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Oil Prices: Analysis of High-Frequency Data 

 

Abstract  

Traditional macroeconomic demand and supply arguments fail to explain the incessant fluctuations 

in today’s oil prices. This gives rise to the question: what drives oil prices and can forecasting help 

identify the future direction of oil prices in the presence of volatility? Mixed-data sampling 

(MIDAS) regression is a topic of growing interest since the variable in question is often desired at 

a lower frequency while the relevant information is also available at a higher frequency. In this 

context, the role of high-frequency financial and energy market data in predicting the price of crude 

oil is of increasing importance since these markets tend to catch the effects of volatility almost 

immediately in contrast to other macroeconomic indicators which are subject to longer periods of 

revision. I investigate the benefits of using univariate MIDAS models in predicting the future price 

of crude oil. Using a range of high-frequency predictors, I find that the oil futures market and global 

metal prices show promising results in predicting crude oil prices changes over multiple forecast 

horizons. The results for the one-step ahead forecast, however, show large prediction errors which 

cannot be overlooked. I conclude that high-frequency financial and energy predictors do not appear 

to have a very significant bearing on improving forecast performance in the short run. Although 

the high-frequency data may contain information rich signals, it is not powerful enough to 

compensate for the additional noise, which is said to be the cost of using high-frequency data in 

forecasting. Last but not least, MIDAS models are especially unsuitable and should be refrained 

from, when a market crash is in sight. This is because bad market news tends to have a severe 

negative impact on predictive accuracy and interferes with the performance of the forecast models. 
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Ölpreise: Analyse von Hochfrequenzdaten 

Zusammenfassung  

Traditionelle makroökonomische Nachfrage- und Angebotsargumente können die unaufhörlichen 

Schwankungen des heutigen Ölpreises nicht erklären. Daraus ergibt sich die Frage: Was treibt die 

Ölpreise an und können Prognosen helfen, die zukünftige Ausrichtung der Ölpreise bei Volatilität 

zu identifizieren? Mixed-Data-Sampling (MIDAS) Regression ist ein Thema von wachsendem 

Interesse, da die erfragte Variable oft mit einer niedrigeren Frequenz erwünscht ist, während die 

relevanten Daten in einer höheren Frequenz verfügbar sind. In diesem Zusammenhang ist die Rolle 

der hochfrequenz Finanz- und Energiemarktdaten bei der Vorhersage des Rohölpreises von 

zunehmender Bedeutung. Dies fußt darauf dass diese Märkte dazu neigen, die Auswirkungen der 

Volatilität nahezu sofort, im Gegensatz zu anderen längerfristig anhaltenden makroökonomischen 

Indikatoren, zu erfassen. Ich untersuche die Vorteile der Anwendung von univariat MIDAS-

Modellen bei der Vorhersage des zukünftigen Rohölpreises. Unter Verwendung einer Reihe von 

Hochfrequenz-Prädiktoren, komme ich zu dem Schluss dass der Öl-Futures-Markt und die globalen 

Metallpreise bei der Vorhersage der Rohölpreisänderungen über mehrere Prognosehorizonte, viel 

versprechende Ergebnisse aufweisen. Die Ergebnisse für die Prognose am ersten Prognosehorizont 

weisen jedoch große Fehlberechnungen auf, die nicht übersehen werden sollten. Ich schließe 

daraus, dass die hochfrequenz Finanz- und Energieprognosen keine signifikanten Auswirkungen 

auf die kurzfristige Verbesserung der Ölpreisprognosen zu haben scheinen. Obwohl die 

Hochfrequentzdaten informationsreiche Signale enthalten können, sind diese nicht stark genug, um 

das zusätzliche Rauschen zu kompensieren, was oft als Nachteil bei der Verwendung von 

Hochfrequenzdaten gesehen wird. Darüber hinaus, sind MIDAS-Modelle bei einem 

vorraussichtlichen Markteinbruch besonders ungeeignet und sollten nicht angewandt werden. Dies 

liegt daran, dass schlechte Marktnachrichten tendenziell eine schwere negative Auswirkung auf die 

prädiktive Genauigkeit haben und die Leistung der Prognosemodelle beeinträchtigen. 

Schlüsselwörter 

Brent-Rohölpreis, Finanz- und Energiemärkte, Hochfrequenzdaten, Mixed-Data-Sampling 

(MIDAS), Non-linear least squares (NLS), Prognosen.  
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1. Introduction  

“Oil is so much more than a fuel. It’s a force even bigger than its trillion-dollar market. It’s 

a weapon, a strategic asset, a curse. It’s a maker and spoiler of fortunes, a leading indicator and 

an echo chamber. Each has a part in determining oil prices.” 

~ Brian Wingfield, Bloomberg 

The price of oil changes throughout the day. Financial investors and speculators across the globe 

wake up in the middle of the night to see how the Tokyo Stock Exchange is opening and how the 

New York Mercantile Exchange is closing. If anything, the last 30 years have proven that oil prices 

are subject to such high levels of volatility, which sometimes defy all laws of economic gravity. 

Traditional macroeconomic demand and supply reasoning comes nowhere close to explaining the 

incessant fluctuations in today’s oil prices. This gives rise to two inevitable questions. Firstly, what 

drives oil price volatility? And secondly, what can be done to minimize the volatility? While the 

first question can be answered, there is no straightforward answer to the second question. While it 

is true that the future of oil prices will depend on resource availability, geopolitical and economic 

stability of nations and on the evolution of global financial markets. However, it is also true that a 

large part of the volatility has less to do with changes in market forces and more to do with decisions 

made by policy makers. Meanwhile, forecasters, econometricians and financial analysts can only 

combine their expert attempts and hope to predict the expected volatility of oil markets correctly 

or at least identify the direction of future oil price development by putting the information and 

resources available to them, to the best use.  

There is a lot of debate on the best approach to forecast oil prices both in the short and long run. 

Time series regression models are typically sampled at the same frequency. Mixed-data sampling 

(MIDAS) regression first proposed by Ghysels et al. (2004) is a topic of growing interest since the 

variable in question is often desired at a lower frequency while the relevant information is available 

at a higher frequency, revised on a tick by tick basis. MIDAS models are also very useful in cases 

of unavailability of same frequency data.  

 

http://www.jstor.org/discover/10.2307/2200513?uid=309668561&uid=3739832&uid=2&uid=3&uid=309666001&uid=67&uid=62&uid=3739256&sid=21104815512337
http://foreignaffairs.house.gov/hearing/hearing-geopolitical-potential-us-energy-boom
http://www.bloombergview.com/quicktake/resource-curse
http://www.nytimes.com/learning/general/onthisday/bday/0708.html
http://www.businessweek.com/articles/2013-10-03/eike-batista-how-brazils-richest-man-lost-34-dot-5-billion
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In fact, this approach has also been applied to cases where time series data was available at the 

same frequency, primarily for the purpose of comparing the performance of direct and iterated 

forecast models in case of multi-period forecasting1.  

While MIDAS regression analysis is trending, there exist several other approaches for handling 

data with different frequencies. Until the 21st century forecasters mainly relied on state space 

models which used the Kalman filter. The Kalman filter allows the use of both high- and low-

frequency data to predict low-frequency macroeconomic variables2. The use of Mixed-Frequency 

Vector Auto Regressive (MF-VAR) models in handling mixed-frequency models is also quite 

common. In fact, Kuzin, Marcellino, and Schumacher (2011) find that it is difficult to rank MF-

VAR and MIDAS models based on their efficiency. They consider them to be complements rather 

than substitutes, since the former performs better at longer horizons and the latter performs better 

at shorter forecast horizons. In contrast to other mixed-frequency models, an obvious advantage of 

using the MIDAS framework is that it is a parsimonious regression model and spares the imposition 

of endless assumptions and parameter estimation for the measurement of equations (Andreou et 

al., 2010). Bai et al. (2009) and Kuzin et al. (2011) show that MIDAS regressions can be 

represented with fewer equations, as a reduced form of a state space model. To no surprise, over 

the last decade the MIDAS approach gained substantial popularity amongst researchers. Nowadays 

the approach is being used to predict financial data volatility by using intraday data3.  

______________________ 

1 See Marcellino, Stock, and Watson (2006) for more recent literature on direct and iterated forecasting techniques. 

Comparisons between single step and iterated models for multi-period forecasts have also been made by Findley 

(1983), Findley (1985), Lin and Granger (1994), Clements and Hendry (1996), Chevillon and Hendry (1996) and 

Bhansali (1999). 

2 
Using mixed-frequency data for macroeconomic forecasting is not new, traditional literature tried to tackle  the 

problem of information loss due to temporal aggregation approaches. The issue was commonly addressed using state 

space models where the low frequency is data is treated as “missing”. The Kalman filter is then applied to retrieve the 

missing data. For literature on the Kalman filter in the context of forecasting see for example, Harvey and Pierse 

(1984), Harvey (1989), Zadrozny (1990) Bernanke, Gertler, and Watson (1997) and Mariano and Murasawa (2003) 

among others. Bai, Ghysels, and Wright (2013) also provide a direct comparison of MIDAS regressions and state space 

models using the Kalman filter.  

3 
See for example Andersen, Bollerslev, Christoffersen, and Diebold (2006).  
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It is also commonly deployed when forecasting macroeconomic variables such as GDP growth 

with intra annual data4.  

The role of financial market data in predicting the price of oil is of growing interest since financial 

markets tend to catch the effects of volatility almost immediately in contrast to other 

macroeconomic indicators or physical markets. This research explores the benefits of using high- 

frequency financial market data in predicting changes in the monthly and quarterly price of oil. 

According to Baumeister et al. (2014), financial data is highly useful due to its forward looking 

nature and availability in real time on a daily basis. It has the advantage that this information is not 

subject to long periods of revision. Yet many industrial data are only published on a monthly or 

quarterly basis and are subject to longer periods of revision, but may prove to be equally important 

for forecasting. This thesis finds its primary motivation in a similar research “Do High-Frequency 

Financial Data Help Forecast Oil Prices? The MIDAS Touch at Work”, published by economists 

Baumeister, Guérin and Kilian in 2014.  My research takes advantage of information-rich high- 

frequency data from global financial and energy markets and based on the predictive power of the 

dataset, it assesses the usefulness of the variables in determining changes in the real price of oil. 

The usefulness is measured via improvements in predictive accuracy of the oil price forecasts. 

The underlying difference between the publication by the authors stated above and my thesis lies 

in terms of the variables used and the preferred MIDAS model estimation technique. While the 

authors compare the performance of the MF-VAR model, a non-linear least squares (NLS) MIDAS 

model and the unrestricted MIDAS (U-MIDAS) model.  I focus exclusively on the original MIDAS 

model framework with NLS estimation by Andreou et al. (2010). Although the U-MIDAS ordinary 

least square estimation proposed by Foroni et al. (2014) has been proven to produce rather accurate 

forecasts under Monte Carlo simulations, I chose not to focus on it for two reasons. Firstly, I wanted 

to make new contributions to the existing literature on mixed-data sampling in the context of oil 

price forecasts. Secondly, not only are MIDAS regressions more parsimonious but they have also 

shown to be less sensitive to specification errors when using NLS lag polynomials. 

______________________ 

4 
Daily financial data is also often used to predict monthly macroeconomic variables. Armesto, Engemann and Owyang 

(2010) offer a user friendly familiarization to MIDAS regressions in this context. 
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Foroni et al. (2012) compared the performance of MIDAS with U-MIDAS and recommended using 

U-MIDAS models since they outperform original MIDAS models, but only when forecasting 

quarterly variables using monthly data. Imposing non-linear polynomial lag restrictions delivered 

better results in the presence of larger differences in sampling frequencies. The finding that U-

MIDAS models tend to be less accurate than polynomial lag MIDAS model specifications when 

forecasting the monthly real price of oil has been reinforced previously (see Baumeister et al., 

2014). In this research, the variables of primary interest are used to produce monthly oil price 

forecasts. It is only in the case of data unavailability for certain variables, that I create quarterly 

forecasts. 

It should be noted that depending on how a MIDAS model is implemented, the length of the sample 

period and the variables under consideration matter to a large extent. The literature will point to 

different and often contradictory findings for most empirical studies deploying MIDAS 

regressions. Therefore, it is not my intent to draw conclusions based on the best forecasting models. 

My intention is to answer the following question: can financial and energy market data predict 

changes in the price of crude oil in the short run? And do the information rich signals contained 

in high-frequency data compensate for the additional noise, which is often said to be the cost of 

using high-frequency data in forecasting? The following section delves deeper into the key drivers 

of oil prices and the relevance of the oil futures market in determining oil prices today. Section 3 

discusses the development of oil prices in the context of financial and energy markets by 

introducing the set of high-frequency predictors used in the research. The high-frequency 

predictors include the spread between oil futures prices and crude oil spot prices; the spread 

between spot prices of diesel and crude oil; oil company stock returns; crude oil inventories; the 

global metal and agricultural raw materials price index and finally, interest rates. I investigate the 

link and movements between the individual predictors and the price of oil, based on existing 

literature. Section 4 reviews the data sources and explains how the weekly variables were 

constructed. Section 5 provides a description of the implemented MIDAS polynomial lag models. 

Section 6 describes the methodology adopted to proceed with the quantitative research. Section 7 

discusses the performance of the high-frequency predictors, whereas section 8 analyzes the main 

findings of the paper. The conclusions drawn for the research can be found in section 9.   
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2. Historical Background 

This section aims to bring the reader a step closer towards understanding the price formation of 

crude oil and the accompanying volatility in both, the short and long run. In the 1920s several 

American, British and French oil companies struck a deal under the Red Line Agreement which 

ultimately led to the foundation of the Seven Sisters by the mid-20th century (United States 

Department of States, 2016). The biggest players included multinationals, today known as Exxon 

Mobil, Esso, Chevron, Royal Dutch/ Shell, British Petroleum and Texaco which continue to 

influence the oil industry even today. These oil giants controlled about 85 percent of the world’s 

petroleum reserves. It was not until the formation of the OPEC cartel in 1960 that the oil market 

witnessed a shift in power that led to the emergence of state owned oil companies across developing 

nations outside the OECD region. It included Russia, China, Malaysia, Iran, Venezuela, Saudi 

Arabia and Brazil, forming the new seven sisters. By the 21st century, the new seven sisters 

controlled about one third of the world’s oil and gas production and reserves, while the former 

global players were reduced to producing 10 per cent and holding only 3 per cent of world’s oil 

and gas reserves (Hoyos, 2007). Today the OPEC, a consortium of 13 countries controls about 40 

per cent of the world’s oil. Thus, the supply market for oil can be viewed as an oligopoly, steered 

by a few sellers. The oil market is in fact, a hermetic market characterized by imperfect competition 

and heavily controlled by the OPEC. The market has been affected by major shifts in political and 

economic power.  

Crude Oil Price Reactions to Geopolitical and Economic Events 

 

Figure 1. Source: U.S. Energy Information Administration, Thomson Reuters 
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Oil markets have also been hit hard by severe geopolitical and financial crises in the last four 

decades. The figure above captures some of the major events resulting in oil price shocks5. These 

include two major oil crises in the 1970s resulting from the OAPEC embargo followed by the 

Iranian Revolution and Iran-Iraq war. Later, the 1990s witnessed the Iraqi Invasion of Kuwait 

leading to another oil price spike with the Persian Gulf War. And finally the 2000s financial crises 

and global recession pushed up oil prices to reach the absolute peak of 136.55$ per barrel (measured 

in December 2015 $) on June 2008, which has been the greatest spike in the history of oil price 

shocks (McMohan, 2016).  

A brief walk through history helps uncover some of the underlying reasons for the oil price 

volatility in the long run. But it does not suffice to fully explain short term volatility or what drives 

the price of oil, when looking at the sudden oil price crash which left oil markets in a slump towards 

the end of 2014, for instance. To keep this paper in reasonable focus, I emphasize on the big picture 

and avoid digging too deep into the economic fundamentals and detailed oil market analysis. The 

purpose is to present a helicopter view of the key drivers of oil prices before proceeding with the 

analysis of the high-frequency data derived from financial and energy markets. Scanning through 

the literature on key oil price drivers almost immediately reveals major disagreements amongst 

politicians and analysts on what will shape the future of oil prices. The discovery of new oil fields, 

changes in consumer behavior and industrial activity are important factors contributing to the oil 

price dynamics.  The central arguments affecting demand and supply include resource scarcity, 

cartel behavior, political stability and economic growth of emerging economies resulting from 

industrialization and globalization to name a few (EIA, 2016).  

Narrowed down, the price of oil is said to depend on three factors. Firstly, the economic forces of 

demand and supply are influential price drivers of crude oil. The demand and supply dynamics for 

oil can change almost immediately and the oil price is therefore very sensitive to an entire range of 

events including wars and terrorism, alternative energy sources or substitutes, environmental 

catastrophes (deep water oil spill), changes in consumption patterns, the rate of global economic 

growth and investment activity, supply disruptions or news on new supply.  

