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Abstract

This thesis puts forth an algorithm for solving the �exible job shop scheduling problem.
The algorithm consist of a subgradient search and of a list scheduling heuristic, which
is designed to generate feasible solutions deriving from the infeasible solutions we obtain
from the subgradient search. Several methods for so-called price discrimination are in-
troduced and their e�ects on the subgradient search are examined. The list scheduling
heuristic uses a priority function to rank operations and creates a schedule that does not
violate any constraints. Implementation in Java was written to test the method. The
results of testing the algorithm on realistic industrial data are shown, compared to results
from other programs and interpreted.



Zusammenfassung

Die vorliegende Masterarbeit beschäftigt sich mit dem Thema "job shop scheduling"
(jss), also der Erstellung von Ablaufplänen. Beim jss sollen mehrere Aufträge so auf
Maschinen aufgeteilt werden, dass ein möglichst dichter Ablaufplan entsteht. Jeder dieser
Aufträge besteht aus Teilen, die in einer �xen Reihenfolge bearbeitet werden müssen und
jeweils nur auf bestimmten Maschinen erledigt werden können.

Der Wert eines Ablaufplans wird als die Summe gewichteter Verspätungen berechnet.
Jeder Auftrag bekommt ein Gewicht zugewiesen, das dessen Dringlichkeit beschreibt,
sowie einem Fälligkeitstermin. Mit jeder Zeiteinheit Verspätung erhöht sich der Zielwert
eines Auftrags um dessen Gewicht. Die Summe dieser Zielwerte ergibt den Wert des
gesamten Ablaufplans. Ein guter Plan ist nun durch einen geringen Zielwert gekennze-
ichnet.

Als Strategie zur Lösung dieses Problems wird auf die Lagrange Relaxierung zurück-
gegri�en. Ein Subgradientenverfahren liefert eine untere Schranke für den Zielwert des
Problems als auch einen unfertigen, unzulässigen Ablaufplan. Dieser Plan kann noch
Bedingungen, die an solche gestellt werden, verletzen. So ist hier noch eine Doppelbele-
gung von Maschinen möglich. Mittels einer Heuristik, dem sogenannten List Scheduling,
wird dieser zu einem fertigen, zulässigen Ablaufplan verändert und man erhält eine obere
Schranke für das Problem.

Der Ansatz war, das Subgradientenverfahren so zu formulieren, dass es einer Auktion äh-
nelt. Dazu wird das Problem auf einzelne auftragsspezi�sche Probleme aufgeteilt. Jeder
Auftrag berechnet einen persönlichen Ablaufplan und bietet nun für Zeitfenster auf den
Maschinen. Hierbei fungieren die Lagrange-Multiplikatoren als Preise. Der Algorith-
mus geht iterativ vor, wobei in jeder Iteration die Preise für Zeitfenster auf Maschinen
gemäÿ der Nachfrage verändert werden. Diese neuen Lagrange-Multiplikatoren dienen
als Grundlage für die auftragsspezi�schen Probleme der nächsten Iteration.

Im Zuge der Arbeit werden verschiedene Vorgehensweisen zur Adaptierung der Lagrange-
Multiplikatoren vorgestellt. So werden auftragsspezi�sche Preise berechnet, die die Ko-
ordination zwischen den Aufträgen erleichtern soll.

Das List Scheduling nimmt das Ergebnis einer Iteration und erstellt daraus einen zulässi-
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gen Ablaufplan, indem es jedem Teilauftrag eine Gewicht zuweist und bei Doppelbelegung
den Auftrag mit dem geringeren Gewicht nach hinten verschiebt.

Der Algorithmus wurde in Java programmiert und anschlieÿend an einer Auswahl von
Musterbeispielen getestet. Hierbei wird der Ein�uss der verschiedene Prozesse zur Adap-
tierung der Lagrange-Multiplikatoren verglichen. Zu Beginn der Arbeit wird ein Überblick
über die geschichtliche Entwicklung der Ablaufplanung als auch der kombinatorischen
Auktion gegeben.
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Chapter 1

Introduction

Lawler, Lenstra, Rinnoy Kan, and Shmoys (1993, p. 445) state that �sequencing and
scheduling is concerned with the optimal allocation of scarce resources to activities over
time�. Scheduling is ubiquitous, even now you may think about what to do next and
when to do it. Informal scheduling was always a part of factories from the middle of the
nineteenth century onwards, when foremen were tasked to organise their shops. More
formal approaches began to appear in the late nineteenth century for example with the
paper of Binsse (1887). Frederick Taylor in the late nineteenth century was the �rst to
separate planning from execution and his pupil Henry Gantt (1919) provided us with the
scheduling and planning tool called the Gantt chart, which is still in use today. Naturally,
there have been many research innovations in scheduling since the work of Gantt and
Taylor.

The purpose of this work is to present the notion of job shop scheduling and to give
some insight into the usage of combinatorial auctions in mathematical optimization. It
will put these two pieces together and to deal with the problem of job shop scheduling
with the help of combinatorial auctions. To this end a computer program tackling the
problem was written and tested on problem instances. The results of these test o�er an
insight into the workings of the algorithm.

The focus of this thesis is on job shop scheduling, therefore not the history of scheduling
but a succinct history of job shop scheduling will be given in the following. A more
detailed history of scheduling is presented in Herrmann (2006), where the short overview
above was also taken from.

A classical job shop scheduling problem (I ×M) consists of I jobs which have to be
executed on M machines. A job can be the completion of some kind of product,. Each
job requires a speci�c choice of machines in a predetermined order. A part of a job which
is scheduled on a machine is called an operation of a job. Therefore, a job consists of a
sequence of operations and the question �which operation of which job is best scheduled
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on which machine at what time?� arises.

Job shop scheduling emerged in the 1950 with papers of Johnson (1954), J. Jackson
(1956) and Akers and Friedman (1955). The former o�ered an optimal algorithm for
the two machine �ow shop problem, which means that every job has the same sequence
of machines. In his paper Jackson deals with the 2 ×M problem where each job has
at most two operations. Akers and Friedman on the other hand work with the I × 2
problem, with both Jackson and Akers operating in the job shop environment. The book
"Industrial Scheduling" edited by Muth and Thompson (1963) collected all research at
the time and was a basis for following investigations.

The Gantt chart, a way of depicting a schedule, was introduced by Gantt (1919). A
di�erent representation, the disjunctive graph, was proposed by Roy and Sussman (1964)
and extended by White and Rogers (1990). It facilitates a very visual way to deal with
the scheduling problem, for example the makespan, the total time needed to complete
all jobs, corresponds to the length of the longest path in this graph.

In the next decade the main focus of research was �nding exact solutions using enumer-
ative algorithms like branch and bound. One example of the enumerative approach is by
Balas (1965) who utilizes the disjunctive graph representation. Due to the complexity
of the problem, these exact algorithms are of limited practical value. Computational
approaches to job shop problems based on these algorithms show in the worst case ex-
ponential runtime as expected from a NP-hard problem.

In the 70s and 80s the research centred around the complexity of the job shop problem,
as in for example Cook (1971) and Lawler, Lenstra, and Rinnooy Kan (1982). Since then
many approximation algorithms have been proposed, the �rst by Panwalkar and Iskander
(1977) using priority dispatch rules. Other approaches make use of fuzzy logic Grabot and
Geneste (1994), genetic local search Moscato (1989), Grefenstette (1987) and Dorndorf
and Pesch (1995), tabu search Glover (1989) and Glover (1990), Taillard (1994), Nowicki
and Smutnicki (1996), simulated annealing Van Laarhoven, Aarts, and Lenstra (1992),
Sadeh and Nakakuki (1996) and genetic algorithms Falkenauer and Bou�oix (1991),
Nakano and Yamada (1991). Furthermore shifting bottleneck procedure Adams, Balas,
and Zawack (1988) or large step optimisation Lourenço (1993) and Lourenço (1995),
Lagrangian relaxation Hoitomt, Luh, and Pattipati (1993) and Wang, Luh, Zhao, and
Wang (1997) have been applied. All of the above is a focused summary of previous
research, largely based on the paper by Jain and Meeran (1999). An extensive discussion
of di�erent approaches to the job shop scheduling problem is given in Jones, Rabelo, and
Sharawi (1999).

A literature review by the author revealed that newer works apply variable neighborhood
search Sevkli and Aydin (2006), Adibi, Zandieh, and Amiri (2010), Amiri, Zandieh,
Yazdani, and Bagheri (2010), ant colony algorithms Zhou, Lee, and Nee (2008) and a
combination of a genetic algorithm and variable neighbourhood search Gao, Sun, and Gen
(2008). combinatorial auctions together with Lagrangian relaxation were used to solve
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the problem in Kutanoglu and Wu (1999), Dewan and Joshi (2002), Liu, Abdelrahman,
and Ramaswamy (2007). Or as Lawler, Lenstra, Rinnooy Kan, and Shmoys (1993, p.
446) have put it �all techniques of combinatorial optimization have at some point been
applied to scheduling problems�.

The second major facet considered in this thesis, besides scheduling, is combinatorial
auctions. A combinatorial auction di�ers from a common auction in the fact, that in
a combinatorial auction a bidder can place bids on a combination of items. A bidder
could, for example, say: �I want either all of these three items, or both of these two, but
not both the three and the two items.� This way a bidder can put a value on groups
of items more easily and can act in a safer environment. The following overview of
research concerning combinatorial auctions and usage of these auctions is mainly taken
from de Vries and Vohra (2007), to which readers who are inclined to learn more about
combinatorial auctions in general, are referred to.

The research in combinatorial auctions was sparked by Rassenti, Smith, and Bul�n
(1982), when a combinatorial auction was used to allocate airport time slots. Even be-
fore that, in C. Jackson (1976) combinatorial auctions were suggested for radio spectrum
rights. Strevell and P. (1985) proposed combinatorial auctions for vacation time slots,
Banks, Ledyard, and Porter (1989) for selecting projects on space shuttles and Caplice
(1996) for shipper-carrier relationships. On the other hand Srinivasan, Stallert, and
Whinston (1998) applied combinatorial auctions to trading �nancial securities, Kutanoglu
and Wu (1999) and (Wellman, Walsh, Wurman, & MacKie-Mason, 2001) to schedul-
ing and Davenport and Kalagnanam (2002) used them for large food manufacturers.
Bikhchandani and Huang (1993) and Ausubel and Cramton (2002) describe the auction
of treasury securities used by the U.S. Department of Treasury, Ledyard, Olson, Porter,
Swanson, and Torma (2002) an auction used by Sears to select carriers. Furthermore
Dai, Chen, and Yang (2014) devised an auction scheme for carrier collaboration, Liu et
al. (2007) one for dynamic job shop scheduling, Kumar, Kumar, Tiwari, and Chan (2006)
for scheduling in the steel making process.

Another research topic in connection with combinatorial auctions is winner determina-
tion, it deals with the question �who gets what?� and is, among many others, tackled in
Sandholm (1999), Fujishima, Leyton-Brown, and Shoham (1999) and Rothkopf, Pekec,
and Harstad (1998). Nisan (2000) and again Rothkopf et al. (1998) examine how bids can
be expressed and how restriction to bidding on speci�c bundles in�uences the auction.

This thesis is structured as follows. The �rst chapter provides the basic de�nitions
and concepts regarding job shop scheduling and combinatorial auctions. It revisits the
topics of linear programming and Lagrangian relaxation and states de�nitions in job shop
scheduling. The second chapter introduces combinatorial auctions and connects them to
both Lagrangian relaxation and job shop scheduling. The de�nitions and result from
chapters 2 and 3 are put to use in chapter 4 where the program designed is presented.
The result of its usage and problems occurred are demonstrated in chapter 5.
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While working on this thesis, I was employed at Profactor in Steyr. The basis for my
thesis was already laid and I could build on the works an knowledge of my co-workers.
The implementation was done using Eclipse and I was able to use its powerful debugging
tools. The problem instances I tested my program on, were supplied by Prof. Dr. Lars
Mönch of the FernUniversität Hagen, who provided not only the necessary data but also
the best results previously achieved.

The main Results of this thesis are on the one hand a way to keep the lower bound
property of the subgradient searches when using personalized prices. And on the other
hand, the insight that personalized prices downgrade the lower bounds of the subgradient
search, is gained. The e�ect of these prices on the feasible schedules was indecisive and
maybe more experiments and improvement on the methods from this thesis can bring a
way to augment subgradient searches through more elaborate pricing to light.
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Chapter 2

Mathematical Basics

This chapter will provide de�nitions of the mathematical concepts, which are used
throughout the paper, and lay the foundations for the chapters to come. The �rst topic
will be job shop scheduling, where di�erent aspects of the problem are looked at and
the notation used in this thesis is stated. For example we will see various criteria for
determining the performance of a particular schedule. Then linear programming and
Lagrangian relaxation are introduced, which will later be used to formulate the job
shop scheduling problem as a linear program. Furthermore, the concepts of the simple
subgradient search and the surrogate subgradient search are introduced.

