u - note ∂t

��u(·, t) = �u(·, t)

The OFE-equation (6.3) contains four unknown (real valued) functions u
(i)
j ,

i, j = 1, 2, and thus is highly under-determined. To overcome the lack of
equations, the problem is formulated as a constrained optimization problem,
to determine, for some fixed α > 0,

argmin
�

R(1)(�u(1)) + αR(2)(�u(2))
�

(6.9)

subject to (6.3). Here R(i), i = 1, 2 are convex, non-negative functionals,
such that R(1) + αR(2) is strictly convex. Instead of solving the constrained
optimization problem, we use a soft variant and minimize the unconstrained
regularization functional:

F(�u(1), �u(2)) := E(�u(1), �u(2)) +
2�

i=1
α(i)R(i)(�u(i)),

E(�u(1), �u(2)) :=
�

Ω×(0,1)

(∇f · (�u(1) + �u(2)) + ∂tf)2 d�xdt with α = α(2)

α(1) .

(6.10)
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In the following we design the regularizers R(i). Moreover, for the sake of sim-
plicity of presentation, we omit the space and time arguments of the functions
u

(i)
j and f , whenever it simplifies the formulas without possible misinterpreta-

tions.

• For R(1) we use a common spatial-temporal regularization functional for
optical flow regularization (see for instance [142]):

R(1)(�u(1)) :=
�

Ω×(0,1)

ν

����∇3u
(1)
1

���
2

+
���∇3u

(1)
2

���
2
�

d�xdτ, (6.11)

where ν : [0, ∞) → [0, ∞) is a monotonically increasing, differentiable
function. For the choice of ν we follow [142] and take

ν(r) = �r + (1 − �)λ2
�

1 + r

λ2 , ∀r ∈ [0, ∞) , (6.12)

with 0 < � � 1 and λ > 0. The function r → ν ◦ (r → r2) is convex
in r and there exist constants c1, c2 > 0 with c1r2 ≤ ν(r) ≤ c2r2 for all
r ∈ �. Moreover, we denote by ν � the derivative of ν.

• R(2) is designed to penalize for variations of the second component in
time. Motivated by Y. Meyer’s book [87], we introduce a regularization
term, which is non-local in time. We have seen in Example 1 that u
may violate L2-smoothness in case of changing illumination conditions.
Variations of Meyer’s G-norm where used in energy functionals for calcu-
lating spatial decompositions of the optical flow [1, 69]. It is a challenge
to compute the G-norm efficiently, and therefore workarounds have been
proposed. For instance [134] proposed as an alternative at the G-norm
the following realization for the H−1 norm: For a generalized function
u : (0, 1) → �, they defined

�u�2
H−1 = −

� 1

0
u(t)∂−1

tt u(t)dt .

Here, we use this workaround for a realization for the temporal H−1-
norm, which we use as a regularization functional:

R(2)(�u(2)) :=
�

Ω×(0,1)

����
� t

0
�u(2)(�x, τ)dτ

����
2

d�xdt =
2�

j=1

�

Ω×(0,1)

�
�u(2)

j (�x, t)
�2

d�xdt.

(6.13)
To see the analogy with the �·�H−1 -norm from [134] we note that the
second primitive of the optical flow component �u(2), satisfies for j = 1, 2
and �x ∈ Ω

��u(2)
j (�x, 1) = 0, ∂t

��u(2)
j (�x, 0) = �u(2)

j (�x, 0) = 0. (6.14)

Then, by integration by parts it follows that

−
� 1

0
��u(2)

j (t)
� �� �

=∂−1
tt u

(2)
j

u
(2)
j (t) dt =

� 1

0

�
�u(2)

j (t)
�2

dt
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and therefore

R(2)(�u(2)) =
2�

j=1

�

Ω

���u
(2)
j (�x, ·)

���
2

H−1
d�x. (6.15)

Energy functional and minimization
We are determining the optimality conditions for minimizers of F introduced in
(6.10). Necessary conditions for a minimizer are that the directional derivatives
vanish for all 2-dimensional vector valued functions �h(j) : Ω × (0, 1) → �

2,
j = 1, 2. To formulate these conditions we use the simplifying notation:

(E , F) := (E , F)(�u(1), �u(2)), R(i) := R(i)(�u(i)) and res = ∇f ·(�u(1) +�u(2))+∂tf .

Therefore the directional derivative of F in direction �u(j) is given by:

(∂�u(j)F)�h(j) = lim
s→0

F(�u(1) + sδ1j
�h(1), �u(2) + sδ2j

�h(2)) − F
s

= 0

where δij = 1 for i = j and zero else is the Kronecker symbol. The gradient of
the functional F from (6.10) can be determined by calculating the directional
derivatives of E and R(i), separately.

• The directional derivative of E in direction �h(j) is given by

(∂�u(j)E)�h(j) = 2
�

Ω×(0,1)

res∇f · �h(j) d�xdt. (6.16)

• The directional derivative of R(1) at �u(1) in direction �h(1) is determined
as follows: Let us abbreviate for simplicity of presentation

ν := ν

����∇3u
(1)
1

���
2

+
���∇3u

(1)
2

���
2
�

, ν� := ν�
����∇3u

(1)
1

���
2

+
���∇3u

(1)
2

���
2
�

,

then the directional derivative of R(1) in direction �h(1) at �u(1) is given by

(∂�u(1)R(1))�h(1) = lim
s→0

R(1)(�u(1) + s�h(1)) − R(1)

s

= lim
s→0

1
s

�

Ω×(0,1)
ν

����∇3(u(1)
1 + sh

(1)
1 )
���
2

+
���∇3(u(1)

2 + sh
(1)
2 )
���
2
�

− ν d�xdt

= − 2
�

Ω×(0,1)
∇3 ·

�
ν�∇3u

(1)
1

�
h

(1)
1 + ∇3 ·

�
ν�∇3u

(1)
2

�
h

(1)
2 d�xdt,

(6.17)
where integration by parts is used to prove the final identity.

• The directional derivative of R(2) is derived as follows:

(∂�u(2)R(2))�h(2) = lim
s→0

R(2)(�u(2) + s�h(2)) − R(2)

s

= lim
s→0

1
s

�

Ω×(0,1)

�����
� t

0
�u(2) + s�h(2)dτ

����
2

−
����
� t

0
�u(2)dτ

����
2�

d�xdt

=2
2�

j=1

�

Ω×(0,1)
�u(2)

j
�h(2)

j d�xdt.

(6.18)
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Moreover, it follows by integration by parts of the last line of (6.18) with
respect to t that

(∂�u(2)R(2))�h(2) = −2
2�

j=1

�

Ω×(0,1)
��u(2)

j (�x, t)h(2)
j (�x, t)d�xdt. (6.19)

Now, because of (6.17) and (6.16) it follows that the minimizer �u(i), i = 1, 2
has to satisfy for every j = 1, 2,

∂jf(∇f · (�u(1) + �u(2)) + ∂tf) − α(1)∇3 ·
�

ν�∇3u
(1)
j

�
= 0 in Ω × (0, 1),

∂�nu
(1)
j = 0 in ∂Ω × (0, 1),

∂tu
(1)
j = 0 in Ω × {0, 1} .

(6.20)
Because of (6.16) and (6.19) hold for all �h

(2)
j , it follows that for every j = 1, 2,

∂jf(∇f · (�u(1) + �u(2)) + ∂tf) − α(2)��u(2)
j = 0 in Ω × (0, 1). (6.21)

Thus the optimality conditions for a minimizer are (6.20) and (6.21).

6.5 Optical flow decomposition in 1D

In order to make transparent the features of our decomposition we study exem-
plary the 1D case again. From regularization theory (see e.g. [116]) we know
that the minimizers (u(1)

�α , u
(2)
�α ), for �α = (α(1), α(2)) → 0, are converging to a

solution of the optical flow equation which minimizes

R = R(1) + αR(2) for α = lim
�α→0

α(2)

α(1) > 0 .

Such a solution is called R minimizing solution. Note that by the 1D simplifi-
cation the modules u(i), i = 1, 2 are single valued functions.

We calculate the decomposition for the optical flow equation (6.5), for the
specific test data (6.6). The regularized solutions approximate the R minimiz-
ing solution, and thus these calculations can be viewed representative for the
properties of the minimizer of the regularization method. For these particular
kind of data the solution of the optical flow equation is given by :

u(x, t) = − f̃(x)
∂xf̃(x)

∂tg(t)
g(t) = − ∂t(log g)(t)

∂x(log f̃)(x)
. (6.22)

Let us assume that (log g)(t) − (log g)(0) can be expanded into a Fourier sin-
series:

(log g)(t) − (log g)(0) =
� t

0
∂t(log g)(τ) dτ =

∞�

n=1
ĝn sin(nπt). (6.23)

Moreover, we assume that 1/∂x(log f̃)(x) can be expanded in a cos-series:

1
∂x(log f̃)(x)

=
∞�

m=0
fm cos(mπx). (6.24)
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Then
− (log g)(t) − (log g)(0)

∂x(log f̃)(x)
= �u(x, t) = �u1(x, t) + �u2(x, t). (6.25)

Inserting this identity in the regularization functional

R(u(1), u(2)) =
�

(0,1)×(0,1)
(∂xu(1))2 + (∂tu

(1))2 + α
�

û(2)
�2

dxdt ,

we remove the u(2) dependence, and we get

R(û(1)) :=
�

(0,1)×(0,1)
(∂xtû

(1))2 + (∂ttû
(1))2 + α

�
(log g)(t) − (log g)(0)

∂x(log f̃)(x)
+ û(1)

�2
dxdt,

where we enforce the following boundary conditions on û(1): From the definition
of û(1) it follows that û(1)(x, 0) = 0. Secondly, we enforce û(1)(x, 1) = 0. In
fact, the assumption is reasonable because of the choice of ĝ, when the series�∞

n=0 ĝn is absolutely convergent, ĝ(1) = 0, which implies that û(1)(x, 1) +
û(2)(x, 1) = 0, which is guaranteed in particular by û(1)(x, 1) = û(2)(x, 1) = 0.

By substituting the relation between û(2) and û(1) we reduce the constraint
optimization problem to an unconstrained optimization problem for û(1), and
the minimizer solves the partial differential equation

∂ttxxû(1) + ∂ttttû
(1) + α

�
(log g)(t) − (log g)(0)

∂x(log f̃)(x)
+ û(1)

�
= 0 in (0, 1) × (0, 1),

together with the boundary conditions:

∂ttû
(1) = û(1) = 0 on (0, 1) × {0, 1} ,

∂x∂ttû
(1) = 0 on {0, 1} × (0, 1).

(6.26)

Now, we substitute ŵ := ∂ttû
(1), and we get the following system of equations

∂xxŵ + ∂ttŵ = −α

�
(log g)(t) − (log g)(0)

∂x(log f̃)(x)
+ û(1)

�
in (0, 1) × (0, 1),

ŵ = 0 on (0, 1) × {0, 1} ,

∂xŵ = 0 on {0, 1} × (0, 1).

(6.27)

and
û(1)(x, t) =

� t

0

� τ

0
ŵ(x, τ̂)dτ̂dτ − t

� 1

0

� τ

0
ŵ(x, τ̂)dτ̂dτ.

