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Abstract

In 2002, the three Indian computer scientists M. Agrawal, N. Kayal and N. Saxena
presented the first unconditional deterministic polynomial-time primality test. The so
called AKS test. Until then, it was not even known, if such an algorithm exists. In this
thesis, we will take a journey through more than 2000 years of primality testing and
discuss the most fundamental and most popular primality testing algorithms - from
the Sieve of Eratosthenes over Fermat, Miller-Rabin, Lucas and Elliptic Curve tests
to the celebrated AKS test and its improvements. At the end we will discuss which
primality test to use for what purpose.
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1. Introduction

People have been studying prime numbers since more than 2000 years. Ever since,
primality testing was of big interest. Given any positive integer n, one would like to
determine quickly if n is prime or not. The first primality test goes back to 300 BC: the
Sieve of Eratosthenes. Eratosthenes found a method to make a list of all prime numbers
up to fixed positive integer. This algorithm can be used to get a very easy primality
test. We will discuss it in detail in chapter 3.

But why does one want to know if a number is prime in the first place? Even though
in many mathematical fields prime numbers are important, they turn out to be essen-
tial in cryptography. The security of most public-key cryptosystems depends on large
prime numbers. This is why primality testing has never been more important than
nowadays.

One famous example for a public-key cryptosystem, whose security is based on the
difficulty of factoring large numbers, is the famous RSA cryptosystem. It is named af-
ter Ron Rivest, Adi Shamir and Leonard Adleman, who published it in 1977. We will
shortly introduce it, to make clear, why large prime numbers play the key role for its
security. You can find a more detailed description in [HPS08].

In cryptography the names Alice and Bob are commonly used for two people at-
tempting to communicate with each other and Eve is the attacker. In the following, let
(e,N) be the so called public encryption key and (d,N) the secret decryption key.

RSA Key Creation

1. Bob chooses two different prime numbers p,q and computes the public modulus

N := p · q.

2. Then he computes Euler’s totient function φ(N):

φ(N) = (p− 1) · (q− 1).

3. Bob chooses a public encryption exponent e coprime to φ(N) such that
1 < e < φ(N).

RSA Enrcyption

1. Alice converts her plaintext into an integermwith 1 6 m < N.
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2. Then she uses Bob’s public key (e,N) to compute the ciphertext c:

c ≡ me (mod N).

3. Alice then sends the ciphertext to Bob.

RSA Decryption

1. Bob computes the decryption exponent d as the modular multiplicative inverse of
emodulo φ(N):

e · d ≡ 1 mod φ(N).

2. He then takes the ciphertext c and computes the plaintextm:

m ≡ cd (mod N).

Note that Bob is only able to computeφ(N) and d since he knows p and q. In fact, he
is the only one who knows these numbers. Eve on the other hand only knows the val-
ues of N, e and c, since they are public. One possibility for her to attack is to factorize
N. If Bob chooses composite numbers instead of primes to compute N, Eve might be
able to factor N. If p and q are small primes, factoring N would also be not that hard.
So it is important thatN is the product of two large prime numbers. So this is what Bob
does. Therefore, Eve probably will not be successful with her attack. Note, that even if
Eve knew c, she would not be able to compute d in general, since it is not known if the
discrete logarithm problem is solvable in polynomial time (see for example [HPS08]).

So far we know, why large prime numbers are important in cryptographic applica-
tions. The next question which naturally arises is how does Bob know that the two
numbers he chose are in fact prime?

This motivates us to find an algorithm which determines quickly whether an arbi-
trary number is prime or composite. As we will see, finding such an algorithm is not
that easy.

As the title of this thesis reveals, our goal is to describe a deterministic polynomial-time
algorithm. The problem is to have both: a deterministic test and a test which runs in
polynomial-time. For a long time it was unknown, if such an algorithm even exists.
But since 2002, we know, that the answer is yes. Before we introduce this so called AKS
Test in chapter 7, we will give an overview of the results in primality testing, which
have been accomplished before the AKS test had been published and which in a way
made the finding of the algorithm possible in the first place.

We start in chapter 2 by introducing basic definitions and concepts, which will be
important in the remainder of this thesis.
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Then, in chapter 3 we will discuss some of the most fundamental primality tests: the
Sieve of Eratosthenes/Trial Division, Fermat’s Test, the Miller-Rabin Test and the Lucas Test
with some variations.

In chapter 4 we will give a short introduction to complexity theory and analyze some
of the primality tests introduced in chapter 3 regarding their running time.

Then, in chapter 5 we will introduce the so called Lucas sequences, which can be used
for primality testing. Among the primality tests we introduce in this chapter is the
Lucas-Lehmer Test with which most of the largest prime numbers were found.

In chapter 6 we introduce one of the most commonly used primality testing algo-
rithms: the Elliptic Curve Primality Test.

After presenting the AKS Test and its improvements in chapter 7, we will compare
the primality tests in chapter 8 to figure out, which one should be used depending on
the situation.
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2. Preliminaries

In this chapter we will focus on basic definitions and facts, which are related to primal-
ity testing.
More advanced readers might skip this chapter (or sections of it) and continue reading
in chapter 3.

To avoid confusion we start by introducing the notations we will use.

• Zn denotes the ring of integer numbers modulo n. Fq denotes the finite field
with q elements. For a prime p, Zp is a finite field, so we denote it by Fp,

• gcd(n,m) and lcm(n,m) denote the greatest common divisor and the least com-
mon multiple of two integers n and m respectively. Two integers n,m are called
coprime if gcd(n,m) = 1,

• Z∗n denotes the group of units of Zn. It consists of all elements a of Zn with
gcd(a,n) = 1.

2.1. Prime numbers1

The concept of prime numbers is a mystery on its own. Whereas the basic definition
of prime numbers was probably learned by most people in school, nobody seems to be
able to have a complete picture of them.

A prime number p is a positive integer, which has exactly two positive divisors: one
and itself. By this definition 2 is the smallest prime number (and the only one which is
even). But until the 19th century, some people considered 1 as the first prime number
(for example see [CRXK12] which gives is a great collection on the history of prime
numbers, especially on the question "What is the smallest prime number?"). A number
n > 1 which is not prime is called composite. 1 is considered neither prime nor com-
posite.

The earliest surviving records about the study of prime numbers come from the an-
cient greeks. Around 300 BC, Euclid proved that there are infinitely many prime numbers.
He used the fact that every integer greater than 1 is divisible by some prime number.
The fundamental theorem of arithmetics was not explicitly stated by Euclid but follows
directly from his results. The fundamental theorem of arithmetics states, that every
positive integer has a unique prime factorization. This is by the way a reason, why it

1The main references for this section are [Bun08] and [CP05]
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makes sense to exclude 1 as a prime number. The uniqueness would fail then, since
any number can be written as n = 1 · n. After Euclid, it got pretty quiet around the
study of primes. No noteworthy statements about primes were made until the begin-
ning of the 17th century. It was Fermat who then made some major discoveries about
primes. His most significant discovery about primes is Fermat’s Little Theorem. It states
that if p is prime, then ap ≡ a (mod p) for every integer a. As we will see in chapter
3, this theorem plays an important role in the field of primality testing.

We will now give some essential results about the distribution of prime numbers.
For that we first define the prime counting function:

Definition. The prime-counting function is defined by

π(x) = #{p 6 x | p prime}.

So π(x) is the number of primes not exceeding x.
In the mid-19th century, the Russian mathematician Pafnuty Lvovich Chebyshev showed
the following inequalities:

Theorem 2.1 (Chebyshev). There are positive integers A,B such that for all x > 3,

Ax

ln x
< π(x) <

Bx

ln x
.

This theorem is for example true for A = 1
2 and B = 2. Gauss had conjectured the

asymptotic behavior of π(x) in 1791, so Chebyshev’s inequalities were a spectacular
result. In 1896, Gauss conjecture was proved by J. Hadamard and C. de la Vallée-
Poussin independently. It is now known as the Prime Number Theorem:

Theorem 2.2 (Prime Number Theorem). As x→∞,

π(x) ∼
x

ln x
.

f ∼ g ("f(x) is asymptotic to g(x) as x tends to infinity"), means limx→∞ f(x)
g(x) = 1.

See [CP05] or [Rib11] for the proof and more about the distribution of prime numbers.

We will now consider prime numbers of special kinds. These are interesting for
themselves and also when it comes to primality testing as we will see. One example
are Fermat primes.

Definition. An integer Fk is called Fermat number if it is of the form Fk = 22k + 1. If a
Fermat number is prime it is called a Fermat prime.

In 1637, Fermat claimed that every Fermat number is prime. But this is one of the few
cases Fermat was wrong. The only known Fermat primes are those up to F4 = 65537.
Every other Fermat number for which we have been able to decide if it is prime or not
is composite. The smallest Fermat number Fk for which its status is unknown is F33.
The largest Fermat number for which it is known is F3329780 (as of October 2016). You
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can find a list of some Fermat numbers and their factoring status in the appendix. A
complete list of the current Fermat factoring status can be found at [Kel].
Apart from the fact that there aren’t that many known Fermat primes, one gets some
interesting results. If one is looking for primes of the form a power of two increased
by one, then it is sufficient to look at Fermat numbers:

Theorem 2.3. If p = 2m + 1 is an odd prime, thenm is a power of two.

In chapter 3 we will introduce a primality test for Fermat numbers. There are more
interesting facts about Fermat numbers. [CP05] is a good reference if you want to learn
more about them.

Mersenne prime numbers are another example of particular prime numbers.

Definition. An integerMp is called Mersenne number if it is of the formMp = 2p− 1. If
a Mersenne number is prime it is called a Mersenne prime.

Mersenne numbers are named after the French Minim friar Marin Mersenne who
stated in 1644 in the preface of his Cogitata Physico-Mathematica that Mp is prime for
p = 2, 3, 5, 7, 13, 17, 19, 31, 67, 127 and 257. He was wrong with p = 67 and p = 257 and
he missed outM61,M89 andM107.
When looking for Mersenne primes, the following result is helpful:

Theorem 2.4. IfMp = 2p − 1 is prime, then p is prime.

So one might restrict oneself to prime exponents, which shortens the finding process
a lot. Most of the largest known prime numbers are Mersenne primes.They were found
with a software based on the Lucas-Lehmer primality test which we will introduce in
chapter 5.

2.2. Modular Arithmetic2

In this section we will give the basic definitions and results from modular arithmetic.

Definition. • Let n ∈N and a ∈ Z with gcd(a,n) = 1. The smallest number k for
which ak ≡ 1 (mod n) is called the order of a modulo n. It is denoted by ordn(a).

• The Euler’s totient function or Euler’s phi function φ(n) counts the natural numbers
up to a given number n that are coprime to n:

φ(n) :=
∣∣{a ∈N |1 6 a 6 n∧ gcd(a,n) = 1}

∣∣.
The following theorem is a famous and important result by Swiss mathematician

and physicist Leonhard Euler from 1763. You can find a proof in nearly every book
about number theory, for example in [Bun08].

Theorem 2.5 (Euler’s Theorem). Let n,a be coprime positive integers. Then

aφ(n) ≡ 1 (mod n).
2The main reference for this section is [Bun08]
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Remark. • The number of elements in Z∗n, the group of units of Zn, is φ(n).

• For any a ∈ Z with gcd(a,n) = 1, ordn(a) | φ(n).

We will need the following simple fact about the least common multiple of the first
m numbers (see [Nai82]):

Lemma 2.6. Let LCM(m) denote the lcm of the firstm numbers.

LCM(m) > 2m

form ∈N withm > 7.

A famous result in number theory which we will need as well is the

Theorem 2.7 (The Chinese Remainder Theorem). Let n1, . . . ,nk be a collection of pairwise
coprime integers and ai, . . . ,ak arbitrary integers. Then the system

x ≡ ai (mod ni) for 1 6 i 6 k

has a solution x = c. Further, if x = c and x = c′ are two solutions, then

c ≡ c′ (mod n1n2 · · ·nk).

See [HPS08] for a proof.

Definition. A number g is called a primitive root modulo n if it is a generator of Z∗n.

Theorem 2.8 (Theorem on the primitive root (Gauss)). Z∗n is a cyclic group if and only if
n is equal to 2, 4,pk or 2 · pk where p is an odd prime number and k a positive integer.

If g is a primitive root modulo a prime number n, then all of the primitive roots for
n are of the form ga, where a is coprime to n− 1 (since this is the number of elements
in Z∗n). Thus:

Lemma 2.9. If n is prime, then there are exactly φ(n− 1) primitive roots modulo n in the
interval [1,n].

The next definition divides the elements a of Z∗n into two categories. a is a quadratic
residue modulo p if there is an x 6= 0 such that a ≡ x2 (mod p) and a quadratic non-residue
modulo p if such an x does not exist.

Definition. For an odd prime number p and an integer a, the Legendre symbol is defined
as follows: (

a

p

)
=

{ 1 if a is a quadratic residue modulo p
−1 if a is a quadratic non-residue modulo p
0 if a ≡ 0 (mod p)

For a composite number n, we have the Jacobi symbol which is a generalization of the
Legendre symbol. Both are denoted by the same symbol and coincide for n prime.
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Definition. Let n = pν1
1 · p

ν2
2 · · ·p

νk
k . The Jacobi symbol is then defined by:(

a

n

)
=

(
a

p1

)ν1

·
(
a

p2

)ν2

· · ·
(
a

pk

)νk
We now give some relations for Legendre and Jacobi symbols.

Theorem 2.10 (Euler’s Criterion). Let p be an odd prime and a an integer coprime to p.
Then (

a

p

)
≡ a

p−1
2 (mod p).

Theorem 2.11. Let n,m be positive odd integers. Then the following relations hold:(
−1
m

)
= (−1)

m−1
2 , (2.1)

(
2
m

)
= (−1)

m2−1
8 . (2.2)

Form,n coprime we also have the law of quadratic reciprocity(
m

n

)(
n

m

)
= (−1)

(m−1)(n−1)
4 . (2.3)

We will use the last two theorems in chapter 5, especially 2.10. Proofs can be found
in [Bun08], for example.

2.3. Polynomial Arithmetic

For the AKS test we will need some basic facts about polynomial rings, especially about
quotient rings of polynomial rings and their arithmetic.

Definition. • The polynomial ring R[x] in x over a ring R is the set of all polynomials
with coefficients in R:

R[x] =
{ k∑
i=0

aix
i | k ∈N0 ∧ ai ∈ R

}
.

The degree of a polynomial is the largest k such that the coefficient ai of xi is not
zero.

• Let R[x] be a polynomial ring and I = (h(x)) the ideal generated by the poly-
nomial h(x). The quotient ring R[x]/I is the set of all equivalence classes modulo
I:

R[x]/(h(x)) =
{
f(x) + (h(x))|f(x) ∈ R[x]

}
.

In particular, we will be interested in quotient rings of polynomial rings over finite
fields:
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Notations. For any prime p and any polynomial h(x) with coefficients in Fp,
Fp[x]/(h(x)) denotes the quotient ring over the finite field Fp.
We will also use the notation

f(x) ≡ g(x) (mod h(x),n)

to indicate that the equation f(x) ≡ g(x) holds in the ring Zn[x]/(h(x)).

Definition. A non-constant polynomial is irreducible over a field K, if its coefficients
belong to K and it cannot be factored into a product of non-constant polynomials with
coefficients in K.

Remark. If p is prime and h(x) is a polynomial of degree d which is irreducible over
Fp, then Fp[x]/(h(x)) is a finite field of order pd.
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3. Primality Testing

A primality test is an algorithm which decides whether or not a given number is prime.
In general it will not provide the factorization of the number, but only a PRIME or
COMPOSITE answer. However, it can happen, that an algorithm returns COMPOSITE
because it found a factor of the number. But again, finding factors is NOT the purpose
of a primality testing algorithm.
There are basically two categories for primality tests: deterministic and probabilistic tests.
Deterministic primality tests are the "for sure" primality tests, they prove either the pri-
mality or the compositeness of the input. They are sometimes also called "perfect tests".
Probabilistic primality tests on the other hand can in general prove the compositeness
of a number, but are only able to prove that the number is prime with a certain proba-
bility. So actually they do not really earn the name "primality test" which is the reason
why some call them compositeness tests.