2.1 Job Shop Scheduling

The following part on notation, basic concepts and de�nitions relies heavily on the book
Pinedo (2008), where a more elaborate taxonomy can be found.

A job shop scheduling problem (jss) consist of a set of I jobs I = {0, 1, . . . , I − 1}
which need to be scheduled on a set of M machines M = {0, 1, . . .M − 1}. Each job
i ∈ I consists of Ji operations Ji = {0, 1, . . . Ji − 1}. An operation is represented by a
pair (i, j) where i ∈ I and j ∈ Ji, which means that the jth operation of the ith job is
considered.

In this environment there is exactly one suitable machinemij ∈M for the operation (i, j),
i.e., the operation (i, j) can only be completed, and therefore scheduled, on the machine
mij . Pij is the time needed for operation j of job i to be completed. The sequence of
operations of a job i =

(
(i, 0), (i, 1), . . . (i, Ji − 1)

)
together with the machines mij is

called the routing of a job. If the routing requires a job to visit a machine more than
once it is said to recirculate. A solution of a job shop scheduling problem assigns a
beginning time bij to each operation (i, j).
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An extension of the job shop problem is the �exible job shop scheduling problem

(fjss), where an operation of a job has not only one suitable machine, but a set Hij of
suitable machines. For each machine m ∈ Hij there is a certain process time Pijm, which
is now also dependent on the machine m. To solve such a problem we need not only
assign a beginning time to an operation but also a machine m from the set of suitable
machines Hij . This means that the problem from above is extended and additionally to
a table of beginning times, we also have to �nd a routing for each job.

Until now we have assumed that the transportation from one machine to another does
not take any time. If we additionally want to take into consideration, that this is not
the case, we are presented with the �exible job shop problem with travel times

(fjsstt). This means we have additional information Rmn being the travel time from
machine m to machine n.

2.1.1 Problem Description

Parameters

The following parameters will play roles in our problem. Their formulation is taken from
Hämmerle, Weichhart, and Vorderwinkler (2015).

• i ∈ I = {0, 1, . . . I − 1} the set of jobs

• m ∈M = {0, 1, . . .M − 1} the set of machines

• Ji = {1, 2, . . . Ji − 1} the set of operations of job i with index (i, j) : i ∈ I and
j ∈ Ji

• Hij the set of suitable machines for operation (i, j)

• Pijm the processing time of operation (i, j) on machine m

• k ∈ K = {0, 1, . . .K − 1} the set of available time slots, we consider time to be
discrete

• Rmn the transport time from machine m to machine n

• Di the due date for job i

• Wi the (tardiness) weight of job i, expresses the importance of a job
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Objective Functions

The following list of objective functions as well as the lost of constraints are just a
selection of choices o�ered by Pinedo (2008) and more possibilities can be found in his
book.

The objective of scheduling is to optimize some aspect of a process. If the completion
time of operation (i, j) is cij we write (Ci) = ciJi−1 as the completion time of job i.
Some examples of objective functions, all of which depend on the completion time and
are non-decreasing, to be minimized are:

Makespan

In this case we try to minimize the time it takes to complete all jobs i.e. max{Co, C1, . . . CI−1}
which is the time, the last job is �nished.

Maximum Lateness

With the lateness of job i de�ned as Li = Ci−Di one can seek to minimizemax{L0, L1, . . . , LI−1}.
This means that one wants to minimize the violation of due dates.

Total Weighted Completion Time

One can also try to minimize
∑

iWiCi. This sum is called the total weighted completion
time. For example one could see a large job weight as a large inventory cost for this job
and one therefore wants to prioritize this speci�c job.

Total Weighted Tardiness

If we de�ne the tardiness of job i as Ti = max{Li, 0}, we can also minimize
∑

iWiTi. Li
is again the lateness and computed by Li = Ci−Di. We call this weighted tardiness and
a job with a large weight could for example be a job for a important costumer.

Other Objectives

Other aspects to be optimized are for example themaximal machine workload, which
is the maximum over all machines of working time on a single machine. Optimizing this
means that we seek to balance the workload on all machines. If machines have di�erent
speeds, i.e. if processing times Pij also depend on the machine used, we can minimize the
total machine workload as well. This then is the total working time on all machines.

12



Constraints

Various kinds of constraints can be incorporated into the concept of scheduling.

Release Dates

If we are presented with a release date ri for each job, we have to �nd a schedule where
bi0 ≥ ri for all i ∈ I. This means that we cannot start processing a job before its release
date.

Preemptions

A schedule is called non-preemptive if once an operation is started on a machine, it
cannot be interrupted by an operation of another job. If preemptions are allowed, this
is possible and the time already processed for the �rst operation before the interruption
is not lost. In other words when this operation is continued on a machine, only the
remaining processing time is needed.

Precedence Constraints

Precedence constraints describe the fact that often some operation (i, jr) has to be com-
pleted before operation (i, js) where without loss of generality r < s. One could even be
presented with inter-job speci�c precedence constraints, meaning that (il1 , r) has to be
processed before (il2 , s). We talk of chain like precedence constraints if each operation has
at most one predecessor and successor. The terms intree and outtree are used to describe
the cases where each operation has at most one successor respectively one predecessor.
In this paper we will only consider chain like precedence constraints, which means that
(i, r) has to be processed before (i, r + 1) for all i ∈ I and for all r ∈ {1, 2, . . . Ji − 2}.

2.2 Mathematical Programming and Lagrangian Relaxation

Mathematical programming encompasses a wide range of di�erent problems and methods.
The book Dantzig and Thapa (1997) is the basis for this chapter. In this thesis we will
look at the notions of linear programming, integer programming as well as nonlinear
programming. Dantzig and Thapa (1997, p 1) write that:

Mathematical programming (or optimization theory) is that branch of math-

ematics dealing with techniques for maximizing or minimizing an objective

function subject to linear, nonlinear, an integer constraints on the variables.
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Linear programming is a special case thereof, in which constraints on variables are always
linear and can be either equality or inequality constraints. A linear programming problem
may be stated in the following form:

Z =min cTx

s.t. Ax = b

Dx ≤ e
x ≥ 0.

(2.1)

Where A is a m×n matrix and the vectors c, x are n×1 vectors and b is a m×1 vector.
The phrase `s. t.' means `such that' and indicates the constraints to be ful�lled. The so
called dual of this linear program is another linear program of the form:

Y =max bT y

s.t. Ay ≤ c.
(2.2)

A again is a m × n matrix an the vectors b, y and c have suitable dimensions. A well
know fact is that Y ≤ Z, which means that the dual problem bounds the initial one.
The di�erence Z − Y is called the duality gap. If the duality gap equals 0, we say that
strong duality holds. Otherwise the property is called weak duality.

The �eld of mathematical programming started to develop in the 1940s and has been
of great interest for mathematicians since then. Numerous di�erent methods of tackling
problems of this nature have been devised and we leave a detailed discussion of this
topics aside. In 2.1.1 it is stated that we work with time slots and therefore assume time
to be discrete. Hence allocating an operation to a machine is a discrete problem and
our variables are integers. We will now brie�y look at a variation of linear programs, so
called integer programs. The formulation of an integer program looks exactly like the
formulation of a linear program except that we add the requirement for x to be integer.

ZP =min cTx

s.t. Ax ≤ b
Dx ≤ e
0 ≤ x ∈ Zn.

(2.3)

It is easy to �nd linear programs that have no solution satisfying all requirements. Since
such programs are of no interest to us, we will assume that from this point onwards all
linear programs are feasible.

14



2.2.1 Lagrangian Relaxation

Lagrangian relaxation is a technique to help �nd a solution to a linear program con-
forming to its constraints. The following treatment of Lagrangian relaxation is largely
based on the paper by Fisher (2004). The idea behind it is that this method can make
a program easier to solve if we include some constraints into the objective function. We
assume that we have split the constraints into two parts A and D, with A containing
only equality constraints. We now reformulate the problem (2.3)

ZLR(λ) =min cTx+ λ(Ax− b)
s.t. Dx ≤ e

0 ≤ x ∈ Zn.
(2.4)

The vector λ has suitable dimensions for matrix multiplication and its entries are called
Lagrange multipliers. A convenient property of the objective value ZLR(λ) of the La-
grangian relaxation is the fact ZLR(λ) ≤ Zp. If we consider x′ to be an optimal solution
to the program (2.3), we obtain the inequality

ZLR(λ) ≤ cTx′ + λ(Ax′ − b) = ZP , (2.5)

since λ(Ax′ − b) = 0 and cTx′ = ZP . A signi�cant decision regarding the Lagrangian
relaxation is the choice of vector λ. Since ZLR(λ) o�ers a lower bound to ZP the best
choice would be one such that

ZLR = max
λ
ZLR(λ). (2.6)

Since this program is dual to (2.4) it is sometimes referred to as the Lagrangian dual
program.

2.2.2 Subgradient Search

We have become sidetracked on the quest of the search for an optimal solution to an
integer program and are searching for a vector λ to help us �nd an optimal lower bound
for the objective function value. Here, a method called subgradient search comes into
play. Since our function ZLR is not necessarily di�erentiable, we may not be able to
use a gradient method to �nd our desired λ. Therefore, we will make use of so called
subgradients, which are a generalization of gradients for non-di�erentiable functions. For
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a convex function f(λ) : U → R, where U is a convex subset of Rm, a subgradient at
point λ′ in U is a vector v in Rn satisfying

f(λ)− f(λ′) ≥ v(λ− λ′). (2.7)

The subgradient method performs an iteration with steps λk+1 = λk + skvk where sk is
called the step size and vk is a subgradient. One can prove under some assumptions that
the points f(λk) generated by the subgradient method converge to the minimum of the
function f(λ). Since according to Wang et al. (1997) our function ZLR is not convex but
rather concave we will reformulate this property as

ZLR(λ)−ZLR(λ′) ≤ v(λ− λ′) ∀λ. (2.8)

The vector Axk−b is a subgradient to if xk is an optimal solution to the problem ZLR(λ).
Thus the subgradient method applied to our problem generates a sequence of vectors λk
of Lagrange multipliers according to the rule

λk+1 = λk + sk(Axk − b). (2.9)

In this setting xk is again an optimal solution to the problem (2.4) with λk substituted
for λ. The step size sk is often computed by

sk =
αk(Zλ −ZLR(λk))
‖ Axk − b ‖2

, (2.10)

where 0 < α ≤ 2 and Zλ is an upper bound for the value of ZLR. An approach which
has proven to be reasonable is to set α0 = 2 and halving it if the value ZLR(λ) did not
increase for a number of iterations. Usually x0 = 0 is chosen as a starting point and
since we cannot prove the optimality of the subgradient method, unless ZLR equals the
value of a known feasible solution, we performed this procedure for a �xed number of
iterations. For this method to work we have to be able to solve the problem ZLR(λ)
optimally which can be very time consuming for big problems.

2.2.3 Surrogate Subgradient Search

In certain instances the relaxed problem (2.4) can be split up into a number of sub-
problems. Each of these subproblems can then be solved on its own and added up to
yield the value ZLR(λ). If this is the case and one is confronted with the di�culty of
solving numerous subproblems, the surrogate subgradient method provides a technique
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that allows one optimize, though not all, but a number of subproblems in one iteration.
This method presented in this section is due to Zhao, Luh, and Wang (1999). Thus,
it reduces computational requirement since we do not need to solve ZLR optimally in
each iteration and still has some of the desired properties of the subgradient method.
Accordingly, suppose the problem can be separated, then we write

min cTx+ λ(Ax− b) =
L∑
l=1

(
cTl xl + λAlxl

)
− λb (2.11)

and postulate the surrogate dual problem as an extension to the Lagrange relaxed prob-
lem (2.4).

