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Abstract

In this thesis we construct a coupling of the trace left by a lazy random walk
on a d-regular large girth expander graph with random interlacements on the
infinite d-regular tree. This coupling can be achieved on balls of mesoscopic
volume. Our main tool is the coupling of two Markov chains on a finite state
space, based on the technique of soft local times. It yields an estimate on
the error of the coupling, by controlling the mixing time and the transition
probability’s density. The two Markov chains on the boundary of two balls
are characterized by the encoding of the random walk’s trajectories into the
ball, for the expander graph and the tree respectively.
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Zusammenfassung

In dieser Arbeit koppeln wir den Pfad einer Irrfahrt auf einem Large Girth
Expander Graph mit Random Interlacements auf dem unendlichen Baum.
Wir setzen voraus, dass beide Graphen d-regulir sind. Diese Kopplung
funktioniert auf Billen von mesoskopischer Grofse. Wir verwenden eine
spezielle Kopplung von zwei Markovketten auf dem endlichen Zustandsraum,
welche auf der so genannten Soft-Local-Time-Technik basiert. Diese liefert
eine Fehlerabschitzung, indem wir die Mischzeit und die Varianz der Uber-
gangswahrscheinlichkeiten kontrollieren. Beide Markovketten - sowohl fiir
den Expander Graph, als auch fiir den Baum - erhalten wir als Kodierung
der Trajektorien der Irrfahrten, welche den Ball treffen.
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Chapter 1

Introduction

1.1 Main result

In this thesis we study the trace of a lazy random walk on a large girth
expander graph. We are interested in the local behaviour of a set of vertices,
that has not been visited up to a certain time, called the vacant set of the
random walk. Locally the expander is isomorphic to a regular tree, and as we
will show the corresponding local model is the random interlacements on such
a tree. In order to understand the vacant set of the random walk we try to find
a local coupling with the vacant set of random interlacements on a infinite
tree. Coupling the vacant sets is only interesting for large expanders. Thus
we consider asymptotics on a diverging sequence of graphs. This coupling
can be achieved on a mesoscopic subset of the large girth expander graph.

Let us precise the setting. Consider the d-regular, connected simple graph
Gpn = G,(V,, E,) with n vertices and d > 3. Let X = (Xj)g>o be the lazy
random walk on G, i.e. the discrete-time Markov chain on the state space
V., which at each step stays put with probability % and otherwise chooses its
next state uniformly among all neighbors of the current state in the graph.
For the graph G,, and a parameter v > 0, the set V" of vertices not visited
by the random walk until time un, is called vacant set of the random walk
on level u, i.e.

The density of the random walk trace is governed by the parameter u. For
small u, the vacant set occupies a large proportion of the graph G,, and vice
versa.

Let T := T(V,E) be the infinite d-regular tree. The model of random
interlacements can be described as a Poisson point process of doubly infinite
random walk trajectories modulo time shift on the tree T. The intensity
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of the Poisson point process is driven by a multiplicative parameter u > 0.
The union of the random walk trajectories’ range is called the interlacement
set on level u, denoted by Z". The complement of Z" is called vacant set of
random interlacements on level u, i.e

V¢ =V \ I% (1.2)

Let G := (G, (Vy, Ep))n>1 be a sequence of d-regular, connected simple
graphs, such that the number n = |V,,| of vertices tends to infinity, as n — oc.
We call the sequence G a family of large girth expander graphs, if

1. G, is an expander graph, i.e. for n > 1, the spectral gap A, of G,, (see
definition below, (2.1)) is uniformly bounded from below by a constant
A > 0.

2. G, is a large girth graph, i.e. for some 0 < a < 1 and n > 1, the
length of the shortest cycle in the graph G, is bounded from below by
2alogy 4 n.

