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Abstract

This work deals with a special topic in the area of Gabor frames belonging to the field of
time-frequency analysis. The focus of this thesis is the investigation of sharp frame bounds
of Gabor frames with Gaussian window and how they behave under a deformation of the
lattice. The study of the deformation of Gabor frames itself is not new and at the same
time it is not yet fully understood.

When it comes to distorting Gabor frames one quickly stumbles across the frame set
of a window function. The frame set of a function is the set of all lattices which yield a
frame for this particular window. Under certain decay and smoothness assumptions it is
known that the frame set is open (which is not true in general). However, it is not clear
how to determine the frame set of a class of functions or even a single function.

The first and hitherto only window for which the entire frame is known, is the Gaus-
sian window. In this particular case the necessary conditions imposed by the Balian-Low
Theorem and by the density theorem are already sufficient and therefore the frame set is
the largest possible. In contrast to the result for the Gaussian window, conjectures about a
simple structure of the frame set for the Hermite functions of higher order were disproved
by counterexamples.

Gabor frames with Gaussian windows are well examined, but still, there are open
problems and conjectures which will be tackled in this work and we will present solutions
for particular cases. One problem is to understand the behavior of the frame bounds within
the frame set. This leads to the question whether there exists a unique lattice within the
frame set which leads to extremal frame bounds. We mention that the question posed is
not entirely meaningful for the whole frame set, but rather for a subset which consists of
lattices of the same volume.

Considering only rectangular (separable) lattices of even redundancy, we will prove that
the square lattice maximizes the lower frame bound and minimizes the upper frame bound.
For general lattices of even redundancy we will prove that the hexagonal lattice minimizes
the upper frame bound. The results need the notion of theta functions on a lattice which
in the separable case can be split into products of the classical Jacobi theta functions. In
order to prove these results, new properties of Jacobi’s theta functions are established.





Introduction

This thesis deals with the concept of Gabor frames, which describes intermediate cases
between pure time analysis and pure frequency analysis (Fourier analysis). If we are given
a signal (function), described by its temporal behavior, we may use the Fourier transform
to learn the distribution of the Fourier coefficients. With these coefficients we may ap-
proximate or reconstruct our signal (function) by trigonometric functions. The drawback
is that we do not get any information about the temporal distribution of the signal (func-
tion) from its Fourier coefficients. Therefore, Gabor proposed to have a two-dimensional
representation of a one-dimensional signal (function) which simultaneously uses informa-
tion about the distribution of the signal in time and the behavior of its frequencies, in
particular the description of the distribution of the Fourier coefficients.

This leads to interesting questions. One of the very first questions in this context is
the following. Is it possible to exactly determine the appearance of a certain frequency
at a certain point in time? This is not possible because of uncertainty principles and,
therefore, the next question is whether we can at least learn the frequency distribution in
a neighborhood of a certain point in time. This is done by multiplying the signal f with a
window g which is localized around some point in time. By shifting the window g in the
time domain, we successively get an idea of how the frequency distribution is changing over
time. This is the basic idea of Gabor frames. In the spirit of Fourier analysis we would
like to be able to write f as a convergent series of some simple atoms, which in the Fourier
case are the trigonometric monomials. This gives rise to the question of which functions
should serve as a window g and how to spread the window in the time-frequency plane to
gain a stable frame. The quality of the Gabor system is measured by two constants called
frame bounds, which are obtained from the frame inequality.

These topics are briefly touched on in Section 1. We describe some key ingredients
and basic concepts of Gabor analysis and have a brief look at the state of the art in time-
frequency analysis. Although much of the theory will be set up in a quite general way, the
Gaussian will be chosen as a window when it comes to explicit examples and calculations.
The Gaussian is a popular choice due to its good decay and smoothness properties, its
invariance under the Fourier transform and its property of uniquely minimizing the classical
uncertainty principle.

In Section 2 we will encounter the symplectic group (a matrix group) and the metaplec-
tic group (a group of unitary operators). We will study how the action of the symplectic
group on the spreading of the atoms can be compensated by allowing the metaplectic group
to act on the window, hence the atoms.

In Section 3 we will use these concepts for the Gaussian and we will see that in this case
Hamiltonian mechanics paints a nice picture of the action of the aforementioned groups.
We will learn how the frame property is preserved without affecting the frame bounds.
Also, we will see that certain geometric characteristics are preserved.

In Section 4 we will explicitly compute frame bounds for Gaussian Gabor frames. We
will encounter the Zak transform and the pre-Gramian as tools to obtain explicit formulas
for the frame bounds.
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In Section 5 we will study a conjecture about optimal frame bounds for Gabor frames
with Gaussian windows and separable lattices. The conjecture is as follows. Given the
standard Gaussian window, which lattice of prescribed fixed density minimizes the frame
condition number of the resulting Gabor system? Formulated as a problem for Gabor
frames, the question appeared in the literature at the latest in 2003 in the work of Strohmer
& Beaver [72]. In another context an analogous problem already arose in 1995 [33]. The
expected solution in [33] was the square lattice. By numerical observations it was shown
in [72] that a hexagonal lattice outperforms the square lattice in the sense of the frame
condition number. At least since the publication of [72] it seems that anybody who ever
dealt with this problem is convinced that the solution provided by Strohmer & Beaver is
optimal. However, if only separable lattices are considered, the solution is expected to be
the square lattice. The mentioned lattices are shown in Figure 1. In the separable case, we
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(a) Hexagonal lattice.
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(b) Square lattice.

Figure 1: A hexagonal lattice and the square lattice of redundancy 2. The coloured
vectors are a basis of the corresponding lattice.

will prove the conjecture to be true for special cases. For the proofs it is necessary to leave
the field of Gabor analysis. It turns out that the optimization of the frame bounds turns
out to be equivalent to an optimization problem for theta functions over a lattice. In the
separable case, these theta functions split into products involving either Jacobi’s theta-3 or
Jacobi’s theta-4 function. Although the problems of finding extremal points for the lower
and the upper frame bound look alike, they are very different to prove. A common theme
is an algebraic simplification which allows us to ignore the parameter which describes the
redundancy of the Gabor system. This simplification cannot be overestimated, since the
functions under consideration tend to a constant function in the limit case of the parameter.
Therefore, a direct analysis of the critical points of the functions seems to be impossible.
The desired extremal results about the square lattice follow from new monotonicity results
about the logarithmic derivatives of Jacobi’s theta functions on a logarithmic scale. We
will not only prove the monotonicity results, but also some identities which are needed
to establish the results as well as some consequences. Also, we would like to mention
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that some of the newly established properties we prove for Jacobi’s theta-3 function have
already found their way into the work of other researchers.

The case of a general lattice is treated in Section 6. We will not prove the correctness
of the Strohmer & Beaver conjecture, but we will prove that, under certain assumptions
on the density, the hexagonal lattice minimizes the upper frame bound of a Gabor frame
with standard Gaussian window. This will follow from a result by Montgomery on minimal
theta functions from 1988 [65]. We will also give an analytic proof that, for redundancy 2,
the frame condition number of a standard Gaussian Gabor frame with a hexagonal lattice
is smaller than the condition number using the square lattice.

In Section 7 we will study a packing problem for holomorphic functions which at first
seems to be unrelated to the problems studied in the previous sections. A theorem by
Landau states that there exists a positive constant L > 0 such that each holomorphic
mapping f from the complex unit disc D into C, with |f ′(0)| = 1 contains an open disc of
minimal radius r(f) ≥ L. The smallest upper bound L+ ≥ L was given by Rademacher
by constructing a function which maps D to C/Λh where Λh is a hexagonal lattice with
covering radius L+. Therefore, the largest disc contained in f(D) has exactly radius L+

and it is conjectured that L = L+. Curiously, numerical inspections yield that 1
L+

might
give the value of the lower frame bound for a Gaussian Gabor frame with hexagonal lattice
of redundancy 2. However, we will see a proof that the value of the lower frame bound of a
Gaussian Gabor frame with a square lattice of redundancy 2 is given by the reciprocal of the
radius of the largest disc of the holomorphic function, fulfilling the conditions of Landau’s
theorem, which maps D onto C/Λ� where Λ� is a square lattice with the described covering
radius.
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1 Time-Frequency Analysis

A Gabor system (or Weyl-Heisenberg system) for L2
(
Rd
)
is generated by a (fixed, non-

zero) window function g ∈ L2
(
Rd
)
and an index set Λ ⊂ R2d. It consists of time-frequency

shifted versions of g which are called atoms. We say λ = (x, ω)T ∈ R
d × R

d is a point in
the time-frequency plane and use the following notation for a time-frequency shift by λ

π(λ)g(t) =MωTx g(t) = e2πiω·tg(t− x), x, ω, t ∈ R
d.

Hence, for a window function g and an index set Λ the Gabor system is

G(g,Λ) = {π(λ)g | λ ∈ Λ}.

In order to be a frame, G(g,Λ) has to fulfil the frame inequality

A‖f‖22 ≤
∑

λ∈Λ
|〈f, π(λ)g〉|2 ≤ B‖f‖22, ∀f ∈ L2

(
R

d
)

(1.1)

for some positive constants A,B > 0 called frame bounds. If the Gabor system G(g,Λ) is a
frame it is called a Gabor frame. Usually, in this work when we speak about frame bounds
we mean the tightest possible bounds which we will also call optimal frame bounds.

Throughout this work, the index set will usually be a lattice. A lattice is a discrete
subgroup of the time-frequency plane, i.e. Λ ⊂ R

2d is generated by a non-unique, invertible
2d × 2d matrix S, in the sense that Λ = SZ2d. Whereas the generating matrix is non-
unique, in fact there are countably many generators for one and the same lattice as we will
see, the volume of the lattice which is defined as

vol(Λ) = | det(S)|

is unique and therefore is a characteristic number for a lattice. We call the reciprocal of
the volume the density or redundancy of the system

δ(Λ) =
1

vol(Λ)
.

In the subsequent paragraphs we will see that it is meaningful to define Gabor frames
for other function spaces than just L2

(
R

d
)
.

The first Gabor system was studied in 1932 by von Neumann [67] and by Gabor [35]
in 1946 using a Gaussian window function, namely e−πt2 , and the integer lattice Z ×
Z. Later on, we will see that this Gabor system just fails to be a frame, due to the
Balian-Low theorem. Since their introduction a lot of research has been done on the
subject of Gabor frames and they have become an integral part of wireless communications
[13, 51, 72], of signal processing [30, 31] and of speech processing and the analysis of acoustic
signals [19]. Gabor frames are also used as tools in several mathematical fields in order to
characterize smoothness properties and phase space concentration [27, 31, 41] as well as in
the study of pseudodifferential operators [42]. Thus, it is of interest to further investigate
and understand the structure of Gabor frames for different window functions and different
types of lattices.
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1.1 Basic Concepts in Time-Frequency Analysis

What we understand up to now is that the frame property of a Gabor family G(g,Λ) defined
in (1.1) crucially depends on the window function g and on the lattice Λ. Although frame
theory is often built upon a Hilbert space, in our case L2

(
Rd
)
, we know that the right

setting for time-frequency analysis are the modulation spaces Mp(Rd) and, among many
others of course, the work by Feichtinger has to be mentioned at this point [25, 26]. But
before introducing modulation spaces, we start with more classical concepts. First, we fix
our notation for the Fourier transform and, related to it, the short-time Fourier transform
(STFT).

Definition 1.1 (Fourier Transform). For f ∈ L1
(
R

d
)
∩ L2

(
R

d
)
we define the Fourier

transform of f by

Ff(ω) = f̂(ω) =

∫

Rd

f(t)e−2πiω·t dt.

We will use both notations Ff and f̂ in this work. The Fourier transform satisfies
Plancherel’s formula.

Theorem 1.2 (Plancherel). For f ∈ L1
(
R

d
)
∩ L2

(
R

d
)
the following identity holds true

‖f‖2 = ‖f̂‖2.

Hence, by a density argument the Fourier transform extends to a unitary operator on
the Hilbert space L2

(
Rd
)
. Therefore, we get the following inversion formula.

Theorem 1.3 (Inversion formula). For f ∈ L2
(
Rd
)
we have

f(x) =

∫

Rd

f̂(ω)e2πix·ω dω.

Definition 1.4 (Inverse Fourier transform). For f ∈ L2
(
Rd
)
we define the inverse Fourier

transform by

F−1f(ω) = Ff(−ω) =
∫

Rd

f(t)e2πiω·t dt.

A useful tool which comes along with the Fourier transform and which we shall use
frequently in this work is the Poisson summation formula.

Proposition 1.5 (Poisson summation formula). Let f be a function with the properties

∑

n∈Zd

f(x+ n) ∈ L2
(
T
d
)

and (
f̂(k)

)
k∈Zd
∈ ℓ2

(
Z
d
)
.
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The Poisson summation formula is then given by

∑

n∈Zd

f(n+ x) =
∑

k∈Zd

f̂(k)e−2πik·x

with equality almost everywhere.

Definition 1.6 (Short-Time Fourier Transform). For a fixed, non-zero window function
g ∈ L2

(
Rd
)
the short-time Fourier transform of a function f ∈ L2

(
Rd
)
with respect to

the window g is defined via

Vgf(x, ω) = 〈f,MωTxg〉 = 〈f, π(λ)g〉 =
∫

Rd

f(t)g(t− x)e−2πiω·t dt.

where λ = (x, ω) ∈ Rd × Rd.

At this point we want to introduce another concept for a quadratic representation of a
function, which is closely related to the STFT.

Definition 1.7 (Ambiguity Function). The ambiguity function of a function f ∈ L2
(
Rd
)

is given by

Af(x, ω) =
∫

Rd

f
(
t+

x

2

)
f
(
t− x

2

)
e−2πiω·t dt.

In a similar way we define the cross-ambiguity function of two functions f, g ∈ L2
(
Rd
)

Agf(x, ω) =

∫

Rd

f
(
t +

x

2

)
g
(
t− x

2

)
e−2πiω·t dt.

The cross-ambiguity function and the ambiguity function are closely related to the
STFT. In fact, they only differ by a phase factor, which is a complex number of modulus
1, i.e. c ∈ C, |c| = 1. We have

Agf(x, ω) = eπix·ωVgf(x, ω).

The appearance of the phase factor is due to the fact that the translation and modulation
operators do not commute.

MωTx = e2πix·ωTxMω (1.2)

Equation (1.2) is called the commutation relation for time-frequency shifts. The ambiguity
function is somehow a more symmetric time-frequency representation of a signal than
the short-time Fourier transform and in absolute values they are the same. The usual
interpretation of the ambiguity function is that it tells us how much a function is spread
out in time and frequency, similar to the interpretation of the Wigner distribution in
physics.
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Definition 1.8 (Wigner Distribution). The Wigner distribution of a function f ∈ L2
(
Rd
)

is given by

Wf(x, ω) =

∫

Rd

f

(
x+

t

2

)
f

(
x− t

2

)
e−2πiω·t dt.

For f, g ∈ L2
(
Rd
)
the cross-Wigner distribution is defined as

Wgf(x, ω) =

∫

Rd

f

(
x+

t

2

)
g

(
x− t

2

)
e−2πiω·t dt.

The Wigner distribution is related to the ambiguity function by the symplectic Fourier
transform which is given by

Ff(Jλ) = Ff(ω,−x), λ = (x, ω), x, ω ∈ R
d.

J =

(
0 I
−I 0

)
denotes the standard symplectic matrix which we will encounter several

more times in this work.

Wf(λ) =Wf(x, ω) = F(Af)(ω,−x) = F(Af)(Jλ), x, ω ∈ R
d,

Similarly, we find the following relation between the cross-Wigner distribution and the
cross-ambiguity function

Wgf(λ) = F(Agf)(Jλ), λ = (x, ω), x, ω ∈ R
d

We introduced 3 different kinds of quadratic representations of a function f ∈ L2
(
R

d
)

which are all alike and have similar interpretations. We will now introduce the inversion
formula for the STFT (see e.g. [41]).

Proposition 1.9 (Inversion of the STFT). For g ∈ L2
(
Rd
)
we have

f =
1

‖g‖22

∫

R2d

Vgf(λ)π(λ)g dλ

for all f ∈ L2
(
Rd
)
.

In a similar way we can reconstruct f , given g, from the cross-ambiguity function or
from the cross-Wigner distribution. We note the fine difference, that given the ambiguity
function or the Wigner distribution, we can only reconstruct f up to a phase factor |c| = 1,
since A(f) = A(c f).

Proposition 1.10. For f ∈ S
(
Rd
)
with f(0) 6= 0 we have

f(0) f(x) =

∫

Rd

Af(x, ω)eπix·ω dω.
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If we want to reconstruct g from the STFT, the cross-ambiguity function or the cross-
Wigner distribution this can be done since Vg(c g) = cVg(g), Ag(c g) = cAg(g) and
Wg(c g) = cWg(g) for c ∈ C. The difference between Proposition 1.9 and Proposition
1.10 is that in one case we assume that g is known whereas in the other case we assume
that we are given the auto-correlations and have to find g. Speaking in terms of the STFT,
given Vgg without prior knowledge of the window, the task of finding g is also only solvable
up to a phase factor since we cannot distinguish between Vgg and V(c g)(c g).

In this work we will mostly use the ambiguity function to state properties of a function
f in the time-frequency plane.

So far, we have worked in the Hilbert space L2
(
Rd
)
. We introduce some more function

spaces which play essential roles in time-frequency analysis.

Definition 1.11 (Modulation Space). For 1 ≤ p ≤ ∞ and any (non-zero) window function
g ∈ S(Rd) in the Schwartz space, the modulation space Mp(Rd) consists of all elements
f ∈ S ′(Rd) in the space of tempered distributions such that the norm

‖f‖pMp =

∫

Rd

∫

Rd

|〈f,MωTx g〉|p dxdω

is finite with the usual adjustment for the ∞-norm.

The definition of the short-time Fourier transform can be extended by duality principles
or the use of Banach-Gelfand triples [29, 43]. Therefore, the short-time Fourier transform
is also defined for (f, g) ∈ (S ′,S) or (f, g) ∈ (S ′

0,S0) = (M∞,M1).
The modulation spaces are independent of the choice of g ∈ S(Rd) and also, M2(Rd) =

L2
(
Rd
)
. The modulation space M1(Rd), called Feichtinger’s algebra and often denoted

by S0, is the smallest function space invariant under time-frequency shifts and the Fourier
transform which also contains the Schwartz space. It was first introduced by Feichtinger in
1981 [25]. It is also a Banach space, embedded in L1(Rd)∩ C0(Rd). Consequently, in time-
frequency analysis M1(Rd) is a natural choice for the window functions g. Its dual space
M∞(Rd), often denoted by S ′

0(R
d), is the canonical space of distributions in time-frequency

analysis. Thus, in time-frequency analysis the pair (M1,M∞) is the appropriate substitute
for the usual pair (S,S ′) in analysis [43]. With the modulation spaces as instruments in
our hands, we revisit the Poisson summation formula.

Proposition 1.12 (Poisson Summation Formula). Let f ∈ M1(Rd), then the Poisson
summation formula ∑

n∈Zd

f(x+ n) =
∑

k∈Zd

f̂(k)e−2πik·x

holds for all x ∈ Rd.

The condition f ∈M1(Rd) implies that also f̂ ∈M1(Rd). Therefore both sums converge
absolutely. In contrast to Proposition 1.5 the formula now holds pointwise since in addition
both f and f̂ are continuous.

We also want to mention a second class of function spaces frequently used in time-
frequency analysis, the Wiener amalgam spaces W

(
Lp
(
Rd
)
, ℓq
(
Zd
))
.
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Definition 1.13 (Wiener Amalgam Space). A function f is an element of the Wiener
amalgam space W

(
Lp
(
Rd
)
, ℓq
(
Zd
))

if the norm defined via

‖f‖W =

(
∑

k∈Zd

‖f · Tkχ[0,1]d‖qp

)1/q

is finite, with the usual adjustment for the ∞-norm.

The Wiener amalgam spaces allow us to describe a function in terms of its local as
well as its global behavior. At this point we mention that the modulation space M1

(
Rd
)

is a subspace of the intersection of the Wiener space W
(
L∞ (Rd

)
, ℓ1
(
Zd
))

and its image
under the Fourier transform

M1
(
R

d
)
⊂W

(
L∞ (

R
d
)
, ℓ1
(
Z
d
))
∩ FW

(
L∞ (

R
d
)
, ℓ1
(
Z
d
))
.

For more properties about Wiener amalgam spaces we refer to the textbooks [30, 41] and
the references therein.

As can already be seen from the frame property in equation (1.1), there is a canonical
operator, the coefficient operator, which can be associated to the Gabor family G(g,Λ).
Definition 1.14 (Coefficient Operator). Let f, g ∈ L2

(
R

d
)
and Λ be a lattice in R

2d. The
coefficient or analysis operator is then

Cg,Λf = (〈f, π(λ)g〉)λ∈Λ = Vgf |Λ.

The adjoint operator of Cg,Λ is called synthesis operator.

Definition 1.15 (Synthesis Operator). Let g ∈ L2
(
Rd
)
, Λ be a lattice in R2d, λ ∈ Λ and

let c = (cλ)λ∈Λ ∈ ℓ2(Λ). The synthesis operator is then

Dg,Λc =
∑

λ∈Λ
cλπ(λ)g.

We can now define the frame operator, which maps functions from L2
(
Rd
)
to L2

(
Rd
)
.

Definition 1.16 (Frame Operator). The frame operator is given by

Dg,ΛCg,Λf = Sg,Λf =
∑

λ∈Λ
〈f, π(λ)g〉π(λ)g.

If the frame operator Sg,Λ is invertible and bounded on L2
(
Rd
)
, which is equivalent to

Cg,Λ being bounded from above and below, which is equivalent to (1.1), then G(g,Λ) is a
Gabor frame. The invertibility of Sg,Λ implies the existence of a dual window γ = S−1

g,Λg ∈
L2
(
Rd
)
and we get a Gabor expansion for an arbitrary function f ∈ L2

(
Rd
)
.

f = S−1
g,ΛSg,Λf =

∑

λ∈Λ
〈f, π(λ)g〉π(λ)γ

= Sg,ΛS
−1
g,Λf =

∑

λ∈Λ
〈f, π(λ)γ〉π(λ)g.

(1.3)
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The convergence of the series in (1.3) is unconditional in L2
(
Rd
)
. If g ∈ M1(Rd) and

1 ≤ p ≤ ∞, then the coefficient operator Cg,Λ is bounded from Mp(Rd) into ℓp(Λ), Dg,Λ is
bounded from ℓp(Λ) into Mp(Rd) and the frame operator Sg,Λ is bounded on Mp(Rd). In
the case that g is in the Wiener amalgam space W(L∞ (Rd

)
, ℓ1(Zd)) the frame operator is

bounded on L2
(
Rd
)
[43].

We would also like to mention the following connection between the Gabor frame bounds
and the frame operator

A−1 = ‖(Sg,Λ)
−1‖Op

B = ‖Sg,Λ‖Op.

1.2 The Fine and the Coarse Structure of Gabor Frames

Although we know that the modulation space M1(Rd) provides a nice setting for the
window functions, this does not guarantee that we get a Gabor frame for an arbitrary
window g ∈ M1(Rd) and an arbitrary lattice Λ ⊂ R2d. We will now deal with the fine
structure of Gabor frames which describes connections between a window g and lattices
which together with g give a frame. Therefore we introduce the full and the reduced frame
set as described in [43].

Definition 1.17 (Frame Set). For given window g, the full frame set is defined as the set
of all 2d-dimensional lattices Λ, which together with g generate a Gabor frame.

Ffull(g) = {Λ ⊂ R
2d : G(g,Λ) is a frame}

The reduced frame set is defined as the set of all lattice parameters of separable 2d-
dimensional lattices Λ, which together with g generate a Gabor frame.

F(α,β)(g) = {(α, β) ⊂ R+ × R+ : G(g, αZd × βZd) is a frame}

Clearly, (α, β) ∈ F(α,β)(g) implies αZd × βZd ∈ Ffull(g). Sometimes we will identify a
separable lattice Λ(α,β) = αZ× βZ with its lattice parameters and write Λ(α,β) ∈ F(α,β).

With this definition in our hands, we may rephrase the question about when a Gabor
system forms a frame in the following way. For any given g what is its (full or reduced)
frame set? At this point we want to emphasize that there is no general idea of how to
determine the frame set of a class of functions or even a single function. The case of the
1-dimensional standard Gaussian window

g0(t) = 21/4e−πt2 ,

which we will encounter several more times in this work, has been fully analyzed: results
of Lyubarskii [61] and Seip [70] give the full frame set for Gabor frames with Gaussian
window g0 as

Ffull(g0) = {Λ ⊂ R
2 | vol(Λ) < 1}.

10



This implies that the reduced frame set is given by

F(α,β)(g0) = {(α, β) ∈ R+ × R+ |αβ < 1}.

Due to classical results from harmonic analysis, the result that the frame set is the largest
possible holds true for generalized Gaussians of the form

g̃0(t) = K e−Lπ(1+iγ)t2 , K ∈ C, γ, L ∈ R+.

which we will investigate in the upcoming sections. At the time of this work, there is no
other function in a modulation space for which we know the full frame set. Still there are
some functions for which the reduced frame set is known and is the largest possible, i.e.
F(α,β)(g) = {(α, β) ∈ R+ × R+ |αβ < 1}. The list of functions for which this is known is
manageable and consists of

• the Gaussian e−πt2 [61, 70] (Lyubarskii, Seip both 1992)

• the hyperbolic secant (eπt + e−πt)
−1

[58] (Janssen & Strohmer 2002)

• the two-sided exponential function e−|t| [56] (Janssen 2003)

• and its Fourier transform 2
1+4π2t2

In Section 2 we will see that it is easy to determine the frame set of ĝ once the frame set of
g is known. Since the Gaussian and the hyperbolic secant are invariant under the Fourier
transform the list does not get longer, besides taking dilates of the mentioned functions
or multiplication with a constant K ∈ C. We can add another function to the list, if we
admit functions from L2 (R) instead of only M1(R)

• the one-sided exponential e−tχ
R+ [54] (Janssen 1996)

• and its Fourier transform 1
1−2πit

.

