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A B S T R A C T

This work is concerned with the interaction of RNA binding proteins
(RPBs) and their RNA target sites. The main focus lies on proteins
interacting with AU-rich elements (AREs), so called AU-rich binding
proteins (ABPs). Their targets, AREs, are cis-acting RNA motifs found
throughout genes in many higher organisms. Their function in AU-
rich element mediated decay and the factors discriminating between
active (bound) and inactive (unbound) status of such RNA elements
is subject to this study.

We analyzed PAR-iCLIP data, identifying main targets of tristetrapro-
lin (TTP) and HuR (ELAVL1) in LPS induced, primary bonemarrow
derived marcophages (BMDMs) in mouse. The influence of RNA sec-
ondary structure on binding, cooperative vs. competitive behavior of
RBPs, correlation with mRNA decay rates, over-represented binding
motifs and differences between early and late immune-response bind-
ing of TTP are part of this thesis.

Furthermore, we compare our dataset to an over-expression study
and investigate the potential of our predictions in mouse for their
portability to human. Our previously published database for AREs
in human and mouse (AREsite) was updated during this thesis and
replaced by a new version (AREsite2), which contains annotations of
AU-/GU- and U-rich elements in all genic regions (exons, introns,
UTRs) of coding and non-coding genes in human, mouse, fruit fly,
zebrafish and bandworm.

Together with an example analysis of AREsite2 derived data, this the-
sis presents a comprehensive analysis of RNA elements and their se-
quence and structure features crucial for functional RNA-RBP inter-
action.

Z U S A M M E N FA S S U N G

In dieser Arbeit wird die Interaktion von RNA bindenden Proteinen
(RBPS) mit ihren Ziel-RNAs untersucht. Das Hauptaugenmerk liegt
dabei auf Proteinen, die mit so genannten AU-reichen Elementen
(ARE) interagieren, so genannte AU-reich bindende Proteine (ABPs).
Der Interaktionspartner, AREs, sind cis-regulatorische Elemente welche
entlang vieler Gene in höheren Organismen zu finden sind. Ihre Funk-
tion im so genannten AU-rich element mediated decay (AMD), also
dem gezielten Abbau von mRNA, und Faktoren mit denen aktive

v



(gebundene) von inaktiven (ungebundenen) Elementen voneinander
unterscheidbar werden, sind Teil dieser Studie.

Zu den behandelten Themen gehört die Analyse von PAR-iCLIP Daten,
bei der primäre Ziele von Tristetraprolin (TTP) und HuR (ELAVL1)
in LPS induzierten, primären "bonemarrow derived" Makrophagen
(BMDMs) aus Maus identifiziert werden. Des weiteren befasst sich
diese Arbeit mit dem Einfluss von RNA Sekundärstrukturen auf Bindung,
kooperatives bzw. kompetitives Bindungsverhalten von RBPs, Korre-
lation mit mRNA Abbauraten, überrepräsentierte Bindemotife und
Unterschiede in der frühen und späten Phase der Immunantwort.

Ein Vergleich unseres Datensets mit einem Überexpressions Datenset
und die Untersuchung des Potentials Ergebnisse von Maus auf Men-
sch zu übertragen sind weitere Punkte dieser Arbeit. AREsite, eine
von uns publizierte Datenbank wurde im Verlauf dieser Arbeit über-
arbeitet und durch eine neue Version, AREsite2 ersetzt. Diese neue
Datenbank enthält Annotationen von AU-/GU-/U- reichen Elementen
in allen genischen Regionen (exons, introns, UTRs) von kodieren-
den und nicht-kodierenden Genen in Mensch, Maus, Fruchtfliege, Ze-
brafisch und Bandwurm.

Zusammen mit der Integration experimenteller Ergebnisse in ARE-
site2 präsentiert diese Arbeit eine umfassende Analyse von RNA Ele-
menten und deren Sequenz- und Struktureigenschaften die für funk-
tionelle RNA-RBP Interaktion eine Rolle spielen.
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1
I N T R O D U C T I O N

1.1 rna-protein interactions

A key mechanism for the survival of each cell and as a consequence
whole organisms, is tight and correct regulation of gene expression.
This includes localization and turnover of all forms of nucleic acids
and proteins in a cell. With growing complexity of higher organisms,
so grows the complexity of regulatory mechanisms.

Vital part of this multi-facetted regulatory machinery is the inter-
play between ribo-nucleic acids (RNA), either coding (mRNA) or non-
coding (ncRNA), and regulatory factors like proteins. Modulation of
the spatial-temporal expression of RNA molecules is crucial for keep-
ing the balance between synthesis (transcription), translation, trans-
port and decay of mRNAs, ncRNAs and proteins. The extreme ver-
satility of single RNA molecules in terms of sequence and structural
features is reflected by an equal complexity of RNA binding domains
and binding preferences of proteins.

A crucial layer in gene expression regulation is tight control of (post-)
transcriptional fate by proteins that interact directly with cis-acting
RNA motifs. Such mechanisms allow a fast response to environmen-
tal stress, infection or developmental necessities. With comprehensive
understanding of key players and their interactome, it should become
possible to develop strategies e. g. for medical applications.

Synthetic biology approaches that exploit such information, have a
broad bandwidth of potential use cases. From synthetic proteins that
regulate specific RNAs, over the modification of natural RNA bind-
ing sequences to the repair of non-functional natural RNAs by the
introduction of synthetic RNA sequences that are designed for spe-
cific half-life effects e. g. combined with the CRISPR-Cas [54] system.

This work is focused on the interplay between RNA, tristetraprolin
(TTP) and Hu antigen R (HuR) two proteins acting as main play-
ers in AU-rich element mediated decay (AMD), a key RNA half-life
control mechanism in metazoa. TTP is crucial for the correct resolv-
ing of immunological response, mainly due to its RNA degrading
function. HuR has been described as ubiquitous RNA interaction
partner, with mainly stabilizing function. Utilizing a relatively new
approach to identify RNA-protein interactions in a high-throughput
manner, known as CLIP-Seq , we investigated key features for suc-
cessful interaction and compared them for their predictive power for
in silico determination of active RNA-protein interaction sites.
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2 introduction

The next sections will summarize RNA and protein features that have
been identified as crucial parts in the interplay between these two
components of life.

1.1.1 RNA binding proteins

Hundreds of RNA binding proteins (RBPs) have been shown to be
involved in virtually all aspects of (post-transcriptional) gene expres-
sion regulation (see e. g. [9, 21, 111]). Gerstberger et al. [38] present a
manually curated collection of more than 1.500 RBPs in human, high-
lighting their vast number and thus potential for interaction and reg-
ulation. Regulation is usually initiated by direct interaction between
RBP and target RNA, requiring more or less specific sequence mo-
tifs [30] and accessible binding sites. Many of the known RBPs seem
to prefer single stranded binding regions, although some have been
shown to interact with structured RNA sites [7].

The versatility of RBPs makes it hard to predict interaction partners
from amino-acid sequence alone. However, it is usually not the whole
protein that interacts with a target, but specific parts, known as do-
mains. Such domains and their function in RNA-RBP interaction are
topic of the next section.

1.1.2 RNA binding domains

Most forms of protein interactions, both with other proteins and nu-
cleic acids, require specific conserved (tertiary) structures with certain
amino-acid content, known as domains. RNA binding proteins (RBPs)
contain RNA-binding domains (RBDs). Although these domains are
very specific and employ different interaction mechanisms, they can
share some features that enable RNA-protein interactions.

Protein domains can in general fold independently of the rest of
the protein, and this fold plays a crucial role in the specificity of
RNA recognition. Hydrogen bonds with the backbone, as well as spe-
cific interactions between nucleotides and amino-acids are common
for sequence specific binding. Electrostatic interactions and stacking
thereof contribute to the affinity of a protein to RNA. In general, pro-
tein domains are 35-90 amino acids in size and interact with a small
stretch of nucleotides (3-5nt). To increase affinity and specificity they
often work in combination with other RBDs in the same protein, thus
highlighting the modularity of most proteins. However, some RBPs
do not contain such a canonical RBD and remain to be investigated
in more detail.

One distinguishes sequence-specific from sequence-unspecific bind-
ing. Sequence-specificity can be achieved via two strategies, i) hy-
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drogen bonds between the protein backbone and RNA bases which
are highly dependent of the protein fold (hydrophobic sidechains are
looking towards the RNA, almost no intramolecular stacking of RNA
bases instead intermolecular with sidechains, RNA bases not exposed
to solvent, very rigid and specific scaffold) and ii) hydrogen bonds
between amino-acid sidechains and RNA bases (intramolecular RNA
base stacking, RNA bases exposed to solvent).

While the structural dependencies of i) make it nearly impossible
to derive preferred target sequences without structure information
(e. g. crystal structures), in case of ii) it should be possible to predict
target preferences from amino-acid sequence information alone [7].
However, RBPs often employ a mix of strategies to bind their targets,
which makes prediction of target sequences challenging in either case.
For some RBPs specific sequence preferences are known, for others
they can be guessed from the available RBDs.

However, due to the versatility of RBDs in combination, exact se-
quence preferences are sometimes hard to predict although general
binding preferences are known. Some of the most common and best
studied RNA-binding domains, are described in the following. De-
tailed reviews on this topic are presented in e. g. Auweter et al. [7],
Cook et al. [29], Lunde et al. [88], McHugh et al. [96], which build the
basis for the next sections.

1.1.2.1 RNA recognition motif (RRM)

The RNA recognition motif (RRM), also known as RNA binding do-
main (RBD) is one of the most common RBDs in eucaryotes, and
found throughout many forms of life. It has been shown not only to
be important for RNA/DNA-protein interactions, but also for protein-
protein interactions [24].

Its two conserved motifs, RNP-1 and RNP2, consist of 8 and 6
mostly positively charged or aromatic amino acids. With a span of ∼90
amino acids the RRM consists of a four-strand antiparallel β-sheet,
the primary RNA-binding surface, packed against two α-helices, cru-
cial for RRM-RRM interaction, in a β1α1β2β3α2β4 topology [24, 29],
see fig. 1a. The mode of RRM-RNA recognition is highly versatile.

Canonical interactions require contacts between RNP-1 and RNP-
2 of the β-sheet, while non-canonical interactions can involve loop-
regions and N- or C- terminal RRM flanking amino acids. Contacts
have been shown to involve 4 to 6 nucleotides, depending on the
RRM interaction site. RRMs are often found in tandems or triplets
and can be separated by a flexible linker, arranged as a continuous
RNA-binding platform oriented in the same direction, or forming an
RNA-binding cleft or can interact back to back, forcing the RNA to
loop around the protein [29].
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Figure 1: RNA binding domains at a glance , adopted from Lunde et al. [88].
a) RRM of human U1A in contact with single stranded RNA via
the protein β-sheet and two loops b) KH domain of Nova-2 bound
to short stretch of single stranded RNA via conserved GXXG in
protein loop c) dsRBD of Rnt1 bound to RNA helix via conserved
protein loop d) Zink fingers of TIS11d bound to AU-rich element
via hydrogen bonds between protein backbone and RNA bases,
zink finger α-helices and β-sheets are coordinated by a Zink atom

RRMs have been shown to interact with AU-rich elements (AREs) [145].
Proteins that bind RNA in the context of secondary structures may in-
volve other forms of RRM-RNA interactions.

1.1.2.2 Pumilio homology domain

The Pumilio Homology Domain (PUM-HD) consists of 8 PUF (Pumilio
and FBF) repeats, three α-helices each, of a 36 amino acid motif. The
repeats pack together to form a right-handed super helix that binds
RNA in the inner face (concave side) of the domain, while the outer
face (convex side) mediates protein-protein interactions [146].

Each RNA nucleotide contacts two consecutive repeats, with the
bases interacting with protein side-chains. Recognition of usually 8
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target nucleotides by a repeat involves only a few well-conserved
amino acids. Due to its well characterized recognition mechanism,
a recognition code for the PUF repeat has been developed, allowing
the design of custom PUM-HD domains which bind new motifs [23].

Increasing the number of repeats even allows to bind to nucleotide
stretches longer than the usual 8 bases [29].

1.1.2.3 K homology domain

hnRNP K homology (KH) domains, are present in different folds in
all domains of life. Two α-helices, a variable loop sequence containing
a conserved GXXG (G glycine, X represents glycine, arginine or lysin)
motif, and a β-strand build the RNA binding cleft of KH domains,
see fig. 1b.

Often combined in multiples, or “augmented” each binding cleft
can interact with four or more RNA bases to enhance binding affinity
and specificity [29, 136].

1.1.2.4 Double-stranded RNA binding domain

Double-stranded RNA binding domains (dsRBDs) are 65-70 amino
acids in size. They consists of two a-helices packed against a three-
strand antiparallel b-sheet in a αβββα fold. RNA binding capabilities
are derived from both α-helices and a loop region between two of the
β-strands, see fig. 1c.

They play a role in post-transcriptional regulation, RNA editing,
RNA processing and RNA localization. The deep and narrow major
groove of the A-form RNA double helix leads to the assumption that
dsRBDs are not sequence specific, but recognize the double-stranded
RNA (dsRNA) shape only. Mismatches or bulges in RNA duplexes
may effect target specificity by dsRBD containing proteins.

However, sequence-specific contacts between the protein and the
minor groove have been shown, e. g. in the case of ADAR2 [29, 92].

1.1.2.5 Zinc fingers

Zinc fingers are a large and diverse class of protein domains. They
act as DNA-, RNA-, and protein-binding domains, coordinating zinc
as common property, see fig. 1d. Their three-dimensional structures
vary and their evolutionary origins may be independent.

Mechanisms behind recognition of and interaction with individual
targets of zinc finger proteins remain to be understood completely.
However some classes tend to follow a trend, C2H2 zinc fingers are
usually DNA binding, CCCH zinc fingers are primarily single-stranded
RNA binding. CCHC zinc knuckles bind RNA in viral and metazoan
proteins. Metazoan CCHC zinc knuckles show RNA binding in the
context of proteins that also contain another RBD.
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Stacking interactions and hydrogen bonds are crucial for RNA recog-
nition by CCCH proteins. Such stacks are formed intermolecularly,
between the RNA and backbone atoms, highlighting the importance
of the domain fold for RNA recognition [7, 21, 29].

1.1.3 Protein binding elements

Interaction between RNA and proteins depends on both, a protein
domain that recognizes the target RNA, as well as RNA elements
that are recognizable by the protein domain. While a number of pro-
tein domains have been studied and characterized in detail, RNA el-
ements crucial for successful interaction are in general less well stud-
ied. There are a number of RNA characteristics than can promote
protein interaction, both on sequence and structure level.

This section focuses on elements for single-stranded RNA binding
proteins, which in general require the target RNA sequence to be
unpaired or in a defined structural context like the loop section of a
hairpin loop. The most prominent metazoan RNA sequence elements
in this category are AU-rich elements (AREs) and GU- or U- rich
elements (GU/UREs), which are in the focus of this thesis. These
sequence motifs are found in many coding and non-coding RNAs,
throughout genic regions including UTRs as well as CDS and intronic
and exonic regions. Although other RNA elements, like e. g. the PUF
repeats, important for RNA recognition by PUM-HD proteins exist,
this work is only concerned about AU/GU/U-rich elements.

1.1.3.1 ARE

AU-rich elements (AREs) are cis-acting sequence elements that have
been categorized as A/U flanked versions of the AUUUA core motif,
with a total of 5-13nts. These motifs are bound by AU-rich binding
proteins (ABPs). Three classes of AREs have been defined. Class I
AREs consist of several dispersed copies of the AUUUA motif within
U-rich regions, class II AREs consist of at least 2 overlapping UUAU-
UUA(U/A)(U/A) nonamers and class III AREs are U-rich regions
that do NOT contain the AUUUA pentamer.
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The strict motif definition can be explained by early experiments
that focused on single, well characterized targets of ABPs, which of-
ten contain repeated versions of such elements. Recent high-throughput
experiments show that this strict definition is not feasible for all tar-
gets and interacting sites, where often variations of these motifs are
found that also contain guanine or cytosin.

The best studied ABPs tristetraprolin (TTP), HuR and Auf1 contain
zinc fingers domains and/or RRMs interacting directly with AREs.
The latter have been shown to play an important role in RNA half-
life control [13, 39].

1.1.3.2 URE

U-rich elements (UREs) are defined as RNA stretches of 7-9 nt that
consist mostly of uridine. In contrast to AREs, these motif definition
allows for some variance in composition, often cytosin or guanin can
be found in such elements.

HuR is one of the most prominent URE binders, and like AREs,
UREs have been shown to influence RNA turnover [22, 63].

1.1.3.3 GRE

GU-rich elements (GREs), are similar to AREs, but have guanin flank-
ing U-rich stretches of RNA. GRE-binding proteins like CUG-binding
protein 1 (CUGBP1), have been reported to influence RNA half-life,
similar to ABPs and UBPs [74, 140].

1.2 rna cycle of life

Complex organisms require complex regulatory mechanisms. In the
last years, RNA has gained more and more attention as crucial part
of gene expression control. From the synthesis of RNA by RNA-
polymerase transcription from its DNA template, processing via var-
ious complexes from de-/capping, de-/adenylation, splicing, modifi-
cation to the final un-/stable molecule, RNA undergoes a vast num-
ber of processing steps.

All sorts of RNA, be it transfer RNA or messenger RNA, micro RNA
or long non-coding RNA, are affected by these or other processes. A
major part of RNA half-life control is performed directly by proteins
or protein-complexes, which are subject of this thesis.

The amount of available RNA is always depending on the ratio be-
tween synthesis and decay. The former has been target of investi-
gations for a long time, and a lot is known about mechanisms and
regulation of RNA synthesis. Decay on the other hand is not as well
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investigated, although there is no reason why decay should be less
regulated than synthesis.

1.2.1 RNA synthesis

RNA is synthesized from a DNA via RNA-polymerase, a class of
enzymes found in procaryotes as well as eucaryotes. While bacte-
ria only have one kind of RNA-polymerase, eucaryotic organisms
express three types, each one required for the synthesis of specific
forms of RNA.

RNA-polymerase binds DNA at certain positions, unwinds the DNA
double-helix and initiates transcription by joining the first RNA nu-
cleotides complementary to the DNA template. The freshly synthe-
sized RNA strand is elongated until a stop signal is reached, the
nascent RNA molecule is released and RNA polymerase detaches
from the DNA template.

This very brief and simple description of transcription (see figure 2)
already shows multiple stages where RNA synthesis can be regu-
lated, from DNA accessibility for RNA-polymerase, to initiation fac-
tors, proof-reading mechanisms, and many more. However, at the
end of transcription, a nascent RNA molecule is available for further
processing.

1.2.2 RNA maturation and processing

In procaryotes, a freshly synthesized RNA is already available for
protein translation by ribosomes or other processes. In eucaryotes,
the nascent RNA is still in the nucleus and has to either be exported,
or undergo a series of processing steps before being translated or
functioning as ncRNAs.

For eucaryotic mRNAs, several processing steps, from 5’-end capping
over splicing to 3’-end poly-adenylation (see fig. 2) ensure that the
correct messenger RNA is being synthesized and released into the
cytosol. At each of the many processing steps, tight regulation of
RNA fate is ensured.

1.2.3 RNA half-life control

Once a mature RNA molecule has been synthesized, a series of RNA
half-life control mechanisms ensure correct turnover. While nonsense-
mediated decay (NMD) ensures that only correctly processed RNAs
(not containing premature termination codons PTC) are retained in
the cytosol, various control points ensure correct translation of mR-
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Initiation Elongation Termination
Promoter binding 
Pol II

Transcription factors

5  Capping
RNA triphosphotase

Guanylyltransferase

Methyltransferase

Cap binding protein

Splicing
at splice sites

Splicesome/U - snRNPs

Exon junction complex
SR proteins

hnRNP proteins

THO/TREX

Export factors

3  End-processing
at cleavage sites

Cleavage/Poly(A) factors

Poly(A) polymerase

Poly(A) binding protein

Release & export
Export factors

Nuclear pores

TATAA

Figure 2: Transcription of messenger RNA (mRNA) and timeline This
schematic covers the minimum of required factors for trancription.
The timeline below indicates crucial steps in transcription and in-
volved enzymes, which highlights available stages for regulation.

NAs and further processing of other RNAs (see Garneau et al. [36]
for a review), known as post-transcriptional regulation.

Among the most abundant mechanisms in metazoa is RNA half-life-
control by ABPs, known as ARE mediated decay (AMD), figure 3
shows mRNA decay pathways including AMD, which is shown in
more detail in figure 4.

Such half-life control mechanisms are crucial for cell fate, as the cor-
rect amount of available RNA is key to processes like differentiation,
response to environmental stress, proliferation and many more. Un-
derstanding these mechanisms will help to identify novel ways of
disease treatment.
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1.2.4 AMD

AU-rich element mediated decay is a mechanism of RNA half-life-
control that requires direct interaction of trans-acting ABPs with their
cis-acting RNA target site (AREs) and the subsequent recruiting of
mRNA processing factors.

Although AMD can be seen as one of the key mechanisms controlling
gene expression, our understanding of its details is still limited. Upon
interaction, a RNA-protein complex is formed, that initializes mRNA
decapping, deadenylation and subsequently RNA decay (see fig. 4).

However, for certain ABPs like HuR (ELAV1) it has been shown, that
their interaction with RNA can prevent decay, thus stabilizing the
transcript, although the exact mechanisms remain unknown. Stabiliz-
ing effects of ABPs do not necessarily have to be active, they can also
come in form of antagonistic binding effects, blocking other RBPs,
miRNAs or yet unidentified destabilizing factors [13, 19, 126, 141].

5' UTR CDS 3' UTR poly-A tail

AU-rich element

Figure 4: AU-rich element mediated mRNA decay AMD is a special type
of deadenylase dependent mRNA decay. Upon interaction of i)
TTP with mRNA, the latter becomes deadenylated, decapped and
is subject to exonucleolytic decay or ii) HuR with mRNA leads to
protection of the poly-A tail from deadenylase, which stabilizes
the mRNA
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1.3 au-rich binding proteins

This class of proteins was named after their preference for AREs. This
classification however is rather old, and more recent experiments of-
ten show that proteins classified as ABPs, often have other prefer-
ences as well, e. g. HuR which would be better classified as U-rich
binding protein, due to its preference for UREs. The current explosion
of CLIP-Seq and other experiments and the new insights into binding
preferences generated have the potential to change this outworn type
of classification and lead to some less strict and more flexible cate-
gories.

1.3.1 TTP

Tristetraprolin (TTP) is a CCCH tandem zinc-finger protein known
to interact with single-stranded RNA molecules. It has a destabiliz-
ing effect on its RNA targets. Predominantly found in the cytoplasm,
it has been shown to be able to shuttle into the nucleus. TTP pref-
erentially binds the core UUAUUUAUU of class II AREs, promotes
deadenylation and degradation of RNAs.

Its tandem zinc fingers can bind to adjacent 5’ -UAUU- 3’ subsites
on the single-stranded target RNA, potentially interacting with two
RNA copies at once [12, 52]. A crystal structure of TTP zinc fingers
bound to a synthetic strand of mRNA can be seen in figure 5A.

TTPs binding preferences have been investigated in detail for some
of its targets, but not in a systematic, transcriptome wide way until
recently. Although partial crystal structures of TTP zinc fingers exist,
so far no structure of the whole protein is available.

As one of the major regulators of mRNA stability, especially during
immune-stress response, TTP was one of the two AMD related pro-
teins studied in this thesis. While it’s expression levels under normal
conditions are low, induced immunological stress e. g. via lipopolysac-
charid (LPS) induction has a strong effect on TTP expression.

TTP is itself regulated by phosphatases and kinases, which are be-
lieved to modify the carboxyterminal domain (CTD) of TTP [118],
thereby regulating its activity. However, exact mechanisms for this
regulation are not known, and not topic of this study.
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1.3.2 HuR

HuR (human antigen R) preferentially binds the nonamer NNUUN-
NUUU. It can shuttle between the cytoplasm and the nucleus and
contains three RRMs. Two N-terminal binding to ARE motifs and the
C-terminal motif binding to poly-A tails, which potentially prevents
deadenylase from interaction and stabilizing the RNA-protein com-
plex [12].

A sketch of the RRM1 of HuR is shown in figure 5B. In contrast to TTP,
HuR is a well studied protein, although its binding preferences and
mode of action are still not fully understood. As potential counterpart
to TTP, HuR-CLIP-Seq data in TTP+/+ and TTP− cells were analyzed
during this thesis, with focus on direct cooperative or antagonistic
effects.

Figure 5: AU-rich binding proteins TTP and HuR A) Sketch of a tandem
CCCH-zinc finger domain of TTP in contact with a class II AU-rich
element (PDB: 1RGO). The nucleic acid is shown in blue and the
two zinc ligands are shown in orange.
B) Sketch of the first two tandem RRMs (RRM1) of HuR that is
known to bind ARE motifs(PDB-ID: 3HI9)

1.3.3 Auf1

Auf1 (ARE/Poly(U)-binding/degradation factor), also known as het-
erogeneous nuclear ribonucleoprotein D (hnRNPD) is a RNA desta-
bilizing factor. It preferentially binds to U-rich elements, but has also
been shown to interact with poly-A and AU-rich elements [42]. Four
isoforms of Auf1 have been identified, all containing two RRMs for
RNA-interaction.

Its diverse binding preferences and the number of isoforms avail-
able, make Auf1 a complex interaction partner for RNA, which is
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known to be less sequence sensitive than other RBPs. It is well pos-
sible that different isoforms have different effect on RNA targets,
maybe even stabilizing their target.

All three ABPs discussed here, have shown the ability to shuttle be-
tween nucleus and cytosol, potentially interacting with RNAs from
synthesis to decay, underlining their important role as regulators of
gene expression and cell fate. Their exact binding mechanics and pa-
rameters that influence their de-/stabilizing effects remain yet to be
investigated.

