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Abstract

In this thesis we construct a coupling of the trace left by a lazy random walk
on a d-regular large girth expander graph with random interlacements on the
in�nite d-regular tree. This coupling can be achieved on balls of mesoscopic
volume. Our main tool is the coupling of two Markov chains on a �nite state
space, based on the technique of soft local times. It yields an estimate on
the error of the coupling, by controlling the mixing time and the transition
probability's density. The two Markov chains on the boundary of two balls
are characterized by the encoding of the random walk's trajectories into the
ball, for the expander graph and the tree respectively.
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Zusammenfassung

In dieser Arbeit koppeln wir den Pfad einer Irrfahrt auf einem Large Girth
Expander Graph mit Random Interlacements auf dem unendlichen Baum.
Wir setzen voraus, dass beide Graphen d-regulär sind. Diese Kopplung
funktioniert auf Bällen von mesoskopischer Gröÿe. Wir verwenden eine
spezielle Kopplung von zwei Markovketten auf dem endlichen Zustandsraum,
welche auf der so genannten Soft-Local-Time-Technik basiert. Diese liefert
eine Fehlerabschätzung, indem wir die Mischzeit und die Varianz der Über-
gangswahrscheinlichkeiten kontrollieren. Beide Markovketten - sowohl für
den Expander Graph, als auch für den Baum - erhalten wir als Kodierung
der Trajektorien der Irrfahrten, welche den Ball tre�en.
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Chapter 1

Introduction

1.1 Main result

In this thesis we study the trace of a lazy random walk on a large girth
expander graph. We are interested in the local behaviour of a set of vertices,
that has not been visited up to a certain time, called the vacant set of the
random walk. Locally the expander is isomorphic to a regular tree, and as we
will show the corresponding local model is the random interlacements on such
a tree. In order to understand the vacant set of the random walk we try to �nd
a local coupling with the vacant set of random interlacements on a in�nite
tree. Coupling the vacant sets is only interesting for large expanders. Thus
we consider asymptotics on a diverging sequence of graphs. This coupling
can be achieved on a mesoscopic subset of the large girth expander graph.

Let us precise the setting. Consider the d-regular, connected simple graph
Gn := Gn(Vn, En) with n vertices and d ≥ 3. Let X = (Xk)k≥0 be the lazy
random walk on Gn, i.e. the discrete-time Markov chain on the state space
Vn, which at each step stays put with probability 1

2
and otherwise chooses its

next state uniformly among all neighbors of the current state in the graph.
For the graph Gn and a parameter u ≥ 0, the set Vun of vertices not visited
by the random walk until time un, is called vacant set of the random walk
on level u, i.e.

Vun = Vn\{X0, ..., Xbunc}. (1.1)

The density of the random walk trace is governed by the parameter u. For
small u, the vacant set occupies a large proportion of the graph Gn and vice
versa.

Let T := T(V,E) be the in�nite d-regular tree. The model of random
interlacements can be described as a Poisson point process of doubly in�nite
random walk trajectories modulo time shift on the tree T. The intensity

1



2 CHAPTER 1. INTRODUCTION

of the Poisson point process is driven by a multiplicative parameter u ≥ 0.
The union of the random walk trajectories' range is called the interlacement
set on level u, denoted by Iu. The complement of Iu is called vacant set of
random interlacements on level u, i.e

Vu := V \ Iu. (1.2)

Let G := (Gn(Vn, En))n≥1 be a sequence of d-regular, connected simple
graphs, such that the number n = |Vn| of vertices tends to in�nity, as n→∞.
We call the sequence G a family of large girth expander graphs, if

1. Gn is an expander graph, i.e. for n ≥ 1, the spectral gap λn of Gn (see
de�nition below, (2.1)) is uniformly bounded from below by a constant
λ > 0.

2. Gn is a large girth graph, i.e. for some 0 < α ≤ 1 and n ≥ 1, the
length of the shortest cycle in the graph Gn is bounded from below by
2α logd−1 n.

We now come to the precise statement of our result. Consider a family
of large girth expander graphs G, with d ≥ 3, λ > 0 and 0 < α ≤ 1. Let
ȳn ∈ Vn and β < α

2
, such that

Gn \Bȳn
n is connected, (1.3)

for the ball
Bȳn
n := B(ȳn, β logd−1 n) ⊂ Vn. (1.4)

Furthermore, consider the in�nite d-regular tree T and the ball Bo
n with some

�xed arbitrary root o ∈ V,

Bo
n = B(o, β logd−1 n) ⊂ V. (1.5)

For the balls

Aȳnn = B(ȳn, α logd−1 n) ⊂ Vn and Aon = B(o, α logd−1 n) ⊂ V, (1.6)

we �x φyn , an arbitrary graph isomorphism

φȳn : Aȳnn → Aon, with φȳn(ȳn) = o. (1.7)

Theorem 1.1. Assume u > 0, and let εn be a sequence, s.t. for some δ′ > 0
and some su�ciently small c ≤ 1

2

n
1
2

(δ′−β) ≤ εn ≤ c. (1.8)
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Then there exists a coupling Qn of the vacant set Vun with Vu(1±εn), such that
for every n large enough,

Qn[(Vu(1+εn) ∩Bo
n) ⊆ φȳn(Vun ∩Bȳn

n ) ⊆ (Vu(1−εn) ∩Bo
n)] ≥ 1− c1e

−c2nδ , (1.9)

for some constants δ > 0, and c2, c1 ∈ (0,∞) depending on α, β, d, λ.

Remark 1.2. We will mostly identify the vertices of Gn and of T linked by
the isomorphism described in (1.7) and omit the φȳn from the notation. For
the balls Ayn, B

y
n we usually omit the y and the n in the de�nition.

Let g(Gn) denote the girth of the graph Gn, i.e. the length of the shortest
cycle in Gn. For d-regular graphs Gd

n we can easily derive the asymptotic
upper bound g(Gd

n) ≤ 2 logd−1 n. Thus in (2) we need to choose α ≤ 1.
Lubotzky-Phillips-Sarnak [LPS88] gave explicit examples for d-regular graphs
Gd
n, with g(Gd

n) ≥ 4
3

logd−1 n. Thus we can apply our coupling to Lubotzky-
Phillips-Sarnak graphs while taking α = 2

3
.

1.2 Previous results and applications

The properties of the vacant set of the random walk on �nite graphs have
been studied in several recent works. In [BS06] Benjamini and Sznitman
showed that, for the torus (Z/NZ)d with large dimension d and small enough
u > 0, the vacant set has a unique connected component with a non-negligible
density.

In [Szn10] Sznitman introduced the random interlacements on Zd. It was
motivated by the idea to have an in�nite volume analogue for the problem of
fragmentation of the random walk on (Z/NZ)d. He proved a phase transition
similar to Bernoulli site percolation on Zd (see [Szn10, SS09]).

In [T+09] Teixeira extended the construction to the more general setting
of transient weighted graphs. When the graph under consideration is a tree,
the vacant set containing some �xed point can be characterized in terms of a
Bernoulli site percolation. For the speci�c case of d-regular trees, d ≥ 3, there
exists an explicit formula for the critical value u∗ of the phase transition.

Teixeira and Windisch (see [TW11]) used a coupling between Zd and
the torus, to show that in all dimensions d ≥ 3 the volume of the vacant
set exhibits a phase transition, i.e. for some 0 < u1 ≤ u2 < ∞ with high
probability as n tends to in�nity,

• for u < u1, the largest connected component of Vn(u) is of size of order
|Vn|,

• for u > u2, the largest connected component of Vn(u) is of size of order
logκ |Vn|, for some κ > 0.
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Although the conjecture of a sharp phase transition, i.e. u1 = u2, is still an
open problem, �erný and Teixeira proved a sharp phase transition for the
diameter of the vacant set containing a given point. In [�T14] they apply
a variant of the soft-local time coupling technique, in order to construct a
coupling on macroscopic subsets of the torus. The proof of our main result
is strongly motivated by this paper and a description of the proof will follow
in the next subsection. Before that we �nish this section with a result on
expanders and the in�nite tree.

A local coupling between the vacant set of the random walk on expanders
Gn and the vacant set of random interlacements on the d-regular in�nite
tree T can be found in [�TW11]. In this paper �erný, Teixeira, Windisch
investigate the percolative properties of the vacant set on d-regular, large
girth expanders and d-regular random graphs. They show that the vacant
set of these graphs undergo a phase transition in u∗ > 0, the critical value
of random interlacements on the in�nite d-regular tree T. More precisely, it
was shown that with high probability as n tends to in�nity,

• for u < u∗, the vacant set has a unique component with volume of order
|Vn|,

• for u > u∗, the largest component of the vacant set only has a volume
of order log |Vn|

The coupling is used to construct a su�cient amount of mesoscopic clusters
in the supercritical phase u < u∗.

1.3 Overview of the proof

Let us now describe the idea of the proof and the organization of the thesis.
In Chapter 2 we start with a detailed introduction of the lazy random

walk X on large girth expander graphs Gn and the in�nite tree T(see Section
2.1- 2.2). In Section 2.3 we introduce random interlacements and we use the
capacity of �nite sets Bn ⊂ V, in order to characterize the law of the vacant
set of random interlacements. The main principal tool for the proof of the
main result is a coupling of two Markov chains on a �nite state space (see
Section 2.4), based on the technique of the so-called soft local times [PT12].
The corresponding statement (see Theorem 2.1), [�T14, Theorem 3.1.]) pro-
vides an estimate on the error of the coupling, by controlling the mixing
times and the transition probability's density of both chains. Theorem 2.1
will be used later in Section 5.1.