In this chapter we will give an overview of some of the most fundamental and fa-
mous primality tests. The Fermat test in section 3.2.1 and the Lucas test in section 3.3
provide the basis for essentially all primality tests, of which the elliptic curve primality
test and the AKS test are only two examples. We will introduce these in chapter 6 and
7. Of course there are more primality tests then presented here. A good collection can
be found in [CP05].

3.1. A Deterministic Method: The Sieve of Eratosthenes

Let us start with one of the most famous and simplest methods: the Sieve of Eratos-
thenes. It is named after the Greek mathematician Eratosthenes of Cyrene who lived
around 200 BC. The method is as follows. Given a number n for which we want to
determine if it is prime. We start by making a list of all integers between 2 and m,
where m is the largest integer less than or equal to

√
n. Next, we circle 2 and cross

off all multiples of two. Then we circle 3 and cross off all multiples of three. We don’t
have to circle 4, since it is already crossed off (it is a multiple of 2). Hence we con-
tinue with 5. When we reached the end of the list, we use trial division to determine
whether or not n is prime. So we test if one of the circled numbers, which are the
prime numbers up to

√
n, divides n. If we checked all circled numbers and no divisor

is found, then n is prime. The reason why we only have to check all primes less than
or equal to

√
n is that if n is composite it has at least one divisor smaller or equal to

√
n.

The Sieve of Eratosthenes is indeed a very simple deterministic method and the al-
gorithm is quite straightforward and easy to implement. But it is by no means efficient.
In most cases the numbers to test for primality are very large, usually more than 100
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digits. If we want to decide whether a relatively small number with just 20 digits is
prime by using the Sieve of Eratosthenes it will take decades. It is possible to reduce
the running time (see chapter 4) but it still won’t be practical to use. Hence we need
faster algorithms.

In the following sections we will find a way to accomplish this goal.

3.2. Probabilistic Methods1

There are basically two options to find quicker algorithms. One is to find a pattern
among primes and then check if a given number follows that pattern. But so far, no
useful pattern has been found. The approaches in the following subsections are all
based on the second option that is finding patterns that are unique to composite num-
bers. However, as we will see there are some composite numbers that do not fit these
patterns. We call these numbers pseudoprimes. To make this clear, all numbers that do
fit the patterns are definitely composite, but there are numbers which do not fit the pat-
tern and are not prime. So they seem to be prime, but are in fact composite. We will see
that there are relatively few pseudoprimes and hence the methods are good in practice.

We will now introduce some of these probabilistic methods.

3.2.1. Fermat Test

The simplest probabilistic method is the Fermat Primality Test. It is fundamental for
many other primality tests but not used in practice, since it is not really efficient. The
test is based on Fermat’s Little Theorem. Fermat stated the theorem in 1640 without
giving a proof. It was Leibniz who first proved it about 40 years later.

Theorem 3.1 (Fermat’s Little Theorem). Let p be a prime number. Then

1.
ap ≡ a (mod p) (3.1)

for any positive integer a. And

2.
ap−1 ≡ 1 (mod p) (3.2)

if gcd(p,a) = 1.

Proof. By induction over a.

For the primality testing algorithm we use the contrapositive of the second state-
ment:

Theorem 3.2 (Fermat’s Primality Test). A positive integer n is composite if there exists a
positive integer a such that

gcd(n,a) = 1 and an−1 6≡ 1 (mod n). (3.3)
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Algorithm 1 Fermat’s Primality Test
Input: positive integer n to be tested, k: parameter that determines the number of

times to test for primality
Output: COMPOSITE if n is composite, otherwise PROBABLY PRIME

1: Repeat k times:
2: Pick a randomly in the range [2,n− 1]
3: if gcd(n,a) 6= 1 then
4: return COMPOSITE
5: end if
6: if an−1 6≡ 1 (mod p) then
7: return COMPOSITE
8: end if
9: if composite is never returned then

10: return PROBABLY PRIME
11: end if

Definition. An integer a not satisfying (3.3) in Theorem 3.2, is called a Fermat witness
for (the compositeness of) n. If such a witness exists, n is definitely composite.

As mentioned above there are composite numbers which do not fit this pattern.

Definition. Let n be a composite number. If an−1 ≡ 1 (mod n) for some integer a
with gcd(n,a) = 1, then n is called pseudoprime (to the base a).

This would not be a big problem, if these numbers were only pseudoprime for few
bases. But in fact there are Fermat pseudoprimes which fulfill equation (2.2) for all
positive integers a:

Definition. If n is Fermat pseudoprime for every positive integer awith gcd(n,a) = 1,
then n is called a Carmichael number.

The smallest Carmichael number is 561 = 3 · 11 · 17. Carmichael numbers are always
the product of at least three different prime numbers.
William Robert Alford, Andrew Granville and Carl Pomerance have not only shown
that there infinitely many such numbers but also that they are not as rare as one might
think:

Theorem 3.3 (Alford, Granville, Pomerance). There are infinitely many Carmichael num-
bers. In particular, for x sufficiently large, the number of Carmichael numbers up to x, denoted
by C(x), satisfies C(x) > x

2
7 .

P. Erdös had given a heuristic argument for a similar statement in 1956. The proof of
Alford et al. can be found in [AGP94].

However, there are way less Carmichael numbers than there are prime numbers.
Richard Pinch has found in 2007 that there are 20 138 200 Carmichael numbers up

1The main references for this section are [MD99] and [HPS08]
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to 1021 [Pin]. Below 1021, there are 21 127 269 486 018 731 928 primes (for example,
see [Cal]); so there is less than a one-in-a-billion chance that a number passing the Fer-
mat test for all positive integers a is a Carmichael number.

Luckily, there are probabilistic primality tests that are better - both in the efficiency
and in the probability of a true output.

One example is the commonly used Miller-Rabin test, which we will discuss below.

3.2.2. Miller-Rabin

In 1976 the US-american computer scientist Gary Lee Miller published a primality test,
which is deterministic under the assumption of the extended Riemann-Hypothesis.
The Israeli computer scientist Michael Oser Rabin turned it into a probabilistic test in
the following year. However, the US-american mathematician John Lewis Selfridge
already used the test in 1974. That’s why the Miller-Rabin test is also called Miller-
Rabin-Selfridge test. It is based on the following theorem:

Theorem 3.4. Let p be an odd prime and write p− 1 = 2sd with d odd. Let a be any number
not divisible by p. Then one of the following two conditions holds:

1. ad ≡ 1 (mod p).

2. One of ad,a2d,a4d, . . . ,a2s−1d,a2sd is congruent to −1 modulo p.

Proof. According to Fermat’s Little Theorem, where ap−1 ≡ 1 (mod p), we see that the
last number in the list ad,a2d,a4d, . . . ,a2s−1d,a2sd which is equal to ap−1, is congruent
to 1 modulo p. Further, every number in the list is the square of the previous number.
Therefore, either the first number in the list is congruent to 1 modulo p or some number
in the list is not congruent to 1 modulo p, but when it is squared repeatedly, it becomes
1. But the only number satisfying b 6≡ 1 (mod p) and b2 ≡ 1 (mod p) is −1.

Definition. An integer a satisfying none of the conditions stated in Theorem 3.4, is
called a Miller-Rabin witness for (the compositeness of) n. If such a witness exists, n is
definitely composite.

Like the pseudoprimes in Fermat’s test, we also have pseudoprimes in the Miller-
Rabin test:

Definition. If a composite n has the properties described in theorem 3.4 for some base
a, then n is called a strong pseudoprime to the base a. If n is either a prime or a pseudo-
prime, then n is called PROBABLY PRIME.

The following proposition leads us to the Miller-Rabin Primality Test.

Proposition 3.5 (Strong Pseudoprimality Test). If n − 1 = 2sd with d odd and s non-
negative, then n is probably prime if ad ≡ 1 (mod n) or a2rd ≡ −1 (mod n) for some
nonnegative r less than s.
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We now have an even stronger primality test than the Fermat test. It reduces the
number of pseudoprimes by half. More important, there are no Carmichael-like num-
bers for the Miller-Rabin test, and in fact, every composite number has many Miller-
Rabin witnesses, as we will see below.

Proposition 3.6. Let n > 1 be an odd composite integer. Then n passes the Strong Pseudopri-
mality Test for at most n−1

4 bases a with 1 < a < n.

To prove this, we will need the following Lemma, for a proof see [Ros86], for exam-
ple.

Lemma 3.7. Let p be an odd prime and let e and q be positive integers. Then the number of in-
congruent solutions x (1 6 x 6 pα) of the congruence xq ≡ 1 (mod pα) is gcd(q,pα−1(p−
1)).

We will now give a sketch of the proof of Proposition 3.6:

Proof. Since the proof is quite long, we only prove the proposition for the case that n is
not square free. See [Ros86] for a detailed proof.
Let n = 1 + 2sd be a strong pseudoprime to the base a. So we either have

ad ≡ 1 (mod n)

or
a2rd ≡ −1 (mod n)

for some r less than s. In particular we have

an−1 = a2sd = (a2rd)2s−r ≡ 1 (mod n).

Let pα1
1 · p

α2
2 · · ·p

αk
k be the prime factorization of n. By Lemma 3.7 we know that the

number of incongruent solutions of xn−1 ≡ 1 (mod pαii ) is

gcd(n− 1,pαi−1
i (pi − 1)) = gcd(n− 1,pi − 1)

for i = 1, . . . ,k. By the Chinese Remainder Theorem there are exactly

k∏
i=1

gcd(n− 1,pi − 1)

incongruent solutions of
xn−1 ≡ 1 (mod n). (3.4)

As we consider the case where the prime factorization of n contains a prime power pαjj
with αi > 2 and as n is odd and therefore pj > 3, we have

pj − 1

p
αj
j

=
1

p
αj−1
j

−
1
p
αj
j

6
2
9

.



3.3. LUCAS TESTS 23

For n > 9, we then get

k∏
i=1

gcd(n− 1,pi − 1) 6
k∏
i=1

(pi − 1)

6
k∏
i 6=j

(pi − 1)
2 · pαjj

9

6
k∏
i 6=j
pi

2 · pαjj
9

6
2
9
n

6
n− 1

4
.

So there are at most n−1
4 incongruent solutions of (3.4) if n > 9, and therefore the

number of bases a 6 n− 1 for which n is a strong pseudoprime is less than or equal
to n−1

4 . In [Ros86] you can find the case where n is square free, which we did not treat
here.

Proposition 3.8 (Miller-Rabin Probabilistic Primality Test). Suppose we test n for k ran-
domly selected bases (as in the algorithm). If n is prime, then the result of the algorithm is
always correct. If n is composite, then the probability that the algorithm outputs PRIME is at
most 1

4k .

Proof. The first claim is obviously true. So suppose n is composite. By Proposition 3.6,
the probability that n passes the Strong Pseudoprimality Test for a randomly selected
base a is at most 1

4 . Therefore, the probability that n passes the test for k different bases
is at most 1

4k .

So if k is large, the probability that a number is indeed prime, when the Miller-Rabin
test determines that it is PROBABLY PRIME is very high. As we will see in chapter 4,
the Miller-Rabin test is a very efficient probabilistic primality test and therefore often
used in practice.

Note, that the Miller-Rabin test might provide a deterministic test :
Remark. If the Riemann Hypothesis is true and n passes the Strong Pseudoprimality
Test for all integers a such that 1 < a < 2 · log2(n), then n is prime.

See [Mil76] for more details.

3.3. Lucas Tests2

In 1876 the French mathematician Édouard Lucas proved a theorem on which the Lu-
cas primality test is build on. The following version of Lucas Theorem from 1953 is due
to the US-American mathematician Derrick Henry Lehmer.

2The main references for this section are [CP05] and [Pom02]
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Theorem 3.9 (Lucas Theorem). Let n,a be integers with n > 1. If

an−1 ≡ 1 (mod n) (3.5)

and
a
n−1
q 6≡ 1 (mod n) (3.6)

for all prime divisors q of n− 1, then n is prime.

Proof. By the congruences in (3.5) and (3.6), we infer that the order of a must divide
n− 1 but is does not divide n−1

q for all prime divisors q of n− 1, which means that the
order of amust be equal to n− 1. By Euler’s Theorem it then follows that n− 1 divides
φ(n). If n is composite, φ(n) < n− 1. But then n− 1 cannot be a divisor of φ(n), so n
must be prime.

Since this is the converse of Fermat’s Little Theorem, it seems to be perfect to build a
(deterministic) primality test upon. We only have to find the prime factors of n− 1 and
a number a such that (3.5) and (3.6) hold. But there is the problem. Whereas finding
the number a will not be a big obstacle, finding all prime factors of a huge number
will be. In general no fast factoring algorithm exists. Nevertheless, there are numbers,
which can be easily factored and Theorem 3.9 provides a great primality test in that
case.
Before we consider such a case, we still have to argue how we can find a suitable
number a. By Lemma 2.9 we know that if n is prime there are φ(n− 1) primitive roots
modulo n in the interval [1,n] (which satisfy (3.5) and (3.6)) and that φ(n) > n

2 log logn
for n > 200560490131 (see [CP05]). So the probability that a randomly chosen number
a in the interval [1,n], satisfies the congruences (3.5) and (3.6) is at least 1

2 log logn if n
is large. Thus, the expected number of random choices, until a suitable number a is
found, is 2 log logn. So if we knew all prime divisors of n − 1 we would be able to
determine if n is prime in polynomial time. So let’s consider a case, where we can
factor n− 1 easily, for example the Fermat numbers where we apply Theorem 3.9 with
a = 3.

Corollary 3.10 (Pépin Test). For k > 1, consider the Fermat numbers Fk = 22k + 1. Fk is

prime if and only if 3
Fk−1

2 ≡ −1 (mod Fk).

Proof. Assume that the congruence holds. Then we have that:

3Fk−1 ≡ 1 (mod Fk)

and
3
Fk−1

2 6≡ 1 (mod Fk)

So by Theorem 3.9 Fk must be prime.
Conversely, suppose now that Fk is prime. 22k ≡ 1 (mod 3) since 2k is even. It follows
that Fk ≡ 2 (mod 3). We also have that Fk ≡ 1 (mod 4), which means, that 3 cannot
be a square modulo Fk, so the Legendre symbol

( 3
Fk

)
= −1. By Theorem 2.10 (Euler’s

Criterion), the congruence in the corollary holds.
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The test is named after the French mathematician Théophile Pépin. In 1877, he gave
a criterion similar to the above, in which 5 was used instead of 3 and with k > 2.
The largest Fk for which the Pépin test has been used is F24 (as of September 2016). This
number is composite and as we already mentioned in 2.1 so are all Fermat numbers Fk
for k > 4 which have been studied.
Since only few numbers can be proven prime by this primality test, it is not really
satisfying. How else can we use Theorem 3.9 to get a primality test? We need to solve
the problem of factoring n− 1 completely. Let’s assume, that we have not found the
complete factorization of n− 1 but a partial factorization. With the following theorem
we will then get the Pocklington primality test.

Theorem 3.11 (Pocklington Theorem). Let n > 1 be an integer with n− 1 = F · R, such
that the complete factorization of F is known. Let a be an integer such that

an−1 ≡ 1 (mod n) (3.7)

and
gcd(a

n−1
q ,n) = 1 (3.8)

for every prime divisor q of F. If F >
√
n, then n is prime.

