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Abstract

Model checking is a fully automated approach in formal verification
to either prove a system’s correctness or find an error. It is an essen-
tial and widely-used component in the iterative design of systems such
as microprocessors. In contrast to iterative design, Church’s synthesis
problem asks to automatically generate a correct system from its speci-
fication. Reactive synthesis is the synthesis of reactive systems that are
systems that repeatedly interact with their environment.

For formal verification and synthesis mathematical models of sys-
tems and their behaviors are needed. Directed graphs are a fundamental
model of systems. Markov decision processes (MDPs) additionally incor-
porate probabilistic behavior of, for example, randomized concurrent
systems or communication protocols. A model for reactive systems
are game graphs, where the vertices of the graph are partitioned be-
tween two players and one player represents controllable inputs and
the other uncontrollable inputs. e automata-theoretic approach to
model-checking and synthesis is a canonical way to formally specify
the desired behaviors of a system using 𝜔-regular objectives such as
Büchi, parity, and Stree objectives. Additionally, mean-payoff objec-
tives allow for expressing quantitative properties of systems such as
resource consumption.

In this thesis we develop algorithms with improved worst-case run-
ning times for several problems on graphs, MDPs, and game graphs
with 𝜔-regular and mean-payoff objectives. Additionally, we show the
first super-linear conditional lower bounds for polynomial-time prob-
lems in this area. In particular we present the following results:

• For mean-payoff objectives on graphs the first approximation al-
gorithm that improves for dense graphs upon the long-standing
running time bounds for exact algorithms.

• For Stree objectives the first sub-quadratic time algorithm for
MDPs and a faster algorithm for dense MDPs and graphs.

• For parity games the first sub-cubic time algorithm for three pri-
orities and improved symbolic algorithms for the general case.

• New algorithms and super-linear conditional lower bounds for
conjunctions and disjunctions of basic 𝜔-regular objectives. ese
results show for the first time that, under popular assumptions,
there exist problems with strictly higher running times on MDPs
than on graphs (“model separation”) and that for each graph and
MDPs there exist objectives with strictly higher running times
compared to closely related objectives (“objective separation”).

• For generalized Büchi games a new upper and tight conditional
lower bounds that imply a model separation between MDPs and
game graphs, and a faster algorithm for dense GR(1) games.
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Zusammenfassung

Die Modellprüfung ist ein vollautomatisches Verfahren zur forma-
len Verifikation, die entweder die Korrektheit eines Systems zeigt oder
einen Fehler findet. Sie ist ein essentieller und o verwendeter Bestand-
teil im schriweisenDesign von Systemen, wie zumBeispiel vonMikro-
prozessoren. Im Gegensatz zu schriweisem Design verlangt das Syn-
theseproblem von Church die automatische Generierung eines korrekten
Systems aus einer vorgegebenen Spezifikation. Reaktive Sythese ist die
Synthese von reaktiven Systemen, welche laufend mit ihrer Umgebung
interagieren.

Für die formale Verifikation und Synthese werden mathematische
Modelle von Systemen und ihrem Verhalten benötigt. Gerichtete Gra-
phen sind ein grundlegendes Modell von Systemen. Markow-Entschei-
dungsprozesse (MEPs) können zusätzlich zufallsgesteuertes Verhalten
abbilden, zum Beispiel von randomisierten parallelen Systemen und
von Kommunikationsprotokollen. EinModell ür reaktive Systeme sind
Spielgraphen, bei denen die Knoten des Graphens zwischen einer Spiele-
rin, die die kontrollierbaren Eingaben repräsentiert, und ihrem Gegen-
spieler, der die unkontrollierbaren Eingaben repräsentiert, aufgeteilt
sind. Der Automaten-basierte Ansatz zur Modellprüfung und Synthese
ist eine anerkannte Methode um das erwünschte Verhalten von Syste-
men mit Hilfe von 𝜔-regulären Zielvorgaben wie Büchi-, Paritäts- oder
Stree-Zielvorgaben formal zu beschreiben. Zusätzlich können quanti-
tative Eigenschaen wie Ressourcenverbrauch durch Mielwerts-Ziel-
vorgaben ausgedrückt werden.

In dieser Arbeit entwickeln wir Algorithmen mit verbesserter Lauf-
zeit ür mehrere Probleme auf Graphen, MEPs, und Spielgraphenmit 𝜔-
regulären Zielvorgaben und Mielwerts-Zielvorgaben. Zusätzlich zei-
gen wir die ersten super-linearen bedingten unteren Schranken ür Po-
lynomialzeitprobleme in diesem Gebiet. Konkret präsentieren wir die
folgenden Ergebnisse:

• Für Mielwerts-Zielvorgaben auf Graphen den ersten Approxi-
mationsalgorithmus, der ür dichte Graphen die lange bekannten
Laufzeitschranken ür exakte Algorithmen durchbricht.

• Für Stree-Zielvorgaben den ersten Algorithmus mit weniger als
quadratischer Laufzeit sowie verbesserte Algorithmen ür dichte
MEPs und Graphen.

• Für Paritätsspiele den ersten sub-kubischen Algorithmus ür drei
Prioritäten sowie verbesserte symbolische Algorithmen ür den
allgemeinen Fall.

• Neue Algorithmen und super-lineare bedingte untere Schranken
ür Konjunktionen und Disjunktionen von einfachen 𝜔-regulären
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Zielvorgaben. Diese Ergebnisse zeigen zum erstenMal, dass es un-
ter weitverbreiteten Annahmen ür MEPs strikt höhere Laufzeit-
schranken als ür Graphen (“Modell-Separierung”) und ür man-
che Zielvorgaben strikt höhere Laufzeitschranken als ür nah ver-
wandte Zielvorgaben (“Zielvorgaben-Separierung”) gibt.

• Für verallgemeinerte Büchi Spiele einen neuen Algorithmus und
passende bedingte untere Schranken, die eine Modellseparierung
zwischen MEPs und Spielgraphen implizieren, sowie ür GR(1)
Spiele einen schnelleren Algorithmus auf dichten Graphen.
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CHAPTER 1
Introduction

Errors in soware and hardware design may endanger our safety and incur huge
costs, such as in the control of an aircra or in the design of a CPU.erefore, prov-
ably error-free systems would be highly desirable. Such a system can be anything
from a traffic light or a vendingmachine to amulti-threaded program, a communica-
tion process, or a hardware circuit [BK08, Ch. 1–2]. Proving the correctness of sys-
tems is unachievable in general since even determining whether an arbitrary given
program terminates is undecidable [see e.g. Sip06, Ch. 4.2]. However, in the last
decades many useful formal methods have been developed by focusing on relevant
special cases, and many practical tools are widely available [Hol97; KNP11]. For-
mal verification is an essential component in the iterative design of systems such as
microprocessors, communication protocols, and security algorithms [see e.g. Hol93;
CW96]. Model checking is a fully automated approach in verification to either prove
a system’s correctness or provide a counter example for it. Its major role in todays’
soware and hardware industry is highlighted by the Turing award in 2007 for the
founders of model checking [CE81; QS82] for transforming technology with their
theoretical research [Com08]. While verification is mostly used in iterative design
processes of systems, the synthesis problem [Chu62; Büc62] asks to automatically
generate a correct system from its specification. Reactive synthesis is the synthesis
of reactive systems that are systems that repeatedly interact with their environment.

For both verification and synthesis we need mathematical models of systems
and a formal way to express a system’s specification, that is, the desired behaviors
of the system. e fundamental models of systems can be represented as directed
graphs. Markov decision processes (MDPs) additionally incorporate probabilistic be-
havior of, e.g., randomized concurrent systems [Var85; CY95] or communication
protocols [Boh+03]. Reactive systems are modeled as game graphs [BL69; McN93;
o95], where the vertices of the graph are partitioned between two players and
one player represents the system and controllable environment inputs and its op-
ponent represents uncontrollable environment inputs. e automata-theoretic ap-
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2 1. INTRODUCTION

proach [VW86; Var96] to model-checking and synthesis is a canonical way to for-
mally specify the desired behaviors of a system using 𝜔-regular objectives such as
Büchi, parity, and Stree objectives. Additionally, mean-payoff objectives allow for
expressing quantitative properties of systems such as resource consumption.

In this thesis we consider algorithmic questions emerging from model checking
and synthesis. In the remainder of this chapter we first describe the relevant models
and specifications in more detail and then provide an overview over the algorithmic
problems, related work, and our results.

Models. A model of a system typically focuses on the control and interaction
between different parts of the system, or the interaction between the system and its
environment, and ignores implementation details.

Finite directed graphs are a model for non-deterministic systems, and provide
the framework to model hardware and soware systems [Hol97; Cim+00] as well
as many basic logic-related questions such as automata emptiness. e vertices
of the graph represent the states of the system and the edges represent the transi-
tions between states. Multiple outgoing edges of a vertex represent several possible
behaviors of the system emerging from, e.g., nondeterminism in the parallel or dis-
tributed execution of processes [Kel76] or, during the iterative design of a system,
from different design choices [see e.g. BK08, Ch. 2].

Markov decision processes (MDPs) model systems with both non-deterministic
and probabilistic behavior. ey are graphs in which a subset of vertices has a proba-
bility distribution over their outgoing edges. ese probabilistic choices can express,
e.g., randomization in concurrent systems [Var85; CY95], randomized communica-
tion protocols [Boh+03], lossy communication channels, or experimental data about
the environment of the system [see e.g. BK08, Ch. 10].

In game graphs the vertices are partitioned between two players. Typically one
player represents the system and the other the environment [AHK02] or, as in the
verification of branching-time properties of reactive systems [EJ91], one playermod-
els the existential quantifiers and the opponent models the universal quantifiers.
Two-player games on graphs are useful inmany problems in verification and synthe-
sis of systems such as the synthesis of reactive systems [Chu62; PR89; RW87], verifi-
cation of open systems [AHK02], and checking interface compatibility [AH01] and
well-formedness of specifications [Dil89]. Moreover, game-theoretic formulations
have been used for program repair [JGB05] and the synthesis of programs [Cer+11].

Specifications. In this work we mostly consider 𝜔-regular objectives [o97]
(𝜔-regular languages extend regular languages to infinite words), which can ex-
press most commonly used properties in formal verification and reactive synthe-
sis [MP92]. We consider for each objective also its complement or dual because an
objective can represent either desired or undesired behaviors, and in games the two
players have complementary objectives.
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e most basic properties of safety-critical systems are safety objectives, that is,
we want to verify that a given set of bad states can be avoided. An example for such
a property is whether in a parallel system two processes can ever be in a critical
section at the same time. e dual objective to safety is reachability, that is, a set of
good states is reached eventually.

Another type of property is, e.g., whether every request of a process to enter a
critical section is eventually granted. is corresponds to liveness or Büchi objec-
tives, where a set of good states has to be reached infinitely oen. Its dual objective
is the co-Büchi objective, where a set of bad states may be reached only finitely
oen.

Stree objectives and their dual Rabin objectives can express all 𝜔-regular lan-
guages [Saf88; o97]. Stree objectives directly correspond to strong fairness con-
ditions; a scheduler, e.g., is strongly fair if every event that is enabled infinitely oen
is scheduled infinitely oen. Büchi and co-Büchi objectives are important special
cases of Stree and Rabin objectives.

Parity objectives generalize Büchi objectives and are a special case of both
Stree and Rabin objectives [Cha07]. e dual of a parity objective is again a parity
objective. Stree and Rabin objectives can be converted to parity objectives [Saf92]
(with an exponential blow-up in the size of the model). Parity objectives are partic-
ularly important as they are equivalent to modal 𝜇-calculus [EJ91], one of the most
important logics in model-checking.

A different generalization of parity objectives that goes beyond 𝜔-regular ob-
jectives are mean-payoff objectives. Here the edges are assigned weights and the
objective is specified in terms of the average weight over a sequence of edges. In
contrast to the other objectives, mean-payoff objectives are quantitative objectives
that can model, e.g., the average resource consumption or delay of a system.

Algorithmic questions. To reason about all possible executions of a system, we
consider traces or plays that are infinite paths induced by moving a token indefi-
nitely along the edges of the model. e resolution of the nondeterministic choices
at a vertex, that is, the choice of an outgoing edge at a non-random vertex, is called
a strategy.

In graphs we ask, for each start vertex, whether there exists a trace that satisfies
the objective. e set of start vertices for which this is the case is called the winning
set. e algorithmic question for graphs is to determine thewinning set and possibly
strategies for vertices in the winning set.

In MDPs we also have random vertices and at a random vertex the outgoing
edge is chosen according to the given probability distribution. In MDPs we ask, for
each start vertex, whether there exists a strategy (for the non-random vertices) such
that the objective is satisfied with probability 1. e set of start vertices for which
this is satisfied is called the almost-sure winning set. e requirement to satisfy
the objective with probability 1 is oen called qualitative analysis of MDPs and
it is common in the analysis of randomized distributed algorithms [KNP00; PSL00;
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Sto03]. For a quantitative analysis ofMDPs that determines the value of thewinning
probability from each start vertex see, e.g., [CH07].

In game graphs the plays are induced by the two players taking turns in moving
the token along the edges of the graph. A strategy for a player is a function that
describes for each vertex how the player that owns the vertex chooses to move
tokens along the outgoing edges of the vertex to extend plays, and awinning strategy
ensures the desired set of plays against all strategies of the opponent. e winning
set of a player is the set of all start vertices for which she has a winning strategy.
For all considered games the winning sets of the two players form a partition of the
graph [Mar75]. e algorithmic question is to determine this partition and, possibly,
to construct winning strategies for both players.

Symbolic model-checking. A fundamental difficulty in the model-checking ap-
proach is the size of the models as the number of states of a system is exponential
in the number of variables used to describe the system. is is called the state-space
explosion problem. One approach to deal with this difficulty is the use of symbolic al-
gorithms, where the states and transitions of a system are not constructed or stored
explicitly; instead, a specific set of operations can be applied to sets of states. A set
can be encoded, e.g., with a binary decision diagram (BDD) [Lee59; Jr78; Bry86].
For game graphs with parity objectives, or parity games for short, we also consider
symbolic algorithms.

Conditional lower bounds. In this thesis we mostly study problems for which
polynomial-time algorithms are known, parity games being the only exception.
In complexity theory, polynomial-time algorithms are seen as efficient. However,
for huge graphs as in model checking, the difference between a quadratic-time
and a linear-time algorithm can affect whether an automated procedure is feasi-
ble. erefore, we would like to find faster algorithms also for polynomial-time
problems, or show that no such algorithms can exist. For algorithmic problems
unconditional super-linear lower bounds are very rare when polynomial-time (but
super-linear) solutions exist. However, recently there have been many interesting
results that establish conditional lower bounds for various combinatorial problems,
see [Vas15] for a survey. ese are lower bounds based on the assumption that
for some well-studied problem no improvement over the best-known running time
is possible (apart from lower order terms). Problems for which such conjectures
were made include Boolean matrix multiplication [AN96; Lee02; Kav12; Hen+15],
CNF-SAT [IPZ01; PW10; AV14; Car+16; Abb+16], 3-SUM [Pat10; GO12; AL13;
KPP16], all-pairs shortest paths [RZ11; VW13], and problems related to cliques in
graphs [Woe04; VW10; JV13; AVY15; ABV15a]. e lower bounds in this work
assume that (A1) there is no combinatorial algorithm for multiplying two 𝑛 × 𝑛
Boolean matrices with a running time of 𝑂(𝑛3−𝜀) for any 𝜀 > 0; or (A2) for all 𝜀 > 0
there exists a 𝑘 such that there is no algorithm for the 𝑘-CNF-SAT problem that
runs in 2(1−𝜀)⋅𝑛 ⋅ poly(𝑚) time, where 𝑛 is the number of variables and 𝑚 the number
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of clauses. Combinatorial here means avoiding fast matrix multiplication [Le 14],
see also the discussion in [Hen+15; Yu15; LW17]. Assumption (A2) is known as the
Strong Exponential Time Hypothesis (SETH). ese two assumptions have been
used to establish lower bounds for several well-studied problems, such as dynamic
graph algorithms [AV14; AVY15], measuring the similarity of strings [AVW14;
Bri14; BK15; BI15; ABV15b], context-free grammar parsing [Lee02; ABV15a], and
verifying first-order graph properties [PW10; Wil14b]. To the best of our knowl-
edge, no relation between conjectures (A1) and (A2) is known.

For several basic model-checking questions the best-known upper bounds are
quadratic or cubic and no super-linear lower bounds are known. In this thesis we
present several algorithms with improved running times, including the first sub-
quadratic time algorithm for MDPs with Stree objectives and the first sub-cubic
time algorithm for parity-3 games. Furthermore, we establish the first conditional
lower bounds that are super-linear for fundamental polynomial-time problems in
model-checking and synthesis.

1.1 Related Work

In this section we present an overview of the algorithmic results for the relevant
models and objectives. Let 𝑛 denote the number of vertices and 𝑚 the number of
edges of the inputmodel. For parity objectives another important input parameter is
the number of priorities 𝑐 and for mean-payoff objectives 𝑊 denotes the maximum
weight of an edge. We simplify the running times and omit dependencies on other
input parameters for the sake of readability; precise running time bounds and more
related work can be found in the subsequent chapters of the thesis.

For graphs the winning set for reachability, safety, Büchi, and co-Büchi objec-
tives can be determined in linear time [Tar72] and for parity objectives in 𝑂(𝑚 log 𝑛)
time [CH11]. For Stree objectives there is an 𝑂(𝑚 min(√𝑚 log 𝑛, 𝑛)) time algo-
rithm [HT96]. e trivial algorithm for Rabin objectives takes time 𝑂(𝑚𝑛). For
mean-payoff objectives the best known algorithms run in time 𝑂(𝑚𝑛) [Kar78] and
𝑂(𝑚√𝑛 log(𝑛𝑊 )) [OA92].

ForMDPs linear-time algorithms are only known for safety objectives (for which
the problem is equivalent to the one in game graphs). e almost-sure winning set
for reachability, Büchi, and co-Büchi objectives can be computed in 𝑂(min(𝑚1.5, 𝑛2))
time [CJH03; CH14] and with an additional factor of log 𝑛 also for parity objec-
tives [CH11]. For Stree and Rabin objectives running times of 𝑂(𝑛 ⋅ min(𝑚1.5, 𝑛2))
follow from [CH14]. Mean-payoff objectives on MDPs can be solved in polynomial
time by linear programming and in pseudo-polynomial time 𝑂(𝑚𝑛𝑊 ) [FV97].

For game graphs the running time for an objective and its dual is the same
since the two objectives correspond to the objectives of the two players and one
winning set is the complement of the other [Mar75]. For reachability and safety
objectives the winning set can be computed in 𝑂(𝑚) time [Bee80; Imm81]. For
Büchi and co-Büchi objectives, the current best known algorithm requires 𝑂(𝑛2)
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time [CH14]. For Stree and Rabin objectives, the problem is coNP-complete and
NP-complete [EJ88], respectively, and for one-pair Stree and one-pair Rabin objec-
tives there is an 𝑂(𝑚𝑛) time algorithm [Jur00; Sch08]. Parity games, and their gener-
alization mean-payoff games, are one of the rare “natural” problems in 𝘕 𝘗 ∩ 𝘤𝘰𝘕 𝘗
for which no polynomial-time algorithm is known. e best known algorithms for
parity games run in time 𝑛𝑂(√𝑛) [JPZ08] and (roughly) time 𝑂(𝑚 ⋅ 𝑛𝑐/3) [Sch07].
Büchi games are parity games with 𝑐 = 2; parity games with 𝑐 = 3 are equivalent
to one-pair Stree objectives. e best known algorithms for mean-payoff games
run in pseudo-polynomial time 𝑂(𝑚𝑛𝑊 ) [Bri+11] and randomized sub-exponential
time 𝑂(2√𝑛 log 𝑛 log 𝑊 ) [BV07].

Symbolic algorithms for parity games. Parity games can be solved with 𝑂(𝑛𝑐)
symbolic steps when storing a linear number of sets [EL86; Zie98] or with 𝑂(𝑛𝑐/2+1)
symbolic steps when storing 𝑂(𝑛𝑐/2+1) many sets [Bro+97; Sei96].

1.2 Results and Outline

We survey the results of this thesis. e running times stated here are simplified;
the actual improvements also depend on other input parameters. All algorithms for
𝜔-regular objectives return (almost-sure) winning sets and can be modified to ad-
ditionally construct winning strategies within the same time bounds. More details
can be found in the corresponding chapters.

• In Chapter 2 we provide definitions and preliminaries.

• In Chapter 3 we present the first approximation algorithm for mean-payoff
objectives on graphs that uses fast matrix multiplication to improve the depen-
dence of the running time on 𝑛 compared to the long-standing running time
bounds for exact algorithms.

• InChapter 4we present improved algorithms for Stree objectives and MDPs.
In their simplified form, the running times are 𝑂(𝑚1.5√log 𝑛) and 𝑂(𝑛2),
which removes a factor of 𝑛/√log 𝑛 resp. 𝑛 for MDPs and improves the run-
ning time for graphs when 𝑚 ∈ 𝜔(𝑛4/3/ 3√log 𝑛).

• In Chapter 5 we first present an improved algorithm for parity games with a
constant number of priorities and 𝑚 ∈ 𝜔(𝑛4/3). Second, we show a symbolic
algorithm that takes 𝑂(𝑛𝑐/3+1) symbolic steps using a linear number of sets
and therefore improves the number of symbolic steps of the best known sym-
bolic algorithm while using the same number of sets as the basic symbolic
algorithm.

• In Chapter 6 we present several new algorithms and conditional lower
bounds for Rabin objectives and disjunctions of reachability, safety, Büchi,
and co-Büchi objectives on graphs and MDPs. ese results lead to (1) a sepa-
ration of models, that is, we provide conditional lower bounds for algorithmic
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problems on MDPs and strictly lower upper bounds for the corresponding
problems on graphs and (2) a separation of objectives, that is, for the same
model conditional lower bounds for one objective that are strictly higher
than the best upper bound for a related objective. In particular, together with
the algorithms in Chapter 4, we separate Stree and Rabin objectives on both
graphs and MDPs with respect to their asymptotic running times.

• Generalized Büchi objectives are conjunctions of Büchi objectives, and GR(1)
objectives are implications of generalized Büchi objectives. In Chapter 7 we
provide a new algorithm and tight conditional lower bounds for generalized
Büchi games that also imply a model separation between MDPs and game
graphs. We further present an algorithm for GR(1) objectives that achieves
an improved running time when 𝑚 ∈ 𝜔(𝑛1.5).





CHAPTER 2
Preliminaries

In this chapter we first state the considered algorithmic questions more precisely by
formally defining models, objectives, strategies, and winning sets. We then intro-
duce basic algorithmic concepts that are repeatedly used in Chapters 4 to 7. Finally,
we define fine-grained reductions and formally state the conjectures that we use for
the conditional lower bounds in Chapters 6 and 7.

2.1 Models

Graphs. e simplest model of a system is a directed graph, where vertices cor-
respond to states of the system and edges to system transitions. Unless stated oth-
erwise, we consider finite directed graphs that might have self-loops but have at
most one edge between every pair of vertices. We denote a graph by 𝐺 = (𝑉 , 𝐸),
where 𝑉 is its set of vertices and 𝐸 ⊆ 𝑉 × 𝑉 is its set of edges. We refer to sets of
vertices as vertices and to sets of edges as edges for short. We denote the number
of vertices by 𝑛 = |𝑉 | and the number of edges by 𝑚 = |𝐸|. We assume that every
vertex has at least one incoming edge and one outgoing edge and therefore we have
𝑚 ≥ 𝑛. Let Out(𝐺, 𝑢) = {𝑣 ∈ 𝑉 ∣ (𝑢, 𝑣) ∈ 𝐸} be the set of successor vertices of
vertex 𝑢 in the graph 𝐺, let Outdeg(𝐺, 𝑢) = |Out(𝐺, 𝑢)| be the number of successor
vertices of vertex 𝑢 in the graph 𝐺, and, analogously for the predecessor vertices,
let In(𝐺, 𝑢) = {𝑣 ∈ 𝑉 ∣ (𝑣, 𝑢) ∈ 𝐸} and Indeg(𝐺, 𝑢) = |In(𝐺, 𝑢)|; we omit 𝐺 if clear
from the context. e reverse graph RevG = (𝑉 , 𝐸𝑅) of a graph 𝐺 = (𝑉 , 𝐸) is the
graph with vertices 𝑉 and all edges of 𝐸 reversed, i.e., 𝐸𝑅 = {(𝑢, 𝑣) ∣ (𝑣, 𝑢) ∈ 𝐸}.

Markov decision processes (MDPs). AnMDP 𝑃 = ((𝑉 , 𝐸), (𝑉1, 𝑉𝑅), 𝛿) consists
of a finite directed graph 𝐺 = (𝑉 , 𝐸) with a set of vertices 𝑉 and a set of edges 𝐸
and a partition of the vertices 𝑉 into player-1 vertices 𝑉1 and random vertices 𝑉𝑅,
and a probabilistic transition function 𝛿. We call an edge (𝑢, 𝑣) with 𝑢 ∈ 𝑉1 player-1
edge and an edge (𝑤, 𝑣) with 𝑤 ∈ 𝑉𝑅 a random edge. e probabilistic transition

9
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function 𝛿 is a function from 𝑉𝑅 to 𝒟(𝑉 ), where 𝒟(𝑉 ) is the set of probability
distributions over 𝑉 . A random edge (𝑣, 𝑤) is in 𝐸 if and only if 𝛿(𝑣)[𝑤] > 0. We
assume for simplicity that for each random vertex 𝑣 the probability distribution 𝛿(𝑣)
is the uniform distribution over all 𝑤 ∈ 𝑉 with (𝑣, 𝑤) ∈ 𝐸; this is w.l.o.g. in the
qualitative analysis of MDPs. If 𝑉𝑅 = ∅, then we have a graph, and if 𝑉1 = ∅, then
we have a Markov chain. us MDPs generalize graphs and Markov chains.

Game graphs. A game graph 𝒢 = ((𝑉 , 𝐸), (𝑉1, 𝑉2)) is a finite directed graph
𝐺 = (𝑉 , 𝐸) with a set of vertices 𝑉 and a set of edges 𝐸 and a partition of 𝑉
into player-1 vertices 𝑉1 and player-2 vertices 𝑉2. Given such a game graph 𝒢 , we
denote with 𝒢 the game graph where the player-1 and player-2 vertices of 𝒢 are
interchanged, i.e, 𝒢 = ((𝑉 , 𝐸), (𝑉2, 𝑉1)). We use 𝑧 to denote a player and 𝑧 to denote
her opponent. Graphs are a special case of game graphs with 𝑉2 = ∅.

2.2 Plays and Strategies

Plays. An infinite path or play in a graph 𝐺 = (𝑉 , 𝐸) is an infinite sequence of
vertices 𝜔 = ⟨𝑣0, 𝑣1, 𝑣2, …⟩ such that (𝑣ℓ, 𝑣ℓ+1) ∈ 𝐸 for all ℓ ≥ 0. We denote
by 𝛺 the set of all plays. In game graphs, plays are formed by the following alter-
nating game of the two players: A game is initialized by placing a token on a vertex.
en the two players form an infinite path in the game graph by moving the token
along the edges of the underlying graph. Whenever the token is on a vertex of 𝑉𝑧,
player 𝑧 moves the token along one of the outgoing edges of the vertex. In MDPs
we have a random player instead of the second player and whenever the token is at
a vertex 𝑣 of 𝑉𝑅, the next vertex is chosen from Out(𝑣) according to the probability
distribution 𝛿(𝑣).

Strategies. Let 𝑉 ∗ ⋅ 𝑉𝑧 denote the set of finite sequences of vertices of 𝑉 that
end in 𝑉𝑧. A strategy 𝜎 ∶ 𝑉 ∗ ⋅ 𝑉𝑧 → 𝑉 of a player 𝑧 is a function that given a
finite prefix 𝜔 ∈ 𝑉 ∗ ⋅ 𝑉𝑧 of a play ending at 𝑣 ∈ 𝑉𝑧 selects a vertex 𝜎(𝜔) ∈ Out(𝑣)
to extend the play. We denote by 𝛴 the set of all player-1 strategies and by 𝛱
the set of all player-2 strategies. In game graphs a start vertex 𝑣 together with a
strategy 𝜎 ∈ 𝛴 for player 1 and a strategy 𝜋 ∈ 𝛱 for player 2 describe a unique play
𝜔(𝑣, 𝜎, 𝜋) = ⟨𝑣0, 𝑣1, 𝑣2, …⟩, which is defined as follows: 𝑣0 = 𝑣 and for all ℓ ≥ 0, if
𝑣ℓ ∈ 𝑉1, then 𝜎(⟨𝑣0, … , 𝑣ℓ⟩) = 𝑣ℓ+1, and if 𝑣ℓ ∈ 𝑉2, then 𝜋(⟨𝑣0, … , 𝑣ℓ⟩) = 𝑣ℓ+1.
Memoryless strategies do not depend on the history of a play but only on the current
vertex, i.e., we have 𝜎(𝜔) = 𝜎(𝜔′) for any 𝜔, 𝜔′ ∈ 𝑉 ∗ ⋅𝑉𝑧 that end in the same vertex
𝑣 ∈ 𝑉𝑧.

2.3 Objectives

A player-𝑧 objective 𝜙 is a subset of 𝛺 said to be winning for player 𝑧. We say
that a play 𝜔 ∈ 𝛺 satisfies the objective if 𝜔 ∈ 𝜙. Let Inf(𝜔) for 𝜔 ∈ 𝛺 denote
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the set of vertices that occurs infinitely oen in 𝜔. Objectives for which the set of
desired plays is determined by the set of vertices Inf(𝜔) for 𝜔 ∈ 𝛺 are called prefix-
independent. In game graphs we consider zero-sum games, where for a player-1
objective 𝜙 the dual objective 𝛺⧵𝜙 is winning for player 2. We denote a game (𝒢 , 𝜙)
by its game graph 𝒢 and the player-1 objective 𝜙. Below we define the objectives
used in this work.

Reachability and safety objectives. For a set of target vertices 𝑇 ⊆ 𝑉 the
reachability objective is the set of infinite paths that contain a vertex of 𝑇 , i.e.,
Reach(𝑇 ) = {⟨𝑣0, 𝑣1, 𝑣2, …⟩ ∈ 𝛺 ∣ ∃𝑖 ≥ 0 ∶ 𝑣𝑖 ∈ 𝑇 }. Its dual objective is the
safety objective, which for a vertex set 𝑇 ⊆ 𝑉 is the set of infinite paths that do not
contain any vertex of 𝑇 , i.e., Safe(𝑇 ) = {⟨𝑣0, 𝑣1, 𝑣2, …⟩ ∈ 𝛺 ∣ ∀𝑖 ≥ 0 ∶ 𝑣𝑖 ∉ 𝑇 }. We
have Reach(𝑇 ) = 𝛺 ⧵ Safe(𝑇 ).

Büchi and co-Büchi objectives. For a set of target vertices 𝑇 ⊆ 𝑉 the Büchi
objective is the set of infinite paths in which a vertex of 𝑇 occurs infinitely oen,
i.e., Büchi(𝑇 ) = {𝜔 ∈ 𝛺 ∣ Inf(𝜔) ∩ 𝑇 ≠ ∅}. Its dual objective is the co-Büchi
objective, which for a vertex set 𝑇 ⊆ 𝑉 is the set of infinite paths for which all
vertices of 𝑇 occur only finitely oen, i.e., coBüchi(𝑇 ) = {𝜔 ∈ 𝛺 ∣ Inf(𝜔) ∩ 𝑇 = ∅}.
We have Büchi(𝑇 ) = 𝛺 ⧵ coBüchi(𝑇 ).

Rabin and Streett objectives. We are given a set TP of 𝑘 pairs (𝐿𝑗 , 𝑈𝑗) of vertex
sets 𝐿𝑗 , 𝑈𝑗 ⊆ 𝑉 with 1 ≤ 𝑗 ≤ 𝑘, also called target pairs. e Stree objective is
the set of infinite paths for which it holds for each 1 ≤ 𝑗 ≤ 𝑘 that whenever a
vertex of 𝐿𝑗 occurs infinitely oen, then a vertex of 𝑈𝑗 occurs infinitely oen, i.e.,
Stree(TP) = {𝜔 ∈ 𝛺 ∣ 𝐿𝑗 ∩ Inf(𝜔) = ∅ or 𝑈𝑗 ∩ Inf(𝜔) ≠ ∅ for all 1 ≤ 𝑗 ≤ 𝑘}. Its
dual objective is the Rabin objective. e Rabin objective is the set of infinite paths
for which there exists a 𝑗, 1 ≤ 𝑗 ≤ 𝑘, such that a vertex of 𝐿𝑗 occurs infinitely oen
but no vertex of 𝑈𝑗 occurs infinitely oen, i.e., Rabin(TP) = {𝜔 ∈ 𝛺 ∣ 𝐿𝑗 ∩Inf(𝜔) ≠
∅ and 𝑈𝑗 ∩ Inf(𝜔) = ∅ for some 1 ≤ 𝑗 ≤ 𝑘}. We have Stree(TP) = 𝛺 ⧵Rabin(TP).
We denote the total number of elements for a set TP = {(𝐿𝑗 , 𝑈𝑗) ∣ 1 ≤ 𝑗 ≤ 𝑘} of
target pairs with 𝑏 = ∑𝑘

𝑗=1(|𝐿𝑗| + |𝑈𝑗|).

Conjunctive and disjunctive objectives. In general for two objectives 𝜙1 and
𝜙2 their conjunctive objective 𝜙1 ∧ 𝜙2 is equal to 𝜙1 ∩ 𝜙2 and their disjunctive
objective 𝜙1 ∨ 𝜙2 is equal to 𝜙1 ∪ 𝜙2, i.e., the conjunctive objective is satisfied
when both objectives are satisfied and the disjunctive objective is satisfied when
at least one of the two objectives is satisfied. For 𝑘 objectives 𝜙1, … , 𝜙𝑘 we de-
note their conjunctive objective with ⋀𝑘

𝑗=𝑗 𝜙𝑗 and their disjunctive objective with
⋁𝑘

𝑗=1 𝜙𝑗 . In this notation we have Stree(TP) = ⋀𝑘
𝑗=1 (coBüchi(𝐿𝑗) ∨ Büchi(𝑈𝑗))

and Rabin(TP) = ⋁𝑘
𝑗=1 (Büchi(𝐿𝑗) ∧ coBüchi(𝑈𝑗)).
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A generalized (or conjunctive) Büchi objective is specified by a set of 𝑘 target
sets 𝑇𝑗 for 1 ≤ 𝑗 ≤ 𝑘 and is equal to ⋀𝑘

𝑗=1 Büchi(𝑇𝑗). Its dual objective is the
disjunctive co-Büchi objective given by ⋁𝑘

𝑗=1 coBüchi(𝑇𝑗).
A generalized reactivity-1 (GR(1)) objective is an implication between two gener-

alized Büchi objectives; that is, when the generalized Büchi objectives are given by
⋀𝑘1

ℓ=1 Büchi(𝐿ℓ) and ⋀𝑘2
𝑗=1 Büchi(𝑈𝑗), then the GR(1) objective is satisfied if either

⋁𝑘1
ℓ=1 coBüchi(𝐿ℓ) holds, or ⋀𝑘2

𝑗=1 Büchi(𝑈𝑗) holds.

Parity objectives. Parity objectives with 𝑐 ≤ 𝑛 priorities (also called “colors”)
are defined with respect to a priority function 𝛼 ∶ 𝑉 → {0, … , 𝑐 − 1} that assigns
an integer priority between 0 and 𝑐 − 1 to each vertex. Technically, we define two
parity objectives that can easily be transformed into each other by adding one to
each priority: A play is in the even-parity objective when the highest priority occur-
ring infinitely oen in the play is even and, respectively, a play is in the odd-parity
objective when the highest priority occurring infinitely oen is odd (equivalently
the lowest priority could be used). In parity games the two players are typically
called player ℰ (for even) and player 𝒪 (for odd), where the objective of player ℰ
is an even-parity objective and the objective of player 𝒪 is an odd-parity objective.
From now on we call both types simply parity objectives and note that the dual of a
parity objective is again a parity objective. We denote by 𝑃𝑖 the set of vertices with
priority 𝑖, i.e., 𝑃𝑖 = {𝑣 ∣ 𝛼(𝑣) = 𝑖}. Note that if 𝑃𝑖 is empty for some 0 < 𝑖 < 𝑐 − 1,
then the priorities > 𝑖 can be decreased by 2 without changing the parity condition,
and when 𝑃𝑐−1 is empty, we simply have a parity game with one priority less; thus
we assume for technical convenience 𝑃𝑖 ≠ ∅ for 0 < 𝑖 < 𝑐. Parity objectives are spe-
cial cases of both Rabin and Stree objectives [see e.g. Cha07] and of mean-payoff
objectives [see e.g. Kla02].

Mean-payoff objectives. For mean-payoff objectives we consider graphs where
each edge (𝑢, 𝑣) is assigned a weight 𝑤(𝑢, 𝑣). For the analysis of reactive systems
it is sufficient to allow only non-negative integer weights. e mean-payoff of a
play ⟨𝑣0, 𝑣1, 𝑣2, …⟩ is defined as lim supℓ→∞

1
ℓ ∑ℓ

𝑖=1 𝑤(𝑣𝑖, 𝑣𝑖+1) and a play is in the
objective if it achieves the smallest possible mean-payoff. In this thesis we only
consider mean-payoff objectives on graphs, where the algorithmic question reduces
to finding the cycle with the smallest average edge weight.

2.4 Winning Sets

A play is winning for player 𝑧 if it is in her objective 𝜙. In graphs all vertices are
owned by player 1 and a vertex 𝑣 belongs to thewinning set if there exists an infinite
path starting at 𝑣 that is in the objective. e algorithmic problem in graphs is to
determine the winning set, and possibly to construct a corresponding strategy for
a given vertex in the winning set.
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In MDPs, for any measurable set of plays 𝐴 ⊆ 𝛺, let Pr𝜎
𝑣 (𝐴) denote the proba-

bility that a play starting at 𝑣 ∈ 𝑉 belongs to 𝐴 when player 1 plays strategy 𝜎. A
strategy 𝜎 is almost-sure (a.s.) winning from a vertex 𝑣 ∈ 𝑉 for an objective 𝜙 if
Pr𝜎

𝑣 (𝜙) = 1. e almost-sure winning set ⦉1⦊as (𝑃 , 𝜙) of player 1 is the set of vertices
for which player 1 has an almost-sure winning strategy. e algorithmic problem
in the qualitative analysis of MDPs is to determine the almost-sure winning set, and
possibly a corresponding winning strategy for player 1.

In game graphs a strategy 𝜎 is winning for player 𝑧 at a start vertex 𝑣 if the
resulting play is winning for player 𝑧 irrespective of the strategy of her opponent,
player 𝑧, i.e., 𝜔(𝑣, 𝜎, 𝜋) ∈ 𝜙 for all 𝜋 ∈ 𝛱 . A vertex 𝑣 belongs to the winning set
𝑊𝑧 of player 𝑧 if player 𝑧 has a winning strategy from 𝑣. Every vertex is winning
for exactly one of the two players and thus the winning sets 𝑊1 and 𝑊2 form a
partition of 𝑉 [Mar75]. When an explicit reference to a specific game (𝒢 , 𝜙) or
game graph 𝒢 is required, we use 𝑊𝑧(𝒢 , 𝜙) and 𝑊𝑧(𝒢 ), respectively, to refer to the
winning sets. e algorithmic problem in game graphs is to determine the winning
sets of the two players, and possibly corresponding winning strategies.

2.5 Reachable and Closed Subgraphs

In this section we introduce the basic algorithmic concepts to determine for each of
the models whether plays can reach or stay in certain parts of the model.

2.5.1 Graphs: Reachability and SCCs

Reachability. Let GR(𝐺, 𝑆) be the set of vertices of 𝐺 that can reach a
vertex of 𝑆 ⊆ 𝑉 within 𝐺. e set GR(𝐺, 𝑆) can be found by a linear-time
graph exploration.

Strongly connected components (SCCs). For a set of vertices 𝑆 ⊆ 𝑉 we denote
by 𝐺[𝑆] = (𝑆, 𝐸 ∩ (𝑆 × 𝑆)) the subgraph of the graph 𝐺 induced by the vertices
of 𝑆 . An induced subgraph 𝐺[𝑆] is strongly connected if there exists a path in 𝐺[𝑆]
between every pair of vertices of 𝑆 . Also a subgraph induced by a single vertex
without a self-loop is considered strongly connected. A strongly connected compo-
nent (SCC) of 𝐺 is a set of vertices 𝐶 ⊆ 𝑉 such that the induced subgraph 𝐺[𝐶]
is strongly connected and 𝐶 is a maximal set in 𝑉 with this property. We call an
SCC trivial if it only contains a single vertex and no edges; and non-trivial other-
wise. e SCCs of 𝐺 partition its vertices and can be found in linear time [Tar72]. A
boom SCC 𝐶 in a directed graph 𝐺 is an SCC with no edges from vertices of 𝐶 to
vertices of 𝑉 ⧵ 𝐶 , i.e., an SCC without outgoing edges. When the algorithm of Tar-
jan [Tar72] is initialized with a vertex of a boom SCC, then it has the property to
output the boom SCC in time linear in the number of edges in the boom SCC. A
top SCC is a boom SCC of RevG, i.e., an SCC without incoming edges (correspond-
ing to a source in the DAG of SCCs). For more intuition for boom and top SCCs,
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consider the graph in which each SCC is contracted into a single vertex (ignoring
edges within an SCC). In the resulting directed acyclic graph the sinks represent the
boom SCCs and the sources the top SCCs. Note that every graph has at least one
boom and at least one top SCC. If the graph is not strongly connected, then there
exist at least one top and at least one boom SCC that are disjoint and thus one of
them contains at most half of the vertices of 𝐺.

2.5.2 MDPs: Random Attractors and MECs

Random attractors. In an MDP 𝑃 = ((𝑉 , 𝐸), (𝑉1, 𝑉𝑅), 𝛿) the random aractor
Ar𝑅(𝑃 , 𝑈) of a set of vertices 𝑈 ⊆ 𝑉 is defined as Ar𝑅(𝑃 , 𝑈) = ⋃𝑖≥0 𝑍𝑖 where
𝑍0 = 𝑈 and for all 𝑖 ≥ 0 let

𝑍𝑖+1 = 𝑍𝑖 ∪ {𝑣 ∈ 𝑉𝑅 ∣ Out(𝑣) ∩ 𝑍𝑖 ≠ ∅} ∪ {𝑣 ∈ 𝑉1 ∣ Out(𝑣) ⊆ 𝑍𝑖} . (2.1)

Intuitively, the random aractor of 𝑈 is the set of vertices fromwhich there is a posi-
tive probability to reach 𝑈 ; or in other words, the set of vertices fromwhich player 1
cannot almost-surely avoid to reach 𝑈 . e random aractor 𝐴 = Ar𝑅(𝑃 , 𝑈) can
be computed in 𝑂(∑𝑣∈𝐴 Indeg(𝑣)) time [Bee80; Imm81].

Maximal end-components (MECs). Let 𝑋 ⊆ 𝑉 be a vertex set without outgo-
ing random edges, i.e., with Out(𝑣) ⊆ 𝑋 for all 𝑣 ∈ 𝑋 ∩ 𝑉𝑅. A sub-MDP of an
MDP 𝑃 induced by a vertex set 𝑋 ⊆ 𝑉 without outgoing random edges is defined
as 𝑃 [𝑋] = ((𝑋, 𝐸 ∩ (𝑋 × 𝑋), (𝑉1 ∩ 𝑋, 𝑉𝑅 ∩ 𝑋), 𝛿). Note that the requirement that
𝑋 has no outgoing random edges is necessary in order to use the same probabilis-
tic transition function 𝛿. An end-component (EC) of an MDP 𝑃 is a set of vertices
𝑋 ⊆ 𝑉 such that (a) has no outgoing random edges, i.e., 𝑃 [𝑋] is a valid sub-MDP,
(b) the induced sub-MDP 𝑃 [𝑋] is strongly connected, and (c) 𝑃 [𝑋] contains at least
one edge. Intuitively, an end-component is a set of vertices for which player 1 can
ensure that the play stays within the set and almost-surely reaches all vertices in the
set (infinitely oen). An end-component is a maximal end-component (MEC) if it is
maximal under set inclusion. An end-component is trivial if it consists of a single
vertex (with a self-loop), otherwise it is non-trivial. e MEC-decomposition of an
MDP consists of all MECs of the MDP and the set of vertices that do not belong to
any MEC.

2.5.3 Game Graphs: Attractors and Closed Sets

Attractors. In a game graph 𝒢 a 𝑧-aractor Ar𝑧(𝒢 , 𝑈) of a set 𝑈 ⊆ 𝑉 is the set
of vertices from which player 𝑧 has a strategy to reach 𝑈 against all strategies of
player 𝑧. A 𝑧-aractor can be constructed inductively as follows: Let 𝑍0 = 𝑈 ; and
for all 𝑖 ≥ 0 let

𝑍𝑖+1 = 𝑍𝑖 ∪ {𝑣 ∈ 𝑉𝑧 ∣ Out(𝑣) ∩ 𝑍𝑖 ≠ ∅} ∪ {𝑣 ∈ 𝑉𝑧 ∣ Out(𝑣) ⊆ 𝑍𝑖}.
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en Ar𝑧(𝒢 , 𝑈) = ⋃𝑖≥0 𝑍𝑖. e 𝑧-rank of a vertex 𝑣 w.r.t. a set 𝑈 is given by
rank𝑧(𝒢 , 𝑈, 𝑣) = min{𝑖 ∣ 𝑣 ∈ 𝑍𝑖} if 𝑣 ∈ Ar𝑧(𝒢 , 𝑈) and is ∞ otherwise. Let
𝐴 = Ar𝑧(𝒢 , 𝑈). e set 𝐴 can be computed in 𝑂(∑𝑣∈𝐴 Indeg(𝑣)) time [Bee80;
Imm81] and from each vertex of 𝐴 player 𝑧 has a memoryless strategy that stays
within 𝐴 to reach 𝑈 against any strategy of player 𝑧 [Zie98].

Closed sets. A set 𝑈 ⊆ 𝑉 is 𝑧-closed in 𝒢 if for all player-𝑧 vertices 𝑢 in 𝑈 we have
Out(𝑢) ⊆ 𝑈 and for all player-𝑧 vertices 𝑣 in 𝑈 there exists a vertex 𝑤 ∈ Out(𝑣)∩ 𝑈 .
For each 𝑧-closed set 𝑈 player 𝑧 has a strategy from each vertex of 𝑈 to keep the
play within 𝑈 , namely choosing an edge (𝑣, 𝑤) with 𝑤 ∈ Out(𝑣) ∩ 𝑈 whenever the
current vertex 𝑣 is in 𝑈 ∩ 𝑉𝑧 [Zie98]. For a game graph 𝒢 and a 𝑧-closed set 𝑈 we
denote by 𝒢 [𝑈] the game graph induced by the set of vertices 𝑈 . Note that given
that in 𝒢 each vertex has at least one outgoing edge, the same property holds for
𝒢 [𝑈]. We further use the shortcut 𝒢 ⧵ 𝑋 to denote 𝒢 [𝑉 ⧵ 𝑋] for a set of vertices 𝑋
such that 𝑉 ⧵ 𝑋 is 𝑧-closed.

e following lemma summarizes two well-known facts about aractors and
closed sets that we use frequently.

Lemma 2.5.1. (1) Let 𝒢 be a game graph in which each vertex has at least one
outgoing edge and let 𝑈 ⊆ 𝑉 . en the set 𝑉 ⧵ Ar𝑧(𝒢 , 𝑈) is 𝑧-closed in 𝒢
[Zie98, Lemma 4].

(2) Let 𝑈 be 𝑧-closed in 𝒢 . en Ar𝑧(𝒢 , 𝑈) is 𝑧-closed [Zie98, Lemma 5].

2.6 Winning Subgraphs

In all our algorithms that determine winning sets for prefix-independent objectives,
we first identify certain winning subgraphs and then obtain the winning set by ad-
ditional aractor or reachability computations. e intuition behind this approach
is that an infinite path 𝜔 satisfies the prefix-independent objective by visiting some
vertices of the underlying graph, denoted by Inf(𝜔), infinitely oen. us we can
first identify sets of vertices 𝑆 ⊆ 𝑉 such that the winning player has a strategy to
stay within 𝐺[𝑆], can visit all vertices of 𝑆 infinitely oen, and for which we have
that every 𝜔 with Inf(𝜔) = 𝑆 is in the objective; and then determine the vertices
from which the winning player can ensure to reach such sets. In the remainder of
this section we define such winning subgraphs for graphs, MDPs, and game graphs
and show the correctness of this approach.

2.6.1 Graphs: Good Components

We only provide an intuitive description for graphs as all definitions and properties
follow from the more general case of MDPs. Let 𝜙 be some prefix-independent
objective. A set of vertices 𝑋 ⊆ 𝑉 is a good 𝜙 component if it 1) induces a non-
trivial strongly connected subgraph and 2) each infinite path 𝜔 with Inf(𝜔) = 𝑋
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satisfies the objective 𝜙. Since 𝜙 is prefix-independent, every vertex that can reach
a good 𝜙 component is winning. Also the other direction holds: let 𝜔∗ ∈ 𝛺 be a
play in the objective. Since the graph is finite, aer some finite prefix of 𝜔∗ only
vertices of Inf(𝜔∗) occur in 𝜔∗. As every sequence of vertices in 𝜔∗ corresponds
to a sequence of edges in the graph, the set Inf(𝜔∗) induces a non-trivial strongly
connected subgraph. us by 𝜔∗ ∈ 𝜙 the set Inf(𝜔∗) is a good 𝜙 component. Hence
we can compute the winning set for graphs with a prefix-independent objective 𝜙
by first determining all (maximal) good 𝜙 components and then returning the set
of vertices that can reach a vertex in a good 𝜙 component. Since reachability in
graphs is in linear time, the running time is dominated by the detection of good
𝜙 components. A strategy to satisfy the objective starting from some vertex in the
winning set can be constructed from the path to reach a good 𝜙 component and a
path that traverses every vertex of the good 𝜙 component at least once.

2.6.2 MDPs: Good End-Components

In MDPs with prefix-independent objectives we determine the almost-sure (a.s.)
winning set by first computing all maximal good end-components and then the
a.s. winning set for the reachability objective with the union of the good end-
components as target set. In this section we show the correctness of this ap-
proach (see also [BK08, Chap. 10.6.3]). We define a good end-component as an
end-component for which the objective is satisfied if exactly the vertices of the
end-component are visited infinitely oen.

Definition 2.6.1 (Good end-component). Given an MDP 𝑃 and an objective 𝜙, an
end-component 𝑋 of 𝑃 such that each path 𝜔 ∈ 𝛺 with Inf(𝜔) = 𝑋 is in 𝜙 is called
a good 𝜙 end-component.

e importance of end-components lies in the following property: Once a play
reaches an end-component, player 1 can keep the play within the end-component
forever. Furthermore, she can visit each vertex in the end-component almost surely
and also almost surely infinitely oen (Lemma 2.6.2). is implies that in a good end-
component player 1 has an a.s. winning strategy (Lemma 2.6.3) and thus player 1
has an a.s. winning strategy from every vertex that can almost-surely reach a good
end-component (Lemma 2.6.4 and Corollary 2.6.5). is shows the soundness of
the approach of determining the a.s. winning set for a prefix-independent objective
by computing the a.s. winning set for a reachability objective with the union of all
good end-components as target set.

Lemma 2.6.2. Given an MDP 𝑃 and an end-component 𝑋, player 1 has a strategy
from each vertex of 𝑋 to reach all vertices of 𝑋 almost-surely infinitely oen while
visiting only vertices of 𝑋.

Proof. We define a strategy 𝜎 as follows: Choose some arbitrary numbering of the
vertices of 𝑋. e strategy (withmemory) of player 1 is to first follow a shortest path
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within the end-component (with, say, lexicographic tie breaking) to the first vertex
from the current position of the play until this vertex is reached, then a shortest
path within the end-component to the second vertex and so on, until she starts
with the first vertex again. is is possible because an end-component is a strongly
connected subgraph. Since an end-component has no outgoing random edges, the
play does not leave the end-component when player 1 plays this strategy. Let ℓ =
|𝑋| and let 𝛼 be the smallest positive transition probability in the MDP. en the
probability that the first chosen shortest path is followed with the above strategy
is at least 𝛼ℓ and the probability that a sequence of ℓ shortest paths within 𝑋 are
followed and thus all vertices of 𝑋 are visited is at least 𝛼ℓ2

. us the probability
that not all vertices of 𝑋 have been visited aer 𝑞⋅ℓ2 steps is atmost (1−𝛼ℓ2)𝑞 , which
goes to 0 when 𝑞 goes to infinity. Hence player 1 has a strategy such that all vertices
of 𝑋 are visited with probability 1. By the same argument, with probability 1 all
vertices of 𝑋 are visited infinitely oen because the probability that some vertex is
not visited aer some finite prefix of length 𝑡⋅ℓ2 can be bounded by (1−𝛼ℓ2)(𝑞−𝑡).

Lemma 2.6.3. From each vertex of a good 𝜙 end-component 𝑋 player 1 has a strategy
to satisfy 𝜙 almost-surely.

Proof. By Lemma 2.6.2 player 1 has a strategy that almost-surely visits all vertices
in 𝑋 but no other vertices infinitely oen. By the definition of a good 𝜙 end-
component, all paths visiting exactly the vertices in 𝑋 infinitely oen are in 𝜙.
Hence, the strategy given by Lemma 2.6.2 is also a.s. winning for 𝜙.

Lemma 2.6.4. Given an MDP 𝑃 , a prefix-independent objective 𝜙, and a set 𝑆 of a.s.
winning vertices, we have that if 𝑣 ∈ ⦉1⦊as (𝑃 , Reach(𝑆)), then also 𝑣 ∈ ⦉1⦊as (𝑃 , 𝜙).

Proof. Assume 𝑣 ∈ ⦉1⦊as (𝑃 ,Reach(𝑆)) and consider the following strategy. Start
with the strategy for reaching 𝑆 and as soon as one vertex 𝑠 of 𝑆 is reached, switch
to the a.s. winning strategy of 𝑠. As 𝑆 is reached almost-surely, the vertices visited
by the strategy for reaching 𝑆 do not affect the objective 𝜙.

Corollary 2.6.5 (Soundness of good end-components). For a prefix-independent ob-
jective 𝜙 and a set of good end-components 𝒳 the set ⦉1⦊as (𝑃 , Reach(⋃𝑋∈𝒳 𝑋)) is
contained in ⦉1⦊as (𝑃 , 𝜙).

Another conclusion we can draw from the above lemmata is that if a MEC con-
tains a good end-component, then player 1 has an a.s. winning strategy for the
whole MEC because she can reach the good end-component almost-surely from ev-
ery vertex of the MEC. We exploit this observation in the improved algorithm for
coBüchi objectives in Section 6.5.4.

Corollary 2.6.6 (of Lemmata 2.6.2 and 2.6.4). We are given an MDP 𝑃 and a prefix-
independent objective 𝜙. If a MEC 𝑋 contains an a.s. winning vertex (e.g., a good
end-component 𝑋), then all vertices in 𝑋 are a.s. winning for player 1.
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To show the completeness of the approach of computing good end-components,
we have to argue that every vertex from which player 1 can satisfy the objective
almost-surely also has a strategy to reach a good end-component almost-surely. For
this we need two rather technical lemmata. e intuition behind Lemma 2.6.7 is that
if a random vertex occurs infinitely oen on a path, then almost-surely also each
of its successors appears infinitely oen on that path. us we can argue that ver-
tex sets that are reached infinitely oen with positive probability are closed under
random edges and hence SCCs within such sets of vertices are end-components
(Lemma 2.6.8). To show completeness (Proposition 2.6.9) we then use a set of paths
in the objective that are reached with positive probability to show that the vertices
that these paths use infinitely oen form good end-components. A similar proof is
given for Büchi objectives in [CY95].

Lemma 2.6.7. Let 𝛺𝜎 for an MDP 𝑃 and a strategy 𝜎 of player 1 be the set of infinite
paths starting at some vertex 𝑣 that are compatible with the strategy 𝜎. Let 𝑎 ∈ 𝑉𝑅
be a vertex that is reached infinitely oen with probability 𝑝 from 𝑣 when player 1
follows 𝜎, i.e., a vertex for which we have Pr𝜎(𝑆𝑎) = 𝑝 for 𝑆𝑎 = {𝜔 ∈ 𝛺𝜎 ∣ 𝑎 ∈
Inf(𝜔)}. en we have for each successor 𝑏 of 𝑎 that the probability of the subset of
𝛺𝜎 containing both 𝑎 and 𝑏 infinitely oen is equal to the probability of the set 𝑆𝑎, i.e.,
Pr𝜎(𝑆𝑎𝑏) = 𝑝 for 𝑆𝑎𝑏 = {𝜔 ∈ 𝛺𝜎 ∣ 𝑎 ∈ Inf(𝜔), 𝑏 ∈ Inf(𝜔)} and Pr𝜎(𝑆𝑎 ⧵ 𝑆𝑎𝑏) = 0
with 𝑆𝑎 ⧵ 𝑆𝑎𝑏 = {𝜔 ∈ 𝛺𝜎 ∣ 𝑎 ∈ Inf(𝜔), 𝑏 ∉ Inf(𝜔)}.

Proof. Whenever a play resulting from the strategy 𝜎 visits vertex 𝑎, then with some
constant probability 𝑞 the play continues in 𝑏. us the probability that 𝑏 is visited
less than ℓ timeswhile 𝑎 is visited 𝑛 times is upper bounded by (1−𝑞ℓ)𝑛/ℓ which goes
to 0 with increasing 𝑛. us, we have Pr𝜎(𝑆𝑎 ⧵ 𝑆𝑎𝑏) = 0 and hence the probability
for the complement set 𝑆𝑎𝑏 w.r.t. 𝑆𝑎 is Pr𝜎(𝑆𝑎𝑏) = 𝑝.

Lemma 2.6.8. We are given an MDP 𝑃 , a strategy 𝜎 of player 1, and the set 𝛺𝜎 of
infinite paths starting at some vertex 𝑣 that are compatible with the strategy 𝜎. Let
𝛺′ ⊆ 𝛺𝜎 and let 𝑆 be the set of vertices that is reached infinitely oen with positive
probability by paths in 𝛺′ when player 1 follows 𝜎, i.e., 𝑆 = {𝑢 ∣ Pr𝜎({𝜔 ∣ 𝑢 ∈
Inf(𝜔), 𝜔 ∈ 𝛺′}) > 0}. We have that for each non-trivial SCC 𝐶 of 𝑃 [𝑆] and each
vertex 𝑎 ∈ 𝐶 ∩ 𝑉𝑅 all successors 𝑏 of 𝑎 are contained in 𝐶 , i.e., 𝐶 is an end-component
of 𝑃 .

Proof. Consider an SCC 𝐶 , a vertex 𝑎 ∈ 𝐶 ∩ 𝑉𝑅, and a successor 𝑏 of 𝑎. en by
the definition of 𝑆 and 𝐶 , Pr𝜎({𝜔 ∣ 𝑎 ∈ Inf(𝜔), 𝜔 ∈ 𝛺′}) = 𝑝 for some 𝑝 > 0 and
by Lemma 2.6.7 we get Pr𝜎({𝜔 ∣ 𝑎 ∈ Inf(𝜔), 𝑏 ∈ Inf(𝜔), 𝜔 ∈ 𝛺′}) = 𝑝, i.e., 𝑏 ∈ 𝑆 .
Note that for each 𝜔 ∈ 𝛺 the set Inf(𝜔) induces a strongly connected subgraph.
us for each of the paths 𝜔 in the set {𝜔 ∣ 𝑎 ∈ Inf(𝜔), 𝑏 ∈ Inf(𝜔), 𝜔 ∈ 𝛺′} we
have a path from 𝑏 to 𝑎 consisting solely of vertices in Inf(𝜔). Since there are just
finitely many paths from 𝑏 to 𝑎 in 𝑃 , at least one must have non-zero probability
and thus is also contained in 𝑆 . Hence, 𝑏 belongs to the SCC 𝐶 .
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Proposition 2.6.9 (Completeness of good end-components). Let 𝑃 be an MDP, let
𝜙 be a prefix independent objective, and let 𝒳 be the set of all good 𝜙 end-components.
en ⦉1⦊as (𝑃 , 𝜙) is contained in ⦉1⦊as (𝑃 , Reach(∪𝑋∈𝒳 𝑋)).

Proof. For a vertex 𝑣 ∈ ⦉1⦊as (𝑃 , 𝜙), fix a strategy 𝜎 of player 1 such that the ob-
jective is satisfied almost-surely. Let 𝑃𝜎 be the sub-MDP of 𝑃 that consists of the
vertices that are visited infinitely oen with non-zero probability when player 1 fol-
lows strategy 𝜎, starting from 𝑣. Note that by Lemma 2.6.8 each SCC of 𝑃𝜎 is an
end-component of 𝑃 . Moreover, 𝜎 is a strategy for almost-surely reaching 𝑃𝜎 (each
infinite path has to visit at least one vertex infinitely oen).

e SCCs of 𝑃𝜎 are not necessarily good end-components but might consist
of multiple good end-components, and player 1 might choose one of these good
end-components depending on the history of the play. We complete the proof by
showing that each vertex of 𝑃𝜎 is contained in a good end-component.

To this end, let 𝛺𝜎 be the set of infinite paths starting at 𝑣 that are compatible
with the strategy 𝜎 and satisfy the objective. For each set 𝑆 ⊆ 𝑉 , let 𝛺𝑆

𝜎 denote
the maximal subset of 𝛺𝜎 such that for all 𝜔 ∈ 𝛺𝑆

𝜎 we have Inf(𝜔) = 𝑆 . For an
arbitrary vertex 𝑢 of 𝑃𝜎 we consider all sets 𝛺𝑆

𝜎 with 𝑢 ∈ 𝑆 . At least one of these
sets 𝛺𝑆

𝜎 has non-zero probability since there are only finitely many possible sets 𝑆
and 𝑢 is visited infinitely oen with non-zero probability. Let us consider one of the
sets of paths 𝛺𝑆

𝜎 with non-zero probability. By Lemma 2.6.8 with 𝛺′ = 𝛺𝑆
𝜎 , the set

𝑆 is closed under random edges. Moreover, as in each path 𝜔 ∈ 𝛺𝜎 the vertices
Inf(𝜔) induce a strongly connected sub-graph, the sub-MDP 𝑃 [𝑆] is also strongly
connected and thus 𝑆 is an end-component. Finally, as the paths 𝜔 ∈ 𝛺𝑆

𝜎 satisfy
the objective and the objective 𝜙 is determined by Inf(𝜔) = 𝑆 , the set 𝑆 forms a
good end component. Hence, we have shown that each vertex of 𝑃𝜎 is contained in
a good 𝜙 end-component, which completes the proof.

Searching for good end-components. Several of our algorithms maintain ver-
tex sets that are candidates for good end-components. For such a vertex set 𝑆 we
(a) refine the maintained sets according to the SCC decomposition of 𝑃 [𝑆] and (b)
for a set of vertices 𝑌 for which we know that it cannot be contained in a good end-
component, we remove its random aractor from 𝑆 . e following lemma shows
the correctness of these operations.

Lemma 2.6.10. Given an MDP 𝑃 = (𝐺 = (𝑉 , 𝐸), (𝑉1, 𝑉𝑅), 𝛿), let 𝑋 be an end-
component with 𝑋 ⊆ 𝑆 for some 𝑆 ⊆ 𝑉 .

(a) For one SCC 𝐶 of 𝐺[𝑆] we have 𝑋 ⊆ 𝐶 and

(b) for each 𝑌 ⊆ 𝑉 ⧵ 𝑋 and each sub-MDP 𝑃 ′ containing 𝑋 we have 𝑋 ⊆ 𝑆 ⧵
Ar𝑅(𝑃 ′, 𝑌 ) = ∅.

Proof. Property (a) holds since every end-component induces a strongly connected
sub-MDP. We prove Property (b) by showing that Ar𝑅(𝑃 ′, 𝑌 ) does not contain a
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vertex of 𝑋 by induction over the recursive definition of a random aractor. Let the
sets 𝑍𝑖 be as in Equation (2.1). We have 𝑍0 = 𝑌 and thus 𝑍0 ∩ 𝑋 = ∅. Assume
we have 𝑍𝑖 ∩ 𝑋 = ∅ for some 𝑖 ≥ 0. No vertex of 𝑉𝑅 ∩ 𝑋 has an outgoing
edge to 𝑉 ⧵ 𝑋 and thus the set 𝑋 ∩ {𝑣 ∈ 𝑉𝑅 ∣ Out(𝑃 ′, 𝑣) ∩ 𝑍𝑖 ≠ ∅} is empty.
Further every vertex in 𝑉1 ∩ 𝑋 has an outgoing edge to a vertex in 𝑋. Hence also
𝑋 ∩ {𝑣 ∈ 𝑉1 ∣ Out(𝑃 ′, 𝑣) ⊆ 𝑍𝑖} is empty and we have that 𝑍𝑖+1 ∩ 𝑋 = ∅.

2.6.3 Game Graphs: Dominions

In game graphs we search for winning subgraphs called dominions. e notion
of dominions was introduced by [JPZ08]. A set of vertices 𝐷 ≠ ∅ is a player-𝑧
dominion if player 𝑧 has a winning strategy from every vertex of 𝐷 that also ensures
only vertices of 𝐷 are visited. Note that a player-𝑧 dominion is also a 𝑧-closed set
and that the 𝑧-aractor of a player-𝑧 dominion is again a player-𝑧 dominion. e
following lemma summarizes somewell-known facts about dominions and winning
sets.

Lemma 2.6.11. e following assertions hold for game graphs 𝒢 with at least one
outgoing edge per vertex and prefix independent objectives. Let 𝑈 ⊆ 𝑉 .

(1) Let𝑈 be 𝑧-closed in𝒢 . en a 𝑧-dominion in𝒢 [𝑈] is a 𝑧-dominion in𝒢 [JPZ08,
Lemma 4.4]1.

(2) e set 𝑊𝑧(𝒢 ) is a 𝑧-dominion [JPZ08, Lemma 4.1].

(3) Let𝑈 be a subset of the winning set𝑊𝑧(𝒢 ) of player 𝑧 and let𝐴 be its 𝑧-aractor
Ar𝑧(𝒢 , 𝑈). en the winning set 𝑊𝑧(𝒢 ) of the player 𝑧 is the union of 𝐴 and
the winning set 𝑊𝑧(𝒢 [𝑉 ⧵ 𝐴]), and the winning set 𝑊𝑧(𝒢 ) of the opponent 𝑧 is
equal to 𝑊𝑧(𝒢 [𝑉 ⧵ 𝐴]) [JPZ08, Lemma 4.5].

Proof. (1) Player 𝑧 cannot leave the set 𝑧-closed set 𝑈 , thus player 𝑧 can use the
same winning strategy for the vertices of the 𝑧-dominion in 𝒢 as in 𝒢 [𝑈].

(2) Recall that the winning sets of the two players partition the vertices [Mar75].
us we have that for any prefix independent objective that as soon as the
play leaves the winning set of player 𝑧, the opponent 𝑧 can play his winning
strategy starting from the vertex in his winning set that was reached. Hence
the winning strategy of player 𝑧 for the vertices in 𝑊𝑧(𝒢 ) has to ensure that
only vertices of 𝑊𝑧(𝒢 ) are visited and thus the set 𝑊𝑧(𝒢 ) is a 𝑧-dominion.

(3) By Lemma 2.5.1 (1) the set 𝑉 ⧵ 𝐴 is 𝑧-closed. By (2) 𝑊𝑧(𝒢 [𝑉 ⧵ 𝐴]) is a 𝑧-
dominion in 𝒢 [𝑉 ⧵ 𝐴] and by (1) also in 𝒢 . us we have 𝑊𝑧(𝒢 [𝑉 ⧵ 𝐴]) ⊆
𝑊𝑧(𝒢 ). Since 𝑊𝑧(𝒢 ) and 𝑊𝑧(𝒢 ) form a partition of 𝑉 , we complete the proof
by showing 𝑊𝑧(𝒢 [𝑉 ⧵𝐴]) ⊆ 𝑊𝑧(𝒢 ). For this we construct a winning strategy
for player 𝑧 from the vertices of 𝑊𝑧(𝒢 [𝑉 ⧵𝐴]) in 𝒢 . As long as the play stays

1 Note that a 𝑧-closed set of [JPZ08] corresponds to our notion of a 𝑧-closed set.
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within 𝑉 ⧵ 𝐴, player 𝑧 follows her winning strategy in 𝒢 [𝑉 ⧵ 𝐴]. If the play
reaches 𝐴⧵𝑈 , she follows her aractor strategy to 𝑈 . When the play reaches
𝑈 , she follows her winning strategy for 𝑈 in 𝒢 (that exists by assumption).
We have that player 𝑧 wins by the winning strategy in 𝒢 [𝑉 ⧵ 𝐴] if the play
forever stays within 𝑉 ⧵ 𝐴 and by the winning strategy for 𝑈 in 𝒢 if the play
ever reaches a vertex of 𝐴.

2.7 Conditional Lower Bounds

While classical complexity results are based on assumptions about relationships be-
tween complexity classes, e.g., 𝘗 ≠ 𝘕 𝘗 , polynomial lower bounds are oen based
on widely believed, conjectured lower bounds for well studied algorithmic prob-
lems. A conditional lower bound for a problem 𝐵 that is based on a conjectured
lower bound for a problem 𝐴 is shown by a fine-grained reduction from problem 𝐴
to problem 𝐵.

Fine-grained reductions. Fine-grained reductions relate running time improve-
ments for one algorithmic problem to another (ignoring lower-order terms). e no-
tion of a fine-grained reduction was introduced for cubic running times by [VW10]
and formally generalized to arbitrary running times by [Car+16]. For the sake of
this thesis the following definition is sufficient: Let (𝑃 , 𝑇 ) denote a problem 𝑃 to-
gether with a time complexity 𝑇 . (𝑃1, 𝑇1) is fine-grained reducible (≤𝐹 𝐺𝑅) to (𝑃2, 𝑇2),
if an algorithm with running time 𝑂(𝑇 1−𝜀

2 ) for any 𝜀 > 0 for problem 𝑃2 implies an
algorithm with running time 𝑂(𝑇 1−𝛿

1 ) for some 𝛿 > 0 for problem 𝑃1. Assume we
have (𝑃1, 𝑇1) ≤𝐹 𝐺𝑅 (𝑃2, 𝑇2). If it is conjectured that no 𝑂(𝑇 1−𝛿

1 ) for any 𝛿 > 0 exists
for problem 𝑃1, then we have that there is no 𝑂(𝑇 1−𝜀

2 ) for any 𝜀 > 0 for problem 𝑃2
if the conjecture is true. In this case we say that there is a conditional lower bound of
𝛺(𝑇 1−𝑜(1)

2 ) for problem 𝑃2 under the conjecture that there is no 𝑂(𝑇 1−𝛿
1 ) algorithm

for 𝑃1 and any 𝛿 > 0.

Conjectured lower bounds. We next discuss the popular conjectures that are
the basis for the conditional lower bounds in this thesis, see Chapter 1 for pointers
to other popular conjectures. e polynomial-time conjectures assume the Word
RAM model with 𝑂(log 𝑛) bit words.

Remark 2.7.1. e conjectures that no polynomial improvements over the best known
running times are possible do not exclude improvements by sub-polynomial factors
such as poly-logarithmic factors or factors of, e.g., 2√log 𝑛 as in [Wil14a]. Similarly,
conjectures about exponential running times do not exclude improvements by polyno-
mial factors.

First, we consider conjectures on Boolean matrix multiplication [VW10; AV14]
and triangle detection [AV14] in graphs, which build the basis for our lower bounds
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on dense graphs. A triangle in a graph is a triple 𝑥, 𝑦, 𝑧 of distinct vertices such that
(𝑥, 𝑦), (𝑦, 𝑧), (𝑧, 𝑥) ∈ 𝐸.

Boolean matrices can be multiplied with any integer matrix multiplication algo-
rithm; for this 𝑂(𝑛𝜔) time algorithms with 𝜔 < 2.3727 are known [Vas12; Le 14].
However, due to the high constants hidden in the running time bound, these “alge-
braic” algorithms are currently impractical. erefore, other types, i.e., “combinato-
rial”, algorithms are desirable. In the conjectures below, combinatorial means avoid-
ing the existing types of sub-cubic time matrix multiplication algorithms. ere ex-
ist combinatorial algorithms that improve upon the basic cubic time algorithm by
logarithmic factors, e.g., the 𝑂(𝑛3/ log4 𝑛) time algorithm for Boolean matrix mul-
tiplication and triangle detection by Yu [Yu15]. With fast matrix multiplication,
triangles can be detected in time 𝑂(min(𝑚2𝜔/(𝜔+1), 𝑛𝜔)) [AYZ97].

Conjecture 2.7.2 (Combinatorial Booleanmatrixmultiplication conjecture (BMM)).
ere is no 𝑂(𝑛3−𝜀) time combinatorial algorithm for computing the Boolean product
of two 𝑛 × 𝑛 Boolean matrices for any 𝜀 > 0.

Conjecture 2.7.3 (Combinatorial triangle conjecture (CTC)). ere is no 𝑂(𝑛3−𝜀)
time combinatorial algorithm that can detect whether a graph contains a triangle for
any 𝜀 > 0.

By a result of Vassilevska Williams andWilliams [VW10], we have that BMM is
equivalent to CTC. A weaker assumption, without the restriction to combinatorial
algorithms, is that detecting a triangle in a graph takes super-linear time. A gener-
alization of the triangle conjecture is the 𝑘-clique conjecture [Woe04; ABV15a].

Second, we consider the Strong Exponential Time Hypothesis [IPZ01; CIP09]
and the orthogonal vectors conjecture [AVW16], the former dealing with the sat-
isfiability of a propositional logic formula in conjunctive normal form (CNF-SAT)
(see [Abb+16] for conjectures on other representations of the satisfiability problem),
and the laer with the orthogonal vectors problem.

e orthogonal vectors problem (OV). Given two sets 𝑆1, 𝑆2 of 𝑑-bit vectors with
|𝑆1|, |𝑆2| ≤ 𝑁 and 𝑑 ∈ 𝛩(log 𝑁), are there 𝑢 ∈ 𝑆1 and 𝑣 ∈ 𝑆2 such that ∑𝑑

𝑖=1 𝑢𝑖 ⋅
𝑣𝑖 = 0?

For the orthogonal vectors problem the current fastest algorithm runs in time
𝑂(𝑛2−1/𝑂(log(𝑑/ log 𝑛))) [AWY15]. For 𝑘-CNF-SAT, where the number of literals per
clause is bounded by a constant 𝑘, there exist several algorithms with a running
time of the form 𝑂(2𝑛(1−𝑐/𝑘)) for some constant 𝑐 [DH09]. For the general CNF-SAT
problem an improvement over exhaustive search is a major open problem.

Conjecture 2.7.4 (Strong Exponential Time Hypothesis (SETH)). For each 𝜀 > 0
there is a 𝑘 such that k-CNF-SAT on 𝑛 variables and 𝑚 clauses cannot be solved in
time 𝑂(2(1−𝜀)𝑛 poly(𝑚)).

Conjecture 2.7.5 (Orthogonal vectors conjecture (OVC)). ere is no 𝑂(𝑁2−𝜀) time
algorithm for the orthogonal vectors problem for any 𝜀 > 0.
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By a result of Williams [Wil05] we know that SETH implies OVC, i.e., when-
ever a problem is hard assuming OVC, it is also hard when assuming SETH. Hence,
it is preferable to use OVC for proving lower bounds. Finally, to the best of our
knowledge, no such relations between the former two conjectures and the laer
two conjectures are known.





CHAPTER 3
Approximating the Minimum

Cycle Mean

3.1 Introduction

In this chapter we show the first approximation algorithm for mean-payoff objec-
tives on graphs that improves the dependence of the running time on the number of
vertices 𝑛, compared to the best known exact algorithm. For mean-payoff objectives
a good component (see Section 2.6.1) is a strongly connected subgraph (induced by
a vertex set), i.e., a not necessarily simple cycle, with minimum average edge weight
among all cycles. erefore computing the winning set for mean-payoff objectives
on graphs reduces to computing theminimum cycle mean for each SCC of the input
graph and then determining the set of vertices that can reach the SCCs where the
minimum cycle mean is the smallest. A strategy to satisfy the mean-payoff objec-
tive is then given by a corresponding cycle with minimum mean weight and a path
from a start vertex to the cycle.

Minimum cycle mean problem. e input to the problem is a finite directed
graph 𝐺 = (𝑉 , 𝐸, 𝑤) with a set 𝑉 of 𝑛 vertices, a set 𝐸 of 𝑚 edges, and a weight
function 𝑤 that assigns an integer weight to every edge. Given a cycle 𝐶 , the
mean weight 𝜇(𝐶) of the cycle is the ratio of the sum of the weights of the cy-
cle and the number of edges in the cycle. e algorithmic question asks to compute
𝜇 = min{𝜇(𝐶) ∣ 𝐶 is a cycle}: the minimum cycle mean. e minimum cycle
mean problem is an important problem in combinatorial optimization and has a
long history of algorithmic study. An 𝑂(𝑛𝑚) time algorithm for the problem was
given by Karp [Kar78]. e current best known algorithm for the problem by Orlin
and Ahuja, which is over two decades old, requires 𝑂(𝑚√𝑛 log (𝑛𝑊 )) time [OA92],
where 𝑊 is the maximum absolute value of the weights.

25
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Applications. e minimum cycle mean problem is a basic combinatorial opti-
mization problem that has numerous applications in network flows [AMO93]. In the
context of the formal analysis of systems, the performance of systems as well as the
average resource consumption of systems is modeled as the minimum cycle mean
problem. For quantitative objectives such as mean-payoff a system is modeled as a
weighted directed graph, where vertices represent states of the system, edges repre-
sent transitions, and every edge is assigned a non-negative integer representing the
resource consumption (or delay) associated with the transition. e computation of
a minimum average resource consumption behavior (or minimum average response
time) corresponds to the computation of the minimum cycle mean. Several recent
works model other quantitative aspects of system analysis (such as robustness) also
as the mean-weight problem (also known asmean-payoff problem) [Blo+09; DM10].

Results. is chapter contains the following results.

(1) Reduction to min-plus matrix multiplication. We show that the minimum cycle
mean problem is reducible to the problem of a logarithmic number ofmin-plus
matrix multiplications of 𝑛 × 𝑛-matrices, where 𝑛 is the number of vertices of
the graph. Our result implies that algorithmic improvements for min-plus
matrix multiplication will carry over to the minimum cycle mean problem
with a logarithmic multiplicative factor in the running time.

(2) Faster approximation algorithm. When the weights are non-negative, we
present the first (1+𝜖)-approximation algorithm for the problem that outputs

̂𝜇 such that 𝜇 ≤ ̂𝜇 ≤ (1+𝜖)𝜇. Our algorithm runs in time 𝑂(𝑛𝜔 log3 (𝑛𝑊 /𝜖)/𝜖),
where 𝑂(𝑛𝜔) is the time required for the classic 𝑛 × 𝑛-matrix multiplica-
tion. e current best known bound for 𝜔 is 𝜔 < 2.3727 [Vas12; Le 14].
As usual, the 𝑂-notation is used to “hide” a polylogarithmic factor, i.e.,
𝑂(𝑇 (𝑛, 𝑚, 𝑊 )) = 𝑂(𝑇 (𝑛, 𝑚, 𝑊 ) ⋅ polylog(𝑛)).
For the computation of ̂𝜇, 𝑂(𝑛2) space is needed. If 𝑂(𝑛2 log(𝑛𝑊 /𝜖)) space is
used instead, i.e., the intermediate results of the approximation algorithm are
saved, we can additionally output a cycle with mean weight at most ̂𝜇.
e worst-case complexity of the current best known algorithm for the mini-
mum cycle mean problem is 𝑂(𝑚√𝑛 log (𝑛𝑊 )) [OA92], which could be as bad
as 𝑂(𝑛2.5 log (𝑛𝑊 )). us for a (1 + 𝜖)-approximation our algorithm provides
beer dependence on 𝑛.
Note that in applications related to the analysis of system the weights are
always non-negative (they represent resource consumption, delays, etc); and
the weights are typically small, whereas the state space of the system is large.
Moreover, due to imprecision in modeling, approximations in weights are
already introduced during themodeling phase. Hence a (1+𝜖)-approximation
of the minimum cycle mean problem with small weights and large graphs
is a relevant algorithmic problem in the formal analysis of systems, and we
improve the long-standing complexity of the problem.
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Table 3.1: Current fastest asymptotic running times for the minimum cycle mean

Reference Running time Approx. Weight Range

Karp [Kar78] 𝑂(𝑚𝑛) exact [−𝑊 , 𝑊 ]
Orlin and Ahuja [OA92] 𝑂(𝑚√𝑛 log (𝑛𝑊 )) exact [−𝑊 , 𝑊 ] ∩ ℤ
Sankowski [San05] (implicit) 𝑂(𝑊 𝑛𝜔 log (𝑛𝑊 )) exact [−𝑊 , 𝑊 ] ∩ ℤ
Butkovic and 𝑂(𝑛2) exact {0, 1}
Cuninghame-Green [BC92]
eorem 3.4.7 𝑶̃(𝒏𝝎 log 𝟑(𝒏𝑾 /𝝐)/𝝐) 𝟏 + 𝝐 [𝟎, 𝑾 ] ∩ ℤ

e key technique that we use to obtain the approximation algorithm is a
combination of the value iteration algorithm for the minimum cycle mean
problem, and a technique used for an approximation algorithm for all-pair
shortest path problem for directed graphs. Table 3.1 compares our algorithm
with the asymptotically fastest existing algorithms.

Outline. In the rest of this section we discuss related work and motivate the mini-
mum cycle mean problem by its relation to negative cycle detection. We summarize
all needed definitions in Section 3.2. In Section 3.3 we describe how min-plus ma-
trix multiplication can be used to compute the minimum cycle mean exactly. In
Section 3.4 we present our approximation algorithm and prove its correctness and
running time. In Section 3.5 we show how at the cost of storing the intermediate
results an approximately optimal cycle can be output.

3.1.1 Related work

We distinguish two types of algorithms: algorithms that are independent of the
weights of the graph and algorithms that depend on the weights in someway. By 𝑊
we denote the maximum absolute edge weight of the graph. Recall that graphs with
mean-payoff objectives are special cases of both MDPs with mean-payoff objectives
and mean-payoff games [EM79; GKK88; ZP96; Ras16].

Algorithms independent of weights. e classic algorithm of Karp [Kar78]
uses a dynamic programming approach to find theminimum cycle mean and runs in
time 𝑂(𝑚𝑛). A corresponding cycle can easily be computed given the outcome of the
algorithm. e main drawback of Karp’s algorithm is that its best-case and worst-
case running times are the same. e algorithms of Hartmann and Orlin [HO93]
and of Dasdan and Gupta [DG98] address this issue, but also have a worst-case com-
plexity of 𝑂(𝑚𝑛). By solving the more general parametric shortest path problem,
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Karp and Orlin [KO81] can compute the minimum cycle mean in time 𝑂(𝑚𝑛 log 𝑛).
Young, Tarjan, and Orlin [YTO91] improve this running time to 𝑂(𝑚𝑛 + 𝑛2 log 𝑛).

A well known algorithm for MDPs with mean-payoff objectives is the value it-
eration algorithm [FV97]. In each iteration this algorithm spends time 𝑂(𝑚) and in
total it performs 𝑂(𝑛𝑊 ) iterations. Madani [Mad02] showed that on graphs a cer-
tain variant of the value iteration algorithm “converges” to the optimal cycle aer
𝑂(𝑛2) iterations, which gives a running time of 𝑂(𝑚𝑛2) for computing the minimum
cycle mean. Using similar ideas he also obtains a running time of 𝑂(𝑚𝑛). Howard’s
policy iteration algorithm is another well-known algorithm for MDPs with mean-
payoff objectives [How60]. e complexity of this algorithm for graphs is unre-
solved. Recently, Hansen and Zwick [HZ10] provided a class of weighted graphs
on which Howard’s algorithm performs 𝛺(𝑛2) iterations where each iteration takes
time 𝑂(𝑚). For a summary of recent results on Howard’s algorithm see [Mil13].

Algorithms depending on weights. If a graph is complete and has only two
different edge weights, then the minimum cycle mean problem can be solved in
time 𝑂(𝑛2) because the matrix of its weights is bivalent [BC92].

Another approach is to use the connection to the problem of detecting a negative
cycle. Lawler [Law76] gave a reduction for finding the minimum cycle mean that
performs 𝑂(log(𝑛𝑊 )) calls to a negative cycle detection algorithm. e main idea
is to perform binary search on the minimum cycle mean. In each search step the
negative cycle detection algorithm is run on a graph with modified edge weights.
Orlin and Ahuja [OA92] extend this idea by the approximate binary search tech-
nique [Zem87]. By combining approximate binary search with their scaling algo-
rithm for the assignment problem, they can compute the minimum mean cycle in
time 𝑂(𝑚√𝑛 log 𝑛𝑊 ).

Note that in its full generality the single-source shortest paths problem (SSSP)
also demands the detection of a negative cycle reachable from the source vertex.1
erefore it is also possible to reduce the minimum cycle mean problem to SSSP.
e best time bounds on SSSP are as follows. Goldberg’s scaling algorithm [Gol95]
solves the SSSP problem (and therefore also the negative cycle detection problem)
in time 𝑂(𝑚√𝑛 log 𝑊 ). McCormick [McC93] combines approximate binary search
with Goldberg’s scaling algorithm to an 𝑂(𝑚√𝑛 log 𝑛𝑊 ) time algorithm for the
minimum cycle mean problem, whichmatches the result of Orlin and Ahuja [OA92].
Sankowski’s matrixmultiplication based algorithm [San05] solves the SSSP problem
in time 𝑂(𝑊 𝑛𝜔). By combining binary search with Sankowski’s algorithm, the
minimum cycle mean problem can be solved in time 𝑂(𝑊 𝑛𝜔 log 𝑛𝑊 ).

