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Abstract

In fluid dynamics, depending on the nature of the flow, different time scales govern the
physical processes. This involves a significant hurdle for numerical simulations of these
systems since the smallest formal time scale determines the size of the overall time step of
the numerical simulation. This can slow down computations considerably. To overcome the
obstacle of small formal time scales and speed up the integration of the governing equations,
different methods have been implemented into the ANTARES code – the code used by our
group to simulate convection in pulsating and non-pulsating stars and double–diffusive
convection, among others.

The overarching topic of this thesis is the advancement of the applicability of one of
these methods: a strong stability preserving implicit-explicit (IMEX) Runge-Kutta scheme as
introduced into the ANTARES code by F. Kupka et al., (2012). Up to now, these IMEX-RK
schemes have been implemented for the case of two spatial dimensions only and take into
account only heat and solute diffusion as the processes possibly introducing the smallest time
scale into the entire problem. One long–term goal of our group is the realistic hydrodynamic
simulation of the double–diffusive convection that occurs in giant gas planets, as it is called
for by J. Leconte and G. Chabrier, (2012), e.g., because it is one of the candidates that could
explain the luminosity anomaly of Saturn (J. Leconte and G. Chabrier, 2013). To be able to
achieve that, several steps must be undertaken: first of all, we have to be able to use the
IMEX method for flows that are not only limited by heat and solute diffusion, but by viscosity,
too, because the viscous time scale of the flow problem also induces a limitation to the time
step in simulations of convection in giant planets with moderate Prandtl numbers. One part
of this theses is the derivation of the IMEX equations for these by viscosity limited flows.
Secondly, the simulations must be able to be performed in three dimensions because the
rotation of planets does call for a third dimension. Thirdly, another simplification that has
been used up to now in simulations of double–diffusive convection is the assumption that the
thermal conductivity KT and the concentration diffusivity κS are constants. This is not the
case in most physical flows and thus, we need to address this simplification and introduce
a way to solve equations where KT and κS are not constant. A consequence of this is that
the partial differential equation which results from the implicit part of the IMEX scheme
has now non-constant coefficients which are either dependent on space only – in which case
the equation to be solved is linear – or on space and temperature, e.g. – in which case the
equation is nonlinear.

To solve the arising (non-) linear equations of Helmholtz type, we derive and implement a
multigrid method for both the linear and nonlinear, variable coefficients Helmholtz equation
in three dimensions. This solver is based on the excellent multigrid solver for the two–
dimensional Helmholtz equation that has been designed and implemented by Happenhofer,
(2014) and is crucial both for efficient use of the IMEX methods developed herein but also
for future extensions of ANTARES, as e.g. the use of the Eddington approximation for the
radiative transport.

Finally, it is demonstrated that the modified code is more efficient than its predecessor
for simulations of convection in a two-component fluid, where time step limitations are
introduced by either heat diffusion or viscosity, for the case of the Boussinesq approximation.
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Zusammenfassung

Eine signifikante Schwierigkeit bei der Simulation physikalischer Systeme stellen die
unterschiedlichen Zeitskalen dar, auf denen die verschiedenen physikalischen Prozesse
ablaufen: die kleinste dieser Zeitskalen legt den maximal erlaubten Zeitschritt für die gesamte
Simulation fest. Dies kann Berechnungen erheblich verlangsamen. Um dieses Hindernis zu
umgehen und die Integration der hydrodynamischen Grundgleichungen zu beschleunigen,
wurden unterschiedliche Methoden in den ANTARES Code – den Code unserer Gruppe, der
u.a. zur Simulation von Konvektion in pulsierenden und nicht-pulsierenden Sternen und
doppelt-diffusiver Konvektion benutzt wird – implementiert.

Das übergreifende Thema dieser Dissertation ist die Weiterentwicklung einer dieser
Methoden: einer stark Stabilität erhaltenden implizit-expliziten (IMEX) Runge–Kutta Me-
thode, die von F. Kupka et al., (2012) für den ANTARES Code vorgestellt wurde. Bisher sind
diese IMEX Methoden für 2 Dimensionen implementiert und berücksichtigen ausschließlich
Wärme- und Konzentrationsdiffusion als die Prozesse, welche den kleinsten Zeitschritt dik-
tieren. Ein langfristiges Ziel unserer Gruppe ist die realistische hydrodynamische Simulation
doppelt-diffusiver Konvektion in Gasriesenplaneten, was z.B. von J. Leconte and G. Chabrier,
(2012) gefordert wird, da es einer der Kandidaten dafür ist, die Luminositätsanomalie von
Saturn zu erklären (J. Leconte and G. Chabrier, 2013). Um dies zu erreichen, sind mehrere
Schritte notwendig: zunächst muss dafür gesorgt werden, dass die IMEX Methode auch für
Strömungen genutzt werden kann, deren Zeitschritt nicht nur durch Wärme- und Konzen-
trationsdiffusion beschränkt wird, sondern dass auch solche Strömungen effektiv berechnet
werden können, deren Zeitintegration von viskösen Prozessen gebremst wird. Der Grund
ist, dass die visköse Zeitskala bei Simulationen von Konvektion in Gasriesenplaneten mit
moderater Prandtl Zahl eine Beschränkung darstellt. Ein Teil dieser Dissertation besteht aus
der Herleitung der IMEX-Gleichungen für diese, durch Viskosität limitierten, Strömungen.
Zweitens müssen die Simulationen in drei Dimensionen durchführbar sein, da die Rotation
von Planeten eine dritte Dimension verlangt. Drittens muss eine weitere Vereinfachung fallen
gelassen werden, die bisher genutzt wurde: in Simulationen doppelt-diffusiver Konvektion
wird angenommen, dass die thermische Leitfähigkeit KT und die Konzentrationsdiffusion κS

konstant sind. Dies ist in dem meisten physikalischen Systemen nicht der Fall. Wir müssen
also eine Methode entwickeln, die Gleichungen zu lösen, wenn KT und κT nicht konstant sind.
Eine Konsequenz daraus ist, dass die partielle Differentialgleichung, die aus dem impliziten
Teil der IMEX Methode herrührt, nicht-konstante Koeffizienten hat, die entweder nur von
den Raumkoordinaten abhängen – in welchem Fall die zu lösende Gleichung linear ist –
oder von den Raumkoordinaten und z.B. der Temperatur abhängen – in welchem Fall die zu
lösende Gleichung nichtlinear ist.

Um diese Gleichung zu lösen, wird ein Multigrid Löser entwickelt, der sowohl die lineare,
als auch die nichtlineare generalisierte Helmholtzgleichung in drei Dimensionen lösen kann.
Der Löser basiert auf dem exzellenten Multigrid Löser für die zweidimensionale Helmholtz-
gleichung, der von Happenhofer, (2014) entwickelt wurde. Der entwickelte Löser ist sowohl
für die effiziente Nutzung der in dieser Dissertation entwickelten IMEX Methode, als auch für
zukünftige Erweiterungen von ANTARES wie z.B. die Nutzung der Eddington-Approximation
von fundamentaler Wichtigkeit.
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1
INTRODUCTION

As Mortensen, (2011) puts it, computer simulations are nowadays an integral part of basic and

applied research in the sciences and have evolved themselves to be a third standalone discipline

besides theory and experiment. Applications of computer simulations span across a multitude of

disciplines: computational materials science, bioinformatics, computational mathematics and

mechanics, computational chemistry and so on. Simulations enable the scientist to conduct

research in areas that are otherwise inaccessible: there may be no analytic solution due to the

complexity of the system and putting up an experiment would be too expensive or just impossible

to achieve (e.g. studying the effects of the collision of two black holes). One big research area in

computational science is the numerical simulation of flows: computational fluid dynamics.

To underline the importance of this field we give one example: Anderson, (1995) says, speaking

about trans-atmospheric vehicles, that “. . . anyone steeped in the history of aeronautics, where the

major thrust has always been to fly faster and higher, knows that such vehicles will someday be a

reality. But they will be made a reality only when computational fluid dynamics has developed

to the point where the complete three-dimensional flow field over the vehicle and through the

engines can be computed expeditiously with accuracy and reliability.”. One can see from these

two sentences alone that computational fluid dynamics is a field with important applications

and that still is an area of very active research. Being able to solve the full governing equations

of fluid dynamics efficiently and accurately in three dimensions while including every possible

physical sub-process is still something that is not feasible today. Although we are purely focusing

on astrophysical applications in this thesis, the numerical methods that are developed can be

applied to all the fields where CFD is used. Thus, it is also an important contribution to the

general computational community as a whole.

Due to its interdisciplinarity, computational astrophysics has close relations to numerical

analysis and computer science: numerical analysis is concerned with the approximation of func-
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tions and the integration of differential equations. Convergent, consistent and stable algorithms

are developed in this branch of mathematics that are all essential for their use in the simulations

of computational astrophysics and the development of new algorithms has to use the tools of

numerical analysis to be effective.

The overlap with computer science stems from working on software problems or the develop-

ment of standards for parallel processing such as MPI and OpenMP, which both are methods that

have been implemented into our own code ANTARES, of which we give a short overview next.

1.1 ANTARES

ANTARES is a numerical code which was originally conceived for simulations in stellar hy-

drodynamics. It was first mentioned by H. J. Muthsam, Löw-Baselli, et al., (2007), followed by

a comprehensive description by H. Muthsam et al., (2010). Numerous updates on numerical

methods and applications have been published until today as e.g. H. J. Muthsam, (2011), H. J.

Muthsam, F. Kupka, et al., (2011), Mundprecht, H. J. Muthsam, and F. Kupka, (2013) or Blies,

F. Kupka, and H. J. Muthsam, (2015) to name a few. ANTARES has been designed with the

following principles in mind:

• general: time dependent compressible hydrodynamics and extensions (such as MHD) in 1D,

2D and 3D; Fortran90 code with a modular structure

• numerics: various high resolution numerical schemes of conservative form implemented:

– hyperbolic terms discretized with ENO, WENO, CNO schemes with adaptive stencils

– parabolic terms discretized by dissipative finite difference schemes of fourth order

– time integration done with total variation diminishing Runge-Kutta methods

• radiative transfer: short characteristics method (use of the diffusion approximation where

appropriate); either gray or non-gray by the binning method based on state of the art

opacities;

• micro-physics: realistic (or idealized);

• gridding: logically rectangular; either rectangular or spherical coordinates; equidistant or

(vertically) logarithmically spaced grid points; grid refinement in pre-assigned rectangular

patches, even recursively, nested grids: at the moment, ANTARES provides up to three

levels of nested grids;

• parallelization: via MPI and OpenMP;

• portability: is running on

2
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– AMD, IBM and Intel processors

– AIX, Linux and OSX operating systems

The area of application of ANTARES is threefold: extremely high resolution 3D simulations

of solar surface convection (H. Muthsam et al., 2010) or of other types of stars for which the

same computational approach is applicable, 2D simulations of the convection zones of pulsating

stars (Mundprecht, H. J. Muthsam, and F. Kupka, 2013)—both with realistic microphysics and

opacities—and idealized 2D and 3D simulations of semiconvection (F. Zaussinger and Spruit,

2013). An overview on the code was given by H. Muthsam et al., (2010). Here, we shortly

summarize which new features have since been added. The newest developments of ANTARES

include

• the capability to calculate two-component flows via (1.4) (F. Zaussinger, 2010),

• the capability to solve the equations for incompressible flow in the Boussinesq approxima-

tion (F. Zaussinger, 2010),

• an operator splitting method to handle low-Mach number flows without modification of the

basic equations (such as the anelastic approximation) (Happenhofer et al., 2013),

• a strong stability preserving implicit-explicit Runge–Kutta method for the set of compress-

ible equations (Higueras, 2006; Higueras, 2009; F. Kupka et al., 2012; Happenhofer, 2014;

Higueras et al., 2014) when diffusion processes limit the maximal time step,

• a parallel multigrid solver for the two–dimensional, generalized, non–linear Helmholtz

equation (Happenhofer, 2014) and

• the capability to solve the Navier–Stokes equations on curvilinear grids (Grimm-Strele,

2014; Grimm-Strele, F. Kupka, and H. Muthsam, 2014).

The features that are developed for ANTARES in this thesis are

1. a strong stability preserving implicit-explicit Runge–Kutta method for the set of incom-

pressible equations in the Boussinesq approximation when diffusion processes or diffusion

and viscous processes limit the maximal time step and

2. a parallel multigrid solver for the three–dimensional, generalized, non–linear Helmholtz

equation.

These additions open up ANTARES to the following new applications and enhancements:

• simulating compressible and incompressible flows with non–constant diffusivities,

• increasing the efficiency of simulations of incompressible flow where diffusive or viscous

processes limit the size of the time step,
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• they lay the foundation for the implementation of the Eddington approximation, which

severely speeds up simulations of stars where radiative transfer is important.

1.2 The Governing Equations of Fluid Dynamics

ANTARES is capable to solve the equations of fluid dynamics in several different forms.

1.2.1 The Equations for Compressible Flow

The most general form of the equations are the compressible Navier–Stokes equations:

∂ρ

∂t
=−∇· (ρu), (1.1)

∂(ρu)
∂t

=−∇· (ρu⊗uT)−∇p+∇·σ+ρg, (1.2)

∂(ρE)
∂t

=−∇· (ρEu+ pu)+∇· (uTσ)+ρuT g+Qrad (1.3)

with the recent addition of the concentration of a second species:

∂(ρc)
∂t

=−∇· (ρcu)+∇· (ρκc∇c). (1.4)

In stellar simulations Qrad in (1.3) is obtained either by the diffusion approximation or by solving

the stationary limit of the radiative transfer equation

r ·∇Iν = χν(Sν− Iν) (1.5)

for all ray directions r and for all frequencies ν. This makes ANTARES a full radiation hydrody-

namics code. We do not treat compressible flows in this thesis, however. Instead, we look at a form

of the equations often used when treating incompressible flows: the Boussinesq approximation.

1.2.2 The Equations in the Boussinesq Approximation

It is often useful to simplify the basic equations to reduce the effort to solve them. One of these

simplifications is the Boussinesq approximation. It was applied for the first time by Boussinesq,

(1903). Spiegel and Veronis, (1960) summarized the approximation as follows:

1. “The fluctuations in density which appear with the advent of motion result principally from

thermal (as opposed to pressure) effects.

2. In the equations for the rate of change of momentum and mass, density variations may be

neglected except when they are coupled to the gravitational acceleration in the buoyancy

force.” (Spiegel and Veronis, 1960)

As seen in Cohen and Kundu, (2002, p. 118), the incompressibility assumption is not valid in
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1. steady flows with large Mach numbers (Ma > 0.3) because large pressure changes cause

large density changes at high Mach numbers.

2. unsteady flows: waves would propagate at infinite speed if the density variations were

neglected.

3. flows where the vertical scale of the flow is so large that the hydrostatic pressure variations

cause large changes in density. The Boussinesq Approximation requires that the vertical

scale of the flow is L ¿ c2/g with c being the speed of sound in the medium.

The governing equations take the following form in the Boussinesq approximation (e.g. Cohen

and Kundu, 2002):

∇·u = 0, (1.6)(
∂u
∂t

)
+ (u ·∇)u =−∇p

ρ0
+ν∇2u+ ρ

ρ0
g, (1.7)

∂T
∂t

+ (u ·∇)T = κT∇2T, (1.8)

∂S
∂t

+ (u ·∇)S = κS∇2S, (1.9)

with ρ = ρ0[1−α(T−T0)+β(S−S0)]. u is the velocity of the flow, p the pressure, ρ the density, ρ0

a reference density, ν the kinematic viscosity, T the temperature, T0 the reference temperature

where ρ = ρ0, S the salinity, S0 the reference salinity where ρ = ρ0, κT the thermal diffusivity

and κS the molecular diffusivity. α is the thermal expansion coefficient −ρ−1
0 (∂ρ/∂T)S, β is the

saline expansion coefficient ρ−1
0 (∂ρ/∂S)T .

1.2.3 Non–Dimensionalization of the Boussinesq Equations

It is usual in fluid dynamics to non–dimensionalize the equations. This makes it possible to use

the same simulations to describe physical systems vastly differing in magnitudes, as long as

the geometry is similar. Ones begins by choosing scales that are typical for the system to be

simulated. For ANTARES, the equations are non-dimensionalized with the scales

r = Lr∗, T −T0 =∆TT∗, S−S0 =∆SS∗, u = κT

L
u∗, t = L2

κT
t∗. (1.10)

L is a typical length scale, ∆T and ∆S are the differences of temperature and salinity between

lower and upper boundary. The time scale used is the thermal diffusion time scale.

1.2.3.1 Non-Dimensionalization of the Continuity Equation

We start with the continuity equation (1.6):

∇·u = 0 (1.11)
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κT

L2 ∇∗u∗ = 0 (1.12)

Dividing by κT /L2 and dropping ∗ for better readability leads to

∇·u = 0. (1.13)

We see that the equation has exactly the same form as the equation with dimensions.

1.2.3.2 Non-Dimensionalization of the Momentum Equation

We start with (1.7):
Du
Dt

=−∇p
ρ0

+ν∇2u+ ρ

ρ0
g (1.14)

Non–dimensionalizing with above scales gives

κ2
T

L3
Du∗

Dt∗
=−∇p

ρ0
+ κT

L3 ν∇∗2 (
u∗)+ [

1−α∆TT∗+β∆SS∗]
g. (1.15)

Multiplying with L3/κ2
T and κT /ν gives

κT

ν︸︷︷︸
Pr−1

Du∗

Dt∗
=− L3

κTνρ0
∇p+ L3

κTν
g︸ ︷︷ ︸

−∇peff

+∇∗2u∗− αL3∆T g
κTν︸ ︷︷ ︸
RaT

T∗+ βL3∆Sg
κTν︸ ︷︷ ︸
RaS

S∗. (1.16)

In ANTARES, the x-axis is pointing towards the center of the star/planet, so the vector of

gravitational acceleration is g = (−g,0,0)T. Using that and dropping ∗ for better legibility gives

1
Pr

Du
Dt

=−∇peff +∇2u+RaTTex −RaSSex. (1.17)

Here, we have introduced three typical non-dimensional numbers: Pr,RaT and RaS and end up

with the following three equations for the velocity vector u = (u,v,w)T:

1
Pr

Du
Dt

=−∇peff +∇2u+RaTT −RaSS, (1.18)

1
Pr

Dv
Dt

=−∇peff +∇2v, (1.19)

1
Pr

Dw
Dt

=−∇peff +∇2w. (1.20)

Note that ∇peff is different for u than it is for v and w.

1.2.3.3 Non-Dimensionalization of the Temperature equation

Starting with (1.8),

DT
Dt

= κT∇2T, (1.21)
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non-dimensionalizing leads to

κT

L2
D(∆TT∗+T0)

Dt∗
= κT

L2 ∇∗2(∆TT∗+T0). (1.22)

Multiplying with L2/κT and dividing by ∆T gives

DT∗

Dt∗
=∇∗2T∗ (1.23)

and dropping ∗ leads to
DT
Dt

=∇2T. (1.24)

As with the continuity equation there is no additional dimensionless number occurring in the

temperature equation.

1.2.3.4 Non-Dimensionalization of the Salinity equation

Finally, starting with (1.9),
DS
Dt

= κS∇2S, (1.25)

non-dimensionalizing leads to

κT

L2
D(∆S∗+S0)

Dt
= κS

1
L2∇∗2(∆SS∗+S0) (1.26)

Multiplying with L2/κT and dividing by ∆S gives

DS∗

Dt∗
= κS

κT︸︷︷︸
Le

∇∗2S∗. (1.27)

Dropping ∗ gives
DS
Dt

=Le∇2S. (1.28)

Here, we have introduced the Lewis number Le.

1.2.4 Summary

For the Boussinesq approximation, we end up with the five non-dimensionalized equations

∇·u = 0, (1.29)

Pr−1
[(
∂u
∂t

)
+ (u ·∇)u

]
=−∇peff +∇2u+RaT Tex −RaSSex, (1.30)

∂T
∂t

+ (u ·∇)T =∇2T, (1.31)

∂S
∂t

+ (u ·∇)S =Le∇2S, (1.32)
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for which we have introduced the dimensionless numbers

Pr= ν

κT
, Le= κS

κT
, RaT = αL3∆T g

κTν
, RaS = βL3∆Sg

κTν
. (1.33)

RaT and RaS are related to each other by the stability parameter Rρ = RaS/RaT . We have also

introduced the effective pressure peff which is the gradient of the scaled original pressure plus a

constant term. This can be written in this form because the constant term vanishes in the course

of solving the equations.

Even though the equations in the Boussinesq form are significantly easier to handle and

solve than the full Navier–Stokes equations, there are still important considerations to make

when trying to simulate a system that is governed by these equations. One problem that requires

a special consideration are the different physical processes which the different terms in the

equations represent and the different time scales on which these processes operate. The advective

terms in the equations are of hyperbolic type while the diffusive and viscous processes are of the

parabolic type. This demands extra care when deciding on the time step to use for the simulations

because parabolic type partial differential equations significantly limit the time step that can

be taken with explicit time integration methods. Equations where the terms change on vastly

different time scales are called stiff equations and are introduced in the next section.

1.3 Time Step Restrictions by Stiff Equations

The following example is taken out of Hoffman, (2001) to demonstrate the behavior of stiff

equations. There, stiff equations are demonstrated with the following ordinary differential

equation, which Gear, (1971) considered:

y′ =−α(y−F(t))+F ′(t),

y(t0)=y0
(1.34)

The exact solution is

y(t)= (y0 −F(0))exp(−αt)+F(t) (1.35)

If αÀ 0 and F(t) is a smooth and slowly varying function, two different time scales become

apparent:

• the rapidly varying component (y0 −F(0))exp(−αt)

• the slowly changing term F(t)

As a concrete example, let α= 1000, F(t)= t+2 and y(0)= 1. Then, (1.34) becomes

y′ =−1000(y− (t−2))+1,

y(0)=1
(1.36)
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with the solution

y(t)=−exp(−1000t)+ t+2. (1.37)

If one were interested in the solution of (1.36) for large values of t only, one might try to use

0.000 0.005 0.010 0.015 0.020 0.025
t

1.0

1.2

1.4

1.6

1.8

2.0

2.2

y(
t)

(a) Small times

0.0 0.5 1.0 1.5 2.0
t

1.0

1.5

2.0

2.5

3.0

3.5

4.0

y(
t)

(b) Large times

Figure 1.1: Plot of the analytical solution (1.37) for small and large values of t.

a simple explicit time integration method with a large time step ∆t. This leads to an unstable

simulation, however: using, e.g., Euler forward,

yn+1 = yn +∆t fn, (1.38)

leads to

yn+1 = yn +∆t(−1000(yn − (tn +2))+1). (1.39)

Figure 1.2 shows the exact and numerical solutions for time steps 0.005,0.01,0.02 and 0.025.

One can see that while the numerical solution is a somewhat close approximation to the exact

solution for very small time steps, for larger time steps the solution is unstable. This is a typical

behavior of explicit method when treating stiff equations: the stability depends crucially on the

time step ∆t taken. This means that even if one was only interested in the solution of (1.36) for,

say, t > 10, one still needed to take time steps of about 0.001 until t = 10 was reached. That is

10000 unnecessary steps before the time of interest is reached.

This is exactly the situation which we have when doing fluid dynamical simulations. The

physical processes with the smallest time scales can be, depending on the specific setting, diffusion

processes, viscous processes or the propagation of sound waves. Whatever process is the one

operating on the smallest time scale demands the strictest time step restriction because it must be

resolved numerically when using explicit methods. This leads to computationally very expensive

calculations.

One way to alleviate this problem is the use of implicit time integration methods. These are

methods which are especially suited for stiff equations. A severe drawback of implicit methods

9



CHAPTER 1. INTRODUCTION

are their high computational cost, however. They require the solution of a (non–) linear system of

equations each time step which is more expensive to perform than just a simple explicit step. The

advantage is the often unconditional stability of the method, however, which means that time

steps much larger that the one limiting the maximal time step in explicit methods can be used in

the simulation. So we get to the interesting parts of the simulation with much fewer (but more

expensive) time steps.

For this reason, one tries to limit the use of implicit methods to those parts of the governing

equations which are stiff, i.e., one splits the equations in a stiff and a non–stiff part and uses

implicit schemes for the stiff parts and explicit schemes for the non–stiff parts. This is exactly

the method which we use in part II to develop an implicit-explicit Runge–Kutta scheme for the

Boussinesq equations.

One major obstacle in the development of these methods is the occurence of a a three-

dimensional Helmholtz equation with varying coefficients either in linear form,

−∇· (κ(x)∇u(x))+ξ(x)u(x)= f (x), (1.40)

or in nonlinear form

−∇· (κ(u)∇u(x))+ξ(u)= f (x) (1.41)

with u :R3 →R, x ∈R3, κ :R3 →R+, ξ :R3 →R+ and f :R3 →R. The boundary conditions can either

be of Dirichlet type

u = gD on ΓD (1.42)

or of Neumann type

∇u ·n= ∂u
∂n

= gN on ΓN . (1.43)

The equations are to be solved over a rectangular domain Ω⊂R3.

0.000 0.005 0.010 0.015 0.020
t

0

1

2

3

4

5

6

7

y(
t)

exact
∆t=0.005

∆t=0.01

∆t=0.0025

∆t=0.002

Figure 1.2: The influence of the time step ∆t of an explicit scheme on the stability of the solution
when solving 1.36 with Euler forward.
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Up to this point, there is no method implemented in ANTARES which is able to solve this

problem in three dimensions. Happenhofer, (2014) has developed a solver for the two- dimensional

form of the equation but before we will be able to tackle the problem of stiff equations with IMEX

methods we have to develop a solver for (1.40) and (1.41). This is done in part I which follows

now.
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Introduction

In ANTARES, depending on the physical system to be simulated, we end up with a linear

generalized Helmholtz equation of type

−∇· (κ(x)∇u(x))+ξ(x)u(x)= f (x) (1.44)

or with a nonlinear generalized Helmholtz equation of type

−∇· (κ(u)∇u(x))+ξ(u)= f (x), (1.45)

which are to be solved over a domain Ω⊂R3. The boundary conditions can either be of Dirichlet

type

u = gD on ΓD (1.46)

or of Neumann type

∇u ·n= ∂u
∂n

= gN on ΓN . (1.47)

Mixed boundary conditions are not considered here.

To solve the arising Helmholtz equations we discretize them and solve the resulting linear

system of equations with the multigrid method which is one of the fastest methods available for

this purpose. The derivation of the solver follows this outline:

• discretization of the

– linear equation (chapter 2.2)

– nonlinear equation (chapter 2.3)

• derivation of the multigrid components for the

– linear equation (chapter 3)

– nonlinear equation (chapter 3.3)

• testing the multigrid solver by running several test cases for the

– linear equation

– nonlinear equation

General introductory remarks regarding the discretization, the multigrid method and the

test outline are presented in the parts for the linear equation.
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DISCRETIZATION OF THE HELMHOLTZ EQUATION

2.1 Introductory Remarks

2.1.1 The Finite Elements Method

The discretization of (1.44) and (1.45) is done with the finite elements method. In general, the

following steps are required to discretize a differential equation with the finite elements method:

1. write the problem in variational formulation

2. choose the specific FEM method (e.g. Collocation, Galerkin)

3. choose a finite dimensional subspace Vh and the basis function ϕµ

4. calculate the resulting matrices and vectors

Details on the mathematical theory behind the finite elements method can be found in

Brenner and Scott, (2008) or Quarteroni and Valli, (1994). A more introductory exposition can be

found, e.g., in Hanke-Bourgeois, (2009).

2.2 Discretization of the Linear Equation

In this part we discretize the linear Helmholtz equation

−∇· (κ(x)∇u(x))+ξ(x)u(x)= f (x). (2.1)

The boundary condition is of either Dirichlet type or Neumann type. Mixed boundary con-

ditions are not implemented in ANTARES. We derive the discretized system of equations for

17
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homogeneous Dirichlet, non-homogeneous Dirichlet and Neumann boundary conditions. The

derivation follows along the lines of Quarteroni, (2009).

2.2.1 Deriving the Variational Formulation

2.2.1.1 Variational Formulation of the Homogeneous Dirichlet Problem

The homogeneous Dirichlet problem reads:

find u such that −∇· (κ(x)∇u(x))+ξ(x)u(x)= f (x) in Ω

u = 0 on ∂Ω=ΓD

(2.2)

where Ω⊂R3 is a bounded domain with boundary ∂Ω.

To obtain the variational formulation of (2.2) we multiply by an arbitrary test function v(x)

and integrate over the domain Ω:

−
∫
Ω

∇· (κ(x)∇u(x))v(x)dΩ+
∫
Ω

ξ(x)u(x)v(x)dΩ=
∫
Ω

f (x)v(x)dΩ. (2.3)

By applying Green’s formula to the first integral we obtain∫
Ω

κ(x)∇u(x)∇v(x)dΩ−
∫
ΓD

κ(x)
∂u
∂n

v(x)dΓ+
∫
Ω

ξ(x)u(x)v(x)dΩ=
∫
Ω

f (x)v(x)dΩ. (2.4)

For the homogeneous Dirichlet problem, we impose the condition that the (arbitrary) testfunction

v(x) is zero on the boundary ∂Ω, by which the boundary integral vanishes and we are left with∫
Ω

κ(x)∇u(x)∇v(x)dΩ+
∫
Ω

ξ(x)u(x)v(x)dΩ=
∫
Ω

f (x)v(x)dΩ. (2.5)

So we get the following weak formulation for problem (2.2):

find u ∈ H1
0(Ω) :∫

Ω

κ(x)∇u(x)∇v(x)dΩ+
∫
Ω

ξ(x)u(x)v(x)dΩ=
∫
Ω

f (x)v(x)dΩ ∀v ∈H1
0(Ω), (2.6)

where f ∈L2(Ω) and

H1
0 = {v ∈H1(Ω) : v = 0 on ∂Ω},

H1 = {v :Ω→R s.t. v ∈L2(Ω),
∂v
∂xi

∈L2(Ω), i = 1,2,3}.
(2.7)

Setting V =H1
0, we define the bilinear form

a : V ×V →R, a(u,v)=
∫
Ω

κ(x)∇u(x)∇v(x)dΩ+
∫
Ω

ξ(x)u(x)v(x)dΩ (2.8)
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and the linear and continuous functional

F : V →R, F(v)=
∫
Ω

f (x)v(x)dΩ (2.9)

whereby the problem can be written as

find u ∈V : a(u,v)= F(v) ∀v ∈V . (2.10)

2.2.1.2 Variational Formulation of the Non–homogeneous Dirichlet Problem

The non–homogeneous Dirichlet problem reads:

find u such that −∇· (κ(x)∇u(x))+ξ(x)u(x)= f (x) in Ω

u = gD on ∂Ω=ΓD

(2.11)

where Ω⊂R3 is a bounded domain with boundary ∂Ω.

To obtain the variational formulation of (2.11) we multiply by an arbitrary test function v(x)

and integrate over the domain Ω:

−
∫
Ω

∇· (κ(x)∇u(x))v(x)dΩ+
∫
Ω

ξ(x)u(x)v(x)dΩ=
∫
Ω

f (x)v(x)dΩ. (2.12)

By applying Green’s formula to the first integral we obtain∫
Ω

κ(x)∇u(x)∇v(x)dΩ−
∫
ΓD

κ(x)
∂u
∂n

v(x)dΓ+
∫
Ω

ξ(x)u(x)v(x)dΩ=
∫
Ω

f (x)v(x)dΩ. (2.13)

For the non–homogeneous Dirichlet problem, we again impose the condition that the (arbi-

trary) testfunction v(x) is zero on the boundary ∂Ω, by which the boundary integral vanishes and

we are left with ∫
Ω

κ(x)∇u(x)∇v(x)dΩ+
∫
Ω

ξ(x)u(x)v(x)dΩ=
∫
Ω

f (x)v(x)dΩ. (2.14)

The difference to the homogeneous Dirichlet problem (2.2) becomes apparent in the weak

formulation:

find u ∈Vg :∫
Ω

κ(x)∇u(x)∇v(x)dΩ+
∫
Ω

ξ(x)u(x)v(x)dΩ=
∫
Ω

f (x)v(x)dΩ ∀v ∈ H1
ΓD

(Ω), (2.15)

where f ∈L2(Ω) and

H1
ΓD

= {v ∈H1(Ω) : v = 0 on ΓD},

Vg = {v ∈H1(Ω) : v = gD on ΓD},

H1 = {v :Ω→R s.t. v ∈L2(Ω),
∂v
∂xi

∈L2(Ω), i = 1,2,3}.

(2.16)

This formulation is problematic because u ∈Vg while v ∈H1
ΓD

. To deal with that, we have to do a

lifting of the boundary data in the following way.:
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Lifting of Boundary Conditions

To handle non-homogeneous Dirichlet boundary conditions we introduce the continuous, piecewise

linear function ugD ∈Vg s.t.

u = u0 +ugD , (2.17)

where u0 stands for the homogeneous part of u, s.t. u0|ΓD = 0, i.e. u0 ∈H1
ΓD

. We can now formulate

the following variational formulation of the problem (2.11) in terms of u0:

find u0 ∈H1
ΓD

(Ω) :∫
Ω

κ(x)∇u0(x)∇v(x)dΩ+
∫
Ω

ξ(x)u0(x)v(x)dΩ

=
∫
Ω

f (x)v(x)dΩ−
∫
Ω

κ(x)∇ugD (x)∇v(x)dΩ−
∫
Ω

ξ(x)ugD (x)v(x)dΩ ∀v ∈H1
ΓD

(Ω).

We now have both u0 and v ∈H1
ΓD

(Ω). Setting V =H1
ΓD

(Ω), we define the bilinear form

a : V ×V →R, a(u,v)=
∫
Ω

κ(x)∇u(x)∇v(x)dΩ+
∫
Ω

ξ(x)u(x)v(x)dΩ (2.18)

and the linear and continuous functional

F : V →R, F(v)=−a(ugD ,v)+
∫
Ω

f (x)v(x)dΩ (2.19)

The problem can then be written as

find u0 ∈V : a(u0,v)= F(v) ∀v ∈V . (2.20)

Note that the formulation is the same as in the homogeneous Dirichlet case. The differences lie

in the form of F(v) and in the space V .

2.2.1.3 Variational Formulation of the Neumann Problem

The Neumann problem reads:

find u such that −∇· (κ(x)∇u(x))+ξ(x)u(x)= f (x) in Ω

∇u ·n= gN on ∂Ω
(2.21)

where Ω⊂R3 is a bounded domain with boundary ∂Ω. For the pure Neumann problem to have a

unique solution, we must require ξ(x)> 0 everywhere.

To obtain the variational formulation of (2.21) we multiply by an arbitrary test function v(x)

and integrate over the domain Ω:

−
∫
Ω

∇· (κ(x)∇u(x))v(x)dΩ+
∫
Ω

ξ(x)u(x)v(x)dΩ=
∫
Ω

f (x)v(x)dΩ. (2.22)
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By applying Green’s formula to the first integral we obtain∫
Ω

κ(x)∇u(x)∇v(x)dΩ−
∫
ΓN

κ(x)
∂u
∂n

v(x)dΓ+
∫
Ω

ξ(x)u(x)v(x)dΩ=
∫
Ω

f (x)v(x)dΩ. (2.23)

We know from the problem that
∂u
∂n

= gN , so we can immediately put the boundary integral to

the right hand side and get∫
Ω

κ(x)∇u(x)∇v(x)dΩ+
∫
Ω

ξ(x)u(x)v(x)dΩ=
∫
Ω

f (x)v(x)dΩ+
∫
ΓN

κ(x) gN v(x)dΓ. (2.24)

Thus, the weak formulation of (2.21) reads

find u ∈H1(Ω) :∫
Ω

κ(x)∇u(x)∇v(x)dΩ+
∫
Ω

ξ(x)u(x)v(x)dΩ

=
∫
Ω

f (x)v(x)dΩ+
∫
ΓN

κ(x) gN v(x)dΓ ∀v ∈ H1(Ω),

(2.25)

where f ∈L2(Ω) and

H1 = {v :Ω→R s.t. v ∈L2(Ω),
∂v
∂xi

∈L2(Ω), i = 1,2,3}. (2.26)

Setting V =H1(Ω), we define the bilinear form

a : V ×V →R, a(u,v)=
∫
Ω

κ(x)∇u(x)∇v(x)dΩ+
∫
Ω

ξ(x)u(x)v(x)dΩ (2.27)

and the linear and continuous functional

F : V →R, F(v)=
∫
Ω

f (x)v(x)dΩ+
∫
ΓN

κ(x) gN v(x)dΓ (2.28)

The problem can then be written as

find u ∈V : a(u,v)= F(v) ∀v ∈V . (2.29)

Note that the formulation is the same as in both Dirichlet cases. The differences lie in the form of

F(v) and in the space V .

2.2.2 The Galerkin Finite Element Method

Having derived the variational formulations for different boundary conditions, we now turn

towards the approximation with finite elements. Each boundary condition yields the same

structure for the variational problem:
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find u ∈V : a(u,v)= F(v) ∀v ∈V . (2.30)

V is different for each boundary condition but they all are Hilbert spaces and subspaces of H1.

Let Vh now be a family of spaces that depend on the positive parameter h, s.t.

Vh ⊂V , dim Vh ≡ Nh <∞ ∀h > 0. (2.31)

The Galerkin problem that approximates (2.30) is then given by

find uh ∈Vh : a(uh,vh)= F(vh) ∀vh ∈Vh. (2.32)

We denote the basis of Vh as
{
ϕµ,µ= 1,2, ..., Nh

}
where Nh depends on the triangulation chosen

and is equal to the number of nodes minus the number of Dirichlet nodes. Because all the

functions in Vh are linear combinations of the basis functions ϕµ it suffices to verify (2.32) for

each ϕµ of the subspace. We thus require that

a(uh,ϕµ)= F(ϕµ), µ= 1,2, ..., Nh. (2.33)

Here, µ denotes a node on the computational grid G, which is defined as

G := {(x, y, z) : x = xi = ihx, y= yj = jhy, z = zk = khz; i, j,k ∈Z}. (2.34)

Since uh ∈Vh we can expand it in terms of the basis functions of Vh as

uh(x)=
Nh∑
ν=1

uνϕν(x) (2.35)

where the uν are unknown coefficients. Inserting (2.35) into (2.33) gives

Nh∑
ν=1

uν a(ϕν,ϕµ)= F(ϕµ), µ= 1,2, ..., Nh. (2.36)

This is equivalent to the linear system

Au = f , (2.37)

where A denotes the matrix with the elements

Aµν = a(ϕν,ϕµ), (2.38)

f is the vector with components

fµ = F(ϕµ) (2.39)

and u denotes the vector of unknown coefficients {uν,ν= 1, ..., Nh}.

In order to solve (2.37), we need to specify the subspace Vh, to which we turn next.
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2.2.3 The Finite Elements

We begin defining the finite dimensional subspace Vh by partitioning Ω into subdomains Ωe,

e = 1, ...,nel, where Ωe ⊂Ω⊂R3 and nel is the number of partitions with the following properties:

• Ωe is open in R3

• Ω̄=
nel⋃
e=1
Ωe

• Ωi ∩Ω j =;, i 6= j

The shape of the partitions Ωe can be chosen at will but heavily depend on the form of Ω and

especially its boundary. It is one of the ingredients needed to define finite elements.

Formally, a finite element, denoted by (K ,P ,N ), consists of three items (see Brenner and

Scott, 2008, e.g.):

• the element domain K ⊆Rn, where K is a bounded closed set with nonempty interior and

piecewise smooth boundary

• the finite–dimensional space of shape functions P on K and

• the set of n = dim(P) nodal variables N = {N1, N2, ..., Nk} which define the degrees of

freedom.

The nodal basis of P is denoted by {ϕ1,ϕ2, ...,ϕk} and is dual to N . This means that Nν(φµ)=
δνµ, which is an important property for deriving the shape functions later.

We now turn to specifying the properties K ,P and N for the finite elements we are using.

The Choice of K

Our simulations are run in a rectangular domain with straight boundaries so we can use one of

the easiest choices for K : rectangular cuboids (see figure 2.1).

The Choice of P

For a rectangular domain, the space of polynomials is usually denoted by Q instead of P . Qk(Rn)

denotes the space of polynomials of degree at most k in each variable. For three dimensions, it is

Qk(R3)=
{ k∑

j=0
α j p j(x) q j(y) r j(z) : p j, q j, r j polynomials of degree≤ k.

}
(2.40)

Since our domain Ω is perfectly rectangular, a choice of k = 1 leads to a sufficiently accurate

approximation, so we use trilinear polynomials for our finite element discretization:

P =Q1(R3)= span{1, x, y, z, xy, xz, yz, xyz}. (2.41)
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Figure 2.1: The element Q1(R3) and its degrees of freedom. Taken from Arnold and Logg, (2014).

Figure 2.2: The subset Ω8 of the domain Ω which shows eight elements around one grid point
with coordinates (xi, yj, zk) (taken from Wikipedia).

The Choice of N

Having specified K and P we must now specify the nodes we use. Since dim(P )= 8 we need 8

nodes. A standard choice for Lagrangian degrees of freedom on P =Q1(R3) are the 8 corners of

the cubicle (see figure 2.1).

2.2.3.1 Calculations of the Shape Functions

Next, we demonstrate how the shape functions are derived . Consider the subset Ω8 ⊂Ω which

consists of eight elements around the grid point µ with the coordinates (xi, yj, zk). Figure 2.2

shows a representation of Ω8 and the numbering of elements around the grid point µ.
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Remember that the linear system to be solved is

Au = f , (2.42)

i.e.,
Nh∑
ν=1

uν a(ϕν,ϕµ)= F(ϕµ), µ= 1,2, ..., Nh. (2.43)

The bilinear form a(·, ·) and the linear functional F(·) are (in the homogeneous Dirichlet case)

defined as

a(u,v)=
∫
Ω

κ(x)∇u(x)∇v(x)dΩ+
∫
Ω

ξ(x)u(x)v(x)dΩ (2.44)

and

F(v)=
∫
Ω

f (x)v(x)dΩ, (2.45)

so that (2.43) becomes

Nh∑
ν=1

uν

∫
Ω

κ(x)∇ϕν(x)∇ϕµ(x)dΩ+
∫
Ω

ξ(x)ϕν(x)ϕµ(x)dΩ

=
∫
Ω

f (x)ϕµ(x)dΩ, µ= 1,2, ..., Nh.

(2.46)

The integrals are evaluated with the three–dimensional trapezoidal rule,∫
Ω

f (x, y, z)dxdydz = f1 + f2 + f3 + f4 + f5 + f6 + f7 + f8

8
hx hy hz, (2.47)

where fµ is the value of f (x, y, z) evaluated at node µ of the cubicle and the indices 1-8 indicate

the node. See figure 2.3 for the numbering of the nodes. This quadrature rule requires us to

calculate ϕ and ∇ϕ at each of the eight nodes of each element in Ω. We now derive a method to

do that.

Consider the arbitrarily chosen inner grid point with index µ and coordinates (xl , yn, zm). It is

surrounded by eight elements Q1,Q2, ...,Q8 (figure 2.2). Since the integrals in (2.46) are evaluated

over all of Ω, each cubicle around point µ contributes to the integral. In order to calculate (2.46)

we need explicit forms for the shape functions ϕ, which are the basis functions of the subspace

Vh and their gradients ∇ϕ. We have specified earlier that ϕ ∈P . A generic polynomial from our

chosen P is of the form

ϕ(x, y, z)=α0 +α1x+α2 y+α3z+α4xy+α5xz+α6 yz+α7xyz. (2.48)

The gradient of (2.48) is

∇ϕ(x, y, z)=


α1 +α4 y+α5z+α7 yz

α2 +α4x+α6z+α7xz

α3 +α5x+α6 y+α7xy

 . (2.49)
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The condition for shape functions is

ϕl,m,n (xi, yj, zk)= δl iδm jδnk (2.50)

where ϕl,m,n is the shape function at the point (xl , ym, zn) of the grid and (xi, x j, xk) is the point on

the grid where the contribution of this particular shape function is to be evaluated. This shows

that only nodes which are points of the element itself have a contribution. All other contributions

are zero due to the lack of support.

Let us now derive an algorithm to calculate the contributions of any shape function on any

point in the grid. To this end, we choose an arbitrary element Qe, where e stands for example.

With our chosen degrees of freedom, Qe looks like figure 2.3.

1 2

34

5 6

78

Figure 2.3: A typical element in our discretization of the domain. The numbers represent the
Lagrangian degrees of freedom.

Every inner node in the grid is surrounded by eight of these elements. That means that we

have to be able to calculate the shape function contributions for any combination of (l,m,n) and

(i, j,k).

Let us now calculate the contributions of the shape functions to the node (xi, yj, zk). The

node is surrounded by the 8 elements Q1,Q2,Q3,Q4,Q5,Q6,Q7,Q8 (see figure 2.2). Each of these

elements contributes to the value of the function at the node. The contribution of all the other

elements is zero because of (2.50). So we now calculate the contributions for each cubicle, starting

with Q1, the cubicle with all positive coordinates. We demonstrate the calculation for this cubicle

in detail. The calculations for the other cubicles have been done with Mathematica.

Cubicle Q1 = [xi, xi+1]× [yj, yj+1]× [zk, zk+1]

We start by inserting the coordinates of each of the eighth nodes of the cubicle Q1, i.e.,

(xi, yj, zk), (xi+1, yj, zk), (xi+1, yj+1, zk), (xi, yj+1, zk), (xi, yj, zk+1), (xi+1, yj, zk+1),
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(xi+1, yj+1, zk+1) and (xi, yj+1, zk+1) into the general form of the shape function (2.48). We end up

with the eight equations

ϕl,m,n(xi, yj, zk)=α0 +α1xi +α2 yj +α3zk +α4xi yj

+α5xi zk +α6 yj zk +α7xi yj zk,
(2.51)

ϕl,m,n(xi+1, yj, zk)=α0 +α1xi+1 +α2 yj +α3zk +α4xi+1 yj

+α5xi+1zk +α6 yj zk +α7xi+1 yj zk,
(2.52)

ϕl,m,n(xi+1, yj+1, zk)=α0 +α1xi+1 +α2 yj+1 +α3zk +α4xi+1 yj+1

+α5xi+1zk +α6 yj+1zk +α7xi+1 yj+1zk,
(2.53)

ϕl,m,n(xi, yj+1, zk)=α0 +α1xi +α2 yj+1 +α3zk +α4xi yj+1

+α5xi zk +α6 yj+1zk +α7xi yj+1zk,
(2.54)

ϕl,m,n(xi, yj, zk+1)=α0 +α1xi +α2 yj +α3zk+1 +α4xi yj

+α5xi zk+1 +α6 yj zk+1 +α7xi yj zk+1,
(2.55)

ϕl,m,n(xi+1, yj, zk+1)=α0 +α1xi+1 +α2 yj +α3zk+1 +α4xi+1 yj

+α5xi+1zk+1 +α6 yj zk+1 +α7xi+1 yj zk+1,
(2.56)

ϕl,m,n(xi+1, yj+1, zk+1)=α0 +α1xi+1 +α2 yj+1 +α3zk+1 +α4xi+1 yj+1

+α5xi+1zk+1 +α6 yj+1zk+1 +α7xi+1 yj+1zk+1,
(2.57)

ϕl,m,n(xi, yj+1, zk+1)=α0 +α1xi +α2 yj+1 +α3zk+1 +α4xi yj+1

+α5xi zk+1 +α6 yj+1zk+1 +α7xi yj+1zk+1.
(2.58)

Now we choose (l,m,n) to be the coordinates of one of the 8 nodes and use the shape function

condition (2.50) on each equation.

This results in eight linear system of equations, one for each set of (l,m,n). For (l,m,n) =
(i, j,k), which is the first node in cubicle Q1, the resulting linear system is

M(1)α=δ(1) (2.59)

with M(1) =

1 ihx jhy khz ihx jhy ihx khz ...

1 (i+1)hx jhy khz (i+1)hx jhy (i+1)hx khz ...

1 (i+1)hx ( j+1)hy khz (i+1)hx ( j+1)hy (i+1)hx khz ...

1 ihx ( j+1)hy khz ihx ( j+1)hy ihx khz ...

1 ihx jhy (k+1)hz ihx jhy ihx (k+1)hz ...

1 (i+1)hx jhy (k+1)hz (i+1)hx jhy (i+1)hx (k+1)hz ...

1 (i+1)hx ( j+1)hy (k+1)hz (i+1)hx ( j+1)hy (i+1)hx (k+1)hz ...

1 ihx ( j+1)hy (k+1)hz ihx ( j+1)hy ihx (k+1)hz ...
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... jhy khz ihx jhy khz

... jhy khz (i+1)hx jhy khz

... ( j+1)hy khz (i+1)hx ( j+1)hy khz

... ( j+1)hy khz ihx ( j+1)hy khz

... jhy (k+1)hz ihx jhy (k+1)hz

... jhy (k+1)hz (i+1)hx jhy (k+1)hz

... ( j+1)hy (k+1)hz (i+1)hx ( j+1)hy (k+1)hz

... ( j+1)hy (k+1)hz ihx ( j+1)hy (k+1)hz


, (2.60)

where the vector α= [α0,α1, ...,α7]T contains the unknown coefficients αi and the vector δ(1) =
[1,0,0,0,0,0,0,0] contains the shape function conditions (2.50) for the current node at (xi, yj, zk).

Solving the system gives us the coefficients αi, i = 1, ...,7 for (2.49):

α0=(i+1)( j+1)(k+1), α1=− ( j+1)(k+1)
hx

, α2=− (i+1)(k+1)
hy

,

α3= − (i+1)( j+1)
hz

, α4= k+1
hx hy

, α5= j+1
hx hz

,

α6= (i+1)
hy hz

, α7= − 1
hx hy hz

. (2.61)

With these coefficients, the shape function (2.48) and its gradient (2.49) can be evaluated for the

first element Q1. The procedure is the same for every other element and has been done with

Mathematica. The results can be seen in the following section where the integrals is evaluated.

2.2.4 Evaluation of the Integrals

Reminder: we have the following problem to solve:

find uh ∈Vh(Ω) : a(uh,vh)= F(vh) ∀vh ∈Vh(Ω) (2.62)

or written in the Galerkin form:

find uh ∈Vh(Ω) :
Nh∑
ν=1

uν a(ϕν,ϕµ)= F(ϕµ), µ= 1,2, ..., Nh. (2.63)

ν and µ denote points in the computational grid G. Having derived the shape functions, we can

now evaluate the integrals.

2.2.4.1 Calculating the Bilinear Forms

The bilinear form a(·, ·) was defined in (2.8). It is the same for each boundary condition considered:

a : V ×V →R, a(u,v)=
∫
Ω

κ(x)∇u(x)∇v(x)dΩ+
∫
Ω

ξ(x)u(x)v(x)dΩ. (2.64)
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Following (2.63), it is to be calculated for every combination of ν and µ. Due to the limited

support of the shape function the calculations are reduced substantially and we are left with the

calculation of the contribution of neighboring points only. Looking at figure 2.2 shows us that

each node (i, j,k) is surrounded by 26 other nodes. That means that we only have to calculate 27

bilinear forms per grid point instead of Nh ones per grid point. For the node µ with coordinates

(xi, x j, yk), the forms to calculate are

a(ϕi−1, j+1,k+1, ϕi, j,k), a(ϕi, j+1,k+1, ϕi, j,k), a(ϕi+1, j+1,k+1, ϕi, j,k),

a(ϕi−1, j,k+1, ϕi, j,k), a(ϕi, j,k+1, ϕi, j,k), a(ϕi+1, j,k+1, ϕi, j,k),

a(ϕi−1, j−1,k+1, ϕi, j,k), a(ϕi, j−1,k+1, ϕi, j,k), a(ϕi+1, j−1,k+1, ϕi, j,k),

a(ϕi−1, j+1,k, ϕi, j,k), a(ϕi, j+1,k, ϕi, j,k), a(ϕi+1, j+1,k, ϕi, j,k),

a(ϕi−1, j,k, ϕi, j,k), a(ϕi, j,k, ϕi, j,k), a(ϕi+1, j,k, ϕi, j,k), (2.65)

a(ϕi−1, j−1,k, ϕi, j,k), a(ϕi, j−1,k, ϕi, j,k), a(ϕi+1, j−1,k, ϕi, j,k),

a(ϕi−1, j+1,k−1, ϕi, j,k), a(ϕi, j+1,k−1, ϕi, j,k), a(ϕi+1, j+1,k−1, ϕi, j,k),

a(ϕi−1, j,k−1, ϕi, j,k), a(ϕi, j,k−1, ϕi, j,k), a(ϕi+1, j,k−1, ϕi, j,k),

a(ϕi−1, j−1,k−1, ϕi, j,k), a(ϕi, j−1,k−1, ϕi, j,k), a(ϕi+1, j−1,k−1, ϕi, j,k).

One advantage of a triangulation by cubicles instead of tetrahedrons is that all bilinear forms

of nodes which are diagonal to each other are zero. This reduces above 27 forms to merely 7 forms

(omitting dependencies for readability):

a(ϕi, j,k,ϕi, j,k)=
∫
Ω

κ∇ϕi, j,k∇ϕi, j,k dΩ+
∫
Ω

ξϕi, j,kϕi, j,k dΩ, (2.66)

a(ϕi+1, j,k,ϕi, j,k)=
∫
Ω

κ∇ϕi+1, j,k∇ϕi, j,k dΩ+
∫
Ω

ξϕi+1, j,kϕi, j,k dΩ, (2.67)

a(ϕi, j+1,k,ϕi, j,k)=
∫
Ω

κ∇ϕi, j+1,k∇ϕi, j,k dΩ+
∫
Ω

ξϕi, j+1,kϕi, j,k dΩ, (2.68)

a(ϕi−1, j,k,ϕi, j,k)=
∫
Ω

κ∇ϕi−1, j,k∇ϕi, j,k dΩ+
∫
Ω

ξϕi−1, j,kϕi, j,k dΩ, (2.69)

a(ϕi, j−1,k,ϕi, j,k)=
∫
Ω

κ∇ϕi, j−1,k∇ϕi, j,k dΩ+
∫
Ω

ξϕi, j−1,kϕi, j,k dΩ, (2.70)

a(ϕi, j,k+1,ϕi, j,k)=
∫
Ω

κ∇ϕi, j,k+1∇ϕi, j,k dΩ+
∫
Ω

ξϕi, j,k+1ϕi, j,k dΩ, (2.71)

a(ϕi, j,k−1,ϕi, j,k)=
∫
Ω

κ∇ϕi, j,k−1∇ϕi, j,k dΩ+
∫
Ω

ξϕi, j,k−1ϕi, j,k dΩ. (2.72)

The domain of integration Ω also reduces due to the lack of support of the shape functions. It

consists of only those cubicles which contain both nodes in question. Those are:

for a(ϕi, j,k,ϕi, j,k) : Q1 ∪Q2 ∪Q3 ∪Q4 ∪Q5 ∪Q6 ∪Q7 ∪Q8, (2.73)
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for a(ϕi+1, j,k,ϕi, j,k) : Q1 ∪Q4 ∪Q5 ∪Q8, (2.74)

for a(ϕi, j+1,k,ϕi, j,k) : Q1 ∪Q2 ∪Q5 ∪Q6, (2.75)

for a(ϕi−1, j,k,ϕi, j,k) : Q2 ∪Q3 ∪Q6 ∪Q7, (2.76)

for a(ϕi, j−1,k,ϕi, j,k) : Q3 ∪Q4 ∪Q7 ∪Q8, (2.77)

for a(ϕi, j,k+1,ϕi, j,k) : Q1 ∪Q2 ∪Q3 ∪Q4, (2.78)

for a(ϕi, j,k−1,ϕi, j,k) : Q5 ∪Q6 ∪Q7 ∪Q8 (2.79)

with

Q1 =[xi, xi+1]× [yj, yj+1]× [zk, zk+1],

Q2 =[xi−1, xi]× [yj, yj+1]× [zk, zk+1],

Q3 =[xi−1, xi]× [yj−1, j j]× [zk, zk+1],

Q4 =[xi, xi+1]× [yj−1, yj]× [zk, zk+1], (2.80)

Q5 =[xi, xi+1]× [yj, yj+1]× [zk, zk−1],

Q6 =[xi−1, xi]× [yj, yj+1]× [zk, zk−1],

Q7 =[xi−1, xi]× [yj−1, j j]× [zk, zk−1],

Q8 =[xi, xi+1]× [yj−1, yj]× [zk, zk−1].

