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Chapter 1

Introduction

In experimental economics, small samples are a common trouble when doing statistical

inference. Especially for samples below n=100, it is seldom clear how well regression

methods perform, just consider Bellemare et al. (2014), to see the large spread in ob-

servation sizes for economic experiments. To enlighten this matter a bit, this thesis

aims at uncovering small sample properties of 4 basic asymptotic regression methods,

joined by a recently developed exact monotonicity test, the binary stratified direction

of change test (Working paper Schlag 2016). The underlying models are chosen to be

quite similar to an experimental economics setting. All explaining and explained vari-

ables are binary. Models are the two most recurrent binary models, a linear probability

model accompanied by a logit binary choice model. Both models are simple and easy

to combine with binary variables. Additionally, due to their simplicity and threshold

behaviour, they find widespread usage in behavioral and experimental economics. When

comparing ordinary least squares to White’s heteroscedasticity robust least squares, a

linear probability model provides a useful and simple test environment.

Analysis focuses on errors of the first kind, i.e. rejecting the null hypothesis when it

is in fact true. The probability to commit a type I error is denoted by the size of a

test. Type I errors may have devastating consequences, just think of a medicine which

is supposed to cure a patient while it has no effect at all. Errors of the second kind, i.e.

rejecting the alternative hypothesis, when it is true are also treated in this study, but to

a lesser extend. While the probability to commit an error of the second kind is denoted

by the Greek letter β, the complementary, i.e., the ability to not reject the alternative

when it is true is called the power of a test. While the study is designed to uncover

problems in falsely rejecting the nul hypothesis, the power values are corresponding to
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this framework.

This paper can be seen as an extension of studies done by Gossner and Schlag in 2013,

where they did a similar study using least squares regressors and an exact regression

technique. Accordingly, in this study, simulations are run in order to investigate the

respective power and size of ordinary least squares, covariance heteroscedasticity robust

least squares, logit, probit and an exact monotonicity test. Due to the odds-nature of

the results of loigit and probit, it is not possible to compare the estimate from linear

regression to those of probit and logit. Hence such results are not included in this study.

In the next chapter, the underlying models are presented, followed by a chapter on the

specifics of the different regression methods and tests. The fourth chapter revisits the

parameters applied in the simulations, followed by an overview on the most interesting

results. The study finishes with a conclusion. Extensive figures of the simulation results

may be found in the Appendix.



Chapter 2

Models

The models selected for this study reflect three basic requirements. They are easy

to implement and flexible enough to represent various sets of parameters. They are

widely used in economics, and they are able to demonstrate the peculiarities of the

applied regression techniques. The linear probability model as well as binary response

model fulfil these requirements. The corresponding methods to both models find use

in experimental and behavioral economics. For example in her famous 1999 paper on

the effect of large stakes in the ultimatum game, Lisa Cameron uses both methods, but

publishes the results of a linear probability model as it is more convenient to interpret.

2.1 Linear Probability Model

In order to make a fairly general statement on regression methods and their limitations,

a basic and simple model is needed. A linear probability model (chapter 13.2 DiNardo

et al. 2007) is simple to implement, and offers straightforward interpretation. The basic

structure follows a linear model, except, that yi follows a binary distribution. However,

the drawback of the linear probability model, is its unreliability with very small and

very high probabilities of a success of y. In effect, the probability for Y = 1 might

be estimated to be negative or larger than 1 for some xi. To keep our study simple

co-variates were chosen to be binary as well.

This leaves us with a model of the form:

3
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y = β0 + β1 ∗ x1 + β2 ∗ x2 + ε

Where:

xi,j =

0 with probability 1− pi

1 with probability pi

P (y = 1|x) = E(y|x) = β0 + β1 ∗ x1 + β2 ∗ x2

The model uses 2 explanatory variables x1 and x2. Both x1 and x2 take on binary

values, generating one with the probabilities p1 and p2. Additionally, both variables are

generated with varying correlation-level (Leisch et al. 1998)). The probabilities p1 and

p2 can be adapted as far as not conflicting with the degree of correlation between x1 and

x2. The simulation focuses on the ability of various tests to detect if β1 is zero respective

different from zero.