1.3.4 TTP and HuR in AMD

Both TTP and HuR, can be found to interact or compete with each
other for single stranded target sites, either having an agonistic or
antagonistic effect on the stability of their target RNAs providing the
cell with a fast response mechanism to environmental or developmen-
tal conditions. Studies comparing both ABPs have reported a wide
range of interaction between the two, from only marginal overlap to
vast amounts of shared binding sites [86, 102, 120].

Overlap of target sites in immunostimulated primary mouse macrophages
and influence on RNA half-life under physiological conditions is one
of the major points addressed in this thesis. As both ABPs are known
to be able to shuttle between nucleus and cytosol, enabling them to
act in an auto-regulatory manner on their own mRNA or pre-mRNA
respectively, their cooperativity/competition is an even more intrigu-
ing target for further investigation.

1.4 identifying rna-protein interactions

RNA-protein interactions are a central part of the complex interac-
tome of organisms and as such their interplay and underlying mech-
anisms are not simple to investigate. It is not trivial to distinguish true
binding sites from sites sharing sequence and/or structure features,
especially as interaction is not necessarily functional. Often proteins
interact with their target not only at specific sites, but in a probing
manner known as diffusional search [97], further complicating inter-
action analysis.

In principle, investigating interactions requires some knowledge of
the interaction partners, sometimes in form of specific probes, anti-
bodies, cell-types or substrates. Early methods to investigate protein-
nucleic acid interactions were footprinting techniques, where enzymes
or chemicals are used to digest or modify nucleic acid unprotected
from the protein body, resulting in a “footprint” of the protein on its
target.
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Electrophoretic Mobility Shift Assay (EMSA), utilizes band-shift dur-
ing gel electrophoresis between bound and unbound nucleic acid
to identify if interaction happens. These methods, are useful to pre-
dict interaction on nucleotide level and footprints of specific proteins.
However, due to the specifics of the experiments they are unsuitable
for large scale experiments without detailed knowledge of interaction
partners.

Experimental methods for the characterization of RNA-RBP interac-
tions can generally be broken down into in vitro assays, which means
free from other interacting factors and under experimental conditions
and in vivo approaches which capture a snapshot of RBP binding to
RNAs at natural expression levels or after induction.

RNA-centric methods use mass spectrometry to potentially identify
all RBPs bound to an RNA of interest. Protein-centric methods focus
on a specific protein of interest which is crosslinked via UV-light or
formaldehyde to its target, which is then co-immunoprecipitated with
the protein.

While RNA-centric methods allow the identification of novel RBP in-
teractions, protein-centric methods require knowledge of the protein
of interest and specific antibodies for the IP. However, protein-centric
methods can easily be applied in a high-throughput manner and re-
quire lower amounts of starting material.

This section contains a general description of the two former men-
tioned approaches based on the reviews from Cook et al. [29] and
McHugh et al. [96], while the high-throughput part will be described
in more detail later on.

1.4.1 RNA-centric methods

RNA-centric methods purify an RNA of interest and identify interact-
ing proteins or protein complexes via methods like mass spectrome-
try (MS). This allows the detection of novel RBPs, as well as RBPs for
which antibodies are hard to come by. However, detection of RNA
interacting RBPs via RNA-centric methods requires the purification
of enough protein mass, which requires an extraordinary amount of
starting material [10]. In contrast to nucleic acids purified protein can-
not be amplified, which makes RNA-centric methods challenging for
low abundancy RNAs and proteins.

in vitro approaches (see fig. 6), use a synthetic RNA bait to capture
RBPs from cellular extracts, while the technically more challenging
in vivo approaches (see fig. 7), preserve the context of competing or
assisting RNA-protein interactions.
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Figure 6: RBP in vitro assays , adopted from Cook et al. [29] with permi-
sion. A) SELEX and SEQRS where RNAs undergo several rounds
of binding and amplification and resulting pools are analyzed via
sequencing at the end (SELEX) or after each round (SEQRS) B)
RNAcompete assays binding affinity of proteins with designed
RNAs on microarray C) RNA Bind-n-Seq sequences protein con-
centration dependent amounts of bound RNAs

Figure 7: RBP in vivo assays , adopted from Cook et al. [29] with permi-
sion. A) RIP-chip and RIP-seq assay bound RNAs after IP B) CLIP-
Seq methods, co-IP of bound RNAs after UV-crosslinking and iden-
tification of targets via NGS C) PAR-CLIP first treats cells with
modified U or G nucleoside analogs for higher crosslinking effi-
ciency

16
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Purification of RNA-RBP complexes from extract or lysate is a chal-
lenging procedure. Re-association or formation of non-specific inter-
actions can occur under native conditions, which can be prevented us-
ing stringent, high-salt wash conditions. Denaturing condition on the
other hand require crosslinked complexes, with crosslinking strate-
gies varying from low efficiency to technically challenging for later
identification of purified peptides.

Tag based purification of the RNA of interest is an alternative where
the RNA is tagged with naturally occurring interaction sites, e. g. the
MS2 viral coat protein binding RNA stem loop structure [20] or arti-
ficially designed RNA aptamers. Such tags are then used for purifi-
cation via resin- or solid support- coupled MS2 protein, streptavidin
or histidin. Depending on the tag, elution of complexes from resin or
solid support can either be conducted by boiling in SDS, which will
dissolve all specific and unspecific complexes, or via specific elusion,
e. g. via biotin in excess in case of streptavidin. The more specific the
elution, the higher the detection sensitivity.

MS is used for the identification of interacting complexes. Non-quantitative
methods compare purified proteins from the RNA of interest and
a control. Total protein stained samples are separated by gel elec-
trophoresis and bands present only in the sample but not the control
are extracted and proteins identified by MS. Whole proteome meth-
ods require quantitative MS, where all proteins in the sample can be
identified, including those not visible on a gel. Non-specific proteins
can be excluded by analyzing a control. Metabolic labeling, chemical
labeling, or spike-ins can be used to tag proteins for MS analysis. Iso-
topes of the proteins are compared to provide direct quantification of
peptide ratios from sample and control to discriminate true binding
from non-specific interactions [29, 96].

1.4.2 Protein-centric methods

Protein-centric methods require access to specific purification meth-
ods for the protein of interest in vivo , or a way to express a tagged ver-
sion in vitro . Most common are antibodies which allow immunopre-
cipitation (IP) of the protein. Consequentially, the quality and speci-
ficity of the antibody has a huge impact on the reliability of the re-
sults. Co-immunoprecipitated RNA is then reverse transcribed into
cDNA, PCR amplified and sequenced to identify interaction partners.
PCR amplification of protein bound RNA allows to detect interaction
partners even when less starting material is available, in contrast to
RNA-centric methods.
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1.4.2.1 In vitro

A common method for the identification of binding motifs for RBPs
is Systematic Evolution of Ligands by EXponential enrichment (SE-
LEX) [65, 156]. Randomized RNA oligos are incubated with an RBP
of interest, followed by reverse transcription (RT) of bound RNAs.
Resulting cDNA is then PCR amplified and in vitro transcribed. This
process is repeated, each time increasing the amount of high-affinity
binding sites in the pool. Sanger sequencing is then applied to the
enriched sequences to finally identify the binding motifs.

SELEX enriches high-affinity motifs, which may exclude some func-
tional binding sites with lower affinity, and it is not possible to de-
duce quantitative affinity information for sub-optimal motifs. SELEX
in combination with high-throughput sequencing is known as SEQRS,
where resulting pools are sequenced after each round of selection,
which gives some information on sub-optimal motifs as well.

Binding specificities of RBPs can be probed by RNAcompete [110],
where a purified Glutathione S-transferase(GST)-tagged RBP of inter-
est is incubated with a pool of ∼40 nt long RNAs which are designed
to represent all 9-mers in a compact way. RNA is incubated in excess,
so that molecules compete for a limited amount of protein binding
sites, which allows to deduct relative affinity from abundance after a
single-step selection. Eluted RNAs are then hybridized to a microar-
ray for detection.

A comparable approach is RNA-bind’n-seq [72], where the protein
of interest is expressed in vitro. Different concentrations of protein
are then incubated with random RNAs of length 40nt. After IP and
sequencing, the ratio of protein concentration and bound RNA can
be used to determine real dissociation constants (Kd) from such ex-
periments, while simultaneously allowing to infer simple secondary
structure preferences, as 40nt is long enough to preserve basic struc-
tures.

However, neither SELEX, nor SEQRS, nor RNAcompete are able to
detect complex secondary structure constraints of interactions, as the
RNA oligos used are too small for structures more complex than sim-
ple hairpins. RNAcompete oligos are even designed to prevent com-
plex structures, to represent all single-stranded 9-mers in the most
compact way. Only RNA Bind-n-Seq has the potential to be used for
RNA secondary structure probing and allows the deduction of off-
rates in context of single nucleotide mutations, which enables binding
affinity decomposition into sequence and structure features.
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1.4.2.2 In vivo

For in vivo methods, native and denaturating purification methods
have to be distinguished. Native purification methods, known as RNA
immunoprecipitation (RIP), preserve physiological conditions and thus
also native RNA-protein and protein-protein complexes during purifi-
cation . However, during purification, the protein can interact with
RNAs which are not present in the same cell compartment and could
not interact in vivo . Furthermore, unspecific interactions with RNAs
that are highly abundant in cells, e. g. rRNAs, can interfere and mask
specific interactions with low-abundancy targets.

Denaturing methods for RNA-protein interactions crosslink the pro-
tein of interest to the target RNA. Crosslinking takes a snapshot of
current interactions, thus preventing the interaction of protein with
RNA in a non-in vivo manner in later steps of purification. Crosslink-
ing with short wavelength UV light creates covalent bonds between
aromatic amino acids of the protein and RNA nucleotides in close
proximity without crosslinking proteins with other proteins.

Followed by antibody-purification, this methods are known as CLIP
(crosslink and immunoprecipitation) [132]. RNA-protein complexes
are denatured in sodiumdodecylsulfate (SDS) and retrieved from SDS
gel after purification.

Several types of CLIP procedures have been proposed [68], e. g. HITS-
CLIP (HIgh-Throughput Sequencing of RNA isolated by CrossLink-
ing ImmunoPrecipitation) [153], iCLIP (Individual-nucleotide resolu-
tion CLIP) [67], PAR-CLIP (PhotoActivatable-Ribonucleoside-enhanced
CrossLinking and ImmunoPrecipitation) [45] (see fig. 8) to name the
most common ones. Together with eCLIP (enhanced CLIP) [138], ir-
CLIP (infrared CLIP) [154], hiCLIP (RNA hybrid and individual-nucleotide
resolution ultraviolet crosslinking and immunoprecipitation) [127],
CLASH (crosslinking, ligation, and sequencing of hybrids) [70] and
CRAC (cross-linking and analysis of cDNAs) [41] a bandwidth of ex-
perimental designs are available, each with certain advantages and
limitations.

They all rely on the same principle, crosslinking protein residues
and adjacent nucleotides with UV light, varying details to achieve dif-
ferent outcomes. As an example, in PAR-CLIP nucleotide analogs like
thio-uridine or thio-guanine are introduced into the cell as crosslink-
ing agents. This circumvents the otherwise low efficiency of UV-crosslinking
at 254nm, as the nucleotide analogs can be crosslinked with long-
wave UV light (365nm), but it works only with cultured cells which
readily utilize the nucleotide analogs. The biochemistry behind UV-
crosslinking is still not completely understood, so that it remains un-
clear which interactions might be missed completely or to what ex-
tent.
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What is known, is that reverse transcriptase (RT) misreads crosslinked
nucleotides with a higher as usual rate, or drops off completely. PAR-
CLIP exploits this behaviour, as the introduced nucleotide analogs in
case of thio-uridine are misinterpreted as guanines by the RT, which
introduces T2C transitions in the resulting sequencing reads. These
transitions can be used to pinpoint interaction sites. iCLIP, as another
example, takes advantage of the fact that the amino acid tag left at
the crosslink site after proteinase digestion often causes termination
of reverse transcription to pinpoint the exact interaction site.

However, CLIP-Seq variants are not bias free. Certain nucleotides and
amino acids are preferentially crosslinked by UV-light, and crosslink
efficiency varies between proteins, just as the incorporation rate of nu-
cleotide analogs, which varies between cell types and is considered
low. PAR-CLIP only creates bonds at the nucleotide analog, so tags
will be enriched at locations with several repeats of that base. Fur-
thermore, crosslinking only occurs at sites where nucleotides and aro-
matic side chains are in close proximity, so even if a nucleotide analog
is incorporated a crosslink only happens if the analog is close to the
actual binding site. A conceptual problem can arise if the interacting
amino-acid side chains are not aromatic, thus can not be crosslinked,
and therefore simply not be seen in a CLIP-Seq experiment.

Formaldehyde crosslinking can be an alternative, but requires more
elaborate purification methods. Affinity tag coupled proteins can be
used to purify in denaturing conditions (guanidine or urea) and work
with UV as well as formaldehyde crosslink protocols. However, a
tagged version of the protein of interest has to be available for ex-
pression in the studied cell line.

Protein occupancy profiling is a technique similar to CLIP, except that
RNPs are not immunoprecipitated but purified via oligo (dT) beads
or biotinylation. Cross-linking is also possible with formaldehyde, fol-
lowed by RNA digestion, cross-link reversion and sequencing of the
purified RNA [96].

An ongoing challenge is the extraction of target RNAs and specific
protein binding sites by in silico methods, which follows such experi-
ments and is discussed in the next section.

1.5 ngs

Next generation sequencing (NGS), is a high-throughput method fol-
lowing most of the experimental RNA-RBP interaction detection ap-
proaches discussed so far. The combination with high-throughput
methods allows to identify a huge number of interactions at once, as
well as comparisons between different experimental setups, e. g. knockout-
wildtype, timelines, concentration dependencies, and more. Initially,



1.5 ngs 21

Figure 8: Most used CLIP-Seq methods and their differences , adopted
from König et al. [68]. High-throughput sequencing of RNA
isolated by ultraviolet (UV) crosslinking and immunoprecipita-
tion (HITS-CLIP), photoactivatable ribonucleoside-enhanced CLIP
(PAR-CLIP) and individual nucleotide resolution CLIP (iCLIP).
CLIP methods differ by UV-light wavelength used for crosslink-
ing, introduction of nucleoside analogs (PAR-CLIP ), introduction
of transitions (PAR-CLIP ) or deletions (HITS-CLIP) during reverse
transcription at crosslink sites and addition of 5’ and 3’ adapter
separately (PAR- and HITS-CLIP) or in one step (iCLIP via circu-
larization and linearization)

sequencing of short DNA stretches was a costly process. It became af-
fordable with the introduction of first parallel sequencing strategies.
The ever decreasing cost for sequencing experiments and the increase
in precision and throughput make NGS a great and feasible resource
for all kinds of experiments, even large consortia projects like EN-
CODE [27] or the 1000 genomes project [28].

Several strategies of read amplification and sequence identification
have successfully been applied in high-throughput life sciences. Am-
plification strategies can be grouped into Emulsion PCR and Bridge
amplification, or are not needed at all (single molecule sequencing
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strategy). The actual sequence identification step is either sequencing
by synthesis, or sequencing by ligation. Both forms can use fluores-
cent dyed nucleotide-triphosphates where the incorporation of bases
triggers pyrophosphate release, emitting flashes of light unique for
each base, which are recorded to infer the sequence of the newly syn-
thesized DNA generated from the cDNA sample.

Alternatively, the nucleotides are added sequentially, so that signal
can only be generated by those currently in solution (e. g. ION-torrent).
Sequencing by ligation uses DNA ligase instead of DNA polymerase,
which is used as key enzyme during sequencing by synthesis. Di-base
primers are ligated to the nascent DNA strand in multiple rounds for
the former, while single nucleotide tri-phosphates are incorporated
for the latter.

The main differences between today’s most popular sequencing plat-
forms are the maximum length of reads that can be sequenced, whether
single- or paired-end read sequencing is possible, the latter allowing
long sequences to be read from both ends, or if mate-pair sequencing
is feasible, where two reads with a given linker size can be retrieved
from each sequence in the sample. Further differences are the number
of reads that can be analyzed in parallel and the sequencing speed. It
is safe to assume that none of the platforms will be best for all types
of analysis, so that the right combination of sequencing platform and
experimental setup varies from case to case (see e. g. Solonenko et al.
[124]).

For a recent overview on sequencing platforms and perspectives see
e. g. Mardis [89], Pareek et al. [106] and table 1.

Besides the obvious use for experiments like RNA-Seq or RNA-RBP
studies, NGS methods can be applied to any experiment which can be
measured in terms of sequencing reads. Thus, NGS data processing
and analysis is a rather young field with a great potential.

1.5.1 The general workflow of NGS experiments

Fragmentation of target DNA/RNA is performed, either by sonica-
tion or digestion by restriction enzymes. Fragmentation is also the
first critical step in an NGS experiment, as enzymatic digestion can
bias the outcome due to enzyme cut site preferences, while fragmen-
tation by sonication is a more random process, which renders it bias
free but also less reproducible than enzymatic digestion [66]. The
main advantage of enzymatic digestion for CLIP-Seq is the smaller
fragment size which allows higher resolution of binding sites com-
pared to lager sonication fragments [123]. Best would be to mix dif-
ferent enzymes for digestion, thus preventing potential biases.
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Table 1: NGS technologies compared, adopted from Mardis [90], Met-
zker [99], van Dijk et al. [137] ∗ Average read-lengths.‡ Fragment
run. §Mate-pair run. Frag, fragment; GA, Genome Analyzer; GS,
Genome Sequencer; MP, mate-pair; N/A, not available; NGS, next-
generation sequencing; PS, pyrosequencing; RT, reversible termina-
tor; SBL, sequencing by ligation; SOLiD, support oligonucleotide
ligation detection.

Platform Library/template preparation NGS chemistry Read length (bases) Run time (days)

Roche/454’s GS FLX
Titanium

Frag, MP/emPCR PS 330∗ <0.5

Illumina/ Solexa’s
GAII

Frag, MP/solid-phase RTs 75 or 100 4‡, 9§

Life/APG’s SOLiD 3 Frag, MP/emPCR Cleavable probe SBL 50 7‡, 14§

Pacific Biosciences Frag only/single molecule Real-time 964∗ N/A

Ion Torrent Frag, MP/emPCR,single
molecule

Semiconductor, pH change 200 <0.5

Gb per run Pros Cons Biological applications

0.45 Longer reads improve mapping
in repetitive regions; low run
times

Low throughput; high reagent
cost; high error rates in homo-
polymer repeats

Bacterial and insect genome de
novo assemblies; medium scale
(<3 Mb) exome capture; 16S in
metagenomics

18‡, 35§ Currently the most widely used
platform in the field; highest
throughput; many compatible
protocols

Sequence complexity needed;
low multiplexing capability of
samples

Variant discovery by whole-
genome resequencing or whole-
exome capture; gene discovery
in metagenomics

30‡, 50§ Two-base encoding provides in-
herent error correction

Long run times and short reads Variant discovery by whole-
genome resequencing or whole-
exome capture; gene discovery
in metagenomics

N/A Reads up to 20kb and more; low
run time; single molecule runs

High cost; high error rates; low
throughput; limited range of ap-
plications

Full-length transcriptome se-
quencing; complements other
resequencing efforts in discover-
ing large structural variants and
haplotype blocks

1 No optical scanning, no fluores-
cent nucleotides; low run time;
many applications

High error rates in homo-
polymer repeats

Transcriptome/Exome sequenc-
ing; bacterial and insect se-
quencing; targeted sequencing
of genes

cDNA is then reverse-transcribed if necessary, as the sequencing re-
action works on DNA not RNA. Adapter sequences for polymerase
chain reaction (PCR) and sequencing are ligated to the cDNA frag-
ments. PCR enrichment ensures sequencing depth which means that
enough copies of each fragment in the mix are available for sequenc-
ing. The parallel processing of multiple experiments/conditions/repli-
cates on one sequencing lane can be realized by multiplexing, where
samples are barcoded and then mixed to decrease sequencing costs,
which on the other hand also decreases sequencing depth.

The sequencing reaction is performed in a highly parallel fashion, pre-
cise steps depend on the applied protocol. Resulting reads are then
converted from signal to sequence if necessary. Samples are demul-
tiplexed, quality controlled and post-processed according to experi-
ment and sequencing protocol.
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1.5.2 RNA-Seq

High-throughput quantification of transcript levels is possible with
RNA-Seq [147]. More and more replacing microarrays, RNA-Seq has
become the method of choice for the evaluation of gene expression
on transcript level. The manifold variations of this technique allow
direct assessment of RNA expression, half-life, modifications, geno-
typing, genome assembly and many more. As expression levels of
RNAs have a direct influence on the occurrence and effect of RNA-
RBP interactions, RNA-Seq results were incorporated into this study.
In brief, during RNA-Seq cellular RNAs are extracted, fragmented,
converted to cDNA, adapters are aligned and cDNA is sequenced.

Resulting reads are aligned to the genome or transcriptome to gener-
ate exonic, intronic, junction or other reads, depending on the proto-
col followed. RNA-Seq allows to calculate expression values for genes
from read counts, predict (novel) transcript-isoforms, investigate single-
nucleotide-polymorphisms (SNPs) or other modifications, differential
expression profiles and much more. The analysis of RNA-Seq reads
differs from e. g. CLIP-Seq generated reads in many ways, for a recent
publication on RNA-Seq analysis see e. g. Conesa et al. [26].

The general workflow for read analysis is the same than for other
NGS experiments. However, due to the vast amount of reads neces-
sary for reliable analysis of such experiments, the amount of data
produced and time consumed is a factor to be considered during the
planing phase, as are the demands for adequate computational hard-
ware.

1.5.3 CLIP-Seq

As mentioned above (see 1.4.2.2), immunoprecipitation techniques re-
quire a specific antibody against the protein of choice, which is used
to extract the latter from cell-lysates. These protein-centric methods
can be quantified via microarrays (RIP-ChIP) or NGS techniques (RIP-
Seq). Crosslink-IP (CLIP) techniques further require a crosslinking
agent, e. g. UV-light, to create a covalent bond between the protein
of interest and its RNA target. Coupled with NGS methods, CLIP-
Seq techniques have gained growing attention as method for RNA-
RBP interaction studies. Depending on the kind of CLIP technique
used (iCLIP, HITS-CLIP, Par-CLIP etc.), downstream analysis requires
specific algorithms to filter signal from noise.

The general workflow is as follows: If required and possible, cells are
cultured in medium with nucleotide analogs like thio-uridine. They
are then exposed to UV-light, which creates covalent bonds between
nucleotides respectively their analogs, and juxtaposed amino-acids of
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interacting proteins. The crosslinked RNA is then co-immuno-precipitated
with the protein of interest via specific antibodies.

Cells are then treated with DNAse and RNAse for fragmentation of
RNA that is not protected by the interacting protein footprint. Pro-
teinase is added to digest protein residues up to a small portion of
amino-acids that stay covalently bound to their target RNA. Reverse
transcriptase synthesizes cDNA from the RNA templates, readily in-
corporating transitions or deletions when protein remnants are en-
countered, or simply dropping off the template. After sequencing,
these mutations can be used to identify interaction sites, and if avail-
able, transitions can be used to distinguish signal from noise.

However, CLIP-Seq signal is a qualitative measure for RBP targets,
and a quantitative measure only for the relative amount of protein
titert by it. It indicates which RNAs are targets and which are not,
but gives no quantitative measure of binding strength or affinity, as
the number of crosslinks depends on a series of factors. For one there
is the number of protein molecules available for binding. Ideally, MS
studies accompany such an experiment, so that the amount of avail-
able RBP is known, but this is very expensive and not at all standard.
However, as most CLIP-Seq studies focus on one protein, it should be
save to assume a comparable amount of available protein for binding
throughout replicates and conditions.

So although not known, the real amount of protein in the cell is not as
important as the amount of RNA available for binding, which is the
second factor. Highly abundant RNAs will likely produce more CLIP
signal than spurious RNAs, independent of the binding affinities. As
mentioned before, RNA-Seq experiments can be used to quantify the
relative amount of a specific RNA in comparison to the rest, which
can be used to normalize CLIP signal.

However, one has to be aware of very low expressed transcripts which
can introduce a bias into such a normalization, as well as the fact
that very abundant RNAs will be down-ranked, even if they are
strong targets, but their number is higher then the amount of avail-
able protein, such that not every copy of RNA can be bound by a
protein. For this thesis, we integrated expression values derived from
RNA-Seq experiments into our findings, to rank targets by normal-
ized CLIP signal and for downstream analysis like motif finding.

1.5.4 Processing of NGS data

A general analysis workflow for NGS and CLIP-Seq experiments is
shown in figure 9.
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Figure 9: CLIP-Seq processing pipeline Quality control steps accompany
a CLIP-Seq experiment after sequencing and every step of analy-
sis. After preprocessing and mapping of reads, peak regions are
defined and annotated. These peak regions are subject to down-
stream analysis regarding sequence and structure preferences, nor-
malization and more.

1.5.4.1 File formats

Since it is very common for bioinformatical analysis to work on se-
quences, or strings to use a more informatical term, there are a lot of
file formats, often specific for the task at hand. This is also the case for
NGS data. This section will give a brief overview on file formats used
during analysis of the underlying experiments. For a more complete
picture, please refer to one of the many up-to-date www sources on
this topic
(e. g. https://en.wikibooks.org/wiki/Next_Generation_Sequencing_
(NGS)/Introduction#File_format_and_terminology and
https://genome.ucsc.edu/FAQ/FAQformat.html).

While the FASTA format is a very common and widely used sequence
format, consisting only of a header with some information followed
by the sequence, this format is ancient and had to be adopted to deal
with additional information. The so called FASTQ format is able to
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store sequence quality and additional information of sequences and
is often the starting point of NGS analysis. As mapping adds ad-
ditional information, like number of matched sites, mutation events
(INDELs, mis/matches) FASTQ was not enough and the most widely
used SAM format [79] was invented.

