
 
 

 

MASTERARBEIT / MASTER’S THESIS 

Titel der Masterarbeit / Title of the Master‘s Thesis 

Charging and routing strategies for electric vehicle routing 
considering flexible energy pricing patterns 

verfasst von / submitted by 

Marcel Uwe Dumeier, BSc 
 

angestrebter akademischer Grad / in partial fulfilment of the requirements for the degree of 

Master of Science (MSc) 

 

Wien, 2017 / Vienna, 2017   

Studienkennzahl lt. Studienblatt / 
degree programme code as it appears on 
the student record sheet: 

A 066 914 

Studienrichtung  lt. Studienblatt / 
degree programme as it appears on 
the student record sheet: 

  Masterstudium Internationale Betriebswirtschaft 

Betreut von / Supervisor: 

 

Univ.-Prof. Mag. Dr. Karl Franz Dörner, Privatdoz. 

  

 





iii

Abstract

Marcel Dumeier

Charging and routing strategies for electric vehicle routing

considering flexible energy pricing patterns

Urban freight distribution with electric powered vehicles has a high potential impact not
only on distribution logistics, but also on energy supply, electricity distribution and grid
utilization. Integrated solutions which combine benefits of several industries can lead to
profitable cross-sector pricing strategies. The usage of day ahead information concerning
energy prices and vehicle charge scheduling can lead to lower energy rates for fleet operators
which can be reflected in smart and efficient charging and pricing policies. The proposed
approach combines these findings and illustrates the effects on charging scheduling, grid
integration and vehicle battery size. A mathematical model is developed for flexible energy
prices and aims to synchronize vehicle scheduling and charging times. It attempts to find
the optimal charging strategy for a given routing solution by using a commercial solver.
Impacts on charging times at the depot as well as influences on the maximum state of charge
are considered to evolve additional benefits. The evaluation is based on a practical goods
distribution case incorporating six different scenarios to investigate the influence of various
delivery strategies on potential enhancements for practitioners. The results show that variable
energy prices can create desirable benefits for both vehicle operators and energy providers,
such as financial benefits or geographically distributed charging.
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1 Introduction

On the 11th of November 2015 the world community adopted a legally binding agreement
to reduce the effects of climate change and keep the overall warming of the planet under 2◦C
(UNFCCC. Conference of the Parties (COP), 2015). In order to do so the agreement forces
countries to reduce emissions. Especially, the transportation and electricity generation sec-
tors need to undergo drastic changes to meet the proposed target. The road transport sector
contributes about 21% to global CO2 emissions, and is the second largest producer of emis-
sions next to the electricity and heat production sector (Psaraftis, Minsaas, and Panagakos,
2013, p. 196). Alternative fuel vehicles and the shift to a renewable energy production create
the opportunity for new business models that allow for joint benefits including the reduction
of emissions. They thereby allow countries and companies to come one step closer to meet-
ing the desired emission targets. Especially in the commercial transport sector new vehicle
solutions have a large impact as proven solutions can be scaled up to a large vehicle fleet.

In addition to the changes mentioned above global energy markets also have seen dra-
matic alterations in the past decades from a shift to network neutrality (unbundling) over
general market design and the integration of renewable energy sources (Glachant, 2013).
The European energy markets such as the European Power Exchange (EPEX) provide two
energy exchanges, a day-ahead trade where sellers and consumers are matched on a 15-min
basis as well as intraday trading that is aimed at compensating production or consumption
shortages and errors in forecasts (Graeber, 2014; EPEX, 2016a). For buyers and sellers of
electricity this means that quantities need to be forecast on a day ahead-basis or at least
30-min before the electricity is needed. Day-ahead quantities are traded on a sport market
and the clearing prices are determined through merit order. The above mentioned shift in
the energy mix and the intermittency of the renewable energy sources has been shown to
boost enormous price changes at the EPEX. Moreover, the lack of appropriate short-term
storage technology make it even harder than with previous power plants to match consump-
tion with production (Paraschiv, Erni, and Pietsch, 2014). This model aims at using these
characteristics to integrate the energy prices into vehicle scheduling.
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A study conducted by McKinsey in 2016 estimates that by 2030 up to 50% of newly
registered vehicles could be electric, especially battery electric vehicles (BEV) may provide
a viable storage opportunity. The above mentioned study was conducted in regard to con-
sumers that use their vehicles for day to day transport. However, companies are also show-
ing interest in transforming their commercial fleets (for transport or delivery) to all electric
solutions (Trummer and Hafner, 2016; Lebeau et al., 2015). To contribute to stabilizing
grid loads vehicles need to be intelligently integrated into the grid, as studies suggest that
uncontrolled charging may put additional strain on the electricity grid (Hoog et al., 2015;
Sundström and Binding, 2012). The coordination of charging times (smart-charging) for
non-commercial vehicles is a new complicated problem that has been the center of many
studies (García-Villalobos et al., 2014). A predefined energy consumption is important for
utilities as unanticipated loads can lead to high costs of balancing energy a penalty that is
charged at the energy markets. In order for utilities to determine viable storage and consump-
tion patterns to optimize their electricity purchases synergies with the energy consumers need
to be established and new business models generated. The optimization model proposed in
this study focuses on producing a beneficial situation for both the BEV fleet operator and the
energy provider. The model aligns information patterns between both partners and thereby
is able to provide incentives to engage in a cooperation.

The thesis is organized as follows: First the related work in the sector of BEV routing and
especially the smart integration of BEVs into the electricity grid will be discussed. In order
to identify the practical implications the results of two expert interviews that were conducted
in the scope of this thesis are then highlighted. Next the contributions both from a practical
and theoretical perspective are presented. In the succeeding section an exact routing and
charging model as well as a decomposition of the problem is presented. In the third part
different scenarios to evaluate the benefits and effects of the proposed model based on a
real-world study are introduced. The thesis ends with a conclusion and discussion of future
applications and model extensions.
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1.1 Related Work

Related research on EVs in the context of this thesis can be categorized by the purpose of
the vehicles. Commercial distribution vehicles are typically used for the transport of goods
or people whereas non-commercial vehicles are used for the day-to-day mobility behavior
of individuals. While commercial trips are mainly planned ahead and are able to provide
information concerning sequences, arrival times or travel times, non-commercial mobility
is driven by personal demands and pricing incentives. Pelletier, Jabali, and Laporte, 2016
specifically explore the literature on electric vehicles in the distribution of goods. They clas-
sify the literature in three categories. Firstly, the strategic perspective encompasses all of
the literature that deals with the issues of vehicle composition. In detail this means studies
dealing with the size and type of battery and vehicle. Especially in the transition to an all-
electric vehicle fleet several propulsion technologies may be operated simultaneously. It is
therefore also important to deploy these different vehicles in a way that meet the require-
ments of the route profile. Moreover Pelletier, Jabali, and Laporte also allocate studies that
integrate the decision to acquire / build charging equipment to this perspective. The tactical
perspective looks into the day to day operation of an electric vehicle. Tactical decisions en-
compass charging strategies for instance in order to prolong the life of the battery. Finally,
the operational perspective considers constraints and variations a vehicle faces in day-to-day
operation. Factors such as breaks by the driver that can be used in order to charge the vehicle
are considered. Advantages that are of technological nature or legislative nature are among
the other topics that are considered these studies.

The following sections try to review the key findings of both the commercial and the
non-commercial sectors and aim to align these approaches to the proposed problem. At
the basis of the model is the routing of a commercial transport vehicle, therefore the liter-
ature on this subject and especially in regard to the deployment of electric vehicles in this
context shall be reviewed. Models which incorporate energy consumption factors of BEVs,
such as load dependent and non-load dependent energy consumption are considered. As the
model also provides a refueling/recharging optimization this subject is addressed in the next
section. The vantage point in this section is literature on optimal vehicle refueling, which
has been conducted for regular diesel vehicles. The proposed model aims at finding joint
benefits for both the electricity provider and electric fleet operator and therefore touches on
literature on EV grid integration and the routing of vehicles in consideration of costs. This
has largely been addressed in non-commercial literature and therefore these findings shall be



4 Chapter 1. Introduction

highlighted. The last section looks at the minimization of energy consumption for BEVs and
highlights the measures and technology that can be deployed in regard to this goal. Based
on this four main areas are implicitly or explicitly addressed by the projected model. A strict
separation of these sectors is not always possible as many of the discussed problems are
interrelated, consequently the presented studies do not solely address only one issue.

1.1.1 Routing

The routing of commercial vehicles has been studied extensively in literature with the first
study dating back more than 50 years (Dantzig and Ramser, 1959). Laporte, 2009 defines the
vehicle routing problem as the design of a minimal cost route to a number of customers from
a depot. With the introduction of BEVs to routing literature new characteristics and con-
straints are added to traditional models and novel solution techniques need to be considered.
The work by Pelletier, Jabali, and Laporte, 2016 suggests that recent studies examine new
objectives such as emission costs (Omidvar and Tavakkoli-Moghaddam, 2012) and also in-
corporate vehicle characteristics as for instance battery health (Moura, 2011) or waiting and
recharging time (Bruglieri et al., 2015). Building on the knowledge of these newer studies
consider variations of parameters such partial recharging or add additional constraints im-
posed by more realistic charging patterns or vehicle consumption (Keskin and Çatay, 2016).
Non-commercial studies largely tackle the integration of consumer electric vehicles into the
electricity grid. The underlying problem of these studies is the uncertainty of BEV charge
times which need to be coordinated (Alonso et al., 2014). Vehicles are sometimes implic-
itly routed through price incentives, however more often the general focus lies not on co-
ordinating the vehicle locations but on controlling the charging patterns (i.e. through price
incentives) when vehicles are connected to the grid (Sundström and Binding, 2012; Cao
et al., 2012). Flath et al., 2014 try to spatially coordinate charging in order to improve the
utilization of area specific loads and to reduce stress on the transformer level of the grid.
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1.1.2 Grid Integration

The combination of grid aspects with the routing or charging problem of BEVs has been
addressed mainly in non-commercial literature, where it can be categorized into two gen-
eral approaches depending on the centralization or decentralization of control. Both research
streams largely tackle the problem of the integration of consumer BEVs into the electricity
grid. In these scenarios vehicles can be actively integrated into the grid in three major ways,
as described by García-Villalobos et al., 2014. Figure 1.1 shows examples of controlled
charging strategies as proposed by García-Villalobos et al., 2014. The gray part displays the
average energy consumption throughout the day. The black part of the graphs indicate addi-
tional loads. In this case additional loads induced through BEV charging. A pure off-peak
charging aims at charging vehicles during times when overall grid consumption is low largely
through voluntary participation of vehicle owners. This measure can easily be implemented
as it does not require any smart technology. This however is also one of the weaknesses
of this measure as it is unable to react to changes in grid utilization. Next to this strategy
there are also so called smart-charging strategies. In these scenarios the vehicle charge can
be actively controlled by the grid operator or a third party and adapted to the requirements
of the grid. The first strategy is valley-filling. As can be observed in Figure 1.1 the idea is
to shift the consumption of vehicles actively to times of low grid utilization and potential
production surplus. A second smart charging strategy is peak shaving. This strategy also
incorporates vehicle-to-grid (V2G) technology, which allows vehicles not only to charge but
also to discharge surplus energy back to grid. Figure 1.1 highlights this strategy. The peak
demand that is shaded out is supplied by the vehicle consequently this energy is then charged
in lower demand periods. This allows BEVs to actively shift loads by storing and feeding
energy back to the grid. Low energy demands at specific times lead to overproduction and
low prices. The synchronization with these valleys can improve grid stability and lead to
potential low energy consumption prices (García-Villalobos et al., 2014). In order to achieve
the load-shifts induced by BEV charging vehicle owners need to be motivated. This can be
achieved through time-of-use (TOU) prices. These prices are synchronized with the current
utilization of the grid. This means that in instances where there is a surplus of production
and shortage of consumption the prices for consumers will be lower in order to encourage
charging to save energy costs. An example of this technique can be found in Cao et al., 2012
who introduced (TOU) prices in order to encourage the shift of loads during the daytime.
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FIGURE 1.1: Three variations of electric vehicle charging

In a decentralized scenario individual vehicles are independent from the grid, i.e. the
decision to charge or discharge is made independently by every vehicle. The motivation is
provided though certain price incentives. The centralized models however also incorporate
an aggregator which is responsible for a fleet of vehicles. The main task of the aggregator is
to synchronize the individual needs of the vehicles, i.e. state of charge (SoC) or charging at
minimal costs (Bessa et al., 2011) with the power and needs supplies. When comparing both,
the centralized and decentralized approach studies found, a centralized scenario produces
better results in terms of reducing the strains on the network (Gonzalez Vaya and Andersson,
2012). A decentralized approach however may be easier to implement and scale up as it does
not require the exact knowledge of vehicle behavior (Logenthiran and Srinivasan, 2011).