ZSG(x, λ) =min cTx+ λ(Ax− b)
s.t. Dx ≤ e

0 ≤ x ∈ Zn.
(2.12)

One now again uses an iterative process to generate a sequence of points. In one such
iteration step, given xk and λk, �rst the vector

λk+1 = λk + sk(Axk − b) (2.13)

is computed, where sk is the stepsize and satis�es

sk = αk
sk−1‖Axk−1 − b‖
‖Axk − b‖

. (2.14)

Then approximate optimization for xk+1 is performed such that

ZSG(xk+1, λk+1) < ZSG(xk, λk+1). (2.15)

This means that one must not necessarily optimize all subproblems fully, but enough to
ful�ll the above inequality, which can be done with approximate optimization. If one
adheres to these restrictions one can show that

0 ≤ ZLR ∗ −ZSG(xk, λk) ≤ (λ′ − λk)T (Axk − b). (2.16)

Z∗LR and λ∗ are the optimum solution to ZLR and the corresponding Lagrangian multi-
pliers, respectively. It can as well be shown that ‖λ′ − λk‖ < ‖λ′ − λk−1‖.
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2.3 Problem Formulation

The following passage is dedicated the concrete problem formulation and the de�nitions of
both parameters and decision variables, which will be used in the remainder of this thesis,
are given. We recall the de�nitions of parameters form the section 2.1.1 and introduce
the decision variables. Just as the section 2.1.1 this section is based on Hämmerle et al.
(2015).

Parameters

• i ∈ I = {0, 1, . . . I − 1} the set of jobs

• m ∈M = {0, 1, . . .M − 1} the set of machines

• Ji = {1, 2, . . . Ji − 1} the set of operations of job i with index (i, j) : i ∈ I and
j ∈ Ji

• Hij the set of suitable machines for operation (i, j)

• Pijm the processing time of operation (i, j) on machine m

• k ∈ K = {0, 1, . . .K − 1} the set of available time slots, we consider time to be
discrete

• Rmn the transport time from machine m to machine n

• Di the due date for job i

• Wi the (tardiness) weight of job i, expresses the importance of a job

Decision Variables

• bij , i ∈ I, j ∈ Ji the beginning time of operation (i, j)

• cij , i ∈ I, j ∈ Ji the completion time of operation (i, j)

• mij ∈ Hiji ∈ I, j ∈ Ji the machine assigned to operation (i, j)

• δijmk, i ∈ I, j ∈ Ji,m ∈M, k ∈ K a binary variable which is 1 if operation (i, j) is
scheduled on machine m in time slot k

• λmk,m ∈M, k ∈ K the Lagrange multiplier for machine m in time slot k
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Constraints

It is easy to see that the decision variables δijmk, bij and cij are not independent since
we have the identity:

δijmk =

{
1 if bij ≤ k ≤ cij and m = mij

0 otherwise.
(2.17)

Due to the non-preemptive constraints we also have

cij = bij + Pijmij − 1,∀i ∈ I, ∀j ∈ Ji, ∀m ∈ Hij . (2.18)

Since operation (i, j) can only be started when (i − j − 1) has been completed, we also
have the precedence constraints

bij ≥ cij−1 + 1 +Rmij−1mij , ∀i ∈ I,∀j ∈ Ji, ∀m ∈ Hij . (2.19)

The fact that Rmij−1mij appears in the previous constraints makes them non-linear. To
linearize these constraints, we introduce auxiliary variables xijm and zijm1m2 de�ned as

xijm =

{
1 if mij = m

2 otherwise.
(2.20)

and

zijm1m2 =

{
1 if m1 = mij−1 and m2 = mij

0 otherwise.
(2.21)

Additional constraints

zijm1m2 ≤ 0.5(xij−1m1 + xijm2 − 2) + 1 (2.22)

force zijm1m2 to equal 0 exactly when either xijm1 or xijm2 or both do. The precedence
constraints from (2.19) can now be reformulated into linear constraints as

bij ≥ cij−1 + 1 +
∑

m1,m2∈M
zijm1m2Rm1m2 , ∀i ∈ I,∀j ∈ Ji. (2.23)
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The capacity constraints, which state that a machine can only process one operation at
time, read

∑
i∈I

∑
j∈Ji

δijmk ≤ 1, ∀m ∈M,∀k ∈ K. (2.24)

Objective Function

The objective we are trying to minimize is the total weighted tardiness, which is computed
as

Z = minbijmij

∑
i∈I

WiTi. (2.25)

The tardiness Ti is de�ned as max(0, Ci−Di), with the completion time Ci of job i being
ciJi−1.
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Chapter 3

Combinatorial Auctions for Job

Shop Scheduling

We have stated above that the job shop scheduling problem is intractable so we will
use a heuristic to �nd a good solution to the problem. In this thesis combinatorial
auction is used to solve the Lagrangian dual problem. Thus the following part deals
with combinatorial auctions and their application to job shop scheduling. We will discuss
combinatorial auctions as a possible approach to solve the problem formulated above and
how these two concepts are connected. A way to modify the Lagrangian function from
the previous chapter to resemble an auction is shown. Also we will see why and how the
Lagrangian relaxation is of use for us and can lead to the use of auctions.

3.1 Auctions

For many years, many di�erent types of auctions have been used to sell and buy goods.
Even so, choosing the right kind of auction for a given situation is di�cult Klemperer
(2002). Thus, auction design is a busy research area and many di�erent types of auctions
have been introduced. In the following passage a short overview of di�erent approaches
is provided.

Some aspects to be considered in designing an auction according to Kalagnanam and
Parkes (2004) are:

Market structure

How many buyers and sellers are there? The most commonly known case is the so called
forward auction, where one seller tries to sell goods to a number of interested buyers.
The opposite case of one buyer and multiple sellers is called the reverse auction and
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is common in procurement. The third instance is that of multiple sellers and multiple
buyers and is called double auction or exchange.

Goods

Another facet of auctions is the quantity and kind of goods that are sold. It ranges from
a single unit of an item to multiple units of a single item, single units of di�erent items
and multiple units of multiple items. Except for the �rst instance, it is possible that
goods are not sold or demanded individually but in groups, called bundles.

Bid Structure

The manner in which bids are structured limits the possibility of the buyers to commu-
nicate their demand and interests. If there are multiple units of a single item available,
buyers might want to include some kind of quantity discount into their bids. In an
auction where multiple di�erent items are sold, buyers can prefer to formulate logical
conjunctions in their bid. Such bids may, for instance, take the form "I will pay 42 ¤
for good A and B, but only if I get both" or "I want either A or B, but not both, and
will pay 42 ¤" An auction designed to give the buyers the chance to voice such complex
demand is called a combinatorial auction.

Information Feedback

The questions of if and how bidders should receive feedback about their bids is also
central in auction design. If an auction uses a direct mechanism, the bidders receive no
feedback from the auctioneer, wich is the case for a single-round sealed bid auction. In an
indirect mechanism, for example an ascending price auction, bidders receive feedback by
a price signal or a provisional allocation, with whose help bids can be readjusted. It
can distinguished between a price setting approach and a quantity setting approach.
Within the price setting approach in every round information feedback is given through
a price update by the auctioneer and the bidders announce their demand with respect to
the new prices. In the latter, a provisional allocation is provided by the auctioneer and
the bidders readjust the prices in their bids to obtain the desired goods or bundles and
change the allocation. In both cases the feedback procedure is performed every iteration.

Behaviour of Bidders

Another important question of auction design is how to get agents to bid in a reasonable
manner. When modeling the behaviour of agents, especially that of bidders, one can
distinguish between two approaches: The �rst approach stems from game theoretic

considerations where agents play best response strategies to each other and an equilibrium
is de�ned as a state, where one-sided deviation from a strategy does not produce better
outcomes. The second path is called price-taking or myopic best-response in which
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case an agent answers with a best response to a current price and not to other bidders;
an equilibrium is styled as an competitive equilibrium. These explanations assume
that bidders reveal their valuation of goods and bundles as well as their desires truthfully.
Untruthful bidding could potentially be used to manipulate an auction to ones favour
and much e�ort is made to design auctions to encourage truthful bidding. Throughout
the rest of this thesis, it is assumed that the bidders act truthfully within the auction.

3.1.1 Bidding Language

A major part of auctions is communication. Therefore, it is essential to specify the man-
ner in which information is transmitted between participants. References that deal with
the possibilities and consequences of bidding language are, for example, Nisan (2000),
Boutilier and Hoos (2001). In auctions where multiple units are disposable it is favourable
to allow bidders to state their preferences. However, if bid formulation is not subject to
restrictions, a bidder could specify up to 2n bids for a set consisting of n items.

Thus, it is necessary to limit and specify the types of bids a bidder can post, allowing
the bidder to formulate his desires, on the one hand, and making the bids processable,
on the other hand. This is done by means of a bidding language. Two types of bidding
languages have been introduced: LG, where goods are logically combined and LB, where
bundles of goods are components of bids.

In LG, bids for single items are linked through logical conjunctions and a price the bidder
is willing to pay for this package is added. The language LB, however, consists of bids
for bundles which are linked through logical conjunctions. This language comes in two
versions: There is the additive-or language LORB , where one or more of the mentioned
bids can be served and the price is the sum of these individual bids. The other possibility
is exclusive-or LXORB where at most one bid can be served.

3.2 Design of a Combinatorial Auction

In this section, the concrete auction protocol, which will be implemented in the next
chapter, is brought forward. We try to shed light on every possible aspect of the protocol.
The �rst part will deal with the general design principles as mentioned above. The
second part deals with the method of price updating, which is of crucial interest for our
implementation.

3.2.1 General structure

Market Structure
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The combinatorial auction is designed as a forward auction where an auctioning agent,
who represents all machines in our environment, tries to sell his goods to a number of
bidders, each serving as an agent for a single job. The set of bidders is, therefore, identical
to the set of jobs and is indexed equally as i ∈ I = {0, 1, . . . I − 1}.

Goods

The goods to be sold by the auctioning agent are the available time slots of the machines
at hand. Since every single time slot on a machine is sold as a single good, there are
|M ||K| goods allocatable.

Information Feedback

An indirect protocol is chosen and a price setting approach is used to resolve con�icts
between bidders. The auction proceeds in rounds, in which the auctioneer releases a
price vector containing every price for every single time slot in each round. The bidders
then submit their bids in response to these current prices. Additionally, a provisional
allocation is posted, but the main tool to coordinate bidders is the price update. A more
detailed insight to how this price update is realized will be delivered below.

Bid Structure and Bidding Language

The bids consist of a job id and a list of desired time slots. These time slots de�ne the
whole schedule of a job and time slots on a machine not to be split are grouped together
to satisfy the non-preemption constraints of job operations. The value of the objective
function of a job, if it obtains the time slots bid for, is also included into the bid. Since
no alternative schedules are bid for, the bidding language is neither LORB nor LXORB and
since the time slots grouped together constitute a bundle the language is also not LG.

Behaviour of Bidders

Furthermore, we expect bidders to follow a price-takings strategy and to bid truthfully
as well as reveal their true objective function value.

3.2.2 Price Update

The fact that price update is the tool used to resolve con�icts between bidders and
to coordinate these bidders, these mechanisms merit our special attention. Di�erent
methods to update prices, often called tâtonnement, are implemented and their results
are examined. From now on, if we speak about a mechanism, we mean the way prices
are updated during our auction.
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The main idea is to adjust prices as a function of demand. If there is excess demand
the prices are raised and in the case of a lack of demand, prices will be reduced. Since a
good is a single time slot on a speci�c machine and a machine can only process one job
at a time, excess demand is given when more than one job agent bids for a certain time
slot. Thus, the formula for excess demand γmk for a time slot and, consequentially, for
the price update λmk for a time slot is:

γmk =
∑
i∈I

∑
j∈|∈J〉

δijmk − 1 (3.1a)

λl+1
mk = max

{
0, λlmk + f

(
γlmk

)}
. (3.1b)

The superscript l indicates the auction round, the subscripts m and k are the afore
mentioned machine and time slot variables. The choice of the function f generates
multiple di�erent possibilities. The �rst and simplest is to choose f as a linear function
with a constant multiplier. This results in

f
(
γlmk

)
= s ∗ γlmk. (3.2)

This approach is often calledWalrasian or non-adaptive tâtonnement and s is called
the step size. The nomenclature for the forms of price update as well as their formulations
are taken from Kutanoglu andWu (1999) and this form of price update stems fromWalras
(1954).

A more sophisticated choice would be to raise the prices quickly in the �rst rounds of the
auction and to �ne-tune the auction in later rounds. This can be done by multiplying the
demand with larger factors in the beginning and scaling them down afterwards. Then
the price update follows

f
(
γlmk

)
= sl ∗ γlmk, (3.3)

where sl is a decreasing function and the name given to this type of price updating
mechanism is adaptive tâtonnement, thereby contrasting the previous choice.