______________________ 

5 
U.S.Energy Information Admistration (2016). What drives Crude Oil Prices? See EIA Statistics: 

http://www.eia.gov/finance/markets/reports_presentations/eia_what_drives_crude_oil_prices.pdf  
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Depending on the nature of the event the implications may be long or short lived. Furthermore, if 

the changes in supply and demand fail to offset one another by a comparable magnitude, the 

consequences for the price volatility can be severe. In reality however, oil is not a product but a 

commodity and its prices cannot be determined by competitive market forces alone.  

Secondly, OPEC- viewed as a major player and accused of abusing its power as a cartel- 

significantly influences the price of oil. This is because a large portion of the oil supply is 

concentrated in the Middle East and OPEC volume adjustments are common (Chevillon and 

Rifflart, 2009). It is advocated that in the 1970s oil prices were solely determined by politics and 

OPEC which controlled the supply of oil. It was not until the late 1990s, where for the first time 

oil markets were affected by a major demand side event, that is, the Asian Financial Crises of 1997 

(Simmons, 2005). In the time period 2003-2008, OPEC began increasing oil production to sober 

down the rising prices but the counter attempt was unsuccessful. It is often argued that political 

unrest within the OPEC member countries resulting in a loss in production capacity coupled with 

increased worldwide demand, might be an indication that the link between OPEC’s control over 

supply and the oil price trends is weakening. However, in the course of writing this thesis, I read 

that OPEC had decided to cut production for the first time in 8 years which immediately caused 

Brent crude oil prices to rise by almost 6% to nearly $49 a barrel on the news6. Similarly, in 2014 

OPEC maintained its production levels despite lower demand in China and Europe which caused 

an excess of oil supply resulting in the fall of oil prices to less than 50$ a barrel. This confirms the 

tremendous power the “clumsy cartel”7 continues to have over oil markets even today and that the 

cartel’s influence should not be underestimated.  

This leaves the third and the most debated factor open for discussion, namely, the role of the oil 

futures in determining the price of oil. Futures contracts are a binding agreement for commodities, 

giving traders the right to buy oil by the barrel at a predetermined price on a predefined date in the 

future, whereby the buyer and seller are both obliged to fulfill the agreement.  

 

 

______________________ 

6 BBC Business News, September 29th, 2016. Oil rallies after OPEC Ministers announce Output Cut: 

http://www.bbc.com/news/business-37502538 

7 One author referred to OPEC as a “clumsy” cartel (Adelman 1980).  

http://www.bbc.com/news/business-37502538
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Since the buyer and seller are both in agreement upon the price, futures are expected to reflect 

direct information about expectations regarding the price of oil in the future. But the matter is 

complicated since traders in the futures market not only include hedgers (commercial traders in the 

petroleum business) but also speculators (non-commercial traders). In the last decade high oil 

prices have been blamed on speculative behavior. Market reactions and investor sentiments may 

change quickly and contribute heavily to oil price volatility based on the principle of bounded 

rationality. To make it worse, the power of OPEC extends to the futures market since the cartel 

often announces production quotas leading to instant movements in crude oil futures’ prices. This 

is due to the changing market sentiment stemming from anticipated changes in production 

(Hamilton 2009a).  

Speculation as a culprit causing inefficiencies in the futures market, is strongly discarded by many- 

including the U.S. Energy Information Administration and the ICE futures market who argue that 

physical and financial arbitrage constraints limit speculators’ possibilities to drive oil prices above 

the market equilibrium. Speculation is ruled out under the belief that any mispricing will be 

reversed due to arbitrage (Happonen, 1999).   

However, arbitrage is said to be costly and risky, causing rational investors to refrain from 

corrective movements and the mispricing to typically continue (Shleifer and Vishny, 1997).  

Speculations in the oil futures market are also categorically denied by those who blame low 

inventory levels for high oil prices. Many claim there exists no evidence of supply being withheld 

from the markets. But there is copious contrary evidence of speculative bubbles in the oil futures 

market available. Since 2003, the relationship between oil prices and inventory levels has 

weakened and the total long positions held by non-commercial traders (a measure of speculative 

activity) on the NYMEX has increased considerably and resulted in excessive trading (Merino and 

Ortiz, 2005). It is not only demand and supply shocks, but also excessive trading that causes 

markets to overreact which in turn increases price volatility (De Bondt and Thaler, 1990). Last but 

not least, all futures commodity trading commissions and institutions claim that oil prices are 

purely driven by demand and supply dynamics which sometimes results in overconfidence in the 

oil commodity futures market.  

I hope to have conveyed the intrinsic message, namely, no single factor is expected to exclusively 

explain the movements observed in oil markets.  
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3. Literature Review: Oil Price Development in the Context of Energy and 

Financial Markets 

Crude oil is a physical commodity and in the long run its price can be determined by demand and 

supply fundamentals and inventory (Barsky and Kilian, 2004; Hamilton, 2009b). Although in the 

short run, crude oil prices behave similar to financial assets, yet not identically. The oil futures and 

derivatives markets have become increasingly liquid with more hedgers and speculators. Arbitrage 

and risk management theories in financial markets influence market expectations and play an 

important role in determining prices of oil futures (Huntington, 1994). The previous section 

highlighted that the futures market dominates oil market trading activity. Yet there are grounds to 

suspect that the price of oil is also linked to the price of other commodities since the correlation 

among commodity prices has risen. Financial activity has not only increased in oil markets but also 

in industrial or non-oil commodity markets. Using information directly measuring economic 

activity such as prices of non-oil commodities, oil inventories or interest rates has shown that the 

predictive accuracy of forecasts for crude oil prices can be improved (Alquist et al., 2013).  

Literature also offers evidence of a close relationship between financial and energy markets and 

the physical market for oil. Therefore, high-frequency data capturing the important details of 

current price movements may prove to be highly beneficial in predicting short term oil price 

movements.   

3.1. Crude Oil and Futures Spread  

The perception that oil futures prices contain information about the future spot price of oil is not 

new. Baumeister, Kilian and Zhou (2013) investigate the power of several models using product 

spreads to forecast the real price of oil, including an oil futures and oil spot price spread model. 

They reason that in the absence of a risk premium, arbitrage ensures that the expected spot price of 

a product equals the current price of the same product in the futures market. In reality, futures are 

risky assets and thereby include risk premiums for the possibility that spot prices deviate from the 

futures price. Wu and McCallem (2005) argue that although these risk premiums are practically nil 

in the case of oil futures, over time the prices can reflect large volatility. There also exist valid 

concerns that futures trading can trigger artificial movements in oil spot prices (Huntington, 1994). 

This suggests that using oil futures may not be optimal to forecast future oil prices. Alquist and 

Kilian (2010) consider two types of models to forecast oil prices based on the price of oil futures. 
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The first model assumes that the oil futures of today reflect tomorrow’s oil price. This model is 

believed to be unbiased in the sense that simply using oil futures prices has an equal probability to 

over- or under-predict the future spot price of oil. The second model uses the spread between the 

futures and spot prices of oil to predict the direction of future oil price development. The figure 

below displays the weekly development of crude oil spot and oil futures prices from the period 

January 1995 to June 2016. One can see that the spread reflects large variations, especially during 

the Global Financial Crises of 2008.  

Figure 2. Source: FRED and Quandl database, 2016 

While none of the papers used mixed-frequency sampling, Alquist and Kilian (2010) show that 

whether only using futures or the futures and spot spread, both models were more biased and less 

accurate than the no-change or random walk forecast (using the no-change benchmark model is 

standard in literature when evaluating forecast performance). Manescu and Robays (2014) came to 

the same conclusion.  

Limited availability of information on futures prices at longer maturities seems to be a major 

drawback. Therefore, forecast accuracy evaluation using futures spread is only possible for shorter 

horizons. A short horizon is said to range anywhere between 1 and 24 months. The futures market 

at longer horizons lacks liquidity implying little traded volumes of oil futures for contracts 

exceeding 1 year maturities (Baumeister et al., 2013). Although the total trading volume has 
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substantially increased over the last 25 years, the oil futures market seems to be most liquid only 

at 1, 3 and 6 month horizons. Yet, there is continued interest in using product spreads from the 

futures market for predicting commodity prices, at least for very short time horizons. Wu and 

McCallem (2005) show that using the futures spread model produces more accurate forecasts 

compared to only using oil futures, but only at short horizons up to 4 months and that the prediction 

errors remain substantial. New findings suggest that futures prices at varying maturity dates are 

starting to move more closely with each other and with the spot prices (Behmiri and Manso, 2013). 

Finally, most relevant to this research, Baumeister et al. (2014) show that using MIDAS models 

indeed compares more favorably than the no-change forecast for short horizons. So far the 

empirical evidence does not suffice to reject the usefulness of oil futures spreads in predicting oil 

prices, specifically when applying a mixed-data sampling approach.  

3.2. Crude Oil and Diesel Spread 

Refined crude oil yields petroleum products such as gasoline, heating oil and diesel. There is good 

reason to suspect that these prices may influence crude oil prices since diesel and crude oil prices 

show a very high degree of correlation. Typically research focuses on whether crude oil prices are 

beneficial in forecasting diesel prices and not the other way around. Investigating the power of 

product spreads in predicting the real price of oil has been a topic of interest for a while now. The 

spread reflects the extent to which the petroleum product prices deviate from crude oil prices and 

is widely viewed as a predictor of crude oil spot price changes. The views presented in this 

paragraph and the next are based on findings by Baumeister et al. (2013), else otherwise stated. 

Using refined crude oil product spreads to predict crude oil prices can be problematic since crude 

oil prices are more likely to be determined by those refined products which have the highest 

demand. Because the refined crude oil products are produced in fixed proportions, changes in 

demand for the product in one market may fail to correctly predict the price of crude oil in another. 

Also, depending on the grade of crude oil inputs- resulting in different levels of refined petroleum 

product outputs, it is hard to tell which geographical areas may suffer a shortage or abundance of 

the product in question and its implications for the future price of crude oil. For instance, the United 

States was the dominant producer and consumer of gasoline, and the demand for it is likely to affect 

WTI oil prices. Whereas in European markets, the demand for diesel and heating oil is higher than 

gasoline, which in turn might not have an impact on WTI crude oil prices at all but have very 
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relevant implications for Brent crude oil prices. The graph below plots the development of diesel 

and crude oil prices (per barrel). Due to data limitations the diesel spot prices in European markets 

are only available as of January 2005. Since then one can see significant differences in the diesel 

price development when comparing American and European spot prices8. It is mostly due to shifts 

in the demand for refined products that we notice a discrepancy between diesel prices in the U.S. 

and in Europe. One must exercise caution in predicting oil prices using product spreads, since these 

may vary across different parts of the world.   

Figure 3. Source: FRED, EIA and European Commission Energy database, 2016 

The before mentioned authors show that gasoline and crude oil spread models improve the forecast 

accuracy up to 2 years, although the prediction accuracy relative to the no-change forecasts is more 

impressive at shorter forecast horizons up to 6 months. Baumeister et al. (2014) showed similar 

results using MIDAS models, however the gains in accuracy over the no-change forecast are not 

particularly impressive. According to Verleger (2011), Europe is becoming the new marginal 

market for diesel products. For this purpose, Baumeister et al. (2013) extended their research to 

European markets and used Rotterdam heating oil and Brent crude oil spot price spreads to predict 

______________________ 

8 Prior to 2005, historical diesel spot prices across Europe were only available for a few selected countries. After this 

period, many countries joined the EU member countries and diesel spot prices across the EU were published regularly. 
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the price of crude oil and showed no improvements over the no-change forecast model. The 

performance of diesel spreads using MIDAS models to predict Brent crude oil prices is yet to be 

assessed. 

3.3. Crude Oil and Stock Market Returns 

There is a lot of clamour surrounding views on the movements of returns on stocks and oil prices. 

While some expect falling oil prices to be good news for stock prices due to expected increases in 

net oil imports for oil importing countries such as China, others are convinced that stock markets 

and oil prices move together and that low oil prices hurt profits and signal a decline in global 

aggregate demand for oil. There is also evidence of Brent futures markets and S&P 500 plunging 

together (Watts, 2016). The positive correlation has been linked to the recent elevations in market 

volatility which signals, that in times of high uncertainty, investors tend to refrain from both 

commodities and the stock market (Bernanke, 2016). The correlation between oil and stock prices 

has witnessed a lot of volatility over the last decade and it may swing towards positive or negative 

extremes. By large however, the correlation remains positive. In order to understand the 

correlation, it is a good idea to identify whether the oil price shock is caused by the aggregate 

demand, the precautionary demand or the supply. While business cycle fluctuations can cause 

aggregate demand side shocks, uncertainty regarding the future supply of oil due to changing 

expectations of future demand may trigger a precautionary demand shock- for instance due to wars 

and terrorism. On the other hand, supply side shocks are generally caused due to falling oil 

production and these are characterized as exogenous shocks (Kilian, 2009). A positive correlation 

between oil prices and stock returns in case of aggregate demand shocks and a negative correlation 

in the case of precautionary demand side shocks has also been confirmed (Degiannakis et al., 2011). 

Precautionary demand shocks are especially relevant in the short run since these affect investors’ 

reactions to future shortfalls in oil supply. Shifts in aggregate demand are more relevant in the long 

run as a result of common expectations regarding future economic activity, allowing stock and oil 

prices to move together (Rafailidis and Katrakilidis, 2014). While most empirical research suggests 

that supply side shocks fail to explain the link between stock returns and oil prices, Ready (2016) 

found a strong negative correlation between the stock markets and oil in the presence of supply 

shocks. The finding however was limited to the consumer goods industry and oil importing 

countries. Hence, the relationship between stock markets and oil markets is very complex and 
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sensitive. While the majority of literature explores the impact of oil markets on stock markets, the 

reverse relationship has seldom been explored. The graph below plots the development of the oil 

stock returns and Brent crude oil prices from the period of January 1995 to June 2016. 

Figure 4. Source: FRED and Yahoo Finance database, 2016 

According to Chen (2014) oil-sensitive stock price indices are powerful tools for predicting 

nominal and real crude oil prices at 1 month horizons relative to the no-change forecast. They 

showed MSPE reductions of up to 28% for Dubai crude oil and 22% for WTI crude oil and attested 

directional accuracy using the Arca Oil & Gas Index. Baumeister et al. (2014) did the same using 

MIDAS models and were able to show improvements in predictive power for horizons up to 15 

months. However, the MSPE reductions of 6% relative to the no-change forecast and 

improvements in directional accuracy remain rather small for all MIDAS model specifications. 

Stock markets and oil markets are one of the most difficult to forecast. The contradictions in 

empirical studies are, in fact, quite overwhelming. Therefore, using oil and energy stocks might 

prove to be more reliable and successful in predicting the future course of crude oil prices. The 

section on the MIDAS results will shed more light upon the relationship between the two markets. 

