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Abstracts

English abstract

This thesis is based on a simple question: how small can one make a gra-
vitational source mass and still detect its gravitational coupling to a nearby
test mass? We describe an experimental scheme based on micromechanical
sensing to observe gravity betweenmilligram-scale masses, thereby improving
the current smallest source-mass values by three orders of magnitude and
possibly even more.

Our discussion of the proposed experiment includes a theoretical treat-
ment of the main physical effects and a range of auxiliary components. This
spans the notion of spectral densities and the usage of harmonic oscillators as
force transducers, with a discussion of the forces that come into play when
attempting to measure gravity on small length scales. Further, we investigate a
polarization based low-noise optical readout and develop a general framework
to calculate transfer functions of passive vibration isolation systems.

The practical implementation of the proposed experiment is discussed
from an engineering point of view, starting with a comparison of relevant
effects for realistic parameters. We then split the technical assessment into four
major engineering challenges: the fabrication of a high-quality test mass, the
construction of a source-mass drive engine, the implementation of the optical
readout scheme and the development of a suitable vibration isolation system.

Finally, we investigate the implications of experimentally accessing the
gravitational source-mass character of small objects both for new precision
measurements of Newton’s constant and for a new generation of experiments
at the interface between quantum physics and gravity.
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Abstracts

Deutsche Kurzfassung

Wie groß muss eine Quellmasse für ein Gravitationspotential sein, welches
nachweislich an eine Testmasse koppelt? Diese simple Frage dient als Grund-
lage für die vorliegende Arbeit. Wir beschreiben ein experimentelles Schema
basierend auf einem mikromechanischen Sensor, mit dem die Gravitation
zwischen millimetergroßen Quellmassen gemessen werden kann und der
aktuelle Größenrekord um mehrere Ordnungen verbessert wird.

Unsere Bearbeitung des vorgeschlagenen Experimentes beinhaltet eine the-
oretische Behandlung der wesentlichen physikalischen Effekte sowie der Hin-
tergründe einer Reihe notwendiger Komponenten. Dies umfasst den Begriff
der spektralen Dichte und die Verwendung von harmonischen Oszillatoren
als Kraft-Transducer, gefolgt von einer Diskussion der relevanten Kräfte bei
einer Messung von Gravitation auf kleinen Längenskalen. Ferner untersuchen
wir ein polarisations-basiertes rauscharmes Setup für die optische Positions-
messung und entwickeln einen allgemeinen Formalismus für die Berechnung
von Transferfunktionen von passiven Vibrationsisolierungs-Systemen.

Im angewandten Teil der Arbeit diskutieren wir die Herausforderungen
einer praktischen Implementierung unter technischen Aspekten, anfangend
mit einemVergleich der Effektgrößen für realistische Parameter. Anschließend
unterteilen wir die technische Behandlung in vier wesentliche Teilprojekte:
die Fabrikation einer hochqualitativen Testmasse, die Konstruktion eines Quel-
lmassenmotors, die Implementierung des optischen Ausleseschemas und die
Entwicklung eines geeigneten Systems für die Vibrationsisolierung.

Abschließend beschäftigen wir uns mit den Implikationen des experi-
mentellen Zugangs zum gravitativen Quellmassen-Character kleiner Objekte
sowohl für neue Präzisionsmessungen von Newtons Gravitationskonstante,
als auch für eine neue Generation von Experimenten an der Grenze zwischen
Quantenphysik und Gravitation.
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Part I

Introduction

The first part of this thesis serves as an introduction in multiple ways: In
chapter 1 we lay out the concept and the basic structure of the thesis before
motivating the proposed experiment in chapter 2. In the last chapter of this
introduction we give an overview of related fields in physics and their current
technological state (chapter 3).
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Chapter 1

About this thesis

In this thesis, we lay out an experimental design based on resonantly driving a
micromechanical device by a gravitational force created by a small, oscillating
source mass. As wewill see, with current technology this scheme should allow
the detection of Newtonian gravity of a millimeter-scale system and enable us
to set a new size- and mass-record for the smallest object to have a measured
gravitational field.

This thesis is divided into five partswith several chapters per part. After the
current introductory part I, we cover the relevant theory for the components of
the project in part II split into two major focuses. First, we derive the relevant
signals in the measurement scheme, which are composed of the effects of both
gravity and non-gravitational forces. Second, we explain the fundamentals
regarding the major experimental components such as vibration isolation and
optical readout. This will lead into the derivation of the technical requirements
for the implementation of the experiment. In part III we propose a concrete
experimental design based on the results from the previous part, including
the relevant auxiliary components, and detail the technical challenges. In the
last part of the main text (part IV) we give an outlook of both short- and long-
term goals for the proposed experiment and conclude with a summary and
some remarks on the current state on the project. Part V includes a technical
appendix and the relevant indexes.

At several instances throughout this thesis, it will become evident that
the proposed experiment poses a significant challenge in precision measu-
rement and engineering. Therefore, a large part of the presented work is
concerned with foreseeable problems and potential solutions. In essence, this
thesis should be seen as a comprehensive blueprint that spans over the entire
development, from the abstract theoretical basis to the design of individual
components.

Note that some parts of the presented thesis are directly related to a re-
cently published, comparably compact summary of the proposed experiment

3



Chapter 1 About this thesis

(Schmöle et al. 2016). As the author of this thesis authored said paper, we do
not cite it at every instance of reference as some overlap of content is to be
expected.
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Chapter 2

Motivation

The measurement of gravitational forces has been a benchmark for high-
precision metrology for hundreds of years.1 While the gravitational forces
between celestial bodies are sufficiently large to dominate their dynamics, thus
allowing for measurements with striking precision, laboratory-scale gravita-
tional effects are comparably minuscule. This poses a significant challenge
for detection of gravitational forces in laboratory experiments. Nevertheless,
ground-based laboratory experiments have been able to achieve high-precision
tests of gravity involving laboratory-scale source masses, i.e. objects generating
a gravitational field. These are are typically on the order of several kilograms
and heavier.2 To the author’s knowledge, the smallest source masses that have
ever been used in a direct measurement of gravity were two 20 mm-diameter
DyFe-cylinders in a torsional pendulum configuration, which added up to a
total mass of 90 g.3

The search for gravitational sources smaller than the aforementioned mass
requires high-sensitivity force sensors, which naturally leads into the vast
field of micromechanical devices. Thanks to the development of modern fa-
brication processes, such devices have been subject to increasing scientific
interest over the last decade, resulting in sensors with unprecedented sensiti-
vity. Examples include mechanical measurements of single electron spins4, of
superconducting persistent currents5 and of mechanical displacement noise
caused by the backaction of quantum-mechanical photon fluctuations (shot
noise) in a laser beam6. The basic principle behind these measurements is
the use of driven harmonic oscillators as transducers for small forces. The
main limitation on the sensing performance of such devices is due to ther-
mally induced amplitude fluctuations (thermal noise), which over a certain
measurement time T accumulate to a Brownian force noise Nth of equivalent
amplitude FNth � (4πmγ)1/2(Tβ)−1/2 on resonance. Here, β � (kBΘ)−1 denotes
the thermodynamic beta (coldness) of the thermal bath that the oscillator is
coupled to, m denotes the effective mass of the device and γ � ω0/Q denotes
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the mechanical bandwidth that is given as the ratio of mechanical eigenfre-
quency ω0 and mechanical quality Q.7 This sets a lower limit for the detection
of external forces, even if they can be arbitrarily modulated (e.g. completely
switched off in certain time intervals). As a consequence, high-Q nanomecha-
nical oscillators at low temperatures have already reported force sensitivities
on the zeptonewton scale.8 Our goal is to utilize these sensitivities as a means
to the measurement of small gravitational forces.

As an introductory example, we consider a spherical lead mass of 1 mm-
radius (m ≈ 40 mg), mounted on a cantilever to yield an effective frequency
of ω0/(2π) � 100 Hz with a quality factor of Q � 104 at room temperature
(θ � 297 K). After 60 minutes of integration time, this results in a thermal noise
limit of FNth ≈ 6 · 10−15 N, which corresponds to the gravitational force exerted
by a mass of the same size separated by 3 mm in center-of-mass distance. That
being said, such a simple estimate neglects the fact that for practical reasons the
external gravitational force would have to be modulated in time, which in turn
decreases the response of the sensor because of the finite modulation depth.
As an order of magnitude estimate, however, it suggests that in principle it
should be possible to exploit the sensitivity of state-of-the-art micromechanical
devices to measure gravity betweenmillimeter-sized objects of milligram-scale
mass and possibly even below that.

As a concluding remark to this brief chapter, we emphasize that this propo-
sal is different from experiments that probe possible deviations from Newto-
nian gravity at short distances, which also involve small source masses.9 Their
sensitivities and experimental configurations are targeted to put bounds on a
modified force term (cf. section 3.2.3 on p. 12), while our proposal is seeking
to detect the signal generated by Newtonian gravity alone. Compared to the
current experimental bounds on these deviations in the regime corresponding
to the dimensions of maximum sensitivity the proposed experiment, the effect
of Newtonian gravity is much weaker.
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Chapter 3

Related topics

The proposed experiment is located at the interface ofmicromechanical sensing
and laboratory-scale gravitation. These topics are briefly covered in this chapter.
In section 3.1 we investigate micromechanical systems in the context of force-
sensing and the field of cavity optomechanics. The vast field of experimental
gravity is covered in section 3.2, divided into the topics of gravitational wave
detection, measurements of Newton’s constant G as well as probings of the
inverse-square law. Lastly, in section 3.3 we mention some of the models
beyond present-day physics that are relevant in the context of experiments at
the interface of gravity and quantum systems.

Chapter contents

3.1 Micromechanics . . . . . . . . . . . . . . . . . . . 7
3.2 Experimental gravity . . . . . . . . . . . . . . . . . 9

3.2.1 Gravitational wave detectors (p. 9)
3.2.2 Measurements of the gravitational constant (p. 10)
3.2.3 Deviations from standard gravitation (p. 12)

3.3 Non-standard physics . . . . . . . . . . . . . . . . . 13

3.1 Micromechanics

In the last years, significant experimental progress has been made in the field
of micromechanics, with a focus on the interaction between electromagnetic
radiation and micromechanical motion.a These systems exhibit a potential for
high sensitivity, making them prime candidates for a span of applications.

On the one hand, being susceptible to weak fields allows for demonstrati-
ons of fundamental effects of quantum physics. Strong coupling, an important

a) For extensive reviews of the field of (quantum) cavity optomechanics, see e.g. the articles
by Aspelmeyer, Kippenberg, and Marquardt (2014), Aspelmeyer, Meystre, and Schwab (2012),
and Kippenberg and Vahala (2008).
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requirement for the manipulation of micromechanical systems, has been obser-
ved in the interaction with superconducting qubits1, electro2- and optomecha-
nical3 systems. Further noteworthy demonstrations include quantum-limited
state preparation of micromechanical cantilevers in pulsed schemes4, mechani-
cal mode thermometry via sideband-asymmetry5 and non-classical correlati-
ons between single photons and single mechanical phonons6. High-frequency
oscillators have been prepared in the quantum ground state of motion in cryo-
genic environmentswith sideband-cooling bymeans of electromechanical7 and
optomechanical8 interaction and without additional manipulation9. Further,
we find entangled states of macroscopic oscillators10 between vibrational states
of spatially separate diamonds11 and between micromechanical oscillators
and microwave fields12. More recently, squeezed quantum states have been
achieved in several micromechanical systems.13

On the other hand, due to their high sensitivity, micromechanical systems
can serve as sensors/transducers for extremely small forces or displacements.
Examples include large-bandwidth accelerometers with ng Hz−1/2 sensitivity
based on cavity-enhanced position readout14, and zeptonewton force detection
with cryogenic cantilevers15 and carbon nanotubes16. Furthermore, it has been
shown that the combination of a cavity-optomechanical structurewith aMEMS
sensing plattform allows for electrically tunable optomechanical coupling and
mechanical transfer functions.17

While all of the systems listed above are mechanically supported by their
respective environments, there also has been increasing interest in levitated
schemes. Potential realizations of levitated micromechanics include optically
trapped dielectric silica spheres18 and diamagnetically levitated supercon-
ductors19. While so far cooling to the ground state of motion has not been
demonstrated for such systems, first instances of cavity-cooling have been
achieved20 and cooled silica nanospheres in an optical lattice were shown to
exhibit zeptonewton force sensitivity at room temperature.21

In addition to these rather new technologies, we also want to point to the
extremes on the mass scale. On the side of very small and light oscillators,
atom interferometry provides a method for local acceleration measurements
with high precision. Acceleration noise below 3 · 10−9 g Hz−1/2 has been obtai-
ned in atom-fountain experiments22, and yoctonewton force sensitivity was
demonstrated in an resonantly driven ultracold gas23, which is just slightly
above the standard quantum limit (section 6.2 on p. 56). On the very large side,
gravitational wave detectors (section 3.2.1) involve huge mechanical oscillators
(kilograms and more) that undergo continuous position-measurement with
noise in the sub-attometer regime.
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3.2 Experimental gravity

Measurements of gravity have a rich history. They started with with the pio-
neering experiments by Maskelyne (1775), who used a pendulum to measure
the gravitational attraction of a mountain and test Newton’s conjecture about
the value for the density of the earth. Two decades later, the torsion balance
experiment by Cavendish (1798) allowed a direct measurement of Newton’s
gravitational constant G and consequently the total mass M⊕ of the earth
(as the GM⊕ product is known from astronomical observations). Now, more
than two hundred years later, there is a vast range of experimental tests of
gravity.24 In addition to astronomical observations25, there is a range of sig-
nificant earth-based experiments, each sparking a number of successors that
improved on sensitivity. This includes thewell-known tests of the gravitational
redshift with resonance spectroscopy by Pound and Rebka (1959, 1960) and
the observation of gravitationally induced quantum interference in a neutron
interferometer by Colella, Overhauser, and Werner (1975). Further, the ato-
mic fountain experiments pioneered by Kasevich and Chu (1991), in which a
gravity-gradient-induced phase shift is probed in a light-atom-interferometer
with high accuracy, laid a significant milestone for precision measurements.26
Other noteworthy measurements include the verification of the time dilation
induced by the Earth’s mass between atomic clocks that are just 0.5 m apart27
and quantum states of ultra-cold neutrons that are bound in the gravitational
field of the Earth28. Note that one feature these experiments have in common
is that they use genuine quantum effects for precision measurement on a fixed
gravitational background and therefore their full description requires the fra-
meworks of both gravity and quantum mechanics, but not as a combined,
coherent theory (cf. section 3.3).

In the following we treat three special sub-fields (gravitational wave detec-
tors, measurements of the gravitational constant and tests of the equivalence
principle) as they are of direct relevance for the proposed experiment that is
the main focus of this thesis.

3.2.1 Gravitational wave detectors

The existence of gravitational waves is a direct consequence of Einstein’s theory
of general relativity.29 For many years gravitational waves were considered in-
accessible to experimental observation due to their small amplitude. However,
the discovery of super-massive astronomical objects, like neutron stars and
black holes, eventually led to the notion that gravitational waves caused by
these objects could indeed be discovered in earth-based observatories.30

The first indirect observation of gravitational waves was performed by
Hulse and Taylor (1975), who measured a decrease in rotational kinetic energy

9
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of a binary pulsar that agreed with the predicted rate of energy dissipation
through gravitational waves.31 However, as this observation of gravitational
waves was indirect, a more direct confirmation remained an outstanding
challenge. After several decades of development and generations of detectors32,
the first direct detection of gravitational waves was achieved in early 2016 by
the advanced LIGO (aLIGO) collaboration.33 The data is consistent with the
expected signal fromamerging binary black hole event that occurred 1.3 billion
years ago and caused a (space-time) distortion of aLIGO’s interferometer arms
on the order of 10−21. The possibility to directly detect gravitational waves
opens up a new field of observational astrophysics in which an entire realm
of astronomical objects become accessible to our observation. As of 2017,
aLIGO is ramping up towards its full performance and even more advanced
gravitationalwave observatories are nearing their commencement of operation:
the advancedVirgodetector in Italy34, the cryogenicKAGRAdetector in Japan35

and potentially another LIGO detector in India36 (IndIGO). The combined
signals of a network of multiple detectors not only serve as a consistency check
and a measure to exclude false signals, but also allow for triangulation of the
origin of the gravitational wave in space, making it a unique tool to gather
knowledge about the universe37 and thereby providing complementary data
to the existing observations in the electromagnetic domain.

Gravitational wave detectors also serve as benchmark systems for state-
of-the-art technology in optical sensing and vibration isolation. Advanced
LIGO38 reaches strain-noise levels of beyond 10−23 Hz−1/2, corresponding to
less than 4 · 10−20 m Hz−1/2 given its arm length of 4 km. This is achieved via a
three-level passive and active isolation system (with each level havingmultiple
sub-stages)39 and opto-interferometric detection by means of an elaborate laser
source40 yielding 165 W of continuous power. To a large extent, the remaining
noise is given by the intrinsic photon quantum noise and the thermal noise of
the mirror suspensions and coatings.

Future generations of gravitational wave detectors, like the ground-based
Einstein Telescope41 and the space-based eLISA observatory42 are approaching
final stages of design development. These instruments could again yield vastly
improved sensitivities as well as access to additional frequency bands, thereby
allowing detections on a daily basis with precise determination of the physical
parameters of the cosmological sources for gravitational waves.

3.2.2 Measurements of the gravitational constant

Surprisingly, little progress in the precise determination of Newton’s constant
G has been made since the first measurement by Cavendish (1798). Due to the
minuscule gravitational interaction between non-celestial bodies, the measu-
rement of G in laboratory-scale experiments remains a significant challenge.