Approximation of minimum cycle mean. To the best of our knowledge, our
algorithm is the first approximation algorithm specifically for the minimum cycle
mean problem. ere are both additive and multiplicative fully polynomial-time

1Remember that, for example, Dijkstra’s algorithm for computing single-source shortest paths
requires non-negative edge weights which excludes the possibility of negative cycles.
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approximation schemes for solving mean-payoff games [Rot+10; Bor+11], which is
a more general problem. Note that in contrast to finding the minimum cycle mean it
is not known whether the exact solution to a mean-payoff game can be computed in
polynomial time. e results of [Rot+10] and [Bor+11] are obtained by reductions to
a pseudo-polynomial algorithm for solving mean-payoff games. In the case of the
minimum cycle mean problem, these reductions do not provide an improvement
over the current fastest exact algorithms mentioned above.

Min-plus matrix multiplication. Our approach reduces the problem of finding
the minimum cycle mean to computing the (approximate) min-plus product of ma-
trices. e naive algorithm for computing the min-plus product of two matrices
runs in time 𝑂(𝑛3). To date, no algorithm is known that runs in time 𝑂(𝑛3−𝛼) for
some 𝛼 > 0, i.e., (truly) subcubic time. is is in contrast to classic matrix mul-
tiplication that can be done in time 𝑂(𝑛𝜔), where the current best bound on 𝜔 is
𝜔 < 2.3727 [Vas12; Le 14]. Moreover, Vassilevska Williams and Williams [VW10]
showed that computing the min-plus product is computationally “equivalent” to a
series of problems including all-pairs shortest paths and negative triangle detection
in the following sense: if one of these problems has a subcubic algorithm, then all
of them have. is provides evidence for the hardness of these problems.

Still, the running time of 𝑂(𝑛3) for the min-plus product can be improved by
sub-polynomial factors. Fredman [Fre76] gave an algorithm for computing the min-
plus product with a running time of 𝑂(𝑛3(log log 𝑛)1/3/(log 𝑛)1/3). Aer a long line
of improvements, Chan [Cha10] presented an algorithm of similar flavor with a run-
ning time of 𝑂(𝑛3(log log 𝑛)3/(log 𝑛)2). Recently, Williams [Wil14b] developed a ran-
domized algorithm that runs in time 𝑂(𝑛3/2𝛺(log 𝑛/ log log 𝑛)1/2) and is correct with high
probability. Williams also gave a deterministic version that runs in time 𝑂(𝑛3/2log𝛿 𝑛)
for some 𝛿 > 0.

A different approach for computing the min-plus product of two integer ma-
trices is to reduce the problem to classic matrix multiplication [Yuv76]. In this
way, the min-plus product can be computed in the pseudo-polynomial time of
𝑂(𝑀𝑛𝜔 log 𝑀) [AGM97]. is observation was used by Alon, Galil, and Mar-
galit [AGM97] and Zwick [Zwi02] to obtain faster all-pairs shortest paths algo-
rithms in directed graphs for the case of small integer edge weights. Zwick also
combines this min-plus matrix multiplication algorithm with an adaptive scaling
technique that allows to compute (1 + 𝜖)-approximate all-pairs shortest paths in
graphs with non-negative edge weights. Our approach of finding the minimum
cycle mean extensively uses this technique.

3.1.2 Relation to negative cycle detection

In the following we provide additional motivation for our approach of approximat-
ing the minimum cycle mean by relating it to negative cycle detection. A solution to
theminimum cyclemean problem immediately gives a solution to the negative cycle
detection problem. erefore, an improved running time for finding the minimum
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cycle mean will also give an improved running time for detecting a negative cycle,
which in turn has numerous applications [WT05] and comes up as a subproblem
in algorithms for other problems, such as the minimum-cost flow problem [CG99].
However, researchers are stuck with finding faster algorithms for negative cycle de-
tection. Even more, by the binary-search based reduction of minimum cycle mean
to negative cycle detection, the worst-case running times of both problems are the
same, up to a factor of 𝑂(log 𝑛𝑊 ). Approximation helps to break the running time
barrier induced by negative cycle detection. Intuitively, the approximation provided
by our algorithm is not good enough to distinguish between a positive and a nega-
tive cycle. erefore our approximation algorithm can be faster than known algo-
rithms for the negative cycle detection problem.

Our new algorithm needs two non-standard assumptions. First, it only works
for graphs with non-negative edge weights. Second, it provides a multiplicative
approximation. Both of these assumptions are necessary for bypassing the negative
cycle detection problem—only one of them is not enough. On the one hand, if we
could compute the minimum cycle mean exactly for non-negative edge weights,
then, by shiing of weights, we could solve the negative cycle detection problem.
On the other hand, a reduction of Gentilini [Gen14] (initially designed for mean-
payoff games) shows that if one can compute a multiplicative 𝜖-approximation ̂𝜇 of
the minimum cycle mean 𝜇 such that |( ̂𝜇 − 𝜇)/𝜇| ≤ 𝜖, then one can immediately
detect negative cycles. In particular, this is true for 𝜖 ≤ 1 for which 𝜇 and ̂𝜇 will
always have the same sign. To see this, note that when ̂𝜇 and 𝜇 have different
signs, then |( ̂𝜇 − 𝜇)/𝜇| = (| ̂𝜇| + |𝜇|)/|𝜇| = | ̂𝜇|/|𝜇| + 1 > 1. us, the only hope of
geing a multiplicative 𝜖-approximation for arbitrary edge weights without solving
the negative cycle detection problem is when 𝜖 > 1. We remark that Gentilini’s
definition of an 𝜖-approximation is a generalization of our definition of a (1 + 𝜖)-
approximation to arbitrary edge weights.

3.2 Definitions

roughout this chapter we let 𝐺 = (𝑉 , 𝐸, 𝑤) be a finite, weighted directed graph
with a set of vertices 𝑉 and a set of edges 𝐸 such that every vertex has at least
one outgoing edge. e weight function 𝑤 assigns a non-negative integer weight
to every edge. We denote by 𝑛 the number of vertices of 𝐺 and by 𝑚 the number of
edges of 𝐺. Note that 𝑚 ≥ 𝑛 because every vertex has at least one outgoing edge.

A path is a finite sequence of edges 𝑃 = (𝑒1, … , 𝑒𝑡) such that for all consecutive
edges 𝑒𝑖 = (𝑥𝑖, 𝑦𝑖) and 𝑒𝑖+1 = (𝑥𝑖+1, 𝑦𝑖+1) of 𝑃 we have 𝑦𝑖 = 𝑥𝑖+1. Note that edges
may be repeated on a path, we do not only consider simple paths. e length |𝑃 |
of a path 𝑃 = (𝑒1, … , 𝑒𝑡) is the number of edges of 𝑃 , i.e. |𝑃 | = 𝑡. e weight
of a path 𝑃 = (𝑒1, … , 𝑒𝑡), denoted by 𝑤(𝑃 ), is the sum of its edge weights, i.e.
𝑤(𝑃 ) = ∑1≤𝑖≤𝑡 𝑤(𝑒𝑖). e mean weight of the path 𝑃 is the ratio 𝑤(𝑃 )/|𝑃 |. A cycle
is a path in which the start vertex and the end vertex are the same. In a simple cycle
each vertex contained in the cycle appears in exactly two of the edges of the cycle;
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thus the length of a simple cycle can be at most 𝑛.
e minimum cycle mean of 𝐺 is the minimum mean weight of any cycle in 𝐺.

For every vertex 𝑥 we denote by 𝜇(𝑥) the value of the minimum mean-weight cycle
reachable from 𝑥. e minimum cycle mean of 𝐺 is simply the minimum 𝜇(𝑥) over
all vertices 𝑥.

We will use that there always exists a simple cycle with minimum mean weight
and thus we can assume that the cycle with minimum mean weight has at most
𝑛 edges. is is already used implicitly in [Kar78]. We show first that every non-
simple cycle can be partitioned into a set of simple cycles, which already appeared
in [ZP96].

Proposition 3.2.1 ([ZP96]). Let 𝑃 be a path in the graph 𝐺 = (𝑉 , 𝐸) from 𝑥 to 𝑦.
Let 𝐺𝑃 = (𝑉 , 𝐸𝑃 ) be the multigraph consisting of the edges in 𝑃 . en 𝐸𝑃 can be
partitioned into a simple path from 𝑥 to 𝑦 and a set 𝑆 of simple cycles.

Proof. Initialize the set 𝑆 with the empty set. Follow the path 𝑃 until a vertex is
encountered for the second time. Let 𝑣 be this vertex and let 𝐶 be the set of edges
between the first and the second encounter of 𝑣. en 𝐶 is a simple cycle since
no other vertex was encountered twice. Add 𝐶 to 𝑆 , remove 𝐶 from 𝑃 and follow
the updated path 𝑃 ′, starting again from vertex 𝑥, until a vertex is encountered for
the second time. Repeat this removal of simple cycles until the final vertex of 𝑃
is reached without encountering any vertex twice. en the remaining path is a
simple path from 𝑥 to 𝑦.

Proposition 3.2.2. Given a set of simple cycles 𝑆 with total mean weight

𝜇 =
∑𝐶𝑖∈𝑆 ∑𝑒∈𝐶𝑖

𝑤(𝑒)
∑𝐶𝑖∈𝑆 |𝐶𝑖|

,

there exists a simple cycle in 𝑆 with mean weight at most 𝜇.

Proof. Denote for each simple cycle 𝐶𝑖 ∈ 𝑆 its mean weight by 𝜇𝑖 and its number
of edges by 𝑚𝑖. en

𝜇 ∑
𝐶𝑖∈𝑆

𝑚𝑖 =
∑𝐶𝑖∈𝑆 ∑𝑒∈𝐶𝑖

𝑤(𝑒)
∑𝐶𝑖∈𝑆 𝑚𝑖 ∑

𝐶𝑖∈𝑆
𝑚𝑖 = ∑

𝐶𝑖∈𝑆
𝑤(𝐶𝑖) = ∑

𝐶𝑖∈𝑆
𝜇𝑖𝑚𝑖 ≥ min

𝐶𝑖∈𝑆
(𝜇𝑖)⋅ ∑

𝐶𝑖∈𝑆
𝑚𝑖

and thus min𝐶𝑖∈𝑆(𝜇𝑖) ≤ 𝜇.

Corollary 3.2.3. Let 𝜇 be the minimum cycle mean of a graph 𝐺. en there exists a
simple cycle in 𝐺 with mean weight 𝜇.

For every vertex 𝑥 and every integer 𝑡 ≥ 1 we denote by 𝛿𝑡(𝑥) the minimum
weight of all paths starting at 𝑥 that have length 𝑡, i.e., consist of exactly 𝑡 edges.
For all pairs of vertices 𝑥 and 𝑦 and every integer 𝑡 ≥ 1 we denote by 𝑑𝑡(𝑥, 𝑦) the
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minimum weight of all paths of length 𝑡 from 𝑥 to 𝑦. If no such path exists we set
𝑑𝑡(𝑥, 𝑦) = ∞.

For every matrix 𝐴 we denote by 𝐴[𝑖, 𝑗] the entry at the 𝑖-th row and the 𝑗-th
column of 𝐴. We only consider 𝑛 × 𝑛 matrices with integer entries, where 𝑛 is the
size of the graph. We assume that the vertices of 𝐺 are numbered consecutively
from 1 to 𝑛, which allows us to use 𝐴[𝑥, 𝑦] to refer to the entry of 𝐴 belonging to
vertices 𝑥 and 𝑦. e weight matrix 𝐷 of 𝐺 is the matrix containing the weights
of 𝐺. For all pairs of vertices 𝑥 and 𝑦 we set 𝐷[𝑥, 𝑦] = 𝑤(𝑥, 𝑦) if the graph contains
the edge (𝑥, 𝑦) and 𝐷[𝑥, 𝑦] = ∞ otherwise.

We denote the min-plus product of two matrices 𝐴 and 𝐵 by 𝐴 ⋆ 𝐵. e min-
plus product is defined as follows. If 𝐶 = 𝐴 ⋆ 𝐵, then for all indices 1 ≤ 𝑖, 𝑗 ≤ 𝑛 we
have 𝐶[𝑖, 𝑗] = min1≤𝑘≤𝑛(𝐴[𝑖, 𝑘] + 𝐵[𝑘, 𝑗]). We denote by 𝐴𝑡 the 𝑡-th power of the
matrix 𝐴. Formally, we set 𝐴1 = 𝐴 and 𝐴𝑡+1 = 𝐴 ⋆ 𝐴𝑡 for 𝑡 ≥ 1. We denote by 𝜔
the exponent of classic matrix multiplication, i.e., the product of two 𝑛 × 𝑛 matrices
can be computed in time 𝑂(𝑛𝜔). e current best bound on 𝜔 is 𝜔 < 2.3727 [Vas12;
Le 14].

3.3 Reduction to Min-Plus Matrix Multiplication

In the following we explain the main idea of our approach, which is to use min-plus
matrix multiplication to find the minimum cycle mean. e well-known value itera-
tion algorithm uses a dynamic programming approach to compute in each iteration
a value for every vertex 𝑥 from the values of the previous iteration. Aer 𝑡 itera-
tions, the value computed by the value iteration algorithm for vertex 𝑥 is equal to
𝛿𝑡(𝑥), the minimum weight of all paths with length 𝑡 starting at 𝑥. We are actually
interested in 𝜇(𝑥), the value of the minimum mean-weight cycle reachable from 𝑥.
It is well known that lim𝑡→∞ 𝛿𝑡(𝑥)/𝑡 = 𝜇(𝑥) and that the value of 𝜇(𝑥) can be com-
puted from 𝛿𝑡(𝑥) if 𝑡 is large enough; specifically, for 𝑡 = 4𝑛3𝑊 the unique number
in (𝛿𝑡(𝑥)/𝑡 − 1/[2𝑛(𝑛 − 1)], 𝛿𝑡(𝑥)/𝑡 + 1/[2𝑛(𝑛 − 1)]) ∩ ℚ that has a denominator of at
most 𝑛 is equal to 𝜇(𝑥) [ZP96]. us, one possibility to determine 𝜇(𝑥) is the fol-
lowing: first, compute 𝛿𝑡(𝑥) for 𝑡 large enough with the value iteration algorithm
and then compute 𝜇(𝑥) from 𝛿𝑡(𝑥). However, using the value iteration algorithm
for computing 𝛿𝑡(𝑥) is expensive because its running time is linear in 𝑡 and thus
pseudo-polynomial.

Our idea is to compute 𝛿𝑡(𝑥) for a large value of 𝑡 by using fast matrix multipli-
cation instead of the value iteration algorithm. We will compute the matrix 𝐷𝑡, the
𝑡-th power of the weight matrix (using min-plus matrix multiplication). e matrix
𝐷𝑡 contains the value of the minimum-weight path of length exactly 𝑡 for all pairs of
vertices. Given 𝐷𝑡, we can determine the value 𝛿𝑡(𝑥) for every vertex 𝑥 by finding
the minimum entry in the row of 𝐷𝑡 corresponding to 𝑥.

Proposition 3.3.1. For every 𝑡 ≥ 1 and all vertices 𝑥 and 𝑦 we have (i) 𝑑𝑡(𝑥, 𝑦) =
𝐷𝑡[𝑥, 𝑦] and (ii) 𝛿𝑡(𝑥) = min𝑦∈𝑉 𝐷𝑡[𝑥, 𝑦].
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Proof. We give the proof for the sake of completeness of the presentation. e claim
𝑑𝑡(𝑥, 𝑦) = 𝐷𝑡[𝑥, 𝑦] follows from a simple induction on 𝑡. If 𝑡 = 1, then clearly the
minimal-weight path of length 1 from 𝑥 to 𝑦 is the edge from 𝑥 to 𝑦 if it exists,
otherwise 𝑑𝑡(𝑥, 𝑦) = ∞. If 𝑡 ≥ 1, then a minimal-weight path of length 𝑡 from
𝑥 to 𝑦 (if it exists) consists of some outgoing edge of 𝑒 = (𝑥, 𝑧) as its first edge
and then a minimal-weight path of length 𝑡 − 1 from 𝑧 to 𝑦. We therefore have
𝑑𝑡(𝑥, 𝑦) = min(𝑥,𝑧)∈𝐸 𝑤(𝑥, 𝑧) + 𝑑𝑡−1(𝑧, 𝑦). By the definition of the weight matrix and
the induction hypothesis we get 𝑑𝑡(𝑥, 𝑦) = min𝑧∈𝑉 𝐷[𝑥, 𝑧] + 𝐷𝑡−1[𝑧, 𝑦]. erefore
the matrix 𝐷 ⋆ 𝐷𝑡−1 = 𝐷𝑡 contains the value of 𝑑𝑡(𝑥, 𝑦) for every pair of vertices 𝑥
and 𝑦.

For the second claim, 𝛿𝑡(𝑥) = min𝑦∈𝑉 𝐷𝑡[𝑥, 𝑦], observe that by the definition of
𝛿𝑡(𝑥) we obviously have 𝛿𝑡(𝑥) = min𝑦∈𝑉 𝑑𝑡(𝑥, 𝑦) because the minimal-weight path
of length 𝑡 starting at 𝑥 has some node 𝑦 as its end point.

Using this approach, the main question is how fast the matrix 𝐷𝑡 can be com-
puted. e most important observation is that 𝐷𝑡 (and therefore also 𝛿𝑡(𝑥)) can be
computed by repeated squaring with only 𝑂(log 𝑡) min-plus matrix multiplications.
is is different from the value iteration algorithm, where 𝑡 iterations are necessary
to compute 𝛿𝑡(𝑥).

Proposition 3.3.2. For every 𝑡 ≥ 1 we have 𝐷2𝑡 = 𝐷𝑡 ⋆ 𝐷𝑡. erefore the matrix 𝐷𝑡

can be computed with 𝑂(log 𝑡) many min-plus matrix multiplications.

Proof. We give the proof for the sake of completeness of the presentation. It can eas-
ily be verified that themin-plusmatrix product is associative [AHU74] and therefore
𝐷2𝑡 = 𝐷𝑡 ⋆ 𝐷𝑡. erefore, if 𝑡 is a power of two, we can compute 𝐷𝑡 with log2 𝑡
min-plus matrix multiplications. If 𝑡 is not a power of two, we can decompose 𝐷𝑡

into 𝐷𝑡 = 𝐷𝑡1 ⋆ ⋯ ⋆ 𝐷𝑡𝑘 where each 𝑡𝑖 ≤ 𝑡 (for 1 ≤ 𝑖 ≤ 𝑘) is a power of two
and 𝑘 ≤ ⌈log2 𝑡⌉. By storing intermediate results, we can compute 𝐷2𝑖

for every
0 ≤ 𝑖 ≤ ⌈log2 𝑡⌉ with ⌈log2 𝑡⌉ min-plus matrix multiplications. Using the decom-
position above, we have to multiply at most ⌈log2 𝑡⌉ such matrices to obtain 𝐷𝑡.
erefore the total number of min-plus matrix multiplications needed for comput-
ing 𝐷𝑡 is 𝑂(log 𝑡).

e running time of this algorithm depends on the time needed for computing
the min-plus product of two integer matrices. is running time usually depends
on the two parameters 𝑛 and 𝑀 , where 𝑛 is the size of the 𝑛 × 𝑛 matrices to be
multiplied (in our case this is equal to the number of vertices of the graph) and the
parameter 𝑀 denotes the maximum absolute integer entry in the matrices to be
multiplied. Whenwemultiply the matrix 𝐷 by itself to obtain 𝐷2, we have 𝑀 = 𝑊 ,
where 𝑊 is the maximum absolute edge weight. However, 𝑀 increases with every
multiplication and in general we can bound the maximum absolute integer entry
of the matrix 𝐷𝑡 only by 𝑀 = 𝑡𝑊 . Note that 𝑂(𝑛2) operations are necessary to
extract the minimum cycle mean 𝜇(𝑥) for all vertices 𝑥 from the matrix 𝐷𝑡 (with
𝑡 = 𝑂(𝑛3𝑊 ) [ZP96], see above).
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eorem 3.3.3. If the min-plus product of two 𝑛 × 𝑛 matrices with entries in
[−𝑀, 𝑀] ∩ ℤ ∪ {∞} can be computed in time 𝑇 (𝑛, 𝑀), then the minimum cycle
mean problem can be solved in time 𝑇 (𝑛, 𝑡𝑊 ) log2 𝑡 where 𝑡 = 𝑂(𝑛3𝑊 ).

Note that necessarily 𝑇 (𝑛, 𝑀) = 𝛺(𝑛2) because the result matrix has 𝑛2 entries that
have to be wrien.

Unfortunately, the approach outlined above does not immediately improve the
running time for the minimum cycle mean problem because min-plus matrix mul-
tiplication currently cannot be done fast enough. However, our approach is still
useful for solving the minimum cycle mean problem approximately because approx-
imate min-plus matrix multiplication can be done faster than its exact counterpart.

3.4 Approximation Algorithm

In this section we design an algorithm that computes an approximation of the min-
imum cycle mean in graphs with nonnegative integer edge weights. It follows the
approach of reducing the minimum cycle mean problem to min-plus matrix multi-
plication outlined in Section 3.3. e key to our algorithm is a fast procedure for
computing the min-plus product of two integer matrices approximately. We will
proceed as follows. First, we explain how to compute an approximation 𝐹 of 𝐷𝑡,
the 𝑡-th power of the weight matrix 𝐷. From this we get, for every vertex 𝑥, an ap-
proximation ̂𝛿𝑡(𝑥) of 𝛿𝑡(𝑥), the minimum-weight of all paths of length 𝑡 starting at 𝑥.
We then argue that for 𝑡 large enough (in particular 𝑡 = 𝑂(𝑛2𝑊 /𝜖)), the value 𝛿𝑡(𝑥)/𝑡
is an approximation of 𝜇(𝑥), the minimum cycle mean of cycles reachable from 𝑥.
By combining both approximations we can show that ̂𝛿𝑡(𝑥)/𝑡 is an approximation of
𝜇(𝑥). us, the main idea of our algorithm is to compute an approximation of 𝐷𝑡

for a large enough 𝑡.

3.4.1 Computing an Approximation of 𝐷𝑡

Our first goal is to compute an approximation of the matrix 𝐷𝑡, the 𝑡-th power of
the weight matrix 𝐷, given 𝑡 ≥ 1. Zwick [Zwi02] provides the following algorithm
for approximate min-plus matrix multiplication.

eorem 3.4.1 ([Zwi02]). Let 𝐴 and 𝐵 be two 𝑛 × 𝑛 matrices with integer entries
in [0, 𝑀] and let 𝐶 ∶= 𝐴 ⋆ 𝐵. Let 𝑅 ≥ log2 𝑛 be a power of two. e algorithm
approx-min-plus(𝐴, 𝐵, 𝑀, 𝑅) computes the approximatemin-plus product𝐶 of𝐴 and
𝐵 in time2 𝑂(𝑛𝜔𝑅 log(𝑀) log2(𝑅) log(𝑛)) such that for every 1 ≤ 𝑖, 𝑗 ≤ 𝑛 it holds that
𝐶[𝑖, 𝑗] ≤ 𝐶[𝑖, 𝑗] ≤ (1 + 4/𝑅)𝐶[𝑖, 𝑗].

2e running time of approx-min-plus is given by 𝑂(𝑛𝜔 log 𝑀) times the time needed to multi-
ply two 𝑂(𝑅 log 𝑛)-bit integers. With the Schönhage-Strassen algorithm for large integer multiplica-
tion, two 𝑘-bit integers can be multiplied in 𝑂(𝑘 log 𝑘 log log 𝑘) time, which gives a running time of
𝑂(𝑛𝜔𝑅 log(𝑀) log(𝑛) log(𝑅 log 𝑛) log log(𝑅 log 𝑛)). is can be bounded by the running time given in
eorem 3.4.1 if 𝑅 ≥ log 𝑛, which will always be the case in the following.
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We now give amodification (see Algorithm 3.1) of Zwick’s algorithm for approx-
imate shortest paths [Zwi02] such that, given an 𝜖 in (0, 1], the algorithm computes a
(1+𝜖)-approximation 𝐹 of 𝐷𝑡 when 𝑡 is a power of two such that for all 1 ≤ 𝑖, 𝑗 ≤ 𝑛
we have 𝐷𝑡[𝑖, 𝑗] ≤ 𝐹 [𝑖, 𝑗] ≤ (1 + 𝜖)𝐷𝑡[𝑖, 𝑗]. Just as we can compute 𝐷𝑡 exactly
with log2 𝑡 min-plus matrix multiplications, the algorithm computes the (1 + 𝜖)-
approximation of 𝐷𝑡 in log2 𝑡 iterations. However, in each iteration only an approx-
imate min-plus product is computed. Let 𝐹𝑠 be the approximation of 𝐷𝑠 ∶= 𝐷2𝑠

. In
the 𝑠-th iteration we use approx-min-plus(𝐹𝑠−1, 𝐹𝑠−1, 𝑡𝑊 , 𝑅) to calculate 𝐹𝑠 with 𝑅
chosen beforehand such that the desired error bound is reached for 𝐹 = 𝐹log2 𝑡.

Algorithm 3.1: Approximation of 𝐷𝑡

input :weight matrix 𝐷, error bound 𝜖 ∈ (0, 1], 𝑡 (a power of 2)
output : (1 + 𝜖)-approximation of 𝐷𝑡

1 𝐹 ← 𝐷
2 𝑟 ← 4 log2 𝑡/ ln(1 + 𝜖)
3 𝑅 ← 2⌈log2 𝑟⌉

4 for log2 𝑡 times do
5 𝐹 ← approx-min-plus(𝐹 , 𝐹 , 2𝑡𝑊 , 𝑅)
6 return 𝐹

Lemma 3.4.2. Given an 0 < 𝜖 ≤ 1 and a power of two 𝑡 ≥ 1, Algorithm 3.1 computes
a (1 + 𝜖)-approximation 𝐹 of 𝐷𝑡 in time

𝑂 (𝑛𝜔 ⋅ log2(𝑡)
𝜖 ⋅ log (𝑡𝑊 ) log2

(
log(𝑡)

𝜖 ) log(𝑛)) = 𝑂 (𝑛𝜔 ⋅ log2(𝑡)
𝜖 ⋅ log (𝑡𝑊 ))

such that 𝐷𝑡[𝑖, 𝑗] ≤ 𝐹 [𝑖, 𝑗] ≤ (1 + 𝜖) 𝐷𝑡[𝑖, 𝑗] for all 1 ≤ 𝑖, 𝑗 ≤ 𝑛.

Proof. We start with the main idea of the proof and continue with the details af-
terwards. e running time of approx-min-plus depends linearly on 𝑅 and loga-
rithmically on 𝑀 , the maximum entry of the input matrices. Algorithm 3.1 calls
approx-min-plus log2 𝑡 times. Each call increases the error by a factor of (1 + 4/𝑅).
However, as only log2 𝑡 approximate matrix multiplications are used, seing 𝑅 to
the smallest power of 2 that is larger than 4 log2(𝑡)/ ln(1 + 𝜖) will suffice to bound
the approximation error by (1 + 𝜖). We will show that 2𝑡𝑊 is an upper bound on
the entries in the input matrices for approx-min-plus. e stated running time will
follow from these two facts and eorem 3.4.1.

Let 𝐹𝑠 be the approximation of 𝐷𝑠 ∶= 𝐷2𝑠
computed by the algorithm aer

iteration 𝑠. Recall that 2𝑠𝑊 is an upper bound on the maximum entry in 𝐷𝑠. As
we will show, all entries in 𝐹𝑠 are at most (1 + 𝜖) times the entries in 𝐷𝑠. Since we
assume 𝜖 ≤ 1, we have 1 + 𝜖 ≤ 2. us 2𝑠+1𝑊 is an upper bound on the entries in
𝐹𝑠. Hence for 𝐹𝑠 with 1 ≤ 𝑠 < log2 𝑡, i.e., for all input matrices of approx-min-plus
in our algorithm, 2𝑡𝑊 is an upper bound its entries.
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is results in an overall running time of

𝑂 (𝑛𝜔𝑅 log (𝑡𝑊 ) log2(𝑅) log(𝑛) ⋅ log(𝑡)) ,

= 𝑂 (𝑛𝜔 ⋅ log2(𝑡)
log(1 + 𝜖) ⋅ log (𝑡𝑊 ) log2

(
log(𝑡)

log(1 + 𝜖)) log(𝑛)) ,

= 𝑂 (𝑛𝜔 ⋅ log2(𝑡)
𝜖 ⋅ log (𝑡𝑊 ) log2

(
log(𝑡)

𝜖 ) log(𝑛)) .

e last equation follows from the inequality ln(𝑥) ≤ 𝑥 − 1 for 𝑥 > 0: With 𝑥 =
1/(1 + 𝜖) and 𝜖 > 0 we have 1/ ln(1 + 𝜖) ≤ (1 + 𝜖)/𝜖. Since 𝜖 ≤ 1 it follows that
1/ log(1 + 𝜖) = 𝑂(1/𝜖).

To show the claimed approximation guarantee, we will prove that the inequality

𝐷𝑠[𝑖, 𝑗] ≤ 𝐹𝑠[𝑖, 𝑗] ≤ (1 + 4
𝑅)

𝑠
𝐷𝑠[𝑖, 𝑗] (3.1)

holds aer the 𝑠-th iteration of Algorithm 3.1 by induction on 𝑠. Note that the (1+𝜖)-
approximation follows from this inequality because the parameter 𝑅 is chosen such
that aer the (log2 𝑡)-th iteration of the algorithm it holds that

(1 + 4
𝑅)

log2 𝑡
≤ (1 + ln(1 + 𝜖)

log2 𝑡 )
log2 𝑡

≤ 𝑒ln(1+𝜖) = 1 + 𝜖 . (3.2)

For 𝑠 = 0 we have 𝐹𝑠 = 𝐷𝑠 and the inequality holds trivially. Assume the
inequality holds for 𝑠. We will show that it also holds for 𝑠 + 1.

First we prove the lower bound on 𝐹𝑠+1[𝑖, 𝑗]. Let 𝐶𝑠+1 be the exact min-plus
product of 𝐹𝑠 with itself, i.e., 𝐶𝑠+1 = 𝐹𝑠 ⋆ 𝐹𝑠. Let 𝑘𝑐 be the minimizing index
such that 𝐶𝑠+1[𝑖, 𝑗] = min1≤𝑘≤𝑛(𝐹𝑠[𝑖, 𝑘] + 𝐹𝑠[𝑘, 𝑗]) = 𝐹𝑠[𝑖, 𝑘𝑐] + 𝐹𝑠[𝑘𝑐 , 𝑗]. By the
definition of the min-plus product

𝐷𝑠+1[𝑖, 𝑗] = min
1≤𝑘≤𝑛

(𝐷𝑠[𝑖, 𝑘] + 𝐷𝑠[𝑘, 𝑗]) ≤ 𝐷𝑠[𝑖, 𝑘𝑐] + 𝐷𝑠[𝑘𝑐 , 𝑗] . (3.3)

By the induction hypothesis and the definition of 𝑘𝑐 we have

𝐷𝑠[𝑖, 𝑘𝑐] + 𝐷𝑠[𝑘𝑐 , 𝑗] ≤ 𝐹𝑠[𝑖, 𝑘𝑐] + 𝐹𝑠[𝑘𝑐 , 𝑗] = 𝐶𝑠+1[𝑖, 𝑗] . (3.4)

By eorem 3.4.1 the values of 𝐹𝑠+1 can only be larger than the values in 𝐶𝑠+1, i.e.,

𝐶𝑠+1[𝑖, 𝑗] ≤ 𝐹𝑠+1[𝑖, 𝑗] . (3.5)

Combining inequalities (3.3), (3.4), and (3.5) yields the claimed lower bound,

𝐷𝑠+1[𝑖, 𝑗] ≤ 𝐹𝑠+1[𝑖, 𝑗] .

Next we prove the upper bound on 𝐹𝑠+1[𝑖, 𝑗]. Let 𝑘𝑑 be the minimizing index
such that 𝐷𝑠+1[𝑖, 𝑗] = 𝐷𝑠[𝑖, 𝑘𝑑] + 𝐷𝑠[𝑘𝑑 , 𝑗]. eorem 3.4.1 gives the error from one
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call of approx-min-plus, i.e., the error in the entries of 𝐹𝑠+1 compared to the entries
of 𝐶𝑠+1. We have

𝐹𝑠+1[𝑖, 𝑗] ≤ (1 + 4
𝑅) 𝐶𝑠+1[𝑖, 𝑗] . (3.6)

By the definition of the min-plus product we know that

𝐶𝑠+1[𝑖, 𝑗] ≤ 𝐹𝑠[𝑖, 𝑘𝑑] + 𝐹𝑠[𝑘𝑑 , 𝑗] . (3.7)

By the induction hypothesis and the definition of 𝑘𝑑 we can reformulate the error
obtained in the first 𝑠 iterations of Algorithm 3.1 as follows:

𝐹𝑠[𝑖, 𝑘𝑑] + 𝐹𝑠[𝑘𝑑 , 𝑗] ≤ (1 + 4
𝑅)

𝑠
𝐷𝑠[𝑖, 𝑘𝑑] + (1 + 4

𝑅)
𝑠

𝐷𝑠[𝑘𝑑 , 𝑗]

= (1 + 4
𝑅)

𝑠
(𝐷𝑠[𝑖, 𝑘𝑑] + 𝐷𝑠[𝑘𝑑 , 𝑗])

= (1 + 4
𝑅)

𝑠
𝐷𝑠+1[𝑖, 𝑗] . (3.8)

Combining inequalities (3.6), (3.7), and (3.8) yields the upper bound

𝐹𝑠+1[𝑖, 𝑗] ≤ (1 + 4
𝑅)

𝑠+1
𝐷𝑠+1[𝑖, 𝑗] .

Once we have computed an approximation of the matrix 𝐷𝑡, we extract from it
the minimal entry of each row to obtain an approximation of 𝛿𝑡(𝑥). Here we use
the equivalence between the minimum entry of row 𝑥 of 𝐷𝑡 and 𝛿𝑡(𝑥) established
in Proposition 3.3.1. Remember that 𝛿𝑡(𝑥)/𝑡 approaches 𝜇(𝑥) for 𝑡 large enough and
later on we want to use the approximation of 𝛿𝑡(𝑥) to obtain an approximation of
the minimum cycle mean 𝜇(𝑥).

Lemma 3.4.3. e value ̂𝛿𝑡(𝑥) ∶= min𝑦∈𝑉 𝐹 [𝑥, 𝑦] approximates 𝛿𝑡(𝑥) with 𝛿𝑡(𝑥) ≤
̂𝛿𝑡(𝑥) ≤ (1 + 𝜖)𝛿𝑡(𝑥) .

Proof. Let 𝑦𝑓 and 𝑦𝑑 be the indices where the 𝑥-th rows of 𝐹 and 𝐷𝑡 obtain their
minimal values, respectively, i.e.,

𝑦𝑓 ∶= arg min
𝑦∈𝑉

𝐹 [𝑥, 𝑦] and 𝑦𝑑 ∶= arg min
𝑦∈𝑉

𝐷𝑡[𝑥, 𝑦] .

By these definitions and Lemma 3.4.2 we have

𝛿𝑡(𝑥) = 𝐷𝑡[𝑥, 𝑦𝑑] ≤ 𝐷𝑡[𝑥, 𝑦𝑓 ] ≤ 𝐹 [𝑥, 𝑦𝑓 ] = ̂𝛿𝑡(𝑥)

and
̂𝛿𝑡(𝑥) = 𝐹 [𝑥, 𝑦𝑓 ] ≤ 𝐹 [𝑥, 𝑦𝑑] ≤ (1 + 𝜖)𝐷𝑡[𝑥, 𝑦𝑑] .
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3.4.2 Approximating the Minimum Cycle Mean

We now add the next building block to our algorithm. So far, we can obtain an
approximation ̂𝛿𝑡(𝑥) of 𝛿𝑡(𝑥) for any 𝑡 that is a power of two. We now show that
𝛿𝑡(𝑥)/𝑡 is itself an approximation of the minimum cycle mean 𝜇(𝑥) for 𝑡 large enough.
en we argue that also ̂𝛿𝑡(𝑥)/𝑡 approximates the minimum cycle mean 𝜇(𝑥) for 𝑡
large enough. is value of 𝑡 bounds the number of iterations of our algorithm. A
similar technique was also used in [ZP96] to bound the number of iterations of the
value iteration algorithm for mean-payoff games.

We start by showing that 𝛿𝑡(𝑥)/𝑡 differs from 𝜇(𝑥) by at most 𝑛𝑊 /𝑡 for any 𝑡.
en we turn this additive error into a multiplicative error by choosing a large
enough value of 𝑡. A multiplicative error implies that we have to compute the solu-
tion exactly for 𝜇(𝑥) = 0. We will use a separate procedure to identify all vertices 𝑥
with 𝜇(𝑥) = 0 and compute the approximation only for the remaining vertices. Note
that 𝜇(𝑥) > 0 implies 𝜇(𝑥) ≥ 1/𝑛 because all edge weights are integers and we can
assume by Corollary 3.2.3 that the cycle with minimum mean weight has at most 𝑛
edges.

Lemma 3.4.4. For every 𝑥 ∈ 𝑉 and every integer 𝑡 ≥ 1 it holds that

𝑡 ⋅ 𝜇(𝑥) − 𝑛𝑊 ≤ 𝛿𝑡(𝑥) ≤ 𝑡 ⋅ 𝜇(𝑥) + 𝑛𝑊 .

Proof. We first show the lower bound on 𝛿𝑡(𝑥). Let 𝑃 be a path of length 𝑡 starting at
𝑥 with weight 𝛿𝑡(𝑥). Consider the cycles in 𝑃 and let 𝐸′ be the multiset of the edges
in 𝑃 that are in a cycle of 𝑃 . ere can be at most 𝑛 edges that are not in a cycle
of 𝑃 , thus there are at least max(𝑡 − 𝑛, 0) edges in 𝐸′. Since 𝜇(𝑥) is the minimum
mean weight of any cycle reachable from 𝑥, the sum of the weights of the edges in
𝐸′ can be bounded below by 𝜇(𝑥) times the number of edges in 𝐸′. Furthermore,
the value of 𝜇(𝑥) can be at most 𝑊 . As we only allow non-negative edge weights,
the sum of the weights of the edges in 𝐸′ is a lower bound on 𝛿𝑡(𝑥). us we have

𝛿𝑡(𝑥) ≥ ∑
𝑒∈𝐸′

𝑤(𝑒) ≥ (𝑡 − 𝑛)𝜇(𝑥) ≥ 𝑡 ⋅ 𝜇(𝑥) − 𝑛 ⋅ 𝜇(𝑥) ≥ 𝑡 ⋅ 𝜇(𝑥) − 𝑛𝑊 .

Next we prove the upper bound on 𝛿𝑡(𝑥). Let 𝑙 be the length of the shortest path
from 𝑥 to a vertex 𝑦 in a minimum mean-weight cycle 𝐶 reachable from 𝑥 (such
that only 𝑦 is both in the shortest path and in 𝐶). Let 𝑐 be the length of 𝐶 . By
Corollary 3.2.3 we can assume that 𝐶 is a simple cycle. Let the path 𝑄 be a path
of length 𝑡 that consists of the shortest path from 𝑥 to 𝑦, ⌊(𝑡 − 𝑙)/𝑐⌋ rounds on 𝐶 ,
and 𝑡 − 𝑙 − 𝑐⌊(𝑡 − 𝑙)/𝑐⌋ additional edges in 𝐶 . By the definition of 𝛿𝑡(𝑥), we have
𝛿𝑡(𝑥) ≤ 𝑤(𝑄). e sum of the length of the shortest path from 𝑥 to 𝑦 and the number
of the remaining edges of 𝑄 not in a complete round on 𝐶 can be at most 𝑛 because
in a graph with non-negative weights no shortest path has a cycle and no vertices
in 𝐶 except 𝑦 are contained in the shortest path from 𝑥 to 𝑦. Each of these edges has
a weight of at most 𝑊 . e mean weight of 𝐶 is 𝜇(𝑥), thus the sum of the weights
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of the edges in all complete rounds on 𝐶 is 𝜇(𝑥) ⋅ 𝑐⌊(𝑡 − 𝑙)/𝑐⌋ ≤ 𝜇(𝑥) ⋅ 𝑡. Hence we
have

𝛿𝑡(𝑥) ≤ 𝑤(𝑄) ≤ 𝑡 ⋅ 𝜇(𝑥) + 𝑛𝑊 .

In the next step we show that we can use the fact that 𝛿𝑡(𝑥)/𝑡 is an approximation
of 𝜇(𝑥) to obtain a (1 + 𝜖)-approximation ̂𝜇(𝑥) of 𝜇(𝑥) even if we only have an
approximation ̂𝛿𝑡(𝑥) of 𝛿𝑡(𝑥) with (1 + 𝜖)-error. We exclude the case 𝜇(𝑥) = 0 for
the moment.

Lemma 3.4.5. Assume we have an approximation ̂𝛿𝑡(𝑥) of 𝛿𝑡(𝑥) such that 𝛿𝑡(𝑥) ≤
̂𝛿𝑡(𝑥) ≤ (1 + 𝜖)𝛿𝑡(𝑥) for 0 < 𝜖 ≤ 1/2. If

𝑡 ≥ 𝑛2𝑊
𝜖 , 𝜇(𝑥) ≥ 1

𝑛 , and ̂𝜇(𝑥) ∶=
̂𝛿𝑡(𝑥)

(1 − 𝜖)𝑡 ,

then
𝜇(𝑥) ≤ ̂𝜇(𝑥) ≤ (1 + 7𝜖)𝜇(𝑥) .

Proof. We first show that ̂𝜇(𝑥) is at least as large as 𝜇(𝑥). From Lemma 3.4.4 we
have 𝛿𝑡(𝑥) ≥ 𝑡 ⋅ 𝜇(𝑥) − 𝑛𝑊 . As 𝑡 is chosen large enough,

𝛿𝑡(𝑥)
𝑡 ≥ 𝜇(𝑥) − 𝑛𝑊

𝑡 ≥ 𝜇(𝑥) − 𝜖
𝑛 ≥ 𝜇(𝑥) − 𝜖𝜇(𝑥) ≥ (1 − 𝜖)𝜇(𝑥) .

us, by the assumption 𝛿𝑡(𝑥) ≤ ̂𝛿𝑡(𝑥) we have

𝜇(𝑥) ≤
̂𝛿𝑡(𝑥)

(1 − 𝜖)𝑡 = ̂𝜇(𝑥) .

For the upper bound on ̂𝜇(𝑥) we use the inequality 𝛿𝑡(𝑥) ≤ 𝑡 ⋅ 𝜇(𝑥) + 𝑛𝑊 from
Lemma 3.4.4. As 𝑡 is chosen large enough,

𝛿𝑡(𝑥)
𝑡 ≤ 𝜇(𝑥) + 𝑛𝑊

𝑡 ≤ 𝜇(𝑥) + 𝜖
𝑛 ≤ (1 + 𝜖)𝜇(𝑥) . (3.9)

With ̂𝛿𝑡(𝑥) ≤ (1 + 𝜖)𝛿𝑡(𝑥) this gives

̂𝜇(𝑥) =
̂𝛿𝑡(𝑥)

(1 − 𝜖)𝑡 ≤ (1 + 𝜖)2

(1 − 𝜖) 𝜇(𝑥) .

It can be verified by simple arithmetic that for 𝜖 > 0 the inequality 𝜖 ≤ 1/2 is
equivalent to

(1 + 𝜖)2

(1 − 𝜖) ≤ (1 + 7𝜖) .

As a last ingredient to our approximation algorithm, we design a procedure that
deals with the special case that the minimum cycle mean is zero. Since our goal is
an algorithm with a multiplicative error, we have to be able to compute the solution
exactly in this case. is can be done in linear time because the edge-weights are
non-negative.
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Proposition 3.4.6. Given a graph with non-negative integer edge weights, we can
find all vertices 𝑥 with 𝜇(𝑥) = 0 and output a cycle with mean weight of zero in time
𝑂(𝑚).

Proof. Note that in the case of non-negative edge weights we have 𝜇(𝑥) ≥ 0. Fur-
thermore, a cycle can only have mean weight 0 if all edges on this cycle have weight
0. us, it will be sufficient to detect cycles in the graph that only contain edges
that have weight 0.

We proceed as follows. Let 𝐺0 = (𝑉 , 𝐸0) denote the subgraph of 𝐺 that only
contains edges of weight 0, i.e., 𝐸0 = {𝑒 ∈ 𝐸|𝑤(𝑒) = 0}. As argued above, 𝐺
contains a zero-mean cycle if and only if 𝐺0 contains a cycle. We can check whether
𝐺0 contains a cycle by computing the strongly connected components of 𝐺0: 𝐺0

contains a cycle if and only if it has a strongly connected component of size at
least 2 (we can assume w.l.o.g. that there are no self-loops). Let 𝑍 be the set of
all vertices in a strongly connected components of 𝐺0 of size at least 2. We can
identify all vertices that can reach a zero-mean cycle by performing a linear-time
graph traversal to identify all vertices that can reach 𝑍 .

To actually output a zero-mean cycle, consider one of the strongly connected
components of 𝐺0 of size at least 2 and output a cycle found by a linear-time traver-
sal of the component.

Since all steps take linear time, the total running time of this algorithm is 𝑂(𝑚).

Finally, wewrap up all arguments to obtain our algorithm for approximating the
minimum cycle mean. is algorithms performs log 𝑡 approximate min-plus matrix
multiplications to compute an approximation of 𝐷𝑡 and 𝛿𝑡(𝑥). Lemma 3.4.5 tells us
that 𝑡 = 𝑛2𝑊 /𝜖 is just the right number to guarantee that our approximation of
𝛿𝑡(𝑥) can be used to obtain an approximation of 𝜇(𝑥). e value of 𝑡 is relatively
large but the running time of our algorithm depends on 𝑡 only in a logarithmic way.

eorem 3.4.7. Given a graph with 𝑛 vertices and non-negative integer edge weights
of at most 𝑊 , we can compute an approximation ̂𝜇(𝑥) of the minimum cycle mean for
every vertex 𝑥 such that 𝜇(𝑥) ≤ ̂𝜇(𝑥) ≤ (1 + 𝜖)𝜇(𝑥) for 0 < 𝜖 ≤ 1 in time

𝑂
(

𝑛𝜔

𝜖 log3
(

𝑛𝑊
𝜖 ) log2

(
log( 𝑛𝑊

𝜖 )
𝜖 )

log(𝑛)
)

= 𝑂 (
𝑛𝜔

𝜖 log3
(

𝑛𝑊
𝜖 )) .

Proof. First we find all vertices 𝑥 with 𝜇(𝑥) = 0. By Proposition 3.4.6 this takes time
𝑂(𝑛2) for 𝑚 = 𝑂(𝑛2). For the remaining vertices 𝑥 we approximate 𝜇(𝑥) as follows.

Let 𝜖′ ∶= 𝜖/7. If we execute Algorithm 3.1 with weight matrix 𝐷, error bound
𝜖′ and 𝑡 such that 𝑡 is the smallest power of two with 𝑡 ≥ 𝑛2𝑊 /𝜖′, we obtain a
(1 + 𝜖′)-approximation 𝐹 [𝑥, 𝑦] of 𝐷𝑡[𝑥, 𝑦] for all vertices 𝑥 and 𝑦 (Lemma 3.4.2).
By calculating for every 𝑥 the minimum entry of 𝐹 [𝑥, 𝑦] over all 𝑦 we have a (1 +
𝜖′)-approximation of 𝛿𝑡(𝑥) (Lemma 3.4.3). By Lemma 3.4.5 ̂𝜇(𝑥) ∶= ̂𝛿𝑡(𝑥)/((1 −
𝜖′)𝑡) is for this choice of 𝑡 an approximation of 𝜇(𝑥) such that 𝜇(𝑥) ≤ ̂𝜇(𝑥) ≤ (1 +
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7𝜖′)𝜇(𝑥). By substituting 𝜖′ with 𝜖/7 we get 𝜇(𝑥) ≤ ̂𝜇(𝑥) ≤ (1 + 𝜖)𝜇(𝑥) , i.e., a
(1 + 𝜖)-approximation of 𝜇(𝑥).

By Lemma 3.4.2 the running time of Algorithm 3.1 for 𝑡 = 2⌈log(𝑛2𝑊 /𝜖′)⌉ =
𝑂(𝑛2𝑊 /𝜖) is

𝑂
⎛
⎜
⎜
⎝

𝑛𝜔

𝜖 log2
(

𝑛2𝑊
𝜖 ) log (

𝑛2𝑊 2

𝜖 ) log2
⎛
⎜
⎜
⎝

log(
𝑛2𝑊

𝜖 )
𝜖

⎞
⎟
⎟
⎠

log(𝑛)
⎞
⎟
⎟
⎠

.

With log(𝑛2𝑊 ) ≤ log((𝑛𝑊 )2) = 𝑂(log(𝑛𝑊 )) we get that Algorithm 3.1 runs in
time

𝑂
(

𝑛𝜔

𝜖 log3
(

𝑛𝑊
𝜖 ) log2

(
log( 𝑛𝑊

𝜖 )
𝜖 )

log(𝑛)
)

. (3.10)

Note that since the weights are integral and by Corollary 3.2.3 there is a simple
cycle with minimum mean weight, the distance between two possible values for
the minimum cycle mean is ≥ 1/(𝑛(𝑛 − 1)) [ZP96]. us the minimum cycle mean
could be determined exactly from ̂𝜇 when 𝜖 ≤ 1/(𝑛2𝑊 ). However, this would give
a running time that is worse than the known exact algorithms.

3.5 Finding an Approximately Optimal Cycle

In this section we provide an algorithm that outputs, for 𝜇 > 0, a cycle with mean
weight of at most (1 + 𝜖)𝜇 for 𝜖 chosen as in eorem 3.4.7. e algorithm uses the
intermediate results of Algorithm 3.1, i.e., the matrices 𝐹𝑠 for 1 ≤ 𝑠 ≤ log2 𝑡, which
approximate 𝐷2𝑠

. For 𝑡 = 𝑂(𝑛2𝑊 /𝜖) it needs 𝑂(𝑛2 log(𝑛𝑊 /𝜖)) space compared
to the space of 𝑂(𝑛2) for computing only the approximate minimum cycle mean.
e running time of the algorithm is 𝑂(𝑛2 log(𝑛𝑊 /𝜖)/𝜖) plus the running time of
Algorithm 3.1, where the former is dominated by the running time of Algorithm 3.1.

e main idea of our algorithm for cycle extraction is as follows. Consider a
path 𝑃 of length 𝑡 starting at 𝑥 with approximately minimum weight. Let 𝑦 be the
final vertex of this path. is path can be described as the sum of a simple path from
𝑥 to 𝑦 and a set of cycles. If we subtract the simple path, the mean weight of the
remaining part might become larger, but not too large because a simple path can
have at most 𝑛 edges, while the whole path has 𝑡 = 𝑂(𝑛2𝑊 /𝜖) edges. Given a set of
cycles and an upper bound on the mean weight of the edges in these cycles, there
must be a simple cycle withmean at most this upper bound. If we can efficiently find
this cycle, we can output it as a cycle with approximately minimum mean weight.
However, spending time proportional to the path length 𝑡 would already be too
costly. erefore, we partition the path into 𝑂(𝑛/𝜖) non-overlapping segments of
equal size and consider the corresponding path 𝑃 ′ in a graph 𝐺′ where the only
edges are these segments. In 𝐺′ there are 𝑂(𝑛/𝜖) edges, thus we can find a cycle 𝐶
in 𝐺′ with minimum mean weight and at most 𝑛 edges in 𝑂(𝑛2/𝜖) time with Karp’s
algorithm. We can split each edge of 𝐺′, which corresponds to a segment of the
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original path 𝑃 , in half by obtaining the midpoint of the segment, i.e., the vertex
in the middle of the corresponding path segment. Let 𝐺″ be the graph consisting
of the segment halves of the edges in the cycle 𝐶 . Since the cycle 𝐶 has at most 𝑛
edges, the graph 𝐺″ has at most 2𝑛 edges. us we can run Karp’s algorithm on 𝐺″

in 𝑂(𝑛2) time. We repeat the halving of the segments until the remaining segments
correspond to edges in the original graph and we can indeed output a cycle with
approximately minimum mean weight.

In the implementation of the algorithm we need to obtain the midpoint of a
path segment. A segment corresponds to an entry 𝐹𝑠[𝑢, 𝑣] in the matrix that ap-
proximates 𝐷2𝑠

for some segment length 𝑙 = 2𝑠 with 1 ≤ 𝑠 ≤ log2 𝑡. us we
can obtain a midpoint 𝑧 such that 𝐹𝑠−1[𝑢, 𝑧] + 𝐹𝑠−1[𝑧, 𝑣] is approximately equal to
𝑑𝑙(𝑢, 𝑣) in time 𝑂(𝑛) by computing arg min𝑧′∈𝑉 (𝐹𝑠−1[𝑢, 𝑧′] + 𝐹𝑠−1[𝑧′, 𝑣]).

We consider a graph whose edges are exactly the edges of a (non-simple) path.
To show that in this graph there exists a simple cycle with mean weight at most the
mean weight of all the edges in the path, we view the graph as a multigraph and
apply Propositions 3.2.1 and 3.2.2. Note that parts of the path might be traversed
multiple times. us we need to consider the multiset of edges in the path in order
to argue about the ratio of the sum of the weights to the number of edges. e
multigraph is only needed in the analysis, not in the actual algorithm.

Lemma 3.5.1. Given all intermediate results of Algorithm 3.1 for some 0 < 𝜖 ≤ 1
and a power of two 𝑡 ≥ 1, Algorithm 3.2 outputs a cycle with mean weight ̂𝜇 such that

̂𝜇 ≤ (1 + 𝜖) min𝑥∈𝑉 ̂𝛿𝑡(𝑥)/𝑡 in time 𝑂((𝑛2/𝜖) log 𝑡).

Proof. Let 𝐹𝑠 denote the intermediate results of Algorithm 3.1 for 1 ≤ 𝑠 ≤ log2 𝑡.
Further let (𝑥, 𝑦) = arg min(𝑖,𝑗)(𝐹log2 𝑡[𝑖, 𝑗]), i.e., 𝑥 = arg min𝑥′∈𝑉 ̂𝛿𝑡(𝑥′). Let 𝑃 be a
path from 𝑥 to 𝑦 with length 𝑡 and weight 𝛿𝑡(𝑥) ≤ 𝑤(𝑃 ) ≤ ̂𝛿𝑡(𝑥) such that 𝑑𝑡(𝑥, 𝑦) ≤

̂𝛿𝑡(𝑥) ≤ (1 + 𝜖)𝑑𝑡(𝑥, 𝑦). Remember that by Equation (3.1) each entry 𝐹𝑠[𝑖, 𝑗] is a
(1 + 4/𝑅)𝑠-approximation of 𝑑2𝑠(𝑖, 𝑗) for all vertices 𝑖, 𝑗 and 1 ≤ 𝑠 ≤ log2 𝑡 and that
by Equation (3.2) we have (1 + 4/𝑅)log2 𝑡 ≤ 1 + 𝜖. us, for any length 𝑙 ≤ 𝑡 that is
a power of 2 and any pair of vertices (𝑢, 𝑣) with 𝑑𝑙(𝑢, 𝑣), we can obtain a midpoint
𝑧 such that 𝑑𝑙(𝑢, 𝑣) ≤ 𝐹log2(𝑙/2)[𝑢, 𝑧] + 𝐹log2(𝑙/2)[𝑧, 𝑣] ≤ (1 + 4/𝑅)log2 𝑙𝑑𝑙(𝑢, 𝑣) in time
𝑂(𝑛) by computing arg min𝑧′∈𝑉 (𝐹log2(𝑙/2)[𝑢, 𝑧′] + 𝐹log2(𝑙/2)[𝑧′, 𝑣]).

In Algorithm 3.2 (lines 5–10) we divide the path 𝑃 into 𝑂(𝑛/𝜖) segments of equal
size 𝑙 such that 𝑙 is the largest power of 2 smaller or equal 𝜖𝑡/(2𝑛). We do this by
repeatedly doubling the number of segments we split the path 𝑃 into, starting with
the segment (𝑥, 𝑦), which represents the whole path 𝑃 . In each iteration a midpoint
for each of the current segments is found, thus in total less than ∑log2(4𝑛/𝜖)

𝑖=0 2𝑖 =
𝑂(𝑛/𝜖) midpoints have to be found. Hence spliing path 𝑃 into 𝑂(𝑛/𝜖) segments
takes time 𝑂(𝑛2/𝜖).

Let 𝐸𝑙 be the set of all segments of 𝑃 and let 𝐺𝑙 be the graph with vertices 𝑉 and
edges 𝐸𝑙 where the edges have weight 𝑤𝑙(𝑖, 𝑗) = 𝐹log2 𝑙[𝑖, 𝑗]. We will prove below
that there exists a simple cycle in 𝐺𝑙 with mean weight at most ̂𝜇 ≤ (1 + 𝜖) ̂𝛿𝑡(𝑥)/𝑡.
Given the existence of such a cycle, we can find a cycle 𝐶 in 𝐺𝑙 with at most 𝑛
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Algorithm 3.2: Cycle with approximately minimum mean weight

input :𝐹𝑠 for 𝑠 = 1, … , log2 𝑡 with 𝐷2𝑠 [𝑖, 𝑗] ≤ 𝐹𝑠[𝑖, 𝑗] ≤ (1 + 4
𝑅 )

𝑠 𝐷2𝑠 [𝑖, 𝑗] and

(1 + 4
𝑅 )

log2 𝑡 ≤ (1 + 𝜖)
output : cycle with mean weight ≤ (1 + 𝜖) min(𝑖,𝑗) 𝐹log2 𝑡[𝑖, 𝑗]/𝑡

1 (𝑥, 𝑦) ← arg min(𝑖,𝑗)(𝐹log2 𝑡[𝑖, 𝑗]) and let 𝑃 denote the corresponding path
2 𝐿 ← 𝜖𝑡/(2𝑛)
3 𝑙 ← 2⌊log2 𝐿⌋

4 𝐸′ ← {(𝑥, 𝑦)}
5 for 𝑗 ← 1 to 𝑡/𝑙 do /* split 𝑃 into 𝑂(𝑛/𝜖) segments */
6 𝐸″ ← ∅
7 foreach (𝑢, 𝑣) ∈ 𝐸′ do
8 find midpoint 𝑧 of segment corresponding to (𝑢, 𝑣)
9 𝐸″ ← 𝐸″ ∪ {(𝑢, 𝑧), (𝑧, 𝑣)}

10 𝐸′ ← 𝐸″

11 foreach 𝑢, 𝑣 ∈ 𝑉 and 𝑠 = 1, … , log2 𝑡 do
12 let 𝑤2𝑠(𝑢, 𝑣) ∶= 𝐹𝑠[𝑢, 𝑣] /* definition of weight function */

13 𝐺′ ← (𝑉 , 𝐸′, 𝑤𝑙)
14 find cycle 𝐶 with minimum mean weight and ≤ 𝑛 edges in 𝐺′

15 while 𝑙 > 1 do /* cycle refinement */
16 𝑙 ← 𝑙/2
17 𝐸′ ← ∅
18 foreach (𝑢, 𝑣) ∈ 𝐶 do
19 find midpoint 𝑧 of segment corresponding to (𝑢, 𝑣)
20 𝐸′ ← 𝐸′ ∪ {(𝑢, 𝑧), (𝑧, 𝑣)}
21 𝐺′ ← (𝑉 , 𝐸′, 𝑤𝑙)
22 find cycle 𝐶 with minimum mean weight and ≤ 𝑛 edges in 𝐺′

23 return 𝐶

segments and minimummean weight ≤ ̂𝜇 with Karp’s algorithm [Kar78] in 𝑂(𝑛2/𝜖)
time (line 14 of Algorithm 3.2) because the number of edges in 𝐺𝑙 is 𝑂(𝑛/𝜖).

To show that there exists a simple cycle in 𝐺𝑙 with mean weight at most ̂𝜇 ≤
(1 + 𝜖) ̂𝛿𝑡(𝑥)/𝑡, we consider the multigraph 𝐺′

𝑙 with vertices 𝑉 and edges 𝐸′
𝑙 with

weight 𝑤𝑙(𝑖, 𝑗) = 𝐹log2 𝑙[𝑖, 𝑗], where 𝐸′
𝑙 is the multiset of all segments of 𝑃 . Note

that byeorem 3.4.1 themeanweight of the edges in 𝐺′
𝑙 is bounded above by ̂𝛿𝑡(𝑥)/𝑡.

Since |𝐸′
𝑙 | ≥ 𝑛, we have that 𝐺′

𝑙 contains at least one cycle. By Proposition 3.2.1, the
set 𝐸′

𝑙 can be partitioned into a simple path from 𝑥 to 𝑦 and a set of simple cycles 𝑆 .
e simple path from 𝑥 to 𝑦 can contain at most 𝑛 segments, where each segment
represents 𝑙 ≤ 𝜖𝑡/(2𝑛) edges in the original graph. Since we assume non-negative
edge weights, the mean weight ̂𝜇 of the segments in 𝑆 is at most

̂𝜇 ≤
̂𝛿𝑡(𝑥)

𝑡 − 𝑛 𝜖𝑡
2𝑛

≤ 1
1 − 𝜖

2

̂𝛿𝑡(𝑥)
𝑡 ≤ (1 + 𝜖)

̂𝛿𝑡(𝑥)
𝑡 .
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By Proposition 3.2.2 there exists a simple cycle with mean weight at most ̂𝜇 ≤
(1 + 𝜖) ̂𝛿𝑡(𝑥)/𝑡 in 𝑆 and in the multigraph 𝐺′

𝑙 , and thus in the simple graph 𝐺𝑙.
As explained above, we can find the midpoint 𝑧 of each segment (𝑢, 𝑣) ∈ 𝐶 in

𝑂(𝑛) time. uswe can obtain amultigraph 𝐺′
𝑙/2 with vertices 𝑉 , the two edges (𝑢, 𝑧)

and (𝑧, 𝑣) for each (𝑢, 𝑣) ∈ 𝐶 , and weights 𝑤𝑙/2(𝑖, 𝑗) = 𝐹log2(𝑙/2)[𝑖, 𝑗] in time 𝑂(𝑛2).
By Proposition 3.2.1 the edges in 𝐺′

𝑙/2 can be described as a set of simple cycles. By
Proposition 3.2.2 there exists a simple cycle 𝐶′ in 𝐺′

𝑙/2 with mean weight at most
̂𝜇. Given the existence, we again only have to consider the corresponding simple

graph 𝐺𝑙/2, for which we can obtain a minimum mean cycle with at most 𝑛 edges
with Karp’s algorithm in time 𝑂(𝑛2) (line 22 of Algorithm 3.2). We can repeat this
process of reducing the segment size for the found simple cycle until each segment
corresponds to an edge in the original graph and we thus have indeed found a cycle
with mean weight at most ̂𝜇.

Since we halve the segment length in each iteration, at most log2 𝑙 iterations are
needed. Hence the running time of thewhile-loop (lines 15–22 of Algorithm 3.2) can
be bounded by 𝑂(𝑛2 log 𝑡), which implies a total running time of 𝑂((𝑛2/𝜖) log 𝑡).

Remark 3.5.2. In Algorithm 3.2 above we use the naive 𝑂(𝑛) time procedure for find-
ing midpoints. A more efficient approach is the following: We modify the procedure
approx-min-plus in Algorithm 3.1 to additionally output a matrix of witnesses as
described in [Zwi02]. For 𝐶 ∶= 𝐹𝑠 ⋆ 𝐹𝑠 the matrix of witnesses contains for each
entry (𝑖, 𝑗) in 𝐹𝑠+1 an index 1 ≤ 𝑘 ≤ 𝑛 such that 𝐶[𝑖, 𝑗] ≤ 𝐹𝑠[𝑖, 𝑘] + 𝐹𝑠[𝑘, 𝑗] ≤
(1 + 4/𝑅)𝐶[𝑖, 𝑗]. Having stored the witness matrices, a midpoint (witness) can be
found in constant time.

eorem 3.5.3. Given a graph with 𝑛 vertices and non-negative integer edge weights
of at most 𝑊 , we can compute a cycle with mean weight at most ̂𝜇 such that 𝜇 ≤ ̂𝜇 ≤
(1 + 𝜖)𝜇 for 0 < 𝜖 ≤ 1 in

𝑂 (
𝑛𝜔

𝜖 log3
(

𝑛𝑊
𝜖 )) time and 𝑂 (𝑛2 log (

𝑛𝑊
𝜖 )) space.

Proof. If 𝜇 = min𝑥′∈𝑉 𝜇(𝑥′) = 0, we can find a cycle with mean weight of zero
in 𝑂(𝑛2) time by Proposition 3.4.6. If 𝜇 > 0, we set 𝜖′ = 𝜖/7 like in the proof of
eorem 3.4.7. We execute Algorithm 3.1 with weight matrix 𝐷, error bound 𝜖′ and
𝑡 such that 𝑡 is the smallest power of two with 𝑡 ≥ 𝑛2𝑊 /𝜖′ and save all intermediate
results 𝐹𝑠 for 𝑠 = 1, … , log2 𝑡. is gives the claimed running time byeorem 3.4.7
and requires 𝑂(𝑛2 log 𝑡) space.

By Lemma 3.5.1 the running time to output a cycle given the intermediate results
of Algorithm 3.1 is subsumed by the running time of Algorithm 3.1. It remains to
show the approximation guarantee on the mean weight of the cycle computed by
Algorithm 3.2. e lower bound is given trivially since we actually output a cycle
in the original graph. Let 𝑥 = arg min𝑥′∈𝑉 𝜇(𝑥′). By Lemma 3.4.4 and the choice
of 𝑡 (Equation (3.9)) we have 𝛿𝑡(𝑥)/𝑡 ≤ (1 + 𝜖′)𝜇(𝑥). Lemma 3.4.3 gives ̂𝛿𝑡(𝑥) ≤
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(1 + 𝜖′)𝛿𝑡(𝑥). Combined with Lemma 3.5.1 this yields an upper bound on the error
of the mean weight ̂𝜇 of the output cycle of

̂𝜇 ≤ (1 + 𝜖′)3𝜇 ≤ (1 + 7𝜖′)𝜇 ≤ (1 + 𝜖)𝜇 .

3.6 Conclusion

We introduced the problem of approximating the minimum cycle mean. It would
be interesting to study whether there is a faster approximation algorithm for the
minimum cycle mean problem, maybe at the cost of a worse approximation. e
running time of our algorithm immediately improves if faster algorithms for clas-
sic matrix multiplication, min-plus matrix multiplication or approximate min-plus
multiplication are found. However, a different approach might lead to beer results
and might shed new light on how well the problem can be approximated. erefore
it would be interesting to remove the dependence on fast matrix multiplication and
develop a so-called combinatorial algorithm.





CHAPTER 4
Algorithms for MDPs with

Streett Objectives

4.1 Introduction

In this chapter we present two algorithms with improved running times for MDPs
with Stree objectives, one for “dense” graphs that improves the dependence of
the running time on 𝑛 and one for “sparse” graphs that improves the dependence
of the running time on 𝑚. Recall from Section 2.3 that a Stree objective for a
set of 𝑘 target pairs TP = {(𝐿𝑗 , 𝑈𝑗) ∣ 1 ≤ 𝑗 ≤ 𝑘} is defined as Stree(TP) =
⋀𝑘

𝑗=1(coBüchi(𝐿𝑗)∨Büchi(𝑈𝑗)), i.e., a play satisfies the objective if for all 1 ≤ 𝑗 ≤ 𝑘
either the vertices of 𝐿𝑗 are visited only finitely oen or some vertex of 𝑈𝑗 is visited
infinitely oen.

Significance. Stree objectives can express all 𝜔-regular languages and are
therefore canonical objectives in formal verification. Additionally, Stree objec-
tives arise, for example, in the verification of systems with strong fairness condi-
tions [LH00; DPC09; Fra86]. In program verification, a scheduler is strongly fair
if every event that is enabled infinitely oen is scheduled infinitely oen. e
verification of closed systems with strong fairness conditions directly corresponds
to checking the non-emptiness of Stree automata, which in turn corresponds to
determining the winning set in graphs with Stree objectives. With MDPs we can
additionally model the probabilistic behavior of systems.

Our results. For an MDP 𝑃 = ((𝑉 , 𝐸), (𝑉1, 𝑉𝑅), 𝛿) and a set of 𝑘 target pairs TP
the size of the input is measured in terms of 𝑚 = |𝐸|, 𝑛 = |𝑉 |, 𝑘, and 𝑏 =
∑𝑘

𝑗=1(|𝐿𝑗| + |𝑈𝑗|) ≤ 2𝑛𝑘. Recall that we assume that each vertex has an outgo-
ing and an incoming edge and therefore we have 𝑚 ≥ 𝑛. In this chapter we prove
the following theorem.

47
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eorem 4.1.1. For MDPs with Stree objectives the almost-sure winning set can be
computed in 𝑂(min(𝑛2, 𝑚1.5√log 𝑛) + 𝑏 log 𝑛) time.

Relation to existingwork. e basic algorithm forMDPs with Stree objectives
makes min(𝑛, 𝑘) calls to an algorithm that computes all MECs and therefore, using
the MEC algorithms of [CH14], takes time 𝑂(min(𝑛, 𝑘) ⋅ (min(𝑛2, 𝑚1.5) + 𝑏)). e
new algorithms improve over the running time of the basic algorithm for all pa-
rameter combinations with 𝑘 ∈ 𝜔(log 𝑛). For graphs an 𝑂(𝑚 min(√𝑚 log 𝑛, 𝑘, 𝑛) +
𝑏 min(log 𝑛, 𝑘)) time algorithm is known [HT96]. We improve over this running
time when 𝑚 is at least of order 𝑛4/3 log−1/3 𝑛+𝑏2/3 log1/3 𝑛 and 𝑘 ∈ 𝜔(𝑛2/𝑚). Further
related work for graphs with Stree objectives includes the algorithms of [LH00;
DPC09] that only achieve a running time of 𝑂((𝑚 + 𝑏) min(𝑛, 𝑘)) but consider ad-
ditional properties such as “on-the-fly” computation and producing certificates of
bounded size.

Technical contribution and outline. Good end-components. In Section 2.6 we
show that the algorithmic question forMDPs with Stree objectives reduces to iden-
tifying good (Stree) end-components (see Definition 2.6.1 for the definition of a good
end-component). In this chapter we describe algorithms that identify all (maximal)
good end-components.

Basic algorithm (Section 4.2). e basic algorithm (folklore) maintains a set of
end-components as candidates for good end-components. is set of candidates is
initialized with the MECs of the input MDP.e algorithm then repeatedly removes
“bad vertices” that cannot be in a good end-component, namely sets 𝐿𝑗 for which
no vertex of 𝑈𝑗 is in the same end-component, and then recomputes the MECs of
the remaining MDP.

Improving upon the basic algorithm (Section 4.3). To improve upon the basic algo-
rithm, we open up the “black box” of computing MECs. We again maintain vertex
sets that are candidates for good end-components such that we can guarantee that
each good end-component is fully contained in one of the candidate sets. How-
ever, the maintained sets are not necessarily end-components but only preserve the
property that they induce sub-MDPs, i.e., they do not have outgoing random edges.
e set of candidates is again initialized with the MECs of the input MDP, but the
relaxed invariant allows us to make progress in each iteration by solely comput-
ing SCCs (not MECs) and removing “bad vertices”. is algorithm can be seen as
“interleaving” the detection of bad vertices and the recomputations of MECs.

Improving the running time for dense (Section 4.4) and sparse (Section 4.5) MDPs.
We then improve the running time using two techniques that enable us to check
faster for strong connectivity aer the removal of vertices.

For denseMDPs, i.e., in particularMDPswith 𝑚 ∈ 𝜔(𝑛4/3/ 3√log 𝑛), we use a spar-
sification technique called Hierarchical Graph Decomposition that was introduced
by [HKW99] for edge deletions in undirected graphs and extended to vertex dele-
tions in directed graphs and game graphs by [CH14] (see [HKL15], Section 5.3 and
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Chapter 7 for further applications of this technique in our subsequent work). In
contrast to [CH14], in our algorithm for Stree objectives the vertices charged in
the running time argument are not removed from the MDP; we therefore refine the
technique with a parallel search on the MDP based on the reverse graph.

For sparse MDPs, i.e., with 𝑚 ∈ 𝑂(𝑛4/3/ 3√log 𝑛), we extend the approach of
“parallel local searches” of [HT96] from graphs to MDPs (see also [CJH03; CH12]
and our subsequent work in [Che+17] for similar approaches).

4.2 Preliminaries and Basic Algorithm

Good end-components. e definition of good end-components, and their spe-
cial case of good components for graphs, is given in Section 2.6. For a Stree objec-
tive the following is an equivalent definition.

Definition 4.2.1 (Good Stree end-component). Given an MDP 𝑃 and a set TP =
{(𝐿𝑗 , 𝑈𝑗) ∣ 1 ≤ 𝑗 ≤ 𝑘} of target pairs, a good (Stree) end-component is an end-
component 𝑋 of 𝑃 such that for each 1 ≤ 𝑗 ≤ 𝑘 either 𝐿𝑗 ∩ 𝑋 = ∅ or 𝑈𝑗 ∩ 𝑋 ≠ ∅.

e algorithms for graphs are based on finding good components and then deter-
mining which vertices can reach these good components. For MDPs we find good
end-components and then output the almost-sure winning set for a reachability ob-
jective with the union of all good end-components as target set. e correctness of
this approach is shown in Section 2.6.2 (see also [BK08, Chap. 10.6.3]).

Bad vertices. Let 𝑋 be a good end-component. en 𝑋∩𝑈𝑗 = ∅ implies 𝑋∩𝐿𝑗 =
∅. us if 𝑆 ∩ 𝑈𝑗 = ∅ for some vertex set 𝑆 and some index 𝑗, then we have
𝐿𝑗 ⊆ 𝑉 ⧵ 𝑋 for each end-component 𝑋 ⊆ 𝑆 . For an index 𝑗 with 𝑆 ∩ 𝑈𝑗 = ∅
we call the vertices of 𝑆 ∩ 𝐿𝑗 bad vertices. All algorithms in this chapter maintain
candidates for good end-components and repeatedly remove the bad vertices and
their random aractor from the maintained sets. In Lemma 2.6.10 we show that (a)
every end-component that is contained in a set 𝑆 is a subset of one of the SCCs of
the subgraph induced by 𝑆 and (b) that, within any sub-MDP that contains an end-
component 𝑋, the set 𝑋 does not intersect with any random aractor of vertices
not in 𝑋. Together with the following corollary this shows the correctness of the
above operations.

Corollary 4.2.2 (of Lemma 2.6.10). Given an MDP 𝑃 , let 𝑋 be a good Stree end-
component with 𝑋 ⊆ 𝑆 for some 𝑆 ⊆ 𝑉 . For each 𝑗 with 𝑆 ∩ 𝑈𝑗 = ∅ it holds that
𝑋 ⊆ 𝑆 ⧵ Ar𝑅(𝑃 [𝑆], 𝐿𝑗 ∩ 𝑆).

Subroutines. We use MEC to denote the algorithm that computes all MECs
of an MDP and  to denote its running time; we have  = 𝑂(min(𝑛2, 𝑚1.5))
by [CH14] and we assume  = 𝛺(𝑚). In eorem 6.3.1 we show that running
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time improvements to computing all MECs carry over to computing the almost-
sure winning set for reachability objectives (almost-sure reachability for short), i.e.,
almost-sure reachability can be computed in time  (a bound of 𝑂(min(𝑛2, 𝑚1.5))
for almost-sure reachability was already shown by [CJH03; CH14], thus this does
not improve the running time for this case). We further use SCC to denote an
algorithm that computes all SCCs of a given MDP and SBSCC for a subrou-
tine that determines the smallest boom SCC; both run time 𝑂(𝑚) [Tar72]. Note
that in particular with respect to vertex sets that induce strongly connected sub-
graphs we oen talk about the underlying graph 𝐺 of an MDP 𝑃 = (𝐺, (𝑉1, 𝑉𝑅)).

Basic algorithm. e basic algorithm for MDPs with Stree objectives is given
in Algorithm StreeBasic. e algorithm maintains (1) a set of already identified
(maximal) good end-components goodEC, which is initially empty, and (2) a set
of end-components 𝒳 that are candidates for good end-components. e set 𝒳
is initialized with the MECs of the input MDP 𝑃 . In each iteration of the while-
loop of Algorithm StreeBasic we remove an end-component 𝑋 from 𝒳 and check
whether it is a good end-component. For this we find sets 𝑈𝑗 for 1 ≤ 𝑗 ≤ 𝑘 that do
not intersect with 𝑋 and identify vertices in 𝑋 ∩ 𝐿𝑗 for such a 𝑗 as bad vertices 𝐵.
If there are no bad vertices, then 𝑋 is a good end-component and added to goodEC.
Otherwise the bad vertices and their random aractor within 𝑋 are removed from
𝑋 (which is correct by Corollary 4.2.2). We then compute all MECs of the sub-MDP
induced by the remaining vertices of 𝑋, which identifies all remaining candidate
end-components among the vertices of 𝑋. e new candidates are then added to
𝒳 . If the algorithm finds good end-components, it returns the almost-sure winning
set for the reachability of the union of them.

Remark 4.2.3 (Simplifications for graphs). In graphs we compute all non-trivial
SCCs instead of all MECs, which can be done in linear time [Tar72]. Also the reachabil-
ity computation in the final step of the algorithm can be done in linear time. Further-
more, no random aractors have to be computed. e total running time on graphs is
obtained from the running time for MDPs by seing  = 𝑂(𝑚).

Proposition 4.2.4 (Running time). Algorithm StreeBasic can be implemented to
run in 𝑂(( + 𝑏) min(𝑛, 𝑘)) time.

Proof. e initialization of 𝒳 with all MECs of the input MDP 𝑃 can clearly be done
in 𝑂() time. Further, byeorem 6.3.1 the almost-sure reachability computation
aer the while-loop can be done in 𝑂() time.

Let 𝑋𝑣 denote the end-component of 𝒳 currently containing an arbitrary, fixed
vertex 𝑣 ∈ 𝑉 during Algorithm StreeBasic. In each iteration of the while-loop in
which 𝑋𝑣 is considered either (a) 𝐵 = {𝑥 ∈ 𝑋𝑣 ∣ ∃𝑗 s.t. 𝑥 ∈ 𝐿𝑗 and 𝑋𝑣 ∩ 𝑈𝑗 =
∅} = ∅ and 𝑋𝑣 will not be considered further or (b) the number of vertices in 𝑋𝑣
is reduced by at least one and we have for some 1 ≤ 𝑗 ≤ 𝑘 that 𝑋𝑣 ∩ 𝐿𝑗 ≠ ∅ before
the iteration of the while-loop and 𝑋𝑣 ∩ 𝐿𝑗 = ∅ aer the while-loop. us each
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Algorithm StreettBasic: Basic algorithm for MDPs with Stree objectives
Input :MDP 𝑃 = ((𝑉 , 𝐸), (𝑉1, 𝑉𝑅), 𝛿) and

target pairs TP = {(𝐿𝑗 , 𝑈𝑗) ∣ 1 ≤ 𝑗 ≤ 𝑘}
Output : ⦉1⦊as (𝑃 , Stree(TP))

1 goodEC ← ∅
2 𝒳 ← MEC(𝑃 )
3 while 𝒳 ≠ ∅ do
4 remove some 𝑋 ∈ 𝒳 from 𝒳
5 𝐵 ← {𝑥 ∈ 𝑋 ∣ ∃𝑗 s.t. 𝑥 ∈ 𝐿𝑗 and 𝑋 ∩ 𝑈𝑗 = ∅}
6 if 𝐵 ≠ ∅ then
7 𝑋 ← 𝑋 ⧵ Ar𝑅(𝑃 [𝑋], 𝐵)
8 𝒳 ← 𝒳 ∪ MEC(𝑃 [𝑋])
9 else

10 goodEC ← goodEC ∪ {𝑋}

11 return ⦉1⦊as (𝑃 , Reach(⋃𝑋∈goodEC 𝑋))

vertex and each edge of the MDP 𝑃 is considered in at most 𝑂(min(𝑛, 𝑘)) iterations
of the while-loop.

Consider the 𝑡-th iteration of the while-loop; let 𝑋𝑡 denote the set removed from
𝒳 in this iteration and let bits(𝑋𝑡) = ∑𝑘

𝑗=1(|𝐿𝑗 ∩ 𝑋𝑡| + |𝑈𝑗 ∩ 𝑋𝑡|). Assume that
each vertex has a list of the sets 𝐿𝑗 and 𝑈𝑗 for 1 ≤ 𝑗 ≤ 𝑘 it belongs to. (We can
generate these lists from the lists of the target pairs in 𝑂(𝑏) time at the beginning of
the algorithm.) en we can determine the vertex set 𝐵 by going through all lists of
the vertices in 𝑋𝑡 in 𝑂(|𝑋𝑡| + bits(𝑋𝑡)) time, which amounts to 𝑂((𝑛 + 𝑏) min(𝑛, 𝑘))
total time over all iterations of the while-loop. e random aractor computed in
line 7 is removed and not considered further, thus its computation takes 𝑂(𝑚) time
over the whole algorithm (see Section 2.5.2). e computation of all MECs in 𝑃 [𝑋𝑡]
takes total time 𝑂( ⋅ min(𝑛, 𝑘)) over all iterations of the while-loop. us the
whole algorithm can be implemented in 𝑂(( + 𝑏) min(𝑛, 𝑘)) total time.

Proposition 4.2.5 (Soundness). Let 𝑊 be the set returned by Algorithm StreeBasic.
We have 𝑊 ⊆ ⦉1⦊as (𝑃 , Stree(TP)).

Proof. By Corollary 2.6.5 it is sufficient to show that every set 𝑋 ∈ goodEC is a good
end-component. e algorithm explicitly checks immediately before 𝑋 is added to
goodEC that we have for each 1 ≤ 𝑗 ≤ 𝑘 either 𝐿𝑗 ∩ 𝑋 = ∅ or 𝑈𝑗 ∩ 𝑋 ≠ ∅. us it
remains to show that 𝑋 is an end-component when it is added to goodEC. Before
a set is added to goodEC, the same set is contained in the set 𝒳 . We show that
all sets in 𝒳 are end-components at any point in the algorithm by induction over
the iterations of the while-loop in the algorithm. Before the first iteration of the
while-loop the sets 𝑋 ∈ 𝒳 are the maximal end-components of 𝑃 . Now consider
an iteration in which a set 𝑋 is removed from 𝒳 and new sets are added to 𝒳 .
First, some vertices and their random aractor in the sub-MDP 𝑃 [𝑋] induced by
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𝑋 are removed from 𝑋. Let 𝑋′ be the remaining set of vertices. By the definition
of a random aractor there are no random edges from 𝑋′ to the removed random
aractor. Further, by the induction hypothesis there are no random edges from 𝑋
to 𝑉 ⧵ 𝑋. us there are no random edges from 𝑋′ to 𝑉 ⧵ 𝑋′. en the algorithm
adds the MECs of the sub-MDP 𝑃 [𝑋′] to 𝒳 . Let 𝑋̂ be one such MEC. Since 𝑋̂ is
a MEC in 𝑃 [𝑋′], it is a MEC in 𝑃 if and only if it has no random edges from 𝑋̂ to
𝑉 ⧵ 𝑋′. is holds by 𝑋̂ ⊆ 𝑋′ and the properties of 𝑋′ established above.

Proposition 4.2.6 (Completeness). Let 𝑊 be the set returned by Algorithm Street-
tBasic. We have ⦉1⦊as (𝑃 , Stree(TP)) ⊆ 𝑊 .

Proof. By Proposition 2.6.9 it is sufficient to show that at the end of Algorithm Street-
tBasic the union of the sets in goodEC contains all good end-components of the
MDP 𝑃 . We show by induction that every good end-component is full contained
in a set of either goodEC or 𝒳 before and aer each iteration of the while-loop in
Algorithm StreeBasic; as 𝒳 is empty at the end of the algorithm, this implies the
claim.

Before the first iteration of the while-loop, the set 𝒳 is initialized with theMECs
of 𝑃 , thus the induction base holds. Let 𝑋 be the set of vertices removed from 𝒳 in
an iteration of the while-loop and let 𝑋∗ be the union of the good end-components
contained in 𝑋. Either 𝑋 is added to goodEC or we have that for some indices 𝑗
the set 𝑋 contains vertices of 𝐿𝑗 but not of 𝑈𝑗 ; then for these indices the sets 𝐿𝑗
and their random aractor are removed from 𝑋. Let 𝑋̂ be the updated set, i.e.,
𝑋̂ = 𝑋 ⧵ Ar𝑅(𝑃 [𝑋], 𝐵). By Corollary 4.2.2 we still have 𝑋∗ ⊆ 𝑋̂ aer this step.
en all MECs of 𝑃 [𝑋̂] are added to 𝒳 . Every good end-component contained in
𝑋̂ is completely contained in one MEC of 𝑃 [𝑋̂], thus the claim continues to hold
aer the iteration of the while-loop.