We now come to the precise statement of our result. Consider a family
of large girth expander graphs G, with d > 3, A > 0 and 0 < o < 1. Let
Un € Vi, and B < 5, such that

G, \ BY" s connected, (1.3)

for the ball
BY" := B(ij,,log,_1n) C V,. (1.4)

Furthermore, consider the infinite d-regular tree T and the ball B? with some
fixed arbitrary root o € V,

B¢ = B(o, flog, yn) C V. (1.5)
For the balls
AV = B(§,,alog, yn) CV, and A°= B(o,alog, ;n)CV, (1.6)
we fix ¢y, , an arbitrary graph isomorphism
by, + AV — A2 with ¢y, (Un) = o. (1.7)

Theorem 1.1. Assume u > 0, and let €, be a sequence, s.t. for some §' > 0
and some sufficiently small ¢ < %

n3(=8) <e, <c (1.8)
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Then there exists a coupling Q, of the vacant set V¥ with V*(F) | such that
for every n large enough,

Qu[(V' I N BY) C ¢y, (ViN B € (VN BY)] > 1 — e, (1.9)
for some constants 6 > 0, and cy,¢; € (0,00) depending on «, (3, d, .

Remark 1.2. We will mostly identify the vertices of G,, and of T linked by
the isomorphism described in and omit the ¢y, from the notation. For
the balls AY, BY we usually omit the y and the n in the definition.

Let g(G,,) denote the girth of the graph G, i.e. the length of the shortest
cycle in G,. For d-reqular graphs G% we can easily derive the asymptotic
upper bound g(G¢) < 2log, yn. Thus in we need to choose a < 1.
Lubotzky- Phillips-Sarnak [LPS88] gave explicit examples for d-reqular graphs
G2, with g(G4) > glogd_1 n. Thus we can apply our coupling to Lubotzky-

Phillips-Sarnak graphs while taking o = %

1.2 Previous results and applications

The properties of the vacant set of the random walk on finite graphs have
been studied in several recent works. In [BS06] Benjamini and Sznitman
showed that, for the torus (Z/NZ)? with large dimension d and small enough
u > 0, the vacant set has a unique connected component with a non-negligible
density.

In [Szn10] Sznitman introduced the random interlacements on Z<. It was
motivated by the idea to have an infinite volume analogue for the problem of
fragmentation of the random walk on (Z/NZ)?. He proved a phase transition
similar to Bernoulli site percolation on Z? (see [Szn10, [SS09)]).

In [TT09| Teixeira extended the construction to the more general setting
of transient weighted graphs. When the graph under consideration is a tree,
the vacant set containing some fixed point can be characterized in terms of a
Bernoulli site percolation. For the specific case of d-regular trees, d > 3, there
exists an explicit formula for the critical value u* of the phase transition.

Teixeira and Windisch (see [TW1I]) used a coupling between Z? and
the torus, to show that in all dimensions d > 3 the volume of the vacant
set exhibits a phase transition, i.e. for some 0 < u; < us < oo with high
probability as n tends to infinity,

e for u < uy, the largest connected component of V,(u) is of size of order
Val,

e for u > us, the largest connected component of V,,(u) is of size of order
log™ |V,|, for some k > 0.
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Although the conjecture of a sharp phase transition, i.e. u; = us, is still an
open problem, éerny and Teixeira proved a sharp phase transition for the
diameter of the vacant set containing a given point. In [CT14] they apply
a variant of the soft-local time coupling technique, in order to construct a
coupling on macroscopic subsets of the torus. The proof of our main result
is strongly motivated by this paper and a description of the proof will follow
in the next subsection. Before that we finish this section with a result on
expanders and the infinite tree.

A local coupling between the vacant set of the random walk on expanders
G, and the vacant set of random interlacements on the d-regular infinite
tree T can be found in [CTW11|. In this paper Cerny, Teixeira, Windisch
investigate the percolative properties of the vacant set on d-regular, large
girth expanders and d-regular random graphs. They show that the vacant
set of these graphs undergo a phase transition in v* > 0, the critical value
of random interlacements on the infinite d-regular tree T. More precisely, it
was shown that with high probability as n tends to infinity,

e for u < u*, the vacant set has a unique component with volume of order
|VTL ‘7

o for u > u*, the largest component of the vacant set only has a volume
of order log |V,,|

The coupling is used to construct a sufficient amount of mesoscopic clusters
in the supercritical phase u < u*.

1.3 Overview of the proof

Let us now describe the idea of the proof and the organization of the thesis.

