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Abstract

Resolving small scale wind fields on high resolution topography is still a challenging task, espe-
cially over complex terrain. In this work a mass consistent model using a pressure based terrain
following vertical coordinate, the η coordinate, is developed. At first the model is tested in an
idealized simulation and then applied to real data. As input a 4 km WRF (Weather Research
and Forecasting) simulation is used. This wind field is then downscaled to a 500m grid with
more detailed topographic information and adjusted to fulfil mass conservation. To evaluate
the performance of the model, four case studies in an area with very complex terrain, a region
around Innsbruck, Austria, are conducted. For verification, the results of the mass consistent
model are compared to near-ground observations. Additionally, comparisons are made with a
prognostic model with a resolution of 1 km which was available for the last case. To find the
ideal value for the vertical transmission coefficient αη which significantly influences the resulting
fields, different empirical values are applied. Furthermore, formulas that link αη to stability and
standard deviation of the input wind field are used and the results analyzed.

Overall, the performance of the mass consistent model strongly depends on the quality and reso-
lution of the input data, the prevailing weather conditions and the choice of αη. Best results are
achieved for stable stratification during day time when strong synoptic forcing is present. The
improvement compared to the 4 km-model is highest in terms of wind direction where the root
mean square error (RMSE) can be reduced by up to 30◦. However, decreasing the error in wind
direction often results in an increased wind speed BIAS.
In general, this work demonstrates that, keeping restrictions and limits in mind, the mass con-
sistent model can be a simple and useful tool to resolve the interaction of wind with small scale
topography.
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Zusammenfassung

Die korrekte Darstellung von kleinskaligen Windfeldern, besonders über komplexer Topographie,
stellt nach wie vor eine große Herausforderung dar. In dieser Arbeit wird ein massenkonsistentes
Windmodell entwickelt. Als Vertikalkoordinate dient die terrain-folgende, auf Druck basierende
η Koordinate. Das Windmodell wird zuerst anhand einer idealisierten Simulation getestet und
im Anschluss auf realen Daten angewendet. Als Eingabewindfeld dient eine 4 km WRF (Weather
Research and Forecasting) Simulation. Dieses Windfeld wird auf ein 500m Gitter mit genauerer
Topographie interpoliert und mit Hilfe des massenkonsistenten Modells so angepasst, dass die
Divergenz verschwindet. Um die Leistung des Modells zu quantifizieren, werden die Ergebnisse
von vier Testfällen mit Bodenwetterbeobachtungen verglichen. Zusätzlich steht für den letzten
Fall ein hochaufgelöstes Modell (1 km) zum Vergleich zur Verfügung. Um einen idealen Wert für
den vertikalen Transmissionskoeffizienten αη zu finden, der das Ergebnis maßgeblich beeinflusst,
werden verschiedene empirische Werte verwendet. Außerdem wird der Wert von αη in Abhän-
gigkeit der Stabilität sowie der Standardabweichung des Eingabewindfeldes berechnet und die
daraus resultierenden Windfelder analysiert.

Insgesamt ist die Leistung des massenkonsistenten Modells stark abhängig von der Qualität und
Auflösung der Eingabedaten sowie den vorherrschenden Wetterbedingungen. Die besten Resul-
tate werden tagsüber bei stabilen Verhältnissen und starkem synoptischen Forcing erreicht. Die
Wiedergabe der Windrichtung kann im Vergleich mit dem 4 km-Modell am stärksten verbessert
werden, mit einer Reduktion des RMS-Fehlers von bis zu 30◦. Gleichzeitig kommt es jedoch meist
zu einer Erhöhung des BIAS der Windgeschwindigkeit.
Generell zeigt diese Arbeit, dass das massenkonsistente Modell ein einfaches und sinnvolles Mittel
sein kann um auf kleiner Skala die Interaktion von Wind und Topographie darzustellen sofern
man gewisse Beschränkungen beachtet.
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Chapter 1

Introduction

Since the beginning of operational weather forecast there has always been an aspiration towards
better, more accurate forecasts. In the past 20 years the spatial resolution of global numeri-
cal weather models has been increased from 100 km down to 9 km thanks to ongoing research
and development of supercomputers. Local weather models use the output of global models as
boundary conditions to operate on even higher resolution to provide the most precise forecast
possible. Nevertheless, due to the limited time for computations in operational services there are
still restrictions regarding the temporal and spatial resolution of the models.

Amongst others, resolving small scale wind fields on high resolution topography (100m to 1 km)
still remains a challenging task. This work meets this challenge and focuses on producing accurate
wind fields over complex terrain with a resolution of 500m.

A solution to this problem can be used in many practical areas, including simulations of the
spread of pollutants (Mayer et al. [2008], Cox et al. [1998]) or the selection and study of wind
turbine sites [Phillips, 1979]. Research on finding a simple and fast way to compute wind fields
over complex topography on a fine grid has been very active over the past decades and is still
subject of modern-day investigations.

Over the years several types of models have been developed to address this problem. In general
they can be divided into two categories, prognostic and diagnostic (steady state) flow models
[Cox et al., 1998]. Prognostic models use a set of time dependent equations (conservation of
mass, momentum, heat, water and other substances) to compute the evolution of atmospheric
motion by integrating those equations over time and space. One can further differentiate between
different types of prognostic models by the parameterization schemes used for phenomena that
cannot be calculated directly or by the approximations made in the conservation equations (e.g.
incompressible or hydrostatic) [Finardi et al., 1997]. The downside of using prognostic models
is that the computation time increases rapidly when increasing temporal and spatial resolution.
A popular and widely used example of a prognostic model is the WRF (Weather Research and
Forecast) model, described in section (6.1).

Diagnostic models use equations that are not time dependent to calculate a steady state wind
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2 CHAPTER 1. INTRODUCTION

field from a provided set of input data and can be further separated into two groups, linearized
and mass consistent models. Linearized models, first introduced by Jackson and Hunt [1975], use
linearized solutions of the Navier-Stokes equations to describe the boundary layer flow disturbed
by terrain. The model divides the flow into an inner region where turbulence plays an important
role, and an outer region where the flow is assumed to be inviscid [Finardi et al., 1997]. LINCOLM
[Troen and De Baas, 1987] and WaSP [Mortensen et al., 2005] are just two examples out of many
linearized models that have been developed and successfully used for reconstructing wind fields.

Mass consistent models use meteorological input data which can either be obtained from meteo-
rological observations or from output from a numerical weather model. A three dimensional wind
field is then created in two steps: Firstly, the input data is interpolated to the computational
grid to generate an initial wind field. This wind field is then adjusted so that it fulfils mass
conservation. Following Sasaki [1970], variational analysis is applied to find the non divergent
wind field whilst making the smallest possible modifications to the initial field. Due to its sim-
ple physics, mass consistent models are relatively easy to handle and therefore widely used in
applied problems. Furthermore, input data can be obtained easily and the computational cost
is significantly lower compared to prognostic models for similar resolution.

However, the use of diagnostic models gives rise to some challenges and problems. The equation
system that has to be solved contains factors, the Gaussian precision moduli or α constants,
that have to be defined prior to the computations. These constants have to be found empirically
and have major influence onto the final velocity field. The importance of the α constants is
discussed in detail in section (4.3). Another disadvantage of using diagnostic models is the lack
in prognostic capability. They cannot reproduce the full dynamics and small scale features of the
atmosphere such as thermal effects or turbulent wakes unless they have already been represented
in some form in the input data because they are based on a set of idealized equations.

In this work a mass consistent model was developed based on the theory of Sherman [1978].
The main purpose of this new diagnostic model is to downscale a wind field calculated by the
prognostic numerical weather model (WRF model) from a 4 km grid to a finer grid with more
detailed topographic information. In contrast to Magnusson [2005], a pressure based terrain
following vertical coordinate, the η coordinate, was chosen. This way, the model output of the
WRF model which is used for operational forecast at UBIMET can be used directly as input data
for the mass consistent model. This has the advantage that no coordinate transformations have
to be performed prior to the computations and potential errors arising from such calculations
can be avoided. Hence, this mass consistent model provides a tool to refine the model output in
specific areas of interest and improve the quality of forecast of wind fields especially over complex
terrain.

Regarding the α constants, different approaches have been made subsequently. Firstly different
constant values for α are chosen and compared. Then the α constants are linked to the stan-
dard deviation of velocity components and atmospheric stability to compute the α constants
automatically, depending on the weather condition.
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To verify the accuracy and point out limitations of our model, four case studies representing four
different weather conditions were conducted. The obtained results were compared to near-ground
observations and radiosonde data. Innsbruck, a region in the west of Austria exhibiting highly
interesting terrain, including high mountains and deep valleys, was chosen as a test region. A
more detailed description of the area is given in section (6.2).

1.1 Previous Work

The first two models using the mass consistent approach were developed in the 1970s. MASCON
[Dickerson, 1978], a mass consistent atmospheric flux model for regions with complex terrain,
was used for air pollution modelling in the San Francisco Bay Area. The model treats the well
mixed layer below the inversion as a single layer and uses mass consistent input data obtained
from measurements of inversion base heights above topography and mean wind as input data.
The product of these two sets of input data is adjusted by the MASCON algorithm so that air
mass is conserved and the changes to the observational data are minimal.

Almost at the same time MATHEW, a mass-adjusted, three-dimensional wind field model, was
developed by Sherman [1978], providing a pollutant transport model with input data. MATHEW
produces a minimally adjusted windfield from observational wind-field data, interpolated and
extrapolated to a computational grid. The vertical wind profile is calculated using a power law
and the geostrophic wind from synoptic analysis as an upper boundary wind. Since all available
field data was used as input, MATHEW has not been verified independently.

Two additional mass consistent models, NOABL [Phillips, 1979] and COMPLEX (Bhumralkar
et al. [1980] and Endlich et al. [1982]) were tested and compared by Guo and Palutikof [1990] in
three different regions within the UK. While COMPLEX was initially developed to investigate
wind energy potential at a potential turbine site, NOABL was used to determine the spatial dis-
tribution of wind speed and direction from observational data. Both models use terrain following
coordinates and require measurements as input data. As an additional parameter the boundary
layer height has to be specified. Both models performed well during the testing for neutrally
stratified conditions with strong winds but had its difficulties with very steep topography where
unrealistic streaming patterns were observed. The observed difference between calculated results
and measurements at selected stations was 5% at stations at lower altitude with wind speeds
being too low, and 20% at higher elevated stations for which the simulations showed higher
wind speeds. Based on these findings, a new model, MC-3, has been developed which takes
into account the anemometer height and roughness at different stations prior to interpolation to
counteract the systematic over- and underestimation of wind speeds.

NUATMOS, a mass consistent model developed by Ross and Smith [1988] and based on ATMOS1
[Davis et al., 1984], has been tested in idealized simulations and compared with potential flow
solutions. An attempt to couple the parameter that controls the amount of adjustment made in
the horizontal and vertical direction with the Froude number to consider atmospheric stability
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effects was made. The model was capable of reproducing the flow predicted by theory and any
differences were attributed to boundary effects and resolution.

Cox et al. [1998] investigated the performance of a model called MINERVE, initially developed
by Geai [1987], using meteorological measurements collected during April and December 1995 at
White Sands Missile Range, New Mexico. MINERVE has been tested extensively prior to this
work and was shown to describe the observed wind flow within 20%. In most cases the wind
fields provided by the model were consistent with observations. However, under some conditions
like the breakup of an inversion, the difference between observed and modelled wind field was
up to 60%, pointing out the limits of this diagnostic model.

Further models based on the idea of mass consistency include CONDOR [Moussiopoulos et al.,
1988], WINDS [Ratto et al., 1990] and WOCSS [Ludwig et al., 1991] but a detailed description
is beyond the scope of this work.



Chapter 2

Derivation of the Mass Consistent
Model

Since numerical high resolution models require a lot of computational power and time which
often cannot be provided in operational forecast, a faster and less complex approach is required
to find a more appropriate wind field on a high resolution topography.

The aim of this work is to find a wind field that is not only mass consistent at every grid point
but also minimizes the variance between the original and the adjusted field. This should then
represent the most reasonable solution because it also is the solution closest to the input field.
Terrain following coordinates are used in order to simplify the boundary conditions especially
when dealing with complex terrain [Magnusson, 2005].

In this section the theory behind the mass consistent model is described. The Euler-Lagrange
equations for solving the problem are derived, first in pressure coordinates and then transformed
to pressure based terrain following hybrid coordinates (η coordinates), following the approach
presented by Mayer and Wind [2015]. The derivation of this diagnostic model is based on
variational analysis, a very powerful and widely applicable mathematical technique.

2.1 Calculus of Variation

This chapter gives a short overview on the principles of the Calculus of Variation and largely
follows chapter 22 of Arfken and Weber [2013].