In Chapter 3 we proceed with some general estimates for the random
walk and random interlacements. These results will be used in Chapter 4 to
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bound the relevant coupling quantities. The results include estimates for the
capacity on the ball Bn and the escape probabilities from Bn (see Section
3.1-3.2). In Section 3.3 we give an approximation for the hitting probability
of the boundary points of Bn for the random walk on Gn started on Bc

n.
In Chapter 4 we continue with an explicit construction of two Markov

chains Y and Z on the �nite state space ∂Bn × ∂Acn. These encode the
trajectories of the random walk on the expander into the ball Bn, and the
trajectories of random interlacements into Bn. (see Section 4.1). In Section
4.2 we show the required equality of the stationary measures of both Markov
chains Y and Z, and estimate all relevant coupling quantities. These include
the variance of the arrival density (see Section 4.3), the mixing time (see
Section 4.4) and the number of excursions (see Section 4.5). The number of
excursions provide a useful length scaling for the Markov chains Y and Z.

In Chapter 5 we use Theorem 2.1 and the estimates from Chapter 4 to
get the desired coupling on ∂B × ∂Ac, for Y and Z (see Section 5.1). In
Section 5.2 we re-decorate Y and Z to obtain a coupling of the vacant sets
restricted to Bn. We de�ne a process as the concatenation of excursions on
the large girth expander graph. Similarly we de�ne a sequence of processes
as the concatenation of excursions on the tree. Applying the coupling of Y
and Z from Section 4.5 and results from Section 5.1, �nishes the proof of
Theorem 1.1.

1.4 Notation

By c, ci, c
′ we denote positive �nite constants, whose values might change

during the computations. For two sequences a = (an)n≥0, b = (bn)n≥0, we
write

a � b :⇐⇒ c−1an ≤ bn ≤ can for some c > 0. (1.10)

Given an arbitrary measure space (Ω,A), we write δx(·) for the Dirac measure
on x ∈ Ω.



Chapter 2

De�nition and results

In this section we introduce all required de�nitions as some basic results for
the considered models.

2.1 Expanders and the tree

The graph denoted by Gn := G(Vn, En) is always a simple graph, i.e. it is
undirected, without loops and without multiple edges. Furthermore Gn is
connected, d-regular and has n = |Vn| vertices.

Let Mn be the adjacency matrix of Gn. The eigenvalues of the matrix
1
d
Mn − I are denoted by

0 = λ1
n < λ2

n ≤ λ3
n ≤ · · · ≤ λnn. (2.1)

Then λ2
n =: λn is the spectral gap of Gn. The object of our investigations is

the family of large girth expander graphs G = (Gn)n≥1 (or simply family of
expanders), introduced in Section 1.1. Remember the uniform lower bound
λ > 0 of the spectral gap λn for n ≥ 1. We call λ the spectral constant of G
and Gn ∈ G an large girth expander graph (or simply expander).

From now on we �x d ≥ 3, 0 < α ≤ 1 and the spectral constant λ for the
family of expanders G = (Gn)n≥1, and therefore omit d, λ and α from the
notation. For Gn we sometimes also omit the n in the de�nition and write
simply G.

Due to the regularity, we know that Gn has dn
2

edges, i.e. Gn is sparse
for n ≥ 1. On the other hand, the spectral gap of Gn is uniformly bounded
away from 0. At least qualitatively, the spectral gap is tightly linked to high
connectivity. These observations induce a more intuitive characterization of

6
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expanders. For a simple graph G(V,E), let

h(G) = min
{ |∂eA|
|A|

: A ⊂ V, |A| ≤ |V |
2

}
(2.2)

be the edge expansion (or isoperimtric constant). The set ∂eA ⊂ E is called
the edge boundary of the set A, i.e.

∂eA := {(x, y) ∈ E : x ∈ A, y ∈ Ac}. (2.3)

The intuition that spectral gap is related to edge expansion is made pre-
cise by the following inequality.

Theorem 2.1 (Cheeger's inequality). Let G(V,E) be a d-regular, connected
simple graph with spectral gap λ and edge expansion h(G), then

λ

2
≤ h(G) ≤

√
2dλ. (2.4)

Proof. See [LW02, Theorem 4.9.].

The notations below are valid for an arbitrary graph G(V,E). For two
vertices x, y ∈ V , we write x ∼ y, if x is a neighbor of y. By a path we mean
a sequence of vertices x1, . . . , xi such that xk+1 ∼ xk for all 1 ≤ k ≤ i − 1
and we write x1 ↔ xi. The metric we use is the graph distance dist(·, ·).
It is characterized by the length of the shortest path between any two ver-
tices. We write diam(G) for the diameter of the graph G, i.e. diam(G) =
max{dist(x, y) : x, y ∈ V }. We denote B(x, r) the ball centered at x ∈ V
with radius r,

B(x, r) = {y ∈ V : dist(x, y) ≤ r}. (2.5)

The boundary of A ⊂ V is given by

∂A = {x ∈ A : x ∼ y for some y ∈ Ac}, (2.6)

where Ac is the complement of A in V . We denote G ∩ A and G \ A the
subgraphs induced by A respectively Ac. By abuse of notation we sometimes
write A ⊂ G, if A ⊂ V for G(V,E). For A ⊂ V , A �nite, we use the notation
A ⊂⊂ V .

Recall the de�nition of the in�nite, connected, d-regular tree T := T(V,E).
A distinct vertex o ∈ V, is called the root of T. For every x ∈ V we de�ne
the descendants in the tree by

Vx = {y ∈ V \B(o, dist(o, x)− 1) : y ↔ x on T \B(o, dist(o, x)− 1)}. (2.7)

and the subgraph Tx induced by Vx.
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2.2 Lazy random walk (LRW)

The lazy random walk (LRW) on G, is the Markov process in discrete time
with generator given by

(∆f)(x) =
∑
y∈V

(f(y)− f(x))pxy for f : V → R, x ∈ V, (2.8)

where pxy = 1
2d

if x ∼ y and pxy = 0 otherwise. Note that ∆ = 1
2d
M − 1

2
I,

where M is the adjacency matrix of G. We use Px to denote the law of the
lazy random walk on G started at x ∈ V . The process X = (Xk)k≥0 is the
canonical process on G and (Fk)k≥0 the canonical �ltration. We write Ex
for the corresponding expectation. Keep in mind, that there exists a unique
stationary distribution π for the random walk X, which satis�es π(x)pxy =
π(y)pyx, i.e. π is reversible. Since the graphs G are d-regular, the measure π
is actually uniform. Starting the random walk X in π, we use the notation
P := Pπ.

By θi, i ≥ 0, we denote the canonical shift for the walk, de�ned on V N,
i.e.,

θi(x0, x1, . . . ) = (xi, xi+1, . . . ). (2.9)

For the law Pπ, with uniform measure π on V , the canonical shifts θi are
invariant transformations on V N, i.e. Pπ ◦ θi = Pπ for all i ≥ 0. Let λ be the
spectral gap of G, then from [SC97, p.328] it follows that

sup
x,y∈V

|Px[Xk = y]− π(y)| ≤ e−λk k ≥ 0. (2.10)

Consider the random walk X killed on hitting B with generator ∆B given
by

(∆Bf)(x) =
∑
y∈V \B

(f(y)−f(x))pxy for f : V \B → R, x ∈ V \B, (2.11)

where pxy are as above. We denote

0 < λ1
B < λ2

B ≤ · · · ≤ λ
|V \B|
B (2.12)

the eigenvalues of ∆B. We further de�ne the quasi-stationary distribution
σB, for B ⊂ V , on the expander G. The distribution σB is the normalized
right-eigenvector v1

B of ∆B corresponding to the eigenvalue λ1
B.

Since T is locally �nite, actually d-regular, we de�ne the lazy random
walk on T in the same manner. We write P T

x for the canonical law of the
lazy random walk on T started from x, and (Xk)k≥0 for the canonical process
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as well. Writing P o
x , we mean the law P T

x for the walk on T either the law
Px for the walk on G.

In order to construct random interlacements we need the de�nition of the
normalized equilibrium measure and the capacity for �nite subsets B on T.

De�nition 2.1. Let B ⊂⊂ T, d ≥ 3 and x ∈ T. We set

eB(x) := Px[H̃B =∞]1{x∈B}, (2.13)

and denote eB the equilibrium measure of B. Its total mass

cap(B) :=
∑
x∈B

eB(x) (2.14)

is called the capacity of B. The measure ēB denotes the normalized equilib-
rium measure on B, and is given by

ēB(x) :=
eB(x)

cap(B)
. (2.15)

Note that ēB is supported on the boundary ∂B ⊂ B. The capacity for
any �nite subset is nontrivial, only if d ≥ 3.

Let us de�ne the normalized equilibrium measure on B, for �nite and
in�nite graphs as well.

De�nition 2.2. Let G(V,E) be a d-regular, connected, simple graph and Px
the law for the lazy random walk started in x ∈ V . For B ⊂ A ⊂⊂ V and
x ∈ B we set

eA
c

B (x) := Px[H̃B > HBc ]1{x∈B}, (2.16)

and
capAc(K) :=

∑
x∈B

eA
c

B (x). (2.17)

The measure ēA
c

B denotes the normalized equilibrium measure on B, for the
walk killed on Ac, and is given by

ēA
c

B (x) :=
eA

c

B (x)

capAc(B)
. (2.18)

We �nish the section with some well known results for a �nite connected
graph G(V,E) and the corresponding lazy random walk with law Px. We
call a function h : V → R harmonic on A, if ∆h(x) = 0 for all x ∈ A ⊂ V .
For functions f, g : V → R we de�ne the Dirichlet form

D(f, g) =
1

2

∑
x,y∈V

(
f(x)− f(y)

)(
g(x)− g(y)

)
π(x)pxy. (2.19)
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Theorem 2.3. Let A,C be two non-empty disjoint subsets of V . Then there
exists a unique function g∗A,C, s.t.

∆g∗A,C(x) = 0 ∀x ∈ V, (2.20)

g∗A,C |A = 1 and g∗A,C |C = 0. (2.21)

We call g∗A,C the equilibrium potential. It is given by

g∗A,C(x) = Px[HA ≤ HC ] ∀x ∈ V. (2.22)

Furthermore,

D(g∗A,C , g
∗
A,C) =

∑
x∈A

Px[H̃A > HC ]π(x). (2.23)

Proof. See [AF02, Lemma 2.27, Theorem 3.36, Corollary 3.37].