Calculation of the Stiffness Matrix

For each bilinear form we calculate the stiffness matrix and the mass matrix separately. To

evaluate the integrals we use the trapezoidal rule (2.47). The first integral in the forms (2.66)-

(2.72) gives the entries for the stiffness matrix S. The 7 non-empty entries are

Si jk,i jk =
8∑
ξ=1

Ñ
Qξ

κ(x, y, z)∇ϕ(ξ)
(i, j,k)(x, y, z)∇ϕ(ξ)

(i, j,k)(x, y, z)dxdydz, (2.81)

Si+1 jk,i jk =
∑

ξ=1,4,5,8

Ñ
Qξ

κ(x, y, z)∇ϕ(ξ)
(i+1, j,k)(x, y, z)∇ϕ(ξ)

(i, j,k)(x, y, z)dxdydz, (2.82)

Si j+1k,i jk =
∑

ξ=1,2,5,6

Ñ
Qξ

κ(x, y, z)∇ϕ(ξ)
(i, j+1,k)(x, y, z)∇ϕ(ξ)

(i, j,k)(x, y, z)dxdydz, (2.83)

Si−1 jk,i jk =
∑

ξ=2,3,6,7

Ñ
Qξ

κ(x, y, z)∇ϕ(ξ)
(i−1, j,k)(x, y, z)∇ϕ(ξ)

(i, j,k)(x, y, z)dxdydz, (2.84)

Si j−1k,i jk =
∑

ξ=3,4,7,8

Ñ
Qξ

κ(x, y, z)∇ϕ(ξ)
(i, j−1,k)(x, y, z)∇ϕ(ξ)

(i, j,k)(x, y, z)dxdydz, (2.85)

Si jk+1,i jk =
∑

ξ=1,2,3,4

Ñ
Qξ

κ(x, y, z)∇ϕ(ξ)
(i, j,k+1)(x, y, z)∇ϕ(ξ)

(i, j,k)(x, y, z)dxdydz, (2.86)

30



2.2. DISCRETIZATION OF THE LINEAR EQUATION

Si jk−1,i jk =
∑

ξ=5,6,7,8

Ñ
Qξ

κ(x, y, z)∇ϕ(ξ)
(i, j,k−1)(x, y, z)∇ϕ(ξ)

(i, j,k)(x, y, z)dxdydz. (2.87)

Evaluation of those stiffness matrix entries by the trapezoidal rule (2.47) with Mathematica

gives

Si jk,i jk =
hyhz

2hx
(κi−1, j,k +κi+1, j,k)+ hxhz

2hy
(κi, j−1,k +κi, j+1,k) (2.88)

+ hxhy

2hz
(κi, j,k−1 +κi, j,k+1)+

(hyhz

hx
+ hxhz

hy
+ hxhy

hz

)
κi, j,k,

Si+1 jk,i jk =− hyhz
(
κi, j,k +κi+1, j,k

)
2hx

, (2.89)

Si−1 jk,i jk =− hyhz
(
κi−1, j,k +κi, j,k

)
2hx

, (2.90)

Si j+1k,i jk =− hxhz
(
κi, j,k +κi, j+1,k

)
2hy

, (2.91)

Si j−1k,i jk =− hxhz
(
κi, j−1,k +κi, j,k

)
2hy

, (2.92)

Si jk+1,i jk =− hxhy
(
κi, j,k +κi, j,k+1

)
2hz

, (2.93)

Si jk−1,i jk =− hxhy
(
κi, j,k−1 +κi, j,k

)
2hz

. (2.94)

Calculating the Mass Matrix M

Calculating the mass matrix involves considerable less effort than calculating the stiffness matrix.

The reason is that the shape functions themselves are calculated (in contrast to their gradients,

as has been the case in the calculation of the stiffness matrix) at the corners of the cubicles. They

are defined to be zero there, however. Only the shape function at (xi, yj, zk) is nonzero. We use

the entry Mi+1 jk,i jk to illustrate this.

The second integral in the forms (2.66)-(2.72) gives the entries for the mass matrix M:

Mi+1 jk,i jk =
∑

ξ=1,4,5,8

Ñ
Qξ

ξ(x, y, z)ϕ(ξ)
i+1, j,k(x, y, z)ϕ(ξ)

i, j,k(x, y, z)dxdydz (2.95)

Inserting the shape function condition (2.50) yields

Mi+1 jk,i jk =
∑

ξ=1,4,5,8

Ñ
Qξ

ξ(x, y, z)δi+1,xδ j,yδk,zδi,xδ j,yδk,z dxdydz. (2.96)

This is always zero because δi+1,xδi,x is zero unless i+1 = i which is obviously never the case.

That means that all terms of the mass matrix are zero with the exception of Mi jk,i jk, which is

Mi jk,i jk =
8∑
ξ=1

Ñ
Qξ

ξ(x, y, z)ϕ(ξ)
i, j,k(x, y, z)ϕ(ξ)

i, j,k(x, y, z)dxdydz. (2.97)
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This is a sum of eight volume integrals. We illustrate the calculation for cubicle Q1. The integral

for Q1 is Ñ
Q1

ξ(x, y, z)ϕ(1)
i, j,k(x, y, z)ϕ(1)

i, j,k(x, y, z)dxdydz. (2.98)

Before using the trapezoidal rule we need to specify the 8 nodes of cubicle Q1 which are

(xi, yj, zk), (xi+1, yj, zk), (xi+1, yj+1, zk), (xi, yj+1, zk),

(xi, yj, zk+1), (xi+1, yj, zk+1), (xi+1, yj+1, zk+1), (xi, yj+1, zk+1). (2.99)

Using the trapezoidal rule for cubicles (2.47) now givesÑ
Q1

ξ(x, y, z)ϕ(1)
i, j,k(x, y, z)ϕ(1)

i, j,k(x, y, z)dxdydz = hx hy hz

8
q1 (2.100)

with

q1 =ξ(i, j,k)ϕ(1)
i, j,k(i, j,k)ϕ(1)

i, j,k(i, j,k)

+ξ(i+1, j,k)ϕ(1)
i, j,k(i+1, j,k)ϕ(1)

i, j,k(i+1, j,k)

+ξ(i+1, j+1,k)ϕ(1)
i, j,k(i+1, j+1,k)ϕ(1)

i, j,k(i, j,k)

+ξ(i, j+1,k)ϕ(1)
i, j,k(i, j+1,k)ϕ(1)

i, j,k(i, j+1,k) (2.101)

+ξ(i, j,k+1)ϕ(1)
i, j,k(i, j,k+1)ϕ(1)

i, j,k(i, j,k+1)

+ξ(i+1, j,k+1)ϕ(1)
i, j,k(i+1, j,k+1)ϕ(1)

i, j,k(i+1, j,k+1)

+ξ(i+1, j+1,k+1)ϕ(1)
i, j,k(i+1, j+1,k+1)ϕ(1)

i, j,k(i+1, j+1,k+1)

+ξ(i, j+1,k+1)ϕ(1)
i, j,k(i, j+1,k+1)ϕ(1)

i, j,k(i, j+1,k+1).

Using the shape function condition again, q1 reduces to

q1 = ξ(i, j,k), (2.102)

so (2.100) becomesÑ
Q1

ξ(x, y, z)ϕ(1)
i, j,k(x, y, z)ϕ(1)

i, j,k(x, y, z)dxdydz = hx hy hz

8
ξ(i, j,k). (2.103)

The calculation for the other cubicles is similar. Summation over all eight elements yields the

mass matrix entry Mi jk,i jk which is

Mi jk,i jk =
8∑

µ=1

Ñ
Qµ

ξ(x, y, z)ϕ(µ)
i, j,k(x, y, z)ϕ(µ)

i, j,k(x, y, z)dxdydz = hx hy hz ξ(i, j,k). (2.104)
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Result: The Bilinear Forms

After having evaluated stiffness and mass matrix entries for node (i, j,k) we can now explicitly

write out the seven non-vanishing bilinear forms:

a(i jk, i jk)=hyhz

2hx
(κi−1, j,k +κi+1, j,k)+ hxhz

2hy
(κi, j−1,k +κi, j+1,k) (2.105)

+ hxhy

2hz
(κi, j,k−1 +κi, j,k+1)+

(hyhz

hx
+ hxhz

hy
+ hxhy

hz

)
κi, j,k

+hx hy hz ξi, j,k,

a(i+1 jk, i jk)=− hyhz
(
κi, j,k +κi+1, j,k

)
2hx

, (2.106)

a(i−1 jk, i jk)=− hyhz
(
κi−1, j,k +κi, j,k

)
2hx

, (2.107)

a(i j+1k, i jk)=− hxhz
(
κi, j,k +κi, j+1,k

)
2hy

, (2.108)

a(i j−1k, i jk)=− hxhz
(
κi, j−1,k +κi, j,k

)
2hy

, (2.109)

a(i jk+1, i jk)=− hxhy
(
κi, j,k +κi, j,k+1

)
2hz

, (2.110)

a(i jk−1, i jk)=− hxhy
(
κi, j,k−1 +κi, j,k

)
2hz

. (2.111)

2.2.4.2 The Calculation of the Right–Hand Side F(v)

The equation to solve, (2.43), is repeated for the reader’s convenience:

Nh∑
j=1

u j a(ϕν,ϕµ)= F(ϕµ), i = 1,2, ..., Nh. (2.112)

We have calculated an explicit formulation of the bilinear form a(·, ·) in the previous section. Now

we turn to the calculation of the right–hand side F(·) which has been defined, depending on the

boundary conditions, in section 2.2.1 as

F : H1
0 →R, F(v)=

∫
Ω

f (x)v(x)dΩ (2.113)

for homogeneous Dirichlet boundary conditions, as

F : H1
ΓD

→R, F(v)=−a(ugD ,v)+
∫
Ω

f (x)v(x)dΩ (2.114)

for hon-homogeneous Dirichlet boundary conditions and as

F : H1 →R, F(v)=
∫
ΓN

κ(x) gN v(x)dΓ+
∫
Ω

f (x)v(x)dΩ (2.115)
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for Neumann boundary conditions.

Using the Galerkin approximation and inserting ϕµ for v gives us the following three terms to

calculate:
∫
Ω

f (x)ϕµ(x)dΩ, −a(ugD ,ϕµ) and
∫
ΓN

κ(x) gN ϕµ(x)dΓ. It is important for the calculation

to know if µ ∈ ∂Ω. We begin with the calculation of
∫
Ω

f (x)ϕµ(x)dΩ for the case that µ is not

situated on the boundary.

The Domain Contributions of the Right–Hand–Side

For the inner grid points, no matter the boundary conditions, F(·) reduces to

F(ϕµ)=
∫
Ω

f (x)ϕµ(x)dΩ, µ= 1,2, ..., Ninner. (2.116)

Ninner represents the number of grid points which are not situated on the domain boundary. The

calculation of F for the grid point with coordinates (xi, yj, zk) is straightforward and similar to

the calculation of the mass matrix M. First, the domain of integration Ω is reduced due to the

lack of support by the shape functions: only the cubicles containing node (i, j,k) have non-zero

contributions, so

Ω=Q1 ∪Q2 ∪Q3 ∪Q4 ∪Q5 ∪Q6 ∪Q7 ∪Q8, (2.117)

with the same definitions of Qξ, ξ= 1, ..,8, as in (2.80). Thus, (2.116) becomes

F(ϕµ)=
8∑
ξ=1

∫
Qξ

f (x)ϕµ(x)dΩ, µ= 1,2, ..., Nh. (2.118)

After doing the calculation (in the same fashion as was done for the mass matrix before) one sees

that, as in the case of the mass matrix, each cubicle contributes

qpartial =
hxhyhz

8
f (i, j,k) (2.119)

to the full F(ϕµ). There are eight cubicles so the overall value of F at grid point (xi, yj, zk) ∉ ∂Ω is

F(ϕi jk)= hxhyhz f (i, j,k). (2.120)

2.2.4.3 The Boundary Contributions

On the boundary the calculation of F(·) is a little more involved because, depending on the kind

of boundary condition used, the term a(ugD ,ϕµ) or
∫
ΓN
κ(x) gN ϕµ(x)dΓ enters the equation. Also,

the support at the boundaries is only half of what it is at the inner points which changes the

value of
∫
Ω

f (x)ϕµ(x)dΩ.
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Figure 2.4: The domain of integration (taken from Wikipedia).

Calculation of
∫
Ω

f (x)ϕµ(x)dΩ on the boundary.

This is very similar to the calculation in the domain, only that the support, and thus the overall

contribution, is halved. We start with

F f (ϕµ)=
∫
Ω

f (x)ϕµ(x)dΩ, µ= 1,2, ..., Nouter, (2.121)

where µ ∈ ∂Ω and Nouter stands for the number of grid points on the boundary ∂Ω. Looking at

figure 2.4 we imagine the yz-plane at x = 0 to be the lower boundary which then looks like figure

2.5. We immediately see that the area of integration is reduced from what it was in the calculation

of the inner domain,

Ωint =Q1 ∪Q2 ∪Q3 ∪Q4 ∪Q5 ∪Q6 ∪Q7 ∪Q8, (2.122)

to

Ωlow_bnd =Q1 ∪Q4 ∪Q5 ∪Q8 (2.123)

for the lower x-boundary and

Ωup_bnd =Q2 ∪Q3 ∪Q6 ∪Q7 (2.124)

for the upper x-boundary. Thus, we arrive at

F f (ϕµ)= ∑
ξ=1,4,5,8

∫
Qξ

f (x)ϕµ(x)dΩ, µ ∈LBIndex (2.125)
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for the lower boundary and

F f (ϕµ)= ∑
ξ=2,3,6,7

∫
Qξ

f (x)ϕµ(x)dΩ, µ ∈UBIndex (2.126)

for the upper boundary, where LB- and UBIndex are the index sets for lower and upper boundary,

respectively. Again, each cubicle contributes

qpartial =
hxhyhz

8
f (i, j,k) (2.127)

to F f (ϕµ). There are only four cubicles now, so the overall value of F f at grid point (xi, yj, zk) ∈ ∂Ω
is

F f (ϕi jk)= 1
2

hxhyhz f (i, j,k) (2.128)

at the lower and upper x-boundary.

2.2.4.4 Calculation of the Neumann Boundary Term

y

z

IIV

VIII V

Figure 2.5: The lower boundary yz–plane.

We turn to the calculation of the Neumann boundary term

FNeum =
∫
ΓN

κ(x) gN ϕµ(x)dΓ. (2.129)

This is a surface integral over the domain shown in figure 2.5 so the quadrature rule changes

accordingly. We use the trapezoidal rule in two dimensions for the evaluation of the integral.
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First, as before, the lack of support reduces the domain ΓN to the four squares in figure 2.5,

T1,T4,T5,T8:

FNeum =
∫
ΓN

κ(x) gN ϕµ(x)dΓ= ∑
ξ=1,4,5,8

∫
Tξ

κ(x) gN ϕµ(x)dΓ (2.130)

Using the points of the square corners as limits we obtain

FNeum =
zk+1∫
zk

dz

yj+1∫
yj

dy κ(xi, y, z) gN (y, z)ϕi jk(xi, y, z)

+
zk+1∫
zk

dz

yj∫
yj−1

dy κ(xi, y, z) gN (y, z)ϕi jk(xi, y, z)

+
zk∫

zk−1

dz

yj+1∫
yj

dy κ(xi, y, z) gN (y, z)ϕi jk(xi, y, z)

+
zk∫

zk−1

dz

yj∫
yj−1

dy κ(xi, y, z) gN (y, z)ϕi jk(xi, y, z)

(2.131)

where xi is situated on the lower Neumann boundary. Using the trapezoid rule gives

FNeum = hyhz

4
κ(xi, yj, zk) gN (yj, zk) ·4

= hyhzκ(xi, yj, zk) gN (yj, zk)
(2.132)

2.2.4.5 Overall Contribution at Neumann boundaries

So the overall value of F(·) at the Neumann boundary node with coordinates (xi, yj, zk) in the

yz-plane is

F(ϕi jk)= 1
2

hxhyhz f (i, j,k)+hyhzκ(i, j,k)gN ( j,k). (2.133)

2.2.4.6 Contribution at Non–homogeneous Dirichlet Boundaries

We turn to the calculation of the non–homogeneous Dirichlet boundary term

FDir = a(ugD ,v), (2.134)

which is, using the definition of the bilinear form, (2.18),

a(ugD ,v)=
∫
Ω

κ(x)∇ugD (x)∇v(x)dΩ+
∫
Ω

ξ(x)ugD (x)v(x)dΩ. (2.135)

By using the Galerkin approximation one obtains

a(ugD ,v)=
No∑
ν=1

ugD ,ν

∫
Ω

κ(x)∇ϕν(x)∇ϕµ(x)dΩ+
∫
Ω

ξ(x)ϕν(x)ϕµ(x)dΩ

 µ= 1, ..., No. (2.136)
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Now, ugD is nonzero only at the boundaries, so all terms with indices ν and µ ∉ ∂Ω vanish. The

terms in parenthesis are essentially the same as have been calculated in (2.66)-(2.72) and we end

up with

FDirichlet(xi, yj, zk)= f i, j,k −a(ϕi, j,k,ϕi−1, j,k)ugD ,(i, j,k) (2.137)

for the lower x–boundary and

FDirichlet(xi, yj, zk)= f i, j,k −a(ϕi, j,k,ϕi+1, j,k)ugD ,(i, j,k) (2.138)

for the upper x–boundary.

2.2.5 Interlude – The Data Structure in ANTARES

To store the evaluated integrals in ANTARES we make use of the stencil notation (see Wesseling,

1992): Let A :Rd →Rd be a linear operator. Then, using stencil notation, Au can be represented

by

(Au)i =
∑

j∈Zd

A(i, j)ui+ j, i ∈G. (2.139)

The subscript i = (i1, i2, ..., id) identifies a point in the computational grid G which is defined by

G = {x ∈Rd : x = ih, i = (i1, i2, ..., id), h = (h1,h2, ..,hd),

iα = 0,1,2, ...,nα, hα = 1/nα, α= 1,2, ...,d}. (2.140)

Note: i is not the index for the x-variable here but a d-dimensional vector. The set SA , defined by

SA = { j ∈Zd : ∃i ∈G with A(i, j) 6= 0}, (2.141)

is called the structure of A. The set of values A(i, j) with j ∈ SA is called the stencil of A at grid

point i. It can be visualized by an array of values [A]i in which the values of A(i, j) are given. In

our case, 3D, the stencil looks like this:

[A](−1)
i =


A(i,−e1 + e2 − e3) A(i, e2 − e3) A(i, e1 + e2 − e3)

A(i,−e1 − e3) A(i,−e3) A(i, e1 − e3)

A(i,−e1 − e2 − e3) A(i,−e2 − e3) A(i, e1 − e2 − e3)

 , (2.142)

[A](0)
i =


A(i,−e1 + e2) A(i, e2) A(i, e1 + e2)

A(i,−e1) A(i,0) A(i, e1)

A(i,−e1 − e2) A(i,−e2) A(i, e1 − e2)

 , (2.143)

[A](1)
i =


A(i,−e1 + e2 + e3) A(i, e2 + e3) A(i, e1 + e2 + e3)

A(i,−e1 + e3) A(i,+e3) A(i, e1 + e3)

A(i,−e1 − e2 + e3) A(i,−e2 + e3) A(i, e1 − e2 + e3)

 (2.144)

with

e1 = (1,0,0), e2 = (0,1,0), e3 = (0,0,1). (2.145)
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In the FEM case, the stencil entries correspond to the following bilinear forms:

[A](−1)
i, j,k =


a(ϕi, j,k,ϕi−1, j+1,k−1) a(ϕi, j,k,ϕi, j+1,k−1) a(ϕi, j,k,ϕi+1, j+1,k−1)

a(ϕi, j,k,ϕi−1, j,k−1) a(ϕi, j,k,ϕi, j,k−1) a(ϕi, j,k,ϕi+1, j,k−1)

a(ϕi, j,k,ϕi−1, j−1,k−1) a(ϕi, j,k,ϕi, j−1,k−1) a(ϕi, j,k,ϕi+1, j−1,k−1)

 , (2.146)

[A](0)
i, j,k =


a(ϕi, j,k,ϕi−1, j+1,k) a(ϕi, j,k,ϕi, j+1,k) a(ϕi, j,k,ϕi+1, j+1,k)

a(ϕi, j,k,ϕi−1, j,k) a(ϕi, j,k,ϕi, j,k) a(ϕi, j,k,ϕi+1, j,k)

a(ϕi, j,k,ϕi−1, j−1,k) a(ϕi, j,k,ϕi, j−1,k) a(ϕi, j,k,ϕi+1, j−1,k)

 , (2.147)

[A](1)
i, j,k =


a(ϕi, j,k,ϕi−1, j+1,k+1) a(ϕi, j,k,ϕi, j+1,k+1) a(ϕi, j,k,ϕi+1, j+1,k+1)

a(ϕi, j,k,ϕi−1, j,k+1) a(ϕi, j,k,ϕi, j,k+1) a(ϕi, j,k,ϕi+1, j,k+1)

a(ϕi, j,k,ϕi−1, j−1,k+1) a(ϕi, j,k,ϕi, j−1,k+1) a(ϕi, j,k,ϕi+1, j−1,k+1)

 . (2.148)

The variable names in ANTARES correspond to the direction in which the entries are written in

these stencils. They go from southwest to northeast. The middle term is named dd as in the 2D

case. The same stencil as above in ANTARES notation is thus written

[A](−1)
i, j,k =


nw_zm1(i,j,k) n_zm1(i,j,k) ne_zm1(i,j,k)

w_zm1(i,j,k) dd_zm1(i,j,k) e_zm1(i,j,k)

sw_zm1(i,j,k) s_zm1(i,j,k) se_zm1(i,j,k)

 , (2.149)

[A](0)
i, j,k =


nw_z0(i,j,k) n_z0(i,j,k) ne_z0(i,j,k)

w_z0(i,j,k) dd_z0(i,j,k) e_z0(i,j,k)

sw_z0(i,j,k) s_z0(i,j,k) se_z0(i,j,k)

 , (2.150)

[A](1)
i, j,k =


nw_zp1(i,j,k) n_zp1(i,j,k) ne_zp1(i,j,k)

w_zp1(i,j,k) dd_zp1(i,j,k) e_zp1(i,j,k)

sw_zp1(i,j,k) s_zp1(i,j,k) se_zp1(i,j,k)

 . (2.151)

2.2.5.1 The Final Form of the Stencils

The values of the bilinear forms have been calculated before. Their values are given in (2.105)-

(2.111). The fact that only 7 of these forms are non-vanishing leads to this simplified version of

the operator:

[A](−1)
i, j,k =


0 0 0

0 a(ϕi, j,k,ϕi, j,k−1) 0

0 0 0

 ,

[A](0)
i, j,k =


0 a(ϕi, j,k,ϕi, j+1,k) 0

a(ϕi, j,k,ϕi−1, j,k) a(ϕi, j,k,ϕi, j,k) a(ϕi, j,k,ϕi+1, j,k)

a a(ϕi, j,k,ϕi, j−1,k) 0

 , (2.152)

[A](1)
i, j,k =


0 0 0

0 a(ϕi, j,k,ϕi, j,k+1) 0

0 0 0

 .
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Written out the stencil (2.152) is

(Au)(i, j,k)=a(ϕi, j,k,ϕi, j,k−1)u(i, j,k−1)+a(ϕi, j,k,ϕi, j−1,k)u(i, j−1,k)+
a(ϕi, j,k,ϕi−1, j,k)u(i−1, j,k)+a(ϕi, j,k,ϕi, j,k)u(i, j,k)+
a(ϕi, j,k,ϕi+1, j,k)u(i+1, j,k)+a(ϕi, j,k,ϕi, j+1,k)u(i, j+1,k)+ (2.153)

a(ϕi, j,k,ϕi, j,k+1)u(i, j,k+1)

This is the equation for the point (xi, yj, zk) of the linear system of equations which has to be

solved on the finest grid for lexicographical ordering of the grid points.
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2.3 Discretization of the Nonlinear Helmholtz Equation

We now turn to the discretization of the nonlinear equation (1.45), i.e.,

−∇· (κ(u)∇u(x))+ξ(u)= f (x). (2.154)

The discretization for the nonlinear problem is similar to the discretization of the linear one. One

major difference is the treatment of ξ: it is not multiplied with u but is directly dependent on u.

This has implications for the discretization.

2.3.1 Deriving the Variational Formulation

Let V be a Hilbert space on Ω. Multiplying (2.154) with an arbitrary test function v(x) ∈V(Ω) and

integrating over the domain Ω gives

−
∫
Ω

∇· (κ(u)∇u(x))v(x)dΩ+
∫
Ω

ξ(u)v(x)dΩ=
∫
Ω

f (x)v(x)dΩ. (2.155)

After using integration by parts on the first integral one arrives at the variational form of

(2.154), which reads (recalling (2.21) for the definition of gN ):

find u ∈ V(Ω) :∫
Ω

κ(u)∇u(x)∇v(x)dΩ+
∫
Ω

ξ(u)v(x)dΩ−
∫
ΓN

κ(u) gN v(x)dΓ

=
∫
Ω

f (x)v(x)dΩ ∀v ∈V.

(2.156)

This has the same form as the linear case, (2.4), except that κ and ξ depend on u instead of x. The

treatment of boundary conditions is equivalent to the treatment of boundary conditions in the

linear case (section 2.2.1). In short: the Dirichlet part of the boundary integral vanishes because

the arbitrary test function is chosen to be zero on the boundary. Choosing a subspace Vh and the

basis functions ϕµ as test functions leads to

find uh ∈ Vh(Ω) :∫
Ω

κ(u)∇uh(x)∇ϕµ(x)dΩ+
∫
Ω

ξ(u)ϕµ(x)dΩ−
∫
ΓN

κ(u) gN ϕµ(x)dΓ

=
∫
Ω

f (x)ϕµ(x)dΩ, µ= 1,2, ...,dim(Vh).

(2.157)

By writing uh(x) in terms of the basis functions of the subspace Vh,

uh(x)=
Nh∑
ν=1

uνϕν(x), (2.158)
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where Nh = dim(Vh), one obtains

find u ∈ Vh(Ω) :
Nh∑
ν=1

∫
Ω

κ(u)∇(uνϕν(x))∇ϕµ(x)dΩ

+
∫
Ω

ξ(u)ϕµ(x)dΩ

−
∫
ΓN

κ(u) gN ϕµ(x)dΓ=
∫
Ω

f (x)ϕµ(x)dΩ, µ= 1,2, ..., Nh.

(2.159)

The first integral,
Nh∑
ν=1

∫
Ω

κ(u)∇(uνϕν(x))∇ϕµ(x)dΩ, (2.160)

can be written as
Nh∑
ν=1

uν
∫
Ω

κ(u)∇ϕν(x)∇ϕµ(x)dΩ

 , (2.161)

which in turn can be written as a matrix–vector product Ā ·u of the matrix

Ā =


<ϕ1,ϕ1 > <ϕ1,ϕ2 > ·· · <ϕ1,ϕNh >
<ϕ2,ϕ1 > <ϕ2,ϕ1 > ·· · <ϕ1,ϕNh >

...
...

. . .
...

<ϕNh ,ϕ1 > <ϕNh ,ϕ2 > ·· · <ϕNh ,ϕNh >

 (2.162)

and the vector u = [u1,u2, ...,uNh ]T, where the entries Āµν =<ϕµ,ϕν > are defined as

<ϕµ,ϕν >=
∫
Ω

κ(u)∇ϕν(x)∇ϕµ(x)dΩ. (2.163)

Thus, (2.159) can be written as

Ā ·u+
∫
Ω

ξ(u)ϕµ(x)dΩ

︸ ︷︷ ︸
ξ

−
∫
ΓN

κ(u) gN ϕµ(x)dΓ

︸ ︷︷ ︸
g

=
∫
Ω

f (x)ϕµ(x)dΩ

︸ ︷︷ ︸
b

, µ= 1,2, ..., Nh, (2.164)

where ξ, g and b are vectors ∈ RNh . Here, the difference to the linear case is obvious: while ξ

entered the mass matrix in the linear case, it enters the calculation as a vector here.

The sum of Ā ·u, ξ and g can be summarized as the action of the nonlinear operator A on

the vector u:

A (u)= b. (2.165)

To solve this system of nonlinear equations we use the Newton method.
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2.3.2 Calculation of the Nonlinear Operator A (u) for the Current Iteration

The calculation of the nonlinear operator A (u) must be performed at every iteration step because

it depends on u. It is defined as

A (u)= Ā ·u+
∫
Ω

ξ(u)ϕµ(x)dΩ−
∫
ΓN

κ(u) gN ϕµ(x)dΓ, µ= 1,2, ..., Nh. (2.166)

We calculate the three terms separately.

2.3.2.1 Calculation of Ā ·u

To wit, Ā ·u is defined as the product of

Ā =


<ϕ1,ϕ1 > <ϕ1,ϕ2 > ·· · <ϕ1,ϕNh >
<ϕ2,ϕ1 > <ϕ2,ϕ1 > ·· · <ϕ1,ϕNh >

...
...

. . .
...

<ϕNh ,ϕ1 > <ϕNh ,ϕ2 > ·· · <ϕNh ,ϕNh >

 (2.167)

with the vector u = [u1,u2, ...,uNh ]T, where the entries Āµν =<ϕµ,ϕν > are defined as

<ϕµ,ϕν >=
∫
Ω

κ(u)∇ϕν(x)∇ϕµ(x)dΩ. (2.168)

This is very similar to the bilinear form which was defined for the linear problem in (2.8) and

reads

a(u,v)=
∫
Ω

κ(x)∇u(x)∇v(x)dΩ+
∫
Ω

ξ(x)u(x)v(x)dΩ. (2.169)

There are only two differences between the linear and the nonlinear problem:

1. κ is dependent on u in the nonlinear case

2. The term containing ξ is missing in the nonlinear case (because it is calculated separately

in the next step.)

Because of the similarity to the linear problem we can use exactly the same calculations as

we did for the linear case, bearing in mind the two differences stated above. The resulting entries

for the matrix associated with grid point (i, j,k) are the same as the stiffness matrix entries

(2.88)–(2.94),

Ā i jk,i jk =
hyhz

2hx
(κi−1, j,k +κi+1, j,k)+ hxhz

2hy
(κi, j−1,k +κi, j+1,k) (2.170)

+ hxhy

2hz
(κi, j,k−1 +κi, j,k+1)+

(hyhz

hx
+ hxhz

hy
+ hxhy

hz

)
κi, j,k,

Ā i+1 jk,i jk =− hyhz
(
κi, j,k +κi+1, j,k

)
2hx

, (2.171)
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Ā i−1 jk,i jk =− hyhz
(
κi−1, j,k +κi, j,k

)
2hx

, (2.172)

Ā i j+1k,i jk =− hxhz
(
κi, j,k +κi, j+1,k

)
2hy

, (2.173)

Ā i j−1k,i jk =− hxhz
(
κi, j−1,k +κi, j,k

)
2hy

, (2.174)

Ā i jk+1,i jk =− hxhy
(
κi, j,k +κi, j,k+1

)
2hz

, (2.175)

Ā i jk−1,i jk =− hxhy
(
κi, j,k−1 +κi, j,k

)
2hz

, (2.176)

with the difference that κi, j,k stands for κ(u(xi, yj, zk)) here.

2.3.2.2 Calculation of ξ

The calculation of ξ is straightforward and essentially the same as the calculation of the domain

contributions for the linear case in section 2.2.4.2 (again with the difference that ξ is dependent

on u now), thus it is omitted and only the result is stated:

(ξ(u, x))i jk =
∫
Ω

ξ(u)ϕi jk(x)dΩ= ·· · = hxhyhz ξ(u(xi, yj, zk)) (2.177)

If the point (xi, yj, zk) lies on the boundary ∂Ω, the contribution is halved, exactly as it was in

section 2.2.4.3:

(ξ(u, x))i jk =
∫
Ω

ξ(u)ϕi jk(x)dΩ= ·· · = 1
2

hxhyhz ξ(u(xi, yj, zk)) (2.178)

Assuming, e.g., that only the first and last point of the grid lie on the boundary, this would

result in the vector

ξ=



1/2hxhyhz ξ(u(xi, yj, zk))

hxhyhz ξ(u(xi, yj, zk))
...

hxhyhz ξ(u(xi, yj, zk))

1/2hxhyhz ξ(u(xi, yj, zk))


(2.179)

2.3.2.3 Calculation of the Neumann Boundary Term gN in the Nonlinear Case

The calculation of the Neumann boundary terms also follows along the lines of the linear problem

in section 2.2.4.5. It results in the following contribution on Neumann boundaries:∫
ΓN

κ(u) gN ϕµ(x)dΓ= ·· · = hyhzκ(u(xi, yj, zk)) gN (yj, zk) (2.180)

44



2.3. DISCRETIZATION OF THE NONLINEAR HELMHOLTZ EQUATION

Again, assuming that only the first and last point of the grid lie on the boundary, this would

result in the vector

gN =



hyhzκ(u(xi, yj, zk)) gN (yj, zk)

0

0
...

0

0

hyhzκ(u(xi, yj, zk)) gN (yj, zk)


(2.181)

2.3.3 Summarizing: The Nonlinear Operator A (u) in Explicit Form

In summary, A (u)= Ā ·u+ξ+ gN can be written as

A (u)=



<ϕ1,ϕ1 > <ϕ1,ϕ2 > ·· · <ϕ1,ϕNh >
<ϕ2,ϕ1 > <ϕ2,ϕ1 > ·· · <ϕ1,ϕNh >

...
...

. . .
...

<ϕNh−1,ϕ1 > <ϕNh−1,ϕ2 > ·· · <ϕNh−1,ϕNh−1 >
<ϕNh ,ϕ1 > <ϕNh ,ϕ2 > ·· · <ϕNh ,ϕNh >


·



u1

u2
...

uNh−1

uNh



+



1/2hxhyhz ξ(u(xi, yj, zk))

hxhyhz ξ(u(xi, yj, zk))
...

hxhyhz ξ(u(xi, yj, zk))

1/2hxhyhz ξ(u(xi, yj, zk))


−



hyhzκ(u(xi, yj, zk)) gN (yj, zk)

0
...

0

hyhzκ(u(xi, yj, zk)) gN (yj, zk)


, (2.182)

assuming that only grid points with indices 1 and Nh lie on the boundary. Of course, this

assumption is nonsense in 3D but it serves its purpose of demonstrating the structures of the

vectors that make up the nonlinear operator.

2.3.4 The Data Structure in the Nonlinear Case

Inner Grid Points For every non-boundary point µ ∈ G with the coordinates (xi, yj, zk) we

have
(A (u))i jk =<ϕi, j,k,ϕi, j,k−1 > ·ui, j,k−1+<ϕi, j,k,ϕi, j−1,k > ·ui, j−1,k

+<ϕi, j,k,ϕi−1, j,k > ·ui−1, j,k+<ϕi, j,k,ϕi, j,k > ·ui, j,k

+<ϕi, j,k,ϕi+1, j,k > ·ui+1, j,k+<ϕi, j,k,ϕi, j+1,k > ·ui, j+1,k

+<ϕi, j,k,ϕi, j,k+1 > ·ui, j,k+1 +hxhyhz ·ξi, j,k.

(2.183)

We save the entries in the same data structure that we used for the linear case, i.e., the action of

the nonlinear operator on the node µ with coordinates (xi, yj, zk), using ANTARES notation, is as
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follows:
(Ā ·u)i, j,k =dd_zm1(i,j,k) ·ui, j,k−1 +s_z0(i,j,k) ·ui, j−1,k

+w_z0(i,j,k) ·ui−1, j,k +dd_z0(i,j,k) ·ui, j,k

+e_z0(i,j,k) ·ui+1, j,k +n_z0(i,j,k) ·ui, j+1,k

+dd_zp1(i,j,k) ·ui, j,k+1 +hxhyhz ·ξi, j,k

(2.184)

Boundary Points For every boundary point µ ∈G with the coordinates (xi, yj, zk) we have

(A (u))i jk =<ϕi, j,k,ϕi, j,k−1 > ·ui, j,k−1+<ϕi, j,k,ϕi, j−1,k > ·ui, j−1,k

+<ϕi, j,k,ϕi−1, j,k > ·ui−1, j,k+<ϕi, j,k,ϕi, j,k > ·ui, j,k

+<ϕi, j,k,ϕi+1, j,k > ·ui+1, j,k+<ϕi, j,k,ϕi, j+1,k > ·ui, j+1,k

+<ϕi, j,k,ϕi, j,k+1 > ·ui, j,k+1 +
1
2

hxhyhz ·ξi, j,k

−hyhz ·κ(ui jk)gN (x j,k),

(2.185)

where the contributions of points left/right of lower/upper boundaries are zero.

2.4 Summary

In this chapter, we have discretized the linear and nonlinear equations with the finite elements

method. We have obtained a (non-)linear system of equations. We can now turn to its solution. To

this end, we use the multigrid method which is the topic of the next chapter.
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THE MULTIGRID METHOD

“ In my program, a 48x40 grid was used so that the unknown grid function and the

right hand side vector occupied almost all operational memory. I started working with

the only iterative method familiar to me then, the relaxation method [here, apparently,

simple iteration or Richardson method is meant-M.B.], and soon became convinced

in its poor efficiency. If at that time I was aware of the ADM (Alternated Direction

Method) with optimally chosen parameters (by that time it was already known), or,

at least of the overrelaxation (SOR) method, then I would probably not have looked

for something else. But "fortunately" I was sufficiently ignorant in this topic. I was

trying to understand what caused the slow convergence by looking at the residual

evolution in the course of iterations and easily discovered the well known fact: first, the

nonsmooth residual decreased fast and became smooth. After this the decrease became

desperately slow. How the idea to formulate the correction equation as a problem on

a coarse grid with the residual at the right hand side crossed my mind is difficult

to recall now. Apparently, a certain hint was given by the Newton method which, for

linear equations, leads to the same problem. This problem can be eased by switching

to a coarse grid and the smoothness of the right hand side (the residual) justifies such

an approach.”

— R.P. Fedorenko, the pioneer of multigrid

http: // wwwhome. math. utwente. nl/ ~botchevma/ fedorenko/ index. php

3.1 Introductory Remarks

Multigrid is considered as one of the fastest methods for the solution of systems of equations

today. A good introduction to multigrid methods can be found in Briggs and McCormick, (2000) or

Köckler, (2012). A thorough treatment is given in Trottenberg, Oosterlee, and Schüller, (2001).
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The underlying principle of multigrid methods it the smoothing property of the standard iterative

schemes for the solution of linear systems of equations. We only give a very short introduction

to multigrid here. The interested reader can read more about the theory in the mentioned

expositions. There are two pillars the whole multigrid principle rests on:

• error smoothing, as stated by the smoothing principle: many iterative methods like

Jacobi or Gauss–Seidel have a strong smoothing effect on the error of any approximation if

appropriately applied to a discrete elliptical problem

• and the fact that any smooth quantity on a certain grid can be, without any essential loss

of information, be approximated on a coarser grid, stated by the coarse grid principle:

a smooth error term is well approximated on a coarse grid and a coarse grid procedure is

substantially less expensive than a fine grid procedure.

So, in essence, multigrid can be summarized the following way: apply an iterative method

on the system of equations to be solved until the error is smooth. Then, approximate the now

smooth error on a coarser grid and continue the computation on the coarser grid where the

computation is much cheaper. This process can be repeated as long as the grid can be made

coarser. In ANTARES, a grid coarsening factor of two is chosen, so that a sequence of grids looks

like figure 3.1.

coarse grid point:

(x,y,z)

= fine grid point
= coarse grid point

Figure 3.1: A sequence of four two–dimensional grids. From Trottenberg, Oosterlee, and Schüller,
(2001).

We further demonstrate the core concept of the multigrid technique by means of the two–grid

correction scheme.

The nonlinear multigrid method is developed in section 3.3.
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3.2 Linear Multigrid

The goal is to solve the linear system of equations (2.42),

Au = f (3.1)

which resulted from the discretization of (2.1) on the discrete grid

Gh = {
(x, y, z) : x = xi = ihx, y= yj = jhy, z = zk = khz; i, j,k ∈Z}

, (3.2)

where h= (hx,hy,hz)T is a vector of fixed mesh sizes. The subscript h is used to label the starting

(fine) grid while the subscript 2h is used to label to coarser grid, i.e., we write the system of

equations as

Ahuh = f h. (3.3)

The multigrid two–grid correction scheme has the following structure:

1. Choose an (arbitrary) initial guess v(0)
h on the finest grid Gh.

2. Relax Ahv(0)
h = f h ν1 times on the finest grid Gh to obtain the improved value v(ν1)

h .

3. Calculate the residual rh = f h − Ahv(ν1)
h .

4. Transfer the residual rh to the coarser grid G2h to obtain r2h.

5. Solve A2he2h = r2h on G2h to obtain an approximation to the error e2h.

6. Transfer the error e2h to the finer grid Gh to obtain eh.

7. Correct the fine–grid approximation v(ν1)
h by adding the error: v(ν1+1)

h = v(ν1)
h + eh.

8. Relax Ahv(ν1+1)
h = f h ν2 times on the finest grid Gh to obtain the improved value v(ν1+1+ν2)

h .

By one iteration of this algorithm the initial guess v(0) is corrected ν1 +1+ν2 times in total. In

what follows we present the elements or components of the multigrid algorithm and describe

the implementation of each component into ANTARES. Although it is well known how to choose

suitable multigrid components for large classes of problems, it is very difficult to define the right

components in new applications. Since ANTARES is a new application it is up to the future users

to change the components accordingly if the performance of this initial setup is not satisfactory.

3.2.1 The Initial Guess

1. Choose an (arbitrary) initial guess v(0)
h on the finest grid Gh.

This first step in the outline does not need a special implementation. In ANTARES, the initial

guess stems from the previous Runge–Kutta time step so there is no need to take a guess.
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3.2.2 The Smoothing Routine

2. Relax Ahv(0)
h = f h ν1 times on the finest grid Gh to obtain the improved value v(ν1)

h .

Principally, one could use any iterative scheme to smooth the high–frequency error compo-

nents. One of the best iterative schemes for multigrid smoothing is the Gauss–Seidel method

because of its superior smoothing properties. It is implemented in ANTARES in the lexicographic

variant only. A future improvement could be an implementation of block-iterative techniques for

3D as e.g. plane–relaxation Gauss–Seidel.

3.2.3 Applying the Linear Operator and Calculating the Residual

3. Calculate the residual rh = f h − Ahv(ν1)
h .

This is straightforward and does not need any discussion.

3.2.4 The Restriction and Prolongation Operators

3.2.4.1 The Restriction Operator, Part I

4. Transfer the residual rh to the coarser grid G2h to obtain r2h.

The transfer of the residual to the coarser grid is the first point in the two–grid correction

scheme which needs an elaborate explanation since this is crucial in the multigrid process.

The following exposition follows along the lines of Wesseling, (1992) and Elman, Silvester, and

Wathen, (2014).

Before we can transfer anything to a coarser grid we must first define the coarser grid itself.

The standard coarsening approach that is used with multigrid is that to take the original grid Gh

with mesh width h and double the mesh width so that the new coarse grid G2h has a mesh width

2h. This is also the approach that is used in ANTARES.

As it turns out, the restriction operator is canonically defined for a discretization by the finite

elements method and can be derived immediately from the prolongation operator—the operator

that is used for transferring the residual back to the fine grid. The relationship between the

prolongation operator P and the restriction operator R is

P = R∗, (3.4)

where R∗ denotes the adjoint of R.

This means that we have to calculate the prolongation operator first, which we turn to next.
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3.2.4.2 The Prolongation Operator

We define an operator P (standing for prolongation) which transfers any vector from the coarse

grid G2h to the fine grid Gh, i.e., we are searching for a P : V2h →Vh with

Pu2h = uh, (3.5)

where Vh and V2h are the vector spaces of uh and u2h, respectively. In stencil notation the

prolongation operator is defined the following way (see Wesseling, 1992):

Let P : V2h →Vh be a prolongation operator. The stencil of P can be represented as

(Pu2h)i =
∑

j∈Zd

P∗( j, i−2 j)u2h, j (3.6)

where P∗ denotes the adjoint of the prolongation operator and i and j are points in the grid.

Remark: in the stencil, as always, the second entry of P∗ is the displacement in the stencil

and the first entry is the point where the stencil is evaluated.

To obtain the stencil of P we need a rule which gives Pu2h for a given u2h. For Finite Element

Methods the prolongation is defined through the natural inclusion of the coarse grid subspace

V2h into Vh,

Pu2h = uh, (3.7)

for all functions u2h ∈ V2h. A representation of P is determined by the finite element bases.

Suppose that ϕ2h is a nodal basis function for V2h. Any coarse grid vector u2h can be expanded

independently in terms of the fine and coarse-grid basis vectors

u2h =
dim(V2h)∑

n=1
un,2hϕ

2h
n =

dim(Vh)∑
m=1

um,hϕ
h
m, (3.8)

where un,2h and um,h are the coefficients of the expansions on the coarse and fine grid, respectively.

Since we have chosen the finite element shape functions as basis functions for each ϕh
µ there

exists a unique pi ∈Ω such that

ϕh
j (pi)= δi j, i, j = 1,2, ...,dim(Vh), (3.9)

where pi denotes the fine grid vertex associated with ϕh
µ. Combining (3.8) and (3.9) gives

uh
i =

dim(V2h)∑
j=1

u j,2hϕ
2h
j (pi), i = 1,2, ...,dim(Vh). (3.10)

(To reduce notational clutter we have written the grid indices h and 2h of u as superscripts and

will keep doing so in this subsection.) The matrix entries of the prolongation operator are then

defined as the coarse-grid shape functions evaluated at the fine-grid vertices:

P(i, j)=ϕ2h
j (ph

i ). (3.11)
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We demonstrate the process for the cubicle Q1, assuming that the domain consists of only

that cubicle and ignoring boundary conditions. This gives us for dim(V2h)= 9 and dim(Vh)= 27.

By using (3.10) one obtains

uh
1 =

4∑
j=1

u j,2hϕ
2h
j (ph

1 )

=u1,2h ϕ
2h
1 (ph

1 )︸ ︷︷ ︸
=1

+u2,2h ϕ
2h
2 (ph

1 )︸ ︷︷ ︸
=0

+u3,2h ϕ
2h
3 (ph

1 )︸ ︷︷ ︸
=0

+u4,2h ϕ
2h
4 (ph

1 )︸ ︷︷ ︸
=0

. (3.12)

The same holds for every fine grid vertex that coincides with a coarse grid vertex. Further,

uh
2 =

4∑
j=1

u j,2hϕ
2h
j (ph

2 )

=u1,2h ϕ
2h
1 (ph

2 )︸ ︷︷ ︸
=0.5

+u2,2h ϕ
2h
2 (ph

2 )︸ ︷︷ ︸
=0.5

+u3,2h ϕ
2h
3 (ph

2 )︸ ︷︷ ︸
=0

+u4,2h ϕ
2h
4 (ph

2 )︸ ︷︷ ︸
=0

. (3.13)

The same holds for every fine grid vertex that lies between two coarse grid vertices. It doesn’t

matter in which direction we move. Finally,

uh
5 =

4∑
j=1

u j,2hϕ
2h
j (ph

5 )

=u1,2h ϕ
2h
1 (ph

5 )︸ ︷︷ ︸
=0.25

+u2,2h ϕ
2h
2 (ph

5 )︸ ︷︷ ︸
=0.25

+u3,2h ϕ
2h
3 (ph

5 )︸ ︷︷ ︸
=0.25

+u4,2h ϕ
2h
4 (ph

5 )︸ ︷︷ ︸
=0.25

. (3.14)

The same holds for every fine grid vertex that lies in the coarse grid plane between four coarse

grid vertices.

If we move into the cube to the middle point there are no corresponding coarse grid vertices

in that plane which we could use. We have to use the already calculated points to determine the

values of the prolongation operator. The value we get is P(14, j)= 0.125.

We see that the prolongation operator we get from the finite element methods is the same

as the canonical trilinear prolongation operator (see Wesseling, 1992). The effect of trilinar

interpolation is: (
Pu2h

)
2i

=u2h
i , (3.15)(

Pu2h
)
2i±e1

=1
2

(
u2h

i +u2h
i±e1

)
, (3.16)(

Pu2h
)
2i±e1±e2

=1
4

(
u2h

i +u2h
i±e1

+u2h
i±e2

u2h
i±e1±e2

)
, (3.17)(

Pu2h
)
2i±e1±e2±e3

= 1
8

(
u2h

i +
3∑

α=1
u2h

i±eα+ u2h
i±e1±e2

+u2h
i±e2±e3

+u2h
i±e3±e1

+u2h
i±e1±e2±e3

)
(3.18)

The resulting stencil is

[
P∗]=




1
8

1
4

1
8

1
4

1
2

1
4

1
8

1
4

1
8




1
4

1
2

1
4

1
2 1 1

2
1
4

1
2

1
4




1
8

1
4

1
8

1
4

1
2

1
4

1
8

1
4

1
8


 . (3.19)

It becomes important for the calculation of the coarse grid operator A2h in section 3.2.5.1.
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3.2.4.3 The Restriction Operator, Part II

Using (3.4) we can immediately calculate the restriction operator. The stencil of the restriction

operator reads

[R]= 1
64




1 2 1

2 4 2

1 2 1




2 4 2

4 8 4

2 4 2




1 2 1

2 4 2

1 2 1


 . (3.20)

As it turns out, this coincides with the three–dimensional full–weighting operator.

3.2.5 Solving the Linear System on the Coarse Grid

5. Solve A2he2h = r2h on G2h to obtain an approximation to the error e2h.

To solve the system on the coarse grid, we need to know what the operator A2h looks like.

It can be calculated in various ways. We have chosen to do it via the Galerkin coarse grid

approximation (GCA) (see section 3.2.5.1). The coarse grid operator A2h is calculated with the

help of both the prolongation and the restriction operator.

3.2.5.1 The Coarse Grid Operator A2h

For a multigrid method there are two possibilities to obtain the coarse grid operator A2h: the

straightforward way of discretizing the equation that is to be solved on the coarse grid directly

(“discretization coarse grid approximation (DCA)”) and the more involved method called “Galerkin

coarse grid approximation (GCA)” where the operator A2h is constructed with the help of pro-

longation and restriction operators. One big advantage of the GCA is the fact that is ensures

perfect coupling between the operators of the different grid levels which plays a big role when

using spherical grids (for details on this see Happenhofer, 2014). Because one major application

of ANTARES is the simulation of Cepheids, this solver might be used for Cepheid simulations in

the future. And since the grids in those simulations are spherical we have implemented the GCA

method.

Wesseling, (1992) gives an explicit formula for the calculation of the coarse grid operator:

A2h(i,n)= ∑
m∈SR

∑
k∈SA

R(i,m)Ah(2i+m,k)P∗(i+n,m+k−2n), (3.21)

where SA and SR are the structures of A and R, defined as

SA = { j ∈Zd : ∃i ∈Ghwith Ah(i, j) 6= 0} (3.22)

SR = { j ∈Zd : ∃i ∈G2hwith R(i, j) 6= 0} (3.23)

The calculation of (3.21) is rather involved and was thus done with Mathematica (see appendix).