The focus of commercial literature on BEVs has largely been on routing vehicles in
order to achieve attained result. However, some studies also incorporate grid aspects and
time-of-use prices. For instance the study by Sassi, Cherif, and Oulamara, 2015 is the first
originating out of the commercial sector to incorporate time dependent charging costs in
their model the objective of their model is the minimization of charging and routing costs.
In a strategic outlook they try to find the optimal composition of a fleet with both EVs
and conventional vehicles. The focus of their studies is on finding an optimal heuristic for
solving their model (Sassi, Cherif-Khettaf, and Oulamara, 2015b; Sassi, Cherif-Khettaf, and
Oulamara, 2015a). A second study of the commercial sector that integrates prices into their
model was conducted by (Yang et al., 2015). The authors consider three different time
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charging zones with different prices in order to induce of peak-charging. Both of these
studies incorporate different energy prices to improve the practicality of their models.

1.1.3 Charging / Refueling Optimization

The cost optimal refueling of vehicle has been explored since the early 1990s originally
being of interest to practitioners it has its origins in the trucking sector where large quantities
of fuel are usually purchased in one stop and therefore optimizing refueling to regard price
can generate high cost savings (Suzuki, 2009; Hong Lin, Gertsch, and Russell, 2007). For
instance the model by Suzuki, 2009 tries to minimize the costs of refueling. These are
dependent on the price of gasoline at the gas stations that are selected for refueling based on a
given route. The prices at every stop are discontinuous and the dynamic programming model
also incorporates a stochastic component that incorporates future gasoline prices. Due to the
advent of BEVs and especially due to their limited range and long charging times this type
of optimization is regaining the interest to scientists. In their non-commercial application
BEVs are parked during most of the day, either at home or at the workplace (Alonso et al.,
2014). The idle time is therefore available for charging or discharging vehicles for V2G
applications. Commercial vehicles however are heavily utilized during the daytime, and
therefore charging times need to be integrated into the route profile. New charging strategies
incorporate vehicle characteristics and for instance aim at prolonging battery life (Bashash,
Moura, and Fathy, 2010) or minimizing the waiting time that is incurred during the route
(Zhang et al., 2014).

Battery life is also an important consideration for commercial deployment of BEVs, as
the battery is still the main cost driver in BEVs. Lithium-ion batteries that are used in current
vehicles show a certain degradation over time and with increased charging and discharging.
The battery health is influenced mainly by three components, the current with which it is
charged, the maximal state of charge and discharge and lastly the temperature of the battery
(Padovani et al., 2013; Ning and Popov, 2004). For instance as found by Millner, 2010
temperature differences of 10◦C can have a significant influence on the degradation of the
battery, EV manufacturers are tackling this problem through temperature controlling vehicle
batteries. The study also found that operating BEVs in between 30 % - 90 % can lead to
an improvement in the lifetime of the battery, in comparison to charging and discharging
the vehicle battery fully. Due to the significance these variables have on the degradation of
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a battery during its life-cycle studies for instance as published by Sweda, Dolinskaya, and
Klabjan, 2016 explore this problem and present an algorithm to find an optimal recharging
schedule for EVs.

In addition to new characteristics of the vehicles recharging stations are also significantly
different from conventional vehicle fueling. Firstly, every customer with an accessible power
outlet is a potential (slow) charge point. However, the charging of the vehicle is also more
complex as it is dependent on the current SoC of the vehicle (Sweda, Dolinskaya, and Klab-
jan, 2016). Lastly, and most importantly the currently installed charge technologies still
require long charging times (Shareef, Islam, and Mohamed, 2016).

1.1.4 Minimization of Energy Consumption

Closely tied to the routing literature are studies concerning the minimization of the energy
consumption of the vehicles. This issue has attained interest of both practitioners and the-
oretical studies. Due to the current range limitations of BEVs, it is important to optimally
use the available energy. Additionally, the range of the vehicles depends on vehicle char-
acteristics and driving behavior and in consequence can vary by more than 50% (Hayes et
al., 2011). More importantly in the commercial sector the load of the vehicle can have a
significant influence on vehicle consumption which is additionally directly reflected in the
ecological impact (Demir, Bektas, and Laporte, 2014).

As Bruglieri et al. (2015) state BEVs allow a energy cost reduction in comparison to
Internal Combustion Engine (ICE) vehicles of up to 90%. Additionally, this energy con-
sumption can be further reduced for instance through the use of regenerative breaking which
allows to regain up to 15% of the energy used for propulsion.



1.2. Practical Input / Expert Interviews 9

1.2 Practical Input / Expert Interviews

Next to the extensive literature research that was presented above two expert interviews were
conducted, in order to incorporate real world data into the model and to integrate and solve
a real world related problem.

1.2.1 Logistics Company

The first interview was conducted on 13.05.2016 with Markus Döhn who is responsible
for electric mobility at a logistics company operating in the German market. The company
delivers 64 million letters and 3.5 million packages each day in this market, however it is also
present in 220 other countries. The main topic of the interview was the sustainability goals
of the company and their practical implementation. The company pursues an improvement
of its CO2-efficiency by 30% in the next 4 years. The parcel and letter delivery business
can be subdivided into four main sections. In the pre-run phase the parcels are picked up
from their drop-off locations and transported to a regional distribution center. Here they are
a sorted and in the main-run forwarded to a regional distribution center that is responsible
for the final delivery area. In the post-run the parcels are then delivered to a local delivery
center. From here the packages are distributed in the final delivery. In the final delivery the
majority of vehicles is deployed by the company. This is due to the fact that a delivery to the
final customer in rural areas occurs using smaller vehicles while the main run and post run is
executed using trucks and lorries. In total more than 17 times as many vehicles are deployed
in the final delivery in comparison to the main and post-run. The company has therefore
decided that in order to attain their pursued goal the final delivery should be tackled first.

As has been shown in the case study conducted by Trummer and Hafner, 2016 electric
vehicles have become a viable solution for the reduction of CO2-emissions in the transporta-
tion sector. The company also decided to conduct their final deliveries using an electric
vehicle. The initial problem they faced was to find a vehicle that meet both their techno-
logical and financial requirements. Firstly, the vehicle would have to be able to replace the
diesel vehicles that were used up to this point and secondly the vehicles also needs to be able
to compete with the diesel vehicle on a financial amortization basis. As can be observed in
the study by Lebeau et al., 2015 there is already is wide selection of electric vehicles for
the transport sector. However the problems with the available solutions mainly were that the
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necessary quantities could not be delivered in the required time and the vehicles were still too
expensive to be able to complete with conventional vehicles. Out of this reason the company
developed their own vehicle to meet these requirements. The usable capacity of the vehicle
is 27 kWh and the overall payload capacity is 650 kg.

Due to the requirements to use the electric vehicle as a replacement for the conventional
diesel vehicle and the characteristics of the BEV some problems arise for the company. First
of all the charging infrastructure has a big influence on the usability of the BEV. Especially
the charging infrastructure at the depot needs to be sufficient to accommodate all vehicles.
Closely, connected to this issue is the smart charging of vehicles. This is seen as one of the
key challenges that need to be overcome, as the energy supply at the depot is expected to
be the main bottlenecks at least in the short term. The smart charging of vehicles is also
important to consider to prolong the life of the battery. As Millner, 2010 pointed out a
controlled charging can have a big impact on the longevity of the battery’s life. This is also
recognized by the logistics company who are interested in operating their vehicles in a way
that preserves battery health.

Next to the changes to the vehicle fleet the company is also looking for new delivery
solutions for the last mile deliveries. To do so it is considering approaches such as a "rolling-
depot". In this scenario the delivery vehicle is parked inside the city at certain nodes. The
vehicles final delivery to the customer then occurs cargo bikes and other non-motorized
transport vehicles.

1.2.2 Utility / Charging station operator

A second interview was conducted with Roman Prager on 04.05.2016. He is responsible for
operational management at a large Austrian utility firm and also oversaw parts of the firm’s
business that is connected to the charging infrastructure for BEVs, that is also provided by
the firm. The interview was conducted with him in order to determine the key challenges for
energy providers, in terms of BEV charging.

The first challenge the company faces stems from the requirements of the electricity grid
to always be balanced. This means that supply and demand always have to meet. On the
energy markets this is ensured through so called balancing groups which balance the energy
used by consumers and producers in order to align consumption and production. In case
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FIGURE 1.2: Required load of electric vehicle charging station for two days

this equilibrium is not achieved a operating reserve of energy is required to either lower
consumption or increase production. For every participant of the energy markets the ordered
energy and actual consumption have to be balanced on a 15-min interval. If this is not the
case the utility is required to pay for the necessary balancing energy. This cross-control area
balancing energy price is calculated in 15-min intervals and dependent on the utilization of
the grid. This setup can create instances where the penalty in the form of balancing energy
may be more expensive than the actual consumption of the energy (i.e. when there is a
surplus in the energy that was ordered). To determine the required energy and purchase it on
a day-ahead basis a prognosis based on historic data is therefore made.

In Figure 1.2 charge data obtained from the company is depicted. The figure shows the
required load at all of the charging stations supplied by the utility company in fifteen minute
intervals for two weekdays. The charges of all charging stations is summed up in 15-min
intervals. As can be observed, the load varies for each 15-min interval. Moreover, there is
a baseload for the charge data from 17:20 till the end of the day for the data of the 11th
of May, which stems from a BEV that is charging at a slow charging outlet. The chargers
include slow-level one chargers as well as fast charging with a power output of up to 50
kW. Vehicles can charge at any station with whatever power output that is provided at the
station. As customers can begin charging at any time this means the company has to predict
how much energy they will require. For companies that operate charging stations in different
balancing groups a geographic prediction of charging may also be necessary.

Next to this problem for the utility company problems may also arise in terms of grid
stability if the power output of charging stations increases. Moreover, the uncoordinated
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charging times paired with the volatility of renewable energy production can lead to further
discrepancies between energy consumption and production.
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2 Contribution

As the literature suggests new business models can be created through the newly established
link between the transport and energy production sector. Especially for delivery companies
and their vehicles it may be possible to integrate charging stops into their planning of regular
tours. This would allow them to pass charging information (i.e. charging time and required
charge) on to utility companies. To encourage the transport company to do so the utility
company could forward the grid prices instead of charging a flat tariff. This would also
allow for the company to decrease energy costs by charging in times of low energy prices.

The contribution of the proposed model is to introduce energy efficient charging through
the use of valley filling and time-of-use (TOU) tariffs to commercial electric vehicle litera-
ture. While TOU-tariffs and valley filling have been addressed in non-commercial literature
they have only been touched upon by commercial vehicle studies. The objectives of both par-
ties need to be aligned to establish a practical realization of the model. Table 2.1 summarizes
the benefits that are generated by the model for the utility and transport company as well as
the grid. The model is based on the fact that the vehicle operator is charged a variable price.
Though a utilization of low cost charging zones overall cost decreases can be achieved. The
model considers decentralized charging of vehicles. As it has been shown in various studies
that solely charging vehicles in one location in a uncontrolled way can lead to power losses
or congestion in the transformer lines (García-Villalobos et al., 2014). Consequently, for an
operator of an electric vehicle fleet it may not be possible to fully charge a large number
of vehicles overnight. Through decentralized charging this issue may be overcome. Lastly,
costly waiting times related to charging behavior on route is reduced through the main objec-
tive of working time reduction. For the utility company receiving fixed consumption values
is paramount in order to avoid balancing energy. By receiving the necessary quantities ahead
of time, these can be purchased appropriately and the energy providers do not need to rely
on the prognosis of quantities. Finally, the utility operator may be able to gain additional
profits in the intraday market, as pay-as bid method can lead to lower costs than the 15-min
merit-order price. For the grid the link between supply and demand through price can lead
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TABLE 2.1: Model benefits

Vehicle Operator Utility / Grid

- Achieve a demand shift to low cost
periods

- Receive fixed consumption values
from its client

- Shift charge from the depot to the
route

- Avoid to be charged balancing en-
ergy for incorrect prognosis

- Decrease size of battery through
charging on route

- Shift energy demand to renewable
energy sources

- Use service times as charging times
to minimize charging related wait-
ing time on route

- Gain additional profits in the intra-
day market

to a shift of consumption from high cost (high-demand / low-production) to low cost (low-
demand / high-production). This may also lead to an increased consumption of renewable
energy (Paraschiv, Erni, and Pietsch, 2014) and a better utilization of grid capacity.