2.3 Random interlacements

We now introduce random interlacements on the in�nite tree T. We de�ne
the local vacant set Vu ∩K, K ⊂⊂ T, which possesses, as we will see at the
end of the section, a particularly useful representation (see 2.42).

We begin with the introduction of the measurable space (W ∗,W∗) of
doubly in�nite lazy random walk trajectories modulo time shifts on T and
the σ-�nite measure ν on it. Let w = (. . . , w(k − 1), w(k), w(k + 1), . . . ),
then

W =

{
w : Z→ T : dist(w(k), w(k + 1)) ≤ 1 for all k ∈ Z

and dist(w(k), o))→∞ as k → ±∞}

}
is the space of doubly in�nite nearest neighbor trajectories which visit every
�nite subset of T only �nitely many times, and for w = (w(0), w(1), . . . )

W+ =

{
w : N→ T : dist(w(k), w(k + 1)) ≤ 1 for all k ∈ N,

and dist(w(k), o))→∞ as k →∞

}
the space of forward trajectories which spend �nite time in �nite subsets of
T. We denote by Xk the canonical coordinates on W and W+, i.e., Xk(w) =
w(k). We write W for the σ-algebra on W generated by (Xk)k∈Z, and W+

for the σ-algebra on W+ generated by (Xk)k∈N.

De�nition 2.1. Let ∼ be the equivalence relation on W de�ned by

w ∼ w′ ⇐⇒ ∃i ∈ Z : w′ = θi(w), (2.24)
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i.e., w and w′ are equivalent, if w′ can be obtained from w by a time shift.
The quotient space W/ ∼ is denoted by W ∗. We write

proj : W → W ∗ (2.25)

for the canonical projection which assigns to a trajectory w ∈ W its
∼- equivalence class proj(w) ∈ W ∗. The natural σ-algebra W∗ is de�ned by

A ∈ W∗ ⇐⇒ (proj)−1(A) ∈ W . (2.26)

In other words, two trajectories are in the same equivalence class, if their
paths coincide.

For any K ⊂⊂ T, we de�ne

WK = {w ∈ W : Xk(w) ∈ K for some i ∈ Z} ∈ W (2.27)

to be the set of trajectories in W that hit K, and let W ∗
K = proj(WK) ∈ W∗.

It will be helpful to partition WK according to the �rst entrance time of
trajectories in K. For this purpose we de�ne for w ∈ W , k ∈ Z and K ⊂⊂ T,

W k
K = {w ∈ W : HK(w) = k} ∈ W . (2.28)

The sets (W k
K)k∈Z are disjoint and

WK = ∪k∈ZW k
K , (2.29)

W ∗
K = proj(W k

K) ∀k ∈ Z. (2.30)

Recall from Section 2.2, that P T
x denotes the law of the lazy random walk

starting in x. Consider P T
x as a probability measure on W+. We will proof

later, that for d ≥ 3 the random walk is transient, i.e., P T
x [W+] = 1. Using

the notions of the hitting time H̃K and the normalized equilibrium measure
ēK of K ⊂⊂ T from Section 2.2, we de�ne the measure QK on (W,W) by
the formula

QK [(X−k)k≥0 ∈ A,X0 = x, (Xk)k≥0 ∈ B] = P T
x [A|H̃K =∞]ēK(x)P T

x [B]
(2.31)

for any A,B ∈ W+ and x ∈ T. Note that we de�ned QK only on sets of form

A× {X0 = x} ×B ∈ W , (2.32)

but the sigma-algebra W is generated by events of this form, so QK can be
uniquely extended to all W -measurable subsets of W . For any K ⊂⊂ T,

QK [W ] = QK [WK ] = QK [W 0
K ] =

∑
x∈K

QK [X0 = x] =
∑
x∈K

ēK(x) = cap(K).

(2.33)
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In particular, the measure QK is �nite, and 1
cap(K)

QK is a probability measure
on (W,W) supported onW 0

K . The following theorem yields a σ-�nite measure
ν on the measurable space (W ∗,W∗).

Theorem 2.2. There exists a unique σ-�nite measure ν on (W ∗,W∗), such
that for all K ⊂⊂ T,

∀A ∈ W∗, A ⊂ W∗K : ν(A) = QK [(proj)−1(A)]. (2.34)

Proof. See [DRS14, Theorem 6.2].

We further de�ne the random interlacements point process on the space
W ∗×R+ of labeled doubly-in�nite trajectories modulo time shift. We endow
this product space with the product σ-algebra W∗ ⊗ B(R+), and de�ne the
measure ν ⊗ du, where ν is the measure constructed in Theorem 2.2, and du
is the Lebesgue measure on R+. Note that for any K ⊂⊂ T and u ≥ 0,

(ν ⊗ du)(W ∗
K × [0, u]) = ν(W ∗

K)u = cap(K)u <∞. (2.35)

Thus, the measure ν ⊗ du is σ-�nite on (W ∗ × R+,W∗ ⊗ B(R+)), and can
be regarded as an intensity measure for a Poisson point process on W ∗ ×
R+. It will be useful to consider this Poisson point process on the canonical
probability space (Ω,A,P), where

Ω :=

{
ω =

∑
k≥0 δ(w∗k,uk) : (w∗k, un) ∈ W ∗ × R+ for any k ≥ 0

and ω(W ∗
K × [0, u]) <∞ for any K ⊂⊂ T, u ≥ 0

}
(2.36)

is the space of locally �nite point measures on W ∗ × R+, the σ-algebra A is
generated by the evaluation maps

ω 7→ ω(D) =
∑
k≥0

1{(w∗k,uk)∈D}, D ∈ W∗ ⊗ B(R+), (2.37)

and P is the probability measure on (Ω,A), such that

ω :=
∑
k≥0

δ(w∗k,uk) (2.38)

is the Poisson point process with intensity ν ⊗ du on (W ∗×R+,W∗⊗B(R))
under P.

De�nition 2.3. We call the random set Iu ⊂ V random interlacements at
level u, if

Iu(ω) :=
⋃
un≤u

range(w∗n), for ω =
∑
k≥0

δ(w∗k,uk) ∈ Ω, (2.39)
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where
range(w∗) = {Xk(w) : w ∈ (proj)−1(w∗), k ∈ Z} ⊂ T (2.40)

is the set of all vertices of T visited by w∗. The vacant set of random inter-
lacements at level u is de�ned as

Vu(ω) := T \ Iu(ω). (2.41)

We �nish the section with a simple representation of the set Vu ∩K. Let
JuK be a Poisson random variable with parameter ucap(K), and (X(i))i≥0 an
i.i.d. sequence of simple random walks on T with law PēK , independent from
JuK . Then

Vu ∩K law
= K \

⋃
1≤i≤JuK

⋃
k≥0

{X(i)
k }. (2.42)

As we will see in Section 4.1, this representation makes the encoding of
excursions of the sequence (X(i))i≥0 useful.

2.4 Coupling the ranges of Markov chains

In this section we construct a coupling of two Markov chains on a �nite state
space such that their ranges almost coincide. For these Markov chains with
equal stationary measure, the di�erence of their ranges can be controlled
by the mixing time and the arrival density's variance. The theorem of the
coupling is abstract and will be applied later for two processes on the set
∂B × ∂Ac.

Let us now precise the setting of this section. For i ∈ {1, 2} and the �nite
state space Σ, let Pi = (pi(x, y))x,y∈Σ be a Markov transition matrix, and νi
a distribution on Σ. We assume that Pi is irreducible, and that there exists
a unique Pi-invariant distribution π for both P1 and P2 on Σ. The mixing
time Ti corresponding to Pi is de�ned by

Ti = min{n ≥ 0 : max
x∈Σ
{‖P n

i (x, · )− π(·)‖TV } ≤
1

4
. (2.43)

where ‖ · ‖TV denotes the total variation distance, i.e.,

‖νi − ν ′i‖TV := (1/2)
∑
x∈Σ

|νi(x)− ν ′i(x)|. (2.44)

Let µ be an apriori measure on Σ with full support. This measure is in-
troduced for convenience only. Let g : Σ → [0,∞) be the density of π with
respect to µ,

g(x) =
π(x)

µ(x)
, ∀x ∈ Σ, (2.45)
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and let further ρi : Σ2 → [0,∞) be the transition density with respect to µ,
i.e.,

ρi(x, y) =
pi(x, y)

µ(y)
, ∀x, y ∈ Σ. (2.46)

We use ρiy to denote the function x 7→ ρi(x, y) giving the arrival probability
density at y as we vary the starting point. For any function f : Σ → R, let
Eπ[f ] = Σx∈Σπ(x)f(x), and Varπ[f ] = Eπ[(f − Eπ(f))2].

The following theorem provides a coupling of two Markov chains so that
their ranges almost coincide.

Theorem 2.1. There exists a probability space (Ω,F ,Q) where one can de-
�ne Markov chains Z1,Z2 with respective transition matrices P1, P2 and
starting distributions ν1, ν2 such that for every ε satisfying

0 < ε ≤ 1

2
∧ min
i=1,2

min
z∈Σ

Varπρ
i
z

2||ρiz||∞g(z)
, (2.47)

and n ≥ 2k(ε)(T1 ∨ T2) we have

Q[G(n, ε)c] ≤ C
∑
i=1,2

∑
z∈Σ

[
exp(−cnε2)

+ exp
(
− cnεπ(z)

νi(z)

)
+ exp

(
− cε2g(z)2

Varπρiz

n

k(ε)Ti

)]
,

(2.48)

where c, C ∈ (0,∞) are absolute constants, G(n, ε) is the event

G(n, ε) =
{ ⋃

1≤i≤n(1−ε)

Z1
i ⊂

⋃
1≤i≤n

Z2
i ⊂

⋃
1≤i≤n(1+ε)

Z1
i

}
, (2.49)

and

k(ε) = −min
z∈Σ

log2

ε2g(z)2 minx∈Σ π(x)

6Varπ(ρiz)
. (2.50)

Proof. See [�T14, Section 3].
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Local behaviour of LRW

In the following section we show some general properties for the random walk
on G and T. These properties will be used to prove all relevant coupling
quantities.

