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Abstract

RNA performs important functions in all organisms, for example mediating

gene expression. RNAs are often evolutionary conserved over large set of

species, giving rise to families of homologous RNA genes. These RNA fami-

lies exhibit not only sequence similarity, but are often characterized by strong

conservation of the RNA structure.

Computationally, RNA families are represented by RNA-family models, also

known as covariance models. Covariance models capture structure and se-

quence of the family in a probabilistic model. They enable the prediction of

additional, previously unknown, members of the RNA-family from genomic

sequences. This allows a knowledge transfer between organisms and helps in

designing experiments.

Up to now RNA-family models were constructed by manual collection and

curation, or automatic solutions for a few specific RNA families. The peer-

reviewed publication for ”RNAlien - Unsupervised RNA-family model con-

struction” introduces a novel method to automatically construct such models,

in principle for any RNA sequence. RNAlien, starting from a single input se-

quence collects potential family member sequences by multiple iterations of

homology search. RNA-family models are fully automatically constructed for

the found sequences.

The quality of RNA-family models and their performance in homology search

depends on several factors. RNAlien evaluates both the models as well as the

aligned sequences used to build them, to provide as much information about

the model as possible. However this takes only the novel model itself into

consideration, but does not investigate it in context with other models.

The following manuscript, with the title ”CMCompare webserver: comparing

RNA families via covariance models”, addresses the comparison between mod-

els. This allows to identify models with poor specificity and to explore the

relationship between models. Visualisation of family relationships helps in

identifying candidates for clans, groups of biologically related families.

Moreover the thesis presents a novel tool to visualise and compare the taxon-

omy of of found RNA-family members, called TaxonomyTools.
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Family member sequences found by RNAlien during the model construction

process are also a useful starting point for investigating families. UCSC genome

browser hubs visualise the found family members in their genetic context,

showing traits like orthology. Methods to constructs such hubs were con-

tributed to the publication ”ViennaNGS: A toolbox for building efficient next-

generation sequencing analysis pipelines” and are also presented in the thesis.
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Zusammenfassung

RNA-Familien werden in den Computerwissenschaften durch RNA-Familien

Modelle, auch bekannt als Covarianz-Modelle repräsentiert. Covarianz-Modelle

bilden Struktur und Sequenz der Familie als statistisches Modell ab. Sie

machen es möglich weitere, zuvor unbekannte, Vertreter der RNA Familie in

genomischen Sequenzen zu identifizieren. Dieser Vorgang ermöglicht es bekan-

ntes Wissen und experimentelle Ergebnisse von einem auf den anderen Organ-

ismus zu transferieren und vereinfacht das Design neuer Experimente.

In der Vergangenheit wurden RNA-Familien Modelle durch manuelles Sam-

meln und Verfeinern, oder durch automatische Lösungen für einige wenige

spezielle RNA Familien konstruiert. Die Publikation ”RNAlien - Unsupervised

RNA-family model construction” stellt eine neue Methode zum automatischen

Konstruieren solcher Modelle, prinzipiell für jede RNA Sequenz, vor. RNAlien,

ausgehend von einer einzelnen Eingabesequenz, sammelt potentielle Familien-

mitglieder durch multiple Iteration von Homologiesuche. RNA-Familien Mod-

elle werden automatisch für die gefundenen Sequenzen gebaut.

Die Qualität von RNA-Familien Modellen und ihre Leistungsfähigkeit in der

Homologiesuche hängt von verschiedenen Faktoren ab. RNAlien wertet sowohl

die Modelle, als auch die alignierten Sequenzen die zum Bau der Modelle ver-

wendet wurden, aus um so viel Information wie möglich zur Verfügung zu

stellen. Dies berücksichtigt allerdings nur das neukonstruierte Modell und

setzt es nicht in Beziehung zu anderen Modellen.

Die folgende Publikation, mit dem Titel ”CMCompare webserver: comparing

RNA families via covariance models”, behandelt den Vergleich zwischen Mod-

ellen. Dies erlaubt die Identifizierung von Modellen mit schlecher Spezifität

und die Untersuchung von Beziehungen zwischen Modellen. Visualisierung

dieser Zusammenhänge hilft bei der Identifizierung von Kandidaten für Clans,

Gruppen biologisch verknüpfter Familien.

Darüberhinaus wird ein Programmpacket, mit dem Namen TaxonomyTools,

vorgestellt, welches die Visualsierung und den Vergleich der Taxonomie von

gefundenen RNA Familien Mitgliedern ermöglicht.

Sequenzen von Familienmitglieder, die von RNAlien während des Konstruk-
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tionsprozesses identifiziert wurden, sind ein Ausgangspunkt für die weitere Un-

tersuchung der Familie. UCSC genome browser hubs visualisieren die gefunde-

nen Familienmitglieder in ihrem genomischen Kontext, was Eigenschaften wie

zum Beispiel Orthologie sichtbar macht. Methoden um solche Hubs zu bauen

wurden als Beitrag mit der Publikation ”ViennaNGS: A toolbox for building

efficient next-generation sequencing analysis pipelines” veröffentlicht und wer-

den hier präsentiert.
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1 Foreword

I have always felt that the research of RNA holds amazing challenges, which has

inspired me throughout my work in this field. In my diploma thesis I investi-

gated RNA-RNA interactions (Tafer et al., 2011) in bacterial cells (Eggenhofer

et al., 2011; Eggenhofer, 2011) and was confronted with several factors that

impeded progress in unraveling these mechanisms. First, for a wide range of

relevant — for example pathogenic — species, genomic annotation informa-

tion was incomplete. In the case of pairwise RNA interactions, missing gene

annotations mean that the corresponding interactions could not be predicted.

Second, annotation of the genome has different degrees of sophistication. Poor

annotation contains only the loci of a few protein-coding regions and assigns

some hypothetical functions of these. Annotation can be extended with loci of

non-coding RNAs, transcripts, repetitive regions and more. Such detailed ge-

nomic annotation is available for model organisms and closely-related species.

Even if genomic features are present, however, annotations often comprise of

just the protein-coding regions of genes without 3’ and 5’ untranslated regions.

Such incomplete annotation means that the parts of the gene that could poten-

tially interact, or inhibit interactions, are missing. In fact these deficiencies in

accurate gene annotations not only affect interaction predictions but genome-

scale analyses in general. A straightforward way to overcome this predicament

is to improve annotation. Considering the large and ever-growing number of

sequenced genomes, it is obvious that only automatic solutions would be able

to have a significant impact.

At the time of my diploma thesis, two of my collaborators, namely Christian

Höner zu Siederdissen and Ivo Hofacker, were working on the comparison of

RNA-family models. These RNA-family models can be used to annotate ad-

ditional instances of RNA genes from this family in other organisms. The

application of RNA-family models is currently the most sophisticated method

to improve the annotation for non-coding RNAs. While RNA-family mod-

els are available for established RNA families, it is not trivial to build new

RNA-family models for novel RNAs. 2,473 of such RNA-family models are

available via the Rfam (12.1) (Nawrocki et al., 2014a) database, which is the
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most popular RNA-family database to date. However, there is a huge potential

for additional RNA families that could be added to the pool and then used

to improve annotation. There are 20,313 protein coding and in total 25,180

genes annotated for Homo sapiens in Ensembl (Yates et al., 2016) version 84.

While some of the non-coding RNAs are unique to human, there will be many

that have homologs in, for example other mammalia. Compared to the 2,473

families in the Rfam database, there is potentially an order of magnitude, or

even more, additional families that could be entered only by taking the human

genome into consideration.

Instead of starting with a project to automatically construct such families right

away, I was given the opportunity to join the project for comparing RNA-family

models. This was very useful to develop a understanding for problems in the

use and construction of RNA-family models. Only afterwards I started to

investigate RNA-family model construction itself. This actually is the reverse

order of events as presented in my thesis, but I felt it is beneficial for the

reader to first consider the construction of RNA-family models and then their

evaluation.
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2 Theoretical Background

RNA is at the center of some of the most essential biological processes. Fore-

most among these is gene expression, turning the genotype into a phenotype.

The genotype, or heredity information, is encoded as Desoxyribonucleic acid or

DNA and then transcribed into RNA. RNA viruses (Steinhauer and Holland,

1987) are an exception, which also use RNA as genome.

RNA genes that originate from a common ancestor gene, also called homolog

RNAs can be found in different organisms. If a specific RNA has been investi-

gated in one organism the gained insights are often also valid for these related

RNAs.

This enables a knowledge transfer, which avoids redundancies and simplifies

the planing of further experiments. A set of such homolog RNAs, that share

the same biological function, is defined as RNA-family.

RNA-family models, describe the sequence and structure of a RNA-family.

They enable the identification of additional members of a RNA-family via

computational means.

This chapter presents the background and terminology for RNA biology and

for RNA-family models.

The biological background describes RNA via its structure and function. Sys-

tematic approaches to define relationships between RNA genes, as well as their

host organisms are introduced.

Construction of RNA-family models depends on sequence alignment. Moreover

sequence alignment has inspired methods in homology search. Therefore the

background includes a presentation of pairwise and multiple sequence align-

ment.

Dynamic programming, which is a method to solve complex problems by

splitting them into sub-problems, is introduced alongside sequence alignment.

However its use is ubiquitous in the field of bioinformatics.

RNA families are described via probabilistic models. First the simpler stochas-

tic regular grammars and hidden Markov models that can be used to model

primary sequence information are introduced.

However secondary structure information of homolog RNAs is often conserved
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when no sequence similarity can be detected. Therefore the more complex

stochastic context free grammars and RNA family models are presented, which

are able to model secondary structure information.

The goal of providing automatic construction of these RNA-family models

depends on the preexisting infrastructure. The Infernal (Nawrocki et al.,

2009; Nawrocki and Eddy, 2013) toolkit includes programs to construct and

process RNA-family models. RNA-family models are then archived in the

curated Rfam (Nawrocki et al., 2014a) database.

The identification of homolog RNA genes, or homology search, via RNA-family

models and alternative methods conclude the background chapter.
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2.1 RNA biology

Ribonucleic acid or RNA is involved in many biological processes and poten-

tially one of the most ancient components(Gilbert, 1986; Robertson and Joyce,

2012) of the cell.

RNA is a polymer formed of a sequence of different nucleotide monomers, which

in different number and combination can serve different biological functions.

Despite their complexity, it is possible to describe RNA molecules via abstrac-

tions, also called primary, secondary, tertiary and quaternary structures (Al-

berts et al., 2002). These represent specific facets of RNA in different levels of

detail.

RNA works as a means of information storage and transfer for cells and viruses.

Moreover RNA can act as an enzyme and catalyze chemical reactions.

The diversity of RNA molecules we can observe nowadays arose from evolution.

Understanding these evolutionary processes also allows us to find RNAs that

originate from a common progenitor RNA, also known as homolog RNAs.

Homology can be considered in context with the host organism the RNA has

be found in. Phylogeny and taxonomy are focusing on different features to put

organisms in relation to each other.

Beyond sharing a common ancestor there are also other criteria to group RNAs,

like RNA families, clans and classes. RNA families for example group RNAs

via their function.

2.1.1 Sequence

Biological macro molecules like DNA,Proteins and RNA are polymer chains

that consist of several specific types of monomers. RNA is composed of nu-

cleotide monomers.

Each of these nucleotides consists of a nucleobase, a pentose sugar (ribose) and

a phosphate. There are several canonical nucleobases that are generally part

of RNAs, adenine, cytosine, guanine, uracil. They are abbreviated with the

letters A,C,G,U (Comm, 1970). Guanine and adenine structures are based on

a purine and therefore also known as purine bases, while cytosine and uracil

are based on pyrimidine and known as pyrimidine bases.

There are other nucleobases (Helm, 2006) or modified versions of the four bases

mentioned above. They are relevant in special cases, such as making RNAs

resistant against degradation. In addition to naturally occurring nucleobases,

artificial ones have been investigated (Leconte et al., 2008), as well.
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Figure 2.1: RNA nucleotides adopted from Eggenhofer (2011): The structural
formula of a nucleosidmonophosphate is shown on the left hand
side of the figure, which has a covalent bond to a nucleobase in-
dicated by ’Base’. On the right hand side of the figure these nu-
cleobases are shown, grouped into Pyrimidinbases (Uracil, Cyto-
sine)and Purinebases (Guanine,Adenine)

The series of covalently linked nucleotides of the RNA molecule is commonly

referred to as sequence, but also known as primary structure. The primary

structure is usually written using the one-letter abbreviation, e.g. ”AUGC”

for a very short RNA consisting of four nucleotides.

The sequence is directed according to the phospho-diester bond connecting two

nucleotides. Index numbers assigned to the five carbon atoms of ribose serve

to give a name to the direction. The phospho-diester bond is formed between

the oxygen bound to the 5 prime (abbreviated with the character ’) carbon of

one nucleotide and the oxygen bound to the 3’ carbon of the next nucleotide

(see Figure 2.2).

Sequences of naturally occurring RNA molecules can range from a few nu-

cleotides long small RNAs (sRNA) (Storz et al., 2011) to thousands of nu-

cleotide long ribosomal sub-units (Brimacombe and Stiege, 1985) or long non-

coding RNAs (lncRNA) (Kung et al., 2013). The sequence of U6 snRNA (Brima-

combe and Stiege, 1985), a non-coding RNA that is part of the splicosome (Will

and Lührmann, 2011) is shown in Table 2.1.

2.1.2 Secondary structure

Secondary structure refers to base pair interactions between nucleotides of the

RNA molecule.

Base pair interactions are weak chemical bonds and based on non-covalent

interactions (Lee and Gutell, 2004).

They came to prominence with the discovery of the DNA double-helix (Wat-
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son et al., 1953). The two strands of the helix are connected via base pairs

between cytosine and guanine, as well as thymine and adenine. The base pair

interactions in the double helix are referred to as canonical base pairs.

While individual base pairs are weak compared to covalent bonds, the overall

binding energy between the strands increases with their number. Base pairs,

in combination with each other, can have a major influence on the structure

of a molecule.

However, many other types of base pair interaction exist in three dimensional

structures. The planar representation of nucleotides, as used in the structural

formula, allows to define interaction surfaces, also known as edges. Leontis and

Westhof (Leontis and Westhof, 2001) categorised base-pair interactions by the

two edges that are interacting.

Purine bases each have a Hoogsteen, a Watson-Crick and a Sugar edge, while

pyrimidine bases feature a C-H, a Watson-Crick, and a ’Sugar’ edge for pos-

sible interactions. Canonical edges, as in the DNA double helix form between

Watson-Crick edges.

Non-canonical base pairs refer to all the remaining interactions between edges

of bases and the sugar component of the nucleotide. These interactions are

even weaker, but there are many different combinations possible. Secondary

structure considering non-canonical base pairs is also known as 2.5D, or ex-

tended secondary structure (Leontis and Westhof, 2001).

Both complementary canonical base pairs have similar distances between the

outermost C1-atoms. This allows the formation of anti-parallel RNA helices.

But also non-canonical base pairs share geometric properties, which can be

used to partition base pairs into isosteric subsets (Leontis et al., 2002).

One RNA molecule can assume many different structures, which are formed

by different combinations of canonical and non-canonical base pairs, between

the nucleotides of this RNA. This is referred to as structure ensemble.

A specific structure is more likely to occur in a population of RNA molecules,

the stronger the sum of all interactions between its base pairs are. The en-

ergy needed to break these interactions has been measured by melting experi-

ments (Mathews et al., 1999b, 2004; Turner and Mathews, 2009).

The biological function of a RNA molecule is closely linked to corresponding

structures. The U6 snRNA (Brow and Guthrie, 1988), for example is a part of

the splicosome (Wahl et al., 2009). It acts as a recycling factor for ribonucleic

particles (Raghunathan and Guthrie, 1998). U6 structure is adapted to provide

binding sites for its interaction partners, like U4 snRNA (Bringmann et al.,
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Figure 2.2: Canonical base-pairs of RNA, adopted from (Eggenhofer, 2011):
Two anti-parallel strands of RNA are shown. The molecule on
the left is oriented from 5’ (top) to 3’ (bottom) and consists of a
adenine- (red) and a cytosine-nucleotide (yellow). The right hand
molecule direction is reversed and starts with a guanine-nucleotide
(blue) and ends with a uracil-nucleotide (green). The direction
is defined by the labeling of the ribose (grey) carbon atoms. A
canonical base-pair with two hydrogen bonds, between adenine and
uracil is shown in the top-center of the figure, while a canonical
base-pair between guanine and cytosine with three hydrogen bonds
is depicted in the bottom-center.

1984) and Sm proteins (Hermann et al., 1995).

If the structure of the U6 snRNA changes, several other components of the

splicosome would need to adapt their structure to preserve the function (Cheng

and Abelson, 1987). This constraint on structure can be observed for homolog

RNAs that are far diverged, while the sequence of the RNAs might be only

very weakly conserved.

Several basic reoccurring patterns can be observed in secondary structures

formed by canonical base pairs. They can be combined and even nested
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Table 2.1: Secondary structure representation of RNA: The U4 snRNA se-
quence retrieved from Rfam (Nawrocki et al., 2014a) seed alignment
via id M15957.1/271-411 is used to illustrate representations for sec-
ondary structure. Two different representations of secondary struc-
ture are shown. Dot-bracket notation indicates unpaired bases via
dots and base pair via a pair of brackets. The W ashington State
U niversity secondary structure (WUSS) notation as used by the
Infernal (Nawrocki et al., 2009; Nawrocki and Eddy, 2013) pack-
age allows the describe the nested secondary structures and includes
information about motif types.

Sequence AGCUUUGCGCAGUGGCAGUAUCGUAGCCAAUGAGGUUUAUCCGAGGCGCGAU

Dot-Backet ................((.(((((.(((................))))))))

WUSS ::::::::::::::::<<-<<<<<-<<<________________>>>>>>>>

Sequence UAUUGCUAAUUGAAAACUUUUCCCAAUACCCCGCCAUGACGACUUGAAAUAU

Dot-Backet ..))....((((...........)))).....(((.((((((((((...)).

WUSS -->>,,,,::::::::::::::::<<-<<<<<-<<<________________

Sequence AGUCGGCAUUGGCAAUUUUUGACAGUCUCUACGGAGA

Dot-Backet ))))))))..)))............((((....))))

WUSS >>>>>>>>-->>,,,,,,,,,,,,,<<<<____>>>>

within each other. Homolog RNAs often have the same secondary structure

motifs (Nowakowski and Tinoco, 1997; Gan et al., 2003) conserved. Some

examples are shown in Figure 2.3.

The mutation of one nucleotide in a functionally important base pair is some-

times followed by a second mutation that restores the base pair in the comple-

mentary nucleotide. That form of structure preserving mutations is known as

covariance (Eddy and Durbin, 1994) of base pairs and is very useful to track

functional conservation. A example of covariant stem loops is shown in Figure

2.4.

2.1.3 Tertiary structure

While the secondary structure captures interactions, it is a simplification. The

tertiary structure describes the spatial location of all atoms included in the

RNA molecule.

Tertiary structure motifs (Westhof, 2010) are much more variable and numer-

ous compared to canonical secondary structure motifs. For internal loops alone

there are 372 non redundant 3D motifs cataloged at the Internal Loop Motif
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Watson - Crick and GU Wooble Pairs (AU,UA,CG,GC,GU,UG)

Otherwise

Internal Loop

5'

3'

5'

3'

Double Helix

5' 3'

3' 5'

Bulge

5'

3'

3'

5'

Multiloop

5'

3'

5'3'

3'5'

Hairpin Loop

5'

3'

Figure 2.3: RNA secondary structure motifs, adopted from (Nowakowski and
Tinoco, 1997) and (Gan et al., 2003): Black lines in the figure
indicate the backbone, yellow lines show base pairs and blue lines
unpaired nucleotides.

Atlas (Release 1.18). Secondary structure information can be augmented by

annotating it with the location of known 3D-motifs (Petrov et al., 2013). More-

over tertiary structure themselves can consist of recurring tertiary structure

building blocks, also called 3D modules (Hendrix et al., 2005).

A reason for this increased variability is that tertiary structure allows not only

pairwise interactions between nucleotides. Nucleotide triplets occur in human

telomerase where they stabilize a catalytically important pseudoknot (Kim
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5' 3'

C G

C G

C G

C G

T

TT

5' 3'

C G

G C

C G

C G

T

TT

covariant

base-pair

Unpaired nucleotides
Watson - Crick base pairs

Figure 2.4: Covariance of base-pairs: The arrow indicates two covariant base-
pairs. Mutations that disrupt biologically relevant structures can
be compensated via a second mutation that restores the base-pair.

et al., 2008). Quadruplexes of nucleotides have been observed in ribosomal

RNA Cheong and Moore (1992). A other major factor is coaxial stacking,

that aligns helical regions in sequence to each other and is present in tR-

NAs (Quigley and Rich, 1976)

Tertiary structure motifs (Špačková and Šponer, 2006), as well as the modules

they are composed of are frequently conserved between homolog RNAs. U4

snRNA features the kink-turn (Vidovic et al., 2000) motif. The kink turn is

a common structural motif and can serve as a protein binding site (Schroeder

et al., 2010).

A emerging approach is to consider secondary and tertiary structure in context

with each other. 3D modules can guide prediction of secondary structure in a

genomic scale and detection of genes (Theis et al., 2015).

2.1.4 Quaternary structure

Quaternary structure refers to interactions of the RNA molecule with other

molecules. Binding sites on the RNA are specific for certain molecules or

classes of molecules. Multiple binding sites can enable to formation of whole

complexes of different molecules.

Therefor the knowledge about the binding partner for a RNA at all time points

can be the key to understand the biological function of it. The interaction of

a small bacterial RNA (Storz et al., 2011) can change the secondary structure

or even the currently possible other binding partners of this RNA.

There are also much larger complexes, for example the splicosome, in which

U6 snRNA, introduced above, is participating. Depending on the function it
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serves at this time point it can interact with sm-like Proteins (Vidovic et al.,

2000), as well as U4 snRNA and others.

2.1.5 RNA function

Some RNAs are used as a template or message for translation into amino-acid

polymers, also known as proteins. The two consecutive steps of translation

and transcription have been defined as the central dogma of molecular biol-

ogy (Crick, 1970). Besides these messenger RNAs (mRNA), there are RNAs

that are not encoding proteins, called non-coding RNAs (ncRNA).

Transcription (Browning and Busby, 2004; Coulon et al., 2013) converts a gene

from the genome into a RNA molecule, a transcript. This RNA has a sequence

that is anti-parallel to the DNA it was transcribed from. Thymine, which does

not occur in RNA is thereby replaced with Uracil.

There are several processes that are associated with transcription that can

alter the RNA from being a reverse complement copy. Splicing (Matlin et al.,

2005) removes certain parts of the transcript.

The parts that are cut out are referred to as introns, while the persistent parts

are known as exons. Introns can, independently of their host transcript, fill

biological functions (Westholm and Lai, 2011).

mRNA translation (Laursen et al., 2005; Dever and Green, 2012) converts

nucleotide triplets of the transcript into a protein. The process of translation

itself depends on several components that are composed of RNA.

The catalytic center of the ribosome (Palade, 1955) that is actually connecting

amino-acid monomers is a highly conserved RNA, that is ubiquitous in the

cellular organisms. This widespread presence in the tree of life combined with

conservation (Ben-Shem et al., 2011) has been used as an argument that RNA

is the most ancient component of life (Robertson and Joyce, 2012).

RNA is not restricted to catalyse the polymerization of amino-acids. RNA

with catalytic properties is referred to as ribozyme (Kruger et al., 1982; Cech

and Steitz, 2014).

RNA is involved in many other complex tasks, such as replication (Frouin

et al., 2003), telomer extension (Bodnar et al., 1997), X-chromosome inactiva-

tion (Penny et al., 1996). They have conserved RNAs in common which will

be introduced in the next sections.
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2.1.6 Homology

Homology (Fitch, 2000a) of RNA and protein coding genes arises when they

share a common ancestor gene. Homology can be divided in into several sub

types, which are described in the following text (see Figure 2.5).

Two types of events are relevant for homology. A speciation event is a process

where one species develops into genetically different daughter species. The

cause for this process can be mutations or recombination events. A duplication

event is the duplication of a specific gene, which is afterwards present in two

different loci in the same genome.

Ortholog genes result from speciation events. The gene is then present in two

different species. In general they fulfill the same biological function.

Paralog genes are created through duplication events within one species. If

the species is evolving into different daughter-species via a speciation event,

two sub types of paralog genes can be defined. In paralog genes (Sonnhammer

and Koonin, 2002) evolved by gene duplication after the speciation event. Out

paralogs (Sonnhammer and Koonin, 2002) arise from duplications before the

speciation event.

Paralog genes and gene duplications are highly relevant for evolution. One of

the two genes is free to evolve into a new biological function, while the host

organism retains the original function via the second gene. This process is

known as functional divergence (Gu, 2003; Soria et al., 2014).

Xenolog genes originate from foreign (greek: ξένoς, xénos) DNA that contains

the gene and has been integrated in the cells genome. This process, also called

horizontal gene transfer, can be mediated by viral/phagic vectors or by up-

take from DNA from the extra cellular space. Horizontal gene transfer can be

a driving force for rapid adaption to new environments, e.g. requirement of

pathogenicity genes in bacteria (Gyles and Boerlin, 2013).

Genes with a similar phenotype, or function do not automatically result from

the same genotype or even from homolog genes. The process which molds

genes of different ancestry into the same phenotype is known as convergent

evolution (Reece et al., 2011).

A big caveat for the annotation of homology is that genes that originated from

convergent evolution are mistakenly annotated as homologs. This incorrect

use of the term homology disregards the required evolutionary descent from a

common ancestor gene (Marabotti and Facchiano, 2010).

Homology information makes it possible to share experimental data and an-

notations between organisms. There are numerous databases that provide
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A1 AB1 B1 B2 C1 C2 C3

Speciation1

Speciation2

Duplication1

Duplication2

horizontal 

gene transfer

Legend:

Organism A

Organism B

Organism C

In-paralog

Ortholog

Out-paralog

Xenolog

Figure 2.5: Types of gene homology: Homologs are genes that are derived
from a common ancestor gene. There are 3 major types of homol-
ogy. Orthologs arise from a speciation event and represent related
genes in different species. Paralogs are created in gene duplica-
tion events, meaning that multiple copies of the gene are present
in the organism. Xenologs originate from horizontal gene trans-
fer, meaning the integration of DNA imported from outside of the
cell in the genome. If the integrated DNA contains genes that
share a common ancestor with one of the original genes, they are
Xenologs. A,B,C denotes the daughter-species resulting from spe-
ciation events. Figure adopted from Fitch (2000b) and Richardson
and Watson (2013)

this information (Huerta-Cepas et al., 2015; Wheeler et al., 2007) Homology

of genes and their degree of conservation also influences how the ancestry of

organisms is interpreted.

2.1.7 Phylogenetics

Phylogenetics describes the relationship between organisms and their common

history in evolution. Heritable traits of the organisms like morphological prop-

erties or similarity of DNA, RNA and protein sequences is used.

Phylogenetics is based on the idea that all species share a common ancestor.

A phylogeny of a certain group of organisms tries to trace the common paths

of descent from their last shared ancestor.

The phylogeny is usually represented by a phylogenetic tree. This tree can

be rooted, where the root represents the most recent common ancestor of all

species in the tree. An unrooted tree just shows the relatedness of the included
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species.

The leaves of the tree represent the actual species, while the branching pattern

captures shared ancestors between them. The length of branches in the tree

symbolizes the spent evolutionary time (see Figure 2.6 A).

Construction of phylogenetic trees by using traits is based on the phenotype,

while using biological sequences is relying on the genotype.

The selection of traits that are evolutionary relevant is non-trivial due to sev-

eral reasons. Some traits are very hard to measure, or even inaccessible to

measurement, because only fossils remain of the species. The same phenotype

can origin from entirely different genotypes by convergent evolution (Gaubert

et al., 2005). Other phenotypes are so variable within one species that there

is a strong overlap with other species (Swiderski et al., 1998).

Measuring the similarity between biological sequences is based on the distinct

amino-acids or nucleotides of the bio-polymer. This is done via sequence align-

ment (see Section 2.2) and also due to the broad availability of sequence data

currently the most-used method.

The mutations causing the difference between the sequences accumulated over

a time. Therefore the amount of these mutations that makes two sequences

different can be interpreted as a molecular clock. So the similarity of sequences

can be interpreted as a evolutionary distances between species.

However the rate of mutations, or the speed of the clock, is depending on

intrinsic factors like DNA repair systems and external factors, such as back-

ground radiation. These need to be considered to make evolutionary distances

comparable.

Phylogenetic trees can be constructed via a variety of methods, e.g. distance

based methods or maximum parsimony (Farris, 1970; Fitch, 1971). The former

are using a matrix of pairwise similarity scores, which can be used by clustering

algorithms. Subgroups of these sequence that are more similar to each other

are clustered together.

The latter considers all possible trees that could be build with these sequences

and selects the result tree by the minimal number of substitutions needed.

Cladistics is closely related to phylogenetics, but in contrast to it evolutionary

time is not considered, but only the branching pattern of the lineages. It is

represented by a cladogram (see Figure 2.6 B)

As mentioned above ribosomal RNA (rRNA) is one of the most ancient and

widespread molecules in living organisms, with the exception of viruses. This

makes it very useful the investigate relatedness between organisms.



16 2 Theoretical Background

Arabidopsis thaliana

Felis catus

Caenorhabditis briggsae

Populus trichocarpa

Oryza sativa

Arabidopsis thaliana 0.00711

Felis catus 0.04732

Caenorhabditis briggsae AF16 0.04732

Populus trichocarpa 0.01699

Oryza sativa 0.1214

A

B

0.06945

0.00260

Figure 2.6: Phylogenetic tree and Cladogram: This figure shows a phylogenetic
tree (A) and a cladogram (B) constructed for the U6 snRNA Rfam

seed sequences from a Clustal Omega alignment. Each sequence
is taken from a different species which is represented in the tree
as leaves. The genetic distance of the sequences is expressed as
horizontal edge-length in the phylogenetic tree. The distance to
the next branching point, respectively the root is annotated for
each leaf. The cladogram just shows the branching pattern and
excluding the evolutionary distance. This figure is reproduced as
a vector graphic from EBI webtools (Mcwilliam et al., 2009).)

Components of the small ribosomal sub-unit are used, specifically 18 Sved-

berg rRNA for eukaryotic cells (Field et al., 1988) and 16 Svedberg rRNA

for prokaryotic cells and mitochondria (Woese et al., 1990). Databases are

available (Quast et al., 2013) that gather ribosomal RNAs and that allow to

construct very comprehensive phylogenetic trees.

Such phylogenetic information can aid taxonomy, which is described in the

next section.

2.1.8 Taxonomy

Taxonomy systematically puts organisms in relation to each other via shared

traits. Modern taxonomy uses a classification scheme that was initiated by

Linnean taxonomy (Linnaeus et al., 1758) along with binominal nomenclature.

The binomial, or scientific, name consists of a first part, which denotes the

genus and a second part that denotes the species. The house mouse for example

belongs to the genus Mus and the species Mus musculus.

Taxonomy was since then influenced by phylogenetics but also by phenetics.

Phenetics (taximetrics) (Sneath et al., 1973) constructs organism relationships

from overall similarity and can be used to resolve species and subspecies clas-
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sifications.

A rank-based system (see Figure 2.1.8) where the actual organisms are associ-

ated with the lowest ranks is used. Higher ranks are used to group organisms

and the level of abstraction, meaning how general the used traits are, increases

with the taxonomic level.

Table 2.2: Taxonomic ranks: Original ranks as introduced by Lineus with 2
examples. The rank phylum is used in a zoological context, while
division is used in Botany.

Rank Human Maize
Kingdom Animalia Viridiplantae

Phylum/Division Chordata Streptophyta
Class Mammalia Liliopsida
Order Primates Poales
Family Hominidae Poaceae
Genus Homo Zea
Species Homo sapiens Zea mays

The traits used to divide organisms in different groups are very general features

at the root of the tree and get more specific towards the species level, as

opposed to the ranks.

Ranks, especially abstract ranks close to the root like Kingdoms, or Domains,

are modified (Woese et al., 1990; Cavalier-Smith, 1998) or dropped due to on-

going discussions about the taxonomy system itself and related fields (Benton,

2000).

The rank system of the NCBI taxonomy database (Notebaart et al., 2005;

Benson et al., 2008), is merged from many ranks used only in specific sub-

taxonomies like plants or insects. This has the side effect, as clearly shown in

Figure 2.7), that many ranks are not populated or taxonomic nodes are used

that are not associated with a rank. The figure also shows that interior nodes

are labeled, in contrast to phylogenetic trees or cladograms.

Despite huge efforts, taxonomy is still in flux and offers open challenges. There

are constantly new organisms and traits that have to be considered and inte-

grated in the existing system. Moreover making existing taxonomies compat-

ible with each other results in artifacts, like different levels of coarse-graining

as shown Figure 2.7).

However taxonomy is very useful due to the direct association of organisms

in the taxonomy with genomic sequences and annotation. This information

can also be used in the construction of RNA families. RNAlien uses taxonomy
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information from the NCBI taxonomy database (Federhen, 2012), to search

groups of closely related organisms for members of RNA families, see Chapter

6).

2.1.9 RNA groups

RNA families (Griffiths-Jones et al., 2003), RNA-family clans (Gardner et al.,

2011) and RNA classes (Cech and Steitz, 2014) can be used to group RNAs

that are shared between organisms. They are different in terms of biological

function and homology, as shown in Table 2.1.9.

Table 2.3: Overview of RNA groups: RNA molecules can be grouped via dif-
ferent criteria like, sharing a common ancestor, sharing a biological
function, the diversity of the family and if the members of the fam-
ily are alignable by computational sequence alignment. Plus and
minus symbols indicate the presence or absence of the property for
the group in the same line or column. RNA families have common
biological function and ancestry. RNA-family clans (Gardner et al.,
2011) either share a common ancestor and function, but cannot be
aligned due to the divergence of the family members (type 1, e.g.
RNaseP (Ellis and Brown, 2009)) or they have clearly distinct func-
tions, but are alignable and not divergent (type 2, e.g. Glm (Urban
and Vogel, 2008)). RNA classes however have very generally the
same function, indicated by the ˜, but are not required to have a
common origin.

RNA group RNA-family RNA clan type 1 RNA clan type 2 RNA class
Shared Biological function + + - ˜

Shared Ancestor + + + -
Diversity - + - +
Alignable + - + -

RNA families are sets of homolog RNA molecules, sharing a common ancestor

and performing the same biological function in different organisms. Due to

the close connection between biological function and structure, RNA-family

members often share a common structure, while the sequence is much more

variable.

RNA families are different in terms of in which organisms they are present

and how divergent their members are. tRNAs for example are ubiquitous

in non-viral genomes and can be very divergent, like missing one arm of the

cloverleaf (Ohtsuki and Watanabe, 2007). Other families are restricted to only

a very specific group of organisms and also highly conserved.
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RNA-family clans Gardner et al. (2011) either share a common ancestor and

function, but cannot be aligned due to the divergence of the family members

(e.g. RNaseP Ellis and Brown (2009)) or they have clearly distinct functions,

but are alignable and not divergent (e.g. Glm (Urban and Vogel, 2008)).

A RNA class is the group that is complementary to RNA clans. Its members

have a common biological function in general terms, but are not necessarily

derived from a common ancestor. The numerous known types of micro RNAs

share their mechanism of action, but are not necessarily homolog.



20 2 Theoretical Background

Figure 2.7: Taxonomic tree as used by NCBI (Notebaart et al., 2005; Ben-
son et al., 2008), with example taxonomies for representative
species from different kingdoms (HIV1, Escherichia coli, Zea mays,
Caenorhabditis elegans, Homo sapiens). Taxonomic names are in
the same line as their associated rank, those without rank are writ-
ten in grey. The figure shows that many available ranks are not
used, and on the other hand taxons are not associated with a rank.
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2.2 Sequence alignment

Sequence alignment is a computational comparison of biological sequences. It

matches regions of these sequences and reports their similarity. The similarity

is useful for phylogenetic tree construction, as measure of evolutionary time

that has passed. Moreover, high similarity can be an indicator for conservation

and homology.

The computational representation of biological sequences is inspired by the

one letter code of primary structure. The corresponding letters are encoded in

a list-like data structure.

Sequences that share a common ancestor diverged due to mutation and recom-

bination events. Alignment algorithms try to model these events based on the

letter representation.

Point mutations can be interpreted as substitution of a letter, representing

a monomer, with an other. Deletion events correspond to the removal of a

character in one sequence, while insertions refer to the removal in the other

sequence.

Sequence alignment methods are grouped by number of sequences they align

with each other. The pairwise sequence alignment methods are discussed in

special detail, with the intent to introduce the dynamic programming opti-

mization strategy.

Dynamic programming is highly relevant for bioinformatics and has been used

to make e.g. alignment, homology search and probabilistic model algorithms

tractable.

2.2.1 Pairwise sequence alignment

The methods for pairwise sequence alignment either consider the alignment of

the full length of both sequences (global), a part of one sequence against the

full other sequence (semi-global) or only parts of both sequences(local).

Global alignment was first introduced by the Needleman-Wunsch algorithm

(Needleman and Wunsch, 1970) and is used for evolutionary comparisons.

The similarity between two sequences can be determined by representing all

possible pairwise-combinations of comparisons between the nucleotides as 2-

dimensional array (Needleman and Wunsch, 1970).

A single comparison between the two sequences can now be treated as paths

through this matrix. Some rules are needed for the step-wise moves to obtain

meaningful results.
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The first sequence x has n nucleotides and its i th position is represented by

xi, moreover the second sequence y has k nucleotides and its j th position is

represented by yj. Both indices are incrementing in 5’ to 3’ direction.

Ai,j then represents the comparison between xi and yj in the comparison ma-

trix. The alignment starts either from the first column or the first row. The

path traverses the matrix by either incrementing the index of one or of both

indices. Each pairwise comparison that we visit along the path is either a

match, a mismatch, or a gap. The simplest form of scoring is to add 1 for

each match along the path and 0 otherwise. The path ends when one or both

indices are equal to the length of the sequence.

A naive approach for this problem would have exponential run-time, because

we would recompute the values of all previous comparisons, every time we

increment the indices.

Dynamic programming, or memoization makes this problem tractable by for-

mulating the different possibilities for each step as a recursive function. A

recursive function is calling itself until some termination condition is fulfilled,

it then stops and returns an outcome. The outcome for each pairwise compar-

ison is stored, or memoized in the matrix Ai,j.

With the simple scoring suggested above we would look for the path with

the maximal score, indicating the highest number of matches. But this scoring

does not consider similarity between nucleotides and does not punish deletions.

This is a corresponding scoring function:

σ(a, b) =

{
1 if a = b

0 otherwise
(2.1)

A scoring function can be used to introduce such more complex scoring schemes.