ŵ can be expanded as follows:

ŵ(x, t) =
∞�

m,n=0
ŵmn cos(mπx) sin(nπt),

and we expand û(1) in an analogous manner:

û(1)(x, t) =
∞�

m,n=0
û(1)

mn cos(mπx) sin(nπt) ,
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such that
ŵmn = −n2π2û(1)

mn, ∀m, n ∈ �0. (6.28)
Thus it follows from (6.27) that

ŵmn(m2 + n2)π2 = α
�

û(1)
mn + fmĝn

�
, ∀m, n ∈ �0. (6.29)

(6.28) and (6.29) imply that

û(1)
mn = − α

α + π4(m2 + n2)n2 fmĝn, ∀m, n ∈ �0. (6.30)

Now, consider a specific test example g(t) = exp
�

sin(n0πt)
n0π

�
for some n0 ∈ �.

Then, from (6.22) it follows that u(x, t) = − cos(n0πt)
∂x(log f̃)(x) , and correspondingly

we have

(log g)(t) − (log g)(0) = sin(n0πt)
n0π

=
∞�

n=1

δnn0

n0π
sin(nπt).

In this case it follows from (6.30) that

û(1)
mn = − α

α + π4(m2 + n2
0)n2

0

δnn0

n0π
fm.

For flickering u(2) is pronounced (if n0 is large û
(1)
mn ≈ 0) while in the quasi-

static case u(1) is dominant. Moreover, we also see that spatial components
belonging to Fourier-cos coefficients with large m are more pronounced in the
u(2) component, and the spatial and temporal coefficients are mixed.

6.6 Numerics

In this section we discuss the numerical minimization of the energy functional
F defined in (6.10). Our approach is based on solving the optimality conditions
for the minimizer u

(i)
j , i, j = 1, 2 from (6.20), (6.21) with a fixed point iteration.

We call the iterates of the fixed point iteration u
(i)
j (�x, t; k), for k = 1, 2, . . . , K,

where K denotes the maximal number of iterations. We summarize all the
iterates of the components of flow functions u

(i)
j in a tensor of size M × N ×

T × K. In this section we use the notation as reported in table 6.1. For every
tensor H = (H(r, s, t)) ∈ �M×N×T (representing a complete movie) we define
the discrete gradient

∇h
3 H(r, s, t) = (∂h

1 H(r, s, t), ∂h
2 H(r, s, t), ∂h

t H(r, s, t))T for (r, s, t) ∈ �M×N×T ,

where

∂h
1 H(r, s, t) =H(r + 1, s, t) − H(r − 1, s, t)

2Δx
if 1 < r < M

∂h
2 H(r, s, t) =H(r, s + 1, t) − H(r, s − 1, t)

2Δy
if 1 < s < N

∂h
t H(r, s, t) =H(r, s, t + 1) − H(r, s, t − 1)

2Δt
if 1 < t < T

(6.31)
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f = f(r, s, t) ∈ �M×N×T Input sequence
�u(i) = �u(i)(r, s, t; k) ∈ �M×N×T ×K×2 artificial optical flow module

�u(i) = �u(i)(r, s, t) = �u(i)(r, s, t; K) formal relation between
∈ �M×N×T ×2 artificial and optical flow module

u
(i)
j = u

(i)
j (r, s, t; k) ∈ �M×N×T ×K component of artificial optical flow

module
u

(i)
j = u

(i)
j (r, s, t) = u

(i)
j (r, s, t; K) formal relation between
∈ �M×N×T components of artificial and optical flow

module
∂h

k Finite difference approximation in
direction xk

∂h
t Finite difference approximation in

direction t

Table 6.1: Discrete Notation

and Δx = 1
M−1 , Δy = 1

N−1 and Δt = 1
T −1 . Again, whenever possible, we

leave out the indices. Moreover, we define the discrete divergence, which is the
adjoint of the discrete gradient: Let (H1, H2, H3)T (r, s, t), then

∇h
3 · (H1, H2, H3)T = ∂h

1 H1 + ∂h
2 H2 + ∂h

t H3. (6.32)

The realization of the fixed point iteration for solving the discretized equations
(6.20) and (6.21) reads as follows:

• k = 0: we initialize two flow components �u(1)(·; 0), �u(2)(·; 0) ∈ �M×N×K×2.

• k → k + 1: let ν �(k) := ν�(|∇h
3 u

(1)
1 (·; k)|2 + |∇h

3 u
(2)
1 (·; k)|2), then

u
(1)
1 (·; k + 1) − u

(1)
1 (·; k)

Δτ
= ∇h

3 ·
�

ν�(k)∇h
3 u

(1)
1 (·; k)

�

− ∂h
1 f

α(1)

�
∂h

1 f
�

u
(1)
1 (·; k + 1) + u

(2)
1 (·; k)

�

+ ∂h
2 f
�

u
(1)
2 (·; k) + u

(2)
2 (·; k)

�
+ ∂h

t f

�
,

(6.33)

u
(1)
2 (·; k + 1) − u

(1)
2 (·; k)

Δτ
= ∇h

3 · (ν�(k)∇h
3 u

(1)
2 (·; k))

− ∂h
2 f

α(1)

�
∂h

1 f
�

u
(1)
1 (·; k + 1) + u

(2)
1 (·; k)

�

+ ∂h
2 f
�

u
(1)
2 (·; k + 1) + u

(2)
2 (·; k)

�
+ ∂h

t f

�
,

(6.34)
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u
(2)
1 (·; k + 1) − u

(2)
1 (·; k)

Δτ
= ��u(2)

1 (·; k)

− ∂h
1 f

α(2)

�
∂h

1 f
�

u
(1)
1 (·; k + 1) + u

(2)
1 (·; k + 1)

�

+ ∂h
2 f
�

u
(1)
2 (·; k + 1) + u

(2)
2 (·; k)

�
+ ∂h

t f

�
,

(6.35)
and

u
(2)
2 (·; k + 1) − u

(2)
2 (·; k)

Δτ
= ��u(2)

2 (·; k)

− ∂h
2 f

α(2)

�
∂h

1 f
�

u
(1)
1 (·; k + 1) + u

(2)
1 (·; k + 1)

�

+ ∂h
2 f
�

u
(1)
2 (·; k + 1) + u

(2)
2 (·; k + 1)

�
+ ∂h

t f

�
,

(6.36)
where

��u(2)
j (r, s, t; k) = −

1�

τ=t

τ�

τ̃=0
u

(2)
j (r, s, τ̃ ; k), j = 1, 2.

and Δτ is the step size parameter, which has been set to 10−4.
The system (6.33),(6.34),(6.35),(6.36) can be solved efficiently using the
special structure of the matrix equation similarly to [141, 142].

The iterations are stopped when the Euclidean norm of the relative error

|u(i)
j (·, k) − u

(i)
j (·, k + 1)|

|u(i)
j (·, k)|

, j = 1, 2

drops below the precision tolerance value tol = 0.05 for at least one of the
component of �u(1) and one of �u(2). The typical number of iterations is much
below 100.

6.7 Experiments

In this section we present numerical experiments to demonstrate the potential
of the proposed optical flow decomposition model. In the first two experiments
we use for visualization of the computed flow fields the standard flow color
coding [14]. The flow vectors are represented in color space via the color wheel
illustrated in Figure 6.4. For the third and fourth experiment we use a black
and white visualization technique. There black is assigned to pixels where no
flow is present and a gray-shade elsewhere, which is proportional to the flow
magnitude. In order to compare frequencies of the sequences used for testing
all the intensity values of f are scaled in the range (0, 1). The used parameters
are reported for each experiment except for Δx, Δy, Δt defined as in Section
6.6. In this work we consider the following four dynamic image sequences:

• The first experiment is performed with the video sequence from [83]
(available at http://of-eval.sourceforge.net/) which consists of forty-
six frames showing a rotating sphere with some overlaid patterns. The
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Figure 6.4: Color Wheel.

analytical results from Section 6.5 in 1D show that the intensity of the �u(2)

component increases monotonically with increasing frequency over time.
We verify this hypothesis numerically in higher dimensions. We simulate
in particular two, four and eight times the original motion frequency. In
order to do so, we duplicate the sequence periodically, however consider
it to be in the same time interval (0, 1). The flow visualized in Figure 6.5
is the one between the 16th and the 17th frame of every sequence. We
study the behavior of the sphere at different motion frequencies with the
same parameter setting α(1) = 1, α(2) = 1

4 . The numerical results confirm
the 1D observation that for high frequency movement �u(2) is dominant
(cf. Figures 6.5) and �u(1) is always 20% of �u(2).

Figure 6.5: �u(2) at different frequencies of rotations: 2, 4 and 8× faster than the
original motion frequency. α(1) = 1, α(2) = 1

4 . The intensity of �u(2) increases
when the frequency of rotation is increased.

• The second experiment concerns the decomposition of the motion in a
dynamic image sequence showing a projection of a cube moving over
an oscillating background. The movie consists of sixty frames and can
be viewed on the web-page http://www.csc.univie.ac.at/index.php?
page=visualattention.
The background is oscillating in diagonal direction, from the bottom left
to the top right, with a periodicity of four frames. In each frame the oscil-
lation has a rate of 5% of the frame size. The flow visualized in Figure 6.6
is the one between the 20th and the 21st frame of the sequence. Applying
the proposed method with a parameter setting α(1) = 103, α(2) = 103,
Δτ = 10−5, and precision tolerance tol = 0.001, we notice that the back-
ground movement appears almost solely in �u(2) and the global movement
of the cube appears in �u(1). In Figure 6.6 we represent only flow vectors
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with magnitude larger than 0.05 and omit in �u(2) the part in common
with �u(1) for better visibility.

Figure 6.6: The dynamic sequence consists of the smooth (translation like) mo-
tion of a cube and an oscillating background. The oscillation has a periodicity
of four frames and takes place along the diagonal direction from the bottom
left to the top right, moving at a rate of 5% of the frame size in each frame.
The proposed model decomposes the motion, obtaining the global movement
of the cube in �u(1) (left) and the background movement solely in �u(2) (right).

• In the third experiment the original movie consists of thirty-two frames
and can be viewed together with the decomposition result on the web-
page http://www.csc.univie.ac.at/index.php?page=visualattention.
The flow is decomposed into two components. The first part shows the
movement of a Ferris wheel and people walking. The second part shows
blinking lights and the reflection of the wheel. The flow visualized in
Figure 6.7 is the one between the 4th and the 5th frame of the sequence
with a parameter setting α(1) = 1, α(2) = 1

4 . In order to improve the
visibility we represent only flow vectors with magnitude larger than 0.18
and we omit in �u(2) the part in common with �u(1).

• The fourth example is flickering. In a standard flickering experiment,
the difference in human attention is investigated by inclusion of blank
images in a repetitive image sequence. Although, in general, these blank
images are not deliberately recognized, they change the awareness of the
test persons. J. K. O’Regan [97] states that “Change blindness is a phe-
nomenon in which a very large change in a picture will not be seen by a
viewer, if the change is accompanied by a visual disturbance that prevents
attention from going to the change location”. They provided test data
http://nivea.psycho.univ-paris5.fr, which we used for our simula-
tions. The proposed optical flow decomposition is able to detect regions,
which also humans can recognize, but standard optical flow algorithms
fail to: To show this the input sequence is composed by four frames con-
sisting of Frame 1, a blank image, Frame 2 and again an identical blank
image (see Figure 6.9 (top)). This sequence is then aligned periodically
to a movie. We interpret the movie as a linear interpolation between the
frames.
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Figure 6.7: �u(1): Movement of a Ferris wheel and people walking in the fore-
ground (top left). �u(2) consists of blinking lights and the reflections of the
wheel (top right). The third image (bottom) is a reference frame.