In Chapter [2| we start with a detailed introduction of the lazy random
walk X on large girth expander graphs GG,, and the infinite tree T(see Section
. In Section we introduce random interlacements and we use the
capacity of finite sets B,, C V, in order to characterize the law of the vacant
set of random interlacements. The main principal tool for the proof of the
main result is a coupling of two Markov chains on a finite state space (see
Section , based on the technique of the so-called soft local times [PT12].
The corresponding statement (see Theorem , |[CT14, Theorem 3.1.]) pro-
vides an estimate on the error of the coupling, by controlling the mixing
times and the transition probability’s density of both chains. Theorem
will be used later in Section B.11

In Chapter 3| we proceed with some general estimates for the random
walk and random interlacements. These results will be used in Chapter [4] to
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bound the relevant coupling quantities. The results include estimates for the
capacity on the ball B, and the escape probabilities from B, (see Section
B.113.2). In Section [3.3| we give an approximation for the hitting probability
of the boundary points of B,, for the random walk on G,, started on B¢.

In Chapter 4 we continue with an explicit construction of two Markov
chains Y and Z on the finite state space 0B, x 0A{. These encode the
trajectories of the random walk on the expander into the ball B, and the
trajectories of random interlacements into B,. (see Section [£.1)). In Section
[4.2] we show the required equality of the stationary measures of both Markov
chains Y and Z, and estimate all relevant coupling quantities. These include
the variance of the arrival density (see Section [4.3)), the mixing time (see
Section and the number of excursions (see Section [£.5). The number of
excursions provide a useful length scaling for the Markov chains Y and Z.

In Chapter 5] we use Theorem and the estimates from Chapter [4] to
get the desired coupling on 9B x 9A¢, for Y and Z (see Section [5.1). In
Section we re-decorate Y and Z to obtain a coupling of the vacant sets
restricted to B,,. We define a process as the concatenation of excursions on
the large girth expander graph. Similarly we define a sequence of processes
as the concatenation of excursions on the tree. Applying the coupling of Y
and Z from Section and results from Section [5.1] finishes the proof of
Theorem LIl

1.4 Notation

By ¢, ¢;, ¢ we denote positive finite constants, whose values might change
during the computations. For two sequences a = (an)n>0,0 = (by)n>0, We
write

axb <= c¢‘ta,<b,<ca, forsomec>D0. (1.10)

Given an arbitrary measure space (£2,.4), we write 0, (-) for the Dirac measure
on z € ().



Chapter 2

Definition and results

In this section we introduce all required definitions as some basic results for
the considered models.

2.1 Expanders and the tree

The graph denoted by G, := G(V,, E,) is always a simple graph, i.e. it is
undirected, without loops and without multiple edges. Furthermore G,, is
connected, d-regular and has n = |V,,| vertices.

Let M, be the adjacency matrix of G,. The eigenvalues of the matrix
LM, — I are denoted by

0=XA <A <N <... < (2.1)

Then A2 =: )\, is the spectral gap of G,. The object of our investigations is
the family of large girth expander graphs G = (G},),>1 (or simply family of
expanders), introduced in Section Remember the uniform lower bound
A > 0 of the spectral gap A, for n > 1. We call X the spectral constant of G
and G,, € G an large girth expander graph (or simply expander).

From now on we fix d > 3, 0 < o < 1 and the spectral constant \ for the
family of expanders G = (G,),>1, and therefore omit d, A and « from the
notation. For (G,, we sometimes also omit the n in the definition and write
simply G.

Due to the regularity, we know that G, has % edges, i.e. G, is sparse
for n > 1. On the other hand, the spectral gap of GG, is uniformly bounded
away from 0. At least qualitatively, the spectral gap is tightly linked to high
connectivity. These observations induce a more intuitive characterization of

6
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expanders. For a simple graph G(V, E), let

104 V]
h(G) = mln{ A ACV, A < 7} (2.2)

be the edge expansion (or isoperimtric constant). The set 0. A C E is called
the edge boundary of the set A, i.e.

0. A :={(x,y) e E:x € Ajyec A°}. (2.3)

The intuition that spectral gap is related to edge expansion is made pre-
cise by the following inequality.