In general, Calculus of Variation describes a functional which has to be minimized (or max-
imized). The functional itself depends not just on variables but on functions. As a simple
example, Arfken and Weber [2013] define an integral J as a functional of y as

J [y] =

∫ x2

x1

f

(
y(x),

dy(x)

dx
, x

)
dx (2.1)

5
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where f is a function of y, dy/dx and x with fixed limits. Subsequently, a variation δy of
the function y, a scale factor ε that describes the magnitude of this variation and an arbitrary
function y′(x) with fixed endpoints are introduced:

y′(x1) = y′(x2) = 0. (2.2)

Then y can be written as a function of x and y′ with

y(x, ε) = y(x, 0) + εy′(x) (2.3)

where y(x.0) is chosen to minimize J . Using this equation, the integral (2.1) becomes

J(ε) =

∫ x2

x1

f

(
y(x, ε),

dy(x, ε)

dx
, x

)
dx. (2.4)

To obtain a stationary value for J we can impose the following condition

∂J(ε)

∂ε

∣∣∣∣
ε=0

= 0. (2.5)

Since the dependence on ε in the integral is contained in y(x, ε) and with the definition ∂y(x, ε)/∂x =

ẏ, the derivative of J is

∂J(ε)

∂ε
=

∫ x2

x1

[
∂f

∂y

∂y

∂ε
+
∂f

∂ẏ

∂ẏ

∂ε

]
dx =

∫ x2

x1

(
∂f

∂y
y′(x) +

∂f

∂ẏ

dy′(x)

dx

)
dx = 0. (2.6)

Integrating the second term of the integral and using equation (2.2) leads to

∂J(ε)

∂ε
=

∫ x2

x1

[
∂f

∂y
− d

dx

∂f

∂ẏ

]
y′(x)dx = 0. (2.7)

This equation can only be satisfied for arbitrary y′(x) if the equation within the square brackets
is equal to zero, yielding in a partial differential equation known as the Euler equation:

∂f

∂y
− d

dx

∂f

∂ẏ
= 0 (2.8)

For more than one (n) unknown functions this theory can still be easily applied and results in a
set of n Euler equations:

∂f

∂yi
− d

dx

∂f

∂ẏi
= 0, i = 1, 2, . . . , n (2.9)

2.1.1 Constrained Minima

The (in this example three-dimensional) function f(x, y, z) is now subject to the constraint
g(x, y, z) = C, where C is a constant. This problem corresponds to minimizing the function f on
a surface of a constant value g. To solve these constraint equations, the method of Lagrangian
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multipliers λ is introduced. For n variables and k constraints the equation is of the form

∂f

∂xi
−

k∑
j=1

λj
∂gj
∂xi

= 0, i = 1, 2, . . . , n. (2.10)

These n equations, together with the k constraint equations, represent the system of equations
that has to be solved.

2.2 Derivation in Pressure Coordinates

In 1958 Sasaki introduced a formalism based on the Calculus of Variation, forming the basis for
mass consistent models. The idea behind this method is to define an integral function whose
minimal solution also minimizes the variance of the difference between the input values and the
adjusted variables. In addition to minimizing the variance, a subsidiary physical constraint is
defined which has to be satisfied exactly (strong constraint) or approximately (weak constraint)
by the adjusted variables. In this model the three dimensional continuity equation

∇ · v =
∂u

∂x
+
∂v

∂y
+
∂ω

∂p
= 0 (2.11)

is used as a strong constraint [Sherman, 1978]. Therefore the divergence of the adjusted wind
field has to be zero at every grid point. The basic integral can be written as∫

V

[
α2
x (u− u0)2 + α2

y (v − v0)2 + α2
p (ω − ω0)2 + 2λ

(
∂u

∂x
+
∂v

∂y
+
∂ω

∂p

)]
dV = Min (2.12)

where ~v0(x, y, p) = [u0, v0, ω0] is the input field, ~v(x, y, p) = [u, v, ω] is the adjusted field, αi are
the Gaussian precision moduli which have to be found empirically and λ(x, y, p) is the Lagrange
multiplier. A factor two is inserted to simplify further calculations.
The integral over the volume equals the integral over the three coordinates:

V =

∫
dV =

∫∫∫
dxdydz. (2.13)

The wind components u, v and ω are assumed to minimize the integral in equation (2.12). To
obtain the Euler-Lagrange differential equations for λ auxiliary functions ũ(x, y, p, ε), ṽ(x, y, p, ε)

and ω̃(x, y, p, ε) are introduced. These functions split the velocity field in two parts, one being
the field that minimizes the integral and the other one describing weighted variations of these
velocity fields. The original fields are related to these functions as follows:

ũ(x, y, p, ε) = u(x, y, p) + εu′(x, y, p) (2.14)

ṽ(x, y, p, ε) = v(x, y, p) + εv′(x, y, p) (2.15)

ω̃(x, y, p, ε) = ω(x, y, p) + εω′(x, y, p). (2.16)
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The partial derivatives of the functions can be written as

∂

∂x
ũ(x, y, p, ε) = ∂

∂xu(x, y, p) + ε ∂∂xu
′(x, y, p) (2.17)

∂

∂y
ṽ(x, y, p, ε) = ∂

∂yv(x, y, p) + ε ∂∂yv
′(x, y, p) (2.18)

∂

∂p
ω̃(x, y, p, ε) = ∂

∂pω(x, y, p) + ε ∂∂pω
′(x, y, p). (2.19)

The variations u′, v′ and ω′ are arbitrary and have to be zero at the boundaries, the weight
factor ε is defined to be small [0 < ε� 1]. The integral (2.12) for the variations is defined as

Ĩ =

∫ [
α2
x (ũ− u0)2 + 2λ

∂ũ

∂x
+ α2

y (ṽ − v0)2 + 2λ
∂ṽ

∂y
+ α2

p (ω̃ − ω0)2 + 2λ
∂ω̃

∂p

]
dV = Min.

(2.20)
After plugging in the functions (2.14)-(2.16) the integral can be expressed as

Ĩ =

∫ [
α2
x

(
u+ ε u′ − u0

)2
+ 2λ

∂

∂x
(u+ ε u′) + α2

y

(
v + ε v′ − v0

)2
+

+ 2λ
∂

∂y
(v + ε v′) + α2

p

(
ω + ε ω′ − ω0

)2
+ 2λ

∂

∂p

(
ω + ε ω′

)]
dV. (2.21)

If ε is zero, the original values u, v and ω minimize the integral (2.21). Hence the relationship

dĨ

dε

∣∣∣∣∣
ε=0

= 0 (2.22)

is valid. For the total derivative with respect to ε, the chain rule has to be applied:

d

dε
=

∂

∂ũ

∂ũ

∂ε
+

∂

∂ṽ

∂ṽ

∂ε
+

∂

∂ω̃

∂ω̃

∂ε
+

∂

∂
(
∂ũ
∂x

) ∂ (∂ũ∂x)
∂ε

+
∂

∂
(
∂ṽ
∂y

) ∂
(
∂ṽ
∂y

)
∂ε

+
∂

∂
(
∂ω̃
∂p

) ∂
(
∂ω̃
∂p

)
∂ε

. (2.23)

Applying equation (2.23) to integral (2.21) gives:

∂Ĩ

∂ũ

∂ũ

∂ε̃

∣∣∣∣∣
ε=0

=

∫ [
2α2

x (ũ− u0)u′
∣∣
ε

]
dV =

∫ [
2α2

x (u− u0)u′
∣∣
ε

]
dV (2.24)

∂Ĩ

∂ṽ

∂ṽ

∂ε̃

∣∣∣∣∣
ε=0

=

∫ [
2α2

y (ṽ − v0) v′
∣∣
ε

]
dV =

∫ [
2α2

y (v − v0) v′
∣∣
ε

]
dV (2.25)

∂Ĩ

∂ω̃

∂ω̃

∂ε̃

∣∣∣∣∣
ε=0

=

∫ [
2α2

p (ω̃ − ω0)ω′
∣∣
ε

]
dV =

∫ [
2α2

p (ω − ω0)ω′
∣∣
ε

]
dV (2.26)

∂Ĩ

∂
(
∂ũ
∂x

) ∂ (∂ũ∂x)
∂ε

∣∣∣∣∣
ε=0

=

∫ [
2λ
∂ ∂ũ∂x
∂ε

∣∣∣∣∣
ε=0

]
dV =

∫ [
2λ
∂u′

∂x

]
dV (2.27)

∂Ĩ

∂
(
∂ṽ
∂y

) ∂
(
∂ṽ
∂y

)
∂ε

∣∣∣∣∣∣
ε=0

=

∫ [
2λ
∂ ∂ṽ∂y
∂ε

∣∣∣∣∣
ε=0

]
dV =

∫ [
2λ
∂v′

∂y

]
dV (2.28)
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∂Ĩ

∂
(
∂ω̃
∂p

) ∂
(
∂ω̃
∂p

)
∂ε

∣∣∣∣∣∣
ε=0

=

∫ [
2λ
∂ ∂ω̃∂p
∂ε

∣∣∣∣∣
ε=0

]
dV =

∫ [
2λ
∂ω′

∂p

]
dV. (2.29)

Using partial integration and the condition that the variations u′, v′ and ω′ vanish at the bound-
aries of the integral, equations (2.27), (2.28) and (2.29) can be simplified:

p2∫
p1

y2∫
y1


x2∫
x1

[
2λ
∂u′

∂x

]
dx

dy dp =

p2∫
p1

y2∫
y1

2λu′
∣∣x2

x1︸ ︷︷ ︸
=0

−
x2∫
x1

2
∂λ

∂x
u′ dx

dy dp = −
∫

2
∂λ

∂x
u′ dV (2.30)

x2∫
x1

p2∫
p1


y2∫
y1

[
2λ
∂v′

∂y

]
dy

dx dp =

x2∫
x1

p2∫
p1

2λ v′
∣∣y2

y1︸ ︷︷ ︸
=0

−
y2∫
y1

2
∂λ

∂y
v′ dy

dx dp = −
∫

2
∂λ

∂y
v′ dV (2.31)

x2∫
x1

y2∫
y1


p2∫
p1

[
2λ
∂ω′

∂p

]
dp

dx dy =

x2∫
x1

y2∫
y1

2λω′
∣∣p2

p1︸ ︷︷ ︸
=0

−
p2∫
p1

2
∂λ

∂p
ω′ dp

dx dy = −
∫

2
∂λ

∂p
ω′ dV.(2.32)

Summarizing all terms and inserting them into equation (2.22) gives rise to the following rela-
tionship:

dĨ

dε

∣∣∣∣∣
ε=0

= 2

∫ {[
α2
x (u− u0)− ∂λ

∂x

]
u′ +

[
α2
y (v − v0)− ∂λ

∂y

]
v′ +

[
α2
p (ω − ω0)− ∂λ

∂p

]
ω′
}

dV = 0.

(2.33)
Since the variations u′, v′ and ω′ are arbitrary the integral above can only vanish if the cor-
responding values in the square brackets in front of the variations are zero. This leads to the
following equations:

α2
x (u− u0)− ∂λ

∂x
= 0 ⇒ u = u0 +

1

α2
x

∂λ

∂x
(2.34)

α2
y (v − v0)− ∂λ

∂y
= 0 ⇒ v = v0 +

1

α2
y

∂λ

∂y
(2.35)

α2
p (ω − ω0)− ∂λ

∂p
= 0 ⇒ ω = ω0 +

1

α2
p

∂λ

∂p
. (2.36)

Together with the continuity equation (2.11) we now have four equations for four unknown
variables (u, v, ω, λ) which closes the system of equations.

2.2.1 Differential Equation for the Lagrange Multiplier λ

To obtain the differential equation for λ, equations (2.34), (2.35) and (2.36) have to be plugged
in to the continuity equation (2.11):

∂u0

∂x
+

1

α2
x

∂2λ

∂x2
+
∂v0

∂y
+

1

α2
y

∂2λ

∂y2
+
∂ω0

∂p
+

1

α2
p

∂2λ

∂p2
= 0. (2.37)
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Figure 2.1: The vertical η coordinate. phs and pht correspond to the pressure values at the surface and
the top boundaries [Skamarock et al., 2008].

Rearranging the terms leads to a partial differential equation second order for the Lagrange
multiplier:

1

α2
x

∂2λ

∂x2
+

1

α2
y

∂2λ

∂y2
+

1

α2
p

∂2λ

∂p2
= −

[
∂u0

∂x
+
∂v0

∂y
+
∂ω0

∂p

]
. (2.38)

The right side represents the divergence of the input wind field which is usually available on
some defined grid can be computed. Thus the only unknown variable in equation (2.38) is λ.
This equation is solved numerically. The discretization that will be introduced in chapter 3, is
carried out using terrain following coordinates.