We test and compare Horn-Schunck, Weickert-Schnörr and the proposed
algorithm. We set the smoothness parameter α(1) to a value of one for

Figure 6.8: Result with Horn-Schunck

all the methods. Moreover, for our approach we set α(2) = 1. For Horn-
Schunck we visualize the flow field in Figure 6.8. This flow is the one
between the blank frame and the slightly changed frame, which exceeds
a threshold of 3.9. The results obtained by applying Weickert-Schnörr
and the �u(1) field of our approach, respectively, are small in magnitude.
Therefore, we do not visualize them. This behavior is coherent with
the motivation of the Weickert-Schnörr method to produce an optical
flow that is less sensitive to variations over space and time. Finally, we
visualize in Figure 6.9 (down right) the �u(2) flow field for the proposed
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approach. For the visualization we omit all vectors with magnitude lower
than 0.18. In order to make transparent the result, we show in Figure
6.9 (down left) the difference between the two frames of the sequence
containing information (see Figure 6.9 (top)). In this experiment, we

Figure 6.9: The two frames of the flickering sequence containing information
(top), the difference between these two frames (down left), and the �u(2) flow
field resulting from the proposed approach (down right). As predicted in sec-
tions 6.3 and 6.5 the �u(1) component is negligible, instead �u(2) detects the
change of intensity across the blank sheet.

notice that the �u(1) component is negligible, instead �u(2) detects the areas
affected by change of intensities (see Figure 6.9 (down right)).

Additional Information
In the following, we show the capacity of our model to extract more and dif-
ferent information compared to standard optical flow algorithms. The current
literature focuses on average angular and endpoint error [14] in order to com-
pare optical flow algorithms. Our model extracts information, that is neglected
by standard algorithms. Such difference can be shown through a quantitative
comparison of models. For this purpose, we use well-known test sequences from
the Middlebury database http://vision.middlebury.edu/flow/, and evalu-
ate the residual of the optical flow constraint. We compare the residual of our
method with the one of the Horn-Schunck method [57]. However, the Horn-
Schunck method does not take into account time information, and therefore we
calculate for every pair of successive frames and stack the series of flow images
into a movie. For calculating the flow for one pair we use the regularization
parameter α = 400 and 50 iterations for every pair of frames. For the proposed
method α(1) = 400, α(2) = 10 and tolerance value tol = 0.03. In this case the
whole image sequence is used at once.
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The parameters α(1), α(2) are chosen larger than 1 in order to avoid over-
fitting. For every pair of successive images f1 and f2 we visualize the squared
residual �

Ω

�
∇f1 · �u + f2 − f1

Δt

�2
d�x,

both for Horn-Schunck and the proposed method. Note that for the comparison
we omit space dependency of the movie. We notice from Figure 6.10 that
the squared residual is larger in every frame for Horn-Schunck than for our
decomposition model, meaning that the proposed method is capable to extract
more flow information.
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Figure 6.10: Residuals for Hamburg taxi (up) and Minicooper sequence (down)
from Middlebury database. Residuals for Horn-Schunck are plotted in red, the
proposed method is plotted in blue.
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Weickert-Schnörr Proposed model
Hamburg Taxi 1374.9 1021
RubberWhale 4459.7 3046.8
Hydrangea 8533.3 7647.2
DogDance 9995.4 8217.6
Walking 8077.5 5944.3

Table 6.2: Comparison of squared residuals over space and time E between
Weickert-Schnörr and the proposed method.

In order to understand how much information our method is capable to
extract from an entire dynamic sequence, we also calculate the residual squared
over space and time: E(�u(1), �u(2)) as in (6.10) and compare it with the squared
residual over space and time of the Weickert-Schnörr method [141, 142]. We
use the parameter settings α(1) = 100 (α = α(1) in Weickert-Schnörr) and
α(2) = 1

4 , tolerance tol = 0.01, in order to have a good comparison of the two
methods. Again the residual is smaller for the proposed method as shown in
table 6.2.

6.8 Conclusion

We present a new optical flow model for decomposing the flow in spatial and
temporal components of different scales. A main ingredient of our work is a new
variational formulation of the optical flow equation. Finally, many applications
are considered both analytically and computationally in case of illumination
disturbances.
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Abstract

Saliency maps are used to understand human attention and visual
fixation. However, while very well established for static images, there
is no general agreement on how to compute a saliency map of dynamic
scenes. In this paper we propose a mathematically rigorous approach
to this problem, including static saliency maps of each video frame for
the calculation of the optical flow. Taking into account static saliency
maps for calculating the optical flow allows for overcoming the aperture
problem. Our approach is able to explain human fixation behavior in
situations which pose challenges to standard approaches, such as when
a fixated object disappears behind an occlusion and reappears after sev-
eral frames. In addition, we quantitatively compare our model against
alternative solutions using a large eye tracking data set. Together, our
results suggest that assessing optical flow information across a series of
saliency maps gives a highly accurate and useful account of human overt
attention in dynamic scenes.

Keywords: Saliency, visual attention, eye movements, optical flow, motion,
dynamic scenes, variational approach.

7.1 Introduction

Humans and other primates focus their perceptual and cognitive processing on
aspects of the visual input. This selectivity is known as visual attention and it
is closely linked to eye movements: humans rapidly shift their center of gaze
multiple times per second from one location of an image to another. These gaze
shifts are called saccades, and they are necessary because high acuity vision
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is limited to a small central area of the visual field. Fixations are the periods
between two saccades, in which the eyes rest relatively still on one location
from which information is perceived with high acuity. Consequently, fixations
reflect which areas of an image attract the viewer’s attention.

Models of visual attention and eye behavior can be roughly categorized into
two classes: bottom-up models, which are task-independent and driven mainly
by the intrinsic features of the visual stimuli, and top-down models, which are
task-dependent and driven by high-level processes [55]. Our focus in this article
is on bottom-up models. A central concept in bottom-up models of attention is
the saliency map, which is a topographical representation of the original image
representing the probability of each location to attract the viewer’s attention.
Saliency maps are useful for testing hypotheses on the importance of the current
image’s low-level visual features (such as color, luminance, or orientation).
Moreover, saliency models allow for general predictions on the locations that
are fixated by human viewers. This is important in many contexts, such as the
optimization of video compression algorithms or of graphical user interfaces
at the workplace as well as in entertainment environments, to name but a few
examples. A location in an image is considered salient if it stands out compared
to its local surroundings.

Saliency maps are often computed based on low-level visual features and
their local contrast strengths in dimensions such as color, luminance, or orien-
tation. A well-known model for static scenes is the one of [64]. Other examples
are graph-based visual saliency (GBVS)[53], gaze-attentive fixation finding en-
gine (GAFFE)[108], frequency-tuned saliency detection model [3] and models
based on phase spectrum, explained by the inverse Fourier transform [52].

Recent work is devoted to develop concepts of saliency maps of dynamic
sequences [42, 62, 60, 63, 77, 109]. These spatial-temporal saliency maps are
modeled as the weighted sum of motion features and of static saliency maps
[42, 60, 62, 63, 76, 77, 79, 81, 104, 109, 119, 148].

The present work introduces a novel dynamic saliency map, which is the
optical flow of a high-dimensional dynamic sequence. Extending the concept of
saliency to dynamic sequences by including optical flow as an additional source
for bottom-up saliency is not new per se [48, 81, 130, 136]. However, while
other researchers use the optical flow as a feature of the dynamic saliency map,
we define the dynamic saliency map as the optical flow itself. In detail:

1. we calculate the flow of a virtual, high-dimensional image sequence, which
consists of (i) intensity and (ii) color channels, complemented by saliency
maps, respectively;

2. we also consider the complete movie (consisting of all frames) for the com-
putation of a dynamic saliency map. In contrast, in [42, 60, 62, 63, 76,
77, 79, 81, 104, 109, 119, 148] (as it is standard), dynamic saliency maps
are obtained from optical flow features (see Figure 7.1) of two consecutive
frames. As we show below in section 7.4 this can lead to misinterpreta-
tions of visual attention, for instance, in the case of occlusions.

Our algorithm for calculating the dynamic saliency map is schematically
depicted in Figure 7.2. From the different methods proposed in the literature to
estimate optical flow, we focus on variational methods, which are key methods
in computational image processing and computer vision.
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Figure 7.1: The standard approach for calculating a dynamic saliency map

The outline of this paper is as follows: in section 7.2 we review the opti-
cal flow, introduce the new model and derive a fixed-point algorithm for the
computational realization; in section 7.3 we discuss the acquisition of the eye
tracking data; finally, in sections 7.4 and 7.5 we present experiments, results
and a discussion.

7.2 Computational methods

The optical flow denotes the pattern of apparent motion of objects and surfaces
in a dynamic sequence. The computational model of optical flow is based on
the brightness-constancy assumption, requiring that for every pixel there exists
a path through the movie which conserves brightness.

Basic optical flow calculations
We briefly outline the concept in a continuous mathematical formulation. We
consider a movie to be a time continuous recording of images, where each image
is described by a function defined for x = (x1, x2)t in the Euclidean plane �2.
This function representing the image is called frame. Moreover, we assume
that the movie to be analyzed has unit-length in time. That is, the movie can
be parametrized by a time t ∈ [0, 1]. If the frames composing a movie consist
of gray-valued images, then we describe each by a function f : �2 → �. If the
frame is completed by a spatial saliency map, then �f := (f1; f2)t : �2 → �

2,
where f1 is the recorded movie and f2 is the according saliency map. For a color
frame, �f := (f1, f2, f3)t : �2 → �

3, where each component represents a channel
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Combine
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channel
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Static
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Figure 7.2: The proposed approach for calculating a dynamic saliency map.
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of the color images; typically RGB (red-green-blue) or HSV (hue-saturation-
value) channels. A color frame, which is complemented by a saliency map is
described by �f := (f1, f2, f3; f4)t : �2 → �

4, where the first three components
are the color channels and the fourth component is the according saliency map.
For the sake of simplicity of notation, from now on, we will always write �f ,
even if f is a gray-valued image.

The optical flow equation is derived from the brightness constancy assump-
tion, which considers paths γ of constant intensity of the movie or the saliency
complemented movie, respectively. Note that in our setting we consider bright-
ness in each component. That is for

�f(γ(x, t), t) = �c (7.1)

for some constant vector �c. Note that we do not differentiate in our notation
between intensity, color, or saliency completed movies anymore and always
write �f for the image data.

A differential formulation of the brightness constancy assumption follows
from (7.1) by differentiation with respect to time (see for instance [57]):

J�f (x, t) · �u(x, t) + d�f

dt
(x, t) = 0 for all x ∈ �2 and t ∈ (0, 1) , (7.2)

where �u(x, t) = (u1(x, t), u2(x, t)) = dγ
dt (x, t) is the optical flow and J�f , d �f

dt

are the partial derivatives in space and time of the function �f , respectively.
Note that (u1(x, t), u2(x, t)) can both be vectors, and that the Jacobian J �f =
∇�f =

�
∂

∂x1
�f, ∂

∂x2
�f
�

is a two-dimensional vector if the movie is gray-valued, a
(2 × 2)-dimensional matrix if it is a saliency complemented gray-valued image,
a (3 × 2)-dimensional matrix if it is in color, and a (4 × 2)-dimensional matrix
if a color image is complemented by a saliency map.