4.3 Improving Upon the Basic Algorithm

e essential observation towards faster algorithms for MDPs with Stree objec-
tives is the following. Consider a set 𝑋 in an iteration of the basic algorithm aer
some vertices in Ar𝑅(𝑃 [𝑋], 𝐵) were removed. We have that there are no random
edges from 𝑋 to the remaining vertices in the graph and further we have for each
1 ≤ 𝑗 ≤ 𝑘 either 𝐿𝑗 ∩ 𝑋 = ∅ or 𝑈𝑗 ∩ 𝑋 ≠ ∅. us if 𝑃 [𝑋] is still strongly
connected, then 𝑋 is a good end-component and is added to goodEC in one of the
subsequent iterations of the algorithm. Otherwise the sub-MDP 𝑃 [𝑋] consists of
multiple SCCs; then we have that the boom SCCs of 𝑃 [𝑋] are end-components
in 𝑃 but the remaining SCCs of 𝑃 [𝑋] might have outgoing random edges within
𝑃 [𝑋]. Note, however, that we have for any good end-component 𝑋̂ in 𝑃 [𝑋] and
any SCC 𝐶 of 𝑃 [𝑋] that either 𝑋̂ ⊆ 𝐶 or 𝑋̂ ∩ 𝐶 = ∅, simply by the fact that every
good end-component is strongly connected (see also Lemma 2.6.10 (a)). Let 𝑋̂ ⊆ 𝐶
and let rout be the random vertices of 𝐶 with edges to vertices not in 𝐶 . en the
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vertices in rout cannot intersect with 𝑋̂ because an end-component has no outgo-
ing random edges. Further, also the random aractor of rout cannot intersect with
𝑋̂ (Lemma 2.6.10 (b)). us we can remove Ar𝑅(𝑃 [𝑋], rout) from 𝑃 [𝑋] and all
good end-components that are contained in 𝑃 [𝑋] are also contained in the remain-
ing sub-MDP. e set of vertices in 𝐶 ⧵ Ar𝑅(𝑃 [𝑋], rout) has no outgoing random
edges. us if it is still strongly connected, then it is an end-component. With
this observation we can avoid computing a MEC decomposition in the while-loop
of the basic algorithm and instead only compute strongly connected components
and random aractors, which both can be done in linear time. Note that in the im-
proved algorithm we do not have the property that every maintained set of vertices
is an end-component (as in the basic algorithm) but still none of the maintained
sets has outgoing random edges (and thus these vertex sets induce sub-MDPs, see
Section 2.5.2).

In this formulation the algorithm for MDPs with Stree objectives has a very
similar structure to the algorithm for graphs with Stree objectives: We repeatedly
remove “bad vertices” and recompute strongly connected components. e main
difference is that we additionally compute random aractors. is can be seen as
opening up the “black-box” use of aMEC-decomposition algorithm and interleaving
it with the identification of bad vertices.

We present the new algorithmic ideas for MDPs with Stree objectives in Algo-
rithm StreeImpr (which is only faster for large enough 𝑘). Based on this, we show
1) in Algorithm StreeSparse how to improve the running time for dense graphs
with a similar technique as in the 𝑂(𝑛2) algorithm for MEC-decomposition [CH14]
and 2) in Algorithm StreeDense how to improve the running time for sparse graphs
by combining the fastest algorithms for MECs [CH14] and for Stree objectives on
graphs [HT96]. Together these algorithms have a faster asymptotic running time
than the basic algorithm for all parameter combinations with 𝑘 ∈ 𝜔(log 𝑛); the
basic algorithm is faster for 𝑘 = 𝑂(1) and some combinations of parameters with
𝑘 = 𝑂(log 𝑛) such as 𝑘 = 𝑂(√log 𝑛) and 𝑚 = 𝑂(𝑛4/3). In contrast to graphs with
Stree objectives, current techniques do not achieve an 𝑂((𝑚 + 𝑏)𝑘) time algorithm
for MDPs (which is relevant for small values of 𝑘).

Let 𝑆 be a set of vertices. In our improved algorithms we use the data structure
𝐷(𝑆) from [HT96] to quickly identify and remove vertices in 𝑆 ∩ 𝐿𝑗 for which
𝑆 ∩ 𝑈𝑗 = ∅. e following lemma describes the operations and their running times
for this data structure. Let bits(𝑆) = ∑𝑘

𝑗=1 (|𝑆 ∩ 𝐿𝑗| + |𝑆 ∩ 𝑈𝑗|).

Lemma 4.3.1 ([HT96]). Aer a one-time preprocessing time of 𝑂(𝑘), there is a data
structure 𝐷(𝑆) for a given set of vertices 𝑆 that supports the following operations:

C(𝑆) initializes the data structure 𝐷(𝑆) for 𝑆 in time 𝑂(bits(𝑆) + |𝑆|),

R(𝑆, 𝐷(𝑆), 𝐵) removes a set 𝐵 ⊆ 𝑉 from 𝑆 and updates 𝐷(𝑆) accordingly in
time 𝑂(bits(𝐵) + |𝐵|),
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B(𝐷(𝑆)) returns a pointer to the set {𝑥 ∈ 𝑆 ∣ ∃𝑗 s.t. 𝑥 ∈ 𝐿𝑗 and 𝑆 ∩ 𝑈𝑗 = ∅} in
constant time.

In Algorithm StreeImpr wemaintain a list 𝑄 of pairs (𝑆, 𝐷(𝑆)) of vertex sets 𝑆
and their data structures 𝐷(𝑆) for disjoint vertex sets 𝑆 that are candidates for good
end-components. To shorten the notation, we use both 𝑆 ∈ 𝑄 and (𝑆, 𝐷(𝑆)) ∈ 𝑄
interchangeably. For every set 𝑆 ∈ 𝑄 we preserve the invariant that there are
no random edges from 𝑆 to 𝑉 ⧵ 𝑆 . e list 𝑄 is initialized with the MECs of the
input MDP 𝑃 . In each iteration of the outer while-loop one vertex set 𝑆 ∈ 𝑄 is
selected and removed from 𝑄. In the inner while-loop the set of bad vertices, that
is, the vertices of 𝑆 ∩ 𝐿𝑗 for indices 𝑗 with 𝑆 ∩ 𝑈𝑗 = ∅, is identified and its random
aractor is removed from 𝑆 and 𝐷(𝑆). rough removing the random aractor, we
maintain the property that there are no random edges from 𝑆 to 𝑉 ⧵ 𝑆 at this step.
us we have that if 𝑃 [𝑆] is (still) strongly connected and contains at least one
edge, then 𝑃 [𝑆] is a good end-component, which we identify in line 13. If 𝑃 [𝑆]
does not contain an edge, we do not have to consider it further. If it contains an
edge but is not strongly connected, the SCCs of 𝑃 [𝑆] are identified (l. 15). For each
SCC 𝐶 of 𝑃 [𝑆] we identify its random vertices that have edges to vertices of 𝑆 ⧵ 𝐶
(l. 18) and remove their random aractor from 𝐶 (l. 21 and 24). Aer this step the
remaining subset of 𝐶 is added to 𝑄. is happens for each SCC of 𝑃 [𝑆] but there
is a difference between the largest SCC and the other SCCs of 𝑃 [𝑆]. We construct a
new data structure for all but the largest SCC (l. 25) and reuse the data structure of
𝑆 for the largest SCC (l. 26. For each but the largest SCC we additionally remove its
vertices from the data structure of the largest SCC (l. 23). is improves the running
time because we only spend time proportional to the smaller SCCs, and a vertex can
be in a smaller SCC at most 𝑂(log 𝑛) times. Note that at this point of the algorithm
the sub-MDP 𝑃 [𝐶] is not necessarily strongly connected since vertices have been
removed aer the last SCC computation. However, as 𝑃 [𝐶] has no edges to vertices
in 𝑉 ⧵𝐶 , we maintain the property that there are no random edges from a vertex set
in 𝑄 to other vertices. When the list 𝑄 becomes empty, the algorithm terminates.
e output is then the almost-sure winning set for the reachability objective of the
union of the identified good end-components, which is equal to the empty set if no
good end-component exists.

Remark 4.3.2 (Simplifications for graphs). e computation of all MECs and of the
a.s. winning set for the reachability objective can be replaced by the corresponding
linear time computations of non-trivial SCCs and reachability in graphs. Furthermore,
the set rout is always empty and all random aractor computations can be omied.
is does not affect the total running time for any of the improved algorithms.

Proposition 4.3.3 (Running time). Algorithm StreeImpr terminates in 𝑂(𝑚𝑛 +
𝑏 log 𝑛) time.

Proof. Using the data structure of Lemma 4.3.1, the initialization phase of Algo-
rithm StreeImpr takes𝑂(𝑘++𝑏+𝑛) time, which is in time𝑂(𝑚𝑛+𝑏). Further by
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Algorithm StreettImpr: New algorithm for MDPs with Stree objectives
Input : an MDP 𝑃 = ((𝑉 , 𝐸), (𝑉1, 𝑉𝑅), 𝛿) and target pairs

TP = {(𝐿𝑗 , 𝑈𝑗) ∣ 1 ≤ 𝑗 ≤ 𝑘}
Output : ⦉1⦊as (𝑃 , Stree(TP))

1 goodEC ← ∅
2 𝑄 ← ∅
3 𝒳 ← MEC(𝑃 )
4 for 𝑋 ∈ 𝒳 do
5 𝑄 ← 𝑄 ∪ {(𝑋,C(𝑋))}
6 while 𝑄 ≠ ∅ do
7 pick and remove some (𝑆, 𝐷(𝑆)) from 𝑄
8 while B(𝐷(𝑆)) ≠ ∅ do
9 𝐴 ← Ar𝑅(𝑃 [𝑆],B(𝐷(𝑆)))

10 (𝑆, 𝐷(𝑆)) ← R(𝑆, 𝐷(𝑆), 𝐴)
11 if 𝑃 [𝑆] contains at least one edge then
12 if 𝑃 [𝑆] is strongly connected then
13 goodEC ← goodEC ∪ {𝑆}
14 else
15 𝒞 ← SCC(𝑃 [𝑆])
16 𝑆′ ← 𝑆
17 for 𝐶 ∈ 𝒞 do
18 rout ← {𝑣 ∈ 𝑉𝑅 ∩ 𝐶 ∣ ∃𝑤 ∈ 𝑆′ ⧵ 𝐶 s.t. (𝑣, 𝑤) ∈ 𝐸}
19 𝐴 ← Ar𝑅(𝑃 [𝐶], rout)
20 if 𝐶 is largest SCC in 𝒞 then
21 (𝑆, 𝐷(𝑆)) ← R(𝑆, 𝐷(𝑆), 𝐴)
22 else
23 (𝑆, 𝐷(𝑆)) ← R(𝑆, 𝐷(𝑆), 𝐶)
24 𝐶 ← 𝐶 ⧵ 𝐴
25 𝑄 ← 𝑄 ∪ {(𝐶,C(𝐶))}

26 𝑄 ← 𝑄 ∪ {(𝑆, 𝐷(𝑆))}

27 return ⦉1⦊as (𝑃 , Reach(⋃𝑋∈goodEC 𝑋))
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eorem 6.3.1 the almost-sure reachability computation aer the outer while-loop
can be done in 𝑂() time.

Whenever bad vertices and their random aractor are identified in lines 8–9,
they are removed in line 10 and not considered further. us finding bad vertices
takes total time 𝑂(𝑛), identifying the random aractor of bad vertices takes total
time 𝑂(𝑚) (see Section 2.5.2), and by Lemma 4.3.1 removing the bad vertices and
their aractor takes total time 𝑂(𝑚 + 𝑏).

Aer the initialization of 𝑄 with the MECs of 𝑃 , all vertex sets in 𝑄 induce
a strongly connected sub-MDP. Let 𝑆′ be the considered vertex set when line 15
is reached, let 𝑆 be its smallest superset 𝑆 ⊇ 𝑆′ that was identified as strongly
connected in the algorithm (i.e. 𝑆 is either a MEC of 𝑃 or an SCC computed in
line 15 in a previous iteration of the algorithm). We have that 𝑆′ is a proper subset
of 𝑆 , i.e., either bad vertices were removed from 𝑆 in line 10 or a non-empty set of
random vertices was identified in line 18. Hence any part of 𝑃 is considered in at
most 𝑛 iterations of the outer while-loop. is implies that we can bound the total
time spent in lines 15–19 with 𝑂(𝑚𝑛).

e calls to R in line 21 take total time 𝑂(𝑛 + 𝑏), as the vertices in 𝐴 are
not considered further. It remains to bound the time for the calls to R and
C in lines 21–25. Note that we avoid to make these calls for the largest
of the SCCs of the sub-MDP induced by 𝑆′. us whenever we call R and
C for an SCC 𝐶 , we have |𝐶| ≤ |𝑆|/2. Hence we can charge the time
for R and C to the vertices of 𝐶 and to bits(𝐶) such that every
vertex 𝑣 and every bits({𝑣}) is charged 𝑂(log 𝑛) times. us we can bound the time
for lines 23–25 with 𝑂((𝑛 + 𝑏) log 𝑛). is proves the claimed running time.

To show the soundness of Algorithm StreeImpr, we first prove the following
invariant.

Invariant 4.3.4. For every set 𝑆 with (𝑆, 𝐷(𝑆)) ∈ 𝑄 there are no random edges from
𝑆 to 𝑉 ⧵ 𝑆 .

Lemma 4.3.5. Invariant 4.3.4 holds throughout Algorithm StreeImpr.

Proof. We prove the invariant by induction over the iterations of the outer while-
loop. Before the first iteration of the while-loop, 𝑄 is initialized with the maximal
end-components of 𝑃 and thus the invariant holds. Assume the invariant holds
before the beginning of an iteration of the outer while-loop and let 𝑆 be the set
of vertices that is removed from 𝑄 in this iteration. In the inner while-loop some
vertices and their random aractor in 𝑃 [𝑆] might be removed from 𝑆 . Let 𝑆′ be
the remaining vertices. By the definition of a random aractor there are no random
edges from 𝑆′ to 𝑆 ⧵ 𝑆′ and thus by the induction hypothesis there are no random
edges from 𝑆′ to 𝑉 ⧵ 𝑆′.

If 𝑃 [𝑆′] is strongly connected (l. 12–13), then no set is added to 𝑄 in this itera-
tion of the while-loop. Otherwise the SCCs 𝒞 of 𝑃 [𝑆′] are considered as candidates
to be added to 𝑄. For each set 𝐶 ∈ 𝒞 the random vertices rout (l. 18) in 𝐶 with
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edges to vertices in 𝑆′ ⧵ 𝐶 and their random aractor 𝐴 (l. 19) in 𝑃 [𝐶] are removed
from 𝐶 (l. 21 and l. 24). Let 𝐶′ be the remaining vertices. We have that there are
no random edges from 𝐶′ to 𝑆′ ⧵ 𝐶 by the definition of rout and that there are no
random edges from 𝐶′ to 𝐶 ⧵ 𝐶′ by the definition of 𝐴. us there are no random
edges from 𝐶′ to 𝑉 ⧵ 𝐶′ for any set 𝐶′ that is added to 𝑄 (l. 25 and l 26), which
shows the invariant.

Proposition 4.3.6 (Soundness). Let the set returned by Algorithm StreeImpr be
denoted by 𝑊 . We have 𝑊 ⊆ ⦉1⦊as (𝑃 , Stree(TP)).

Proof. By Corollary 2.6.5 it is sufficient to show that every set 𝑋 ∈ goodEC is a good
end-component. e algorithm explicitly checks immediately before 𝑋 is added to
goodEC in line 13 that 𝐺[𝑋] contains at least one edge and is strongly connected.
Further we have by the termination condition of the inner while-loop that for each
1 ≤ 𝑗 ≤ 𝑘 either 𝐿𝑗 ∩ 𝑋 = ∅ or 𝑈𝑗 ∩ 𝑋 ≠ ∅. us it remains to show that there
are no random edges from 𝑋 to 𝑉 ⧵ 𝑋.

Let 𝑆 be the set of vertices that is removed from 𝑄 in the iteration of the outer
while-loop in which 𝑋 is added to goodEC. By Invariant 4.3.4 and Lemma 4.3.5
there are no random edges from 𝑆 to 𝑉 ⧵ 𝑆 . If 𝑆 is not equal to 𝑋, then some
vertices and their random aractor within 𝑃 [𝑆] are removed in the inner while-
loop. By the definition of a random aractor, there are no random edges from 𝑋 to
𝑆 ⧵ 𝑋 and thus to 𝑉 ⧵ 𝑋. Hence we have shown that each 𝑋 ∈ goodEC is a good
end-component.

To show the completeness of Algorithm StreeImpr, we first prove the following
invariant.

Invariant 4.3.7. For each good end-component 𝑋 of 𝑃 and some set 𝑌 ⊇ 𝑋 either
𝑌 ∈ goodEC or (𝑌 , 𝐷(𝑌 )) ∈ 𝑄.

Lemma 4.3.8. Invariant 4.3.7 holds before and aer each iteration of the outer while-
loop in Algorithm StreeImpr.

Proof. We show the invariant by induction over the iterations of the outer while-
loop. Before the first iteration of the outer while-loop, the set 𝑄 is initialized with
the MECs of 𝑃 , thus the induction base holds. Let 𝑆 be the set of vertices that is
removed from 𝑄 in an iteration of the outer while-loop and let 𝒳𝑆 be the set of
good end-components contained in 𝑆 . Let 𝑆′ be vertices of 𝑆 that remain aer the
inner while-loop. By Corollary 4.2.2 we have for every 𝑋 ∈ 𝒳𝑆 that 𝑋 ⊆ 𝑆′.

Since every end-component contains an edge, 𝑃 [𝑆′] contains at least one edge
if 𝒳𝑆 is not empty. en either 𝑆′ and thus all 𝑋 ∈ 𝒳𝑆 are added to goodEC
in line 13 or the SCCs 𝒞 of 𝑃 [𝑆′] are computed in line 15. By Lemma 2.6.10 (a)
there exists a 𝐶 ∈ 𝒞 such that 𝑋 ⊆ 𝐶 for each 𝑋 ∈ 𝒳𝑆 ; let 𝑋 and 𝐶 be such
that 𝑋 ⊆ 𝐶 . Let 𝐴 = Ar𝑅(𝑃 [𝐶], rout). Since 𝑋 has not outgoing random edges,
we have rout ∩ 𝑋 = ∅ (line 18) and thus by Lemma 2.6.10 (b) also 𝑋 ⊆ 𝐶 ⧵ 𝐴.
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e set 𝐶 ⧵ 𝐴 is added to 𝑄 in lines 25 or 26, hence the claim holds aer the outer
while-loop.

Proposition 4.3.9 (Completeness). Let the set returned by Algorithm StreeImpr be
denoted by 𝑊 . We have ⦉1⦊as (𝑃 , Stree(TP)) ⊆ 𝑊 .

Proof. By Proposition 2.6.9 it is sufficient to show that at the end of the algorithm
the union of the sets in goodEC contains all good end-components of the MDP 𝑃 .
As 𝑄 is empty at the end of the algorithm, this is implied by Invariant 4.3.7 and
Lemma 4.3.8.

4.4 Algorithm for Dense MDPs with Streett Objectives

Algorithm StreeDense combines Algorithm StreeImpr with the ideas of the MEC-
algorithm for dense MDPs of [CH14]. e difference to Algorithm StreeImpr lies
in the search for strongly connected components. Fix an iteration of the outer while-
loop and let 𝑆 be the set of vertices that selected and removed from 𝑄. Let 𝑆′ ⊆ 𝑆
be the set of remaining vertices aer some bad vertices and their random arac-
tor are removed from the vertex set 𝑆 in the inner while-loop. To detect a good
end-component, it is essential to decide whether the sub-MDP 𝑃 [𝑆′] is strongly
connected. For this it is sufficient to identify one strongly connected component 𝐶
of the sub-MDP 𝑃 [𝑆′]: e sub-MDP is strongly connected if and only if the SCC
spans the whole sub-MDP, i.e., 𝐶 = 𝑆′. As for Algorithm StreeImpr, the correct-
ness of the algorithm is based on maintaining (1) that the vertex sets maintained
in 𝑄 do not have outgoing random edges (Invariant 4.3.4) and (2) that each good
end-component is fully contained in either 𝑄 or goodC aer each iteration of the
outer while-loop (Invariant 4.3.7). For maintaining these invariants, it makes no
difference whether we compute all SCCs of 𝑃 [𝑆′] or just one. Whenever 𝑃 [𝑆′] is
not strongly connected, there exists at least one top or boom SCC that contains
at most half of the vertices of 𝑆′ (see Section 2.5.1). In Algorithm StreeDense we
search for such a “small” top or boom SCC of 𝑃 [𝑆] more efficiently, discussed in
detail below. e search for a top SCC is done by searching for a boom SCC in
the reverse graph RevG. When a boom SCC 𝐶 of RevG (with at most half of the
vertices of 𝑆 by l. 22) is identified (l. 23), then it is a top SCC in 𝐺 and thus there
are no random edges from 𝑆′ ⧵ 𝐶 to 𝐶 but there might be random edges from 𝐶
to 𝑆′ ⧵ 𝐶 . us we can simply remove the vertices of 𝐶 from the set 𝑆′ (l. 24),
while for the set 𝐶 we determine its outgoing random edges (l. 25) and remove their
random aractor from 𝐶 . When a boom SCC 𝐶 of 𝐺 is identified (l. 27), then 𝐶
does not have outgoing random edges but we have to remove the random aractor
of 𝐶 from 𝑆′ to maintain Invariant 4.3.4. Aer these steps for removing outgoing
random edges (that cannot be part of a good end-component, see Lemma 2.6.10), for
both 𝐶 and 𝑆′ ⧵ 𝐶 the remaining vertices are added to 𝑄 (l. 29 and 30), where for
the set 𝑆′ ⧵ 𝐶 the existing data structure of 𝑆 is reused.
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e search for bottom SCCs. To search for a boom SCC, we use the following
variant of the Hierarchical Graph Decomposition [HKW99; CH14]. For 𝑖 ∈ ℕ the
graph 𝐾𝑖 of a graph 𝐾 includes the first 2𝑖 outgoing edges of each vertex. us 𝐾𝑖
has 𝑂(𝑛⋅2𝑖) edges. e main observation (Lemma 4.4.2) is that we can identify each
boom SCC with at most 2𝑖 vertices by searching for boom SCCs of 𝐾𝑖 that only
contain vertices for which all their outgoing edges in 𝐾 are also in 𝐾𝑖. e search
is started at level 𝑖 = 1 and then 𝑖 is doubled until such a boom SCC is found in 𝐾𝑖.
Note that 𝐾𝑖 = 𝐾 for 𝑖 ≥ log2 𝑛. When a boom SCC is identified at level 𝑖∗ but not
at 𝑖∗ − 1, then, as an immediate consequence of Lemma 4.4.2, this boom SCC has
𝛺(2𝑖∗) vertices (Corollary 4.4.3). Further, the number of edges in the graphs from
level 1 to 𝑖∗ forms a geometric series. us the work spent in all the levels up to
𝑖∗ can be bounded in terms of the number of edges in 𝐾𝑖∗ , that is, the boom SCC
of size 𝛺(2𝑖∗) is identified in 𝑂(𝑛 ⋅ 2𝑖∗) time. By searching “in parallel” for top and
boom SCCs and charging the needed time to the identified SCC, the total running
time can be bounded by 𝑂(𝑛2). To identify only boom SCCs of 𝐾𝑖 for which all
the outgoing edges are present in 𝐾𝑖, we determine the set of “blue” vertices Bl𝑖 that
have an out-degree higher than 2𝑖 and remove vertices that can reach blue vertices
before computing SCCs (l. 15–16). In the following we provide formal definitions
and proofs for Algorithm StreeDense.

Let 𝐾 = (𝑉 , 𝐸) be a directed graph with at most one edge between each (di-
rected) pair of vertices in 𝑉 × 𝑉 and with some arbitrary but fixed ordering of the
outgoing edges of each vertex.

Definition 4.4.1 (Hierarchical Graph Decomposition). For 𝑖 ∈ ℕ let 𝐾𝑖 be the sub-
graph (𝑉 , 𝐸𝑖) of 𝐾 = (𝑉 , 𝐸), where 𝐸𝑖 contains for each vertex of 𝑉 its first 2𝑖 outgo-
ing edges in 𝐸. Let the set Bl𝑖 denote all vertices with out-degree more than 2𝑖 in 𝐾 .

Note that when 𝑖 ≥ log2(max𝑣∈𝑉 Outdeg(𝐾, 𝑣)), then 𝐾𝑖 = 𝐾 and Bl𝑖 = ∅.

Lemma 4.4.2. We use Definition 4.4.1.

(1) A set 𝐶 ⊆ 𝑉 ⧵ Bl𝑖 is a boom SCC in 𝐾𝑖 if and only if it is a boom SCC in 𝐾 .

(2) If a set 𝐶 ⊆ 𝑉 with |𝐶| ≤ 2𝑖 is a boom SCC in 𝐾 , then 𝐶 ⊆ 𝑉 ⧵ Bl𝑖.

Proof. (1) By 𝐶 ⊆ 𝑉 ⧵ Bl𝑖 the outgoing edges of the vertices in 𝐶 are the same in
𝐾𝑖 and in 𝐾 . us we have 𝐾𝑖[𝐶] = 𝐾[𝐶] and 𝐶 has no outgoing edges in
𝐾𝑖 if and only if it has no outgoing edges in 𝐾 .

(2) In 𝐾 all outgoing edges of each vertex of 𝐶 have to go to other vertices of 𝐶 .
us each vertex of 𝐶 has an out-degree of at most |𝐶| ≤ 2𝑖 in 𝐾 .

e following corollary summarizes the properties of the Hierarchical Graph
Decomposition that we use in the running time analysis of Algorithm StreeDense.
Note that when in Algorithm StreeDense a set 𝐶 ⊆ 𝑆 ⧵ Bl𝑖 is a boom SCC in
𝐾𝑖[𝑆], then it does not intersect with GR(𝐾𝑖[𝑆],Bl𝑖) and thus it is also a
boom SCC in 𝐾𝑖[𝑍] for 𝑍 = 𝑆 ⧵ GR(𝐾𝑖[𝑆], Bl𝑖).
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Algorithm StreettDense: Dense MDPs with Stree objectives
Input :MDP 𝑃 = (𝐺, (𝑉1, 𝑉𝑅), 𝛿) with graph 𝐺 = (𝑉 , 𝐸) and

target pairs TP = {(𝐿𝑗 , 𝑈𝑗) ∣ 1 ≤ 𝑗 ≤ 𝑘}
Output : ⦉1⦊as (𝑃 , Stree(TP))

1 goodEC ← ∅
2 𝑄 ← ∅
3 𝒳 ← MEC(𝑃 )
4 for 𝑋 ∈ 𝒳 do
5 𝑄 ← 𝑄 ∪ {(𝑋,C(𝑋))}
6 while 𝑄 ≠ ∅ do
7 pick and remove some (𝑆, 𝐷(𝑆)) from 𝑄
8 while B(𝐷(𝑆)) ≠ ∅ do
9 𝐴 ← Ar𝑅(𝑃 [𝑆],B(𝐷(𝑆)))

10 (𝑆, 𝐷(𝑆)) ← R(𝑆, 𝐷(𝑆), 𝐴)
11 if 𝑃 [𝑆] contains at least one edge then
12 for 𝑖 ← 1 to ⌈log2(|𝑆|)⌉ do
13 foreach 𝐾 ∈ {𝐺, RevG} do
14 construct 𝐾𝑖[𝑆]
15 Bl𝑖 ← {𝑣 ∈ 𝑆 ∣ Outdeg(𝐾[𝑆], 𝑣) > 2𝑖}
16 𝑍 ← 𝑆 ⧵ GR(𝐾𝑖[𝑆],Bl𝑖)
17 if 𝑍 ≠ ∅ then
18 𝐶 ← SBSCC(𝐾𝑖[𝑍])
19 if 𝐶 = 𝑆 then
20 goodEC ← goodEC ∪ {𝐶}
21 continue with next iteration of while-loop
22 if |𝐶| ≤ |𝑆|/2 then
23 if 𝐾 = RevG then /* top SCC */
24 (𝑆, 𝐷(𝑆)) ← R(𝑆, 𝐷(𝑆), 𝐶)
25 rout ← {𝑣 ∈ 𝑉𝑅 ∩ 𝐶 ∣ ∃𝑢 ∈ 𝑆 s.t. (𝑣, 𝑢) ∈ 𝐸}
26 𝐶 ← 𝐶 ⧵ Ar𝑅(𝑃 [𝐶], rout)
27 else /* bottom SCC */
28 (𝑆, 𝐷(𝑆)) ← R(𝑆, 𝐷(𝑆),Ar𝑅(𝑃 [𝑆], 𝐶))
29 𝑄 ← 𝑄 ∪ {(𝐶,C(𝐶))}
30 𝑄 ← 𝑄 ∪ {(𝑆, 𝐷(𝑆))}
31 continue with next iteration of while-loop

32 return ⦉1⦊as (𝑃 , Reach(⋃𝑋∈goodEC 𝑋))
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Corollary 4.4.3. (1) If there exists a boom SCC 𝐶 with 𝐶 ⊆ 𝑉 ⧵ Bl𝑖 in 𝐾𝑖 but 𝐶
is not contained in 𝑉 ⧵ Bl𝑖−1, then |𝐶| > 2𝑖−1 and thus |𝐶| ∈ 𝛺(2𝑖).

(2) Consider the for-loop of Algorithm StreeDense for a set 𝑆 as defined in the
algorithm. In the for-loop either a top or boom SCC 𝐶 with |𝐶| ≤ |𝑆|/2 is
identified or 𝐺[𝑆] is strongly connected.

Proof. (1) By Lemma 4.4.2 (1) the set 𝐶 is a boom SCC in 𝐾 . us if |𝐶| ≤ 2𝑖−1,
then 𝐶 ⊆ 𝑉 ⧵ Bl𝑖−1 by Lemma 4.4.2 (2), a contradiction.

(2) If 𝐺[𝑆] is not strongly connected, then it contains at least one top and at least
one boomSCC that are disjoint from each other, and thus at least one of them
contains at most |𝑆|/2 vertices. Let 𝐶∗ be the smallest such top or boom
SCC with |𝐶∗| ≤ |𝑆|/2, assume w.l.o.g. that 𝐶∗ is a boom SCC (otherwise
replace 𝐺 with RevG and let 𝑖 ≤ 𝑖∗), and let 𝑖∗ = ⌈log|𝐶∗|⌉. en we have
by Lemma 4.4.2 (2) that 𝐶∗ ⊆ 𝑆 ⧵ Bl𝑖∗ and thus either a top or boom SCC
of 𝐺[𝑆] with |𝐶| ≤ |𝑆|/2 is identified in an iteration 𝑖 < 𝑖∗ or in iteration
𝑖∗ for 𝐾 = 𝐺 the set 𝐶∗ is the smallest boom SCC in 𝐾[𝑍] for 𝑍 = 𝑆 ⧵
GR(𝐾𝑖[𝑆],Bl𝑖) and is thus identified in line 22 of the for-loop.

Proposition 4.4.4 (Running time). Algorithm StreeDense terminates in 𝑂(𝑛2 +
𝑏 log 𝑛) time.

Proof. Using the data structure of Lemma 4.3.1, the initialization phase of Algo-
rithm StreeDense takes 𝑂(+𝑏+𝑛) time, which is in 𝑂(𝑛2 +𝑏) [CH14]. Further
by eorem 6.3.1 the almost-sure reachability computation aer the outer while-
loop can be done in 𝑂() time. Removing bad vertices takes total time 𝑂(𝑛 + 𝑏)
by Lemma 4.3.1. Whenever a random aractor is computed, its edges are removed;
thus all aractor computations take total time 𝑂(𝑚) (see Section 2.5.2). Whenever
R or C are called outside of the initialization phase, the vertices that
are removed resp. added are either (1) vertices for which the size of the SCC contain-
ing them was at least halved (l. 24, l. 28, and l. 29) or (2) vertices that are removed
(l. 10). For each vertex, case (1) can happen at most 𝑂(log 𝑛) times and case (2) at
most once, thus all calls to R or C take total time 𝑂((𝑛 + 𝑏) log 𝑛)
by Lemma 4.3.1.

To efficiently construct the graphs 𝐾𝑖 and compute Bl𝑖 for 1 ≤ 𝑖 < ⌈log2(𝑛)⌉ and
𝐾 ∈ {𝐺, RevG}, we maintain for all vertices a list of their incoming and outgoing
edges, which we update whenever we encounter obsolete entries while construct-
ing 𝐾𝑖. Each entry can be removed at most once, thus this can be done in total
time 𝑂(𝑚).

Let 𝑆 be the set of vertices considered in an iteration of the outer while-loop and
let |𝑆| = 𝑛′. We will bound the running time of the algorithm over all iterations in
which vertices of 𝑆 are considered by 𝑂(𝑛′2). Applied to the vertex sets the set 𝑄
is initialized with, this implies a bound of 𝑂(𝑛2) on the running time of the overall
algorithm.
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e 𝑖-th iteration of the for-loop takes 𝑂(𝑛′ ⋅ 2𝑖) time because 𝐾𝑖 contains 𝑂(𝑛′ ⋅
2𝑖) edges and constructing 𝐾𝑖 and Bl𝑖 and computing reachability, SCCs, and rout
can all be done in time linear in the number of edges. Searching in 𝐺 and RevG only
increases the running time by a factor of two. Further all iterations up to the 𝑖-th
iteration can be executed in time 𝑂(𝑛′ ⋅ 2𝑖) as their running times form a geometric
series. Note that whenever a graph is not strongly connected, it contains at least
one top SCC and at least one boom SCC and at least one of them has at most half
of the vertices. us in some iteration 𝑖∗ a top or boom SCC with either 𝐶 = 𝑆
or |𝐶| ≤ 𝑛′/2 is found by Corollary 4.4.3. Since 𝐶 was not found in iteration 𝑖∗ − 1,
we have |𝐶| = 𝛺(2𝑖∗) by Corollary 4.4.3. It follows that 𝑛′ = 𝛺(2𝑖∗), i.e., that
2𝑖∗ = 𝑂(𝑛′).

In the case 𝐶 = 𝑆 (l. 20) the vertices in 𝑆 are not considered further by the
algorithm. us we can bound the time for this iteration with 𝑂(𝑛′ ⋅ 2log(𝑛′)) =
𝑂(𝑛′2), and hence the total time for this case with 𝑂(𝑛2).

It remains to bound the time for the case |𝐶| ≤ 𝑛′/2 (l. 22). Let |𝐶| = 𝑛1 and
let 𝑐 be some constant such that the time spent for the search of 𝐶 is bounded by
𝑐 ⋅ 𝑛1 ⋅ 𝑛′. We denote this time spent for the vertices in the set 𝑆 over the whole
algorithm by 𝑓(𝑛′). Finally we show 𝑓(𝑛′) = 2𝑐𝑛′2 by induction as follows:

𝑓(𝑛′) ≤ 𝑓(𝑛1) + 𝑓(𝑛′ − 𝑛1) + 𝑐𝑛′𝑛1 ,
≤ 2𝑐𝑛2

1 + 2𝑐(𝑛′ − 𝑛1)2 + 𝑐𝑛′𝑛1 ,
= 2𝑐𝑛2

1 + 2𝑐𝑛′2 − 4𝑐𝑛′𝑛1 + 2𝑐𝑛2
1 + 𝑐𝑛′𝑛1 ,

= 2𝑐𝑛′2 + 4𝑐𝑛2
1 − 3𝑐𝑛′𝑛1 ,

≤ 2𝑐𝑛′2 ,

where the last inequality follows from 𝑛1 ≤ 𝑛′/2.

Proposition 4.4.5 (Soundness). Let the set returned by Algorithm StreeDense be
denoted by 𝑊 . We have 𝑊 ⊆ ⦉1⦊as (𝑃 , Stree(TP)).

Proof. By Corollary 2.6.5 it is sufficient to show that every set 𝑋 ∈ goodEC is a good
end-component. Let 𝐶 be a set of vertices added to goodEC in line 20 and let 𝑖 be
the corresponding iteration of the for-loop. e subgraph induced by 𝐶 is strongly
connected in 𝐺𝑖 and, since it does not contain any vertices of Bl𝑖, also in 𝐺 by
Lemma 4.4.2. erefore we have that immediately before 𝐶 is added to goodEC the
algorithm verified that 𝐺[𝐶] contains at least one edge (l. 11), is strongly connected
(l. 18), and B(𝐷(𝐶)) is empty (l. 8). us it remains to show that there 𝐶 has no
outgoing random edges. Since 𝐶 is obtained from some set 𝑆 ∈ 𝑄 only by removing
random aractors in the inner while-loop (compare the proof of Proposition 4.3.6),
it is sufficient to show that Invariant 4.3.4 holds in Algorithm StreeDense, i.e., that
there are no random edges from 𝑆 to 𝑉 ⧵ 𝑆 for any 𝑆 ∈ 𝑄.

Before the first iteration of the while-loop, 𝑄 is initialized with the maximal end-
components of 𝑃 and thus the invariant holds. Assume the invariant holds before
the beginning of an iteration of the outer while-loop and let 𝑆 be the set of vertices
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that is removed from 𝑄 in this iteration. In the inner while-loop some vertices and
their random aractor in 𝑃 [𝑆] might be removed from 𝑆 . Let 𝑆′ be the remaining
vertices. By the definition of a random aractor there are no random edges from
𝑆′ to 𝑆 ⧵ 𝑆′ and thus by the induction hypothesis there are no random edges from
𝑆′ to 𝑉 ⧵ 𝑆′.

en either 𝑃 [𝑆′] is strongly connected (l. 20) and no set is added to 𝑄 in this
iteration of the while-loop or either a top or a boom SCC 𝐶 of 𝑃 [𝑆′] is identified
in some iteration of the for-loop by Corollary 4.4.3.

If 𝐶 is a top SCC (l. 23), then there are no edges from 𝑆′ ⧵𝐶 to 𝐶 and thus 𝑆′ ⧵𝐶
has no outgoing random edges. Hence the invariant is maintained when 𝑆′ ⧵ 𝐶 is
added to 𝑄 in line 30. In line 26 the random vertices of 𝐶 with edges to vertices in
𝑆′ ⧵𝐶 and their random aractor are removed from 𝐶 . us the remaining vertices
of 𝐶 have no random edges to 𝑉 ⧵ 𝐶 and the invariant is maintained when this
vertex set is added to 𝑄 in line 29.

If 𝐶 is a boom SCC (l. 27), then there are no edges from 𝐶 to 𝑆′ ⧵ 𝐶 ; thus
the invariant is maintained when 𝐶 is added to 𝑄 in line 29. In line 28 the random
aractor of 𝐶 is removed from 𝑆′ ⧵ 𝐶 before the remaining vertex set is added to
𝑄 in line 30, hence the invariant is maintained in all cases.

Proposition 4.4.6 (Completeness). Let the set returned by Algorithm StreeDense
be denoted by 𝑊 . We have ⦉1⦊as (𝑃 , Stree(TP)) ⊆ 𝑊 .

Proof. By Proposition 2.6.9 it is sufficient to show that at the end of the algorithm
the union of the sets in goodEC contains all good end-components of the MDP 𝑃 .
As 𝑄 is empty at the end of the algorithm, it is sufficient to show, by induction,
that Invariant 4.3.7 holds before and aer each iteration of the outer while-loop in
Algorithm StreeDense. Recall that the invariant guarantees that each good end-
component of the given MDP 𝑃 is contained in some set of either goodEC or 𝑄.

Before the first iteration of the outer while-loop, the set 𝑄 is initialized with
the MECs of 𝑃 , thus the induction base holds. Let 𝑆 be the set of vertices that is
removed from 𝑄 in an iteration of the outer while-loop and let 𝒳𝑆 be the set of good
end-components contained in 𝑆 . Let 𝑆′ be the subset of 𝑆 that is not removed in the
inner while-loop. By Corollary 4.2.2 we have that removing vertices in B(𝐷(𝑆))
and their random aractor in the inner while-loop does not affect the good end-
components contained in 𝑆 , and this can be applied inductively. us we have that
𝑋 ⊆ 𝑆′ for every 𝑋 ∈ 𝒳𝑆 .

Since every end-component contains an edge, 𝑃 [𝑆′] contains at least one edge
if 𝒳𝑆 is not empty (l. 11). By Corollary 4.4.3 then either 𝑆′ and thus all 𝑋 ∈ 𝒳𝑆
are added to goodEC (line 20) or an SCC 𝐶 ⊊ 𝑆′ of 𝐺[𝑆′] is identified in line 18. By
Lemma 2.6.10 (a) each 𝑋 ∈ 𝒳𝑆 is either a subset of 𝐶 or of 𝑆′ ⧵ 𝐶 . For 𝑋 ⊆ 𝐶 we
have rout ∩ 𝑋 = ∅ (line 25) since 𝑋 has no outgoing random edges and thus 𝑋 ⊆
𝐶 ⧵Ar𝑅(𝑃 [𝐶], rout) by Lemma 2.6.10 (b). For 𝑋 ⊆ 𝑆′ ⧵ 𝐶 we have 𝑋 ∩ 𝐶 = ∅ and
thus 𝑋 ⊆ 𝑆′ ⧵ Ar𝑅(𝑃 [𝑆′], 𝐶) by Lemma 2.6.10 (b). e sets 𝐶 ⧵ Ar𝑅(𝑃 [𝐶], rout)
and 𝑆′ ⧵Ar𝑅(𝑃 [𝑆′], 𝐶) are added to 𝑄 in lines 29 and 30, hence the invariant holds
aer the outer while-loop.



64 4. ALGORITHMS FOR MDPS WITH STREETT OBJECTIVES

4.5 Algorithm for Sparse MDPs with Streett Objectives

Algorithm StreeSparse combines Algorithm StreeImprwith the ideas of theMEC-
algorithm for sparse MDPs of [CH14] and the algorithm for graphs with Stree
objectives of [HT96]. e difference to Algorithm StreeImpr lies, as for dense
MDPs, in the search for SCCs in a sub-MDP 𝑃 [𝑆] induced by a vertex set 𝑆 . e
algorithm is based on the following observation: Whenever for an SCC 𝐶 and a
vertex set 𝐴 the graph induced by 𝐶 ⧵ 𝐴 is not strongly connected, then (a) there
is at least one top and at least one boom SCC in 𝐺[𝐶 ⧵ 𝐴] and (b) in each top
SCC of 𝐺[𝐶 ⧵ 𝐴] some vertex has an incoming edge from a vertex of 𝐴 and in each
boom SCC some vertex has an outgoing edge to a vertex of 𝐴. We label vertices
that lost an incoming edge since the last SCC computation with ℎ (for head) and
vertices that lost an outgoing edge with 𝑡 (for tail). If more than √𝑚/ log2 𝑛 vertices
are labeled, we remove all labels and compute SCCs as in Algorithm StreeImpr;
this can happen at most √𝑚 log2 𝑛 times. Otherwise we search for the smallest top
or boom SCC of 𝑃 [𝑆] by searching in lock-step from all labeled vertices. Lock-step
means that one step in each of the searches is executed before the next step of any
search is conducted and all searches are stopped as soon as the first search finishes.
We search for top SCCs by searching for boom SCCs in the reverse graph. For
example, Tarjan’s depth-first search based SCC algorithm [Tar72] detects a boom
SCC in time proportional to the number of edges in the boom SCCwhen the search
is started from a vertex inside the boom SCC. In general any graph traversal that
explores all reachable edges one by one is sufficient as described by the following
observation.

Observation 4.5.1. Assume we are given a set of start vertices 𝑇 that includes at least
one vertex of each boom SCC of a graph. When we start in lock-step from each vertex
of 𝑇 a graph traversal of the edges reachable from the respective start vertex, then the
traversal that terminates first induces a boom SCC in the graph.

Proof. Each vertex that is not in a boom SCC can reach some boom SCC and thus
can reach the edges of at least one boom SCC and at least one additional edge. As
a graph traversal needs as many steps as the number of edges it traverses, one of
the graph traversals that is started in the boom SCCs with the fewest numbers of
edges finishes first.

By the label invariant described below, Algorithm StreeSparse starts a search in
each boom SCC. As there are at most √𝑚/ log2 𝑛 parallel searches, the time for all
the lock-step searches is 𝑂(√𝑚/ log2 𝑛) times the number of edges in the smallest
top or boom SCC of 𝑃 [𝑆]. Since each edge can be in the smallest SCC at most
𝑂(log 𝑛) times, this leads to a total running time of 𝑂(𝑚1.5√log 𝑛). Whenever an
SCC is identified, the labels of its vertices are removed. e Invariants 4.3.4 and 4.3.7
are maintained as in Algorithm StreeImpr.
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Algorithm StreettSparse: Sparse MDPs with Stree objectives
Input :MDP 𝑃 = (𝐺, (𝑉1, 𝑉𝑅), 𝛿) with graph 𝐺 = (𝑉 , 𝐸) and

target pairs TP = {(𝐿𝑗 , 𝑈𝑗) ∣ 1 ≤ 𝑗 ≤ 𝑘}
Output : ⦉1⦊as (𝑃 , Stree(TP))

1 goodEC ← ∅; 𝑄 ← ∅; 𝒳 ← MEC(𝑃 )
2 for 𝑋 ∈ 𝒳 do 𝑄 ← 𝑄 ∪ {(𝑋,C(𝑋))}
3 while 𝑄 ≠ ∅ do
4 pick and remove some (𝑆, 𝐷(𝑆)) from 𝑄
5 while B(𝐷(𝑆)) ≠ ∅ do
6 𝐴 ← Ar𝑅(𝑃 [𝑆],B(𝐷(𝑆)))
7 (𝑆, 𝐷(𝑆)) ← R(𝑆, 𝐷(𝑆), 𝐴)
8 add label ℎ (𝑡) to vertices that just lost an incoming (resp. outgoing) edge
9 𝐻 ← {𝑣 ∈ 𝑆 ∣ ℎ ∈ 𝑙𝑎𝑏𝑒𝑙(𝑣)}; 𝑇 ← {𝑣 ∈ 𝑆 ∣ 𝑡 ∈ 𝑙𝑎𝑏𝑒𝑙(𝑣)}

10 if 𝑃 [𝑆] contains at least one edge then
11 if |𝐻| + |𝑇 | = 0 then goodEC ← goodEC ∪ {𝑆}
12 else if |𝐻| + |𝑇 | ≥ √𝑚/ log2 𝑛 then

/* as in Algorithm StreettImpr plus labels */
13 remove all labels from 𝑆
14 𝒞 ← SCC(𝑃 [𝑆]); 𝑆′ ← 𝑆
15 for 𝐶 ∈ 𝒞 do
16 rout ← {𝑣 ∈ 𝑉𝑅 ∩ 𝐶 ∣ ∃𝑤 ∈ 𝑆′ ⧵ 𝐶 s.t. (𝑣, 𝑤) ∈ 𝐸}
17 𝐴 ← Ar𝑅(𝑃 [𝐶], rout)
18 add label ℎ (𝑡) to vertices with incoming (outgoing) edge from (to) 𝐴
19 if 𝐶 is largest SCC in 𝒞 then (𝑆, 𝐷(𝑆)) ← R(𝑆, 𝐷(𝑆), 𝐴)
20 else
21 (𝑆, 𝐷(𝑆)) ← R(𝑆, 𝐷(𝑆), 𝐶)
22 𝐶 ← 𝐶 ⧵ 𝐴
23 𝑄 ← 𝑄 ∪ {(𝐶,C(𝐶))}

24 𝑄 ← 𝑄 ∪ {𝐷(𝑆)}
25 else
26 Search in lock-step from each 𝑣 ∈ 𝑇 in 𝐺[𝑆] and from each 𝑣 ∈ 𝐻 in

RevG[𝑆], terminate when first search has found a boom SCC 𝐶
/* as in Alg. StreettDense plus labels */

27 if 𝐶 = 𝑆 then goodEC ← goodEC ∪ {𝑆}
28 else
29 remove all labels from 𝐶
30 if 𝐶 is boom SCC in RevG[𝑆] then /* top SCC */
31 (𝑆, 𝐷(𝑆)) ← R(𝑆, 𝐷(𝑆), 𝐶)
32 rout ← {𝑣 ∈ 𝑉𝑅 ∩ 𝐶 ∣ ∃𝑢 ∈ 𝑆 ⧵ 𝐶 s.t. (𝑣, 𝑢) ∈ 𝐸}
33 𝐶 ← 𝐶 ⧵ Ar𝑅(𝑃 [𝐶], rout)
34 else /* bottom SCC */
35 (𝑆, 𝐷(𝑆)) ← R(𝑆, 𝐷(𝑆),Ar𝑅(𝑃 [𝑆], 𝐶))
36 add label ℎ (𝑡) to vertices that just lost an incoming (outgoing) edge
37 𝑄 ← 𝑄 ∪ {(𝐶,C(𝐶))}
38 𝑄 ← 𝑄 ∪ {(𝑆, 𝐷(𝑆))}

39 return ⦉1⦊as (𝑃 , Reach(⋃𝑋∈goodEC 𝑋))
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Lemma 4.5.2 (Label invariant). In Algorithm StreeSparse the following invariant
is maintained for every set 𝑆 with (𝑆, 𝐷(𝑆)) in 𝑄: Either (1) no vertex of 𝑆 is labeled
and 𝐺[𝑆] is strongly connected or (2) in each top SCC of 𝐺[𝑆] at least one vertex is
labeled with ℎ and in each boom SCC of 𝐺[𝑆] at least one vertex is labeled with 𝑡.

Proof. e proof is by induction over the iterations of the outer while-loop. Aer
the initialization of 𝑄 with the MECs of 𝑃 , no vertex is labeled and every set 𝑆 ∈ 𝑄
is strongly connected. Let now 𝑆 denote the set that is removed from 𝑄 at the
beginning of an iteration of the outer while-loop and assume the invariant holds
for 𝑆 .

Observation. Wehave for non-empty vertex sets𝑊 and𝑍 = 𝑊 ⧵𝑌 for some 𝑌 ⊊ 𝑊
that if 𝐶 is a top (boom) SCC in 𝐺[𝑍] but has incoming (outgoing) edges in 𝐺[𝑊 ],
then these incoming (outgoing) edges are from (to) vertices in 𝑌 . us when the label
invariant holds for 𝑊 and we label each vertex of 𝑍 with an incoming edge from 𝑌
with ℎ and each vertex of 𝑍 with an outgoing edge to 𝑌 with 𝑡, then the invariant
holds for 𝑍 .

By this observation the invariant remains to hold for 𝑆 aer the inner while-
loop. In the case |𝐻| + |𝑇 | ≥ √𝑚/ log2 𝑛 all labels are removed from 𝑆 and then
each SCC 𝐶 of 𝐺[𝑆] is considered separately. Note that for each 𝐶 the invariant
holds and thus the invariant remains to hold for the set 𝐶 added to 𝑄 when the
vertices in 𝐴 are removed and the corresponding labels are added in line 18. In the
case |𝐻| + |𝑇 | < √𝑚/ log2 𝑛 a boom or top SCC 𝐶 of 𝐺[𝑆] is identified and all
labels of 𝐶 are removed. e invariant holds for 𝐶 and thus the invariant remains to
hold for the set 𝐶 added to 𝑄 when vertices are removed from 𝐶 in line 33 and the
corresponding labels are added in line 36. By the above observation with 𝑊 = 𝑆
and 𝑌 = Ar𝑅(𝑃 [𝑆], 𝐶) the invariant also holds for the set 𝑆 ⧵Ar𝑅(𝑃 [𝑆], 𝐶) that
is added to 𝑄 aer the corresponding labels are added in line 36.

Proposition 4.5.3 (Running time). Algorithm StreeSparse takes 𝑂(𝑚1.5√log 𝑛 +
𝑏 log 𝑛) time.

Proof. Using the data structure of Lemma 4.3.1, the initialization phase of Algo-
rithm StreeSparse takes time 𝑂( + 𝑏 + 𝑛), which is in 𝑂(𝑚√𝑚 + 𝑏) [CH14].
Further, by eorem 6.3.1 the almost-sure reachability computation aer the outer
while-loop can be done in 𝑂() time. Removing bad vertices takes total time 𝑂(𝑛+
𝑏) by Lemma 4.3.1. Since a label is added only when an edge is removed by the algo-
rithm, the total time for adding and removing labels is 𝑂(𝑚). Whenever a random
aractor is computed, its edges are removed; thus all aractor computations take
total time 𝑂(𝑚). Note that whenever a graph is not strongly connected, it contains
some top SCC and some boom SCC and at least one of them has at most half of
the vertices. us whenever a top or boom SCC 𝐶 with 𝐶 ⊊ 𝑆 is identified in
line 26, then |𝐶| ≤ |𝑆|/2. is implies by Lemma 4.5.2 that whenever R or
C are called (aer the initialization phase), the vertices that are removed
resp. added are either (a) vertices for which the size of the SCC containing them
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was at least halved (l. 21, 23, 31, 35, and 37) or (b) vertices that are removed (l. 7
and l. 19). Case (a) can happen at most 𝑂(log 𝑛) times, thus all calls to R or
C take total time 𝑂((𝑛 + 𝑏) log 𝑛) by Lemma 4.3.1.

It remains to bound the time for identifying SCCs and determining the random
boundary vertices rout in Case 1, |𝐻| + |𝑇 | ≥ √𝑚/ log2 𝑛, and Case 2, |𝐻| + |𝑇 | <
√𝑚/ log2 𝑛. Since labels are added only to the endpoints of edges that are not con-
sidered further and all labels of the considered vertices are deleted when Case 1 oc-
curs, Case 1 can happen at most √𝑚 log2 𝑛 times. us the total time for Case 1 can
be bounded by 𝑂(𝑚1.5√log 𝑛). In Case 2 we charge the time for the 𝑂(√𝑚/ log 𝑛)
lock-step searches to the edges in the identified SCC 𝐶 . With Tarjan’s SCC algo-
rithm [Tar72] a boom SCC is identified in time proportional to the number of edges
in the boom SCC when the search is started at a vertex in the boom SCC, which
in Algorithm StreeSparse is guaranteed by Lemma 4.5.2 for both top and boom
SCCs. Since always a top or boom SCC 𝐶 with |𝐶| ≤ |𝑆|/2 is identified, each edge
is charged at most 𝑂(log 𝑛) times. us the total time for identifying SCCs in Case 2
is 𝑂(𝑚1.5√log 𝑛). Determining the random boundary vertices rout in Case 2 can be
charged to the edges from 𝐶 to 𝑆 ⧵ 𝐶 , which are then not considered further by the
algorithm. us the total running time of the algorithm is 𝑂(𝑚1.5√log 𝑛).

Proposition 4.5.4 (Correctness). Let the set returned by Algorithm StreeSparse be
denoted by 𝑊 . We have 𝑊 = ⦉1⦊as (𝑃 , Stree(TP)).

Proof. By Corollary 2.6.5 and Proposition 2.6.9 it is sufficient to show that the set
goodEC contains exactly all (maximal) good end-components of 𝑃 when the algo-
rithm terminates. By Lemma 4.5.2 we have that whenever a vertex set is added to
goodEC in line 11, it induces a strongly connected subgraph. us we have that
immediately before a set of vertices 𝐶 is added to goodEC in line 11 or line 27, it
is checked that 𝐺[𝐶] contains at least one edge, is strongly connected, and that
B(𝐷(𝐶)) is empty.

Recall Invariant 4.3.4 that states that there are no random edges between 𝑆 and
𝑉 ⧵ 𝑆 for any set 𝑆 that is in 𝑄 and Invariant 4.3.7 that states that each good end-
component is contained in a set of goodEC or 𝑄 before and aer each iteration of
the outer while-loop.

For the soundness of Algorithm StreeSparse it remains to show that there are
no random edges from 𝐶 to 𝑉 ⧵ 𝐶 . When 𝐶 is added to goodEC in line 11, this
follows immediately from Invariant 4.3.4, for line 27 it follows from Invariant 4.3.4
and the observation that only random aractors are removed from the superset of
𝐶 that is removed from 𝑄 in the iteration in which 𝐶 is added to goodEC (compare
the proof of Proposition 4.3.6).

us for soundness it remains to show Invariant 4.3.4. For completeness we
have that 𝑄 is empty at the end of Algorithm StreeSparse and hence it is sufficient
to show Invariant 4.3.7. We have for each iteration of the outer while-loop: e
inner while-loop is the same as in Algorithms StreeImpr and StreeDense. In the
case |𝐻| + |𝑇 | = 0, the currently considered set of vertices is added to goodEC
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and no set is added to 𝑄. If |𝐻| + |𝑇 | ≥ √𝑚/ log2 𝑛, the same operations as in
Algorithm StreeImpr are performed. If |𝐻| + |𝑇 | < √𝑚/ log2 𝑛, like in Algo-
rithm StreeDense, either a top or a boom SCC is identified and then the same
operations as in Algorithm StreeDense are applied to the identified SCC and the
remaining vertices. As the operations in Algorithms StreeImpr and StreeDense
preserve the invariants, the same arguments apply to Algorithm StreeSparse (see
the proofs of Lemmas 4.3.5 and 4.3.8 and Propositions 4.4.5 and 4.4.6).

4.6 Conclusion

Recently, algorithms with a running time of ≈ 𝑂(min(𝑚1.5, 𝑛2)) were obtained, with
similar techniques, for several problems: forMEC-decomposition [CH14], forMDPs
with Stree objectives (this chapter), and for the maximal induced subgraphs that
are 2-edge or 2-vertex connected in directed graphs [HKL15; Che+17]. For all these
problems it would be very interesting to find faster algorithms or (conditional) lower
bounds. ese problems seem simple enough for the existence of a linear-time algo-
rithm but no approach that avoids min(√𝑚, 𝑛) iterations in the worst-case is known.
For determining the winning sets in Büchi games only an 𝑂(𝑛2) time algorithm is
known, again with similar techniques [CH14]. Is there also an 𝑂(𝑚1.5) time algo-
rithm for Büchi games?



CHAPTER 5
Parity Games

5.1 Introduction

In this chapter we present two different kinds of improved algorithms for game
graphs with parity objectives, called parity games for short: (1) an (explicit) algo-
rithm with improved running time for dense game graphs and (2) set-based symbolic
algorithms with an improved number of symbolic steps. e parity games problem
in general is in UP ∩ coUP [Jur98]; it is one of the rare and intriguing combinatorial
problems that lie in NP ∩ coNP but are not known to be solvable in polynomial
time. We first discuss the significance of parity games, 𝜇-calculus, and symbolic
algorithms, followed by previous results and our contributions.

Significance of parity games. Game graphs with parity objectives are partic-
ularly important in the verification and synthesis of systems, since all 𝜔-regular
winning conditions (such as safety, reachability, liveness, fairness) as well as all
linear-time temporal logic (LTL) winning conditions can be translated to parity con-
ditions [Saf88; Saf89]. For an (even-)parity objective, every vertex is assigned a
non-negative integer priority from {0, 1, … , 𝑐 − 1}, and a play is winning if the
highest priority visited infinitely oen is even (see also Section 2.3). ere is a rich
literature on the algorithmic study of finite-state parity games [EJ91; Bro+97; Sei96;
Jur00; VJ00; JPZ08; Sch07].

Fixed-point calculus: 𝜇-calculus. Modal 𝜇-calculus, a fixed-point calculus for
programs, introduced in the seminal work of [Koz83], is one of the most important
logics in model-checking. e fixed-point calculus consists of the alternation of
least and greatest fixed-point operators and the basic formulas consist of the com-
putation of the one-step predecessors and successors of the system. It provides an
exceptional balance between expressiveness and algorithmic properties. One of the
key strengths of 𝜇-calculus is that a formula in 𝜇-calculus is by itself a succinct
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description of a symbolic algorithm for the evaluation of the formula (by the evalu-
ation of the nested fixed points). Hence 𝜇-calculus is oen referred to as the “assem-
bly language of program logics”, reflecting its comprehensiveness. Moreover, due
to its elegant mathematical representation, there exist many important mathemati-
cal characterizations of 𝜇-calculus, such as in terms of completeness [Wal00]. In a
fundamental result [EJ91], the equivalence of solving parity games and 𝜇-calculus
model-checking was established. us the analysis of parity games, or equivalently,
𝜇-calculus model-checking, are the core algorithmic problems for many formal anal-
ysis tools.

Explicit vs. symbolic algorithms. e algorithmic analysis of parity games has
received a lot of aention [EJ91; Bro+97; Sei96; Jur00; VJ00; JPZ08; Sch07], and the
algorithms can be classified broadly as explicit algorithms, where the algorithms
operate on the explicit representation of the game graph, and implicit or symbolic
algorithms, where the algorithms only use a set of predefined operations and does
not explicitly access the game graph.

Significance of parity-3 and dense game graphs. e running time improve-
ment of our explicit algorithm is most relevant for game graphs with parity objec-
tives with three priorities, parity-3 games for short, and dense game graphs. Graphs
obtained as synchronous product of several components (where each component
makes transitions at each step) [KP09; Cha+16d] can lead to dense graphs. Parity-3
objectives also correspond to one-pair Stree objectives. Parity-3 games arise in
many applications in verification. We sketch a few of them. (A) Timed automaton
games are a model for real-time systems. e analysis of such games with reacha-
bility and safety objectives (which are the dual of reachability objectives) reduces
to game graphs with parity-3 objectives [Alf+03; AF07; CHP11; CP13]. (B) e
synthesis of Generalized Reactivity(1) (aka GR(1)) specifications exactly require the
solution of parity-3 games [Blo+10]; GR(1) specifications are standard for hardware
synthesis [PPS06] and even used in the synthesis of industrial protocols [GCH13;
Blo+12]1. (C) Finally, the problem of fair simulation [HKR02] between two systems
also reduces to parity-3 games [CCK12].

Significance of set-based symbolic algorithms. Symbolic algorithms are of
great significance for the following reasons: (a) first, symbolic algorithms are
required for large finite-state systems that can be succinctly represented implic-
itly (e.g., programs with Boolean variables) and symbolic algorithms are scalable,
whereas explicit algorithms do not scale; and (b) second, for infinite-state systems
(e.g., real-time systems modeled as timed automata, or hybrid systems, or programs

1A GR(1) specification expresses that if a conjunction of Büchi objectives holds, then another
conjunction of Büchi objectives must also hold, and since conjunction of Büchi objectives can be
reduced in linear time to a single Büchi objective, a GR(1) specification reduces to implication between
two Büchi objectives, which is a parity-3 objective.
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with integer domains) only symbolic algorithms are applicable, rather than ex-
plicit algorithms. Hence for the analysis of large systems or infinite-state systems
symbolic algorithms are necessary.

e most significant class of symbolic algorithms for parity games are based on
set operations, where the allowed symbolic operations are: (a) basic set operations
such as union, intersection, complement, and inclusion; and (b) one step predeces-
sor (Pre) operations (similarly, one step successor operations (Post) operations can
be defined but are not needed in this thesis). Note that the basic set operations (that
only involve state variables) are much cheaper as compared to the predecessor oper-
ations (that involve both variables of the current and of the next state). us in our
analysis we will distinguish between the basic set operations and the predecessor
operations. e significance of set-based symbolic algorithms is as follows:

(1) First, in several domains of the analysis of both infinite-state systems (e.g.,
games over timed automata or hybrid systems) as well as large finite-state
systems (e.g., programs with many Boolean variables, or bounded integer
variables), the desired model-checking question is specified as a 𝜇-calculus
formula with the above set operations [AHM01; Alf+03]. us an algorithm
with the above set operations provides a symbolic algorithm that is directly
applicable to the formal analysis of such systems.

(2) Second, in other domains such as in program analysis, the one-step prede-
cessor operators are routinely used (namely, with the weakest-precondition
as a predicate transformer). A symbolic algorithm based only on the above
operations thus can easily be developed on top of the existing implementa-
tions. Moreover, recent work [Bey+14] shows how efficient procedures (such
as constraint-based approaches using SMTs) can be used for the computation
of the above operations in infinite-state games. is highlights that symbolic
one-step operations can be applied to a large class of problems.

(3) Finally, if a symbolic algorithm is described with the above very basic set of
operations, then any practical improvement to these operations in a particular
domain would translate to a symbolic algorithm that is faster in practice for
the respective domain.

us the problem of an efficient set-based symbolic algorithm is at the heart of
formal analysis of several fundamental models, such as in program analysis and
program repair, large finite-state systems, as well as games over timed automata.

Previous results. We summarize the main previous results for finite-state game
graphs with parity conditions. Consider a parity game with 𝑛 vertices, 𝑚 edges, and
𝑐 priorities (which is equivalent to 𝜇-calculus model-checking of transitions sys-
tems with 𝑛 states, 𝑚 transitions, and a 𝜇-calculus formula of alternation depth 𝑐).
In the interest of concise presentation, in the following discussion, we ignore de-
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nominators in 𝑐 in the running time bounds, see Section 5.2.6, and eorems 5.4.14
and 5.5.7 for precise bounds.

Explicit algorithms. e classical algorithm for parity games requires 𝑂(𝑛𝑐−1𝑚)
time and linear space [Zie98; McN93], which was then improved to the small-
progress measure algorithm that requires 𝑂(𝑛𝑐/2𝑚) time and 𝑂(𝑐 ⋅ 𝑛) space [Jur00].
e small-progress measure algorithm, which is an explicit algorithm, uses an
involved domain of the product of integer priorities and li operations (which
is a lexicographic max and min in the involved domain). e algorithm shows
that the fixed point of the li operation computes the solution of the parity game.
e li operation can be encoded with algebraic BDDs (algebraic binary deci-
sion diagrams) [BKV04] but this does not provide a set-based symbolic algorithm.
Other notable explicit algorithms for parity games are as follows: (a) a strategy
improvement algorithm [VJ00], which in the worst-case is exponential [Fri09]; (b) a
dominion-based algorithm [JPZ08] that requires 𝑛𝑂(√𝑛) time and a randomized
𝑛𝑂(√𝑛/ log 𝑛) algorithm [BSV03] (both algorithms are sub-exponential, but inherently
explicit algorithms); and (c) an ≈ 𝑂(𝑛𝑐/3𝑚) time algorithm [Sch07] combining the
small-progress measure and the dominion-based algorithm.

Despite the importance of parity-3 games in numerous applications and sev-
eral algorithmic ideas to improve the running time for general parity games [VJ00;
BSV03; JPZ08; Sch07] or Büchi games [CJH03; CH14], there has been no algorithmic
improvement for parity-3 games since the 𝑂(𝑚𝑛) time algorithm in 2000 by [Jur00].

Set-based symbolic algorithms. e basic set-based symbolic algorithm (based
on the direct evaluation of the nested fixed point of the 𝜇-calculus formula) for par-
ity games requires 𝑂(𝑛𝑐) symbolic operations and linear space [EL86]. In a break-
through result [Bro+97], a new set-based symbolic algorithm was presented that
requires 𝑂(𝑛𝑐/2+1) symbolic operations but also requires 𝑂(𝑛𝑐/2+1) space (i.e., expo-
nential space as compared to the linear space of the basic algorithm). A simplifica-
tion of the result of [Bro+97] was presented in [Sei96].

Infinite graphs. While the above algorithms are specified for finite-state graphs,
the symbolic algorithms also apply to infinite-state graphswith a finite bi-simulation
quotient (such as timed-games [AD94], or rectangular hybrid games [Hen95; Kop96;
HMR05]), and then 𝑛 represents the size of the finite quotient.

Open questions. Given the above results, many fundamental questions remained
open. A major and long-standing open question is whether there is any polynomial-
time algorithm (explicit or symbolic) for parity games. In relation to set-based sym-
bolic algorithms, a few important open questions are as follows:

(1) Does there exist a set-based symbolic algorithm that beats the 𝑂(𝑛𝑐) symbolic
operations algorithm using only linear space?

(2) Does there exist a set-based symbolic algorithm that beats the 𝑂(𝑛𝑐/2+1) sym-
bolic operations algorithm?
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Table 5.1: Explicit algorithms for parity games with few priorities.

# Priorities

Reference 3 4 5 6 7

[Sch07] 𝑂(𝑚𝑛) 𝑂(𝑚𝑛3/2) 𝑂(𝑚𝑛2) 𝑂(𝑚𝑛7/3) 𝑂(𝑚𝑛11/4)
[Sch07] with 𝑚 = 𝛩(𝑛2) 𝑂(𝑛3) 𝑂(𝑛7/2) 𝑂(𝑛4) 𝑂(𝑛13/3) 𝑂(𝑛19/4)
eorem 5.3.9 𝑶(𝒏𝟐.𝟓) 𝑶(𝒏𝟑) 𝑶(𝒏𝟏𝟎/𝟑) 𝑶(𝒏𝟏𝟓/𝟒) 𝑶(𝒏𝟔𝟓/𝟏𝟔)

(3) Does there exist a set-based symbolic algorithm that requires at most a sub-
exponential number of symbolic operations?

Our contributions. Explicit algorithm. We show that the winning set computa-
tion for parity games with three priorities can be achieved in 𝑂(𝑛2.5) time. Our
algorithm is faster for 𝑚 ∈ 𝜔(𝑛1.5), and breaks the long-standing 𝑂(𝑚𝑛) barrier
for dense graphs. Our algorithm for parity-3 games also extends to general parity
games and improves the running time for dense graphs when the number of prior-
ities is sub-polynomial. Let, as in [Sch07], 𝛾(𝑐) = 𝑐/3 + 1/2 − 4/(𝑐2 − 1) for odd 𝑐
and 𝛾(𝑐) = 𝑐/3 + 1/2 − 1/(3𝑐) − 4/𝑐2 for even 𝑐, and let 𝛽(𝑐) = 𝛾(𝑐)/(⌊𝑐/2⌋ + 1). We
obtain that the running time of our algorithm is 𝑂(𝑛1+𝛾(𝑐+1)) = 𝑂(𝑛2+𝛾(𝑐)−𝛽(𝑐)) for
parity games with 𝑐 priorities. For a constant number of priorities this replaces 𝑚
of [Sch07] by 𝑛2−𝛽(𝑐). Since the value of 𝛽(𝑐) quickly approaches 2/3 with increas-
ing 𝑐, we have 𝑛2−𝛽(𝑐) ≈ 𝑛4/3, i.e., a running time of roughly 𝑂(𝑛𝛾(𝑐)+4/3). For small 𝑐
we compare our running times with the Big-step algorithm of [Sch07] in Table 5.1.

Set-based symbolic algorithms. We present answers to the fundamental open
questions related to set-based symbolic algorithms for parity games. Our results for
game graphs with 𝑛 vertices and parity objectives with 𝑐 priorities are as follows:

(1) First, we present a set-based symbolic algorithm that requires 𝑂(𝑛𝑐/2+1) sym-
bolic operations and linear space. us it matches the symbolic operations
bound of [Bro+97; Sei96] and the space requirement of the classical algorithm.

(2) Second, developing on our first algorithm, we present a set-based symbolic
algorithm that requires 𝑂(𝑛𝛾(𝑐)+1, i.e., roughly 𝑂(𝑛𝑐/3+1), symbolic operations
and linear space. us it improves the symbolic operations of [Bro+97; Sei96]
while having the same space requirement as the classical algorithm. We also
present a modification of our algorithm that requires 𝑛𝑂(√𝑛) symbolic oper-
ations and at most linear space. us we also present the first (determinis-
tic, linear-space) set-based symbolic algorithm that requires at most a sub-
exponential number of symbolic operations.

In the results above the number of symbolic operations mentioned is the number of
predecessor operations, and in all cases the number of required basic set operations
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Table 5.2: Set-based symbolic algorithms for parity games.

Reference Symbolic Operations Space

[EL86; Zie98] 𝑂(𝑛𝑐) 𝑂(𝑛)
[Bro+97; Sei96] 𝑂(𝑛𝑐/2+1) 𝑂(𝑛𝑐/2+1)
m. 5.4.14 𝑶(𝒏𝒄/𝟐+𝟏) 𝑶(𝒏)
m. 5.5.7 min{𝒏𝑶(√𝒏), 𝑶(𝒏𝒄/𝟑+𝟏)∗} 𝑶(𝒏)

∗ simplified bound

(which are usually cheaper) is at most a factor of 𝑂(𝑛) more. Our main results and
comparison with previous set-based symbolic algorithms are presented in Table 5.2.

Technical contributions. Explicit algorithm. e classical algorithm for parity-
3 games repeatedly solves Büchi games such that the union of the winning sets
of player 2 in the Büchi games gives the winning set for the parity-3 objective.
Schewe [Sch07] showed that an algorithm for parity games by Jurdziński [Jur00]
can be used to compute small subsets of the winning set of player 2, called domin-
ions (see Section 2.6.3), and thereby improved the running time for general parity
games. However, his ideas do not improve the running time for parity-3 games.
With this algorithm dominions with at most ℎ vertices in Büchi games can be found
in time 𝑂(𝑚ℎ). We extend this approach by using the hierarchical graph decom-
position technique to find small dominions quickly and call the 𝑂(𝑛2) Büchi game
algorithm of [CH14] for large dominions. is extension is possible as we are able to
show that, rather surprisingly, it is sufficient to consider game graphs with 𝑂(𝑛ℎ)
edges to detect dominions of size ℎ. e hierarchical graph decomposition tech-
nique was developed by Henzinger et al. [HKW99] to handle edge deletions in undi-
rected graphs. In [CH14] it was extended to deal with vertex deletions in directed
and game graphs (see also Section 4.1).

Set-based symbolic algorithms. We provide a symbolic version of the progress
measure algorithm. e main challenge is to succinctly encode the numerical do-
main of the progress measure as sets. More precisely, the challenge is to represent
𝛩(𝑛𝑐/2) many numerical values with 𝑂(𝑛) many sets, such that they can still be effi-
ciently processed by a set-based symbolic algorithm. For the sake of efficiency our
algorithms considers sets 𝑆𝑟 storing all vertices with progress measure at least 𝑟.
However, there are 𝛩(𝑛𝑐/2) many such sets 𝑆𝑟 and thus, to reduce the space require-
ments to a linear number of sets, we use a succinct representation that encodes all
the sets 𝑆𝑟 with just 𝑂(𝑛) many sets, such that we can restore a set 𝑆𝑟 efficiently
whenever it is processed by the algorithm.
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5.2 Preliminaries and Existing Algorithms

5.2.1 Parity Games

Let for all 𝑐 ∈ ℕ denote the set {0, 1, … , 𝑐 − 1} by [𝑐]. A parity game 𝒫 = (𝒢 , 𝛼)
with 𝑐 priorities consists of a game graph 𝒢 = ((𝑉 , 𝐸), (𝑉ℰ , 𝑉𝒪 )) and a priority
function 𝛼 ∶ 𝑉 → [𝑐] that assigns an integer from the set [𝑐] to each vertex. We
denote the two players by ℰ (for even) and 𝒪 (for odd). Player ℰ (resp. player 𝒪 )
wins a play if the highest priority occurring infinitely oen in the play is even (resp.
odd). We say that the vertices in 𝑉ℰ are ℰ -vertices and the vertices in 𝑉𝒪 are 𝒪-
vertices. We use 𝑧 to denote one of the players {ℰ, 𝒪} and 𝑧 to denote her opponent.
Parity-3 games are parity games with 𝑐 = 3 and Büchi games have 𝑐 = 2. We denote
the set of vertices with priority 𝑖 by 𝑃𝑖 and assume for 𝑖 ≥ 0 w.l.o.g. |𝑃𝑖| > 0 (see
Section 2.3).

One-pair Streett and parity-3 objectives. A one-pair Stree objective with pair
(𝐿1, 𝑈1) is equivalent to a parity game with three priorities. Let the vertices in 𝑈1
have priority 2, let the vertices in 𝐿1 ⧵ 𝑈1 have priority 1 and let the remaining
vertices have priority 0. en player 1 wins the game with the one-pair Stree
objective if and only if player ℰ wins the parity-3 game. In this chapter we use
the notation of parity games (i.e., player ℰ and player 𝒪 instead of player 1 and
player 2).

Memoryless winning strategies. See Chapter 2 for the definitions of plays,
strategies, and winning sets. Since it is well-known that for parity games it is
sufficient to consider memoryless strategies, in this chapter every strategy is mem-
oryless.

eorem5.2.1 ([EJ91; McN93]). For every parity game the vertices can be partitioned
into the winning set 𝑊ℰ of player ℰ and the winning set 𝑊𝒪 of player 𝒪 . ere exists
a memoryless winning strategy for player ℰ (resp. 𝒪 ) for all vertices in 𝑊ℰ (resp. 𝑊𝒪 ).

5.2.2 Equivalence to Model Checking of 𝜇-Calculus
Parity games are equivalent to modal 𝜇-calculus; for detailed syntax and semantics
we refer to [Koz83; Bro+97; EL86]; we briefly describe themain principle of the logic.
Modal 𝜇-calculus is a very expressive program logic, where the basic formulas are
Boolean combination of atomic propositions, variables, and one-step predecessor
operators (the existential predecessor asks for the existence of an edge, and the uni-
versal predecessor asks for all edges), and then we have the least (𝜇) and greatest
(𝜈) fixed point operators. Modal 𝜇-calculus formulas are interpreted over Kripke
structures (models of transition systems with states labeled by atomic propositions,
i.e., for our purpose, graphs with labels on the vertices). Modal 𝜇-calculus model
checking is linearly equivalent to solving parity games [EJ91], where the alterna-
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tion depth (number of alternations of the least and greatest fixed point operators)
correspond to the number of priorities of the parity game.

5.2.3 Set-based Symbolic Operations

Symbolic algorithms operate on sets of vertices, which are usually described by
Binary Decision Diagrams (BDD) [Lee59; Jr78]. For the symbolic algorithms for
parity games we consider the most basic form of symbolic operations, namely, set-
based symbolic operations. More precisely, for the symbolic algorithms we only
allow the following operations:

(1) Basic set operations. First, we allow basic set operations like ∪, ∩, ⧵, ⊆, and =.

(2) One-step operations. Second, we allow the following one-step symbolic oper-
ations: (a) the one-step predecessor operator

𝘗 𝘳 𝘦(𝐵) = {𝑣 ∈ 𝑉 ∣ ∃𝑢 ∈ 𝐵 ∶ (𝑣, 𝑢) ∈ 𝐸};

and (b) the one-step controllable predecessor operator

𝘊𝘗 𝘳 𝘦𝑧(𝐵) = {𝑣 ∈ 𝑉𝑧 ∣ Out(𝑣) ∩ 𝐵 ≠ ∅}
∪ {𝑣 ∈ 𝑉𝑧 ∣ Out(𝑣) ⊆ 𝐵} ;

i.e., the 𝘊𝘗 𝘳 𝘦𝑧 operator computes all vertices from which 𝑧 can ensure that
in the next step the successor belongs to the set 𝐵. Moreover, the 𝘊𝘗 𝘳 𝘦𝑧
operator can be defined using the 𝘗 𝘳 𝘦 operator and basic set operations as
follows:

𝘊𝘗 𝘳 𝘦𝑧(𝐵) = 𝘗 𝘳 𝘦(𝐵) ⧵ (𝑉𝑧 ∩ 𝘗 𝘳 𝘦(𝑉 ⧵ 𝐵)).

Algorithms that use only the above operations are called set-based symbolic algo-
rithms. Additionally, successor operations can be allowed but are not needed for
our algorithms. e above symbolic operations correspond to primitive operations
in standard symbolic packages like CDD [Som15].

Distinction of symbolic operations and space requirement. We clarify the
distinction between the two types of symbolic operations, and also specify the space
requirement of symbolic algorithms.

(1) Typically, the basic set operations are cheaper (as they encode relationships
between state variables) as compared to the one-step symbolic operations
(which encode the transitions and thus the relationship between the variables
of the present and of the next state). us in our analysis we distinguish be-
tween these two types of operations.
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(2) For the space requirements of set-based symbolic algorithms, as per standard
convention, we consider that a set is stored in constant space (e.g., a set can be
represented symbolically as one BDD [Bry86]). We thus consider the space
requirement of a symbolic algorithm to be the maximal number of sets that
the algorithm has to store.

5.2.4 𝜇-Calculus Based Algorithms

Note that the basic formulas in 𝜇-calculus correspond directly to the set-based sym-
bolic operations. us a 𝜇-calculus formula by itself provides a set-based symbolic
algorithm by the evaluation of the fixed points. e classical set-based symbolic
algorithm [EL86] uses 𝑂(𝑛𝑐) symbolic operations and linear space, for 𝜇-calculus
formulas of alternation depth 𝑐. e result of [Bro+97] shows how to memorize
intermediate computations to speed up the set-based symbolic computation. It re-
duces the number of symbolic operations to 𝑂(𝑛𝑐/2+1) but to remember intermediate
computations, it requires 𝑂(𝑛𝑐/2+1) space.

eorem 5.2.2. e 𝜇-calculus model checking problem for formulas of alternation
depth 𝑐 on Kripke structures of 𝑛 states, and therefore parity games with 𝑐 priorities
and 𝑛 vertices, can be solved (a) in linear space with 𝑂(𝑛𝑐) set-based symbolic op-
erations [EL86]; and (b) in 𝑂(𝑛𝑐/2+1) space with 𝑂(𝑛𝑐/2+1) set-based symbolic opera-
tions [Bro+97].

5.2.5 Attractors, Closed Sets, and Dominions.

We briefly recall the most relevant basic algorithmic concepts from Chapter 2.
A player-𝑧 aractor 𝐴 = Ar𝑧(𝒢 , 𝑈) of a set of vertices 𝑈 ⊆ 𝑉 is the maximal

set of vertices fromwhich player 𝑧 can ensure to reach the set 𝑈 against any strategy
of player 𝑧, using a memoryless strategy that does not leave 𝐴. An aractor 𝐴 can
be computed in time proportional to the number of incoming edges in 𝐴 with an
explicit algorithm and with at most |𝐴 ⧵ 𝑈| + 1 set-based symbolic operations.

A set of vertices 𝑈 ⊆ 𝑉 is 𝑧-closed if all outgoing edges of 𝑧-vertices in 𝑈 lead
to other vertices of 𝑈 and all 𝑧-vertices in 𝑈 have at least one outgoing edge to a
vertex of 𝑈 . Player 𝑧 has a memoryless strategy to keep a play within a 𝑧-closed
set 𝑈 against all strategies of player 𝑧. Recall that the complement of a 𝑧-aractor
is 𝑧-closed (Lemma 2.5.1 (1)).

A (non-empty) set of vertices 𝐷 ⊆ 𝑉 is a 𝑧-dominion if player 𝑧 has a winning
strategy from every vertex of 𝐷 that does not leave 𝐷. Every 𝑧- dominion is 𝑧-
closed. By Lemma 2.6.11 (3) we can determine winning sets in an iterative manner
by removing dominions and their aractor and recursing on the remaining game
graph.

By a slight abuse of notation, we denote the sub-game induced by a 𝑧-closed
set 𝑈 by (𝒢 [𝑈], 𝛼), where the priority function 𝛼 is evaluated only on 𝑈 and we
say that the highest priority of (𝒢 [𝑈], 𝛼) is max𝑣∈𝑈 𝛼(𝑣). In this case we further
interpret a set 𝑃𝑖 for a priority 𝑖 w.r.t. the subgame, i.e., as 𝑃𝑖 ∩ 𝑈 .
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5.2.6 Algorithms for Parity Games

In this section we present the key existing algorithms for parity games along with
the main ideas for correctness.

5.2.6.1 Classical Algorithm

In the following we describe a classical algorithm for parity games by [Zie98;
McN93] and provide intuition for its correctness. Our symbolic big-step algorithm
presented in Section 5.5 uses the same overall structure as the classical algorithm but
determines dominions using our symbolic progress measure algorithm presented
in Section 5.4.

Algorithm ClassicParity: Classical algorithm for parity games
Input :parity game 𝒫 = (𝒢 , 𝛼), with

game graph 𝒢 = ((𝑉 , 𝐸), (𝑉ℰ , 𝑉𝒪 )) and
priority function 𝛼 ∶ 𝑉 → [𝑐].

Output : winning sets (𝑊ℰ , 𝑊𝒪 ) of player ℰ and player 𝒪
1 if 𝑐 = 1 then return (𝑉 , ∅)
2 let 𝑧 be player ℰ if 𝑐 is odd and player 𝒪 otherwise
3 𝑊𝑧 ← ∅
4 repeat
5 𝒢 ′ ← 𝒢 ⧵ Ar𝑧(𝒢 , 𝑃𝑐−1)
6 (𝑊 ′

ℰ , 𝑊 ′
𝒪 ) ←ClassicParity(𝒢 ′, 𝛼)

7 𝐴 ← Ar𝑧(𝒢 , 𝑊 ′
𝑧 )

8 𝑊𝑧 ← 𝑊𝑧 ∪ 𝐴
9 𝒢 ← 𝒢 ⧵ 𝐴

10 until 𝑊 ′
𝑧 = ∅

11 𝑊𝑧 ← 𝑉 ⧵ 𝑊𝑧
12 return (𝑊ℰ , 𝑊𝒪 )

Informal description of classical algorithm. Let 𝑧 be ℰ if 𝑐 is odd and 𝒪 if
𝑐 is even. Let 𝒢 be the game graph as maintained by the algorithm. e clas-
sical algorithm repeatedly identifies 𝑧-dominions by recursive calls for a parity
game 𝒫 ′ = (𝒢 ′, 𝛼) with one priority less that is obtained by temporarily removing
the 𝑧-aractor of 𝑃𝑐−1, i.e., the vertices with highest priority, from the game. In
other words, the steps are as follows:

(1) Obtain the game 𝒫 ′ by removing the 𝑧-aractor of 𝑃𝑐−1.

(2) If the winning set 𝑊 ′
𝑧 of player 𝑧 in the parity game 𝒫 ′ is non-empty, then

its 𝑧-aractor 𝐴 is added to the winning set 𝑊𝑧 of 𝑧 and removed from the
game graph 𝒢 . e algorithm recurses on the remaining game graph.
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(3) Otherwise all vertices in the parity game 𝒫 ′ are winning for player 𝑧. In this
case the algorithm terminates and the remaining vertices 𝑉 ⧵𝑊𝑧 are returned
as the winning set of player 𝑧.

e pseudocode of the classical algorithm is given in Algorithm ClassicParity.