To give a sample of what they look like we present the entry for A2h((i, j,k), (0,0,0)):

A2h((i, j,k), (0,0,0))=
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1
8

ddZ0(2i,2 j,2k)+ 1
32

ddZ0(2i,2 j,2k−1)+ 1
32

ddZ0(2i,2 j,2k+1)+ 1
32

ddZ0(2i,2 j+1,2k)+
1

32
ddZ0(2i,2 j−1,2k)+ 1

128
ddZ0(2i,2 j−1,2k−1)+ 1

128
ddZ0(2i,2 j−1,2k+1)+

1
128

ddZ0(2i,2 j+1,2k−1)+ 1
128

ddZ0(2i,2 j+1,2k+1)+ 1
32

ddZ0(2i−1,2 j,2k)+
1

128
ddZ0(2i−1,2 j,2k−1)+ 1

128
ddZ0(2i−1,2 j,2k+1)+ 1

128
ddZ0(2i−1,2 j−1,2k)+

1
512

ddZ0(2i−1,2 j−1,2k−1)+ 1
512

ddZ0(2i−1,2 j−1,2k+1)+ 1
128

ddZ0(2i−1,2 j+1,2k)+
1

512
ddZ0(2i−1,2 j+1,2k−1)+ 1

512
ddZ0(2i−1,2 j+1,2k+1)+ 1

32
ddZ0(2i+1,2 j,2k)+

1
128

ddZ0(2i+1,2 j,2k−1)+ 1
128

ddZ0(2i+1,2 j,2k+1)+ 1
128

ddZ0(2i+1,2 j−1,2k)+
1

512
ddZ0(2i+1,2 j−1,2k−1)+ 1

512
ddZ0(2i+1,2 j−1,2k+1)+ 1

128
ddZ0(2i+1,2 j+1,2k)+

1
512

ddZ0(2i+1,2 j+1,2k−1)+ 1
512

ddZ0(2i+1,2 j+1,2k+1)+
1

16
ddZm1(2i,2 j,2k)+ 1

16
ddZm1(2i,2 j,2k+1)++ 1

128
nZm1(2i−1,2 j,2k+1)

1
64

ddZm1(2i,2 j−1,2k)+ 1
64

ddZm1(2i,2 j−1,2k+1)+ 1
64

ddZm1(2i,2 j+1,2k)+
1

64
ddZm1(2i,2 j+1,2k+1)+ 1

64
ddZm1(2i−1,2 j,2k)+ 1

64
ddZm1(2i−1,2 j,2k+1)+

1
256

ddZm1(2i−1,2 j−1,2k)+ 1
256

ddZm1(2i−1,2 j−1,2k+1)+ 1
256

ddZm1(2i−1,2 j+1,2k)+
1

256
ddZm1(2i−1,2 j+1,2k+1)+ 1

64
ddZm1(2i+1,2 j,2k)+ 1

64
ddZm1(2i+1,2 j,2k+1)+

1
256

ddZm1(2i+1,2 j−1,2k)+ 1
256

ddZm1(2i+1,2 j−1,2k+1)+ 1
256

ddZm1(2i+1,2 j+1,2k)+
1

256
ddZm1(2i+1,2 j+1,2k+1)+ 1

16
ddZp1(2i,2 j,2k)+ 1

16
ddZp1(2i,2 j,2k−1)+

1
64

ddZp1(2i,2 j−1,2k)+ 1
64

ddZp1(2i,2 j−1,2k−1)+ 1
64

ddZp1(2i,2 j+1,2k)+
1

64
ddZp1(2i,2 j+1,2k−1)+ 1

64
ddZp1(2i−1,2 j,2k)+ 1

64
ddZp1(2i−1,2 j,2k−1)+

1
256

ddZp1(2i−1,2 j−1,2k)+ 1
256

ddZp1(2i−1,2 j−1,2k−1)+
1

256
ddZp1(2i−1,2 j+1,2k)+ 1

256
ddZp1(2i−1,2 j+1,2k−1)+

1
64

ddZp1(2i+1,2 j,2k)+ 1
64

ddZp1(2i+1,2 j,2k−1)+ 1
256

ddZp1(2i+1,2 j−1,2k)+
1

256
ddZp1(2i+1,2 j−1,2k−1)+ 1

256
ddZp1(2i+1,2 j+1,2k)+ 1

16
eZ0(2i,2 j,2k)+

1
256

ddZp1(2i+1,2 j+1,2k−1)+ 1
64

eZ0(2i,2 j,2k−1)+ 1
64

eZ0(2i,2 j,2k+1)+
1

64
eZ0(2i,2 j−1,2k)+ 1

256
eZ0(2i,2 j−1,2k−1)+ 1

256
eZ0(2i,2 j−1,2k+1)+
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1
64

eZ0(2i,2 j+1,2k)+ 1
256

eZ0(2i,2 j+1,2k−1)+ 1
256

eZ0(2i,2 j+1,2k+1)+
1

16
eZ0(2i−1,2 j,2k)+ 1

64
eZ0(2i−1,2 j,2k−1)+ 1

64
eZ0(2i−1,2 j,2k+1)+

1
64

eZ0(2i−1,2 j−1,2k)+ 1
256

eZ0(2i−1,2 j−1,2k−1)+ 1
256

eZ0(2i−1,2 j−1,2k+1)+
1

64
eZ0(2i−1,2 j+1,2k)+ 1

256
eZ0(2i−1,2 j+1,2k−1)+ 1

256
eZ0(2i−1,2 j+1,2k+1)+

1
32

eZm1(2i,2 j,2k)+ 1
32

eZm1(2i,2 j,2k+1)+ 1
128

eZm1(2i,2 j−1,2k)+
1

128
eZm1(2i,2 j−1,2k+1)+ 1

128
eZm1(2i,2 j+1,2k)+ 1

128
eZm1(2i,2 j+1,2k+1)+

1
32

eZm1(2i−1,2 j,2k)+ 1
32

eZm1(2i−1,2 j,2k+1)+ 1
128

eZm1(2i−1,2 j−1,2k)+
1

128
eZm1(2i−1,2 j−1,2k+1)+ 1

128
eZm1(2i−1,2 j+1,2k)+ 1

128
eZm1(2i−1,2 j+1,2k+1)+

1
32

eZp1(2i,2 j,2k)+ 1
32

eZp1(2i,2 j,2k−1)+ 1
128

eZp1(2i,2 j−1,2k)+ 1
64

neZm1(2i,2 j−1,2k+1)

+ 1
128

eZp1(2i,2 j−1,2k−1)+ 1
128

eZp1(2i,2 j+1,2k)+ 1
128

eZp1(2i,2 j+1,2k−1)+
1

32
eZp1(2i−1,2 j,2k)+ 1

32
eZp1(2i−1,2 j,2k−1)+ 1

128
eZp1(2i−1,2 j−1,2k)+

1
128

eZp1(2i−1,2 j−1,2k−1)+ 1
128

eZp1(2i−1,2 j+1,2k)+ 1
128

eZp1(2i−1,2 j+1,2k−1)+
1

32
neZ0(2i,2 j,2k)+ 1

128
neZ0(2i,2 j,2k−1)+ 1

128
neZ0(2i,2 j,2k+1)+

1
32

neZ0(2i,2 j−1,2k)+ 1
128

neZ0(2i,2 j−1,2k−1)+ 1
128

neZ0(2i,2 j−1,2k+1)+
1

32
neZ0(2i−1,2 j,2k)+ 1

128
neZ0(2i−1,2 j,2k−1)+ 1

128
neZ0(2i−1,2 j,2k+1)+

1
32

neZ0(2i−1,2 j−1,2k)+ 1
128

neZ0(2i−1,2 j−1,2k−1)+ 1
128

neZ0(2i−1,2 j−1,2k+1)+
1

64
neZm1(2i,2 j,2k)+ 1

64
neZm1(2i,2 j,2k+1)+ 1

64
neZm1(2i,2 j−1,2k)+

1
64

neZm1(2i−1,2 j,2k)+ 1
64

neZm1(2i−1,2 j,2k+1)+ 1
64

neZm1(2i−1,2 j−1,2k)+
1

64
neZm1(2i−1,2 j−1,2k+1)+ 1

64
neZp1(2i,2 j,2k)+ 1

64
neZp1(2i,2 j,2k−1)+

1
64

neZp1(2i,2 j−1,2k)+ 1
64

neZp1(2i,2 j−1,2k−1)+ 1
64

neZp1(2i−1,2 j,2k)+
1

64
neZp1(2i−1,2 j,2k−1)+ 1

64
neZp1(2i−1,2 j−1,2k)+ 1

64
neZp1(2i−1,2 j−1,2k−1)+

1
32

nwZ0(2i,2 j,2k)+ 1
128

nwZ0(2i,2 j,2k−1)+ 1
128

nwZ0(2i,2 j,2k+1)+
1

32
nwZ0(2i,2 j−1,2k)+ 1

128
nwZ0(2i,2 j−1,2k−1)+ 1

128
nwZ0(2i,2 j−1,2k+1)+

1
32

nwZ0(2i+1,2 j,2k)+ 1
128

nwZ0(2i+1,2 j,2k−1)+ 1
128

nwZ0(2i+1,2 j,2k+1)+
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1
32

nwZ0(2i+1,2 j−1,2k)+ 1
128

nwZ0(2i+1,2 j−1,2k−1)+ 1
128

nwZ0(2i+1,2 j−1,2k+1)+
1

64
nwZm1(2i,2 j,2k)+ 1

64
nwZm1(2i,2 j,2k+1)+ 1

64
nwZm1(2i,2 j−1,2k)+

1
64

nwZm1(2i,2 j−1,2k+1)+ 1
64

nwZm1(2i+1,2 j,2k)+ 1
64

nwZm1(2i+1,2 j,2k+1)+
1
64

nwZm1(2i+1,2 j−1,2k)+ 1
64

nwZm1(2i+1,2 j−1,2k+1)+ 1
64

nwZp1(2i,2 j,2k)+
1
64

nwZp1(2i,2 j,2k−1)+ 1
64

nwZp1(2i,2 j−1,2k)+ 1
64

nwZp1(2i,2 j−1,2k−1)+
1
64

nwZp1(2i+1,2 j,2k)+ 1
64

nwZp1(2i+1,2 j,2k−1)+ 1
64

nwZp1(2i+1,2 j−1,2k)+
1

64
nwZp1(2i+1,2 j−1,2k−1)+ 1

16
nZ0(2i,2 j,2k)+ 1

64
nZ0(2i,2 j,2k−1)+

1
64

nZ0(2i,2 j,2k+1)+ 1
16

nZ0(2i,2 j−1,2k)+ 1
64

nZ0(2i,2 j−1,2k−1)+
1
64

nZ0(2i,2 j−1,2k+1)+ 1
64

nZ0(2i−1,2 j,2k)+ 1
256

nZ0(2i−1,2 j,2k−1)+
1

256
nZ0(2i−1,2 j,2k+1)+ 1

64
nZ0(2i−1,2 j−1,2k)+ 1

256
nZ0(2i−1,2 j−1,2k−1)+

1
256

nZ0(2i−1,2 j−1,2k+1)+ 1
64

nZ0(2i+1,2 j,2k)+ 1
256

nZ0(2i+1,2 j,2k−1)+
1

256
nZ0(2i+1,2 j,2k+1)+ 1

64
nZ0(2i+1,2 j−1,2k)+ 1

256
nZ0(2i+1,2 j−1,2k−1)+

1
256

nZ0(2i+1,2 j−1,2k+1)+ 1
32

nZm1(2i,2 j,2k)+ 1
32

nZm1(2i,2 j,2k+1)+
1

32
nZm1(2i,2 j−1,2k)+ 1

32
nZm1(2i,2 j−1,2k+1)+ 1

128
nZm1(2i−1,2 j,2k)+

1
128

nZm1(2i−1,2 j−1,2k)+ 1
128

nZm1(2i−1,2 j−1,2k+1)+ 1
128

nZm1(2i+1,2 j,2k)+
1

128
nZm1(2i+1,2 j,2k+1)+ 1

128
nZm1(2i+1,2 j−1,2k)+ 1

128
nZm1(2i+1,2 j−1,2k+1)+

1
32

nZp1(2i,2 j,2k)+ 1
32

nZp1(2i,2 j,2k−1)+ 1
32

nZp1(2i,2 j−1,2k)+
1
32

nZp1(2i,2 j−1,2k−1)+ 1
128

nZp1(2i−1,2 j,2k)+ 1
128

nZp1(2i−1,2 j,2k−1)+
1

128
nZp1(2i−1,2 j−1,2k)+ 1

128
nZp1(2i−1,2 j−1,2k−1)+ 1

128
nZp1(2i+1,2 j,2k)+

1
128

nZp1(2i+1,2 j,2k−1)+ 1
128

nZp1(2i+1,2 j−1,2k)+ 1
128

nZp1(2i+1,2 j−1,2k−1)+
1

32
seZ0(2i,2 j,2k)+ 1

128
seZ0(2i,2 j,2k−1)+ 1

128
seZ0(2i,2 j,2k+1)+

1
32

seZ0(2i,2 j+1,2k)+ 1
128

seZ0(2i,2 j+1,2k−1)+ 1
128

seZ0(2i,2 j+1,2k+1)+
1

32
seZ0(2i−1,2 j,2k)+ 1

128
seZ0(2i−1,2 j,2k−1)+ 1

128
seZ0(2i−1,2 j,2k+1)+

1
32

seZ0(2i−1,2 j+1,2k)+ 1
128

seZ0(2i−1,2 j+1,2k−1)+ 1
128

seZ0(2i−1,2 j+1,2k+1)+
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1
64

seZm1(2i,2 j,2k)+ 1
64

seZm1(2i,2 j,2k+1)+ 1
64

seZm1(2i,2 j+1,2k)+
1

64
seZm1(2i,2 j+1,2k+1)+ 1

64
seZm1(2i−1,2 j,2k)+ 1

64
seZm1(2i−1,2 j,2k+1)+

1
64

seZm1(2i−1,2 j+1,2k)+ 1
64

seZm1(2i−1,2 j+1,2k+1)+ 1
64

seZp1(2i,2 j,2k)+
1

64
seZp1(2i,2 j,2k−1)+ 1

64
seZp1(2i,2 j+1,2k)+ 1

64
seZp1(2i,2 j+1,2k−1)+

1
64

seZp1(2i−1,2 j,2k)+ 1
64

seZp1(2i−1,2 j,2k−1)+ 1
64

seZp1(2i−1,2 j+1,2k)+
1

64
seZp1(2i−1,2 j+1,2k−1)+ 1

32
swZ0(2i,2 j,2k)+ 1

128
swZ0(2i,2 j,2k−1)+

1
128

swZ0(2i,2 j,2k+1)+ 1
32

swZ0(2i,2 j+1,2k)+ 1
128

swZ0(2i,2 j+1,2k−1)+
1

128
swZ0(2i,2 j+1,2k+1)+ 1

32
swZ0(2i+1,2 j,2k)+ 1

128
swZ0(2i+1,2 j,2k−1)+

1
128

swZ0(2i+1,2 j,2k+1)+ 1
32

swZ0(2i+1,2 j+1,2k)+ 1
128

swZ0(2i+1,2 j+1,2k−1)+
1

128
swZ0(2i+1,2 j+1,2k+1)+ 1

64
swZm1(2i,2 j,2k)+ 1

64
swZm1(2i,2 j,2k+1)+

1
64

swZm1(2i,2 j+1,2k)+ 1
64

swZm1(2i,2 j+1,2k+1)+ 1
64

swZm1(2i+1,2 j,2k)+
1

64
swZm1(2i+1,2 j,2k+1)+ 1

64
swZm1(2i+1,2 j+1,2k)+ 1

64
swZm1(2i+1,2 j+1,2k+1)+

1
64

swZp1(2i,2 j,2k)+ 1
64

swZp1(2i,2 j,2k−1)+ 1
64

swZp1(2i,2 j+1,2k)+
1

64
swZp1(2i,2 j+1,2k−1)+ 1

64
swZp1(2i+1,2 j,2k)+ 1

64
swZp1(2i+1,2 j,2k−1)+

1
64

swZp1(2i+1,2 j+1,2k)+ 1
64

swZp1(2i+1,2 j+1,2k−1)+ 1
16

sZ0(2i,2 j,2k)+
1

64
sZ0(2i,2 j,2k−1)+ 1

64
sZ0(2i,2 j,2k+1)+ 1

16
sZ0(2i,2 j+1,2k)+

1
64

sZ0(2i,2 j+1,2k−1)+ 1
64

sZ0(2i,2 j+1,2k+1)+ 1
64

sZ0(2i−1,2 j,2k)+
1

256
sZ0(2i−1,2 j,2k−1)+ 1

256
sZ0(2i−1,2 j,2k+1)+ 1

64
sZ0(2i−1,2 j+1,2k)+

1
256

sZ0(2i−1,2 j+1,2k−1)+ 1
256

sZ0(2i−1,2 j+1,2k+1)+ 1
64

sZ0(2i+1,2 j,2k)+
1

256
sZ0(2i+1,2 j,2k−1)+ 1

256
sZ0(2i+1,2 j,2k+1)+ 1

64
sZ0(2i+1,2 j+1,2k)+

1
256

sZ0(2i+1,2 j+1,2k−1)+ 1
256

sZ0(2i+1,2 j+1,2k+1)+ 1
32

sZm1(2i,2 j,2k)+
1

32
sZm1(2i,2 j,2k+1)+ 1

32
sZm1(2i,2 j+1,2k)+ 1

32
sZm1(2i,2 j+1,2k+1)+

1
128

sZm1(2i−1,2 j,2k)+ 1
128

sZm1(2i−1,2 j,2k+1)+ 1
128

sZm1(2i−1,2 j+1,2k)+
1

128
sZm1(2i−1,2 j+1,2k+1)+ 1

128
sZm1(2i+1,2 j,2k)+ 1

128
sZm1(2i+1,2 j,2k+1)+
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1
128

sZm1(2i+1,2 j+1,2k)+ 1
128

sZm1(2i+1,2 j+1,2k+1)+ 1
32

sZp1(2i,2 j,2k)+
1
32

sZp1(2i,2 j,2k−1)+ 1
32

sZp1(2i,2 j+1,2k)+ 1
32

sZp1(2i,2 j+1,2k−1)+
1

128
sZp1(2i−1,2 j,2k)+ 1

128
sZp1(2i−1,2 j,2k−1)+ 1

128
sZp1(2i−1,2 j+1,2k)+

1
128

sZp1(2i−1,2 j+1,2k−1)+ 1
128

sZp1(2i+1,2 j,2k)+ 1
128

sZp1(2i+1,2 j,2k−1)+
1

128
sZp1(2i+1,2 j+1,2k)+ 1

128
sZp1(2i+1,2 j+1,2k−1)+ 1

16
wZ0(2i,2 j,2k)+

1
64

wZ0(2i,2 j,2k−1)+ 1
64

wZ0(2i,2 j,2k+1)+ 1
64

wZ0(2i,2 j−1,2k)+
1

256
wZ0(2i,2 j−1,2k−1)+ 1

256
wZ0(2i,2 j−1,2k+1)+ 1

64
wZ0(2i,2 j+1,2k)+

1
256

wZ0(2i,2 j+1,2k−1)+ 1
256

wZ0(2i,2 j+1,2k+1)+ 1
16

wZ0(2i+1,2 j,2k)+
1

64
wZ0(2i+1,2 j,2k−1)+ 1

64
wZ0(2i+1,2 j,2k+1)+ 1

64
wZ0(2i+1,2 j−1,2k)+

1
256

wZ0(2i+1,2 j−1,2k−1)+ 1
256

wZ0(2i+1,2 j−1,2k+1)+ 1
64

wZ0(2i+1,2 j+1,2k)+
1

256
wZ0(2i+1,2 j+1,2k−1)+ 1

256
wZ0(2i+1,2 j+1,2k+1)+ 1

32
wZm1(2i,2 j,2k)+

1
32

wZm1(2i,2 j,2k+1)+ 1
128

wZm1(2i,2 j−1,2k)+ 1
128

wZm1(2i,2 j−1,2k+1)+
1

128
wZm1(2i,2 j+1,2k)+ 1

128
wZm1(2i,2 j+1,2k+1)+ 1

32
wZm1(2i+1,2 j,2k)+

1
32

wZm1(2i+1,2 j,2k+1)+ 1
128

wZm1(2i+1,2 j−1,2k)+ 1
128

wZm1(2i+1,2 j−1,2k+1)+
1

128
wZm1(2i+1,2 j+1,2k)+ 1

128
wZm1(2i+1,2 j+1,2k+1)+ 1

32
wZp1(2i,2 j,2k)+

1
32

wZp1(2i,2 j,2k−1)+ 1
128

wZp1(2i,2 j−1,2k)+ 1
128

wZp1(2i,2 j−1,2k−1)+
1

128
wZp1(2i,2 j+1,2k)+ 1

128
wZp1(2i,2 j+1,2k−1)+ 1

32
wZp1(2i+1,2 j,2k)+

1
32

wZp1(2i+1,2 j,2k−1)+ 1
128

wZp1(2i+1,2 j−1,2k)+ 1
128

wZp1(2i+1,2 j−1,2k−1)+
1

128
wZp1(2i+1,2 j+1,2k)+ 1

128
wZp1(2i+1,2 j+1,2k−1) (3.24)

The presentation of this entry must suffice to hint at the complexity of the underlying code for the

Galerkin coarsening approach. There are 26 more entries like this in total, all of them nonzero.

This is, in fact, one of the drawbacks of the GCA. The DCA would deliver the same 7-point stencil

structure as the fine grid operator Ah, i.e., 7 non–zero entries while the remaining 20 entries

would be zero. However, the important coupling for Cepheids would not be present, as indicated

before.

The subroutine to calculate the coarse grid operator with the GCA has about 5000 lines of

code in ANTARES and must be called once for each multigrid level.
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3.2.5.2 The Coarse Grid Solver

We can now come back to the problem of solving

A2he2h = r2h. (3.25)

on the coarse grid. Having derived an explicit form of the operator A2h the only thing that

remains to be chosen is the method with which to solve (3.25). Happenhofer, (2014) has used the

Conjugate Gradient method as the coarse–grid solver in her 2D solver. We did the same for three

dimensions. Implementing the CG method for three dimensions did not pose much of a problem

because of its relatively simple algorithmic structure. Details on the development of a CG solver

in the ANTARES framework can be found in Grimm-Strele, (2010). The system is solved up to a

sufficiently small error tolerance εcoarse.

3.2.6 Restricting the Error to the Finer Grid and Correcting the
Approximation

6. Transfer the error e2h to the finer grid Gh to obtain eh.

The error obtained on the coarsest grid is transferred to the finer grid with the help of the

restriction operator from section 3.2.4:

eh = Re2h (3.26)

3.2.7 Correcting the Approximation and Final Smoothing

7. Correct the fine–grid approximation v(ν1)
h by adding the error: v(ν1+1)

h = v(ν1)
h + eh.

8. Relax Ahv(ν1+1)
h = f h ν2 times on the finest grid Gh to obtain the improved value v(ν1+1+ν2)

h .

The last two steps do not need any further explanation. The smoother in step 8 is the same one

that was used in step 1, i.e., lexicographic Gauss–Seidel. This completes one two–grid correction

sweep. The next natural step in the development of a multigrid solver is to use more than two

grids, which we turn to next.

3.2.8 From Two–grid to Multigrid

The multi–grid method works principally exactly like the two–grid method. The only difference is

that the restriction to a finer grid (and prolongation to the coarse one, of course) does not take

place only once, but several times. There are different methods of how exactly to traverse the

different grids (V–cycle, W–cycle, F–cycle,...). Examples are shown in figure 3.2. The interested

reader can find more details in the literature. For our purposes is suffices to say that the

implemented three–dimensional multigrid solver can use anything from two to five grid levels

and has V–cycling and W–cycling implemented. To see which cycling yields better results, the

reader is referred to section 4.1.3.
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Two-grid method: Three-grid methods:

Four-grid methods:

A five-grid method:

Figure 3.2: A few examples for different multigrid cycles (from Trottenberg, Oosterlee, and
Schüller, 2001).
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3.3 Non-Linear Multigrid

We now turn towards the case where the elliptic equation to be solved is nonlinear, as in

−∇· (κ(u)∇u(x))+ξ(u)= f (x) (3.27)

with suitable boundary conditions.

There are two ways to treat a nonlinear problem with multigrid methods: the full approx-

imation storage scheme (FAS), which is allows the development of a completely matrix- and

derivative-free nonlinear solver and the Multigrid–Newton procedure, which basically is a lin-

earization of the nonlinear equation with a subsequent use of the linear multigrid procedure

to solve the resulting linear system. Happenhofer, (2014) tested both approaches for the two–

dimensional solver and has come to the following conclusion:

“The advantage of the MG-FAS method clearly lies in the possibility of creating a completely

matrix- and derivative-free nonlinear solver. Apart from having good convergence properties,

it allows a memory efficient implementation. However, the nonlinear formulation requires the

determination of the nonlinear operator anew on every grid level and multiple times on the coarsest

grid level, depending on the solution method employed. Since the determination of the nonlinear

operator A entails a call to the EOS, which is, in case that a model employing realistic microphysics

is considered, computationally expensive [...], this is considered a disadvantage. Furthermore,

if the fixed-point iteration is used, the additional timestep restriction [...] has to be taken into

account. [...] Based on the estimation of the impact of the call to the EOS on the solution time,

the MG-FAS approach is discarded and the Multigrid-Newton technique is adopted to solve the

nonlinear equation [...] arising in the context of IMEX Runge-Kutta methods.”

Since the nonlinear three–dimensional multigrid solver is to be used for the same physical

simulations as the two–dimensional one they also entail a call to the EOS. Thus, following

Happenhofer’s argumentation, the 3D nonlinear solver was coded with the Multigrid–Newton

method.

3.3.1 The Newton Scheme

Details on the Newton scheme for multigrid methods can be found,e.g., in Köckler, (2012). A

remark: the Newton procedure does not guarantee convergence, i.e., the starting guess must be

rather accurate in order for the method to converge. In ANTARES, the starting value stems from

a previous Runge–Kutta time step so it is reasonable so suppose a sufficiently accurate value.

The starting point of the Newton procedure is the Taylor expansion of the nonlinear operator

A (u),

A (u)=A (u(r))+ J(u(r))(u−u(r))+O (u−u(r))2, (3.28)

where J is the Jacobian matrix

J(u)= ∂A (u)
∂u

(3.29)
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and r is the iteration count. Neglecting terms of second order and setting A (u)= b and u = u(r+1)

leads to

b =A (u(r))+ J(u(r))(u(r+1) −u(r)). (3.30)

Defining d(r) ≡ u(r+1) −u(r) leads to the iterative scheme

J(u(r))d(r) =b−A (u(r))

u(r+1) =u(r) +d(r), r = 0,1, ...
(3.31)

This is now a linear system of equations which can be solved with a linear solver. For our

purposes this is the linear multigrid solver that was developed in section 3.2. We now have a

nested iterative scheme with the outer iteration (with counter r) being the linearization by the

Newton method and the inner iterative scheme being the linear multigrid solver.

To be able to solve the system, we first need an explicit form for the Jacobian matrix J(u)

and the right hand side b−A (u), calculated at the current iteration step r. To obtain these we

first need to calculate A (u), to which we turn now.

3.3.2 Calculation of the Jacobian Matrix

Now that we know what A looks like, we can calculate the Jacobian matrix. It is defined as

Ji jk,lmn =∂[A (u)]i jk

∂ulmn
(3.32)

Using definition (2.184) for the nonlinear operator A (u), this results in

Ji jk,lmn =ui jk
∂dd_z0(i,j,k)

∂ulmn
+dd_z0(i,j,k)

∂ui jk

∂ulmn

+ui jk−1
∂dd_zm1(i,j,k)

∂ulmn
+dd_zm1(i,j,k)

∂ui jk−1

∂ulmn

+ui jk+1
∂dd_zp1(i,j,k)

∂ulmn
+dd_zp1(i,j,k)

∂ui jk+1

∂ulmn

+ui+1 jk
∂e_z0(i,j,k)

∂ulmn
+e_z0(i,j,k)

∂ui+1 jk

∂ulmn

+ui−1 jk
∂w_z0(i,j,k)

∂ulmn
+w_z0(i,j,k)

∂ui−1 jk

∂ulmn

+ui j+1k
∂n_z0(i,j,k)

∂ulmn
+n_z0(i,j,k)

∂ui j+1k

∂ulmn

+ui j−1k
∂s_z0(i,j,k)

∂ulmn
+s_z0(i,j,k)

∂ui j−1k

∂ulmn

+hxhyhz ·
∂ξi, j,k

∂ulmn

(3.33)

The stencil entries dd_zm1(i,j,k), s_z0(i,j,k), e_z0(i,j,k), dd_z0(i,j,k), w_z0(i,j,k),

n_z0(i,j,k)and dd_zm1(i,j,k)were calculated in (2.170)-(2.176). To wit, they are

dd_z0(i,j,k)=hyhzκi, j,k

hx
+ hxhzκi, j,k

hy
+ hxhyκi, j,k

hz
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+ hxhyκi, j,k−1

2hz
+ hxhyκi, j,k+1

2hz
+ hxhzκi, j−1,k

2hy
(3.34)

+ hxhzκi, j+1,k

2hy
+ hyhzκi−1, j,k

2hx
+ hyhzκi+1, j,k

2hx
,

e_z0(i,j,k)=− hyhz(κi, j,k +κi+1, j,k)
2hx

, (3.35)

w_z0(i,j,k)=− hyhz(κi, j,k +κi−1, j,k)
2hx

, (3.36)

n_z0(i,j,k)=− hxhz(κi, j,k +κi, j+1,k)
2hy

, (3.37)

s_z0(i,j,k)=− hxhz(κi, j,k +κi, j−1,k)
2hy

, (3.38)

dd_zp1(i,j,k)=− hxhy(κi, j,k +κi, j,k+1)
2hz

, (3.39)

dd_zm1(i,j,k)=− hxhy(κi, j,k +κi, j,k−1)
2hz

. (3.40)

With this we can calculate the derivatives in (3.33) and obtain

Ji jk,lmn =−
hxhyui jk−1

(
∂κi jk
∂ulmn

+ ∂κi jk−1
∂ulmn

)
2hz

−
hxhyui jk+1

(
∂κi jk
∂ulmn

+ ∂κi jk+1
∂ulmn

)
2hz

−
hxhzui j−1k

(
∂κi jk
∂ulmn

+ ∂κi j−1k
∂ulmn

)
2hy

−
hxhzui j+1k

(
∂κi jk
∂ulmn

+ ∂κi j+1k
∂ulmn

)
2hy

−
hyhzui−1 jk

(
∂κi jk
∂ulmn

+ ∂κi−1 jk
∂ulmn

)
2hx

−
hyhzui+1 jk

(
∂κi jk
∂ulmn

+ ∂κi+1 jk
∂ulmn

)
2hx

+
hxhyhz

∂ξi jk

∂ulmn
+

hxhy
∂κi jk
∂ulmn

hz
+

hxhz
∂κi jk
∂ulmn

hy
+

hyhz
∂κi jk
∂ulmn

hx
+

hxhy
∂κi jk−1
∂ulmn

2hz

+
hxhy

∂κi jk+1
∂ulmn

2hz
+

hxhz
∂κi j−1k
∂ulmn

2hy
+

hxhz
∂κi j+1k
∂ulmn

2hy
+

hyhz
∂κi−1 jk
∂ulmn

2hx
+

hyhz
∂κi+1 jk
∂ulmn

2hx

ui jk

+
(
ξi jkhxhyhz +

hxhyκi jk

hz
+ hxhzκi jk

hy
+ hyhzκi jk

hx
+ hxhyκi jk−1

2hz

+ hxhyκi jk+1

2hz
+ hxhzκi j−1k

2hy
+ hxhzκi j+1k

2hy
+ hyhzκi−1 jk

2hx
+ hyhzκi+1 jk

2hx

)
∂ui jk

∂ulmn

−
hxhy(κi jk +κi jk−1)∂ui jk−1

∂ulmn

2hz
−

hxhy(κi jk +κi jk+1)∂ui jk+1
∂ulmn

2hz

−
hxhz(κi jk +κi j−1k)∂ui j−1k

∂ulmn

2hy
−

hxhz(κi jk +κi j+1k)∂ui j+1k
∂ulmn

2hy

−
hyhz(κi jk +κi−1 jk)∂ui−1 jk

∂ulmn

2hx
−

hyhz(κi jk +κi+1 jk)∂ui+1 jk
∂ulmn

2hx
.

(3.41)
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This is as far as we can go without knowing the explicit dependencies of κ and ξ on u and

without any further knowledge of the underlying physics. As it turns out, we can use an essential

simplification for the applications we are interested in.

3.3.3 Simplifications by the Local Nature of κ and ξ

The three–dimensional nonlinear solver which was developed is used primarily for simulations of

semiconvection with a possible later addition of simulations of Cepheid–like pulsating stars. In

these simulations, κ(u) and ξ(u) stem from micro-physical processes. Depending on the specific

kind of simulation that is performed, they be the opacity, radiative diffusivity or the concentration

diffusivity among others. What is common to all of the choices for κ(u) and ξ is that they stem

from micro-physical processes. This means that they stem from very fast processes on microscopic

scales. Since we are describing dynamic processes with the equations of hydrodynamics, the time

scales are significantly larger than the time scales on which the micro-processes change. This

allows us to the separation of scales to be able to average the fast micro-processes and use these

averages for the discussion of their influence on the dynamics of the whole system.

A consequence of that is that these averages are local quantities in that they have no explicit

dependence on x which means that the derivatives with respect to all other points are zero:

∂κi jk

∂ulmn
= δi jk,lmn and

∂ξi jk

∂ulmn
= δi jk,lmn (3.42)

That means that many terms in the entries of the Jacobian matrix are zero which allows us

to write down the explicit form of the entries of the Jacobian matrix in the next section.

3.3.3.1 The Final Form of the Jacobian Matrix

We can now evaluate the final form of the Jacobian matrix for our purposes. It has the same

structure as the nonlinear operator has, i.e., 7 nonzero entries. They read

JwZ0=−
hyhz

(
κi jk + (ui−1 jk −ui jk) ∂κi−1 jk

∂ui−1 jk
+κi−1 jk

)
2hx

(3.43)

JeZ0=−
hyhz

(
κi jk + (ui+1 jk −ui jk) ∂κi+1 jk

∂ui+1 jk
+κi+1 jk

)
2hx

(3.44)

JsZ0=−
hxhz

(
κi jk + (ui j−1k −ui jk) ∂κi j−1k

∂ui j−1k
+κi j−1k

)
2hy

(3.45)

JnZ0=−
hxhz

(
κi jk + (ui j+1k −ui jk) ∂κi j+1k

∂ui j+1k
+κi j+1k

)
2hy

(3.46)

JddZm1=−
hxhy

(
κi jk + (ui jk−1 −ui jk) ∂κi jk−1

∂ui jk−1
+κi jk−1

)
2hz

(3.47)
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JddZ p1=−
hxhy

(
κi jk + (ui jk+1 −ui jk) ∂κi jk+1

∂ui jk+1
+κi jk+1

)
2hz

(3.48)

JddZ0= 1
2hxhyhz

{
2h2

xh2
yh2

zui jk
∂ξi jk

∂ui jk
+2ξi jkh2

xh2
yh2

z

+ ∂κi jk

∂ui jk

[
h2

x

(
h2

y(2ui jk −ui jk−1 −ui jk+1)+h2
z(2ui jk −ui j−1k −ui j+1k)

)
+ h2

yh2
z(2ui jk −ui−1 jk −ui+1 jk)

]
+2h2

xh2
yκi jk +h2

xh2
yκi jk−1 (3.49)

+ h2
xh2

yκi jk+1 +2h2
xh2

zκi jk +h2
xh2

zκi j−1k +h2
xh2

zκi j+1k

+ 2h2
yh2

zκi jk +h2
yh2

zκi−1 jk +h2
yh2

zκi+1 jk

}

3.3.3.2 Lower Boundary Terms

The calculation for the boundaries is analogous to the previous calculation in the domain. We

only give the results here. The stencil entries of the nonlinear operator for the lower boundary

terms are

ddZ0LB=0.5ξi jkhxhyhz +
hyhzκi jk

2hx
+ hxhzκi jk

2hy

+ hxhyκi jk

2hz
+ hxhyκi jk−1

4hz
+ hxhyκi jk+1

4hz
(3.50)

+ hxhzκi j−1k

4hy
+ hxhzκi j+1k

4hy
+ hyhzκi+1 jk

2hx

eZ0LB=− hyhz(κi jk +κi+1 jk)
2hx

(3.51)

wZ0LB=0 (3.52)

nZ0LB=− hxhz(κi jk +κi j+1k)
4hy

(3.53)

sZ0LB=− hxhz(κi jk +κi j−1k)
4hy

(3.54)

ddZp1LB=− hxhy(κi jk +κi jk+1)
4hz

(3.55)

ddZm1LB=− hxhy(κi jk +κi jk−1)
4hz

. (3.56)

The resulting entries of the Jacobian matrix are

JddZm1LB =−
hxhy

(
κi jk + (ui jk−1 −ui jk) ∂κi jk−1

∂ui jk−1
+κi jk−1

)
4hz

(3.57)

JsZ0LB =−
hxhz

(
κi jk + (ui j−1k −ui jk) ∂κi j−1k

∂ui j−1k
+κi j−1k

)
4hy

(3.58)

JwZ0LB =0 (3.59)
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JddZ0LB = 1
hxhyhz

0.5h2
xh2

yh2
zui jk

∂ξi jk

∂ui jk
+0.5ξi jkh2

xh2
yh2

z

+ ∂κi jk

∂ui jk

(
h2

x

(
h2

y(0.5ui jk −0.25ui jk−1 −0.25ui jk+1)

+ h2
z(0.5ui jk −0.25ui j−1k −0.25ui j+1k)

)+h2
yh2

z(0.5ui jk −0.5ui+1 jk)
)

(3.60)

+0.5h2
xh2

yκi jk +0.25h2
xh2

yκi jk−1 +0.25h2
xh2

yκi jk+1

+0.5h2
xh2

zκi jk +0.25h2
xh2

zκi j−1k

+0.25h2
xh2

zκi j+1k +0.5h2
yh2

zκi jk +0.5h2
yh2

zκi+1 jk

JeZ0LB =−
hyhz

(
κi jk + (ui+1 jk −ui jk) ∂κi+1 jk

∂ui+1 jk
+κi+1 jk

)
2hx

(3.61)

JnZ0LB =−
hxhz

(
κi jk + (ui j+1k −ui jk) ∂κi j+1k

∂ui j+1k
+κi j+1k

)
4hy

(3.62)

JddZ p1LB =−
hxhy

(
κi jk + (ui jk+1 −ui jk) ∂κi jk+1

∂ui jk+1
+κi jk+1

)
4hz

(3.63)

3.3.3.3 Upper Boundary Terms

The stencil entries of the nonlinear operator at the upper boundary read

ddZm1UB=− hxhy(κi jk +κi jk−1)
4hz

(3.64)

sZ0UB=− hxhz(κi jk +κi j−1k)
4hy

(3.65)

wZ0UB=− hyhz(κi jk +κi−1 jk)
2hx

(3.66)

ddZ0UB=0.5ξi jkhxhyhz +
hyhzκi jk

2hx
+ hxhzκi jk

2hy

+ hxhyκi jk

2hz
+ hxhyκi jk−1

4hz
+ hxhyκi jk+1

4hz
(3.67)

+ hxhzκi j−1k

4hy
+ hxhzκi j+1k

4hy
+ hyhzκi−1 jk

2hx

eZ0UB=0 (3.68)

nZ0UB=− hxhz(κi jk +κi j+1k)
4hy

(3.69)

ddZp1UB=− hxhy(κi jk +κi jk+1)
4hz

. (3.70)

The resulting entries of the Jacobian matrix are

JddZm1UB =−
hxhy

(
κi jk + (ui jk−1 −ui jk) ∂κi jk−1

∂ui jk−1
+κi jk−1

)
4hz

(3.71)

66



3.4. SUMMARY

JsZ0UB =−
hxhz

(
κi jk + (ui j−1k −ui jk) ∂κi j−1k

∂ui j−1k
+κi j−1k

)
4hy

(3.72)

JwZ0UB =−
hyhz

(
κi jk + (ui−1 jk −ui jk) ∂κi−1 jk

∂ui−1 jk
+κi−1 jk

)
2hx

(3.73)

JddZ0UB = 1
hxhyhz

0.5h2
xh2

yh2
zui jk

∂ξi jk

∂ui jk
+0.5ξi jkh2

xh2
yh2

z

+ ∂κi jk

∂ui jk

(
h2

x

(
h2

y(0.5ui jk −0.25ui jk−1 −0.25ui jk+1)

+ h2
z(0.5ui jk −0.25ui j−1k −0.25ui j+1k)

)+h2
yh2

z(0.5ui jk −0.5ui−1 jk)
)

(3.74)

+0.5h2
xh2

yκi jk +0.25h2
xh2

yκi jk−1 +0.25h2
xh2

yκi jk+1

+0.5h2
xh2

zκi jk +0.25h2
xh2

zκi j−1k +0.25h2
xh2

zκi j+1k

+0.5h2
yh2

zκi jk +0.5h2
yh2

zκi−1 jk

JeZ0UB =0 (3.75)

JnZ0UB =−
hxhz

(
κi jk + (ui j+1k −ui jk) ∂κi j+1k

∂ui j+1k
+κi j+1k

)
4hy

(3.76)

JddZ p1UB =−
hxhy

(
κi jk + (ui jk+1 −ui jk) ∂κi jk+1

∂ui jk+1
+κi jk+1

)
4hz

(3.77)

This completes the derivation of the Jacobian matrix. With this, all components of the nonlinear

solver have been derived and we can solve the system (3.31).

After having derived the necessary components for the discretization, linearization and

solution of the systems of equations the next step is to implement them into the ANTARES

framework. This is the step which demanded a great amount of my time. Getting the algorithms

in the correct form and implementing them into the existing code has been a major part of my

work. Unfortunately, I cannot represent the difficulty of the coding part of the thesis here.

After having implemented the multigrid solver it is necessary to thoroughly test it and to

determine if the discretization accuracy of the finite elements method is met. This is done in the

following chapter.

3.4 Summary

In this chapter, we have given a few general introductory remarks about multigrid methods in

general and have given information about which components have been chosen for our imple-

mentation of a multigrid solver for the three–dimensional, (non–)linear, generalized Helmholtz

equation in the ANTARES framework. Finally, we have derived the chosen components for the

linear and nonlinear case.
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4
TESTING THE MULTIGRID SOLVER

After having implemented the solver into the ANTARES framework, we now have to validate its

accuracy in order for it to be used in production simulations. This section serves two purposes:

• to test the MG solver with equations for which the analytical solutions are known in order

to be able to make the statement “the solver is producing correct results” and

• to demonstrate and explain to future users of ANTARES the impact of some parameters

that can be adjusted when using the solver. Those parameters are:

– the number of points on the coarse grid,

– the number of multigrid levels,

– the number of pre- and post-smoothing steps ν1 and ν2,

– the multigrid cycling used: V–cycling or W–cycling

– and the stopping criterion or accuracy to which the solver approximates the solution.

The chapter is subdivided as follows:

• We start with tests of the linear multigrid solver with different boundary conditions:

– Homogeneous Dirichlet boundary conditions (section 4.1): in this section, various

combinations of the parameters mentioned above are tested and their influence on

convergence rate, wall clock time and multigrid cycles needed to achieve convergence

is investigated;

– non-homogeneous Neumann boundary conditions (section 4.2);

– non-homogeneous Dirichlet boundary conditions (section 4.3).
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• We then verify the correctness of parallelization done and investigate the strong and weak

scaling behavior (section 4.4).

• Next, the nonlinear solver is tested with the following boundary conditions:

– non-homogeneous Dirichlet boundary conditions (section 4.5);

– non-homogeneous Neumann boundary conditions (section 4.6).

• Finally, the correctness of parallelization is verified in the nonlinear case (section 4.7)

A short remark on accuracy: as Trottenberg, Oosterlee, and Schüller, (2001) mention: in practice,

it is usually not necessary to reduce the residual by a factor of 10−12, as is done in the following

investigations. Convergence to discretization accuracy O(h2) is sufficient in most cases and,

naturally, considerably faster. Because we are interested in studying the implemented solver

with analytic problems here, we are not so much interested in the speed of the solver but in the

asymptotic convergence properties. Hence, we investigate the behavior of the residual to much

smaller scales than it is actually necessary.

The test cases are of the following structure: let Ω= [0,2π]× [0,2π]× [0,2π]. Each of the linear

test equations is of form

−∇· (κ(x)∇u(x))+ξ(x)u = f (x) (4.1)

with x ∈Ω; κ,ξ :Ω→R+; f ,u :Ω→R and each of the nonlinear test equations is of form

−∇· (κ(u)∇u(x))+ξ(u)= f (x) (4.2)

with x ∈ Ω; κ,ξ : R→ R+; f ,u : Ω→ R. The fact that κ and ξ are positive in Ω ensures strong

ellipticity.

4.1 Test Case 1 — Linear Equation with Homogeneous Dirichlet
B.C.

The problem considered is

−∇· (x∇u(x))+ x u(x)=4x sin(x) sin(y) sin(z)−cos(x) sin(y) sin(z) (4.3)

with the homogeneous Dirichlet boundary conditions

u(0, y, z)=u(2π, y, z)= 0,

u(x,0, z)=u(x,2π, z),

u(x, y,0)=u(x, y,2π).

(4.4)
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The exact solution is

u(x, y, z)=sin(x) sin(y) sin(z). (4.5)

The numerical results of the test can be found in appendix A.1.1. We summarize the most

interesting results here.

4.1.1 Calculating the Order of Accuracy

To investigate the accuracy of the solver we are following the procedure which LeVeque, (2007)

outlines: first, the order of accuracy of the discretization is confirmed. It is expected to be two

because that is the order of accuracy of the discretization with the finite element method discussed

in section 2. When we have the exact solution uexact at each grid point (which we have) we can

estimate the absolute numerical error directly by calculating the point-wise error vector

e = uexact −unumeric =


uexact,1 −unumeric,1

uexact,2 −unumeric,2
...

uexact,dim(Vh) −unumeric,dim(Vh)

 (4.6)

where the vector components represent the values of the exact and numerical solutions at each

grid point. We then take some norm of e to obtain e(h) = ‖e‖, which is a function of the grid

spacing h. In what follows we use the discrete 2-norm for calculating e, i.e.,

e(h)= ‖e‖2(h)=
(
h
dim(Vh)∑

j=1
|e2

j |
)1/2

(4.7)

The order p of the method can then be estimated by

p ≈ log(e(h1)/e(h2))
log(h1/h2)

, (4.8)

i.e., we need to run two simulations with a different grid spacing. The values of e can be seen in

the tables in the appendix. Taking e.g. the errors at the resolutions 100×100×100 (table A.2,

h1 = 6.28 ·10−2) and 200×200×200 (table A.3, h2 = 3.14 ·10−2), we arrive at

p ≈ log(e(h1)/e(h2))
log(h1/h2)

= log
(
1.33 ·10−3/3.33 ·10−4)

log
(
6.28 ·10−2/3.14 ·10−2

) = 2.00 (4.9)

which is what we expect for a second order accurate discretization. Having a second order accurate

method means that

e(h)= Ch2 + o(h2) (4.10)

where “little-oh” o means that if

f (h)= o(g(h)) as h → 0 (4.11)

then ∣∣∣∣ f (h)
g(h)

∣∣∣∣→ 0 as h → 0. (4.12)
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4.1.2 Adjusting the Multigrid Component Parameters

Having ascertained that our implementation yields the correct order of accuracy we can now

move to figure out the best choice for the parameters for the multigrid components. Based on the

conclusions of Happenhofer, (2014) for her two–dimensional solver we start with the following

parameters:

• the number of grid points in one direction on the coarsest grid, denoted by Nc. This

parameter is chosen automatically, based on the actual resolution setting in the input file.

This works as follows:

1. divide the number of fine grid points per direction, N, by the coarsening ratio. (Remark:

the coarsening ratio is always 2 in this implementation.)

2. If the result is an even number: repeat step 1 until the result is an uneven number.

3. The number of grid levels used in the multigrid solver is the number of divisions done

plus one.

4. The number of coarse grid points per direction, Nc, is the resulting uneven number.

For example, if one wants to run a simulation with a resolution of around 200×200×200

the procedure is the following:

200/2=100 result even: continue dividing by 2 (4.13)

100/2=50 result even: continue dividing by 2 (4.14)

50/2=25 result even: stop dividing (4.15)

=⇒ Nc = 25, number of grid levels: 4

If we wanted, say, a coarse grid resolution of 99 grid points per direction, but still a fine

grid resolution of around 200×200×200, we would have to choose a fine grid resolution of

198×198 such that

198/2= 99 result uneven: stop dividing (4.16)

=⇒ Nc = 99, number of grid levels: 2

So by choosing the fine grid resolution, one is at the same time choosing the number

of multigrid levels and the resolution on the coarsest grid. One important note: due to

parallelization issues and the necessary presence of ghost cells the number of coarse grids

points cannot be chosen too small.

• the number of pre-smoothing steps ν1 and the number of post-smoothing steps ν2,

• the accuracy limit for the multigrid solver,

• and the multigrid cycling strategy.
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4.1.2.1 Determining the Influence of the Number of Multigrid Levels and the Coarse
Grid Resolution

The Setting

• Accuracy setting: exit the solver when the initial residual ‖r‖(0)
2 is reduced by a factor of

10−10 or when ‖r‖(k)
2 < 10−13, whichever comes first. The values for the coarse grid solver

are 10−12‖r‖(0,CG)
2 and ‖r‖(k,CG)

2 < 10−13, respectively.

• Multigrid cycling: V-grid traversal

• ν1 = ν2 = 2

We ran simulations with the following coarse and fine grid resolutions:

• coarse grid resolution Nc = 253:

– 2 grid levels, resulting in a fine grid resolution of N = 503 (results in table A.1),

– 3 grid levels, resulting in a fine grid resolution of N = 1003 (results in table A.2),

– 4 grid levels, resulting in a fine grid resolution of N = 2003 (results in table A.3).

• coarse grid resolution Nc = 513:

– 2 grid levels, resulting in a fine grid resolution of N = 1023 (results in table A.4)

– 3 grid levels, resulting in a fine grid resolution of N = 2043 (results in table A.5),

• coarse grid resolution Nc = 993:

– 2 grid levels, resulting in a fine grid resolution of N = 1983 (results in table A.6)

The numerical results can be found in the given tables in appendix A.1.1. Here, we give an

overview of the results.

The Results: Influence on the Convergence Rate

The impact of the different resolutions and number of multigrid levels on the convergence rate

can be seen in figure 4.1. We recognize three distinct groups of graphs: the solid lines represent

all simulations with two grid levels. They lead to the fastest convergence in terms of iterations.

Their slope, i.e., their convergence rate, is steepest among these simulations. Next, we have

the dashed lines which represent the simulations with three grid levels. They lead to medium

convergence rates. Lastly, we have the dash–dotted plot which represents the simulation with

four grid levels. Judging from these simulations we arrive at our first conclusions:

• the convergence rate is hardly dependent on the fine or coarse grid resolution,

• the convergence rate is dependent on the number of grid levels used: less grid levels lead to

a better convergence rate
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Figure 4.1: Plot of the residual norm against the number of iterations for different coarse grid
resolutions. The black lines correspond to simulations with a coarse grid resolution of Nc = 253,
the red lines correspond to Nc = 513 and the green line corresponds to Nc = 993. Nf is the fine
grid resolution.

The Results: Influence on the Wall Clock Times

To measure the efficiency of the solver, both the convergence rate and the total computational

work – measured by the wall clock time – are important measures. We now investigate the effect

the different resolutions had on the wall clock times. These have been measured by a call to

system_clock immediately before and after the call to the multigrid solver.

Figure 4.2 shows a comparison of the normalized wall clock times, mean convergence rates

and necessary multigrid cycles of the three simulations with fine grid resolutions of 200×200×200,

204×204×204 and 198×198×198 (tables A.6, A.5, A.3). Obviously the solution with four grid

levels and a fine grid resolution Nf = 2003 has the worst wall clock time, convergence rate and

necessary grid cycles among the three solutions. The best wall clock time (Nf = 2043, 3 grid levels)

is not reached by the simulation with the best average convergence rate (Nf = 1983, 2 grid levels),

however. This can be explained by the fact that while the convergence rate for the two–grid

V-cycle is better than for the three–grid cycle in this implementation for this particular problem,

the time needed to solve the system of equations on the coarsest grid is significantly higher

for the case with a coarse grid resolution Nc = 983 (and a corresponding fine grid resolution of

Nf = 1983) than it is for the case with the significantly lower coarse grid resolution Nc = 513 and

the fine grid resolution of 2043. We thus arrive at another conclusion:
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Figure 4.2: Normalized wall clock time, average convergence rate and multigrid iterations
until convergence for fine grid resolutions of Nf ≈ 2003 and different number of grid levels for
ν1 = ν2 = 2 and multigrid V-cycling.

• the wall clock time is not always smallest for the case with best convergence rate

Next, we investigate the influence of a change in the number of pre- and post-smoothing steps.

4.1.2.2 Determining the Influence of the Number of Smoothing Steps

According to Trottenberg, Oosterlee, and Schüller, (2001), the number of pre- and post-smoothing

steps should be chosen so that ν1 +ν2 ≤ 3. We repeated the above simulations with the following

settings for ν1 and ν2:

• ν1 = 2 and ν2 = 1.

The numerical results can be seen in tables A.7 - A.9 for the simulations with a coarse grid

resolution of 25×25×25, tables A.10 - A.11 for 51×51×51 and table A.12 for 99×99×99.

• ν1 = 1 and ν2 = 2.

The numerical results can be seen in tables A.13 - A.15 for the simulations with a coarse

grid resolution of 25×25×25, tables A.16 - A.17 for 51×51×51 and table A.18 for 99×99×99.

• ν1 = 1 and ν2 = 1.

The numerical results can be seen in tables A.19 - A.21 for the simulations with a coarse

grid resolution of 25×25×25, tables A.22 - A.23 for 51×51×51 and table A.24 for 99×99×99.

We have investigated the same as before: the effects on the wall clock times, average convergence

rates and iterations until convergence.
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The Results: The Influence on the Convergence Rate

Plots of the residuals against the iteration count can be seen in figure 4.3. We observe the

following properties in these plots:

• more smoothing cycles lead to faster convergence

• for two grid levels, using only one pre- and post-smoothing step leads to worse convergence

properties than when using two pre- and one post-smoothing step.

The Results: The Influence on the Wall Clock Times

The results are shown in figure 4.6. We observe the following:

• The average convergence rate is worst when using ν1 = ν2 = 1 smoothing cycles. This was

already apparent in the previous plot.

• The wall clock time for almost every simulation is shortest when using ν1 = ν2 = 1 smooth-

ing cycles. That means that the convergence rate is not a good measure of multigrid

performance.

• When comparing simulations with similar fine grid resolutions, i.e., Nf = 1003 and 102

or Nf = 1983,200,204 we see that simulations with three grid levels always outperform

simulations with two grid levels. Four grid levels do not yield a better result than three

multigrid levels at this problem, though.

4.1.2.3 Conclusions from this Series of Experiments

For this kind of problem, it seems that the following set of parameters yields the best performance

in terms of the wall clock time:

• coarse grid resolution: Nc = 513;

• number of grid levels: 3 levels;

• resulting fine grid resolution: Nf = 2043;

• number of pre- and post-smoothing cycles: ν1 = ν2 = 1.

We use these settings for the next tests. Keep in mind that these parameters have proven best for

this particular problem only. If you want to achieve optimal performance with the solver when

using ANTARES, you must find out the best values for your specific problem by doing numerical

experiments yourself. The next tests we perform are
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Figure 4.3: Plot of the norm of the residual against the multigrid iteration for different coarse
grid resolutions and numbers of pre- and post-smoothing steps.
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Figure 4.4: Plot of the norm of the residual against the multigrid iteration for different coarse
grid resolutions and numbers of pre- and post-smoothing steps.
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Figure 4.5: Plot of the norm of the residual against the multigrid iteration for different coarse
grid resolutions and numbers of pre- and post-smoothing steps.
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Figure 4.6: Normalized wall clock time, average convergence rate and multigrid iterations until
convergence for varying fine grid resolutions and different values for ν1 and ν2. Multigrid cycling:
V-cycling.
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• investigation of the influence of the type of multigrid cycling: V-cycling or W-cycling,

• investigation of the influence of the accuracy settings.
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4.1.3 Third Series of Experiments — The Influence of the Grid Traversal

In this section we investigate the influence of the type of grid traversal used. Up to now, each

experiment has been done with V–traversal. Now we test using W–traversal.

4.1.3.1 The Setting

As stated in the previous section, we use a coarse grid resolution of Nc = 513 grid points per

direction because it resulted in the best wall clock times. Three simulation settings have been

used:

• coarse grid resolution Nc = 253 and fine grid resolutions of Nf = 1003 and Nf = 200, corre-

sponding to 3 and 4 grid levels respectively

• coarse grid resolution of Nc = 513 and a fine grid resolution of Nc = 204, i.e., 3 grid levels

Each setting was done once with ν1 = ν2 = 1 and once with ν1 = ν2 = 2. W-grid traversal was used

in each simulation. The numerical results can be found in tables A.25 - A.30.

4.1.3.2 Results

Residuals vs. Multigrid Iteration

Again, we first take a look at the residual evolution in terms of multigrid cycles in figure 4.7.

We immediately note the same influence of the number of pre- and post-smoothing cycles as in

the previous section: more smoothing leads to faster convergence in terms of complete multigrid

iterations.

But there are some noteworthy differences, too:

• the convergence rate seems to be independent of the numbers of grid levels and also

almost independent of the fine grid resolution. This is much more satisfying than the

level-dependent convergence rate which we had observed for V-traversal.

• the convergence rate (i.e., the slope in figure 4.7) for W-grid traversal) is better

Let us look at the differences more directly by plotting the results in one figure and compare

the simulations with fine grid resolutions of Nf = 1003, Nf = 2003 and Nf = 2043 grid points per

direction for V- and W-cycling.

First Setting: Nf = 1003, Nc = 253

Looking at figure 4.8, we see that the W-cycle leads to better convergence rates when using

ν1 = ν2 = 2 smoothing steps. For ν1 = ν2 = 1 we have an ambivalent result: while the convergence

rate is better after only a few iterations, it becomes worse towards the end. However, since the
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Figure 4.7: Evolution of 2-norm of residual against number of multigrid iterations.

accuracy to which to reduce the residual ε is chosen larger in production runs this does not matter

because less iterations are performed in these runs, anyway. So in summary, for production

simulations, W-cycling leads to better convergence.

Second Setting: Nf = 2043, Nc = 513

We see in figure 4.9 that the case looks similar to the simulation with fine grid resolution of

Nf = 2043. For small iteration counts the W-cycle leads to faster convergence and using more pre-

and post-smoothing steps also leads to faster convergence.

Third Setting: Nf = 2003, Nc = 253

The difference to the two settings before is that we are using four grid levels now. When using 4

grid levels the W-cycle leads to a very distinct improvement of the convergence rate as can be

seen in figure 4.10.

Although the V-cycle has a nice constant convergence rate all the way down to the accuracy

limit, reducing the residual by an order of magnitude takes significantly more grid cycles than

with the W-cycle. From the standpoint of minimizing the overall convergence rate, the W-cycle

with ν1 = ν2 = 2 leads to the best result. However, the wall clock time is what really counts in

practical simulations so that is what we investigate next.
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Figure 4.8: Plot of the norm of the residual against the multigrid iteration for a fine grid
resolution of Nf = 1003 for different values of the number of pre- and post-smoothing steps and
different grid traversal strategies.

4.1.4 Wall Clock Times for W-cycling

Let us now investigate the wall clock times for the simulations with W-grid traversal. First, we

look at the simulations where three grid levels have been used, then we look at the simulations

where four grid levels have been used.

