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1. Introduction

Ever since the first  stock exchanges opened in the 18th century1,  traders,  in order to make

money, as  well  as  mathematicians,  statisticians  and  economists,  out  of  academic  interest,

wanted to understand the behavior of stock indices. A very important hypothesis that has its

roots  in  the  19th century2 and  was  famously  formalized  by  Eugene  Francis  Fama  is  the

Efficient-market hypothesis (Fama, 1970). It states that the current prize of a stock is fair in the

sense that one cannot expect to win or lose by buying or selling shares of it.  Hence, if this

hypothesis holds true, it is not possible to outperform the market. Models in agreement with the

Efficient-market hypothesis are the  random walk models developed by Bachelier  (1900) and

expanded and refined by Osborne (1959)  and the  Martingale  theory developed by Pearson

(1905) and taken up by Samuelson (1973). Many random walk models assume that the random

variation, governing the price changes of stock indices, is (a continuous function of) Gaussian

white  noise,  the  most  famous  being  the  Black-Scholes-Merton  model (Black  and  Scholes,

1973). This model is still used these days to calculate the price of a European call option and it

assumes that stock indices follow a geometric Brownian motion. The existence of the underlying

stochastic  process  of  Bachelier´s  as  well  as  Black,  Scholes  and  Merton´s  model,  called

Brownian motion or Wiener process, was proven by Wiener (1923).

Most random walk models are good approximations of the behavior of stock indices, however,

they cannot adequately describe the behavior of stocks because future price changes are not

independent of past changes, the underlying stochastic process is not stationary (in particular

the volatility is not constant in time) and stock price changes are seldom log-normally let alone

normally distributed. There is a huge body of literature on the random walk hypothesis (and the

efficient market hypothesis) and the evidence against it grows each year (e.g. Lo and MacKinlay

1988, 2002). The first major alternative hypothesis, the stable (Paretian) distribution hypothesis,

was developed by Mandelbrot (1963) and Fama (1965). Mandelbrot noticed, while analyzing

cotton  prices,  that  it  is  virtually  impossible  to  distinguish  the  stock  charts  of  daily,  weekly,

monthly and annual prices if the axes were unlabeled. This fractional behavior of stock indices

led him to use the Levy-alpha-stable distribution family, first studied by Levy (1928), with their

intrinsic property that sums of independent and identically distributed random variables out of

that  family  have the same distribution  (up to scale  and location)  as the respective random

1 The London Stock Exchange opened in 1977, the New York Stock Exchange in 1792.

2 For  a  detailed  summary  of  the  Efficient-Market  hypothesis the  reader  is  referred  to  the

well-researched article by Martin Sewell (Sewell, 2011).
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variables, to fit the logarithmic price changes (i.e. log returns). The Normal distribution is the

only  member  of  that  family  that  has  a  defined  second  moment.  All  other  members  are

leptokurtic, which means that they have more probability mass in the center and in the tails than

a Normal distribution. One advantage of the Levy-alpha-stable distribution family is that it allows

for skewness in the data, an important improvement over the random walk models since the

distribution  of  negative  price  returns  seems  to  differ  from  the  distribution  of  positive  ones

(e.g. Sheik  and  Qiao,  2010).  Although  Fama  (1965),  Mandelbrot  (1967)  and  Roll  (1970)

provided some more empirical evidence in the 60´s, more and more evidence piled up against

that hypothesis, for instance in the works of Akgiray and Booth (1988), Lau, Lau and Wingender

(1990) and Kunst, Reschenhofer and Rodler (1991). Just as the simpler random walk models,

the stable  distribution  model  cannot  explain  dependencies  (and correlations)  between  price

changes. Along with the fact, that an undefined second moment is implausible, this model is just

another good approximation of the behavior of stocks. Longin (1996) provides evidence that the

true (unknown and permanently  changing)  stock  return  generating  process lies  somewhere

between the Bachelier and the Mandelbrot model.

At the core of all random walk models lies the distribution of stock returns. This work analyzes

the daily returns of two major stock indices (Chapter 2). Read (1906, page 310) famously wrote:

“It is better to be vaguely right than exactly wrong.” The main approach of this work is to be

approximately right and to avoid being precisely wrong, an approach certainly not pursued by a

large portion of the scientific community, particularly in the social sciences. Following the Great

Benoit  B.  Mandelbrot,  graphical  analysis  forms  the  core  of  this  work.  After  a  systematic

dissection of the properties of the two stocks (Chapter 2.1 - 2.3), continuous distributions were

fitted to their daily returns (Chapter 2.4). Furthermore, in order to assess the implications of the

properties of the daily returns, a simulation study was conducted (Chapter 3).

2. Analysis of stock returns

2.1. Datasets

This work provides an in-depth analysis of two major stock indices,  the Standard & Poor 500

(S&P 500) and the Nikkei 225. Together with the  Dow Jones Industrial Average the former is

considered  as  the  most  important  compound stock  index  because  they  both  represent  the

biggest companies of the biggest stock exchange of the world, the American Stock Exchange

(“wall street” in colloquial speech) with a market capitalization of about 18.5 trillion US dollars

(Visual Capitalist, 2017). The S&P 500 also contains companies listed on NASDAQ, the second

biggest stock exchange in the world with a market capitalization of about $ 7.5 trillion (Visual

Capitalist, 2017).
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The S&P 500 contains (as the name suggests) 500 large US companies. Those 500 companies

satisfy among others the following criteria (Investopedia, 2017): 

• A market capitalization of at least $ 5.3 billion

• The headquarter has to be in the United States of American

• Most of its shares have to be in the public´s hands

The S&P 500 contains among others companies from the following sectors (CNN Money, 2017):

• Healthcare

• Information technology

• Financials

• Real Estate

• Energy

The Nikkei 255 of Tokyo´s Stock Exchange,  the third largest stock exchange with a market

capitalization of $ 7.5 trillion, is considered as the most important Asian compound stock index.

It  includes  225  Japanese  companies  in  a  multitude of  different  sectors,  for  instance  (CNN

Money, 2017):

• Foods

• Automotive

• Chemicals

• Financials

The daily closing prices (Pt) of the S&P 500 (from 1950-11-20 to 2016-11-18) and the Nikkei 225

(from 1984-01-05 to 07-12-2016) have been downloaded from Yahoo (Yahoo Finance, 2017).

Those two datasets were then imported into R (R Core Team, 2016) and the daily returns (Rt)

Rt :=
Pt−P t−1

Pt−1

=
Pt
Pt−1

−1 (1)

as well as the daily log returns (Lt) were calculated.

Lt := log(R t+1)=
(1)

log(
P t

Pt−1

)= log(Pt)−log(Pt−1) (2)
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Lt is equal to Rt if the latter is zero and smaller otherwise. However, for R t values close to zero,

the  difference  between  Lt is  very  small,  which  can  readily  be  seen  via  Taylor  series

decomposition of the natural logarithm centered at one. The daily returns of the S&P 500 and

the Nikkei 225 are all smaller than 0.25 and mostly smaller than 0.05. Hence, in all subsequent

analysis, the  daily percentage changes (i.e. 100*Rt) are used instead of the daily returns to

simplify the representation and the interpretation of the relative index changes.

2.1.1. S&P 500

Figure 1 shows the S&P 500 from the 20th of November, 1984 to the 18th of November, 2016 as

well as the daily percentage changes. For the plot of the S&P 500 a semi-logarithmic scale is

used, hence a linear increase of the trajectory corresponds to an exponential increase of the

S&P 500. There is huge variation in the daily percentage changes (Figure 1.b) with both large

positive and large negative changes. In particular, the 20.47% decrease on the 19th of October,

1987 sticks out. On this infamous day, which is often called “Black Monday”,  stock markets

around the world experienced dramatic losses which almost all financial experts at that time did

not consider possible.

2.1.2. Nikkei 225

Figure 2 shows the Nikkei 225 from the 5th of January, 1984 to the 7th of December, 2016 as well

as the daily percentage changes. In contrast to the S&P 500, no clear upward trend between

1984 and 2016 is visible. The peak in 1989 was never reached again and the stock index at the

end of this time series is less than half as big as it was at its peak. Just like in the case of the

S&P 500, Figure 2.b shows very strong daily percentage changes every now and then. The

strongest percentage change (a loss of 14.9%) occurred on the 20th of October, in the events of

the aforementioned “Black Monday”3.

3 Due to time lag the worst one day percentage losses of the S&P 500 and the Nikkei 225 differ by less

than 24 hours.
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Figure  1: The S&P 500 index from 1950-11-21 to  2016-11-18 (a)  and its  daily

percentage changes (b).

Figure  2: The Nikkei 225 index from 1984-01-05 to 2016-12-07 (a) and its daily

percentage changes (b).
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2.2. Are the daily percentage changes i.i.d.?

How plausible is the assumption that the behavior of some stock index on any given day is

independent  of  its  changes  in  the  antecedent  days,  weeks  or  months?  How  about  the

independence of a stock index and some other stock index which may or may not come from a

different  stock  exchange,  maybe  even from a  different  country?  The  answer  to  the former

question is beyond reasonable doubt: NO! One way to rebut the assumption of independence is

the detection of cycles. A multitude of cycles have been analyzed in the scientific literature and

some even created catchphrases such as “Sell in May and go away!” The interested reader is

referred to Andrade, Chhaochharia and Fuerst (2012) for this particular seasonal effect. Other

well-known seasonal dependencies are the “January effect” analyzed among others by Haugen

and Jorion (1996) and the “presidential cycle effect” (Gärtner & Wellershoff, 1995). As shown by

Peiro (1994) cycle effects can also persist for short periods.

There also exist various dependencies among different stock indices around the globe and in

turbulent times like in the events around “Black Monday” or the financial crisis of 2008, almost

all stock indices lose in value. Furthermore, there exist various negative dependencies were an

increase of some asset comes along with a decrease in another asset. The fact that the prize of

commodities, gold in particular, and the exchange rate of the US dollar are negatively correlated

is  often used in  hedging strategies  and is  analyzed  in  great  detail  by Ciner, Gurdgiev  and

Lucey (2013).

Equation (3) shows that due to definition (1) the closing price Pt  is fully determined by some

starting value P1 and all daily returns between 1 and t:

Pt =
(1)

(Rt+1)⋅Pt−1 =
(1)

(R t+1)⋅(R t−1+1)⋅Pt−2 =...
(1)

= P1⋅∏
i=2

t

(Ri+1) (3)

Given the current stock value Pt, the random variable Pt+k is the product of random increments

(Ri+1) for i = t+1, t+2, …, t+k. Hence,  the stochastic process {Pt+k: k=1, 2, 3,…} is a  multiplicative

random walk in discrete time if the daily returns Ri are independent and identically distributed

(i.i.d.) random variables. Certain properties of the daily returns transfer to the log returns:

(4.1): Ri i . i .d . ⇒ Li=
(2)

log(Ri+1) i .i .d . since f (x )= log(x+1) is bijective ∀ x>0
(4.2): ∀ i∈ℕ : E(R i)<∞ ⇒ E(Li)=: µ<∞ since 0<log(x+1)<x ∀ x>0

(4.3) : ∀ i∈ℕ : Var (R i)<∞ ⇒ Var (Li)≝E(Li
2
)−µ2

=: σ2
<∞ since 0<log(x+1)<x ∀ x>0

Furthermore : ∀ i≠ j : Cov (Li , L j) := E((Li−E(Li))⋅(L j−E(L j))) =
(4.2)

E(Li⋅L j)−µ
2
=
(4.1)

0

(4)
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In order to analyze the plausibility of (4), two important functions are hereby defined:  

S p(t) :=∑
i=2

t−p

Li+ p⋅Li cS p(t) :=∑
i=2

t−p

(Li+p−
∑
k=2

t

Lk

(t−1)
)⋅(Li−

∑
k=2

t

Lk

(t−1)
) ∀ 0≤p≤t−2  (5)

The process cSp(t) is the sample autocovariance estimator of order p multiplied by the number

of used log returns (i.e. t-p-1). If p is set to zero, cSp(t) is equal to the sample variance of the first

(t-1) log returns multiplied by (t-1). Sp(t) is a non-centralized modification of cSp(t). 