This function takes the characters that are compared as parameters and re-

turns a score. A scoring function that treats substitutions between nucleotides

of the same class (Purine, Pyrimidine) as neutral is shown in Equation 2.2

δ(a, b) =





1 if a = b

0 if a,b ∈ Y

0 if a,b ∈ P

-1 otherwise

where Y = {A,G} P = {U,C} (2.2)

Alternatively the score can be interpreted as distance instead of similarity.
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Matches do not influence the distance and are scored with 0, while substitu-

tions, insertions and deletions are increasing the distance and contribute posi-

tive scores. In this case the alignment with the minimal score wound indicate

low distance and high similarity.

Gaps arise either from insertion events in one sequence or deletions in the other.

The simplest model is to assume linear gap costs that corresponds directly to

the number of gaps. If similarity is used in the scoring function and awarded

with positive scores, the gap costs should decrease the score and set to e.g.

γ = −2

Affine gap costs (Gotoh, 1982) are a more sophisticated model and assume

that deletions and insertions often arise from recombination events, which

cause multiple gaps at once. The model then punishes the initial gap severely,

however the extension of the gap weakly.

Boundary conditions for the algorithm, also called initialization can be encoded

in Ai,j. The neutral starting value for the global alignment A0,0 is set to 0. The

values stored in Ai,0 and A0,j represent the leading gaps in the alignment and

increase directly with the length of the gap in case of linear gap costs setting

Ai,0 = i ∗ γ and A0,j = j ∗ γ.

A recursion for global sequences alignment with the Gotoh algorithm (Gotoh,

1982), adopted from Durbin et al. (1998), is shown in the following equation

A(i, j) = max





A(i− 1, j − 1) + σ(xi, yj)

A(i− 1, j)− γ
A(i, j − 1)− γ

(2.3)

, where γ = -1 and σ as defined in Eq 2.1

The algorithm uses linear gap costs (γ) and has a asymptotic run-time (Knuth,

1976) and memory consumption of O(n ∗m), where n is the length of the the

first and m of the second sequence.

The resulting similarity matrix, for this recursion applied to two short se-

quences, is shown in the following Figure 2.8. The final value representing the

best global alignment can be found in the bottom right cell of the matrix.

To obtain not only the score of the best alignment but the alignment itself a

method called backtracking has to be applied. This reverses the computing of

the scores and starts in the cell with the best score. Then for each step the

path to the cell the current value was derived from is selected. If there is more

than one equal way to arrive at the value, then there are that many alternative

choices. In the standard variant of backtracking only one of these is selected by
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Final score (best alignment)

Sequence indices
Initalization values

Figure 2.8: Sequence alignment similarity matrix: The matrix contains the
tabulated intermediate results of the global alignment recursion.
The indices of both sequences are indicated by the subscript of the
text in grey. The score of the best comparison result for the two
subsequences up to this point is shown in the corresponding cells.
The initial values in blue indicate leading alignment gaps in one
sequence. The final result in red can be found in the bottom right
cell and is highlighted in red.

arbitrary choice. Therefore only one optimal alignment will be produced, but

the algorithm can be modified to recover more than one alignment (Altschul

and Erickson, 1986).

The selected paths determine the two characters that are added to the align-

ment. The diagonal move that gave rise the match or mismatch scores add

the two corresponding nucleotides xi and yj to the alignment. Alternatively

horizontal moves add the yj nucleotide and a gap, while vertical moves add

the xi nucleotide and a gap. An example for the trace-back and the optimal

alignment resulting from the previous example is shown in Figure 2.9.

Semi-global, glocal, free-end gap, or free shift alignment methods are used

to align a shorter sequence to a longer one, for example aligning a sequence

motif to a transcript (Brudno et al., 2003). This problem can be solved with a

variant of the Needleman-Wunsch algorithm, where flanking gap-costs are not

considered. The first column and row are therefore all initialized with zero.

Local alignment methods are useful if sequence share a similar domain, but are

otherwise different. The Smith-Waterman algorithm (Smith and Waterman,

1981), is modified a version of the Needleman-Wunsch algorithm and was the

first algorithm for this task.
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Figure 2.9: Sequence alignment trace-back: The alignment for the scores com-
puted by the global alignment recursion can be obtained by trace-
back. Starting from the result value in the right bottom cell, the
alignment is constructed depending on which cases of the recursion
yielded the score. Diagonal moves originating from match or mis-
match cases, vertical or horizontal moves from indels (insertions
or deletions). The match and mismatch case mean that the two
nucleotides with indices corresponding to this field are added to
the alignment. In the indel case, a nucleotide of one sequence and
a gap character in the other are added to the alignment. It is pos-
sible that two alternative cases yield the same score, this means
that there are two equally good alignments. The result alignment
for the selected path is shown below the backtracking matrix.

Additionally to similar initialization as in semi-global alignment, the recursion

features a fourth alternative to score a cell with 0. This indicates the start of

a new local alignment.

Structural alignment

Secondary structure is often better conserved than the sequence information.

This conservation allows to detect homology even when there is no sequence

similarity left. Especially for RNA alignments, which do not have a reading

frame available, like proteins, it is essential to incorporate structure informa-

tion to improve alignment quality.

However for most RNAs a experimentally determined structure is not available.
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Structural alignment algorithms therefore also have to solve to problem of

missing structure information.

The Sankoff algorithm simultaneously computes the alignment and the con-

sensus secondary structure of a sequence pair in O(n6) and O(n4), where n is

the length of the sequences (Sankoff, 1985).

These substantial memory and runtime requirements have been addressed via

two different variants of the Sankoff algorithm. The first one places restric-

tions on the aligned sequences by e.g. by defining maximal motif lengths, or

maximal subsequence length differences. Examples for this approach is are

Foldalign (Gorodkin et al., 1997; Sundfeld et al., 2015), which was the first

implementation that supported local alignment and dynalign (Mathews and

Turner, 2002), which implements a full loop based thermodynamic energy-

model (Mathews et al., 1999a).

The second approach restricts the base-pairs that are considered during the

sequence-structure alignment. pmcomp (Hofacker et al., 2004) first computes

the base pair probability matrices for the individual sequences via the Mc-

Caskill algorithm (McCaskill, 1990; Hofacker et al., 1994; Lorenz et al., 2011).

The pairing probabilities are used to score the pairing between nucleotides

during alignment. By restricting the span between matching base pairs for

all partial alignments, the runtime complexity is reduced to O(n4) and the

memory consumption to O(n3).

LocARNA (Will et al., 2007, 2012) improves this approach and also applies it to

further lower the memory consumption. By a assuming a minimal probability

threshold for base-pairs, the necessary matrix becomes spare and only requires

O(m2 +n2) memory and O(n2(m2 +n2)) time, where n is the sequence length

and m the number of significant base pairs. RNAlien (Eggenhofer et al., 2016)

(see Chapter 6), uses LocARNA for the semi-global alignment of RNA fragments,

found in homology search, to a full length homolog RNA.

2.2.2 Multiple sequence alignment

Multiple sequence alignment (MSA) algorithms perform comparisons between

three or more sequences. There is a wide range of applications for MSA.

Evolutionary distances between a set of sequences as required for phylogenetic

trees can be computed. Regions that can be aligned over multiple sequences

can indicate conserved domains that are relevant for the biological function.

Most relevant, in the context of this thesis, is that multiple sequence alignments

are the prerequisites for RNA-family model construction. The quality of the
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alignment thereby directly affects the quality of the resulting model.

Multiple sequence alignment is a difficult problem, which has lead to several

approaches. The field has been evolving for some time and some of these

methods build on others, like iterative alignments on progressive ones.

Exact methods

Like pairwise sequence alignment, also multiple sequence alignment could be

solved with dynamic programming. The number of dimensions of the dynamic

programming matrix would then correspond with the number of sequences.

A exact algorithm for this problem (Sankoff, 1975) exists. The run-time

and memory requirements for sequences of same length (L) are O(LN) and

O(2NLN) (Durbin et al., 1998). This is not practical for sets of longer se-

quences beyond three.

However there is a range of heuristic methods that not necessarily give the

best solution for the problem, but are much faster.

Progressive alignments

Progressive alignment methods utilize pairwise alignment of the input se-

quences. Starting from a first pair the other sequences are step-wise added

to the growing alignment, which is fixed after each step.

The sequences are generally added in order of their similarity. The progressive

alignment approach introduced by Feng and Doolittle (Feng and Doolittle,

1987) first computes all pairwise similarities. Then a guide tree is constructed

by clustering (Fitch et al., 1967). The guide tree represents the ordering in

which the sequences are going to be aligned. It is a binary tree where the leaves

represent the input sequences and the interior nodes represent alignment steps.

The outermost leaf nodes that represent the most similar sequences are aligned

first. Then the other sequences are aligned to the fixed alignment until the

leafs are exhausted.

CLUSTALW (Thompson et al., 1994) takes the position-specific sequence conser-

vation (Gribskov et al., 1987) of the already partially aligned sequences into

consideration. Sequences are then progressively aligned to this profile and the

nucleotide frequencies modified accordingly.

T-Coffee (Notredame et al., 2000), tries to avoid the uses a library of sub-

alignment information. In the first step pairwise alignments between the input

sequences are computed, also known as primary library. T-Coffee has the
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advantage that it can in principle use any pairwise sequence alignment tool to

build the primary library.

The contribution of different sub-alignments used (e.g. global or local) can be

controlled by assigning weights to them. An extended library is constructed

from the edges of the primary library. For all pairwise alignments in the

primary library the alignments with a third sequence are used to determine the

consistency of edges. The result is a extended library that contains modified

edge weights corresponding to this consistency information. The extended

library is then used for scoring in the progressive alignment.

Due to their heuristic nature and the propagation of errors from previous

alignment steps to the final result the quality of progressive alignments is often

not optimal. Other methods have been conceived to improve upon progressive

alignments.

Iterative alignments

Iterative alignments methods are refining existing alignments by realigning.

This allows to improve the alignment of first aligned sequences that where

fixed from the beginning of the alignment process. A strategy to achieve

realignment is to remove aligned sequences from the alignment and realign

them to the profile of the other sequences. This process is iteratively repeated

until the alignment scores converge. Examples for iterative alignment methods

are MUSCLE (Edgar, 2004) and DIALIGN (Morgenstern, 2004).

Multiple structural alignments

The fact that secondary structure information is often better conserved than

sequence information is also essential for the quality of multiple RNA align-

ments.

The Sankoff algorithm could in principle also be used for multiple sequence

alignment. The runtime complexity is O(n3KN), where n is the length of the

longest sequence, K is a small integer constant proportional to n and N the

number of sequences.

PMcompMulti (Hofacker et al., 2004) was the first tool using the progressive

alignment strategy in multiple structural alignment.

mLocARNA (Will et al., 2007, 2012) was initially also a progressive multiple

alignment method. Since then it has been extended to provide also iterative

and consistency based multiple alignments.
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It relies on the pairwise alignment algorithm LocARNA (Will et al., 2007, 2012)

to perform both local and global structural alignments.

RNAlien (Eggenhofer et al., 2016) uses mLocARNA for computing the multiple

sequence alignment from which the inital RNA-family model is constructed

(see Chapter 6).

A alternative method is available via the multiple alignment tool FoldalignM

(Torarinsson et al., 2007; Havgaard et al., 2012).
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2.3 Probabilistic models

Hidden Markov models (HMM ) and stochastic context free grammars (SCFG)

are the probabilistic models that have been most commonly applied to rep-

resent sets of RNA sequences. HMM s will be presented first and SCFGs

explained as an extension of them.

2.3.1 Hidden Markov models

Different concepts and terminologies have been associated with HMM s due to

their versatility and use in a different fields. They can for example also be

understood as stochastic regular grammars.

Originally Hidden-Markov models were applied in speech recognition (Rabiner,

1989), but they were also used in electrical engineering (Satish and Gururaj,

1993) to classify discharge patterns.

HMM are based on the Markov process which describes transitions between

states of a finite state space. In a stochastic Markov process each of these

transitions is associated with a probability.

A process that is a Markov process must fulfill the Markov property of being

memory-less. For a first order HMM the conditional probability of the current

state only depends on the previous state. Higher order hidden Markov models

of rank n depend on the n previous states.

The ’hidden’ property of HMM means that only specific states, produce visible

output with a specific emission probability.

The model consists of states, emissions and probabilities. A HMM can be

defined as a tuple (S,Σ, (πi), (ai,j), (bi,k))) where S is a set of states 1, ..., n, Σ

is a set of emittable symbols (alphabet) 1, ..,m, π are the starting probabilities,

ai,j are transition probabilities and bi,k are emission probabilities.

A example model for the feeding call behavior (Evans and Marler, 1994) of

male Gallus gallus specimen, using the introduced notation is shown in Figure

2.10.

A traversal of the model following always one edge from a state into the di-

rection indicated by the arrow would yield emissions which corresponds to the

calls emitted by the bird.

Design of a new model first considers possible states, emissions and allowed

moves between states. In the second step probabilities are assigned, which can

be subject to further modification.

The model has four states, that represent the start of the observation (S),
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if food is present for the observed specimen, or not (N) and the end of the

observation (E). While (S), (F) and (N) are known as non-terminal states, (E)

is a terminal state and terminates the traversal.

Beginning with the starting state the model proceeds with a starting proba-

bility to either an immediate end of the observation, for example if there is no

specimen to observe, or to the (S) or (N) state.

These two hidden states can produce emission with certain probabilities. The

food present state has a higher probability to yield a food call (C) instead of

other sounds (O) compared to the no food present state. After the emission

the model can proceed to either again to or (N) or (F) or to (E).

Figure 2.10: Hidden Markov model example for modeling the feeding call. The
model consists of states S (Start),F (Food),N (No food),E (End);
a output alphabet C (food call) and O (other sounds or silence) in
red; starting and ending probabilities Π; transition probabilities
τ and emission probabilities ε.

Once the model has been set up, different algorithms are available to answer

questions pertaining to the model and what it represents. Three of these

algorithms and their goals are presented below.

Given a series of observations there is the question which is the best path

of states in model. Applied to the bird call model this would mean which

sequence of food present and no food present most probably produced the

bird sounds.

The most likely path through the states and therefore the most likely sequence

of emission can be computed by the Viterbi algorithm (Viterbi, 1967). This
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sequence of observations can be produced from multiple state sequences. The

algorithm selects the path of maximal probability for each time-step.

The second question is determining the probability of a certain observation

given the model. Translated to the feeding call model this would be series of

food calls and other sounds. An actual series of bird calls should therefore

achieve a high probability, while a bad imitation should have the opposite

result.

The forward algorithm computes the probability of a series of observations

given the model and its parameters. Instead of selecting the path of maximal

probability, the forward algorithm sums the probability for all paths that can

produce the observation from the start up to a certain time point. Formulated

differently that gives the probability of a certain prefix of observations given

that the HMM was in a specific state at that time-point.

The backward algorithm computes the probability of these sequence given the

model and its parameters. In contrast to the forward algorithm, the backward

algorithm starts at the last time-step and sums the probability of all paths

that can produce a certain observation up a certain time-point, backward in

time. Formulated differently that gives the probability of a certain suffix of

observations given that the HMM was in a specific state at that time-point.

In most cases the parameters, or probabilities in the model, especially the

movements between hidden state can not directly be observed as in the feeding

call model. Instead expectation maximization (Dempster et al., 1977) is used

to iteratively improve parameters with the forward-backward (Baum, 1972)

algorithm.

A naive approach in computing answers for these three problems would take

exponential run-time and memory consumption, because considering all possi-

ble traversals of the state-space the same results would be computed over and

over again.

The Markov property allows us to use dynamic programming to achieve poly-

nomial run-times. Intermediary results are memoized and do not have to be

computed multiple times (see Table 2.4).

As suggested above hidden Markov models can also be perceived as stochas-

tic regular grammars. The concept of grammars is used in linguistics and

theoretical computer science (Chomsky, 1959).

A grammar is defined by rewrite, or production rules and symbols. Symbols

can be split into non-terminal and terminal symbols. In context of hidden

Markov models, terminal symbols could be interpreted as states and terminal
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symbols as the emitted observations.

The production rules have a left-hand, containing at least one non-terminal

symbol and a right hand side, containing terminal and non-terminal symbols.

By applying the production rules a string of non-terminals is generated.

A grammar is stochastic, when the emission of non-terminal symbols and the

selection of production rules are only happening with a certain probability.

Regular grammars allow productions in the form of W → aW or W → a,

where W can be any non-terminal symbol and a any terminal symbol. This is

sufficient for the primary structure of bio-polymers.

Table 2.4: Algorithms for hidden Markov models (HMM ), adopted from
(Durbin et al., 1998). The runtime complexity of these algorithm
is O(LM2) and the memory consumption O(LM), where L is the
length of the observation and M is the number of states

Goal HMM algorithm
Optimal alignment Viterbi
Probability(s|Θ) Forward

Expectation maximization parameter estimation Forward-Backward

Hidden Markov models were very successfully applied to describe Protein fam-

ilies. These Protein family models are constructed from multiple sequence

alignments and capture which regions of the protein are conserved and where

gaps or insertions are occurring.

The models use begin, match , insertion-deletion (indel) and end states. The

occurrence of a specific state is modeled via transition probabilities. The fre-

quency of a specific amino acid at a certain position is encoded in emission

probabilities. A example for a toy protein HMM is shown in the following

figure 2.11.

Tools and databases for protein family models are briefly mentioned, because

they inspired a similar infrastructure for RNA families.

The HMMER (Eddy, 1998, 2011; Mistry et al., 2013) toolkit contains programs

to construct hidden Markov models for proteins and to use them for homology

search.

The curated Pfam (Bateman et al., 2004; Finn et al., 2013) database exists that

collects these models and their corresponding multiple sequence alignments.

The independent columns of a HMM are well suited to model the primary

structure of proteins or RNA. However the importance of using secondary

structure information for detecting homology between RNAs, makes it nec-

essary to include base-pairing information. This introduces dependencies be-
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Sequence1: GGGGGSSSSSGGGGVPPPP

Sequence2: GGGGG--SSSGGGGIPPPP

Sequence3: GGGGGSSSSSGGGGG----

Figure 2.11: Example for a protein family model built and visualised with
SAM (Krogh et al., 1994; Hughey and Krogh, 1996) from the toy
alignment that is included in the figure. The figure show begin
and end states on the left, and right end of the model. Indel
states are round and shown at the top of the visualisation, match
states are shown in the center. Transition probabilities connect
the state as edges. The higher the probabilities of these edges,
the thicker the plotted line. Emission probabilities for all amino-
acids are shown via the length of the bar next to the one-letter
abbreviation of the amino acid in the box at the bottom of each
position.

tween columns which cannot be modeled by regular grammars and has led to

the use of context free grammars.

2.3.2 Stochastic Context Free Grammar

Stochastic context free grammars, or SCFGs, expand on the concept of stochas-

tic regular grammars. They allow to model dependencies between remote

states, as required for secondary structure in RNA-family models.

On the right hand side of the grammar, any combination of terminal and non

terminal symbols is allowed. The corresponding production rule is W → β,

where W can be any non-terminal symbol and β any combination of terminal

symbol and non-terminal symbols.

The less restrictive production rules allow more complex models, which for

example can also model the secondary structure of RNA. While the goals

remain the same, different algorithms are required for SCFGs (see Table 2.5).

The problem of finding the best path for the sequence of observations is solved

with the CYK algorithm (Sakai, 1962; Kasami, 1965; Younger, 1967; Cocke,

1970), which corresponds to the Viterbi algorithm for HMM s.
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The probability of the observation given the model can be computed with the

Inside algorithm (Lari and Young, 1990). Like the Forward algorithm it sums

the probabilities of all possible paths for the sequence of observations.

The Outside algorithm (Lari and Young, 1990) is the SCFG equivalent to the

Backward algorithm for HMM s.

EM parameter training for SCFGs can be solved with the Inside-Outside

algorithm (Lari and Young, 1990, 1991), which corresponds to the forward-

backward algorithm for HMM s

While SCFGs allow to build more complex models, they also require substan-

tially higher computational cost in terms of run-time and memory. Depending

on the sets of observation the model represents, it might be necessary to use

cheaper approaches like HMM s or heuristics instead. This gain in performance

induces a loss in descriptive power.

Table 2.5: Algorithms for stochastic context free grammars (SCFG), adopted
from (Durbin et al., 1998).The runtime complexity of these algo-
rithm is O(L3M3) and the memory consumption O(L2M), where L
is the length of the observation and M the number of states

Goal SCFG algorithm
Optimal alignment CYK
Probability(s|Θ) Inside

Expectation maximization parameter estimation Inside-Outside
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2.4 RNA-family models

Covariance models, commonly abbreviated as CMs, are profile stochastic con-

text free grammars (Eddy and Durbin, 1994). These models feature the same

properties as hidden Markov models, but the context free grammar also allows

to model relationships between states that have longer distances. Homology

search for proteins utilizes the sequence conservation that arises from the amino

acid encoding codon triples. This is not possible for RNA homology search,

however the secondary structure of RNA is often conserved and can be used

instead.

Covariance models allow to include base pair interactions, but require an ad-

ditional set of node types, compared to hidden Markov models that just model

the sequence. The reference implementation of RNA-family models are used

by the Rfam (Griffiths-Jones et al., 2003; Gardner et al., 2011; Nawrocki et al.,

2014b) database and the Infernal (Nawrocki et al., 2009; Nawrocki and Eddy,

2013) tool package.

2.4.1 Infernal

RNA-family models are complex data-structures and the infrastructure for

building and using them has grown over time. The Infernal package (Nawrocki

et al., 2009; Nawrocki and Eddy, 2013), short for INFERence of RNA ALign-

ment”, is a central part of this infrastructure and contains ten major tools and

and multiple scripts.

The consensus secondary structure is encoded in the guide tree of the model,

which consists of nodes. There are eight different node types as shown in Table

2.6.

Table 2.6: Covariance model guide tree nodes: adopted from Infernal user
guide (Nawrocki and Eddy, 2013)

Node type Description States
MATP pair MP, ML, MR, D, IL, IR
MATL single strand, left ML, D, IL
MATR single strand, right MR, D, IR

BIF bifurcation B
ROOT root S, IL, IR
BEGL begin left S
BEGR begin right S, IL
ROOT end E
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A example guide tree for the XIST A REPEAT family is shown in Figure

2.12. The figure shows, how the ability of context free grammars to produce

sequences from inside out is used to capture the consensus secondary structure

of the family. The lines connecting the guide tree nodes to the consensus

structure and sequence also visualize the meaning of left and right in the

nodes names.

::<<<<____>>>>--<<<____>>>:::::...::::::..

UUGCCCAUCGGGGCCuCGGAUACCUGCUUUU...AUUUUU..

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42

END 24
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ROOT 0

Figure 2.12: RNA-family model guide-tree with consensus sequence and struc-
ture of the XIST A REPEAT Rfam family.

The nodes can contain several states, which encode the sequence. Seven differ-

ent states, see Table 2.7 are defined. Pair-emitting states (P) are used to model

base pairs, left (L) and right (R) emitting states for nucleotides in matches and

insertions. Depending on this context the corresponding variants are prefixed
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with M, respectively I (see Table 2.6). Deletions are represented by the D state,

end by E and start by S states. The bifurcation state B can be used to model

nested structures.

Each of the nodes is associated with grammatical production rules. Which

symbols are emitted by these productions and which state, if any, the grammar

will transit to is controlled by emission and transition probabilities for each

state.

Table 2.7: Covariance model states, adopted from Infernal user
guide (Nawrocki and Eddy, 2013). A description for each
state type and the grammatical production rules are tabulated. N
refers to unspecified non-terminal symbols (the states P,L,R,B,D,S,E),
the small letters x and y to unspecified terminal symbols (the
nucleotides in letter code a,g,u,c). Small epsilon represents the
empty string. The P state emits 2 nucleotides (x,y), which delimit
a new state N. As indicated in Table 2.6 some of the states can be
used either in a match case or in insertion context. The state type
is then prefixed with M (match), yielding MP, ML, MR states or
with I (insert) yielding IL and IR states. Each state is associated
with emission and transition probabilities, which sum to one and
are not shown.

State type Description Production rules
P pair emitting P → xNy
L left emitting L→ xN
R right emitting R→ Nx
B bifurcation B → SS
D delete D → N
S start S → N
E end E → ε

While this setup of states and nodes is a de-facto standard, also other model

topologies are possible (Janssen and Giegerich, 2015).

Infernal is related to the HMMER package that performs similar tasks for

protein families, which are models by hidden Markov models. Both packages

share the Easel library and mini-applications that can be used for manipulating

sequence data. Following is a description of those tools that were used in the

thesis.

cmbuild

cmbuild constructs a covariance model from a multiple sequence with consen-

sus structure, currently only in .stockholm-format. The result are covariance
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model complete with nodes, states and transition, as well as emission proba-

bilities. cmbuild also computes a HMM from the input sequences, which can

be used as a pre-filter during homology search and includes it in the output.

The result model is not yet ready for direct use in homology search, it first has

to be calibrated by cmcalibrate.

cmcalibrate

Preparing a model for homology search requires a calibrating step for E-value

determination. cmcalibrate runs the covariance model against randomly gen-

erated sequences and gathers the achieved bit-scores. This process can take

hours and can be sped up by reducing the number of random sequences gener-

ated, which consequently reduces the number of generated bit-scores. The bit

score histogram is then fit to the tail of the exponential distribution. E-values

for homology search results can then be estimated with the parameters of this

distribution.

cmalign

cmalign is a multiple sequence alignment tool, that aligns a set of input se-

quences to a covariance model. The resulting stockholm alignment contains the

same consensus structure as the one used to construct the covariance model.

cmstat

cmstat computes a set of statistics for an input covariance model, like the

number of sequences the model was constructed from, the number of base-

pairs and bifurcations. For a calibrated covariance model can also output

E-values and bit scores for a given database size.

2.4.2 Rfam - RNA-family database

The Rfam database is a steadily growing repository of RNA-family models.

Currently there are 2474 models (version 12.1) in the database, which represent

9 million annotated ncRNA loci.

Each database entry for a family consists of several different elements. Se-

quences of family members and their genomic coordinates are tabulated to-

gether with their organism of origin. A multiple-sequence alignment contain-

ing the consensus secondary structure and the covariance model with curation

information are the core element of the entry.
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Many families are additionally annotated with RNA class and RNA clan mem-

bership. Since Rfam version 10 some family entries are linked to corresponding

Wikipedia entries.

The database started with 25 families (Version 1.0, 2002-08-15) and has grown

on average by approximately by 176 families per year. Since Rfam version 6.0

the growth rate has increased and was approximately 237 families per year for

for that time interval. The database growth is shown in Figure 2.13.
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Figure 2.13: Rfam database family number development adopted from (Burge
et al., 2012). This shows the family number of major Rfam re-
leases, with numbers acquired from the family files available via
the Rfam ftp server. The used dates correspond to the time stamps
of the files. The current release, a subversion release (12.1) was
also included.

Each family model in the database consists of a HMMER hidden Markov model,

and of the covariance model. The hidden Markov model serves as pre-filter

during homology search and models the sequence of the RNA-family. The

covariance model represents sequence and secondary structure of the RNA-

family.

The model construction and curation process is a sophisticated process, that

requires an immense computational effort. Moreover not only new families are

added to the database also new genomes are constantly sequenced. Existing

RNA families need to be adjusted to also include scanning results for these

families. The process of model construction is explained in further detail in

the Chapter 3 and a automatic solution is presented in Chapter 6.

The model construction process depends on homology search tools to identify
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additional potential family members.
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2.5 Homology search

The search for homolog genes in other species is a sub-field of bioinformatics

known as homology search. It utilizes the sequences of the gene in question

and contextual information. In case of proteins the frequently conserved codon

triplets encoding amino acids can be utilized.

In RNA homology search, which this chapter will focus on, the secondary

structure, or base-pairing information can be used to trace homolog RNAs

through evolution.

The same useful abstraction applied to sequences, that was used for sequence

alignment can also be applied to homology search. Instead of the whole chem-

istry of each nucleotide, just the variable component, the nucleobase is con-

sidered. We can then use a single letter to represent each nucleotide. Conse-

quently a gene can be understood as a word and a genome as a text. Even

with this simplification in mind, genomes represent long texts with millions of

characters in case of bacteria, to billions of characters in case of mammalians.

Some homologs can be easily found by considering sequence information alone,

others require the inclusion of secondary structure information, or even orthol-

ogy.

Matching single genes to genomes is actually a special case of sequence align-

ment. As presented in the sequence alignment background (see Section 2.2)

there are local, semi-global (glocal) and global alignment methods.

The task is to compare a short sequence with a longer one. For homology search

local sequence alignment that does not punish unmatched flanking regions with

negative scores would be therefore the method of choice.

The downside of local sequence alignment is the required run-time. The Smith-

Waterman algorithm has a run-time of O(nm), where n is the length of the

query and m of the sequence database. A current CPU performs in the mag-

nitude of 109 operations per second. In a very simplified scenario, matching a

100 nucleotide sequence against the human genome with over 109 nucleotides

would therefore require 100 ∗ 109 operations, which equals 100 seconds.

Lets consider instead a search against a database including a big set of organ-

isms, for example the RefSeq database (Pruitt et al., 2012). RefSeq release

76 contains sequences from 59995 organisms which total to 825,600,134,816

genomic nucleotides. In this case our search would take hours. Despite the

advantage that exact algorithms give all possible solutions, including the best

one this is too long for for many tasks in bioinformatics.
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The requirement for tools that deliver homology search results in a short time

has made heuristic approaches very successful in this field. Heuristic algorithms

take certain assumptions, which reduce the search space and the necessary run-

time. This has the disadvantage that the best solution can be excluded from

the possible search results.

There is a range of different implementations available to match a sequence to

a genome and many of them are specialized to a specific setting. Three tools

for RNA homology search will be introduced, blast and nhmmer in this section

and cmsearch in the section for RNA-family models (see Section 2.3).

The reliable identification of homolog sequences requires not only the tools

themselves but also some concepts, from statistics, which will be introduced

with blast.

2.5.1 BLAST

BLAST (Altschul et al., 1990), or Basic Local Alignment Search Tool is a heuris-

tic version of the Smith-Waterman algorithm and with over fifty-thousand

citations one of the most highly cited publications in existence.

This high number of citations show the demand for a fast method to search

genomic sequences in the last years.

It is a word-based method, that matches a short sub-word and then expands

it. The approach consists of three steps.

The seeding step first generates sub-strings from the query sequence. Depend-

ing on the bio-polymer type different sub-word lengths are useful. Protein

sequences use an initial sub-word size of three, the size of a codon. Nucleotide

sequences that lack the reading frame of proteins require longer sub-words,

which are per default eleven nucleotides long.

Variants of these sub-words are generated and used to scan the sequence

database for exact hits.

The second step is an extension step that expands the sub-words on the query

sequence by aligning additional flanking query sequence nucleotides to the

exact match. Originally the extension step could not bridge gapped regions,

however this functionality has been included (Altschul et al., 1997). The results

of this extension are called maximal segment pairs (MSP).

Masking can either further speed the BLAST search up, by avoiding the match-

ing of specific regions entirely, or increase the sensitivity, by assigning different

importance to parts of the query sequence.

BLAST defines hard- and soft-masking. Hard-masking means that regions of
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the database are not scanned. Repetitive genomic regions are typically hard-

masked. If the RNA of interest, e.g. tRNA occurs in these regions, it will not

be included in the result list.

There are two variants of soft-masking. Database soft-masking only excludes

the masked regions in the seeding step, but not in the expansion step. Query

soft-masking allows to define conserved regions of the query, which will exclu-

sively used during the seeding step. The rest of the query sequence can still be

used during extension. This type of masking can make searches more profile

like and is used in RNAlien (see Figures 8.2 and 8.3).

The third step is a evaluation of the maximal sequence pairs for statistical sig-

nificance. This relies on the E-value the MSP achieved. Statistically significant

MSP hits are called high-scoring segment pairs (HSP).

2.5.2 Expected value

The E-value, or Expected value, used in sequence similarity search, relies on the

assumption that the maximal scores achieved by MSPs follow an extreme-value

distribution (Karlin and Altschul, 1990; Gumbel, 1958).

E-value is an estimate how many hits in the sequence search would achieve at

least that same score by chance. The E-value can be computed from the raw

score as follows, the equation is adopted from (Karlin and Altschul, 1990).

E = KmneλS (2.4)

Where E is the E-value, S is the raw score, m and n are the query and database

length, K is a scaling factor for the search space and λ is a scaling factor for

the scoring system.

Alternatively the E-value can be computed via the bit score, which has the

unit bits (Altschul, 1991, 1993) and can be computed by following equation,

adopted from (Altschul et al., 1997):

S ′ =
λS − lnK

ln2
(2.5)

Where S ′ is the bit score, S is the raw score, K is a scaling factor for the search

space and λ is a scaling factor for the scoring system.

The corresponding number of sequences with at least the bit-score S’ can be
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approximated by the following equation, adopted from (Altschul et al., 1997).

E = mn2−S
′

(2.6)

Where S ′ is the bit score, m and n are the query and database length and E

is the E-value.

The E-value can then be used as a cut-off for homology search results.

2.5.3 nhmmer

nhmmer (Wheeler and Eddy, 2013) relies on profile Hidden-Markov models

(see Section 2.3)for homology search. Homology search with a hidden Markov

model uses the Viterbi algorithm that aligns the genomic sequence against the

model.

nhmmer has the advantage over BLAST that the used HMM s encode which parts

of the model are conserved and which not. This increases sensitivity, but has

a much higher run-time complexity.

nhmmer uses a a set of consecutive pre-filters and applies the Viterbi algo-

rithm only on promising sequence segments, thereby gaining speed via a loss

of sensitivity.

2.5.4 cmsearch

cmsearch is a homology search tool that uses calibrated covariance models to

search as sequence database. In comparison to nhmmer, cmsearch also uses

secondary structure information.

Scanning a sequence database with a covariance model is an application of the

CYK-algorithm. It has run-time complexity of O(MaLD+MbLD
2), where Ma

is the number of non-bifurcation states, Mb the number of bifurcation states,

L the length of the input sequence database and D the length of the longest

aligned subsequence (Durbin et al., 1998). This is achieved by several restric-

tions, as the run-time of a general purpose CYK algorithm for SCFGs would

have a time complexity of O(L3N3) and memory consumption of O(L2N),

where N is the number of non-terminal states (Durbin et al., 1998).

Moreover cmsearch has a set of consecutive heuristic pre-filters, that increase

search speed significantly at a loss of sensitivity. cmsearch results contain the

hit sequences, their sequence database coordinates, as well as bit-score and

corresponding E-values.
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3 RNA-family model construction

There is a huge potential for adding new RNA families to existing databases.

The importance of this effort is underlined by the fact that the journal RNA

biology (Gardner and Bateman, 2009) has set up an own track for publishing

novel RNA-family models.

This chapter provides the introduction for the publication RNAlien - Unsu-

pervised RNA-family model construction (see Chapter 6) and provides a

description of the state of the art of RNA-family construction. Moreover results

from a pre-study that was concerned with sequence and structure conservation

in Rfam families and post-publication results of running RNAlien (Eggenhofer

et al., 2016) with query-soft-masking are presented.

An Rfam RNA-family model consists of a structural alignment with the known

family members with a corresponding consensus structure and the probabilistic

model itself. A covariance model captures the sequence and structure of the

family with a stochastic context free grammar representation. This abstraction

of the RNA-family, can be used to find novel, formerly unknown members of

the RNA-family via homology search.
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3.1 Construction of RNA families and Clans

The building of RNA-family models starts with the collection of RNA se-

quences of that family. This can be a number of RNAs that has been identified

by experiment and cataloged as members of the same family, or alternatively

a set of sequences that has been found via homology search.

To maximize the sensitivity of the resulting covariance model in homology

search, it is necessary to include a representative sample of family members,

in terms of structure and sequence. Biologically relevant RNA base pairs

are often conserved even after their mutation, to prevent a loss of function.

Mutants that have a second mutation in the previously unmutated base pair

that restore the base-pair are more prone to survive natural selection processes.

The restoration of the original base pair is known as covariance. Ideally the

representative first set of member sequences shows this covariance for relevant

base pairs.

3.1.1 Seed alignment

Rfam labels this first set as seed sequences. The set of seed sequences needs

to be aligned to be able to construct a RNA-family model from it. Seed

alignments can range from a few sequences to hundreds (e.g. U4 snRNA with

140 sequences, tRNA with 954 sequences).

3.1.2 Consensus secondary structure

The alignment of the RNA-family also includes a consensus secondary struc-

ture. This structure is then used in the covariance model.

There are several ways to obtain a consensus secondary structure, The sequence

alignment can be performed first and the consensus secondary structure com-

puted afterwards. RNAalifold (Hofacker et al., 2002; Bernhart et al., 2008)

averages the contributions from secondary structure predictions for the indi-

vidual sequences (Mathews and Turner, 2006; Lorenz et al., 2011), according

to the input alignment. These energies are then used to solve the folding

problem.

The alternative are structural alignment algorithms (see Subsection 2.2.2),

which use the secondary structure during the alignment process and also yield

a consensus secondary structure.
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3.1.3 Alignment to model

However the curation process goes beyond selecting representative sequences

for the seed alignment. The seed alignment is also used to construct the

covariance model of the family.

Tools from the Infernal package are using the alignment with the consen-

sus secondary structure to build the covariance model (see Subsection 2.4.1)

cmbuild constructs the actual model, while cmcalibrate calibrates the pa-

rameters for E-value estimation.

This model is then used to find all instances of the RNA in the sequence

database of Rfam and select candidates for the full alignment.

To determine which sequences will be accepted into the full alignment there

are three different cutoffs defined by Rfam. These cutoffs refer to bit score

cutoffs resulting from searching the sequence database with cmsearch.

The noise cutoff is the bit-score that the best hit received that is defined as

noise by the curator.

The gathering cutoff is the bit score that hits have to achieve to be included

in the full alignment.

The trusted cutoff is the lowest bit score a sequence yielded that is considered

a true family member.

These cutoffs were introduced before the computation of E-values was im-

plemented in the Infernal toolkit. Possibly these bit-score cutoffs will be

changed to E-value thresholds in the future.

3.1.4 RNA-family clans

For some families the process of selecting sequences and setting thresholds

can lead to problematic results. This lead to the introduction of RNA-family

clans (Gardner et al., 2011).

Families that share the same ancestor and biological function but are difficult to

align, or can be aligned and have different biological functions can be grouped

into clans.

The RNAase P family has been split into three families, each for a different

domain in the tree of life. The family as a whole is too diverse for good quality

alignments.
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3.1.5 Full alignment

The model can be used to search genomes for more members of this RNA-

family. From the perspective of a single RNA-family that means it is possible

to find paralogs in one species and orthologs in other species. The sequences

obtain with the homology search by cmsearch that satisfy the gathering cutoff

are included in the full alignment.