2.3 The Terrain Following η Coordinate

Although using the geometrical height as a vertical coordinate seems to be the most obvious and
simple idea, the height coordinate system is not used in hydrostatic numerical weather models.
The use of pressure coordinates brings the advantage of reducing the mass continuity equation
to a diagnostic equation but at the same time introduces certain computational disadvantages
in mountainous terrain where the lower boundary does not coincide with the coordinate surface
[Kasahara, 1974]. Therefore, a variety of terrain following coordinates have been developed over
the past few decades.

The vertical coordinate used in the WRF model (described in section 6.1) is the η coordinate,
whose output is used for further computations in this thesis. The η coordinate is defined by

η(x, y, p) =
p(x, y)− pt
ps(x, y)− pt

(2.39)
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where p(x, y) is pressure at the corresponding grid point, pt is pressure at the top of the domain
and ps(x, y) is surface pressure [Laprise, 1992]. Using this definition, the η coordinate is a minor
generalisation of the σ coordinate p/ps which first was introduced by Phillips [1957].The value
of η varies between 1 on the surface (p = ps) and 0 at the top (p = pt)(see figure 2.1). On
transformation between pressure and η coordinates, the horizontal coordinates x and y remain
the same while the vertical coordinate and thus the vertical velocity has to be adapted:

x⇒ x u⇒ u∗ = u (2.40)

y ⇒ y v ⇒ v∗ = v (2.41)

p⇒ η ω = dp/dt⇒ ω∗ = dη/dt. (2.42)

To find an equation for the vertical velocity, the coordinate η which is a function of p(t) and
ps(x(t), y(t)) has to be differentiated with respect to t:

ω∗ =
dη

dt
=
∂η

∂p

dp

dt︸︷︷︸
ω

+
∂η

∂ps

∂ps
∂x

dx

dt︸︷︷︸
u

+
∂η

∂ps

∂ps
∂y

dy

dt︸︷︷︸
v

(2.43)

The partial derivatives from equation (2.43) are then calculated separately:

∂η

∂p
=

1

ps(x, y)− pt
(2.44)

∂η

∂ps
= − p(x, y)− pt

(ps(x, y)− pt)2
. (2.45)

To replace p(x, y) in equation (2.45), equation (2.39) can be resolved for p

p(x, y) = η(x, y, p) (ps(x, y)− pt) + pt (2.46)

and inserted into equation (2.45):

∂η

∂ps
== −η (ps(x, y)− pt) + pt − pt

(ps(x, y)− pt)2 = − η

ps(x, y)− pt
. (2.47)

Plugging equations (2.44) and (2.47) into equation (2.43) yields

ω∗ = − η

ps − pt
∂ps
∂x

u− η

ps − pt
∂ps
∂y

v +
1

ps − pt
ω. (2.48)

Taking a closer look at this equation, one can see that the horizontal surface pressure gradients
∂ps/∂x and ∂ps/∂x can induce a vertical velocity in η coordinates even when the initial vertical
velocity in p coordinates is zero. The influence of the pressure gradients, which corresponds to
the influence of the topography, on ω∗ decreases while the influence of the last term in equation
(2.48) increases with height.
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2.4 Transformation of the Continuity Equation

The continuity equation in generalized coordinates qj is of the form

ρ̇

ρ
+
∂q̇j
∂qj

+
Ḋx
q

Dx
q

= 0 (2.49)

where ρ is the density, Dx
q the Jacobian and the dotted values denote time derivatives [Hantel,

2013]. Starting in pressure coordinates and transforming to η coordinates, the first term in
equation (2.49) is zero. The Jacobian Dp

η for this transformation can be calculated and has the
form

Dp
η =

∣∣∣∣∣∣∣


∂x
∂x

∂x
∂y

∂x
∂η

∂y
∂x

∂y
∂y

∂y
∂η

∂p
∂x

∂p
∂y

∂p
∂η


∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
 1 0 ∂x

∂η

0 1 ∂y
∂η

0 0 ps − pt


∣∣∣∣∣∣∣ = ps − pt (2.50)

where ∂p/∂η was derived from equation (2.46). The time derivative of the Jacobian is thus

Ḋp
η(ps(x(t), y(t))) =

∂Ḋp
η

∂ps

∂ps
∂x

dx

dt
+
∂Ḋp

η

∂ps

∂ps
∂y

dy

dt
=
∂ps
∂x

u+
∂ps
∂y

v. (2.51)

Assembling the results of equations (2.50) and (2.51) and plugging it in into equation (2.49)
yields the continuity equation in η coordinates:

∂u

∂x
+
∂v

∂y
+
∂ω∗

∂η
+

1

ps − pt

[
∂ps
∂x

u+
∂ps
∂y

v

]
= 0. (2.52)

2.5 Eulerian Differential Equations in η Coordinates

After deriving the vertical velocity and the continuity equation in η cooridnates, the obtained
additional terms have to be considered when minimizing integral (2.12). The new, extended
integral has the form

Ĩ =

∫ [
α2
x (ũ− u0)2 + α2

y (ṽ − v0)2 + α2
η (ω̃∗ − ω∗0)2 +

+ 2λ

(
∂ũ

∂x
+
∂ṽ

∂y
+
∂ω̃∗

∂η
+

1

ps − pt

[
∂ps
∂x

ũ+
∂ps
∂y

ṽ

])]
dV = Min. (2.53)

Following a similar procedure as described in section (2.2), the previously defined auxiliary
functions (2.14-2.19) are reused for u, v and ω∗ and plugged into equation (2.53):

Ĩ =

∫ [
α2
x

(
u+ εu′ − u0

)2
+ 2λ

(
∂

∂x

(
u+ εu′

)
+

1

ps − pt
∂ps
∂x

(
u+ εu′

))
+

+ α2
y

(
v + εv′ − v0

)2
+ 2λ

(
∂

∂y

(
v + εv′

)
+

1

ps − pt
∂ps
∂y

(
v + εv′

))
+

+ α2
η

(
ω∗ + εω∗′ − ω∗0

)2
+ 2λ

(
∂

∂η
(ω∗ + εω∗)

)]
. (2.54)
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The partial derivatives of integral Ĩ with respect to ε at ε = 0 can now be written as

∂Ĩ

∂ũ

∂ũ

∂ε

∣∣∣∣∣
ε=0

=

∫ [
2α2

x (u− u0)u′ +
2λ

ps − pt

[
∂ps
∂x

]
u′
]

dV (2.55)

∂Ĩ

∂ṽ

∂ṽ

∂ε

∣∣∣∣∣
ε=0

=

∫ [
2α2

y (v − v0) v′ +
2λ

ps − pt

[
∂ps
∂y

]
v′
]

dV (2.56)

∂Ĩ

∂ω̃∗
∂ω̃∗

∂ε

∣∣∣∣∣
ε=0

=

∫ [
2α2

η (ω∗ − ω∗0)ω∗′
]

dV (2.57)

∂Ĩ

∂
(
∂ũ
∂x

) ∂ (∂ũ∂x)
∂ε

∣∣∣∣∣
ε=0

=

∫ [
2λ
∂u′

∂x

]
dV (2.58)

∂Ĩ

∂
(
∂ṽ
∂y

) ∂
(
∂ṽ
∂y

)
∂ε

∣∣∣∣∣∣
ε=0

=

∫ [
2λ
∂v′

∂y

]
dV (2.59)

∂Ĩ

∂
(
∂ω̃∗

∂η

) ∂
(
∂ω̃∗

∂η

)
∂ε

∣∣∣∣∣∣
ε=0

=

∫ [
2λ
∂ω∗′

∂η

]
dV. (2.60)

Equations (2.58)-(2.60) can be simplified using partial integration analogous to equations (2.30)-
(2.32). Putting everything together results in the following equation:

dĨ

dε

∣∣∣∣∣
ε=0

= 2

∫ {[
α2
x (u− u0)− ∂λ

∂x
+

λ

ps − pt
∂ps
∂x

]
u′ +

+

[
α2
y (v − v0)− ∂λ

∂y
+

λ

ps − pt
∂ps
∂y

]
v′

+

[
α2
η (ω ∗ −ω∗0)− ∂λ

∂η

]
ω∗′
}

dV = 0. (2.61)

The variations u′, v′ and ω′ are independent and arbitrary. Hence the terms in the brackets in
front of these variations have to disappear. Solving these terms for u, v and ω∗ results in:

u = u0 +
1

α2
x

[
∂λ

∂x
− λ

ps − pt
∂ps
∂x

]
(2.62)

y = y0 +
1

α2
y

[
∂λ

∂y
− λ

ps − pt
∂ps
∂y

]
(2.63)

ω∗ = ω0
∗ +

1

α2
η

[
∂λ

∂η

]
. (2.64)

With the subsequent abbreviations

Zx = − 1

ps − pt
∂ps
∂x

(2.65)

Zy = − 1

ps − pt
∂ps
∂y

(2.66)
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equations (2.62) to (2.64) can be written as

u = u0 +
1

α2
x

[
∂λ

∂x
+ λZx

]
(2.67)

v = v0 +
1

α2
y

[
∂λ

∂y
+ λZy

]
(2.68)

ω∗ = ω0
∗ +

1

α2
η

[
∂λ

∂η

]
. (2.69)

2.5.1 Differential Equation for the Lagrange Multiplier λ

To obtain the final differential equation for the Lagrange multiplier λ, equations (2.67) to (2.69)
have to be plugged into the continuity equation in η coordinates (2.52):

1

α2
x

∂λ

∂x
+

1

α2
y

∂λ

∂y
+

1

α2
η

∂λ

∂η
+

1

α2
x

λ
∂Zx
∂x

+
1

α2
y

λ
∂Zy
∂y
− 1

α2
x

λZ2
x −

1

α2
y

λZ2
y =

= −
[
∂u0

∂x
+
∂v0

∂y
+
∂ω∗0
∂η
− Zx u0 − Zy v0

]
. (2.70)

The left hand side of the equation contains the terms with the Lagrange multiplier, the right hand
side represents the divergence of the input wind field. Solving this equation numerically yields
the Lagrange multiplier as a function of space (λ(x, y, η)) which can then be used to compute
the new wind components by solving equations (2.67) to (2.69).



Chapter 3

Discretization

To obtain a solution to the continuous problem derived in the previous chapter equation 2.70
needs to be discretized and solved numerically. The formulation of the discretized equations is
described in this chapter. Additionally section 3.2 discusses the choice of boundary conditions.

3.1 Discretizing the Continuous Equations

The equation to solve, equation (2.70), has the form C1∇2λ + C2∇λ + C3λ = F with Ci and
F being space-dependent scalar functions. Kapitza and Eppel [1987] define the discretization of
the first and second derivatives of a function λ with respect to the coordinate x as

∂λ

∂x
=

∆2
iλi+1 −

(
∆2
i −∆2

i+1

)
λi −∆2

i+1λi−1

∆i∆i+1 (∆i + ∆i+1)
(3.1)

∂2λ

∂x2
=

2 [∆iλi+1 − (∆i −∆i+1)λi −∆i+1λi−1]

∆i∆i+1 (∆i + ∆i+1)
(3.2)

with grid distances ∆i = xi − xi−1 and ∆i+1 = xi+1 − xi. With this formulation the grid does
not need to be equally spaced which, in our case, is true for the vertical coordinate. Applying
equations (3.1) and (3.2) to equation (2.70) using indices i and j for the horizontal and k for the
vertical dimensions results in the following equation:

2

α2
x

[
∆iλi+1,j,k − (∆i + ∆i+1)λi,j,k + ∆i+1λi−1,j,k

∆i ∆i+1 (∆i + ∆i+1)

]
+

2

α2
y

[
∆jλi,j+1,k − (∆j + ∆j+1)λi,j,k + ∆j+1λi,j−1,k

∆j ∆j+1 (∆j + ∆j+1)

]
+

2

α2
η

[
∆kλi,j,k+1 − (∆k + ∆k+1)λi,j,k + ∆k+1λi,j,k−1

∆k ∆k+1 (∆k + ∆k+1)

]
+

λi,j,k
α2
x

[
∆2
i Zxi+1,j −

(
∆2
i −∆2

i+1

)
Zxi,j −∆2

i+1 Zxi−1,j

∆i ∆i+1 (∆i + ∆i+1)

]

15
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+
λi,j,k
α2
y

∆2
j Zyi,j+1 −

(
∆2
j −∆2

j+1

)
Zyi,j −∆2

j+1 Zyi,j−1

∆j ∆j+1 (∆j + ∆j+1)


− 1

α2
x

λi,j,k Z
2
xi,j −

1

α2
y

λi,j,k Z
2
yi,j

= −
∆2
i u0i+1,j,k

−
(
∆2
i −∆2

i+1

)
u0i,j,k −∆2

i+1 u0i−1,j,k

∆i ∆i+1 (∆i + ∆i+1)

−
∆2
j v0i,j+1,k

−
(

∆2
j −∆2

j+1

)
v0i,j,k −∆2

i+1 v0i,j−1,k

∆j ∆j+1 (∆j + ∆j+1)

