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Abstract
It is well known that within the extravasation process, leukocytes roll

along the blood vessel wall before they come to rest and are able to leave
the bloodstream. In recent flow chamber experiments it was observed that
during this process of rolling the leukocyte produces membrane tethers,
which connect the cell with the vessel wall and slow down the movement of
the leukocyte. This master’s thesis deals with the modelling, analysis and
numerical simulation of such membrane tethers.

In the first part of this work an overview of the biological background is
given. This serves as basis for the modelling assumptions in part two, where
the model for the tether is derived and then simplified.
In the third part the existence and uniqueness of a solution to the simplified
model are investigated. The method established in this theoretical analy-
sis, needing Banach’s fixed-point theorem and other results from functional
analysis, is also used to produce numerical simulations in the fourth part.
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Zusammenfassung
Es ist bereits bekannt, dass bei dem Prozess der Leukodiapedese die

Leukozyten erst entlang der Gefäßinnenwand rollen, bis sie zu Ruhe kommen
und dann den Blutkreislauf durch die Gefäßwand verlassen können. Wie sich
kürzlich in Flusskammer-Experimenten gezeigt hat, werden vom Leukozyten
in der Phase des Rollens Membranausstülpungen mit sehr geringem Durch-
messer, die sogenannten Tether, gebildet, die die Zelle mit dem Endothel
verbinden und eine bremsende Wirkung haben. Diese Masterarbeit beschäf-
tigt sich mit der Modellierung, Analysis, sowie mit numerischen Simulatio-
nen dieser Tether.

Im ersten Teil dieser Arbeit wird ein Überblick über den biologischen
Hintergrund gegeben, was als Grundstein für die Modellierungsannahmen
im zweiten Teil dient. Hier wird erst ein Model für den Tether entwickelt,
das anschließend zu dem vereinfacht wird, was als Objekt der Analyse in
den nächsten Kapiteln dient.
Der dritte Teil der Arbeit ist der Frage nach Existenz und Eindeutigkeit
einer Lösung des Models gewidmet. Die Methode, die dabei genutzt wurde,
verwendet den Banachschen Fixpuktsatz sowie weitere Resultate aus der
Funktionalanalysis. Diese dient ebenfalls als Grundlage für die numerischen
Simualtionen im vierten und letzten Teil der Arbeit.
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Part 1. Introduction: Biological Background

White blood cells, also called leukocytes, belong to the immune system
of vertebrates and are the crucial factor for protecting the body against
pathogens, cancer cells, and other dangerous invaders. They are produced
in bone marrow and can also be found in lymph channels and of course in
the blood of vertebrates.
Since there are many types of aetiologic agents, also many types of leukocytes
are needed to protect the body. These different types of white blood cells
do not only vary in their function in the immune system, but also in their
shape. One kind of leukocyte is the so called neutrophil granulocyte, which
comprises the majority of the circulating white blood cells in human bodies
and comes to action when inflammation due to bacterial or fungal infection
occurs. In order to reach the site of an infection, they have to leave the blood
stream. This process is called leukocyte extravasation and happens in several
steps. The following description of the extravasation process of neutrophils
is based on [7, 4, 3], where more biochemical details can be found.

1. Leukocyte Extravasation

Leukocyte recruitment from the blood into the affected tissue is needed
in the process of inflammation, which is an acute response of the immune
system when it comes to an infection. Neutrophil granulocytes are the first
responder immune cells to be taken there. Their recruitment mostly takes
place in postcapillary venules (venules following the capillaries) of the in-
flamed site. Extravasation is a chemotactic process and therefore initiated by
chemical signals caused by the infection. Once the neutrophils detect these
signals with molecules on their cell membrane and start following the chemi-
cal gradients of the chemoattractants, the following steps until extravasation
can be observed: Rolling, adhesion, crawling, and finally transmigration (see
1).

Once a free circulating neutrophil detects chemical changes on the surface
of the endothelium of vessels near the infection, it starts with the process
of tethering. This means that selectin ligands on the cell membrane bind
to selectins on the endothelial cells. This is modulated by integrins, which
are transmenbrane receptors on the surface of the leukocyte. As soon as the
connection to the vessel wall is provided, the neutrophils start rolling along
the endothelium in the direction of the blood stream. At the points where
the cell is connected to the venule wall, long sub-micron diameter tubes are
pulled out of it. The so-called tethers. If the forces of the blood flow acting
on the neutrophil are too strong, the bonds that anchor the tether to the
cell wall might break, which is called tether breaking. It usually gives the
granulocyte a push forward in the direction on the flowing blood. Also slings
are formed. Other than tethers, which appear behind the cell, slings occur
at the front.

During the process of rolling, other chemicals activate the integrins on
the surface of the rolling cells. The now activated receptors cause stronger
bindings instead of the former frail ones such that the movement of the
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Figure 1. Steps of Neutrophil Extravasation [3]

rolling neutrophils becomes less until it comes to tight adhesion. One could
think that the site of their arrest will then be the place, where the cells leave
the blood stream. But unlike this, it was observed that most neutrophils
were actively crawling in a small area around the adhesion spot, while on
one hand beeing elonginated because of the shear stress caused by the blood
flow, but on the other hand remaining firmly attached to the endothelium.

If a suitable spot on the vessel wall is found, the last step of extrava-
tion starts, the so-called transmission. Two ways of neutrophils leaving the
blood stream were observed. Either they leave paracellularly or transcellu-
larly. If neutrophils choose the first possibility mentioned, then they wander
between cells of the venule to the outside. It is also possible that they leave
the blood stream by wandering through an endothelical cell. Which type
of transmission of each granulocyte is chosen depends on some factors as
the surface structure and the alignment of cells of the vessel wall and is not
investigated that good at the moment.

After finally reaching the inflamated tissue, neutrophils start their work
against the infection. Most of them will die in this process, are destroyed
and cleared by macrophages (another type of white blood cells), gathered
and end up as pus. Only in laboratory experiments and very seldom in
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living beings reverse neutrophil migration has been observed.

2. Tether under Blood Flow

In this section a closer look at the tethers and their behavior under the
forces acting on them during the rolling of neutrophils is taken. These in-
formation is taken from [4], where newest observations with mice neutrophil
granulocytes in flow chamber experiments conducted by Ley et al. about
tether and sling formation, tether breaking and tether-to-sling transition
can be found.
Neutrophil granulocytes are capable of rolling at high shear stress, which
among other things can on one hand be referred to the deformability of neu-
trophils and on the other hand to the formation of tethers and slings that
sustain the loads of the forces.

As already stated above, tethers form during the rolling-part of neutrophil
extravasation. Since some spots on the membrane of the leukocyte get well
fixed at the vessel wall through chemical bindings, cell membrane is pulled
out of the rolling neutrophil caused by hydrodynamic drag and tethers are
formed. While one end of the long tube-like membrane excrescence with ex-
tremely small lumen is anchored at the venule wall, the other end at the cell
serves as source for new membrane material when it is pulled longer during
the process of rolling. Once formed, the tether does not only have to bear
the pull from the leukocyte, but also the forces acting on it from the blood
flow. Under high shear stress (greater than 0.6 Pa) it was observed that a
neutrophil forms around 5 tethers of length between 1.2 µm and 30.1 µm.
To visualize these descriptions, see 2. The first picture 2(a) shows a bottom
view of rolling neutrophils with the blood streaming from left to right. The
tethers at the rear of the cell cannot be seen, but their anchors at the wall
occur as small glowing dots behind the granulocyte. Picture 2(b) captured
neutrophils shortly after their arrest from rolling to the right. Since this
is a side view image, tethers behind the cell can be seen clearly. To get a
better spatial idea, image 2(c) shows a 3D reconstruction of a shortly resting
neutrophil.
Under that many forces acting on tethers, the bindings anchoring them on
the endothelium might break at some point. This leads to a forward mi-
crojump of the cell, which was witnessed in the experiments. Individual
tethers participate significantly in preventing the cell from running with the
flow, since it was even observed that after multiple consecutive tether breaks
large granulocyte displacements followed. In 3 one can see such neutrophil
displacement after several tether breaks. The white lines mark the front
of the cell at different consecutive times, while the arrows show the anchor
points of a tether in the last frame it was visible.
It was also observed that approximately 15% of all broken tethers in the rear
of the neutrophil lead to the formation of slings in front of the cell. After
a former tether is detached, the blood flow first maneuveres it to the wall
before it is dragged in the front by the rolling of the cell. There, if the point
of attachment gets close enough, it can bind again on the vessel wall and is
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load bearing again. A tether-to-sling transition could only be observed at
relatively long tethers. In 4 one can see the key frames of such a transition
at a neutrophil which again is rolling from left to right. While in the first
frame a tether can be seen clearly behind the granulocyte, the other frames
show it as a sling in front of the cell which is able to bind to the wall after
1.2 seconds.

(a) Bottom view of rolling
neutrophils

(b) Side view of just ar-
rested neutrophils

(c) 3D reconstruction im-
age of a recently arrested
neutrophil

Figure 2. Microscope images of rolling and just arrested
neutrophil granulocytes with tethers [4]

Figure 3. Tether breaks resulting in microjumps of the neu-
trophil [4]

Since in the whole process many physical forces and mechanical mecha-
nisms are involved, the above described observations give also rise to some
questions of physical and mathematical interest. A different, theoretical,
approach is therefore useful for better understanding, predicting and con-
firming the witnessed observations from a non-biological point of view.
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Figure 4. Side view tether-to-sling transition [4]

As a step in that direction, this work will present a mathematical model,
which describes a tether of a rolling neutrophil acting under the forces orig-
inating from the blood flow.
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Part 2. Modelling

With the biologocal background explained in the last chapter in mind, it
is now time to approach the modelling of such a tether.

1. Assumptions and Setting

Inspired by some images from [4] of rolling neutrophils taken in the side
view flow chamber, we consider the whole process in only two dimensions.
One can imagine a cross section through a leukocyte exactly where a tether
is pulled out of the cell surrounded by a two-dimensional laminar flow. This,
in general, is a huge simplification for the actual three-dimensional objects.
In our case, it is quite reasonable as the main movement of the neutrophil is
one-dimensional and goes in the direction of the flow with only very small
lateral displacement.