The summarized effects of flexible tariff zones and adapted vehicle scheduling are vi-
sualized in Figure 2.1 which shows a comparison of fixed and flexible starting times of a
given route based on a flexible energy prices. The figure illustrates the described effects of
flexible energy prices combined with synchronized charging strategies. Due to shift of the
starting point increased usage of low tariff zones as well as reductions in the maximum state
of charge can be achieved. The scheduling of the route with fixed starting time leads to a
narrow availability of tariff zones below the average price and therefore to limited reduction
of the variable charging costs. As in the example shown only a few of the available stops are
actually used for charging in contrast to the flexible starting time. In this case the route and
its stops are scheduled aligned to the most beneficial usage of low charging prices. There-
fore the charge at the depot can be shifted to the tour without extending travel times. This
additionally leads to a lower maximum SoC which is required to execute the given tour. As
shown in the second part of the figure this can further lead to a reduction of the battery size.
In summary the main benefits of the model are 3-fold:

1. Reduction of variable charge related costs

2. Shifting vehicle charge away from the depot

3. Improved utilization of energy and grid capacity
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3 Problem Formulation

The basic model initially aims to construct a route for a given set of customer locations
departing from a depot and returning to this location (see Figure 3.1).The main objective is
to reduce the driving time and the charging costs however the wage costs are assumed to
account for the largest portion of delivery costs. The travel time from one customer to the
next is predefined and may not necessarily have to be relational to the travel distance. For
instance the travel time could increase due to congestion, speed limitation on a certain route
or other external factors. The transport vehicle has a certain driving range which is dependent
on the driven distance and the transported load. The initial driving range is determined by
the charge that is conducted at the depot. The vehicle can generally be charged from 0 -
100% SoC however the maximum charge may be restricted to conform to possible charge
limitations at the depot. If this driving range is not sufficient to satisfy the energy demand the
vehicle is required to recharge during the tour. It is assumed that a vehicle can charge at any
customer location. At every customer location packages are delivered to the customers. The
time it takes for the driver to deliver these goods to their final locations is the service time
and can be used for charging the vehicle. During the service time several customers can also
be delivered by foot. There are certain instances where an increase of the total travel time
is possible. Firstly, the vehicle may not have enough range to reach all customer locations
and cannot recharge the required charge during the given service times or secondly, the costs
for charging at a specific location offset the additional travel time. This is possible, as the
charging costs are time dependent (TOU-prices).

There are two types of costs associated with charging that are induced by the objective
of the model. Firstly, the total time should be minimized. This is the time the driver departs
from the depot and arrives back at it. The charging time coordination is impacted by this
as the total delivery time can be extended if charging times are longer than service times.
This could be observed in the example presented above at node 5. The second type of costs
originate out of the charging zones and the time dependency of these. There is a savings
potential if the costs for charging at a specific charging station are lower than the average
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FIGURE 3.1: TSP illustration: Finding the shortest route

TABLE 3.1: Simplified model example

Node Service Time Charging Time State of Charge Starting Time

Depot Departure - CTd0: 1h 30min SoCd: 50% STd: 10:00
1 se1: 10min CT1c: 10min SoC1: 35% ST1: 10:30
2 se2: 15min CT2c: - SoC2: 30% ST2: 10:55
3 se3: 13min CT3c: 10min SoC3: 10% ST3: 11:28
4 se4: 20min CT4c: - SoC4: 15% ST4: 11:58
5 se5: 5min CT5c: 10min SoC5: 10% ST5: 12:18
6 se6: 12min CT6c: - SoC6: 15 % ST6: 13:00

Depot Arrival - - SoCn+1: 0 % STn+1: 13:15

costs that the vehicle pays at the depot. The savings during the route should be maximized
and this means the model will determined the optimal time to leave from the depot and the
SoC that allows for the greatest cost savings while still being able to execute the route without
the charge dropping below the minimum SoC. The time a vehicle arrives at a charging station
is important for the determination of the charge costs. This means charging times will also
be synchronized with low cost charging zones.

Figure 3.2 shows a small example of the charging behavior described above. The charg-
ing costs are illustrated by the dark gray columns. Furthermore the average charging costs,
charging time, and service time are shown. As can be observed the charging times are syn-
chronized with the service time in the time interval from 10:30 - 10:45. This is also the
charging zone with the lowest charging costs and therefore allows for the greatest cost sav-
ings. It can also be observed that the vehicle can charge within a charging zone multiple
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FIGURE 3.2: Example of the charging behavior

times, as there is a short driving break in between the two charges in the charging zone.

To incorporate all of the requirements described above a linear programming model was
created. The model can be divided into two logical parts. The first part of the model incor-
porates the vehicle routing (Constraints 3.2 – 3.7). The sequence the customers are visited is
determined by this part of the model. In the second part of the model the vehicle charging as
well as departure and arrival times of the vehicle are determined (Constraints 3.9 – 3.25).
The model considers the following input data (Table 3.2) and decision variables (Table 3.3).
The small example in Figure 3.1 and the corresponding values for the decision variables
(in bold) are summarized in Table 3.1. The example illustrates the main components of the
model. Firstly, the starting time, the time of departure from a node to another is set. This
time has an influence on the overall costs due to the time dependency of the costs. Secondly,
the model determines the charging locations and times. The variable charging time summa-
rizes and simplifies the more complex approach taken in the model that will be described
in further detail below. The example also illustrates the calculation of the starting time at a
node. This is dependent on the previous starting time, plus the travel time and service time
or charging time. If the charging time is longer than the service time (for instance in node
five) the total time, i.e. departure from the depot and arrival at the depot is increased. Finally,
the SoC of the vehicle always has to be positive and is relational to the total charge time and
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the travel distance between the customers.

3.1 Objective Function

The Objective Function (3.1) minimizes the total variable costs for the delivery. These costs
include the wage costs of the driver and the costs of charging the vehicle. STMIN is the time
the driver leaves the depot and STNn+1 is the time the driver arrives at the end depot.

min (STn+1 − STMIN)w +
∑
j∈N0

∑
c∈C

CTjcccce+ CT00c
avce (3.1)

The first term therefore calculates the actual working time of the employee, which is multi-
plied by a wage factor.
Due to the structure of the pricing at electricity markets, which is time dependent, the charg-
ing costs cc are subdivided into several zones of different charging costs. In the upper part
of figure 2.1 an illustration of the different zones and can be observed. The decision variable
CTjc represents the actual time that the vehicle spends at customer j to charge the vehicle in
charging zone c. This factor is multiplied with the costs of this cost-zone and the charging
rate (ce) in kWh. The costs that are incurred for charging at the depot are weighted with an
average cost factor cav. The average cost per kWh is the mean of all charging zone prices.

3.2 Vehicle Routing

The first part of the constraints (3.2 - 3.7) determine the vehicle routing, which is formulated
as traveling salesman problem (TSP). Constraints 3.2 ensure, that all demands are covered.
Constraints 3.3 represent the flow constraint in the model. The load of the vehicle is subject
to Constraints 3.5 and Constraints 3.6 where Li and Lj represents the load of the vehicle at
node i and node j. This determines the load dependent energy consumption of the vehicle.
The delivery quantity at the individual nodes Lj needs to be greater than the quantity deliv-
ered to the preceding customer Li minus the amount that was delivered to this customer dj .
Additionally, the load of the vehicle at every individual node may not be greater than the
maximal load of the vehicle LMAX and also needs to be greater than zero. In 3.6 the sum
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TABLE 3.2: Input data for the considered model formulation.

Name Description

i ∈ N Set of customers
i∈N0,i∈Nn+1,
i∈N,i∈N0,n+1

Set of customers, charging stations, and the start
depot (0) or the end depot (n + 1), i ∈ I ∪ C ∪
0 or i ∈ I ∪ C ∪ n+ 1

c ∈ C Set of different charging costs Euro per kWh
cav Average charging costs Euro per kWh
distij Costs for traveling from node i to j (km)
ecl Load dependent energy consumption
eceij Empty vehicle energy consumption
Lmax Maximum capacity of vehicle
dj Demand of customer j (kg)
sej Service time of customer j (kg)
ce Charging power for vehicle (kWh)
M Big-M
w Wage of driver (Euro per hour)
costsc Cost in charging zone c (Euro per kWh)
tij Travel time from customer i to j (hours)
SoCmax Maximum state of charge of the vehicle (kW)
CZAc Time of charging zone availability
DCmax Percentage of total charge that may be charged at

the depot

TABLE 3.3: Decision variables for the considered model formulation.

Name Description

xij If arc i to j is used(1) or not(0)
SoCi State of charge at node i
Li Load of vehicle after visiting customer i
STi Starting time at node i
CTic Charging time in charging zone c at node i
STMIN Minimum starting time i.e. when driver starts

working
CTSic Charging time start in charging zone c at node i
CTEic Charging time end in charging zone c at node i
CHic Binary variable if charging zone c at node i is

used (1) or not (0)



22 Chapter 3. Problem Formulation

of Xn,n+1 over all i and X0j over all j need to be equal to one. This constraint ensures, that
both the first start node and the designated end node are visited. The charging costs are time
dependent and therefore the model also incorporates a time factor in the variable STi which
is the starting time of the tour before visiting customer i. To this starting time a service time
sei is added this time accounts for the length of the stop.

s.t dj ≤
∑

i∈N0:i 6=j

xijM ∀ j ∈ I, (3.2)

∑
i∈N0:i 6=j

xij =
∑

i∈Nn+1:i 6=j

xji ∀ j ∈ N (3.3)

∑
j∈Nn+1

x0j =
∑
i∈N0

xi,n+1 = 1 ∀ j ∈ N (3.4)

Lj ≤ Li − dixij + Lmax(1− xij) ∀ i ∈ N0, j ∈ Nn+1 : i 6= j (3.5)

0 ≤ Li ≤ Lmax ∀ i ∈ N0,n+1 (3.6)

3.3 Charging

Constraints 3.7 to 3.26 mirror the charging and discharging behavior of the vehicle. The
following starting time at the next customer i.e. the customer at node j needs to be greater
or equal to this time plus the service time and travel time from node i to the node j (tij), this
is considered in Constraints 3.7.
In the model the day is divided into several charging zones. In these zones prices vary ac-
cording to daily price changes at the EPEX. For every charging zone there is a charging time
start (CTSic), charging time end (CTEic) and a binary variable that indicates if the vehicle
charges in this charging zone at a specific node. CHic is a binary variable (Constraint 3.25),
which is set to 1 if the charge occurs at a specific charging zone and node. Lastly, the actual
charging time is tracked using the variable (CTic).
Constraint 3.9 specifies that the SoC of the successor needs to be greater or equal to the
charge at the predecessor minus the necessary energy consumption and plus the energy
charged at that node. The consumption of the vehicle is made up of two components, firstly
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an empty vehicle energy consumption, this is dependent on the distance driven by the ve-
hicle, secondly a load specific factor which increases the empty consumption dependent on
the load and kilometers driven. Speed based energy consumption is not considered in this
model because the load dependent energy consumption is based on an average inner city
driving circle. Constraints 3.10 are similarly structured as the previous constraints and limits
the charging to values greater than zero and smaller than the maximal charge. Charging at
the depot is allowed prior to departure. In 3.11 the SoC at departure at the depot needs to
be equal to the actual charging times that occur at the depot node. The model lets the solu-
tion flexibility select the starting charge as long as it is greater than zero and smaller than a
predefined threshold (CHmax) (Constraint 3.12). The minimal starting time is set using Con-
straints 3.13. The charging zones dictate the prices at a certain point in time, in order to bind
them to specific times the charging zones availability variable (CZAc) stores the individual
time intervals during which charging can be conducted in a specific charging zone. In an ex-
ample with real life EPEX data this is restricted to 15-min intervals This means, that in case
a charging zone is utilized (CHic = 1) the starting and end time of charging (CTSic, CTEic)
needs to be in between the time interval that the charging zone is active (Constraints 3.15,
3.16). The actual charging time in a charging zone c is the time when charging ended minus
the time charging started (3.17), this time may only be greater than zero in case the charging
zone is actually used (CHic = 1) (3.18). The vehicle may commence charging once it has
reached the customer location, therefore the travel time (tij) is added to the time the vehicle
leaves the predecessor (3.18).
Constraints 3.19 - 3.24 are logical constrains which ensure the charging time of the next
node does not begin or end before the previous one ended (3.20, 3.21), the SoC, starting and
end time of charging is always positive (3.22), (3.23) (3.24). Constraints (3.25) and (3.26)
represents the variable domain definition.
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STj ≥ STi + tijxij + sej −M(1− xij) ∀ i ∈ N0, j ∈ Nn+1 : i 6= j (3.7)