 

 

 

0
200
400
600
800
1000
1200
1400
1600
1800
2000

0

20

40

60

80

100

120

140

160

180

0
6

-J
an

-9
5

0
6

-J
u

l-
9

5
0

6
-J

an
-9

6
0

6
-J

u
l-

9
6

0
6

-J
an

-9
7

0
6

-J
u

l-
9

7
0

6
-J

an
-9

8
0

6
-J

u
l-

9
8

0
6

-J
an

-9
9

0
6

-J
u

l-
9

9
0

6
-J

an
-0

0
0

6
-J

u
l-

0
0

0
6

-J
an

-0
1

0
6

-J
u

l-
0

1
0

6
-J

an
-0

2
0

6
-J

u
l-

0
2

0
6

-J
an

-0
3

0
6

-J
u

l-
0

3
0

6
-J

an
-0

4
0

6
-J

u
l-

0
4

0
6

-J
an

-0
5

0
6

-J
u

l-
0

5
0

6
-J

an
-0

6
0

6
-J

u
l-

0
6

0
6

-J
an

-0
7

0
6

-J
u

l-
0

7
0

6
-J

an
-0

8
0

6
-J

u
l-

0
8

0
6

-J
an

-0
9

0
6

-J
u

l-
0

9
0

6
-J

an
-1

0
0

6
-J

u
l-

1
0

0
6

-J
an

-1
1

0
6

-J
u

l-
1

1
0

6
-J

an
-1

2
0

6
-J

u
l-

1
2

0
6

-J
an

-1
3

0
6

-J
u

l-
1

3
0

6
-J

an
-1

4
0

6
-J

u
l-

1
4

0
6

-J
an

-1
5

0
6

-J
u

l-
1

5
0

6
-J

an
-1

6
0

6
-J

u
l-

1
6

R
EA

L 
U

SD

R
EA

L 
U

SD
 P

ER
 B

A
R

R
EL

Weekly Brent Crude Oil and Stock Market Returns Development

Brent Spot Price ARCA Oil & Gas Index



 

20 Oil Prices: Analysis of High-Frequency Data 

3.4. Crude Oil and Oil Inventories  

The inventory model approach is a long recognized traditional approach used to explain oil price 

developments. The model was first developed by Pindyck (1994) who explained the effect of 

demand and supply shocks on commodity prices. It was later extended to petroleum and crude oil 

commodities (Pindyck, 2001). It has been found that, the price of oil is less responsive to changes 

in production levels and that oil inventories serve as a better proxy for capturing the effect of market 

volatility on oil prices in the short run (Ye et al., 2002). The rationale behind maintaining oil 

inventories can be attributed to demand fluctuations in the commodities markets. Holding 

inventory allows producers to reduce losses in situations of stockout during periods of peak 

demand. It also helps save on costs when a need to change production levels arises, for instance 

due to reduced demand. According to Pindyck (1994) the market clearing price is determined by 

changes in inventory, production and consumption. And the level of inventory, depends on the 

inventory holding costs. Pindyck (2001) showed that in the case of temporary oil demand shocks, 

the inventory used as a buffer caused crude oil pot prices to rise in the short run. After the demand 

returned back to normal, the spot price of crude oil fell again. But these prices remained higher 

than the original prices in the market- before the demand shock. This is because oil production 

remained unchanged and it needed to catch up with consumption levels, so that oil inventories 

could be replenished again. In the case of more permanent demand shocks, oil prices reacted 

differently to inventories. This was because both, production and inventories, were increased to 

meet the growing demand. This results in higher crude oil spot prices but also higher levels of oil 

inventories which in turn creates a new price equilibrium in the market compared to the pre shock 

levels. While changes in crude oil inventories are useful in explaining oil price movements in the 

short run, based on rational demand and supply dynamics, the impact of inventories on the price of 

oil is said to be limited. The reason is that movements in the oil futures market, stock markets and 

other commodities markets also steer the course of future oil prices. In simple words, changes in 

expectations about the real price of crude oil are reflected in changes in crude oil inventories, but 

only under an all else equal assumption (Alquist and Kilian, 2010). Figure 5 depicts the 

development of weekly U.S. commercial crude oil inventory together with the safety inventory and 

the real price of Brent crude oil from the period January 1995 to June 2016.  
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Figure 5. Source: FRED and EIA database, 2016 

Baumeister et al. (2014) tested the predictive power of changes in U.S. crude oil inventories on the 

real price of WTI crude oil using different MIDAS regression models. They found that oil 

inventories are very successful in predicting changes in the price of crude oil at forecast horizons 

exceeding 6 months. They achieved MSPE reductions of up to 28% with high directional accuracy. 

The directional accuracy was found to be as high as 80%, which meant that in 4 out of 5 cases a 

rise or fall for the price of crude oil was correctly predicted. At shorter horizons they established 

that MIDAS models, using inventories, performed similar to the no-change forecast model. Their 

empirical findings are quite remarkable.  

3.5. Crude Oil and Industrial Commodity Indices  

The price movements of many energy commodities are beginning to converge over the years, 

mainly due to increased financial activity in both, oil and non-oil or industrial commodity futures 

markets. A part of the volatility in oil prices is believed to stem from the spot prices of other 

industrial commodities. It is believed that non-oil commodities could prove to be very useful in 

predicting future oil price movements. This is because it is easier to predict the price of industrial 

commodities since their prices are determined by more reliable and predictable variations in global 

economic activity (Baumeister et al., 2014). While there exist several ways to measure global 

economic activity, the relationship between oil and gold prices for instance, is considered to be 
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weak. However, a good proxy to measure economic activity are industrial inputs such as the global 

agricultural raw material index and the global metal index. In fact, there are several reasons to 

suspect that non-oil commodities and oil markets are correlated. In times of globalization, food 

production is becoming increasingly fuel dependent, worldwide. According to Chavdarov (2015), 

agricultural raw material prices affect food prices and there exists a strong positive correlation 

between oil and food prices. Oil is required for agricultural chemicals, farming equipment and for 

the transportation of the raw materials and finished goods. Furthermore, there is an increased 

demand for substitutes such as biofuels which are produced from agricultural raw materials like 

wheat, sugarcane or corn for instance (Chavdarov, 2015). The demand for these oil substitutes is 

believed to affect the demand for crude oil commodities. Switching to more renewable energy 

sources like biofuels or the usage of more efficient transportation modes and environment friendly 

farming technology is expected to shift the demand for crude oil in the long run, which will have 

implications for the spot price of crude oil.  

In the recent years several other industrial commodities were also affected by the oil price drops 

witnessed in 2014. The global metal index lists prices of very important metals including copper. 

The demand for copper is considered to be a signal of economic growth since the metal is heavily 

used in the manufacturing, IT, construction and health sectors. Low metal prices signal a 

weakening of the global economy. Furthermore, metals and crude oil prices seem to be affected by 

very similar economic factors. The difference is that the demand for metals is not as volatile as the 

demand for oil and there are less speculations regarding the future supply of metals (Burstein, 

2015). Thus there is a certain element of stability attached to predicting the prices of industrial 

commodities. Empirical research shows that using these commodities to predict oil prices yields 

significant directional accuracy and MSPE reductions. The graph below depicts the development 

of the global metal index, the global agricultural raw material index and Brent crude oil prices from 

January 1995 to June 2016. 
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Figure 6. Source: FRED database, 2016 

Baumeister et al. (2014) predicted the monthly real price of WTI crude oil using the spot prices of 

industrial raw materials, provided by the Commodity Research Bureau (CRB) Index. They showed 

that the MIDAS modeling approach did not produce significant gains in forecast accuracy and that 

the benefit of using high-frequency weekly data was limited. Never the less I would like to test the 

relationship, using global industrial indices to forecast Brent crude oil prices changes. 

3.6. Crude Oil and Interest rates 

The relationship between interest rates and product prices is not new. Hotelling theorized as early 

as 1931, that under a certain set of assumptions, the opportunity cost of storing oil is nothing but 

the foregone interest rate. This suggests that interest rates and oil prices move in the same direction 

since the expected rate of return for holding oil should be identical to the interest rate. In practice 

however, the relationship between interest rates and crude oil prices is said to be inverse and 

Hotelling’s theory has been widely rejected. Low interest rates reflect looser economic policies and 

are associated with a higher demand for crude oil since the prices of commodities rises (Baumeister 

et al., 2014). Similarly, high interest rates make holding oil supply in storage expensive. When the 

opportunity cost from the foregone interest rate is higher, the incentive to hold crude oil inventories 

diminishes. The reduced crude oil inventories result in a tightening of oil markets. Moreover, 
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investors tend to shift their investments from the commodities markets to capital assets, when 

interest rates are high (Piotrowski, 2015). Ultimately this can dry up the liquidity in the oil futures 

markets and cause the reduced inventory levels to push the price of crude oil upward. But in the 

short run the implication is a fall in the price of oil. The reverse holds true when interest rates fall. 

It is only when the crude oil futures are in contango9 with spot prices that an incentive to hold 

inventory exists. In simple words, one can expect rising interest rates to increase production and 

consumption costs, which will result in a lower demand for crude oil due to the reduced economic 

activity. As long as the supply of oil suffices and interest rates rise, the price of oil is expected to 

fall, indicating an inverse correlation. Similarly, a fall in interest rates will encourage consumers 

and producers to borrow and spend more, and thereby push the demand and price of oil upward.  

However, the dynamics are not the same for all crude oil importing countries. The exchange rate 

is also said to impact the price of oil since it affects the purchasing power of oil importing countries 

and export revenues in fast growing economies with high oil consumption. With oil priced in U.S. 

dollars, higher interest rates help strengthen the dollar against other currencies. This, for example, 

allows oil companies in the U.S. to purchase more oil as a result of the dollar appreciation, which 

in turn makes oil cheaper due to the increased supply. But the effect will be the opposite for China 

since they have to pay more Chinese Yuan to purchase oil. Similarly, when interest rates are low, 

the dollar will depreciate and buying oil in the U.S. will become more expensive and push the price 

of crude oil upward (Piotrowski, 2015). Hence, depending upon how changing interest rates 

influence fluctuations in the value of the dollar relative to other currencies, it may become cheaper 

or more expensive for oil importing countries to buy oil (Baumeister et al., 2014). The complexity 

may further increase since a stronger dollar could also clear out speculative traders in the oil futures 

and commodities market and thereby affect the price of oil (Piotrowski, 2015). Figure 7 plots the 

movements in EURIBOR interest rates and Brent crude oil prices between January 1999 and June 

2016. The period before 1999 plots the Euro Area Interbank rates.  

 

____________________ 

9 
Contango is a situation where forward or futures prices of commodities are priced higher than spot prices. 
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The last four years reflect an era of zero interest rates, in fact- negative interest rates. Raising 

interest rates may cause the price of oil to plunge further, as long as the supply exceeds demand 

and there are no shortages in crude oil inventories.   

Figure 7. Source: FRED and European Money Markets Institute database, 2016 

Baumeister et al. (2014) investigated the predictive power of U.S. interest rates and the U.S. 

exchange rate on changes in the price of crude oil using MIDAS specifications. In the case of 

interest rates, MIDAS models outperformed the no-change forecast between horizons of 6 to 18 

months. The improvements were very modest and the forecasts showed no directional accuracy. 

The U.S. exchange rate as a predictor failed to produce any MSPE reductions. While a theoretical 

link between interest rates, exchange rates and oil prices may exist, lack of predictive power among 

the variables suggests that the quantitative importance is yet to be established. I aim to test this 

finding using EURIBOR interest rates.  

This section discussed the theoretical relationship between a range of high-frequency predictors 

from energy and financial markets and the price of oil. Now we are sufficiently equipped to 

establish whether the high-frequency data contains signals and information, beneficial for 

forecasting, or if it is simply additional noise, which should be ignored. Using MIDAS models, I 

explore the possible influence of the predictors in forecasting changes in price of crude oil and 

-1

0

1

2

3

4

5

6

7

8

0

20

40

60

80

100

120

140

160

0
1

-J
an

-9
5

0
1

-J
u

l-
9

5
0

1
-J

an
-9

6
0

1
-J

u
l-

9
6

0
1

-J
an

-9
7

0
1

-J
u

l-
9

7
0

1
-J

an
-9

8
0

1
-J

u
l-

9
8

0
1

-J
an

-9
9

0
1

-J
u

l-
9

9
0

1
-J

an
-0

0
0

1
-J

u
l-

0
0

0
1

-J
an

-0
1

0
1

-J
u

l-
0

1
0

1
-J

an
-0

2
0

1
-J

u
l-

0
2

0
1

-J
an

-0
3

0
1

-J
u

l-
0

3
0

1
-J

an
-0

4
0

1
-J

u
l-

0
4

0
1

-J
an

-0
5

0
1

-J
u

l-
0

5
0

1
-J

an
-0

6
0

1
-J

u
l-

0
6

0
1

-J
an

-0
7

0
1

-J
u

l-
0

7
0

1
-J

an
-0

8
0

1
-J

u
l-

0
8

0
1

-J
an

-0
9

0
1

-J
u

l-
0

9
0

1
-J

an
-1

0
0

1
-J

u
l-

1
0

0
1

-J
an

-1
1

0
1

-J
u

l-
1

1
0

1
-J

an
-1

2
0

1
-J

u
l-

1
2

0
1

-J
an

-1
3

0
1

-J
u

l-
1

3
0

1
-J

an
-1

4
0

1
-J

u
l-

1
4

0
1

-J
an

-1
5

0
1

-J
u

l-
1

5
0

1
-J

an
-1

6
0

1
-J

u
l-

1
6

P
ER

C
EN

TI
LE

R
EA

L 
U

SD
 P

ER
 B

A
R

R
EL

Weekly Brent Crude Oil and Interest Rate Development

Brent Spot Price 3 M Euro Area Interbank Rate 3 M EURIBOR RATE



 

26 Oil Prices: Analysis of High-Frequency Data 

compare my findings to the empirical results in the reference paper on the use of high-frequency 

financial data in forecasting oil prices by Baumeister et al. (2014).  

 

4. The Data 

The global crude oil pricing system is anchored on many types of crude oil including West Texas 

Intermediate (WTI), Dubai Crude and the North Sea Brent as depicted in figure 8. Lately, Brent 

has become the world’s most widely referenced crude oil price benchmark, with 60 percent of the 

world’s traded oil being priced using the Brent reference. Brent is a mix of crude oil from 15 

different oil fields in the North Sea and is often mixed with OPEC reference baskets10. Baumeister 

et al. (2014) explored the relevance of high-frequency financial data in forecasting the real price of 

WTI crude oil. However, in 2010 the crude oil dynamics in North America changed as a result of 

an oversupply of oil in Cushing, Oklahoma. Since then the WTI has been traded at a significant 

discount to Brent and many U.S. traders started using a weighted average of Brent and WTI prices 

as a benchmark. 

Worldwide Crude Oil Pricing 

 

Figure 8. Source: ICE Crude and Refined Oil Products Report, 2016 

____________________ 

10 
For more information on OPEC reference baskets, please refer to OPEC Monthly Oil Market Report, pp.8:  

http://www.opec.org/opec_web/static_files_project/media/downloads/publications/MOMR%20September%202016.

pdf 

https://en.wikipedia.org/wiki/Oil_field
https://en.wikipedia.org/wiki/North_Sea
http://www.opec.org/opec_web/static_files_project/media/downloads/publications/MOMR%20September%202016.pdf
http://www.opec.org/opec_web/static_files_project/media/downloads/publications/MOMR%20September%202016.pdf
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It is only recently that this gap seems to be closing slowly11. It is also worth mentioning that the 

MIDAS results presented in the paper by Baumeister et al. (2014) may contain some 

mismeasurements since the results are based on data ranging from the years 1992 to 2012. This 

also covers the time period where WTI crude oil was no longer considered to be the most reliable 

benchmark. And this might have influenced the predictive ability of the futures and gasoline spread 

models. Due to its new status as the international benchmark for crude oil, I used Brent crude oil 

spot prices in this thesis.  

Data Sources  

The majority of the data was retrieved from the Federal Reserve Economic Data (FRED) database 

made available by the Federal Reserve Bank of St. Louis. This included data for the Brent crude 

oil spot prices, the global price of metals12, the global price of agricultural raw materials13, the 3 

month Interbank Rate for the Euro area and the U.S. consumer price index (CPI) for all urban 

consumers. The U.S. ending stocks of commercial crude oil, the U.S. ending stocks of SPR crude 

oil14 and the U.S. number 2 Diesel prices were obtained from the Energy Information 

Administration (EIA) database. The Brent futures front month continuous contracts B115 were 

extracted from the Quandl database. The diesel prices in Europe were obtained from the Weekly 

Oil Bulletin European Commission database. 

 

 ____________________ 

11 Intercontinental Exchange (2016). ICE Crude & Refined Oil Products Report: 

https://www.theice.com/publicdocs/ICE_Crude_Refined_Oil_Products.pdf 

12 The global metal index composes of copper, aluminium, iron ore, tin, nickel, lead and uranium prices. 

13 The global agricultural raw materials index composes of timber, cotton, wool, rubber and hides prices. 

14 U.S. Ending stocks of crude oil consist of commerical and SPR crude oil inventories. The Strategic Petroleum 

Reserve (SPR) is an emergency fuel storage of petroleum maintained underground in Louisiana and Texas by 

the United States Department of Energy. It acts as safety inventory and with a capacity to hold up to 727 million 

barrels it serves as world’s largest emergency supply. 

15 The Brent futures contracts are front month contracts with a maturity of 1 month. 

https://www.theice.com/publicdocs/ICE_Crude_Refined_Oil_Products.pdf
https://en.wikipedia.org/wiki/Emergency
https://en.wikipedia.org/wiki/Fuel
https://en.wikipedia.org/wiki/Petroleum
https://en.wikipedia.org/wiki/Louisiana
https://en.wikipedia.org/wiki/Texas
https://en.wikipedia.org/wiki/United_States
https://en.wikipedia.org/wiki/United_States_Department_of_Energy
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The EURIBOR rates were retrieved from the European Money Markets Institute (EMMI) data 

base. The NYSE ARCA Oil & Gas index16 prices were retrieved from Yahoo Finance.  