Let us recall some assumptions. For n ≥ 1, the graphG(V,E) = Gn(Vn, En)
is a large girth expander graph with �xed d ≥ 3, λ > 0 and 0 < α ≤ 1. The
subgraph G∩Ayn is cycle-free for all y = yn ∈ V , where Ayn = B(y, α logd−1 n).
We choose ȳn = ȳ ∈ V and β < α

2
, s.t. the induced graph G\B is connected,

where B = Bȳ
n = B(ȳ, β logd−1 n) and A = Aȳn.

3.1 LRW killed outside the ball

Due to the isomorphism between G ∩ A and T ∩ A the laws of the random
walks started in A killed on Ac are equal for the expander G and the tree T.
Recall that P o

x can stand for the laws P T
x and Px.

The following lemma gives us information about the hitting probability
of the sets ∂Ac and ∂B, starting in x ∈ A \B.

Lemma 3.1. Let B(y,R) ∩ G be cycle-free and 0 ≤ r < R. Then for all
x ∈ B(y,R) with r(x) := dist(y, x) ≥ r

P o
x [HB(y,r) < HBc(y,R)] =

(d− 1)R−r(x) − 1

(d− 1)R−r − 1
. (3.1)

Proof. Since G ∩ B(y,R) is a tree, the probability doing one step to the
direction of ∂B(y,R), started from any x ∈ int(B(y,R)) is given by

P o
x [X1 ∈ ∂B(y, r(x) + 1)] =

d− 1

2d
, (3.2)

15
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Now consider X ′ the lazy random walk in Z with drift d−1
2d

on the space
(Ω,A, P ′). Then

P ′x[X
′
1 = x+ 1] =

d− 1

2d
∀x ∈ Z, (3.3)

and f(x) = (d− 1)−x is harmonic for P ′, i.e. (P ′f)(x) = f(x) for all x ∈ Z.
Then f(X ′T[r+1,R−1]∧n

) is a martingale and by the optional stopping theorem
[LPW09, Theorem 17.6]

Ex[(f(X ′T[r+1,R−1]
)] = f(x) r ≤ r(x) ≤ R. (3.4)

Since the event {X ′T[r+1,R−1]
= x} is supported for x ∈ {r, R},

P ′x[X
′
T[r+1,R−1]

= r] =
(d− 1)R−x − 1

d− 1)R−r − 1
. (3.5)

Since (3.2) holds for any x ∈ B(y,R) \ ∂B(y,R),

P ′x[X
′
T[r+1,R−1]

= r] = P o
x [HB(y,r) < HB(y,R)], (3.6)

and the lemma follows.

We now compute the escape probability with respect to B, and the ca-
pacity of B. Note that

|∂B| = d

d− 1
nβ and |∂A| = d

d− 1
nα. (3.7)

Lemma 3.2. For the tree T and the expander G, n ≥ 1,

P o
x [H̃B > HAc ] =

d− 2

2d
(1− (d− 1)−1nβ−α)−1 ∀x ∈ ∂B (3.8)

and

capAc(B) =
d− 2

2(d− 1)

nβ

1− (d− 1)−1nβ−α
. (3.9)

Proof. We apply Lemma 3.1 and get

P o
x∈∂B[H̃B > HAc ] =

d− 1

2d
P o
x∈∂Bc [H∂B > H∂Ac ]

=
d− 2

2d
(1− (d− 1)−1nβ−α)−1. (3.10)

Using (3.10), (3.7) and the de�nition of capAc( · ) proves (3.9).
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Consider equation (3.10) for the tree T, assume B = {x} and let α
converge to in�nity, then

P T
x [H̃x =∞] =

d− 2

2d
. (3.11)

This implies the transience of the random walk on T for d > 2.
The escape probabilities with respect to B for the random walk killed

on Ac are equal for all initial points x ∈ ∂B. Therefore the normalized
equilibrium measure ēA

c

B is the uniform measure on ∂B. Due to the transience
ofX on T the normalized equilibrium measure ēB exists and equals ēA

c

B . Using
(3.7), we get the following lemma.

Lemma 3.3. For the tree T and the expander G, n ≥ 1,

ēB(x) =
d− 1

d
n−β ∀x ∈ ∂B. (3.12)

3.2 LRW on the tree

Recall the de�nition (2.7) of the induced subtree Tx, for any x ∈ V.

Lemma 3.1. For the tree T and for all z ∈ ∂B and x ∈ ∂A,

P T
x [HB =∞] = 1− nβ−α, (3.13)

P T
x [XHB = z,HB <∞] = 1{x∈Tz}n

β−α, (3.14)

cap(B) =
d− 2

2(d− 1)
nβ. (3.15)

Proof. Assume x ∈ ∂A and R > α logd−1 n. Using Lemma 3.1, we get

P T
x [HB =∞] = lim

R→∞
P T
x [HB ≥ HB(y,R)]

= lim
R→∞

1− (d− 1)R−α logd−1 n − 1

(d− 1)R−β logd−1 n − 1
= 1− nβ−α. (3.16)

Since (3.13) holds,

P T
x [XHB = z,HB <∞] = P T

x [XHB = z|HB <∞]P T
x [HB <∞]

= 1{x∈Tz}n
β−α. (3.17)

Since (3.7) and (3.11), (3.15) follows.
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3.3 LRW on expanders

In the last two sections we investigated the random walk for the tree T and
the random walk killed on Ac for the graphs T and G. Although computing
all relevant quantities for this cases was not too hard, it's more challenging to
control the hitting probabilities for the boundary points of B, for the random
walk on large girth expander graphs G. We know that G is cycle-free on A.
But outside of A the informations are rare. Just the d-regularity and the
uniform lower bound of the spectral gap are known. But these properties
tempt to assert two important facts:

• Most of the trajectories of the random walk started on Ac killed on B,
are 'quiet long'.

• Stopping the random walk X after a 'quiet long' time t′, the coordinate
Xt′ is nearly uniformly distributed.

These observations motivate Lemma 3.4, and the key idea of its proof.
In the �rst part of this section we show some general statements, con-

cerning the entrance time of B and the quasi-stationary distribution on Bc.
Let us recall some de�nitions. For the random walk X killed on hitting

B, we write ∆B for its generator and σB for the quasi-stationary distribution
on Bc (see Section 2.2). Because of (3.8), the Dirichlet form D (see (2.23))
of the equilibrium potential g∗B,Ac (see (2.22)) is given by

D(g∗B,Ac , g
∗
B,Ac) =

∑
x∈B

Px[H̃B > HAc ]π(x) � nβ−1. (3.18)

We start with an estimate of the expected entrance time for the random
walk X with the initial distribution π.

Lemma 3.1.

E[HB] � n1−β. (3.19)

Proof. The expected entrance time can be expressed by the following varia-
tional formula (see [AF02, Proposition 3.41].

E[HB]−1 = inf{D(f, f) : f : V → R, f |B = 1, E[f ] = 0}, (3.20)

with the minimizing function f ∗ given by

f ∗(x) = 1− Ex[HB]

E[HB]
. (3.21)
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Applying the variational formula, we obtain the following estimate (see [�TW11,
Proposition 3.2]).

D(g∗B,Ac , g
∗
B,Ac)

(
1− 2 sup

x∈Ac
|f ∗(x)|

)
≤ 1

E[HB]
≤ D(g∗B,Ac , g

∗
B,Ac)π(Ac)−2.

(3.22)
In order to estimate the left-hand side of (3.22), we use

sup
x∈Ac
|f ∗(x)| ≤ c|B|nβ−α log4 n, for some c > 0, (3.23)

(see [�TW11, Proposition 3.5]). Since |B| � nβ, π(Ac) � c > 0 and 2β < α,
(3.22) reads

nβ−1(1− cn2β−α log4 n) ≤ E[HB]−1 ≤ c′nβ−1, for some c, c′ > 0, (3.24)

and (3.19) follows.

Lemma 3.2. Let δ > 0, then

P [HB > n1−β+δ] ≤ e−n
δ

. (3.25)

Proof. By [AB92, (1) and Theorem 3],

P [HB > t] ≥
(

1− 1

λEσB [HB]

)
exp

(
− t

EσB [HB]

)
(3.26)

and
P [HB > t] ≤

(
1− π(B)

)
exp

(
− t

EσB [HB]

)
(3.27)

Integrating (3.26) over t yields

E[HB] ≥ EσB [HB]− λ−1. (3.28)

Set t = n1−β+δ in (3.27), using (3.28) and E[HB] � nβ, gives

P [HB > n1−β+δ] ≤
(
1− π(B)

)
exp

(
− n1−β+δ

EσB [HB]

)
≤ exp(−cnδ), (3.29)

for some c > 0.