In 2013 the list was extended by a whole class of functions, namely totally positive functions
of finite type. A totally positive function of finite type M can easily be described via its
Fourier transform and satisfies

ĝ(ω) =
M∏

k=1

(1 + 2πiδkω)
−1 ,

with non-zero parameters δk ∈ R and M ∈ N. M is called the type of the function.
Whenever M ≥ 2 the function is already in the modulation space M1(R) [43]. We also see
that for M = 1 we will have a scaled version of the one-sided exponential function which
is not in Feichtinger’s algebra. Due to the results by Gröchenig & Stöckler [47] we know
that for M ≥ 2 the reduced frame set of a totally positive window of finite type is given by
F(α,β)(g) = {(α, β) ∈ R+ × R+ |αβ < 1}. We do not go into the details, but we mention
that all functions in the above lists belong to the class of totally positive functions. More
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results on totally positive functions followed for discrete Gabor frames in 2014 [7]. We refer
to the mentioned literature and the references therein for more information about totally
positive functions.

From the above results, one might get the impression that the frame set is always of
such simple nature, but this is not true. Already for the characteristic function of an
interval the reduced frame set is very complicated and was not fully known until the work
of Dai & Sun in 2015 [17]. Janssen already described parts of the frame set in 2003, but
left some white spots. The pattern is now known as Janssen’s tie [57]. Another class of
well examined functions are the Hermite functions

hn(t) =
21/4

(n!(2π)n 2n)1/2
eπt

2

(
dn

dtn
e−2πt2

)
, n ∈ N0.

We note that h0(t) = g0(t) is the standard Gaussian which is the only function for which
the full frame set is known, as we already mentioned earlier. It is known that at least
for αβ < 1

n+1
the system G(hn, αZ × βZ) is a Gabor frame [44, 45]. In 2014 Gröchenig

formulated some conjectures on the frame set of the Hermite functions in his survey [43]
based on known results to that time. For even Hermite functions the conjecture was that
the reduced frame set is given by F(α,β)(h2n) = {(α, β) ∈ R+ × R+ |αβ < 1}. Due to
results of Lyubarskii & Nes in 2013 [62], showing that for odd functions the parameters
(α, β) never give a frame when αβ = n−1

n
, 2 ≤ n ∈ N, the conjecture for odd Hermite

functions was that F(α,β)(h2n+1) = {(α, β) ∈ R+ × R+ |αβ < 1, αβ 6= n−1
n
, n = 2, 3, . . . }.

Just recently Lemvig found counterexamples to these conjectures, leaving little hope that
the frame sets of the Hermite functions might have a simple structure [60].

We will now turn to the coarse structure of Gabor frames, which describes general
properties of the frame set.

Theorem 1.18 (Coarse Structure). Let g ∈M1(Rd), then the full frame set Ffull(g) is an
open subset of {Λ : vol(Λ) < 1} and it contains a neighbourhood of 0. Hence, the reduced
frame set F(α,β)(g) is open in {(α, β) ∈ R+ × R+ : αβ < 1} and contains a neighbourhood
of (0, 0) in R+ × R+.

Theorem 1.18 combines several fundamental results from the field of time-frequency
analysis, namely the density theorem, the Balian-Low theorem, the theorem on the exis-
tence of Gabor frames as well as perturbation results. We will now state these results and
start with the density theorem, which gives a necessary condition on a lattice to generate
a Gabor frame.

Theorem 1.19 (Density Theorem). Let g ∈ L2
(
Rd
)
be a window generating a Gabor

frame G(g,Λ), then
vol(Λ) ≤ 1. (1.4)

The density theorem can be seen as one of many uncertainty principles in time-frequency
analysis, as it states that the time-frequency shifts of the window must cover the time-
frequency plane densely enough. It has been studied extensively and there exists a variety
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of proofs and formulations [43, 49]. Equality in (1.4) is possible if g ∈ L2
(
Rd
)
and in that

case we say that we generate a frame at critical density. For g = χ
[0,1]d and Λ = Z2d we

even have an orthonormal basis for the Hilbert space L2
(
Rd
)
, i.e.

‖f‖22 =
∑

λ∈Z2d

∣∣〈f, π(λ)χ[0,1]d
〉∣∣2 .

In this particular case, G
(
χ
[0,1]d,Z

2d
)
consists of the translated Fourier basis functions of

the d-dimensional torus.
However, the indicator function χ

[0,1]d is not an element of the modulation space
M1(Rd), which we described to be a natural choice to pick our window functions from.
The next theorem can be seen as a “no-go result” and has been stated in many different
versions. We will give a statement for the Hilbert space case and discuss some consequences
of the result.

Theorem 1.20 (Balian-Low Theorem). Let g ∈ L2
(
Rd
)
be a window generating a Gabor

frame G(g,Λ) with vol(Λ) = 1. Then, either xg /∈ L2
(
Rd
)
or ω ĝ /∈ L2

(
Rd
)
, with both

x, ω ∈ R
d.

This result means that the existence of an orthonormal basis which allows good con-
centration in time and frequency at the same time is not possible. We can also formulate
a version of the Balian-Low theorem for Feichtinger’s algebra. If G(g,Λ) is a Gabor frame
with vol(Λ) = 1, then g /∈ M1(Rd). In comparison to Theorem 1.19, where we have a
window from L2

(
Rd
)
, the inequality in equation (1.4) becomes strict by taking a window

fromM1(Rd) ⊂ L2
(
Rd
)
. At this point, we want to remark that an amalgam version of the

Balian-Low theorem can as well be formulated, meaning that under the milder assumption
g ∈ W

(
L∞ (

R
d
)
∩ C

(
R

d
)
, ℓ1
(
Z
d
))

the reduced frame set still does not contain lattice
parameters with αβ = 1. Hence,

F(α,β)(g) ⊂ {(α, β) ∈ R+ × R+ : αβ < 1}

is a necessary condition for windows from the Wiener amalgam space to constitute a frame.
This impossibility to produce an orthonormal basis with nice decay properties in the time
as well as in the frequency domain was the first strong argument to use frames in analysis.
Furthermore, there is quite a subtle point in Theorem 1.18, namely the statement that
the frame set Ffull(g) contains a neighborhood of 0 which asserts the existence of Gabor
frames [43].

The fact that for g ∈ M1(Rd) the (full or reduced) frame set is open, is not true if g
is not in Feichtinger’s algebra, e.g. for g = χ[0,1] /∈ M1(R) the frame set is not open. The
openness of the frame set may as well be interpreted as a strong perturbation result. A first
result in this direction was presented by Feichtinger & Kaiblinger in 2004 [28] and states
that a Gabor frame over a rectangular lattice remains a frame under small perturbations
on the generating matrix S1. If g ∈ M1(Rd) and G(g, S1Z

2d) is a frame, then G(g, S2Z
2d)

is a frame as well, if ‖S2 − S1‖ < ε for ε > 0 sufficiently small in some matrix norm. This
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result is remarkable, since the perturbation in the generating matrix may be small, but
the perturbations on the lattice points accumulate and, hence, might be quite large.

We want to close the section with recent results on deformations of Gabor Frames.

Theorem 1.21. Let g ∈ M1(Rd) and Λ ⊂ R2d. Let Tn : R2d → R2d, n ∈ N be a sequence
of differentiable maps with Jacobian DTn. Assume

sup
λ∈Z2d

|DTn(λ)− Id| → 0, n→∞,

then the following holds. If G(g,Λ) is a frame, then G(g, TnΛ) is a frame for sufficiently
large n.

This result is a special case of what is called Lipschitz deformation [46]. It also holds
for Riesz sequences which we do not discuss in this work. Also, Theorem 1.21 is already
quite general in the sense that it holds for non-uniform Gabor frames, which do not have a
lattice structure, under non-linear deformations and therefore generalizes the result from
[28]. It is still an open question how to reasonably formulate a general concept of the
deformation of Gabor systems [38, 43]. Usually deformation results only decide whether
the frame property is kept at all, but say little about the quality of the resulting Gabor
frame, meaning that in general they do not give information on the sharp frame bounds.

In the next section we will derive some deformation results where the sharp frame
bounds are kept under a deformation of the Gabor system. We will see that under certain
aspects the deformation of the lattice can be compensated by a suitable deformation of the
window function and vice versa.
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2 The Symplectic and the Metaplectic Group

There are two obvious ways of changing a Gabor system G(g,Λ). One option is to deform
the lattice Λ the other option is to change the window function g. Since a lattice can be
described by a matrix the first idea is to change the matrix or to multiply it with another
matrix. A perturbation of the window can be performed by letting a unitary operator act
on the window.

For the lattice part we first note that we only need to consider matrices of even dimen-
sion. Also, we want to deform our lattices in a continuous way and we want to keep the
subgroup property of our lattice as well as the volume of the lattice. Therefore we focus
on matrices with determinant 1 and we will study a subgroup of the special linear group
SL(2d,R).

For the part concerning the deformation of the window we will focus on a subgroup of
the group of unitary operators U

(
L2
(
Rd
))
. This subgroup, called the metaplectic group,

and its elements, the metaplectic operators, are widely used in quantum mechanics and
in time-frequency analysis. There is a close connection between the symplectic and the
metaplectic group and this interplay might be used to solve problems in quantum mechanics
once the solution for the corresponding classical problem is known [36]. In time-frequency
analysis this property can be used to deform Gabor frames without destroying their frame
property and even keeping the optimal frame bounds [38, 34, 41].

2.1 Symplectic Matrices

Definition 2.1 (Symplectic Matrix). A matrix S ∈ GL(2d,R) is called symplectic if and
only if

SJST = STJS = J, (2.1)

where

J =

(
0 I
−I 0

)
.

Here, 0 denotes the d × d zero matrix and I is the d × d identity matrix. J is called the
standard symplectic matrix.

We note that condition (2.1) is redundant. Actually, we have

SJST = J ⇐⇒ STJS = J.

From (2.1) we conclude that all symplectic matrices S ∈ Sp(2d,R) must have determinant
equal to ±1. In fact, if S ∈ Sp(2d,R) then det(S) = 1, see [36, 37, 41]. Also, Sp(2d,R) is
a subgroup of SL(2d,R) and in the case d = 1 we have Sp(2,R) = SL(2,R). In all other
cases where d > 1, Sp(2d,R) is a proper subgroup of SL(2d,R).

Lemma 2.2 (Symplectic Group). The set of all symplectic matrices forms a group denoted
by Sp(2d,R) and is called the symplectic group.
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Proof. Let S1, S2 ∈ Sp(2d,R). It follows from equation (2.1) that the product S1S2 ∈
Sp(2d,R). Taking the inverse of the double equality in (2.1) and using the fact that
J−1 = −J we see that S−1 ∈ Sp(2d,R) if S ∈ Sp(2d,R).

It is convenient to write symplectic matrices as block matrices in the following form

S =

(
A B
C D

)
,

where A,B,C,D are d× d matrices. With this notation we have the following formula for
the inverse of a symplectic matrix

S−1 =

(
DT −BT

−CT AT

)
.

In the case d = 1 this reduces to the well-known inversion formula for a matrix S belonging
to SL(2,R), as A,B,C,D ∈ R are scalars. For general dimension d, condition (2.1) already
implies d(2d+ 1) constraints on the block matrices A,B,C,D [37]. We want to state the
3 universal constraints which hold for arbitrary dimension d.

ATC = CTA (2.2)

BTD = DTB (2.3)

ATD − CTB = I (2.4)

or equivalently

ABT = BAT (2.5)

CDT = DCT (2.6)

ADT − BCT = I (2.7)

We see that the products in (2.2), (2.3), (2.5) and (2.6) are symmetric. Furthermore, for
the special case d = 1 these conditions in fact collapse to equation (2.4) or (2.7) and state
that S has determinant det(S) = 1.

2.2 Free Symplectic Matrices

We will now introduce the building blocks of the symplectic group and the free symplectic
matrices which factor into these building blocks. At the end of this section we will see that
any symplectic matrix is the product of the mentioned building blocks [36, 40].

The motivation comes from Hamiltonian mechanics. We want to describe the motion
of a particle depending on two variables usually called position x and momentum p which
depend on time t and are coupled by Hamilton’s equations

x′(t) =
∂

∂p
H(x(t), p(t))

p′(t) = − ∂

∂x
H(x(t), p(t)).
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or in a more compact notation

(
x′(t)
p′(t)

)
= J

(
∂
∂x
H

∂
∂p
H

)
.

Here, H(x(t), p(t)) is the Hamiltonian or Hamilton function and J is the already known
standard symplectic matrix. The coupled pair (x, p) ∈ Rd × Rd describes a point in phase
space. For more details on Hamiltonian mechanics see e.g. Arnold’s textbook [4].

Given now initial position x and final position x̃ of a particle we want to know the
initial and final momentum p and p̃, assuming that the motion is linear. This means, we
are given a linear system (x, p) = S(x̃, p̃) and knowing the pair (x, x̃) we are trying to find
(p, p̃). This is equivalent to

x = Ax̃+Bp̃

p = Cx̃+Dp̃.

In order to solve this system of equations for (p, p̃), clearly B has to be invertible. We
could also ask the reverse question, given (p, p̃) how can we determine the pair (x, x̃). In
this case, of course, C has to be invertible. Therefore, we want to put on record that the
following definition could have been done with a condition on C and hence, all follow up
results can be adjusted and reformulated with a condition on C.

Definition 2.3 (Free Symplectic Matrix). We call a symplectic matrix S =

(
A B
C D

)
∈

Sp(2d,R) a free symplectic matrix if B is invertible.

Definition 2.4 (Generator Matrices). We define the following 2d× 2d matrices.

• The standard symplectic matrix

J =

(
0 I
−I 0

)
.

• The shearing matrices

VP =

(
I 0
P I

)

with P being a symmetric matrix.

• The dilation matrices

ML =

(
L−1 0
0 LT

)

with L being an invertible matrix.

We call these matrices the generator matrices for the free symplectic matrices.

We note that the matrices VP and ML are not free, still the name generator matrix is
justified by the following propositions.
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Proposition 2.5. With the notation of Definition 2.4 we get that any free symplectic

matrix S =

(
A B
C D

)
can be factored as

S = VDB−1MB−1JVB−1A. (2.8)

Proof. Since S is a free symplectic matrix, it follows that B is invertible. Therefore, we
have the factorization

(
A B
C D

)
=

(
I 0

DB−1 I

)(
B 0
0 DB−1A− C

)(
B−1A I
−I 0

)
.

The rest of the proof follows by conditions (2.2) – (2.7). From the mentioned conditions

we conclude that DB−1A− C = (B−1)
T
since ADT − BCT = I. Therefore, we have

(
A B
C D

)
=

(
I 0

DB−1 I

)(
B 0

0 (B−1)
T

)(
B−1A I
−I 0

)

and the last matrix can be factored as
(
B−1A I
−I 0

)
=

(
0 I
−I 0

)(
I 0

B−1A I

)
.

A proof is also given in [36] or [34].

2.3 Generating Functions

In the case of time-frequency analysis the proper way to use and interpret Hamiltonian
mechanics is by replacing position by time, momentum by frequency and phase space by
time-frequency plane. We will now return to the notation of time-frequency analysis and
point out connections between free symplectic matrices and quadratic forms.

Proposition 2.6. Let S =

(
A B
C D

)
∈ Sp(2d,R) be a free symplectic matrix. Let P,Q

be d× d symmetric matrices and let L be a d× d invertible matrix.

(i) Then we have

(x, ω) = S(x̃, ω̃)⇐⇒
{
ω = ∂xW (x, x̃),

ω̃ = −∂x̃W (x, x̃)

where W is the quadratic form

W (x, x̃) =
1

2
DB−1x2 − B−1x · x̃+ 1

2
B−1Ax̃2 (2.9)

where DB−1 and B−1A are symmetric.
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(ii) To every quadratic form

W (x, x̃) =
1

2
Px2 − Lx · x̃+ 1

2
Qx̃2 (2.10)

we can associate the free symplectic matrix

SW =

(
L−1Q L−1

PL−1Q− LT PL−1

)
. (2.11)

We call the quadratic form in (2.10) the generating function of SW in (2.11) and SW

factors as
SW = VPMLJVQ.

We note the connection between the generating function in equation (2.9) and the
factorization of a free symplectic matrix given in equation (2.8) in Proposition 2.5. The
next theorem and the resulting corollary, whose proofs can be found in [36], show the
importance of free symplectic matrices and their factorization.

Theorem 2.7. For every S ∈ Sp(2d,R) there exist two (non-unique) free symplectic ma-
trices SW1 and SW2 such that S = SW1SW2.

Corollary 2.8. The set of all matrices

{VP ,ML, J}

generates the symplectic group Sp(2d,R).

2.4 Metaplectic Operators and the Quadratic Fourier Transform

After the study of the symplectic group we will now investigate the metaplectic group. We
start with a rather abstract characterization of the metaplectic group which allows a very
quick identification with the symplectic group. A sequence of group homomorphisms

G0 → G1 → · · · → Gn → Gn+1

is called exact, if the image of each homomorphism equals the kernel of the next homo-
morphism

im(Gk−1 → Gk) = ker(Gk → Gk+1), k = 1, . . . , n.

A short exact sequence is of the form

0→ G1 → G2 → G3 → 0

and in this case we have an identification rule via the following isomorphism

G3
∼= G2/im (G1 → G2) .
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Definition 2.9 (Metaplectic Group). The metaplectic group Mp(2d,R) is the connected
two-fold cover of the symplectic group Sp(2d,R). Equivalently, we can define Mp(2d,R)
by saying that the sequence of homomorphisms

0→ Z2 →Mp(2d,R)→ Sp(2d,R)→ 0

is exact.

Since, the sequence in Definition 2.9 is actually a short exact sequence, we can identify
the symplectic group with the metaplectic group modulo im (Z2 →Mp(2d,R)) = {±I}

Sp(2d,R) ∼= Mp(2d,R)/{±I},

where I now denotes the identity element of the group (Mp(2d,R), ◦).
We would also like to present a more constructive approach to define the metaplectic

group. The metaplectic group is a group of unitary operators on L2
(
Rd
)
, well described

e.g. in [36, 34, 41, 69]. We define the following operators.

Definition 2.10. For a function ψ ∈ S(Rd) in the Schwartz space we define the following
operators.

• The modified Fourier transform J defined by

Jψ(ω) = i−d/2

∫

Rd

ψ(t) e−2πi ω·t dt = id/2Fψ(ω). (2.12)

• The linear chirps
VPψ(t) = eπi P t·tψ(t) (2.13)

with P being a real, symmetric d× d matrix.

• The dilation operator
ML,nψ(t) = in

√
| det(L)|ψ(Lt), (2.14)

where L is invertible and n is an integer corresponding to a choice of arg(det(L)), to
be more precise

nπ ≡ arg(det(L)) mod 2π. (2.15)

The class modulo 4 of the integer n appearing in the definition of the dilation operator
(2.14) is called Maslov index [36, 40]. At this point we remark that we have chosen the
phase factors in equation (2.12) and equation (2.14) according to the existing literature
[36, 34, 41] and that the choice is not clear from the context so far. However, as the main
motivation for this section was to gain tools for a deformation of Gabor frames without
changing the frame bounds, we do not have to care about phase factors. The reason why
they do not influence the frame bounds can be directly seen from the frame inequality
(1.1). Therefore we will not discuss their choice any further and might as well just ignore
them.

We will now associate quadratic forms to metaplectic operators and we will also see
parallels between the symplectic and the metaplectic group.
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Definition 2.11 (Quadratic Fourier Transform). Let SW be the free symplectic matrix

SW =

(
L−1Q L−1

PL−1Q− LT PL−1

)

associated to the quadratic form W (t̃, t) = 1
2
P t̃2 − Lt̃ · t+ 1

2
Qt2 (compare Proposition 2.6

equations (2.10) and (2.11)). Let the operators J,VP and ML,n be defined as in (2.12),
(2.13) and (2.14) respectively. We call the operator

SW,n = VPML,nJVQ (2.16)

the quadratic Fourier transform associated to the free symplectic matrix SW .

For ψ ∈ S(Rd) we have the explicit formula

SW,nψ
(
t̃
)
= in−

d
2

√
| det(L)|

∫

Rd

ψ(t) e2πiW(t̃,t) dt, (2.17)

whereW
(
t̃, t
)
is again the quadratic form as defined in (2.10) and Definition 2.11. We note

that to each quadratic form W
(
t̃, t
)
we can actually associate not one but two metaplectic

operators SW,n and SW,n+2 = −SW,n. Due to (2.15), both are equally good choices. This
reflects the fact that the metaplectic operators are elements of the two-fold cover of the
symplectic group.

Although, all statements in this section were formulated for the Schwartz space S(Rd),
they also hold for the modulation spaces Mp

(
Rd
)
including the Hilbert space L2

(
Rd
)
.

Also, we will frequently drop one or both of the indices W and n and will write S instead
of SW and S or SW instead of SW,n. When the context allows, we will also use other indices
than the ones mentioned.

As can be seen by formula (2.16) a quadratic Fourier transform is a manipulation of
a (suitable) function by a chirp, a modified Fourier transform, a dilation and another
chirp. This is the exact same way in which the fractional Fourier transform is described in
[3] with an additional dilation in between the modified Fourier transform and the second
chirp. Hence, the quadratic Fourier transform is an extension of the fractional Fourier
transform in the sense that the directions in the time-frequency plane are scaled by some
factor depending on the angle. For more details on the fractional Fourier transform see
also [40].

Proposition 2.12. Every operator SW,n extends to a unitary operator on L2
(
Rd
)
and the

inverse is given by
S−1
W,n = SW ∗,n∗ ,

with W ∗ (t̃, t
)
= −W

(
t, t̃
)
and n∗ = d− n.

Proof. The fact that SW,n is a unitary operator is clear since, VP , ML,n and J are unitary.
Obviously, we have

V−1
P = V−P , M−1

L,n = ML−1,−n
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and the inverse of the modified Fourier transform is given by

J−1ψ(t) = id/2
∫

Rd

ψ(ω) e2πit·ω dω = id/2F−1ψ(t)

We note that
J−1ML−1,−n = M−LT ,d−nJ

and hence,
S−1
W,n = V−QJ

−1ML−1,−nV−P = SW ∗,n∗ .

From Definition 2.11 it follows that the metaplectic operators are a subset of the group
U
(
L2
(
Rd
))
. In fact the metaplectic operators form a subgroup of U

(
L2
(
Rd
))

[36, 41].

Definition 2.13 (Metaplectic Group). The group generated by the quadratic Fourier
transforms SW,n is called the metaplectic group and is denoted by Mp(2d,R). Its elements
are called metaplectic operators.

Theorem 2.14. For every S ∈ Mp(2d,R) there exist two quadratic Fourier transforms
SW1,n1 and SW2,n2 such that S = SW1,n1SW2,n2.

The factorization in Theorem 2.14 is not unique as the identity operator can always be
written as SW,nSW ∗,n∗.

Corollary 2.15. The set of all operators

{VP ,ML,n, J}

generates the metaplectic group.

We close this section by introducing the natural projection of the metaplectic group
Mp(2d,R) onto the symplectic group Sp(2d,R), which we will denote by πMp. For the
details we refer to [36].

Theorem 2.16. The mapping

πMp : Mp(2d,R) −→ Sp(2d,R)

SW,n 7−→ SW

which associates a free symplectic matrix with generating functionW to a quadratic Fourier
transform, is a surjective group homomorphism. Hence,

πMp (S1S2) = πMp (S1) π
Mp (S2) .

and the kernel of πMp is given by

ker(πMp) = {±I}.

Therefore, πMp :Mp(2d,R) 7→ Sp(2d,R) is a two-fold covering of the symplectic group.
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Definition 2.17. The mapping πMp in Theorem 2.16 is called the natural projection of
Mp(2d,R) onto Sp(2d,R).

The natural projections of the metaplectic generator elements are the symplectic gen-
erator elements.

πMp (±VP ) = VP , πMp (±ML,n) =ML, πMp (±J) = J.

For more information on the interplay of the symplectic and the metaplectic group we
refer to [34, 36].
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3 Gabor Frame Sets of Invariance

In this section we will study examples of generalized Gaussian Gabor frames where the
frame bounds stay invariant under a change of the lattice or a change of the Gaussian.
The machinery working in the background is the interplay between symplectic and the
metaplectic group as described in Section 2. We will have a look at the geometric aspects
of the window and the lattice in the time-frequency plane and we will use the geometric
intuition to quickly derive some classical as well as some non-obvious results.

We introduce the following notation. Assume G(g1,Λ1) and G(g2,Λ2) are Gabor frames
with the same optimal frame bounds then we write

G(g1,Λ1) ∼= G(g2,Λ2).

We note that a priori we cannot say anything more about the relation between the two
frames from the fact G(g1,Λ1) ∼= G(g2,Λ2). The windows as well as the lattices might
be totally unrelated to each other, but we are particularly interested in cases where the
windows g1 and g2 can be derived from each other by the action of an element of the
metaplectic group.

Theorem 3.1. Let G(g,Λ) be a Gabor frame. Let S ∈ Mp(2d,R) and let S ∈ Sp(2d,R)
be the natural projection of the metaplectic operator πMp(S) = S. Then

SG(g,Λ) = G(Sg, SΛ)

and therefore G(Sg, SΛ) ∼= G(g,Λ).

Proof. The key ingredient in the proof is the following relation between metaplectic oper-
ators and the symmetric time-frequency shifts defined by

ρ(λ) = ρ(x, ω) =Mω/2TxMω/2.

We have the following covariance principle

S−1ρ (Sλ)S = ρ(λ),

with πMp(S) = S. From this we conclude that

∑

λ∈SΛ
|〈f, ρ(λ)Sg〉|2 =

∑

λ∈SΛ

∣∣〈f, Sρ
(
S−1λ

)
g
〉∣∣2 =

∑

λ∈Λ

∣∣〈S−1f, ρ(λ)g
〉∣∣2 .