Equation (7.2) is uniquely solvable at points (x, t) where J �f has full-rank
2. For gray-valued movies the matrix can have at most rank of one, and thus
the two unknown functions u1 and u2 cannot be reconstructed uniquely from
this equation. This is known as the aperture problem in Computer Vision. The
non-uniqueness is taken care of mathematically by restricting attention to the
minimum energy solution of (7.2) which minimizes, among all solutions, an
appropriately chosen energy, such as the one proposed in [57]:

E [t](�u) :=
�

�2
|∇u1(x, t)|2 + |∇u2(x, t)|2dx for all t ∈ [0, 1]. (7.3)

For every t ∈ (0, 1) the minimum energy solution can be approximated (see for
instance [116] for a rigorous mathematical statement) by the minimizer of

F [t](�u) :=
�

�2

�����J�f (x, t) · �u(x, t) + d�f

dt
(x, t)

�����

2

dx

+ α

�

�2
|∇u1(x, t)|2 + |∇u2(x, t)|2dx.

(7.4)

Here α > 0 is a weight (also called regularization) parameter.
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Different optical flow methods have been considered in the literature, which
are formulated via different regularization energies. For instance, in [142] it was
suggested to minimize

�

�2

�����J�f (x, t) · �u(x, t) + d�f

dt
(x, t)

�����

2

+ αΨ(|∇u1(x, t)|2 + |∇u2(x, t)|2)dx

for all t ∈ [0, 1],

(7.5)

where Ψ : �+
0 → �

+
0 is a monotonically increasing, differentiable function.

Note that in the original work of [142] the function �f is not saliency comple-
mented and the data �f only represents intensity images.

We note that in most applications, F [t] is realized by replacing J �f by the
spatial difference quotients, d �f

dt by the temporal difference of two consecutive
frames �f(x, ti), i = 1, 2, respectively, and appropriate scaling. This results in
the functional to be minimized:

�

�2

���J�f(·,t1) (x) · �u(x) + �f(x, t2) − �f(x, t1)
���
2

dx

+ α

�

�2
Ψ(|∇u1(x)|2 + |∇u2(x)|2)dx.

(7.6)

Remark 1. We emphasize that by the approximation of d �f
dt with the finite

difference �f(x, t2) − �f(x, t1) (where, we assume that after time scaling we have
t2 − t1 = 1), the equations (7.2) and

J�f(·,t1) (x) · �u(x) + �f(x, t2) − �f(x, t1) = 0 for all x ∈ �2 , (7.7)

might not be correlated anymore. This is especially true for large displacements
γ − I. In order to overcome this discrepancy, researchers in computer vision
proposed to use computational coarse-to-fine strategies [5, 22, 28, 84, 85, 86].

We emphasize that in all these approaches the temporal coherence of the
movie is neglected and this can lead to rather abruptly changing flow sequences.
Therefore, in [142], a spatial-temporal regularization was suggested, which con-
sists in minimization of
�

�2×[0,1]

�����J�f (x, t) · �u(x, t) + d�f

dt
(x, t)

�����

2

+ αΨ(|∇3u1(x, t)|2 + |∇3u2(x, t)|2)dxdt,

(7.8)
where ∇3 = (∇, ∂

∂t ) denotes the spatial-temporal gradient operator. More
sophisticated spatial-temporal regularization approaches have been proposed
in [6, 24, 101, 137, 141, 142].

Spatial saliency for optical flow computations
In the following section we investigate the effect of complementing intensity and
color images with a spatial saliency map on optical flow computations. We use
the GBVS method, introduced by [53], which defines a spatial saliency for each
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Sequence Saliency-Brightness Saliency-Color Color
Backyard 3.16% 8.18% 2.45%
Basketball 3.68% 10.06% 1.26%
Beanbags 4.07% 9.73% 0.9%
Dimetrodon 5.91% 7.54% 1.07%
DogDance 3.99% 9.57% 2.50%
Dumptruck 5.20% 10.13% 3.35%
Evergreen 6.12% 12.48% 3.20%
Grove 12.61% 18.94% 4.86%
Grove2 15.48% 24.07% 3.29%
Grove3 16.49% 25.27% 4.20%
Hydrangea 10.30% 29.93% 2.48%
Mequon 11.44% 19.12% 2.38%
MiniCooper 7.35% 16.77% 3.76%
RubberWhale 8.45% 22.34% 1.46%
Schefflera 12.12% 20.02% 1.98%
Teddy 16.65% 32.96% 4.63%
Urban2 3.17% 3.35% 0.31%
Venus 12.86% 17.84% 2.75%
Walking 2.85% 7.41% 1.25%
Wooden 3.38% 7.76% 0.75%

Table 7.1: Percentage of the pixels with condition number smaller than 1000
for different sequences from the Middleburry Dataset [15]. For each sequence
we use the third frame and its spatial saliency as input.

frame. Note however, that our approach is not restricted to this particular
choice.

We verify the hypothesis that the complemented data uniquely determines
the optical flow in selected regions - that is, where J �f has full rank. A con-
ceptually similar strategy was implemented in [81] where the image data was
complemented by Gabor filters as input of (7.2). Here, we verify this thesis
by checking the spatially dependent condition number of J �f in the plane, and
by tabbing the area of the points in a region where the condition number is
below 1000 (see Table 7.1). In these regions we expect that the flow can be
computed accurately from (7.2) without any regularization. We recall that
for gray-valued images the optical flow equation is under-determined and the
matrix J�f is singular, or in other words, the condition number is infinite. How-
ever, if the intensity data is complemented by a saliency map, 3 to 17% of the
pixels have a condition number smaller than 1000, such that the solution of
(7.2) can be determined in a numerically stable way. For color images the op-
tical flow equation is already over-determined and 1 to 5% of the pixels have a
small condition number. However, if the color information is complemented by
a saliency information, 3 to 33% of the pixels have this feature. These results
suggest that complementing the original information by saliency is useful for
accurate computations of the optical flow.
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Contrast invariance
We also aim to recognize motion under varying illumination conditions because
humans have this visual capacity. However, a typical optical flow model, like
the one in (7.8), would not yield contrast invariant optical flow although this
would be necessary for motion recognition under varying illumination condi-
tions.

In order to restore contrast invariance for the minimizer of the optical flow
functional, as proposed (for a different reason) by [59] and by [72, 149], we
introduce the semi-norm � · �2

B like:

�w�2
B = wT diag(b1, ..., bn)w ,

where bi are the components of a vector B. For gray-valued images comple-
mented with saliency �f = (f1; f2) the vector B is defined as:

B =
�

f2√
|∇f1|2+ξ2

, 1
�

. (7.9)

For saliency complemented color images �f = (f1, f2, f3; f4) we define

B =
�

f4√
|∇f1|2

, f4√
|∇f2|2+ξ2

, f4√
|∇f3|2+ξ2

, 1
�

. (7.10)

The vectors B are the product of the weighting factors 1√
|∇fi|2+ξ2

and the
saliency map, respectively. This means that features with high spatial saliency
will be weighted stronger, and thus more emphasis on a precise optical flow
calculation is given to these regions. We are then using the weighted semi-
norm as an error measure of the residual of (7.2):

�

�2×[0,1]

�����J�f (x, t) · �u(x, t) + d�f

dt
(x, t)

�����

2

B
. (7.11)

Finally, one needs to choose the constant ξ for the denominator of each weight-
ing factor. As in [59] we choose ξ = 0.01.

The final model
We use as a regularization functional

�

�2×[0,1]
Ψ(|∇3u1(x, t)|2 + |∇3u2(x, t)|2)dxdt

as in [142], with the difference that the function Ψ(r2) = �r2+(1−�)λ2
�

1 + r2

λ2

is replaced by
Ψ(r2) =

�
r2 + �2 with � = 10−6 (7.12)

as in [27]. Moreover, we substitute the spatial-temporal gradient operator in
[142] with ∇3 = (∇, λ ∂

∂t ). In numerical realizations, the weighting parameter
λ corresponds to the ratio of the sampling in space squared and the one in time
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The resulting model for optical flow computations then consists in minimization
of the functional

�

�2×[0,1]

�����Jf (x, t) · �u(x, t) + d�f

dt
(x, t)

�����

2

B
+ αΨ(|∇3u1(x, t)|2 + |∇3u2(x, t)|2)dxdt.

(7.13)
.

Numerical solution

The ultimate goal is to find the path γ solving (7.1), that is connecting a movie
sequence. By applying Taylor expansion one sees that �u ∼ dγ

dt (x, t)t for small
t. As we have stated in Remark (1), when trying to find approximations of
γ via minimization of the proposed functional (7.13) a coarse-to-fine strategy
[5, 22, 28, 84, 85, 86] is useful for the following two reasons:

First, since at a coarse level of discretization large displacements appear
relatively small, the optical flow equation (7.2), which is a linearization of the
brightness constancy equation (7.1), is a good approximation of that. Indeed, a
displacement of one pixel at the coarsest level of a 4-layer pyramid can represent
4 pixels of distance in the finest layer. With reference to [73], we can assume
that on the coarsest level, the discretized energy functional has a unique global
minimum and that the displacements are still small. We further expect to
obtain the global minimum by refining the problem at finer scales and using
the outcome of the coarser iteration as an initial guess of the fine level.

Second, this strategy results in a faster algorithm [15]. The optical flow is
computed on the coarsest level, where the images are composed by fewest pixels,
and then upsampled and used to initialize the next level. The initialization
results in far lesser iterations at each level. For this reason, an algorithm using
coarse-to-fine strategy tends to be significantly faster than an algorithm using
only the finest level. For the coarse-to-fine strategy, we use four pyramid levels
and a bicubic interpolation between each level.

In this paper, we combine the coarse-to-fine strategy with two nested fixed-
point iterations. We apply a presmoothing at each level, by convolving the
images with a Gaussian kernel with standard deviation one, as proposed by
[17]. We solve the minimization problem on each pyramid level starting from
the coarsest one. There, we initialize the optical flow �u by 0. The solution of
the minimization problem is smoothed applying a median filter, as proposed in
[122], and then prolonged to the next finer level. There, we employ it for the
initialization of the fixed-point iterations.

For the purpose of numerical realization we call the iterates of the fixed
point iteration u

(k)
i for k = 1, 2, ..., K where K denotes the maximal number of

iterations. We plot the pseudo-code to illustrate the structure of the algorithm
in Figure 7.3.

For each level of the pyramid we compute with the fixed point iterations
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Given an input sequence f
Initialization
for all frame in the sequence do

create a pyramid of 4 levels
calculate the saliency map
smooth the frame

end for
for each level lev ∈ 1..4 do

if lev=1 then
u

(k)
1 =0

u
(k)
2 =0

else
u

(k)
1 = u

(k+1)
1

u
(k)
2 = u

(k+1)
2

end if
while the precision tolerance ≥ 0.001 do

Calculate an approximation of u
(k+1)
1 and u

(k+1)
2

solving fixed point iterations
end while
Apply median filtering to the flow
Rescale u

(k+1)
1 and u

(k+1)
2 with bicubic interpolation

end for

Figure 7.3: Pseudo-code to illustrate the structure of the algorithm

the solution of the optimality condition of the functional (7.13):

0 =
σ�

i=1
Bi

∂fi

∂x1

�
∂fi

∂x1
u1 + ∂fi

∂x2
u2 + ∂fi

∂t

�
− ∇3 · (Ψ�(|∇3u1|2 + |∇3u2|2)∇3u1)

0 =
σ�

i=1
Bi

∂fi

∂x2

�
∂fi

∂x1
u1 + ∂fi

∂x2
u2 + ∂fi

∂t

�
− ∇3 · (Ψ�(|∇3u1|2 + |∇3u2|2)∇3u2)

(7.14)
where Bi is the i-component of the vector B and σ = 2, 4, if we consider intensity
with complemented saliency data or color with complemented saliency data,
respectively.