STj ≥ CTEjc ∀ j ∈ Nn+1 (3.8)

SoCj ≤

(
SoCi − eceijXij − distijLjecl

+M(1− xij) +
∑

c∈C CTicce

)
∀ i ∈ N0, j ∈ Nn+1 : i > 1 (3.9)

SoCMAX ≥

(
SoCi − eceijxij

−distijLjecl +
∑

c∈C CTicce

)
∀ i ∈ N0, j ∈ Nn+1 : c ∈ C (3.10)

SoC0 =
∑
c∈C

CT00ce ∀ c ∈ C (3.11)

SoCMaxDCMax ≥ SoC0 (3.12)

STMin ≤ STi − t0i ∀ i ∈ N (3.13)

0 ≤
∑
c∈C

CTjcce ≤ SoCMAX ∀ i ∈ N0, j ∈ Nn+1 : c ∈ C (3.14)

CZAcCHic ≤ CTSic ≤ CZAc+1CHic ∀ i ∈ I, c ∈ C : c < C (3.15)

CZAcCHic ≤ CTEic ≤ CZAc+1CHic ∀ i ∈ I, c ∈ C : c < C (3.16)

CTic = CTEic − CTSic ∀ i ∈ I, c ∈ C : c < C (3.17)

CTic ≤ CHicM ∀ i ∈ I, c ∈ C : c < C (3.18)

CTSjc ≥ STi + tijxij ∀ i ∈ I, c ∈ C 6= j (3.19)

CTSic+1 ≥ CTEic ∀ i ∈ I, c ∈ C : c < C (3.20)

CTEic+1 ≥ CTEic ∀ i ∈ I, c ∈ C : c < C (3.21)

SoCi ≥ 0 ∀ i ∈ N0,n+1 (3.22)

CTSic ≥ 0 ∀ i ∈ I, c ∈ C (3.23)

CTEic ≥ 0 ∀ i ∈ I, c ∈ C (3.24)

CHic ∈ {0, 1} ∀ i ∈ I, c ∈ C (3.25)

xi,j ∈ {0, 1} ∀ i ∈ N0, j ∈ Nn+1 (3.26)
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4 Implementation

As described in the problem formulation the model incorporates a TSP and a recharging op-
timization. There are two cost components in the model the wage costs, which are dependent
on the total tour time and the charging costs which depend on the energy charged and price
at this point in time. The wage costs are considered to be an hourly rate and the maximum
working time is based on legal restrictions. For the energy costs the day-ahead prices at the
EPEX are used. The main objective of the model will always be to firstly, minimize the total
working time. In initial trial runs this was also verified. In order to find a solution to the
model described above the a decomposition is therefore conducted, where the TSP provides
the sequence of customers that are visited by the vehicle and in a second step the charging
times are adapted to minimize the charging cost of the predefined route. The TSP has been
solved exact by many studies (Laporte, 1992) and therefore the solution to this problem is
largely factored out in the solution approach. The focus is directed to the optimal charging
strategies for a given route.

The implementation first uses the given real-world tour data provided by the practitioner.
In a second step this data is then used to optimize the recharging of the vehicle. To do so
the model was solved exact by implementing it in IBM ILOG CPLEX Optimization Studio
12.6.3. Following this procedure solutions were found for relatively large test instances
within a reasonable calculation time. In a second step the tour data is optimized using a
savings algorithm and local search.

4.1 Tour data optimization

To optimize the tours provided by the practitioner first new tours were created, using a
savings-algorithm. The savings algorithm is a heuristic which was first introduced by Clarke
and Wright in 1964. The basic procedure of the heuristic can be broken down into three steps.
In a first step tours from the depot to each individual customer are created (see Figure 4.1).
In a second step these individual tours are merged in order to obtain savings. The succession
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FIGURE 4.1: Illustration of a savings tour calculation with local search im-
provement

of the merge is determined by the extent of the savings. To determine these the savings for
each route are calculated by adding the additional travel distance or time and subtracting the
saved distances and times. For the example presented in Figure 4.1 (from route A to route B)
the savings values are calculated for the travel time as has been conducted for the practical
case. First the initial route costs are calculated:

1. TravelT imeRouteA = td1 + t1d + td2+ t2d

2. TravelT imeRouteB = td1 + t12 + t2d

3. Savings1−2 = t1d + td2 - t12

By subtracting the additionally driven time from the no longer driven time the savings value
can be determined (3). If these savings are grated than zero this means the total tour time is
reduced and the two separated customers should be delivered during one tour. These calcu-
lations are conducted for all possible tour merges and the values are listed in a descending
order. Tour merges are conducted until all tours have been merged or a constraint is violated.
In the practical example this means that the total travel time may not be greater than the total
possible work time and the transported load in kg may not exceed the total capacity. The
vehicle range as determined by the charge do not restrict the savings heuristic as they are
later considered in the calculation of charge times. In case a further merging of tours is not
possible due to a violation of one of the constraints a new tour is created.
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The third constellation in the bottom left corner of Figure 4.1 shows the final route pro-
duced by the savings algorithm. As can be seen in section C the route crosses in this section
and this may not be optimal. For further optimization of the obtained tours an improvement
heuristic was used in the form of a local search heuristic. The 2-opt heuristic a special form
of the k-opt was used. This heuristic was introduced by Croes (1958) and can be found
in many variations. The main idea of the heuristic is to cut out certain parts of the tours
rearrange this part of the tour and then ad it back to the tour. In case the total tour length
decreases this swap is executed. For the example presented in Figure 4.1 in the bottom right
part of the figure the 2-opt has been executed. The section between node 2 and 6 (4-5-3) is
extracted and reinserted in reverse order (3-5-4).

4.2 Numerical Study

As input for the model real-world data was used. The data can be broadly subdivided into two
major categories. The first category is related to the specifications of the simulated vehicle,
while the second encompasses the tour specific variables, such as tour length, number of test
tours and charging costs at a node. The following two subsection describe the data, that is
also depicted in Table 4.1 in more detail.

TABLE 4.1: Numerical Study Input Data

No. of Customers 24 - 664
No. of Tours 1 - 11

Wage costs (C) 14
Max Vehicle payload (kg) 600

Max Vehicle Charge (kWh) 65
Min Vehicle Charge (kWh) 0

No. of charging zones 56
Begin Tour time 6

End tour time 20
Load specific energy consumption (kWh per km) 0.000056

Charging power (kW) 3.7, 11, 22, 50, 100
Empty Vehicle Consumption (kWh per km) 0.27322
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FIGURE 4.2: Components of the German electricity price for industrial cus-
tomers for 2016 (Statista, 2016a; Statista, 2016b)

4.2.1 Tour specific information

The real world driving data was obtained from a company conducting the delivery of per-
ishable goods in the business to customer sector. The daily execution is based on template
tours with short-cutting. Street network distances and asymmetric travel time matrix based
on average speeds are used. Through incorporating this input data, the model becomes a
asymmetric TSP. Demands of the customers, service times and the tours are provided by the
company. Lastly, the data also includes clustered routes where several customer deliveries
are combined into one stop. This data is available in four different degrees of consolidation
(50 m, 100 m, 150 m, 200 m). The data encompasses the consolidated service times and
delivery quantities of each customer. Including the unclustered case the total number of test
routes considered is 330. The maximum number of customers in a test case is 664 and the
smallest number of customers in a test case is 24 executed by one vehicle with 200 m clus-
tering. The average tour length is 89.74km. Using the travel time matrix, demand data and
service time the routes were also optimized using a savings and local search. Here the num-
ber of routes increases to 346, however the maximum number of vehicles needed decreases
to 10 (see table 5.5 for further route information).

As input data for the charging costs EPEX Spot continuous values were used (EPEX,
2016b). To compare the calculated scenarios and for the charge at the depot the average
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costs are set as the average price of the used EPEX dataset. The EPEX data is available in
15-min intervals. The possible working time begins at 6am and ends at 8pm. For this time
interval there are therefore 56 individual charging zones. The wage costs were set according
to the current conditions of the practical partner. Figure 4.2 shows the different components
of the electricity price of Germany for an industrial customer. It can be seen than the EPEX
price only makes up a small fraction of the total electricity costs, however this part of the
energy price is the only one that can be actively controlled, therefore the model omits various
taxes and surcharges that normally have to be paid. These are also omitted for the average
price, which is calculated based on the EPEX values.

4.2.2 Vehicle Data

Generally electric vehicles do not only encompass BEVs but also include other vehicles that
store energy in different forms, for instance fuel cell electric vehicles use hydrogen to store
energy and generate electricity using a fuel cell when needed Chan, 2007. This thesis focuses
on BEVs as this vehicle technology is more promising from a technological and economical
viewpoint for the proposed use-case of urban deliveries (Offer et al., 2010). Especially, the
conversion losses which are more than 45% smaller for BEV in comparison to a fuel cell
vehicle enable the vehicle to play a key role in the stabilizing of grid power (Eaves and
Eaves, 2004).

The vehicle data is also derived from actual fleet of the partner. Empty vehicle consump-
tion as well as load dependent vehicle consumption were obtained by the partner using a
longitudinal vehicle dynamics simulation. Figure 4.3 shows the general procedure. In a first
step, vehicle data was recorded. This data was used in a second step to generate a motor
consumption map, which is compared with measured energy consumption. To do so the en-
gine load and rotational speed are inserted into an engine model. By iteratively adjusting the
motor consumption map a representative motor consumption model was generated. Based
on the vehicle and delivery data a vehicle model was created and used to tune the model
to correspond to the previously measured driving cycles. A fully fine-tuned vehicle model
thereby is able to accurately reproduce the vehicle energy consumption solely based on the
driving profile and delivery stops. Data for both a conventional internal combustion engine
vehicle as well as BEV was obtained using this method.
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FIGURE 4.3: Process of longitudal vehicle dynamic simulation

In terms of charging technology there is a variety of technologies and standards that
are currently used. On this basis, a distinction can be made between direct current (DC)
and alternating current (AC) charging. There is a discrepancy between how energy is trans-
ported in the grid (AC) and how energy is currently stored in a battery (DC), therefore all
of the currently available vehicles have an on-board AC-DC converter (Capasso and Veneri,
2015). Due to the limited space inside a vehicle and costs associated with these converters
the capacity of these are limited to a maximum output of 43 kW (McKinsey, 2014). DC
charging on the other hand can currently achieve greater charging power. In this setting the
required conversion technology is located outside of the vehicle at the charging station and
therefore does not suffer from the special limitations of the vehicle. This technology is cur-
rently able to reach a charging power of more than 100 kW (Shareef, Islam, and Mohamed,
2016). Moreover the capacity of this technology have not yet been reached as companies
are currently building a charging infrastructure than can achieve a charge of above 300 kW
(Daimler, 2016). In the scenarios three variations of charging speeds are therefore used to
account for slow (3.7 kW, 11 kW, 22 kW), fast (50 kW) and ultra-fast charging (100kW).
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5 Results

Based on the input data described in the previous sections the solution approach was verified
on the different test instances and the results are summarized in six different scenarios. The
numerical findings are focused on the charging strategies, benefits of adapted delivery be-
havior and implications on depot charging requirements, as determined by the model, battery
sizes and charging power. Figure 5.1 shows the different scenarios. Variations to the previous
scenarios are framed and can be grouped into four areas. In the first scenario a diesel case
is also included in addition to a comparison between the flat tariff case and variable tariff,
which is at the basis of the other scenarios. In scenario II the results of integrating clustered
data (i.e 50 m - 200 m), as provided by the practitioner are also observed. The number of
stops per cluster is reduced to one and the final delivery is made on foot. The delivery time
consequently increases by the service time per customer. The vehicle traveled distance (in
km) however is decreased as short driving distances are conducted on foot. Starting from
the third scenario flexible starting times are allowed. This means the vehicle can depart at
any time beginning from 6am as long as it returns back to the depot by 8pm. The fourth
scenario looks at the impact of the optimized routes. Finally two further factors are analyzed
in scenario five and six. Scenario V looks at the changes in battery size caused by the vari-
ations in the scenarios described above. In the final scenario the charging power is changed
in five different stages and the impact on the individual route as well as overall impacts are
analyzed.