−
∆2
k ω
∗
0i,j,k+1

−
(
∆2
k −∆2

k+1

)
ω∗0i,j,k −∆2

k+1 ω
∗
0i,j,k−1

∆k ∆k+1 (∆k + ∆k+1)

+ Zxi,j u0i,j,k + Zyi,j v0i,j,k . (3.3)

Factoring out the Lagrange multipliers and taking into consideration that in our case the hori-
zontal grid points are equally spaced, i.e. ∆i = ∆i+1 = ∆j = ∆j + 1 ≡ ∆, simplifies equation
(3.3) to

λi,j,k

[
− 1

α2
x

(
2

∆2
+ Z2

xi,j −
Zxi+1,j − Zxi−1,j

2∆

)
− 1

α2
y

(
2

∆2
+ Z2

yi,j −
Zyi,j+1 − Zyi,j−1

2∆

)
− 2

α2
η∆k∆k+1

]
+ λi−1,j,k

[
1

α2
x∆2

]
+ λi+1,j,k

[
1

α2
x∆2

]
+ λi,j−1,k

[
1

α2
y∆

2

]
+ λi,j+1,k

[
1

α2
y∆

2

]
+ λi,j,k−1

[
2

α2
η∆k(∆k + ∆k+1)

]
+ λi,j,k+1

[
2

α2
η∆k+1(∆k + ∆k+1)

]
= −

[
u0i+1,j,k

− u0i−1,j,k

2∆

]
−
[
v0i,j+1,k

− v0i,j−1,k

2∆

]
+ Zxi,j u0i,j,k + Zyi,jv0i,j,k

−

[
∆2
kω
∗
0i,j,k+1

−
(
∆2
k −∆2

k+1

)
ω∗0i,j,k −∆2

k+1ω
∗
0i,j,k−1

∆k∆k+1 (∆k + ∆k+1)

]
. (3.4)

The equation above can be put into the form of a matrix equation

Mλ = r (3.5)

with r representing the right hand side of equation (3.4). To find a solution to this equation,
the indices i, j, k are merged to one index n where n = 1, . . . , ni · nj · nk. Consequently, the
three-dimensional matrix of λ becomes a vector andM becomes an n×n matrix. Furthermore,
M only has 7 diagonals with non-zero elements and can therefore be treated as a sparse matrix,
considerably reducing the computational cost.
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3.2 Boundary Conditions

Using terrain following coordinates introduces a big advantage compared to cartesian coordinates
considering boundary conditions when dealing with topography. Following Sherman [1978], either
the adjustment of the velocity component normal to the boundary or λ has to be zero. The
resulting wind field can then be calculated using equations (2.67) to (2.69).

Lateral and Upper Boundary

Setting λ to zero at the boundary does not imply that the derivative of λ normal to the boundary
is zero. Therefore, the velocities can still be adjusted according to equations (2.67) to (2.69).
This type of boundary condition is applied to the upper and lateral boundaries. These are so-
called flow-through boundaries because an adjustments of the velocity component normal to the
boundary also results in a change of mass flowing in or out of the volume.

Lower Boundary

For the lower boundary a no-flow-through or closed boundary condition is applied in which the
normal derivative of λ is set to zero. Thus, no adjustment of the vertical wind component can
be made. In combination with defining the wind components u = v = ω∗ = 0 no mass can enter
or leave the volume through the lower boundary.
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Chapter 4

The Mass Consistent Model

This chapter gives an overview on the main steps that have to be performed to correct the input
wind data such that the new wind field is mass consistent. A flow chart that summarizes this
process is shown in Figure 4.1. Additionally the role of the α constants is discussed in section
4.3.

4.1 Preparation of the Data

First of all, data has to be collected from the WRF model (cf. 6.1). This data comes on a 4 km
horizontal grid and has 41 vertical levels. To reduce computational cost and time not all vertical
levels are used for further computations, i.e. only the lowest six levels and every fifth level above.
By maintaining the higher resolution in the lower levels the difference in the results are almost
negligible. A more detailed discussion of the choice of vertical levels is given in chapter 7.

Once data has been collected from the numerical model, the desired area has to be cut out
by specifying the starting- and endpoint in latitude and longitude. The area chosen for further
computations is described in section 6.2. As a next step, to get a first guess for the high resolution
wind field, the data has to be interpolated from the 4 km grid to the finer grid with a resolution
of 500m. A two dimensional linear interpolation scheme for interpolation on the hybrid planes
is used.

It is important to note that the matter of interpolation is not trivial. A change in resolution
on model surfaces also changes the vertical coordinate. As a consequence, horizontal gradients
on model surfaces get modified by a non-linear term [Trenberth et al., 1993]. However, an ideal
procedure for interpolating to higher resolution still has to be found.

4.2 Setting up the Equation System

Following the interpolation, several calculations have to be done to be able to compute the
divergence of the input wind field which is the right hand side of the equation system (3.5).
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Get data from the WRF
model ( terrain height, p, T ,
Θ, u, v, ω)

Get high resolution topogra-
phy data

Choose area of interest:
find grid points according to
specified values of latitude
and longitude

Cut out the domain

Interpolate data to smaller
grid on η-planes

Calculate:

– Surface pressure on
high resolution
topography

– Terrain following
vertical velocity ω∗

with interpolated values
of u, v, ω

Calculate divergence of input
wind field

Set constant αη value

Calculate stability parameter

Calculate αη for every grid-
point

Create matrixM

Solve equation system to get
λ

Calculate new wind compo-
nents

Figure 4.1: Steps of collecting and preparing data for the mass consistent model to compute the new
wind field.
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Firstly, the surface pressure on the high resolution topography is needed to obtain the horizontal
pressure gradient. For this purpose the interpolated surface pressure ps,i is calculated from the
interpolated terrain height Hi on the corresponding high resolution terrain height H at each grid
point (ps,new) using the barometric equation:

ps,new = ps,i

(
T0

T0 + Γ (Hi −H)

)− g
RΓ

. (4.1)

The following values of the standard atmosphere are assumed: T0 = 288.15K, the laps rate
Γ = −0.0065Km−1, the ideal gas constant for dry air R = 287.05 JK−1 kg−1 and the gravita-
tional acceleration g = 9.81ms−2. With the new surface pressure ps,new the horizontal pressure
gradients at each grid point i, j can be calculated using centered differences:(

∂ps
∂x

)
i,j

=
psi+1,j − psi−1,j

2∆x
(4.2)

(
∂ps
∂y

)
i,j

=
psi,j+1 − psi,j−1

2∆y
(4.3)

At the lateral boundaries a one sided difference scheme of second order is used. Zx and Zy

(equations 2.65 and 2.66) as well as the terrain following vertical velocity ω∗ (equation 2.48) and
subsequently the divergence of the input wind field can be computed using the right hand side of
equation 3.4. The divergence is set to zero on the boundaries. Furthermore the resulting three
dimensional matrix has to be rearranged to a vector.

As a next step the matrix M with dimensions n × n (n = ni · nj · nk), where i and j are the
horizontal and k the vertical grid numbers, is created according to the left hand side of equation
3.4. As already mentioned in chapter 3 the matrix is sparsely populated with only 7 non-zero
diagonals. The values 6= 0 which are the expressions within the brackets after the respective λ
in equation 3.4, with their corresponding indices can be seen in table 4.1. For the grid points at

Variable Value Index

λi,j,k
− 1
α2
x

(
2

∆2 + Z2
xi,j −

Zxi+1,j−Zxi−1,j

2 ∆

)
n , n

− 1
α2
y

(
2

∆2 + Z2
yi,j −

Zyi,j+1−Zyi,j−1

2 ∆

)
− 2

α2
z ∆k ∆k+1

λi,j,k−1
2

α2
z ∆k(∆k+∆k+1)

n , n− 1

λi,j,k+1
2

α2
z ∆k+1(∆k+∆k+1)

n , n+ 1

λi,j−1,k
1

α2
y ∆2 n , n− nz

λi,j+1,k
1

α2
y ∆2 n , n+ nz

λi−1,j,k
1

α2
x ∆2 n , n− nynz

λi+1,j,k
1

α2
x ∆2 n , n+ nynz

Table 4.1: Non-zero elements of the matrixM with their corresponding variable and index.
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the lateral boundaries (i = j = 1 and i = nx, j = ny) the value in the main diagonal is set to 1.
Concerning the points at the lower boundary (k = 1), the main diagonal values are filled with
−1 and the values to the right of the diagonal (index n, n+ 1) with 1.

The equation systemMλ = r can now be solved for λ using LDL decomposition. The resulting
vector contains the λ values for every grid point and has to be rearranged into a three dimensional
matrix. Finally the new wind field can be calculated with equations 2.67 to 2.69. The horizontal
and vertical gradients of λ used in these equations are calculated analogous to equations 4.2 and
4.3.

4.3 The α Constants

The choice of the Gaussian precision moduli (α constants) has major influence on the resulting
wind field. They can be interpreted as weighting factors that define the relative amount of adjust-
ment of the vertical and horizontal velocity components in the solution of the continuity equation
[Finardi et al., 1997]. The ratio between horizontal αh and vertical αv constants is the crucial
value defining the final velocity field. A ratio equal to one allows the same amount of change in
horizontal and vertical direction. For ratios αh/αv smaller than one, horizontal adjustments are
favoured whereas ratios bigger than one mainly allow changes in the vertical. This behaviour
allows to connect the α constants to atmospheric stratification. For stable conditions the wind
is primarily adjusted horizontally corresponding to a ratio αh/αv > 1. Unstable conditions are
characterized by prevailing vertical adjustments with αh/αv < 1. αh = αv represents neutral
stratification with evenly distributed adjustments [Magnusson, 2005]. Ross and Smith [1988] also
included topographic features through the Froude number to compute α since the constants also
influence on weather air moves around or above an obstacle.

In Sherman [1978] and Dickerson [1978] the value for the Gaussian precision moduli was linked
to the observation errors or deviations σ of the observed to the adjusted field with α = 1/2 σ−2.
Sherman states that the value of (αv/αh)2 = (σv/σh)2 should be of the same magnitude as the
ratio of vertical and horizontal velocity (w/u)2.

All models used in the studies mentioned above use a vertical coordinate system that is based
on the geometric height. Therefore horizontal and vertical velocity as well as their adjustments
are of comparable magnitude. This model uses a pressure based vertical coordinate where the
vertical velocity is constituted in ηs−1. Hence, the vertical velocity is smaller by a factor of 10−4

compared the horizontal velocities. As a consequence, the parameter controlling the vertical
adjustment (αη) has to be about four times bigger in magnitude than the horizontal parameters
to reach the same results.

For the real cases three different approaches defining αη are taken in this work. As a first
approach αη values were varied from 500 to 40000 to find the value that minimizes the difference
between the observed and modelled wind field. Then αη is calculated using the approach of
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Sherman [1978]:

αη = αx

√
σ2
u + σ2

v

σω∗
(4.4)

with σu, σv and σω∗ being the standard deviations of the horizontal and terrain following vertical
wind velocities. The horizontal transmission coefficient αx = αy can be set to 1 because only
the ratio between horizontal and vertical coefficients is of importance. In a third attempt, αη is
calculated as a linear function of the mean vertical temperature gradient ∂θ/∂z to link it with
atmospheric stability.

αη = k
∂θ

∂z
+ d (4.5)

The factors k and d have to be chosen empirically. After some testing they were set to k = 6 ·105

and d = 104. To compute the vertical gradient, the difference of potential temperature of the
fifth (≈ 150m) and second level (≈ 8m) is divided by the total height difference between both
levels. Information about potential temperature is taken from the WRF input data.

The results of the different approaches are compared and discussed for four different case studies
in chapter 7.
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Chapter 5

Idealized Simulation

To validate the behaviour of the mass consistent model, an idealized simulation of a flow over an
artificial hill similar to Magnusson [2005] was made. Based on this test setup the resulting wind
fields were examined before applying the model to real data.

5.1 Model Setup

The model topography has the shape of a Gaussian hill and is given by

hg(i, j) = hmax exp
(
−s
(

(i−Xc)
2 + (j − Yc)2

))
(5.1)

where hg is the height of the terrain, hmax the maximum height of the hill and s the steepness
parameter. The variables i and j denote the location of the grid point within the domain and
(Xc, Yc) the central point of the hill. The shape of the hill is shown in Figure 5.1. For this
example the height of the hill is set to 500m and the steepness parameter is s = 0.08. The
number of grid points in x and y direction is 30 with a grid spacing of 1 km. In the vertical
direction 20 levels have been defined with a variable grid spacing similar to Magnusson [2005].
The level-heights are 0m, 2m, 4m, 10m, 20m, 50m, 100m, 150m, 200m, 300m and 400m,
above 400m every 200m up to 2200m. Since pressure based coordinates are used for this model,
the corresponding pressure p to the level heights z is calculated with the barometric formula for
an isothermal atmosphere [Bauer et al., 2001]

p(z) = ps exp
(
− z

H

)
(5.2)

with the surface pressure ps = 1000 hPa and the scale height of the atmosphere H = 8 km.