Until now, the proposed mechanisms produced the same prices for every bidder. But
since Jennergren (1973) and Jose, Harker, and Ungar (1997) showed that uniform prices
generally do not lead to an equilibrium when bidders are characterized by linear programs
we would be wise to choose a mechanism with price discrimination. If we pigeonhole all
the styles of price updating above as regular tâtonnement, we can contrast this with
augmented tâtonnement, where each bidder possibly pays a di�erent price for a time
slot:

λl+1
imk = max

{
0, λl+1

mk + f
(
γlmk, t(i)

)}
. (3.4)
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In this case, λl+1
mk is the original price in round l + 1 as computed by an adaptive price

update or similar methods and t(i) is some aspect or function of job i or its schedule. For
example, this can be a function depending on the resource usage, i.e. time slot usage, of
a job, or a predetermined job pro�le.

3.3 Solving the Lagrangian Dual with Combinatorial Auc-

tions

As the deliberations in the previous chapter look quite akin to the explanations in the
section 2.2, it is easy to guess that we want to link the concept of Combinatorial Auctions
to integer programming and Lagrangian Relaxation through the similarities between
subgradient search and price updating mechanisms.

3.3.1 Decomposition into subproblems

To connect these two approaches, we �rst look at the objective function (2.25) and the
capacity constraits (2.24) in Section 2.3 and use the Lagrangian relaxation technique
form Section 2.2 to include these constraints into our objective function. We get the
following formula and will see that we can split the problem into subproblems. This part
is due to Hämmerle et al. (2015).

ZD(λ) = min
bij ,mij

∑
i∈I

WiTi +
∑
m∈M

∑
k∈K

λmk

[∑
i∈I

∑
j∈Ji

δijmk − 1
]
, (3.5)

Rearranging the order of summations, we get:

min
bij ,mij

∑
i∈I

WiTi +
∑
i,j

∑
m∈M

∑
k∈K

λmkδijmk −
∑
m,k

λmk. (3.6)

By using the fact

∑
m∈M

∑
k∈K

λmkδijmk =

cij∑
k=bij

λmijk, (3.7)

we can rewrite ZD(λ) as

ZD(λ) = min
bij ,mij

∑
i∈I

WiTi +
∑
i,j

cij∑
k=bij

λmijk −
∑
m,k

λmk. (3.8)
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The last formulation of ZD(λ) makes clear that we can divide it into subproblems

Si = min
bij ,mij

WiTi +
∑
j∈Ji

cij∑
k=bij

λmijk. (3.9)

Each subproblem S1 is a one-job scheduling problem with linear precedence constraints
as in (2.23) and processing time constraints (2.18). As stated in Wang et al. (1997),
the one job scheduling problem with linear precedence constraints is not NP-hard. The
problem can be pictured as a minimization problem, where each operation of a job has
to be scheduled on one out of a set of alternative machines. The objective thereby is to
minimize the sum of the weighted tardiness and the cost of machine time usage where
λmk is the cost for machine k at time slot k. Using the subproblems, we can write

ZD(λ) =
∑
i∈I
Si −

∑
m,k

λmk. (3.10)

As in Section 2.2, we can formulate the Lagrangian dual problem of our original problem,
which amounts to

ZD = max
λ
ZD(λ). (3.11)

3.3.2 A Combinatorial Auction for the Job Shop Scheduling

The following sections up to and including 3.3.4 are based on the paper by Kutanoglu and
Wu (1999). If we design an auction as stated in 3.2.1, a good is a pair of a machine and a
time slot. The set of goods, therefore, is G = {(m, k) : 0 ≤ m ≤M − 1, 0 ≤ k ≤ K − 1}.
Due to the preemption constraints, a bid for one operation Bij has to include Pijm
consecutive time slots and is a set of time slots

Bij ∈{(mij , k) : mij ∈ Hij ,
1 ≤ bij ≤ k ≤ cij ≤ K − 1, cij = bij + Pijm − 1} .

(3.12)

A feasible job bid Bi, is a combination of operation bids
⋃
j∈Ji Bij but subject to ad-

ditional precedence constraints. Since the premise is a weighted tardiness problem, we
have a due date and, thus, a tardiness Ti for each job. If we additionally assume that a
job has to pay a price for each time slot it uses and that tardiness causes some cost, we
can formulate the utility function of a bidder in dependency of a bid Bi as

Ui(Bi) = −WiTi − C(Bi). (3.13)
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Here Wi is the cost incurred by a unit of tardiness and C(Bi) is the cost of time slots
contained in bid Bi, called the payment function. Hence a job agent searches for a
bid that maximizes its utility function, trying to �nd the middle ground between keeping
the due date and keeping cost for time slots low. If the payment function is de�ned
as the sum of prices of time slots given as a vector of Lagrangian multipliers λ, then
C(Bi) =

∑cij
k=bij

λmijk. The utility function can be rewritten as

Ui(Bi) = −WiTi −
∑
j∈Ji

cij∑
k=bij

λmijk. (3.14)

The constraints above are the same as the ones in Section 2.3 and the utility function
is the negative of the job speci�c subproblem Si. Minimizing the subproblem is, there-
fore, equivalent to maximizing the utility function and a bidder bidding optimally and
truthfully will solve the job-speci�c subproblem.

The auctioneer, on the other hand, tries to maximize his revenue. As he does not know
the valuations of the bidders, he can only use his current knowledge to achieve this. When
he has collected the bids, he can compute the overall demand. Given this demand, he tries
to maximize his earnings by adjusting prices. This means for solutions to subproblems
Si, the auctioneer tries to �nd the resource prices to reach his goal. This formulation
describes the Lagrangian dual

ZD = max
λ
ZD(λ). (3.15)

3.3.3 The Subgradient Search in Combinatorial Auctions

From Section 2.2 we know that if we can solve (3.5) optimally for a given vector of
Lagrange multipliers λ, we can use the subgradient search to solve the Lagrangian dual
(3.11). It is not hard to see that the rule to generate a sequence of Lagrange multiplier
in the subgradient search with similar notation to Section 2.2

λl+1 = λl + sl

(
Axl − b

)
(3.16)

is a variant of

λl+1 = max
{
0, λl + f

(
γl
)}

. (3.17)

In this equation γl is the vector of excess demand as de�ned in (3.1a) and we now
designate the iteration in the superscript. The advantage of this change of notation is
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due to the fact that the subscript now denotes the time slot and the machine. Since

(
Ax?l − b

)
=
(∑

(i,j)

δ?lijmk − 1
)
mk

= γl (3.18)

provided that both x?l and δ?lijmk are optimal solutions of the Lagrangian Relaxation.

And f
(
γl
)
is chosen as in the subgradient search as slγ with the step size set to

sl = αl
Z∗ −ZD(λl)
‖γl‖2

. (3.19)

Once again αl is a scalar satisfying 0 < αl < 2, and Z∗ is an upper bound of ZD. Fisher
(2004)

All together, this means that with the information about Integer Programming and
Combinatorial auction, we can use the latter to simulate a subgradient search if we
set a job speci�c objective function as (3.9). We expect the job agent to solve this
problem optimally and to bid accordingly, meaning to communicate the result of its one
job scheduling problem. As, since the subproblems are independent, minimizing them
separately yields the same result as minimizing (3.10) and the adaptive price updating
mechanism simulates a gradient search using the settings derived above.

3.3.4 Augmented Price Update

As shown in the papers by Jennergren (1973) and Jose et al. (1997), regular tâtonnement
is often not powerful enough to coordinate multiple agent represented by linear programs
and a quadratic term in the payment function can resolve this problem. Since our job
agents are characterized by linear programs, we will put this insight to use. Thus, we will
take the same course of action as Kutanoglu and Wu (1999) and formulate a subproblem
as

Si = min
bij ,mij

WiTi +
( ∑
m∈M

∑
k∈K

λmk +
∑
m∈M

∑
k∈K

qδijmk

)
δijmk

= min
bij ,mij

WiTi +
∑
m∈M

∑
k∈K

λmkδijmk +
∑
m∈M

∑
k∈K

qδ2ijmk.
(3.20)

However since δ2ijmk = δijmk, the quadratic term joins the linear term and this reformu-
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lation does not yield a new subproblem.

Si = min
bij ,mij

WiTi +
∑
m∈M

∑
k∈K

λmkδijmk +
∑
m∈M

∑
k∈K

qδijmk

= min
bij ,mij

WiTi +
∑
m∈M

∑
k∈K

(λmk + q)δijmk.
(3.21)

We can approach this issue, as it was done in Kutanoglu and Wu (1999), and join multiple
time slots together to create time zones. We can keep the linear term in the price function
unchanged and add a quadratic term to the payment function. Using the formulation
from (3.9), we de�ne the subproblem

Si = min
bij ,mij

WiTi +
∑
j∈Ji

cij∑
k=bij

λmijk + µ
∑
j∈Ji

T−1∑
t=0

( kt+τ−1∑
t=kt

δijmk

)2
. (3.22)

Here we assumed K partitioned into T = {0, 1, . . . T − 1} time zones, each of length τ .
The �rst time slot in time zone t is denoted by kt. When not grouping time slots into
time zones but grouping them by operation, we come up with

Si = min
bij ,mij

WiTi +
∑
j∈Ji

cij∑
k=bij

λmijk + µ
∑
j∈Ji

( cij∑
k=bij

δijmk

)2
. (3.23)

The sum ZM of theses job speci�c problems Si subtracted by the prices for time slots∑
m,k λmk, as in (3.10), does not necessarily satisfy the inequality ZM ≤ Z as in (2.5)

since we have added a quadratic term.

However, if we denote as mij∗, the machine which maximizes the process time of opera-
tion (i, j) and additionally subtract

µ
∑
i∈I

∑
j∈Ji

(
b
Pijmij∗

τ
c
)2

+ (Pijmij∗ mod τ)2 =: K(µ, τ) (3.24)

and since

K(µ, τ) ≥ µ
∑
i∈I

∑
j∈Ji

T−1∑
t=0

( kt+τ−1∑
t=kt

δijmk

)2
(3.25)

we again get the lower bound identity ZK =
∑

i∈I Si −
∑

m,k λmk −K(µ, τ) ≤ Z, when
the subproblems Si are as de�ned in (3.22).
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3.3.5 Third Order Pricing

Above, we introduced the concept of price discrimination. In this section we extend this
notion to what was called third order pricing in Bikhchandani and Ostroy (2002). For
example, if one produces bidder speci�c prices, the subproblems that we constructed in
the last paragraphs appear the following:

Si = min
bij ,mij

WiTi +
∑
j∈Ji

cij∑
k=bij

λimijk. (3.26)

In the right summand, the payment function, an i is added because we now have per-
sonalized prices. When formulating the entire minimization problem like in (3.10), one
is confronted with the problem of �nding appropriate Lagrange multipliers that still lead
to a lower bound for the original, unrelaxed problem. This is central to the usefulness of
the Lagrangian relaxation technique. If we sum over all subproblems, we get

∑
i∈I
Si =

∑
i∈I

WiTi +
∑
i,j

cij∑
k=bij

λimijk (3.27)

And can formulate a integer program similar to the program (P ) in the style of statement
(3.7) in Section 3.3.1.

ZM = min
bij ,mij

∑
i∈I

WiTi +
∑
i,j

cij∑
k=bij

λimijk −M(λ) (3.28)

subject to the same constraints as the program (LR). If we now choose an appropriate
summation to subtract in place of M(λ), analogous to

∑
m,k λmk in (3.6), we can deduce

the lower bound property of our new program.

Proposition 1. Let (AP ) be the integer problem as stated in (3.28), then the inequality

ZM ≤ Z (3.29)

holds for each of the following choices for M(λ):
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M(λ)1 =
∑
k∈K

∑
m∈M

max
i
λimk, (3.30)

M(λ)2 =
∑
k∈K

∑
i∈I

max
m

λimk, (3.31)

M(λ)3 =
∑
k∈K
|M|max

i,m
λimk, (3.32)

M(λ)4 =
∑
k∈K
|I|max

i,m
λimk. (3.33)

Proof. Let δ∗ijmk be variables corresponding to an optimal solution to the original problem
(2.25) from Section 2.3 satisfying all constraints. First we can reformulate

ZM = min
bij ,mij

∑
i∈I

WiTi +
∑
i,j

cij∑
k=bij

λimijk −M(λ) (3.34)

to
ZM = min

bij ,mij

∑
i∈I

WiTi +
∑
i,j

∑
m∈M

∑
k∈K

λimkδijmk −M(λ) (3.35)

due to the fact ∑
m∈M

∑
k∈K

λimkδijmk =

cij∑
k=bij

λimijk (3.36)

and analogous to (3.7) form Section 3.3.1. Since δ∗ijmk ∈ {0, 1} and, for �xed m, k, takes
the value 1 for at most one job i, we use the property

∑
k∈K

∑
m∈M

max
i
λimk ≥

∑
i,j

∑
m∈M

∑
k∈K

λimkδ
∗
ijmk (3.37)

to obtain the desired inequality

ZM1 ≤ min
bij ,mij

∑
i∈I

WiTi

+
∑
i,j

∑
m∈M

∑
k∈K

λimkδ
∗
ijmk −

∑
k∈K

∑
m∈M

max
i
λimk ≤ Z.