To compare the  fluctuations  of  the  S&P 500 with  those of  the  Nikkei  225  dataset  a  scale

invariant measure of variation is of need. For a random variable (r.v.) X the squared coefficient

of variation is defined as:

CV 2
(X ) := Var (

X
E (X )

)=
Var (X)

(E(X ))
2 if Var (X )<∞ (6)

If properties (4.1), (4.2) and (4.3) are satisfied, results (7.1) – (7.14) follow!

Result  (7.1) shows that  the summed log returns are equal to the logarithm of Pt minus the

constant log(P1) at each point in time. Hence, the process {log(Pt+k): k=1, 2, 3,…} is an additive

random walk in discrete time if properties (4.1), (4.2) and (4.3) are satisfied. Result (7.10) shows

that cSp(t) divided by (t-p-1) would be a biased estimator for the true autocovariance of order p,

which is zero no matter the p because of (4). Whereas the expected value of cSp(t) converges

to -σ² (7.10), the expected value of the off-centered process Sp(t) diverges to +∞ if µ is unequal

to zero (7.9). The variance of cSp(t) only depends on the first and second moment of L i if p is

unequal to zero (7.12). The variance of cS0(t), on the other hand, also depends on the fourth

moment of Li (7.8).  In order to assess the plausibility that the daily returns are i.i.d. random

variables with finite second moments the cumulative sums of the log returns, as well as  Sp(t)

and cSp(t) for p=0,1,2,3, are plotted for the two indices (Figures 3-6).
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(7.1): ∑
i=2

t

Li=
(2)
∑
i=2

t

(log (Pi)−log(Pi−1))=
(2)

log(Pt)−log(P1)=
(2)

log(
Pt
P1

)

(7.2): E (∑
i=2

t

Li) =
(4.2)

( t−1)⋅µ

(7.3): E (S0(t ))=∑
i=2

t

E(Li
2
) =
(4.3)

(t−1)⋅(σ2
+µ2

)

(7.4) : E((∑
i=2

t

Li)
2
)=∑

i=2

t

E (Li
2
)+∑

i=2

t

∑
k=2, k≠i

t

E (Li⋅Lk ) =
(4, 7.3)

(t−1)⋅(σ2
+µ2

)+(t−1)⋅(t−2)⋅µ2

=(t−1)⋅σ2
+(t−1)2⋅µ2

(7.5): Var (∑
i=2

t

Li)≝E((∑
i=2

t

Li)
2
)−(E (∑

i=2

t

Li))
2

=
(7.2, 7.4 )

(t−1)⋅σ2
+( t−1)2⋅µ2

−(t−1)2⋅µ2
=(t−1)⋅σ2

(7.6): E(cS0(t ))=E (∑
i=2

t

Li
2−

(∑
i=2

t

Li)
2

t−1
) =

(7.3, 7.4 )
(t−1)⋅(σ2+µ2)−

( t−1)⋅σ2
+(t−1)2⋅µ2

t−1
=( t−2)⋅σ2

(7.7): E((S0(t))
2
)=E (∑

i=2

t

Li
2
⋅∑
k=2

t

Lk
2
)=∑

i=2

t

E (Li
4
)+∑

i=2

t

∑
k=2,k≠i

t

E(Li
2
⋅Lk

2
)

=
(4 )

(t−1)⋅E(L1
4
)+(t−1)⋅(t−2)⋅(σ2

+µ2
)
2

(7.8): Var (S0(t))≝E ((S0(t))
2
)−(E(S0( t)))

2
=

(7.3, 7.7)
( t−1)⋅[E (L1

4
)−(σ

2
+µ2

)
2
]

(7.9): E (S p(t ))=∑
i=2

t− p

E (Li+p⋅Li)=
(4)

(t−p−1)⋅µ2
∀1≤p≤t−2

(7.10): E (cS p(t))=∑
i=2

t−p

[E (Li+p⋅Li)−
1

(t−1)
∑
k=2

t

E (Li+p⋅Lk )−
1

(t−1)
∑
k=2

t

E (Li⋅Lk)+
1

(t−1)2
E((∑

k=2

t

Lk)
2
)]

=
(4, 7.4)

∑
i=2

t−p

[µ2
−

2
(t−1)

⋅((t−2)∗µ2
+(σ

2
+µ2

))+
σ

2

(t−1)
+µ2

]=(t−p−1)⋅
−σ

2

( t−1)
∀1≤p≤t−2

(7.11): E((S p(t))
2
)=E((∑

i=2

t−p

Li+ p⋅Li)⋅(∑
k=2

t− p

Lk+p⋅Lk))

=∑
i=2

t−p

E(Li+p
2 ⋅Li

2)+2 ∑
i=2+ p

t−p

E (Li+p⋅Li
2⋅Li−p)+2∑

i=3

t−p

∑
j≠k ,i≠k +p ,k=2

t−p−1

E (Li+ p⋅Li⋅Lk +p⋅Lk)

=
(4 )

(t−p−1)⋅(σ2
+µ2

)
2
+2⋅(t−p−p−1)⋅µ⋅(σ2

+µ2
)⋅µ+((t−p−1)⋅(t−p−4)+2 p)⋅µ4

=σ
4
⋅( t−p−1)+σ

2
⋅µ2

⋅(4 t−6 p−4)+µ4
⋅[(t−p−1)⋅(( t−p−4 )+1+2)+2 p−2 p] ∀1≤p≤

(t−2)
2

(7.12): Var (S p(t))≝E((Sp(t ))
2
)−(E (Sp(t )))

2
=

(7.9, 7.11)
(t−p−1)⋅(σ4

+4σ
2
⋅µ2

)−2 p⋅σ2
⋅µ2

+µ4
⋅(t−p−1)2−(t−p−1)2⋅µ4

=(t−p−1)⋅(σ4
+4 σ

2
⋅µ2

)−2 p⋅σ2
⋅µ2

∀1≤p≤
( t−2)

2

(7.13): CV 2
( log(

Pt
P1

)) =
(6, 7.1, 7.2, 7.5) (t−1)⋅σ2

(t−1)2⋅µ2 =
σ2

µ2⋅
1

( t−1)

(7.14) : CV 2
(S p(t)) =

(6, 7.9, 7.12) (t−p−1)⋅(σ4+4 σ2⋅µ2)−2 p⋅σ2⋅µ2

( t−p−1)2⋅µ4 =(σ
4

µ4 +
4σ

2

µ2 )⋅
1

(t−p−1)
−

2 p⋅σ2

µ2(t−p−1)2
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The sum of the log returns increases over time in the case of the S&P 500 (Figure 3.a). An

underlying random walk with a small positive drift µ seems certainly possible. Figure 3.b shows

that cS0(t) and S0(t) are indistinguishable by the naked eye. This means that the variance σ² is

relatively strong in comparison to the drift µ since the relative distance of the expectations of

S0(t) (7.3) and cS0(t) (7.6) depends on the ratio of σ² and µ² (Table 1). cS0(t) (and S0(t)) are a lot

less stochastic than the sum of the log returns (Figure 3.a) which means that the 4 th moment,

responsible for the variance of the squared log returns (7.8), is relatively weak in comparison

to σ². The average increase of cS0(t) in the last three decades is stronger as in the 50´s, 60´s

and 70`s. This indicates that  σ² is not constant over the whole time frame, but bigger in the

second half of the time series.

Figure 3: The sum of the daily log returns (a) and the sum of the (centralized) squared log returns (b) of the

S&P 500.

A constant drift term µ seems more unlikely for the Nikkei 225 (Figure 4.a). The sum of the log

returns rises relatively  constant  for  the  first  1000 days or  so,  after  which it  starts  to  wildly

fluctuate until day 8109. It seems as though the drift is positive in the beginning and in the end,

but negative in the middle of this time series. Just as in the case of the S&P 500, cS0(t) and S0(t)

are  practically  equal  at  each  time  point  t  (Figure  4.b).  Hence,  σ²  is  relatively  strong  in

comparison to µ (Table 1). cS0(t) (and S0(t)) rise relatively constant as (7.3) and (7.6) would

predict  under assumptions (4).  The sharp increase of  cS0(t)  during the 2008 financial  crisis

distorts the picture. Such a “volatility cluster” is not uncommon in stock markets. A “volatility

cluster” is a period of time where large price changes occur more (in)frequently as usual or in

the words of the great Benoit Mandelbrot (1963): “...large changes tend to be followed by large

changes-of either sign-and small changes tend to be followed by small changes...” A good way
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to analyze volatility clustering in financial data is to substitute the log returns Li with |Li| or Li² in

(5). The interested reader is referred to Cont (2007) who offers a detailed analysis of volatility

clustering in financial time series.

Figure 4: The sum of the daily log returns (a) and the sum of the (centralized) squared log returns (b) of the

Nikkei 225.

For p=1,2,3, Sp(t) and cSp(t) are practically equal for both indices (Figures 5 & 6). Given (4) it

was  shown  in  (7.9)  and  (7.10),  that  the  expectation  of  cSp(t)  converges  to  -σ²  and  the

expectation of Sp(t) diverges to +∞ if µ is unequal to zero. However, both µ and σ² are probably

very close to zero and, hence, the expected value of cSp(t) and Sp(t) is almost identical given the

finite sample sizes (Table 1). µ and  σ² were estimated via the sample mean and the sample

variance of the log returns:

µ̂ :=
∑
i=2

tmax

Li

( tmax−1)
σ̂

2 :=
cS0(tmax)
(tmax−1)

=
∑
i=2

t max

Li
2

(tmax−1)
−(µ̂)2 where tmax := number of days  (8)

The CV² of the summed log returns (7.13) and Sp(t) (7.14) can now be estimated by replacing µ

and σ² with the respective estimator (8). Table 1 shows the computation of (8) for the S&P 500

and the Nikkei 225 as well as the estimated decisive components of (7.13) and (7.14). Whereas

the estimated  σ² of  the Nikkei 225 is just about twice as big as those of the S&P 500, the

estimated (7.13) is more than 30 times as big for the same time point  t  and the estimated

decisive factor of (7.14) is almost 1000 times as big.
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S&P 500 Nikkei 225

tmax 16610 8109

µ̂ 2.83*10-4 7.68*10-5

σ̂
2 9.45*10-5 2.16*10-4

σ̂
2

µ̂2 1.18*103 3.67*104

σ̂
4

µ̂4 +4⋅σ̂
2

µ̂2 1.40*106 1.34*109

Table 1: Mean and variance estimations of the log returns as well as an estimation of the decisive 

constant factors in the CV² of log(Ptmax/P1) and Sp(t).

The  behavior  of  the  cS1(t)  (and  the  S1(t))  seems  to  change  after  “Black  Monday”  for  the

S&P 500 dataset. All (centralized) autocovariance processes drastically change in the events

around “Black Monday” and during the financial crisis of 2008. Those drastic changes clearly

argue against a random walk hypothesis with properties (4).

Figure 5: The (centralized) autocovariance process (5) of the S&P 500 for p=1,2,3. 
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In accordance with their estimated CV² (Table 1), the (centralized) autocovariance processes

fluctuate much stronger in the case of the Nikkei 225 (Figure 6). Similar to the S&P 500, the

fluctuation of the processes is greatly increased around “Black Monday” and the 2008 financial

crisis. Unlike the S&P 500 (Figure 5), cS1(t) is negative for later time points. This means that a

positive change on any given day makes a negative change on the subsequent day more likely

and vice versa.

Figure 6: The (centralized) autocovariance process (5) of the Nikkei 225 for p=1,2,3. 

This chapter can be concluded with the conviction that the (log) returns of the S&P 500 and the

Nikkei  225  (and  any other  stock  for  that  matter)  are  not  independent  realizations  of  some

random variable.  However, in statistics, particularly in the field of stochastic processes, i.i.d.

realizations seldom arise and the question of interest is how good an i.i.d. approximation is. The

goodness of fit of certain i.i.d. approximations for the daily percentage changes of the S&P 500

and the Nikkei 225 will be evaluated in Chapter 2.4.
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2.3. How fat are the tails of the distribution?