The input wind field is defined with wind exclusively from the southern direction, therefore
u = ω = 0 and v = 10ms−1. Below 50m a logarithmic wind profile for v is defined with

v(z) = vr
log(z/z0)

log(zr/z0)
(5.3)
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Figure 5.1: Gaussian shaped hill for the idealized simulation with a maximum hill size of 500m.

with a roughness length of z0 = 0.01m, vr = 10ms−1 and zr = 50m. At the first level
(z0 = 0m) the wind speed is set to zero. The input wind field initially does not "know" the hill.
The information about the model terrain is first put in when calculating the terrain following
vertical velocity ω∗ with equation (2.48). A vertical cross section of ω∗ through the center of the
hill is shown in Figure 5.2 with positive values in front of and negative values behind the hill.

Figure 5.2: Vertical cross section of the terrain following vertical velocity ω∗ through the center of the
hill calculated from the input wind field.

For the first simulation the α-constants were set to αx = αy = 1 and αη = 1·104. Later three
different values for αη are compared.
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5.2 Results

Figure 5.3: Adjusted wind components and wind speed at the second vertical η level (≈ 2m above
ground).

Figure 5.3 shows the resulting horizontal and vertical wind components and the windspeed at
approximately 2m above the ground (second vertical level) after introducing topography as
described before and applying the mass consistent model. For the plots the wind speed is
calculated as

U =
√
u2 + v2. (5.4)

with u and v being the wind velocities. To get a more intuitive depiction of the vertical flow
component, the terrain following vertical component ω∗ is transformed to cartesian coordinates
by first rearranging and applying equation (2.48) and then using the hydrostatic relationship

w = − ω

gρ
(5.5)

with g = 9.81ms−2 and ρ = 1 kgm−1.

The adjustments in the horizontal u component can be seen in the upper left plot. It is easy
to see that the flow now goes around the hill. Concerning the vertical velocity component, the
lower left plot shows an ascending motion in front of and a descending motion behind the hill.
The plots on the right hand side look very similar due to the fact that the u component is much
smaller than the v component and the wind speed is calculated according to equation (5.4). In
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both plots a deceleration in front of and behind the hill as well as a maximum in the wind speed
and v component at the top of the hill can be found.

However, the location of the maximum poses a problem since in reality the maximum in wind
speed is located behind the hill. Another error source is the magnitude of the minima which is
the same on both sides of the hill for this simulation but can be different in real cases depending
on the stratification.

The level of adjustment strongly depends on the choice of the vertical α constant. Figure 5.4b
shows streamlines for the same αη value as used in the previous plots. In Figure 5.4a a lower
value for αη was chosen which has the effect that the horizontal deflection of the flow is weaker
compared with Figure 5.4b. Therefore the vertical adjustment has to be stronger leading to
the conclusion that lower values of αη represent unstable stratification whereas higher values
reproduce a streaming pattern typical for stable stratification. In Figure 5.4c αη was set to
15000 which results in air rather flowing around than over the artificial hill.

Theoretically, the maximum vertical displacement of an air parcel that approaches an obstacle
can be calculated by

δmax =
u0

N
≈ 550m (5.6)

with N being the Brunt-Väisälä frequency and u0 = 10ms−1 [Markowski and Richardson, 2011].
Air will not be able to flow over a mountain higher than δmax because there the stagnation point
(u0 = 0) is reached. Hence, for this very stable stratification (isothermal atmosphere) αη = 15000

seems to be an appropriate value.
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(a) αη = 5000

(b) αη = 10000

(c) αη = 15000

Figure 5.4: Streamlines of simulated flow for three different values of αη at the second vertical η level
(≈ 2m above ground).
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Chapter 6

Real Data and Methods

This chapter describes the data sources used for computing and verifying the mass consistent
model. Furthermore the geographical domain used for testing the model as well as the ground
based stations within this area are introduced in section 6.2 and 6.3.1. A description of statistical
methods, used to compare observed wind data with the interpolated and resulting mass consistent
wind fields, is given in section 6.3.2.

6.1 The Weather Research & Forecast Model (WRF)

As a first step, prior to running the mass consistent model, input data has to be collected. This
data is taken from an operationally used Weather Research and Forecasting (WRF) model with
a resolution of 4 km.

The WRF model is a numerical weather prediction and atmospheric simulation system created
for both research and operational purposes. It offers a broad spectrum of physics and dynam-
ics options and is therefore applicable for various problems covering all scales from large-eddy
to global simulations. Developed by a collaboration between the National Center for Atmo-
spheric Research’s (NCAR) Mesoscale and Microscale Meteorology (MMM) Division, the Na-
tional Oceanic and Atmospheric Administration’s (NOAA) National Centers for Environmental
Prediction (NCEP) and Earth System Research Laboratory (ESRL), the Department of De-
fense’s Air Force Weather Agency (AFWA) and Naval Research Laboratory (NRL), the Center
for Analysis and Prediction of Storms (CAPS) at the University of Oklahoma and the Federal
Aviation Administration (FAA), the WRF model is used all over the world in operational services
and research with over 6000 registered users [Skamarock et al., 2008].

The WRF Software Framework (WSF) combines the principal components of the WRF system
and provides two different dynamic solvers, the Advanced Research WRF (ARW) solver and
the NMM (Nonhydrostatic Mesoscale Model) solver. The current ARW Version (Version 3) was
first released in April 2008. The equations featured in the ARW solver are fully compressible
and non hydrostatic with a hydrostatic option. Amongst some optional variables like turbulent

31



32 CHAPTER 6. REAL DATA AND METHODS

Figure 6.1: Map of the domain chosen for testing the mass consistent model including all near ground
observation stations used for verification.

kinetic energy or water vapour mixing ratio, prognostic variables include the velocity components
u, v and ω, perturbation potential temperature, geopotential and surface pressure of dry air.
As vertical coordinate a terrain following, dry hydrostatic pressure coordinate is used. For
discretization the model uses a second- or third-order Runge-Kutta time integration scheme.
Further specifications of the model can be found in Skamarock et al. [2008].

The WRF variables used as input data for the mass consistent model are: latitude, longitude,
height of hybrid levels, pressure, temperature, potential temperature, horizontal and vertical
velocity components. Additionally, available surface values are used for terrain height, pressure,
temperature and potential temperature.

6.2 Geographical Domain

The domain chosen for testing the mass consistent model is a region around Innsbruck, the
capital city of Tyrol in Austria and lies between latitudes 47◦ and 47.4◦N and longitudes 11◦

and 12◦E. This alpine area is chosen because of its complex topography including deep valleys as
well as high mountain ridges. The most prominent valleys within the domain are the west-east
oriented Inn valley and the north-south oriented Wipp valley with its junction point around
Innsbruck at an elevation of approximately 570m. The Inn valley is bounded by the Karwendel
mountain range to the north with peaks over 2700m and by the Tuxer and Stubaier Alps with
peaks exceeding 3000m to the south which are separated by the Wipp valley.

An overview over the area including all measuring stations is given in Figure 6.1 and Table 6.1.



6.3. VERIFICATION 33

6.3 Verification

6.3.1 Verification Sources

To investigate the quality and accuracy of the mass consistent model the model data is compared
to different observation data.

Near Ground Observations

The near ground observations are mostly taken from the measuring network maintained by the
ZAMG (Zentralanstalt für Meteorologie und Geodynamik). This network contains about 250
semiautomatic weather stations (TAWES) that, besides measuring wind speed and direction,
also sample air and soil temperature, dew point temperature, precipitation, pressure and total
radiation in 10-minute intervals. Additional measuring stations at Austrian airports are provided
by Austro Control (ACG).

The stations that lie within the testing domain (described above) used for verification are listed
in Table 6.1.

Table 6.1: List of stations within the testing domain used for verification.

Station Name Latitude [◦E] Longitude [◦N] Elevation [m]
Innsbruck University 11.3833 47.2667 577
Innsbruck Airport 11.3500 47.2667 584
Mayrhofen 11.8500 47.1667 633
Neustift/Milders 11.2919 47.1028 993
Rinn 11.5039 47.2492 917
Steinach/Tirol 11.4667 47.0833 1025
Patsch 11.4183 47.1928 794
Hochzirl 11.2497 47.2809 923
Seefeld 11.1839 47.3317 1182
Patscherkofel 11.4617 47.2097 2247

Radiosonde Data

For the purpose of verification along the vertical axis, radiosonde data is used. These radio
soundings measure temperature, dew point temperature, wind speed and wind direction at spe-
cific pressure levels. The only sounding that is available on a regular basis within the domain
is the sounding from Innsbruck-Airport (station number 11120) where the radiosonde ascends
every day at 3 UTC.

6.3.2 Error Measures

Different error measures are used to quantify the performance of the mass consistent model and
to compare its result to observational data.
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BIAS

Predictions from numerical weather models can contain systematic errors for various reasons.
Among others, systematic errors in wind speed forecasts near the ground can be caused by
wrong values for the roughness length or by topographic features not resolved by the model. An
error measure for this type of error is the BIAS. For a set of N forecasts, the BIAS is defined as

BIAS =
1

N

[
N∑
i=1

(H(Fi)−Oi)

]
(6.1)

with Fi being the i-th forecast and Oi the corresponding observation. The observation operator
H is used in this formula to make different physical quantities comparable - in this work the
observation operator is needed to compare observed wind data with gridded wind data by inter-
polation from the nearest grid point to the location of the measuring station. This provides a
measure for the average direction of the deviation from observed values. As a convention, fore-
cast values are subtracted from observed values so that a positive BIAS indicates, on average,
a forecast value that exceeds the observations. On the other hand, if the BIAS is negative, the
observed value falls below the predicted value on average [Stanski et al., 1989].

Since the BIAS only states the direction but not the magnitude of the error, the BIAS should
not be used as a standalone score but be accompanied by other error measures.

Mean Absolute Error (MAE)

For a series of N forecasts the Mean Absolute Error (MAE) is given by

MAE =
1

N

[
N∑
i=1

|H(Fi)−Oi|

]
(6.2)

where Fi represents the i-th forecast and Oi the corresponding observation [Stanski et al., 1989].
This linear score describes the mean magnitude of the errors but does not give information about
the direction of the deviation.

Root Mean Square Error (RMSE)

The Root Mean Square Error (RMSE) for a series of N forecasts is defined as

RMSE =

[
1

N

N∑
i=1

(H(Fi)−Oi)2

] 1
2

. (6.3)

Fi and Oi are the i-th forecast and observation. Similar to the MAE, the RMSE does not
indicate the direction of the deviation since it is always positive. Owing to the square, the
RMSE gives more weight to large errors than to small errors. This characteristic leads to a more
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appropriate estimation of the error since large errors are particularly unwanted but can also
encourage conservative forecasting where forecasts are made near to the climatological mean to
avoid large errors.

The RMSE can also be an estimate of the error variance if it is compared to the MAE. A RMSE
significantly larger than the MAE indicates a high error variance. If the errors all have the
same magnitude, the RMSE has the same value as the MAE. A smaller RMSE can never occur
[Stanski et al., 1989].

Mean Absolute Vector Difference (MAVD)

To compare analyzed and observed wind vectors the mean absolute vector difference is computed
[Lotteraner, 2009]:

MAVD =

[
1

N

N∑
i=1

(uo − ua)2 + (vo − va)2

] 1
2

. (6.4)

N is the number of stations, uo and vo are the components of the observed wind vector and ua
and va the components of the analyzed wind vector at the nearest grid point to the observation.

Spearman Rank Correlation Coefficient

To compare observed and modelled time series of wind speed the Spearman rank correlation
coefficient is calculated. It is a technique to evaluate the degree of linear association or correlation
of two variables. Since it uses the rank of the data instead of raw data, the influence of outliers
on the correlation coefficient is relatively weak. Furthermore this technique is non-parametric
so there is no requirement of a specific distribution on the raw data. To compute the rank
correlation coefficient each variable is ranked from lowest to highest and the difference between
the ranks of each pair of data (di) is calculated. Then the Spearman rank correlation coefficient
(rs) can be calculated by

rs =
1− 6

∑n
i=1 d

2
i

n3 − n
(6.5)

with n being the number of data pairs [Gautheir, 2001]. The values of rs can range between 1

(perfect positive correlation) and −1 (perfect negative correlation). A correlation coefficient of
0 means that the data is not correlated at all.

Circular Correlation Coefficient

To get a measure for the correlation of observed and modelled wind direction, a circular correla-
tion coefficient (ρ) is used. This coefficient is designed to deal with directional data and can be
computed with

ρ =

∑n
i=1 sin(αi − α) sin(βi − β)√∑n
i=1 sin2(αi − α) sin2(βi − β)

(6.6)
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where αi and βi are two sets of angular data (in polar coordinates) and α and β are the mean
values [Berens et al., 2009].