Full alignments range from a two sequences for a family up to 3,302,554 se-

quences for the bacterial small ribosomal sub-unit. The number of sequences

in Rfam seed and full alignment is shown in the following Figure 3.1.
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Figure 3.1: Sequences per family Rfam seed and full alignments: Full align-
ments are shown in red, seed alignments in blue. The y-axis is
log10 transformed.
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3.2 Conservation of Rfam families

RNA families share a common biological function in different organisms. These

RNA molecules rely on their specific structure to fulfill their function. The

sequences used to build RNA-family models are therefore expected to exhibit

structure conservation.

The Rfam (Nawrocki et al., 2014b) seed alignments were investigated regarding

their structuredness, as a pre-study for RNAlien (Eggenhofer et al., 2016). The

goal was to determine if there a overall conservation of secondary structure or

if it is limited to subgroups or only individual families.

An established measure for structure conservation, the structure conservation

index index (SCI ) (Washietl et al., 2005; Gruber et al., 2010) was computed

for all 2450 of Rfam 12.0 seed alignments. The results for all families and the

available subgroups are shown in 3.1 and 3.2.
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Figure 3.2: Structure conservation index (SCI )of Rfam family groups: The
family groups show in general structuredness, with the exception
of the lncRNA group. The SCI s for families in one group can be
spread, this can be observed particularly in CRISPR, antisense
and CD-box subgroups.

The results show clearly that both the subgroups and the Rfam seed alignments

show structure conservation, with the one exception of long non-coding RNAs.

This lack of conserved secondary structure in long non-coding RNA, has also

been confirmed by detailed investigation (Rivas et al., 2016).

However a high structure conservation is to be expected for RNAs that have a

high level of sequence conservation, because base-pairs are conserved as well.
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Table 3.1: Structure conservation index SCI for Rfam subsets: The seed align-
ments have a average SCI of approximately 0.7, which indicates
structure conservation. The frameshift element family group has
the highest average SCI, while lncRNAs have the lowest average
structure conservation.

Rfam subset Min Max Median Mean
All 0.00 1.20 0.76 0.70
Cis-reg 0.00 1.20 0.80 0.78
frameshift element 0.63 1.02 0.87 0.85
IRES 0.17 1.00 0.70 0.68
leader 0.22 0.96 0.68 0.66
riboswitch 0.30 1.18 0.77 0.76
thermoregulator 0.00 0.99 0.80 0.71
Gene 0.00 0.99 0.80 0.71
antisense 0.05 1.02 0.51 0.54
antitoxin 0.54 1.00 0.76 0.74
CRISPR 0.00 1.15 0.88 0.72
lncRNA 0.00 0.96 0.48 0.47
miRNA 0.05 1.06 0.86 0.81
ribozyme 0.17 0.98 0.71 0.69
rRNA 0.08 1.06 0.68 0.64
snRNA 0.00 1.06 0.69 0.63
snoRNA 0.00 1.06 0.68 0.63
CD-box 0.00 1.06 0.54 0.53
HACA-box 0.25 1.06 0.82 0.79
scaRNA 0.50 0.93 0.71 0.72
splicing 0.17 1.03 0.80 0.76
sRNA 0.13 1.05 0.80 0.76
tRNA 0.17 1.17 0.71 0.76
Intron 0.17 0.96 0.68 0.68

Covariant base-pairs are a strong indicator for functional conservation, but we

can only observe them if the sequence is not conserved. The next goal was

therefore to investigate the sequence conservation of the Rfam seed alignments.

The mean sequence identity was computed for all Rfam seed alignments with

RNAz and is shown in Table 3.2 and in Figure 3.3.

The structure conservation index is on average lower than the mean sequence

identity for all Rfam seed alignments. However for tRNA, miRNA ,splicing,

intron, riboswitch and ribozyme subgroups the SCI is higher than the MSI.

While the human curator is able to consider different criteria, this ratio of

sequence and structure conservation presents a very conservative measure for

automatic family construction. This concept is used in RNAlien (Eggenhofer
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Table 3.2: Mean sequence identity (MSI )for Rfam family groups: The mean
sequence identity on average is lower than the structure conservation
index. The family group with the lowest average MSI is the Intron
group and the one with the highest the CRISPR group.

Rfam subset Min Max Median Mean
All 0.24 1.00 0.80 0.79
Cis-reg 0.43 1.00 0.80 0.79
frameshift element 0.62 0.95 0.86 0.86
IRES 0.55 1.00 0.83 0.81
leader 0.43 0.97 0.71 0.71
riboswitch 0.43 0.79 0.68 0.66
thermoregulator 0.55 0.93 0.84 0.80
Gene 0.55 0.93 0.84 0.80
antisense 0.54 0.95 0.80 0.79
antitoxin 0.66 0.88 0.81 0.79
CRISPR 0.66 1.00 0.89 0.87
lncRNA 0.60 0.96 0.80 0.79
miRNA 0.48 1.00 0.80 0.79
ribozyme 0.24 0.97 0.69 0.68
rRNA 0.24 0.87 0.78 0.75
snRNA 0.34 1.00 0.80 0.79
snoRNA 0.34 1.00 0.80 0.79
CD-box 0.34 1.00 0.80 0.79
HACA-box 0.48 1.00 0.80 0.79
scaRNA 0.71 0.87 0.81 0.80
splicing 0.24 0.97 0.77 0.75
sRNA 0.27 1.00 0.81 0.81
tRNA 0.24 0.88 0.70 0.69
Intron 0.24 0.73 0.59 0.59

et al., 2016) as normalised structure conservation index.
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Figure 3.3: [Mean sequence identity (MSI ) for Rfam family groups: The box-
plot shows that the MSI is on average higher than the SCI. The
MSI values show much less fluctuation within the groups compared
to the SCI.
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Figure 3.4: Mean sequence identity (MSI ) vs structure conservation index
(SCI ) of Rfam family subsets: The (SCI and (MSI ) for each Rfam

seed alignment is shown as a dot in the plot. Subgroups are la-
beled in the same color. There is a general trend for families with
higher sequence conservation to also have high structure conserva-
tion, which can be observed by the bulk of the points being in the
right upper quadrant.



54 4 RNA family model evaluation

4 RNA family model evaluation

A newly constructed RNA-family model should be evaluated before further

use in homology search, or other applications. In this regard the model itself,

the input sequences, the host organisms and the homology search results of

the model can be investigated. In this chapter, and the publication in the

following Chapter 7, the focus will be on evaluating the model.

The necessity for evaluation models will further grow in the future with the

increase of the number of known models in the databases.

The model and its homology search performance depend on the sequences used

to construct it. In general it is useful to include all known family members

into the construction and especially the most divergent ones.

RNA-family models built from sequences that are not representative for the

family lead to a lack of sensitivity in homology search. RNAlien provides RNAz

statistics that include the mean sequence similarity, which enables to identify

such sequence sets.

However the selection of too divergent family members can be problematic as

well. Specificity of homology search results can be decreased for families that

are very divergent in terms of sequence and structure, or families which have

closely related families.

Low specificity can be discovered by visualization of search results (See Chapter

5) or by directly comparing the resulting covariance models.

4.1 CMCompare

Specificity in context of RNA homology search means, that a specific RNA

sequence should only be detected by the RNA-family model representing this

specific RNA-family. If an other RNA-family model identifies the RNA se-

quence as a significant hit, there is a lack of specificity in one or both models.

The optimal alignment of a sequence to a RNA-family model is be computed

with the CYK algorithm. A sequence achieving a high CYK score in the

RNA-family models of two different RNA families would indicate such a lack

of specificity.
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The CMCompare (Höner zu Siederdissen and Hofacker, 2010) algorithm identi-

fies the shared sequence with the highest CYK score in both models. This is

accomplished via a a tree alignment approach for the guide tree of both models

and the associated sequence information.

The minimum of the CYK scores, of this sequence, in the first covariance

model c1 and the second model c2 is called link score and is computed as

following (Höner zu Siederdissen and Hofacker, 2010):

Linkscore(c1, c2) = max{min{CYK(c1, s),CYK(c2, s)}|s ∈ A∗} (4.1)

where A is the alphabet of nucleotides, A∗ are all strings over A and s is

the shared input sequence between both model, element of A∗. A straightfor-

ward implementation of this equation would require enumeration of all possible

sequences yielded by combining nucleotides from A∗.
CMCompare (Höner zu Siederdissen and Hofacker, 2010) provides a implemen-

tation of the CMCompare algorithm. This implementation uses a dynamic pro-

gramming approach that reformulates above equation as recursion. The re-

cursion essentially aligns the guide trees of both covariance models with each

other. The time complexity of this approach is O(n1n2l
2), where nx is the

number of states in the guide tree of model x and l the number of children per

state.

CMCompare uses the a similar scoring scheme as the tools of the Infernal (Nawrocki

et al., 2009; Nawrocki and Eddy, 2013) package. Search results with bit scores

over 20 would be considered as a indicator for low specificity. High link scores

can occur between RNA-family models that are part of the same RNA-family

clan.

Besides the link sequence and the link score, CMCompare also returns the index

intervals of the nodes the link sequence was emitted from. The regions of both

models that are linked can be identified in this fashion.

Curators that are familiar with the biological function of different regions of a

RNA can use this information to interpret if a high link score originates from

a homology or from a specificity problem.

The CMCompare webserver: comparing RNA families via covari-

ance models (Eggenhofer et al., 2013) (see Chapter 7), provides a web based

interface to evaluate covariance models with CMcompare.
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5 RNA-family member visualization

Once a RNA-family model is constructed it can be used to detect novel mem-

bers of this family. The Infernal suite offers the cmsearch tool specifically

for this purpose.

The found potentially homolog RNAs can be considered in its genomic con-

text from a single organism point of view. However the construction of these

hubs is a tedious task. Therefore I contributed two tools that provide a simple

and efficient way to generate trackhubs and assembly hubs to the ViennaNGS

toolkit(Wolfinger et al., 2015). The section Track and Assembly Hub construc-

tion presents tools for such a purpose.

Alternatively the taxonomic or phylogenetic perspective can be relevant for the

research question. Taxonomy tools, as described in the section RNA family

members and taxonomy, can be used to visualize the host organisms of the

RNA in the tree of life.
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5.1 Genome browser visualization

Visualising genes in their genomic context can be accomplished by the use of

genome browsers. They display the genome as an graphical representation,

e.g. a line. Genes and other features, like repeats, are annotated with icons

that are located on the genome.

The genome can be indexed via its nucleotide number, called coordinates in the

genome browser context. While the whole genome usually has an overwhelming

number of features, the start and end coordinates known for each individual

feature allow to consider only the features for a specific region.

The genome can therefore be shown in different level of detail, which is ex-

tremely useful for the putative RNA-family members found during RNAlien

model construction, or predicted with the result covariance model via cmsearch.

On the gene level it is possible to verify if the locus overlaps with other anno-

tated genes. This could be a indicator for specificity overlaps as discussed in

Chapter 7.

Due to recombination events it is more likely that neighboring genes are in-

volved in a common biological function or process. Investigation of the func-

tional annotation of neighboring genes could therefore be informative in the

identification of the biological role of the RNA family of interest.

The region in which the gene of interest is embedded can be inspected for the

presence or enrichment of specific features, like repetitive regions. This can be

useful context information for non-coding RNAs which are known to be found

frequently in such regions.

Genome and the features are the most basic information provided by genome

browsers. The available genome browsers can be distinguished by the addi-

tional information they can show in conjunction with the genome.

A driving force for the development of genome browsers and the inclusion of

new visualisation has been sequencing in general and next-generation sequenc-

ing (Goodwin et al., 2016) (NGS ). NGS is a constant source of new context

data that can be intersected with genomic features, like those obtained from

RNAlien.

Context data like the level of expression for a certain genomic region (Steijger

et al., 2013), or its degree of methylation (Bock, 2012) can be annotated in the

genome browser as so called tracks. Multiple tracks can align different context

features simultaneously to a genomic region.

The versatility of tracks and the availability of ready-to-use context informa-
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tion sets genome browsers apart from each other. The UCSC genome browser (Kent

et al., 2002), offers a extensive (Rosenbloom et al., 2015) number of various

tracks for model organisms.

It is possible to add own tracks via track-hub (Raney et al., 2014) to these

existing genome browser instances. Moreover new genome browser instances,

for organisms not originally included into the UCSC genome browser can be

included with assembly hubs.

Tools to automatically construct track-hubs and assembly hubs are introduced

below and were contributed by the author to ViennaNGS (Wolfinger et al.,

2015).

5.1.1 Trackhub construction

Trackhubs can be used to include additional tracks into the UCSC genome

browser instance for a available organisms. These available organisms cover

eukaryotic model organisms, specifically from the kingdom of Animalia and

viruses.

Homo sapiens has the biggest number of additional tracks in nine different

categories (Mapping Sequencing, Genes and Gene Predictions, Phenotype and

Literature, mRNA and EST, Expression, Regulation, Comparative Genomics,

Variation, Repeats). The other organisms have subsets of these available.

Discrete track data, like genes can be encoded as browser extensible format

(BED). The minimal definition necessary for a gene is the identifier of the host

DNA molecule and the start and end coordinate of the feature.

BED format can be optionally extended to contain a label, a weight (score),

strand information, color and blocks. These can be used to include information

specific for homology search. The label can be set to the name of the predicted

RNA, the score can be weighted by the achieved e-value. Color can be used to

distinguish hits for different types of predicted RNAs and blocks can be used

to represent exons and introns.

RNA homology search using a covariance model is usually performed with

cmsearch. RNAlien contains the cmsearchToBed tool allowing the conversion

of potential RNA gene loci from cmsearch to BED format with a specifiable

E-value or bit-score cutoff.

Continuous track data can encoded in wiggle (WIG) format, which is useful to

represent e.g. expression strength or the methylation level of genomic regions.

Both BED and WIG information can be directly integrated into trackhubs. How-

ever data-sets can become large enough to negatively affect the performance
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of the browser visualisation engine. Therefore typically data compressed ver-

sions of BED and WIG, namely BIGBED and BIGWIG are used. cmsearchToBed

optionally enables automatic sorting of the BED entries, by coordinates, which

is the prerequisite for compression into BIGBED format.

The track hub constructor tool, available via ViennaNGS (Wolfinger et al.,

2015), builds the required trackhub data-structure. Usage of this tool and

the required parameters are demonstrated using homology search results for

splicosomal RNAs.

The benchmark data-set for RNAlien included three splicosomal RNA families,

U6 snRNA, already presented in the introductions, as well as U1 and U2

snRNAs. For each of these families a covariance model was constructed.

These covariance models were used to search chromosome 16 of the human

genome, with Sequencing/Assembly provider ID GRCh38 Genome Reference

Consortium Human Reference 38 (hg38). The resulting homology search cmsearch

results were converted into BED files with cmsearchToBed and compressed into

BigBed files with UCSC bedToBigBed program.

Since the UCSC genome browser imports the trackhub via a publicly acces-

sible unified resource locator (URL), this needs to be hard-coded into the

trackhub. The trackhub data-structure has to be deposited at that location.

The same applies to the generated BIGBED and optionally, and not included in

this example, BIGWIG files.

The parameters required by track hub constructer are the UCSC genome

identifier, which enables to map the trackhub to the correct genome, a name

for the track hub which will be displayed in the browser (see Figure 5.1).

Furthermore the local output file-path and the URL where the data-structure

will be available, was well as the URLs of BIGBED and BIGWIG have to be

provided. The current example was constructed with the parameters shown in

Table 5.1.

The trackhub is still available and can be imported and viewed by navigating

the browser to https://genome.ucsc.edu. Select My Data in the top naviga-

tion bar and select the trackhubs sub-menu. The browser is redirected to

the Track data hubs page, showing all publicly available hubs that can be

enabled for genome browser instance. Select the second tab My hubs and

paste the URL to the constructed trackhub, which is http://www.bioinf.uni-

freiburg.de/∼egg/snRNA/hub.txt for the example case. The browser is then

automatically redirected to the correct genome browser instance with the ad-

ditional trackhub.
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Table 5.1: track hub constructer parameters with example values as used for
building the trackhub shown in Figure 5.1. The hashtag characters
are used to delimit the URLs on the command line.

track hub constructer
parameter description value
–gi UCSC identifier hg38
–name Trackhub name snRNA
–out Output path /home/user/public html/
–baseurl URL for UCSC import http://www.bioinf.uni-freiburg.de/∼egg/snRNA

–bigbeds List of bigbed tracks
http://www.bioinf.uni-freiburg.de/∼egg/u6.bigbed
#http://www.bioinf.uni-freiburg.de/∼egg/u1.bigbed
#http://www.bioinf.uni-freiburg.de/∼egg/u2.bigbed

–bigwigs List of bigwig tracks

Upon loading the example trackhub for snRNAs in the hg38 instance of the

genome browser, the U1, U2 and U6 tracks are inserted and a corresponding

control panel below is added (see Figure 5.1). The homology search hits can

now be compared to the existing annotation, as all features are aligned to the

genomic coordinate ruler shown at the top.

The inserted tracks are shown directly below the genomic ruler, and show a

predicted U6 snRNA locus. Gencode 22 (Harrow et al., 2006) annotates a

U6 RNA at this locus that overlaps with the predicted hit from the RNAlien

model. Moreover we can see that this region is not very conserved over 100

vertebrate species, but strongly conserved in Macaca mulatta and partially

conserved in Mus musculus. The track for repetitive regions shows the U6

RNA locus is bordering to a short interspersed element (SINE ) region.

Further investigation of a novel RNA could consider conserved regions in other

organisms and overlapping genomic features. For the U6 RNA example, that

would mean investigating the conserved loci in Macaca mulatta and Mus mus-

culus. If the novel RNA is generally co-located with SINE s, or even derived

from them, should also be investigated. If such a co-location is present, this

simplifies the identification of additional family members.

5.1.2 Assembly hub construction

Genome browser instances are not available for all species as mentioned above.

While some specialized sister projects of the UCSC genome browser exist,

that offer e.g. instances for bacterial species, many organisms are not covered.

However it is possible to construct own assemblyhubs that can be imported in
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Figure 5.1: Trackhub for predicted splicosomal RNAs in Homo sapiens This
figure shows the UCSC genome browser instance extended with
a trackhub for U1,U2,U6 splicosomal RNAs. The RNAs in the
trackhub were annotated with covariance models constructed by
RNAlien. At the top the displayed genomic coordinates are shown
(A). This region is also marked in the graphical depiction of the
chromosome with a red vertical bar (B). The box that dominates
the center of the figure shows the tracks vertically stacked on each
other and aligned to the genomic coordinate ruler shown at the top
of the box. The U1 snRNA and the U2 snRNA tracks (C) do not
have genes predicted in this region. However the U6 RNA track
features a green box representing an annotated gene (D). Moreover
this gene is nearly identical with the annotation from GENCODE
22 Harrow et al. (2006) for this U6 RNA loci (E). The following
tracks following below contain context information, like the overall
conservation of this region for 100 vertebrate species (F), the in-
dividual conservation for eight model organisms (G) and different
types of repetitive regions (H). At the bottom of the figure control
elements for the trackhub (hg38 ) are shown(I).

the UCSC genome browser.

The assembly hub constructer tool also included in ViennaNGS (Wolfinger

et al., 2015) can build assembly hub data structures. The usage will be demon-

strated using the tRNA and tmRNA covariance models from the benchmark

results of RNAlien applied to Escherichia coli K-12.
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The organisms genome is needed by assembly hub constructer to build the

index to which all genomic features will be aligned to. Moreover there is no

automatically available annotation present which can be used to put the newly

added tracks into context.

Nevertheless annotation data available from additional data-sources can be

used and included together with the homology search tracks. Genomes avail-

able via NCBI genbank (Benson et al., 2008) have such annotation data encoded

in genbank format (gbk). The gff2bed tool, also part of the ViennaNGS suite,

can partition genomic features according to type and convert them into BED

format. In this way tracks for coding sequences, non-coding RNAs, repetitive

elements and others can be obtained in a single step.

The local directory path to the BED files for annotation, those from homology

search and WIG files is required by assembly hub constructer. All files will be

automatically converted to the corresponding compressed format and included

into the assembly hub.

The example assembly hub was constructed with the parameters listed in

Table 5.2. The resulting genome hub can be used by providing the URL

http://www.bioinf.uni-freiburg.de/∼egg/assemblyHub/hub.txt to the UCSC genome

browser, as described for the trackhub.

Table 5.2: assembly hub constructer parameters with example values as used
for building the trackhub shown in Figure 5.2

assembly hub constructer
parameter description value
–fasta Fasta filename GCA 000005845.2 ASM584v2 genomic.fna
–name Assembly hub name U00096.3
–in Directory with bed and wig files bed
–out Output path /home/user/public html/
–baseurl URL for UCSC import http://www.bioinf.uni-freiburg.de/∼egg/assemblyhub

The resulting genome browser instance, in Figure 5.2, shows the genomic ruler

for the provided Eschericha coli U00096.3 on top. The annotation data im-

ported from NCBI genbank (Benson et al., 2008) consists of a coding sequence

(CDS ), gene, miscellaneous features, mobile elements, replication origin, ribo-

somal RNA, tmRNA and tRNA tracks. Tracks generated from the cmsearch

homology search results are shown at the bottom.

All annotated tRNAs are overlapping with loci predicted by the RNAlien

model, which predicts an additional tRNA. Depending of the annotation qual-

ity of the organism in question, this could be a homolog gene, an inactive
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variant of the gene (e.g. pseudogene) or a spurious hit. In case of the tmRNA,

neither the NCBI annotation nor the homology search have features in this

region.
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D

Figure 5.2: Assemblyhub for predicted tRNAs in Escherichia coli This figure
shows the a novel UCSC genome browser instance with annota-
tion tracks generated from NCBI genbank (Benson et al., 2008).
The tRNAs in the trackhub were annotated with covariance mod-
els constructed by RNAlien. At the top the displayed genomic
coordinates are shown (A). The box that dominates the center
of the figure shows the tracks vertical stacked on each other and
aligned to the genomic coordinate ruler shown at the top of the
box. NCBI genbank annotations with features in this region are
coding sequences(B), non-coding RNAs (C), replication origin(D),
repeat regions(E), ribosomal RNAs (F) and RNAs (G). tRNA fea-
tures identified by the RNAlien (H) model are overlapping with all
genes in the NCBI annotation. At the bottom of the figure control
elements for the tracks shown(I).
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5.2 RNA-family members and taxonomy

RNA-family members exist in different host organisms. The number of organ-

isms and the number of family members in these organisms, can be used to

evaluate how widespread and variable the family is. However this does not

take the diversity of the host organisms into account.

The taxonomy of the hosts contains this diversity information and allows to

map the presence of the RNA-family to the tree of life. The distribution of the

family members in this tree can give clues about the evolutionary history of the

family or the possible function of the RNA in context with other information.

RNA families can be restricted to only a few closely related species or spread

over multiple kingdoms or even the whole tree. Disconnected sub-trees fea-

turing the RNA-family could be interpreted as either gene transfer to some

species or loss of the gene in others.

While there is a huge number of different tools to visualize phylogenetic trees,

the selection for taxonomic trees is small. Interactive tree of life (iTol) (Letu-

nic and Bork, 2016) is the most popular webservice in this regard and offers

a wide range of functionality. However it is only available online and not as a

downloadable tool.

The following text describes two tools from the package Taxonomy Tools,

which has been developed to visualize, process and compare taxonomic trees.

Taxonomy Tools has been written in the Haskell programming language It is

publicly available via GitHub (https://github.com/eggzilla/TaxonomyTools).

5.2.1 Visualizing taxonomy of RNA-family members

In order to visualize the taxonomy of all RNA-family members, the mem-

ber sequences need to be associated with their host organisms. NCBI taxon-

omy (Federhen, 2012) provides tables that associate organisms with unique

taxonomic ids, rank, genetic code and literature references. Obtaining the

taxonomy id for a specific sequence depends on its available context informa-

tion.

The accession number that identifies the DNA molecule or a gene identifier (gi)

can be used to find the corresponding organism. Taxonomy tools contains

the Accessions2TaxIds helper tool to automatically perform this conversion

step. RNAlien (Eggenhofer et al., 2016) stores and outputs the taxonomy ids,

for organisms containing RNA-family members, at the end of a construction

process.
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TaxIds2Tree uses the following steps to construct and visualize taxonomic

trees. For each taxonomy id the more general parent taxonomic node as

described in Subsection 2.1.8 is tabulated. These tables are parsed via the

parsec Leijen (2001) library.

The list of organism identifiers is used to recursively obtain the identifiers

of all parent nodes up to the root from the parsed tables. The set of node

id and parent node id tuples is representing the edges of the taxonomy tree.

The unique list of the taxonomy identifiers from the tuple represents all our

included taxonomic nodes.

Taxonomy tools uses these edges and nodes and a general datastructure from

the functional graph library (Erwig, 2001) to represent taxonomic trees.

TaxIds2Tree requires the list of organism taxonomy ids and allows to option-

ally toggle the rank of each taxonomic node.

The result trees are optionally either encoded in .dot or in .json format. .dot

format can be used as input for the Graphiz (Gansner and North, 2000) toolkit.

Graphviz implements a series of different lay-outing algorithms for graphs.

The dot tool provides hierarchical drawings of graphs and provides both verti-

cal (see Figure 5.3 A) and horizontal (see Figure 5.5) layouts for trees. Among

others also radial layouts with the circo tool are possible (see Figure 5.3 B).

This versatility is well suited to produce a non-overlapping and clear rendering

of the tree.

The resulting figure can become very broad in one dimension if organisms are

from divergent linage. Therefore is is possible to control the depth of the tree,

by defining the edge distance from the root node.

Alternatively the .json format output can be used with the data-driven docu-

ments (Michael Bostock, 2011) (D3js) javascript library. This enables interac-

tive taxonomic trees that can be embedded in webpages. These trees are scroll-

and zoomable, which enables the rendering of very large trees. Additionally it

is possible to collapse sub-trees by clicking on the corresponding node, which

allow to exclusively display the relevant parts of the tree. This was used for

the RNAlien webservice that has been published alongside the tool to visualise

the taxonomy of detected RNA-family members (see Figure 5.4).

5.2.2 Comparing taxonomy of RNA-family members

The distribution of traits over different species is a relevant question for classi-

cal phylogeny, while the distribution of homolog genes is interesting for molec-

ular biology.
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Figure 5.3: Taxonomy of model organisms, constructed by TaxIds2Tree: (A)
shows a taxonomic tree, rendered by dot, for the species Human
immunodeficiency virus 1, Escherichia coli, Sulfolobus solfatatri-
cus, Zea mays, Caenorhabditis elegans that has been truncated ten
moves away from the taxonomic root. (B): Shows a radial layout
of the same tree, rendered by circo, this is useful for broad trees.

These distinct features can each be mapped individually to the taxonomic
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Figure 5.4: Interactive taxonomic tree, constructed by TaxIds2Tree and ren-
dered by 3Djs : the tree is zoom- and scrollable, sub-trees can be
collapses by clicking.

tree as described above. However traits as well as genes can be considered in

context to each other.

Taxonomy Tools contains the TaxIds2TreeCompare tool which accepts sets

of taxonomy identifiers. Each of these sets represents a group that shares a

certain feature, for example the presence of a specific RNA family. The sets in

combination represent the distribution and overlap of the features over several

organisms. TaxIds2TreeCompare visualises these features in the taxonomic

tree.

For each set a color is selected from the spectrum. Each provided leaf node

is labeled with the colors corresponding to the features it has been assigned.

TaxIds2TreeCompare intersects the features present in child nodes for each

internal taxonomic node. This enables to see at which point features overlap.

A example for this in horizontal tree layout shows a actual example for CRISPR-

Cas (Maier et al., 2016; Makarova et al., 2015) system in Haloarchea (see Figure

5.5).
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Figure 5.5: Comparing taxonomy distribution of CRISPR-Cas (Maier et al.,
2016; Makarova et al., 2015) systems in Haloarchea. This figure was
automatically build with TaxIds2TreeCompare and dot and shows
the distribution of three different sets of Cas-protein in Haloarchea.
The legend was added manually.
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Freiburg, Germany, 3Research Group Bioinformatics and Computational Biology, Faculty of Computer Science,
University of Vienna, A-1090 Vienna, Austria, 4Bioinformatics Group, Department of Computer Science, University of
Leipzig, D-04107 Leipzig, Germany and 5Interdisciplinary Center for Bioinformatics, University of Leipzig,
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ABSTRACT

Determining the function of a non-coding RNA re-
quires costly and time-consuming wet-lab exper-
iments. For this reason, computational methods
which ascertain the homology of a sequence and
thereby deduce functionality and family membership
are often exploited. In this fashion, newly sequenced
genomes can be annotated in a completely computa-
tional way. Covariance models are commonly used to
assign novel RNA sequences to a known RNA family.
However, to construct such models several examples
of the family have to be already known. Moreover,
model building is the work of experts who manu-
ally edit the necessary RNA alignment and consen-
sus structure. Our method, RNAlien, starting from
a single input sequence collects potential family
member sequences by multiple iterations of homol-
ogy search. RNA family models are fully automati-
cally constructed for the found sequences. We have
tested our method on a subset of the Rfam RNA fam-
ily database. RNAlien models are a starting point
to construct models of comparable sensitivity and
specificity to manually curated ones from the Rfam
database. RNAlien Tool and web server are available
at http://rna.tbi.univie.ac.at/rnalien/.

INTRODUCTION

One of the basic aims of genome informatics is to anno-
tate every single nucleotide of a genome for presence and
type of biological function. The most well-known regions
are protein-coding genes. The nature of non-coding RNAs
(ncRNAs) and their genes has more recently started to play a
role (1), with many new functions of these non-protein cod-
ing regions being elucidated using biological (2) and compu-

tational methodology (3). Of particular interest are ncRNAs
which form well-defined structures that are needed to per-
form their function.

The sequence and the structural conservation of RNAs
allows for clustering these ncRNAs into families of ho-
mologs. Structural RNA families are therefore conveniently
characterized by a multiple alignment, as well as a con-
sensus secondary structure. This allows one to trace pat-
terns of structural conservation with covariance-preserving
sequence mutations through the evolution of individual
ncRNAs. For sequences that are not too far diverged, it
has become a standard procedure to determine RNA fam-
ily membership via computational means.

When newly sequenced genomes are to be annotated for
putative functions, several tools exist that try to match a
known structural RNA family to an area of the genome. The
Infernal (4,5) suite of tools provides the standard ma-
chinery to match known structural RNA family models to
genomic regions. The required family models are collected
in the Rfam (6,7) database of more than 2000 families.

Novel RNA sequences, which are continuously discovered
via next-generation sequencing experiments, are often the
first known example of their RNA family. It is therefore of in-
terest to search for homologous sequences in related species
and ultimately construct a covariance model.
RNA homology search is a difficult problem (8), since

simple sequence-based search can only detect very close
homologs while structural conservation is needed to re-
liably detect remote homologs. The traditional approach
would therefore combine sequence-based BLAST searches
with manual inspection of each candidate in order to dis-
card spurious hits without structural similarity.

Successful homology search for some families (9–13) that
are highly variable in length and structure even requires
context information like associated promoter regions. For
some families even specialized homology search tools exist
that consider their individual properties (14–17). Once a set
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of diverse family members has been collected, a covariance
model can be constructed from the final alignment and con-
sensus structure. From that point on it would be possible
to use the Rfam pipeline for iteratively expanding the seed
alignment (14). The model can then be submitted for review,
in essence repeating the steps already taken for known RNA
families in the Rfam database.

The above approach is, especially up to the seed align-
ment, quite time-consuming and individual steps like
choosing the exact start and end of the potential candidate
are not standardized. In short, the model construction pro-
cess would greatly profit from automation and standardiza-
tion.

We now describe in detail the approach we have taken for
automating the construction of a set of potentially homol-
ogous sequences given a single starting sequence, including
the prediction of a common consensus secondary structure.

Our approach closely mimics a strategy that could be em-
ployed when searching for homologous sequences manu-
ally. Given that our method scales to many sequences and
can be off-loaded to a web service, it aims to decrease the
burden of establishing initial family models for novel se-
quences without much local overhead for the user.

MATERIALS AND METHODS

RNAlien is based on an iterative sequence search process.
In each step new sequences from a different section of the
phylogenetic tree are searched for, filtered and possibly in-
cluded in the growing RNA family model. By step-wise inclu-
sion of remote family members it is possible to increase the
sensitivity for even more divergent members, without losing
too much specificity.

In brief, RNAlien starts with a single sequence and op-
tionally the organism of origin, identified by the NCBI tax-
onomy (18) identifier as input. An initial RNA family model
is constructed from sequences found in the close taxonomic
neighborhood of the input. In the second phase, the model
is expanded iteratively by ascending in the taxonomic tree,
and considering ever larger sub-trees, to collect family mem-
bers from increasingly divergent species. When the root of
the tree has been reached a final global search in each tax-
onomic kingdom is performed, to include sequences of in-
terest that could not be identified before. Figure 1 shows an
overview of the pipeline, a more detailed flowchart (Supple-
mentary Figure S1) and default parameter set (Supplemen-
tary Section B – Implementation details) are available in the
Supplementary Material.

Initial model construction

The goal of the initial model construction is to collect se-
quences that capture the secondary structure of the RNA
family and some sequence variability that allows us to find
more remote homologs.
RNAlien performs a sequence search via the NCBI nu-

cleotide Blast REST interface and restricts the search
to the taxonomic parent of the input organism. Using
the REST interface has the advantage that the scanned
databases are always up to date and that no bulk downloads
are necessary.

Figure 1. RNAlien program flow. RNAlien expects a single input se-
quence for which homology is to be established. Knowledge of the source
organism provides an optional starting point in the taxonomic tree.
Sequence-similar candidates are discovered (via BLAST) in closely related
species with selection to reduce bias. Once a small set is discovered, an ini-
tial structural alignment and covariance model are constructed (as shown
on the left) with mlocarna, cmbuild and cmcalibrate. In the second
step (shown on the right side), BLAST searches continue to ever more di-
vergent species. The covariance model is used to decide if these additional
sequences are included and, if so, aligned to the model. When the whole
taxonomic tree has been visited, a final search is performed and then the re-
sulting covariance model, structural alignment and all collected sequences
are returned.

BLAST hits are pre-filtered by having more than 80% cov-
erage of the query sequence to exclude short hits. Collection
of redundant hits is avoided by excluding hits with 99% or
more query similarity.

Since BLAST hits are usually too short, we first expand
them with flanking genomic regions (see Supplementary
subsection B.5). Subsequently each candidate sequence is
aligned to the input sequence using the structuralRNA align-
ment program LocARNA (19) with a semi-global alignment
in order to truncate them to the input sequence length.

The sequence identity SI is used as a measure for se-
quence conservation. Given the Levenshtein distance D be-
tween the input and current candidate sequence, and L, the
length of the longer of the two sequences, we calculate the
SI as follows: SI = 1 − (D/L)

Since we are interested in structural RNAs, we want to
accept candidates that exhibit more structure conservation
than expected for their respective sequence similarity. As a
measure of structure conservation we use the SCI value in-
troduced in the RNA gene finder RNAz (20). The SCI com-
pares the energy Econsensus of a consensus structure folding
of the alignment A with the average energy Ex obtained
from folding each sequence x in the alignment individu-
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ally, SCI = Econsensus/Ex. Since the SCI depends on the se-
quence identity of the alignment (an alignment of identical
sequences necessarily has SCI = 1), we normalize the SCI
by the sequence identity SI of the sequences:

nSCI = SCI
SI

(1)

As a rule of thumb, alignments of structured RNA fam-
ilies exhibit an SCI larger than the sequence identity. We
therefore accept candidates if their nSCI > 1.

In case the first round does not yield any acceptable can-
didates, we ascend in the NCBI taxonomic tree and repeat
the initial model construction in the larger sub-tree.

All accepted sequences in the initial set are aligned with
mlocarna, the multiple sequence alignment variant ofLo-
cARNA. The resulting structural alignment is then used
to construct and calibrate a covariance model with cm-
build and cmcalibrate from the Infernal package.
We speed up calibration as described in Supplementary Ma-
terial B.1 – Model construction. In the following round of
the model expansion phase this model will be used to decide
candidate sequence acceptance.

Model expansion

Model expansion is an iterative process depending on the
family members collected so far and the corresponding co-
variance model.

The first step is to select representative queries for the
upcoming BLAST search from the currently collected se-
quences. The current set is filtered, so that for all sequences
with pairwise similarity greater than 95% only the first one
is used. Per default the first five of these sequences are used
as query sequences.

Optionally the current set can instead be clustered with
the UPGMA algorithm (21), based on a distance matrix
computed by Clustal Omega (22). RNAlien incremen-
tally increases the cluster cutoff distance to form up to 5
clusters. The first sequence from each cluster is used as a
query sequence. This method achieved slightly better re-
call in the benchmark but is optional due to the Clustal
Omega dependency.

The target organisms are always confined to a sub-tree
of the taxonomy. In each round the search space is ex-
panded by ascending one level in the taxonomy. In order to
avoid duplicates we also exclude the sub-tree of the previ-
ous round (see Supplementary Figure S2). For example, if
the current taxonomic position is Enterobacteriacea (fam-
ily) and the previous node was Enterobacter (genus) all or-
ganisms that belong to Enterobacteriacea but not Enter-
obacter are searched. Depending on the number of selected
queries, multiple searches can be performed, the results are
then pooled. The search is again performed via the REST
interface ofNCBI nucleotideBLAST using an E-value cutoff
of 1.

To decide which of the BLAST hits to accept, we eval-
uate each hit with the current covariance model using cm-
search. To obtain E-values we set the genome size param-
eter of cmsearch to the database size of the BLAST search.
At this step, we employ two different E-value cutoffs: Se-
quences that satisfy the strict cutoff (E-value < 0.001) are

accepted and used to build the next iteration of the covari-
ance model. Sequences that only satisfy a relaxed cutoff of
1, are collected in a set of ‘potential’ family members and
re-evaluated at the end of the pipeline using the final model.

Candidates that have been accepted are aligned to the
model by cmalign, which creates a new Stockholm align-
ment. The expanded alignment may yield a slightly changed
consensus structure compared to the previous iteration. We
therefore recompute the consensus structure using RNAal-
ifoldwith the recommended parameters from (23). A new
model is then constructed with cmbuild and calibrated
(see Supplementary Material B.1 – Model construction)
with cmcalibrate. Model expansion proceeds further up
in the taxonomic tree until the root node has been reached.

Model finalization

In order to capture the most remote homologs, a final round
analogous to model expansion, but without any taxonomic
restriction is performed.

Finally, the set of potential family members collected
during earlier rounds is now re-evaluated with the current
model using the strict cutoff. This gives rise to the final co-
variance model, which is once more calibrated using cm-
calibrate.