2.3.1. Law of large numbers

One important, if not the most important, family of statistical theorems is the family of laws of

large numbers (LLN). The generalization of this family, ergodic theory, constitutes an important

mathematical branch. All theorems in that family show that, if certain properties are met, some

time average converges (in some stochastic way) to some ensemble (space) average (e.g. the

expected value of some random variable) as the sample size increases. The most important

theorem in this family is the Strong Law of Large Numbers (SLLN) for i.i.d. random variables:

If X i i . i .d . with E (X1)<∞ then : Probability [
∑
i

n

X i

n
→ E(X1) for n→∞]= 1 (9)

The power of (9) is that an approximation of the unknown expected value via sample mean is

sound and the precision of this approximation can be increased ad infinitum by incorporating

new data (i.e. increasing the sample size). The process of the pth (raw) sample moment of the

daily percentage changes is given by:

M p(t) :=
∑
i=2

t

(100⋅R i)
p

(t−1)
for p∈ℕ (10)

Figures 7 & 8 show the progression of (10) with p=1,2,3,4 for the S&P 500 (Figure 7) and the

Nikkei 225 (Figure 8). For both indices a clear decrease of variation (i.e. convergence) can only

be observed for the first sample moment (Figures 7.a & 8.a). The impact of “Black Monday” on

(10) is gigantic, especially for the respective 3rd and 4th sample moments.

Does the size of the relative index change differ on days with negative and positive returns? Are

large losses in value more or less likely than large gains? In order to compare the distribution of

negative and positive daily percentage changes, the two datasets were respectively divided into

all days with a positive return (increase subsample) and all days with a negative return. The

absolute values of all negative returns then constituted the respective  decrease subsample.

The 115 days of  the S&P 500 with a return equal  to zero were discarded.  The Nikkei  225

sample only contains nonzero returns.
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Figure 7: Process (10) with p=1 (a), p=2 (b), p=3 (c) and p=4 (d) for the S&P 500.

Figure 8: Process (10) with p=1 (a), p=2 (b), p=3 (c) and p=4 (d) for the Nikkei 225.
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Can  a  convergence  of  higher  moments,  as  in  (9),  be  ascertained  for  these  subsamples?

According to Cirillo and Taleb (2016), the following holds true: 

“For  a sequence X1, X2, …, Xn of  nonnegative  i.i.d.  random variables,  if  E[Xp]  <  ∞ for  

p = 1, 2, 3…, then Qn
p  = Mn

p/Sn
p   →a.s.0 as n→∞, where Sn

p = ∑
i=1

n

X i
p is the partial sum, 

and Mn
p = max(X1

p,…., Xn
p) the partial maximum.” (Result 1)4

In other words, the largest observations share of the sum of all  instances gets smaller  (not

necessarily monotonically) with an increasing sample size. One diagnostic tool that makes use

of this fact is the Maximum-to-Sum plot, a two-dimensional plot with the sample size n on the

abscissa and Qn
p (for some p = 1, 2, 3..) on the ordinate. If no clear convergence to zero for Qn

p

can be observed one possible explanation is that the p th moment E[Xp] does not exist. Another

explanation is that the pth moment exists (i.e. E[|Xp|] = E[Xp] < ∞) but that the i.i.d. assumption is

violated quite considerably. In any case, it is valid to conclude that (1/N)*SN
p is a bad estimator

for E[Xp]  given the sample size N, if  no clear convergence to zero is observed for Qn
p with

n=1,...,N. Figures 9 & 10 show the  Maximum-to-Sum plots with p=1,2,3,4 for the respective

increase  and  decrease  subsamples  of  the  S&P  500  and  the  Nikkei  255.  Note  that  the

nonnegative assumption of  Result 1 is  always met,  due to the construction of the decrease

subsample.

The  Maximum-to-Sum plots  of  the  decrease  subsample  (N=7721)  only  show  a  clear

convergence for Qn
1 (Figure 9). Since all data points are non-negative MN

1, MN
2, MN

3 and MN
4

always  realize  their  maximum on  the  same day  for  all  n=1,…,N.  In  the  S&P 500  dataset

(Figure 9)  the  sample  maxima of  the  first  four  moments  (MN
1,  MN

2,  MN
3,  MN

4)  in  case  of  a

percentage  decrease  are  equivalent  to  ((-Xn*)1,  (-Xn*)2,  (-Xn*)3,  (-Xn*)4)  where  Xn* is  equal  to

-20.47, the percentage change on the 19th of September, 1987 (“Black Monday”). This drop was

so huge that it makes up more than 90% of Sn*
4 and approximately 70% of SN

4, which is quite

astonishing since the latter tells us that more than two-thirds of the 4 th raw sample moments

value comes from just one out of the 7721 days. The four Maximum-to-Sum plots corresponding

to the increase subsample are smoother than those corresponding to a decrease (Figure 9).

The biggest one-day jump (+11,58% on the 13th of October, 2008) has no big impact on QN
1 and

QN
2 and its impact on QN

3 can be compared to “Black Monday´s” impact on QN
2 in the decrease

subsample. Figure 9 suggests that a LLN like (9) seems to apply for the negative, the positive

and the squared positive daily percentage changes. Estimations based on the 3rd and 4th sample

moment (10) of the daily percentage changes (e.g. skewness and kurtosis) should only be used

with extreme caution due to their strong dependence on just a few days.

4 The letter R was replaced by the letter Q in order to avoid a clash of notation in this work.
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Figure  9: Maximum-to-sum plots for the decrease and the increase subsample of the S&P 500 with

p=1,2,3,4.

Figure 10: Maximum-to-sum plots for the decrease and the increase subsample of the Nikkei 225 with

p=1,2,3,4.
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The difference between the decrease and the increase subsample is smaller in the case of the

Nikkei 225 (Figure 10). Just as in the case of the S&P 500 there are gigantic jumps5 of Qn
3 and

Qn
4 in both subsamples. After the first 1000 days, Qn

2 converges relatively smoothly to values

smaller than 0.05 and estimations based on SN
2 (e.g. the sample variance) should, therefore, be

considered as valuable in both subsamples. Just as in the case of the S&P 500, estimations

based on the 3rd and 4th sample moment should only be used with extreme caution, if at all.

2.3.2. Zipf plots

One diagnostic tool regularly used to analyze the tail behavior of a univariate distribution has its

roots in the works of the linguist George Kingsley Zipf. Zipf (1949) analyzed the frequency of

different words and found that the probability of a certain word was proportional to the inverse of

its rank in the frequency table. That means that the most common word is used about twice as

often as the second and about three times as often as the third most common word. Similar

observations in the studies of population ranks of cities, the distribution of wealth and the size of

corporations were made and let to the development of discrete power law distributions. Only

continuous probability distributions are used in this work (either as a fit for the datasets or for

comparison  reasons)  and,  therefore,  only  continuous  power  law  distributions  and  their

properties are of concern.

A r.v. X follows a Pareto Type I distribution if it has the following density function (pdf):

f (x)=
k⋅ak

xk +1 0<a≤x , x∈ℝ with parameter a>0(scale) , k>0(shape) ; a , k∈ℝ (11)

By integrating (11) over (a , x ) we get the cumulative distribution function (cdf)

F( x)= 1−(
a
x
)
k

0<a≤x (12)

and the survival function of X:

F̄( x)≝ 1−F (x) = (
a
x
)
k

= ak⋅x−k 0<a≤x , a∈ℝ (13)

5 A big jump down means that the percentage change on that day was almost but not quite as big as

the currently biggest one.
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The shape parameter k in (11) governs the thickness of the right tail. The scale parameter a is

the left endpoint of the distribution. The smaller  k, the thicker the right tail due to the slower

decay of the survival function (13). 

A distribution function F is called  scale-invariant if there exist a continuous function g and a

real number x0 > 0 such that the survival function satisfies:

F̄(c⋅x) = g(c )⋅F̄( x) ∀ x ,c∈ℝ : x0≤x , x0≤c⋅x (14)

By using (13) and setting x0 equal to a in (14) we see that the Pareto Type I, sometimes referred

to as the standard Pareto distribution, is scale-invariant:

F̄(c⋅x) =
(13)

(
a
cx

)
k

= ak⋅x−k⋅c−k
=
(13)
F̄ (x)⋅g(c) where g(c) := c−k (15)

The standard Pareto (11) belongs to the class of  regularly varying distributions where the

survival function has the form

F̄( x)= L(x)⋅x−k k>0, k∈ℝ (16)

where L(x) is a so-called slowly varying function with the following property:

lim
x→∞

L(c⋅x )
L(x)

= 1 ∀ c>0, c∈ℝ (17)

Prominent members of this class are the Burr, the Log-gamma and the Student`s t distribution.

In  the  case  of  (13),  L(x)  is  the  constant  function  ak. Whereas  the  standard  Pareto  (11)  is

scale-invariant  over  its  whole  support (a , +∞) all  distributions  satisfying  (16)  with  a

non-constant slowly varying function are only asymptotically scale-invariant:

lim
x→∞

F̄ (c⋅x)
F̄ (x )

=
(16)

lim
x→∞

L(c⋅x )⋅(cx)−k

L( x)⋅x−k
= c−k⋅lim

x→∞

L(c⋅x )
L(x)

=
(17)

c−k (18)

If we take the logarithm (any logarithm will do) on both sides of (13) we get:

log(F (x )) = k⋅log (a)−k⋅log(x) 0<a≤x (19)

Equation  (19)  tells  us  that  the logarithm of  the  survival  function  is  a  linear  function  of  the

logarithm of x with a slope of -k in the case of the standard Pareto (11).
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If the slowly varying function in (16) is not a constant function this relationship is non-linear: 

log( F̄ (x )) =
(16)

log(L(x))−k⋅log(x ) (20)

However, the bigger x, the lesser log(L(x)) changes with the input x compared to log(x) due to

(17) and, hence, the curvature of (20) converges to zero (i.e. the farther in the tails, the more

(20) mimics a linear relationship)6. The relations (19) and (20) give rise to the zipf plot, a simple

two-dimensional plot with the logarithm of the empirical survival function on the ordinate and the

logarithmized order statistics on the abscissa. The stronger the concavity of the Figure for the

higher order statistics, the thinner the tail of the distribution. A linear behavior after a certain

threshold is evidence for a Paretian right tail, i.e., underlying i.i.d. random variables from the

class of regularly varying distributions (16).

Figure 11 shows the zipf plots for the S&P 500 dataset. We can clearly see that the body of the

distribution (decrease as well as increase) behaves quite different from the tail (e.g. the top 10%

of the data) and, hence, it can be ruled out that the whole distribution follows a standard Pareto

distribution. However, if only the top 10% of data points are considered, a linear trend seems

quite reasonable. The red lines in Figure 11 are the ordinary least squares (OLS) regression fits

for the respective top 10% data points. The intercept of the regression line multiplied by minus

one can be used to  estimate  the shape  parameter  k due to  (20).  This  method of  fitting  a

Paretian tail has two downsides. Firstly, the OLS assumption of homoscedasticity is not met

since there are fewer data points in the tails and, hence, the empirical survival function has a

higher variance in the tails. Secondly, one can generate different regression lines (with different

slopes)  depending on the chosen threshold  (e.g.  the 90% quantile  in  Figure 11).  The OLS

estimate of k is a bit smaller in the decrease subsample (3.012 vs 3.061) which indicates that

the left tail (i.e. losses) of the S&P 500 daily percentage changes is a little thicker than the right

tail (i.e. wins). This  matches the observations in Chapter 2.3.1 where the convergence of the

first four sample moments was worse in the decrease subsample.