Chapter 7

Case Studies

Four different days with different weather conditions (strong gradient, frontal passage, stable
and unstable stratification) are chosen to analyze the performance of the mass consistent model
within the testing domain (described in section 6.2). As input data simulations from the WRF
model with a resolution of 4 km is used. The mass consistent model uses a topography with
500m resolution.

For every hour of the day the mass consistent wind field is computed. To determine the influence
of the α constants on the resulting wind field, several values for αη are used for the simulations.
First, different constant values of αη, which are chosen empirically, are compared. The chosen
values range from 500 to 40000. Another attempt was to couple the value of αη to the standard
deviation of the wind components (Eq. 4.4) or the vertical temperature gradient, representing
atmospheric stability, (Eq. 4.5). The values of αx and αy are set to 1 for all simulations (4.3).

The resulting fields at level 2 of the computational domain, which correspond to a height of
approximately 7.65m above ground, are compared with near ground observations from 10 stations
listed in Table 6.1. For this comparison the nearest grid point to the location of the station is
used respectively.

For the last case (June, 8th 2015) a WRF simulation with a resolution of 1 km is available. This
higher resolved model data is used to compare the performance of diagnostic and prognostic
models.

To save some computational time, not all of the 41 vertical levels of the WRF model are used for
further computation. Error measures comparing the resulting wind field with observational data
are compared for different amounts of vertical levels. For the purpose of retaining high resolution
near the ground, the first six vertical levels remain unchanged. Above, only every ∆z-th level
is used to calculate the mass consistent wind field. The levels in between are skipped and do
not have any influence on the resulting field. Table 7.1 shows the RMSE for wind speed and
wind direction and the mean absolute vector difference (MAVD) for different values of ∆z. As
an example, these computations are made for March, 31st 2015, 3 UTC. In this case the RMSE
and the MAVD show a slight increase when decreasing the number of vertical levels. However,
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this behaviour is not found for all dates. When performing the same calculations for 12 UTC,
the RMSE of wind direction decreases with lesser vertical levels.

Since different values of ∆z correspond to changes in higher levels, the 3 UTC sounding of
Innsbruck is used to investigate the impact of different amounts of vertical levels. The last
column in 7.1 shows the RMSE of wind direction resulting from comparing radiosonde and model
data in the vertical column above the nearest grid point to Innsbruck Airport. As expected, this
error increases with decreasing vertical resolution. Nevertheless, the general focus is set on lower
levels where the errors do not seem to change significantly. Therefore ∆z = 5 has been chosen
for all further computations.

∆z RMSEFF RMSEDD MAVD RMSEDD,sounding
2 8.294 78.866 8.194 32.614
3 8.354 79.129 8.250 36.465
4 8.404 79.525 8.307 38.606
5 8.458 79.587 8.361 39.045
6 8.549 80.064 8.446 41.471
7 8.627 80.321 8.518 40.758
8 8.628 80.422 8.519 41.999
9 8.551 80.155 8.445 43.848
10 8.512 79.998 8.420 43.627

Table 7.1: Root mean square error of wind speed and direction (RMSEFF, RMSEDD) and mean absolute
vector difference (MAVD) at the second vertical level and RMSE of wind direction verified with radiosonde
data for different numbers of vertical levels used for the computation for March, 31st 2015, 3 UTC with
αη = 104. Every ∆z-th vertical level of the input data is is used for following calculations. The lowest 6
levels are always used.

7.1 Case 1 - March, 31st 2015

Weather Conditions

On this day the weather in Central Europe is characterized by a strong pressure gradient causing
strong westerly winds with gusts of over 90 kmh−1 over parts of Austria, Germany, the Benelux
states and the North Sea. A prominent low pressure system, with its core initially located in the
north-east of the UK, progresses further west during the day and lies over the Baltic countries
24 hours later. During the day a wave pattern emerges along the Alps with a ridge north west of
the Alps and a trough over Italy and south France (see Figure 7.1). This reinforces the pressure
difference across the Alps causing higher wind speeds starting around midday. A time series of
two stations, Innsbruck Kranebitten and Rinn, is shown in Figure 7.2.

Results

When looking at the different results for different values of αη one can see the vast impact of the
choice of this parameter on the mass consistent wind field. Table 7.2 shows the values of αη that
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Figure 7.1: Synoptic weather conditions for March, 31st 2015, 12 UTC from the GFS analysis with a
0.5◦ resolution. The black lines indicate the 500 hPa geopotential height in gpdam, white lines the surface
pressure in hPa and coloured areas the relative topography (difference of 500 hPa and 1000 hPa (source:
http://www.wetter3.de/Archiv/).

(a) Innsbruck Kranebitten (Airport) (b) Rinn

Figure 7.2: Time series of observed hourly data of wind speed (green) and wind direction (blue) for
stations Innsbruck Kranebitten (Airport) and Rinn for March, 31st 2015.

give the lowest error measures compared with observed wind data for several hours of the day.
What can be seen at first sight is, that there is no ideal αη that minimizes all errors. There is no
hour of the day where the same value of αη minimizes the RMSE for wind speed and direction.
Furthermore, the α values computed from the standard deviation of the velocity components
or the vertical temperature gradient are often too high. Especially in the night and morning
hours, when wind speeds are generally lower and the atmosphere is stably stratified, high values
of αη seem to produce winds that are too strong. During daytime, when the atmosphere is
well mixed, higher values of αη , corresponding to stronger adjustment of the wind in horizontal
direction, are needed to minimize the RMSE of wind speed. When looking at the MAVD, the

http://www.wetter3.de/Archiv/
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best choice for αη is a relatively small value for every hour of the day. These values have the
effect of small adjustment in horizontal and stronger changes in the vertical direction.

αη for minimal αη computed from
hour RMSEFF RMSEDD MAVD σ (4.4) ∂θ/∂η (4.5)
00 49113 25000 49113 49113 12498
02 500 1000 500 40034 17262
04 500 35228 500 35228 20464
06 500 800 500 30661 19204
08 2000 500 500 30837 14258
10 40000 9394 2000 29824 9394
12 40000 500 500 30120 7891
14 40000 500 800 31515 7153
16 30000 12000 5000 31881 8478
18 16000 30000 5000 31743 10634
20 4000 40000 2000 31665 11171
22 3000 1000 800 31819 11192

Table 7.2: αη values resulting in minimal values of RMSE of wind speed (RMSEFF) and direction
(RMSEDD) and MAVD for every second hour of March, 31st 2015. The two columns on the right show
the values of αη computed using the standard deviation of the wind components (eq. 4.4) and the vertical
temperature gradient (eq. 4.5).

As an example, we now take a closer look at the wind fields at 10 UTC. According to Table 7.2
the best wind field regarding the minimal value of MAVD is reached for a small value of αη .
This means that the flow is adjusted mainly in the vertical. The minimum at αη = 2000 can also
be seen in Figure 7.3d. For almost the same αη value a minimum is also present in the RMSE of
wind speed (Figure 7.3a). But in contrast to the MAVD where the error increases again after the
second minimum at αη = 3×104 (which is also the αη value computed from (4.4)) the error keeps
on decreasing with higher αη leading to an improvement of ≈ 7% compared to the interpolated
wind speed. Furthermore, the wind speed shows a positive BIAS which increases strongly at first
and then stays more or less constant at a value of approximately 2ms−1 for αη > 104 (Figure
7.3c).

Interestingly the BIAS of the mass consistent model is greater than the BIAS of the solely
interpolated wind field for all tested values of αη. In this case the main advancement is achieved
for the wind direction. Compared to the RMSE of the interpolated wind field, the error is
reduced by approximately 14◦ corresponding to an improvement of ≈ 34% for αη = 104 (Figure
7.3b). The αη value computed from (4.5) is very close to this minimum. However, the best value
regarding the wind direction coincides with maximal RMSE for wind speed and MAVD and is
therefore overall probably not the best choice.

In Figure 7.4 wind vectors of the interpolated and mass consistent wind field are compared
to the observed wind at the available stations for three different values of αη. In most of the
stations the observed wind speed is generally low. Compared to the observed arrows, the arrows
of the interpolated and mass consistent model data are almost always longer. This illustrates
the positive BIAS of modelled wind speed mentioned above. Figure 7.4a represents the case
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(a) (b)

(c) (d)

Figure 7.3: Different error measures as a function of αη for 10 UTC on March, 31st 2015. The green
and blue values mark the αη values computed from (4.5) and (4.4). Red lines represent values for the
raw interpolated wind field.

where the MAVD is minimal (cf. Table 7.2). Since this is achieved for a small value of αη, the
interpolated and mass consistent wind field does not differ much. At some stations the arrows
even are congruent. In Figure 7.4b the difference between the modelled wind vectors is already
more distinct. The αη value used here is computed from (4.5) and minimizes the RMSE of wind
direction. While the improvement for most stations is rather weak, an obvious improvement can
be seen at station Patscherkofel. For this station the mass consistent value looks even better in
Figure 7.4c where the observed and mass consistent winds almost coincide. There αη was set to
4× 104 which is the best value regarding wind speed. Especially station Seefeld shows apparent
advance in wind speed (at the cost of almost opposite wind direction).

To further investigate the performance of the model over the whole day time series of wind speed
and wind direction at specific stations are shown in Figure 7.5. In addition to this, correlations
of observed and modelled time series are computed and shown in Table 7.3 and 7.4. Stations
Mayrhofen and Seefeld do not appear in Table 7.4 because the observed wind speed at these
stations is below the threshold of 1ms−1, used for computing correlations, for more than half of
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(a)

(b)

(c)

Figure 7.4: Comparison of mass consistent (green) and interpolated (blue) with observed wind vectors
(red) for different values of αη for March, 31st 2015.
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(a) Innsbruck Kranebitten (Airport) (b) Hochzirl

(c) Patscherkofel (d) Steinach/Brenner

Figure 7.5: Comparison of time series for wind direction (top) and speed (bottom) of observed (red),
interpolated (blue) and four different mass consistent wind fields (lowest RMSE (purple), lowest MAVD
(black), αη from standard deviation (4.4)(yellow) and from stability (4.5)(green)) at four stations for
March, 31st 2015.

the day.

For station Innsbruck Kranebitten (Figure 7.5a) highest correlations for wind speed and direction
are achieved for the mass consistent model using αη values that minimize the RMSE at every
hour. In general the conformity of modelled and observed wind direction gets higher as soon
as wind speeds increase (around 10 UTC). Prior to this point observed wind directions show
fluctuations that are not captured by the model. Furthermore the model does not reproduce
the strong increase in observed wind speed in late morning. Therefore wind speeds are too weak
during the second half of the day. Apart from a strong positive BIAS, the shape of the curve of
observed wind speed at station Hochzirl (shown in Figure 7.5b) is reproduced well by the model.
Therefore also the correlations of wind speed at this station reach high values. This is not the
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# interpolated RMSE MAVD stddev stability
Innsbruck University 18 0.911 0.857 0.907 0.523 0.694
Innsbruck Kranebitten 18 0.832 0.931 0.810 0.736 0.829
Neustift / Milders 16 0.338 0.342 -0.175 -0.342 -0.463
Rinn 18 0.765 0.834 0.811 0.775 0.652
Steinach / Brenner 21 0.502 0.161 0.461 0.093 0.291
Patsch 16 0.610 0.439 0.613 0.339 0.532
Hochzirl 20 0.870 0.733 0.877 0.730 0.815
Seefeld 13 0.415 -0.176 0.456 -0.094 0.458
Patscherkofel 24 0.687 0.587 0.573 0.562 0.661

Table 7.3: Spearman correlation coefficients of modelled and observed wind speed for March, 31st 2015.
The second column shows the number of data points used for computing the correlations where the
observed wind speeds are > 1ms−1. Bold values mark the highest positive correlations for each station.

case for wind direction where the deviations from the observed values are considerably high.
Better concordance in wind direction can be found at stations Patscherkofel (Figure 7.5c) and
Steinach/Brenner (Figure 7.5d). In contrast to Hochzirl, modelled wind speed at Patscherkofel
(a more elevated station) shows a negative BIAS. Only for the first five hours of the day wind
speeds computed with αη values from standard deviation and stability reach roughly similar
values. Later the two lines are similar to the interpolated curve. At Steinach/Brenner the same
behavior of strong wind speeds during the night and subsequent alignment with the interpolated
model can be observed. However, in this case the correlation coefficient of the interpolated
model is higher and the mass consistent model can only bring improvement regarding the wind
direction.