10
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While astronomical observations can be done with astonishing precision, they
can only yield the GM product of celestial bodies. Therefore, separatemeasure-
ments of G are required for astronomers to determine the mass of these bodies.
Current laboratory methods to measure G can be divided roughly into three
different classes: torsion balance-, pendulum- and differential acceleration-
measurements.43

In the category of torsion-balance experiments we find not only the first,
but also the (as of early 2017) most precise measurement of G with ∆G/G ≈
1.4 · 10−5.44. Here, a fiber torsion-balance setup with dynamic compensation
was used with a suspended cuboid rod serving as the oscillator and spherical
8 kg source masses. Instead of the typical measurement of the oscillation
period of the pendulum, the pendulum support was rotated with a constant
angular velocity. Due to the gravitational force of the source masses, the
pendulum was subject to a periodic modulation in deflection, which was
compensated by rotation of the pendulum’s support in real-time using active
feedback. In this way, the deflection of the pendulum could be reduced to the
equivalent noise of the deflection readout and thus, many systematic errors
typically associated with the nonlinear restoring force of the fibers used for the
test-mass suspension could be avoided. In addition, the entire experimental
setup could be rotated with respect to the laboratory frame, therefore enabling
control over systematic errors from external sources of gravitational attraction.
The main remaining sources of error stem from separation measurements of
the source masses, temperature variations and uncertainties in thickness and
flatness of the cuboid test mass45. Conceptually similar torsion balance tests
have been performed in other institutions, though none of them stated a higher
precision46 (see also fig. 13.1 on p. 176).

Another technique conceptually different from torsion pendulums is to
modulate the position of fiber-suspended test masses along a linear axis by
heavy sources masses in varied positions. If the test masses are equipped
with mirrors and aligned such that an optical cavity is formed, the distance
of the test masses can be determined with high precision. While the first
iteration of the scheme was done with microwaves and yielded mediocre
sensitivity compared to state-of-the-art G-measurements47, the same scheme
realized in the optical wavelength regime allowed to resolve the change of
a few nanometers in cavity length caused by the 125 kg source masses with
competitive precision48 (∆G/G ≈ 2.1 · 10−5). However, the latter resulted in a
stated value of G with a huge (seemingly systematic) offset from the average
value obtained in torsion-balance experiments (cf. section 13.1 on p. 175).

In a third class of experiments G is measured through changes in the local
gravitational acceleration caused by massive source masses. This technique
was demonstrated by measuring the change in weight of a test mass caused by
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repositioning of a 6.5 ton source mass with a high-precision scale49 (∆G/G ≈
1.6 · 10−5). In a conceptionally similar experiment, a double vertically-stacked
atom fountain was used to measure the change in acceleration caused by
varying the position of 516 kg of tungsten.50 For an overview of source masses
used throughout measurements of G, see e.g. Gillies and Unnikrishnan (2014).

The current recommended value for G is a weighted average of the results
of several different experiments51 and has a relative precision of around 10−4.
While individually published results have much higher precision (see fig. 13.1
on p. 176), comparing results of separate groups shows a spread in the ab-
solute values that corresponds to many standard deviations.52 One possible
explanation for this phenomenon is the huge susceptibility of most of the
above measurements to systematic errors that are caused by the necessarily
large dimensions of the systems. The known errors include imprecision in
the determination of the length scales, in the homogeneities of materials, total
masses, temperature effects, distortion by external gravitational gradients and
nonlinearities and suspension noise in the fiber suspensions that are used in
most of the experiments – with the latter even causing significant deviations
for the measured value of G with different fiber types used within the same
experimental apparatus.53

Today, the importance of a precise measurement of G maintains a certain
level of interest, though due to the well-known GM product of celestial bodies,
it is not required for cosmology or space engineering. From the perspective of
fundamental physics, there are some attempts to derive G from other, suppo-
sedly more fundamental values. However, those attempts deviate in relative
predictions of the value of G by more than 10−3 and therefore no determi-
nation of G with higher relative precision is required to test these theories.54
Nevertheless, the situation is certainly unpleasant on an intellectual level and
hence it remains a serious experimental challenge to repeat or improve current
experiments55 or come up with entirely new schemes, e.g. deep space satellite
missions56.

3.2.3 Deviations from standard gravitation

As a third sub-class of laboratory-scale measurements of gravity the search for
modifications of standard Newtonian gravitation on certain scales is gaining
increasing interest. In essence, as a consequence of some non-standard phy-
sical theories, the typical Newtonian r−1-potential could be modified on an
(unknown) length scale λY.57 These deviations from Newtonian gravity can
arise from predictions of exotic particles58 (where λY is related to the Comp-
ton wavelength) or theories of extra dimensions59 (where λY is be related to
the radius of compactification). Other concepts of new physical models with
similar consequences for Newtonian gravity include violations of the weak
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equivalence or the Lorentz-invariance principle on certain scales. In addition to
yielding high-precisionmeasurements of G, torsion balances also turned out to
be a suitable tool for the measurements of the proposed short-range forces60, as
their basic geometry can be compacted into centimeter-scale experiments that
allow for measurements of micrometer-scale effects.61 However, some groups
have also proposed and successfully used typical micromechanical systems for
probes of gravity. This includes driven cantilever systems62, optically levitated
microspheres63 and free-falling Bose-Einstein condensates64. Another possibi-
lity for probing Newtonian gravity is realized using precision spectroscopy of
the confining potential of gravitationally bound states of neutrons.65

To the author’s knowledge, so far no significant deviation from the standard
Newtonian r−1 potential has been discovered. In addition, even though one
might intuitively believe the contrary, most of these experiments do actually not
directly confirm standard gravity. This is because most experiments that probe
the r−1 potential are either specifically designed to be sensitive to all potentials
except for r−1, or they put an upper bound to the strength of the additional
interaction that is significantly higher than the strength of actual Newtonian
gravity (at a specific length scale). This means that these experiments had zero-
outcomes and did not see any signature of gravity, so even though their sources
masses are small, they can not be considered as (Newtonian) gravitational
detectors. One noteworthy exception is the torsion pendulum test of the
equivalence principle using polarized masses.66 This experiment has already
been mentioned in chapter 2 as the non-zero experiment with the hitherto
smallest gravitational source mass. Here, a measurement of the gravitational
constant with ∆G/G � 2.3 · 10−2 could be achieved as a side result.

We also briefly note that short-range deviations from the gravitational
1/r potential are not the only prediction of non-standard physical theories
that can be subject to experimental investigation. It has been proposed that
higher-order corrections of the quantum commutator, that may arise from a
minimal length scale through spacetime quantization, could be measured in a
pulsed readout scheme of an optomechanical system.67 A similar scheme based
on residual angular-frequency modulations has already been experimentally
demonstrated.68.

3.3 Non-standard physics

The development of a coherent theory that includes both the effects of general
relativity and quantum mechanics in their “most extreme” cases, e.g. black
holes rotating near the speed of light andmassive spatial quantum superpositi-
ons, has been a major concern of modern physics and remains an outstanding
challenge.69 The first reason as to why this theory would be so interesting is, at
the same time, the reason as to why it is so conceptually hard: There are funda-
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mental discrepancies between the theories when it comes to the treatment of
space and time, making it impossible to answer even simple questions, such as
“What is the curvature due to gravity in a spatial superposition of mass?”. The
second reason is that mathematically, the respective frameworks of quantum
mechanics and general relativity (i.e. Lie algebra and differential geometry)
are somewhat incompatible. Perturbative approaches to a quantum theory
of gravity are non-renormalizable and are therefore not considered consis-
tent70, while non-perturvative approaches (such as string theory) face other
mathematical difficulties or are simply too underdeveloped to be considered
underlying theories of quantum mechanics and relativity71.b

One major aspect of the mechanism behind the emergence of the classical
world from an underlying quantum theory could potentially be linked to the
question about the validity of the superposition principle at any length scale:
“Does it hold true atmacroscopic scales or does it break down due to some kind
of collapse or decoherence due to unknown physical effects?” Some approa-
ches deduce the existence of collapse mechanisms from dynamical quantum
effects72 or by introducing new physical models that include microscopic and
macroscopic systems as limiting cases73 and forbid the occurrence of spatial
superpositions with large separation.

Another set of ideas, however, regard gravity as a driving mechanism of
collapse or decoherence. These involve arguments based on, e.g., a univer-
sal gravity-induced mechanism that leads to classical trajectories and the de-
struction ofmacroscopic superpositions on short time-scales74, the ill-definition
of the quantum time on relativistic space-time leading to finite lifetimes of
superpositions of energetic eigenstates and thereby to state reduction75 and
gravity as a mechanism causing the bundling of world lines in a path-integral
formalism of quantum theory76. Further, we find predictions of decoherence
through gravity as an environment in perturbative quantizations of relativity77,
through gravity as a classical communication channel between quantum sy-
stems78, or through dephasing due to eigentime divergence79. We note that
these approaches are not consistent in their assumption of whether gravity is
classical or quantized, and that most, but not all models rely on some unknown
phenomenological parameters that define the respective collapse rates for gi-
ven sizes and complexities of quantum superpositions. For a more detailed
overview, see e.g. Bahrami, Smirne, and Bassi (2014).

Following the developments in proposals for gravity-induced collapse
mechanisms is not made easier by the rising number of proposals to experi-
mentally probe such models in novel laboratory tests. Of special interest in
the context of micromechanical systems are those ideas that suggest using

b)Note that it is possible to write down effective quantum field theories of gravity for the
low-energy regime, which should yield the the correct limit for small space-time curvatures if
quantum gravity exists (Blencowe 2013; Donoghue 1994).
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quantum harmonic oscillators, e.g. as probes for the quantum properties of
massive superpositions through gravity-induced position fluctuations80 or for
Newtonian Schrödinger-cat-states81 and to search for squeezing signatures
caused by a modified Schrödinger-evolution in the nonrelativistic limit82. At
the same time there has been rising interest in using magnetomechanical sys-
tems to test collapse models.83 For overviews of the current developments of
experimental systems and their viability for testing the limits of macroscopic
quantum states see e.g. Arndt and Hornberger (2014), Leggett (2002), and
Romero-Isart (2011), as well as Howl et al. (2016) for a more general view on
laboratory-scale experiments combining gravity and quantum measurements.
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Part II

Theory

In this part we develop the theory and perform some necessary calculations
for the proposed experiment. We start by introducing a fundamental quantity
of signal and noise processing, the spectral density (chapter 4). Based on
this notion we investigate how a harmonic oscillator can be used as a force
transducer device and derive the response to various forces (chapter 5). In the
next chapter (chapter 6) we analyze the output of a specific implementation of
a position-readout interferometer and show the validity of this approach. In
the last chapter of this part (chapter 7) we derive the basic concepts of passive
vibration isolation and develop a framework to estimate the performance of
multiple chained vibration isolation stages with coupled degrees of freedom.
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Chapter 4

Spectral density

In this chapter we introduce the spectral density, one of the standard tools
in the analysis of signals or noise.a Through the notion of variance distri-
butions (section 4.1) we motivate the definition of power (section 4.2) and
energy (section 4.3) spectral densities and their relation (section 4.4). The
concept is then generalized to random processes (section 4.5) and linked to
autocorrelations via the Wiener-Khinchin theorem (section 4.6). In the last
section we explain how the finiteness and discreteness of actual measurements
impacts these concepts (section 4.7). The relevant conventions of definitions
used throughout this chapter are given in appendix A.1 on p. 189.
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4.1 Variance distributions and spectral variance density

The notion of a spectral density can be motivated by first defining the spectral
(variance) distribution Sx(ω) of the physical quantity x(t) as the variance of x(t)
contributed by frequencies between 0 and ω.1 Throughout this thesis we will
associate t with time, but the concept remains unchanged for any combination
of physical quantities. Naturally, ω is the angular frequency related to the

a) This is by no means a complete introduction to spectral densities, but it represents the
fundamental aspects that went into the calculations in this part.
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parameter t. As, by definition, Sx has the same units as x2, it is often referred
to as a power distribution, even though it does not necessarily have a direct
relation to physical power. In fact, this name can be somewhat misleading.

Following the above definition of Sx the contribution of variance within
an interval [ω1 , ω2)will be Sx(ω2) − Sx(ω1). We may write this as

Sx(ω2) − Sx(ω1) �
∫ ω2

ω1

Sx(ω)dω

by defining a spectral density (technically spectral variance density) Sx(ω) :�
dSx(ω)/dω. Since it has the same units as x2/ω, it can be interpreted as a
density of variance distributions in frequency-space. More specifically, it is
the amount of variance contributed by frequencies in the neighborhood of ω
to the variance of x.

At this point we can introduce a useful distinction of signals. We categorize
signals x(t) in either continuous (e.g. periodic signals or noise) or transient.
The latter one has finite support or at least converges to zero outside of a
certain interval in time t. In mathematical terms, the continuous signals are
notwithin the set L2 of square-integrable functions, while the pulse-like signals
are square-integrable.

4.2 Power spectral density

Approaching a measurement of a quantity x(t) from a practical perspective,
we find that in many cases a data point is gathered by integrating the power
at a resistor dropped by a detector-generated voltage that scales linearly with
the quantity of interest, e.g. the number of photons in a light field or electrons
in a conductor. Since by Ohm’s law the power drop at a resistor scales qua-
dratically with the Voltage, it is very common to focus on the square of the
physically interesting quantity, which gives a somewhat natural intuition for
the importance of the variance distributions. Another, separate motivation
comes from the fact that some rapidly-oscillating field amplitudes, such as that
of light, can often not be measured directly, but only in terms of their power.2

Going back to the distinction we made at the end of the previous section,
for time-continuous signals, x(t) < L2, the physical situation resembles a signal
with infinite total energy. This would correspond to an experiment that is
running forever, without ever being switched on or off, while the signal is
recorded continuously. Instead of working with the notion of total energy, it
therefore makes sense to consider energy per time, or power, which is finite
for most physical situations. For such signals x(t), one commonly defines the
power spectral density3 (PSD)
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Sx(ω) :� lim
T→∞

1
2T

����
∫ T

−T
x(t)eiωt dt

����
2

,

which is often written in terms of the windowed Fourier transform T x̃(ω),

Sx(ω) � lim
T→∞
|T x̃(ω)|2 with T x̃(ω) � 1√

2T

∫ T

−T
x(t)eiωt dt. (4.1)

Note that this definition does not properly account for random signals. We
will consider the general case in section 4.5 along with the proper definition of
the PSD. If one were to omit the limit in eq. (4.1), the definition would resemble
a truncated PSD. Note that in any real experiment, measurements can not be
infinite in time. Therefore, the truncated PSDwill be the physical quantity that
is actually extracted, while the PSD itself is just a hypothetical construction.

We emphasize that due to the absolute square, the PSD does not entail any
phase information of the signal, making the calculation of noise PSDs more
convenient (see e.g. the calculation of Brownian thermal noise in section 5.7.1
on p. 45). However, especially in the context ofmeasurements that are subject to
random noise, the phase informationmight actually simplify signal processing.
We investigate this topic in appendix B.4 on p. 200.

As we mentioned above, the PSD is suitable for signals x(t) with x(t) < L2,
which means that the Fourier transform x̃(ω) of these signals will generally
not exist as a function. However, it might still exist in the sense of distributions.
We can use this to simplify the computation of Sx . Consider rewriting the
finite integral of the windowed Fourier transform T x̃(ω) as an infinite integral
using a rectangular window function T h(t) as

T x̃(ω) � 1√
2T

∫ ∞

−∞
T h(t)x(t)eiωt dt with T h(t) �

{
1 for t ∈ [−T; T]
0 else,

,

which can be rewritten using the convolution theorem, eq. (A.2), as

T x̃(ω) � 1√
2T

1
2π

[
T h̃ · x̃] (ω) with T h̃(ω) � 2T sinc(ωT). (4.2)

This allows us to calculate the windowed Fourier transform from an infinite
Fourier transform. We also note that due to the linearity in x̃, if x̃ is composed
as a sum of individual terms x̃i , we may compute the total T x̃ as the sum of
the individual window functions T x̃ i ,

x̃(ω) �
∑

i

x̃i(ω) ⇒ T x̃(ω) �
∑

i
T x̃ i(ω) �

∑
i

1√
2T

1
2π

[
T h̃ · x̃i

] (ω).
(4.3)
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4.3 Energy spectral density

As the proposed experiment and therefore all measured quantities are continu-
ous, we will only briefly investigate the notion of the energy spectral density,
which is defined for pulse-like signals. Given that x(t) ∈ L2, the total integral
of x2(t) exists and we can use Parseval’s theorem (eq. (A.3)) and write∫

+∞

−∞
x(t)2 dt �

1
2π

∫
+∞

−∞
|x̃(ω)|2 dω.

In this equation, the left-hand side can be associatedwith total energy in x(t) in
the broad sense of signal processing (i.e. not necessarily physical energy).4 With
this interpretation the meaning of an spectral energy density can be assigned to
|x̃(ω)|2. It will have the units of signal energy per frequency and for a physical
scenario will usually be related to physical energy per frequency by some
constants. Therefore, we define

SE,x �

����
∫ ∞

−∞
x(t)eiωt dt

����
2
� |x̃(ω)|2

as the energy spectral density.

4.4 Relation between power and energy spectral density

From the above definitions, we may quickly convince ourselves that both types
of spectral densities cannot be relevant physical quantities at the same time. If
the limit in eq. (4.1) exists and is non-zero,

0 < lim
T→∞

1
2T

����
∫ T

−T
x(t)eiωt dt

����
2

< ∞,

then clearly the energy spectral density
���∫ +∞
−∞ x(t)eiωt dt

���2 has to be infinite,
which is expected from the physical motivation of the definitions above. Simi-
larly, if ����

∫
+∞

−∞
x(t)eiωt dt

����
2
< ∞,

then the limit limT→∞(2T)−1
���∫ T
−T x(t)eiωt dt

���2 has to be zero. The choice of the
useful physical quantity therefore depends on the type of signal. For a transient
signal, e.g. a pulse, the energy spectral density will be relevant, whereas for an
infinitely lasting (e.g. periodic) signal, the power spectral density is the formally
correct choice. Also, it is important to keep in mind that as both quantities
require infinite measurement times, they are technically not physical.
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4.5 Spectral density of random processes

So far, we have implicitly assumed that the considered signals are completely
deterministic, i.e. 〈x(t)〉 � x(t) (where 〈 〉 denotes the mean or expectation
value). For signals that have a noisy component or are entirely composed of
noise, a straightforward Fourier transform will usually be very noisy as well5,
which can render finding certain frequency peaks of interest impossible in
actual measurements. Therefore, for practical scenarios, where noise is almost
always an issue, it makes sense to include ensemble averages in the definitions
of both spectral densities, yielding

Sx � lim
T→∞
〈|T x̃(ω)|2〉 , and SE,x � 〈|x̃(ω)|2〉 . (4.4)

These are the standard definitions of power and energy spectral density. In fact,
they can also directly be applied to quantum observables, where the ensemble
average is replaced by the quantum expectation value.6 In many real-world
experiments in which just a single system is available to measure, the ensemble
average has to be replaced by an average over repeated measurements.b

In section 4.1 we introduced the spectral density as a variance. However,
an ensemble or a time average of a noisy signal can only reproduce the true
value of the PSD for an infinite number of samples or repeated measurements.
Therefore, it makes sense to ask about the expected deviation of the measured
PSD from the actual hypothetical PSD, given a finite number of samples. In
other words, we have to ask about the variance of a variance. We analyze the
convergence behavior for the case of Gaussian white noise, which is the one of
main interest (section 5.7 on p. 45), in appendix A.3.1 on p. 191. There, we
show that the variance σ2

〈x2〉M
:� 〈(〈x2〉M − 〈〈x2〉M〉

)2〉 of x2 for a finite number
M of samples is given by

σ2
〈x2〉M �

2
M
σ4

x .