6 All  functions  that  converge  to  a  real-valued  constant  are  slowly  varying  functions,  however,  the

reverse  does  not  necessarily  hold  true.  For  instance,  any  logarithmic  function  fulfills  (17):

lim
x→∞

log(c⋅x)
log(x )

= log(c )⋅lim
x→∞

(
1

log(x )
)+ lim

x→∞

log(x )
log(x )

= log (c)⋅0+1= 1 ∀ c>0, c∈ℝ  
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Figure 11: Zipf plots for the decrease and the increase subsample of the S&P 500.

Figure 12: Zipf plots for the decrease and the increase subsample of the Nikkei 225.
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The two OLS fits for the top 10% of the Nikkei 225 subsamples seem to fit quite well and a

linear tail behavior seems plausible (Figure 12). In contrast to the S&P 500 dataset, the OLS

estimates of k (3.268 vs 3.153) suggest that the right tail (i.e. wins) of the Nikkei 225 is thicker

than  its  left  tail  (i.e. losses).  Given  the  facts  that  the  90% quantile  was  chosen  somewhat

arbitrary as the threshold for the Paretian tail and that better estimators, the maximum likelihood

estimator in particular, exist, it is emphasized that these OLS tail estimations should only be

taken as rough guidelines. For more details, the reader is referred to De Haan and Ferreira

(2007) as well as Sousa and Michailidis (2004).

One property of the class of  regularly  varying distributions (16) is that only those moments

smaller than k are defined. In the case of a standard Pareto distributed r.v. X with density (11),

the derivation of the pth moment is relatively straightforward:

E(X p) =
(11)

∫
a

∞

xp
k⋅ak

xk+1 dx = k⋅ak∫
a

∞

x p x−(k+1)dx=
k⋅ak⋅x p−k

p−k
∣∞
a

=
k⋅ap

k−p
if p<k , ∞ if p≥k (21)

It is essential that p is smaller than the shape parameter k in the last step. The four estimates of

k (Figures 11 & 12) are all between three and four and, therefore, suggest that the respective 4 th

moment is not defined. At least for the decrease subsamples, this is simply impossible because

a stock cannot  lose more than 100% of  its value and,  hence,  there is  no such thing as a

negative value for a stock index.

2.3.3. Mean excess function

One important characterization of (continuous) probability distributions can be made with the

help of the mean excess function (mef):

mef (u) := E (X−u∣X>u)=
∫
u

∞

(x−u)⋅f ( x)dx

F̄ (u)
for 0<u<Supremum {x∈ℝ :F (x)<1 } (22)

In this work, only continuous probability distributions with no finite right endpoint (i.e. Supremum

in (22) equal to +∞) are of concern. In the case of a standard Pareto random variable with

density (11), the mean excess function has the following form:

mef (u)=
∫
u

∞

x⋅f (x )dx

F̄(u)
−

u⋅∫
u

∞

f (x )dx

F̄ (u)
=

(13, 15)

ak⋅k⋅u(1−k )

k−1
ak⋅u−k −

u⋅ak⋅u−k

ak⋅u−k =
k⋅u
k−1

−u=
u
k−1

∀u>a . (23)
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In the second step of (23) the results from (13) and (15),  with p equal  to one,  were used.

(23) shows that the expected excess increases in a linear fashion with the threshold u. A linear

relationship also holds true for the Pareto Lomax and the Generalized Pareto distribution (GPD)

although with different slopes and intercepts. Other distributions in the class of regularly varying

distributions (16) have more complicated mefs, however, they can always be reduced to a linear

part and an error term that loses its importance with an increasing threshold. More details are

given by Johnson, Klotz and Balakrishnan (1970).

A r.v. X follows an Exponential distribution if it has the following density function (pdf):

f (x)= λ e−λ x x∈ℝ , x>0 with parameter λ>0(scale) ; λ∈ℝ (24)

A r.v. X follows a Gamma distribution if it has the following density function (pdf):

f (x)=
β

α xα−1 e−xβ

Γ(α)
x∈ℝ , with parameters α>0(shape) ,β>0 (scale); α ,β∈ℝ

where Γ(z) :=∫
0

∞

x( z−1)e−xdx
(25)

A r.v. X follows a Log-normal distribution if it has the following density function (pdf):

f (x)=
1

x σ√2π
e
−

(log(x)−u)2

2σ 2

x∈ℝ , with parameters u , σ>0(shape); u ,σ∈ℝ (26)

Figure 13 shows the shape of the  mean excess function for different continuous distribution

functions.  A  well-known  property  of  the  Exponential  distribution  (24)  is  the  “memoryless

property”, which is just a fancy word for a constant  mef. The Exponential distribution is very

useful  to  categorize  the  thickness  of  the  tails  of  other  continuous  distributions.  Those

distributions  with an increasing  mef (e.g.  the Log-normal  (26) and the Pareto Lomax)  have

thicker  tails  than the Exponential  distribution,  those with a decreasing  mef like the Gamma

distribution (25) have thinner one`s7. The Pareto Lomax (Y is a Pareto Lomax r.v. with shape k

and scale a, if and only if, X  := Y+a is a standard Pareto r.v. with shape  k and scale a) was

chosen instead of (11)  in  order to compare only  distributions  with support  on the complete

positive real axis.

7 The characterization  of  probability  distributions  into  the  subexponential  and  the  superexponential

class is closely related to the behavior of the mean excess function. The interested reader is referred

to  Wierman  (2014)  who  gives  a  great  introduction  into  the  properties,  the  emergence  and  the

identification of heavy tails.
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The Log-normal  distribution  is  a  very  important  continuous  distribution  due to  the following

relationship: Y is a Log-normal r.v. with parameters s and u if and only if X  := log(Y) is a Normal

r.v. with mean u and variance s2 whose density is shown in formula (29). The shape parameter

of Y is the scale parameter of X. A substitution in (26) reveals that eu is the scale parameter of Y:

1
x σ√2π

e
−

(log(x)−u)2

2σ 2

=
1

x σ√2π
e
−

(log(
x
s
))

2

2σ
2

with s := eu>0 (27)

The  Log-normal  has  an  increasing  mef,  but  in  contrast  to  the  Pareto  Lomax,  its  shape  is

concave (Figure 13). The higher the shape parameter in (26), the fatter the (right) tail of the

Log-normal. Anyhow, no matter how big the shape parameter, all moments of the Log-normal

r.v. are defined (i.e. finite). This fact connotes a decisive difference between a Log-normal r.v.

and any r.v. from the class of regularly varying distributions, with all moments higher than the

respective shape parameter undefined.  This fact was shown in (21) for the standard Pareto

distribution.

In the case of the Pareto Lomax, the shape parameter solely determines the slope of the mef

whereas the intercept (i.e. the mean excess function evaluated at zero) is determined by both

the shape and the scale parameter. Note that mef(0) is equivalent to the mean of the respective

distribution for all distributions in Figure 13 because they all have a support that starts at zero.

Every  Exponential  distribution  has  a  mef with  slope  zero  and  an  intercept  that  is  solely

determined by the respective scale parameter. The mean excess functions are nonlinear in case

of the Log-normal (increasing) and the Gamma distributions (decreasing) and their shapes, the

respective mef(0) in particular, are determined by both shape and scale.
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Figure 13: Mean excess functions of four important families of continuous distributions.

The empirical mean excess function (emef) of a sample of random variables X1, X2,…, XN at

threshold u is calculated as:

emef (u)=
∑
i=1

N

(X i−u)⋅( I {Xi>u})

∑
i=1

N

(I {Xi>u})

where I {Xi>u}=1 if Xi>u , 0 if Xi≤u (28)

In order to assess the tail behavior of the two datasets, the empirical mean excess functions

were plotted for the respective decrease and increase subsamples (Figures 14 & 15). Figure 14

shows that the shape of the emef in the body (low threshold values) differs quite substantially

from its shape in the tail (high threshold values) in both S&P 500 subsamples. In the decrease

subsample, the emef stays almost constant for threshold values smaller than 1.5. Somewhere
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around 1.5, the emef starts to increases in a convex fashion up until a threshold of about 3. The

emef continues to increase between threshold values of 3 and 5, although now approximately

linearly. For threshold values bigger than 5 it is nonsensical to analyze the shape of the emef in

too  much detail  because  only  a  few data  points  are  bigger  than this  threshold.  Figure  14

suggests, however, that the (true)  mef continues to rise for values higher than 5. For small

values,  the  emef of  the  S&P  500  increase  subsample  behaves  similar  to  the  decrease

subsample.  The  increase  between  the  threshold  values  2  and  4,  however,  is  considerably

smaller. Around a threshold  value of  4 the slope of  the  emef increases constantly  (convex

behavior) up to a value of approximately 5.5.

A comparison of Figure 14 with the theoretical  mean excess functions in Figure 13, clearly

shows that the S&P 500 has heavier tails than the Exponential distribution. Furthermore, the

shapes of  both emefs in  Figure  14 are more complex  than those of  a Pareto Lomax or  a

Log-normal due to changes in their curvatures. These changes in curvature suggest that the

daily percentage changes of the S&P 500 come from a mixture of different distributions. A linear

(true)  mef  after  a  certain  threshold  (e.g.  3  for  the  decrease  subsample),  which  would  be

equivalent  to  a Paretian  tail,  cannot  be ruled  out  for  either  subsample.  In  the  case of  the

increase subsample, the emef decreases after a threshold of 7.07. This should not be seen as a

clear  indication  of  a  decreasing true  mef since  only  three data points  are  bigger  than this

threshold  leading  to  highly  uncertain  mef estimates  (i.e.  emef values)  above this  value.  In

agreement with the analysis in Chapter 2.3.2, it seems as though the daily percentage changes

of the S&P 500 have a thicker left then right tail since the emef of the decrease subsample is

higher  than  its  increase  counterpart  for  almost  all  threshold  values  and  the  last  ten  order

statistics (i.e. the 10 largest data points) of the decrease subsample are all higher than their

increase counterparts.

The  emefs are  approximately  constant  at  1  until  a  threshold  value  of  about  2  for  both

subsamples of the Nikkei 225 dataset (Figure 15). Somewhere around this threshold value, the

emefs start to increase linearly with a slope of approximately 0.25. In the case of the increase

subsample, this linear trend does not change strongly until threshold values somewhere around

8, after which a drastic increase followed by a drastic decrease distorts the picture. Once again

it is stressed that the emef is particularly unreliable for large (i.e. large in relation to the highest

order statistics of the given dataset) threshold values. The  emef of the decrease subsample

decreases with increasing threshold values between approximately 4.5 and 5. This could very

well be not just an anomaly but a real trend reversal since quite a view data points happen to be

larger than 4.5.

 25



Figure 14: Mean excess plots for the decrease and the increase subsample of the S&P 500.

Figure 15: Mean excess plots for the decrease and the increase subsample of the Nikkei 225.

 26



Showing close resemblance to the S&P 500 dataset (Figure 14), the two  emefs in Figure 15

strongly suggest heavy tails for both the lower (decrease) and the upper (increase) tail of the

Nikkei 225 daily percentage changes. Paretian tails, starting somewhere around a value of 2,

are quite plausible. That being said, a concave shape of the true mefs, characteristic for a Log-

normal distribution, cannot be ruled out either given these emefs. The two tails of the Nikkei 225

appear to be more similar than their S&P 500 counterparts. In sharp contrast to the S&P 500

dataset, six out of the last ten order statistics in the decrease subsample are smaller than their

respective increase counterparts.

2.4. Fitting distributions to the daily percentage changes

The analysis  thus far  revealed that  the two stock indices  of  interest,  the S&P 500 and the

Nikkei 225  do  have  fat  tails.  Furthermore,  Chapter  2.2  concluded  that  our  datasets  most

definitely  are  not  i.i.d.  realizations  of  some  random  variable.  However,  maybe  an  i.i.d.

approximation works quite well for our two indices and daily data from several decades. The aim

of this chapter is to find probability distributions with known properties that describe the behavior

of the two indices fairly well. Such a parametric description is the basis of probabilistic inference

and  the  estimation  of  important  risk  management  quantities  like  Value  at  Risk (V@R)  and

Expected Shortfall (ES). In Chapter 2.4.1 well-known probability distributions are fitted to the

complete  S&P 500  dataset  as  well  as  the  complete  Nikkei 225  dataset.  In  Chapter  2.4.2,

inspired by the results from Chapter 2.3, different distributions are fitted for the left (decrease)

and the right tails (increase) of the two stock indices.