(3.38)

The choice M(λ)2 satis�es the identity∑
k∈K

∑
i∈I

max
m

λimk ≥
∑
i,j

∑
m∈M

∑
k∈K

λimkδ
∗
ijmk, (3.39)
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as, analogously to above, for a job i δ∗ijmk = 1 for at most one m and we attain that
ZM2 ≤ Z. The third and fourth possibility for M(λ) satisfy the inequalities∑

k∈K
|M|max

i,m
λimk ≥

∑
i,j

∑
m∈M

∑
k∈K

λimkδ
∗
ijmk, (3.40)

∑
k∈K
|I|max

i,m
λimk ≥

∑
i,j

∑
m∈M

∑
k∈K

λimkδ
∗
ijmk, (3.41)

since, in a feasible solution, at most I as well as at most M jobs can be scheduled at
a given time k. These two inequalities subsequently lead to analogous inequations as
(3.38) for each choice, i.e. ZM3 ≤ Z and ZM4

≤Z . Furthermore, we can see that∑
k∈K

∑
m∈M

max
i
λimk ≤

∑
k∈K
|M|max

i,m
λimk. (3.42)

This is based on the fact that, if we �x k, then
∑

mmaxi λimk ≤ |M|maxi,m λimk,
because there are |M| summands on the left side of the inequality and for every m′ on
the left maxi λim′k ≤ maxi,m λimk. This gives us ZM3 ≤ ZM1 . The same reasoning with
jobs and machines interchanged provides us with the fact ZM4 ≤ ZM2 .

Without price discrimination, the choice M(λ)1 leads to

∑
k∈K

∑
m∈M

max
i
λimk =

∑
k∈K

∑
m∈M

λmk, (3.43)

as λmk = λlmk = λimk∀i, j ∈ I and accordingly

max
i
λimk = λmk∀i ∈ I. (3.44)

The same reason leads to

∑
k∈K

∑
i∈I

max
m

λimk =
∑
k∈K
|I|max

i,m
λimk =

∑
k∈K
|I|max

m
λmk (3.45)

with choices M(λ)2 and M(λ)4. As well as for the third choice

∑
k∈K
|M|max

i,m
λimk =

∑
k∈K
|M|max

m
λmk. (3.46)
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Chapter 4

Implementation

In this chapter we will transform the mathematical problem formulation into an algorith-
mic problem. We will state the algorithm in pseudo-code to give a better understanding
of the procedure. Also, information regarding the implemented programs will be given
and all input and output variables explained.

The following is the design of a combinatorial auction to help solve the �exible job shop
scheduling with transport time problem. This design is, among others, based on the
paper by Kutanoglu and Wu (1999). It is used to obtain an infeasible schedule which,
by means of list scheduling, will be transformed into a feasible schedule. This infeasible
schedule determines the lagrangian multipliers for each time slot on each machine.

4.0.1 Initialization

Since we have proved that we can split our problem into job speci�c subproblems in the
previous chapters 3.3.1, the �rst step in the Initialization is to divide the fjsstt problem
into its job subproblems. At this point, the method of price adjustment is chosen and
also which form of price discrimination is used.

4.1 Two Di�erent Subgradient Methods

4.1.1 Simple Subgradient Search

The method of price adjustment implemented is the adaptive update whose step size
sl varies between rounds and equals a subgradient search. This formulation is taken
from Fisher (2004) and is, amongst others, treated in Held, Wolfe, and Crowder (1974).
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With similar notation as in previous chapters with l denoting the current iteration and
according to (3.16) in Section 3.3.3, the price update follows

f
(
γlmk

)
= slγlmk, (4.1)

with sl de�ned as,

sl = αl
Z∗ −ZD(λl)
‖γl‖2

. (4.2)

Z∗ is and upper bound for the value of Z and the Lagrangian multipliers are updated
by

λlmk = λl−1mk + f
(
γmkl

)
. (4.3)

Algorithm 1 shows how the implemented program is structured.

4.1.2 Surrogate Subgradient Search

The following implementation is based on Bragin, Luh, Yan, Yu, and Stern (2014). In
order for the multipliers λl to converge to λ∗, the parameter αl as in equation (2.10) in
Section 2.2.2 is computed by

αl = 1− 1

Mlp
, p = 1− 1

lr
with M ≤ 1, 0 < r < 1, k = 2, 3, . . . (4.4)

The stepsize sl is updated according to the formula

sl = αl
sl−1 ‖ Axl−1 − b ‖
‖ Axl − b ‖2

. (4.5)

The initial step size can either be chosen beforehand and input at the start of the algo-
rithm, or it is calculated by

s0 =
Zest −ZSG(x0, λ0)
‖ Ax0 − b ‖2

, (4.6)

where Zest is an estimation of the optimal dual cost Z∗LR. Updating of the Lagrange
multipliers follows the equations (4.1) and (4.3).
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Data: fjsstt-problem, α, σ, φ, number of iterations it

begin
Initialization Split problem into subproblems as in (3.9).
The Lagrangian multipliers λ0 are initialized equalling 0.
for i = 0 to it do

Bid generation
Merge solutions
Calculate subgradients
Calculate lower bound
if New lower bound is better then

Update lower bound
end

if Lower bound hasn't increasied in σ iterations then
Update α

end

Update Lagrangian multipliers
if φ iterations passed since the last feasibility repair then

Call feasibility repair
if New upper bound is better then

Update upper bound
end

end

end

end
Algorithm 1: Algorithm for the simple subgradient search
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Data: fjsstt-problem, r, M , initial step size s, number of subproblems n
optimized each iteration, φ, number of iterations it

begin
Initialization Split problem into subproblem as in (3.9).
The Lagrangian multipliers λl are initialized equalling 0.
If not set as an input, the initial step size is computed as in (4.6)
for i = 0 to it do

Bid generation
Merge solutions
Calculate subgradients
Calculate lower bound
if New lower bound is better then

Update lower bound
end

if Lower bound hasn't increased in σ iterations then
Update α

end

Update step size
Update Lagrangian multipliers
if φ iterations passed since the last feasibility repair then

Call feasibility repair
if New upper bound is better then

Update upper bound
end

end

end

end
Algorithm 2: Algorithm for the surrogate subgradient search

This choice of variables di�ers from the simple subgradient search since we want to ensure
that the multipliers λl converge to the value λ∗, even if we only optimize a share of the job
speci�c subproblems. This possibility will be useful when solving big problems because
it helps minimizing the computational requirements. The algorithm for the surrogate
subgradient search is shown in Algorithm 2.
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4.2 Three Kinds of Price Discrimination and The Auction

Algorithm

4.2.1 Augmented Price Update

One kind of price discrimination that was implemented is based on the paper by Kutanoglu
and Wu (1999). It is called augmented price update or augmented tatonnement to that
e�ect and was already treated in 3.3.4. In this case, the job speci�c subproblem is
formulated as

Si = min
bij ,mij

WiTi +
∑
j∈Ji

cij∑
k=bij

λmijk + µ
∑
j∈Ji

T−1∑
t=0

( kt+τ−1∑
t=kt

δijmk

)2
. (4.7)

4.2.2 Based on Preceding Iterations

From an economic point of view, the auctioneer will always try to maximize his or her
revenue. Assuming that a job agent, who requires a speci�c time slot on a machine more
urgently, is willing to pay a higher price for this slot, it is important for the auctioneer to
identify these agents and slots. One way to achieve this is by looking back at preceding
iterations. Since a job agent in dire need of a speci�c slot will bid on it in several
consecutive auction iterations, the auctioneer could post discriminatory prices on slots
by raising prices for job agents who have bidden on a slot for a number of previous
rounds. Another positive consequence of this process could be that jobs will post di�erent
solutions to their problems since requiring the same time slot each iteration will raise their
prices. Since feasibility restoration uses the infeasible solution generated by merging the
individual job solutions, greater diversity in infeasible schedules could mean that more
di�erent feasible schedules are found.

The price for a time slot for a job agent, with a factor ρ < 1, would then be

λl+1′

imk =λl+1
mk + ρδlijmk + ρ2δl−1ijmk + ρ3δl−2ijmk . . .

=λl+1
mk +

ι−1∑
t=0

ρl−tδl−tijmk

(4.8)

The basic price update λl+1
imk is done in the way of (4.3). The magnitude of the e�ect of

the price discrimination is dependent on the value of ρ and the number ι of preceding
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iteration taken into account. An individual job problem would then take the form

Si = min
bij ,mij

WiTi +
∑
m∈M

∑
k∈K

λimkδijmk. (4.9)

4.2.3 Based on Tardiness and Weight

Following the same train of thought as delineated above one can argue that an agent with
a pressing due date and a large job weight is willing to pay a higher price for his time
slots. It can, therefore, be wise to discriminate agents based on due date and weight.
This leads to following prices

λl+1′

imk = λl+1
mk + f(Di,Wi). (4.10)

λl+1
mk is computed as in (4.3). The function f needs to depend on Pi =

Wi
Di

since Pi is
highest for urgent due dates and great weight and smallest for late due dates and small
weights. If we want to normalize this rating in the interval (0, 1), then

fi =

Di
Wi

maxi∈I
Di
Wi

(4.11)

will do the trick. As the price function for a slot, we will assume

λl+1′

imk = λl+1
mk + fiκλ

l+1
mk , (4.12)

and the job speci�c subproblem is again

Si = min
bij ,mij

WiTi +
∑
m∈M

∑
k∈K

λimkδijmk. (4.13)

4.2.4 The Auction Algorithm

Since the auction algorithm relies on either the simple subgradient search or the surrogate
subgradient search, it is very similar to the algorithms above. The only di�erence lies in
the sections 'Calculate lower bound' and 'Update Lagrange multipliers'. When using the
price discrimination based on weighted tardiness or on preceding iterations, calculating
the lower bound follows the same formula as in Proposition 1 and updating the Lagrange
multipliers is done as in either (4.12) or (4.8). If the augmented price update is chosen, the
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initialization of the subproblems uses the formula (4.7) and the lower bound is computed
by using the result of Section 4.2.1.

4.3 Feasibility Repair

In general, we cannot expect to obtain a feasible solution by applying a combinatorial
auction. This means that we need a tool to translate the infeasible schedule generated
by a combinatorial auction into a feasible one. The method of list scheduling o�ers itself
for such an endeavor. The algorithm described below is based on the paper by Hoitomt
et al. (1993).

4.3.1 Input

The infeasible schedule is represented by two matrices, in each of these matrices a line
represents a job and each column an operation. The �rst matrix entries are the beginning
times bij of the operations (i, j), the seconds are machine assignments mij for operation
(i, j).

4.3.2 Initialization

Prioritizing Function

In order to modify the infeasible schedule and to resolve scheduling con�icts we need
to know which operations to keep at the time slots speci�ed in the infeasible schedule
and which operations to push back in the schedule. Therefore, we need a notion of
importance of an operation. To determine this importance, we make use of prioritizing
rules. Possible choices are

1. f(i, j) =W ((Ti + 1)2 − T 2
i ) or

2. f(i, j, t) = Wi
Pi
emax{0,Di−Pi−t}/KP

if delaying the beginning time of operation (i, j) by one time unit leads to an increased
weighted tardiness. The �rst choice favours jobs which already incur tardiness and stems
from Hoitomt et al. (1993). The second option is the apparent tardiness cost (ATC) as
presented in Vepsalainen and Morton (1987) and which can also be found in Buchmeister
(2013).

In the statement regarding the apparent tardiness cost, Pi is the remaining processing
time of job i, P is the average remaining process time of all jobs both at time t and
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K is a scaling factor. Since the ATC function as stated above is a dynamic scheduling
rule and the value of f(i, j, t) is computed anew each time a machine becomes unused,
it is, in this form, not suitable for a static feasibility repair. For our purpose, we change
the ATC function so that the value of f(i, j, t) for operation (i, j) is computed with t
equal to the beginning time obtained from the infeasible schedule. Pi is, therefore, the
remaining process time of job i from and including operation j. P is computed as the
average remaining process time of all jobs and of operations starting at time t or later.

The List U of all Operations

We use one of the prioritizing functions from above to produce a sequence U of all
operations according to the following rules: The operation (i, j) is placed before the
operation (u, v) in U , if

• bij < buv, or if

• bij = buv and f(i, j) > f(u, v), or if

• bij = buv and f(i, j) = f(u, v) through random selection.