Key intuition for correctness. e correctness argument is inductive over the
number of priorities and has the following two key aspects.

(1) e winning set of player 𝑧 in 𝒫 ′ is a 𝑧-dominion in (𝒢 , 𝛼) because the ver-
tices in 𝒫 ′ are 𝑧-closed by Lemma 2.5.1 (1). us the aractor of the winning
set of player 𝑧 in 𝒫 ′ can be removed as part of the winning set of player 𝑧
and it suffices to solve the remaining game by Lemma 2.5.1 (3).

(2) If the algorithm terminates in some iteration where all vertices in 𝒫 ′ are
winning for 𝑧, then a winning strategy for player 𝑧 on the remaining game
can be constructed by combining her winning strategy in the subgame 𝒫 ′

(by the inductive hypothesis over the number of priorities as 𝒫 ′ has a strictly
smaller number of priorities) with her aractor strategy to the vertices with
highest priority, and the fact that the set of remaining vertices 𝑉 ⧵ 𝑊𝑧 is
𝑧-closed by Lemma 2.5.1 (1).

e classical algorithm can be interpreted both as an explicit algorithm as well as a
set-based symbolic algorithm, since it only uses aractor computations and set op-
erations. e following theorem summarizes the results for the classical algorithm
for parity games.

eorem 5.2.3. [Zie98; McN93] Algorithm ClassicParity correctly computes the win-
ning sets of parity games; as an explicit algorithm it requires 𝑂(𝑛𝑐−1 ⋅ 𝑚) time and
linear space; and as a set-based symbolic algorithm it requires 𝑂(𝑛𝑐) symbolic one step
and set operations, and linear space.

5.2.6.2 Progress Measure Algorithm

Wefirst provide basic intuition for the progressmeasure and then provide the formal
definitions. By the results of [Jur00] the task of solving parity games can be reduced
to computing the progress measure. In Section 5.4 we present a set-based symbolic
algorithm to compute the progress measure.

High-level intuition: progress measure. Towards a high-level intuition be-
hind the progress measure, consider an ℰ -dominion 𝐷, i.e., player ℰ wins on all
vertices of 𝐷 without leaving 𝐷. Fix a play started at a vertex 𝑢 ∈ 𝐷 in which
player ℰ follows her winning strategy on 𝐷. In the play from some point on the
highest priority visited by the play, say 𝛼∗, has to be even. Let 𝑣∗ be the vertex aer
which the highest visited priority is 𝛼∗ (recall that memoryless strategies are suf-
ficient for parity games). Before 𝑣∗ is visited, the play might have visited vertices
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with odd priority higher than 𝛼∗ but the number of these vertices has to be less
than 𝑛. e progress measure is based on a so-called lexicographic ranking function
that assigns a rank to each vertex 𝑣, where the rank is a “vector of counters” for the
number of times player 𝒪 can force a play to visit an odd priority vertex before a
vertex with higher even priority is reached.

• If player 𝒪 can ensure a counter value of at least 𝑛, then she can ensure that
a cycle with highest priority odd is reached from 𝑣 and therefore player ℰ
cannot win from the vertex 𝑣.

• Conversely, if player 𝒪 can reach a cycle with highest priority odd before
reaching a higher even priority, then she can also force a play to visit an odd
priority 𝑛 times (thus a counter value of 𝑛) before reaching a higher even
priority.

In other words, a vertex 𝑢 is in the ℰ -dominion 𝐷 if and only if player 𝒪 cannot force
any counter value to reach 𝑛. When a vertex 𝑢 is classified as winning for player 𝒪 ,
it is marked with the rank ⊤ and whenever 𝒪 has a strategy for some vertex 𝑣 to
reach a ⊤-ranked vertex, it is also winning for player 𝒪 and thus ranked ⊤. e
progress measure itself is computed by updating the rank of a vertex according to
the ranks of its successors, which corresponds to computing the least simultaneous
fixed point for all vertices with respect to “ranking functions”.

Strategies from progressmeasure. An additional property of the progress mea-
sure is that the ranks assigned to the vertices of the ℰ -dominion provide a certificate
for a winning strategy of player ℰ within the dominion, namely, player ℰ can fol-
low edges that lead to vertices with “lower or equal” rank with respect to a specific
ordering of the ranks.

We next provide formal definitions of rank, the ranking function, the ordering
on the ranks, the li-operators, and finally the progress measure (see also [Jur00]).

e progress measure domain 𝑀∞
𝒢 . We consider parity games with 𝑛 vertices

and highest priority 𝑐 − 1. Let 𝑛𝑖 be the number of vertices with priority 𝑖 for odd 𝑖
(i.e., 𝑛𝑖 = |𝑃𝑖|), let 𝑛𝑖 = 0 for even 𝑖, and let 𝑁𝑖 = [𝑛𝑖 + 1] for 0 ≤ 𝑖 < 𝑐. Let
𝑀𝒢 = ({0} × 𝑁1 × {0} × 𝑁3 × … × 𝑁𝑐−2 × {0}) for odd 𝑐 and 𝑀𝒢 = ({0} × 𝑁1 ×
{0} × 𝑁3 × … × 𝑁𝑐−1) for even 𝑐 be the product domain where every even index is 0
and every odd index 𝑖 is a number between 0 and 𝑛𝑖. e progress measure domain
is 𝑀∞

𝒢 = 𝑀𝒢 ∪ {⊤}, where ⊤ is a special element called the top element. en we
have |𝑀∞

𝒢 | = 1 + ∏⌊𝑐/2⌋
𝑖=1 (𝑛2𝑖−1 + 1) = 𝑂(( 𝑛

⌊𝑐/2⌋ )
⌊𝑐/2⌋

) [Jur00] (this bound uses the
w.l.o.g. assumption that for each priority > 0 there is at least one vertex with the
respective priority).

Ranking functions. A ranking function 𝜌 ∶ 𝑉 → 𝑀∞
𝒢 assigns to each vertex a

rank 𝑟 that is either one of the 𝑐 dimensional vectors in 𝑀𝒢 or the top element ⊤.
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Note that a rank has at most ⌊𝑐/2⌋ non-zero entries. Informally, we call the entries
of a rank with an odd index 𝑖 a “counter” because as long as the top element is
not reached, it counts (with “carry”, i.e., if 𝑛𝑖 is reached, the next highest counter
is increased by one and the counter at index 𝑖 is reset to zero) the number of times
a vertex of priority 𝑖 is reached before a vertex of higher priority is reached (from
some specific start vertex). e co-domain of 𝜌 is 𝑀∞

𝒢 = 𝑀𝒢 ∪ {⊤} and we index
the elements of the vectors from 0 to 𝑐 − 1.

Lexicographic comparison operator <. We use the following ordering < of the
ranks assigned by 𝜌: the vectors are considered in the lexicographical order, where
the le most entry is the least significant one and the right most entry is the most
significant one, and ⊤ is the maximum element of the ordering. We write 0̄ to refer
to the all zero vector (i.e., the minimal element of the ordering) and 𝑁̄ to refer to
the maximal vector (𝑛0, 𝑛1, … , 𝑛𝑐−1) (i.e., the second largest element, aer ⊤, in the
ordering).

Lexicographic increment and decrement operations. Given a rank 𝑟, i.e., ei-
ther a vector or ⊤, we refer to the successor in the ordering < by inc(𝑟) (with
inc(⊤) = ⊤), and to the predecessor in the ordering < by dec(𝑟) (with dec(0̄) = 0̄).
We also consider restrictions of inc and dec to fewer dimensions, which are de-
scribed below. Given a vector 𝑥 = (𝑥0, 𝑥1, 𝑥2, … , 𝑥𝑐−1), we denote by ⟨𝑥⟩ℓ (for
0 ≤ ℓ < 𝑐) the vector (0, 0, … , 0, 𝑥ℓ, … , 𝑥𝑐−1), where we set all elements with in-
dex less than ℓ to 0; in particular 𝑥 = ⟨𝑥⟩0. Intuitively, we use the notation ⟨𝑥⟩ℓ to
“reset the counters” for priorities lower than ℓ when a vertex of priority ℓ is reached
(as long as we have not counted up to the top element). Moreover, we also gener-
alize the ordering to a family of orderings <ℓ where 𝑥 <ℓ 𝑦 for two vectors 𝑥 and
𝑦 iff ⟨𝑥⟩ℓ < ⟨𝑦⟩ℓ; the top element ⊤ is the maximum element of each ordering. In
particular, 𝑥 <0 𝑦 iff 𝑥 < 𝑦 and in our seing also 𝑥 <1 𝑦 iff 𝑥 < 𝑦. We further have
restricted versions incℓ and decℓ of inc and dec; note that decℓ is a partial function
and that ℓ will be the priority of the vertex 𝑣 for which we want to update its rank
and 𝑥 will be the rank of one of its neighbors in the game graph.

incℓ(𝑥) =
⎧⎪
⎨
⎪⎩

⟨𝑥⟩ℓ if ℓ is even and 𝑥 < ⊤ ,
min{𝑦 ∈ 𝑀∞

𝒢 ∣ 𝑦 >ℓ 𝑥} if ℓ is odd and 𝑥 < ⊤ ,
⊤ if 𝑥 is ⊤ ,

and

decℓ(𝑥) =
{

0̄ if 𝑥 is 0̄ ,
min{𝑦 ∈ 𝑀𝒢 ∣ 𝑥 = incℓ(𝑦)} otherwise .

For 0̄ < 𝑥 < ⊤ we have incℓ(decℓ(𝑥)) = decℓ(incℓ(𝑥)) = ⟨𝑥⟩ℓ while for ⊤ we only
have incℓ(decℓ(⊤)) = ⊤ and for 0̄ only decℓ(incℓ(0)) = 0. By the restriction of inc
by the priority ℓ of 𝑣, for both even and odd priorities the counters for lower (odd)
priorities are reset to zero as long as the top element is not reached. For an odd ℓ
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additionally the counter for ℓ is increased or, if the counter for ℓ has already been
at 𝑛ℓ, then one of the higher counters is increased while the counter for ℓ is reset
to zero as well; if no higher counter can be increased any more, then the rank of 𝑣
is set to ⊤.

e best operation. Recall the interpretation of the progressmeasure as awitness
for a player-ℰ winning strategy on an ℰ -dominion, where player ℰ wants to follow
a path of non-increasing rank. e function best we define next reflects the ability
of player ℰ to choose the edge leading to the lowest rank when he owns the vertex,
while for player-𝒪 vertices all edges need to lead to non-increasing ranks if player ℰ
can win from this vertex. e function best for each vertex 𝑣 and ranking function 𝜌
is given by

best(𝜌, 𝑣) =
{

min{𝜌(𝑤) ∣ (𝑣, 𝑤) ∈ 𝐸} if 𝑣 ∈ 𝑉ℰ ,
max{𝜌(𝑤) ∣ (𝑣, 𝑤) ∈ 𝐸} if 𝑣 ∈ 𝑉𝒪 .

e Lift operation and the progress measure. Finally, the li operation imple-
ments the incrementing of the rank of a vertex 𝑣 according to its priority and the
ranks of its neighbors:

Lift(𝜌, 𝑣)(𝑢) =
{

inc𝛼(𝑣)(best(𝜌, 𝑣)) if 𝑢 = 𝑣 ,
𝜌(𝑢) otherwise .

e Lift(., 𝑣)-operators are monotone and the progress measure for a parity game is
defined as the least simultaneous fixed point of all Lift(., 𝑣)-operators. e progress
measure can be computed by starting with the ranking function equal to the all-
zero function and iteratively applying the Lift(., 𝑣)-operators in an arbitrary or-
der [Jur00]. See [Jur00] for a worst-case example for any liing algorithm. By the
following result, the winning set of player ℰ can be obtained from the progress
measure by selecting those vertices whose rank is a vector, i.e., smaller than ⊤.

Lemma 5.2.4. [Jur00] For a given parity game and the progress measure 𝜌 with co-
domain 𝑀∞

𝒢 , the vertices with 𝜌(𝑣) < ⊤ are exactly the winning vertices for player ℰ .

is implies that to solve parity games it is sufficient to provide an algorithm
that computes the least simultaneous fixed point of all Lift(., 𝑣)-operators. e Lift
operation can be computed explicitly in 𝑂(𝑚) time, which gives the SP
M algorithm of [Jur00].

eorem 5.2.5. [Jur00] Algorithm SPM correctly computes the
winning sets of parity games and it is an explicit algorithm that requires𝑂(𝑚⋅|𝑀∞

𝒢 |) =
𝑂(𝑚 ⋅ ( 𝑛

⌊𝑐/2⌋ )
⌊𝑐/2⌋

) time and 𝑂(𝑛 ⋅ 𝑐) space.

5.2.6.3 Sub-exponential and Big-step Algorithms

Finally, we discuss the sub-exponential and the big-step algorithm for parity games.
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Sub-exponential algorithm [JPZ08]. e sub-exponential time algorithm
of [JPZ08] is based on the following modification of the classical algorithm. Before
the recursive call, which finds a non-empty dominion, the algorithm enumeratively
and explicitly searches for all dominions of size at most √𝑛; if it succeeds to find a
dominion, then its aractor is removed from the game; otherwise, the subsequent
recursive call is guaranteed to find a dominion of size > √𝑛. A clever analysis of
the recurrence relation shows that the running time of the algorithm is at most
𝑛𝑂(√𝑛), yielding the first deterministic sub-exponential time algorithm for parity
games. However, the algorithm is inherently explicit and enumerative (it enumer-
ates with a brute-force search all dominions of size at most √𝑛). We refer the above
algorithm as SE algorithm.

eorem 5.2.6. [JPZ08] Algorithm SE correctly computes the winning sets of
parity games, and it is an explicit algorithm that requires 𝑛𝑂(√𝑛) time and linear space.

Big-step algorithm. e progress measure algorithm and the sub-exponential
algorithm were combined in [Sch07] to obtain the big-step algorithm. e main
idea is to use the progress measure to identify (small) dominions of size ≤ ℎ + 1,
for some given integer ℎ ∈ [1, 𝑛 − 1]. Given that an ℰ -dominion is of size ≤ ℎ + 1,
player ℰ must have a strategy from each vertex of the ℰ -dominion to reach a vertex
with an even priority by visiting at most ℎ vertices with odd priorities. us, one
considers a product domain 𝑀ℎ ⊆ 𝑀𝒢 containing only the vectors of 𝑀𝒢 whose
elements sum up to at most ℎ. e co-domain 𝑀∞

ℎ of the ranking function 𝜌 is
then given by 𝑀∞

ℎ = 𝑀ℎ ∪ {⊤} and the function inc(𝑟) and dec(𝑟) are then only
defined on the restricted domain 𝑀∞

ℎ (the min in the definitions is over 𝑀∞
ℎ instead

of 𝑀∞
𝒢 ). Again the corresponding progress measure for a parity game is defined as

the least simultaneous fixed point of all Lift(., 𝑣)-operators. e identification of ℰ -
dominions from the progress measure is achieved by selecting those vertices whose
rank is a vector, i.e., smaller than ⊤.

Lemma 5.2.7. [Sch07] For a given parity game with 𝑛 vertices and the progress mea-
sure 𝜌 with co-domain 𝑀∞

ℎ for some integer ℎ ∈ [1, 𝑛 − 1], the set of vertices {𝑣 ∈
𝑉 ∣ 𝜌(𝑣) < ⊤} is an ℰ -dominion that contains all ℰ -dominions with at most ℎ + 1
vertices.

In our explicit algorithm we use the SPM algorithm with
the co-domain 𝑀∞

ℎ as a subroutine to compute 𝑧-dominions with at most ℎ + 1
vertices.

Remark 5.2.8. Note that the progress measure algorithm determines ℰ -dominions.
We can compute 𝒪-dominions (including a winning strategy within the dominion) by
adding one to each priority and changing the roles of the two players. If 𝑐 has been even
before this modification, this does not increase the bound on the number of symbolic
operations for the dominion search because the number of odd priorities, and therefore
the possible number of non-empty indices of a rank vector, does not increase.
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Figure 5.1: An example of a parity game 𝒫 = (𝒢 , 𝛼) with three priorities. Circles
denote ℰ -vertices, triangles denote 𝒪-vertices. e values in the vertices are the
priorities.

Lemma 5.2.9 ([Jur00; Sch07]). Let (𝒢 , 𝛼) be a parity game with game graph 𝒢 with
𝑛 vertices and 𝑚 edges, a priority function 𝛼, and 𝑐 priorities. ere is an explicit
algorithm PM(𝒢 , 𝛼, ℎ, 𝑧) that returns the union of all 𝑧-dominions of
size at most ℎ + 1, including a winning strategy for 𝑧, in time 𝑂(𝑐 ⋅ 𝑚 ⋅ (ℎ+⌈𝑐/2⌉

ℎ )).

Combining the sub-exponential algorithm with the progress measure algorithm
to identify small dominions gives the BS algorithm for parity games.

eorem 5.2.10. [Sch07] Let 𝛾(𝑐) = 𝑐/3 + 1/2 − 4/(𝑐2 − 1) for odd 𝑐 and 𝛾(𝑐) =
𝑐/3+1/2−1/(3𝑐)−4/𝑐2 for even 𝑐. Algorithm BS correctly computes the winning
sets of parity games and it is an explicit algorithm that requires 𝑂(𝑚 ⋅ ( 𝜅⋅𝑛

𝑐 )
𝛾(𝑐)

) time
for some constant 𝜅 and 𝑂(𝑛 ⋅ 𝑐) space.

In [Sch17] (in press, personal communication) the running time bound for the B
S algorithm is improved further to 𝑂(𝑚( 6𝑒5/3𝑛

𝑐2 )
𝛾(𝑐)

).

5.3 Explicit Algorithm for Dense Game Graphs

In this section we present our explicit algorithm that computes the winning sets
of both players for a parity game 𝒫 = (𝒢 , 𝛼) with 𝑐 ≤ √𝑛 priorities in time
𝑂(𝑛1+𝛾(𝑐+1)), where 𝛾(𝑐) = 𝑐/3 + 1/2 − 4/(𝑐2 − 1) for odd 𝑐, and 𝛾(𝑐) = 𝑐/3 + 1/2 −
1/(3𝑐) − 4/𝑐2 for even 𝑐. e special case for 𝑐 = 3 is described explicitly in the
conference version of this section [CHL15].

Initialization (steps 1–3 of Procedure P). If all vertices of the parity game
have priority zero, player ℰ wins from all vertices and thus the algorithm terminates
and returns the set of all vertices as the winning set of player ℰ and the empty set as
winning set of player 𝒪 . Otherwise we set 𝑧 according to the parity of the highest
priority 𝑐 − 1 in the parity game. e procedure then iteratively determines the
winning set of player 𝑧 and in the end identifies 𝑊𝑧 as the complement of 𝑊𝑧.

Iterated vertex deletions (steps 4–12 of Procedure P). e algorithm
repeatedly removes vertices from the game graph 𝒢 . During the algorithm, we
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Procedure P(𝒢 , 𝛼, ℎ)
Input :game graph 𝒢 = ((𝑉 , 𝐸), (𝑉ℰ , 𝑉𝒪 )) with 𝑛 = |𝑉 |,

priority function 𝛼 ∶ 𝑉 → [𝑐] with 𝑐 ≥ 1, and
parameter ℎ ∈ [1, 𝑛] ∩ ℕ

Output :winning sets (𝑊ℰ , 𝑊𝒪 ) of player ℰ and player 𝒪
1 if 𝑐 = 1 then return (𝑉 , ∅)
2 let 𝑧 be player ℰ if 𝑐 is odd and player 𝒪 otherwise
3 𝑊𝑧 ← ∅
4 repeat
5 𝑊 ′

𝑧 ← D(𝒢 , 𝛼, ℎ, 𝑧)
6 if 𝑊 ′

𝑧 = ∅ and 𝑐 ≥ 3 then
7 𝒢 ′ ← 𝒢 ⧵ Ar𝑧(𝒢 , 𝑃𝑐−1)
8 (𝑊 ′

ℰ , 𝑊 ′
𝒪 ) ← P(𝒢 ′, 𝛼)

9 𝐴 ← Ar𝑧(𝒢 , 𝑊 ′
𝑧 )

10 𝑊𝑧 ← 𝑊𝑧 ∪ 𝐴
11 𝒢 ← 𝒢 ⧵ 𝐴
12 until 𝑊 ′

𝑧 = ∅
13 𝑊𝑧 ← 𝑉 ⧵ 𝑊𝑧
14 return (𝑊ℰ , 𝑊𝒪 )

denote by 𝒢 the remaining game graph aer vertex deletions. e vertex removal
is achieved by identifying parts of the winning set of player 𝑧, i.e, 𝑧-dominions, and
removing their aractors.

Dominion find and attractor removal. e algorithm repeatedly finds domin-
ions of player 𝑧 in parity games 𝒫 ′ where the highest priority is at most 𝑐 − 2. e
parity game 𝒫 ′ is constructed by removing the 𝑧-aractor of vertices with prior-
ity 𝑐 − 1 from 𝒢 (this is implicit in the Procedure D and explicit before
the recursive call to Procedure P; more details follow). Aer a dominion in
the parity game 𝒫 ′ is found, its 𝑧-aractor is removed from 𝒢 . en the search
for 𝑧-dominions is continued on the remaining vertices. If all vertices in the parity
game 𝒫 ′ are winning for 𝑧, i.e., no 𝑧-dominion exists in 𝒫 ′, then the procedure
terminates. e winning set of player 𝑧 is the union of the 𝑧-aractors of all found
𝑧-dominions. e remaining vertices are winning for player 𝑧. We now describe
the steps to find 𝑧-dominions.

Steps of dominion find. For the search for 𝑧-dominions in the parity game 𝒫 ′

we use two different procedures, Procedure D and a recursive call to Pro-
cedure P. We first search for “small” 𝑧-dominions with up to ℎ vertices with
Procedure D, where ℎ is a parameter that will be set later to balance the
running times of the two procedures. If no 𝑧-dominion is found, we can conclude
that either all 𝑧-dominions contain more than ℎ vertices or the winning set of 𝑧
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Figure 5.2: e resulting Büchi game (𝒢 ′, 𝛼) (in black) aer removing Arℰ (𝒢 , 𝑃2)
from 𝒢 . e vertex in the top le corner is an ℰ -vertex with out-degree larger than
√𝑛, i.e., a blue vertex of 𝒢 ′

𝑖 for 𝑖 ≤ log2(√𝑛). e two Büchi vertices in the boom
le corner are contained in Arℰ (𝒢 ′

𝑖 ,Bl𝑖) and we have 𝒟𝑖 = ∅.

Procedure D(𝒢 , 𝛼, ℎ, 𝑧)
Input :game graph 𝒢 = ((𝑉 , 𝐸), (𝑉ℰ , 𝑉𝒪 )),

priority function 𝛼 ∶ 𝑉 → [𝑐] with 𝑐 ≥ 2,
parameter ℎ ∈ [1, 𝑛] ∩ ℕ, and
player 𝑧

Output : a 𝑧-dominion that contains all 𝑧-dominions with at most ℎ vertices or
possibly the empty set if no such 𝑧-dominion exists

1 for 𝑖 ← 1 to ⌈log2(ℎ)⌉ do
2 construct 𝒢𝑖
3 Bl𝑖 ← {𝑣 ∈ 𝑉𝑧 ∣ Outdeg(𝒢𝑖, 𝑣) = 0} ∪ {𝑣 ∈ 𝑉𝑧 ∣ Outdeg(𝒢 , 𝑣) > 2𝑖}
4 𝒢 ′

𝑖 ← 𝒢𝑖 ⧵ Ar𝑧(𝒢𝑖, 𝑃𝑐−1 ∪ Bl𝑖)
5 if 𝑐 = 2 then
6 𝐷𝑖 ← the vertices of 𝒢 ′

𝑖
7 else
8 𝐷𝑖 ← PM(𝒢 ′

𝑖 , 𝛼, 2𝑖, 𝑧)
9 if 𝐷𝑖 ≠ ∅ then

10 return 𝐷𝑖

11 return ∅

on the current game graph is empty. In the laer case the algorithm terminates.
e former case occurs at most 𝑛/ℎ times and in such a case we use the recursive
call to Procedure P on the parity game 𝒫 ′ with one priority less to obtain a
𝑧-dominion. Below we describe the details of Procedure D.

Example 5.3.1 (Illustration of the algorithm for parity-3.). Figure 5.1 shows a parity
game with priorities {0, 1, 2}, and Figure 5.2 shows the Büchi game we obtain when
we remove the ℰ -aractor of the vertices with the highest priority 2. Figure 5.3 shows
the winning set of player 𝒪 in the Büchi game, which is an 𝒪-dominion in the parity
game, and its 𝒪-aractor in the original game graph. Finally, Figure 5.4 shows the
remaining game graph aer the removal of the 𝒪-dominion and its aractor.
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Figure 5.3: ewinning set of player 𝒪 in the Büchi game (𝒢 ′, 𝛼) and its 𝒪-aractor
in 𝒢 .

..

..0 ..0 ..2 ..1 ..1

..1 ..1 ..0 ..2 ..0

Figure 5.4: e remaining graph. e two vertices on the right are an 𝒪-dominion,
the remaining vertices form the winning set of player ℰ .

Graph decomposition for Procedure D. In the Procedure D
we use the following variant of the hierarchical graph decomposition. For a game
graph 𝒢 = ((𝑉 , 𝐸), (𝑉ℰ , 𝑉𝒪 )) we denote its decomposition with respect to player 𝑧
by {𝒢𝑖}. We consider the incoming edges of each vertex in a fixed order: First the
edges from vertices of 𝑉𝑧, then the remaining edges. We define ⌈log2 𝑛⌉ graphs
𝒢𝑖 = (𝑉 , 𝐸𝑖) for levels 1 ≤ 𝑖 ≤ ⌈log2 𝑛⌉ where the set of edges 𝐸𝑖 contains for each
vertex 𝑣 ∈ 𝑉 with Outdeg(𝒢 , 𝑣) ≤ 2𝑖 all its outgoing edges in 𝐸 and in addition
for each vertex 𝑣 ∈ 𝑉 its first 2𝑖 incoming edges in 𝐸. Note that (1) 𝐸𝑖 ⊆ 𝐸𝑖+1,
(2) |𝐸𝑖| ≤ 2𝑖+1𝑛, and (3) 𝒢⌈log2 𝑛⌉ = 𝒢 . We color 𝑧-vertices 𝑣 with Outdeg(𝒢 , 𝑣) > 2𝑖

and 𝑧-vertices without outgoing edges in 𝒢𝑖 blue for 𝒢𝑖 and denote the set of blue
vertices by Bl𝑖. All other vertices are called white.

ProcedureD. eProcedure D searches for 𝑧-dominions in par-
ity games with highest priority at most 𝑐 − 2, where the game graphs are given
by parts of the subgraphs 𝒢𝑖 that only contain white vertices. e search for 𝑧-
dominions is started at 𝑖 = 1. As long as no 𝑧-dominion is found, the index 𝑖 is
increased one by one up to at most 𝑖 = ⌈log2(ℎ)⌉. To (a) ensure that 𝑧-dominions
found in the subgraph 𝒢𝑖 are also 𝑧-dominions in 𝒢 and (b) reduce the number of
priorities in the parity game by one, the 𝑧-aractor of the vertices in Bl𝑖 ∪ 𝑃𝑐−1 is
removed from 𝒢𝑖. en for 𝑐 ≥ 3 the PM algorithm (Lemma 5.2.9)
is used to find 𝑧-dominions of size at most 𝑂(2𝑖) in the subgame induced by the
remaining vertices of 𝒢𝑖. For 𝑐 = 2, i.e., Büchi games, we have that any non-empty
set of remaining vertices is a dominion of player 𝑧 (in this case the algorithm is
equivalent to the one of [CH14]).
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In the remaining part of this section we prove the correctness and running time
of Procedure P (including the calls to Procedure D). e following
lemma captures the essence of why the hierarchical graph decomposition is helpful
for graph games. e lemma is a generalization of related lemmata for Büchi games
in [CH14] and for parity-3 games in the conference version of this section [CHL15].
e first part of the lemma is essential for the correctness of the hierarchical graph
decomposition technique on game graphs: It shows that every 𝑧-closed set in 𝒢𝑖 that
consists only of white vertices is also 𝑧-closed in 𝒢 . e second part is essential for
the running time: Every 𝑧-closed set in 𝒢 that, including its 𝑧-aractor, contains
at most ℎ vertices, is a 𝑧-closed set induced by white vertices in 𝒢⌈log2 ℎ⌉. Note that
the 𝑧-aractor of a 𝑧-closed set is itself 𝑧-closed and thus this holds in particular for
maximal 𝑧-closed sets of size at most ℎ.

Lemma 5.3.2. Let 𝒢 = ((𝑉 , 𝐸), (𝑉ℰ , 𝑉𝒪 )) be a game graph and {𝒢𝑖} its hierarchical
graph decomposition w.r.t. to player 𝑧. For 1 ≤ 𝑖 ≤ ⌈log2 𝑛⌉ let Bl𝑖 be the set consisting
of the player-𝑧 vertices that have no outgoing edge in 𝒢𝑖 and the player-𝑧 vertices with
more than 2𝑖 outgoing edges in 𝒢 .

(1) If a set 𝑆 ⊆ 𝑉 ⧵ Bl𝑖 is 𝑧-closed in 𝒢𝑖, then 𝑆 is 𝑧-closed in 𝒢 .

(2) If a set 𝑆 ⊆ 𝑉 is 𝑧-closed in 𝒢 and |Ar𝑧(𝒢 , 𝑆)| ≤ 2𝑖, then (i) 𝒢𝑖[𝑆] = 𝒢 [𝑆],
(ii) the set 𝑆 is in 𝑉 ⧵ Bl𝑖, and (iii) 𝑆 is 𝑧-closed in 𝒢𝑖.

Proof. (1) By 𝑆 ⊆ 𝑉 ⧵ Bl𝑖 we have for all 𝑣 ∈ 𝑆 ∩ 𝑉𝑧 that Out(𝒢 , 𝑣) = Out(𝒢𝑖, 𝑣).
us if Out(𝒢𝑖, 𝑣) ⊆ 𝑆 , then also Out(𝒢 , 𝑣) ⊆ 𝑆 . Each edge of 𝐺𝑖 is con-
tained in 𝐺, thus we have for all 𝑣 ∈ 𝑆 ∩ 𝑉𝑧 that Out(𝐺𝑖, 𝑣) ∩ 𝑆 ≠ ∅ implies
Out(𝐺, 𝑣) ∩ 𝑆 ≠ ∅.

(2) Since 𝑆 is closed for player 𝑧 and |𝑆| ≤ 2𝑖, (a) the set 𝑆 does not contain
vertices 𝑣 ∈ 𝑉𝑧 with Outdeg(𝒢 , 𝑣) > 2𝑖. Furthermore, for every vertex of
𝑆 also the vertices in 𝑉𝑧 from which it has incoming edges are contained
in Ar𝑧(𝒢 , 𝑆). us by |Ar𝑧(𝒢 , 𝑆)| ≤ 2𝑖 no vertex of 𝑆 has more than
2𝑖 incoming edges from vertices of 𝑉𝑧. Hence, by the ordering of incoming
edges in the construction of 𝒢𝑖, we obtain (b) for the vertices of 𝑆 all incoming
edges from vertices of 𝑉𝑧 are contained in 𝐸𝑖. Combining (a), i.e., Out(𝒢 , 𝑣) =
Out(𝒢𝑖, 𝑣) for 𝑣 ∈ 𝑆 ∩ 𝑉𝑧, and (b), i.e., (𝑢, 𝑤) ∈ 𝐸𝑖 for 𝑢 ∈ 𝑉𝑧 and 𝑤 ∈ 𝑆 ,
we have (i) 𝒢𝑖[𝑆] = 𝒢 [𝑆]. Since 𝑆 is closed for player 𝑧 in 𝒢 , every vertex
𝑢 ∈ 𝑆 ∩ 𝑉𝑧 has an outgoing edge to another vertex 𝑤 ∈ 𝑆 in 𝒢 . us
in particular these edges (𝑢, 𝑤) are contained in 𝐸𝑖 and hence every vertex
𝑢 ∈ 𝑆 ∩ 𝑉𝑧 has an outgoing edge to another vertex 𝑤 ∈ 𝑆 in 𝒢𝑖. It follows
from (a) that (ii) 𝑆 ∩Bl𝑖 = ∅, and from 𝐸𝑖 ⊆ 𝐸 that (iii) 𝑆 is closed for player 𝑧
in 𝒢𝑖.

In the next lemma we consider not just 𝑧-closed sets but 𝑧-dominions and thus
argue additionally about winning strategies of player 𝑧. e first part of the lemma
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shows the soundness of Procedure D, while the second part shows com-
pleteness and is crucial for the running time analysis of the overall algorithm.

Lemma 5.3.3. Let the parity game (𝒢 , 𝛼) with 𝑐 priorities, the parameter ℎ, and the
player 𝑧 be the input to ProcedureD. Let𝐷𝑖,𝒢 ′

𝑖 and Bl𝑖 be as in ProcedureD
.

(1) Every 𝐷𝑖 ≠ ∅ is a 𝑧-dominion in the parity game (𝒢 , 𝛼) with 𝐷𝑖 ∩ 𝑃𝑐−1 = ∅.

(2) If there exists a 𝑧-dominion 𝐷 with |Ar𝑧(𝒢 , 𝐷)| ≤ 2𝑖 in (𝒢 , 𝛼) such that 𝐷 ∩
𝑃𝑐−1 = ∅, then 𝐷 is a 𝑧-dominion in the parity game (𝒢 ′

𝑖 , 𝛼).

Proof. (1) By definition the highest priority in 𝒢 ′
𝑖 and thus in 𝐷𝑖 is at most 𝑐 − 2.

Let 𝑉 ′
𝑖 be the vertices of 𝒢 ′

𝑖 . By Lemma 2.5.1 (1) the set 𝑉 ′
𝑖 is 𝑧-closed in

𝒢𝑖 and by 𝑉 ′
𝑖 ∩ Bl𝑖 = ∅ and Lemma 5.3.2 (1) also in 𝒢 . If 𝑐 = 2, we have

𝑉 ′
𝑖 = 𝐷𝑖 and by 𝐷𝑖 ∩ 𝑃𝑐−1 = ∅ that 𝐷𝑖 is a 𝑧-dominion in (𝒢 , 𝛼). If 𝑐 ≥ 3,

then 𝐷𝑖 is the set returned by PM and thus by Lemma 5.2.9 a
𝑧-dominion in the parity game (𝒢 ′

𝑖 , 𝛼). Since 𝑉 ′
𝑖 is 𝑧-closed in 𝒢𝑖, the set 𝐷𝑖

is also a 𝑧-dominion in 𝒢𝑖 by Lemma 2.5.1 (1). With 𝐷𝑖 ∩ Bl𝑖 = ∅ we have
(a) the set 𝐷𝑖 is 𝑧-closed in 𝒢 by Lemma 5.3.2 (1) and (b) all outgoing edges
of vertices of 𝑉𝑧 are present in 𝒢𝑖. us by 𝐸𝑖 ⊆ 𝐸 the winning strategy of
player 𝑧 for the vertices of 𝐷𝑖 in 𝒢𝑖 is also a winning strategy in 𝒢 and hence
𝐷𝑖 is a 𝑧-dominion in the parity game (𝒢 , 𝛼).

(2) By Lemma 5.3.2 (2) we have (i) 𝒢 [𝐷] = 𝒢𝑖[𝐷], (ii) 𝐷 ∩ Bl𝑖 = ∅, and (iii) 𝐷
is 𝑧-closed in 𝒢𝑖. us (a) 𝐷 is contained in 𝒢 ′

𝑖 and (b) player 𝑧 can play the
same winning strategy in 𝒢𝑖[𝐷] as in 𝒢 [𝐷].

In the following corollary we state the insights of the previous two lemmata as
needed for the running time analysis. e first part shows that when we use the
hierarchical graph decomposition with increasing level 𝑖 to search for a 𝑧-dominion
andwe have to go up to level 𝑖∗, then the found 𝑧-dominion, or at least its 𝑧-aractor
(which is again a 𝑧-dominion), contains a number of vertices proportional to 2𝑖∗

,
which allows us to charge thework done in the search to the vertices in the identified
dominion. e second part of the corollary states that no “small” 𝑧-dominions exist
in the maintained parity game if Procedure D returns the empty set, where
“small” is specified by the parameter ℎ that will be set to balance the running time
of Procedure D and the recursive calls. In this case either no 𝑧-dominion
exists in the parity game and the algorithm terminates or the subsequent recursive
call identifies a 𝑧-dominion with more than ℎ vertices; the laer can happen at most
𝑂(𝑛/ℎ) times and allows us to bound the number of iterations in Procedure P.
For the proof of the second part we use that every 𝑧-dominion 𝐷 contains a subset
𝐷′ that is a 𝑧-dominion itself and does not contain any vertex with priority 𝑐 − 1.
Intuitively, 𝐷′ is the set of vertices that are contained in the cycles of 𝐷 that are
induced by the memoryless winning strategy of player 𝑧 in 𝒢 [𝐷].
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Lemma 5.3.4 (Proposition 2 of [Jur00]). Let 𝒫 be a parity game with 𝑐 priorities
and let 𝑧 be ℰ if 𝑐 is odd and 𝒪 otherwise. Let 𝐷 be any 𝑧-dominion in 𝒫 . en there
exists a 𝑧-dominion 𝐷′ ⊆ 𝐷 with 𝐷′ ∩ 𝑃𝑐−1 = ∅.

Corollary 5.3.5. Let the parity game (𝒢 , 𝛼) with 𝑐 priorities, the parameter ℎ, and
the player 𝑧 be the input to Procedure D. Let 𝐷𝑖, 𝒢 ′

𝑖 and Bl𝑖 be as in Proce-
dure D.

(1) If for some 𝑖 > 1 we have 𝐷𝑖 ≠ ∅ but 𝐷𝑖−1 = ∅, then |Ar𝑧(𝒢 , 𝐷𝑖)| > 2𝑖−1.

(2) If Procedure D returns the empty set, then we have for every 𝑧-
dominion 𝐷 in the given parity game |Ar𝑧(𝒢 , 𝐷)| > ℎ.

Proof. (1) By Lemma 5.3.3 (1) we have that 𝐷𝑖 is a 𝑧-dominion in (𝒢 , 𝛼) with
𝐷𝑖 ∩ 𝑃𝑐−1 = ∅. Assume by contradiction that |Ar𝑧(𝒢 , 𝐷𝑖)| ≤ 2𝑖−1. en by
Lemma 5.3.3 (2) the set 𝐷𝑖−1 is not empty, a contradiction.

(2) Assume by contradiction that Procedure D returns the empty set and
there exists a 𝑧-dominion 𝐷 with |Ar𝑧(𝒢 , 𝐷)| ≤ ℎ in (𝒢 , 𝛼). By Lemma 5.3.4
in this case also a 𝑧-dominion 𝐷′ ⊆ 𝐷 with 𝐷′ ∩ 𝑃𝑐−1 = ∅ exists. By
Lemma 5.3.3 (2) the set 𝐷′ is a 𝑧-dominion in the parity game (𝒢 ′

𝑖 , 𝛼) for 𝑖 ≥
⌈log2(|𝐷′|)⌉ and thus in particular for 𝑖 = ⌈log2(ℎ)⌉. Hence by Lemma 5.2.9
Procedure D returns a non-empty set, a contradiction.

Combining the running time bound for PM by Lemma 5.2.9 with
Corollary 5.3.5, we bound the running time of Procedure P without the recur-
sive calls.

Lemma 5.3.6. Let (𝒢 , 𝛼) be a parity game with a game graph 𝒢 = ((𝑉 , 𝐸), (𝑉ℰ , 𝑉𝒪 ))
with 𝑛 = |𝑉 |, a priority function 𝛼, and 𝑐 priorities and let ℎ ∈ [1, 𝑛] be a parameter
with ℎ = 𝑛 for 𝑐 = 2. e running time of Procedure P(𝒢 , 𝛼) without the
recursive calls, and without the aractor computation before the recursive calls, is
𝑂(𝑐 ⋅ 𝑛2 ⋅ (ℎ+⌊𝑐/2⌋

ℎ )) for 𝑐 ≥ 3, 𝑂(𝑛2) for 𝑐 = 2, and 𝑂(𝑛) for 𝑐 = 1.

Proof. All operations before and aer the repeat-until loop can be done in 𝑂(𝑛) time,
which shows 𝑂(𝑛) for 𝑐 = 1. Further the aractor computations and the updates of
the maintained sets in lines 9–11 can be done in total time 𝑂(𝑚). us it remains to
bound the total time for the calls to Procedure D.

To efficiently construct the graphs 𝒢𝑖 and the vertex sets Bl𝑖, we maintain or-
dered lists of the incoming and outgoing edges of each vertex. ese lists can be
updated whenever an obsolete entry is encountered in the construction of 𝒢𝑖; as
each entry is removed at most once, this takes total time 𝑂(𝑚).

We now analyze the time spent in an iteration 𝑖 of the for-loop in Procedure D
. e graph 𝒢𝑖 contains 𝑂(2𝑖 ⋅𝑛) edges and both 𝒢𝑖 and Bl𝑖 can be constructed
from the maintained lists of in- and outedges in 𝑂(2𝑖 ⋅ 𝑛) time. Also the aractor
computation takes time 𝑂(2𝑖 ⋅ 𝑛). us for 𝑐 = 2 the time in iteration 𝑖 is 𝑂(2𝑖 ⋅ 𝑛),
while for 𝑐 ≥ 3 the time is dominated by the call to PM. Note that
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with the aractor computation the vertices with the highest priority are removed
from the parity game, thus the call to PM is done for a parity game
with 𝑐 − 1 priorities and parameter ℎ = 2𝑖. Hence by Lemma 5.2.9 iteration 𝑖 for
𝑐 ≥ 3 takes time

𝑂 (𝑐 ⋅ 𝑛 ⋅ 2𝑖 ⋅ (
2𝑖 + ⌈(𝑐 − 1)/2⌉

2𝑖 )) = 𝑂 (𝑐 ⋅ 𝑛 ⋅ 2𝑖 ⋅ (
2𝑖 + ⌊𝑐/2⌋

2𝑖 )) .

e time for all iterations up to the 𝑖-th iteration forms a geometric series and thus
satisfies the same running time bound.

Let 𝑖∗ be the last iteration of the for-loop in a call to Procedure D. Let
𝑧 be ℰ if 𝑐 is odd and 𝒪 otherwise. By Corollary 5.3.5 either (1) 𝐷𝑖∗ is a 𝑧-dominion
with |Ar𝑧(𝒢 , 𝐷𝑖∗)| > 2𝑖∗−1 vertices or (2) 𝑖∗ = ⌈log2(ℎ)⌉ and 𝒢 does not contain
any 𝑧-dominion 𝐷 with Ar𝑧(𝒢 , 𝐷) ≤ ℎ vertices. In case (2) either (2a) 𝑐 ≥ 3
and a 𝑧-dominion with more than ℎ vertices in its 𝑧-aractor is detected in the
subsequent recursive call to Procedure P or (2b) there is no 𝑧-dominion in
the maintained parity game and this is the last iteration of the repeat-until loop in
the Procedure P. Case (2b) can happen at most once and its running time is
bounded by 𝑂(𝑛2) for 𝑐 = 2 and by

𝑂 (𝑐 ⋅ 𝑛 ⋅ 2log2(ℎ) ⋅ (
2log2(ℎ) + ⌊𝑐/2⌋

2log2(ℎ) ))

for 𝑐 ≥ 3, which can be bounded by 𝑂(𝑐 ⋅ 𝑛2 ⋅ (ℎ+⌊𝑐/2⌋
ℎ )). In the cases (1) and (2a)

more than 2𝑖∗−1 vertices are removed from the maintained graph in this iteration.
We charge each of these vertices 𝑂(𝑐 ⋅ 𝑛 ⋅ (2𝑖+⌊𝑐/2⌋

2𝑖 )) time, which can be bounded by
𝑂(𝑐 ⋅ 𝑛 ⋅ (ℎ+⌊𝑐/2⌋

ℎ )) (per vertex). Hence the total running time is bounded by

𝑂 (𝑐 ⋅ 𝑛2 ⋅ (
ℎ + ⌊𝑐/2⌋

ℎ )) .

To bound the running time including the recursive calls, we use a similar anal-
ysis as for the BS algorithm in [Sch07; Sch08]. e running time for parity
games with 𝑐 priorities of the BS algorithm is 𝑂(𝑚 ⋅ (𝜅𝑛/𝑐)𝛾(𝑐)) for 𝛾(𝑐) =
𝑐/3 + 1/2 − 4/(𝑐2 − 1) for odd 𝑐 and 𝛾(𝑐) = 𝑐/3 + 1/2 − 1/(3𝑐) − 4/𝑐2 for even 𝑐, and
some constant 𝜅 (eorem 5.2.10). Further let 𝛽(𝑐) = 𝛾(𝑐)/(⌊𝑐/2⌋ + 1). It can easily
be verified that 𝛾(𝑐 + 1) = 1 + 𝛾(𝑐) − 𝛽(𝑐) holds. Similar to [Sch07; Sch08], we set
ℎ = 𝑛𝛽(𝑐) for 𝑐 ≥ 3 and additionally ℎ = 𝑛 for 𝑐 = 2. We show by induction over 𝑐 a
running time bound of 𝑂(𝑛1+𝛾(𝑐+1)) = 𝑂(𝑛2+𝛾(𝑐)−𝛽(𝑐)) for parity games with 𝑐 colors,
i.e., for a constant number of priorities we replace 𝑚 by 𝑛2−𝛽(𝑐).

Lemma 5.3.7. For parity games with 𝑐 ≤ √𝑛 priorities Procedure P takes time
𝑂(𝑛1+𝛾(𝑐+1)).

Proof. For the base case of 𝑐 = 2 we have 𝛾(𝑐 + 1) = 1 and no recursive calls.
us the running time of Procedure P for 𝑐 = 2 is 𝑂(𝑛2) by Lemma 5.3.6
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(in this case Procedure P is equivalent to the algorithm of [CH14]). Suppose
Procedure P runs in time 𝑂(𝑛1+𝛾(𝑐)) for a parity game with 𝑐 −1 ≥ 2 priorities.
We show that this implies that Procedure P runs in time 𝑂(𝑛1+𝛾(𝑐+1)) for a
parity game with 𝑐 priorities for 3 ≤ 𝑐 ≤ √𝑛. Let ℎ = 𝑛𝛽(𝑐) for 𝛽(𝑐) = 𝛾(𝑐)/(⌊𝑐/2⌋ +
1). We have 𝛽(𝑐) ≥ 1/2 for all 𝑐 ≥ 3 and thus ℎ ≥ √𝑛. By Lemma 5.3.6 the time
spent in Procedure P without the recursive calls is 𝑂(𝑐 ⋅ 𝑛2 ⋅ (ℎ+⌊𝑐/2⌋

ℎ )). With
Stirling’s approximation of (𝑥/𝑒)𝑥 ≤ 𝑥! we have

(
ℎ + ⌊𝑐/2⌋

ℎ ) ≤ (ℎ + ⌊𝑐/2⌋)⌊𝑐/2⌋

⌊𝑐/2⌋! ,

≤ (
(ℎ + ⌊𝑐/2⌋) ⋅ 𝑒

⌊𝑐/2⌋ )
⌊𝑐/2⌋

.

Using 3 ≤ 𝑐 ≤ √𝑛 ≤ ℎ, we obtain

(
ℎ + ⌊𝑐/2⌋

ℎ ) ≤ (
2𝑒ℎ + 𝑒𝑐

𝑐 − 1 )
⌊𝑐/2⌋

,

≤ (
5𝑒ℎ

𝑐 )
⌊𝑐/2⌋

.

us we have

𝑐 ⋅ (
ℎ + ⌊𝑐/2⌋

ℎ ) ≤ (5𝑒)⌊𝑐/2⌋

𝑐⌊𝑐/2⌋−1 ℎ⌊𝑐/2⌋ ,

which is ≤ ℎ⌊𝑐/2⌋ for 𝑐 ≥ (5𝑒)3/2 and ≤ 𝜅ℎ⌊𝑐/2⌋ for some constant 𝜅 for 𝑐 < (5𝑒)3/2.
Hence the timewithout the recursive calls is bounded by𝑂(𝑛2⋅ℎ⌊𝑐/2⌋), which is equal
to 𝑂(𝑛2+𝛽(𝑐)⌊𝑐/2⌋) for ℎ = 𝑛𝛽(𝑐). By the choice of 𝛽(𝑐) we have 𝛽(𝑐)⌊𝑐/2⌋ = 𝛾(𝑐)−𝛽(𝑐)
and thus we can write this bound as 𝑂(𝑛2+𝛾(𝑐)−𝛽(𝑐)). By Corollary 5.3.5 there are at
most 𝑂(𝑛/ℎ) = 𝑂(𝑛1−𝛽(𝑐)) recursive calls to Procedure P. Each recursive call
is for a parity game with one priority less and thus takes time 𝑂(𝑛1+𝛾(𝑐)). Hence the
total time for all recursive calls is bounded by 𝑂(𝑛1−𝛽(𝑐)+1+𝛾(𝑐)). For 𝛾(𝑐) as defined
above we have 𝛾(𝑐 + 1) = 1 + 𝛾(𝑐) − 𝛽(𝑐), which completes the proof.

By Lemma 5.3.3 (1) every 𝑧-dominion found in the parity gamewith one priority
less on 𝒢 ′ is indeed a 𝑧-dominion in the original parity game on 𝒢 . Together with
Lemma 2.5.1 (3) this implies that the computed set 𝑊𝑧 is indeed a part of thewinning
set of player 𝑧 in the parity game. To show the correctness of Procedure P,
we provide a winning strategy for player 𝑧 for all remaining vertices.

Lemma 5.3.8 (Correctness). Given a parity game 𝒫 , let 𝑧 be player ℰ if 𝑐 is odd and
player 𝒪 otherwise and let 𝑊𝑧 and 𝑊𝑧 be the output of Procedure P. We have:
(1) (Soundness). 𝑊𝑧 ⊆ 𝑊𝑧(𝑃 ); and (2) (Completeness). 𝑊𝑧(𝑃 ) ⊆ 𝑊𝑧.
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Proof. e first part on soundness follows from Lemmata 5.3.3 (1) and 2.5.1 (3). We
now prove the completeness result. When Procedure P terminates, the win-
ning set 𝑊 ′

𝑧 of player 𝑧 in the parity game (𝒢 ′, 𝛼) is empty. Also note that since
the algorithm removes aractors of 𝑧, the set 𝑊𝑧 is closed for 𝑧 by Lemma 2.5.1 (1).
Consider the set 𝑍 = 𝑊𝑧 ∩ 𝑃𝑐−1, its aractor 𝑋 = Ar𝑧(𝒢 , 𝑍), and the subgame
induced by 𝑈 = 𝑊𝑧 ⧵ 𝑋. Note that the game graphs 𝒢 [𝑈] and 𝒢 ′[𝑈] coincide.
us all vertices of 𝑈 must be winning for player 𝑧 in the parity game (𝒢 ′, 𝛼) as
otherwise 𝑊 ′

𝑧 would have been non-empty for (𝒢 ′, 𝛼). We prove the lemma by
describing a winning strategy for player 𝑧 in 𝒫 for all vertices in 𝑊𝑧. For vertices
of 𝑍 ∩ 𝑉𝑧 the winning strategy chooses an edge in 𝑊𝑧, which exists since 𝑊𝑧 is
𝑧-closed. For vertices in 𝑋 ⧵ 𝑍 player 𝑧 follows her aractor strategy to 𝑍 . In the
subgame induced by 𝑈 = 𝑊𝑧 ⧵𝑋 player 𝑧 follows her winning strategy in the parity
game (𝒢 ′, 𝛼). en in a play either (i) 𝑋 is visited infinitely oen; or (ii) from some
point on only vertices of 𝑈 are visited. In the former case, the aractor strategy
ensures that then some vertex of 𝑍 with priority 𝑐 −1 is visited infinitely oen; and
in the later case, the subgame winning strategy ensures that the highest priority
visited infinitely oen has the same parity as 𝑐 − 1. It follows that 𝑊𝑧 ⊆ 𝑊𝑧(𝑃 ), i.e.,
𝑊𝑧(𝑃 ) ⊆ 𝑊𝑧, and the desired result follows.

Lemmata 5.3.7 and 5.3.8 yield the following result.

eorem 5.3.9. Procedure P correctly computes the winning sets in parity
games with 𝑛 vertices and 𝑐 ≤ √𝑛 priorities in 𝑂(𝑛1+𝛾(𝑐+1)) time, where 𝛾(𝑐) =
𝑐/3 + 1/2 − 4/(𝑐2 − 1) for odd 𝑐 and 𝛾(𝑐) = 𝑐/3 + 1/2 − 1/(3𝑐) − 4/𝑐2 for even 𝑐.

Computation of winning strategies. In parity-3 games the previous results for
computing winning strategies for the players in their respective winning sets are
as follows: e small-progress measure algorithm of [Jur00] requires 𝑂(𝑚𝑛) time to
compute the winning strategy of player ℰ and 𝑂(𝑛2𝑚) time to compute the winning
strategy for player 𝒪 ; Schewe [Sch08] shows how to modify the small-progress
measure algorithm to compute the respective winning strategies of both players in
𝑂(𝑚𝑛) time. Schewe’s running time bound for general parity games also holds when
both winning strategies are requested [Sch08]. We show that our algorithm also
computes the respective winning strategies without increasing the running time,
i.e., in 𝑂(𝑛2.5) time for parity-3 games and in 𝑂(𝑛1+𝛾(𝑐+1)) time for parity games
with a constant number of priorities 𝑐.

For parity-3 we first observe that for Büchi games [CH14] we can construct
in 𝑂(𝑛2) time also the respective winning strategies of both players since the al-
gorithm is based on identifying closed sets and aractors, and the corresponding
winning strategies are identified immediately with the computation. e proof of
Lemma 5.3.8 describes the strategy computation for a winning strategy of player 𝒪
which involves an aractor strategy and the sub-game strategy for Büchi games,
each of which can be computed in 𝑂(𝑛2) time. A winning strategy for player ℰ
is obtained in the iterations of the algorithm, i.e., whenever we obtain a dominion
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by solving Büchi games we also obtain a corresponding winning strategy, and sim-
ilarly for the aractor computation. us the winning strategy for player ℰ can be
computed in 𝑂(𝑛2.5) time.

For general parity games the winning strategies for both players are constructed
in a similar way; the argument uses parity-3 games as base case and then induc-
tion over the recursive calls. Let 𝑧 be player ℰ if 𝑐 is odd and player 𝒪 otherwise.
First note that the time bound in Lemma 5.2.9, and therefore the time bound of
Procedure D, includes the computation of a winning strategy for player 𝑧
within a 𝑧-dominion determined by Procedure D. e winning strategy
of player 𝑧 is a combination of his winning strategies for the dominions identified
in Procedure D and the dominions identified in the recursive calls for par-
ity games with one priority less and the corresponding aractor strategies. e
winning strategy of player 𝑧, as described in Lemma 5.3.8, is identified in the last
iteration of the repeat-until loop and consists of her winning strategy for the parity
game for which the last recursive call is made and her aractor strategy to vertices
with priority 𝑐 − 1.

Corollary 5.3.10. Winning strategies for player ℰ and player 𝒪 in their respective
winning sets in parity games with 𝑛 vertices and 𝑐 ≤ √𝑛 priorities can be computed
in 𝑂(𝑛1+𝛾(𝑐+1)) time.

5.4 Symbolic Progress Measure Algorithm

In this section we present a set-based symbolic algorithm for parity games, with
𝑛 vertices and 𝑐 priorities, by showing how to compute a progress measure using
only set-based symbolic operations (see Section 5.2.3 for the definition of symbolic
operations).

Key challenge. Recall that the main challenge for an efficient set-based symbolic
algorithm similar to the SPM algorithm is to represent 𝛩(𝑛𝑐/2)
many numerical values succinctly with 𝑂(𝑛) many sets, such that they can still be
processed efficiently by a symbolic algorithm.

Key concepts: e sets 𝑆𝑟 and the ranking function 𝜌{𝑆𝑟}𝑟
. Recall from Sec-

tion 5.2.6.2 that the progress measure for parity games is defined as the least simul-
taneous fixed point of the Lift(𝜌, 𝑣)-operators on a ranking function 𝜌 ∶ 𝑉 → 𝑀∞

𝒢 .
ere are two key aspects of our algorithm:

(1) Symbolic encoding of numerical domain. In our symbolic algorithm we cannot
directly deal with the ranking function but have to use sets of vertices to
encode it. We first formulate our algorithm with sets 𝑆𝑟 for 𝑟 ∈ 𝑀∞

𝒢 that
contain all vertices that have rank 𝑟 or higher; that is, given a function 𝜌, the
corresponding sets are 𝑆𝑟 = {𝑣 ∣ 𝜌(𝑣) ≥ 𝑟}. On the other hand, given a
family of sets {𝑆𝑟}𝑟, the corresponding ranking function 𝜌{𝑆𝑟}𝑟

is given by
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𝜌{𝑆𝑟}𝑟
(𝑣) = max{𝑟 ∈ 𝑀∞

𝒢 ∣ 𝑣 ∈ 𝑆𝑟}. is formulation encodes the numerical
domain with sets but uses exponential in 𝑐 many sets.

(2) Space efficiency. In Section 5.4.3 we directly encode the ranks with one set
corresponding to each possible index-value pair. is reduces the required
number of sets to linear at the cost of increasing the number of set operations
only by a factor of 𝑛; the number of one-step symbolic operations does not
increase.

Organization. Our results are organized as follows. First, we present the result
for parity games with 5 priorities. Second, we present the general case, where we
present the set-based symbolic algorithm to compute the progress measure, which
still requires exponential space, i.e., an exponential number of sets. Finally, we
present the modification which reduces the space requirement to a linear number
of sets, increasing the number of set operations only by a factor of 𝑛.

5.4.1 Illustration: Parity Games with 5 Priorities

In this section we informally introduce our symbolic algorithm to compute the
progress measure, using parity games with 5 priorities as an important special case.

Intuition for ranks 𝑟 and sets 𝑆𝑟. We first provide some intuition for the ranks 𝑟
and the sets 𝑆𝑟 for parity games with 5 priorities. e rank 𝑟 has an index for each
of the priorities {0, 1, 2, 3, 4} but may contain non-zero entries only for the odd
priorities {1, 3}. us, for this section, we denote a rank vector as a vector with
two elements, where the first element corresponds to element 1 of 𝑟 and the second
element corresponds to element 3 of 𝑟. e lowest rank is (0, 0), followed by (1, 0),
the highest rank is ⊤, preceded by (𝑛1, 𝑛3). roughout the algorithm, whenever a
vertex is contained in the set 𝑆𝑟, then its rank in the progress measure is at least 𝑟.
e sets 𝑆𝑟 are defined to contain vertices with rank at least 𝑟 instead of exactly 𝑟
such that for each vertex 𝑣 and rank 𝑟′ we only have to consider one set 𝑆𝑟 in order
to decide whether the rank of 𝑣 can be increased to 𝑟′. Each vertex can only be
assigned ranks for which all indices corresponding to priorities lower than its own
priority are zero. For example, a vertex with priority 4 can only be assigned rank
(0, 0) or rank ⊤. us for such a vertex its rank can “jump” from (0, 0) to ⊤ (because
of one of its successors being added to 𝑆⊤), and then this information has to be
propagated to its predecessors. e algorithm achieves this efficiently by adding,
e.g., vertices that are added to 𝑆⊤ to all sets representing lower ranks as well. e
sets 𝑆𝑟 implicitly assign each vertex 𝑣 a rank, namely the maximum rank 𝑟 such
that 𝑣 ∈ 𝑆𝑟. We next describe the intuition for what it means when a vertex 𝑣 is
assigned a specific rank 𝑟.

• Intuitively, when a vertex 𝑣 is assigned a rank (𝑖, 0) for 𝑖 ∈ 𝑁1, i.e., the set
with highest rank it is contained in is 𝑆(𝑖,0), then, in plays starting from 𝑣,
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Algorithm SymbolicProgressMeasureParity(5):

Input :parity game 𝒫 = (𝒢 , 𝛼), with
game graph 𝒢 = ((𝑉 , 𝐸), (𝑉ℰ , 𝑉𝒪 )) and
priority function 𝛼 ∶ 𝑉 → {0, 1, 2, 3, 4}

Output : winning set of player ℰ
1 𝑆(0,0) ← 𝑉
2 𝑆𝑟 ← ∅ for (0, 0) < 𝑟 ≤ (𝑛1, 𝑛3) and 𝑟 = ⊤
3 𝑟 ← (1, 0)
4 while 𝑡𝑟𝑢𝑒 do
5 if 𝑟 = (𝑖, 𝑗), 𝑖 > 0 then
6 𝑆(𝑖,𝑗) ← 𝑆(𝑖,𝑗) ∪ (𝘊𝘗 𝘳 𝘦𝒪 (𝑆𝑖−1,𝑗) ∩ 𝑃1)
7 repeat
8 𝑆(𝑖,𝑗) ← 𝑆(𝑖,𝑗) ∪ (𝘊𝘗 𝘳 𝘦𝒪 (𝑆𝑖,𝑗) ⧵ ⋃𝑖=2,3,4 𝑃𝑖)
9 until a fixed-point for 𝑆(𝑖,𝑗) is reached

10 else if 𝑟 = (0, 𝑗) then
11 𝑆(0,𝑗) ← 𝑆(0,𝑗) ∪ (𝘊𝘗 𝘳 𝘦𝒪 (𝑆𝑛1,𝑗−1) ∩ 𝑃1) ∪ (𝘊𝘗 𝘳 𝘦𝒪 (𝑆0,𝑗−1) ∩ 𝑃3)
12 repeat
13 𝑆(0,𝑗) ← 𝑆(0,𝑗) ∪ (𝘊𝘗 𝘳 𝘦𝒪 (𝑆0,𝑗) ⧵ 𝑃4)
14 until a fixed-point for 𝑆(0,𝑗) is reached

15 else if 𝑟 = ⊤ then
16 𝑆⊤ ← 𝑆⊤ ∪ (𝘊𝘗 𝘳 𝘦𝒪 (𝑆𝑛1,𝑛3 ) ∩ 𝑃1) ∪ (𝘊𝘗 𝘳 𝘦𝒪 (𝑆0,𝑛3) ∩ 𝑃3)
17 repeat
18 𝑆⊤ ← 𝑆⊤ ∪ 𝘊𝘗 𝘳 𝘦𝒪 (𝑆⊤)
19 until a fixed-point for 𝑆⊤ is reached

20 𝑟′ ← dec(𝑟)
21 if 𝑆𝑟′ ⊇ 𝑆𝑟 and 𝑟 < ⊤ then
22 𝑟 ← inc(𝑟)
23 else if 𝑆𝑟′ ⊇ 𝑆𝑟 and 𝑟 = ⊤ then
24 break
25 else /* ensure 𝑆𝑟′ ⊇ 𝑆𝑟 for all 𝑟′ < 𝑟 */
26 repeat
27 𝑆𝑟′ ← 𝑆𝑟′ ∪ 𝑆𝑟
28 𝑟′ ← dec(𝑟′);
29 until 𝑆𝑟′ ⊇ 𝑆𝑟
30 𝑟 ← inc(𝑟′) /* 𝑆𝑟 is modified set with smallest rank */

31 return 𝑉 ⧵ 𝑆⊤
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player 𝒪 can force a play from 𝑣 to visit 𝑖 vertices of priority 1 before a vertex
of priority 2 or higher is reached; for 𝑖 > 0 this implies that the priority of 𝑣
is either 0 or 1.

• Let vertex 𝑣 be assigned rank (𝑖, 𝑗) for 𝑖 ∈ 𝑁1 and 𝑗 ∈ 𝑁3. e interpretation
of the value of 𝑖 is the same as in the case (𝑖, 0), where the value of 𝑖 is taken
modulo 𝑛1 + 1. Each contribution of 1 to the value of 𝑗 corresponds either (a)
to the number of times a priority-3 vertex is visited before a priority-4 vertex
is reached or (b) to priority-1 vertices being reached 𝑛1 + 1 times before a
vertex with priority at least 2 is reached. Note that case (b) can also happen
for a vertex 𝑣 with priority 2 or 3; for 𝛼(𝑣) = 4 the only set 𝑆(𝑖,𝑗) the vertex 𝑣
can belong to is 𝑆(0,0), as the rank of a priority-4 vertex can only be (0, 0) or ⊤.

• Recall that ⊤ are the vertices where player ℰ has no winning strategy. ere
are three ways a vertex 𝑣 can be ranked ⊤: (i) 𝑣 has priority-1 and the best suc-
cessor is ranked (𝑛1, 𝑛3), (ii) 𝑣 has priority-3 and the best successor is ranked
at least (0, 𝑛3), and (iii) the best successor is ranked ⊤. e case (i) and (ii)
correspond to the cases where player ℰ has to visit at least 𝑛1 + 1 or 𝑛3 + 1
many vertices of the respective odd priority before reaching a higher even
priority. Note that this means that player 𝒪 can force plays to reach a cycle
where the highest priority is odd. In case (iii) player 𝒪 can force plays to visit
at vertex from which she can reach a cycle with highest odd priority.

Symbolic algorithm. In our symbolic algorithm SymbolicProgressMeasurePar-
ity(5) we use the sets 𝑆𝑟 to represent the numerical values of the progress measure,
and, to utilize the power of symbolic operations, we compute all vertices whose rank
can be increased to a certain value 𝑟 in each iteration of the algorithm. e laer
is in contrast to the explicit progress measure algorithm [Jur00], where vertices are
considered one by one and the rank is increased to the maximal possible value.

We next describe Algorithm SymbolicProgressMeasureParity(5) and then give
some intuition for its correctness and the number of its symbolic operations. Recall
that the sets 𝑆𝑟 define a ranking function 𝜌{𝑆𝑟}𝑟

(𝑣) = max{𝑟 ∈ 𝑀∞
𝒢 ∣ 𝑣 ∈ 𝑆𝑟} that

assigns a rank to each vertex and that by the definition of inc (Section 5.2.6.2) a
vertex 𝑣 with priority 𝛼(𝑣) is only assigned ranks 𝑟 with 𝑟 = ⟨𝑟⟩𝛼(𝑣).

Initialization. To find the least simultaneous fixed point of the li-operators, all
ranks are initialized with the all zero vector, i.e., all vertices are added to 𝑆(0,0), while
all other sets 𝑆𝑟 are empty. e variable 𝑟 is initialized to (1, 0).

e value of 𝑟. In each iteration of the while-loop the set 𝑆𝑟 for the rank that
is stored in the variable 𝑟 at the beginning of the iteration is updated (more de-
tails below). By the definition of the sets 𝑆𝑟′ we need to maintain 𝑆𝑟′ ⊇ 𝑆𝑟 for
𝑟′ < 𝑟, i.e., every vertex that is newly added to 𝑆𝑟 but not yet contained in 𝑆𝑟′ is
added to 𝑆𝑟′ (line 27). For the vertices newly added to 𝑆𝑟 we say that their rank is
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increased. When the rank of a vertex is increased, this might influence the value
of Lift(𝜌{𝑆𝑟}𝑟

, 𝑣)(𝑣) for its neighbors 𝑣. Since we want to obtain a fixed point of
Lift(𝜌{𝑆𝑟}𝑟

, 𝑣)(𝑣) for all 𝑣 ∈ 𝑉 , we have to reconsider the neighbors of a vertexwhen-
ever the rank of the vertex is increased. is is achieved by updating the variable 𝑟
to the lowest 𝑟′ for which a new vertex is added to 𝑆𝑟′ in this iteration (lines 26–30).
If 𝑟 = 𝑟′, then for 𝑟 < ⊤ the value of 𝑟 is increased to the next highest rank in the
ordering (line 22) and for 𝑟 = ⊤ the algorithm terminates (line 24).

Update of set 𝑆𝑟. To reach a simultaneous fixed point of the li-operators, the
rank of a vertex 𝑣 has to be increased to Lift(𝜌{𝑆𝑟}𝑟

, 𝑣)(𝑣) whenever the value of
Lift(𝜌{𝑆𝑟}𝑟

, 𝑣)(𝑣) is strictly higher than 𝜌{𝑆𝑟}𝑟
(𝑣) for the current ranking function

𝜌{𝑆𝑟}𝑟
. Recall that this is the case when the value of best(𝜌, 𝑣) is increased, which

implies that the rank assigned to at least one successor of 𝑣 is increased. For the
update of the set 𝑆𝑟 in an iteration of the while-loop (where 𝑟 is the value of the
variable at the beginning of the while-loop), the algorithm adds vertices with (i)
𝜌{𝑆𝑟}𝑟

(𝑣) < 𝑟, (ii) Lift(𝜌{𝑆𝑟}𝑟
, 𝑣)(𝑣) ≥ 𝑟, and (iii) 𝑟 = ⟨𝑟⟩𝛼(𝑣) to 𝑆𝑟. Note that the

algorithmmaintains the invariant that vertices with 𝜌{𝑆𝑟}𝑟
≥ 𝑟 are already contained

in 𝑆𝑟. We distinguish between 𝑟 = (𝑖, 𝑗) with 𝑖 > 0, 𝑟 = (0, 𝑗), and 𝑟 = ⊤.

(1) For 𝑟 = (𝑖, 𝑗) with 𝑖 > 0 recall that only vertices 𝑣 with priority 0 or 1 can be
assigned rank 𝑟.
Case (a): Assume first that 𝛼(𝑣) = 1. en Lift(𝜌{𝑆𝑟}𝑟

, 𝑣)(𝑣) ≥ 𝑟 if (i) 𝑣 ∈ 𝑉ℰ
and all successors 𝑤 of 𝑣 have 𝜌{𝑆𝑟}𝑟

(𝑤) ≥ (𝑖 − 1, 𝑗) or (ii) 𝑣 ∈ 𝑉𝒪 and one
successor 𝑤 of 𝑣 has 𝜌{𝑆𝑟}𝑟

(𝑤) ≥ (𝑖 − 1, 𝑗). at is, Lift(𝜌{𝑆𝑟}𝑟
, 𝑣)(𝑣) ≥ 𝑟 only

if 𝑣 ∈ 𝘊𝘗 𝘳 𝘦𝒪 (𝑆(𝑖−1,𝑗)). In this case the vertex 𝑣 is added to 𝑆𝑟 in line 6.
Case (b): Assume now that 𝛼(𝑣) = 0. en Lift(𝜌{𝑆𝑟}𝑟

, 𝑣)(𝑣) ≥ 𝑟 if (i) 𝑣 ∈
𝑉ℰ and all successors 𝑤 of 𝑣 have 𝜌{𝑆𝑟}𝑟

(𝑤) ≥ (𝑖, 𝑗) or (ii) 𝑣 ∈ 𝑉𝒪 and one
successor 𝑤 of 𝑣 has 𝜌{𝑆𝑟}𝑟

(𝑤) ≥ (𝑖, 𝑗). at is, Lift(𝜌{𝑆𝑟}𝑟
, 𝑣)(𝑣) ≥ 𝑟 only if

𝑣 ∈ 𝘊𝘗 𝘳 𝘦𝒪 (𝑆(𝑖,𝑗)). In this case the vertex 𝑣 is added to 𝑆𝑟 in some iteration
of the repeat-until loop in line 8.

(2) e difference for 𝑟 = (0, 𝑗) is first that also vertices with priorities 2 or 3 are
candidates for the assignment of rank 𝑟 and second that for a vertex 𝑣 with
odd priority we now have the following possibilities: either (i) 𝛼(𝑣) = 1 and
we consider neighbors 𝑤 with 𝜌{𝑆𝑟}𝑟

(𝑤) ≥ (𝑛1, 𝑗 − 1) or (ii) 𝛼(𝑣) = 3 and we
consider neighbors 𝑤 with 𝜌{𝑆𝑟}𝑟

(𝑤) ≥ (0, 𝑗 − 1).

(3) e case 𝑟 = ⊤ corresponds to the case 𝑟 = (0, 𝑗) with 𝑗 = 𝑛3 + 1 with the
difference that also vertices with priority 4 can be included in 𝑆⊤ in the case
𝜌{𝑆𝑟}𝑟

(𝑤) = ⊤.

Sketch of bound on number of symbolic operations. Observe that each
rank 𝑟 is considered in at least one iteration of the while-loop but is only recon-
sidered in a later iteration if at least one vertex was added to the set 𝑆𝑟 since the
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last time 𝑟 was considered. is implies by |𝑆𝑟| ≤ 𝑛 that Algorithm SymbolicPro-
gressMeasureParity(5) can be implemented with 𝑂(𝑛 ⋅ |𝑀∞

𝒢 |) = 𝑂(𝑛3) symbolic
operations.

Sketch of correctness. Let {𝑆𝑟}𝑟 be the sets in the algorithm at termination. e
algorithm returns the set of vertices that are not contained in 𝑆⊤, i.e., the vertices
to which 𝜌{𝑆𝑟}𝑟

assigns a rank < ⊤. If 𝜌{𝑆𝑟}𝑟
is equal to the progress measure of the

parity game, then by Lemma 5.2.4 the returned set 𝑉 ⧵𝑆⊤ is equal to the winning set
of player ℰ . Let ̃𝜌 denote the progress measure. It remains to show that 𝜌{𝑆𝑟}𝑟

(𝑣) =
̃𝜌(𝑣) for all 𝑣 ∈ 𝑉 when the algorithm terminates. To this end we show (1) that the

algorithm only adds a vertex to a set 𝑆𝑟 when the progress measure ̃𝜌 is at least 𝑟,
i.e., throughout the algorithm the ranking function 𝜌{𝑆𝑟}𝑟

is a lower bound on ̃𝜌 and
(2) by the update of the variable 𝑟 we have before and aer each iteration of the
while-loop for all vertices 𝑣 that either Lift(𝜌{𝑆𝑟}𝑟

, 𝑣)(𝑣) = 𝜌{𝑆𝑟}𝑟
(𝑣) or 𝜌{𝑆𝑟}𝑟

(𝑣) ≥ 𝑟
and in the final iteration with 𝑟 = ⊤ we have Lift(𝜌{𝑆𝑟}𝑟

, 𝑣)(𝑣) = 𝜌{𝑆𝑟}𝑟
(𝑣) for all

𝑣 ∈ 𝑉 . is implies that when the algorithm terminates the ranking function 𝜌{𝑆𝑟}𝑟
is a simultaneous fixed point of the li-operators. Together these two properties
imply that the algorithm computes the progress measure of the parity game.

5.4.2 General Parity Games

In this section we generalize the algorithm for parity games with 5 priorities to par-
ity games with 𝑐 priorities and provide proofs for the correctness and the number of
symbolic operations of the algorithm. We first present the variant that uses an ex-
ponential number of sets and then, in Section 5.4.3, show how to reduce the number
of sets to linear.

Key differences and challenges. We mention the key differences of our algo-
rithm and the progress-measure algorithm, and the associated challenges.

• First, in our symbolic SymbolicParityDominion algorithm we represent the
numerical values of the progress measure by sets 𝑆𝑟 storing all vertices with
rank at least 𝑟.

• Second, to exploit the power of symbolic operations, in each iteration of the
algorithm we compute all vertices whose rank can be increased to a cer-
tain value 𝑟. is is in sharp contrast to the explicit progress-measure al-
gorithm [Jur00], where vertices are considered one by one and the rank is
increased to the maximal possible value.

e above gives a set-based symbolic algorithm, but since now we deal with sets
of vertices, as compared to individual vertices, the correctness needs to be estab-
lished. e non-trivial aspect of the proof is to identify appropriate invariants on
sets (which we call symbolic invariants, see Invariant 5.4.1) and use them to establish
the correctness.
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e co-domain 𝑀∞
ℎ . Additionally to the generalization to an arbitrary number

of priorities, we formulate our algorithm such that it can not only compute the
winning sets of the players but also ℰ -dominions of size at most ℎ + 1. (For 𝒪-
dominions add one to each priority and exchange the roles of the two players.) e
only change needed for this is to use the co-domain 𝑀∞

ℎ , instead of 𝑀∞
𝒢 , for the inc

and dec operations. e co-domain 𝑀∞
ℎ contains all ranks of 𝑀∞

𝒢 whose entries
sum up to at most ℎ (see Section 5.2.6.3).

Algorithm SymbolicParityDominion: Symbolic progress measure algo-
rithm for parity games
Input :parity game 𝒫 = (𝒢 , 𝛼), with

game graph 𝒢 = ((𝑉 , 𝐸), (𝑉ℰ , 𝑉𝒪 )) and
priority function 𝛼 ∶ 𝑉 → [𝑐], and
parameter ℎ ∈ [0, 𝑛] ∩ ℕ

Output : an ℰ -dominion that contains all ℰ -dominions of size ≤ ℎ + 1 or possibly
the empty set if no such ℰ -dominion exists

1 𝑆0̄ ← 𝑉 ; 𝑆𝑟 ← ∅ for 𝑟 ∈ 𝑀∞
ℎ ⧵ {0̄}

2 𝑟 ← inc(0̄)
3 while 𝑡𝑟𝑢𝑒 do
4 if 𝑟 ≠ ⊤ then
5 Let ℓ be maximal such that 𝑟 = ⟨𝑟⟩ℓ
6 𝑆𝑟 ← 𝑆𝑟 ∪ ⋃1≤𝑘≤(ℓ+1)/2 (𝘊𝘗 𝘳 𝘦𝒪 (𝑆dec2𝑘−1(𝑟)) ∩ 𝑃2𝑘−1)
7 repeat
8 𝑆𝑟 ← 𝑆𝑟 ∪ (𝘊𝘗 𝘳 𝘦𝒪 (𝑆𝑟) ⧵ ⋃ℓ<𝑘<𝑐 𝑃𝑘)
9 until a fixed-point for 𝑆𝑟 is reached

10 else if 𝑟 = ⊤ then
11 𝑆⊤ ← 𝑆⊤ ∪ ⋃1≤𝑘≤⌊𝑐/2⌋ (𝘊𝘗 𝘳 𝘦𝒪 (𝑆dec2𝑘−1(⊤)) ∩ 𝑃2𝑘−1)
12 repeat
13 𝑆⊤ ← 𝑆⊤ ∪ (𝘊𝘗 𝘳 𝘦𝒪 (𝑆⊤))
14 until a fixed-point for 𝑆⊤ is reached

15 𝑟′ ← dec(𝑟)
16 if 𝑆𝑟′ ⊇ 𝑆𝑟 and 𝑟 < ⊤ then
17 𝑟 ← inc(𝑟)
18 else if 𝑆𝑟′ ⊇ 𝑆𝑟 and 𝑟 = ⊤ then
19 break
20 else
21 repeat
22 𝑆𝑟′ ← 𝑆𝑟′ ∪ 𝑆𝑟
23 𝑟′ ← dec(𝑟′);
24 until 𝑆𝑟′ ⊇ 𝑆𝑟
25 𝑟 ← inc(𝑟′)

26 return 𝑉 ⧵ 𝑆⊤
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esets𝑆𝑟 and the ranking function 𝜌{𝑆𝑟}𝑟
. ealgorithm implicitlymaintains

a rank for each vertex. A vertex is contained in a set 𝑆𝑟 only if its maintained
rank is at least 𝑟. Each set 𝑆𝑟 is monotonically increasing throughout the algorithm.
Furthermore, the algorithm maintains anti-monotonicity among the sets, i.e., we
have 𝑆𝑟′ ⊇ 𝑆𝑟 for all 𝑟 and all 𝑟′ < 𝑟 before and aer each iteration. e rank of a
vertex 𝑣 is the highest 𝑟 such that 𝑣 ∈ 𝑆𝑟. In other words, the family of sets {𝑆𝑟}𝑟
defines the ranking function 𝜌{𝑆𝑟}𝑟

(𝑣) = max{𝑟 ∈ 𝑀∞
ℎ ∣ 𝑣 ∈ 𝑆𝑟}.

Structure of the algorithm. e overall structure of the algorithm is the same
as for parity games with 5 priorities: e set 𝑆0̄ is initialized with the set of all
vertices 𝑉 , while all other set 𝑆𝑟 for 𝑟 > 0̄ are initially empty, i.e., the ranks of
all vertices are initialized with the zero vector. e variable 𝑟 is initially set to the
second lowest rank inc(0̄) that is one at index 1 and zero otherwise. In the while-
loop the set 𝑆𝑟 is updated for the value of 𝑟 at the beginning of the iteration (see
below). Aer the update of 𝑆𝑟, it is checked whether the set corresponding to the
next lowest rank already contains the vertices newly added to 𝑆𝑟, i.e., whether the
anti-monotonicity is preserved. If the anti-monotonicity is preserved despite the
update of 𝑆𝑟, then for 𝑟 < ⊤ the value of 𝑟 is increased to the next highest rank
(line 17) and for 𝑟 = ⊤ the algorithm terminates (line 19). Otherwise the vertices
newly added to 𝑆𝑟 are also added to all sets with 𝑟′ < 𝑟 that do not already contain
them; the variable 𝑟 is then updated to the lowest 𝑟′ for which a new vertex is added
to 𝑆𝑟′ in this iteration (lines 21–25).

Update of set 𝑆𝑟. Consider a fixed iteration of the while-loop and let 𝑆𝑟 be the
set that is updated in this iteration in lines 4–14. Let 𝜌{𝑆𝑟}𝑟

be denoted by 𝜌 for short.
In this update of the set 𝑆𝑟 we want to add to 𝑆𝑟 all vertices 𝑣 with 𝜌(𝑣) < 𝑟 and
Lift(𝜌, 𝑣)(𝑣) ≥ 𝑟 under the condition that the priority of 𝑣 allows 𝑣 to be assigned
the rank 𝑟, i.e., 𝑟 = ⟨𝑟⟩𝛼(𝑣). Note that by the anti-monotonicity property the set 𝑆𝑟
already contains all vertices with 𝜌(𝑣) ≥ 𝑟.

(1) We fist consider the case 𝑟 < ⊤ (lines 4–9). Let ℓ be maximal such that
𝑟 = ⟨𝑟⟩ℓ, i.e., the first ℓ entries with indices 0 to ℓ − 1 of 𝑟 are 0 and the
entry with index ℓ is larger than 0. Note that ℓ is odd. We have that only the
Lift(., 𝑣)-operators with 𝛼(𝑣) ≤ ℓ can increase the rank of a vertex to 𝑟 as all
the others would set the element with index ℓ to 0.
Recall that Lift(𝜌, 𝑣)(𝑣) = inc𝛼(𝑣)(best(𝜌, 𝑣)), where best considers the ver-
tices with edges from 𝑣 and is implemented by the 𝘊𝘗 𝘳 𝘦𝒪 operator. e
function inc𝛼(𝑣)(𝑥) for 𝑥 < ⊤ behaves differently for odd and even 𝛼(𝑣) (see
Section 5.2.6.2): If 𝛼(𝑣) is odd, then inc𝛼(𝑣)(𝑥) is the smallest rank 𝑦 in 𝑀∞

ℎ
such that 𝑦 >𝛼(𝑣) 𝑥, i.e., 𝑦 is larger than 𝑥 w.r.t. indices ≥ 𝛼(𝑣). If 𝛼(𝑣) is even,
then inc𝛼(𝑣)(𝑥) is equal to 𝑥 with the indices lower than 𝛼(𝑣) set to 0.

• First, consider a Lift(𝜌, 𝑣) operation with odd 𝛼(𝑣) ≤ ℓ, i.e., let 𝛼(𝑣) =
2𝑘 − 1 for some 1 ≤ 𝑘 ≤ (ℓ + 1)/2. en Lift(𝜌, 𝑣)(𝑣) ≥ 𝑟 only if (a) 𝑣 ∈
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𝑉ℰ and all successors 𝑤 have 𝜌(𝑤) ≥ dec2𝑘−1(𝑟), or (b) 𝑣 ∈ 𝑉𝒪 and one
successor 𝑤 has 𝜌(𝑤) ≥ dec2𝑘−1(𝑟). at is, Lift(𝜌, 𝑣)(𝑣) ≥ 𝑟 only if 𝑣 ∈
𝘊𝘗 𝘳 𝘦𝒪 (𝑆dec2𝑘−1(𝑟)). Vice versa, we have that if 𝑣 ∈ 𝘊𝘗 𝘳 𝘦𝒪 (𝑆dec2𝑘−1(𝑟))
then by 𝜌 = 𝜌{𝑆𝑟}𝑟

also Lift(𝜌, 𝑣)(𝑣) ≥ 𝑟. is observation is imple-
mented in SymbolicParityDominion in line 6, where such vertices 𝑣 are
added to 𝑆𝑟.

• Now, consider a Lift(𝜌, 𝑣) operation with even 𝛼(𝑣) ≤ ℓ, i.e., let 𝛼(𝑣) =
2𝑘 for some 1 ≤ 𝑘 ≤ ℓ/2. en Lift(𝜌, 𝑣)(𝑣) ≥ 𝑟 only if (a) 𝑣 ∈ 𝑉ℰ
and all successors 𝑤 have 𝜌(𝑤) ≥ 𝑟, or (b) 𝑣 ∈ 𝑉𝒪 and one successor
𝑤 has 𝜌(𝑤) ≥ 𝑟. at is, Lift(𝜌, 𝑣)(𝑣) ≥ 𝑟 only if 𝑣 ∈ 𝘊𝘗 𝘳 𝘦𝒪 (𝑆𝑟).
Vice versa, we have that if 𝑣 ∈ 𝘊𝘗 𝘳 𝘦𝒪 (𝑆𝑟) then Lift(𝜌, 𝑣)(𝑣) ≥ 𝑟. In
SymbolicParityDominion these vertices are added iteratively in line 8
until a fixed point is reached. Notice that in line 8 the algorithm also
adds vertices 𝑣 with odd priority to 𝑆𝑟, but due do the above argument
we have Lift(𝜌, 𝑣)(𝑣) > 𝑟 and thus they can be included in 𝑆𝑟.