# interpolated RMSE MAVD stddev stability
Innsbruck University 18 -0.173 0.128 -0.122 -0.198 -0.098
Innsbruck Kranebitten 18 0.127 0.388 0.242 -0.056 0.186
Neustift / Milders 16 -0.919 0.237 0.226 0.426 0.320
Rinn 18 0.775 0.367 0.311 0.193 0.588
Steinach / Brenner 21 0.486 0.814 0.528 0.891 0.844
Patsch 16 0.147 0.301 0.237 0.257 0.297
Hochzirl 20 0.542 0.145 0.118 0.010 0.317
Seefeld 13 -0.074 -0.307 -0.468 -0.295 0.057
Patscherkofel 24 0.800 0.654 0.800 0.582 0.544

Table 7.4: Circular correlation coefficients of modelled and observed wind direction for March, 31st
2015. The second column shows the number of data points used for computing the correlations where the
observed wind speeds are > 1ms−1. Bold values mark the highest positive correlations for each station.
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7.2 Case 2 - April, 28th 2015

Weather Conditions

Figure 7.6: Synoptic weather conditions in Central Europe for April, 28th 2015, 12 UTC from the GFS
analysis with a 0.5◦ resolution. The coloured areas indicate the pseudopotential temperature in ◦C, the
white lines the surfaces pressure in hPa (source: http://www.wetter3.de/Archiv/).

This case is chosen because of the frontal passage happening during the day. The weather
situation in Europe is characterized by a complex low pressure system with multiple cores south
east of Iceland, in the north of Scandinavia, Austria and in the gulf of Genoa. Originating from
a low over Finland a cold front extends over the Baltic countries, through Poland and Germany
to the south west of France. During the day, as the front moves further west, it gets blocked
by the Alps causing a strong pressure gradient with high pressure north-west and low pressure
south-east of the Alps. The transition zone between the air masses at 12 UTC can be seen in
Figure 7.6.

Results

Table 7.5 lists the αη values that result in lowest errors for several hours of the day. Compared
to the previous case the optimal αη values for one hour do not differ that much from each other.
Apart from the first few hours of the day the variation of αη is relatively small. The generally
low values of αη represent more adjustment of the original wind field in the vertical than in the
horizontal. When looking at the two right columns of the table one can see that both equations
for computing αη from input data lead to values that are too high compared to the ideal values.
Nevertheless, using the temperature gradient to calculate αη leads to values that are not too far
from ideal during daytime. The dependence of error measures on αη at 12 UTC is investigated in

http://www.wetter3.de/Archiv/
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αη for minimal αη computed from
hour RMSEFF RMSEDD MAVD σ (4.4) ∂θ/∂η(4.5)
01 18000 500 500 33862 20325
03 25000 500 500 37578 17263
05 7000 25000 8000 21368 14371
07 3000 4000 3000 17405 11667
09 7000 3000 3000 16639 10266
11 6000 4000 5000 16326 8512
12 7000 6000 5000 16517 7909
13 10000 3000 8000 16506 7710
15 7000 4000 5000 16574 8179
17 6000 3000 4000 17653 9408
19 6000 16000 5000 18905 10888
21 6000 2000 5000 21023 12404
23 1000 2000 2000 24501 13543

Table 7.5: αη values resulting in minimal values of RMSE of wind speed (RMSEFF) and direction
(RMSEDD) and MAVD for several hours of April, 28th 2015. The two columns on the right show the
values of αη computed using the standard deviation of the wind components (eq. 4.4) and the vertical
temperature gradient (eq. 4.5).

detail. On the average, the interpolated and the mass consistent model again overestimate wind
speed which is reflected in the positive BIAS (Figure 7.7c). However, the BIAS can be reduced
for some αη values. In general, in contrast to the previous case (cf. 7.3), all error measures in
Figure 7.7 have a distinct minimum that lies below the red line corresponding to the error value
of the interpolated wind field. This minimum value almost coincides for all αη values making it
possible do determine one ideal αη without making a compromise regarding the resulting wind
speed or direction so that an overall improvement can be achieved. Also the value of αη computed
from (4.5) is close to the minimum value for all error measures. Similar results are obtained for
almost all daytime hours leading to the conclusion that the mass consistent model is able to
improve the forecast for this case.

In Figure 7.8 observed winds are compared to interpolated and mass consistent wind vectors.
The arrows are shown for αη = 6× 103 leading to a minimal MAVD for 12 UTC (ct. Table 7.5).
This value can also be seen as the best overall αη for this hour because it also represents the
mean of RMSEFF and RMSEDD. One can see that for most of the stations the wind vector of
the mass consistent model is closer to the observed value than the interpolated vector.

Wind vectors of the interpolated and mass consistent model at every fifth grid point are shown
in Figure 7.9. Apart from the Inn valley which is resolved by the 4 km grid of the WRF model,
the flow of the interpolated wind field is hardly opposed by topography. In contrast, the mass
consistent model clearly shows an adaptation to the terrain. Particularly when looking at the
smaller valleys like the Wipp or Stubai valley one can see that the wind tends to follow the course
of the valleys. This illustrates that the desired feature of the mass consistent model, alignment
of the wind field to high resolution topography, is working.

When looking at the time series of some stations within the domain, one can see that the
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(a) (b)

(c) (d)

Figure 7.7: Different error measures as a function of αη for 12 UTC on April, 28th 2015. The green
and blue values mark the αη values computed from (4.5) and (4.4). Red lines represent values for the
raw interpolated wind field.

Figure 7.8: Comparison of mass consistent (green) and interpolated (blue) with observed wind vectors
(red) for αη = 6× 103 for April, 28th 2015 at 12 UTC.
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Figure 7.9: Comparison of mass consistent (green) and interpolated (blue) wind vectors for αη = 6×103

for April, 28th 2015 at 12 UTC.

impact and improvement of the mass consistent model differs for every station. None or just
very weak improvements can be seen at stations Innsbruck Kranebitten and Rinn whereas for
the station Patscherkofel improvements are achieved for both wind speed and direction. The
curves representing the mass consistent model show better correlations with the observed values.
Especially when looking at the wind speed, the improvement becomes even more distinct. The
curve where the αη value is linked to the temperature gradient nearly reproduces the evolution of
wind speed over time resulting in a correlation of 0.832 (cf. Table 7.7). The interpolated model
underestimates the wind speed at this station for the whole day.

At Neustift/Milders the evolution of wind direction is captured well by the mass consistent
model. While the interpolated model shows a clockwise rotation of the wind from West to North
in the morning hours, the mass consistent wind follows the observed wind direction. Regarding
wind speed, the mass consistent model does not perform that well. The computed αη values are
too high and therefore the mass consistent model overestimates wind speed for almost the whole
day. Hence, the interpolated model correlates best with the observations.

All correlations of wind speed and wind direction for stations with wind speeds > 1ms−1 for at
least half of the day can be seen in Tables 7.6 and 7.7.
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(a) Innsbruck Kranebitten (Airport) (b) Rinn

(c) Patscherkofel (d) Neustift/Milders

Figure 7.10: Comparison of time series for wind direction (top) and speed (bottom) of observed (red),
interpolated (blue) and four different mass consistent wind fields (lowest RMSE (purple), lowest MAVD
(black), αη from standard deviation (4.4)(yellow) and from stability (4.5)(green)) at four stations for
April, 28th 2015.

# interpolated RMSE MAVD stddev stability
Innsbruck University 16 0.744 0.718 0.759 0.363 0.629
Innsbruck Kranebitten 17 0.341 0.146 0.305 0.243 0.183
Neustift / Milders 19 0.767 0.296 0.390 0.292 0.106
Rinn 14 -0.115 0.446 0.324 0.543 0.376
Steinach / Brenner 21 0.598 0.763 0.631 0.497 0.736
Patscherkofel 24 0.336 0.692 0.459 0.428 0.397

Table 7.6: Spearman correlation coefficients of modelled and observed wind speed for April, 28th 2015.
The second column shows the number of data points used for computing the correlations where the
observed wind speeds are > 1ms−1. Bold values mark the highest positive correlations for each station.
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# interpolated RMSE MAVD stddev stability
Innsbruck Universtiy 16 0.745 0.655 0.637 0.806 0.697
Innsbruck Kranebitten 17 0.624 0.162 0.345 -0.480 0.227
Neustift / Milders 19 -0.506 0.321 0.808 0.649 0.680
Rinn 14 0.538 0.570 0.561 0.428 0.519
Steinach / Brenner 21 -0.464 -0.219 -0.359 0.099 0.040
Patscherkofel 24 0.691 0.688 0.688 0.813 0.832

Table 7.7: Circular correlation coefficients of modelled and observed wind direction for April, 28th
2015. The second column shows the number of data points used for computing the correlations where the
observed wind speeds are > 1ms−1. Bold values mark the highest positive correlations for each station.

7.3 Case 3 - May, 11th 2015

Weather Conditions

A prominent high pressure system lies over central Europe with its core over the Czech Republic
and Poland at 6 UTC (see Figure 7.11). Austria is located at the front side of a ridge at
500 hPa leading to stable weather conditions. Due to the weak synoptic forcing wind speeds

Figure 7.11: Synoptic weather conditions in central Europe for May, 11th 2015, 06 UTC from the GFS
analysis with a 0.5◦ resolution. The black lines indicate the 500 hPa geopotential height in gpdam, white
lines the surface pressure in hPa and coloured areas the relative topography (difference of 500 hPa and
1000 hPa (source: http://www.wetter3.de/Archiv/).

are generally low and the stations within the domain show prevailing thermally driven flows like
valley- and slope winds. In Figure 7.13 the time series of wind and wind direction at Steinach
is shown where the diurnal cycle of up- and down-valley flow is distinct. During night time
and early morning south-easterly winds are observed, corresponding to a down-valley flow of the
Wipp valley. During day time the wind direction changes to north west which can be linked to
up-valley flow.

http://www.wetter3.de/Archiv/
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Figure 7.12: Steinach/Brenner

Figure 7.13: Time series of observed hourly data of wind speed (green) and wind direction (blue) for
Steinach/Brenner for May, 11th 2015.

Results

The αη values listed in Table 7.8 again show a heterogeneous picture. While the αη values
that minimize the RMSE of wind speed are high during night and low during day hours, the
RMSE of wind direction shows almost an opposite behaviour. The computation of αη from the

αη for minimal αη computed from
hour RMSEFF RMSEDD MAVD σ (4.4) ∂θ/∂η (4.5)
00 9000 1000 35000 58520 13394
02 20000 8000 16000 55039 24849
04 25000 9000 5000 53762 24197
06 500 500 500 56463 18194
08 500 56956 500 56956 9984
10 500 40000 12000 53012 7878
12 500 51682 8000 51682 8089
14 500 50506 500 50506 9314
16 5000 20000 500 49395 10745
18 20000 2000 3000 47911 14905
20 25000 500 4000 48786 17678
22 25000 14000 16000 48993 19001

Table 7.8: αη values resulting in minimal values of RMSE of wind speed (RMSEFF) and direction
(RMSEDD) and MAVD for several hours of May, 11th 2015. The two columns on the right show the
values of αη computed using the standard deviation of the wind components (eq. 4.4) and the vertical
temperature gradient (eq. 4.5).

vertical temperature gradient provides acceptable results during nighttime but during daytime
the values are mostly far from ideal. The smallest errors regarding wind directions during the
day are achieved with very high αη values (mostly values computed from 4.4). This fits to the
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stable weather conditions since high values of αη result in mainly horizontal adjustment of the
wind and therefore favour flow around rather than over the mountain.

The evolution of the different error measures with αη is shown in Figure 7.14. Since the behaviour
of the errors is broadly similar for all daytime hours, 12 UTC is chosen as an example. As already
mentioned above, the errors for wind speed and wind direction have very contrary characteristics.
The RMSE (Figure 7.14a) and the BIAS of wind speed (Figure 7.14c) increase whereas the error
in wind direction (Figure 7.14b) decreases strongly with greater values of αη. If the focus is
set on improving wind direction, accepting the positive BIAS of wind speed, the RMSE can be
reduced remarkably by more than 35◦. If both parameters are of same importance, probably the
best compromise is to use the αη value that minimizes the MAVD (Figure 7.14c).

(a) (b)

(c) (d)

Figure 7.14: Different error measures as a function of αη for 12 UTC on May, 11th 2015. The green
and orange values mark the αη values computed from (4.5) and (4.4). Red lines represent values for the
raw interpolated wind field.

To illustrate the effect of the αη values on the resulting wind field, the wind vectors of the
interpolated and mass consistent wind field are compared to the observed wind at the measuring
stations. In Figure 7.15a αη was set to 500. According to Table 7.8 this value results in the
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(a)

(b)

(c)

Figure 7.15: Comparison of mass consistent (green) and interpolated (blue) with observed wind vectors
(red) for different values of αη for 12 UTC on May, 11th 2015.
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minimal error for wind speed. The length of the modelled and observed arrows is similar for
most of the stations but the mass consistent winds almost show no difference to the interpolated
field since the small αη value does hardly allow horizontal adjustment. For αη = 8× 103 (7.15b)
the difference of the mass consistent and interpolated model is more distinct.