Proof. Let p be a prime dividing n. From (3.7) we have that an−1 ≡ 1 (mod p), so the

order of aR modulo p divides n−1
R = F. From (3.8), we have that (aR)

F
q 6≡ 1 (mod p)

for every prime q dividing F, so ordp(aR) cannot be a proper divisor of F and hence
ordp(aR) = F. Since ordp(aR) 6 p− 1 and F >

√
n it follows that p >

√
n, so nmust be

prime.

Konyagin and Pomerance have given a criterion for the primality of n that allows F
to be even smaller than

√
n. The resulting probabilistic primality test goes by the name

n− 1-Test. It can be found in [CP05]
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4. Time Complexity

Our goal is to find a deterministic primality testing algorithm with polynomial run-
ning time. But we did not mention yet, what we exactly mean by that. In this chapter
we will focus on the basic theory of time complexity and explain what a "good" run-
ning time is.

The running time or time complexity of an algorithm quantifies the amount of time
(by time we mean the number of operations) taken by the algorithm as a function of
the length of the input. Since the input is normally binary, the length of the input is
logn. When we write logn we always mean the base 2 logarithm. We will also need
the base e logarithm, which we will denote with lnn

The time complexity of an algorithm is usually expressed using the big-O notation. So
before we start talking about the running time in detail, we will introduce some basic
time complexity concepts.

4.1. Notations and Basics

Definition. Let f(x) and g(x) be functions of x defined on a subset of R. We say that f
is a big-O of g as x→∞ and write

f(x) = O(g(x))

if there is a positive real number c and a real number x0 such that

|f(x)| 6 c|g(x)| for all x > x0.

Note, that when we write f(x) = O(g(x)) we actually mean f(x) ∈ O(g(x)), since
O(g(x)) is a set of functions. When we write O(f(x)) = O(g(x)), we mean O(f(x)) ⊆
O(g(x)).

Example. Let f(x) = 4x3 − 7x2 + 5. Then: f(x) = O(x3), since x3 is the fastest growing
term in f(x). Formally: Let x > x0 = 1 and c = 16. We then have:

|4x3 − 7x2 + 5| 6 4x3 + 7x2 + 5
6 4x3 + 7x3 + 5x3

= 16x3

So |4x3 − 7x2 + 5| 6 16|x3| for all x > 1.
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Definition. A function f(x) is a big-Ω of g and write

f(x) = Ω(g(x))

, if there are positive constants c and x0 such that

f(x) > cg(x) for all x > x0.

We will also use the soft-O notation:

Definition. A function f(x) is called a soft-O of g(x), denoted by f(x) = Ô(g(x)), if

f(x) = O(g(x) logk(g(x))) for some k.

It is essentially a big-O notation ignoring logarithmic factors.

Example. Ô(logm(x)) = O(logm x logk(log(x))) = O(logm+ε(x)) for any ε > 0, since
logk(x) = O(xε) for any ε > 0.

So what is a good running time? In our first example, the Sieve of Eratosthenes, the
running time is ok if the number to be tested is small. But if the numbers get bigger, we
might have to wait years until we know the result. This is obviously too long. So what
we want is that even if we test big numbers the running time should not get too big. To
ensure this we want our algorithms to have polynomial time complexity. Remember that
the input is binary, so if we talk about polynomial running time we mean polynomial
in the length of the input. Hence the algorithms should run in time O(logk(n)), for some
positive constant k.
An algorithm is said to have exponential time complexity if it runs in O(nk) = O(2logk n),
for some positive constant k. An algorithm that is slower than polynomial but not
as slow as exponential is said to have quasi-polynomial time complexity. For example,
O((logn)log logn) would be a quasi-polynomial running time.

For analyzing the time complexity of algorithms, we need some basic properties of
the big-O notation:

Proposition 4.1 (Properties). Let f,g, f1, f2,g1,g2 be functions and f1 = O(g1), f2 = O(g2),
then

1. f1 · f2 = O(g1 · g2).

2. f ·O(g) = O(fg).

3. for k 6= 0: O(kg) = O(g).

4. f1 + f2 = O(|g1|+ |g2|).

5. f1 = O(g) and f2 = O(g)⇒ f1 + f2 = O(g).
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The proof is quite simple. It can be found in nearly every book or lecture notes about
complexity theory and related topics.

Obviously, different algorithms can lead to very different time complexities. We
already talked about how probabilistic primality tests can lead to faster algorithms.
However, we are always (not only when it comes to primality testing) interested in
an algorithm which can actually solve a problem (= a deterministic algorithm) in the
best running time possible. By "problem" we mean a decision problem, that is a ques-
tion which has a yes or no answer. For example, PRIME is a decision problem. A set
of decision problems which have related complexity, is called a complexity class. Lets
shortly (informally) introduce the most important (at least for our purposes) complex-
ity classes:

• P is the set of all decision problems, which are solvable in polynomial time.

• NP is the set of all decision problems, where the yes-instance of the problem can
be verified in polynomial time.

In which complexity class a problem is categorized is based on the fastest known
algorithm. As such, the class a problem belongs to may change over time if a faster al-
gorithm is discovered. Based on the primality tests above we don’t know if PRIMES is
in P, since none of them is a deterministic polynomial time algorithm. But in chapter 7
(and we already mentioned this in the introduction) we will see that such an algorithm
exists.

Remark. It is an open problem in computer science if P = NP. It is widely believed that
the answer is no.

4.2. Analyzing the running time of some algorithms

In this section we analyze the time complexity of some of the primality tests above.
Even if we are in general interested in a deterministic polynomial-time algorithm, we
will also analyze the time complexity of the (probabilistic) Miller-Rabin test. As we saw
in the last chapter, the probability of a true output is very high for the Miller-Rabin test.
So if it is much faster than the deterministic tests we considered so far, we might want
to compromise and take the (little) risk, that Miller-Rabin tells us our number is prime
even if it is not.

Before we start, we will give the time complexity of the some fundamental opera-
tions:

Lemma 4.2. For any numbers of length logn,

1. addition and subtraction can be done in time O(logn),

2. multiplication and division can be done in time O(log2 n),

3. multiplication modulo n can be done in time O(log2 n),
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4. finding out if n = ab can be done in time Ô(log3 n),

5. the greatest common divisor of two numbers can be computed in time O(logn).

Proof. 1. is simple: since the sum of two numbers of size logn is at most of size logn+1
and each bit of the sum gets computed in a constant time, the time complexity is linear,
thus O(logn).
For 2., we use long multiplication (the one we all learned at school), for multiplying
two numbers of size logn: in base 2, we get logn rows of length at most 2 logn, which
we then have to add up. Since every addition takes at most time O(logn), the running
time of multiplying two numbers is O(log2 n). Note that to divide two numbers n and
m, we have to find numbers q, r, such that n = q ·m+ r, where r > m. It is easy to see,
that like multiplication, this takes time O(log2 n).
3. follows from 2: we first multiply the numbers, which gives a number of length
at most 2 logn and then compute the remainder upon dividing the product by the
modulus n. Since both operations take time O(log2 n), multiplication modulo n can
still be done in time O(log2 n).
For 4. and 5., see [vzGG99].

Using Fast Fourier transforms we can improve the running time for multiplication
(and therefore for division and for multiplication modulo n):

Lemma 4.3. With the Schönhage-Strassen algorithm, multiplication, division can be done in
time Ô(logn). Similarly, these operations on two degree d polynomials with coefficients of
length at most logn can be done in time Ô(d · logn).

For more details, see [vzGG99], for example.

4.2.1. Sieve of Eratosthenes

To analyze the time complexity of the Sieve of Eratosthenes, lets recall how the method
works:
First, we write down all numbers between 2 and n. Then we compute the multiples of
all prime numbers p 6 n, that is p, 2p, 3p . . . kp, until kp > n. So for each prime p, the
number of multiplications is smaller than or equal to n

p . Therefore, the total number of
multiplications is ∑

p6
√
n

n

p
.

The following theorem follows directly from Theorem 427 (page 351) in [HW75]:

Theorem 4.4. Let n be a positive integer and p be prime. Then
∑
p6
√
n
n
p = n ln ln

√
n+

O(n).

Since O(ln ln x) = O(log log x) (changing the base of a logarithms only results in a
constant change) the running time of the Sieve of Eratosthenes for finding all primes
up to

√
n is O(n log log

√
n).
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Now, to find out if n is prime, we have to test if one of the primes p 6 n divides n.
In the worst case, that is if n is prime, this gives another π(

√
n) operations.

The running time of the Sieve of Eratosthenes can be improved. Instead of writing
down all numbers greater than or equal to 2, we write down 2 and all odd numbers,
since we already know, that all even numbers cannot be prime. Calculating the multi-
ples of 2 takes n

2 operations, so it seems like we could save much time with this. But
unfortunately, it is not that easy. In fact, by deleting the multiples of 2 in our list we
indeed save up some time, but we also have to change indices in the algorithm, which
in total gives us a larger running time. But if we also deleting the multiples of 3, 5, 7, 11
and 13, we get in total a better running time. If we delete the multiples of larger prime
numbers, we again get a worse running time [MO].

Another possibility to improve the running time, is to keep prime numbers in a
database. But this would not be very efficient concerning the space complexity.

Overall, primality proving with the Sieve of Eratosthenes is not very efficient. The
running time is exponential. Lets see, what probabilistic tests can offer.

4.2.2. Miller-Rabin

Recall the Miller-Rabin Test: for k randomly chosen integers a, it tests if n is a strong
pseudoprime to base a. Lets see the pseudocode for details:

Algorithm 2 Miller-Rabin Primality Test
Input: positive integer n = 2sd + 1 to be tested, k: parameter that determines the

number of times to test for primality
Output: COMPOSITE if n is composite, otherwise PROBABLY PRIME

1: i := 1
2: for i = 1 to k do
3: Randomly choose an integer awith 1 < a < n and p - a
4: if ad ≡ 1 (mod n) then
5: i := i+ 1
6: Repeat step 3
7: end if
8: if a2rd ≡ −1 (mod n) for some nonnegative r less than s then
9: i := i+ 1

10: Repeat step 3
11: end if
12: return COMPOSITE
13: end for
14: return PROBABLY PRIME

To determine if n is a strong pseudoprime, the algorithm computes the powers
ad,a2d, . . . ,a2sd modulo n. By using the binary representation of d and repeated
squaring, computing ad requires O(logn) mod n-multiplication operations. By Lemma
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4.2 every mod n-multiplication requires time O(log2 n) using the usual algorithms
for integer multiplication and division. The remaining powers of ad can then be com-
puted via repeated squaring modulo n, which again can be done in time O(logn).
Therefore, for each number a, it takes time O(log3 n) to determine if n is a strong pseu-
doprime. So testing k different bases a yields a time complexity of O(k log3 n) in total.

The time complexity can be improved by using the Schönhage-Strassen multiplica-
tion algorithm. The Miller-Rabin test then takes time Ô(k log2 n).

The Miller-Rabin Test is therefore a probabilistic polynomial-time algorithm.

4.2.3. Pépin’s Test

We will now analyze Pépin’s test for Fermat numbers. Given a Fermat number Fk =

22k + 1, we only have to check if 3
Fk−1

2 ≡ −1 (mod Fk) (see Algorithm 3). This involves
log Fk multiplications modulo Fk. By Lemma 4.2 each multiplication can be done in
time O(log2 Fk), which gives a total running time of O(log3 Fk).

Using the Schönhage-Strassen multiplication algorithm, we get a time complexity of
Ô(log2 Fk).

So Pépin’s test is a deterministic polynomial-time algorithm for Fermat numbers.

Algorithm 3 Pepin Test

Input: positive integer Fk = 22k + 1, k > 1, to be tested
Output: COMPOSITE if n is composite, otherwise PRIME

1: if 3
Fk−1

2 ≡ −1 (mod Fk) then
2: return PRIME
3: end if
4: return COMPOSITE
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5. Primality Tests based on Lucas
Sequences

We saw in chapter 3 that if n is of a special form, it could be more easily verified, if it
is prime. Especially the Pepin Test for Fermat numbers is very efficient. In this chapter
we introduce Lucas sequences and some primality tests based on them. For Mersenne
prime numbers this will lead us to the very efficient Lucas-Lehmer-Test.

5.1. Lucas Sequences

Let a,b ∈ Z,a,b 6= 0. Consider the polynomial f(x) = x2 −ax+b and it’s discriminant
∆ = a2 − 4b. The two roots α and β of f are

α =
a+
√
∆

2
and β =

a−
√
∆

2
.

The following relations among a,b,∆,α and β hold, as one can easily check:

α+β = a,α−β =
√
∆,α ·β = b.

We assume that ∆ 6= 0. The Lucas sequences U(a,b) and V(a,b) are then defined as
follows:

Definition. For each k > 0 consider the integers

Uk(a,b) =
αk −βk

α−β

and
Vk(a,b) = αk +βk.

The Lucas sequences of the pair (a,b) are defined by

U(a,b) = (U0(a,b),U1(a,b),U2(a,b), . . . )

V(a,b) = (V0(a,b),V1(a,b),V2(a,b), . . . )

A famous example of a Lucas sequence is the sequence of Fibonacci numbers. It is
obtained by choosing a = 1,b = −1 in U(a,b). The numbers of the corresponding
sequence V are called Lucas numbers.

1The main references for this chapter are [CP05] and [Rib11]
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For every k > 2 we have

Uk(a,b) = aUk−1(a,b) − bUk−2(a,b)
Vk(a,b) = aVk−1(a,b) − bVk−2(a,b)

(to see this, simply substitute a = α+ β and b = αβ). Since U0 = 0,V0 = 2, we
see that the Lucas sequences are defined by a linear recurrence (and indeed consist of
integers). From now on, we will write Uk,Vk instead of Uk(a,b),Vk(a,b).

We will need the following properties:

Lemma 5.1. Let n be a positive integer. Then

U2n = UnVn.

Proof.

UnVn =
αn −βn

α−β
(αn +βn) =

α2n −α2n

α−β
= U2n.

Lemma 5.2. For all integers n, we have:

V2n = V2
n − 2bn.

Proof.
V2n = α2n +β2n = (αn +βn)2 − 2αnβn = V2

n − 2bn.

Lemma 5.3. Let n,m be positive integers. Then

2Vm+n = VmVn +∆UmUn.

Proof.

VmVn +∆UmUn = (αm +βm)(αn +βn) +∆
αm −βm

α−β

αn −βn

α−β

= αm+n +βm+n +αmβn +αnβm +∆
αm+n +βm+n −αmβn −αnβm

∆
= 2(αm+n +βm+n) = 2Vm+n.

Lemma 5.4. For all positive integersm > n, we have Um+n = UmVn − b
nUm−n.
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Proof. Letm > n. Then:

UmVn − b
nUm−n =

αm −βm

α−β
(αn +βn) − (αβ)n

αm−n −βm−n

α−β

=
αmαn −βmβn +αmβn −αnβm

α−β
−
αmβn −αnβm

α−β

=
αmαn −βmβn

α−β
= Um+n.

Lemma 5.5. V2
n = ∆U2

n + 4bn for every integer n.

Proof. By Lemma 5.3 we have 2V2n = V2
n −∆Un. With Lemma 5.2 we get:

2(V2
n − 2bn) = V2

n +∆U
2
n

V2
n = ∆U2

n + 4bn.

Lemma 5.6. For every integer n we have

2n−1Un =
∑

k6n,odd

(
n

k

)
an−k∆

k−1
2 .

Proof.

Un =
αn −βn

α−β
=

(a+
√
∆

2 )n − (a−
√
∆

2 )n
√
∆

=
1
2

n 1√
∆

( n∑
k=0

(
n

k

)
an−k(

√
∆)k −

n∑
k=0

(
n

k

)
an−k(−

√
∆)k
)

2n
√
∆Un = 2

∑
k6n,odd

(
n

k

)
an−k(

√
∆)k

2n−1Un =
∑

k6n,odd

(
n

k

)
an−k(

√
∆)k−1

2n−1Un =
∑

k6n,odd

(
n

k

)
an−k∆

k−1
2

Lemma 5.7. Let p be an odd prime. Then

Up ≡
(∆
p

)
(mod p) (5.1)
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Proof. By Lemma 5.6 we have

2p−1Up =
∑

k6n,odd

(
p

k

)
ap−k∆

k−1
2 .