It follows that the standard deviation of Sx scales with M−1/2, so halving the
uncertainty on noise power requires to quadruple the measurement time.

4.6 Wiener-Khinchin theorem

For a special class of random processes as described below, there is a more
convenient (and in many cases the only feasible) way to calculate a PSD. If the

b) In technical data sheets, it is common to find noise power values given as root-mean-
square values with physical units resembling those of x2 or x instead of x2/ω or x/√ω. This is
discussed in more detail in appendix B.3 on p. 200.
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autocorrelation function

rx(τ) :� 〈x(t)x̄(t − τ)〉
(with the complex conjugate x̄(t)) of the signal x(t) is known, the PSD can be
calculated as its Fourier transform since

Sx(ω) �
∫ ∞

−∞
rx(τ)eiωτ dτ. (4.5)

The proof for this relation can be found in appendix A.3.2 on p. 192. It is
important to note that in the definition of rx we implicitly assumed that the
autocorrelation will not depend on the absolute time t, but only on the relative
time difference τ.c A physical situation that yields such an x(t) is usually
referred to as wide sense stationary random process (stationäre Zufallsprozesse im
weiteren Sinn), and the Wiener-Khinchin theorem will in general not be valid
for a process that does not fulfill this criterion. As the adjective random implies,
there are hardly any deterministic functions x(t) that the Wiener-Khinchin
theorem can be applied to and therefore, in the case of a deterministic drive
(like a forcemodulation), the generalWiener-Khinchin theorem can not be used.
For some cases, the notion above can be varied to allow the direct computation
of power spectral densities from autocorrelation functions (see e.g. Behunin
et al. (2014)), though an investigation of this method was not performed within
the scope of this thesis.

4.7 Finite times, discrete sampling and window functions

The concepts of infinite measurement times and continuous sampling are
mere hypothetical constructions and do not represent practical experimental
situations. We can technically implement finitemeasurement times by omitting
the limit out of the definition of the PSD (eq. (4.4)). As shown in appendix B.2.2,
the impact of finite sampling intervals can be modeled by introducing the
discrete Fourier transform of a finitely sampled window function, h̃ f (ω) :�∑∞

n�−∞ T h(n∆t)eiωn∆t∆t. Here, ∆t denotes the sampling time step and T h(t)
does not necessarily need to be a rectangular window function. The windowed
Fourier transform of x(t) is then calculated as

T x̃(ω) � 1√
2T

1
2π

[
h̃ f · x̃

] (ω). (4.6)

For the simple case of a rectangular window function, T h(t) � { 1 for t∈[−T;T],
0 else ,

we find that

h̃ f (ω) � 2T sinc(ωT)exp(−iω∆t/2)
sinc(ω∆t/2) ,

c)Note that this in particular means that 〈|x(t)|2〉 is constant in time t, i.e. stationary.
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(b) Real part of discretely sampled h̃ f (ω) � 2T sinc(ωT) exp(−iω∆t/2) sinc−1(ω∆t/2).

Figure 4.1: Convolution functions for the hypothetical case of continuous sampling
and the real case of discrete sampling, given a rectangular window function T h(t) as
defined above.

7) Luke 1999

while the general case is shown in eq. (B.3) on p. 198. This function is periodic
in frequency ω with period ωp � 2π/∆t and modulated with rate ωm � 2π/T,
which is visualized in fig. 4.1. We see that frequency contributions are smoothly
“binned” into intervals of width ωm due to the finite measurement time, and
higher-frequency contributions (above ωp) are shifted back and added to lower
ones due to the finite sampling (a more general formulation of this effect is
referred to as the Nyquist–Shannon sampling theorem7). The simple choice of
a rectangular window T h(t) is usually called a periodogram in the context of
PSD estimation methods, and it represents the most basic estimation method
for a PSD. For an in-depth analysis of spectrum estimation methods, see e.g.
Boashash (2015) and Brown and Hwang (2012). The role of window functions
is investigated further in appendix B.2.2 on p. 198.

Equation (4.6) reveals a fundamental problem for any measurement in
which high-frequency contributions have non-negligible size. If those con-
tributions are not resolved by sufficiently short measurement timesteps ∆t,
they will contribute to the estimated spectrum at lower frequencies, an effect
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called aliasing. The only way to circumvent this effect is to implement physical
low-pass filters that dissipate the power of high-frequency contributions into
a bath.
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Chapter 5

Harmonic oscillators for force measurements

In this chapter we introduce a one-dimensional system with a linear restoring
force, the harmonic oscillator, as a device for force measurements. For this, a
purely classical description is convenient and therefore we will remain in a
classical framework unless we explicitly need to consider quantum effects.

The aim of the analysis is to understand a system composed of a spherical
harmonic oscillator (test mass) that is driven in multiple ways: By a spherical
driving mass (source mass), by motion of its support (both deterministic and
stochastic), by various deterministic forces Fi that depend on the total distance
between the center-of-mass (COM) of the oscillator and the driving system,
and by zero-mean stochastic noise terms. We start by deriving the equation
of motion in section 5.1 before considering the explicit effects of a sinusoidal
force excitation by a source-mass motion (section 5.2) and additional noise
(section 5.3). This will lead to expressions for the total power spectral density
and power spectrum in section 5.4 and, equivalently, the driven amplitude
of the harmonic oscillator in section 5.5. We then consider a range of actual
forces (section 5.6), sources of noise (section 5.7) and non-standard corrections
(section 5.8). A specific drive amplitude yields an optimal signal, which we
investigate in section 5.9. We close this chapter with technical remarks on
the effective mass of oscillator modes (section 5.10) and optimal mass shapes
(section 5.11).
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5.1 Equation of motion

We refer to a physical system as a harmonic oscillator if the most significant
force F acting on it is linear and restoring (i.e. opposing deflections with spring
constant k) in the position coordinate x,

m Üx � F, F � −kx + . . . .

This is Newton’s second law, where m denotes themass of the system. Without
additional force contributions, once excited the restoring force F will cause
the system to oscillate with the eigenfrequency ω2

0 � k/m. We now generalize
this system to include a variety of additional forces, including damping, as

Üx′ + ω′02(x′ − xsup) � − γ′int Ûx′ − γ′sup( Ûx′ − Ûxsup)

+ m−1

(∑
i

F′i(dtot , Ûdtot) +
∑

i

Ni

)
.

(5.1)

Here, we rename the position coordinate to x′ and the eigenfrequency to ω′0 as
we will later define a new, shifted coordinate x and effective eigenfrequency
ω0. We introduce the coordinate of the support xsup of the spring that is
causing the restoring force, an intrinsicn (viscous) damping rate γint of the
oscillator and a spring damping rate γsup.a The system is driven by various (not

a)An example for an intrinsic damping rate, i.e. one that does not depend on the relative
support deflection, is damping through drag by gas molecules. A counter-example is the spring
damping caused by internal material losses, which depends on the relative deflection x′−xsup.
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source mass drive

source mass

membrane
(optional)

test mass

test mass
spring

support x′

xS

position readout m

d0
xsup

Figure 5.1: Basic system composed of the test mass and the source mass. Also shown is
the mechanism that moves the source mass (source-mass drive), an optional shielding
membrane and the optical beam for position readout we treat in chapter 6.

necessarily deterministic) forces F′i that depend only on the total distance dtot
(and its derivatives) between the center-of-mass (COM) of the oscillator and
the driving system. Practically this means that the forces we consider are static
and will only become time-dependent through the action of the motion of the
driving system. Lastly, we added zero-mean stochastic force noise terms Ni .
Implicitly we have to assume that the physical dynamics of this system are
fully described by the COM coordinates (and therefore do not depend on the
shape of the masses), which, as we see in section 5.11 on p. 51, is not necessarily
true. From here on, we refer to the oscillator as the test mass and to the driving
system as the source mass.

In order to obtain linearized force terms and derive a solution to eq. (5.1),
we write the time-dependent distance as dtot � d0 + xS − x′ (see fig. 5.1), where
d0 is the (static) COM distance with both masses being non-deflected and xS(t)
is the drive displacement. We can then expand the force terms as

∑
i

F′i(d0 + xS − x′, ÛxS − Ûx′)

≈
∑

i

F′i(d0 + xS , ÛxS)︸¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨︷︷¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨︸
�:Fi(xS , ÛxS)

+

∑
i

∂x′F′i
��
d0 ,0︸¨̈ ¨̈ ¨̈ ¨̈ ¨︷︷¨̈ ¨̈ ¨̈ ¨̈ ¨︸

�:−mξ

x′ +
∑

i

∂ Ûx′F′i
��
d0 ,0︸¨̈ ¨̈ ¨̈ ¨̈ ¨︷︷¨̈ ¨̈ ¨̈ ¨̈ ¨︸

�:−mζ

Ûx′

+ higher orders of x′, Ûx′ +mixed terms with xS, ÛxS,

(5.2)

with |d0 ,0 being used as evaluated at dtot�d0 and Ûdtot�0. We define ξ and ζ as the
relevant displacement and velocity gradient amplitudes. The newly defined
force term Fi(xS , ÛxS) now describes the dynamic (i.e. non-static) effects. It can
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be expanded as∑
i

Fi(xS , ÛxS) �
∑

i

Fi(0, 0)
︸¨̈ ¨̈ ¨̈ ¨︷︷¨̈ ¨̈ ¨̈ ¨︸

�:mς

+

∑
i

∂xS Fi
��
0,0

︸¨̈ ¨̈ ¨̈ ¨̈︷︷¨̈ ¨̈ ¨̈ ¨̈︸
�mξ

xS +
∑

i

∂ ÛxS Fi
��
0,0

︸¨̈ ¨̈ ¨̈ ¨̈︷︷¨̈ ¨̈ ¨̈ ¨̈︸
�mζ

ÛxS

+

∞∑
n1 ,n2�1

∑
i

1
n1!n2!

∂n1+n2

∂xn1
S ∂ Ûxn2

S
Fi(xS , ÛxS)

�����
0,0︸¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨︷︷¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨︸

�:mΞ(n1 ,n2)

xn1
S Ûxn2

S .
(5.3)

In the first term we introduce a new definition ς, which sums up the absolute
amplitude of forces at the point of the test mass. The associations of the second
and third term with mξ and mζ follow from eq. (5.2). The last term of the sum
includes all the second- and higher-order force terms. Inserting eq. (5.3) into
eq. (5.1) yields the simplified oscillator equation of motion,

Üx + γ Ûx + ω2
0x � ω′20 xsup + γ

′
sup Ûxsup + ξxS + ζ ÛxS

+

∞∑
n1 ,n2�1

Ξ(n1 , n2)xn1
S Ûxn2

S + m−1
∑

j

N j .
(5.4)

Here, we defined

ω2
0 :� ω′20 + ξ, γ :� γ′int + γ

′
sup + ζ, and x :� x′ − ςω−2

0 (5.5)

as the new effective frequency ω0, damping rate γ and position x due to the
presence of forces with non-zero static components, respectively. We see that
while the shift of position x scales with the 0th-order amplitude of the forces
(related to ς), frequency ω0 and damping rate γ are only affected by the spatial
displacement and velocity gradients and higher derivatives expressed through
ξ and ζ. Themagnitude of the change in position and frequency for the specific
case of gravity is investigated in section 8.3 on p. 86.

5.1.1 Homogeneous solution

For later reference we briefly mention the homogeneous solution of eq. (5.4).
Dropping all external force and driving terms, the equation becomes

Üx + γ Ûx + ω2
0x � 0.

With the ansatz x(t) � exp(ωhomt)we can quickly see that

ωhom � −γ2 ±
i
2

√
4ω2

0 − γ2
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is a solution to the equation. The general homogeneous solution will be the
sum of both solutions to xhom(t), with arbitrary complex amplitudes, which
we choose such that xhom is real as

xhom(t) � e−γt/2
[
A1 cos

(
t
√
ω2

0 − γ2/4
)
+ A2 sin

(
t
√
ω2

0 − γ2/4
)]

, (5.6)

where A1 and A2 are real-valued amplitudes that depend on the boundary
conditions. Due to the common prefactor exp(−γt/2) this solution will decay
to a fraction 1/e of the original amplitude after a time τ � 2/γ.

5.1.2 Frequency-space representation

Most linear differential equations can be drastically simplified by converting
them into Fourier space. Applying the conventions listed in appendix A.1, the
oscillator equation of motion, eq. (5.4), can be rewritten as

(
ω2

0 − ω2 − iγω
)

︸¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨︷︷¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨︸
�:χ(ω)−1

x̃ �

(
ω′20 − iγ′supω

)
TE(ω)︸¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨︷︷¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨︸

�:AE(ω)

x̃E

+

[(
ω′20 − iγ′supω

)
TS(ω) + ξ − iωζ

]
︸¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨︷︷¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨︸

�:AS(ω)

x̃S

+

∞∑
n1 ,n2�1

Ξ(n1 , n2)F [xn1
S Ûxn2

S ] + m−1
∑

j

Ñ j .

(5.7)

Here, χ(ω) � (ω2
0 − ω2 − iγω)−1 is the susceptibilityb, AS(ω) is the Fourier

amplitude component of the system that is caused by the linearized forces,
and AE(ω) is the amplitude component caused by environmental displace-
ments. This form of eq. (5.7) is achieved by splitting up the support motion
into an environmental statistical noise and a drive contribution with their
respective transmissibilities, x̃sup � TE(ω)x̃E + TS(ω)x̃S. TE and TS are the
frequency-dependent functions that describe how a finite amplitude excitation
is modulated after progressing from the point of deflection to the test-mass
oscillator.c These definitions slightly simplify eq. (5.7) as

x̃(ω) � X̃S(ω) + X̃E(ω) + X̃N(ω) + X̃Ξ(ω), (5.8a)

b)Adefinition that varies from the one used here by a factor of m−1 is commonly encountered
in the standard literature and also commonly referred to as compliance (as it converts physical
force to displacement units). We use this definition as it allows to directly see how mass ratios
of coupled oscillators affect the dynamics, which becomes useful in chapter 7, and because it
slightly simplifies many expressions throughout this thesis.

c) The assumption that such functions exist is an implicit simplification, as it neglects the
backaction within coupled oscillator systems. We review these effects in section 7.4 on p. 78.
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where we defined the individual Fourier contributions

X̃S(ω) :� χ(ω)AS(ω)x̃S, (5.8b)
X̃E(ω) :� χ(ω)AE(ω)x̃E, (5.8c)

X̃N(ω) :� χ(ω)m−1
∑

i

Ñi , (5.8d)

X̃Ξ(ω) :� χ(ω)
∞∑

n1 ,n2�1
Ξ(n1 , n2)F [xn1

S Ûxn2
S ]. (5.8e)

Here, X̃S(ω) includes all the linear contributions that depend on the dynamics
of the source mass, while X̃Ξ(ω) has all the second- and higher-order contri-
butions. X̃E(ω) represents the environmental displacement noise and X̃N(ω)
is statistic noise that does not depend on the source-mass position.

In the following, we make a few simplifications. The first one is to drop the
nonlinear contributions X̃Ξ(ω) for now. Even though they are important for the
evaluation of actual signal data, at this point we will start our analysis by being
mainly interested in slightly better than order-of-magnitude estimations.d
Some straightforward arguments can be made that would say that while
including X̃Ξ(ω) does not change the mathematical nature of the problem,
it greatly increases the computational complexity, which is investigated in
appendix A.3.6. The second simplification is that we will assume that all
force terms that depend on the source-mass dynamics are deterministic, i.e.
free of statistic noise. This is trivially true for forces in the classical limit,
such as gravity and the Coulomb force. However, some forces, such as those
caused by electromagnetic patch-potentials (section 5.6), do in principle have
distance-dependent statistical components too. Within this framework, there
is essentially no problem with including these effects; however, the necessary
calculations have not been performed within the scope of this thesis.

As pointed out when previously defining the PSD (eq. (4.4) on p. 23), it
will eventually be necessary to compute an ensemble average over the absolute
square of the total windowed Fourier transform. Using the above two simplifi-
cations, we may carry out these calculations individually for X̃S(ω), X̃E(ω) and
X̃N(ω), which greatly simplifies the computation. The justification for doing
so comes from the fact that the expectation value of statistically uncorrelated
effects vanishes from the total PSD. The technical form of this argument is
presented in appendix A.3.5 on p. 193.

d) It is important to be conscious about the degree of expected deviations of this approxima-
tion from an exact solution depending on the nonlinearity of the force that is approximated.
For example, while a force that scales with inverse-square distance (such as gravity) can be
reasonably approximated by a linearizion even in the near field, forces with much higher
orders in distance-dependency, such as the London-vd. Waals force (section 5.6.4), are poorly
approximated by such a simplification.
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5.2 Effect of a sinusoidal source drive

To further process the previous results, we assume an explicit form of the
source-mass motion. The simplest case is a sinusoidal modulation

xS(t) :� dS cos(ωSt) (5.9)

with amplitude dS and driving frequency ωS. In appendix B.5 on p. 203 we
demonstrate that to first order of the modulated displacements, this case is
equivalent to a sourcemass rotating in a circularmotion. The Fourier transform
of xS(t) is a distribution,

x̃S(ω) � dSπ (δ(ω − ωS) + δ(ω + ωS)) .