Algorithm 3 shows the pseudo code for the feasibility repair. An extended version of the
list scheduling feasibility repair was also implemented, its pseudo code can be seen in
Algorithm 4. The di�erence between these two variants is that the basic version schedules
the operation on the �rst free machine while the extended version searches through all
machines an selects the machine, where the completion time is minimal. This means
that the basic list scheduling deviates less from the input infeasible schedule than the
extended version.

4.4 The Implemented Programs

For my thesis and during my time at Profactor, I implemented a program to solve an
fjsstt-problem with the techniques described above. Not every implementation of algo-
rithms mentioned here is my own work, for example, the simple subgradient search as
well as the surrogate subgradient search where implemented by my colleagues during my
time at Profactor. My task, on the other hand, was implementing the auction algorithm
using the two subgradient searches as foundations. My other programming project was
the feasibility restoration for which the above-mentioned list scheduling method was cho-
sen. While employing list scheduling without the auction algorithm is possible, and it
was used to compute an initial upper bound, this kind of usage is not its intend and the
solutions obtained are comparatively bad. Hence, from a users point of view, the main
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Data: fjsstt-problem, infeasible solution, priority rule f , scaling factor K

begin
Initialization Generate list U according to f and K
while U 6= ∅ do

Get �rst operation from U
while UnsearchedMachines 6= ∅ do

while !NeedAnotherMachine do
Compute earliest possible starting time
Compute latest possible starting time
Check if machine is available within these bounds
if Machine is available then

The operation is scheduled on this machine
Set NeedAnotherMachine = true
Set UnsearchedMachines = ∅

else
Set NeedAnotherMachine = true

end

if UnsearchedMachines 6= ∅ then
Delete previous machine from UnsearchedMachines
if UnsearchedMachines = ∅ then

Push back current operation back in U
else

Select another suitable machine
end

end

end

end
Algorithm 3: List scheduling

Data: fjsstt-problem, infeasible solution, priority rule f , scaling factor K

begin
Initialization Generate list U according to f and K
while U 6= ∅ do

Get �rst operation from U
for m ∈ SuitableMachines do

Compute earliest available starting time
Compute earliest available completion time tm
Add tm to the list of completion times Tm

end

Take the minimum of Tm and schedule the operation accordingly
Delete the operation from U

end

end
Algorithm 4: Extended list scheduling
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matter in utilizing my program is the auction algorithm. Since the two subgradient algo-
rithms are essential for the auction to work and are the basis for the auction algorithm
using the auction means using and con�guring the subgradient searches.

4.4.1 Using the Program

This section will familiarize the reader with the use of my program. It is intended to
give only an overview and not a in depth treatment of speci�c parts of the algorithm.
An example of initializing a problem and solving it with the program at hand is given in
the Appendix in the section A.1.

Input

Since fjsstt-problems require a lot of input information, this information is provided
through three plain text �les. Each of these �les has the same name, which is that
of the problem with di�erent �le extensions. The .properties �le gives a summary of
con�gurations as well as information concerning the two other �les. The second �le, with
a .fjs extension, contains all information for all jobs for example the number of operations
for each job as well as the suitable machines and corresponding processing times for all
operations. The �le with the extension .tt stores the data of the transport times between
machines.

To access the information from these three �les, a parsing package was implemented.
This program was already running when I started working on my thesis and its inner
workings are not of interest to this documentation. For the user, it is enough to know that
the method parseFile(fileName), which takes a string as input, initializes a problem
given in the above format.

Constructing an entirely new problem is possible. This is either done by writing the
three �les above or by initializing the problem in Java directly. While this is reasonable
if one wants to check the proper operation of di�erent parts of the algorithm, it is quite
tedious for big problems. If one wants to initialize a problem manually the constructor
FJSSTT_problem() has to be used.

FJSSTT_problem(noJobs, noOperations, noMaxOperations,

noMachines, noTimeSlots, suitableMachines, processTimes, travelTimes,

dueDates, objective, jobWeights)

In order to have enough information for the algorithm to work before this constructor is
called, the following data has to be provided:

• The objective: The aspect to be minimized. This can be either the total weighted
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completion time, or, as was the main focus of this thesis, the total weighted tardi-
ness.

• The number of jobs: A positive integer.

• The number of operations per job: An array of positive integers, one for each job.

• The maximum number of operations per job: A positive integer.

• The number of machines: A positive integer.

• The number of time slots: A positive integer.

• The set of suitable machines for each operation: A HashMap, where the key is the
integer tuple (job, operation) and the corresponding value is the set of machines.

• The process times for all operations: A three dimensional array of positive integers,
where the �rst index is the job, the second the operation and the third the machine.

• The travel times between machines: A two dimensional array of positive integers,
each index denoting a machine.

• The due dates of jobs: An array of positive integers, one for each job.

• The weights of jobs: An array of positive integers, one for each job.

The setmTimeSlots() method can be used to alter the number of time slots after the
initialization of the problem, which is useful when the initial value was too low and
produced an error.

List Scheduling

To use the list scheduling, it has to be initialized with the ListScheduling() constructor,
which comes in three variants.

• ListScheduling(fjsstt-problem)

• ListScheduling(fjsstt-problem, solution)

• ListScheduling(fjsstt-problem, solution, outputFile)

The �rst just needs an fjsstt-problem as input, the second also an infeasible solution,
which serves as a basis for the feasibility repair, the third has a �le name as additional
input. In this �le the results will be printed and if it is not initialized, as in the to other
constructors, a default �le is used as output.
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Once the list scheduling is initialized, the feasibility restoration is started with either
listScheduling(prioritizingFunction,valueOfK) or
listSchedulingExtended(prioritizingFunction,valueOfK). Both these methods have
two inputs or none at all. These are the kinds of prioritizing function to be used and,
in the case of the ATC function, also the value of the variable K in (4.3.2), which can
be any real number. If no input is give,n the default con�guration, which is the ATC
function with K equalling 5, will be used.

Simple Subgradient Search

The simple subgradient search must �rst be initialized through a constructor. This
constructor

SimpleSubgradientSearch(fjsstt-problem, α,
itsUntilAlphaIsHalved, itsBetweenFeasibilityRepair)

has as inputs, �rst the fjsstt-problem to be solved, second an initial upper bound for this
problem, third the value of α and fourth the number of iterations without an increase of
the lower bound until α is halved, as well as the number of iterations between feasibility
repair. The roles of the upper bound and α are shown in the equation (4.2).

While α can be any real number, the three other values have to be integers. If no
initial upper bound is given or its value is negative, the list scheduling method is used to
generate a suitable one. In this case, a random infeasible schedule is generated and used
as a basis for list scheduling. If the number of iterations between list scheduling runs is
initialized with 0, no feasibility restoration will be applied except after the subgradient
search has run its course. If it is initialized with −1 no feasibility restoration will be done
whatsoever.

Once the simple subgradient search is initialized, it is started with the
solve(noIterations) method which takes the number of iterations that are performed
as an input. This has to be a positive integer.

Surrogate Subgradient Search

Similar to the simple subgradient search, the surrogate search is initialized with the
SurrogateSubgradientSearch() constructor.

SurrogateSubgradientSearch(fjsstt-problem, fixedStepSize,

estimatedDualCost, initialStepSize, numberOfSubproblems,

r, M, itsBetweenFeasibilityRepair)

The inputs are the following: First a fjsstt-problem, second a boolean dictating whether
a �xed step size should be used or, if initialized as false, should be computed by the
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equation (4.2). Furthermore an estimate for the dual cost, the value of the initial step
size, which should be a postive real number and the number of subproblems solved in
each iteration indicated by a positive integer. Next come values for the variables r and
M from the equation (4.4), where r is some positive real number and M a positive
integer. The last input is the number of iteration between feasibility repair with the
same restrictions as above.

Like the simple subgradient search, the surrogate variety is started with the
solve(noIterations) method, which again needs an integer indicating the number of
iterations to be executed.

Auction

The three alternative auctions, each named for its pricing mechanism, are initialized with
an individual constructor. These three constructors are:

• AugmentedPriceUpdate(fjsstt-problem, subgradientSearch,

scalingFactorMu, timeZoneLengthTau)

• DemandDependentDiscrimination(fjsstt-problem,

subgradientSearch, scalingFactorRho,

precedingIterationsIota)

• WeightedTardinessDsicrimination(fjsstt-problem,

subgradientSearch, scalingFactor)

The �rst two inputs are the same for each constructor. The �rst is a fjsstt-problem while
the second is a kind of subgradient search. This can either be a simple or a surrogate sub-
gradient search. This means that before the constructor is usable, a subgradient search
has to be initialized. The input scalingFactorMu in the �rst constructor corresponds to
the µ in (4.7) and should be a positive real number smaller than 1 and timeZoneLength

to the variable τ , a positive integer.

In the second constructor, scalingFactorRho initializes the value of ρ, a with ρ being
a positive real number, as in (4.8). precedingIterationsIota sets the value for ι in
the same equation, which denotes the number of iterations the auctioneer looks back to
compute prices for time slots and which has to be a positive integer. In this spirit, the
value 1 will not increase this number since the auctioneer already calculates the prices
based on the previous iteration.

The last constructor only has scalingFactorKappa as additional input, this corresponds
to the value of κ in the equation (4.12) and has to be a positive real number.

Once any of these auctions is initialized, the algorithm is again started with
solve(noIterations) with the number of iterations to be executed as the sole input.
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Chapter 5

Numerical Results

To provide the means to evaluate the quality of the above implemented algorithms, I
have applied these to a data-set of problem instances and analysed the performance of
the algorithm in the light of di�erent indicators. A grid search was performed for each
algorithm on each problem instance. The �rst section describes the problem instances
used. In the second section the problems encountered when implementing the algorithms
are stated. The third part of this chapter is a summarized assessment of the program
and algorithms. Finally a conclusion is drawn from these �ndings.

5.1 Problem Types and Problem Instances

The problem instances, which were used to con�gure and test the algorithms I pro-
grammed, were all taken from the website Moench (2016). From these problem instances
six were used: WT1, WT2, Mk01 loose, Mk01 tight, Mk02 loose, and Mk02 tight. The
di�erence between the problem types loose and tight of the same Mk-instance lies in the
due dates. The due dates of tight instances are at a sooner time point, thus increasing
the total weighted tardiness.

In order to put the outcome of my algorithm into perspective, the best results up to now
were provided together with the problem data. What was not part of the data was a
matrix of travel times between machines. Therefore, I generated these transport times
myself by �rst determining the maximum of all minimal makespans of all jobs. This
means that I calculated the minimal makespan of each job and took the maximum of all
values. This is a lower bound for the completion time of the problem instance. I further
split the machines into two groups with a di�erence in size of at most 1. I assumed
a travel time between machines in two di�erent groups of one time the maximum of
all minimal makespans. This problem instance is indicated by the su�x "A", or twice
that value, with the su�x "B". The thought process behind this assumption was that
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the machines are situated in two di�erent plants. The travel time between machines in
the same plant can be neglected, while there is substantial travel time between plants.
With these settings I had 18 di�erent problems, the six original ones and two derivations
thereof with di�erent travel times.

Let us now take a closer look at the basic problem instances without travel times I used.
The following table gives an overview. I indicates the number of jobs, M the number
of di�erent machines, Ji the number of operations per job and max |Hij | the maximum
number of di�erent machines suitable for an operation. The column with header D
shows the minimum and maximum of due dates of jobs and the column TWT the best
know total weighted tardiness. The �rst two instances originally stem from Brandimarte
(1993).

Table 5.1: FJSS problem instances

Instance I M Ji max |Hij | D TWT

WT1 10 5 5 3 45 . . . 76 57
WT2 20 5 5 3 58 . . . 156 252

Mk01 loose 10 6 5 . . . 7 3 16 . . . 36 55
Mk01 tight 10 6 5 . . . 7 3 5 . . . 12 393
Mk02 loose 10 6 5 . . . 7 6 18 . . . 28 18
Mk02 tight 10 6 5 . . . 7 6 6 . . . 9 361

This next table shows the travel times for problem instances of types A and B, as well
as the grouping of machines in the last column. "3 + 2" means that the �rst 3 machines
form a group and so do the remaining 2.

Table 5.2: Travel Times for FJSSTT problem instances

Instance Type A Type B Grouping
WT1 36 72 3 + 2
WT2 38 76 3 + 2
Mk01 22 44 3 + 3
Mk02 18 36 3 + 3

5.2 Problems Encountered

The next section deals with my experience while working on my programs. Even though
a course in programming is mandatory in the second semester of studies of mathematics
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at the university of Vienna, I had never worked on a programming problem of this size.
When I started to write my program many algorithm were already implemented. For
example the simple subgradient search, the basis for the auction mechanism, was already
running.