For the solution of the system of equations we use a semi-implicit Euler
method: Let τ be the step size, then the fixed point iterations is defined by

u
(k+1)
1 − u

(k)
1

τ
= −

σ�

i=1
Bi

∂fi

∂x1

�
∂fi

∂x1
u

(k+1)
1 + ∂fi

∂x2
u

(k)
2 + ∂fi

∂t

�
+

∇3 · (Ψ�(|∇3u
(k)
1 |2 + |∇3u

(k)
2 |2)∇3u

(k)
1 )

u
(k+1)
2 − u

(k)
2

τ
= −

σ�

i=1
Bi

∂fi

∂x2

�
∂fi

∂x1
u

(k)
1 + ∂fi

∂x2
u

(k+1)
2 + ∂fi

∂t

�

+ ∇3 · (Ψ�(|∇3u
(k)
1 |2 + |∇3u

(k)
2 |2)∇3u

(k)
2 )

(7.15)
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where for the discretization of ∇3 · (Ψ�(|∇3u
(k)
1 |2 + |∇3u

(k)
2 |2)∇3u

(k)
1 ) and ∇3 ·

(Ψ�(|∇3u
(k)
1 |2 + |∇3u

(k)
2 |2)∇3u

(k)
2 ) we follow [142].

In our experiments we use τ = 10−3. Moreover, we set the regularization
parameter α = 40 and λ = 1, unless stated otherwise. The iterations are
stopped, when the Euclidean norm of the relative error

|u(k)
j − u

(k+1)
j |

|u(k)
j |

, j = 1, 2

drops below the precision tolerance value of tol = 0.003 for both the compo-
nents uj . For the discretization of (7.15), we use central difference approxima-
tions of ∂fi

∂x1
, ∂fi

∂x2
, ∂fi

∂t for each pixel. We consider that the spacing in the central
differences approximations equals a value of one with reference to space and
time.

7.3 Eye tracking experiment

We next test our model. This is done by recording human participants’ fixa-
tions on small video clips of relatively total views of natural scenes, and testing
how much of variance of fixation locations could be explained by our model as
compared to two alternative models, [52] and [122]. To this end, model perfor-
mances are compared using the areas under the curves (AUCs) and normalized
scanpath saliency

Participants

Twenty-four (five female) human viewers with a mean age of 25 years (range 19–
32) volunteered in an eye tracking experiment and received partial course credit
in exchange. All were undergraduate Psychology students at the University of
Vienna. Viewers were pre-screened for normal or fully corrected eye-sight and
intact color vision. Prior to the start of the experiment, written informed
consent was obtained from all participants.

Stimuli

The same 71 short video recordings that were used for performing the saliency
computations were presented to the sample of human viewers. All videos were
presented without sound. Each of the videos contained moving and potentially
interesting content at several spatially distinct locations off-center (e.g., moving
cars, wind moving trees, people crossing streets etc.). Hence, videos presented
viewers with multiple potentially interesting fixation locations and the viewers
could visually explore the scene. This distinguished the videos used here from
professionally produced footage from TV shows or feature films, which often
elicit strong tendencies to keep fixation at the center of the movie scene [37].
The order in which the videos were presented in the experiment was chosen
randomly for each participant. All videos were presented in full screen on a
CRT monitor.
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Apparatus

Throughout each data acquisition session, the viewer’s dominant eye posi-
tion was recorded using an EyeLink 1000 Desktop Mount (SR Research Ltd.,
Kanata, ON, Canada) video-based eye tracker sampling at 1000 Hz. The eye
tracker was calibrated using a standard 9-point calibration sequence. Prior
to each individual video, a fixation circle was presented at the center of the
screen to perform a drift check. Whenever the acquired gaze position differed
by more than 1◦ from the fixation target’s position, the whole calibration se-
quence was repeated to assure maximal spatial accuracy for each viewer. Video
stimuli were delivered in color to a 19-in. CRT monitor (Multiscan G400, Sony
Inc.) at a screen resolution of 1280 × 1024 pixels (85 Hz refresh rate). View-
ers sat in front of the monitor and placed their head on a chin and forehead
rest, which held viewing distance fixed at 64 cm, resulting in an apparent size
of each full-screen video of 31 × 24.2◦. The presentation procedure was imple-
mented in MATLAB with the PsychToolbox and the Eyelink toolbox functions
[25, 32, 103].

Data preprocessing

For the evaluation of the model results we compared the spatial distribution of
the human viewers’ fixations on each video frame with the computed dynamic
saliency maps for each frame. The recorded gaze position vector was parsed into
three classes of oculomotor events: blinks, saccades, and fixations. Fixations
were defined as the mean horizontal and vertical gaze position during data
segments not belonging to a blink, or a saccade (gaze displacement < 0.1◦,
velocity < 30◦/s, and acceleration < 8, 000◦/s2). The parsed fixations were
mapped onto each video frame depending on their start and end times. For
example, if a fixation started 1.25 s after the onset the scene at location (x,y),
this location was marked as fixated in a fixation matrix belonging to the 30th
frame of the video. If this same fixation ended 2 s after the onset of the video,
the corresponding fixation matrix from the 30th through to the 50th frame
were set to true (or fixated) at that location. This mapping was done for all
viewers, and all videos, resulting in a 3-dimensional fixation matrix with the
spatial resolution of one video frame and the temporal extent of the number
of analyzed video frames. Each video was presented for 10 s during the data
collection.

7.4 Results

Qualitative model evaluation
This section is devoted to the evaluation of the dynamical saliency mapping by
comparison with eye tracking data. High spatial saliency should correspond to
active visual attention. Particular emphasis is put on the participants’ tracking
of moving objects which are temporarily occluded, because this is a situation
where standard optical flow algorithms fail although humans try to actively
track such objects [4, 45, 118] that is, they attend to such temporarily occluded
objects. We compare our model (7.13) with saliency complemented data, with
a standard optical flow algorithm [122] and with (7.13) without complemented
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Figure 7.4: The dynamic sequence shows traffic in a public street. A motor-
cycle is riding behind a pole and it is an object of interest. We notice that
when the motorcycle is occluded (central column), only (7.13) with saliency
complemented data (top) is able to recognize the occluded part as salient. The
method considering only two frames [122] (middle) does not recognize this area
as salient. The method (7.13) without complemented data (bottom) results in
a lower correlation between the saliency map and the fixation distribution.

data. This last approach is shown to highlight the effect of complementing
data with spatial saliency on the calculation of a dynamic saliency map. In
order to make a fair comparison between methods, for both our model (7.13)
with gray valued images complemented with saliency and the model of [122]
we set the amount of regularization (i.e. α) to the value of forty. We set α =
30 for (7.13) using color valued images complemented with saliency. Finally,
for (7.13) with both types of complemented data, we set the factor enforcing
smoothness over time (i.e λ) to the value of ten. The parameters for (7.13)
without complemented data are like the one for (7.13) with complemented
data. In Figure 7.4, 7.5 and 7.6 we present three sequences with occlusions.
For each sequence we show the results of the models in one frame before, one
during, and one after the occlusion. On every depicted frame, we superimposed
partecipants’ fixations, with green dots, of the last five frames before until the
last five frames after the depicted frame. For the proposed method (7.13) with
complemented data or without complemented data (see Figures 7.4, 7.5 and
7.6 [top and bottom]), the resulting saliency maps are similar for gray valued
or color valued images. Therefore, we display only the gray valued version.

The first video in Figure 7.4 shows a motorcycle riding behind a pole. We
note that people are looking at the pole in order to follow the motion during
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Figure 7.5: The dynamic sequence shows people walking in front of a metro
station. A woman in a red coat is walking behind a tree and is salient. We
notice that when the woman is occluded (central column), only (7.13) with
saliency complemented data (top) is able to recognize the occluded part as
salient. The method considering only two frames [122] (middle) does not rec-
ognize this area as salient. The method (7.13) without complemented data
(bottom) results in a lower correlation between the saliency map and the fixa-
tion distribution.

the occlusion. A two-frame method such as [122] does not recognize the pole
as salient, while our method (7.13) does so for the occluding parts of the pole
(see Figure 7.4 [top]). Moreover, (7.13) without complemented data recognizes
the occlusion as salient, but the area is not as strongly marked as attractive
for attention compared to (7.13) with complemented data. Indeed, we are not
able to predict if the people are looking at the car or at the motorcycle in
Figure 7.4. Therefore, the usage of complemented data in (7.13) results in a
better fit to the measured fixations compared to (7.13) without complemented
data (see Figure 7.5 [top and bottom]) We notice moreover that the method in
[122] discards the information regarding the motorcycle in the central column
of Figure 7.4.

In the second video in Figure 7.5, we see a woman running which is occluded
by a tree for some moments. The woman is highly salient due to the strong
color contrast of her red coat. Her saliency is not recognized by [122] while
the woman is being occluded by a tree. Using both types of complemented
data, our method (7.13) recognizes her saliency correctly. We notice how a
two-frame method like [122], in the central column of Figure 7.5, is affected by
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Figure 7.6: The dynamic sequence shows a couple walking in a park. They
are walking behind a tree. We notice that when the couple is occluded (central
column), only (7.13) with saliency complemented data (top) is able to recognize
the occluded part as salient. The method considering only two frames [122]
(middle) does not recognize this area as salient. The method (7.13) without
complemented data (bottom) results in a lower correlation between the saliency
map and the fixation distribution. This sequence is particularly challenging due
to light reflections and noise. We notice how the method in [122] (middle) is
affected by over-smoothing.

over-smoothing, which results in a wrong interpretation. This image illustrates
that the temporal coherence inherent in (7.13) but lacking in [122] makes the
method more robust against over-smoothing. Also in this experiment like in
the previous one, the usage of complemented data results in a saliency map
more correlated to the gaze points compared to the one without complemented
data (see Figure 7.5 [top and bottom]).

Finally, the third video shows a couple walking behind a tree. This sequence
is particularly challenging because it includes many points with light reflections
and noise. We notice that this does not affect the proposed model (7.13), but it
influences the result of a two-frame model like [122]. This outcome shows that
using temporal coherence, as is done in our model (7.13), results in a robust
method, usable for real video sequences. The saliency of the walking couple is
correctly recognized by our model (7.13) using complemented data ( see Figure
7.6 [top]). Moreover, the model marks the tree section as potentially attractive
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Figure 7.7: Comparison according to AUC (top) and NSS (bottom) for the
proposed approach (7.13) with complemented data, the motion as modeled in
[52] and a standard optical flow algorithm [122]

for attention, a region that the participants indeed fixate during the occlusion
(see Figure 7.6 central column [top]). We notice that in all these experiments
the proposed model (7.13) with complemented data recognizes the salient part
of the sequences more clearly compared to (7.13) without complemented data
and to [122].