Theorem 2.1 (Cheeger’s inequality). Let G(V, E) be a d-regular, connected
simple graph with spectral gap A and edge expansion h(G), then

A
B < h(G) < V2dA. (2.4)
Proof. See [LW02, Theorem 4.9.]. O

The notations below are valid for an arbitrary graph G(V, E). For two
vertices x,y € V', we write x ~ y, if z is a neighbor of y. By a path we mean
a sequence of vertices xy,...,x; such that xp; ~ xp forall 1 < k <i—-1
and we write x; <> x;. The metric we use is the graph distance dist(-,-).
It is characterized by the length of the shortest path between any two ver-
tices. We write diam(G) for the diameter of the graph G, i.e. diam(G) =
max{dist(x,y) : z,y € V}. We denote B(xz,r) the ball centered at x € V
with radius r,

B(z,r) ={y € V : dist(z,y) < r}. (2.5)

The boundary of A C V is given by
0A={x € A:x~yfor someyec A}, (2.6)

where A° is the complement of A in V. We denote G N A and G \ A the
subgraphs induced by A respectively A°. By abuse of notation we sometimes
write A C G, if A C V for G(V, E). For A C V, A finite, we use the notation
AccV.

Recall the definition of the infinite, connected, d-regular tree T := T(V, E).
A distinct vertex o € V, is called the root of T. For every z € V we define
the descendants in the tree by

Ve ={y € V\ B(o,dist(0,z) — 1) : y <> z on T\ B(o,dist(o,z) —1)}. (2.7)

and the subgraph T, induced by V.
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2.2 Lazy random walk (LRW)

The lazy random walk (LRW) on G, is the Markov process in discrete time
with generator given by

(Af)(@) =D (f(y) = f(@))pay for f:V R, z€V, (2.8)

yev

where p,, = i if z ~ y and p,, = 0 otherwise. Note that A = iM — %I,
where M is the adjacency matrix of G. We use P, to denote the law of the
lazy random walk on G started at © € V. The process X = (Xj)g>o is the
canonical process on G and (Fy)r>o the canonical filtration. We write E,
for the corresponding expectation. Keep in mind, that there exists a unique
stationary distribution 7 for the random walk X, which satisfies 7(x)p,, =
7(Y)pys, 1-e. 7 is reversible. Since the graphs G are d-regular, the measure 7
is actually uniform. Starting the random walk X in 7, we use the notation
P =P,
By 6;, i > 0, we denote the canonical shift for the walk, defined on V¥,
ie.,
0;(zo, x1,...) = (Ti, Tiz1, ... ). (2.9)

For the law P, with uniform measure 7 on V| the canonical shifts 6; are
invariant transformations on VY, i.e. P.o6; = P, for all i > 0. Let A be the
spectral gap of G, then from [SCI7, p.328] it follows that

sup |Po[Xr =9y —n(y)| <e ™ k>0 (2.10)

z,yeV

Consider the random walk X killed on hitting B with generator AP given
by

(AP (@)= D (fy) = f(@)pay for f:V\B—=R, ze€V\B, (211)

yeV\B

where p,, are as above. We denote
0< A <AL <. <AV (2.12)

the eigenvalues of AP, We further define the quasi-stationary distribution
og, for B C V, on the expander G. The distribution op is the normalized
right-eigenvector v} of AP corresponding to the eigenvalue \k.

Since T is locally finite, actually d-regular, we define the lazy random
walk on T in the same manner. We write P for the canonical law of the
lazy random walk on T started from x, and (X} )g>o for the canonical process
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as well. Writing P?, we mean the law P! for the walk on T either the law
P, for the walk on G.

In order to construct random interlacements we need the definition of the
normalized equilibrium measure and the capacity for finite subsets B on T.

Definition 2.1. Let BCC T, d>3 and x € T. We set
ep(x) = P,[Hp = 0|1 (zep, (2.13)

and denote eg the equilibrium measure of B. Its total mass

cap(B) := Z ep(x) (2.14)

is called the capacity of B. The measure ég denotes the normalized equilib-
rium measure on B, and 1s given by

_ ep(z)
ep(x) = )
5() cap(B)
Note that ép is supported on the boundary 0B C B. The capacity for
any finite subset is nontrivial, only if d > 3.
Let us define the normalized equilibrium measure on B, for finite and
infinite graphs as well.