Data Construction 

The in-sample period for all data begins in January 1995 and ends in December 2014. The data 

from January 2015 to June 2016 serves as the out-of-sample period for all the forecasts. All spot 

prices in the data set were in nominal U.S. dollars and were adjusted for inflation to reflect today’s 

prices using the CPI index of April 2016. I used the U.S. CPI index since all the spot prices use the 

dollar as the benchmark currency. Another option would have been to use nominal prices but this 

approach is less common in the literature on forecasting.  In order to generate a balanced weekly 

data set such that each month consists of only 4 weeks, I reduced all months consisting of 5 weeks 

to 4 weeks. The reduction was undertaken by computing the average of weeks 4 and 5 for each 

month consisting of 5 weeks and thereby creating a new observation for the 4th week. The 

unavailability of data across variables over longer periods was highly problematic. Data availability 

ranged anywhere between the period 1988 to 2016. The U.S. diesel prices could be retrieved 

starting from the year 1995 while diesel prices in Europe were only available starting from the year 

2005. Due to the lack of consistent data sets for diesel spot prices in Europe prior to January 2005, 

I used U.S. diesel spot for the entire in-sample period. The alternative would have been to work 

with a shorter in-sample period or to combine U.S. and European diesel spot prices17. The diesel 

spot prices were reported in U.S. dollars per gallon and were converted to the barrel by multiplying 

the spot price by 42 gallons per barrel.  

 

____________________ 

16 
The ARCA Oil & Gas index comprises of several oil companies such as Anadarko Petroleum, British Petroleum, 

Chevron, Exxon mobil, ConocoPhillips, Hess, Marathon Oil and Total SA among others. 

17 
Due to limitations in data on diesel spot prices prior to 2005, U.S. diesel no. 2 prices are used to construct the product 

spread and maintain consistency.  While diesel is an important fuel in Europe, gasoline is more relevant for U.S. 

markets. Thus is should be taken into consideration that the spot prices may only be sub-optimal for predicting Brent 

crude oil prices, firstly due to their reduced relevance in European markets and second, due to the use of the Brent 

crude oil benchmark instead of WTI.  
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Unfortunately, the data for global crude oil inventories is not published at a weekly or monthly 

frequency, it is only for the U.S. oil inventories that regular data is available. Very relevant for this 

research is the question whether U.S. crude oil inventories will have any predictive power in 

determining changes in the real price of Brent crude oil. Due to the change in the international 

benchmark for crude oil, it would not be reliable to use WTI crude oil prices at the moment. Neither 

is it optimal to predict Brent crude oil prices using U.S. oil inventories, currently there seems to be 

an excess supply of oil in America. An alternative would have been to use data capturing global 

crude oil production at a monthly frequency. This might not succeed in capturing the gains in 

forecast accuracy with the inventory model approach. This is because the inventory model 

approach rests on basic economic fundamentals, namely the interaction between demand and 

supply, where crude oil inventories are actually a reflection of the imbalance between the demand 

for oil and oil production levels. The 3 month EURIBOR interest rates were only available starting 

from 1999. Gaps in the sample period before 1999 are covered using the Euro area 3 month 

interbank rates18. Data for the global metal index and the global agricultural raw material index 

was only available at a monthly frequency.  

While the EURIBOR and Euro area interbank rates were available at a higher frequency, these 

were converted to a monthly frequency and incorporated into the quarterly forecast model because 

interest rate data for 90 days shows little variance on a weekly basis. All other data was available 

at weekly frequency. Hence, depending on the high-frequency variable, I implemented MIDAS 

models which produced monthly or quarterly crude oil forecasts. 

 

 

 

____________________ 

18 
Globalization has brought world financial markets a lot closer over the last two decades. Hence it is assumed that 

using EURIBOR or LIBOR rates should not affect results with a bias. It is also standard to use interest rates with a 

maturity of 3 months (90 days) in forecasting. Furthermore, the difference between the Interbank Interest Rate for the 

Euro Area and the EURIBOR is negligible. Therefore, the former was used to fill the data gaps between the period 

1995 to 1999. Thereafter, the EURIBOR returns were used.   
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5. The Mixed-Data Sampling Approach for Forecasting 

Handling variables of mixed frequencies typically involves reducing the higher frequency data to 

the same frequency as the dependent variable after which standard regression models can be 

estimated. Aggregation or summing coefficients are traditional approaches for handling mixed-

frequency data. The first approach is a simple aggregation approach which aggregates the higher 

frequency information and transforms it into a lower frequency. It uses equal weighted sums of 

higher frequency data converted to the lower frequency variable in order to perform a same 

frequency regression:  

                                              𝑅𝑡+ℎ =  𝛽0 + 𝜆𝑅𝑡 +  𝛽1 ∑
1

𝜆
𝐿𝑘/𝑤𝐾

𝑘=1 𝑥𝑡
(𝑤)

+  𝜀𝑡+ℎ                                          (1) 

The approach estimates a single 1/λ value which acts as the common coefficient through which all 

higher frequency lags enter the lower frequency regression.  

The second approach is the individual coefficient approach which takes the distinct coefficient of 

each high-frequency component and adds it as a regressor into the lower frequency regression. This 

means that one includes all high-frequency data corresponding to the current low frequency 

observation: 

                                     𝑅𝑡+ℎ =  𝛽0 + 𝜆𝑅𝑡 +  𝛽1 ∑ 𝛼𝑘𝐿𝑘/𝑤𝐾
𝑘=1 𝑥𝑡

(𝑤)
+  𝜀𝑡+ℎ                                (2)                                                             

This approach estimates a distinct 𝛼 coefficient for each of the high-frequency lag regressors.  

In the previous sections I explained that financial markets are subject to high levels of volatility. 

The problem with the first approach is that aggregation may lead to a loss of important information 

by weakening the impact of the data. Whereas the second approach may leave us with many lags 

in the data and therefore a very large number of coefficients to estimate in the regression. MIDAS 

regressions offer a middle ground solution between these two approaches by allowing flexible and 

parsimonious parameterization to deal with the effect of high-frequency variables on the lower 

frequency variable. It reduces the parameters to estimate while trying to minimize information loss 

by incorporating non equal weights. Ghysels et al. (2004) show that MIDAS regressions share 

some commonalities with finitely distributed polynomial lag models and are built on (non-linear) 

least square estimations. Aggregation biases due to the unavailability of continuous time data 
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collected at equally distant discrete points in time, is a common issue faced even when using 

MIDAS models. A classic example is reducing a month with 5 weeks to 4 weeks.  

Univariate MIDAS Regression Models  

There are various efficiency gains of deploying MIDAS regression due to their superiority relative 

to simple aggregation techniques used in distributed lag models- in spite of the discretization and 

aggregation biases, where only independent variables can be sampled more frequently. The 

MIDAS weighting functions reduce the number of parameters in the model by placing restrictions 

on the effects of high-frequency variables with varying lag lengths (Ghysels et al., 2004). The 

MIDAS augmentations shown in this paper use unrestricted autoregressive terms which enter 

linearly with unconstrained coefficients (Ghysels et al., 2016). The model below represents a 

univariate MIDAS regression model forecasting h periods ahead: 

                                            𝑅𝑡+ℎ =  𝛽0 + 𝜆𝑅𝑡 +  𝛽1𝐵(𝐿1/𝑤 ;  𝜃)𝑥𝑡
(𝑤)

+  𝜀𝑡+ℎ                                       (3) 

where 𝑅𝑡+ℎ , the dependent variable, is the change in the real price of Brent Crude Oil tomorrow. 

𝑅𝑡  is the first lag of the dependent variable. In other words, it is the autoregressive term which 

exhibits the change in the real price of crude oil today. Both are sampled at a low frequency 

(monthly or quarterly in this paper). While 𝑥𝑡
(𝑤)

 is the independent variable sampled at the higher 

frequency w. The high-frequency data in this paper is weekly or monthly, depending on the 

variable. In short,  𝑥𝑡  denotes the predictor observed in week w ∈ {1,2,3,4} of month t or the 

predictor observed in month w ∈ {1,2,3} of quarter t.  The predictor may also depend on horizon h 

of the forecast and it is defined as the cumulative change in 𝑥𝑡
(𝑤)

 between a current week and the 

same week h months ago. It can be represented as 𝑥𝑡
(𝑤,ℎ)

 (this is not shown in equation 3). When 

the dependent and the independent variables are sampled at the same frequency, w= 1. If the change 

in the real price of Brent crude oil is sampled monthly while the explanatory variable is sampled 

weekly, the frequency w= 4. Similarly, in case where the change in the real price of Brent crude oil 

is sampled quarterly and the change in the explanatory variable is sampled at a monthly frequency, 

w= 3. 𝛽1 is the common slope coefficient of the high-frequency variables converted to a lower 

frequency by applying MIDAS weights. In other words, it is the impact parameter. 
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𝐵(𝐿1/𝑤 ;  𝜃) is the polynomial lag operator for 𝑥𝑡
(𝑤)

, such that the high-frequency lags can enter 

the low-frequency regression. It is the weighting function for each lagged observation and is 

represented as:  

                                                          𝐵(𝐿1/𝑤 ;  𝜃) =  ∑ 𝐵(𝑘; 𝜃)𝐿𝑘/𝑤 𝐾
𝑘=1                                                  (4) 

where k is the number of lags selected and 𝜽 is the vector of hyper-parameters to be estimated for 

the normalized weighting function 𝐵(𝑘; 𝜃), which contains the MIDAS weight coefficients that 

determine the shape of the above weighting function. 𝐿1/𝑤 is the lag operator or common 

coefficient such that 𝐿1/𝑤𝑥𝑡
(𝑤)

=  𝑥𝑡−1/𝑤
(𝑤)

. Thus the impact parameter 𝛽1 (in equation 3) is the 

common slope coefficient obtained by applying the MIDAS weights (𝜃) to the overall slope (𝐿1/𝑤) 

for k lags. This is how MIDAS regressions allow for high-frequency lags to enter the low frequency 

regression with a common coefficient. This coefficient depends on the type of polynomial 

weighting scheme used. The MIDAS application in this paper uses the original distributed lag 

polynomials as weighting functions provided by Ghysels et al. (2006a, 2006b).  

5.1. Exponential Almon MIDAS Regression 

The normalized exponential Almon (Nealmon) weighting function uses exponential weights where 

Q denotes the degree order of the polynomial. The weights of this polynomial sum up to unity and 

produce positive coefficients due the expressions in the denominator: 

                                                         𝐵(𝑘, 𝜽) =  
𝑒

(𝜃1𝑘1 +⋯ + 𝜃𝑄𝑘𝑄)

∑ 𝑒
(𝜃1𝑘1 +⋯ + 𝜃𝑄𝑘𝑄)𝑚

𝑘=1

                                                           (5)    

A lag polynomial of degree order 2 yields the functional form of two parameters with  𝜽 = [ 𝜃1, 𝜃2]: 

                                                          𝐵(𝑘, 𝜃1, 𝜃2) =  
𝑒(𝜃1𝑘 + 𝜃2𝑘2)

∑ 𝑒(𝜃1𝑘 + 𝜃2𝑘2)𝑚
𝑘=1

                                                         (6) 

The expanded form of the Exponential Almon Lag MIDAS regression model can be represented 

by the following equation:  

                          𝑅𝑡+ℎ =  𝛽0 +  𝜆𝑅𝑡 +  𝛽1 ∑
𝑒(𝜃1𝑘 + 𝜃2𝑘2)

∑ 𝑒(𝜃1𝑘 + 𝜃2𝑘2)𝑚
𝑘=1

𝐿𝑘/𝑤𝐾
𝑘=1 𝑥𝑡

(𝑤)
+  𝜀𝑡+ℎ                        (7)                
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where k is the selected number of lags and 𝐿𝑘/𝑤 becomes the slope of the coefficient which is 

common across the lags. The Exponential Almon function can change shapes with 𝜃1 = 𝜃2 =

0, implying equal weights for instance. Thus differential response comes via the exponential 

weighting function and the lag polynomial which depends on the two MIDAS coefficients 𝜃1 and 

𝜃2. The lag selection in such models is largely data driven, where the rate of weight decline 

determines the number of lags included in the regression and therefore one must ensure to not 

choose too few lags. This regression model is highly non-linear in the parameters of the model.  

5.2. PDL Almon MIDAS Regression 

The Almon lag weighting function by Shirley Almon (1965) also known as the polynomial 

distributed lag (PDL) function works well while placing restrictions on the lag coefficients of 

autoregressive models and is thereby also suitable for MIDAS regressions. Here the weight on each 

lag is computed as:  

                                                                       𝐵(𝑘;  𝜽) =  ∑ 𝜃𝑞 𝑘
𝑞𝑄

𝑞=1                                                          (8)              

where Q represents the order of the polynomial 𝜽 = (𝜃1 , 𝜃2 , 𝜃3 … 𝜃𝑄) and k is the number of lags. 

Since the weights of this polynomial do not sum up to unity parameter 𝛽1 is not estimated. The 

number of coefficients or hyper-parameters to be estimated depends on the polynomial order. A 

second order Almon polynomial, meaning Q = 2 will estimate four parameters 𝜃1, 𝜃2, 𝜃3 and 𝛽0. 

The expanded form of the PDL Almon Lag MIDAS regression model may be represented by the 

equation:  

                                              𝑅𝑡+ℎ = 𝛽0 + 𝜆𝑅𝑡 +  ∑ 𝜃𝑞 𝑘
𝑞𝐿𝑘/𝑤3

𝑞=1 𝑥𝑡
(𝑤)

+  𝜀𝑡+ℎ                                 (9) 

where k is the number of lags and 𝜽  is a distinct coefficient associated with each of the Q sets of 

constructed variables. Since the chosen number of lags is not data driven, the model is sensitive to 

the choice of lags.  

5.3. Beta MIDAS Regression  

The normalized Beta weighting function discussed by Ghysels at al. (2006) is also deployed in the 

MIDAS regression. This beta lag polynomial has two parameters given by: 
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                                                              𝑓(𝑘, 𝜃1, 𝜃2) =  
𝑓(

𝑘

𝐾
,𝜃1,𝜃2)
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This function is often used in Bayesian econometrics to impose parsimonious yet flexible 

distributions. The beta function can take many shapes with 𝜃1 =  𝜃2 = 1, implying equal weights 

for instance. Slowly declining weights imply that 𝜃1 =  1 and 𝜃2 > 1. Faster declining rates can 

be obtained as 𝜃2 increases. A further restriction is to set  𝜃3= 0 or  𝜃3= 1. Thus various 

parameterizations can obtain humped shaped or strictly decreasing weighting functions. As in the 

case of the exponential Almon Lag polynomial function, the rate of weight decline determines the 

number of lags included in the MIDAS regression.  

These yield positive coefficients which sum up to unity, where: 
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For simplicity let us denote  (
𝑘

𝐾
) by 𝜔. Hence equation: 
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can be reformulated to:   𝑓(𝑘, 𝜃1, 𝜃2) =  
(𝜔)𝜃1−1(1−𝜔)𝜃2−1𝜏(𝜃1+ 𝜃2)

∑ (𝜔)𝜃1−1(1−𝜔)𝜃2−1𝜏(𝜃1+ 𝜃2)𝐾
𝑘=1

                                         (14) 

Hence the expanded form of normalized Beta Polynomial MIDAS regression can be represented 

by the following equation: 

                        𝑅𝑡+ℎ =  𝛽0 + 𝜆𝑅𝑡 +  𝛽1 ∑
(𝜔)𝜃1−1(1−𝜔)𝜃2−1𝜏(𝜃1+ 𝜃2)

∑ (𝜔)𝜃1−1(1−𝜔)𝜃2−1𝜏(𝜃1+ 𝜃2)𝐾
𝑘=1

𝐿𝑘/𝑤𝐾
𝑘=1 𝑥𝑡

(𝑤)
+  𝜀𝑡+ℎ      (15) 

where k is the number of lags. The number of parameters of the beta weighting model is at most 

three so that it does not increase with the number of lags. This paper restricts itself to two 

parameters. The resultant regression model is also highly non-linear in terms of parameters. 
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6. Methodology and Model Specification 

Forecast Method  

I used three types of MIDAS weighting functions to predict the change in the real price of Brent 

Crude Oil over the period January 2015- June 2016. The model’s forecast performance is assessed 

by splitting the data set into an in-sample period which begins in January 1995 and ends in 

December 2014. This period is used for initial model selection and parameter estimation. January 

2015 to June 2016 serves as the out-of-sample period, to which the performance of the forecasts 

covering a horizon of 1 to 18 months is later compared. In simple words, the in-sample period over 

which the model is estimated is used to forecast the out-of-sample period using the static forecast 

method. When producing forecasts, a model which is best in terms of fit for an in-sample data, 

does not necessarily provide the more accurate forecasts. But a robust model with adequate 

functional constraints and lag length is a good starting point. A true of out-of-sample forecast is 

only possible for one-period ahead (one-step ahead) meaning at horizon 1. Therefore, the results 

discussed in the next section for multiple forecast horizons exceeding one period should be 

interpreted as pseudo forecasts. It is common to produce out-of-sample predictions over a desired 

forecast horizon, which does not require new data for forecasting at each horizon (Ghysels et al., 

2016).  

Model Estimation  

The models are estimated in programming language R version 3.2.4 using the midasr package. The 

most important factor for reliable MIDAS results is perhaps the model specification itself. Due to 

the fact that the weighting schemes adopted in this research for high-frequency regressors result in 

NLS estimation, only one variable was tested at a time to avoid multicollinearity complexities. 