Since
(
p
k

)
≡ 0 (mod p) for all k with 1 6 k 6 p − 1, we get (with Fermat’s Little

theorem and Euler’s Criterion)

2p−1Up ≡ ∆
p−1

2 (mod p)

Up ≡ 2p−1Up ≡
(∆
p

)
(mod p).

Lemma 5.8. Let p be an odd prime. Then

Vp ≡ a (mod p). (5.2)

See [Rib11] for a proof.

Lemma 5.9. For all positive integers n,k, we have that Un | Ukn.

Proof. Induction over k and Lemma 5.4.

Definition. Let n be a positive integer. The rank of appearance of n, denoted by rf(n), is
the least positive integer rwith Ur ≡ 0 (mod n).

Lemma 5.10. Suppose rf(n) exists, with gcd(n,b) = 1. Then Uk ≡ 0 (mod n) if and only
if rf(n) | k.

Proof. Suppose rf(n) | k. By Lemma 5.9 we then have that Urf(n) | Uk. Since n | Urf(n)
we therefore have n | Uk.
Now suppose rf(n) - k and write k = lrf +m, l > 0, 0 < m < rf (if k < rf we are done
by definition of rf). We then have to show that n - Uk.
We will use induction over l. For l = 1 we have:

Uk = Urf+m = UrfVm − bmUrf−m,

where the first part is divisible by n but the second part is not, since gcd(n,b) = 1 and
rf −m < rf. So Uk = Urf+m is not divisible by n.
Let’s suppose n - Uk = U(l−1)rf+m for everym with 0 < m < rf. We then have:

Uk = Ulrf+m = UlrfVm − bmUlrf−m.

The first part is divisible by n, since n | Ulrf . The second part can be written as
bmUlrf−m = bmU(l−1)rf+(rf−m). By induction hypothesis and since gcd(n,b) = 1,
n - bmU(l−1)rf+(rf−m) and therefore n - Uk = Ulrf+m.

Lemma 5.11. Let p be an odd prime with p - ab∆. Then rf(p) | p−
(
∆
p

)
.
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Proof. Suppose
(
∆
p

)
= −1. By Lemma 5.6 we have

2pUp+1 =
∑

k6p+1,odd

(
p+ 1
k

)
ap+1−k∆

k−1
2 .

p |
(
p+1
k

)
ap+1−k∆

k−1
2 for all k with 1 < k < p. Therefore, we get

2pUp+1 ≡ (p+ 1)ap + (p+ 1)a∆
p−1

2 (mod p)

≡ a+ a∆
p−1

2 ,

where the last equivalence follows by Fermat’s Little Theorem. By Theorem 2.10,
∆
p−1

2 ≡
(
∆
p

)
(mod p). Since

(
∆
p

)
= −1, we thus get

2pUp+1 ≡ a(1 +
(∆
p

)
) ≡ 0 (mod p).

So p | Up+1 and therefore (by Lemma 5.10) rf(p) | p+ 1.

Now suppose that
(
∆
p

)
= 1. That means, there exists an x such that ∆ = a2 − 4b ≡ x2

(mod p). By Lemma 5.6 we have

2p−2Up−1 =
∑

k6p−1,odd

(
p− 1
k

)
ap−1−k∆

k−1
2 .

Since
(
p−1
k

)
≡ −1 (mod p) for k odd, we get

2p−2Up−1 ≡ −
∑

k6p−1,odd

ap−1−k∆
k−1

2

≡ −a(ap−3 + ap−5∆+ · · ·+∆
p−3

2 )

≡ −a
ap−1 −∆

p−1
2

a2 −∆

≡ −a
ap−1 − xp−1

a2 −∆
≡ 0 (mod p).

Therefore, p | Up−1 and (by Lemma 5.10) rf(p) | p − 1 (Note, that since p - ab∆,
a2 −∆ 6≡ 0 and p - x). Since p - ∆,

(
∆
p

)
cannot be equal to 0, so overall we have

rf(p) | p−
(∆
p

)
.
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5.2. Primality Tests

The following theorem by Michael Morrison from 1975 is similar to Theorem 3.11. It is
often referred to as "n+ 1 test".

Theorem 5.12 (Morrison). Supposen > 1 is an odd integer, a,b are integers with gcd(b,n) =
1 and that the Jacobi symbol

(
∆
n

)
= −1. Also assume that F is an integer with F | n+ 1, F >√

n+ 1 and that
Un+1 ≡ 0 (mod n),Un+1

q
∈ Z∗n

for every prime divisor q of F. Then n is prime.

Proof. SinceUn+1 ≡ 0 (mod n), rf(n) | n+ 1 and therefore rf(p) | n+ 1 for every prime
factor p of n. But since p - Un+1

q
, by Lemma 5.10 we have rf(p) - n+1

q for every prime

divisor q of F. So every prime factor q must be a divisor of rf(p). By Lemma 5.11 we
thus have F | p−

(
∆
p

)
. Therefore, p+ 1 > p−

(
∆
p

)
> F >

√
n+ 1. So p >

√
n, for every

prime factor of n, which means n is prime.

To turn Theorem 5.12 into a primality test, we first have to find suitable numbers
a,b. Given a prime number n, we may choose a,b at random such that the conditions
of Theorem 5.12 are fulfilled. Indeed, the expected number of choices we have to make
is not that large [CP05].

Theorem 5.13 (Primality Test for Mersenne prime numbers). Let a = 2, b = −2 and let
U,V be the related Lucas sequences with discriminant ∆ = 12. Then n =Mp = 2p − 1 > 3 is
prime if and only if Vn+1

2
≡ 0 (mod n).

Proof. Let n > 3 be prime. By Lemma 5.2 we have

V2
n+1

2
= Vn+1 + 2(−2)

n+1
2 = Vn+1 − 4(−2)

n+1
2

by 2.10
≡ Vn+1 − 4

(−2
n

)
(mod n).

With
(
−2
n

)
=
(
−1
n

)( 2
n

)
= −1 (this follows by Theorem 2.11) we get

V2
n+1

2
≡ Vn+1 + 4 (mod n).

We will show, that Vn+1 ≡ −4 (mod n). By Lemma 5.3 we have

2Vn+1 = VnV1 +∆UnU1

2Vn+1 = 2Vn + 12Un
Vn+1 = Vn + 6Un.

Thus, with (5.1) and (5.2) we get

Vn+1 ≡ a+ 6
(12
n

)
≡ 2 + 6

( 2
n

)( 2
n

)( 3
n

)
≡ 2 − 6 ≡ −4 (mod n).
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Now, let Vn+1
2
≡ 0 (mod n). By Lemma 5.1Un+1 is also divisible by n. With Lemma

5.5 we get
V2
n+1

2
− 12Un+1

2
= 4(−2)

n+1
2 .

Therefore, gcd(Un+1
2

,n) = 1. And since gcd(2,n) = 1,
(12
n

)
= −1 and since 2 is the

only prime factor of n+ 1 = 2p, nmust be prime by Theorem 5.12.

For practical reasons, instead of the Lucas sequence V we now consider the recursive
sequence S = (S0,S1, . . . ), which is defined as follows:

S0 = 4, Sk+1 = S2
k − 2.

In this way, we get the promised Lucas-Lehmer-Test for Mersenne prime numbers:

Theorem 5.14 (Lucas-Lehmer-Test). Mp = 2p−1 is prime if and only if Sp−2 ≡ 0 (mod Mp).

Proof. First, we will show by induction that Sk =
V2k+1

22k
. S0 = 4 = V−2

2 , so suppose, that

Sk−1 =
V2k

22k−1 holds. Then

Sk = S
2
k−1 − 2 =

V2
2k

22k
− 2

by Lemma 5.2
=

V2k+1 + 2 · 22k − 2 · 22k

22k
=
V2k+1

22k
.

By Theorem 5.13,Mp is prime, if and only if it divides VMp+1
2

. And since

VMp+1
2

= V2p−1 = 22p−1
Sp−1,

Mp is prime, if and only if it divides Sp−2.

5.2.1. Time Complexity Analysis - Lucas-Lehmer

We now analyze the Lucas-Lehmer primality test. If we perform the reduction (mod Mp)
at each iteration, we ensure that the intermediate results do not get bigger than the
length of the input. The most expensive operation of each iteration is the squaring. The
number of iterations is O(logMp) = O(p). By Lemma 4.2 and since the length of all
intermediate results is at most logMp, each squaring takes time O(log2Mp) = O(p2).
Therefore, the total running time of the algorithm is O(log3Mp) = O(p3).

Using the Schönhage-Strassen algorithm, we get an improved time complexity of
Ô(log2Mp) = Ô(p2).

The Lucas-Lehmer test is therefore an efficient deterministic polynomial-time algo-
rithm for Mersenne numbers.
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Algorithm 4 Lucas-Lehmer Test
Input: positive integerMp = 2p − 1 to be tested
Output: COMPOSITE ifMp is composite, otherwise PRIME

Let Sp−2 = S2
p−3 − 2 with S0 = 4.

if Sp−2 ≡ 0 (mod Mp) then
return PRIME

end if
return COMPOSITE

5.2.2. GIMPS

The Lucas-Lehmer test is the basis of the Great Internet Mersenne Prime Search (GIMPS).
GIMPS is a collaborative project of volunteers who use freely available software to
search for big Mersenne prime numbers. It was founded in 1996 by computer scientist
George Woltman. The project has found fifteen Mersenne prime numbers as of Oc-
tober 2016, most of them were the greatest known primes at their respective times of
discovery. The largest known prime as of October 2016, 274207281 − 1, was discovered
on September 17, 2015 (but actually not noticed until January 2016) by US-American
mathematician Curtis Niles Cooper using a GIMPS software. It has 22 228 618 decimal
digits.
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6. The Elliptic Curve Primality Test

One of the most powerful primality tests that is also most widely used in practice is
the elliptic curve primality test. In 1985, H. W. Lenstra developed a concept of using
elliptic curves in factorization. The use of elliptic curves in primality testing algorithms
was an implication of his work. The elliptic curve primality test was first described by
Shafrira Goldwasser and Joe Kilian in 1986 and then turned into an effective algorithm
by A.O.L. Atkin in the same year. The algorithm was improved notably by A. O. L.
Atkin and Francois Morain in 1993.

6.1. Motivation1

We will first consider a generalization of the idea of Lucas. It is the motivation for a
theorem, on which the Elliptic Curve Primality Test is based on.

Theorem 6.1. Let n ∈ N,n > 1. Suppose that there is an element a ∈ Zn and a number
s > 0 such that

as ≡ 1 (mod n)

a
s
q − 1 ∈ Z∗n, for every prime factor q of s.

Then p ≡ 1 (mod s) for any prime p dividing n. In particular: if s >
√
n⇒ n is prime.

Proof. Let p be prime with p | n. Then we have:

as ≡ 1 (mod p)

a
s
q 6≡ 1 (mod p) for every prime factor q of s,

since a
s
q − 1 ∈ Z∗n ⇒ a

s
q − 1 ∈ Z∗p ⇒ a

s
q − 1 6≡ 0 (mod p). Therefore, s = ordp(a) |

|Z∗p| = p− 1, which means p ≡ 1 mod s. For the second statement, suppose that n is
composite and choose a prime p 6

√
n. Let s >

√
n. We then have:

p− 1 = k · s > k
√
n >
√
n⇒ p− 1 >

√
n⇒ p >

√
n.

Therefore, nmust be prime.

In order to test if a
s
q − 1 ∈ Z∗n for every prime factor q of n, one has to check if

gcd(n,a
s
q − 1). So first we need to know all prime factors q of s. But s needs to be

large. In fact, it has to be larger than
√
n to conclude that n is prime. In applications, s

is a completely factored divisor of n− 1. Computing such a divisor takes usually much

1The motivation is based on [Sch14]
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time, if n is large. So in general this theorem won’t prove directly, if n is prime.
But it may happen, that one can compute a divisor r > 1 of n− 1 that has the prop-
erty that s = n−1

r is probably prime. This would make our problem much easyer: one
chooses a random x ∈ Zn and computes a = xr. With high probability we have as ≡ 1
(mod n) and a− 1 ∈ Z∗n. Since s >

√
n, Theorem 6.1 implies now that n is prime if

the smaller number s is prime. But don’t get too excited: the chance that n− 1 factors
this way is very low (on average O( 1

logn)). As we will see, elliptic curves will give a
solution to this problem.

6.2. Preliminaries

In this section we will give some basic definitions and facts related to elliptic curves.
While there are whole books about the theory of elliptic curves we will concentrate
on the very basics which is enough for our purpose. Advanced readers might want
to skip this section and continue reading in section 6.3. To define elliptic curves we
shortly introduce the concept of affine and projective planes:

6.2.1. Affine and Projective Plane

First remember how an affine plane is defined:

Definition. Let A be a set of points and G ⊂ P(A), where P(A) denotes the power set
of A, be a set of lines. (A, G) is called affine plane if:

(A1) For any two elements p,q ∈ A,p 6= q there exists exactly one L ∈ G such that
p,q ∈ L

(A2) For L ∈ G and p ∈A\L there exists exactly one L′ ∈ G with p ∈ L′ and L∩ L′ = ∅.
(Parallel postulate)

(A3) There are p,q, r ∈A and L ∈ G with p,q ∈ L but r 6∈ L.

Lemma 6.2. Let K2 be the two dimensional vector space over the field K. For A := K2 and
G := {a+Kb | a,b ∈ K,b 6= 0}, A2(K) := (A, G) is an affine plane.

Remark. For K = R, A and G are points and lines in the usual interpretation.

The smallest affine plane is the following:

Example. Let A = {p,q, r, s} and G = {{p,q}, {p, r}, {p, s}, {q, r}, {q, s}, {r, s}}. So any two
different lines are either parallel or intersect in exactly one point.
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Although the concept of an affine plane is nice and clear, we don’t like the fact that
there are lines which do not intersect each other. The projective plane solves this prob-
lem:

Definition. Let P be a set of points and G ⊂ P(P) be a set of lines. (P, G) is called
projective plane if:

(A1) For any two points P,Q ∈ P with P 6= Q there exists exactly one L ∈ G such that
P,Q ∈ L

(P2) For any two lines L1,L2 ∈ G, |L1 ∩ L2| = 1.

(P3) There are P,Q,R,S ∈ P such that any three of them do not belong to the same
line L ∈ G.

So in a projective plane any two lines intersect in exactly one point. There are no non-
identical parallel lines anymore. To avoid confusion, we usually denote the coordinates
of a point in the projective plane with capital letters and those in the affine plane with
small letters.
Now, let K3 be the three dimensional vector space over K. We will define an equivalence
relation for points P,Q ∈ K3\{0}:

P ∼ Q :⇔ ∃λ ∈ K\{0} with λP = Q.

For the equivalence classes of a = (a1,a2,a3) ∈ K3\{0} we write (a1 : a2 : a3) or for
simplicity reasons [a]. On these equivalence classes, we now define a set of points:

P := (K3\{0})/∼ = {[a] | a ∈ K3\{0}}.

For P 6= Q ∈ P,P = [a],Q = [b], the line connecting the points is defined by:

PQ := {[λa+ µb] | λ,µ ∈ K, (λ,µ) 6= (0, 0)}.

Then the set of all lines is

G := {PQ | P,Q ∈ P,P 6= Q}

and we get:

Lemma 6.3. For P and G definded as above, P2(K) := (P, G) is a projective plane.