(2.15)

Definition 2.2. Let G(V, E) be a d-regular, connected, simple graph and P,
the law for the lazy random walk started in x € V. For BC A CCV and

z € B we set .
eq (2) = Po[Hp > Hp)1imeny, (2.16)

and

cap . (K) := Z en (). (2.17)
zeB
The measure &5 denotes the normalized equilibrium measure on B, for the
walk killed on A, and is given by

—A¢

e (z) == _en (@) (2.18)

cap 4¢(B)’

We finish the section with some well known results for a finite connected
graph G(V, E) and the corresponding lazy random walk with law P,. We
call a function h : V' — R harmonic on A, if Ah(z) =0forallz € A C V.
For functions f,g: V' — R we define the Dirichlet form

Dif.g) =5 3 (f@)~ 1) (00) — g r(hpey. (219)

z,yeV
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Theorem 2.3. Let A, C be two non-empty disjoint subsets of V.. Then there
exrists a unique function gj o, S.1.

Agiclz) =0 Vz eV, (2.20)
Jacla=1 and g4clc=0. (2.21)

We call g}y ¢ the equilibrium potential. It is given by

gZ’C(ZL’) = P’L‘[HA < Hc] Ve eV. (222)
Furthermore,
D(ghcr9ac) = Y PalHa > Heln (). (2.23)
€A
Proof. See [AF02, Lemma 2.27, Theorem 3.36, Corollary 3.37|. ]

2.3 Random interlacements

We now introduce random interlacements on the infinite tree T. We define
the local vacant set V* N K, K CC T, which possesses, as we will see at the
end of the section, a particularly useful representation (see .

We begin with the introduction of the measurable space (W* W*) of
doubly infinite lazy random walk trajectories modulo time shifts on T and
the o-finite measure v on it. Let w = (..., w(k — 1), w(k),w(k + 1),...),
then

oo Jws Z — T :dist(w(k),w(k+1)) <1lforall k € Z
- and dist(w(k),0)) — oo as k — +oo}

is the space of doubly infinite nearest neighbor trajectories which visit every
finite subset of T only finitely many times, and for w = (w(0), w(1),...)

IO KLE N — T : dist(w(k),w(k+ 1)) <1 forall k € N,
T and dist(w(k),0)) — oo as k — oo

the space of forward trajectories which spend finite time in finite subsets of
T. We denote by X}, the canonical coordinates on W and W, i.e., Xp(w) =
w(k). We write W for the o-algebra on W generated by (Xy)gez, and W,
for the o-algebra on W, generated by (Xj)gen-

Definition 2.1. Let ~ be the equivalence relation on W defined by

wr~w = HeZ:w =0;(w), (2.24)
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i.e., w and w' are equivalent, if w' can be obtained from w by a time shift.
The quotient space W/ ~ is denoted by W*. We write

proj : W — W~ (2.25)

for the canonical projection which assigns to a trajectory w € W its
~- equivalence class proj(w) € W*. The natural o-algebra W* is defined by

A e W* < (proj) *(A) e W. (2.26)

In other words, two trajectories are in the same equivalence class, if their
paths coincide.
For any K CC T, we define

Wik ={we W : Xig(w) € K for some i € Z} € W (2.27)

to be the set of trajectories in W that hit K, and let W}, = proj(Wx) € W*.
It will be helpful to partition Wy according to the first entrance time of
trajectories in K. For this purpose we define forw € W, k € Z and K CC T,

WE ={weW: Hg(w) =k} eW. (2.28)

The sets (WE)rez are disjoint and
Wi = UpezW, (2.29)
Wi = proj(Wr) Vk € Z. (2.30)

Recall from Section [2.2] that PT denotes the law of the lazy random walk
starting in z. Consider PI as a probability measure on W,. We will proof
later, that for d > 3 the random walk is transient, i.e., PY[IW,] = 1. Using
the notions of the hitting time Hy and the normalized equilibrium measure
ex of K CC T from Section we define the measure Qx on (W, W) by
the formula

Qk[(X #)iz0 € A, Xo = 7, (Xp)s0 € B] = PJ[A|Hx = oole (z) P} [B]
(2.31)
for any A, B € W, and x € T. Note that we defined )i only on sets of form

Ax{Xo=x} x BeW, (2.32)

but the sigma-algebra W is generated by events of this form, so (Jx can be
uniquely extended to all W -measurable subsets of W . For any K CC T,

Qx[W] = QrWk] = Qr[W}] = Z Qk[Xo = 7] Z ex(x) = cap(K).

zeK zeK

(2.33)
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In particular, the measure Qg is finite, and m@ K 18 a probability measure

on (W, W) supported on W}.. The following theorem yields a o-finite measure
v on the measurable space (W* W*).