Together with its binary counterpart BAM and the related tools for
reading and processing (SAMtools [79] or PicardTools http://broadinstitute.
github.io/picard/) the SAM format contains all the information re-
quired for downstream NGS analysis.

Information on annotation, gene features and the likes are stored in
Browser Extensible Data (BED) and General Feature Format (GFF) or
Gene Transfer Format (GTF) format or similar, mostly tab separated
file formats, which are usually human readable and read/editable by
hand or tools like the BEDtools suite [108], several peak finders/Dif-
ferential Expression (DE) analysis tools and more.

Furthermore, (indexed, binary) formats for the easy upload of files
to web-services like the UCSC genome browser [59] exist e. g. Wig
or BigWig. Variant calling, e. g. for SNP detection require information
often stored in the Variant Call Format (VCF). There is a multitude of
further formats, mostly for specialized tasks of downstream analysis
available, but the above mentioned formats are those most common
and of importance for this thesis.

1.5.4.2 Pre-processing

As many RNA-Seq and CLIP-Seq experiments are run at different con-
ditions for comparison, it is very common to multiplex samples. The
addition of random barcodes together with fixed barcodes for each
sample allows the parallel sequencing of multiple samples on one
lane and the later split into the single samples.

Tools are available that allow manual splitting by barcode, e. g. the
FastX toolkit (http://hannonlab.cshl.edu/fastx_toolkit/), however
this is often done as a service by sequencing facilities. In rare cases,
as for the CLIP-Seq data used here, custom built code has to be used
to split samples by complex barcodes.

The next (optional) step is adapter trimming, as reads are often shorter
than the maximum sequencing length of the sequencer, leading to
readthrough into adapter sequences. Even under optimal conditions,
at least barcodes and some PCR-primer adapters have to be cleaved
from the reads, which can be done again with the FastX-toolkit, alter-
native programs like Cutadapt [91] or of course using custom built
code.
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1.5.4.3 Quality control

A very essential step during NGS analysis is quality control (QC).
In principal it is recommended to perform QC after every step dur-
ing pre- and post- processing, to ensure a correct basis for down-
stream analysis. Remaining adapter-sequences, calls with low quality
and reads of wrong length can be identified and removed from the
dataset.

A very handy tool for this task is FastQC (http://www.bioinformatics.
babraham.ac.uk/projects/fastqc/). It creates statistics on overall se-
quence quality, as called by the sequencing machine, compares se-
quences to known adapters, analyses k-mer enrichment for bias esti-
mation and more. Some experiments require specialized quality con-
trol, in this case e. g. analysis of T2C transition rates, which are not yet
covered by established tools.

However, quality control is something that should in any case be
adapted to the data at hand, as e. g. over-sequencing (high read-duplication
levels) is a common problem in ChIP-Seq data, while it is simply not
possible in RNA-Seq experiments. Also the influence of remaining
adapter sequences, the number of uniquely mappable reads and so
on are quality criteria that depend on the experiment and can not be
generalized. So far no quality control pipeline specifically for CLIP-
Seq experiments is available.

1.5.4.4 Read mapping or assembly

The high versatility of NGS experiments leads to a very diverse set
of tools for read mapping or assembly of de novo genomes/transcrip-
tomes, reviewed in e. g. Reinert et al. [112] and Simpson and Pop [122],
which are the basis for this section. The most prominent software for
read alignment is the Basic Local Alignment Search Tool (BLAST) [4],
which uses a database of indexed k-mers that are compared to the
query and extended until a threshold is reached to find the highest-
scoring segment pairs.

Although this local alignment heuristic works very good for small
datasets, it is simply not efficient enough to deal with NGS data,
where millions of reads have to be aligned. NGS read alignment is
non-trivial. Usually reads are mapped to a reference genome, which
is not identical with the genome of the organisms the reads are de-
rived from. This means that mapping algorithms have to deal with
differences coming from sequencing errors, as well as naturally occur-
ring single nucleotide polymorphisms (SNPs), insertions/deletions
(InDels) of small regions and even large-scale complex variations of
thousands of nucleotides, e. g. transposable elements.
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Furthermore, reads derived from mature mRNA do not contain in-
tronic regions, which are usually larger than exonic ones, so reads
mapping to two or more exons have to be split to span the exon-
intron-exon structure. Sometimes mismatches arise from the experi-
mental method used, e. g. from bisulfite treatment during epigenomic
NGS or T2C transitions from thio-uracil crosslink in PAR-iCLIP . How-
ever, independent of the source of reads and whether they come from
single or paired-end runs, the challenge is to map them back to the
position on the reference genome where they were derived from. This
is done by solving an approximate matching problem, approximate
because of above mentioned challenges (SNPs, etc. ).

Two main approaches to deal with the large number of input and the
large size of reference genomes exist, filtering and indexing. During
filtering, one excludes regions on the reference where no approxi-
mate match is possible, thereby shrinking the search space. Indexing
is based on pre-processing of the reference sequence, the reads or
both to allow a quick lookup of potential mapping locations with-
out scanning of the whole reference. Schbath et al. [119] divide al-
gorithms for read mapping in three categories, those that use hash
tables, Burrows-Wheeler Transform or suffix trees/arrays as underly-
ing data structure.

Reinert et al. [112] also mention the enhanced suffix array and the
FM-index, which is based on the Burrows-Wheeler transform. The
FM-index is less memory demanding, but not as fast as the memory
demanding suffix array. Irrespective of the underlying data structure,
in the end the user will get a list of reads that could be mapped to the
reference genome, the genomic location of the best match or matches
and some information on the alignment and its quality. This assumes,
that such a reference genome or at least a reference genome of some
closely related species exists. If this is not the case, one has to generate
a reference by genome/transcriptome assembly.

Even today, most sequencing technologies are limited to read lengths
of not more than 150 bases, 10-20kb in case of PacBio (see table 1). The
human genome on the other hand has a size of 3Gb. Reconstructing
these huge genomes is possible by assembling read fragments at over-
lapping positions, generated e. g. via shotgun sequencing as proposed
by Staden [125]. A simple approach for assembly is to iteratively join
reads in decreasing overlap quality, starting with best matching reads
and ending with reads with only small overlap.

Such nascent assembled sequences are known as contigs (contiguous
sequence of bases). Greedy assemblers use this strategy of locally op-
timal joining, but are limited in their usefulness when it comes to
repeat regions. Graph based assemblers represent reads and their re-
lationships as vertices and edges in a graph and try to find a walk
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through that graph that best reconstructs the underlying genome. In
the simplest modes, each read is a vertex and linked with an edge to
overlapping graphs. OLC assemblers [58] (Overlay, Layout, Consen-
sus) first find overlapping vertices, then build an ordered layout for
the graph and return a consensus sequence computed from the graph.
Finding overlaps is a problem similar to the alignment of reads and
best solved via indexing.

OLC assemblers became unfeasible when confronted with the large
number of reads derived from NGS experiments and led to the de-
velopment of De Bruijn graph based assemblers [107]. There, each
read is broken into a sequence of overlapping k-mers, distinct k-mers
are added as vertices to graph and those derived from adjacent posi-
tions are linked by an edge. De Bruijn graphs represent all copies of
repeats as single segment in the graph with multiple entry and exit
points, thereby collapsing repeat regions. Solving the assembly prob-
lem for such a graph can be formulated as an Eularian path problem,
visiting each edge in the graph once. Assemblers usually construct
contigs from unambiguous, unbranched regions of the graph and not
the whole sequence at once. However, generating such a De Bruijn
graph of k-mers for higher eucaryotes, given mismatches and repeats
is extremely memory consuming.

In recent years Bloom filters, which use bit arrays, indexed by multi-
ple hash functions or FM-index structures are used to deal with the
memory consumption. String graphs were recently [103] discovered
as an elegant way to represent overlap-based assemblies. Reads that
are substrings of other reads, or contained by other reads are removed
and transitive edges are removed from the graph. The resulting string
graph shares properties with the De Bruijn graph without the need
to generate k-mers.

As it is far beyond the scope of this thesis to give a detailed overview
of all available implementations of the described algorithms, or a com-
parison of the latter, please refer to available literature for more infor-
mation, e. g. [11, 112, 116, 119, 122].

1.5.4.5 Downstream analysis

After successful QC and mapping, reads are available for downstream
analysis. In case of CLIP-Seq this means definition of peak regions, for
the distinction of real binding sites from noisy data, sequence/struc-
ture motif search, annotation of bound regions and more. RNA-Seq reads
allow the identification of gene/transcript expression levels, differen-
tial expression analysis, transcript isoform detection and more, mostly
depending on read counts per defined region (e. g. gene).
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A general protocol for downstream analysis is not available, as it
strongly depends on the type of investigation conducted. Further-
more, one has to keep in mind that what works for one experiment
may prevent conclusive findings in an other, or even worse lead to
false positives, which are often hard to identify later on. At this point
it should be mentioned that detailed description of data sources and
experimental and bioinformatical processing steps is crucial for re-
producibility of experiments.

Several projects aim at helping the user to create reproducible anal-
ysis pipelines, among them larger projects like Snakemake https://

bitbucket.org/snakemake/snakemake/wiki/Home, Bpipe [117], and sev-
eral commercial and smaller projects. During the course of this thesis
we developed ViennaNGS [150], a lightweight Perl6 based toolbox for
the generation of reusable pipelines, some of which were used for
downstream analysis steps within this thesis.
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1.6 binding site identification, normalization and mo-
tif prediction

No matter whether RNA- or protein-centric methods were used to
identify interaction partners, the resulting collection of reads in case
of (high-throughput) sequencing or fluorescence intensities in case of
microarrays, or MS spectra, require advanced bioinformatical meth-
ods to identify binding partners and/or interaction sites. This section
will focus on computational methods for binding site prediction from
next generation sequencing related experiments and motif prediction
from protein-centric experimental data.

In general, the first step is to identify true binding sites by filtering
spurious and unspecific binding. Such sites are then used to identify
binding motifs (see figure 10 for a workflow). The latter can then
be used for binding site predictions, given that their quality is good
enough and that the protein of interest has binding preferences.

Figure 10: CLIP-Seq peak finding and normalization from König et al. [68].
A) Regions with enriched signal (crosslink events) are filtered
from background with peak finder algorithms. B) CLIP-Seq signal
of such regions depends on the amount of available transcript
and total signal over transcript as well as transcript abundance
can be used for normalization.
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1.6.1 Defining binding sites from CLIP-Seq experiments

The major challenge in CLIP-Seq binding site prediction is missing
negative control. Without negative control, one has to come up with
a measure, that allows to distinguish true binding from background
binding. Algorithms for binding site identification work on read counts
in defined genomic regions or sequence stretches derived from data
directly. A straight forward way to distinguish real binding from
noise is the random distribution of reads over such a defined re-
gion (e. g. the gene body) and calculating the probabilities for finding
the read density observed in the experiment. Such algorithms allow
the computation of p-values for peak regions and enrichment val-
ues between theoretical and experimental signals. Pyicos [3], is one
implementation of such an algorithm, where false discovery rates
(FDRs) are calculated from CLIP-Seq experiments without control ex-
periments.

Paralyzer [32] utilizes T2C transitions, introduced in PAR-CLIP exper-
iments by reverse transcriptase when crosslink sites are encountered.
Comparing the smoothened kernel density estimates (used to infer
the probability density function) for transitions and non-transitioned
nucleotides in binding regions, allows enrichment analysis for sites
with more transition events then expected from background.

Piranha [135] compares read counts in bins with one or more reads to
a negative binomial distributed read model. It theory, it allows to call
peaks in all sorts of CLIP experiments, although correct estimation of
bin size by the user is necessary.

The number of tools for peak detection and CLIP analysis is growing
steadily (see table 2 for an overview), so this work only lists the so
far most widely used implementations. A source for discussion is the
elimination of background from CLIP-Seq experiments, as high signal
does not automatically indicate strong binding, and the reverse is true
as well.

The common approach of selecting only signal rich binding sites into
the final set of peaks can lead to false positives, as some regions tend
to show high signal across conditions and protein of interest, which
suggests background binding. On the other hand one might miss im-
portant binding sites with low signal due to low expression of tar-
get sites. Challenges like these remain to be solved on the computa-
tional side, however, adequate experiment quality will always be of
the essence for successful CLIP-Seq analysis.
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Table 2: CLIP-seq data specific processing tools , adopted from Reyes and
Ficarra [113]

TOOL YEAR EXPERIMENT FOCUS MAIN ADVAN-
TAGE

RECOMMENDED
CASE

AVAILABILITY

Paralyzer [32] 2011 PAR-CLIP Peak detection Exploits T to C mu-
tations to Improve
Signal to noise ratio

PAR-CLIP data http:

//www.genome.

duke.edu/

labs/ohler/

research/

PARalyzer/

wavClusteR [25] 2012 PAR-CLIP
(BAM format)

Noise and false
positives reduction
Peak detection

Distinguishes
between non-
experimentally
and experimentally
induced transitions

PAR-CLIP data https:

//github.com/

FedericoComocglio/

wavClusteR

Piranha [135] 2012 CLIP-seq and
RIP-seq (BED
or BAM)

Noise and false
positives reduction
Peak detection
CLIP-seq data
comparison [correc-
tion for transcript
abundance]

Corrects the reads
dependence on tran-
script abundance

CLIP-seq and Tran-
script abundance
data

http:

//smithlab.

use.edu

mCarts [155] 2013 CLIP-seq Sites prediction on
different samples

Considers acces-
sibility in local
RNA secondary
structures and
cross-species con-
servation

RBP motif http:

//zhanglab.

c2b2.columbia.

edu/index.php/

MCarts

dCLIP [144] 2014 CLIP-seq Peak detection
CLIP-seq data
comparison [correc-
tion for transcript
abundance]

Detects differential
binding regions
in comparing two
CLIP-seq experi-
ments

several CLIP-seq
datasets and Tran-
script abundance
data

http:

//qbrc.swmed.

edu/software/

PIPE-
CLIP [155]

2014 CLIP-seq (SAM
or BAM)

Noise and false
positives reduc-
tion Statistical
assessment Peak
detection

Provides a signifi-
cance level for each
identified candidate
binding site

HITS-CLIP, iCLIP http:

//pipeclip.

qbrc.org/

GraphProt [94] 2014 CLIP-seq and
RNAcompete

Peak detection Sites
prediction on differ-
ent samples

Detects RBP motif
secondary structure
common character-
istics. It estimates
binding affinities

RBP motifs that are
NOT located within
single-stranded re-
gions

http://www.

bioinf_uni-

freiburg.de/

Software/

GraphProt/

34
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1.6.2 Binding motif prediction

Once binding sites are identified, the next logical step is to search for
binding preferences of the protein of interest. Search for the preferred
binding motif is a routine task with CLIP-Seq data, identification of
such a motif is, however, non-trivial.

Motif finding is described as the problem of discovering of motifs
without any prior knowledge of how the motifs look [55]. Given a set
of sequences, the task is to find subsequences that occur more often
than expected, meaning that they are over-represented. This means
that the motif of interest will occur in many input sequences and can
in principle be found by aligning the input sequences and searching
for conserved regions. However, motifs do not have to be fully con-
served, and they can even consists of sub-motifs themselves, or at
least show some variability in their nucleotide content. Alignments
can be used to generate Position Weight Matrices (PWM), which as-
sign each position in a sequence a probability for containing a cer-
tain nucleotide. From such a PWM, the frequency of a given motif
in the input can be computed and compared to the background fre-
quency (e. g. number of motifs in genes), such that a score for over-
representation is derived. Many implementations of algorithms that
utilize this or equal strategies exist (see table 3 for an exemplary
overview), among which MEME [8] is the most widely used. Apply-
ing an expectation maximization (EM) algorithm to find the most
over-represented motifs in a set of sequences, MEME successfully pre-
dicted binding motifs for a set of RBPs from data.

RBP binding motifs can in general be predicted by DNA motif find-
ers, which either only consider RNA sequence, or include RNA sec-
ondary structure. Accessibility of motifs is not a factor when consid-
ering DNA motifs, as DNA is in general in a double stranded B-form
α−helical structure, which allows (sequence specific) DNA binding
proteins to interact with its major groove. RNA on the other hand
is less accessible when double-stranded, due to its A-form α−helical
geometry, which results in a very deep and narrow major groove
and a shallow and wide minor groove, both not accessible for pro-
teins. Thus, most RBPs are thought to prefer single stranded RNA
(ssRNA) regions for interaction. To correctly predict binding motifs
for RBPs it is therefore interesting to include accessibility of bind-
ing sites. MEMERIS [47], predicts the probability of being unpaired
for analyzed regions and incorporates this single-strandedness into
MEMEmotif prediction, making it more appropriate for ssRNA bind-
ing protein motif prediction.

However, it is not only interesting to consider the accessibility of
the preferred motif, but also to get an idea of the structural con-
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text, as motif embedding regions can of course influence the bind-
ing behaviour of RBPs. RNAcontext [57] interprets the probability for
each nucleotide in a binding site to be found in a particular RNA
secondary structure (hairpin, multi loop, interior loop, etc.) derived
from e. g.RNAplfold . It combines this information to extract the pre-
ferred structural context of a motif, accepting loss of nucleotide reso-
lution. Furthermore it can deal with affinity data and use the affinity
of a protein to binding sites to refine the motif search and predict
affinities for identified motifs. This on the other hand, requires such
a dataset for optimal performance, which is not standard, and is op-
timized for short sequences, ignoring broader context which may be
important for successful interaction.

GraphProt [94] is a graph kernel-based machine learning algorithm,
extracting motifs that were highly predictive for binding from a set of
bound and unbound sequences. These motifs can be used to predict
binding affinities and de novo binding sites, not present in the ex-
perimental output. A main advantage over RNAcontext is that the full
secondary structure information is conserved and not just a structure
profile per motif, which decreases the error-rate and can be used to
identify structural preferences of RBPs with higher resolution.

Motif finding algorithms incorporating gaped positions have not yet
been extensively applied to RNA-protein interaction data, although
many RBPs contain more than one RNA interaction site and thus
have the potential to bind gaped motifs.

However, MEMEworks well for many RBPs, presumably because of
their preference for ssRNA regions, and has successfully been used
for binding motif prediction with our dataset (see 2.2.8.1).
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Table 3: Motif finding algorithms used for analyzing RBP-RNA interac-
tion data, adopted from Cook et al. [29]

Algorithm Input Type of motif generated
Considers secondary struc-
ture?

MEME [8]
Positive (and optionally,
negative) sequences

PWM No

PhyloGibbs [121]
Positive (and optionally,
negative) sequences

PWM No

REFINE [114] Positive sequences

N/A, Filtering procedure to
only consider sequences con-
taining three enriched hex-
amers; filtered sequences are
then submitted to another
motif finding algorithm

No

cERMIT [37] Rank ordered sequences PWM No

DRIMUST [35] Rank ordered sequences
IUPAC motif, possibly
gapped

No

StructuRED [40]
Positive and negative se-
quences

PWM in a hairpin loop
Yes, considers possible hair-
pin loops up to 7 bases with
at least 3 paired bases

TEISER [75]
Sequences and scores
(e.g., stability scores)

PWM in a hairpin loop

Yes, considers possible hair-
pin loops with stems 4-7
bases long and loop sizes of
4-9 bases

RNAcontext [57]
Sequences and affinity
scores

PWM with structural con-
text scores

Yes, learns the preferred
structural context of each
base in a motif

GraphProt [94]
Positive and negative se-
quences

graph-based sequence and
structure motifs, can be visu-
alized with logos

Yes, models RNA structure
using a graph-based encod-
ing

CMfinder [152] Positive sequences structured sequence
Yes, SCFG-based, examines
the most stable structures in
the input

RNApromo [109] Positive sequences structured sequence

Yes, SCFG-based, optimizes
a motif from an initial set
of substructures generated
from the input

#ATS [81]
Positive and negative se-
quences

IUPAC
Yes, scores candidate bind-
ing sites by accessibility

MEMERIS [47]
Positive and negative se-
quences

PWM

Yes, uses accessibility as
prior knowledge to guide
motif finding toward single-
stranded regions

37
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1.6.3 RNA-RBP databases

With a growing number of experiments and RNA-RBP interaction
predictions, online databases collecting this kind of data emerged.
Such databases make it possible to compare RBP targets for shared/u-
nique sequence and/or structure features, shared motifs and more
and build the basis for many downstream analysis tasks. Table 4
shows a number of currently available databases for RNA-RBP in-
teraction studies, some of them even offering ready to use analysis
pipelines and tools.

Table 4: Databases for RNA-RBP interaction data , adopted from Cook et al.
[29]

Database URL Features

RBPDB [30] http://rbpdb.ccbr.

utoronto.ca/

Direct observations of protein-RNA
interactions in metazoans, both low-
and high-throughput

CISBP-RNA [111] http://cisbp-rna.ccbr.

utoronto.ca/

Directly observed and predicted
(by homology with known pro-
teins) motifs. Tools for scanning se-
quences and comparing motifs

starBase [80] http://starbase.sysu.edu.

cn/

RBP-RNA and miRNA-RNA inter-
actions from CLIP data

doRiNA [16] http://dorina.mdc-

berlin.de/

mRNA-centric or RBP-centric
search of CLIP data including
combinatorial search

CLIPz [62] http://www.clipz.unibas.

ch/

Storage and analysis (mapping
reads, extracting clusters, mapping
T2C conversions) of CLIP data

CLIPdb [133] http://lulab.life.

tsinghua.edu.cn/clipdb/

CLIPdb aims to characterize the
regulatory networks between
RNA binding proteins (RBPs) and
various RNA transcript classes
by integrating large amounts of
CLIP-Seq (including HITS-CLIP,
PAR-CLIP and iCLIP as vari-
antions) data sets

AREsite2 [34] http://rna.tbi.univie.ac.

at/AREsite

Database of AU-/GU-/U-rich el-
ements in human, mouse, ze-
brafish, fruit fly and worm with
information to overlap with CLIP-
Seq identified RBP binding sites
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1.6.4 Expression level estimation from RNA-Seq data

Transcript expression levels contain a lot of information that is im-
portant for the correct interpretation of biological consequences of
e. g. experimental conditions, cell state or in our case inflammatory
response. The type of expressed transcripts and their expression rate
can give insight into gene expression control mechanisms and regu-
latory networks and show relevant changes under different cellular
conditions. It is quite obvious, that the expression rate of a target
RNA has influence on the amount of protein that can interact with
this target. This makes RNA-Seq an important part of the thesis at
hand, both, to normalize CLIP-Seq signal and to analyze changes be-
tween the different states of LPS induction investigated here.

In general, existing algorithms for the estimation of transcript/gene
expression can be divided into count based and transcript isoform
abundance based methods. While the former assign read counts to
defined regions and are mostly used for differential-expression (DE)
analysis, the latter assign fragments or reads to regions which can
either be pre-defined or inferred from read coverage. This allows the
prediction of expression levels of de-novo transcripts without prior
annotation.

Kanitz et al. [56] state that gene level expression estimates obtained
by cumulating transcript isoform abundance are more accurate than
those from “count-based” methods. Among the most widely used
implementations for transcript isoform abundance estimations is Cuf-
flinks [129], which was also used for this thesis, while DESeq [5] re-
spectively the newer version DESeq2 [85] is most commonly used for
count based analysis of DE.
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1.7 rna structure

Interactions between RNAs and proteins are influenced by the struc-
tural context of binding sites. As many RBPs either bind single-stranded
regions, or have certain structural preferences, like hairpin loops, RNA
secondary structure is a critical aspect to be considered for successful
binding site prediction.

Although ABPs, as their name implies, show a preference for certain
RNA motifs, this sequences alone may not be sufficient for effective
binding. The influence of “structuredness”, which means the general
probability of a region to form secondary structures, on RNA-protein
interaction is one of the main motivators for this thesis.

In biology, it is generally known that structure defines function. What
is true for proteins with their modular buildup dictating their func-
tion, holds also true for RNAs. For proteins, where tertiary structure
is crucial for function, the fold of a protein into the correct tertiary
structure is the main step from peptide chain to functional protein,
driven by hydrophobic forces. RNAs however, have a hierarchical
folding, where basepairs and helices (known as secondary structure)
are formed first and then complex tertiary structures can be formed.
In contrast to proteins, where secondary structure is mainly the aggre-
gation of polypeptides into α−helices and β−sheets, RNA secondary
structure already contains a lot of information, including the poten-
tial of an RNA for intra- and intermolecular interactions.

RNA secondary structure elements (see fig. 11 for an overview) are
formed via intramolecular interactions of nucleotides. Such interac-
tions form base-pairs via hydrogen bonds between corresponding
nucleotides. The standard set of RNA base-pairs (AU,GC) is known
as Watson-Crick-base-pairs , named after the famous discoverers of
DNAs double-helical structure [148]. GC-base-pairs can form three
hydrogen bonds between their Watson-Crick edges, while AU-base-
pairs can only form two. This is important considering their energy
contributions, which is higher for GC- than for AU-base-pairs . The
most important stabilizer of RNA secondary structure however, are
stacking interactions, where base-pairs in close proximity generate
an energy bonus from electrostatic forces of the stacking nucleotides.
This energy bonus has a huge impact on the thermodynamics of RNA
secondary structure , as adjacent base-pairs (stems) become more fa-
vorable than separated ones. The same holds true for the energy con-
tributions of loop regions, which depend on the type and amount of
bases in the loop (a minimum of four is required for a loop to form).

Besides canonical base-pairs other interactions between nucleotides
are occurring in nature like e. g. the Non-Watson-Crick (or non-canonical)
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Exterior loop

Stem loop

Hairpin loop

Bulge

Interior loop

Multi loop

Phospho-diester bond

Hydrogen bond

Figure 11: Overview of RNA secondary structure elements Loop types
that occur in RNA molecules and are distinguished by
in silico structure prediction algorithms due to their differing ther-
modynamic effects. One distinguishes stem loops, hairpin loops,
multi loops, bulges, interior loops and exterior loops.

wobble-basepair GU. RNA bases can not only interact via the "stan-
dard" Watson-Crick-edge, they can also form bonds between their
Hoogsteen- or CH-edge and their Sugar-edge. These edges even al-
low the formation of base-pairs between three bases at once, known
as base triplets, influencing the stability of helices and tertiary as well
as quaternary structures.