Note that the quasi-stationary distribution σB of the random walk X
killed on B can be characterized by

PσB [Xk = y|HB > k] = σB(y), ∀k > 0, (3.30)

(see [AF02, see remarks in Section 3.6.5]). Now we show that the random
walk at time t∗ = blog2 nc conditioned not to have visited B and started in
x ∈ Bc is close to the quasi-stationary distribution.
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Lemma 3.3. For some c, c′ > 0 and t∗ = log2 n,

sup
x,y∈Bc

|Px[Xt∗ = y|HB > t∗]− σB(y)| ≤ ce−c
′t∗ . (3.31)

Proof. If we can show that

e−t
∗(λ2B−λ

1
B)|Bc|

(
sup
x∈Bc

σBc(x)

π(x)
1
2

)2(
inf
x∈Bc

σBc(x)

π(x)
1
2

)−1

≤ ce−c
′t∗ , (3.32)

then (3.31) follows from [�T13, Appendix: Lemma A.2.].
The generator ∆B with corresponding eigenvalues

0 < λ1
B < λ2

B ≤ · · · ≤ λ
|V \B|
B (3.33)

can be viewed as a sub-matrix of the generator ∆ (see (2.8)) with spectral
gap λ2

n. Thus by the eigenvalue interlacing inequality (see [Hae95, Corollary
2.2]) we have λ2

B ≥ λ2
n. On the other hand, by [AB92, Lemma 2 and the

paragraph following equation (12)],

λ1
B =

1

EσB [HB]
≤ 1

E[HB]
. (3.34)

Combining these two inequalities we get

λ2
B − λ1

B ≥ λ2
n −

1

E[HB]
. (3.35)

Since E[HB] � n1−β and λ2
n ≥ λ > 0, for n ≥ 1,

λ2
B − λ1

B ≥ λB, for some constantλB > 0. (3.36)

We now show a lower bound for the quasi-stationary distribution on Bc.
Let x ∈ Bc and k ≥ 0. By reversibility, for all x′ ∈ Bc,

Px′ [Xk = x|HB > k] = Px[Xk = x′|HB > k]
Px[HB > k]

Px′ [HB > k]
. (3.37)

In order to bound the above ratio, note that

Px[HB > k] ≥ Px[Hx′ < HB, HB ◦ θHx′ > k] = Px[Hx′ < HB]Px′ [HB > k].
(3.38)

By assumption the graph G \B is connected and

max{deg(x) : x ∈ G \B} = d. (3.39)
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Applying [Kow16, Proposition 3.1.5] and (3.36), we get

diam(G \B) ≤ c′ log |G \B|
log(1 + λB

d
)
≤ c log n, for some c, c′ > 0. (3.40)

That is, we can �nd a path of length at most c log n, connecting x and x′ and
not passing through B. That implies

Px[Hx′ < HB] ≥ 2d−c logn ≥ cn−c
′
, for some c, c′ > 0. (3.41)

From [�T13, Lemma A.2.], Px[Xk = x′|HB > k]
k→∞−→ σB(x′) uniformly for

all x, x′ ∈ G \B. Therefore, taking the limit k →∞ in (3.37), together with
(3.38) and (3.41),

∃c, c′ > 0 : σBc(x) ≥ cσBc(x
′)n−c

′
, ∀x, x′ ∈ Bc (3.42)

and since σB is a probability measure,

inf
x∈Bc

σB(x) ≥ cn−c
′
. (3.43)

The estimates (3.36) and (3.43) show (3.32), and the lemma follows.

Finally, we control the hitting probabilities of boundary points of B.

Lemma 3.4. Let x ∈ ∂Ac and y ∈ ∂B, then

Px[XHB = y] � n−β. (3.44)

Proof. By [�TW11, Lemma 3.4.]), we can control the probability that the
random walk started in x ∈ Ac visits the ball B before time t. More precisely,
let t > 0, then for some c, c′ > 0,

Px[HB < t] ≤ ctnβ−α + e−c
′t, for all x ∈ Ac. (3.45)

Taking t = t∗ = blog2 nc in (3.45), for all x ∈ Ac,

Px[HB > t∗] ≥ 1− o(1). (3.46)

Let x ∈ ∂Ac and y ∈ ∂B. Using (3.46), Lemma 3.3 and the Markov
property, gives

Px[XHB = y] ≥ Px[HB > t∗]Px[XHB = y|HB > t∗]

≥ c
∑
z∈Bc

Px[XHB = y,Xt∗ = z|HB > t∗]

≥ c
∑
z∈Bc

Px[Xt∗ = z|HB > t∗]Pz[XHB = y]

≥ cPσB [XHB = y], for some c > 0. (3.47)
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We now estimate the distribution PσB [XHB = · ]. Consider the probabil-
ity that the random walk X started in x ∈ ∂B stays outside of B for a time
interval at least t∗ = log2 n. Since X is reversible with respect to the uniform
distribution on G, the probability can be written as∑

y∈∂B\{x}

Px[H̃B > t∗, XH̃B
= y] =

∑
y∈∂B\{x}

Py[H̃B > t∗, XH̃B
= x]. (3.48)

By the Markov property,

Px[H̃B > t∗, XH̃B
= y] =

∑
z∈Bc

Px[H̃B > t∗, Xt∗ = z,XH̃B
= y]

=
∑
z∈Bc

Px[Xt∗ = z|H̃B > t∗]Px[H̃B > t∗]Pz[XH̃B
= y].

(3.49)

Moreover, the distribution Px[Xt∗ = · |H̃B > t∗] can be approximated by the
quasi-stationary distribution σB (3.31), i.e., for some c, c′ > 0,∣∣∣Px[H̃B > t∗, XH̃B

= y]− Px[H̃B > t∗]
∑
z∈Bc

σB(z)Pz[XH̃B
= y]

∣∣∣ ≤ ce−c
′t∗ .

(3.50)
Combining (3.50) and (3.48), we obtain∣∣∣Px[H̃B > t∗]PσB [XH̃B

6= x]− PσB [XH̃B
= x]

∑
y∈∂B\{x}

Py[H̃B > t∗]
∣∣∣ ≤ ce−c

′t∗ ,

(3.51)

or equivalently,

Px[H̃B > t∗]− ce−c′t∗∑
y∈∂B Py[H̃B > t∗]

≤ PσB [XH̃B
= y] ≤ Px[H̃B > t∗] + ce−c

′t∗∑
y∈∂B Py[H̃B > t∗]

. (3.52)

Applying the escape probability (3.9) and the Markov property, we get

Px[H̃B > t∗] ≥ Px[HAc < H̃B]Px[H̃B > t∗|HAc < H̃B]

≥ Px[HAc < H̃B] inf
x∈∂Ac

Px[HB > t∗] (3.53)

≥ d− 2

d

1

1− cnβ−α
(1− c′t∗nβ−α) ≥ c > 0,

Combining (3.52) and (3.53), yields, for some c > 0,

PσB [XH̃B
= y] ≥ cn−β, ∀y ∈ ∂B. (3.54)

Due to (3.47),(3.54) and |∂B| � n−β, Lemma 3.4 follows.



Chapter 4

Coupling quantities

In order to use Theorem 2.1 for the proof of our main result, in Section 4.1
we construct two Markov chains Y, Z on Σ := ∂B × ∂Ac, which encode the
behaviour of the random walk on B ⊂ V and the random interlacements on
B ⊂ V, respectively. In Sections 4.2-4.5 we will estimate all relevant coupling
quantities occurring in the theorem.

4.1 Encoding excursions

Consider the random walk X on the expander G. For B,Ac ⊂ V , we de�ne
inductively two sequences of stopping times Ri, Di, which describe the times
of returns to the set B, and the times of departures of the set Ac, respectively.
More precisely, D0 = HAc and for i ≥ 1

Ri = HB ◦ θDi−1
+Di−1, (4.1)

Di = HAc ◦ θRi +Ri. (4.2)

For i ≥ 1, the random walk X between the return time Ri and the successive
departure time Di is called excursion. By the strong Markov property of X,
(Yi)i≥1 = (XRi , XDi)i≥1 is a Markov chain on Σ := ∂B × ∂Ac with transition
probabilities

P [Yi+1 = yyy|Yi = xxx] = Px2 [XHB = y1]Py1 [XHAc = y2], (4.3)

for every xxx = (x1, x2) and yyy = (y1, y2) ∈ Σ, and with initial distribution

νY (x) = P [XR1 = x1, XD1 = x2] = P [XR1 = x1]Px1 [XHAc = x2]. (4.4)

The Markov chain Y encodes the excursions of the random walk X.

23
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The second Markov chain, which encodes the behaviour of random inter-
lacements in B, is de�ned similarly by considering separately the excursions
of any random walk trajectories of random interlacements which enters B.
More precisely, recall the representation of random interlacements on the �-
nite set B, using an i.i.d. sequence of lazy random walks (X(i))i≥1 on T with
law P T

ēB
(2.42). For every i ≥ 1, set R(i)

1 = 0 and de�ne D(i)
j , R(i)

j , j ≥ 1
analogously to (4.1) and (4.2), to be the successive departure and return
times between B and A of the random walk X(i). We set

T (i) = sup{j : R
(i)
j <∞}, (4.5)

to be the number of excursions of X(i) between B and Ac. Finally, let Z =
(Zk)k≥1 be the sequence of the starting and ending points of these excursions,

Zk =
(
X

(i)

R
(i)
j

, X
(i)

D
(i)
j

)
, for i ≥ 1,

and 1 ≤ j ≤ T (i), given by k =
i−1∑
l=1

T (l) + j.
(4.6)

The strong Markov property for X(i)'s and their independence imply that Z
is a Markov chain on Σ with transition distribution

P [Zk+1 = yyy|Zk = xxx] = P T
y1

[XHAc = y2]

·
(
P T
x2

[HB <∞, XHB = y1] + P T
x2

[HB =∞]ēB(y1)
)
, (4.7)

for every xxx,yyy ∈ ∂B × ∂Ac, and with initial distribution

νZ(xxx) = ēB(x1)P T
x1

[XHAc = x2]. (4.8)

The construction above, together with (2.42), yields

Vu ∩B law
= B \

JuB⋃
i=1

T (i)⋃
k=1

{
X

(i)

R
(i)
k

, . . . , X
(i)

D
(i)
k

}
, (4.9)

where JuB is a Poisson random variable with parameter ucap(B). The Markov
chain Z encodes the excursions of the sequence of random walks X(i).

Due to the transience of the random walk on T (see (3.13)), we already
know, that the number of excursions T (i) of the random walk X(i) is �nite
almost sure. The next lemma provides us the expected number of visits of
any x ∈ ∂B. Later in Section 4.2, we apply this lemma to compute the
stationary measure for the Markov chain Z on ∂B × ∂Ac.
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Lemma 4.1. For x ∈ ∂B and i ≥ 1

ET
ēB

[ T (i)∑
j=1

1{X
R
(i)
j

=x}

]
=
P T
x [H̃B > HAc ]

cap(B)
. (4.10)

Proof. To simplify the notation we write T,X,Rj for T (i), X(i), R
(i)
j . We

extend X to a two-sided random walk on T by requiring the law of (X−i)i≥0

to be P T
X0

[· |H̃B = ∞], conditionally independent of (Xi)i≥0. We denote by
L = sup{n : Xn ∈ B} the time of the last visit of X to B. Then,

ET
ēB

[ T∑
j=1

1{XRj=x}

]
=
∑
y∈∂B

∑
z∈∂B

ēB(y)ET
y

[
1{XL=z}

T∑
j=1

1{XRj=x}

]
=
∑
y∈∂B

∑
z∈∂B

∞∑
n=0

ēB(y)P T
y

[
Xn = x,XL = z,∃m ∈ Z : m < n,Xm ∈ Ac,

{Xm+1, . . . , Xn−1} ⊂ A \B

]
.