Inserting this expression into eq. (5.8b) yields

X̃S(ω) � χ(ω)AS(ω)dSπ (δ(ω − ωS) + δ(ω + ωS)) . (5.10)

As becomes clear from eq. (4.3) on p. 21, due to the linearity of the windowed
Fourier transform we may proceed by calculating the individual windowed
Fourier transform for the drive contribution. Inserting eq. (5.10) into eq. (4.2)
on p. 21 allows us to compute the windowed Fourier transform through a con-
volution of the infinite Fourier transform with a rectangular window function
T h̃(ω) � { 1 for t∈[−T;T],

0 else . This is trivial as X̃S(ω) is composed ofDirac δ functions,
so

T x̃S(ω) � 1√
2T

1
2π

[
T h̃ · X̃S

] (ω)
�

dS

2
√

2T

[
T h̃(ω − ωS)χ(ωS)AS(ωS) + T h̃(ω + ωS)χ(−ωS)AS(−ωS)

]
,

and using the explicit form of T h̃(ω) from eq. (4.2) on p. 21,

. . . �
dS
√

2T
2 [sinc ((ω − ωS)T) χ(ωS)AS(ωS)

+ sinc ((ω + ωS)T) χ(−ωS)AS(−ωS)] .

For the calculating the PSD, we require the absolute square of this quantity.
Given the simplifications made at the end of section 5.1, and the argument
in appendix A.3.5 on p. 193, we may neglect the other contributions of the
total windowed Fourier transform T x̃(ω) for now and focus on the source
contribution T x̃S(ω). As x(t) is real-valued, we can use eq. (A.1) on p. 190 and
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calculate the absolute square of T x̃S(ω) as

|T x̃S(ω)|2 � T x̃S(ω)T x̃S(−ω)

�
d2

ST

2
{|χ(ωS)|2 |AS(ωS)|2

· [sinc2 ((ω − ωS)T) + sinc2 ((ω + ωS)T)
]

+
[
χ(ωS)2AS(ωS)2 + χ(−ωS)2AS(−ωS)2

]
· sinc ((ω − ωS)T) sinc ((ω + ωS)T)

}
.

(5.11)

The PSDwill then be given by the limit of this expression forT →∞. Due to the
asymptotic behavior of the sinc function, in this limit the second contribution
of eq. (5.11) will vanish at every point where ω , ±ωD . However, at the two
resonances the function will not converge, but will instead be bounded by a
finite sinusoidal oscillation. In a naive physicist notation we write this as

sinc ((ω − ωD)T) sinc ((ω + ωD)T)T T→∞−−−−→ δω,±ωD I[−1;+1],

where δa ,b denotes the Kronecker delta function and I[−1;+1] is a symbolic
expression for values in the intervall between −1 and 1. This contribution has
zero support and is finitely bounded. Since the spectral density only has a
physical meaning when integrated over a certain bandwidth (see eq. (5.16)
on p. 37), we can omit the second part of eq. (5.11) completely.e For the first
contribution of eq. (5.11), we use that limT→∞ T sinc2 (ωT) � πδ(ω), which is
proven in appendix A.3.3. This allows us to calculate

SxS � lim
T→∞
〈|T x̃S(ω)|2〉

� d2
S
π
2 |χ(ωS)|2 〈|AS(ωS)|2〉 [δ(ω − ωS) + δ(ω + ωS)] . (5.12)

Here, we made use of the fact that the ensemble average needs to, if at all, only
be applied to AS(ωS) as only this term can contain statistical force contributions,
while χ(ω) and δ(ω) are deterministic. Recalling that we defined AS such that

AS(ωS) �
(
ω′20 − iγ′supω

)
TS(ω) + m−1

∑
i

∂xS Fi
��
0,0 + iωm−1

∑
i

∂ ÛxS Fi
��
0,0 ,

another problem of working with PSDs becomes evident. Due to the absolute
square, the deterministic force contributions in A(ωS), which are necessarily
correlated as they originate from the same source mass, will create cross terms

e)As we pointed out in section 4.7 on p. 24 and explain more detailed in appendix B.2.2 on
p. 198, the most physical representation of the PSD is actually one where the limit T →∞ is
never performed. Therefore, for increased precision measurement, one might indeed need to
properly incorporate the term we just argued to be omitted.
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between separate forces. This is critical if a certain force, here gravity, is
supposed to dominate all other contributions by a certain margin, as there
will be mixed terms between gravity and non-gravitational forces in the signal.
As all forces drive the test mass with the same frequency ωS, they will be
impossible to distinguish. This problem can in principle be resolved by taking
the square root of the measured PSD, but this is again causing other difficulties
if the PSD also includes contributes without square cross terms. Therefore, it
is important to know the non-gravitational force terms well, and it might be
necessary to take extra-care with respect to shielding them properly from the
test mass or even choosing a favorable distance regime.

As another important observation we see that every force or noise acting on
the test mass is modulated with the mechanical susceptibility. This means that
improving the mechanical properties of the test mass (especially the damping
rate) might not necessarily improve the measurement if other effects dominate
the gravitational contribution. Also, we note that switching from the PSD
to a evaluation quantity that entails phase information can yield a possible
improvement when separating deterministically driven signals from noise-
driven contributions (see appendix B.4 on p. 200), but it does not help with
the distinction of deterministic signals caused by different forces.

5.3 Effect of noise terms

We proceed in computing the PSD terms by processing the statistical noise
terms. Inserting the previous expression for the noise contributions, eq. (5.8d)
on p. 32, into the rewritten windowed Fourier transform, eq. (4.2) on p. 21,
yields

T x̃N(ω) � 1√
2T

1
2π

[
T h̃ ·

(
χm−1

∑
i

Ñi

)]
(ω) with T h̃(ω) � 2T sinc(ωT),

which enables us to calculate the PSD using the standard definition (eq. (4.4)
on p. 23) as

m2Sx N � lim
T→∞
〈|T x̃N(ω)|2〉

� lim
T→∞

1
(2π)2

∬
+∞

−∞
dω′dω′′


2T sinc((ω − ω′)T) sinc((ω − ω′′)T)

· χ(ω′)χ(−ω′′)
∑
i , j

〈Ñi(ω′)Ñ j(−ω′′)〉

,

where we used that χ̄(ω) � χ(−ω), ¯̃Ni(ω) � Ñi(−ω). To further process this
expression, we assume that all noise terms Ni(t) are uncorrelated and white
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(see also appendix A.3.5 on p. 193), i.e.

〈Ñi(ω)Ñ j(ω′)〉 � 2πδi , jSNi (ω)δ(ω + ω′).

This simplifies the above to

m2Sx N �
1

2π

∫
+∞

−∞
dω′

[(
lim

T→∞
2T sinc2((ω − ω′)T)

)
|χ(ω′)|2

∑
i

SNi (ω′)
]
.

Again, we can make use of knowing the limit derived in appendix A.3.3 on
p. 192, which yields

. . . �
1

2π

∫
+∞

−∞
dω′

[
2πδ(ω − ω′) |χ(ω′)|2

∑
i

SNi (ω′)
]

� |χ(ω)|2
∑

i

SNi (ω).

Therefore, the final result is

Sx N � m−2 |χ(ω)|2
∑

i

SNi (ω). (5.13)

In analogue fashion, we can compute the contribution of environmental vibra-
tions SxE via eq. (5.8c). The expression is

SxE � |χ(ω)|2 |AE(ω)|2 SxE(ω). (5.14)

5.4 Total power spectral density and power spectrum

We combine the previous results in order to derive an expression for the total
power spectral density. It is given by the sum of the individual contributions
of source drive (S), further noise terms (N) and environmental vibrations (E),
eqs. (5.12) to (5.14), as

Sx(ω) � SxS(ω) + SxN(ω) + SxE(ω)
+ nonlinear source motion terms and cross terms

(5.15a)

with

SxS(ω) � d2
S
π
2 |χ(ωS)|2 〈|AS(ωS)|2〉 [δ(ω − ωS) + δ(ω + ωS)] , (5.15b)

Sx N(ω) � m−2 |χ(ω)|2
∑

i

SNi (ω), (5.15c)

SxE(ω) � |χ(ω)|2 |AE(ω)|2 SxE(ω), (5.15d)
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ω0 − Γ/2 ω0 ω0 + Γ/2
frequency ω
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D

S x
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g.
) noise terms ∝ |χ(ω)|2

deterministic terms ∝ δ(ω − ωS)

Figure 5.2: Visualization of eq. (5.16) for the resonant drive ωS � ω0. The gray area
under the purple curve equals the (displacement) power spectrum Px of the noise
terms, while the power of the deterministic terms lies entirely within the blue delta
peak, which for the purpose of demonstration was replaced by a peak with non-zero
width.

where

χ(ω) � (
ω2

0 − ω2 − iγω
)−1 , (5.15e)

AS(ω) �
(
ω′20 − iγ′supω

)
TS(ω) + ξ + iωζ, (5.15f)

AE(ω) �
(
ω′20 − iγ′supω

)
TE(ω), (5.15g)

ξ � m−1
∑

i

∂xS Fi
��
0,0 and ζ � m−1

∑
i

∂ ÛxS Fi
��
0,0 . (5.15h)

From eq. (5.15f) we immediately see that the magnitude of wanted force con-
tributions in ξ can easily be dominated by the mechanical displacement due
to the drive, (ω′20 − iγ′supω)TS(ω), when the drive displacement attenuation
(described by the transfer function TS(ω0)) is not high enough.

In order to find the power spectrum contributions Px in an actual measure-
ment with finite measurement time τ, we have to integrate the PSD Sx over
a finite bandwidth Γ � 2π/τ around the (driven) frequency of interest ωS.
Here, that can be the resonance frequency ω0 of the harmonic oscillator for a
resonantmeasurement, or, alternatively, a lower frequency for an off-resonant
measurement,

Px(ωS) �
∫ ωS+Γ/2

ωS−Γ/2
Sx(ω)dω. (5.16)

The integration is visualized in fig. 5.2. It can be performed numerically,
but in order to come up with analytical estimations for the resonant case,
we assume that the measurement bandwidth Γ is much smaller than the
mechanical width γ.f For the finite-width PSD contributions, the power is

f) Technically, we also have to assume that it is much broader than the width of the sinusoidal
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then approximated by the product of the contribution at ω0 and the width of
the measurement band Γ,

Px(ωS) � PxS(ωS) + PxN(ωS) + PxE(ωS)
+ nonlinear source motion terms and cross terms,

(5.17a)

where the contributions in the resonant (ωS � ω0) and off-resonant (ωS �

ωoff < ω0 − some γ) are

PxS(ω0) � π
2

d2
S

(γω0)2 〈|AS(ω0)|2〉 , PxS(ωoff) ≈ π2
d2

S

ω4
0
〈|AS(ωoff)|2〉 ,

(5.17b)

Px N(ω0) ≈ Γ

(mγω0)2
∑

i

SNi (ω0), Px N(ωoff) ≈ Γ

m2ω4
0

∑
i

SNi (ωoff),

(5.17c)

PxE(ω0) ≈ Γ

(γω0)2 |AE(ω0)|2 SxE(ω0), PxE(ωoff) ≈ Γ
ω4

0
|AE(ωoff)|2 SxE(ωoff),

(5.17d)

where we used that χ(ω) is approximately constant for all frequencies from
zero up to a few γ below the resonance frequency ω0, so |χ(ωoff)|2 ≈ ω−4

0 , as
well as |χ(ω0)|2 � (γω0)−2. These are the main results of this chapter and will
serve as a reference for many of the following discussions. In the next section
we take a short detour and establish the relation between the PSD or the power
spectrum and the actual amplitude of the driven harmonic oscillator.

5.5 Driven amplitude

The actual time-domain displacement amplitude of the driven mechanical
oscillator, XS, is of relevance for the optical readout (chapters 6 and 11) in
terms of range and discretization. We start the calculation with the Fourier
representation of the deterministically driven amplitude contribution, eq. (5.10)
on p. 33, and apply the inverse Fourier transform (with the convention given
in appendix A.1 on p. 189),

XS(t) � 1
2π

∫
+∞

−∞
χ(ω)AS(ω)dSπ (δ(ω − ωS) + δ(ω + ωS)) e−iωtdω

� dS {< [χ(ωS)AS(ωS)] cos(ωSt) + = [χ(ωS)AS(ωS)] sin(ωSt)} .
(5.18)

drive. Here, we set the drive to have zero width, however, in an actual experiment with very
long measurement times (and therefore small Γ), it might be necessary to take care when
selecting the reference signal for the driven motion (see also section 10.1.2 on p. 121).
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The second line holds as χ̄(ω) � χ(−ω) and identically for AS(ω). Using the
definitions of χ and AS from eq. (5.7) on p. 31, we find

<[χ(ωS)AS(ωS)] �
(ω2

0 − ω2
S)(ω′20 TS(ωS) + ξ) + γω2

S(γ′supTS(ωS) + ζ)
(ω2

0 − ω2
S)2 + γ2ω2

S
,

= [χ(ωS)AS(ωS)] �
γωS(ω′20 TS(ωS) + ξ) − ωS(ω2

0 − ω2
S)(γ′supTS(ωS) + ζ)

(ω2
0 − ω2

S)2 + γ2ω2
S

.

On resonance, i.e.ωS � ω0, and in theweak-force limitω′0 ≈ ω0, the expressions
simplify to

<[χ(ω0)AS(ω0)] � γ−1
(
γ′supTS(ω0) + ζ

)
, (5.19a)

= [χ(ω0)AS(ω0)] � γ−1 (
ω0TS(ω0) + ω−1

0 ξ
)
. (5.19b)

Inserting eqs. (5.19a) and (5.19b) back into eq. (5.18) yields the resonantly
driven amplitude

XS,res(t) :� dSγ
−1

[(
γ′supTS(ω0) + ζ

)
cos(ω0t)

+
(
ω0TS(ω0) + ω−1

0 ξ
)

sin(ω0t)] . (5.20)

These results have a straightforward interpretation. Setting the source-mass
transfer function to zero, TS � 0, the amplitude is XS,res(t) � dSγ−1[ζ cos(ω0t)+
ω−1

0 ξ sin(ω0t)]. Recalling that the original drive motion was defined as a
cosine function without a phase shift (eq. (5.9) on p. 33), we should expect
that the resonantly driven motion will pick up a π/2 phase shift and behave
as cos(ω0t − π/2) � sin(ω0t). Indeed, since

ξ � m−1
∑

i

∂xS Fi
��
0,0 and ζ � m−1

∑
i

∂ ÛxS Fi
��
0,0 ,

the sine term in eq. (5.20) contains the effects of deterministic forces that depend
on relative position, while the cosine term contains the velocity-dependent
effects.g The transfer functionTS appears in both terms of eq. (5.20), however, in
the sine contribution they are larger by a factor of ω0/γsup, which corresponds
to the mechanical quality Qsup of the test-mass support.

We may at this point also ask how the integrated power spectral density,
the power spectrum, relates to the actual amplitude. Comparing the time-
domain amplitude of the resonant drive, eq. (5.20), to the deterministic power
spectrum contribution, eq. (5.17b), and recalling that the PSD does not entail
phase information, we realize that the amplitude in the power spectrum is

g)Also, recall that γ � γ′int + γ
′
sup + ζ and therefore the velocity-dependent force contributi-

ons ζ will also indirectly appear in the sin terms.
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given by the sum of squared amplitudes of the cosine and sine contributions
in eq. (5.20).

Another way to quickly relate the actual driven amplitude to the PSD is to
repeat the computation done in section 5.2 on p. 33, but start by specifically
setting the motion of the test mass to be sinusoidal instead. Doing so one
quickly finds that

x(t) :� dA cos(ωTt) ⇒ Sx � d2
Aπ (δ(ω − ωT) + δ(ω + ωT)) ,

so an amplitude dA of actual sinusoidal motion results in a Dirac delta function
PSD with amplitude d2

Aπ.

5.6 Deterministic force contributions

Themain purpose of the proposed experiment is to measure gravity. Gravity is
known to dominate all other forces at large distances, however, at microscopic
distances, gravity can be dwarfed by other effects. In this section we discuss
a number of forces that potentially come into play. We divide them into
deterministic forces and noise, where the latter is treated in section 5.7.

Since most of the forces analyzed below depend on the geometry of the
source and test masses, we have to make specific assumptions about their
density-distributions. Thus far we have treated both masses as being point-
like. For the case of a 1/r potential, such as gravity, this is equivalent to
rotationally symmetric masses1 (shell theorem). To simplify the treatment of
the system, we assume that both masses are homogeneous and spherical with
radii rT, rS. The shortest distance between the surfaces of the spheres is then
given by dtot − rT − rS, which will be a common expression in the analysis
below.

5.6.1 Newtonian gravity

For rotationally symmetricmasses, classical (instantaneous)Newtonian gravity
outside the surface does not depend on the radial density distribution but only
on the total mass. It takes the well-known form

FG � −G
mM
d2
tot

. (5.21)

To simplify the discussion, we assume that the effective mass of the oscillator
mode (see section 5.10 on p. 50) is identical to the gravitational mass.h

h)Aswe lay out in section 9.1 on p. 94, at least in the first iterations of the proposed experiment,
the test mass will likely be a compound system consisting of a micromechanical cantilever
or trampoline, which provides the restoring force for the harmonic oscillator, and an added,
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As we will later need to calculate the optimal value of the drive amplitude
(section 5.9 on p. 49), we calculate the power spectral contribution of the
gravitational forces. Using the expression for the deterministic power spectrum
terms, eq. (5.17b), and reducing the deterministic amplitude to the gravitational
contribution, ASG :� m−1 ∑

i ∂xS FG
��
0,0, we write down the “pure” gravitational

power spectrum

PxG(ω) � |χ(ω)|2 π2 d2
S 〈|ASG(ωS)|2〉 � |χ(ω)|2 2π (GM)2 d2

S

d6
0
, (5.22a)

PxG(ω0) � 2π
(

GM
γω0

)2 d2
S

d6
0
, PxG(ωoff) � 2π

(
GM
ω2

0

)2
d2

S

d6
0
. (5.22b)

Similarly, we can write down the harmonic amplitude that is induced by the
gravitational drive. Reducing eq. (5.20) to the gravitational contribution, we
write

XS,resG(t) �
ξGdS
γω0

sin(ω0t) � 2GM
γω0

dS

d3
0

sin(ω0t). (5.23)

5.6.2 Coulomb force

For the Coulomb force we consider the (worst) case in which all free additional
charges are located at the closest possible positions on the sphere surfaces (see
fig. 5.3(a)). This means that the distance of the attracting/repulsive centers is
not given by the COM distance dtot, but by the surface distance dtot − rT − rS, as

Fq �
1

4πε0

q1q2

(dtot − rT − rS)2 , (5.24)

with the charges q1 and q2 on the test and source mass.