Andreou et al. (2011) offer an alternative solution to tackle multicollinearity issues, that is by 

estimating several univariate models and then using a forecast combination to produce final 

forecast. This however is currently not the subject of interest since I attempt to determine the 

predictive power of a range of individual financial and energy market variables. MIDAS are 

typically not autoregressive models. It is assumed that the real price of Brent Crude oil will exhibit 

a seasonal response, whether or not the high-frequency explanatory variables carry seasonal 

variation. Ghysels et al. (2006b) warn that the model carries the risk of efficiency losses when 
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lagged dependent variables are introduced into the MIDAS regressions and that this specification 

should only be used if there are seasonal patterns in the independent variables. Results can be 

interpreted as whether the change in the real price of oil also linearly depends on the change in its 

own previous values and on a stochastic term.  Since the results are model estimates for the given 

realizations of explanatory variables, a further risk accompanying this methodology is that the in-

sample period performance can be quite sensitive to outliers or sudden shocks in the data. This is 

why, out-of-sample forecasts are better at reflecting information available in real time. There exist 

several methods to improve and re-estimate a non-linear least square model with a poor fit. I used 

the optim function in the R package which applies the Nelder Mead algorithm to optimize the NLS 

function. The function may also be used to find more suitable start values. The obtained start values 

are then used to re-estimate the NLS model. This however requires running the Nelder Mead 

algorithm for many iterations and is only successful if the algorithm reaches convergence, which 

is often difficult to achieve (Ghysels et al., 2016). Several optimization functions can be chosen 

from to perform the minimization for the NLS estimation. There also exist hybrid optimization 

methods for example in the E-views software package which might be more successful in reaching 

convergence (for examples please refer to the Eviews guide on MIDAS). Table 1 provides a 

summary of these NLS estimates for the hyper-parameters from the in-sample data for MIDAS 

models. The summary results reflect only initial model selection and parameter estimation.  

Model Restrictions  

The imposed restrictions are the weighting scheme applied across the model, the maximum lag 

order of high-frequency variables used in the low frequency regression and the parameters of 

weighting functions in each lag. The regression model estimates the impact parameter and hyper-

parameters mentioned in the above section. The impact parameter is the slope of the coefficient 

which is common across the high-frequency variable transformed to the lower frequency and the 

hyper-parameters are the two actual lag or MIDAS coefficients denoted as 𝜃 on which the lag 

pattern primarily depends. In case of the PDL Almon weighting scheme, three lag coefficients are 

obtained as hyper-parameters, while by default, the slope coefficient is not estimated. The midasr 

package requires providing start values for the weights of the first low frequency lag in order to 

estimate these parameters. The start values implicitly define the number of parameters of the 

constraint functions used for each data series (Ghysels et al., 2016). Furthermore, depending on the 
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start values and lags selected, the NLS problem may or may not converge. This makes a MIDAS 

model specification highly sensitive. Different start values for the weighting functions were tried 

and the forecast results are based on the start values where the NLS problem successfully 

converged.  

In order to validate the forecast results, it was necessary to test the adequacy of the restrictions for 

the MIDAS regressions by performing some standard tests, with the null hypothesis being that the 

functional restrictions on the empirical model are adequate. Else the forecasts would have little 

relevance. Table 2 in the appendix summarizes the results of some of the constraint adequacy tests. 

Three tests were performed. The Hah-test by Kvedaras and Zemlys (2012) was used to test whether 

the restrictions on the MIDAS regression coefficients hold. This test is a heteroscedasticity and 

autocorrelation weight specification test. The Hahr-test is simply the robust version of the Hah test. 

I also performed the Deriv test to check whether the NLS restricted MIDAS regression problem 

converged. This tests gives values of the gradient and hessian of the optimization function and tells 

us whether the conditions of local optimum are met. However, if the functional adequacy cannot 

be rejected at an appropriate significance level, there exist several other options to make a selection 

of the best candidate in the midasr package. I applied the select and forecast19 feature built for 

restricted regression models which is designed such that it selects the best forecasting equations in 

terms of model specification and the in- and out-of-sample precision measures for each forecasted 

horizon.  

Lag Determination 

The results discussed are based on a high-frequency maximum lag length fixed at sixteen for 

monthly forecasts and twelve for the quarterly forecasts. The minimum lag length is four, in the 

case of the monthly forecasts and three, in the case of quarterly forecasts. A lag length of sixteen, 

implies that prices for June 2016 are explained by the movements in the weeks of March, April,  

____________________ 

19 
The select and forecast feature of the midasr package automatically selects the best models at each forecast horizon 

from a set of potential model specifications containing the lag orders and functional restrictions. It should be noted that 

the forecast combinations obtained from this function are based on the MIDAS coefficient restrictions and not on the 

selected lag length. The best lag order can be decided using an information criterion. 
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May and June. Determining the lag length of the explanatory variables is very important since 

choosing too few lags results in under-parameterizing of the MIDAS models with the consequence 

of very high prediction errors (Götz et al., 2014). Provided that the sample is large enough, for 

cases where more than necessary lags are chosen, the MIDAS lag polynomial assigns a zero weight 

to the unimportant lags without affecting predictive accuracy (Asimakopoulos et al., 2013). In 

mixed-data sampling literature, there is a lot of discussion on the optimal lag lengths, which are 

selected based on some information criterion. The lag lengths can be selected based on several 

selection criteria. Foroni et al. (2014) for instance, test whether the Akaike information 

criterion(AIC) provides better results than the Bayesian Information Criterion (BIC) since it puts a 

lower loss on the number of parameters than BIC when the lag lengths are increased20. They show 

that there are no gains from switching the selection criterion. As the lag length increases, the 

problem is not the omitted regressors, but rather the estimation of too heavily parameterized 

models. The in-sample fit is optimized based on the AIC lag selection criterion in this research. 

The AIC criteria gives a warning when the lags selected are too high. I tested the model by varying 

the lag lengths, however the results do not vary much as long as the minimum lag length is covered. 

This is why the forecast results use different lag lengths and start values, since achieving 

convergence for the NLS estimates at a fixed lag length with the same start values is not always 

guaranteed. 

Forecast Evaluation  

In order to present and compare the predictive power of the variables using different MIDAS 

specifications, I rely on the root mean square error (RMSE) observed over the forecast horizon. 

The RMSE is computed by evaluating Brent crude oil forecasts against the actual crude oil prices 

from the out-of-sample window. The forecast accuracy of the predictors is presented in the form 

____________________ 

20 
The Akaikes information criteria usually tries to find unknown models. The Bayesian information criteria on the 

other hand only comes across true models. Thus AIC cannot determine the quality of a model in an absolute sense. In 

the case where all the candidate models fit poorly relative to another, AIC can only give a warning of that. For simple 

definitions or more information on AIC and BIC, see for instance, Acquah de Graft (2010):  

http://www.academicjournals.org/article/article1379662949_Acquah.pdf 

http://www.academicjournals.org/article/article1379662949_Acquah.pdf
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of RMSE ratios. The ratio is computed by taking the RMSE of the monthly (quarterly) forecasts 

relative to the RMSE value of the no-change (random walk without drift) forecast. This is standard 

in literature. According to oil experts, Alquist and Kilian (2010), no-change forecasts are more 

accurate than forecasts based on econometric models or survey forecasts. The no-change forecast 

can be interpreted as a naive forecast. It has been shown that, whether or not crude oil spot prices 

follow a random walk, naive forecasts tend to be attractive in terms of their RMSE. This is because 

excluding other predictors in small samples results in reduced variance which more than offsets 

the omitted variable bias (Alquist and Kilian, 2010).  For the benchmark forecast, the future 

forecast values are simply set to be the values of the last observation. Since I use a random walk 

model without drift and compare predictive accuracy over a horizon, it is possible to work under 

the assumption that the price of crude oil remains the same throughout the 18 months or 6 quarter 

forecast horizon for the no-change forecast. An RMSE ratio below 1 indicates that a MIDAS model 

is more accurate than the no-change forecast model. This suggests that high-frequency data from 

financial markets do contain information which is useful in predicting oil prices.  Section 7 

discusses these results for the horizon of one, three, six, nine, twelve, fifteen and eighteen months 

in the case where the frequency of the dependent variable is monthly. When the frequency of the 

dependent variable is quarterly, the RMSE ratios are provided at quarterly intervals over the 

forecast horizon of one to six quarters. Whether the change in the real price of Brent Crude Oil is 

being measured at a monthly or quarterly frequency, the out-of-sample period January 2015- July 

2016 is fully covered. I discuss the individual forecast results of the specific MIDAS models 

relative to the no-change forecast. I also present the overall accuracy of MIDAS models over the 

no-change forecast using an equal weighted average of the Exponential Almon, PDL and Beta 

MIDAS forecast performance. I also evaluate the directional accuracy of the forecasts with the help 

of the Pesaran Timmerman test. Under this tests, the null hypothesis states that there is no 

directional accuracy. A success ratio is used to report the directional accuracy of the forecasts, 

measuring the number of times the forecast model is able to correctly predict whether the real price 

of crude oil rises or falls. Success ratios higher than 0.5 imply rejecting the null hypothesis of no 

directional accuracy. 
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7. Empirical Results  

This section discusses the predictive power for a range of individual high-frequency predictors in 

determining the real price of crude oil. The theoretical relationship between the predictors and the 

price of oil as well as the most important findings from the current literature were already discussed 

in section 3. It should be taken into consideration that the efficiency of the MIDAS models not only 

depends on the model specification itself but also on the predictive power of the variables since 

some variables have a stronger correlation to oil prices than others. While it is possible to evaluate 

the performance of the parameters using MIDAS regression models for the historical data, currently 

there exists no valid test to confirm the statistical significance of the RMSE reductions for the out-

of-sample forecasts generated (Baumeister et al., 2014). Thus there is no reliable method to confirm 

whether the forecasted model suffers from parameter estimation uncertainty. Before discussing the 

results of the univariate MIDAS models, it should also be mentioned that the results should be 

interpreted as changes measured through logarithmic differences, which is similar to using 

percentage changes. The real price of crude oil is measured by taking the difference between the 

natural logarithm of crude oil prices from one period to the next. The no-change forecast for the 

real price of Brent crude oil also uses the natural logarithmic difference to measure the change in 

the price of oil from one period to the next. The forecast accuracy measured through the RMSE 

shows how far the forecasted values deviate from the actual realized values in the out-of-sample 

period. Finally, the MIDAS forecast performance relative to the no-change forecast presented in 

the form of RMSE ratios is assessed. 

7.1. Forecasting Brent Crude Oil Prices with Futures  

There is a widespread consensus that the oil futures market is a good predictor of the future price 

of oil. It was explained in section 3 that in the absence of risk premium, arbitrage should ensure 

the price of crude oil futures to be the conditional expectation of the spot price of crude oil. The 

historical Brent futures prices and Brent spot prices were converted into their natural logarithm and 

the spread was computed by taking the difference between the two. The spread can be written as:  

                                                                     ∆𝑆𝑝𝑟𝑒𝑎𝑑𝑡 = 𝐹𝑡 −  𝑆𝑡                                                               (16)                       

The change in the spread from one week to the next forms the high-frequency variable 

𝑥𝑡
(𝑤)

introduced in section 5 and is measured for weeks w= 1,2,3,4 for month t. The underlying 
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difference between the Brent futures used in this research and the WTI Crude oil futures modeling 

approach by Baumeister et. al (2014) lies in terms of maturity of the futures contracts. Due to 

limitations in accessing data, the futures contracts used in this paper have a maturity of 1 month, 

while the futures contracts used in the reference paper have a maturity varying from 1 to 18 months. 

I worked under the assumption that the difference between futures contracts with longer maturities 

is modest. Considering the empirical evidence that futures prices with varying maturity dates are 

beginning to move closer together along with the spot prices, this is reasonable assumption to make 

(Behmiri and Manso, 2013).  

Table 1 summarizes the regression estimates of the in-sample data for the MIDAS models with the 

normalized exponential Almon weights, the PDL Almon weights and the Beta weights. With the 

exception of the intercept and the first MIDAS coefficient of the PDL Almon model, all variables 

in the in-sample data are statistically significant. This means that changes in tomorrow’s crude oil 

prices can be explained by the change in the current oil price and by the common slope obtained 

by converting the change in weekly futures spread to the monthly frequency with the help of the 

MIDAS weight coefficients. The current oil price has a positive impact on the tomorrow’s oil price 

at a 5% significance level for all models, which is a reasonable expectation. The exponential Almon 

and Beta models show that the change in the futures spread had an overall negative impact on the 

change in price of crude oil at a 1% and 0% significance level, respectively. This implies that as 

the oil futures and spot spread increases, the price of oil drops. For the PDL Almon specification, 

the impact on crude oil prices is solely explained by the slope of the PDL weights. For this model, 

the second and third MIDAS weight coefficients are statistically significant at 1%. The change in 

the spread can be explained twofold. Firstly, herd behavior among speculators and panic among 

hedgers in the futures market may cause the oil future prices to rise by a higher magnitude than the 

crude oil spot price. Furthermore, a temporary shock triggering a spike in oil prices may cause the 

increase in the futures prices to be of a smaller magnitude than oil spot prices. The effects of such 

a shock however are not expected to last long and should dissipate in the market.  

Table 2 tests the adequacy of the imposed restrictions. The null hypothesis cannot be rejected for 

either model, implying that none of the MIDAS weight restrictions suffer from heteroscedasticity 

and autocorrelation. Hence the restrictions are appropriate. The robust version of the Hah test 

concludes similar results. The Deriv test confirms that the NLS MIDAS problem has converged 
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for all MIDAS specifications. The results of the MIDAS models differ in lag lengths (determined 

using AIC). The purpose of discussing the model fitting is to ensure that the forecasts results are 

reliable, since predictive accuracy of the variables would have little benefit if the NLS problem did 

not converge.  

The figure below depicts the individual and average predictive accuracy (EW MIDAS) of the 

MIDAS models relative to the no-change forecast using the oil futures spread. A true forecast only 

applies to horizon 1. As shown in the graph, none of the MIDAS forecasts beat the no-change 

forecast at horizon 1. The RMSE ratios relative to the no-change forecast are very high at values 

close to 5 for all three MIDAS specifications. For a model to perform better than no-change forecast 

one would expect an RMSE ratio below 1. This however changes for forecast horizons 3, 6, 9, 12, 

15 and 18. The colored lines lying lowest in the 3D graph reveal the superior performing model 

with the largest RMSE reductions. 

                 

Figure 9 

Table 3 in the appendix shows that Beta MIDAS forecasts have the highest RMSE reductions 

relative to the no-change forecast at every horizon between 3 and 18 months. The exponential 

Almon and PDL Almon models give similar results. The gains in accuracy up to 40% for the Beta 

MIDAS specification are substantial at a horizon of 3 months and are maintained at longer horizons 

by all model specifications. The largest RMSE reduction is 57% and is achieved at a forecast 

horizon of 18 months by the PDL Almon and Beta MIDAS models. Both the no-change forecast 

and the MIDAS forecasts predict the direction of change in oil prices correctly at horizon 1. The 
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directional accuracy for the MIDAS models is poor at all other horizons except at the horizon of 

18 months where it performs slightly better compared to the no-change forecast. The directional 

accuracy however is statistically insignificant. The failure of either model to compare favorably 

with the no-change forecast at horizon one is striking and at a first glance indicates that there are 

no gains from employing MIDAS models with futures spread for one period ahead forecasts. 

7.2. Forecasting Brent Crude Oil Prices with Diesel   

The concept of using product spreads to predict changes in the price of crude oil was introduced in 

the literature review on oil price development in section 3. Product price spreads reveal information 

about changes in the demand for petroleum products since they reflect how far the price of diesel 

deviates from the spot price of crude oil. It hereby serves as a topic of interest to examine how this 

may affect expectations regarding the future development of crude oil spot prices. Similar to the 

futures spread model, the weekly U.S. Diesel spot prices and Brent crude oil spot prices were 

converted to their natural logarithm and the spread reflects the price difference between the two 

products.  

Table 1 shows that changes in today’s spot price of crude oil have a positive impact on the change 

in tomorrow’s oil price at a 0% significance level for all three MIDAS model specifications. The 

regression estimates of the in-sample data for the exponential Almon and Beta models show an 

overall negative relationship between the change in the monthly real price of crude oil and the 

change in the real price of the diesel spread at a 0% significance level. The MIDAS coefficients of 

these two models also show the highest statistical significance. For the PDL Almon model, only 

the second MIDAS weight coefficient is statistically significant at a 5 % level.  The regression 

estimates indicate that an increase in the diesel and crude oil spot spread today will cause the spot 

price of crude oil to drop tomorrow. There are many possibilities to explain this observation. One 

argument would be that as the demand for diesel rises, it pushes up the price while the demand for 

crude oil remains unchanged or increases by a smaller magnitude. The resultant increase in the 

product price spread may result in lower demand for crude oil, triggering crude oil prices to fall. 