(4.11)

According to [Szn12, Proposition 1.8.] under P T
ēB
,XL has also distribution

ēB. Hence, by reversibility, this equals

=
∑
y∈∂B

∑
z∈∂B

∞∑
n=0

ēB(z)P T
z

[
Xn = x,XL = y,∃m ∈ Z : m < n,Xm ∈ Ac,

{Xm+1, . . . , Xn−1} ⊂ A \B

]

=
∑
y∈∂B

∑
z∈∂B

∞∑
n=0

ēB(z)P T
z

[
Xn = x,∃m ∈ Z : m < n,Xm ∈ Ac,
{Xm+1, . . . , Xn−1} ⊂ A \B

]

=
∑
z∈∂B

∞∑
n=0

ēB(z)P T
z [Xn = x]Px[H̃B > HAc ]. (4.12)

Introducing the Green function g(x, y) =
∑∞

k=0 P
T
x [Xk = y] and using the

identity
∑

z∈∂B ēB(z)g(z, x) = 1 (see [Szn12, Proposition 1.8.]), this equals
to ∑

z∈∂B

ēB(z)g(z, x)Px[H̃B > HAc ] =
Px[H̃B > HAc ]

cap(B)
. (4.13)

This completes the proof.

Summing equation (4.10) over x ∈ ∂B, we obtain the expected number
of excursions into B, i.e.

ET
ēB

[T (i)] =
capAc(B)

cap(B)
. (4.14)
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4.2 Equilibrium measure

In this section we show that the equilibrium measures of the Markov chains
Y and Z, de�ned in Section 4.1, coincide.

Lemma 4.1. Let π be the probability measure on Σ given by

π(xxx) = ēB(x1)Px1 [XHAc = x2], xxx = (x1, x2) ∈ Σ. (4.15)

Then π is the invariant measure for both Y and Z.

Proof. To see that π is invariant for Y , consider the stationary random walk
(Xi)i∈Z on G. Let R be the set of returns to B for this walk,

R = {n ∈ Z : Xn ∈ B, ∃m < n,Xm ∈ Ac, {Xm+1, ..., Xn−1} ⊂ A \B},
(4.16)

D the set of departures

D =
{n ∈ Z : Xn ∈ Ac, ∃m ∈ R,m < n,

{Xm, ..., Xn−1} ⊂ A \B
}
, (4.17)

and write R = {R̄i}i∈Z, D = {D̄i}i∈Z so that R̄i < D̄i < R̄i+1, i ∈ Z, and

R̄0 < inf{i ≥ 0 : Xi ∈ Ac} < R̄1. (4.18)

Observe that by this convention the sequence (R̄i, D̄i)i≥1 agrees with (Ri, Di)i≥1,
de�ned in Section (4.1). Remark also that R̄0 might be non-negative in gen-
eral, but R̄−1 < 0. Due to the stationarity and the reversibility of X, for
every xxx = (x1, x2),

P [n ∈ R, Xn = x1] = P

[
Xn = x1,∃m < n,Xm ∈ Ac,
{Xm+1, ..., Xn−1} ⊂ A \B

]
= P [X0 = x1]Px1 [H̃B > HAc ]

= n−1Px1 [H̃B > HAc ].

(4.19)

By the ergodic theorem (see [Szn12, Theorem 4.16]), the stationary measure
πY of Y satis�es

πY ({x1} × ∂A) = lim
k→∞

k−1

k∑
i=1

1{XRi=x1}

= lim
m→∞

m−1
∑m

n=1 1{n∈R,Xn=x1}

m−1
∑m

n=1 1{n∈R}
,

(4.20)
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where we used the observation below (4.18) for the last equality. Applying
the ergodic theorem for the numerator and denominator separately and using
(4.19) yields

πY ({x1} × ∂Ac) =
Px1 [H̃B > HAc ]∑
y∈∂B Py[H̃B > HAc ]

= ēB(x1). (4.21)

By the strong Markov property, πY (xxx) = πY ({x1} × ∂Ac)Px1 [HAc = x2] and
thus πY = π as claimed.

We now consider the Markov chain Z. This chain is de�ned from the
i.i.d. sequence of random walks X(i). Each of these random walks give rise
to a random-length block of excursions distributed as{(

X
(1)

R
(1)
j

, X
(1)

D
(1)
j

)
: j = 1, ..., T (1)

}
. (4.22)

The invariant measure πZ of Z can thus be written as

πZ(xxx) =
1

ET
ēB [T (1)]

ET
ēB

[ T (1)∑
j=1

1{X(1)

R
(1)
j

=x1}

]
Px1 [XHAc = x2], xxx = (x1, x2).

(4.23)
Due to Lemma 4.1 and (4.14), π = πZ follows.

4.3 Variance estimates

We start with some de�nitions and then show Lemma 4.1, which yields the
asymptotic behavior of the arrival densities' variance for both Markov chains
Y, Z. Remember, β < α

2
.

Let us �x the base measure µ on Σ, such that π(x1, x2) = ēB(x1)µ(x1, x2),
i.e.,

µ(xxx) = Px1 [XHAc = x2] = P T
x1

[XHAc = x2], xxx := (x1, x2) ∈ Σ. (4.24)

then we get the transition densities ρY of P with respect to µ, and ρZ of P T

with respect to µ, i.e.

ρY (yyy,xxx) = Py2 [XHB = x1], (yyy,xxx) ∈ Σ2 (4.25)

and

ρZ(yyy,xxx) = P T
y2

[XHB = x1, HB <∞] + P T
y2

[XHB =∞]ēB(x1), (yyy,xxx) ∈ Σ2.
(4.26)
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Since the densities ρo only depend on y2 and x1 for o = Y, Z, we write

ρo(yyy,xxx) =: ρo(y2, x1). (4.27)

The arrival density ρoxxx for o = Y, Z is given by the function

ρoxxx : Σ→ [0, 1] yyy 7→ ρo(yyy,xxx). (4.28)

Before we state the lemma, we capture the following properties. Since π
is invariant for the Markov chain Y ,

Eπ[ρYxxx ] =
∑
yyy∈Σ

π(yyy)ρY (yyy,xxx)

=
∑
yyy∈Σ

π(yyy)
Pxxx[Y1 = yyy]

µ(yyy)
(4.29)

=
π(xxx)

µ(xxx)
= ēB(x1) =

d− 1

d
n−β.

Since π is invariant for the Markov chain Z as well, as above

Eπ[ρZxxx ] =
d− 1

d
n−β. (4.30)

Because π(∂B × { · }) is uniform on ∂Ac, for o = Y, Z

Eπ[(ρoxxx)
2] =

∑
yyy∈Σ

π(yyy)ρo(yyy,xxx)2

=
∑
y2∈∂A

π(∂B × {y2})ρo(y2, x1)2 (4.31)

= |∂Ac|−1
∑

y2∈∂Ac
ρo(y2, x1)2.

Lemma 4.1. Let β < α
2
. Then there exist constants c1, c2 ∈ (0,∞), such

that for every xxx ∈ Σ

c1n
−2β ≤ Varπ(ρYxxx ) ≤ c2n

−2β, (4.32)

c1n
−2β ≤ Varπ(ρZxxx ) ≤ c2n

−2β. (4.33)

Proof. Because of Lemma 3.4, ρY (y2, x1) � n−β. Combining this and the
above equations (4.31), (4.29), the claim (4.32) follows.

We continue with the proof of (4.33). Since β < α
2
,

ρZ(y2, x1) = P T
y2

(HB =∞)ēB(x1) + P T
y2

(XHB = x1, HB <∞)

= c(1− nβ−α)n−β + 1{y2∈Tx1}n
β−α

� n−β. (4.34)
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Combining (4.34), (4.30) and (4.31), we obtain that

Varπ(ρZx ) � n−α
∑

y2∈∂Ac
ρZ(y2, x1)2 � n−2β. (4.35)

4.4 Mixing times

Recall the de�nition of the mixing time T of a Markov chain (2.43). We
denote TY , TZ the mixing times of Y respectively Z.

Lemma 4.1. There exists a constant c, such that

TZ ≤ c, (4.36)
TY ≤ c. (4.37)

Let us start with some preliminary considerations for the proof. For the
Markov chain Y on Σ = ∂B × ∂Ac, we know the transition probabilities

P [Yi+1 = yyy|Yi = xxx] = Px2 [XHB = y1]Py1 [XHAc = y2], (4.38)

for xxx = (x1, x2) ∈ Σ and yyy = (y1, y2) ∈ Σ. That is, we can achieve the mixing
on the set ∂Ac, as on ∂B, separately. Since the induced graph G∩A is a tree,
the distribution Px1 [HAc = · ] is nothing at all uniform on ∂Ac. On the other
hand, Lemma 3.4 gives us a strong result for the distribution Px2 [HB = · ]
on ∂B, which is nearly uniform.

Similar considerations work for the Markov chain Z. For the random
walk X(i) the number of excursions between B and Ac is �nite a.s., and
X(i+1) starts uniformly on ∂B.

It forces on, to use these facts in the proof of Lemma 4.1, i.e. we try to
couple both chains on the set ∂B. In order to bound the mixing times we
use the following lemma.

Lemma 4.2. Let (Xi)i≥0 = X be an arbitrary Markov chain on a �nite state
space Σ. Assume that for every x, y ∈ Σ there exists a coupling Qx,y of two
copies X1, X2 of X starting respectively from x and y, such that

max
x,y∈Σ

Qx,y[X
1
n 6= X2

n] ≤ 1/4. (4.39)

Then TX ≤ n.