Model evaluation measures

As comparison metrics we chose [110]: area under the curve (AUC) of the re-
ceiver operating characteristic (ROC) and normalized scanpath saliency (NSS).
The AUC treats the saliency map as a classifier. Starting from a saliency map,
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the AUC algorithm labels all the pixels over a threshold as True Positive (TP)
and all the pixels below as False Positive (FP). Human fixations are used as
ground truth. This procedure is repeated one hundred times with different
threshold values. Finally, the algorithm can estimate the ROC curve and com-
pute the AUC score. A perfect prediction corresponds to a score of 1.0 while
a random classification results in 0.5.
The NSS was introduced by [105]. For each point along a subject scan-path we
extract the corresponding position p and a partial value is calculated:

NSS(p) = SM(p) − µSM

σSM
(7.16)

where SM is the saliency map. In (7.16) we normalize the saliency map in
order to have zero mean and unit standard deviation. The final NSS score is
the average of NSS(p):

NSS = 1
N

N�

p=1
NSS(p) (7.17)

where N is the total number of fixation points. The NSS, due to the initial
normalization of the saliency map, allows comparison across different subjects.
For this measurement the perfect prediction corresponds to a score of 1.0.

In this paper, for the implementation of AUC and NSS we follow [66].
These measures are used to test the prediction performances of our new dy-
namic saliency map. In other approaches [81, 52, 60, 99, 104, 148] the dynamic
saliency maps are combined through a chosen weighting scheme [81, 99] with
spatial saliency maps and then the resulting saliency map tested. Here, we do
not discuss the choice of a weighting scheme and we test directly the dynamic
saliency map.
In Figure 7.7, we compare the proposed model (7.13) using the two types of
complemented data, the motion as modeled in [52] and a standard optical flow
algorithm [122]. We set the regularization parameter α = 40 for [122]. We
notice in Figure 7.7 that the proposed model (7.13) performs similarly with
both types of complemented data. Moreover, it performs better than the other
models considered. It is worth noticing that two frames models such as [122]
and [52] have bad performances. This is coherent with our previous results.
The algorithms of [122] and [52] discards more information than (7.13) (as
the motorcycle in the central column of Figure 7.4, second row). Moreover, the
models of [122] and of [52] fail in particular cases as the occlusion one described
in the previous paragraph.

7.5 Conclusion

We have proposed a novel dynamic saliency map based on a variational ap-
proach and optical flow computations. The framework is applicable to every
type of spatial saliency algorithm and results in significant improvements of
model performance with regard to predicting human fixations in videos. We
analyzed the possibility to use gray valued images or color valued images com-
plemented with spatial saliency as input of our model. Finally, we studied the
contribution of temporal coherence for calculating dynamic saliency maps and
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presented an application regarding occlusions. The results underline better
performances (AUC and NSS) explaining visual attention compared to other
approaches in literature [52, 122].
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The use of complemented data results in a more reliable
optical flow

We would like to emphasize that the purpose of our model (7.13) is to estimate
the dynamic saliency map of a movie sequence and not calculating a precise
optical flow. As shown in Table 7.1, if we use saliency complemented data in
(7.13), we can calculate the optical flow in imaging regions without regulariza-
tion. In turn this means that by taking this into account we can reduce the

Figure .8: We test the reliability of the optical flow comparing (7.13) using
gray valued images complemented with spatial saliency (left column), (7.13)
using color valued images complemented with spatial saliency (central column)
and (7.13) using color valued images not complemented (right column). The
used comparison measure is the average angular error [15] for the Grove 3
(top) and the Hydrangea (bottom) sequences from the Middleburry dataset.
Blue shade color indicates points with small average angular error. For these
experiments we set τ = 0.01 and α = 0.8, α = 0.01 and α = 1.5, respectively.
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amount of regularization (smaller α) in optical flow minimization algorithms.
We test the assumptions above for two sequences of the Middlebury dataset
[15]. We compare the flow obtained with our complemented data, with the true
one, also called ground truth for these sequences. We use the average angular
error [17] as comparison measure. In Figure .8, areas colored in shades of blue
are the ones for which the average angular error is small. This means that in
these areas, the flow is close to the true one.

In accordance with the results in Table 7.1, we set α to a value of: 0.8
for gray scale data complemented with saliency, 0.01 for color valued images
complemented by saliency, and 1.5 for color valued images. Ideally, we should
obtain similar areas with small error.

We notice in Figure .8 that the result we obtain by using color valued images
complemented with saliency outperforms the other approaches. Moreover, the
model (7.13) that uses gray valued images complemented with saliency per-
forms slightly performs better than the one using only color valued images
without saliency. This exemplary test confirms our results in Table 7.1.
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Abstract

In this paper we do a systematic investigation of continuous methods
for pixel, line pixel and line dejittering. The basis for these investi-
gations are the discrete line dejittering algorithm of Nikolova and the
partial differential equation of Lenzen et al for pixel dejittering. To put
these two different worlds in perspective we find infinite dimensional
optimization algorithms linking to the finite dimensional optimization
problems and formal flows associated with the infinite dimensional op-
timization problems. Two different kinds of optimization problems will
be considered: Dejittering algorithms for determining the displacement
and displacement error correction formulations, which correct the jittered
image, without estimating the jitter. As a by-product we find novel vari-
ational methods for displacement error regularization and unify them
into one family. The second novelty is a comprehensive comparison of
the different models for different types of jitter, in terms of efficiency of
reconstruction and numerical complexity.

Keywords: Dejittering, Variational methods, Nonlinear evolution PDEs.

8.1 Introduction

A frequent task in image processing is dejittering, which is the process of as-
signing pixel positions to image data recorded with pixel displacements. Jitter
is a type of distortions which arises frequently in signal processing, when the
distance (time) between sampling points vary rendering signal errors. A spe-
cific form of jitter is line jitter that consists of horizontal shifts of each row
(line) of an image. The shift is the same for the entire row. This may typ-
ically happen when digitizing analog noisy video frames and there are line
registration problems due to bad synchronization pulses. The effect is that
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the image lines are (randomly) shifted with respect to their original location,
so vertical lines become jagged resulting in a disturbing visual effect since all
shapes become jagged. One may also have line pixel jitter where pixels in a row
are shifted differently. Finally there is pixel jitter where one also experiences
vertical shifts.

The main goal of this paper is to establish relations between discrete and
continuous models for dejittering. In particular we consider line, line pixel, and
pixel jitter. In the literature these problems have been considered in an infinite
dimensional continuous and in a finite dimensional discrete setting, resulting in
different problem formulations and analysis. To link these approaches and put
the theory on solid grounds (based on an infinite dimensional - discretization
free - theory) we require to link the approaches.

Presently there exists two kind of algorithms for dejittering which we catalog
as follows:

• Dejittering algorithms find the displacements by an optimization routine
first and then restore the image by composing the jittered image with the
displacement.

• Displacement correction algorithms compute the image directly without
calculating the displacement function first.

The algorithms will be implemented for different purposes: For dejittering we
assume a deterministic jitter, while in the later we assume a random perturba-
tion.

Starting point of this paper are publications in different worlds, which deal
with dejittering: The discrete optimization formulation of Nikolova [95, 96]
and Lenzen et al [74, 75], which deals with displacement correction. We are
generalizing Nikolova’s algorithm to the infinite dimensional setting and then
establish a relation to displacement correction and systems of partial differential
equations.

As a consequence we can discuss advantages and shortcuts of the different
methods and discretization dependence.

The outline of this paper is as follows: In Section 8.2 we make the basic
problem formulation for three types of jittering. Then we explain line dejitter-
ing and recall the standard formulation in the field from Nikolova [96] in Section
8.3. After deriving a continuous variant, we put this algorithm in perspective
with displacement error regularization [50, 74, 75, 114, 115]. We explain the
different philosophies but show the close relation of these areas in the general
setting of line pixel dejittering; cf. Section 8.4. Moreover, we review continu-
ous algorithms for pixel dejittering in Section 8.5. In Section 8.6 we formulate
partial differential equations, which constitute the flows according to the con-
tinuous optimization energies. Finally we present numerical results in Section
8.7. The paper ends with a conclusion, where we outline the novelties of this
work.

8.2 Basic Notation and Problem Formulation

In this paper we use the following notations:
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• u can either denote a discrete (digital) gray valued image, in which case
it is represented as a matrix u ∈ �m×n, where m is number of columns,
and n is number of rows, or

• u denotes a function u : Ω → � on the unit-square Ω = [0, 1]2. For a
continuous image u : Ω → �, one way to have the digitized image pixels
is

uij = 1
hxhy

� i/m

(i−1)/m

� j/n

(j−1)/n

u(x, y) d(x, y) .

Here, the pixel size is hx × hy, with hx = 1
m and hy = 1

n .

• ηij and η : Ω → � denote noise. In the discrete setting the lines are
horizontally numbered from bottom to top.

Let uδ denote either a discrete, jittered image - then it is a matrix in �m×n, or
a continuous, jittered image, then it is function uδ : Ω → �. Assuming that u
denotes the original image without jittering, we consider the following discrete
and continuous problem formulations:

Line jitter:

uδ(i, j) = u(i + dj , j) + ηij , uδ(x, y) = u(x + d(y), y) + η(x, y) , (8.1)

respectively, where dj ∈ � denotes the discrete jitter of the j-th line, and
d : [0, 1] → � denotes the jitter function of the y-th component.

Line pixel jitter:

uδ(i, j) = u(i+di,j , j)+ηij , uδ(x, y) = u((x+d(x, y), y)+η(x, y) , (8.2)

respectively, where di,j ∈ � denotes the discrete jitter of the i − th pixel
in the j-th line, and d : Ω → � denotes the jitter function of the point
(x, y) in x-direction.

Pixel jitter:

uδ(i, j) = u((i, j) + di,j) + ηij , uδ(x, y) = u((x, y) + d(x, y)) + η(x, y) ,
(8.3)

respectively, where di,j ∈ �2 denotes the discrete jitter of the (i, j) − th
pixel, and d : Ω → �

2 denotes the jitter vector field at the point (x, y).

For those jittered pixels which run out of the domain of the original image u,
we define their intensity values as 0.

In the literature, many dejittering algorithms are particularly designed for
line jittering, referring to (8.1), see for instance [68, 67, 95, 96, 120]. In these
algorithms, the jittering error is considered deterministic, and a probably noisy
input image has to be smoothed in an additional step, either before or after
dejittering. The problems of line pixel jitter (8.2) and pixel jitter (8.3) have
been discussed for instance in [74, 75], where a displacement error correction
model has been considered. In this context, it is commonly assumed that noise
is significant and jitter is stochastic, and the methods are supposed to dejitter
and denoise simultaneously.
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8.3 Line Dejittering

In this section we investigate algorithms for line dejittering. After reviewing
algorithms from the literature, we will formulate line pixel and pixel dejittering
below.

As we have mentioned in the introduction, there are two different kinds
of algorithms for dejittering in the literature. The prime example of the first
type approach is Nikolova’s algorithm [95, 96], which is outlined below. A-
priori Nikolova’s approach is formulated in a discrete setting. We provide a
continuous formulation below, which allows us to put it in perspective with
the second approach, and thus in turn to partial differential equation models
in the spirit of [74, 75].