The model is fully specified without imposing an exogenous error term. The error term

is not normally distributed and has a heteroscedastic variance:

var(ε) = (py ∗ (1− py)) = (β0 + β1 ∗ xi + β2 ∗ x2) ∗ (1− β0 − β1 ∗ x1 − β2 ∗ x2)

This is an interesting ground, to compare heteroscedasticity robust regression to ordinary

least squares regression.

2.2 Logit Model

The logit model uses a function to convert Xβ from the linear probability model into a

probability ranging between zero and one. Although the logit model is non-linear and

has a functional form, its underlying latent variable y∗ is build upon the same equation

as y in the linear probability model above. Remember that y∗ is an unobserved variable,

while the corresponding y is the outcome observed.
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y∗ = β0 + β1 ∗ x1 + β2 ∗ x2 + ε

where :

yi =

1 if yi∗ > 0

0 else

Again x1 and x2 are generated randomly from a bi-variate binary distribution with a

given correlation parameter ρ (Leisch et al. 1998). Further, as before the probabilities

p1 = P (x1 = 1) and p2 = P (x2 = 1) might be adapted. Now to transform xβ =

β0 + β1 ∗ x1 + β2 ∗ x2 into a probability, the inverted logistic distribution is applied onto

xβ:

Pr(y = 1|x) = G(xβ) (2.1)

where:

G(x) =
1

1 + e−x
(2.2)

The choice of the distribution G distinguishes the logit from the probit. While the logit

model uses a logistic distribution, the probit implements a standard normal for G. This

gives the logit more weight on the tails of the distribution.

If a logit estimateor is applied to the logit model as specified it is homoscedastic, assum-

ing a constant variance term. However, in applying an linear regression method onto

these non-linear data, errors are heteroscedastic. The variance is quite similar to that

in the linear probability model, with the difference, that a probability density function

is applied to Xβ.



Chapter 3

Methods

3.1 Asymptotic regression methods

This section aims to give a short overview on the most basic asymptotic regression tech-

niques and their assumptions. Further, their peculiarities towards this specific simulation

study and exact methods will be examined.

3.1.1 Ordinary Least Squares Regression

Ordinary least squares (OLS) is one of the most widely known regression methods in

economics and several other sciences. It applies to discrete as well as continuous data

of multiple forms. Under the following assumptions on the data, OLS is the best linear

unbiased estimator (chapter 3.4 DiNardo et al. 2007).:

• X is non-stochastic or X is stochastic but independent of ε

• inference is conditional on X

• E(x′ε) = 0

• E(ε2 ∗ x′x) = σ2 ∗ E(x′x)

• rank(x′x) = K

where x is a 1 ×K vector

Considering these assumptions, ordinary least squares provides the following unbiased

estimator:

6
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β = (X ′X)−1X ′y

Variance is as follows:

var(β) = σ2(X ′X)−1

Due to the fact that our data is not homoscedastic for OLS in neither of our two models,

one main assumption on OLS is not met. However heteroscedasticity is a common

obstacle in applied work and may be a more realistic situation than homoscedasticity.

OLS is still consistent and unbiased, but inefficient. Further, coefficient standard errors

are incorrect (chapter 6.1. DiNardo et al. 2007).

As our correlation term is adaptable, for some parameter, the columns are interdepen-

dent. This again is a violation of the variance assumption, leading to less efficient OLS

outcomes.

3.1.2 Robust regression

The used robust regression technique mirrors the stata command ”, robust” which is the

most widely used heteroscedasticity robust least squares regression. It makes use of an

heteroscedasticity-robust variance covariance matrice by MacKinnon and White (1985).