Model evaluation

The final covariance model and the corresponding struc-
tural alignment are inspected via cmstat, RNAz, RNA-
code (24) and taxonomy of the included sequences. RNAz
predicts whether the alignment contains a functional RNA
structure. Since RNAlien is particularly geared for struc-
tural RNAs, this is an important quality indicator. cmstat
provides additional information about the resulting covari-
ance model itself, such as the total and effective number of
sequences used to construct the model and the relative im-
portance of sequence and structure information.
RNAcode predicts protein coding segments within the

alignment. This allows in particular to identify RNAs that
carry both functional open reading frames and RNA struc-
ture. While it is possible to use RNAlien for pure protein
coding sequences, methods that consider protein specific
features are more suited. For all found sequences a lookup
at RNAcentral (25,26) is performed to find already exist-
ing entries. A list of RNAcentral identifiers is appended
to the result.

The taxonomy information of the collected sequences can
be useful for gaining information about the biological func-
tion of a newly isolated RNA. RNAlien provides a detailed
log of tools and exact versions as well as intermediate re-
sults for later analysis and reproducibility of the construc-
tion process.

RESULTS AND DISCUSSION

In order to test the quality of the automatic family con-
struction process, two different performance tests were con-
ducted. First, we extracted a subset of RNA families from
the Rfam 12.0 database, as detailed below. We then used
RNAlien to reconstruct each RNA family, given a single se-
quence from the seed alignment. The resulting family model
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Figure 2. (A) Specificity of RNAlien homology search. The plot shows the fraction of homologs predicted by RNAlien that are recognized by the original
Rfam model. In 55 of 56 cases (98%), at least half of the sequences collected by RNAlien are recognized as belonging to the Rfam model. In 35 (62%)
families all sequences included by RNAlien are recognized as belonging to the Rfam model. (B) Recall of RNAlien models on Rfam sequences. We show
the fraction of Rfam seed sequences recognized by the RNAlien model. In 44 of 56 cases (78%) at least half the sequences in the Rfam seed alignment are
correctly recognized by the RNAlien model.

and collected sequences were compared with the original
Rfam model and sequences. This test reveals the ability of
RNAlien to reconstruct a known family from a single se-
quence.

The resulting consensus secondary structures from the
first test were compared against the structure annotated in
the seed alignment and the run-time for RNAlienwas mea-
sured.

Second, we created a set of negative control sequences
and started the model construction process. We used coding
sequences, ancestral repeats, untranslated regions (UTRs)
from NCBI genbank (27), Ensembl Release 83 (28),
RegulonDB 9.0 (29) and random sequences. According to
the procedure for structured and diverse RNA families the
sequences of the negative control set were used as a input
sequence for RNAlien.

Rfam families with known structure

As a test set we chose the subset of Rfam families with
known structure derived from nuclear magnetic resonance
or X-ray crystallography. For efficiency reasons, we dis-
carded three families that are representing large ribosomal
sub-units, each consisting of sequences exceeding 1500 nu-
cleotides in length, leaving us with 56 families. A second test
set with 192 families is contained in the Supplementary Ma-
terial (see Supplementary Section D).

By arbitrary choice the first sequence of the Rfam seed-
alignment was extracted and the organism of origin re-
trieved. This single initial sequence and the corresponding
taxonomy id were used as input to RNAlien. To measure
the specificity of RNAlien we tested each of the homologs
predicted by RNAlien using the Rfam covariance model.
RNAlien predictions that did not meet the bit score cut-
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off, as described below, of the Rfam model were considered
false positives.

Conversely, we measured the recall of the RNAlien
model by evaluating all sequences in the Rfam seed align-
ment and counting all sequences not recognized by the
RNAlien model as false negatives.

To provide a context for the results we performed both
a BLAST and a nhmmer (30) search against the full NCBI
nucleotide database with each RNAlien input se-
quence, without iteration. The BLAST results were aligned
with mlocarna and a consensus structure was computed
with RNAalifold. For the nhmmer result alignment a
consensus structure was computed with RNAalifold.

The Bacterial small subunit ribosomal
RNA homology search nhmmer found over 2 million hits
and the resulting structural alignment was too big to
further process (∼600 GB) it. We therefore included it with
specificity and sensitivity 1.

The resulting alignments for both tools were used to con-
struct and calibrate a covariance model. The sequences and
the model were used in the same manner as the alien result
models for the benchmark.

We used two different cutoffs, one bit score based for
specificity and one E-value based for the recall benchmark.
The bit score cutoff uses the gathering cutoff annotated for
the Rfam model to discriminate between true and false pos-
itives. However, the gathering score is quite specific for the
Rfam model and is possibly not applicable to the RNAlien
model.

Therefore, we used a E-value cutoff for cmsearch of
0.001 with a database size of 1000 × 106 nucleotides for fam-
ilies with members in eukaryotic species, corresponding to
typical genome sizes. For families predominantly present in
viral and prokaryotic species 1 × 106 nucleotides was set as
database size.

Note, that there may well exist true homologs that are
not recognized by the Rfam covariance model. Moreover,
some classes of RNA, such as RNaseP or SRP RNA, are rep-

resented in Rfam by multiple families. The reported accu-
racies therefore present a pessimistic estimate. All interme-
diate results and models from this benchmark are available
via http://rna.tbi.univie.ac.at/rnalien/help#benchmark.

A total of 55 out of 56 families (∼98%) exhibit speci-
ficity >50%, meaning that more than 50% of their sequences
are recognized by the original Rfam model as family mem-
ber (see Figure 2). BLAST and nhmmer achieved a slightly
higher specificity than RNAlien.

In 44 of 56 cases (78%), more than 50% of the Rfam seed
sequences could be categorized by the RNAlien model as
a family member (see Figure 2). RNAlien has higher recall
than BLAST and nhmmer.
RNA families where RNAlien performs well in terms of

specificity and recall are not necessarily the same. We there-
fore used the minimum of recall and specificity to classify
successful and poor reconstructions.

As shown in Figure 3, 43 reconstructions (∼78%)
achieved both recall and specificity ≥50% and were catego-
rized as well reconstructed families. In the low recall (recall
< 50%) group 12 cases (∼21%) still had specificity higher
than 50%, indicating that RNAlien only found a subgroup
of the Rfam family. The low specificity (specificity < 50%)
group, consisting only of the FMN family, had recall above
50%. This indicates that RNAlien sometimes reports false
positives.

The Low specificity (FMN) and Low recall – families
groups (Intron gpI, Intron gpII, Histone3, mir-689, crcB,
c-di-GMP-II, THF, tRNA-Sec, Protozoa SRP, group-II-
D1D4-1) are of special interest to understand problems in
the model construction process. The construction processes
with sub-optimal results will be discussed in the following.

The FMN family models the flavin mononucleotide ri-
boswitch and the reconstructed model recovers nearly all
seed sequences of the Rfam model. However, during the
construction process more and more divergent hits are col-
lected until the model becomes unspecific. In this case low

Figure 3. Family groups. To test our method, 56 Rfam family models with known structure were reconstructed by RNAlien from the first sequence picked
from the family seed sequences. This plot shows the minimum of specificity and recall of all 56 reconstructed families. A total of 43 (∼78%) families achieve
a specificity and recall ≥0.5 and are referred to as group Well reconstructed families. Only the FMN family where the Rfam model detected less than 50%
of the sequences collected by RNAlien (Specificity) is in the Low specificity – families group. A total of 12 reconstructed families (∼21%) where the Alien
model detected less than 50% of Rfam model seed sequences (Recall) are grouped in Low recall – families.
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Figure 4. Length normalized secondary structure base-pair distances between the RNAlien consensus structure versus Rfam model consensus structure.

specificity is the result of an uninformative start sequence
that is too short and exhibits only simple structure.
RNAlien does only recover about 47% of the Rfam seed

alignment sequences for the tRNA family, with but these
with high specificity. The family is too diverse for RNAlien
to find all potential members.

The same applies to the Protozoa SRP family which
features related families for metazoa, as well as protozoa
and to a set of other families (Histone3, mir-689, crcB, c-di-
GMP-II, THF, tRNA-Sec, group-II-D1D4-1, IRE II ).

The Intron gpI and Intron gpII represents self splicing ri-
bozymes that can be found in eukarya, bacteria and viruses.
The Intron gpI RNA features nine paired regions which are
grouped in two domains, of which only the second one is
featured in the Rfam model. The family is characterized by
frequent variable length insertions in the loop regions.

The Rfam curators overcame this problem by manually
adding biologically reasonable gaps in the seed alignment,
thus reducing the cost of insertions. Moreover, the initial se-
quence selected for RNAlien is a viral sequence that is iso-
lated both in terms of taxonomy and similarity with regard
to the bulk of the family.

As expected, we observe among the low recall families,
complex RNAs, such as group I introns, that exhibit large
variation in length and would present challenges even for
human experts.

Secondary structure comparison

We compared consensus secondary structures between the
annotated structure for Rfam families with known 3D-
structure and corresponding RNAlien alignment con-
sensus structure. A base-pair distance, as computed by
RNAdistance (31) was used for the comparison.
RNA structure distances are most meaningful when struc-

tures for sequences of equal length are compared. Both the
seed alignment and the final RNAlien alignment share at
least the sequence used as input forRNAlien. We processed
both consensus structures before the comparison by remov-

ing all positions that map to gaps for the shared sequence.
Basepairs that lose their binding position in this manner are
set to be unpaired.

The resulting distances were normalized by the length of
the sequence to make them comparable with each other, as
shown in Figure 4. Constructions that achieved good speci-
ficity and recall in the benchmark do not necessarily have a
low distance.

Running times

The running times for constructing the 56 families in above
benchmarks are shown in Supplementary Figure 7. The av-
erage running time (wall-clock time) with 20 cpu-cores was
about 4 h, while the fastest construction with 40 min was
the archea SRP family model and the longest construction
with 1 day 4 h was Purine.

Negative control set

In the second test we applied RNAlien on a negative data
set of 651 sequences consisting of 300 random, 34 ances-
tral repeat, 124 coding, 193 3′ and 5′-untranslated region
sequences.

Homo sapiens, Escherichia coli and Sulfolobus solfatari-
cus were used as organism of origin for 100 of the random
sequences each. For none of these sequences was a second
sequence search hit detected.

A total of 34Dfam (32) families tagged as ancestral repeat
a sequence was picked as input for RNAlien.The homol-
ogy search for the sequences found multiple sequences but
only one of the final RNAlien alignments was predicted by
RNAz to be of structured RNA quality.

A total of 49 Coding sequences for Homo sapiens, 40 for
Escherichia coli and 35 for Sulfolobus solfataricus were re-
trieved from Ensembl (28), RegulonDB (29) and NCBI
genbank (27).

Each of the 124 sequences was used as input for
RNAlien. In 24 of the cases homology search found no
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Figure 5. Result output of the RNAlien web service. The table at the top shows links to the final construction log, result sequences, alignment, covariance
model, RNAz, cmstat and zip archive files. The zip archive contains all files of the construction for later reproducibility. The table in the center shows
features computed for the result by cmstat, RNAz and RNAcode including the prediction if the result alignment is of structural RNA alignment quality.
At the bottom a slice of the taxonomic tree, including all organisms that contained hits in the construction is shown. The tree is collapsible and zoom-able
for better overview.

additional hits. The 100 remaining result alignments where
evaluated usingRNAcode, 75 of them were classified as pro-
tein coding with a P-value below 0.05. Of the remaining
cases, 19 are neither predicted by RNAz to be RNA nor to
be proteins by RNAcode, while 6 cases were identified to be
structural RNA alignments.

This means that RNAlien can, in principle, provide
meaningful output when given protein coding sequences as
input, with the caveat that these sequences are often too
long for folding algorithms to terminate in reasonable time
and that the protein-specific features (e.g. reading frame) are
not used.

If RNAlien received protein coding input, this is usu-
ally indicated by RNAcode in the evaluation step. Some of
the constructed alignments were qualified as structuredRNA
by RNAz, which could be explained by conserved secondary
structures that are contained in the reading frames of these
alignments.

95 sequences from 5′ and 3′ untranslated regions from
Homo sapiens and 98 from Escherichia coli were checked.
Escherichia coli sequences are from egulonDB version 9.0
(29) Homo sapiens sequences are from Ensembl (28) (Re-
lease 84, GRCh38.p5), chromosome 2.

In 34 of the 193 cases no additional hits, meaning no
hits that satisfied the filter criteria, were found by homology
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search. 30 of these cases were UTR input sequences from
Homo sapiens. In 114 cases, the final RNAlien alignments
were classified by RNAz as not structural RNA alignments,
in 45 cases were classified as structured RNAs, of which 37
are in the 3′-UTR of E. coli.

Finding structured RNA in UTRs is quite expected (33).
One example are terminator hairpins in prokaryotic 3′-
UTRs. Possibly RNAlien could be also used to search for
structural motifs in untranslated regions.

The full table of the negative data set results can be found
in Supplementary Section F - Negative control set.

As can be observed from the results in Figures 2 and 3,
our models do not recover all Rfam seed sequence sets with
100% sensitivity. This is, however, completely in line with
our expectations. Putative homologs are collected solely via
quite stringent BLAST hits, which limits the depth of a
model to those homologs to be recovered using sequence-
based searches only. Additional remote homologs can be
discovered by running Infernal (4).

WEB SERVER

RNA homology searches can be performed conveniently via
the RNAlien web server. The server takes a fasta se-
quence and the organism of origin’s name or NCBI taxon-
omy id as input. For each iteration step the server provides
information on how many sequences have been collected so
far and to which node of the taxonomic tree the search has
progressed.

Upon completion the sequences, structural alignment
and calibrated covariance model are available via download
links (see Figure 5). All intermediate results are available as
compressed archives for documentation and review of the
results.

A key feature of the web server is a zoom-able and
collapse-able taxonomic tree of the organisms where family
members were found. The results of model evaluation, like
the cmstat, RNAz and RNAcode output are summarized
in a table.

The final covariance model can be directly passed on to
the CMCompare web service (34,35) which compares it to
all RNA family models in the Rfam database. This allows
to find related families, or even an alternative pre-existing
family model for the newly constructed model.

CONCLUSION

With RNAlien we provide an automated pipeline for
RNA homology search. Starting from a single sequence, a
combined sequence-structure alignment is constructed. Se-
quences are collected from an ever-wider search within the
phylogeny of the starting sequence, with the goal of pro-
ducing a family of phylogenetically diverse members. The
resulting family comes complete with a set of statistical
predictors of quality, and a covariance model for further
searches.

These results show that our method does indeed produce
models that may serve as initial seed models for further in-
vestigation. The resulting alignment could also be used as
input for iteratively expanding input seed alignments via
multiple rounds (14).

However there are RNA families (10–13) for which an au-
tomated approach can only partially succeed, because the
RNAs exhibit large variation in length and structure. Here,
the use of contextual information, like promoter binding
sites and other expert knowledge can help.

We point out that the dependency on BLAST could be
easily dropped by directly using cmsearch for candidate
search. While this could improve sensitivity, it would incur
much higher computational cost, especially when scanning
eukaryotic genomes. In the future we plan to add candi-
date search via nhmmer, speed up the pipeline by modify-
ing model calibration and expand the construction process
to include alternative model concepts (36).

Together with the web server, RNAlien provides a com-
pletely automated and easy to use method to construct ini-
tial structured RNA family models, based on a single initial
sequence. This in turn considerably reduces the workload
of an investigation into a novel sequence whose pedigree is
unknown.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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Muñiz-Rascado,L., Garcı́a-Sotelo,J.S., Weiss,V., Solano-Lira,H.,
Martı́nez-Flores,I., Medina-Rivera,A. et al. (2013) RegulonDB v8. 0:
omics data sets, evolutionary conservation, regulatory phrases,
cross-validated gold standards and more. Nucleic Acids Res., 41,
D203–D213.

30. Wheeler,T.J. and Eddy,S.R. (2013) nhmmer: DNA homology search
with profile HMMs. Bioinformatics, 29, 2487–2489.

31. Lorenz,R., Bernhart,S. H.F., zu Siederdissen,C.H., Tafer,H.,
Flamm,C., Stadler,P.F. and Hofacker,I.L. (2011) ViennaRNA
Package 2.0. Algorithms Mol. Biol., 6, 26–40.

32. Wheeler,T.J., Clements,J., Eddy,S.R., Hubley,R., Jones,T.A., Jurka,J.,
Smit,A.F. and Finn,R.D. (2013) Dfam: a database of repetitive DNA
based on profile hidden Markov models. Nucleic Acids Res., 41,
D70–D82.

33. Pichon,X., Wilson,L.A., Stoneley,M., Bastide,A., King,H.A.,
Somers,J. and Willis,A.E. (2012) RNA binding protein/RNA element
interactions and the control of translation. Curr. Protein Pept. Sci.,
13, 294–304.

34. Eggenhofer,F., Hofacker,I.L. and zu Siederdissen,C.H. (2013)
CMCompare webserver: comparing RNA families via covariance
models. Nucleic Acids Res., 41, 499–503.
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A RNAlien detailed flowchart

Detailed flowchart representation of the RNAlien program flow.

Fig. 1. Detailed program flow chart for RNAlien program.
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B Implementation Details

RNAlien depends on several external tools and interfaces, which are listed in
this section. System and function calls are included with their parameters and
highlighted in italic. A starting point in the taxonomic tree is set, either speci-
fied by the input NCBI taxonomy id, or by running a nucleotide BLAST search
via the NCBI REST interface and selecting the organism of the best hit. The
model construction process starts at this organism and performs a initial model
construction step. RNAlien retrieves the taxonomic lineage of starting organism
from the NCBI ENTREZ REST interface. After each of these steps RNAlien

proceeds to the taxnomic parent of the current taxonomic node. If a model was
already constructed in a previous step then a model expansion step is performed,
otherwise a initial model construction is reattemped. Once the root of the tax-
onomic tree has been reached model expansion stops and the model finalization
step is performed.

B.1 Initial model construction

RNAlien tries to establish an inital set of sequences related to the input sequence,
that serve as seed for further expansion of the model.

Search: Candidate search is performed via the nucleotide BLAST REST inter-
face which returns a list of hits. The organisms to be searched are restricted by
the current taxononomic node of the step in two ways. To avoid overenrichment
of sequences similar to included ones, already visited organisms are excluded.
Only organisms that are are associated with children of the current node are
searched. For example if the current taxonomic position is Enterobacteriacea
and the previous node was Enterobacter all other organisms that belong to En-
terobacteriacea excluding Enterobacter are searched.
Summary of NCBI BLAST REST function call (one for each query, all other pa-
rameters default):

blastHTTP

parameter value
program blastn
database nt

querySequence currentsequence
hitlistSize 5000

e-value 0.001
uppertaxonomylimit currenttaxonomyid
lowertaxonomylimit previoustaxonomyid

Filtering hits: BLAST hits are filtered by consecutively by following criteria:
Hit has to achive over 80% coverage of the query sequence.
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Legend:

Current Node

Previous Node

Search Node

Fig. 2. Organisms used for candidate search are determined as follows. All organisms
and their corresponding genomes that are associated with the currently selected po-
sition in the taxonomic tree are used for searching. Excepted from this are organisms
that have already been searched in previous rounds.

The hit must not exceed query length by factor of three.
Similarity of the hit to the query must be under 99%.
The remaining hits are expanded to query length as explained in subsection B.5.
The gene id contained in the BLAST result and the expanded coordinates are used
to retrieve nucleotide sequence from the Entrez REST interface. The sequences
are filtered by normalized structure conservation index (nSCI). To compute the
nSCI for each candidate sequence we need the mimimum free secondary struc-
ture folding energy (MFE) of the candidate and the input sequence which is
computed with RNAfold.

RNAfold

parameter value
−−noPS

inputfilePath fastaFilePath
outputFilepath foldFilePath

Furthermore the structure conservation index and the sequence identity of the
candidate and input sequence are required. The candidate sequence is pair-wise
aligned with free end-gap setting (semi-globally) to the input sequence. For each
of these alignments the structure conservation index SCI is computed via RNAal-
ifold.

locarna

parameter value
−−write-structure

−−free-endgaps=+ + −−
−−clustal clustalFormatFilePath

inputFilepath1 inputFastaFilePath
inputFilepath2 inputFastaFilePath
outputFilepath locarnaFilePath
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RNAalifold

parameter value
inputFilepath clustalFormatFilePath
outputFilepath aliFoldFilePath
The sequence identity is computed via levenstein distance with following edit
costs (delete,insert,substitution,transposition)=1. Candidate sequences are ac-
cepted for model construction if their nSCI exceeds one.

Model Construction: Candidate sequences that passed the nSCI filter are
then used to build the inital model together with the input sequence. The se-
quences are structually aligned with mlocarna.

mlocarna

parameter value
inputFilepath inputFastaFilePath

outputFilepath mlocarnaFilePath

cmbuild is applied to the resulting structural stockholm alignment to con-
struct a covariance model.

cmbuild

parameter value
−−refine

inputModelFilepath cmFilePath
inputAlignmentFilepath stockholmAlignmentFilePath
outputLogFilepath logFilePath
The covariance model is used in the model expansion rounds to filter candidates
and is therefore calibrated with cmcalibrate. This step is very time-consuming
but sped up by using nonstandard (--beta 10−4) parameter. This affects the
pre-filter steps of cmsearch, but not the final step where the sequence is aligned
to the model via the CYK algorithm. Meaning that this increase in calibration
speed reduces sensitivity but not specificity.

cmcalibrate

parameter value
−−beta 1E-4

inputModelFilepath cmFilePath
outputFilepath mlocarnaFilePath

Select Queries: At the end of the round queries for the candidate search of
the next round are selected. RNAlien features a filtering and a clustering based
method of query selection.
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Filtering based method is the default method and iteratively removes all entries
from the list of collected sequences, that do not have at most 95% pairwise
sequence identity. This method has less specificity and sensitivity in the bench-
marks (see 5, 6), but it is faster and removes the dependency on clustalo.

Clustering based method can alternatively be used by suppling the −m com-
mandline switch with the value clustering to RNAlien.Clustal omega is used to
compute a pairwise distance matrix of all collected sequences for clustering.

clustalo

parameter value
−−full

−−distmat-out matrixFilePath
−−infile fastaFilePath
outputFilepath clustaloFilePath
RNAlien clusters the sequences via unweighted pair group method with arithmetic
mean (UPGMA) and then incrementally increases the cutoff distance until 5
clusters can be formed. If less than 5 seqences have been collected, then each of
them will be used as query.

B.2 Model expansion

After a initial model has been constructed RNAlien enters into model expansion
phase.

Search: Searching is performed as descibed in Initial model construction but
with a relaxed e-value cutoff of 1 during the BLAST search.

blastHTTP

parameter value
program blastn
database nt
querySequence currentsequence
hitlistSize 5000
e-value 1
uppertaxonomylimit currenttaxonomyid
lowertaxonomylimit previoustaxonomyid

Filtering hits: Filtering of BLAST hits and hit expansion is performed as de-
scribed in Initial model construction.
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Sequences are also retrieved via the NCBI Entrez REST interface but then
filtered with a different approach. We use the calibrated covariance model of the
previous round and apply it with cmsearch to the canidate sequences. Candidates
are accepted into the growing model if their e-value is below 0.001 or as specified
by the inputEvalueCutoff commandline argument.

To ensure a meaningful e-value cutoff we need to consider the size of the
database. We reuse the size of the blast database the hit originates from.

The value is not by itself contained in the blast XML output, but all the pa-
rameters needed to compute it. The relationship of E-value and bitscore (Equa-
tion 3 adopted from [1]):

e = d ∗ q ∗ 2−b (1)

where d = databasesize
e = e-value
b = bitscore
q = querylength

We compute the database size in Mbases that was used for the blast search
as follows, by rearranging the equation above:

d = (e ∗ 2b)/q (2)

where d = databasesize
e = e-value
b = bitscore
q = querylength

Candidates are accepted into the growing model if their cmsearch E-value is
below 0.001 or as specified by the inputEvalueCutoff commandline argument

cmsearch

parameter value
−−notrunc

-Z databaseSize
-g covarianceModelPath
inputFilepath sequenceFilePath
outputFilepath cmsearchFilePath

Model Construction: Candidates that were accepted by cmsearch and al-
ready collected sequences are structurally aligned with the covariance model of
the previous round.

cmalign

parameter value
inputModelFilepath cmFilePath
inputSequenceFilepath fastaFilePath
outputAlignmentFilepath stockholmAlignmentFilePath
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As the secondary structure of the resulting stockholm alignment is not updated
in this process, a consensus secondary structure of the new alignment is com-
puted via RNAalifold, with settings specifically optimized to consider covariance
contributions. The old consensus secondary structure is replaced with the new
one in the alignment.

RNAalifold

parameter value
-r

−−cfactor
-Z databaseSize
-g covarianceModelPath
inputFilepath sequenceFilePath
outputFilepath cmsearchFilePath
cmbuild is used to construct a updated covariance model.

cmbuild

parameter value
−−refine

inputModelFilepath cmFilePath
inputAlignmentFilepath stockholmAlignmentFilePath
outputLogFilepath logFilePath
The model is calibrated with cmcalibrate for the following candidate search.

cmcalibrate

parameter value
−−beta 1E-4

inputModelFilepath cmFilePath
outputFilepath mlocarnaFilePath

Select Queries: Search candidates for the next round are selected as described
in Inital model construction.

B.3 Model finalization:

Model finalization serves to collect family members that could not be included
in earlier rounds, because the model was too specific at that point and make the
results availble for the user. First individual candidate searches are performed in
Archea, Bacteria, and Eukaria or as specified by the taxonomyRestriction com-
mandline argument. The results are pooled and then processed as described in
model expansion. The resulting model is then used to reevaluate collected po-
tential candidates. These sequences are filtered as described in modelexpansion
and if accepted included into the model. This final model is then calibrated with
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default options to make it immedately useable for further homology search by
the user.

Search, Filter: as in modelexpansion for 3 kingdoms (Archea - taxid 2157,
Bacteria - taxid 2, Eukaria - taxid 2759)
Modelconstruction as in Modelexpansion

Reevaluation of potential candidates: Filter like in Modelexpansion

Modelconstruction: as described above
cmbuild

parameter value
−−refine

inputModelFilepath cmFilePath
inputAlignmentFilepath stockholmAlignmentFilePath
outputLogFilepath logFilePath
Calibration is done without speedup by −−beta 1E-4 for the final model

cmcalibrate

parameter value
inputModelFilepath cmFilePath
outputFilepath mlocarnaFilePath

B.4 Model evaluation

In this step descriptors for the result files are computed. The covariance model
is used as input for cmstat, which computes among other features the cm and
hmm content of the model. cmalign is used to generate a clustalw format
result alignment which is prefiltered by rnazSelectSeqs.pl (auxiliary script pack-
aged with RNAz). This filtered alignment is used as input for RNAz set to use the
decision model for structural alignments. The most relevant output of RNAz in
this case is if it predicts the input to be structured RNA, which is a indicator
for successful model constructions.

cmalign

parameter value
−−outformat=Clustal

inputModelFilepath cmFilePath
outputFilepath mlocarnaFilePath
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rnazSelectSeqs.pl

parameter value
inputFilepath clustalFilePath
outputFilepath selectedClustalFilePath

RNAz

parameter value
-l

inputFilepath selectedClustalFilePath
outputFilepath rnazFilePath

cmstat

parameter value
-l

inputFilepath covarianceModelPath
outputFilepath cmstatFilePath

B.5 Blast hit extension

RNAlien expands found BLAST hits to the query length if possible.

Same strand BLAST hit are extended as follows,

t =h− q

T =H + (L−Q)

s(t) =

{
t, if t ≥ 0

0, otherwise

E(T ) =

{
b, if T ≥ b

T, otherwise

where h is the start coordinate of the hit, t is the extended start coordinate,
q is the start coordinate of the hit on the query, H is the end coordinate of the
hit, T is the extended endcoordinate, Q is the end cooridnate of the hit on the
query, L is the length of the query sequence b is the length of the sequence the
hit maps to s is the start coordinate of the extended sequence checked for being
within the available coordinates of the hit sequence, E is the end coordinate of
the extended sequence checked for being within the available coordinates of the
hit sequence
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Query

Hit

q Q

h H

Candidate s e

Fig. 3. Extension of BLAST hit and query on the same strand to query length, where
h is the start coordinate of the hit, t is the extended start coordinate, q is the start
coordinate of the hit on the query, H is the end coordinate of the hit, T is the extended
endcoordinate, Q is the end cooridnate of the hit on the query, L is the length of the
query sequence b is the length of the sequence the hit maps to s is the start coordinate
of the extended sequence checked for being within the available coordinates of the hit
sequence, E is the end coordinate of the extended sequence checked for being within
the available coordinates of the hit sequence

Different Strand BLAST hit are extended as follows,

t =h + q

T =H − (L−Q)

s(t) =

{
b, if t ≥ b

t, otherwise

e(T ) =

{
T, if T ≥ 0

0, otherwise

where h is the start coordinate of the hit,
t is the extended start coordinate,
q is the start coordinate of the hit on the query,
H is the end coordinate of the hit,
T is the extended endcoordinate,
Q is the end cooridnate of the hit on the query,
L is the length of the query sequence
b is the length of the sequence the hit maps to
s is the start coordinate of the extended sequence checked for being within the
available coordinates of the hit sequence,
E is the end coordinate of the extended sequence checked for being within the
available coordinates of the hit sequence

C Rfam RNA families with known structure

This section contains additional plots for the RNA families with known structure
featured in the paper. The first 2 plots show the changes of specificity and
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L

Fig. 4. Extension of BLAST hit and query on different strands to query length

sensitivity after subsequently applying the suggestions of the reviewers. The
orginal version before the review was RNAlien 1.0.0, the one including all changes
listed here has version 1.1.1.

Inclusion of paralogs and toggling of the refine switch for cmbuild were in-
cluded first, this has improved both specificity, as well as recall. Additionally
to this, we changed the method for selecting queries for searching candidates
from clustering all collected sequences and picking one sequence per cluster to
filtering all sequence that do not have a pairwise sequence identity of less then
95%.

While the specificity is slightly only lower, there is a decrease in specificity.
Nevertheless we have selected the new query selection method as default, because
it is substantially faster and it drops the dependency on clustal-omega.

Blast hits are now also checked for the hit to have at least 80% coverage of
the query. This feature should have been included in RNAlien 1.0.0, but was
faulty.

Query sequences submitted to blast can be softmasked with conservation
information from /cmalign. This feature is not considered in the shown bench-
marks, but can be activated via commandline switch.

All of the newly introduced features can be controlled via commandline
switches, with exception of the cmbuild refinement.

The runtime of RNAlien for the structured RNA test set
Following is the table of sequences from the Rfam 12.0 seed alignments of

families with known structure, that was used in the result section. The first
sequence of the family was picked with the exception of sequences that are
associated with metagenomic tax ids that could not be processed by the NCBI
REST BLAST interface.
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Table 1: RNA families with known structure benchmark table. Col-
umn names A to N are placeholders for the following names: Speci-
ficity Alien (=A) Sens Alien (=B) Spec+paralogs+refine (=C)
Sens+paralogs+refine (=D) Spec+filterings (=E) Sens+filtering
(=F) Spec+coverage (=G) Sens+coverage (=H) Spec evalue (=I)
Sens evalue (=J) Spec nhmmer evalue (=K) Sens nhmmer evalue
(=L) Spec blast evalue (=M) Sens blast evalue (=N). The column
names annotated with evalue were computed with a evalue cutoff
of 1−3 and a databasesize of 109 bases per default, with the excep-
tion of families that can be found exclusively in prokaryotes and
viruses.

Rfam id Rfam name A B C D E F G H I J K L M N
5S rRNA RF00001 0.64 0.91 0.99 0.92 0.77 0.82 1 0.87 1 0.83 0.94 0.53 0.72 0.55

Continued on next page
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Table 1 – continued from previous page
Rfam id Rfam name A B C D E F G H I J K L M N

5 8S rRNA RF00002 0.95 0.9 1 0.9 1 0.85 1 0.85 1 0.89 0.96 0.95 1 0.74
U1 RF00003 0.58 0.88 0.97 1 0.99 1 1 1 1 0.99 0.86 0.99 1 0.75
U2 RF00004 0.62 0.99 0.89 0.98 0.99 0.99 0.99 0.95 0.99 0.96 0.84 0.99 0.96 0.89
tRNA RF00005 0.77 0.48 1 0.75 1 0.7 1 0.63 0.75 0.47 0.9 0.15 1 0.04
Hammerhead 3 RF00008 1 0.63 1 0.74 1 0.74 1 0.74 1 0.74 1 0.74 1 0.74
RNaseP bact a RF00010 0.56 1 0.93 0.98 0.94 0.98 1 1 1 1 0.98 1 1 1
RNaseP bact b RF00011 0.55 1 0.99 1 1 1 1 1 1 1 0.99 1 0.91 1
Metazoa SRP RF00017 0.35 0.92 0.06 0.96 0.13 0.96 1 0.99 1 0.99 0.95 0.96 1 0.99
tmRNA RF00023 0.65 0.92 0.98 0.93 0.98 0.92 0.99 0.88 0.99 0.91 0.98 0.95 0.98 0.61
U6 RF00026 0.64 0.83 0.98 0.83 0.99 0.82 1 0.82 1 0.8 0.88 0.89 0.93 0.71
Intron gpI RF00028 0.32 0.08 0.17 0.17 0.27 0.25 1 0.08 1 0.08 0.28 0.08 1 0.08
Intron gpII RF00029 0.75 0.41 0.31 0.65 0.92 0.58 0.89 0.2 0.92 0.16 0.84 0.2 1 0.09
Histone3 RF00032 1 0.02 1 0.02 1 0.02 1 0.02 0.5 0.02 1 0.02 1 0.02
IRE I RF00037 0.78 0.92 0.99 0.92 0.95 0.87 0.95 0.89 0.96 0.89 1 0.05 1 0.05
Phage pRNA RF00044 0.8 1 0.8 1 0.8 1 1 1 1 1 0.8 1 1 1
FMN RF00050 0.21 0.79 0.6 1 0.18 1 0.1 0.66 1 1 1 1 0.85 1
TPP RF00059 0.63 0.83 0.77 0.92 0.57 0.91 0.87 0.83 0.8 0.82 1 0.5 1 0.3
S15 RF00114 0.56 0.85 1 0.85 1 0.85 1 0.85 1 0.85 1 0.83 1 0.82
SAM RF00162 0.55 0.72 0.81 0.99 0.67 0.98 0.76 0.91 0.98 1 0.99 0.99 1 0.79
s2m RF00164 1 1 1 1 1 1 1 0.97 1 0.97 1 0.18 1 0.87
Purine RF00167 0.66 0.71 1 1 1 1 1 0.99 1 1 1 0.99 1 0.94
Lysine RF00168 0.82 0.94 1 0.98 1 0.89 1 0.85 1 0.94 1 0.98 1 0.45
Bacteria small SRP RF00169 0.64 0.75 0.99 0.77 0.99 0.75 1 0.27 1 0.67 1 0.41 1 0.39
Cobalamin RF00174 0.73 0.6 0.87 0.99 0.91 1 1 0.94 1 0.96 1 0.97 0.9 0.9
HIV-1 DIS RF00175 1 0.99 1 0.99 1 0.99 1 0.99 1 1 1 0.91 1 0.91
SSU rRNA bacteria RF00177 1 1 1 1 1 1 1 1 1 1 1 1 1 1
K10 TLS RF00207 1 1 1 1 1 1 1 1 0.8 1 1 1 1 1
IRES Pesti RF00209 0.95 1 0.91 1 0.91 1 1 1 1 1 0.96 1 1 1
glmS RF00234 0.69 1 0.97 1 1 1 1 0.89 1 0.89 1 1 1 0.89
Gammaretro CES RF00374 0.64 1 0.87 1 0.87 1 1 1 1 1 0.99 1 1 1
ykoK RF00380 0.7 0.86 1 0.94 1 0.96 1 0.89 1 0.99 1 0.99 0.95 0.99
IRES Cripavirus RF00458 0.33 0.14 0.25 0.29 0.25 0.29 1 0.29 1 1 1 0.86 1 1
HIV FE RF00480 1 0.98 1 0.98 1 0.98 1 0.98 1 0.99 1 0.99 1 0.97
TCV H5 RF00500 1 0.8 1 0.8 1 0.8 1 0.8 1 1 1 1 1 1
Glycine RF00504 0.69 0.59 0.91 0.77 0.87 0.7 0.91 0.52 0.99 0.66 1 0.09 1 0.09
mir-228 RF00843 1 1 1 1 1 1 1 1 1 1 1 1 1 1
mir-689 RF00871 0.5 0.08 0.5 0.08 0.5 0.08 0.83 0.38 0.83 0.38 0.92 0.38 1 0.46
c-di-GMP-I RF01051 0.81 0.97 1 0.97 0.94 0.94 1 0.96 1 0.98 1 0.76 1 0.69
preQ1-II RF01054 0.67 0.93 1 0.93 1 0.93 1 0.71 1 0.93 1 0.86 1 0.71
GP knot1 RF01073 0.96 0.86 0.96 0.71 0.96 0.71 0.91 0.71 0.93 0.86 1 0.43 0.88 0.71
PK-G12rRNA RF01118 0.65 0.99 0.73 0.99 0.68 0.97 0.99 0.99 1 1 1 1 1 1
HIV-1 SD RF01380 1 0.05 1 0.05 1 0.05 1 0.05 1 0.77 1 0 1 0

Continued on next page
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Table 1 – continued from previous page
Rfam id Rfam name A B C D E F G H I J K L M N

MFR RF01510 1 0.33 1 0.67 1 0.67 1 0.67 1 1 1 1 0.67 1
AdoCbl-variant RF01689 1 0.91 1 0.91 1 0.91 1 0.91 1 0.91 1 0.86 1 0.91
crcB RF01734 0.84 0.36 0.93 0.45 1 0.36 0.88 0.28 0.88 0.32 1 0.03 1 0.03
c-di-GMP-II RF01786 0.67 0.02 1 0.04 1 0.04 1 0.04 1 0.07 1 0.04 1 0.02
THF RF01831 0.76 0.96 1 0.96 0.86 0.87 0.7 0.14 0.8 0.24 1 0.24 1 0.16
tRNA-Sec RF01852 0.89 0.3 0.92 0.3 0.9 0.3 0.53 0.28 0.53 0.28 0.88 0.29 0.92 0.28
Protozoa SRP RF01856 0.72 0.39 0.91 0.39 0.95 0.39 1 0.11 1 0.33 1 0.33 1 0.33
Archaea SRP RF01857 0.35 0.96 0.82 0.96 0.45 0.96 1 0.87 1 0.96 1 1 1 0.15
group-II-D1D4-1 RF01998 0.38 0.5 0.38 0.46 0.45 0.31 0.62 0.11 0.62 0.06 0.83 0.02 0.5 0.02
group-II-D1D4-3 RF02001 0.3 0.78 1 0.98 1 0.99 1 0.98 1 0.96 0.94 0.94 0.97 0.49
mir-2985-2 RF02095 0.68 0.95 0.84 0.95 0.97 1 1 0.95 1 1 1 1 1 1
IRE II RF02253 0.42 0.17 0.42 0.17 0.44 0.17 0.54 0.17 0 0.17 0 0.03 0 0.17
ToxI RF02519 0.78 0.5 0.56 0.5 0.62 0.5 0.62 0.5 1 1 1 1 1 1

D Diverse Rfam RNA families benchmark set

The Rfam database features following tags to group families: Cis-reg, frameshift element,
IRES, leader, riboswitch, thermoregulator, antisense, antitoxin, CRISPR, lncRNA,
miRNA, ribozyme, rRNA, snRNA, snoRNA, CD-box, HACA-box, scaRNA,
splicing, Gene, sRNA, tRNA, Intron.