So far not mentioned are long range interactions like pseudo-knots or
kissing hairpins, which also contribute to RNA secondary structure
formation. They are a form of intramolecular base-pairing where a
stem or loop region interacts with another non-adjacent stem or loop
regions. Such interactions are usually not very frequent in vivo and
hard to compute in silico , as they explode the search-space for poten-
tial RNA secondary structure , thus they are neglected from most pre-
diction algorithms. In general such structures are treated as tertiary
interactions.

The Leontis-Westhof annotation [76–78] (see fig. 12) introduces a set
of motifs that use the three edges of nucleotides in different confor-
mations, to categorize 3D-interactions in a 2D fashion. Among these
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motifs are sarcin/ricin loops, kink-turns, C-loops and A-minor motifs,
which can all be seen as building blocks for RNA tertiary structure.

Figure 12: Summary of Leontis/Westhof base pairing classification , from
Abu Almakarem et al. [1]. (A) Three edges for base pair-
ing interactions, the Hoogsteen (H), Watson-Crick (W) and
Sugar (S) edges which include the 2’-OH group of the riboses.
(B)Nucleotides can pair in cis and trans conformation, with the
glycosidic bonds of the nucleotides on the same side in the cis
configuration, and on opposite sides in the trans configuration.
(C) Schematic representations of each of the 12 basic base pair
families. Triangles represent bases, circles represent W edges,
squares represent H edges and triangles represent S edges. Filled
in symbols represent cis and open symbols, trans base pairs. (D)
Schematic showing a representative regular base triple, where the
central base pairs with each of the other two bases using a distinct
base edge.

Secondary structure influences binding potential as well as binding
influences the ensemble of potential RNA secondary structures. An
inaccessible binding site requires some kind of energy contribution
to unfold and become accessible, while a bound protein can prevent
secondary structures from forming or provide the energy needed to
form it. in vivo RNA can be expected to be in constant contact with sev-
eral RBPs and binding factors like other RNAs (e. g. miRNAs, metal
ions, etc.), which all influence and are influenced by the ensemble of
potential secondary structures a RNA molecule can form.

in silico methods allow the prediction of potential secondary struc-
tures for RNA molecules at given temperatures and since recently
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also under the constraint of other interaction partners. Also recently
developed were experimental high-throughput methods for measure-
ment of RNA structuredness which allow the assessment of secondary
structures in vitro or even in vivo . Together with experiments for the
identification of binding sites, these methods are the basis for further
investigations of structural influence on RNA-RBP interaction.

1.7.1 Experimental determination of RNA secondary structure

Footprinting techniques determine the secondary structure of RNA
molecules by cutting the RNA using RNAses specific to single or
double stranded RNA, or utilizing small molecular reagents cleaving
or modifying nucleotides in proportion to their accessibility.

Selective 2’-hydroxyl acylation and primer extension (SHAPE) and
its derivative SHAPE-Seq [87] and SHAPE-Seq 2.0 [84], as well as
PARS [61] are techniques, that can be applied to experimentally val-
idate RNA secondary structures in a high-throughput manner in an
in vitro setting.

DMS-Seq [115] even allows this in vivo . However, such experiments,
similar to computational predictions, do not return a single structure
as they work on the whole set of available RNA molecules. As a con-
sequence, one gets a snapshot of all structures formed by the specific
RNA molecule at time of the experiment. While in vitro experiments
lack the "real life" environment of cellular compartments, they allow
to investigate RNA secondary structure without interference of other
molecules. in vivo experiments on the other hand return a more re-
alistic look on RNA secondary structure , as they are probed in an
natural environment.

However, such experiments alone might provide insights into struc-
ture, but to really understand RNA secondary structure dynamics,
such experiments would best be combined with knowledge of inter-
action partners that might influence structure formation.

Thermodynamic measurements of energy contributions of single base-
pairs and loop-types are the basis for free-energy based algorithms for
RNA secondary structure prediction. However, only some datasets
have been published, most widely used are optical melting measure-
ments (see e. g. Turner and Mathews [130]). Parameters derived from
such or chemical modification experiments [93, 142] are readily incor-
porated into RNA secondary structure prediction algorithms.

1.7.2 in silico prediction of RNA secondary structure

Free-energy based algorithms build on the assumption, that thermo-
dynamically stable structures are more likely to exist in vivo than un-
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stable ones. The Zuker algorithm [157] is the basis for programs
that predict secondary structures using their thermodynamic prob-
abilities. More complex approaches consider all possible structures
via partition functions, based on an algorithm first proposed by Mc-
Caskill [95]. The fact that functional RNA secondary structures are
more likely to be conserved through evolution than non-functional
ones is the basis for covariation algorithms. As simultaneous folding
and alignment of RNA sequences is computationally costly, most im-
plementations use heuristics for their predictions.

In principle algorithms for the computation of RNA secondary struc-
ture rely on Dynamic Programming (DP). Nussinov and Jacobson
[104] et al. presented the first efficient algorithm for the prediction of
RNA secondary structure with a maximum number of base pairs.
However, as described earlier, stacking interactions play a crucial role
for correct RNA secondary structure formation and are not modeled
by this type of algorithm.

First steps towards Minimum-Free-Energy (MFE) structure predic-
tions were done by decomposing RNA secondary structure into their
respective loop regions, which are enclosed by stems that contribute
most of the stacking energy. The idea is to estimate the energy of a
structure by decomposing it into its loops and summing up their en-
ergy contributions, the most famous algorithm that solved this prob-
lem efficiently was presented by Zuker [157]. However, this allowed
only the prediction of simplified structures and no suboptimal solu-
tions. Suboptimal structures are important, as RNA is not as a static
molecule, always folding into its MFE structure, but as a dynamic en-
tity, which folds and unfolds upon interaction or changes in cellular
environment.

Modeling all suboptimal structures of a RNA molecule is a non-trivial
task, as an exponential number of structures is possible, first effi-
ciently solved by Wuchty et al. [151]. This approach works only for
sequences of small length and is thus not applicable for exhaustive
predictions of most naturally occurring RNAs. However, a key point
for secondary structure prediction in RNA-RBP interaction studies is
not to determine a specific structure, like the minimum-free-energy
(MFE) structure, but more the gain of accessibility information.

As a stretch of RNA must be accessible for most RBPs to interact,
the most likely secondary structure is of less importance than its
accessibility derived from the ensemble of structures an RNA can
form. McCaskill [95] presented an algorithm that allows the exhaus-
tive calculation of base-pairing probabilities from the Bolzmann dis-
tributed ensemble of structures in thermal equilibrium. Derivatives
of this approach are used to compute local sequence accessibility (see
e. g.RNAplfold [15]).
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The latter and other programs from the famous ViennaRNA pack-
age [83] have been used in this thesis to predict the effects of acces-
sibility on RNA-protein interactions and cooperativity/competition.
An interesting feature of such predictions is that not only accessibil-
ity can be predicted, but also the probability of being in a certain
structure (e. g. hairpin, stem, bulge, ..).

However, one has to be aware that such predictions, as they are made
on a local rather than global scale, are very context-sensitive. This
means that when analyzing e. g. CLIP-Seq target sites, the length of
the surrounding region one selects for folding has a strong impact on
the results.

1.8 gene ontology

Gene Ontology (GO) uses defined terms to describe gene properties.
It covers three domains, Cellular Component (e. g. cell parts or ex-
tracellular environment), Molecular Function (e. g. binding, catalysis)
and Biological Process (e. g. signal transduction, metabolic process).
The Gene Ontology Consortium http://geneontology.org/ and its
GO project are concerned with the development of a consistent com-
putational representation of how genes encode biological functions at
the molecular, cellular and tissue system levels in form of GO terms.

Such terms exist for most genes in many organisms and can be used
to analyze functions of a set of gene by GO-term enrichment, to find
over- or under- represented GO terms. Such terms can be seen as
indicators for e. g. molecular functions specific to the analyzed set of
genes. However, GO-enrichment analysis results depend strongly on
the set of available GO-terms for the organism and genes of interest,
as well as the selected background, and have to be interpreted with
care. They can, however, help to identify differences between experi-
ments/conditions in a broader context than just a list of target genes
as GO term comparison allows some conclusion on cell/tissue/or-
ganisms wide changes in broad context.
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R E S U LT S

2.1 aresite 2 .0

As described in section 1.1.3.1, AU-rich elements are cis-acting se-
quence motifs, preferentially bound by ARE binding proteins (ABPs).
Together with U- and GU-rich elements, these sequence patterns rep-
resent a set of potential binding sites for proteins that have a crucial
influence on RNA function and half-life.

With the publication of AREsite [43], a first attempt was made at
annotating potential ABP target motifs in human and mouse protein
coding 3’UTRs and evaluating their functional properties in terms of
accessibility and conservation.

Our recently published update AREsite2 [34] contains annotations
of motifs in all genic regions (exons, introns, UTRs) of coding and
non-coding genes in human, mouse, fruit fly, zebrafish and band-
worm. This vastly increased amount of information is accessible ei-
ther via a web interface, or a new REST API for semi-automated re-
trieval of information.

2.1.1 Improvements

A comparison of features between AREsite versions 1 and 2 is pro-
vided in table 5, adopted from Fallmann et al. [34].

The updated database provides additional information on the level
of genomes/transcriptomes/motifs analyzed, genic regions annotated,
accessibility of data and integration of experimental data.

This section will provide some information on the annotated motifs
in included organisms, the intersection with published CLIP datasets
for the RBPs HuR, TTP and Auf1 and an outlook on how such cura-
tion can help predicting functional binding sites from the huge set of
annotated motifs.

2.1.2 AU-/GU-/U-rich elements in AREsite2

AREsite2 contains information on 378,019,727 motifs alone in human
and more than 1.5× 109 motifs in total. This is a manifold of what
was covered in the first version of the database. Figure 13 shows a
comparison of numbers of human and mouse coding and non-coding
genes, containing at least one copy of the core ARE (ATTTA), URE

47
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Table 5: Summary of features of AREsite and AREsite2, respectively

Genic feature AREsite AREsite2

3’UTRs ! !

5’UTRs !

CDS !

introns !

exons ! !

mRNAs ! !

non-coding RNAs !

Species AREsite AREsite2

human ! !

mouse ! !

zebrafish !

fruitfly !

C.elegans !

Motif feature AREsite AREsite2

AREs ! !

UREs/GREs !

Motif accessibility ! !

Secondary structures in overlap !

Conservation information ! !

Result download ! !

Database dump !

Related literature ! !

REST interface !

CLIP-Seq integration !

(TTTTT), GRE (GTTTG), or the poly-A signal (AWTAAA) in exon/in-
tron/UTR/CDS.

Mouse is a well established model organism, not least for the porta-
bility of findings to human. Especially the portability of findings con-
cerning gene expression regulation make mouse a valid model sys-
tem for investigations in this area. Comparing motif numbers and
location in human and mouse, it becomes obvious that mouse also
has a high potential for investigations concerning AU/GU/U-rich el-
ements and their biological function. However, there are differences,
as is to be expected even between closely related organisms. AREsite2
provides the means to compare binding element related findings be-
tween these two and other model organisms.



2.1 aresite 2 .0 49

Exon^3UTR Intron^3UTR Exon^5UTR Intron^5UTR Exon^CDS Intron^CDS Exon Intron
0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

18,000

20,000

22,000

Exon^3UTR Intron^3UTR Exon^5UTR Intron^5UTR Exon^CDS Intron^CDS Exon Intron
0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

18,000

Exon^3UTR Intron^3UTR Exon^5UTR Intron^5UTR Exon^CDS Intron^CDS Exon Intron
0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

18,000

Exon^3UTR Intron^3UTR Exon^5UTR Intron^5UTR Exon^CDS Intron^CDS Exon Intron
0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

18,000

20,000

22,000

24,000

Exon^3UTR Intron^3UTR Exon^5UTR Intron^5UTR Exon^CDS Intron^CDS Exon Intron
0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

18,000

20,000

22,000

Exon^3UTR Intron^3UTR Exon^5UTR Intron^5UTR Exon^CDS Intron^CDS Exon Intron
0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

18,000

20,000

22,000

24,000

Exon^3UTR Intron^3UTR Exon^5UTR Intron^5UTR Exon^CDS Intron^CDS Exon Intron
0

5,000

10,000

15,000

20,000

25,000

30,000

Exon^3UTR Intron^3UTR Exon^5UTR Intron^5UTR Exon^CDS Intron^CDS Exon Intron
0

5,000

10,000

15,000

20,000

25,000

30,000

Human Mouse

A
T
T
T
A

G
T
T
T
G

T
T
T
T
T

A
W
T
A
A
A

Figure 13: Genes with motifs annotated in AREsite2 A comparison of
genes with at least one copy of the core ARE ATTTA, URE TTTTT,
GRE GTTTG, and the poly-A signal AWTAAA in human and
mouse. Motifs are binned by the genic region they are located in.

2.1.2.1 Accessibility of AU-/GU-/U-rich elements in AREsite2

Presence or absence of a motif in a given gene is an important infor-
mation. However, presence alone is not evidence enough for interac-
tion with a protein. A motif that is hidden in secondary structures
which prevent proteins from interacting will most likely have no bio-
logical function.

Similar to its predecessor, AREsite2 includes the local structuredness
of motif sites in terms of opening energies and accessibility probabil-
ities. RNAplfold [14] was used to calculate these terms for each gene
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in the database, considering short range interactions (W = 80, L = 40)
as well as mid range interactions (W = 240, L = 160).

Depending on the protein of interest, binding preferences may in-
clude some sort of secondary structure. To make information on this
level available, AREsite2 incorporates stable secondary structures in
overlap with annotated motifs from genome wide scans with RNAL-
foldZ [44, 49]. Locally stable RNA secondary structures were pre-
dicted for all included genomes and filtered by Z-score. Motifs of
interest in overlap with such a stable structure are visualized with
Forna [60], which allows the user to inspect and interact with these
structures.

Summing up, AREsite2 contains a lot of information on motif location,
annotation, accessibility, conservation and more for a vast amount
of potential RBP targets. Some of this motifs were extracted from
the database for downstream analysis, which is the topic of the next
sections.

2.1.3 Integration of CLIP-Seq datasets

As mentioned before, more than 1.5× 109 motifs were annotated for
AREsite2 . This, however, does not mean that all of those motifs are
actively bound by RBPs, or at least not that they are all functional at
once in RNA half-life regulation. To produce a more comprehensive
picture of functional target sites, CLIP-Seq datasets, retrieved from
the CLIP database CLIPdb [133] or directly from source (e. g. Mukherjee
et al. [102], Sedlyarov et al. [120]) were integrated. Preprocessed CLIP-
Seq datasets were intersected with annotated motifs, to extract motifs
with experimental evidence for interaction in terms of CLIP signal.
Those motifs are considered active and part of the positive set for
further investigation. Motifs without overlap are considered inactive
and part of the negative set.

With those datasets several downstream analysis steps were conducted,
as described in the next sections. However, one has to keep in mind,
that this type of analysis is prone to error by various sources. For one,
the set of positive (bound) motifs is depending on the quality of the
CLIP-Seq experiment. It is commonly accepted, that CLIP-Seq does
not guarantee full saturation of binding sites, and is of course de-
pending on the cell type and conditions used for the experiment.
This makes it particularly hard to generate an adequate negative set,
as one wants to prevent false negatives, or negatives that have no
biological meaning in the context of the experiment conducted. RNA-
Seq derived expression data can be integrated, to filter for expressed
transcripts and get rid of motifs without possible function due to
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their location on unexpressed transcripts. Further filters can be ap-
plied, e. g. one can filter motifs in regions without a certain regulatory
role, which in case of mRNA half-life control would mean to exclude
motifs not within 3’UTRs.

As for most of the experimental datasets in AREsite2 no accompa-
nying RNA-Seq experiment is available and the aim is to investigate
principle differences between all bound and unbound sites, no fur-
ther filtering steps were conducted for the results presented in the
next section. This has a strong influence on the results derived with
both datasets, even when the principal analysis is similar, which is
discussed in section 3.1.

2.1.4 AU/GU/U-richness vs accessibility of motifs

Motif presence and accessibility are the basis for successful interac-
tion with RBPs. However, just those two criteria alone are no guar-
antee for interaction and much less for activity in terms of biological
function. The question at hand is which features allow to distinguish
active from inactive motifs. In a first attempt to define such a feature
or set of features, the previously described positive and negative sets
were analyzed for their mean A+U-richness and accessibility.

This analysis was conducted for hg38 and mm10, with CLIP-Seq sites
of TTP (3 h and 6 h after LPS induction for mouse, extracted from
[120]), HuR and Auf1 (human only), after lift-over (mm9 to mm10,
hg18 to hg38) where necessary.

Figures 14 to fig 17 show mean mono- and di-nucleotide content
of AU/GU/U-rich elements in positive and negative sets with 15nt
flanking region. Although all possible dinucleotides were considered,
only those of interest for this analysis (AU,UU,GU, each the sum over
their permutations) are shown. It is important to mention that AU
and GU classes also contain AA/UU and GG/UU respectively.
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Figure 14: Mean mono-nucleotide composition of AU/GU/U-rich motifs in human
A comparison of the mono-nucleotide composition of AU/GU/U-rich el-
ements overlapping CLIP-Seq signal of Auf1, HuR and TTP and without
overlap. For each protein and motif combination nucleotide content of mo-
tifs in and outside of CLIP-Seq defined binding regions is compared.

The A+U mono-nucleotide content of flanking regions is for all
proteins and all motif classes higher for motifs overlapping CLIP-
Seq signal than for the negative set. This effect is particularly strong
for TTP and HuR. The same is true when only comparing U con-
tent. On the contrary, the G+U nucleotide content for AUUUA and
UUUUU motif flanking regions of Auf1 and TTP is higher in the neg-
ative set, which shows that motifs in GU-rich context are less likely
to be bound and therefore active.
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Figure 15: Mean di-nucleotide composition of AU/GU/U-rich motifs in human A
comparison of the di-nucleotide composition of AU/GU/U-rich elements
overlapping CLIP signal of Auf1, HuR and TTP and without overlap, simi-
lar to figure 14
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The content of AU and UU dinucleotides is in most cases higher in
the positive set for all proteins and motif classes, similar to the mono-
nucleotide content. Interestingly, UU and GU di nucleotide content
for Auf1 in general and TTP in the UUUUU motif class is higher
for the negative set. In summary this indicates that TTP and Auf1
prefer AU-rich flanking regions around their interaction sites, while
HuR seems to care only for U richness, independent of co-occurring
nucleotides.
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Figure 16: Mean mono-nucleotide composition of AU/GU/U-rich motifs in mouse
A comparison of the mono-nucleotide composition of AU/GU/U-rich el-
ements overlapping CLIP signal of HuR and TTP (3 h and 6 h after LPS
induction) and without overlap, similar to figure 14

In mouse, the relative small amount of publicly available binding sites
for HuR render this analysis step hard to compare. The content of all
mono-nucleotides in the HuR negative set however, resembles that
seen for human, thus it seems safe to assume similar preferences. The
TTP sets show that for motifs of the AUUUA class, the A+U content
stays high in the positive set, while the G+U and U content varies.
The variation can be interpreted in a way, that AUUUA motifs in TTP
bound sites are preferentially embedded in A+U rich regions, with
recurring As, many Us and only a small portion of Gs. In general,
the distributions over all motifs indicate, that TTP bound motifs are
embedded in regions rich in U and also A, while G+U content com-
pared to U content indicates that Gs are more often found in regions
flanking unbound motifs, similar to the human motif sets.
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Figure 17: Mean di-nucleotide composition of AU/GU/U-rich motifs in mouse A
comparison of the mono-nucleotide composition of AU/GU/U-rich ele-
ments overlapping CLIP signal of HuR and TTP (3 h and 6 h after LPS
induction) and without overlap, similar to figure 14

The di nucleotide content reveals no new results compared to the
mono-nucleotide content. Again AU dinucleotides are very common
flanking motifs bound by TTP in both datasets, while G containing
dinucleotides are rather rare.

The three RBPs investigated here are known to prefer single stranded
regions for binding. This leads to the hypothesis, that active motifs
are found in a more single stranded surrounding than others. As
AREsite2 contains RNAplfoldderived accessibility predictions for all
regions overlapping annotated motifs, the positive and negative sets
could easily be examined for their accessibility.

Figures 18 and 19 show probabilities of being unpaired over a stretch
of 5nt along a 35nt long region, embedding AU/GU/U-rich elements
of positive and negative sets in their center, for all proteins of interest.

Comparable to the A+U content of motifs in the positive set, flank-
ing regions around bound motifs are in general more accessible then
those in the negative set. However, for Auf1 and TTP sites in the UU-
UUU motif class, the opposite is the case, here motifs in the negative
set have a higher probability of being unpaired than those from the
positive set. AUUUA class motifs in the TTP positive set show the
highest difference in the regions shortly before and overlapping the
motif. GUUUG class motifs in the Auf1 set show a similar picture,
where the region upstream of the motif in the positive set is more
accessible in comparison to the negative set, while the opposite is
true downstream of the motif. For TTP and GUUUG class motifs the
downstream region in the positive set is also more accessible than the
upstream region.

In mouse, the HuR dataset is hard to interpret due the low number
of available bindingsites, however, at least for UUUUU class motifs,
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Figure 18: Mean probability of being unpaired of AU/GU/U-rich motifs
in human A comparison of the accessibility of AU/GU/U-rich
elements overlapping CLIP signal of Auf1, HuR and TTP and
without overlap. Accessibility is measured in terms of probability
of being unpaired over a stretch of 5 nucleotides, corresponding
to the length of the investigated core motifs.

accessibility of motif embedding regions is higher for the positive set
than for the negative set. TTP shows comparable accessibility of motif
sets in both conditions, especially the negative set is very similar. Due
to the high number of overlapping binding sites or binding sites in
close proximity (see section 2.2.7.1), also the positive sets are compa-
rable.
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Figure 19: Mean probability of being unpaired of AU/GU/U-rich motifs
in mouse A comparison of the accessibility of AU/GU/U-rich
elements overlapping CLIP signal of Auf1, HuR and TTP and
without overlap, similar to figure 18.
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2.1.5 The search for a discriminator

After what we learned so far, higher AU/U content and accessibility
of regions embedding active elements, at least for their core binding
motifs, a point to discuss remains the predictive power of these find-
ings. Predicting novel binding sites for ABPs is a challenging task.
For this section data from AREsite2 was utilized to investigate the
power of AU/GU/U-richness vs. accessibility as discriminator be-
tween bound and unbound elements.

In a first step the descriptive power of former described features is
analyzed and visualized with receiver-operating-characteristic (ROC)
curves. A ROC-curve is generated when the number of true positives
is plotted against the number of false positives as a function of a
threshold of a certain feature. In this case AU/GU/U-content and/or
accessibility are used as thresholds to show how well one of these
features describes if a certain sample is from the positive or negative
set. The area under the ROC curve (AUROC) helps to compare how
well a descriptor performs, the higher the AUROC, the higher its
descriptive power. A ROC close to the diagonal (corresponding to
an AUROC of 0.5) resembles a random selection, which means the
descriptor is uninformative. A curve that goes below the diagonal is
not a good descriptor, but its negative can still be useful as predictor.

Figures 20 to 22 show the results of this analysis for all three investi-
gated ABPs in human and the discriminative power in terms of area
under the ROC curve (AUC).

Figures 25 to 24 show the respective results for mouse. For each pro-
tein the motif with best results was selected, appendix A.1 contains
plots for all motif-protein combinations.



2.1 aresite 2 .0 57

2.1.5.1 Human Auf1 targets

Figure 20: Descriptor analysis of nucleotide content vs accessibility of
Auf1 bound/unbound AU-rich elements (AUUUA) in human
ROC curve to visualize the descriptive power of accessibility and
nucleotide content in terms of Area under the ROC curve (AUC).

For Auf1, which is known to bind AU- as well as GU- and U-rich el-
ements, the highest predictive power lies in AU-content of sequences
(see figures 20 and 46). Mono-nucleotide as well as di-nucleotide AU-
content have the highest AUROC for all investigated motif classes. U-
content and accessibility are weaker descriptors, GU-content is in all
cases no valid descriptor. U-rich motifs targeted by Auf1 (see fig 46)
can not be distinguished from unbound ones with any of the descrip-
tors essayed here.
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2.1.5.2 Human HuR targets

Figure 21: Descriptor analysis of nucleotide content vs accessibility of
HuR bound/unbound U-rich elements (UUUUU) in human
ROC curve to visualize the descriptive power of accessibility and
nucleotide content in terms of Area under the ROC curve (AUC).

For all subsets of HuR targets, mono- and di-nucleotide content
have a higher potential as descriptors than motif accessibility (see fig-
ures 21 and 47). Depending on the investigated motif family, either
AU- or GU- di-nucleotide or U- mono-nucleotide content can be con-
sidered reasonable descriptors for bound and unbound motifs. Acces-
sibility of motifs is a rather weak descriptor for HuR targets. This is
in direct contrast to the findings from our datasets in section 2.2.11.4.
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2.1.5.3 Human TTP targets

Figure 22: Descriptor analysis of nucleotide content vs accessibility of
TTP bound/unbound AU-rich elements (AUUUA) in human
ROC curve to visualize the descriptive power of accessibility and
nucleotide content in terms of Area under the ROC curve (AUC).

The picture for TTP targets resembles that of HuR targets in hu-
man, with the difference, that AU-mono and di-nucleotide content
are in every case the best (in the case of U-rich motifs even the only
valid) descriptors, followed by U-mono-content (see figures 22 and
48). Accessibility of motifs is again either a weaker, or in case of U-
rich motifs, no useful descriptor.

Summing up, AU-content seems to be a valid descriptor for all three
ABPs, followed by U-mono-nucleotide content. GU-content is a weak
or no valid descriptor in most cases. Accessibility of motifs could not
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be shown to be a useful, or better descriptor than nucleotide content
in any dataset.