Figure 5. Sketch of the 2D-model

As visualized in 5, we are in R2 where the x-axis serves as, in our model
of course only one-dimensional, vessel wall. The neutrophil granulocyte is
placed on the x-axis and rolls in the direction of the blood flow from the
right to the left. The blood flow is modelled as a two-dimensional laminar

flow with velocity
(
U
0

)
, where U is set to be negative as we decided that

the blood streams from the right to the left.
Biologically, it is quite reasonable to see the tether only as one-dimensional
object, since as a sub-micron diameter tube its thickness is negligible com-
pared to the other magnitudes in this process. Therefore, we now intro-
duce the tether {T (s, t) : s ∈ [0, κ(t)]} ⊂ R2 as a one-dimensional curve
in the plane, where t > 0 is the time, s ∈ [0, κ(t)] is the parameter of
the path T (., t) and has to be understood as Lagrangian-coordinate, which
models the fact, that the tether consisting of cell membrane is not elas-
tic. The time-dependent, positive function κ describes the length of the
parameter interval. Furthermore, we assume that at time t = 0 the curve
T (., 0) is parametrized by arc-length, which is characterized by | ddsT (s, 0)| =√

( ddsT1(s, 0))2 + ( ddsT2(s, 0))2 = 1, ∀s ∈ [0, κ(0)]. We cannot guarantee this
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property of the path being maintained with proceeding time, but we assume

κ(t) =
∫ κ(t)

0
|∂sT (s, t)| ds, ∀t > 0,

which implicates that the tangential vector is normalized at least on aver-
age and assures that the length of the parameter interval corresponds to the
actual length of the curve. The Lagrangian-coordinate does not change at
the anchored end of the tether, while the coordinate at the endpoint at the
cell will vary in time. Therefore, we will for now use the convention that
s = κ(t) corresponds to the end of the tether at the neutrophil while at
s = 0 the tether is anchored at the vessel wall.

In order to investigate the behavior of the tether, the curve given by T
will be the unknown of our equations we will derive under consideration of
the forces it has to bear.

2. Derivation of the Model

The model takes into account the bending and tension of the tether as
well as friction between tether and blood. We consider a friction dominated
model, where forces derived from a potential (bending and stretching) energy
are balanced with friction forces. The potential energy is given by

Epot[T ] = 1
2

∫ κ

0

(
µ|∂2

sT |2 + ζκ|∂sT |2
)
ds .

The positive parameter µ is the bending stiffness, and the tension ζκ with
the parameter ζ > 0 is assumed proportional to the length κ of the tether,
modeling the assumption that bigger forces are required to pull longer teth-
ers out of the leukocyte cell membrane.

The variation

δEpot[T ] =
∫ κ

0

(
µ∂4

sT − ζκ∂2
sT
)
· (δT ) ds

+ µ∂2
sT · ∂s(δT )

∣∣∣κ
0

+
(
ζκ∂sT − µ∂3

sT
)
· (δT )

∣∣∣κ
0

provides both the force density µ∂4
sT − ζκ∂2

sT and boundary conditions for
different situations. We shall always assume freely rotating boundaries, i.e.

∂2
sT = 0 for s = 0, κ .

As a second boundary condition we use either free boundaries, i.e.

ζκ∂sT − µ∂3
sT = 0 for s = 0 and/or s = κ ,

or prescribed endpoints

T = T0 for s = 0 , T = T1 for s = κ ,

(implying δT = 0 for s = 0, κ).
The above mentioned force density is balanced with a friction force, where

we assume different friction coefficients γ‖ > 0 and γ⊥ > 0 for the tangential
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and, respectively, orthogonal components. This leads to the differential
equation
(1)

−µ∂4
sT+ζκ∂2

sT−γ‖
∂sT

|∂sT |
·(∂tT−v(T )) ∂sT

|∂sT |
−γ⊥∂sT

⊥

|∂sT |
·(∂tT−v(T ))∂sT

⊥

|∂sT |
= 0,

where ∂tT − v(T ) is the velocity of the tether relative to the given velocity
v = (v1, v2) of the blood flow near the leukocyte, where we always assume
v = O(|U|), for |U| → 0. The superscript ⊥ indicates rotation by π/2.

Two different situations will be considered:
1) The tether is anchored to the vessel wall. In this case the boundary
conditions

T (0, t) = T0 , T (κ(t), t) = T1(t) , ∂2
sT (0, t) = ∂2

sT (κ, t) = 0 ,
are used, where the time dependence of T1 is caused by the movement of
the leukocyte.
2) The end of the tether is free. Now the boundary conditions

ζκ∂sT (0, t)− µ∂3
sT (0, t) = 0 , T (κ(t), t) = T1(t) , ∂2

sT (0, t) = ∂2
sT (κ, t) = 0 ,

apply. The problem is completed by prescribing initial conditions
T (s, 0) = TI(s) ,

and we recall the condition

κ =
∫ κ

0
|∂sT | ds .

Well posedness of this moving boundary problem seems highly nontrivial.

3. Simplifications

Before we start analyzing the above problem, we will make some simpli-
fications and approximations in order to end up with a special case of the
original model.
The first major assumption will be, that the whole process is observed as
quasi-stationary. This approximation requires that the characteristic veloc-
ity of the object is much smaller than the propagation velocity of information
relating to this object. Biologically, this is quite reasonable in our case, since
the motion of the neutrophil is assumed to be much slower than the dynam-
ics of the tether. Time-dependence therefore is assumed to be negligible,
which leads to setting all time derivatives equal to zero. Also the given ve-
locity field, v, will not depend on t. Furthermore, under this assumptions it
makes no sense to investigate the process after tether breaking. Hence, our
tether will be fixed at one end at the neutrophil and at the other end on the
vessel wall and time-independent given boundary conditions will be used.
Furthermore, we will have a closer look at the friction term in our now quasi-
stationary problem. The friction-force in normal direction is much stronger
than the force in the tangential direction. Therefore, γ‖ is assumed to be
that small, that the corresponding term in the differential equations does
not contribute significantly and hence, will be ignored completely. Thus,
another simplification will be setting γ‖ = 0.
At last, we will switch the roles of the endpoints of the tether such that the
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parameter interval is orientated the same way as the x-axis. Since we now
assume that κ does not change in time, it does not matter weather s = κ
corresponds to the endpoint of the tether at the cell or to the endpoint an-
chored at the vessel wall. For reasons of simplification we therefore use the
convention that at s = 0 the tether originates from the leukocyte and at
s = κ the tether is anchored at the blood vessel wall.
The partial differential equations (1) simplify to ordinary differential equa-
tions, the arc-length, κ, is not time-dependent anymore and the problem
now reads

−µT (4) + ζκT ′′ + γ⊥

|T ′|2
(T ′⊥ · v(T )) T ′⊥ = 0, for s ∈ (0, κ),∫ κ

0
|T ′| ds = κ,

(2)

where T ′⊥(s) =
(
−T ′2(s)
T ′1(s)

)
again denotes the unit normal vector of T and

the boundary conditions are given by
T ′′ = 0, for s = 0, κ
T (0) = T0 and T (κ) = T1 given.

(3)

3.1. The Tether as Graph of a Function. The next assumption will con-
cern the curve describing the tether itself. We assume that the displacement
of the tether under the blood flow is that little, that the curve can always be
expressed as graph of some function denoted by u. Here we want to recall
that we assume for the velocity of the blood flow near the cell v = O(|U|).
Then of course, this assumption is only reasonable in a physical way, if |U|,
the speed of the blood flow, is suitable small. As we will see later on, an
adequate small speed is absolutely necessary for our analysis to work.
In other words, we assume that there exists some function u : [x0, x1] 7→ R
for some x0, x1 > 0, such that the curve can be parametrized by

T : [x0, x1] 7→ R2, T (x) =
(

x
u(x)

)
.

This will help us to reduce the problem (2) from two dimensions to only
one, given by one differential equation for u.
We further introduce ū : [x0, x1] 7→ R, which describes the interpolation
between the endpoints of the tether, and its length, κ0. If the boundary

conditions are given by T (x0) =
(
x0
u0

)
and T (x1) =

(
x1
0

)
, then

ū(x) = u0
x1 − x0

(x1 − x)

and
κ0 =

√
(x1 − x0)2 + u2

0.

Regarding our assumption, u always has to remain in a small neighborhood
around ū. If we write u(x) = ū(x) + w(x), ∀x ∈ [x0, x1], this allows us to
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reduce the problem to investigating the dynamics of the perturbation w, as
we will use several times later on. The assumption that |U| is that small
that there is only very little displacement from the interpolation also im-
plies that the slope of u is very close to the one of ū and therefore, w′ is small.

Figure 6. Sketch of the 2D-model with interpolation ū

Working with such a comfortable way to parametrize the curve goes along
with further approximations which will not always be consistent. Since
neither x is the parameter by which we differentiate nor x1−x0 is the actual
length of the curve, we have to find a suitable parameter transformation.
Considering a velocity field with small |U| gives us from the first differential
equation in (2) after neglecting the friction term

T1(s) ∼ ϕ(s) := x1 − x0
κ

s+ x0,

with ϕ : [0, κ] 7→ [x0, x1] defining a regular parameter transformation from
[0, κ] to [x0, x1]. Therefore, T will be written as

T (x) =
(

x
u(x)

)
=
(

ϕ(s)
u(ϕ(s))

)
∼ T (s).

Here, we want to mention that only doing a linear approximation of the first
component of T , while still considering friction in the second one, is not a
consistent approximation.
By using the chain rule, one can express the derivatives with respect to s as
ones with respect to x by dT

ds = dT
dx

x1−x0
κ . In the formula for κ we use our

above assumption, that the slope of u can be approximated by the one of ū,
for the first time. We get

κ =
∫ x1

x0

√
1 + u′2(x) dx ∼

∫ x1

x0

√
1 + ū′2(x) dx = κ0,

and the derivatives can be approximated by dT
ds ∼

x1−x0
κ0

dT
dx . Keeping in

mind that
T ′⊥(x)
|T ′(x)| = 1√

1 + u′2(x)

(
−u′(x)

1

)
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is the unit normal vector at x ∈ [x0, x1] in the last term of the equation (2),
we can rewrite our problem. The simplified and now only one-dimensional
differential equation in our problem reads

(4) − µ
(
x1 − x0
κ0

)4
u(4) + ζκ

(
x1 − x0
κ0

)2
u′′ + γ⊥

v2 − v1u
′

1 + u′2
= 0.

The curvature κ remains as the last open question concerning these approx-
imations. In order to maintain the property that stretching the tether in
longitudinal direction is proportional to the actual length of it, we won’t use
the constant length κ0 of the interpolation as approximation.
Also in this case we will perform a linear approximation where we assume
the slope of u being very close to the one of ū. By Taylor-expansion up to
order u′2 we get for the arc-length:∫ x1

x0

√
1 + u′2 dx =

∫ x1

x0

√
1 +

(
w′ − u0

x1 − x0

)2
dx

= κ0
x1 − x0

∫ x1

x0

√
1− 2w′u0(x1 − x0)

κ2
0

+ w′2(x0 − x1)2

κ2
0

dx

∼ κ0
x1 − x0

∫ x1

x0

[
1− w′u0(x1 − x0)

κ2
0

+ w′2(x0 − x1)2

2κ2
0

− w′2(x1 − x0)2u2
0

2κ4
0

]
dx

= κ0 + (x1 − x0)3

2κ3
0

∫ x1

x0
w′2 dx,

where in the last equality we used that w vanishes at the boundary. After
substituting w = u− ū and several calculations, we get∫ x1

x0

√
1 + u′2 dx ∼

u4
0 + (x1 − x0)4 + 3

2u
2
0(x1 − x0)2

κ3
0

+ (x1 − x0)3

2κ3
0

∫ x1

x0
u′2 dx =: κ[u].