Theorem 2.2. There exists a unique o-finite measure v on (W* W*), such
that for all K CC T,

VAe W ACWy: v(A) = Qkl(proj) ' (A)]. (2.34)
Proof. See [DRS14] Theorem 6.2]. O

We further define the random interlacements point process on the space
W* xR, of labeled doubly-infinite trajectories modulo time shift. We endow
this product space with the product o-algebra W* @ B(R, ), and define the
measure v ® du, where v is the measure constructed in Theorem [2.2] and du
is the Lebesgue measure on R,. Note that for any K CC T and u > 0,

(v @ du)(Wge x [0,u]) = v(Wg)u = cap(K)u < oo. (2.35)

Thus, the measure v ® du is o-finite on (W* x Ry, W* ® B(R,)), and can
be regarded as an intensity measure for a Poisson point process on W* X
R.. Tt will be useful to consider this Poisson point process on the canonical
probability space (2,4, P), where

0. Jv= Zkzo O up) : (wi,u,) € W* x R, for any £ >0 (2.36)
and w(W§ x [0,u]) < oo for any K CC T,u >0

is the space of locally finite point measures on W* x R, the o-algebra A is
generated by the evaluation maps

W= CU(D) = Z 1{(w;:7uk)ED}7 DeW'® B(R+), (237)
k>0
and P is the probability measure on (£2,.4), such that
W = Z 5(w;’;»uk) (238)

k>0

is the Poisson point process with intensity v ® du on (W* x Ry, W* @ B(R))
under P.

Definition 2.3. We call the random set 7% C V random interlacements at
level u, if

T"(w) = U range(w?), forw = 25(%7%) € Q, (2.39)

Up <U k>0
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where
range(w*) = { X (w) : w € (proj) ' (w*),k € Z} C T (2.40)

is the set of all vertices of T wisited by w*. The vacant set of random inter-
lacements at level u is defined as

Vi w) =T\ Z"w). (2.41)

We finish the section with a simple representation of the set V* N K. Let
J& be a Poisson random variable with parameter ucap(K), and (X®);5¢ an
ii.d. sequence of simple random walks on T with law P;, , independent from
Ji. Then

vinK 2K\ ) U (2.42)
1<i< T k>0
As we will see in Section [4.1] this representation makes the encoding of
excursions of the sequence (X ®);5q useful.

2.4 Coupling the ranges of Markov chains

In this section we construct a coupling of two Markov chains on a finite state
space such that their ranges almost coincide. For these Markov chains with
equal stationary measure, the difference of their ranges can be controlled
by the mixing time and the arrival density’s variance. The theorem of the
coupling is abstract and will be applied later for two processes on the set
0B x 0A°.

Let us now precise the setting of this section. For i € {1,2} and the finite
state space X, let P, = (p'(x,y))syex be a Markov transition matrix, and v;
a distribution on Y. We assume that P; is irreducible, and that there exists
a unique P;-invariant distribution 7 for both P, and P on X. The mizing
time T; corresponding to P; is defined by

1
T; =min{n > 0: mag{HPl”(a:, =7 )rv} < T (2.43)
Te
where || - |7y denotes the total variation distance, i.e.,
o' =" v = (1/2) ) V() = (@), (2.44)
€Y

Let 1 be an apriori measure on Y with full support. This measure is in-
troduced for convenience only. Let g : ¥ — [0,00) be the density of = with
respect to p,

g(x) = ——=, Vrex, (2.45)
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and let further p’ : X% — [0, 00) be the transition density with respect to u,
ie.,

Pz, y) = , Yr,y € X. (2.46)
We use p; to denote the function x — p’(z,y) giving the arrival probability
density at y as we vary the starting point. For any function f : ¥ — R, let
Er[f] = Saexm(x) f(x), and Var[f] = E[(f — Ex(f))?].

The following theorem provides a coupling of two Markov chains so that
their ranges almost coincide.