In least squares regression, the variance of β̂ is:

φ = var(β̂) = (XTX)−1XTΩX(XTX)−1

where: Ω = σ2In

Ordinary least squares now estimates σ2 by:

σ̂2 = (n− k)−1 ∗
∑
i=1

ûi
2

Now MacKinnon and White propose to use an alternative estimator for σ2:

σ̂i =
û2i

(1− hi)2

Where hi = Pii being the diagonal elements of the projection matrix. This estimator

adapts to the different variance structures of the single errors.
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3.1.3 Probit and Logit

In contrast to ordinary least squares, probit and logit are non-linear methods. Logit

and probit are only applicable on discrete outcome data. They do not have problems

from discrete and non-normal error structures. On the other hand, they only provide

odds-ratios as results, which are more complicated when interpreting. The model was

already presented in some detail in the section on the different models simulated in this

study. Probit and logit rely on an unobservable latent variable yi∗ with the property

yi∗ = Xiβ + εi. Where yi∗ is conditional on X. Now, as we can not observe yi∗, it is

modeled by:

yi =

1 if yi∗ > 0

0 otherwise

As these models are constrained to 0,1 no conventional error term exists. To conclude

this refresh, the standard portayal of the Probit is the following prob(yi = 1) = Φ(Xi
β
σ ).

In principle the logit does not differ much from the Probit. Instead of relying on the

normal distributed errors it relies on the logistic distribution, which has more weight on

its tails (DiNardo, 2007). The logit equation is therefore prob(yi = 1) = exp(Xiβ)
1+exp(Xiβ)

.

To get a deeper overview on logit and probit, ”Econometric Methods” by DiNardo and

Johnston provides a compact and well written introduction into the model.

3.2 Finite-Sample exact tests for linear regression

In this section we will introduce a mathematically exact test for finite sample mono-

tonicity testing. This test is under current development by Schlag (2016) and details

should be published soon. By identifying the bounds of the dependent variable it is pos-

sible for these tests to have a specific type I error probability bound. As our simulation

environment is fully binary the bounds on the dependent variable do not represent an

obstacle.
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3.2.1 Framework for the exact monotonicity test

As the stratified permutation test applies to a wide range of binary, ordinal and cardinal

models, let us here specify a framework for the binary case. Consider a nonparametric

binary choice model, where Yi is binary, Yi ∈ 0, 1 and there is a function f : Dom→ [0, 1],

such that:

P (Yi = 1|X = x) = f(xi) for all x.

Where outcomes emerge from the same distribution, i.e. are identically distributed, and

Dom has a complete order. While f is not specified, it is known to be either strictly

monotone increasing, strictly monotone decreasing or independent of xi. As an interest-

ing side note, f need not necessarily be linear.

In more detail, consider an explained variable Y in Rn and a matrix of covariates X

with dimensions n times k. Now if we have a relation such as f described above, one of

3 cases below is true.

P (Yc = 1|X = x) > P (Yi = 1|X = x)ifxc,j > xi,j

and xc,k = xi,kfor allj 6= k.

P (Yc = 1|X = x) = P (Yi = 1|X = x)ifxc,j > xi,j

and xc,k = xi,kfor allj 6= k.

P (Yc = 1|X = x) < P (Yi = 1|X = x)ifxc,j > xi,j

and xc,k = xi,kfor allj 6= k.

Clearly, both of our models are supported by this framework.
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3.2.2 Binary stratified direction of change test

As mentioned earlier, the binary stratified direction of change test is able to detect in-

creasing, decreasing or no influence from a certain covariate onto the explained variable.

It is exact in the sense, that its probability to reject the null hypothesis when in fact

it is true, is bounded above by α. In order to be exact, the test requires discrete and

thereby bounded data.

In more detail, the binary stratified direction of change test is based on Fisher’s exact

test with the corresponding extension by Tocher (1950). This is an exact test on inde-

pendence of contingency tables, with the Tocher extension it is even the uniformly most

powerful unbiased test. However, in the present monotonicity test, it is used to check

for different effect intensities.

The binary stratified direction of change test takes 3 steps in order to reject of not reject

a null hypothesis.

1. Individual observations are pooled in blocks. Where a block consists of individuals

with the same values for all covariates except the covariate for which the hypothesis

of monotonicity is checked, i.e. for all j 6= k where j is the covariate in question.