(5)

For simplicity let us denote

(6) c̃ :=
u4

0 + (x1 − x0)4 + 3
2u

2
0(x1 − x0)2

κ3
0

and therefore,

κ[u] = c̃+ (x1 − x0)3

κ3
0

∫ x1

x0

u′2

2 dx.

Our now fully simplified model is given by

−µ
(
x1 − x0
κ0

)4
u(4) + ζκ[u]

(
x1 − x0
κ0

)2
u′′ + γ⊥

v2 − v1u
′

1 + u′2
= 0,

for x ∈ (x0, x1),

κ[u] = c̃+ (x1 − x0)3

κ3
0

∫ x1

x0

u′2

2 dx,(7)

u(x0) = u0, u(x1) = 0,
u′′(x0) = u′′(x1) = 0.
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3.2. The Blood Flow as Two-Dimensional Potential Flow. With this
simplifications we achieved a workable model, but there still is one magni-
tude not described clearly. The last open question is how to model the
two-dimensional quasi-stationary blood flow v around the cell. We assumed
the blood streaming as a laminar flow from the right to the left with veloc-

ity v̂ :=
(
U
0

)
, U < 0. But this velocity cannot be used near the neutrophil

where we would need it, since the streamlines are diverted by the cell. In
this work, we will simulate the bloodstream around the cell by calculating
velocity fields, which describe a flow between two lines enclosing a specific
angle. One line will be the x-axis simulating the vessel wall, the other one
will serve as modell for the cell. The idea and procedure was taken from [6].

In order to determine such a velocity field of the bloodstream, we assume
that the flow is a potential flow and hence, can be written as the gradient
of some scalar function, the so-called velocity potential. If we denote this
velocity potential by Φ, we get v̂ = ∇Φ. Furthermore, the blood flow is an
incompressible flow, which is equivalent to require that the velocity field v̂
is divergence free, i.e. ∇· v̂ = 0. This again implies that the potential Φ has
to satisfy the Laplace equation, ∆Φ = 0 and hence, is a harmonic function.
We now take use of the fact, that our blood flow is two-dimensional and
interpret R2 as complex plane. In this case, our potential flow occurs in the
upper half-plane H := {x + iy | y > 0; x, y ∈ R} and we will investigate it
further by using a holomorphic mapping. Let us denote z := x + iy, then
we define the complex velocity potential

F (z) := Φ(x, y) + iΨ(x, y), ∀z ∈ C,
where the real valued functions Φ and Ψ are the real and imaginary part
of F . Since we assume F to be holomorphic, Φ and Ψ have to satisfy the
Cauchy-Riemann equations,

∂Φ
∂x

= ∂Ψ
∂y

,
∂Φ
∂y

= −∂Ψ
∂x

.

One gets by further differentiation that both Φ and Ψ have to be harmonic,
i.e. ∆Φ = 0 and ∆Ψ = 0. Therefore, our velocity potential of our flow can
be interpreted as the real part of a holomorphic function.

In our case, we have v̂(x, y) = ∇Φ(x, y) =
(
U
0

)
, ∀(x, y) ∈ H and by using

the Cauchy-Riemann equations, we get
Φ(x, y) = Ux, Ψ(x, y) = Uy,

and therefore the complex velocity potential reads
F (z) = Uz, z ∈ H.

We will now use the fact, that a harmonic function under a transformation
by a conformal map remains harmonic. This means that our Φ remains
harmonic after transforming the complex upper half-plane via an angle- and
orientation-preserving map. We will give two attempts of simulating the
blood flow around a neutrophil. Firstly, the conformal transformation of H
is given by the square-root, which will give us the flow between the positive
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parts of the x- and the y-axis (enclosing an angle of 90◦). Secondly, a more
realistic simulation is tried to be achieved by using the fifth-root in order to
get a velocity field of a flow between the positive parts of the x-axis and a
line with which it encloses an angle of 36◦.

Figure 7. Velocity field with speed U = −1 after taking the
square-root of the upper half-plane

Figure 8. Velocity field with speed U = −1 after taking the
fifth-root of the upper half-plane
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3.2.1. Square-Root. Let us denote by ξ :=
√
z, ξ := a+ ib, the variable after

coordinate transformation and by W (ξ) := F (ξ2), the complex velocity
potential in the transformed domain. We get

W (ξ) = Uξ2 = U(a2 − b2 + i2ab).
Hence, the potential velocity after transformation is given by Φ̃(a, b) =
U(a2 − b2), for a, b > 0 and therefore, one gets for the velocity field

vsqrt(a, b) := 2U
(
a
−b

)
, for a, b > 0.

Our domain therefore is the first quadrant, where the a-axis can be seen as
the vessel wall, while the b-axis serves as replacement for the neutrophil.

3.2.2. Fifth-Root. Using the same notation as before, we set ξ := 5
√
z and

W (ξ) := F (ξ5). Calculating the complex velocity potential gives
W (ξ) = U

(
a5 − 10a3b2 + 5ab4 + i(5a4b− 10a2b3 + b5)

)
.

From this we conclude that the new potential velocity reads Φ̃(a, b) = U(a5−
10a3b2 + 5ab4) and the velocity field of the flow in the transformed domain
is given by

vftrt(a, b) := U
(

5a4 − 30a2b2 + 5b4
−20a3b+ 20ab3

)
.

We are interested in the domain given by
{
a, b ∈ R3 : a > 0, b > 0 and b <

a
√

5−
√

20
}
. Here, the line given by b = a

√
5−
√

20 serves as replacement
for the cell.
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Part 3. Theoretical Analysis

The main goal of this chapter is to investigate the system (7) and prove
existence and uniqueness of a solution. Our problem can be classified as
one-dimensional boundary value problem and is analyzed by using results
and methods from functional analysis. More details to the theoretical back-
ground and methods used can be found, for example, in [1].

Since, apart from the speed of the blood flow U , which is contained in the
formular of v, none of the constants are important for the analysis of (7),
we reformulate the system using the notation

a := µ

(
x1 − x0
κ0

)4
, b := ζ

(
x1 − x0
κ0

)2
.

Here, it is important to note that bκ[u] is always positive. Furthermore, we
write p̃ = p̃(x, u(x), u′(x)) = v2(x, u(x))− v1(x, u(x))u′(x) for a polynomial
in x, u and u′. In our case, we have

p̃(x, u(x), u′(x)) = psqrt(x, u(x), u′(x)) = u(x) + xu′(x),(8)

if we consider our problem (7) with the velocity field of the blood flow given
by v = vsqrt and

p̃(x, u(x), u′(x)) = pftrt(x, u(x), u′(x))(9)
= 5x4u′(x) + 5u4(x)u′(x)− 30x2u2(x)u′(x) + 20x3u(x)− 20xu3(x),

if we use v = vftrt as velocity field. In order to be able to work with
homogeneous boundary conditions, we again use the fact that u = ū + w,
with w being the perturbation from the interpolation ū. Keeping in mind
that

u′(x) = ū′ + w′(x) = − u0
x1 − x0

+ w′(x)

and that
p(x,w(x), w′(x)) := p̃(x, ū(x) + w(x), ū′ + w′(x))

defines a polynomial in x, w and w′, we reformulate our problem further such
that now w is our unknown. Since u(x0) = ū(x0) = u0 and u(x1) = ū(x1) =
0 we get the desired homogeneous boundary conditions w(x0) = w(x1) = 0.
The formula for the curvature is then given by

κ[ū+ w] = c̃+ (x1 − x0)3

κ3
0

∫ x1

x0

1
2

( −u0
x1 − x0

+ w′
)2

dx.(10)

The problem we investigate now reads

− aw(4)(x) + bκ[ū+ w]w′′(x) = 2Uγ⊥ p(x,w(x), w′(x))
1 + (ū′ + w′(x))2 in (x0, x1),

w(x0) = w(x1) = 0,
w′′(x0) = w′′(x1) = 0,

and κ[ū+ w] = c̃+ (x1 − x0)3

κ3
0

∫ x1

x0

1
2

( −u0
x1 − x0

+ w′
)2

dx.

(11)
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In order to prove existence and uniqueness of (11), we will do a fixed-point
iteration. For given function wn, in each step the solution wn+1 of the system

− aw(4)
n+1(x) + bκ[ū+ wn]w′′n+1(x) = 2Uγ⊥ p(x,wn(x), w′n(x))

1 + (ū′ + w′n(x))2 in (x0, x1),

wn+1(x0) = wn+1(x1) = 0,
w′′n+1(x0) = w′′n+1(x1) = 0,

(12)

is calculated. The resulting sequence {wn}n≥1 is convergent and its limit
then is the solution of the original problem (11).
Therefore, the first aim is to prove existence and uniqueness of a solution
of the linear problem (12). This we will do by applying the Lax-Milgram
theorem. Afterward, convergence of the sequence is shown using Banach’s
fixed-point theorem. Both results are stated in [1].

1. Analysis of the Linear Problem

We will work on the space H2
∂ := {w ∈ H2(x0, x1) | w(x0) = w(x1) = 0}

equipped with the H2-norm.
We first formulate the linear problem (12) for a given continuously differen-
tiable function. Let w̃ ∈ H2

∂ , then of course the curvature κ := κ[ū + w̃] is
constant and we define

f(x) := 2γ⊥ p(x, w̃(x), w̃′(x))
1 + (ū′ + w̃′(x))2 , x ∈ [x0, x1].

Since w̃ is assumed to be in H2
∂ , we can use a Sobolev-embedding theorem

(in one dimension) and conclude w̃ ∈ C1[x0, x1]. More general information
to Sobolev inequalities can, again, be found in [1]. This implies that f
is continuous, hence bounded on [x0, x1] and therefore we get a function
in L2[x0, x1] on the right-hand-side. The problem to investigate in each
iteration step now reads

−aw(4) + bκw′′ = Uf in (x0, x1),
w(x0) = w(x1) = 0,

w′′(x0) = w′′(x1) = 0.
(13)

1.1. Existence of a weak solution. After multiplying the differential
equation in (13) with a testfunction ϕ ∈ H2

∂ and integrating by parts while
ignoring the resulting boundary terms, we end up with

a

∫ x1

x0
ϕ′′w′′ dx+ bκ+

∫ x1

x0
ϕ′w′ dx = −U

∫ x1

x0
ϕf dx.