From the frame inequality

A‖f‖22 ≤
∑

λ∈Λ
| 〈f, π(λ)g〉 |2 ≤ B‖f‖22, ∀f ∈ L2

(
R

d
)

we finally conclude that G(Sg, SΛ) ∼= G(g,Λ) since ‖f‖22 = ‖S−1f‖22 for all f ∈ L2
(
Rd
)
.
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The theorem can be found in [38] and follows from classical results in harmonic analysis.
Similar results and the covariance principle can also be found in the textbooks of de Gosson
[36], Folland [34] or Gröchenig [41].

The first observation we make in the direction of frame bounds is that a phase factor
c ∈ C with |c| = 1 is negligible since G(g,Λ) ∼= G(c g,Λ) as can also directly be seen from
the frame inequality. Actually we already used that fact in the argumentation above as
the covariance principle holds for the symmetric time-frequency shifts whereas the frame
inequality is formulated for usual time-frequency shifts. Therefore, in what follows, we will
not care too much about appearing phase factors.

Theorem 3.1 is a particular case of the notion of a “Hamiltonian deformation of Gabor
frames” as described in [38]. It tells us under which conditions the frame property as well
as the optimal frame bounds are kept when a Gabor frame suffers some deformations.
This is a very special case, as in general neither the optimal frame bounds nor the frame
property might be kept under some general deformation of the frame. However, as already
presented in Section 1.1, there are cases when the frame property might be kept without
keeping the optimal frame bounds [39, 28, 46]. This is usually done by either deforming the
window and fixing the lattice or the other way round. By Theorem 3.1, we know that these
approaches are equivalent as long as we stick to symplectic and metaplectic deformations.

What we will see in the following sections is that it is possible to keep both, the frame
property and the optimal frame bounds under certain lattice deformations, without chang-
ing the window. This is due to the fact that generalized Hermite functions, including the
generalized Gaussians, are eigenfunctions of certain metaplectic operators with eigenvalues
of modulus 1. Hence, the corresponding symplectic matrix will deform the lattice, while
the window remains unchanged up to a phase factor.

3.1 Lattice Rotations and the Standard Gaussian

From this point on, we will only consider the 1-dimensional case. The most popular 1-
dimensional window function is probably the standard Gaussian

g0(t) = 21/4e−πt2 .

Although Gabor frames with Gaussian window have been studied intensively, we still want
to explore and exploit the Gabor family G(g0,Λ) with vol(Λ) < 1. We recall that by the
work of Lyubarskii [61] and Seip [70] the frame set of the Gaussian window is the largest
possible

Ffull(g0) =
{
Λ ⊂ R

2 | vol(Λ) < 1
}
.

One of the simplest manipulations of our Gabor frame is to rotate the lattice and cal-
culate the corresponding window. This means that our lattice is deformed by the rotation
matrix

Sτ =

(
cos τ sin τ
− sin τ cos τ

)
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and the corresponding deformation of the window is given by the action of the quadratic
Fourier transform on the window g0. To derive an explicit formula for the resulting window
we use Proposition 2.6 and equation (2.17).

Sτ g0
(
t̃
)
= in(τ)−

1
2

√
1

| sin τ |

∫

R

e2πiWτ(t,t̃)g0(t) dt,

where n(τ) ∈ {0, 1, 2, 3} depends on τ and the choice of arg
(√

sin(τ)
)
and where

Wτ

(
t, t̃
)
=

1

2 sin τ

(
(t2 + t̃ 2) cos τ − 2 t t̃

)
.

This manipulation is meaningful whenever τ 6= kπ, k ∈ Z. The case τ = kπ is obvious,
since the matrix Skπ equals ±I. Hence, by the factorization I = −J2, we find that the
corresponding metaplectic operator can be assigned and is (up to the sign) the identity

operator. In the case that τ = (2k+1)π
2

, k ∈ Z, we simply recover, up to a phase factor, the
(modified) Fourier transform as the resulting metaplectic operator, which reflects the fact
that changing from the time domain to the frequency domain is equivalent to a rotation of
the time-frequency plane by 90 degrees. We would like to know the resulting window for
general τ . Performing the calculations, we get

Sτg0(t) = 21/4in(τ)e−i τ
2 e−πt2 = c g0(t),

with |c| = 1. The calculations above need a change of variables and the Fourier invariance
of the standard Gaussian, Fg0 = g0. For a proof of the Fourier invariance of g0 see [34, 41].
Hence, we have the result

G(g0,Λ) ∼= G(g0, SτΛ),

which means that the frame bounds of a Gabor frame with window g0 stay invariant under
a rotation of the lattice. A heuristic explanation is given by looking at the ambiguity
function of the standard Gaussian which is given by

Ag0(x, ω) = e−
π
2 (x2+ω2).

It is rotation symmetric in the time-frequency plane. Therefore a rotation of the time-
frequency plane will yield a rotated lattice and the same ambiguity function. We also want
to mention the other quadratic representations of g0 we introduced. The STFT is given by

Vg0g0(x, ω) = eπixωe−
π
2 (x

2+ω2)

whereas the Wigner distribution is given by

Wg0(x, ω) = 2e−2π(x2+ω2).

We note the relations

|Vg0g0(x, ω)| = Ag0(x, ω) = F−1 (Wg0) (−ω, x).
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3.2 Elliptic Deformations and Dilated Gaussians

In Section 3.1 we saw that, using the standard Gaussian window, the Gabor frame bounds
stay invariant under a rotation of the lattice. We will now extend this result using ideas
from Hamiltonian mechanics. For an introduction to Hamiltonian mechanics we refer to
Arnold’s textbook [4].

We introduce the harmonic oscillator with mass m = 1 via its Hamiltonian given by

H(x, ω; τ) =
x(τ)2

2
+
ω(τ)2

2
. (3.1)

Assuming a conservative system, the Hamiltonian gives the full energy of the system and
is therefore constant. Hamilton’s equations are given by

d

dτ
λ = J

(
∂
∂x
H

∂
∂ω
H

)
= Jλ, (3.2)

where λ = (x, ω) and both, x and ω depend on τ . The rotation matrix

Sτ =

(
cos τ sin τ
− sin τ cos τ

)

determines the phase flow of the harmonic oscillator with mass m = 1. This means that
if the pair (x0, ω0) is an initial state satisfying (3.1) and (3.2), then the pair (xτ , ωτ) =
Sτ (x0, ω0) is a solution to (3.1) and (3.2).

Allowing arbitrary mass m, the Hamiltonian of the harmonic oscillator is given by

Hm(x, ω; τ) =
mx2

2
+
ω2

2m
.

The trajectories of the initial value problem induced by Hamilton’s equations

d

dτ
λ = J

(
∂
∂x
Hm

∂
∂ω
Hm

)
, λ(0) = λ0 (3.3)

will be ellipses in standard position with semi-axis ratio m.
Assume now we are given the Gabor frame G(g0,Λ) with standard Gaussian window

and arbitrary lattice Λ with vol(Λ) < 1. Any dilation of the lattice by a symplectic matrix
M√

m can be compensated by a metaplectic dilation of the window such that the frame
bounds remain unchanged, so

G(g0,Λ) ∼= G(M√
m g0,M√

mΛ).

The dilated standard Gaussian is

g0,m(t) = M√
m g0(t) = c (2m)1/4e−πmt2 ,
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where |c| = 1. Next, we compute the ambiguity function Ag0,m.

Ag0,m(x, ω) =
√
2m

∫

R

e−πm(t+x/2)2e−πm(t−x/2)2e−2πiωt dt

=
√
2me−πmx2/2

∫

R

e−πm2t2e−2πiωt dt

= e
−π

2

(
mx2+ω2

m

)

.

Hence, any level set of Ag0,m will be an ellipse in standard position with semi-axis ratio m.
As already mentioned, the trajectories of System (3.3) are the ellipses

mx2 +
ω2

m
= Hm = const.

In general a set X in phase space will change its shape under the action of the phase
flow ϕτ associated to a Hamiltonian system, but it follows from the general theory on
Hamiltonian mechanics that the volume is preserved vol(X) = vol(ϕτX). Also, if x ∈ X
then ϕτx ∈ ϕτX and if X1 ∩ X2 = {} then ϕτX1 ∩ ϕτX2 = {}. In the particular case
of System (3.3) there exist sets which even keep their shape, regardless of their size and
position in phase space. These sets are the possibly translated ellipses in standard position.
Therefore the symplectic matrices

Sτ,m =

(
cos τ 1

m
sin τ

−m sin τ cos τ

)
.

with m fixed are the right candidates for deforming the lattice of the Gabor system
G(g0,√m,Λ) without changing the frame bounds.

Theorem 3.2. Let g0,m(t) = (2m)1/4e−πmt2 be the dilated standard Gaussian and let Λ ⊂
R2 be a lattice with vol(Λ) < 1. Let

Sτ,m =

(
cos τ 1

m
sin τ

−m sin τ cos τ

)
.

be the deformation matrix acting on the lattice. Then

G(g0,m,Λ) ∼= G(g0,m, Sτ,mΛ).

Proof. It is sufficient to show that

Sτ,mg0,m(t) = c g0,m(t),

with πMp (Sτ,m) = Sτ,m. Since the ambiguity function determines a function up to a phase
factor we will show

A (Sτ,m g0,m) (x, ω) = Ag0,m(x, ω).
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First, we note that

Sτ,mM√
m =

( cos τ√
m

sin τ√
m

−√m sin τ
√
m cos τ

)
=M√

mSτ ,

where Sτ = Sτ,1 is a rotation by −τ . This means, that imposing the elliptic flow Sτ,m on
the dilated lattice is the same as rotating the lattice by the corresponding angle followed
by the same dilation. As a next step we recall the covariance principle

ρ(λ)S = Sρ
(
S−1λ

)

for symmetric time-frequency shifts. Since Af(λ) = 〈f, ρ(λ)f〉, the covariance principle
implies that

A (Sf) (λ) = Af(S−1λ).

Using the fact that

Ag0(λ) = Ag0(x, ω) = e−
π
2
(x2+ω2) = e−

π
2
〈λ, λ〉

we compute
A (Sτ,m g0,m) (x, ω) = A

(
Sτ,mM

√
m g0

)
(x, ω)

= Ag0
((
Sτ,mM√

m

)−1
λ
)

= e
−π

2

〈
(Sτ,m M√

m)
−1

λ, (Sτ,m M√
m)

−1
λ
〉

= e
−π

2

〈
(M√

m Sτ)
−1

λ, (M√
m Sτ)

−1
λ
〉

= e
−π

2

〈
S−1
τ M−1√

m
λ, S−1

τ M−1√
m

λ
〉

= e
−π

2

〈
M−1√

m
λ, M−1√

m
λ
〉

= e
−π

2

(
mx2+ω2

m

)

= Ag0,m(x, ω).
Therefore, we find that the ambiguity function Ag0,m stays invariant under the action
of Sτ,m on the window g0,m. This implies that the dilated standard Gaussian g0,m is an
eigenfunction of Sτ,m with an eigenvalue of modulus 1.

Sτ,m g0,m(t) = c g0,m(t), (3.4)

with |c| = 1. Hence, equation (3.4) implies that

G(g0,m,Λ) ∼= G(g0,m, Sτ,mΛ),
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We note that according to Theorem 3.2 for each Gaussian there is an uncountable family
of lattices, all with different Euclidean geometry, such that the resulting frame bounds are
always the same. The only case where the Euclidean geometry remains unchanged is for
m = 1, meaning that we only rotate the lattice. Hence, taking only the geometry into
account, there is only 1 lattice for the standard Gaussian for which the frame bounds are
kept.

In order to derive Theorem 3.2 we were motivated by a geometric approach and a
clear picture in mind about the flow induced by the harmonic oscillator. The crucial in-
gredient for Theorem 3.2 to work is that we could explicitly calculate the eigenfunctions
of the metaplectic operator via the ambiguity function. We note that similar approaches
have already been made by Daubechies in 1988 [18], characterizing the (dilated) Hermite
functions as eigenfunctions of certain localization operators. A geometric approach in the
time-frequency plane has also been used in [20] to construct frames consisting of eigen-
functions of localization operators. We only stated Theorem 3.2 for the dilated Gaussian
window, but the result holds for all dilated Hermite functions since they are eigenfunctions
of the quadratic Fourier transform defined in (2.17) and have eigenvalues of modulus 1.
We recall that we defined the n-th Hermite function as

hn(t) =
21/4

(n!(2π)n 2n)1/2
eπt

2

(
dn

dtn
e−2πt2

)
, n ∈ N0.

In fact we find the following characterization of the Hermite functions in Folland’s textbook
[34].

Proposition 3.3. For f ∈ L2 (R) the ambiguity function Af(x, ω) is rotation-invariant if
and only if f is a Hermite function f = c hn, c ∈ C, n ∈ N0.

As a consequence we get the following conjecture for the Hermite functions.

Conjecture 3.4. Let g ∈ L2 (R), Λ ⊂ R2 such that the system G(g,Λ) is a frame and let

Sτ,m =

(
cos τ 1

m
sin τ

−m sin τ cos τ

)
.

Then the following are equivalent.

(i) For all τ ∈ R we have G(g,Λ) ∼= G(g, Sτ,mΛ).

(ii) For all τ ∈ R we have A (Sτ,mg) (x, ω) = Ag(x, ω) with πMp(Sτ,m) = Sτ,m

(iii) g(t) = cM√
m hn(t), c ∈ C.

The part needing verification is (i)⇒ (ii). (ii)⇔ (iii) is Proposition 3.3 and (ii)⇒ (i)
follows from Theorem 3.2.

As a next step, we will present results where the frame bounds are kept under the
action of a discrete, non-compact deformation group leaving the lattice invariant.
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3.3 Modular Deformations of Gabor Frames

In this section, we will investigate discrete deformations of Gabor frames for dimension
d = 1. In particular, the objects of interest are taken from the modular group which we
define as follows.

Definition 3.5 (Modular Group). The modular group SL(2,Z) consists of all 2×2 matrices
with integer entries and determinant 1.

The modular group is therefore a discrete subgroup of SL(2,R) = Sp(2,R). In the lit-
erature, the modular group is also defined as the group of linear fractional transformations
on the complex upper half plane

H = {z ∈ C | Im(z) > 0}

which have the form

z 7→ az + b

cz + d
,

with a, b, c, d ∈ Z and ad − bc = 1. It is obvious how to switch between these definitions
and how to identify elements of the mentioned groups. For more details on the modular
group see, e.g., the textbook of Stein & Shakarchi [71].

Consider the integer lattice Z
2. The action of the modular group leaves Z

2 invariant,
i.e. BZ2 = Z2 for B ∈ Sp(2,Z). In other words, B is just another choice for a basis of
Z2. In particular, any B ∈ Sp(2,Z) provides a basis for Z2. Taking any symplectic matrix
S ∈ Sp(2,R) and any basis B ∈ Sp(2,Z) for Z2 this implies that

SZ2 = SBZ2.

We stay with the square lattice for the beginning. Let

Λδ
� =

1√
δ
Z× 1√

δ
Z

be the square lattice of density δ > 1 such that the system G
(
g,Λδ

�

)
is a Gabor frame. For

B =

(
a b
c d

)
∈ Sp(2,Z)

the corresponding metaplectic operator is given by

Bg
(
t̃
)
= i−

1
2

√
1

|b|

∫

R

e2πiW(t̃,t)g(t) dt,

where W
(
t̃, t
)
= 1

2
d
b
t̃ 2 − 1

b
t̃ t + 1

2
a
b
t2 and b 6= 0. In general Bg will differ from g by more

than just a phase factor as we apply a chirp, a modified Fourier transform, a dilation and
again a chirp, but the lattice remains invariant under a modular deformation. Hence,

G
(
g,Λδ

�

) ∼= G
(
Bg,Λδ

�

)
.
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This result can be extended in an obvious way. Let S ∈ Sp(2,R) and let S ∈Mp(2,R) be
the corresponding metaplectic operator, then

G
(
Sg, SΛδ

�

) ∼= G
(
SBg, SΛδ

�

)
.

Therefore, given any lattice Λ = SΛδ
� there are countably many possible windows, resulting

from one and the same window, which lead to the same Gabor frame bounds. We sum up
the results in the following theorem.

Theorem 3.6. Let S ∈ Sp(2,R), B ∈ Sp(2,Z) and let S and B be the corresponding
metaplectic operators. Let Λδ

� = 1√
δ
Z × 1√

δ
Z with δ > 1 and let g ∈ L2 (R) be a window

function. Then
G
(
Sg, SΛδ

�

) ∼= G
(
SBg, SΛδ

�

) ∼= G
(
g,Λδ

�

)
.

Whereas the deformations in the previous section had been derived from a continuous,
compact group, the deformations in the current section were derived from a discrete, non-
compact group. Continuous deformation groups will in general change the lattice, whereas
the window might stay invariant under the corresponding deformation. Discrete deforma-
tion groups will in general change the window, whereas the lattice might stay invariant
under the corresponding deformation.

We also note the importance of the order of the operators in Theorem 3.6. The window
is chosen according to a choice of basis for the window before performing the deformation of
the frame. Once the window is chosen we apply Theorem 3.1 in order to derive Theorem 3.6.
What we learn from Theorem 3.6 is that the intuition that we need nicely concentrated
windows in order to derive good frame bounds if we choose a ‘nice’ lattice such as the
quadratic or the hexagonal lattice, is misleading. This results from the fact that the basis
for the integer lattice Z2 might be far from the standard orthonormal basis in R2. We will
discuss this property in more detail in the next section.

3.4 Examples for Generalized Gaussians

We will now illustrate our geometric approach to keep the frame bounds when deforming
a Gabor frame by example, using different Gaussians and different lattices.

Example 3.7. We start with an example inspired by the article of Strohmer & Beaver
[72]. For this purpose, let

Λδ
h =

1√
δ

√
2√
3

(
cos(π/6) cos(π/6)
− sin(π/6) sin(π/6)

)
Z
2

be a version of the hexagonal lattice of density δ > 1. We choose the standard Gaussian
g0 as window function. The resulting Gabor system G

(
g0,Λ

δ
h

)
is then of course a Gabor

frame. We apply the dilation matrixM3−1/4 on the lattice and the rescaling operatorM3−1/4

on the window. Theorem 3.2 tells us that

G
(
g0,Λ

δ
h

) ∼= G
(
M3−1/4g0,M3−1/4Λδ

h

)
.
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We compute

M3−1/4Λδ
h =

1√
δ

(
cos(π/4) sin(π/4)
− sin(π/4) cos(π/4)

)
Z
2 = Sπ

4
Λδ

�,

which is a 45 degrees rotated version of the square lattice of density δ > 1. Recall, that
the ambiguity function of g0 is given by

Ag0(x, ω) = e−
π
2
(x2+ω2)

and the ambiguity function of M3−1/4g0 = g0, 1√
3
is given by

Ag0, 1√
3
(x, ω) = e

−π
2

(
x2√
3
+
√
3ω2

)

.

So far, we derived the observation from [72] that G
(
g0,1,Λ

δ
h

) ∼= G
(
g0,

√
3, Sπ

4
Λδ

�

)
. Basically

this means that for a Gaussian whose ambiguity function has ellipses with axis ratio
√
3

and as level lines, we can choose a 45◦ rotated version of the square lattice and have the
same frame bounds as for the standard Gaussian and the hexagonal lattice of same density.
Applying the matrix

Sτ, 1√
3
=

(
cos τ

√
3 sin τ

− sin τ√
3

cos τ

)
,

derived from the flow of the harmonic oscillator with mass m = 1√
3
on the lattice will leave

the frame bounds unchanged and we have

G
(
g0,Λ

δ
h

) ∼= G
(
g0, 1√

3
, Sπ

4
Λδ

�

)
∼= G

(
g0, 1√

3
, Sτ, 1√

3
Sπ

4
Λδ

�

)
.

The deformation process is illustrated in Figure 2. Unless τ = k π
3
, k ∈ Z, the lattice

will not be a rotated version of the square lattice. The property which stays invariant under
the deformation is the shape of the Gaussian. If we consider the level line of the Gaussian
which gives the densest packing in the time-frequency plane, we observe that the packing
density and the shape of the level line are the features which stay invariant under the
chosen deformation. As already mentioned, we have chosen the operator according to the
shape of the Gaussian and in general shapes are not kept under Hamiltonian deformations.
The only property which stays invariant in general is the packing property. We extended
the observations from [72] a bit, by providing an uncountable family of lattices which give
the same packing property and the same frame bounds for a dilated Gaussian. We note
again that for the standard Gaussian we can only rotate the lattice in order to keep these
properties.

♦

Example 3.8. Let Λδ
� = 1√

δ
Z2 be the square lattice of density δ > 1 and let g0(t) =

21/4e−πt2 be the standard Gaussian. The standard symplectic form J belongs to the mod-
ular group Sp(2,Z). Hence, JΛδ

� = Λδ
� and Jg0 = c g0 with |c| = 1. In this case neither
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(a) τ = π/12
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(c) τ = −π/12
−3 −2 −1 0 1 2 3

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(d) τ = −π/6

Figure 2: Illustration of the action of Sτ,m on the lattice and of Sτ,m on the ambiguity
function. The small ellipses illustrate the ambiguity functions centered at lattice points.

The ellipses centered at the origin indicate flow lines of the harmonic oscillator.

the change of basis, nor the metaplectic operation have an effect on the Gabor frame. This
is due to the fact that we could interpret the change of basis as a rotation of the time-
frequency plane. Using a quadratic representation of g0, such as the ambiguity function,
we see that a rotation does not have an effect as Ag0(x, ω) = e−

π
2
(x2+ω2).

Let us now consider the case of g0,
√
3 and Sπ

4
Λδ

� which is a 90 degrees rotated version
of the window in Example 3.7. It can also be seen as a deformation of the window under
a change of basis. Starting from the ambiguity function of

Ag0,√3(x, ω) = e
−π

2

(√
3x2+ ω2

√
3

)

,

we rotate our lattice by the matrix S−π
4
and apply the corresponding operator S−π

4
on the
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window. Hence, the ambiguity function of the new window becomes

A
(
S−π

4
g0,

√
3

)
(x, ω) = Ag0,√3

(
S−1
−π

4
λ
)

= Ag0
(
M−1

31/4
S−1
−π

4
λ
)

= e
−π

2

〈(
S−π

4
M

31/4

)−1
λ,

(
S−π

4
M

31/4

)−1
λ

〉

= e
−π

2

(
M

3−1/4Sπ
4
λ
)T

·
(
M

3−1/4Sπ
4
λ
)

= e
−π

2
λTST

π
4
MT

3−1/4
M

3−1/4Sπ
4
λ

= e
−π

2
λTS−π

4
M

3−1/2Sπ
4
λ

= e
−π

2
2√
3
(x2+xω+ω2).

Therefore, the level lines of the ambiguity function will be ellipses rotated by 45 degrees
with axis ratio equal to

√
3 and the lattice will be a square lattice with density δ > 1. The

action of the metaplectic operator can be interpreted in a very natural and geometric way
as can be seen by the calculations above. Every action imposed on the lattice effects the
shape of the ambiguity function in exactly the same way as the geometry of the lattice is
changed. We could also have rotated the lattice Λ = 1√

δ
Sπ

4
Z
2 in the opposite direction by

Sπ
4
. Then the lattice would have been 1√

δ
JZ2, which leads to the same lattice, but with

another choice of basis. Hence, the window as well as the ambiguity function would have
changed.

A
(
S−1
−π

4
g0,

√
3

)
(x, ω) = e

−π
2

2√
3
(x2−xω+ω2) = A

(
S−π

4
g0,1/

√
3

)
(x, ω)

Switching from A
(
S−1
−π

4
g0,

√
3

)
to A

(
S−1
−π

4
g0, 1√

3

)
, illustrated in Figure 3, can be interpreted

as a rotation, a shearing or as choosing a different basis.

♦

Example 3.9. In this example we discuss Theorem 3.6 by considering the ambiguity
function of the window. We choose the window g0, 1

3
which has ambiguity function

Ag0, 1
3
(x, ω) = e

−π
2

(
x2

3
+3ω2

)

.

This window is quite concentrated in the frequency direction whereas it is pretty spread
in the time direction. Nonetheless we choose again the hexagonal lattice

Λδ
h = Sδ

hZ
2 =

1√
δ

√
2√
3

(
cos(π/6) cos(π/6)
− sin(π/6) sin(π/6)

)
Z
2.
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(a) A
(
S−π

4
g
0,
√

3

)
(b) A

(
S−π

4
g
0, 1

√

3

)

Figure 3: Contour plots of the ambiguity functions of two generalized Gaussians which
lead to the same frame bounds for the scaled integer lattice of density δ > 1.

Then we have
G
(
g0,Λ

δ
h

) ∼= G
(
g0, 1

3
,Λδ

h

)
.

The basis chosen for Z2 in the example are the Euclidean standard Basis and

B̃ =

(
1 1
0 1

)
.

In particular there exist a generalized Gaussian window g̃ and metaplectic operators Sδ
h

with πMp
(
Sδ
h

)
= Sδ

h and B̃ with πMp
(
B̃

)
= B̃ such that

G
(
g̃,Z2

)
= G

((
S
δ
h

)−1
g0,Z

2
)
= G

(
B

−1
(
S
δ
h

)−1
g0, 1

3
,Z2
)

By choosing another basis we can create even less concentrated (generalized) Gaussian
windows which still lead to Gabor frames which have the same frame bounds as G

(
g0,Λ

δ
h

)
.

We also note that in contrast to Example 3.8 the systems G
(
g0, 1

3
,Λδ

h

)
and G

(
g0,3,Λ

δ
h

)
do

not posses the same optimal frame bounds since Λδ
h is not invariant under a rotation of

90◦.

♦
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(a) Hexagonal arrangement for the standard
Gaussian.
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(b) Hexagonal arrangement for the dilated stan-
dard Gaussian

Figure 4: Illustrated are the shapes of the ambiguity functions of the time-frequency
shifted standard Gaussian g0 and of the time-frequency shifted dilated Gaussian g0, 1

3
. In

both cases the time-frequency shifts are carried out in the same hexagonal pattern. The
straight lines indicate the chosen basis B for the lattice, the large circle is for visual aid to

identify the hexagonal pattern more easily.