The �rst algorithm I implemented was the list scheduling method for feasibility repair.
Although I already had a good understanding of how the algorithm works and which
parts perform speci�c tasks and I had an idea of how to implement the single steps
of the algorithm, structuring and bringing it in a concise form was challenging. After
writing the program, a long time of debugging began. Although I was introduced to
the debugging tools at an early stage, I used simple output messages to the console to
solve most of my problems. Only problems I could not tackle this way were further
examined using the debugging tool. All in all, I encountered many problems throughout
implementation, but none stood out in a way to be considered major in comparison to
others.

The only problem worth mentioning, although not strictly one within the code, was the
case when too few time slots were considered to obtain a feasible schedule through list
scheduling. Most of the time the list scheduling routine is called during execution of
a subgradient search and the number of time slots is initialized along with this search.
At �rst, I thought it would be easy to increase the number of time slots during list
scheduling, as to not interrupt the algorithm and avoid the need to restart the whole
program. This course of action proved unreasonable, since changing the time slots for
list scheduling would also change the setting of the subgradient search between iterations.
This seemed both mathematically dubious as well as unnecessary complex to implement.

5.3 Results and Con�guration

The presentation of results will be split into di�erent parts. One classi�cation is in terms
of subgradient searches applied. Therefore, dividing the �ndings into simple subgradient
search and surrogate subgradient search is executed. Another approach to split the
evaluation of the algorithms is by lower and upper bound which is sensible, because
the lower bound property stems from the subgradient search and the upper bound is
produced by the list scheduling method. A third distinction is made by looking at the
impact of price discrimination on both the lower and the upper bound.

An entirely di�erent matter is the con�guration of the list scheduling routine and com-
parison of two variants, which will be dealt with at the end of this section. During these
test the initial upper bound for the objective value needed by the subgradient searches
was provided by applying the list scheduling method to a randomly generated infeasible
schedule. For all tests mentioned in this section the number of iterations was �xed at
800. The following section will give a rough overview of how the results where established
but not the whole chain of thought and reasoning behind reaching these conclusions. We
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will �rst start with examining the lower bounds achieved by our subgradient searches
and then look at the e�ects of price discrimination. Afterwards we will take a look at
the upper bounds.

5.3.1 Lower Bounds without Price Discrimination

Simple Subgradient Search

All the subsequent �gures portray, unless stated otherwise, the results of test runs for one
problem only. The results were very similar for all problems. Since putting all problem
instances into one �gure would have made the graphics too crowded and including 18
similar �gures would have been heavily redundant, the shown visualizations should exem-
plify the �ndings. In the case that one problem instance o�ered unique results it will be
mentioned and treated in written form. The �rst part of our investigation into achieving
the best possible lower bounds will take a look at the simple subgradient search. During
these test runs no feasibility restoration was performed and attention was turned solely
on the lower bound. The two remaining variables to examine were the value of α and
the number of iterations until α was halved when no better lower bound was found. For
these trials α was varied in the interval ]0, 2] and the second variable was tested within
the interval [2, 32].

Figure 5.1 shows the value of α on the x axis, and the number of iterations until α is
halved is located on the y axis. A bigger circle implies a higher lower bound. We can
see that the bigger the value of both α and the iterations until halving α are, the greater
the lower bound gets. While this conclusion is apparent from this �gure, the di�erence
between the achieved lower bounds is rather small.

The same tendency can easily be seen in Figure 5.2a, where again a tendency to higher
upper bounds is seen as the iterations until α is halved increase. In this �gure each of
the six vertical facets corresponds to the number of iterations until α is halved, the x
axis indicates the lower bounds and the subdivision of the facets shows the values of α.
Each dot in the �gure codes one test run each with a di�erent value for the two control
variables, and the vertical lines are the arithmetic means for each facet. Although an
increase of lower bounds can be observed, it is of minimal degree and the averages of
the 5 lower facets di�er in no more than 0.5 in value. While this �gure suggests that
changing α as seldom as possible is the way to go, numerical test on other problems show
no improvement after the number of these iterations reaches 25.

The third �gure 5.2b is the complement to the second with the roles of α and iterations
until halving α interchanged. This means that each facet corresponds to a value of α
and the subdivision of facets is by values of iterations until α was halved. As before each
dot depicts one test run, each with di�erent initial setting and the grey lines indicate
the mean in every facet. This �gure shows that once the value of α exceeds 1 there is
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Figure 5.1: The best lower bounds for Mk02 loose, where a bigger circle means that a
higher lower bound was achieved.

no trend indicating a superior con�guration. From these three �guress one can conclude
that our simple subgradient search provides the best lower bounds when the value of α
lies in the interval [1, 2] and the number of iterations until α is halved is larger than 25.

Surrogate Subgradient Search

Let us turn our attention to the surrogate subgradient search and the lower bounds it
provides. The �rst insight concerning the surrogate subgradient search is that to ful�ll
the requirement of equation 2.15, it is necessary to optimize enough subproblems in one
iteration. Only when optimizing at least 5 subproblems in a single iteration the surrogate
subgradient search satis�es the lower bound condition. The parameters in the surrogate
subgradient search are r, M , the initial step size and the number of subproblems to be
optimized in one iteration. The bounds for r where set as 0.2 and 1, values considered
for M were between 16 and 24, at least 5 and at most 9 subproblems were solved in
one iteration. This last bound was chosen so that less than half of the subproblems of
the largest instance WT2 are solved in one iteration. The initial step size was examined
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(a) Facets to the right correspond to itera-
tions until α is halved and scaling on the left
side indicates the values of α.

(b) Facets to the right correspond to values
of α whereas the values to the left show the
number of iterations until α is halved.

Figure 5.2: The best lower bounds for WT2 with respect to the values of both α and the
number of iterations until halving α.

between 0.1 and 0.4.

The �rst three �gures 5.3 are again faceted and each facet, as indicated on the far right,
corresponds to a value of r. The subdivisions are, from left to right, the initial step size,
the number of subproblems solved in an iteration and the values of M .

It is evident when looking at these three �gures that the best choice for r is smaller that
0.3. We can restrict the value of r and will henceforth only include test runs adhering to
this restriction into our considerations. Lets now turn to the best value for the variable
M . We will again show three �gures where the facets indicate the values of M and the
subdivision correspond to the other three variables.

When looking at these three �gures one �nds that the best choice for M is the value
16. Although the maxima of lower bounds for di�erent values of M are very similar, the
minimal lower bounds, and therefore also the mean value, achieved are higher when the
value 16 is chosen for M . As before we will from now on exclude test runs with other
values for M which will ease our tasks substantially.
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(a) subscales on the left indicate the ini-
tial step size

(b) subscales on the left indicate the
number of subproblems solved each it-
eration

(c) subscales on the left show the values
of M

Figure 5.3: The lower bounds achieved by the surrogate subgradient search for the problem instance Mk01
loose A. Each �gure is faceted by values of r which are indicated to the far right. The sub scales at the left
side of each graphic show values of a di�erent variable.

(a) subscales on the left show the values
of the initial stepsize

(b) subscales on the left denote values
of r

(c) subscales on the left indicate the
number of subproblems solved in each
iteration

Figure 5.4: The lower bounds achieved by the surrogate subgradient search for the problem instance Mk01
loose A. The facets indicated to the far right show the values of M . Each graphic's subdivision corresponds
to a di�erent variable.
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The last �gure concerning the lower bounds in the surrogate subgradient search looks at
the contribution of the initial step size. Although there seems to be substantial di�erence
between the results for the initial step size equalling 0.2 and 0.25 investigation in results
from other problems indicate that the outcomes for any initial step size smaller or equal
0.25 and larger than 1.5 are similar. For larger values a drop can be observed and
therefore this limitation seems sensible for the variable of the initial step size.

Figure 5.5: The lower bounds achieved by the surrogate subgradient graphic for the
problem instance Mk01 loose A with the initial stepsize indicated on the x axis. In
this boxplot the values of the initial step size are mapped to the x axis whereas the
lower bounds achieved correspond to the y axis. The point in the middle symbolizes
the median of the values and the lines run from the maximum and the minimum to the
upper respectively lower quartile.

In conclusion, the best con�guration for the surrogate subgradient search satis�es the
following constraints

r ≤ 0.3, M = 16, initial step size ≤ 0.25, (5.1)

while solving at least 5 subproblems in each iteration.
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5.3.2 Lower Bounds with Price Discrimination

Once the underlying subgradient searches were con�gured, the next step was to test the
e�ects of price discrimination on the lower bounds. The results of these test runs with
price discrimination, which were performed for each of the aforementioned discrimination
strategies for chapters 3.3.4 and 3.3.5, were sobering. A large problem seemed to be that
the estimation to retain the property of achieving a lower bound from Theorem 1 was
imprecise.

The following �gures Figure 5.6 and Figure 5.7 show that the lower bounds deteriorate
with increasing scaling factors for each of the methods of price discrimination in conjunc-
tion with both simple and surrogate subgradient search. The three �gures from the �rst
group pertain to the simple subgradient search. In each, the value of the achieved lower
bound is recorded on the x axis and each point corresponds to a test run with di�erent
settings.

The left �gure indicates the impact of the weighted tardiness discrimination from 4.2.3
on the search and the y axis plots the values of the factor 1

κ . One immediately sees that
the bigger the contribution of the price discrimination is the poorer the lower bound
gets. The �gure in the middle depicts the e�ect of the demand dependent price update
from 4.2.2. The y axis shows values of the factor ρ and we see that its increase leads
to worse lower bounds. Finally the right �gure shows the rami�cation of the augmented
price update as in 4.2.1 and the y axis shows the number of time slots joint to one time
zone and the facetting to the right shows the values of µ. Again the same conclusion as
above can be drawn.

The Figure 5.7 conveys the same information as the above but with regard to the surro-
gate subgradient search. The order of the pricing methods is the same as above and the
meaning of each axis and its divisions are equal. The deterioration of the lower bounds
is not as visible as in the case of the simple subgradient search. Especially when looking
at the �gure for the demand dependent discrimination in the middle, the e�ect is very
little.

All in all, the demand dependent discrimination had varying in�uence on the surrogate
subgradient search. While there are problem instances in which an improvement of the
lower bounds is visible, other instances show worsening of the results and a third group
of problem instances indicate a scattering of lower bounds. Therefore, it is not easy to
come to a �nal conclusion concerning the co-action of the surrogate subgradient search
and the demand dependent discrimination.
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(a) E�ect of weighted tardiness discrim-
ination. The y axis shows the values of
1
κ .

(b) E�ect of demand dependent dis-
crimination. The scale on the y axis
denotes the values of ρ.

(c) E�ect of augmented price update.
The facets on the right correspond to
the values of µ and the subscales on the
left indicate the number of time slots
joined to form a time zone.

Figure 5.6: The e�ects of three di�erent strategies for price discrimination on lower bounds of the simple
subgradient search for problem instance WT1B.

(a) E�ect of weighted tardiness discrim-
ination. The y axis shows the values of
1
κ .

(b) E�ect of demand dependent dis-
crimination. The scale on the y axis
denotes the values of ρ.

(c) E�ect of augmented price update.
The facets on the right correspond to
values of µ and the subscales on the left
show the number of time slots joined to
form a time zone.

Figure 5.7: The e�ects of three di�erent strategies for price discrimination on lower bounds of the surrogate
subgradient search for problem instance WT1B.
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5.3.3 Upper Bounds

Next to the quest for a good lower bound for a speci�c problem, the best feasible schedule
produced is of even more importance as a benchmark for algorithmic performance. Thus,
we will �rst present two tables which will show the best solutions the algorithm found for
each problem. One for the simple subgradient search Table 5.3 and one for the surrogate
subgradient search Table 5.4. Test runs were made with the parameters within the
bounds obtained from the test runs for the lower bounds and with all price discrimination
methods.

At �rst glance it might seem as if the price discrimination strategies had a positive e�ect
on the subgradient searches. For example the augmented price update in conjunction
with the surrogate subgradient seem to work together quite well. Yet, when investigated
more thoroughly it seemed that there was no consistent e�ect from any form of price
discrimination on the subgradient searches. While they helped produce some of the best
feasible solutions they did not contribute in a consistent or predictable manner. There
was no visible positive e�ect on the median feasible schedule, nor the average nor the
worst case scenario. On the other hand, there was also no negative implication on any
of these parameters. Another remarkable insight gained from this table is that it was
easy to reach the best feasible schedule in the problem instance Mk02 tightB. Adding
extensive travel times to the problem seems to restrict the job agents in their choices and
almost always forces the algorithm to a very good result.