FIGURE 5.1: Scenarios Overview
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5.1 Scenario I: Diesel - BEV comparison

The first scenario includes a comparison of a conventional diesel vehicle with combustion
engine and a battery powered vehicle which was adapted to the requirements of the diesel
vehicle. The assumption is made, that the diesel vehicle is fully fueled and does not have to
be refueled during the trip. For the BEV two price patterns are used. In the first version the
electricity prices are set fixed as the average of the EPEX values. This means no matter when
the vehicle is charged the same costs occur. In a second version, the electricity prices are set
according to the real time prices of the EPEX. The Table 5.1 shows the results obtained from
the model for the diesel vehicle, and electric vehicle with the two electricity tariff options.
The data for the diesel vehicle include the objective value and energy consumption, while
the BEV values also include BEV specific data and a comparison between the energy costs
of both tariffs (Energy Cost reduction).

The results depicted in Table 5.1 for Scenario I also support our choice of solution strat-
egy, as it can be observed, that the energy consumption for the BEV regardless of fixed or
variable tariff obtains less than 1% (0.75-9.13 e) of the objective value. In comparison it
makes up more than 10% (10.31-124.29 e) for the diesel vehicle. For the diesel vehicle a
price of 1 C was considered. These results also show the large cost gap between the energy
consumption costs of a conventional diesel vehicle and BEV. Additionally, further key re-
sults can be observed in this scenario that are important to consider for the next scenarios.
First, there is only a small reduction of the energy costs from the flat tariff to the variable
tariff. The average savings between the two test cases is equal to 2.26%. This effect arises
due to short service times and sparsely availability of low rates during the morning. Never-
theless the vehicle does charge outside of the depot for the variable tariff. On average the
vehicle charges 19.72% of the total charge during the tour. In consequence the maximum
SoC during the tour is also reduced, on average by 8.35 kWh. In accordance with the second
part of the objective function this energy is charged during charging zones that exhibit lower
than average costs.

An example of the charging and driving behavior of the BEV with a variable electricity
tariff is shown in Figure 5.2 (See A.1 for more detail). It can observed that the variable price
only drops below the average price in a few instances. Moreover the figure shows that the
vehicle only charges during the service time, there is no instance, where the charge prolongs
the service time, this is due to the high impact of the wage costs described above.
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FIGURE 5.2: Scenario I: Extract of a Tours charging and driving behavior
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This means that tours will not become longer. Lastly, this also holds the wage costs constant
for every vehicle type. It can also be seen that through the fixed starting time, potential
charging times are restricted to a time of day where the price only drops below the average
price in a view instances. Finally, there is also a high number of charges for every tour. For
instance in test tour 11_0_1 that only incorporates one tour the vehicle charges 14 times.
Which is at nearly every third customer. This is caused by the short service times in the
un-clustered data instances.

5.2 Scenario II: Clustered data

In Scenario II the effect on charging of the clustered input data is examined. The data are
clustered in four stages 50 m, 100 m, 150 m and 200 m. The clustering influences the
charging costs that decrease with increased clustering due to a shorter driving distance. Table
5.2 shows how clustering changes the tour values. Firstly, the total driven distance decreases
with increased clustering. In total from 6467.68 km to 5531.88 km. While the total distance
and energy consumption decrease in every case the total tour time increases from the 150 m
cluster to the 200 m cluster. This means that after a certain degree of clustering the benefits
from a decrease in driving time are outweighed by increased deliver time on foot. This can
also be observed in the objective value, which is lowest for the 150 m cluster and increases
for the 200 m cluster.

TABLE 5.2: Scenario II: Clustered Data Summary

0m 50m 100m 150m 200m

Total Energy
1872.00 1763.05 1690.52 1642.60 1601.40Consumption (kWh)

Objective Value (C) 6617.37 6250.25 6089.30 5960.05 6022.71

Total driven
6467.68 6093.60 5844.83 5675.90 5531.88

distance (km)
Total Tour Time

342h 42min 308h 9min 287h 48min 267h 28min 256h 17min
w/o service Time

Service Time 126h 7min 133h 14min 143h 24min 154h 34min 170h 50min

Total Tour Time 468h 49min 442h 23min 431h 11min 422h 2min 426h 7min
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The results for the model calculations using the savings and local search optimized tours
are summarized in Table 5.3. The number of charge stops decreases and on average there are
significant less charging stops in the clustered case. Between the no clustering and maximal
clustered case there is a difference of 8.6 stops (i.e. on average 14.27 stops per tour). This
effect arises due to increased service time and reduction of stops. The minimum number of
stops for a tour is 6 in contrast to the no-cluster case, where the minimum number of stops
on one tour was equal to 14. The effect of large decreases in the number of charge stops
does not prevail for further clustering scenarios after the 50m cluster. There is a decrease
in the amount of charge stops, however the average decrease falls to 0.16 from 1.85 for the
next consecutive clusters. The average cost reduction between flat and variable tariff over
all instances of clustered data is 2.26%. There is no clear tendency for the cost differences
in terms of increased clustering. The total charge outside the depot however increases to a
maximum of 29.92% for the case where the clustering is increased to 200m. The average
amount of charge that is shifted outside of the depot over all of these cases is 407.32 kWh.

TABLE 5.3: Scenario II: Clustered Data - Results

Clustering Energy Costs (Flat) Energy Costs (Var) Energy Cost Reduction
[e] [e] BEV Flat / BEV Var

0m 56.74 55.38 2.26%
50m 53.44 52.20 2.09%

100m 51.24 50.13 2.01%
150m 49.79 48.54 2.33%
200m 48.54 47.17 2.63%

Average 51.95 50.68 2.26%

Clustering Average no of Charge outside Charge outside of
charging stops / Tour of Depot (%) Depot (kWh)

0m 20.45 20.42% 382.22
50m 14.58 22.06% 388.99

100m 12.33 22.08% 373.24
150m 12.15 25.14% 412.98
200m 11.85 29.92% 479.19

Average 14.27 23.92% 407.32
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5.3 Scenario III: Flexible Starting Time

As can be seen in seen in Figure 5.2 the tour is restricted to a charging interval and the model
only determines if a charge is conducted at a location or not. This restricts the potential
savings significantly. In Scenario III therefore the model may also decide when the vehicle
leaves the depot, as long as the tour time stays within the specified time interval. The effect
of this change is displayed in Table 5.4. Firstly, the energy cost savings increase on average
to 18.27%. Secondly, the charge outside of the depot more than doubles in every case.
In comparison to the results of Scenario II where it was only 407.32 kWh or 29.92% of
total charge it increases on average to 998.77 kWh or to 58.33% of the total charge. The
maximum energy cost reduction between the flat and the variable charging costs of 20.35%
are achieved for the greatest clustering. With increased clustering the proportional savings
and charge outside of the depot is also increased. The lowest savings occur at the maximum
clustering. This is not only caused by a lower driving distance but also occur due to a higher
savings of the variable tariff in comparison to the flat tariff. The charge outside of the depot
is also equal to the total charge below the average costs. The effect of releasing the starting
time can be observed in Figure 5.3. Figure A.2 shows the same Scenario in more detail.
Additionally Figure A.5 - A.8 show the complete results.

TABLE 5.4: Scenario III: Clustered Data / Flexible Starting Time - Results

Clustering Energy Costs (Flat) Energy Costs (Var) Energy Cost Reduction
[e] [e] BEV Flat / BEV Var

0m 56.74 48.42 15.30%
50m 53.44 44.51 17.56%
100m 51.24 42.05 18.74%
150m 49.79 40.57 19.39%
200m 48.54 39.02 20.35%

Average 51.95 42.91 18.27%

Clustering Average no of Charge outside Charge outside of
charging stops / Tour of Depot (%) Depot (kWh)

0m 54.64 56.63% 1060.08
50m 37.14 57.87% 1020.26
100m 30.61 58.77% 993.57
150m 25.97 58.52% 961.29
200m 22.32 59.86% 958.64

Average 34.13 58.33% 998.77
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FIGURE 5.3: Scenario III: Tour Charging Patterns
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The tour time is shifted to a later starting time. During this time-interval energy costs
are reduced by the higher availability of low tariff zones. Moreover long service times are
synchronized with low energy costs.

5.4 Scenario IV: Savings Tours as Input Data

In Scenario IV, the predefined routes are optimized using savings and local search. The im-
provements are summarized in Table 5.6. The table shows the cumulated values over all
tours and degrees of clustering. Overall the results show that there is a great opportunity
for improvement for the predefined tours. On the one hand a decrease in travel time can be
obtained and on the other hand the maximum number of vehicles decreases. The average
savings from an optimized route to the predefined route achieved through shorter travel dis-
tance is 13.35 (from 51.94 to 38.59). The total energy savings are equal to 145.86 kWh (from
1713.19 kWh to 1567.33 kWh). In regard to the charging pattern the results of Scenario II
prevail. These are shown in 5.5. The objective value decreases largely due to the reduction
in travel time. The charge outside of the depot on average is equal to 59.88% or 938.32 kWh.
The cost savings between the variable and flat tariff increase with clustering with maximum
savings of 20.63%.

TABLE 5.5: Scenario IV: Clustered Data / Savings Routes - Results

Clustering Energy Costs (Flat) Energy Costs (Var) Energy Cost Reduction
[e] [e] BEV Flat / BEV Var

0m 50.64 41.94 17.56%
50m 47.99 39.32 18.53%
100m 46.55 37.69 19.49%
150m 46.46 37.45 19.86%
200m 45.88 36.56 20.63%

Average 47.50 38.59 19.21%

Clustering Average no of Charge outside Charge outside of
charging stops / Tour of Depot (%) Depot (kWh)

0m 46.89 59.46% 993.41
50m 33.43 59.21% 937.41
100m 29.00 61.31% 941.57
150m 23.72 59.62% 913.98
200m 19.83 59.80% 905.24

Average 30.63 59.88% 938.32
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TABLE 5.6: Scenario IV: Differences of Predefined Tours to Savings and local
search

Tour Length

Max Tour Length Min Tour Length Mean Tour Length Sum Tour Length
Predefined 143.69 km 54.35 km 89.74 km 29613.89 km

Savings + LS 117.74 km 51.19 km 78.51 km 27163.35 km
Difference -18.06% -5.81% -12.52% -8.27%

Tour Time

Max Tour Time Min Tour Time Mean Tour Time Sum Tour Time
Predefined 6h 7min 2h 2min 4h 4min 1463h 23min

Savings + LS 5h 6min 1h 2min 3h 4min 1241h 41min
Difference -12.56% -23.47% -19.09% -15.17%

5.5 Scenario V: Battery Size considerations

Charging outside the depot also has an influence on the maximum SoC that a vehicle has
during a tour. This is illustrated in Figure 5.4.

FIGURE 5.4: Scenario V: Charging/Discharging pattern under different sce-
narios

For all three scenarios the maximum SoC is occurs at the depot. Thereafter vehicles
discharge during the tour. While the charging behavior during the tour creates different
charging and discharging patterns it can be seen that the vehicle is discharged to the same
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level at customer 64. The remaining charge is set to cover the remaining distance and to
arrive at the depot with a SoC of zero. It can be observed, that the discharge is reduced for
the variable tariff and increases the greatest from customer 55 to 57. A greater charge can
be observed in case of a flexible charging time. For instance from customer 15 to 25. In this
scenario the SoC and thereby also the size of the vehicle battery is decreased the most. In
comparison to the flat tariff a vehicle with a 22.58% (41.94 vs 32.58 kWh) smaller battery
can be deployed in case of the variable tariff. If the starting time is released this is decreased
to 25.39kWh or only 60.53% of the fixed pricing scenarios battery size is required. This is
caused by the increased charging throughout the tour which can also be observed in Figure
5.4.

5.6 Scenario VI: Charge Power Variation

Up to this point the charging power has been set at 11 kW for all previous scenarios. In
this scenario the charging power will be increased up to a speed of 100 kW and the impact
on overall model results presented. In detail five variations where tested, three AC-charging
scenarios (3.7 kW, 11 kW, 22 kW), which correspond to a level 1 to level 2 charger and two
fast charging cases which correspond to a fast DC charger (50 kW, 100 kW).