2.4.1. Continuous and symmetric distributions for the complete datasets

A random variable X follows a Normal distribution if it has the following density function (pdf):

f (x)=
1

σ√2π
e
−

(x−u)2

2σ 2

x∈ℝ , with parameters u (location) , σ>0 (scale); u ,σ∈ℝ (29)

A r.v. X follows a Logistic distribution if it has the following density function (pdf):

f (x)=
e
−
x−u
s

s(1+e
−
x−u
s )

2

x∈ℝ , with parameters u (location) , s>0(scale); u , s∈ℝ (30)
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A r.v. X follows a Laplace distribution if it has the following density function (pdf):

f (x)=
1
2b

e
−
|x−u|
b x∈ℝ , with parameters u (location) , b>0 (scale) ; u ,b∈ℝ (31)

A r.v. X follows a Student`s t distribution if it has the following density function (pdf):

f (x)=
Γ(
v+1
2

)

√v πΓ(
v
2
)

(1+
(
x−u
σ )

2

v
)

−
v +1
2

x∈ℝ , with parameters u(location) ,

σ>0(scale) , v>0(shape); u ,σ , v∈ℝ ;where Γ(z) :=∫
0

∞

x(z−1 )e−x dx

(32)

Formulas  (29)  –  (32)  show  the  density  functions  of  four  important  families  of  continuous

distributions with support on the complete real axis. All four densities are symmetric around their

respective  location  parameter  u,  although  this  is  not  immediately  obvious  for  (30).  The

University of Alabama (2017) offers a short proof of the symmetry of the Logistic distribution on

its website. Furthermore, the location parameter happens to be the mean (only if v>1 in the

case of the Student`s t since it is a member of the class of regularly varying distributions), the

median and the mode for these four distribution families. Out of (29), (30) and (31), the Normal

distribution has the thinnest tails since the input is squared in (29) and the Laplace has the

thickest tails. The Laplace distribution is often called Double-Exponential distribution since its

density has the shape of an Exponential distribution (multiplied with 0.5) with its support shifted

from (0, ∞) to (u , ∞) for values greater than u and a vertically mirrored shape for values

smaller than u. This can easily be seen if (31) is compared to (24):

set λ :=
1
b
then

1
2b

e
−
|x−u|
b =

1
2
⋅(λ e−λ|x−u|)=

1
2
⋅(λ e−λ y

) for y :=|x−u|≥0 (33)

The  densities  (29) – (31)  all  decrease  exponentially  the  further  the  distance  from  their

respective location parameter. Out of (29) – (32), the Student`s t is the only distribution with a

density that does not decrease exponentially and the only one with a shape parameter which is

often called the “degrees of freedom” parameter. This shape parameter v is equivalent to k in

(16) and the smaller v, the slower the decrease of the density and the fatter the tails. Whereas

all moments are defined for (29), (30) and (31) only those moments smaller than v exist for (32).

 28



A very important figural tool to assess the distribution of some numerical data is the histogram.

Figures 16 & 17 show the respective histograms for our two indices. 150 breaks were chosen

for our two datasets because that value seemed to achieve better noise to signal ratios than

smaller or higher numbers. Furthermore, the histograms were normed such that the respective

area under all bins equals 1. This ensures meaningful comparisons with theoretical probability

distributions. Since the goal in this chapter is to treat our datasets as if they would come from

some unknown  continuous  probability  distribution,  kernel  density  estimates  were  plotted  in

addition.  It  is  stressed  once  more,  that  the  goal  in  this  chapter  is  not  to  find  the  perfect

parametric  fit  for  our  two  datasets  but  the  assessment  of  the  accuracy  of  different

approximations via some continuous probability distributions8. 

The parameters of four continuous distributions (Normal, Logistic, Laplace, Students´ t) were

estimated  via  maximum  likelihood  for  both  indices  (Table  2)  and  its  densities  plotted  in

Figures 16 & 17.  The  daily  percentage  changes  of  the  S&P  500  (Figure 16)  seem  to  be

unimodal and almost symmetrical, although not around a value of zero but a slightly bigger one

– of which more later. The bins around the middle of the histogram are clearly higher than the

density of the fitted Normal distribution which, coupled with the fact that the tails of the S&P 500

daily  percentage changes are quite fat (Chapter 2.3),  is  a clear sign of  a leptokurtic shape

coming from a kurtosis greater than 39. Whereas the Normal and the Logistic distribution fit the

data very poorly, the densities of the fitted Laplace and Student`s t manage to stay close to the

kernel  density  estimate.  The Laplace density  fit  stays closer  to  the kernel  density  than the

Student`s t density fit for negative values but further away for positive values. Note that the two

histograms (Figures 16 & 17) are only plotted between -4 and 4 and, therefore, the goodness of

fit in the tails cannot be assessed graphically just now.

8 Note that, for instance, the S&P 500 index did not change at all for 116 out of the 16609 days in our

sample. Hence, a underlying continuous probability distribution can safely be ruled out.

9 3 is the kurtosis (i.e. the 4th standardized moment) of a Normal distribution and all distributions with a

kurtosis lower than the Normal are categorized as platykurtic whereas those with a higher kurtosis are

labeled as leptokurtic.
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Values rounded to

three decimal places!
Normal Logistic Laplace Student`s t

S&P 500

shape - - - 3.152

scale 0.968 0.478 0.654 0.611

location 0.033 0.041 0.045 0.045

Nikkei 225

shape - - - 3.475

scale 1.468 0.747 1.021 0.989

location 0.018 0.031 0.040 0.039

Table  2: Maximum likelihood parameter estimates for different distributions and the daily percentage

changes of the Standard & Poor 500 as well as the Nikkei 225.

Figure 16: The histogram of the daily percentage changes of the S&P 500 index, a kernel density

estimate and fitted densities of four important continuous probability distributions.
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The Nikkei 225´s daily percentage changes seem to be unimodal and symmetric (Figure 17).

The kernel density is leptokurtic, although not quite as much as those of the S&P 500 since its

peak is at approximately 0.4 as opposed to approximately 0.6 in Figure 16. Just as in the case

of  the S&P 500 dataset,  the Normal  and the Logistic  fit  the daily  percentage changes very

poorly. The Laplace as well as the Student`s t fit is quite good, and once again, the former is

better for values between -2 and 0 whereas the latter is better for values between 0 and 2. In

comparison to Figure 16, the bins are higher between -4 and -2 as well as between 2 and 4

indicating  that  the  Nikkei 225  experienced  more  medium  sized  index  changes  than  the

S&P 500.

Figure  17: The histogram of the daily percentage changes of the Nikkei 225 index, a kernel density

estimate and fitted densities of four important continuous probability distributions.

For  both  the S&P 500 and the Nikkei 225 the Normal  and the Logistic  density  fits  are  not

analyzed  any  further  due  to  their  strong  deviations  from  the  respective  histograms

(Figures 16 & 17).  The  Laplace  as  well  as  the  Student`s  t  describe  the  body  of  the  two

distributions reasonably well and in order to compare their shapes in the tails, Figures 18 & 19

zoom in on the respective left and right tails. In addition to the kernel density estimator used in

the histograms (Kernel  1)  a second kernel  estimator, with a four  times larger  bandwidth  is
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plotted (Kernel 2). The small hills in the tails of Kernel 1 (Figure 18&19) look implausible and the

larger bandwidth of Kernel 2 leads to smoother densities and more reasonable fits in the tails.

However, any nonparametric estimate (e.g. a kernel density) for the tail behavior of empirical

data is problematic for heavy-tailed phenomena because of the small number of data points in

the tails.

Figure 18 shows that in the case of the S&P 500 dataset the fitted Laplace density lies above

the fitted Student`s t density until approximately values of -3.5 and 3.5. Both the Laplace (31)

and  the  Student`s  t  (32)  are  symmetric  around  their  location  parameter  u,  hence,  their

respective density at (u - x) has the same value as their respective density at (u + x) for all real

numbers x10. For values larger than 6 (or smaller than -6) the Laplace density fit is essentially

zero. The considerably slower decreasing densities of Kernel 1, Kernel 2 and the Student`s t fit,

make values larger than 6 neither likely nor astronomically unlikely as the Laplace fit does.

Figure 18: S&P 500: Zoom of two fitted theoretical distributions and two kernel densities.

10 The mean, if defined, is equivalent to the median for all unimodal symmetric distributions.
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In  the  case  of  the  Nikkei  225  dataset  (Figure  19),  the  densities  of  the  Laplace  and  the

Student`s t fit cross later as in the S&P 500 dataset, at approximately values of 5 and -5. The

tails of the Laplace fit are thicker as those of its S&P 500 counterpart, yet they are not thick

enough to describe the distribution of the Nikkei 255 accurately for values larger than 6 (or

smaller than -6).

Figure 19: Nikkei 225: Zoom of two fitted theoretical distributions and two kernel densities.

The most rigorous tool for a graphical analysis of some fitted distribution is the quantile-quantile

(Q-Q) plot. In the case of a univariate r.v., a Q-Q plot is a two dimensional plot with the empirical

quantiles (i.e. the order statistics of the sample) on the ordinate and the theoretical quantiles on

the abscissa. For each order statistic (the y-coordinate) a point is plotted with the inverse of the

theoretical  distribution  function  evaluated  at  the  empirical  distribution  function  of  that  order

statistic as the x-coordinate11. The closer the N points lie to the 45° line, the more similar the

theoretical and the empirical distribution. 

11 This is actually not precise, since the y-coordinate is the empirical distribution function multiplied with

N/(N+1), a correction factor. Otherwise the x-coordinate would be +∞ for the Nth order statistic (i.e. the

maximum) for all theoretical distributions with an unbounded support on the positive real axis.
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Figures 20 & 21 show the Q-Q plots for the Laplace and the Student`s t fits of the two indices.

For each of these four Q-Q plots, three additional plots (zoom in the center, the left, and the

right  tail)  are  shown  in  order  to  better  detect  deviations  from  the  respective  theoretical

distribution.

Figure 20: S&P 500: Quantile-Quantile plots for the Student`s t and the Laplace fit.

Figure 21: Nikkei 225: Quantile-Quantile plots for the Student`s t and the Laplace fit.
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The Q-Q plots for the S&P 500 (Figure 20) clearly show that the Laplace fit performs poorly in

the tails.  There seems to be a point  in both tails where the quantiles of the Laplace fit  are

starting to increase at a higher rate than the empirical quantiles. These two structural breaking

points are different for the right (2.5) and the left tail (3). After these two breaking points, the

respective  theoretical  (Laplace  fit)  quantiles  start  to  diverge  from their  respective  empirical

quantiles,  at  an  approximately  constant  rate,  the  further  in  the  tails.  In  the  case  of  the

Student`s t fit,  no structural breaking points can be detected. All  points with an x-coordinate

bigger than 4 lie under the 45° line, which connotes that the actual right tail is not as heavy as

the theoretical fit. However, in contrast to the Laplace fit, the points do not diverge from the 45°

line, the further in the tails. Instead, the increasing distance between the points and the 45° line

between  approximately  4  and  7  is  followed  by  a  short  decrease,  another  increase  after

approximately 7.5 and yet another decrease at around 10. The Student`s t fit is better in the left

than in the right tail since the points in the left tail stay close to the 45° line until values of around

-9. Of course, “Black Monday” steps out of line with a theoretical quantile of around 15. Both the

Laplace and the Student`s t fit are quite good in the center of the distribution.