The smallest projective plane is the so called Fano plane:

Example (Fano plane). |P| = 7.
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For Z 6= 0 we can transform every point of the project plane as follows:

(X : Y : Z) = (
X

Z
:
Y

Z
: 1) = (x : y : 1).

We can now identify the point (x : y : 1) of the project plane with (x,y) in the affine
plane. To include the points where Z = 0 we define the so called points at infinity:

U := {(U : V :W) ∈ P |W = 0}.

We then get the projective plane by adding the points at infinity to the affine plane:

P2(K) = A2(K)∪U.

6.2.2. Elliptic Curves2

The field of elliptic curves is huge. There are lots of good books devoted to elliptic
curves. We will focus on the very basics, just enough for applying them to primality
testing. For further reading see [Mil06], for example.

Before we start, note that elliptic curves are (as we will see) not ellipses. See [Mil06]
for their (sparse) connection.

Consider the following polynomial:

F(X, Y,Z) = Y2Z+ a1XYZ+ a3YZ
2 −X3 − a2X

2Z− a4XZ
2 − a6Z

3.

F is a homogenous polynomial (which is a polynomial whose nonzero terms all have
the same degree) of degree 3. The strange numbering of the coefficients has historical
reasons.

Definition. The equation F(X, Y,Z) = 0 is called Weierstrass equation.

Let
E := {(U : V :W) ∈ P | F(U,V ,W) = 0}

be the zero set of F. E defines a curve in the projective plane P2(K).

Definition. A point P = (U : V :W) ∈ E is called singular, if the partial derivatives of F
at P vanish:

∂F

∂X
(P) =

∂F

∂Y
(P) =

∂F

∂Z
(P) = 0.

A curve E is called singular if there exist a singular point in E and non-singular, if not.

We can now give a definition of an elliptic curve:

Definition. A non-singular curve, described by a Weierstrass equation, is called an
elliptic curve.

2The main reference for this section is [HPS08]
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Remark. Let E be an elliptic curve. Then E has exactly one point at infinity, namely:
O := (0 : 1 : 0). (Simply substitute Z = 0 in the equation...)

In many cases, and in particular all the cases we will consider, we can simplify the
Weierstrass equation:

Lemma 6.4. Let E be an elliptic curve over K. If char(K) 6= 2, 3 then E is isomorphic to an
elliptic curve E′ of the form:

E′ : 0 = Y2Z−X3 − aXZ2 − bZ3

and the equation
0 = Y2Z−X3 − aXZ2 − bZ3 (6.1)

is called short Weierstrass equation.

By dividing equation (6.1) by Z3 and replacing X by X
Z and Y by Y

Z , we get the short
Weierstrass equation in the affine plane:

0 = y2 − x3 − ax− b.

Since O is the only point at infinity on E and all other points can be transformed into
points of the form P = (U : V : 1), we get the affine representation of E:

E = {(x,y) ∈ K2 | y2 = x3 + ax+ b}∪O. (6.2)

But how can we ensure, that our curve is non-singular? The following lemma will
give the answer to this question:

Lemma 6.5. Let E be a curve given by (6.2). E is non-singular, and therefore an elliptic curve,
if and only if

4a3 + 27b2 6= 0

Proof. Let f(x,y) = y2 −x3 −ax−b. We then have the partial derivatives fx = −3x2 −a
and fy = 2y, where fx = 0 ⇔ x =

√
−a

3 and fy = 0 ⇔ y = 0. If we plug these in the
short Weierstrass equation, we get:

0 =
(√

−
a

3

)3
+ a ·

√
−
a

3
+ b

⇔ 4a3 + 27b2 = 0

So for E being non-singular, 4a3 + 27b2 6= 0 must hold and this is also sufficient.

Remark. If 4a3 + 27b2 > 0, E has only one component, if 4a3 + 27b2 < 0, it has two.

See figures 6.1 and 6.2 for examples of elliptic curves. And figure 6.3 for examples of
singular curves.
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Figure 6.1.: An elliptic curve with one component: y2 = x3 + 18

Figure 6.2.: An elliptic curve with two components: y2 = x3 − 15x+ 18

From now on, we assume that E is given in its affine representation and that Lemma
6.5 holds, so we have indeed an elliptic curve.

Elliptic curves have the great property that one can take any two points on the curve
and add them together to get a third point. We will now define, what we mean by
"adding":

Addition Law. Let E be an elliptic curve. The addition law is then defined by:
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Figure 6.3.: Two singular curves, one with self intersection, one with a cusp

• Let P and Q be two points on E, P 6= Q and let L be the line connecting them. L
intersects E in three points: P,Q and a third point which we call R = (s, t). We
take R and reflect it across the x-axis. So we get:

P+Q := R′ = (s,−t).

• LetQ = P′. In that case, L is the vertical line through P and it intersects E in three
points: P,P′ and in the point at infinity O. With this we get:

P+ P′ := O.

• If Q = P, then L is the tangent line to E at P. Suppose that L intersects E in P and
in a different point Q 6= P. Then

P+ P := −Q

• P+O := P, since the line connecting P and O is vertical it intersects E in P,O and
P′. Reflecting P′ gets us back to P

Note that the reflection point is always in E, since elliptic curves are symmetric about
the x-axis.
To make this addition law clear, let’s do an example:

Example. Let E : y2 = x3 − 15x+ 18 be an elliptic curve and P = (7, 16),Q = (1, 2)
be two points on E. To determine P +Q, we first have to find the line L : y = kx+ d
connecting them, so we have to find k,d. Computation leads to L : y = 7

3x−
1
3 . Now

we have to find the third intersection point of E and L:

(7
3
x−

1
3
)2

= x3 − 15x+ 18 (6.3)

⇔ x3 −
49
9
x2 −

121
9
x+

161
9

= 0 (6.4)
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In general, finding the roots of a cubic polynomial is not that easy, but in this case we
already know two of its roots: x = 7 and x = 1. Therefore the polynomial in equation
(6.4) factors into (x− 7)(x− 1)(x+ 23

9 ). So we found the x-coordinate of the third point,
which is x = −23

9 , and by substituting this into L we also get the y-coordinate: y =

−170
27 . By reflecting the point (−23

9 ,−170
27 ) across the x-axis, the get:

P+Q = (−
23
9

,
170
27

).

Note that this is indeed a point in E!

Notations. If P = (s, t) we denote the reflection point by P′ = (s,−t). If we add P n
times to itself, we denote it by nP.

Theorem 6.6. Let E be an elliptic curve. Then the addition law gives the points of E the
structure of an abelian group:

(a) P+O = O+ P = P for all P ∈ E (Identity)

(b) P+ P′ = O for all P ∈ E (Inverse)

(c) (P+Q) + R = P+ (Q+ R) for all P,Q,R ∈ E (Associative)

(d) P+Q = Q+ P for all P,Q ∈ E (Commutative)

Proof. (a) and (b) are clear.
(d) is also clear, since every line through P,Q is the same as the line through Q,P.
The associative law (c) is harder to prove. One can find it in [Mil06] for example.

Algorithm 5 computes the sum of two points on an elliptic curve.

Algorithm 5 Elliptic Curve Addition Algorithm
Input: An elliptic curve E(Fp) : y2 = x3 + ax+ b and two points P,Q ∈ E(Fp)
Output: The sum P+Q

1: if P = O then
2: P+Q = Q
3: end if
4: if Q = O then
5: P+Q = P
6: end if
7: Write P = (x1,y1), Q = (x2,y2).
8: if x1 = x2 and y1 = −y2 then
9: P+Q = O

10: end if
11: Define λ by

12: λ =

{
y2−y1
x2−x1

if P 6= Q
3x2

1+a
2y1

if P = Q

13: and let x3 = λ2 − x1 − x2 and y3 = λ(x1 − x3) − y1
14: then P+Q = (x3,y3)
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Proof of the correctness of the algorithm. The steps 1, 4 and 8 obviously compute the cor-
rect sum.
We show, that step 11 also leads to the correct point on E(Fp).
If P 6= Q, then λ is the slope of the line through P and Q. We have

λ =
y2 − y1

x2 − x1
.

If P = Q, then λ is the slope of the tangent line at P. By differentiating implicitly we get

2y
dy

dx
= 3x2 + a⇔ dy

dx
=

3x2 + a

2y
.

Substituting P yields

λ =
3x2

1 + a

2y1
.

In both cases, the line is then given by

L : y = λx+ ν , ν = y1 − λx1.

Substituting this into E(Fp) yields:

(λx+ ν)2 = x3 + ax+ b

⇔ x3 − λ2x2 + (a− 2λν)x+ (b− ν2) = 0. (6.5)

This cubic equation has roots x1 and x2. Let x3 denote the third root, then 6.5 factors
into

x3 − λ2x2 + (a− 2λν)x+ (b− ν2) = (x− x1)(x− x2)(x− x3).

By equating coefficients, we get:

λ2 = x1 + x2 + x3 ⇔ x3 = λ2 − x1 − x2.

Substituting x3 into L yields y′3 = λ(x3 − x1) + y1. By reflecting across the x-axis we get
y3 = λ(x1 − x3) − y1 and we have

P+Q = (x3,y3).

Algorithm 5 shows, that it is necessary to have a non-singular curve, since otherwise
we would not have unique tangent lines in every point and the addition would not be
defined for all points on the elliptic curve.

For our purpose we will consider elliptic curves over finite fields:

Definition. Let a,b ∈ Fp. An elliptic curve over the finite field Fp is then given by:

Ea,b(Fp) := {(x,y) | x,y ∈ Fpwith y2 ≡ x3 + ax+ b (mod p)

with 4a3 + 27b2 6≡ 0 (mod p)}∪O.
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Notations. |Ea,b(Fp)| denotes the number of points of Ea,b(Fp).

Note that this is not a continuous curve anymore, but a discrete set of points in the
xy-plane, as the following example will show:

Example. Let E3,8 : y2 ≡ x3 + 3x + 8 over F13. To find the points of E3,8(F13) we
substitute all possible values x = 0, . . . , 12 into the equation and check if the result is a
square modulo 13:

x = 0⇒ y2 = 8 but 8 is not a square modulo 13, so we discard x

x = 1⇒ y2 = 12 we get two square roots modulo 13:

52 ≡ 12 (mod 13) and 82 ≡ 12 (mod 13)

which gives us two points in E3,8(F13): (1, 5) and (1, 8). By repeating the same proce-
dure for all possible values x, we get:

E3,8(F13) = {O, (1, 5), (1, 8), (2, 3), (2, 10), (9, 6), (9, 7), (12, 2), (12, 11)}

and |E3,8(F13)| = 9.

Remark. The addition law still gives Ea,b(Fp) the structure of an abelian group. And the
elliptic curve addition applied to two points of Ea,b(Fp) still yields a point in Ea,b(Fp).

Note, that the elliptic curve addition algorithm involves division. So if n is compos-
ite, Zn is not a finite field anymore, but a ring and we have zero divisors. Therefore,
there are points P,Q such that P +Q is not defined. Hence, in this case the points of
Ea,b(Zn) will not form a group anymore. Since we often do not know, if n is prime or
not, we call a curve over the ring Zn an elliptic pseudocurve:

Definition. For a,b ∈ Zn with gcd(4a3 + 27b2,n) = 1 and gcd(n, 6) = 1, an elliptic
pseudocurve over the ring Zn is the set

Ea,b(Zn) = {(x,y) | x,y ∈ Zn : y2 = x3 + ax+ b}∪O.

Note, that every elliptic curve over Fp is also an elliptic pseudocurve.

In order to use elliptic curves for primality tests, we need an estimate for the number
of points on an elliptic curve over a finite field.

Theorem 6.7 (Hasse’s Theorem). Let Ea,b be an elliptic curve over the finite field Fp. Then:∣∣|Ea,b(Fp)|− (p+ 1)
∣∣ 6 2

√
p.

6.3. Goldwasser-Kilian Primality Test3

We can finally apply Theorem 6.1 from the beginning of this chapter to elliptic curves:

3The main references for this section are [Sch14] and [CP05]
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Theorem 6.8. Let n ∈ N,n > 1 and let Ea,b(Zn) be an elliptic pseudocurve. Suppose that
there is a point P ∈ Ea,b(Zn) and an integer s > 0, such that:

sP = O in Ea,b(Zn)
s

q
6= O in Ea,b(Zp)

for any prime factors q of s and any prime factors p of n. Then:

|Ea,b(Zp)| ≡ 0 (mod s)

for every prime p dividing n. In particular, if s > ( 4
√
n+ 1)2, then n is prime.

Proof. Let p be any prime divisor of n. Since sP = O in Ea,b(Zn), the order of P in
Ea,b(Zp) is also s. Therefore s | |Ea,b(Fp)| and |Ea,b(Fp)| ≡ 0 (mod s). By Hasse’s
Theorem we know that |Ea,b(Fp)| 6 (

√
p+ 1)2. Therefore, if s > ( 4

√
n+ 1)2, we have:

(
√
p+ 1)2 > |Ea,b(Fp)| > s > ( 4

√
n+ 1)2 ⇒ p >

√
n

As before, if n is composite it must have a prime factor p 6
√
n, since this is not the

case, nmust be prime.

Theorem 6.8 is due to Shafrira Goldwasser and Joe Kilian.

Now the question is how do we get a primality test out of Theorem 6.8? The idea of
Goldwasser and Kilian is the following:

Suppose n is prime. Then, for any given a,b, the order of Ea,b(Zn) lies in the Hasse
interval ((

√
n− 1)2, (

√
n+ 1)2) by Theorem 6.7. To apply Theorem 6.8 we have to find

a number s > ( 4
√
n+ 1)2, which is a completely factored divisor of |Ea,b(Zn)|. As we

already noticed, in generak it will not be easy to find such a number s. But now, we are
dealing with elliptic curves, which gives us more possibilities:
We choose a,b at random, with gcd(4a3 + 27b2,n) = 1 and determine |Ea,b(Zn)|. So
we first have to know, if there is an algorithm, that quickly determines the order of
Ea,b(Zn), provided n is prime. In fact, such an algorithm exists:
In 1985, the Dutch mathematician René Schoof published a deterministic polynomial-
time algorithm to count the number of points on elliptic curves over finite fields [Sch85].
Until then, only algorithms with exponential running time were known. Therefore,
Schoof’s algorithm was a great discovery.

So now that we know that determining the order will not be a problem, we try to
find a completely factored divisor s of this order with s > ( 4

√
n+ 1)2. If trying to factor

the order of the curve takes too long, we just choose another pair a,b and try again
with those.
Suppose, that we were lucky and we found suitable numbers a,b and s. We now have
to find a point P on Ea,b(Zn) which satisfies the conditions of Theorem 6.8. For thhis
purpose, we simply choose an integer x at random and determine x3 + ax + b. The
probability that this number is a quadratic residue modulo n is approximately 1/2.
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Then, finding its square root modulo n also will not be a big challenge. There are sev-
eral algorithms to provide it.
Also, finding a point on Ea,b(Zn) whose order is a multiple of s is not too difficult.
The probability of finding such a point is large enough and if we found one, getting a
multiple of that point whose order is exactly s is simple.

So if we find a large and completely factored divisor s of |Ea,b(Zn)|, deciding whether
n is prime or composite is ensured. We therefore have to think about what kind of
numbers are easy to factor. Well, prime numbers might be able to do the job, since
once you know you have a prime number, it obviously is completely factored.
So as with Theorem 6.1, instead of proving that n is prime, we try to show that a
smaller number s is prime. Concretely we proceed as follows:

Given a number n that is likely to be prime, we choose randomly elliptic
(pseudo)curves Ea,b(Fn) and compute the order |Ea,b(Fn)| until we find one with
|Ea,b(Fn)| = r · s, where s is probably prime with s > ( 4

√
n+ 1)2. Now randomly choose

a point Q ∈ Ea,b(Fn) and compute P = rQ. Then check, if sP = O in Ea,b(Fn) and that
P 6= O in Ea,b(Fp) for every prime divisor p of n (If we take the projective notation
P = (U : V : W), the last equation simply means, that gcd(n,W) = 1). Theorem 6.8
now ensures that n is prime if s is prime. In order to prove that s is prime, one might
have to apply the method again, until one is able to prove the primality of some divisor
by trial division.