4.1.4.1 Three Grid Levels

The results can be found in figure 4.11. Both sub-figures look very similar. While the absolute

values of wall clock times, average convergence rate and multigrid cycles needed to achieve

convergence differ, the normalized values look very similar for both the case where the fine

grid resolution is Nf = 1003 and the case where it is Nf = 2043 points. One possible explanation

could be that that for three grid levels, the differences for using a different number of pre- and

post-smoothing steps and a different cycling pattern do not depend on the actual number of fine

or coarse grid points but only on the number of grid levels used in the multigrid algorithm. For

both settings the following points can be observed:

• the smallest wall clock time is achieved when using less (ν1 = ν2 = 1 here) smoothing steps

and W-grid traversal,

86



4.1. TEST CASE 1 — LINEAR EQUATION WITH HOMOGENEOUS DIRICHLET B.C.

0 5 10 15 20 25
iteration

10-13

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1
re

si
du

al
N=2043 , ν1 =2, ν2 =2, W-cycle
N=2043 , ν1 =1, ν2 =1, W-cycle
N=2043 , ν1 =2, ν2 =2, V-cycle
N=2043 , ν1 =1, ν2 =1, V-cycle

Figure 4.9: Residual decline comparison for Nf = 2043.

• the best smoothing rate is achieved when using more (ν1 = ν2 = 2 here) smoothing steps

and W-cycle grid traversal,

• fewest multigrid iterations are needed when using more (ν1 = ν2 = 2 here) smoothing steps

and W-grid traversal,

• the difference between V- and W-cycles is more pronounced when using a higher number of

smoothing steps.

Summarizing, when using three grid levels, the smallest wall clock time and hence least compu-

tational work is achieved with the W-cycle and ν1 = ν2 = 1 pre- and post-smoothing steps.

4.1.4.2 Four Grid Levels

Figure 4.12 shows the comparison of wall clock time, average smoothing rate and number of

multigrid cycles needed for the case of using a fine grid resolution of Nf = 2003, which corresponds

to a coarse grid resolution of Nc = 253. Here, we can see a pronounced difference between V- and

W-grid traversal, especially in the number of iterations needed and in the average smoothing

rate. For the V-cycle we have a mediocre smoothing rate of about 0.5 while for the W-cycle we

have a good value of about 0.15 for 2 pre- and post-smoothing steps.

This can be explained by the fact that the 4 level W-cycle visits the coarsest grid four times

in one multigrid iteration while the V-cycle visits it only once, which means that 34 multigrid
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Figure 4.10: Plot of the norm of the residual against the multigrid iteration for a fine grid
resolution of Nf = 2003 and a coarse grid resolution of Nc = 253 which corresponds to four grid
levels.

iterations with the V-cycling pattern lead to 34 coarse grid solver calls while 13 multigrid cycles

with the W-cycling pattern lead to 13 ·4= 52 coarse grid solver calls. But the wall clock time is

still much better, at least for this particular test case. The main observations for four grid levels

are:

• the smallest wall clock time is achieved using less (ν1 = ν2 = 1 here) smoothing steps and

W-cycle grid traversal,

• the best smoothing rate is achieved when using more (ν1 = ν2 = 2 here) smoothing steps

and W-cycle grid traversal,

• fewest multigrid iterations are needed when using more (ν1 = ν2 = 2 here) smoothing steps

and W-cycle grid traversal,

• the difference between V- and W-cycles is more pronounced when using a higher number of

smoothing steps.

So the observations for three and four grids are the same.
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Figure 4.11: Wall clock times, average smoothing rates and MG-cycles needed to achieve conver-
gence for 3 grid levels.
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Figure 4.12: Wall clock times, average smoothing rates and MG-cycles needed to achieve conver-
gence for 4 grid levels.

Figure 4.13: V- and W-cycle for four grid levels (taken from Trottenberg, Oosterlee, and Schüller,
2001))

4.1.5 Result from W-cycle Testing

The question remains which setup is the best for solving a system with, say, about 200 grid

points in each direction. To this end, one should compare figures 4.11 and 4.12. For the fastest

simulations with ν1 = ν2 = 1 and W-cycling it does not seem to matter whether 3 or 4 grid levels

are used. The absolute wall clock times differ but the Nf = 2003 simulation has only about 94%

of the grid points of the Nf = 2043 simulation. At the same time, the wall clock time is also only

about 94 % that of the Nf = 2043 case so these numbers are very similar. If in doubt, one should

use W-cycling for this test case to be able to use more grid levels.

In summary, for this particular test case the multigrid setup should be: the smallest wall clock

time and hence least computational work is achieved with the W-cycle and ν1 = ν2 = 1 pre- and

post-smoothing steps, no matter whether three or four grid levels are used. This is a better result

than the V-cycle result which stated that using four grid levels leads to an inefficient algorithm.
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4.1.6 Fourth Series of Experiments — Adjusting the Accuracies

Up to now, we performed the simulations up to almost machine precision in order to test the

convergence properties. We now turn to a more realistic scenario because it is not necessary for

the residual to become so small. After all, our solver does not solve the differential equation but

the system of equations that resulted from our finite element discretization. This means that it

is not necessary to achieve an accuracy with the solver which is smaller than the discretization

accuracy.

Formally, this can be written in the following way. The true solution u ∈V is approximated by

an approximated solution vh ∈Vh. The discretization error for our finite element discretization is

of order

‖u−uh‖ =O(h2). (4.17)

This means that a feasible stopping criterion is one where the increase in accuracy from one

multigrid iteration (k−1) to the next multigrid iteration (k) is smaller than this discretization

accuracy, i.e.,

‖u(k)
h −u(k−1)

h ‖ < ‖u−uh‖ =O(h2). (4.18)

One possible choice is

‖u(k)
h −u(k−1)

h ‖ <βh2 (4.19)

where β can be used to adjust the level of accuracy needed.

Because it has been observed by our group that it is bad in some situations to set a too

high β ANTARES uses a rather conservative value. That way we reach an accuracy better than

discretization accuracy but still far above machine precision.

A safe implementation should be reducing the first residual ‖r‖(0) by 6 orders of magnitude.

One question that remains to be investigated is the statement by Happenhofer, (2014) that

the error tolerance of the CG solver on the coarsest grid should be one order of magnitude better

than that of the multigrid solver. This is what we investigate next.

4.1.6.1 Testing the Influence of εcoarse

The Setting

Here, we perform simulations for values of εcoarse ∈ {0.1·εfine,0.01·εfine,0.001·εfine} to determine the

influence of the coarse grid solver accuracy. We use fine grid resolutions of Nf = 1003 (corresponds

to 3 grid levels and Nc = 25), Nf = 2003 (corresponds to 4 grid levels and Nc = 25) and Nf = 2043

(corresponds to 3 grid levels and Nc = 51). This allows us to determine if the number of grid levels

and coarse grid points changes the behavior in any way. We use W-cycling because it has proven

to be more robust and faster in the previous section. The number of pre- and post-smoothing

steps is set to 1.

The numerical results can be found in tables A.31 - A.39. The summarized results are

visualized in figures 4.14 and 4.15.
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The Results
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Figure 4.14: Wall clock times, average smoothing rates and MG-cycles needed to achieve conver-
gence.

We see that for each simulation setting εcoarse = 0.1 ·εfine is not sufficient in terms of efficiency

for the tested parameters in test problem 1. Two orders of magnitude yield better result in

terms of wall clock time, average smoothing rate and needed multigrid cycles. Three orders of

magnitude result in slightly higher wall clock times in all three tested resolutions. Accordingly,

the standard 3D setting for the coarse grid accuracy has been implemented as

εcoarse = 0.01 ·εfine. (4.20)
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Figure 4.15: Wall clock times, average smoothing rates and MG-cycles needed to achieve conver-
gence for Nf = 2043.
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4.1.7 Summary of Best Parameters for Test Case 1

Here, we summarize the results which we have obtained for the parameters when handling test

case 1. Again, we point out that each problem treated with the solver will likely have a different

set of best parameters values. They will have to be adjusted by each user separately for the kind

of problem they want to tackle. This section served the purpose of demonstrating the impact that

the multigrid components have on the wall clock times, convergence rates and multigrid cycles

needed to achieve convergence. For the purpose of solving (4.3), the following parameter yield the

best results in terms of wall clock times:

• number of pre– and post–smoothing steps: ν1 = ν2 = 1

• grid cycle traversal: W-cycling for more than 2 levels

• coarse grid accuracy: εcoarse = 0.01εfine

Next, we verify the accuracy of the solver for different boundary conditions, starting with

Neumann boundaries.

4.2 Test Case 2 — Linear Equation with Neumann B.C.

To test the behavior of the solver for Neumann boundary conditions we treat the same equation

as in test case 1, albeit with different boundary conditions. The problem reads

−∇· (x∇u(x))+ xu(x)= 4x sin(x) sin(y) sin(z)−cos(x) sin(y) sin(z). (4.21)

with the boundary conditions
∂u
∂x

(0, y, z)=sin(y)sin(z),

∂u
∂x

(2π, y, z)=sin(y)sin(z),

u(x,0, z)=u(x,2π, z),

u(x, y,0)=u(x, y,2π).

(4.22)

The exact solution is

u(x, y, z)=sin(x) sin(y) sin(z). (4.23)

It should be noted here that one needs to pay attention when implementing the Neumann

boundaries: the general Neumann problem reads

find u such that −∇· (κ(x)∇u(x))+ξ(x)u(x)= f (x) in Ω

∇u ·n= gN on ∂Ω.
(4.24)

So the boundary conditions are specified by

∇u ·n= gN . (4.25)
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This means that gN for this problem is given by

gN,lower boundary =−sin(y)sin(z)

gN,upper boundary =sin(y)sin(z)
(4.26)

because of the direction of n.

In contrast to test case 1, only the accuracy of the solver is tested here. It would serve

no purpose to repeat the parameter investigations for every test problem because the best

parameters need to be found out by every user of the solver for each individual problem anyway.

We use the parameters which we have found out to be best for test case 1, i.e.

• number of pre– and post–smoothing steps: ν1 = ν2 = 1

• grid cycle traversal: W-cycling for more than 2 levels

• coarse grid accuracy: εcoarse = 0.01εfine

The numerical results can be found in tables A.40 and A.41.

4.2.1 Calculating the Order of Accuracy

By the same process as in section 4.1.1 we calculate the order of accuracy of the solver. We derive

the order p with the values of tables A.40 and A.41 and obtain

p ≈ log(e(h1)/e(h2))
log(h1/h2)

= log
(
5.44 ·10−3/3.32 ·10−4)

log
(
1.26 ·10−1/3.14 ·10−2

)
=2.01.

(4.27)

The accuracy is in accord with what was expected, i.e., it is the same as the discretization accuracy

of the finite elements method. We conclude that the Neumann boundaries are implemented

correctly.

4.3 Test Case 3 — Linear Equation with Nonhom. Dirichlet B. C.

The problem we used to test the implementation of non–homogeneous Dirichlet boundary condi-

tions is

−∇· ((x+1)∇u(x))+10000u(x)= 2(x+1) cos(z) sin(y)+10000 cos(z) sin(y) (4.28)

95



CHAPTER 4. TESTING THE MULTIGRID SOLVER

with the boundary conditions
u(0, y, z)=cos(z) sin(y),

u(2π, y, z)=cos(z) sin(y),

u(x,0, z)=u(x,2π, z),

u(x, y,0)=u(x, y,2π).

(4.29)

The exact solution is

u(x, y, z)=sin(y) cos(z). (4.30)

Again, the goal is to verify that the solver works with non-homogeneous Dirichlet boundary

conditions, so, as in test case 2, only the order of accuracy is investigated. We use the same

settings and multigrid parameters which have been used for test case 2, i.e.,

• number of pre– and post–smoothing steps: ν1 = ν2 = 1,

• grid cycle traversal: W-cycling,

• coarse grid accuracy: εcoarse = 0.01εfine.

The numerical results can be found in tables A.42 and A.43.

4.3.1 Calculating the Order of Accuracy

We obtain for the order p

p ≈ log(e(h1)/e(h2))
log(h1/h2)

= log
(
1.56 ·10−6/8.19 ·10−7)

log
(
3.14 ·10−2/2.53 ·10−2

)
=2.98.

(4.31)

While this is unexpected for a second order accurate discretization the equation

p ≥ discretization accuracy (4.32)

still holds.

Having investigated the order of the method in serial runs we now turn to the investigation

of the behavior of the parallel multigrid solver in the next section.

4.4 Test Case 4 — Parallel Linear Multigrid

4.4.1 Introduction

Not much has been said about the parallelization concept of ANTARES in this thesis. For more

details on that topic, see Obertscheider, (2007) for a description of the parallelization concept used

in ANTARES and Happenhofer, (2014) for a thorough treatment of parallelization issues when
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using multigrid methods in conjunction with ANTARES. A summary on the implementation

details for the parallel multigrid solver can be found in Blies, F. Kupka, and H. J. Muthsam,

(2015). For a thorough introduction to the concept of parallel scalability, see Hager and Wellein,

(2010).

In order to verify the correct implementation of the parallel three–dimensional multigrid

solver we have decided to perform two investigations. One of the strong scaling behavior in

section 4.4.2 and one of the weak scaling behavior in section 4.4.3.

To test the parallelization properties of the linear solver we use the same problem as in test

case 1, i.e.,

−∇· (x∇u(x))+x u(x)= 4x sin(x) sin(y) sin(z)−cos(x) sin(y) sin(z) (4.33)

with the boundary conditions
u(0, y, z)=u(2π, y, z)= 0,

u(x,0, z)=u(x,2π, z),

u(x, y,0)=u(x, y,2π)

(4.34)

and the exact solution

u(x, y, z)=sin(x) sin(y) sin(z). (4.35)

The parallelization tests have been performed on a different system than the serial tests. This

means that the wall clock times from this section cannot be compared with those from previous

tests.

4.4.2 Investigation of the Strong Scaling Behavior

Strong scaling is defined as how the wall clock time changes with the number of processors used

for a fixed total problem size. To determine the strong scaling behavior of the developed multigrid

solver we have investigated the wall clock times for solving (4.33) with the settings outlined in

table 4.1 and 4.2. The detailed numerical results can be found in tables A.44- A.50.

simulation parameters
levels: 4W, Nc = 31, Nf = 248, h = 2.53 ·10−2, ν1 = 1, ν2 = 1

εfine =max(10−6‖r‖(0)
2 ,10−13), εcoarse = εfine/100, system: Sedna

resolution number of processors domain decomposition wall clock time [s]

248×248×248 1 (serial run) n/a 162
248×248×248 2 2 1 1 86
248×248×248 4 2 2 1 45
248×248×248 8 2 2 2 28

Table 4.1: Parameters and wall clock times for the strong scaling experiments for 1-8 processors.
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simulation parameters
levels: 4W, Nc = 31, Nf = 248, h = 2.53 ·10−2, ν1 = 1, ν2 = 1

εfine =max(10−6‖r‖(0)
2 ,10−13), εcoarse = εfine/100, system: VSC2

resolution number of processors domain decomposition wall clock time [s]

248×248×248 16 4 2 2 8
248×248×248 32 4 4 2 5
248×248×248 64 4 4 4 3

Table 4.2: Parameters and wall clock times for the strong scaling experiments for 16-64 processors.

The results are visualized in figures 4.16(a) and 4.16(b). Observing these figures we see that

the solver has (for this problem with the chosen parameters) a very good strong scaling behavior

for a small number of processors and a good strong scaling behavior for a medium number of

processors. Note, however, that the wall clock times for many processors are very low, so that a

fluctuation of one second has a much higher impact on the results that when the wall clock time

is 162 s as in the serial run.
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(a) Small number of processors. The simulations have been performed on the system “Sedna”.
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(b) Medium number of processors. Simulations have been performed on the system “VSC2”.

Figure 4.16: Wall clock times vs. number of processors for small and medium number of processors.
The dashed line represents perfect strong scaling.
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4.4.3 Investigation of the Weak Scaling Behavior

Weak scaling is defined as how the wall clock time changes with the number of processors for

a fixed problem size per processor. To investigate the weak scaling behavior of our solver, we

have run simulations with the resolutions shown in table 4.3. For each simulation setting, the

number of grid points in one specific direction was doubled, as was the number of processors in

that direction, so that the amount of work per processor was constant. The wall clock time was

measured for each experiment. We repeated the measurement five times for each setting because

of the small wall clock times involved.

simulation parameters
ν1 = 1, ν2 = 1

εfine =max(10−6‖r‖(0)
2 ,10−13), εcoarse = εfine/100, system: VSC2

resolution no of processors domain decomp. wall clock times [s]

216×108×108 16 4 2 2 (3.21+3.18+3.17+3.19+3.24)/5= 3.20
216×216×108 32 4 4 2 (4.85+4.83+4.85+4.83+4.84)/5= 4.84
216×216×216 64 4 4 4 (3.09+3.09+3.09+3.14+3.16)/5= 3.11
432×216×216 128 8 4 4 (4.99+5.10+5.05+5.06+5.14)/5= 5.07
432×432×216 256 8 8 4 (7.68+7.58+7.42+7.64+7.40)/5= 7.54
432×432×432 512 8 8 8 (5.86+5.69+5.87+5.72+5.75)/5= 5.78

Table 4.3: Parameters and wall clock times for the weak scaling experiments.

Because we repeated each experiment five times, we do not show the exact numerical values

in the appendix. Instead, we only show the summary of the results in the table above.

One sees that the wall clock times change only marginally when increasing the resolution

and the processor count at the same time, which is evidence of a good weak scaling behavior.

The worst weak scaling seems to occur for 256 processors while the wall clock time for 64

processors are even better than the wall clock times for 16 processors. The simulations with 256

processors are the only simulations where the quotient of Ti/T16 > 2. For all other simulations,

this quotient is smaller than 2 which is evidence for the good weak scaling behavior of the solver.

The different wall clock times are not caused by the solver exclusively: another factor is the

underlying architecture of the VSC2 and the different inter- and intranode communication speeds.

Also, this investigation is only viable for problem (4.33). An investigation of how good the scaling

behavior is for other problems can be done in the future.
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4.5 Test Case 5 — Nonlinear Multigrid with Dirichlet
Boundaries

We now turn to the tests of the nonlinear solver. The problem that we solve is

−∇· ((5+u(x))∇u(x))+u(x)=− (cos(z)2 sin(1+ x)2 sin(y)2)+sin(1+ x)sin(y)sin(z)

−cos(y)2 sin(1+ x)2 sin(z)2 −cos(1+ x)2 sin(y)2 sin(z)2

+3sin(1+ x)sin(y)sin(z) · (5+sin(1+ x) ·sin(y) ·sin(z))

(4.36)

with the boundary conditions

u(0, y, z)=u(2π, y, z)= sin(1)sin(y)sin(z),

u(x,0, z)=u(x,2π, z),

u(x, y,0)=u(x, y,2π)

(4.37)

and the exact solution

u(x, y, z)=sin(1+ x) sin(y) sin(z). (4.38)

For the nonlinear solver, only its accuracy is tested here. We use the following parameters

which are combined from what we have found out to be best for test case 1 and the number of

pre- and post-smoothing steps used by Happenhofer, (2014):

• ν1 = ν2 = 5 ,

• W-cycling.

4.5.1 Calculating the Order of Accuracy

By the same calculation as in section 4.1.1 we determine the order of accuracy of the nonlinear

solver. We derive the order p with the values of tables A.51 and A.52 and obtain

p ≈ log(e(h1)/e(h2))
log(h1/h2)

= log
(
3.94 ·10−4/6.36 ·10−4)

log
(
3.14 ·10−2/3.83 ·10−2

)
=2.4.

(4.39)

The accuracy is again in accord with what was expected, i.e., it is the same or better as the

discretization accuracy of the finite elements method. We conclude that the nonlinear solver with

non-homogeneous Dirichlet boundaries is implemented correctly.

One point to note is the wall clock time of the simulations. The run with a resolution of

164×164×164 grid points and three grid levels took 350 s to complete. The run with 200×200×200

grid points and four grid levels only needed 315 s in spite of the fact that there were 1.8 times as
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many grid points in the higher refined simulation. This is likely due to the fact that the coarse

grid equation has to be solved on a grid with a lower resolution if one uses more grid levels.

This shows again that one should experiment with the multigrid parameters before making a

definite parameter choice for a long simulation.

4.6 Test Case 6 — Nonlinear Multigrid with Neumann
Boundaries

We now turn to the tests of the nonlinear solver with non-homogeneous Neumann boundaries.

The problem that we are solving is

−∇· ((10+u(x))∇u(x))+ (1000+u(x))=1000−sin2(x)sin2(y)cos2(z)+sin(x)sin(y)sin(z)

−sin2(x)cos2(y)sin2(z)−cos2(x)sin2(y)sin2(z)

+3sin(x)sin(y)sin(z) (sin(x)sin(y)sin(z)+10)

(4.40)

with the boundary conditions

∂u
∂x

(0, y, z)=∂u
∂x

(2π, y, z)= sin(y)sin(z),

u(x,0, z)=u(x,2π, z),

u(x, y,0)=u(x, y,2π)

(4.41)

and the exact solution

u(x, y, z)=sin(x) sin(y) sin(z). (4.42)

It should be noted here that one needs to pay attention when implementing the Neumann

boundaries: the general Neumann problem reads

find u such that −∇· (κ(u)∇u(x))+ξ(u)= f (x) in Ω

∇u ·n= gN on ∂Ω.
(4.43)

So the boundary conditions are

∇u ·n= gN . (4.44)

This means that gN for this problem is given by

gN,lower boundary =−sin(y)sin(z)

gN,upper boundary =sin(y)sin(z)
(4.45)

because of the direction of n.
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4.6.1 Calculating the Order of Accuracy

By the same calculation as in section 4.1.1 we determine the order of accuracy of the nonlinear

solver. We derive the order p with the values of tables A.53 and A.54 and obtain

p ≈ log(e(h1)/e(h2))
log(h1/h2)

= log
(
5.85 ·10−4/2.32 ·10−3)

log
(
3.74 ·10−2/7.48 ·10−2

)
=1.99.

(4.46)

The accuracy is again in accord with what was expected, i.e., it is the same or better as the

discretization accuracy of the finite elements method and we conclude that the nonlinear solver

with Neumann boundaries is implemented correctly.

4.7 Test Case 7 — Parallel Nonlinear Multigrid

To test the correctness of the parallelization of the nonlinear multigrid solver, we repeat test case

6 with a domain composition of 2×2×2, i.e., on 8 processors, so the problem has been stated in

4.40. While it would be interesting to investigate the scaling properties of the nonlinear solver as

well, this has to be postponed

to a later time. We only verify the correctness of the implementation and for that, we move to

the calculation of the order of accuracy of the method.

4.7.1 Calculating the Order of Accuracy

By the same calculation as in section 4.1.1 we determine the order of accuracy of the nonlinear

solver. We derive the order p with the values of tables A.55 and A.56 and obtain

p ≈ log(e(h1)/e(h2))
log(h1/h2)

= log
(
5.89 ·10−4/2.33 ·10−3)

log
(
3.74 ·10−2/7.48 ·10−2

)
=1.98.

(4.47)

The accuracy is again in accord with what was expected, i.e., it is the same or better as the

discretization accuracy of the finite elements method and we conclude that the nonlinear solver

with Neumann boundaries is implemented correctly.

4.8 Summary

This concludes our tests for the multigrid solver. We have verified the order of accuracy of the

solver for linear and nonlinear test problems for which the analytical solutions are known. We
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have tested the solver for different boundary conditions and have also tested the correctness of

parallelization for both the linear and nonlinear solver.

Every test resulted in an order about equal or better than the discretization accuracy so

the conclusion we draw is that the solver has been correctly derived and implemented into the

ANTARES framework.

Furthermore, for the test problem with homogeneous Dirichlet boundary conditions, we have

tested the influence of various parameters of the multigrid solver on the convergence rates and

wall clock times.

For the linear parallel solver, we have done some simple scaling tests to get a hint at the

strong and weak scaling properties of the solver.
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The problem we started from was the following one: depending on which approach we choose to

solve the equations of fluid dynamics with ANTARES, we arrive at a three-dimensional Helmholtz

equation with varying coefficients either in linear form,

−∇· (κ(x)∇u(x))+ξ(x)u(x)= f (x), (5.1)

or in nonlinear form

−∇· (κ(u)∇u(x))+ξ(u)= f (x) (5.2)

with u :R3 →R, x ∈R3, κ :R3 →R+, ξ :R3 →R+ and f :R3 →R. The boundary conditions can either

be of Dirichlet type

u = gD on ΓD (5.3)

or of Neumann type

∇u ·n= ∂u
∂n

= gN on ΓN . (5.4)

The equations are to be solved over a rectangular domain Ω⊂R3.

Since ANTARES was not able to handle this kind of equation in three dimensions prior to this

thesis, deriving and implementing a solver for this equation was the topic of this part. The part

was subdivided into three sections: discretization of the equation with the finite elements method,

the derivation of the multigrid components and extensive tests of the implemented solver.

Discretization

We started from the discretization of the linear and nonlinear equations with the finite elements

method in chapter 2 in order to obtain a (non-)linear system of equations. The choices we have

made for the finite elements, denoted by (K ,Q,N ), are
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• for the element domain K ⊆Rn: since our simulations are run in a rectangular domain with

straight boundaries we can use one of the easiest choices for K : rectangular cuboids;

• for the finite–dimensional space of shape functions Q on K : since our domain Ω is perfectly

rectangular, a choice of k = 1 leads to a sufficiently accurate approximation, so we use

trilinear polynomials for our finite element discretization:

P =Q1(R3)= span{1, x, y, z, xy, xz, yz, xyz}; (5.5)

• for the set of n = dim(P ) nodal variables N = {N1, N2, ..., Nk} which define the degrees of

freedom: a standard choice for Lagrangian degrees of freedom on P = Q1(R3) are the 8

corners of the cubicle.

Solving the Discretized System with Multigrid Methods

To solve the (non-)linear system of equations that resulted from the discretization we have used

the multigrid approach. To that end we have derived the necessary multigrid components for

both the linear and the nonlinear system of equations and have implemented the algorithm into

the ANTARES framework. The choices we have made for the multigrid components are

• smoothing routine: one of the best iterative schemes for multigrid smoothing is the Gauss–

Seidel method because of its superior smoothing properties. It is implemented in ANTARES

in the lexicographic variant only.

• prolongation operator: for Finite Element Methods the prolongation is defined through

the natural inclusion of the coarse grid subspace V2h into the fine grid subspace Vh. This

results in the canonical trilinear prolongation operator.

• restriction operator: the restriction operator is canonically defined for a discretization

with the finite elements method. It coincides with the three–dimensional full–weighting

approach.

• the coarse grid operator: it was obtained via the Galerkin coarse grid approximation where

it is constructed with the help of the prolongation and the restriction operators.

• the coarse grid solver: we use a Conjugate Gradient method on the coarsest grid to solve

the system of coarse-grid equations.

• for the nonlinear system of equations we have linearized the system with the Newton

scheme.
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After having implemented the multigrid solver into ANTARES we have verified the order of

accuracy of the solver for linear and nonlinear test problems for which the analytical solutions

are known. We have tested the solver for different boundary conditions and have also tested the

correctness of parallelization for both the linear and nonlinear solver. Furthermore, we have done

a preliminary study of the strong and weak scaling properties of the solver with very satisfactory

results.

In addition, for the test problem with homogeneous Dirichlet boundary conditions, we have

investigated the influence of various parameters of the multigrid solver on the convergence rates

and wall clock times and have arrived at the following conclusions: for the purpose of solving

(4.3), the following parameters yield the best results in terms of wall clock times:

• number of pre– and post–smoothing steps: ν1 = ν2 = 1

• grid cycle traversal: W-cycling for more than 2 levels

• coarse grid accuracy: εcoarse = 0.01εfine

We point out that each problem treated with the solver will likely have a different set of best

parameters values. They will have to be adjusted by each user separately for the kind of problem

they want to tackle.

Conclusion

We have successfully derived, developed and implemented a multigrid solver for the three-

dimensional, (non-)linear Helmholtz equation with varying coefficients and thereby considerably

extended the possible areas of application of ANTARES.
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6
THEORY AND DERIVATION OF THE METHOD

6.1 Introduction

As we have mentioned in the introduction, the time scales of the different physical processes are

of major importance when trying to conduct efficient numerical simulations of these systems.

We are looking at the Navier–Stokes equations in the Boussinesq approximation which have

been presented in section 1.2.2. We reprint them in their 3D, non–dimensionalized form for the

reader’s convenience:

∇·u = 0 (6.1)

∂u
∂t

+u ·∇u =Pr
[
−∂peff

∂x
+RaT T +RaS S+∇2u

]
(6.2)

∂v
∂t

+u ·∇v =Pr
[
−∂peff

∂y
+∇2v

]
(6.3)

∂w
∂t

+u ·∇w =Pr
[
−∂peff

∂z
+∇2w

]
(6.4)

∂T
∂t

+u ·∇T =∇2T (6.5)

∂S
∂t

+u ·∇S =Le∇2S (6.6)

with

Pr= ν

κT
, Le= κS

κT
, RaT = αL3∆T g

κTν
, RaS = βL3∆Sg

κTν
. (6.7)

We also define

Rρ = RaT

RaS
. (6.8)
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According to F. Kupka et al., (2012), the following time step restriction occur due to the

physical processes which the equations model:

advection: ∆tad = cad
min(∆x,∆y,∆z)

|u| , (6.9)

diffusion of heat: ∆tT = cdiff min(∆x2,∆y2,∆z2), (6.10)

diffusion of solute: ∆tS = cdiff
min(∆x2,∆y2,∆z2)

Le
, (6.11)

viscous stresses: ∆tvisc = cdiff
min(∆x2,∆y2,∆z2)

Pr
. (6.12)

Here, cad and cdiff are the advective and diffusive Courant numbers, respectively. When using

explicit time integration, in order for the numerical scheme to be stable, all processes must be

temporally resolved and hence the overall applicable time step is

∆texplicit =min(∆tad,∆tT,∆tS,∆tvisc). (6.13)

In other words, the maximal possible timestep reduces whenever the Lewis number is large, the

Prandtl number is large or the fluid velocity is high. The dependence of ∆t on the diffusivity

of heat does not appear here in explicit form due to the non-dimensionalization (t is measured

in units of tT. Usually, one is interested in solutions which change according to the advective

time scale but there are many cases where other time scales are smaller. For these flows, various

methods have been invented to alleviate the time step restrictions by the other processes.

Our methods of choice are SSP IMEX schemes. When treating the diffusive parts of the

equations implicitly, depending on the method the diffusive time scale plays no part in limiting

the time step any more except for cases where the solution indeed changes on such a time scale)

and thus the overall time step is given by

∆tdiffusive implicit =min(∆tad,∆tvisc). (6.14)

When treating the diffusive and viscous parts of the equations implicitly the theoretically

achievable maximum time step increases even further to

∆tdiffusive and viscous implicit =∆tad. (6.15)

Again, here we assume the most common astrophysical case where significant (large relative)

changes of the solution do not occur for ∆t <∆tad. So the time step is only limited by the advective

terms, i.e., we have eliminated every time step restriction that was introduced by the parabolic

nature of diffusive and viscous processes.

One important consideration to keep in mind when comparing time step restrictions of

different time integration schemes is that each scheme has its own limit on both the advective

and the diffusive Courant numbers because of different stability regions. More stable schemes

permit higher Courant numbers – and thus time steps – than schemes with smaller stability
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domains. See Happenhofer, (2014) and F. Kupka et al., (2012) and references therein for details

on the stability regions of the IMEX schemes. We give both advective and diffusive Courant

numbers in the numerical experiments to come.

Prior to this thesis, ANTARES had no implicit scheme implemented for the Boussinesq

approximation. Although a variety of explicit methods are available, implicit methods had not

been implemented and so the maximal time step for simulations in the Boussinesq approximation

has been

∆tBoussinesq, before thesis =min(∆tad,∆tT,∆tS,∆tvisc), (6.16)

even for stiff equations.

The case is different for the fully compressible Navier–Stokes equations. For these equations,

F. Kupka et al., (2012) have introduced total-variation-diminishing implicit-explicit Runge–Kutta

methods for flows which are limited by diffusive processes. Happenhofer, (2014) has implemented

these into ANTARES. That means that for compressible equations, the smallest time step with

these new methods is given by

∆tcompressible =min(∆tad,∆tvisc). (6.17)

In this part of the thesis we closely follow F. Kupka et al., (2012) in deriving the method for

the Boussinesq approximation and Happenhofer, (2014) for its implementation into ANTARES.

This chapter focuses on the theoretical side of the method: in section 6.2 we present the derivation

of the Runge–Kutta equations for the method, section 6.3 gives a few implementation details.

Chapter 7 covers numerical experiments with the method and a discussion of the results.

6.2 Deriving the SSP IMEX RK Equations for the Boussinesq
Approximation

6.2.1 Runge–Kutta Methods for Stiff Equations

In ANTARES the method of lines approach is used to transform the Boussinesq equations (6.1) -

(6.6), which are a system of partial differential equations, to the ordinary differential equation

initial value problem
∂y(t)
∂t

=F(y(t)),

y(0)=y0.
(6.18)

If F can be partitioned into a stiff and non-stiff part, this can be written as

∂y(t)
∂t

=F(y(t))+G(y(t)),

y(0)=y0

(6.19)
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where F(y(t)) and G(y(t)) have different stiffness properties (for a short introduction to stiff

equations, see section 1.3, for a thorough treatment see (Hairer, 1993)).

Partitioned Runge–Kutta methods are a popular choice for treating problems with the struc-

ture of (6.19). With these methods, F is integrated explicitly and G is integrated implicitly.

In general, an s-stage partitioned Runge–Kutta method characterized by coefficient matrices

A = (ai j) and Ã = (ãi j) defines one step yold → ynew by

yi =yold +∆t
s∑

j=1
ai jF(yj)+∆t

s∑
j=1

ãi jG(yj), i = 1, ..., s

ynew =yold +∆t
s∑

j=1
b j F(yj)+∆t

s∑
j=1

b̃ j G(yj).
(6.20)

The coefficient matrices are represented by Butcher tableaus in the following way. ai j and bi j are

given by

c1 a11 a12 · · · a1s

c2 a21 a22 · · · a2s
...

...
...

. . .
...

cs as1 as2 · · · ass

A b1 b2 · · · bs

(6.21)

and ãi j and b̃i j are given by

c̃1 ã11 ã12 · · · ã1s

c̃2 ã21 ã22 · · · ã2s
...

...
...

. . .
...

c̃s ãs1 ãs2 · · · ãss

Ã b̃1 b̃2 · · · b̃s

. (6.22)

The coefficients ci and c̃i are just the sums of the corresponding rows such that ci =∑s
j=1 ai j, i =

1,2, ..., s and c̃i =∑s
j=1 ãi j, i = 1,2, ..., s.

If ai j = 0 for j ≥ i, the method is referred to as an implicit-explicit (IMEX) method. The

tableaus determine the stability properties of the method. Many different methods exist in the

literature with different tableaus.

The strong-stability preserving (SSP) property of an IMEX method is used to suppress

spurious oscillations in the spatial discretization and has been demonstrated to be necessary for

stable integration by Gottlieb, Ketcheson, and Shu, (2009). We follow the standard convention

in nomenclature for SSP IMEX methods: an SSP IMEX method is referred to as SSPk(s,σ, p)

when is has the following properties: k is the order of the method in the stiff limit, i.e., when the

non-stiff part F is negligible. s is the number of stages in the implicit scheme and σ the number

of stages in the explicit scheme. p is the global order of the resulting combined method.
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Figure 6.1: Radius of absolute monotonicity R(Ã) as a function of γ for (6.23) (taken from F.
Kupka et al., 2012)

6.2.2 The IMEX SSP2(2,2,2) Method

In this thesis, the SSP2(2,2,2) method of Pareschi and Russo, (2005) with adjustments made by

F. Kupka et al., (2012) is implemented. It is characterized by the Butcher tableaus

0 0 0

1 1 0

A 1/2 1/2

and
γ γ 0

1−γ 1−2γ γ

Ã 1/2 1/2

. (6.23)

where Pareschi and Russo, (2005) used γ= 1−1/
p

2 . F. Kupka et al., (2012) have adapted the

value of γ according to the resulting stability, accuracy and dissipativity properties. E.g., fig.

6.1 shows the relationship that γ has on the radius of absolute monotonicity of the method. F.

Kupka et al., (2012) suggested to optimize γ by taking it as large as necessary to avoid any linear

stability restrictions and as small as possible to minimize the stability constant. They have found

that the choice γ= 0.24 yielded the most efficient time integrator for the applications they were

interested in and hence this is the method which is used in this thesis. The Butcher tableaus of

this method read

0 0 0

1 1 0

A 1/2 1/2

and
0.24 0.24 0

0.76 0.52 0.24

Ã 1/2 1/2

. (6.24)

6.2.3 Application to the Boussinesq Equations

Writing the Boussinesq equations (1.29)-(1.32) in the form of (6.19) yields
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∂

∂t



0

u

v

w

T

S


︸ ︷︷ ︸

y(t)

=



∇·u
−u ·∇u+Pr

(−∂x peff +RaT T +RaS S+∇2u
)

−u ·∇v+Pr(−∂y peff +∇2v)

−u ·∇w+Pr(−∂z peff +∇2w)

−u ·∇T +∇2T

−u ·∇S+Le∇2S


︸ ︷︷ ︸

F(y(t))

+



0

0

0

0

0

0


︸ ︷︷ ︸
G(y(t))

(6.25)

In this form, no part of the equations has been declared as stiff, so the usual explicit methods can

be applied. It now depends on the dimensionless numbers Pr and Le which time scale is the most

restrictive one and depending on those numbers, the system (6.25) is either written as

∂

∂t



0

u

v

w

T

S


︸ ︷︷ ︸

y(t)

=



∇·u
−u ·∇u+Pr

(−∂x peff +RaT T +RaS S+∇2u
)

−u ·∇v+Pr(−∂y peff +∇2v)

−u ·∇w+Pr(−∂z peff +∇2w)

−u ·∇T

−u ·∇S


︸ ︷︷ ︸

F(y(t))

+



0

0

0

0

∇2T

Le∇2S


︸ ︷︷ ︸

G(y(t))

(6.26)

if the diffusive time scale of concentration – governed by Le – is smallest and as

∂

∂t



0

u

v

w

T

S


︸ ︷︷ ︸

y(t)

=



∇·u
−u ·∇u+Pr (−∂x peff +RaT T +RaS S)

−u ·∇v+Pr(−∂y peff)

−u ·∇w+Pr(−∂z peff)

−u ·∇T

−u ·∇S


︸ ︷︷ ︸

F(y(t))

+



0

Pr∇2u

Pr∇2v

Pr∇2w

∇2T

Le∇2S


︸ ︷︷ ︸

G(y(t))

(6.27)

if both the diffusive and viscous time scales are the limiting terms.

One remark on the pressure: when using the Boussinesq equations in ANTARES, the pressure

is calculated with a pressure correction method (see (F. Zaussinger, 2010)) which means that

the pressure is calculated implicitly as well. This is done independently from this splitting,

however, so that we declare it as belonging to the explicit part F(y(t)). This has no influence on

our Runge–Kutta algorithm here.

We derive the equations to be solved for the case of using implicit integration for the diffusive

terms only (system (6.26)) first and then proceed to the derivation of the equations for the case of

implicit integration of diffusive and viscous terms (system (6.27)).
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6.2.4 Implicit Integration of Diffusive Terms Only

From (6.20) we see that the i-th implicit stage of a diagonal IMEX-Runge-Kutta scheme is given

by

yi = y∗+∆tãi,iG(yi), (6.28)

where y∗ is known from previous stages. Applying this to (6.26) leads to

ui =u∗, (6.29)

vi =v∗, (6.30)

wi =w∗, (6.31)

Ti =T∗
i +∆tãi,i∇2Ti, (6.32)

Si =S∗
i +∆tãi,iLe∇2Si. (6.33)

Rewriting eq. (6.32) and (6.33) yields

−∇2Ti + Ti

∆tãi,i
= T∗

∆tãi,i
, (6.34)

−∇2Si + Si

Le∆tãi,i
= S∗

Le∆tãi,i
. (6.35)

These are generalized Helmholtz equations of the form

−∇· (κ(x)∇φ(x))+ξ(x)φ(x)= f (x) (6.36)

with
κ(x)=1,

ξ(x)= 1
∆tãi,i

,

f (x)= T∗

∆tãi,i
,

φ(x)=Ti

(6.37)

for the temperature equation and
κ(x)=1,

ξ(x)= 1
Le∆tãi,i

,

f (x)= S∗

Le∆tãi,i
,

φ(x)=Si

(6.38)

for the salinity equation. In ANTARES, we can use the multigrid solver from Happenhofer, (2014)

to solve these equations for up to two dimensions and the multigrid solver from part I of this

thesis to solve the equations in three dimensions.
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6.2.5 Implicit Integration of Diffusive and Viscous Terms

Repeating this process for the case of diffusively and viscously limited flows, i.e., using (6.27) as

our starting point, gives

ui =u∗+∆tãi,iPr∇2ui, (6.39)

vi =v∗+∆tãi,iPr∇2vi, (6.40)

wi =w∗+∆tãi,iPr∇2wi, (6.41)

Ti =T∗
i +∆tãi,i∇2Ti, (6.42)

Si =S∗
i +∆tãi,iLe∇2Si. (6.43)

Rewriting the equations gives

−∇2ui + ui

Pr∆tãi,i
= u∗

Pr∆tãi,i
, (6.44)

−∇2vi + vi

Pr∆tãi,i
= v∗

Pr∆tãi,i
, (6.45)

−∇2wi + wi

Pr∆tãi,i
= w∗

Pr∆tãi,i
, (6.46)

−∇2Ti + Ti

∆tãi,i
= T∗

∆tãi,i
, (6.47)

−∇2Si + Si

Le∆tãi,i
= S∗

Le∆tãi,i
. (6.48)

All of these are generalized Helmholtz equations of the form

−∇· (κ(x)∇φ(x))+ξ(x)φ(x)= f (x) (6.49)

with
κ(x)=1,

ξ(x)= 1
∆tãi,i

,

f (x)= T∗

∆tãi,i
,

φ(x)=Ti

(6.50)

for the temperature equation,
κ(x)=1,

ξ(x)= 1
Le∆tãi,i

,

f (x)= S∗

Le∆tãi,i
,

φ(x)=Si

(6.51)
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for the salinity equation and

κ(x)=1,

ξ(x)= 1
Pr∆tãi,i

,

f (x)= q∗

Pr∆tãi,i
,

φ(x)=qi

(6.52)

for the velocity component equations, q being placeholder for u,v or w.

Again, we can use the multigrid solver from Happenhofer, (2014) to solve the two–dimensional

case and the multigrid solver from part I of this thesis to solve the three–dimensional case. Note

that in the case of implicit integration of both viscous and diffusive terms there are five elliptic

equations to be solved at every stage of the Runge–Kutta scheme. In the case of two-stage Runge–

Kutta methods that is ten elliptic equations per time step (not counting the elliptic equations

which must be solved for the pressure correction). Although the time step can be chosen to be

larger if using implicit methods, it remains to be seen if the overall computational efficiency can

be increased at all by this approach because ten calls per time step to the elliptical solver are

computationally expensive. We conduct some numerical experiments in chapter 7 to determine if

and when the IMEX method should be used.

6.3 Implementation Details of the IMEX Method

6.3.1 Time Step Control

Similar to Happenhofer, (2014), we have used a criterion based on observed two-point instabilities

to determine the maximal time step. If using implicit integration for the diffusive as well as the

viscous terms, there is no time step limit left except the advective one. In the diffusive phase, the

fluid velocity is minimal, however, so the maximum time step for which the numerical scheme is

still stable is huge compared to ∆tad. Accuracy considerations have to help to make sure that the

time step does not become to large. For that matter, the variables u,v,w,T,S are observed and

their difference between adjacent grid cells is calculated every time step by calculating

d1 =qi, j−1,k − qi, j−2,k

d2 =qi, j,k − qi, j−1,k

d3 =qi, j+1,k − qi, j,k

d4 =qi, j+2,k − qi, j+1,k

(6.53)
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and
d5 =qi, j,k−1 − qi, j,k−2

d6 =qi, j,k − qi, j,k−1

d7 =qi, j,k+1 − qi, j,k

d8 =qi, j,k+2 − qi, j,k+1

(6.54)

where q is one of the conserved variables u,v,w,T,S and 1< i < nx, 1< j < ny and 1< k < nz for a

computational grid of nx×ny×ny grid points. If the sign pattern of (d1,d2,d3,d4) or (d5,d6,d7,d8)

corresponds to (+,−,+,±), (−,+,−,±), (±,+,−,+) or (±,−,+,−) a two-point instability has been

found. This is an indication for a time step that is too large. Happenhofer, (2014) has chosen

a limit of ny ×0.1 two-point instabilities for the two-dimensional implementation of the IMEX

routines. We use the same limit in three dimensions, i.e., the limit for two-point instabilities is set

to ny ×nz ×0.1. If this limit is exceeded, the calculation of the current time step is repeated with

a time step of ∆tnew = 2/3×∆told. Contrary to Happenhofer, (2014), we do not allow the system to

readjust for 15 time steps but reduce the time step until the number of two-point instabilities

stays below the limit. Numerical tests during the development phase have shown that letting the

system readjust for 15 time steps produces visual artifacts in the case of implicit integration of

viscous and diffusive terms. This is a clear sign of a time step which is too big.

6.3.2 The Algorithm

The algorithm, on the other hand, is exactly the same as Happenhofer, (2014). In the following

summary s denotes an arbitrary stage:

1. At the start, y(s)
old = [u∗,v∗,w∗,T∗,S∗]T is given.

2. Evaluation of the implicit stage (6.28):

• for DIFF_IMEX, (6.34) and (6.35) are calculated with one of the elliptical solvers in

ANTARES. This results in y(s)
imp = [u∗,v∗,w∗,Timp,Simp]T

• for VISC_IMEX, (6.44) to (6.48) are calculated with one of the elliptical solvers in

ANTARES. This results in y(s)
imp = [uimp,vimp,wimp,Timp,Simp]T

3. Explicit sweep:

y(s)
exp = y(s)

old +∆tF(y(s)
imp) (6.55)

4. Assembly of the final stage values:

The computed values y(s)
exp and y(s)

imp must be assembled to obtain the final values for the

stage considered. To this end (6.20) gives for the stage s:

y(s)
sum = y(s)

old +bi(y(s)
exp − y(s)

old)+ b̃i

ãii
(y(s)

imp − y(s)
old) (6.56)
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5. Assembly of the new y(s+1)
old :

If s equals the total number of stages S, ynew = y(S)
sum and a new step may be started. If

s does not equal the total number of stages, y(s+1)
old must be assembled s.t. according to

definition (6.20)

y(s+1)
imp = y(s+1)

old +∆tãs+1,s+1G(y(s+1)
imp ) (6.57)

6. Repeat 1.-5 for each time step in the simulation.

A remark on the explicit sweep in step 3: in the Boussinesq approximation, the pressure is

also treated implicitly. That means that the explicit sweep (represented by F(·)) is only explicit

in the sense of the Runge–Kutta time integration scheme presented here but not explicit in the

general ANTARES scheme. For details on how the Boussinesq approximation is implemented in

ANTARES, see F. Zaussinger, (2010).

As was the case with the multigrid solver in part I the amount of programming necessary to

implement the solver into the ANTARES framework to the point that it worked flawlessly cannot

be represented in this written thesis, but the programming work has been a significant part of

this Ph.D. thesis.

After having implemented the solver we are now ready to use the method with ANTARES to

perform numerical experiments.
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NUMERICAL EXPERIMENTS WITH IMEX SSP2(2,2,2)

7.1 Outline

The experimental part of part II is structured the following way: first, we describe the experimen-

tal setup used for the numerical tests in this chapter in section 7.2. Then, we perform simulations

with different time integration routines first in two dimensions (section 7.3) and then in three

dimensions (section 7.5). A discussion of the results follows in section 7.6 and we conclude with a

summary in 7.7.

7.2 The Experimental Setup

Again, we refer to F. Kupka et al., (2012) in order to define the problem which we use to

investigate the IMEX methods for the Boussinesq approximation. In summary, the test problem

is the following: we specify a hydrostatic configuration with is unstable against convection. The

mean molecular weight is linearly and stably stratified. As time evolves, we expect convection

to set in and mix the zone completely. For the purposes of investigating the IMEX methods, we

are only interested in the diffusive phase, i.e., the phase before the onset of convection: once

convection sets in, the fluid velocity increases and (6.9) is the limit on the time step so that

implicit methods yield no benefits over explicit schemes. Each experiment was conducted with

an explicit method and with the newly developed implicit methods. As explicit method, we have

chosen to use the explicit SSPRK(3,2) method, which was first presented by Kraaijevanger, (1991)

and is considered to be the optimal second-order scheme with three stages. Its diffusive Courant

number is 0.6726, we use a safety factor of 0.5 which leads to an effective diffusive Courant

number of 0.336. The advective Courant number was chosen to be 0.3. As implicit methods, we

used the IMEX SSP2(2,2,2),γ= 0.24 method derived in the last chapter, once in the form where

123



CHAPTER 7. NUMERICAL EXPERIMENTS WITH IMEX SSP2(2,2,2)

only the diffusive terms are integrated implicitly, called DIFF_IMEX from here on and once in the

version where the diffusive and viscous terms are integrated implicitly, known as VISC_IMEX

henceforth. The diffusive Courant number of this method is 0.375. With the same safety factor of

0.5, this gives an effective diffusive Courant number of 0.225. The advective Courant number

was chosen to be 0.25.

We see that the explicit method has two advantages in terms of computational work already:

first, the time step restrictions are inherently not as strict due to higher Courant numbers of the

used explicit method. However, this is partially compensated by SSP(3,2) requiring 3 stages per

time step. Secondly, the explicit methods do not need to use the elliptical solver (except for the

pressure terms in the Boussinesq approximation which are not considered here) which saves

a significant amount of computational work. We see if these two initial disadvantages can be

overcome by the larger time step which are allowed by the implicit part of the methods.

The runtime of most of our simulations has been limited to 0.03 thermal diffusion time

scales. After this time convection has already set in for the choice of our simulation parameters.

Since we are interested in the possible gain through IMEX methods which only have an effect in

the diffusive phase, the convective phase is of no interest for us, so we neglect it and stop the

simulation when convection has set in. For all our simulations with parameters from table 7.1,

this has already happened at 0.03 thermal diffusion time scales.

All simulations are performed with the same values for Le,Rρ and Ra∗
T and different values

of the Prandtl number because Pr determines the viscous time step limit. We are interested in

the time step actually taken as a function of the simulation runtime and investigate for what

values of the Prandtl number the use of the IMEX method makes sense.

7.3 Two-Dimensional Experiments

The simulations in the following section have been performed on the Vienna Scientific Cluster

2, VSC2, with a resolution of 800×800 grid points on 256 cores (16×16). A summary of the

performed experiments and the corresponding figures with the results is shown in table 7.1.

7.3.1 The Reference Run: Pr= 1,Le= 0.1,Rρ = 0.1,RaT = 5×105.

We have chosen this parameter setting as our point of reference because the limit on the time

step of the viscous and diffusive terms is the same due to the Prandtl number of 1. This allows us

to directly compare the efficiencies in terms of computational costs (measured by the wall clock

time) and necessary steps to reach 0.03 thermal diffusion time scales.

7.3.1.1 Explicit Time Integration

We see from figure 7.1 that the time step actually taken is limited by viscosity and diffusion.

They pose the same limit on the time step. What is noteworthy is that even in the advective
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Pr Le Rρ RaT Ra∗
T RK scheme result in figure

0.01 0.1 0.1 5.00×107 5.00×105 SSP32 7.9
0.01 0.1 0.1 5.00×107 5.00×105 DIFF_IMEX 7.10(a)
0.01 0.1 0.1 5.00×107 5.00×105 VISC_IMEX 7.10(b)
0.01 0.1 0.1 5.00×107 5.00×105 DIFF_IMEX, γ= 0.245 7.15(b)
0.01 0.1 0.1 5.00×107 5.00×105 VISC_IMEX, γ= 0.245 7.16(b)
0.01 0.1 0.1 5.00×107 5.00×105 DIFF_IMEX, γ= 0.2475 7.15(c)
0.01 0.1 0.1 5.00×107 5.00×105 VISC_IMEX, γ= 0.2475 7.16(c)
0.03 0.1 0.1 1.70×107 5.00×105 SSP32 7.7
0.03 0.1 0.1 1.70×107 5.00×105 DIFF_IMEX 7.8(a)
0.03 0.1 0.1 1.70×107 5.00×105 VISC_IMEX 7.8(b)
0.1 0.1 0.1 5.00×106 5.00×105 SSP32 7.5
0.1 0.1 0.1 5.00×106 5.00×105 DIFF_IMEX 7.6(a)
0.1 0.1 0.1 5.00×106 5.00×105 VISC_IMEX 7.6(b)
0.5 0.1 0.1 1.00×106 5.00×105 SSP32 7.3
0.5 0.1 0.1 1.00×106 5.00×105 DIFF_IMEX 7.4(a)
0.5 0.1 0.1 1.00×106 5.00×105 VISC_IMEX 7.4(b)
1 0.1 0.1 5.00×105 5.00×105 SSP32 7.1
1 0.1 0.1 5.00×105 5.00×105 DIFF_IMEX 7.2(a)
1 0.1 0.1 5.00×105 5.00×105 VISC_IMEX 7.2(b)
1 0.1 0.1 5.00×105 5.00×105 VISC_IMEX, γ= 0.245 7.17(b)
1 0.1 0.1 5.00×105 5.00×105 VISC_IMEX, γ= 0.2475 7.17(c)
2 0.1 0.1 2.50×105 5.00×105 SSP32 7.11
2 0.1 0.1 2.50×105 5.00×105 VISC_IMEX 7.12
3 0.1 0.1 1.67×105 5.01×105 SSP32 7.13
3 0.1 0.1 1.67×105 5.01×105 VISC_IMEX 7.14
7 0.1 0.1 7.14×104 5.00×105 SSP32 7.15(a)
7 0.1 0.1 7.14×104 5.00×105 VISC_IMEX 7.15(b)
7 0.1 0.1 7.14×104 5.00×105 VISC_IMEX, γ= 0.245 7.18(c)
7 0.1 0.1 7.14×104 5.00×105 VISC_IMEX, γ= 0.2475 7.18(c)

Table 7.1: Simulation parameters for the IMEX experiments in two dimensions. The γ factor for
the IMEX methods is 0.24 unless stated otherwise. The resolution was 800×800. The simulations
have been performed on 16×16 cores on the VSC2.

phase the time step is restricted by diffusion and viscosity. To reach 0.03 diffusion time scales,

ANTARES needed 57144 steps and completed the simulation after 18 hours and 45 minutes. We

now investigate the effect of using implicit-explicit Runge–Kutta methods for this parameter

setting.

7.3.1.2 IMEX Time Integration

Using implicit integration for diffusive terms only does not bring any benefits for this parameter

setting (figure 7.2(a)). This is immediately understandable because while the diffusive time step
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Pr=1.00, Le=0.1, Rrho=0.1, RaT=5.0e+05, 
         scheme: SSP32, total time steps taken: 57144, wallclocktime: 18:45:12, 

 RaTStar:5.0e+05

taken time step

tsr from fluid velocity

tsr from viscosity: 5.25e-07

tsr from diffusion: 5.25e-07

Figure 7.1: The reference run: Pr = 1,Le = 0.1,Rρ = 0.1,RaT = 5×105. Time integration was
performed with SSPRK(3,2).

limit is lifted, the viscous one is still in place and so the actually used time step cannot increase

above this limit. One also sees the clear advantage of using the explicit SSPRK(3,2) scheme here:

its higher diffusive Courant number permits much larger time steps than the diffusive Courant

number of the IMEX SSP2(2,2,2) scheme does. This is why the simulation with DIFF_IMEX

needs 85337 time steps to reach the same simulation time. This becomes apparent in the wall

clock time, too, which is 33 hours and 48 minutes — 1.8 times longer than the simulation with

SSPRK(3,2). This is a direct result from the number of time steps but is also due to the fact that

2 elliptic equations must be solved per stage of the Runge–Kutta method (in addition to the one

implied by the Boussinesq approximation) which needs more computational time than using

explicit integration.