(2) e case 𝑟 = ⊤ (lines 10–14) works similarly except that (a) every vertex is
a possible candidate for being assigned the rank ⊤, independent of its prior-
ity (line 11) and (b) whenever 𝑥 is equal to ⊤, inc𝛼(𝑣)(𝑥) assigns the rank ⊤
independently of 𝛼(𝑣) (line 13).

Sketch of bound on number of symbolic operations. As for parity games
with 5 priorities, the number of symbolic operations per set 𝑆𝑟 is of the same order
as the number of times a vertex is added to the set.2 us the algorithm can be
implemented with 𝑂(𝑛 ⋅ |𝑀∞

ℎ |) symbolic operations. For the co-domain 𝑀∞
𝒢 the

bound 𝑂(𝑛 ⋅ |𝑀∞
𝒢 |) is analogous.

Outline correctness proof. In the following proof we show that when Algo-
rithm SymbolicParityDominion terminates, the ranking function 𝜌{𝑆𝑟}𝑟

is equal to
the progress measure for the given parity game and the co-domain 𝑀∞

ℎ . e same
proof applies for the co-domain 𝑀∞

𝒢 . e algorithm returns the set of vertices that
are assigned a rank < ⊤ when the algorithm terminates. By Lemma 5.2.7 this set
is an ℰ -dominion that contains all ℰ -dominions of size at most ℎ + 1 when the
co-domain 𝑀∞

ℎ is used, and by Lemma 5.2.4 this set is equal to the winning set
of player ℰ when the co-domain 𝑀∞

𝒢 is used. us it remains to show that 𝜌{𝑆𝑟}𝑟
equals the progress measure for the given co-domain when the algorithm termi-
nates. We first show that maintaining the following invariants over all iteration of
the algorithm is sufficient for this and then prove that the invariants are maintained.
All proofs are described for the co-domain 𝑀∞

ℎ .
2Notice that to initialize Algorithm SymbolicParityDominion, more precisely to compute the set

𝑀∞
𝒢 , we need to determine the sizes of the sets 𝑃𝑖. Such a cardinality operation |𝑆| returning the

number of elements of a set 𝑆 is provided by standard symbolic implementations, e.g., see [Cha+13,
Section 3.2]. Also we need only 𝑂(𝑐) cardinality operations.



5.4. SYMBOLIC PROGRESS MEASURE ALGORITHM 103

Invariant 5.4.1 (Symbolic invariants). In Algorithm SymbolicParityDominion the
following three invariants hold. Every rank is from the co-domain 𝑀∞

ℎ and the
Lift(., 𝑣)-operators are defined w.r.t. the co-domain. Let ̃𝜌 be the progress measure
of the given parity game and let 𝜌{𝑆𝑟}𝑟

= max{𝑟 ∈ 𝑀∞
ℎ ∣ 𝑣 ∈ 𝑆𝑟} be the ranking

function with respect to the sets 𝑆𝑟 that are maintained by the algorithm.

(1) Before and aer each iteration of the while-loop we have that if a vertex 𝑣 is in
a set 𝑆𝑟1

then it is also in 𝑆𝑟2
for all 𝑟2 < 𝑟1 (anti-monotonicity).

(2) roughout Algorithm SymbolicParityDominion we have ̃𝜌(𝑣) ≥ 𝜌{𝑆𝑟}𝑟
(𝑣) for

all 𝑣 ∈ 𝑉 .

(3) Before and aer each iteration of the while-loop we have for the rank stored in 𝑟
and all vertices 𝑣 either Lift(𝜌{𝑆𝑟}𝑟

, 𝑣)(𝑣) ≥ 𝑟 or Lift(𝜌{𝑆𝑟}𝑟
, 𝑣)(𝑣) = 𝜌{𝑆𝑟}𝑟

(𝑣).
At line 15 of the algorithm we additionally have 𝑣 ∈ 𝑆𝑟 for all vertices 𝑣 with
Lift(𝜌{𝑆𝑟}𝑟

, 𝑣)(𝑣) = 𝑟 (closure property).

Informal description of invariants. Invariant 5.4.1(1) ensures that the definition of the
sets 𝑆𝑟 and the ranking function 𝜌{𝑆𝑟}𝑟

is sound; Invariant 5.4.1(2) guarantees that
𝜌{𝑆𝑟}𝑟

is a lower bound on ̃𝜌 throughout the algorithm; and Invariant 5.4.1(3) shows
that when the algorithm terminates, a fixed point of the 𝜌{𝑆𝑟}𝑟

function with respect
to the Lift(., 𝑣)-operators is reached. Together these three properties guarantee
that when the algorithm terminates, the function 𝜌{𝑆𝑟}𝑟

corresponds to the progress
measure, i.e., to the least simultaneous fixed point of the Lift(., 𝑣)-operators. We
start with proving this claim and then prove each of the invariants.

Lemma 5.4.2. Assuming that Invariant 5.4.1 holds, the ranking function 𝜌{𝑆𝑟}𝑟
in-

duced by the family of sets {𝑆𝑟}𝑟 at termination of Algorithm SymbolicParityDomin-
ion is equal to the progress measure for the given parity game and the co-domain 𝑀∞

ℎ .

Proof. Recall that the progress measure is the least simultaneous fixed point of all
Lift(., 𝑣)-operators for the given parity game (where inc, dec, and the ordering of
ranks are w.r.t. the given co-domain) and let the progress measure be denoted by ̃𝜌.
Let {𝑆𝑟}𝑟 be the sets in the algorithm at termination. For all 𝑣 ∈ 𝑉 the ranking
function 𝜌{𝑆𝑟}𝑟

(𝑣) is defined as max{𝑟 ∈ 𝑀∞
ℎ ∣ 𝑣 ∈ 𝑆𝑟}. By Invariant 5.4.1(2) we

have 𝜌{𝑆𝑟}𝑟
(𝑣) ≤ ̃𝜌(𝑣) for all 𝑣 ∈ 𝑉 .

When the algorithm terminates, with 𝑟 = ⊤, we have by Invariant 5.4.1(3)
Lift(𝜌{𝑆𝑟}𝑟

, 𝑣)(𝑣) = 𝜌{𝑆𝑟}𝑟
(𝑣) for each vertex 𝑣 and thus 𝜌{𝑆𝑟}𝑟

is a simultaneous fixed
point of the Lift(., 𝑣)-operators. Now, as ̃𝜌 is the least simultaneous fixed point of
all Lift(., 𝑣)-operators, we obtain 𝜌{𝑆𝑟}𝑟

(𝑣) ≥ ̃𝜌(𝑣) for all 𝑣 ∈ 𝑉 . Hence we have
𝜌{𝑆𝑟}𝑟

(𝑣) = ̃𝜌(𝑣) for all 𝑣 ∈ 𝑉 .

We prove the three parts of Invariant 5.4.1 with the following three lemmata.
Notice that Invariant 5.4.1(1) is required to prove Invariant 5.4.1(3).
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Lemma 5.4.3. Before and aer each iteration of the while-loop in Algorithm Symbol-
icParityDominion we have 𝑆𝑟1

⊇ 𝑆𝑟2
for all 𝑟1 ≤ 𝑟2 with 𝑟1, 𝑟2 ∈ 𝑀∞

ℎ , i.e., Invari-
ant 5.4.1((1)) holds.

Proof. e proof is by induction over the iterations of the while-loop. e claim is
satisfied when we first enter the while-loop and only 𝑆0̄ is non-empty. It remains
to show that when the claim is valid at the beginning of a iteration then the claim
also hold aerwards. By the induction hypothesis, the sets 𝑆𝑟′ for 𝑟′ < 𝑟 are mono-
tonically decreasing. us it is sufficient to find the lowest rank 𝑟∗ such that for all
𝑟∗ ≤ 𝑟′ < 𝑟 we have 𝑆𝑟 ⊈ 𝑆𝑟′ and add the vertices newly added to 𝑆𝑟 to the sets 𝑆𝑟′

with 𝑟∗ ≤ 𝑟′ < 𝑟, which is done in lines 16–25 of the while-loop.

Lemma 5.4.4. Let ̃𝜌 be the progress measure of the given parity game and let 𝜌{𝑆𝑟}𝑟
=

max{𝑟 ∈ 𝑀∞
ℎ ∣ 𝑣 ∈ 𝑆𝑟} be the ranking function with respect to the family of sets

{𝑆𝑟}𝑟 that is maintained by the algorithm. roughout Algorithm SymbolicParityDo-
minion we have ̃𝜌(𝑣) ≥ 𝜌{𝑆𝑟}𝑟

(𝑣) for all 𝑣 ∈ 𝑉 , i.e., Invariant 5.4.1((2)) holds.

Proof. We show the lemma by induction over the iterations of the while-loop. Be-
fore the first iteration of the while-loop only 𝑆0̄ is non-empty, thus the claim holds
by ̃𝜌 ≥ 0̄.

Assume we have 𝜌{𝑆𝑟}𝑟
(𝑣) ≤ ̃𝜌(𝑣) for all 𝑣 ∈ 𝑉 before an iteration of the while-

loop. We show that 𝜌{𝑆𝑟}𝑟
(𝑣) ≤ ̃𝜌(𝑣) also holds during and aer the iteration of the

while-loop. As the update of 𝑆𝑟′ in line 22 does not change 𝜌{𝑆𝑟}𝑟
, we only have

to show that the invariant is maintained by the update of 𝑆𝑟 in lines 4–14. Further
𝜌{𝑆𝑟}𝑟

(𝑣) only changes for vertices newly added to 𝑆𝑟, thus we only have to take
these vertices into account.

Assume 𝑟 < ⊤, the argument for 𝑟 = ⊤ is analogous. Recall that ℓ is themaximal
index such that 𝑟 = ⟨𝑟⟩ℓ.3 ealgorithm adds vertices to 𝑆𝑟 in (1) line 6 and (2) line 8.
In case (1) we add the vertices ⋃1≤𝑘≤(ℓ+1)/2(𝘊𝘗 𝘳 𝘦𝒪 (𝑆dec2𝑘−1(𝑟)) ∩ 𝑃2𝑘−1) to 𝑆𝑟. Let
𝑣 ∈ 𝘊𝘗 𝘳 𝘦𝒪 (𝑆dec2𝑘−1(𝑟)) ∩ 𝑃2𝑘−1 for some 1 ≤ 𝑘 ≤ (ℓ + 1)/2.

• If 𝑣 ∈ 𝑉ℰ ∩ 𝑃2𝑘−1, then all successors 𝑤 of 𝑣 are in 𝑆dec2𝑘−1(𝑟) and thus, by the
induction hypothesis, have ̃𝜌(𝑤) ≥ dec2𝑘−1(𝑟). Now as 𝑣 ∈ 𝑃2𝑘−1, it has rank

̃𝜌(𝑣) at least inc2𝑘−1(dec2𝑘−1(𝑟)) = 𝑟.

• If 𝑣 ∈ 𝑉𝒪 ∩ 𝑃2𝑘−1, at least one successors 𝑤 of 𝑣 is in 𝑆dec2𝑘−1(𝑟) and thus, by
the induction hypothesis, has ̃𝜌(𝑤) ≥ dec2𝑘−1(𝑟). Now as 𝑣 ∈ 𝑃2𝑘−1, it has
rank ̃𝜌(𝑣) at least inc2𝑘−1(dec2𝑘−1(𝑟)) = 𝑟.

For case (2) consider a vertex 𝑣 ∈ 𝘊𝘗 𝘳 𝘦𝒪 (𝑆𝑟) ⧵ ⋃ℓ<𝑘≤𝑑 𝑃𝑘 added in line 8.

• If 𝑣 ∈ 𝑉ℰ , all successors 𝑤 of 𝑣 are in 𝑆𝑟 and thus, by the induction hypothesis,
have ̃𝜌(𝑤) ≥ 𝑟. Since the priority of 𝑣 is ≤ ℓ, we have ̃𝜌(𝑣) ≥ ⟨𝑟⟩ℓ = 𝑟.

3For the case 𝑟 = ⊤, let ℓ be the highest odd priority.
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• If 𝑣 ∈ 𝑉𝒪 , at least one successors 𝑤 of 𝑣 is in 𝑆𝑟 and thus, by the induction
hypothesis, has ̃𝜌(𝑤) ≥ 𝑟. Since the priority of 𝑣 is ≤ ℓ, we have ̃𝜌(𝑣) ≥
⟨𝑟⟩ℓ = 𝑟.

Lemma 5.4.5. Before and aer each iteration of the while-loop, we have for the
rank stored in 𝑟 and all vertices 𝑣 either Lift(𝜌{𝑆𝑟}𝑟

, 𝑣)(𝑣) ≥ 𝑟 or Lift(𝜌{𝑆𝑟}𝑟
, 𝑣)(𝑣) =

𝜌{𝑆𝑟}𝑟
(𝑣). At line 15 of the algorithm we additionally have 𝑣 ∈ 𝑆𝑟 for all vertices 𝑣 for

which the value of Lift(𝜌{𝑆𝑟}𝑟
, 𝑣)(𝑣) is equal to 𝑟. us Invariant 5.4.1((3)) holds.

Proof. We show the claim by induction over the iterations of the while-loop. Be-
fore we first enter the loop, we have 𝑟 = inc(0̄) and 𝑆0̄ = 𝑉 and thus the claim
is satisfied. For the inductive step, let 𝑟old be the value of 𝑟 and 𝜌old the ranking
function 𝜌{𝑆𝑟}𝑟

before a fixed iteration of the while-loop and assume we have for all
𝑣 ∈ 𝑉 either Lift(𝜌old, 𝑣)(𝑣) ≥ 𝑟old or Lift(𝜌old, 𝑣)(𝑣) = 𝜌old(𝑣) before the iteration
of the while-loop. Let 𝑟new be the value of 𝑟 and 𝜌new the ranking function 𝜌{𝑆𝑟}𝑟
aer the iteration. We have three cases for the value of 𝑟new: (1) 𝑟new = inc(𝑟old)
(line 16), (2) 𝑟new = 𝑟old = ⊤ (line 18), or (3) 𝑟new < 𝑟old, i.e., the rank is decreased in
lines 21–25 to maintain anti-monotonicity.

We show in Claim 5.4.6 that, in all three cases, if a set 𝑆𝑟′ , for some 𝑟′ < 𝑟old, is
not changed in the considered iteration of the while-loop then for all 𝑣 ∈ 𝑉 with
Lift(𝜌new, 𝑣)(𝑣) ≤ 𝑟′ we have that Lift(𝜌new, 𝑣)(𝑣) = 𝜌new(𝑣).

Given Claim 5.4.6, we prove the first part of the invariant as follows. In the
case (1) the lowest (and only) rank for which the set is updated is 𝑟old, thus it remains
to show Lift(𝜌new, 𝑣)(𝑣) = 𝜌new(𝑣) for vertices with Lift(𝜌new, 𝑣)(𝑣) = 𝑟old, which
is done by showing the second part of the invariant, namely that 𝑣 ∈ 𝑆𝑟old for all
vertices 𝑣 with Lift(𝜌{𝑆𝑟}𝑟

, 𝑣)(𝑣) = 𝑟old aer the update of the set 𝑆𝑟old in lines 4–14;
for case (1) we have 𝜌new = 𝜌{𝑆𝑟}𝑟

at this point in the algorithm.
In the cases (2) and (3) we have that the lowest rank for which the set is up-

dated in the iteration is equal to 𝑟new, thus Claim 5.4.6 implies that the invariant
Lift(𝜌new, 𝑣)(𝑣) ≥ 𝑟new or Lift(𝜌new, 𝑣)(𝑣) = 𝜌new(𝑣) holds for all 𝑣 ∈ 𝑉 aer the
while-loop.

Claim 5.4.6. Let 𝑟∗ ≤ 𝑟old be a rank with the guarantee that no set corresponding to
a lower rank than 𝑟∗ is changed in this iteration of the while-loop. en we have for
all 𝑣 ∈ 𝑉 either Lift(𝜌new, 𝑣)(𝑣) ≥ 𝑟∗ or Lift(𝜌new, 𝑣)(𝑣) = 𝜌new(𝑣) aer the iteration
of the while-loop.

To prove the claim, note that since each set 𝑆𝑟 is monotonically non-decreasing
over the algorithm, we have 𝜌new(𝑣) ≥ 𝜌old(𝑣) and Lift(𝜌new, 𝑣)(𝑣) ≥ 𝜌new(𝑣). As-
sume by contradiction that there is a vertex 𝑣 with Lift(𝜌new, 𝑣)(𝑣) > 𝜌new(𝑣) and
Lift(𝜌new, 𝑣)(𝑣) < 𝑟∗. e laer implies best(𝜌new, 𝑣) < 𝑟∗. By the induction hypoth-
esis for 𝑟∗ ≤ 𝑟old we have Lift(𝜌old, 𝑣)(𝑣) = 𝜌old(𝑣). By 𝜌new(𝑣) ≥ 𝜌old(𝑣) and the
definition of the li-operator this implies best(𝜌new, 𝑣) > best(𝜌old, 𝑣), i.e., the rank
assigned to at least one vertex 𝑤 with (𝑣, 𝑤) ∈ 𝐸 is increased. By best(𝜌new, 𝑣) < 𝑟∗
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this implies that a set 𝑆𝑟′ with 𝑟′ < 𝑟∗ is changed in this iteration, a contradiction
to the definition of 𝑟∗. is concludes the proof of the claim.

It remains to show that 𝑣 ∈ 𝑆𝑟old for all vertices 𝑣 with Lift(𝜌{𝑆𝑟}𝑟
, 𝑣)(𝑣) = 𝑟old

aer the update of the set 𝑆𝑟old in lines 4–14. Towards a contradiction assume that
there is a 𝑣 ∉ 𝑆𝑟old such that Lift(𝜌{𝑆𝑟}𝑟

, 𝑣)(𝑣) = 𝑟old. Assume 𝑣 ∈ 𝑉ℰ , the argument
for 𝑣 ∈ 𝑉𝒪 is analogous. Let ℓ be maximal such that 𝑟old = ⟨𝑟old⟩ℓ for 𝑟old < ⊤ and
let ℓ be the highest odd priority in the parity game for 𝑟old = ⊤. Notice that 𝛼(𝑣)
can be at most ℓ for Lift(𝜌{𝑆𝑟}𝑟

, 𝑣)(𝑣) = 𝑟old to hold. We now distinguish two cases
depending on whether 𝛼(𝑣) is odd or even.

• If 𝛼(𝑣) is odd, i.e., 𝛼(𝑣) = 2𝑘 − 1 for some 𝑘 ≤ (ℓ + 1)/2, then we have that
all successors 𝑤 of 𝑣 have 𝜌{𝑆𝑟}𝑟

(𝑤) ≥ dec2𝑘−1(𝑟old) and thus, by Lemma 5.4.3,
𝑤 ∈ 𝑆dec2𝑘−1(𝑟old). But then 𝑣 would have being included in 𝑆𝑟old in line 6, a
contradiction.

• If 𝛼(𝑣) is even, i.e., 𝛼(𝑣) = 2𝑘 for some 𝑘 ≤ ℓ/2, then we have that all succes-
sors 𝑤 of 𝑣 have 𝜌{𝑆𝑟}𝑟

(𝑤) ≥ 𝑟old. en by the definition of 𝜌{𝑆𝑟}𝑟
it must be

that 𝑤 ∈ 𝑆𝑟′ for some 𝑟′ ≥ 𝑟old and by Lemma 5.4.3 it must be that 𝑤 ∈ 𝑆𝑟old .
But then 𝑣 would have being included in 𝑆𝑟old in line 8, a contradiction.

us, aer the update of the set 𝑆𝑟old we have that 𝑣 ∈ 𝑆𝑟old for all vertices 𝑣 with
Lift(𝜌{𝑆𝑟}𝑟

, 𝑣)(𝑣) = 𝑟old. Together we the above observations this proves the lemma.

Combining Lemma 5.4.2 with Lemmata 5.4.3–5.4.5 that prove Invariant 5.4.1
concludes the correctness proof.

Lemma 5.4.7 (Correctness). Algorithm SymbolicParityDominion computes the
progress measure for a given parity game (with 𝑛 vertices) and a given set of pos-
sible ranks 𝑀∞

ℎ (for some integer ℎ ∈ [1, 𝑛 − 1]).

We address next the number of symbolic operations of Algorithm SymbolicPar-
ityDominion. e main idea is that a set 𝑆𝑟 is only reconsidered aer at least one
new vertex is added to 𝑆𝑟.

Lemma 5.4.8. For parity games with 𝑛 vertices and 𝑐 priorities Algorithm Symbol-
icParityDominion takes 𝑂(𝑛 ⋅ 𝑐 ⋅ |𝑀∞

ℎ |) many symbolic operations using 𝑂(|𝑀∞
ℎ |)

many sets, where ℎ is some integer in [1, 𝑛 − 1].

Proof. In the algorithm we use one set 𝑆𝑟 for each 𝑟 ∈ 𝑀∞
ℎ and thus |𝑀∞

ℎ | many
sets. We first consider the number of symbolic operations needed to compute the
sets 𝑆𝑟 in lines 4–14, and then consider the number of symbolic operations to com-
pute the new value of 𝑟 in lines 15–25.

1) Whenever we consider a set 𝑆𝑟 we first initialize the set with 𝑂(𝑐) many sym-
bolic operations (lines 6 & 11). Aer that we do a fixed-point computation
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that needs 𝑂(𝑘) symbolic operation, where 𝑘 is the number of added vertices.
Now fix a set 𝑆𝑟 and consider all the fixed-point computation for 𝑆𝑟 over the
whole algorithm. As only 𝑂(𝑛) many vertices can be added to 𝑆𝑟, all these
fixed-points can be computed in 𝑂(𝑛+#𝑟) symbolic operation, where #𝑟 is the
number of times the set 𝑆𝑟 is considered (the algorithm needs a constant num-
ber of symbolic operations to realize that a fixed-point was already reached).
Each set 𝑆𝑟 is considered at least once and only reconsidered when some new
vertices are added to the set, i.e., it is considered at most 𝑛 times. us for
each set 𝑆𝑟 we have 𝑂(𝑐 ⋅ 𝑛) many operations, which gives a total number of
operations of 𝑂(𝑛 ⋅ 𝑐 ⋅ |𝑀∞

ℎ |).

2) Now consider the computation of the new value of 𝑟 in lines 15–25. Lines 15–
19 take a constant number of operations. It remains to count the iterations
of the repeat-until loop in lines 20–25, which we bound by the number of
iterations of the while-loop as follows. Whenever a set 𝑆𝑟′ is considered as
the le side argument in line 24, then the new value for 𝑟 is less or equal to
inc(𝑟′) and thus there will be another iteration of the while-loop considering
inc(𝑟′). As there are only 𝑂(𝑛 ⋅ |𝑀∞

ℎ |) many iterations of the while-loop
over the whole algorithm, there are only 𝑂(𝑛 ⋅ |𝑀∞

ℎ |) many iterations of the
repeat-until loop in total. In each iteration a constant number of operations
is performed.

By (1) and (2) we have that Algorithm SymbolicParityDominion takes 𝑂(𝑛⋅𝑐 ⋅|𝑀∞
ℎ |)

many symbolic operations.

If we want to compute dominions of size ℎ+1, by Lemma 5.2.7, we only have to
consider ranks in 𝑀∞

ℎ . To obtain our final theorem, we apply the following bound4

on the size of 𝑀∞
ℎ :

|𝑀∞
ℎ | ≤ (

ℎ + ⌊𝑐/2⌋
ℎ ) + 1

Key Lemma 5.4.9. For a given parity game with 𝑛 vertices and 𝑐 priorities and an in-
teger ℎ ∈ [1, 𝑛 − 1], Algorithm SymbolicParityDominion computes a player-ℰ domin-
ion that contains all ℰ -dominions with at most ℎ + 1 vertices with 𝑂 (𝑐 ⋅ 𝑛 ⋅ (ℎ+⌊𝑐/2⌋

ℎ ))
symbolic one-step and set operations.

To solve parity games directly with Algorithm SymbolicParityDominion, we
use the co-domain 𝑀∞

𝒢 instead of 𝑀∞
ℎ . Recall from Section 5.2.6.2 that we have

|𝑀∞
𝒢 | ∈ 𝑂(( 𝑛

⌊𝑐/2⌋ )
⌊𝑐/2⌋

) [Jur00].

4 To bound |𝑀ℎ| we have to count the sequences of non-negative integers 𝑥1, 𝑥2, … , 𝑥⌊𝑐/2⌋ such
that ∑⌊𝑐/2⌋

𝑖=1 𝑥𝑖 ≤ ℎ. Such a sequence is equivalent to a weak composition of an integer ℎ into exactly
⌊𝑐/2⌋ + 1 parts which gives the (ℎ+⌊𝑐/2⌋

ℎ ) bound.
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eorem 5.4.10. Let 𝜉(𝑛, 𝑐) = ( 𝑛
⌊𝑐/2⌋ )

⌊𝑐/2⌋. Algorithm SymbolicParityDominion cor-
rectly computes the winning sets of parity games and requires 𝑂(𝑐⋅𝑛⋅𝜉(𝑛, 𝑐)) symbolic
one-step and set operations and space for 𝑂(𝜉(𝑛, 𝑐)) many sets.

5.4.3 A Linear Space Algorithm

Algorithm SymbolicParityDominion requires |𝑀∞
𝒢 | many sets 𝑆𝑟, which is drasti-

cally beyond the space requirement of the progress measure algorithm for explicitly
represented graphs. e aim of this section is to reduce the space requirement to
𝑂(𝑛) many sets, in a way that still allows to restore the sets 𝑆𝑟 efficiently. For the
sake of readability, we assume for this section that 𝑐 is even.

Main idea. e main idea to reduce the space requirement for the symbolic
progress measure algorithm is as follows.

• Instead of storing sets 𝑆𝑟 corresponding to a specific rank, we encode the
value of each coordinate of the rank 𝑟 separately, i.e., we use sets 𝐶 𝑖

𝑥 contain-
ing all vertices with a rank where the 𝑖-th coordinate has value 𝑥.

• Whenever the algorithms needs to process a set 𝑆𝑟, we reconstruct it from
the stored sets, using a linear number of set operations.

To this end, we define the sets 𝐶 𝑖
0, 𝐶 𝑖

1 … , 𝐶 𝑖
𝑛𝑖

for each odd priority 𝑖. Intuitively, a
vertex is in the set 𝐶 𝑖

𝑥 iff element 𝑖 of the rank of 𝑣 is 𝑥. Given these 𝑂(𝑐 + 𝑛) ∈ 𝑂(𝑛)
sets, we have encoded the exact rank vector 𝑟 of each vertex with 𝑟 < ⊤. To also
cover vertices with rank ⊤, we additionally store the set 𝑆⊤.

To use the sets 𝐶 𝑖
𝑥, Algorithm SymbolicParityDominion has to be adapted as

follows. First, at the beginning of each iteration we have to compute the set 𝑆𝑟 and
up to 𝑐/2 sets 𝑆𝑟′ that correspond to some predecessor 𝑟′ of 𝑟, i.e., the sets used
in line 6. Second, at the end of each iteration we have to update the sets 𝐶 𝑖

𝑥 to
incorporate the updated set 𝑆𝑟.

Computing a set 𝑆𝑟 from the sets 𝐶 𝑖
𝑥. Let 𝑟𝑖 denote the 𝑖-th entry of 𝑟. To obtain

the set 𝑆=
𝑟 of vertices with rank exactly 𝑟 (for 𝑟 < ⊤), one can simply compute the in-

tersection ⋂1≤𝑘≤𝑐/2 𝐶2𝑘−1
𝑟2𝑘−1

of the corresponding sets 𝐶 𝑖
𝑥. However, in the algorithm

we need the sets 𝑆𝑟 containing all vertices 𝑣 with a rank at least 𝑟 and computing
all sets 𝑆=

𝑟′ with 𝑟′ ≥ 𝑟 is not efficient. Towards a more efficient method to compute
𝑆𝑟, recall that a rank 𝑟′ < ⊤ is higher than 𝑟 if either (a) the right most odd element
of 𝑟′ is larger than the corresponding element in in 𝑟, i.e., 𝑟′

𝑐−1 > 𝑟𝑐−1, or (b) if 𝑟 and
𝑟′ coincide on the 𝑖 right most odd elements, i.e., 𝑟′

𝑐−2𝑘+1 = 𝑟𝑐−2𝑘+1 for 1 ≤ 𝑘 ≤ 𝑖,
and 𝑟′

𝑐−2𝑖−1 > 𝑟𝑐−2𝑖−1. In case (a) we can compute the corresponding vertices by
𝑆0

𝑟 = ⋃𝑟𝑐−1<𝑥≤𝑛𝑐−1
𝐶𝑐−1

𝑥 while in case (b) we can compute the corresponding ver-
tices by 𝑆 𝑖

𝑟 = ⋂1≤𝑘≤𝑖 𝐶𝑐−2𝑘+1
𝑟𝑐−2𝑘+1

∩ ⋃𝑟𝑐−2𝑖−1<𝑥≤𝑛𝑐−2𝑖−1
𝐶𝑐−2𝑖−1

𝑥 for 1 ≤ 𝑖 ≤ 𝑐/2 − 1. at
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is, we can reconstruct the set 𝑆𝑟 by the following union of the above sets 𝑆 𝑖
𝑟, the set

𝑆=
𝑟 of vertices with rank 𝑟, and the set 𝑆⊤ of vertices with rank ⊤:

𝑆𝑟 = 𝑆⊤ ∪ 𝑆=
𝑟 ∪

𝑐/2−1

⋃
𝑖=0

𝑆 𝑖
𝑟

at is, a set 𝑆𝑟 can be computed with 𝑂(𝑐 +𝑛) ∈ 𝑂(𝑛) many ∪ and 𝑂(𝑐) many ∩ op-
erations; for the laer boundwe use an additional set to store the set ⋂1≤𝑘≤𝑖 𝐶𝑐−2𝑘+1

𝑟𝑐−2𝑘+1
for the current value of 𝑖, such that for each set 𝑆 𝑖

𝑟 we just need two ∩ operations.
is implies the following lemma.

Lemma 5.4.11. Given the sets 𝐶 𝑖
𝑥 as defined above, we can compute the set 𝑆𝑟 that

contains all vertices with rank at least 𝑟 with 𝑂(𝑛) many symbolic set operations. No
symbolic one-step operation is needed.

Updating a set 𝑆𝑟. Now consider we have updated a set 𝑆𝑟 during the iteration of
the outer loop, and nowwewant to store the updated set 𝑆𝑟 within the sets 𝐶 𝑖

𝑥. at
is, we have already computed the fixed-point for 𝑆𝑟 and are now in line 15 of the
Algorithm. To this end, let 𝑆old

𝑟 be the set as stored in 𝐶 𝑖
𝑥 and 𝑆new

𝑟 the updated set,
which is a superset of the old one. First, one computes the difference 𝑆diff

𝑟 between
the two sets 𝑆diff

𝑟 = 𝑆new
𝑟 ⧵ 𝑆old

𝑟 ; intuitively, the set 𝑆diff
𝑟 contains the vertices for

which the algorithm has increased the rank. Now for the vertices of 𝑆diff
𝑟 we have

to (i) delete their old values by updating 𝐶 𝑖
𝑥 to 𝐶 𝑖

𝑥 ⧵ 𝑆diff
𝑟 for each 𝑖 ∈ {1, 3, … , 𝑐 − 1}

and each 𝑥 ∈ {0, … , 𝑛𝑖} and (ii) store the new values by updating 𝐶 𝑖
𝑥 to 𝐶 𝑖

𝑥 ∪ 𝑆diff
𝑟

for 𝑖 ∈ {1, 3, … , 𝑐 − 1} and 𝑥 = 𝑟𝑖. In total we have 𝑂(𝑐) many ∪ and 𝑂(𝑛) many ⧵
operations.

Notice that the update operation for a set 𝑆𝑟, as described above, also updates
all sets 𝑆𝑟′ for 𝑟′ < 𝑟. us, when using the more succinct representation via the
sets 𝐶 𝑖

𝑥 and executing SymbolicParityDominion literally, the computation of the
maximal rank 𝑟′ s.t. 𝑆𝑟′ ⊇ 𝑆𝑟 would fail because of the earlier update of 𝑆𝑟 in
line 24. Hence, we have to postpone the update of 𝑆𝑟 till the end of the iteration
(right before line 25) and adjust the computation of 𝑟′ ( lines 20–25) as follows. We
remove line 22, i.e., we do not update the set 𝑆′

𝑟 , and first compute the final value
for 𝑟′ by decrementing 𝑟′ until 𝑆𝑟′ ⊇ 𝑆𝑟 and then, before executing line 25, update
𝑆𝑟 to 𝑆new

𝑟 and thus implicitly also update the sets 𝑆 ̃𝑟 to 𝑆 ̃𝑟 ∪ 𝑆𝑟 for 𝑟′ < ̃𝑟 < 𝑟. is
gives the following lemma.

Lemma 5.4.12. In each iteration of SymbolicParityDominion only 𝑂(𝑛) symbolic set
operations are needed to update the sets 𝐶 𝑖

𝑥, and no symbolic one-step operation is
needed.

Putting things together. To sum up, when introducing the succinct representa-
tion of the sets 𝑆𝑟, we only need additional ∪, ∩, and ⧵ operations, while the number
of 𝘊𝘗 𝘳 𝘦𝑧 operations is unchanged.
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In the following we argue that whenever the algorithm computes or updates a
set 𝑆𝑟 then we can charge a 𝘊𝘗 𝘳 𝘦𝑧 operation for it, and each 𝘊𝘗 𝘳 𝘦𝑧 operation is
only charged for a constant number of set computations and updates. (a) Whenever
the algorithm computes a set 𝑆𝑟 in line 6 or 11, at least one 𝘊𝘗 𝘳 𝘦𝑧 computation with
this set is done. (b) Now consider the computation of the new value of 𝑟. e subset
tests in lines 16 and 18 are between a set that was already computed in line 6 or 11
and the set computed in line 8 or 13 and thus, if we store these sets, we do not require
additional operations. Whenever a set 𝑆𝑟′ is considered as the le side argument
in line 24, then the new value of 𝑟 is less or equal to inc(𝑟′) and thus there will be
another iteration of the while-loop considering inc(𝑟′). Hence, we can charge the
additional operations needed for the comparison to the 𝘊𝘗 𝘳 𝘦𝑧 operations of the
next iteration that processes the rank inc(𝑟′). (c) Finally, we only need to update
the sets 𝐶 𝑖

𝑥 once per iteration and in each iteration we perform at least one 𝘊𝘗 𝘳 𝘦𝑧
computation that we can charge for the update.

Now, as both computing a set 𝑆𝑟 and updating the sets 𝐶 𝑖
𝑥 can be done with

𝑂(𝑛) set operations, the number of the additional set operations in SymbolicParity-
Dominion is in 𝑂(𝑛 ⋅ #𝘊𝘗 𝘳 𝘦), for #𝘊𝘗 𝘳 𝘦 being the number of 𝘊𝘗 𝘳 𝘦𝑧 operations in
the algorithm. Combining Lemma 5.4.9 with the results of this section proves our
key lemma.

Key Lemma 5.4.13. For a given parity game with 𝑛 vertices and 𝑐 priorities and
an integer ℎ ∈ [1, 𝑛 − 1], we can compute a player-ℰ dominion that contains all
ℰ -dominions with at most ℎ + 1 vertices with 𝑂 (𝑐 ⋅ 𝑛 ⋅ (ℎ+⌊𝑐/2⌋

ℎ )) symbolic one-step

operations, 𝑂 (𝑐 ⋅ 𝑛2 ⋅ (ℎ+⌊𝑐/2⌋
ℎ )) symbolic set operations, and space for 𝑂(𝑛) many sets.

eorem 5.4.14. Let 𝜉(𝑛, 𝑐) = ( 𝑛
⌊𝑐/2⌋ )

⌊𝑐/2⌋. Algorithm SymbolicParityDominion cor-
rectly computes the winning sets of parity games and requires 𝑂(𝑐⋅𝑛⋅𝜉(𝑛, 𝑐)) symbolic
one-step operations, 𝑂(𝑐⋅𝑛2 ⋅𝜉(𝑛, 𝑐)) symbolic set operations, and space for 𝑂(𝑛) many
sets.

Remark 5.4.15 (Strategy construction). Given the set representation of the progress
measure returned by Algorithm SymbolicParityDominion, the winning strategy for
player ℰ can be computed with 𝑂(𝑛) symbolic one-step operations and 𝑂(𝑐 ⋅ 𝑛2) sym-
bolic set operations. To this end, notice that the values of the progress measure imme-
diately give a winning strategy of player ℰ . at is, for a vertex 𝑣 in the winning set
of ℰ a winning strategy of ℰ picks an arbitrary successor 𝑤 of 𝑣, with 𝜌(𝑤) ≤𝛼(𝑣) 𝜌(𝑣)
if 𝑣 has an even priority or with 𝜌(𝑤) <𝛼(𝑣) 𝜌(𝑣) if 𝑣 has an odd priority.

In the symbolic seing we can compute the strategy as follows. We maintain a set
𝑆 of the vertices in 𝑉ℰ ⧵ 𝑉⊤ that already have a strategy, and first initialize 𝑆 as the
empty set. We then iterate over all vertices 𝑣 ∈ 𝑉 ⧵ 𝑉⊤, i.e., over all vertices that are
winning for player ℰ , and do the following.
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• First, compute the exact rank 𝜌(𝑣) of the vertex 𝑣 by checking with 𝑂(𝑛) set
operations for which of the sets 𝐶 𝑖

𝑥 the intersection with {𝑣} is not empty.5

• Second, for each 0 ≤ ℓ < 𝑐 compute the set 𝑆incℓ(𝜌(𝑣)) with 𝑂(𝑛) many symbolic
set operations per set.

• en compute 𝘊𝘗 𝘳 𝘦ℰ ({𝑣}) and consider the sets 𝘊𝘗 𝘳 𝘦ℰ ({𝑣}) ∩ 𝑆incℓ(𝜌(𝑣)) ∩
𝑉ℰ ∩ 𝑃ℓ, for 0 ≤ ℓ < 𝑐. From each vertex contained in one of the sets a winning
strategy for player ℰ can move to 𝑣 and thus, for each of these vertices not
already in sets 𝑆 , we fix 𝑣 as the strategy of player ℰ and add it to 𝑆 .

In each iteration of the above algorithm we use only one 𝘊𝘗 𝘳 𝘦𝑧 operation and 𝑂(𝑐 ⋅ 𝑛)
symbolic set operations and as we have 𝑂(𝑛) iterations, the claim follows.

5.5 Symbolic Big-Step Algorithm

In the previous section we presented a set-based symbolic algorithm to compute
the progress measure that is also capable of determining dominions of bounded
size. Since the classical algorithm can be implemented with set-based symbolic
operations, we now show how to combine our algorithm and the classical set-based
algorithm to obtain a set-based symbolic Big-Step algorithm for parity games (see
Section 5.2.6.3 for the explicit Big-Step algorithm).

Iterative winning set computation. e basic structure of Algorithm Sym-
bolicBigStep is the same as in the classical algorithm for parity games (see Sec-
tion 5.2.6.1). Let 𝑧 be ℰ if 𝑐 is odd and 𝒪 if 𝑐 is even and assume we have 𝑐 > 2 (the
cases 𝑐 ≤ 2, i.e., Büchi games, are simpler). Let 𝒢 be the game graph as maintained
by the algorithm. In each iteration of the repeat-until loop the algorithm searches
for a 𝑧-dominion. When a 𝑧-dominion is found, its 𝑧-aractor is added to the win-
ning set of 𝑧 and removed from the game graph 𝒢 . If no 𝑧-dominion is found, then
the set of vertices in the remaining game graph 𝒢 is returned as the winning set of
player 𝑧.

Dominion search. e search for 𝑧-dominions is conducted in two different
ways: by Procedure D and by a recursive call to a derived parity game
with game graph 𝒢 ′ and the priority function 𝛼 restricted to the vertices of 𝒢 ′.
e derived parity game is denoted by (𝒢 ′, 𝛼) and will have 𝑐 − 1 priorities. e
parameter ℎ is used to balance the number of symbolic operations of the two
procedures.

First, all 𝑧-dominions of size at most ℎ + 1 are found with Procedure D
that uses Algorithm SymbolicParityDominion. Note that this algorithm determines
ℰ -dominions. We can compute 𝒪-dominions (including a winning strategy within

5Alternativelywe could use binary search on the sets 𝑆𝑟 at the cost of increasing the set operations
for this step by a factor of 𝑂(𝑐 ⋅ log 𝑛).
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Algorithm SymbolicBigStep: Symbolic Big-Step algorithm for parity games
Input :parity game 𝑃 = (𝒢 , 𝛼), with

game graph 𝒢 = ((𝑉 , 𝐸), (𝑉ℰ , 𝑉𝒪 )) and
priority function 𝛼 ∶ 𝑉 → [𝑐], and
parameter ℎ ∈ [1, 𝑛] ∩ ℕ

Output : winning sets (𝑊ℰ , 𝑊𝒪 ) of player ℰ and player 𝒪
1 if 𝑐 = 1 then return (𝑉 , ∅)
2 let 𝑧 be player ℰ if 𝑐 is odd and player 𝒪 otherwise
3 𝑊𝑧 ← ∅
4 repeat
5 if 𝑐 > 2 then
6 𝑊 ′

𝑧 ← D(𝒢 , 𝛼, ℎ, 𝑧)
7 𝐴 ← Ar𝑧(𝒢 , 𝑊 ′

𝑧 )
8 𝑊𝑧 ← 𝑊𝑧 ∪ 𝐴
9 𝒢 ← 𝒢 ⧵ 𝐴

10 𝒢 ′ ← 𝒢 ⧵ Ar𝑧(𝒢 , 𝑃𝑐−1)
11 (𝑊 ′

ℰ , 𝑊 ′
𝒪 ) ←SymbolicBigStep(𝒢 ′, 𝛼)

12 𝐴 ← Ar𝑧(𝒢 , 𝑊 ′
𝑧 ); 𝑊𝑧 ← 𝑊𝑧 ∪ 𝐴

13 𝒢 ← 𝒢 ⧵ 𝐴
14 until 𝑊 ′

𝑧 = ∅
15 𝑊𝑧 ← 𝑉 ⧵ 𝑊𝑧
16 return (𝑊ℰ , 𝑊𝒪 )

17 Procedure D(𝒢 , 𝛼, ℎ, 𝑧)
18 if 𝑧 = ℰ then
19 return SymbolicParityDominion for 𝒢 , 𝛼, and ℎ
20 else
21 construct the parity game (𝒢 ′, 𝛼′) from (𝒢 , 𝛼) by increasing each priority

by one and changing the roles of the two players
22 return SymbolicParityDominion for 𝒢 ′, 𝛼′, and ℎ

the dominion) by adding one to each priority and changing the roles of the two
players. If 𝑐 was even before this modification, this does not increase the bound on
the number of symbolic operations for the dominion search because the number of
odd priorities, and therefore the possible number of non-empty indices of a rank
vector, does not increase (compare the definition of the co-domain for rank vectors
𝑀ℎ in Section 5.2.6.3). Whenever we call Procedure D for 𝑧 = 𝒪 , we do
so for a parity game where the highest priority is even; thus we can use the same
upper bound on the number of symbolic operations as for ℰ -dominions6.

For the recursive call for the parity game 𝒫 ′ = (𝒢 ′, 𝛼) we obtain the game

6As for the recursive call, we could also call Procedure D for a modified parity game
where the highest priority vertices are removed. is would yield the same worst-case number of
symbolic operations.
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graph 𝒢 ′ from 𝒢 by removing the 𝑧-aractor of the vertices with the highest pri-
ority. Note that the vertices of 𝒢 ′ are 𝑧-closed in 𝒢 . e winning set of player 𝑧 in
𝒫 ′ is a 𝑧-dominion in the original parity game.

Number of iterations. e following lemma shows that the number of iterations
of the repeat-until loop is bounded by 𝑂(𝑛/ℎ). is holds because in each but the
last iteration the union of the dominion identified by D and the dominion
identified by the recursive call is larger than ℎ + 1; otherwise, the union of the two
dominions, which is itself a dominion, would already have been identified solely by
Procedure D and the algorithm would have terminated.

Lemma 5.5.1 ([Sch07]). Let ℎ be the parameter of Algorithm SymbolicBigStep. In
each but the last iteration of the repeat-until loop at least ℎ + 2 vertices are removed,
and thus there are at most ⌊𝑛/(ℎ + 2)⌋ + 1 iterations.

Proof. Consider a fixed iteration of the repeat-until loop. Let 𝑊 ″
𝑧 be the union of

the 𝑧-dominion identified by Procedure D and the 𝑧-dominion identified
by the recursive call. If |𝑊 ″

𝑧 | ≤ ℎ + 1, then by Lemma 5.4.9 the 𝑧-dominion 𝑊 ″
𝑧

is identified by Procedure D and therefore the recursive call returned the
empty set and the algorithm terminates. Otherwise we have |𝑊 ″

𝑧 | > ℎ + 1, which
can happen in at most ⌊𝑛/(ℎ+2)⌋ iterations of the repeat-until loop since the vertices
of 𝑊 ″

𝑧 are removed from the maintained game graph before the next iteration.

Analysis of number of symbolic operations. We first analyze the number of
symbolic operations of Algorithm SymbolicBigStep for instances with an arbitrary
numbers of priorities 𝑐 and then give beer bounds for the case 𝑐 ≤ √𝑛. For the
former we follow the analysis of [JPZ08] for a similar explicit algorithm. ere we
choose the parameter ℎ to depend (only) on the number of vertices of the game
graph for which Procedure D is called. In the analysis for 𝑐 ≤ √𝑛 the
parameter ℎ depends on the number of vertices in the input game graph and the
number of priorities in the game graph for which the procedure is called.

Lemma 5.5.2. Let ℎ = ⌈√2𝑛′⌉ − 2 where 𝑛′ is the number of vertices in 𝒢 when
Procedure D is called in Algorithm SymbolicBigStep. With this choice for ℎ
and parity games with 𝑛 vertices, Algorithm SymbolicBigStep requires 𝑛𝑂(√𝑛) symbolic
one-step and set operations and space for 𝑂(𝑛) many sets.

Proof. Let 𝑇 (𝑛) denote the number of the symbolic one-step operations of Algo-
rithm SymbolicBigStep when called for a game graph with 𝑛 vertices. We instan-
tiate ℎ as ℎ = ⌈√2𝑛⌉ − 2. First, for a game graph of size 𝑛, by Lemma 5.4.13, we
can compute a dominion in 𝑂 (𝑐 ⋅ 𝑛 ⋅ (ℎ+⌊𝑐/2⌋

ℎ )). is can be bounded with 𝑂(𝑛ℎ+2)
as follows (using 𝑐 ≤ 𝑛). First we apply Stirling’s approximation (ℎ/𝑒)ℎ ≤ ℎ! and
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we distinguish whether ℎ ≥ ⌊𝑐/2⌋ or ℎ ≤ ⌊𝑐/2⌋. We have

(
ℎ + ⌊𝑐/2⌋

ℎ ) ≤ (ℎ + ⌊𝑐/2⌋)ℎ

ℎ! ≤ (
(ℎ + ⌊𝑐/2⌋)𝑒

ℎ )
ℎ

,

and (a) if ℎ ≥ ⌊𝑐/2⌋, then

(
(ℎ + ⌊𝑐/2⌋)𝑒

ℎ )
ℎ

≤ (
2ℎ ⋅ 𝑒

ℎ )
ℎ

≤ (2𝑒)ℎ ,

(b) if ℎ ≤ ⌊𝑐/2⌋, then

(
(ℎ + ⌊𝑐/2⌋)𝑒

ℎ )
ℎ

≤ (
2⌊𝑐/2⌋ ⋅ 𝑒

ℎ )
ℎ

.

In both cases we obtain 𝑂(𝑛ℎ+2).
Let 𝛤 = ℎ+2 = ⌈√2𝑛⌉. To solve an instance of size 𝑛, the algorithm (1) calls the

subroutine for computing a dominion, which is in 𝑂(𝑛𝛤 ); (2) then makes a recursive
call to Algorithm SymbolicBigStep, with an instance of size at most size 𝑛 − 1 (it
removes the largest parity and thus at least one vertex); and (3) finally processes
the instance in which all winning vertices from the previous two steps have been
removed, i.e., an instance of size at most 𝑛 − 𝛤 (Lemma 5.5.1). us, we obtain the
following recurrence relation for 𝑇 (𝑛)

𝑇 (𝑛) ≤ 𝑂(𝑛𝛤 ) + 𝑇 (𝑛 − 1) + 𝑇 (𝑛 − 𝛤 )

for 𝛤 = ⌈√2𝑛⌉. is coincides with the recurrence relation for the explicit algo-
rithm and thus we get 𝑇 (𝑛) = 𝑛𝑂(√𝑛) [JPZ08, eorem 8.1]. Finally, as in Algo-
rithm SymbolicBigStep the number of symbolic set operations is at most a factor of
𝑛 higher than the number of symbolic one-step operations, we obtain the claim by
𝑛 ⋅ 𝑇 (𝑛) = 𝑛𝑂(√𝑛).

Now let us consider the space requirements of Algorithm SymbolicBigStep.
Computing a dominion, by Lemma 5.4.13, can be done with 𝑂(𝑛) many sets. e
recursion depth is bounded by 𝑐 and thus also by 𝑛, and for each instance on the
stack we just need a constant number of sets to store the current subgraph and
the winning sets of the two players. Finally, also aractor computations can be
done with a constant number of sets. at is, Algorithm SymbolicBigStep uses 𝑂(𝑛)
many sets, independent of the value of ℎ.

To provide an improved bound for 𝑐 ≤ √𝑛 we follow the analysis of [Sch07];
see [Sch17] (in press) for an improved analysis. We use the following definitions
from [Sch07]: let 𝛾(𝑐) = 𝑐/3 + 1/2 − 4/(𝑐2 − 1) for odd 𝑐 and 𝛾(𝑐) = 𝑐/3 + 1/2 −
1/(3𝑐) − 4/𝑐2 for even 𝑐, and let 𝛽(𝑐) = 𝛾(𝑐)/(⌊𝑐/2⌋ + 1). With these definitions we
have 𝛽(𝑐) ∈ [1/2, 7/10] for all 𝑐 ≥ 3, 𝛾(𝑐) ∈ [𝑐/3, 𝑐/3 + 1/2] and

𝛾(𝑐) = 𝛾(𝑐 − 1) + 1 − 𝛽(𝑐 − 1) , (5.1)
𝛽(𝑐 − 1) ⋅ ⌈𝑐/2⌉ = 𝛾(𝑐 − 1) . (5.2)
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We first present a shorter proof for the simplified bound of 𝑂(𝑛1+𝛾(𝑐)) symbolic one-
step operations and then a more extensive analysis to show that, for some con-
stant 𝜅, 𝑂(𝑛 ⋅ (𝜅 ⋅ 𝑛/𝑐)𝛾(𝑐)) symbolic one-step operations are sufficient. We bound
the number of symbolic set operations with an additional factor of 𝑂(𝑛). In both
cases the parameter ℎ depends on number of vertices in the input game graph and
the number of priorities 𝑐 in the parity game that is maintained by the algorithm.

Lemma 5.5.3 (Simplified analysis of number of symbolic operations). For parity
games with 𝑛 vertices and 𝑐 priorities Algorithm SymbolicBigStep takes𝑂(𝑛1+𝛾(𝑐)) sym-
bolic one-step operations and 𝑂(𝑛2+𝛾(𝑐)) symbolic set operations for 2 < 𝑐 ≤ √𝑛 and
𝑂(𝑛2) symbolic one-step and set operations for 𝑐 = 2. Moreover, it needs to store 𝑂(𝑛)
many sets.

Proof. By the proof of Lemma 5.5.2 the algorithm only stores 𝑂(𝑛) many sets inde-
pendent of the value of ℎ, and thus it only remains to show the upper bound on
the number of symbolic operations. We focus on the bound for the number of sym-
bolic one-step operations, the number of symbolic set operations is higher only for
the subroutine SymbolicParityDominion, where the difference is at most a factor
of 𝑂(𝑛), by Lemma 5.4.9. For 𝑐 = 2 note that in each iteration of the repeat-until
loop at least one vertex is removed from the game, thus there can be at most 𝑂(𝑛)
iterations. In each iteration there are aractor computations, a recursive call for
parity games with one priority, and set operations, which all can be done with 𝑂(𝑛)
symbolic operations7, thus at most 𝑂(𝑛2) symbolic operations are needed for 𝑐 = 2.

By Lemma 5.5.1 the repeat-until loop can have at most ⌊
𝑛

(ℎ+2) ⌋+1 iterations. We
show the claimed number of symbolic one-step operations for 𝑐 ≥ 3 by induction
over 𝑐. For the base case of 𝑐 = 3 let ℎ = 𝑛. In this case there is only one iteration of
the repeat-until loop. e call to the progress measure procedure and the recursive
call for parity games with one priority less, i.e., Büchi games, both take 𝑂(𝑛2) sym-
bolic one-step operations. us the total number of symbolic one-step operations
for 𝑐 = 3 is bounded by 𝑂(𝑛1+𝛾(3)) = 𝑂(𝑛2). For 𝑐 = 3 the number of sets 𝑆𝑟 is only
𝑂(𝑛), therefore we do not have to use the sets 𝐶 𝑖

𝑥 to achieve linear space and thus
the number of symbolic set operations is also 𝑂(𝑛2).

For the induction step we differentiate between the number of vertices 𝑛0 in
the first (i.e., non-recursive) call to Algorithm SymbolicBigStep and the number
of vertices 𝑛′ in the parity game that is maintained by the algorithm. We set the
parameter ℎ according to 𝑛0 (and to at most 𝑛′) to maintain the property 𝑐 ≤ √𝑛0
in all recursive calls.

Let ℎ = min (⌈𝑛𝛽(𝑐−1)
0 ⌉, 𝑛′) for 𝑐 > 3. By Lemma 5.5.1 the number of iterations

in Algorithm SymbolicBigStep is bounded by 𝑂(𝑛1−𝛽(𝑐−1)
0 ). By Lemma 5.4.9 each

7Note that while the aractor computations in line 12 only need 𝑂(𝑛) symbolic operations over
the whole algorithm, the aractor computations in line 10 might require 𝑂(𝑛) symbolic operations in
each iteration.
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call to SymbolicParityDominion needs only

𝑂
(

𝑐 ⋅ 𝑛0 ⋅ (
⌈𝑛𝛽(𝑐−1)

0 ⌉ + ⌊𝑐/2⌋
⌈𝑛𝛽(𝑐−1)

0 ⌉ ))

many symbolic one-step operations. e binomial coefficient can be bounded using
𝛽(𝑐 − 1) ≥ 1/2, Stirling’s approximation of (𝑐/𝑒)𝑐 ≤ 𝑐!, and 3 < 𝑐 ≤ √𝑛0.

(
⌈𝑛𝛽(𝑐−1)

0 ⌉ + ⌊𝑐/2⌋
⌈𝑛𝛽(𝑐−1)

0 ⌉ ) ≤
(⌈𝑛𝛽(𝑐−1)

0 ⌉ + ⌊𝑐/2⌋)⌊𝑐/2⌋

⌊𝑐/2⌋! ,

≤
(

2𝑒 ⋅ (⌈𝑛𝛽(𝑐−1)
0 ⌉ + ⌊𝑐/2⌋)

𝑐 − 1 )

⌊𝑐/2⌋

,

≤
(

2𝑒 ⋅ 𝑛𝛽(𝑐−1)
0 + 𝑒 ⋅ 𝑐
𝑐 − 1 )

⌊𝑐/2⌋

,

≤
(

4𝑒 ⋅ 𝑛𝛽(𝑐−1)
0
𝑐 )

⌊𝑐/2⌋

,

thus, the number of symbolic one-step operations in a call to SymbolicParityDo-
minion is bounded by 𝑂(𝑛0 ⋅ 𝑛𝛽(𝑐−1)⌊𝑐/2⌋

0 ). Hence, we can bound the total num-
ber of symbolic one-step operations for all calls to SymbolicParityDominion with
𝑂(𝑛0 ⋅𝑛𝛽(𝑐−1)⌊𝑐/2⌋

0 ⋅𝑛1−𝛽(𝑐−1)
0 ). Using Eq. (5.2), we have 𝛽(𝑐−1)⌊𝑐/2⌋ ≤ 𝛽(𝑐−1)⌈𝑐/2⌉ =

𝛾(𝑐 −1) and can bound the total number of symbolic one-step operations of the calls
to the progress measure procedure with 𝑂(𝑛0 ⋅𝑛𝛾(𝑐−1)+1−𝛽(𝑐−1)

0 ), which by Eq. (5.1) is
equal to 𝑂(𝑛1+𝛾(𝑐)

0 ). By the induction assumption we further have that the total num-
ber of symbolic one-step operations for all recursive calls is 𝑂(𝑛1−𝛽(𝑐−1)+1+𝛾(𝑐−1)

0 ) =
𝑂(𝑛1+𝛾(𝑐)

0 ), which concludes the proof.

Lemma 5.5.4 (Number of symbolic operations). For parity games with 𝑛 vertices and
2 < 𝑐 ≤ √𝑛 priorities Algorithm SymbolicBigStep takes, for some constant 𝜅, 𝑂(𝑛 ⋅
( 𝜅⋅𝑛

𝑐 )𝛾(𝑐)) symbolic one-step operations and 𝑂(𝑛2 ⋅ ( 𝜅⋅𝑛
𝑐 )𝛾(𝑐)) symbolic set operations.

Moreover, it needs to store 𝑂(𝑛) many sets.

Proof. By the proof of Lemma 5.5.2 the algorithm only stores 𝑂(𝑛) many sets inde-
pendent of the value of ℎ, and thus it only remains to show the upper bound on
the number of symbolic operations. We show the bound for the number of sym-
bolic one-step operations, the number of symbolic set operations is higher only for
the subroutine SymbolicParityDominion, where the difference is at most a factor of
𝑂(𝑛) by Lemma 5.4.9.

We differentiate between the number of vertices 𝑛0 in the first (i.e. non-
recursive) call to Algorithm SymbolicBigStep and the number of vertices 𝑛′ in
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the parity game that is maintained by the algorithm. We will set the parameter ℎ
according to 𝑛0 (and to at most 𝑛′) to maintain the property 𝑐 ≤ √𝑛0 in all recursive
calls.

Similar to [Sch08], we use ℎ = min (⌈2 3√𝑐 ⋅ 𝑛𝛽(𝑐−1)
0 ⌉, 𝑛′

) to balance the number
of symbolic operations to compute dominions with the number of symbolic oper-
ations in the recursive calls. We will frequently apply Stirling’s approximation by
which we have

(S1) ( 𝑐
𝑒 )

𝑐 ≤ 𝑐!, and

(S2) 𝑐!∈ 𝑂(( 𝑐
𝜅̂ )

𝑐
) for all 𝜅̂ < 𝑒.

We first show that proving the following claim is sufficient.

Claim 5.5.5. e number of symbolic one-step operations is bounded by 𝜅1 ⋅ 𝑛0 ⋅
(𝜅2⋅𝑛0)𝛾(𝑐)

3√𝑐!
for some constants 𝜅1 and 𝜅2.

e claim implies the lemma since we have for 𝑐 ≥ 3

𝜅1 ⋅ 𝑛0 ⋅ (𝜅2 ⋅ 𝑛0)𝛾(𝑐)

3√𝑐!
≤ 𝜅1 ⋅ 𝑛0 ⋅ (𝜅2 ⋅ 𝑛0)𝛾(𝑐) ⋅ (

𝑒
𝑐 )

𝑐
3 ,

≤ 𝜅1 ⋅ 𝑛0 ⋅ (𝜅2 ⋅ 𝑛0)𝛾(𝑐) ⋅ (
𝑒
𝑐 )

𝛾(𝑐)− 1
2 ,

≤ 𝜅1 ⋅ 𝑛0 ⋅ (
𝜅2 ⋅ 𝑒 ⋅ 𝜅3 ⋅ 𝑛0

𝑐 )
𝛾(𝑐)

for some constant 𝜅3 > 1. e first inequality is by (S1) and the second by the
definition of 𝛾(𝑐). us it remains to prove the above claim.

We prove the claim by induction over 𝑐, where the base case is provided by
Lemma 5.5.3 for, e.g., 𝑐 = 3. Assume the claim holds for parity games with 𝑐 − 1
priorities; we will show that the claim then also holds for parity games with 𝑐 pri-
orities. For 𝑐 > 2 the number of symbolic operations per iteration is dominated by
(a) the recursive call for parity games with one priority less and (b) the call to Proce-
dure D. To bound the total number of symbolic operations for (a) and (b),
we use that by Lemma 5.5.1 the number of iterations in Algorithm SymbolicBigStep
is bounded by

⌊
𝑛0

ℎ + 2⌋ + 1 ≤
𝑛1−𝛽(𝑐−1)

0

2 3√𝑐
+ 1 ≤ 2 ⋅

𝑛1−𝛽(𝑐−1)
0

3 3√𝑐
.

(a) We first bound the total number of symbolic one-step operations for the
recursive call. By the induction hypothesis the number of symbolic one-step oper-
ations in a single recursive call is bounded by

𝜅1 ⋅ 𝑛0 ⋅ (𝜅2 ⋅ 𝑛0)𝛾(𝑐−1)

3√(𝑐 − 1)!
.
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By the definition of 𝛾(𝑐) (see also the proof of Lemma 5.5.3) we can bound the total
number of symbolic one-step operations for all recursive calls with

𝜅1 ⋅ 𝑛0 ⋅ (𝜅2 ⋅ 𝑛0)𝛾(𝑐−1)

3√(𝑐 − 1)!
⋅

2 ⋅ 𝑛1−𝛽(𝑐−1)
0

3 3√𝑐
≤ 𝜅1 ⋅ 𝑛0 ⋅ 2 ⋅ (𝜅2 ⋅ 𝑛0)𝛾(𝑐)

3 3√𝑐!
. (5.3)

(b) us it remains to bound the total number of symbolic one-step operations
in the calls to Procedure D. By Lemma 5.4.9 the number of symbolic one-
step operations in a call to Procedure D is bounded by 𝑂 (𝑐 ⋅ 𝑛0 ⋅ (ℎ+⌊𝑐/2⌋

⌊𝑐/2⌋ )).
e binomial coefficient can be bounded by using 𝛽(𝑐 − 1) ≥ 1/2, Stirling’s approx-
imation (S1), and 3 < 𝑐 ≤ √𝑛0. We have

(
⌈2 3√𝑐 ⋅ 𝑛𝛽(𝑐−1)

0 ⌉ + ⌊𝑐/2⌋
⌊𝑐/2⌋ ) ≤

(⌈2 3√𝑐 ⋅ 𝑛𝛽(𝑐−1)
0 ⌉ + ⌊𝑐/2⌋)⌊𝑐/2⌋

⌊𝑐/2⌋! ,

≤
(

𝑒 ⋅ (⌈2 3√𝑐 ⋅ 𝑛𝛽(𝑐−1)
0 ⌉ + ⌊𝑐/2⌋)

⌊𝑐/2⌋ )

⌊𝑐/2⌋

≤
(

(1 + 1/4) ⋅ 𝑒 ⋅ ⌈2 3√𝑐 ⋅ 𝑛𝛽(𝑐−1)
0 ⌉

⌈(𝑐 − 1)/2⌉ )

⌈ 𝑐−1
2 ⌉

.

With this bound on the binomial coefficient we have that the number of sym-
bolic one-step operations in one call to Procedure D is bounded by

𝜅4 ⋅ 𝑐 ⋅ 𝑛0 ⋅
(

7⌈2 3√𝑐𝑛𝛽(𝑐−1)
0 ⌉

𝑐 − 1 )

⌈ 𝑐−1
2 ⌉

for some constant 𝜅4. To obtain a bound on the total number of symbolic one-step
operations for all calls to Procedure D, we multiply that with the number
of iterations 2 ⋅ 𝑛1−𝛽(𝑐−1)

0 /(3 3√𝑐) and split the further analysis into two parts.
(1) First, we consider the factor ⌈𝑛𝛽(𝑐−1)

0 ⌉⌈ 𝑐−1
2 ⌉ ⋅ 𝑛1−𝛽(𝑐−1)

0 depending on 𝑛0. We upper
bound the factor by using 𝑐 ≤ √𝑛0 and 𝛽(𝑐 − 1) ≥ 1/2, and then apply Eq. (5.1).

⌈𝑛𝛽(𝑐−1)
0 ⌉⌈ 𝑐−1

2 ⌉ ⋅ 𝑛1−𝛽(𝑐−1)
0 ≤ √𝑒 ⋅ 𝑛𝛽(𝑐−1)⋅⌈ 𝑐

2 ⌉
0 ⋅ 𝑛1−𝛽(𝑐−1)

0 = √𝑒 ⋅ 𝑛𝛾(𝑐)
0 .

(2) Second, we consider the factor 𝑐 ⋅ (7⌈2 3√𝑐⌉/(𝑐 − 1))
⌈ 𝑐−1

2 ⌉
depending on 𝑐 and

show that, when assuming8 𝑐 ≥ 64, we have

𝑐 ⋅
(

7⌈2 3√𝑐⌉
𝑐 − 1 )

⌈ 𝑐−1
2 ⌉

≤ 𝑐 ⋅
(

𝜅5
3√𝑐

𝑐 − 1 )

𝑐−1
2

,

≤ 𝑐 ⋅
(

𝜅6
3√𝑐 − 1

𝑐 − 1 )

𝑐−1
2

,

8Notice that for 𝑐 ≤ 63 the factor is bounded by a constant anyway.
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≤ 𝑐 ⋅
(

√𝜅6
3√𝑐 − 1)

𝑐−1

,

≤ 𝑐 ⋅
(

4
3√𝑐 − 1)

𝑐−1

.

with 𝜅5 = 63/4, and 𝜅6 = 𝜅5 ⋅ 3√64/63 ≈ 15.83. Notice that in the above equation
we exploited the assumption 𝑐 ≥ 64 several times. First, to bound 7⌈2 3√𝑐⌉ by 𝜅5

3√𝑐,
second, to obtain (

𝜅5
3√𝑐

𝑐−1 ) ≤ 1, and, finally, to bound 𝜅5
3√𝑐 by 𝜅6

3√𝑐 − 1.
Now let 𝜅7 be such that 𝜅7/(𝑐 − 1)! ≥ (𝜅̂/(𝑐 − 1))𝑐−1 for some 𝜅̂ slightly smaller

than 𝑒, such that we can apply (S2). Notice that we also can bound 43/𝜅̂ by 24 for 𝜅̂
close to 𝑒. We have

𝑐 ⋅
(

4 ⋅ 3√𝜅̂
3√𝜅̂ ⋅ 3√(𝑐 − 1)

𝑐−1

≤ 𝑐 ⋅
3√𝜅7 ⋅ 24(𝑐−1)/3

3√(𝑐 − 1)!
,

≤
𝜅8 ⋅ 𝜅𝛾(𝑐)

9
3√(𝑐 − 1)!

,

for appropriately chosen constants 𝜅8 and 𝜅9. Puing parts (1), (2) and the not yet
considered factor of 𝜅4 ⋅2/(3 3√𝑐) together, we have that the total number of symbolic
one-step operations for all calls to Procedure D is bounded by

𝜅4 ⋅ 𝑐 ⋅ 𝑛0 ⋅
(

7⌈2 3√𝑐𝑛𝛽(𝑐−1)
0 ⌉

⌈ 𝑐−1
2 ⌉ )

⌈ 𝑐−1
2 ⌉

⋅
2 ⋅ 𝑛1−𝛽(𝑐−1)

0

3 3√𝑐
≤ 𝜅1 ⋅ 𝑛0 ⋅ (𝜅2 ⋅ 𝑛0)𝛾(𝑐)

3 3√𝑐!

for 𝜅1 ≥ 2√𝑒 ⋅ 𝜅4 ⋅ 𝜅8 and 𝜅2 ≥ 𝜅9. Together with Equation (5.3) this concludes the
proof.

Correctness. e correctness of Algorithm SymbolicBigStep is as follows: (i) the
algorithm correctly identifies dominions for player 𝑧 (Lemma 5.4.13), and then re-
moves them (Lemma 2.5.1 (3)), and it suffices to solve the remaining game graph;
and (ii) when no vertices are removed, then no dominion is found, and the compu-
tation is exactly as the classical algorithm, and from the correctness of the classical
algorithm it follows that the remaining vertices are winning for player 𝑧.

Lemma 5.5.6 (Correctness). e algorithm correctly computes the winning sets of
player ℰ and player 𝒪 for parity games with 𝑐 ≥ 1 priorities.

Proof. e proof is by induction over 𝑐. For 𝑐 = 1 all vertices are winning for
player ℰ and the algorithm correctly returns 𝑊ℰ = 𝑉 and 𝑊𝒪 = ∅. Assume the
algorithm correctly computes the winning sets for parity games with 𝑐 −1 priorities.
We show that this implies the correctness for 𝑐 priorities. Let 𝑧 be ℰ if 𝑐 is odd and
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𝒪 otherwise. We first show (1) that each vertex of 𝑊𝑧 is indeed winning for player 𝑧
and then (2) that each vertex of 𝑊𝑧 is winning for player 𝑧; this is sufficient to prove
the lemma by 𝑊𝑧 ∪ 𝑊𝑧 = 𝑉 .

For (1) recall that the algorithm repeatedly computes 𝑧-dominions 𝐷 and their
𝑧-aractor 𝐴, adds 𝐴 to the winning set of player 𝑧 and recurses on the parity game
with 𝐴 removed. By Lemma 2.5.1 (3) we have that this approach is correct if the
sets 𝐷 are indeed 𝑧-dominions. By the soundness of SymbolicParityDominion by
Lemma 5.4.13 we have that 𝐷 is a 𝑧-dominion when computed with SymbolicPar-
ityDominion; it remains to show the soundness of determining a dominion 𝑊 ′

𝑧 of
player 𝑧 by the recursive call to SymbolicBigStep on the parity game (𝒢 ′, 𝛼) with
one priority less (line 11). is follows by Lemma 2.5.1 (1) from 𝒢 ′ not containing
a vertex with priority 𝑐 − 1 and being closed for player ℰ by Lemma 2.5.1 (1).

To show completeness, i.e., 𝑊𝑧(𝑃 ) ⊆ 𝑊𝑧, we describe a winning strategy for
player 𝑧 on the vertices of 𝑊𝑧. Since the set 𝑊𝑧 is the set of remaining vertices aer
the removal of 𝑧-aractors, the set 𝑊𝑧 is 𝑧-closed by Lemma 2.5.1 (1). Let 𝒢 ∗ be the
game graph as in the last iteration of the algorithm, i.e., 𝒢 ∗ = 𝒢 [𝑊𝑧]. Furthermore,
let 𝑍 be the set of vertices in 𝒢 ∗ with priority 𝑐 − 1, and let 𝒢 ′ = 𝒢 ∗ ⧵Ar𝑧(𝒢 ∗, 𝑍).
Since the algorithm has terminated, we have that player 𝑧 wins on all vertices of
𝒢 ′ in the parity game (𝒢 ′, 𝛼). e winning strategy for player 𝑧 for the vertices
of 𝑊𝑧 is as follows: for vertices of 𝑍 the player choses an edge to some vertex in
𝑊𝑧; for vertices of Ar𝑧(𝒢 ∗, 𝑍) ⧵ 𝑍 the player follows her aractor strategy to
𝑍; and for the vertices of 𝒢 ′ the player plays according to her winning strategy
in (𝒢 ′, 𝛼). en in a play starting from 𝑊𝑧 either 𝑍 is visited infinitely oen or the
play remains within 𝒢 ′ from some point on; in both cases player 𝑧 wins with the
given strategy.

With Lemmata 5.5.6, 5.5.2, and 5.5.4 we proved the following result.

eorem 5.5.7. Let 𝛾(𝑐) = 𝑐/3 + 1/2 − 4/(𝑐2 − 1) for odd 𝑐 and 𝛾(𝑐) = 𝑐/3 + 1/2 −
1/(3𝑐) − 4/𝑐2 for even 𝑐. Algorithm SymbolicBigStep correctly computes the winning
sets for parity games and requires the minimum of 𝑂(𝑛⋅ (𝜅 ⋅𝑛/𝑐)𝛾(𝑐)) for some constant
𝜅 and 𝑛𝑂(√𝑛) symbolic one-step operations and space to store 𝑂(𝑛) many sets. e
number of symbolic set operations is at most a factor of 𝑂(𝑛) larger than the number
of one-step operations.

Remark 5.5.8 (Strategy construction). e winning strategies for both players can
be computed within the bounds of eorem 5.5.7 using SymbolicBigStep. is is by the
following observations.

• Whenever a player-𝑧 dominion is found with SymbolicParityDominion (line 6),
then by Remark 5.4.15 we can obtain a winning strategy of player 𝑧 for each
vertex in the 𝑧-dominion within the same algorithmic bounds.

• For 𝑐 = 1 player ℰ can just pick any successor vertex and thus a strategy can be
constructed with 𝑂(|𝑉 |) many symbolic operations.
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• For 𝑧-dominion found in a recursive call to SymbolicParityDominion (line 11),
we can use the strategy that is computed in the recursive call.

• For vertices in the 𝑧-aractor 𝐴 computed in lines 7 and 12, we can determine
the winning strategy with 𝑂(|𝐴|) symbolic operations as follows. In the compu-
tation of the aractor we keep track of the vertices 𝐴𝑖−1 added in the previous
iteration of the aractor computation and whenever a vertices of 𝑉𝑧 is added to
the aractor, we identify a successor for each of them. To this end, for each vertex
in 𝑣 ∈ 𝐴𝑖−1, we compute 𝘗 𝘳 𝘦({𝑣}) ∩ 𝐴𝑖 ∩ 𝑉𝑧 and fix 𝑣 as players 𝑧 choice for all
these vertices. As each vertex of 𝐴 is in exactly one set 𝐴𝑖, we only need 𝑂(|𝐴|)
many operations, and as the aractor computation itself needs 𝑂(|𝐴|) many
𝘊𝘗 𝘳 𝘦𝑧 operations, this does not increase the bound for the number of symbolic
operations.

5.6 Conclusion

In this section we presented the first sub-cubic time (explicit) algorithm for parity-3
games and improved set-based symbolic algorithms for parity games. e bounds
on the number of symbolic operations and the space usage (in terms of the number
of stored sets) match the known bounds on the running time and space, respectively,
of explicit algorithms for parity games. It would be interesting to understand the re-
lation between the two models beer. For both models the major and long-standing
theoretical open problem is finding a polynomial-time algorithm. To this end, condi-
tional lower bounds could providemore insights into the complexity of parity games
and its relation to other combinatorial problems. Another interesting direction of
future work would be to explore a practical approach, where our algorithmic ideas
are complemented with engineering efforts to obtain scalable symbolic algorithms
for the reactive synthesis of systems.





CHAPTER 6
Model and Objective Separation

for Graphs and MDPs

6.1 Introduction

In this chapter we present improved algorithms and the first super-linear lower
bounds for polynomial-time algorithmic problems in model checking on graphs and
MDPs. We consider several 𝜔-regular objectives, in particular reachability, safety,
Büchi, and co-Büchi objectives and conjunctions and disjunctions thereof, includ-
ing Stree and Rabin objectives. Additional motivation can be found in Chapter 1,
formal definitions are provided in Chapter 2.

Significance of model and objectives. Standard graphs are the model for non-
deterministic systems, and provide the framework to model hardware and soware
systems [Hol97; Cim+00], as well as many basic logic-related questions such as
automata emptiness. MDPs model systems with both non-deterministic and proba-
bilistic behavior; and provide the framework for a wide range of applications from
randomized communication and security protocols, to stochastic distributed sys-
tems, to biological systems [KNP11; BK08]. In verification, reachability objectives
are the most basic objectives for safety-critical systems. In general all properties
that arise in verification (such as liveness, fairness) are 𝜔-regular languages, and ev-
ery 𝜔-regular language can be expressed as a Stree objective (or a Rabin objective).
Important special cases of Stree (resp. Rabin) objectives are Büchi and coBüchi ob-
jectives [CH14]. us the algorithmic questions we consider are the most basic
questions in formal verification.

Conjunction and disjunction of objectives. Conjunctive and disjunctive ob-
jectives are a natural extension of single objectives [FH10; Wol00; CHP07]. For
two objectives 𝜙1 and 𝜙2 their conjunctive objective is equal to 𝜙1 ∩ 𝜙2 and their
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disjunctive objective is equal to 𝜙1 ∪ 𝜙2 (see also Section 2.3). e conjunction
of reachability (resp. Büchi) objectives is known as generalized reachability (resp.
Büchi) [FH10; Wol00]. In addition to computing (almost-sure) winning sets and
strategies for given models and objectives (see Section 2.4), we consider two addi-
tional algorithmic questions: e conjunctive query question for 𝑘 objectives asks
whether there is a policy for player 1 to ensure that all the objectives are satisfied
with probability 1, and the disjunctive query question asks whether there is a policy
for player 1 to ensure that one of the objectives is satisfied with probability 1. Con-
junctive queries coincide with conjunctive objectives on graphs and MDPs, while
disjunctive queries coincide with disjunctive objectives on graphs but not on MDPs
(see Observations 6.2.1 and 6.2.2).

Conditional lower bounds. For the problems we consider, while polynomial-
time algorithms are known, there are no super-linear lower bounds. Since for
polynomial-time algorithms unconditional super-linear lower bounds are very rare
in the whole of computer science, we consider conditional lower bounds, which as-
sume that for some well-studied problem the known algorithms are optimal up to
some lower-order factors. We consider two such well-studied assumptions, (A1) the
combinatorial Boolean matrix multiplication conjecture (BMM) and (A2) the Strong
Exponential Time Hypothesis (SETH). See Section 2.7 for a formal statement of the
conjectures and Chapter 1 for their relevance.

Model separation and objective separation questions. In this chapter our re-
sults (upper and conditional lower bounds) aim to establish the following two fun-
damental separations:

• Model separation. Consider an objective where the algorithmic question for
both graphs and MDPs can be solved in polynomial time, and establish a con-
ditional lower bound for the running time for MDPs that is strictly higher
than the best-known upper bound for graphs. In other words, the conditional
lower bound would separate the asymptotic running times of the models of
graphs and MDPs for problems (i.e., w.r.t. the objective) that can be solved in
polynomial time.

• Objective separation. Consider a model (either graphs or MDPs) with two dif-
ferent objectives and show that, though the algorithmic question for both ob-
jectives can be solved in polynomial time, there is a conditional lower bound
for one objective that is strictly higher than the best-known upper bound for
the other objective. In other words, the conditional lower bound would sep-
arate the two objectives w.r.t. the model, though they both can be solved in
polynomial time.

To the best of our knowledge, there is no previous work that establish any model
separation or objective separation result in the literature.
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Our results. In this chapter we present improved algorithms as well as the first
conditional lower bounds that are super-linear for algorithmic problems in model
checking that can be solved in polynomial time, and together they establish both
model separation and objective separation results. e algorithms for Stree ob-
jectives are presented in Chapter 4. An overview of the results for the different
objectives is given in Table 6.1, where our results are highlighted in boldface. We
use  to refer to the time to compute all maximal end-components (MECs) of an
MDP. Recall from Section 2.5.2 that an end-component is a non-trivial strongly con-
nected sub-MDP (induced by a set of vertices), and that a sub-MDP has no outgoing
random edges. We have  = 𝑂(min(𝑛2, 𝑚1.5)) [CH14] and assume  = 𝛺(𝑚)
and 𝑚 ≥ 𝑛. Moreover, we use 𝑘 to denote the number of combined objectives in the
case of conjunction or disjunction of multiple objectives and 𝑏 to denote the total
number of elements in all the target sets that specify the objectives. We first de-
scribe Table 6.1 and our main results and then discuss the significance of our results
for model and objective separation.

(1) Conjunctive and Disjunctive Reachability (and Büchi) Problems. First, we con-
sider conjunctive and disjunctive reachability objectives and queries. Recall
that conjunctive objectives and queries in general and disjunctive objectives
and queries on graphs coincide. For reachability further the disjunctive objec-
tive can be reduced to a single objective (see Observation 6.2.3). e follow-
ing results are known: the algorithmic question for conjunctive reachability
objectives is 𝘕 𝘗 -complete for graphs [CAM13], and 𝘗 𝘚𝘗 𝘈𝘊𝘌 -complete for
MDPs [FH10]; and the disjunctive objective can be solved in linear time for
graphs and in 𝑂(min(𝑛2, 𝑚1.5)+𝑏) time for MDPs [CJH03; CH14]. We present
three results for disjunctive reachability queries on MDPs: (i) We present an
𝑂(𝑘𝑚 +) time algorithm1. (ii) We show that under assumption (A1) there
does not exist a combinatorial 𝑂(𝑘 ⋅ 𝑛2−𝜀) algorithm for any 𝜀 > 0. (iii) We
show that for 𝑘 = 𝛺(𝑚) there does not exist an 𝑂(𝑚2−𝜀) time algorithm for
any 𝜀 > 0 under assumption (A2). Hence we establish an upper bound and
matching conditional lower bounds based on (A1) and (A2).
Disjunctive Büchi objectives (on graphs and MDPs) can be reduced in linear
time to disjunctive reachability objectives and vice versa, therefore the same
results apply to disjunctive Büchi problems (see Observation 6.2.6). e basic
algorithm for conjunctive Büchi objectives runs in time 𝑂(𝑚 + 𝑏) for graphs
and in time 𝑂( + 𝑏) for MDPs.

(2) Conjunctive and Disjunctive Safety Problems. Second, we consider conjunc-
tive and disjunctive safety objectives and queries. e following results are
known: the conjunctive problem can be reduced to a single objective and can
be solved in linear time, both in graphs and MDPs (see e.g. [CDH10]); dis-
junctive queries for MDPs can be solved in 𝑂(𝑘 ⋅ 𝑚) time; and disjunctive

1is implies an 𝑂( + 𝑏) time algorithm for disjunctive reachability objectives but does not
improve the running time for this case.
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Table 6.2: Model separation.

upper bound graphs lower bounds MDPs

Reach/Büchi Disj. . 𝑚 + 𝑛𝑘 𝒌 ⋅ 𝒏𝟐−𝒐(𝟏), 𝒎𝟐−𝒐(𝟏)

co-Büchi Singleton Disj. Obj./. 𝒎 𝒎𝟐−𝒐(𝟏)

objectives for MDPs are 𝘗 𝘚𝘗 𝘈𝘊𝘌 -complete [FH10]. We present two results:
(i) We show that for the disjunctive problem in graphs under assumption (A1)
there does not exist a combinatorial 𝑂(𝑘 ⋅ 𝑛2−𝜀) algorithm for any 𝜀 > 0.
is implies the same conditional lower bound for disjunctive queries and
objectives in MDPs and matches the upper bound for graphs and disjunctive
queries in MDPs. (ii) We present, for 𝑘 = 𝛺(𝑚), an 𝛺(𝑚2−𝑜(1)) lower bound
for disjunctive objectives and queries in MDPs under assumption (A2). Again
this lower bound matches the upper bound of 𝑂(𝑘 ⋅ 𝑚) for disjunctive queries.

(3) Conjunctive and Disjunctive co-Büchi Problems. For co-Büchi, a conjunctive
objective can be reduced to a single objective. For single objectives the ba-
sic algorithm runs in time 𝑂( + 𝑏) for MDPs and in time 𝑂(𝑚 + 𝑏) for
graphs. Since the conditional lower bounds for disjunctive safety objectives
and queries actually already apply for the non-emptiness of the winning set,
the reductions also hold for co-Büchi (see Observation 6.2.5). Here the run-
ning times and the conditional lower bounds are matching for both disjunc-
tive queries and disjunctive objectives. For the conditional lower bound based
on assumption (A2) only singleton co-Büchi objectives, i.e., co-Büchi objec-
tives with target sets of cardinality one, are needed, therefore the bound al-
ready holds for this case. We additionally present two results: (i) We present
𝑂(𝑘𝑚 +) time algorithms for disjunctive queries and objectives on MDPs.
(ii) We present a linear time algorithm for disjunctive singleton co-Büchi ob-
jectives on graphs.

(4) Rabin and Stree objectives. Finally, we consider Rabin and Stree objectives.
e basic algorithm for Rabin objectives runs in time 𝑂(𝑘 ⋅ 𝑚) on graphs and
in time 𝑂(𝑘 ⋅ ) on MDPs. As disjunctive co-Büchi objectives are a special
case of Rabin objectives, the conditional lower bounds for co-Büchi objectives
of 𝛺(𝑘 ⋅ 𝑛2−𝑜(1)) for graphs and additionally 𝛺(𝑚2−𝑜(1)) for MDPs extend to
Rabin objectives. e conditional lower bound for graphs is matching (for
combinatorial algorithms). In Chapter 4 we show that MDPs with Stree
objectives can be solved in 𝑂(𝑚1.5√log 𝑛+𝑏 log 𝑛) and in 𝑂(𝑛2 +𝑏 log 𝑛) time.
e first bound is an extension of an existing algorithm for graphs [HT96],
while the laer is also an improvement for graphs with 𝑚 > 𝑛4/3/ 3√log 𝑛,
𝑚 > 𝑏2/3 3√log 𝑛, and 𝑘 ≥ 𝑛2/𝑚.
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Table 6.3: Dual objective separation for graphs.

upper bound lower bound

Reach Disj. 𝑚 + 𝑛𝑘 𝒌 ⋅ 𝒏𝟐−𝒐(𝟏) Safety Disj.
Büchi Disj. 𝑚 + 𝑛𝑘 𝒌 ⋅ 𝒏𝟐−𝒐(𝟏) co-Büchi Disj.

Büchi Conj. 𝑚 + 𝑛𝑘 𝒌 ⋅ 𝒏𝟐−𝒐(𝟏) co-Büchi Disj.
Stree 𝒏𝟐 + 𝒏𝒌 log𝒏 𝒌 ⋅ 𝒏𝟐−𝒐(𝟏) Rabin

Significance of our results. Wenowdescribe themodel and objective separation
results that are obtained from the results we established.