Theorem 2.1. There exists a probability space (Q, F,Q) where one can de-
fine Markov chains Z',Z? with respective transition matrices P, Py and
starting distributions vy, vs such that for every e satisfying

1 . Var, p
0 < e < = Aminmin Pz

_ Yalape 2.47
2 " Ol e () (247
and n > 2k(e)(Ty V Ty) we have
Q[G(n,e)] < C Z Z [exp(—cneQ)
i=1,2 zex. (2.48)

cnem(z ce’g(2)?> n
vi(2) )> T exp < a Vaiipé k(e)Ti)]’

where ¢, C' € (0,00) are absolute constants, G(n,€) is the event

g(n,e):{ U zic | zc | Z}}, (2.49)

1<i<n(1—e) 1<i<n 1<i<n(1+¢€)

+exp<—

and
2

: €g(2)* min, ey 7 ()
= — 1 -
k(e) PR 6Var,(p?)

(2.50)

Proof. See [CT14, Section 3]. O



Chapter 3
Local behaviour of LRW

In the following section we show some general properties for the random walk
on GG and T. These properties will be used to prove all relevant coupling
quantities.

Let us recall some assumptions. For n > 1, the graph G(V, E) = G,,(V,,, E,,)
is a large girth expander graph with fixed d > 3, A > 0 and 0 < a < 1. The
subgraph GNAY is cycle-free for all y = y,, € V, where AY = B(y, alog,_; n).
We choose 7, =9 € V and 8 < §, s.t. the induced graph G'\ B is connected,
where B = BY = B(y,Blog,_;n) and A = AY.

3.1 LRW killed outside the ball

Due to the isomorphism between G N A and T N A the laws of the random
walks started in A killed on A€ are equal for the expander GG and the tree T.
Recall that P? can stand for the laws Pl and P,.

The following lemma gives us information about the hitting probability
of the sets 0A° and 0B, starting in x € A\ B.

Lemma 3.1. Let B(y,R) N G be cycle-free and 0 < r < R. Then for all
x € B(y, R) with r(z) := dist(y,z) > r

(d—1)fi—r@ 1

Pxo[HB(y,r) < HBC(y,R)] = (d—1)R7—1"

(3.1)
Proof. Since G N B(y, R) is a tree, the probability doing one step to the
direction of B(y, R), started from any x € int(B(y, R)) is given by

POIX, € OB(y, r(z) + 1)] = dQ;dl, (3.2)

15
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Now consider X’ the lazy random walk in Z with drift % on the space

(Q, A, P'). Then

d—1
P X =2+1]=——- VxelZ, 3.3
! 2d

and f(z) = (d —1)~" is harmonic for P’ i.e. (P'f)(x) = f(x) for all x € Z.
Then f<X”iF[r+1 R_I]m) is a martingale and by the optional stopping theorem
ILPW09, Theorem 17.6]

EA(f(Xh )= f@) r<r@) <R (3.4)

Since the event { X/,

[r+1,R—1

= x} is supported for = € {r, R},

(d—1)F* -1

PUXG ey =71 = 1 (3.5)

Since holds for any = € B(y, R) \ 9B(y, R),
PXT iy =11 =Pl Hp, < Hp,n), (3.6)
and the lemma follows. O

We now compute the escape probability with respect to B, and the ca-
pacity of B. Note that

d
d—1

d
ﬁ A = @
n” and |0A] T 1n . (3.7)

08| =

Lemma 3.2. For the tree T and the ezpander G, n > 1,
d—2

P°[Hp > Hy| = g (1= (d— D)t v e 0B (3.8)
and p 5
-2 n
(B) = : 3.9
capac(B) 20d—1)1— (d— 1)~ pp-a (3:9)
Proof. We apply Lemma [3.1 and get
o 7 d—1 0
PreoplHp > Hae] = — = Pleope[Ho > Hoae]
d—2
— 2—d(1 —(d—1)"tnfm>)7L, (3.10)

Using (3.10), (3.7) and the definition of cap 4.( ) proves (3.9). O
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Consider equation (3.10) for the tree T, assume B = {z} and let «
converge to infinity, then

d—2

2d

This implies the transience of the random walk on T for d > 2.
The escape probabilities with respect to B for the random walk killed

on A€ are equal for all initial points z € JB. Therefore the normalized

equilibrium measure 4 is the uniform measure on dB. Due to the transience

of X on T the normalized equilibrium measure ép exists and equals e . Using

(3.7), we get the following lemma.