However, using implicit integration for diffusive and viscous terms does lead to a larger time

step (figure 7.2(b)). Both the diffusive and the viscous time step limits are lifted and the used

time step in the diffusive phase only depends on the occurrence of two-point instabilities (see

section 6.3.1). This also explains the high variance in the actually used time step. The algorithm

constantly checks the number of two-point instabilities against the set threshold and adjusts the

time step accordingly. Taking the mean of the used time step yields an average time step which

is 3.3 times higher than the limit of either diffusive and viscous processes. However, the wall
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Pr=1.00, Le=0.1, Rrho=0.1, RaT=5.0e+05, 
         scheme: DIFF_IMEX, total time steps taken: 85337, wallclocktime: 1 day, 9:48:14 

         ratio of time step sizes: 1.0, RaTStar:5.0e+05, gamma=0.2400

taken time step

tsr from fluid velocity

tsr from viscosity: 3.52e-07

tsr from diffusion: 3.52e-07

(a) Implicit integration for diffusive terms only.
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Pr=1.00, Le=0.1, Rrho=0.1, RaT=5.0e+05, 
         scheme: VISC_IMEX, total time steps taken: 27458, wallclocktime: 19:29:25 

         ratio of time step sizes: 3.3, RaTStar:5.0e+05, gamma=0.2400

taken time step

mean of taken time step: 1.15e-06

tsr from fluid velocity

tsr from viscosity: 3.52e-07

tsr from diffusion: 3.52e-07

(b) Implicit integration for diffusive and viscous terms.

Figure 7.2: Evolution of time step size for Pr= 1.0,Le= 0.1,Rρ = 0.1,RaT = 5×105. Time integra-
tion was performed with IMEX methods.
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clock time is with 28 hours and 53 minutes still 1.5 times higher than the wall clock time of the

simulation with the explicit SSPRK(3,2). Having to solve 4 elliptic equations per stage of the

Runge–Kutta scheme (in addition to the one implied by the Boussinesq approximation) definitely

takes its toll on the computational work that is required per step. Also, every time the number of

two-point instabilities rises above the set threshold the time integration step must be repeated.

This explains the comparably high number of 27458 time steps in spite of a time step 3.3 times

larger.

7.3.2 Reducing the Prandtl Number: Pr= 0.5

Next, we look at the results of the experiments with reduced Prandtl numbers: Theoretically,

reducing the Prandtl number should increase the viscous time step limit while the diffusive one

stays the same. This should cause DIFF_IMEX to be of more use than in the reference run. Let

us look at each parameter setting from table 7.1 where Pr= 0.5 in turn to see if the theoretically

predicted outcome can be verified by experiment.

7.3.2.1 Explicit Time Integration
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Pr=0.50, Le=0.1, Rrho=0.1, RaT=1.0e+06, 
         scheme: SSP32, total time steps taken: 57144, wallclocktime: 18:36:46, 

 RaTStar:5.0e+05

taken time step

tsr from fluid velocity

tsr from viscosity: 1.05e-06

tsr from diffusion: 5.25e-07

Figure 7.3: Evolution of time step size for Pr = 0.5. Time integration was performed with
SSPRK(3,2).
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We see from figure 7.3 that the time step actually taken is limited by diffusion in this

parameter setting. Similar to the reference setting, even in the advective phase, the time step is

restricted by diffusion and not by the fluid velocity. To reach 0.03 diffusion time scales, ANTARES

needed 57144 steps which is exactly the same number of time steps as was needed in the reference

run. This also demonstrates that Ra∗
T (which is RaT ×Pr) is the dimensionless number which

determines the onset of convection, not RaT alone. The simulation was completed after 18 hours

and 36 minutes. This is 9 minutes faster than the reference run but this could also be due to the

workload on VSC2 or the specific nodes that have been used for the calculation. Reducing the

Prandtl number does not seem to make a difference for the number of time steps when using

explicit methods as long as the diffusion time scale is the limiting one. We now investigate the

effect of using implicit-explicit Runge–Kutta methods for this parameter setting.

7.3.2.2 IMEX Time Integration

The simulation shown in figure 7.4(a) clearly shows the advantage of using implicit integration

for the diffusive term. The actually used time step is increased from the diffusion time step limit

to the viscous time step limit when using DIFF_IMEX. As soon as the fluid becomes fast enough

the fluid velocity determines the maximally applicable time step and implicit integration has

no further benefits. The number of time steps needed for DIFF_IMEX is 43278, the wall clock

time is 18 hours and 17 minutes which is 98% of the wall clock time with SSPRK(3,2). This is a

very small acceleration, bearing in mind that the actually taken time step is twice the diffusion

limit. But again, the superior diffusive Courant number of SSPRK(3,2) makes the DIFF_IMEX

simulation comparable in terms of wall clock times.

Using implicit integration for viscous and diffusive terms gives us a clear advantage for this

parameter setting as we see in figure 7.4(b). Not only is the time step actually taken larger than

the diffusive step restriction, but also higher than the viscous one. This leads to a time step 6.5

times the size of the one taken for explicit integration. In the end, we only needed 17192 time

steps and managed to do so in only 12 hours and 39 minutes which is 68% of the time needed

with explicit integration with SSPRK(3,2).
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Pr=0.50, Le=0.1, Rrho=0.1, RaT=1.0e+06, 

         scheme: DIFF_IMEX, total time steps taken: 43278, wallclocktime: 18:17:28 
         ratio of time step sizes: 2.0, RaTStar:5.0e+05, gamma=0.2400

taken time step

tsr from fluid velocity

tsr from viscosity: 7.03e-07

tsr from diffusion: 3.52e-07

(a) Implicit integration for diffusive terms only.
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Pr=0.50, Le=0.1, Rrho=0.1, RaT=1.0e+06, 
         scheme: VISC_IMEX, total time steps taken: 17192, wallclocktime: 12:39:02 

         ratio of time step sizes: 6.5, RaTStar:5.0e+05, gamma=0.2400

taken time step

mean of taken time step: 2.29e-06

tsr from fluid velocity

tsr from viscosity: 7.03e-07

tsr from diffusion: 3.52e-07

(b) Implicit integration for diffusive and viscous terms.

Figure 7.4: Evolution of time step size for Pr= 0.5. Time integration was performed with IMEX
methods.
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7.3.3 Reducing the Prandtl Number: Pr= 0.1

7.3.3.1 Explicit Time Integration
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Pr=0.10, Le=0.1, Rrho=0.1, RaT=5.0e+06, 
         scheme: SSP32, total time steps taken: 57144, wallclocktime: 18:55:09, 

 RaTStar:5.0e+05

taken time step

tsr from fluid velocity

tsr from viscosity: 5.25e-06

tsr from diffusion: 5.25e-07

Figure 7.5: Time step evolution for Pr= 0.1. Time integration was performed with SSPRK(3,2).

We see from figure 7.5 that the time step actually taken is limited by diffusion in this

parameter setting. Similar to the reference setting and the simulation with Pr = 0.5 the time

step continues to be restricted by diffusion in the advective part of the simulation. To reach 0.03

diffusion time scales, ANTARES needed again 57144 steps which is exactly the same number of

time steps as was needed in the reference run and for Pr= 0.5. The simulation was completed

after 18 hours and 55 minutes. This is again in the same range as the simulations with Pr= 1 and

Pr= 0.5. This makes sense because by adjusting the Prandtl number, only the viscous time limit

is influenced. This poses no limit for these simulations, however, because they are diffusively

limited.

Next, we investigate the effect of using implicit-explicit Runge–Kutta methods for this

parameter setting.

7.3.3.2 IMEX Time Integration

The simulation shown in figure 7.6(a) clearly shows the advantage of using implicit integration

for the diffusive term. The actually used time step is increased from the diffusion limit to the
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Pr=0.10, Le=0.1, Rrho=0.1, RaT=5.0e+06, 

         scheme: DIFF_IMEX, total time steps taken: 16094, wallclocktime: 7:50:35 
         ratio of time step sizes: 10.0, RaTStar:5.0e+05, gamma=0.2400

taken time step

tsr from fluid velocity

tsr from viscosity: 3.52e-06
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(a) Implicit integration for diffusive terms only.
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Pr=0.10, Le=0.1, Rrho=0.1, RaT=5.0e+06, 
         scheme: VISC_IMEX, total time steps taken: 11607, wallclocktime: 8:13:12 

         ratio of time step sizes: 32.8, RaTStar:5.0e+05, gamma=0.2400

taken time step

mean of taken time step: 1.15e-05

tsr from fluid velocity

tsr from viscosity: 3.52e-06

tsr from diffusion: 3.52e-07

(b) Implicit integration for diffusive and viscous terms.

Figure 7.6: Evolution of time step size for Pr= 0.1. Time integration was performed with IMEX
methods.
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viscous limit when using DIFF_IMEX. As soon as the fluid becomes fast enough the fluid velocity

determines the maximally applicable time step and implicit integration has no further benefits.

The number of time steps needed for DIFF_IMEX is 16094, the wall clock time is 7 hours and

50 minutes which is an acceleration of 2.4 compared with SSPRK(3,2). This is a very good

acceleration. The time step actually taken is limited by the viscous time scale which is 10 times

as large as the diffusive one. That means that for this parameter setting, the IMEX method does

not reach its limit yet because there are no two-point instabilities visible which means that the

time step could be increased further.

Using implicit integration for viscous and diffusive terms further magnifies the used time

step to be on average 39 times that of the originally most restrictive time scale, i.e., the diffusive

one (7.6(b)). In the end, we only needed 11609 time steps and managed to do so in 8 hours and

13 minutes. This is 43% of the time needed with explicit integration with SSPRK(3,2). But this

is a little slower than using implicit integration for diffusive terms only. This is likely due to

the increased workload when using implicit integration for 4 equations per stage instead of 2

equations per stage (in addition to the one implied by the Boussinesq approximation).

Since we have not yet reached the limit for the IMEX method, we further decrease the Prandtl

number to Pr= 0.01.

7.3.4 Reducing the Prandtl Number: Pr= 0.03

Here, we perform a simulation with a reduction of the Prandtl number to Pr= 0.03.

7.3.4.1 Explicit Time Integration

For explicit integration, not much changes from the prior simulations: we see from figure 7.7

that the time step actually taken is limited by diffusion again because it is the most restrictive

limit on the time step. Similar to the settings before, the time step continues to be restricted by

diffusion in the advective part of the simulation. To reach 0.03 diffusion time scales, ANTARES

needed again 57144 steps which is exactly the same number of time steps that was needed in

runs before. The simulation was completed after 18 hours and 41 minutes. This is again in the

same range as the simulations with Pr = 1, Pr = 0.5 and Pr = 0.1. This makes sense because

by adjusting the Prandtl number, only the viscous time limit is influenced. This poses no limit

for these simulations, however, because they are diffusively limited. So for explicit integration,

it makes no difference if the Prandtl number is set to 1 or 0.03. The time step is restricted by

diffusion in both cases.

Next, we investigate the effect of using implicit-explicit Runge–Kutta methods for this

parameter setting.
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Pr=0.03, Le=0.1, Rrho=0.1, RaT=1.7e+07, 
         scheme: SSP32, total time steps taken: 57144, wallclocktime: 18:41:46, 

 RaTStar:5.0e+05

taken time step

tsr from fluid velocity

tsr from viscosity: 1.75e-05

tsr from diffusion: 5.25e-07

Figure 7.7: Time step evolution for Pr= 0.03. Time integration was performed with SSPRK(3,2).

7.3.4.2 IMEX Time Integration

The simulation shown in figure 7.8(a) clearly shows the advantage of using implicit integration

for the diffusive term. The actually used time step is increased from the diffusion limit to the

viscous limit when using DIFF_IMEX. As soon as the fluid becomes fast enough the fluid velocity

determines the maximally applicable time step and implicit integration has no further benefits.

The number of time steps needed for DIFF_IMEX is 12545, the wall clock time is 6 hours and 20

minutes which is an acceleration of 2.95 compared to SSPRK(3,2). This is a very good acceleration.

The time step actually taken is limited by the viscous time scale which is 33.2 times as large as

the diffusive one. That means that for this parameter setting, the IMEX method does still not

reach its stability limit because there are still no two-point instabilities visible which means that

the time step could be increased further.

Using implicit integration for viscous and diffusive terms further magnifies the used time

step to be on average 39 times that of the originally most restrictive time scale, i.e., the diffusive

one (7.6(b)). In the end, we only needed 11687 time steps and managed to do so in 7 hours and 31

minutes. This is an acceleration of 2.8 compared to explicit integration with SSPRK(3,2). But

this is a little slower than using implicit integration for diffusive terms only. This is likely due to

the increased workload when using implicit integration for 4 equations per stage instead of 2

equations per stage (in addition to the one implied by the Boussinesq approximation).
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(a) Implicit integration for diffusive terms only.
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(b) Implicit integration for diffusive and viscous terms.

Figure 7.8: Evolution of time step size for Pr= 0.03. Time integration was performed with IMEX
methods.

135



CHAPTER 7. NUMERICAL EXPERIMENTS WITH IMEX SSP2(2,2,2)

Since we have not yet reached the limit for the IMEX method, we further decrease the Prandtl

number to Pr= 0.01.

7.3.5 Reducing the Prandtl Number: Pr= 0.01

We performed one more simulation with a reduction of the Prandtl number to Pr= 0.01.

7.3.5.1 Explicit Time Integration
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         scheme: SSP32, total time steps taken: 57144, wallclocktime: 18:50:33, 

 RaTStar:5.0e+05
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tsr from fluid velocity
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tsr from diffusion: 5.25e-07

Figure 7.9: Time step evolution for Pr= 0.01. Time integration was performed with SSPRK(3,2).

For explicit integration, not much changes from the two prior simulations: we see from figure

7.9 that the time step actually taken is limited by diffusion again because it is the most restrictive

limit on the time step. Similar to the settings before, the time step continues to be restricted by

diffusion in the advective part of the simulation. To reach 0.03 diffusion time scales, ANTARES

needed again 57144 steps which is exactly the same number of time steps that was needed in

runs before. The simulation was completed after 18 hours and 50 minutes. This is again in the

same range as the simulations with Pr = 1, Pr = 0.5 and Pr = 0.1. This makes sense because

by adjusting the Prandtl number, only the viscous time limit is influenced. This poses no limit

for these simulations, however, because they are diffusively limited. So for explicit integration,
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it makes no difference if the Prandtl number is set to 1 or 0.01. The time step is restricted by

diffusion in both cases.

Next, we investigate the effect of using implicit-explicit Runge–Kutta methods for this

parameter setting.

7.3.5.2 IMEX Time Integration

The simulation shown in figure 7.10(a) again clearly shows the advantage of using implicit

integration for the diffusive term. The actually used time step is increased from the diffusion

limit. However, for Pr = 0.01 DIFF_IMEX reaches its stability limit as is apparent by the

activation of the time step control mechanism. This is the first parameter setting where this

occurs and it does so for a time step size 38.7 times larger than the diffusive limit. The number of

time steps needed for DIFF_IMEX is 11813, the wall clock time is 6 hours and 6 minutes which is

32% of the wall clock time with SSPRK(3,2). This is an extremely good acceleration: integrating

the diffusive terms implicitly leads to an acceleration of about 3. The time step actually taken is

not limited by the viscous time scale in this scenario because the Prandtl number is so low that

the viscous time step limit is too high to have an impact. Because we have reached the stability

limit of IMEX SSP2(2,2,2),γ= 0.24 with this parameter setting, it would be of interest to see if

an increase of γ leads to a more stable IMEX scheme. This will be investigated in section 7.4.

Using VISC_IMEX has no significant effect on the size of the possible time step. This is

immediately clear because the viscous time step limit is never reached in this parameter setting

so the implicit integration of viscous terms makes no sense here. That is why there is no further

acceleration from DIFF_IMEX visible here. The actual time step is still on average 39 times that

of the originally most restrictive time scale (which is the diffusive one, see figure 7.10(b)). In the

end, we needed 11808 time steps and managed to do so in 7 hours and 36 minutes. While this is

40% of the time needed with explicit integration with SSPRK(3,2) it is longer than the wall clock

time for implicit integration of the diffusive terms only. This is again likely due to the increased

workload when using implicit integration for 4 equations per stage instead of 2 equations per

stage (in addition to the one implied by the Boussinesq approximation).

Since we have reached the stability limit for the IMEX SSP2(2,2,2) method, a further reduction

of the Prandtl number does not yield more insight. Instead, we turn to the simulations where we

have increased the Prandtl number.
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(a) Implicit integration for diffusive terms only.
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(b) Implicit integration for diffusive and viscous terms.

Figure 7.10: Evolution of time step size for Pr= 0.01. Time integration was performed with IMEX
methods.
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7.3.6 Increasing the Prandtl Number: Pr= 2

Increasing the Prandtl number leads to a more restrictive viscous time step limit. We expect to

see a clearer advantage when using VISC_IMEX. Using implicit integration for the diffusive

terms only does not make any sense for values of the Prandtl number greater than one because

the time step is restricted by viscosity in this regime. This means that implicit integration of just

the diffusive terms is of no use. That is why we perform the time integration in this section with

2 methods only: SSPRK(3,2) and VISC_IMEX.

7.3.6.1 Explicit Time Integration
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         scheme: SSP32, total time steps taken: 114287, wallclocktime: 1 day, 13:25:48, 

 RaTStar:5.0e+05

taken time step
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tsr from viscosity: 2.62e-07

tsr from diffusion: 5.25e-07

Figure 7.11: Time step evolution for Pr= 2. Time integration was performed with SSPRK(3,2).

The results for explicit integration can be found in figure 7.11 . The time step actually taken

is limited by viscosity because it is the most restrictive limit on the time step. A difference to the

simulations with Pr ≤ 1 is that we do not quite reach the advective phase in this setting. This

might be due to RaT reaching lower and lower values for increasing Pr in order for Ra∗
T to be

constant. But the qualitative statements that we are about to make about this parameter setting

remain accurate.

To reach 0.03 diffusion time scales, ANTARES needed 113287 steps. This is almost twice

of what it needed in the simulations with lower Prandtl number. This is because the viscous
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time step limit decreases with increasing Pr. Since the viscous limit is the one controlling the

actually used time step, this leads to a smaller overall time step and as a result also to a longer

simulation: the wall clock time was 37 hours and 25 minutes.

Next, we investigate the effect of using implicit-explicit Runge–Kutta methods for this

parameter setting.

7.3.6.2 IMEX Time Integration
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         ratio of time step sizes: 3.3, RaTStar:5.0e+05, gamma=0.2400

taken time step

mean of taken time step: 5.71e-07

tsr from fluid velocity

tsr from viscosity: 1.76e-07
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Figure 7.12: Evolution of time step size for Pr= 2. Time integration was performed with implicit
integration of diffusive and viscous terms.

While the simulation shown in figure 7.12 shows a slight advantage of using implicit inte-

gration for diffusive and viscous terms, the increase in the time step is much smaller than was

hoped for. The number of time steps needed with IMEX was 53779 steps, which is only 47% of

time steps that were needed for the explicit integration. But the wall clock time was with 36

hours and 8 minutes almost the same as with the explicit integration. The likely reason for this

can be seen from figure 7.12: the time step control mechanism had much more work to do than in

the simulations with lower Prandtl number. This means that there have been many occurrences

of two-point instabilities and the time step had to be repeated a significant number of times. This

is a lot of wasted computational effort and explains why the accepted time steps needed such a

long computational time.
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We now further increase the Prandtl number to investigate if this behavior persists.

7.3.7 Increasing the Prandtl Number: Pr= 3
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Figure 7.13: Time step evolution for Pr= 3. Time integration was performed with SSPRK(3,2). It
was aborted after 70 hours of runtime. At that point it had reached 0.0371 thermal diffusion time
scales.

The results can be found in figures 7.13 and 7.14 . This is the first simulation setting where

the threshold of 70 hours which we have set for the wall clock time was reached and thus the

simulation was aborted prematurely. Here, primarily the overall simulation time in terms of

thermal diffusion times lets us decide on which time integration scheme performed better. The

reason why the simulations take longer for increased Prandtl numbers is that we are decreasing

the maximally allowed time step (6.12), i.e.,

∆tvisc = cdiff
min(∆x2,∆y2,∆z2)

Pr
,

which leads to smaller time step limits, the larger the Prandtl number is chosen.

As a matter of fact, both the viscous as well as the diffusive time step limits are far below the

advective time step limit that is reached when convection sets in. Because the simulation was

stopped after a runtime of 70 hours, we cannot compare the wall clock times, the total number of

steps and so on as we did for the simulations above. Instead, we focus on the time in thermal

141



CHAPTER 7. NUMERICAL EXPERIMENTS WITH IMEX SSP2(2,2,2)

0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040

runtime in thermal diffusion time scales

10-7

10-6

10-5

10-4

10-3

10-2

si
ze

 o
f 

ti
m

e
 s

te
p
 i
n
 t

h
e
rm

a
l 
d
if
fu

si
o
n
 t

im
e
 s

ca
le

s
Pr=3.00, Le=0.1, Rrho=0.1, RaT=1.7e+05, 

         scheme: VISC_IMEX, total time steps taken: 107213, wallclocktime: 2 days, 21:59:12 
         ratio of time step sizes: 3.3, RaTStar:5.0e+05, gamma=0.2400
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Figure 7.14: Evolution of time step size for Pr= 3. Time integration was performed with implicit
integration of diffusive and viscous terms. It was aborted after 70 hours of runtime. At that point
it had reached 0.0399 thermal diffusion time scales.

diffusion time scales that has been reached during the wall clock time of 70 hours: 0.0371 for the

explicit SSPRK(3,2) scheme and 0.0399 for IMEX SSP2(2,2,2). This means that using IMEX does

have an advantage in simulations with high Prandtl number. It was able to achieve 1.07 times

more thermal diffusion time scales in 70 hours than the explicit scheme.

The mean of the actually used time step is again 3.3 times higher than the viscous time step

limit which solidifies our assumption that this limit is set by the specific choice of the IMEX

method.

We perform one more simulation with Pr= 7, the approximate Prandtl number of water.

7.3.8 Increasing the Prandtl Number: Pr= 7

This is the last simulation in our set of highly-resolved simulations. The results can be found in

figures 7.15(a) and 7.15(b). As could be expected from the simulation with Pr= 3 the wall clock

time threshold of 70 hours leads to an abortion of these simulations as well because of the further

reduced time step limit. Again, we compare the simulations by comparing the simulated time in

thermal diffusion time scales: explicit integration reached 0.0172 thermal diffusion time scales

and VISC_IMEX reached 0.0188 thermal diffusion time scales. This time, integration with IMEX

142



7.3. TWO-DIMENSIONAL EXPERIMENTS

0.000 0.005 0.010 0.015 0.020 0.025 0.030

runtime in thermal diffusion time scales

10-8

10-7

10-6

10-5

10-4

10-3

10-2

si
ze

 o
f 

ti
m

e
 s

te
p
 i
n
 t

h
e
rm

a
l 
d
if
fu

si
o
n
 t

im
e
 s

ca
le

s

Pr=7.00, Le=0.1, Rrho=0.1, RaT=7.1e+04, 
         scheme: SSP32, total time steps taken: 229630, wallclocktime: 2 days, 21:59:51, 

 RaTStar:5.0e+05

taken time step

tsr from fluid velocity

tsr from viscosity: 7.50e-08

tsr from diffusion: 5.25e-07

(a) Time integration performed with SSPRK(3,2).
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(b) Time integration was performed with implicit integration of diffusive and viscous terms.

Figure 7.15: Evolution of time step size for Pr= 7. The simulations have been aborted after 70
hours of runtime.
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was able to simulate a 1.09 times larger interval in time simulated time than explicit integration.

The mean of the actually used time step is again 3.3 times higher than the viscous time step

limit which further solidifies our assumption that this limit is set by the specific choice of the

IMEX method.
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Pr method ratio of time steps wall clock time

0.01 DIFF_IMEX, γ= 0.24 47.3 06:06:42
0.01 DIFF_IMEX, γ= 0.245 95.9 05:55:23
0.01 DIFF_IMEX, γ= 0.2475 100 05:57:47
0.01 VISC_IMEX, γ= 0.24 47.9 07:36:40
0.01 VISC_IMEX, γ= 0.245 106.6 07:18:25
0.01 VISC_IMEX, γ= 0.2475 199.8 07:20:39

Table 7.2: Results from the simulations with increased γ for Pr= 0.01.

7.4 Increasing the γ Factor of the SSP IMEX Scheme

It has been mentioned in section 6.2.2 that the value of γ has been chosen because F. Kupka

et al., (2012) found it to be the most efficient time integrator for their applications. In our group,

for simulations of semiconvection, γ= 0.24 yielded the best integrator. The situation is different

when looking at simulations of Cepheids. Here, a larger value of γ (and with that a larger stability

region) was more suitable (see Happenhofer, 2014).

To determine if increasing γ is of any use in our simulations, we repeat the simulations

for Prandtl numbers 0.01, 1 and 7 for higher values of γ, namely γ= 0.245 and γ= 0.2475 and

investigate if the time steps obtained by the prior experiments can be enhanced by the use of a

higher γ.

7.4.1 Increasing γ for Pr= 0.01

We repeat the simulations from section 7.3.5 with γ = 0.245 and γ = 0.2475. The results for

DIFF_IMEX are shown in figure 7.16, the results for VISC_IMEX are shown in figure 7.17 and

table 7.2.

7.4.1.1 Effect on the Size of the Time Step Actually Taken

We see that an increase of γ leads to a significant increase of the actual time step. While for

γ= 0.24 DIFF_IMEX reached its stability limit (fig 7.16(a)) with a ratio of the average taken time

step over the time step limit from diffusion of 47.3, for γ= 0.245 the ratio increased to 95.9 which

is almost as good as the viscous limit allows for this parameter setting. A further increase of γ

to 0.2475 yields an actual time step which is limited by viscosity and no two-point instabilities

occur at all.

For VISC_IMEX the effect is even more pronounced because there is no upper limit from

the viscosity time scale. For γ= 0.24 VISC_IMEX was limited by the stability of DIFF_IMEX

(fig 7.17(a)). Because the stability region of DIFF_IMEX increases when increasing γ, we see a

further increase of the time step when using VISC_IMEX with γ= 0.245 (fig 7.16(c) ). The time

step with IMEX methods is 106.6 times as large as the time step with explicit methods.
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(a) γ= 0.24

A further increase of γ to the value 0.2475 (fig 7.17) even leads to a time step which is 199.8

times as large as the time step employed with the explicit method. It can be assumed that

the time step would increase even further if the fluid time scale would not inhibit any further

increase.

7.4.1.2 Effect on the Wall Clock Time

The effects that increasing γ has on the wall clock time are more ambivalent. For both DIFF_IMEX

and VISC_IMEX there is a slight decrease of the wall clock time when using γ= 0.245 but then

a tiny increase in wall clock time when increasing γ further to 0.2475. The reason for why

increasing γ (and thus the time step actually taken) leads to surprisingly small changes in wall

clock time is discussed in section 7.6.3.
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Figure 7.16: Comparison of a modification of γ on the size of the time step for Pr = 0.01. Time
integration was performed with DIFF_IMEX.
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Figure 7.17: Comparison of a modification of γ on the size of the time step for Pr = 0.01. Time
integration was performed with VISC_IMEX.
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7.4.2 Increasing γ for Pr= 1

Here, we repeat the SSPRK(3,2) and VISC_IMEX simulations from section 7.3.1 with γ= 0.245

and γ= 0.2475. The results are shown in figure 7.18.
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7.4.2.1 Effect on the Size of the Time Step Actually Taken

We see that an increase of γ only has a minuscule effect on the average time step actually taken.

For each value of γ, there is a large amount of two-point instabilities. No value of γ was able to

increase the stability of the method in a way that it did in the simulations with Pr = 0.01. For

γ = 0.24 VISC_IMEX reached its stability limit (fig 7.18(a)) with a ratio of the average taken

time step over the time step limit from diffusion of 3.3, for γ= 0.245 the ratio increased to 3.4

and a further increase of γ to 0.2475 led to a time step ratio of 3.5. This is in stark contrast with

Pr= 0.01 where the time step could be increased by a factor of 100. We discuss the likely reason

for that in section 7.6.3.

7.4.2.2 Effect on the Wall Clock Time

The effect on the wall clock time is more pronounced than for Pr = 0.01. While the simulation

with γ = 0.24 took 19 hours and 29 minutes to complete, the simulation with γ = 0.2475 only
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Figure 7.18: Comparison of a modification of γ on the size of the time step for Pr = 1. Time
integration was performed with VISC_IMEX.
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Pr method ratio of time steps wall clock time

1 VISC_IMEX, γ= 0.24 3.3 19:29:25
1 VISC_IMEX, γ= 0.245 3.4 18:26:47
1 VISC_IMEX, γ= 0.2475 3.5 18:02:05

Table 7.3: Results from the simulations with increased γ for Pr= 1.

needed 18 hours and 2 minutes. While this is not a drastic increase it is sufficient to warrant the

use of a higher value of γ for simulations with a Prandtl number of 1. A possible reason for this is

that a higher stability of the method leads to fewer two-point oscillations. This in turn leads to

fewer time step rejections.

7.4.3 Increasing γ for Pr= 7

Here, we repeat the SSPRK(3,2) and VISC_IMEX simulations from section 7.3.8 with γ= 0.245

and γ= 0.2475. The results are shown in figure 7.19 and table 7.4

7.4.3.1 Effect on the Size of the Time Step Actually Taken

We see that an increase of γ only has a minuscule effect on the average time step actually taken.

For each value of γ, there is a large amount of two-point instabilities. No value of γ was able to

increase the stability of the method in a way that it did in the simulations with Pr = 0.01. For

γ= 0.24 VISC_IMEX reached its stability limit (fig 7.19(a)) with a ratio of the average taken time

step over the time step limit from diffusion of 3.3, for γ= 0.245 the ratio increased to 3.4 and a

further increase of γ to 0.2475 led to a time step ratio of 3.5. These are exactly the same values

as for the simulations with Pr= 1.

7.4.3.2 Effect on the Wall Clock Time

For the simulation with Pr= 7 we cannot measure the wall clock time because the simulations

have been aborted after a runtime of 72 hours. Instead, we measure the effect of increasing γ

with the simulated time that has been reached in a wall clock time of 72 hours. We see that

similarly to the simulation with Pr= 1 that the highest γ yields the most efficient simulation for

Pr = 7. This is likely again due to fewer time step rejections as a consequence of an enhanced

stability due to a larger value of γ.

Next, we investigate the behavior of the IMEX routines for three dimensions. Before we can

do that, we reduce the resolution quite a bit, however.
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Pr method ratio of time steps simulated time
[thermal diff. time scales]

7 VISC_IMEX, γ= 0.24 3.3 1.876e-2
7 VISC_IMEX, γ= 0.245 3.4 1.999e-2
7 VISC_IMEX, γ= 0.2475 3.5 2.023e-2

Table 7.4: Results from the simulations with increased γ for Pr= 7.
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Figure 7.19: Comparison of a modification of γ on the size of the time step for Pr = 7. Time
integration was performed with VISC_IMEX.
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7.5 Three-Dimensional Experiments

7.5.1 Reducing the Resolution to Prepare for 3D Simulations

Simply adding a third dimension to our 2D grid of 800×800= 6.40×105 grid points and thereby

creating a grid consisting of 800×800×800= 5.12×108 grid points is not possible with our limited

resources. We have to reduce the number of grid points in order to get a manageable amount of

computational work. The clearest advantage of using implicit integration for diffusive and viscous

terms has been observed in the parameter setting with Pr= 0.1. The achieved acceleration was

2.3. We run a 2D simulation with a much reduced resolution now to investigate whether the

results so far hold with a decreased resolution.

In the simulations with 800×800 grid points, we had 20 points in the thermal boundary

layer and 6 points in the helium boundary layer in x-direction. We now relax this condition

and only require 10 points to be in the thermal boundary layer. This results in 3 points in the

helium boundary layer in x-direction. The resolution in y-direction is half of that because of the

rectangular structure of the grid (see F. Zaussinger, 2010, for an explanation as how to determine

the number of points in a boundary layer in ANTARES). We now run a simulation with 272×272

grid points on 8×8 processors, once for each time integration routine.
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Figure 7.20: Time step evolution for Pr= 0.1 and a reduced resolution of 272×272 grid points.
Time integration was performed with SSPRK(3,2).
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The time step evolution for the explicit SSPRK(3,2) can be found in figure 7.20 . We see that

the result is very similar to the highly resolved simulations with the same parameters. The time

step actually taken is limited by diffusion because that is the most restrictive limit on the time

step. The reason for the time step limits being larger than in the highly resolved cases is that

the spatial resolution is one of the factors entering the equations (6.9) - (6.12). So a low spatial

resolution also permits a low temporal resolution. This accelerates the simulation: instead of

needing almost 19 hours on 256 cores, this simulation only needed half an hour on 64 cores. This

is exactly what we want for the three-dimensional simulations and the reason why we reduced

the resolution in the first place. It also demonstrates a good scaling (in the weak sense) of the

entire computational approach.

Figure 7.21 shows the results for DIFF_IMEX and VISC_IMEX. Qualitatively, the results are

the same as in the highly resolved simulation: using implicit integration just for diffusion leads

to an increased time step, limited by viscosity. Using implicit integration for diffusive and viscous

terms yields a larger increase of the actually used time step until the time step control detects

two-point instabilities and reduces the time step again.

Both methods lead to stable simulations so we think that a resolution of 272 points per

dimension suffices for three dimensional experiments.
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(a) Implicit integration for diffusive terms only.
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(b) Implicit integration for diffusive and viscous terms.

Figure 7.21: Time step evolution for Pr= 0.1 and a reduced resolution of 272×272 grid points.
Time integration was performed with DIFF_IMEX and VISC_IMEX.
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7.5.2 The Results for Three Dimensions

We use the same parameters for the 3D experiments as we did for the 2D experiment with

reduced resolution. The parameters can be found in table 7.5 .

Pr Le Rρ RaT Ra∗
T

0.1 0.1 0.1 5.00E+06 5.00E+05

Table 7.5: Simulation parameters for the 3D experiments. The simulations have been performed
with SSP32, DIFF_IMEX and VISC_IMEX. The resolution was 272×272×272 in each case. The
simulations have been performed on 8×8×8 cores on the VSC2.

7.5.2.1 Explicit Time Integration
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Figure 7.22: Time step evolution for Pr= 0.1 in three dimensions with a resolution of 272×272×
272. Time integration was performed with SSPRK(3,2).

We see from figure 7.22 that the result for the three dimensional experiments is very close to

the result of the two dimensional experiments with reduced resolution in section 7.5.1.

To reach 0.03 diffusion time scales, ANTARES needed 7345 steps which is 324 steps more

than in the 2D case. The simulation was completed after 40 hours. In contrast, the 2D simulation

with the same parameters was completed after 32 minutes.
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Next, we investigate the benefit of using implicit-explicit Runge–Kutta methods in three

dimensions.

7.5.2.2 IMEX Time Integration

The results for the IMEX runs are shown in figure 7.6. One can notice at once that the qualitative

evolution of the time step looks almost exactly as in the two dimensional run with reduced

resolution. This is a very good result because it shows that the IMEX schemes are correctly

implemented in three dimensions. It also demonstrates the correctness of the multigrid solver

that has been developed as part of this thesis because that solver was used in these simulations

to solve the elliptic equation arising from the implicit integration. Because the results are so

similar to the 2D simulations, almost the same can be said in summary: using DIFF_IMEX leads

to an increased time step, limited by viscosity. Using VISC_IMEX yields a larger increase of the

actually used time step until the time step control detects two-point instabilities and reduces the

time step again.
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(a) Implicit integration for diffusive terms only.
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(b) Implicit integration for diffusive and viscous terms.

Figure 7.23: Evolution of time step size for Pr = 0.1 in three dimensions with a resolution of
272×272×272. Time integration was performed with IMEX methods.
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7.5.3 A Few Words on the Scaling Properties of the 3D Helmholtz Solver

Taking a short detour from our investigation of the IMEX methods, we can use the simulations

performed to investigate the scaling properties of the solver that was developed in part I. The 2D

simulations used the solver by Happenhofer, (2014) while the 3D simulations used our solver.

This gives us a good opportunity to estimate the overhead that is incurred by the 3D solver

compared to the 2D solver.

To obtain a baseline for comparison we first calculate the workload per processor W , i.e., the

number of grid points divided by the number of processors. For the two- and three-dimensional

case we have, respectively,

W2d = number of grid points in 2D
number of processors in 2D

= 2762

64
= 73984

64
= 1156

W3d = number of grid points in 3D
number of processors in 3D

= 2763

512
= 20123648

512
= 39304.

(7.1)

We see that W3d/W2d = 34 which means that – neglecting overheads like communication –

performing simulations in three dimensions should be 34 times slower than performing the same

simulations in two dimensions. From looking at the wall clock times actually achieved in table

7.6 we see that 3D simulation with explicit time integration is 75.6 times slower than the 2D

simulation with explicit time integration which suggests an overhead of the explicit solver (plus

one implicit equation for the pressure correction in the Boussinesq approximation) of about 120%.

Now, to make the statement “our developed Helmholtz solver scales well”, we would need to

achieve an overhead in the IMEX simulations with is lesser or equal to 120%. As we see from

table 7.6 this is indeed the case: the 3D simulations with IMEX are only a factor of about 44 times

slower than the 2D simulations. This is much less than in the explicit case when the Helmholtz

solvers are not used (which is also subject to overhead due to communication and the Poission

equation for the pressure which is solved each time step).

This leads us to solidify our conclusion in section 4.4 that the scaling of the 3D Helmholtz

Method and Dimensionality Actual Wall Clock Times Normalized WCT Overhead to 2D

2D explicit 00:31:43 1
3D explicit 40:00:20 75.7 2.2

2D DIFF_IMEX 00:33:53 1
3D DIFF_IMEX 24:48:22 43.9 1.3

2D VISC_IMEX 00:42:34 1
3D VISC_IMEX 31:46:14 44.8 1.3

Table 7.6: An overview of wall clock times for 2D and 3D simulations and different time integration
routines. Grid points in 2 dimensions: 2762, grid points in 3 dimensions: 2763, MPI processes in 2
dimensions: 64, MPI processes in 3 dimensions: 512 .
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solver is very good, even when using it for real world applications instead of analytical toy

problems.
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7.6 Discussion of the Results

7.6.1 Comparing the Size of the Time Steps

In order to investigate the mathematical properties of the IMEX methods we now take a look at

the size of the actual time steps that have been achieved with each method. To this end, we first

look at the size of the time steps when using the explicit SSPRK(3,2) method.

7.6.1.1 Time Steps with explicit SSPRK(3,2)
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Figure 7.24: A plot of the size of time steps in dependence of the Prandtl number when using
SSPRK(3,2). Also shown are the diffusive and viscous limits for the corresponding Prandtl
numbers. It turns out that the actual time step is the minimum of the diffusive and the viscous
limit.

We can see in in figure 7.24 that the time step actually taken when using explicit integration

is indeed the minimum of the diffusive and the viscous limits. For Prandtl numbers Pr< 1 the

diffusive time scale is the most stringent one and for Pr > 1 the viscous time scale is the most

stringent one. This is in accordance to theory: in explicit methods, the smallest time scales

determine the time step actually taken.

Next, we investigate which impact the use of DIFF_IMEX has on the time step actually taken.

7.6.1.2 Time Steps with DIFF_IMEX

The situation when using implicit integration for the diffusive terms can be seen in figure 7.25.

We observe that the time step actually taken when using implicit integration for diffusive terms
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Figure 7.25: A plot of the size of time steps in dependence of the Prandtl number when using
implicit integration for diffusive terms only and a γ of 0.24. Also shown are the diffusive and
viscous limits for the corresponding Prandtl numbers. The actual time step is larger than the
diffusive limit for every Prandtl number. The size of the time step is limited by the viscous
time scale for Prandtl numbers up to 0.1. Somewhere between 0.01 and 0.03, the stability of
DIFF_IMEX puts a limit on the achievable time step.

is above the limit posed by diffusive processes for every Prandtl number we used diffusive IMEX

for. For small Prandtl numbers (Pr< 0.1) the actual time step is limited by the intrinsic stability

of the IMEX SSP2(2,2,2),γ= 0.24 scheme, i.e., two-point oscillations occur and limit a further

increase of the time step actually taken. As we have seen in section 7.4, if we increase γ from

0.24 to 0.245 or 0.2475 the size of the time step increases even more because the stability region

is enlarged by increasing γ and hence, no two-point instabilities (and thus the stability of the

method) limit the time step but the viscous limit.

When increasing the Prandtl number, one reaches the point where the viscous time step

limit becomes important. This happens at around Pr= 0.03 in figure 7.25. From this point on, an

increase of the Prandtl number leads to a decrease in the time step actually taken because the

viscous limit becomes more stringent with increasing Prandtl number.

7.6.1.3 Time Steps with VISC_IMEX

The relationship of the time step actually taken and the Prandtl number when using implicit

integration for diffusive and viscous terms is shown in figure 7.26. For VISC_IMEX, there is

only the advective time scale as an externally imposed limit on the time step. What this means

is that the maximally possible time step for VISC_IMEX stems purely from the properties of

164



7.6. DISCUSSION OF THE RESULTS

the underlying Runge–Kutta scheme. This allows us to investigate the behavior of the scheme

directly.
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Figure 7.26: A plot of the size of time steps in dependence of the Prandtl number when using
implicit integration for both diffusive and viscous terms. The actual time step is above the
diffusive limit for every Prandtl number.

For Prandtl numbers Pr ∈ {0.01,0.03} the method shows the same behavior as when using

DIFF_IMEX, i.e, the time step actually used is limited by the overall stability of the IMEX

SSP2(2,2,2) method.

For Prandtl numbers larger than about 0.1, the viscous IMEX method permits a consistent

improvement of time steps about 3 times larger for each Prandtl number. This behavior is an in-

dicator for the occurrence of an intrinsic limit of VISC_IMEX SSP2(2,2,2). A possible explanation

is an insufficient damping property of the IMEX method which becomes apparent when the time

step actually taken is about 3 times as large as the viscous limit allows.

7.6.2 Comparing the Achieved Acceleration

After having investigated the mathematical properties of the method, we now want to answer

the question that is most relevant to users of ANTARES: based on these experiments, which time

integration scheme should be used when performing simulations with a certain Prandtl number?

To answer that question, we have plotted the acceleration in terms of wall clock times vs. the

Prandtl number for each time integration scheme in figure 7.27. We only have a very limited

number of data points available and the connecting lines between the data points are only there
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to help visualizing the relationship between acceleration and Prandtl number. The numerical
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Figure 7.27: Plot of the achieved accelerations in two dimensions in dependence of the Prandtl
number for the used time integration methods. Simulation parameters are Le = 0.1,Rρ =
0.1,Ra∗

T = 5×105. The resolution is 800×800 grid points. This is a plot of table 7.7

values for the accelerations can be found in table 7.7.

acceleration for
Pr DIFF_IMEX VISC_IMEX

0.01 3.18 2.48
0.03 2.95 2.48
0.1 2.41 2.30
0.5 1.02 1.47
1 0.55 0.65
2 n/a 1.04
3 n/a 1.07
7 n/a 1.09

Table 7.7: Achieved accelerations in two dimensions for different Prandtl numbers. Simulation
parameters are Le= 0.1,Rρ = 0.1,Ra∗

T = 5×105. The resolution is 800×800 grid points. These are
the numerical results for figure 7.27.
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7.6.2.1 Low Prandtl Numbers

We observe the following for the acceleration in dependence of the Prandtl number: for low

Prandtl numbers, using the IMEX method yields a significant boost in terms of wall clock times.

VISC_IMEX gives an acceleration of about 2.5 whereas DIFF_IMEX even gives us an acceleration

of about 3. This makes sense because the limiting time scale for Pr= 0.01 is the diffusive time

scale and both DIFF_IMEX as well as VISC_IMEX are limited by the diffusive time scale (see

figures 7.10(a) and 7.10(b)) due to the finite stability region of IMEX2(2,2,2) at γ= 0.24. In this

case, VISC_IMEX does not have any advantages over DIFF_IMEX. The higher computational

cost of the method leads to an inferior acceleration for low Prandtl numbers in comparison to

DIFF_IMEX. For Pr= 0.03 the situation is similar

For Pr= 0.1 the situation is a little bit more complicated. While initially, the diffusive time

scale is limiting the time step, DIFF_IMEX alleviates this restriction. However, when the time

step is increased tenfold, the viscous time limit prevents further acceleration. That is why the

acceleration for DIFF_IMEX is not as large for the Pr= 0.1 simulation as it is for the Pr= 0.01

simulation. For VISC_IMEX, the viscous time step limit only sets in once the stability limit

of the IMEX2(2,2,2) method at γ= 0.24 is reached which is not the case for this problem with

Pr = 0.1. So the actual time step is further increased. In terms of acceleration, when using a

Prandtl number of Pr ∈ [0.01,0.1] VISC_IMEX is not able to beat DIFF_IMEX, however. The

necessary solution of 2 additional elliptic equations in each stage of the Runge–Kutta scheme is

too expensive.

7.6.2.2 Medium Prandtl Numbers

Once the viscous time step limit becomes small enough (i.e., the Prandtl number sufficiently high),

VISC_IMEX shows an advantage over DIFF_IMEX. For Pr = 0.5, the latter has no significant

advantage over the explicit SSPRK(3,2) scheme whereas VISC_IMEX leads to an acceleration of

about 1.5. Somewhere between Pr= 0.5 and Pr= 1, the acceleration of VISC_IMEX drops below

1, too, and for a Prandtl number of 1, the explicit SSPRK(3,2) is superior to both IMEX methods.

7.6.2.3 High Prandtl Numbers

For Prandtl numbers above 2, VISC_IMEX yields a small improvement over the explicit scheme.

It is rather negligible, however, especially for simulations of semiconvection, where one is usually

interested in the advective part of the simulations, i.e., the time where convection has already

set in. In these parts, SSPRK(3,2) has a significant advantage over the IMEX schemes because of

its higher advective Courant numbers and lower computational cost.

Of course, these results are only a small step towards a thorough investigation with many

more numerical experiments in order to generate more data and to solidify the first results we

have found. But despite the relative lack of data, we can observe a trend for the acceleration in
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dependence of the Prandtl number. And since this trend is in accordance with theory, we have no

reason not to believe the results.

An investigation of achievable acceleration as a function of other parameters as e.g. the Lewis

number of Ra∗
T can be the subject of future research.

7.6.3 Discussion on the Influence of γ

Pr method ratio of time steps wall clock time OR runtime in dts

0.01 DIFF_IMEX, γ= 0.24 47.3 06:06:42
0.01 DIFF_IMEX, γ= 0.245 95.9 05:55:23
0.01 DIFF_IMEX, γ= 0.2475 100 05:57:47
0.01 VISC_IMEX, γ= 0.24 47.9 07:36:40
0.01 VISC_IMEX, γ= 0.245 106.6 07:18:25
0.01 VISC_IMEX, γ= 0.2475 199.8 07:20:39

1 VISC_IMEX, γ= 0.24 3.3 19:29:25
1 VISC_IMEX, γ= 0.245 3.4 18:26:47
1 VISC_IMEX, γ= 0.2475 3.5 18:02:05

7 VISC_IMEX, γ= 0.24 3.3 1.876e-2
7 VISC_IMEX, γ= 0.245 3.4 1.999e-2
7 VISC_IMEX, γ= 0.2475 3.5 2.023e-2

Table 7.8: Overview of the effect that γ has on the ratio of the average time step actually used in
IMEX simulations to one used in simulations with explicit time integration. For simulations with
Pr= 7 the simulations have been aborted at a wall clock time of 72 hours. For that reason, the
runtime in thermal diffusion time scales (dts) is given instead of the wall clock times.

7.6.3.1 The Influence of γ on the Size of the Time Step

For simulations with a low Prandtl number, we have seen a clear effect of γ on the stability of

the IMEX scheme and hence the achievable time step. The average time step actually used with

Pr= 0.01 and γ= 0.2475 was 4.2 times as large as the one used with γ= 0.24.

This effect becomes much less pronounced when increasing the Prandtl number, however. For

both the simulations with Pr= 1 and Pr= 7 the time step ratio for γ= 0.2475 was only 1.06 times

as large as the time step ratio when using γ= 0.24.

This solidifies our conclusion about the IMEX SSP2(2,2,2) method:

• for low values of the Prandtl number, the method yields good results and the achievable

time step is limited by the stability region of the method. Increasing the stability region (by

choosing a larger γ) yields larger time steps.
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• for high values of the Prandtl number, the method yields only small improvements of the

average time step actually taken. A possible explanation is that the method might have

insufficient damping properties.

One thing to take note of is that the ratio of the the time step actually used to the diffusive

time step limit can be significantly increased by changing γ.

7.6.3.2 The Influence of γ on the Wall Clock Times

For productions runs, when simulations can take several months to complete, the value one tries

to minimize is the wall clock time. Our results show that for complex applications with complex

numerical codes, it is often not the method with the most favorable mathematical property that

emerges as the optimal method. One must rather account for many inter-dependencies which are

present in a numerical code.

Seeing the increase in the size of the time step for the simulations with a small Prandtl

number one could assume that this would lead to significant improvements in the wall clock

times, too. However, the wall clock times hardly differ for these different methods. How can this

be explained? The reason for this is probably twofold:

• the larger the time step actually taken is, the worse the initial guess for the multigrid

correction is, i.e., the multigrid solver needs more iterations to converge and takes a longer

time to run.

• The larger the time step actually taken is, the smaller ξ(x) in (6.36) becomes. ξ(x) has major

implications for the numerical efficiency of the multigrid solver, however: the larger ξ(x) is

the faster the solver converges.

The efficiency of the solver for the elliptic equations is of crucial importance in these appli-

cations: it is called 8 times per Runge–Kutta time step for 2D VISC_IMEX simulations. The

simulation with Pr= 7 and γ= 0.2475 performed 116591 time steps, which gives 932728 calls to

the multigrid solver. It is understandable that even a small improvement in its efficiency can

have a large impact on the overall performance.

7.7 Summary

In this section, we have compared the performance of the explicit SSPRK(3,2) method with

two versions of the implicit-explicit SSP2(2,2,2),γ = 0.24 method: one version where we have

used implicit integration for diffusive terms only (named “DIFF_IMEX”) and one version where

we have used implicit integration for diffusive and viscous terms (named “VISC_IMEX”). The

performance measures have been the acceleration (i.e., the ratio of wall clock times of the
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computations) and the size of time steps taken. The latter performance measure is of theoretical

interest only.

While it is mathematically interesting to find out that VISC_IMEX consistently gives us a time

step about three times larger than the viscous time step limit for Prandtl numbers above ≈ 0.1, it

is more important to know which time integration scheme leads to the best performance when

using ANTARES. This is measured by the ratio of wall clock times. Based on the measurements

depicted in figure 7.27, we propose to use the following time integration method in dependence of

the Prandtl number:

• for Prandtl numbers . 0.1: use DIFF_IMEX. Since the time step is increased all the way

up to the stability limit of the SSP2(2,2,2),γ= 0.24 method, there is no further increase in

acceleration possible by using VISC_IMEX.

• for Prandtl number 0.1.Pr. 0.8: use VISC_IMEX. In this parameter regime, the viscous

time step limit is sufficiently low for VISC_IMEX to have a significant effect on the acceler-

ation. The time step is augmented sufficiently to offset the increased computational cost of

VISC_IMEX compared to DIFF_IMEX.

• for Prandtl numbers & 0.8: use explicit SSPRK(3,2). While VISC_IMEX does show a small

acceleration, it is slower than the explicit scheme once the simulation reaches the advective

phase. Since simulations with ANTARES are primarily concerned with the advective phase,

it can be assumed that the advective phase will cover a significant part of the overall

simulation runtime. The very small acceleration that IMEX leads to in these parameters

regime does not warrant a use of it in the overall simulation.

Of course, these results should be checked for the parameter setting in question when planning

to use IMEX in a long simulation. It could very well be the case that different values of Le,Rρ

or RaT change the results that we have obtained here. A thorough investigation of different

parameter regimes can be the subject of further research.

We have also investigated the impact of an increase of γ for a small subset of the simulations

with the following results:

• for low values of the Prandtl number, increasing γ leads to significantly larger time steps

which led us to conclude that the time step actually taken when using IMEX SSP2(2,2,2)

is limited by its stability region for low values of Pr. The wall clock time could not be

reduced by a substantial amount, however, because too large time steps lead to unfavorable

numerical properties for the multigrid solver

• For high values of the Prandtl number, increasing γ yields only small improvements of the

average time step actually taken. A possible explanation is that the method might have

insufficient damping properties for large values of Pr. The wall clock time, however, could

be reduced by a small amount when choosing a large value for γ.
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This concludes part II. We have successfully developed and tested a strong-stability preserving

implicit-explicit Runge–Kutta method for viscous flows. We will summarize this part of the thesis

in the next chapter.
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SUMMARY OF PART II

In this part we have started from the following problem statement: each time scale of physical

processes must be resolved when using explicit time integration methods for the numerical

solution of the governing equations for physical systems. The scales of the various processes

can differ by substantial amounts, sometimes several orders of magnitude. This poses stringent

restrictions on the time step which can be taken to solve the equations numerically. Over time,

different methods to deal with these restrictions have been implemented into ANTARES, one

example being implicit-explicit (IMEX) Runge–Kutta methods for diffusively limited compressible

flows. When integrating the governing equations with these IMEX methods, the processes with

the most stringent time step restrictions are integrated implicitly, whereby the restriction on the

overall time step is alleviated and much larger time steps can be taken. Prior to this thesis, there

was the possibility in ANTARES to use IMEX methods with diffusive processes in compressible

flows. We extended the potential use of these diffusive IMEX methods to incompressible flows

and developed new methods for flows where the viscous time scale is the most stringent one.

For the new viscous methods, we haven chosen the IMEX SSP2(2,2,2),γ= 0.24 method for

diffusive flows of F. Kupka et al., (2012) as our starting point and applied their formalism to the

equations of fluid dynamics in the Boussinesq approximation. This resulted in two new IMEX

methods for ANTARES:

• an IMEX SSP2(2,2,2),γ= 0.24 Runge–Kutta method for incompressible flows in the Boussi-

nesq approximation, where the diffusive terms of the Navier–Stokes equations are inte-

grated implicitly and the viscous terms are integrated explicitly (called DIFF_IMEX in this

thesis)

• and an IMEX SSP2(2,2,2),γ= 0.24 Runge–Kutta method for incompressible flows in the

Boussinesq approximation, where both the diffusive and viscous terms of the Navier–Stokes
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equations are integrated implicitly (called VISC_IMEX in this thesis).

After having implemented these methods into the ANTARES framework we have run simulations

for Prandtl numbers 0.01, 0.03, 0.1, 0.5, 1, 2, 3 and 7 with the explicit SSPRK(3,2) method

and with the two new versions of the implicit-explicit SSP2(2,2,2),γ= 0.24 method to establish

whether the time step restrictions can be alleviated effectively and how the new methods affect the

wall clock times of the simulations for different regimes of the Prandtl number. The performance

measures have been the acceleration (i.e., the ratio of wall clock times of the computations) and

the size of time steps taken. As a result we came up with the following suggestions for the use of

IMEX methods in the Boussinesq approximation:

• for Prandtl numbers . 0.1: use DIFF_IMEX. Since the time step is increased all the way

up to the stability limit of the SSP2(2,2,2),γ= 0.24 method, there is no further increase in

acceleration possible by using VISC_IMEX.

• for Prandtl numbers 0.1.Pr. 0.8: use VISC_IMEX. In this parameter regime, the viscous

time step limit is sufficiently low for VISC_IMEX to have a significant effect on the acceler-

ation. The time step is augmented sufficiently to offset the increased computational cost of

VISC_IMEX compared to DIFF_IMEX.