(1) Model Separation. Table 6.2 shows our results that separate graphs and MDPs
regarding their complexity for certain objectives and queries under assump-
tions (A1) and (A2). First, for reachability and Büchi objectives disjunction for
graphs is in linear time while for MDPs we have 𝛺(𝑘𝑛2−𝑜(1)) and 𝛺(𝑚2−𝑜(1))
conditional lower bounds for disjunctive queries. Second, for co-Büchi we
have a separation when restricted to the class where each target set is a sin-
gleton. For these objectives disjunction on graphs is in linear time while we
establish an 𝛺(𝑚2−𝑜(1)) conditional lower bound for MDPs for both disjunc-
tive objectives and queries.

(2) Objective Separation. We next identify running time separations between dif-
ferent objectives. Here we consider two aspects, separations between dual ob-
jectives like Büchi and co-Büchi (Tables 6.3 and 6.4), and separations between
conjunction and disjunction of objectives (Table 6.5). We compare dual objec-
tives in twoways: (i) we show that single objectives that are dual to each other
behave differently when we consider disjunction for each of them and (ii) we
compare conjunctive objectives and their dual disjunctive objectives. For (ii)
we have that conjunctive Büchi objectives are dual to disjunctive co-Büchi
objectives, and Stree objectives, the conjunction of 1-pair Stree objectives,
are dual to Rabin objectives, the disjunction of 1-pair Rabin objectives.

(1) Separating Dual Objectives for Graphs. First, we consider reachability
and safety objectives. For graphs we have that for reachability objec-
tives disjunction is in linear time while for disjunctive safety objectives
we establish an 𝛺(𝑘𝑛2−𝑜(1)) lower bound under assumption (A1). Anal-
ogously, we have that disjunctive Büchi objectives are in linear time on
graphs while we establish an 𝛺(𝑘𝑛2−𝑜(1)) conditional lower bound for
the disjunction of co-Büchi objectives. Furthermore, conjunctive Büchi
objectives are in linear time and thus can be separated from their dual
objective, the disjunctive co-Büchi objectives. Finally, for Stree ob-
jectives on graphs with 𝑏 = 𝑂(𝑛2/ log 𝑛) we have an 𝑂(𝑛2) algorithm
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Table 6.4: Dual objective separation for MDPs.

upper bound lower bound

Büchi Disj. Obj. min(𝑛2, 𝑚1.5) + 𝑛𝑘 𝒌 ⋅ 𝒏𝟐−𝒐(𝟏), 𝒎𝟐−𝒐(𝟏) co-Büchi Disj. Obj.

Büchi Conj. min(𝑛2, 𝑚1.5) + 𝑛𝑘 𝒌 ⋅ 𝒏𝟐−𝒐(𝟏), 𝒎𝟐−𝒐(𝟏) co-Büchi Disj. Obj.
Stree min(𝒏𝟐, 𝒎𝟏.𝟓√log𝒏) 𝒌 ⋅ 𝒏𝟐−𝒐(𝟏), 𝒎𝟐−𝒐(𝟏) Rabin

+ 𝒏𝒌 log𝒏

while we establish an 𝛺(𝑛3−𝑜(1)) lower bound for Rabin objectives when
𝑘 = 𝛩(𝑛). Note that 𝑏 ≤ 2𝑛𝑘.

(2) Separating Dual Objectives for MDPs. First, consider Büchi and co-
Büchi objectives for MDPs. For MDPs disjunctive Büchi objectives
are in time 𝑂( + 𝑏), which is in 𝑂(min(𝑛2, 𝑚1.5) + 𝑛𝑘), while for
co-Büchi objectives we show 𝛺(𝑘𝑛2−𝑜(1)) and 𝛺(𝑚2−𝑜(1)) conditional
lower bounds for both disjunctive queries and disjunctive objectives.
is separates the two objectives for both sparse and dense graphs. Fur-
thermore, conjunctive Büchi objectives can be solved in 𝑂( + 𝑏)
time and thus there is also a separation between disjunctive co-Büchi
objectives and their dual. Finally, for MDPs with Stree objectives
with 𝑏 = 𝑂(min(𝑛2, 𝑚1.5√log 𝑛)/ log 𝑛) , we show both an 𝑂(𝑛2) time
and an 𝑂(𝑚1.5√log 𝑛) time algorithm while we establish 𝛺(𝑛3−𝑜(1))
and 𝛺(𝑚2−𝑜(1)) conditional lower bounds for Rabin objectives when
𝑘 = 𝛩(𝑛).

(3) Separating Conjunction and Disjunction for Graphs and MDPs. Except
for reachability, i.e., in particular for all considered polynomial-time
problems, we observe that the disjunction of objectives is computation-
ally harder than the conjunction of these objectives (under assumptions
(A1), (A2)). First, for safety objectives conjunction is in linear time
even for MDPs while for disjunctive queries (disjunctive objectives are
𝘗 𝘚𝘗 𝘈𝘊𝘌 -complete) we present 𝛺(𝑘𝑛2−𝑜(1)) and 𝛺(𝑚2−𝑜(1)) conditional
lower bounds, where the first bound also holds for graphs. Second, for
Büchi and co-Büchi objectives conjunction is in 𝑂( + 𝑏) for MDPs
(and 𝑂(𝑚+𝑏) for graphs) while we show 𝛺(𝑘𝑛2−𝑜(1)) and 𝛺(𝑚2−𝑜(1)) con-
ditional lower bounds for disjunctive co-Büchi objectives and disjunc-
tive Büchi / co-Büchi queries onMDPs. e𝛺(𝑚2−𝑜(1)) bound even holds
for the disjunction of singleton co-Büchi objectives. Furthermore, for
co-Büchi objectives our 𝛺(𝑘𝑛2−𝑜(1)) bound also holds on graphs, which
separates conjunction and disjunction also in this seing. ird, we
can also see the results for Stree and Rabin objectives as a separation
between conjunction and disjunction. Recall that Stree objectives are
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Table 6.5: Separating conjunction and disjunction.

Conjunction Disjunction

Safety Graphs 𝑚 + 𝑛𝑘 𝒌 ⋅ 𝒏𝟐−𝒐(𝟏)

MDP . 𝑚 + 𝑛𝑘 𝒌 ⋅ 𝒏𝟐−𝒐(𝟏), 𝒎𝟐−𝒐(𝟏)

Büchi MDPs . min(𝑛2, 𝑚1.5) + 𝑛𝑘 𝒌 ⋅ 𝒏𝟐−𝒐(𝟏), 𝒎𝟐−𝒐(𝟏)

co-Büchi Graphs 𝑚 + 𝑛𝑘 𝒌 ⋅ 𝒏𝟐−𝒐(𝟏)

MDPs Obj./. min(𝑛2, 𝑚1.5) + 𝑛𝑘 𝒌 ⋅ 𝒏𝟐−𝒐(𝟏), 𝒎𝟐−𝒐(𝟏)

1-pair Stree Graphs 𝒏𝟐 + 𝒏𝒌 log𝒏 𝒌 ⋅ 𝒏𝟐−𝒐(𝟏)

MDPs Obj./. min(𝒏𝟐, 𝒎𝟏.𝟓√ log𝒏) 𝒌 ⋅ 𝒏𝟐−𝒐(𝟏), 𝒎𝟐−𝒐(𝟏)

+ 𝒏𝒌 log𝒏

1-pair Rabin Graphs 𝑚 + 𝑛𝑘 𝒌 ⋅ 𝒏𝟐−𝒐(𝟏)

MDPs Obj./. min(𝑛2, 𝑚1.5) + 𝑛𝑘 𝒌 ⋅ 𝒏𝟐−𝒐(𝟏), 𝒎𝟐−𝒐(𝟏)

the conjunction of one-pair Stree objectives and Rabin objectives are
the disjunction of one-pair Rabin objectives. Further, both Büchi and
co-Büchi objectives are special cases of each of one-pair Stree and one-
pair Rabin objectives. In particular the following separations are easy
observations or corollaries of our results: For the disjunction of one-pair
Stree objectives the same conditional lower bounds (and the same up-
per bound, see Observation 6.5.11) as for the disjunction of co-Büchi
objectives apply. us the disjunction of one-pair Stree objectives
is harder than the conjunction of one-pair Stree objectives (under as-
sumptions (A1)/(A2)). e conjunction of one-pair Rabin objectives can
be solved in the same time as conjunctive Büchi objectives. us also
the disjunction of one-pair Rabin objectives is harder than their conjunc-
tion.

Remark on Streett and Rabin objective separation. One remarkable aspect of
our objective separation result is that we achieve it for Rabin and Stree objectives
(both for graphs and MDPs), which are dual. For game graphs, Rabin objectives
are 𝘕 𝘗 -complete and Stree objectives are 𝘤𝘰𝘕 𝘗 -complete [EJ99]. For graphs and
MDPs, both Rabin and Stree objectives can be solved in polynomial time. Since
Rabin and Stree objectives are dual, and they belong to complementary complexity
classes (either both in P, or one is 𝘕 𝘗 -complete, other 𝘤𝘰𝘕 𝘗 -complete), they were
considered to be equivalent for algorithmic purposes for graphs and MDPs. ite
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surprisingly, we show that under somewidely believed assumptions, both for MDPs
and graphs, Rabin objectives are algorithmically harder than Stree objectives.

Remark on separating conjunction and disjunction. In logic disjunction and
conjunction are dual and for polynomial-time problems, to the best of our knowl-
edge, there have not been any results which show that one is harder than the other.
For reachability objectives the conjunctive problems are harder (NP-complete for
graphs, PSPACE-complete for MDPs) compared to the disjunctive problems, which
are in polynomial time. In terms of strategy complexity, again conjunctive objec-
tives are harder than disjunctive objectives: While for disjunctive Büchi objectives
memoryless strategies suffice, for conjunctive Büchi objectives strategies require
memory; and while for Rabin objectives memoryless strategies suffice, for Stree
objectives strategies require memory (even exponential memory in games). Given
the existing results, there was no evidence to expect that when polynomial-time al-
gorithms exist that disjunction is harder than conjunction. On the contrary, existing
results show that some aspects of conjunctive objectives are harder than for their
disjunctive counterpart. Surprisingly, our results indicate that from an algorithmic
point of view several polynomial-time problems are harder for the disjunctive prob-
lems than for their conjunctive counterparts.

Remark on digraph parameters. e graphs in the reductions for our lower
bounds can be made acyclic by deleting a single vertex, thus our lower bounds also
apply to a broad range of digraph parameters. For instance, let 𝑤 be the DAG-
width [Ber+06] of a graph, then we have for the problems with conditional lower
bounds from (A1) that there is no 𝑂(𝑓(𝑤) ⋅ (𝑘 ⋅ 𝑛2)1−𝑜(1)) time algorithm and for
those with conditional lower bounds from (A2) that there is no 𝑂(𝑓(𝑤) ⋅ (𝑘𝑚)1−𝑜(1))
time algorithm under the respective assumptions.

Technical contributions. Algorithms. (1) We show that given the MECs of an
MDP, the almost-sure winning set for a reachability objective can be determined in
linear time on the MDP where each MEC is contracted to a player 1 vertex. is
yields to the improved algorithms for disjunctive queries of reachability and Büchi
objectives on MDPs. (2) For MDPs with disjunctive co-Büchi objectives and disjunc-
tive queries of co-Büchi objectives we use the MECs in a different way; namely,
we show that it is sufficient to do a linear-time computation within each MEC per
co-Büchi objective to solve both disjunctive questions. (3) Finally we show that for
graphs with a disjunctive co-Büchi objective for which the target set of each of the
single co-Büchi objectives has cardinality one, the problem can be solved with a
breadth-first search like algorithm in linear time.

Conditional Lower Bounds. (a) Conjecture (A1) is equivalent to the conjecture
that there is no combinatorial 𝑂(𝑛3−𝜀) time algorithm to detect whether an 𝑛-vertex
graph contains a triangle [VW10]. We show that triangle-detection in graphs can
be linear-time reduced to disjunctive queries of reachability objectives on MDPs and
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thus that the running time for the laer can only be improved by sub-polynomial
factors assuming (A1). (b) For the conditional lower bound under (A2) we consider
the orthogonal vectors problem, which is known to be hard under (A2) [Wil05], and
linear-time reduce it to disjunctive queries of reachability objectives on MDPs. (c) For
disjunctive safety problems we give a linear-time reduction from triangle-detection
that only requires player 1 vertices; thus the resulting conditional lower bound un-
der (A1) also holds for graphs. (d)e reductionwe give from the orthogonal vectors
problem to disjunctive safety problems requires random vertices and thus the condi-
tional lower bound under (A2) only holds for MDPs. (e) Based on the conditional
lower bounds for disjunctive reachability queries and disjunctive safety problems,
we then exploit reductions between the different types of objectives to obtain the
conditional lower bounds for Büchi, co-Büchi, and Rabin.

6.2 Preliminiaries

Basic definitions and formal statements of the conjectures can be found in Chap-
ter 2. Given 𝑐 objectives 𝜙1, … , 𝜙𝑐 , the conjunctive objective 𝜙 = 𝜙1 ∩ … ∩ 𝜙𝑐 =
⋀𝑐

𝑖=1 𝜙𝑖 is given by the intersection of the 𝑐 objectives, and the disjunctive objective
𝜙 = 𝜙1 ∪ … ∪ 𝜙𝑐 = ⋁𝑐

𝑖=1 𝜙𝑖 is given by the union of the 𝑐 objectives. For the con-
junctive query of 𝑐 objectives 𝜙1, … , 𝜙𝑐 we define the (almost-sure) winning set to
be the set of vertices that have one strategy that is (almost-sure) winning for each of
the objectives 𝜙1, … , 𝜙𝑐 . Analogously, a vertex is in the (almost-sure) winning set
⋁𝑐

𝑖=1⦉1⦊as (𝑃 , 𝜙𝑖) for the disjunctive query of the 𝑐 objectives if it is in an (almost-
sure) winning set for at least one of the 𝑐 objectives (i.e. we take the union of the
winning sets).

Below we present several observations that interlink different types of objec-
tives.

Observation 6.2.1. e almost-sure winning set for a conjunctive objective is the
same as for the corresponding conjunctive query.

Proof. We have for any 𝑣 ∈ 𝑉 and 𝜎 ∈ 𝛴 and any two objectives 𝜙1, 𝜙2 that
Pr𝜎

𝑣 (𝜙1 ∧ 𝜙2) = 1 iff Pr𝜎
𝑣 (𝜙1) = 1 and Pr𝜎

𝑣 (𝜙2) = 1.

Observation 6.2.2. On graphs (i.e. 𝑉𝑅 = ∅) the winning set for a disjunctive objec-
tive is the same as for the corresponding disjunctive query.

Proof. For any two objectives 𝜙1, 𝜙2 we have for each 𝜔 ∈ 𝛺 that 𝜔 ∈ (𝜙1 ∪ 𝜙2) iff
𝜔 ∈ 𝜙1 or 𝜔 ∈ 𝜙2.

Observation 6.2.3. e disjunctive objective of Büchi (resp. reachability) objectives
is the same as the Büchi (resp. reachability) objective of the union of the target sets.

Proof. We show the claim for Büchi, the proof for reachability is analogous. For two
target sets 𝑇1, 𝑇2 ⊆ 𝑉 we have {𝜔 ∈ 𝛺 ∣ Inf(𝜔)∩𝑇1 ≠ ∅}∪{𝜔 ∈ 𝛺 ∣ Inf(𝜔)∩𝑇2 ≠
∅} = {𝜔 ∈ 𝛺 ∣ Inf(𝜔) ∩ (𝑇1 ∪ 𝑇2) ≠ ∅}.



6.2. PRELIMINIARIES 133

Observation 6.2.4. e conjunctive objective of co-Büchi (resp. safety) objectives
is the same as the co-Büchi (resp. safety) objective of the union of the target sets.

Proof. We show the claim for co-Büchi, the proof for safety is analogous. For two
target sets 𝑇1, 𝑇2 ⊆ 𝑉 we have {𝜔 ∈ 𝛺 ∣ Inf(𝜔)∩𝑇1 = ∅}∩{𝜔 ∈ 𝛺 ∣ Inf(𝜔)∩𝑇2 =
∅} = {𝜔 ∈ 𝛺 ∣ Inf(𝜔) ∩ (𝑇1 ∪ 𝑇2) = ∅}.

By definition each path winning for a safety objective is also winning for the
corresponding co-Büchi objective while the converse is not always true. However,
when it comes to the non-emptiness of winning sets, these two objectives become
equivalent.

Observation 6.2.5. For a fixedMDP𝑃 the winning set for Safe(𝑇 ) is non-empty iff the
winning set for coBüchi(𝑇 ) is non-empty. is equivalence extends also to conjunctions
and disjunctions of safety and co-Büchi objectives.

Proof. By [CY95, p. 891] (see also Section 2.6.2) the winning set for Safe(𝑇 ) resp.
coBüchi(𝑇 ) is non-empty if and only if there exists an end-component 𝑋 with 𝑋 ∩
𝑇 = ∅.

Observation 6.2.6. Disjunctive reachability queries (resp. objectives) in MDPs can
be linear time reduced to disjunctive Büchi queries (resp. objectives) in MDPs and vice
versa.

Proof. Reachability ⇒ Büchi: For each target set 𝑇 replace each 𝑡 ∈ 𝑇 with two
vertices: 𝑡in ∈ 𝑉1 and 𝑡out, where 𝑡out belongs to the same player as 𝑡. Assign all
incoming edges of 𝑡 to 𝑡in and all outgoing edges of 𝑡 to 𝑡out, and add the edge (𝑡in, 𝑡out)
and the self-loop (𝑡in, 𝑡in). Let the corresponding target set 𝑇 ′ for Büchi consist of
the vertices 𝑡in for all 𝑡 ∈ 𝑇 . As player 1 can force the play to stay at a vertex 𝑡in as
soon as it is reached, we have that the set 𝑇 ′ in the modified MDP can be visited
infinitely oen almost surely iff in the original MDP the set 𝑇 can be reached almost
surely.

Büchi ⇒ reachability: For each target set 𝑇 replace each 𝑡 ∈ 𝑇 with three ver-
tices: 𝑡in ∈ 𝑉𝑅, 𝑡𝑟 ∈ 𝑉1, and 𝑡out, where 𝑡out belongs to the same player as 𝑡. Assign
all incoming edges of 𝑡 to 𝑡in and all outgoing edges of 𝑡 to 𝑡out, and add the edges
(𝑡in, 𝑡out), (𝑡in, 𝑡𝑟), and (𝑡𝑟, 𝑡out). Let the corresponding target set 𝑇 ′ for reachability
consist of the vertices 𝑡𝑟 for all 𝑡 ∈ 𝑇 . Notice that the vertex 𝑡𝑟 can only be reached
from 𝑡in and that whenever 𝑡in is reached, the vertex 𝑡𝑟 is reached with probability
1/2. Furthermore, the vertex 𝑡out is reached whenever the vertex 𝑡in is reached. No-
tice that there is a one-to-one correspondence between player-1 strategies for the
twoMDPs. us when player 1 follows the corresponding strategies for both MDPs,
then the set 𝑇 ′ in the modified MDPs is a.s. reached if and only if the set 𝑇 is a.s.
reached infinitely oen. Hence the correctness of the reduction follows.

Observation 6.2.7. Conjunctive Büchi (resp. co-Büchi) objectives are special instances
of Stree objectives.
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Proof. For Büchi let 𝐿𝑗 = 𝑉 and 𝑈𝑗 = 𝑇𝑗 , for co-Büchi let 𝐿𝑗 = 𝑇𝑗 and 𝑈𝑗 = ∅.

Observation 6.2.8. Disjunctive Büchi (resp. co-Büchi) objectives are special instances
of Rabin objectives.

Proof. For Büchi let 𝐿𝑗 = 𝑇𝑗 and 𝑈𝑗 = ∅, for co-Büchi let 𝐿𝑗 = 𝑉 and 𝑈𝑗 = 𝑇𝑗 .

6.3 Reachability in MDPs

First let us briefly discuss reachability in graphs. e winning set for disjunctive
reachability can simply be computed by taking the union of all target sets and then
starting a breadth-first search, which is in 𝑂(𝑚). On the other hand, the problem
becomes 𝘕 𝘗 -complete when considering conjunctive reachability [FH10], as with
conjunction one can require a path to contain several vertices and in particular one
can embed the well-known 𝘕 𝘗 -hard problem of Hamiltonian path.

Turning to MDPs, notice that in MDPs based on acyclic graphs almost-sure
reachability is equivalent to computing the winning set for a player with reacha-
bility objectives in a game graph where all the random vertices are owned by the
opponent (as the random player plays the optimal strategy for the opponent with
non-zero probability). As computing the winning set in a conjunctive reachability
game is 𝘗 𝘚𝘗 𝘈𝘊𝘌 -hard even for acyclic graphs [FH10], we have that conjunctive
almost-sure reachability in MDPs is 𝘗 𝘚𝘗 𝘈𝘊𝘌 -hard as well.

In the first part of this section we present an improved algorithm for disjunctive
reachability queries in MDPs. As a disjunctive reachability objective can easily be
reduced to a single reachability objective by taking the union of all target sets, this
algorithm with 𝑘 = 1 is also an algorithm for disjunctive reachability objectives
(but does not improve upon the known running time for this case). We refer to
computing the almost-sure winning set for a single reachability objective as the
almost-sure reachability problem. In the second part we present two lower bounds
for disjunctive reachability queries, an 𝛺(𝑛3−𝑜(1)) lower bound based on CTC (resp.
BMM) and an 𝛺(𝑚2−𝑜(1)) lower bound based on OVC (resp. SETH).

6.3.1 Algorithm for Disjunctive Reachabilityeries in MDPs

In this section we present an algorithm to compute the almost-sure winning set for
disjunctive reachability queries in MDPs. In particular we show the following the-
orem, where the result for Büchi objectives follows from the result for reachability
objectives by Observation 6.2.6.

eorem 6.3.1. For an MDP 𝑃 and target sets 𝑇𝑗 ⊆ 𝑉 for 1 ≤ 𝑗 ≤ 𝑘 the almost-sure
winning set for the disjunctive query of Reach(𝑇𝑗) for 1 ≤ 𝑗 ≤ 𝑘 can be computed in
𝑂(𝑘𝑚 + ) time. e same bound holds for the disjunctive query of Büchi(𝑇𝑗).

A vertex 𝑣 is in the almost-sure winning set iff player 1 has a strategy to reach
one of the 𝑘 target sets 𝑇𝑗 with probability 1 starting from 𝑣. Note that the sets 𝑇𝑗
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are not necessarily absorbing in contrast to what is oen assumed for the reacha-
bility objective in MDPs. e trivial algorithm would be to invoke an algorithm for
almost-sure reachability in MDPs 𝑘 times (for one target set 𝑇𝑗 at a time, temporar-
ily making the set 𝑇𝑗 absorbing if necessary). e crucial observation to improve
upon this is that given an MDP without non-trivial end-components, almost-sure
reachability in MDPs can be solved in linear time. Recall from Section 2.5.2 that
a non-trivial end-component is an end-component with at least two vertices. We
further observe that, for each target set, either all vertices of an end-component
are a.s. winning or none. us if we know the MEC-decomposition of an MDP,
we can contract the MECs to single vertices with self-loops and solve almost-sure
reachability on the derived MDP. is derived MDP does not have non-trivial end-
components, therefore, given the MEC-decomposition, the problem can be solved
in linear time per target set. Our algorithm implies that almost-sure reachability
(i.e. the case 𝑘 = 1) can be solved in the same asymptotic running time as comput-
ing the MEC-decomposition of an MDP; thus any improvements over the known
𝑂(min(𝑛2, 𝑚1.5)) running time forMEC-decomposition [CH14] carry over to almost-
sure reachability. e same running time is achieved for almost-sure reachability
in [CJH03; CH14], i.e., our algorithm improves upon the known running times only
for super-constant 𝑘.

Definition 6.3.2 (Contraction of MECs). Contracting a MEC 𝑋 in an MDP 𝑃 creates
a modified MDP 𝑃 ′ from 𝑃 where the vertices of 𝑋 are replaced by a single vertex 𝑢
that belongs to player 1 and the edges to or from a vertex in 𝑋 are replaced with edges
to or from, respectively, the vertex 𝑢; parallel edges are omied from 𝑃 ′, for parallel
random edges the probabilities are added up.

Observation 6.3.3 ([CH11]). e MDP 𝑃 ′ that is constructed from the MDP 𝑃 by
contracting all MECs of 𝑃 does not contain any non-trivial end-components.

Proof. Assume by contradiction that the MDP 𝑃 ′ contains an end-component 𝑋′

with at least two vertices. Let 𝑋 be the set of vertices corresponding to the vertices
of 𝑋′ in the original MDP 𝑃 . en 𝑋 is an end-component in 𝑃 , a contradiction to
the definition of 𝑃 ′.

In the derived MDP we apply, for each target set, one iteration of the classical
almost-sure reachability algorithm but with a modified random aractor computa-
tion defined below. e classical algorithm repeatedly executes the following two
steps: 1) Compute the vertices 𝑆 from which player 1 can reach the target set 𝑇 .
2a) If 𝑆 = 𝑉 , output 𝑆 as the a.s. winning set of player 1. 2b) If 𝑆 ⊊ 𝑉 , remove the
random aractor of 𝑉 ⧵ 𝑆 from the graph and repeat. Recall from Section 2.5.2 that
a random aractor of a set of vertices 𝑊 contains the vertices from which there is
a positive probability to reach 𝑊 for every strategy of player 1. e extended ran-
dom aractor, formally defined below and used implicitly in [CH14], additionally
includes player 1 vertices for which the only player 1 strategy to avoid a positive
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probability to reach 𝑊 is using a self-loop of a vertex not in the target set. Addition-
ally, we explicitly avoid adding vertices in the considered target set to the aractor.
In the classical algorithm this was achieved by making the target set absorbing.

Definition 6.3.4 (Extended RandomAractor). In anMDP 𝑃 = ((𝑉 , 𝐸), (𝑉1, 𝑉𝑅), 𝛿)
the extended random aractor Ar+

𝑅(𝑃 , 𝑊 , 𝑇 ) for sets of vertices 𝑊 , 𝑇 ⊆ 𝑉 is de-
fined as Ar+

𝑅(𝑃 , 𝑊 , 𝑇 ) = ⋃𝑖≥0 𝑍𝑖 where 𝑍0 = 𝑊 ⧵ 𝑇 and 𝑍𝑖+1 for 𝑖 ≥ 0 is defined
as 𝑍𝑖+1 = 𝑍𝑖 ∪ {𝑣 ∈ 𝑉𝑅 ∣ Out(𝑣) ∩ 𝑍𝑖 ≠ ∅} ∪ {𝑣 ∈ 𝑉1 ∣ Out(𝑣) ⊆ (𝑍𝑖 ∪ {𝑣})} ⧵ 𝑇 .

In contrast to a random aractor (a) a set of vertices 𝑇 can be specified that is never
included in Ar+

𝑅(𝑃 , 𝑊 , 𝑇 ) and (b) a player 1 vertex is also included in 𝑍𝑖+1 if all its
outgoing edges apart from its self-loop are contained in 𝑍𝑖. An extended random
aractor 𝐴 = Ar+

𝑅(𝑃 , 𝑊 , 𝑇 ) can be computed in 𝑂(∑𝑣∈𝐴 Indeg(𝑣) + |𝑉1 ⧵ 𝑇 |)
time [Bee80; Imm81].

e overall algorithm for MDPs with disjunctive reachability queries is de-
scribed in Algorithm DisjReachMDP. First, the MEC-decomposition of the input
MDP 𝑃 is computed (l. 1). en all MECs of 𝑃 are contracted to construct the
derived MDP 𝑃 ′, which does not contain any non-trivial MECs (l. 2). For each
target set we execute one iteration of the classical algorithm (l. 5–8), replacing the
usual random aractor with the extended random aractor (l. 7). Aer reversing
the contraction (l. 9), the union of the winning sets determined for each target set
yields the a.s. winning set of player 1 for the disjunctive reachability query.

Algorithm DisjReachMDP: MDPs with disjunctive reachability queries
Input :MDP 𝑃 = ((𝑉 , 𝐸), (𝑉1, 𝑉𝑅), 𝛿) and

target sets 𝑇𝑗 ⊆ 𝑉 for 1 ≤ 𝑗 ≤ 𝑘
Output : ⋁1≤𝑗≤𝑘⦉1⦊as (𝑃 ,Reach(𝑇𝑗))

1 compute MEC decomposition of 𝑃
2 let 𝑃 ′ be 𝑃 with all MECs contracted
3 let 𝑇 ′

𝑗 for 1 ≤ 𝑗 ≤ 𝑘 be the set of vertices of 𝑃 ′ that represent some vertex of 𝑇𝑗
4 𝑊 ′ ← ∅
5 for 𝑗 ← 1 to 𝑘 do
6 𝑆′ ← GR(𝑃 ′, 𝑇 ′

𝑗 )
7 𝐴′ ← Ar+𝑅(𝑃 ′, 𝑉 ′ ⧵ 𝑆′, 𝑇 ′

𝑗 )
8 𝑊 ′ ← 𝑊 ′ ∪ (𝑉 ′ ⧵ 𝐴′)
9 let 𝑊 be the vertex set resulting from 𝑊 ′ by reversing the contraction

10 return 𝑊

Proposition 6.3.5 (Running time). Algorithm DisjReachMDP runs in time 𝑂(𝑘𝑚 +
).

Proof. By definition the computation of all MECs takes 𝑂(). Contracting all
MECs can be done in time 𝑂(𝑚) as we have to consider each edge (and vertex)
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at most twice. e for-loop is executed 𝑘 times. Within the for-loop, both the
vertices 𝑆 that can reach 𝑇𝑗 and the extended random aractor 𝐴 = Ar+

𝑅(𝑃 ′, 𝑉 ′ ⧵
𝑆′, 𝑇 ′

𝑗 ) can be found in linear time, that is, in 𝑂(𝑘𝑚) time over all iterations of the
for-loop. Undoing the contraction takes again at most 𝑂(𝑚) time.

Towards proving the correctness of Algorithm DisjReachMDP, first note that by
definition the disjunctive query is satisfied almost-surely for a vertex if and only if
the reachability objective is satisfied almost-surely for one of the target sets. Hence
we can consider the 𝑘 target sets separately by showing that in the 𝑗-th iteration of
the for-loop of Algorithm DisjReachMDP the set ⦉1⦊as (𝑃 ,Reach(𝑇𝑗)) is identified.

In the correctness proof we assume that in the MDP 𝑃 each vertex has at least
one outgoing edge and each random vertex has at least one outgoing edge that is
not a self-loop. is is w.l.o.g. because ⋁1≤𝑗≤𝑘⦉1⦊as (𝑃 ,Reach(𝑇𝑗)) does not change
if we replace each vertex without outgoing edges by a vertex with a self-loop and
treat a random vertex whose only outgoing edge is a self-loop as a player 1 vertex.

Notation. Let 𝑃 ′ be the MDP derived from the MDP 𝑃 by contracting all MECs
of 𝑃 and let 𝑇 ′

𝑗 be the set of contracted vertices that represent some vertex of 𝑇𝑗 as
in Algorithm DisjReachMDP. We use the superscript ′ to denote sets related to the
MDP 𝑃 ′ and omit the superscript for sets related to the original MDP 𝑃 . Note that
since only strongly connected subgraphs are contracted in 𝑃 ′, it clearly holds that a
vertex 𝑣 ∈ 𝑉 can reach another vertex 𝑢 ∈ 𝑉 if and only if the vertex 𝑣′ ∈ 𝑉 ′ into
which 𝑣 is contracted to can reach the vertex 𝑢′ ∈ 𝑉 ′ into which 𝑢 is contracted to.

Fix some iteration 𝑗 and let 𝑆′ = GR(𝑃 ′, 𝑇 ′
𝑗 ), let 𝐴′ = Ar+

𝑅(𝑃 ′, 𝑉 ′ ⧵
𝑆′, 𝑇 ′

𝑗 ), and let 𝑊 ′
𝑗 = 𝑉 ′ ⧵ 𝐴′, that is, 𝑊 ′

𝑗 is the set added to 𝑊 ′ in the 𝑗-th
iteration of the for-loop of Algorithm DisjReachMDP. Let the same leers without
superscript denote the corresponding sets of vertices aer reverting the contraction
of the MECs of 𝑃 . We prove the correctness of the algorithm by first showing
𝑊𝑗 ⊆ ⦉1⦊as (𝑃 ,Reach(𝑇𝑗)) and then ⦉1⦊as (𝑃 ,Reach(𝑇𝑗)) ⊆ 𝑊𝑗 .

Lemma 6.3.6. For each 1 ≤ 𝑗 ≤ 𝑘 we have 𝑊𝑗 ⊆ ⦉1⦊as (𝑃 , Reach(𝑇𝑗)).

Proof. Let 𝐺[𝑊𝑗] = (𝑊𝑗 , 𝐸 ∩ (𝑊𝑗 × 𝑊𝑗)) be the subgraph induced by the vertices of
𝑊𝑗 . We establish two properties: (1) all outgoing edges of random vertices 𝑉𝑅 ∩ 𝑊𝑗
lead to vertices in 𝑊𝑗 , and (2) all vertices in 𝑊𝑗 ⧵ 𝑇𝑗 can reach 𝑇𝑗 in 𝐺[𝑊𝑗]. e
claim follows from these two properties using the same proof as for the classical
algorithm for almost-sure reachability in MDPs (folklore, see below).

(1) For vertices in 𝑉𝑅 we distinguish whether they are contained in a MEC of 𝑃
or not. In the first case, property (1) follows from the fact that a MEC has
no outgoing random edges and every MEC is either completely contained
in 𝑊𝑗 or completely contained in 𝑉 ⧵ 𝑊𝑗 . In the second case, property (1)
follows from the definition of an extended random extractor because a vertex
of 𝑉𝑅 ∩𝑊 ′

𝑗 with an edge to a vertex of 𝐴 = 𝑉 ⧵𝑊𝑗 would have been included
in the (extended) random aractor 𝐴′.
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(2) To show that every vertex in 𝑊𝑗 ⧵ 𝑇𝑗 can reach 𝑇𝑗 in 𝐺[𝑊𝑗], we use that by
Observation 6.3.3 the MDP 𝑃 ′ does not contain any non-trivial MEC. Assume
by contradiction that some vertices in 𝑊𝑗 ⧵𝑇𝑗 cannot reach 𝑇𝑗 in 𝐺[𝑊𝑗]. en
there exists a boom SCC 𝐶 (i.e. an SCC without outgoing edges, possibly a
single vertex) in 𝐺[𝑊𝑗] with 𝐶 ∩ 𝑇𝑗 = ∅. Note that every MEC in 𝐺[𝑊𝑗] is
completely contained in one of the SCCs of 𝐺[𝑊𝑗]. By property (1) 𝐶 has no
outgoing random edges in 𝑃 ; by this and the fact that 𝐶 is strongly connected,
the corresponding set 𝐶′ of contracted vertices in 𝑃 ′ would be a non-trivial
MEC in 𝑃 ′ if it contained more than one vertex. us 𝐶′ can contain only
one vertex 𝑐′ and this vertex has either no outgoing edge or only a self-loop
in 𝐺′

𝑊 ′
𝑗
. If 𝑐′ was a player 1 vertex, then all its outgoing edges would go to

vertices of 𝐴′ = 𝑉 ′ ⧵𝑊 ′
𝑗 or be a self-loop, hence 𝑐′ would have been included

in the extended random aractor 𝐴′. If 𝑐′ was a random vertex, then by the
assumption that in 𝑃 , and thus in 𝑃 ′, every random vertex has an outgoing
edge that is not a self-loop we would get a contradiction to property (1). us
no such boom SCC 𝐶 can exist, that is, every boom SCC of 𝐺[𝑊𝑗] contains
a vertex of 𝑇𝑗 and thus property (2) holds.

To see that the two established properties imply 𝑊𝑗 ⊆ ⦉1⦊as (𝑃 ,Reach(𝑇𝑗)), let
for a vertex 𝑢 ∈ 𝑊𝑗 be 𝑑(𝑢) the shortest path distance to a vertex in 𝑇𝑗 . Consider
the following strategy 𝜎 of player 1: For a player 1 vertex 𝑢, choose an edge to a
vertex 𝑣 such that 𝑑(𝑣) < 𝑑(𝑢). For a random vertex 𝑢, there is always an edge to
a vertex 𝑣 such that 𝑑(𝑣) < 𝑑(𝑢). Let ℓ = |𝑊𝑗| and let 𝛼 be the minimum positive
transition probability in the MDP 𝑃 . For all vertices 𝑣 ∈ 𝑊𝑗 the probability that 𝑇𝑗
is reached within ℓ steps is at least 𝛼ℓ, that is, the probability that 𝑇𝑗 is not reached
within 𝑏 ⋅ ℓ steps is at most (1 − 𝛼ℓ)𝑏, which goes to 0 as 𝑏 goes to ∞. us for all
𝑣 ∈ 𝑊𝑗 strategy 𝜎 ensures that 𝑇𝑗 is reached with probability 1.

Lemma 6.3.7. For each 1 ≤ 𝑗 ≤ 𝑘 we have ⦉1⦊as (𝑃 , Reach(𝑇𝑗)) ⊆ 𝑊𝑗 .

Proof. We prove ⦉1⦊as (𝑃 ,Reach(𝑇𝑗)) ⊆ 𝑊𝑗 by showing that 𝐴 = 𝑉 ⧵ 𝑊𝑗 is con-
tained in 𝑉 ⧵ ⦉1⦊as (𝑃 ,Reach(𝑇𝑗)), that is, that we have for all vertices 𝑎 ∈ 𝐴 and
every strategy 𝜎 of player 1 that Pr𝜎

𝑎 (𝑃 ,Reach(𝑇𝑗)) < 1. We show this by induc-
tion on the recursive definition of 𝐴′ = Ar+

𝑅(𝑃 ′, 𝑉 ′ ⧵ 𝑆′, 𝑇 ′
𝑗 ) = ⋃𝑖≥0 𝑍′

𝑖 , where
the sets 𝑍′

𝑖 are defined as in Definition 6.3.4 and the sets 𝑍𝑖 are the corresponding
sets aer reverting the contraction of the MECs of 𝑃 . Since the aractor computa-
tion is done on 𝑃 ′, each set 𝑍𝑖 either contains all vertices of a MEC of 𝑃 or none.
Clearly 𝐴 ∩ 𝑇𝑗 = ∅ as vertices in 𝑇 ′

𝑗 are explicitly excluded from 𝐴′. Player 1 can-
not reach 𝑇𝑗 almost surely from the vertices in 𝑍0 = 𝑉 ⧵ 𝑆 because these vertices
cannot reach any vertex in 𝑇𝑗 . Assume the claim holds for 𝑍𝑖, i.e., for all vertices
𝑧 ∈ 𝑍𝑖 and any strategy 𝜎 of player 1 we have Pr𝜎

𝑧 (𝑃 ,Reach(𝑇𝑗)) < 1. By the defi-
nition of 𝑍′

𝑖+1, for a random vertex 𝑣′ in 𝑍′
𝑖+1 ⧵ 𝑍′

𝑖 there is a positive probability to
reach a vertex in 𝑍′

𝑖 ; thus, Pr𝜎′

𝑣′ (𝑃 ′,Reach(𝑇 ′
𝑗 )) < 1 for any strategy 𝜎′ of player 1.
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Random vertices in 𝑃 ′ are not contracted, thus the same argument holds for 𝑍𝑖+1
and 𝑃 . A player-1 vertex 𝑥′ in 𝑍′

𝑖+1 ⧵ 𝑍′
𝑖 corresponds to either a player-1 vertex 𝑥

or a MEC 𝑋 in 𝑍𝑖+1 ⧵ 𝑍𝑖. In both cases all the edges from 𝑥 resp. 𝑋 lead to vertices
in 𝑍𝑖 or to 𝑥 resp. 𝑋 itself. Hence since 𝑥 ∉ 𝑇𝑗 resp. 𝑋 ∩ 𝑇𝑗 = ∅, we also have
Pr𝜎

𝑥 (Reach(𝑇𝑗)) < 1 for any strategy 𝜎 of player 1 and 𝑥 resp. all 𝑥 ∈ 𝑋.

Proposition 6.3.8 (Correctness). For anMDP 𝑃 and target sets 𝑇𝑗 ⊆ 𝑉 for 1 ≤ 𝑗 ≤ 𝑘
Algorithm DisjReachMDP returns the set ⋁1≤𝑗≤𝑘⦉1⦊as (𝑃 , Reach(𝑇𝑗)).

Proof. We have that a vertex is in ⋁1≤𝑗≤𝑘⦉1⦊as (𝑃 ,Reach(𝑇𝑗)) if and only if it is in
⦉1⦊as (𝑃 ,Reach(𝑇𝑗)) for some 1 ≤ 𝑗 ≤ 𝑘. us it is sufficient to show that in the 𝑗-th
iteration of the for-loop of Algorithm DisjReachMDP the set ⦉1⦊as (𝑃 ,Reach(𝑇𝑗))
is identified. Let 𝑊 ′

𝑗 denote the set of vertices in the contracted MDP 𝑃 ′ that
is identified in iteration 𝑗 and let 𝑊𝑗 denote the set of vertices obtained from
𝑊 ′

𝑗 by reverting the contraction of the MECs. By Lemma 6.3.6 we have 𝑊𝑗 ⊆
⦉1⦊as (𝑃 ,Reach(𝑇𝑗)) and by Lemma 6.3.7 we have ⦉1⦊as (𝑃 ,Reach(𝑇𝑗)) ⊆ 𝑊𝑗 .
Hence the union of the sets 𝑊𝑗 that is returned by the algorithm is equal to
⋁1≤𝑗≤𝑘⦉1⦊as (𝑃 ,Reach(𝑇𝑗)).

6.3.2 Conditional Lower Bounds for Disjunctive Reachability in
MDPs

Here we complement the above algorithm by conditional lower bounds for disjunc-
tive reachability queries in MDPs. ese lower bounds are based on the conjectures
CTC and OVC introduced in Section 2.7. We first present our lower bound on the
worst-case running time in terms of 𝑘 and 𝑛 based on CTC (which is equivalent to
BMM) that is particularly relevant for dense graphs with 𝑚 = 𝛩(𝑛2).

eorem 6.3.9. ere is no combinatorial 𝑂(𝑛3−𝜖) or 𝑂((𝑘 ⋅ 𝑛2)1−𝜖) time algorithm,
for any 𝜖 > 0, for disjunctive reachability queries in MDPs under Conjecture 2.7.3, i.e.,
unless CTC and BMM fail. In particular, there is no such algorithm deciding whether
the winning set is non-empty or deciding whether a specific vertex is in the winning
set.

We show the theorem using the following reduction from triangle detection.

Reduction 6.3.10. Given an instance of the triangle detection problem with a graph
𝐺 = (𝑉 , 𝐸), we build the following MDP 𝑃 = ((𝑉 ′, 𝐸′), (𝑉 ′

1 , 𝑉 ′
𝑅)). e target sets

for the disjunctive reachability queries on 𝑃 are given by 𝑇𝑣 = {𝑔𝑣} for 𝑔𝑣 as defined
below.

• e vertices 𝑉 ′ of 𝑃 are given by four copies 𝑉 1, 𝑉 2, 𝑉 3, 𝑉 4 of 𝑉 , a start ver-
tex 𝑠, and absorbing vertices 𝐹 = {𝑔𝑣 ∣ 𝑣 ∈ 𝑉 }. e edges 𝐸′ of 𝑃 are defined
as follows: For 1 ≤ 𝑖 ≤ 3 there is an edge from 𝑣𝑖 to 𝑢𝑖+1 iff (𝑣, 𝑢) ∈ 𝐸; fur-
thermore, there is an edge from 𝑠 to the first copy 𝑣1 ∈ 𝑉 1 of every 𝑣 ∈ 𝑉 , and
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Figure 6.1: Illustration of Reduction 6.3.10, with 𝐺 =
({𝑎, 𝑏, 𝑐}, {(𝑎, 𝑏), (𝑏, 𝑎), (𝑏, 𝑐), (𝑐, 𝑎)}). Cycles denote player-1 vertices, diamonds
random vertices.

the last copy 𝑣4 ∈ 𝑉 4 of every 𝑣 ∈ 𝑉 is connected to its first copy 𝑣1and its
corresponding absorbing vertex 𝑔𝑣 ∈ 𝐹 ; each absorbing vertex has a self-loop.

• e set of vertices 𝑉 ′ is partitioned into player-1 vertices 𝑉 ′
1 = {𝑠} ∪ 𝑉 1 ∪ 𝑉 2 ∪

𝑉 3 ∪ 𝐹 and random vertices 𝑉 ′
𝑅 = 𝑉 4. Moreover, the probabilistic transition

function for each vertex 𝑣 ∈ 𝑉 ′
𝑅 chooses among 𝑣’s successors uniformly at

random, i.e., with probability 1/2 each.

e reduction is illustrated in Figure 6.1. As all random choices are uniformly
at random, we omit the exact probabilities in the figures.

Next we prove that Reduction 6.3.10 is indeed a valid reduction from triangle
detection to disjunctive reachability queries in MDPs.

Lemma 6.3.11. Let 𝑃 be the MDP and 𝑇𝑣 for 𝑣 ∈ 𝑉 the target sets given by Reduc-
tion 6.3.10 for a graph 𝐺 = (𝑉 , 𝐸). e graph 𝐺 contains a triangle iff 𝑠 is contained
in ⋁𝑣∈𝑉 ⦉1⦊as (𝑃 , Reach(𝑇𝑣)).

Proof. For the only if part assume that 𝐺 has a triangle with vertices 𝑎, 𝑏, 𝑐 and let
𝑎𝑖, 𝑏𝑖, 𝑐𝑖 be the copies of 𝑎, 𝑏, 𝑐 in 𝑉 𝑖. Now a strategy for player 1 in the MDP 𝑃
to reach 𝑔𝑎 with probability 1 is as follows: When at 𝑠, go to 𝑎1; when at 𝑎1, go
to 𝑏2; when at 𝑏2, go to 𝑐3; when at 𝑐3, go to 𝑎4. As 𝑎, 𝑏, 𝑐 form a triangle, all the
edges required by the above strategy exist. When player 1 starts at 𝑠 and follows
the above strategy, the only random vertex she encounters is 𝑎4. e random choice
sends her to the target vertex 𝑔𝑎 and to vertex 𝑎1 with probability 1/2 each. In the
former case, she is done, in the laer case she continues playing her strategy and
reaches 𝑎4 again aer three steps. e probability that player 1 reaches 𝑔𝑎 in at most
3𝑞 + 1 steps is 1 − (1/2)𝑞 which converges to 1 when 𝑞 goes to infinity. us we
have found a strategy to reach 𝑔𝑎 with probability 1.

For the if part assume that 𝑠 ∈ ⋁𝑣∈𝑉 ⦉1⦊as (𝑃 ,Reach(𝑇𝑣)). at is, there is an
𝑎 ∈ 𝑉 such that 𝑠 ∈ ⦉1⦊as (𝑃 ,Reach(𝑇𝑎)). Let us consider a corresponding strategy
for reaching 𝑇𝑎 = {𝑔𝑎}. First, assume that a play resulting from the strategy would
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visit a vertex 𝑣4 for 𝑣 ∈ 𝑉 ⧵ {𝑎}. en with probability 1/2 the play would reach
the vertex 𝑔𝑣, which has no path to 𝑔𝑎, a contradiction to 𝑠 ∈ ⦉1⦊as (𝑃 ,Reach(𝑇𝑎)).
us the strategy has to prohibit that a play visits vertices 𝑣4 for 𝑣 ∈ 𝑉 ⧵ {𝑎}.
Second, as the only way to reach 𝑔𝑎 is 𝑎4, the strategy has to choose 𝑎4. But then
with probability 1/2 the play goes to 𝑎1 and there must be a path from 𝑎1 to 𝑔𝑎 that
does not cross 𝑉 4 ⧵ {𝑎4}. By the laer this path must be of the form 𝑎1, 𝑏2, 𝑐3, 𝑎4, 𝑔𝑎
for some 𝑏, 𝑐 ∈ 𝑉 . By the construction of the MDP 𝑃 , the vertices 𝑎, 𝑏, 𝑐 form a
triangle in the original graph 𝐺.

e size and the construction time of the MDP 𝑃 , constructed by Reduc-
tion 6.3.10, is linear in the size of the original graph 𝐺 and we have 𝑘 = 𝛩(𝑛)
target sets. us if we would have a combinatorial 𝑂(𝑛3−𝜖) or 𝑂((𝑘 ⋅ 𝑛2)1−𝜖) time
algorithm for disjunctive queries of reachability objectives in MDPs for some 𝜖 > 0,
we would immediately get a combinatorial 𝑂(𝑛3−𝜖) time algorithm for triangle
detection, which contradicts CTC and BMM.

Next we present a lower bound on the running time in terms of 𝑘 and 𝑚 based
on OVC (and thus SETH) that is particularly relevant for sparse graphs.

eorem 6.3.12. ere is no 𝑂(𝑚2−𝜖) or 𝑂((𝑘 ⋅ 𝑚)1−𝜖) time algorithm, for any 𝜖 > 0,
for disjunctive reachability queries in MDPs under Conjecture 2.7.5, i.e., unless OVC
and SETH fail. In particular, there is no such algorithm deciding whether the winning
set is non-empty or deciding whether a specific vertex is in the winning set.

To prove the above, we give a reduction from the orthogonal vectors problem
to disjunctive reachability queries in MDPs.

Reduction 6.3.13. Given two sets 𝑆1 and 𝑆2 of 𝑑-dimensional vectors, we build the
following MDP 𝑃 = ((𝑉 , 𝐸), (𝑉1, 𝑉𝑅)). e target sets for the disjunctive reachability
query are defined as 𝑇𝑣 = {𝑔𝑣} for 𝑔𝑣 as defined below.

• e vertices 𝑉 of the MDP 𝑃 are given by a start vertex 𝑠, vertices 𝑆1 and 𝑆2
representing the sets of vectors, vertices 𝒞 = {𝑐𝑖 ∣ 1 ≤ 𝑖 ≤ 𝑑} representing
the coordinates, and absorbing vertices 𝐹 = {𝑔𝑣 ∣ 𝑣 ∈ 𝑆2}. e edges 𝐸 of 𝑃
are defined as follows: for each 𝑥 ∈ 𝑆1 there is an edge to 𝑐𝑖 ∈ 𝒞 iff 𝑥𝑖 = 1
and for each 𝑦 ∈ 𝑆2 there is an edge from 𝑐𝑖 ∈ 𝒞 iff 𝑦𝑖 = 0; further, the start
vertex 𝑠 has an edge to every vertex of 𝑆1 and every vertex 𝑣 ∈ 𝑆2 has an edge
to 𝑠 and to its corresponding absorbing vertex 𝑔𝑣 ∈ 𝐹 ; every absorbing vertex
has a self-loop.

• e set of vertices 𝑉 is partitioned into player 1 vertices 𝑉1 = {𝑠} ∪ 𝒞 ∪ 𝐹 and
random vertices 𝑉𝑅 = 𝑆1 ∪ 𝑆2. e probabilistic transition function for each
vertex 𝑣 ∈ 𝑉𝑅 chooses among 𝑣’s successors uniformly at random.

e reduction is illustrated on an example in Figure 6.2.
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Figure 6.2: Illustration of Reduction 6.3.13 for 𝑆1 = {(1, 0, 0), (1, 1, 1), (0, 1, 1)} and
𝑆2 = {(1, 1, 0), (0, 1, 0), (0, 0, 1)}.

Lemma 6.3.14. Let 𝑃 = ((𝑉 , 𝐸), (𝑉1, 𝑉𝑅)) be the MDP and 𝑇𝑣 = {𝑔𝑣} for 𝑣 ∈ 𝑉 the
target sets given by Reduction 6.3.13 for an instance of the orthogonal vectors problem
specified by 𝑆1 and 𝑆2. ere exist orthogonal vectors 𝑥 ∈ 𝑆1 and 𝑦 ∈ 𝑆2 iff 𝑠 ∈
⋁𝑣∈𝑉 ⦉1⦊as (𝑃 , Reach(𝑇𝑣)).

Proof. If one of the sets 𝑆1 and 𝑆2 contains the all-zero vector, an orthogonal pair
of vectors exists trivially and this can be detected in linear time; thus we assume
w.l.o.g. that none of the sets contains the all-zero vector. To ensure that each vertex
in the constructed MDP contains an outgoing edge, we further assume that for each
coordinate 𝑖 there exists a vector 𝑦 ∈ 𝑆2 with 𝑦𝑖 = 0. is can be ensured within
the construction time of 𝑃 by removing vertices 𝑐𝑖 without outgoing edges and all
vertices 𝑥 ∈ 𝑆1 with an edge to such a coordinate vertex. is does not change
the orthogonal vector instance as every 𝑦 ∈ 𝑆2 has 𝑦𝑖 = 1 if 𝑐𝑖 does not have an
outgoing edge and thus there cannot exist an orthogonal pair that contains a vector
𝑥 ∈ 𝑆1 with 𝑥𝑖 = 1.

For the only if part assume that there are orthogonal vectors 𝑥 ∈ 𝑆1 and 𝑦 ∈ 𝑆2.
Now a strategy for player 1 in theMDP 𝑃 to reach 𝑔𝑦 with probability 1 is as follows:
When at 𝑠, go to 𝑥; when at some 𝑐 ∈ 𝒞 , go to 𝑦. As 𝑥 and 𝑦 are orthogonal, each
𝑐𝑖 ∈ 𝒞 reachable from 𝑥 has an edge to 𝑦, i.e., for 𝑥𝑖 = 1 it must be that 𝑦𝑖 = 0.
When player 1 starts at 𝑠 and follows the above strategy, she reaches 𝑦 aer three
steps. ere the random choice sends her, with probability 1/2 each, either to the
target vertex 𝑔𝑦 or back to vertex 𝑠. In the former case, she is done, in the laer
case she continues playing her strategy and reaches 𝑦 again aer three steps. e
probability that player 1 reaches 𝑔𝑦 in at most 3𝑞 steps is 1−(1/2)𝑞 , which converges
to 1 when 𝑞 goes to infinity. us this strategy reaches 𝑔𝑦 with probability 1.

For the if part assume that 𝑠 ∈ ⋁𝑣∈𝑉 ⦉1⦊as (𝑃 ,Reach(𝑇𝑣)). at is, there is
an 𝑦 ∈ 𝑆2 such that 𝑠 ∈ ⦉1⦊as (𝑃 ,Reach(𝑇𝑦)). Let us consider a corresponding
strategy for reaching 𝑇𝑦 = {𝑔𝑦}. First, assume that a play resulting from the strategy
would visit a vertex 𝑦′ ∈ 𝑆2 for 𝑦′ ≠ 𝑦. en with probability 1/2 the player
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would end up in the vertex 𝑔𝑦′ , which has no path to 𝑔𝑦, a contradiction to 𝑠 ∈
⦉1⦊as (𝑃 ,Reach(𝑇𝑦)). us the strategy has to prohibit that a play visits vertices of
𝑆2 ⧵ {𝑦}. Second, as the only way to reach 𝑔𝑦 is from 𝑦, the strategy has to choose 𝑦.
But then with probability 1/2 the play goes to 𝑠 and thus there must be a strategy
to reach 𝑔𝑦 from 𝑠 with probability 1 that does not cross 𝑆2 ⧵ {𝑦}. As 𝑦 is the only
predecessor of 𝑔𝑦, there must also be such a strategy to reach 𝑦. In other words,
there must be an 𝑥 ∈ 𝑆1 such that for each successor 𝑐𝑖 ∈ 𝒞 there is an edge to 𝑦.
By the construction of the MDP 𝑃 this is equivalent to the existence of an 𝑥 ∈ 𝑆1
such that whenever 𝑥𝑖 = 1 then 𝑦𝑖 = 0, and thus 𝑥 and 𝑦 are orthogonal vectors.

e number of vertices in 𝑃 , constructed by Reduction 6.3.13, is 𝑂(𝑁) and the
construction can be performed in 𝑂(𝑁 log 𝑁) time (recall that 𝑑 ∈ 𝑂(log 𝑁)). e
number of edges 𝑚 is 𝑂(𝑁 log 𝑁) (thus we consider 𝑃 to be a sparse MDP) and
the number of target sets 𝑘 ∈ 𝛩(𝑁) = 𝜃(𝑚/ log 𝑁). Finally, if we would have an
𝑂(𝑚2−𝜖) or 𝑂((𝑘⋅𝑚)1−𝜖) time algorithm for disjunctive reachability queries inMDPs
for any 𝜖 > 0, we would immediately get an 𝑂(𝑁2−𝜖) time algorithm for OV, which
contradicts OVC (and thus SETH).

6.4 Safety Objectives

It is well-known that computing the almost-sure (a.s.) winning set for a single safety
objective in an MDP is equivalent to computing the winning set of player 1 in game
graphs with safety objectives, where all the random vertices are owned by player 2
(see e.g. [CDH10]). Safety objectives in game graphs can be computed in 𝑂(𝑚) time
by computing a player-2 aractor to the target set and taking the complement (see
Section 2.5.3). us in MDPs the a.s. winning set for a single safety objective can
be computed in 𝑂(𝑚) time by computing a random aractor, and the a.s. winning
set for a disjunctive query can be determined in 𝑂(𝑘 ⋅ 𝑚) time by computing 𝑘
random aractors and taking the union of the winning sets. For safety objectives
memoryless strategies suffices, see, e.g., [o95].

By Observation 6.2.4 conjunctive safety objectives (which coincide with con-
junctive queries by Observation 6.2.1) can be reduced to single safety objectives in
𝑂(𝑏) time by taking the union of all the sets 𝑇𝑖.

Turning to disjunctive safety objectives, we have the same equivalence to game
graphs as for single objectives (see Observation 6.4.1 below). In a game graph the
disjunctive safety objective is the complementary objective to the conjunctive reach-
ability objective with the same sets and, since the winning sets of the two players
form a partition of the vertices of the game graph, the 𝘗 𝘚𝘗 𝘈𝘊𝘌 -hardness shown
in [FH10] also applies to disjunctive safety objectives.

Observation 6.4.1. Computing the a.s. winning set for a disjunctive safety objective
in anMDPwith player-1 vertices 𝑉1 and random vertices 𝑉𝑅 is equivalent to computing
the winning set in a game graph with the same disjunctive safety objective, where the
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game graph is obtained from the MDP by assigning the random vertices to player 2,
i.e., 𝑉2 = 𝑉𝑅.

Proof. We show that a vertex 𝑠 is almost-sure winning in the MDP if and only if it
is winning for player 1 in the game graph.
⇒∶ Assume 𝑠 is not winning for player 1 in the graph game. en 𝑠 is winning for
player 2 and thus player 2 has a strategy to visit all target sets from 𝑠. As there are
only finitely many target sets, all these target sets are visited aer a finite number
of steps, lets say aer ℓ steps. Now consider the corresponding MDP; with some
constant probability the random choices in the MDP follows exactly the strategy of
player 2 in the graph game for the first ℓ steps and thus all target sets are reached.
In this case player 1 cannot win almost surely from 𝑠. Hence, 𝑠 is not in the a.s.
winning set.
⇐∶ Assume player 1 has a winning strategy for the graph game starting in 𝑠. Since
this strategy is winning for each possible choice of player 2, it also winning for a
random choice.

6.4.1 Conditional Lower Bounds for Safety Objectives

We first present a lower bound for disjunctive safety objectives and queries based
on CTC that even holds on graphs. Recall that on graphs disjunctive objectives and
queries coincide.

eorem6.4.2. ere is no combinatorial𝑂(𝑛3−𝜖) or𝑂((𝑘⋅𝑛2)1−𝜖) time algorithm, for
any 𝜖 > 0, for disjunctive safety objectives (or queries) in graphs under Conjecture 2.7.3,
i.e., unless CTC and BMM fail. In particular, there is no such algorithm for deciding
whether the winning set is non-empty or for deciding whether a specific vertex is in the
winning set.

e above is by the following linear time reduction from triangle detection to
disjunctive safety objectives/queries in graphs.

Reduction 6.4.3. Given an instance of the triangle detection problem, i.e., a graph
𝐺 = (𝑉 , 𝐸), we build a graph 𝐺′ = (𝑉 ′, 𝐸′) and disjunctive safety objectives as
follows. e set of vertices 𝑉 ′ is the union of four copies 𝑉 1, 𝑉 2, 𝑉 3, 𝑉 4 of 𝑉 and a
vertex 𝑠. For 1 ≤ 𝑖 ≤ 3 a vertex 𝑣𝑖 ∈ 𝑉 𝑖 has an edge to a vertex 𝑢𝑖+1 ∈ 𝑉 𝑖+1 iff
(𝑣, 𝑢) ∈ 𝐸. e vertex 𝑠 has an edge to all vertices in 𝑉 1 and all vertices in 𝑉 4 have
an edge to 𝑠. e target sets are given by 𝑇𝑣 = (𝑉 1 ⧵ {𝑣1}) ∪ (𝑉 4 ⧵ {𝑣4}) for 𝑣 ∈ 𝑉 .

Reduction 6.4.3 is illustrated in Figure 6.3.

Lemma 6.4.4. Let 𝐺′ be the graph and 𝑇𝑣 for 𝑣 ∈ 𝑉 the target sets given by Reduc-
tion 6.4.3 for a graph 𝐺 = (𝑉 , 𝐸). e following statements are equivalent.

(1) 𝐺 contains a triangle.

(2) e vertex 𝑠 is in the winning set of (𝐺′, ⋁𝑣∈𝑉 Safe(𝑇𝑣)).
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Figure 6.3: Illustration of Reduction 6.4.3, with 𝐺 =
({𝑎, 𝑏, 𝑐, 𝑑}, {(𝑎, 𝑏), (𝑏, 𝑎), (𝑏, 𝑐), (𝑐, 𝑎), (𝑐, 𝑑), (𝑑, 𝑎)}). e target sets for the
disjunctive safety objective (or query) are 𝑇𝑎 = {𝑏1, 𝑐1, 𝑑1, 𝑏4, 𝑐4, 𝑑4}, 𝑇𝑏 =
{𝑎1, 𝑐1, 𝑑1, 𝑎4, 𝑐4, 𝑑4}, 𝑇𝑐 = {𝑎1, 𝑏1, 𝑑1, 𝑎4, 𝑏4, 𝑑4}, and 𝑇𝑑 = {𝑎1, 𝑏1, 𝑐1, 𝑎4, 𝑏4, 𝑐4}.

(3) e winning set of (𝐺′, ⋁𝑣∈𝑉 Safe(𝑇𝑣)) is non-empty.

Proof. (1)⇒(2): Assume that 𝐺 has a triangle with vertices 𝑎, 𝑏, 𝑐 and let 𝑎𝑖, 𝑏𝑖, 𝑐𝑖 be
the copies of 𝑎, 𝑏, 𝑐 in 𝑉 𝑖. Now a strategy for player 1 in 𝐺′ to satisfy Safe(𝑇𝑎) is as
follows: When at 𝑠, go to 𝑎1; when at 𝑎1, go to 𝑏2; when at 𝑏2, go to 𝑐3; when at 𝑐3,
go to 𝑎4; and when at 𝑎4, go to 𝑠. As 𝑎, 𝑏, 𝑐 form a triangle, all the edges required by
the above strategy exist. When player 1 starts at 𝑠 and follows the above strategy,
the resulting play uses only the vertices 𝑠, 𝑎1, 𝑏2, 𝑐3, 𝑎4 and thus satisfies Safe(𝑇𝑎).

(2)⇒(1): Assume that there is a winning play starting in 𝑠 that satisfies Safe(𝑇𝑎).
Starting from 𝑠, at first this play has to go to 𝑎1, as all other successors of 𝑠 would
violate the safety constraint. en the play continues with some vertices 𝑏2 ∈ 𝑉 2

and 𝑐3 ∈ 𝑉 3 and then, again by the safety constraint, has to reach 𝑎4. Now by
the construction of 𝐺′, we know that there must be edges (𝑎, 𝑏), (𝑏, 𝑐), (𝑐, 𝑎) in the
original graph 𝐺, i.e., there is a triangle in 𝐺.

(2)⇔(3): Notice that when removing 𝑠 from 𝐺′, we obtain an acyclic graph and
thus each infinite path has to contain 𝑠 infinitely oen. us, if the winning set
is non-empty, then there is a cycle winning for some vertex and this cycle is also
winning for 𝑠. For the converse direction we have that if 𝑠 is in the winning set,
then the winning set is non-empty.

e graph 𝐺′ defined by Reduction 6.4.3 has size linear in the size of the origi-
nal graph 𝐺 and can be constructed in linear time. Furthermore, we have 𝑘 = 𝛩(𝑛)
target sets. us if we would have a combinatorial 𝑂(𝑛3−𝜖) or 𝑂((𝑘 ⋅ 𝑛2)1−𝜖) time
algorithm for disjunctive safety objectives or queries in graphs, we would immedi-
ately obtain a combinatorial 𝑂(𝑛3−𝜖) time algorithm for triangle detection, which
contradicts CTC (and thus BMM).

e above reduction uses 𝛩(𝑛) safety constraints which are of size 𝛩(𝑛) each.
us, a natural question is whether smaller target sets would make the problem
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Figure 6.4: Illustration of how to reduce the number of entries in the tar-
get sets in Reduction 6.4.3 with two complete binary trees. Here 𝐺 =
({𝑎, 𝑏, 𝑐, 𝑑}, {(𝑎, 𝑏), (𝑏, 𝑎), (𝑏, 𝑐), (𝑐, 𝑎), (𝑐, 𝑑), (𝑑, 𝑎)}) and the target sets for disjunc-
tive safety are 𝑇𝑎 = {𝑏1, 𝑥2, 𝑏4, 𝑦2}, 𝑇𝑏 = {𝑎1, 𝑥2, 𝑎4, 𝑦2}, 𝑇𝑐 = {𝑑1, 𝑥1, 𝑑4, 𝑦1}, and
𝑇𝑑 = {𝑐1, 𝑥1, 𝑐4, 𝑦1}.

any easier. We argue next that our result even holds for target sets that are of
logarithmic size. To this end, we modify Reduction 6.4.3 as follows. We remove all
edges incident to 𝑠 and replace them by two complete binary trees. e first tree
with 𝑠 as root and the vertices 𝑉 1 as leaves is directed towards the leaves, the second
tree with root 𝑠 and leaves 𝑉 4 is directed towards 𝑠. Now for each pair 𝑣1, 𝑣4 one
can select one vertex of each level of the trees (except for the root levels) for the
set 𝑇𝑣 such that the only safe path starting in 𝑠 has to use 𝑣1 and each safe path
to 𝑠 must pass 𝑣4. As the depth of the trees is logarithmic in the number of leaf
vertices, we obtain sets of logarithmic size. e construction with the binary trees
is illustrated in Figure 6.4.

Next we present an 𝛺(𝑚2−𝑜(1)) time lower bound for disjunctive safety objec-
tives and queries in MDPs.

eorem 6.4.5. ere is no 𝑂(𝑚2−𝜖) or 𝑂((𝑘 ⋅ 𝑚)1−𝜖) time algorithm, for any 𝜖 > 0,
for disjunctive safety objectives or queries in MDPs under Conjecture 2.7.5, i.e., unless
OVC and SETH fail. In particular, there is no such algorithm for deciding whether the
winning set is non-empty or for deciding whether a specific vertex is winning.

To prove the above, we give a linear time reduction from OV to disjunctive
safety objectives and queries.

Reduction 6.4.6. Given two sets 𝑆1 and 𝑆2 of 𝑑-dimensional vectors, we build the
following MDP 𝑃 = ((𝑉 , 𝐸), (𝑉1, 𝑉𝑅)). e target sets are given by 𝑇𝑣 = {𝑣} for
𝑣 ∈ 𝑆2.

• e vertices 𝑉 of the MDP 𝑃 are given by a start vertex 𝑠, vertices 𝑆1 and 𝑆2
representing the sets of vectors, and vertices 𝒞 = {𝑐𝑖 ∣ 1 ≤ 𝑖 ≤ 𝑑} representing
the coordinates. e edges 𝐸 of 𝑃 are defined as follows: for each 𝑥 ∈ 𝑆1 there
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is an edge to 𝑐𝑖 ∈ 𝒞 iff 𝑥𝑖 = 1 and for each 𝑦 ∈ 𝑆2 there is an edge from 𝑐𝑖 ∈ 𝒞
iff 𝑦𝑖 = 1; further the start vertex 𝑠 has an edge to every vertex of 𝑆1 and every
vertex 𝑣 ∈ 𝑆2 has an edge to 𝑠.

• e set of vertices 𝑉 is partitioned into player 1 vertices 𝑉1 = {𝑠} ∪ 𝑆2 and
random vertices 𝑉𝑅 = 𝑆1 ∪ 𝒞 . Moreover, the probabilistic transition function
for each vertex 𝑣 ∈ 𝑉𝑅 chooses among 𝑣’s successors uniformly at random.

e reduction is illustrated on an example in Figure 6.5.

Lemma 6.4.7. Given two sets 𝑆1 and 𝑆2 of 𝑑-dimensional vectors and the correspond-
ing MDP 𝑃 and target sets 𝑇𝑣 for 𝑣 ∈ 𝑆2 given by Reduction 6.4.6, the following state-
ments are equivalent.

(1) ere exist orthogonal vectors 𝑥 ∈ 𝑆1 and 𝑦 ∈ 𝑆2.

(2) 𝑠 ∈ ⋁𝑣∈𝑆2
⦉1⦊as (𝑃 , Safe(𝑇𝑣))

(3) 𝑠 ∈ ⦉1⦊as (𝑃 , ⋁𝑣∈𝑆2
Safe(𝑇𝑣))

(4) e winning set ⋁𝑣∈𝑆2
⦉1⦊as (𝑃 , Safe(𝑇𝑣)) is non-empty.

(5) e winning set ⦉1⦊as (𝑃 , ⋁𝑣∈𝑆2
Safe(𝑇𝑣)) is non-empty.

Proof. W.l.o.g., we assume that the 1-vector, i.e., the vector with all coordinates
being 1, is contained in 𝑆2 (adding the 1-vector does not change the result of the
OV instance); this implies that all vertices of 𝒞 have an outgoing edge. If the set 𝑆1
contains the all-zero vector, an orthogonal pair of vectors exists trivially and this
can be detected in linear time; thus we further assume w.l.o.g. that each vector of
𝑆1 contains a non-zero entry and thus each vertex has an outgoing edge in 𝑃 .

A play in the MDP 𝑃 proceeds as follows. Starting from 𝑠, player 1 chooses
a vertex 𝑥 ∈ 𝑆1; then first a vertex 𝑐 ∈ 𝒞 and then a vertex 𝑦 ∈ 𝑆2 are picked
randomly; then the play goes back to 𝑠, starting another cycle of the play.

(1)⇒(2): Assume that there are orthogonal vectors 𝑥 ∈ 𝑆1 and 𝑦 ∈ 𝑆2. Now
player 1 can satisfy Safe(𝑇𝑦) in the MDP 𝑃 by going to 𝑥 whenever the play is at 𝑠.
e random player then picks some adjacent 𝑐 ∈ 𝒞 and then some adjacent vertex
of 𝑆2 but as 𝑥 and 𝑦 are orthogonal, no 𝑐 reachable from 𝑥 has an edge to 𝑦. us
the play never visits 𝑦.

(2)⇒(3): Assume 𝑠 ∈ ⋁𝑣∈𝑆2
⦉1⦊as (𝑃 , Safe(𝑇𝑣)). en there is a vertex 𝑦 ∈

𝑆2 such that 𝑠 ∈ ⦉1⦊as (𝑃 , Safe(𝑇𝑦)). Now we can enlarge the objective to
⋁𝑣∈𝑆2

Safe(𝑇𝑣) and obtain 𝑠 ∈ ⦉1⦊as (𝑃 , ⋁𝑣∈𝑆2
Safe(𝑇𝑣)).

(3)⇒(1): Assume 𝑠 ∈ ⦉1⦊as (𝑃 , ⋁𝑣∈𝑆2
Safe(𝑇𝑣)) and consider a corresponding

strategy 𝜎. W.l.o.g., we can assume that this strategy is memoryless [o95]. us
whenever a play is at 𝑠, the strategy picks a fixed 𝑥 ∈ 𝑆1 as the next vertex. Assume
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Figure 6.5: Illustration of Reduction 6.4.6, for 𝑆1 = {(1, 0, 0), (1, 1, 1), (0, 1, 1)} and
𝑆2 = {(1, 1, 0), (1, 1, 1), (0, 1, 0), (0, 0, 1)}.

towards contradiction that there is no orthogonal vector 𝑦 ∈ 𝑆2 for 𝑥. en for each
𝑦 ∈ 𝑆2 we have that there is a 𝑐 ∈ 𝒞 connecting 𝑥 to 𝑦. In each cycle of a play,
the play proceeds from 𝑠 to 𝑥 and then at random to some vertex of 𝑆2. By the
above, each of the vertices of 𝑆2 has a non-zero probability to be reached in this
cycle, which can, for each fixed 𝑛, be lower bounded by a constant 𝑝. us aer 𝑛
cycles of a play with probability at least 𝑝|𝑆2| all vertices in 𝑆2 have been visited and
thus none of the safety objectives is satisfied, a contradiction to the assumption that
with probability 1 at least one safety objective is satisfied. us there must exist a
vector 𝑦 ∈ 𝑆2 orthogonal to 𝑥.

(2)⇔(4) and (3)⇔(5): Notice that when removing 𝑠 from 𝑃 we get an acyclic
MDP and thus each infinite path has to contain 𝑠 infinitely oen. Certainly if 𝑠 is
in the a.s. winning set, this set is non-empty. us let us assume there is a vertex 𝑣
different from 𝑠 with a winning strategy 𝜎. All (winning) plays starting at 𝑣 cross 𝑠
aer at most 3 steps and thus 𝜎 must also be winning when starting at 𝑠.

e number of vertices in theMDP 𝑃 defined by Reduction 6.4.6 is 𝑂(𝑁) and the
number of edges 𝑚 is 𝑂(𝑁 log 𝑁) (recall that 𝑑 ∈ 𝛩(log 𝑁)). Furthermore, we have
𝑘 ∈ 𝛩(𝑁) target sets, and the construction can be performed in 𝑂(𝑁 log 𝑁) time.
us, if we would have an 𝑂(𝑚2−𝜖) or 𝑂((𝑘 ⋅ 𝑚)1−𝜖) time algorithm for disjunctive
queries or disjunctive objectives of safety objectives for some 𝜖 > 0, we would
immediately obtain an 𝑂(𝑁2−𝜖) time algorithm for OV, which contradicts OVC (and
thus SETH).
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6.5 MDPs with Rabin, Büchi, and co-Büchi Objectives

In the first part of this section we prove the following conditional lower bounds for
Rabin, disjunctive Büchi, and disjunctive co-Büchi objectives.

eorem 6.5.1. Assuming CTC or BMM, there is no combinatorial 𝑂(𝑛3−𝜖) or
𝑂((𝑘𝑛2)1−𝜖) time algorithm for any 𝜖 > 0 and any of the following problems:

(1) computing the a.s. winning set for an MDP with a disjunctive Büchi query;

(2) computing the winning set for a graph with a disjunctive co-Büchi objective and
thus also computing the a.s. winning set for an MDP with a disjunctive co-Büchi
objective or a disjunctive co-Büchi query;

(3) computing the a.s. winning set for an MDP with a Rabin objective.

eorem 6.5.2. Assuming SETH or OVC, there is no 𝑂(𝑚2−𝜖) or 𝑂((𝑘 ⋅ 𝑚)1−𝜖) time
algorithm for any of the following problems:

(1) computing the a.s. winning set for an MDP with a disjunctive Büchi query;

(2) computing the a.s. winning set for an MDP with a disjunctive co-Büchi objective
or a disjunctive co-Büchi query, even when each target set has cardinality one;

(3) computing the a.s. winning set for an MDP with a Rabin objective.

On the algorithmic side, we prove the following theorem in the second part of
this section. Note that a Rabin objective is a disjunctive objective of 1-pair Rabin ob-
jectives. e results for Büchi objectives are already implied by Observations 6.2.3
and 6.2.6, [CJH03; CH14], and eorem 6.3.1 and are only presented for the com-
pleteness of the presentation.

eorem 6.5.3. We are given anMDP 𝑃 = ((𝑉 , 𝐸), (𝑉1, 𝑉𝑅), 𝛿) and a Rabin objective
with target pairs TP = {(𝐿𝑗 , 𝑈𝑗) ∣ 1 ≤ 𝑗 ≤ 𝑘}. Let 𝑏 = ∑𝑘

𝑗=1(|𝐿𝑗| + |𝑈𝑗|) and let
 denote the time to compute a MEC-decomposition.

(1) e almost-sure winning set ⦉1⦊as (𝑃 , Rabin(TP)) can be computed in 𝑂(𝑘⋅)
time.

(2) If 𝑈𝑗 = ∅ for all 1 ≤ 𝑗 ≤ 𝑘, i.e., each target pair defines a Büchi objective,
then the almost-sure winning set for the disjunctive objective of the 1-Pair Rabin
objectives can be computed in 𝑂( + 𝑏) time and for the disjunctive query in
𝑂(𝑘 ⋅ 𝑚 + ) time.

(3) If 𝐿𝑗 = 𝑉 for all 1 ≤ 𝑗 ≤ 𝑘, i.e., each target pair defines a co-Büchi objective,
then the almost-sure winning set for the disjunctive objective and the disjunctive
query of the 1-Pair Rabin objectives can computed in 𝑂(𝑘 ⋅ 𝑚 + ) time.
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6.5.1 Conditional Lower Bounds for Rabin, Büchi and co-Büchi

e conditional lower bounds for Rabin and for disjunctive Büchi and co-Büchi
objectives are based on our results for reachability (see Section 6.3.2) and safety
objects (see Section 6.4.1) and the Observations 6.2.5, 6.2.6 & 6.2.8 that interlink
these objectives. Recall that by Observation 6.2.2 disjunctive objectives and queries
coincide for graphs but not MDPs.

Proposition 6.5.4. Assuming CTC or BMM, there is no combinatorial 𝑂(𝑛3−𝜖) or
𝑂((𝑘 ⋅ 𝑛2)1−𝜖) time algorithm for

(1) computing the winning set for an MDP with a disjunctive Büchi query,

(2) computing the winning set for a graph with a disjunctive co-Büchi objective, and

(3) computing the winning set for an MDP with a Rabin objective.

Moreover, there is no such algorithm deciding whether the winning set is non-empty or
for deciding whether a specific vertex is in the winning set.

Proof. 1) By Observation 6.2.6 in MDPs reachability queries can be reduced to Büchi
queries in linear time. us the result follows from the corresponding conditional
lower bound for reachability queries (cf. eorem 6.3.9).

2) By Observation 6.2.5 the winning set for disjunctive safety objectives is non-
empty iff the winning set for disjunctive co-Büchi objectives with the same target
sets is non-empty. us the result follows from the corresponding conditional lower
bound for safety objectives (cf. eorem 6.4.2).
For the problem of deciding whether a specific vertex is in the winning set, recall
that the graph 𝐺′ constructed in Reduction 6.4.3 is such that the vertex 𝑠 appears in
each infinite path and thus if there is a winning strategy starting from some vertex,
then there is also one starting from 𝑠. at is, deciding for 𝐺′ whether 𝑠 is winning
is equivalent to deciding whether the winning set is non-empty.

3) e result follows from (2) and Observation 6.2.8, by which disjunctive co-
Büchi objectives are special instances of Rabin objectives.

Proposition 6.5.5. Assuming SETH or OVC, there is no 𝑂(𝑚2−𝜖) or 𝑂((𝑘⋅𝑚)1−𝜖) time
algorithm for

(1) computing the winning set for an MDP with a disjunctive Büchi query;

(2) computing the winning set for an MDP with a disjunctive co-Büchi objective or
a disjunctive co-Büchi query, even when each target set has cardinality one;

(3) computing the winning set for an MDP with a Rabin objective.

Moreover, there is no such algorithm for deciding whether the winning set is non-empty
or deciding whether a specific vertex is in the winning set.
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Proof. 1) By Observation 6.2.6 in MDPs reachability queries can be reduced to Büchi
queries in linear time. us the result follows from the corresponding conditional
lower bound for reachability (cf. eorem 6.3.12).

2) By Observation 6.2.5 the winning set for a disjunctive safety objective resp.
query is non-empty iff the winning set for the disjunctive co-Büchi objective resp.
query with the same target sets is non-empty. us the result follows from the
corresponding conditional lower bounds for safety objectives (cf. eorem 6.4.5).
For the problem of deciding whether a specific vertex is in the winning set, recall
that the MDP 𝑃 constructed in Reduction 6.4.6 is such that vertex 𝑠 appears in each
infinite path and thus if there is a winning strategy starting from some vertex, then
there is also one starting from 𝑠. at is, deciding for 𝑃 whether 𝑠 is winning is
equivalent to deciding whether the winning set is non-empty. Note that all target
sets in Lemma 6.4.7 have cardinality one.

3) e result follows from (2) and Observation 6.2.8, by which disjunctive co-
Büchi objectives are special instances of Rabin objectives.

6.5.2 Algorithm for MDPs with Rabin Objectives

In this section we describe an algorithm for MDPs with Rabin objectives that consid-
ers each MEC of the input MDP separately. is formulation has the advantage that
for the special case of disjunctive co-Büchi objectives we can then obtain a faster
running time than previously known, which we describe in Section 6.5.4. e spe-
cial case of disjunctive Büchi objectives is described in Section 6.5.3. e results for
Büchi objectives are already implied by Observations 6.2.3 and 6.2.6, [CJH03; CH14],
and eorem 6.3.1 and are only presented for the completeness of the presentation.

For Rabin objectives a good end-component is defined as follows (see also Defi-
nition 2.6.1).

Definition 6.5.6 (Good Rabin end-component). Given an MDP 𝑃 and a set TP =
{(𝐿𝑗 , 𝑈𝑗) ∣ 1 ≤ 𝑗 ≤ 𝑘} of target pairs, a good (Rabin) end-component is an end-
component 𝑋 of 𝑃 such that 𝐿𝑗 ∩ 𝑋 ≠ ∅ and 𝑈𝑗 ∩ 𝑋 = ∅ for some 1 ≤ 𝑗 ≤ 𝑘.

As for Stree objectives, we determine the almost-sure winning set for Rabin
objectives by computing the almost-sure winning set for the reachability objective
with the union of all good Rabin end-components as target set. e correctness of
this approach follows from Corollary 2.6.5 and Proposition 2.6.9. Our strategy to
find all good Rabin end-components is as follows. First the MEC-decomposition of
the inputMDP 𝑃 is determined. For eachMEC 𝑋, and separately for each 1 ≤ 𝑗 ≤ 𝑘,
we first remove the set 𝑈𝑗 and its random aractor and then compute the MEC-
decomposition in the sub-MDP induced by the remaining vertices. Every newly
computed MEC that contains a vertex of 𝐿𝑗 is a good Rabin end-component. If the
MEC 𝑋 of 𝑃 contains one such good end-component, then by Corollary 2.6.6 all
vertices of 𝑋 are in the almost-sure winning set for the Rabin objective. us we
can immediately add 𝑋 to the set of winning MECs in line 8.2

2 We could alternatively add only the vertices in the good end-component because the winning
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Algorithm RabinMDP: Algorithm for MDPs with Rabin objectives
Input :MDP 𝑃 = ((𝑉 , 𝐸), (𝑉1, 𝑉𝑅), 𝛿) and

target pairs TP = {(𝐿𝑗 , 𝑈𝑗) ∣ 1 ≤ 𝑗 ≤ 𝑘}
Output : ⦉1⦊as (𝑃 ,Rabin(TP))

1 𝒳 ← MEC(𝑃 ); winMEC ← ∅
2 foreach 𝑋 ∈ 𝒳 do
3 for 1 ≤ 𝑗 ≤ 𝑘 do
4 if 𝐿𝑗 ∩ 𝑋 ≠ ∅ then
5 𝒴 ← MEC(𝑋 ⧵ Ar𝑅(𝑃 [𝑋], 𝑈𝑗))
6 foreach 𝑌 ∈ 𝒴 do
7 if 𝐿𝑗 ∩ 𝑌 ≠ ∅ then
8 winMEC ← winMEC ∪ {𝑋}
9 continue with next 𝑋 ∈ 𝒳

10 return ⦉1⦊as (𝑃 , Reach(⋃𝑋∈winMEC 𝑋))

Proposition 6.5.7 (Running time). Algorithm RabinMDP can be implemented in
𝑂(𝑘 ⋅ ) time.

Proof. e initialization of 𝒳 with all MECs of the input MDP 𝑃 can clearly be
done in 𝑂() time. Further, by eorem 6.3.1, the final almost-sure reachability
computation can be done in 𝑂() time3. Assume that each vertex has a list of the
sets 𝐿𝑗 and 𝑈𝑗 for 1 ≤ 𝑗 ≤ 𝑘 it belongs to; we can generate these lists from the lists
of the target pairs in 𝑂(𝑏) ∈ 𝑂(𝑛𝑘) time at the beginning of the algorithm. Consider
an iteration of the outer for-each loop, let 𝑋 denote the consideredMEC, and fix one
iteration 𝑗 of the 𝑘 iterations of the for-loop. Determining the intersection 𝐿𝑗 ∩ 𝑋
in line 4 can be done in 𝑂(|𝑋|) time. Let 𝑚𝑋 be the number of edges in 𝑃 [𝑋] and let
𝑋 denote the time needed to compute a MEC-decomposition on 𝑃 [𝑋]. Line 5
requires 𝑂(𝑚𝑋 + 𝑋) = 𝑂(𝑋) time. e inner for-each loop takes 𝑂(|𝑋|)
time as in each iteration 𝑂(|𝑌 |) time for the intersection in line 7 and constant time
for line 8 are sufficient. us in total we have 𝑂(𝑏++∑𝑋∈𝒳 𝑘⋅(|𝑋|+𝑋)) ∈
𝑂(𝑘 ⋅ ).