One could ask the question why there was no visible signi�cant impact, neither positive
nor negative on the performance of the basic algorithm. The �rst possibility is that
there is no such impact and the price discrimination just contributes in a minor, mostly
chaotic way. The second possibility is that the implementation of the pricing mechanisms
was inadequate or that other price mechanisms would have been a better choice. The
augmented price update is the price discrimination with the most solid basis in pure
mathematics and one can therefore hope that the results together with the surrogate
subgradient search could point out that an improvement could be facilitated with the
help of this method. But it seems that the result from these test runs do not give a
conclusive answer to the question of usefulness of augmented price update.

Another insight in reference to the best feasible schedule obtained was that not only was
there no visible relation between values of α, the number of iterations until α was halved,
there was also no relation between test runs which achieved high lower bounds and those
which produces favourable feasible solutions.

As one can see in the following �gure 5.8 in which the lower bound of a test run is
indicated on the x axis and the total weighted tardiness of the best feasible solution is
shown on the y axis. Additionally one can see in 5.9a and 5.9b that the choice of both
α and the number of iterations until α is halved is in no visible correlation to the ratio
of the best feasible schedule and the best lower bound.
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Figure 5.8: The relationship between good lower bounds indicated on the x axis and
good upper bounds on the y axis. Each point depicts the results of a test run on the
problem Mk02 tight.

There has been no connection between di�erent values for parameters in both the sim-
ple subgradient search and the surrogate subgradient search and the feasible schedule
produced. Since this behaviour is rather unsatisfying another way of examining the algo-
rithm was conducted. Meta optimization was carried out in order to get the best values
for the input variables.

This was done by using the algorithm Snobift from Huyer and Neumaier (2008). The
results of this test runs con�rmed the �ndings from the grid search. Looking at Figure
5.10 no clear connection between the values of variables and the performance of the
algorithm can be found. In this �gure each point corresponds to the results of the meta
optimization pertaining to one problem instance. The choice of variables that secured
the best output are shown here. The di�erent shapes indicate di�erent types of instances.

5.3.4 List Scheduling

Two di�erent kinds of list scheduling were tested. The basic version and the extended
variant, in which all machines are searched prior to scheduling an operation on a machine.
The ordinary list scheduling method �rst searches the machine suggested by the infeasible
schedule and assigns the operation to this machine if the slots are free. In this case no
other machines are searched.

Comparing these two methods the results show that, when the initial upper bound needed
for the simple subgradient search is provided by the list scheduling method and not as
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(a) The values of α are shown on the x axis
and the ratio of the best feasible schedule and
the best lower bound is indicated on the y
axis.

(b) The number of iterations until α is halved
are indicated on the x axis and the ratio of
the best feasible schedule and the best lower
bound is displayed on the y axis.

Figure 5.9: The ratio of the best feasible schedule and the best lower bound with respect
to the values of both α and the number of iterations until halving α.

an input from the user, it is better to use the extended version. While the performance
in view of best upper bound generated was comparable between these di�erent methods,
the extended version is a major improvement over the basic version in terms of worst
attained upper bound, median and average attained upper bound. Since this initial list
scheduling was performed on a randomly generated infeasible schedule, it seems that the
basic version is more dependent on this infeasible schedule than the more intricate search.
This connection was also visible when the feasibility restoration was performed during
iterations of the subgradient searches, in which case the basic version produced better
results. Although not better by a great margin it is still consistently better in terms of
both best, worst, average and median feasible schedule.

Concerning the two di�erent kinds of priority functions and the scaling factor in the ATC
function, the ATC function with a scaling factor of about 5 proved to be best suitable,
albeit the di�erence was minor.

5.4 Conclusion

Looking at the results from this chapter both positive and negative conclusions can be
drawn. Each of the subgradient searches produced good lower bounds and a relation
between parameters and the results can be identi�ed. It can also be seen that the
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Figure 5.10: The results of the meta optimization using the Snob�t algorithm. The
values for α are indicated on the x axis and the numbers of iterations until α is halved
are shown on the y axis. Each point corresponds to the choice of variables producing
the best output for a single problem instance. The dots are basic problem instances, the
triangles belong to the group A with moderate travel times and the squares to problems
belonging to the group B.

methods for price discrimination do not improve the performance of the algorithms, with
the exception of the demand dependent discrimination in conjunction with the surrogate
subgradient search. In this case the e�ect is ambiguous and further testing could clarify
the situation. Whether the worsening of the lower bounds is due to the calculation of
the lower bound or a deteriorating e�ect of the price discrimination is hard to say.

Regarding upper bounds the outcome is con�icting. On the one hand the total weighted
tardiness of the feasible schedules is comparable to previous results and sometimes even
better. On the other hand a relation between parameters and the quality of the results
can not be seen. It seems that the feasibility repair is to disruptive and changes to
much to leave any connection between infeasible and feasible schedule. This may also
be the reason why the e�ect of price discrimination on the total weighted tardiness can
not be determined. Thus, the jury is still out on the usefulness of price discrimination
regarding feasible schedules. Further research might bring an expedient method of price
discrimination to light or proof the uselessness of price discrimination strategies.
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Appendix A

Appendix

A.1 Example of a Problem Initialization

This section depicts the code for initializing a home made fjsstt-problem with commen-
tary. The following problem is rather small, as the initialization of a problem within java
is quite cumbersome.

/**

* This code generates a test instance with 3 jobs,

* 3 machines, 2 operations per job with moderate flexibility.

* It also initializes the process times of each operation,

* the matrix of travel times between machines as well as

* the due dates and weights for each job.

*/

public void testInstanceE() {

//This line engenders the HashMap that maps operations represented

//as strings to machines which are encoded as integers.

final HashMap<String, List<Integer� altMachines = new HashMap<String, List<Integer�();

//The following code generates an ArrayList of the type Integer for

//every operation. These list will be filled with integer corresponding

//to suitable machines for this operation. The String "altM01" stands

//for alternative machines for operation 1 of job 0.

final List<Integer> altM00 = new ArrayList<Integer>();

final List<Integer> altM01 = new ArrayList<Integer>();

final List<Integer> altM10 = new ArrayList<Integer>();

final List<Integer> altM11 = new ArrayList<Integer>();
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final List<Integer> altM20 = new ArrayList<Integer>();

final List<Integer> altM21 = new ArrayList<Integer>();

//We now add the suitable machines to the operations of job 0 and

//operation 0 can be processed on machine 0 and machine 1, while

//operation 1 can only be scheduled on machine 2.

altM00.add(0);

altM00.add(1);

altM01.add(2);

//Analogously to above we now initialize the alternative machines

//for job 1. One can see that operation 1 of this job can be

//processed on any of the three machines.

altM10.add(1);

altM10.add(2);

altM11.add(0);

altM11.add(1);

altM11.add(2);

//Contrary to the job above, this one is not flexible at all and

//every operation has only one suitable machine.

altM20.add(2);

altM21.add(0);

//Now we generate the keys for the HashMaps, where k21 is the key

//for operation 1 of job 2.

final String k00 = 0 + "-" + 0;

final String k01 = 0 + "-" + 1;

final String k10 = 1 + "-" + 0;

final String k11 = 1 + "-" + 1;

final String k20 = 2 + "-" + 0;

final String k21 = 2 + "-" + 1;

//Here the keys for the HashMap and the ArrayList of the type Integer

//representing operations and suitable machines respectively are //conjoined.

altMachines.put(k00, altM00);

altMachines.put(k01, altM01);

altMachines.put(k10, altM10);

altMachines.put(k11, altM11);

altMachines.put(k20, altM20);
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altMachines.put(k21, altM21);

//We initialize the matrix of process times. The first index indicates

//the job, the second the operation and the third the machine.

final int[][][] processTimes = new int[3][2][3];

//The third line implies that if operation 1 of job 2 is scheduled

//on machine 2, it takes 3 time slots to be processed.

processTimes[0][0][0] = 2;

processTimes[0][0][1] = 1;

processTimes[0][1][2] = 3;

processTimes[1][0][1] = 2;

processTimes[1][0][2] = 4;

processTimes[1][1][0] = 2;

processTimes[1][1][1] = 2;

processTimes[1][1][2] = 2;

processTimes[2][0][2] = 3;

processTimes[2][1][0] = 2;

//The matrix of travel times is subsequently generated. Each index

//corresponds to a machine. In this example the travel time between

//machines 0 and 1 and machine 2 amount to 2 time units.

final int[][] travelTimes = new int[3][3] {

{0, 0, 2}, {0, 0, 2}, {2, 2, 0}};

//The Array of Integer indicating the operations per job is generated

//here.

final int[] operationsPerJob = {2, 2, 2};

//The due dates for each job is specified, i.e. job 0

//is due on the 9th time slot.

final int[] jobDueDates = {9, 10, 7};

//The weights for each job are given, i.e. if job 2 is completed

//at time slot 9, it entails a tardiness penalty of 4.

final int[] jobWeights = {1, 2, 2};

65



//Now we use the constructor FJSSTT_ problem to generate the problem

//with the specifications above. The inputs given directly to the

//constructor are in order of occurrence: 3; the number of jobs,

//2; the maximum number of operations per job, 3; the number of machines,

//30; the number of time slots the algorithm offers as well as the

//objective function, in this case FJSSTT_ problem.Objective.TARDINESS.

//The other possible choice for objective function is FJSSTT_ problem

//.Objective.COMPLETION_ TIME.

final FJSSTT_ problem problem = new FJSSTT_ problem(3, operationsPerJob, 2,

3, 30, altMachines, processTimes, travelTimes, jobDueDates, FJSSTT_ problem.Objective.TARDINESS,

jobWeights);

//The next line uses the SimpleSubgradientSearch constructor to produce

//said search. The inputs are the problem above as well as the upper

//bound, where we insert our conservative guess of 20, our choice

//for α, in the form of a double and for the number of iterations

//with no improvement of the lower bound until α is halved, which

//has to be an integer and we set at 25. //The variable initialized is the

number of iterations between calls

//to the list scheduling routine. To achieve the best feasible schedule

//this has to be set at 1.

final SubgradientSearch subgradientSearch = new SimpleSubgradientSearch

(problem, 20, 2, 25, 1);

//If one wants to use the surrogate subgradient search, it can be

//done by replacing the command above by the following. The inputs

//are again in order of occurrence, the boolean whether a fixed stepsize

//will be used, which was set to true in this example, the estimated

//dual cost of the problem, which we guessed to be 12, the value

//of the initial stepsize, the number of subproblems solved in each

//iteration, the value of the variables r and M as well as the number

//of iterations between calls to the feasibility repair.

final SubgradientSearch subgradientSearch = new SurrogateSubgradientSearch

(problem, true, 12, 0.2, 1, 0.1, 20, 1);

//Now we call the solve() method in the class SimpleSubgradientSearch

//respectivly SurrogateSubgradientSearch and specify that the algorithm

//should run for 800 iterations.

subgradientSearch.solve(800);

//An auction algorithm with price discrimination has to be initialized
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//as follows. First a subgradient search of your choice is initiazlizead,

//then this is used as an input into the auction algorithm.

final Auction auction = new AugmentedPriceUpdate(problem, subgradientSearch,

0.1, 2);

final Auction auction = new DemandDependentDiscrimination(problem, subgradientSearch,

2, 0.2);

final Auction auction = new WeightedTardinessDiscrimination(problem, subgradientSearch,

0.3);

//For the first kind of auction there are two variables to adjust,

//which are the factor µ and the lenght of the time zones τ.
//For the second type the to variables are again a scaling factor,

//namely ρ and the number of preceding iterations ι to be considered

//in your price discrimination. The last choice has only one variable

//to adjust, which is the factor κ. Further information can be found

//in chapter 4.4.1.

}

//Once the auction is generated one again calls the solve() method

//to run algorithm with the number of iterations as an input.

auction.solve(800);

//The last possibility is to only run the list scheduling algorithm.

//This is by first using the constructor ListScheduling().

ListScheduling listScheduling = new ListScheduling(problem);

//To ultimately run the algorithm one can use either the method

//listScheduling() or the method listSchedulingExtended(). Both

//have as inputs the kind of prioritizing function, which offer the

//options of the above mentioned ATC function (4.3.2) as well as

//the quadratic function mentioned ibidem. These two function

//correspond to the integer values 1 and 2. In case of the

//ATC function one also has to choose the variable K, which is

//usually selected between 4 and 6. If the second function is

//chosen, the the second input is without effect and can therefore

//be chosen arbitrarily.

listScheduling.listScheduling(1,5); //or

listScheduling.listSchedulingExtended(2,0);
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