2.1.5.4 Mouse TTP targets 3 h after LPS induction

AUUUA

Figure 23: Descriptor analysis of nucleotide content vs accessibility of
TTP bound/unbound AU-rich elements in mouse, 3 h after LPS
induction ROC curve to visualize the descriptive power of acces-
sibility and nucleotide content in terms of Area under the ROC
curve (AUC).

TTP targets of the AU-rich type can be well distinguished from un-
bound motifs by their nucleotide content, best by U-content, followed
by AU-content (see figures 23 and 50). Embedding regions of GU- and
U- rich motifs are better described by AU-content. For the first time,
even GU-content shows some descriptor potential, although not com-
parable to AU- and U- content. Accessibility of motifs has descriptive



2.1 aresite 2 .0 61

power only in case of AU-rich motifs, again weaker than nucleotide
content, but AU-rich motifs have to be considered the preferred bind-
ing motifs of TTP.

2.1.5.5 Mouse TTP targets 6 h after LPS induction

AUUUA

Figure 24: Descriptor analysis of nucleotide content vs accessibility of
TTP bound/unbound AU-rich elements in mouse, 6 h after LPS
induction ROC curve to visualize the descriptive power of acces-
sibility and nucleotide content in terms of Area under the ROC
curve (AUC).

6 h after LPS induction, TTP binding sites can still best be distin-
guished from unbound sites by their AU- and U- content, presenting
a similar picture than 3 h after LPS induction (see figures 24 and 51).
In case of the 6 h dataset, accessibility is a slightly better descriptor
than for the 3 h dataset.
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2.1.5.6 Mouse HuR targets

UUUUU

Figure 25: Descriptor analysis of nucleotide content vs accessibility of
HuR bound/unbound U-rich elements in mouse ROC curve
to visualize the descriptive power of accessibility and nucleotide
content in terms of Area under the ROC curve (AUC).

In contrast to human target sites, HuR targets of AU- and GU-rich
families, show no promising descriptor in our set of descriptors in
mouse (see figures 25 and 49). Only the U-rich class of motifs has a
potential, although not very good, descriptor in form of accessibility
of motif embedding regions. This can partially be explained by the
small set of binding sites available and the majority of those not in
overlap with AU- and GU-rich motifs, while U-rich motifs are clearly
favored. However, this effect was already visible in section 2.1.4. If
none of the investigated features show potential as descriptors, two
possible explanations come to mind. Either the true discriminating
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feature was not part of the analysis, or presence of a motif alone is
indeed the only necessity for binding.

Summing up, AU- and U- content of motifs and embedding regions
are promising descriptors for TTP targets and unbound sites in hu-
man and mouse. Auf1 and HuR targets in human can also be de-
scribed by AU content, while HuR targets could not be distinguished
by any of the presented descriptors in mouse. Accessibility of motifs
shows only low descriptive potential for the ABPs and motif families
investigated here. When compared to section 2.2.11.4, where PAR-
iCLIP derived datasets were normalized to transcript expression lev-
els and filtered for biological relevance, it becomes obvious, that an
analysis as conducted here is strongly influenced by the quality of the
available data and downstream analysis.

In section 2.2.11.5 features extracted from PAR-iCLIP defined binding
sites were also used to train a linear discriminator and assess its pre-
dictive power with the here presented datasets as testsets.
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2.2 par-iclip of ttp and hur in primary mouse macrophages

To directly address the role of TTP and HuR in the inflammatory
macrophage transcriptome, PAR-iCLIP experiments in LPS induced
primary mouse macrophages were analyzed. The raw dataset con-
sists of PAR-iCLIP experiments in TTP 3 h and 6 h after LPS induction,
and HuR 6 h after LPS induction in TTP+/+ and TTP−/− primary
macrophages.

As we have shown in Sedlyarov et al. [120] direct influence of TTP
binding on RNA half-life is observable and only a handful of bind-
ing sites seem to be targeted by TTP and HuR in a directly antag-
onistic manner. Furthermore, we focus on the quantification of our
CLIP analysis with RNA-Seq data, to account for transcript expres-
sion rates, and show the influence of secondary structure vs. AU-
richness on functionality of ARE motifs.

Recently published Ago-CLIP-Seq sites in mouse macrophages were
integrated and analyzed for overlaps with our dataset. GO analysis
of identified target genes in all examined conditions conclude this
chapter.

2.2.1 Processing of PAR-iCLIP reads

Preprocessing of reads retrieved from PAR-iCLIP and RNA-Seq pro-
tocols includes demultiplexing, discarding of PCR artifacts, barcode
trimming and removing adapters with Cutadapt [91]. Statistical analy-
sis with FASTQC (S. Andrews: http://www.bioinformatics.babraham.
ac.uk/projects/fastqc/ was conducted to validate read quality and
clipping efficiency (results not shown).

Reads were mapped to the mouse genome (Mus musculus, assembly
NCBI m37 (April 2007, strain C57BL/6J)) with Segemehl [50]. Only
uniquely mapped reads were used for further analysis to avoid am-
biguous binding signal.

Figure 26 shows the number of PAR-iCLIP reads remaining after each
processing step.
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Figure 26: Amount of remaining Par-iCLIP-Seq reads after each processing step for
all samples Total reads in sample, total mapped reads, uniquely mapped
reads, reads in peak regions and reads in peak regions we see in all repli-
cates of a sample.

With more than 10× 106 uniquely mapped reads per replicate in
the final peak set, our CLIP-Seq dataset has higher sequencing depth
than comparable ones [143], allowing us to apply stringent filtering
without loosing too many true positives.
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2.2.2 Crosslink site extraction and analysis

CLIP [131] (Crosslinking and Immunoprecipitation) is a method to
study interactions between nucleic acids and proteins. A key fea-
ture of CLIP techniques is to establish a covalent crosslink between
RNA bases and aromatic protein residues via UV light. Par-CLIP [45]
(Photoactivatable-Ribonucleoside-Enhanced Crosslinking and Immuno-
precipitation) was developed to increase the amount of crosslinked
protein-RNA residues.

Cells are incubated with thio-uridine, a photoactive uridine analog,
which is incorporated into newly transcribed RNA. UV treatment at
365nm ensures site-specific crosslinking between aromatic amino acid
residues and thio-uridine. Analysis of crosslink sites are based on
T2C transitions, which occur when reverse transcriptase (RT) reads
through a crosslink site and interprets thio-uridine as guanine, thus
introducing a cytidine into the cDNA strand. iCLIP [67] (Individual-
nucleotide resolution UV Cross-Linking and Immunoprecipitation)
on the other hand uses UV-light at a standard wavelength for un-
specific RNA-protein crosslinking at 254nm, with the difference that
only the 3’ RT-primer is annealed before the cDNA synthesis step.

Reverse transcriptase tends to drop-off of the RNA template when
encountering a crosslink-site, so that the cDNA strand ends one nu-
cleotide before the crosslink site, thus allowing identification of crosslink
sites with nucleotide resolution. For more details please refer to sec-
tion 1.4.2.2.

crosslink site extraction The here used PAR-iCLIP method
combines advantages of both techniques, high yield and nucleotide
resolution of crosslink sites. To take full advantage of this high resolu-
tion, only the theoretical crosslink site, i.e. the position one nucleotide
upstream of the read start was considered, rather than the entire read.
Using the whole read would lead to a signal shift away from the ac-
tual crosslink site, resulting in artificial peak patterns and binding
site analysis.

2.2.3 Peak finding and filtering

A peak is defined as a region with a significantly higher number of
read pileup at a given genomic position than would be expected by
chance. The Pyicos [3] ModFDR method was applied for peak finding,
together with a modified filtering algorithm for the use with PAR-
iCLIP crosslink sites, which can be seen as reads of length one. Due to
the nucleotide resolution of PAR-iCLIP , peak width can range from
one nucleotide for very sharp signals, to several hundred nucleotides
for regions with e.g. multiple consecutive binding sites. Our custom
filtering method splits peak regions surrounding the highest peak
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signal, henceforth named summit in accordance with Pyicos, once
certain height-thresholds are reached.

Cutoffs were defined based on signals detected in known TTP tar-
gets. Peaks with a summit signal below 100 pileups are considered
background and discarded. With a sliding window approach, start-
ing from the summit, a peak is first split when its height falls below
30% of the summit signal. Emerging subpeaks with a summit above
this cutoff and 100 pileups are then recursively split when their signal
falls below 10% of their summit.

Final split-peaks contain a high amount of crosslink signal and allow
to analyze protein binding sites with high resolution. Replicates of
each experimental setup were analyzed separately. Width and posi-
tion of peaks vary slightly between experiments. For the ranked lists
of TTP and HuR target genes, peaks from all replicates were collected
and peaks that do not have an overlap with peaks in all other repli-
cates were filtered out (see ’in_merged_peaks’ in fig. 26).

Resulting filtered peaks were then subject to downstream analysis,
e.g. annotation and motif analysis.



68 results

2.2.4 Transition analysis

In order to verify the specificity of PAR-iCLIP for thymidines as cross-
link sites, the nucleotide composition around the 5’ ends of all reads
was analyzed.
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Figure 27: Nucleotide distribution around 5’ends of reads. To verify the
specificity of PAR-iCLIP for Ts as cross-link sites, the nt compo-
sition around the 5’ ends of all reads was analyzed. Position 0,
which is the putative crosslink site, is in ∼ 66% of the cases thymi-
dine. The same analysis has been conducted for RNA-Seq exper-
iments, showing a more or less equal distribution of nucleotides
along the reads.

The first nucleotide upstream of the 5’-end of each read was ex-
tracted, here called position 0, which represents the potential crosslink
site. As expected, the majority of all reads (∼66%, fig. 27) show a
thymidine at this position of the reference genome.
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Figure 28: Transitions in TTP PAR-iCLIP When reverse transcriptase encounters a thio-
uridine in the RNA template, it is recognized as guanine, resulting in the incor-
poration of a cytidine in the newly synthesized cDNA strand. Later on this T2C
transitions can be used to detect read-through events. (A) T2C transitions repre-
sent ∼ 46% of all occurring transitions and transversions in TTP samples. (B)show
a similar ratio of T2C to other mutations in HuR in WT, HuR in KO is equivalent
to the WT dataset and not shown

To check whether these T were indeed involved in a cross-link, a
‘transition map’ of all T2C transitions observed within reads was con-
structed. 8.9 million reads (55%) contain at least one T2C transition,
which makes up 2.4 million unique positions on the genome. T2C
transitions represent ∼ 46% of all occurring transitions and transver-
sions in TTP samples (fig. 28). Furthermore, 9.65 million. reads (59%)
show a T on position 0 that is contained in our transition map and
thus has been used for cross-linking at least once. 78% of all reads
have a T2C transition within 3 nucleotides of position 0 and make up
94% of final peak regions which are subject to further analysis.

2.2.5 Genomic distribution of binding sites

2.2.5.1 Gene Annotation for human and mouse

Mouse genome assembly mm9/GRCm37 (source: ENSEMBL [33] and
genome annotation ENSEMBL v67 http://may2012.archive.ensembl.

org/Mus_musculus/Info/Index were used for annotation. Genomic
coordinates of all protein coding genes were retrieved via the EN-
SEMBL Perl API http://www.ensembl.org/info/docs/api/core/index.
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html#api on all 3 levels (gene, transcript, exon). Mouse-human or-
thologs were retrieved via the ENSEMBL Biomart tool [64].

2.2.5.2 Annotation of binding sites in ENSEMBL mouse genes

Crosslinks derived from uniquely mapped reads in peak regions were
annotated with ENSEMBL derived information.

For gene statistics an exon first approach was applied, where all
transcript isoforms of a target gene are taken into account: A peak
region is classified as exonic if it occurs in an exon of at least one
transcript isoform; it is intronic if it occurs in an intron of at least one
isoform and never in an exon.

2.2.5.3 Binding site distribution
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Figure 29: Genic distribution of crosslinks in peaks for one representative
replicate of TTP and HuR in WT and TTP-KO BMDMs after fil-
tering.

Both TTP and HuR favor binding to 3’UTRs. However, TTP also
shows a prominent amount of signal in intronic regions, especially
introns in the CDS of target genes in both conditions. Figure 29 shows
the intronic and exonic localization of PAR-iCLIP reads in 5’UTRs,
CDS and 3’UTRs. 63% (63% 3 h LPS) of total TTP PAR-iCLIP signal
map to 3’UTR exons, 30% (32% 3 h LPS) to CDS introns and 6% (5%
3 h LPS) to 5’UTR introns. The remaining reads are found in exons
of 5’UTRs and CDS. 10% of TTP derived PAR-iCLIP signal in introns
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originates from a single intron (intron 4) of Immune-responsive gene
1 (Irg1) (fig. 29, tab. 26).

For HuR, 94% (WT) and 87% (TTP-KO) of total PAR-iCLIP signal
maps to 3’UTR exons, 2% (WT) and 8% (TTP-KO) to CDS introns
and 1% (WT and TTP-KO) to CDS exons. 3% of the signal in WT cells
originates from 5’UTRs, (2% exonic, 1% to intronic), in TTP-KO this
number is slightly higher with 5%, we detect 3% intronic signal and
2% exonic.

Table 6 shows the number of peaks and PAR-iCLIP signal in introns
and exons for TTP 6 h and HuR in WT and TTP-KO. 5’ UTRs were
not considered here given the low amount of signal derived from
this genomic element (fig. 29). Only 6 h experiments are included for
better comparability with HuR.

A total of 498 genes are bound by TTP (6 h LPS). We find more
peaks in CDS introns (855) than in 3’UTRs (566) and also more genes
with intronic peaks (337 intronic, 196 3’UTR). However, the highest
amount (∼66%) of PAR-iCLIP signal is derived from peaks in 3’UTRs.
In both HuR conditions clearly more and stronger peaks can be found
in 3’UTRs (1,935 peaks/16,639,802 reads in WT and 1,465 peaks/14,033,808
reads in TTP-KO) than in introns (179/598,838 reads in WT and 434
peaks/1,501,148 reads in TTP-KO) and more genes show 3’UTR bind-
ing, 234 (365 in TTP-KO) genes with 3’UTR peaks, 77 (212 in TTP-KO)
genes with intronic peaks.

summary Most binding signal of TTP and HuR in primary mouse
BMDMs, independent of the analyzed condition is located in exonic
regions of 3’UTRs of protein coding genes. In case of HuR this prefer-
ence holds true for both, peak numbers and CLIP-Seq signal, for TTP
this is only true for signal.

At this point it is to be considered, that peak numbers depend
directly on the cutoffs set during peak filtering, thus we consider
the amount of CLIP-Seq signal, which is directly derived from the
number of reads containing crosslinks, a more stable indicator for
strong/weak targets.

However, the high amount of intronic binding indicates some func-
tion for these regions. A possible explanation could be titration of
TTP via circular intronic RNA sponge molecules as another layer of
regulation.

Although RNA-Seq data of analyzed BMDMs is available, no cir-
cular RNA fragments could be identified. This, however, should be
investigated in separate experiments, designed for the detection of
circular RNAs.
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2.2.6 Quantification and Normalization of RNA-seq and PAR-iCLIP data

PAR-iCLIP can not distinguish between poor binding sites in highly
expressed targets and good binding sites in targets with low expres-
sion. In order to introduce a measure for binding site strength, RNA-
Seq experiments of primary BMDMs (WT and TTP-KO) upon 3 h and
6 h of LPS induction [120] were performed. Expression rates were cal-
culated using Cufflinks v.2.0.2 [128] with ENSEMBL exon annotation
as regions of interest.

The resulting FPKM values for each expressed transcript isoform
were then used to normalize PAR-iCLIP derived signals on two levels.
Peak areas were normalized by the sum of transcript FPKMs that
overlap the peak region to define PeakScorenormalized (eq 1).

PeakScorenormalized =
PeakArea

FPKMtranscript
(1)

Gene-wide PAR-iCLIP signal was normalized by gene expression
rates (FPKMgene) to define GeneScorenormalized (eq 2). FPKMgene

were calculated as the sum of FPKMs of all transcript isoforms (FPKMtranscript)
of each gene containing the peak region within the mature mRNA.

Only transcripts of FPKM > 10 were considered, as we expect TTP
targets under inflammatory stress to be overexpressed.

FPKMgene =
∑

transcript contains peak

FPKMtranscript

GeneScorenormalized =

∑
PeakArea

FPKMgene + (medianFPKM ∗α)

(2)

Sparse data correction (median FPKMtranscript is added to FPKMgene

before normalization) was applied, to avoid spurious high GeneScores
of low expressed genes. Using this GeneScores (α was set to 1 for all
tables shown) we were able to generate a ranked list of potential TTP
(and HuR) target genes in mouse (tab. 22,25,23,24).

2.2.6.1 Normalization of PAR-iCLIP signal

In order to rank target genes independent of their expression and
therefore see which ones play an important role in the model system,
normalized GeneScores (equ. 2) were calculated.

To pass this filter, at least one transcript isoform has to (i) have
an FPKM>10 and (ii) this isoform must contain at least one peak.
This filter works well for exonic and 3’UTR regions, it does ,however,
not allow to normalize intronic regions without the assumption that
intron levels are comparable to exon levels.
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The problem that arises is that tools for the calculation of transcript
expression work on exon level, which makes sense in a biological way,
as mature mRNAs are not thought to contain introns. As our dataset
does not allow to distinguish cytosolic from nuclear fraction derived
transcripts, it is thus impossible to quantify intron expression levels.
Although for nascent RNA, introns will be available in comparable
amounts than exons, co-transcriptional splicing and unknown intron
stability make it impossible to infer these numbers from our dataset.

As regulatory function of ABP binding sites was so far only corre-
lated with 3’UTR binding and as of now, no functional role of intronic
binding could be established and to circumvent analysis based on too
many assumptions, it was decided to exclude intron normalization
from downstream analysis.

About a quarter of TTP 6 h target genes (133 of 498) are expressed
above threshold, almost all (130) have TTP binding sites in 3’UTRs
(tab. 6). For HuR, 43% and 32% (WT and TTP-KO, respectively) of
targets are highly expressed, again, almost all binding sites reside in
3’UTRs.

Normalization allows to remove all unspecific or weak targets and
downrank genes that show high TTP signal just because of mRNA
abundance. High GeneScores indicate, that the gene is ’strongly‘ bound
by TTP. Two possible scenarios can lead to identical gene scores: (i)
high PAR-iCLIP signal exists because TTP binds every copy of mRNA
and therefore has at least one high-affinity binding site or (ii) a gene
has multiple binding sites, but of medium to low affinity.

Therefore the normalized PeakScore (equ. 1) is calculated, which re-
flects the strength of the interaction between RNA and protein in
dependence of the expression rate of the targeted mRNA. With this
information it is possible to identify binding sites that are preferably
bound by TTP or HuR, i.e. sites that could directly influence mRNA
regulation, presenting a list (see 27, 28, 29, 30) of candidate binding
sites for further experimental analysis (each list represents one repli-
cate of the corresponding experiment, after filtering for peaks that
occur in all replicates).

Ranked lists of TTP (and HuR) target genes normalized by expres-
sion are presented in tables 22, 23, 24, 25). In contrast to the full list
of targets, these genes can be seen as important actors in inflamma-
tory response (highly expressed) and quantitative information about
TTP/HuR affinity is available. This curated list of target genes was
used for several downstream analysis steps (discriminator analysis,
correlation analysis with RNA decay, etc.).
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2.2.7 TTP and HuR target genes revealed by PAR-iCLIP

Tables 18, 19 and 20 show the top 10 target genes of TTP and HuR
in WT and TTP-KO cells identified 6 h after LPS induction. Genes are
ranked based on PAR-iCLIP signal.

Table 21 shows the top ten target genes of TTP after 3 h of LPS in-
duction. Top targets after 3 h correlate strongly with those 6 h after
induction. Most of the following analysis steps were conducted for
the 6 h sample only to compare with HuR samples.

Among the top 10 targets of TTP (tab. 18) are many well studied
target genes in macrophages[17, 18, 53, 69] and other cell types[71], as
for instance Tnf-alpha, Cxcl2, Zfp36 (TTP), and Ccl3 . In addition, we
detected targets where TTP binds not only to 3’UTRs, but to intronic
regions, for instance Immuno-responsive gene Irg1.

Top targets for HuR in WT and TTP-KO contain more or less the same
set of genes, but differ slightly in rank (tab. 19, 20). Again, among
the top targets we find many genes known for their interaction with
HuR [73], e. g. . ActB, Cd44, Marcks.

The full lists of target genes, including gene expression rates from
accompanying RNA-Seq experiments, PAR-iCLIP signal and gene an-
notation is provided as supplemental material of Sedlyarov et al.
[120].

2.2.7.1 Gene counts

116 (WT) and 168 (TTP-KO) of the 499 TTP target genes identified in
this study are also bound by HuR (fig. 30A). 279 genes are bound by
HuR in both WT and TTP-KO, where 170 genes are not targeted by
TTP at all, and 109 genes are also bound by TTP. Only 7 genes are
targeted by TTP and HuR in WT, but not in TTP-KO, while 59 TTP
targets are only bound by HuR under the absence of TTP. 323 genes
show only TTP binding sites, and 381 are exclusively bound by HuR
(17 only in WT, 194 only in TTP-KO).

Figure 30B shows the number of binding sites in our samples, with
and without direct overlap, where the majority of TTP binding sites
do not directly overlap HuR binding sites in both conditions.

To address a possible direct antagonistic behaviour of TTP and HuR
when targeting the same mRNA, overlaps in binding regions from
TTP and HuR PAR-iCLIP in WT and TTP-KO (tab. 7) were analyzed .
BEDtools v2.17 [108] was used to compare binding sites within and
between all experimental settings. Only overlaps on the same strand
(-s) with minimum overlap of 1nt were considered.
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A B

Figure 30: Venn diagram (A) shows the number of genes in our samples
that either contain no or at least one peak of one or two of the
other ABPs. In contrast to table 7, these peaks do not have to
overlap. (B) This Venn diagram shows the number of binding
sites with and without overlap in our samples color-coded by
ABP of numbers differ

Table 6 summarizes numbers of peaks, genes with peaks, transcripts
with peaks, and PAR-iCLIP signal in peaks for all samples 6 h after
LPS induction and compares it to RNA-Seq normalized numbers.

Table 7 summarizes numbers of peaks and genes and PAR-iCLIP signal
for TTP and HuR derived binding sites in overlap for all samples 6 h
after LPS induction and compares it to RNA-Seq normalized num-
bers.
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Directly overlapping TTP and HuR peaks were detected for 51 genes
in WT and 67 genes in TTP-KO. 42 genes show overlapping peaks
in both conditions. PAR-iCLIP signal from nucleotides at direct peak
overlaps with HuR in WT cells is higher than in overlaps with HuR
in TTP-KO. For binding sites used by TTP and HuR in both WT and
TTP-KO, we observe average peak lengths of 21.71nt (TTP), 23.16nt
(HuR in WT) and 24.13nt (HuR in KO) (not significantly different in
two-sample t-test).

This insignificant difference indicates that TTP does not displace HuR
from binding sites when both proteins are present, as would be the
case when direct competition were the standard mode of interaction.

467 TTP target genes were identified 3 h after LPS induction, 142 tar-
gets can be found in the 6 h dataset but not in the 3 h dataset, and 166
in the 6 h and not the 3 h dataset. In most cases these genes do have
TTP bound in each of the other datasets, but either very weakly or not
in all replicates and are thus excluded during the filtering procedure.

On peak level, a total of 837 peaks are in direct overlap and 762 peaks
not directly overlapping, with 212 peaks within 50nt distance to each
other. As the stringent filtering and experimental noise have to be
considered, it is likely that TTP targets the same genes and sites under
both conditions, however, with differing affinity and quantity (see
section 2.2.14).

summary TTP 3 h and 6 h after LPS induction preferentially target
the same genes, only interaction strength and reproducibility between
replicates differ. HuR in WT and TTP-KO do bind different sets of
genes, although top targets remain mostly the same.

Antagonistic behaviour between TTP and HuR could not be ob-
served as the default modus operandi for mRNA stability regulation
in our experiments. Only a small subset of genes shows directly over-
lapping binding sites, indicating a more indirect regulatory mecha-
nism. We could also not detect a significant influence on peak length
in overlapping binding sites between WT and KO HuR-CLIP-Seq ,
which could have indicated active displacement of HuR in presence
of TTP.
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2.2.8 Motif Analysis

To find sequence motifs that act as biologically functional entities
within our PAR-iCLIP datasets, k-mer analysis and motif enrichment
analysis were conducted. MEME [8] finds overrepresented sequence
motifs based on expectation derived from a background model. The
commandline version of MEMEwas used to detect over-represented
sequence motifs in the peak regions. MEMEgenerates a background
model based on nucleotide frequencies of input sequences.

Since the aim is to identify motifs that are enriched in specific ge-
nomic elements (introns and 3’UTRs) rather than all regions of PAR-
iCLIP signal, individual background models for those genomic ele-
ments annotated in ENSEMBL protein coding genes were generated
manually. Peak regions shorter than MEME ’s minimum sequence
length (8nt) were extended on both ends to a minimal length of 9nt.
Using the custom background models and the "any number of re-
peats" mode of MEME with motif-length of 7 yielded the best results
regarding both motif information and gene coverage (see tab. 9).

2.2.8.1 Analysis of sequence motifs in TTP and HuR binding sites

Before over-represented binding motifs were analyzed with MEME ,
a simple k-mer count was conducted with KAnalyze [6] in TTP and
HuR samples before and after RNA-Seq normalization. Top 5 7-mers
overall, in 3’ UTRs and intronic regions are summarized in table 8.
Although k-mer analysis does simply count all k-mers in a given se-
quence set without enrichment or any other measure of significance,
the motifs found this way resemble the MEME identified binding mo-
tifs of TTP and HuR already very well. The top 5 k-mers can be seen
as rotations of the consensus UAUUUAU motif for TTP and UUUU-
UUU motif for HuR, including point mutations.