2. Compute the original test-statistic
∑

i s.t. yi=1 xi,j .

3. Values of Yi are permuted l times within blocks, where l → ∞. For each permu-

tation a test-statistic is computed.

4. Then the proportion of permutations with a corresponding test-statistic above the

test-statistic of the original data is computed. If this proportion is above the

significance level α, the null hypothesis is rejected.

However, the permutation should lead to an exact randomized test. In order to transform

an exact randomized test into an exact non randomized test, the following theorem by

Gupta and Hande (1992) is applied:

Theorem 3.1. Let φ be an exact randomized test with level θ ∗α. Then φ |θ is an exact

nonrandomized test with level α. The type II error of φ |θ is bounded above by the type

II error of the underlying randomized test φ divided by (1− θ).

Needless to say, the presented test is exact non-random, so the above theorem is applied

and a θ needs to be chosen. In the working paper on exact monotonicity tests (2008),

Karl Schlag recommends a θ of 0.3.



The drawback of this method is that permutation needs more computational power,

than estimation by asymtotic regression. Hence, the exact methods were simulated with

less rich parameters. However in normal use, this should not present a problem.

In contrast to the asymptotic methods presented above, the binary stratified direction

of change test does not rely on assumptions about the asymptotic distribution of the

data. Mathematically exact tests offer the advantage, to have a perfectly determined

significance level, independent of the underlying distribution of the data. Hence, for

particularly sensitive topics, such as medicine or risk analysis, the use of an exact test

might prevent potential problems concerning imprecise significance levels. Studies on

oversizedness of ordinary least squares and a robust least squares regression in simulated

as well as in empirical data can be found in Gossner and Schlag 2013.

Chapter 4

Methodology

4.1 Type I and Type II Errors

In order to describe the power and the size of a test, first errors of the first and of the

second kind need to be introduced (cf. Lehman and Romano 2005). A Type I error is

occurs if an hypothesis test rejects the null hypothesis, when it is in fact true. As an

example, consider a courthouse. Under continental law a suspect is innocent as long

as its guilt is not proven. So the null hypothesis is innocence while the alternative

hypothesis is guilt. Now if a judge convicts a suspect, he rejects the null. If years later

an airtight alibi is found for the suspect. It turns out the judge committed an error of

the first type. Similarly, an error of the second kind occurs if an hypothesis test rejects

the alternative hypothesis if it is in fact true. Here again the courthouse provides a good

example. Consider again a suspect, but now with an alibi at the time of the trial. The

judge notes the alibi and pledges for innocence of the suspect. If years later the alibi

turns out to be invalid, the judge committed an error of the second kind.

11



12

This example shows that the consequences of errors of the first kind respective of the

second kind depend on the phrasing of the null hypothesis. For instance, if the null

hypothesis in the court would be that the suspect is guilty until its innocence is proven,

errors of the first and the second kind would be inverted. However, often the hypothesis

test is constructed in a way that an error of the first kind weights heavier. Just like in

our original courthouse example, where Napoleonic law assumes innocence until guilt is

proven.

4.2 Power and Size

The size of an hypothesis test is the probability of a test to reject the null hypothesis

when it is true. In other words, the size is the probability to commit an error of the

first kind. Directly linked to the size is the significance level of a test. The significance

level of a test is the upper bound on the type I errors which an hypothesis test commits.

Often, one wants the size to be below 5 percent, so a test with a significance level of 5

percent, under the given circumstances is chosen.

Conversely, the power of an hypothesis test is the probability to not commit an error of

the second kind. In other words, the power is the probability to reject the null hypothesis

when it is wrong. Typically it is not possible for a test to have certain lower bound on

the power, given a certain significance level. Therefore, the standard procedure is to

choose a test with an appropriate significance level while having a power as high as

possible. Studies such as the underlying serve as a guidance for this choice.

4.3 Hypothesis Specification

The aim of this paper is to assess the respective size and power of the various methods

presented. The linear probability model and the logit model serve as test environment for

this benchmarking exercise. The probabilities for type I and type II errors are estimated

by simulation.