The  Q-Q  plots  for  the  Nikkei  (Figure  21)  show  a  similar  picture.  The  Laplace  fit  cannot

adequately describe the tails and there seem to exist structural breaking points once again. The

Student`s t fit describes this dataset pretty well in both tails, as no big deviations from the 45°

line can be found in the plots. This fits with the previous observation that the difference in the

thickness  of  the  respective  tails  is  smaller  in  the  case  of  the  Nikkei  225.  The  Student`s  t

distribution is symmetric and, therefore, the more asymmetric a dataset, the poorer the fit. Both

the Laplace and the Student`s t fit are quite good. The former is inferior at around a value of 2,

the latter around -2.

2.4.2. Different fits for the left and the right tail

Chapter 2.4.1 revealed that the Students´s t distribution fits the daily percentage changes better

than  the  Normal,  the  Logistic  and  the  Laplace.  The  respective  fits  of  the  Student`s  t  via

maximum likelihood estimation (MLE) describe the two datasets actually pretty good given the

fact  that  they do not  constitute i.i.d.  realizations  of  some random variable (Chapter 2.2).  In

Chapter 2.3 it was discovered that the datasets are somewhat asymmetric and that the left tail,

particularly in the case of the S&P 500 dataset, seems to be thicker than the respective right tail.

Therefore, in this chapter, the datasets are split at their respective median (0.04480137 for the

S&P 500 and 0.04035366 for the Nikkei 225) and separate distributions are fitted to both parts

of the respective index12.

12 Unlike the Nikkei 225 dataset, the S&P 500 dataset consists of an uneven number of daily percentage

changes (16609) and therefore the median is equal to one data point, namely the [(16609+1)/2] th

order statistic. This data point was not considered in the subsequent Double distribution fits.
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The following steps describe the creation of the artificial fits for both indices (Figures 22-27):

• Firstly,  the  median  was  subtracted  for  each  and  every  data  point.  After  these

subtractions, all values greater than zero (nright) were used to fit distributions for values

greater than the median and values smaller than zero were multiplied by -1 (n left) and

then used to fit distributions for values smaller than the median.

• The Gamma (25) and the Log-normal (26) distribution were fitted to nright as well as to nleft

via MLE. The density fits for nright were multiplied by 0.5 and shifted to the right by the

value of the median. The density fits for nleft were also multiplied by 0.5 and shifted to the

right  by  the  value  of  the  median.  Additionally,  the  variable  x  in  (25)  and  (26)  was

replaced by -x in order to get a vertically mirrored density shape on the left side of the

median.  The  Double Log-normal and the  Double Gamma densities (Figures 22-25)

are just the respective density fits for the left and the right part, plotted with the same

color.

• The Double Student`s t fit was created in a different way since unlike the Log-normal

and  the  Gamma,  the  Student`s  t  distribution  with  density  (32)  has  support  on  the

complete real axis. For each value in nright as well as in nleft a negative counterpart (i.e. -1

times the value) was added and, hence, their respective sizes doubled and both nright and

nleft became  perfectly  symmetric  around  the  value  0.  Afterward,  a  Student`s  t  was

respectively fitted to  nright  and nleft via MLE. Both distributions were then shifted to the

right by the value of the median. The Double Student`s t density (Figures 22-25) is the

nleft density fit until the median and the nright fit after the median.

It is important to note that because of this construction, all three  Double Distributions have a

discontinuity point at the median of the respective dataset. Furthermore, the Double Log-normal

and the Double Gamma densities get infinitely small, the nearer to the respective discontinuity

point. This is certainly not a realistic description of the two datasets. However, if one or more of

the Double Distribution fits were to describe the dataset(s) well for all values not too close to the

median, modifications to smooth out the transitions from the left to the right side of the median

are certainly possible.  The parameter estimates for the respective left  and right parts of the

three artificially created Double distributions can be found in Table 3. A smaller shape parameter

indicates a fatter tail in case of the Gamma and the Student`s t and a thinner tail in case of the

Log-normal. In agreement with the analysis in Chapter 2.3, the left tail of the two indices seems

to be thicker than the right tail, although not by much. The differences in shape and scale are

smaller between the left and the right tail of both indices than they are between the indices and

the same tails for all three Double distributions.
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(Left / Right)

Values rounded to

three decimal places!

Double Log-normal Double Gamma Double Student`s t

S&P 500
shape 1.252 / 1.210 1.012 / 1.069 3.094 / 3.219

scale 0.377 / 0.376 0.658 / 0.601 0.619 / 0.604

Nikkei 225
shape 1.245 / 1.223 1.036 / 1.071 3.399 / 3.588

scale 0.599 / 0.585 1.006 / 0.932 1.006 / 0.973

Table  3: Maximum likelihood parameter estimates for three artificially constructed distributions in the

S&P500 as well as the Nikkei 225 dataset.

Figure  22: The histogram of the daily percentage changes of the S&P 500 index, a kernel

density estimate and the densities of three artificially constructed probability distributions.
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Figure 23: The histogram of the daily percentage changes of the Nikkei 225 index, a kernel

density estimate and the densities of three artificially constructed probability distributions.

In  the  case of  the  S&P 500,  the  Double  Log-normal  is  a  poor  fit  for  the daily  percentage

changes (Figure 22). The blue density is too leptokurtic, that is too high for very small values,

too low for values between approximately -2 and -0.5 as well as approximately 0.5 and 2, and

again, too high for values farther than 2 from the median. The Double Gamma and the Double

Student`s t both fit the body of this dataset quite well. The Double Gamma lies closer to the

kernel density than the Double Student`s t in the left part and farther away in the right part.

Everything said about the performance of the three artificial Double distributions also holds true

for the Nikkei 225 (Figure 23).

In order to compare the Double distribution fits in the tails, Figures 24 & 25 zoom in on the

densities  in  the  tails  of  the  respective  distributions.  For  both  the  S&P 500  as  well  as  the

Nikkei 225, the Double Log-normal density is too high for small and for large values. The Double

Gamma densities, on the other hand, are too small for values far away from the respective

median.  For  both  datasets,  only  the  respective  Double  Student`s  t  density  fit  lies  close  to

Kernel 2 for values farther than 6 away from the respective median (Figures 24 & 25).
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Figure  24: S&P 500:  Zoom of  the  densities  of  two  artificially  fitted  theoretical

distributions as well as two kernel densities.

Figure  25: Nikkei 225: Zoom of the densities of two artificially fitted theoretical

distributions as well as two kernel densities.
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The  Double  Student`s  t  fits  are  clearly  superior  to  the  other  two  artificially  fitted  Double

distributions. The next obvious question is: How big is the improvement in describing the two

datasets with the artificial Double Student`s t with its five parameters (2x shape, 2x scale, and

the  median)  instead  of  the  three  parameter  Student`s  t  fit  (Chapter  2.4.1).  To answer  this

question, Figures 26 & 27 show the Q-Q plots for the Double Student`s t and the Student`s t.

Figure 26: S&P 500: Quantile-Quantile plots for the Student`s t and the Double Student`s t fit.

Figure 27: Nikkei 225: Quantile-Quantile plots for the Student`s t and the Double Student`s t fit.
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In the case of the S&P 500 (Figure 26), there seems to be a slight improvement in the right tail.

On the other hand, the Double distribution seems to be a poorer fit in the left tail, at least until

values smaller than -10. This is clearly owed to “Black Monday” and its huge impact on the

shape parameter  in  the left  tail.  Neither  improvement  nor  debasement  in  the center  of  the

distribution  can  be  spotted  for  the  Double  distribution.  There  also  seems  to  be  a  slight

improvement in the right and a slight debasement in the left tail for the Nikkei 225 (Figure 27).

The Double distribution of the Nikkei 225 improves the fit between values of approximately -1

and -2.

3. Monte Carlo simulations

3.1. Design and methods

Just  as  the  analysis  of  the  S&P  500  and  the  Nikkei  225  index  in  Chapter  2  (including

Figures 1-27),  this simulation was programmed in R (R Core Team, 2016). The complete R

code including all non-basic functions of the simulation as well as the code of the (graphical)

analysis is available from the author upon request. Exact reproducibility was established since

random variables were generated and stored in a first step, and loaded and analyzed later on.

In 50 scenarios i.i.d. Student`s t random variables (32), with a location parameter of 0 and a

scale parameter of 1, were generated. Two parameters were varied in order to generate these

50  scenarios,  namely  the  degrees  of  freedom (shape)  parameter  and  the  number  of  i.i.d.

realizations. The degrees of freedom (v) parameter was either 2.9, 3.0, 3.1, 3.2, 3.3, 3.4, 3.5,

3.6, 3.7 or 3.8. These values were chosen because they cover the range of maximum likelihood

estimates of the degrees of freedom parameters for the S&P 500 and the Nikkei 225 dataset

(Tables 2&3) well. The sample size (n) was either 100, 500, 1000, 5000 or 10000. The largest

value (i.e.  n=10000) lies between the sample size of the S&P 500 dataset  (16609) and the

sample  size  of  the  Nikkei  225  dataset  (8108).  Since  an  analysis  of  daily  financial  data  is

particularly interesting for time frames of only a few years or even just a few months, smaller

sample sizes were investigated as well. A fully crossed design with these two parameters was

chosen  and,  therefore,  50  (5x10)  different  scenarios  were  constituted.  Each  scenario  was

simulated 1000 times in order to assess the distribution of the estimators of interest. 
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For each scenario the following quantities were computed:

• Maximum likelihood estimate of the location parameter

• Maximum likelihood estimate of the scale parameter

• Maximum likelihood estimate of the degrees of freedom parameter

• Sample variance

• Sample mean

• Sample median

• Sample 99% quantile

• Sample 99.9% quantile

The main goal of this simulation is to answer the following questions:

• How well can five important quantities, namely mean, variance, median, 99% quantile

and 99.9% quantile, be estimated?

• Which estimation technique (MLE or nonparametric) fairs better for which quantity and

which scenario?

• How strong is the influence of the sample size and the degrees of freedom parameter

on the precision of the estimators?

The  sample  quantiles  (50%  (median),  99%  and  99.9%)  are  computed  with  the  function

quantile () of the stats package (R Core Team, 2016) with the type parameter equal to 7. Three

other non-basic R packages were used in this simulation:  MASS (Venables & Ripley, 2002),

LaplacesDemon (Statisticat, Llc., 2016) and matrixStats (Bengtsson, 2016). 

The maximum likelihood (ML) estimates for the mean and the median are equivalent to the ML

estimate of the location parameter due to the symmetry of the Student`s t distribution. The ML

estimates of the 99% and the 99.9% quantile are just the respective theoretical quantiles of a

Student`s t distribution with the ML estimates of the location, scale and  degrees of freedom

parameter as  the  respective  parameter.  The  ML estimate  of  the  variance  is  computed  by

replacing the scale and the degrees of freedom parameter with the respective ML estimate in

the following equation:

If r .v . X has density (16) , then Variance(X ) =
v

v−2
σ

2 , σ>0 (scale) , v>2(shape ) (34)

Due  to  (34),  no  variance  can  be  estimated  via  ML  if  the  estimated  degrees  of  freedom

parameter is less than or equal to 2. 
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The following metric was used to compare the performance of the ML and the nonparametric

estimators in this simulation:

^MAD(θ̂) := Ê(|(θ̂−θ)|) = 1
N
∑
i=1

N

|θ̂i−θ|, θ(true quantity) , θ̂ (estimator for θ). (35)

This metric is an estimator for the  mean absolute deviation (MAD) of an estimator from the

true quantity. Obviously, the smaller the MAD, the better the estimator. 