FIGURE 5.5: Scenario VI: Charge on tour and average savings for changing
charging power
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In Figure 5.5 the charge during the tour in % and the total savings between the scenarios
are illustrated. For the former it can be observed that the average charge on tour increases
with a greater charging power. However it can also be seen, that the increases stagnate when
the charging power is increased above 22 kW. The reason for this trend can be observed
when looking at the charging and discharging pattern. Figure 5.6 shows four cases of the
charging behavior during the tour. For the 11kW case 10.93 kWh are charged at the depot
and rest outside of it. If the charging power is increased to 22 kW and higher the total charge
at the depot is 7.90 kWh in every case. This is the required charge to arrive at the first cus-
tomer. Consequently, the vehicles arrive with a battery at minimum allowed SoC at the first
customer and recharge at this location. While the charging pattern change for the different
charge power cases above 22kW the amount charged at the depot remains unchanged. This
explains the shape of the graph showing the percentage charged on tour in Figure 5.5. The
second graph in Figure 5.5 shows the average savings between the flat and variable tariff.
In the case of this data it can also be observed, that the average savings increase with an in-
crease in charging power however the increases decline with greater charging power. While
the energy charged on tour stays unchanged after the power is increased above 11 kW there
are still increases for the savings. This effect can again be explained by the charging pattern
depicted in Figure 5.6. With increased charging power a greater charge can occur within the
same time-frame. This can also be observed in the charge graph where larger vertical jumps
indicate this. This also means that the more energy can be charged for lower energy prices.

FIGURE 5.6: Scenario VI: Charging Pattern under different charging power
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FIGURE 5.7: Scenario VI: Charge stops per Tour and max SoC for changing
charging power

Figure 5.7 shows the changes in charges per stop and the maximal SoC with increased
charge power. The average charge stops decrease with increases in charge stops. The small-
est average amount of charge stops occurs with a charging power of 100 kW at about 6 stops.
The biggest decrease occurs if the charging power is increased from 22 kW to 50 kW. As
could be seen in Figure 5.5 the charge outside of the depot only decreases to a certain power
level. The results for the max SoC are depicted in Figure 5.7. They show a similar pattern
to the average number of charge stops until 22 kW, however deviate thereafter. First the max
SoC decreases become smaller and reach their minimum at 50 kW. For the highest charging
power the max SoC again increases. Since the vehicle can charge more in a shorter amount
of time the charges during cheap time intervals increases. If these charging zones are at the
beginning of the route the vehicle will charge more cheap energy to offset later increases in
costs. In certain cases it may be possible that the SoC within these time intervals is greater
than the SoC that the vehicle had when it left the depot. Table A.9 to A.12 show the results
of this scenario in more detail. For the results of the 11 kW case see Scenario III.
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5.7 Findings

A diesel vehicles energy consumption makes up more than 10% of the objective value in
the proposed optimization model. For BEVs, these only make up less than 1%. This means
for the optimization of the energy costs to become viable additional benefits need to be
generated. Scenario I showed that even though only small cost savings between both the
variable and flat tariff are possible the vehicle charges almost 20% of energy outside of the
depot. This may reduce the stress on the charge bottleneck. Another benefit that derives from
the shift of charging behavior is that the battery can be operated with a lower battery capacity
which leads to lower initial purchase costs. The following scenarios further examine and try
to improve on this baseline scenario. Scenario II showed that input data and especially
service times have significant impact on the results obtained in Scenario I. Scenario II also
shows that the clustering only has a positive impact on the objective value as well as total tour
time to a certain extent. When the walking time becomes greater than the savings that are
generated by not driving certain distance the objective value increases. This is also related
to the predominance of the wage costs in comparison to the energy cost.

Clustering of the customers does not only proof to be effective in lowering the tour time
and driving distance but also lead to more reasonable number of charging stops. This is
especially important for a practical implementation of the model. The best way to synchro-
nize charging times with energy prices is by letting a vehicle execute the predefined route
within a certain time interval rather than setting a fixed starting time. Although this increases
the average number of stops, the increases in energy cost reductions and charge outside of
the depot increase substantially. Scenario IV shows that the overall savings are still great-
est when route optimization is considered in comparison to energy optimization. Different
factors within the scenarios were also shown to have an impact on the charging pattern and
battery size, as for instance shown in Scenario V. The smallest required battery size is re-
quired with a variable tariff and a flexible starting time. Finally the last Scenario shows that
the charging speed also has an impact on all of the results described above. It could how-
ever also be observed that this is only true until a certain extent as the route characteristics
required a certain initial charge to reach the first customer. Additionally, a greater charging
power can also increase the max battery size. This is caused by an increased charge in cheap
charging zones. However other benefits such as a lower number of charging stops or average
savings where shown to still prevail.
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6 Conclusion

The efficient integration of BEVs into the grid can generate significant benefits on numerous
levels. In this chapter a short conclusion shall be presented in order to highlight these benefits
as well as present the implications of these findings define future research directions and
model extensions.

6.1 Contributions and Implications

The presented model and scenarios address the problem of a smart integration of BEV trans-
port vehicles into the grid pricing patterns with a predefined route. This is done through
smart charging with a valley-filling approach. The approach merges previously separate re-
search streams and applies them to the electric vehicle recharging problem. The idea also
builds on previous studies of different sectors, for instance the work of Suzuki, 2009 who
introduced the vehicle refueling problem for conventional diesel trucks in a similar man-
ner. In this study the model is also solved through a decomposition of route composition
and timing of refueling. The results show that offering a variable tariff to transport firms
can induce charging outside of the depot. In a best case scenario this charge can even be
greater than the charge at the depot. The results of the test cases further illustrate that setting
variable prices can create desired benefits. Firstly, the charge costs for the transport firm
are reduced. In a best case by about 20.63% per day, which constitute a high return and
therefore good incentive for the company. Secondly, more than half of the required energy is
charged outside of the depot. This is both a benefit for the transport firm that is able to shift
energy consumption from the depot and thereby avoid an energy shortage but also for the
utility and grid as loads are shifted to low cost i.e. production surplus zones and distributed
over time and geographic location. The differences in the input data also show that some
scenarios are better suited for a practical implementation. For instance, longer service times
increased the above described benefits. This can be achieved by clustering customers. By
far the greatest impact however could be observed when tour times allowed to be flexible.
By incorporating real world the model is able to show how incentives for all of the involved
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partners can be generated. This is a key component for a practical implementation. The ex-
pert interviews that were conducted revealed that both the transport firm and utility firm are
looking for new ways to integrate BEV charging into their existing infrastructure. While the
model creates benefits such as a load shift and reduces the capacity required at the depot the
savings produced by the model would be an additional motivation for the partner to consider
a decentralized charging of vehicles. Further results can be obtained for the battery size and
required charging infrastructure. By implementing the model the required battery size of the
vehicle is decreased, which leads to a lower initial investment and thereby also a faster return
on investment. In terms of the required charging infrastructure the different scenarios that
were presented show that a greater charging power does not necessarily generate proportion-
ate increases in savings and other benefits. In summary the model touches on all three levels
(strategic, operational, tactical) as described by Pelletier, Jabali, and Laporte (2016)

The implications of the obtained results are multiple. Firstly, the model shows that purely
on a energy cost perspective an electric vehicle is superior to a conventional diesel vehicle.
When all other costs are held constant it is favorable for transport firms to switch to all BEV
for the delivery of goods. Additional benefits such as reduction in emissions may even offset
a higher total cost of acquisition The results also showed that it is favorable in terms of charg-
ing outside of the depot to cluster customers. This is both favorable from an energy efficiency
standpoint but also reduces overall tour time and therefore has the potential to reduce costs.
Clustering can be beneficiary to a certain extent in this case until a cluster of 150m. With a
further expansion of the radius some values such as the total delivery time or objective value
can increase. For a practical implementation however clustering is an effective way to in-
crease service times and thereby extend potential charging times. The optimized predefined
routes make it obvious that in this case this optimization still promises the greatest savings.
This means that both that this optimization step is essential and should not be omitted. The
reduction of battery size due to an increased charging during the route is a valuable result
and implies that smaller battery sizes may be sufficient to meet the requirements of the route.
This is an in important consideration for strategic decisions in a firm. Lastly, the variation
of the charging power showed that for the presented cases faster charging technologies do
not necessarily yield a substantially higher increase of the benefits. The implication is that
current charging technology are sufficient for an implementation.
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6.2 Model Extensions and Further Research

While the model yields many results that create important implications for a real world ap-
plication further research needs to be conducted to allow for an easier application and im-
plementation. These can generally be divided into recommendations that are connected to
model extensions and general further research in the area of dynamic pricing of electric de-
livery vehicles. A simple modification could be undertaken in the varying the input data of
the model. By changing the route profile for instance by shifting the depot location to be in
a more central location new implications for vehicle characteristics such as battery size may
be gained. It could also be interesting to restrict charging to a few customer locations and
to have different charging speeds at these locations. Another adaption would be to cluster
the provided data with different approaches. By differentiating between these styles the im-
pact could be determined. Furthermore it would be possible to apply this method to cluster
customer nodes at real world charging stations. In terms of the real world application it may
also be important to consider additional time for engaging and disengaging the charge of the
vehicle. This is however dependent on future developments as technologies such as inductive
charging would not require this kind of driver input.

The model does not consider any conversion losses as these don’t have an influence on
the effect imposed by the a different tariff structure. However to increase the degree of
realism of the model these should also be considered. An extension of this consideration
would be to also include charge specific components in the charging of vehicles, as for
instance vehicles can charge faster in if they the battery is not fully depleted. This may lead
to different results in terms of the battery size and SoC throughout the tour. In the current
model only the latest arrival and departure time are predetermined. However delivery drivers
mostly work in shifts, for example 7 hours long. In the presented scenarios this would mean
that the actual delivery time of the driver would always smaller than the actual working time.
Two extensions are possible in this regard firstly, a vehicle could be able to return to the
depot and reload and head out for another tour or a flat-rate for the driver could be set. This
would enable the vehicle to have charging stops that are longer than the service time without
incurring a penalty in the form of an increased wage. The effect of instability in driving
times, for instance caused by congestion or longer/shorter service times, also needs to be
investigated. This could be incorporated by only allowing a charge inside a charging zone
with a time certain buffer.
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While the model is able to stimulate a load shift on the grid level more decentralized
optimization strategies may also need to be considered. In a first step this means, that proxies
for lower level grid energy consumption and utilization should be integrated to analyze the
effects that the proposed pricing model has on this level of the grid. Additionally, a real
time vehicle charge management could be considered in a next step. This may be able
overcome some of the limitations of the proposed model. In this scenario vehicles could be
used to offset a capacity surplus for the utility or even provide balancing energy in a V2G
scenario, as it has been shown in non-commercial vehicle literature. To show the potential
of coordinating production and consumption through price incentives a further more direct
applications could also be created by integrating the real time production of regenerative
power plants. Furthermore it would also be interesting to consider and integrate a scenario
that considers autonomous driving, as this would offset the need for a driver and would have
a significant impact on the objective function and the overall model.