Even stronger changes of the wind are achieved in Figure 7.15c. The αη value used in this case
is computed from 4.4 and leads to the lowest RMSE of wind direction (cf. Table 7.8). A better
alignment of the mass consistent with the observed wind vectors is achieved for the majority of
the stations. However, this comes at the price of higher errors in wind speed.

The positive effect of the mass consistent model on the wind direction can be seen especially
good at station Seefeld (Figure 7.16a). Yet, an appropriate αη value has to be chosen to achieve
significant improvements. Here the αη value computed from the standard deviation of the velocity
components (eq. 4.4) clearly gives the best result compared to all other time series.

In Figure 7.16b the negative impact of the high αη value can be seen at the time series of wind
speed at station Patsch. While the results of the interpolated model as well as the mass consistent
model computed with small αη values are close to the observed data, the curve for the model
using αη from equation (4.4) shows a strong positive BIAS over the whole day.

(a) Seefeld (b) Patsch

Figure 7.16: Comparison of time series for wind direction (top) and speed (bottom) of observed (red),
interpolated (blue) and four different mass consistent wind fields (lowest RMSE (purple), lowest MAVD
(black), αη from standard deviation (4.4)(yellow) and from stability (4.5)(green)) at two stations on May,
11th 2015.
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7.4 Case 4 - June, 8th 2015

Weather Conditions

The weather conditions in Central Europe are characterized by a weak pressure gradient. A
quasi-stationary cold front, reaching from Russia via Poland and Germany to France, separates
cool air masses north of the front from warmer air south of the front. In Austria these warm and
high-energy air masses lead to unstable stratification causing thunderstorms to develop during
the day. This strong convective activity causes high variability in wind direction and speed.
These small scale features of the wind are hard to capture by numerical weather models and
almost impossible to resolve by a model using a 4 km grid like the WRF model used as input for
the mass consistent model.

Figure 7.17: Synoptic weather conditions in central Europe for June, 8th 2015, 12 UTC from the GFS
analysis with a 0.5◦ resolution. The coloured areas indicate the pseudopotential temperature in ◦C, the
white lines the surface pressure in hPa (source: http://www.wetter3.de/Archiv/).

Results

The αη values minimizing the different error measures show strong variations over the whole day.
Only for some hours during the day the optimal αη values for all three error measures coincide
with each other or are almost similar. Theoretically one would expect that low values of αη are
needed here since they favour stronger adjustments of the flow in the vertical. However, the
unstable conditions in the area of interest lead to very variable wind at most of the stations
making it hard to determine an ideal αη for this day.

Although the errors in wind speed and wind direction can be minimized for specific values of αη,

http://www.wetter3.de/Archiv/
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αη for minimal αη computed from
hour RMSEFF RMSEDD MAVD σ (4.4) ∂θ/∂η (4.5)
01 500 40000 500 26974 19128
03 500 40000 500 33910 18986
05 18000 12000 3000 33991 15005
07 18000 40000 16000 39042 9996
09 7000 25000 20000 34357 10328
11 18000 18000 9000 23615 9951
13 8000 40000 18000 24962 10817
15 800 12092 500 22612 12092
17 500 5000 500 23701 12863
19 30000 40000 40000 26267 12895
21 40000 20000 40000 26209 13747
23 40000 500 40000 23034 12910

Table 7.9: αη values resulting in minimal values of RMSE of wind speed (RMSEFF) and direction
(RMSEDD) and MAVD for every second hour of June, 8th 2015. The two columns on the right show the
values of αη computed using the standard deviation of the wind components (eq. 4.4) and the vertical
temperature gradient (eq. 4.5).

the calculated values in the last two columns of Table 7.9 often are far from ideal. Yet, for some
hours an improvement can be achieved. An example is 11 UTC.

With the αη value linked to stability, the mass consistent model can reduce both RMS errors as
well as the mean absolute vector difference compared to the interpolated model. Additionally,
the BIAS of wind speed can be reduced by both αη values calculated prior to the computations
(Figure 7.18c). While the interpolated model has a negative BIAS of −0.4, the absolute value of
the BIAS can be reduced by the mass consistent model with αη from equations (4.5) and (4.4).

Comparing these results to the errors resulting from the prognostic model with 1 km resolution,
one can see that the RMSE of wind direction is significantly lower for the higher resolved WRF
model. Furthermore the mean absolute vector difference is slightly smaller. The higher errors
in wind speed can be explained by the fact that model data was only available for a height of
approximately 30m and reduced to 10m using power law

v10m = vr
log(z/z0)

log(zr/z0)
(7.1)

where vr is the wind speed at height zr ≈ 30m. The roughness length z0 is set to 2m.

Taking a look at the time series for different stations within the domain shows that the im-
provement achieved by the mass consistent model varies from station to station but is generally
low.

A constant change of wind direction and speed can be seen at the time series of the station
Innsbruck University in Figure 7.19a. The observed wind varies between westerly and easterly
directions, corresponding to along-valley wind, that also fluctuates in strength, especially in the
afternoon. Since these small scale features can not be resolved by the 4-km-model, also the
mass consistent model is not able to reproduce the observed wind. Even for the 1-km-model this
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(a) (b)

(c) (d)

Figure 7.18: Different error measures as a function of αη for 11 UTC on June, 8th 2015. The green
and blue values mark the αη values computed from (4.5) and (4.4). Red lines represent values for the
raw interpolated wind field, orange lines values of the 1 km WRF model.

weather situation is hard to capture and the results can not be improved considerably.
As expected, the correlations of the interpolated as well as the mass consistent winds for this
station are not significant with values around 0.1 (cf. Tables 7.10 and 7.11). Correlations with
the high resolution prognostic model are even worse for this station.

A slightly better result can be achieved for the station Neustift/Milders located in the Stubaier
valley (Figure 7.19b). Here, at least the wind direction shows significant correlation with the
observation. However, the mass consistent model does not bring an improvement, the high-
est correlation is achieved by the interpolated model followed by the 1-km-model. At station
Seefeld (Figure 7.19c) the correlation of wind direction is little improved by the mass consistent
model. Regarding wind speed as well as both parameters at station Patscherkofel and Innsbruck
Kranebitten (Figures 7.19d and 7.19a) the use of the model does hardly bring any benefits.

In general, wind speeds are weak and therefore the threshold for computing correlations, exceed-
ing 1ms−1 at at least 12 hours of the day, is only reached at 5 stations within the domain. The
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resulting values are shown in Table 7.10 and 7.11. Interestingly, for this case the 1-km-model
does not really improve the forecast.

# interpolated RMSE MAVD stddev stability 1-km-model
Innsbruck University 13 0.013 0.108 0.096 0.074 0.073 -0.017
Innsbruck Kranebitten 14 -0.348 -0.336 -0.353 -0.584 -0.508 0.026
Neustift / Milders 17 -0.043 0.072 -0.111 -0.252 -0.252 -0.190
Seefeld 12 -0.158 -0.171 -0.194 -0.137 -0.218 0.186
Patscherkofel 19 0.074 0.245 -0.014 -0.189 -0.162 -0.167

Table 7.10: Spearman correlation coefficients of modelled and observed wind speed for June, 8th 2015.
The second column shows the number of data points used for computing the correlations where the
observed wind speeds are > 1ms−1. Bold values mark the highest positive correlations for each station.

# interpolated RMSE MAVD stddev stability 1-km-model
Innsbruck University 13 0.132 0.165 0.099 0.082 0.074 -0.007
Innsbruck Kranebitten 14 0.044 0.118 0.169 0.020 0.160 -0.300
Neustift / Milders 17 0.660 0.467 0.481 0.343 0.505 0.582
Seefeld 12 0.094 0.218 0.328 0.299 0.343 -0.163
Patscherkofel 19 -0.207 -0.097 -0.151 -0.394 -0.382 -0.215

Table 7.11: Circular correlation coefficients of modelled and observed wind direction for June, 8th
2015. The second column shows the number of data points used for computing the correlations where the
observed wind speeds are > 1ms−1. Bold values mark the highest positive correlations for each station.
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(a) Innsbruck University (b) Neustift/Milders

(c) Seefeld (d) Patscherkofel

Figure 7.19: Comparison of time series for wind direction (top) and speed (bottom) of observed (red),
interpolated (blue) and four different mass consistent wind fields (lowest RMSE (purple), lowest MAVD
(black), αη from standard deviation (4.4)(yellow) and from stability (4.5)(green)) at four stations on
June, 8th 2015.
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Chapter 8

Conclusion and Future Work

In this work a mass consistent model was developed using η coordinates. This brings the ad-
vantage of being able to use the output of the operationally used WRF model directly as input
data for the mass consistent model. At first, the model was tested in an idealized simulation
where it showed reasonable results. Then the model was applied to real data in an area with
very complex terrain, a region around Innsbruck, Austria. For that, input data was taken from
a 4 km WRF simulation and downscaled to a 500m grid with more detailed topography. Four
case studies representing four different weather conditions were conducted. For all of these cases
different values for the vertical transmission coefficient αη were applied and the results compared.
Additionally, a prognostic model with a resolution of 1 km was available for comparison for the
last case (June, 8th 2015).

8.1 Conclusion

This work shows that the mass consistent model can be a useful tool to downscale wind data
to a higher resolution topography. Yet, restrictions in the applicability of the model are present
and could be shown with the four test cases. Overall, the performance of the model depends on
the following factors:

– Resolution and quality of the input data

– Complexity of the underlying terrain

– Prevailing weather conditions

– Choice of the transmission coefficient αη .

For this work the coarse resolution of the input data in combination with the very complex
terrain in the tested domain is the main reason for the intermingled performance of the mass
consistent model. The 4 km model misses too many important small scale features. Hence, if
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features like for example the strong increase in wind speed at station Innsbruck Kranebitten (cf.
Figure 7.5a) are not already represented in the coarse grid model, the mass consistent model
cannot achieve real improvement. On the one hand, the simple physics of the mass consistent
model cannot describe the full dynamics of the meso and micro scale since it only takes into
account the continuity equation and the high resolution topography. On the other hand, the
level of adjustment made by the model is restricted because in the derivation the assumption is
made that the solution closest to the input data, that fulfils mass consistency, is also the most
reasonable. Thus, if the wind in the input model differs strongly from the real value, the mass
consistent model will not be able to give correct results.

Another important possible error source is the choice of the vertical transmission coefficient αη .
In the case studies presented in the previous chapter, ideal values of αη that minimize error
measures are computed for every hour of the day. Often the αη values are ideal either for a
minimal error in wind speed or in wind direction. Thus, a compromise has to be found or the
focus has to be set on only one of the parameters. Yet, when using the model for operational
forecasts the best αη value cannot be determined prior to the computations. Therefore, two
different approaches on finding an appropriate αη are tried.

Linking the transmission coefficient to the standard deviation of the velocity components often
results in αη values that are too high. Especially when considering days with low synoptic forcing,
this αη value can cause a strong positive BIAS in wind speed. Good results are achieved in the
first case study during day time, where a strong pressure gradient is present. Regarding wind
direction, best results are achieved for stable stratification during daytime (case 3).

The calculation of αη from the vertical temperature gradient performs best in the second case
where, similar to the first case, a stronger synoptic forcing is present. Here the αη value is close
to the values that minimize errors in wind speed and direction. This is the only case in which
both parameters can be optimized using almost the same transmission coefficient.

The comparison with the higher resolution prognostic model showed that at least for the selected
case the higher computational effort does not lead to better results. However, due to the complex
weather conditions on June, 8th 2015 the performance of all models used in this work is generally
poor.

Overall, the improvement due to the use of the mass consistent model is highest in terms of wind
direction where the RMSE can be reduced by 10◦ to 30◦. The MAVD shows an improvement of
1% to 15%. However, decreasing the error in wind direction comes at the cost of an increased
wind speed BIAS.

8.2 Future Work

For further tests, model output of a higher resolution model can be used as input data. With
more small scale processes that can be resolved, this should significantly improve the results over
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complex terrain. Additionally, the same 4 km input data could be tested on less complex terrain
where small scale processes induced by topography are not that prominent.

Another factor that can be improved is the positive BIAS in wind speed. A possible way to
address this problem is to include ground friction to reduce the near ground wind speed. Then
higher values of αη can be used to optimize wind direction without the disadvantage of increasing
errors in wind speed.

Regarding the αη values, improvements can be achieved by letting the coefficient vary over the
whole domain. To implement this change, the dependence of αη on space has to be considered in
the derivation. In this work, the αη values are assumed to be constant which leads so some sim-
plifications. With variable αη , changes of atmospheric stratification with height (e.g. inversions)
can be considered in the mass consistent model.

Overall, there is room for improvements in many aspects. However, keeping in mind the limits
and restrictions in the application of the mass consistent model, it can be an useful instrument to
resolve flow over or around topography whose scale is too small to be considered in a prognostic
model.
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