We have seen that the geometric intuition we have about packing problems is helpful
for deforming Gaussian Gabor frames without changing the frame bounds, but we have to
be aware that we might encounter some surprising results if we do not choose the standard
basis for Z2. These heuristic arguments lead to the conjectures that for the standard
Gaussian among all separable lattice the square lattice yields the best frame bounds and
that among general lattices the hexagonal lattice gives the best frame bounds. We will
prove parts of these conjectures in the upcoming sections.
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4 Optimal Frame Bounds

In this section we will outline methods to compute sharp frame bounds of a Gabor system
G(g,Λ). These methods will also serve as tools to investigate how the frame bounds change
in dependence of the lattice parameters.

4.1 The Zak Transform and the Pre-Gramian

So far, we found conditions under which two Gabor frames possess the same optimal frame
bounds. As a next step, we will study how to explicitly compute those optimal bounds.
A tool heavily exploited when it comes to calculating frame bounds is the Zak transform
which we will define right away.

Definition 4.1 (Zak Transform). The Zak transform of the function f ∈ L2 (R) with
respect to the parameter T > 0 is given by

(ZT f) (x, ω) =
√
T
∑

k∈Z
f (x− Tk) e2πiTkω, x, ω ∈ R.

For an extensive study on the Zak transform we refer to [41, 52]. The origin of this
transform goes at least back to Weil [74], according to Janssen [52] it was already studied by
Gauss. It became more popular after Zak’s work on finding eigenfunctions for a complete
set of commuting operators in quantum mechanics in 1967 [78]. Since then, the Zak
transform has often been used as tool in time-frequency analysis to compute the frame
bounds of Gabor frames [48, 52, 54, 62].

Lemma 4.2. Let 1 < 1
αβ

= n ∈ N be fixed and let Λ = αZ × βZ and f ∈ L2 (R). Then

the optimal lower and upper frame bound of G(f,Λ) are given by

A = ess inf
(x,ω)

n−1∑

k=0

∣∣∣∣(Zαf)

(
x+

k

n
, ω

)∣∣∣∣
2

(4.1)

B = ess sup
(x,ω)

n−1∑

k=0

∣∣∣∣(Zαf)

(
x+

k

n
, ω

)∣∣∣∣
2

(4.2)

respectively, where the essential infimum and supremum may be taken over any unit square
in R2.

Janssen uses an equivalent approach to compute frame bounds for windows in L2 (R)
on separable lattices [53, 54], which we will follow. First, we define the operator G which
maps elements of L2 (R) onto double sequences and is often called the pre-Gramian of the
Gabor frame G(g, αZ× βZ)

Gf =
(
〈f,Mk/βTl/α g〉

)
k,l∈Z , f, g ∈ L2 (R) .
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Then the operator GG∗, called the Gramian of G(g, αZ×βZ), maps double sequences onto
double sequences and has matrix elements

(GG∗)(k,l);(k′,l′) = 〈Ml′/αTk′/β g,Ml/αTk/β g〉,

with k, l, k′, l′ ∈ Z, g ∈ L2 (R). In the case that 1 ≤ 1
αβ

= n ∈ N, by using the commutation

relations (1.2) it can easily be shown that

(GG∗)(k,l);(k′,l′) = 〈g,M(l−l′)/αT(k−k′)/β g〉,

with k, l, k′, l′ ∈ Z, g ∈ L2 (R). Also, in this case the Gramian GG∗ has Toeplitz structure

and the spectrum of GG∗ is therefore contained in the interval
[
Ã, B̃

]
, where

Ã =ess inf
(x,ω)

Fg(x, ω;α, β) (4.3)

B̃ =ess sup
(x,ω)

Fg(x, ω;α, β) (4.4)

where Fg is the Fourier series associated to the Toeplitz operator GG∗ [14].

Fg(x, ω;α, β) =
∑

(k,l)∈Z2

〈g,Ml/αTk/β g〉 e2πikxe2πilω (4.5)

and the essential infimum and supremum may be taken over any unit square. The reader
familiar with Riesz sequences will have noticed that these are the Riesz bounds of the
adjoint Gabor system. We find that

1

αβ
Fg(x, ω;α, β) =

n−1∑

k=0

∣∣∣∣(Zαf)

(
x+

k

n
, ω

)∣∣∣∣
2

(4.6)

(see e.g. [54]) and so from (4.1), (4.2), (4.3), (4.4) and (4.6) we conclude that the spectral
bounds of GG∗ coincide with the Gabor frame bounds of G(g, αZ×βZ) up to the constant
factor n = 1

αβ
.

The operator G already appeared in the work by Wexler & Raz [75] where they study
the construction of dual windows. The method became known as the Wexler-Raz biorthog-
onality relations.

We will now compute the frame bounds for a chirped Gaussian window on a rectangular
lattice with (fixed) integer redundancy. This is equivalent to computing the frame Bounds
for a Gabor frame with the standard Gaussian g0 on a general lattice of (fixed) integer
redundancy.

The chirped standard Gaussian, with chirping parameter γ, is given by

Vγg0(t) = gγ(t) = eπiγt
2

21/4e−πt2 = 21/4e−πt2(1−iγ).
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The frame bounds are then given by the minimum and maximum of the Fourier series

Fgγ(t, ω;α, β) =
∑

k∈Z

∑

l∈Z
〈gγ,Ml/αTk/β gγ〉e2πikxe2πilω.

Furthermore, we compute

〈
gγ , M l

α
T k

β
gγ

〉
= 21/2

∫

R

eπiγt
2

e−πt2e−πiγ(t−k/β)2e−π(t−k/β)2e−2πil/α t dt

= 21/2
∫

R

eπiγ(t
2−(t−k/β)2)e−π(t2+(t−k/β)2)e−2πil/α t dt

= 21/2e
−π k2

β2 (1−iγ) 1√
2

∫

R

e−πt2e−2πi( l
α
+ k

β
(−γ+i))/

√
2 t dt

= e
−π k2

β2 (1+iγ)
e−

π
2 (

l
α
+ k

β
(−γ+i))

2

= e−πi kl
αβ e

−π
2

(
k2

β2+( l
α
− kγ

β )
2
)

.

Since we have (αβ)−1 = n ∈ N, the complex exponential will give an alternating sign.
Therefore, the lower and upper frame bound are given by

A(α, β) = min
(x,ω)∈[0,1]2

n
∑

k,l∈Z
(−1)(kln) e−

π
2

(
k2

β2+( l
α
− kγ

β )
2
)

e2πikxe2πilω, (4.7)

B(α, β) = max
(x,ω)∈[0,1]2

n
∑

k,l∈Z
(−1)(kln) e−

π
2

(
k2

β2+( l
α
− kγ

β )
2
)

e2πikxe2πilω (4.8)

respectively. We will study these series intensively in the Section 5.

4.2 Janssen’s Representation

We want to mention a certain representation of the frame operator which also goes back
to Janssen [53] and is now widely known as Janssen’s representation. Before doing so, we
formulate the definition of the adjoint lattice.

Definition 4.3. For a lattice Λ ⊂ R2 the adjoint lattice is given by

Λ◦ = vol(Λ)−1Λ.

Proposition 4.4 (Janssen’s representation). Let g ∈ L2
(
Rd
)
with the property that

∑

λ◦∈Λ◦

|〈g, π(λ◦)g〉| <∞. (4.9)

Then, the frame operator can be written in the form

Sg,Λ = vol(Λ)−1
∑

λ◦∈Λ◦

〈g, π(λ◦)g〉π(λ◦).
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We note that the coefficients, given by the inner products of g and its time-frequency
shifted version π(λ◦)g, appearing in Janssen’s representation are the same as the coefficients
appearing in the Fourier series associated to the Toeplitz operator GG∗ in equation (4.5).
We will make use of this representation in Section 6. Note that if the lattice Λ is very dense,
then the adjoint lattice Λ◦ is very coarse which usually gives computational advantages.
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5 The Separable Case and Jacobi’s Theta Functions

In this section we will focus on the case where Λ is a separable lattice, i.e. it can be
written in the form αZ× βZ, (α, β) ∈ R+×R+. The section is motivated by the following
question. Given a Gaussian window function, which lattice Λ ⊂ R

2 minimizes B/A? Due
to a conjecture in the work of Floch, Alard & Berrou in 1995 [33] the square lattice was
a promising candidate to provide a solution to this problem. This was disproved in 2003
by Strohmer & Beaver [72] by providing evidence that the hexagonal lattice is preferable
over the square lattice in terms of the frame condition. The new conjecture was therefore
that B/A is minimized by the hexagonal lattice among all lattices of any fixed redundancy
(this conjecture was also stated by Abreu & Dörfler in 2012 [1]). However, Strohmer &
Beaver also claim that it is ‘plausible’ to assume that the square lattice minimizes the frame
condition among all rectangular lattices. We believe that an even stronger statement is
true, which we formulate in the following conjecture.

Conjecture 5.1. 1. Let g0(t) = 21/4e−πt2 be the standard Gaussian window. Among all
pairs (α, β) in the set

F δ
(α,β)(g0) = {(α, β) ∈ R+ × R+ | (αβ)−1 = δ > 1, δ fixed}.

the pair
(

1√
δ
, 1√

δ

)
is the unique maximizers for the lower frame bound and the unique

minimizer for the upper frame bound.

For even redundancy, we will prove the correctness of the conjecture. Given a standard
Gaussian Gabor frame with a separable lattice of integer redundancy 1 < (αβ)−1 = n ∈
2N, we will show that the problems of finding lattice parameters maximizing the lower
frame bound and of finding lattice parameters minimizing the upper frame bound are
both uniquely solved for the parameters α = β = 1√

n
. Hence, the resulting lattice is the

square lattice. These results were first proven by Faulhuber & Steinerberger [24]. For odd
redundancy, we will also see a proof that the upper frame bound is again minimized if
α = β = 1√

n
.

Unfortunately, several details of [24, 7. Proof of Theorem 2.6], which implies the proof
of the maximality of the lower frame bound for the square lattice of odd redundancy,
were omitted and the author was not able to reproduce all the details necessary before
completion of the thesis. We will therefore not state this maximality result as a theorem,
but only try to make reasoning of [24, 7. Proof of Theorem 2.6] more plausible.

We will see that the proofs do not require any special knowledge on Gabor frames, but
rather need identities for Jacobi’s theta functions. The results and techniques presented
in this section have already been adapted and reused by other researchers. In particular,
some results from [24] were already used in [10] and [11].

1In a private discussion with Peter Søndergaard at the Strobl conference in 2014 we light-heartedly
called our intuition, that among all separable lattice the square lattice should minimize the frame condition
number, ‘The Obvious Conjecture’. At that time we only had numerical inspections and no idea how to
prove it.
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5.1 Even Redundancy.

Theorem 5.2. Consider the window function g0(t) = 21/4e−πt2. For the Gabor frame

G(g0, αZ× βZ)

with 1 < (αβ)−1 = n ∈ 2N we denote the lower and upper frame bound by

A = Ag0,n(α, β)

and
B = Bg0,n(α, β)

respectively. Then we have that

Ag0,n

(
1√
n
,

1√
n

)
≥ Ag0,n(α, β) (5.1)

Bg0,n

(
1√
n
,

1√
n

)
≤ Bg0,n(α, β) (5.2)

for all (α, β) ∈ R+ × R+ with 1 < (αβ)−1 = n ∈ N with equality if and only if (α, β) =(
1√
n
, 1√

n

)
.

Corollary 5.3. For g0(t) = 21/4e−πt2, the condition number of the frame operator for the
Gabor frame G(g0, αZ× βZ) is minimized for the square lattice. This means that

Bg0,n

Ag0,n

(
1√
n
,

1√
n

)
≤ Bg0,n

Ag0,n
(α, β)

for all (α, β) ∈ R+ × R+ with 1 < (αβ)−1 = n ∈ 2N with equality if and only if (α, β) =(
1√
n
, 1√

n

)
.

The proof of Theorem 5.2 will follow from statements about products of Jacobi’s theta-
3 and theta-4 function. Recall equation (4.7) and equation (4.8) which tell us that for a
chirped Gaussian the lower and upper frame bound can be computed, up to the factor
(αβ)−1 = n, via the minimum and the maximum of the Fourier series

Fgγ (x, ω;α, β) =
∑

k∈Z

∑

l∈Z
(−1)(kln) e−

π
2

(
k2

β2+( l
α
− kγ

β )
2
)

e2πikxe2πilω.

For γ = 0 this reduces to

Fg0(x, ω;α, β) =
∑

k∈Z

∑

l∈Z
(−1)klne−

π
2

(
k2

β2+
l2

α2

)

e2πikxe2πilω. (5.3)

We will need to prove many properties about Jacobi’s theta-3 and theta-4 function in
order to derive the results. This section will naturally split into two separate parts again,
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one proving results for θ3 and the result for the upper bound and one proving results of θ4
and the result for the lower bound.

If n is even the alternating sign in the Fourier series (5.3) vanishes and therefore we
treat this case first. We also see that we can split the double sum in the following way

Fg0(x, ω;α, β) =
∑

k∈Z
e
−π

2
k2

β2 e2πikx
∑

l∈Z
e−

π
2

l2

α2 e2πilω.

With the following definition we can rewrite Fgγ as a product of theta functions.

Definition 5.4 (Theta Function). For z ∈ C and τ ∈ H = {τ ∈ C|Im(τ) > 0} (complex
upper half plane) we define the function

Θ(z, τ) =

∞∑

k=−∞
eπik

2τe2πikz

called theta function.

From this definition we see that

Θ(z, τ) = Θ(z + 1, τ),

Θ(z, τ) = Θ(z, τ + 2).

Furthermore, Θ is an entire function in the variable z ∈ C and holomorphic in the variable
τ ∈ H. Also, for τ fixed we have the property that

Θ(1/2 + τ/2 + k + lτ, τ) = 0, k, l ∈ Z,

in particular Θ(1/2, 0) = 0 and Θ(1/2+τ/2, τ) = 0. There is also a product representation
of the theta function, known as Jacobi’s triple product representation, which will be useful
later on.

Proposition 5.5 (Jacobi triple product). For z ∈ C and τ ∈ H we have

Θ(z, τ) =
∏

k≥1

(
1− e2kπiτ

) (
1 + e(2k−1)πiτe2πiz

) (
1 + e(2k−1)πiτ e−2πiz

)
. (5.4)

For more details on theta functions and the product representation we refer to the
textbook of Stein & Shakarchi [71].

As Janssen already stated [54], it follows from the product representation that for real
z and purely imaginary τ = is, s ∈ R+ the function Θ(z, is) is maximal for z ∈ Z and
minimal for z ∈ Z+ 1

2
. Therefore, the Fourier series

Fg0(x, ω;α, β) =
∑

k∈Z
e
−π

2
k2

β2 e2πikx
∑

l∈Z
e−

π
2

l2

α2 e2πilω.

= Θ

(
x,

1

2β2

)
Θ

(
ω,

1

2α2

)

= Θ

(
x,

1

2β2

)
Θ

(
ω,
n2β2

2

)
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assumes its minimum at (x, ω) = (k + 1/2, l + 1/2) and its maximum at (x, ω) = (k, l),
k, l ∈ Z. For the special values z = 0 and z = 1/2 the theta function is known as Jacobi’s
theta-3 and theta-4 function respectively. We have

θ3(s) =
∞∑

k=−∞
e−πk2s = Θ(0, is)

θ4(s) =

∞∑

k=−∞
(−1)ke−πk2s = Θ(1/2, is)

with s ∈ R+. They appear in many different areas: θ4, for example, is a rescaling of the
cumulative distribution function of the Kolmogorov-Smirnov distribution in probability
theory whereas θ3 is the heat kernel on the torus evaluated at 0.

For (αβ)−1 = n ∈ 2N fixed, we can now write the lower and upper frame bound
of G(g, αZ × βZ) in dependence of one lattice parameter and in terms of Jacobi’s theta
functions. We have

A = A(β) = n θ4

(
1

2β2

)
θ4

(
n2β2

2

)
(5.5)

B = B(β) = n θ3

(
1

2β2

)
θ3

(
n2β2

2

)
. (5.6)

From these formulas it is easy to see that A(β) as well as B(β) have critical points at
β = 1/

√
n. The corresponding separable lattice is the quadratic lattice 1√

n
Z× 1√

n
Z. The

work lies in showing that there are no more critical points and that the resulting extrema
are global and unique.

By making the substitution β =
√
s/n we get

A
(√

s/n
)
= Ã(s) = n θ4

(n
2
s
)
θ4

(
n

2

1

s

)
(5.7)

B
(√

s/n
)
= B̃(s) = n θ3

(n
2
s
)
θ3

(
n

2

1

s

)
(5.8)

which is slightly easier to handle.
As a next step we take the algebraic structure into account. A straight-forward analysis

of the above products seems difficult because they have extremely small derivatives around
s = 1 (see Figures 5 and 6). The following lemma will be quite useful.

Lemma 5.6. Let Fr(s) = f(rs)f(r/s) with f : R+ → R+ differentiable and r ∈ R+ fixed.
If

s
f ′(s)

f(s)
is strictly increasing (decreasing) for s > 0,

then the only critical point of Fr(s) is at s = 1 and the this point is the global minimum
(maximum).

45



Proof. The algebraic structure implies that Fr(s) = Fr(1/s) and therefore there exists
either a local minimum or a local maximum. Each critical point of Fr satisfies

0 =
d

ds
Fr(s) = rf ′(rs)f(r/s)− r

s2
f(rs)f ′(r/s),

which is equivalent to

rs
f ′(rs)

f(rs)
=
r

s

f ′(r/s)

f(r/s)
.

The monotonicity assumption implies rs = r/s and thus s = 1 is the only solution. Also,
due to the monotonicity assumption, we find that the global minimum (maximum) is
achieved only for s = 1.

s

(a) The function θ3(6s)θ3(6/s).

s

(b) The function θ4(6s)θ4(6/s).

Figure 5: Both functions take their global extremum for s = 1.

s

(a) The function θ3(6s)θ3(6/s) with logarithmic
scale on the abscissa.

s

(b) The function θ4(6s)θ4(6/s) with logarithmic
scale on the abscissa.

Figure 6: On a logarithmic scale the symmetry around s = 1 becomes more visible.
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We will now proof some properties of the Jacobi theta-3 and theta-4 functions, which
we could not find in the literature prior to the work of Faulhuber & Steinerberger [24] and
in the end they will imply Theorem 5.2 for even redundancy.

5.1.1 Properties of Theta-3 and a Statement for the Upper Frame Bound

This section is devoted to prove equation (5.2)

Bg0,n

(
1√
n
,

1√
n

)
≤ Bg0,n(α, β)

of Theorem 5.2 for even redundancy.
We start with two identities for the Jacobi theta-3 function. The first identity is well-

known and follows from the Poisson summation formula.

Lemma 5.7 (Jacobi Identity).

√
sθ3(s) = θ3

(
1

s

)
. (5.9)

To our knowledge the next identity was not found in the literature before the publication
of [24].

Lemma 5.8. For all s > 0 we have

s
θ′3(s)

θ3(s)
+

1

s

θ′3(1/s)

θ3(1/s)
= −1

2
.

Proof. We use the Jacobi identity given in equation (5.9). Differentiating the identity on
both sides gives

1

2
√
s
θ3(s) +

√
sθ′3(s) = −

1

s2
θ′3

(
1

s

)
.

Multiplying both sides with s1/2

θ3(s)
yields

1

2
+ s

θ′3(s)

θ3(s)
= −1

s

θ′3
(
1
s

)

s1/2θ3(s)
.

Using the Jacobi identity once more we get

1

2
+ s

θ′3(s)

θ3(s)
= −1

s

θ′3
(
1
s

)

θ3
(
1
s

)

and the proof is complete.
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At this point we remark that Riemann apparently used the following identities, which
he attributed to Jacobi, to establish the functional equation for his zeta function (see e.g.
the textbook [21]). The identities are

1 + 2ψ(s)

1 + 2ψ
(
1
s

) =
1√
s

(5.10)

and
1

2
+ ψ(1) + 4ψ′(1) = 0, (5.11)

where ψ(s) =
∑

k≥1 e
−πk2s. We find out that equation (5.10) is the Jacobi identity for the

theta-3 function in Lemma 5.7 and equation (5.11) follows by differentiating 1 + 2ψ(s) =
1√
s

(
1 + 2ψ

(
1
s

))
on both sides and evaluating for s = 1. We note that equation (5.11) can

also be written as 1
2
θ3(1) + 2θ′3(1) = 0 which is equivalent to

θ′3(1)

θ3(1)
= −1

4
. This is a special

case of the identity in Lemma 5.8 for s = 1.
The next result follows from estimates on θ3 and its derivatives by using geometric

series.

Lemma 5.9. The function s
θ′3(s)

θ3(s)
is strictly increasing for s ≥ 1.

Proof. We will now show that the derivative d
ds
(sθ′3(s)/θ3(s)) is positive. This is equivalent

to showing that
sθ′′3(s)θ3(s) + θ′3(s)θ3(s)− sθ′3(s)2 > 0,

where the first term is positive and the last two terms are negative. Since θ3(s) ≥ 1 the
statement above is implied by the stronger inequality

sθ′′3(s) + θ′3(s)θ3(s)− sθ′3(s)2 > 0,

which can be equivalently written as

0 <s

(
2
∑

k≥1

π2k4e−πk2s

)

︸ ︷︷ ︸
(I)

−
(
2
∑

k≥1

πk2e−πk2s

)

︸ ︷︷ ︸
(II)

(
1 + 2

∑

k≥1

e−πk2s

)

︸ ︷︷ ︸
θ3(s)

− s
(
2
∑

k≥1

πk2e−πk2s

)2

︸ ︷︷ ︸
(III)

.

(5.12)

We will now establish this inequality using term-by-term estimates. The first term (I) can
be easily bounded from below by

(I) = s

(
2
∑

k≥1

π2k4e−πk2s

)
≥ 2sπ2e−πs.
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In order to control (II) and (III) we bound the expressions by geometric series. The
geometric series starting at index m is given by

∑

k≥m

qk = qm
∑

k≥0

qk = qm
1

1− q .

Differentiating the classical geometric series
∑

k≥0 q
k = 1

1−q
with a subsequent multiplica-

tion by q gives ∑

k≥0

kqk =
q

(1− q)2 .

By combining these results we show that

∑

k≥m

kqk = qm

(
∑

k≥0

kqk +m
∑

k≥0

qk

)

= qm
(

q

(1− q)2 +m
1

1− q

)

= qm
m− (m− 1)q

(1− q)2 ,

which allows us to estimate (II) and (III).

(II) = 2
∑

k≥1

πk2e−πk2s

≤ 2πe−πs + 2π
∑

k≥4

ke−πks

= 2π

(
e−πs + e−4πs (4− 3e−πs)

(1− eπs)2
)

(III) = (II)2 ≤
(
2π

(
e−πs + e−4πs (4− 3e−πs)

(1− eπs)2
))2

For s ≥ 1 it is quickly checked that (4−3e−πs)
(1−eπs)2

≤ (4−3e−π)
(1−eπ)2

≤ 1 which gives us the even rougher
estimates

(II) ≤ 2π
(
e−πs + e−4πs

)

(III) ≤
(
2π
(
e−πs + e−4πs

))2 ≤
(
2π
(
2e−πs

))2
.

Since θ3 is strictly decreasing on R+ we estimate it in the following way

θ3(s) < θ3(1) <
π

2

for all s > 1. The last estimate is very rough as the concrete value is θ3(1) = π1/4

Γ(3/4)
≈

1.08643 [64] but it is helpful since it allows us to pull out the factor π2 when we want to
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show equation (5.12). Combining all these estimates we claim that

s

(
2
∑

k≥1

π2k4e−πk2s

)
−
(
2
∑

k≥1

πk2e−πk2s

)(
1 + 2

∑

k≥1

e−πk2s

)
− s

(
2
∑

k≥1

πk2e−πk2s

)2

≥ 2sπ2e−πs − 2π
(
e−πs + e−4πs

) π
2
− s

(
2π
(
2e−πs

))2
> 0.

This means that we have to check that

π2e−πs
(
2s− 1− e−3πs − 16s e−πs

)
> 0

which follows from the following chain of inequalities. For s ≥ 1 we have

s
(
2− 16e−πs

)
≥ 2− 16e−π

︸ ︷︷ ︸
≈1.30858

> 1 + e−3π

︸ ︷︷ ︸
≈1.00008

≥ 1 + e−3πs

We see that the desired Inequality (5.12) holds at least for s ≥ 1.

As a consequence we get the following result which is illustrated in Figure 7.

Theorem 5.10. The function s
θ′3(s)

θ3(s)
is strictly increasing on R+.

Proof. From Lemma 5.9 we know that s
θ′3(s)

θ3(s)
is strictly increasing for s ≥ 1. From Lemma

5.8 we know that the identity

s
θ′3(s)

θ3(s)
+

1

s

θ′3(1/s)

θ3(1/s)
= −1

2
.

holds for s ∈ R+. Consequently the function 1
s

θ′3(1/s)

θ3(1/s)
must be decreasing for s ≥ 1. This

implies that s
θ′3(s)

θ3(s)
is strictly increasing for s ∈ (0, 1]. Therefore, the statement follows

immediately.

s

Figure 7: The function sθ′3(s)/θ3(s). The figure indicates that Mathematica 10 has some
troubles with evaluating the function near s = 0.
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We saw that the proof of Theorem 5.10 is quite curious. This is because θ3(s) and its
derivatives are complicated to evaluate if s is close to the origin (less than 1), since many
different terms start to contribute to the sum, but θ3(s) and its derivatives are quite simple
to handle for s ≥ 1 because then the series are essentially characterized by one term only.
The identity from Lemma 5.8 helped us to backpropagate the behavior to the origin. An
approach using the product representation instead of the series representation leads to the
same problems and arguments. We are not aware of a method avoiding the use of the
identity from Lemma 5.8.