An often used alternative metric is the estimated mean squared error (MSE):

^MSE( θ̂) := Ê ((θ̂−θ)
2
)=

1
N
∑
i=1

N

(θ̂i−θ)
2

θ(true quantity) , θ̂(estimator forθ) . (36)

Note that in this simulation N is equal to 1000 in (35) and (36) since each estimator is computed

in each of the 1000 iterations of a certain scenario. Just as in the case of the MAD, the smaller

the MSE, the better the estimator. Since the differences between the estimates and the true

values are squared in (36), strong deviations have a greater impact on the MSE than on the

MAD. A well-known relation between the MSE and the variance of an estimator exists:

Bias (θ̂) := E( θ̂)−θ → MSE( θ̂) := E ((θ̂−θ)
2
) = E((θ̂−E(θ̂)+E (θ̂)−θ)

2
)

= E((θ̂−E(θ̂))
2
)−2⋅(E (θ̂)−θ)⋅E (θ̂−E (θ̂))+E ((E (θ̂)−θ)

2
)

= Var (θ̂)−2⋅Bias(θ̂)⋅(E(θ̂)−E(θ̂))+E((Bias (θ̂))2) = Var (θ̂)+(Bias (θ̂))2
(37)

Both the MAD and the MSE of some estimator are scale-dependent. The MSE of the sample

mean of n i.i.d. random variables with density (32) and v > 1 is:

MSE(
1
n
∑
i=1

n

X i) =
(31)

Var (
1
n
∑
i=1

n

X i)=
1
n2∑

i=1

n

Var (X i) =
(28) 1

n
v

v−2
σ

2 (38)

The first equality in (38) holds because the sample mean of i.i.d. realization is an unbiased

estimator for the true mean since v > 1 and, hence, the mean is finite. The second equality

holds because the random variables are independent and, therefore, all covariances are equal

to zero. Result (38) shows that if the scale parameter is 2 instead of 1, as in this simulation, the

MSE of the sample mean would be 22=4 times as great for a given shape parameter and a

given sample size. Result (39) shows that the MAD of the sample mean increases linearly with

the scaling factor a:

a∈ℝ , a>0; Y i := a⋅X i then : MAD(
1
n
∑
i=1

n

Y i) := E(|1n∑i=1

n

Y i−E (Y 1)|)
= E(|1n∑i=1

n

a⋅X i−E (a⋅X1)|) =|a|⋅E(|1n∑i=1

n

X i−E (X1)|)≝ a⋅MAD(
1
n
∑
i=1

n

X i)

(39)
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No MSE estimator (36) was used in this simulation study due to the heavy tails of the simulated

Student`s t distributions. (36) would be particularly bad if the variance is the quantity of interest

since the degrees of freedom parameter is smaller than 4 in all 50 scenarios and, hence, the 4th

moment is always undefined. This poses a huge problem because the expected value of the

square of a variance estimator (e.g. the sample variance) depends on the 4th moment of the

underlying random variable. Due to the scale dependence of the MAD, the relative MAD or

mean absolute percentage error (MAPE) was estimated as well, at least for the variance, the

99% quantile and the 99.9% quantile:

^MAPE(θ̂)=100⋅Ê(|θ̂−θ
θ |)=100

N
∑
i=1

N

|θ̂i−θ

θ |= 100
|θ|

⋅ ^MAD(θ̂) if θ≠0. (40)

The MAPE cannot be estimated if the true parameter happens to be 0 such as in the case of the

mean and the median in this simulation study. The estimated MAPE reveals how big the relative

distance between an estimator and the true quantity is on average for a given scenario.

At this point, it seems important to note that (34) should not be confused with MAPE estimations

often used as an alternative metric to  least squares in forecasting models. These estimations

differ from (40) insofar that each estimator (e.g. estimated y i given xi in a regression model

y ~= f(x)) has a different true quantity (e.g. the actual value y i). However (40) is a questionable

metric in such a case because the smaller the actual value, the bigger the size of the absolute

relative distance between the estimated and the true value. Hence, this metric puts weights on

the estimates that  are inversely  proportional  to the size of  the true quantity. The interested

reader is referred to Foss et. al. (2003) and Tofallis (2015) for an in-depth analysis of the MAPE

metric as well as alternative metrics. In each of the 1000 iterations of a certain scenario, the true

quantity is the same and, therefore, no pitfalls other than the fact that it cannot be estimated if

the true quantity happens to be zero exist.

3.2. Results

Whereas all nonparametric (NP) estimates are valid for each and every scenario and iteration,

the  ML estimates  failed  some of  the  time  for  n=100.  In  59  out  of  these 10000  (10x1000)

samples, the MLE of the 3-dimensional parameter vector (location, scale, and v) failed because

no maximum could be found. Moreover, the ML estimate of v was less than or equal to 2 in 319

of the remaining 9941 samples. Hence the variance could not be estimated via (34) in these

319 samples. For all scenarios with n  > 100, the ML estimation never failed and all estimates of v

were higher than 2.

Figure 28 shows the estimated (sample) MAD´s (35) of all  estimators and all  scenarios with

n > 100.  With  only  a  single  exception,  namely  the  variance  estimates  for  n=500,  the  ML

estimates had a lower sample MAD than their NP counterparts (The green points in Figure 28
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lie below the blue points with the same shape). In accordance with the Strong Law of Large

Numbers  (9)  and  the  (asymptotic)  unbiasedness  of  the  used  estimators,  the  larger  n,  the

smaller the sample MAD. The increase in precision between 5000 and 10000 i.i.d. realizations

is quite small, the differences between 500 and 1000 as well as 1000 and 5000, on the other

hand, seem to be rather substantial. The influence of v on the sample MAD´s depends strongly

on the estimated quantity. No influence can be spotted for the ML estimates of the median and

the expected value and for the NP median estimates. The sample MAD´s increase roughly

linear with v for both the NP and the ML estimates of the 99% and the 99.9% quantile. The

larger n, the lesser the slopes of these “lines”, suggesting a constant percentage decrease of

the (true) MAD´s with increasing v. In case of the variance, the convex shapes of the blue and

green lines suggest that the percentage decrease of the MAD is not constant with increasing v.

The sample MAD´s for v=2.9 are between two and three times the size of the respective sample

MAD´s for v=3.8.

Figure 28: Sample mean absolute deviations (29) of the ML (blue) and the NP (green) estimates of five

important  quantities (median,  mean, variance,  99% quantile and 99.9% quantile) for different  sample

sizes and degrees of freedom.
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The used metric (35) shines a light on the question how far an estimator is on average away

from the quantity it is estimating and the results in Figure 28 clearly favor the use of MLE over

NP estimations for n >= 500. However, the MAD is certainly not the only interesting property of

an estimator13 and hence, further analysis was conducted. Figures 29-32 show the histograms

of the respective 1000 estimates for different scenarios and quantities. These histograms shed

light  on the (true)  distribution  of  the  respective  estimators.  Figure  29 reveals  a clear  right-

skewness of the NP variance estimator (The histograms have more area left of the red dotted

line – the true variance). The larger n for a given v, the lesser the skewness of the sample

variance´s histogram. For n=500 and n=1000 there are cases where the sample variance is

more than ten times as big as the true variance. This shows that a NP variance estimate can be

horribly bad at times when the sample size of i.i.d. realizations happens to be small. The higher

v, the lesser the skewness of the histograms in Figure 29.

Figure 30 shows the histograms of the ML estimates of the variance for the same scenarios as

in Figure 29. The histograms are vastly less skewed as their NP counterparts (Figure 29) and

are  almost  symmetric  for  n=5000  and  n=10000.  Furthermore,  the  worst  estimate  (i.e.  the

estimate farthest away from the true variance) is smaller than its NP counterpart for all twelve

scenarios. In case of n=1000 and v=3.5, no estimate departs more than 15% from the true

variance and the histogram looks very much like coming from i.i.d. realizations of some normal

distribution with a density as in (29).

Figure 31 shows the NP and Figure 32 the ML estimates of the 99.9% quantile for the same

scenarios as for the variance (Figures 29 & 30). Once again, the NP estimates are smaller than

the true quantity (dotted red line) most of the time and occasionally far too big, particularly for

n=500 and n=1000. Just like for the variance, the larger  n, the lesser the skewness and the

lesser the difference between the worst estimate and the true value. Once again, the histograms

of the ML estimates (Figure 32) are vastly less skewed than their NP counterparts and the worst

estimate is better than its NP counterpart for all twelve scenarios. Unlike ML variance estimates

(Figure 30), the histograms even look quite symmetric for n=1000. Whereas the histograms of

the ML estimates (Figure 32) all resemble the shape of a normal distribution for n=5000 and

n=10000, not one histogram of NP estimates resembles a normal distribution (Figure 31). For a

given n, the shapes of the histograms are lesser skewed the bigger v for both the NP and the

ML estimates. However, the differences between v=3.1, v=3.3, and v=3.5 are quite small.

13 Two estimators A & B could have the same MAD, lets say 1, but behave very differently: Whereas A

estimates the true quantity (=50) perfectly 9 out of 10 times, but fails horrible every 10 th time where A

is equal to 40, estimator B is either 49 or 51 with a probability of ½. Depending on the situation one of

these two estimators is to be preferred.
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Figure  29: Histograms  of  the  respective  1000  sample  variances  and  the  true

variance (red line) for different sample sizes and different degrees of freedom.

Figure 30: Histograms of the respective 1000 ML variance estimates and the true

variance (red line) for different sample sizes and different degrees of freedom.
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Figure  31: Histograms  of  the  respective  1000  nonparametric  99.9%  quantile

estimates and the true 99.9% quantile (red line) for different n and v.

Figure 32: Histograms of the respective 1000 ML 99.9% quantile estimates and the

true 99.9% quantile (red line) for different n and v.
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Table  4  shows the estimated MAPE´s  (40)  of  the  NP as  well  as  the ML estimates  of  the

variance,  the 99% quantile and the 99.9% quantile.  No MAPE´s could be estimated for the

ML estimates if the sample size was equal to 100 since the maximization of the likelihood failed

at least once in each of these ten scenarios. Table 4 is useful  to assess the precision of a

certain estimator given some n and v. For instance, for 1000 i.i.d realizations of a Student`s t

distribution with v=3.5 the sample variance is on average 11.2% of the true variance´s value

away from the true variance, regardless of the location and the scale parameter. The bigger n,

the smaller  the average estimation error, for  both the NP and the ML estimates.  However,

whereas the improvement for the three estimated quantities is very much alike in case of the ML

estimates,  the NP quantile  estimates benefit  more from an increased sample size than the

sample variance. While the ML quantile estimates are clearly more precise than the respective

NP estimates for n=500, n=1000, n=5000 and n=10000, the ML variance estimates really only

excel the respective sample variances for n=5000 and n=10000. For both the ML and the NP

estimates it applies that the smaller v, the bigger the estimated MAPE. The degrees of freedom

parameter has a considerable bigger impact on the accuracy of the variance estimates than on

the accuracy of the quantile estimates.
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Degrees of freedom 2.9 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8