MEME analysis is similar to k-mer analysis focused on CDS introns
and 3’UTR exons since these genomic partitions contain most of the
PAR-iCLIP signal. In contrast to k-mer counts, the motifs derived
from this over-representation assay compact all variation in a single
motif, which allows to compare the information content of variation
on sequence level.



Table 8: Top 5 7-mers in Par-iCLIP peaks for TTP and HuR samples in all, 3’UTR and intronic peak
regions. Also shown are 7-mers derived from these regions in normalized datasets. Non-U nu-
cleotides are colored for visualization purposes.

7mers TTP HuR-WT HuR-KO

not
norma-
lized

All

UUUAUUU 1206 6.72%

All

UUUUUUU 1842 7.92%

All

UUUUUUU 3506 13.47%

UAUUUAU 1160 6.47% UUUGUUU 374 1.60% UUUGUUU 597 2.29%

AUUUAUU 1115 6.22% UUUUGUU 316 1.35% UUGUUUU 499 1.91%

UUAUUUA 1110 6.19% UUGUUUU 316 1.35% UUUUGUU 490 1.88%

UUUUUUU 272 1.51% UGUUUUU 209 0.89% UUUCUUU 351 1.34%

3’UTR

UAUUUAU 143 2.79%

3’UTR

UUUUUUU 1565 7.90%

3’UTR

UUUUUUU 2326 12.94%

UUUAUUU 122 2.38% UUUGUUU 310 1.56% UUUGUUU 362 2.01%

UUUUUUU 118 2.30% UUGUUUU 254 1.28% UUGUUUU 301 1.67%

AUUUAUU 118 2.30% UUUUGUU 253 1.27% UUUUGUU 298 1.65%

UUAUUUA 111 2.16% UGUUUUU 180 0.90% UUUCUUU 232 1.29%

Intron

UUUAUUU 1083 8.54%

Intron

UUUUUUU 159 6.29%

Intron

UUUUUUU 1032 14.03%

UAUUUAU 1013 7.99% UUUGUUU 61 2.41% UUUGUUU 233 3.16%

UUAUUUA 997 7.87% UUUUGUU 60 2.37% UUGUUUU 194 2.63%

AUUUAUU 996 7.86% UUGUUUU 58 2.29% UUUUGUU 190 2.58%

UAUCUAU 163 1.28% UGUUUUG 31 1.22% UUUAUUU 128 1.74%

norma-
lized

All

UUUUUUU 88 2.25%

All

UUUUUUU 834 6.44%

All

UUUUUUU 1053 9.57%

UAUUUAU 87 2.23% UUUGUUU 174 1.34% UUUGUUU 180 1.63%

UUUAUUU 59 1.51% UUUUGUU 133 1.02% UUUUGUU 139 1.26%

AUUUAUU 59 1.51% UUGUUUU 132 1.02% UUGUUUU 137 1.24%

UUAUUUA 58 1.48% UUUUUGU 90 0.69% UUUCUUU 106 0.96%

3’UTR

UUUUUUU 88 2.29%

3’UTR

UUUUUUU 814 6.74%

3’UTR

UUUUUUU 997 9.33%

UAUUUAU 85 2.21% UUUGUUU 172 1.36% UUUGUUU 178 1.66%

AUUUAUU 59 1.53% UUUUGUU 131 1.04% UUUUGUU 137 1.28%

UUUAUUU 58 1.51% UUGUUUU 130 1.03% UUGUUUU 134 1.25%

UUAUUUA 57 1.48% UGUUUUU 89 0.07% UUUCUUU 105 0.98%
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MEME analysis reveals that over-represented motifs derived from
peak regions of TTP PAR-iCLIP differ slightly for 3’UTRs and intronic
regions. While in 3’UTRs the already well described ARE heptamer
U[AU]UUU[AU]U is detected, the U-rich UUUAUUU motif tends to
be over-represented in intronic regions. Furthermore, intronic motifs
may contain Cs in 2nt distance to the central A, which itself is more
pronounced than in 3’UTRs. However, the motif found in intronic re-
gions can be seen as shifted version of the 3’UTR motifs, thus there
seems to be no significant difference in binding motif choice by TTP.
This is in strong correlation to k-mer analysis results.

Figure 31: MEME motif Probability of a nucleotide to be found in the most
over-represented MEME motif for peak regions of all samples di-
vided in 3’ UTR and Intron located peaks for comparison. The
second Y-Axis and corresponding lines show the information bit-
score of the motif.

The HuR datasets reveal only small sequence differences in peak re-
gions of different elements. 3’UTR as well as intronic regions show
a U-rich heptamer, which can contain guanine (G) or cytosine (C)
around position 4. However, all extracted motifs show a high similar-
ity to previously published ARE, or U-rich motifs. Figure 31 shows
the probability for each nucleotide to be present at any position in
the top over-represented MEMEmotifs for TTP, HuR and HuR in TTP-
KO.

Figure 32 shows the 7mer MEMEmotif for TTP 3 h after LPS induction
for bindingsites in 3’UTRs and Introns. Motifs have a high correlation
with those in the 6 h dataset, indicating that TTP has a high affinity
towards presented motifs throughout immune response.
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A B

Figure 32: TTP 3h motif in 3’UTRs and introns. MEME 7-mer logos of (A)
3’UTR and (B) intronic binding sites

To check how much of our observations can be explained by the
MEME consensus motifs, the fraction of CLIPed genes that contain
the latter was computed, as well as the fraction of PAR-iCLIP signals
that fall into this motifs. To do so, the sequences of all binding sites
detected were scanned using the regular expression of the motif pro-
vided by MEME .

This regular expression represents the most likely form of the mo-
tif, i.e. not all possible isoforms of the motif are taken into account,
only those nucleotides are considered that best fit the multilevel con-
sensus.

Table 9 summarizes the motifs found and their occurrences. For
this analysis and direct comparison to the HuR dataset, we focused
on 6 h datasets only.



Table 9: Par-iCLIP signal and target gene coverage of
MEME motifs derived from the regular expression de-
scribing the most probable motif per sample and ge-
nomic partition.

Sample
MEME regular ex-
pression and motif

% of total
peak signal
with overlap

% of total
peak signal in
overlap

% of total
peak count

% of genes
with peaks
and motif

% of genes
where peak
and motif
overlap

% of EN-
SEMBL mm9
protein cod-
ing genes
with motif

TTP
3’UTR

U[AU]UUU[AU]U

89% 36% 31% 96% 66% 59%

MEME (no SSC) 11.07.14 20:19
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89% of TTP PAR-iCLIP signal in 3’UTRs originates from the mo-
tif U[AU]UUU[AU]U and 68% of intronic signal maps to the mo-
tif UUUAUUU. 64% of HuR PAR-iCLIP signal in 3’UTRs is derived
from the motif UUUUUUU and 56% of intronic signal from the mo-
tif UUUU[UG]UU. The most over-represented motif in both genomic
elements for HuR in TTP-KO cells is UUU[UG]UUU. 74% of 3’UTR
signal and 66% of intronic signal comes from this MEMEmotif.

To evaluate if and by how much TTP motifs in 3’UTRs and in-
trons differ in usage by TTP, the same analysis as described, was
conducted with swapped motifs. The amount of PAR-iCLIP signal
detected within 3’UTR peaks when searched for the intronic motif
decreased by 14% compared to the original one. In the other case,
10% more signal coverage is observed when using the 3’UTR motif in
introns, highlighting TTPs preference of the known core motif, and
that the intronic MEMEmotif is just a shifted version.

summary TTP does not discriminate intronic from exonic binding
sites by sequence motif. Most of the PAR-iCLIP signal in our experi-
ments results from TTP/HuR interacting with already well described
motifs. Taken together, the strongest, most frequent and over repre-
sented TTP and HuR motifs identified here confirm the commonly
known and published ones.
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2.2.8.2 Analysis of sequence motifs in TTP and HuR overlapping binding
sites

To further analyze TTP and HuR overlapping binding regions for dif-
ferences with distinct binding sites, MEMEmotifs of the latter were
computed and compared to motifs derived from non-overlapping
sites.

A B

Figure 33: Overlapping binding sites between TTP and HuR in 3’UTRs.
MEME logos of (A) 7-mer and (A) 9-mer over-represented motifs

Figures 33A and 33B show the MEME sequence logo of 79 hand
curated binding sites where TTP and HuR overlap. In contrast to
[UA]UAU[UC]UAU[AU] TTP and [AU]UUU[UG]UUU[AU] HuR only bind-
ing sites, one can see a merged motif, which can be described as
[AU]U[AU]U[UAGC]U[AU]U[AU].

So for most of the overlapping binding sites (66/79) a sort of con-
sensus motif can be found, which is in general U-rich, as required for
HuR binding, but does also contain As as required for TTP binding.
The 9mer motif also fulfills these requirements, however with more
variability.

summary Overlapping sites of TTP and HuR binding are neither
in the class of typical TTP nor HuR motifs. They rather represent a
merged version of both, rich in Us as required by both RBPs with
some A content as required for TTP binding.

This indicates that overlapping sites represent a third class of motif,
not favored over canonical ones by either RBP. The potential of the
resulting motifs for their usefulness in prediction of co-regulatory
binding sites remains to be investigated in detail.
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2.2.8.3 Analysis of sequence motifs in TTP and HuR non-overlapping
binding sites

A B

C D

Figure 34: Non HuR overlapping TTP binding sites in 3’UTRs. MEME (A)
TTP 7-mer, (B) TTP 9-mer,(C) HuR 7-mer and (D) HuR 9-mer
non-overlapping 3’UTR binding sites.

Figures 34 A and B show the MEME sequence logo of TTP binding
sites without HuR overlap. Figures 34 C and D show the MEME sequence
logo of HuR binding sites without TTP overlap. The motifs are similar
to the motifs derived from the total set of binding sites, which is not
surprising as most binding sites do not overlap. However, compared
to sequence motifs in overlapping sites the most obvious difference
is the U-content, which is higher in overlapping sites, a probable pre-
requisite for HuR binding.

Furthermore, HuR PAR-iCLIP signals between WT and KO condi-
tions was compared. If direct competition were the case, one would
expect to find higher HuR signal in TTP-KO. However, when using
non-normalized datasets, which is not ideal as changes in expression
levels are expected, HuR signal in KO is lower than HuR signal in
WT. Even after normalization to mRNA levels, no significant increase
in HuR signal at these exact sites was detected, further strengthening
a non-direct competition model between TTP and HuR.

summary Sequence motifs extracted from non-overlapping sites
have high similarity to canonical binding motifs identified here. This
can be explained by the fact that only few overlapping sites could be
identified, but it still indicates that there are separate classes of motifs
for individual and competitive binding.
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2.2.9 Human/Mouse conserved binding sites

A strong indicator of function for some genomic region is conserva-
tion. Evolution depends on the survival of the fittest. So if a binding
site for a protein that is conserved between organisms has a function
in all of them, it is expected to be conserved. This section describes the
conservation of 6 h PAR-iCLIP derived binding sites between mouse
(mm9) and human (hg19). Binding site coordinates were lifted from
mouse to human as follows.

2.2.9.1 Coordinate lift-over mouse-human

In order to identify homologous TTP binding sites in human and
mouse, we extracted syntenic regions using the liftover tool of the
Kent source tree [59].

Conservation of identified TTP and HuR binding sites of one repre-
sentative replicate between mm9 and hg19 was investigated in a simi-
lar manner to the comparison with Mukherjee et al. [102] (sec. 2.2.10).
Lift-over parameters were set to 95% and 10% sequence similarity for
highly conserved and conserved subsets respectively.

Table 10 provides an overview of binding site conservation for TTP
and HuR, where highly conserved means 95% and conserved means
10% sequence similarity between mouse and human.

Table 10: Human/Mouse conserved binding sites

TTP HuR

Highly conserved total 580 1445

Conserved total 759 1817

Highly conserved 3’UTR 424 1,246

Conserved 3’UTR 503 1,568

Highly conserved Introns 143 96

Conserved Introns 242 123

Although multiple intronic binding sites are conserved, 3’UTR sites
are conserved more often. The TTP/HuR binding site in Irg1 intron 4
is not conserved among mouse and human, thus gives no indication
for a possible sponge function in human.

Figure 35A provides an overview of target genes for TTP and HuR
in our dataset that have orthologs in human and their overlap (i. e. genes
targeted by TTP and HuR). Almost all TTP targets have orthologs (444
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A B

Figure 35: TTP and HuR targets with human-mouse orthologs. (A) This
figure shows the TTP-HuR targeted conserved genes and over-
laps (B) This figure shows conserved TTP and HuR bindingsites
and overlaps. For convenience, color-codes show numbers for
each ABP and experimental setting, since some binding sites over-
lap more than one BS in another set.

of 498), the same holds true for HuR in WT (271 of 303) and HuR in
TTP−/− (474 of 532).

In figure 35B TTP binding sites which are conserved among mouse
and human in any replicate and overlap conserved binding sites of
HuR in TTP-WT and TTP-KO are shown. When comparing to fig. 30
one sees that relatively more HuR binding sites are conserved than
TTP binding sites. Overlapping binding sites between all three or
pairs of ABPs are well conserved, in general better than non-overlapping
ones.

summary Binding sites in 3’UTRs are more often conserved be-
tween mouse and human than those in intronic regions. The ratio of
overlapping binding sites between TTP and HuR is similar for bind-
ing sites lifted to human and those in mouse. The large number of
TTP and HuR target genes conserved between mouse and human
highlights the potential for portability of findings in this dataset to
human.
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2.2.10 Comparison of our findings with Mukherjee et al. [102]

2.2.10.1 Comparison of experimental setup

Targets from Sedlyarov et al. [120] show some overlap to a previous
comprehensive study of TTP binding sites in a human HEK cell line
by Mukherjee et al. [102], however, the majority of targets, and es-
pecially most of the top targets, were not identified there (for more
details see section 2.2.10.3).

The two studies compared here differ greatly in their experimental
setup.

(i) TTP is not expressed in human embryonic kidney cells (HEK)
and had to be introduced via transfection with an expression vector.
In contrast, primary mouse BMDMs are the natural defense system
against bacterial infections and TTP is known to be expressed during
the early inflammatory response, as mimicked by LPS stimulation.

(ii) Overexpression of TTP in HEK cells most likely alters the stocheom-
etry of TTP-target interactions leading to artifacts. LPS induction of
TTP expression in BMDMs ensures more natural conditions and thus
allows us to detect and analyze native targets of TTP.

(iii) Previous studies (see e.g. Copeland et al. [31] or Osuchowski
et al. [105] or Webb et al. [149]) underline similarities in inflammato-
ry/endotoxin response in mice and humans, which emphasizes the
impact of our findings on TTP function in BMDM inflammatory re-
sponse and the high number of conserved target genes. 444 out of 498
TTP target genes identified in our study have annotated orthologs in
human, indicating that these genes might be true targets of TTP in
human as well.

(iv) TNF-α is one of the key players in inflammatory response, if
not controlled it can cause systemic inflammatory response syndrome
(cytokine storm) which is lethal to human as well as murine cell lines.
While TNF-α is among, if not the top TTP targets, it can not be found
among the target list of Mukherjee et al. [102].

Taken together, Sedlyarov et al. [120] identified TTP targets with hu-
man orthologs in a native, non-over-expressed system, allowing the
findings of this study to be transferred from the model system mouse
to human.

2.2.10.2 Comparing Target Genes Sets

Mukherjee et al. [102] identified 2,143 human genes to be targeted
by TTP in HEK cells. 1,925 of these genes have orthologs in mouse
(genome assembly NCBI m37 [mm9], ENSEMBL annotation 67), 942
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Table 11: Comparison of experimental conditions of TTP binding studies

Condition Sedlyarov et al. [120] Mukherjee et al. [102]

cell system mouse primary bone mar-
row derived macrophages
(BMDB)

human embryonic kidney
cells (HEK)

TTP induction LPS stimulation transfection of expression
vector

TTP levels native overexpression

CLIP method PAR-iCLIP PAR-Clip

of which are ‘high confidence’ orthologs. Only 107 (48 high confi-
dence) of these human genes with known mouse orthologs are repre-
sented in our set of TTP targets in BMDMs.

444 out of 498 TTP target genes identified in our study have orthologs
in human. As for HuR, 271 of 303 target genes in wild type BMDMs
and 474 of 532 HuR targets in TTP-KO have human orthologs accord-
ing to ENSEMBL.

Sedlyarov et al. [120] provides a list of 500 genes which represent
main TTP targets in inflammatory response. The majority of these
genes have orthologs in human (see Figure 35 in section 2.2.9), un-
derlining the importance and portability of mouse models in order to
study ABP related human disease mechanisms.

2.2.10.3 Comparing TTP Signals

Coordinates of TTP peaks in human (hg19) identified by Mukherjee
et al. [102] were ‘lifted’ to mouse coordinates (mm9) with -minMatch=0.05.

3,316 binding sites out of 4,625 total binding sites of the Mukherjee
et al. [102] dataset could be assigned to homologous loci in mouse.
2,731 “lifted” binding sites are within annotated mouse genes.

1,925 human target genes have orthologs in mouse, for 1,896 of those
the binding sites could be lifted as well. This is because in some
cases the actual TTP binding site is not sufficiently conserved between
mouse and human.

Only 32 binding sites (from 29 human genes) overlap directly with
binding sites from the Sedlyarov et al. [120] dataset, e. g. Zfp36, but
not TNF. Zpf36 and PFKFB3 are two of the top 10 targets (12 of top50)
that have been identified in both studies.

248 out of 1,598 binding sites in the Sedlyarov et al. [120] dataset are
in ±50nt distance to a total of 3,316 sites Mukherjee et al. [102] (2,731
in annotated genes).
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Table 12: TTP target genes with binding sites identified in both studies.
After liftover of coordinates, we found TTP binding sites to be
conserved between human and mouse in the following 35 genes

Gene name

6330409N04Rik Mdm2 Actb Med13 Adrbk1 Mxd1 Aff1

Nfkbia Anxa5 Papd7 App Pfkfb3 Arl8a Plaur

Atf3 Ppp1r15a B2m Ppp3r1 Brd4 Rabep1 Cebpb

Sdc4 Cep170 Tet2 Cxcl1 Tnfaip3 Dennd4b Zeb2

Ets2 Zfp36 Etv3 H3f3b Hivep2 Ier3 Mcl1

These 248 binding sites come from 35 genes out of 498 from our
dataset (tab. 12).

summary For the comparison of Sedlyarov et al. [120] PAR-iCLIP data
to the dataset of Mukherjee et al. [102], several aspects have to be
kept in mind. Although lift over works well in general, it lacks preci-
sion for small intervals (i.e. binding sites), therefore a range of ±50nt
around binding sites was considered a reasonable range to compare
these intervals between organisms.

Furthermore, the investigated cell types differ vastly. HEK cells
without native TTP expression are expected to show different binding
behaviour then the native LPS induced BMDM approach. However, a
small set of genes was identified in both studies, containing e. g. TTP
itself (Zfp36), highlighting auto-regulation as important mechanism
in TTP controlled mRNA stability regulation in human and mouse.

2.2.11 Structure vs. Sequence analysis

2.2.11.1 ARE analysis

Potential ABP binding sites as defined by AREsite [43], are investi-
gated for their "activity" in TTP/HuR regulation of mRNA stability.
Therefore positions of annotated consensus motifs are compared with
binding sites identified by PAR-iCLIP experiments, to generate "pos-
itive" and "negative" sets for further analysis. Conservation of these
motifs between human and mouse is shown in tab. 13.

Genomic coordinates of all sites listed in the ARE database that corre-
spond to the consensus motifs for HuR (TTTKTTT) and TTP (WATT-
TAW) identified in this PAR-iCLIP analysis were extracted. The fol-
lowing subsets were created: (i) sites conserved between mouse and
human (ii) sites residing in target genes expressed in BMDMs (iii)
sites that overlap with binding sites identified in this study.
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To determine overlaps between features, BEDtools v2.17 [108] was
used and only overlaps on the same strand (-s) with minimum over-
lap of 1nt were considered.

13,862 of 17,411 TTP motifs in the AREsite1 database reside in tran-
scripts that are expressed in BMDMs. Almost all of these motifs (12,290)
are conserved between human and mouse, but only a small fraction
(249) is indeed used by TTP. HuR follows a similar trend (see tab. 13).

Table 13 summarizes numbers for TTP and HuR ARE core motifs
bound and unbound as well as conserved and not conserved between
human and mouse.

Furthermore, AREs are divide into motifs in transcripts that are (i) ex-
pressed in BMDMs used in this PAR-iCLIP experiments and in those
that (ii) do and do not overlap with binding sites identified in this
study.

While the vast majority of ARE motifs (WATTTAW as well as TT-
TKTTT) can be found in transcripts expressed in our cell-lines also
have conserved sites in human, only a small amount of those show
overlaps with identified binding sites. The ratio between conserved
and unconserved motifs is highest for those not in overlap with PAR-
iCLIP signal of any ABP.
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Table 13: ARE motifs used and unused by TTP/HuR and (non-) conserved between
human and mouse

AREs TTTKTTT (HuR) WATTTAW (TTP)

total 47,887 17,411

conserved 33,187 15,034

unconserved 14,700 2,377

expressed 40,419 13,862

expressed & conserved 28,443 12,290

expressed & uncon-
served

11,976 1,572

AREs in overlap with Par-
iCLIP binding site

HuR KO HuR WT TTP HuR KO HuR WT TTP

total 2,232 1,574 112 76 84 249

conserved 1,319 904 74 70 77 217

unconserved 913 670 38 6 7 32

expressed 2,232 1,574 112 76 84 249

expressed & conserved 1,319 904 74 70 77 217

expressed & uncon-
served

913 670 38 6 7 32

AREs NOT in overlap with
Par-iCLIP binding site

HuR KO HuR WT TTP HuR KO HuR WT TTP

total 45,658 46,313 47,779 17,335 17,327 17,164

conserved 31,869 32,283 33,113 14,964 14,957 14,819

unconserved 13,789 14,030 14,666 2,371 2,370 2,345

expressed 38,190 38,845 40,311 13,786 13,778 13,615

expressed & conserved 27,125 27,539 28,369 12,220 12,213 12,075

expressed & uncon-
served

11,065 11,306 11,942 1,566 1,565 1,540

However, the ratio of bound motifs is small compared to unbound
ones, and conserved bound motifs are always more than unconserved
ones.

The "positive" and "negative" sets derived from this ARE analysis
where used to compare sequence and structure features that lead to
binding by TTP and/or HuR.
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2.2.11.2 Structure analysis

RNAplfold [14] can calculate the energy needed to open potential sec-
ondary structures on a stretch of RNA, which allowed us to compare
differences in the structuredness of binding site embedding regions
and non-bound regions. For this analysis flanking regions of 28nt
were added to the positive and negative sets described in section
2.2.11.1.

Then the opening energies for said sequences were calculated and
the latter binned in 7nt steps, which corresponds to the length of
the extracted consensus motifs and allows to compare AU-content of
both sets with their structuredness.
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Figure 36: Structural context of TTP and HuR binding sites. (A) Accessi-
bility of regions embedding ARE motifs with and without overlap
with TTP binding sites, (B) Accessibility of regions embedding
ARE motifs with and without overlap with HuR binding sites

Figures 36A and 36B show the mean probability of being unpaired
for a ±28nt context around ARE core motifs (WAUUUAW for TTP,
where W can either be A or U and UUUKUUU for HuR where K can
either be U or G) in and outside of peak regions of TTP and HuR. In
both cases ARE motifs within binding sites show a higher probability
of being unpaired than motifs without peak signal.

Figures 37A and 37B show the RNAplfold derived opening energies
for potential secondary structures ±28nt around peak regions in bins
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Figure 37: Opening energy for secondary structures in ARE motif embedding regions in-
and outside of TTP and HuR binding sites. (A) ARE overlapping TTP binding
sites, (B) ARE outside TTP binding sites, (C) ARE overlapping HuR binding sites,
(D) ARE outside HuR binding sites; - ... median • ... mean

of 7nts. Opening energies for motifs in TTP/HuR peaks are lower
than for motifs without peak overlap, which means that the former
are less likely to be found in stable secondary structures than the
latter. As opening energy and probability of being unpaired are not
independent terms, this finding is not unexpected, but visualization
as box plot allows to get a feeling for mean and median opening
energy, which are both lower for bound motifs (Note the differing
scales on y-axis).
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2.2.11.3 Sequence analysis

A+U-content analysis of flanking regions around ARE motifs in both
sets is shown in figure 38. The region close to the actual WATTTAW
motif has a higher A+U-content in TTP/HuR binding sites (median >
80%) compared to motifs outside, however the A+U content remains
in general very high (median ∼ 70%).

Regions more distant to the central motif show comparable A+U con-
tent in bound and unbound regions for TTP as well as HuR.
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Figure 38: AU content of regions embedding ARE motifs in- and outside of TTP
and HuR binding sites. (A) A+U content overlapping TTP binding sites,
(B) A+U content outside TTP binding sites, (C) A+U content overlapping
HuR binding sites, (D) A+U content outside HuR binding sites; - ... median
• ... mean
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2.2.11.4 Comparison of sequence and structure as descriptors for active
binding sites

Table 14 compares Wilcoxon ranked sum test derived p-values de-
scribing the significance in differences on sequence (A+U-content)
and structure (opening energies) level between flanking regions around
ARE motifs with and without overlapping TTP/HuR binding sites.

Differences are in all cases significant, however, for TTP differences in
A+U-content and opening energy are comparable, while for HuR dif-
ferences in opening energy are more significant than in A+U-content.