As a consequence we get the following result.

Theorem 5.11. For all r > 0 fixed and s ∈ R+ we have

θ3(rs)θ3

(r
s

)
≥ θ3(r)

2

with equality only for s = 1.

Proof. The result is a combination of Theorem 5.10 and Lemma 5.6. From Theorem 5.10
we know that sθ′3(s)/θ3(s) is strictly increasing and therefore, as a consequence of the
algebraic structure, the result follows.

Theorem 5.11 in combination with equation (5.8) implies particularly that

B
(
1/
√
n
)
≤ n θ3

(n
2
s
)
θ3

(
n

2

1

s

)
.

Using again the substitution β =
√
s/n and equation (5.6) we get

B
(
1/
√
n
)
≤ n θ3

(
1

2β2

)
θ3

(
n2β2

2

)
.

The fact that we fixed the product (αβ)−1 = n ∈ 2N finally gives

Bg0,n

(
1√
n
,

1√
n

)
≤ Bg0,n(α, β)

for even redundancy.
In Appendix A we give an alternative proof of Theorem 5.11 for the case that r = 1

which corresponds to the minimization of the upper frame bound for redundancy 2. We
will now state more properties of Jacobi’s theta-3 function and some of these properties
appeared for the first time in [24]. But first we start with an elementary proof which
implies the log-convexity of θ3.

Lemma 5.12. Let s ∈ R+ and let ak, bk ≥ 0 be sequences of positive real numbers such
that

∑
k ak <∞. Then

f(s) =
∞∑

k=1

ake
−bks satisfies (log (f(s)))′′ ≥ 0.
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Proof. We prove the statement in the form f ′′(s)f(s)− f ′(s)2 ≥ 0. Let

f(s) =

∞∑

k=1

ake
−bks.

Then, by direct computation, our statement can be written as

f ′′(s)f(s)− f ′(s)2 =

( ∞∑

k=1

b2kake
−bks

)( ∞∑

k=1

ake
−bks

)
−
( ∞∑

k=1

bkake
−bks

)2

≥ 0.

Using the fact that

∞∑

k=1

bkake
−bks =

∞∑

k=1

(
bk
√
ake

−bks/2
) (√

ake
−bks/2

)
,

the proof follows by applying the Cauchy-Schwarz inequality.

As a direct application of Theorem 5.10 we have the following result (see also [24]).

Proposition 5.13 (Refined Logarithmic Convexity for θ3). For s ∈ R+ we have

θ′′3(s)θ3(s)− θ′3(s)2 > −
θ′3(s)θ3(s)

s
> 0.

Proof. Theorem 5.10 states that d
ds

(
s
θ′3(s)

θ3(s)

)
> 0 for s ∈ R+. By a direct calculation we get

0 <
d

ds

(
s
θ′3(s)

θ3(s)

)
=
θ′3(s)

θ3(s)
+ s

θ′′3(s)θ3(s)− θ′3(s)2
θ3(s)2

which is equivalent to

θ′′3(s)θ3(s)− θ′3(s)2 > −
θ′3(s)θ3(s)

s
.

We finally show that the right-hand side of the last inequality is positive. Since,

θ3(s) = 1 + 2
∑

k∈N
e−πk2s > 1

and
θ′3(s) = −2π

∑

k∈N
k2e−πk2s < 0,

we see that
θ′3(s)θ3(s)

s
< 0

and the proof is complete.
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Figure 8: The function s
θ′3(s)

θ3(s)
plotted on a logarithmic scale. On this scale, the (only)

point of inflection is at s = 1.

The following proposition states that on a logarithmic scale the logarithmic derivative
of Jacobi’s theta-3 function has exactly one point of inflection and that it is antisymmetric
with respect to this point. (see Figure 8). The proof is quite lengthy and we need careful
estimates for Jacobi’s theta-3 functions and its logarithmic derivatives.

Proposition 5.14. For s ∈ R+, the function

s
d

ds

(
s
d

ds

(
s
d

ds
log (θ3(s))

))
(5.13)

is positive for s ∈ (0, 1) and negative for s > 1. Also, the function is antisymmetric in the
following sense

s
d

ds

(
s
d

ds

(
s
d

ds
log (θ3(s))

))
= −s d

ds

(
s
d

ds

(
s
d

ds
log

(
θ3

(
1

s

))))
.

Before we prove this proposition we have some remarks. The computer algebra system
Mathematica [76] was used at some points in the proof in order to calculate explicit values
or closed expressions for geometric series, but in principle all computations can also be
checked by hand.

We also want to explain the occurrence of the differential operator s d
ds
. We actually

establish symmetry results for log(θ3(s)) on a logarithmic scale, which means that we use
the variable transformation s 7→ es. Therefore, we get an extra exponential factor each
time we take a derivative. By reversing the transformation of variables, we come back to
an ordinary scale, but the factor s stays.

Proof of Proposition 5.14. To simplify notation we set

ψ(s) = (log ◦ θ3)′(s) =
θ′3(s)

θ3(s)
.
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and start with the following calculation

s
d

ds

(
s
d

ds
(s ψ(s))

)
= s ψ(s) + 3s2 ψ′(s) + s3 ψ′′(s). (5.14)

From Lemma 5.8 we already know that

s ψ(s) +
1

s
ψ

(
1

s

)
= −1

2
.

which means that s ψ(s) is antisymmetric with respect to the point
(
1,−1

4

)
on a logarithmic

scale. Differentiating the last identity on both sides with respect to s and a subsequent
multiplication by s gives

s ψ(s) + s2 ψ′(s)− 1

s
ψ

(
1

s

)
− 1

s2
ψ′
(
1

s

)
= 0.

This means that the first derivative of sψ(s) is symmetric with respect to the line s = 1 on
a logarithmic scale. By repeating the process once more, we find out that on a logarithmic
scale the second derivative of sψ(s) is antisymmetric with respect to the point (1, 0) which
is equivalent to the statement

s ψ(s) + 3s2 ψ′(s) + s3 ψ′′(s) +
1

s
ψ

(
1

s

)
+ 3

1

s2
ψ′
(
1

s

)
+

1

s3
ψ′′
(
1

s

)
= 0.

In particular the last equality implies that

ψ(1) + 3ψ′(1) + ψ′′(1) = 0.

By repeating this process, we can actually show that on a logarithmic scale all higher
order derivatives of log(θ3(s)) are either symmetric with respect to the line s = 1 or
antisymmetric with respect to the point (1, 0).

Since ψ is the logarithmic derivative of θ3, we use Jacobi’s triple product formula for
θ3, given by equation (5.4), to obtain a series representation for ψ. In order to control the
expression in equation (5.14) we compute the derivatives of ψ up to order 2.

ψ(s) =
∑

k≥1

(
2kπe−2kπs

1− e−2kπs
− 2

(2k − 1)πe−(2k−1)πs

1 + e−(2k−1)πs

)

ψ′(s) =
∑

k≥1

(
− (2kπ)2e−2kπs

(1− e−2kπs)2
+ 2

((2k − 1)π)2e−(2k−1)πs

(1 + e−(2k−1)πs)
2

)

ψ′′(s) =
∑

k≥1

(
(2kπ)3e−2kπs

(
1 + e−2kπs

)

(1− e−2kπs)3

− 2
((2k − 1)π)3e−(2k−1)πs

(
1− e−(2k−1)πs

)

(1 + e−(2k−1)πs)
3

)
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We start with an estimation for ψ from above. For s > 0, we have

ψ(s) =
θ′3(s)

θ3(s)
< 0

since θ′3(s) < 0 and θ3(s) > 0. This bound was not hard to establish. In what follows we
will estimate parts of the series by the leading term, by using geometric series and by their
values at s = 1. We proceed with an upper bound for ψ′ for s > 1.

ψ′(s) =
∑

k≥1

(
− (2kπ)2e−2kπs

(1− e−2kπs)2
+ 2

((2k − 1)π)2e−(2k−1)πs

(1 + e−(2k−1)πs)
2

)

<
∑

k≥1

(
2
((2k − 1)π)2e−(2k−1)πs

(1 + e−(2k−1)πs)
2

)

<
∑

k≥1

(
2π2k2e−kπs

)

= 2π2e−πs
(
e−πs + 1

)
︸ ︷︷ ︸

<1.05

(
1− e−πs

)−3

︸ ︷︷ ︸
<1.15

< 24 e−πs.

With the same techniques we bound ψ′′ from above for s > 1.

ψ′′(s) =
∑

k≥1

(
(2kπ)3e−2kπs

(
1 + e−2kπs

)

(1− e−2kπs)3

− 2
((2k − 1)π)3e−(2k−1)πs

(
1− e−(2k−1)πs

)

(1 + e−(2k−1)πs)
3

)

<
∑

k≥1


(2kπ)3 e−2kπs

(
1 + e−2π)

)
︸ ︷︷ ︸

<1.002

(
1− e−2π

)−3

︸ ︷︷ ︸
<1.006


− 2π3e−πs

< 1.01 π3 e−πs
(
e−5πs + 4e−3πs + e−πs

)
︸ ︷︷ ︸

<0.045

(
1− e−2πs

)−4

︸ ︷︷ ︸
<1.008

−2π3e−πs

< 0.05 π3 e−πs − 2π3e−πs

< −60 e−πs.

Therefore we have for s > 1

s
d

ds

(
s
d

ds
(s ψ(s))

)
= s ψ(s) + 3s2 ψ′(s) + s3 ψ′′(s)

< 72 s2e−πs − 60 s3e−πs.
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It is quickly verified that 72 s2e−πs− 60 s3e−πs < 0 for s > 6
5
. In particular this shows that

s ψ(s) + 3s2 ψ′(s) + s3 ψ′′(s) < 0 for s >
6

5
.

As a next step we compute that

s
d

ds

(
s ψ(s) + 3s2 ψ′(s) + s3 ψ′′(s)

)
= s ψ(s) + 7s2 ψ′(s) + 6s3 ψ′′(s) + s4ψ′′′(s).

The last expression is again symmetric on a logarithmic scale with respect to s = 1. We
continue with an estimation on ψ′′′ for s > 1.

ψ′′′(s) =
∑

k≥1

(
−(2kπ)

4e−πks
(
e−5πks + 4e−3πks + e−πks

)

(1− e−2πks)4

+
2((2k − 1)π)4 e−(2k−1)πs

(
e−2(2k−1)πs − 4e−(2k−1)πs + 1

)

(1 + e−(2k−1)πs)
4

)

< −16 π4e−πs (e−5π + 4e−3π + e−π)︸ ︷︷ ︸
>0.04

+ 2
∑

k≥1

((2k − 1)π)4 e−(2k−1)πs
(
1 + e−(2k−1)πs

)−2

︸ ︷︷ ︸
<1

< −0.64 π4 e−πs + 2π4 e−πs + 2
∑

k≥3

(kπ)4 e−kπs

= −0.64 π4 e−πs + 2π4 e−πs
(
1− e−πs

)−5

︸ ︷︷ ︸
<1.25

×


1 +

(
16e−7πs − 79e−6πs + 155e−5πs − 149e−4πs + 81e−3πs

)
︸ ︷︷ ︸

<0.0065




< (2 · 1.259− 0.64)π4 e−πs

< 183 e−πs

It follows that

s ψ(s) + 7s2 ψ′(s) + 6s3 ψ′′(s) + ψ′′′(s) <
(
168s2 − 360s3 + 183s4

)
e−πs.

It is quickly verified that (168s2 − 360s3 + 183s4) e−πs < 0 for s ∈
(
1, 60+2

√
46

61

)
. We note

that 60+2
√
46

61
> 1.205. Therefore, the function s ψ(s) + 3s2 ψ′(s) + s3 ψ′′(s) is strictly

decreasing at least on the interval (1, 1.205). Since we already proved that the function
is negative for s > 1.2 and that the value at s = 1 is zero, we can finally conclude
that the expression given in equation(5.13) is negative for s > 1. Due to the already
mentioned antisymmetry with respect to the point (1, 0) the function has to be positive
for 0 < s < 1.
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It seems as if we were quite lucky regarding the last proof. This impression is due to
the fact that our estimates were quite rough, but at the same time fine enough for the
proof to work. Numerical inspections beforehand suggested that

s ψ(s) + 3s2 ψ′(s) + s3 ψ′′(s) < 0 for s > 1.05.

and that
s ψ(s) + 7s2 ψ′(s) + 6s3 ψ′′(s) + ψ′′′(s) < 0 for 1 < s < 1.5.

We adjusted the proof to a level which should be quite accessible with no or only little
help of a computer algebra software. We remark that the proof does not work if ψ′′′(s) is
estimated by 184 e−πs instead of 183 e−πs.

5.1.2 Properties of Theta-4 and a Statement for the Lower Frame Bound

This section is devoted to prove equation (5.1)

Ag0,n

(
1√
n
,

1√
n

)
≥ Ag0,n(α, β)

of Theorem 5.2 for even redundancy.
We will proceed in the same manner as for the upper frame bound, meaning that we

will use the algebraic lemma (Lemma 5.6) to establish that s
θ′4(s)

θ4(s)
is strictly decreasing (see

Figure 9) for s ∈ R+. Since θ4 has alternating signs, it is difficult to handle and the proof
contains a certain ‘magic’ element of algebraic simplification. Interestingly, this argument
does not work for θ3 even though there exists an analogous representation of θ3 as an
infinite product, as already mentioned.

Theorem 5.15. The function s
θ′4(s)

θ4(s)
is strictly decreasing on R+.

Proof. We use the Jacobi triple product representation from Proposition 5.5 to rewrite θ4
as

θ4(s) =
∏

k≥1

(
1− e−2kπs

) (
1− e−(2k−1)πs

)2
=
∏

k≥1

θ4,k(s).

Using the product rule we will show that for every k ∈ N and s > 0

d

ds

(
s
θ′4,k(s)

θ4,k(s)

)
< 0

which then immediately implies

d

ds

(
s
θ′4(s)

θ4(s)

)
=

d

ds

(
s

(∏
k≥1 θ4,k(s)

)′
∏

k≥1 θ4,k(s)

)
=

d

ds

(
s
∑

k≥1

θ′4,k(s)

θ4,k(s)

)
=
∑

k≥1

d

ds

(
s
θ′4,k(s)

θ4,k(s)

)
< 0.
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A simple calculation yields

s
θ′4,k(s)

θ4,k(s)
= s

(
2kπe−2kπs

1− e−2kπs
+ 2

(2k − 1)πe−(2k−1)πs

1− e−(2k−1)πs

)

=
2kπs

e2kπs − 1
+ 2

(2k − 1)πs

e(2k−1)πs − 1
.

Both terms in the last sum are of the form ms/(ems − 1) for some m ∈ R+. Note that

d

ds

(
ms

ems − 1

)
= m

ems − (1 +ms ems)

(ems − 1)2
< 0,

which is quickly checked using the elementary inequality

ey < 1 + y ey ⇔ 1− y < e−y ∀y > 0.

Therefore, the statement follows since all terms involved are negative.

s

Figure 9: The function sθ′4(s)/θ4(s).

In comparison to the proof of Theorem 5.10 the proof of Theorem 5.15 was rather
straight forward. At this point we want to mention that the use of the product represen-
tation is crucial for the proof. We were not able to establish the result with the series
representation of θ4.

As a consequence we get the following result.

Theorem 5.16. For all r > 0 fixed and s ∈ R+ we have

θ4(rs)θ4

(r
s

)
≤ θ4(r)

2

with equality only for s = 1.
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Proof. The result is a combination from Theorem 5.15 and Lemma 5.6. From Theorem
5.15 we know that sθ′4(s)/θ4(s) is strictly decreasing and therefore, as a consequence of the
algebraic structure, the result follows.

Theorem 5.16 in combination with equation (5.7) implies particularly that

A
(
1/
√
n
)
≥ n θ4

(n
2
s
)
θ4

(
n

2

1

s

)
.

Using again the substitution β =
√
s/n and equation (5.5) we get

A
(
1/
√
n
)
≥ n θ4

(
1

2β2

)
θ4

(
n2β2

2

)
.

The fact that we fixed the product (αβ)−1 = n ∈ 2N finally gives

Ag0,n

(
1√
n
,

1√
n

)
≥ Ag0,n(α, β)

for even redundancy.
In Appendix A we find an alternative proof of Theorem 5.16 for the case that r = 1

using the series representation. However, this proof is not suitable for generalization to
arbitrary r > 0. We will now state some more properties of Jacobi’s theta-4 function. As
a consequence of Theorem 5.15 we get the following statement (see also [24]).

Proposition 5.17 (Refined Logarithmic Concavity for θ4). We have, for s > 0,

θ′′4(s)θ4(s)− θ′4(s)2 < −
θ′4(s)θ4(s)

s
< 0.

Proof. Due to Theorem 5.15 we know that the function s
θ′4(s)

θ4(s)
is strictly decreasing. This

means

0 >
d

ds

(
s
θ′4(s)

θ4(s)

)
=
θ′4(s)

θ4(s)
+ s

θ′′4(s)θ4(s)− θ′4(s)2
θ4(s)2

which is equivalent to

θ′′4(s)θ4(s)− θ′4(s)2 < −
θ′4(s)θ4(s)

s
.

Next we show that the right-hand side of the last inequality is negative. Since

θ4(s) = 1 + 2
∑

k∈N
(−1)ke−πk2s

we have
θ′4(s) = −2π

∑

k∈N
(−1)kk2e−πk2s.
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We see that lims→∞ θ4(s) = 1 and that lims→∞ s θ′4(s) = 0 therefore

lim
s→∞

s
θ′4(s)

θ4(s)
= 0.

Theorem 5.15 states that s
θ′4(s)

θ4(s)
is strictly decreasing, which implies that

s
θ′4(s)

θ4(s)
> 0 for all s > 0.

Thus, dividing by s2 and multiplying by θ4(s)
2 gives

θ′4(s)θ4(s)

s
> 0

which completes Theorem 5.17.

Next, we will prove an identity involving θ2 and θ4 which is analogous to the identity
of θ3 stated in Lemma 5.8.

Lemma 5.18. For s > 0, we have

s
θ′4(s)

θ4(s)
+

1

s

θ′2
(
1
s

)

θ2
(
1
s

) = −1
2

and

s
θ′2(s)

θ2(s)
+

1

s

θ′4
(
1
s

)

θ4
(
1
s

) = −1
2

Proof. We start with the identity

√
s θ4(s) = θ2

(
1

s

)

which follows from the Poisson summation formula and is actually a classical result for
Jacobi’s theta functions. By differentiating this identity on both sides we get

1

2s1/2
θ4(s) + s1/2θ′4(s) = −

1

s2
θ′2

(
1

s

)
.

Multiplying both sides with s1/2

θ4(s)
and using the identity

√
s θ4(s) = θ2

(
1
s

)
once more gives

1

2
+ s

θ′4(s)

θ4(s)
= −1

s

θ′2
(
1
s

)

s1/2θ4(s)
= −1

s

θ′2
(
1
s

)

θ2
(
1
s

)

and the proof is complete.
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Corollary 5.19. The function s
θ′2(s)

θ2(s)
is strictly decreasing on R+.

Proof. Theorem 5.15 tells us that s
θ′4(s)

θ4(s)
is strictly decreasing on R+. Using Lemma 5.18

we get

s
θ′2(s)

θ2(s)
= −1

s

θ′4
(
1
s

)

θ4
(
1
s

) − 1

2

and the statement follows.

In [24] the statement in Corollary 5.19 was proved for s > 1
4
. We note that the identities

in Lemma 5.18 hold for arbitrary differentiable functions f and g (not necessarily different
from each other) which fulfil the identity

√
sf(s) = g

(
1
s

)
.

5.2 Odd Redundancy

In the spirit of Theorem 5.2 we would like to prove

Ag0,n

(
1√
n
,

1√
n

)
≥ Ag0,n(α, β) (5.15)

Bg0,n

(
1√
n
,

1√
n

)
≤ Bg0,n(α, β) (5.16)

for the case n ∈ 2N + 1. The proof of (5.16) will easily follow from the already achieved
results. Regrettably, the proof of (5.15) turns out to be very hard to establish and we will
not see a full proof of for this case.

First of all, we recall the Fourier series from equation (5.3)

Fg0(x, ω;α, β) =
∑

k∈Z

∑

l∈Z
(−1)klne−

π
2

(
k2

β2+
l2

α2

)

e2πikxe2πilω (5.17)

and that up to the factor n the frame bounds are given by the minimum and the maximum
of these series. The difference to the case of even redundancy is the alternating sign. We
note that the sign is only negative when both indices, k and l, are odd and that n does
not change the sign, because it is odd, and therefore we can ignore it.

We use the absolute convergence of the above series to rewrite in different ways. First,
we observe that

Fg0(x, ω;α, β) = 2
∑

k∈Z

∑

l∈Z
e
−π

2

(
(2k)2

β2 +
(2l)2

α2

)

e2πi(2k)xe2πi(2l)ω

−
∑

k∈Z

∑

l∈Z
(−1)k+le

−π
2

(
k2

β2+
l2

α2

)

e2πikxe2πilω.
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By rewriting the alternating sign as a complex exponential the series takes the following
form

Fg0(x, ω;α, β) = 2
∑

k∈Z

∑

l∈Z
e
−π

2

(
(2k)2

β2 +
(2l)2

α2

)

e2πi(2k)xe2πi(2l)ω

−
∑

k∈Z

∑

l∈Z
e
−π

2

(
k2

β2+
l2

α2

)

e2πik(x+
1
2)e2πil(ω+

1
2).

It is easy to see that the first double sum is maximal whenever (x, ω) ∈ Z × Z and from
the product representation in equation (5.4) we already know that the second double sum
is minimal whenever (x, ω) ∈ Z × Z. It follows that the upper frame bound is therefore
given by

Bg0(α, β) = nFg0(0, 0;α, β).

Now rewrite Fg0 in a another way.

Fg0(x, ω;α, β) =
∑

k∈Z

∑

l∈Z
e
−π

2

(
k2

β2+
l2

α2

)

e2πikxe2πilω

− 2
∑

k∈Z

∑

l∈Z
e
−π

2

(
(2k+1)2

β2 + (2l+1)2

α2

)

e2πi(2k+1)xe2πi(2l+1)ω

We already know from the product representation in equation (5.4) that the first double
sum is minimal whenever

(
x+ 1

2
, ω + 1

2

)
∈ Z × Z and it is easy to see that the second

double sum is maximal whenever (x, ω) ∈ Z × Z, because then the complex exponentials
take the value 1, or if

(
x+ 1

2
, ω + 1

2

)
∈ Z × Z, because then both complex exponentials

take the value -1 and hence their product is 1. Therefore the Fourier series in equation
(5.17) takes its minimum whenever

(
x+ 1

2
, ω + 1

2

)
∈ Z × Z. This means that the lower

frame bound is now given by

Ag0(α, β) = nFg0

(
1

2
,
1

2
;α, β

)
.

To simplify notation we introduce the function

θo(s) =
∑

k∈Z
e−π(2k+1)2s,

which can be understood as θ3 with summation restricted to the odd integers. It is closely
related to Jacobi’s theta-2 function which is defined as

θ2(s) =
∑

k∈Z
e−π(k+ 1

2)
2
s.

Now we can write the lower and upper frame bound as

A(β) = n

(
θ4

(
1

2β2

)
θ4

(
n2β2

2

)
− 2θo

(
1

2β2

)
θo

(
n2β2

2

))
(5.18)

B(β) = n

(
θ3

(
1

2β2

)
θ3

(
n2β2

2

)
− 2θo

(
1

2β2

)
θo

(
n2β2

2

))
. (5.19)

62



The following result will already imply that the upper frame bound is minimized for α =
β = 1√

n
.

Proposition 5.20. Let r > 0 be fixed, s ∈ R+. Then we have that

θo(r)
2 ≥ θo(rs)θo

(r
s

)

with equality only for s = 1.

Proof. Using the Poisson summation formula the result follows from Theorem 5.16. We
have

θo(rs) =
∑

k∈Z
e−π(2k−1)2rs =

∑

k∈Z
e−4π(k−1/2)2rs

=
1

2
√
rs

∑

l∈Z
e−πile−

πl2

4rs =
1

2
√
rs
θ4

(
1

4rs

)
.

In the same manner we derive

θo(r/s) =

√
s

2
√
r
θ4

( s
4r

)
.

Therefore, we have

θo(rs)θo(r/s) =
1

4r
θ4

(
1

4rs

)
θ4

( s
4r

)

and the statement follows from the results about the θ4-function.

We remark that this result can also be derived by a proper rescaling of θ2. It is quickly
checked that

θ4(s) =
∑

k∈Z
e−πk2seπik =

1√
s

∑

l∈Z
e−π(l− 1

2)
2 1
s =

1√
s
θ2

(
1

s

)

by using the Poisson summation formula. We have the following result.

Corollary 5.21. For r > 0 fixed, , s ∈ R+ we have

θ3(rs)θ3(r/s)− 2θo(rs)θo(r/s) > 0

and the function is minimal if and only if s = 1.

Proof. From Theorem 5.11 we know that θ3(rs)θ3(r/s) assumes its global minimum only
for s = 1. Proposition 5.20 tells us that θo(rs)θo(r/s) takes its global maximum only for
s = 1. Therefore the function assumes its minimum only for s = 1. It is quickly checked
that

θ3(1)
2 > 2θo(1)

2.
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First, we observe that θ3(1)
2 > 1. Next, we see that

θo(1) =
∑

k∈Z
e−π(2k+1)2 < 2

∑

k≥1

e−πk = 2
1

eπ − 1
< 1.

which follows easily by using the identity for the geometric series. Therefore the function
θ3(rs)θ3(r/s)− 2θo(rs)θo(r/s) is positive.

By using the substitution β =
√
s/n again, we find that for odd redundancy equation

(5.2)

Bg0,n

(
1√
n
,

1√
n

)
≤ Bg0,n(α, β)

holds for all (α, β) ∈ R+ × R+ with (αβ)−1 = n ∈ 2N+ 1.
We will now turn to an analogue statement of Corollary 5.21 involving Jacobi’s theta-4

function. With the following identity, we can rewrite the problem in many different ways.