5.6.3 Electrostatic force due to a fixed potential difference

If both spheres are conductors with a relative potential difference V0, one
can give expressions for the two limiting cases of close approach and widely
separated spheres (Lekner 2012a,b). They are

Festat �



− 1

4 V2
0

rTrS
rT+rS
(dtot − rT − rS)−1 , (dtot − rT − rS) /dtot � 1

−V2
0

(
rTrS

rT+rS

)2
d−2

tot , dtot � rT + rS.

comparably heavy mass. Neglecting the mass of the micromechanical device is reasonable
as the gravitational dynamics of the compound test-mass device should be dominated by the
added mass. However, once the proposed experiment progresses to the stage of a quantitative
precision measurement, this simplification may have to be reinvestigated.
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m M

dtotrT rS

(a) Dimensions dtot, rT and rS and worst-
case positions of charges (red and blue).

m M

dtot

(b) The gas molecules are scattered off the
big sphere equally in all directions while a
fraction πr2

s /(4πd3
tot) hits the small sphere.

Figure 5.3: Vizualisations of dimensions for the location of charges and effects of
residual gas molecules.

This situation does not necessary relate to the proposed experiment. However,
setting both masses on a fixed potential difference yields and artificial, tunable
force that might serve for, e.g., calibration purposes.

5.6.4 London-Van der Waals force

The surface separation in the proposed setup is much larger than typical
interaction distances of forces emerging from dipole fluctuations (i.e. London-
vd. Waals, Casimir-Polder and Casimir forces)i. However, we want to be
convinced that any of the aforementioned effects do not contribute significantly
to the signal.

We can extract an expression for the London-vd. Waals force by calculating
the spatial derivative dEy/dx of the sphere-sphere potential expression given
by Hamaker (1937, eq. (13)), which we find to be

FVDW � AVDW
32r3

Tr3
Sdtot

3(dtot − rT − rS)2(dtot − rT + rS)2(dtot + rT − rS)2(dtot + rT + rS)2 .
(5.25)

Here, A � π2Q1Q2λ1−2(dtot) is the (distance-dependent) Hamaker coefficient,
with Q1,2 denoting the atom number per cubic centimeter of both materials
and λ1−2(dtot) being the material- and distance-dependent London-vd. Waals
constant.

5.6.5 Casimir force

For the effect of the Casimir force between two spherical surfaces we find
two different expressions in Teo (2012), which hold in near- and far-field

i) Insights into how these forces are related are given for example by Genet et al. (2003) and
Rodriguez, Capasso, and Johnson (2011).
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approximations, respectively:

FCas �

{
FCas,near for dtot(β~c)−1 � 1
FCas,far for dtot(β~c)−1 � 1

, (5.26)

with

FCas,near �
7π3

5760~c
rTrS

rT + rS
(dtot − rT − rS)−3

+
π
45

1
β4~3c3

rTrS
rT + rS

(dtot − rT − rS),

FCas,far �
3

32β
rTrS

rT + rS
(dtot − rT − rS)−2ζ(3), (5.27)

with the Riemann zeta function ζ(z) and thermodynamic beta β. As we will
see when physically evaluating the expressions in chapter 8, only the far field
region is of interest in the proposed experiment.

5.6.6 Patch potentials

Another possible signal contribution is due to non-contact friction caused
by time-dependent electric fields (patch potentials), which is a known effect
for conducting surfaces.2 For the effect of patch potentials, an expression
for the interaction energy per unit area in the isotropic-material case was
originally presented by Speake and Trenkel (2003) and can be found with a
slightly more rigorous derivation in Kim et al. (2010, eq. (11)). Note that the
relevant expression in the latter publication has been adjusted by removing
the contribution at infinite separation. Adding it back, we arrive at

Upatch/A �
ε0
2

∫ kmax

kmin

k2 coth [k(dtot − rT − rS)] S(k)dk,

where k denotes the wave number of the interacting electromagnetic wave and
kmin, kmax denote the boundaries of the relevant wave number range. S(k) is
the PSD of patch distributions in spatial frequency space. Following Kim et al.
(2010, eq. (19)) we may estimate the latter as

S(k) ≈ 2V2
rms

k2
max − k2

min
,

with the RMS potential fluctuations Vrms. The underlying assumption for this
expression is that the surface patch-potential correlations are constant in a
certain wave number range kmin < k < kmax. Taking the derivative ∂

∂dtot
of the

patch potential per unit area andmultiplication by the effective area Aeff yields
the expression for a static force due to patch effects,

|Fpatch | ≈ Aeff
ε0V2

rms

k2
max − k2

min

∂
∂dtot

∫ kmax

kmin

k2 exp(−k(dtot − rT − rS))
sinh(k(dtot − rT − rS)) dk. (5.28)
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We emphasize that by this notionwe have reduced the effect of patch effects
to a static, distance-dependent force between two spheres. The effects of both
random fluctuations and velocity-dependence (friction) have been neglected
but could be included for a more precise evaluation. However, we can assume
that the effect of the statistic contributions will at most have a magnitude
on the same order as the averaged fluctuations above, and it can be further
suppressed with increased measurement times.

5.6.7 Transfer of momentum kicks through gas molecules

Residual gas molecules can not only cause friction (cf. section 9.3.1 on p. 100 on
damping by residual gas molecules), but also facilitate an effective momentum
transfer between moving bodies. In our specific situation, the moving source
mass will add momentum onto each molecule that is reflected off its surface.
Thismomentum can then be transfered onto the test mass and in effect cause an
extra force. In the following, we derive an upper bound on the force resulting
from this effect. We assume that the pressure is sufficiently low for bothmasses
to be in the molecular regime (see section 9.3.1), i.e. we can completely neglect
the interactions between individual gas molecules. Then the rate Rcoll at which
air molecules will hit the source mass is3

Rcoll � πβPvairr2
S ,

where vair � (βmair)−1/2 is the average velocity of air molecules. The fraction
of these air molecules that is scattered towards the spherical test mass can
be estimated by comparing the cross-sectional area of the test mass, πr2

T, to
the virtual surface area 4πr3 of a sphere that is defined by sharing its origin
with the source mass and radius equal to the COM distance between the two
masses as the radius, r � dtot (fig. 5.3(b)). Therefore, the rate RS→T at which
air molecules that were previously scattered off the source mass hit the test
mass is given by

RS→T �
r2

T

4d2
tot

Rcoll.

Compared to a gas molecule, the test and source masses are large. This implies
that every scattered molecule will carry twice the source-mass velocity as
additional velocity after elastically colliding with the source mass. By the same
notion, twice the molecule’s momentum is transfered onto the test mass in
direct hits. Wemayassume that, apart from the additional velocity contribution
due to the source-mass modulation, the equally distributed kicks from all
directions cancel out, so only the momentum difference caused through the
motion of the source mass is relevant. The effective force can then be expressed
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in terms of rate of momentum transfers, or

|Fkick(t)| . 4mair ÛdtotRB→ S �
r2

T

d2
tot

Rcollmair Ûdtot. (5.29)

Of course, the direct correspondence between the sphere velocity and the
force will only work if the momentum transfer by air molecules is quasi-
instantaneous compared to the typical time scales of the system.

5.7 Noise contributions

Without diving deeply into the theory of (quantum) noise, below we analyze
major contributors to noise in the proposed experiment. Following Clerk et al.
(2010), we assume that the noise processes are wide-sense stationary, i.e. the
autocorrelation function of the noise terms only depends on the time difference,
not on absolute time (cf. section 4.6 onp. 23). Then, by the central limit theorem4,
due to the large number of involved independent and identically distributed
instances (such as photons in a laser beam), the distribution of the average
will be Gaussian, independent of the underlying distribution. This is why in
systems composed of many particles, one often assumes Gaussian noise, which
conveniently is completely specified by its mean and autocorrelation function.

Recalling the Wiener-Khinchin theorem, eq. (4.5), the autocorrelation
function rx is related to the PSD via

rx(t) � 1
2π

∫ ∞

−∞
Sx(ω)e−iωt dω. (5.30)

It is evident that autocorrelations with short timescales imply spectral densities
which are non-zero over a large band of frequencies. The most extreme case
of this is white noise, which has a flat (i.e. frequency independent) PSD and a
delta-like autocorrelation,

rx(t) � Sxδ(t) ⇔ Sx is constant,

which will be of relevance in the next section.

5.7.1 Brownian force noise

From the equipartition theorem we know that for a system in thermal equili-
brium, every contribution to its total energy has mean value equal to (2β)−1,
where β � (kBΘ)−1 is the thermodynamic beta with the Boltzmann constant
kB and temperature Θ.5 The thermal noise, in this case Brownian force noise,
poses a true fundamental limit on the minimal detectable force using mecha-
nical systems. Here, we perform a rough derivation of Brownian noise for
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a single-mode oscillator. For a more in-depth derivation, see e.g. Clerk et al.
(2010, appendix A.1).

We assume that the thermal force noise Nth(t) is white and Gaussian, i.e.

rNth(t − t′) � 〈Nth(t)Nth(t′)〉 � SNthδ(t − t′).

Following eq. (5.13), we write down the displacement PSD contribution caused
by thermal force noise as

Sx th � m−2 |χ(ω)|2 SNth ,

which, as SNth is constant, we may easily integrate over the entire spectral
width once knowing the required integral of |χ(ω)|2, which we give in eq. (A.7)
on p. 193: ∫

+∞

−∞
Sx th dω � π

1
m2

1
γω2

0
SNth . (5.31)

From the identity eq. (A.4) on p. 190 we also know that
∫

+∞

−∞
Sx th dω � 2π lim

T→∞
1

2T

∫
+T

−T
〈x(t)2〉 dt � 2π 〈x(t)2〉 , (5.32)

where the second equality has to hold aswhite noise is stationary, and therefore
〈x(t)2〉 is constant in time. Now we may make use of the relation between
the variance 〈x(t)2〉 and the thermal and mechanical properties of the system
using the equipartition theorem6

mω2
0 〈x2〉 � β−1. (5.33)

Combining eqs. (5.31) to (5.33) yields

SNth � 2
mγ
β

and Sx th � |χ(ω)|2 2γ
mβ

. (5.34)

Of course, real devices rarely have just a single mechanical mode, and
therefore the effective thermal PSD will be given by the sum of individual
thermal noise PSDs for each mechanical mode, where the mass m is then given
by the effective mass of the individual modes for a given readout position (see
section 5.10).

It is sometimes said (see e.g. Stowe et al. (1997)) that thermal noise poses
a fundamental limit for the detection of forces, “Fmin �

√
2mγΓ/β′′, where

Γ � 2π/T is the bandwidth of the measurement. This expression is derived by
integrating SNth in eq. (5.34) over a bandwidth Γ and taking the square root
of the result. Even though this quantity has the physical units of force, it is
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only equivalent to the smallest detectable force in a limiting case. Specifically,
in order to reach this limit, the measurement would have to either be taken
at ω � 0 (DC), which implies infinite 1/ω noise (cf. section 5.7.3), or the force
of magnitude A needs to be modulated over the entire range from −A to +A,
at a certain signal frequency. The latter is possible in some cases, e.g. if the
forces are caused by externally generated fields with direct modulation of
the field amplitude. In our case, however, we create the force modulation by
motion of an external mass. Therefore, without the masses being able to pass
through each other, it is difficult to achieve this kind of modulation.j However,
we can rephrase the expression above and state that ∆Fmin �

√
2mγΓ/β is a

lower limit for the resolvable force modulation, i.e. the difference between both
extrema of the force (in the case of harmonic modulation). The fact that one
has to implicitly assume some kind of optimal modulation between said points
is closely related to the existence of a finite optimal driving amplitude, which
we investigate in section 5.9 on p. 49.

5.7.2 Photon backaction

The use of light for the readout of mechanical motion implies some kind of
interaction, as every photon carries momentum that is partially transfered onto
the systemat themoment of reflection. The net action of thesemomentumkicks
can carry a signature of the readout-photon distribution. Here, we differentiate
between two effects. The first one is the direct impact of photon momentum,
which, similar to the Heisenberg microscope7, physically changes the state
of the mechanical system (photon backaction). We investigate this below. The
second effect is the statistical uncertainty, or measurement imprecision, in the
detection of a photon readout beam due to the photon statistics (photon shot
noise), which we investigate in section 6.1 as part of the optical readout scheme.

We start with the momentum ~k carried by a single photon. A perfect
reflection of this photon will cause a transfer of a total momentum 2~k. The
force PSD of photon impacts is given by

SNph � (2~k)2SRph ,

where Rph denotes the rate of photon impacts per unit time. Assuming a
coherent state of light, we can follow Clerk et al. 2010, appendix G to calculate
the PSD of the photon rate Rph, which for the special case of a normally
distributed rate turns out to be

SRph � 〈Rph〉 .
j) In one dimension, this kind of modulation is simply impossible. However, one might

envision a two-dimensional scheme with a source mass moving along an elliptical path that
effectively causes such a modulation to a test mass that is constraint to one axis.
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The power P of a light beam is given by the single photon energy times the
photon rate, P � ~ωph 〈Rph〉 � ~ck 〈Rph〉. With the wave number k � 2π/λ,
we find that

SNph � 8π~ P
λc

.

Relating this to a displacement PSD using eq. (5.13) on p. 36, the effect of
photon backaction is

Sxph � m−2 |χ(ω)|2 8π~ P
λc

. (5.35)

The notion that a measurement of a system may impact the system itself is
of course awell established concept in the realm of quantum systems. However,
it also plays a role in vastly macroscopic setups.8 As an interesting side remark,
comparing the expression to those by Clerk et al. (2010) (who are using the
same conventions for the PSD) yields that reflection off a single mirror is
mathematically equivalent to a (appropriately tuned) cavity with finesse F �

π/2.

5.7.3 Environmental noise

Due to the limited knowledge about the general laboratory environment, achie-
ving an analytic derivation of the environmental noise PSD SxE(ω) in eq. (5.17d)
onp. 38 is unfeasible. However, wemay expect a noise background that roughly
follows a common 1/ f curve9. There is some uncertainty as to why exactly
1/ f noise is so common in both natural and urban environments, but the con-
sensus seems to be that is a general manifestation of complex systems.10 Even
though the effect of deterministic forces in eq. (5.17b) scales very favorably
when transitioning to lower frequencies ω0, due to 1/ f noise there can be
practical limitations in the form of minimal feasible frequencies for any given
physical experiment, depending on the specific laboratory environment.

5.8 Contributions from non-Newtonian gravity

There are two qualitatively different types of corrections to Newtonian gravity
we might consider in the context of the proposed experiment. First, a Yukawa-
Newtonian potential, which we motivated in section 3.2.3 on p. 12. It takes the
form

ΦG,Yukawa � −G
mM
dtot

(
1 + αYe−dtot/λY

)
,
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where λY is the characteristic length scale and αY an unknown parameter
corresponding to the amplitude of the modification. We can derive the corre-
sponding force as

FG,Yukawa � − d
ddtot

ΦG,Yukawa � FG

[
1 +

(
1 +

dtot
λY

)
αYe−dtot/λY

]
, (5.36)

where we used the Newtonian gravitational force FG from eq. (5.21) on p. 40.
Second, we can also consider corrections from modified Newtonian dyna-

mics11 (MOND). However, finding a similar expression for a modified gravita-
tional potential is not straight-forward. The basic assumption of MOND is not
that the laws of gravity are changed, but that the inertialmass m is modified
by a function µ depending on acceleration Üx,

m → mµ( Üx/a0) with µ( Üx/a0 � 1) ≈ 1, µ( Üx/a0 � 1) ≈ x.

Here, a0 is some typical acceleration scale where the corrections from MOND
become significant. As Newton’s law now reads F � mµ( Üx/a0) Üx, the equation
of motion is necessarily nonlinear, and, in order to be properly evaluated,
requires a new solution. This has not been attempted within the scope of this
thesis.

5.9 Optimal drive amplitude

Intuitively, we can expect that the effect of a gravitational drive will be maxi-
mized for a certain optimal source-mass amplitude dSopt. If dS is too small, the
modulation will be small too and if dS is too large, the source mass will only
be in the regime of a relevant strength of force for a short amount of time per
cycle of movement. We can quickly derive this optimum by first setting the
minimal distance ε between the test mass and source-mass surfaces to a fixed
value, which we take as a technical requirement in a practical experiment. As
a purely geometric consideration, both sphere’s radii, rT for the test mass and
rS for the source mass, the minimal distance ε and the driving amplitude dS
need to add up to the COM distance d0; d0 � dS + rT + rS + ε. From eq. (5.22b)
on p. 41 we know that the Newtonian contribution to the measurement signal
scales with d2

Sd−6
0 . Setting d(d2

Sd−6
0 )/dd0

!
� 0 yields the optimumCOMdistance

and drive amplitude,

d0opt �
3
2 (rT + rS + ε) , dSopt �

1
2 (rT + rS + ε) . (5.37)

We note that (in our case of linearized forces) these optima hold independently
of frequency, and specifically for the case of the gravitational force (due to its
characteristic distance-scaling). The latter implies that the optima are likely
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12) Pinard, Hadjar, and
Heidmann 1999; Vanner
et al. 2013

different for forces that follow other power laws. Therefore, when deviating
too much from these optimal parameters in practical experiments, it is well
possible that non-gravitational forces gain in power contribution while gravity
loses.