Proposition 6.5.8 (Correctness). Algorithm RabinMDP computes the almost-sure
winning set ⦉1⦊as (𝑃 , Rabin(TP)).

Proof. By the Corollaries 2.6.6 and 2.6.5 and Proposition 2.6.9 we know that it suf-
fices to correctly classify each MEC as either winning or not winning; we say a
MEC is winning iff it contains a good Rabin end-component, that is, it contains an

MEC would be detected as winning in the final almost-sure reachability computation; the presented
formulation shows the similarities to the co-Büchi algorithm in Section 6.5.4. Additionally, this allows
reusing the initial MEC-decomposition for the almost-sure reachability computation.

3Actually the almost-sure reachability computation can be done in 𝑂(𝑚) by reusing the already
computed MEC-decomposition.
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end-component 𝑋 such that 𝐿𝑗 ∩ 𝑋 ≠ ∅ and 𝑈𝑗 ∩ 𝑋 = ∅ for some 1 ≤ 𝑗 ≤ 𝑘.
e loops in lines 2 and 3 iterate over all MECs 𝑋 and all target pairs (𝐿𝑗 , 𝑈𝑗). It
remains to show that lines 4–8 correctly classify whether a MEC contains a good
end-component 𝑋′ with 𝐿𝑗 ∩ 𝑋′ ≠ ∅ and 𝑈𝑗 ∩ 𝑋′ = ∅.

• Assume 𝑋 contains a good end-component 𝑋′ with 𝐿𝑗 ∩ 𝑋′ ≠ ∅ and 𝑈𝑗 ∩
𝑋′ = ∅. en the if condition in line 4 is true and, in the 𝑗-th iteration of
the for-loop, the algorithm removes the random aractor of 𝑈𝑗 from 𝑋 and
computes the MECs 𝒴 of the MDP induced by the remaining vertices of 𝑋.
As 𝑋′ is strongly connected, has no outgoing random edges, and 𝑈𝑗 ∩𝑋′ = ∅,
it does not intersect with Ar𝑅(𝑃 [𝑋], 𝑈𝑗) by Lemma 2.6.10. us there is a
MEC 𝑌 ∈ 𝒴 that contains 𝑋′ and thus has 𝐿𝑗 ∩𝑌 ≠ ∅. Hence, the algorithm
correctly classifies the set 𝑋 as a winning MEC.

• Assume the algorithm classifies a MEC 𝑋 as winning. en for some 𝑗 in
line 7 there is an end-component 𝑌 ∈ 𝒴 of 𝑃 [𝑋 ⧵ Ar𝑅(𝑃 [𝑋], 𝑈𝑗)] with
𝐿𝑗 ∩ 𝑌 ≠ ∅ and 𝑈𝑗 ∩ 𝑌 = ∅, i.e., 𝑌 is a good end-component in 𝑃 [𝑋 ⧵
Ar𝑅(𝑃 [𝑋], 𝑈𝑗)]. Moreover, there cannot be a random edge from 𝑢 ∈ 𝑌
to Ar𝑅(𝑃 [𝑋], 𝑈𝑗) as such an 𝑢 would be included in the random aractor
Ar𝑅(𝑃 [𝑋], 𝑈𝑗); and by definition of a MEC, 𝑋 has no outgoing random
edges. us 𝑌 is also a good end-component of the full MDP 𝑃 , i.e., 𝑋 is
classified correctly.

By the above we have that whenever the outer for-each loop terminates, the set
winMEC consists of all winning MECs and then by Corollary 2.6.5 and Proposi-
tion 2.6.9 we can compute ⦉1⦊as (𝑃 ,Rabin(TP)) by computing the almost-sure win-
ning set for the reachability objective with the union of all winning MECs as target
set.

6.5.3 Algorithms for MDPs with Büchi Objectives

As Büchi objectives can be encoded by one-pair Rabin objectives, Algorithm Ra-
binMDP can also be used to compute the a.s. winning set for disjunctive Büchi ob-
jectives. However, Büchi objectives allow for some immediate simplifications that
result in Algorithm DisjObjBuchiMDP. is simplifications are based on the obser-
vation that for disjunctive Büchi objectives all sets 𝑈𝑗 are empty and therefore also
the random aractors computed in line 5 of AlgorithmRabinMDP are empty. Hence,
there is also no need to recompute theMECs, and therefore decidingwhether aMEC
is winning reduces to testing whether it intersects with one of the target sets.

Proposition 6.5.9 (Running time). Algorithm DisjObjBuchiMDP can be imple-
mented in 𝑂( + 𝑏) time.

Proof. e initialization of 𝒳 with all MECs of the input MDP 𝑃 and, by eo-
rem 6.3.1, the final almost-sure reachability computation can be done in 𝑂()
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Algorithm DisjObjBuchiMDP: MDPs with disjunctive Büchi objectives
Input : MDP 𝑃 = ((𝑉 , 𝐸), (𝑉1, 𝑉𝑅), 𝛿) and

target sets 𝑇𝑗 for 1 ≤ 𝑗 ≤ 𝑘
Output : ⦉1⦊as (𝑃 , ⋁1≤𝑗≤𝑘 Büchi(𝑇𝑗))

1 𝒳 ← MEC(𝑃 ); winMEC ← ∅; 𝑇 ← ⋃1≤𝑗≤𝑘 𝑇𝑗
2 foreach 𝑋 ∈ 𝒳 do
3 if 𝑇 ∩ 𝑋 ≠ ∅ then
4 winMEC ← winMEC ∪ {𝑋}

5 return ⦉1⦊as (𝑃 , Reach(⋃𝑋∈winMEC 𝑋))

time. Assume that each vertex has a flag indicating whether it is in one of the sets
𝑇𝑗 or in none of them; we can generate these flags from lists of the sets 𝑇𝑗 in 𝑂(𝑏)
time at the beginning of the algorithm. Consider an iteration of the for-each loop,
let 𝑋 denote the considered MEC, and fix some iteration 𝑗 of the for-loop. One it-
eration costs 𝑂(|𝑋|) time because in each iteration the intersection 𝑇 ∩ 𝑋 in line 3
can be determined in 𝑂(|𝑋|) time and line 4 takes constant time. us in total the
algorithm runs in 𝑂( + 𝑛 + 𝑏) ∈ 𝑂( + 𝑏) time.

Next we describe the algorithm for disjunctive Büchi queries with 𝑘 target
sets 𝑇𝑗 . Recall that by definition a vertex is in the a.s. winning set for a disjunctive
query if it is in the a.s. winning set for at least one of the objectives, i.e., we can de-
termine the a.s. winning set for the disjunctive query by taking the union of the a.s.
winning sets for each of the single objectives. We say that a MEC 𝑋 is winning for
a target set 𝑇𝑗 w.r.t. the Büchi objective defined by 𝑇𝑗 if 𝑇𝑗 ∩ 𝑋 ≠ ∅. Algorithm Dis-
jeryBuchiMDP first determines the winning MECs, denoted by winMEC𝑗 , for
each of the target sets 𝑇𝑗 separately. However, as the MEC-decomposition is inde-
pendent of the sets 𝑇𝑗 , it suffices to compute the MEC-decomposition once. e a.s.
winning set for the disjunctive Büchi query is then computed via a disjunctive reach-
ability query, where the 𝑗-th target set is given by the union of the winning MECs
for 𝑇𝑗 . Using Algorithm DisjReachMDP, the disjunctive reachability query takes
time 𝑂(𝑘 ⋅ 𝑚 +) (eorem 6.3.1). us the only differences to Algorithm DisjOb-
jBuchiMDP are that (a) the winning MECs are determined and stored separately for
each 𝑇𝑗 with 1 ≤ 𝑗 ≤ 𝑘 and (b) a disjunctive reachability query with 𝑘 target sets is
performed in the final step of the algorithm, while in Algorithm DisjObjBuchiMDP
it is sufficient to consider a single target set for almost-sure reachability. is
immediately results in a running time of 𝑂(𝑘 ⋅ 𝑚 +  + 𝑏) = 𝑂(𝑘 ⋅ 𝑚 + ).

Corollary 6.5.10 (Running time). Algorithm DisjeryBuchiMDP can be imple-
mented in 𝑂(𝑘 ⋅ 𝑚 + ) time.
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Algorithm DisjeryBuchiMDP: MDPs with disjunctive Büchi queries
Input : MDP 𝑃 = ((𝑉 , 𝐸), (𝑉1, 𝑉𝑅), 𝛿) and

target sets 𝑇𝑗 for 1 ≤ 𝑗 ≤ 𝑘
Output : ⋁1≤𝑗≤𝑘⦉1⦊as (𝑃 ,Büchi(𝑇𝑗))

1 𝒳 ← MEC(𝑃 )
2 for 1 ≤ 𝑗 ≤ 𝑘 do
3 winMEC𝑗 ← ∅
4 foreach 𝑋 ∈ 𝒳 do
5 for 1 ≤ 𝑗 ≤ 𝑘 do
6 if 𝑇𝑗 ∩ 𝑋 ≠ ∅ then
7 winMEC𝑗 ← winMEC𝑗 ∪ {𝑋}

8 return ⋁1≤𝑗≤𝑘⦉1⦊as (𝑃 , Reach(⋃𝑋∈winMEC𝑗
𝑋))

6.5.4 Algorithms for MDPs with co-Büchi Objectives

As co-Büchi objectives can be encoded by one-pair Rabin objectives, Algorithm Ra-
binMDP can be used to compute the a.s. winning set for disjunctive co-Büchi ob-
jectives. However, co-Büchi objectives allow for some simplifications that result
in the simpler and more efficient Algorithm DisjObjCoBuchiMDP. ese simplifica-
tions are based on the observation that for disjunctions of co-Büchi objectives all
sets 𝐿𝑗 coincide with the set of all vertices and therefore the if-conditions in lines 4
and 7 of Algorithm RabinMDP are always true. at is, whenever there is a vertex
in a MEC 𝑋 of 𝑃 that is not contained in Ar𝑅(𝑃 [𝑋], 𝑇𝑗), then there is a MEC in
𝑃 [𝑋 ⧵ Ar𝑅(𝑃 [𝑋], 𝑇𝑗)], which is a good end-component of 𝑃 . Testing whether
a MEC contains a good end-component for a co-Büchi objective coBüchi(𝑇𝑗) thus
reduces to testing whether the random aractor of 𝑇𝑗 covers the whole MEC.

Observation 6.5.11. For the disjunction of one-pair Stree objectives the same ideas
can be used (Table 6.5). For each MEC 𝑋 and each 𝑗 we check whether 𝑋 ∩ 𝐿𝑗 ≠ ∅
and 𝑋 ∩ 𝑈𝑗 = ∅. If this is the case, then we determine whether the random aractor
of 𝐿𝑗 covers the whole MEC. If the laer does not hold, then the MEC contains a good
end-component for the one-pair Stree objective.

Proposition 6.5.12 (Running time). Algorithm DisjObjCoBuchiMDP can be imple-
mented in 𝑂(𝑘 ⋅ 𝑚 + ) time.

Proof. e initialization of 𝒳 with all MECs of the input MDP 𝑃 and, by eo-
rem 6.3.1, the final almost-sure reachability computation can be done in 𝑂()
time. Consider an iteration of the for-each loop, let 𝑋 denote the considered MEC,
and fix some iteration 𝑗 of the for-loop. Let 𝑚𝑋 be the number of edges in 𝑃 [𝑋]. In
the 𝑗-th iteration we need 𝑂(|𝑚𝑋|) time to compute the random aractor in line 4
and constant time in line 5. us the total time is 𝑂(𝑘 ⋅ 𝑚 + ).
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Algorithm DisjObjCoBuchiMDP: MDPs with disjunctive co-Büchi obj.
Input : MDP 𝑃 = ((𝑉 , 𝐸), (𝑉1, 𝑉𝑅), 𝛿) and

target sets 𝑇𝑗 for 1 ≤ 𝑗 ≤ 𝑘
Output : ⦉1⦊as (𝑃 , ⋁1≤𝑗≤𝑘 coBüchi(𝑇𝑗))

1 𝒳 ← MEC(𝑃 ); winMEC ← ∅
2 foreach 𝑋 ∈ 𝒳 do
3 for 1 ≤ 𝑗 ≤ 𝑘 do
4 if 𝑋 ⊈ Ar𝑅(𝑃 [𝑋], 𝑇𝑗) then
5 winMEC ← winMEC ∪ {𝑋}
6 continue with next 𝑋 ∈ 𝒳

7 return ⦉1⦊as (𝑃 , Reach(⋃𝑋∈winMEC 𝑋))

Recall that we can determine the a.s. winning set for a disjunctive query by
taking the union of the a.s. winning sets for each of the single objectives. us
for disjunctive co-Büchi queries with target sets 𝑇𝑗 for 1 ≤ 𝑗 ≤ 𝑘, we consider
the target sets 𝑇𝑗 separately. However, as the MEC-decomposition is independent
of the target sets, it suffices to compute the MEC-decomposition once. We say
that a MEC 𝑋 is winning for a target set 𝑇𝑗 w.r.t. the co-Büchi objective specified
by 𝑇𝑗 if 𝑋 ⊈ Ar𝑅(𝑃 [𝑋], 𝑇𝑗). We test whether this is satisfied in l. 6 of Algo-
rithm DisjeryCoBuchiMDP.Whenever a MEC is winning for some 𝑇𝑗 , it is added
to winMEC𝑗 . e a.s. winning set for the disjunctive co-Büchi query can then be
determined by computing the a.s. winning set for a disjunctive query of 𝑘 reacha-
bility objectives, where the target set for the 𝑗-th reachability objective is the union
of the MECs in winMEC𝑗 . Compared to Algorithm DisjObjCoBuchiMDP, this in-
creases the running time for the almost-sure reachability computation to 𝑂(𝑘 ⋅ 𝑚)
(given the MEC-decomposition), which, however, is subsumed by the total run-
ning time of 𝑂(𝑘 ⋅ 𝑚 + ). e resulting algorithm is stated as Algorithm Dis-
jeryCoBuchiMDP.

Corollary 6.5.13 (Running time). Algorithm DisjeryCoBuchiMDP can be imple-
mented in 𝑂(𝑘 ⋅ 𝑚 + ) time.

6.6 Algorithm for Graphs with Singleton co-Büchi
Objectives

In this section we show how to compute in linear time the winning set for graphs
with a special type of disjunctive co-Büchi objective (or, equivalently, query),
namely when all sets 𝑇𝑗 for 1 ≤ 𝑗 ≤ 𝑘 have cardinality one. We assume w.l.o.g. that
the sets 𝑇𝑗 are pairwise disjoint.
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Algorithm DisjeryCoBuchiMDP: MDPs with disj. co-Büchi queries
Input : MDP 𝑃 = ((𝑉 , 𝐸), (𝑉1, 𝑉𝑅), 𝛿) and

target sets 𝑇𝑗 for 1 ≤ 𝑗 ≤ 𝑘
Output : ⋁1≤𝑗≤𝑘⦉1⦊as (𝑃 , coBüchi(𝑇𝑗))

1 𝒳 ← MEC(𝑃 )
2 for 1 ≤ 𝑗 ≤ 𝑘 do
3 winMEC𝑗 ← ∅
4 foreach 𝑋 ∈ 𝒳 do
5 for 1 ≤ 𝑗 ≤ 𝑘 do
6 if 𝑋 ⊈ Ar𝑅(𝑃 [𝑋], 𝑇𝑗) then
7 winMEC𝑗 ← winMEC𝑗 ∪ {𝑋}

8 return ⋁1≤𝑗≤𝑘⦉1⦊as (𝑃 , Reach(⋃𝑋∈winMEC𝑗
𝑋))

eorem 6.6.1. Given a graph 𝐺 = (𝑉 , 𝐸) and co-Büchi objectives 𝑇𝑗 with |𝑇𝑗| = 1
for 1 ≤ 𝑗 ≤ 𝑘, the winning set for the disjunctive co-Büchi objective (or, equivalently,
query) can be computed in 𝑂(𝑚) time.

We call an SCC winning if it contains a good component (see Section 2.6.1), i.e.,
a strongly connected subgraph induced by a set of vertices 𝑆 such that a play 𝜔
with Inf(𝜔) = 𝑆 satisfies the objective. To compute the winning set for disjunctive
singleton co-Büchi objectives, it is sufficient to detect whether a strongly connected
graph contains a cycle that does not contain all the vertices in the set 𝑇 = ⋃1≤𝑗≤𝑘 𝑇𝑗 .
To see this, first note that each non-trivial SCC of the graph (i.e., each SCC that
contains at least one edge) that does not contain all vertices of 𝑇 is winning. If
there is no SCC 𝑆 with 𝑇 ⊆ 𝑆 , then we can determine the winning set in linear
time by computing the vertices that can reach any non-trivial SCC. us it remains
to consider an SCC 𝑆 with 𝑇 ⊆ 𝑆 . For the relevant case of |𝑇 | > 1 we have that
𝑆 is a non-trivial SCC. Since 𝑆 is strongly connected, the vertices of 𝑆 can reach
each other and hence it is sufficient to compute whether 𝑆 contains a cycle that
does not contain all the vertices of 𝑇 (i.e., to solve the non-emptiness problem). If
such a cycle exists, then 𝑆 is winning, otherwise 𝑆 is not winning. In any case, the
winning set can then be determined by computing the vertices that can reach some
winning SCC.

We now describe the algorithm to determine whether a strongly connected
graph 𝐺 = (𝑉 , 𝐸) contains a simple cycle 𝐶 such that we have 𝑇𝑗 ∩ 𝐶 = ∅ for
some 1 ≤ 𝑗 ≤ 𝑘, given |𝑇𝑗| = 1 for all 𝑗. First we check whether 𝐺[𝑉 ⧵ 𝑇1] contains
a non-trivial SCC (l. 3). If this is true, then 𝐺 contains a cycle that does not contain
𝑇1 and we are done. Otherwise every cycle of 𝐺 contains 𝑇1. We assign the edges
of 𝐺 edge lengths as follows: All edges (𝑣, 𝑤) ∈ 𝐸 for which 𝑤 ∈ 𝑇 have length 1,
all other edges have length 0. Let 𝑠 denote the vertex in 𝑇1. Let 𝛿 be the length
of the shortest path (w.r.t. the edge lengths defined above) from 𝑠 to 𝑠 that uses at
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Algorithm SingletonCBGraph: Disjunctive singleton co-Büchi on graphs
Input : strongly connected graph 𝐺 = (𝑉 , 𝐸) and

disjoint target sets 𝑇𝑗 with |𝑇𝑗| = 1 for 1 ≤ 𝑗 ≤ 𝑘 and 𝑘 > 1
Output : “yes” if there is a cycle 𝐶 with 𝑇 ⊈ 𝐶 ; “no” otherwise

1 let 𝑇 = ⋃𝑗 𝑇𝑗
2 𝒞 ← SCC(𝐺[𝑉 ⧵ 𝑇1])
3 if 𝒞 contains non-trivial SCC then
4 return yes

5 else
6 let 𝑠 be the vertex in 𝑇1
7 replace 𝑠 with 𝑠in and 𝑠out: 𝑠in gets in-edges and 𝑠out gets out-edges of 𝑠
8 𝑄0 ← {𝑠out}; mark 𝑠out
9 for 𝑡 ← 0 to 𝑘 − 1 do

10 𝑄𝑡+1 ← ∅
11 while 𝑄𝑡 ≠ ∅ do
12 remove 𝑣 from 𝑄𝑡
13 if 𝑣 = 𝑠in then
14 return yes

15 foreach (𝑣, 𝑤) ∈ 𝐸 with 𝑤 not marked do
16 mark 𝑤
17 if 𝑤 ∈ 𝑇 then add 𝑤 to 𝑄𝑡+1
18 else add 𝑤 to 𝑄𝑡

19 return no

least one edge, i.e., the minimum length of a cycle containing 𝑠. We have that 𝛿 < 𝑘
if and only if this cycle with the length 𝛿 does not contain all vertices of 𝑇 . us
if 𝛿 < 𝑘, then 𝐺 is winning for the disjunctive co-Büchi objective, otherwise not.
Note that this algorithm would also work for a Rabin objective where we have for
each 1 ≤ 𝑗 ≤ 𝑘 that (a) 𝐿𝑗 = {𝑠} for some 𝑠 ∈ 𝑉 and (b) |𝑈𝑗| = 1.

Since all edge lengths are zero or one, we can compute 𝛿 in linear time. In Al-
gorithm SingletonCBGraph we additionally use that all incoming edges of a vertex
have the same length. Aer checking whether 𝐺[𝑉 ⧵𝑇1] contains a non-trivial SCC,
the algorithm works as follows. We modify the graph by replacing the vertex 𝑠 by
two vertices, 𝑠in and 𝑠out, and replacing 𝑠 in all edges (𝑣, 𝑠) ∈ 𝐸 with 𝑠in and in all
edges (𝑠, 𝑣) ∈ 𝐸 with 𝑠out (l. 7). en 𝛿 is equal to the shortest path from 𝑠out to
𝑠in. For the algorithm we consider both 𝑠in and 𝑠out to be contained in 𝑇 . In the
𝑡-th iteration of the for-loop we consider two “queues”, 𝑄𝑡 and 𝑄𝑡+1 (can be imple-
mented as sets). Each vertex is added to a queue at most once during the algorithm,
which is ensured by marking vertices when they are added to a queue (l. 16) and
only add before unmarked vertices. e following lemma shows that, until the ver-
tex 𝑠in is removed from 𝑄𝑡 and the algorithm terminates, precisely the vertices with
distance 𝑡 from 𝑠out are added to 𝑄𝑡 for each 𝑡. us 𝑠in is added to 𝑄𝑡 for some 𝑡 < 𝑘
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if and only if 𝛿 < 𝑘, which shows the correctness of the algorithm. e running
time of the algorithm is 𝑂(𝑚) because each vertex is added to and removed from a
queue at most once and thus the outgoing edges of a vertex are only examined once,
namely when it is removed from a queue (l. 12).

Lemma 6.6.2. Before each iteration 𝑡 of the for-loop in Algorithm SingletonCBGraph,
with 𝑡 ranging from 0 to 𝑘 − 1, the queue 𝑄𝑡 contains the vertices of 𝑇 with distance 𝑡
from 𝑠out. During iteration 𝑡, the vertices of 𝑉 ⧵ 𝑇 with distance 𝑡 from 𝑠out are added
to 𝑄𝑡. No other vertices are added to 𝑄𝑡.

Proof. e proof is by induction over the iterations of the for-loop. Before the first
iteration (𝑡 = 0), 𝑄0 is initialized with 𝑠out and all queues 𝑄𝑡 for 𝑡 > 0 are empty,
thus the induction base holds. Assume the claim holds before the 𝑡-th iteration. At
the end of the while-loop, 𝑄𝑡 is empty; every vertex 𝑣 that has been added to 𝑄𝑡
before or in the 𝑡-th iteration of the for-loop is removed from 𝑄𝑡 in some iteration
of the while-loop. en all the unmarked vertices 𝑤 with (𝑣, 𝑤) ∈ 𝐸 are marked
and added to 𝑄𝑡 if the edge (𝑣, 𝑤) has length zero or added to 𝑄𝑡+1 if the edge (𝑣, 𝑤)
has length one. A vertex 𝑢 ∈ 𝑉 ⧵ 𝑇 with distance at least 𝑡 from 𝑠out has distance
exactly 𝑡 if and only if it can be reached from some vertex 𝑣 ∈ 𝑇 that has distance 𝑡
by a sequence of zero length edges. e while-loop precisely adds these vertices to
𝑄𝑡. Further, a vertex 𝑢 ∈ 𝑉 ∩ 𝑇 has distance 𝑡 + 1 if and only if it has an edge from
some vertex 𝑣 ∈ 𝑉 that has distance 𝑡. e while-loop adds exactly these vertices
to 𝑄𝑡+1.

6.7 Conclusion

In this chapter we present new algorithms and the first conditional super-linear
lower bounds for several fundamental model-checking problems in graphs and
MDPs w.r.t. to 𝜔-regular objectives. Our results establish the first model separation
results for graphs and MDPs w.r.t. to classical 𝜔-regular objectives, and the first
objective separation results both in graphs and MDPs for dual objectives, and the
conjunction and disjunction of objectives of the same type. An interesting direc-
tion for future work is to consider similar results for other models, such as, graphs
games. First results in this direction can be found in Chapter 7.

For sparse MDPs with Rabin objectives it remains open to close the gap between
the 𝑂(𝑘𝑚1.5) upper bound and the 𝛺((𝑘𝑚)1−𝑜(1)) conditional lower bound. Further-
more, it would be interesting to remove the “combinatorial” assumption from the
conditional lower bounds for dense graphs, or show that fast matrix multiplication
can be used to obtain faster algorithms.





CHAPTER 7
Generalized Büchi and

Generalized Reactivity-1 Games

7.1 Introduction

In this chapter we consider game graphs with generalized Büchi and GR(1) objec-
tives. Since for reactive systems there are multiple requirements, the conjunction
of Büchi objectives, which is known as generalized Büchi objective, is a very central
objective to study for game graphs. Generalized Büchi objectives are required to
specify progress conditions of mutual exclusion protocols, and deterministic Büchi
automata can expressmany important properties of linear-time temporal logic (LTL)
(the de-facto logic to specify properties of reactive systems) [KV05; KV98; AT04;
KPB94]. e analysis of reactive systems with such objectives naturally gives rise
to generalized Büchi games.

GR(1) (generalized reactivity (1)) objectives are currently a very popular class
of objectives to specify behaviors of reactive systems [PPS06]. A GR(1) objective
is an implication between two generalized Büchi objectives: the antecedent gen-
eralized Büchi objective is called the assumption and the consequent generalized
Büchi objective is called the guarantee. In other words, the objective requires that
if the assumption generalized Büchi objective is satisfied, then the guarantee gen-
eralized Büchi objective must also be satisfied. Game graphs with GR(1) objectives
have been used in many applications, such as the industrial example of synthesis of
AMBA AHB protocol [Blo+07; GCH13] as well as in robotics applications [FKP05;
Cha+15a].

For the problems we consider, while polynomial-time algorithms are known,
there are no super-linear lower bounds. Since for polynomial-time algorithms un-
conditional super-linear lower bounds are very rare in the whole of computer sci-
ence, we consider conditional lower bounds, which assume that for somewell-studied
problem the known algorithms are optimal up to some lower-order factors. We con-
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sider two such well-studied assumptions, (A1) the combinatorial Boolean matrix
multiplication conjecture (BMM) and (A2) the Strong Exponential Time Hypothesis
(SETH). e conjectures are formally stated in Section 2.7, see Chapter 1 for their
relevance and other conjectures.

We will distinguish between results most relevant for sparse graphs, where the
number of edges 𝑚 is roughly proportional to the number of vertices 𝑛, and dense
graphs with 𝑚 = 𝛩(𝑛2). Sparse graphs arise naturally in program verification, as
control-flow graphs are sparse [o98; Cha+15b]. Graphs obtained as synchronous
product of several components (where each component makes transitions at each
step) [KP09; Cha+16d] can lead to dense graphs.

Recall from Chapters 1 and 2 that the basic algorithmic problem is to compute
the winning set, i.e., the set of starting vertices where player 1 can ensure the objec-
tive irrespective of the way player 2 plays; the way player 1 achieves this is called
her winning strategy. We specify a game by a game graph 𝒢 and an objective 𝜙 for
player 1. Player 2 has the complementary objective 𝛺 ⧵ 𝜙.

Our results. We consider game graphs with 𝑛 vertices and 𝑚 edges with general-
ized Büchi objectives with 𝑘 conjunctions, and target sets of size 𝑏1, 𝑏2, … , 𝑏𝑘, and
GR(1) objectives with 𝑘1 conjunctions in the assumptions and 𝑘2 conjunctions in
the guarantee. Below we state our results in relation to existing work.

• Generalized Büchi objectives. e classical algorithm for generalized Büchi
objectives requires 𝑂(𝑘 ⋅ min1≤ℓ≤𝑘 𝑏ℓ ⋅ 𝑚) time. Furthermore, there exists an
𝑂(𝑘2 ⋅ 𝑛2) time algorithm via a reduction to Büchi games [Blo+10; CH14].

(1) Dense graphs. Since min1≤ℓ≤𝑘 𝑏ℓ = 𝑂(𝑛) and 𝑚 = 𝑂(𝑛2), in terms of 𝑛
and 𝑘 the classical algorithm has a worst-case running time of 𝑂(𝑘 ⋅ 𝑛3).
First, we present an algorithm with worst-case running time 𝑂(𝑘 ⋅ 𝑛2),
which is an improvement for instances with min1≤ℓ≤𝑘 𝑏ℓ ⋅ 𝑚 = 𝜔(𝑛2).
Second, for dense graphs with 𝑚 = 𝛩(𝑛2) and 𝑘 = 𝛩(𝑛𝑐) for any 0 <
𝑐 ≤ 1 our algorithm is optimal under (A1); i.e., improving our algorithm
for dense graphs would imply a sub-cubic combinatorial Boolean matrix
multiplication algorithm.

(2) Sparse graphs. We show that for 𝑘 = 𝛩(𝑛𝑐) for any 0 < 𝑐 ≤ 1, for target
sets of constant size, and sparse graphs with 𝑚 = 𝛩(𝑛1+𝑜(1)) the basic
algorithm is optimal under (A2). In fact, our conditional lower bound
under (A2) holds even when each target set is a singleton. ite strik-
ingly, our result implies that improving the basic algorithm for sparse
graphs even with singleton sets would imply a major breakthrough in
overcoming the exponential barrier for SAT.

In summary, for games on graphs, we present an improved algorithm for gen-
eralized Büchi objectives for dense graphs that is optimal under (A1); and
show that under (A2) the basic algorithm is optimal for sparse graphs and
constant size target sets.
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e conditional lower bound for dense graphs means in particular that for
unrestricted inputs the dependence of the running time on 𝑛 cannot be im-
proved, whereas the bound for sparse graphs makes the same statement for
the dependence on 𝑚. Moreover, as the graphs in the reductions for our lower
bounds can be made acyclic by deleting a single vertex, our lower bounds
also apply to a broad range of digraph parameters. For instance, let 𝑤 be the
DAG-width [Ber+06] of a graph, then there is no 𝑂(𝑓(𝑤) ⋅ (𝑘 ⋅ 𝑛2)1−𝑜(1)) time
algorithm (A1) and no 𝑂(𝑓(𝑤) ⋅ (𝑘𝑚)1−𝑜(1)) time algorithm under (A2).

• GR(1) objectives. We present an algorithm for games on graphs with GR(1)
objectives that has 𝑂(𝑘1 ⋅ 𝑘2 ⋅ 𝑛2.5) running time and improves the previously
known 𝑂(𝑘1 ⋅ 𝑘2 ⋅ 𝑚 ⋅ 𝑛) time algorithm [JP06] for 𝑚 ∈ 𝜔(𝑛1.5). Note that
since generalized Büchi objectives are special cases of GR(1) objectives, our
conditional lower bounds for generalized Büchi objectives apply to GR(1) ob-
jectives as well, but are not tight.

All our algorithms can easily be modified to also return the corresponding winning
strategies for both players within the same time bounds.

Comparison with related models. We compare our results for game graphs
to the special case of (standard) graphs (i.e., games with only player 1) and the
related model of Markov decision processes (MDPs) (with player 1 and stochas-
tic transitions). First note that for reachability objectives, linear-time algorithms
exist for game graphs [Bee80; Imm81], whereas for MDPs (for the computation
of the almost-sure winning set) the best-known algorithm has a running time of
𝑂(min(𝑛2, 𝑚1.5)) [CJH03; CH14]. For MDPs with reachability objectives, a linear or
even 𝑂(𝑚 log 𝑛) time algorithm is a major open problem, i.e., there exist problems
that seem harder on MDPs than on game graphs. Our conditional lower bound re-
sults show that under assumptions (A1) and (A2) the algorithmic problem for gen-
eralized Büchi objectives is strictly harder on game graphs as compared to standard
graphs and MDPs. More concretely, for 𝑘 = 𝛩(𝑛), (a) for dense graphs (𝑚 = 𝛩(𝑛2))
and min1≤ℓ≤𝑘 𝑏ℓ = 𝛺(log 𝑛), our lower bound for games on graphs under (A2) is
𝛺(𝑛3−𝑜(1)), whereas both the graph and the MDP problems can be solved in 𝑂(𝑛2)
time [CH14]; and (b) for sparse graphs (𝑚 = 𝛩(𝑛1+𝑜(1))) with min1≤ℓ≤𝑘 𝑏ℓ = 𝑂(1),
our lower bound for games on graphs under (A1) is 𝛺(𝑚2−𝑜(1)), whereas the graph
problem can be solved in 𝑂(𝑚) time and the MDP problem in 𝑂(𝑚1.5) time [AH04;
CH14]; respectively.

Outline. In Section 7.2 we consider algorithms for generalized Büchi objectives
and first present a basic algorithm which is in 𝑂(𝑘𝑚𝑛) time and then improve it to
an 𝑂(𝑘 ⋅ 𝑛2) time algorithm. In Section 7.3 we provide conditional lower bounds for
generalized Büchi objectives. Finally, in Section 7.4 we study algorithms for games
with GR(1) objective and first give a basic algorithm which is in 𝑂(𝑘1 ⋅ 𝑘2 ⋅ 𝑛3) time
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(using the 𝑂(𝑘⋅𝑛2) time algorithm for generalized Büchi games as a subroutine) and
then improve it to an 𝑂(𝑘1 ⋅ 𝑘2 ⋅ 𝑛2.5) time algorithm.

7.2 Algorithms for Generalized Büchi Games

For generalized Büchi games we first present the basic algorithm that follows from
the results of [EJ91; McN93; Zie98]. e basic algorithm (cf. AlgorithmGenBuchiBa-
sic) runs in time 𝑂(𝑘𝑚𝑛). We then improve it to an 𝑂(𝑘 ⋅ 𝑛2) time algorithm by ex-
ploiting ideas from the 𝑂(𝑛2) time algorithm for Büchi games in [CH14]. e basic
algorithm is fast for instances where one target set is small, i.e., the algorithm runs
in time 𝑂(𝑘 ⋅ 𝑚𝑖𝑛1≤ℓ≤𝑘𝑏ℓ ⋅ 𝑚) time, where 𝑏ℓ = |𝑇ℓ|.

Reduction to Büchi games. Another way to implement generalized Büchi
games is by a reduction to Büchi games as follows (see also [Blo+10]). Make 𝑘
copies 𝑉 ℓ, 1 ≤ ℓ ≤ 𝑘, of the vertices of the original game graph and draw an edge
(𝑣ℓ, 𝑢ℓ) if (𝑣, 𝑢) is an edge in the original graph and 𝑣 ∉ 𝑇ℓ, and an edge (𝑣ℓ, 𝑢ℓ⊕1)
if (𝑣, 𝑢) is an edge in the original graph and 𝑣 ∈ 𝑇ℓ (where ℓ ⊕ 1 = ℓ + 1 for
ℓ < 𝑘 and 𝑘 ⊕ 1 = 1). Finally, pick the target set 𝑇ℓ of minimal size and make its
copy 𝑇 ℓ

ℓ in 𝑉 ℓ the target set for the Büchi game. is reduction results in another
𝑂(𝑘 ⋅ 𝑚𝑖𝑛1≤ℓ≤𝑘𝑏ℓ ⋅ 𝑚) time algorithm when combined with the basic algorithm for
Büchi games and in an 𝑂(𝑘2𝑛2) time algorithm when combined with the 𝑂(𝑛2) time
algorithm for Büchi games [CH14].

Notation. Our algorithms iteratively identify sets of vertices that are winning for
player 2, i.e., player-2 dominions, and remove them from the graph. In the algo-
rithms and their analysis we denote the sets in the 𝑡-th-iteration with superscript 𝑡,
in particular 𝒢 1 = 𝒢 , where 𝒢 is the input game graph, 𝐺𝑡 is the graph of 𝒢 𝑡, 𝑉 𝑡 is
the vertex set of 𝐺𝑡, and 𝑇 𝑡

ℓ = 𝑉 𝑡 ∩ 𝑇ℓ. We also use {𝑇 𝑡
ℓ} to denote the list of target

sets (𝑇 𝑡
1, 𝑇 𝑡

2, … , 𝑇 𝑡
𝑘), in particular when updating all the sets in a uniform way.

7.2.1 Basic Algorithm

In this subsection we establish the foundations for our improved algorithm for gen-
eralized Büchi games by providing a proof of the following folklore theorem.

eorem 7.2.1 (folklore). e winning sets for generalized Büchi games with 𝑛 ver-
tices and 𝑘 target sets can be computed in time 𝑂(𝑘 ⋅ min1≤ℓ≤𝑘 𝑏ℓ ⋅ 𝑚) ∈ 𝑂(𝑘𝑚𝑛).

e intuition behind the basic algorithm for generalized Büchi games is as fol-
lows. Recall that for a player-1 closed set 𝑈 , player 2 has a strategy from each vertex
𝑢 ∈ 𝑈 that ensures that the play never leaves 𝑈 (see Section 2.5.3). us, if for a
1-closed set 𝑈 there is a target set 𝑇ℓ with 𝑇ℓ ∩ 𝑈 = ∅, then the set 𝑈 is a player-2
dominion. Moreover, if 𝑈 is a player-2 dominion, also the aractor Ar2(𝒢 , 𝑈) of
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𝑈 is a player-2 dominion. e basic algorithm (cf. Algorithm GenBuchiBasic) pro-
ceeds as follows. It iteratively computes vertex sets 𝑆 𝑡 closed for player 1 that do
not intersect with one of the target sets. If such a player-2 dominion 𝑆 𝑡 is found,
then all vertices of Ar2(𝒢 𝑡, 𝑆 𝑡) are marked as winning for player 2 and removed
from the game graph. e remaining game graph is denoted by 𝒢 𝑡+1. To find a
player-2 dominion 𝑆 𝑡, for each 1 ≤ ℓ ≤ 𝑘 the aractor 𝑌 𝑡

ℓ = Ar1(𝒢 𝑡, 𝑇 𝑡
ℓ) of the

target set 𝑇 𝑡
ℓ is determined. If for some ℓ the complement of 𝑌 𝑡

ℓ is not empty, then
we assign 𝑆 𝑡 = 𝑉 𝑡 ⧵ 𝑌 𝑡

ℓ for the smallest such ℓ. e algorithm terminates if in some
iteration 𝑡 for each 1 ≤ ℓ ≤ 𝑘 the aractor 𝑌 𝑡

ℓ contains all vertices of 𝑉 𝑡. In this
case the set 𝑉 𝑡 is returned as the winning set of player 1. e winning strategy of
player 1 from these vertices is then a combination of the aractor strategies to the
sets 𝑇 𝑡

ℓ.

Algorithm GenBuchiBasic: Generalized Büchi games in 𝑂(𝑘 ⋅ 𝑏1 ⋅ 𝑚) time
Input :game graph 𝒢 = (𝐺, (𝑉1, 𝑉2)) with graph 𝐺 = (𝑉 , 𝐸) and

generalized Büchi objective ⋀1≤ℓ≤𝑘 Büchi(𝑇ℓ)
Output : winning set of player 1

1 𝒢 1 ← 𝒢
2 {𝑇 1

ℓ } ← {𝑇ℓ}
3 𝑡 ← 0
4 repeat
5 𝑡 ← 𝑡 + 1
6 for 1 ≤ ℓ ≤ 𝑘 do
7 𝑌 𝑡

ℓ ← Ar1(𝒢 𝑡, 𝑇 𝑡
ℓ)

8 𝑆𝑡 ← 𝑉 𝑡 ⧵ 𝑌 𝑡
ℓ

9 if 𝑆 𝑡 ≠ ∅ then break
10 𝐷𝑡 ← Ar2(𝒢 𝑡, 𝑆 𝑡)
11 𝒢 𝑡+1 ← 𝒢 𝑡 ⧵ 𝐷𝑡

12 {𝑇 𝑡+1
ℓ } ← {𝑇 𝑡

ℓ ⧵ 𝐷𝑡}
13 until 𝐷𝑡 = ∅
14 return 𝑉 𝑡

Proposition 7.2.2 (Running time). Algorithm GenBuchiBasic terminates in 𝑂(𝑘⋅𝑏1 ⋅
𝑚) time, where 𝑏1 = |𝑇1|, and thus also in 𝑂(𝑘𝑚𝑛) time .

Proof. In each iteration of the repeat-until loop at most 𝑘+1 aractor computations
are performed, each of which can each be done in 𝑂(𝑚) time. We next argue that
the repeat-until loop terminates aer at most 2𝑏1 + 2 iterations. We use that (a)
a player-2 edge from 𝑌 𝑡

ℓ = Ar1(𝒢 𝑡, 𝑇 𝑡
ℓ) to 𝑉 𝑡 ⧵ 𝑌 𝑡

ℓ has to originate from a vertex
of 𝑇 𝑡

ℓ and (b) if a player-1 aractor contains a vertex set, then it contains also the
player-1 aractor of this vertex set. In each iteration we have one of the following
situations:

(1) 𝑆 𝑡 = ∅: e algorithm terminates.
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(2) Ar1(𝒢 𝑡, 𝑇 𝑡
1) = 𝑉 𝑡 and Ar1(𝒢 𝑡, 𝑇 𝑡

ℓ) ≠ 𝑉 𝑡 for some ℓ > 1: We have that 𝑇 𝑡
1 ⊈

Ar1(𝒢 𝑡, 𝑇 𝑡
ℓ) as 𝑇 𝑡

1 ⊆ Ar1(𝒢 𝑡, 𝑇 𝑡
ℓ) would imply that also Ar1(𝒢 𝑡, 𝑇 𝑡

1) =
𝑉 𝑡 ⊆ Ar1(𝒢 𝑡, 𝑇 𝑡

ℓ), which is in contradiction to the assumption. us we
obtain |𝑇 𝑡+1

1 | < |𝑇 𝑡
1|.

(3) Ar1(𝒢 𝑡, 𝑇 𝑡
1) ≠ 𝑉 𝑡 and 𝐷𝑡 ∩ 𝑇 𝑡

1 ≠ ∅: We immediately get |𝑇 𝑡+1
1 | < |𝑇 𝑡

1|.

(4) Ar1(𝒢 𝑡, 𝑇 𝑡
1) ≠ 𝑉 𝑡 and 𝐷𝑡∩𝑇 𝑡

1 = ∅: In this casewe have 𝐷𝑡 = Ar2(𝒢 𝑡, 𝑆 𝑡) =
𝑆 𝑡. Notice that for each vertex 𝑣 ∈ Ar1(𝒢 𝑡, 𝑇 𝑡

1) player 1 has a strategy to
reach 𝑇 𝑡

1 and thus for 𝑣 to be in 𝐷𝑡, the set 𝐷𝑡 has to contain at least one
vertex of 𝑇 𝑡

1 . is implies that in the next iteration 𝑡 + 1 we have 𝑇 𝑡+1
1 = 𝑇 𝑡

1
and Ar1(𝒢 𝑡+1, 𝑇 𝑡+1

1 ) = Ar1(𝒢 𝑡, 𝑇 𝑡
1) = 𝑉 𝑡+1 and hence either situation (1)

or (2).

By the above we have that 𝑇 𝑡
1 is decreased in at least every second iteration of the

repeat-until loop. For 𝑇 𝑡
1 = ∅ we have Ar1(𝒢 𝑡, 𝑇 𝑡

1) = ∅ and thus 𝑉 𝑡+1 = ∅, which
terminates the algorithm in the next iteration. us we have that each iteration
takes time 𝑂(𝑘𝑚) and there are 2𝑏1 + 2, i.e., 𝑂(𝑏1), iterations.

As we can always rearrange the target sets such that 𝑏1 = min1≤ℓ≤𝑘 𝑏ℓ, this
gives an 𝑂(𝑘 ⋅ min1≤ℓ≤𝑘 𝑏ℓ ⋅ 𝑚) time algorithm for generalized Büchi games.

For the final game graph 𝒢 𝑡 we have that all vertices are in all the player-1
aractors of the target sets 𝑇ℓ. us player 1 can win the game by following one
aractor strategy until the corresponding target set is reached and then switching
to the aractor strategy of the next target set.

Proposition 7.2.3 (Soundness). Let 𝑉 𝑡∗
be the set of vertices returned by Algo-

rithm GenBuchiBasic. Each vertex in 𝑉 𝑡∗
is winning for player 1.

Proof. Let the 𝑡∗-th iteration be the last iteration of the algorithm. We have 𝑆 𝑡∗ =
∅. us each vertex of 𝑉 𝑡∗

is contained in Ar1(𝒢 𝑡∗ , 𝑇 𝑡∗

ℓ ) for each 1 ≤ ℓ ≤ 𝑘.
Additionally, either 𝑉 𝑡∗ = ∅ or 𝑇 𝑡∗

ℓ ≠ ∅ for all 1 ≤ ℓ ≤ 𝑘. Further we have
that 𝑉 𝑡∗

is closed for player 2 as only player-2 aractors were removed from 𝑉
to obtain 𝑉 𝑡∗

(i.e., we apply Lemma 2.5.1 (1) inductively). Hence player 1 has the
following winning strategy (with memory) on the vertices of 𝑉 𝑡∗

: On the vertices
of 𝑉 𝑡∗ ⧵ ⋂𝑘

ℓ=1 𝑇 𝑡∗

ℓ first follow the aractor strategy for 𝑇 𝑡∗

1 until a vertex of 𝑇 𝑡∗

1 is
reached, then the aractor strategy for 𝑇 𝑡∗

2 until a vertex of 𝑇 𝑡∗

2 is reached and so on
until the set 𝑇 𝑡∗

𝑘 is reached; then restart with 𝑇 𝑡∗

1 . On the vertices of ⋂𝑘
ℓ=1 𝑇 𝑡∗

ℓ ∩ 𝑉1
player 1 can pick any outgoing edge whose endpoint is in 𝑉 𝑡∗

. Since 𝑉 𝑡∗
is closed

for player 2 and 𝑇 𝑡∗

ℓ ≠ ∅ for all 1 ≤ ℓ ≤ 𝑘, this strategy exists, never leaves the set
𝑉 𝑡∗

, and satisfies the generalized Büchi objective.

For completeness we use that each 1-closed set that avoids some target set is
winning for player 2 and that, by Lemma 2.5.1 (3), we can remove such sets from
the game graph and recurse on the remaining game graph.
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..

..𝑎 ..𝑏 ..𝑐 ..𝑑 ..𝑒

..𝑓 ..𝑔 ..ℎ ..𝑖 ..𝑗

Figure 7.1: Illustration of the hierarchical graph decomposition. Circles denote
player 1 vertices, squares denote player 2 vertices. In the original graph 𝐺 all the
edges (solid, dashed, doed) are present. From the hierarchical graph decomposi-
tion we consider the graphs 𝐺1, 𝐺2 and 𝐺3. e graph 𝐺1 contains only the solid
edges, the graph 𝐺2 additionally the dashed edges, and 𝐺3 also contains the doed
edge, i.e., 𝐺 = 𝐺3. Let the target sets be 𝑇1 = {𝑎, 𝑒, 𝑖} and 𝑇2 = {𝑏, 𝑑}. en the
set {𝑒, 𝑗} is a player-2 dominion of 𝐺 that can be detected in 𝐺1. Its player-2 at-
tractor contains additionally the vertex 𝑑. To detect that the remaining vertices are
winning for player 1 it is necessary to consider the doed edge.

Proposition 7.2.4 (Completeness). Let 𝑉 𝑡∗
be the set returned by Algorithm Gen-

BuchiBasic. Player 2 has a winning strategy from each vertex of 𝑉 ⧵ 𝑉 𝑡∗
.

Proof. By Lemma 2.5.1 (3) it is sufficient to show that, in each iteration 𝑡, player 2
has a winning strategy from each vertex of 𝑆 𝑡 in 𝒢 𝑡. Let ℓ be such that 𝑆 𝑡 =
𝑉 𝑡 ⧵ Ar1(𝒢 𝑡, 𝑇 𝑡

ℓ). By Lemma 2.5.1 (1) the set 𝑆 𝑡 is closed for player 1 in 𝒢 𝑡, that
is, player 2 has a strategy that keeps the play within 𝒢 𝑡[𝑆 𝑡] against any strategy of
player 1. Since 𝑆 𝑡 ∩ 𝑇 𝑡

ℓ = ∅, this strategy is winning for player 2 (i.e., it satisfies
coBüchi(𝑇 𝑡

ℓ) and thus the disjunctive co-Büchi objective).

7.2.2 Our Improved Algorithm

In this subsection we show the following theorem.

eorem7.2.5. AlgorithmGenBuchi computes the winning sets for generalized Büchi
games with 𝑛 vertices and 𝑘 target sets in 𝑂(𝑘 ⋅ 𝑛2) time.

e 𝑂(𝑘 ⋅ 𝑛2) time Algorithm GenBuchi for generalized Büchi games combines
the basic algorithm for generalized Büchi games described above with the method
used for the 𝑂(𝑛2) time Büchi game algorithm [CH14], called hierarchical graph
decomposition [HKW99]. e hierarchical graph decomposition defines for a di-
rected graph 𝐺 = (𝑉 , 𝐸) and integers 1 ≤ 𝑖 ≤ ⌈log2 𝑛⌉ the graphs 𝐺𝑖 = (𝑉 , 𝐸𝑖).
Assume the incoming edges of each vertex in 𝐺 are given in some fixed order in
which first the edges from vertices of 𝑉2 and then the edges from vertices of 𝑉1
are listed. e set of edges 𝐸𝑖 contains all the outgoing edges of each 𝑣 ∈ 𝑉
with Outdeg(𝐺, 𝑣) ≤ 2𝑖 and the first 2𝑖 incoming edges of each vertex. Note that
𝐺 = 𝐺⌈log2 𝑛⌉ and |𝐸𝑖| ∈ 𝑂(𝑛 ⋅ 2𝑖). See Figure 7.1 for an example. e running time
analysis uses that we can identify small player-2 dominions (i.e., player-1 closed
sets that do not intersect at least one of the target sets) that contain 𝑂(2𝑖) vertices
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Algorithm GenBuchi: Generalized Büchi games in 𝑂(𝑘 ⋅ 𝑛2) time
Input :game graph 𝒢 = (𝐺, (𝑉1, 𝑉2)) with graph 𝐺 = (𝑉 , 𝐸) and

generalized Büchi objective ⋀1≤ℓ≤𝑘 Büchi(𝑇ℓ)
Output : winning set of player 1

1 𝒢 1 ← 𝒢
2 {𝑇 1

ℓ } ← {𝑇ℓ}
3 𝑡 ← 0
4 repeat
5 𝑡 ← 𝑡 + 1
6 for 𝑖 ← 1 to ⌈log2 𝑛⌉ do
7 construct 𝐺𝑡

𝑖
8 𝑍𝑡

𝑖 ← {𝑣 ∈ 𝑉 𝑡
2 ∣ Outdeg(𝐺𝑡

𝑖, 𝑣) = 0} ∪ {𝑣 ∈ 𝑉 𝑡
1 ∣ Outdeg(𝐺𝑡, 𝑣) > 2𝑖}

9 for 1 ≤ ℓ ≤ 𝑘 do
10 𝑌 𝑡

ℓ,𝑖 ← Ar1(𝐺𝑡
𝑖, 𝑇 𝑡

ℓ ∪ 𝑍𝑡
𝑖 )

11 𝑆 𝑡 ← 𝑉 𝑡 ⧵ 𝑌 𝑡
ℓ,𝑖

12 if 𝑆𝑡 ≠ ∅ then player 2 dominion found, continue with line 13

13 𝐷𝑡 ← Ar2(𝐺𝑡, 𝑆𝑡)
14 𝒢 𝑡+1 ← 𝒢 𝑡 ⧵ 𝐷𝑡

15 {𝑇 𝑡+1
ℓ } ← {𝑇 𝑡

ℓ ⧵ 𝐷𝑡}
16 until 𝐷𝑡 = ∅
17 return 𝑉 𝑡

by considering only 𝐺𝑖. e algorithm first searches for such a set 𝑆 𝑡 in 𝐺𝑖 for 𝑖 = 1
and each target set and then increases 𝑖 until the search is successful. In this way
the time spent for the search is proportional to 𝑘 ⋅ 𝑛 times the number of vertices in
the found dominion, which yields a total running time bound of 𝑂(𝑘⋅𝑛2). To obtain
the 𝑂(𝑘⋅𝑛2) running time bound, it is crucial to put the loop over the different target
sets as the innermost part of the algorithm. Given a game graph 𝒢 = (𝐺, (𝑉1, 𝑉2)),
we denote by 𝒢𝑖 the game graph where 𝐺 is replaced by 𝐺𝑖 from the hierarchical
graph decomposition, i.e., 𝒢𝑖 = (𝐺𝑖, (𝑉1, 𝑉2)).

Properties of the hierarchical graph decomposition. Lemma 5.3.2, restated
below in the notation used in this chapter, describes the essence of why the hier-
archical graph decomposition is useful for game graphs with prefix independent
objectives. e first part is crucial for correctness: When searching in 𝐺𝑖 for a
player-1 closed set that does not contain one of the target sets, we can ensure that
such a set is also closed for player 1 in 𝐺 by excluding certain vertices that are
missing outgoing edges in 𝐺𝑖 from the search. e second part is crucial for the
running time argument: Whenever the basic algorithm would remove (i.e., identify
as winning for player 2) a set of vertices with at most 2𝑖 vertices, then we can iden-
tify this set also by searching in 𝐺𝑖 instead of 𝐺. e vertices 𝑍𝑖 we exclude for
the search on 𝐺𝑖 are player-1 vertices with more than 2𝑖 outgoing edges in 𝐺 and
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player-2 vertices with no outgoing edges in 𝐺𝑖. Note that the laer can only happen
if Outdeg(𝐺, 𝑣) > 2𝑖.

Lemma 7.2.6 (Restatement of Lemma 5.3.2). Let 𝒢 = (𝐺, (𝑉1, 𝑉2)) be a game graph
with 𝐺 = (𝑉 , 𝐸) and {𝐺𝑖} its hierarchical graph decomposition. For 1 ≤ 𝑖 ≤ ⌈log2 𝑛⌉
let 𝑍𝑖 be the set consisting of the player 2 vertices that have no outgoing edge in 𝒢𝑖 and
the player 1 vertices with > 2𝑖 outgoing edges in 𝒢 .

(1) If a set 𝑆 ⊆ 𝑉 ⧵ 𝑍𝑖 is player-1 closed in 𝒢𝑖, then 𝑆 is player-1 closed in 𝒢 .

(2) If a set 𝑆 ⊆ 𝑉 is player-1 closed in 𝒢 and |Ar2(𝒢 , 𝑆)| ≤ 2𝑖, then (i) 𝒢𝑖[𝑆] =
𝒢 [𝑆], (ii) the set 𝑆 is in 𝑉 ⧵ 𝑍𝑖, and (iii) 𝑆 is player-1 closed in 𝒢𝑖.

For Algorithm GenBuchi this implies that, in all but the last iteration of the
repeat-until loop, whenever the graph 𝐺𝑖 is considered, a dominion of size at least
2𝑖−1 is identified and removed from the graph.

Corollary 7.2.7. If in Algorithm GenBuchi for some ℓ, 𝑡, and 𝑖 > 1 we have that
𝑆 𝑡 = 𝑉 𝑡⧵Ar1(𝒢 𝑡

𝑖 , 𝑇 𝑡
ℓ∪𝑍 𝑡

𝑖 ) is not empty but for 𝑖−1 the set 𝑉 𝑡⧵Ar1(𝒢 𝑡
𝑖−1, 𝑇 𝑡

ℓ∪𝑍 𝑡
𝑖−1)

is empty, then |Ar2(𝒢 𝑡, 𝑆 𝑡)| > 2𝑖−1.

Proof. By Lemma 2.5.1 (1) 𝑆 𝑡 is closed for player 1 in 𝒢 𝑡
𝑖 and by Lemma 7.2.6 (1) also

in 𝒢 𝑡. Assume by contradiction that |Ar2(𝒢 𝑡, 𝑆 𝑡)| ≤ 2𝑖−1. en by Lemma 7.2.6 (2)
we have that 𝑆 𝑡 ⊆ 𝑉 𝑡 ⧵ 𝑍 𝑡

𝑖−1 and 𝑆 𝑡 is closed for player 1 in 𝒢 𝑡
𝑖−1. Since this means

that in 𝒢 𝑡
𝑖−1 player 1 has a strategy to keep a play within 𝑆 𝑡 against any strategy of

player 2 and 𝑆 𝑡 does not contain a vertex of 𝑍 𝑡
𝑖−1 or 𝑇 𝑡

ℓ, the set 𝑆 𝑡 does not intersect
with Ar1(𝒢 𝑡

𝑖−1, 𝑇 𝑡
ℓ ∪ 𝑍 𝑡

𝑖−1), a contradiction to 𝑉 𝑡 ⧵ Ar1(𝒢 𝑡
𝑖−1, 𝑇 𝑡

ℓ ∪ 𝑍 𝑡
𝑖−1) being

empty.

e next two propositions show the correctness of the algorithm by (i) showing
that all vertices in the final set 𝑉 𝑡 are winning for player 1 and (ii) all vertices not
in 𝑉 𝑡 are winning for player 2.

Proposition 7.2.8 (Soundness). Let 𝑉 𝑡∗
be the set returned by Algorithm GenBuchi.

Each vertex in 𝑉 𝑡∗
is winning for player 1.

Proof. When the algorithm terminates we have 𝑖 = ⌈log2 𝑛⌉ and 𝑆 𝑡 = ∅. Since for
𝑖 = ⌈log2 𝑛⌉ we have 𝐺𝑡

𝑖 = 𝐺𝑡 and 𝑍 𝑡
𝑖 = ∅, the winning strategy of player 1 can be

constructed in the same way as for the set returned by Algorithm GenBuchiBasic
(cf. Proof of Proposition 7.2.3).

Proposition 7.2.9 (Completeness). Let 𝑉 𝑡∗
be the set returned by Algorithm Gen-

Buchi. Player 2 has a winning strategy from each vertex in 𝑉 ⧵ 𝑉 𝑡∗
.

Proof. By Lemma 2.5.1 (3) it is sufficient to show that, in each iteration 𝑡, player 2
has a winning strategy in 𝒢 𝑡 from each vertex of 𝑆 𝑡. For a fixed 𝑡 with 𝑆 𝑡 ≠ ∅,
let 𝑖 and ℓ be such that 𝑆 𝑡 = 𝑉 𝑡 ⧵ Ar1(𝒢 𝑡

𝑖 , 𝑇 𝑡
ℓ ∪ 𝑍 𝑡

𝑖 ). By Lemma 2.5.1 (1) the set
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𝑆 𝑡 is closed for player 1 in 𝒢 𝑡
𝑖 and by Lemma 7.2.6 (1) also in 𝒢 𝑡. at is, player 2

has a strategy that keeps the play within 𝒢 𝑡[𝑆 𝑡] against any strategy of player 1.
Since 𝑆 𝑡 ∩ 𝑇 𝑡

ℓ = ∅, this strategy is winning for player 2 (i.e., satisfies the disjunctive
co-Büchi objective).

Finally, the running time of 𝑂(𝑘 ⋅ 𝑛2) follows from Corollary 7.2.7 and the fact
that we can construct aractors and the graphs 𝐺𝑖 efficiently.

Proposition 7.2.10 (Running time). Algorithm GenBuchi can be implemented to ter-
minate in 𝑂(𝑘 ⋅ 𝑛2) time.

Proof. To efficiently construct the graphs 𝐺𝑡
𝑖 and the vertex sets 𝑍 𝑡

𝑖 we maintain
(sorted) lists of the incoming and the outgoing edges of each vertex. ese lists
can be updated whenever an obsolete entry is encountered in the construction of
𝐺𝑡

𝑖; as each entry is removed at most once, maintaining this data structures takes
total time 𝑂(𝑚). For a given iteration 𝑡 of the outer repeat-until loop and the 𝑖-th
iteration of the inner repeat-until loop we have that the graph 𝐺𝑡

𝑖 contains 𝑂(2𝑖 ⋅ 𝑛)
edges and both 𝐺𝑡

𝑖 and the set 𝑍 𝑡
𝑖 can be constructed from the maintained lists in

time 𝑂(2𝑖 ⋅ 𝑛). Furthermore, the 𝑘 aractor computations in the for-loop can be
done in time 𝑂(𝑘 ⋅ 2𝑖 ⋅ 𝑛), thus, for any 𝑡, the 𝑖-th iteration of the inner repeat-until
loop takes time 𝑂(𝑘 ⋅ 2𝑖 ⋅ 𝑛). e time spent in the iterations up to the 𝑖-th iteration
forms a geometric series and can thus be bounded by 𝑂(𝑘 ⋅ 2𝑖 ⋅ 𝑛) as well. When
a non-empty set 𝑆 𝑡 is found in the 𝑡-th iteration of the outer repeat-until and in
the 𝑖-th iteration of the inner repeat-until loop, then by Corollary 7.2.7 we have
|Ar2(𝒢 𝑡, 𝑆 𝑡)| > 2𝑖−1. e vertices of Ar2(𝒢 𝑡, 𝑆 𝑡) are then removed from 𝐺𝑡 to
obtain 𝐺𝑡+1 and are not considered further by the algorithm. us we can charge
the time of 𝑂(𝑘 ⋅ 2𝑖 ⋅ 𝑛) to identify 𝑆 𝑡 to the vertices of Ar2(𝒢 𝑡, 𝑆 𝑡), which yields a
bound on the total time spent in the inner repeat-until loop, whenever 𝑆 𝑡 ≠ ∅, of
𝑂(𝑘 ⋅ 𝑛2). e total time for computing the aractors Ar2(𝒢 𝑡, 𝑆 𝑡) can be bounded
by 𝑂(𝑚). Finally, the time for the last iteration of the while-loop, when 𝑆 𝑡 = ∅ and
𝑖 = ⌈log2 𝑛⌉, can be bounded by 𝑂(𝑘 ⋅ 2⌈log2 𝑛⌉ ⋅ 𝑛) = 𝑂(𝑘 ⋅ 𝑛2).

Remark 7.2.11. Algorithm GenBuchi can easily be modified to also return winning
strategies for both players within the same time bound: For player 2 a winning strategy
for the dominion 𝐷𝑡 that is identified in iteration 𝑡 of the algorithm can be constructed
by combining his strategy to stay within the set 𝑆 𝑡 that is closed for player 1 with
his aractor strategy to the set 𝑆 𝑡. For player 1 we can obtain a winning strategy by
combining her aractor strategies to the sets 𝑇ℓ for 1 ≤ ℓ ≤ 𝑘 (as described in the
proof of Proposition 7.2.3).

7.3 Conditional Lower bounds for Generalized Büchi
Games

In this section we present two conditional lower bounds, one for dense graphs with
𝑚 = 𝛩(𝑛2) based on CTC, or equivalently BMM, and one for sparse graphs with
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𝑚 = 𝛩(𝑛1+𝑜(1)) based on OVC and thus SETH.e conjectures are stated formally in
Section 2.7. We use the existence of memoryless strategies for co-Büchi objectives,
see, e.g., [o95].

eorem 7.3.1. ere is no combinatorial 𝑂(𝑛3−𝜖) or 𝑂((𝑘 ⋅ 𝑛2)1−𝜖) time algorithm,
for any 𝜖 > 0, for generalized Büchi games under Conjecture 2.7.3, i.e., unless CTC &
BMM fail. In particular, there is no such algorithm deciding whether the winning set
is non-empty or deciding whether a specific vertex is in the winning set.

e result can be obtained from a reduction from triangle detection to disjunc-
tive co-Büchi objectives on graphs in Chapter 6, and we present the reduction in
terms of game graphs below and illustrate it on an example in Figure 7.2.

Reduction 7.3.2. Given a graph 𝐺 = (𝑉 , 𝐸) (for triangle detection), we build a
game graph 𝒢 ′ = ((𝑉 ′, 𝐸′), (𝑉1, 𝑉2)) (for generalized Büchi objectives) as follows.
As vertices 𝑉 ′ we have four copies 𝑉 1, 𝑉 2, 𝑉 3, 𝑉 4 of 𝑉 and a vertex 𝑠. A vertex
𝑣𝑖 ∈ 𝑉 𝑖, 𝑖 ∈ {1, 2, 3} has an edge to a vertex 𝑢𝑖+1 ∈ 𝑉 𝑖+1 iff (𝑣, 𝑢) ∈ 𝐸. Moreover,
𝑠 has an edge to all vertices of 𝑉 1, and all vertices of 𝑉 4 have an edge to 𝑠. All the
vertices are owned by player 2, i.e., 𝑉1 = ∅ and 𝑉2 = 𝑉 . Finally, the generalized Büchi
objective is ⋀𝑣∈𝑉 Büchi(𝑇𝑣) with 𝑇𝑣 = (𝑉 1 ⧵ {𝑣1}) ∪ (𝑉 4 ⧵ {𝑣4}).

e game graph 𝒢 ′ is constructed such that there is a triangle in the graph 𝐺 if
and only if the vertex 𝑠 is winning for player 2 in the generalized Büchi game on 𝒢 ′.
For instance consider the example in Figure 7.2. e graph 𝐺 has a triangle 𝑎,𝑏,𝑐
and this triangle gives rise to the following winning strategy for player 2 starting
at vertex 𝑠. When a play is at the vertex 𝑠 then player 2 moves to vertex 𝑎1, when
at 𝑎1, he moves to 𝑏2, when at 𝑏2 he moves to 𝑐3, when at 𝑐3 he moves to 𝑎4, and
finally from 𝑎4, he moves back to 𝑠. is strategy does not visit any vertex of the set
𝑇𝑎 and thus the conjunctive Büchi objective of player 1 is not satisfied, i.e., player 2
wins. e following lemma shows that also the other direction holds, i.e., that a
memoryless winning strategy from 𝑠 gives rise to a triangle in the original graph.
is correspondence between triangles and memoryless winning strategies then
gives the correctness of the reduction.

Lemma 7.3.3. Let 𝒢 ′ be the game graph given by Reduction 7.3.2 for a graph 𝐺 and
let 𝑇𝑣 = (𝑉 1 ⧵ {𝑣1}) ∪ (𝑉 4 ⧵ {𝑣4}). en the following statements are equivalent.

(1) 𝐺 contains a triangle.

(2) 𝑠 ∉ 𝑊1(𝒢 ′, ⋀𝑣∈𝑉 Büchi(𝑇𝑣)).

(3) e winning set 𝑊1(𝒢 ′, ⋀𝑣∈𝑉 Büchi(𝑇𝑣)) is empty.

Proof. (1)⇒(2): Assume that 𝐺 has a triangle with vertices 𝑎, 𝑏, 𝑐 and let 𝑎𝑖, 𝑏𝑖, 𝑐𝑖 be
the copies of 𝑎, 𝑏, 𝑐 in 𝑉 𝑖. Now a strategy for player 2 in 𝒢 ′ to satisfy coBüchi(𝑇𝑎)
is as follows: When at 𝑠, go to 𝑎1; when at 𝑎1, go to 𝑏2; when at 𝑏2, go to 𝑐3; when
at 𝑐3, go to 𝑎4; and when at 𝑎4, go to 𝑠. As 𝑎, 𝑏, 𝑐 form a triangle, all the edges
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Figure 7.2: Illustration of Reduction 7.3.2, with 𝐺 =
({𝑎, 𝑏, 𝑐, 𝑑}, {(𝑎, 𝑏), (𝑏, 𝑎), (𝑏, 𝑐), (𝑐, 𝑎), (𝑐, 𝑑), (𝑑, 𝑎)}). e target sets for dis-
junctive co-Büchi are 𝑇𝑎 = {𝑏1, 𝑐1, 𝑑1, 𝑏4, 𝑐4, 𝑑4}, 𝑇𝑏 = {𝑎1, 𝑐1, 𝑑1, 𝑎4, 𝑐4, 𝑑4},
𝑇𝑐 = {𝑎1, 𝑏1, 𝑑1, 𝑎4, 𝑏4, 𝑑4}, and 𝑇𝑑 = {𝑎1, 𝑏1, 𝑐1, 𝑎4, 𝑏4, 𝑐4}.

required by the above strategy exist. When player 2 starts at 𝑠 and follows the
above strategy, then the resulting play forms an infinite path that only uses the
vertices 𝑠, 𝑎1, 𝑏2, 𝑐3, 𝑎4 and thus satisfies coBüchi(𝑇𝑎).

(2)⇒(1): Assume that there is a, w.l.o.g. memoryless [o95], winning strategy
for player 2 starting at 𝑠 that satisfies coBüchi(𝑇𝑎). Starting from 𝑠, this strategy
has to go to 𝑎1, as all other successors of 𝑠 are contained in 𝑇𝑎 and thus the play
resulting from the memoryless strategy would violate the coBüchi(𝑇𝑎) objective.
en the play continues with some vertices 𝑏2 ∈ 𝑉 2 and 𝑐3 ∈ 𝑉 3 and then, again
by the co-Büchi constraint, has to continue with 𝑎4. Now by the construction of
𝒢 ′ we know that there must be edges (𝑎, 𝑏), (𝑏, 𝑐), (𝑐, 𝑎) in the original graph 𝐺, i.e.
there is a triangle in 𝐺.

(2)⇔(3): Notice that when removing 𝑠 from 𝒢 ′ we obtain an acyclic graph and
thus each infinite path has to contain 𝑠 infinitely oen. us, if the winning set
is non-empty, then there is a cycle winning for some vertex and this cycle is also
winning for 𝑠. For the converse direction, we have that if 𝑠 is in the winning set,
then the winning set is non-empty.

e size and the construction time of the game graph 𝒢 ′, given in Reduc-
tion 7.3.2, are linear in the size of the original graph 𝐺 and we have 𝑘 = 𝛩(𝑛) target
sets. us if we would have a combinatorial 𝑂(𝑛3−𝜖) or 𝑂((𝑘 ⋅ 𝑛2)1−𝜖) algorithm
for generalized Büchi games, we would immediately get a combinatorial 𝑂(𝑛3−𝜖)
algorithm for triangle detection, which contradicts CTC (and thus BMM).

Notice that the sets 𝑇𝑣 in the above reduction are of linear size but can be reduced
to logarithmic size by modifying the graph constructed in Reduction 7.3.2 as follows
(more details are given in Section 6.4.1). Remove all edges incident to 𝑠 and replace
them by two complete binary trees. e first tree with 𝑠 as root and the vertices 𝑉 1

as leaves is directed towards the leaves, the second tree with root 𝑠 and leaves 𝑉 4 is
directed towards 𝑠. Now for each pair 𝑣1, 𝑣4 one can select one vertex per non-root
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Figure 7.3: Illustration of Reduction 7.3.5, for 𝑆1 = {(1, 0, 0), (1, 1, 1), (0, 1, 1)} and
𝑆2 = {(1, 1, 0), (1, 1, 1), (0, 1, 0), (0, 0, 1)}.

level of the trees to be in the set 𝑇𝑣 such that the only winning path for player 2
starting in 𝑠 has to use 𝑣1 and each winning path for player 2 to 𝑠 must pass 𝑣4.

Next we present an 𝛺(𝑚2−𝑜(1)) lower bound for generalized Büchi objectives in
sparse game graphs based on OVC and SETH.

eorem 7.3.4. ere is no 𝑂(𝑚2−𝜖) or 𝑂(min1≤ℓ≤𝑘 𝑏ℓ ⋅ (𝑘 ⋅ 𝑚)1−𝜖) time algorithm,
for any 𝜖 > 0, for generalized Büchi games under Conjecture 2.7.5, i.e., unless OVC and
SETH fail. In particular, there is no such algorithm for deciding whether the winning
set is non-empty or deciding whether a specific vertex is in the winning set.

e above theorem is by a linear time reduction from OV provided below, and
illustrated on an example in Figure 7.3.

Reduction 7.3.5. Given two sets 𝑆1 and 𝑆2 of 𝑑-dimensional vectors, we build the
following game graph 𝒢 = ((𝑉 , 𝐸), (𝑉1, 𝑉2)).

• e vertices 𝑉 are given by a start vertex 𝑠, sets of vertices𝑆1 and𝑆2 representing
the sets of vectors, and a set of vertices 𝒞 = {𝑐𝑖 ∣ 1 ≤ 𝑖 ≤ 𝑑} representing the
coordinates. e edges 𝐸 are defined as follows: the start vertex 𝑠 has an edge
to every vertex of 𝑆1 and every vertex of 𝑆2 has an edge to 𝑠; further for each
𝑥 ∈ 𝑆1 there is an edge to 𝑐𝑖 ∈ 𝒞 iff 𝑥𝑖 = 1 and for each 𝑦 ∈ 𝑆2 there is an
edge from 𝑐𝑖 ∈ 𝒞 iff 𝑦𝑖 = 1.

• e set of vertices 𝑉 is partitioned into player 1 vertices 𝑉1 = 𝑆1 ∪ 𝑆2 ∪ 𝒞 and
player 2 vertices 𝑉2 = {𝑠}.

Finally, the generalized Büchi objective is given by ⋀𝑣∈𝑆2
Büchi(𝑇𝑣) with 𝑇𝑣 = {𝑣}.

e correctness of the reduction is by the following lemma.
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Lemma 7.3.6. Given two sets 𝑆1, 𝑆2 of 𝑑-dimensional vectors, the corresponding
graph game 𝒢 given by Reduction 7.3.5, and 𝑇𝑣 = {𝑣} for 𝑣 ∈ 𝑆2, the following
statements are equivalent:

(1) ere exist orthogonal vectors 𝑥 ∈ 𝑆1 and 𝑦 ∈ 𝑆2.

(2) 𝑠 ∉ 𝑊1(𝒢 , ⋀𝑣∈𝑆2
Büchi(𝑇𝑣))

(3) e winning set 𝑊1(𝒢 , ⋀𝑣∈𝑆2
Büchi(𝑇𝑣)) is empty.

Proof. W.l.o.g. we assume that the 1-vector, i.e., the vector with all coordinates be-
ing 1, is contained in 𝑆2 (adding the 1-vector does not change the result of the OV
instance), which guarantees that each vertex 𝑐 ∈ 𝒞 has at least one outgoing edge.
en a play in the game graph 𝒢 proceeds as follows. Starting from 𝑠, player 2
chooses a vertex 𝑥 ∈ 𝑆1; then player 1 first picks a vertex 𝑐 ∈ 𝒞 and then a vertex
𝑦 ∈ 𝑆2; then the play goes back to 𝑠 (at each 𝑦 ∈ 𝑆2 player 1 has only this choice),
starting another cycle of the play.

(1)⇒(2): Assume there are orthogonal vectors 𝑥 ∈ 𝑆1 and 𝑦 ∈ 𝑆2. Now player 2
can satisfy coBüchi(𝑇𝑦) by simply going to 𝑥 whenever a play is in 𝑠. en player 1
can choose some adjacent 𝑐 ∈ 𝒞 and then some adjacent vertex in 𝑆2, but as 𝑥
and 𝑦 are orthogonal, this 𝑐 is not connected to 𝑦. us no play resulting from this
strategy visits 𝑦.

(2)⇒(1): By 𝑊1 = 𝑉 ⧵ 𝑊2 we have that (2) is equivalent to 𝑠 being in the win-
ning set of player 2 for the conjunctive Büchi game (𝒢 , ⋀𝑣∈𝑆2

Büchi(𝑇𝑣)). Assume
𝑠 ∈ 𝑊2(𝒢 , ⋀𝑣∈𝑆2

Büchi(𝑇𝑣)) and consider a corresponding strategy for player 2
that satisfies ⋁𝑣∈𝑆2

coBüchi(𝑇𝑣). Notice that the graph is such that player 2 has
to visit at least one of the vertices 𝑣 in 𝑆1 infinitely oen. Moreover, for such
a vertex 𝑣 then player 1 can visit all vertices 𝑣′ ∈ 𝑆2 that correspond to vec-
tors not orthogonal to 𝑣 infinitely oen. at is, if 𝑣 has no orthogonal vector,
player 1 can satisfy all the Büchi constraints, a contradiction to our assumption that
𝑠 ∈ 𝑊2(𝒢 , ⋀𝑣∈𝑆2

Büchi(𝑇𝑣)). us there must be a vector 𝑥 ∈ 𝑆1 such that there
exists a vector 𝑦 ∈ 𝑆2 that is orthogonal to 𝑥.

(2) ⇔ (3): Notice that when removing 𝑠 from the graph we get an acyclic graph
and thus each infinite path has to contain 𝑠 infinitely oen. Certainly if 𝑠 is in the
winning set of player 1, this set is non-empty. us let us assume there is a vertex 𝑣
different from 𝑠 with a winning strategy 𝜎. All (winning) plays starting in 𝑣 cross 𝑠
aer at most 3 steps and thus the strategy 𝜎 is also winning for player 1 when the
play starts at 𝑠.

Let 𝑁 = max(|𝑆1|, |𝑆2|). e number of vertices in the game graph, constructed
by Reduction 7.3.5, is 𝑂(𝑁), the number of edges 𝑚 is 𝛩(𝑁 log 𝑁) (recall that
𝑑 ∈ 𝑂(log 𝑁)), we have 𝑘 ∈ 𝛩(𝑁) target sets, each of size 1, and the construc-
tion can be performed in 𝑂(𝑁 log 𝑁) time. us, if we would have an 𝑂(𝑚2−𝜖) or
𝑂(min1≤ℓ≤𝑘 𝑏ℓ ⋅ (𝑘 ⋅ 𝑚)1−𝜖) time algorithm for any 𝜖 > 0, we would immediately get
an 𝑂(𝑁2−𝜖) algorithm for OV, which contradicts OVC (and thus SETH).
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Remark 7.3.7. Notice that the conditional lower bounds apply to instances with 𝑘 ∈
𝛩(𝑛𝑐) for arbitrary 0 < 𝑐 ≤ 1, although the reductions produce graphs with 𝑘 ∈
𝛩(𝑛). e instances constructed by the reductions have the property that whenever
player 2 has a winning strategy, he also has a winning strategy for a specific co-Büchi
target set 𝑇𝑣. Now instead of solving the instance with 𝛩(𝑛) many target sets, one can
simply consider 𝛩(𝑛1−𝑐) many instances with 𝛩(𝑛𝑐) target sets and obtain the winning
set for player 2 in the original instance by the union of the player 2 winning sets of
the new instances. Finally, towards a contradiction, assume there would be an 𝑂((𝑘 ⋅
𝑓(𝑛, 𝑚))1−𝜖) time algorithm for 𝑘 ∈ 𝛩(𝑛𝑐). en together we the above observation
we would get an 𝑂((𝑘 ⋅ 𝑓(𝑛, 𝑚))1−𝜖) time algorithm for the original instance.

Remark 7.3.8. In both reductions the constructed graph becomes acyclic when delet-
ing the vertex 𝑠. us, our lower bounds also apply for a broad range of digraph pa-
rameters. For instance let 𝑤 be the DAG-width [Ber+06] of a graph, then there is no
𝑂(𝑓(𝑤) ⋅ (𝑘 ⋅ 𝑛2)1−𝜖) time algorithm (under BMM) and no 𝑂(𝑓(𝑤) ⋅ (𝑘𝑚)1−𝜖) time
algorithm (under SETH ).

7.4 Generalized Reactivity-1 Games

e input to GR(1) games is a game graph 𝒢 = (𝐺, (𝑉1, 𝑉2)), with underlying
graph 𝐺 = (𝑉 , 𝐸), and subsets of vertices 𝐿ℓ for 1 ≤ ℓ ≤ 𝑘1 and 𝑈𝑗 for 1 ≤
𝑗 ≤ 𝑘2. e GR(1) objective is the implication between the two generalized Büchi
objectives given by ⋀𝑘1

ℓ=1 Büchi(𝐿ℓ) and ⋀𝑘2
𝑗=1 Büchi(𝑈𝑗), i.e., it is satisfied if ei-

ther ⋁𝑘1
ℓ=1 coBüchi(𝐿ℓ) or ⋀𝑘2

𝑗=1 Büchi(𝑈𝑗) holds. We denote a GR(1) objective by
⋀𝑘1

ℓ=1 Büchi(𝐿ℓ) → ⋀𝑘2
𝑗=1 Büchi(𝑈𝑗). e winning sets of the two players in GR(1)

games can be computed in 𝑂(𝑘1𝑘2 ⋅ 𝑚 ⋅ 𝑛) time [JP06] with an extension of the
progress measure algorithm of [Jur00] and in 𝑂((𝑘1𝑘2 ⋅ 𝑛)2.5) time by combining the
reduction to one-pair Stree objectives by [Blo+10] with the algorithm of [CHL15].
In this section we develop an 𝑂(𝑘1𝑘2 ⋅ 𝑛2.5) time algorithm by modifying the algo-
rithm of [JP06] to compute dominions instead of winning sets1. We further use our
𝑂(𝑘 ⋅ 𝑛2) time algorithm for generalized Büchi games with 𝑘 = 𝑘1 as a subroutine.

Section outline. We first describe a basic, direct algorithm for GR(1) games that
is based on repeatedly identifying player-2 dominions in generalized Büchi games.
We then show how the progress measure algorithm of [JP06] can be modified to
identify player-2 dominions in generalized Büchi games with 𝑘1 Büchi objectives in
time proportional to 𝑘1 ⋅ 𝑚 times the size of the dominion. In the 𝑂(𝑘1𝑘2 ⋅ 𝑛2.5) time
algorithm we use the modified progress measure algorithm in combination with
the hierarchical graph decomposition of [CH14] (see also Section 5.3) to identify
dominions that contain up to √𝑛 vertices and our 𝑂(𝑘1 ⋅ 𝑛2) time algorithm for

1Note that [JP06] does not contain proofs and that we present a corrected version of a special
case of the algorithm of [JP06].
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generalized Büchi games to identify dominions with more than √𝑛 vertices. Each
time we search for a dominion we might have to consider 𝑘2 different subgraphs.

Notation. In the algorithms and their analysis we denote the sets in the 𝑡-th it-
eration of our algorithms with superscript 𝑡, in particular 𝒢 1 = 𝒢 , where 𝒢 is the
input game graph, 𝐺𝑡 is the graph of 𝒢 𝑡, 𝑉 𝑡 is the vertex set of 𝐺𝑡, 𝑉 𝑡

1 = 𝑉1 ∩ 𝑉 𝑡,
𝑉 𝑡

2 = 𝑉2 ∩ 𝑉 𝑡, 𝐿𝑡
ℓ = 𝐿ℓ ∩ 𝑉 𝑡, and 𝑈 𝑡

𝑗 = 𝑈𝑗 ∩ 𝑉 𝑡.

7.4.1 Basic Algorithm for GR(1) Objectives

Similar to generalized Büchi games, the basic algorithm for GR(1) games, described
in Algorithm GR(1)Basic, identifies a player-2 dominion 𝑆 𝑡, removes the dominion
and its player-2 aractor 𝐷𝑡 from the graph, and recurses on the remaining game
graph 𝒢 𝑡+1 = 𝒢 𝑡 ⧵ 𝐷𝑡. If no player-2 dominion is found, the remaining set of ver-
tices 𝑉 𝑡 is returned as the winning set of player 1. Given the set 𝑆 𝑡 is indeed a
player-2 dominion, the correctness of this approach follows from Lemma 2.5.1 (3).
A player-2 dominion in 𝒢 𝑡 is identified as follows: For each 1 ≤ 𝑗 ≤ 𝑘2 first the
player-1 aractor 𝑌 𝑡

𝑗 of 𝑈 𝑡
𝑗 is temporarily removed from the graph. en a general-

ized Büchi game with target sets 𝐿𝑡
1, … , 𝐿𝑡

𝑘1
is solved on 𝒢 𝑡 ⧵ 𝑌 𝑡

𝑗 . e generalized
Büchi player in this game corresponds to player 2 in the GR(1) game and his winning
set to a player-2 dominion in the GR(1) game. Note that 𝑉 𝑡 ⧵ 𝑌 𝑡

𝑗 is player-1 closed
and does not contain 𝑈 𝑡

𝑗 . us if in the game induced by the vertices of 𝑉 𝑡 ⧵ 𝑌 𝑡
𝑗

player 2 can win w.r.t. the generalized Büchi objective ⋀𝑘1
ℓ=1 Büchi(𝐿

𝑡
ℓ), then these

vertices form a player-2 dominion in the GR(1) game. is observation is formalized
in Lemma 7.4.2. Further, we can show that when a player-2 dominion in the GR(1)
game on 𝒢 𝑡 exists, then for one of the sets 𝑈 𝑡

𝑗 the winning set of the generalized
Büchi game on 𝒢 𝑡 ⧵ 𝑌 𝑡

𝑗 is non-empty; otherwise we can construct a winning strat-
egy of player 1 for the GR(1) game on 𝒢 𝑡(see Lemma 7.4.3 and Proposition 7.4.4).
Note that this algorithm computes a player-2 dominion 𝑂(𝑘2 ⋅ 𝑛) many times using
our 𝑂(𝑘1 ⋅ 𝑛2) time generalized Büchi Algorithm GenBuchi from Section 7.2.2. In
this subsection we show the following theorem.

eorem 7.4.1. Using eorem 7.2.5, the basic algorithm for GR(1) games computes
the winning set of player 1 in 𝑂(𝑘1 ⋅ 𝑘2 ⋅ 𝑛3) time.

We first show that the dominions we compute via the generalized Büchi games
are indeed player-2 dominions in the GR(1) game.