The null hypothesis of the various tests is that there is no significant impact of β1 on y,

i.e. β1 = 0. The alternative hypothesis is defined as y is dependent from β1. All of the

presented methods share the same null hypothesis. However the common alternative

hypothesis of the asymptotic regression methods is a specific relationship between y

and x1, while the alternative hypothesis of the exact test is that the y and x1 have a

monotone relation. Still, generalizing the alternative hypothesis to test for dependency

of y from β1 comprises the mentioned alternative hypotheses.



It should be emphasized, that the results provided by these simulations apply only to the

specified frameworks. Further only a small fraction of the parameters of this framework

are simulated. Still, the simulations should provide a useful assessment for the reliability

of the presented methods in a fully binary model.

Chapter 5

Simulation Details

Fortunately, both models can be adapted using the same parameters, so where possible,

the same parameters are used. The study runs a simulation count of 1000 repetitions

for each parameter setting. The simulation framework is based on a biomedical research

paper form Christopher Meany and Rahim Moineddin (2014).

5.1 Simulation parameters for the linear probability model

In order to have a more detailed look on the asymptotic regressors, 2 different parameter

settings where chosen. The smaller setting is dedicated to detect the features of the exact

regression technique, while enabling a direct comparison to the asymptotic methods. As

the binary stratified direction of change test is computationally more demanding, only

the small setting could be applied in a reasonable time period. The large parameter

setting enables a wider analysis of the behavior of the asymptotic methods.

5.1.1 Reduced simulation parameters

For the linear probability model, Xβ is limited to lie between 0 and 1. This bound does

not apply to the logit model, as it is inherently bounded between 0 and 1. β1 takes the

values 0 and 0.3 for the linear probability model and the logit model.

During extensive studies no significant impact of β2 on the size nor the power could be

detected, thereby β2 is fixed to 0.09. On the other hand, β0 changes from 0 to .6 in steps

of 0.1. Due to the apriori bounding of logit, in this model, β0 varies from 0 to 1 in steps

13
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of 0.1. The results will show that β0 has a big impact on errors of robust covariance

regression and ordinary least squares. Next the probability of x1 to be a success will

be analysed for 0.1 and 0.5. As the P (x2 = 1) was found to have no further impact on

respective sizes and power, it is fixed to 0.3. This holds for both models. To analyse the

impact of correlation, ρ takes the values 0 and 0.5. This value is retained from a paper

by Mela and Kopalle (2002). Due to computational limitations, the other interesting

case of negative correlation of -0.5 was omitted, but might be analysed in later work.

Concerning the binary stratified direction of change test, θ is specified at 0.3, while the

number of permutations is fixed at 1000. Finally the observation numbers of the single

cohorts variate from 30 over 50 and 100 to 750. These numbers represent a a standard

experimental economics framework, as can be found in List et al.(2011), Bellemare et

al. (2014) and Meaney et al. (2014). However the present simulation study does not

include clustering as it makes no sense in the given randomization framework.

5.1.2 Large simulation parameters

For the large sample, a few changes have been made. Most importantly β2 is allowed

to change in the same manner as β0. For the linear probability setting, both, β0 and

β2 change from 0 to 0.6 in steps of 0.05. For the logit model, both change form -1 to 1

in steps of 0.1. Both parameters where chosen to change only if the other parameter is

fixed at 0.09. To have a more detailed overview on the P (x1 = 1) it is extended to (0.1,

0.3, 0.5) for both models.

5.2 Statistical software and simulation matters

Since the software for the binary stratified direction of change test is only available in R,

this simulation experiment is based on R version 3.3.0. It uses the inbuilt lm() function

for ordinary least squares as well as robust covariance-matrix regression, while the second

uses two distinct libraries, ”sandwich” and ”lmtest”. ”lmtest” provides the function

coeftest() allowing to specify an alternative covariance-matrix for linear regression. This

covariance matrix is provided by the library ”sandwich” and reproduces the MacKinnon-

White heteroscdasticity robust covariance matrix. Further, probit and logit use the

inbuild glm() function. The algorithm for the exact monotonicity test runs on a script

provided by Karl Schlag. In order to get distinct correlation classes, the library ”bindata”

was used.