To obtain a representative sample of Rfam families, for each of these tags
the alphanumberically first 10 families (if avialable for that tag) were selected.
As some families have multiple tags, the list was filtered to contain each family
only once.

The benchmark was conducted in the same manner as for the families with
known 3D structure. The plots show different combinations of e-value cutoffs
and databasesizes. Without explicitly setting the database size cmsearch uses
twice the sequence length (forward/backward strand).

The setting compareable to the one used for the structured dataset is diverse(ev-
1e-3,db-1e-9), meaning a cmsearch e-value cutoff of 1e-3 and a databasesize of
109 bases in general and 106 bases for bacterial and viral RNA families.

The result with compareable settings to the structured dataset has 191 of
192 cases (99%) with at least half of the sequences collected by RNAlien are
recognized as belonging to the Rfam model. In 170 (89%) families all sequences
included by RNAlien are recognized as belonging to the Rfam model

In of 163 cases (85%) at least half the sequences in the Rfam seed alignment
are correctly recognized by the RNAlien model. In 123 of 191 cases (64%) all
sequences in the Rfam seed alignment are correctly recognized by the RNAlien

model.
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Fig. 7. Alien program runtime in minutes for structured families
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Fig. 8. Specificity of RNAlien homology search. The plot shows the fraction of homologs
predicted by RNAlien that are recognized by the original Rfam model. The legend
indicates the e-evalue cutoff (ev-) and the database size used. The e-evalue cutoffs
start at 1 and are made stricter in 1e-3 steps up to 1e-9. The result with compareable
settings to the structured dataset has 191 of 192 cases (99%) with at least half of the
sequences collected by RNAlien are recognized as belonging to the Rfam model. In 170
(89%) families all sequences included by RNAlien are recognized as belonging to the
Rfam model

Following is the table of familes from the Rfam 12.0 used in the as a second
benchmark set.
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Fig. 9. Recall for 191 RNA families, selected up to 10 for each family tag. To test
our method, sRNA Rfam family models were reconstructed by RNAlien from a ran-
dom sequence picked from the family seed sequences. This plot shows how many Rfam

seed sequences are recognized by the reconstructed RNAlien model using the model
gathering score (used by Rfam to establish full models). In of 163 cases (85%) at least
half the sequences in the Rfam seed alignment are correctly recognized by the RNAlien

model. In 123 of 191 cases (64%) all sequences in the Rfam seed alignment are correctly
recognized by the RNAlien model.

Table 2: Diverse RNA families benchmark set. Column names A to D
are placeholders for following names: Specificty evalue 1 (=A) Sensi-
tivity evalue 1 (=B) Specificity evalue 1e-3 (=C) Sensitivity evalue 1e-3
(=D) Specificity evalue 1e-6 (=E) Sensitivity evalue 1e-6 (=F) Speci-
ficity evalue 1e-9 (=G) Sensitivity evalue 1e-9 (=H)

Rfam name Rfam id A B C D E F G H

5S rRNA RF00001 1 0.88 1 0.75 0.97 0.54 0.58 0.48
5 8S rRNA RF00002 1 0.89 1 0.82 1 0.75 1 0.69
U1 RF00003 1 1 1 1 0.98 0.98 0.94 0.94
U2 RF00004 1 1 0.99 0.96 0.92 0.83 0.88 0.75
tRNA RF00005 1 0.61 0.75 0.47 0.02 0.25 0 0.03
RNaseP nuc RF00009 1 0.11 1 0.09 1 0.08 1 0.07
RNaseP bact b RF00011 1 1 1 1 1 1 1 1
U4 RF00015 0.97 0.74 0.96 0.55 0.94 0.12 0.9 0.06
Y RNA RF00019 0.52 0.59 0.4 0.33 0.12 0.31 0.05 0.31
U5 RF00020 1 0.9 1 0.61 0.97 0.21 0.78 0.09
U6 RF00026 1 0.94 1 0.8 0.99 0.63 0.88 0.51
PrfA RF00038 1 1 1 1 1 1 1 1
CopA RF00042 1 1 1 1 1 1 0.97 0.97
FMN RF00050 1 1 1 1 0.99 0.99 0.8 0.78

Continued on next page
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Table 2 – continued from previous page

Rfam name Rfam id A B C D E F G H

TPP RF00059 1 0.95 1 0.83 1 0.53 0.67 0.39
U7 RF00066 1 0.71 0.99 0.63 0.79 0.53 0.18 0.39
SNORD29 RF00070 1 0.3 1 0.3 1 0.3 0 0.3
mir-29 RF00074 0.96 1 0.82 0.6 0.56 0.6 0.11 0.4
RNAI RF00106 1 1 1 1 0.97 1 0.91 0.9
SIB RNA RF00113 1 1 1 1 1 1 1 1
snoZ159 RF00160 1 0.3 1 0.1 0.33 0.1 0 0.1
Hammerhead 1 RF00163 1 0.31 1 0.1 0 0.03 0 0.03
Purine RF00167 1 0.89 1 0.83 1 0.55 1 0.14
SSU rRNA bacteria RF00177 1 1 1 1 1 1 1 1
IRES Bag1 RF00222 1 1 1 1 1 1 1 1
glmS RF00234 1 1 1 0.89 1 0.89 1 0.33
ctRNA pGA1 RF00236 1 1 1 1 1 0.6 1 0.2
RNA-OUT RF00240 1 1 1 1 1 1 1 1
ctRNA pT181 RF00242 1 1 1 0.94 1 0.69 1 0.62
IRES L-myc RF00261 1 1 1 1 0.82 1 0.23 1
SCARNA18 RF00283 1 1 1 1 1 1 0.86 0.95
SCARNA8 RF00286 1 1 1 1 1 1 1 1
snoR86 RF00303 1 1 1 1 1 1 0.88 1
snoZ157 RF00333 1 1 1 1 0.94 0.9 0.83 0.8
snoR60 RF00339 1 1 0.96 1 0.96 1 0.72 0.9
ydaO-yuaA RF00379 1 1 1 0.99 1 0.94 0.9 0.84
Antizyme FSE RF00381 1 1 1 0.92 0.99 0.62 0.91 0.46
Pox AX element RF00384 1 1 1 1 1 1 1 1
IBV D-RNA RF00385 1 1 1 1 1 1 1 0.9
SNORA30 RF00415 1 1 1 0.73 1 0.73 1 0.64
SCARNA24 RF00422 1 1 1 1 1 1 1 0.87
SCARNA15 RF00426 1 1 1 1 1 0.77 0.88 0.64
SCARNA23 RF00427 1 1 1 1 1 1 1 0.94
Hsp90 CRE RF00433 1 1 1 1 1 1 1 1
ROSE RF00435 1 1 1 0.46 1 0.15 0 0.15
IRES HIF1 RF00449 1 1 1 1 1 0.94 0.87 0.88
IRES mnt RF00457 1 1 1 1 1 1 1 0.95
HCV SLVII RF00468 1 1 1 1 1 1 1 0.91
HCV SLIV RF00469 1 1 1 1 1 1 1 0.94
SCARNA6 RF00478 1 1 1 0.94 1 0.94 1 0.94
HIV FE RF00480 1 1 1 0.99 1 0.99 0.92 0.86
IRES Cx43 RF00487 1 1 1 1 0.98 1 0.83 0.93
U1 yeast RF00488 1 1 1 1 1 1 1 0.8
ctRNA p42d RF00489 0.97 1 0.81 0.9 0.53 0.6 0.03 0.2
IRES Hsp70 RF00495 1 0.86 1 0.86 1 0.86 1 0.86
RNAIII RF00503 1 1 1 1 0.56 1 0.56 1
Thr leader RF00506 1 1 1 1 1 1 0.95 0.96
snosnR64 RF00509 1 1 1 1 0.91 1 0.82 0.9
Leu leader RF00512 1 1 1 1 1 1 1 1
Trp leader RF00513 1 0.95 1 0.91 0.98 0.59 0.78 0.36
His leader RF00514 1 1 1 1 1 0.97 0.99 0.79

Continued on next page
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Table 2 – continued from previous page

Rfam name Rfam id A B C D E F G H

PreQ1 RF00522 1 0.74 0.84 0.26 0.14 0.17 0 0.14
Flavivirus DB RF00525 1 1 1 1 1 0.92 1 0.68
snoMe28S-G3255 RF00527 1 1 1 0.5 1 0.3 0 0.1
IRES TrkB RF00547 1 1 1 1 1 0.94 1 0.94
IRES c-sis RF00549 1 1 1 1 1 1 1 1
L13 leader RF00555 1 0.35 1 0.35 1 0.35 0.95 0.35
L19 leader RF00556 1 1 1 0.6 0.88 0.2 0 0.2
L20 leader RF00558 1 0.79 1 0.3 1 0.21 0.94 0.21
L21 leader RF00559 1 0.87 1 0.74 0.96 0.45 0.46 0.11
SCARNA3 RF00565 1 1 1 1 1 1 1 0.96
SCARNA14 RF00582 1 1 1 1 1 1 1 0.86
CoTC ribozyme RF00621 1 1 1 1 1 1 1 0.9
CPEB3 ribozyme RF00622 1 1 1 1 1 0.92 1 0.67
P1 RF00623 1 1 1 1 1 0.86 1 0.5
P24 RF00629 1 1 1 1 1 1 1 1
MIR169 2 RF00645 1 0.32 1 0.07 1 0.03 1 0.03
MIR168 RF00677 1 1 1 1 0.97 0.9 0.87 0.6
MIR162 2 RF00742 1 1 1 0.9 0.75 0.1 0.25 0.1
mir-342 RF00760 1 1 1 1 1 1 1 1
mir-541 RF00777 1 1 1 0.9 0.92 0.9 0.62 0.9
mir-1255 RF00994 0.99 0.9 0.86 0.9 0.45 0.9 0.11 0.1
WLE3 RF01046 1 1 1 0.7 1 0.7 1 0.6
Sacc telomerase RF01050 1 1 1 1 1 1 1 1
preQ1-II RF01054 1 1 1 0.93 1 0.71 1 0.64
MOCO RNA motif RF01055 1 0.33 1 0.13 1 0.07 1 0.02
RF site2 RF01076 1 1 0.83 1 0.67 1 0.67 1
RF site3 RF01079 1 1 1 1 1 1 1 0.5
RF site5 RF01093 1 1 1 1 1 0.58 0.9 0.5
RF site9 RF01098 1 1 1 1 1 1 1 1
PK-G12rRNA RF01118 1 1 1 1 1 1 1 1
snoZ30a RF01196 1 1 1 1 1 1 1 1
snoR103 RF01213 0.87 1 0.87 1 0.87 0.82 0.87 0.73
snoR442 RF01232 1 1 1 1 0.25 0.7 0 0.1
snR161 RF01237 1 1 1 0.9 1 0.9 1 0.5
snR36 RF01242 1 1 1 1 1 1 1 1
snR8 RF01248 1 1 1 1 1 0.91 1 0.91
snR190 RF01249 1 1 1 1 1 0.8 1 0.8
snR5 RF01252 1 1 1 1 1 0.82 1 0.82
snR35 RF01255 1 1 1 1 1 1 1 1
snR191 RF01263 1 1 1 1 1 1 1 1
SCARNA2 RF01268 1 0.95 1 0.95 1 0.95 1 0.95
snoR2 RF01292 1 1 1 1 1 1 1 1
SCARNA7 RF01295 1 1 1 1 1 0.94 1 0.94
AHBV epsilon RF01313 1 1 1 1 1 1 0.88 1
CRISPR-DR2 RF01315 1 0.74 1 0.05 0 0.05 0 0
CRISPR-DR3 RF01316 0.5 0.1 0.5 0.05 0 0 0 0
CRISPR-DR5 RF01318 1 1 1 0.08 1 0.08 0 0

Continued on next page
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Rfam name Rfam id A B C D E F G H

CRISPR-DR7 RF01320 1 0.9 1 0.2 1 0.1 0 0
CRISPR-DR35 RF01345 1 1 1 1 1 1 1 0
CRISPR-DR53 RF01366 1 1 1 1 1 1 1 0
CRISPR-DR60 RF01373 1 1 1 1 1 0.5 0 0.5
CRISPR-DR61 RF01374 1 1 0.83 1 0.83 1 0 0.5
CRISPR-DR65 RF01378 1 1 1 1 1 1 0 0
isrA RF01385 1 1 1 1 0.97 1 0.97 1
istR RF01400 1 1 1 1 1 1 0.97 1
NrrF RF01416 1 1 1 1 1 1 1 1
IsrR RF01419 1 0.98 1 0.97 1 0.91 1 0.88
VrrA RF01456 1 1 1 1 0.95 1 0.84 1
Afu 300 RF01509 1 1 1 1 1 1 0.61 0.5
MFR RF01510 1 1 1 1 1 1 1 0.67
Afu 309 RF01512 1 1 1 1 1 1 1 1
Dictyostelium SRP RF01570 1 1 1 1 1 1 1 1
RNase P RF01577 1 1 1 1 1 1 1 1
AdoCbl-variant RF01689 1 0.62 1 0.03 1 0.01 1 0.01
Lnt RF01711 1 0.9 1 0.8 1 0.3 0 0.3
cspA RF01766 1 1 1 1 1 1 1 1
SMK box riboswitch RF01767 1 0.6 1 0.08 1 0.04 1 0.04
rnk leader RF01771 0.97 1 0.97 1 0.97 0.85 0.97 0.85
RatA RF01776 1 1 0.88 1 0.35 0.56 0.04 0.5
blv FSE RF01785 1 1 1 1 1 0 0 0
FourU RF01795 1 1 1 1 1 1 0.94 1
fstAT RF01797 1 1 1 1 0.94 1 0.94 0.73
HSUR RF01802 1 0.5 1 0.5 1 0.5 1 0.5
Lambda thermo RF01804 1 1 1 1 1 1 1 1
GIR1 RF01807 1 1 0.89 0.92 0.89 0.92 0.89 0.92
MicX RF01808 1 1 1 1 1 1 1 1
symR RF01809 1 1 1 1 1 1 1 1
PtaRNA1 RF01811 1 1 1 1 1 1 1 0.75
rdlD RF01813 1 1 1 1 1 1 1 0.98
ROSE 2 RF01832 1 1 1 1 0.99 1 0.94 1
HIV FS2 RF01835 1 1 1 1 1 1 1 0.79
ovine lenti FSE RF01840 1 1 1 1 1 1 1 0.93
veev FSE RF01841 1 1 1 1 0.5 0.9 0.5 0.7
alpha tmRNA RF01849 1 1 1 1 1 1 0.98 1
tRNA-Sec RF01852 0.9 0.32 0.53 0.28 0.43 0.28 0.08 0.28
MIAT exon1 RF01874 1 1 1 1 1 1 0.98 0.9
MIAT exon5 2 RF01876 1 1 1 1 1 1 1 1
HSR-omega 2 RF01886 1 1 1 1 1 1 0.86 1
mir-2241 RF01899 1 1 1 0.5 1 0.5 1 0.5
mir-284 RF01901 1 1 1 1 1 1 1 1
HEARO RF02033 1 0.27 1 0.16 1 0.05 1 0.01
STnc630 RF02052 1 1 1 1 1 1 1 1
STnc370 RF02064 1 1 1 1 1 0.8 1 0.8
STnc180 RF02079 1 0.8 1 0.5 1 0.3 1 0.3

Continued on next page
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Rfam name Rfam id A B C D E F G H

OrzO-P RF02083 1 1 1 1 1 1 1 0.43
Yar 1 RF02085 1 0.9 1 0.8 1 0.5 1 0.3
tfoR RF02100 1 1 1 1 1 1 1 1
IS009 RF02111 1 1 1 1 0.97 1 0.74 0.73
FAM13A-AS1 1 RF02114 0.92 1 0.92 0.8 0.92 0.3 0.92 0.2
FAM13A-AS1 2 RF02115 1 0.8 1 0.6 1 0.3 1 0.3
MEG8 3 RF02147 1 1 1 1 0.92 0.6 0.42 0.4
PVT1 4 RF02167 1 1 1 0.9 1 0.5 1 0.4
HPnc0260 RF02194 1 0.39 1 0.26 1 0.23 1 0.19
WT1-AS 1 RF02203 1 1 1 1 1 1 0.9 0.8
sX5 RF02224 1 1 1 1 1 1 0.59 0.8
sX11 RF02230 1 1 1 1 1 1 1 1
Six3os1 3 RF02248 1 1 1 1 1 0.9 0.89 0.8
Hammerhead II RF02276 1 0.83 1 0.79 0.73 0.54 0 0
Hammerhead HH10 RF02277 1 1 1 1 1 1 1 1
hsp17 RF02358 1 0.67 1 0.67 0.83 0.67 0.33 0.67
PyrG leader RF02371 1 1 1 0.7 0.8 0.2 0.3 0.2
PyrD leader RF02373 1 0.59 1 0.15 1 0.11 1 0.11
Ms AS-8 RF02466 1 1 1 1 1 1 0.78 0.8
Gl RNase MRP RF02472 1 1 1 1 1 1 1 1
Gl U1 RF02491 1 1 1 1 1 1 1 1
Gl U2 RF02492 1 1 1 1 1 1 1 1
Gl U4 RF02493 1 1 1 1 1 1 1 1
Gl U6 RF02494 1 1 1 1 1 1 1 1
ohsC RNA RF02495 1 1 1 1 1 0.97 1 0.97
mir-2494 RF02518 1 1 1 0.9 1 0.9 1 0.7
ToxI RF02519 1 1 1 1 1 1 0.62 0.5
ROSE 3 RF02523 1 1 1 1 1 1 1 0.88
NRF2 IRES RF02531 0.98 1 0.98 1 0.97 0.95 0.86 0.9
MNV 3UTR RF02532 1 1 1 1 1 1 1 1
ODC IRES RF02535 1 1 1 1 1 1 0.97 0.85
mt-tmRNA RF02544 1 1 1 0.91 1 0.82 0.67 0.36
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E Negative control set

We used coding sequences, ancestral repeats, untranslated regions (UTRs) and random
sequences to perform a negative control. According to the procedure for structured and
diverse RNA families the sequences of the negative control set were used as a input
sequence for RNAlien. Taxonomic start points for the construction were set as below
using taxids from NCBI taxonomy [2]. The results were summarized for each subset
individually.

E.1 Random sequences

A test with 300 different 100 nucleotides long random sequences was performed. 100
Sequences each were used in Escherichia coli, Homo sapiens and Sulfolobus solfatari-
cus. The sequences were created with a inhouse randseq program, source code will be
provided on request by Ivo L. Hofacker (ivo@tbi.univie.ac.at).

E.2 Ancestral repeats

All 62 entries tagged with ancestral repeat from the Dfam [3] database were used with
Homo sapiens as starting point for RNAlien, if the repeat was present there. The
exceptions are the following list of pairs, with the first element containing the fam-
ily name and the second the taxonomic start point: (Charlie12 Rodent,Mus musculus),
(DNA9TA1 DR,Danio rerio), (L2-1 DR,Danio rerio), (Jockey2,Drosophila melanogaster),
(DIVER2 I,Drosophila melanogaster)

E.3 Coding sequences

50 Protein coding sequences were checked for Escherichia coli, Sulfolobus solfataricus
and Homo sapiens. Escherichia coli sequences are the first 50 annotated CDS sequences
from regulonDB 9.0 [4] (http://regulondb.ccg.unam.mx/menu/download/datasets/
files/Gene_sequence.txt) . Sulfolobus solfataricus sequences are retrieved from the
reference genbank [5] assembly for Sulfolobus solfataricus GCF 000007005.1 ASM700v1.
Homo sapiens sequences are from Ensemble [6] (Release 84, GRCh38.p5), chromo-
some2.

E.4 UTR regions

50 3-prime and 5-prime untranslated regions from E.coli and Homo sapiens were
checked. Escherichia coli sequences are from regulonDB version 9.0 [4] (http://regulondb.
ccg.unam.mx/menu/download/datasets/files/UTR_5_3_sequence.txt), Homo sapi-
ens sequences are from Ensemble [6] (Release 84, GRCh38.p5), chromosome2. For
suolfolobus we could not find a UTR dataset.
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Table 3: Table for negative control set construction results. Shown are selected result fields
of RNAz, RNAcode and cmstat. Column names A to Y are placeholders for following names:
Name(=A), alienFastaNumber(=B), meanPairwiseIdentity(=C), shannonEntropy(=D), gc-
Content(=E), meanSingleSequenceMFE(=F), consensusMFE(=G), energyContribution(=H),
covarianceContribution(=I), combinationsPair(=J), meanZScore(=K), SCI(=L), svmDeci-
sionValue(=M), svmRNAClassProbability(=N), prediction(=O), RNAcodelowestp-value(=P),
RNAcodeclassification(=Q), statSequenceNumber(=R), statEffectiveSequences(=S), stat-
ConsensusLength(=T), statW(=U), statBasepairs(=V), statBifurcations(=W), relativeEn-
tropyCM(=X), relativeEntropyHMM(=Y)

A B C D E F G H I J K L M N O P Q R S T U V W X Y

hs random1 1 - - - - - - - - - - - - - - - 1 0.7 100 118 28 1 0.591 0.318
hs random2 1 - - - - - - - - - - - - - - - 1 0.61 100 118 34 1 0.59 0.266
hs random3 1 - - - - - - - - - - - - - - - 1 0.75 100 118 24 2 0.589 0.369
hs random4 1 - - - - - - - - - - - - - - - 1 0.78 100 118 26 3 0.59 0.34
hs random5 1 - - - - - - - - - - - - - - - 1 0.75 100 118 27 2 0.591 0.335
hs random6 1 - - - - - - - - - - - - - - - 1 0.75 100 118 27 4 0.592 0.335
hs random7 1 - - - - - - - - - - - - - - - 1 0.69 100 117 27 2 0.589 0.335
hs random8 1 - - - - - - - - - - - - - - - 1 0.69 100 119 28 2 0.59 0.319
hs random9 1 - - - - - - - - - - - - - - - 1 0.71 100 118 29 0 0.589 0.322
hs random10 1 - - - - - - - - - - - - - - - 1 0.72 100 132 26 2 0.59 0.348
hs random11 1 - - - - - - - - - - - - - - - 1 0.65 100 117 33 1 0.589 0.276
hs random12 1 - - - - - - - - - - - - - - - 1 0.78 100 118 28 1 0.59 0.321
hs random13 1 - - - - - - - - - - - - - - - 1 0.8 100 118 20 1 0.589 0.401
hs random14 1 - - - - - - - - - - - - - - - 1 0.62 100 118 33 2 0.589 0.278
hs random15 1 - - - - - - - - - - - - - - - 1 0.85 100 117 19 2 0.591 0.414
hs random16 1 - - - - - - - - - - - - - - - 1 0.79 100 117 23 0 0.588 0.371
hs random17 1 - - - - - - - - - - - - - - - 1 0.75 100 118 27 1 0.59 0.336
hs random18 1 - - - - - - - - - - - - - - - 1 0.72 100 118 26 1 0.589 0.343
hs random19 1 - - - - - - - - - - - - - - - 1 0.79 100 118 26 2 0.591 0.34
hs random20 1 - - - - - - - - - - - - - - - 1 0.76 100 118 29 2 0.591 0.328
hs random21 1 - - - - - - - - - - - - - - - 1 0.65 100 118 33 2 0.59 0.282
hs random22 1 - - - - - - - - - - - - - - - 1 0.69 100 117 31 2 0.589 0.299
hs random23 1 - - - - - - - - - - - - - - - 1 0.69 100 118 27 1 0.59 0.331
hs random24 1 - - - - - - - - - - - - - - - 1 0.69 100 118 31 1 0.591 0.291
hs random25 1 - - - - - - - - - - - - - - - 1 0.69 100 118 30 3 0.589 0.303
hs random26 1 - - - - - - - - - - - - - - - 1 0.71 100 118 31 1 0.59 0.287
hs random27 1 - - - - - - - - - - - - - - - 1 0.66 100 117 30 1 0.59 0.306
hs random28 1 - - - - - - - - - - - - - - - 1 0.73 100 119 28 2 0.589 0.326
hs random29 1 - - - - - - - - - - - - - - - 1 0.69 100 117 30 1 0.591 0.308
hs random30 1 - - - - - - - - - - - - - - - 1 0.62 100 117 35 1 0.59 0.249
hs random31 1 - - - - - - - - - - - - - - - 1 0.76 100 118 27 1 0.589 0.334
hs random32 1 - - - - - - - - - - - - - - - 1 0.94 100 118 18 1 0.592 0.432
hs random33 1 - - - - - - - - - - - - - - - 1 0.87 100 118 22 0 0.59 0.39
hs random34 1 - - - - - - - - - - - - - - - 1 0.69 100 119 32 1 0.59 0.288
hs random35 1 - - - - - - - - - - - - - - - 1 0.68 100 118 28 2 0.59 0.318
hs random36 1 - - - - - - - - - - - - - - - 1 0.73 100 118 26 2 0.591 0.341
hs random37 1 - - - - - - - - - - - - - - - 1 0.75 100 118 25 2 0.589 0.35
hs random38 1 - - - - - - - - - - - - - - - 1 0.67 100 119 32 2 0.59 0.281
hs random39 1 - - - - - - - - - - - - - - - 1 0.77 100 118 24 2 0.59 0.365
hs random40 1 - - - - - - - - - - - - - - - 1 0.82 100 117 24 1 0.591 0.369
hs random41 1 - - - - - - - - - - - - - - - 1 0.75 100 118 26 2 0.589 0.345
hs random42 1 - - - - - - - - - - - - - - - 1 0.82 100 118 25 1 0.591 0.356
hs random43 1 - - - - - - - - - - - - - - - 1 0.76 100 117 25 2 0.59 0.352
hs random44 1 - - - - - - - - - - - - - - - 1 0.73 100 118 27 2 0.59 0.33
hs random45 1 - - - - - - - - - - - - - - - 1 0.65 100 118 30 1 0.59 0.305
hs random46 1 - - - - - - - - - - - - - - - 1 0.78 100 118 23 2 0.591 0.371
hs random47 1 - - - - - - - - - - - - - - - 1 0.82 100 118 22 1 0.588 0.376
hs random48 1 - - - - - - - - - - - - - - - 1 0.59 100 118 34 1 0.59 0.259
hs random49 1 - - - - - - - - - - - - - - - 1 0.65 100 118 30 1 0.589 0.299
hs random50 1 - - - - - - - - - - - - - - - 1 0.76 100 117 26 1 0.59 0.347
hs random51 1 - - - - - - - - - - - - - - - 1 0.71 100 118 29 0 0.59 0.313
hs random52 1 - - - - - - - - - - - - - - - 1 0.69 100 118 31 2 0.589 0.289
hs random53 1 - - - - - - - - - - - - - - - 1 0.73 100 118 26 1 0.589 0.351
hs random54 1 - - - - - - - - - - - - - - - 1 0.71 100 118 28 2 0.589 0.328
hs random55 1 - - - - - - - - - - - - - - - 1 0.64 100 118 31 1 0.591 0.289
hs random56 1 - - - - - - - - - - - - - - - 1 0.77 100 118 25 0 0.591 0.354
hs random57 1 - - - - - - - - - - - - - - - 1 0.71 100 117 31 1 0.591 0.298
hs random58 1 - - - - - - - - - - - - - - - 1 0.74 100 118 25 1 0.592 0.358
hs random59 1 - - - - - - - - - - - - - - - 1 0.78 100 118 26 3 0.591 0.346
hs random60 1 - - - - - - - - - - - - - - - 1 0.67 100 118 29 1 0.59 0.319
hs random61 1 - - - - - - - - - - - - - - - 1 0.67 100 118 31 0 0.591 0.287
hs random62 1 - - - - - - - - - - - - - - - 1 0.72 100 118 28 0 0.59 0.322
hs random63 1 - - - - - - - - - - - - - - - 1 0.75 100 119 26 1 0.59 0.342
hs random64 1 - - - - - - - - - - - - - - - 1 0.83 100 118 25 1 0.591 0.356
hs random65 1 - - - - - - - - - - - - - - - 1 0.91 100 117 21 0 0.589 0.395
hs random66 1 - - - - - - - - - - - - - - - 1 0.8 100 118 25 1 0.589 0.363
hs random67 1 - - - - - - - - - - - - - - - 1 0.73 100 118 29 2 0.59 0.317
hs random68 1 - - - - - - - - - - - - - - - 1 0.73 100 118 30 2 0.589 0.31
hs random69 1 - - - - - - - - - - - - - - - 1 0.68 100 118 32 1 0.589 0.278
hs random70 1 - - - - - - - - - - - - - - - 1 0.74 100 118 28 1 0.59 0.322
hs random71 1 - - - - - - - - - - - - - - - 1 0.69 100 118 30 1 0.59 0.31
hs random72 1 - - - - - - - - - - - - - - - 1 0.75 100 118 26 1 0.591 0.344
hs random73 1 - - - - - - - - - - - - - - - 1 0.72 100 118 29 3 0.588 0.312
hs random74 1 - - - - - - - - - - - - - - - 1 0.91 100 118 18 2 0.591 0.424
hs random75 1 - - - - - - - - - - - - - - - 1 0.79 100 118 29 1 0.59 0.314
hs random76 1 - - - - - - - - - - - - - - - 1 0.72 100 119 26 1 0.591 0.345
hs random77 1 - - - - - - - - - - - - - - - 1 0.69 100 117 29 2 0.59 0.319
hs random78 1 - - - - - - - - - - - - - - - 1 0.79 100 118 26 1 0.59 0.353
hs random79 1 - - - - - - - - - - - - - - - 1 0.84 100 118 24 1 0.589 0.365

Continued on next page
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A B C D E F G H I J K L M N O P Q R S T U V W X Y