Lets define the bilinear form

A : H2
∂ ×H2

∂ → R, A(ϕ,w) := a

∫ x1

x0
ϕ′′w′′ dx+ bκ

∫ x1

x0
ϕ′w′ dx,

and the linear functional

F : H2
∂ → R, F (ϕ) := −U

∫ x1

x0
ϕf dx.
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Since f ∈ L2(x0, x1), one can see easily by the Cauchy-Schwarz inequality
that

|F (ϕ)| ≤ |U|‖ϕf‖L1(x0,x1)

≤ |U|‖ϕ‖L2(x0,x1)‖f‖L2(x0,x1),

and therefore F is bounded and can be seen as an element of H2′
∂ , the dual

space of H2
∂ . The weak formulation of our problem is finding a solution

w ∈ H2
∂ , such that A(ϕ,w) = F (ϕ), ∀ϕ ∈ H2

∂ . To prove the existence and
uniqueness of such a weak solution, we will use the Lax-Milgram theorem.
Therefore, we fist have to show that A is a continuous and coercive bilinear
form.

1.1.1. Continuity. Let ϕ,w ∈ H2
∂ , then

|A(ϕ,w)| ≤ a‖ϕ′′w′′‖L1(x0,x1) + bκ‖ϕ′w′‖L1(x0,x1)

≤ a‖ϕ′′‖L2(x0,x1)‖w′′‖L2(x0,x1) + bκ‖ϕ′‖L2(x0,x1)‖w′‖L2(x0,x1)

≤ (a+ bκ)‖ϕ‖H2(x0,x1)‖w‖H2(x0,x1),

where in the second inequality we again used Cauchy-Schwarz and in the
last one, we simply used the definition of the H2-norm.

1.1.2. Coercivity. In order to show the coercivity of A, we use Poincarè’s
inequality. We will state a special version in one dimension concerning L2,
the general theorem can be found in [1].

Lemma 1 (Poincarè’s inequality). Let I be a bounded open interval, then
there exists some constant λp (depending on I), such that

‖w‖L2(I) ≤ λp‖w′‖L2(I), ∀w ∈ H1
0 (I).

Let w ∈ H2
∂ ⊂ H1

0 (x0, x1), then we can use the above lemma and the
following estimates

A(w,w) = a‖w′′‖2L2(x0,x1) + bκ‖w′‖2L2(x0,x1)

= a‖w′′‖2L2(x0,x1) + bκ

2 ‖w
′‖2L2(x0,x1) + bκ

2 ‖w
′‖2L2(x0,x1)

≥ a‖w′′‖2L2(x0,x1) + bκ

2 ‖w
′‖2L2(x0,x1) + 1

λp

bκ

2 ‖w‖
2
L2(x0,x1)

≥ min
{
a,
bκ

2 ,
bκ

2λp

}
‖w‖2H2(x0,x1)

give us the coercivity of A.

Now, we can apply the Lax-Milgram theorem, which gives us the existence
of a unique weak solution, i.e.

∃!w ∈ H2
∂(x0, x1) such that A(w,ϕ) = F (ϕ), ∀ϕ ∈ H2

∂(x0, x1).(14)
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1.2. Regularity. Up to this point, it is not clear whether the weak solution
w ∈ H2

∂ also solves the original problem (13).
From Lax-Milgram we get the estimate

‖w‖H2(x0,x1) ≤ k‖F‖H2′
∂

≤ k|U|‖f‖L2(x0,x1),(15)
with k being the inverse of the coercivity constant of A and hence we see
that w ∈ H2(x0, x1). Due to the fact that we are only in one dimension
and applying a Sobolev-embedding theorem assures us that w can be in-
terpreted as an element in C1[x0, x1], which we already used once above.
Therefore, we can now say that our solution w fulfills w ∈ C1[x0, x1] and
w(x0) = w(x1) = 0. But to solve (13) more smoothness is needed.
After integration by parts and only considering testfunctions ϕ ∈ C∞0 (x0, x1),
we get from (14) that

w(4) = 1
a

[bκw′′ − Uf ],(16)

in the sense of distributions. Since we have w ∈ H2(x0, x1) and assumed
f ∈ L2(x0, x1), we see from the above equation that w(4) ∈ L2(x0, x1). In
order to control w′′′, we use the following version of the Gagliardo-Nirenberg
interpolation inequality, which can be found in [5].

Theorem 2 (Gagliardo-Nirenberg interpolation inequality). Let Ω ∈ Rn
be a bounded Lipschitz domain, and u : Ω → R. Let 1 ≤ p, q, r ≤ ∞ and
m, j ∈ N be fixed. If

1
p

= j

n
+
(1
r
− m

n

)
α+ 1− α

q
,

j

m
≤ α ≤ 1

and u ∈ Lq(Ω), ∇mu ∈ Lr(Ω), then

∇ju ∈ Lp(Ω).
Furthermore, ∃C1, C2 such that the following inequality

‖∇ju‖Lp(Ω) ≤ C1‖∇mu‖αLr(Ω)‖u‖
1−α
Lq(Ω) + C2‖u‖Ls(Ω),

holds for s > 0 arbitrary. The constants are only depending on n, m, j, p,
q, r, α and s.

In our case we use that w,w(4) ∈ L2(x0, x1) to control w′′′. Regarding the
above theorem this means p = q = r = 2 and j = 3, m = 4, which gives us
α = 3

4 . The interpolation inequality

‖w′′′‖L2(x0,x1) ≤ C1‖w(4)‖
3
4
L2(x0,x1)‖w‖

1
4
L2(x0,x1) + C2‖w‖Ls(x0,x1),

for suitable constants C1, C2 and for s = 2 assures us
w′′′ ∈ L2(x0, x1).

Therefore, we can conclude
w ∈ H4(x0, x1).
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Again after applying Sobolev’s embedding theorem this yields w ∈ C3[x0, x1],
which is still not enough to solve (13). But since we now know that w′′ is
continuous (even in C1[x0, x1]), we get that both f and f ′ are also con-
tinuous, hence bounded on [x0, x1]. This implies that f and its derivate
are L2-functions, which gives us f ∈ H1(x0, x1). Having in mind that
w ∈ H4(x0, x1) we can conclude from (16) that w(4) ∈ H1(x0, x1) and
therefore Gagliardo-Nirenberg gives us w ∈ H5(x0, x1). With Sobolev’s
embedding theorem we have that w ∈ C4(x0, x1), which assures that the
solution is smooth enough to fulfill the differential equation in (13).

In order to be sure that our smooth w also is a solution of the whole
problem (13), we have to show that it actually solves the differential equation
and it also fulfills the freely rotating boundary conditions

w′′(x0) = w′′(x1) = 0.

For this, let us again consider the weak formulation of the problem:
A(ϕ,w)− F (ϕ) = 0
⇔

a

∫ x1

x0
ϕ′′w′′ dx+ bκ

∫ x1

x0
ϕ′w′ dx+ U

∫ x1

x0
ϕf dx = 0,

for some ϕ ∈ H2
∂ . Since we now know that w is smooth, we can integrate

by parts such that only w occurs with derivatives:

a

∫ x1

x0
ϕw(4) dx+ a (ϕ′w′′)

∣∣x1
x0
− a (ϕw′′′)

∣∣x1
x0

− bκ
∫ x1

x0
ϕw′′ dx+ bκ (ϕw′)

∣∣x1
x0

+ U
∫ x1

x0
ϕf dx = 0.

The testfunction ϕ ∈ H2
∂ vanishes at the boundary, which implies that the

third and the fifth term in the above equation are equal to zero. We get
that

a

∫ x1

x0
ϕw(4) dx+ a (ϕ′w′′)

∣∣x1
x0
− bκ

∫ x1

x0
ϕw′′ dx+ U

∫ x1

x0
ϕf dx = 0.(17)

Let us now only consider testfunctions whose derivatives have compact sup-
port, i.e. ϕ ∈ H2

∂ such that ϕ′(x0) = ϕ′(x1) = 0. Then also the last
boundary term vanishes and

a

∫ x1

x0
ϕw(4) dx− bκ

∫ x1

x0
ϕw′′ dx+ U

∫ x1

x0
ϕf dx = 0,

has to hold ∀ϕ ∈ {H2
∂ |ϕ′(x0) = ϕ′(x1) = 0}. From this we can conclude

that w fulfills the differential equation in (13) for x ∈ (x0, x1).
Again considering (17), we now know that

a (ϕ′w′′)
∣∣x1
x0

= 0.

Firstly, we restrict ourselves to ϕ ∈ H2
∂ with ϕ′(x0) = 1 and ϕ′(x1) = 0

and therfore conclude w′′(x0) = 0. Secondly, we only take ϕ ∈ H2
∂ with

ϕ′(x0) = 0 and ϕ′(x1) = 1 and get w′′(x1) = 0.
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With this, we finally proved that the weak solution w is also a classical
solution to the linear problem (13).

2. Convergence of the Fixed-Point Iteration

In this section, we will prove convergence of the fixed-point iteration given
by solving (12) in each step. We want to apply Banach’s fixed-point theorem
on the space

S :=
{
v ∈ H2

∂(x0, x1) | ‖v‖H2(x0,x1) ≤M
}
,

for some fixed constant M > 0 and on the, as we proved in the last section,
well defined mapping G given by

G : H2(x0, x1)→ H2(x0, x1), w̃
G7→ w by solving:

− aw(4) + (bκ[ū+ w̃] + c)w′′ = Uf [w̃] in (x0, x1),
w(x0) = w(x1) = 0,(18)
w′′(x0) = w′′(x1) = 0.

Again with the already familiar notation

f [w̃](x) = p(x, w̃, w̃′)
1 + (ū′ + w̃′)2 , x ∈ [x0, x1].

Here, the subscript at the right-hand-side emphasizes that it depends on the
input function w̃. We have to prove that G maps S into itself and that G
is a contraction on S. Now it is very important that we assumed our model
to be reasonable only with a suitable small blood flow speed U .

In order to see that G maps S into itself, we use the estimate (15) we
get from the Lax-Milgram theorem. Let again be w̃ ∈ S some input and
w := G(w̃). Then we have

‖w‖H2(x0,x1) ≤ k|U|‖f [w̃]‖L2(x0,x1)

= k|U|
(∫ x1

x0

p(x, w̃(x), w̃′(x))2

(1 + (ū′ + w̃′(x))2)2 dx

) 1
2

≤ k|U|
(∫ x1

x0
p(x, w̃(x), w̃′(x))2 dx

) 1
2

(19)

≤ k|U|
√
x1 − x0‖p(., w̃(.), w̃′(.))‖L∞(x0,x1).

Since w̃ ∈ C1(x0, x1) due to Sobolev’s embedding, we have that both w̃ and
w̃′ are bounded on [x0, x1] and therefore we can estimate p with a monotone
increasing function h of the L∞-norms of w̃ and w̃′. Afterward we can use
the Sobolev-embedding inequality to end up with the H2-norm of w̃.