49

A Appendix

FIGURE A.1: Scenario I: Example tour charging patterns detailed view
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FIGURE A.2: Scenario III: Example tour charging patterns detailed view
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TABLE A.9: Scenario VI: 3.7 kW charging power

Clustering Energy Costs (Flat) Energy Costs (Var) Energy Cost Reduction
[C] [C] BEV Flat / BEV Var

0m 56.74 53.96 5.11%
50m 53.44 50.41 5.94%
100m 51.24 47.93 6.76%
150m 49.79 46.25 7.48%
200m 48.54 44.67 8.50%

Average 51.95 48.64 6.76%

Clustering Average no of Charge outside Charge outside of
charging stops / Tour of Depot (%) Depot (kWh)

0m 55.44 19.38% 362.72
50m 41.79 21.94% 386.85
100m 36.67 24.74% 418.18
150m 32.83 27.24% 447.46
200m 29.64 29.86% 478.10

Average 39.27 24.63% 418.66

TABLE A.10: Scenario VI: 22 kW charging power

Clustering Energy Costs (Flat) Energy Costs (Var) Energy Cost Reduction
[C] [C] BEV Flat / BEV Var

0m 56.74 43.13 24.53%
50m 53.44 40.01 25.68%
100m 51.24 38.09 26.02%
150m 49.79 36.85 26.33%
200m 48.54 35.58 26.95%

Average 51.95 38.73 25.90%

Clustering Average no of Charge outside Charge outside of
charging stops / Tour of Depot (%) Depot (kWh)

0m 34.00 69.27% 1296.76
50m 23.42 68.13% 1201.08
100m 18.36 67.93% 1148.38
150m 15.44 66.75% 1096.48
200m 12.82 65.58% 1050.20

Average 20.81 67.53% 1158.58
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TABLE A.11: Scenario VI: 50 kW charging power

Clustering Energy Costs (Flat) Energy Costs (Var) Energy Cost Reduction
[C] [C] BEV Flat / BEV Var

0m 56.74 39.24 31.01%
50m 53.44 36.45 32.07%

100m 51.24 34.90 32.01%
150m 49.79 34.12 31.49%
200m 48.54 33.36 31.03%

Average 51.95 35.61 31.52%

Clustering Average no of Charge outside Charge outside of
charging stops / Tour of Depot (%) Depot (kWh)

0m 16.06 70.49% 1319.66
50m 10.94 68.96% 1215.81

100m 8.67 67.83% 1146.61
150m 8.14 66.72% 1095.98
200m 5.91 65.62% 1050.79

Average 9.94 67.92% 1165.77

TABLE A.12: Scenario VI: 100 kW charging power

Clustering Energy Costs (Flat) Energy Costs (Var) Energy Cost Reduction
[C] [C] BEV Flat / BEV Var

0m 56.74 37.33 34.25%
50m 53.44 35.30 34.03%

100m 51.24 34.03 33.55%
150m 49.79 33.35 32.72%
200m 48.54 32.70 32.23%

Average 51.95 34.54 33.36%

Clustering Average no of Charge outside Charge outside of
charging stops / Tour of Depot (%) Depot (kWh)

0m 8.80 70.38% 1317.42
50m 6.80 68.95% 1215.62

100m 5.48 68.09% 1151.10
150m 5.02 66.90% 1098.96
200m 4.03 65.82% 1054.03

Average 6.03 68.03% 1167.43



61

Bibliography

Alonso, Monica et al. (2014). “Optimal Charging Scheduling of Electric Vehicles in Smart
Grids by Heuristic Algorithms”. In: Energies 7.4, pp. 2449–2475. ISSN: 1996-1073. DOI:
10.3390/en7042449.

Bashash, S., S J Moura, and H K Fathy (2010). “Charge trajectory optimization of plug-
in hybrid electric vehicles for energy cost reduction and battery health enhancement”.
In: Proceedings of the 2010 American Control Conference. IEEE, pp. 5824–5831. ISBN:
978-1-4244-7427-1. DOI: 10.1109/ACC.2010.5530497.

Bessa, R. J. et al. (2011). “Models for the EV aggregation agent business”. In: 2011 IEEE
Trondheim PowerTech. IEEE, pp. 1–8. ISBN: 978-1-4244-8418-8. DOI: 10.1109/PTC.
2011.6019221.

Bruglieri, Maurizio et al. (2015). “A Variable Neighborhood Search Branching for the Elec-
tric Vehicle Routing Problem with Time Windows”. In: Electronic Notes in Discrete
Mathematics 47, pp. 221–228. ISSN: 15710653. DOI: 10.1016/j.endm.2014.11.
029. arXiv: 1506.00211.

Cao, Yijia et al. (2012). “An optimized EV charging model considering TOU price and SOC
curve”. In: IEEE Transactions on Smart Grid 3.1, pp. 388–393. ISSN: 19493053. DOI:
10.1109/TSG.2011.2159630.

Capasso, Clemente and Ottorino Veneri (2015). “Experimental study of a DC charging sta-
tion for full electric and plug in hybrid vehicles”. In: Applied Energy 152, pp. 131–142.
ISSN: 03062619. DOI: 10.1016/j.apenergy.2015.04.040.

Chan, C. C. (2007). “The State of the Art of Electric, Hybrid, and Fuel Cell Vehicles”. In:
Proceedings of the IEEE 95.4, pp. 704–718. ISSN: 0018-9219. DOI: 10.1109/JPROC.
2007.892489.

http://dx.doi.org/10.3390/en7042449
http://dx.doi.org/10.1109/ACC.2010.5530497
http://dx.doi.org/10.1109/PTC.2011.6019221
http://dx.doi.org/10.1109/PTC.2011.6019221
http://dx.doi.org/10.1016/j.endm.2014.11.029
http://dx.doi.org/10.1016/j.endm.2014.11.029
http://arxiv.org/abs/1506.00211
http://dx.doi.org/10.1109/TSG.2011.2159630
http://dx.doi.org/10.1016/j.apenergy.2015.04.040
http://dx.doi.org/10.1109/JPROC.2007.892489
http://dx.doi.org/10.1109/JPROC.2007.892489


62 BIBLIOGRAPHY

Clarke, G. and J. W. Wright (1964). “Scheduling of Vehicles from a Central Depot to a
Number of Delivery Points”. In: Operations Research 12.4, pp. 568–581. ISSN: 0030-
364X. DOI: 10.1287/opre.12.4.568. arXiv: arXiv:1011.1669v3.

Croes, A (1958). “A Method for Solving Traveling-Salesman Problems”. In: Operations
Research 6.6, pp. 791–812.

Daimler (2016). A Joint Venture for Ultra-Fast, High-Power Charging Along. URL: http:
/ / media . daimler . com / marsMediaSite / en / instance / ko / BMW -

Group-Daimler-AG-Ford-Motor-Company-and-Volkswagen-Group.

xhtml?oid=14866747 (visited on 01/07/2017).

Dantzig, G. B. and J. H. Ramser (1959). “The Truck Dispatching Problem”. In: Management
Science 6.1, pp. 80–91. ISSN: 0025-1909. DOI: 10.1287/mnsc.6.1.80.

Demir, Emrah, Tolga Bektas, and Gilbert Laporte (2014). “The bi-objective Pollution-Routing
Problem”. In: European Journal of Operational Research 232.3, pp. 464–478. ISSN:
03772217. DOI: 10.1016/j.ejor.2013.08.002.

Eaves, Stephen and James Eaves (2004). “A cost comparison of fuel-cell and battery electric
vehicles”. In: Journal of Power Sources 130.1-2, pp. 208–212. ISSN: 03787753. DOI:
10.1016/j.jpowsour.2003.12.016.

EPEX (2016a). Basics of the Power Market. URL: https://www.epexspot.com/en/
company-info/basics_of_the_power_market (visited on 10/11/2016).

— (2016b). EPEX SPOT SE: Intraday Continuous Market Data. URL: https://www.
epexspot.com/en/market-data/intradaycontinuous (visited on 01/17/2017).

Flath, Christoph M et al. (2014). “Improving Electric Vehicle Charging Coordination Through
Area Pricing”. In: Transportation Science 48.4, pp. 619–634. ISSN: 0041-1655. DOI:
10.1287/trsc.2013.0467.

García-Villalobos, J. et al. (2014). “Plug-in electric vehicles in electric distribution networks:
A review of smart charging approaches”. In: Renewable and Sustainable Energy Reviews
38, pp. 717–731. ISSN: 13640321. DOI: 10.1016/j.rser.2014.07.040.

Glachant, Jean-Michel (2013). “Epilogue”. In: Evolution of Global Electricity Markets. El-
sevier, pp. 791–798. DOI: 10.1016/B978-0-12-397891-2.00037-7.

Gonzalez Vaya, M. and Goran Andersson (2012). “Centralized and decentralized approaches
to smart charging of plug-in Vehicles”. In: 2012 IEEE Power and Energy Society General

http://dx.doi.org/10.1287/opre.12.4.568
http://arxiv.org/abs/arXiv:1011.1669v3
http://media.daimler.com/marsMediaSite/en/instance/ko/BMW-Group-Daimler-AG-Ford-Motor-Company-and-Volkswagen-Group.xhtml?oid=14866747
http://media.daimler.com/marsMediaSite/en/instance/ko/BMW-Group-Daimler-AG-Ford-Motor-Company-and-Volkswagen-Group.xhtml?oid=14866747
http://media.daimler.com/marsMediaSite/en/instance/ko/BMW-Group-Daimler-AG-Ford-Motor-Company-and-Volkswagen-Group.xhtml?oid=14866747
http://media.daimler.com/marsMediaSite/en/instance/ko/BMW-Group-Daimler-AG-Ford-Motor-Company-and-Volkswagen-Group.xhtml?oid=14866747
http://dx.doi.org/10.1287/mnsc.6.1.80
http://dx.doi.org/10.1016/j.ejor.2013.08.002
http://dx.doi.org/10.1016/j.jpowsour.2003.12.016
https://www.epexspot.com/en/company-info/basics_of_the_power_market
https://www.epexspot.com/en/company-info/basics_of_the_power_market
https://www.epexspot.com/en/market-data/intradaycontinuous
https://www.epexspot.com/en/market-data/intradaycontinuous
http://dx.doi.org/10.1287/trsc.2013.0467
http://dx.doi.org/10.1016/j.rser.2014.07.040
http://dx.doi.org/10.1016/B978-0-12-397891-2.00037-7


BIBLIOGRAPHY 63

Meeting. IEEE, pp. 1–8. ISBN: 978-1-4673-2729-9. DOI: 10.1109/PESGM.2012.
6344902.

Graeber, Dietmar Richard (2014). “Vermarktung von Strom aus erneuerbaren Energien”. In:
Handel mit Strom aus erneuerbaren Energien, pp. 25–40. DOI: 10.1007/978-3-
658-05941-5_4.

Hayes, John G. et al. (2011). “Simplified electric vehicle power train models and range esti-
mation”. In: 2011 IEEE Vehicle Power and Propulsion Conference. IEEE, pp. 1–5. ISBN:
978-1-61284-248-6. DOI: 10.1109/VPPC.2011.6043163.

Hong Lin, Shieu Hong, Nate Gertsch, and Jennifer R. Russell (2007). “A linear-time al-
gorithm for finding optimal vehicle refueling policies”. In: Operations Research Letters
35.3, pp. 290–296. ISSN: 01676377. DOI: 10.1016/j.orl.2006.05.003.

Hoog, Julian De et al. (2015). “Optimal Charging of Electric Vehicles Taking Distribu-
tion Network Constraints Into Account”. In: IEEE Transactions on Power Systems 30.1,
pp. 365–375.

Keskin, Merve and Bülent Çatay (2016). “Partial recharge strategies for the electric vehicle
routing problem with time windows”. In: Transportation Research Part C: Emerging
Technologies 65, pp. 111–127. ISSN: 0968090X. DOI: 10.1016/j.trc.2016.01.
013.

Laporte, G (1992). “The traveling salesman problem: an overview of exact and approximate
algorithms”. In: European Journal of Operational Research 59, pp. 231–247.

Laporte, Gilbert (2009). “Fifty Years of Vehicle Routing”. In: Transportation Science 43.4,
pp. 408–416. ISSN: 0041-1655. DOI: 10.1287/trsc.1090.0301.

Lebeau, Philippe et al. (2015). “Conventional, Hybrid, or Electric Vehicles: Which Technol-
ogy for an Urban Distribution Centre?” In: The Scientific World Journal 2015, pp. 1–11.
ISSN: 2356-6140. DOI: 10.1155/2015/302867.

Logenthiran, T. and Dipti Srinivasan (2011). “Multi-agent system for managing a power
distribution system with Plug-in Hybrid Electrical vehicles in smart grid”. In: ISGT2011-
India. Vol. 0954. IEEE, pp. 346–351. ISBN: 978-1-4673-0315-6. DOI: 10.1109/ISET-
India.2011.6145339.

McKinsey (2014). EVolution Electric vehicles in Europe: gearing up for a new phase? Tech.
rep. April, p. 21.

http://dx.doi.org/10.1109/PESGM.2012.6344902
http://dx.doi.org/10.1109/PESGM.2012.6344902
http://dx.doi.org/10.1007/978-3-658-05941-5_4
http://dx.doi.org/10.1007/978-3-658-05941-5_4
http://dx.doi.org/10.1109/VPPC.2011.6043163
http://dx.doi.org/10.1016/j.orl.2006.05.003
http://dx.doi.org/10.1016/j.trc.2016.01.013
http://dx.doi.org/10.1016/j.trc.2016.01.013
http://dx.doi.org/10.1287/trsc.1090.0301
http://dx.doi.org/10.1155/2015/302867
http://dx.doi.org/10.1109/ISET-India.2011.6145339
http://dx.doi.org/10.1109/ISET-India.2011.6145339


64 BIBLIOGRAPHY

McKinsey (2016). “Automotive revolution perspective towards 2030”. In: Stanford Univer-
sity, PEEC Sustainable Transportation Seminar. January 1st, pp. 1–20. DOI: 10.1365/
s40112-016-1117-8.