• for Prandtl numbers & 0.8: use explicit SSPRK(3,2). While VISC_IMEX does show a small

acceleration, it is slower than the explicit scheme once the simulation reaches the advective

phase. Since simulations with ANTARES are primarily concerned with the advective phase,

it can be assumed that the advective phase will cover a significant part of the overall

simulation runtime. The very small acceleration that IMEX leads to in these parameters

regime does not warrant a use of it in the overall simulation.

Of course, these results only hold for the parameter setting tested here. It could very well be the

case that different values of Le,Rρ or RaT change the results that we have obtained. A thorough

investigation of different parameter regimes can be the subject of further research.

Additionally, we have repeated a subset of the simulations with a different γ factor of the

IMEX schemes (and thus an increased stability region) to figure out if the use of a more stable

method of time integration enables larger time steps and improved wall clock times. These are

the results:

• for low values of the Prandtl number, increasing γ leads to significantly larger time steps

which led us to conclude that the time step actually taken when using IMEX SSP2(2,2,2)

is limited by its stability region for low values of Pr. The wall clock time could not be

reduced by a substantial amount, however, because too large time steps lead to unfavorable

numerical properties for the multigrid solver.

174



• for high values of the Prandtl number, increasing γ yields only small improvements of the

average time step actually taken. A possible explanation is that the method might have

insufficient damping properties for large values of Pr. The wall clock time, however, could

be reduced by a small amount when choosing a large value for γ.

Although most tests for the time integration routines have been performed in 2D, we have

also made comparisons with the 3D case for which the solver developed in part I was used. Our

tests indicate that the performance of the time integration methods is independent from this and

that the solver developed in part I also has excellent scaling and performnace properties.

In summary, by implementing the SSP implicit-explicit Runge–Kutta method for the Boussi-

nesq approximation we could accelerate the simulations of incompressible flows with ANTARES,

especially in simulations where Pr ≤ 1. In simulations with Pr > 1 the number two-point in-

stabilities became too large and the time step was repeated too often to yield a significant

acceleration. One idea to counter that is the development of three-stage IMEX methods, as

e.g. IMEX SSP2(3,3,2) LPUM, which has proven to have superior properties to similar time

integration schemes in Happenhofer, (2014) and F. Kupka et al., (2012). This can be the topic of

future research.
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RESULTS OF MULTIGRID SOLVER TESTS

In this chapter, we present the exact numerical results of the simulations performed to verify the

accuracy of the multigrid solver. The tables include the following parameters:

• levels: the number of grid levels in the multigrid algorithm,

• Nf: the number of points on the finest grid. Usually, we have the same number of grid

points per direction so that Nf = 503 means a resolution on the fine grid of 50×50×50. The

resolution is specified whenever there are a different number of points per direction.

• Nc: the number of points on the coarsest grid,

• h: the grid spacing in x-direction (usually the same as the grid spacing in y- and z-direction),

• ν1: the number of pre-smoothing steps,

• ν2: the number of post-smoothing steps,

• εfine: the stopping criterion for the multigrid solver,

• εcoarse: the stopping criterion for the conjugate gradient solver on the coarsest grid.

The following entries are present in the tables:

• k: the iteration of the multigrid algorithm,

• ‖e‖(k)
2 : the 2-norm of the error at iteration k, i.e., the difference between the calculated

solution at iteration k, uk, and the exact solution uexact,

• ‖r‖(k)
2 : the 2-norm of the residual at iteration k where the residual is given by r = f − Au

for the linear equations and by r = f − A(u) for the nonlinear equations,

179



APPENDIX A. RESULTS OF MULTIGRID SOLVER TESTS

• ‖rc‖(k)
2 : the 2-norm of the coarse grid residual at iteration k,

• the other entries are combinations of the errors or residuals at different iterations.

A.1 Linear Multigrid

A.1.1 Test Case 1 — Linear Equation with Homogeneous Dirichlet B.C.

These are the results which are discussed in section 4.1.

The problem considered is

−∇· (x∇u(x))+ x u(x)=4x sin(x) sin(y) sin(z)−cos(x) sin(y) sin(z) (A.1)

with the homogeneous Dirichlet boundary conditions

u(0, y, z)=u(2π, y, z)= 0,

u(x,0, z)=u(x,2π, z),

u(x, y,0)=u(x, y,2π).

(A.2)

The exact solution is

u(x, y, z)=sin(x) sin(y) sin(z). (A.3)
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Table A.1: Test case 1 — Results of section 4.1.2.1

levels: 2, Nc = 25, Nf = 503, h = 1.26 ·10−1, ν1 = 2, ν2 = 2

εfine =max(10−10‖r‖(0)
2 ,10−13), εcoarse =max(10−12‖rc‖(k)

2 ,10−13)

k ‖e‖(k)
2 ‖r‖(k)

2 ‖rc‖(k)
2 ‖e(k) − e(k−1)‖2 ‖e‖(k−1)

2 /‖e‖(k)
2 ‖r‖(k)

2 /‖r‖(k−1)
2

0 5.568E+00 1.592E-01

1 1.520E-01 1.050E-01 1.505E-01 5.416E+00 0.0273 0.6595

2 4.790E-03 2.038E-03 1.545E-01 1.472E-01 0.0315 0.0194

3 5.436E-03 5.606E-05 4.376E-03 6.457E-04 1.1348 0.0275

4 5.317E-03 1.925E-06 1.160E-04 1.187E-04 0.9782 0.0343

5 5.316E-03 2.047E-07 4.364E-06 1.513E-06 0.9997 0.1063

6 5.315E-03 3.101E-08 3.707E-07 4.338E-07 0.9999 0.1515

7 5.315E-03 4.833E-09 5.290E-08 5.822E-08 1.0000 0.1559

8 5.315E-03 7.553E-10 8.133E-09 8.806E-09 1.0000 0.1563

9 5.315E-03 1.183E-10 1.266E-09 1.312E-09 1.0000 0.1566

10 5.315E-03 1.857E-11 1.975E-10 1.946E-10 1.0000 0.1570

11 5.315E-03 2.922E-12 3.086E-11 2.875E-11 1.0000 0.1574

convergence after 11 multigrid cycles

mean convergence rate: 0.128

wall clock time: 7 sec
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Table A.2: Test case 1 — Results of section 4.1.2.1

levels: 3, Nc = 25 Nf = 1003, h = 6.28 ·10−2, ν1 = 2, ν2 = 2

εfine =max(10−10‖r‖(0)
2 ,10−13), εcoarse =max(10−12‖rc‖(k)

2 ,10−13)

k ‖e‖(k)
2 ‖r‖(k)

2 ‖rc‖(k)
2 ‖e(k) − e(k−1)‖2 ‖e‖(k−1)

2 /‖e‖(k)
2 ‖r‖(k)

2 /‖r‖(k−1)
2

0 5.568E+00 1.990E-02

1 3.030E-01 5.527E-02 1.793E-02 5.265E+00 0.0544 2.7778

2 1.547E-01 3.957E-03 3.731E-02 1.483E-01 0.5105 0.0716

3 2.179E-02 1.681E-03 2.139E-02 1.329E-01 0.1408 0.4247

4 4.231E-03 2.324E-04 2.700E-03 1.756E-02 0.1942 0.1383

5 2.139E-03 5.968E-05 7.560E-04 2.092E-03 0.5056 0.2568

6 1.188E-03 1.044E-05 1.286E-04 9.509E-04 0.5554 0.1749

7 1.357E-03 2.292E-06 2.910E-05 1.688E-04 1.1421 0.2196

8 1.326E-03 4.367E-07 5.514E-06 3.125E-05 0.9770 0.1905

9 1.331E-03 9.016E-08 1.157E-06 5.720E-06 1.0043 0.2064

10 1.331E-03 1.776E-08 2.277E-07 9.224E-07 0.9993 0.1970

11 1.331E-03 3.588E-09 4.640E-08 1.640E-07 1.0001 0.2020

12 1.331E-03 7.123E-10 9.232E-09 2.832E-08 1.0000 0.1985

13 1.331E-03 1.424E-10 1.856E-09 3.850E-09 1.0000 0.2000

14 1.331E-03 2.831E-11 3.703E-10 6.074E-10 1.0000 0.1988

15 1.331E-03 5.687E-12 7.409E-11 1.206E-10 1.0000 0.2009

16 1.331E-03 1.128E-12 1.471E-11 1.009E-11 1.0000 0.1984

convergence after 16 multigrid cycles

mean convergence rate: 0.234

wall clock time: 98 sec
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Table A.3: Test case 1 — Results of section 4.1.2.1

levels: 4, Nc = 25, Nf = 2003, h = 3.14 ·10−2, ν1 = 2, ν2 = 2

εfine =max(10−10‖r‖(0)
2 ,10−13), εcoarse =max(10−12‖rc‖(k)

2 ,10−13)

k ‖e‖(k)
2 ‖r‖(k)

2 ‖rc‖(k)
2 ‖e(k) − e(k−1)‖2 ‖e‖(k−1)

2 /‖e‖(k)
2 ‖r‖(k)

2 /‖r‖(k−1)
2

0 5.568E+00 2.487E-03

1 4.705E-01 2.854E-02 2.183E-03 5.098E+00 0.0845 11.4744

2 4.912E-01 4.375E-03 6.908E-03 2.078E-02 1.0442 0.1533

3 2.535E-01 3.591E-03 7.910E-03 2.377E-01 0.5161 0.8208

4 1.016E-01 1.693E-03 4.244E-03 1.520E-01 0.4006 0.4715

5 5.303E-02 7.390E-04 1.681E-03 4.853E-02 0.5222 0.4365

6 2.400E-02 3.731E-04 8.989E-04 2.903E-02 0.4525 0.5048

7 1.178E-02 1.736E-04 4.195E-04 1.222E-02 0.4908 0.4654

8 5.256E-03 8.247E-05 1.998E-04 6.521E-03 0.4463 0.4750

9 2.832E-03 3.925E-05 9.627E-05 2.424E-03 0.5388 0.4759

10 1.043E-03 1.853E-05 4.570E-05 1.790E-03 0.3681 0.4723

11 8.233E-04 8.779E-06 2.180E-05 2.193E-04 0.7897 0.4737

12 3.009E-04 4.151E-06 1.037E-05 5.224E-04 0.3654 0.4728

13 4.110E-04 1.961E-06 4.927E-06 1.101E-04 1.3661 0.4723

14 3.133E-04 9.256E-07 2.339E-06 9.767E-05 0.7623 0.4721

15 3.446E-04 4.365E-07 1.109E-06 3.132E-05 1.1000 0.4716

16 3.295E-04 2.057E-07 5.251E-07 1.511E-05 0.9561 0.4713

17 3.350E-04 9.690E-08 2.484E-07 5.455E-06 1.0166 0.4710

18 3.327E-04 4.561E-08 1.174E-07 2.242E-06 0.9933 0.4707

19 3.335E-04 2.145E-08 5.542E-08 8.136E-07 1.0024 0.4704

20 3.332E-04 1.009E-08 2.614E-08 3.029E-07 0.9991 0.4701

21 3.333E-04 4.740E-09 1.231E-08 1.049E-07 1.0003 0.4699

22 3.333E-04 2.227E-09 5.796E-09 3.533E-08 0.9999 0.4698

23 3.333E-04 1.046E-09 2.725E-09 1.094E-08 1.0000 0.4697

24 3.333E-04 4.914E-10 1.280E-09 3.185E-09 1.0000 0.4697

25 3.333E-04 2.309E-10 6.011E-10 8.663E-10 1.0000 0.4698

26 3.333E-04 1.085E-10 2.820E-10 2.429E-10 1.0000 0.4699

27 3.333E-04 5.103E-11 1.322E-10 9.544E-11 1.0000 0.4704

28 3.333E-04 2.405E-11 6.192E-11 6.720E-11 1.0000 0.4712

29 3.333E-04 1.136E-11 2.900E-11 5.286E-11 1.0000 0.4723

30 3.333E-04 5.379E-12 1.358E-11 3.894E-11 1.0000 0.4736

31 3.333E-04 2.543E-12 6.361E-12 2.622E-11 1.0000 0.4727

Continued on next page
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Table A.3 – Continued from previous page

levels: 4, Nc = 25, Nf = 2003, h = 3.14 ·10−2, ν1 = 2, ν2 = 2

εfine =max(10−10‖r‖(0)
2 ,10−13), εcoarse =max(10−12‖rc‖(k)

2 ,10−13)

k ‖e‖(k)
2 ‖r‖(k)

2 ‖rc‖(k)
2 ‖e(k) − e(k−1)‖2 ‖e‖(k−1)

2 /‖e‖(k)
2 ‖r‖(k)

2 /‖r‖(k−1)
2

32 3.333E-04 1.185E-12 2.982E-12 1.804E-11 1.0000 0.4662

33 3.333E-04 6.233E-13 1.403E-12 4.654E-12 1.0000 0.5258

34 3.333E-04 6.989E-13 6.920E-13 4.822E-12 1.0000 1.1214

convergence after 34 multigrid cycles

mean convergence rate: 0.492

wall clock time: 1624 sec
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Table A.4: Test case 1 — Results of section 4.1.2.1

levels: 2, Nc = 51, Nf = 1023, h = 6.16 ·10−2, ν1 = 2, ν2 = 2

εfine =max(10−10‖r‖(0)
2 ,10−13), εcoarse =max(10−12‖rc‖(k)

2 ,10−13)

k ‖e‖(k)
2 ‖r‖(k)

2 ‖rc‖(k)
2 ‖e(k) − e(k−1)‖2 ‖e‖(k−1)

2 /‖e‖(k)
2 ‖r‖(k)

2 /‖r‖(k−1)
2

0 5.568E+00 1.875E-02

1 1.687E-01 5.289E-02 1.850E-02 5.400E+00 0.0303 2.8210

2 4.567E-03 1.066E-03 1.907E-02 1.642E-01 0.0271 0.0202

3 1.482E-03 3.602E-05 6.229E-04 3.084E-03 0.3246 0.0338

4 1.283E-03 1.020E-06 1.817E-05 1.997E-04 0.8653 0.0283

5 1.280E-03 6.182E-08 8.077E-07 2.539E-06 0.9980 0.0606

6 1.279E-03 9.630E-09 6.089E-08 9.760E-07 0.9992 0.1558

7 1.279E-03 1.812E-09 9.752E-09 1.496E-07 0.9999 0.1882

8 1.279E-03 3.395E-10 1.784E-09 2.814E-08 1.0000 0.1873

9 1.279E-03 6.369E-11 3.336E-10 5.217E-09 1.0000 0.1876

10 1.279E-03 1.195E-11 6.255E-11 9.723E-10 1.0000 0.1876

11 1.279E-03 2.246E-12 1.173E-11 1.781E-10 1.0000 0.1879

12 1.279E-03 4.352E-13 2.204E-12 2.799E-11 1.0000 0.1938

convergence after 12 multigrid cycles

mean convergence rate: 0.136

wall clock time: 101 sec
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Table A.5: Test case 1 — Results of section 4.1.2.1

levels: 3, Nc = 513, Nf = 2043, h = 3.08 ·10−2, ν1 = 2, ν2 = 2

εfine =max(10−10‖r‖(0)
2 ,10−13), εcoarse =max(10−12‖rc‖(k)

2 ,10−13)

k ‖e‖(k)
2 ‖r‖(k)

2 ‖rc‖(k)
2 ‖e(k) − e(k−1)‖2 ‖e‖(k−1)

2 /‖e‖(k)
2 ‖r‖(k)

2 /‖r‖(k−1)
2

0 5.568E+00 2.344E-03

1 3.394E-01 2.735E-02 2.286E-03 5.229E+00 0.0610 11.6701

2 1.925E-01 2.211E-03 4.783E-03 1.469E-01 0.5672 0.0808

3 2.839E-02 1.018E-03 2.797E-03 1.642E-01 0.1474 0.4606

4 7.846E-03 1.590E-04 4.069E-04 2.054E-02 0.2764 0.1562

5 1.845E-03 4.475E-05 1.226E-04 6.001E-03 0.2352 0.2814

6 1.972E-04 8.808E-06 2.364E-05 1.648E-03 0.1069 0.1968

7 3.948E-04 2.136E-06 5.890E-06 1.975E-04 2.0016 0.2425

8 3.038E-04 4.556E-07 1.259E-06 9.102E-05 0.7694 0.2133

9 3.237E-04 1.047E-07 2.942E-07 1.994E-05 1.0657 0.2298

10 3.196E-04 2.314E-08 6.521E-08 4.073E-06 0.9874 0.2211

11 3.206E-04 5.196E-09 1.487E-08 9.430E-07 1.0030 0.2245

12 3.204E-04 1.153E-09 3.334E-09 2.041E-07 0.9994 0.2219

13 3.204E-04 2.612E-10 7.555E-10 3.780E-08 1.0001 0.2265

14 3.204E-04 5.766E-11 1.696E-10 9.494E-09 1.0000 0.2207

15 3.204E-04 1.291E-11 3.837E-11 2.160E-09 1.0000 0.2239

16 3.204E-04 3.017E-12 8.650E-12 3.156E-10 1.0000 0.2337

17 3.204E-04 6.891E-13 1.939E-12 1.019E-10 1.0000 0.2284

18 3.204E-04 3.460E-13 4.764E-13 9.653E-12 1.0000 0.5020

19 3.204E-04 4.481E-13 2.321E-13 3.831E-11 1.0000 1.2952

convergence after 19 multigrid cycles

mean convergence rate: 0.265

wall clock time: 1061 sec
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Table A.6: Test case 1 — Results of section 4.1.2.1

levels: 2, Nc = 99, Nf = 1983, h = 3.17 ·10−2, ν1 = 2, ν2 = 2

εfine =max(10−10‖r‖(0)
2 ,10−13), εcoarse =max(10−12‖rc‖(k)

2 ,10−13)

k ‖e‖(k)
2 ‖r‖(k)

2 ‖rc‖(k)
2 ‖e(k) − e(k−1)‖2 ‖e‖(k−1)

2 /‖e‖(k)
2 ‖r‖(k)

2 /‖r‖(k−1)
2

0 5.568E+00 2.563E-03

1 1.734E-01 2.737E-02 2.554E-03 5.395E+00 0.0311 10.6753

2 5.133E-03 5.533E-04 2.634E-03 1.683E-01 0.0296 0.0202

3 5.466E-04 1.964E-05 9.235E-05 4.586E-03 0.1065 0.0355

4 3.440E-04 5.479E-07 2.682E-06 2.026E-04 0.6293 0.0279

5 3.413E-04 2.310E-08 1.424E-07 2.683E-06 0.9922 0.0422

6 3.403E-04 2.864E-09 9.433E-09 1.034E-06 0.9970 0.1240

7 3.401E-04 5.978E-10 1.471E-09 1.603E-07 0.9995 0.2088

8 3.401E-04 1.235E-10 2.896E-10 3.311E-08 0.9999 0.2065

9 3.401E-04 2.561E-11 5.972E-11 6.788E-09 1.0000 0.2074

10 3.401E-04 5.317E-12 1.237E-11 1.388E-09 1.0000 0.2076

11 3.401E-04 1.140E-12 2.567E-12 2.565E-10 1.0000 0.2144

12 3.401E-04 3.213E-13 5.478E-13 4.501E-11 1.0000 0.2819

13 3.401E-04 1.746E-13 1.727E-13 5.130E-11 1.0000 0.5433

convergence after 13 multigrid cycles

mean convergence rate: 0.145

wall clock time: 1452 sec
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A.1.1.1 Second Series of Experiments — The Influence of the Number of Smoothing
Steps

Table A.7: Test case 1 — Results of section 4.1.2.2

levels: 2, Nc = 25, Nf = 503, h = 1.26 ·10−1, ν1 = 2, ν2 = 1

εfine =max(10−10‖r‖(0)
2 ,10−13), εcoarse =max(10−12‖rc‖(k)

2 ,10−13)

k ‖e‖(k)
2 ‖r‖(k)

2 ‖rc‖(k)
2 ‖e(k) − e(k−1)‖2 ‖e‖(k−1)

2 /‖e‖(k)
2 ‖r‖(k)

2 /‖r‖(k−1)
2

0 5.568E+00 1.592E-01

1 1.782E-01 3.549E-01 1.505E-01 5.390E+00 0.0320 2.2295

2 8.762E-03 1.934E-02 1.546E-01 1.695E-01 0.0492 0.0545

3 5.621E-03 8.242E-04 4.525E-03 3.141E-03 0.6415 0.0426

4 5.338E-03 3.219E-05 1.241E-04 2.833E-04 0.9496 0.0391

5 5.319E-03 2.189E-06 1.055E-05 1.905E-05 0.9964 0.0680

6 5.316E-03 3.490E-07 1.408E-06 2.863E-06 0.9995 0.1594

7 5.315E-03 7.360E-08 2.353E-07 5.356E-07 0.9999 0.2109

8 5.315E-03 1.565E-08 4.565E-08 1.090E-07 1.0000 0.2127

9 5.315E-03 3.361E-09 9.480E-09 2.251E-08 1.0000 0.2147

10 5.315E-03 7.234E-10 2.016E-09 4.640E-09 1.0000 0.2152

11 5.315E-03 1.561E-10 4.319E-10 9.510E-10 1.0000 0.2157

12 5.315E-03 3.374E-11 9.286E-11 1.942E-10 1.0000 0.2162

13 5.315E-03 7.313E-12 2.001E-11 3.890E-11 1.0000 0.2167

convergence after 13 multigrid cycles

mean convergence rate: 0.160

wall clock time: 6 sec
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Table A.8: Test case 1 — Results of section 4.1.2.2

levels: 3, Nc = 253, Nf = 1003, h = 6.28 ·10−2, ν1 = 2, ν2 = 1

εfine =max(10−10‖r‖(0)
2 ,10−13), εcoarse =max(10−12‖rc‖(k)

2 ,10−13)

k ‖e‖(k)
2 ‖r‖(k)

2 ‖rc‖(k)
2 ‖e(k) − e(k−1)‖2 ‖e‖(k−1)

2 /‖e‖(k)
2 ‖r‖(k)

2 /‖r‖(k−1)
2

0 5.568E+00 1.990E-02

1 3.240E-01 1.866E-01 1.793E-02 5.244E+00 0.0582 9.3776

2 1.621E-01 2.128E-02 3.735E-02 1.619E-01 0.5003 0.1140

3 2.466E-02 6.672E-03 2.150E-02 1.374E-01 0.1521 0.3136

4 4.812E-03 1.098E-03 2.809E-03 1.985E-02 0.1952 0.1645

5 2.257E-03 2.601E-04 7.982E-04 2.556E-03 0.4689 0.2370

6 1.189E-03 4.927E-05 1.398E-04 1.068E-03 0.5269 0.1894

7 1.363E-03 1.070E-05 3.222E-05 1.740E-04 1.1463 0.2172

8 1.325E-03 2.124E-06 6.268E-06 3.835E-05 0.9719 0.1985

9 1.331E-03 4.434E-07 1.346E-06 6.845E-06 1.0052 0.2088

10 1.330E-03 9.089E-08 2.721E-07 9.553E-07 0.9993 0.2050

11 1.331E-03 1.860E-08 5.664E-08 2.418E-07 1.0002 0.2047

12 1.331E-03 3.799E-09 1.160E-08 3.888E-08 1.0000 0.2042

13 1.331E-03 8.029E-10 2.405E-09 8.032E-10 1.0000 0.2114

14 1.331E-03 1.607E-10 4.874E-10 1.571E-09 1.0000 0.2001

15 1.331E-03 3.410E-11 1.033E-10 2.849E-10 1.0000 0.2122

16 1.331E-03 7.978E-12 2.148E-11 8.152E-11 1.0000 0.2340

17 1.331E-03 1.511E-12 4.190E-12 1.918E-11 1.0000 0.1894

convergence after 17 multigrid cycles

mean convergence rate: 0.235

wall clock time: 75 sec
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Table A.9: Test case 1 — Results of section 4.1.2.2

levels: 4, Nc = 253, Nf = 2003, h = 3.14 ·10−2, ν1 = 2, ν2 = 2

εfine =max(10−10‖r‖(0)
2 ,10−13), εcoarse =max(10−12‖rc‖(k)

2 ,10−13)

k ‖e‖(k)
2 ‖r‖(k)

2 ‖rc‖(k)
2 ‖e(k) − e(k−1)‖2 ‖e‖(k−1)

2 /‖e‖(k)
2 ‖r‖(k)

2 /‖r‖(k−1)
2

0 5.568E+00 2.487E-03

1 4.898E-01 9.625E-02 2.183E-03 5.079E+00 0.0880 38.6980

2 5.126E-01 1.917E-02 6.919E-03 2.281E-02 1.0466 0.1992

3 2.726E-01 1.344E-02 7.954E-03 2.400E-01 0.5318 0.7008

4 1.129E-01 6.670E-03 4.327E-03 1.597E-01 0.4141 0.4964

5 5.961E-02 3.014E-03 1.772E-03 5.326E-02 0.5281 0.4519

6 2.784E-02 1.538E-03 9.678E-04 3.177E-02 0.4670 0.5103

7 1.405E-02 7.388E-04 4.636E-04 1.379E-02 0.5046 0.4804

8 6.474E-03 3.594E-04 2.265E-04 7.575E-03 0.4608 0.4864

9 3.479E-03 1.753E-04 1.120E-04 2.995E-03 0.5374 0.4877

10 1.393E-03 8.498E-05 5.459E-05 2.086E-03 0.4004 0.4848

11 9.992E-04 4.131E-05 2.674E-05 3.939E-04 0.7173 0.4861

12 3.520E-04 2.005E-05 1.307E-05 6.473E-04 0.3522 0.4855

13 4.463E-04 9.726E-06 6.380E-06 9.438E-05 1.2681 0.4850

14 3.105E-04 4.717E-06 3.113E-06 1.358E-04 0.6957 0.4850

15 3.498E-04 2.287E-06 1.517E-06 3.927E-05 1.1265 0.4848

16 3.281E-04 1.108E-06 7.391E-07 2.165E-05 0.9381 0.4845

17 3.358E-04 5.366E-07 3.597E-07 7.621E-06 1.0232 0.4843

18 3.325E-04 2.598E-07 1.749E-07 3.249E-06 0.9903 0.4841

19 3.337E-04 1.257E-07 8.498E-08 1.148E-06 1.0035 0.4840

20 3.332E-04 6.084E-08 4.126E-08 4.507E-07 0.9986 0.4839

21 3.334E-04 2.943E-08 2.001E-08 1.566E-07 1.0005 0.4838

22 3.333E-04 1.424E-08 9.699E-09 5.045E-08 0.9998 0.4837

23 3.333E-04 6.887E-09 4.697E-09 1.526E-08 1.0000 0.4837

24 3.333E-04 3.332E-09 2.273E-09 4.917E-09 1.0000 0.4838

25 3.333E-04 1.612E-09 1.099E-09 1.278E-09 1.0000 0.4840

26 3.333E-04 7.808E-10 5.307E-10 2.958E-10 1.0000 0.4842

27 3.333E-04 3.782E-10 2.562E-10 1.967E-10 1.0000 0.4844

28 3.333E-04 1.834E-10 1.236E-10 1.736E-10 1.0000 0.4848

29 3.333E-04 8.919E-11 5.957E-11 1.248E-10 1.0000 0.4864

30 3.333E-04 4.351E-11 2.871E-11 9.075E-11 1.0000 0.4878

31 3.333E-04 2.134E-11 1.384E-11 6.396E-11 1.0000 0.4905

Continued on next page
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Table A.9 – Continued from previous page

levels: 4, Nc = 253, Nf = 2003, h = 3.14 ·10−2, ν1 = 2, ν2 = 1

εfine =max(10−10‖r‖(0)
2 ,10−13), εcoarse =max(10−12‖rc‖(k)

2 ,10−13)

k ‖e‖(k)
2 ‖r‖(k)

2 ‖rc‖(k)
2 ‖e(k) − e(k−1)‖2 ‖e‖(k−1)

2 /‖e‖(k)
2 ‖r‖(k)

2 /‖r‖(k−1)
2

32 3.333E-04 1.047E-11 6.677E-12 3.917E-11 1.0000 0.4906

33 3.333E-04 5.030E-12 3.228E-12 2.379E-11 1.0000 0.4804

34 3.333E-04 2.482E-12 1.565E-12 1.012E-11 1.0000 0.4934

35 3.333E-04 2.230E-12 7.790E-13 6.646E-12 1.0000 0.8984

36 3.333E-04 1.994E-12 4.558E-13 1.690E-11 1.0000 0.8942

37 3.333E-04 2.260E-12 3.581E-13 2.310E-11 1.0000 1.1333

convergence after 37 multigrid cycles

mean convergence rate: 0.519

wall clock time: 1356 sec
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Table A.10: Test case 1 — Results of section 4.1.2.2

levels: 2, Nc = 513, Nf = 1023, h = 6.16 ·10−2, ν1 = 2, ν2 = 1

εfine =max(10−10‖r‖(0)
2 ,10−13), εcoarse =max(10−12‖rc‖(k)

2 ,10−13)

k ‖e‖(k)
2 ‖r‖(k)

2 ‖rc‖(k)
2 ‖e(k) − e(k−1)‖2 ‖e‖(k−1)

2 /‖e‖(k)
2 ‖r‖(k)

2 /‖r‖(k−1)
2

0 5.568E+00 1.875E-02

1 1.921E-01 1.783E-01 1.850E-02 5.376E+00 0.0345 9.5117

2 6.649E-03 1.052E-02 1.907E-02 1.854E-01 0.0346 0.0590

3 1.664E-03 4.840E-04 6.436E-04 4.985E-03 0.2503 0.0460

4 1.309E-03 1.996E-05 2.061E-05 3.555E-04 0.7864 0.0412

5 1.284E-03 9.093E-07 2.057E-06 2.471E-05 0.9811 0.0456

6 1.280E-03 8.851E-08 2.538E-07 3.832E-06 0.9970 0.0973

7 1.279E-03 2.099E-08 3.963E-08 7.510E-07 0.9994 0.2371

8 1.279E-03 5.063E-09 7.843E-09 1.731E-07 0.9999 0.2412

9 1.279E-03 1.239E-09 1.796E-09 4.152E-08 1.0000 0.2447

10 1.279E-03 3.031E-10 4.322E-10 1.006E-08 1.0000 0.2446

11 1.279E-03 7.418E-11 1.053E-10 2.445E-09 1.0000 0.2448

12 1.279E-03 1.816E-11 2.575E-11 5.908E-10 1.0000 0.2449

13 1.279E-03 4.457E-12 6.303E-12 1.403E-10 1.0000 0.2454

14 1.279E-03 1.136E-12 1.547E-12 2.941E-11 1.0000 0.2549

convergence after 14 multigrid cycles

mean convergence rate: 0.166

wall clock time: 99 sec
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Table A.11: Test case 1 — Results of section 4.1.2.2

levels: 3, Nc = 51, Nf = 2043, h = 3.08 ·10−2, ν1 = 2, ν2 = 1

εfine =max(10−10‖r‖(0)
2 ,10−13), εcoarse =max(10−12‖rc‖(k)

2 ,10−13)

k ‖e‖(k)
2 ‖r‖(k)

2 ‖rc‖(k)
2 ‖e(k) − e(k−1)‖2 ‖e‖(k−1)

2 /‖e‖(k)
2 ‖r‖(k)

2 /‖r‖(k−1)
2

0 5.568E+00 2.344E-03

1 3.542E-01 9.213E-02 2.286E-03 5.214E+00 0.0636 39.3075

2 1.947E-01 1.147E-02 4.784E-03 1.595E-01 0.5498 0.1245

3 2.955E-02 3.886E-03 2.801E-03 1.652E-01 0.1517 0.3388

4 8.036E-03 7.028E-04 4.139E-04 2.151E-02 0.2719 0.1809

5 1.903E-03 1.810E-04 1.249E-04 6.133E-03 0.2368 0.2576

6 2.677E-04 3.772E-05 2.430E-05 1.635E-03 0.1407 0.2083

7 4.014E-04 8.913E-06 6.074E-06 1.337E-04 1.4992 0.2363

8 3.031E-04 1.944E-06 1.309E-06 9.821E-05 0.7553 0.2181

9 3.236E-04 4.452E-07 3.077E-07 2.044E-05 1.0674 0.2290

10 3.195E-04 9.979E-08 6.875E-08 4.129E-06 0.9872 0.2241

11 3.206E-04 2.234E-08 1.576E-08 1.117E-06 1.0035 0.2239

12 3.204E-04 5.026E-09 3.555E-09 1.984E-07 0.9994 0.2250

13 3.204E-04 1.157E-09 8.205E-10 3.263E-08 1.0001 0.2301

14 3.204E-04 2.567E-10 1.854E-10 1.508E-08 1.0000 0.2220

15 3.204E-04 5.743E-11 4.178E-11 1.561E-09 1.0000 0.2237

16 3.204E-04 1.444E-11 1.034E-11 5.358E-11 1.0000 0.2515

17 3.204E-04 3.857E-12 2.389E-12 2.777E-10 1.0000 0.2671

18 3.204E-04 1.616E-12 5.238E-13 4.823E-11 1.0000 0.4190

19 3.204E-04 1.122E-12 2.911E-13 1.915E-11 1.0000 0.6940

20 3.204E-04 1.249E-12 2.415E-13 5.556E-11 1.0000 1.1139

convergence after 20 multigrid cycles

mean convergence rate: 0.278

wall clock time: 849 sec
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Table A.12: Test case 1 — Results of section 4.1.2.2

levels: 2, Nc = 993, Nf = 1983, h = 3.17 ·10−2, ν1 = 2, ν2 = 1

εfine =max(10−10‖r‖(0)
2 ,10−13), εcoarse =max(10−12‖rc‖(k)

2 ,10−13)

k ‖e‖(k)
2 ‖r‖(k)

2 ‖rc‖(k)
2 ‖e(k) − e(k−1)‖2 ‖e‖(k−1)

2 /‖e‖(k)
2 ‖r‖(k)

2 /‖r‖(k−1)
2

0 5.568E+00 2.563E-03

1 1.960E-01 9.211E-02 2.554E-03 5.372E+00 0.0352 35.9337

2 6.441E-03 5.534E-03 2.634E-03 1.895E-01 0.0329 0.0601

3 6.788E-04 2.596E-04 9.771E-05 5.762E-03 0.1054 0.0469

4 3.692E-04 1.097E-05 3.566E-06 3.097E-04 0.5438 0.0422

5 3.446E-04 4.609E-07 4.076E-07 2.460E-05 0.9334 0.0420

6 3.410E-04 2.697E-08 4.820E-08 3.602E-06 0.9895 0.0585

7 3.403E-04 6.088E-09 6.741E-09 6.684E-07 0.9980 0.2258

8 3.401E-04 1.563E-09 1.209E-09 1.580E-07 0.9995 0.2567

9 3.401E-04 4.117E-10 2.774E-10 4.024E-08 0.9999 0.2634

10 3.401E-04 1.083E-10 7.053E-11 1.048E-08 1.0000 0.2629

11 3.401E-04 2.849E-11 1.842E-11 2.734E-09 1.0000 0.2632

12 3.401E-04 7.540E-12 4.838E-12 6.988E-10 1.0000 0.2646

13 3.401E-04 2.102E-12 1.279E-12 1.676E-10 1.0000 0.2788

14 3.401E-04 8.842E-13 3.576E-13 4.008E-11 1.0000 0.4206

15 3.401E-04 5.251E-13 1.615E-13 3.656E-11 1.0000 0.5938

16 3.401E-04 4.608E-13 1.441E-13 4.255E-12 1.0000 0.8777

17 3.401E-04 3.804E-13 1.385E-13 1.929E-12 1.0000 0.8256

18 3.401E-04 3.797E-13 1.410E-13 6.689E-12 1.0000 0.9981

convergence after 18 multigrid cycles

mean convergence rate: 0.232

wall clock time: 1567 sec
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Table A.13: Test case 1 — Results of section 4.1.2.2

levels: 2, NC = 25, Nf = 503, h = 1.26 ·10−1, ν1 = 1, ν2 = 2

εfine =max(10−10‖r‖(0)
2 ,10−13), εcoarse =max(10−12‖rc‖(k)

2 ,10−13)

k ‖e‖(k)
2 ‖r‖(k)

2 ‖rc‖(k)
2 ‖e(k) − e(k−1)‖2 ‖e‖(k−1)

2 /‖e‖(k)
2 ‖r‖(k)

2 /‖r‖(k−1)
2

0 5.568E+00 1.592E-01

1 1.554E-01 1.072E-01 1.538E-01 5.413E+00 0.0279 0.6736

2 4.905E-03 6.362E-03 1.580E-01 1.505E-01 0.0316 0.0593

3 5.428E-03 2.769E-04 4.640E-03 5.229E-04 1.1066 0.0435

4 5.321E-03 1.128E-05 1.298E-04 1.073E-04 0.9802 0.0407

5 5.316E-03 7.396E-07 1.083E-05 4.377E-06 0.9992 0.0656

6 5.315E-03 1.026E-07 1.279E-06 8.418E-07 0.9998 0.1387

7 5.315E-03 1.986E-08 1.780E-07 1.601E-07 1.0000 0.1936

8 5.315E-03 4.109E-09 2.990E-08 3.277E-08 1.0000 0.2069

9 5.315E-03 8.747E-10 5.811E-09 6.753E-09 1.0000 0.2129

10 5.315E-03 1.879E-10 1.208E-09 1.387E-09 1.0000 0.2148

11 5.315E-03 4.055E-11 2.570E-10 2.832E-10 1.0000 0.2158

12 5.315E-03 8.777E-12 5.515E-11 5.773E-11 1.0000 0.2164

convergence after 12 multigrid cycles

mean convergence rate: 0.152

wall clock time: 6 sec
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Table A.14: Test case 1 — Results of section 4.1.2.2

levels: 3, Nc = 253, Nf = 1003, h = 6.28 ·10−2, ν1 = 1, ν2 = 2

εfine =max(10−10‖r‖(0)
2 ,10−13), εcoarse =max(10−12‖rc‖(k)

2 ,10−13)

k ‖e‖(k)
2 ‖r‖(k)

2 ‖rc‖(k)
2 ‖e(k) − e(k−1)‖2 ‖e‖(k−1)

2 /‖e‖(k)
2 ‖r‖(k)

2 /‖r‖(k−1)
2

0 5.568E+00 1.990E-02

1 3.112E-01 5.562E-02 1.874E-02 5.257E+00 0.0559 2.7952

2 1.622E-01 6.471E-03 3.904E-02 1.491E-01 0.5210 0.1164

3 2.307E-02 2.020E-03 2.247E-02 1.391E-01 0.1423 0.3121

4 4.718E-03 3.351E-04 2.934E-03 1.835E-02 0.2045 0.1659

5 2.234E-03 7.931E-05 8.329E-04 2.484E-03 0.4735 0.2367

6 1.171E-03 1.510E-05 1.456E-04 1.063E-03 0.5240 0.1904

7 1.361E-03 3.274E-06 3.354E-05 1.907E-04 1.1629 0.2168

8 1.325E-03 6.542E-07 6.517E-06 3.659E-05 0.9731 0.1998

9 1.332E-03 1.368E-07 1.398E-06 6.701E-06 1.0051 0.2091

10 1.330E-03 2.793E-08 2.817E-07 1.116E-06 0.9992 0.2042

11 1.331E-03 5.758E-09 5.860E-08 2.085E-07 1.0002 0.2061

12 1.331E-03 1.176E-09 1.193E-08 3.463E-08 1.0000 0.2042

13 1.331E-03 2.422E-10 2.459E-09 4.532E-09 1.0000 0.2060

14 1.331E-03 4.933E-11 5.006E-10 9.461E-10 1.0000 0.2036

15 1.331E-03 1.020E-11 1.033E-10 1.592E-10 1.0000 0.2069

16 1.331E-03 2.108E-12 2.099E-11 5.143E-13 1.0000 0.2065

17 1.331E-03 4.405E-13 4.260E-12 6.725E-12 1.0000 0.2090

convergence after 17 multigrid cycles

mean convergence rate: 0.233

wall clock time: 74 sec
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Table A.15: Test case 1 — Results of section 4.1.2.2

levels: 4, Nc = 253, Nf = 2003, h = 3.14 ·10−2, ν1 = 1, ν2 = 2

εfine =max(10−10‖r‖(0)
2 ,10−13), εcoarse =max(10−12‖rc‖(k)

2 ,10−13)

k ‖e‖(k)
2 ‖r‖(k)

2 ‖rc‖(k)
2 ‖e(k) − e(k−1)‖2 ‖e‖(k−1)

2 /‖e‖(k)
2 ‖r‖(k)

2 /‖r‖(k−1)
2

0 5.568E+00 2.487E-03

1 4.822E-01 2.862E-02 2.310E-03 5.086E+00 0.0866 11.5072

2 5.143E-01 5.785E-03 7.324E-03 3.206E-02 1.0665 0.2021

3 2.723E-01 4.017E-03 8.420E-03 2.420E-01 0.5294 0.6943

4 1.117E-01 1.998E-03 4.580E-03 1.606E-01 0.4101 0.4975

5 5.960E-02 9.032E-04 1.875E-03 5.206E-02 0.5338 0.4520

6 2.782E-02 4.606E-04 1.023E-03 3.179E-02 0.4667 0.5100

7 1.392E-02 2.213E-04 4.894E-04 1.389E-02 0.5006 0.4804

8 6.433E-03 1.076E-04 2.390E-04 7.490E-03 0.4620 0.4861

9 3.460E-03 5.245E-05 1.180E-04 2.973E-03 0.5379 0.4876

10 1.379E-03 2.542E-05 5.744E-05 2.081E-03 0.3986 0.4847

11 9.927E-04 1.235E-05 2.809E-05 3.867E-04 0.7197 0.4857

12 3.481E-04 5.988E-06 1.371E-05 6.447E-04 0.3506 0.4850

13 4.450E-04 2.901E-06 6.678E-06 9.695E-05 1.2785 0.4845

14 3.096E-04 1.405E-06 3.251E-06 1.354E-04 0.6957 0.4843

15 3.499E-04 6.801E-07 1.581E-06 4.027E-05 1.1301 0.4840

16 3.281E-04 3.289E-07 7.679E-07 2.176E-05 0.9378 0.4837

17 3.358E-04 1.590E-07 3.726E-07 7.656E-06 1.0233 0.4833

18 3.325E-04 7.680E-08 1.806E-07 3.302E-06 0.9902 0.4830

19 3.337E-04 3.708E-08 8.748E-08 1.193E-06 1.0036 0.4828

20 3.332E-04 1.789E-08 4.232E-08 4.599E-07 0.9986 0.4825

21 3.334E-04 8.629E-09 2.046E-08 1.601E-07 1.0005 0.4823

22 3.333E-04 4.161E-09 9.878E-09 5.450E-08 0.9998 0.4822

23 3.333E-04 2.006E-09 4.765E-09 1.692E-08 1.0001 0.4821

24 3.333E-04 9.672E-10 2.297E-09 5.046E-09 1.0000 0.4821

25 3.333E-04 4.664E-10 1.106E-09 1.366E-09 1.0000 0.4822

26 3.333E-04 2.250E-10 5.322E-10 3.845E-10 1.0000 0.4824

27 3.333E-04 1.086E-10 2.559E-10 1.747E-10 1.0000 0.4826

28 3.333E-04 5.244E-11 1.229E-10 1.317E-10 1.0000 0.4830

29 3.333E-04 2.542E-11 5.904E-11 1.057E-10 1.0000 0.4848

30 3.333E-04 1.236E-11 2.834E-11 7.871E-11 1.0000 0.4862

31 3.333E-04 6.040E-12 1.361E-11 5.378E-11 1.0000 0.4887

Continued on next page
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Table A.15 – Continued from previous page

levels: 4, Nc = 253, Nf = 2003, h = 3.14 ·10−2, ν1 = 1, ν2 = 2

εfine =max(10−10‖r‖(0)
2 ,10−13), εcoarse =max(10−12‖rc‖(k)

2 ,10−13)

k ‖e‖(k)
2 ‖r‖(k)

2 ‖rc‖(k)
2 ‖e(k) − e(k−1)‖2 ‖e‖(k−1)

2 /‖e‖(k)
2 ‖r‖(k)

2 /‖r‖(k−1)
2

32 3.333E-04 2.954E-12 6.545E-12 3.332E-11 1.0000 0.4891

33 3.333E-04 1.402E-12 3.152E-12 2.166E-11 1.0000 0.4746

34 3.333E-04 6.764E-13 1.524E-12 9.816E-12 1.0000 0.4825

35 3.333E-04 6.255E-13 7.512E-13 3.582E-12 1.0000 0.9247

convergence after 35 multigrid cycles

mean convergence rate: 0.500

wall clock time: 1282 sec
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Table A.16: Test case 1 — Results of section 4.1.2.2

levels: 2, Nc = 513, Nf = 1023, h = 6.16 ·10−2, ν1 = 1, ν2 = 2

εfine =max(10−10‖r‖(0)
2 ,10−13), εcoarse =max(10−12‖rc‖(k)

2 ,10−13)

k ‖e‖(k)
2 ‖r‖(k)

2 ‖rc‖(k)
2 ‖e(k) − e(k−1)‖2 ‖e‖(k−1)

2 /‖e‖(k)
2 ‖r‖(k)

2 /‖r‖(k−1)
2

0 5.568E+00 1.875E-02

1 1.701E-01 5.316E-02 1.860E-02 5.398E+00 0.0305 2.8354

2 4.089E-03 3.415E-03 1.917E-02 1.660E-01 0.0240 0.0642

3 1.461E-03 1.602E-04 6.485E-04 2.628E-03 0.3573 0.0469

4 1.289E-03 6.680E-06 2.096E-05 1.726E-04 0.8819 0.0417

5 1.281E-03 2.939E-07 2.080E-06 7.357E-06 0.9943 0.0440

6 1.279E-03 2.249E-08 2.419E-07 1.665E-06 0.9987 0.0765

7 1.279E-03 4.627E-09 3.261E-08 3.482E-07 0.9997 0.2058

8 1.279E-03 1.079E-09 5.383E-09 8.251E-08 0.9999 0.2333

9 1.279E-03 2.622E-10 1.117E-09 1.991E-08 1.0000 0.2430

10 1.279E-03 6.403E-11 2.604E-10 4.834E-09 1.0000 0.2442

11 1.279E-03 1.567E-11 6.295E-11 1.174E-09 1.0000 0.2447

12 1.279E-03 3.838E-12 1.536E-11 2.820E-10 1.0000 0.2449

13 1.279E-03 9.470E-13 3.759E-12 6.407E-11 1.0000 0.2468

convergence after 13 multigrid cycles

mean convergence rate: 0.154

wall clock time: 92 sec

199



APPENDIX A. RESULTS OF MULTIGRID SOLVER TESTS

Table A.17: Test case 1 — Results of section 4.1.2.2

levels: 3, Nc = 513, Nf = 2043, h = 3.08 ·10−2, ν1 = 1, ν2 = 2

εfine =max(10−10‖r‖(0)
2 ,10−13), εcoarse =max(10−12‖rc‖(k)

2 ,10−13)

k ‖e‖(k)
2 ‖r‖(k)

2 ‖rc‖(k)
2 ‖e(k) − e(k−1)‖2 ‖e‖(k−1)

2 /‖e‖(k)
2 ‖r‖(k)

2 /‖r‖(k−1)
2

0 5.568E+00 2.344E-03

1 3.424E-01 2.740E-02 2.310E-03 5.226E+00 0.0615 11.6882

2 1.946E-01 3.456E-03 4.835E-03 1.478E-01 0.5684 0.1261

3 2.873E-02 1.171E-03 2.831E-03 1.659E-01 0.1477 0.3388

4 8.011E-03 2.129E-04 4.182E-04 2.072E-02 0.2788 0.1819

5 1.892E-03 5.474E-05 1.261E-04 6.120E-03 0.2361 0.2571

6 2.021E-04 1.143E-05 2.447E-05 1.689E-03 0.1068 0.2088

7 3.981E-04 2.696E-06 6.120E-06 1.960E-04 1.9702 0.2359

8 3.032E-04 5.899E-07 1.319E-06 9.487E-05 0.7617 0.2188

9 3.239E-04 1.349E-07 3.098E-07 2.061E-05 1.0680 0.2287

10 3.196E-04 3.017E-08 6.906E-08 4.302E-06 0.9867 0.2237

11 3.206E-04 6.787E-09 1.584E-08 1.021E-06 1.0032 0.2250

12 3.204E-04 1.523E-09 3.571E-09 2.089E-07 0.9993 0.2244

13 3.204E-04 3.466E-10 8.170E-10 3.973E-08 1.0001 0.2276

14 3.204E-04 7.690E-11 1.843E-10 1.144E-08 1.0000 0.2219

15 3.204E-04 1.733E-11 4.182E-11 2.047E-09 1.0000 0.2254

16 3.204E-04 4.107E-12 9.694E-12 2.822E-10 1.0000 0.2370

17 3.204E-04 9.559E-13 2.179E-12 1.723E-10 1.0000 0.2328

18 3.204E-04 4.423E-13 5.157E-13 9.899E-12 1.0000 0.4627

19 3.204E-04 3.971E-13 2.662E-13 5.796E-11 1.0000 0.8979

20 3.204E-04 4.331E-13 2.305E-13 6.538E-11 1.0000 1.0906

convergence after 20 multigrid cycles

mean convergence rate: 0.280

wall clock time: 829 sec
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Table A.18: Test case 1 — Results of section 4.1.2.2

levels: 2, Nc = 993, Nf = 1983, h = 3.17 ·10−2, ν1 = 1, ν2 = 2

εfine =max(10−10‖r‖(0)
2 ,10−13), εcoarse =max(10−12‖rc‖(k)

2 ,10−13)

k ‖e‖(k)
2 ‖r‖(k)

2 ‖rc‖(k)
2 ‖e(k) − e(k−1)‖2 ‖e‖(k−1)

2 /‖e‖(k)
2 ‖r‖(k)

2 /‖r‖(k−1)
2

0 5.568E+00 2.563E-03

1 1.739E-01 2.740E-02 2.558E-03 5.394E+00 0.0312 10.6899

2 4.554E-03 1.792E-03 2.638E-03 1.694E-01 0.0262 0.0654

3 5.198E-04 8.575E-05 9.801E-05 4.034E-03 0.1141 0.0478

4 3.500E-04 3.649E-06 3.597E-06 1.698E-04 0.6733 0.0426

5 3.422E-04 1.508E-07 4.102E-07 7.780E-06 0.9778 0.0413

6 3.405E-04 7.007E-09 4.738E-08 1.671E-06 0.9951 0.0465

7 3.402E-04 1.182E-09 6.072E-09 3.432E-07 0.9990 0.1687

8 3.401E-04 2.901E-10 9.075E-10 8.529E-08 0.9997 0.2453

9 3.401E-04 7.619E-11 1.795E-10 2.203E-08 0.9999 0.2627

10 3.401E-04 2.001E-11 4.326E-11 5.758E-09 1.0000 0.2626

11 3.401E-04 5.269E-12 1.115E-11 1.494E-09 1.0000 0.2634

12 3.401E-04 1.413E-12 2.923E-12 3.677E-10 1.0000 0.2681

13 3.401E-04 4.475E-13 7.801E-13 7.996E-11 1.0000 0.3167

14 3.401E-04 2.283E-13 2.479E-13 6.107E-11 1.0000 0.5102

convergence after 14 multigrid cycles

mean convergence rate: 0.158

wall clock time: 1378 sec
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Table A.19: Test case 1 — Results of section 4.1.2.2

levels: 2, Nc = 253, Nf = 503, h = 1.26 ·10−1, ν1 = 1, ν2 = 1

εfine =max(10−10‖r‖(0)
2 ,10−13), εcoarse =max(10−12‖rc‖(k)

2 ,10−13)

k ‖e‖(k)
2 ‖r‖(k)

2 ‖rc‖(k)
2 ‖e(k) − e(k−1)‖2 ‖e‖(k−1)

2 /‖e‖(k)
2 ‖r‖(k)

2 /‖r‖(k−1)
2

0 5.568E+00 1.592E-01

1 1.813E-01 3.624E-01 1.538E-01 5.387E+00 0.0326 2.2770

2 1.097E-02 2.657E-02 1.580E-01 1.703E-01 0.0605 0.0733

3 5.889E-03 2.836E-03 4.622E-03 5.086E-03 0.5366 0.1067

4 5.394E-03 3.142E-04 2.346E-04 4.954E-04 0.9159 0.1108

5 5.330E-03 3.832E-05 4.997E-05 6.316E-05 0.9883 0.1220

6 5.319E-03 6.040E-06 1.156E-05 1.143E-05 0.9979 0.1576

7 5.316E-03 1.295E-06 2.747E-06 2.737E-06 0.9995 0.2144

8 5.316E-03 3.263E-07 6.671E-07 7.772E-07 0.9999 0.2520

9 5.315E-03 8.829E-08 1.657E-07 2.375E-07 1.0000 0.2705

10 5.315E-03 2.506E-08 4.234E-08 7.439E-08 1.0000 0.2839

11 5.315E-03 7.411E-09 1.122E-08 2.344E-08 1.0000 0.2957

12 5.315E-03 2.265E-09 3.103E-09 7.383E-09 1.0000 0.3057

13 5.315E-03 7.100E-10 8.962E-10 2.317E-09 1.0000 0.3134

14 5.315E-03 2.264E-10 2.691E-10 7.246E-10 1.0000 0.3189

15 5.315E-03 7.308E-11 8.329E-11 2.257E-10 1.0000 0.3228

16 5.315E-03 2.378E-11 2.634E-11 6.956E-11 1.0000 0.3254

17 5.315E-03 7.785E-12 8.449E-12 2.112E-11 1.0000 0.3273

convergence after 17 multigrid cycles

mean convergence rate: 0.249

wall clock time: 6 sec
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Table A.20: Test case 1 — Results of section 4.1.2.2

levels: 3, Nc = 253, Nf = 1003, h = 6.28 ·10−2, ν1 = 1, ν2 = 1

εfine =max(10−10‖r‖(0)
2 ,10−13), εcoarse =max(10−12‖rc‖(k)

2 ,10−13)

k ‖e‖(k)
2 ‖r‖(k)

2 ‖rc‖(k)
2 ‖e(k) − e(k−1)‖2 ‖e‖(k−1)

2 /‖e‖(k)
2 ‖r‖(k)

2 /‖r‖(k−1)
2

0 5.568E+00 1.990E-02

1 3.317E-01 1.878E-01 1.874E-02 5.237E+00 0.0596 9.4368

2 1.650E-01 1.028E-02 3.907E-02 1.666E-01 0.4976 0.0547

3 2.347E-02 6.426E-03 2.254E-02 1.415E-01 0.1422 0.6252

4 4.527E-03 5.256E-04 3.032E-03 1.894E-02 0.1929 0.0818

5 2.153E-03 2.015E-04 8.523E-04 2.374E-03 0.4756 0.3835

6 1.213E-03 2.650E-05 1.473E-04 9.398E-04 0.5635 0.1315

7 1.359E-03 7.068E-06 3.373E-05 1.455E-04 1.1199 0.2667

8 1.326E-03 1.206E-06 6.424E-06 3.297E-05 0.9757 0.1707

9 1.331E-03 2.741E-07 1.365E-06 4.981E-06 1.0038 0.2272

10 1.330E-03 5.625E-08 2.677E-07 5.409E-07 0.9996 0.2052

11 1.331E-03 1.432E-08 5.454E-08 2.805E-07 1.0002 0.2546

12 1.331E-03 2.873E-09 1.075E-08 2.180E-09 1.0000 0.2007

13 1.331E-03 8.365E-10 2.476E-09 5.683E-09 1.0000 0.2911

14 1.331E-03 3.456E-10 5.121E-10 5.155E-09 1.0000 0.4132

15 1.331E-03 6.588E-11 9.487E-11 4.550E-10 1.0000 0.1906

16 1.331E-03 2.528E-11 4.768E-11 3.891E-10 1.0000 0.3837

17 1.331E-03 1.341E-11 1.230E-11 1.998E-10 1.0000 0.5307

18 1.331E-03 2.808E-12 1.909E-12 3.287E-11 1.0000 0.2094

19 1.331E-03 9.144E-13 1.781E-12 1.450E-11 1.0000 0.3256

convergence after 19 multigrid cycles

mean convergence rate: 0.274

wall clock time: 56 sec
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Table A.21: Test case 1 — Results of section 4.1.2.2

levels: 4, Nc = 253, Nf = 2003, h = 3.14 ·10−2, ν1 = 1, ν2 = 1

εfine =max(10−10‖r‖(0)
2 ,10−13), εcoarse =max(10−12‖rc‖(k)