Recall, that if n is not prime, Ea,b(Fn) is not an elliptic curve but an elliptic pseu-
docurve and there are zero divisors. In practice, this is not a problem, since whenever
zero divisors occur, we know for sure that n is composite.
Algorithm 6 summarizes the details of the Goldwasser-Kilian Primality Test.
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Algorithm 6 Goldwasser-Kilian Primality Test
Input: positive nonsquare integer n, that has already passed a probabilistic primality

test
Output: COMPOSITE if n is composite, otherwise PRIME IF s IS PRIME

1: [Choose an elliptic pseudocurve over Zn]
Choose random a,b ∈ [0,n− 1] such that gcd(4a3 + 27b2,n) = 1

2: [Assess curve order]
Calculating |Ea,b(Fn)| =: o as if nwere prime using Algorithm 8.

3: if the point-counting algorithm fails then
4: return COMPOSITE
5: end if
6: [Attempt to factor]

Attempt to factor o = r · swhere r > 1 and s probably prime with s > ( 4
√
n+ 1)2.

7: if the factoring cannot be done according to some time-limit criterion then
8: goto 1
9: end if

10: [Choose point on Ea,b(Zn)]
Choose random x ∈ [0,n− 1] such that t ≡ x3 + ax+ b (mod n) has

(
t
n

)
6= −1

Find an integer y such that y2 ≡ t (mod n) (under the assumption that n is prime).
11: if y2 6≡ t (mod n) then
12: return COMPOSITE
13: end if
14: Q = (x,y)
15: [Operate on point]

Compute the multiple P = rQ
16: if zero divisors occur then
17: return COMPOSITE
18: end if
19: if P = O then
20: goto 10
21: end if
22: Compute R = sP
23: if zero divisors occur then
24: return COMPOSITE
25: end if
26: if R 6= O then
27: return COMPOSITE
28: end if
29: return PRIME IF s IS PRIME

But the Goldwasser-Kilian Primality Test is not only able to decide whether a num-
ber is prime or not, it also provides a very short proof of primality, a so called certificate
of primality. That means, once proven that a certain number is prime, one can quickly
verify this result by using the certificate. In the case of the Goldwasser-Kilian test, the



6.4. ATKIN-MORAIN PRIMALITY TEST 53

certificate consists of a chain

(n = n1,a1,b1,o1, r1, s1,Q1), (s1 = n2,a2,b2,o2, r2, s2,Q2),

. . . , (si−1 = ni,ai,bi,oi, ri, si,Qi),

where si can be proven prime by trial division.

6.3.1. Time Complexity Analysis

Whereas the time complexity analysis of the primality tests in chapter 3 was quite
straight forward, the time complexity analysis of the Goldwasser-Kilian Primality Test
is more complicated. This is basically because we do not really know how prime num-
bers are distributed in certain intervals. Therefore, we do not know how long it will
take until we find a curve whose order we are able to factor in a limited time.
However, there are some conjectures related to this:

It can be shown that if

π((
√
x+ 1)2) − π((

√
x− 1)2) > A

√
x

lnc x
for positive constants A, c, then the expected time complexity of the algorithm is

O(ln9+c n) (see [GK99]).

The most time consuming step is computing the curve order via Schoof’s algorithm.
Schoof’s algorithm takes time O(ln8 n) (see [GK99]). The algorithm can be improved
such that one gets a time complexity of O(ln6 n) (see [CP05]).

Therefore the Goldwasser-Kilian Primality Test has expected polynomial running
time for almost all inputs.

6.4. Atkin-Morain Primality Test

In 1988, Arthur Oliver Lonsdale Atkin and François Morain were able to transform
the Goldwasser-Kilian Primality Test into a computer practical test. The problem with
the Goldwasser-Kilian Primality Test is determining the curve order with Schoof’s Al-
gorithm. Even though it is a deterministic, polynomial-time algorithm, it is not very
practical to apply it repeatedly with very large prime numbers.

By using the theory of complex multiplication on elliptic curves, the method of Atkin
and Morain first finds the order, and if one can quickly find a completely factored s as
in Theorem 6.8 then finding a corresponding curve is not so hard (see [AM93] for the
details).

The method seems to work very well in practice. The largest numbers that were
proven prime by the Atkin-Morain Primality Test have more than 2 000 digits.
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However, in general, the number of choices for the order we have to make is not
known, since the potential curve orders that one wants to factor have an unknown
distribution.
But heuristic estimates for the time complexity of the algorithm are polynomial, e.g.
O(log4+ε n). Like the Goldwasser-Kilian Primality Test, the Atkin-Morain Primality
Test also provides a certificate of primality.
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7. The AKS Test

On August 6, 2002, Manindra Agrawal, Neeraj Kayal and Nitin Saxena, computer sci-
entists at the Indian Institute of Technology Kanpur, published a paper called "PRIMES
is in P", in which they introduced a deterministic polynomial time primality testing
algorithm. The AKS test, named after its inventors, is the first primality-proving al-
gorithm with polynomial running time. For this breakthrough Agrawal, Kayal and
Saxena received the 2006 Goedel Prize and the 2006 Fulkerson Prize. [AKS04] is the
main reference for this chapter.

7.1. The Idea

The test is based on the following lemma:

Lemma 7.1. Let a ∈ Z,n ∈N,n > 2 and gcd(a,n) = 1. Then n is prime if and only if

(x+ a)n ≡ xn + a (mod n). (7.1)

Proof. The coefficient of xk in (x+ a)n is
(
n
k

)
an−k for 0 < k < n.

(i) Suppose n is prime. Then n |
(
n
k

)
and

(
n
k

)
≡ 0 (mod n). Hence all coefficients are

zero modulo n.

(ii) Suppose n is composite. Consider a prime factor q of n and let qr be the greatest
power of q dividing n. Then qr -

(
n
q

)
, since(

n

q

)
=

n(n− 1) · · · (n− q+ 1)
q(q− 1) · · · 1

=
qrm(n− 1) · · · (n− q+ 1)

q(q− 1) · · · 1
=
qr−1m(n− 1) · · · (n− q+ 1)

(q− 1) · · · 1

Since gcd(a,n) = 1, qr is coprime to an−q and hence the coefficient of xq is not
zero modulo n. Thus (x+ a)n 6≡ xn + a (mod n).

So if we want to find out, if a given number is prime or not the lemma above gives
us a simple way to find out: if the congruence 7.1 is satisfied for at least one a, we
know for sure, that n is prime. So far so good. The only problem is: in general this
involves the computation of all coefficients of the polynomial and this cannot be done
in polynomial time. In fact, if there are n coefficients it takes time Ω(n). The idea is
now to reduce the number of coefficients. A simple way to do so is evaluating both
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sides of 7.1 modulo a polynomial of the form xr − 1 for an appropriately chosen small
r. So we test if the following equation is satisfied:

(x+ a)n ≡ xn + a (mod xr − 1,n). (7.2)

If n is prime, obviously 7.2 is satisfied for all values of a and r. The problem now is
that there are composite numbers which also satisfy the congruence for some values of
a and r. However, we will show that for appropriately chosen r, if the congruence 7.2
is satisfied for several values of a, then n must be a prime power. With this we get a
deterministic primality testing algorithm with polynomial running time.

7.2. The Algorithm

The AKS primality testing algorithm is as follows:

Algorithm 7 The AKS Test
Input: integer n>1
Output: COMPOSITE if n is composite, PRIME if n is prime.

1: if n = ab for a ∈N and b > 1 then
2: return COMPOSITE
3: end if
4: Find the smallest r such that ordr(n) > log2 n.
5: if 1 < gcd(a,n) < n for some a 6 r then
6: return COMPOSITE
7: end if
8: if n 6 r then
9: return PRIME

10: end if
11: for a = 1 to b

√
φ(r) lognc do

12:
13: if (x+ a)n 6≡ xn + a (mod xr − 1,n) then
14: return COMPOSITE
15: end if
16: return PRIME
17: end for

In the next section we will show that this algorithm determines, if a given number is
prime or not and that the running time is polynomial.

7.2.1. Proof of Correctness

Theorem 7.2. The algorithm above returns PRIME if and only if n is prime.

We will prove the theorem through a sequence of lemmas. One direction is trivial:

Lemma 7.3. If n is prime, the algorithm returns PRIME.
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Proof. If n is prime, step 2 and 6 of the algorithm can never return COMPOSITE. The
for loop also cannot return COMPOSITE, because of Lemma 7.1. Therefore the algo-
rithm will identify n either in step 9 or in step16 as a prime number.

The other direction is not that easy. It is clear that if the algorithm identifies n as
PRIME in step 9, n is definitely prime, since otherwise step 5 would have found a non-
trivial divisor of n. So what remains is the case when the algorithm returns PRIME in
step 16. We assume now that this is the case, so we have to prove that this implies that
n is in fact prime.

In step 4 of the algorithm we have to find the smallest r such that ordr(n) > log2 n.
This can be done by simply testing successive values for r. But then the question will
be how large r can get. Since we want our algorithm to have polynomial running time,
the answer to the answer to this question is very important. Luckily, we can bound the
magnitude of the appropriate r:

Lemma 7.4. There exist an r 6 max{3, dlog5 ne} such that ordr(n) > log2 n.

Proof. For n = 2 this is trivially true: r = 3 satisfies all conditions. So assume that
n > 2. Consider the set of all numbers ri such that either ordri(n) 6 log2 n or ri | n.

Then every such ri divides n ·
∏blog2 nc
i=1 (ni − 1). We have:

n ·
blog2 nc∏
i=1

(ni − 1) < n ·
blog2 nc∏
i=1

ni

= n ·n1+2+···+blog2 nc

= n
blog2nc·(blog2nc+1)

2 +1

= n
blog2nc2+blog2nc+2

2

Since log2n > 2 for every n > 2, we have 2 < blog2 nc2 − blog2 nc. With this we get:

n ·
blog2 nc∏
i=1

(ni − 1) < n
blog2nc2+blog2nc+2

2

< nblog2 nc2 6 n(log2 n)2

= nlog4 n = 2log5 n

Overall we have:

n ·
blog2 nc∏
i=1

(ni − 1) < 2log5 n.

From Lemma 2.6 we know, that the LCM(dlog5 ne) > 2dlog5 ne. So:

n ·
blog2 nc∏
i=1

(ni − 1) < LCM(dlog5 ne),
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which means, that there must be a number smaller than dlog5 ne, which does not divide
the product. For this number, lets call it r, we have ordr(n) > log2 n. If gcd(r,n) = 1,
we are done. So suppose gcd(r,n) > 1. Then we define r′ as r′ := r

gcd(r,n) . Since r does
not divide the product and gcd(r′,n) = 1, r′ cannot divide the product. Therefore,
ordr′(n) > log2 n.

Remark. • Since ordr(n) > 1, there is a prime factor p of n such that ordr(p) > 1.
(Let n = p1 · · ·pk. Suppose r | (pi − 1) for all i ∈ {1, . . . ,k}. Then r |

∏k
i=1(pi − 1).

But then r | (n− 1), which is a contradiction to ordr(n) > 1.)

• p > r, since otherwise the algorithm would have returned COMPOSITE in step 6
or PRIME in step 9.

• gcd(n, r) = 1, since otherwise either step 6 or step 9 of the algorithm would have
identified n correctly as composite resp. prime. So p,n ∈ Z∗r .

p and rwill be fixed in the remainder of this section. Let l := bφ(r) lognc.
In step 11 of the algorithm, l congruences are verified. Since the algorithm does not

return COMPOSITE, we have:

(x+ a)n ≡ xn + a (mod xr − 1,n) (7.3)

for every a, 0 < a 6 l. This implies:

(x+ a)n ≡ xn + a (mod xr − 1,p) (7.4)
Lemma 7.1
======⇒ (x+ a)p ≡ xp + a (mod xr − 1,p) (7.5)

With (7.4) und (7.5) we get

(xp)
n
p + a = xn + a ≡ (x+ a)n ≡ (x+ a)n·

p
p ≡ (xp + a)

n
p (mod xr − 1,p)

And since xp ≡ x (mod xr − 1,p) we have:

(x+ a)
n
p ≡ x

n
p + a (mod xr − 1,p)

We see that both n and n
p behave like the prime pwith respect to the polynomial x+a.

We give numbers with this property a name:

Definition. Let f(x) be a polynomial andm ∈N. We saym is introspective for f(x) if

f(x)m ≡ f(xm) (mod xr − 1,p) (7.6)

Introspective numbers are closed under multiplication:

Lemma 7.5. Letm andm′ be introspective for f(x). Thenm ·m′ is also introspective for f(x).

Proof. Sincem is introspective for f(x) we have:

((f(x))m)m
′
≡ (f(xm))m

′
(mod xr − 1,p). (7.7)
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Sincem′ is introspective for f(x) and by replacing x by xm we get:

(f(xm))m
′
≡ f((xm)m

′
) (mod (xm)r − 1,p) (7.8)

≡ f(xm·m
′
) (mod xr − 1,p) (7.9)

The second relation holds because (xr − 1) | (xm·r − 1). Putting together (7.7) and (7.9)
we get:

f(x)m·m
′
≡ f(xm·m

′
) (mod xr − 1,p).

The following lemma shows that the set of polynomials for which a fixed numberm
is introspective, is also closed under multiplication:

Lemma 7.6. Letm be introspective for f(x) and g(x). Then it is also introspective for
f(x) · g(x).
Proof. We have:

(f(x) · g(x))m ≡ f(x)m · g(x)m (mod xr − 1,p)
≡ f(xm) · g(xm) (mod xr − 1,p)

Let’s define P as the set of all products of powers of (x+ a) for 0 6 a 6 l:

P :=
{ l∏
a=0

(x+ a)ea | ea > 0
}

.

Then Lemma 7.6 tells us that np and p are introspective for all polynomials in P.
Let now I be the set of all products of powers of pi and (np )

j:

I :=
{
pi ·
(n
p

)j
| i, j > 0

}
.

Then we know from Lemma 7.5 that every number in I is introspective for every poly-
nomial in P.

Based on the sets P and Iwe now define two groups:
The first group, let’s call it G, is the set of all residues of numbers in I (mod r). G is

a subgroup of Z∗r since gcd(n, r) = gcd(p, r) = 1. Let |G| = t. G is generated by n and
pmodulo r and since ordr(n) > log2 n, t > log2 n.
To define the second group, we need some basic facts about cyclotomic polynomials
over finite fields. But first let’s define what cyclotomic polynomials are:

Definition. Let p be prime and r be any positive integer. The rth cyclotomic polynomial
over Fp is then given by:

Φr(x) :=
∏

16k6r
gcd(k,r)=1

(
x− e

2iπk
r

)
∈ Fp[x]

, where e
2iπk
r is a primitive rth root of unity.
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Whereas cyclotomic polynomials over the integers are always irreducible (this is a
well known fact, proved by several mathematicians such as Gauss, Landau, Kronecker
and Dedekind; see [Wei]), for cyclotomic polynomials over finite fields this must not
be the case, as the following example will show:

Example. The 4th cyclotomic polynomial is given by:

Φ4(x) =
∏

16k64
gcd(k,4)=1

(
x− e

2iπk
4

)
= (x− e

2iπ
4 )(x− e

2iπ·3
4 )

= (x− i)(x+ i) = x2 − ix+ ix+ 1 = x2 + 1.

Over the integers, x2 + 1 is indeed irreducible, where as in F5 for example, we can
factor it as follows:

(x+ 2)(x− 2) = x2 − 4 ≡ x2 + 1 (mod 5).