5.10 Effective mass of oscillator modes

So far we have considered just one mechanical mode of the harmonic oscillator.
However, most physical harmonic oscillators are continuous expanded bodies
and therefore possess many eigenmodes. Each mode has a specific eigenfre-
quency ω0 i , a specific damping rate γi and a specific effective mass meff that
depend on the shape of the mode, the point of measured deflection and the
relative internal stress that it is causing.k

The effective mass is the point-mass equivalent of a modal mass. We can
derive it by comparing the potential energy of an expanded oscillator (in a
deflected stage) to the potential energy of a single point-like particle.12 The
former is given by

U � ω2
0/2

∫
V

[
u2(®x) + v2(®x) + w2(®x)] ρ dx3,

where u, v and w are the entries of the displacement vector field, and the inte-
gration is carried out over the volume V of the oscillator. In order to compare
this expression to the potential energy of a point mass U � ω2

0meffD2/2, we
need to factor in the mode overlap D between the mechanical mode and the
geometric representation of the readout. For the case of a Gaussian probing
beam with width r0, this is

D � (2πr2
0)−1

∫
x ,y

w(x , y , z � 0) exp[−(x2
+ y2)/(2r2

0)]dx dy,

but the mode overlap can also represent a change in arm length when the same
concept is applied to a vibrating interferometer, as presented in section 6.4 on
p. 66. Comparing both terms yields the effective modal mass

meff � D−2
∫

V

[
u2(®x) + v2(®x) + w2(®x)] ρ dx3. (5.38)

This expression can be used, e.g., in a finite element approach to the description
of an actual test-mass system, as we demonstrate in section 9.2 on p. 97.

k)Depending on the community (see e.g. Gatscher and Kawiecki (1996)), there is a second
definition of effective mass, namely the frequency-dependent mass mcomp(ω) that relates the
force ®Fin applied at a certain point of a mechanical system to the acceleration amplitude ®aout
at another point via Newton’s second law, mcomp(ω)�| ®Fin |/| ®aout |. This quantity is usually
important in the context of vibration isolation and specifically compliance. We treat it in
section 7.1 on p. 68.
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(a) An expanded object (rod
to the right) will not be acce-
lerated as expected from a
point-like object.

®xm1

®xm2
®xm3

®xM1

®xM2
®xM3

(b) The gravitational poten-
tial of two point-likemass dis-
tributions has to include all
pairs of mass points.

zm1 zm2 zM1 zM2

m M

(c) Integration boundaries
for the cylindrical-symmetry
case.

Figure 5.4: Conceptual figures to illustrate steps for the optimization of test and source-
mass shapes.

5.11 Mass shape optimization

In this section we ask if we can vary the distribution of the masses in a way that
optimizes the effect of the gravitational drive. One might intuitively think that
the gravitational pull should be independent of themasses’ density distribution
and only affect the COM coordinates. However, this is an approximation that
breaks down when the size of the masses is on the order of their separation.
Specifically, with the exception of rotationally symmetric mass distributions,
the weak equivalence principle does only hold for point-like objects and is
invalid for expanded objects. A simple example for this effect is a mass rod that
falls down towards a singular (or rotationally symmetric) center of gravitation
(fig. 5.4(a)) and, compared to perfect free fall, will experience local deceleration
due to partially canceling force components, leading to a slower fall than
expected from a point mass. In order to find the mass distribution which
maximizes the effect of gravity in the proposed scheme, we first write down
the potential between two sets of mass points that form rigid bodies (fig. 5.4(b)).
It is

UG � − G
Nm∑
i�1

NM∑
i�1

mi M j

| ®xmi − ®xM j |
,

which in the continuum limit becomes

. . .→ − G
∫

Vm

∫
VM

dm(®xm)dM(®xM)
| ®xm − ®xM | .

Assuming constant densities for both bodies we may write dm(®x) � ρ d®x3, so

. . . � − GρmρM

∫
Vm

∫
VM

dx3
m dx3

M

| ®xm − ®xM | .
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For clarity we now rename the previously used test- and source-mass coordina-
tes from x and xS to z and zS, as below we will switch to cylinder coordinates.
The force FG of the above potential on the test mass is then given by

FG � −∂U
∂z

. (5.39)

As we saw in section 5.1, the driving strength of the source mass is not deter-
mined by the absolute force (0th-order), but by the gradient of the force with
respect to the source-mass position. Therefore, the quantity ι that needs to be
maximized is

ι :� ∂F
∂zS

� GρmρM
∂2

∂z∂zS

∫
Vm

∫
VM

dx3
m dx3

M

| ®xm − ®xM | . (5.40)

This equation alone does not make sense without specifying appropriate
constraints. In our case, we are interested in keeping both total masses fixed,
which, given the constant density, is equivalent to fixed volumes. Therefore,
the constraints for the equation above are

m
ρm

�

∫
Vm

dx3
m ,

M
ρM

�

∫
VM

dx3
M . (5.41)

A third constraint arises from the condition that at thepoint of closest separation
the minimal distance between both masses has to be ε (see section 5.9 on
p. 49), the mathematical implementation of which depends on the choice
of coordinates. Finally, one likely has to account for the possibility that the
optimal drive amplitude will change as well with differently shaped masses.

5.11.1 Cylinder coordinates and two specific cases

Analytically processing eq. (5.40) with the given constraints is a challenging
undertaking. In order to compare some specific examples, we assume cylindric
symmetry of both masses and transfer the equation to cylinder coordinates,
i.e.

ι � GρmρM
∂2

∂z∂zS

∫ zm 2

zm 1

∫ zM 2

zM 1

∫ 2π

0

∫ 2π

0

∫ r(zm)

0

∫ rS(zM)

0

· rm rM
((d0 + zS + zM − z − zm)2 + r2

M + r2
m − rM rm cos(θM − θm)

)−1/2

· drm drM dφm dφM dzm dzM . (5.42)

The integration boundaries are visualized in fig. 5.4(c). Let us now treat two
special cases. In the first case, both masses are cylinders of height hcyl with
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the test- and source-mass coordinate positioned at the closest points within
both masses (see also fig. 9.8(b)). The constraints (eq. (5.41)) then read

m
ρm

� 2π
∫ 0

−hcyl

∫ rcyl

0
rm drm dzm ⇒ rcyl �

√
m

πρm hcyl
.

In the second case both masses are cones with height hcon with the flat sides
facing the respective other mass, such that the radius is given by r(z) � α(z −
hcon)with some inclination α (see also fig. 9.8(c)). The constraints then read

m
ρm

� 2π
∫ 0

−hcon

∫ α(zm+hcon)

0
rm drm dzm ⇒ α �

√
3m

πρm h3
con

.

For the case of two spheres with diameter hsph where the coordinates refer to
the closest position, we refer to eq. (5.21) on p. 40 and write

ι � GmM
∂F
∂zS
(d0 + hsph + zS − z)−2. (5.43)

After establishing some key parameters and dimensions in chapter 8, in
section 9.7 on p. 113 we perform a brief numerical estimation of eq. (5.42)
to get a qualitative idea as to whether non-spherical mass distributions yield a
significant advantage for the potential signal amplitude.

5.11.2 Semi-optimal case with a point-like test mass

If we make the specific assumption that the test mass behaves point-like, we
may write dm � mδ(xm)δ(ym)δ(zm − z)d3xm , and eq. (5.39) becomes

FG � GmρM
∂2

∂z∂zS

∫
VM

dx3
M

| ®xm − ®xM | ,

which we may further process by using cylinder coordinates and assuming
cylinder symmetry, i.e.

FG � 2πGmρM
∂2

∂z∂zS

∫ z2

z1

∫ r(zM)

0

rMdrMdzM√
(d0 + zS + zM − z)2 + r2

M

,

where we reintroduced the distance d0 (which now acts as a COM-to-surface
distance). This expression can be used instead of eq. (5.21) on p. 40, as a
semi-improved approach to improve the validity of the current formalism for
non-spherical mass shapes.
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Chapter 6

Optical-interferometric position measurement

In this chapter we describe the relevant theoretical background of optical-
interferometric position-sensing of a micromechanial device. We will first
discuss the effect of photon shot noise (section 6.1), which combined with
the aforementioned backaction noise yields the standard quantum limit for
continuous measurements (SQL, section 6.2). We then motivate optical interfe-
rometry and homodyning as the means for high precision readout of motion
before developing the relevant relations for one specific implementation of
a Mach-Zehnder interferometer (section 6.3). In the last section (section 6.4)
we develop the means to estimate the mechanical effective masses of practical
homodyne setups, which is relevant for thermal noise considerations.

Chapter contents

6.1 Photon shot noise . . . . . . . . . . . . . . . . . . . 55
6.2 The standard quantum limit . . . . . . . . . . . . . . 56
6.3 Balanced optical homodyning of a classical phase . . . . . . 57

6.3.1 Transfer matrix of a specific interferometer (p. 58)
6.3.2 Homodyne signals (p. 60)
6.3.3 Shot noise scaling (p. 61)
6.3.4 Optimal power distribution (p. 62)
6.3.5 Mismatched photodetectors (p. 64)
6.3.6 Beamsplitter variation (p. 65)

6.4 Mechanical noise of homodyne implementations . . . . . . 66

6.1 Photon shot noise

On a fundamental level, the method of using light for the determination of
mechanical displacement is subject to the statistics of photon ensembles. The
simple notion that the photon rates underly statistic distributions implies
additional photon-distribution dependent noise for the measurement. In our
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1) Braginsky, Khalili, et al.
1995; Caves 1980; Clerk et al.
2010

case, we use a single-frequency, single-spatial-mode laser beam and therefore
assume the light to be in a coherent state. Using the input-ouput formalism
for homodyne detection, we can follow Clerk et al. (2010, (G20)) to derive the
contribution to the phase spectral density of a light field that is entirely caused
by photon statistics of a coherent state. It is

Sφsh �
1

4 〈Rph〉 ,

where Rph denotes the rate of photons, as we already saw in the derivation of
back-action noise (section 5.7.2). Since we consider the simple case without an
optical cavity, a phase shift dφ can directly be expressed as a position shift dx
via

dφ � 2k dx

with the wavenumber k. We may then use the (same) relations between power
and photon number that we already employed in section 5.7.2 and arrive at an
expression for the additional position noise through readout-photon statistics,

Sxsh �
Sφsh
4k2 �

~
32π

λc
P

. (6.1)

Remember that even though this effect is expressed as a displacement PSD,
the mechanical displacement x is not actually affected. The conversion above
yields a displacement PSD equivalent to the photon noise seen at a detector
(see also section 11.3.1 on p. 139).

6.2 The standard quantum limit

The effect of photon shot noise, eq. (6.1), is often treated combined with photon
back action noise, eq. (5.35), to form the standard quantum limit1 for continuous
measurements,

SxSQL � Sxsh + Sxph �
~

32π
λc
P

+ m−2 |χ(ω)|2 8π~ P
λc

. (6.2)

While the shot noise contribution scales with inverse power, the backaction
contribution scales linearly with power. It is clear that an optimal value for the
power P has to exist that minimizes the sum of both PSDs, SxSQL. This turns
out to be

Popt,SQL �
λcm

16π |χ(ω)| . (6.3)

However, in most practical cases, thermal noise or other noise sources, e.g.
classical amplitude noise (and, in consequence, classical backaction), will pose
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Figure 6.1: The standard quantum limit, eq. (6.2), in normalized units for the no-cavity
case. We directly see that the minimal noise of SxSQL � 2~|χ(ω)|m−1 is achieved if
P/(mλc(16π |χ(ω)|)−1) � 1.

2)McKenzie 2002; Stefszky
2012; Vahlbruch 2008

a major noise limitation before the SQL with optimal power can be reached.
Nevertheless, measurements close to the SQL have recently become available,
e.g. as demonstrated by LaHaye (2004) and Schreppler et al. (2014). It is
important to stress that both terms in eq. (6.2) have the same physical origin,
namely the statistics of photons, but are also fundamentally different in one
aspect: Photon backaction noise affects the actual position of the mechanics
(and could therefore also be detected if one would apply an additional position
readout scheme that does not rely on the detection of the same photons) while
the photon shot noise is an effect that is part of the detection of the light quanta
and does not affect the mechanics. Lastly, we also note that eq. (6.2) only holds
for the case of coherent (i.e. Poisson-distributed) light, which is likely not the
optimal choice for a given measurement and might well be improved using
non-classical states of light, e.g. squeezed light, which is a well-explored topic
in the context of gravitational wave detectors.2 The typical standard quantum
limit curve is shown in fig. 6.1.

6.3 Balanced optical homodyning of a classical phase

Generally, one speaks of homodyning when a (phase-)modulated signal (SI) is
mixed with a reference signal of the same optical frequency, the local oscillator
(LO), in order to convert the otherwise non-measurable phase modulations of
light into well-measurable amplitude modulations. To achieve a fixed phase
relation of optical input fields, both SI and LO usually have the same original
source, which is then split into the SI and LO pathways and later recombined.
Usually, one output port of the recombination already entails the required
phase information, which is at the heart of interferometry. However, as we
will see below, it can be advantageous to use both outputs and measure the
difference signal, which is sometimes called balanced homodyne detection. This

57



Chapter 6 Optical-interferometric position measurement

3)Gerry and Knight 2005;
Loudon 2000

allows to cancel the offset and noise of the light amplitude and in consequence
become more sensitive to its phase.

In the experimental part of this thesis, specifically in section 11.2.3 on
p. 132, we present a specific interferometric readout configuration for the
proposed experiment. Here, we focus on its core elements and employ a
quantum treatment using the input-output-operator matrix formalism3 (also
Jones calculus) in order to analyze how an input operator is propagated through
the chain of optical elements.

6.3.1 Transfer matrix of a polarizer-based Mach-Zehner interferometer

We treat the light in the basis of horizontal and vertical polarization (with
respect to the optical table) and denote the polarization of operators with
the subscripts H and V . The three basic optical elements we will use are a
polarizing beam splitter (PBS), a half-wave plate with fast axis at angle ϕ
and an arbitrary-phase retarder (APR) rotated to have no off-diagonal entries.
These will propagate input states as

©«

âH

âV

b̂H

b̂V

ª®®®¬
PBS−−−−−−−→

©«

1
i

1
i

ª®®®¬
©«

âH

âV

b̂H

b̂V

ª®®®¬
, (6.4a)

(
âH

âV

)
λ/2−−−−−−−→

(
cos 2ϕ sin 2ϕ
sin 2ϕ − cos 2ϕ

) (
âH

âV

)
, (6.4b)(

âH

âV

)
APR−−−−−−−→

(
e−iθ 0

0 1

) (
âH

âV

)
, (6.4c)

where â and b̂ are used to distinguish spatially distinct modes and for later
convenience we dropped a common phase from the typical APR matrix. Fi-
gure 6.2(a) shows the chains of optical elements, where the input and output
ports of each element are individually labeled. A variation of this scheme,
fig. 6.2(b), is be analyzed in section 6.3.6.

In order to derive the relation between the output ports ĉ and d̂ and all
interferometer input ports, we first write down the transformation for each
optical element using the relations above. The input state vector ( âH âV v̂H v̂V )
is transformed by the first PBS as(

âIH âIV b̂H b̂V

)T
�

(
âH iv̂V v̂H iâV

)T .

The half-wave plate at angle ϕ1 and the APR oriented to cause a phase shift θ
between horizontal and vertical polarization act as(

âIIH
âIIV

)
�

(
cos(2ϕ1)âIH + sin(2ϕ1)âIV
sin(2ϕ1)âIH − cos(2ϕ1)âIV

)
,

(
âIIIH
âIIIV

)
�

(
e−iθ âIIH

âIIV

)
.
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(a) Angled-reflection schemewhere, in prin-
ciple, all power can be used for detection.
This scheme is analyzed in sections 6.3.1
to 6.3.5.
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(b) Direct reflection scheme. Compared
to the first scheme, it sacrifices power for
practicality. This scheme is analyzed in
section 6.3.6.

Figure 6.2: Two slightly different realizations of optical homodyning schemes where
SI and LO are implemented via orthogonal polarizations. Both figures include all
relevant optical elements (P for polarizing beam splitter, AP for arbitrary phase retarder,
S for beam splitter) and the corresponding operators. The operators are indexed by
ascending roman numerals according to their appearance in the propagation chain,
and operators that correspond to vacuum input ports are denoted by v̂.

As one can quickly see, the choice of ϕ1 determines the splitting of power into
the spatially separated part of the interferometer at the next PBS, which acts
similar to the first one as(

âIVH âIVV b̂IH b̂IV
)T

�
(
âIIIH iv̂I

V v̂I
H iâIIIV

)T .

One of the output ports of the second PBS will now be modulated by a time-
dependent mechanical phase, which simply means that

(
âVH âVV

)T
� e−iφ (

âIVH âIVV
)T .

This is followed by a third polarizer,(
âVIH âVIV b̂IIH b̂IIV

)T
�

(
âVH ib̂IV b̂IH iâVV

)T
,

and a second half-wave plate with angle ϕ2,(
âVIIH
âVIIV

)
�

(
cos(2ϕ2)âVIH + sin(2ϕ2)âVIV
sin(2ϕ2)âVIH − cos(2ϕ2)âVIV

)
.

The last step is to spatially separate both polarizations with another PBS,
yielding the output(

ĉH ĉV d̂H d̂V

)T
�

(
âVIIH iv̂II

V v̂II
H iâVIIV

)T .
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We may now simply perform the necessary algebra and arrive at the total
transformation matrix of the interferometer, which splits into two parts. First,
the relevant output ports are given by

(
ĉH

d̂V

)
�

(
M1,1 M1,2
M2,1 M2,2

) (
âH

v̂V

)
,

with the matrix elements

M1,1 � e−i(φ+θ) cos(2ϕ1) cos(2ϕ2) − sin(2ϕ1) sin(2ϕ2),
M1,2 � ie−i(φ+θ) sin(2ϕ1) cos(2ϕ2) + i cos(2ϕ1) sin(2ϕ2),
M2,1 � ie−i(φ+θ) cos(2ϕ1) sin(2ϕ2) + i sin(2ϕ1) cos(2ϕ2),
M2,2 � −e−i(φ+θ) sin(2ϕ1) sin(2ϕ2) + cos(2ϕ1) cos(2ϕ2).