Lemma 7.4.2. Let 𝒢 be a game graph with a GR(1) objective ⋀𝑘1
ℓ=1 Büchi(𝐿ℓ) →

⋀𝑘2
𝑗=1 Büchi(𝑈𝑗). Each player-1 dominion 𝐷 of the game graph 𝒢 with generalized

Büchi objective ⋀𝑘1
ℓ=1 Büchi(𝐿ℓ), for which there is an index 1 ≤ 𝑗 ≤ 𝑘2 with 𝐷∩𝑈𝑗 =

∅, is a player-2 dominion of 𝒢 with the original GR(1) objective.
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Proof. By definition of a dominion, in 𝒢 player 1 has a strategy that visits all sets
𝐿ℓ infinitely oen and only visits vertices of 𝐷. But then for some 𝑗 the target set
𝑈𝑗 is not visited at all and thus in 𝒢 this strategy is winning for player 2 w.r.t. the
GR(1) objective.

Next we show that each player-2 dominion contains a player-2 dominion that
does not intersect with one of the sets 𝑈𝑗 , and thus can be computed via generalized
Büchi games.

Lemma 7.4.3. Let 𝒢 be a game graph with a GR(1) objective ⋀𝑘1
ℓ=1 Büchi(𝐿ℓ) →

⋀𝑘2
𝑗=1 Büchi(𝑈𝑗). Each player-2 dominion 𝐷 has a subset 𝐷′ ⊆ 𝐷 that is a player-2

dominion (in 𝒢 ) with 𝐷′ ∩ 𝑈𝑗 = ∅ for some 1 ≤ 𝑗 ≤ 𝑘2.

Proof. First, note that by the definition of a 2-dominion we have that on the game
graph 𝒢 [𝐷] restricted to 𝐷 player 2 wins from all vertices of 𝐷 (w.r.t. the GR(1)
objective). We show the existence of a 2-dominion 𝐷′ ⊆ 𝐷 with 𝐷′ ∩ 𝑈𝑗 = ∅ for
some 1 ≤ 𝑗 ≤ 𝑘2 by showing its existence in the game graph 𝒢 [𝐷]. Since 𝐷 is
closed for player 1, by Lemma 2.6.11 (1) a set 𝐷′ ⊆ 𝐷 is a player-2 dominion of 𝒢
iff it is a player-2 dominion of 𝒢 [𝐷]. e proof is by contradiction. We will show
that if no such 2-dominion 𝐷′ with 𝐷′ ∩ 𝑈𝑗 = ∅ for some 1 ≤ 𝑗 ≤ 𝑘2 exists, then
player-1 has a winning strategy from all vertices of 𝐷 in 𝒢 [𝐷], a contradiction.

Assume that there does not exist such a player-2 dominion 𝐷′ in 𝒢 [𝐷]. We
consider for 1 ≤ 𝑗 ≤ 𝑘2 the game graphs 𝒢 𝑗[𝐷] = 𝒢 [𝐷] ⧵ Ar1(𝒢 [𝐷], 𝑈𝑗). By
Lemma 2.6.11 (2) the vertices of 𝒢 𝑗[𝐷] are 1-closed in 𝒢 [𝐷]. us we have that
by Lemma 2.6.11 (1) a 2-dominion in 𝒢 𝑗[𝐷] would be a 2-dominion in 𝒢 [𝐷] and
thus by our assumption no 2-dominion exists for the GR(1) game on 𝒢 𝑗[𝐷]. Hence
we have that player 1 wins on all vertices in the GR(1) game on 𝒢 𝑗[𝐷]. As 𝑈𝑗 ∩
𝒢 𝑗[𝐷] = ∅, the same strategy is also winning for the disjunctive co-Büchi objective
⋁𝑘1

ℓ=1 coBüchi(𝐿ℓ) on 𝒢 [𝐷]. Now consider the following strategy of player 1 for the
GR(1) game on 𝒢 [𝐷]. ewinning strategy of player 1 on 𝒢 [𝐷] is constructed from
her winning strategies for the game graphs 𝒢 𝑗[𝐷] and the aractor strategies for
Ar1(𝒢 [𝐷], 𝑈𝑗) for 1 ≤ 𝑗 ≤ 𝑘2 as follows. To win in 𝒢 , player 1 has to either visit
all sets 𝑈𝑗 infinitely oen or one of the sets 𝐿ℓ only finitely oen. Towards visiting
all sets 𝑈𝑗 , she maintains a counter 𝑐 ∈ {1, … , 𝑘2} that is initialized to 1 and that
represents the set 𝑈𝑗 she aims at visiting next. As long as the current vertex in
a play is contained in 𝒢 𝑐[𝐷], player 1 plays her winning strategy for 𝒢 𝑐[𝐷]. If a
vertex of Ar1(𝒢 [𝐷], 𝑈𝑐) is reached, player 1 follows the corresponding aractor
strategy until 𝑈𝑐 is reached. en player 1 increases the counter by one or sets the
counter to 1 if its value has been 𝑘2 and continues playing the above strategy for the
new value of 𝑐, and continues like this indefinitely. In each play one of two cases
must happen:

• Case 1: Aer some prefix of the play, the play never reaches Ar1(𝒢 [𝐷], 𝑈𝑐)
for some value of 𝑐. en the play satisfies the disjunctive co-Büchi objective
⋁𝑘1

ℓ=1 coBüchi(𝐿ℓ) and thus the GR(1) objective.
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Algorithm GR(1)Basic: GR(1) games in 𝑂(𝑘1 ⋅ 𝑘2 ⋅ 𝑛3) time
Input :game graph 𝒢 = (𝐺, (𝑉1, 𝑉2)) with graph 𝐺 = (𝑉 , 𝐸) and

GR(1) objective ⋀𝑘1
ℓ=1 Büchi(𝐿ℓ) → ⋀𝑘2

𝑗=1 Büchi(𝑈𝑗)
Output : winning set of player 1

1 𝒢 1 ← 𝒢
2 {𝑈 1

𝑗 } ← {𝑈𝑗}; {𝐿1
ℓ} ← {𝐿ℓ}

3 𝑡 ← 0
4 repeat
5 𝑡 ← 𝑡 + 1
6 for 1 ≤ 𝑗 ≤ 𝑘2 do
7 𝑌 𝑡

𝑗 ← Ar1(𝒢 𝑡, 𝑈 𝑡
𝑗 )

8 𝑆 𝑡 ← 𝑊1 (𝒢 𝑡 ⧵ 𝑌 𝑡
𝑗 , ⋀𝑘1

ℓ=1 Büchi(𝐿𝑡
ℓ ⧵ 𝑌 𝑡

𝑗 ))
9 if 𝑆 𝑡 ≠ ∅ then break

10 𝐷𝑡 ← Ar2(𝒢 𝑡, 𝑆𝑡)
11 𝒢 𝑡+1 ← 𝒢 𝑡 ⧵ 𝐷𝑡

12 {𝑈 𝑡+1
𝑗 } ← {𝑈 𝑡

𝑗 ⧵ 𝐷𝑡}; {𝐿𝑡+1
ℓ } ← {𝐿𝑡

ℓ ⧵ 𝐷𝑡}
13 until 𝐷𝑡 = ∅
14 return 𝑉 𝑡

• Case 2: For all 𝑐 ∈ {1, … 𝑘2} the set 𝑈𝑐 is reached infinitely oen. en the
play satisfies the generalized Büchi objective ⋀𝑘2

𝑗=1 Büchi(𝑈𝑗) and thus the
GR(1) objective.

Hence we have shown that player 1 has a winning strategy from every vertex of 𝐷
in the GR(1) game on 𝒢 [𝐷], a contradiction to 𝐷 being a 2-dominion in the GR(1)
game on 𝒢 .

Let the 𝑡∗-th iteration be the last iteration of Algorithm GR(1)Basic. For the
final game graph 𝒢 𝑡∗

we can build a winning strategy for player 1 by combining
her winning strategies for the disjunctive objective in the subgraphs 𝒢 𝑡∗

𝑗 and the
aractor strategies for Ar1(𝒢 𝑡∗ , 𝑈𝑗).

Proposition 7.4.4 (Soundness). Let 𝑉 𝑡∗
be the set of vertices returned by Algo-

rithm GR(1)Basic. Each vertex in 𝑉 𝑡∗
is winning for player 1.

Proof. First note that 𝑉 𝑡∗
is closed for player 2 by Lemma 2.5.1 (1). us as long as

player 1 plays a strategy that stays within 𝑉 𝑡∗
, a play that reaches 𝑉 𝑡∗

will never
leave 𝑉 𝑡∗

. e following strategy of player 1 for the vertices of 𝑉 𝑡∗
satisfies this con-

dition. e winning strategy of player 1 is constructed from the winning strategies
of the disjunctive co-Büchi player, i.e., player 2, in the generalized Büchi games with
game graphs 𝒢 𝑡∗

𝑗 = 𝒢 𝑡∗ ⧵ 𝑌 𝑡∗
𝑗 and objectives ⋀𝑘1

ℓ=1 Büchi(𝐿
𝑡∗

ℓ ⧵𝑌 𝑡∗
𝑗 ) and the aractor

strategies for Ar1(𝒢 𝑡∗ , 𝑈 𝑡∗
𝑗 ) for 1 ≤ 𝑗 ≤ 𝑘2. For a play starting at a vertex of 𝑉 𝑡∗

,
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player 1 has the following strategy. Player 1 maintains a counter 𝑐 ∈ {1, … , 𝑘2}
that is initialized to 1 and proceeds as follows. (1) As long as the current vertex of
the play is contained in 𝐺𝑡∗

𝑐 = 𝐺𝑡∗ ⧵ 𝑌 𝑡∗
𝑐 , player 1 plays her winning strategy for

the disjunctive co-Büchi objective on 𝒢 𝑡∗
𝑐 . (2) If a vertex of 𝑌 𝑡∗

𝑐 = Ar1(𝒢 𝑡∗ , 𝑈 𝑡∗
𝑐 ) is

reached, player 1 follows the corresponding aractor strategy until the play reaches
𝑈 𝑡∗

𝑐 . en player 1 increases the counter by one, or sets the counter to 1 if its value
has been 𝑘2, and continues with (1). As the play stays within 𝑉 𝑡∗

1 , one of two cases
must happen: Case 1: Aer some prefix of the play for some counter value 𝑐 the
set Ar1(𝒢 𝑡∗ , 𝑈 𝑡∗

𝑐 ) is never reached, i.e., the play stays within 𝒢 𝑡∗
𝑐 . en the play

satisfies the disjunctive co-Büchi objective ⋁𝑘1
ℓ=1 coBüchi(𝐿ℓ) and thus the GR(1)

objective. Case 2: For all 𝑐 ∈ {1, … 𝑘2} the set 𝑈 𝑡∗
𝑐 is reached infinitely oen. en

the play satisfies the generalized Büchi objective ⋀𝑘2
𝑗=1 Büchi(𝑈𝑗) and thus the GR(1)

objective. Hence player 1 wins from all vertices of 𝑉 𝑡∗
.

We show next that whenever Algorithm GR(1)Basic removes vertices from
the game graph, these vertices are indeed winning for player 2. is is due to
Lemma 7.4.2 that states that these sets are player-2 dominions in the current game
graph, and Lemma 2.5.1 (3) that states that all player-2 dominions of the current
game graph 𝒢 𝑡 are also winning for player 2 in the original game graph 𝒢 .

Proposition 7.4.5 (Completeness). Let 𝑉 𝑡∗
be the set of vertices returned by Algo-

rithm GR(1)Basic. Each vertex in 𝑉 ⧵ 𝑉 𝑡∗
is winning for player 2.

Proof. By Lemma 2.5.1 (3) it is sufficient to show that in each iteration 𝑡 with 𝑆 𝑡 ≠ ∅
player 2 has a winning strategy from the vertices of 𝑆 𝑡 in 𝒢 𝑡. Let 𝑗 be such that
𝑆 𝑡 = 𝑊1 (𝒢 𝑡 ⧵ 𝑌 𝑡

𝑗 , ⋀𝑘1
ℓ=1 Büchi(𝐿

𝑡
ℓ ⧵ 𝑌 𝑡

𝑗 )). We first show that 𝑆 𝑡 is also a player-

1 dominion for the generalized Büchi game on the game graph 𝒢 𝑡 that includes
the vertices of 𝑌 𝑡

𝑗 , i.e., that 𝑆 is a player-2 dominion on 𝒢 𝑡. By Lemma 2.5.1 (1)
the set 𝑉 𝑡 ⧵ 𝑌 𝑡

𝑗 is 1-closed in 𝒢 𝑡, i.e., it is 2-closed in 𝒢 𝑡. us by Lemma 2.5.1 (1)
each 1-dominion of 𝒢 𝑡 ⧵ 𝑌 𝑡

𝑗 is also a 1-dominion in 𝒢 𝑡. Now as 𝑆 𝑡 does not contain
any vertices of 𝑈𝑗 , it is, by Lemma 7.4.2, a player-2 dominion in 𝒢 w.r.t. the GR(1)
objective. Finally, combining the aractor strategy with the above we have that also
Ar2(𝒢 𝑡, 𝑆 𝑡) is a player-2 dominion in the GR(1) game on 𝒢 .

Finally, the running time of Algorithm GR(1)Basic is the product of the number
of iterations of the nested loops and the running time for the generalized Büchi
algorithm.

Proposition 7.4.6 (Running time). Algorithm GR(1)Basic runs in 𝑂(𝑘2 ⋅ 𝑛 ⋅ 𝐵) where
𝐵 is the running time bound for solving a generalized Büchi game. By eorem 7.2.5
we have 𝐵 = 𝑂(𝑘1 ⋅ 𝑛2) and thus a total running time of 𝑂(𝑘1 ⋅ 𝑘2 ⋅ 𝑛3).

Proof. As in each iteration of the outer loop, except the last one, at least one vertex is
removed from the maintained graph, there are at most 𝑂(𝑛) iterations. In the inner
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loop there are 𝑘2 iterations, each with a call to a generalized Büchi game algorithm.
us, in total we have a running time of 𝑂(𝑘2 ⋅ 𝑛 ⋅ 𝐵).

7.4.2 Progress Measure Algorithm for Finding Small Dominions

Our goal for the remaining part of Section 7.4 is to speed up the basic algorithm
by computing “small” player-2 dominions faster such that in each iteration of the
algorithm a “large” 2-dominion is found and thereby the number of iterations of the
algorithm is reduced. To compute small dominions we use a progress measure for
generalized Büchi games which is a special instance of the more general progress
measure for GR(1) games presented in [JP06, Section 3.1], which itself is based on
[Jur00]. In this sectionwe first restate the progressmeasure of [JP06] in our notation
and simplified to generalized Büchi, then adapt it to not compute the winning sets
but dominions of a given size, and finally give an efficient algorithm to compute the
progress measure. e size of a dominion is the number of vertices it contains.

e progress measure of [JP06] is defined as a fixed-point of ranking functions
that are defined as follows. Let ⋀𝑘

ℓ=1 Büchi(𝑇𝑖) be a generalized Büchi objective. For
each 1 ≤ ℓ ≤ 𝑘 we define the value ̄𝑛ℓ to be ̄𝑛ℓ = |𝑉 ⧵ 𝑇ℓ|. and a ranking function
𝜌ℓ ∶ 𝑉 → {0, 1, … , ̄𝑛ℓ, ∞}. e intuitive meaning of a value 𝜌ℓ(𝑣) is the number of
moves player 1 needs, when starting from 𝑣, to reach a vertex of 𝑇ℓ ∩ 𝑊1, i.e., 𝜌ℓ(𝑣)
will be equal to the rank rank1(𝒢 , 𝑇ℓ ∩ 𝑊1, 𝑣). As there are only ̄𝑛ℓ many vertices
which are not in 𝑇ℓ, they can either be reached within ̄𝑛ℓ steps or cannot be reached
at all. Let ℓ⊕1 = ℓ+1 if ℓ < 𝑘 and 𝑘⊕1 = 1 and analogously ℓ⊖1 = ℓ−1 if ℓ > 1
and 1⊖1 = 𝑘. e actual value 𝜌ℓ(𝑣) is defined in a recursive fashion via the values
of the successor vertices of 𝑣. at is, for 𝑣 ∉ 𝑇ℓ we define 𝜌ℓ(𝑣) by the values 𝜌ℓ(𝑤)
for (𝑣, 𝑤) ∈ 𝐸. Otherwise, if 𝑣 ∈ 𝑇ℓ, then we already reached 𝑇ℓ and we only have
to check whether 𝑣 is in the winning set. at is, whether 𝑣 can reach a vertex of
the next target set 𝑇ℓ⊕1 that is also in the winning set 𝑊1. Hence, for 𝑣 ∈ 𝑇ℓ we
define 𝜌ℓ(𝑣) by the values 𝜌ℓ⊕1(𝑤) for (𝑣, 𝑤) ∈ 𝐸. For each vertex 𝑣 we consider
all its successor vertices and their values and then pick the minimum if 𝑣 ∈ 𝑉1 or
the maximum if 𝑣 ∈ 𝑉2. In both cases, 𝜌ℓ(𝑣) is set to this value increased by 1 for
𝑣 ∉ 𝑇ℓ. If 𝑣 ∈ 𝑇ℓ, the value is set to ∞ if the minimum (resp. maximum) over the
successors is ∞ and to 0 otherwise. is procedure is formalized via two functions.
First, bestℓ(𝑣) returns the value of the best neighbor for the player owning 𝑣.

bestℓ(𝑣) =

⎧⎪
⎪
⎨
⎪
⎪⎩

min(𝑣,𝑤)∈𝐸 𝜌ℓ⊕1(𝑤) if 𝑣 ∈ 𝑉1 ∧ 𝑣 ∈ 𝑇ℓ ,
min(𝑣,𝑤)∈𝐸 𝜌ℓ(𝑤) if 𝑣 ∈ 𝑉1 ∧ 𝑣 ∉ 𝑇ℓ ,
max(𝑣,𝑤)∈𝐸 𝜌ℓ⊕1(𝑤) if 𝑣 ∈ 𝑉2 ∧ 𝑣 ∈ 𝑇ℓ ,
max(𝑣,𝑤)∈𝐸 𝜌ℓ(𝑤) if 𝑣 ∈ 𝑉2 ∧ 𝑣 ∉ 𝑇ℓ .

Second, the function incℓ
𝑣 formalizes the increment over the value of the best neigh-

bor that then defines the value of 𝜌ℓ(𝑣). We define for each set {0, 1, … , ̄𝑛ℓ, ∞} the
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unary ++ operator as 𝑥++ = 𝑥 + 1 for 𝑥 < ̄𝑛ℓ and 𝑥++ = ∞ otherwise.

incℓ
𝑣(𝑥) =

{
0 if 𝑣 ∈ 𝑇ℓ ∧ 𝑥 ≠ ∞,
𝑥++ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

Note that from these definitions it follows a vertex 𝑣 of 𝑇ℓ can only have 𝜌ℓ(𝑣) =
0 or 𝜌ℓ(𝑣) = ∞. Moreover, we do not have to update 𝜌ℓ(𝑣) for 𝑣 ∈ 𝑇ℓ as long as (a)
for 𝑣 ∈ 𝑉1 one 𝑤 with (𝑣, 𝑤) ∈ 𝐸 has finite 𝜌ℓ⊕1(𝑤) or (b) for 𝑣 ∈ 𝑉2 all 𝑤 with
(𝑣, 𝑤) ∈ 𝐸 have finite 𝜌ℓ⊕1(𝑤).

e progress measure is now defined as the least simultaneous fixed-point of the
operation that updates all ranking functions 𝜌ℓ(𝑣) tomax(𝜌ℓ(𝑣), incℓ

𝑣(bestℓ(𝑣))). e
least fixed-point can be computed via the liing algorithm (introduced by [Jur00]
for parity games) that starts with all the ranking functions 𝜌ℓ(.) initialized as the
zero functions and iteratively updates 𝜌ℓ(𝑣) to incℓ

𝑣(bestℓ(𝑣)), for all 𝑣 ∈ 𝑉 , until
the least simultaneous fixed-point is reached.

Given the progress measure, we can decide the generalized Büchi game by the
following theorem. Intuitively, player 1 can win starting from a vertex with 𝜌1(𝑣) <
∞ by keeping a counter ℓ that is initialized to 1, choosing the outgoing edge to
bestℓ(𝑣) whenever at a vertex of 𝑉1, and increasing the counter with ⊕1 when a
vertex of 𝑇ℓ is reached.

eorem 7.4.7. [JP06, m. 1] For a given generalized Büchi game and its progress
measure 𝜌, Player 1 has a winning strategy from a vertex 𝑣 iff 𝜌1(𝑣) < ∞.

As our goal is to compute small dominions, say of size ℎ, instead of the whole
winning set, we have to modify the above progress measure as follows. In the defi-
nition of the functions 𝜌ℓ we redefine the value ̄𝑛ℓ to be min{ℎ−1, |𝑉 ⧵𝑇ℓ|} instead
of |𝑉 ⧵ 𝑇ℓ|. e intuition behind this is that if the dominion contains at most ℎ ver-
tices, then from each vertex in the dominion we can reach each set 𝑇ℓ within ℎ − 1
steps and we do not care about vertices with a larger distance.

With Algorithm GenBuchiProgressMeasure we give an 𝑂(𝑘 ⋅ ℎ ⋅ 𝑚) time real-
ization of the liing algorithm for computing the functions 𝜌ℓ. It is a corrected
version of the liing algorithm in [JP06, Section 3.1], tailored to generalized Büchi
objectives and dominion computation, and exploits ideas from the liing algorithm
in [EWS05]. We iteratively increase the values 𝜌ℓ(𝑣) for all pairs (𝑣, ℓ). e main
idea for the running time bound is to consider each pair (𝑣, ℓ) at most ℎ times,
namely only when the value of 𝜌ℓ(𝑣) can be increased, and each time we consider
a pair, we increase the value of 𝜌ℓ(𝑣) and only do computations in the order of the
degree of 𝑣. To this end, we use the following data structure. (1) We maintain a
list of pairs (𝑣, ℓ) for which 𝜌ℓ(𝑣) must be increased because of some update on 𝑣’s
neighbors. (2) We additionally maintain 𝐵ℓ(𝑣) for each pair (𝑣, ℓ), which stores the
value of bestℓ(𝑣) from the last time we updated 𝜌ℓ(𝑣), and (3) a counter 𝐶ℓ(𝑣) for
𝑣 ∈ 𝑉1, which stores the number of successors 𝑤 ∈ Out(𝑣) with 𝜌ℓ(𝑤) = 𝐵ℓ(𝑣). Ev-
ery time 𝐵ℓ(𝑣) is updated, we initialize 𝐶ℓ(𝑣) using the function cntℓ(𝑣) that counts
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Algorithm GenBuchiProgressMeasure: Liing Algorithm for progress
measure of generalized Büchi games
Input :game graph 𝒢 = ((𝑉 , 𝐸), (𝑉1, 𝑉2)),

generalized Büchi objective ⋀1≤ℓ≤𝑘 Büchi(𝑇ℓ), and
parameter ℎ ∈ [1, 𝑛] ∩ ℕ

Output : player 1 dominion / winning set for player 1 if ℎ = 𝑛
1 foreach 𝑣 ∈ 𝑉 , 1 ≤ ℓ ≤ 𝑘 do
2 𝐵ℓ(𝑣) ← 0
3 if 𝑣 ∈ 𝑉1 then 𝐶ℓ(𝑣) ← Outdeg(𝑣)
4 𝜌ℓ(𝑣) ← 0
5 𝑄 ← {(𝑣, ℓ) ∣ 𝑣 ∈ 𝑉 , 1 ≤ ℓ ≤ 𝑘, 𝑣 ∉ 𝑇ℓ}
6 while 𝑄 ≠ ∅ do
7 pick some (𝑣, ℓ) ∈ 𝑄 and remove it from 𝑄
8 old ← 𝜌ℓ(𝑣)
9 𝐵ℓ(𝑣) ← bestℓ(𝑣)

10 if 𝑣 ∈ 𝑉1 then 𝐶ℓ(𝑣) ← cntℓ(𝑣)
11 𝜌ℓ(𝑣) ← incℓ

𝑣 (bestℓ(𝑣))
12 foreach 𝑤 ∈ In(𝑣) ⧵ 𝑇ℓ with (𝑤, ℓ) ∉ 𝑄, 𝜌ℓ(𝑤) < ∞ do
13 if 𝑤 ∈ 𝑉1 and old = 𝐵ℓ(𝑤) then
14 𝐶ℓ(𝑤) ← 𝐶ℓ(𝑤) − 1
15 if 𝐶ℓ(𝑤) = 0 then 𝑄 ← 𝑄 ∪ {(𝑤, ℓ)}
16 else if 𝑤 ∈ 𝑉2 and 𝜌ℓ(𝑣) > 𝐵ℓ(𝑤) then 𝑄 ← 𝑄 ∪ {(𝑤, ℓ)}
17 if 𝜌ℓ(𝑣) = ∞ then
18 foreach 𝑤 ∈ In(𝑣) ∩ 𝑇ℓ⊖1 with (𝑤, ℓ ⊖ 1) ∉ 𝑄, 𝜌ℓ⊖1(𝑤) < ∞ do
19 if 𝑤 ∈ 𝑉1 then
20 𝐶ℓ⊖1(𝑤) ← 𝐶ℓ⊖1(𝑤) − 1
21 if 𝐶ℓ⊖1(𝑤) = 0 then 𝑄 ← 𝑄 ∪ {(𝑤, ℓ ⊖ 1)}
22 else if 𝑤 ∈ 𝑉2 then 𝑄 ← 𝑄 ∪ {(𝑤, ℓ ⊖ 1)}

23 return {𝑣 ∈ 𝑉 ∣ 𝜌ℓ(𝑣) < ∞ for some ℓ}

the number of successor vertices 𝑤 with 𝜌ℓ(𝑤) = bestℓ(𝑣). Notice that for 𝑣 ∈ 𝑇ℓ
we only distinguish whether 𝜌ℓ⊕1(𝑣) is finite or not.

cntℓ(𝑣) =
{

|{𝑤 ∈ Out(𝑣) ∣ 𝜌ℓ⊕1(𝑤) < ∞}| if 𝑣 ∈ 𝑇ℓ ,
|{𝑤 ∈ Out(𝑣) ∣ 𝜌ℓ(𝑤) = bestℓ(𝑣)}| if 𝑣 ∉ 𝑇ℓ .

Whenever the algorithm considers a pair (𝑣, ℓ), it first computes bestℓ(𝑣) and
cntℓ(𝑣) in 𝑂(Outdeg(𝑣)) time (l. 9–10), stores these values in 𝐵ℓ(𝑣) and 𝐶ℓ(𝑣), and
updates 𝜌ℓ(𝑣) to incℓ

𝑣(bestℓ(𝑣)) (l. 11). It then identifies the pairs (𝑤, ℓ), (𝑤, ℓ ⊖ 1)
that are affected by the change of the value 𝜌ℓ(𝑣) and adds them to the set 𝑄 in
𝑂(Indeg(𝑣)) time (l. 12–22). us it spends 𝑂(Outdeg(𝑣) + Indeg(𝑣)) time whenever
𝜌ℓ(𝑣) changes, which happens only 𝑂(𝑛) times.

In the remainder of the section we prove the following theorem.
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eorem 7.4.8. For a given generalized Büchi game, Algorithm GenBuchiProgress-
Measure is an 𝑂(𝑘 ⋅ ℎ ⋅ 𝑚) time procedure that either returns a player-1 dominion or
the empty set, and, if there is at least one player-1 dominion of size ≤ ℎ then it returns
a player-1 dominion containing all player-1 dominions of size ≤ ℎ.

Remark 7.4.9. While for the progress measure in [JP06] it holds that 𝜌ℓ(𝑣) < ∞ for
some 1 ≤ ℓ ≤ 𝑘 is equivalent to 𝜌ℓ′(𝑣) < ∞ for all 1 ≤ ℓ′ ≤ 𝑘, this does not hold in
general for our modified progress measure 𝜌. us we consider the set {𝑣 ∈ 𝑉 ∣ 𝜌ℓ(𝑣) <
∞ for some ℓ} as a player-1 dominion and not just the set {𝑣 ∈ 𝑉 ∣ 𝜌1(𝑣) < ∞} .

e correctness of Algorithm GenBuchiProgressMeasure will be proven by the
following invariants that are maintained during the whole algorithm. ese invari-
ants show that (a) the data structures 𝑄, 𝐵ℓ, and 𝐶ℓ are maintained correctly, and
(b) the values 𝜌ℓ(𝑣) are bounded from above (i) by incℓ

𝑣(bestℓ(𝑣)) and (ii) by the rank
rank1(𝒢 , 𝑇ℓ ∩ 𝐷, 𝑣) if 𝑣 is in a dominion 𝐷 of size ≤ ℎ.

Invariant 7.4.10. e while-loop in Algorithm GenBuchiProgressMeasure has the fol-
lowing loop invariants.

(1) For all 𝑣 ∈ 𝑉 and all 1 ≤ ℓ ≤ 𝑘 we have 𝜌ℓ(𝑣) ≤ incℓ
𝑣(bestℓ(𝑣)).

(2) For all 𝑣 ∈ 𝑉 and all 1 ≤ ℓ ≤ 𝑘 we have that if 𝜌ℓ(𝑣) ≠ 0 or 𝑣 ∈ 𝑇ℓ, then
𝜌ℓ(𝑣) = incℓ

𝑣(𝐵ℓ(𝑣)).

(3) For 𝑣 ∈ 𝑉1 and all 1 ≤ ℓ ≤ 𝑘 we have

𝐶ℓ(𝑣) =
{

|{𝑤 ∈ Out(𝑣) ∣ 𝜌ℓ⊕1(𝑤) < ∞}| if 𝑣 ∈ 𝑇ℓ ,
|{𝑤 ∈ Out(𝑣) ∣ 𝜌ℓ(𝑤) = 𝐵ℓ(𝑣)}| if 𝑣 ∉ 𝑇ℓ, 𝜌ℓ(𝑣) < ∞.

(4) e set 𝑄 consists exactly of the pairs (𝑣, ℓ) with 𝜌ℓ(𝑣) < incℓ
𝑣(bestℓ(𝑣)).

(5) For each player-1 dominion 𝐷 with |𝐷| ≤ ℎ and for each 𝑣 ∈ 𝐷 and all 1 ≤
ℓ ≤ 𝑘 we have 𝜌ℓ(𝑣) ≤ 𝑟𝑎𝑛𝑘1(𝒢 , 𝑇ℓ ∩ 𝐷, 𝑣) < ℎ.

Notice that when the algorithm terminates we have by the Invariants (1) & (4) that
𝜌ℓ(𝑣) = incℓ

𝑣(bestℓ(𝑣)) for all 𝑣 ∈ 𝑉 and all 1 ≤ ℓ ≤ 𝑘, i.e., the functions 𝜌ℓ(𝑣) are a
fixed-point for the incℓ

𝑣(bestℓ(𝑣)) updates. By the following lemmata we prove that
the above loop invariants are valid.

Lemma 7.4.11. Before and aer each iteration of the while-loop in Algorithm Gen-
BuchiProgressMeasure we have 𝜌ℓ(𝑣) ≤ incℓ

𝑣(bestℓ(𝑣)) for all 𝑣 ∈ 𝑉 and 1 ≤ ℓ ≤ 𝑘.

Proof. First note that by the initialization of the functions 𝜌ℓ(.) with the zero func-
tion and by the definition of incℓ

𝑣(bestℓ(.)), the values of 𝜌ℓ(𝑣) for 𝑣 ∈ 𝑉 never
decrease.

We prove the lemma by induction over the iterations of the while-loop. As
all 𝜌ℓ(𝑣) are initialized to 0 and 0 is the minimum value, the inequalities are all
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satisfied in the base case when the algorithm first enters the the while-loop. Now
for the induction step consider an iteration of the loop and assume the invariant is
satisfied before the loop. e value 𝜌ℓ(𝑣) is only changed when the pair (𝑣, ℓ) is
processed and then it is set to incℓ

𝑣(bestℓ(𝑣)). us the invariant is satisfied aer
these iterations. In all the other iterations with different pairs (𝑣′, ℓ′) the values
𝜌ℓ′(𝑣′) are either unchanged or increased . As incℓ

𝑣(bestℓ(𝑣)) is monotonic in the
values of the neighbors, this can only increase the right side of the inequality and
thus this invariant is also satisfied aer these iterations. Hence, if the invariant is
valid before an iteration of the loop, it is also valid aerwards.

Lemma 7.4.12. Before and aer each iteration of the while-loop in Algorithm Gen-
BuchiProgressMeasure we have that if 𝜌ℓ(𝑣) ≠ 0 or 𝑣 ∈ 𝑇ℓ, then 𝜌ℓ(𝑣) = incℓ

𝑣(𝐵ℓ(𝑣)),
for all 𝑣 ∈ 𝑉 and all 1 ≤ ℓ ≤ 𝑘.

Proof. We prove the lemma by induction over the iterations of the while-loop. As
𝜌ℓ(𝑣) is initialized to 0, this is trivially satisfied in the base case. Now for the in-
duction step consider an iteration of the loop and let us assume that the invariant is
satisfied before the loop. e values 𝜌ℓ(𝑣) and 𝐵ℓ(𝑣) are only changedwhen the pair
(𝑣, ℓ) is processed and then the invariant is trivially satisfied by the assignments in
line 9 and line 11 of the algorithm.

Lemma 7.4.13. Before and aer each iteration of the while-loop in Algorithm Gen-
BuchiProgressMeasure for 𝑣 ∈ 𝑉1 we have for all 1 ≤ ℓ ≤ 𝑘

𝐶ℓ(𝑣) =
{

|{𝑤 ∈ Out(𝑣) ∣ 𝜌ℓ⊕1(𝑤) < ∞}| if 𝑣 ∈ 𝑇ℓ ,
|{𝑤 ∈ Out(𝑣) ∣ 𝜌ℓ(𝑤) = 𝐵ℓ(𝑣)}| if 𝑣 ∉ 𝑇ℓ, 𝜌ℓ(𝑣) < ∞.

Proof. We prove the lemma by induction over the iterations of the while-loop. As
base case consider the point where the algorithm first enters the while-loop. All
𝜌ℓ(𝑣) and 𝐵ℓ(𝑣) are initialized to 0 and thus in both cases the right side of the
invariant is equal to Outdeg(𝑣), which is exactly the value assigned to 𝐶ℓ(𝑣).

Now for the induction step consider an iteration of the loop and let us assume
that the Invariants (1)–(3) are satisfied before the loop. Let 𝑣 ∈ 𝑉1. In an iteration
where (𝑣, ℓ) is processed in line 10 we set 𝐶ℓ(𝑣) to cntℓ(𝑣) and hence the invariant
is satisfied by the definition of cntℓ(𝑣). Otherwise the condition for 𝐶ℓ(𝑣) is only
affected if a vertex 𝑢 ∈ Out(𝑣) is processed. We distinguish the two cases 𝑣 ∈ 𝑇ℓ
and 𝑣 ∉ 𝑇ℓ.

• If 𝑣 ∈ 𝑇ℓ, then 𝐶ℓ(𝑣) is only affected in iterations where pairs (𝑢, ℓ ⊕ 1) are
considered. If the updated value of 𝜌ℓ⊕1(𝑢) is less than ∞, then the set {𝑤 ∈
Out(𝑣) ∣ 𝜌ℓ⊕1(𝑤) < ∞} is unchanged and also 𝐶ℓ(𝑣) is not changed by the
algorithm, i.e., the invariant is still satisfied. Otherwise, if the updated value
of 𝜌ℓ⊕1(𝑢) is ∞, then 𝑢 drops out of the set {𝑤 ∈ Out(𝑣) ∣ 𝜌ℓ⊕1(𝑤) < ∞} but
also the algorithm decreases 𝐶ℓ(𝑣) by one, i.e., again the invariant is satisfied.
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• If 𝑣 ∉ 𝑇ℓ and 𝜌ℓ(𝑣) < ∞, then 𝐶ℓ(𝑣) is only affected in iterations where
pairs (𝑢, ℓ) are considered. Let 𝜌𝑜

ℓ(𝑢) be the value of 𝜌ℓ(𝑢) before its update. If
𝜌𝑜

ℓ(𝑢) > 𝐵ℓ(𝑣), then 𝑢 ∉ {𝑤 ∈ Out(𝑣) ∣ 𝜌ℓ(𝑤) = 𝐵ℓ(𝑣)} and thus the set is not
affected by the increased value of 𝜌ℓ(𝑢). In this case the algorithm does not
change 𝐶ℓ(𝑣) and thus the invariant is satisfied. Otherwise, if 𝜌𝑜

ℓ(𝑢) = 𝐵ℓ(𝑣),
then 𝑢 ∈ {𝑤 ∈ Out(𝑣) ∣ 𝜌ℓ(𝑤) = 𝐵ℓ(𝑣)} before the iteration but not aer
the iteration. In that case the algorithm decreases 𝐶ℓ(𝑣) by one and thus the
invariant is still satisfied.
Notice that by Invariants (1) and (2), it cannot happen that 𝜌𝑜

ℓ(𝑢) < 𝐵ℓ(𝑣). To
see this, assume by contradiction 𝜌𝑜

ℓ(𝑢) < 𝐵ℓ(𝑣). Let best𝑜
ℓ(𝑣) denote the value

of bestℓ(𝑣) before the update of 𝜌ℓ(𝑢). By (1) we have 𝜌ℓ(𝑣) ≤ incℓ
𝑣(best𝑜

ℓ(𝑣)),
by the definition of best𝑜

ℓ(𝑣) and 𝑣 ∈ 𝑉1 ⧵ 𝑇ℓ we have best𝑜
ℓ(𝑣) ≤ 𝜌𝑜

ℓ(𝑢), and
thus by the assumption best𝑜

ℓ(𝑣) < 𝐵ℓ(𝑣). By (2) we have either 𝜌ℓ(𝑣) =
incℓ

𝑣(𝐵ℓ(𝑣)) or 𝜌ℓ(𝑣) = 0. In the first case, as incℓ
𝑣(𝑥) is strictly increasing for

𝑥 < ∞, we have incℓ
𝑣(best𝑜

ℓ(𝑣)) < incℓ
𝑣(𝐵ℓ(𝑣)) = 𝜌ℓ(𝑣) and thus a contradic-

tion to (1). In the second case the pair (𝑣, ℓ) has not been processed yet and
we have a contradiction by 𝐵ℓ(𝑣) = 0.

Lemma 7.4.14. Before and aer each iteration of the while-loop in Algorithm Gen-
BuchiProgressMeasure we have that the set 𝑄 consists exactly of the pairs (𝑣, ℓ) with
𝜌ℓ(𝑣) < incℓ

𝑣(bestℓ(𝑣)).

Proof. e set 𝑄 is initialized in line 5 with all pairs (𝑣, ℓ) such that 𝑣 ∉ 𝑇ℓ. For all
of these vertices we have bestℓ(𝑣) = 0 and thus incℓ

𝑣(bestℓ(𝑣)) = 1, i.e., 𝜌ℓ(𝑣) = 0 <
incℓ

𝑣(bestℓ(𝑣)) = 1. Now consider (𝑣, ℓ) ∉ 𝑄, i.e., 𝑣 ∈ 𝑇ℓ. As all 𝜌ℓ(𝑣) = 0, we have
incℓ

𝑣(bestℓ(𝑣)) = 0 and thus 𝜌ℓ(𝑣) = 0 ≮ incℓ
𝑣(bestℓ(𝑣)) = 0. Hence, in the base case

a pair (𝑣, ℓ) is in 𝑄 iff 𝜌ℓ(𝑣) = 0 < incℓ
𝑣(bestℓ(𝑣)) = 1.

Now for the induction step consider an iteration of the loop and let us assume
that the Invariants (1)–(4) are satisfied before the loop. For the pair (𝑣, ℓ) processed
in the iteration, 𝜌ℓ(𝑣) is set to incℓ

𝑣(bestℓ(𝑣)) and it is removed from 𝑄. Notice
that (a) the value of 𝜌ℓ(𝑤) is only changed when a pair (𝑤, ℓ) processed and (b)
incℓ

𝑣(bestℓ(𝑤)) can only increase when other pairs (𝑣, ℓ) are processed. us we
have to show that in an iteration where the algorithm processes the pair (𝑣, ℓ)
all pairs (𝑤, ℓ′) with 𝜌ℓ′(𝑤) = incℓ

𝑣(bestℓ(𝑤)) before the iteration and 𝜌ℓ′(𝑤) <
incℓ

𝑣(bestℓ(𝑤)) aer the iteration are added to the set 𝑄. e only vertices affected
by the change of 𝜌ℓ(𝑣) are those in In(𝑣) which are either (i) not in 𝑇ℓ or (ii) in 𝑇ℓ⊖1.
In the former case only 𝜌ℓ is affected while in the laer case only 𝜌ℓ⊖1 is affected.
Let 𝜌𝑜

ℓ(𝑣) and 𝜌𝑛
ℓ(𝑣) be the values before, respectively aer, the update of 𝜌ℓ(𝑣). No-

tice that if 𝑤 ∉ 𝑇ℓ and 𝜌ℓ(𝑤) = 0, then (𝑤, ℓ) ∈ 𝑄 by the initialization in line 5.
us in the following we can assume by Invariant (2) that 𝜌ℓ(𝑤) = incℓ

𝑣(𝐵ℓ(𝑤)) for
all (𝑤, ℓ) ∉ 𝑄. We consider the following cases.

• 𝑤 ∈ In(𝑣) ⧵ 𝑇ℓ and 𝑤 ∈ 𝑉1: en incℓ
𝑣(bestℓ(𝑤)) > 𝜌ℓ(𝑤) iff all 𝑢 ∈ Out(𝑤)

have 𝜌ℓ(𝑢) > 𝐵ℓ(𝑤). As (𝑤, ℓ) ∉ 𝑄 we know that before the iteration there



186 7. GENERALIZED BÜCHI AND GENERALIZED REACTIVITY-1 GAMES

is at least one 𝑢 ∈ Out(𝑤) with 𝜌ℓ(𝑢) = 𝐵ℓ(𝑤). In the case 𝑢 ≠ 𝑣, 𝐵ℓ(𝑤)
is not changed during the iteration and thus incℓ

𝑣(bestℓ(𝑤)) ≯ 𝜌ℓ(𝑤). Hence
incℓ

𝑣(bestℓ(𝑤)) > 𝜌ℓ(𝑤) iff 𝑣 is the only vertex in Out(𝑤) with 𝜌𝑜
ℓ(𝑣) = 𝐵ℓ(𝑤).

But then, by Invariant (3), 𝐶ℓ(𝑣) = 1 and thus the algorithm reduces 𝐶ℓ(𝑣) to
0 and add (𝑣, ℓ) to the set 𝑄 in lines 14–15.

• 𝑤 ∈ In(𝑣) ⧵ 𝑇ℓ and 𝑤 ∈ 𝑉2: en incℓ
𝑣(bestℓ(𝑤)) > 𝜌ℓ(𝑤) iff there is a vertex

𝑢 ∈ Out(𝑤) with 𝜌ℓ(𝑢) > 𝐵ℓ(𝑤). If there would be such an 𝑢 ∈ Out(𝑤)
different from 𝑣 then by the induction hypothesis we already have (𝑣, ℓ) ∈ 𝑄.
us wemust have that 𝜌𝑛

ℓ(𝑣) > 𝐵ℓ(𝑤) and thus (𝑤, ℓ) is added to 𝑄 in line 16
of the algorithm.

• 𝑤 ∈ In(𝑣) ∩ 𝑇ℓ⊖1 and 𝑤 ∈ 𝑉1: en incℓ
𝑣(bestℓ(𝑤)) > 𝜌ℓ⊖1(𝑤) iff all 𝑢 ∈

Out(𝑤) have 𝜌ℓ(𝑢) = ∞ and 𝜌ℓ⊖1(𝑤) = 0. is is the case iff 𝑣 has been the
only vertex in Out(𝑤) with 𝜌ℓ(𝑣) < ∞. But then, Invariant (3), 𝐶ℓ(𝑣) = 1 and
thus the algorithm decrements 𝐶ℓ(𝑣) to 0 and add (𝑣, ℓ ⊖ 1) to the set 𝑄 in
lines 20–21.

• 𝑤 ∈ In(𝑣) ∩ 𝑇ℓ⊖1 and 𝑤 ∈ 𝑉2: en, by the definition of incℓ
𝑣 , we have

incℓ
𝑣(bestℓ(𝑤)) > 𝜌ℓ⊖1(𝑤) iff there is an 𝑢 ∈ Out(𝑤) with 𝜌ℓ(𝑢) = ∞ and

𝜌ℓ⊖1(𝑤) = 0. If there would be such an 𝑢 ∈ Out(𝑤) different from 𝑣 then
by the induction hypothesis we already have (𝑣, ℓ ⊖ 1) ∈ 𝑄. us, we have
that 𝜌𝑛

ℓ(𝑣) = ∞ > 𝜌ℓ⊖1(𝑤) and incℓ
𝑣(𝜌𝑛

ℓ(𝑣)) = ∞ > 𝜌ℓ⊖1(𝑤) = 0. In that case
(𝑤, ℓ ⊖ 1) is added to 𝑄 in line 22 of the algorithm.

Lemma 7.4.15. For each player-1 dominion 𝐷 with |𝐷| ≤ ℎ, for each 𝑣 ∈ 𝐷, and all
1 ≤ ℓ ≤ 𝑘 we have 𝜌ℓ(𝑣) ≤ 𝑟𝑎𝑛𝑘1(𝒢 , 𝑇ℓ ∩ 𝐷, 𝑣) < ℎ.

Proof. First notice that as |𝐷| ≤ ℎ, we have rank1(𝒢 , 𝑇ℓ∩𝐷, 𝑣) < ℎ for all 1 ≤ ℓ ≤ 𝑘
and 𝑣 ∈ 𝐷. us we only have to show 𝜌ℓ(𝑣) ≤ 𝑟𝑎𝑛𝑘1(𝒢 , 𝑇ℓ ∩ 𝐷, 𝑣). We show this
claim by induction on the number of iterations of the while-loop.

As all functions 𝜌ℓ(.) are initialized with the 0-function, the invariant is satisfied
trivially in the base case when the algorithm first enters the while-loop.

Now for the induction step consider an iteration of the loop and let us assume
all the invariants are satisfied before the loop.

e value 𝜌ℓ(𝑣) is only updated in line 11 and there it is set to incℓ
𝑣(bestℓ(𝑣)).

We distinguish three different cases.

• Assume 𝑣 ∈ 𝑉1 and rank1(𝒢 , 𝑇ℓ ∩ 𝐷, 𝑣) = 𝑟 with 1 ≤ 𝑟 < ℎ. en,
by definition of rank1, there is a 𝑤 ∈ 𝐷, 𝑤 ≠ 𝑣, with (𝑣, 𝑤) ∈ 𝐸 and
rank1(𝒢 , 𝑇ℓ ∩ 𝐷, 𝑤) = 𝑟 − 1. Now by the induction assumption, 𝜌ℓ(𝑤) ≤
𝑟 − 1 at the beginning of the ℓ-th iteration. As 𝜌ℓ(𝑤) is not changed dur-
ing the iteration, we have 𝜌ℓ(𝑤) ≤ 𝑟 − 1 and thus bestℓ(𝑣) ≤ 𝑟 − 1. Hence,
incℓ

𝑣(bestℓ(𝑣)) ≤ 𝑟 and the invariant is still satisfied.
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• Assume 𝑣 ∈ 𝑉2 and rank1(𝒢 , 𝑇ℓ ∩ 𝐷, 𝑣) = 𝑟 with 1 ≤ 𝑟 < ℎ. en, by
definition of rank1, rank1(𝒢 , 𝑇ℓ ∩ 𝐷, 𝑤) = 𝑟 − 1 for each (𝑣, 𝑤) ∈ 𝐸 and as 𝐷
is 2-closed we have 𝑤 ∈ 𝐷. Now by the induction assumption, 𝜌ℓ(𝑤) ≤ 𝑟 − 1
at the beginning of the 𝑟-th iteration. As 𝜌ℓ(𝑤) is not changed during the
iteration, we have 𝜌ℓ(𝑤) ≤ 𝑟 − 1 when 𝑣 is updated for each (𝑣, 𝑤) ∈ 𝐸 and
thus bestℓ(𝑣) ≤ 𝑟 − 1. Hence, incℓ

𝑣(bestℓ(𝑣)) ≤ 𝑟 and the invariant is still
satisfied.

• Finally, assume rank1(𝒢 , 𝑇ℓ ∩ 𝐷, 𝑣) = 0, that is, 𝑣 ∈ 𝑇ℓ. By the induction
hypothesis for all 𝑤 ∈ 𝐷 with (𝑣, 𝑤) ∈ 𝐸 it holds that 𝜌ℓ⊕1(𝑤) < ℎ (and
there exists such a 𝑤 ∈ 𝐷) and thus bestℓ(𝑣) < ℎ. Hence, incℓ

𝑣(bestℓ(𝑣)) = 0
and the loop invariant is still satisfied.

us this loop invariant is maintained during the whole algorithm.

So far we have shown that the algorithm behaves as described by Invari-
ant 7.4.10. e next lemma provides the ingredients to show that the set 𝑊 =
{𝑣 ∈ 𝑉 ∣ 𝜌ℓ(𝑣) < ∞ for some ℓ} is a player-1 dominion by exploiting the fact that
the functions 𝜌ℓ form a fixed-point of the update operator.

Lemma 7.4.16. Let 𝑊 = {𝑣 ∈ 𝑉 ∣ 𝜌ℓ(𝑣) < ∞ for some ℓ} be the set computed by
Algorithm GenBuchiProgressMeasure.

(1) For all 𝑣 ∈ 𝑊 we have that if 𝜌ℓ(𝑣) < ∞, then player 1 has a strategy to reach
{𝑣′ ∈ 𝑇ℓ ∣ 𝜌ℓ(𝑣′) = 0} from 𝑣 by only visiting vertices in 𝑊 .

(2) For all 𝑣 ∈ 𝑇ℓ ∩ 𝑊 we have that if 𝜌ℓ(𝑣) = 0, then player 1 has a strategy to
reach {𝑣′ ∈ 𝑇ℓ⊕1 ∣ 𝜌ℓ⊕1(𝑣′) = 0} from 𝑣 by only visiting vertices in 𝑊 .

Proof. Recall that by the Invariants (1) and (4) we have 𝜌ℓ(𝑣) = incℓ
𝑣(bestℓ(𝑣)) for

all 𝑣 ∈ 𝑉 and all 1 ≤ ℓ ≤ 𝑘, i.e., the functions 𝜌ℓ(𝑣) are a fixed-point of the
incℓ

𝑣(bestℓ(𝑣)) updates.
(1) Consider a vertex 𝑣 ∈ 𝑊 with 𝜌ℓ(𝑣) = 𝑑 for 0 ≤ 𝑑 < ℎ. We will show by
induction in 𝑑 that then player 1 has a strategy to reach 𝑆 = {𝑣′ ∈ 𝑇ℓ ∣ 𝜌ℓ(𝑣′) = 0}
from 𝑣 by only visiting vertices in 𝑊 . For the base casewe exploit that the functions
𝜌ℓ(𝑣) are a fixed-point of the incℓ

𝑣(bestℓ(𝑣)) updates. Recall that we assume that
each vertex has at least one outgoing edge. By the definition of incℓ

𝑣 we have that
𝜌ℓ(𝑣) = 0 only if 𝑣 ∈ 𝑇ℓ and thus we already have reached 𝑆 in the base case.

For the induction step let us assume the claim holds for all 𝑑′ < 𝑑 and consider
a vertex 𝑣 with 𝜌ℓ(𝑣) = 𝑑. We distinguish the cases 𝑣 ∈ 𝑉1 and 𝑣 ∈ 𝑉2.

• 𝑣 ∈ 𝑉1: Since 𝜌 is a fixed-point of incℓ
𝑣(bestℓ(𝑣)), we have that there is at least

one vertex 𝑤 with (𝑣, 𝑤) ∈ 𝐸 and 𝜌ℓ(𝑤) = 𝑑−1. By the induction hypothesis,
player 1 has a strategy to reach 𝑆 starting from 𝑤 and visiting only vertices
in 𝑊 , and, as player 1 can choose the edge (𝑣, 𝑤), also a strategy starting
from 𝑣.
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• 𝑣 ∈ 𝑉2: Since 𝜌 is a fixed-point of incℓ
𝑣(bestℓ(𝑣)), we have that 𝜌ℓ(𝑤) < 𝑑

for all vertices 𝑤 with (𝑣, 𝑤) ∈ 𝐸. By the induction hypothesis player 1 has
a strategy to reach 𝑆 starting from any 𝑤 with (𝑣, 𝑤) ∈ 𝐸 and visiting only
vertices in 𝑊 , and thus also when starting from 𝑣.

Moreover, in both cases only the vertex 𝑣 is added to the path induced by the strat-
egy, and 𝑣 is by definition in 𝑊 . Hence, in both cases player 1 has a strategy to
reach 𝑆 from 𝑣 by only visiting vertices in 𝑊 , which concludes the proof of part 1.
(2) Recall that we have 𝑣 ∈ 𝑇ℓ and 𝜌ℓ(𝑣) = 0. Let 𝑆′ = {𝑣′ ∈ 𝑇ℓ⊕1 ∣ 𝜌ℓ⊕1(𝑣′) = 0}.
Again we distinguish whether 𝑣 ∈ 𝑉1 or 𝑣 ∈ 𝑉2.

• If 𝑣 ∈ 𝑉1, then, as the functions 𝜌ℓ form a fixed-point, there is at least one
vertex 𝑤 with (𝑣, 𝑤) ∈ 𝐸 and 𝜌ℓ⊕1(𝑤) < ∞. en by (1) player 1 has a
strategy to reach 𝑆′ starting from 𝑤 and visiting only vertices in 𝑊 , and, as
player 1 can choose the edge (𝑣, 𝑤), also a strategy starting from 𝑣.

• If 𝑣 ∈ 𝑉2, then, as 𝜌 is a fixed-point, we have 𝜌ℓ⊕1(𝑤) < ∞ for all 𝑤 with
(𝑣, 𝑤) ∈ 𝐸. en by (1) player 1 has a strategy to reach 𝑆′ starting from
any 𝑤 with (𝑣, 𝑤) ∈ 𝐸 and visiting only vertices in 𝑊 , and thus also when
starting from 𝑣.

Again, in both cases only the vertex 𝑣 is added to the path induced by the strategy,
and 𝑣 is by definition in 𝑊 . Hence in both cases player 1 has a strategy to reach 𝑆′

using only vertices of 𝑊 , which concludes the proof of part 2.

We now prove the correctness of Algorithm GenBuchiProgressMeasure.

Proposition 7.4.17 (Correctness). For the game graph 𝒢 and the conjunctive Büchi
objective ⋀1≤ℓ≤𝑘 Büchi(𝑇ℓ), Algorithm GenBuchiProgressMeasure either returns a
player-1 dominion or the empty set, and, if exists a player-1 dominion of size ≤ ℎ then
it returns a player-1 dominion containing all player-1 dominions of size ≤ ℎ.

Proof. We will show that (1) 𝑊 = {𝑣 ∈ 𝑉 ∣ 𝜌ℓ(𝑣) < ∞ for some ℓ} is a player-1
dominion and that (2) each player-1 dominion of size ≤ ℎ is contained in 𝑊 .
(1) e following strategy is winning for player 1 and does not leave 𝑊 . First, for
vertices 𝑣 ∈ 𝑊 ⧵ ⋃𝑘

ℓ=1 𝑇ℓ pick some ℓ s.t. 𝜌ℓ(𝑣) < ∞ and play the strategy given
by Lemma 7.4.16(1) to reach 𝑇ℓ ∩ 𝑊 . e first time a set 𝑇ℓ is reached, start playing
the strategies given by Lemma 7.4.16(2) to first reach the set 𝑇ℓ⊕1 ∩ 𝑊 , then the
set 𝑇ℓ⊕2 ∩ 𝑊 and so on. e plays resulting from this strategy visit all target sets
infinitely oen and never leave the set 𝑊 . at is, 𝑊 is a player-1 dominion.
(2) Consider a player-1 dominion 𝐷 with |𝐷| ≤ ℎ. en, we have that rank1(𝒢 , 𝑇ℓ ∩
𝐷, 𝑣) ≤ ℎ − 1 for all 𝑇ℓ and all 𝑣 ∈ 𝐷 and by Invariant (5) that 𝜌ℓ(𝑣) ≤ ℎ − 1 for all
𝑣 ∈ 𝐷. at is, each 𝑑 ∈ 𝐷 has 𝜌1(𝑣) < ∞ and thus 𝐷 ⊆ 𝑊 .

Finally, we consider the running time of Algorithm GenBuchiProgressMeasure.
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Proposition 7.4.18 (Running time). Algorithm GenBuchiProgressMeasure runs in
time 𝑂(𝑘 ⋅ ℎ ⋅ 𝑚).

Proof. Notice that the functions bestℓ(𝑣) and cntℓ(𝑣) can be computed in time pro-
portional to Outdeg(𝑣), while incℓ

𝑣(.) is in constant time. An iteration of the initial
foreach loop takes time 𝑂(Outdeg(𝑣)) and, as each 𝑣 ∈ 𝑉 is considered 𝑘 times,
the entire foreach loop takes time 𝑂(𝑘 ⋅ 𝑚). e running time of Algorithm Gen-
BuchiProgressMeasure is dominated by the while-loop. Processing a pair (𝑣, ℓ) ∈ 𝑄
takes time 𝑂(Outdeg(𝑣) + Indeg(𝑣)). Moreover, whenever (𝑣, ℓ) is processed, the
value of 𝜌ℓ(𝑣) is increased by 1 if 𝑣 ∉ 𝑇ℓ or by ∞ if 𝑣 ∈ 𝑇ℓ and thus each pair
can be considered at most ℎ times. Hence, for the entire while-loop we have a run-
ning time of 𝑂 (ℎ ⋅ ∑𝑘

ℓ=1 ∑𝑣∈𝑉 (Outdeg(𝑣) + Indeg(𝑣))) which can be simplified to
𝑂(𝑘 ⋅ ℎ ⋅ 𝑚).

7.4.3 Our Improved Algorithm for GR(1) Games

In this section we present our 𝑂(𝑘1𝑘2 ⋅ 𝑛2.5) time algorithm for GR(1) games, the
pseudocode is given in Algorithm GR(1) and Procedure GBD. We
prove the following theorem.

eorem 7.4.19. Algorithm GR(1) computes the winning sets for GR(1) games with
𝑛 vertices, 𝑘1 target sets in the antecedent, and 𝑘2 target sets in the consequent in
𝑂(𝑘1𝑘2 ⋅ 𝑛2.5) time.

e overall structure of the algorithm is the same as for the basic algorithm: We
search for a player-2 dominion 𝑆 𝑡 and if one is found, then its player-2 aractor 𝐷𝑡

is determined and removed from the current game graph 𝒢 𝑡 (with 𝒢 1 = 𝒢 ) to create
the game graph for the next iteration, 𝒢 𝑡+1. If no player-2 dominion exists, then the
remaining vertices are returned as the winning set of player 1. e difference to the
basic algorithm lies in the way we search for player-2 dominions. Two different
procedures are used for this purpose: First we search for “small” dominions with
the subroutine GBD. If no small dominion exists, then we search
for player-2 dominions as in the basic algorithm. e guarantee that we find a
“large” dominion in the second case (if a player-2 dominion exists) allows us to
bound the number of times this can happen. e subroutine GBD
called with parameter ℎ on a game graph 𝒢 provides the guarantee to identify all
player-2 dominions 𝐷 for which |Ar2(𝒢 , 𝐷)| ≤ ℎ, where ℎ is set to √𝑛 to achieve
the desired running time.

Search for large dominions. If the subroutine GBD returns an
empty set, i.e., when we have for all player-2 dominions 𝐷 that |Ar2(𝒢 𝑡, 𝐷)| > ℎ,
thenwe search for player-2 dominions as in the basic algorithm: For each 1 ≤ 𝑗 ≤ 𝑘2
first the player-1 aractor 𝑌 𝑡

𝑗 of 𝑈 𝑡
𝑗 is temporarily removed from the graph. en a

generalized Büchi game with target sets 𝐿𝑡
1 ⧵ 𝑌 𝑡

𝑗 , … , 𝐿𝑡
𝑘1

⧵ 𝑌 𝑡
𝑗 is solved on 𝒢 𝑡 ⧵ 𝑌 𝑡

𝑗 .
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Algorithm GR(1): GR(1) Games in 𝑂(𝑘1 ⋅ 𝑘2 ⋅ 𝑛2.5) Time
Input :game graph 𝒢 = (𝐺, (𝑉1, 𝑉2)) with graph 𝐺 = (𝑉 , 𝐸) and

GR(1) objective ⋀𝑘1
ℓ=1 Büchi(𝐿ℓ) → ⋀𝑘2

𝑗=1 Büchi(𝑈𝑗)
Output : winning set of player 1

1 𝒢 1 ← 𝒢
2 {𝑈 1

𝑗 } ← {𝑈𝑗}; {𝐿1
ℓ} ← {𝐿ℓ}

3 𝑡 ← 0
4 repeat
5 𝑡 ← 𝑡 + 1
6 𝑆𝑡 ← GBD(𝒢 𝑡, {𝐿𝑡

ℓ}, {𝑈 𝑡
𝑗}, √𝑛)

7 if 𝑆𝑡 = ∅ then
8 for 1 ≤ 𝑗 ≤ 𝑘2 do
9 𝑌 𝑡

𝑗 ← Ar1(𝒢 𝑡, 𝑈 𝑡
𝑗 )

10 𝑆 𝑡 ← GBG(𝒢 𝑡 ⧵ 𝑌 𝑡
𝑗 , ⋀𝑘1

ℓ=1 Büchi(𝐿𝑡
ℓ ⧵ 𝑌 𝑡

𝑗 ))
11 if 𝑆𝑡 ≠ ∅ then break

12 𝐷𝑡 ← Ar2(𝒢 𝑡, 𝑆𝑡)
13 𝒢 𝑡+1 ← 𝒢 𝑡 ⧵ 𝐷𝑡

14 {𝑈 𝑡+1
𝑗 } ← {𝑈 𝑡

𝑗 ⧵ 𝐷𝑡}; {𝐿𝑡+1
ℓ } ← {𝐿𝑡

ℓ ⧵ 𝐷𝑡}
15 until 𝐷𝑡 = ∅
16 return 𝑉 𝑡

egeneralized Büchi player in this game corresponds to player 2 in the GR(1) game
and his winning set to a player-2 dominion in the GR(1) game, see Lemma 7.4.2.

Procedure GBD. e procedure searches for player-2 domin-
ions in the GR(1) game, and is guaranteed to return some 2-dominion if there exists
a 2-dominion 𝐷 with |Ar2(𝒢 , 𝐷)| ≤ ℎ, otherwise it might return the empty set. To
this end we again consider generalized Büchi games, where the generalized Büchi
player corresponds to player 2 in the GR(1) game. We use the same hierarchical
graph decomposition as for Algorithm GenBuchi: Let the incoming edges of each
vertex be ordered such that the edges from vertices of 𝑉2 come first; for a given
game graph 𝒢 𝑡 the graph 𝐺𝑡

𝑖 contains all vertices of 𝒢 𝑡, for each vertex its first 2𝑖 in-
coming edges, and for each vertex with outdegree at most 2𝑖 all its outgoing edges.
e set 𝑍 𝑡

𝑖 contains all vertices of 𝑉 𝑡
1 with outdegree larger than 2𝑖 in 𝐺𝑡 and all

vertices of 𝑉 𝑡
2 that have no outgoing edge in 𝐺𝑡

𝑖 . We start with 𝑖 = 1 and increase 𝑖
by one as long as no dominion is found. For a given 𝑖 we perform the following
operations for each 1 ≤ 𝑗 ≤ 𝑘2: First the player 1 aractor 𝑌 𝑡

𝑖,𝑗 of 𝑈 𝑡
𝑗 ∪ 𝑍 𝑡

𝑖 is de-
termined. en we search for player-1 dominions on 𝒢 𝑡

𝑖 ⧵ 𝑌 𝑡
𝑖,𝑗 w.r.t. the objective

⋀𝑘1
ℓ=1 Büchi(𝐿ℓ ⧵ 𝑌 𝑡

𝑖,𝑗) with the generalized Büchi progress measure algorithm and
parameter ℎ = 2𝑖, i.e., by eorem 7.4.8 the progress measure algorithm returns all
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Procedure GBD(𝒢 𝑡, {𝐿𝑡
ℓ}, {𝑈 𝑡

𝑗}, ℎ)

Input :game graph 𝒢 𝑡 = ((𝑉 𝑡, 𝐸𝑡), (𝑉 𝑡
1 , 𝑉 𝑡

2 )),
𝑘1 target sets {𝐿𝑡

ℓ},
𝑘2 target sets {𝑈 𝑡

𝑗}, and
parameter ℎ ∈ [1, 𝑛]

Output : a player-2 dominion in the game graph 𝒢 𝑡 with objective
⋀𝑘1

ℓ=1 Büchi(𝐿𝑡
ℓ) → ⋀𝑘2

𝑗=1 Büchi(𝑈 𝑡
𝑗 ) that contains all 2-dominions with at

most ℎ vertices, or possibly the empty set if no such 2-dominion exists
1 for 𝑖 ← 1 to ⌈log2(2ℎ)⌉ do
2 construct 𝐺𝑡

𝑖
3 𝑍𝑡

𝑖 ← {𝑣 ∈ 𝑉 𝑡
2 ∣ Outdeg(𝐺𝑡

𝑖, 𝑣) = 0} ∪ {𝑣 ∈ 𝑉 𝑡
1 ∣ Outdeg(𝐺𝑡, 𝑣) > 2𝑖}

4 for 1 ≤ 𝑗 ≤ 𝑘2 do
5 𝑌 𝑡

𝑖,𝑗 ← Ar1(𝒢 𝑡
𝑖 , 𝑈 𝑡

𝑗 ∪ 𝑍𝑡
𝑖 )

6 𝑋𝑡
𝑖,𝑗 ← GBPM(𝒢 𝑡

𝑖 ⧵ 𝑌 𝑡
𝑖,𝑗 , ⋀𝑘1

ℓ=1 Büchi(𝐿𝑡
ℓ ⧵ 𝑌 𝑡

𝑖,𝑗), 2𝑖)
7 if 𝑋𝑡

𝑖,𝑗 ≠ ∅ then return 𝑋𝑡
𝑖,𝑗

8 return ∅

generalized Büchi dominions in 𝒢 𝑡
𝑖 ⧵ 𝑌 𝑡

𝑖,𝑗 of size at most ℎ.
e following lemma shows how the properties of the hierarchical graph decom-

position extend from generalized Büchi games to GR(1) games. e first part is cru-
cial for correctness: Every non-empty set found by the progress measure algorithm
on 𝒢 𝑡

𝑖 ⧵ 𝑌 𝑡
𝑖,𝑗 for some 𝑖 and 𝑗 is indeed a player-2 dominion in the GR(1) game. e

second part is crucial for the running time argument: Whenever the basic algorithm
for GR(1) gameswould identify a player-2 dominion 𝐷 with |Ar2(𝒢 , 𝐷)| ≤ 2𝑖, then
𝐷 is also a generalized Büchi dominion in 𝒢 𝑡

𝑖 ⧵ 𝑌 𝑡
𝑖,𝑗 for some 𝑗.

Lemma 7.4.20. Let the notation be as in Algorithm GR(1).

(1) Every 𝑋𝑡
𝑖,𝑗 ≠ ∅ is a 2-dominion in the GR(1) game on 𝒢 𝑡 with 𝑋𝑡

𝑖,𝑗 ∩ 𝑈 𝑡
𝑗 = ∅.

(2) If in 𝒢 𝑡 there exists a player-2 dominion 𝐷 w.r.t. the generalized Büchi ob-
jective ⋀𝑘1

ℓ=1 Büchi(𝐿
𝑡
ℓ) such that 𝐷 ∩ 𝑈 𝑡

𝑗 = ∅ for some 1 ≤ 𝑗 ≤ 𝑘2 and
|Ar2(𝒢 𝑡, 𝐷)| ≤ 2𝑖, then 𝐷 is a player-2 dominion w.r.t. the generalized Büchi
objective ⋀𝑘1

ℓ=1 Büchi(𝐿
𝑡
ℓ ⧵ 𝑌 𝑡

𝑖,𝑗) in 𝒢 𝑡
𝑖 ⧵ 𝑌 𝑡

𝑖,𝑗 .

Proof. We prove the two points separately.

(1) Byeorem 7.4.8 the set 𝑋𝑡
𝑖,𝑗 is a player-2 dominion on 𝒢 𝑡

𝑖 ⧵ 𝑌 𝑡
𝑖,𝑗 w.r.t. the gen-

eralized Büchi objective ⋀𝑘1
ℓ=1 Büchi(𝐿

𝑡
ℓ ⧵𝑌 𝑡

𝑖,𝑗) of player 2. By Lemma 2.5.1 (1)
𝑉 𝑡 ⧵𝑌 𝑡

𝑖,𝑗 is closed for player 1 on 𝒢 𝑡
𝑖 . us by Lemma 2.5.1 (1) 𝑋𝑡

𝑖,𝑗 is a player-2
dominion w.r.t. the generalized Büchi objective also in 𝒢 𝑡

𝑖 . As 𝑋𝑡
𝑖,𝑗 is player-

1 closed in 𝒢 𝑡
𝑖 and does not intersect with 𝑍 𝑡

𝑖 , it is player-1 closed in 𝒢 𝑡 by
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Lemma 7.2.6 (1). us by 𝐸𝑡
𝑖 ⊆ 𝐸𝑡, the set 𝑋𝑡

𝑖,𝑗 is a player-2 dominion w.r.t.
the generalized Büchi objective also in 𝒢 𝑡. Since 𝑋𝑡

𝑖,𝑗 does not intersect with
𝑈 𝑡

𝑗 , it is also a player-2 dominion in the GR(1) game on 𝒢 𝑡 (cf. Lemma 7.4.2).

(2) Since every player-2 dominion is player-1 closed, we have by Lemma 7.2.6 (2)
that (i) 𝒢 𝑡[𝐷] = 𝒢 𝑡

𝑖 [𝐷], (ii) 𝐷 does not intersect with 𝑍 𝑡
𝑖 , and (iii) 𝐷 is player-1

closed in 𝒢 𝑡
𝑖 . us we have that (a) 𝐷 does not intersect with 𝑌 𝑡

𝑖,𝑗 and (b)
player 2 can play the same winning strategy for the vertices in 𝐷 on 𝒢 𝑡

𝑖 as
on 𝒢 𝑡.

From this we can draw the following two corollaries: (1) When we have to go
up to 𝑖∗ in the graph decomposition to find a dominion, then its aractor has size
at least 2𝑖∗−1 and (2) when GBD returns an empty set, then all
player-2 dominions in the current game graph have more than ℎ = √𝑛 vertices.

Corollary 7.4.21. Let 𝑡 be some iteration of the repeat-until loop in Algorithm GR(1)
and consider the call to GBD(𝒢 𝑡, {𝐿𝑡

ℓ}, {𝑈 𝑡
𝑗}, ℎ).

(1) If for some 𝑖 > 1we have𝑋𝑡
𝑖,𝑗 ≠ ∅ but𝑋𝑡

𝑖−1,𝑗 = ∅, then |Ar2(𝒢 𝑡, 𝑋𝑡
𝑖,𝑗)| > 2𝑖−1.

(2) If GBD(𝒢 𝑡, {𝐿𝑡
ℓ}, {𝑈 𝑡

𝑗}, ℎ) returns the empty set, then for ev-
ery player-2 dominion 𝐷 in the GR(1) game we have |Ar2(𝒢 𝑡, 𝐷)| > ℎ.

Proof. We prove the two points separately.

(1) By Lemma 7.4.20 (1) 𝑋𝑡
𝑖,𝑗 is a player-2 dominion in the GR(1) game on 𝒢 𝑡 with

𝑋𝑡
𝑖,𝑗 ∩ 𝑈 𝑡

𝑗 = ∅ and thus in particular a dominion w.r.t. the generalized Büchi
objective ⋀𝑘1

ℓ=1 Büchi(𝐿
𝑡
ℓ) such that 𝑋𝑡

𝑖,𝑗 ∩ 𝑈 𝑡
𝑗 = ∅. Assume by contradiction

|Ar2(𝒢 𝑡, 𝑋𝑡
𝑖,𝑗)| ≤ 2𝑖−1. en by Lemma 7.4.20 (2) we have 𝑋𝑡

𝑖−1,𝑗 ≠ ∅, a
contradiction.

(2) Assume there exists a 2-dominion 𝐷 with |Ar2(𝒢 𝑡, 𝐷)| ≤ ℎ. en by
Lemma 7.4.3 there is also a 2-dominion 𝐷′ ⊆ 𝐷 that meets the criteria of
Lemma 7.4.20 (2). Let 𝑖′ be the minimal value such that |Ar2(𝒢 𝑡, 𝐷′)| ≤ 2𝑖′

;
we have 𝑖′ ≤ ⌈log2(ℎ)⌉. Now, by Lemma 7.4.20 (2), we have that 𝐷′ is a
dominion w.r.t. the generalized Büchi objective ⋀𝑘1

ℓ=1 Büchi(𝐿
𝑡
ℓ ⧵ 𝑌 𝑡

𝑖′,𝑗) in
𝒢 𝑡

𝑖′ ⧵ 𝑌 𝑡
𝑖′,𝑗 . By the correctness of Algorithm GenBuchiProgressMeasure, the

set 𝑋𝑡
𝑖′,𝑗 is a dominion containing 𝐷′ and thus GBD(𝒢 𝑡 =

((𝑉 𝑡, 𝐸𝑡), (𝑉 𝑡
1 , 𝑉 𝑡

2 )), {𝐿𝑡
ℓ}, {𝑈 𝑡

𝑗}, ℎ) returns a non-empty set.

For the final game graph 𝒢 𝑡∗
we can build a winning strategy for player 1 in the

sameway as for AlgorithmGR(1)Basic. at is, by combining herwinning strategies
for the disjunctive objective in the subgraphs 𝒢 𝑡∗

𝑗 and the aractor strategies for
Ar1(𝒢 𝑡∗ , 𝑈𝑗).
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Proposition 7.4.22 (Soundness). Let 𝑉 𝑡∗
be the set of vertices returned by Algo-

rithm GR(1). Each vertex in 𝑉 𝑡∗
is winning for player 1.

Proof. When the algorithm terminates we have 𝑆 𝑡∗ = ∅. us the winning strat-
egy of player 1 can be constructed in the same way as for the set returned by Algo-
rithm GR(1)Basic. (cf. Proof of Proposition 7.4.4)

Next we show that whenever Algorithm GR(1) removes vertices from the game
graph, these vertices are indeedwinning for player 2. is is due to Lemma 7.4.20 (1)
that states that these sets are 2-dominions in the current game graph and due to
Lemma 2.5.1 that states that all player-2 dominions of the current game graph 𝒢 𝑡

are also winning for player 2 in the original game graph 𝒢 .

Proposition 7.4.23 (Completeness). Let 𝑉 𝑡∗
be the set of vertices returned by Algo-

rithm GR(1). Each vertex in 𝑉 ⧵ 𝑉 𝑡∗
is winning for player 2.

Proof. By Lemma 2.5.1 (3) it is sufficient to show that in each iteration 𝑡 with
𝑆 𝑡 ≠ ∅ player 2 has a winning strategy from the vertices in 𝑆 𝑡 in 𝒢 𝑡. If a
non-empty set 𝑆 𝑡 is returned by GBD, then 𝑆 𝑡 is winning for
player 2 by Lemma 7.4.20 (1). For the case where 𝑆 𝑡 is empty aer the call to
GBD, the set 𝑆 𝑡 is determined in the same way as in the ba-
sic algorithm for GR(1) games and thus is winning by the correctness of Algo-
rithm GR(1)Basic (cf. Proof of Proposition 7.4.5).

Finally, as the running time of the subroutine GBD scales with
the size of the smallest player-2 dominion in 𝒢 𝑡 and we have only make 𝑂(√𝑛)
many calls to GBG, we obtain a running time of 𝑂(𝑘1 ⋅ 𝑘2 ⋅ 𝑛2.5).

Proposition 7.4.24 (Running time). Algorithm GR(1) can be implemented to termi-
nate in 𝑂(𝑘1 ⋅ 𝑘2 ⋅ 𝑛2.5) time.

Proof. We analyze the total running time over all iterations of the repeat-until loop.
e analysis uses that whenever a player-2 dominion 𝐷𝑡 is identified, then the ver-
tices of 𝐷𝑡 are removed from themaintained game graph. In particular, we have that
whenever GBD returns an empty set, either at least ℎ = √𝑛 ver-
tices are removed from the game graph or the algorithm terminates. us this case
can happen at most 𝑂(𝑛/ℎ) = 𝑂(√𝑛) times. In this case GBG is called 𝑘2
times. By Proposition 7.2.10 this takes total time 𝑂(√𝑛 ⋅ 𝑘2 ⋅ 𝑘1 ⋅ 𝑛2) = 𝑂(𝑘1𝑘2 ⋅ 𝑛2.5).

We next bound the total time spent in GBD. To efficiently con-
struct the graphs 𝐺𝑡

𝑖 and the vertex sets 𝑍 𝑡
𝑖 we maintain (sorted) lists of the incom-

ing and the outgoing edges of each vertex. ese lists can be updated whenever an
obsolete entry is encountered in the construction of 𝐺𝑡

𝑖; as each entry is removed
at most once, maintaining these data structures takes total time 𝑂(𝑚). Now con-
sider a fixed iteration 𝑖 of the outer for-loop in GBD. e graph
𝐺𝑡

𝑖 has 𝑂(2𝑖 ⋅ 𝑛) edges and thus, given the above data structure for adjacent edges,
the graphs 𝐺𝑡

𝑖 and the sets 𝑍 𝑡
𝑖 can be constructed in 𝑂(2𝑖 ⋅ 𝑛) time. Further the 𝑘2
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aractor computations in the inner for-loop can be done in time 𝑂(𝑘2⋅2𝑖⋅𝑛). e run-
ning time of iteration 𝑖 is dominated by the 𝑘2 calls to GBPM.
By eorem 7.4.8 the calls to GBPM in iteration 𝑖, with pa-
rameter ℎ set to 2𝑖, take time 𝑂(𝑘1𝑘2 ⋅ 𝑛 ⋅ 22𝑖). Let 𝑖∗ be the iteration at which
GBD stops aer it is called in the 𝑡-th iteration of the repeat-
until loop. e running time for this call to GBD from 𝑖 = 1
to 𝑖∗ forms a geometric series that is bounded by 𝑂(𝑘1𝑘2 ⋅ 𝑛 ⋅ 22𝑖∗). By Corol-
lary 7.4.21 either (1) a dominion 𝐷 with |Ar2(𝒢 𝑡, 𝐷)| > 2𝑖∗−1 vertices is found by
GBD or (2) all dominions in 𝒢 𝑡 have more than ℎ vertices. us
either (2a) a dominion 𝐷 withmore than ℎ vertices is detected in the subsequent call
to GBG or (2b) there is no dominion in 𝒢 𝑡 and 𝑡 is the last iteration of
the algorithm. Case (2b) can happen at most once and its running time is bounded
by 𝑂(𝑘1𝑘2 ⋅ 𝑛 ⋅ 22 log(ℎ)) = 𝑂(𝑘1𝑘2 ⋅ 𝑛2). In the cases (1) and (2a) more than 2𝑖∗−1

vertices are removed from the graph in this iteration, since ℎ > 2𝑖∗−1. We charge to
each such vertex 𝑂(𝑘1𝑘2 ⋅ 𝑛 ⋅ 2𝑖∗) = 𝑂(𝑘1𝑘2 ⋅ 𝑛 ⋅ ℎ) time. Hence the total running
time for these cases is 𝑂(𝑘1𝑘2 ⋅ 𝑛2 ⋅ ℎ) = 𝑂(𝑘1𝑘2 ⋅ 𝑛2.5).

Remark 7.4.25. Algorithm GR(1) can be modified to additionally return winning
strategies for both players. Procedure GBPM(𝒢 , 𝜙, ℎ) can be
modified to return a winning strategy within the returned dominion (as described by
Lemma 7.4.16). Procedure GBG can be modified to return winning strate-
gies for both player in the generalized Büchi game. us for player 2 a winning strategy
for the dominion 𝐷𝑡 that is identified in iteration 𝑡 of the algorithm can be constructed
by combining his winning strategy in the generalized Büchi game in which 𝑆 𝑡 is iden-
tified with his aractor strategy to the set 𝑆 𝑡. For player 1 we can obtain a winning
strategy in the final iteration of the algorithm by combining for 1 ≤ 𝑗 ≤ 𝑘2 her arac-
tor strategies to the sets 𝑈𝑗 with her winning strategies in the generalized Büchi games

for each of the game graphs 𝒢 𝑡
𝑖 ⧵ 𝑌 𝑡

𝑖,𝑗 (as described in the proof of Proposition 7.4.4).

7.5 Conclusion

In this chapter we consider the algorithmic problem of computing the winning sets
for games on graphs with generalized Büchi and GR(1) objectives. We present im-
proved algorithms for both, and conditional lower bounds for generalized Büchi
objectives. e existing upper bounds and our conditional lower bounds are tight
for (a) for dense graphs, and (b) sparse graphs with constant size target sets. Two in-
teresting open questions are as follows: (1) For sparse graphs with 𝜃(𝑛) many target
sets of size 𝜃(𝑛) the upper bounds are cubic, whereas the conditional lower bound
is quadratic, and closing the gap is an interesting open question. (2) For GR(1) ob-
jectives we obtain the conditional lower bounds from generalized Büchi objectives,
which are not tight in this case; whether beer (conditional) lower bounds can be
established also remains open.



CHAPTER 8
Conclusion

is thesis connects two areas of theoretical computer science that are too oen
treated as isolated from each other: on the one hand algorithm design and compu-
tational complexity that are considered to be part of “Track A” of theory, on the
other hand model checking, automata, and graph games that belong to “Track B”.
By relating the asymptotic worst-case running times of different problems, e.g., the
running times of checking the non-emptiness of Rabin automata and solving gener-
alized Büchi games to the running times of CNF-SAT and of combinatorial Boolean
matrix multiplication, we connect fundamental algorithmic questions from both ar-
eas. From the point of view of “Track B”, we introduce popular conjectures and
the concept of fine-grained reductions to obtain conditional lower bounds on run-
ning times. Additionally, we highlight the applicability of techniques from graph
algorithms to canonical problems in model checking and synthesis. From the point
of view of “Track A”, we draw aention to important algorithmic problems in the
formal analysis of systems and provide an accessible exposition in the language of
graph algorithms. In particular, parity games are one of the rare “natural” problems
in NP ∩ coNP for which no polynomial-time algorithm is known and are therefore of
high interest for the complexity landscape. Furthermore, symbolic computation is a
model of computation that is very relevant in practice and deserves more aention
from the theory community; symbolic operations are, at the same time, restricted
and powerful and could therefore allow for surprising upper and lower bounds.

We concludewith an overview of the results of this thesis and possible directions
for future research that emerge from the different parts of the thesis.

Approximating the minimum cycle mean. We initialize the algorithmic
study of approximating mean-payoff objectives on graphs and showed the first run-
ning time improvement for dense graphs using fast matrix multiplication. While
fast matrix multiplication is a valuable theoretical tool, it is not efficient in practice.
erefore an interesting research direction is to develop other methods for improv-
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ing the running time and to study the trade-off between the running time and the
approximation factor.

Algorithms for MDPs with Streett objectives. For Stree objectives we
showed the first sub-quadratic time algorithm for MDPs and improved running
times for dense graphs and MDPs. Among others, we applied a sparsification tech-
nique and a local graph exploration approach from graph algorithms to obtain
faster running times on dense and sparse graphs, respectively. An open question is
whether the running time can be improved further or whether there exists a (con-
ditional) lower bound. Insights into either of these directions might also lead to an
improved understanding of other algorithmic problems in both graph theory and
verification and synthesis, where similar techniques were applied (see Section 4.6).

Parity games. For parity games we showed the first sub-cubic time algorithm
for three priorities and an improved set-based symbolic algorithm that is the first
with a sub-exponential bound on the number of symbolic steps, and for different pa-
rameters has an improved exponential dependence on the number of priorities. In
contrast to the exponential number of sets used by the previously best algorithm, we
use only a linear number of sets. emajor and long-standing theoretical open prob-
lem is whether a polynomial-time algorithm for parity games exists. Fine-grained
reductions could be the next step in understanding the complexity of parity games.
Moreover, symbolic algorithms are of great practical relevance, therefore it would
be worth exploring whether some of the algorithmic ideas also lead to practical
improvements.

Separating polynomial-time problems with conditional lower bounds.
e basis of our conditional lower bounds are our fine-grained reductions from
CNF-SAT to disjunctions of reachability and safety objectives on MDPs and from
Boolean matrix multiplication to disjunctive safety objectives on graphs and dis-
junctive reachability queries on MDPs. Based on these, we obtain conditional lower
bounds for other objectives on graphs and MDPs and for generalized Büchi games.
ese results show that algorithmic improvements for fundamental problems in for-
mal verification and reactive synthesis would imply a breakthrough in algorithm
design. In combination with further new algorithmic results of this thesis, the con-
ditional lower bounds show for the first time separation results among polynomial-
time problems in model checking and synthesis; namely, we show that, under pop-
ular assumptions, some problems have a strictly higher worst-case running time for
MDPs than for graphs and, similarly, for game graphs than for MDPs or graphs, and
we separate the running times of closely related objectives, such as Rabin and Stree
objectives. Our results are a first step in analyzing the time complexity of algorith-
mic problems in formal verification and synthesis beyond complexity classes, and
many open questions remain (for somemore specific open questions see Sections 6.7
and 7.5). An intriguing research direction would be conditional lower bounds for
mean-payoff games that are quantitative generalizations of parity games and have
the same rare complexity status; we are not aware of even a slightly super-linear
conditional lower bound for mean-payoff games.
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