Sample
size

Estimated
quantity

Esti-
mator

n=100

Variance
NP 41.6 37.1 32.2 31.9 27.0 27.6 29.3 27.3 25.8 24.4

ML - - - - - - - - - -

99%
quantile

NP 26.8 25.0 26.2 24.5 23.2 24.1 24.1 23.1 22.2 23.5

ML - - - - - - - - - -

99.9%
quantile

NP 49.3 48.7 47.5 47.0 46.5 45.7 45.4 43.7 43.2 42.6

ML - - - - - - - - - -

n=500

Variance
NP 24.4 22.8 19.3 18.2 17.0 15.9 15.3 15.4 15.2 13.1

ML 43.7 23.4 22.1 18.2 16.8 16.8 15.5 14.3 13.9 13.7

99%
quantile

NP 12.9 12.7 12.4 11.8 11.8 12.2 11.9 11.4 11.5 10.9

ML 7.6 7.6 7.6 7.1 7.1 7.3 7.0 6.7 6.8 6.9

99.9%
quantile

NP 32.3 31.5 30.5 29.2 27.3 27.5 25.6 24.8 25.9 24.5

ML 15.4 15.0 15.2 14.1 14.3 14.6 14.2 13.7 13.4 13.7

n=1000

Variance
NP 18.7 17.2 16.8 14.3 14.1 14.4 11.2 10.4 10.9 9.1

ML 16.8 15.1 13.7 12.2 12.0 10.8 9.8 9.6 9.6 8.3

99%
quantile

NP 9.6 9.1 9.0 8.6 8.8 8.6 8.3 8.0 7.9 7.9

ML 5.5 5.4 5.4 5.0 5.1 4.9 4.7 4.7 4.8 4.4

99.9%
quantile

NP 24.0 24.2 23.6 22.4 22.8 21.5 20.8 20.3 19.1 19.3

ML 11.0 10.8 10.8 10.2 10.3 9.8 9.5 9.4 9.6 8.7

n=5000

Variance
NP 12.4 10.2 8.8 9.4 6.7 7.5 6.1 5.5 5.3 4.8

ML 7.2 6.2 5.9 5.4 4.6 4.6 4.1 4.3 4.1 3.8

99%
quantile

NP 4.6 4.1 4.2 3.9 3.8 3.7 3.7 3.7 3.7 3.5

ML 2.5 2.4 2.4 2.3 2.1 2.2 2.0 2.2 2.1 2.0

99.9%
quantile

NP 12.3 11.6 11.8 11.5 10.7 10.6 10.4 9.9 9.8 9.6

ML 5.1 4.8 4.8 4.7 4.2 4.3 4.1 4.3 4.2 4.0

n=10000

Variance
NP 9.8 9.6 6.9 6.1 6.1 4.9 4.4 4.3 3.9 3.5

ML 4.8 4.5 3.9 3.7 3.5 3.3 2.9 2.9 2.7 2.6

99%
quantile

NP 3.2 2.9 2.8 2.8 2.8 2.7 2.7 2.7 2.5 2.5

ML 1.7 1.7 1.6 1.6 1.6 1.6 1.4 1.5 1.4 1.4

99.9%
quantile

NP 9.1 8.5 8.1 7.9 7.9 7.5 7.5 7.2 6.9 6.4

ML 3.4 3.4 3.2 3.2 3.2 3.1 2.9 3.0 2.8 2.8

Table 4: The estimated mean absolute percentage error of the NP and the ML estimates of the variance,

the 99% quantile and the 99.9% quantile, in each and every scenario.
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4. Concluding remarks

The daily percentage changes and, hence, the daily returns are leptokurtic. Both, the S&P 500

and the Nikkei 225 have fat tails and Pareto tails cannot be ruled out for either of them. The

daily returns are not symmetric and in the case of the S&P 500, the left tail is thicker than the

right. Stock returns are seldom symmetric, however, the difference in tail thickness varies from

stock to stock and from time period to time period. Whereas Sheikh and Qiao (2010) present

clear negative skewness (i.e. fatter left tails) for various monthly stock returns, Jondeau and

Rockinger (2003) as well as Koronokiewicz and Jamroz (2014) find no significant differences in

tail thickness of daily returns. The approach of this work was to fit the same distribution to the

left  and the right  tail  and,  therefore,  the  parametric  fits  of  the two tails  only  differ  by  their

estimated parameters. A more flexible approach would be to use more complicated distributions

for the whole dataset which allow for different shapes in the left and the right tail. The Double

Student`s t  and the traditional  three parameter Student`s t  fit  clearly  outperformed all  other

distributions  analyzed in  this work (Chapter  2.4)  and,  hence,  future research may focus on

extensions of the Student`s t distribution. Aas and Haff (2006) give an excellent overview of the

various  skew  extensions  of  the  Student`s  t  distribution  and  find  that  the  five  parameter

Generalized Hyperbolic skew Student`s t distribution fits the log returns of Norwegian stocks

well.  Another possibility, not analyzed in this work, is an artificial “Triple Distribution” fit.  One

could, for instance, fit the body with a symmetric distribution such as the Laplace and the left as

well as the right tail with some distribution from the class of regularly varying distributions. Such

a fit would probably be quite good since the analysis in Chapter 2.3 showed that Paretian tails

are plausible and Chapter 2.4.1 showed that the Laplace distribution fits the body of the two

datasets quite well. One big downside of such a fit is the requirement to estimate at least ten

parameters - namely, location (1x), scales (3x), shapes (2x), breaking points (2x) and proportion

of data in each part (2x). Reschenhofer (2013) proposed a seven parameter extension of the

wizard´s hat distribution and future research could address how many parameters are optimal

insofar that peculiarities of stock returns are adequately modeled and overfitting is avoided at

the same time. All artificially constructed distributions (Chapter 2.4.2) have a discontinuity point

at  the  respective  median.  This  is  not  necessarily  a  weakness  of  this  approach.

Reschenhofer (2013) provides evidence that a discontinuity point at zero exists for the S&P 500

log returns. Future research may analyze discontinuity points of stock returns and whether it is

advantageous to split the dataset at zero as opposed to at the median as in this work.

The results of the simulation (Chapter 3.2) showed that the maximum likelihood estimations of

five  important  quantities  outperformed  the  respective  nonparametric  estimations,  for  a  big

enough sample size. This is certainly no surprise as every statistician knows that parametric

estimates outperform nonparametric if the true model is known. However, given real (financial)

data,  it  is  impossible  to  know  the  (true)  model  that  generated  the  dataset.  Although  the
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Student`s t distribution seems to be a good approximation (Chapter 2.4), the daily percentage

changes of the S&P 500 as well as the Nikkei 225 index are certainly not i.i.d. realizations of

some continuous distribution  (Chapter  2.2).  If  the assumed parametric  model  is  wrong,  the

parametric estimates are biased. In case of severe differences between the assumed and the

true model, parametric estimates can be horribly wrong. Nonparametric estimates, on the other

hand,  are  much more robust  and  future  research may focus on  the question  how big  the

difference between the assumed and the true model can be for the parametric approach to be

superior to the nonparametric. An often used metric in finance and insurance is the so-called p-

Value at Risk (p-V@R). The p-V@R is the value which is exceeded with a probability of p. If the

daily percentage change of some stock happens to be Student`s t distributed with location=0,

scale=1 and v=3.5 then the 0.99-V@R is the 99% quantile of this distribution and Table 4 tells

us how precise we can estimate this value for a given sample size. Alongside the p-V@R,

volatility  estimates,  the  variance  in  particular,  are  the  most  important  quantities  in  finance,

insurance, and risk analysis. In case of financial data or any other data coming from areas with

equally  heavy  tails  (e.g. natural  disasters  like  earthquakes,  floods,  and  operational  losses)

Table 4 suggests that  additional  data benefits  nonparametric  p-V@R estimations more than

nonparametric volatility estimations. Table 4 also suggests that the thicker the tail of a certain

dataset  supposedly  is,  the  better  the  accuracy  of  p-V@R estimates  compared  to  variance

estimates. Nonparametric p-V@R and variance estimates tend to underestimate the respective

true  values,  particularly  in  small  samples.  However,  every  once  in  a  while  they  hugely

overestimate the true value.
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Abstract / Zusammenfassung

Abstract:

The daily returns of the S&P 500 index from 20.11.1950 to 18.11.2016 and the Nikkei 225 index

from 5.01.1984 to 7.12.2016 are analyzed in great depth with a focus on graphical analyses.

The analyses revealed that both datasets have fat-tails and that estimations of skewness and

kurtosis are problematic because the estimates vary widely in different time periods and are

significantly influenced by just a few days with strong index fluctuations. Parametric analysis of

the tails clearly suggests that the tails of stock returns are so thick that no 4 th moment exists.

Various symmetric continuous probability distributions were fitted to the datasets and, building

on  the  assessment  that  the  properties  of  negative  and  positive  returns  differ,  artificial

distributions were constructed out of different fits for the left and the right tail for both indices.

The three parameter  Student`s  t  distribution fits  both datasets reasonable  well  and,  hence,

samples  of  different  sizes  of  independent  and  identically  Student`s  t  distributed  random

variables  with  shape  parameters  in  the  range  of  [2.9,  3.8]  were  simulated.  Five  important

quantities,  namely  mean,  median,  variance,  99%  quantile  and  99.9%  quantile  were  then

estimated parametrically via maximum likelihood as well  as nonparametrically and the mean

absolute  deviation  was  computed  for  each  estimator  in  each  scenario.  The  parametric

estimations did not turn out to be satisfactory for a sample size of 100 because the estimations

of  the  shape  parameter  occasionally  deviated  strongly  from  the  true  parameter  and  the

maximization of the likelihood even failed in some of the iterations. For sample sizes larger than

500,  the parametric  estimates are clearly  superior  to  their  nonparametric  counterparts.  The

nonparametric  quantile  and  variance  estimates  are  much  more  right-skewed  than  their

parametric counterparts, particularly for smaller sample sizes. The sample quantiles (99% and

99.9%) benefit more from an increase in sample size and are harmed less from a decrease of

the shape parameter (i.e. a thicker tail) than the sample variance.

Keywords: Fat-tails,  Mean  Absolute  Deviation,  Simulation  Study,  Stock  Returns,

Student`s t Distribution
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Zusammenfassung:

Die täglichen Renditen des Standard & Poor`s 500 Aktienindexes vom 20.11.1950 bis  zum

18.11.2016 und die des Nikkei 225 Aktienindexes vom 5.01.1984 bis zum 7.12.2016 wurden auf

Herz  und  Nieren  untersucht,  und  zwar  mit  einem  starken  Fokus  auf  graphischen

Analysemethoden.  Beide  Datensätze  haben  sogenannte  „fat-tails“  und  Schätzungen  des

standardisierten dritten (Schiefe) und vierten (Kurtosis) Moments sind problematisch da sich die

Schätzwerte  je  nach  Zeitperiode  stark  unterscheiden  und  von  einigen  wenigen  Tagen  mit

starken  Kursschwankungen  maßgeblich  beeinflusst  werden. Die  durchgeführten

parametrischen Analysen legen zudem den Schluss nahe, dass kein viertes Moment existiert.

Verschiedene symmetrische und stetige Wahrscheinlichkeitsverteilungen wurden an die beiden

Datensätze angepasst um weitere Aufschlüsse über das Verhalten der Renditen zu gewinnen.

Aufgrund der Erkenntnis, dass sich positive und negative Renditen unterscheiden, wurden des

Weiteren artifizielle Verteilungen durch ein separates Anpassen von Verteilungen an die oberen

und unteren 50% der Daten kreiert. Die (drei Parameter) studentsche t-Verteilung beschreibt die

Renditen  der  beiden  Aktienindexe  recht  gut  und  aus  diesem  Grund  wurden  mithilfe  der

Programmiersprache  R unterschiedlich  große  Stichproben  aus  unabhängigen  und  identisch

t-verteilten  Zufallsvariablen,  mit  Freiheitsgraden  aus  dem  Intervall  [2.9,  3.8],  erzeugt.  Fünf

essentielle  statistische Größen,  nämlich  Erwartungswert,  Median,  Varianz,  99% Quantil  und

99.9%  Quantil  wurden  anschließend  mittels  parametrischer  Maximum-Likelihood-Methode

sowie nicht-parametrisch geschätzt. In weiterer Folge wurde die Genauigkeit der Schätzungen

mithilfe der mittleren absoluten Abweichung ermittelt. Die parametrischen Schätzungen waren

für  eine  Stichprobengröße  von  100  nicht  zufriedenstellend,  da  die  Schätzungen  der

Freiheitsgrade teilweise sehr schlecht waren und in manchen Iterationen sogar die Maximierung

der  Likelihood  scheiterte.  Ab  einer  Stichprobengröße  von  1000  zeigte  sich,  dass  die

parametrischen  Schätzungen  genauer  als  die  nicht-parametrischen  sind.  Die  nicht-

parametrischen  Quantils-  und  Varianzschätzer,  also  die  Stichprobenquantile  sowie  die

Stichprobenvarianz,  sind  rechts-schief  und  weniger  symmetrisch  als  die  entsprechenden

parametrischen Schätzer,  insbesondere  bei  einer  Stichprobengröße  von 100 oder  500.  Die

Stichprobenquantile  (99%  und  99.9%)  profitieren  stärker  von  einer  Erhöhung  der

Stichprobengröße  und  weniger  stark  von  einer  Verringerung  der  Freiheitsgrade  als  die

Stichprobenvarianz.
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