Table 14: Wilcoxon rank sum test , of A+U content and opening energy of
binding site flanking regions

WATTTAW in TTP

A+U content Opening energy

Flanking region
[nt]

p-value p-value

15 7.1603e-11 6.1496e-12

20 2.2114e-12 8.8905e-11

25 1.9143e-12 2.4849e-11

30 3.2151e-11 4.5697e-10

35 4.9798e-08 6.4108e-09

TTTKTTT in HuR

A+U content Opening Energy

Flanking region
[nt]

p-value p-value

15 9.1934e-41 9.6389e-151

20 4.3190e-50 1.5994e-145

25 6.1551e-56 2.7504e-141

30 3.1049e-57 8.8364e-135

35 1.8690e-56 2.2810e-117

To further evaluate if structuredness can be used as a descriptor for
bound and unbound ARE motifs, we performed a Receiver-Operator-
Characteristic (ROC) analysis comparing the A+U-content of regions
embedding ARE motifs with and without overlap of binding sites of
TTP and HuR with the energy required to open potential RNA sec-
ondary structures (fig. 39), similar to section 2.1.5, in a region ±15nt
and ±25nt around motifs.
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A B

C D

Figure 39: Descriptor analysis of ARE flanking regions with and without overlap of
TTP/HuR binding sites (A) ROC-curve of ±15nt around TTP binding sites, (B) ,
ROC-curve of ±25nt around TTP binding sites, (C) ROC-curve of ±15nt around
HuR binding sites, (D) ROC-curve of ±25nt around HuR binding sites

For TTP Sequence and Structure derived AUCs (Area under the
ROC-Curve) are almost similar, while for HuR structure derived AUCs
are higher. For TTP AU-richness of bound motifs is already higher
than for unbound ones, so that AU-content as well as opening energy
are equally useful for distinguishing bound from unbound ARE mo-
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tifs.

For HuR however, opening energy seems to be a better descriptor
of bound and unbound sites than AU-content alone, which is in gen-
eral very high, also for unbound motifs, see section 2.2.11.3. For both
proteins, the descriptive power of structural context ±15nt around
binding sites is higher than for the ±25nt context. This indicates that
TTP as well as HuR binding depends on context in close proximity to
actual binding sites.

summary Analysis of accessibility of TTP/HuR un-/bound sites
reveals that bound sites are in general embedded in a more accessible
environment that unbound sites. Also the AU-content is higher in the
surroundings of bound sites.

This indicates that active target sites for both RBPs need to be ac-
cessible and AU-rich in a broader context than just the actual binding
site, rendering the existence of secondary structure prerequisites be-
sides single-strandedness unlikely.

2.2.11.5 Linear discriminator analysis

We now know that accessibility and AU-content as descriptors can
be used to distinguish bound from unbound motifs in our normal-
ized and filtered PAR-iCLIP dataset. What remains to be investigated
is if these descriptors can be used to train a discriminator that can
distinguish bound from unbound sites in a larger context.

To that purpose a linear discriminator was trained with the R MASS
library [139] using the PAR-iCLIP dataset descriptors AU-content and
opening energy for training. The dataset was split 9:1, where 90% of
the positive and negative set were used for training and the remain-
ing 10% for testing of the linear discriminators. Once trained, this
discriminators were also tested against the AREsite2 derived positive
and negative sets described in section 2.1.3.
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Figure 40: LDA analysis for TTP Linear discriminator analysis of sequence
and/or structure for TTP binding sites. LDA was trained with the
PAR-iCLIP derived dataset and tested on AREsite2 derived mo-
tifs with CLIP-Seq signal overlap. The plot shows a comparison
of predictive power. LDA, LDA-NRG and LDA-A+U and corre-
sponding AUCs show descriptive power for training with 90% of
the training set and testing on the remaining 10%, while LDAC,
LDAC-NRG and LDAC-A+U show predictive power when tested
on the AREsite2 derived dataset. NRG stands for accessibility in
terms of opening energy, A+U for A and U sequence content re-
spectively, no addition means a combination of both descriptors
was tested.

Figures 40 and 41 show ROC curves for both tests for TTP and HuR
respectively. The blue to violet curves stand for the 9:1 test and the
red to yellow curves for the test with the AREsite2 dataset. For each
test the discriminators are either opening energy and A+U content
or one of the two. For TTP, AUCs for the 9:1 test indicate medium
predictive power for all three discriminators, with the highest AUC
for a combination of both, opening energy and A+U-content. When
testing on the AREsite2 dataset, opening energy outperforms both,
A+U-content and the combination of both descriptors.
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Figure 41: LDA analysis for HuR Linear discriminator analysis of sequence
and structure for HuR binding sites. LDA was trained with the
PAR-iCLIP derived dataset and tested on AREsite2 derived mo-
tifs with CLIP-Seq signal overlap. The plot shows a comparison
of predictive power. LDA, LDA-NRG and LDA-A+U and corre-
sponding AUCs show descriptive power for training with 90% of
the training set and testing on the remaining 10%, while LDAC,
LDAC-NRG and LDAC-A+U show predictive power when tested
on the AREsite2 derived dataset. NRG stands for accessibility in
terms of opening energy, A+U for A and U sequence content re-
spectively, no addition means a combination of both descriptors
was tested.

For HuR opening energy has the highest AUC for both test sets,
and outperforms A+U-content in predictive power. Similar to the de-
scriptor analysis in section 2.2.11.4, the LDA analysis shows that ac-
cessibility of motifs is a good discriminator between HuR bound and
unbound motifs.

summary Linear discriminator analysis (LDA) for the ABPs TTP
and HuR, shows that accessibility and AU-content can be used to suc-
cessfully discriminate between bound and unbound motifs. In case of
HuR, accessibility of a motif is even a better discriminator than A+U-
content.
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Although LDA is a rather simple way of training for a discrimina-
tor, it already shows promising results and highlights the value of
secondary structure predictions for machine learning approaches for
protein-RNA interaction studies.

2.2.12 miRNAs and TTP/HuR

Lu et al. [86] recently published an Ago-CLIP-Seq dataset in mouse
BMDMs. This experiment aims at identifying miRNA interaction sites
in the same biological context than our PAR-iCLIP experiment. As
cross-regulation of ABPs and miRNAs could be shown in this study,
we extracted miRNA binding sites from the Lu et al. [86] data and
intersected them with our PAR-iCLIP peak regions.

Figure 42 shows a Venn diagram of binding sites in ±50nt distance
between these datasets. Only a minority of binding sites overlap, in-
terestingly most of them with HuR in the TTP-KO sample.

All overlapping sites are excellent candidates for further experiments,
focusing on the extend of miRNA RBP cross-regulation in detail.

Figure 42: Venn diagram presenting the number of binding sites in ±50nt
distance between TTP/HuR from PAR-iCLIP and miRNAs ex-
tracted from Lu et al. [86].

summary This preliminary analysis shows already that miRNA
binding sites have overlaps with both RBPs, thus co-regulatory func-
tion as described e. g. by Lu et al. [86] is a factor to be considered for
further analysis.

Such analysis could shed light on the mechanics behind RNA half-
life regulation, especially in the context of the auto-regulatory func-
tion of both RBPs.
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2.2.13 Cooperative vs. competitive binding

So far we have shown that direct overlaps between TTP and HuR are
rarely found in our dataset. This indicates that direct competition of
these two ABPs is only relevant for a minority of targeted genes. To
address indirect competition, we focused on genes with binding site
of both proteins, but without direct overlap.

Competition does not necessarily require both proteins to be located
at the exact same or overlapping stretch of nucleotides, but can poten-
tially occur via structural constraints that are the result of binding of
one competitor. Such interaction introduces or titrates energy to/from
the system, which can lead to refolding, potentially un/blocking pre-
viously un/paired regions.

Lin and Bundschuh [82] present a model for the calculation of coop-
erative binding free energy, where the free energy of a RNA molecule
bound by two interaction partners is derived from the sum of of the
energy of both partners interacting separately minus the end state
and ground state.

Equation 3 describes the four states which are used to calculate ∆∆G,
the cooperative binding free energy. A negative ∆∆G indicates an-
tagonistic binding effects, a positive ∆∆G indicates cooperative ef-
fects. The new constraint folding option in the ViennaRNA package
2.0 [83], using a pair of binding sites as constraints, allows to calculate
all terms required for such an investigation.

∆G0→1 = ∆G1 −∆G0 − RT × ln
(
c1
KD,1

)

∆G0→2 = ∆G2 −∆G0 − RT × ln
(
c2
KD,2

)

∆G1→12 = ∆G12 −∆G1 − RT × ln
(
c2
KD,2

)

∆G2→12 = ∆G12 −∆G2 − RT × ln
(
c1
KD,1

)

∆∆G = ∆G0→1 −∆G2→12 = G1 +G2 −G12 −G0

(3)

Non-overlapping pairs of binding sites in 3’UTRs with minimal dis-
tance of 10nt between and within experiments were extracted from
our dataset. Minimum free energy of 3’UTR sequences with/without
these binding sites as constraints were computed with RNAfold [48].
Figure 43 shows histograms of ∆∆G computed from all binding site
pairs from our PAR-iCLIP dataset and the Ago-CLIP-Seq data from Lu
et al. [86], between and within samples on the same 3’UTR.
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Figure 43: ∆∆G for all pairs of 3’UTR binding sites between and within
samples of TTP and HuR from PAR-iCLIP and miRNA from Lu
et al. [86].

In general only small to no ∆∆G for pairwise binding could be seen.
However, the here investigated ABPs bind single-stranded RNA and
effects on already unpaired regions were expected to be small. Fur-
thermore, we find some of the top TTP targets to be effected in a coop-
erative manner by other molecules of TTP as well as HuR or miRNA
binding the same target. The TTP transcript itself is one of the RNAs
where miRNA-27 binding has effect on HuR and TTP binding site
accessibility.

Lu et al. [86] propose a regulatory feedback loop where HuR binding
stabilizes the TTP transcript, while miRNA-27 binding has destabiliz-
ing effects. Furthermore, they show that in the absence of HuR, more
miRNA-27 is bound to the TTP transcript, inferring that miRNA-27
and HuR compete for binding. This was shown for binding sites with
direct overlap. Our data suggest an even more complex picture.

While we compute an overall negative (antagonistic) effect of miRNA-
27 binding on the accessibility of TTP binding sites on its own mRNA,
we also see a positive effect on HuR binding sites on the same target.

This suggests, that miRNA-27 contributes positively to the expression
of TTP, once by indirectly displacing TTP from its binding site, which
would otherwise have a negative effect on TTP expression, while in
parallel rendering a HuR binding site more accessible. However, one
has to be aware that this preliminary analysis is not capable of solving
the complex interactome between TTP/HuR and miRNAs, but note
that this kind of investigation should be subject to future studies.
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summary While this analysis was conducted with all non-overlapping
pairs of binding sites sharing the same 3’UTR, pre-selection of high
potential sites (e. g. by high PeakScore) should be included. Larger
peak regions, which could potentially contain more then one molecule
of TTP/HuR should also be split into smaller regions, as especially
these sites have a high potential of co-regulation.

Summing up, this preliminary investigation shows some promising
results, which have a potential for further studies with more complex
models of interaction and constraints.

2.2.14 TTP directly influences mRNA half-life

A key function of TTP is initiation of degradation of target mRNAs.
To test whether direct correlation between TTP binding and mRNA
decay can be found, Pearson correlation of normalized gene score
for TTP 3 h and 6 h targets with mRNA decay experiments published
in Sedlyarov et al. [120] was investigated. Normalized gene scores
were used to cope with the influence of RNA expression on CLIP-
Seq signal.
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Figure 44: Correlation analysis of mRNA decay and PAR-iCLIP signal A)
compares mRNA decay rate 3 h after LPS induction with RNA-
Seq normalized PAR-iCLIP signal for TTP, B) compares mRNA
decay rate 6 h after LPS induction with RNA-Seq normalized
PAR-iCLIP signal for TTP.

Figure 44 shows dot-plots comparing the normalized CLIP-Seq signal
to the mRNA decay rate in WT and TTP-KO cells. As the presence of
TTP is thought to decrease mRNA stability upon interaction, the dif-
ference between decay rate in KO cells and decay rate in WT cells was
calculated. Most of the genes show only marginal difference between
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both conditions, resulting in the majority of datapoints between -.01
and .01 on the y-axis.

However, some genes with higher CLIP-Seq signal show also increased
decay rate. At 3 h after LPS induction, where TTP already binds target
genes, correlation with decay rate changes is only weak (Pearson-R
= 0.2977; 95%CI: lower = 0.0941, upper = 0.4774). 6 h after LPS in-
duction we see a significantly (p-val: .004, z=2.65) higher correlation
(Pearson-R = 0.5912; 95%CI: lower = 0.4660, upper = 0.6932) between
CLIP-Seq signal and decay.

This indicates a direct influence of TTP bound to a target mRNA
and decay of the latter for the 6 h dataset which is in perfect agree-
ment with the biological model of TTP resolving the inflammatory
response.

2.2.15 GO Analysis of TTP and HuR target genes

An indicator for the molecular function of genes are associated GO-
terms. We used the generated lists of target genes of TTP and HuR
for GO enrichment analysis to investigate gene function differences
between TTP 3 h and 6 h and HuR in WT and TTP-KO with the tools
DAVID [51] and PantherDB [100] and the R package TopGO [2].

2.2.15.1 GO-enrichment for TTP binding sites in UTR, intron and overall

Target genes were divided in three sets, those containing all genes,
those with binding sites in 3’UTR and those with binding sites in
intronic regions only and investigated TopGO GO-term enrichment
for each subclass. As expected, we see a clear bias towards inflamma-
tory related GO-terms in over-all and 3’UTR bound TTP target genes.
Those with exclusive intronic binding sites lack these GO-terms.

The top enriched GO-term annotation clusters of DAVID derived GO-
terms for the 3 h and 6 h TTP dataset comparing all genes and those
with only 3’UTR binding sites can be found in the supplements (see
tables 33, 34, 35 and 36). In both conditions (3 h and 6 h), GO-term
related to inflammation and cytokine activity are ranked higher in
the 3’UTR datasets, which indicates that only 3’UTR binding of TTP
plays a direct role for inflammatory response.

2.2.15.2 GO term enrichment comparison between TTP datasets

To further investigate the role of TTP binding during inflammatory
response, we compared the number of genes with specific GO-terms
and log fraction (observed vs expected) of GO terms for TTP targets
3 h and 6 h after LPS induction with PantherDB.
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Table 15: GO-term enrichment for TTP target genes, and genes contain-
ing exclusively 3’UTR or intronic peak regions. Analysis was
conducted with TopGO and the set of all expressed transcripts as
background.

GO-ID GO-Term Annotated Significant Expected Rank

TTP

GO:0005125 cytokine activity 26 15 6.78 1

GO:0008009 chemokine activity 10 8 2.61 2

GO:0042379 chemokine receptor binding 11 8 2.87 3

GO:0005126 cytokine receptor binding 32 16 8.34 4

GO:0001664
G-protein coupled receptor
binding

17 10 4.43 5

TTP 3’UTR

GO:0008009 chemokine activity 10 8 2.22 1

GO:0005125 cytokine activity 26 14 5.77 2

GO:0005126 cytokine receptor binding 27 14 5.99 3

GO:0042379 chemokine receptor binding 11 8 2.44 4

GO:0042802 identical protein binding 25 13 5.55 5

TTP Introns

GO:0003676 nucleic acid binding 74 58 49.52 1

GO:0005524 ATP binding 59 47 39.48 2

GO:0030554 adenyl nucleotide binding 59 47 39.48 3

GO:0032559 adenyl ribonucleotide binding 59 47 39.48 4

GO:0001883 purine nucleoside binding 74 57 49.52 5

Figure 45 shows results as retrieved from PantherDB for both gene
sets. In the 3 h category, more genes with corresponding GO-terms
related to immune response, response to stress or cell communication
are annotated, while in the 6 h category terms like cell proliferation,
immune system processes and cellular defense response are more
present (fig. 45A). When directly comparing the log fraction of ob-
served vs. expected GO terms between both conditions (see fig. 45B),
this trend of the 3 h towards early and 6 h towards late immune re-
sponse related processes stays the same.

This supports the model of TTPs role during inflammatory response,
which in the first 3 h of infection starts to control stress and stimu-
lus induced genes, while it later on primarily targets genes relevant
for inflammatory response and proliferation, both necessary for suc-
cessful ceasing of inflammatory response and preventing the immune
system from over-reaction.
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A B

Figure 45: PantherDB GO term comparison A) Shows the %-age of PAR-iCLIP derived tar-
get genes that are enriched for a certain GO-term in background (mus musculus)
and TTP 3 h and 6 ,h after LPS induction, B) shows the difference between ob-
served and expected GO-term enrichment for PAR-iCLIP derived target genes for
TTP 3 h and 6 h after LPS induction.

2.2.15.3 GO-analysis for orthologous TTP targets in human and mouse

To further investigate if the findings in our dataset can be transferred
to human, GO-term related differences and commonalities between
TTP target genes identified in this study and their orthologs anno-
tated in human were investigated.

Mouse/Human conserved genes show no obvious GO-term related
difference in comparison to the total target list for TTP (444 of 498
genes are conserved). Table 16 shows a brief summary of cell-fate
related GO terms enriched in human and mouse with DAVID, the full
list of the top three clusters can be found in the supplements (tab. 37).
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Table 16: Summary of GO-terms of TTP-target genes with orthologs in
human and mouse This table lists only those GO-terms (molecular
function) that were enriched for both human and mouse. For the
whole set see table 37

(Negative-) Regulation of Human Mouse

apoptosis ! !

programmed cell death ! !

cell death ! !

(acute) inflammatory response ! !

immune system development ! !

endocytosis ! !

2.2.15.4 GO-comparison for our target genes and Mukherjee et al. [102]
target genes

TTP target genes in our dataset to those derived from [102] were
already compared for their overlap. As vast differences between those
datasets were detected, GO-term enrichment of both datasets was
conducted, to check the function of genes targeted by TTP under the
hard to compare conditions during both experiments.

The top 3 cluster for TTP targeted genes in our dataset contain
endocytosis, defense response, response to wounding, inflammatory
response (see tables 33, 34, 35 and 36).

When annotating GO-terms for the Mukherjee et al. [102] target gene
list with DAVID (see tab. 17),we do find immune response in clus-
ter 244 (not shown) for the first time, top enriched terms are nuclear
lumen and intracellular organelle lumen. Terms like nucleic acid bind-
ing and transcription factor binding are shown as most enriched by
rank in Mukherjee et al. [102]. These results further highlight the dif-
ference between our study of TTP function in a native system com-
pared to over-expression studies, as we are able to show the impor-
tance of TTP for inflammatory/wound response.

2.2.15.5 HuR target genes

Tables for TopGO enriched GO-terms in HuR targets can be found in
the supplements (chapter A, table 31 and 32). GO-term enrichment
for HuR target genes in WT and TTP-KO shows cytoskeleton associ-
ated GO-terms, which fits top HuR targets like ActB and highlights
that HuR has no specific function during inflammatory response com-
pared to TTP. Top GO-terms of these datasets are similar and differ
mainly by rank.
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Table 17: Mukherjee et al. [102] TTP target genes GO-terms annotated
with DAVID

Category Term Count %

Annotation Cluster 1 Enrichment Score: 35.1501

GOTERM_CC_FAT GO:0031981 nuclear lumen 342 14.7034

GOTERM_CC_FAT GO:0070013 intracellular organelle lumen 381 16.3801

GOTERM_CC_FAT GO:0043233 organelle lumen 384 16.5090

GOTERM_CC_FAT GO:0031974 membrane-enclosed lumen 389 16.7240

GOTERM_CC_FAT GO:0005654 nucleoplasm 220 9.4583

GOTERM_CC_FAT GO:0044451 nucleoplasm part 142 6.1049

GOTERM_CC_FAT GO:0005730 nucleolus 160 6.8788

Annotation Cluster 2 Enrichment Score: 27.9342

SP_PIR_KEYWORDS nucleus 913 39.2519

SP_PIR_KEYWORDS Transcription 433 18.6156

SP_PIR_KEYWORDS transcription regulation 425 18.2717

GOTERM_MF_FAT GO:0003677 DNA binding 473 20.3353

GOTERM_BP_FAT GO:0045449 regulation of transcription 513 22.0550

GOTERM_BP_FAT GO:0006350 transcription 435 18.7016

SP_PIR_KEYWORDS dna-binding 380 16.3371

GOTERM_BP_FAT GO:0051252 regulation of RNA metabolic process 357 15.3482

GOTERM_BP_FAT GO:0006355 regulation of transcription, DNA-dependent 345 14.8323

GOTERM_MF_FAT GO:0030528 transcription regulator activity 284 12.2098

GOTERM_MF_FAT GO:0003700 transcription factor activity 186 7.9966

GOTERM_MF_FAT GO:0043565 sequence-specific DNA binding 120 5.1591

Annotation Cluster 3 Enrichment Score: 14.9707

GOTERM_CC_FAT GO:0043228 non-membrane-bounded organelle 431 18.5297

GOTERM_CC_FAT GO:0043232 intracellular non-membrane-bounded organelle 431 18.5297

GOTERM_CC_FAT GO:0005856 cytoskeleton 179 7.6956
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D I S C U S S I O N A N D O U T L O O K

3.1 aresite 2 .0

Already more than 1,000 visitors and 13,000 served requests of ARE-
site2 in the first half year show, that the recently published update
is readily accepted as resource for RNA-protein interaction investiga-
tions. This resource is not only interesting for the broad community,
it was also used in this thesis to investigate main differences between
TTP, HuR and Auf1 bound and unbound motifs. AU/GU/U-content
as well as the accessibility of motif embedding regions was analyzed
for all motifs contained in AREsite2 . CLIP-Seq experiments, processed
by CLIPdb or directly from source are also part of the database, allow-
ing to investigate motifs with and without experimental evidence.

Positive and negative datasets were curated from the database. The
positive set consists of motifs with overlapping CLIP-Seq signal and
the negative set consists of motifs without overlapping signal. These
datasets were not filtered any further due to the lack of RNA-Seq or
equivalent data.

Section 2.1.4 shows, that for all combinations of motifs and proteins,
AU- and U-content is higher in the positive set than in the negative
set. This indicates, that unbound motifs are more often found iso-
lated than bound ones, which are embedded in AU/U-rich context.
Analyzing accessibility in terms of probability of being unpaired for
both sets shows that bound motifs are in general more accessible then
unbound ones, and that their peak accessibility is found around the
center of the motif.

Since AU-content and structuredness are correlated, the question arises,
which feature is best used for target site prediction. To investigate the
descriptive power of these findings, Receiver Operating Characteris-
tic (ROC) curves were computed in section 2.1.5.

ROC analysis shows that accessibility is in most cases not a very
good descriptor for both sets, while AU- and U-content of embed-
ding regions has potential. Together, these findings show that there
are differences between bound and unbound motifs, even if they
are not strong enough to be good predictors. Comparing this re-
sults to the ROC analysis with our Sedlyarov et al. [120] dataset in
section 2.2.11.4, the impact of thorough preprocessing becomes evi-
dent. While the unfiltered, non RNA-Seq normalized AREsite2 data
suggest only weak descriptive power for secondary structure, anal-
ysis of our filtered and RNA-Seq normalized PAR-iCLIP data shows
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the opposite. Binding site quality can only be judged by comparing
CLIP-Seq signal to transcript abundance. This highlights the need for
accompanying experiments when investigating complex mechanisms
like RNA-protein interactions with CLIP-Seq experiments.

One has to keep in mind that due to the nature of CLIP-Seq experiments,
which will under normal circumstances not lead to a fully saturated
target list, not all motifs that are potentially targeted by one of the
three RBPs is in the positive set. While this leads to false negatives,
which impact downstream analysis, there are strategies available to
deal with this problem.

Additional experiments like RNA-Seq allow to filter for motifs that
are located on expressed transcripts, hence available for binding and
help to curate more accurate positive and negative sets. Furthermore,
expression rates derived from such experiments allow to normalize
CLIP-Seq signal to the amount of available target, establishing the
means to compare different proteins for their binding behavior and
required binding features.

The lack of such experimental data can to some degree be circum-
vented with in silico approaches like e. g.GraphProt , which estimates
sequence and structure features from a set of validated binding sites
and predicts new target sites that share common features. It is, how-
ever, obvious that adequately preprocessed, high quality datasets will
profit more from such methods than raw datasets, as features used for
predictions are extracted directly from the initial set of binding sites.

Comparing descriptor analysis of AREsite2 data and RNA-Seq nor-
malized PAR-iCLIP data emphasizes that the power of RNA secondary
structure for binding site discrimination is tightly coupled to ade-
quate processing of CLIP-Seq derived bindingsites, last but not least
normalization. The LDA analysis in section 2.2.11.5 validates, that it
is indeed possible to discriminate active binding sites from inactive
ones, given a good enough training set.

The example analysis (see section 2.1.4) discussed here shows that
data from AREsite2 can readily be used for detailed investigation of
RNA-RBP interactions. Combining AREsite2 data, PAR-iCLIP derived
training sets, a more advanced machine learning algorithm and ide-
ally also additional expression and RNA stability data can potentially
be used to predict effects of RBP binding under certain conditions
and/or in different cell types.

3.2 par-iclip

The introduction of CLIP-Seq and its derivatives rendered high-resolution
mapping of protein binding sites on RNA molecules in a high-throughput
fashion a feasible tool for molecular biology. As for all next genera-
tion sequencing based protocols, generation of large datasets is faster
than the actual data analysis, highlighting the need for case specific,
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thorough and fast bioinformatical processing. While many tools and
services offer general and fast analysis of NGS data, this is often not
enough to deal with the specifics of certain experimental protocols.
A great part of this thesis is concerned with the analysis of PAR-
iCLIP derived data, a hybrid method of iCLIP and PAR-CLIP without
any ready to use analysis pipeline available. The following sections
will discuss the PAR-iCLIP related findings presented in chapter 2,
section 2.2.

3.2.1 Verification of method

This thesis shows that PAR-iCLIP can be used to identify binding
sites of RNA binding proteins with nucleotide resolution (fig. 27) and
higher yield than comparable methods (fig. 26).