Second, the transformation matrix of the auxiliary operators reads

©«

ĉV

d̂H

b̂H

b̂V

b̂IIH
b̂IIV

ª®®®®®®®®¬
�

©«

i
1

1
i

1
−e−iφ

ª®®®®®®®¬

©«

v̂II
V

v̂II
H

v̂H

âV

v̂I
H

v̂I
V

ª®®®®®®®¬
,

implying that all of thesemodes leave the interferometer unaffected (up to some
phase). Thismakes clear that the output ĉH , d̂V is completely determined by the
original input âH and one vacuumport v̂V , with all other vacuum contributions
disappearing in the final result.

6.3.2 Homodyne signals

The number operators of the two outputs of the interferometer are ĉ†H ĉH and
d̂†V d̂V . Straight-forward multiplication yields

ĉ†H ĉH , “+”,“+”,“−”,
d̂†V d̂V , “−”,“−”,“+”

}
�

1
2

(
â†H âH + v̂†V v̂V

)

±

�:Adiff(φ,θ,ϕ1 ,ϕ2)/2︷¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨︸︸¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨︷
1
4

[(1 − cos(φ + θ)) cos(4ϕ1 − 4ϕ2) + (1 + cos(φ + θ)) cos(4ϕ1 + 4ϕ2)
]

·
(
â†H âH − v̂†V v̂V

)
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±

�:Bdiff(φ,θ,ϕ1 ,ϕ2)/2︷¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈︸︸¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈︷
i
4

[(1 − cos(φ + θ)) sin(4ϕ1 − 4ϕ2) + (1 + cos(φ + θ)) sin(4ϕ1 + 4ϕ2)
]

·
(
â†H v̂V − âH v̂†V

)
∓ cos 2ϕ2 sin 2ϕ2 sin(φ + θ)

(
â†H v̂V + âH v̂†V

)
.

(6.5)

The sum and difference of the number operators of both arms are given by

ĉ†H ĉH + d̂†V d̂V � â†H âH + v̂†V v̂V , (6.6a)

ĉ†H ĉH − d̂†V d̂V � Adiff(φ, θ, ϕ1 , ϕ2)
(
â†H âH − v̂†V v̂V

)
+ Bdiff(φ, θ, ϕ1 , ϕ2)

(
â†H v̂V − âH v̂†V

)
− 2 cos 2ϕ2 sin 2ϕ2 sin(φ + θ)

(
â†H v̂V + âH v̂†V

)
.

(6.6b)

At this point we can assume a coherent input state |αcoh〉 for the âH port
and a vacuum state |0〉 at the vacuum entry port v̂V . Since 〈v̂V〉0 � 〈v̂†V〉0 �

〈v̂†V v̂V〉0 � 0, eqs. (6.5) and (6.6b) yield

〈ĉ†H ĉH〉 � 1
2

[
1 + Adiff(φ, θ, ϕ1 , ϕ2)

] |αcoh |2,
〈d̂†V d̂V〉 � 1

2
[
1 − Adiff(φ, θ, ϕ1 , ϕ2)

] |αcoh |2 (6.7)

and

〈ĉ†H ĉH + d̂†V d̂V〉 � |αcoh |2, (6.8a)
〈ĉ†H ĉH − d̂†V d̂V〉 � Adiff(φ, θ, ϕ1 , ϕ2)|αcoh |2. (6.8b)

Now, we can identify Adiff as the amplitudemodulation of the difference signal,
which depends on the mechanical phase φ, the APR phase shift θ and the
half-wave plate angles ϕ1 and ϕ2.

6.3.3 Shot noise scaling

Beforewe analyze the behavior of Adiff for different choices ofwave plate angles
ϕ1, ϕ2 in the next section, we briefly check how photon shot noise appears in
the output signal. This can be done by computing the variance of ĉ†H ĉH − d̂†V d̂V ,

σ2
ĉ†H ĉH−d̂†V d̂V

� 〈
(
ĉ†H ĉH − d̂†V d̂V

)2
〉 −

(
〈ĉ†H ĉH − d̂†V d̂V〉

)2
. (6.9)

61



Chapter 6 Optical-interferometric position measurement

We already know the second summand from eq. (6.8b). For the first summand
we expand the expression, yielding new terms of fourth order in ĉH and d̂V .
Using the expectation values from eq. (6.7) and applying the commutation
relations for creation/annihilation operators, [ĉH , ĉ†H] � [d̂V , d̂†V ] � 1, yields

〈c†H cH c†H cH〉 � 1
2 (1 + Adiff) |αcoh |2 〈cH c†H〉

�
1
2 (1 + Adiff) |αcoh |2

(
1 + 〈c†H cH〉

)
�

1
2 (1 + Adiff) |αcoh |2 + 1

4 (1 + Adiff)2 |αcoh |4,

〈d†V dV d†V dV〉 � 1
2 (1 − Adiff) |αcoh |2 + 1

4 (1 − Adiff)2 |αcoh |4,

〈c†H cH d†V dV〉 � 1
4

(
1 − A2

diff
) |αcoh |4.

Combining these results with eq. (6.8b) and inserting them into eq. (6.9) yields

σ2
ĉ†H ĉH−d̂†V d̂V

� |αcoh |2.

Therefore, the ratio of the homodyne amplitude over its shot-noise dominated
standard deviation, or quantum-limited signal-to-noise ratio, will depend on
the mechanical phase φ and on the choice of ϕ1, ϕ2 and θ as

〈ĉ†H ĉH − d̂†V d̂V〉√
σ2
〈ĉ†H ĉH−d̂†V d̂V 〉

� Adiff(φ, θ, ϕ1 , ϕ2)|αcoh |.

We can interpret this in the following way: choosing ϕ1, ϕ2 and θ in order to
make eq. (6.8b) extremal will also maximize the signal-to-noise ratio in the
case of dominating shot noise (i.e. the sum of all other noise sources being
lower than the shot noise contribution).

6.3.4 Optimal power distribution

We can further process themodulation amplitude Adiff as defined in eq. (6.5) on
p. 61. To this endwewrite themechanical phase φ as a sum of a constant phase
φ0 and a small modulation φmod. With a series expansion we may therefore
write cos(φ + θ) ≈ cos(φ0 + θ) − sin(φ0 + θ)φmod and

Adiff |αcoh |2 �
1
2

[(1 − cos(φ + θ)) cos(4ϕ1 − 4ϕ2)
+ (1 + cos(φ + θ)) cos(4ϕ1 + 4ϕ2)

] |αcoh |2
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4)Welsch, Vogel, and Opa-
trny 2009

≈ A+(ϕ1 , ϕ2)|αcoh |2
+ A−(ϕ1 , ϕ2)|αcoh |2

[
cos(φ0 + θ) − sin(φ0 + θ)φmod

]
,

(6.10)

with A±(ϕ1 , ϕ2) :� 1
2

[
cos(4ϕ1 + 4ϕ2) ± cos(4ϕ1 − 4ϕ2)

]
.

From this expression we can directly see that tuning θ will allow us to make
the output signal proportional to any (normalized) superposition of φmod
and 1 (plus some constant term), where the extreme cases are commonly
referred to as measuring the phase quadrature or the amplitude quadrature4.a Of
the two summands just the latter, which scales with A−(ϕ1 , ϕ2), also scales
with the mechanical phase modulation φmod. Therefore, this part should
be made extremal by the choice of ϕ1, ϕ2. Figure 6.3 shows plots for this
expression as well as the first term of eq. (6.10), which causes an offset (i.e. a
contribution with no dependency on φmod) and scales with A+(ϕ1 , ϕ2). The
smallest values yielding extremal values of A−(ϕ1 , ϕ2) can be found for ϕ1,
ϕ2 � ±π/8. Conveniently, for these values we find that A+(ϕ1 , ϕ2) � 0, so the
offset vanishes and θ can be chosen such that there is no signal contribution
that is not directly proportional to φmod.

Going back to eq. (6.4b), we see that the transfer matrix of a half wave-plate
for ϕ � ±π/8 yields a symmetric power-distribution into both outputs,

(
âIIH
âIIV

)
�

1√
2

(
1 ±1
±1 −1

) (
âIH
âIV

)
,

i.e. a polarization rotation by 45◦.The fact that a symmetric power-distribution
yields optimal performancemay seem unintuitive, given that in many practical
experiments much more power is put into the LO than into the SI, but the
situation at hand is slightly different from these scenarios. First, many experi-
ments employ an optical cavity in the SI path, which is shifting the optimal
power-distribution towards the LO (as a cavity-based readout yields increased
mechanical-phase sensitivity per power). Second, there often is a restriction
on the maximal power that can be tolerated at a mechanical sample, which
we did not consider here. Third, in some cases, one also wants to measure
amplitude fluctuations, which is different from our assumptions. For our case,
however, the total power is limited by either the available input power or the

a) In the context of these results, this terminology might appear to be somewhat confusing,
as the amplitude |αcoh |2 enters proportionally in both cases. However, this expression already
contains an expectation value, which means that it averages over quantum noise in the qua-
dratures. It turns out that when performing the same calculation without expectations, the
amplitude quantum noise will enter the phase quadrature only in second order, and vice-versa.
Therefore, in the context of quantum noise, it makes sense to speak of phase and amplitude
quadratures.
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(a) A−(ϕ1 , ϕ2), which determines the am-
plitude of the phase modulation φmod.
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(b) A+(ϕ1 , ϕ2), which determines the con-
stant offset to the difference signal.

Figure 6.3: Colourmap plots of signal contributions for the homodyne output depen-
ding on the angle settings of the half-wave plates. The plot ranges from −1 to 1, with
negative values drawn blue, positive values drawn red and lines indicating 0.

5) Leonhardt and Paul 1995

power at the optical detectors, and a mechanical-phase modulation is the main
quantity of interest. In this scenario the ideal choice of power splitting is to
put equal power into both arms.

6.3.5 Mismatched photodetectors

We briefly estimate the effect of a mismatch in the detection efficiency of
the optical detectors. Imperfect detectors are properly modeled by placing
conceptual beam splitters in front of ideal detectors5, but for simplicity, here
we just replace the matched number difference ĉ†H ĉH − d̂†V d̂V by an unmatched
one ĉ†H ĉH − (1 − 2κ)d̂†V d̂V , where 0 < κ < 1/2. The expectation value of this
operator is then

〈ĉ†H ĉH − (1 − 2κ)d̂†V d̂V〉 � κ |αcoh |2 + (1 − κ)Adiff(φ, θ, ϕ1 , ϕ2)|αcoh |2
≈ [

κ + (1 − κ)A+(ϕ1 , ϕ2)
] |αcoh |2

+ (1 − κ)A−(ϕ1 , ϕ2)|αcoh |2
[
cos(φ0 + θ) − sin(φ0 + θ)φmod

]
.

In order for the non-φmod-dependent contribution to vanish, we require that

A+(ϕ1 , ϕ2)|αcoh |2 !
� − κ

1 − κ ≈ −κ,

where the approximation is valid if κ � 1/2, corresponding to the case of
closely matched detectors. Looking at fig. 6.3(b) it becomes clear that this can

64



Balanced optical homodyning of a classical phase Section 6.3

be achievedwith the proper setting of ϕ1 and ϕ2, but forces a less-than-optimal
limit on the signal amplitude proportional to A−(ϕ1 , ϕ2) in fig. 6.3(a).

6.3.6 Beamsplitter variation

We can vary the interferometer as shown in fig. 6.2(b) on p. 59 by using the
second PBS in both directions and adding a 50/50 beam splitter(

â
b̂

)
BS→ 1√

2

(
1 i
i 1

) (
â
b̂

)

to separate the ingoing from the outgoing beam. Up to a global phase, the
relevant output operators of this system are given by

(
ĉH

d̂V

)
�

©«

M1,1 M2,1
M1,2 M2,2

i
2 e−iφ cos(2ϕ2) − 1

2 e−iφ sin(2ϕ2)
− i

2 sin(2ϕ2) − 1
2 cos(2ϕ2)

− i√
2

cos(2ϕ2) 1√
2

sin(2ϕ2)
− i√

2
sin(2ϕ2) − 1√

2
cos(2ϕ2)

ª®®®®®®®®¬

T

©«

âH

v̂V

v̂I
H

v̂I
V

v̂III
H

v̂III
H

ª®®®®®®®¬
,

with

M1,1 �
1
2

(
e−i(φ+θ) cos(2ϕ1) cos(2ϕ2) − sin(2ϕ1) sin(2ϕ2)

)
,

M1,2 �
i
2

(
e−i(φ+θ) sin(2ϕ1) cos(2ϕ2) + cos(2ϕ1) sin(2ϕ2)

)
,

M2,1 �
i
2

(
e−i(φ+θ) cos(2ϕ1) sin(2ϕ2) + sin(2ϕ1) cos(2ϕ2)

)
,

M2,2 � −1
2

(
e−i(φ+θ) sin(2ϕ1) sin(2ϕ2) − cos(2ϕ1) cos(2ϕ2)

)
,

where the remaining contributions necessary to make this transformation
unitary are contained within b̂I and b̂IV. The expressions relating ĉH , d̂V with
âH , v̂V differ from those derived for the first interferometer (section 6.3.1) by
a factor of 1/2, so we can reuse previous results to shorten the calculation,
yielding

〈ĉ†H ĉH + d̂†V d̂V〉 � 1
4 |αcoh |

2,

〈ĉ†H ĉH − d̂†V d̂V〉 � 1
4Adiff(φ, θ, ϕ1 , ϕ2)|αcoh |2,

and the variance and signal-to-noise

σ2
ĉ†H ĉH−d̂†V d̂V

�
1
4 |αcoh |

2,
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〈ĉ†H ĉH − d̂†V d̂V〉√
σ2
〈ĉ†H ĉH−d̂†V d̂V 〉

�
1
2Adiff(φ, θ, ϕ1 , ϕ2)|αcoh |.

Comparing these results to the previous case (section 6.3.2) we see that, as we
would naturally expect, the configuration involving a beam splitter yields a
quarter of the original absolute signal and halves the quantum limited signal-
to-noise ratio.

6.4 Mechanical noise of homodyne implementations

Generally, the difference signal of a balanced homodyne detection will be
sensitive to every relative phase change between the SI and LO pathways.
Apart from a mechanical phase caused by a moving mirror, a relative change
of path lengths can also be induced by other elements in the beam path, or by
a change of refractive indexes of the optical components. On the time scales of
seconds to hours or even days, one usually speaks of drifts, which are typically
induced by the environment, e.g. through changes in temperature or humidity.
But the practical implementation of any interferometer will also have a variety
of mechanical modes, which can be excited acoustically or thermally (see
section 5.7.1 on p. 45).b

As seen in section 5.10 on p. 50, we might assign an effective mass meff to a
mechanical mode by normalizing the total integrated stress,∫

V

[
u2(®x) + v2(®x) + w2(®x)] ρ dx3,

with the mode overlap, which in many cases can be simplified to the change in
position z0 at the spot of probing. Transferring this concept to an interferometer,
the change in position can be replaced by a change in arm length difference
∆z � ∆L1−∆L2, where L1, L2 are the lengths of the interferometer arms and∆L1,
∆L2 are their mode-induced changes. The effective mass of an interferometer
mode is then

meff � ∆z−2
∫

V

[
u2(®x) + v2(®x) + w2(®x)] ρ dx3. (6.11)

in analogy to eq. (5.38).

b) Similar effects arise in the context of laser stabilization, where one commonly speaks of
residual amplitude modulations (RAM). For an overview of this topic, see e.g. Zhang et al. (2014)
and the references therein.
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Chapter 7

Vibration isolation at low frequencies

The field of vibration isolation is vast, ranging from high-force applications in
aerospace and vehicle design1, where acceleration magnitudes above g need to
be compensated for, to gravitational wave detectors in space2 that can tolerate
only a microscopic fraction of typical accelerations on earth. Here, we will
focus mainly on the working principle of isolation systems that are used for
gravitational wave detection on earth. This is because the proposed experi-
ment has requirements similar to gravitational wave detectors – with respect
to achieving very low displacement background noise within a laboratory
environment.

We start this chapter by explaining how a harmonic oscillator can be used
as a motion attenuator in section 7.1 (as opposed to a amplification, which
we treated in chapter 5). We then derive the attenuation properties of general
one-dimensional (section 7.2) as well as a specific class of three-dimensional
(section 7.3) spring mass systems. As we will ultimately have to estimate the
performance of a compound vibration-isolation system, we briefly look into
the topic of chaining multiple attenuation systems in section 7.4. We close this
chapter with a few remarks on active vibration isolation in section 7.5.
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3)Gatscher and Kawiecki
1996

7.1 Harmonic oscillators as motion attenuators

The main principle of passive vibration-isolation revolves around employing
low-frequency harmonic oscillators as elements of force or displacement sup-
pression between the environment and the system that needs to be at rest. The
underlying mechanism can be derived in a straightforward fashion. We start
by writing down the equation of a harmonic oscillator, which in this case is
driven by both movement of the support xsup as well as an external force F:

F/m � Üx + γ( Ûx − Ûxsup) + ω2
0(x − xsup), (7.1)

which in Fourier space readsa

⇔ x̃ �
(
ω2

0 − ω2 − iγω
)−1 (

F̃/m + (ω2
0 − iγω)x̃sup

)
,

or, expressed through the acceleration spectrum,

⇔ Ü̃x �

(
1 + i

γ

ω
− ω

2
0

ω2

)−1 (
F̃
m
−

(
ω2

0
ω2 + i

γ

ω

)
Ü̃xsup

)
,

where we neglected inherent damping of x that does not depend on xsup.b
With this, we may write the response of x to an input motion xsup or force F as

x̃
x̃sup

�
ω2

0 − iγω
ω2

0 − ω2 − iγω
transmissibility, (7.2a)

x̃
F̃
�

1
m
(ω2

0 − ω2 − iγω)−1 compliance, or (7.2b)

Ü̃x
F̃
�

1
m

(
1 + i

γ

ω
− ω

2
0

ω2

)−1

�: m−1
comp(ω) effective mass. (7.2c)

The first expression x̃/x̃sup is the conversion from ingoing displacement to
outgoing displacement, or transmissibility. The second expression x̃/F̃ is the
conversion from force to displacement, or compliance. The third expression is
the conversion from force to acceleration, which in this context is often called
effective mass3 (or apparent weight), though it should not be confused with the
effective modal mass introduced in section 5.10 on p. 50. The first two expres-
sions are plotted in fig. 7.1. We note that below resonance, the transmissibility

a) In the context of vibration isolation, the Laplace transform is commonly used instead of
the Fourier transform (Matichard et al. 2015). In essence, both methods are mathematically
equivalent.

b) Technically, damping that directly affects a single degree of freedom can only be achieved
by damping its motion with respect to an inertial reference, i.e. a system that is completely at
rest. Therefore, neglecting this type of damping in the context of vibration isolation is justified.
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Figure 7.1: Transmissibility and compliance as functions of frequency ω. All axes are
scaled logarithmically.

is essentially unity, so no attenuation of motion can be achieved, while the
compliance scales with inverse mass and inverse squared frequency (i.e. with
inverse spring constant). Above resonance, the transmissibility goes with 1/ω2

up to ω2
0/γ and then changes into a less steep 1/ω falloff, while the compliance

follows a 1/ω2 curve. Note however that the difference in qualitative behavior
is due to the γ Ûxsup term in eq. (7.1), which effectively provides a vibrational
shortcut above the transition frequency ω2

0/γ. If the dominant damping force
in the system was only proportional to x (internal mass damping) or negligi-
ble, the transmissibility would go as ω2

0/ω2 above resonance, similar to the
compliance. We also note that in terms of motion/force isolation, it is highly
advantageous for the transmissibility to have low eigenfrequencies ω0 and for
the compliance to have large masses m, while the respective other quantity is
not affected by these choices.