Proof. See [LPW09, Corollary 5.3]



30 CHAPTER 4. COUPLING QUANTITIES

Proof of Lemma 4.4.1. To show (4.36), we consider two copies Z1, Z2 of the
Markov chain Z starting respectively in xxx,xxx′ ∈ Σ and de�ne the coupling
Qxxx,xxx′ between them as follows. Let (ξi)i≥1 be a sequence of i.i.d. Bernoulli
random variables with parameter P [ξi = 1] = 1 − nβ−α (see (3.13)). Given
Z1
i = xxx, Z2

i = xxx′ and ξi = 1, then Z1
i+1 = Z2

i+1 are distributed as π(xxx) =
ēB(x1)Px1 [XHAc = x2]. For ξi = 0, we choose Z1

i+1 and Z2
i+1 independently

with distribution µxxx, µxxx′ where (see Section 4.1)

µxxx(yyy) =
P T
x2

[XHB = y1, HB <∞]P T
y1

[XHAc = y2]

1− (1− nβ−α)
(4.40)

If Z1
i = Z2

i for some i, then we let them move together, i.e., Z1
j = Z2

j for all
j ≥ i. It follows that

max
xxx,xxx′

Qxxx,xxx′ [Z
1
i 6= Z2

i ] ≤ P [ξj = 0∀j < i] = (1− (1− nβ−α))i (4.41)

Choosing now i su�ciently large, but independent of n and using Lemma
4.2, (4.36) follows.

Now we show (4.37). Assume x2 ∈ ∂Ac and µ is the sub-probability on
∂B, given by µ(y1) = infx2∈∂Ac Px2 [XHB = y1]. Since ∂B � nβ and because
of Lemma 3.4, µ(∂B) ≥ c1 for some c1 ∈ (0, 1).
We can now construct the coupling required for the application of Lemma
4.2. Let xxx(0),xxx′(0) ∈ Σ and de�ne the coupling Qxxx,xxx′ of two copies Y 1, Y 2

of Y as follows. Let Y 1
0 = xxx, Y 2

0 = xxx′, and let (ξi)i≥0 be an independent
sequence of i.i.d. Bernoulli random variables with P [ξ = 1] = µ(∂B). Given
Y 1
i = xxx, Y 2

i = xxx′ and ξi = 1, then Y 1
i+1 = Y 2

i+1 are distributed as π(xxx) =
ēB(x1)Px1 [XHAc = x2]. For ξi = 0, we choose Y 1

i+1 and Y 2
i+1 independently

with distribution νxxx, νxxx′ where (see Section 4.1)

νxxx(yyy) =

(
P T
x2

[XHB = y1]− µ(y1)
)
P T
y1

[XHAc = y2]

1− µ(∂B)
. (4.42)

If Y 1
i = Y 2

i for some i, then we let them move together, i.e., Y 1
j = Y 2

j for all
j ≥ i.

These steps construct two copies of Y , started from xxx and xxx′ respectively.
Since

Qxxx,xxx′ [Y
1
i 6= Y 2

i ] ≤ P [ξj = 0∀j < i] = (1− µ(∂B)i−1, (4.43)

and µ(∂B) ≥ c1, we can choose i independent of n, such that right part of
(4.43) is ≤ 1

4
. Applying Lemma 4.2, (4.37) follows.
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4.5 Number of excursions

Consider the random walk on the expander. De�ne

N (t) = sup{i : Ri < t}, (4.44)

to be the number of excursions started before t. We show that N (t) concen-
trates around its expectation.

Lemma 4.1. Let u > 0 be �xed. There exist constants c1, c2 depending on
α, β, such that for every n ≥ 1

P [|N (un)− ucapAc(B)| > ηcapAc(B)] ≤ c1e
−c2η2nc2 . (4.45)

Proof. Let's start with the computation of the expectation of N (t) and
EēB(R1). Recall (4.16)-(4.18), the returns and departures (R̄i, D̄i) of the
stationary random walk (Xn)n∈Z. Let N̄ (t) = sup{i : R̄i < t}. Recall
equality (4.19). Summing it over x1 ∈ ∂B, we obtain

P [k ∈ R̄] = n−1capAc(B), k ≥ 0. (4.46)

Summing again over 0 ≤ k < t,

E[N̄ (t)] = tn−1capAc(B) (4.47)

follows. By the observation below (4.18), |N̄ (t)−N (t)| ≤ 1. Combining this
and equality (4.47) , we obtain

|E[N (t)]− tn−1capAc(B)| ≤ 1, ∀t ∈ N. (4.48)

Since (4.48), the fact that every XRk is ēB-distributed at stationary, and the
ergodic theorem,

EēB(R1) =
n

capAc(B)
. (4.49)

It is more convenient to show a concentration result for the return times
Ri instead of N (t). Observing that for any t > 0 and b > 0,

{|N (t)− E(N (t))| > b} ⊂ {RdE(N (t)−be > t} ∪ {RbE(N (t))+bc<t}, (4.50)

and therefore

P [|N (un)− ucapAc(B)| > ηcapAc ] ≤ P [Rd(u−η)capAc (B)e > un]

+ P [Rb(u+η)capAc (B)c < un]. (4.51)
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Let ε > 0 be a constant that will be �xed later, and set l = bnεc. In order
to estimate the right-hand side of (4.51), we study the typical size of Rm±l

where

m− = dl−1(u− η)capAc(B)e, and m+ = dl−1(u+ η)capAc(B)e. (4.52)

Since capAc(B) � nβ, it follows that

m± � nβ−ε. (4.53)

Let Gi = σ(Xk : k ≤ Ril). Using the standard properties of the mixing time
(see [LPW09, Section 4.5.]) and the strong Markov property,

‖P [(XRil , XDil) ∈ · |Gi−1]− π(·)‖TV ≤ 2−n
ε

. (4.54)

Since π({·} × ∂Ac) is uniformly distributed on ∂B,∣∣∣P [XRil = y|Gi−1]

ēA
c

B (y)
− 1
∣∣∣ ≤ c2−n

ε/2

, ∀i ≥ 1. (4.55)

Let m stand for m+ or m−, we write

Rml =
m∑
j=1

Zj, where Zj = Rjl −R(j−1)l and R0 := 0. (4.56)

For every j ≥ 2, by (4.55),

P [Zj > t|Gj−2] ≤ (1 + c2−n
ε/2)PēAcB [Rl > t] ≤ 2lPēAcB [R1 > t/l]. (4.57)

Using 3.25 for any δ > 0, yields

P [R1 > n1−β+δ] ≤ e−cn
δ

, (4.58)

and thus

P [Zj > ln1−β+δ|Gj−2] ≤ 2lPēAcB [R1 > n1−β+δ] ≤ ce−n
c′δ
. (4.59)

Analogous reasoning proves also that

P [Z1 ≥ ln1−β+δ] ≤ ce−n
c′δ
. (4.60)

By (4.55) again,

|E[Zj]− E[Zj|Gj−1]| ≤ c2−n
ε/2

E(Zj). (4.61)
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Hence,

P [|Rml − E(Rml) > ηE(Rml)|] = P
[∣∣∣ m∑

j=1

(Zj − E[Zj])
∣∣∣ > ηE(Rml)

]
≤ P [Z1 ≥ ηE(Rml/4]+ (4.62)∑
n∈{0,1}

P
[∣∣∣ m∑

j=n mod 2
1≤j≤m

(Zj − E[Zj|Gj−2])
∣∣∣ > ηE(Rml/4)

]
.

Setting Z̃ = Zj ∧ n1−β+δl, which by (4.59) satis�es

|E[Z̃j|Gj−2]− E[Zj|Gj−2]| =
∫ ∞
n1−β+δl

P [Zj > t|Gj−2]dt ≤ ce−n
c′δ
, (4.63)

the right-hand side of (4.62) can be bounded by

≤ cm exp−nc′δ+∑
n∈{0,1}

P
[∣∣∣ m∑

j=n mod 2
1≤j≤m

(Zj − E[Zj|Gj−2])
∣∣∣ > ηE(Rml/4)

]
. (4.64)

Applying Azuma's inequality, (4.64) can be bounded by

≤ cm exp(−nc′δ) + 4 exp
(
− 2c1(ηE(Rml/4))2

m(n1−β+δl)2

)
, (4.65)

and together with E[Rml] � n, m± � nβ−ε, and l = bnεc, (4.65) can be
bounded by

≤ cm exp(−nc′δ) + 4 exp
(
− c1η

2nβ−ε−2δ
)
. (4.66)

It is possible to �x δ and ε su�ciently small, so that the exponent of n on the
right-hand side of the last display is positive. Altogether the above decays
at least as c1 exp(−c2η

2nc3) as n tends to in�nity, �nishing the proof of the
lemma.

We now count the number of excursions of random interlacements at
level u into B. Let (Jnu )u≥0 be the Poisson process with intensity cap(B)
driving the excursions of random interlacements to B. Recall the de�nition
of random variables T (i) (4.5), giving the number of excursions of i-th random
walk between B and Ac. Given those, denote by N ′(u) the number of steps
of Markov chain Z corresponding to the level u of random interlacements,

N ′(u) =

Jnu∑
i=1

T (i). (4.67)
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Lemma 4.2. There exist constants c1, c2 depending on α, β and u, such that
for every u > 0

P [|N ′(u)− ucapAc(B)| ≥ ηucapAc(B)] ≤ c1e
−c2η2nc2 . (4.68)

Proof. By the de�nition of random interlacements, Jnu is a Poisson random
variable with parameter ucap(B), and thus, by Chernov estimate,

P [|Jnu − ucap(B)| ≥ ηucap(B)] ≤ e−cη
2nc . (4.69)

The random variables T (i) are i.i.d, geometrically distributed and due to
(4.14),

ET
ēB

[T (i)] =
capAc(B)

cap(B)
. (4.70)

Applying Chernov bound again for v = (1± η
2
)ucap(B),

P
[∣∣∣ v∑

i=1

T (i) − vcapA(B)

cap(B)

∣∣∣ ≥ η

2

vcapA(B)

cap(B)

]
≤ c1e

−c2η2nc2 (4.71)

for some constants c1 and c2 depending on α, β. The proof is completed by
combining (4.69) and (4.71).