Millner, Alan (2010). “Modeling Lithium Ion battery degradation in electric vehicles”. In:
2010 IEEE Conference on Innovative Technologies for an Efficient and Reliable Electric-
ity Supply. 4. IEEE, pp. 349–356. ISBN: 978-1-4244-6076-2. DOI: 10.1109/CITRES.
2010.5619782.

Moura, Scott J (2011). “Techniques for Battery Health Conscious Power Management via
Electrochemical Modeling and Optimal Control”. PhD thesis, pp. 1–152.

Ning, Gang and Branko N. Popov (2004). “Cycle Life Modeling of Lithium-Ion Batteries”.
In: Journal of The Electrochemical Society 151.10, A1584. ISSN: 00134651. DOI: 10.
1149/1.1787631.

Offer, G.J. et al. (2010). “Comparative analysis of battery electric, hydrogen fuel cell and
hybrid vehicles in a future sustainable road transport system”. In: Energy Policy 38.1,
pp. 24–29. ISSN: 03014215. DOI: 10.1016/j.enpol.2009.08.040.

Omidvar, A. and R. Tavakkoli-Moghaddam (2012). “Sustainable vehicle routing: Strategies
for congestion management and refueling scheduling”. In: 2012 IEEE International En-
ergy Conference and Exhibition (ENERGYCON). 4. IEEE, pp. 1089–1094. ISBN: 978-1-
4673-1454-1. DOI: 10.1109/EnergyCon.2012.6347732.

Padovani, Thomas MIRO et al. (2013). “Optimal Energy Management Strategy including
Battery Health through Thermal Management for Hybrid Vehicles”. In: IFAC Proceed-
ings Volumes 46.21, pp. 384–389. ISSN: 14746670. DOI: 10.3182/20130904-4-
JP-2042.00137.

Paraschiv, Florentina, David Erni, and Ralf Pietsch (2014). “The impact of renewable ener-
gies on day-ahead electricity prices”. In: Energy Policy 73, pp. 196–210. ISSN: 03014215.
DOI: 10.1016/j.enpol.2014.05.004.

Pelletier, Samuel, Ola Jabali, and Gilbert Laporte (2016). “50th Anniversary Invited Ar-
ticle ”Goods Distribution with Electric Vehicles: Review and Research Perspectives”.
In: Transportation Science 50.1, pp. 3–22. ISSN: 0041-1655. DOI: 10.1287/trsc.
2015.0646.

http://dx.doi.org/10.1365/s40112-016-1117-8
http://dx.doi.org/10.1365/s40112-016-1117-8
http://dx.doi.org/10.1109/CITRES.2010.5619782
http://dx.doi.org/10.1109/CITRES.2010.5619782
http://dx.doi.org/10.1149/1.1787631
http://dx.doi.org/10.1149/1.1787631
http://dx.doi.org/10.1016/j.enpol.2009.08.040
http://dx.doi.org/10.1109/EnergyCon.2012.6347732
http://dx.doi.org/10.3182/20130904-4-JP-2042.00137
http://dx.doi.org/10.3182/20130904-4-JP-2042.00137
http://dx.doi.org/10.1016/j.enpol.2014.05.004
http://dx.doi.org/10.1287/trsc.2015.0646
http://dx.doi.org/10.1287/trsc.2015.0646


BIBLIOGRAPHY 65

Psaraftis, Harilaos, Atle Minsaas, and George Panagakos (2013). “Green Corridors in Euro-
pean Surface Freight Logistics”. In: Handbook of Global Logistics. Vol. 181, pp. 193–
218. ISBN: 978-1-4419-6131-0. DOI: 10.1007/978-1-4419-6132-7.

Sassi, Ons, Wahiba Ramdane Cherif, and Ammar Oulamara (2015). “Vehicle Routing Prob-
lem with Mixed fleet of conventional and heterogenous electric vehicles and time depen-
dent charging costs”. In: International Journal of Mathematical, Computational, Physi-
cal, Electrical and Computer Engineering 9.3, pp. 167–177.

Sassi, Ons, W. Ramdane Cherif-Khettaf, and Ammar Oulamara (2015a). “Multi-start Iterated
Local Search for the Mixed Fleet Vehicle Routing Problem with Heterogenous Electric
Vehicles”. In: Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics). Vol. 9026, pp. 138–149.
ISBN: 9783319164670. DOI: 10.1007/978-3-319-16468-7_12.

Sassi, Ons, Wahiba Ramdane Cherif-Khettaf, and Ammar Oulamara (2015b). “Iterated Tabu
Search for the Mix Fleet Vehicle Routing Problem with Heterogenous Electric Vehicles”.
In: Communications in Computer and Information Science. Vol. 14, pp. 57–68. ISBN:
978-3-540-87476-8. DOI: 10.1007/978-3-319-18161-5_6. arXiv: arXiv:
1011.1669v3.

Shareef, Hussain, Md Mainul Islam, and Azah Mohamed (2016). “A review of the stage-
of-the-art charging technologies, placement methodologies, and impacts of electric vehi-
cles”. In: Renewable and Sustainable Energy Reviews 64, pp. 403–420. ISSN: 13640321.
DOI: 10.1016/j.rser.2016.06.033.

Statista (2016a). Börsenstrompreis am EPEX-Spotmarkt für Deutschland bis 2016. URL:
https://de.statista.com/statistik/daten/studie/154012/

umfrage/grosshandelspreise-fuer-strom-in-deutschland-seit-

2008/ (visited on 01/15/2017).

— (2016b). Zusammensetzung des Industriestrompreises in Deutschland bis 2016. URL:
https://de.statista.com/statistik/daten/studie/168571/

umfrage/strompreis-fuer-die-industrie-in-deutschland-seit-

1998/ (visited on 01/15/2017).

Sundström, Olle and Carl Binding (2012). “Flexible charging optimization for electric vehi-
cles considering distribution grid constraints”. In: IEEE Transactions on Smart Grid 3.1,
pp. 26–37. ISSN: 19493053. DOI: 10.1109/TSG.2011.2168431.

http://dx.doi.org/10.1007/978-1-4419-6132-7
http://dx.doi.org/10.1007/978-3-319-16468-7_12
http://dx.doi.org/10.1007/978-3-319-18161-5_6
http://arxiv.org/abs/arXiv:1011.1669v3
http://arxiv.org/abs/arXiv:1011.1669v3
http://dx.doi.org/10.1016/j.rser.2016.06.033
https://de.statista.com/statistik/daten/studie/154012/umfrage/grosshandelspreise-fuer-strom-in-deutschland-seit-2008/
https://de.statista.com/statistik/daten/studie/154012/umfrage/grosshandelspreise-fuer-strom-in-deutschland-seit-2008/
https://de.statista.com/statistik/daten/studie/154012/umfrage/grosshandelspreise-fuer-strom-in-deutschland-seit-2008/
https://de.statista.com/statistik/daten/studie/168571/umfrage/strompreis-fuer-die-industrie-in-deutschland-seit-1998/
https://de.statista.com/statistik/daten/studie/168571/umfrage/strompreis-fuer-die-industrie-in-deutschland-seit-1998/
https://de.statista.com/statistik/daten/studie/168571/umfrage/strompreis-fuer-die-industrie-in-deutschland-seit-1998/
http://dx.doi.org/10.1109/TSG.2011.2168431


66 BIBLIOGRAPHY

Suzuki, Yoshinori (2009). “A decision support system of dynamic vehicle refueling”. In:
Decision Support Systems 46.2, pp. 522–531. ISSN: 01679236. DOI: 10.1016/j.
dss.2008.09.005.

Sweda, Timothy M., Irina S. Dolinskaya, and Diego Klabjan (2016). “Optimal Recharg-
ing Policies for Electric Vehicles”. In: Transportation Science 14, trsc.2015.0638. ISSN:
0041-1655. DOI: 10.1287/trsc.2015.0638.

Trummer, Wolfgang and Norbert Hafner (2016). “Potentials of e-Mobility for Companies
in Urban Areas”. In: Commercial Transport, Lecture Notes in Logistics. Ed. by Uwe
Clausen et al. Lecture Notes in Logistics. Cham: Springer International Publishing, pp. 129–
139. ISBN: 978-3-319-21265-4. DOI: 10.1007/978-3-319-21266-1_8.

UNFCCC. Conference of the Parties (COP) (2015). “Adoption of the Paris Agreement. Pro-
posal by the President.” In: Paris Climate Change Conference - November 2015, COP
21 21932.December, p. 32. ISSN: 1098-6596. DOI: FCCC/CP/2015/L.9/Rev.1.
arXiv: arXiv:1011.1669v3. URL: http://unfccc.int/resource/docs/
2015/cop21/eng/l09r01.pdf.

Yang, Hongming et al. (2015). “Electric vehicle route optimization considering time-of-
use electricity price by learnable partheno-genetic algorithm”. In: IEEE Transactions
on Smart Grid 6.2, pp. 657–666. ISSN: 19493053. DOI: 10.1109/TSG.2014.
2382684.

Zhang, Tian et al. (2014). “Charging scheduling of electric vehicles with local renewable
energy under uncertain electric vehicle arrival and grid power price”. In: IEEE Transac-
tions on Vehicular Technology 63.6, pp. 2600–2612. ISSN: 00189545. DOI: 10.1109/
TVT.2013.2295591. arXiv: arXiv:1301.2457v1.

http://dx.doi.org/10.1016/j.dss.2008.09.005
http://dx.doi.org/10.1016/j.dss.2008.09.005
http://dx.doi.org/10.1287/trsc.2015.0638
http://dx.doi.org/10.1007/978-3-319-21266-1_8
http://dx.doi.org/FCCC/CP/2015/L.9/Rev.1
http://arxiv.org/abs/arXiv:1011.1669v3
http://unfccc.int/resource/docs/2015/cop21/eng/l09r01.pdf
http://unfccc.int/resource/docs/2015/cop21/eng/l09r01.pdf
http://dx.doi.org/10.1109/TSG.2014.2382684
http://dx.doi.org/10.1109/TSG.2014.2382684
http://dx.doi.org/10.1109/TVT.2013.2295591
http://dx.doi.org/10.1109/TVT.2013.2295591
http://arxiv.org/abs/arXiv:1301.2457v1


67

B Deutsche Zusammenfassung

Die städtische Frachtverteilung mit elektrisch-betriebenen Fahrzeugen wirkt sich nicht nur
auf die Verteilungslogistik, sondern auch auf die Energieversorgung, die Stromverteilung
und die Netznutzung aus. Integrierte Lösungen, die die Vorteile mehrerer Branchen miteinan-
der kombinieren, können zu profitablen sektorübergreifenden Preisstrategien führen. Der
Einsatz von Day-Ahead-Informationen bspw. von Energiepreisen und der Fahrzeuglade-
planung kann zu niedrigeren Energiepreisen für Transportfirmen führen, die sich in einer
intelligenten und effizienten Gebühren- und Preispolitik widerspiegeln.

Der vorgeschlagene Ansatz kombiniert diese Ergebnisse und veranschaulicht die Auswirkun-
gen auf die Ladeplanung, Netzintegration und Fahrzeugbatteriegröße. Ein mathematisches
Modell wird für flexible Energiepreise entwickelt und zielt auf die Synchronisation von
Fahrzeugterminierungs- und Ladezeiten ab. Mittels eines kommerziellen Solvers wird ver-
sucht, die optimale Ladestrategie für eine gegebene Tour zu finden. Veränderungen der
Ladezeiten im Depot sowie Einflüsse auf den maximalen Ladezustand werden als zusät-
zlicher Nutzen betrachtet. Die Evaluierung basiert auf einem praktischen Fall der Waren-
verteilung mit sechs verschiedenen Szenarien, um den Einfluss verschiedener Strategien auf
mögliche Verbesserungen für Praktiker zu untersuchen. Die Ergebnisse zeigen, dass variable
Energiepreise für Fahrzeugbetreiber und Energieversorger wünschenswerte Vorteile schaffen
können, wie etwa finanzielle Vorteile oder geografisch verteiltes Laden.
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