‖w‖H2(x0,x1) ≤ |U|h(‖w̃‖L∞(x0,x1) + ‖w̃′‖L∞(x0,x1))
= |U|h(‖w̃‖C1([x0,x1]))
≤ |U|h(‖Cw̃‖H2(x0,x1))(20)
≤ |U|h(CM)
≤M
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for U suitable small and therefore, w also lies in S.

We now want to prove that G is a contraction. Let w̃1, w̃2 ∈ S, w1 :=
G(w̃1), w2 := G(w̃2) and u1 := ū+ w̃1, u2 := ū+ w̃2. We now consider the
problem (21) for both w̃1, w1 and w̃2, w2 and subtract the second differential
equation from the first one. By using the notation v := w1 − w2 and fj :=
f [w̃j ], j ∈ {1, 2}, we get

−av(4) + b(κ[u1]w′′1 − κ[u2]w′′2) = U(f1 − f2).

This is equivalent to

−av(4) + bκ[u1]v′′ = b(κ[u2]− κ[u1])w′′2 + U(f1 − f2).

In order to show that ‖v‖H2(x0,x1) ≤ q‖w̃1− w̃2‖H2(x0,x1) for some q ∈ (0, 1),
we again want use the Lax-Milgram theorem which gives us that ‖v‖H2(x0,x1)
is less or equal the the H2′

∂ -norm of the right-hand-side, which we therefore
have to estimate:

sup
ϕ∈H2

∂
, ‖ϕ‖H2=1

∣∣∣∣∫ x1

x0
[b(κ[u2]− κ[u1])w′′2ϕ+ U(f1 − f2)]ϕ dx

∣∣∣∣
≤ sup
ϕ∈H2

∂
, ‖ϕ‖H2=1

{
b|κ[u2]− κ[u1]|‖w′′2‖L2(x0,x1)‖ϕ‖L2(x0,x1)

+ |U|‖f1 − f2‖L2(x0,x1)‖ϕ‖L2(x0,x1)

}
≤ b |κ[u2]− κ[u1]|︸ ︷︷ ︸

(∗)

‖w′′2‖L2(x0,x1)︸ ︷︷ ︸
(∗∗)

+|U| ‖f1 − f2‖L2(x0,x1)︸ ︷︷ ︸
(∗∗∗)

From the first to the second line we used the Cauchy-Schwarz inequality.
Now we will estimate the terms (∗), (∗∗) and (∗ ∗ ∗) separately.

We will start with (∗) as follows:

(∗) = |κ[u2]− κ[u1]|

= 1
2

∣∣∣∣∫ x1

x0
(u′22 − u′21 ) dx

∣∣∣∣
≤ 1

2

∫ x1

x0
|w̃′2 − w̃′1| |2ū′ + w̃′2 + w̃′1| dx

≤ c1
2 ‖w̃

′
2 − w̃′1‖L1(x0,x1)

≤ c1
2
√
x1 − x0‖w̃′2 − w̃′1‖L2(x0,x1)

≤ c1
2
√
x1 − x0‖w̃2 − w̃1‖H2(x0,x1).

From the third to the fourth line we used that ū′ is constant and w̃′1 and w̃′2
are bounded and therefore |2ū′ + w̃′2 + w̃′1| ≤ c1, for some constant c1 > 0,
while from the fourth to the fifth line we used the Cauchy-Schwarz inequality.
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For (∗∗) we use again the estimate (15) we get from the Lax-Milgram
theorem.

(∗∗) = ‖w′′2‖L2(x0,x1) ≤ ‖w2‖H2(x0,x1) ≤ c|U|‖f2‖L2(x0,x1)

To estimate ‖f2‖L2(x0,x1) further, we proceed as in (19)-(20) and since we
assumed w̃2 ∈ S we get

(∗∗) = ‖w′′2‖L2(x0,x1) ≤ |U|c2M,

for some constant c2 > 0.

In the last step we have to estimate (∗∗∗). As in (19), we use the definition
of fj and the fact that denominator is greater than one. This yields

(∗ ∗ ∗) = ‖f1 − f2‖L2(x0,x1)

=
(∫ x1

x0
|f1(x, w̃1, w̃

′
1)− f2(x, w̃2, w̃

′
2)|2 dx

) 1
2

≤
(∫ x1

x0

∣∣∣p(x, w̃1, w̃
′
1)
(
1 + (ū′ + w̃′2)2)− p(x, w̃2, w̃

′
2)
(
1 + (ū′ + w̃′2)2)∣∣∣2 dx

) 1
2
.

Next we again use the boundedness of w̃′j , j ∈ {1, 2} and the local Lipschitz
continuity of the polynomial. Let therefore Lp be the Lipschitz constant of
p in [x0, x1] with respect to the second argument, then we get for a suitable
constant c3 > 0,

(∗ ∗ ∗) ≤ K
(∫ x1

x0
|p(x, w̃1, w̃

′
1)− p(x, w̃2, w̃

′
2)|2 dx

) 1
2

≤ c3Lp

(∫ x1

x0
|w̃1 − w̃2|2 dx

) 1
2

= c3Lp‖w̃1 − w̃2‖L2(x0,x1).

Finally, putting all this together gives us the desired estimate for the
right-hand-side of the equation by

‖w1 − w2‖H2(x0,x1) = ‖v‖H2(x0,x1)

≤ c4 sup
ϕ∈H2

∂
, ‖ϕ‖H2=1

∣∣∣∣∫ x1

x0
[b(κ[u2]− κ[u1])w′′2 + U(f1 − f2)]ϕ dx

∣∣∣∣
≤ c4

(
|U|bc1c2M

2
√
x1 − x0‖w̃2 − w̃1‖H2(x0,x1) + |U|c3Lp‖w̃1 − w̃2‖L2(x0,x1)

)
≤ c4

(
|U|bc1c2M

2
√
x1 − x0‖w̃2 − w̃1‖H2(x0,x1) + |U|c3Lp‖w̃1 − w̃2‖H2(x0,x1)

)
= |U|c4

(
bc1c2M

2
√
x1 − x0 + c3Lp

)
︸ ︷︷ ︸

=:q

‖w̃2 − w̃1‖H2(x0,x1).
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With |U| sufficiently small we achieve

q := |U|c4

(
bc1c2M

2
√
x1 − x0 + c3Lp

)
< 1,(21)

which assures that the mapping G is a contraction and therefore, we get
the convergence of our fixed-point iteration given by wn+1 := G(wn). We
generated a function w ∈ S, w = limn→∞wn, which solves the problem (11).
Therefore, ū+ w is the unique solution to our original problem (7).
Proceeding with the bootstrapping arguments in section 1.2, we end up with
a solution w ∈ C∞[x0, x1].

Theorem 3 (Existence and uniqueness of a solution). Let q be defined as
in (21) and U < 0 chosen such that q < 1.
Then there exists a unique classical solution w ∈ C∞[x0, x1] to the problem
(11).
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Part 4. Numerical Simulations

In this last chapter, we present some numerical simulations of our sim-
plified quasi-stationary model (7). Therefore, we use the methods and re-
sults form the previous chapter. This means that we produce a fixed-point
sequence by solving the linear problem (13) with constant curvature and
independent right-hand-side in each iteration step. From the solution we
calculate the curvature and the nonlinearity which serves as input for the
next step.
The implementations are written in MatLab and the code can be found in
the appendix.

1. The Algorithm

Following the procedure of the last chapter, the algorithm works as fol-
lows:

Algorithm 1 Fixed-point iteration
• STEP1: Choose appropriate values for the constants µ, ζ, γ⊥ and
U of the differential equation in (7), for the endpoints x0, x1 of the
interval as well as for the boundary value u0.
• STEP2: Choose starting values κ0 for the curvature and nonlin0 for
the nonlinearity on the right-hand-side of the differential equation.
Fix ε > 0.
• STEP3: Determine w1 as solution to the linear problem with ho-
mogeneous boundary conditions, (13), for the chosen values κ0 and
f = nonlin0

2γ⊥ .
Calculate κ1, using (10) and nonlin1, using (8) resp. (9).
• STEP4: Determine w2 as solution to (13), for the values κ1 and
f = nonlin1

2γ⊥ .
Calculate κ2, using (10) and nonlin2, using (8) resp. (9).
Set n = 2.
• STEP5: If ‖wn−1 − wn‖ ≤ ε then stop. (a-posteriori error esti-
mate)
Calculate the solution u(x) = wn(x) + u0

x1−x0
(x1−x) for x ∈ [x0, x1].

• STEP6: Determine wn+1 as solution to (13), for the values κn and
f = nonlinn

2γ⊥ .
Calculate κn+1, using (10) and nonlinn+1, using (8) resp. (9).
Set n = n+ 1.
Got to STEP5.

The files run_fpsqrt.m and run_fbftrt.m contain the implementations
of this algorithm, depending on whether one uses vsqrt or vftrt as velocity
field of the blood flow.

2. Methods

In this section we shortly discuss the method used to solve the linear
problem (13) in each iteration step. Theoretical background can be found,
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for example in [2].

The equation in (13) is a linear fourth order ordinary differential equa-
tion. The aim is to replace the ODE by a set of algebraic equations, which
can be solved by inverting a sparse matrix. Therefore we will perform finite
difference approximations of the occurring derivatives. This means that af-
ter choosing suitable grid points of the domain, the derivatives are replaced
by relationships between the function values at the the nodal points corre-
sponding to the chosen grid.
Since our domain is one-dimensional, the grid simply is given by a subdi-
vision of the interval [x0, x1]. We will choose an equidistant subdivision
x0 = x0 < x1 < · · · < xN = x1 for N ∈ N, with distance ∆x := xi − xi−1.
By wi := w(xi), 0 ≤ i ≤ N , we denote the nodal points of the solution w.
Note that our boundary conditions give us w0 = wN = 0. Using Taylor
expansion, we get

wi+1 = wi + ∆xw′(xi) +O(∆x2),

and after reformulation

w′(xi) = wi+1 − wi

∆x +O(∆x).

This yields the forward difference approximation for the first derivative

w′(xi) ∼ wi+1 − wi

∆x .(22)

The remainder term, which is of order ∆x, is called the local truncation
error and will tend to zero as N is chosen bigger.
Using the above approximation (22) consecutively, we get for the derivatives
up to order four

w′′(xi) ∼ wi+1 − 2wi + wi−1

∆x2 ,(23)

w′′′(xi) ∼ wi+2 − 3wi+1 + 3wi − wi−1

∆x3 ,(24)

w(4)(xi) ∼ wi+2 − 4wi+1 + 6wi − 4wi−1 + wi−2

∆x4 ,(25)

for i ∈ {2, . . . , N − 1}.
Inserting this in the differential equation in (13) gives us the desired alge-
braic equations for the nodal points wi. Since the derivatives occur linear,
the left-hand-side can be expressed in terms of matrices. Lets denote the
solution vector by W := (w0, . . . , wN ) and the solution vector without the
first and the last component by W̃ := (w1, . . . , wN−1). After embedding the
information from the values of the second derivative at the boundary points,
the left-hand-side reads

− a

∆x4AW̃ + (bκ+ c)
∆x2 BW̃ ,
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with

A =



5 −4 1 0 . . . 0
−4 6 −4 1 0 . . . 0
1 −4 6 −4 1 0 . . . 0
... . . . ...
0 . . . 0 1 −4 6 −4 1
0 . . . 0 1 −4 6 −4
0 . . . 0 1 −4 5


∈ RN−1×N−1,

and

B =


−2 1 0 . . . 0
1 −2 1 0 . . . 0
... . . . ...
0 . . . 0 1 −2 1
0 . . . 0 1 −2

 ∈ RN−1×N−1.