Testing the adequacy of the restrictions in table 2 confirms convergence of the NLS optimization 

function for all three MIDAS models. However, it is only in the case of PDL Almon specification 

that the MIDAS coefficient restrictions are free of heteroscedasticity and autocorrelation. The null 
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hypothesis for the Exponential Almon and Beta MIDAS specification is rejected quite strongly at 

a 0% significance level, implying that the imposed restrictions are not optimal. Hence I only discuss 

the performance of the PDL Almon specification relative to the no-change forecast in detail.  

The 3D graph below presents the individual and average MIDAS model performance for all three 

weighting schemes relative to the no-change forecast.  Similar to the futures spread, none of the 

MIDAS models outperforms the no-change forecast model at horizon 1. However, gains in 

predictive accuracy are remarkably high after the first month.   

               

Figure 10 

Table 4 in the appendix shows that PDL Almon MIDAS forecasts yield the highest RMSE 

reduction of 74% relative to the no-change forecast at horizon 18. The RMSE reduction at a horizon 

of 3 months is as high as 72% and the RMSE reductions are maintained over the horizons of 3 to 

18 months. Although the exponential Almon and Beta models provide even better results and the 

model parameters are highly significant, the imposed restrictions suffer from heteroscedasticity 

and autocorrelation and therefore the results are not discussed. The majority of the PDL Almon 

MIDAS regression parameters on the other hand are statistically insignificant. In terms of 

directional accuracy, the exponential Almon shows the best results, followed by the Beta model. 

The PDL Almon model also shows high directional accuracy and improvements over the no-

change forecast and the results are statistically significant at forecast horizons of 6, 9, 12, 15 and 

18 months. Directional accuracy for all the models is successful at month 1. It is plausible that U.S. 

diesel prices may not serve as the best proxy for applying the product spread to the Brent market. 
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It can be concluded that the high predictive accuracy of PDL Almon model relative to the no-

change forecast cannot compensate for the lack of statistical significance of the in-sample data and 

that little is lost by ignoring diesel product spreads when forecasting the real price of Brent crude 

oil.   

 

7.3. Forecasting Brent Crude Oil Prices with Oil Stock Market Returns   

In my research I also discussed the claim of oil stocks as a powerful predictor in determining future 

oil prices. One would expect oil stocks to reflect important signals regarding the price of oil, which 

might be weakened when looking at general stock returns from the S&P 500 index, for instance. 

For this purpose, I used the NYSE Arca Oil and Gas Index, which consists of many important 

international oil companies, to see whether it can help predict the real price of oil. The return on 

the oil stocks, recorded at a weekly frequency, was converted to its natural logarithm and the 

difference from one week to the next was used to predict the monthly change in the real price of 

Brent crude oil.  

For all three MIDAS regressions, the model summary in table 1 shows that changes in today’s spot 

price of crude oil have a positive impact on the change in tomorrow’s oil price, however the results 

are statistically insignificant. The regression estimates of the in-sample data for the exponential 

Almon and Beta models show an overall positive relationship between change in the monthly real 

price of crude oil and change in the oil stock returns at a 0% significance level. The MIDAS weight 

coefficients of the Beta model show higher statistical significance at 0% compared to the 

exponential Almon model. The hyper-parameters of the PDL Almon model are also statistically 

significant with the exception of the first weight coefficient which lacks explanatory power in 

determining the price of oil. The positive common slope coefficient, obtained by converting 

changes in oil stock returns from the weekly to the monthly frequency through the MIDAS weight 

coefficients, signal that oil stock prices and oil prices move together. This is in line with most 

empirical findings which show that, in times of high uncertainty, investors tend to shy away from 

both commodities and the stock market and vice versa. This causes the price of oil to move in the 

same direction as the stock market.  

Although the NLS problem converges for the exponential Almon, PDL Almon and Beta models, 

testing the adequacy of the remaining restriction in table 2 shows that all model restrictions suffer 
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from heteroscedasticity and autocorrelation. Since the model suffers from parameter estimation 

uncertainty, it is difficult to assess the reliability of the MIDAS models in terms of their predictive 

accuracy.  

The graph below presents the individual and average MIDAS model performance and it is clear 

that it was not possible to beat the no-change forecast at forecast horizon of 1 month. All models 

predict the direction of change of the oil prices correctly at the first horizon.  The RMSE ratio for 

the MIDAS models is almost 9 compared to the no-change forecast for the one period ahead 

forecast, indicating that the no-change forecast is clearly the better predictor. However predictive 

accuracy improved impressively for forecast horizons of 3, 6, 9, 12, 15 and 18 months. The 3D 

graph in fat shows that the RMSE ratios over the horizons are almost monotonically decreasing for 

all MIDAS specifications.    

              

Figure 11 

Table 5 in the appendix shows that all three MIDAS models provide similar results. Substantial 

improvements in RMSE ratios can be seen between forecast horizons of 3 and 6 months. The largest 

RMSE reductions are achieved for the Beta MIDAS specification. At horizon 3 this models shows 

40% predictive accuracy, which increases to 56% at a forecast horizon of 6 months. The reductions 

in the RMSE ratio are maintained throughout the forecast horizon and biggest improvement of 62% 

can be seen at 18 months. The PDL Almon model is slightly less accurate than the exponential 

Almon and Beta models. Statistically significant improvements in directional accuracy over the 
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no-change forecast can be seen in case of the exponential Almon and Beta model, where the latter 

clearly outperforms all other models through forecast horizons of 3 to 18 months. The PDL Almon 

model has higher directional accuracy only at horizon 18, it however lacks statistical significance. 

However, as mentioned, due to parameter estimation uncertainty and the poor performance at 

forecast horizon of one month there is no reason to prefer either MIDAS model over the no-change 

forecast. 

7.4. Forecasting Brent Crude Oil Prices with U.S. Crude Oil Inventories   

The role of crude oil inventories in capturing the future price of oil is of high importance in 

economic literature since in the short run, oil prices are believed to be more responsive to changes 

in oil inventories as compared to changes in oil production levels. Hence, changes in crude oil 

inventories are expected to reflect changes in expectations about the real price of oil, all else equal 

(Alquist and Kilian, 2010).  Baumeister et. al (2014) showed that using weekly U.S. oil inventories 

was very successful in forecasting the monthly real price of WTI crude oil, particularly at longer 

forecast horizons using unrestricted MIDAS models. Data for global crude oil inventories was not 

available at a weekly frequency and data for global oil production was only available at a quarterly 

or annual frequency. Therefore, the logarithmic difference of U.S. weekly crude oil inventories had 

to be used to predict the change in the monthly real price of Brent crude oil.   

Table 1 summarizes the regression results for the exponential Almon, PDL Almon and Beta 

MIDAS models. All models suffer from parameter estimation uncertainty. The first lag of Brent 

crude oil, the common slope coefficient and most of the MIDAS weight coefficients are statistically 

insignificant. The failure of this model does not come as a surprise since the international crude oil 

benchmark has shifted to the Brent over the recent years and currently there is an oil oversupply in 

the U.S. Thus, it is not realistic to expect U.S. oil inventories to contain explanatory power which 

may influence the future price of Brent crude oil.  

Furthermore, in table 2 one can see that while the MIDAS coefficient restrictions are adequate for 

all three MIDAS models, the non-linear least square problem fails to converge for the Beta MIDAS 

specification. Hence, only the exponential Almon and PDL MIDAS model forecasts can be 

discussed although these results lack explanatory power. Unfortunately, these results can be 

regarded as irrelevant.  



 

48 Oil Prices: Analysis of High-Frequency Data 

The graph below shows that the exponential Almon and PDL Almon models both perform very 

poorly relative to the no-change forecast at a horizon of 1 month. Big improvements in predictive 

accuracy can be seen between months 3 and 6. After these horizons the forecast improvements 

remain constant.  

 

Figure 12 

Table 6 shows that the largest RMSE reduction of 52% relative to the no-change forecast is realized 

at a forecast horizon of 18 months by the exponential Almon and PDL Almon MIDAS models. At 

a forecast horizon of 3 months, RSME reductions are moderate at 17% for both models. Between 

horizons of 6 and 15 months, predictive accuracy of the MIDAS models improves and the RMSE 

ratio reductions become constant at about 45%. While the no-change forecast shows superior 

performance at a horizon of 1 month, there is no difference between MIDAS and no-change models 

in terms of directional accuracy performance for the one-step ahead forecast. Directional accuracy 

of the MIDAS models compared to the no-change forecast at other horizons is poor. Modest 

improvements can be seen at forecast horizon 18, however only the success ratio for the exponential 

Almon specification is statistically significant at 67%.  Hence there is no reason to prefer one 

MIDAS specification over the other. One may conclude that trying to use U.S. crude oil inventories 

to predict changes in the real price of Brent crude oil has no benefit, whatsoever.  
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7.5. Forecasting Brent Crude Oil Prices with Industrial Commodity Prices   

It is also worthwhile to explore the predictive relationship between changes in non-oil commodities 

and changes in the real price of crude oil for two reasons. Firstly, a fraction of the observed 

volatility in oil prices is said to stem from the spot prices of industrial commodities, all else equal. 

Secondly, price movements of many energy commodities have started to converge over the years 

due to increased financial activity in both oil and non-oil or industrial commodity futures markets. 

The advantage of using non-oil commodities in forecasting oil prices is that their prices are 

determined through more transparent and foreseeable variations in global economic activity. This 

may prove to be useful in forecasting oil prices, especially in times of low volatility. I computed 

the change in the global metal prices and global agricultural raw materials prices, respectively, by 

taking the natural logarithmic difference between one month and the next. These explanatory 

variables were then implemented into two separate univariate MIDAS models. 

The MIDAS regression summary results, using the global metal index, in table 1 show high 

statistical significance for the exponential Almon model followed by the Beta model. The 

parameters of the PDL Almon specification lack statistical significance. In the case of the 

exponential Almon specification, the change in the current price of oil has a positive impact on the 

change on tomorrow’s crude oil price at a 1% significance level. Furthermore, the common slope 

coefficient is positive, implying that change in monthly metal prices has a positive impact on the 

change in the quarterly real price of crude oil at a 1% significance level. The MIDAS weight 

coefficients are also statistically significant at a 5% level. The regression results for the Beta 

MIDAS specification are similar, with the exception of changes in the current quarterly real price 

of crude oil, which lacks explanatory power. This gives good reason to suspect that oil prices 

variations can be explained through variations in other important non-oil commodities and that 

these prices move together. 

The regression summary of the in-sample data is less promising in the case of the agricultural raw 

materials index. The exponential Almon and PDL Almon model are, by large, statistically 

insignificant. The Beta model finds the intercept to be statistically significant at a 10% level. The 

common slope coefficient and the first MIDAS weight coefficient also have high explanatory 

power at a 0% significance level. In line with the literature, a positive relationship between 
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movements in oil prices and agricultural raw materials prices can be confirmed through the Beta 

MIDAS specification. 

The Deriv test in table 2 shows that the NLS problem converges for all MIDAS specifications and 

that none of the MIDAS restrictions suffer from heteroscedasticity or autocorrelation. This holds 

true for both global metal prices and the global agricultural price MIDAS forecasts. Due to a lack 

of statistical significance for most models, only the more promising MIDAS results will be 

discussed.   

The 3D graph below compares the performance of the individual MIDAS forecasts using monthly 

global metal prices relative to the no-change forecast. It can be seen that the exponential Almon 

model outperforms the Beta and PDL Almon model. In terms of directional accuracy for the one- 

step ahead forecast, all models predict the direction of change in oil prices correctly. 

 

 

Figure 13 

Table 7 shows that while none of the MIDAS specifications outperform the no-change forecast at 

horizon 1, the RMSE reduction at a forecast horizon of 2 quarters is 32% in the case of the 

exponential Almon MIDAS model. The gains in predictive accuracy are maintained at forecast 

horizons of 2, 3, 4 and 6 quarters. In quarter 5 however, one can see a decline in the predictive 

accuracy with an RMSE reduction of only 16%. A similar pattern is identified for the Beta and 

PDL MIDAS models. Directional accuracy of the MIDAS models compared to the no-change 
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forecast is worse and statistically insignificant. Although the success ratio is greater than 0.5, the 

null hypothesis of no directional accuracy cannot be rejected.   

When forecasting the changes in the quarterly real price of crude oil using changes in the monthly 

agricultural raw materials prices, the graph below shows that there is no reason to prefer one 

MIDAS model over the other. As in the case of all variables till now, the MIDAS models for using 

non-oil commodities were also not able to outperform the no-change forecast for the one-step ahead 

forecasts.  

 

Figure 14  

Table 9 compares the performance of the exponential Almon, the PDL Almon and Beta MIDAS 

models. However, due to parameter estimation uncertainty I only discuss the performance of the 

Beta model relative to the no-change forecast. The largest RMSE reduction is 20% at a horizon of 

2 quarters. At horizons 3 and 4 quarters. a deterioration in the RMSE reductions at 10% is evident. 

At the forecast horizon over 5 quarters the no-change forecast clearly performs better than the Beta 

MIDAS model. Directional accuracy was achieved successfully for all models over the first 

forecast horizon. In terms of directional accuracy for the remaining horizons, the findings are the 

same as in the case of forecasting changes in crude oil prices using the changes in the global metal 

index. The Pesaran Timmerman test results are statistically insignificant and perform poorly 

relative to the no-change forecast. Since improvements in predictive accuracy are erratic over 

longer forecast horizons, one may conclude that using agricultural raw materials for predicting 

crude oil prices is only beneficial at very short forecast horizons, if at all. 
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7.6. Forecasting Brent Crude Oil Prices with EURIBOR Interest Rates    

Last but not least, the literature review discussed the predictive relationship between interest rates 

and the real price of oil. An inverse correlation has been found between changes in the interest rate 

and changes in the spot price of crude oil. Furthermore, interest rates also effect the exchange rate 

and purchasing power of countries, which in turn has varying implications for oil importing and 

exporting countries. I investigate this predictive relationship using MIDAS models. Since the 

interest rates were already in percentages, changes in the monthly interest rate were measured by 

simply taking the difference in the EURIBOR rates from one month to the next.    

The MIDAS regressions in table 1 show that changes in tomorrow’s quarterly real price of crude 

oil are positively affected by changes in the current real price of crude oil at a 5% significance 

level. However the exponential Almon and the Beta MIDAS models both suffer from parameter 

estimation uncertainty with most of the MIDAS coefficients being statistically insignificant. Never 

the less, a negative relationship between the common slope coefficient (representing the higher 

frequency interest rate changes converted to the lower frequency) and the low frequency crude oil 

price changes is evident. This is in line with the findings in section 3. It is only in the case of the 

PDL Almon specification that the model is statistically significant.  

Table 2 tested the adequacy of the MIDAS restrictions. While all three MIDAS models found 

convergence for the NLS optimization function, the null hypothesis stating that the MIDAS 

coefficient restrictions are adequate was rejected strongly at a 0% significance level in the case of 

the exponential Almon and Beta MIDAS augmentations. For the PDL Almon model the restrictions 

were adequate and did not suffer from autocorrelation and heteroscedasticity. Hence I focus on 

comparing the performance of the PDL Almon MIDAS model relative to the no-change forecast 

in predicting changes in the real price of crude oil.  

The red line in the 3D graph below shows that the PDL Almon MIDAS model is not better than 

the no-change forecast at horizon 1. The second quarter sees improvements in predictive accuracy 

relative to the no-change forecast, these are however not sustainable through all the quarters of the 

forecast horizon.  
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Figure 15 

In table 9 of the appendix one can see that the PDL Almon MIDAS model beats the no-change 

forecast only at quarters 2 and 6 of the forecast horizons. The gains in predictive accuracy over 

longer forecast horizons are minimal. Over a horizon of 2 quarters the improvement in predictive 

accuracy is 14% and at horizon 6 the RMSE reduction rises to 16%. In the first quarter, all MIDAS 

models and the no-change model predict the direction of change in crude oil spot prices 

successfully. For the remaining horizons, MIDAS forecasts show low and statistically insignificant 

directional accuracy compared to the no-change forecast through quarters 2, 3, 4 ,5 and 6. 

Baumeister et al. (2014) showed similar results and suggested that while theoretically there is a 

strong link between the oil prices and interest rates, from a quantitative perspective, one should be 

skeptical when linking oil price fluctuations to interest rates. 