hs random80 1 - - - - - - - - - - - - - - - 1 0.83 100 118 23 2 0.589 0.379
hs random81 1 - - - - - - - - - - - - - - - 1 0.82 100 118 24 0 0.591 0.363
hs random82 1 - - - - - - - - - - - - - - - 1 0.79 100 118 23 2 0.589 0.364
hs random83 1 - - - - - - - - - - - - - - - 1 0.65 100 117 32 1 0.591 0.284
hs random84 1 - - - - - - - - - - - - - - - 1 0.72 100 118 27 2 0.59 0.337
hs random85 1 - - - - - - - - - - - - - - - 1 0.7 100 118 31 1 0.591 0.304
hs random86 1 - - - - - - - - - - - - - - - 1 0.71 100 118 30 2 0.59 0.308
hs random87 1 - - - - - - - - - - - - - - - 1 0.78 100 118 24 1 0.588 0.372
hs random88 1 - - - - - - - - - - - - - - - 1 0.73 100 118 28 2 0.59 0.326
hs random89 1 - - - - - - - - - - - - - - - 1 0.89 100 118 21 2 0.589 0.398
hs random90 1 - - - - - - - - - - - - - - - 1 0.77 100 118 26 1 0.59 0.342
hs random91 1 - - - - - - - - - - - - - - - 1 0.74 100 132 25 2 0.59 0.348
hs random92 1 - - - - - - - - - - - - - - - 1 0.79 100 118 27 1 0.589 0.339
hs random93 1 - - - - - - - - - - - - - - - 1 0.82 100 118 23 1 0.589 0.378
hs random94 1 - - - - - - - - - - - - - - - 1 0.75 100 118 25 0 0.589 0.348
hs random95 1 - - - - - - - - - - - - - - - 1 0.7 100 118 31 1 0.59 0.298
hs random96 1 - - - - - - - - - - - - - - - 1 0.75 100 118 24 2 0.59 0.362
hs random97 1 - - - - - - - - - - - - - - - 1 0.66 100 117 33 2 0.591 0.274
hs random98 1 - - - - - - - - - - - - - - - 1 0.7 100 118 28 1 0.59 0.324
hs random99 1 - - - - - - - - - - - - - - - 1 0.71 100 132 28 2 0.591 0.332
hs random100 1 - - - - - - - - - - - - - - - 1 0.71 100 119 29 2 0.591 0.316
ec random101 1 - - - - - - - - - - - - - - - 1 0.67 100 118 30 1 0.592 0.306
ec random102 1 - - - - - - - - - - - - - - - 1 0.75 100 118 23 3 0.589 0.368
ec random103 1 - - - - - - - - - - - - - - - 1 0.73 100 118 27 1 0.589 0.333
ec random104 1 - - - - - - - - - - - - - - - 1 0.75 100 118 27 2 0.589 0.335
ec random105 1 - - - - - - - - - - - - - - - 1 0.71 100 118 30 3 0.59 0.307
ec random106 1 - - - - - - - - - - - - - - - 1 0.71 100 118 27 1 0.589 0.329
ec random107 1 - - - - - - - - - - - - - - - 1 0.82 100 118 21 2 0.592 0.4
ec random108 1 - - - - - - - - - - - - - - - 1 0.73 100 119 27 3 0.589 0.331
ec random109 1 - - - - - - - - - - - - - - - 1 0.69 100 118 27 2 0.591 0.336
ec random110 1 - - - - - - - - - - - - - - - 1 0.78 100 117 27 0 0.591 0.339
ec random111 1 - - - - - - - - - - - - - - - 1 0.72 100 117 29 0 0.591 0.329
ec random112 1 - - - - - - - - - - - - - - - 1 0.7 100 118 29 0 0.589 0.313
ec random113 1 - - - - - - - - - - - - - - - 1 0.69 100 118 32 0 0.591 0.29
ec random114 1 - - - - - - - - - - - - - - - 1 0.82 100 118 25 2 0.591 0.369
ec random115 1 - - - - - - - - - - - - - - - 1 0.72 100 118 31 0 0.59 0.303
ec random116 1 - - - - - - - - - - - - - - - 1 0.82 100 118 24 2 0.591 0.366
ec random117 1 - - - - - - - - - - - - - - - 1 0.68 100 119 28 1 0.59 0.319
ec random118 1 - - - - - - - - - - - - - - - 1 0.79 100 118 27 0 0.589 0.334
ec random119 1 - - - - - - - - - - - - - - - 1 0.79 100 118 26 2 0.59 0.344
ec random120 1 - - - - - - - - - - - - - - - 1 0.82 100 118 23 1 0.591 0.374
ec random121 1 - - - - - - - - - - - - - - - 1 0.66 100 119 30 1 0.59 0.306
ec random122 1 - - - - - - - - - - - - - - - 1 0.71 100 118 28 1 0.591 0.321
ec random123 1 - - - - - - - - - - - - - - - 1 0.73 100 118 29 0 0.59 0.316
ec random124 1 - - - - - - - - - - - - - - - 1 0.65 100 119 29 2 0.589 0.31
ec random125 1 - - - - - - - - - - - - - - - 1 0.64 100 118 31 0 0.59 0.305
ec random126 1 - - - - - - - - - - - - - - - 1 0.75 100 118 29 2 0.589 0.319
ec random127 1 - - - - - - - - - - - - - - - 1 0.74 100 132 28 3 0.591 0.327
ec random128 1 - - - - - - - - - - - - - - - 1 0.79 100 117 26 0 0.591 0.346
ec random129 1 - - - - - - - - - - - - - - - 1 0.79 100 117 28 1 0.589 0.328
ec random130 1 - - - - - - - - - - - - - - - 1 0.71 100 118 27 1 0.592 0.333
ec random131 1 - - - - - - - - - - - - - - - 1 0.74 100 118 27 2 0.589 0.331
ec random132 1 - - - - - - - - - - - - - - - 1 0.77 100 118 24 2 0.59 0.372
ec random133 1 - - - - - - - - - - - - - - - 1 0.68 100 117 34 0 0.591 0.273
ec random134 1 - - - - - - - - - - - - - - - 1 0.78 100 118 29 2 0.589 0.323
ec random135 1 - - - - - - - - - - - - - - - 1 0.78 100 118 25 2 0.589 0.359
ec random136 1 - - - - - - - - - - - - - - - 1 0.82 100 117 24 0 0.59 0.363
ec random137 1 - - - - - - - - - - - - - - - 1 0.75 100 118 25 2 0.589 0.348
ec random138 1 - - - - - - - - - - - - - - - 1 0.75 100 118 27 1 0.591 0.34
ec random139 1 - - - - - - - - - - - - - - - 1 0.82 100 118 25 0 0.591 0.358
ec random140 1 - - - - - - - - - - - - - - - 1 0.69 100 118 30 2 0.591 0.309
ec random141 1 - - - - - - - - - - - - - - - 1 0.75 100 118 25 1 0.588 0.355
ec random142 1 - - - - - - - - - - - - - - - 1 0.7 100 118 28 1 0.59 0.322
ec random143 1 - - - - - - - - - - - - - - - 1 0.73 100 118 27 1 0.589 0.345
ec random144 1 - - - - - - - - - - - - - - - 1 0.81 100 118 25 1 0.588 0.348
ec random145 1 - - - - - - - - - - - - - - - 1 0.77 100 118 25 1 0.59 0.355
ec random146 1 - - - - - - - - - - - - - - - 1 0.77 100 118 24 3 0.591 0.36
ec random147 1 - - - - - - - - - - - - - - - 1 0.98 100 118 18 1 0.591 0.429
ec random148 1 - - - - - - - - - - - - - - - 1 0.89 100 118 18 1 0.591 0.418
ec random149 1 - - - - - - - - - - - - - - - 1 0.64 100 118 32 2 0.591 0.289
ec random150 1 - - - - - - - - - - - - - - - 1 0.73 100 118 29 1 0.591 0.318
ec random151 1 - - - - - - - - - - - - - - - 1 0.79 100 118 30 1 0.589 0.313
ec random152 1 - - - - - - - - - - - - - - - 1 0.71 100 119 29 2 0.589 0.312
ec random153 1 - - - - - - - - - - - - - - - 1 0.79 100 118 24 2 0.589 0.365
ec random154 1 - - - - - - - - - - - - - - - 1 0.65 100 118 32 3 0.591 0.288
ec random155 1 - - - - - - - - - - - - - - - 1 0.75 100 118 28 2 0.59 0.328
ec random156 1 - - - - - - - - - - - - - - - 1 0.79 100 118 26 1 0.59 0.342
ec random157 1 - - - - - - - - - - - - - - - 1 0.71 100 118 28 1 0.59 0.331
ec random158 1 - - - - - - - - - - - - - - - 1 0.67 100 118 34 3 0.591 0.26
ec random159 1 - - - - - - - - - - - - - - - 1 0.7 100 118 28 2 0.591 0.323
ec random160 1 - - - - - - - - - - - - - - - 1 0.78 100 118 24 3 0.589 0.368
ec random161 1 - - - - - - - - - - - - - - - 1 0.63 100 116 35 0 0.589 0.251
ec random162 1 - - - - - - - - - - - - - - - 1 0.69 100 118 28 1 0.591 0.328
ec random163 1 - - - - - - - - - - - - - - - 1 0.81 100 118 26 0 0.59 0.352
ec random164 1 - - - - - - - - - - - - - - - 1 0.76 100 131 25 2 0.589 0.353
ec random165 1 - - - - - - - - - - - - - - - 1 0.83 100 118 23 1 0.591 0.374
ec random166 1 - - - - - - - - - - - - - - - 1 0.68 100 118 32 3 0.59 0.293
ec random167 1 - - - - - - - - - - - - - - - 1 0.82 100 118 22 0 0.589 0.381
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ec random168 1 - - - - - - - - - - - - - - - 1 0.74 100 118 29 2 0.592 0.319
ec random169 1 - - - - - - - - - - - - - - - 1 0.79 100 118 23 3 0.59 0.377
ec random170 1 - - - - - - - - - - - - - - - 1 0.71 100 118 30 1 0.59 0.301
ec random171 1 - - - - - - - - - - - - - - - 1 0.71 100 118 30 1 0.589 0.3
ec random172 1 - - - - - - - - - - - - - - - 1 0.72 100 116 27 0 0.59 0.331
ec random173 1 - - - - - - - - - - - - - - - 1 0.67 100 118 32 0 0.591 0.294
ec random174 1 - - - - - - - - - - - - - - - 1 0.7 100 118 29 2 0.591 0.316
ec random175 1 - - - - - - - - - - - - - - - 1 0.68 100 118 30 1 0.589 0.307
ec random176 1 - - - - - - - - - - - - - - - 1 0.72 100 118 27 1 0.589 0.333
ec random177 1 - - - - - - - - - - - - - - - 1 0.71 100 118 29 1 0.591 0.317
ec random178 1 - - - - - - - - - - - - - - - 1 0.76 100 119 26 1 0.589 0.34
ec random179 1 - - - - - - - - - - - - - - - 1 0.75 100 119 26 1 0.591 0.345
ec random180 1 - - - - - - - - - - - - - - - 1 0.78 100 118 25 0 0.589 0.356
ec random181 1 - - - - - - - - - - - - - - - 1 0.75 100 118 29 1 0.589 0.325
ec random182 1 - - - - - - - - - - - - - - - 1 0.79 100 117 26 0 0.589 0.349
ec random183 1 - - - - - - - - - - - - - - - 1 0.74 100 118 23 2 0.589 0.369
ec random184 1 - - - - - - - - - - - - - - - 1 0.89 100 117 24 1 0.589 0.375
ec random185 1 - - - - - - - - - - - - - - - 1 0.72 100 118 27 4 0.591 0.335
ec random186 1 - - - - - - - - - - - - - - - 1 0.8 100 119 21 2 0.59 0.388
ec random187 1 - - - - - - - - - - - - - - - 1 0.61 100 118 33 1 0.589 0.274
ec random188 1 - - - - - - - - - - - - - - - 1 0.61 100 118 33 1 0.589 0.269
ec random189 1 - - - - - - - - - - - - - - - 1 0.68 100 118 32 3 0.589 0.278
ec random190 1 - - - - - - - - - - - - - - - 1 0.74 100 118 28 1 0.59 0.329
ec random191 1 - - - - - - - - - - - - - - - 1 0.77 100 118 24 2 0.59 0.369
ec random192 1 - - - - - - - - - - - - - - - 1 0.75 100 118 29 1 0.591 0.321
ec random193 1 - - - - - - - - - - - - - - - 1 0.8 100 118 25 2 0.59 0.351
ec random194 1 - - - - - - - - - - - - - - - 1 0.85 100 118 22 1 0.59 0.388
ec random195 1 - - - - - - - - - - - - - - - 1 0.77 100 118 26 2 0.589 0.349
ec random196 1 - - - - - - - - - - - - - - - 1 0.66 100 117 30 0 0.59 0.297
ec random197 1 - - - - - - - - - - - - - - - 1 0.71 100 117 28 1 0.59 0.332
ec random198 1 - - - - - - - - - - - - - - - 1 0.71 100 132 27 2 0.591 0.345
ec random199 1 - - - - - - - - - - - - - - - 1 0.87 100 118 23 1 0.592 0.388
ec random200 1 - - - - - - - - - - - - - - - 1 0.7 100 119 27 3 0.589 0.334
ss random201 1 - - - - - - - - - - - - - - - 1 0.77 100 118 32 0 0.591 0.294
ss random202 1 - - - - - - - - - - - - - - - 1 0.72 100 118 30 0 0.591 0.302
ss random203 1 - - - - - - - - - - - - - - - 1 0.73 100 131 28 2 0.59 0.324
ss random204 1 - - - - - - - - - - - - - - - 1 0.62 100 132 33 2 0.591 0.279
ss random205 1 - - - - - - - - - - - - - - - 1 0.66 100 119 32 1 0.591 0.282
ss random206 1 - - - - - - - - - - - - - - - 1 0.71 100 119 27 2 0.589 0.329
ss random207 1 - - - - - - - - - - - - - - - 1 0.72 100 119 28 1 0.591 0.326
ss random208 1 - - - - - - - - - - - - - - - 1 0.73 100 118 27 1 0.59 0.336
ss random209 1 - - - - - - - - - - - - - - - 1 0.73 100 118 27 3 0.59 0.334
ss random210 1 - - - - - - - - - - - - - - - 1 0.71 100 118 30 2 0.591 0.313
ss random211 1 - - - - - - - - - - - - - - - 1 0.8 100 118 25 1 0.589 0.358
ss random212 1 - - - - - - - - - - - - - - - 1 0.73 100 118 27 4 0.591 0.328
ss random213 1 - - - - - - - - - - - - - - - 1 0.77 100 118 25 2 0.59 0.355
ss random214 1 - - - - - - - - - - - - - - - 1 0.73 100 119 27 3 0.589 0.343
ss random215 1 - - - - - - - - - - - - - - - 1 0.85 100 117 23 1 0.588 0.374
ss random216 1 - - - - - - - - - - - - - - - 1 0.83 100 118 25 1 0.59 0.356
ss random217 1 - - - - - - - - - - - - - - - 1 0.79 100 118 24 2 0.588 0.362
ss random218 1 - - - - - - - - - - - - - - - 1 0.75 100 118 27 2 0.591 0.335
ss random219 1 - - - - - - - - - - - - - - - 1 0.81 100 118 21 1 0.591 0.397
ss random220 1 - - - - - - - - - - - - - - - 1 0.72 100 118 27 1 0.59 0.336
ss random221 1 - - - - - - - - - - - - - - - 1 0.68 100 118 29 1 0.591 0.314
ss random222 1 - - - - - - - - - - - - - - - 1 0.79 100 117 23 1 0.59 0.369
ss random223 1 - - - - - - - - - - - - - - - 1 0.65 100 117 34 1 0.591 0.268
ss random224 1 - - - - - - - - - - - - - - - 1 0.86 100 118 24 1 0.592 0.376
ss random225 1 - - - - - - - - - - - - - - - 1 0.79 100 118 24 1 0.59 0.362
ss random226 1 - - - - - - - - - - - - - - - 1 0.75 100 118 27 1 0.59 0.34
ss random227 1 - - - - - - - - - - - - - - - 1 0.82 100 118 21 1 0.59 0.389
ss random228 1 - - - - - - - - - - - - - - - 1 0.79 100 117 26 0 0.591 0.341
ss random229 1 - - - - - - - - - - - - - - - 1 0.64 100 118 32 1 0.589 0.279
ss random230 1 - - - - - - - - - - - - - - - 1 0.74 100 118 27 2 0.59 0.344
ss random231 1 - - - - - - - - - - - - - - - 1 0.71 100 118 26 2 0.588 0.342
ss random232 1 - - - - - - - - - - - - - - - 1 0.79 100 118 26 1 0.591 0.339
ss random233 1 - - - - - - - - - - - - - - - 1 0.71 100 118 33 0 0.59 0.293
ss random234 1 - - - - - - - - - - - - - - - 1 0.8 100 118 25 2 0.589 0.355
ss random235 1 - - - - - - - - - - - - - - - 1 0.65 100 117 29 1 0.591 0.319
ss random236 1 - - - - - - - - - - - - - - - 1 0.6 100 118 34 1 0.59 0.261
ss random237 1 - - - - - - - - - - - - - - - 1 0.87 100 118 18 1 0.588 0.421
ss random238 1 - - - - - - - - - - - - - - - 1 0.67 100 117 31 2 0.59 0.291
ss random239 1 - - - - - - - - - - - - - - - 1 0.64 100 118 32 2 0.589 0.28
ss random240 1 - - - - - - - - - - - - - - - 1 0.61 100 118 32 2 0.591 0.284
ss random241 1 - - - - - - - - - - - - - - - 1 0.85 100 118 22 0 0.591 0.381
ss random242 1 - - - - - - - - - - - - - - - 1 0.78 100 118 25 2 0.59 0.359
ss random243 1 - - - - - - - - - - - - - - - 1 0.68 100 118 31 1 0.59 0.293
ss random244 1 - - - - - - - - - - - - - - - 1 0.67 100 118 29 1 0.59 0.319
ss random245 1 - - - - - - - - - - - - - - - 1 0.76 100 118 26 2 0.589 0.354
ss random246 1 - - - - - - - - - - - - - - - 1 0.74 100 118 29 1 0.59 0.314
ss random247 1 - - - - - - - - - - - - - - - 1 0.66 100 117 33 1 0.59 0.27
ss random248 1 - - - - - - - - - - - - - - - 1 0.86 100 118 18 0 0.59 0.423
ss random249 1 - - - - - - - - - - - - - - - 1 0.61 100 117 31 0 0.589 0.29
ss random250 1 - - - - - - - - - - - - - - - 1 0.75 100 118 28 1 0.589 0.318
ss random251 1 - - - - - - - - - - - - - - - 1 0.69 100 117 30 2 0.59 0.306
ss random252 1 - - - - - - - - - - - - - - - 1 0.75 100 118 24 1 0.59 0.363
ss random253 1 - - - - - - - - - - - - - - - 1 0.68 100 118 25 2 0.59 0.352
ss random254 1 - - - - - - - - - - - - - - - 1 0.75 100 118 26 2 0.591 0.343
ss random255 1 - - - - - - - - - - - - - - - 1 0.88 100 118 17 1 0.589 0.435
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ss random256 1 - - - - - - - - - - - - - - - 1 0.78 100 117 29 2 0.59 0.324
ss random257 1 - - - - - - - - - - - - - - - 1 0.76 100 118 24 1 0.59 0.366
ss random258 1 - - - - - - - - - - - - - - - 1 0.75 100 119 25 2 0.592 0.355
ss random259 1 - - - - - - - - - - - - - - - 1 0.68 100 118 30 1 0.589 0.306
ss random260 1 - - - - - - - - - - - - - - - 1 0.71 100 118 32 2 0.591 0.291
ss random261 1 - - - - - - - - - - - - - - - 1 0.77 100 119 25 1 0.589 0.351
ss random262 1 - - - - - - - - - - - - - - - 1 0.67 100 118 30 1 0.591 0.307
ss random263 1 - - - - - - - - - - - - - - - 1 0.8 100 118 27 1 0.591 0.349
ss random264 1 - - - - - - - - - - - - - - - 1 0.8 100 119 23 2 0.591 0.372
ss random265 1 - - - - - - - - - - - - - - - 1 0.62 100 118 32 0 0.591 0.28
ss random266 1 - - - - - - - - - - - - - - - 1 0.7 100 118 30 2 0.59 0.308
ss random267 1 - - - - - - - - - - - - - - - 1 0.71 100 118 27 1 0.589 0.331
ss random268 1 - - - - - - - - - - - - - - - 1 0.68 100 118 29 1 0.589 0.314
ss random269 1 - - - - - - - - - - - - - - - 1 0.73 100 118 29 1 0.59 0.323
ss random270 1 - - - - - - - - - - - - - - - 1 0.71 100 119 24 3 0.591 0.36
ss random271 1 - - - - - - - - - - - - - - - 1 0.79 100 118 23 2 0.59 0.372
ss random272 1 - - - - - - - - - - - - - - - 1 0.62 100 118 32 2 0.591 0.283
ss random273 1 - - - - - - - - - - - - - - - 1 0.69 100 119 28 2 0.591 0.323
ss random274 1 - - - - - - - - - - - - - - - 1 0.71 100 118 26 0 0.591 0.345
ss random275 1 - - - - - - - - - - - - - - - 1 0.82 100 118 22 2 0.59 0.381
ss random276 1 - - - - - - - - - - - - - - - 1 0.74 100 118 28 2 0.591 0.327
ss random277 1 - - - - - - - - - - - - - - - 1 0.76 100 118 26 1 0.592 0.354
ss random278 1 - - - - - - - - - - - - - - - 1 0.67 100 118 29 1 0.59 0.316
ss random279 1 - - - - - - - - - - - - - - - 1 0.67 100 118 31 2 0.591 0.295
ss random280 1 - - - - - - - - - - - - - - - 1 0.68 100 118 31 1 0.589 0.29
ss random281 1 - - - - - - - - - - - - - - - 1 0.65 100 118 28 2 0.589 0.321
ss random282 1 - - - - - - - - - - - - - - - 1 0.78 100 118 25 1 0.591 0.351
ss random283 1 - - - - - - - - - - - - - - - 1 0.68 100 118 31 1 0.591 0.286
ss random284 1 - - - - - - - - - - - - - - - 1 0.78 100 118 25 1 0.59 0.357
ss random285 1 - - - - - - - - - - - - - - - 1 0.7 100 118 29 2 0.592 0.317
ss random286 1 - - - - - - - - - - - - - - - 1 0.71 100 117 33 1 0.591 0.277
ss random287 1 - - - - - - - - - - - - - - - 1 0.75 100 118 28 1 0.591 0.322
ss random288 1 - - - - - - - - - - - - - - - 1 0.73 100 118 29 1 0.591 0.315
ss random289 1 - - - - - - - - - - - - - - - 1 0.75 100 118 25 1 0.589 0.354
ss random290 1 - - - - - - - - - - - - - - - 1 0.74 100 119 28 2 0.59 0.328
ss random291 1 - - - - - - - - - - - - - - - 1 0.66 100 118 31 2 0.59 0.289
ss random292 1 - - - - - - - - - - - - - - - 1 0.79 100 118 25 2 0.589 0.353
ss random293 1 - - - - - - - - - - - - - - - 1 0.86 100 118 21 2 0.589 0.391
ss random294 1 - - - - - - - - - - - - - - - 1 0.71 100 118 28 1 0.588 0.316
ss random295 1 - - - - - - - - - - - - - - - 1 0.66 100 118 33 1 0.59 0.275
ss random296 1 - - - - - - - - - - - - - - - 1 0.76 100 118 23 1 0.588 0.37
ss random297 1 - - - - - - - - - - - - - - - 1 0.76 100 118 25 2 0.59 0.356
ss random298 1 - - - - - - - - - - - - - - - 1 0.74 100 131 25 1 0.589 0.347
ss random299 1 - - - - - - - - - - - - - - - 1 0.77 100 118 27 3 0.591 0.333
ss random300 1 - - - - - - - - - - - - - - - 1 0.68 100 118 29 2 0.591 0.311
ancestral301 4 70.78 0.38461 0.44033 -130.03 -74.85 -74.01 -0.84 1.24 0.11 0.58 -2.35 0.00001 OTHER 0.472 OTHER 4 0.94 429 567 125 6 0.59 0.325
ancestral302 36 83.43 0.32333 0.40133 -227.71 -159.55 -158.33 -1.22 1.26 -0.92 0.7 -0.61 0.159931 OTHER 0.00002425 PROTEIN 36 2.87 743 2198 137 17 0.59 0.466
ancestral303 1 - - - - - - - - - - - - - - - 1 0.72 1419 1444 363 28 0.59 0.343
ancestral304 24 79.36 0.38635 0.34247 -141.15 -79.86 -80.67 0.81 1.33 -0.86 0.57 -1.12 0.04612 OTHER 0.453 OTHER 24 3.44 560 798 122 8 0.59 0.445
ancestral305 21 66.08 0.63164 0.33584 -134.74 -21.02 -22.72 1.69 1.61 0.86 0.16 -4.4 0 OTHER 0.279 OTHER 21 3.86 613 716 99 10 0.59 0.489
ancestral306 48 74.65 0.4543 0.40367 -134.35 -64.28 -67.74 3.46 1.33 -0.46 0.48 -1.85 0.006953 OTHER 0.174 OTHER 48 3.8 504 689 89 9 0.59 0.477
ancestral307 26 66.88 0.56316 0.36765 -147.39 -54.05 -52.73 -1.32 1.5 -0.08 0.37 -2.47 0.000005 OTHER 0.88 OTHER 26 4.56 593 1112 74 6 0.59 0.514
ancestral308 27 55.36 0.72936 0.36114 -179.43 -25.97 -28.09 2.12 1.72 -0.02 0.14 -3.09 0 OTHER 0.193 OTHER 27 4.07 703 2471 113 12 0.59 0.487
ancestral309 28 81.68 0.33225 0.34702 -140.49 -71.93 -75.53 3.6 1.2 0.81 0.51 -3.87 0 OTHER 0.268 OTHER 28 4.64 619 968 86 9 0.59 0.505
ancestral310 0 - - - - - - - - - - - - - - - - - - - - - - -
ancestral311 3 97.1 0.03993 0.33497 -9.67 -8.9 -9.23 0.33 1 0.8 0.92 -2.97 0 OTHER 0.234 OTHER 3 1.46 69 86 17 1 0.814 0.611
ancestral312 66 76.09 0.44929 0.28298 -36.06 -7.49 -6.3 -1.19 1.44 0.75 0.21 -4.8 0 OTHER 0.198 OTHER 66 3.98 226 256 41 2 0.59 0.473
ancestral313 30 64.14 0.67586 0.35367 -126.18 -22.65 -25.78 3.13 1.55 0.65 0.18 -3.88 0 OTHER 0.825 OTHER 30 4.65 556 695 80 7 0.59 0.501
ancestral314 4 54.65 0.71539 0.35137 -159.78 -31.56 -24.5 -7.06 1.81 -0.17 0.2 -2.66 0.000002 OTHER 0.093 OTHER 4 1.81 687 882 157 13 0.589 0.409
ancestral315 38 61.23 0.71454 0.3754 -154.57 -30.28 -29.08 -1.2 1.57 -0.85 0.2 -1.84 0.007176 OTHER 0.000695 PROTEIN 38 4.65 654 1148 84 8 0.59 0.512
ancestral316 49 61.73 0.7012 0.39975 -138.36 -32.35 -35.58 3.23 1.62 -0.22 0.23 -2.49 0.000005 OTHER 0.068 OTHER 49 4.9 562 637 69 5 0.59 0.52
ancestral317 43 67.43 0.61204 0.35571 -107.73 -20.28 -18.5 -1.79 1.56 0.72 0.19 -4.18 0 OTHER 0.375 OTHER 43 5.1 480 545 77 3 0.59 0.496
ancestral318 42 57.09 0.79051 0.37492 -130.29 -24.33 -22.88 -1.45 1.73 0.45 0.19 -3.14 0 OTHER 0.889 OTHER 42 6.51 496 1324 60 7 0.59 0.519
ancestral319 44 69.88 0.55626 0.33964 -93.68 -25.06 -25.29 0.23 1.49 0.44 0.27 -3.68 0 OTHER 0.819 OTHER 44 4.68 427 519 80 7 0.59 0.475
ancestral320 22 60.07 0.73414 0.37267 -145.46 -25.14 -23.56 -1.58 1.73 0.28 0.17 -3.27 0 OTHER 0.294 OTHER 22 3.99 553 1045 102 7 0.59 0.472
ancestral321 31 64.12 0.63227 0.3663 -144.59 -33.73 -31.12 -2.61 1.7 0.4 0.23 -3.52 0 OTHER 0.249 OTHER 31 4.38 582 1327 93 6 0.59 0.49
ancestral322 35 72.84 0.48502 0.38149 -163.69 -62.83 -65.55 2.72 1.42 0.14 0.38 -3.04 0 OTHER 0.12 OTHER 35 4.32 653 980 97 7 0.59 0.495
ancestral323 32 76 0.45257 0.3777 -185.43 -75.16 -72.87 -2.3 1.53 0.11 0.41 -2.98 0 OTHER 0.622 OTHER 32 4.05 717 936 145 5 0.59 0.458
ancestral324 0 - - - - - - - - - - - - - - - - - - - - - - -
ancestral325 3 57.89 0.4211 0.36727 -310.1 -163.29 -162.79 -0.5 1.32 -3.32 0.53 2 0.994941 RNA - - 3 1.15 1097 1135 318 21 0.59 0.331
ancestral326 1 - - - - - - - - - - - - - - - 1 0.75 686 710 181 10 0.589 0.334
ancestral327 1 - - - - - - - - - - - - - - - 1 0.71 547 571 157 10 0.589 0.312
ancestral328 98 68.03 0.54084 0.35433 -86.32 -23.37 -21.17 -2.2 1.64 -0.43 0.27 -2.68 0.000002 OTHER 0.546 OTHER 98 4.83 363 528 53 4 0.59 0.501
ancestral329 22 59.5 0.71233 0.34629 -193.59 -22.79 -21.85 -0.95 1.66 0.03 0.12 -3.32 0 OTHER 0.042 PROTEIN 22 4.73 836 1513 100 8 0.59 0.518
ancestral330 19 57.62 0.78843 0.32483 -125.55 -9.05 -8.79 -0.26 1.82 -0.36 0.07 -2.83 0.000001 OTHER 0.115 OTHER 19 5.29 578 734 53 5 0.59 0.536
ancestral331 2 56.59 0.43409 0.3613 -102.01 -36.69 -33.44 -3.25 1.38 -1.05 0.36 -1.85 0.006859 OTHER - - 2 1.14 436 466 147 9 0.59 0.296
ancestral332 1 - - - - - - - - - - - - - - - 1 0.75 575 599 159 13 0.59 0.32
ancestral333 0 - - - - - - - - - - - - - - - - - - - - - - -
ancestral334 0 - - - - - - - - - - - - - - - - - - - - - - -
ancestral335 0 - - - - - - - - - - - - - - - - - - - - - - -
ancestral336 65 76.46 0.44218 0.43976 -76.53 -27.67 -27.49 -0.18 1.37 -0.96 0.36 -1.93 0.005543 OTHER 0.976 OTHER 65 2.1 282 351 61 6 0.59 0.426
ancestral337 0 - - - - - - - - - - - - - - - - - - - - - - -
ancestral338 0 - - - - - - - - - - - - - - - - - - - - - - -
ancestral339 0 - - - - - - - - - - - - - - - - - - - - - - -
ancestral340 0 - - - - - - - - - - - - - - - - - - - - - - -
ancestral341 0 - - - - - - - - - - - - - - - - - - - - - - -
ancestral342 0 - - - - - - - - - - - - - - - - - - - - - - -
ancestral343 0 - - - - - - - - - - - - - - - - - - - - - - -
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ancestral344 0 - - - - - - - - - - - - - - - - - - - - - - -
ancestral345 0 - - - - - - - - - - - - - - - - - - - - - - -
ancestral346 0 - - - - - - - - - - - - - - - - - - - - - - -
ancestral347 0 - - - - - - - - - - - - - - - - - - - - - - -
ancestral348 0 - - - - - - - - - - - - - - - - - - - - - - -
ancestral349 0 - - - - - - - - - - - - - - - - - - - - - - -
ancestral350 0 - - - - - - - - - - - - - - - - - - - - - - -
ancestral351 0 - - - - - - - - - - - - - - - - - - - - - - -
ancestral352 1 - - - - - - - - - - - - - - - 1 0.86 132 151 33 1 0.589 0.346
ancestral353 3 86.34 0.18632 0.33011 -7.2 -1.84 -1.07 -0.77 1.4 0.34 0.26 -5.16 0 OTHER 0.639 OTHER 3 1.67 67 83 18 1 0.839 0.622
ancestral354 3 84.42 0.21686 0.26903 -9.57 -6.04 -5.27 -0.77 1.29 0.01 0.63 -2.73 0.000001 OTHER 0.778 OTHER 3 1.26 92 109 24 1 0.621 0.397
ancestral355 0 - - - - - - - - - - - - - - - - - - - - - - -
ancestral356 0 - - - - - - - - - - - - - - - - - - - - - - -
ancestral357 0 - - - - - - - - - - - - - - - - - - - - - - -
ancestral358 0 - - - - - - - - - - - - - - - - - - - - - - -
ancestral359 0 - - - - - - - - - - - - - - - - - - - - - - -
ancestral360 0 - - - - - - - - - - - - - - - - - - - - - - -
ancestral361 0 - - - - - - - - - - - - - - - - - - - - - - -
ancestral362 0 - - - - - - - - - - - - - - - - - - - - - - -
hs cds363 1 - - - - - - - - - - - - - - - 1 0.6 2802 2820 916 54 0.591 0.275
hs cds364 293 83.19 0.29658 0.52882 -170.7 -110.88 -111.09 0.21 1.29 -0.21 0.65 -1.96 0.005212 OTHER 3.286E-14 PROTEIN 293 3.11 488 732 90 8 0.59 0.474
hs cds365 336 79.55 0.35368 0.40477 -108.24 -51.99 -50.84 -1.15 1.29 0.25 0.48 -3.23 0 OTHER 0 PROTEIN 336 2.22 425 447 94 9 0.59 0.431
hs cds366 245 80.6 0.35557 0.46077 -39.77 -16.89 -16.87 -0.02 1.46 0.49 0.42 -3.84 0 OTHER 2.398E-14 PROTEIN 245 2.15 178 197 36 1 0.59 0.45
hs cds367 2 98.15 0.01846 0.62158 -979.32 -964.1 -965.85 1.75 1.01 0.86 0.98 -2.82 0.000001 OTHER - - 2 0.55 2221 2246 756 37 0.589 0.258
hs cds368 8 95.49 0.0871 0.55072 -454.53 -408.27 -411.37 3.1 1.09 -1.93 0.9 0.58 0.820264 RNA 3.331E-16 PROTEIN 8 0.66 1165 1194 376 19 0.59 0.282
hs cds369 258 79.46 0.3491 0.53547 -156.74 -96.35 -98.45 2.1 1.27 -0.28 0.61 -1.84 0.007127 OTHER 4.564E-08 PROTEIN 258 2.37 437 815 82 7 0.59 0.455
hs cds370 3 97.59 0.03324 0.71897 -516.07 -487.85 -489.53 1.69 1.03 0.59 0.95 -2.59 0.000003 OTHER 0.02 PROTEIN 3 0.52 967 992 331 18 0.589 0.258
hs cds371 290 83.01 0.29677 0.48942 -117.74 -75.33 -74.12 -1.21 1.28 -0.4 0.64 -1.76 0.008723 OTHER 5.706E-10 PROTEIN 290 2.49 355 477 91 5 0.59 0.418
hs cds372 1 - - - - - - - - - - - - - - - 1 0.6 2802 2820 916 54 0.591 0.275
hs cds373 1 - - - - - - - - - - - - - - - 1 0.61 2283 2306 737 43 0.591 0.279
hs cds374 1 - - - - - - - - - - - - - - - 1 0.57 2208 2231 724 33 0.591 0.273
hs cds375 2 98.25 0.01748 0.44002 -315.8 -306.05 -311.05 5 1.01 0.26 0.97 -2.15 0.003076 OTHER - - 2 0.65 1030 1055 335 17 0.589 0.274
hs cds376 11 90.74 0.17916 0.53033 -613.79 -502.23 -504.74 2.52 1.11 -0.69 0.82 -0.96 0.068659 OTHER 1.744E-12 PROTEIN 11 0.71 1619 1647 535 24 0.589 0.278
hs cds377 1 - - - - - - - - - - - - - - - - - - - - - - -
hs cds378 0 - - - - - - - - - - - - - - - - - - - - - - -
hs cds379 1 - - - - - - - - - - - - - - - 1 0.59 2670 2689 876 49 0.59 0.272
hs cds380 248 78.79 0.38016 0.50804 -138.16 -68.73 -67.19 -1.54 1.35 -0.64 0.5 -1.84 0.007077 OTHER 1.11E-16 PROTEIN 248 2.49 389 478 90 5 0.59 0.428
hs cds381 337 84.03 0.28135 0.42118 -117.79 -76.14 -74.9 -1.23 1.28 0.35 0.65 -2.76 0.000001 OTHER 7.772E-16 PROTEIN 337 3.25 443 468 99 11 0.59 0.45
hs cds382 250 86.15 0.25673 0.59612 -233.35 -148.81 -151.19 2.38 1.27 0.19 0.64 -2.72 0.000001 OTHER 0 PROTEIN 250 1.67 599 646 152 13 0.589 0.395
hs cds383 304 81.74 0.3406 0.41272 -25.98 -10.99 -11.22 0.23 1.32 0.63 0.42 -4.08 0 OTHER 3.524E-11 PROTEIN 304 1.74 149 168 27 3 0.59 0.45
hs cds384 66 82.07 0.34165 0.54476 -121.59 -68.96 -69.97 1.01 1.33 0.28 0.57 -2.83 0.000001 OTHER 6.505E-13 PROTEIN 66 1.16 343 365 105 6 0.59 0.334
hs cds385 1 - - - - - - - - - - - - - - - 1 0.6 2631 2650 854 47 0.589 0.276
hs cds386 323 80.65 0.33629 0.47296 -102.59 -65.05 -66.2 1.15 1.2 0.2 0.63 -2.41 0.000007 OTHER 2.897E-13 PROTEIN 323 1.84 327 421 87 6 0.59 0.395
hs cds387 19 76.4 0.43514 0.50991 -450.99 -240.95 -236.93 -4.02 1.37 -0.66 0.53 -1.39 0.023333 OTHER 0 PROTEIN 19 1.04 1260 1320 392 26 0.591 0.32
hs cds388 272 79.58 0.34846 0.51643 -111.64 -62.58 -64.67 2.09 1.15 0.43 0.56 -3.04 0 OTHER 3.14E-11 PROTEIN 272 1.68 332 558 96 5 0.591 0.361
hs cds389 1 - - - - - - - - - - - - - - - 1 0.73 141 159 40 1 0.591 0.325
hs cds390 224 73.86 0.44218 0.44178 -174.92 -67.47 -66.88 -0.59 1.37 0.48 0.39 -3.6 0 OTHER 0 PROTEIN 224 2.05 583 1332 112 10 0.59 0.451
hs cds391 2 98.25 0.01748 0.44002 -315.8 -306.05 -311.05 5 1.01 0.17 0.97 -2.04 0.004121 OTHER - - 2 0.65 1030 1055 335 17 0.589 0.274
hs cds392 1 - - - - - - - - - - - - - - - - - - - - - - -
hs cds393 1 - - - - - - - - - - - - - - - 1 0.73 264 285 70 6 0.589 0.339
hs cds394 1 - - - - - - - - - - - - - - - - - - - - - - -
hs cds395 234 79.62 0.34338 0.4878 -57.85 -37.47 -37.62 0.14 1.22 -0.36 0.65 -1.53 0.015875 OTHER 0.0000209 PROTEIN 234 2.63 177 313 42 3 0.59 0.431
hs cds396 294 80.5 0.32141 0.51559 -130.97 -85.78 -85.63 -0.15 1.27 -0.83 0.65 -1.02 0.059955 OTHER 2.257E-08 PROTEIN 294 2.73 376 578 84 5 0.59 0.444
hs cds397 157 84.71 0.26692 0.62348 -174.7 -122.53 -125.62 3.09 1.12 0.88 0.7 -3.22 0 OTHER 0.00008376 PROTEIN 157 2.53 404 739 109 7 0.59 0.401
hs cds398 1 - - - - - - - - - - - - - - - - - - - - - - -
hs cds399 104 75.71 0.44618 0.48586 -165.49 -62.53 -61.09 -1.45 1.5 -0.28 0.38 -2.68 0.000002 OTHER 0 PROTEIN 104 1.82 540 563 90 8 0.59 0.464
hs cds400 236 80.93 0.34395 0.4726 -41.37 -21.1 -20.47 -0.63 1.43 0.33 0.51 -3.21 0 OTHER 2.676E-14 PROTEIN 236 2.09 178 207 36 1 0.59 0.449
hs cds401 318 78.1 0.35296 0.47069 -57.22 -34.33 -36 1.67 1.12 0.06 0.6 -2.32 0.000012 OTHER 6.916E-08 PROTEIN 318 2.03 202 223 41 4 0.59 0.441
hs cds402 2 88 0.11997 0.53247 -484.27 -432.72 -432.97 0.25 1.06 -1.5 0.89 0.15 0.5922 RNA - - 2 0.68 1240 1265 416 21 0.59 0.27
hs cds403 164 87.57 0.23668 0.45274 -89.55 -64.93 -64.61 -0.32 1.25 -0.21 0.73 -1.8 0.007883 OTHER 3.554E-07 PROTEIN 164 1.61 313 338 76 6 0.59 0.404
hs cds404 147 81.74 0.32352 0.42757 -272.93 -161.45 -164.62 3.17 1.26 0.01 0.59 -2.45 0.000006 OTHER 0 PROTEIN 147 1.67 898 1345 196 17 0.59 0.422
hs cds405 54 78.04 0.39949 0.52933 -177.77 -86.14 -88.13 1.99 1.37 -0.3 0.48 -2.31 0.000013 OTHER 1.029E-12 PROTEIN 54 2.14 518 605 132 8 0.59 0.403
hs cds406 2 95.04 0.04958 0.53837 -1235.31 -1193.13 -1193.38 0.25 1 1.11 0.97 -3.03 0 OTHER - - 2 0.66 3561 3569 1037 66 0.588 0.307
hs cds407 3 98.49 0.02081 0.54636 -268.67 -260.17 -260.4 0.23 1.01 -0.02 0.97 -1.8 0.007972 OTHER 0.02 PROTEIN 3 0.61 706 730 232 14 0.59 0.274
hs cds408 3 98.98 0.01022 0.43462 -206.66 -200.66 -202.91 2.25 1.01 -0.45 0.97 -1.31 0.028235 OTHER - - 3 0.65 685 714 213 9 0.591 0.291
hs cds409 277 79.4 0.38945 0.50329 -220.37 -121.21 -121.02 -0.2 1.38 1.29 0.55 -3.98 0 OTHER 0 PROTEIN 277 2.15 706 774 180 13 0.59 0.408
hs cds410 1 - - - - - - - - - - - - - - - 1 0.58 354 376 117 4 0.589 0.276
hs cds411 231 74.04 0.47736 0.4175 -36.86 -7.58 -7.5 -0.08 1.24 0.02 0.21 -3.82 0 OTHER 1.11E-16 PROTEIN 231 2.05 178 197 30 2 0.591 0.469
hs cds412 270 88.42 0.21632 0.47512 -85.04 -61.81 -62.2 0.39 1.17 -1.76 0.73 0.14 0.580798 RNA 0.00007657 PROTEIN 270 2.96 250 273 39 3 0.59 0.491
ec cds413 67 83.17 0.30114 0.51823 -17.25 -11.19 -11.38 0.19 1.08 -1.66 0.65 -0.02 0.479488 OTHER 0.045 PROTEIN 67 2.6 66 140 13 1 0.849 0.704
ec cds414 0 - - - - - - - - - - - - - - - - - - - - - - -
ec cds415 11 98.08 0.03611 0.56202 -405.27 -397.24 -397.5 0.26 1.05 -2.5 0.98 1.4 0.97548 RNA 0.000005102 PROTEIN 11 0.55 934 970 336 18 0.589 0.244
ec cds416 11 98.2 0.03301 0.52918 -500.67 -479.58 -481.48 1.9 1.05 -1.57 0.96 0.15 0.588528 RNA 3.085E-09 PROTEIN 11 0.6 1288 1315 434 31 0.59 0.265
ec cds417 0 - - - - - - - - - - - - - - - - - - - - - - -
ec cds418 63 77.99 0.4146 0.55162 -578.07 -288.52 -288.61 0.09 1.39 -0.4 0.5 -2 0.004699 OTHER 0 PROTEIN 63 1.76 1432 1458 407 25 0.59 0.385
ec cds419 134 82.69 0.32775 0.51896 -341.78 -192.73 -193.13 0.4 1.34 -1.18 0.56 -1.03 0.057644 OTHER 0 PROTEIN 134 3.63 955 1016 154 16 0.59 0.5
ec cds420 214 80.84 0.36059 0.59438 -246.06 -147.7 -147.45 -0.25 1.34 -0.36 0.6 -1.73 0.009369 OTHER 0 PROTEIN 214 2.72 584 644 136 11 0.59 0.444
ec cds421 277 86.94 0.24705 0.56601 -221.9 -164.23 -163.95 -0.28 1.25 -1.46 0.74 -0.05 0.458331 OTHER 1.11E-16 PROTEIN 277 4.36 563 633 111 11 0.59 0.489
ec cds422 99 79.49 0.38368 0.51084 -252.63 -129.23 -127.4 -1.83 1.41 -0.39 0.51 -2.1 0.003601 OTHER 0 PROTEIN 99 1.42 715 744 191 17 0.589 0.379
ec cds423 36 79.24 0.38678 0.48168 -150.86 -69.38 -64.38 -5 1.56 -0.27 0.46 -2.52 0.000004 OTHER 0 PROTEIN 36 1.35 487 510 147 8 0.589 0.345
ec cds424 80 76.03 0.44058 0.49987 -117.81 -48.92 -51.5 2.57 1.4 -0.36 0.42 -2.38 0.000009 OTHER 0 PROTEIN 80 1.53 406 427 89 9 0.589 0.419
ec cds425 0 - - - - - - - - - - - - - - - - - - - - - - -
ec cds426 43 80.06 0.37283 0.51741 -38.83 -35.68 -35.93 0.25 1.14 -4.36 0.92 5 0.999998 RNA 0.134 OTHER 43 1.51 89 107 22 1 0.64 0.446
ec cds427 0 - - - - - - - - - - - - - - - - - - - - - - -
ec cds428 9 93.85 0.0993 0.50999 -412.74 -365.45 -365.19 -0.25 1.09 -1.95 0.89 0.62 0.834859 RNA 0.067 OTHER 9 0.64 1113 1138 369 19 0.589 0.273
ec cds429 12 96.61 0.05496 0.5109 -83.33 -71.47 -72.47 1 1.05 0.59 0.86 -2.97 0 OTHER 0.468 OTHER 12 0.75 310 332 85 5 0.591 0.329
ec cds430 42 80.11 0.37698 0.50509 -79.58 -64.14 -64.07 -0.07 1.32 -3.23 0.81 3.22 0.999808 RNA 0.00008636 PROTEIN 42 1.61 210 232 58 3 0.59 0.362
ec cds431 22 82.6 0.32729 0.51621 -54.95 -48.29 -46.22 -2.08 1.3 -2.09 0.88 1.91 0.993685 RNA 0.002 PROTEIN 22 1.44 154 177 50 3 0.59 0.317
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ec cds432 33 79.27 0.37147 0.48 -22.07 -16.94 -15.78 -1.16 1.44 -4.2 0.77 4.12 0.999983 RNA 0.532 OTHER 33 3.15 55 72 17 0 1.011 0.837
ec cds433 311 76.52 0.43771 0.5751 -513.26 -261.36 -258.82 -2.55 1.46 -1.5 0.51 -0.38 0.258292 OTHER 0 PROTEIN 311 4.21 1145 1211 279 22 0.59 0.466
ec cds434 8 92.51 0.13426 0.47662 -303.66 -258.74 -260.34 1.6 1.16 -0.21 0.85 -1.64 0.011909 OTHER 0 PROTEIN 8 0.78 907 935 287 19 0.59 0.298
ec cds435 70 88.91 0.19957 0.53764 -184.76 -130.97 -128.48 -2.49 1.21 0.28 0.71 -2.72 0.000001 OTHER 0.000000004 PROTEIN 70 1.11 498 522 161 7 0.59 0.315
ec cds436 65 84.9 0.27786 0.5383 -253.32 -166.41 -169.41 2.99 1.2 0.77 0.66 -3.25 0 OTHER 6.22E-10 PROTEIN 65 0.99 698 734 223 13 0.589 0.306
ec cds437 38 79.47 0.39331 0.51879 -83.83 -39 -41.54 2.54 1.35 0.02 0.47 -2.81 0.000001 OTHER 1.727E-08 PROTEIN 38 0.91 277 308 86 4 0.589 0.312
ec cds438 330 85.51 0.26111 0.4896 -86.13 -55.24 -57.35 2.11 1.11 -2.13 0.64 0.35 0.70857 RNA 3.004E-07 PROTEIN 330 4.12 265 284 51 5 0.59 0.484
ec cds439 94 79.27 0.38832 0.45795 -63.29 -29.49 -30.3 0.81 1.31 -0.1 0.47 -2.67 0.000002 OTHER 0.893 OTHER 94 2.07 219 240 51 3 0.59 0.421
ec cds440 3 96.92 0.03075 0.53157 -378.08 -367.4 -366.65 -0.75 1.04 -1.64 0.97 0.27 0.662904 RNA - - 3 0.62 943 968 312 22 0.59 0.274
ec cds441 0 - - - - - - - - - - - - - - - - - - - - - - -
ec cds442 245 87.88 0.21969 0.56423 -199.94 -161.96 -163.07 1.1 1.24 -2.77 0.81 1.87 0.992958 RNA 2.665E-15 PROTEIN 245 3.07 468 489 146 9 0.59 0.398
ec cds443 244 78.2 0.40657 0.57735 -192.55 -98.75 -98.5 -0.25 1.38 -2.58 0.51 0.88 0.910046 RNA 0 PROTEIN 244 3.73 445 470 121 7 0.59 0.435
ec cds444 1140 - - - - - - - - - - - - - - - 1140 5.19 917 1018 169 17 0.59 0.506
ec cds445 0 - - - - - - - - - - - - - - - - - - - - - - -
ec cds446 381 80.52 0.36206 0.60362 -384.65 -231.35 -226.75 -4.6 1.38 -1.85 0.6 0.24 0.647011 RNA 0 PROTEIN 381 5.57 818 861 166 20 0.59 0.493
ec cds447 157 83.13 0.31995 0.59817 -44.62 -27.91 -29.03 1.11 1.31 -1.23 0.63 -0.61 0.160158 OTHER 0.00001153 PROTEIN 157 2.82 113 130 32 2 0.59 0.414
ec cds448 12 97.6 0.04509 0.53182 -426.64 -405.65 -405.41 -0.24 1.06 -1.71 0.95 0.34 0.702764 RNA 4.331E-11 PROTEIN 12 0.62 1150 1179 381 26 0.59 0.272
ec cds449 0 - - - - - - - - - - - - - - - - - - - - - - -
ec cds450 46 74.76 0.4839 0.46552 -124.55 -40.35 -40.44 0.09 1.39 -0.78 0.32 -2.21 0.00269 OTHER 0 PROTEIN 46 1.42 397 427 96 10 0.59 0.396
ec cds451 110 69.48 0.57573 0.64549 -284.35 -90.4 -90.71 0.31 1.56 -0.4 0.32 -2.29 0.000014 OTHER 0 PROTEIN 110 4.22 589 615 159 14 0.59 0.444
ec cds452 88 78.31 0.41696 0.57868 -337.77 -179.95 -183.52 3.57 1.4 -1.58 0.53 -0.26 0.327476 OTHER 0 PROTEIN 88 1.39 787 811 224 14 0.59 0.368
ec cds453 11 98.22 0.03303 0.50917 -592.3 -567.07 -569.14 2.07 1.05 -3.71 0.96 2.71 0.999252 RNA 2.094E-07 PROTEIN 11 0.6 1555 1583 522 31 0.589 0.267
ec cds454 0 - - - - - - - - - - - - - - - - - - - - - - -
ec cds455 116 81.65 0.34362 0.55923 -469.3 -274.91 -266.84 -8.08 1.45 -0.7 0.59 -1.42 0.021229 OTHER 0 PROTEIN 116 1.92 1144 1170 363 23 0.59 0.36
ec cds456 63 81.92 0.33901 0.54545 -588.42 -334.97 -335.9 0.93 1.35 -0.95 0.57 -1.23 0.035212 OTHER 0 PROTEIN 63 1.1 1516 1545 503 26 0.59 0.311
ec cds457 63 85.11 0.27054 0.53513 -296.6 -185.23 -183.75 -1.48 1.27 -1.55 0.62 -0.48 0.211143 OTHER 0 PROTEIN 63 2.48 769 802 215 13 0.59 0.406
ec cds458 2 97.03 0.02969 0.56393 -385.8 -368.02 -367.52 -0.5 1.03 -1.23 0.95 -0.34 0.278733 OTHER - - 2 0.6 943 973 311 16 0.591 0.275
ec cds459 22 80.71 0.36172 0.57241 -556.92 -300.63 -296.53 -4.1 1.39 -1.19 0.54 -0.97 0.067014 OTHER 0 PROTEIN 22 1.44 1288 1325 404 16 0.59 0.349
ec cds460 68 71.01 0.54065 0.53351 -102.12 -35.25 -33.48 -1.76 1.45 -0.68 0.35 -1.92 0.005782 OTHER 0 PROTEIN 68 3.1 285 311 61 5 0.59 0.464
ec cds461 0 - - - - - - - - - - - - - - - - - - - - - - -
ec cds462 0 - - - - - - - - - - - - - - - - - - - - - - -
ss cds463 0 - - - - - - - - - - - - - - - - - - - - - - -
ss cds464 0 - - - - - - - - - - - - - - - - - - - - - - -
ss cds465 0 - - - - - - - - - - - - - - - - - - - - - - -
ss cds466 0 - - - - - - - - - - - - - - - - - - - - - - -
ss cds467 0 - - - - - - - - - - - - - - - - - - - - - - -
ss cds468 0 - - - - - - - - - - - - - - - - - - - - - - -
ss cds469 0 - - - - - - - - - - - - - - - - - - - - - - -
ss cds470 0 - - - - - - - - - - - - - - - - - - - - - - -
ss cds471 1 - - - - - - - - - - - - - - - - - - - - - - -
ss cds472 3 86.43 0.1357 0.32659 -158.95 -130.35 -130.6 0.25 1.12 -2.36 0.82 0.97 0.928403 RNA - - 3 0.81 619 648 199 11 0.589 0.288
ss cds473 0 - - - - - - - - - - - - - - - - - - - - - - -
ss cds474 1 - - - - - - - - - - - - - - - - - - - - - - -
ss cds475 4 89.61 0.1039 0.2835 -79.11 -63.4 -66.4 3 1.11 -0.09 0.8 -2.21 0.002656 OTHER - - 4 0.83 385 407 118 4 0.59 0.299
ss cds476 32 76.07 0.45528 0.39904 -243.71 -117.16 -116.23 -0.92 1.45 0.28 0.48 -2.8 0.000001 OTHER 0 PROTEIN 32 2.92 843 922 160 12 0.59 0.48
ss cds477 4 67.15 0.5502 0.40708 -384.65 -135.96 -146.84 10.87 1.47 0.61 0.35 -3.5 0 OTHER 0 PROTEIN 4 1.47 1398 1423 418 24 0.59 0.359
ss cds478 3 87 0.13004 0.31238 -47.1 -34.1 -34.1 0 1.11 -1.02 0.72 -1.31 0.0282 OTHER - - 3 0.84 223 243 63 5 0.591 0.32
ss cds479 1 - - - - - - - - - - - - - - - - - - - - - - -
ss cds480 1 - - - - - - - - - - - - - - - - - - - - - - -
ss cds481 12 71.39 0.53702 0.36338 -130.85 -37.37 -36.22 -1.15 1.53 -0.46 0.29 -2.55 0.000004 OTHER 0 PROTEIN 12 2.08 538 560 126 9 0.59 0.428
ss cds482 3 81.63 0.18372 0.31709 -192 -146.5 -145.75 -0.75 1.17 -0.72 0.76 -1.23 0.035354 OTHER - - 3 0.86 811 835 245 16 0.589 0.309
ss cds483 1 - - - - - - - - - - - - - - - - - - - - - - -
ss cds484 3 83.26 0.16742 0.33069 -89.6 -71.1 -70.6 -0.5 1.14 1.09 0.79 -3.45 0 OTHER - - 3 0.86 442 465 132 8 0.59 0.309
ss cds485 1 - - - - - - - - - - - - - - - - - - - - - - -
ss cds486 8 67.5 0.57593 0.362 -168.26 -47.92 -44.64 -3.28 1.69 0.57 0.28 -3.7 0 OTHER 0 PROTEIN 8 1.68 648 672 192 6 0.589 0.363
ss cds487 2 85.46 0.1454 0.33468 -142.76 -111.61 -114.61 3 1.12 0.27 0.78 -2.58 0.000003 OTHER - - 2 0.74 619 643 219 10 0.589 0.256
ss cds488 0 - - - - - - - - - - - - - - - - - - - - - - -
ss cds489 5 67.93 0.53054 0.3606 -265.66 -93.69 -104 10.31 1.45 0.8 0.35 -3.81 0 OTHER 0 PROTEIN 5 1.51 1057 1081 278 22 0.59 0.38
ss cds490 1 - - - - - - - - - - - - - - - - - - - - - - -
ss cds491 4 71.55 0.39641 0.34918 -167.34 -72.5 -70.59 -1.91 1.35 -0.14 0.43 -2.81 0.000001 OTHER 0 PROTEIN 4 1.15 718 743 197 11 0.591 0.353
ss cds492 2 86.03 0.13965 0.30879 -178.73 -146.47 -144.22 -2.25 1.17 0.21 0.82 -2.31 0.000012 OTHER - - 2 0.79 802 826 271 11 0.589 0.272
ss cds493 1 - - - - - - - - - - - - - - - - - - - - - - -
ss cds494 6 68.6 0.56478 0.36569 -166.77 -40.2 -42.32 2.12 1.49 -0.78 0.24 -2.3 0.000013 OTHER 0 PROTEIN 6 1.62 662 685 174 8 0.59 0.388
ss cds495 0 - - - - - - - - - - - - - - - - - - - - - - -
ss cds496 0 - - - - - - - - - - - - - - - - - - - - - - -
ss cds497 0 - - - - - - - - - - - - - - - - - - - - - - -
ss cds498 2 84.15 0.15848 0.31284 -88.75 -63.78 -67.53 3.75 1.12 -0.57 0.72 -1.76 0.008701 OTHER - - 2 0.82 448 477 131 5 0.59 0.314
ss cds499 5 67.65 0.5221 0.33685 -134.92 -49.24 -50.87 1.62 1.44 -0.34 0.36 -2.38 0.000009 OTHER 0 PROTEIN 5 1.48 574 603 141 11 0.591 0.389
ss cds500 3 92.9 0.09782 0.43728 -116.3 -101.51 -100.53 -0.98 1.08 0.01 0.87 -1.99 0.00474 OTHER 0.0005335 PROTEIN 3 0.76 460 483 129 8 0.59 0.328
ss cds501 1 - - - - - - - - - - - - - - - 1 0.66 594 618 182 12 0.589 0.298
ss cds502 2 98.96 0.01045 0.58178 -270.91 -267.45 -267.45 0 1.01 1.75 0.99 -3.83 0 OTHER - - 2 0.57 670 694 233 14 0.591 0.253
ss cds503 3 81.35 0.26274 0.50049 -101.81 -75.22 -76.47 1.24 1.13 0.14 0.74 -2.07 0.003806 OTHER 0.00001294 PROTEIN 3 0.89 313 334 96 4 0.59 0.315
ss cds504 0 - - - - - - - - - - - - - - - - - - - - - - -
ss cds505 4 81.04 0.18962 0.38226 -269.72 -202.07 -201.57 -0.5 1.14 1.37 0.75 -3.9 0 OTHER - - 4 0.84 1060 1085 341 16 0.589 0.289
ss cds506 12 69.74 0.57394 0.36701 -42.36 -7.19 -6.22 -0.97 1.73 0.25 0.17 -3.89 0 OTHER 0 PROTEIN 12 2.15 193 212 45 4 0.59 0.432
ss cds507 6 62.06 0.67429 0.32941 -166.69 -24.84 -25.04 0.2 1.56 -0.12 0.15 -3.14 0 OTHER 0 PROTEIN 6 2.01 741 823 174 12 0.59 0.419
ss cds508 1 - - - - - - - - - - - - - - - - - - - - - - -
ss cds509 12 77.6 0.41801 0.37772 -94.11 -39.89 -40.54 0.65 1.39 -0.11 0.42 -2.8 0.000001 OTHER 0 PROTEIN 12 1.47 388 413 89 8 0.59 0.411
ss cds510 0 - - - - - - - - - - - - - - - - - - - - - - -
ss cds511 1 - - - - - - - - - - - - - - - - - - - - - - -
ss cds512 3 87.74 0.12263 0.32768 -251.81 -208.73 -209.98 1.25 1.13 -1.36 0.83 -0.32 0.290055 OTHER - - 3 0.81 1003 1028 313 17 0.589 0.293
hs 5putr 513 15 83.93 0.30314 0.47179 -16.35 -10.13 -9.63 -0.5 1.4 0.24 0.62 -2.68 0.000002 OTHER 0.445 OTHER 15 1.37 83 101 17 1 0.685 0.513
hs 5putr 514 20 86.33 0.24408 0.71992 -112.28 -93.58 -94.2 0.62 1.11 0.66 0.83 -2.34 0.000011 OTHER 0.387 OTHER 20 1 243 289 68 4 0.591 0.348
hs 5putr 515 14 81.29 0.3485 0.751 -49.07 -31.42 -30.9 -0.52 1.31 0.17 0.64 -2.26 0.000016 OTHER 0.653 OTHER 14 0.92 94 112 32 2 0.608 0.319
hs 5putr 516 1 - - - - - - - - - - - - - - - 1 1 73 90 22 1 0.702 0.433
hs 5putr 517 21 77.2 0.42204 0.70801 -87.88 -49.54 -52.73 3.19 1.23 0.83 0.56 -3.21 0 OTHER 0.267 OTHER 21 0.86 196 216 61 4 0.591 0.309
hs 5putr 518 31 75.02 0.46156 0.64282 -79.07 -37.3 -37 -0.3 1.45 0.16 0.47 -2.67 0.000002 OTHER 0.925 OTHER 31 1.06 194 227 61 5 0.59 0.325
hs 5putr 519 0 - - - - - - - - - - - - - - - - - - - - - - -
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hs 5putr 520 1 - - - - - - - - - - - - - - - - - - - - - - -
hs 5putr 521 13 91.02 0.16051 0.44516 -106.82 -83.47 -82.22 -1.24 1.12 -0.13 0.78 -2 0.004676 OTHER 0.929 OTHER 13 0.84 385 407 113 5 0.589 0.315
hs 5putr 522 15 76.01 0.42775 0.47033 -16.11 -7.53 -7.62 0.09 1.44 0.32 0.47 -3.03 0 OTHER 0.974 OTHER 15 1.25 90 111 18 2 0.634 0.466
hs 5putr 523 1 - - - - - - - - - - - - - - - - - - - - - - -
hs 5putr 524 23 84.38 0.2728 0.70562 -75.93 -48.44 -47.3 -1.13 1.23 0.85 0.64 -3.48 0 OTHER 0.09 OTHER 23 0.82 163 183 52 2 0.591 0.304
hs 5putr 525 15 79.72 0.36867 0.82239 -38.47 -31.29 -31.58 0.29 1.09 0.81 0.81 -2.04 0.004157 OTHER 0.872 OTHER 15 0.98 81 112 29 1 0.7 0.396
hs 5putr 526 13 76.8 0.40568 0.82488 -74.23 -48.32 -49.27 0.95 1.14 0.16 0.65 -1.92 0.005743 OTHER 0.595 OTHER 13 0.77 113 208 37 1 0.589 0.299
hs 5putr 527 1 - - - - - - - - - - - - - - - - - - - - - - -
hs 5putr 528 11 84.3 0.28083 0.81588 -21.93 -18.55 -19.22 0.67 1.17 -0.04 0.85 -1.15 0.043045 OTHER 0.343 OTHER 11 2.47 52 67 18 0 1.066 0.859
hs 5putr 529 1 - - - - - - - - - - - - - - - - - - - - - - -
hs 5putr 530 21 85.6 0.26157 0.6696 -37.55 -25.22 -24.83 -0.39 1.21 0.46 0.67 -2.88 0.000001 OTHER 0.136 OTHER 21 0.85 95 112 31 2 0.602 0.314
hs 5putr 531 16 83.38 0.29886 0.74948 -48.88 -33.34 -34.17 0.84 1.21 0.13 0.68 -2.22 0.002575 OTHER 0.74 OTHER 16 0.83 97 118 31 1 0.59 0.307
hs 5putr 532 1 - - - - - - - - - - - - - - - - - - - - - - -
hs 5putr 533 6 85.55 0.25722 0.47941 -100.35 -68.03 -69.15 1.13 1.07 -0.09 0.68 -2.13 0.003247 OTHER 0.384 OTHER 6 0.78 341 363 106 7 0.59 0.299
hs 5putr 534 16 80.95 0.34034 0.71445 -27.13 -17.25 -18.28 1.03 1.22 0.58 0.64 -2.83 0.000001 OTHER 0.78 OTHER 16 1.85 66 81 21 0 0.851 0.624
hs 5putr 535 16 79.55 0.35714 0.45642 -11.35 -3.46 -3.47 0 1.4 -0.01 0.31 -3.78 0 OTHER 0.351 OTHER 16 1.68 71 90 17 1 0.794 0.61
hs 5putr 536 19 80.15 0.38442 0.48119 -49.67 -30.04 -32.77 2.72 1.09 -0.66 0.6 -1.23 0.035487 OTHER 0.353 OTHER 19 1.07 184 204 48 2 0.59 0.351
hs 5putr 537 35 77.21 0.42103 0.67244 -65.08 -33.68 -34.16 0.48 1.47 -0.66 0.52 -1.51 0.016917 OTHER 0.791 OTHER 35 0.96 142 162 49 2 0.59 0.295
hs 5putr 538 1 - - - - - - - - - - - - - - - - - - - - - - -
hs 5putr 539 10 87.46 0.21393 0.72664 -21.78 -18.81 -18.42 -0.39 1.21 -0.84 0.86 -0.38 0.258255 OTHER 0.628 OTHER 10 3.09 47 62 15 0 1.173 1.01
hs 5putr 540 0 - - - - - - - - - - - - - - - - - - - - - - -
hs 5putr 541 9 70.96 0.48104 0.51728 -116.28 -58.9 -61.32 2.42 1.13 0.33 0.51 -2.58 0.000003 OTHER 0.25 OTHER 9 1.3 392 488 78 6 0.59 0.416
hs 5putr 542 1 - - - - - - - - - - - - - - - - - - - - - - -
hs 5putr 543 33 77.22 0.41875 0.70111 -46.5 -22.95 -23.24 0.28 1.39 0.17 0.49 -2.77 0.000001 OTHER 0.667 OTHER 33 1.04 103 136 32 2 0.59 0.333
hs 5putr 544 1 - - - - - - - - - - - - - - - - - - - - - - -
hs 5putr 545 7 89.17 0.19252 0.73237 -14 -10.49 -10.27 -0.22 1.2 0.63 0.75 -2.98 0 OTHER 0.215 OTHER 7 4.35 40 54 12 1 1.367 1.229
hs 5putr 546 6 86.85 0.21652 0.74853 -27.96 -20.8 -21.64 0.84 1.06 0.39 0.74 -2.62 0.000002 OTHER 0.356 OTHER 6 1.77 65 81 20 1 0.863 0.647
hs 5putr 547 9 93.3 0.10644 0.77155 -206.78 -185.36 -185.55 0.19 1.09 0.06 0.9 -1.86 0.006811 OTHER 0.117 OTHER 9 0.52 342 373 122 7 0.591 0.246
hs 5putr 548 1 - - - - - - - - - - - - - - - - - - - - - - -
hs 5putr 549 1 - - - - - - - - - - - - - - - 1 0.64 356 386 103 7 0.59 0.314
hs 5putr 550 7 94.95 0.09209 0.48773 -63.33 -55.49 -58.1 2.61 1.02 -1.98 0.88 0.57 0.815994 RNA 0.164 OTHER 7 0.77 185 204 54 5 0.589 0.315
hs 5putr 551 15 80.13 0.34941 0.71912 -32.5 -23.22 -24 0.78 1.24 0.49 0.71 -2.28 0.000015 OTHER 0.898 OTHER 15 1.6 73 89 21 0 0.772 0.557
hs 5putr 552 10 94.34 0.09986 0.80338 -26.13 -26.03 -25.78 -0.25 1.15 1.04 1 -2.57 0.000003 OTHER 0.677 OTHER 10 1.59 59 75 19 1 0.946 0.714
hs 5putr 553 1 - - - - - - - - - - - - - - - - - - - - - - -
hs 5putr 554 10 93.55 0.1103 0.8257 -20.13 -17.05 -17.22 0.17 1 1.19 0.85 -3.5 0 OTHER 0.369 OTHER 10 2.29 49 64 15 1 1.127 0.937
hs 5putr 555 18 77.09 0.41037 0.4824 -16.04 -6.22 -5.25 -0.97 1.54 0.51 0.39 -3.78 0 OTHER 0.988 OTHER 18 1.38 86 104 14 1 0.662 0.531
hs 5putr 556 49 85.85 0.22758 0.46889 -202.35 -171.94 -173.75 1.81 1.04 0.15 0.85 -1.65 0.011565 OTHER 0.031 PROTEIN 49 2.28 617 1108 150 10 0.59 0.405
hs 5putr 557 1 - - - - - - - - - - - - - - - - - - - - - - -
hs 5putr 558 1 - - - - - - - - - - - - - - - 1 0.69 450 480 133 7 0.591 0.308
hs 5putr 559 1 - - - - - - - - - - - - - - - - - - - - - - -
hs 5putr 560 1 - - - - - - - - - - - - - - - - - - - - - - -
hs 5putr 561 7 94.4 0.10179 0.50263 -52.58 -45.21 -47.65 2.44 1.02 -1.45 0.86 -0.16 0.387846 OTHER 0.204 OTHER 7 0.78 161 180 46 4 0.59 0.325
hs 5putr 562 10 88.22 0.2011 0.72299 -23.17 -20.54 -19.9 -0.64 1.25 -0.81 0.89 -0.33 0.287113 OTHER 0.528 OTHER 10 2.65 50 65 16 0 1.106 0.926
hs 3putr 563 10 92.23 0.13973 0.41497 -60.24 -47.58 -49.45 1.86 1.06 0.43 0.79 -2.75 0.000001 OTHER 0.077 OTHER 10 0.92 259 281 66 4 0.588 0.358
hs 3putr 564 0 - - - - - - - - - - - - - - - - - - - - - - -
hs 3putr 565 36 84.45 0.28218 0.40395 -263.04 -179.95 -180.16 0.21 1.15 -1.11 0.68 -0.67 0.139103 OTHER 0.164 OTHER 36 1.29 954 1149 294 19 0.591 0.326
hs 3putr 566 103 78.74 0.38257 0.40738 -40.88 -22.77 -23.13 0.36 1.12 0.56 0.56 -3.05 0 OTHER 0.329 OTHER 103 2.57 194 303 33 2 0.59 0.474
hs 3putr 567 1 - - - - - - - - - - - - - - - 1 0.83 105 122 24 0 0.591 0.378
hs 3putr 568 28 81.04 0.30548 0.47 -120.99 -92.53 -93.32 0.79 1.18 -0.86 0.76 -0.44 0.228909 OTHER 0.352 OTHER 28 1.02 362 530 105 8 0.59 0.334
hs 3putr 569 26 86.03 0.25251 0.45694 -158.51 -91.91 -90.4 -1.51 1.22 0.09 0.58 -2.94 0 OTHER 0.433 OTHER 26 2.08 523 773 159 8 0.59 0.356
hs 3putr 570 0 - - - - - - - - - - - - - - - - - - - - - - -
hs 3putr 571 11 81.05 0.36083 0.48244 -547.63 -357.85 -362.48 4.63 1.22 -0.78 0.65 -0.89 0.081532 OTHER 0.888 OTHER 11 0.81 1602 1628 523 29 0.59 0.289
hs 3putr 572 12 91.04 0.15956 0.42004 -61.52 -43.24 -44.41 1.17 1.07 0.33 0.7 -3.02 0 OTHER 0.049 PROTEIN 12 0.87 258 280 72 3 0.59 0.333
hs 3putr 573 1 - - - - - - - - - - - - - - - - - - - - - - -
hs 3putr 574 14 81.86 0.32852 0.46058 -22.43 -8.34 -8.67 0.33 1.2 -0.25 0.37 -3.3 0 OTHER 0.686 OTHER 14 1.12 106 124 26 1 0.591 0.371
hs 3putr 575 76 76.73 0.39135 0.27577 -115.72 -42.92 -40.16 -2.76 1.32 0.72 0.37 -4.23 0 OTHER 0.074 OTHER 76 2.5 609 679 121 8 0.59 0.44
hs 3putr 576 86 85.62 0.2492 0.28484 -21.3 -13.73 -13.82 0.08 1.1 -0.48 0.64 -1.88 0.0063 OTHER 0.937 OTHER 86 2 125 151 32 1 0.59 0.392
hs 3putr 577 1 - - - - - - - - - - - - - - - - - - - - - - -
hs 3putr 578 1 - - - - - - - - - - - - - - - 1 0.65 2317 2339 754 41 0.591 0.276
hs 3putr 579 12 91.04 0.15956 0.42004 -61.52 -43.24 -44.41 1.17 1.07 0.33 0.7 -3.02 0 OTHER 0.09 OTHER 12 0.87 258 280 72 3 0.59 0.333
hs 3putr 580 0 - - - - - - - - - - - - - - - - - - - - - - -
hs 3putr 581 36 86.65 0.23873 0.39804 -267.77 -190.94 -190.9 -0.03 1.15 -1.38 0.71 -0.36 0.269478 OTHER 0.113 OTHER 36 1.26 978 1158 309 16 0.589 0.316
hs 3putr 582 69 81.92 0.33167 0.34621 -10.07 -2.25 -2.58 0.33 1 -0.51 0.22 -3.73 0 OTHER 0.428 OTHER 69 2.53 62 77 14 0 0.902 0.751
hs 3putr 583 1 - - - - - - - - - - - - - - - - - - - - - - -
hs 3putr 584 1 - - - - - - - - - - - - - - - 1 0.74 299 321 85 5 0.59 0.319
hs 3putr 585 10 92.23 0.13973 0.41497 -60.24 -47.58 -49.45 1.86 1.06 0.43 0.79 -2.75 0.000001 OTHER 0.069 OTHER 10 0.92 259 281 66 4 0.588 0.358
hs 3putr 586 1 - - - - - - - - - - - - - - - 1 0.77 2622 2641 757 46 0.589 0.314
hs 3putr 587 28 81.04 0.30548 0.47 -120.99 -92.53 -93.32 0.79 1.18 -0.84 0.76 -0.47 0.216698 OTHER 0.367 OTHER 28 1.02 362 530 105 8 0.59 0.334
hs 3putr 588 14 81.86 0.32852 0.46058 -22.43 -8.34 -8.67 0.33 1.2 -0.25 0.37 -3.3 0 OTHER 0.669 OTHER 14 1.12 106 124 26 1 0.591 0.371
hs 3putr 589 313 65.26 0.54511 0.45812 -42.12 -10.54 -10.02 -0.52 1.41 0.12 0.25 -3.45 0 OTHER 0.00005179 PROTEIN 313 3.47 162 310 23 2 0.59 0.506
hs 3putr 590 69 77.45 0.37054 0.26563 -111.33 -51.65 -48.62 -3.04 1.23 0.7 0.46 -3.82 0 OTHER 0.096 OTHER 69 2.6 583 929 137 11 0.59 0.415
hs 3putr 591 39 79.55 0.3708 0.27114 -125.55 -46.61 -47.68 1.07 1.3 0.91 0.37 -4.55 0 OTHER 0.155 OTHER 39 2.35 662 729 139 9 0.59 0.43
hs 3putr 592 1 - - - - - - - - - - - - - - - - - - - - - - -
hs 3putr 593 151 82.68 0.32615 0.56843 -141.15 -97.15 -101.3 4.15 1.25 -0.47 0.69 -1.25 0.033516 OTHER 3.331E-16 PROTEIN 151 1.54 371 393 102 8 0.591 0.377
hs 3putr 594 1 - - - - - - - - - - - - - - - - - - - - - - -
hs 3putr 595 1 - - - - - - - - - - - - - - - 1 0.71 897 927 272 11 0.589 0.297
hs 3putr 596 28 79.41 0.3599 0.56759 -53.27 -27.96 -27.3 -0.66 1.3 0.43 0.52 -3.21 0 OTHER 0.605 OTHER 28 1 157 176 48 3 0.59 0.322
hs 3putr 597 35 71.91 0.51098 0.35251 -138.56 -52.65 -54.82 2.17 1.3 -0.43 0.38 -2.2 0.00274 OTHER 0.849 OTHER 35 1.96 586 649 120 10 0.59 0.432
hs 3putr 598 1 - - - - - - - - - - - - - - - - - - - - - - -
hs 3putr 599 1 - - - - - - - - - - - - - - - 1 0.71 2731 2750 862 41 0.59 0.285
hs 3putr 600 76 87.07 0.2177 0.36086 -75.59 -63.24 -63.78 0.53 1.07 -0.01 0.84 -1.55 0.015217 OTHER 0.994 OTHER 76 2.14 345 473 75 8 0.59 0.429
hs 3putr 601 92 78.7 0.38776 0.4543 -104.04 -57.83 -58.51 0.68 1.29 -0.2 0.56 -2.04 0.004143 OTHER 0.0005126 PROTEIN 92 1.91 355 384 86 6 0.59 0.401
hs 3putr 602 86 85.62 0.2492 0.28484 -21.3 -13.73 -13.82 0.08 1.1 -0.48 0.64 -1.88 0.0063 OTHER 0.83 OTHER 86 2 125 151 32 1 0.59 0.392
hs 3putr 603 107 79.81 0.36456 0.41048 -48.09 -27.39 -27.15 -0.24 1.26 0.29 0.57 -2.73 0.000001 OTHER 0.47 OTHER 107 2.32 218 311 39 4 0.59 0.461
hs 3putr 604 70 78.08 0.36815 0.26265 -113.02 -50.43 -52.28 1.85 1.27 0.66 0.45 -3.84 0 OTHER 0.044 PROTEIN 70 2.53 613 679 113 8 0.59 0.452
hs 3putr 605 3 96.51 0.03486 0.47221 -162.96 -159.46 -159.46 0 1.01 -0.78 0.98 -0.73 0.120172 OTHER - - 3 0.72 544 567 158 6 0.589 0.31
hs 3putr 606 1 - - - - - - - - - - - - - - - 1 0.7 2754 2774 881 43 0.589 0.28
hs 3putr 607 14 80.17 0.35554 0.46435 -23.72 -8.34 -8.67 0.33 1.2 -0.29 0.35 -3.23 0 OTHER 0.67 OTHER 14 1.07 110 129 30 1 0.59 0.345
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hs 3putr 608 77 82.44 0.32921 0.23088 -19.24 -8.18 -7.55 -0.63 1.38 0.06 0.43 -3.37 0 OTHER 0.478 OTHER 77 2.14 151 182 31 2 0.59 0.431
hs 3putr 609 1 - - - - - - - - - - - - - - - 1 0.59 171 191 55 1 0.589 0.277
hs 3putr 610 32 85.36 0.26017 0.43457 -82.7 -43.51 -43.27 -0.24 1.22 -0.55 0.53 -2.35 0.00001 OTHER 0.349 OTHER 32 2.19 310 353 78 5 0.59 0.401
hs 3putr 611 107 79.81 0.36456 0.41048 -48.09 -27.39 -27.15 -0.24 1.26 0.26 0.57 -2.69 0.000002 OTHER 0.413 OTHER 107 2.32 218 311 39 4 0.59 0.461
hs 3putr 612 1 - - - - - - - - - - - - - - - 1 0.75 298 319 85 3 0.59 0.322
ec 5putr 613 8 90.8 0.14638 0.42611 -4.9 -4.2 -4.83 0.63 1.11 -0.6 0.86 -1.03 0.05832 OTHER 0.342 OTHER 8 8 29 41 9 0 1.59 1.518
ec 5putr 614 17 83.66 0.28902 0.4513 -45.55 -37.42 -36.35 -1.07 1.31 -1.78 0.82 1.01 0.934612 RNA 0.31 OTHER 17 0.98 148 166 38 1 0.589 0.363
ec 5putr 615 26 79.11 0.40182 0.31789 -14.37 -7.29 -7.65 0.36 1.29 -0.58 0.51 -1.76 0.008719 OTHER 0.578 OTHER 26 1.77 84 100 20 0 0.676 0.483
ec 5putr 616 14 87.31 0.21928 0.29231 -16.16 -12.68 -12.23 -0.44 1.12 -1.12 0.78 -0.42 0.240778 OTHER 0.069 OTHER 14 0.82 108 142 29 1 0.591 0.335
ec 5putr 617 31 86.79 0.2297 0.35517 -4.47 -4.14 -3.78 -0.36 1.25 -0.78 0.93 -0.02 0.480396 OTHER 0.66 OTHER 31 11.87 34 47 9 0 1.595 1.542
ec 5putr 618 2 81.82 0.18182 0.4482 -2.9 -1.35 -1.35 0 1 0.92 0.47 -4.87 0 OTHER - - 2 2 44 60 7 1 0.929 0.811
ec 5putr 619 110 78.96 0.40428 0.35141 -25.15 -15.13 -16.05 0.92 1.28 -1.94 0.6 0.56 0.812661 RNA 0.998 OTHER 110 1.61 102 132 27 2 0.59 0.381
ec 5putr 620 47 81.24 0.36057 0.36245 -15.32 -9.68 -10.15 0.47 1.23 -0.32 0.63 -1.62 0.012752 OTHER 0.381 OTHER 47 2.52 83 99 15 0 0.684 0.562
ec 5putr 621 10 93.94 0.09834 0.32292 -0.79 0 0 0 0 0.78 0 -6.9 0 OTHER 0.337 OTHER 10 6.74 33 47 6 0 1.641 1.592
ec 5putr 622 57 80.45 0.37093 0.42294 -21.53 -16 -15.53 -0.47 1.53 -0.74 0.74 -0.39 0.253651 OTHER 0.308 OTHER 57 1.97 89 106 17 0 0.64 0.501
ec 5putr 623 72 77.68 0.42447 0.425 -25.42 -17.27 -17.47 0.2 1.32 -0.57 0.68 -0.7 0.130656 OTHER 0.723 OTHER 72 1.24 117 135 25 0 0.589 0.405
ec 5putr 624 25 86.9 0.23966 0.3902 -4.35 -3.57 -3.57 0 1 -0.26 0.82 -1.23 0.035291 OTHER 0.863 OTHER 25 4.23 42 56 4 0 1.305 1.266
ec 5putr 625 0 - - - - - - - - - - - - - - - - - - - - - - -
ec 5putr 626 24 85.21 0.26689 0.40124 -11.92 -6.57 -6.98 0.42 1.17 0.9 0.55 -4.06 0 OTHER 0.792 OTHER 24 1.41 80 95 26 0 0.708 0.434
ec 5putr 627 4 96.15 0.03846 0.25462 -2.1 -2.1 -2.1 0 1 -0.93 1 -0.43 0.235121 OTHER - - 4 4 26 40 3 0 1.426 1.385
ec 5putr 628 62 74.28 0.45444 0.49573 -88.68 -42.32 -40.92 -1.4 1.58 -1.22 0.48 -0.85 0.091017 OTHER 4.063E-14 PROTEIN 62 1.57 293 500 70 7 0.59 0.399
ec 5putr 629 32 76.98 0.4352 0.44981 -19.53 -11.74 -11.69 -0.05 1.35 -0.33 0.6 -1.42 0.021381 OTHER 0.15 OTHER 32 1.61 96 116 18 2 0.595 0.437
ec 5putr 630 60 79.96 0.37524 0.61403 -71.2 -36.84 -37.43 0.59 1.37 0.3 0.52 -2.97 0 OTHER 7.772E-16 PROTEIN 60 1.34 188 207 47 2 0.591 0.393
ec 5putr 631 60 80.07 0.37325 0.61078 -71.42 -36.84 -37.43 0.59 1.37 0.26 0.52 -2.93 0 OTHER 1.118E-13 PROTEIN 60 1.34 189 208 48 2 0.59 0.388
ec 5putr 632 22 92.52 0.14395 0.37402 -54.54 -45.84 -45.04 -0.8 1.2 -2.42 0.84 1.19 0.957459 RNA 0.837 OTHER 22 0.81 212 232 65 4 0.589 0.301
ec 5putr 633 24 92.22 0.15037 0.38806 -45.56 -40.1 -39.91 -0.19 1.18 -3.33 0.88 2.54 0.998812 RNA 0.997 OTHER 24 0.88 179 199 48 2 0.591 0.34
ec 5putr 634 6 89.06 0.20076 0.45302 -2.36 -2 -2 0 1 0.79 0.85 -2.6 0.000003 OTHER 0.656 OTHER 6 6 32 46 5 0 1.44 1.377
ec 5putr 635 19 92.54 0.14579 0.4364 -28.88 -25 -25.25 0.25 1.12 -2.57 0.87 1.54 0.983026 RNA 0.926 OTHER 19 0.78 92 110 30 1 0.621 0.317
ec 5putr 636 27 87.8 0.23299 0.3675 -73.86 -52.41 -53.59 1.18 1.24 -0.93 0.71 -0.98 0.06556 OTHER 0.316 OTHER 27 0.99 317 339 84 5 0.59 0.35
ec 5putr 637 10 92.41 0.13306 0.36798 -2.34 -1.62 -1.22 -0.4 1.25 0.18 0.69 -3.01 0 OTHER 0.486 OTHER 10 10 29 42 8 0 1.689 1.636
ec 5putr 638 36 74.72 0.47338 0.34504 -53 -17.33 -16.7 -0.63 1.49 -1.94 0.33 -0.7 0.128393 OTHER 0.873 OTHER 36 1.36 216 235 59 2 0.59 0.358
ec 5putr 639 16 86.65 0.25482 0.33821 -44.69 -28.44 -26.78 -1.66 1.33 -1.97 0.64 0.11 0.561664 RNA 0.104 OTHER 16 0.94 182 213 60 1 0.59 0.288
ec 5putr 640 24 84.03 0.30045 0.39891 -12.47 -6.79 -6.07 -0.72 1.31 -0.32 0.54 -2.41 0.000007 OTHER 0.855 OTHER 24 2.44 66 82 17 0 0.85 0.685
ec 5putr 641 49 80.42 0.31033 0.50952 -28.92 -15.54 -14.9 -0.64 1.17 -0.22 0.54 -2.49 0.000005 OTHER 0.647 OTHER 49 2.38 106 123 25 1 0.59 0.422
ec 5putr 642 297 75.77 0.39456 0.5435 -136.65 -79.97 -80.96 0.99 1.29 -1.06 0.59 -0.7 0.128695 OTHER 2.217E-10 PROTEIN 297 3.13 358 378 92 7 0.59 0.433
ec 5putr 643 50 83.39 0.29579 0.46154 -62.74 -34.45 -34.51 0.06 1.24 -1 0.55 -1.48 0.018273 OTHER 0.091 OTHER 50 1.62 220 267 48 2 0.59 0.419
ec 5putr 644 189 80.12 0.37893 0.53397 -56.38 -23.75 -25.95 2.2 1.23 -1.23 0.42 -1.53 0.016195 OTHER 1.008E-13 PROTEIN 189 2.43 159 177 42 3 0.59 0.424
ec 5putr 645 11 85.33 0.26568 0.44012 -4.53 -1.21 -0.68 -0.53 1.75 1.63 0.27 -6.27 0 OTHER 0.302 OTHER 11 3.09 49 63 11 0 1.128 1.005
ec 5putr 646 30 83.9 0.30365 0.49786 -1.84 0 0 0 0 0.75 0 -6.21 0 OTHER 0.745 OTHER 30 8.89 39 53 4 0 1.4 1.379
ec 5putr 647 183 85.71 0.26716 0.54021 -150.88 -106.17 -104.8 -1.37 1.33 -0.8 0.7 -1.04 0.056479 OTHER 5.945E-13 PROTEIN 183 2.76 415 490 108 6 0.59 0.426
ec 5putr 648 62 83.57 0.32608 0.50481 -24.35 -14.37 -14.77 0.39 1.33 -0.75 0.59 -1.44 0.020275 OTHER 0.065 OTHER 62 1.72 86 104 22 0 0.662 0.465
ec 5putr 649 200 81.1 0.36185 0.54199 -111.07 -61.9 -62.63 0.73 1.29 -0.77 0.56 -1.41 0.021718 OTHER 4.774E-15 PROTEIN 200 2.68 288 308 72 5 0.59 0.426
ec 5putr 650 4 93.94 0.08348 0.47691 -1.33 -0.9 -1.23 0.33 1 -0.17 0.67 -2.9 0.000001 OTHER 0.306 OTHER 4 4 22 36 5 0 1.461 1.361
ec 5putr 651 250 77.15 0.40556 0.51936 -139.82 -76.79 -77.12 0.33 1.35 -1.46 0.55 -0.35 0.273931 OTHER 0 PROTEIN 250 4.82 404 494 95 7 0.59 0.47
ec 5putr 652 250 79.81 0.38331 0.60376 -151.04 -93.74 -92.2 -1.54 1.39 -1.03 0.62 -0.63 0.154103 OTHER 0 PROTEIN 250 2.58 343 369 83 9 0.59 0.436
ec 5putr 653 254 77.57 0.41643 0.53313 -251.91 -143.74 -145.68 1.94 1.38 -1.36 0.57 -0.32 0.292691 OTHER 0 PROTEIN 254 2.11 648 782 179 14 0.59 0.397
ec 5putr 654 6 93.94 0.09834 0.30019 -2.08 0 0 0 0 -0.71 0 -5.3 0 OTHER 0.445 OTHER 6 6 33 47 6 0 1.612 1.542
ec 5putr 655 26 85.24 0.2895 0.38316 -34.47 -15.37 -16.41 1.03 1.27 -0.71 0.45 -2.45 0.000006 OTHER 0.993 OTHER 26 1.08 174 193 40 1 0.59 0.387
ec 5putr 656 2 96 0.04 0.3875 -0.65 -0.5 -0.5 0 1 0.57 0.77 -3.49 0 OTHER - - 2 2 25 40 4 0 0.977 0.864
ec 5putr 657 93 81.57 0.3507 0.57414 -78.98 -47.83 -47.08 -0.74 1.39 -1.6 0.61 -0.08 0.43613 OTHER 7.435E-09 PROTEIN 93 1.69 195 214 57 3 0.59 0.365
ec 5putr 658 2 80.77 0.19231 0.37308 -1.45 -0.95 -0.95 0 1 0.06 0.66 -2.75 0.000001 OTHER - - 2 2 26 41 4 0 0.857 0.744
ec 5putr 659 89 82.44 0.33156 0.51235 -125.93 -78.93 -78.05 -0.88 1.32 -0.98 0.63 -0.88 0.083724 OTHER 2.998E-15 PROTEIN 89 1.8 359 384 84 8 0.59 0.417
ec 5putr 660 254 83.1 0.32268 0.54018 -213.25 -139.42 -139.72 0.3 1.33 -0.78 0.65 -1.08 0.051542 OTHER 0 PROTEIN 254 3.32 548 633 139 11 0.59 0.439
ec 5putr 661 106 79.97 0.37735 0.48516 -48.67 -30.41 -30.38 -0.02 1.19 -1.42 0.62 -0.14 0.401024 OTHER 0.000009461 PROTEIN 106 1.87 165 187 29 4 0.59 0.456
ec 5putr 662 111 79.85 0.38579 0.45233 -36.07 -30.97 -29.75 -1.22 1.45 -0.96 0.86 0.63 0.837292 RNA 0.943 OTHER 111 1.17 134 163 33 1 0.591 0.377
ec 3putr 663 30 80.18 0.33733 0.51289 -20.85 -15.14 -14.53 -0.61 1.38 -1.45 0.73 0.33 0.699332 RNA 0.032 PROTEIN 30 1.75 66 83 18 3 0.85 0.635
ec 3putr 664 58 81.67 0.34781 0.47024 -13.45 -11.57 -11.43 -0.14 1.14 -2.33 0.86 2.22 0.997207 RNA 0.938 OTHER 58 3.92 56 71 10 1 0.994 0.914
ec 3putr 665 1 - - - - - - - - - - - - - - - 1 0.58 137 156 46 3 0.591 0.263
ec 3putr 666 10 93.48 0.11491 0.62262 -18.98 -17 -17.33 0.33 1 -4.59 0.9 3.85 0.999964 RNA 0.085 OTHER 10 4.84 36 50 10 0 1.511 1.393
ec 3putr 667 70 85.62 0.26619 0.45934 -24.93 -19.61 -20.08 0.47 1.15 -2.09 0.79 1.14 0.950854 RNA 0.757 OTHER 70 2.15 79 107 18 1 0.717 0.55
ec 3putr 668 50 80.91 0.35279 0.3618 -14.92 -14.2 -13.7 -0.5 1.2 -2.42 0.95 2.8 0.999401 RNA 0.674 OTHER 50 3.69 56 73 10 0 0.993 0.889
ec 3putr 669 3 84.71 0.20036 0.61825 -51.3 -43.87 -43.43 -0.44 1.06 -2.63 0.86 1.85 0.992531 RNA 0.673 OTHER 3 0.62 94 133 33 1 0.608 0.273
ec 3putr 670 47 70.4 0.56663 0.61376 -138.25 -61 -61.38 0.38 1.57 -0.75 0.44 -1.19 0.038462 OTHER 0 PROTEIN 47 2.09 321 350 100 4 0.59 0.37
ec 3putr 671 2 98.91 0.01087 0.54097 -32.05 -30.9 -30.9 0 1 -0.72 0.96 -1.02 0.059017 OTHER - - 2 0.7 92 110 30 1 0.62 0.308
ec 3putr 672 23 88.92 0.19679 0.25749 -13.38 -11.96 -10.8 -1.16 1.39 -1.06 0.89 -0.03 0.47461 OTHER 0.107 OTHER 23 1.73 79 96 17 1 0.716 0.535
ec 3putr 673 16 88.57 0.19233 0.54523 -13.41 -12.28 -12.39 0.11 1.11 -2.18 0.92 1.54 0.982947 RNA 0.52 OTHER 16 3.66 40 68 10 0 1.367 1.243
ec 3putr 674 25 88.24 0.21148 0.46242 -29.22 -25.17 -26.43 1.25 1.09 -3.28 0.86 2.7 0.999232 RNA 0.519 OTHER 25 1 84 102 24 1 0.675 0.416
ec 3putr 675 21 77 0.43171 0.49769 -28.57 -26.35 -24.8 -1.55 1.31 -3.65 0.92 4.5 0.999994 RNA 0.532 OTHER 21 2.88 71 87 18 0 0.794 0.617
ec 3putr 676 104 75.18 0.47548 0.63834 -94.82 -42.52 -45.09 2.56 1.38 -0.68 0.45 -1.64 0.012184 OTHER 9.567E-13 PROTEIN 104 2.54 218 237 54 4 0.59 0.431
ec 3putr 677 0 - - - - - - - - - - - - - - - - - - - - - - -
ec 3putr 678 133 83.9 0.2816 0.47086 -34.5 -28 -27.83 -0.16 1.19 -1.4 0.81 0.42 0.749167 RNA 0.000000053 PROTEIN 133 2.08 139 165 35 2 0.59 0.404
ec 3putr 679 290 76.86 0.42772 0.60735 -78.32 -29.49 -29.41 -0.08 1.36 -0.97 0.38 -1.87 0.00652 OTHER 2.665E-15 PROTEIN 290 4.05 212 267 35 2 0.59 0.505
ec 3putr 680 517 81.35 0.34765 0.62319 -313.85 -178.25 -178.75 0.5 1.31 -0.3 0.57 -2.04 0.004127 OTHER 0 PROTEIN 517 4.82 721 779 143 14 0.59 0.494
ec 3putr 681 17 83.33 0.29851 0.44986 -13.23 -12.32 -12.48 0.17 1 -4.11 0.93 4.42 0.999992 RNA 0.67 OTHER 17 6.1 37 50 9 0 1.472 1.4
ec 3putr 682 6 82.41 0.26729 0.46885 -5.8 -4.68 -4.43 -0.25 1.17 0.09 0.81 -1.6 0.013277 OTHER 0.45 OTHER 6 6 36 50 6 0 1.387 1.31
ec 3putr 683 9 96.34 0.06899 0.44229 -18.95 -17.42 -17.58 0.17 1 -4.92 0.92 4.03 0.999978 RNA 0.356 OTHER 9 2.04 51 66 18 1 1.085 0.823
ec 3putr 684 1 - - - - - - - - - - - - - - - 1 0.64 222 243 69 3 0.589 0.287
ec 3putr 685 39 77.29 0.44319 0.52114 -20.58 -21.11 -20.67 -0.44 1.27 -4.8 1.03 6.18 1 RNA 0.892 OTHER 39 15.42 41 55 11 0 1.335 1.272
ec 3putr 686 15 93.69 0.12597 0.52928 -21.43 -21.31 -21.17 -0.14 1.08 -5.48 0.99 5.13 0.999999 RNA 0.72 OTHER 15 4.87 37 51 13 0 1.472 1.341
ec 3putr 687 2 95.24 0.04762 0.63452 -6.3 -6.3 -6.3 0 1 -1.1 1 -0.17 0.377476 OTHER - - 2 2 21 35 5 0 1.077 0.901
ec 3putr 688 43 80.56 0.3698 0.53827 -21.72 -15.13 -15.38 0.25 1.08 -2.85 0.7 2.14 0.996528 RNA 0.199 OTHER 43 3.93 57 72 17 1 0.977 0.815
ec 3putr 689 18 78.79 0.40575 0.47818 -10.52 -10.49 -10.68 0.19 1.1 -1.71 1 2.4 0.998263 RNA 0.794 OTHER 18 11.13 39 53 10 0 1.4 1.353
ec 3putr 690 1 - - - - - - - - - - - - - - - 1 0.74 110 129 27 2 0.592 0.356
ec 3putr 691 42 81.51 0.33458 0.49639 -19.18 -18.5 -18.62 0.11 1.08 -4.3 0.96 4.92 0.999998 RNA 0.875 OTHER 42 4.86 50 65 12 0 1.106 1.002
ec 3putr 692 104 77.98 0.41359 0.55763 -60.58 -23.33 -23.17 -0.16 1.42 -0.27 0.39 -2.78 0.000001 OTHER 3.163E-12 PROTEIN 104 2.87 178 196 39 3 0.59 0.455
ec 3putr 693 108 83.01 0.32115 0.54646 -80.05 -40.1 -41.58 1.48 1.29 -2.38 0.5 0.17 0.600042 RNA 6.397E-11 PROTEIN 108 2.77 223 242 56 4 0.59 0.428
ec 3putr 694 7 92.94 0.12352 0.59916 -17.13 -17.13 -17.13 0 1 -4.22 1 3.92 0.99997 RNA 0.328 OTHER 7 5.5 35 49 8 0 1.551 1.474
ec 3putr 695 39 80.2 0.36957 0.50156 -27.48 -22.41 -23.18 0.78 1.12 -4.94 0.82 5.14 0.999999 RNA 0.853 OTHER 39 1.7 70 88 22 1 0.803 0.557