Due to the permutation structure of the binary stratified direction of change test, and

its implementation in the relatively slow R-language, the simulation had a massive need



for computational power. This was solved by implementing a parallel structure for the

simulation program, running the libraries ”foreach” together with ”doParallel”. Using

an eight-core machine, running time for the hole simulation was down to about 15 hours.

To generate a specific correlation structure, an R-library by Leisch et al. is used. It

directly converses normally distributed random variables into binary variables with a

predefined correlation structure.

In the later analytical phase of the project, the library ”ggplot2” was used to create

various plots, while ”stargazer” enables to create nice tables to export explicitly to

Latex.

Chapter 6

Results

The Appendix provides detailed results in figures for each distinct observation count,

divided into the large simulation and the small simulation. The figures are augmented by

a 5 percent line to easily spot oversizedness. The type of regression method is depicted

in different segments of bars. The bars represent different values for β0. The vertical

axis depicts the rejection probability. Further, the figures are segmented in different

facets, where β1 and the correlation divide the figure vertically. The horizontal division

is made by different probabilities of a success of x1.

In the latter the description of the results will be segmented by least squares regression

techniques and binomial response models. Further, the text will mostly begin with the

low observation sample and finish gradually with the high observation sample, first 30

15
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observations, then 50 observations, then 100 observations.

6.1 Size and Power in the Linear Probability Model

6.1.1 Least squares regression

When looking at the outcomes such as figure 8.1, linear regression techniques attract

attention, by showing larger values for both, the probability of a type I error as well

as for the probability of a type II error. At 30 observations, ordinary least squares

shows increased size for low probability of a success of x1, i.e. P (x1 = 1) = .1. The

lower β0 the higher the size. White’s heteroscedasticity robust regression behaves in the

opposite direction, while type I error probabilities are larger for low P (x1 = 1). The

size increases with an increase in β0. In the worst case, with a low P (x1 = 1) = 0.1,

β0 above .5 and no correlation, variance robust least squares reaches sizes over 20%.

Interestingly, while correlation increases the size of OLS at low β0 it decreases the size

of robust at high β0. Similarly, the power of both regression methods react in the same

direction as the respective sizes for β0. For 50 observations, the pattern described above

endures, even though, the rejection probability for the null hypothesis is closer to 5

percent. Ordinary least squares has sizes up to .6 if not controlling for β0. For small

β0 < 0.1 and P (x1 = 1) = 0.1 OLS shows still increased sizes, reaching values above 10

percent for β0. The size for robust has similar behavior than in the small sample case,

with sizes above 10 percent for β0 ≥ 0.5 and P (x1 = 1) = .1. The power again varies

with β0 in opposing directions. In the comparably large sample of 100 observations,

both regressors reach normal sizes for most settings tested. Small P (x1 = 1) = 0.1

still drives the size of ordinary least squares up, reaching values above 10 percent for

β0 = 0. Although less pronounced, correlation still has an opposing effect on sizes.

With correlated variables and P (x1 = 1) ≤ 0.1 sizes are significantly above 5 percent.

The power reacts as described before, while at higher P (x1 = 1) power is increased for

low and high values of β0 for both regression methods. In the large observation case

of 750 observations, ordinary least squares still has problems with the size at β0 = 0.

Heteroscedasticity robust regression does not show problems with the size. Concerning

power, no problems have been detected, even for P (x1 = 1) = 0.1 the null hypothesis is

rejected in more than 99 percent of the cases. Concerning correlation, it decreases the

power of our linear estimators in all settings by about 10 percent.