Lemma 5.22. Let r1, r2, s ∈ R
+. Then we have the following identity.

θ3

(r1s
2

)
θ3

( r2
2s

)
+ θ4

(r1s
2

)
θ4

( r2
2s

)

=2

(
θ3 (2r1s) θ3

(
2r2
s

)
+ θ2 (2r1s) θ2

(
2r2
s

))

Proof. The proof only needs the unconditional convergence of the series of the Jacobi theta
function so the rearrangements of the terms are justified.

θ3

(r1s
2

)
θ3

( r2
2s

)
+ θ4

(r1s
2

)
θ4

( r2
2s

)

=
∑

k∈Z

∑

l∈Z
e
−π

2

(
r1k2s+

r2l
2

s

)

+
∑

k∈Z

∑

l∈Z
(−1)k+l e

−π
2

(
r1k2s+

r2l
2

s

)

=2

(
∑

k∈Z

∑

l∈Z
e
−π

2

(
r1(2k)2s+

r2(2l)
2

s

)

+
∑

k∈Z

∑

l∈Z
e
−π

2

(
r1(2k+1)2s+

r2(2l+1)2

s

))

=2

(
θ3 (2r1s) θ3

(
2r2
s

)
+ θ2 (2r1s) θ2

(
2r2
s

))
.

Similar identities can be found in [16, Chap. 4, p. 104] and the identity in Lemma 5.22
could as well be established from other known identities involving Jacobi’s theta-2, theta-3
and theta-4 functions.
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Proposition 5.23. Let r ≥ 1
2
, s ∈ R+. Then

θ4(rs)θ4

(r
s

)
− 2 θo(rs)θo

(r
s

)

= θ4(rs)θ4

(r
s

)
− 1

2r
θ4

( s
4r

)
θ4

(
1

4rs

)

=2θ3(4rs)θ3

(
4r

s

)
− θ3(rs)θ3

(r
s

)

> 0.

Proof. The identities follow from Lemma 5.22 and the Poisson summation formula.
For the part concerning the positivity of the expressions we show a stronger argument,

namely the positivity of

fr(s) = θ4(rs)θ4

(r
s

)
− θ4

( s
4r

)
θ4

(
1

4rs

)
.

It follows from Proposition 5.17 that θ4 is strictly increasing. Therefore, we have for r > 1
2

that
θ4(rs) > θ4

( s
4r

)

and

θ4

(r
s

)
> θ4

(
1

4rs

)
.

In particular this implies that

θ4(rs)θ4

(r
s

)
>

1

2r
θ4

( s
4r

)
θ4

(
1

4rs

)
, for r >

1

2

and the positivity statement is proved.

We could add more identities by using Poisson summation on single terms. We use
the first notation since it seems natural to write the lower frame bound in this way as we
derive a formula for the upper bound by substituting theta-4 by theta-3 as can be seen
from equation (5.18) and equation (5.19). The second notation was used to proof the
proposition. The third notation was introduced because it seems curious that it enjoys the
same properties as the first or the second equation.

From numerical inspections it seems true that for r > 1
2
the the expressions in Propo-

sition 5.23 are maximal if and only if s = 1. We will give some arguments that

θ4(rs)θ4

(r
s

)
− 1

2r
θ4

( s
4r

)
θ4

(
1

4rs

)
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should be maximal if and only if s = 1. In [24] it is argued that the approximation

θ4(rs)θ4

(r
s

)
− 2 θo(rs)θo

(r
s

)
∼
(
1− 2e−πrs

) (
1− 2e−π r

s

)
− 2

(
2e−πrs 2e−π r

s

)

= 1− 2e−πrs − 2e−π r
s − 4e−πr(s+ 1

s)

is very accurate (see Figure 10). The second derivative of the approximation is given by

(a) (b)

(c) (d)

Figure 10: The function θ4(rs)θ4
(
r
s

)
− 2 θo(rs)θo

(
r
s

)
(solid graph) and its approximation

for (dashed graph) for different parameters r on a normal scale ((a) and (b)) and on a
logarithmic scale ((c) and (d)). The parameters are r = 1 ((a) and (c)) and r = 7

2
((b)

and (d)). The borders of the interval
(

2
πr
, πr

2

)
are marked by the vertical lines.

s−4e−πr(s+ 1
s)
((
4πrs− 2π2r2

)
eπrs + 8πrs− 4π2r2 − 4π2r2s4 + 8π2r2s2 − 2π2r2s4e

πr
s

)

For s > 0, we will now show that this expression is negative at least for s < πr
2
. We see

that
4πrs− 2π2r2 < 0, for s <

πr

2
.

Also
8πrs− 4π2r2 < 0 for s <

πr

2
.

Since
−4π2r2s4 + 8π2r2s2 < 0 for s2 > 2

66



we have to check that

−4π2r2s4 + 8π2r2s2 − 2π2r2s4e
πr
s < 0 for s > 1.

The statement is certainly true for s = 1 as we have −4π2r2+8π2r2 < 40r2 and 19 ·23rr2 <
2π2r2s4eπr. Assuming r > 1 this gives

−4π2r2 + 8π2r2 < 2π2r2s4eπr.

For s > 1, it is quickly checked that −4π2r2s4 + 8π2r2s2 is strictly decreasing and that
2π2r2s4e

πr
s is strictly increasing.

This implies that the one-term approximation

1− 2e−πrs − 2e−π r
s − 4e−πr(s+ 1

s)

has a local maximum at s = 1 for s ∈
[
1, πr

2

)
. By a symmetry argument we conclude

that for s ∈
(

2
πr
, πr

2

)
we have a local maximum for s = 1. For s /∈

(
2
πr
, πr

2

)
and r ≥ 1 the

function cannot assume a global maximum since for s ≥ πr
2

1− 2e−πrs − 2e−π r
s − 4e−πr(s+ 1

s) ≤ 1− 2e−2

︸ ︷︷ ︸
<0.72

< 1− 4e−π − 4e−2π

︸ ︷︷ ︸
>0.8

≤ 1− 2e−πrs − 2e−π r
s − 4e−πr(s+ 1

s)
∣∣∣
s=1

.

The same argumentation works for s ≤ 2
πr

and therefore the unique global maximum is
attained at s = 1. Although the approximation is very accurate, it only suggests that the
expression

θ4(rs)θ4

(r
s

)
− 2 θo(rs)θo

(r
s

)

is maximal if and only if s = 1. From the algebraic structure it is clear that the expression
has a critical point at s = 1 and by adding an additional term in the approximation it is
possible to show that the expression cannot assume a global maximum outside the interval(

2
πr
, πr

2

)
. In order to gain a proper proof for the statement, it would be sufficient to show

that there are no more critical points inside the interval
(

2
πr
, πr

2

)
. A direct analysis seems

hard, since the function is almost constant on a large part of this interval if r is big.
By using the substitution β =

√
s/n, the above arguments suggest particularly that

Ag0,n

(
1√
n
,

1√
n

)
≥ Ag0,n(α, β)

for all (αβ)−1 ∈ 2N+ 1.
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5.3 Critical Density

Although there exist already lots of results which tell us that G (g0, αZ× βZ) cannot be
a frame for αβ = 1, we will give a proof for this fact using results about Jacobi’s theta
functions.

We investigate the lower frame bound which we expect to cause troubles. We recall the
following fact for Jacobi’s theta functions from Lemma 5.22. For r1, r2, s ∈ R+, we have

θ3

(r1s
2

)
θ3

( r2
2s

)
+ θ4

(r1s
2

)
θ4

( r2
2s

)

=2

(
θ3 (2r1s) θ3

(
2r2
s

)
+ θ2 (2r1s) θ2

(
2r2
s

))
.

If we now take a look the lower frame bound we find, by using Lemma 5.22, that we can
write it in the following way

Ag0,1(α, β) = θ4

(
1

2β2

)
θ4

(
β2

2

)
− 2 θ2

(
2

β2

)
θ2
(
2β2
)

= 2 θ3
(
2β2
)
θ3

(
2

β2

)
− θ3

(
β2

2

)
θ3

(
1

2β2

)
.

From the Jacobi identity we conclude that θ3

(
2
β2

)
= β√

2
θ3

(
β2

2

)
and that θ3

(
1

2β2

)
=

√
2β θ3 (2β

2). Therefore we can rewrite the lower frame bound as

Ag0,1(α, β) =
√
2β

(
θ3
(
2β2
)
θ3

(
β2

2

)
− θ3

(
β2

2

)
θ3
(
2β2
))

= 0.

From this we see that G(g0, αZ× βZ) never is a frame if αβ = 1. We remark that setting
r = 1

2
in Proposition 5.23 corresponds exactly to the case of the lower bound for a Gaussian

Gabor frame at critical density. Therefore the condition r > 1
2
cannot be weakened any

more in Proposition 5.23. Also, the sign changes for r < 1
2
.
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6 The General Case and Theta Functions on a Lattice

This section deals with the already mentioned conjecture formulated by Strohmer & Beaver
in 2003 [72] which we briefly recall. They claim that the condition number of the Gabor
frame operator for the standard Gaussian window and a hexagonal lattice of fixed density
δ > 1 is minimal among all lattice of same fixed density δ. In their work Strohmer &
Beaver show that the hexagonal lattice is preferable over the quadratic lattice, which, until
then, was the candidate to give the optimal condition number for a standard Gaussian
Gabor frame due to the conjecture by Floch, Alard & Berrou in 1995 [33]. We state the
following, stronger conjecture.

Conjecture 6.1. Let g0(t) = 21/4e−πt2 be the standard Gaussian window. Among all
lattices in the set

F δ
full(g0) = {Λ ⊂ R

2 | vol−1(Λ) = δ > 1, δ fixed}.

the hexagonal lattice is the unique maximizer for the lower frame bound and the unique
minimizer for the upper frame bound.

For even redundancy we will see that the hexagonal lattice minimizes the upper frame
bound. We conjecture that it also maximizes the lower frame bound, unfortunately we do
not yet have a proof for that. It turns out that optimizing the frame bounds in the case
of even redundancy is equivalent to finding the maximum and the minimum of the heat
kernel of the flat Laplacian on the torus R2/Λ and then optimizing among all lattices of
fixed area. Investigations in this direction have been carried out by Montgomery in 1988
[65]. Using Montgomery’s theorem about minimal theta functions [65, Theorem 1], we will
prove Theorem 6.2. Besides Montgomery’s theorem we will use the Poisson summation
formula which holds pointwise for the Gaussian window.

Theorem 6.2. Let S be the generating matrix for the lattice Λ = SZ2 of density 2n, n ∈ N

and let g0(t) = 21/4e−πt2 be the standard Gaussian. Let

Λh = ShZ
2 =

1√
2n

(
4√3√
2

0
√
2

2 4√3

√
2

4√3

)
Z
2

be the hexagonal lattice. We denote the upper frame bound of G(g0,Λ) by

B = Bg0,n(Λ).

Then
Bg0,n(Λh) ≤ Bg0,n(Λ)

with equality only for Λ = S̃hZ
2 with

S̃h = QShB

where Q is an orthogonal matrix and B ∈ SL(2,Z).
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The theorem tells us that the upper frame bound is minimized by a hexagonal lattice.
The matrix B is an element of the modular group and Z2 is invariant under the action
of this group. In fact, it is just another choice for a basis of our lattice. Furthermore,
the action of the matrix Q does not change the geometry of the lattice. Therefore, those
matrices will be negligible in our proofs and we will focus on lattices generated by lower
triangular matrices which is justified by the results of Section 3.

In Section 6.1 we will recall Janssen’s formulas [54] for sharp frame bounds of a Gaussian
Gabor frame. We will show that, starting from a rectangular lattice, the upper frame bound
is always improved by shearing the lattice, or, equivalently, by chirping the window. In
Section 6.2 we will show that among a certain class of lattices, which we will call quincunx
lattices, the hexagonal lattice leads to the smallest possible upper frame bound. In Section
6.3 we will prove Theorem 6.2 and finally, in Section 6.4 we will state some open problems
about frame bounds and also some conjectures about concrete values for redundancy 2 in
the spirit of Strohmer & Beaver [72]. Also, we will make the observation that Landau’s
constant, Baxter’s 4-colouring constant and the frame bounds of a Gabor frame with
standard Gaussian window and hexagonal lattice of redundancy 2 might be related to each
other.

6.1 Chirped Gaussians and Sheared Lattices

As already mentioned, due to the results in Section 3 we only need to consider lattices
where the generating matrix takes the form

Sγ =

(
α 0
γα β

)
=

(
1 0
γ 1

)(
α 0
0 β

)
.

with α, β > 0 and αβ = 1
2n
. It is enough to look at lattices of the type Λ = SγZ

2

because any lattice Λ ⊂ R2 can be represented by Λ = QSγZ
2, where Q is an orthogonal

matrix (QR-decomposition). The rotation imposed by Q does not affect the frame bounds
as the Gaussian is an eigenfunction with eigenvalue 1 of the corresponding metaplectic
operator, which is the fractional Fourier transform described already in [3] or [18]. Instead
of looking at lattices of the mentioned type and the standard Gaussian, we can also look
at rectangular lattices, i.e. γ = 0, paired with chirped Gaussians. A chirped (standard)
Gaussian is of the form

gγ(t) = 21/4eπiγt
2

e−πt2 .

As we also already studied in detail in Section 3, the two systems

G
(
g0, SγZ

2
)

and G
(
g−γ, S0Z

2
)

possess the same sharp frame bounds.
We choose the Gabor system G (g−γ, S0Z

2) as object of investigation. As already stated
before, due to the work of Janssen [54], we know that for (αβ)−1 ∈ N the lower and upper
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frame bound are given by the minimum and maximum, respectively, of the Fourier series

Fg−γ (x, ω) =
1

αβ

∑

k,l∈Z

〈
g−γ, M l

α
T k

β
g−γ

〉
e2πikxe2πilω.

From its definition it is clear that we only need to know Fgγ on the unit square, i.e.
(x, ω) ∈ [0, 1]× [0, 1]. We already computed the inner product in Section 4 to be

〈
g−γ, M l

α
T k

β
g−γ

〉
= e−πi kl

αβ e
−π

2

(
k2

β2+( l
α
+ kγ

β )
2
)

= (−1) kl
αβ e

−π
2

(
k2

β2+( l
α
+ kγ

β )
2
)

.

Since we assume (αβ)−1 ∈ 2N we have

Fg−γ(x, ω) = 2n
∑

k,l∈Z
e
−π

2

(
k2

β2+( l
α
+ kγ

β )
2
)

e2πikxe2πilω,

which, as Montgomery did [65], can also be identified as the heat kernel of the flat Laplacian
on the torus R2/Λ where Λ = SγZ

2. We note that

Fg−γ (x, ω) = Fgγ (−x, ω) = Fg−γ (−x,−ω) = Fgγ (x,−ω).

It is easy to see that the functions Fg−γ and Fgγ take their maximum whenever (x, ω) ∈
Z × Z. This implies that in the case of even redundancy the optimal upper frame bound
for a Gabor frame with standard Gaussian window is given by the formula

B = B(α, β, γ) = B(α, β,−γ)

= 2n
∑

k∈Z

∑

l∈Z
e
−π

2

(
k2

β2+
l2

α2

)

e
−π

2

(
k2γ2

β2 +2klγ
αβ

)

= 2n
∑

k∈Z

∑

l∈Z
e
−π

2

(
k2

β2+
l2

α2

)

e
−π

2

(
k2γ2

β2 −2klγ
αβ

)

.

(6.1)

Our goal is to find the global minimum of this function with respect to the parameters α,
β and γ. Since the product αβ = 1

2n
is fixed, this is a minimization problem in 2 variables.

It is similar to the problem considered in Section 5. Unfortunately, the techniques used
there cannot be applied directly, as the double sum does not factor into a product of two
sums for γ 6= 0. Still, the double sum converges very nicely, in particular absolutely. We
will now show some properties of B.

Proposition 6.3. For α, β fixed with αβ = 1
2n
, n ∈ N, B is periodic in γ with period β

α

and symmetric with respect to the points β
2α
Z. Furthermore, B takes its global maximum

only for γ ∈ β
α
Z, i.e., for rectangular lattices.

Proof. The only property that needs verification is that B assumes its global maximum for
γ ∈ β

α
Z. The periodicity and symmetry follow from the according properties of the lattice.
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We split the double sum in the following way.

B(γ) = 2n
∑

k∈Z

(
e
−π

2
k2

β2 (1+γ2)∑

l∈Z
e
−π

2

(
l2

α2 −2klγ
αβ

))

= 2n
∑

k∈Z

(
e
−π

2
k2

β2 (1+γ2)∑

l∈Z
e−πn( β

α
l2−2klγ)

)
.

We will now use Poisson summation to rewrite the inner sum of the expression. For k fixed
we have that

∑

l∈Z
e−πn( β

α
l2−2klγ) =

∑

l∈Z
e−πn β

α(l−
α
β
γk)

2

eπn
α
β
γ2k2 =

√
α

nβ

∑

m∈Z
e−

π
n

α
β (m

2−n2γ2k2)e−2πimα
β
γk.

Using the fact that (αβ)−1 = 2n and due to the convergence properties of the double series
we can now rewrite it as

B(γ) = 2n

√
α

nβ

∑

k∈Z

(
e
−π

2
k2

β2 (1+γ2)∑

l∈Z
e−

π
n

α
β (l2−n2γ2k2)e−2πilα

β
γk

)

= 2n
√
2α
∑

k∈Z

(
e−2πα2n2k2(1+γ2)

∑

l∈Z
e−2πα2(l2−n2k2γ2)e−2πiklα

β
γ

)

= 2n
√
2α

∑

k,l∈Z
e−2πα2(l2+k2n2)e−2πiklα

β
γ

= 2n
√
2α

∑

k,l∈Z
e−2πα2(l2+k2n2) cos

(
2πkl

α

β
γ

)
.

By using the identity cos(2x) = cos(x)2 − sin(x)2 = 1− 2 sin(x)2 we get

B = 2n
√
2α
∑

k,l∈Z
e−2πα2(l2+k2n2)

(
1− 2 sin

(
πkl

α

β
γ

)2
)

and we see that B(γ) is maximal for γ ∈ β
α
Z.

Proposition 6.3 shows that for even redundancy the upper frame bound of any Gabor
frame with rectangular lattice and standard Gaussian window will become smaller by either
shearing the lattice or by chirping the window (γ /∈ β

α
Z). This gives analytic evidence that

the quadratic lattice cannot be optimal for the upper frame bound among general lattices.
We will now state a lemma by Montgomery from which we will be able to conclude when
B assumes its minimum. The proof of the upcoming result needs a lot of cumbersome
computations and estimates. Therefore, we refer to the original work where this lemma
has been proved [65, Lemma 4].
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Lemma 6.4 (Montgomery). Let c > 0 be fixed, r ∈
(
0, 1

2

)
and s ≥ 1

2
. We define

ϑ(r, s; c) =
∑

k

(
e−cπsk2

∑

l∈Z
e−

cπ
s
(l+kr)2

)
.

Then
∂

∂r
ϑ(r, s; c) < 0.

The parameter r in Montgomery’s lemma in principle represents the shearing parameter
of the lattice whereas the parameter s corresponds to the lattice parameter α (or β as one
prefers). Fixing α and β, B only depends on the shearing parameter γ. By rewriting
equation (6.1) in the following way

B(γ) = 2n
∑

k,l∈Z
e−

π
2 (

l
α
− kγ

β )
2

e
−π

2
k2

β2

= 2n
∑

k∈Z

(
e−2πα2n2k2

∑

l∈Z
e−

π
2α2 (l−γ α

β
k)

2

)

= 2nϑ

(
−γα

β
, 2α2n;n

)
,

Montgomery’s lemma implies the following proposition.

Proposition 6.5. For α, β fixed with α ≥ 1√
2
√
2n

and αβ = 1
2n
, n ∈ N, B assumes its

global minimum only for γ ∈ β
α

(
1
2
+ Z

)
.

We want to remark that Montgomery has already noticed that the condition s ≥ 1
2
in

Lemma 6.4 is sufficient for the statement to hold. In his work [65], Montgomery states
that it seems likely that the result is still true for s ≥ 1√

12
. Making the substitutions

s = 2α2n = 1
2
and r = −γ α

β
= 1

2
in Lemma 6.4 we get the value of the upper frame bound

for G(g0,Λ⋄) where

Λ⋄ =
1√
2n

(
1√
2

0

− 1√
2

√
2

)
Z
2

is a 45◦ rotated version of the square lattice of redundancy 2n. Using the parameters
s = 2α2n = 1√

12
and r = −γ α

β
= 1

2
we find the upper frame bound of the Gabor frame

G(g0,Λh) where

Λh =
1√
2n

(
1√
2 4√3

0

− 4√3√
2

√
2 4
√
3

)
Z
2

is the hexagonal lattice from Theorem 6.2 with another choice of basis and rotated by 30◦.
Testing for some values s < 1√

12
suggests that Lemma 6.4 might hold for s ≥ 1

4
. We find

a local maximum for r = 1
2
by testing numerically for some values s < 1

4
. Numerically the

minimum was found by symmetrically truncating the theta function and finding critical
points for the truncated series using ‘NSolve’ in Mathematica 10 [76].
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(a) ϑ(r, 1) (b) ϑ
(
r, 1

√

12

)

(c) ϑ
(
r, 1

4

)
(d) ϑ

(
r, 1

8

)

Figure 11: The function ϑ(r, s) from Lemma 6.4 with c = 2 and different fixed values for
s. The ordinates in (a)-(d) are shown in different scales. The plots were created in

Mathematica 10 [76] by symmetrically truncating the theta function.

6.2 Dilated Quincunx Lattices

We will now consider the case γ = β
2α
. This leads us to dilated versions of the quincunx

lattice which can be described by a matrix of the form

S =

(
1 0
β
2α

1

)(
α 0
0 β

)
=

(
α 0
β/2 β

)
.

Often the quincunx lattice is the 45◦ rotated version of the square lattice. A generating

matrix has the form

(
1√
2

0
1√
2

√
2

)
.

From Proposition 6.5 we already know that for αβ = 1
2n

and α ≥ 1√
2
√
2n

the upper

frame bound assumes its global minimum for γ ∈ β
α

(
1
2
+ Z

)
. For the standard Gaussian

window, we want to find out whether there exists a unique triple of lattice parameters

(α, β, γ) such that Λ =

(
α 0
γα β

)
Z
2 with (αβ)−1 ∈ 2N and γ = β

2α
which minimizes the

upper frame bound.
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We can now write the upper frame bound as

B = 2n
∑

k∈Z

∑

l∈Z
e
−π

2

(
k2

β2+
l2

α2

)

e
−π

2

(
k2γ2

β2 −2klγ
αβ

)

= 2n
∑

k,l∈Z
e−

π
2α2 ((4n2α4+ 1

4)k
2+kl+l2).

(6.2)

We will now give some definitions in order to state a theorem formulated by Montgomery
[65]. For ρ > 0 and a positive definite quadratic form q(u1, u2) = au21 + bu1u2 + cu22 of
discriminant D = −1 we define the theta function

θq(ρ) =
∑

k,l∈Z
e−2πρ q(k,l). (6.3)

The discriminant D of the quadratic form is given by

D = b2 − 4ac

and for positive definite quadratic forms we have D < 0. Also, we can associate the
symmetric matrix

ST
q Sq = Gq =

(
a b/2
b/2 c

)

to the quadratic form q(u1, u2) = (u1, u2) ·Gq · (u1, u2)T = ‖Squ‖22. We observe that

4 det(Gq) = −D.

We say the quadratic form q̃ is (integrally) equivalent to the quadratic form q if

q̃(u1, u2) = (u1, u2) · BTGqB︸ ︷︷ ︸
Gq̃

·(u1, u2)T

where B ∈ SL(2,Z). This means that the Gram matrices (SqB)T (SqB) and ST
q Sq associ-

ated to the quadratic forms q̃ and q respectively, are associated to the same lattice SqZ
2.

At this point, we remark that we used the index q to emphasize that the Gram matrix
Gq is associated to the quadratic form. In what follows we will also use the index Λ to
emphasize the association to a lattice. For more details on quadratic forms associated to
a lattice we refer to the textbook of Conway & Sloane [16].

Theorem 6.6 (Montgomery). Let h(u1, u2) = 1√
3
(u21 + u1u2 + u22). For any ρ > 0 and

any positive definite quadratic form q(u1, u2) with discriminant D = −1 we have

θq(ρ) ≥ θh(ρ).

If we have equality for some ρ > 0, then q and h are equivalent forms and θq ≡ θh.

75



We will see that the quadratic form h(u1, u2) in Montgomery’s theorem is associated to
the hexagonal lattice, which was certainly known to Montgomery, but not mentioned in his
work [65]. This will imply, that among all theta functions associated to a quadratic form
with fixed discriminant, the form associated to a hexagonal lattice minimizes the theta
function.

The quadratic form associated to the upper frame bound in equation (6.2) is given by

ρ qα(k, l) =
1

4α2

((
4n2α4 +

1

4

)
k2 + kl + l2

)

which is not yet normalized. In order to minimize B we have to find values for α > 0 such
that

4n2α4 +
1

4
= 1.

The unique solution to this problem is given by

α =
4
√
3√

2
√
2n
.

Therefore,

ρ qα(k, l) =
n√
3

(
k2 + kl + l2

)
.

Since, we want to have that the discriminant D = −1, we get that ρ = n. We compute
the other parameters β and γ. As the product αβ = 1

2n
is fixed we have

β =

√
2

4
√
3
√
2n

and γ was set to β
2α

which gives

γ =
1√
3
.

On the other hand, the resulting lattice is generated by the matrix

Sh =

(
1 0
1√
3

1

)
=

( 4√3√
2
√
2n

0

0
√
2

4√3
√
2n

)
=

( 4√3√
2
√
2n

0
√
2

2 4√3
√
2n

√
2

4√3
√
2n

)
=

1√
2n

( 4√3√
2

0
√
2

2 4√3

√
2

4√3

)
.