 

8. Analysis in Context: Failure of MIDAS Models at the First Forecast 

Horizon  

The preceding section demonstrated that the no-change forecast is the most accurate predictor of 

the change in the real price of crude oil at the first forecast horizon which is the one-step ahead or 

true forecast. In case of the one-step ahead forecasts, none of the financial and energy market high- 

frequency variables, including promising predictors such as an oil futures spread and global metal 

prices succeed in improving predictive accuracy compared with the random walk (without drift) 

model.  This section investigates the reason behind the failure of the MIDAS models at the first 
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forecast horizon. I open my argument with the claim that the type and impact of the news influences 

forecasting volatility over both, single and multiple forecast horizons. Chen and Ghysels (2011) 

show that sudden very good or bad news, makes it difficult to predict the volatility in the S&P 500 

futures market with the latter having a more severe impact on the forecast performance. For this 

purpose, they split the in-sample data into two evaluation periods to produce volatility forecasts 

using different types of forecasting models including a semi parametric MIDAS regression model 

and an asymmetric GARCH model. The first evaluation period produced forecasts for a rather calm 

out-of-sample period and the second evaluation period ended right before the brink of the financial 

crises of 2008. They showed that the differences in predicted volatility for the out-of-sample period 

and actual realized volatility were rather small during calm times. However, during the crises the 

root mean square forecast errors were 20 times larger in comparison to the evaluation period used 

to forecast results in calm times. They also showed that whilst all forecast models performed poorly 

where the evaluation period ended right before the beginning of the financial crises, differences 

between the type of forecasting model used were a lot more pronounced. The semi parametric 

MIDAS models did not fare as well as the simple asymmetric GARCH models during periods of 

extremely good and bad news (Chen and Ghysels, 2011).  

Having said that bad news tends to have a more severe impact on forecasts, the in-sample period 

used for the forecast evaluation in this thesis ends in December 2014. It was just after mid-June 

2014 that the real price of Brent crude oil began to drop steadily. However, a real crash where crude 

oil spot prices almost fell by half, did not occur until December 2014. The no-change forecast 

predicts the change in the crude oil price for January 2015 to be equal to the drop in crude oil prices 

from November to December 2014. Thus the no-change forecast was more responsive in capturing 

the effects of the oil price crash compared to the MIDAS forecasts which use 20 years of evaluation 

period and changes in the high-frequency financial market data over several lags to predict the 

change in the real price of oil for January 2015. The rationale for using such a long evaluation 

period is to minimize the risk of spurious forecasts. Nevertheless, I wanted to confirm the finding 

whether the RMSE ratio at the first forecast horizon was unusually high as a result of the unforeseen 

oil price crash or if there was ground to suspect a general failure of the MIDAS models 

implemented in this research. For this purpose, I reproduced the MIDAS forecasts based on a 

different evaluation period which roughly coincides with the evaluation period used by Baumeister 



 

55 Oil Prices: Analysis of High-Frequency Data 

et al. (2014) in the reference paper. The out-of-sample period for which the new MIDAS forecasts 

were produced was calm. It begins in January 2013 and ends in June 2014. The results are 

summarized in tables 12 to 18 of the appendix and will be discussed shortly.  But first, another 

point open for discussion is the impact of bad news in forecasting volatility over multiple forecast 

horizons. One might question why the MIDAS predictive accuracy begins to improve substantially 

and outperforms the no-change forecast model after forecast horizons exceeding 1 period. The 

explanation is straightforward but is only relevant where an unforeseeable upward or downward 

price trend after the end of a forecast evaluation period is identified. As explained in the section on 

the forecast methodology, the forecasts for the remaining horizons should be interpreted as pseudo 

forecasts. Generating pseudo forecasts for the out-of-sample period of January 2015- June 2016 

implies that we assume all monthly or quarterly values realized during this period to be unknown. 

Implicitly, the random walk model without drift is not revised at every period and it will project 

the change in the price of oil to be constant through the entire length of the out-of-sample period. 

However, the price of oil continued to drop through 2015 which resulted in very large forecast 

errors, even for the no-change model. Furthermore, the prediction errors over longer forecast 

horizons comprise of the cumulative mean square errors over time, which further increases the 

RMSE values of the no-change forecasts. Hence, the effect of high predictive inaccuracy at horizon 

1, diminished as the forecast horizons become longer and as the prediction errors for the random 

walk model also increased.  

Table 10 in the appendix summarizes the MIDAS regression results and table 11 tests the adequacy 

of the restrictions using a slightly shorter evaluation period and a calmer out-of-sample period. The 

length of the out-of-sample period remains unchanged, whereas the in-sample period beginning in 

January 1995 ends in December 2012. In terms of predictive accuracy, the MIDAS estimates for 

the one-step ahead forecast (at horizon 1) perform substantially better compared to the empirical 

results discussed in section 7. In fact, some of the MIDAS models outperformed the no-change 

forecast model at the first forecast horizon. I would briefly like to discuss the performance of those 

MIDAS models, for which the regression estimates were statistically significant and where the 

adequacy of the restrictions could be confirmed.  

With the exception of the one-step ahead forecasts, predicting changes in the real price of crude oil 

with the help of the futures spread proved to be promising. Table 12 in the appendix shows that, 
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the exponential Almon and PDL Almon MIDAS forecasts yield high RMSE reductions relative to 

the no-change forecast between horizons of 3 and 18 months. However, the most significant gains 

in accuracy, as high as 32% for the PDL model and 30% for the exponential Almon model, were 

achieved between forecast horizons of 3 and 6 months. At these horizons, the gains in directional 

accuracy of the forecasts were as high as 83% and statistically significant.   

Very impressive improvements in predictive accuracy were shown using diesel product spreads to 

forecast changes in the real price of crude oil (in table 13). The exponential Almon model showed 

the most impressive results with an RMSE reduction as high as 83% for the first forecast horizon. 

For the remaining forecast horizons, the RMSE reductions were less impressive, but sustainable 

between 20 and 30%. The gains in directional accuracy between horizons of 3 and 6 months were 

statistically significant and high at 83%. Although the directional accuracy of the exponential 

Almon MIDAS model declined over longer forecast horizons, it still showed statistically 

significant and superior performance at 67% compared to the no-change model.  

Using oil stocks to forecast oil prices also paid off between forecast horizons of 1 and 9 months. 

Table 14 shows that the PDL Almon model specification beat the no-change model for the one-

step ahead forecasts with 74% predictive accuracy. However, after the first forecast horizon, there 

was a rapid decline in the predictive accuracy as well as directional accuracy. The RMSE 

reductions fluctuated between 8% and 16% for forecast horizons of 3, 6 and 9 months. The 

directional accuracy dropped from 100% to 78% in this period, but remained statistically 

significant. For the remaining forecast horizons, directional accuracy dropped steadily and the 

MIDAS models failed to outperform the no-change forecast.  This is in line with the finding by 

Chen (2014) who showed that oil-sensitive stock price indices are powerful tools for predicting 

crude oil prices at 1 month horizons relative to the no-change forecast. Baumeister et al. (2014) 

also showed that there are advantages in predicting crude oil prices using oil stocks, but these gains 

are not very high over multiple forecast horizons.  

The MIDAS regression results for the crude oil inventory model were statistically insignificant, 

which was in line with my expectation. As far as the forecast models relying on non-oil 

commodities are concerned, although the regression estimates were partially significant, either the 

NLS problem did not converge or the MIDAS coefficient restrictions were not adequate. Hence, 
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due to parameter estimation uncertainty, these results (available in tables 15-17) were not very 

helpful. Last but not least, the results for interest rates (in table 18) as a predictor, were in line with 

the findings of the reference paper by Baumeister et al. (2014). That is, the MIDAS forecasts 

performed poorly relative to the no-change forecast with RMSE ratios above one and the forecasts 

typically lacked directional accuracy. 

Comparing the forecast results in tables 12-18 to the results in tables 3-9 of the appendix, it can be 

concluded that working with MIDAS models using financial data harbors advantages as well as 

disadvantages. On the one hand, we now know that it is largely due to the unexpected crash in 

world oil markets, that the MIDAS forecasts were highly inaccurate compared to the no-change 

forecasts at horizon 1. While this is good news, it is inevitably accompanied by some bad news- 

namely, that in times of extreme volatility, MIDAS models should not be favored since they do not 

prove to be reliable in predicting movements in the oil market. While forecasting with any model 

will lead to large prediction errors in times of sudden and extreme volatility, simple but powerful 

forecast models such as the random walk model without drift still perform better in such times. 

 

9. Conclusions  

In order to forecast oil prices, I implemented the original MIDAS models using a range of potential 

high-frequency financial and energy market predictors. The relationship between oil and the oil 

futures market and non-oil commodities proved to be quite promising. Unfortunately, none of the 

MIDAS models were able to beat the no-change forecast model at the first forecast horizon. 

However, it was shown that there are benefits of using univariate MIDAS models over multiple 

forecast horizons. Forecasting crude oil price movements with movements in the crude oil futures 

spread showed high predictive accuracy for the MIDAS models. The largest RMSE reduction of 

57% was achieved at the horizon of 18 months by the PDL Almon and Beta MIDAS models. The 

gains in directional accuracy were rather modest at 55% and statistically insignificant. The 

exponential Almon model also produced promising results when forecasting changes in the price 

of crude oil with the help of global metal prices. With the exception of horizon 5, the RMSE 

reductions between horizons of 2 and 6 quarters were sustainable at 32%. While these forecasts 
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achieved high directional accuracy of 80%, so did the no-change forecast model. In terms of 

individual model performance there is no reason to prefer one MIDAS specification over the other. 

However, achieving convergence for the non-linear least square optimization function using a PDL 

Almon MIDAS augmentation is easier. Finding the appropriate start values for the exponential 

Almon and Beta lag specifications, so that the optimization function can find a local minimum is 

very challenging and tedious. Hence, implementing MIDAS models successfully, is anything but 

straightforward.  

Yet, the overall failure of MIDAS models can only partially be attributed to the unforeseen oil price 

crash of 2014. Although most of the MIDAS forecasts performed better than the no-change forecast 

over multiple forecast horizons, the major problem was the presence of parameter estimation 

uncertainty, which causes me to deny the validity of the forecasts for most of predictors. This was 

because most of the MIDAS regression estimates for the in-sample data lacked statistical 

significance and in many cases the MIDAS coefficient restrictions suffered from autocorrelation 

and heteroscedasticity. Similar challenges were faced whilst using a different forecast evaluation 

period. In the context of this research and looking at the one-step ahead predictive accuracy of 

MIDAS models, it can be concluded that high-frequency financial and energy market data do not 

appear to have a very significant bearing on improving forecast performance in the short run. 

Although the high-frequency data may contain information rich signals, it is not powerful enough 

to compensate for the additional noise, which is said to be the cost of using high-frequency data in 

forecasting.  

However, this should not come as a surprise, since the OPEC till date remains the main influencer 

of oil prices. Even if the price fluctuations caused by changes in OPEC’s production decisions in 

oil markets are short lived, they cause significant unrest in the oil futures market by triggering panic 

among hedgers and worse, encouraging herd behavior among speculators. In fact, most of the 

trading in the oil futures market is driven by non-commercial trade on behalf of speculators. Hence, 

the price of oil is largely determined in the oil futures market, rather than by traditional 

macroeconomic demand and supply mechanisms. In the short run, the higher the noise is being 

made about an event, the higher will its effect be on the price of crude oil. But this effect may 

vanish quickly and result in inaccurate forecasts when relying on mixed-frequency data.    

Moreover, although macroeconomic variables such as interest rates or global economic GDP 

growth play a role in determining the price of crude oil, they alone cannot be expected to explain 
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the incessant oil price fluctuations. In recent years rising concerns about shortfalls in global oil 

supply, political conflicts and terrorism in the Middle East, environmental disasters and increased 

investment in alternative energy fuels have entered the picture as important factors. Hence, the 

determinants of global oil prices today extend beyond traditional macroeconomic fundamentals 

and OPEC’s cartel behavior. Without doubt, establishing a clear link between these determinants 

and measuring their magnitude and implications for the future price of oil is complicated and 

continues to be a challenge.   

 

Limitations and Scope for Future Research  

The scope of the master’s thesis was limited by certain aspects, the main one being restrictions in 

access to data. Initially, the intention was to use European diesel prices to measure product spreads. 

But the unavailability of this data, prior to 2005, would have meant comprising on the forecast 

evaluation period and risking spurious forecast results. While, the disappointing results for U.S. 

crude oil inventories did not come as a surprise, the fact remains that the inclusion of weekly U.S. 

crude oil inventory data in the MIDAS models documented the best improvements in forecast 

accuracy in the reference paper by Baumeister et al (2014). Confirming their finding by using 

global crude oil inventories would have been a reinforcing and an important contribution to existing 

literature on forecasting oil prices using MIDAS models. However, the lack of high-frequency data 

for global crude oil inventories hindered the attempt. 

Another rather plausible limitation or weakness remains that a univariate model cannot be expected 

to outperform other models at each horizon. Furthermore, the variables differ in terms of 

importance in forecasting the changes in crude oil prices. Perhaps a combination of forecasts using 

multiple variables and models would yield more robust and accurate results. It is therefore 

inaccurate to state that the univariate models used in this paper are the best or worst models to 

forecast changes in oil prices, without having implemented a multivariate MIDAS model. Most 

researchers focus on one high-frequency predictor at a time while forecasting oil prices with 

MIDAS models. It seems multivariate MIDAS modeling for oil prices did not gain popularity for 

two reasons. First, the latter approach is considered to be more appealing in the context of 

forecasting macroeconomic variables. And second, looking at the literature on oil price forecasts 

using MIDAS models it becomes evident that only a small pool of potential high-frequency 
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predictors is relevant enough to be included in the forecasts. Since the price of oil is determined in 

global oil markets, the majority of financial and energy market variables fail to show large, 

statistically significant and systematic improvements in predictive accuracy (Baumeister et al., 

2014).  

Nevertheless, the findings presented in this research can be used as a strong foundation for 

understanding the role of the individual high-frequency financial data in forecasting crude oil price 

movements in conjuncture with the mixed-data sampling approach. For future endeavours, the most 

promising high-frequency financial and energy market predictors such as the oil futures spread, 

diesel product spreads, oil stock returns, crude oil inventories and important non-oil commodity 

indices could be tested together in a multivariate mixed-data sampling model.  
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10.  Appendix 
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Test value df p-value Success value df p-value Success value df p-value Success

Variable 

Hah 1.344 1 0.246 2.377 1 0.123 10.712 13 0.635

Hahr 0.982 1 0.322 2.529 1 0.112 13.304 13 0.425

Deriv T T T

Variable 

Hah 25.416 5 0.000* 0.486 1 0.486 60.343 9 0.000*

Hahr 32.089 5 0.000* 0.405 1 0.525 50.095 9 0.000*

Deriv T T T

Variable 

Hah 16.550 5 0.005* 67.001 13 0.000* 35.385 9 0.000*

Hahr 15.508 5 0.008* 88.713 13 0.000* 24.791 9 0.003*

Deriv T T T

Variable 

Hah 8.106 13 0.837 5.869 9 0.753 5.173 9 0.819

Hahr 10.900 13 0.619 7.121 9 0.625 6.958 9 0.642

Deriv T T F

Variable 

Hah 2.168 3 0.538 13.024 9 0.162 12.143 9 0.205

Hahr 2.487 3 0.478 12.053 9 0.210 11.004 9 0.276

Deriv T T T

Variable 

Hah 2.316 3 0.509 8.441 9 0.490 3.573 6 0.734

Hahr 1.963 3 0.580 18.305 9 0.032 3.072 6 0.800

Deriv T T T

Variable 

Hah 39.133 6 0.000* 3.827 3 0.281 39.192 6 0.000*

Hahr 31.415 6 0.000* 7.758 3 0.051 27.520 6 0.000*

Deriv T T T

T: NLS optimization problem converged; F: NLS optimization problem did not converge

*Rejection of null hypothesis (H0: functional constraint on MIDAS coefficients is adequate)

EURIBOR Interest Rates 

Table 2: Forecasting the Monthly Real Price of Brent Crude Oil with Financial & Energy Market Data

Evaluation Period: January 1995 - December 2014

Testing the Adequacy of Restrictions

Exponential Almon PDL Almon Beta

Brent Futures Spread

Diesel Spread

ARCA Oil & Gas Returns on Stock

U.S. Commericial & SPR Crude Oil Inventories

Global Metal Index

Global Agricultural Raw Materials Index
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Horizon 

(Months) RMSE Ratio Success Ratio RMSE Ratio Success Ratio RMSE Ratio Success Ratio

1 5.480 1.000 5.568 1.000 4.894 1.000

3 0.654 0.333 0.631 0.333 0.598 0.333

6 0.510 0.333 0.495 0.333 0.474 0.333

9 0.540 0.333 0.522 0.333 0.509 0.333

12 0.538 0.417 0.525 0.417 0.515 0.417

15 0.509 0.467 0.501 0.467 0.497 0.467

18 0.442 0.556 0.435 0.556 0.431 0.556

Predictive Accuracy measured via RMSE Ratio =  RMSE of MIDAS/ RMSE of No Change Forecast