Keeping in mind that we have homogeneous boundary conditions, the linear
system approximating the differential equation is given by

− a

∆x4AW̃ + (bκ+ c)
∆x2 BW̃ = UF,(26)

where we denote by

F :=

 f(x1)
...

f(xN−1)

 ∈ RN−1

the vector of the given right-hand-side at the nodal points.
W̃ and hence the solution W can be determined explicitly by inverting the
nonsingular matrix

− a

∆x4A+ (bκ+ c)
∆x2 B.

The file solvelin.m in the appendix contains the implementation of the
above described finite difference method to solve (13) numerically.

3. Simulation Results

In this last section results and outcomes of simulations under some sce-
narios are shown. The aim was to investigate how the choice of the different
parameters, especially the speed of the blood flow U , influence the conver-
gence behavior of the fixed-point iteration and the deflection of the solution
u from the interpolation ū. Here we have to mention that the values chosen
for the constants should only be seen relatively to each other and do not
originate from experiments. Furthermore, the difference between the two
velocity fields of the blood flow, vsqrt and vftrt was examined.
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Four graphics are produced by the simulations. The most important pic-
ture shows the tether, the interpolation and the velocity field of the blood
flow combined in one plot. Moreover, also a plot of the H2-norm of the ele-
ments of the fixed-point sequence with respect to the steps is generated and
the arc-length respectively L2-norm of the nonlinearity are plotted against
the steps.

For the presented results, we chose the following values for the parameters:

constant value
µ 0.1
ζ 1
γ⊥ 7
N 1000
ε 10−4

As starting value for the curvature the length of the interpolation, κ0 =√
5, and for the nonlinearity the vector nonlin0 = (1, . . . , 1) ∈ RN was cho-

sen.

Simulations using the velocity field vsqrt: We set x0 = 0, x1 = 1
and u0 = 2 and compare the cases U = −0.9 and U = −2.5. The corre-
sponding plots can be found in 9-12.
The first thing to say is that in case of a higher speed U more iteration
steps are needed. It takes 8 iterations to fulfill the stopping criterion in the
case U = −0.9 and 21 for U = −2.5. This of course coincides with our
analytical results, since a higher speed causes a bigger contraction constant
and therefore slower convergence. At some critical value of U , which we
did not compute explicitly, the convergence of the fixed-point iteration can
no longer be provided. In this scenario, it can be assumed that the critical
value is about U = −5.66. For U = −5.6 it takes 49 and for U = −5.65 235
steps until the stopping criterion is achieved. For values beyond -5.65 we
stopped the algorithm after 6000 iterations.
As expected, we can also observe that the higher U gets the more the tether
bends under the force of the blood flow. In 9 one can see that in the first
case 9(a) the tether does not move far away from the interpolation line,
while in the second case 9(b) displacement can be noticed clearly.



28

(a) Speed of the blood flow U = −0.9

(b) Speed of the blood flow U = −2.5

Figure 9. Tether under blood flow for v = vsqrt

(a) Speed of the blood flow U = −0.9 (b) Speed of the blood flow U = −2.5

Figure 10. H2-norm of the fixed-point sequence
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(a) Speed of the blood flow U = −0.9 (b) Speed of the blood flow U = −2.5

Figure 11. L2-norm of the nonlinearity

(a) Speed of the blood flow U = −0.9 (b) Speed of the blood flow U = −2.5

Figure 12. Arc-length

Simulations using the velocity field vftrt: We set x0 = 0.3, x1 = 1
and u0 = x0

√
5−
√

20 and compare the cases U = −0.3 and U = −0.9. The
corresponding plots can be found in 13-16.
Again, we can observe a little increase of the iterations as the speed U is
chosen higher. For U = −0.3 10 steps are needed while for U = −0.9 the
stopping criterion is fulfilled after 14 steps. After some numerical tests, it
may be assumed that the critical value for convergence lies about U = −1.6,
which is a lot lower than in the case where we used vsqrt. But for bio-
logically meaningful simulations, only U > −1 should be considered, since
otherwise there occur function values of the solution which lie above the
line

{
(x, y) ∈ [0,∞)× [0,∞) : y = x

√
5−
√

20
}

and therefore, the tether

leaves the relevant area. Biologically, this means that the displacement of
the tether from the interpolation line is that strong that it would be pressed
against the neutrophil. An example of such a case can be seen in 17 where
we chose U = −1.3 and the stopping criterion was achieved after 21 steps.

If we compare the results where we used vsqrt to the ones with vftrt, we
see that the generated sequence converges faster in the first case, where the
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polynomial contained in the nonlinearity is of less degree. For U = −0.9
14 steps are needed to fulfill the stopping criterion with the right-hand-side
containing vftrt, while in the case with vsqrt only 8 steps were sufficient. The
difference of the needed iterations increases as the speed of the blood flow
does.

(a) Speed of the blood flow U = −0.3

(b) Speed of the blood flow U = −0.9

Figure 13. Tether under blood flow for v = vftrt
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(a) Speed of the blood flow U = −0.3 (b) Speed of the blood flow U = −0.9

Figure 14. H2-norm of the fixed-point sequence

(a) Speed of the blood flow U = −0.3 (b) Speed of the blood flow U = −0.9

Figure 15. L2-norm of the nonlinearity

(a) Speed of the blood flow U = −0.3 (b) Speed of the blood flow U = −0.9

Figure 16. Arc-length
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Figure 17. Tether exceeds relevant area for U = −1.3
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Part 5. Outlook

The results in this work can be seen as first attempt to model a tether
under the forces it has to bear from the blood flow and internal tension. Of
course this is expandable, the model could be improved and further phe-
nomena could be included.
The first thing to mention is that both the analysis and the numerical sim-
ulations of the time dependent problem should also be considered. As a
possible next step, one could try to do the computations with a more re-
alistic flow profile of the blood stream near the neutrophil. Since also the
streamlines on the left and right of the cell contribute in the behavior of the
tether, a corresponding model in 3 dimensions should be developed in order
to get more realistic results.
Another interesting phenomenon is the occurrence of tether-breaking. The
questions about when this happens, how the tether behaves after getting
loose and under which circumstances a tether-to-sling transition is possible
could be investigated mathematically by the developing the above model
further.
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Appendix A. Matlab Code

Solving the Linear Problem
1 f u n c t i o n [ w, dw, ddw , VX, de l ta , kappa0 ] = s o l v e l i n ( m, g , s ,U, x0 , x1 , u0 ,N,

kappa , n o n l i n )
2
3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
4 % S o l v e s the l i n e a r boundary value problem : %
5 % %
6 % −a∗w^ ( 4 ) +(b∗kappa+c ) ∗w^ ( 2 )=U∗2∗ g∗ nonl in , %
7 % w( x0 )=w( x1 ) =0, %
8 % w^ ( 2 ) ( x0 )=w^ ( 2 ) ( x1 ) =0, %
9 % %

10 % with f i n i t e d i f f e r e n c e method . %
11 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
12
13 VX=l i n s p a c e ( x0 , x1 ,N+1) ; %s u b d i v i s i o n o f the i n t e r v a l
14 d e l t a=VX( 2 )−VX( 1 ) ; %l e n g t h o f s u b d i v i s i o n −i n t e r v a l s
15 kappa0=s q r t ( ( x1−x0 )^2+u0 ^2) ; %i n t e r p o l a t i o n a r c l e n g t h
16 w=z e r o s (N+1 ,1) ; %i n i t i a l i z a t i o n o f s o l u t i o n v e c t o r
17 A=s p a r s e (N−1,N−1) ; %i n i t i a l i z a t i o n o f matrix
18 B=s p a r s e (N−1,N−1) ; %i n i t i a l i z a t i o n o f matrix
19 dw=z e r o s (N, 1 ) ; %i n i t i a l i z a t i o n o f the d e r i v a t i v e o f the s o l u t i o n
20 ddw=z e r o s (N, 1 ) ; %i n i t i a l i z a t i o n o f the second d e r i v a t i v e o f the s o l u t i o n
21
22 %d e f i n i t i o n o f the c o n s t a n t s
23 a=m∗ ( ( x1−x0 ) /kappa0 ) ^ 4 ;
24 b=s ∗ ( ( x1−x0 ) /kappa0 ) ^ 2 ;
25
26 %d e f i n i t i o n o f the l e f t −hand−s i d e
27 f o r i =1:N−1
28 B( i , i )=−2;
29 end
30
31 A( 1 , 1 ) =5;
32 A(N−1,N−1)=5;
33
34 f o r i =2:N−2
35 A( i , i ) =6;
36 end
37
38 f o r i =1:N−2
39 B( i , i +1)=1;
40 B( i +1, i ) =1;
41 A( i , i +1)=−4;
42 A( i +1, i )=−4;
43 end
44
45 f o r i =1:N−3
46 A( i , i +2)=1;
47 A( i +2, i ) =1;
48 end
49
50 M=−a ∗(1/ d e l t a ^4) ∗A+b∗kappa ∗(1/ d e l t a ^2) ∗B;
51
52 %d e f i n i t i o n o f the r i g h t −hand−s i d e ( keeping in mind that we have
53 %homogeneous boundary c o n d i t i o n s )
54 rhs=2∗g∗U∗ n o n l i n ( 1 :N−1) ;
55
56 %s o l v i n g the system M∗w( 2 :N)=rhs
57 w( 2 :N)=M\ rhs ;
58
59 %computing the d e r i v a t i v e , dw
60 f o r i =1:N
61 dw( i )=(w( i +1)−w( i ) ) / d e l t a ;
62 end
63
64 %computing the second d e r i v a t i v e , ddw
65 ddw( 1 ) =0;
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66 f o r i =2:N
67 ddw( i )=(w( i +1)−2∗w( i )+w( i −1) ) / d e l t a ^ 2 ;
68 end
69
70 end
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Fixed-Point Iteration for nonlinsqrt

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 % Executes a f i x e d −point i t e r a t i o n by s o l v i n g the l i n e a r boundary value %
3 % problem : %
4 % %
5 % −a∗w^ ( 4 ) +(b∗kappa+c ) ∗w^ ( 2 )=U∗2∗ g∗ nonl in_sqrt , %
6 % w( x0 )=w( x1 ) =0, %
7 % w^ ( 2 ) ( x0 )=w^ ( 2 ) ( x1 ) =0, %
8 % %
9 % with s o l v e l i n .m in each step f o r g iven and f i x e d a , b , c , g ( c a l c u l a t e d %