2 ,10−13)

k ‖e‖(k)
2 ‖r‖(k)

2 ‖rc‖(k)
2 ‖e(k) − e(k−1)‖2 ‖e‖(k−1)

2 /‖e‖(k)
2 ‖r‖(k)

2 /‖r‖(k−1)
2

0 5.568E+00 2.487E-03

1 5.012E-01 9.654E-02 2.310E-03 5.067E+00 0.0900 38.8116

2 5.258E-01 9.884E-03 7.332E-03 2.455E-02 1.0490 0.1024

3 2.769E-01 1.259E-02 8.451E-03 2.489E-01 0.5266 1.2733

4 1.098E-01 5.303E-03 4.631E-03 1.671E-01 0.3966 0.4214

5 5.794E-02 2.366E-03 1.920E-03 5.187E-02 0.5277 0.4461

6 2.622E-02 1.229E-03 1.041E-03 3.172E-02 0.4525 0.5196

7 1.308E-02 5.647E-04 4.931E-04 1.314E-02 0.4987 0.4594

8 5.804E-03 2.717E-04 2.381E-04 7.271E-03 0.4439 0.4811

9 3.076E-03 1.294E-04 1.161E-04 2.728E-03 0.5299 0.4764

10 1.201E-03 6.115E-05 5.573E-05 1.875E-03 0.3906 0.4724

11 8.724E-04 2.903E-05 2.687E-05 3.291E-04 0.7261 0.4748

12 3.237E-04 1.369E-05 1.289E-05 5.486E-04 0.3711 0.4717

13 4.139E-04 6.449E-06 6.153E-06 9.014E-05 1.2784 0.4709

14 3.176E-04 3.036E-06 2.932E-06 9.625E-05 0.7675 0.4708

15 3.445E-04 1.426E-06 1.394E-06 2.687E-05 1.0846 0.4697

16 3.298E-04 6.682E-07 6.616E-07 1.476E-05 0.9572 0.4685

17 3.346E-04 3.126E-07 3.132E-07 4.836E-06 1.0147 0.4678

18 3.329E-04 1.462E-07 1.478E-07 1.704E-06 0.9949 0.4675

19 3.335E-04 6.821E-08 6.959E-08 6.593E-07 1.0020 0.4667

20 3.333E-04 3.182E-08 3.269E-08 2.764E-07 0.9992 0.4665

21 3.333E-04 1.483E-08 1.533E-08 5.261E-08 1.0002 0.4659

22 3.333E-04 6.909E-09 7.178E-09 1.089E-08 1.0000 0.4660

23 3.333E-04 3.222E-09 3.355E-09 1.245E-08 1.0000 0.4663

24 3.333E-04 1.501E-09 1.566E-09 2.207E-09 1.0000 0.4659

25 3.333E-04 7.017E-10 7.296E-10 1.938E-09 1.0000 0.4675

26 3.333E-04 3.271E-10 3.397E-10 3.912E-10 1.0000 0.4661

27 3.333E-04 1.536E-10 1.582E-10 6.744E-10 1.0000 0.4695

28 3.333E-04 7.269E-11 7.367E-11 8.825E-11 1.0000 0.4734

29 3.333E-04 3.439E-11 3.438E-11 1.778E-11 1.0000 0.4731

30 3.333E-04 1.646E-11 1.608E-11 1.359E-10 1.0000 0.4786

31 3.333E-04 8.043E-12 7.567E-12 3.865E-11 1.0000 0.4887

Continued on next page
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Table A.21 – Continued from previous page

levels: 4, Nc = 253, Nf = 2003, h = 3.14 ·10−2, ν1 = 1, ν2 = 1

εfine =max(10−10‖r‖(0)
2 ,10−13), εcoarse =max(10−12‖rc‖(k)

2 ,10−13)

k ‖e‖(k)
2 ‖r‖(k)

2 ‖rc‖(k)
2 ‖e(k) − e(k−1)‖2 ‖e‖(k−1)

2 /‖e‖(k)
2 ‖r‖(k)

2 /‖r‖(k−1)
2

32 3.333E-04 3.797E-12 3.589E-12 2.182E-13 1.0000 0.4720

33 3.333E-04 2.068E-12 1.715E-12 3.402E-11 1.0000 0.5446

34 3.333E-04 1.929E-12 8.601E-13 4.367E-13 1.0000 0.9329

convergence after 34 multigrid cycles

mean convergence rate: 0.498

wall clock time: 846 sec
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Table A.22: Test case 1 — Results of section 4.1.2.2

levels: 2, Nc = 513, Nf = 1023, h = 6.16 ·10−2, ν1 = 1, ν2 = 1

εfine =max(10−10‖r‖(0)
2 ,10−13), εcoarse =max(10−12‖rc‖(k)

2 ,10−13)

k ‖e‖(k)
2 ‖r‖(k)

2 ‖rc‖(k)
2 ‖e(k) − e(k−1)‖2 ‖e‖(k−1)

2 /‖e‖(k)
2 ‖r‖(k)

2 /‖r‖(k−1)
2

0 5.568E+00 1.875E-02

1 1.933E-01 1.793E-01 1.860E-02 5.375E+00 0.0347 9.5605

2 6.764E-03 1.252E-02 1.916E-02 1.866E-01 0.0350 0.0698

3 1.912E-03 1.371E-03 6.453E-04 4.853E-03 0.2826 0.1095

4 1.375E-03 1.504E-04 4.292E-05 5.372E-04 0.7190 0.1097

5 1.298E-03 1.695E-05 9.470E-06 7.672E-05 0.9442 0.1127

6 1.284E-03 2.078E-06 2.231E-06 1.404E-05 0.9892 0.1226

7 1.280E-03 3.291E-07 5.396E-07 3.322E-06 0.9974 0.1584

8 1.280E-03 7.369E-08 1.327E-07 9.659E-07 0.9992 0.2239

9 1.279E-03 2.018E-08 3.318E-08 3.139E-07 0.9998 0.2739

10 1.279E-03 6.077E-09 8.480E-09 1.069E-07 0.9999 0.3011

11 1.279E-03 1.942E-09 2.239E-09 3.707E-08 1.0000 0.3196

12 1.279E-03 6.461E-10 6.192E-10 1.293E-08 1.0000 0.3327

13 1.279E-03 2.204E-10 1.814E-10 4.516E-09 1.0000 0.3412

14 1.279E-03 7.631E-11 5.631E-11 1.577E-09 1.0000 0.3462

15 1.279E-03 2.663E-11 1.834E-11 5.490E-10 1.0000 0.3490

16 1.279E-03 9.344E-12 6.180E-12 1.894E-10 1.0000 0.3508

17 1.279E-03 3.302E-12 2.127E-12 6.346E-11 1.0000 0.3533

18 1.279E-03 1.189E-12 7.513E-13 2.152E-11 1.0000 0.3600

convergence after 18 multigrid cycles

mean convergence rate: 0.252

wall clock time: 101 sec
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Table A.23: Test case 1 — Results of section 4.1.2.2

levels: 3, Nc = 513, Nf = 2043, h = 3.08 ·10−2, ν1 = 1, ν2 = 1

εfine =max(10−10‖r‖(0)
2 ,10−13), εcoarse =max(10−12‖rc‖(k)

2 ,10−13)

k ‖e‖(k)
2 ‖r‖(k)

2 ‖rc‖(k)
2 ‖e(k) − e(k−1)‖2 ‖e‖(k−1)

2 /‖e‖(k)
2 ‖r‖(k)

2 /‖r‖(k−1)
2

0 5.568E+00 2.344E-03

1 3.570E-01 9.227E-02 2.310E-03 5.211E+00 0.0641 39.3691

2 1.918E-01 4.803E-03 4.835E-03 1.652E-01 0.5373 0.0520

3 2.729E-02 3.585E-03 2.831E-03 1.645E-01 0.1423 0.7464

4 7.181E-03 2.996E-04 4.281E-04 2.011E-02 0.2632 0.0836

5 1.673E-03 1.313E-04 1.251E-04 5.508E-03 0.2330 0.4383

6 2.317E-04 1.832E-05 2.326E-05 1.442E-03 0.1384 0.1395

7 3.864E-04 5.387E-06 5.813E-06 1.547E-04 1.6679 0.2940

8 3.081E-04 9.600E-07 1.209E-06 7.828E-05 0.7974 0.1782

9 3.224E-04 2.428E-07 2.774E-07 1.435E-05 1.0466 0.2529

10 3.196E-04 4.829E-08 5.945E-08 2.889E-06 0.9910 0.1989

11 3.205E-04 1.166E-08 1.347E-08 8.965E-07 1.0028 0.2415

12 3.204E-04 2.713E-09 2.884E-09 6.145E-08 0.9998 0.2326

13 3.204E-04 5.746E-10 6.758E-10 2.267E-08 1.0001 0.2118

14 3.204E-04 2.004E-10 1.651E-10 1.750E-08 0.9999 0.3488

15 3.204E-04 7.621E-11 3.461E-11 3.105E-09 1.0000 0.3802

16 3.204E-04 1.002E-11 8.990E-12 3.124E-10 1.0000 0.1315

17 3.204E-04 7.713E-12 4.923E-12 6.183E-10 1.0000 0.7699

18 3.204E-04 4.200E-12 1.227E-12 2.031E-10 1.0000 0.5445

19 3.204E-04 1.614E-12 2.817E-13 1.667E-10 1.0000 0.3844

20 3.204E-04 1.099E-12 3.201E-13 9.436E-11 1.0000 0.6807

21 3.204E-04 1.290E-12 2.292E-13 9.703E-11 1.0000 1.1734

convergence after 21 multigrid cycles

mean convergence rate: 0.311

wall clock time: 615 sec
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Table A.24: Test case 1 — Results of section 4.1.2.2

levels: 2, Nc = 993, Nf = 1983, h = 3.17 ·10−2, ν1 = 1, ν2 = 1

εfine =max(10−10‖r‖(0)
2 ,10−13), εcoarse =max(10−12‖rc‖(k)

2 ,10−13)

k ‖e‖(k)
2 ‖r‖(k)

2 ‖rc‖(k)
2 ‖e(k) − e(k−1)‖2 ‖e‖(k−1)

2 /‖e‖(k)
2 ‖r‖(k)

2 /‖r‖(k−1)
2

0 5.568E+00 2.563E-03

1 1.965E-01 9.224E-02 2.558E-03 5.372E+00 0.0353 35.9826

2 5.649E-03 6.384E-03 2.637E-03 1.908E-01 0.0288 0.0692

3 9.273E-04 7.057E-04 9.960E-05 4.722E-03 0.1641 0.1105

4 4.326E-04 7.744E-05 8.461E-06 4.947E-04 0.4665 0.1097

5 3.579E-04 8.606E-06 1.877E-06 7.467E-05 0.8274 0.1111

6 3.443E-04 9.751E-07 4.445E-07 1.360E-05 0.9620 0.1133

7 3.413E-04 1.207E-07 1.079E-07 3.013E-06 0.9913 0.1237

8 3.405E-04 2.006E-08 2.657E-08 8.316E-07 0.9976 0.1662

9 3.402E-04 5.050E-09 6.618E-09 2.680E-07 0.9992 0.2518

10 3.401E-04 1.588E-09 1.673E-09 9.331E-08 0.9997 0.3144

11 3.401E-04 5.427E-10 4.325E-10 3.356E-08 0.9999 0.3418

12 3.401E-04 1.925E-10 1.160E-10 1.222E-08 1.0000 0.3548

13 3.401E-04 6.956E-11 3.290E-11 4.462E-09 1.0000 0.3613

14 3.401E-04 2.538E-11 1.001E-11 1.621E-09 1.0000 0.3649

15 3.401E-04 9.344E-12 3.262E-12 5.801E-10 1.0000 0.3681

16 3.401E-04 3.527E-12 1.126E-12 2.055E-10 1.0000 0.3774

17 3.401E-04 1.415E-12 4.216E-13 8.577E-11 1.0000 0.4011

18 3.401E-04 6.227E-13 2.032E-13 5.201E-11 1.0000 0.4402

19 3.401E-04 4.305E-13 1.483E-13 3.764E-11 1.0000 0.6913

20 3.401E-04 4.747E-13 1.375E-13 4.256E-11 1.0000 1.1028

convergence after 20 multigrid cycles

mean convergence rate: 0.272

wall clock time: 1613 sec
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A.1.1.2 Third Series of Experiments — The Influence of the Grid Traversal

Table A.25: Test case 1 — Results of section 4.1.3

levels: 3W, Nc = 253, Nf = 1003, h = 6.28 ·10−2, ν1 = 2, ν2 = 2

εfine =max(10−10‖r‖(0)
2 ,10−13), εcoarse =max(10−12‖rc‖(k)

2 ,10−13)

k ‖e‖(k)
2 ‖r‖(k)

2 ‖rc‖(k)
2 ‖e(k) − e(k−1)‖2 ‖e‖(k−1)

2 /‖e‖(k)
2 ‖r‖(k)

2 /‖r‖(k−1)
2

0 5.568E+00 1.990E-02

1 1.651E-01 5.390E-02 1.838E-02 5.403E+00 0.0297 2.7090

2 1.618E-03 1.020E-03 1.892E-02 1.635E-01 0.0098 0.0189

3 1.330E-03 8.001E-06 5.463E-04 2.876E-04 0.8222 0.0078

4 1.337E-03 7.873E-07 4.872E-06 6.955E-06 1.0052 0.0984

5 1.331E-03 4.230E-08 3.066E-07 6.129E-06 0.9954 0.0537

6 1.331E-03 6.513E-09 1.596E-08 5.295E-07 0.9996 0.1540

7 1.331E-03 1.148E-09 1.881E-09 9.658E-08 0.9999 0.1763

8 1.331E-03 2.060E-10 3.268E-10 1.702E-08 1.0000 0.1793

9 1.331E-03 3.690E-11 5.879E-11 3.028E-09 1.0000 0.1792

10 1.331E-03 6.601E-12 1.055E-11 5.402E-10 1.0000 0.1789

11 1.331E-03 1.179E-12 1.889E-12 1.050E-10 1.0000 0.1786

convergence after 11 multigrid cycles

mean convergence rate: 0.123

wall clock time: 70 sec
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Table A.26: Test case 1 — Results of section 4.1.3

levels: 3W, Nc = 253, Nf = 1003, h = 6.28 ·10−2, ν1 = 1, ν2 = 1

εfine =max(10−10‖r‖(0)
2 ,10−13), εcoarse =max(10−12‖rc‖(k)

2 ,10−13)

k ‖e‖(k)
2 ‖r‖(k)

2 ‖rc‖(k)
2 ‖e(k) − e(k−1)‖2 ‖e‖(k−1)

2 /‖e‖(k)
2 ‖r‖(k)

2 /‖r‖(k−1)
2

0 5.568E+00 1.990E-02

1 1.903E-01 1.827E-01 1.925E-02 5.378E+00 0.0342 9.1839

2 7.131E-03 1.292E-02 1.980E-02 1.831E-01 0.0375 0.0707

3 1.625E-03 1.338E-03 5.434E-04 5.506E-03 0.2278 0.1036

4 1.391E-03 1.499E-04 1.739E-05 2.337E-04 0.8561 0.1120

5 1.343E-03 1.689E-05 1.263E-06 4.823E-05 0.9653 0.1127

6 1.334E-03 2.075E-06 1.688E-07 8.904E-06 0.9934 0.1228

7 1.332E-03 3.259E-07 3.176E-08 2.171E-06 0.9984 0.1571

8 1.331E-03 7.033E-08 7.134E-09 6.464E-07 0.9995 0.2158

9 1.331E-03 1.810E-08 1.931E-09 2.101E-07 0.9998 0.2574

10 1.331E-03 5.045E-09 5.957E-10 7.053E-08 0.9999 0.2787

11 1.331E-03 1.487E-09 1.950E-10 2.394E-08 1.0000 0.2948

12 1.331E-03 4.600E-10 6.552E-11 8.152E-09 1.0000 0.3093

13 1.331E-03 1.478E-10 2.229E-11 2.779E-09 1.0000 0.3214

14 1.331E-03 4.878E-11 7.624E-12 9.512E-10 1.0000 0.3300

15 1.331E-03 1.638E-11 2.616E-12 3.250E-10 1.0000 0.3358

16 1.331E-03 5.554E-12 9.041E-13 1.112E-10 1.0000 0.3391

17 1.331E-03 1.840E-12 3.402E-13 4.184E-11 1.0000 0.3313

convergence after 17 multigrid cycles

mean convergence rate: 0.237

wall clock time: 56 sec
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Table A.27: Test case 1 — Results of section 4.1.2.2

levels: 4W, Nc = 253, Nf = 2003, h = 3.14 ·10−2, ν1 = 2, ν2 = 2

εfine =max(10−10‖r‖(0)
2 ,10−13), εcoarse =max(10−12‖rc‖(k)

2 ,10−13)

k ‖e‖(k)
2 ‖r‖(k)

2 ‖rc‖(k)
2 ‖e(k) − e(k−1)‖2 ‖e‖(k−1)

2 /‖e‖(k)
2 ‖r‖(k)

2 /‖r‖(k−1)
2

0 5.568E+00 2.487E-03

1 1.717E-01 2.708E-02 2.300E-03 5.397E+00 0.0308 10.8888

2 3.369E-03 5.312E-04 2.371E-03 1.683E-01 0.0196 0.0196

3 4.046E-04 1.100E-05 7.201E-05 2.964E-03 0.1201 0.0207

4 3.379E-04 1.848E-07 1.435E-06 6.671E-05 0.8351 0.0168

5 3.339E-04 1.032E-08 2.482E-08 4.021E-06 0.9881 0.0558

6 3.334E-04 1.681E-09 8.309E-10 4.871E-07 0.9985 0.1629

7 3.333E-04 3.227E-10 9.427E-11 8.996E-08 0.9997 0.1920

8 3.333E-04 6.190E-11 1.858E-11 1.692E-08 0.9999 0.1918

9 3.333E-04 1.204E-11 3.524E-12 3.211E-09 1.0000 0.1945

10 3.333E-04 2.394E-12 7.133E-13 5.783E-10 1.0000 0.1988

11 3.333E-04 5.745E-13 2.153E-13 1.469E-10 1.0000 0.2400

12 3.333E-04 3.554E-13 1.290E-13 8.015E-11 1.0000 0.6187

13 3.333E-04 4.263E-13 1.235E-13 4.401E-12 1.0000 1.1995

convergence after 13 multigrid cycles

mean convergence rate: 0.147

wall clock time: 749 sec
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Table A.28: Test case 1 — Results of section 4.1.3

levels: 4W, Nc = 253, Nf = 2003, h = 3.14 ·10−2, ν1 = 1, ν2 = 1

εfine =max(10−10‖r‖(0)
2 ,10−13), εcoarse =max(10−12‖rc‖(k)

2 ,10−13)

k ‖e‖(k)
2 ‖r‖(k)

2 ‖rc‖(k)
2 ‖e(k) − e(k−1)‖2 ‖e‖(k−1)

2 /‖e‖(k)
2 ‖r‖(k)

2 /‖r‖(k−1)
2

0 5.568E+00 2.487E-03

1 1.932E-01 9.126E-02 2.442E-03 5.375E+00 0.0347 36.6898

2 6.772E-03 6.412E-03 2.514E-03 1.864E-01 0.0351 0.0703

3 7.570E-04 6.565E-04 7.021E-05 6.015E-03 0.1118 0.1024

4 3.954E-04 7.474E-05 2.276E-06 3.616E-04 0.5223 0.1138

5 3.445E-04 8.301E-06 9.741E-08 5.088E-05 0.8713 0.1111

6 3.360E-04 9.385E-07 4.561E-09 8.470E-06 0.9754 0.1131

7 3.341E-04 1.157E-07 6.327E-10 1.914E-06 0.9943 0.1232

8 3.336E-04 1.850E-08 2.122E-10 5.436E-07 0.9984 0.1599

9 3.334E-04 4.253E-09 7.387E-11 1.758E-07 0.9995 0.2300

10 3.334E-04 1.208E-09 2.634E-11 6.032E-08 0.9998 0.2840

11 3.333E-04 3.774E-10 9.370E-12 2.118E-08 0.9999 0.3125

12 3.333E-04 1.246E-10 3.342E-12 7.485E-09 1.0000 0.3302

13 3.333E-04 4.270E-11 1.197E-12 2.616E-09 1.0000 0.3426

14 3.333E-04 1.522E-11 4.663E-13 8.844E-10 1.0000 0.3564

15 3.333E-04 5.174E-12 2.361E-13 3.990E-10 1.0000 0.3399

16 3.333E-04 2.010E-12 1.539E-13 2.123E-10 1.0000 0.3884

17 3.333E-04 1.574E-12 1.607E-13 7.675E-11 1.0000 0.7830

18 3.333E-04 1.332E-12 1.838E-13 4.803E-11 1.0000 0.8464

19 3.333E-04 9.730E-13 1.671E-13 1.615E-11 1.0000 0.7305

20 3.333E-04 1.239E-12 1.751E-13 4.057E-11 1.0000 1.2733

convergence after 20 multigrid cycles

mean convergence rate: 0.285

wall clock time: 570 sec
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Table A.29: Test case 1 — Results of section 4.1.3

levels: 3W, Nc = 513, Nf = 2043, h = 3.08 ·10−2, ν1 = 2, ν2 = 2

εfine =max(10−10‖r‖(0)
2 ,10−13), εcoarse =max(10−12‖rc‖(k)

2 ,10−13)

k ‖e‖(k)
2 ‖r‖(k)

2 ‖rc‖(k)
2 ‖e(k) − e(k−1)‖2 ‖e‖(k−1)

2 /‖e‖(k)
2 ‖r‖(k)

2 /‖r‖(k−1)
2

0 5.568E+00 2.344E-03

1 1.685E-01 2.654E-02 2.355E-03 5.400E+00 0.0303 11.3227

2 9.537E-04 4.891E-04 2.424E-03 1.675E-01 0.0057 0.0184

3 2.318E-04 7.435E-06 6.955E-05 7.219E-04 0.2430 0.0152

4 3.279E-04 6.950E-07 4.847E-07 9.610E-05 1.4146 0.0935

5 3.209E-04 1.481E-08 7.591E-08 7.004E-06 0.9786 0.0213

6 3.205E-04 1.328E-09 2.359E-09 4.119E-07 0.9987 0.0897

7 3.204E-04 2.363E-10 2.016E-10 6.524E-08 0.9998 0.1779

8 3.204E-04 4.471E-11 3.343E-11 1.304E-08 1.0000 0.1892

9 3.204E-04 8.718E-12 6.317E-12 2.533E-09 1.0000 0.1950

10 3.204E-04 1.681E-12 1.249E-12 5.217E-10 1.0000 0.1929

11 3.204E-04 3.289E-13 2.747E-13 1.122E-10 1.0000 0.1956

12 3.204E-04 2.374E-13 1.570E-13 2.858E-11 1.0000 0.7218

13 3.204E-04 2.771E-13 1.479E-13 2.384E-11 1.0000 1.1671

convergence after 13 multigrid cycles

mean convergence rate: 0.142

wall clock time: 810 sec
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Table A.30: Test case 1 — Results of section 4.1.3

levels: 3W, Nc = 513, Nf = 2043, h = 3.08 ·10−2, ν1 = 1, ν2 = 1

εfine =max(10−10‖r‖(0)
2 ,10−13), εcoarse =max(10−12‖rc‖(k)

2 ,10−13)

k ‖e‖(k)
2 ‖r‖(k)

2 ‖rc‖(k)
2 ‖e(k) − e(k−1)‖2 ‖e‖(k−1)

2 /‖e‖(k)
2 ‖r‖(k)

2 /‖r‖(k−1)
2

0 5.568E+00 2.344E-03

1 1.927E-01 8.945E-02 2.381E-03 5.376E+00 0.0346 38.1641

2 6.796E-03 6.303E-03 2.450E-03 1.859E-01 0.0353 0.0705

3 6.632E-04 6.368E-04 6.691E-05 6.132E-03 0.0976 0.1010

4 3.719E-04 7.281E-05 2.835E-06 2.912E-04 0.5609 0.1143

5 3.301E-04 8.086E-06 2.216E-07 4.186E-05 0.8875 0.1111

6 3.227E-04 9.129E-07 2.981E-08 7.398E-06 0.9776 0.1129

7 3.211E-04 1.116E-07 5.287E-09 1.607E-06 0.9950 0.1223

8 3.206E-04 1.742E-08 1.099E-09 4.589E-07 0.9986 0.1560

9 3.205E-04 3.878E-09 2.601E-10 1.501E-07 0.9995 0.2227

10 3.204E-04 1.071E-09 7.228E-11 5.181E-08 0.9998 0.2762

11 3.204E-04 3.266E-10 2.270E-11 1.821E-08 0.9999 0.3049

12 3.204E-04 1.057E-10 7.620E-12 6.466E-09 1.0000 0.3236

13 3.204E-04 3.556E-11 2.645E-12 2.321E-09 1.0000 0.3365

14 3.204E-04 1.226E-11 9.422E-13 8.287E-10 1.0000 0.3447

15 3.204E-04 3.979E-12 3.610E-13 3.149E-10 1.0000 0.3246

16 3.204E-04 1.629E-12 2.151E-13 4.135E-11 1.0000 0.4093

17 3.204E-04 1.276E-12 1.586E-13 2.579E-11 1.0000 0.7833

18 3.204E-04 1.341E-12 1.628E-13 7.496E-12 1.0000 1.0513

convergence after 18 multigrid cycles

mean convergence rate: 0.248

wall clock time: 604 sec
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A.1.1.3 Adjusting εcoarse

For the tables in this section different values are shown in the tables. Instead of focusing on

the errors and residuals of each iteration step the focus now is on the computed value u(k)

itself because information on the error is not available in production simulations. Instead, the

difference ‖u(k) −u(k−1)‖2 is a good measure of whether the desired accuracy is achieved.

Table A.31: Test case 1 — Results of section 4.1.6

levels: 3W, Nc = 253, Nf = 1003, h = 6.28 ·10−2, ν1 = 1, ν2 = 1

εfine =max(10−6‖r‖(0)
2 ,10−13), εcoarse = εfine/10

k ‖e‖(k)
2 ‖r‖(k)

2 ‖u‖(k)
2 ‖u(k) −u(k−1)‖2 ‖u‖(k−1)

2 /‖u‖(k)
2 ‖r‖(k)

2 /‖r‖(k−1)
2

0 5.5683E+00 1.9898E-02 0.0000

1 1.9027E-01 1.8274E-01 5.7335 5.734E+000 0.0000 9.1839

2 7.1311E-03 1.2921E-02 5.5722 1.851E-001 1.0290 0.0707

3 1.6246E-03 1.3383E-03 5.5694 5.822E-003 1.0005 0.1036

4 1.3909E-03 1.4994E-04 5.5696 7.273E-004 1.0000 0.1120

5 1.3427E-03 1.6894E-05 5.5696 2.126E-004 1.0000 0.1127

6 1.3337E-03 2.0737E-06 5.5696 7.033E-005 1.0000 0.1227

7 1.3314E-03 3.2532E-07 5.5696 2.363E-005 1.0000 0.1569

8 1.3306E-03 6.8203E-08 5.5696 7.740E-006 1.0000 0.2096

9 1.3307E-03 2.0487E-08 5.5696 2.729E-006 1.0000 0.3004

10 1.3307E-03 8.8251E-09 5.5696 1.247E-006 1.0000 0.4308

convergence after 10 multigrid cycles

mean convergence rate: 0.188

wall clock time: 33 sec
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Table A.32: Test case 1 — Results of section 4.1.6

levels: 4W, Nc = 253, Nf = 2003, h = 3.14 ·10−2, ν1 = 1, ν2 = 1

εfine =max(10−6‖r‖(0)
2 ,10−13), εcoarse = εfine/10

k ‖e‖(k)
2 ‖r‖(k)

2 ‖u‖(k)
2 ‖u(k) −u(k−1)‖2 ‖u‖(k−1)

2 /‖u‖(k)
2 ‖r‖(k)

2 /‖r‖(k−1)
2

0 5.5683E+00 2.4873E-03 0.0000

1 1.9316E-01 9.1258E-02 5.7375 5.7375E+00 0.0000 36.6898

2 6.7720E-03 6.4116E-03 5.5719 1.8841E-01 1.0297 0.0703

3 7.5699E-04 6.5653E-04 5.5684 6.1770E-03 1.0006 0.1024

4 3.9539E-04 7.4737E-05 5.5686 5.8410E-04 1.0000 0.1138

5 3.4451E-04 8.3015E-06 5.5686 1.2480E-04 1.0000 0.1111

6 3.3623E-04 9.3950E-07 5.5686 3.9291E-05 1.0000 0.1132

7 3.3437E-04 1.1584E-07 5.5686 1.4101E-05 1.0000 0.1233

8 3.3365E-04 1.8718E-08 5.5686 4.9492E-06 1.0000 0.1616

9 3.3325E-04 5.4447E-09 5.5686 1.6751E-06 1.0000 0.2909

10 3.3319E-04 4.8534E-09 5.5686 1.0966E-06 1.0000 0.8914

11 3.3329E-04 2.4129E-09 5.5686 7.3772E-07 1.0000 0.4972

convergence after 11 multigrid cycles

mean convergence rate: 0.209

wall clock time: 322 sec

216



A.1. LINEAR MULTIGRID

Table A.33: Test case 1 — Results of section 4.1.6

levels: 3W, Nc = 513, Nf = 2043, h = 3.08 ·10−2, ν1 = 1, ν2 = 1

εfine =max(10−6‖r‖(0)
2 ,10−13), εcoarse = εfine/10

k ‖e‖(k)
2 ‖r‖(k)

2 ‖u‖(k)
2 ‖u(k) −u(k−1)‖2 ‖u‖(k−1)

2 /‖u‖(k)
2 ‖r‖(k)

2 /‖r‖(k−1)
2

0 5.5683E+00 2.3438E-03 0.0000

1 1.9268E-01 8.9450E-02 5.7370 5.7370E+00 0.0000 38.1641

2 6.7955E-03 6.3031E-03 5.5725 1.8738E-01 1.0295 0.0705

3 6.6316E-04 6.3683E-04 5.5684 6.3170E-03 1.0007 0.1010

4 3.7194E-04 7.2814E-05 5.5686 5.3900E-04 1.0000 0.1143

5 3.3011E-04 8.0870E-06 5.5686 1.0931E-04 1.0000 0.1111

6 3.2259E-04 9.1210E-07 5.5686 3.5622E-05 1.0000 0.1128

7 3.2092E-04 1.1119E-07 5.5686 1.2109E-05 1.0000 0.1219

8 3.2049E-04 1.6882E-08 5.5686 4.0072E-06 1.0000 0.1518

9 3.2051E-04 4.9481E-09 5.5686 1.4946E-06 1.0000 0.2931

10 3.2053E-04 2.5955E-09 5.5686 6.9826E-07 1.0000 0.5246

11 3.2034E-04 1.7606E-09 5.5686 3.9833E-07 1.0000 0.6783

convergence after 11 multigrid cycles

mean convergence rate: 0.195

wall clock time: 362 sec
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Table A.34: Test case 1 — Results of section 4.1.6

levels: 3W, Nc = 253, Nf = 1003, h = 6.28 ·10−2, ν1 = 1, ν2 = 1

εfine =max(10−6‖r‖(0)
2 ,10−13), εcoarse = εfine/100

k ‖e‖(k)
2 ‖r‖(k)

2 ‖u‖(k)
2 ‖u(k) −u(k−1)‖2 ‖u‖(k−1)

2 /‖u‖(k)
2 ‖r‖(k)

2 /‖r‖(k−1)
2

0 5.5683E+00 1.9898E-02 0.0000

1 1.9027E-01 1.8274E-01 5.7335 5.7335E+00 0.0000 9.1839

2 7.1311E-03 1.2921E-02 5.5722 1.8507E-01 1.0290 0.0707

3 1.6246E-03 1.3383E-03 5.5694 5.8218E-03 1.0005 0.1036

4 1.3909E-03 1.4994E-04 5.5696 7.2727E-04 1.0000 0.1120

5 1.3427E-03 1.6893E-05 5.5696 2.1259E-04 1.0000 0.1127

6 1.3338E-03 2.0750E-06 5.5696 7.0319E-05 1.0000 0.1228

7 1.3316E-03 3.2587E-07 5.5696 2.3659E-05 1.0000 0.1570

8 1.3310E-03 7.0253E-08 5.5696 8.1045E-06 1.0000 0.2156

9 1.3307E-03 1.8064E-08 5.5696 2.7846E-06 1.0000 0.2571

convergence after 9 multigrid cycles

mean convergence rate: 0.177

wall clock time: 30 sec
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Table A.35: Test case 1 — Results of section 4.1.6

levels: 4W, Nc = 253, Nf = 2003, h = 3.14 ·10−2, ν1 = 1, ν2 = 1

εfine =max(10−6‖r‖(0)
2 ,10−13), εcoarse = εfine/100

k ‖e‖(k)
2 ‖r‖(k)

2 ‖u‖(k)
2 ‖u(k) −u(k−1)‖2 ‖u‖(k−1)

2 /‖u‖(k)
2 ‖r‖(k)

2 /‖r‖(k−1)
2

0 5.5683E+00 2.4873E-03 0.0000

1 1.9316E-01 9.1258E-02 5.7375 5.7375E+00 0.0000 36.6898

2 6.7720E-03 6.4116E-03 5.5719 1.8841E-01 1.0297 0.0703

3 7.5699E-04 6.5653E-04 5.5684 6.1770E-03 1.0006 0.1024

4 3.9540E-04 7.4737E-05 5.5686 5.8410E-04 1.0000 0.1138

5 3.4452E-04 8.3013E-06 5.5686 1.2477E-04 1.0000 0.1111

6 3.3604E-04 9.3838E-07 5.5686 3.9277E-05 1.0000 0.1130

7 3.3414E-04 1.1574E-07 5.5686 1.4032E-05 1.0000 0.1233

8 3.3361E-04 1.8539E-08 5.5686 5.0009E-06 1.0000 0.1602

9 3.3345E-04 4.3598E-09 5.5686 1.7914E-06 1.0000 0.2352

10 3.3337E-04 1.1914E-09 5.5686 6.2695E-07 1.0000 0.2733

convergence after 10 multigrid cycles

mean convergence rate: 0.169

wall clock time: 293 sec
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Table A.36: Test case 1 — Results of section 4.1.6

levels: 3W, Nc = 513, Nf = 2043, h = 3.08 ·10−2, ν1 = 1, ν2 = 1

εfine =max(10−6‖r‖(0)
2 ,10−13), εcoarse = εfine/100

k ‖e‖(k)
2 ‖r‖(k)

2 ‖u‖(k)
2 ‖u(k) −u(k−1)‖2 ‖u‖(k−1)

2 /‖u‖(k)
2 ‖r‖(k)

2 /‖r‖(k−1)
2

0 5.5683E+00 2.3438E-03 0.0000

1 1.9268E-01 8.9450E-02 5.7370 5.7370E+00 0.0000 38.1641

2 6.7955E-03 6.3031E-03 5.5725 1.8738E-01 1.0295 0.0705

3 6.6316E-04 6.3683E-04 5.5684 6.3170E-03 1.0007 0.1010

4 3.7194E-04 7.2814E-05 5.5686 5.3900E-04 1.0000 0.1143

5 3.3009E-04 8.0864E-06 5.5686 1.0934E-04 1.0000 0.1111

6 3.2270E-04 9.1298E-07 5.5686 3.5620E-05 1.0000 0.1129

7 3.2108E-04 1.1155E-07 5.5686 1.2141E-05 1.0000 0.1222

8 3.2061E-04 1.7350E-08 5.5686 4.2696E-06 1.0000 0.1555

9 3.2046E-04 3.8616E-09 5.5686 1.5219E-06 1.0000 0.2226

10 3.2041E-04 1.0249E-09 5.5686 5.2799E-07 1.0000 0.2654

convergence after 10 multigrid cycles

mean convergence rate: 0.167

wall clock time: 338 sec
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Table A.37: Test case 1 — Results of section 4.1.6

levels: 3W, Nc = 253, Nf = 1003, h = 6.28 ·10−2, ν1 = 1, ν2 = 1

εfine =max(10−6‖r‖(0)
2 ,10−13), εcoarse = εfine/1000

k ‖e‖(k)
2 ‖r‖(k)

2 ‖u‖(k)
2 ‖u(k) −u(k−1)‖2 ‖u‖(k−1)

2 /‖u‖(k)
2 ‖r‖(k)

2 /‖r‖(k−1)
2

0 5.5683E+00 1.9898E-02 0.0000

1 1.9027E-01 1.8274E-01 5.7335 5.7335E+00 0.0000 9.1839

2 7.1311E-03 1.2921E-02 5.5722 1.8507E-01 1.0290 0.0707

3 1.6246E-03 1.3383E-03 5.5694 5.8218E-03 1.0005 0.1036

4 1.3909E-03 1.4994E-04 5.5696 7.2728E-04 1.0000 0.1120

5 1.3427E-03 1.6893E-05 5.5696 2.1259E-04 1.0000 0.1127

6 1.3338E-03 2.0747E-06 5.5696 7.0319E-05 1.0000 0.1228

7 1.3316E-03 3.2591E-07 5.5696 2.3659E-05 1.0000 0.1571

8 1.3310E-03 7.0329E-08 5.5696 8.1054E-06 1.0000 0.2158

9 1.3308E-03 1.8098E-08 5.5696 2.7868E-06 1.0000 0.2573

convergence after 9 multigrid cycles

mean convergence rate: 0.177

wall clock time: 31 sec
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Table A.38: Test case 1 — Results of section 4.1.6

levels: 4W, Nc = 253, Nf = 2003, h = 3.14 ·10−2, ν1 = 1, ν2 = 1

εfine =max(10−6‖r‖(0)
2 ,10−13), εcoarse = εfine/1000

k ‖e‖(k)
2 ‖r‖(k)

2 ‖u‖(k)
2 ‖u(k) −u(k−1)‖2 ‖u‖(k−1)

2 /‖u‖(k)
2 ‖r‖(k)

2 /‖r‖(k−1)
2

0 5.5683E+00 2.4873E-03 0.0000

1 1.9316E-01 9.1258E-02 5.7375 5.7375E+00 0.0000 36.6898

2 6.7720E-03 6.4116E-03 5.5719 1.8841E-01 1.0297 0.0703

3 7.5699E-04 6.5653E-04 5.5684 6.1770E-03 1.0006 0.1024

4 3.9540E-04 7.4737E-05 5.5686 5.8410E-04 1.0000 0.1138

5 3.4452E-04 8.3013E-06 5.5686 1.2477E-04 1.0000 0.1111

6 3.3604E-04 9.3849E-07 5.5686 3.9278E-05 1.0000 0.1131

7 3.3413E-04 1.1565E-07 5.5686 1.4032E-05 1.0000 0.1232

8 3.3359E-04 1.8503E-08 5.5686 4.9992E-06 1.0000 0.1600

9 3.3341E-04 4.2577E-09 5.5686 1.7822E-06 1.0000 0.2301

10 3.3335E-04 1.2108E-09 5.5686 6.3525E-07 1.0000 0.2844

convergence after 10 multigrid cycles

mean convergence rate: 0.169

wall clock time: 300 sec
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A.1. LINEAR MULTIGRID

Table A.39: Test case 1 — Results of section 4.1.6

levels: 3W, Nc = 513, Nf = 2043, h = 3.08 ·10−2, ν1 = 1, ν2 = 1

εfine =max(10−6‖r‖(0)
2 ,10−13), εcoarse = εfine/1000

k ‖e‖(k)
2 ‖r‖(k)

2 ‖u‖(k)
2 ‖u(k) −u(k−1)‖2 ‖u‖(k−1)

2 /‖u‖(k)
2 ‖r‖(k)

2 /‖r‖(k−1)
2

0 5.5683E+00 2.3438E-03 0.0000

1 1.9268E-01 8.9450E-02 5.7370 5.7370E+00 0.0000 38.1641

2 6.7955E-03 6.3031E-03 5.5725 1.8738E-01 1.0295 0.0705

3 6.6316E-04 6.3683E-04 5.5684 6.3170E-03 1.0007 0.1010

4 3.7194E-04 7.2814E-05 5.5686 5.3900E-04 1.0000 0.1143

5 3.3009E-04 8.0864E-06 5.5686 1.0934E-04 1.0000 0.1111

6 3.2269E-04 9.1287E-07 5.5686 3.5619E-05 1.0000 0.1129

7 3.2108E-04 1.1161E-07 5.5686 1.2142E-05 1.0000 0.1223

8 3.2063E-04 1.7414E-08 5.5686 4.2709E-06 1.0000 0.1560

9 3.2047E-04 3.8757E-09 5.5686 1.5240E-06 1.0000 0.2226

10 3.2042E-04 1.0696E-09 5.5686 5.4367E-07 1.0000 0.2760

convergence after 10 multigrid cycles

mean convergence rate: 0.167

wall clock time: 352 sec
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A.2 Test Case 2 — Linear Equation with Neumann B.C.

The problem considered is

−∇· (x∇u(x))+ xu(x)= 4x sin(x) sin(y) sin(z)−cos(x) sin(y) sin(z). (A.4)

with the boundary conditions
∂u
∂x

(0, y, z)=sin(y)sin(z),

∂u
∂x

(2π, y, z)=sin(y)sin(z),

u(x,0, z)=u(x,2π, z),

u(x, y,0)=u(x, y,2π).

(A.5)

The exact solution is

u(x, y, z)=sin(x) sin(y) sin(z). (A.6)

Table A.40: Test case 2 — Results of section 4.2.1

levels: 2W, Nc = 253, Nf = 503, h = 1.26 ·10−1, ν1 = 1, ν2 = 1

εfine =max(10−6‖r‖(0)
2 ,10−13), εcoarse = εfine/100

k ‖e‖(k)
2 ‖r‖(k)

2 ‖u‖(k)
2 ‖u(k) −u(k−1)‖2 ‖u‖(k−1)

2 /‖u‖(k)
2 ‖r‖(k)

2 /‖r‖(k−1)
2

0 5.5683E+00 1.9314E-01 0.0000

1 1.7789E-01 3.6237E-01 5.7150 5.7150E+00 0.0000 1.8762

2 1.1458E-02 2.6814E-02 5.5721 1.7192E-01 1.0257 0.0740

3 6.1280E-03 2.8631E-03 5.5727 7.2686E-03 0.9999 0.1068

4 5.5673E-03 3.1277E-04 5.5728 1.2703E-03 1.0000 0.1092

5 5.4689E-03 3.6067E-05 5.5728 2.8763E-04 1.0000 0.1153

6 5.4459E-03 4.8515E-06 5.5728 7.1058E-05 1.0000 0.1345

7 5.4402E-03 8.5041E-07 5.5728 1.8032E-05 1.0000 0.1753

8 5.4387E-03 1.8345E-07 5.5728 4.6231E-06 1.0000 0.2157

convergence after 8 multigrid cycles

mean convergence rate: 0.178

wall clock time: 2 sec
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A.2. TEST CASE 2 — LINEAR EQUATION WITH NEUMANN B.C.

Table A.41: Test case 2 — Results of section 4.2.1

levels: 4W, Nc = 253, Nf = 2003, h = 3.14 ·10−2, ν1 = 1, ν2 = 1

εfine =max(10−6‖r‖(0)
2 ,10−13), εcoarse = εfine/100

k ‖e‖(k)
2 ‖r‖(k)

2 ‖u‖(k)
2 ‖u(k) −u(k−1)‖2 ‖u‖(k−1)

2 /‖u‖(k)
2 ‖r‖(k)

2 /‖r‖(k−1)
2

0 5.5683E+00 4.2486E-03 0.0000

1 1.9280E-01 9.1250E-02 5.7369 5.7369E+00 0.0000 21.4776

2 7.4879E-03 6.4145E-03 5.5712 1.8861E-01 1.0297 0.0703

3 1.2414E-03 6.5972E-04 5.5683 6.5477E-03 1.0005 0.1028

4 5.5234E-04 7.5085E-05 5.5686 8.2513E-04 1.0000 0.1138

5 3.8410E-04 8.3376E-06 5.5686 2.3721E-04 1.0000 0.1110

6 3.4594E-04 9.4254E-07 5.5686 7.9163E-05 1.0000 0.1130

7 3.3607E-04 1.1618E-07 5.5686 2.7512E-05 1.0000 0.1233

8 3.3312E-04 1.9644E-08 5.5686 9.5827E-06 1.0000 0.1691

9 3.3216E-04 5.1842E-09 5.5686 3.3540E-06 1.0000 0.2639

10 3.3180E-04 1.5685E-09 5.5686 1.1634E-06 1.0000 0.3026

convergence after 10 multigrid cycles

mean convergence rate: 0.173

wall clock time: 81 sec
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A.3 Test Case 3 — Linear Equation with Nonhom. Dirichlet B.
C.

The problem considered is

−∇· ((x+1)∇u(x))+10000u(x)= 2(x+1) cos(z) sin(y)+10000 cos(z) sin(y) (A.7)

with the boundary conditions
u(0, y, z)=cos(z) sin(y),

u(2π, y, z)=cos(z) sin(y),

u(x,0, z)=u(x,2π, z),

u(x, y,0)=u(x, y,2π).

(A.8)

The exact solution is

u(x, y, z)=sin(y) cos(z). (A.9)

Table A.42: Test case 3 — Results of section 4.3.1

levels: 4W, Nc = 253, Nf = 2003, h = 3.14 ·10−2, ν1 = 1, ν2 = 1

εfine =max(10−6‖r‖(0)
2 ,10−13), εcoarse = εfine/100

k ‖e‖(k)
2 ‖r‖(k)

2 ‖u‖(k)
2 ‖u(k) −u(k−1)‖2 ‖u‖(k−1)

2 /‖u‖(k)
2 ‖r‖(k)

2 /‖r‖(k−1)
2

0 7.8551E+00 2.4512E+00 0.0000

1 1.0146E-01 1.0338E-01 7.9251 7.9251E+00 0.0000 0.0422

2 5.1133E-03 6.3412E-03 7.8541 9.9895E-02 1.0090 0.0613

3 6.1867E-04 6.2557E-04 7.8551 4.5349E-03 0.9999 0.0987

4 8.0520E-05 6.9436E-05 7.8551 5.4018E-04 1.0000 0.1110

5 1.0768E-05 8.5729E-06 7.8551 6.9935E-05 1.0000 0.1235

6 1.5571E-06 1.1216E-06 7.8551 9.3241E-06 1.0000 0.1308

convergence after 6 multigrid cycles

mean convergence rate: 0.192

wall clock time: 52 sec

226



A.3. TEST CASE 3 — LINEAR EQUATION WITH NONHOM. DIRICHLET B. C.

Table A.43: Test case 3 — Results of section 4.3.1

levels: 4W, Nc = 31, Nf = 248, h = 2.53 ·10−2, ν1 = 1, ν2 = 1

εfine =max(10−6‖r‖(0)
2 ,10−13), εcoarse = εfine/100

k ‖e‖(k)
2 ‖r‖(k)

2 ‖u‖(k)
2 ‖u(k) −u(k−1)‖2 ‖u‖(k−1)

2 /‖u‖(k)
2 ‖r‖(k)

2 /‖r‖(k−1)
2

0 7.8589E+00 1.2891E+00 0.0000

1 1.3275E-01 9.4888E-02 7.9564 7.9564E+00 0.0000 0.0736

2 7.1758E-03 6.3565E-03 7.8573 1.3117E-01 1.0126 0.0670

3 1.0371E-03 7.2060E-04 7.8589 6.2233E-03 0.9998 0.1134

4 1.6422E-04 9.5073E-05 7.8589 8.7703E-04 1.0000 0.1319

5 2.6754E-05 1.4371E-05 7.8589 1.3786E-04 1.0000 0.1512

6 4.4213E-06 2.3126E-06 7.8589 2.2390E-05 1.0000 0.1609

7 8.1870E-07 3.8139E-07 7.8589 3.6845E-06 1.0000 0.1649

convergence after 7 multigrid cycles

mean convergence rate: 0.205

wall clock time: 106 sec
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A.4 Test Case 4 — Parallel Multigrid

The problem considered is

−∇· (x∇u(x))+x u(x)= 4x sin(x) sin(y) sin(z)−cos(x) sin(y) sin(z) (A.10)

with the boundary conditions
u(0, y, z)=u(2π, y, z)= 0,

u(x,0, z)=u(x,2π, z),

u(x, y,0)=u(x, y,2π)

(A.11)

and the exact solution

u(x, y, z)=sin(x) sin(y) sin(z). (A.12)

Table A.44: Test Case 4 — results of section 4.4.2

levels: 4W, N = 248, h = 2.53 ·10−2, ν1 = 1, ν2 = 1

εfine =max(10−6‖r‖(0)
2 ,10−13), εcoarse = εfine/100 domain decomp.: 1 1 1

k ‖e‖(k)
2 ‖r‖(k)

2 ‖u‖(k)
2 ‖u(k) −u(k−1)‖2 ‖u‖(k−1)

2 /‖u‖(k)
2 ‖r‖(k)

2 /‖r‖(k−1)
2

0 5.5683E+00 1.3046E-03 0.0000

1 1.9424E-01 7.3550E-02 5.7389 5.7389E+00 0.0000 56.3789

2 7.0483E-03 5.1631E-03 5.5710 1.9037E-01 1.0301 0.0702

3 6.1498E-04 5.3040E-04 5.5684 6.5965E-03 1.0005 0.1027

4 2.9081E-04 6.0364E-05 5.5685 5.1783E-04 1.0000 0.1138

5 2.2772E-04 6.6974E-06 5.5685 1.2341E-04 1.0000 0.1109

6 2.1961E-04 7.5139E-07 5.5685 3.2222E-05 1.0000 0.1122

7 2.1770E-04 8.9810E-08 5.5685 1.2275E-05 1.0000 0.1195

8 2.1719E-04 1.3163E-08 5.5685 4.3057E-06 1.0000 0.1466

9 2.1703E-04 2.9151E-09 5.5685 1.5747E-06 1.0000 0.2215

10 2.1697E-04 7.9827E-10 5.5685 5.5823E-07 1.0000 0.2738

convergence after 10 multigrid cycles

mean convergence rate: 0.166

wall clock time: 162 sec
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A.4. TEST CASE 4 — PARALLEL MULTIGRID

Table A.45: Test case 4

levels: 4W, N = 248, h = 2.53 ·10−2, ν1 = 1, ν2 = 1

εfine =max(10−6‖r‖(0)
2 ,10−13), εcoarse = εfine/100 domain decomp.: 2 1 1

k ‖e‖(k)
2 ‖r‖(k)

2 ‖u‖(k)
2 ‖u(k) −u(k−1)‖2 ‖u‖(k−1)

2 /‖u‖(k)
2 ‖r‖(k)

2 /‖r‖(k−1)
2

0 5.5683E+00 1.3046E-03 0.0000

1 1.9426E-01 7.3548E-02 5.7389 5.7389E+00 0.0000 56.3779

2 7.0482E-03 5.1633E-03 5.5710 1.9041E-01 1.0301 0.0702

3 6.1587E-04 5.3031E-04 5.5684 6.5960E-03 1.0005 0.1027

4 2.9089E-04 6.0365E-05 5.5685 5.1824E-04 1.0000 0.1138

5 2.2773E-04 6.6999E-06 5.5685 1.2356E-04 1.0000 0.1110

6 2.1961E-04 7.5330E-07 5.5685 3.2243E-05 1.0000 0.1124

7 2.1770E-04 9.0866E-08 5.5685 1.2280E-05 1.0000 0.1206

8 2.1719E-04 1.3629E-08 5.5685 4.3066E-06 1.0000 0.1500

9 2.1703E-04 3.0960E-09 5.5685 1.5754E-06 1.0000 0.2272

10 2.1697E-04 1.0177E-09 5.5685 5.6430E-07 1.0000 0.3287

convergence after 10 multigrid cycles

mean convergence rate: 0.167

wall clock time: 86 sec
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Table A.46: Test case 4

levels: 4W, N = 248, h = 2.53 ·10−2, ν1 = 1, ν2 = 1

εfine =max(10−6‖r‖(0)
2 ,10−13), εcoarse = εfine/100 domain decomp.: 2 2 1

k ‖e‖(k)
2 ‖r‖(k)

2 ‖u‖(k)
2 ‖u(k) −u(k−1)‖2 ‖u‖(k−1)

2 /‖u‖(k)
2 ‖r‖(k)

2 /‖r‖(k−1)
2

0 5.5683E+00 1.3046E-03 0.0000

1 1.9426E-01 7.3549E-02 5.7389 5.7389E+00 0.0000 56.3784

2 7.0480E-03 5.1634E-03 5.5710 1.9041E-01 1.0301 0.0702

3 6.1601E-04 5.3035E-04 5.5684 6.5959E-03 1.0005 0.1027

4 2.9088E-04 6.0366E-05 5.5685 5.1842E-04 1.0000 0.1138

5 2.2773E-04 6.6999E-06 5.5685 1.2355E-04 1.0000 0.1110

6 2.1961E-04 7.5335E-07 5.5685 3.2242E-05 1.0000 0.1124

7 2.1770E-04 9.0884E-08 5.5685 1.2280E-05 1.0000 0.1206

8 2.1719E-04 1.3632E-08 5.5685 4.3065E-06 1.0000 0.1500

9 2.1703E-04 3.0965E-09 5.5685 1.5753E-06 1.0000 0.2271

10 2.1697E-04 1.0164E-09 5.5685 5.6397E-07 1.0000 0.3283

convergence after 10 multigrid cycles

mean convergence rate: 0.167

wall clock time: 45 sec
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A.4. TEST CASE 4 — PARALLEL MULTIGRID

Table A.47: Test case 4

levels: 4W, N = 248, h = 2.53 ·10−2, ν1 = 1, ν2 = 1

εfine =max(10−6‖r‖(0)
2 ,10−13), εcoarse = εfine/100 domain decomp.: 2 2 2

k ‖e‖(k)
2 ‖r‖(k)

2 ‖u‖(k)
2 ‖u(k) −u(k−1)‖2 ‖u‖(k−1)

2 /‖u‖(k)
2 ‖r‖(k)

2 /‖r‖(k−1)
2

0 5.5683E+00 1.3046E-03 0.0000

1 2.0786E-01 7.3727E-02 5.7530 5.7530E+00 0.0000 56.5148

2 3.0999E-02 4.8953E-03 5.5558 2.2233E-01 1.0355 0.0664

3 4.5299E-03 7.7013E-04 5.5697 3.5115E-02 0.9975 0.1573

4 1.3238E-03 7.1434E-05 5.5683 5.7507E-03 1.0003 0.0928

5 3.3376E-04 1.8791E-05 5.5686 1.5490E-03 1.0000 0.2630

6 2.2203E-04 2.1236E-06 5.5685 2.7395E-04 1.0000 0.1130

7 2.1836E-04 6.0521E-07 5.5685 6.1095E-05 1.0000 0.2850

8 2.1711E-04 8.6666E-08 5.5685 1.1595E-05 1.0000 0.1432

9 2.1702E-04 2.0984E-08 5.5685 2.7621E-06 1.0000 0.2421

10 2.1695E-04 3.4956E-09 5.5685 6.9488E-07 1.0000 0.1666

11 2.1693E-04 9.4854E-10 5.5685 2.2742E-07 1.0000 0.2714

convergence after 11 multigrid cycles

mean convergence rate: 0.208

wall clock time: 28 sec
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Table A.48: Test case 4

levels: 4W, N = 216, h = 2.91 ·10−2, ν1 = 1, ν2 = 1

εfine =max(10−6‖r‖(0)
2 ,10−13), εcoarse = εfine/100 domain decomp.: 4 2 2

k ‖e‖(k)
2 ‖r‖(k)