Its Gram matrix is given by

Gh = ST
h Sh =

1

2n

(
2√
3

1√
3

1√
3

2√
3

)
.

The determinant of the Gram matrix is det(Gh) =
1

4n2 = −1
4
D which is equivalent to the

fact that D = −1
n2 . Therefore, the resulting (non-normalized) quadratic form is given by

ρ h(u1, u2) =
1

n
√
3

(
u21 + u1u2 + u22

)
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and we find out that ρ = 1
n
. The associated theta function is

θh

(
1

n

)
=
∑

k,l∈Z
e
−2π 1

n
√

3
(k2+kl+l2)

The discrepancy about the appearing factors in the quadratic form is explained by the
following identity

ρ θq(ρ) = θq

(
1

ρ

)

which is true for quadratic forms with discriminant D = −1 and can be verified by using
Poisson summation. The identity can also be looked up in [65]. So, we find out that

Bh = 2n
∑

k,l∈Z2

e
−2π n√

3
(k2+kl+l2) = 2

∑

k,l∈Z2

e
−2π 1

n
√

3
(k2+kl+l2).

We will discuss this property in more detail in the upcoming section.
For even redundancy αβ = 1

2n
, the results show that for fixed α ≥ 1√

2
√
2n

the combina-
tion of the standard Gaussian window and a quincunx lattice minimizes the upper frame
bound. Among these quincunx lattices we find that the hexagonal lattice uniquely min-
imizes the upper frame bound which implies that it uniquely minimizes the upper frame
bound among all lattices of redundancy 2n with α ≥ 1√

2
√
2n
.

6.3 General Lattices

As a next step we want to show that the hexagonal lattice uniquely minimizes the upper
frame bound among all lattices of (fixed) even redundancy. Therefore, the only assumptions
on the triple (α, β, γ) defining the lattice will be that (αβ)−1 = 2n, n ∈ N. The statement
will again follow from Montgomery’s theorem.

We recall Janssen’s representation that for g ∈ L2
(
Rd
)
with

∑

λ◦∈Λ◦

|〈g, π (λ◦) g〉| =
∑

λ◦∈Λ◦

|Ag (λ◦)| <∞

the frame operator can be represented as

Sg,Λ = vol(Λ)−1
∑

λ◦∈Λ◦

〈g, π (λ◦) g〉π (λ◦) .

We also recall that for the chirped standard Gaussian and a separable lattice of even
redundancy, the Gabor frame bounds are given by the minimum and the maximum of the
Fourier series

Fg−γ (x, ω) =
1

αβ

∑

k,l∈Z

〈
g−γ, M l

α
T k

β
g−γ

〉
e2πikxe2πilω.
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which we already encountered earlier. This shows that for a Gabor frame with separable
lattice Λ = αZ × βZ with αβ = 1

2n
and window gγ, the chirped standard Gaussian, the

ℓ1(Λ◦)-norm of the coefficients in Janssen’s representation of the frame operator (including
the factor vol(Λ)−1) gives us precisely the upper frame bound by evaluating the Fourier
series Fg−γ at (x, ω) = (0, 0). We will now show that for Gabor frames with standard
Gaussian window g0 and general lattices the same is true for the ℓ1(2Λ)-norm of the samples
of the ambiguity function Ag0 of the standard Gaussian.

For Λ = SγZ
2 =

(
α 0
αγ β

)
Z2, the associated Gram matrix is given by

GΛ =

(
(1 + γ2)α2 αβγ

αβγ β2

)

with determinant det(GΛ) =
1

α2β2 = 1
4n2 = −1

4
D. The adjoint lattice, its associated matrix

and the Gram matrix are given by

Λ◦ = S◦
Z
2 =

( 1
β

0
γ
β

1
α

)
Z
2 = vol(Λ)−1Λ and GΛ◦ =

(
1+γ2

β2
γ
αβ

γ
αβ

1
α2

)
.

We recall the identity

θq(ρ) =
1

ρ
θq

(
1

ρ

)

where θq(ρ) is defined as in equation (6.3) and q is a quadratic form of discriminant −1.
Using the last identity for theta functions, we compute the upper frame bound of G(g0,Λ)
as

B(Λ) = 2n
∑

λ◦∈Λ◦

Ag0 (Λ◦)

= 2n
∑

k∈Z

∑

l∈Z
e
−π

2

(
1+γ2

β2 k2+2γkl
αβ

+ 1
α2 l

2

)

= det(GΛ◦)1/2
∑

k,l∈Z
e−

π
2
〈S◦(k,l), S◦(k,l)〉

= 2(−D)−1/2
∑

k,l∈Z
e−2π(−D)−1/2qΛ(k,l)

= 2
∑

k,l∈Z
e−

π
2
qΛ(2k,2l)

= 2
∑

λ∈2Λ
Ag0(λ).

Here, qΛ(k, l) = (−D)−1/2 〈S(k, l), S(k, l)〉 is a quadratic form with discriminant −1. We
find that

B(Λ) = 2θqΛ

(
1

n

)
= 2n θqΛ(n). (6.4)
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Therefore, Montgomery’s theorem (Theorem 6.6) implies that for a Gabor frame with
Gaussian window and any lattice of even redundancy, only a lattice with associated Gram
matrix

Gh =
1

2n

1√
3

(
2 1
1 2

)

yields the minimal norm for the Gabor frame operator Sg0,Λ or equivalently the smallest
possible upper frame bound. Therefore, only rotated versions of the hexagonal lattice give
the optimal upper frame bound. Any other quadratic form which also minimizes the theta
function θq(ρ) is as well associated to a hexagonal lattice. In particular the quadratic form
associated to the lattice will be of the form

G̃h = BTGh B, B ∈ SL(2,Z)
where B ∈ SL(2,Z) is just another choice for a basis for Λh. This proves Theorem 6.2.
For more details on the connections between lattices and quadratic forms we refer again
to the textbook by Conway & Sloane [16].

As a final remark we note that the case of redundancy 2 is special as we have 2Λ = Λ◦.
Also, this means that n = 1 in equation (6.4) and in this case and we have

B(Λ) = 2 θqΛ(1).

6.4 Open Problems and Observations

In this section we will have a look at some properties of the often encountered Fourier
series associated to the Gabor system G(g,Λ). First, we mention the problem for the lower
frame bound. Whereas it is easy to see that the maximum of the Fourier series

Fq(x, ω; ρ) =
∑

k∈Z

∑

l∈Z
e−2πρ q(k,l)e2πi(kx+lω)

is achieved if (x, ω) ∈ Z× Z for any ρ > 0 and any positive definite quadratic form q with
discriminant -1, it is not as easy to locate its minimum (see Figure 12). In the separable
case, i.e. γ = 0 or, equivalently, when the quadratic form q has no mixed term, we already
saw in Section 5 that the minimum is taken for (x, ω) ∈

(
Z+ 1

2

)
×
(
Z+ 1

2

)
as was also

described by Janssen [54]. Also, in the separable case the maximum and the minimum of
the Fourier series associated to a Gabor frame of integer redundancy (αβ)−1 = n > 1

F(α,β) (x, ω) = 2n
∑

k∈Z

∑

l∈Z
(−1)klne−

π
2

(
k2

α2+
l2

β2

)

e2πi(kx+lω)

are taken at integer and half integer points respectively. Note the alternating sign in the
last formula which vanishes for n ∈ 2N.

Taking h(u1, u2) =
1√
3
(u21 − u1u2 + u22), which is equivalent to the quadratic form from

Theorem 6.6, and an adaption of a result by Baernstein [6] shows that the series

Fh(x, ω; ρ) =
∑

k∈Z

∑

l∈Z
e−2πρ h(k,l)e2πi(kx+lω)
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(a) The hexagonal heat kernel Fh(x, ω; 1). The
maximum is taken at the corners of the unit
square, the minima are marked and taken at
the points

(
1

3
, 1
3

)
and

(
2

3
, 2

3

)
.

(b) The argmin of a family of sheared heat ker-
nels for a shearing factor 0 ≤ γ ≤ 1

√

3
. The

parameters α and β are chosen such that for
γ = 1

√

3
we obtain the hexagonal heat kernel.

Figure 12: In the separable case, i.e. γ = 0, the minimum of any heat kernel is taken at
the point

(
1
2
, 1
2

)
. By varying γ, we will obtain two points, located symmetrically to the

point
(
1
2
, 1
2

)
, which yield the minimum.

assumes its minimum at (x, ω) =
(
1
3
, 1
3

)
and, due to symmetry, also at (x, ω) =

(
2
3
, 2
3

)
and

of course at all integer shifts of these points (see Figure 12).
The sharp results about frame bounds in this section are restricted to the case of even

redundancy. However, due to the results by Janssen [53] and Tolimieri & Orr [73] the
norm of the Gabor frame operator is always bounded from above by the ℓ1 (Λ

◦)-norm of
the coefficients in Janssen’s representation as given by equation (4.9) in Proposition 4.4,
i.e.

B(Λ) ≤ vol (Λ)−1
∑

λ◦∈Λ◦

|〈g, π(λ◦)g〉|.

This results holds for any Gabor system with g ∈ M1
(
Rd
)
. In the case of a Gabor frame

with standard Gaussian window G(g0,Λ) the result is sharp whenever vol(Λ) = 1
2n
, n ∈ N.

Therefore, the upper frame bound of the system G(g0,Λ) can always be estimated by

B(Λ) ≤ 2
∑

λ∈Λ
Ag0(2λ) = 2n

∑

λ◦∈Λ◦

Ag0(λ◦).

The first sum, involving 2Λ, has computational advantages whenever 1
2
≤ vol(Λ) because

in this case the adjoint lattice Λ◦ is denser than 2Λ. If 1
2
≥ vol(Λ) summing over Λ◦ is

preferable for computations. From the frame inequality given in equation (1.1) and the
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last estimate for the upper frame bound, we see that

∑

λ∈Λ
|〈g0, π(λ)g0〉|2 =

∑

λ∈Λ
Ag0(λ)2 ≤ B ≤ 2

∑

λ∈Λ
Ag0(2λ). (6.5)

Although we do not have a sharp bound, the inequalities in Formula (6.5) give indication
that Theorem 6.2 might hold for lattices of arbitrary fixed density greater than 1. In fact,
as the redundancy increases we find out that the estimates in (6.5) become sharper (see
Figure 13).

Redundancy

E
s
ti

m
a
te

s
 o

n
 B

Figure 13: The lower estimate (solid line) and the upper estimate (dotted line) on B from
equation (6.5) for the hexagonal lattice for different redundancies greater than 1. As the

redundancy increases, B tends to take the value of the redundancy.

This argument can be made rigorous by observing that for large redundancy we can
sample and sum the ambiguity function over the adjoint lattice. Therefore, we see that
only the term Ag0(0) contributes a lot to the sums in equation (6.5) since Ag0 decays like
the standard Gaussian in all directions. As a consequence we get

lim
vol(Λ)→0

vol(Λ)
∑

λ∈Λ
Ag0(λ)2 = lim

vol(Λ)→0
vol(Λ)B(Λ) = lim

vol(Λ)→0
vol(Λ) 2

∑

λ∈Λ
Ag0(2λ) = 1.

This is true for any lattice which indicates that as the redundancy increases the geometry
of the lattice is negligible for the frame bounds. It is also interesting to observe, that the
mean of Fq(x, ω; ρ) is equal to 1, independent of the quadratic from q and the parameter ρ

∫∫

[0,1]×[0,1]

Fq(x, ω; ρ) dx dω = 1.

This implies that the upper frame bound is always greater than or equal to the redundancy
of the Gabor system G(g0,Λ). Of course this is a well-known fact which follows e.g. from
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Janssen’s proof of the density theorem [55]. Furthermore, since the hexagonal lattice yields
the smallest maximum for all heat kernels on the torus R2/Λ with vol(Λ) fixed, the fact
that all heat kernels possess the same mean, leads to the conjecture that the heat kernel
associated to the hexagonal lattice might also give the largest minimum, because since the
maximum is close to the mean we would expect the minimum to be close to the mean as
well.

We want to make a final remark on frame bounds of the Gabor frame G(g0,Λ) for
redundancy 2. If we take the standard Gaussian and the square lattice 1√

2
Z× 1√

2
Z we find

out that the sharp lower and upper frame bound are given by

A� = 2

(
∑

k∈Z
(−1)ke−πk2

)2

= 2

(
π1/4

21/4Γ
(
3
4

)
)2

B� = 2

(
∑

k∈Z
e−πk2

)2

= 2

(
π1/4

Γ
(
3
4

)
)2

,

where Γ is the usual gamma function defined as

Γ(t) =

∫

R+

xt−1e−x dx

The two formulas for A� and B� are actually classical results about Jacobi’s theta-3 and
theta-4 function. They can also be found in [64]. It is easy to see that the condition number
is B�/A� =

√
2 which was also observed by Strohmer & Beaver in [72]. Furthermore, they

mentioned that in the case of the hexagonal lattice of redundancy 2, the condition number
is approximately Bh/Ah ≈ 1.2599 which, as they say, ‘is suspiciously close to 3

√
2’. We will

now prove that it is exactly the expected value.

Proposition 6.7. For redundancy 2, the ratio of the frame bounds for the standard Gaus-
sian window and a hexagonal lattice is given by

Bh

Ah
=

3
√
2.

Proof. We already observed that the frame bounds are given by

Ah = 2
∑

k,l∈Z
e
−2π 1√

3
(k2−kl+l2)e2πi(k+l)/3 = 2

∑

k,l∈Z
e
−2π 1√

3
(k2+kl+l2)e2πi(k−l)/3

Bh = 2
∑

k,l∈Z
e
−2π 1√

3
(k2+kl+l2).
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We will now use a result on cubic theta functions by Hirschhorn, Garvan & Borwein derived
in 1993 [50]2. To stick close to their notation we introduce the following functions

a(q) =
∑

k,l∈Z
qk

2+kl+l2

b(q) =
∑

k,l∈Z
qk

2+kl+l2ζk−l
3

c(q) =
∑

k,l∈Z
q(k+

1
3)

2
+(k+ 1

3)(l+
1
3)+(l+

1
3)

2

where ζ33 = 1 and ζ3 6= 1 and |q| < 1. These functions fulfil the identity

a(q)3 = b(q)3 + c(q)3.

Setting q = e−2π/
√
3 we will now prove that actually b

(
e−2π/

√
3
)
= c

(
e−2π/

√
3
)
by using

Poisson summation. We start with the observation that e
− 2π√

3
(k2+kl+l2) and e

− 2π√
3
(k2−kl+l2)

are the 2-dimensional Fourier transforms of each other. Therefore we have
∑

k,l∈Z
e
− 2π√

3
(k2+kl+l2)e2πi

(k−l)
3 =

∑

k,l∈Z
e
− 2π√

3
(k2−kl+l2)e−2πi (k+l)

3

=
∑

k,l∈Z
e
− 2π√

3

(
(k+ 1

3)
2
+(k+ 1

3)(l+
1
3)+(l+

1
3)

2
)

.

Hence, it follows that

Ah = 2 b
(
e−2π/

√
3
)
= 2 c

(
e−2π/

√
3
)

Bh = 2 a
(
e−2π/

√
3
)

which gives
B3

h = 2A3
h

and the proof is finished.

We remark that in the case of the square lattice of redundancy 2 we already know

B2
� = 2A2

�.

This is equivalent to the identity

θ3(1)
4 = 2θ4(1)

4 = θ2(1)
4 + θ4(1)

4,

which actually holds for arbitrary s > 0 and not only for the presented case s = 1. This
is one reason why the functions a(q), b(q) and c(q) introduced in the last proof are called

2The author wishes to thank Thomas Strohmer for pointing out reference [50]
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cubic analogues of the Jacobi theta functions. Also, Proposition 6.7 gives an analytic proof
that for a Gabor frame with standard Gaussian window and a lattice of redundancy 2 the
hexagonal lattice yields a better frame condition number than the square lattice.

We close this section with some numerical observations. Trying to link Ah and Bh to
known constants gives two promising candidates. Computations3 show that (at least) the
first 2048 digits of the following numbers match

Ah ≈
1

L+

=
Γ
(
1
6

)

Γ
(
1
3

)
Γ
(
5
6

) =
3
√
2 C2, (6.6)

where L+ is the best known upper bound for Landau’s constant L first described by Landau
in 1929 [59] for which the inequality

1

2
< L ≤ Γ

(
1
3

)
Γ
(
5
6

)

Γ
(
1
6

) = L+ (6.7)

is known and the upper bound is conjectured to be sharp [32, Section 7.1]. This goes back
to the work of Rademacher in 1943 [68] in which he computed the upper value L+ given in
(6.7) and conjectured that this might be the true value of L. Landau himself had a slightly
larger value for the upper bound on this constant. The constant C is Baxter’s 4-colouring
constant for the hexagonal (triangular) lattice given by

C2 =
∞∏

k=1

(3k − 1)2

(3k − 2) (3k)
=

3

4π2
Γ

(
1

3

)3

which can be found in [8], [9], [32, Section 5.24.1]. We will now prove the last equality in
equation (6.6). We could not find this identity in the literature.

Proposition 6.8.
1

L+
=

3
√
2 C2.

Proof. We establish the result by using two identities for the Gamma function. We have
the Legendre duplication formula which says

Γ(2z) = 22z−1 π−1/2 Γ(z)Γ

(
z +

1

2

)
.

Setting z = 1
6
gives us, after some rearrangements, that

Γ

(
1

6

)
= 22/3

√
π
Γ
(
1
3

)

Γ
(
2
3

) . (6.8)

3The computations where performed in Mathematica 10.0 by truncating the series representation of Ah

for indices |k|, |l| > 41 and using the built-in function ‘Gamma’ to evaluate Γ.
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The second identity we use, is Euler’s reflection formula

Γ(z)Γ(1− z) = π

sin(πz)
, z /∈ Z.

For z = 1
3
and z = 1

6
this gives us the identities

Γ

(
2

3

)
=

2π√
3 Γ
(
1
3

) (6.9)

Γ

(
5

6

)
=

2π

Γ
(
1
6

) . (6.10)

By using all these identities we will be able to complete the proof.

1

L+

=
Γ
(
1
6

)

Γ
(
1
3

)
Γ
(
5
6

) (6.10)
=

Γ
(
1
6

)2

Γ
(
1
3

)
2π

(6.8)
=

Γ
(
1
3

)2
24/3π

Γ
(
2
3

)2
Γ
(
1
3

)
2π

(6.9)
=

Γ
(
1
3

)3
24/3π

(2π)2

3
2π

=
3Γ
(
1
3

)3
21/3

4π2
= 21/3C2.

As a deduction of equation (6.6) and Proposition 6.7 which shows that Bh/Ah = 3
√
2

we get the following approximation

Bh ≈
3
√
2

L+
=

3
√
2 Γ

(
1
6

)

Γ
(
1
3

)
Γ
(
5
6

) = 22/3 C2. (6.11)

Again, the approximation is very accurate and at least the first 2048 digits are correct.
In the upcoming section we will have a closer look at Landau’s constant and a possible
connection to Gabor frames.
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7 Gabor Frame Bounds and “Weltkonstanten”

In the first part of this section we will study a packing problem for holomorphic functions.
In 1929 Landau [59] gave some estimates on two constants, which he called “Weltkonstan-
ten” (universal constants). These constants go back to an article by Bloch in 1925 [12]. In
this article Bloch showed the existence of one of the former mentioned “Weltkonstanten”.
In 1937 Ahlfors & Grunsky gave an upper bound on Bloch’s constant which they already
believed to be its true value and in 1943 Rademacher [68] gave an estimate on the related
Landau constant which he also conjectured to be the true value.

In the second part we have a look at lower frame bounds for two particular Gabor
frames. For the standard Gaussian g0 we investigate the Gabor frames G (g0,Λ2

�), where
Λ2

� is the square lattice of redundancy 2, and the Gabor frame G (g0,Λ2
h), where Λ2

h is the
hexagonal lattice of redundancy 2.

7.1 A Packing Problem for Holomorphic Functions

In what follows D will be the open unit disc in C. As Landau already wrote in his article
[59]: The following theorem is due to Bloch [12].

Theorem 7.1 (Bloch 1925). Let f ∈ H(D) with |f ′(0)| = 1. Then there exist an open
subset U ⊆ D and an open disc Df (r) of radius r > 0 in f(D) such that f is biholomorphic
from U to Df(r).

Bloch’s constant B is then defined in the following way. First, we define for each
f ∈ H(D) a constant b depending on f by

b(f) = sup{r ∈ R+ | ∃U ⊆ D : f(U) = Df(r) and f |U is biholomorphic}

where Df(r) is a disc of radius r contained in f(D). Bloch’s constant is now

B = inf
f∈H(D),
|f ′(0)|=1

{b(f)}.

The smallest upper bound for B was found by Ahlfors & Grunsky in 1937 [2] and is
conjectured to be the true value of B. We have the following estimates

√
3

4
+ 2 · 10−4 < B ≤ Γ

(
1
3

)
Γ
(
11
12

)

Γ
(
1
4

) (
1 +
√
3
)1/2 .

We are interested in the related constant L which is called Landau’s constant. It is de-
fined in a way similar to Bloch’s constant by dropping the property that f should be
biholomorphic on Df(r). We have following theorem.

Theorem 7.2 (Landau 1929). Let f ∈ H(D) with |f ′(0)| = 1. Then there exists a disc
Df(r) of radius r > 0 in f(D).
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Landau’s constant is now defined as follows. Again, for f ∈ H(D) we define a constant
ℓ depending on f by

ℓ(f) = sup{r ∈ R+ |Df(r) ⊆ f(D)}.
Landau’s constant is now

L = L+ = inf
f∈H(D),
|f ′(0)|=1

{ℓ(f)}.

We have the following estimates

1

2
+ 10−335 < L ≤ Γ

(
1
3

)
Γ
(
5
6

)

Γ
(
1
6

) = L+.

The best upper estimate, which is conjectured to be the true value of L, was achieved by
Rademacher in 1943 [68] using analogue techniques to the ones of Ahlfors & Grunsky in
their article [2].

Conjecture 7.3 (Rademacher 1943).

L =
Γ
(
1
3

)
Γ
(
5
6

)

Γ
(
1
6

) .

The work by Baernstein & Vinson [5] gives a collection of techniques and results con-
cerning Bloch’s constant as well as Landau’s constant. The textbooks [15] and [71] contain
information about Schwarz-Christoffel mappings, which map the unit disc onto a regular
polygon. For mappings from the unit disc onto a hyperbolic polygon we refer to [66, V.7].
These mappings have been the main tools in Rademacher’s work and we will also use them
later on.

It is beneficial for us to repeat Rademacher’s process of finding the upper bound L+.
The procedure is as follows [68]:

• Map the interior of a hyperbolic equilateral triangle in D conformally onto the interior
of a Euclidean equilateral triangle

• By successive reflections create a universal covering map from D onto C/Λh, where
Λh is the (shifted) hexagonal lattice generated by the Euclidean triangle with optimal
covering radius 1.

Consider the following function as already described by Rademacher in [68]

φα : D→ C

φα(z) = z · Γ
(
2
3

)
Γ
(
5
6
+ α

2

)

Γ
(
4
3

)
Γ
(
1
6
+ α

2

) 2F1

(
5
6
− α

2
, 1
2
− α

2
, 4
3
; z3
)

2F1

(
1
6
− α

2
, 1
2
− α

2
, 2
3
; z3
) .

Here, 2F1(a, b, c; z) denotes Gauss’ hypergeometric function. It is given by

2F1(a, b, c; z) =
∞∑

n=0

(a)n(b)n
(c)n

zn

n!
, |z| < 1,
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where (q)n denotes the rising Pochhammer symbol which is

(q)n =

{
1 n = 0

q(q + 1) · · · (q + n− 1) n > 0.

We note that an analytic continuation of 2F1 is possible along any path in the complex
plane, as long as the branch points 0 and 1 are avoided. For z = 1 we have the value

2F1(a, b; c; 1) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b) , Re(c) > Re(a+ b)

The function φα maps the interior of the unit disc D onto an equilateral, equiangular
circular triangle of angles απ, 0 ≤ α ≤ 1 (see Figure 14). We note the following properties
of φα

φα(0) = 0

φα (1) = 1

φα (ζ3) = ζ3

φα

(
ζ23
)
= ζ23

which hold for all α ∈ [0, 1]. Here, ζ3 = e2πi/3 and the formulas for α = 0 hold in the limit
case limα→0+ φα(z) = φ0(z). Also, the points on the unit circle are mapped to the edges of
the triangle. By using the inverse function for α = 0

φ−1
0 (z)

we introduce the following conformal mapping

f(z) = φ 1
3

(
φ−1
0 (z)

)
.

This function maps a hyperbolic triangle, to be more precise the zero-angled, equilateral,
circular triangle, onto the Euclidean equilateral triangle. By successive reflections (see
Figure 154) f extends to a universal covering map from D onto C/Λh. The largest disc
contained in f(D) has radius 1. We compute the derivative of f

f ′(z) =
φ′

1
3

(
φ−1
0 (z)

)

φ′
0

(
φ−1
0 (z)

)

and evaluate at zero

f ′(0) =
φ′

1
3

(0)

φ′
0(0)

=
Γ
(
1
6

)

Γ
(
5
6

)
Γ
(
1
3

) .

4The Mathematica code to produce the pictures of the hyperbolic triangles in Figure 15 was downloaded
from the Wolfram Demonstrations Project [77].
demonstrations.wolfram.com/ReflectingARegularPolygonAcrossItsSidesInTheHyperbolicPlane
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Since, we want to have |f ′(0)| = 1, we scale f by the factor
Γ( 1

3)Γ(
5
6)

Γ( 1
6)

which now means

that the largest disc contained in f(D) has exactly radius
Γ( 1

3)Γ(
5
6)

Γ( 1
6)

.

We remark that Λh, obtained from f in the described way, is actually not a lattice since
it does not contain the origin. However, a simple shift of Λh does not affect any of the
results, since this would mean that we add a constant to the function f(z) which does not
change its derivative.

(a) The unit disc D.