6.1.2 Logit and Probit

For all three observation samples, neither probit nor logit show problems with type I error

probabilities. The power is quite low compared to least squares regression techniques,
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especially low probability of a success of x1. Considering different β0, the power is lowest

at both low and high values for β0. At 30 observations, and P (x1 = 1) = 0.1 the power

hardly reaches 10 percent. For larger P (x1 = 1) the power reaches the levels of linear

regression techniques, for β0 around 0.3. At 50 observations and P (x1 = 1) = 0.1, the

power is still considerably lower than for least squares regression. At higher observation

counts the power catches up. Further, correlation has the same decreasing effect on the

power.

6.1.3 Exact monotonicity test

Considering the size, the binary stratified monotonicity test clearly undercuts all of the

asymptotic tests. Although, logit and probit perform reasonably well, the exact test has

less than a tenth of their corresponding sizes. This holds for all observation numbers and

all remaining parameters. The power is a little inferior to that of logit and probit, while

it is higher at the ends of the values for β0. At 30 observations and low P (x1 = 1) = 0.1,

the power is below 5 percent. This performance is comparable to that of probit and

logit, while robust and OLS reach far higher power. For P (x1 = 1) = 0.5 it is around 10

percent, while it is considerably lower with correlation. When comparing again to logit

and probit, this is half their power and less than a third of OLS. At 50 observations the

picture of low power prevails, as the power of the binary stratified direction of change

test is about half that of ordinary least squares. While the test catches up for 100

observations to about three fourths the power of OLS, at 750 observations 99 percent of

the wrong null hypotheses where rejected.

6.1.4 Size and Power in the Logit Model

6.1.5 Least squares regression

The binary response model is not the natural home of linear regression functions, still

next to probit and logit and for reasonably high observation counts, they show reasonable

size and power. In the 30 observations sample, the probability for type I errors for robust

is strongly increased. Ordinary least squares on the other hand does not show problems

with its size. Especially with a low probability on the success of x1 the white-robust

regression expresses mean rejection probabilities above 20 percent. Further, in the small

sample, rejection probabilities for the null hypothesis are still exaggerated when looking

at the results for P (x1 = 1) = .3. Only at large samples of 750 observations, robust

reaches a size below 5 percent in all parameter settings. As in the case of a linear

probability model, the size of variance robust regression tends to increase for a higher
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levels of β0. Concerning power, OLS, has power levels below 10 percent for the 3 smaller

observation samples, even at a fairly large P (x1 = 1) = 0.5. Still this is fairly comparable

to logit and probit. At the large sample, OLS has a power of around 20 percent for low

P (x1 = 1) = 0.1 while it goes up to about 50 percent for P (x1 = 1) = 0.5. White’s

robust regression method’s power is bad as well, especially regarding the meaningless

size at smaller sample sizes. At 100 observations it has a power of 10 percent while at

750 observations its power reaches 20 percent. The power of ordinary least squares is

decreasing for larger values of beta0, while robust has increased power.

Correlation has a decreasing effect on power and has an ambivalent effect on size for

heteroscedasticity robust regression.

6.1.6 Logit and Probit

Let us consider a detailed analysis of the logit and probit regressors starting with the

small sample of 30 observations. Considering the size, logit and probit are not remark-

able, their sizes stay below the 5 percent level. Especially in low observation samples,

the size seems to be larger for negative β0. Power levels are quite comparable to ordinary

least squares regression. At the 3 smaller samples, the power lies between 1 and about

10 percent. Only in the large sample of 750 observations, the power of logit an probit

reach 50 percent for the P (x1 = 1) ≤ .5 case and around 20 percent for P (x1 = 1) = .1.

Correlation has the same effect as for ordinary least squares regression, it decreases the

power but has no effect on the size

6.1.7 Exact monotonicity test

The binary stratified monotonicity test has a size below 1 percent for all parameter

constellations simulated. On the other hand, the power is also the lowest observed,

with values below 5 percent for all different success probabilites for x1 and observation

counts of 30, 50 and even 100. At 750 observations, the power lies still between 50

and 60 percent of that of all the other regression techniques. Correlation has again a

decreasing effect on the power of the non-parametric monotonicity test.