10 % from the c o n s t a n t s ) and input kappa and nonl in_sqrt . %
11 % %
12 % P l o t s the 2−norm o f the s o l u t i o n s o f s o l v e l i n .m, kappa and the 2−norm %
13 % o f nonl in_sqrt with r e s p e c t to the s t e p s . %
14 % P l o t s the i n t e r p o l a t i o n bu and the s o l u t i o n u=bu+w t o g e t h e r with the %
15 % v e l o c i t y f i e l d o f the bloodf low , g iven by v=2∗U∗( a,−b ) . %
16 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
17
18 %% Constants
19
20 m=0.1; %e l a s t i c i t y c o e f f i c i e n t in t r a n s v e r s e d i r e c t i o n
21 s =1; %p r o p o r t i o n a l i t y constant o f e l o n g a t i o n
22 g=7; %f r i c t i o n c o e f f i c i e n t
23 U=−2.5; %v e l o c i t i y o f the b loodf low
24 x0=0; %l e f t boundary
25 x1=1; %r i g h t boundary
26 u0=2; %endpoint on g r a n u l o c y t e
27 N=1000; %number o f s u b d i v i s i o n p o i n t s o f the i n t e r v a l
28
29
30 %% F i r s t two i t e r a t i o n s t e p s
31
32 kappa=s q r t ( 5 ) ; %s t a r t i n g v a l u e o f the curvature
33 n o n l i n=z e r o s (N, 1 ) ; %s t a r t i n g v e c t o r o f the n o n l i n i a r i t y
34
35 %%Step 1
36 %s o l v e
37 [w, dw, ddw , x , de l ta , kappa0]= s o l v e l i n ( m, g , s ,U, x0 , x1 , u0 ,N, kappa , n o n l i n ) ;
38
39 %d e f i n e bu ( i n t e r p o l a t i o n )
40 bu=z e r o s (N+1 ,1) ;
41 f o r i =1:N+1
42 bu ( i )=(u0 ∗( x1−x ( i ) ) ) /( x1−x0 ) ;
43 end
44 dbu=−u0 /( x1−x0 ) ; %d e r i v a t i v e o f bu , constant
45
46 solut ionnorm=s q r t ( d e l t a ) ∗ s q r t ( norm (w)^2+norm (dw)^2+norm (ddw) ^2) ; %v e c t o r

s t o r i n g the approximation o f the H2−norm o f the s o l u t i o n in each
i t e r a t i o n step

47 a r c l e n g t h=kappa ; %v e c t o r s t o r i n g the a r c l e n g t h o f the s o l u t i o n in each
i t e r a t i o n step

48 rhs=s q r t ( d e l t a ) ∗norm ( n o n l i n ) ; %v e c t o r s t o r i n g the approximation o f the L2−
norm o f the n o n l i n e a r i t y in each i t e r a t i o n step

49
50 %c a l c u l a t i n g ( approximating ) the curvature −i n t e g r a l f o r the next step
51 sum=0;
52 f o r i =1:N
53 sum=sum+(dbu+dw( i ) ) ^ 2 ;
54 end
55 kappa=((u0^4+(x1−x0 ) ^4+(3/2) ∗u0 ^2∗( x1−x0 ) ^2) /kappa0 ) +((x1−x0 ) ^3/(2∗ kappa0

^3) ) ∗ d e l t a ∗sum ;
56
57 %c a l c u l a t i n g the n o n l i n e a r i t y f o r the next step
58 f o r i =1:N
59 n o n l i n ( i )=(bu ( i )+w( i )+x ( i ) ∗dbu+x ( i ) ∗dw( i ) ) /(1+(dbu+dw( i ) ) ^2) ;
60 end
61
62 %%Step 2
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63 solut ionnorm =[ solutionnorm , s q r t ( d e l t a ) ∗ s q r t ( norm (w)^2+norm (dw)^2+norm (ddw)
^2) ] ;

64 a r c l e n g t h =[ arc length , kappa ] ;
65 rhs =[ rhs , s q r t ( d e l t a ) ∗norm ( n o n l i n ) ] ;
66 wold=w;
67 dwold=dw ;
68 ddwold=ddw ;
69 %s o l v e
70 [w, dw, ddw , x , de l ta , kappa0]= s o l v e l i n ( m, g , s ,U, x0 , x1 , u0 ,N, kappa , n o n l i n ) ;
71
72 %c a l c u l a t i n g ( approximating ) the curvature −i n t e g r a l f o r the next step
73 sum=0;
74 f o r i =1:N
75 sum=sum+(dbu+dw( i ) ) ^ 2 ;
76 end
77 kappa=((u0^4+(x1−x0 ) ^4+(3/2) ∗u0 ^2∗( x1−x0 ) ^2) /kappa0 ) +((x1−x0 ) ^3/(2∗ kappa0

^3) ) ∗ d e l t a ∗sum ;
78
79 %c a l c u l a t i n g the n o n l i n e a r i t y f o r the next step
80 f o r i =1:N
81 n o n l i n ( i )=(bu ( i )+w( i )+x ( i ) ∗dbu+x ( i ) ∗dw( i ) ) /(1+(dbu+dw( i ) ) ^2) ;
82 end
83
84 %% Loop over kappa and n o n l i n ( f i x e d p o i n t i t e r a t i o n )
85 s t e p s =2;
86 whi le ( s q r t ( d e l t a ) ∗ s q r t ( norm (w( 1 :N)−wold ( 1 :N) )^2+norm (dw−dwold )^2+norm (ddw−

ddwold ) ^2) >0.0001 && steps <6000)
87
88 s t e p s=s t e p s +1;
89 so lut ionnorm =[ solutionnorm , s q r t ( d e l t a ) ∗ s q r t ( norm (w)^2+norm (dw)^2+norm (

ddw) ^2) ] ;
90 a r c l e n g t h =[ arc length , kappa ] ;
91 rhs =[ rhs , s q r t ( d e l t a ) ∗norm ( n o n l i n ) ] ;
92 wold=w;
93 dwold=dw ;
94 ddwold=ddw ;
95
96 %s o l v e
97 [w, dw, ddw , x , de l ta , kappa0]= s o l v e l i n (m, g , s ,U, x0 , x1 , u0 ,N, kappa , n o n l i n ) ;
98
99 %c a l c u l a t i n g the curvature f o r the next step

100 sum=0;
101 f o r i =1:N
102 sum=sum+(dbu+dw( i ) ) ^ 2 ;
103 end
104
105 kappa=((u0^4+(x1−x0 ) ^4+(3/2) ∗u0 ^2∗( x1−x0 ) ^2) /kappa0 ) +((x1−x0 ) ^3/(2∗

kappa0 ^3) ) ∗ d e l t a ∗sum ;
106
107 %c a l c u l a t i n g the n o n l i n e a r i t y f o r the next s tep
108 f o r i =1:N
109 n o n l i n ( i )=(bu ( i )+w( i )+x ( i ) ∗dbu+x ( i ) ∗dw( i ) ) /(1+(dbu+dw( i ) ) ^2) ;
110 end
111
112 end
113
114 u=bu+w; %o r i g i n a l s o l u t i o n u i s the i n t e r p o l a t i o n bu + the p e r t u r b a t i o n w
115
116 s t =[ ’ Steps : ’ , num2str ( s t e p s ) ] ;
117 d i sp ( s t ) ;
118
119 % %% P l o t s
120
121 %p l o t s the 2−norm o f the s o l u t i o n in each step
122 f i g u r e
123 p l o t ( 1 : 1 : s teps , so lut ionnorm ) ;
124 a x i s ( [ 1 s t e p s 0 1 0 ] ) ;
125 x l a b e l ( ’ Steps ’ ) ;
126 y l a b e l ( ’H2−Norm o f the Fixed−point Sequence ’ ) ;
127
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128 %p l o t s the a r c l e n g t h in each step
129 f i g u r e
130 p l o t ( 1 : 1 : s teps , a r c l e n g t h ) ;
131 a x i s ( [ 1 s t e p s 0 1 0 ] ) ;
132 x l a b e l ( ’ Steps ’ ) ;
133 y l a b e l ( ’ Arc−l e n g t h ’ ) ;
134
135 %p l o t s the 2−norm o f the n o n l i n e a r i t y in each step
136 f i g u r e
137 p l o t ( 1 : 1 : l e n g t h ( rhs ) , rhs ) ;
138 a x i s ( [ 1 s t e p s 0 max( rhs ) ] ) ;
139 x l a b e l ( ’ Steps ’ ) ;
140 y l a b e l ( ’ L2−Norm o f the N o n l i n e a r i t y ’ ) ;
141
142 %p l o t s the t e t h e r ( u ) , the i n t e r p o l a t i o n ( bu ) and the v e l o c i t y f i e l d o f the
143 %bloodf low
144 f i g u r e
145 p l o t ( x , u , ’ b ’ ) ;
146 [ a , b]= meshgrid ( 0 : 0 . 1 : x1 , min ( u ) : 0 . 1 : max( u ) ) ;
147
148 hold on ;
149 p l o t ( x , bu , ’ k ’ ) ;
150 q u i v e r ( a , b , 2 ∗U∗a ,−2∗U∗b , ’ r ’ ) ;
151 a x i s ( [ 0 x1 min ( u ) max( u ) ] ) ;
152 hold o f f ;
153 legend ( ’ t e t h e r ’ , ’ i n t e r p o l a t i o n ’ , ’ blood f low ’ ) ;
154 t i t l e ( ’ Tether under blood f low ’ ) ;
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Fixed-Point Iteration for nonlinftrt

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 % Executes a f i x e d −point i t e r a t i o n by s o l v i n g the l i n e a r boundary value %
3 % problem : %
4 % %
5 % −a∗w^ ( 4 ) +(b∗kappa+c ) ∗w^ ( 2 )=U∗2∗ g∗ n o n l i n _ f t r t , %
6 % w( x0 )=w( x1 ) =0, %
7 % w^ ( 2 ) ( x0 )=w^ ( 2 ) ( x1 ) =0, %
8 % %
9 % with s o l v e l i n .m in each step f o r g iven and f i x e d a , b , c , g ( c a l c u l a t e d %