2 ‖u‖(k)
2 ‖u(k) −u(k−1)‖2 ‖u‖(k−1)

2 /‖u‖(k)
2 ‖r‖(k)

2 /‖r‖(k−1)
2

0 5.5683E+00 1.9745E-03 0.0000

1 2.0444E-01 8.4356E-02 5.7486 5.7486E+00 0.0000 42.7228

2 2.6601E-02 5.7789E-03 5.5566 2.1645E-01 1.0346 0.0685

3 3.3539E-03 9.1014E-04 5.5695 2.8993E-02 0.9977 0.1575

4 9.3065E-04 1.6571E-04 5.5684 3.8890E-03 1.0002 0.1821

5 4.0545E-04 1.3315E-04 5.5686 9.8317E-04 1.0000 0.8035

6 3.6065E-04 1.3114E-04 5.5686 1.7469E-04 1.0000 0.9849

convergence after 6 multigrid cycles

mean convergence rate: 0.390

wall clock time: 8 sec

Table A.49: Test case 4

levels: 4W, N = 216, h = 2.91 ·10−2, ν1 = 1, ν2 = 1

εfine =max(10−6‖r‖(0)
2 ,10−13), εcoarse = εfine/100 domain decomp.: 4 4 2

k ‖e‖(k)
2 ‖r‖(k)

2 ‖u‖(k)
2 ‖u(k) −u(k−1)‖2 ‖u‖(k−1)

2 /‖u‖(k)
2 ‖r‖(k)

2 /‖r‖(k−1)
2

0 5.5683E+00 1.9745E-03 0.0000

1 2.0605E-01 8.6168E-02 5.7492 5.7492E+00 0.0000 43.6408

2 2.6520E-02 6.2464E-03 5.5570 2.1755E-01 1.0346 0.0725

3 3.2955E-03 9.8878E-04 5.5695 2.8773E-02 0.9977 0.1583

4 8.8975E-04 1.7512E-04 5.5684 3.7528E-03 1.0002 0.1771

5 4.0388E-04 1.3349E-04 5.5686 9.2414E-04 1.0000 0.7623

6 3.6055E-04 1.3115E-04 5.5686 1.6384E-04 1.0000 0.9824

convergence after 6 multigrid cycles

mean convergence rate: 0.382

wall clock time: 5 sec
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A.4. TEST CASE 4 — PARALLEL MULTIGRID

Table A.50: Test case 4

levels: 4W, N = 216, h = 2.91 ·10−2, ν1 = 1, ν2 = 1

εfine =max(10−6‖r‖(0)
2 ,10−13), εcoarse = εfine/100 domain decomp.: 4 4 4

k ‖e‖(k)
2 ‖r‖(k)

2 ‖u‖(k)
2 ‖u(k) −u(k−1)‖2 ‖u‖(k−1)

2 /‖u‖(k)
2 ‖r‖(k)

2 /‖r‖(k−1)
2

0 5.5683E+00 1.9745E-03 0.0000

1 2.3440E-01 8.8340E-02 5.7752 5.7752E+00 0.0000 44.7405

2 5.1605E-02 6.4008E-03 5.5403 2.6950E-01 1.0424 0.0725

3 1.1495E-02 1.0970E-03 5.5585 4.2246E-02 0.9967 0.1714

4 3.8395E-03 3.7924E-04 5.5712 1.5102E-02 0.9977 0.3457

5 5.7701E-04 1.3626E-04 5.5688 3.4778E-03 1.0004 0.3593

6 3.3257E-04 1.3126E-04 5.5685 3.2722E-04 1.0001 0.9633

convergence after 6 multigrid cycles

mean convergence rate: 0.382

wall clock time: 3 sec
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A.5 Test Case 5 — Nonlinear Equation with Dirichlet
Boundaries

The problem considered is

−∇· ((5+u(x))∇u(x))+u(x)=− (cos(z)2 sin(1+ x)2 sin(y)2)+sin(1+ x)sin(y)sin(z)

−cos(y)2 sin(1+ x)2 sin(z)2 −cos(1+ x)2 sin(y)2 sin(z)2

+3sin(1+ x)sin(y)sin(z) · (5+sin(1+ x) ·sin(y) ·sin(z))

(A.13)

with the boundary conditions

u(0, y, z)=u(2π, y, z)= sin(1)sin(y)sin(z),

u(x,0, z)=u(x,2π, z),

u(x, y,0)=u(x, y,2π)

(A.14)

and the exact solution

u(x, y, z)=sin(1+ x) sin(y) sin(z). (A.15)

Table A.51: Test case 5

levels: 3W, Nf = 164×164×164, hx = 3.83 ·10−2, ν1 = 5, ν2 = 5

εfine =max(10−6‖r‖(0)
2 ,10−13), εcoarse = εfine/100

k ‖e‖(k)
2 ‖r‖(k)

2 ‖u‖(k)
2 ‖u(k) −u(k−1)‖2 ‖u‖(k−1)

2 /‖u‖(k)
2 ‖r‖(k)

2 /‖r‖(k−1)
2

0 5.5442E+00 1.4120E-01 0.0000

1 3.6619E-01 9.0518E-03 8.7689 5.7074E+00 0.7534 0.0641

2 8.4098E-03 1.5190E-04 8.6533 3.7398E-01 1.0134 0.0168

3 1.1237E-03 3.2693E-06 8.6559 9.2550E-03 0.9997 0.0215

4 6.3614E-04 2.0268E-07 8.6558 5.6506E-04 1.0000 0.0620

convergence after 5 multigrid cycles

wall clock time: 350 sec
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A.5. TEST CASE 5 — NONLINEAR EQUATION WITH DIRICHLET BOUNDARIES

Table A.52: Test case 5

levels: 4W, Nf = 200×200×200, hx = 3.14 ·10−2, ν1 = 5, ν2 = 5

εfine =max(10−6‖r‖(0)
2 ,10−13), εcoarse = εfine/100

k ‖e‖(k)
2 ‖r‖(k)

2 ‖u‖(k)
2 ‖u(k) −u(k−1)‖2 ‖u‖(k−1)

2 /‖u‖(k)
2 ‖r‖(k)

2 /‖r‖(k−1)
2

0 5.5486E+00 1.0466E-01 0.0000

1 3.6757E-01 6.7288E-03 8.7709 5.7161E+00 0.7536 0.0643

2 8.1434E-03 1.1899E-04 8.6529 3.7522E-01 1.0136 0.0177

3 6.5818E-04 2.4923E-06 8.6556 8.5784E-03 0.9997 0.0209

4 3.9355E-04 1.1310E-07 8.6557 4.3983E-04 1.0000 0.0454

convergence after 5 multigrid cycles

wall clock time: 315 sec
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A.6 Test Case 6 — Nonlinear Equation with Neumann
Boundaries

The problem that we are solving is

−∇· ((10+u(x))∇u(x))+ (1000+u(x))=1000−sin2(x)sin2(y)cos2(z)+sin(x)sin(y)sin(z)

−sin2(x)cos2(y)sin2(z)−cos2(x)sin2(y)sin2(z)

+3sin(x)sin(y)sin(z) (sin(x)sin(y)sin(z)+10)

(A.16)

with the boundary conditions

∂u
∂x

(0, y, z)=∂u
∂x

(2π, y, z)= sin(y)sin(z),

u(x,0, z)=u(x,2π, z),

u(x, y,0)=u(x, y,2π)

(A.17)

and the exact solution

u(x, y, z)=sin(x) sin(y) sin(z). (A.18)

Table A.53: Test case 6 — Results of section 4.6

levels: 3W, Nf = 84×84×84, hx = 7.48 ·10−2, ν1 = 5, ν2 = 5

εfine =max(10−6‖r‖(0)
2 ,10−12), εcoarse = εfine/100

k ‖e‖(k)
2 ‖r‖(k)

2 ‖u‖(k)
2 ‖u(k) −u(k−1)‖2 ‖u‖(k−1)

2 /‖u‖(k)
2 ‖r‖(k)

2 /‖r‖(k−1)
2

0 5.5683E+00 9.9278E-02 0.0000

1 2.4521E-01 8.3576E-03 5.6799 5.6799E+00 0.0000000 0.0842

2 9.1901E-02 1.7318E-03 5.5395 2.2236E-01 1.0253588 0.2072

3 5.8943E-02 1.1081E-03 5.5528 3.3674E-02 0.9976006 0.6399

4 3.8369E-02 7.1319E-04 5.5589 2.0845E-02 0.9989097 0.6436

5 2.5290E-02 4.5925E-04 5.5629 1.3434E-02 0.9992779 0.6439

6 1.7080E-02 2.9584E-04 5.5655 8.6554E-03 0.9995316 0.6442

7 1.2026E-02 1.9068E-04 5.5672 5.5837E-03 0.9996962 0.6445

8 8.9949E-03 1.2303E-04 5.5683 3.6113E-03 0.9998029 0.6452

9 7.2116E-03 7.9525E-05 5.5690 2.3480E-03 0.9998719 0.6464

10 6.1493E-03 5.1592E-05 5.5694 1.5427E-03 0.9999166 0.6487

11 5.4771E-03 3.3704E-05 5.5698 1.0338E-03 0.9999454 0.6533

12 5.0091E-03 2.2308E-05 5.5700 7.1651E-04 0.9999641 0.6619

13 4.6507E-03 1.5112E-05 5.5701 5.2219E-04 0.9999762 0.6774

14 4.3562E-03 1.0629E-05 5.5702 4.0454E-04 0.9999840 0.7033

15 4.1040E-03 7.8765E-06 5.5702 3.3234E-04 0.9999892 0.7410

Continued on next page
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A.6. TEST CASE 6 — NONLINEAR EQUATION WITH NEUMANN BOUNDARIES

Table A.53 – Continued from previous page

levels: 3W, Nf = 84×84×84, hx = 7.48 ·10−2, ν1 = 5, ν2 = 5

εfine =max(10−6‖r‖(0)
2 ,10−12), εcoarse = εfine/100

k ‖e‖(k)
2 ‖r‖(k)

2 ‖u‖(k)
2 ‖u(k) −u(k−1)‖2 ‖u‖(k−1)

2 /‖u‖(k)
2 ‖r‖(k)

2 /‖r‖(k−1)
2

16 3.8836E-03 6.1937E-06 5.5703 2.8557E-04 0.9999925 0.7863

17 3.6893E-03 5.1405E-06 5.5703 2.5252E-04 0.9999947 0.8300

18 3.5175E-03 4.4402E-06 5.5703 2.2691E-04 0.9999961 0.8638

19 3.3659E-03 3.9332E-06 5.5703 2.0561E-04 0.9999971 0.8858

20 3.2322E-03 3.5343E-06 5.5704 1.8709E-04 0.9999978 0.8986

21 3.1148E-03 3.2004E-06 5.5704 1.7057E-04 0.9999982 0.9055

22 3.0118E-03 2.9095E-06 5.5704 1.5564E-04 0.9999986 0.9091

23 2.9217E-03 2.6505E-06 5.5704 1.4207E-04 0.9999988 0.9110

24 2.8431E-03 2.4170E-06 5.5704 1.2970E-04 0.9999990 0.9119

25 2.7747E-03 2.2053E-06 5.5704 1.1842E-04 0.9999991 0.9124

26 2.7151E-03 2.0126E-06 5.5704 1.0811E-04 0.9999992 0.9126

27 2.6634E-03 1.8370E-06 5.5704 9.8712E-05 0.9999993 0.9128

28 2.6186E-03 1.6768E-06 5.5704 9.0110E-05 0.9999994 0.9128

29 2.5797E-03 1.5307E-06 5.5704 8.2273E-05 0.9999994 0.9129

30 2.5460E-03 1.3973E-06 5.5704 7.5109E-05 0.9999995 0.9129

31 2.5169E-03 1.2756E-06 5.5704 6.8557E-05 0.9999995 0.9129

32 2.4915E-03 1.1645E-06 5.5704 6.2594E-05 0.9999996 0.9129

33 2.4696E-03 1.0630E-06 5.5704 5.7150E-05 0.9999996 0.9129

34 2.4506E-03 9.7043E-07 5.5704 5.2161E-05 0.9999997 0.9129

35 2.4340E-03 8.8590E-07 5.5704 4.7624E-05 0.9999997 0.9129

36 2.4197E-03 8.0872E-07 5.5704 4.3465E-05 0.9999997 0.9129

37 2.4071E-03 7.3828E-07 5.5704 3.9686E-05 0.9999997 0.9129

38 2.3962E-03 6.7398E-07 5.5704 3.6235E-05 0.9999998 0.9129

39 2.3867E-03 6.1527E-07 5.5704 3.3064E-05 0.9999998 0.9129

40 2.3784E-03 5.6168E-07 5.5704 3.0193E-05 0.9999998 0.9129

41 2.3711E-03 5.1277E-07 5.5704 2.7565E-05 0.9999998 0.9129

42 2.3647E-03 4.6811E-07 5.5704 2.5162E-05 0.9999998 0.9129

43 2.3591E-03 4.2734E-07 5.5704 2.2963E-05 0.9999999 0.9129

44 2.3542E-03 3.9015E-07 5.5704 2.0978E-05 0.9999999 0.9130

45 2.3498E-03 3.5620E-07 5.5704 1.9143E-05 0.9999999 0.9130

46 2.3459E-03 3.2521E-07 5.5704 1.7473E-05 0.9999999 0.9130

47 2.3425E-03 2.9695E-07 5.5704 1.5949E-05 0.9999999 0.9131

48 2.3395E-03 2.7118E-07 5.5704 1.4551E-05 0.9999999 0.9132

Continued on next page
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Table A.53 – Continued from previous page

levels: 3W, Nf = 84×84×84, hx = 7.48 ·10−2, ν1 = 5, ν2 = 5

εfine =max(10−6‖r‖(0)
2 ,10−12), εcoarse = εfine/100

k ‖e‖(k)
2 ‖r‖(k)

2 ‖u‖(k)
2 ‖u(k) −u(k−1)‖2 ‖u‖(k−1)

2 /‖u‖(k)
2 ‖r‖(k)

2 /‖r‖(k−1)
2

49 2.3369E-03 2.4759E-07 5.5704 1.3253E-05 0.9999999 0.9130

50 2.3345E-03 2.2603E-07 5.5704 1.2081E-05 0.9999999 0.9129

51 2.3324E-03 2.0632E-07 5.5704 1.1014E-05 0.9999999 0.9128

52 2.3305E-03 1.8827E-07 5.5704 1.0037E-05 0.9999999 0.9125

53 2.3289E-03 1.7181E-07 5.5704 9.1550E-06 0.9999999 0.9126

54 2.3274E-03 1.5676E-07 5.5704 8.3492E-06 0.9999999 0.9124

55 2.3260E-03 1.4302E-07 5.5704 7.6120E-06 1.0000000 0.9124

56 2.3248E-03 1.3048E-07 5.5704 6.9395E-06 1.0000000 0.9123

57 2.3238E-03 1.1906E-07 5.5704 6.3373E-06 1.0000000 0.9125

58 2.3228E-03 1.0858E-07 5.5704 5.7667E-06 1.0000000 0.9120

convergence after 59 Newton–multigrid cycles

mean convergence rate: 0.844

wall clock time: 682 sec
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A.6. TEST CASE 6 — NONLINEAR EQUATION WITH NEUMANN BOUNDARIES

Table A.54: Test case 6 — Results of section 4.6

levels: 4W, Nf = 168×168×168, hx = 3.74 ·10−2, ν1 = 5, ν2 = 5

εfine =max(10−6‖r‖(0)
2 ,10−12), εcoarse = εfine/100

k ‖e‖(k)
2 ‖r‖(k)

2 ‖u‖(k)
2 ‖u(k) −u(k−1)‖2 ‖u‖(k−1)

2 /‖u‖(k)
2 ‖r‖(k)

2 /‖r‖(k−1)
2

0 5.5683E+00 1.5041E-02 0.0000

1 2.3015E-01 3.2749E-03 5.7109 5.7109E+00 0.0000000 0.2177

2 6.6450E-02 2.5299E-04 5.5447 2.3354E-01 1.0299780 0.0773

3 5.2334E-02 1.7550E-04 5.5532 1.5413E-02 0.9984710 0.6937

4 4.2121E-02 1.4084E-04 5.5561 1.0257E-02 0.9994787 0.8025

5 3.3909E-02 1.1312E-04 5.5586 8.2634E-03 0.9995580 0.8031

6 2.7331E-02 9.0856E-05 5.5606 6.6361E-03 0.9996440 0.8032

7 2.2065E-02 7.2984E-05 5.5621 5.3305E-03 0.9997130 0.8033

8 1.7855E-02 5.8633E-05 5.5634 4.2823E-03 0.9997687 0.8034

9 1.4495E-02 4.7108E-05 5.5645 3.4405E-03 0.9998136 0.8034

10 1.1821E-02 3.7853E-05 5.5653 2.7647E-03 0.9998498 0.8035

11 9.6994E-03 3.0419E-05 5.5660 2.2221E-03 0.9998790 0.8036

12 8.0229E-03 2.4448E-05 5.5665 1.7865E-03 0.9999026 0.8037

13 6.7050E-03 1.9652E-05 5.5670 1.4370E-03 0.9999215 0.8038

14 5.6736E-03 1.5800E-05 5.5673 1.1566E-03 0.9999367 0.8040

15 4.8711E-03 1.2707E-05 5.5676 9.3168E-04 0.9999490 0.8042

16 4.2489E-03 1.0223E-05 5.5678 7.5149E-04 0.9999588 0.8045

17 3.7672E-03 8.2293E-06 5.5680 6.0725E-04 0.9999668 0.8050

18 3.3929E-03 6.6292E-06 5.5682 4.9195E-04 0.9999732 0.8056

19 3.0995E-03 5.3456E-06 5.5683 3.9996E-04 0.9999783 0.8064

20 2.8661E-03 4.3166E-06 5.5684 3.2675E-04 0.9999824 0.8075

21 2.6766E-03 3.4925E-06 5.5685 2.6866E-04 0.9999858 0.8091

22 2.5192E-03 2.8333E-06 5.5685 2.2275E-04 0.9999885 0.8113

23 2.3851E-03 2.3069E-06 5.5686 1.8664E-04 0.9999906 0.8142

24 2.2681E-03 1.8874E-06 5.5686 1.5834E-04 0.9999924 0.8182

25 2.1640E-03 1.5541E-06 5.5687 1.3627E-04 0.9999938 0.8234

26 2.0696E-03 1.2901E-06 5.5687 1.1909E-04 0.9999949 0.8301

27 1.9829E-03 1.0818E-06 5.5687 1.0570E-04 0.9999958 0.8385

28 1.9024E-03 9.1808E-07 5.5687 9.5217E-05 0.9999965 0.8487

29 1.8272E-03 7.8983E-07 5.5687 8.6906E-05 0.9999971 0.8603

30 1.7564E-03 6.8951E-07 5.5688 8.0201E-05 0.9999976 0.8730

31 1.6896E-03 6.1094E-07 5.5688 7.4706E-05 0.9999980 0.8860

Continued on next page
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Table A.54 – Continued from previous page

levels: 4W, Nf = 168×168×168, hx = 3.74 ·10−2, ν1 = 5, ν2 = 5

εfine =max(10−6‖r‖(0)
2 ,10−12), εcoarse = εfine/100

k ‖e‖(k)
2 ‖r‖(k)

2 ‖u‖(k)
2 ‖u(k) −u(k−1)‖2 ‖u‖(k−1)

2 /‖u‖(k)
2 ‖r‖(k)

2 /‖r‖(k−1)
2

32 1.6264E-03 5.4906E-07 5.5688 7.0059E-05 0.9999983 0.8987

33 1.5665E-03 4.9984E-07 5.5688 6.6061E-05 0.9999986 0.9103

34 1.5097E-03 4.6009E-07 5.5688 6.2548E-05 0.9999988 0.9205

35 1.4558E-03 4.2737E-07 5.5688 5.9368E-05 0.9999990 0.9289

36 1.4046E-03 3.9985E-07 5.5688 5.6476E-05 0.9999991 0.9356

37 1.3561E-03 3.7619E-07 5.5688 5.3801E-05 0.9999992 0.9408

38 1.3101E-03 3.5542E-07 5.5688 5.1304E-05 0.9999993 0.9448

39 1.2664E-03 3.3684E-07 5.5688 4.8955E-05 0.9999994 0.9477

40 1.2250E-03 3.1996E-07 5.5688 4.6736E-05 0.9999995 0.9499

41 1.1859E-03 3.0442E-07 5.5688 4.4634E-05 0.9999995 0.9515

42 1.1488E-03 2.8999E-07 5.5688 4.2621E-05 0.9999996 0.9526

43 1.1137E-03 2.7648E-07 5.5688 4.0739E-05 0.9999996 0.9534

44 1.0805E-03 2.6375E-07 5.5688 3.8899E-05 0.9999997 0.9540

45 1.0491E-03 2.5172E-07 5.5688 3.7178E-05 0.9999997 0.9544

46 1.0195E-03 2.4031E-07 5.5688 3.5520E-05 0.9999997 0.9547

47 9.9160E-04 2.2947E-07 5.5688 3.3942E-05 0.9999997 0.9549

48 9.6527E-04 2.1916E-07 5.5688 3.2430E-05 0.9999998 0.9550

49 9.4046E-04 2.0933E-07 5.5688 3.0987E-05 0.9999998 0.9552

50 9.1710E-04 1.9996E-07 5.5688 2.9618E-05 0.9999998 0.9552

51 8.9513E-04 1.9101E-07 5.5688 2.8278E-05 0.9999998 0.9553

52 8.7446E-04 1.8248E-07 5.5688 2.7041E-05 0.9999998 0.9553

53 8.5505E-04 1.7433E-07 5.5688 2.5828E-05 0.9999998 0.9553

54 8.3683E-04 1.6655E-07 5.5688 2.4671E-05 0.9999998 0.9554

55 8.1974E-04 1.5912E-07 5.5688 2.3577E-05 0.9999998 0.9554

56 8.0371E-04 1.5202E-07 5.5688 2.2524E-05 0.9999998 0.9554

57 7.8869E-04 1.4524E-07 5.5688 2.1523E-05 0.9999999 0.9554

58 7.7462E-04 1.3876E-07 5.5688 2.0574E-05 0.9999999 0.9554

59 7.6146E-04 1.3257E-07 5.5688 1.9647E-05 0.9999999 0.9554

60 7.4915E-04 1.2666E-07 5.5688 1.8768E-05 0.9999999 0.9554

61 7.3763E-04 1.2101E-07 5.5688 1.7945E-05 0.9999999 0.9554

62 7.2688E-04 1.1562E-07 5.5688 1.7132E-05 0.9999999 0.9554

63 7.1684E-04 1.1046E-07 5.5688 1.6372E-05 0.9999999 0.9554

64 7.0747E-04 1.0554E-07 5.5688 1.5649E-05 0.9999999 0.9554

Continued on next page
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Table A.54 – Continued from previous page

levels: 4W, Nf = 168×168×168, hx = 3.74 ·10−2, ν1 = 5, ν2 = 5

εfine =max(10−6‖r‖(0)
2 ,10−12), εcoarse = εfine/100

k ‖e‖(k)
2 ‖r‖(k)

2 ‖u‖(k)
2 ‖u(k) −u(k−1)‖2 ‖u‖(k−1)

2 /‖u‖(k)
2 ‖r‖(k)

2 /‖r‖(k−1)
2

65 6.9872E-04 1.0083E-07 5.5688 1.4942E-05 0.9999999 0.9554

66 6.9057E-04 9.6331E-08 5.5688 1.4276E-05 0.9999999 0.9554

67 6.8296E-04 9.2037E-08 5.5688 1.3646E-05 0.9999999 0.9554

68 6.7587E-04 8.7931E-08 5.5688 1.3033E-05 0.9999999 0.9554

69 6.6926E-04 8.4012E-08 5.5688 1.2460E-05 0.9999999 0.9554

70 6.6311E-04 8.0264E-08 5.5688 1.1895E-05 0.9999999 0.9554

71 6.5737E-04 7.6687E-08 5.5688 1.1375E-05 0.9999999 0.9554

72 6.5203E-04 7.3265E-08 5.5688 1.0859E-05 0.9999999 0.9554

73 6.4706E-04 6.9996E-08 5.5688 1.0372E-05 0.9999999 0.9554

74 6.4243E-04 6.6876E-08 5.5688 9.9196E-06 0.9999999 0.9554

75 6.3812E-04 6.3892E-08 5.5688 9.4710E-06 0.9999999 0.9554

76 6.3410E-04 6.1043E-08 5.5688 9.0524E-06 0.9999999 0.9554

77 6.3037E-04 5.8318E-08 5.5688 8.6440E-06 0.9999999 0.9554

78 6.2688E-04 5.5717E-08 5.5688 8.2643E-06 0.9999999 0.9554

79 6.2364E-04 5.3230E-08 5.5688 7.8927E-06 1.0000000 0.9554

80 6.2062E-04 5.0855E-08 5.5688 7.5458E-06 1.0000000 0.9554

81 6.1781E-04 4.8584E-08 5.5688 7.2067E-06 1.0000000 0.9553

82 6.1519E-04 4.6409E-08 5.5688 6.8749E-06 1.0000000 0.9552

83 6.1275E-04 4.4338E-08 5.5688 6.5845E-06 1.0000000 0.9554

84 6.1047E-04 4.2353E-08 5.5688 6.2849E-06 1.0000000 0.9552

85 6.0835E-04 4.0456E-08 5.5689 6.0045E-06 1.0000000 0.9552

86 6.0636E-04 3.8640E-08 5.5689 5.7384E-06 1.0000000 0.9551

87 6.0451E-04 3.6908E-08 5.5689 5.5073E-06 1.0000000 0.9552

88 6.0276E-04 3.5252E-08 5.5689 5.2904E-06 1.0000000 0.9551

89 6.0110E-04 3.3685E-08 5.5689 5.1336E-06 1.0000000 0.9556

90 5.9950E-04 3.2226E-08 5.5689 5.0653E-06 1.0000000 0.9567

91 5.9790E-04 3.0931E-08 5.5689 5.1469E-06 1.0000000 0.9598

92 5.9642E-04 2.9700E-08 5.5689 4.9151E-06 1.0000000 0.9602

93 5.9523E-04 2.8300E-08 5.5689 4.0906E-06 1.0000000 0.9529

94 5.9408E-04 2.7052E-08 5.5689 4.0269E-06 1.0000000 0.9559

95 5.9302E-04 2.5832E-08 5.5689 3.8085E-06 1.0000000 0.9549

96 5.9203E-04 2.4677E-08 5.5689 3.6466E-06 1.0000000 0.9553

97 5.9110E-04 2.3569E-08 5.5689 3.4728E-06 1.0000000 0.9551

Continued on next page
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Table A.54 – Continued from previous page

levels: 4W, Nf = 168×168×168, hx = 3.74 ·10−2, ν1 = 5, ν2 = 5

εfine =max(10−6‖r‖(0)
2 ,10−12), εcoarse = εfine/100

k ‖e‖(k)
2 ‖r‖(k)

2 ‖u‖(k)
2 ‖u(k) −u(k−1)‖2 ‖u‖(k−1)

2 /‖u‖(k)
2 ‖r‖(k)

2 /‖r‖(k−1)
2

98 5.9023E-04 2.2505E-08 5.5689 3.3231E-06 1.0000000 0.9549

99 5.8941E-04 2.1496E-08 5.5689 3.1699E-06 1.0000000 0.9551

100 5.8865E-04 2.0535E-08 5.5689 3.0346E-06 1.0000000 0.9553

101 5.8793E-04 1.9617E-08 5.5689 2.8972E-06 1.0000000 0.9553

102 5.8726E-04 1.8728E-08 5.5689 2.7617E-06 1.0000000 0.9547

103 5.8664E-04 1.7881E-08 5.5689 2.6295E-06 1.0000000 0.9548

104 5.8604E-04 1.7082E-08 5.5689 2.5247E-06 1.0000000 0.9553

105 5.8549E-04 1.6319E-08 5.5689 2.4103E-06 1.0000000 0.9553

106 5.8497E-04 1.5576E-08 5.5689 2.2965E-06 1.0000000 0.9545

convergence after 107 Newton–multigrid cycles

mean convergence rate: 0.912

wall clock time: 10360 sec

A.7 Test Case 7 — Parallel Nonlinear Multigrid

The problem that we are solving is

−∇· ((10+u(x))∇u(x))+ (1000+u(x))=1000−sin2(x)sin2(y)cos2(z)+sin(x)sin(y)sin(z)

−sin2(x)cos2(y)sin2(z)−cos2(x)sin2(y)sin2(z)

+3sin(x)sin(y)sin(z) (sin(x)sin(y)sin(z)+10)

(A.19)

with the boundary conditions

∂u
∂x

(0, y, z)=∂u
∂x

(2π, y, z)= sin(y)sin(z),

u(x,0, z)=u(x,2π, z),

u(x, y,0)=u(x, y,2π)

(A.20)

and the exact solution

u(x, y, z)=sin(x) sin(y) sin(z). (A.21)
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A.7. TEST CASE 7 — PARALLEL NONLINEAR MULTIGRID

Table A.55: Test case 7 — Results of section 4.7

levels: 3W, Nf = 84×84×84 on 2×2×2 procs, hx = 7.48 ·10−2, ν1 = 5, ν2 = 5

εfine =max(10−6‖r‖(0)
2 ,10−12), εcoarse = εfine/100

k ‖e‖(k)
2 ‖r‖(k)

2 ‖u‖(k)
2 ‖u(k) −u(k−1)‖2 ‖u‖(k−1)

2 /‖u‖(k)
2 ‖r‖(k)

2 /‖r‖(k−1)
2

0 5.5683E+00 9.9278E-02 0.0000

1 2.6423E-01 9.0165E-03 5.6339 5.6339E+00 0.0000000 0.0908

2 1.2749E-01 2.5011E-03 5.5135 2.1996E-01 1.0218306 0.2774

3 8.1870E-02 1.6150E-03 5.5357 4.6437E-02 0.9959903 0.6457

4 5.3478E-02 1.0399E-03 5.5478 2.8866E-02 0.9978342 0.6439

5 3.5488E-02 6.7003E-04 5.5556 1.8616E-02 0.9985818 0.6443

6 2.4278E-02 4.3185E-04 5.5607 1.1999E-02 0.9990810 0.6445

7 1.7467E-02 2.7849E-04 5.5641 7.7433E-03 0.9994047 0.6449

8 1.3450E-02 1.7975E-04 5.5662 5.0092E-03 0.9996143 0.6455

9 1.1113E-02 1.1623E-04 5.5676 3.2576E-03 0.9997498 0.6466

10 9.7126E-03 7.5436E-05 5.5685 2.1416E-03 0.9998373 0.6490

11 8.7973E-03 4.9317E-05 5.5691 1.4380E-03 0.9998939 0.6538

12 8.1270E-03 3.2703E-05 5.5695 1.0024E-03 0.9999305 0.6631

13 7.5845E-03 2.2260E-05 5.5697 7.3928E-04 0.9999541 0.6807

14 7.1153E-03 1.5817E-05 5.5699 5.8360E-04 0.9999694 0.7106

15 6.6943E-03 1.1929E-05 5.5700 4.9078E-04 0.9999793 0.7542

16 6.3102E-03 9.6104E-06 5.5701 4.3216E-04 0.9999858 0.8056

17 5.9571E-03 8.1953E-06 5.5702 3.9125E-04 0.9999900 0.8528

18 5.6318E-03 7.2696E-06 5.5702 3.5946E-04 0.9999928 0.8870

19 5.3320E-03 6.6007E-06 5.5702 3.3268E-04 0.9999946 0.9080

20 5.0560E-03 6.0687E-06 5.5703 3.0894E-04 0.9999959 0.9194

21 4.8022E-03 5.6153E-06 5.5703 2.8734E-04 0.9999967 0.9253

22 4.5692E-03 5.2121E-06 5.5703 2.6742E-04 0.9999973 0.9282

23 4.3557E-03 4.8452E-06 5.5703 2.4895E-04 0.9999977 0.9296

24 4.1604E-03 4.5076E-06 5.5703 2.3178E-04 0.9999980 0.9303

25 3.9820E-03 4.1950E-06 5.5703 2.1579E-04 0.9999983 0.9306

26 3.8193E-03 3.9047E-06 5.5703 2.0090E-04 0.9999984 0.9308

27 3.6713E-03 3.6349E-06 5.5703 1.8704E-04 0.9999986 0.9309

28 3.5367E-03 3.3838E-06 5.5703 1.7413E-04 0.9999987 0.9309

29 3.4147E-03 3.1501E-06 5.5703 1.6210E-04 0.9999988 0.9309

30 3.3041E-03 2.9327E-06 5.5704 1.5092E-04 0.9999989 0.9310

31 3.2042E-03 2.7302E-06 5.5704 1.4049E-04 0.9999990 0.9310

Continued on next page
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Table A.55 – Continued from previous page

levels: 3W, Nf = 84×84×84 on 2×2×2 procs, hx = 7.48 ·10−2, ν1 = 5, ν2 = 5

εfine =max(10−6‖r‖(0)
2 ,10−12), εcoarse = εfine/100

k ‖e‖(k)
2 ‖r‖(k)

2 ‖u‖(k)
2 ‖u(k) −u(k−1)‖2 ‖u‖(k−1)

2 /‖u‖(k)
2 ‖r‖(k)

2 /‖r‖(k−1)
2

32 3.1140E-03 2.5417E-06 5.5704 1.3079E-04 0.9999991 0.9310

33 3.0326E-03 2.3662E-06 5.5704 1.2175E-04 0.9999991 0.9310

34 2.9594E-03 2.2028E-06 5.5704 1.1334E-04 0.9999992 0.9310

35 2.8936E-03 2.0507E-06 5.5704 1.0552E-04 0.9999992 0.9310

36 2.8344E-03 1.9091E-06 5.5704 9.8226E-05 0.9999993 0.9310

37 2.7814E-03 1.7773E-06 5.5704 9.1441E-05 0.9999993 0.9310

38 2.7338E-03 1.6546E-06 5.5704 8.5135E-05 0.9999994 0.9310

39 2.6911E-03 1.5404E-06 5.5704 7.9245E-05 0.9999994 0.9309

40 2.6530E-03 1.4340E-06 5.5704 7.3771E-05 0.9999995 0.9309

41 2.6188E-03 1.3350E-06 5.5704 6.8675E-05 0.9999995 0.9309

42 2.5882E-03 1.2428E-06 5.5704 6.3930E-05 0.9999995 0.9309

43 2.5609E-03 1.1570E-06 5.5704 5.9524E-05 0.9999996 0.9310

44 2.5364E-03 1.0771E-06 5.5704 5.5403E-05 0.9999996 0.9309

45 2.5145E-03 1.0027E-06 5.5704 5.1576E-05 0.9999996 0.9309

46 2.4949E-03 9.3346E-07 5.5704 4.8012E-05 0.9999997 0.9309

47 2.4774E-03 8.6903E-07 5.5704 4.4706E-05 0.9999997 0.9310

48 2.4616E-03 8.0900E-07 5.5704 4.1608E-05 0.9999997 0.9309

49 2.4475E-03 7.5312E-07 5.5704 3.8733E-05 0.9999997 0.9309

50 2.4349E-03 7.0114E-07 5.5704 3.6067E-05 0.9999997 0.9310

51 2.4236E-03 6.5270E-07 5.5704 3.3566E-05 0.9999998 0.9309

52 2.4134E-03 6.0765E-07 5.5704 3.1257E-05 0.9999998 0.9310

53 2.4042E-03 5.6567E-07 5.5704 2.9088E-05 0.9999998 0.9309

54 2.3960E-03 5.2663E-07 5.5704 2.7089E-05 0.9999998 0.9310

55 2.3886E-03 4.9024E-07 5.5704 2.5207E-05 0.9999998 0.9309

56 2.3819E-03 4.5640E-07 5.5704 2.3475E-05 0.9999998 0.9310

57 2.3759E-03 4.2486E-07 5.5704 2.1843E-05 0.9999998 0.9309

58 2.3704E-03 3.9553E-07 5.5704 2.0343E-05 0.9999999 0.9310

59 2.3655E-03 3.6823E-07 5.5704 1.8938E-05 0.9999999 0.9310

60 2.3610E-03 3.4276E-07 5.5704 1.7619E-05 0.9999999 0.9309

61 2.3570E-03 3.1911E-07 5.5704 1.6411E-05 0.9999999 0.9310

62 2.3533E-03 2.9707E-07 5.5704 1.5275E-05 0.9999999 0.9309

63 2.3500E-03 2.7655E-07 5.5704 1.4220E-05 0.9999999 0.9310

64 2.3470E-03 2.5746E-07 5.5704 1.3237E-05 0.9999999 0.9309

Continued on next page
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Table A.55 – Continued from previous page

levels: 3W, Nf = 84×84×84 on 2×2×2 procs, hx = 7.48 ·10−2, ν1 = 5, ν2 = 5

εfine =max(10−6‖r‖(0)
2 ,10−12), εcoarse = εfine/100

k ‖e‖(k)
2 ‖r‖(k)

2 ‖u‖(k)
2 ‖u(k) −u(k−1)‖2 ‖u‖(k−1)

2 /‖u‖(k)
2 ‖r‖(k)

2 /‖r‖(k−1)
2

65 2.3442E-03 2.3970E-07 5.5704 1.2330E-05 0.9999999 0.9310

66 2.3417E-03 2.2313E-07 5.5704 1.1470E-05 0.9999999 0.9309

67 2.3394E-03 2.0772E-07 5.5704 1.0676E-05 0.9999999 0.9309

68 2.3373E-03 1.9338E-07 5.5704 9.9446E-06 0.9999999 0.9310

69 2.3354E-03 1.8004E-07 5.5704 9.2586E-06 0.9999999 0.9310

70 2.3337E-03 1.6760E-07 5.5704 8.6144E-06 0.9999999 0.9309

71 2.3321E-03 1.5603E-07 5.5704 8.0209E-06 0.9999999 0.9310

72 2.3306E-03 1.4527E-07 5.5704 7.4705E-06 1.0000000 0.9310

73 2.3293E-03 1.3522E-07 5.5704 6.9454E-06 1.0000000 0.9308

74 2.3281E-03 1.2592E-07 5.5704 6.4787E-06 1.0000000 0.9312

75 2.3269E-03 1.1723E-07 5.5704 6.0251E-06 1.0000000 0.9310

76 2.3259E-03 1.0913E-07 5.5704 5.6048E-06 1.0000000 0.9309

77 2.3250E-03 1.0163E-07 5.5704 5.2223E-06 1.0000000 0.9313

convergence after 78 Newton–multigrid cycles

mean convergence rate: 0.875

wall clock time: 211 sec
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Table A.56: Test case 7 — Results of section 4.1.2.1

levels: 4W, Nf = 168×168×168 on 2×2×2 procs, hx = 3.74 ·10−2, ν1 = 5, ν2 = 5

εfine =max(10−6‖r‖(0)
2 ,10−12), εcoarse = εfine/100

k ‖e‖(k)
2 ‖r‖(k)

2 ‖u‖(k)
2 ‖u(k) −u(k−1)‖2 ‖u‖(k−1)

2 /‖u‖(k)
2 ‖r‖(k)

2 /‖r‖(k−1)
2

0 5.5683E+00 1.5041E-02 0.0000

1 2.3238E-01 3.2868E-03 5.6844 5.6844E+00 0.0000000 0.2185

2 9.2399E-02 3.4358E-04 5.5259 2.3436E-01 1.0286924 0.1045

3 7.2854E-02 2.5736E-04 5.5379 2.0610E-02 0.9978307 0.7491

4 5.8671E-02 2.0657E-04 5.5437 1.4257E-02 0.9989416 0.8026

5 4.7269E-02 1.6593E-04 5.5486 1.1493E-02 0.9991260 0.8033

6 3.8141E-02 1.3329E-04 5.5525 9.2309E-03 0.9992961 0.8033

7 3.0843E-02 1.0709E-04 5.5557 7.4158E-03 0.9994329 0.8034

8 2.5018E-02 8.6047E-05 5.5582 5.9582E-03 0.9995433 0.8035

9 2.0382E-02 6.9144E-05 5.5602 4.7876E-03 0.9996322 0.8036

10 1.6706E-02 5.5566E-05 5.5619 3.8475E-03 0.9997039 0.8036

11 1.3804E-02 4.4659E-05 5.5632 3.0927E-03 0.9997616 0.8037

12 1.1528E-02 3.5897E-05 5.5643 2.4866E-03 0.9998081 0.8038

13 9.7540E-03 2.8858E-05 5.5651 2.0000E-03 0.9998454 0.8039

14 8.3813E-03 2.3204E-05 5.5658 1.6097E-03 0.9998755 0.8041

15 7.3259E-03 1.8662E-05 5.5664 1.2966E-03 0.9998997 0.8043

16 6.5174E-03 1.5015E-05 5.5668 1.0457E-03 0.9999192 0.8046

17 5.8975E-03 1.2087E-05 5.5672 8.4493E-04 0.9999348 0.8050

18 5.4187E-03 9.7363E-06 5.5675 6.8449E-04 0.9999474 0.8056

19 5.0435E-03 7.8511E-06 5.5677 5.5656E-04 0.9999575 0.8064

20 4.7431E-03 6.3400E-06 5.5679 4.5488E-04 0.9999657 0.8075

21 4.4962E-03 5.1302E-06 5.5681 3.7438E-04 0.9999722 0.8092

22 4.2874E-03 4.1630E-06 5.5682 3.1098E-04 0.9999775 0.8115

23 4.1058E-03 3.3914E-06 5.5683 2.6134E-04 0.9999818 0.8147

24 3.9438E-03 2.7776E-06 5.5684 2.2273E-04 0.9999852 0.8190

25 3.7963E-03 2.2912E-06 5.5685 1.9291E-04 0.9999879 0.8249

26 3.6598E-03 1.9074E-06 5.5685 1.6997E-04 0.9999901 0.8325

27 3.5318E-03 1.6064E-06 5.5686 1.5234E-04 0.9999919 0.8422

28 3.4108E-03 1.3715E-06 5.5686 1.3873E-04 0.9999934 0.8538

29 3.2956E-03 1.1893E-06 5.5686 1.2810E-04 0.9999945 0.8671

30 3.1854E-03 1.0485E-06 5.5686 1.1967E-04 0.9999955 0.8816

31 3.0798E-03 9.3956E-07 5.5687 1.1279E-04 0.9999962 0.8961

Continued on next page
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Table A.56 – Continued from previous page

levels: 4W, Nf = 168×168×168 on 2×2×2 procs, hx = 3.74 ·10−2, ν1 = 5, ν2 = 5

εfine =max(10−6‖r‖(0)
2 ,10−12), εcoarse = εfine/100

k ‖e‖(k)
2 ‖r‖(k)

2 ‖u‖(k)
2 ‖u(k) −u(k−1)‖2 ‖u‖(k−1)

2 /‖u‖(k)
2 ‖r‖(k)

2 /‖r‖(k−1)
2

32 2.9783E-03 8.5497E-07 5.5687 1.0706E-04 0.9999969 0.9100

33 2.8807E-03 7.8852E-07 5.5687 1.0210E-04 0.9999974 0.9223

34 2.7866E-03 7.3544E-07 5.5687 9.7755E-05 0.9999978 0.9327

35 2.6961E-03 6.9208E-07 5.5687 9.3806E-05 0.9999981 0.9410

36 2.6089E-03 6.5575E-07 5.5687 9.0187E-05 0.9999984 0.9475

37 2.5248E-03 6.2453E-07 5.5687 8.6813E-05 0.9999986 0.9524

38 2.4438E-03 5.9704E-07 5.5687 8.3647E-05 0.9999988 0.9560

39 2.3658E-03 5.7229E-07 5.5688 8.0617E-05 0.9999989 0.9586

40 2.2906E-03 5.4964E-07 5.5688 7.7736E-05 0.9999990 0.9604

41 2.2183E-03 5.2860E-07 5.5688 7.4976E-05 0.9999991 0.9617

42 2.1486E-03 5.0885E-07 5.5688 7.2325E-05 0.9999992 0.9626

43 2.0814E-03 4.9018E-07 5.5688 6.9788E-05 0.9999993 0.9633

44 2.0168E-03 4.7241E-07 5.5688 6.7319E-05 0.9999993 0.9637

45 1.9547E-03 4.5543E-07 5.5688 6.4951E-05 0.9999994 0.9641

46 1.8948E-03 4.3916E-07 5.5688 6.2667E-05 0.9999994 0.9643

47 1.8373E-03 4.2355E-07 5.5688 6.0464E-05 0.9999995 0.9644

48 1.7819E-03 4.0853E-07 5.5688 5.8337E-05 0.9999995 0.9645

49 1.7287E-03 3.9409E-07 5.5688 5.6300E-05 0.9999995 0.9646

50 1.6775E-03 3.8016E-07 5.5688 5.4308E-05 0.9999996 0.9647

51 1.6284E-03 3.6674E-07 5.5688 5.2397E-05 0.9999996 0.9647

52 1.5811E-03 3.5380E-07 5.5688 5.0554E-05 0.9999996 0.9647

53 1.5357E-03 3.4133E-07 5.5688 4.8775E-05 0.9999996 0.9647

54 1.4921E-03 3.2931E-07 5.5688 4.7072E-05 0.9999996 0.9648

55 1.4502E-03 3.1771E-07 5.5688 4.5403E-05 0.9999997 0.9648

56 1.4100E-03 3.0651E-07 5.5688 4.3805E-05 0.9999997 0.9648

57 1.3715E-03 2.9571E-07 5.5688 4.2262E-05 0.9999997 0.9648

58 1.3345E-03 2.8530E-07 5.5688 4.0775E-05 0.9999997 0.9648

59 1.2990E-03 2.7525E-07 5.5688 3.9339E-05 0.9999997 0.9648

60 1.2650E-03 2.6556E-07 5.5688 3.7966E-05 0.9999997 0.9648

61 1.2324E-03 2.5621E-07 5.5688 3.6618E-05 0.9999997 0.9648

62 1.2012E-03 2.4718E-07 5.5688 3.5329E-05 0.9999997 0.9648

63 1.1713E-03 2.3848E-07 5.5688 3.4083E-05 0.9999998 0.9648

64 1.1427E-03 2.3008E-07 5.5688 3.2883E-05 0.9999998 0.9648

Continued on next page
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Table A.56 – Continued from previous page

levels: 4W, Nf = 168×168×168 on 2×2×2 procs, hx = 3.74 ·10−2, ν1 = 5, ν2 = 5

εfine =max(10−6‖r‖(0)
2 ,10−12), εcoarse = εfine/100

k ‖e‖(k)
2 ‖r‖(k)

2 ‖u‖(k)
2 ‖u(k) −u(k−1)‖2 ‖u‖(k−1)

2 /‖u‖(k)
2 ‖r‖(k)

2 /‖r‖(k−1)
2

65 1.1153E-03 2.2197E-07 5.5688 3.1724E-05 0.9999998 0.9648

66 1.0890E-03 2.1416E-07 5.5688 3.0620E-05 0.9999998 0.9648

67 1.0640E-03 2.0661E-07 5.5688 2.9529E-05 0.9999998 0.9648

68 1.0400E-03 1.9934E-07 5.5688 2.8490E-05 0.9999998 0.9648

69 1.0171E-03 1.9231E-07 5.5688 2.7486E-05 0.9999998 0.9648

70 9.9525E-04 1.8554E-07 5.5688 2.6517E-05 0.9999998 0.9648

71 9.7436E-04 1.7901E-07 5.5688 2.5596E-05 0.9999998 0.9648

72 9.5444E-04 1.7270E-07 5.5688 2.4682E-05 0.9999998 0.9647

73 9.3543E-04 1.6662E-07 5.5688 2.3813E-05 0.9999998 0.9648

74 9.1730E-04 1.6074E-07 5.5688 2.2973E-05 0.9999998 0.9648

75 9.0002E-04 1.5508E-07 5.5688 2.2164E-05 0.9999998 0.9648

76 8.8355E-04 1.4963E-07 5.5688 2.1396E-05 0.9999998 0.9648

77 8.6787E-04 1.4435E-07 5.5688 2.0631E-05 0.9999999 0.9647

78 8.5294E-04 1.3926E-07 5.5688 1.9903E-05 0.9999999 0.9648

79 8.3873E-04 1.3435E-07 5.5688 1.9201E-05 0.9999999 0.9648

80 8.2521E-04 1.2963E-07 5.5688 1.8539E-05 0.9999999 0.9648

81 8.1236E-04 1.2506E-07 5.5688 1.7873E-05 0.9999999 0.9647

82 8.0014E-04 1.2065E-07 5.5688 1.7244E-05 0.9999999 0.9648

83 7.8854E-04 1.1640E-07 5.5688 1.6635E-05 0.9999999 0.9647

84 7.7751E-04 1.1230E-07 5.5688 1.6062E-05 0.9999999 0.9648

85 7.6704E-04 1.0834E-07 5.5688 1.5486E-05 0.9999999 0.9647

86 7.5710E-04 1.0452E-07 5.5688 1.4938E-05 0.9999999 0.9647

87 7.4768E-04 1.0084E-07 5.5688 1.4411E-05 0.9999999 0.9647

88 7.3872E-04 9.7292E-08 5.5688 1.3918E-05 0.9999999 0.9649

89 7.3024E-04 9.3858E-08 5.5688 1.3415E-05 0.9999999 0.9647

90 7.2220E-04 9.0547E-08 5.5688 1.2941E-05 0.9999999 0.9647

91 7.1458E-04 8.7355E-08 5.5688 1.2487E-05 0.9999999 0.9647

92 7.0735E-04 8.4284E-08 5.5688 1.2058E-05 0.9999999 0.9648

93 7.0051E-04 8.1308E-08 5.5688 1.1621E-05 0.9999999 0.9647

94 6.9404E-04 7.8437E-08 5.5688 1.1209E-05 0.9999999 0.9647

95 6.8789E-04 7.5681E-08 5.5688 1.0829E-05 0.9999999 0.9649

96 6.8208E-04 7.3010E-08 5.5688 1.0438E-05 0.9999999 0.9647

97 6.7659E-04 7.0432E-08 5.5688 1.0066E-05 0.9999999 0.9647

Continued on next page
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A.7. TEST CASE 7 — PARALLEL NONLINEAR MULTIGRID

Table A.56 – Continued from previous page

levels: 4W, Nf = 168×168×168 on 2×2×2 procs, hx = 3.74 ·10−2, ν1 = 5, ν2 = 5

εfine =max(10−6‖r‖(0)
2 ,10−12), εcoarse = εfine/100

k ‖e‖(k)
2 ‖r‖(k)

2 ‖u‖(k)
2 ‖u(k) −u(k−1)‖2 ‖u‖(k−1)

2 /‖u‖(k)
2 ‖r‖(k)

2 /‖r‖(k−1)
2

98 6.7138E-04 6.7957E-08 5.5688 9.7252E-06 0.9999999 0.9649

99 6.6645E-04 6.5557E-08 5.5688 9.3712E-06 0.9999999 0.9647

100 6.6179E-04 6.3242E-08 5.5688 9.0387E-06 0.9999999 0.9647

101 6.5737E-04 6.1022E-08 5.5688 8.7367E-06 0.9999999 0.9649

102 6.5320E-04 5.8864E-08 5.5688 8.4129E-06 0.9999999 0.9646

103 6.4926E-04 5.6784E-08 5.5688 8.1158E-06 0.9999999 0.9647

104 6.4552E-04 5.4790E-08 5.5688 7.8438E-06 0.9999999 0.9649

105 6.4198E-04 5.2853E-08 5.5688 7.5565E-06 1.0000000 0.9647

106 6.3864E-04 5.0996E-08 5.5688 7.3009E-06 1.0000000 0.9649

107 6.3548E-04 4.9191E-08 5.5688 7.0306E-06 1.0000000 0.9646

108 6.3248E-04 4.7462E-08 5.5688 6.7957E-06 1.0000000 0.9649

109 6.2965E-04 4.5784E-08 5.5688 6.5468E-06 1.0000000 0.9646

110 6.2697E-04 4.4163E-08 5.5688 6.3112E-06 1.0000000 0.9646

111 6.2444E-04 4.2615E-08 5.5688 6.1058E-06 1.0000000 0.9649

112 6.2204E-04 4.1105E-08 5.5688 5.8759E-06 1.0000000 0.9646

113 6.1977E-04 3.9661E-08 5.5688 5.6810E-06 1.0000000 0.9649

114 6.1762E-04 3.8252E-08 5.5688 5.4642E-06 1.0000000 0.9645

115 6.1559E-04 3.6911E-08 5.5688 5.2893E-06 1.0000000 0.9649

116 6.1366E-04 3.5603E-08 5.5688 5.0911E-06 1.0000000 0.9646

117 6.1184E-04 3.4352E-08 5.5688 4.9214E-06 1.0000000 0.9649

118 6.1011E-04 3.3134E-08 5.5688 4.7382E-06 1.0000000 0.9646

119 6.0847E-04 3.1970E-08 5.5688 4.5813E-06 1.0000000 0.9649

120 6.0693E-04 3.0837E-08 5.5689 4.4101E-06 1.0000000 0.9646

121 6.0546E-04 2.9750E-08 5.5689 4.2597E-06 1.0000000 0.9647

122 6.0407E-04 2.8706E-08 5.5689 4.1168E-06 1.0000000 0.9649

123 6.0275E-04 2.7687E-08 5.5689 3.9603E-06 1.0000000 0.9645

124 6.0150E-04 2.6705E-08 5.5689 3.8183E-06 1.0000000 0.9645

125 6.0031E-04 2.5771E-08 5.5689 3.6993E-06 1.0000000 0.9650

126 5.9919E-04 2.4857E-08 5.5689 3.5570E-06 1.0000000 0.9645

127 5.9812E-04 2.3974E-08 5.5689 3.4286E-06 1.0000000 0.9645

128 5.9711E-04 2.3130E-08 5.5689 3.3141E-06 1.0000000 0.9648

129 5.9615E-04 2.2316E-08 5.5689 3.2006E-06 1.0000000 0.9648

130 5.9524E-04 2.1530E-08 5.5689 3.0884E-06 1.0000000 0.9648

Continued on next page
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APPENDIX A. RESULTS OF MULTIGRID SOLVER TESTS

Table A.56 – Continued from previous page

levels: 4W, Nf = 168×168×168 on 2×2×2 procs, hx = 3.74 ·10−2, ν1 = 5, ν2 = 5

εfine =max(10−6‖r‖(0)
2 ,10−12), εcoarse = εfine/100

k ‖e‖(k)
2 ‖r‖(k)

2 ‖u‖(k)
2 ‖u(k) −u(k−1)‖2 ‖u‖(k−1)

2 /‖u‖(k)
2 ‖r‖(k)

2 /‖r‖(k−1)
2

131 5.9437E-04 2.0767E-08 5.5689 2.9726E-06 1.0000000 0.9645

132 5.9355E-04 2.0030E-08 5.5689 2.8657E-06 1.0000000 0.9645

133 5.9276E-04 1.9332E-08 5.5689 2.7800E-06 1.0000000 0.9652

134 5.9202E-04 1.8648E-08 5.5689 2.6725E-06 1.0000000 0.9646

135 5.9132E-04 1.7991E-08 5.5689 2.5806E-06 1.0000000 0.9648

136 5.9065E-04 1.7346E-08 5.5689 2.4764E-06 1.0000000 0.9642

137 5.9001E-04 1.6746E-08 5.5689 2.4130E-06 1.0000000 0.9654

138 5.8940E-04 1.6146E-08 5.5689 2.3069E-06 1.0000000 0.9641

139 5.8882E-04 1.5582E-08 5.5689 2.2402E-06 1.0000000 0.9651

convergence after 140 Newton–multigrid cycles

mean convergence rate: 0.930

wall clock time: 3891 sec
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