φ1/3

−−−−→
−−−−→ φ0

(b) The Euclidean triangle.

f←−−−−

(c) The hyperbolic triangle.

Figure 14:
Illustration of the conformal mappings φ0 and φ1/3. The unit disc is mapped to the

hyperbolic equilateral zero-angled triangle and to the Euclidean equilateral triangle. f
maps the hyperbolic triangle onto the Euclidean triangle.
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(a) First step of hyperbolic reflections
in the unit disc.

f−−−−→

(b) First step of Euclidean reflections
in the plane.

(c) Second step of hyperbolic reflec-
tions in the unit disc.

f−−−−→

(d) Second step of Euclidean reflec-
tions in the plane.

Figure 15: Successive reflections of the hyperbolic triangles along their edges provide a
tessellation of the unit disc. We note that all hyperbolic triangles in the disc are disjoint
from each other whereas in the plane two different triangles might be reflected to one and

the same triangle after the second step of reflections. Therefore the map f is not
biholomorphic.
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We will now consider a mapping similar to φα above, namely

Φα : D→ C

Φα(z) = z · Γ
(
3
4

)
Γ
(
a
2
+ 3

4

)

Γ
(
5
4

)
Γ
(
a
2
+ 1

4

) 2F1

(
1
2
− a

2
, 3
4
− a

2
; 5
4
; z4
)

2F1

(
1
4
− a

2
, 1
2
− a

2
; 3
4
; z4
)

which maps the disc D onto a circular quadrangle with angles απ, 0 ≤ α ≤ 1 (see Figure
16).

(a) The unit disc D.

Φ1/2

−−−−→
−−−−→ Φ0

(b) The Euclidean square.

F←−−−−−

(c) The hyperbolic quadrangle.

Figure 16:
Illustration of the conformal mappings Φ0 and Φ1/2. The unit disc is mapped to the

hyperbolic equilateral zero-angled quadrangle and to the Euclidean square. F maps the
hyperbolic quadrangle onto the Euclidean square.
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(a) First step of hyperbolic reflections
in the unit disc.

f−−−−→

(b) First step of Euclidean reflections
in the plane.

(c) Second step of hyperbolic reflec-
tions in the unit disc.

f−−−−→

(d) Second step of Euclidean reflec-
tions in the plane.

Figure 17: Successive reflections of the circular quadrangles along their edges provide a
tessellation of the unit disc. We note that all hyperbolic quadrangles in the disc are

disjoint from each other whereas in the plane two different squares might be reflected to
one and the same square after the first step of reflections (plotted yellow in step 2).

Therefore the map F is not biholomorphic.
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We note the following properties of Φα

Φα(0) = 0

Φα (1) = 1

Φα (i) = i

Φα

(
i2
)
= i2

Φα

(
i3
)
= i3

hold for all α ∈ [0, 1]. The formulas for α = 0 hold in the limit case limα→0+ φα(z) = φ0(z).
Also, the points on the unit circle are mapped to border sides of the quadrangle. Hence,
by successive reflections (see Figure 17 5) the function

F (z) = Φ 1
2

(
Φ−1

0 (z)
)

extends to a universal covering map which maps D onto C/Λ⋄, where Λ⋄ is a 45◦ rotated
square lattice with covering radius 1, i.e. the largest disc contained in F (D) has radius 1.
The points Λ⋄ are branch points of F with infinite order. Computing the derivative in zero
gives

F ′(0) =
Γ
(
1
4

)

Γ
(
1
2

)
Γ
(
3
4

) .

Again, we remark that Λ⋄ is actually not a lattice, but, as before, adding the right
constant (e.g. -1) to the function F (z) shifts the point set such that one point is the origin.

Multiplying F (z) with e
πi
4 rotates the image F (D) by 45◦ such that the branch points of

F create the square lattice with covering radius 1.

7.2 Gabor Frame Bounds Revisited

We will investigate the lower frame bounds of the Gabor frames

G(g0,Λ2
h) and G(g0,Λ2

�)

where Λ2
h is the hexagonal lattice of redundancy 2 and Λ2

� is the square lattice of redundancy
2. From here on we will sometimes drop the superscript 2 which indicates that the lattice
has redundancy 2, since we do not consider other redundancies. We already know that
finding the lower frame bound of G(g0,Λ) , Λ ∈ F2

full(g0) is equivalent to the following
optimization problem

A(Λ) = inf
(x,ω)∈[0,1]2

Fg0(x, ω) = 2
∑

λ∈Λ
〈g0, π(λ)g0〉 e2πi(kx+lω).

5The Mathematica code to produce the pictures of the hyperbolic quadrangles in Figure 17 was down-
loaded from the Wolfram Demonstrations Project [77].
demonstrations.wolfram.com/ReflectingARegularPolygonAcrossItsSidesInTheHyperbolicPlane
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Now, we define the following number

A = sup
Λ∈F2

full(g0)

A(Λ).

Having a look at the problem when only separable lattices are allowed, we define the
following constant

A = sup
Λ∈F2

(α,β)
(g0)

A(Λ).

As we already know from Section 5 (see also [24]), this value is given by

A = 2
∑

k,l∈Z
e−2π 1

2
(k2+l2)e2πi

1
2
(k+l) = 2 ϑ4(1)

2 = 2

(
π1/4

21/4Γ
(
3
4

)
)2

.

The last equality actually goes back to a classical result about Jacobi’s theta-4 function
and can also be found in [64]. We note the following curious property.

Proposition 7.4.
A = F ′(0).

Proof. We already know that A = 2

(
π1/4

21/4Γ( 3
4)

)2

and that F ′(0) =
Γ( 1

4)
Γ( 1

2)Γ(
3
4)
. Therefore we

have to show that

2
π1/2

21/2Γ
(
3
4

)2 =
Γ
(
1
4

)

Γ
(
1
2

)
Γ
(
3
4

) . (7.1)

We use Euler’s reflection formula

Γ(z)Γ(1 − z) = π

sin(πz)
, z /∈ Z

for z = 1
4
. This gives

Γ

(
1

4

)
Γ

(
3

4

)
=
√
2 π.

Therefore, equation (7.1) reads
√
2π

Γ
(
3
4

)2 =

√
2 π

Γ
(
1
2

)
Γ
(
3
4

)2

and, since, Γ
(
1
2

)
=
√
π the proof is complete.

For the general case, we conjecture that Λ being a hexagonal lattice always maximizes
the lower frame bound for a Gaussian Gabor frame. Therefore, we conjecture that the
value of A defined above, is given by

A = 2
∑

k,l∈Z
e
−2π 1√

3
(k2−kl+l2)

e2πi
1
3
(k+l).
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Furthermore, the numerical results from Section 6 suggest that the following might be true.

A =
1

L+
=

Γ
(
1
6

)

Γ
(
5
6

)
Γ
(
1
3

) .

Therefore, we end this work with the following conjecture.

Conjecture 7.5. A is the “Weltkonstante”

A =
1

L .
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A On Two Products of Jacobi’s Theta Functions

We start with recalling Jacobi’s theta functions. Also, for the special arguments z = 0
and z = 1

2
we present alternative proofs to Theorem 5.11 and Theorem 5.16 in Section

5 but without the additional parameter r (i.e. r = 1). For Gabor frames with standard
Gaussian window and rectangular lattices of redundancy 2, the results imply the optimality
results for the frame bounds using the square lattice. The proofs are very different in style
compared to the proofs in Section 5.

Recall that

θ3(s) =
∑

k∈Z
e−πk2s

θ4(s) =
∑

k∈Z
(−1)ke−πk2s

with s ∈ R+. Since the proof of the upcoming lemma relies heavily on it, we recall the
Jacobi identity

θ3(s) = s−1/2 θ3(1/s), (A.1)

which follows from the Poisson summation formula.

Lemma A.1. For s ∈ R+ we have

θ3(s)θ3(1/s) ≥ θ3(1)
2

with equality only for s = 1.

Proof. We want to find the critical points of θ3(s) · θ3(1/s). Hence, we need to find s ∈ R+

such that
(θ3(s) · θ3(1/s))′ = 0.

This is equivalent to
θ′3(s) · θ3(1/s)− θ3(s) · θ′3(1/s) s−2 = 0. (A.2)

From (A.2) we see that θ3(s) · θ3(1/s) has a critical point at s = 1. Also, equation (A.2) is
equivalent to

θ3(s)

θ3(1/s)

θ′3(1/s)

θ′3(s)
= s2,

which by (A.1) is equivalent to
θ′3(1/s)

θ′3(s)
= s5/2. (A.3)

We will now use (A.1) again to compute

θ′3(s) =
(
s−1/2θ3(1/s)

)′

= −1
2
s−3/2 θ3(1/s)− s−5/2 θ′3(1/s).
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This can be reformulated as

θ′3(1/s) =

(
−1
2
s−3/2 θ3(1/s)− θ′3(s)

)
s5/2. (A.4)

Plugging (A.4) into (A.3) and using (A.1) again yields

−1
2
s−1 θ3(s)− θ′3(s)

θ′3(s)
= 1,

which leads to the differential equation

θ′3(s) = −
1

4
s−1 θ3(s). (A.5)

The solution to (A.5) is given by

θ3(s) = c s−1/4, (A.6)

where c = θ3(1). So, we have to check that θ3(s) 6= θ3(1) s
−1/4 except for s = 1. For

this purpose we define the function f(s) = θ3(1) s
−1/4 and want to find s ∈ R+ such that

θ3(s) = f(s). To make the analysis easier, we define the functions

θ̃3(s) = θ3 (exp(s))

and

f̃(s) = f (exp(s))

= θ3(1) e
−s/4

= θ̃3(0) e
−s/4.

Instead of comparing θ3(s) · θ3(1/s) with f(s) · f(1/s) ≡ θ3(1)
2 on R+ we compare the

symmetric products θ̃3(s) · θ̃3(−s) and f̃(s) · f̃(−s) ≡ θ̃3(0)
2 on the whole real line. The

function θ̃3(s) is positive, strictly decreasing and

lim
s→∞

θ̃3(s) = 1.

Also, the function f̃(s) is positive, strictly decreasing and

lim
s→∞

f̃(s) = 0.

We will make use of the mentioned properties of θ̃3 and f̃ as well as of the properties of
their derivatives. We compute

θ̃3
′
(s) = −πes

∑

k∈Z
k2e−πk2es (A.7)
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and

f̃ ′(s) = −1
4
θ̃3(0)e

−s/4. (A.8)

From equations (A.7) and (A.8) and setting s = 0 we conclude that

4π =
θ̃3(0)∑

k∈Z k
2e−πk2

. (A.9)

We will now compare θ̃3
′
with f̃ ′.

θ̃3
′
(s) = f̃ ′(s) (A.10)

⇐=⇒ −πes
∑

k∈Z
k2e−πk2es = −1

4
θ̃3(0)e

−s/4 (A.11)

⇐=⇒ 4π
∑

k∈Z
k2e−πk2(es+5s/4) = θ̃3(0) (A.12)

(A.9)⇐=⇒
∑

k∈Z
k2e−πk2(es+5s/4) =

∑

k∈Z
k2e−πk2 (A.13)

We consider 3 cases.
Case 1. Let s = 0. From the equivalence of (A.10) and (A.13) we see immediately that

θ̃3
′
(0) = f̃ ′(0). Also, we have θ̃3(0) · θ̃3(0) = f̃(0) · f̃(0), which is certainly true by the

definitions of the functions.
Case 2. Let s < 0. Then, equation (A.13) becomes an inequality and the left-hand side of
(A.13) is bigger than the right-hand side. This is due to the fact that

es + 5s/4 < 1 for s < 0.

By the equivalence of (A.10) and (A.13) this is equivalent to

θ̃3
′
(s) < f̃ ′(s) for s < 0.

Case 3. Let s > 0. With similar arguments as for the case s < 0, we conclude that

θ̃3
′
(s) > f̃ ′(s) for s > 0.

Recall that both functions, θ̃3 and f̃ , are strictly decreasing and by equation (A.5) or
(A.13) they touch at s = 0. Using the results from the case analysis, we are able to conclude

that θ̃3(s) ≥ f̃(s) with equality if and only if s = 0. In the same way θ̃3(−s) ≥ f̃(−s)
holds with equality if and only if s = 0. Hence, we finally get

θ̃3(s) · θ̃3(−s) ≥ f̃(s) · f̃(−s) ≡ θ̃3(0)
2

for all s ∈ R with equality if and only if s = 0. Therefore, θ̃3(s) · θ̃3(−s) takes its global
minimum at s = 0 and consequently, θ3(s) · θ3(1/s) takes its global minimum only for
s = 1.
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Lemma A.2. For s ∈ R+ we have

θ4(s)θ4(1/s) ≤ θ4(1)
2

with equality only for s = 1.

Proof. First we rewrite the sum over the natural numbers

θ4(s) = 1 + 2
∑

k≥1

(−1)ke−πk2s. (A.14)

We will show that outside a neighborhood of 1 the product φ(s) = θ4(s) θ4(1/s) is smaller
than some threshold and that inside this neighborhood we only find one critical point,
which is a local maximum and hence, the global maximum. For this purpose we compute
the derivatives up to order 3.

φ′(s) = θ4

(
1

s

)
θ′4(s)−

θ4(s)θ
′
4

(
1
s

)

s2
(A.15)

φ′′(s) =
θ4(s)θ

′′
4

(
1
s

)

s4
+

2θ4(s)θ
′
4

(
1
s

)

s3

− 2θ′4(s)θ
′
4

(
1
s

)

s2
+ θ4

(
1

s

)
θ′′4(s)

(A.16)

φ′′′(s) = − θ4(s)θ
′′′
4

(
1
s

)

s6
− 6θ4(s)θ

′′
4

(
1
s

)

s5
− 6θ4(s)θ

′
4

(
1
s

)

s4

+
3θ′4(s)θ

′′
4

(
1
s

)

s4
+

6θ′4(s)θ
′
4

(
1
s

)

s3
− 3θ′4

(
1
s

)
θ′′4(s)

s2

+ θ4

(
1

s

)
θ′′′4 (s)

(A.17)

In order to get estimates for φ(n) in a neighborhood of 1 it is sufficient to have estimates
for θ

(m)
4 where m = 0, . . . , n in this neighborhood. We compute

θ′4(s) = +2π
∑

k≥1

(−1)k+1k2e−πk2s (A.18)

θ′′4(s) = −2π2
∑

k≥1

(−1)k+1k4e−πk2s (A.19)

θ′′′4 (s) = +2π3
∑

k≥1

(−1)k+1k6e−πk2s. (A.20)

Next, we want to estimate θ
(m)
4 (s), m = 1, 2, 3 in a neighborhood of 1. As the sums in

(A.18), (A.19) and (A.20) are absolutely convergent we compare two successive terms and
show that they are monotonically decreasing for s large enough.
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Let k > 1, r > 0, then there exists a value sr such that

kre−πk2s ≤ (k − 1)re−π(k−1)2s (A.21)

for all s ≥ sr =
r
3π
. We start with the observation that the Inequality (A.21) is equivalent

to (
1 +

1

k − 1

)r

≤ eπ(k
2−(k−1)2)s

which is equivalent to

((
1 +

1

k − 1

)(k−1)
) r

(k−1)

︸ ︷︷ ︸
≤e

r
k−1

≤ eπ(2k−1)s.

Therefore, we compare the exponents

r

k − 1
≤ (2k − 1)πs

which is equivalent to
r

(k − 1)(2k − 1)
≤ πs.

The last statement is certainly true for k > 1, r > 0 and s > r
3π
. Using equation (A.21)

and the fact that

0 < θ′′′4,2(s) = +2π3
2∑

k=1

(−1)k+1k6e−πk2s ≤ θ′′′4 (s), s ≥ 2

π

we conclude that θ′′′4 (s) > 0 and decreasing on the interval
[
2
π
,∞
)
. Using (A.21) and the

fact that the sum is alternating we conclude that

|θ′′′4 (s)| ≤
2π3

e2
= 8.39249 . . . (A.22)

on the interval
[
2
π
,∞
)
. As we want to estimate φ′′′(s) via equation (A.20) we also need

estimates on the lower order derivatives of θ4(s) and on θ4(s) itself. By using the Inequality
A.21 on θ′′4(s) we conclude that θ′′4(s) < 0 and increasing for s ∈

[
4
3π
,∞
)
⊃
[
2
π
,∞
)
. Also,

we conclude that

|θ′′4(s)| ≤
2π2

e2
= 2.67141 . . . (A.23)

on the interval
[
2
π
,∞
)
. In the same manner, we get that θ′4(s) > 0 and decreasing for

s ∈
[

2
3π
,∞
)
⊃
[
2
π
,∞
)
. Hence, we have

|θ′4(s)| ≤
2π

e2
= 0.850337 . . . (A.24)
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on the interval
[
2
π
,∞
)
. At last, we conclude that 0 ≤ θ4(s) ≤ 1 and increasing, since it is

a cumulative distribution function on R+, in particular

|θ4(s)| ≤ 1 (A.25)

on R+. Since, estimates on |φ(k)(s)| involve estimates on the derivatives of our function θ4
with argument s as well as with 1

s
, we cannot estimate |φ(k)| on the the interval [ 2

π
, ∞),

but only on the interval [ 2
π
, π

2
]. We use Equations (A.22), (A.23), (A.24) and (A.25) to get

an estimate on φ′′′(s) on the interval
[
2
π
, π
2

]
. We plug in all those estimates into equation

(A.17) and estimate all negative terms by 0 so we get an estimate from above.

φ′′′(s) ≤0 +6
(π
2

)5 2π2

e2
+0

+0 +6
(π
2

)3 2π
e2

2π

e2
+3
(π
2

)2 2π
e2

2π2

e2

+
2π3

e2

=
2π3

e2
+

6π5

e4
+

3π7

8e2

= K+ = 195.304 . . .

(A.26)

In the same manner we estimate positive terms by 0 to get an estimate from below.

φ′′′(s) ≥−
(π
2

)6 2π3

e2
+0 −6

(π
2

)4 2π
e2

−3
(π
2

)4 2π
e2

2π2

e2
+0 +0

+0

=− 3π5

4e2
− 3π7

4e4
− π9

32e2

= K− = −198.61986 . . .

(A.27)

Since |K+| < |K−| we get the following estimate for |φ′′′(s)|

|φ′′′(s)| ≤ |K−| = K = 198.61986 . . . (A.28)

As a next step we want to show that φ′′(1) < 0 by using the information we have about
φ′′′(s).First, we write

φ′′(s)− φ′′(1) =

∫ s

1

φ′′′(u) du.

This implies that

φ′′(s) =

∫ s

1

φ′′′(u) du+ φ′′(1).
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We will now estimate how large φ′′(1) can be at most. Therefore, we observe that θ′′4(s) is
always less or equal to a truncation of the series after any even term, in particular

θ′′4(s) ≤ 2π2(−e−πs + 16e−4πs) = θ′′4,2(s)

and
θ′′4(1) ≤ 2π2(−e−π + 16e−4π) = θ′′4,2(1) = −0.851907 . . .

In the same manner we can estimate θ′4(s) by a truncation of the series after any odd term,
in particular

θ′4(s) ≤ 2πe−πs = θ′4,1(s)

and
θ′4(1) ≤ 2πe−π = θ′4,1(1) = 0.271521 . . .

According to equation (A.16) we know that

φ′′(1) = 2
(
θ4(1)θ

′′
4(1) + θ4(1)θ

′
4(1)− θ′4(1)2

)

≤ 2 θ4(1)
(
θ′′4,2(1) + θ′4,1(1)

)

= −1.16077 θ4(1).

The value of θ4(1) = π1/4

21/4Γ( 3
4)

= 0.913579 . . . where Γ(z) =
∫∞
0
sz−1e−s dt is the Euler

gamma function. Collecting all the information we have, we see that

φ′′(1) ≤ K̃ = −1.060457 . . . (A.29)

and consequently

φ′′(s) =

∫ s

1

φ′′′(u) du+ φ′′(1) ≤ K |s− 1|+ K̃

where K and K̃ are defined as in (A.28) and (A.29) respectively. Finally, we found the
desired neighborhood of 1

|s− 1| < −K̃
K

= 0.00533913 . . .

In particular, this means that in the smaller interval I0 = [1/s0, s0] =
[

1
1.005

, 1.005
]
the

function φ(s) has a local maximum in s = 1.
Further on, φ(1.005) = φ

(
1

1.005

)
and outside this region we can dominate φ(s) by the

product θ4,2(s)θ4,2(1/s) where θ4,2(s) = 1−2e−πs+2e−4πs is the series from equation (A.14)
truncated after k = 2. On the interval [1, s0] we know that φ(s) takes its maximum at s = 1
and is decreasing for s ≥ 1. Also, we calculate that θ4,2(s0)θ4,2(1/s0) = 0.8346118 · · · <
0.834627 · · · = θ4(1)

2 and hence

φ(1) = θ4(1)
2 > θ4,2(s0)θ4,2(1/s0) > φ(s0).
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By the mean value theorem there exists some ξ ∈ (1, s0) such that φ(ξ) = θ4,2(s0)θ4,2(1/s0).
For s ≥ 1, we define the function

g(s) =





θ4(s)θ4(1/s), 1 ≤ s ≤ ξ

θ4,2(s0)θ4,2(1/s0) ξ < s ≤ s0

θ4,2(s)θ4,2(1/s), s0 < s ≤ 3π
log(4)

θ4

(
log(4)
3π

)
, 3π

log(4)
< s

On the interval
[
1, 3π

log(4)

]
we have g(s) ≥ φ(s) and g is decreasing. And at s = 3π

log(4)

we have 1 − 3
25/3

= θ4,2

(
log(4)
3π

)
= 0.0550592 . . . . Since, θ4,2(s) ≥ θ4(s) this shows that

g ≥ θ4 on [1,∞). By the symmetry φ(s) = φ(1/s) we finally get that φ(s) takes its global
maximum at s = 1.
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[1] Lúıs Daniel Abreu and Monika Dörfler. An inverse problem for localization operators.
Inverse Problems, 28(11):115001, 2012.
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volume 17, pages 1–22, 1925.

[13] Helmut Bölcskei. Orthogonal Frequency Division Multiplexing Based on Offset QAM.
In Hans G. Feichtinger and Thomas Strohmer, editors, Advances in Gabor Analysis,
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Birkhäuser/Springer Basel AG, Basel, 2011.

[37] Maurice A. de Gosson. The symplectic egg in classical and quantum mechanics.
American Journal of Physics, 81(5):328–337, 2013.

[38] Maurice A. de Gosson. Hamiltonian deformations of Gabor frames: First steps. Ap-
plied and Computational Harmonic Analysis, 38(2):196–221, 2015.
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Deutsche Zusammenfassung

Die vorliegende Arbeit behandelt ein Thema im Bereich von Gabor Frames welche zum
Gebiet der Zeit-Frequenz Analyse gehören. Der Fokus wird auf die Untersuchung von schar-
fen Schranken von Gabor Frames mit Gauß Fenster gerichtet und wie sich diese Schranken
unter Deformation des zugehörigen Gitters verhalten. Die Forschung bezüglich der Defor-
mation von Gabor Systemen ist weithin bekannt, gleichzeitig gibt es noch kein allgemeines
Verständnis dafür, wann ein Gabor System auch tatsächlich einen Frame bildet.

Möchte man das Verhalten eines Gabor Frames mit einem bestimmten Fenster un-
tersuchen, stößt man schnell auf den Begriff des Frame Sets. Das Frame Set eines bes-
timmten Fensters beschreibt welche Gitter einen Frame liefern. Fordert man eine bes-
timmte Glattheit und ein bestimmtes Abklingverhalten von einem Fenster, so weiß man,
dass das Frame Set eine offene Menge ist (was im Allgemeinen nicht wahr ist). Die Bes-
timmung des Frame Sets gestaltet sich im Allgemeinen als sehr schwierig und man kennt
kein allgemeines Konzept mit welchem man das Frame Set für eine Klasse von Funktionen
oder selbst einer einzelnen Funktion bestimmen kann.

Die erste und bislang einzige Funktion für welche man das gesamte Frame Set kennt, ist
die Gauß Funktion. In diesem Fall sind die notwendigen Bedingungen welche sich aus dem
Balian-Low Theorem beziehungsweise dem Dichtheitssatz ergeben schon hinreichend. Im
Gegensatz zu dem Resultat für die Gauß Funktion wurden erst kürzlich Vermutungen über
eine ähnlich einfache Struktur des Frame Sets von Hermite Funktionen höherer Ordnung
durch Gegenbeispiele widerlegt.

Es mag den Anschein erwecken, dass wir viel über Gabor Frames mit einem Gauß
Fenster wissen, dennoch gibt es auch in diesem Fall noch genügend offene Fragen, welche
es wert sind, untersucht zu werden. Ein offenes Problem ist es, das Verhalten der Frame
Schranken in Abhängigkeit des Frame Sets zu beschreiben. Konkret stellt sich die Frage, ob
es ein einziges optimales Gitter gibt, welches die Schranken eines Gabor Frames mit Gauß
Fenster optimiert. An dieser Stelle weisen wir darauf hin, dass diese Fragestellung erst
unter der Einschränkung sinnvoll wird, dass die betrachteten Gitter alle dieselbe Dichte
haben.

Beschränkt man sich auf den Fall von Rechtecksgittern (welche auch separabel genannt
werden) mit geradzahliger Dichte, so werden wir Beweise sehen, dass das quadratische Git-
ter sowohl die untere als auch die obere Frame Schranke optimiert. Für allgemeine Gitter
geradzahliger Dichte, werden wir einen Beweis führen welcher zeigt, dass das hexagonale
Gitter die obere Frame Schranke minimiert. Für den Beweis ist es notwendig Theta Funk-
tionen über einem Gitter zu betrachten. Im Fall von Rechtecksgittern zerfallen diese Theta
Funktionen in Produkte der klassischen Jacobi Theta Funktionen und die erwähnten Re-
sultate für die Frame Schranken folgen durch in dieser Arbeit gezeigte, neue Eigenschaften
der Jacobi Theta Funktionen.
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