10 % from the c o n s t a n t s ) and input kappa and n o n l i n _ f t r t . %
11 % %
12 % P l o t s the 2−norm o f the s o l u t i o n s o f s o l v e l i n .m, kappa and the 2−norm %
13 % o f n o n l i n _ f t r t with r e s p e c t to the s t e p s . %
14 % P l o t s the i n t e r p o l a t i o n bu and the s o l u t i o n u=bu+w t o g e t h e r with the %
15 % v e l o c i t y f i e l d o f the bloodf low , g iven by %
16 % v=2∗U∗(5∗ a^4−30∗a ^2∗b^2+5∗b^4 , −20∗a ^3∗b+20∗a∗b ^3) . %
17 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
18
19 %% Constants
20
21 m=0.1; %e l a s t i c i t y c o e f f i c i e n t in t r a n s v e r s e d i r e c t i o n
22 s =1; %p r o p o r t i o n a l i t y constant o f e l o n g a t i o n
23 g=7; %f r i c t i o n c o e f f i c i e n t
24 U=−0.9; %v e l o c i t i y o f the b loodf low
25 x0 =0.3; %l e f t boundary
26 x1=1; %r i g h t boundary
27 u0=x0∗ s q r t (5− s q r t ( 20 ) ) ; %endpoint on g r a n u l o c y t e
28 N=1000; %number o f s u b d i v i s i o n p o i n t s o f the i n t e r v a l
29
30 %% F i r s t two i t e r a t i o n s t e p s
31
32 kappa=s q r t ( 5 ) ; %s t a r t i n g v a l u e o f the curvature
33 n o n l i n=ones (N, 1 ) ; %s t a r t i n g v e c t o r o f the n o n l i n i a r i t y
34
35
36 %step1
37 %s o l v e
38 [w, dw, ddw , x , de l ta , kappa0]= s o l v e l i n ( m, g , s ,U, x0 , x1 , u0 ,N, kappa , n o n l i n ) ;
39
40 %d e f i n e bu ( i n t e r p o l a t i o n )
41 bu=z e r o s (N+1 ,1) ;
42 f o r i =1:N+1
43 bu ( i )=(u0 ∗( x1−x ( i ) ) ) /( x1−x0 ) ;
44 end
45 dbu=−u0 /( x1−x0 ) ; %d e r i v a t i v e o f bu , constant
46
47 solut ionnorm=s q r t ( d e l t a ) ∗ s q r t ( norm (w)^2+norm (dw)^2+norm (ddw) ^2) ; %v e c t o r

s t o r i n g the approximation o f the H2−norm o f the s o l u t i o n in each
i t e r a t i o n step

48 a r c l e n g t h=kappa ; %v e c t o r s t o r i n g the a r c l e n g t h o f the s o l u t i o n in each
i t e r a t i o n step

49 rhs=s q r t ( d e l t a ) ∗norm ( n o n l i n ) ; %v e c t o r s t o r i n g the approximation o f the L2−
norm o f the n o n l i n e a r i t y in each i t e r a t i o n step

50
51 %c a l c u l a t i n g ( approximating ) the curvature −i n t e g r a l f o r the next step
52 sum=0;
53 f o r i =1:N
54 sum=sum+(dbu+dw( i ) ) ^ 2 ;
55 end
56 kappa=((u0^4+(x1−x0 ) ^4+(3/2) ∗u0 ^2∗( x1−x0 ) ^2) /kappa0 ) +((x1−x0 ) ^3/(2∗ kappa0

^3) ) ∗ d e l t a ∗sum ;
57
58
59 %c a l c u l a t i n g the n o n l i n e a r i t y f o r the next step
60 n o n l i n=z e r o s (N−1 ,1) ;
61 f o r i =1:N
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62 n o n l i n ( i ) =(5∗x ( i ) ^4∗( dbu+dw( i ) ) +5∗(bu ( i )+w( i ) ) ^4∗( dbu+dw( i ) ) −30∗x ( i )
^2∗( bu ( i )+w( i ) ) ^2∗( dbu+dw( i ) ) +20∗x ( i ) ^3∗( bu ( i )+w( i ) ) −20∗x ( i ) ∗( bu ( i )+w( i
) ) ^3) /(1+(dbu+dw( i ) ) ^2) ;

63 end
64
65 %Step 2
66 solut ionnorm =[ solutionnorm , s q r t ( d e l t a ) ∗ s q r t ( norm (w)^2+norm (dw)^2+norm (ddw)

^2) ] ;
67 a r c l e n g t h =[ arc length , kappa ] ;
68 rhs =[ rhs , s q r t ( d e l t a ) ∗norm ( n o n l i n ) ] ;
69 wold=w;
70 dwold=dw ;
71 ddwold=ddw ;
72
73 %s o l v e
74 [w, dw, ddw , x , de l ta , kappa0]= s o l v e l i n ( m, g , s ,U, x0 , x1 , u0 ,N, kappa , n o n l i n ) ;
75
76 %c a l c u l a t i n g ( approximating ) the curvature −i n t e g r a l f o r the next step
77 sum=0;
78 f o r i =1:N
79 sum=sum+(dbu+dw( i ) ) ^ 2 ;
80 end
81 kappa=((u0^4+(x1−x0 ) ^4+(3/2) ∗u0 ^2∗( x1−x0 ) ^2) /kappa0 ) +((x1−x0 ) ^3/(2∗ kappa0

^3) ) ∗ d e l t a ∗sum ;
82
83
84 %c a l c u l a t i n g the n o n l i n e a r i t y f o r the next step
85 n o n l i n=z e r o s (N−1 ,1) ;
86 f o r i =1:N
87 n o n l i n ( i ) =(5∗x ( i ) ^4∗( dbu+dw( i ) ) +5∗(bu ( i )+w( i ) ) ^4∗( dbu+dw( i ) ) −30∗x ( i )

^2∗( bu ( i )+w( i ) ) ^2∗( dbu+dw( i ) ) +20∗x ( i ) ^3∗( bu ( i )+w( i ) ) −20∗x ( i ) ∗( bu ( i )+w( i
) ) ^3) /(1+(dbu+dw( i ) ) ^2) ;

88 end
89
90 %% Loop over kappa and n o n l i n ( f i x e d −point i t e r a t i o n )
91 s t e p s =2;
92 whi le ( s q r t ( d e l t a ) ∗ s q r t ( norm (w( 1 :N)−wold ( 1 :N) )^2+norm (dw−dwold )^2+norm (ddw−

ddwold ) ^2) >0.0001 && steps <6000)
93
94 s t e p s=s t e p s +1;
95 so lut ionnorm =[ solutionnorm , s q r t ( d e l t a ) ∗ s q r t ( norm (w)^2+norm (dw)^2+norm (

ddw) ^2) ] ;
96 a r c l e n g t h =[ arc length , kappa ] ;
97 rhs =[ rhs , s q r t ( d e l t a ) ∗norm ( n o n l i n ) ] ;
98 wold=w;
99 dwold=dw ;

100 ddwold=ddw ;
101
102 %s o l v e
103 [w, dw, ddw , x , de l ta , kappa0]= s o l v e l i n ( m, g , s ,U, x0 , x1 , u0 ,N, kappa , n o n l i n ) ;
104
105 %c a l c u l a t i n g ( approximating ) the curvature −i n t e g r a l f o r the next step
106 sum=0;
107 f o r i =1:N
108 sum=sum+(dbu+dw( i ) ) ^ 2 ;
109 end
110 kappa=((u0^4+(x1−x0 ) ^4+(3/2) ∗u0 ^2∗( x1−x0 ) ^2) /kappa0 ) +((x1−x0 ) ^3/(2∗

kappa0 ^3) ) ∗ d e l t a ∗sum ;
111
112
113 %c a l c u l a t i n g the n o n l i n e a r i t y f o r the next step
114 n o n l i n=z e r o s (N−1 ,1) ;
115 f o r i =1:N
116 n o n l i n ( i ) =(5∗x ( i ) ^4∗( dbu+dw( i ) ) +5∗(bu ( i )+w( i ) ) ^4∗( dbu+dw( i ) ) −30∗x ( i )

^2∗( bu ( i )+w( i ) ) ^2∗( dbu+dw( i ) ) +20∗x ( i ) ^3∗( bu ( i )+w( i ) ) −20∗x ( i ) ∗( bu ( i )+w( i
) ) ^3) /(1+(dbu+dw( i ) ) ^2) ;

117 end
118
119 end
120
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121 u=bu+w; %o r i g i n a l s o l u t i o n u i s the i n t e r p o l a t i o n bu + the p e r t u r b a t i o n w
122
123 s t =[ ’ Steps : ’ , num2str ( s t e p s ) ] ;
124 d i sp ( s t ) ;
125
126 %% P l o t s
127
128 %p l o t s the H2−norm o f the s o l u t i o n in each step
129 p l o t ( 0 : 1 : s teps −1, so lut ionnorm ) ;
130 a x i s ( [ 0 s t e p s 0 1 0 ] ) ;
131 x l a b e l ( ’ Steps ’ ) ;
132 y l a b e l ( ’H2−Norm o f the Fixed−point Sequence ’ ) ;
133 f i g u r e
134
135 %p l o t s the a r c l e n g t h in each step
136 p l o t ( 0 : 1 : s teps −1, a r c l e n g t h ) ;
137 a x i s ( [ 0 s t e p s 0 max( a r c l e n g t h ) ] ) ;
138 x l a b e l ( ’ Steps ’ ) ;
139 y l a b e l ( ’ Arc−l e n g t h ’ ) ;
140 f i g u r e
141
142 %p l o t s the L2−norm o f the n o n l i n e a r i t y in each step
143 p l o t ( 0 : 1 : l e n g t h ( rhs ) −1, rhs ) ;
144 a x i s ( [ 0 s t e p s 0 max( rhs ) ] ) ;
145 x l a b e l ( ’ Steps ’ ) ;
146 y l a b e l ( ’ L2−Norm o f the N o n l i n e a r i t y ’ ) ;
147 f i g u r e
148
149 %p l o t s the t e t h e r ( u ) , the i n t e r p o l a t i o n ( bu ) and the v e l o c i t y f i e l d o f the
150 %bloodf low
151 p l o t ( x , u , ’ b ’ ) ;
152
153 [ a , b]= meshgrid ( 0 : 0 . 1 : x1 , min ( u ) : 0 . 1 : ( x1∗ s q r t (5− s q r t (20 ) ) ) ) ;
154
155 hold on
156 p l o t ( x , bu , ’ k ’ ) ;
157 q u i v e r ( a , b ,U∗(5∗ a .^4 −30∗a . ^ 2 . ∗ b.^2+5∗b . ^ 4 ) ,U∗(−20∗a . ^ 3 . ∗ b+20∗a . ∗ b . ^ 3 ) , ’ r ’ ) ;
158 p l o t ( a ( 1 , : ) , z e r o s ( l e n g t h ( a ( 1 , : ) ) ) ’ , ’ k ’ ) ;
159 p l o t ( a ( 1 , : ) , a ( 1 , : ) ∗ s q r t (5− s q r t (20 ) ) , ’ k ’ ) ;
160 hold o f f
161 legend ( ’ t e t h e r ’ , ’ i n t e r p o l a t i o n ’ , ’ blood f low ’ ) ;
162 t i t l e ( ’ Tether under blood f low ’ ) ;
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