Under the present experimental conditions, PAR-iCLIP crosslinking
should only be possible between thio-uridine and aromatic amino-
acid residues. A high rate of thymidine at position 0 of the mapped
reads, i.e. the hypothetical crosslink site could be shown for our Sedl-
yarov et al. [120] dataset. This suggests, that crosslinking at incorpo-
rated thio-uridines efficiently causes reverse transcriptase to fall off
during reverse transcription directly at the cross-link site (∼66% of
reads). For the remaining 34% of reads the hypothetical cross-linked
site is at an A,G or C. However, the nearest T2C transition is usually
within 10nt from the observed position zero. Thus, reverse transcrip-
tase occasionally reads through crosslinks, but seems to fall off in
the immediate surrounding in most cases. Experiments that would
establish a benchmark for thio-uridine incorporation, crosslink effi-
ciency and reverse transcriptase read-through and drop-off rates are
not available yet. Thus, we accept the high rate of thymidine in posi-
tion 0 and the fact that T2C transitions (∼ 46% of all analyzed tran-
sitions, fig. 28) are observed far more often than any other mutation
(∼ 4− 5 times more often than the next most frequent transition) as
indicators for high-quality CLIP-Seq .

Although not corrected for biases from mapping errors, sequencing
quality or SNP-events, the high amount of T2C transitions can only
be explained by read-through events. However, this also shows the
main advantage of this method compared to regular PAR-CLIP . For
the latter, read-through is mandatory for library preparation, leading
to PCR duplicate rates of 80% and more, simply as the sequencing
depth is limited.

In case of this study, focusing on transition events only would have
led to a loss of many uniquely mappable reads, i. e. sequencing depth.
So far no standard method for quantification of read-through and
crosslink events and incorporation of findings into CLIP-Seq processing
and normalization was established. The RNA-Seq based normaliza-
tion of PAR-iCLIP reads presented in this thesis (see section 2.2.6)
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made it possible to compare results for TTP and HuR, including RNA
stability correlation analysis, which would otherwise have been prob-
lematic. RNA-Seq expression rates were also used to filter the set of
unbound motifs, which increased the quality and significance of all
downstream analysis steps.

3.2.2 HuR binds preferentially to 3’UTRs of mouse BMDM mRNAs

A proposed mechanism for HuRs RNA stabilizing function is that
HuR binds to the 3’UTR of its target and the poly-A tail, preventing
deadenylases from degrading the latter. PAR-iCLIP derived HuR sig-
nal stems almost exclusively (∼90%) from binding to 3’UTRs exons.
This is true for HuR in TTP+/+ (WT) and as well as in TTP−/− (KO)
cells. Although we observed intronic binding of HuR (3% in WT and
7% in KO), the amount of crosslinks in this regions is so small, that
most peaks were discarded during peak filtering. Similar results have
been reported in previous studies of HuR CLIP-Seq , e. g. Uren et al.
[134]. The fact that signal stems almost exclusive from 3’UTRs con-
tributes to the proposed mechanism for HuRs stabilizing function.

3.2.3 TTP also binds to intronic regions of mouse BMDM mRNAs

Although the exact mechanism behind TTPs RNA destabilizing func-
tion is still not fully understood (see Brooks and Blackshear [17] for
a review), so far only 3’UTR binding could be shown to influence
RNA half-life. Also in this work, the majority (53%) of TTP PAR-
iCLIP crosslinks could be mapped to 3’UTRs. However, to some sur-
prise, we could annotate a third (32%) of them in intronic regions
of coding sequences. 10% of this signal originates from intron 4 of
Immune-responsive gene 1 (Irg1). Intronic binding of TTP has been
observed before [102], however, it remains elusive whether TTP in
this case also causes mRNA destabilization or performs other, yet
uncharacterized functions.

Introns might act as sponges that titer TTP away from its regular
target sites in 3’UTRs and by this increase target mRNA stability in a
cis- or trans- acting manner. Such intronic sponges were described as
circular RNAs [98], that for instance control abundance of free/reac-
tive miRNAs [46].

In Sedlyarov et al. [120] we could show that TTP is available in the
nucleus, the same compartment were introns are spliced. Thus, our
results suggest that introns play a role in regulating or at least tuning
concentrations of free TTP. Whether or not this observation applies
to other introns remains to be seen, given that introns often contain
AU-repeats which are potential TTP binding sites.

The same is true for the idea of circularized intronic sponges, which
seems an intriguing explanation for TTPs unexpected binding behav-
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ior. The huge amount of signal stemming from a single intron (Irg1
intron 4) and the fact that TTP binds to the spliced out version of the
latter, suggest sponge function. As such a sponge has a strong influ-
ence on the amount of TTP available for binding, tight control of its
own half-life could be established by de-/circularization. Additional,
targeted RNA-Seq experiments would allow to proof this concept if
circularization point spanning reads can be found.

Anyway, even if Irg1 intron 4 can be shown as TTP sponge in
mouse, it is not conserved in human (in contrast to many other in-
tronic ARE-elements, see 2.2.11.1), but the existence of such an inter-
esting regulatory mode should nonetheless be investigated beyond
the scope of this one intron.

3.2.4 Identified target genes and implications

Many of the known TTP and HuR target genes are present in our top
target lists (see section 2.2.7) which further supports the usefulness
of the applied PAR-iCLIP method. In section 2.2.6.1 we show that nor-
malization by RNA-Seq estimated expression rates could successfully
be applied, leading to normalized target lists that were used for many
downstream analysis steps.

This normalization is of importance for the investigated system,
immune response in primary mouse BMDMs. It allows to re-rank
targets according to TTPs/HuRs binding preference in relation to ex-
pression changes due to LPS induction and/or TTP knockout. Al-
though this does not allow direct inference of binding affinities, it is
a crucial first step towards such an analysis. Quantified binding sig-
nal gives a direct measure to compare targets and protein binding
preferences over a range of experimental conditions.

Without previous normalization, analysis steps like correlation with
mRNA decay would be rather meaningless. A remaining challenge is
the normalization of intronic signal, however, due to the unknown
effect of such binding, without consequences for this thesis.

3.2.5 Different binding region equals different binding motif?

MEME analysis (see section 2.2.8.1) confirmed published binding mo-
tifs for both TTP and HuR. TTP shows permutations of ARE and
U-rich motifs throughout peaks in 3’UTRs and intronic regions. The
motifs vary slightly in sequence, however, TTP seems to recognize the
3’UTR and intronic motifs comparably well.

To validate this, introns were searched with the 3’UTR motif and
vice versa and signal coverage on found motifs was calculated. While
signal in UTRs slightly decreased when searching with the intronic
motif, the 3’UTR motif applied on intronic binding sites showed more
signal coverage. The motif derived from 3’UTRs allows for more vari-
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ation due to the variable flanking positions allowing either A or U
and thus covers, as expected, more signal. However, this is a strong
indicator that TTP does not discriminate 3’UTR from intronic binding
sites by motif.

96% of TTP target genes contain the top over-represented MEME
motifs somewhere in their 3’UTRs or intronic regions (see tab. 9 in
section 2.2.8.1). In about 65% of those genes the potential binding
sites are indeed used for binding, as indicated by PAR-iCLIP signals.

Visual inspection of the remaining 35% of genes revealed slight
variations of the TTP core motif in TTP peaks, for instance, an addi-
tional U in the center (UAUUUUAU) or motifs were the flanking Us
are missing (AUUUA) or even motifs entirely consisting of Us (UUU-
UUUU) were found. In the latter cases, overlapping PAR-iCLIP signal
of TTP and HuR was observed, explaining the U-richness of these
motifs.

We propose that overlapping motifs present a third class of binding
motif (see section 2.2.8.2), which can be seen as a hybrid motif for
both proteins. However, due to the low number of overlaps, the po-
tential of the derived motif for prediction of other overlapping sites
remains to be validated.

3.2.6 Binding sites are often conserved between mouse and human

Investigating the conservation of binding sites for TTP and HuR be-
tween mouse and human (see section 2.2.9) shows that sites located
in 3’UTRs are frequently conserved. Also intronic sites are conserved,
but to a lesser extend.

As so far only 3’UTR binding could be shown to influence mRNA
stability, this indicates that conclusions drawn here for mouse can
be ported to human. The same is true for the identified target genes,
where most have orthologs in human.

It is important to emphasize such a finding, as for many interesting
studies, including most knockout or knockdown experiments, this
provides a way to investigate protein-RNA interactions in a native
setting in a model system without having to rely on over-expression
in “artificial” cell lines.

However, there is still no guarantee that findings drawn from such
studies can be ported 1:1, as cells from model organisms like mouse
can and do behave different from human cells, especially under stress.

3.2.7 Overlap analysis reveals not only competitive binding

TTP and HuR are known to have antagonistic effects on mRNA half-
life. While TTP is a known RNA destabilizer, HuR can prolong mRNA
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half-life. It has been shown that both act in complexes with other
proteins and/or regulatory factors like miRNAs [17, 86, 101], which
makes it hard to identify direct cooperative and antagonistic behav-
ior.

So far, it remained elusive whether they act on the same targets
and binding sites under native conditions, i.e. if they compete for
the same binding sites thereby directly antagonizing each other. The
Sedlyarov et al. [120] PAR-iCLIP experiments analyzed in this thesis
provide the basis for competition analysis under native conditions.

To see if TTP and HuR indeed compete for target genes, we ana-
lyzed overlapping peak regions for TTP with HuR in WT and in KO
cells (see section 2.2.7.1). While 23% of genes containing TTP peaks
also contain peaks of HuR in WT (34% in KO), only 10% of those
show directly overlapping peak regions with HuR in WT (13% in
KO) and 8% under both conditions at the same genomic position.

Thus, TTP and HuR indeed target the same genes to some extent,
but they do only rarely share the same binding regions. While HuR
in KO binds 75% (229) more genes than in WT, we only detect 50
more genes that are also targeted by TTP. This does not support direct
competition as default regulatory mechanism. However, HuR might
very well be just one among many protein or (nc)RNA agents that are
able to interfere with TTP binding and vice versa, especially under
inflammatory stress conditions.

We conclude, that TTP and HuR compete directly for certain tar-
gets, but our data suggest that this is not the default. This is in con-
trast to the study of Mukherjee et al. [102], who found over 80% over-
lap. However, we investigate the role of both proteins in a native set-
ting, without over-expression or "artificial" cell lines like HEK cells,
both potentially resulting in many false positives and non-functional
targets. We focus on the role of TTP and HuR in the specific pro-
cess of immune response in a native setting without overexpression.
Thus, we may miss potential targets, either because these targets are
simply not expressed in BMDMs, or they vanish in comparison to tar-
gets important during inflammatory stress. However, for any CLIP-
Seq experiment, there is always a tradeoff between finding as many
potential binding sites as possible and finding binding sites that have
a real biological meaning for a system. The ideal case would be to
combine both kinds of study, to first draw conclusions on general
binding behavior, and then investigate a more specialized case to
see if conclusions drawn from the general investigation still hold
true. This was successfully done in this thesis, highlighting both, dif-
ferences as well as commonalities between two TTP focused CLIP-
Seq studies.
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3.2.8 Cooperative vs. competitive binding in broader context

For the PAR-iCLIP dataset of TTP and HuR binding sites, no prefer-
ence for direct competition could be found. In general the binding
sites of both proteins do not overlap directly, obvious when compar-
ing their preferred binding motifs. This, however, does not exclude
competitive behavior, as competitive effects do not necessarily need
direct overlaps. To investigate this in more detail, all pairs of bind-
ing sites for TTP/HuR and miRNAs extracted from an Ago-CLIP-
Seq experiment [86] were compared, see section 2.2.13.

With a simple model (see section 2.2.13, equation 3), changes in bind-
ing free energy in presence of binding partners on the same 3’UTR
were analyzed. Although this study is only preliminary, a proposed
regulatory feedback-loop between miRNA-27, HuR and TTP could
already be shown to be even more complex.

However, although the simple model used here is by far not com-
plete and it requires more effort and data to come up with a more
convincing model, first results show potential for future investiga-
tions in this direction.

To shed more light onto this complex topic, additional data has
to be included. Efforts like eCLIP experiments applied by the GEN-
CODE consortium make many new CLIP-Seq datasets available in
a comparable manner. However, the full complexity mechanism of
RNA-protein interactions will only be deciphered if the full spectrum
of interactions is taken into account, including protein-RNA as well
as RNA-RNA and protein-protein interactions on sequence as well as
on structure level.

3.2.9 Is sequence or structure the better predictor for functional binding
sites

Taking together the results from this thesis, it seems that both, se-
quence and structure are reasonable descriptors for bound and un-
bound motifs in human and mouse. For motifs derived from ARE-
site2 , one has to keep in mind that this dataset is unfiltered and
for sure contains a lot of false negatives, simply due to the fact that
only a limited amount of CLIP-Seq experiments is available and that
these experiments are not saturated and not accompanied by match-
ing RNA-Seq experiments or other adequate measures of transcript
abundance.

For PAR-iCLIP binding sites in mouse, which were investigated in
more detail, it could be shown that accessibility, or opening energy
is a solid, if not even better descriptor than AU-content. The main
conclusion that can be drawn from this investigation is that bound
sites are usually found in a context which is both, more AU-rich and
accessible than unbound motifs.



3.2 par-iclip 119

Linear discriminators, trained with AU-content and opening en-
ergy as descriptors for the PAR-iCLIP dataset and tested there, as well
as with the AREsite2 dataset, prove that accessibility of binding sites
is a solid discriminator for both, TTP and HuR binding. Although
AU-content is already a good discriminator, accessibility of motif em-
bedding regions outperforms it in both test sets, especially for HuR.

One has to keep in mind that the proteins investigated here are all
known to have strong preferences for specific binding site sequence,
as was confirmed here too. These motifs are highly enriched in Uri-
dine and Adenine, which increases the chance of finding unpaired
stretches embedding binding sites. This suggests that the high AU-
content of the surrounding region serves to make the binding site
more accessible. For a high quality binding site set and given care-
ful RNA secondary structure prediction, accessibility of motif embed-
ding region provides a layer of information that should definitely be
integrated into target site prediction.
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3.3 concluding remarks and outlook

Many studies that focus on interactions between proteins and RNA
have been presented over the last years, with numbers growing from
day to day. Their experimental design has changed over the years,
from single target, single interaction, gel electrophoresis driven to
whole cell, transcriptome wide interactome analysis driven by high
throughput sequencing advancements.

Sparked by the invention of CLIP-Seq techniques, studies nowa-
days present target lists containing hundreds or thousands of inter-
action sites for single proteins. This evolution from single target to
the whole interactome allows researchers to draw conclusions about
binding preferences and interaction networks on a whole new scale.
For the first time ever, it is possible to get detailed knowledge about
the role and behavior of an RNA binding protein in an in vivo setting
and on a cell wide scale, probably even in single cell resolution in the
not so far future.

This leads to new insights and allows to investigate correlation be-
tween interaction and cellular events that were not possibly drawn
before.

However, with all this new data and information it is still important
to keep in mind that CLIP-Seq also has its limits.

One limitation of CLIP-Seq is that it can only resolve interactions
that are exposed to the crosslinking agent, which is usually UV-light.
The saturation rate of UV-crosslinking seems to be highly variable,
between cell-types as well as between proteins, and so far no con-
trol experiment which could be used to deduct saturation rates was
shown.

Another drawback is the lack of a solid negative control, preventing
experimental validation of false positives. IP-bases techniques can po-
tentially introduce a range of errors, highly depending on the quality
of the used antibody, although quality control is possible to ensure
specificity. CLIP-Seq alone can not determine the affinity of a pro-
tein for certain targets and is only a quantitative measure in terms of
which RNAs are targeted by the protein of interest.

Still, CLIP-Seq is a solid technique for the investigation of proteins
that directly interact with RNAs, as long as certain quality standards
are fulfilled.

Any CLIP-Seq experiment profits from matching RNA-Seq -experiments,
which allow to draw conclusions about transcript abundance and can
be used to normalize CLIP-Seq signal to available copies of target
RNAs. Furthermore, accompanying experiments allow to extend the
information derived from CLIP-Seq experiments from binding site lo-
cation to biological function, e. g. RNA half-life control.



3.3 concluding remarks and outlook 121

Only very few experiments are concerned with the cooperative or
antagonistic effects of RBPs. Such effects can, however, have a huge
impact on the interactome of a protein in a certain cell type under
certain conditions. Another point to keep in mind is that many RBPs
interact not alone but in a complex with other proteins, RNPs or other
molecules, which potentially have a strong effect on the choice of
target.

This could be circumvented by combining in vivo approaches like
CLIP-Seq with in vitro - experiments like RNA-bind’n-seq, which ex-
clude naturally occurring partners/competitors and allow to focus on
a single player. Such experiments, however, can never cope with the
complexity of in vivo experiments, and results have to be compared
carefully.

The combination of CLIP-Seq with other experiments also allows
to draw conclusions about the consequences of successful binding,
as could be shown for TTP and mRNA decay [120]. Although the
correlation between decay and TTP binding signal is strongest for a
specific TTP target (Tnf-α), a general trend towards TTP function as
regulator of late immune response could be shown.

The case of TTP and mRNA decay is special and it may be harder to
find consequences of other RNA-RBP interactions, however, this part
remains the most interesting, as interaction without consequences is
only half of the story.

Taken together, CLIP-Seq has a huge potential for the investiga-
tion of RNA-protein interactions. Careful planing and selection of
adequate cellular system, as well as accompanying experiments like
RNA-Seq are prerequisites for a comprehensive investigation.

The next years will bring further advances in experimental and
in silico approaches which will shed more light on the complex inter-
actome of higher cells, creating a basis for synthetic approaches that
allow us to take control and directly influence the balance towards
our needs.

The End
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a.1 aresite2_supplements

This section contains supplementary figures for section 2.1.5. Fig-
ures 46 to 48 show ROC curves from the descriptor analysis of ARE-
site2 derived HuR, TTP and Auf1 bound and unbound AU/GU/U-
rich elements in human. Figures 49 to 51 show ROC curves from the
descriptor analysis of AREsite2 derived HuR and TTP bound and un-
bound AU/GU/U-rich elements in mouse. In contrast to the figures
in section 2.1.5, the here presented figures contain ROC curves for all
combinations of motifs and proteins, even if the motifs are not main
targets for the protein of interest.
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AUUUA GUUUG

UUUUU

Figure 46: Descriptor analysis of nucleotide content vs accessibility of
Auf1 bound/unbound AU/GU/U-rich elements in human ROC
curve to visualize the descriptive power of accessibility and nu-
cleotide content in terms of Area under the ROC (AUC).
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AUUUA GUUUG

UUUUU

Figure 47: Descriptor analysis of nucleotide content vs accessibility of
HuR bound/unbound AU/GU/U-rich elements in human ROC
curve to visualize the descriptive power of accessibility and nu-
cleotide content in terms of Area under the ROC (AUC).
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AUUUA GUUUG

UUUUU

Figure 48: Descriptor analysis of nucleotide content vs accessibility of
TTP bound/unbound AU/GU/U-rich elements in human ROC
curve to visualize the descriptive power of accessibility and nu-
cleotide content in terms of Area under the ROC (AUC).
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AUUUA GUUUG

UUUUU

Figure 49: Descriptor analysis of nucleotide content vs accessibility of
HuR bound/unbound AU/GU/U-rich elements in human ROC
curve to visualize the descriptive power of accessibility and nu-
cleotide content in terms of Area under the ROC (AUC).
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AUUUA GUUUG

UUUUU

Figure 50: Descriptor analysis of nucleotide content vs accessibility of
TTP 3 h bound/unbound AU/GU/U-rich elements in human
ROC curve to visualize the descriptive power of accessibility and
nucleotide content in terms of Area under the ROC (AUC).
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AUUUA GUUUG

UUUUU

Figure 51: Descriptor analysis of nucleotide content vs accessibility of
TTP 3 h bound/unbound AU/GU/U-rich elements in human
ROC curve to visualize the descriptive power of accessibility and
nucleotide content in terms of Area under the ROC (AUC).
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a.2 par-iclip supplements

This section provides supplementary information to the analysis of
PAR-iCLIP data for TTP and HuR in mouse macrophages in section 2.2.

a.2.1 Top 10 targets

Tables of top target genes and introns of TTP and HuR, both normal-
ized with RNA-Seq and without normalization, are presented here.
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a.2.3 Top 10 TTP intronic targets
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142 appendix

a.2.4 RNA-Seq normalized PAR-iCLIP peaks

This section contains the highest ranked peaks by RNA-Seq normalized
PAR-iCLIP signal of TTP and HuR.
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a.2.5 GO-term analysis

This section presents results from GO-term enrichment of TTP and
HuR target genes analyzed with TopGO and DAVID .



Table 31: GO-term enrichment for HuR target genes , and genes containing
exclusively 3’UTR or intronic peak regions, analyzed with TopGO
and expressed mouse BMDM genes as background

GO-ID GO-Term Annotated Significant Expected Rank weight

HuR

GO:0003779 actin binding 27 14 6.52 1 0.0014

GO:0005102 receptor binding 63 25 15.2 2 0.0030

GO:0005080 protein kinase C binding 4 4 0.97 3 0.0033

GO:0051015 actin filament binding 4 4 0.97 4 0.0033

GO:0008092 cytoskeletal protein binding 38 17 9.17 5 0.0034

GO:0005178 integrin binding 9 6 2.17 6 0.0079

GO:0001653 peptide receptor activity 3 3 0.72 7 0.0139

GO:0008528
G-protein coupled peptide re-
ceptor activ...

3 3 0.72 8 0.0139

GO:0016597 amino acid binding 3 3 0.72 9 0.0139

GO:0016887 ATPase activity 18 9 4.34 10 0.0142

HuR 3UTR

GO:0003779 actin binding 24 14 6.88 1 0.0018

GO:0038023 signaling receptor activity 15 10 4.3 2 0.0022

GO:0008092 cytoskeletal protein binding 32 17 9.18 3 0.0023

GO:0005080 protein kinase C binding 4 4 1.15 4 0.0066

GO:0051015 actin filament binding 4 4 1.15 5 0.0066

GO:0005102 receptor binding 57 25 16.35 6 0.0069

GO:0005178 integrin binding 8 6 2.29 7 0.0084

GO:0004871 signal transducer activity 33 16 9.47 8 0.0102

GO:0060089 molecular transducer activity 33 16 9.47 9 0.0102

GO:0001653 peptide receptor activity 3 3 0.86 10 0.0233

HuR Introns

GO:0036094 small molecule binding 58 9 3 1 0.00036

GO:0097367 carbohydrate derivative binding 54 8 2.8 2 0.00152

GO:0000166 nucleotide binding 55 8 2.85 3 0.00174

GO:1901265 nucleoside phosphate binding 55 8 2.85 4 0.00174

GO:0005516 calmodulin binding 2 2 0.1 5 0.00249

GO:0097159
organic cyclic compound bind-
ing

91 10 4.71 6 0.00270

GO:1901363 heterocyclic compound binding 91 10 4.71 7 0.00270

GO:0032553 ribonucleotide binding 46 6 2.38 8 0.01712

GO:0001882 nucleoside binding 47 6 2.43 9 0.01908

GO:0008026
ATP-dependent helicase activ-
ity

6 2 0.31 10 0.03309



Table 32: GO-term enrichment for HuR target genes in TTP-KO , and
genes containing exclusively 3’UTR or intronic peak regions, an-
alyzed with TopGO and expressed mouse BMDM genes as back-
ground

GO-ID GO-Term Annotated Significant Expected Rank weight

HuR in TTP-KO

GO:0005102 receptor binding 66 32 20.72 1 0.0018

GO:0042623 ATPase activity, coupled 20 12 6.28 2 0.0070

GO:0016887 ATPase activity 23 13 7.22 3 0.0099

GO:0016209 antioxidant activity 6 5 1.88 4 0.0132

GO:0008026
ATP-dependent helicase activ-
ity

13 8 4.08 5 0.0231

GO:0070035
purine NTP-dependent helicase
activity

13 8 4.08 6 0.0231

GO:0005539 glycosaminoglycan binding 11 7 3.45 7 0.0269

GO:0001653 peptide receptor activity 3 3 0.94 8 0.0307

GO:0008528
G-protein coupled peptide re-
ceptor activ...

3 3 0.94 9 0.0307

GO:0016597 amino acid binding 3 3 0.94 10 0.0307

HuR in TTP-KO 3UTR

GO:0038023 signaling receptor activity 12 9 4.14 1 0.0046

GO:0005080 protein kinase C binding 4 4 1.38 2 0.0139

GO:0005102 receptor binding 56 27 19.33 3 0.0173

GO:0016209 antioxidant activity 6 5 2.07 4 0.0203

GO:0008092 cytoskeletal protein binding 31 16 10.7 5 0.0326

GO:0003779 actin binding 24 13 8.29 6 0.0341

GO:0001653 peptide receptor activity 3 3 1.04 7 0.0407

GO:0004930
G-protein coupled receptor ac-
tivity

3 3 1.04 8 0.0407

GO:0008528
G-protein coupled peptide re-
ceptor activ...

3 3 1.04 9 0.0407

GO:0005515 protein binding 337 125 116.35 10 0.0407

HuR in TTP-KO Introns

GO:0003950
NAD+ ADP-ribosyltransferase
activity

5 3 0.67 1 0.018

GO:0008026
ATP-dependent helicase activ-
ity

9 4 1.2 2 0.021

GO:0070035
purine NTP-dependent helicase
activity

9 4 1.2 3 0.021

GO:0004386 helicase activity 11 4 1.47 4 0.045

GO:0042623 ATPase activity, coupled 11 4 1.47 5 0.045

GO:0004693
cyclin-dependent protein ser-
ine/threonin...

3 2 0.4 6 0.048

GO:0005516 calmodulin binding 3 2 0.4 7 0.048

GO:0030332 cyclin binding 3 2 0.4 8 0.048

GO:0097472
cyclin-dependent protein kinase
activity

3 2 0.4 9 0.048

GO:0016763
transferase activity, transferring
pento...

7 3 0.93 10 0.053
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