Lemma 7.7 (Cyclotomic Polynomials over finite fields). Let Φr(x) be the rth cyclotomic
polynomial over Fp. Then Φr(x) divides xr − 1 and factors into irreducible polynomials of
degree ordr(p).

A proof can be found in [LN86] for example.

Let now h(x) be a factor of Φr(x) with degree ordr(p). The degree of h(x) is greater
than 1 since ordr(p) > 1. The second group we have to consider then consists of all
residues of polynomials in P modulo h(x) and p. Let’s call this group G. It is gener-
ated by x, x+ 1, x+ 2, . . . , x+ l in the field F := Fp[x]/(h(x)). It is a subgroup of the
multiplicative group of F. We now give a lower bound on the size of the subgroup G:

Lemma 7.8 (Hendrik Lenstra Jr.). |G| >
(
t+l
t−1

)
.

Proof. First note, that x is a primitive rth root of unity in F since h(x) is a factor ofΦr(x),
so in particular a factor of xr − 1.
We first show, that any two distinct polynomials of degree less than |G| = t in P will
map to different elements in G. Let f(x) and g(x) be two such polynomials in P and
suppose that f(x) ≡ g(x) in F.Then f(x)m ≡ g(x)m in F for every m ∈ I. Since m
is introspective for both f(x) and g(x), by definition f(xm) ≡ g(xm) (mod xr − 1,p)
and since h(x) divides xr − 1, f(xm) ≡ g(xm) in F. This implies that xm is a root of the
polynomialQ(y) = f(y)−g(y) for everym ∈ G. As mentioned above,G is a subgroup
of Z∗r and gcd(m, r) = 1, so each xm is a primitive rth root of unity. Hence there are
|G| = t distinct roots of Q(y) in F. But by the choice of f and g the degree of Q(y) is
less than t. This is contradiction and therefore f(x) 6≡ g(x) in F.
Since l = b

√
φ(r) lognc <

√
r logn < r (the last inequality follows from r > ordr(p) >

log2 n) and p > r, i 6≡ j (mod p) for 1 6 i 6= j 6 l. So x, x+ 1, x+ 2, . . . , x+ l are all
distinct in F. Also x+ a 6≡ 0 in F for every a with 0 6 a 6 l, since deg(h) = ordr(p) >
1. So there are et least l+ 1 distinct polynomials of degree one in G. So there are at least

t−1∑
i=0

(
t− 1 + l+ 1

i

)
=

t−1∑
i=0

(
t+ l

i

)
=

(
t+ l

t− 1

)
distinct polynomials with degree smaller than t in G.
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Lemma 7.9. If n is not a power of p then |G| 6 n
√
t.

Proof. Let Î :=
{
pi ·

(
n
p

)j
| 0 6 i, j 6 b

√
tc
}
⊂ I. If n is not a power of p then the set Î

has (
√
t+ 1)2 > t distinct elements. At least two numbers in Î must be equal modulo

r, since |G| = t. Let these bem1 andm2 and letm1 > m2. We then have:

xm1 ≡ xm2 (mod xr − 1).

Let f(x) ∈ P. Then the following holds:

f(x)m1 ≡ f(xm1) (mod xr − 1,p)
≡ f(xm2) (mod xr − 1,p)
≡ f(x)m2 (mod xr − 1,p).

Therefore, f(x) is a root of the polynomial Q(y) := ym1 − ym2 in the field F. Since f(x)
can be any polynomial in G, the polynomial Q(y) has at least |G| distinct roots in F.
Since the degree of Q(y) ism1 6 (np · p)

b
√
tc 6 nb

√
tc, |G| 6 n

√
t.

With these estimates on the size of G we are now able to prove the correctness of the
algorithm:

Lemma 7.10. If the algorithm returns PRIME then n is prime.

Proof. First note that since t > log2 n, t >
√
t logn. Also, since G is a subgroup of Z∗r ,

|G| = t 6 φ(r). With this we have l = b
√
φ(r) lognc > b

√
t lognc. Now suppose the

algorithm returns PRIME. Lemma 7.8 implies that for |G| = t and l = b
√
φ(r) lognc

the following holds:

|G| >

(
t+ l

t− 1

)
>

(
l+ 1 + b

√
t lognc

b
√
t lognc

)
>

(
2 · b
√
t lognc+ 1

b
√
t lognc

)
> 2b

√
t lognc+1

> n
√
t.

By Lemma 7.9, |G| 6 n
√
t, if n is not a power of p. Therefore, n = pk for some k > 0. If

k > 1 the algorithm would have returned COMPOSITE in step 2. Therefore n must be
prime.

We have thus proven that the algorithm returns PRIME if and only if n is prime.
What we still have to show is that the running time of the algorithm is polynomial.
This will be part of the next section.
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7.3. Time Complexity Analysis

Theorem 7.11. The asymptotic time complexity of the AKS-algorithm is Ô(log
21
2 n).

Proof. . For the proof, we use Lemma 4.2 and 4.3. In the first step of the algorithm,
we have to test if n = ab. Since b is bounded by logn (n = 2logn), this takes time
Ô(log3 n).
We then have to find an r with ordr(n) > log2 n. To do so, we try out successive
values of r and test if nk 6≡ 1 (mod r) for all k 6 log2 n. For each r (with input length
log r), this takes at most O(log2 n) multiplications modulo r, which gives us a time
complexity of Ô(log2 n log r). By Lemma 7.4 we know that we have to try at most
O(log5 n) different r’s. So the total time complexity of step 4 is Ô(log7 n).
In step 5 we have to compute the greatest common divisor of at most r numbers, where
every computation takes time O(logn).Therefore, the total time complexity of step 5 is
O(r logn) = O(log6 n).
The time complexity of step 8 (testing, if n 6 r), is O(logn).
In step 11 we have to check at most b

√
φ(r) lognc equations. Each equation involves

O(logn) multiplications of polynomials with degree r and coefficients of size O(logn).
Thus, each equation can be checked in time Ô(r log2 n). So the total time complexity
of step 11 is Ô(r

√
φ(r) log3 n) = Ô(r

3
2 log3 n) = Ô((log5)

3
2 log3 n) = Ô(log

21
2 n). So the

time complexity of this step is dominant, hence it is the total time complexity of the
AKS-algorithm.

7.3.1. Improvements

We know now, that the AKS-algorithm has polynomial time complexity. But we would
like to have an even better running time, since we know there are very good probabilis-
tic primality tests with a much better time complexity. So what can we do? We could
try to improve the time complexity by improving the estimate for r. The best possible
value for r is r = O(log2 n), since for smaller values of r, r > ordr(n) > log2 n would
not be possible. In this case of r = O(log2 n) the time complexity of the algorithm
would be Ô(log6n), as one can easily check.
There are two conjectures that support the possibility of such an estimate for r:

Conjecture 1 (Artin’s Conjecture). Given any number n ∈ N that is not a perfect
square, the number of primes q 6 m for which ordr(n) = q − 1 is asymptotically
A(n) · m

lnm where A(n) is Artin’s constant with A(n) > 0.35.

Form = O(log2n), Artin’s Conjecture would show that there is an r = O(log2 n) with
the required properties.It is known, that if the Generalized Riemann Hypothesis holds,
Artin’s Conjecture is true.

Conjecture 2 (Sophie-Germain Prime Density Conjecture). The number of primes q 6
m such that 2q + 1 is also prime is asymptotically 2C2m

ln2m
where C2 is the twin prime

constant (estimated to be approximately 0.66). Primes q with this property are called
Sophie-Germain Primes.
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If this conjecture holds, there must exist at least log2 n Sophie-Germain prime num-
bers between 8 log2 n and c log2 n(log logn)2 for suitable constant c. Let r = 2q+ 1.
Then either ordr(n) 6 2 or ordr(n) > q. If ordr(n) 6 2, then r divides n2 − 1. Since the
number of such numbers r is bounded by O(logn), this implies that there is a prime
r = Ô(log2 n) such that ordr(n) > log2 n. Such an r therefore qualifies for the AKS-
algorithm and it would yield a time complexity of Ô(log6n).

Apart from these conjectures, there is a lemma proved by Fouvry in 1985 [Fou85],
which also improves the estimate of r:

Lemma 7.12 (Fouvry’s Theorem). Let P(m) denote the greatest prime divisor of m. There
exist constants c > 0 and n0 such that

|{q | q is prime, q 6 x and P(q− 1) > q
2
3 }| > c

x

ln x

for all x > n0.

Specifying the constant c is quite difficult and so is the proof of the lemma. However,
R. C. Baker and G. Harman had shown in [BH96] that the lemma holds for constants
up to 0.6683.

With Fouvry’s theorem one can show, that r may be chosen with r = O(log3 n),
which gives the following improvement:

Theorem 7.13. The asymptotic time complexity of the AKS-algorithm is Ô(log
15
2 n).

See [AKS04] for the proof. The fact that the proof of Fouvry’s theorem is not only
very hard but also ineffective (meaning that from the proof it is not possible to give a
numerical explicit upper bound for the number of operations) makes the last result not
that satisfying.

Hendrik Lenstra and Carl Pomerance have found a way to improve the time com-
plexity even more and without using such a deep result as Fouvry’s theorem. We will
explain their idea in the next subsection.

7.3.2. The Version of Lenstra and Pomerance1

Agrawal, Kayal and Saxena reduced the number of coefficients in (7.1) by evaluating it
modulo a polynomial of the form xr− 1. The approach of Lenstra and Pomerance (first
given in 2005) is via a more general polynomial f(x).

Theorem 7.14 (Lenstra and Pomerance). Suppose n is an integer with n > 2, f(x) is a
monic polynomial in Zn[x] of degree t, where t > log2 n,

f(xn) ≡ 0 (mod f(x)), xn
t
≡ x (mod f(x)), (7.10)

and
xn

t
q
− x and f(x) are coprime for all primesq dividing t. (7.11)

1This subsection is based on [Gra04], [CP05] and [JP15]
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Then p is prime if and only if the following three conditions hold: n is not a perfect power, n
does not have any prime factor p 6 t and

(x+ a)n ≡ xn + a (mod f(x)) (7.12)

for each integer a with 0 6 a 6
√
t logn.

Proof. As in the proof of the AKS algorithm, one direction is trivial, that is if n is
prime. So suppose n is composite and that the three hypotheses hold. Let p be a
prime dividing n (with p > t) and let h(x) be an irreducible factor of f(x) (mod p), so
F = Zp[x]/(h(x)) is a finite field.
Let l = b

√
t lognc. As in subsection 7.2.1, let G be the subgroup of F generated mul-

tiplicatively by x, x + 1, x + 2, . . . , x + l and let I be the set of positive integers of the
form pi · nj with i, j > 0. Further, let r be the order of x in Zp[x]/(f(x)). By the second
condition of (7.10) and by (7.11) we thus have that t is the order of n (mod r). The
powers xn

0
, xn

1
, . . . , xn

t−1
are distinct in Zp[x]/(f(x)) and also in F. Therefore, the roots

of the polynomial g(y) :=
∏t−1
i=0(y− x

ni) ∈ F[y] are distinct. Since g(xp) ≡ g(x)p ≡ 0
in F, xp ≡ xnj in F for some j. Therefore, p ≡ nj (mod r). Thus, if G denotes the set of
residues of numbers in I modulo r, generated by n and p, then G is in fact generated
by n alone and has therefore t elements (as in subsection 7.2.1).
The proof that I is closed under multiplication, works like the proof of Lemma 7.7, ex-
cept using the following observation (instead of using the fact that (xr−1) | (xm·r−1).):
f(xk) ≡ 0 (mod f(x)) for all k ∈ I, which holds by the first condition of 7.10 and since
f(xp) ≡ f(x)p (mod p) ≡ 0 (mod f(x)).
Note that in 7.2.1 we had x+ a ∈ G for every a with 0 6 a 6 l = b

√
φ(r) lognc but in

the proof of Lemma 7.10 we only used that 0 6 a 6 b
√
t lognc, which is the condition

we now have. Now, we can simply follow the proof in subsection 7.2.1. So like in the
proof of 7.10 we get a contradiction and thus nmust be prime.

With the AKS test, we conjectured that there are suitable values for r with r =

O(log2 n). But the best estimate for r that we could actually prove was r 6 log5 n

(besides the improvement due to Fouvry’s theorem).
We now consider a more general polynomial f(x), more precisely, we can consider any
monic polynomial with degree smaller than log2 n, such that (7.10) and (7.11) are sat-
isfied. Note, that if n is prime, then a polynomial f(x) satisfies (7.10) and (7.11) if and
only if f(x) is irreducible in Zn[x] (see [CP05], Theorem 2.2.8). Also, there are many
monic irreducible polynomials of any given degree (see [CP05], (2.5)). So the first idea
would be, to just let t = blog2 nc+ 1 and choose a polynomial of degree t that would
be irreducible if nwere prime.
As usual, things are not that easy. The problem is that most deterministic polynomial
algorithms for finding an irreducible polynomial of any given degree depend on the
ERH. But in [JP15] it is shown how to deterministically find an irreducible polynomial
modulo a prime number p with degree in [t, 2t]:

Theorem 7.15. There is an effectively computable positive integer c and a deterministic al-
gorithm such that the following holds: Given a prime p and positive integer t > log

46
25 p, the

algorithm computes an irreducible polynomial f in Fp[x] of degree t′, where t 6 t′ 6 2t.
Moreover, the running time of the algorithm is at most (t logp) · (2 + log t+ log logp)c.
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So lets take t = blog2 nc+ 1 and run the algorithm of Lenstra and Pomerance on a
large number n. If n is prime, then the algorithm finds an irreducible polynomial with
degree in [t, 2t]. If n is composite, then two things can happen: either the algorithm
finds a polynomial with degree in [t, 2t] such that (7.10) and (7.11) hold or the algo-
rithm will crash. In the latter case, nwill then have been proven composite.
If the algorithm succeeds in finding a suitable polynomial, one tests if (7.12) holds for
the required values of a. This step takes time Ô(t

3
2 log3 n) = Ô(log6 n) and since this

step was dominant, this is the total time complexity of deciding whether n is prime or
composite.

The polynomial construction method based on Gaussian periods that Lenstra and
Pomerance are using is quite complicated. A detailed description can be found in
[JP15].
Note, that in practice one should always find a small r so that the running time of the
algorithm does not get too big. Therefore, the version of Lenstra and Pomerance gives
no practical advantage over the AKS algorithm. However, we now have the proof that
deciding whether n is prime or composite can be done in time Ô(log6 n).

7.3.3. Further Improvements

Since the best possible estimate for r and d, respectively, was r = O(log2 n), we already
reached the best possible time complexity of Ô(log6 n). For getting a deterministic
algorithm with running time having an exponent smaller than 6, a fundamental new
idea would be required [JP15].
However, Daniel J. Bernstein presented an algorithm that, given a prime n, finds and
verifies a proof of primality of n in random time Ô(log4 n) [Ber07]. His approach was
build on an idea of Pedro Berrizbeitia [Ber05].
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8. Which Primality Testing Algorithm
should be used?

The answer to this question depends obviously on the implementation. However, we
will discuss this issue only concentrating on the time complexities stated in the above
chapters.

Maybe, the most interesting question is: Should we use the AKS test in practice? As
we saw, with the original version and its improvements we are able to decide whether
or not n is prime in time Ô(log6 n). Although this is a great (theoretical) result, it is
not yet very practical. If one needs to decide quickly, if a number is prime - for crypto-
graphic applications for example - the AKS test is still not fast enough. In fact, the AKS
test is not used in practice at all. So lets see, what other methods can offer.

A (deterministic) alternative is the Atkin-Morain elliptic curve method. The heuris-
tic time complexity is Ô(log4 n), however, the worst case running time is not known.
Recall that elliptic curve primality tests have the great advantage that they also provide
a certificate for primality. Since it works very well in practice, elliptic curve primality
proving is one of the most widely used methods.