Chapter 5

Proof of the main result

In this chapter we show the local coupling of the vacant set of the random
walk on expanders with the vacant set of random interlacements.

Before that we need to �nish our investigations on the Markov chains Y
and Z. In the following section we show, that their ranges almost coincide.

5.1 Coupling encoded excursions

Remember the state space Σ = ∂B × ∂Ac of the Markov chains Y and Z is
�nite, and the stationary distributions are equal for both chains. Thus we
can apply Theorem 2.1 to construct a coupling of the two chains on some
probability space (Ωn,Fn,Qn).

We summarize the estimates from the last two chapters:

• l := ucapAc(B) � nβ,

• g(x1, x2) = ēA
c

B (x1) � n−β,

• TY = TZ ≤ c for some c > 0,

• Varπ(ρYxxx ) � Varπ(ρZxxx ) � n−2β,

• ‖ρYxxx ‖∞ � n−β,

• ‖ρZxxx ‖∞ � n−β.

For the last two estimates we use Lemma 3.4 to get

‖ρYxxx ‖∞ = sup
yyy∈Σ

Py2 [XHB = x1] � n−β, (5.1)
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and due to β < α
2
,

‖ρZxxx ‖∞ = sup
y2∈∂Ac

{P T
y2

[HB =∞]ēB(x1) + P T
y2

[XHB = x1, HB <∞]}

� sup
y2∈∂Ac

{n−β + 1{y1∈Tx1}n
β−α} (5.2)

= n−β + nβ−α � n−β.

We take the length l = ucapAc(B), since this is (with a negligible di�erence)
the expected number of excursions of the random walk on G with length un.
In section 5.2 we need this fact to redecorate the Markov chains Y and Z.

Let's now estimate all requirements for Theorem 2.1. Since

min
i=1,2

min
xxx∈Σ

Varπρ
i
x

2‖ρiz‖∞g(x)
� c, for α > 2β, (5.3)

and the condition (2.47), we need for some su�ciently small c > 0,

0 < εn ≤ c. (5.4)

Due to 2.50, for some c1, c2 > 0

k(εn) � c1 log n− c2 log(εn). (5.5)

Now we can apply Theorem 2.1, which yields

Q[G(l, εn)c] ≤ c1 exp
( −c2ε

2
nn

β

c3 log n− c4 log(εn)

)
(5.6)

for
G(l, εn) =

{ ⋃
1≤i≤l(1−εn)

Zi ⊂
⋃

1≤i≤l

Yi ⊂
⋃

1≤i≤l(1+εn)

Zi

}
. (5.7)

With a sensible lower bound for the sequence εn, we get the desired con-
vergence. Let ε2n ≥ nδ

′−β for some δ′ > 0, then

ε2n
c3 log n− c4 log(εn)

≥ nδ
′−β

c log n
> cnδ−β, (5.8)

for some δ < δ′ and c > 0, and the following lemma is proved.

Lemma 5.1. Let Y and Z be the Markov chains de�ned in Section 4.1.
Suppose that β < α

2
, u > 0 and εn is a sequence satisfying n

1
2

(δ′−β) ≤ εn < c
for some δ′ > 0 and su�ciently small c > 0. Let

G(l, εn) =
{ ⋃

1≤i≤l(1−εn)

Zi ⊂
⋃

1≤i≤l

Yi ⊂
⋃

1≤i≤l(1+εn)

Zi

}
, with l = ucapAc(B).

(5.9)
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Then there exist probability spaces (Ωn,Fn,Qn), such that for large enough n

Qn[G(l, εn)c] ≤ c1e
−c2nδ , (5.10)

for some 0 < δ < δ′ and c1, c2 > 0.

5.2 Coupling the vacant sets

We now re-decorate Y and Z to obtain a coupling of the vacant sets restricted
to Bȳn

n = Bn.
Let Γ be the space of all �nite-length nearest-neighbor paths on Gn. For

γ ∈ Γ we use s(γ) to denote its length and write γ as (γ0, . . . , γs(γ)).
To construct the vacant set of the random walk, we de�ne on the same
probability space (Ωn,Fn,Qn) the sequence of excursions (Ei)i≥1 and bridges
(Ẽi)i≥0, whose distribution is uniquely determined by the following properties.

• Given Y =
(
(Yi,1, Yi,2)

)
and Z =

(
(Zi,1, Zi,2)

)
, (Ei)i≥1 and (Ẽi)i≥0 are

conditionally independent sequences of conditionally independent ran-
dom variables.

• For every i ≥ 1, the random variable Ei is Γ-valued and for every γ ∈ Γ,

Qn[Ei = γ|Y, Z] = PYi,1 [HAcn = s(γ), Xi = γi∀i ≤ s(γ)|XHAcn
= Yi,2].

(5.11)

• For every i ≥ 1, the random variable Ẽi is Γ-valued and for every γ ∈ Γ,

Qn[Ẽi = γ|Y, Z] = PYi,2 [HB = s(γ), Xi = γi∀i ≤ s(γ)|XHB = Yi+1,1].
(5.12)

• The random variable Ẽ0 is Γ-valued and

Qn[Ẽ0 = γ|Y, Z] = P [R1 = s(γ), Xi = γi∀i ≤ s(γ)|XR1 = Y1,1]. (5.13)

By concatenation of Ẽ0, E1, Ẽ1, E2, . . . we de�ne a process X = (Xk)k≥0

on (Ωn,Fn,Qn). From the construction it follows, that X is a lazy random
walk on Gn started from the uniform distribution. Finally we write R1 =
s(Ẽ0), D1 = s(Ẽ0)+s(E1), . . . , which is consistent with the previous notation,
and set, as before, N (un) = sup{i : Ri < un}. Finally, we �x an arbitrary
constant ξ > 0 and de�ne the vacant set of random walk on (Ωn,Fn,Qn) by

Vun = Gn\{Xξn, . . . , X(ξ+u)n}, (5.14)
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which has the same distribution as the vacant set introduced in (1.1), since
X is a stationary Markov chain.

In order to construct the vacant set of random interlacements intersected
with Bn, let I0 = ∅ and for i ≥ 1 inductively

ιi = inf{j ≥ 1 : j /∈ Ii−1, Yj = Zi},
ERIi = Eιi , (5.15)
Ii = Ii−1 ∪ {ιi}.

Let further (Ui)i≥1 be a sequence of conditionally independent Bernoulli ran-
dom variables with

P [Ui = 1] =
P T
Zi,2

[HBn =∞]ēBn(Zi+1,1)

P T
Zi,2

[HBn <∞, XHBn
= Zi+1,1] + P T

Zi,2
[HBn =∞]ēBn(Zi+1,1)

.

(5.16)
The event {Ui = 1} heuristically corresponds to the event �after the excursion
Zi the random walk leaves to in�nity and the excursion of random interlace-
ments corresponding to Zi+1 is a part of another random walk trajectory�.
We set V0 = 0 and inductively for i ≥ 1, Vi = inf{i > Vi−1 : Ui = 1}.
Then, by construction, for every i ≥ 1, (ERIj )Vi−1<j≤Vi has the same distribu-
tion as the sequence of excursions of random walk X(i) into Bn, (see Section
4.1). Finally, as in Section 2.3, we let (Jnu )u≥0 to stand for a Poisson process
with intensity cap(Bn), de�ned on (Ωn,Fn,Qn), independent of all previous
randomness, and set

N ′(u) = VJnu . (5.17)

This is again consistent with previous notation. Finally, for ξ as above,
we can construct the random variables having the law of the vacant set of
random interlacements at levels u+ εn and u− εn intersected with Bn,

Bn ∩ Vu±εn = Bn \
N ′(ξ+u±εn/2)⋃
i=N ′(ξ∓εn/2)

Range(ERIi ). (5.18)

Proof of Theorem 1.1. Let Kn = capAcn(Bn) and εn
n→∞−→ 0.

Consider the random walk X on Gn. Then the number of excursions
started before time nu concentrates around its expectation uKn (see Lemma
4.1). Since Range(Ẽi) ∩Bn = ∅, and (5.14),

Qn

[
Bn \

(ξ+u+εn/4)Kn⋃
i=(ξ−εn/4)Kn

Range(Ei) ⊂ Vun ∩Bn ⊂ Bn \
(ξ+u−εn/4)Kn⋃
i=(ξ+εn/4)Kn

Range(Ei)
]

≥ 1− c1e
−c1ε2nnc2 .

(5.19)
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Recall the coupling of the encoded excursions (Lemma 5.1), and the con-
struction of ERIi (5.15). Assume n

1
2

(δ′−β) ≤ εn ≤ c for su�ciently small c > 0
and 0 < δ′ < β. Then for some δ < δ′,

Qn

[
Bn \

(β+u+εn/4)Kn⋃
i=(β−εn/4)Kn

Range(Ei) ⊃ Bn \
(β+u+εn/3)Kn⋃
i=(β−εn/3)Kn

Range(ERIi )
]

≥ 1− c1e
−c2nδ ,

(5.20)

and

Qn

[
Bn \

(β+u−εn/4)Kn⋃
i=(β+εn/4)Kn

Range(Ei) ⊂ Bn \
(β+u−εn/3)Kn⋃
i=(β+εn/3)Kn

Range(ERIi )
]

≥ 1− c1e
−c2nδ .

(5.21)

Consider random interlacements at level u on T. Due to Lemma 4.2 we
know that the number of excursions concentrates around its expectation uKn.
Together with (5.18), we get

Qn

[
Vu+εn/2 ∩Bn ⊂ Bn \

(β+u+εn/3)Kn⋃
i=(β−εn/3)Kn

Range(ERIi )
]
≥ 1− c1e

−c2ε2nnc2 , (5.22)

and

Qn

[
Vu−εn/2 ∩Bn ⊃ Bn \

(β+u−εn/3)Kn⋃
i=(β+εn/3)Kn

Range(ERIi )
]
≥ 1− c1e

−c2ε2nnc2 . (5.23)

Theorem 1.1 then follows by combining 5.19-5.23.
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