Nikolova’s Algorithm for Discrete Line Dejittering
Nikolova [95, 96] proposed an efficient algorithm for discrete line dejittering.
This algorithm is based on energy minimization and determines in an iterative
way, from bottom to top, for each horizontal image line discrete integer values
dj , j ∈ {1, 2, · · · , n}, which indicate the horizontal displacement of the j-th
line, respectively.

The algorithm involves setting values of an exponential parameter p, which
Nikolova chooses as p = 1 or p = 0.5, p = 0.5 is better suited for discontinuous
images, while p = 1 is better suited for smooth images. Moreover, it is assumed
that the jitter is bounded, such that there is a parameter σ constraining the
maximal line jitter (a typical values is σ = 6 pixels):

|dj | ≤ σ , ∀j = 2, . . . , n .

1. The algorithms is initialized by setting j := 2, d1 := 0, û(i, 1) := uδ(i, 1)
and selecting the parameter σ∗ ≥ σ. The minimizer d̂2 of the functional

J2(d2) :=
m−σ∗�

i=σ∗+1

��uδ(i − d2, 2) − uδ(i, 1)
��p (8.4)

is used to define û(i, 2) := uδ(i − d̂2, 2).

2. For j = 3, . . . , n determine d̂j as the minimizer of the functional

Jj(dj) :=
m−σ∗�

i=σ∗+1

��uδ(i − dj , j) − 2û(i, j − 1) + û(i, j − 2)
��p , (8.5)

and define û(i, j) = uδ(i − d̂j , j).

A Continuous Optimization Problem for Line Dejittering
We here formulate a continuous variant of Nikolova’s algorithm, which also
establishes the relation to existing variational methods and partial differential
equations for dejittering. Let uδ : Ω → � be the line jittered variant of u, so uδ

satisfies (8.1). In order to recover u and d, we minimize (8.6) for each ŷ ∈ [0, 1]
separately, where ŷ indicates the continuum position of the line in the image,
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Jc(d)(ŷ) := lim
τ→0+

1
2τ

� min{ŷ+τ,1}

max{ŷ−τ,0}

� 1−σ∗

σ∗

��∂k
y uδ(x − d(y), y)

��p d(x, y) , (8.6)

subject to
�d�L∞([0,1]) ≤ σ. (8.7)

The parameter σ∗ is chosen to satisfy σ ≤ σ∗. With this choice the integrand
in the integral

� 1−σ∗
σ∗

��∂k
y uδ(x − d(y), y)

��p dx is evaluated only for arguments
of uδ in the interior of the image domain [0, 1] × [0, 1]. This correspond to the
discrete sum

�m−σ∗
i=σ∗+1 in the Nikolova algorithm. The term ∂k

y uδ denotes the
k-th derivative of uδ with respect to the second component. Since

uδ(i − dj , j) − 2û(i, j − 1) + û(i, j − 2)
h2

y

≈ ∂2
yuδ(ihx − d((j − 1)hy), (j − 1)hy) ,

we propose the following simplified variant of (8.6) and (8.7), namely to mini-
mize

J (k)(d) := 1
p

�

Ω

��∂k
y uδ(x − d(y), y)

��p d(x, y) (8.8)

subject to
�d�L2([0,1]) ≤ σ̂. (8.9)

The main difference to minimizing Jc is that we consider integration over all
of Ω. To make this well-defined, we propose to extend uδ symmetric across
left and right, and top and bottom images boundaries, respectively. Another
difference is that we consider an a joint approach, which optimizes globally
over all pixels, instead of separately for each line. Moreover, from a modelling
point of view taking the second derivative (k = 2) of uδ in the functional Jc

is not mandatory, for instance, we may take as well the derivative (k = 1)
or another integer order. In practice, minimizing the functional with second
order derivatives performs better than using first order derivatives in a noise
free environment. For the other parameter p in (8.8), in the discrete setting,
Nikolova has suggested to use either 0.5 or 1, however, we would propose to
choose either p = 1 or p = 2, in order to keep the convexity of the functional
in our continuous model, where p = 1 works better with the discontinuities.

8.4 Line Pixel Dejittering

In this section we review line pixel dejittering and displacement regularization:
We find that within the continuous setting, formally, the optimization approach
for line dejittering from last section can be similarly generalized to the case
of line pixel dejittering. However, the formal difference is that for line pixel
dejittering d : Ω → � is a bounded random field over the whole two dimensional
domain Ω, while for line jitter d : [0, 1] → �. Thus, we propose to optimize
the functional which is only slightly changed from (8.8)

J (k)
2 (d) := 1

p

�

Ω

��∂k
y uδ(x − d(x, y), y)

��p d(x, y) (8.10)

subject to �d�L2(Ω) ≤ σ̂.
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Because we assume small displacements d, we also consider approximating
the term ∂k

y uδ(x − d(x, y), y) by its linearisation:

∂k
y uδ(x − d(x, y), y) ≈ ∂k

y uδ(x, y) − d(x, y)∂x∂k
y uδ(x, y) .

Replacing the nonlinear term by its linearization, we arrive at the constrained
optimization problem, which is to minimize

J (k)
2 (d) := 1

p

�

Ω

��∂k
y uδ(x, y) − d(x, y)∂x∂k

y uδ(x, y)
��p d(x, y) , k = 1, 2 (8.11)

subject to (8.9).
For 1 < p ≤ 2, J (k)

2 is strictly convex, and for three-times continuously
differentiable uδ also weakly lower semi-continuous. Then, the constrained op-
timization problem is equivalent to the method of Tikhonov-regularization with
parameter choice by Morozov’s discrepancy principle, consisting in calculation
of

d(α) := arg mind

�
J (k)

2 (d) + α

2 �d�2
L2(Ω)

�
, (8.12)

where α is chosen to satisfy �d(α)�L2(Ω) = σ̂. For further background on the
relation between Tikhonov regularization and constrained optimization prob-
lems see for instance [41, 93, 51, 90, 91, 116, 126, 127]. For p ≤ 1 the relation
is not obvious, but we ignore this difficulty.

We stress the fact that the minimizer of (8.12) with p = 2 can be explicitly
calculated: We have

d(α) =
∂k

y uδ∂x∂k
y uδ

α + (∂x∂k
y uδ)2 . (8.13)

This explicit linearised method provides insufficient results (cf. Figure 8.1).

Figure 8.1: Left to right: ground truth, line jittered image, displacement,
recovered image

Displacement Error Correction for Line Pixel Dejittering
In the following we outline an approach for dejittering, which does not recover
the jitter but the dejittered image directly. We use a first order approximation
of the data by assuming that the jitter is only a small disturbance:

uδ(x, y) ≈ u(x + d(x, y), y) ≈ u(x, y) + ∂xu(x, y)d(x, y) . (8.14)

Considering the approximation as an identity we find that

d(x, y) = uδ(x, y) − u(x, y)
∂xu(x, y) . (8.15)
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Now, instead of minimizing J (k)
2 with respect to d, we replace in J (k) the uδ by

u(x+d(x, y)) and use the identity (8.15), and minimize with respect to u. Thus
the optimization problem for line pixel dejittering consists in the minimization
of the functional:

N (u) := α
1
2

�

Ω

����
uδ(x, y) − u(x, y)

∂xu(x, y)

����
2

d(x, y) + 1
p

�

Ω

��∂k
y u(x, y)

��p d(x, y)
� �� �

R

.

(8.16)

Remark 2. When we use this approach to correct for line jitter, we have to
respect the fact that each line has the same shift, which leads to

0 = ∂xd(y) ≈ ∂x

�
uδ(x, y) − u(x, y)

∂xu(x, y)

�
.

Thus line jitter correction can be rephrased as an unconstrained minimization
of the functional

N (u) + β

�

Ω

�
∂x

�
uδ(x, y) − u(x, y)

∂xu(x, y)

��2

d(x, y) , (8.17)

where β is a penalty parameter.

8.5 Pixel Dejittering

The problem of pixel jitter correction can be formulated again as a constraint
optimization problem, consisting in minimization of

J (k)
3 (d) := 1

p

�

Ω

��∂k
y uδ((x, y) − d(x, y))

��p d(x, y) (8.18)

subject to �d�(L2(Ω))2 ≤ σ̂. Note the fundamental difference that d : Ω → �
2,

while for line pixel jitter d : Ω → �, and for line jitter d : [0, 1] → �.
Displacement error regularization for correcting pixel jitter has been con-

sidered in [74, 75]. It is again based on Taylor expansion

uδ(x, y) − u(x, y) ≈ d · ∇u ,

which implies that we can choose as a solution d ≈ (∇u)†(uδ −u) , where (∇u)†

denotes the Moore-Penrose pseudo-inverse of ∇u. This choice of an inverse of
∇u considers displacement errors which are orthogonal to level lines of u.

Here, we define

Ŝ(u) := 1
2
��(∇u)†(uδ − u)

��2
L2(Ω) .

Assuming that u is of finite total variation we ended up with the following
regularization functional [74, 75]:

N̂ (u) := αŜ(u) +
�

Ω
|∇u(x, y)| d(x, y) . (8.19)

Note that in comparison with (8.16),
�

Ω
��∂k

y u(x, y)
��p d(x, y) has been replaced

by the TV -semi norm
�

Ω |∇u(x, y)| d(x, y).
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8.6 PDE Models as Formal Energy Flows

Considering S as a metric, the minimization of functional N defined in (8.16),
can be formally solved as metric flows of S with energy R. In [75], a PDE
according to (8.19) has been derived by considering N̂ (α, ·) as an implicit
time-step of the associated flow, following that, we state the flows according to
(8.16) and (8.19).

• The flow associated with (8.16), for k = 1, 2 and p = 1, 2 is:




∂tu = |∂xu|2 ∂k
y

�
∂k

y u
��∂k

y u
��2−p

�
;

u = uδ , in Ω × {0} ;
∂2l−1

y u = 0 , on {0, 1} × [0, 1] , ∀l = 1, .., k .

(8.20)

• We emphasize that the flow associated to (8.19) is




∂tu = |∇u|2 ∇ ·
� ∇u

|∇u|

�
;

u = uδ , in Ω × {0} ;
∂nu = 0 , on ∂Ω .