In many cases, one might want to take the (very little) risk of a false output and use
a probabilistic method. One of the fastest probabilistic algorithms is the Miller-Rabin
test. As we saw, using the Schönhage-Strassen algorithm for fast multiplication we got
a time complexity of Ô(k log2 n). This is so much faster than the AKS test and also
faster than the Atkin-Morain test, that this seems to be a very good option. However,
note that for prime numbers of unknown origin, such a probabilistic test should not be
used to verify primality. This is especially relevant in cryptography, since an adversary
might try to send you a pseudoprime in a place where a prime number is needed. But
for choosing a number at random and then check, if it is prime, a test like Miller-Rabin
could be used (and it is).

Tests like Pépin or Lucas-Lehmer, which do not work for general (prime) numbers,
are not very useful in cryptography, since the number of such primes is very limited.
However, when it comes to prime number records, they are key. Especially the Lucas-
Lehmer test helped to find many of the largest prime numbers known today. We al-
ready mentioned this in subsection 5.2.2.

But what about the Sieve of Eratosthenes and trial division? Even though they are
very inefficient, for smaller numbers they still could be used (and they are). Recall, that
some methods where the primality of a number depends on the primality of a smaller
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number - like the Goldwasser-Kilian test - have to be applied several times, until some
divisor can be proven prime by trial division. The trial division is in fact used in prac-
tice - if only as a part of some other test.

Overall, deciding which primality test to use highly depends on the reason why one
wants to know that a number is prime. Very often, a probabilistic test like Miller-Rabin
is used first, and when the output is (pseudo)prime, a test like Atkin-Morain is used to
verify the result.

Note, that there are other commonly used primality tests that we did not present, for
example the Baillie-Pomerance-Selfridge-Wagstaff test (Baillie-PSW). It is a combination of
a Miller-Rabin test and a Lucas test. See [Nic12] for a description.



Appendices

68



A. List of Prime Numbers and Prime
Number Records

A.1. Prime numbers

Table A.1 shows all prime numbers up to 2000. [Cal] provides more lists of prime num-
bers. One can also test if a certain number is prime or not.

Table A.1.: The prime numbers up to 2000
2 3 5 7 11 13 17 19 23 29 31 37

41 43 47 53 59 61 67 71 73 79 83 89
97 101 103 107 109 113 127 131 137 139 149 151

157 163 167 173 179 181 191 193 197 199 211 223
227 229 233 239 241 251 257 263 269 271 277 281
283 293 307 311 313 317 331 337 347 349 353 359
367 373 379 383 389 397 401 409 419 421 431 433
439 443 449 457 461 463 467 479 487 491 499 503
509 521 523 541 547 557 563 569 571 577 587 593
599 601 607 613 617 619 631 641 643 647 653 659
661 673 677 683 691 701 709 719 727 733 739 743
751 757 761 769 773 787 797 809 811 821 823 827
829 839 853 857 859 863 877 881 883 887 907 911
919 929 937 941 947 953 967 971 977 983 991 997

1009 1013 1019 1021 1031 1033 1039 1049 1051 1061 1063 1069
1087 1091 1093 1097 1103 1109 1117 1123 1129 1151 1153 1163
1171 1181 1187 1193 1201 1213 1217 1223 1229 1231 1237 1249
1259 1277 1279 1283 1289 1291 1297 1301 1303 1307 1319 1321
1327 1361 1367 1373 1381 1399 1409 1423 1427 1429 1433 1439
1447 1451 1453 1459 1471 1481 1483 1487 1489 1493 1499 1511
1523 1531 1543 1549 1553 1559 1567 1571 1579 1583 1597 1601
1607 1609 1613 1619 1621 1627 1637 1657 1663 1667 1669 1693
1697 1699 1709 1721 1723 1733 1741 1747 1753 1759 1777 1783
1787 1789 1801 1811 1823 1831 1847 1861 1867 1871 1873 1877
1879 1889 1901 1907 1913 1931 1933 1949 1951 1973 1979 1987
1993 1997 1999

69
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A.2. Fermat numbers

The first five Fermat numbers Fn = 22n + 1 are:

F0 = 3, F1 = 5, F2 = 17, F3 = 257, F4 = 65537.

Table A.2 shows the status of composite Fermat numbers up to F20. The date in-
dicates the year when the first factor was found. The current status of other Fermat
numbers can be found (HERE).

Table A.2.: Composite Fermat numbers
n Status Date Discovered by
5 completely factored 1732 L. Euler
6 completely factored 1855 T. Clausen
7 completely factored 1970 M. A. Morrison & J. Brillhart
8 completely factored 1980 R. P. Brent & J. M. Pollard
9 completely factored 1903 A.E. Western

10 completely factored 1962 J. Brillhart
11 completely factored 1899 A. Cunningham
12 factorization incomplete 1877 I. M. Pervushin; E. Lucas
13 factorization incomplete 1974 J. C. Hallyburton & J. Brillhart
14 factorization incomplete 2010 T. Rajala & Woltman
15 factorization incomplete 1925 M. B. Kraitchik
16 factorization incomplete 1953 J. L. Selfridge
17 factorization incomplete 1978 G. B. Gostin
18 factorization incomplete 1903 A.E. Western
19 factorization incomplete 1962 H. Riesel
20 without known factors 1987 D. A. Buell & J. Young

A.3. Mersenne numbers

Table A.3 shows all known Mersenne prime numbers (as of October 2016).

Table A.3.: Mersenne prime numbers
# 2p − 1 Date Discovered by Method

1 22 − 1 500 BCE Ancient Greek mathematicians
2 23 − 1 500 BCE Ancient Greek mathematicians
3 25 − 1 275 BCE Ancient Greek mathematicians
4 27 − 1 275 BCE Ancient Greek mathematicians
5 213 − 1 1456 Anonymous trial division
6 217 − 1 1588 P. Cataldi trial division
7 219 − 1 1588 P. Cataldi trial division
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Table A.3.: Mersenne prime numbers
# 2p − 1 Date Discovered by Method

8 231 − 1 1772 L. Euler Enhanced trial division
9 261 − 1 1883 I. M. Pervushin Lucas Sequences
10 289 − 1 1911 R. E. Powers Lucas Sequence
11 2107 − 1 1914 R. E. Powers Lucas Sequence
12 2127 − 1 1876 É. Lucas Lucas Sequence
13 2521 − 1 1952 R. M. Robinson Lucas-Lehmer
14 2607 − 1 1952 R. M. Robinson Lucas-Lehmer
15 21279 − 1 1952 R. M. Robinson Lucas-Lehmer
16 22203 − 1 1952 R. M. Robinson Lucas-Lehmer
17 22281 − 1 1952 R. M. Robinson Lucas-Lehmer
18 23217 − 1 1957 H. Riesel Lucas-Lehmer
19 24253 − 1 1961 A. Hurwitz Lucas-Lehmer
20 24423 − 1 1961 A. Hurwitz Lucas-Lehmer
21 29689 − 1 1993 D. B. Gillies Lucas-Lehmer
22 29941 − 1 1963 D. B. Gillies Lucas-Lehmer
23 211213 − 1 1963 D. B. Gillies Lucas-Lehmer
24 219937 − 1 1871 B. Tuckerman Lucas-Lehmer
25 221701 − 1 1978 L. C. Noll & L. Nickel Lucas-Lehmer
26 223209 − 1 1997 L. C. Noll Lucas-Lehmer
27 244497 − 1 1979 H. L. Nelson & D. Slowinski Lucas-Lehmer
28 286243 − 1 1982 D. Slowinski Lucas-Lehmer
29 2110503 − 1 1988 W. Colquitt & L. Welsh Lucas-Lehmer
30 2132049 − 1 1983 D. Slowinski Lucas-Lehmer
31 2216091 − 1 1985 D. Slowinski Lucas-Lehmer
32 2756839 − 1 1992 D. Slowinski & P. Gage Lucas-Lehmer
33 2859433 − 1 1994 D. Slowinski & P. Gage Lucas-Lehmer
34 21257787 − 1 1996 D. Slowinski & P. Gage Lucas-Lehmer
35 21398269 − 1 1996 GIMPS - J. Armengaud Lucas-Lehmer
36 22976221 − 1 1997 GIMPS - G. Spence Lucas-Lehmer
37 23021377 − 1 1998 GIMPS - R. Clarkson Lucas-Lehmer
38 26972593 − 1 1999 GIMPS - N. Hajratwala Lucas-Lehmer
39 213466917 − 1 2001 GIMPS - M. Cameron Lucas-Lehmer
40 220996011 − 1 2003 GIMPS - M. Shafer Lucas-Lehmer
41 224036583 − 1 2004 GIMPS - J. Findley Lucas-Lehmer
42 225964951 − 1 2005 GIMPS - M. Nowak Lucas-Lehmer
43 230402457 − 1 2005 GIMPS - C. Cooper & S. Boone Lucas-Lehmer
44 232582657 − 1 2006 GIMPS - C. Cooper & S. Boone Lucas-Lehmer
45 237156667 − 1 2008 GIMPS - H.-M. Elvenich Lucas-Lehmer
46 242643801 − 1 2009 GIMPS - O. M. Strindmo Lucas-Lehmer
47 243112609 − 1 2008 GIMPS - E. Smith Lucas-Lehmer
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Table A.3.: Mersenne prime numbers
# 2p − 1 Date Discovered by Method

48 257885161 − 1 2013 GIMPS - C. Cooper Lucas-Lehmer
49 274207281 − 1 2016 GIMPS - C. Cooper Lucas-Lehmer

A.4. Sophie Germain prime numbers

Table A.4 shows the ten greatest known Sophie Germain prime numbers (as of October
2016).

Table A.4.: Top 10 Sophie Germain prime numbers
x prime digits Date
1 2618163402417 · 21290000 − 1 388 342 2016
2 18543637900515 · 2666667 − 1 200 701 2012
3 183027 · 2265440 − 1 79 911 2010
4 648621027630345 · 2253824 − 1 76 424 2009
5 620366307356565 · 2253824 − 1 76474 2009
6 99064503957 · 2200008 − 1 60 220 2016
7 607095 · 2176311 − 1 53 081 2009
8 48047305725 · 2172403 − 1 51 910 2007
9 137211941292195 · 2171960 − 1 51 780 2006
10 31737014565 · 2140003 − 1 42 156 2010

Table A.5 shows the actual numbers of Sophie Germain primes up to a certain num-
ber m compared to the estimated number of the Sophie Germain prime density con-
jecture.

Table A.5.: Sophie Germain primes up tom
m actual estimate
1 000 37 39
100 000 1 171 1 166
10 000 000 56 032 56 128
100 000 000 423 140 423 295
1 000 000 000 3 308 859 3 307 888
10 000 000 000 26 569 515 26 568 824



B. Schoof’s Algorithm1

To be able to explain the idea of Schoof, we need a few more tools for elliptic curves
over finite fields:
For any elliptic curve Ea,b(Fp) defined over a finite field Fp, that is whose points have
coordinates in Fp, we add those points of E whose coordinates lie in an algebraic clo-
sure Fp of Fp. The so defined elliptic curve defined over Fp is denoted by Ea,b(Fp). The
Frobenius endomorphismΦ on Ea,b(Fp) is defined byΦ(x,y) = (xp,yp) and Φ(O) = O.

The following theorem establishes a connection between the points of E defined over
Fp and those over Fp:

Theorem B.1. Let |Ea,b(Fp)| = p+ 1 − t, then

Φ2(P) − tΦ(P) + pP = O,

for every point P ∈ Ea,b(Fp).

If we know the value of t, we obviously know the order of Ea,b(Fp).
For any positive integer n, we now consider those points P of Ea,b(Fp) for which nP =
O. Those are the points of order dividing n in the group, the so called n-torsion points.
We denote this set by E[n]. By Theorem B.1, we have

Φ2(P) − (t mod n)Φ(P) + (p mod n)P = O, for all P ∈ E[n]. (B.1)

Schoof’s idea was to use this equation to compute the residue t mod n by trial and
error procedure until the correct value that satisfies (B.1) is found. To do this, the
division polynomials are used. These polynomials both simulate elliptic multiplication
and pick out n-torsion points. They are defined as follows:

Definition. To an elliptic curve Ea,b(Fp) we associate the division polynomialsΨn(x,y) ∈
Fp[x,y]/(y2 − x3 − ax− b) as follows:

Ψ−1 = −1,Ψ0 = 0,Ψ1 = 1,Ψ2 = 2y,
Ψ3 = 3x4 + 6ax2 + 12bx− a2,
Ψ4 = 4y(x6 + 5ax4 + 20bx3 − 5a2x2 − 4abx− 8b2 − a3),

while all further cases are given by

Ψ2n = Ψn
Ψn+2Ψ

2
n−1 −Ψn−2Ψ

2
n+1

2y
,

Ψ2n+1 = Ψn+2Ψ
3
n −Ψ

3
n+1Ψn−1.

1This chapter is based on [CP05] and [Wik]
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Algorithm 8 summarizes Schoof’s algorithm. For a detailed explanation see [CP05]
or [Sch85].
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Algorithm 8 Schoof’s Algorithm for curve order
Input: A prime number p > 3 and an elliptic curve Ea,b(Fp) : y

2 = x3 + ax+ b.
Output: The curve order |Ea,b(Fp)|.

1: Choose a set S of odd primes not containing p such that N =
∏
l∈S l > 4

√
p.

2: if gcd(xp − x, x3 + ax+ b) 6= 1 then
3: t2 = 0
4: else
5: t2 = 1
6: end if
7: Compute the division polynomials Ψl.

All computations in the loop below are performed in the ring Fp[x,y]/(y2 − x3 −
ax− b,Ψl).

8: for l ∈ S do
9: Let p be the unique integer such that p ≡ p (mod l) and |p < l

2 |.
Compute (xp,yp), (xp

2
,yp

2
) and (xp, xp) =

(
x−

Ψp−1Ψp+1

Ψ2
p

, Ψ2p

2Ψ4
p

)
.

10: if xp
2 6= xp then

11: Compute (X, Y) = (xp
2
,yp

2
) + (xp, xp).

12: for 1 6 t 6 l−1
2 do

13:
14: if X = xp

t
then

15:
16: if Y = yp

t
then

17: tl = t
18: else
19: tl = −t.
20: end if
21: end if
22: end for
23: else if q is a square modulo l then
24: compute wwith q ≡ w2 (mod l)

compute w(xp,yp)
25: if w(xp,yp) = (xp

2
,yp

2
) then

26: tl = 2w
27: else if w(xp,yp) = (xp

2
,−yp

2
) then

28: tl = −2w
29: else
30: tl = 0
31: end if
32: else
33: tl = 0
34: end if
35: end for
36: Use the Chinese Remainder Theorem to compute t modulo N from the equations

x ≡ tl (mod l), where l ∈ S.
37: OUTPUT q+ 1 − t



C. Zusammenfassung

Im August 2002 veröffentlichten Manindra Agrawal, Neeraj Kayal und Nitin Saxena,
alle drei Informatiker und Mathematiker am "Indian Institute of Technology Kanpur",
den ersten deterministischen Primzahltest mit polynomialer Laufzeit. Der sogenan-
nte AKS Test war eine Sensation, denn bis zur Veröffentlichung war nicht bekannt, ob
es überhaupt einen derartigen Primzahltest gibt. In der vorliegenden Arbeit machen
wir eine Reise durch mehr als 2000 Jahre Primzahltests. Dabei werden wir die fun-
damentalsten und bekanntesten Primzahltests vorstellen - angefangen beim Sieb des
Eratosthenes über Fermat, Miller-Rabin, Lucas und Primzahltests basierend auf ellip-
tischen Kurven bis hin zum gefeierten AKS Test. Am Ende gehen wir der Frage nach,
welcher Primzahltest für welchen Zweck verwendet werden sollte.
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