Chapter 7

Discussion

Some interesting results have been found in this study. Especially concerning White’s

heteroscedasticity robust least squares estimator on the one hand with large size and

power. And on the other hand the binary stratified monotonicity test with low size and

low power. Ordinary least squares size was around 5 percent, except in simulations with

no constant where OLS showed increased size. Further it provided quite good power

results, making it the silent star of this study.

When introducing inexperienced students to econometrics, a large part of the classes is

dedicated to heteroscedasticity in data and its ”cure”. The solution most students retain

from these lessons is to put ”, robust” behind the regression command. The author of this

study himself, lacking experience and knowledge, was prone to just using robust at the

slightest sign of heteroscedasticity. Quite shockingly, in the present parameter setting,

including inherent heteroscedasticity, OLS fares better than robust. Especially in small

samples, White’s heteroscedasticity robust least squares estimator reaches unusably high

sizes. This was found for both models, where all other estimators, had no, or at least

a lot less problems with falsely rejecting the null hypothesis. Ordinary least squares

showed its biggest troubles with correlated covariates of low success probability.

This study does not focus on the exact prediction made by the estimators, but rather

on their ability to reject or not to reject the null hypothesis, when it is a priori true

respectively false. It is possible, that the true outcomes, delivered by robust perform

better than those of the other estimators. But when these data where produced as a

side product in this study, they did not seem to confirm this.

When comparing to non-robust power levels, the exact test presented in this study

did quite well in terms of power. The size is mathematically proven to be below 5

percent, our simulation study just confirmed this. Although considering the very low
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size throughout all parameter constellations, and the relatively low power especially

in low observation samples, it seem this test could be a bit too conservative. Maybe

some improvements are still to be done. In this place it should be mentioned, that an

other soon to be published exact monotonicity test (working paper Schlag 2016), fared

similarly in preliminary studies leading to this paper.

In the end it needs to be said, that this simulation study did only cover a small fraction of

the binary models out there. Even regarding the 2 models considered, many possibilities

have been left out. For example higher probabilities for a success in the logit model

should be investigated further. The same is true for larger coefficients for x1 and x2.

A simulation study using only 2 models might fail at underlining the main advantage

of an exact test, its independence from distributive assumptions (except for bounds).

While OLS showed better results in the underlying setting, a different distribution of the

data could show the opposite. No matter the underlying distribution, a mathematically

exact test will not be oversized and thereby be at least a valuable reinforcement of an

empirical work.

Last but not least, this study constitutes a praise to simple models. In our simulaton

stting, ordinary least squares showed the best overall performance. Among the consid-

ered asymptotic models, it is by far the simplest and most studied. This holds also

when talking about interpretation, where logit and probit have a serious drawback. Es-

pecially concerning the publication and spreading of results, logit and probit are prone

to misinterpretation. The exact monotonicity test on the other side put up to much

more assumption loaded techniques, while it is very simple in both application to data

and interpretation.
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Figure 1: small simulation of the linear probability model at 30 observations



25

Figure 2: small simulation of the linear probability model at 50 observations
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Figure 3: small simulation of the linear probability model at 100 observations
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Figure 4: small simulation of the linear probability model at 750 observations
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Figure 5: small simulation of the logit model at 30 observations
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Figure 6: small simulation of the logit model at 50 observations
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Figure 7: small simulation of the logit model at 100 observations
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Figure 8: small simulation of the logit model at 750 observations
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Figure 9: large simulation of the LPM model at 30 observations
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Figure 10: large simulation of the LPM model at 50 observations
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Figure 11: large simulation of the LPM model at 100 observations
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Figure 12: large simulation of the LPM model at 750 observations
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Figure 13: large simulation of the logit model at 30 observations
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Figure 14: large simulation of the logit model at 50 observations
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Figure 15: large simulation of the logit model at 100 observations
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Figure 16: large simulation of the logit model at 750 observations
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Figure 17: Complete overview of the large linear probability model
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Figure 18: Complete overview of the reduced linear probability model
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Figure 19: Complete overview of the large logit model
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Figure 20: Complete overview of the reduced logit model
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