(8.21)

8.7 Numerical Results

In this section we show the numerical results of our newly developed model
(8.20) for different choices of k and p, making comparisons with the approach
from [75], that consists in solving (8.21), and with Nikolova’s algorithm [96].
In the implementation, for p = 2 in (8.20), we use standard finite differences
discretization with semi-implicit iteration, but for the case of p = 1, the solu-
tion of (8.20) is obtained by solving the convex optimization problem (8.22)
iteratively, where we generalised the TV denoising algorithm from [43] to ap-
proximate the solution.




um+1 := arg minu

�
α

2

�

Ω

|um(x, y) − u(x, y)|2

|∂xum(x, y)|2 + �
+
��∂k

y u(x, y)
�� d(x, y)

�
,

u0 = uδ.
(8.22)

Here α corresponds to the time-stepping and um ≈ u(mα). In all the experi-
ments, we use as stopping criteria some threshold of

��um − um+1��
L2 . The test

data are generated by adding jitter to clean test images. In addition noisy test
data are generated by composing the test image with Gaussian noise of mean
0 and standard deviation 10. In order to evaluate the results quantitatively,
we consider the mean square error (MSE) computed by averaging the intensity
difference between the analyzed pixel û(i, j) and the reference pixel u(i, j), and
the related quantity of peak signal to noise ration (PSNR)

MSE = 1
N

m�

i=1

n�

j=1
(û(i, j) − u(i, j))2 and PSNR = 10 log10

L2

MSE
,



94 8 Infinite dimensional dejittering models

Measure Test data k=1,p=2 k=2,p=2 k=1,p=1 k=2,p=1 cf.[75] cf.[96]
Line Jitter Data without Adding Noise

PSNR 17.814 19.886 20.031 20.109 20.461 19.807 24.818
MSE 1075.7 667.407 645.584 634.035 584.668 679.740 214.408
SSIM 0.622 0.704 0.714 0.709 0.729 0.691 0.998

Line Pixel Jitter Data without Adding Noise
PSNR 16.608 17.913 17.956 18.193 18.356 19.213 13.999
MSE 1420.0 1051.4 1040.9 985.634 949.517 779.525 2589
SSIM 0.484 0.552 0.558 0.566 0.571 0.618 0.308

Pixel Jitter Data with Adding Noise
PSNR 15.367 17.460 17.563 17.688 17.891 19.064 -
MSE 1889.8 1167.1 1139.6 1137 1056.6 806.614 -
SSIM 0.316 0.433 0.461 0.457 0.487 0.585 -

Table 8.1: Comparison of noisy and noise free data affected by different jitter
types.

where L is the dynamic range of allowable pixel intensities, e.g. for an 8-bit
per pixel image L = 28 − 1 = 255. These quantity are appealing but not well
matched to perceived visual quality as reported in [94] and [139]. For that
reason we consider also the structural similarity (SSIM) index [139] defined as:

SSIM(û, u) = f(l(û, u), c(û, u), s(û, u)) ,

where the three independent components l(û, u), c(û, u), s(û, u) are the simi-
larity functions of the luminance, the contrast and the structure, respectively,
between the reconstructed and test image, and f is a combination function.
Quantitatively, the higher PSNR value the better similarity between the test
data and the original clean image. Moreover, a small value of MSE points out
a good intensity approximation of the original data, and a larger value of SSIM
claims that the structure of the original image is better preserved.

Table 8.1 gives a comprehensive evaluation of different methods for image
dejittering, which are the algorithm for solving (8.20) presented in this paper,

Figure 8.2: Line Dejittering. Top row: The ground truth, the noisy free line
jittered image, dejittered with [96], dejittered with (8.20) k = 1, p = 2. Bottom
row: dejittered with (8.20) k = 2, p = 2, (8.20) k = 1, p = 1, (8.20) k = 2, p =
1, approach from [75].
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Figure 8.3: Line Pixel Dejittering. Top row: The noisy line pixel jittered image,
dejittered with (8.20) k = 1, p = 2, (8.20) k = 2, p = 2. Bottom row: (8.20)
k = 1, p = 1, (8.20) k = 2, p = 1, approach from [75].

and the algorithms from [75] and from [96], respectively. For the test images
used for line dejittering and line pixel dejittering, we have not superimposed the
data with additive noise. The test data used for pixel dejittered was considered
with additive noise. For line dejittering, Nikolova’s algorithm [96] gives the
most superior results. Evaluating the two different PDE models, we notice
that (8.20) performs better than [75] for line dejittering. [96] is not able to
handle line pixel dejittering, in contrast with the PDE models. In this case
the method in [75] achieves slightly better grades than (8.20); see Table 8.1.
However visually, one may find that (8.20) (e.g.with parameter k = 2, p = 1)
has less blurring of the reconstructed image and keeps more clear details; see
Fig 8.3. The highlight of the approach [75] happens in the pixel dejittering
task, where it outperforms the others both quantitatively and qualitatively.
Over all the tests, it is not hard to find that, for the model (8.20), the choice
of parameter k = 2, p = 1 gives the most competitive results in compare with

Figure 8.4: Pixel Dejittering. Top row: The noisy line pixel jittered image,
dejittered with (8.20) k = 1, p = 2, (8.20) k = 2, p = 2. Bottom row: (8.20)
k = 1, p = 1, (8.20) k = 2, p = 1, approach from [75].
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the other parameter choices.

8.8 Conclusion

The novelties of this paper are that we have shown the formal connection
of Nikolova’s method with variational displacement error correction and PDE
methods. To do this, we have unified a family of variational methods for
displacement error regularization, which apply for different dejittering applica-
tions. The second novelty is a comparison of the different models for different
types of jitter. An analysis of the proposed algorithms for minimizing models
(8.16) is lacking and this might be a future research topic. Another aspect
will be to investigate problems in tomography, which involve reconstruction of
objects that show small (unknown) displacements while being imaged.
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Zusammenfassung

Aufmerksamkeit ist der Prozess, in dem sich unsere geistige Fähigkeiten auf
Teile der verfügbaren Informationen konzentrieren. Dies liegt daran, dass Men-
schen nicht alle verfügbaren Informationen auf einmal verarbeiten können. In
dieser Dissertation konzentrieren wir uns auf die visuelle Aufmerksamkeit und
versuchen, mathematisch ihr Verhalten zu simulieren.
Die Verbreitung von Informationen durch Videos wird mehr und mehr in der
heutigen Gesellschaft, durch TV-On-Demand, Webstreaming, E-Learning und
Onlinespiele, um nur einige Beispiele zu nennen, präsent. Die vorliegende Ar-
beit konzentriert sich auf die folgenden Forschungsgebiete: die Bedeutung von
Schnitt in Filmsequenzen für die visuelle Aufmerksamkeit, die Attraktivität
einer Region in einem Video und das Verhalten der visuellen Aufmerksamkeit
in Gegenwart von Verzerrungen, wie Jitter.

Im Folgenden werden wir uns auf das erste Forschungsgebiet, nämlich auf
Schnitte, konzentrieren. Schnitte bezeichnen eine Bearbeitungstechnik, die zu
einer starken Veränderung der Filmszene führt. Insbesondere werden Objek-
torte durch Schnitte unkorreliert. Wir analysieren zunächst das Verhalten der
Zuschauer, während sie sich ein Video mit einem Schnitt anschauen, aus der
Sicht der Kognitionswissenschaft. Wir schlagen eine zweistufige konzeptuelle
Architektur vor und testen sie durch Eyetracking Experimente. Die Architek-
tur wird durch die zeitliche Kohärenz der scheinbaren Bewegung angetrieben,
die auch als optischer Fluss bekannt ist und sich auf zwei Fälle konzentriert:
die Reaktion des Betrachters auf eine Sequenz ohne Schnitte und auf eine mit
Schnitten.

Wir schlagen vor, dass die Aufmerksamkeit des Betrachters durch Neuheit
in einer Einstellung, die keine Schnitte enthält, angezogen wird. In diesem Fall,
während der globale Fluss kohärent ist, weist die lokale Inkohärenz auf die
Neuheit hin. Das Verhalten der Zuschauer ändert sich, wenn man auf einen
Schnitt trifft. In diesem Fall ist der globale Fluss inkohärent, was den Schnitt
signalisiert. Die Aufmerksamkeit des Betrachters wird durch wiederholte Merk-
male, wie wiederholte Bewegung, angezogen.
Mathematisch formulieren wir die zweistufige Architektur als Variationsansatz
zur Berechnung des optischen Flusses. Wir gehen von der Horn-Schunck Funk-
tional aus und modifizieren es bequem, um den räumlich-zeitlichen Ansatz von
Weickert-Schnörr mit einzuschließen. Wir schlagen eine Aufteilung des Flusses
in zwei optische Felder vor: eines, das einen zeitlich-kohärenten Fluss charak-
terisiert und ein anderes, das Bezug auf wiederholte Bewegung, die auch als
Schwingungsmuster bekannt ist, nimmt. Um das Schwingungsmuster zu mo-
dellieren, schlagen wir ein in Zeit nicht lokalen Regularisator, von Meyers Buch
inspiriert, vor.

111



112 Zusammenfassung

Wir beschreiben nun das zweite Forschungsgebiet, das sich auf die Attrak-
tivität einer bestimmten Stelle in einem Video bezieht. Das Ziel eines Modells
der visuellen Aufmerksamkeit ist, die Attraktivität einer Stelle für den Betrach-
ter, numerisch in einer Wahrscheinlichkeit von Interesse übersetzt, zu schätzen.
Eine Karte der Wahrscheinlichkeiten von Interesse für jeden Punkt eines stati-
schen Bildes wird Salienzkarte genannt. Um im Standardansatz die Salienz von
dynamischen Sequenzen zu berechnen, wird die Salienz jedes Kaders des Vi-
deos und die Salienz der Bewegungsmerkmale berechnet, um sie dann durch ein
Gewichtungsschema zu kombinieren. Wir schlagen einen Algorithmus zur Be-
rechnung der Salienz der Bewegungsmerkmale in einer dynamischen Sequenz,
in einer so genannten dynamische Salienzkarte vor. Auch hier formulieren wir
die Bewegungsmerkmale als Variationsansatz des optischen Flusses-Problems.
Insbesondere berechnen wir den Fluss einer hoch-dimensionalen Sequenz, die
durch Intensität- oder Farbkanäle, ergänzt durch die Salienzkarte jedes Kaders,
zusammengesetzt ist. Dies ermöglicht uns, das Aperturproblem zu überwinden.
Außerdem inkludieren wir eine modifizierte Version des räumlich-zeitlichen An-
satzes von Weickert-Schnörr in unserem Funktional. Dank der vorgeschlagenen
Veränderung ist unser Modell besonders wirksam im Falle von Okklusion. In
der Tat, in unserer dynamischen Salienzkarte, simulieren wir das menschliche
Verhalten, die Bewegung eines Objektes kontinuierlich durch Okklusion zu ver-
folgen.

Wir sprechen das dritte und letzte Forschungsgebiet, genauer gesagt das
Verhalten der visuellen Aufmerksamkeit in Gegenwart von Verzerrungen wie z.
B. Jitter, an. Die Menschen sind in der Lage, Formen und Objekte bis hin zu
einem gewissen Grad der Verzerrung zu erkennen. Das menschliche Hirn führt
eine automatische Rekonstruktion des Originalbildes. Wir simulieren diesen
Prozess der Rekonstruktion im Fall von statischen Bildern und konzentrieren
uns auf eine bestimmte Art von Verzerrung, so genannt Jitter. Jitter entsteht,
wenn das Zeitintervall zwischen den Abfragepunkten des Signals nicht korrekt
ist. Wir schlagen Variationsansätze des Funktionals, um Bilder, die von Linien-,
Linien-Pixel- und Pixeljitter verzehrt werden, zu rekonstruieren, vor.

Die vorgeschlagenen Algorithmen erlauben Kognitionswissenschaftler, Theo-
rien zu testen und quantitative Bewertung durchzuführen. Eyetracking Experi-
mente sollen durchgeführt werden, um die Antwort der menschlichen visuellen
Aufmerksamkeit im Vergleich zum Ergebnis unserer Algorithmen zu untersu-
chen. Ein weiterer Schritt von mathematischem Interesse könnte die Erweite-
rung unserer Modelle in Richtung eines allgemeinen Modells, das in der Lage
ist, die visuelle Aufmerksamkeit in allen oben-genannten Forschungsgebieten
gleichzeitig zu simulieren, darstellen. Wir behaupten, dass eine geeignete For-
mulierung des optischen Flusses, quantitative Methoden zur Abschätzung der
visuellen Aufmerksamkeit liefern kann.
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