Directional Accuracy measured via success ratio of Pesaran Timmerman test 

Statistically significant improvements in directional accuracy marked using *(5% significance level) and **(10% significance level)

Boldface indicates improvements over the No Change Forecast

Exp Almon PDL Almon Beta 

Table 3: Forecasting the Monthly Real Price of Brent Crude Oil with Brent Futures Spead 

Evaluation Period: January 1995 - December 2014

MIDAS Results

Horizon 

(Months) RMSE Ratio Success Ratio RMSE Ratio Success Ratio RMSE Ratio Success Ratio

1 3.495 1.000 3.407 1.000 3.026 1.000

3 0.191 1.000 0.181 1.000 0.164 1.000

6 0.159 1.000** 0.166 0.833** 0.135 1.000**

9 0.157 1.000* 0.162 0.778* 0.140 0.889*

12 0.160 1.000* 0.160 0.833* 0.149 0.917*

15 0.147 1.000* 0.176 0.867* 0.138 0.933*

18 0.130 1.000* 0.159 0.889* 0.122 0.944*

Predictive Accuracy measured via RMSE Ratio =  RMSE of MIDAS/ RMSE of No Change Forecast

Directional Accuracy measured via success ratio of Pesaran Timmerman test 

Statistically significant improvements in directional accuracy marked using *(5% significance level) and **(10% significance level)

Boldface indicates improvements over the No Change Forecast

Exp Almon

Table 4: Forecasting the Monthly Real Price of Brent Crude Oil with Diesel Spead 

Evaluation Period: January 1995 - December 2014

MIDAS Results

PDL Almon Beta 

Horizon 

(Months) RMSE Ratio Success Ratio RMSE Ratio Success Ratio RMSE Ratio Success Ratio

1 9.130 1.000 8.830 1.000 8.344 1.000

3 0.658 0.667 0.659 0.330 0.603 1.000*

6 0.475 0.833* 0.487 0.500 0.438 1.000*

9 0.480 0.778* 0.490 0.556 0.460 0.889*

12 0.471 0.750* 0.499 0.500 0.456 0.833*

15 0.440 0.733* 0.485 0.533 0.427 0.800*

18 0.390 0.778* 0.426 0.611 0.381 0.833*

Predictive Accuracy measured via RMSE Ratio =  RMSE of MIDAS/ RMSE of No Change Forecast

Directional Accuracy measured via success ratio of Pesaran Timmerman test 

Statistically significant improvements in directional accuracy marked using *(5% significance level) and **(10% significance level)

Boldface indicates improvements over the No Change Forecast

Evaluation Period: January 1995 - December 2014

MIDAS Results

Exp Almon PDL Almon Beta 

Table 5: Forecasting the Monthly Real Price of Brent Crude Oil with Return on ARCA Oil & Gas Stocks
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Horizon 

(Months) RMSE Ratio Success Ratio RMSE Ratio Success Ratio RMSE Ratio Success Ratio

1 9.300 1.000 7.956 1.000 7.723 1.000

3 0.734 0.333 0.718 0.333 0.706 0.333

6 0.538 0.500 0.527 0.500 0.531 0.333

9 0.558 0.556 0.551 0.556 0.564 0.444

12 0.560 0.583 0.558 0.417 0.566 0.417

15 0.555 0.600 0.550 0.467 0.561 0.400

18 0.487 0.667* 0.483 0.556 0.494 0.500

Predictive Accuracy measured via RMSE Ratio =  RMSE of MIDAS/ RMSE of No Change Forecast

Directional Accuracy measured via success ratio of Pesaran Timmerman test 

Statistically significant improvements in directional accuracy marked using *(5% significance level) and **(10% significance level)

Boldface indicates improvements over the No Change Forecast

Table 6: Forecasting the Monthly Real Price of Brent Crude Oil with U.S. Crude Oil Inventories

Evaluation Period: January 1995 - December 2014

MIDAS Results

Exp Almon PDL Almon Beta 

Horizon 

(Quarters) RMSE Ratio Success Ratio RMSE Ratio Success Ratio RMSE Ratio Success Ratio

1 3.133 1.000 3.678 1.000 3.536 1.000

2 0.677 0.500 0.773 0.500 0.702 0.500

3 0.710 0.667 0.882 0.667 0.771 0.667

4 0.681 0.750 0.840 0.750 0.730 0.750

5 0.842 0.800 1.045 0.600 0.926 0.800

6 0.678 0.667 0.746 0.667 0.715 0.667

Predictive Accuracy measured via RMSE Ratio =  RMSE of MIDAS/ RMSE of No Change Forecast

Directional Accuracy measured via success ratio of Pesaran Timmerman test 

Statistically significant improvements in directional accuracy marked using *(5% significance level) and **(10% significance level)

Boldface indicates improvements over the No Change Forecast

Table 7: Forecasting the Quarterly Real Price of Brent Crude Oil with Global Metal Index

Evaluation Period: January 1995 - December 2014

MIDAS Results

Exp Almon PDL Almon Beta 

Horizon 

(Quarters) RMSE Ratio Success Ratio RMSE Ratio Success Ratio RMSE Ratio Success Ratio

1 4.420 1.000 4.469 1.000 4.349 1.000

2 0.811 0.500 0.835 0.500 0.801 0.500

3 0.892 0.667 0.892 0.667 0.901 0.667

4 0.868 0.750 0.872 0.750 0.889 0.750

5 1.163 0.600 1.101 0.600 1.228 0.600

6 0.814 0.667 0.764 0.667 0.844 0.667

Predictive Accuracy measured via RMSE Ratio =  RMSE of MIDAS/ RMSE of No Change Forecast

Directional Accuracy measured via success ratio of Pesaran Timmerman test 

Statistically significant improvements in directional accuracy marked using *(5% significance level) and **(10% significance level)

Boldface indicates improvements over the No Change Forecast

Table 8: Forecasting the Quarterly Real Price of Brent Crude Oil with Global Agricultural Raw Materials Index

Evaluation Period: January 1995 - December 2014

MIDAS Results

Exp Almon PDL Almon Beta 
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Horizon 

(Quarters) RMSE Ratio Success Ratio RMSE Ratio Success Ratio RMSE Ratio Success Ratio

1 4.376 1.000 4.749 1.000 4.385 1.000

2 0.861 0.500 0.857 0.500 0.858 0.500

3 1.040 0.333 1.035 0.333 1.036 0.333

4 1.001 0.500 1.000 0.500 0.999 0.500

5 1.119 0.600 1.128 0.600 1.119 0.600

6 0.843 0.500 0.821 0.500 0.841 0.500

Predictive Accuracy measured via RMSE Ratio =  RMSE of MIDAS/ RMSE of No Change Forecast

Directional Accuracy measured via success ratio of Pesaran Timmerman test 

Statistically significant improvements in directional accuracy marked using *(5% significance level) and **(10% significance level)

Boldface indicates improvements over the No Change Forecast

MIDAS Results

Exp Almon PDL Almon Beta 

Table 9: Forecasting the Quarterly Real Price of Brent Crude Oil with EURIBOR Interest Rates

Evaluation Period: January 1995 - December 2014
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Test value df p-value Success value df p-value Success value df p-value Success

Variable 

Hah 11.093 9 0.269 1.710 1 0.191 15.596 5 0.008*

Hahr 17.361 9 0.043* 1.997 1 0.158 11.793 5 0.038*

Deriv T T T

Variable 

Hah 0.048 1 0.827 0.528 1 0.467 58.554 9 0.000*

Hahr 0.050 1 0.824 0.468 1 0.494 55.529 9 0.000*

Deriv T T T

Variable 

Hah 15.461 5 0.009* 9.552 5 0.089 31.932 9 0.000*

Hahr 15.124 5 0.001* 7.612 5 0.179 23.850 9 0.005*

Deriv F T T

Variable 

Hah 4.544 5 0.474 2.253 5 0.813 9.111 13 0.765

Hahr 5.532 5 0.354 3.191 5 0.671 12.135 13 0.517

Deriv F T F

Variable 

Hah 3.916 6 0.688 3.555 3 0.314 4.263 6 0.641

Hahr 3.388 6 0.759 3.260 3 0.353 4.305 6 0.636

Deriv F T F

Variable 

Hah 3.066 3 0.382 3.572 3 0.312 2.332 3 0.507

Hahr 2.951 3 0.399 3.517 3 0.319 2.564 3 0.464

Deriv T T T

Variable 

Hah 40.501 6 0.000* 3.227 3 0.358 40.541 6 0.000*

Hahr 32.234 6 0.000* 6.682 3 0.083 28.371 6 0.000*

Deriv T T T

T: NLS optimization problem converged; F: NLS optimization problem did not converge

EURIBOR Interest Rates 

*Rejection of null hypothesis at 5%  sig. level (H0: functional constraint on MIDAS coefficients is adequate)

Brent Futures Spread

Diesel Spread

ARCA Oil & Gas Returns on Stock

U.S. Commericial & SPR Crude Oil Inventories

Global Metal Index

Global Agricultural Raw Materials Index

Table 11: Forecasting the Monthly Real Price of Brent Crude Oil with Financial & Energy Market Data

Evaluation Period: January 1995 - December 2012

Testing the Adequacy of Restrictions

Exponential Almon PDL Almon Beta
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Horizon 

(Months) RMSE Ratio Success Ratio RMSE Ratio Success Ratio RMSE Ratio Success Ratio

1 1.663 0.000 1.612 0.000 1.438 0.000

3 0.831 0.667 0.801 0.667 0.915 0.667

6 0.702 0.833* 0.678 0.667** 0.807 0.500

9 0.699 0.778* 0.691 0.667** 0.783 0.556

12 0.829 0.667 0.791 0.583 0.815 0.583

15 0.917 0.600 0.884 0.533 0.871 0.533

18 0.937 0.556 0.899 0.556 0.871 0.556

Predictive Accuracy measured via RMSE Ratio =  RMSE of MIDAS/ RMSE of No Change Forecast

Directional Accuracy measured via success ratio of Pesaran Timmerman test 

Statistically significant improvements in directional accuracy marked using *(5% significance level) and **(10% significance level)

Boldface indicates improvements over the No Change Forecast

Table 12: Forecasting the Monthly Real Price of Brent Crude Oil with Brent Futures Spead 

Evaluation Period: January 1995 - December 2012

MIDAS Results

Exp Almon PDL Almon Beta 

Horizon 

(Months) RMSE Ratio Success Ratio RMSE Ratio Success Ratio RMSE Ratio Success Ratio

1 0.172 1.000 0.184 1.000 0.501 1.000

3 0.740 0.833* 0.740 0.833* 0.398 1.000*

6 0.653 0.833* 0.658 0.833* 0.481 1.000*

9 0.615 0.778* 0.619 0.778* 0.450 0.889*

12 0.770 0.667 0.763 0.667 0.528 0.833*

15 0.767 0.667** 0.763 0.667** 0.527 0.800*

18 0.796 0.667** 0.795 0.667** 0.625 0.778*

Predictive Accuracy measured via RMSE Ratio =  RMSE of MIDAS/ RMSE of No Change Forecast

Directional Accuracy measured via success ratio of Pesaran Timmerman test 

Statistically significant improvements in directional accuracy marked using *(5% significance level) and **(10% significance level)

Boldface indicates improvements over the No Change Forecast

Table 13: Forecasting the Monthly Real Price of Brent Crude Oil with Diesel Spead 

Evaluation Period: January 1995 - December 2012

MIDAS Results

Exp Almon PDL Almon Beta 

Horizon 

(Months) RMSE Ratio Success Ratio RMSE Ratio Success Ratio RMSE Ratio Success Ratio

1 0.604 1.000 0.354 1.000 0.574 1.000

3 0.883 1.000* 0.925 1.000* 0.970 0.667

6 0.860 0.833* 0.840 0.833* 0.881 0.833*

9 0.930 0.778* 0.899 0.778* 0.931 0.778

12 1.049 0.667 1.065 0.667 1.056 0.583

15 1.117 0.600 1.116 0.533 1.080 0.467

18 1.149 0.611 1.143 0.556 1.123 0.500

Predictive Accuracy measured via RMSE Ratio =  RMSE of MIDAS/ RMSE of No Change Forecast

Directional Accuracy measured via success ratio of Pesaran Timmerman test 

Statistically significant improvements in directional accuracy marked using *(5% significance level) and **(10% significance level)

Boldface indicates improvements over the No Change Forecast

Table 14: Forecasting the Monthly Real Price of Brent Crude Oil with Return on ARCA Oil & Gas Stocks

Evaluation Period: January 1995 - December 2012

MIDAS Results

Exp Almon PDL Almon Beta 
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Horizon 

(Months) RMSE Ratio Success Ratio RMSE Ratio Success Ratio RMSE Ratio Success Ratio

1 0.483 1.000 0.639 1.000 0.600 1.000

3 0.685 0.667 0.672 0.333 0.651 0.667

6 0.549 0.667 0.536 0.500 0.513 0.667

9 0.467 0.778 0.438 0.667 0.433 0.778

12 0.488 0.667 0.441 0.667 0.447 0.667

15 0.482 0.600 0.436 0.667** 0.455 0.533

18 0.478 0.611 0.433 0.667** 0.449 0.556

Predictive Accuracy measured via RMSE Ratio =  RMSE of MIDAS/ RMSE of No Change Forecast

Directional Accuracy measured via success ratio of Pesaran Timmerman test 

Statistically significant improvements in directional accuracy marked using *(5% significance level) and **(10% significance level)

Boldface indicates improvements over the No Change Forecast

Table 15: Forecasting the Monthly Real Price of Brent Crude Oil with U.S. Crude Oil Inventories

Evaluation Period: January 1995 - December 2012

MIDAS Results

Exp Almon PDL Almon Beta 

Horizon 

(Quarters) RMSE Ratio Success Ratio RMSE Ratio Success Ratio RMSE Ratio Success Ratio

1 6.197 1.000 4.944 1.000 7.052 1.000

2 0.750 1.000 0.568 1.000 0.812 1.000

3 0.774 1.000* 0.806 0.667 0.844 1.000*

4 0.818 0.750** 0.868 0.500 0.878 0.750**

5 0.810 0.800* 0.859 0.600 0.866 0.800*

6 0.817 0.833* 0.922 0.500 0.869 0.667

Predictive Accuracy measured via RMSE Ratio =  RMSE of MIDAS/ RMSE of No Change Forecast

Directional Accuracy measured via success ratio of Pesaran Timmerman test 

Statistically significant improvements in directional accuracy marked using *(5% significance level) and **(10% significance level)

Boldface indicates improvements over the No Change Forecast

Table 16: Forecasting the Quarterly Real Price of Brent Crude Oil with Global Metal Index

Evaluation Period: January 1995 - December 2012

MIDAS Results

Exp Almon PDL Almon Beta 

Horizon 

(Quarters) RMSE Ratio Success Ratio RMSE Ratio Success Ratio RMSE Ratio Success Ratio

1 0.665 1.000 0.726 1.000 0.209 1.000

2 1.953 0.500 1.961 0.500 1.907 0.500

3 1.721 0.667 1.760 0.333 1.671 0.667

4 1.865 0.500 1.921 0.250 1.852 0.500

5 2.012 0.400 2.030 0.200 1.990 0.400

6 2.016 0.333 2.034 0.167 1.990 0.333

Predictive Accuracy measured via RMSE Ratio =  RMSE of MIDAS/ RMSE of No Change Forecast

Directional Accuracy measured via success ratio of Pesaran Timmerman test 

Statistically significant improvements in directional accuracy marked using *(5% significance level) and **(10% significance level)

Boldface indicates improvements over the No Change Forecast

Table 17: Forecasting the Quarterly Real Price of Brent Crude Oil with Global Agricultural Raw Materials Index

Evaluation Period: January 1995 - December 2012

MIDAS Results

Exp Almon PDL Almon Beta 
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Horizon 

(Quarters) RMSE Ratio Success Ratio RMSE Ratio Success Ratio RMSE Ratio Success Ratio

1 2.350 1.000 1.174 1.000 3.065 1.000

2 1.134 0.500 1.122 0.500 1.166 0.500

3 1.225 0.333 1.091 0.667 1.248 0.333

4 1.246 0.250 1.137 0.500 1.270 0.250

5 1.238 0.200 1.156 0.400 1.261 0.200

6 1.238 0.167 1.156 0.500 1.261 0.167

Predictive Accuracy measured via RMSE Ratio =  RMSE of MIDAS/ RMSE of No Change Forecast

Directional Accuracy measured via success ratio of Pesaran Timmerman test 

Statistically significant improvements in directional accuracy marked using *(5% significance level) and **(10% significance level)

Boldface indicates improvements over the No Change Forecast

Table 18: Forecasting the Quarterly Real Price of Brent Crude Oil with EURIBOR Interest Rates

Evaluation Period: January 1995 - December 2012

MIDAS Results

Exp Almon PDL Almon Beta 
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