Continued on next page
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ec 3putr 696 5 91.77 0.13538 0.5147 -35.72 -35.7 -35.2 -0.5 1.16 -5.73 1 5.44 0.999999 RNA 0.992 OTHER 5 1.12 77 93 26 1 0.733 0.435
ec 3putr 697 70 83.08 0.33097 0.42827 -21.95 -18.78 -20.67 1.89 1.07 -5.52 0.86 5.69 1 RNA 0.083 OTHER 70 3.7 46 68 17 1 1.198 0.995
ec 3putr 698 209 86.65 0.22301 0.57768 -19.67 -16.6 -16.6 0 1 -4.67 0.84 4.24 0.999987 RNA 0.118 OTHER 209 209 28 85 11 0 1.53 1.225
ec 3putr 699 14 93.44 0.12758 0.45678 -25.38 -25.33 -25.22 -0.11 1.11 -4.97 1 4.7 0.999996 RNA 0.384 OTHER 14 1.7 60 76 19 1 0.931 0.678
ec 3putr 700 18 83.8 0.28603 0.4945 -27.3 -24.13 -25.43 1.31 1.1 -4.75 0.88 4.82 0.999997 RNA 0.831 OTHER 18 1.31 76 93 21 2 0.743 0.501
ec 3putr 701 13 91.58 0.15036 0.4783 -18.98 -19.12 -18.98 -0.14 1.15 -3.78 1.01 3.63 0.999935 RNA 0.311 OTHER 13 4.28 39 52 14 0 1.4 1.252
ec 3putr 702 8 97.22 0.04507 0.42794 -16.38 -16.75 -16.38 -0.38 1.14 -2.76 1.02 1.94 0.994105 RNA 0.375 OTHER 8 1.9 54 69 16 1 1.027 0.805
ec 3putr 703 24 79.63 0.3742 0.51288 -14.57 -10.68 -11.02 0.33 1 -2.6 0.73 2.01 0.995079 RNA 0.204 OTHER 24 4.72 46 77 11 1 1.197 1.09
ec 3putr 704 42 80.14 0.38538 0.56406 -23.02 -20.48 -20.37 -0.11 1.08 -4.79 0.89 5.37 0.999999 RNA 0.797 OTHER 42 8.04 47 62 12 0 1.173 1.062
ec 3putr 705 5 62.53 0.60602 0.54072 -111.92 -82.64 -81.45 -1.19 1.19 -6.08 0.74 6.75 1 RNA 0.268 OTHER 5 1.13 243 279 76 5 0.59 0.315
ec 3putr 706 21 89.47 0.18397 0.37186 -21.18 -20.71 -21.1 0.39 1.07 -7.12 0.98 6.66 1 RNA 0.858 OTHER 21 2.79 47 61 14 0 1.173 0.99
ec 3putr 707 10 92.97 0.1238 0.50556 -20.56 -20.14 -20.22 0.08 1.08 -6.22 0.98 5.71 1 RNA 0.76 OTHER 10 4.71 37 51 12 0 1.472 1.349
ec 3putr 708 24 83.68 0.3139 0.55579 -13.98 -13.98 -13.98 0 1 -2.67 1 3.14 0.999759 RNA 0.906 OTHER 24 24 32 44 7 0 1.617 1.591
ec 3putr 709 191 81.28 0.3428 0.49671 -59.19 -42.89 -42.95 0.06 1.16 -2.89 0.72 2.17 0.996782 RNA 9.228E-07 PROTEIN 191 2.06 165 193 45 2 0.59 0.392
ec 3putr 710 46 76.97 0.41504 0.45547 -22.67 -18.6 -18.55 -0.05 1.08 -4.94 0.82 5.35 0.999999 RNA 0.191 OTHER 46 2.78 57 75 16 0 0.977 0.796
ec 3putr 711 5 87.62 0.17647 0.4123 -17.63 -18.32 -18.1 -0.22 1.09 -4.58 1.04 4.72 0.999996 RNA 0.525 OTHER 5 5 35 48 11 0 1.456 1.344
ec 3putr 712 15 84.81 0.26892 0.70876 -20.07 -18.3 -18.3 0 1 -3.61 0.91 3.62 0.999933 RNA 0.809 OTHER 15 9.39 34 47 12 0 1.595 1.483
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ABSTRACT