PYH, = o0] = (3.11)

Lemma 3.3. For the tree T and the expander G, n > 1,

d—1
ep(x) = y n? VacoB. (3.12)

3.2 LRW on the tree

Recall the definition (2.7)) of the induced subtree T,, for any = € V.
Lemma 3.1. For the tree T and for all z € OB and x € 0A,

PI[Hp = o0] =1 —nf2, (3.13)
Pl Xy, =2, Hp < 0] = 1gzeryn”™*, (3.14)
d—2
B)= —n" 1

Proof. Assume x € 0A and R > alog, ;n. Using Lemma [3.1} we get
P, [Hp = oo] = lim P/[Hp > Hp(,p)
—00

- R—alogy, 1n __
B Cln) i
R—oo (d _ 1)R*ﬁlogd71n -1

=1-n (3.16)

Since (3.13) holds,
P Xy, =2 Hp < 0] = P Xy, = 2|Hg < 00| PY[Hp < 0]
= ]_{xETZ}TL/B_a. (317)

Since (3.7) and (3.11)), (3.15) follows. O
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3.3 LRW on expanders

In the last two sections we investigated the random walk for the tree T and
the random walk killed on A¢ for the graphs T and G. Although computing
all relevant quantities for this cases was not too hard, it’s more challenging to
control the hitting probabilities for the boundary points of B, for the random
walk on large girth expander graphs G. We know that G is cycle-free on A.
But outside of A the informations are rare. Just the d-regularity and the
uniform lower bound of the spectral gap are known. But these properties
tempt to assert two important facts:

e Most of the trajectories of the random walk started on A° killed on B,
are 'quiet long’.

e Stopping the random walk X after a 'quiet long’ time t', the coordinate
Xy is nearly uniformly distributed.

These observations motivate Lemma [3.4] and the key idea of its proof.
In the first part of this section we show some general statements, con-
cerning the entrance time of B and the quasi-stationary distribution on B¢.
Let us recall some definitions. For the random walk X killed on hitting

B, we write AP for its generator and o for the quasi-stationary distribution
on B¢ (see Section [2.2). Because of (3.8)), the Dirichlet form D (see (2.23))
of the equilibrium potential g5 4. (see (2.22)) is given by

D(gh ae:Ghac) = 3 PolHp > Hylm(z) < n®7, (3.18)
z€EB

We start with an estimate of the expected entrance time for the random
walk X with the initial distribution 7.

Lemma 3.1.
E[Hp] < n'". (3.19)

Proof. The expected entrance time can be expressed by the following varia-
tional formula (see [AF02, Proposition 3.41|.

E[Hp|™' =inf{D(f.f): f:V = R, flz = 1, E[f] = 0}, (3.20)
with the minimizing function f* given by

Ex[HB}
E[Hp]"

Fa)=1- (3.21)
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Applying the variational formula, we obtain the following estimate (see [CTW11,
Proposition 3.2]).

1
D(gi acy i ac)(1 — 2 su (z)]) < < D(g% se, Gl ae)m(AS) 2
(9,402 9.0 (1 = 2 500 " (@)]) < Gy < PlGpaer G.ae) 7 (A7)
(3.22)
In order to estimate the left-hand side of (3.22]), we use
sup | f*(x)] < ¢|BIn"~*log*n, for some ¢ > 0, (3.23)

TEAC

(see [CTW11, Proposition 3.5]). Since |B| < n?, 7(A¢) < ¢> 0 and 23 < a,
(3.22) reads

nP7H (1 — en®log'n) < E[Hp]™' < dnP7, for some ¢, >0, (3.24)

and (3.19) follows. O

Lemma 3.2. Let 6 > 0, then

P[Hp > n' Pt < e’ (3.25)
Proof. By [AB92, (1) and Theorem 3],
1 t
Pz (- Yoo (- L) e
o= 0= S ) T ) O
and ;
PlHp > 1) < (1= 7(B)) exp (— =) 3.27
Ho 1] < (1= w(B) exp (- (3:27
Integrating (3.26)) over ¢ yields
E[Hp]) > E,,[Hp] — X" (3.28)
Set t = n!=A+% in (3.27), using (3.28) and E[Hp] < n”, gives
)
P[Hp > n' ) < (1 — 7(B)) exp ( - —) < exp(—cn®),  (3.29)
EO'B [HB]
for some ¢ > 0. O

Note