A standard method for the identification of novel
non-coding RNAs is homology search by covariance
models. Covariance models are constructed for
specific RNA families with common sequence and
structure (e.g. transfer RNAs). Currently, there are
models for 2208 families available from Rfam.
Before being included into a database, a proposed
family should be tested for specificity (finding only
true homolog sequences), sensitivity (finding remote
homologs) and uniqueness. The CMCompare
webserver (CMCws) compares Infernal RNA family
models to (i) identify models with poor specificity
and (ii) explore the relationship between models.
The CMCws provides options to compare new
models against all existing models in the current
Rfam database to avoid the construction of dupli-
cate models for the same non-coding RNA family. In
addition, the user can explore the relationship
between two or more models, including whole sets
of user-created family models. Visualization of
family relationships provides help in evaluating can-
didates for clusters of biologically related families,
called clans. The CMCws is freely available, without
any login requirements, at http://rna.tbi.univie.ac.at/
cmcws, and the underlying software is available
under the GPL-3 license.

INTRODUCTION

In the past years, and especially with the development of
high-throughput methods like RNA sequencing, the sci-
entific community became more and more aware of the
importance of non-coding RNAs. These transcripts are
found in all domains of life and regulate essential
pathways and cellular processes.

Homologs of known RNA sequences can be detected in
genomes using a number of methods. For close homologs,
sequence-based methods like Blast (1) provide an ex-
tremely efficient search method. More remote homologs
accumulate mutations on the sequence level, whereas the
structure tends to be conserved. In structural non-coding
RNAs, most of the statistical information appears to be
available with the sequence and secondary structure.
Methods like Infernal (2,3) can be used to transform the
structural alignment of an RNA family of related se-
quences into a stochastic model called a covariance model.
RNA family models allow one to find new homolog

family members by considering the structure and
sequence features of this family. The number of covari-
ance models, which is available from databases like Rfam
(4,5), is constantly increasing.
Putative homologs discovered in a genome should, in

principle, show strong affinity to only a single RNA family
or, by extension, covariance model. In practice, some
RNA families [e.g. RNaseP, rRNA (SSU)] have been in-
tentionally split along kingdoms to preserve statistical
signals owing to diverse sequence mutations and structural
changes.
The CMCompare webserver (CMCws) provides an

easy-to-use interface to check the discriminatory power
of newly proposed RNA family models. This makes it
possible to check that a similar model does not already
exist in the database or that a set of existing or newly
proposed models is not too closely related to each other
in terms of the sequences they accept as putative
homologs.

DESCRIPTION OF THE WEBSERVER

Functionality of CMCws

For newly constructed covariance models, it is useful to
check what other models are already available in Rfam
and compare them with each other. The CMCws is
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based on ‘CMCompare’ (6), which returns a Link score
for every pair of models checked. Link sequences and their
associated Link scores are sequences giving high scores in
both models simultaneously. A sequence with a Link score
of, say 20 bits, scores at least 20 bits in each of the models.
The Link sequence is the sequence with highest overall
Link score (6). A high Link score can be an indicator
for the following:

(1) A model for the same RNA family is already present
in the database. Using a curated model from Rfam
avoids repetitive model construction and fine tuning.
Also, improvements and extensions can be easier
shared by finding and using a common set of
models. Detection of a similar model by CMCws
allows one to use this model instead.

(2) At least one of the models lacks specificity, meaning
that both score high for the same sequence. A model
should detect only homologs belonging to the RNA
family it represents, but not of member sequences of
other families. During model construction, more
members belonging to the RNA family are added
to ensure detection over bigger phylogenetic
distance, which can expand the space of detected se-
quences and associated structures to overlap with
other families. By highlighting these overlaps,
CMCws makes it possible to address this lack of
specificity.

(3) A biological relationship exists between the models
that explain the overlap. Families derived from a
common ancestor can share sequence and structure
features. Rfam groups families related in this way as
clans (7), which has been done up to now in a
manual process. CMCws would allow Rfam to find
possible candidates for clan members.

Input

After choosing the mode of comparison, the web server
accepts a file upload containing one or more Infernal
covariance models (Infernal 1.0 or later, Rfam 9 or
later) or structural alignments using the Stockholm
format as input. Stockholm alignments are intern-
ally converted to covariance models for further
processing.

Processing

The web server relies on CMCompare (6), which is the
first published tool for comparison of covariance models
and has already been used in other projects (8,9).
CMCompare has been expanded to also compare
models created with Infernal 1.1 since publication.
Two modes of processing are available. The first mode

allows one to compare the input models against all avail-
able models in Rfam or all models of specified subtype
(micro RNAs, tRNAs) thereof, which reduces computa-
tion time. Alternatively, the set of uploaded models can be
compared against each other.

Output

The first mode provides the user with a table of pairwise
comparisons against Rfam models, as shown in Figure 1.

The result list, computed by CMCompare, can be
filtered by model name, Link score and number of
models. Each of the columns can be sorted. These filtering
options allow one to easily extract similar models. A
weighted graph representation visualizes selected models
as nodes, and their Link scores as edges to simplify evalu-
ation, see Figure 2b. By clicking on the edges or the mag-
nifying glass icon, each pairwise comparison can also be
viewed in detail, providing the common highest scoring
sequence (Link sequence), corresponding structure and
further information.

Models of interest from the result list, or a set of models
that have been uploaded by the user, can be analyzed with
the second mode. This mode returns all pairwise compari-
sons, which can also be sorted and filtered by the name of
a second model. Exploring this list is especially useful to
identify groups of models that are closely related and pose
potential candidates for clans.

The output is visualized as a graph, as well as a matrix,
which gives all pairwise Link scores, simplifying the iden-
tification of relevant links, see Figure 2. Comparing
models cannot always capture the biological relationship
between models, e.g. in the RNase P clan. Although the
two different models for bacterial RNaseP are linked with
each other, one of them is strongly linked with the corres-
ponding RNaseP model for archae, and the other one is
not. By using a graph representation, we are still indirectly
able to identify potential clan members.

As noted before, Rfam clans are constructed entirely
manually. We believe that CMCws can significantly facili-
tate this process.

Usage example

Assume we are interested in RNA families related
with tRNAs. For this usage example, which follows
Figures 1 and 2, we use as input the tRNA model
(RF00005) from Rfam.

The first step is to select the comparison versus Rfam
mode and upload the model to check for similar models
already available from the database.

The top five resulting hits are shown in Figure 1,
starting with tRNA having the maximal score possible
with this model, compared with itself. The next models
have Link scores between 10 and 20, indicating a
moderate overlap between them.

For each of these models, one should investigate the
reason for the high Link score, with potential reasons
given previously as points 1–3. In decreasing order of
Link score, we first consider the tRNA-Sec RNA family.
Careful comparison of both secondary structures yields
notable differences, including an additional stem in
tRNA-Sec, but also some commonality. Based on
commonalities and differences in biological action in the
cell, as well as the differences in the structural alignment,
one will probably not want to join both tRNA and tRNA-
Sec, as a single family, but the commonalities are large
enough to suggest a common Rfam clan, which for
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(a)

(b)

Figure 2. Visualizations: simplifying identification of relevant similarities between models by giving different representations of the pairwise result
Link scores. (a) Link score matrix containing the similarity between all provided models and highlighting them by color. Clicking the Link score
shows a detailed view of the comparison. (b) Weighted graph representation of linked models. The nodes indicate the models and contain their
identifier. In contrast to the matrix representation, the shown edges correspond with the applied filtering options and redirect to a detailed view of
the comparison on clicking. The comparisons against Rfam only show edges between the input and Rfam models. The shown input models 1, 2 and
4, 5 are members of the tRNA-clan, whereas ManA is presumably a false link.

Figure 1. List of results: contains comparison results corresponding to the current filtering options. The list is sortable by all column names.
The magnifying glass links to a detailed view of each comparison. The checkboxes on the right allow to select the models for a comparison
with each other. CMCompare computes a score for the Input model (Input score) and for the Rfam model (Rfam score). The lower one is the
Link score.
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Rfam is true. Incidentally, the CMCompare algorithm
proposes a consensus secondary structure of both RNA
families for the link sequence, which contains a total of
three stems, with one tRNA and two tRNA-Sec stems
deleted in the consensus.
The next two models in the list tmRNA and

beta_tmRNA have a significantly lower Link score than
the tRNA compared with itself but capture the similarity
between the models. As an aside, both tmRNAs have a
higher Link score between each other than to the tRNA
model.
The final model flagged by the CMCws is the manA

RNA motif family. The Link score is low (13 bits) so
that no immediate action is warranted.
However, the nature of the manA and its secondary

structure (the CMCompare algorithm proposes a low-
scored cloverleaf consensus structure between the tRNA
and manA families) makes it a candidate for further in-
vestigation. According to Rfam, this is a computationally
identified RNA family that occurs often adjacent to
tRNAs (10).
Among the first five hits of the list, we can find three of

the five other members of the tRNA clan. To get a better
idea about their relationship with each other, we can select
and resubmit them to a cm versus cm comparison.
Figure 2b shows the result for the submission of the top
five models. The matrix representation gives an overview
over all comparisons between the submitted models,
whereas the weighted graph only shows RNA family
models as nodes and linkscores as edges. As expected,
we can see that there is a strong connection between the
members of this clan and especially between the tmRNA
models. The manA is only linked with the tRNA model,
but not with the other clan members. The combination of
these two comparison modes simplifies finding candidates
for clan construction.
Following these conclusions, the tRNA family would be

submitted for inclusion in the Rfam database, pointing
out it is possible biological relationship with the tRNA-
Sec family.

Implementation details

CMCws was implemented in Perl 5 using CGI.pm and the
template toolkit. It relies on the jQuery library to allow
sortable result tables. The underlying CMCompare algo-
rithm (6) is implemented in Haskell (11). The conversion
of input Stockholm-format alignments is done with
cmbuild from the Infernal package (3).
The weighted graph representations of the output are

created with dot from the graphviz (12) toolset.
The current version of the CMCompare algorithm has

a quadratic runtime. With n and m the number of
states (roughly the number of columns) in each covariance
model, and c a fairly large constant, the runtime is
OðcnmÞ. Wall-clock runtimes are from <1 s for
small models to �30 s for comparisons between mem-
bers of the RNaseP clan. We plan to improve on these
runtimes in the near future to facilitate large-scale
comparisons.

Other tools

To our knowledge, there are no algorithms available other
than CMCompare that compare RNA family models with
each other. Other classes of biopolymers like DNA or
Proteins families can be modeled by profile hidden
Markov models (HMMs) (13). General work has been
done on comparing HMMs (14) with other HMMs.
Also comparisons of HMMs with stochastic context free
grammars (15), which provide the underlying principles of
covariance models, have been investigated, but in both
cases, no available tools originated from this work.

DISCUSSION

CMCws simplifies dealing with an increasing number of
RNA family models. Covariance models designed for es-
sentially the same structural RNA family can be detected,
as can those that capture a sub- or super-set of the struc-
tural features. Covariance models with inferior discrimin-
atory power are easily detected by a large number of high
Link scores to other RNA family models. Potential clans
can be discovered by looking for a small set of CMs with
higher Link scores to each other but low Link scores to all
other families.

Challenges remain in identifying the cause of non-
specificity among covariance models and how to defuse
it. Suggestions how to split RNA families into more
specific subfamilies and use of meta-families to pool
them again could be a first step into this direction. Also,
the construction of clans in an entirely unsupervised
manner is a goal for the future.

Promising avenues for expanding functionality of
CMCompare are other stochastic grammars such as
HMMs used in Pfam (16).

This would allow expanding CMCws in the future to
provide a comprehensive web server for comparing and
analyzing different kinds of databases of stochastic
sequence families.
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6. Höner zu Siederdissen,C. and Hofacker,I.L. (2010) Discriminatory
power of RNA family models. Bioinformatics, 26, 453–459.

7. Gardner,P.P., Daub,J., Tate,J., Moore,B.L., Osuch,I.H., Griffiths-
Jones,S., Finn,R.D., Nawrocki,E.P., Kolbe,D.L., Eddy,S.R. et al.
(2011) Rfam: wikipedia, clans and the ‘‘decimal’’ release. Nucleic
Acids Res., 39, D141–D145.

8. Lange,S.J., Maticzka,D., Möhl,M., Gagnon,J.N., Brown,C.M.
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8 Discussion and outlook

The goal of this thesis was to facilitate the construction and analysis of RNA

family models, thereby improving our ability to annotate non-coding RNA.

Thousands of RNA families for which no RNA-family model exists are known

alone for Homo sapiens. From its first launch, the Rfam database has grown at

the rate of 176 models on average per year and with 237 models on average per

year since Rfam version 6.0 (according to Rfam ftp-server family files and time

stamps, see Figure 2.13). At this rate adding the remaining families for Homo

sapiens alone will take many years. The tools, described in this thesis aim to

facilitate the rapid expansion of the Rfam database with novel, high-quality

families. To accomplish this, more automatic solutions are needed that reduce

manual work required to expand the excellent platform that is already available

with Rfam (Griffiths-Jones et al., 2003; Gardner et al., 2011; Nawrocki et al.,

2014b) and Infernal (Nawrocki et al., 2009; Nawrocki and Eddy, 2013).

The importance of adding new RNA-family models and making them publicly

available is emphasized by the fact that the journal RNA biology features

a dedicated track (Gardner and Bateman, 2009) for publishing RNA family

models.

While for many families, automatic construction is feasible, it would be best

if the construction process is guided by an expert who specifically knows the

respective family. To that end, it is necessary to provide web-enabled tools.

A crowd-sourcing effort will be able to fill the gaps that automatic solutions

cannot yet cover. The tools developed in this thesis are tailored towards this

purpose and either directly provide webservices, or yield results that can be

conveniently used as web resources. All tools combined provide a workflow

for building RNA-family models and are connected with each other as shown

in Figure 8.1. The components of the workflow can also be used individu-

ally, or even for purposes not connected with RNA-family models at all, like

TaxonomyTools.

The centerpiece of this workflow is RNAlien, which constructs RNA-family

models from a single input-sequence and an optional organism of origin (Eggen-

hofer et al., 2016). All previously published approaches require a seed align-
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Figure 8.1: Workflow for model construction and evaluation, starting at the
top with the construction of a novel RNA-family. The workflow
branches into three different approaches to evaluate the quality of
the model-construction process. The covariance model itself can
be evaluated, by CMCompare and cmcv. The predicted family mem-
bers can be investigated via genome-browser visualisation in their
genomic context. The organisms that host the sequences within an
RNA family can be inspected as taxonomic tree by TaxonomyTools.

ment of representative sequences to build a RNA-family, which is then used as

a core model to identify further members and is thus extended.

Currently RNAlien uses BLAST for finding potential family members in the

model construction process. BLAST allows to offload searches to the NCBI in-

frastructure. Especially for family construction of novel RNAs it is relevant

that up-to-date sequence databases are searched. NCBI is constantly adding

new organisms and sequences to their databases, thereby also making these

updates available to RNAlien. Moreover the user does not have to download

the necessary sequence databases, which are of substantial size (e.g nt database

approximately 28Gb or refseq genomic database approximately 208Gb). An-

other tool, nhmmer should offer a higher sensitivity than BLAST, but there is

currently no online infrastructure that allows bulk searches with nhmmer as
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just described. RNAcentral offers a nhmmer database search for single requests

via its web-page, but no interface for automated search requests. It is planned

to extend RNAlien with a local nhmmer search, as well as an online search in

the future.

The development of RNAlien continues and as a first new feature we have

added query soft-masking for the BLAST search, that should make searches

more profile-like and serve as intermediary step towards nhmmer.

Query soft-masking uses conservation information from the alignment to mask

weakly conserved nucleotides of the query, such that they are ignored when

scoring hits. RNAlien uses the conservation information as computed by

cmalign and passes it to BLAST.

The 56 families with known structure already used in the benchmark of the

RNAlien publication were used here to compare model construction with or

without query soft-masking enabled. Specificity was identical in both cases

(see Figure 8.2).
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Figure 8.2: Specificity of RNAlien with BLAST query soft-masking disabled in
red (RNAlien version 1.1.1) and enabled (RNAlien version 1.1.2) in
cyan. Both results were identical and both results are overlapping
in the plot. The red line is therefore not visible.

Recall was in general lower with soft-masking than without, with the exception

of three families (see Figure 8.3). While query soft-masking can be enabled via

command-line switch (-f), it is currently not improving results in general. How-

ever, now that the technical requirements for using soft-masking with RNAlien

have been established, further improvements that unlock the full potential of

the soft-masking approach can be developed.
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Figure 8.3: Recall of RNAlien with BLAST query soft-masking disabled
(RNAlien version 1.1.1) in red and enabled (RNAlien version 1.1.2)
in cyan. Recall was in general lower with soft-masking than with-
out, with the exception of three families.

In many cases, the models automatically constructed by RNAlien can be used

as they are in homology search and in annotation of organisms. There are

challenges in the construction process, however, which apply to model con-

struction in general. The first problem affects construction of RNA-families

that have very distinct subgroups in terms of sequence and structure. In case

that these subgroups are connected via gradually different RNA-family mem-

bers it is possible to start in one subgroup and discover the second subgroup

via iterative searches. Without RNA family members that are similar to both

groups, it becomes very difficult to find the second group, even with multiple

rounds of searching. However, the finished model should be representative for

all real instances of the RNA-family, which will not be the case if sequences

are missing. These models will have reduced sensitivity in homology search,

because they will not be able to detect some family members. The second

problem is model construction for RNA families with high sequence and struc-

ture diversity, which can lead to inclusion of false positive sequences, that are

not actually family members. These models will have lower specificity dur-

ing homology search. An additional problem is that the sequences detected

by the model can be truncated compared to the real world situation. While

there are families that cannot be constructed entirely automatically, the next

step is therefore to support experimentalists and curators in overcoming these

challenges. The following tools are designed to identify problems in the model-
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construction process and to help an expert for the specific RNA family to adjust

the construction process accordingly. The model construction process with the

workflow can be optimised via several rounds of adjustment and evaluation.

To identify newly constructed family models that are unspecific the CMCompare

webserver can be used (Eggenhofer et al., 2013). The service therefore com-

pares the model against all against all the models in the Rfam database. Un-

specific models receive a high link score by CMCompare, which means that at

least one sequence exists which scores high in both models. While this could

indicate a specificity problem in homology search, the compared families could

also be members of a RNA-family clan. This approach obviously becomes more

powerful, the more RNA families are available. The RNAlien webserver allows

to pass the newly constructed model on to the CMCompare webserver with a

single mouse-click. Besides the evaluation of the RNA-family models itself the

predicted genomic loci and the corresponding organisms can be investigated.

An expert, which is aware of the functionality of the RNA-family can judge

the quality of the predictions by comparing them to preexisting annotations

in their genomic context. Visualisation of the predictions and annotations via

genome- and trackhubs for the UCSC genome browser enables to evaluate the

loci and their context systematically. However the construction of these hubs

is a tedious task. Therefore two tools that provide a simple and efficient way

to generate trackhubs and assembly hubs were contributed to the ViennaNGS

toolkit (Wolfinger et al., 2015).

The taxonomic distribution of detected family members can be useful to eval-

uate if all instances of the RNA-family have been covered. Visualisation of

the taxonomic tree of the organisms the RNA has been detected in, allows to

check if the RNA is missing in species where it would be expected, or if the

RNA was predicted in species where it was not expected. The tools for the

simple visualisation and comparison of taxonomic trees are provided in the

TaxonomyTools package.

High annotation quality for non-coding RNAs is of high importance the progress

of molecular biology. The workflow and the tools presented in this thesis will

contribute to provide new high quality RNA-family models, thereby also im-

proving annotation. Specifically the automatic construction should enable the

coverage of RNAs and organisms that are not in the current focus of research.

The results also show that challenging cases in model construction remain that

provide open research questions for the future. A part of this gap can be filled

by enabling experts for specific RNA families to contribute their insights, via
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web-enabled tools. Furthermore, there are multiple open avenues to further

improve RNA family models and the corresponding homology search. Some

of these improvements could be integrated directly in the covariance models

themselves, while others can be used in combination with the models. Am-

bivalent RNA (Janssen and Giegerich, 2015) family models would offer the

possibility to consider multiple secondary structures in the model. This could

be very useful in the modeling of riboswitches and RNAs with multiple stable

secondary structures. RNAs within a functional context are often located in

genomic proximity due to recombination events. Orthology information could

therefore be utilized in the evaluation of potential loci. Another promising

type of context information are RNA 3D modules and motifs. They could also

be used to evaluate predicted loci. It is planned to further extend and improve

the workflow and its components in the future. The next immediate step is

to complete a follow-up project of CMCompare (see Figure 8.1 ) that visualises

the regions of the covariance models that were responsible for the detected

specificity overlap.
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