Both quantities are highly relevant for passive isolation systems. The
transmissibility allows to estimate the passive seismic isolation and similar
scenarios where the mass of the driving system is very large compared to the
isolated system, from the motion of tectonic plates to the residual noise of a
(heavy) pre-isolation platform, and therefore completely dictates the input
motion (i.e. negligible backaction). In contrast, the compliance is needed
in the context of active vibration compensation (section 7.5 on p. 80), as it
yields a frequency-dependent value for the force required to achieve a certain
displacement.

7.2 Transfer functions of one-dimensional compound systems

We derive the response of a vertical one-dimensional mass chain with positi-
ons xi and masses mi (i ≤ n) that is connected by springs ki j and excited by
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x0, β0 x1, β1 x2, β2 x3, β3 xn , βnxn−1, βn−1

Fact1 Fact2 Fact3 FactnFactn−1
k01 k12 k23 kn−1n

β01 β12 β23 βn−1n
gravity

m1 m2 m3 mn−1 mn

Figure 7.2: One-dimensional mass chain with actuation forces, gravity and full set of
damping.

displacement x0 of its zeroth element as well as forces Fact i acting on its ith
element (fig. 7.2), where the latter is necessary to model active actuation. With
x � (x1 , . . . , xn), the equation of motion for this system is

Mm Üx + B Ûx + Kx � gMm

( 1
...
1

)
+ Fact + Fin with Fin �

©«
k01x0+β01 Ûx0

0
...
0

ª®¬
,

where B � Bs + Bk , with

Mm � diag(m1 , . . . ,mn) and Bs � diag(β1 , . . . , βn)
being diagonal matrices for mass elements and self-damping and

K �

©«

k01 + k12 −k12
−k12 k12 + k23 −k23

. . .
. . .

. . .

−kn−2n−1 kn−2n−1 + kn−1n kn−1n

−kn−1n kn−1n

ª®®®®®®¬
,

Bk �

©«

β01 + β12 −β12
−β12 β12 + β23 −β23

. . .
. . .

. . .

−βn−2n−1 βn−2n−1 + βn−1n βn−1n

−βn−1n βn−1n

ª®®®®®®¬
.

The term caused by gravity will cause a constant offset in the system without
affecting the dynamics. This can be seen by defining

x′ � x + ∆x

and requiring that the gravitational term is vanishing,

Mm Üx′
+ B Ûx′

+ Kx′ − Fact − Fin � gMm

( 1
...
1

)
+ K∆x !

� 0

⇔ ∆x � gK−1Mm

( 1
...
1

)
.
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4)Hua 2005

5) Barton 2004; Husman et al.
2000; Plissi, Torrie, Husman,
et al. 2000; Torrie 2001

The remaining system can be re-written using the Fourier transform, i.e.

(−ω2Mm − iωB + K
)

x̃′ − F̃in − F̃act � 0

⇔ x̃′
�

(−ω2Mm − iωB + K
)−1


©«
(k01+iωβ01)x̃0

0
...
0

ª®¬
+ F̃act


. (7.3)

Using this expression we may compute the response of any element in the
chain to an ingoing displacement of x0 (transmissibility) or a force acting on any
element (compliance). Specifically, we are usually interested in the response
of the last chain element to ingoing displacement, as well as the response to
an actuation force acting on the first stage.c

7.3 Transfer function of a compound system in three spatial dimensions

Of course, actual isolation systems are three-dimensional and exhibit spe-
cific transfer functions in all Euclidean directions. As these directions are
orthogonal, it seems logical to treat them separately as three uncoupled one-
dimensional isolation chains. However, this can only yield a rough approxima-
tion of the absolute performance of an isolation system, and will likely be too
optimistic. We can understand this as follows: Intuitively, as soon as rotation
of the rigid bodies forming individual isolation stages is allowed, orthogonal
Euclidean DOFs are effectively related via rotation DOFs (see fig. 7.3(a)). This
implies that the total transfer in any spatial coordinate involves non-trivial
modes (i.e. modes that can not be represented by a one-dimensional system)
of typically lower isolation performance.4

There are some tools available to estimate the performance of complex iso-
lation systems5; however, they seem either too specific (and likely not suitable
for our application of estimating the isolation between an actuated sourcemass
and a test-mass platform), or outdated or not publicly documented. Here,
we develop a framework for the performance estimation of isolation systems
based on elastic springs in both horizontal and vertical directions. We assume
that the horizontal springs are realized with wire pendulums (see section 12.2.2),
and from here on refer to the vertical springs as blade flexures (see section 12.2.1).
In order to correctly account for advanced isolation element developments
such as inverted pendulums and geometric anti-springs (see section 12.2.3),
the scheme presented would have to be slightly modified but is in principle
still applicable.

c) In order to utilize the passive stages for the filtering of noise from active vibration compen-
sation, one usually places the actuators early in the isolation chain (Robertson, Cagnoli, et al.
2002).
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vertical displacement

horizontal displacement

(a) Orthogonal displacement degrees of free-
dom can be coupled through tilt motion.

®x

®p

®φ

(b) Displacement ®x, spring attachment ®p and
rotation angle ®φ.

Figure 7.3: Conceptual figures to illustrate the effect of stage rotations and the relevant
labels.

7.3.1 Total spring potential formalism

We search for the total spring forces acting on the various DOFs of the iso-
lation system, similar to the basic concept used by Coyne et al. (2007). The
latter describes a system composed of a single stage with six DOFs (three for
displacement and three for rotation), which makes it possible to write down
all spring-forces without too much complication. We want to generalize this
method to systems composed of multiple chained platforms with six DOFs per
platform. With the added complexity, finding the forces on each individual
DOF can be a challenging undertaking. We approach this task by constructing
a total spring potential of the coupled system. This allows us to compute
the restoring forces on each individual DOF by the means of taking partial
derivatives of the total potential with respect to the specific DOFs. Given some
support by computer algebra, this method drastically simplifies the search for
the desired force expressions.

The potential can be constructed as follows: For every spring, we refer to
an upper (up) and a lower (lo) stage. At both stages we find points of spring
attachment ®pup, ®plo relative to the COM of that stage (fig. 7.3(b)). Both stages
are parametrized by two times three degrees of freedom; for displacement ®xup,
®xlow and rotation ®φup, ®φlow with

®xi � (xi , yi , zi) and ®φi � (φi , θi , ψi),

where each angle vector entry donates the rotation angle around the respective
axis. At first, we need a general expression for the displacement caused by
non-zero deflections of the two stages. In the approximation of small angles,
this is given by

®∆(®pup , ®plo) ≈
(
Rup ®pup + ®xup

) − (
Rlo ®plo + ®xlo

) − (®pup − ®plo),
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with the linearized rotation matrix Ri �
©«

1 −ψi θi

ψi 1 −φi

−θi φi 1

ª®¬
.

Due to the nature of a typical blade pendulum system (see e.g. Aston et al.
(2012) and Torrie (2001)), we have to deal with two kinds of flexible mechanical
elements causing spring potentials:

1. A wire is suspended between two attachment points on two platforms.
In a first approximation, the potential of this wire is composed of two
individual potentials. First, an elongation/compression potential pro-
portional to k� in the direction parallel to the wire (fig. 7.4(b)), where the
deflection ®∆‖ is given by

®∆‖ �
(
®∆(®pup , ®plo) · ®eG

)
®eG,

and second, a restoring contribution proportional to kG within the plane
orthogonal to the wire directiond (fig. 7.4(a)), onto which the projection
of the deflection ®∆⊥ can be written as

®∆⊥ � ®∆(®pup , ®plo) − ®∆‖ .

2. A blade flexure is causing a soft spring with stiffness kB that effectively
adds an additional small mass which can move orthogonal to the upper
stage plane, the degree of which we call z, and has the wire attached to
it (fig. 7.4(c)). We also incorporate a lateral blade mode with stiffness kD,
which we associate with a coordinate x and a blade direction ®eB. Similar
to the case above, we have

®∆‖ �
(
®∆(®pup + z®ez + x®eB , ®plo) · ®eG

)
®eG,

®∆⊥ � ®∆(®pup + z®ez + x®eB , ®plo) − ®∆‖ .

Therefore, a connection between an upper and a lower stage can yield two
kinds of potentials;

Vwire �
1
2 kG ®∆2

⊥ +
1
2 k� ®∆2

‖

�
1
2 kG

[
®∆(®pup , ®plo) −

(
®∆(®pup , ®plo) · ®eG

)
®eG

]2

+
1
2 k�

(
®∆(®pup , ®plo) · ®eG

)2
,

d)Contrary to intuition, the restoring force of an angled wire suspension is not dictated by
the absolute gravitational potential, but by the load along the wire axis. Therefore the relevant
plane is orthogonal to the wire, not orthogonal to gravity.

73



Chapter 7 Vibration isolation at low frequencies

®eGkG

(a) Deflection orthogonal to
wire, with restoring force pro-
portional to kG.

®eG

k�

(b) Deflection in wire di-
rection (bounce), with resto-
ring force proportional to k�

mkB

(c) Vertical spring with stif-
fness kB incorporated via a
point mass m with two atta-
chments.

Figure 7.4: Basicwiredeflection illustrations. For an analysis of thephysical pendulums
and springs/blade flexures, see sections 12.2.1 and 12.2.2 on p. 149 and on p. 152.

for a single wire, as well as

Vwire/blade �
1
2 kBz2 +

1
2 kDx2 +

1
2 kG ®∆2

⊥ +
1
2 k� ®∆2

‖

�
1
2 kBz2 +

1
2 kDx2 +

1
2 kG

[
®∆(®pup + z®e3 + x®eB , ®plo)

−
(
®∆(®pup + z®e3 + x®eB , ®plo) · ®eG

)
®eG

]2

+
1
2 k�

(
®∆(®pup + z®e3 + x®eB , ®plo) · ®eG

)2
,

for a combined blade and wire suspension. In addition to the small-angle
approximation mentioned before, we made two major simplifications here:
First, we ignored any twist-motion or internal modes of the blade flexures.
They act as perfect vertical/horizontal springs with respect to their attachment
plane. Second, we completely ignored all violin-modes of the wires.e

The total potential will be given by the combination of all individual po-
tentials as well as gravity,

Vtotal �
∑

springs
V +

∑
stages

m gz.

Due to the rotation matrix R acting on z and x, this potential will include
terms that have a fourth power in some combinations of DOFs and therefore

e) The advanced LIGO suspension Mathematica model (Barton 2004) includes these modes;
but it seems like the model is not maintained anymore and as far as the author can tell, running
theMathematica notebooks available onlinewith current versions of the softwarewould require
considerable effort.
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(a) Symmetric wire suspen-
sion.

(b) Asymmetric wire suspen-
sion (not desired).

(c) Pre-bent blade-spring that
reaches the intended pseudo
“non-deflected” state when
the payload is attached.

Figure 7.5: Conceptual figures to illustrate the proper design of wire suspensions and
of vertical springs.

it will not be possible to achieve linear equations of motion without further
simplification. In the following, we will derive force terms from the potential
that can then be linearized. This method is most precise if the springs and
wires have been placed such that the steady state of the system has already
been reached. For this, the wires should to be symmetric with respect to a
centered vertical plane (figs. 7.5(a) and 7.5(b)), and the vertical springs have to
be designed such that the linearization point is reached when the payload is
attached (fig. 7.5(c)).

7.3.2 Construction of the spring matrix

We can now use the total potential to calculate the resulting force on a specific
degree of freedom αi , which can be any displacement or angle coordinate of a
stage or a blade tip. This force is given by

Fi � −∂Vtotal
∂αi

.

The goal of this analysis is to achieve linear equations of motion. The proper
point of linearization should be the point of equilibrium, i.e. the set of coor-
dinate values that put the system at rest. Mathematically, we request that all
time derivatives of all coordinates vanish, which is equivalent to the condition
that the static force on each coordinate is vanishing, Fi � 0 ∀αi . This leads
to an equation system of six equations and unknowns per stage and two per
blade. As some equations of this system are nonlinear, finding a (numerical)
solution can be time-consuming. Therefore, we further simplify the problem
for computation by making use of the previous assumption that the entire
system is symmetric (figs. 7.5(a) and 7.5(b)). In this case, the forces on all angles
and non-vertical coordinates must naturally vanish at the non-deflected (i.e.
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0-) position of said coordinates, leading to a remaining system of one equation
and unknown vertical coordinate z per stage and z per blade. This system can
then be solved to gather said coordinates and fully define the linearization
point for the force terms. Further, we can then shift the vertical coordinates z
and z for the stages and blades in order to compensate for the static offset due
to gravity, as seen in section 7.2. This means that if we approximate the force
terms to first order in any coordinate,

Fi � −∂Vtotal
∂αi

≈ −
∑

j

Ki jα j + Fconst,

there will be no static offset, or Fconst � 0. This implies that the system of
equations of motion we aim to construct can be solved via Fourier transform,
as seen before.

We may write the above relation in matrix form as

− FK � Kα

with α � (®x0 , ®φ0 , ®x1 , ®φ1 , . . . , ®xnstages , ®φnstages , z1 , x1 , z2 , x2 , . . . , znblades , xnblades)T ,

where α nowhas 6(nstages+1)+2nblades entires, with nstages and nblades denoting
the total number of stages and blades, respectively. Now, as ®x0, ®φ0 serve as
input for the system of coupled oscillator and are not part of the dynamics itself,
the matrix K will have dimensions (6nstages+2nblades)×(6(nstages+1)+2nblades).
We may therefore write

−FK � ( K0
(nDOF×6)

| Kdyn
(nDOF×nDOF)

)
(
α0
αdyn

)
(6×1)
(nDOF×1) � K0α0 + Kdynαdyn

(nDOF×1)
, (7.4)

where we split up the dynamic part and the input part of the DOF vector α
and defined nDOF :� 6nstages + 2nblades as the total number of dynamic DOFs.

7.3.3 Construction of the damping matrix

The damping matrix B can be constructed in a similar fashion, where, in
analogy to the one dimensional chain (section 7.2) , B � Bs + Bk consists of
a self-damping part proportional to a DOF’s velocity and a spring-damping
part proportional to the velocity difference of several DOF’s that are linked
via springs. Due to the similarity to spring forces, we can construct it in the
same way as the spring force matrix K, i.e. by writing down an effective total
“damping potential” and then calculating Bk by derivation with respect to the
dynamic DOFs. This will lead to the damping force

−FB � B0 Ûα0 + Bdyn Ûαdyn. (7.5)
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7.3.4 Construction of the mass matrix

In order to equate the sum of these forces to the total force F � M Üα, a mass
matrix M is required. For every DOF in α, we need to find the effective inertial
mass. This is straight-forward for the translational DOFs, ®xi , and the rotational
DOFs, ®φi , of the stages. For n � 1, . . . , nstages, we write

®F®xi � mi
Ü®xi and®F ®φi

� Ji
Ü®φi ,

where mi is the mass of the stage and Ji is the moment-of-inertia tensor with
respect to the rotation axes. As the DOFs of the blade tips are coordinates in
the relative frames of the stages the blades are attached to, we have to factor in
the stage motion when determining the blade-tip forces. For n � 1, . . . , nblades,
the force on the vertical DOF zi of a blade tip is given by

Fzi � mz i
d2

dt2

[
Ri′

(®pi + z®e3 + x®eB
)
+ ®xi′

] · ®e3,

where i′ denotes the index of the stage that hosts the blade and mz i is the
effective mass of the blade mode. Since we neglect second-order terms in
DOFs, and further ®e3 ⊥ ®eB, we can approximate this as

≈ mz i
[ ( ÜRi′ ®pi

) · ®e3 + Üz + Üzi′
]
.

Similarly, for a blade tip deflection DOF xi ,

Fxi ≈ mx i
[ ( ÜRi′ ®pi

) · ®eB + Üx + Ü®xi′ · ®eB
]
.

Combining all forces into a single vector,

F �

(
®F®x1 ,
®F ®φ1
, ®F®x2 ,

®F ®φ2
, . . . , ®F®xnstages

, ®F ®φnstages
,

Fz1 , Fx1 , Fz2 , Fx2 , . . . , Fznblades , Fxnblades

)T
,

we can make use of the previous linearizion and write

F � M Üα � M0 Üα0 + Mdyn Üαdyn (7.6)

in analogy to eqs. (7.4) and (7.5).

7.3.5 Total equation of motion and solution

Comparing the terms in eqs. (7.4) to (7.6), we may now write

F � FB + FK

⇔ Mm Üαdyn + Bdyn Ûαdyn + Kdynαdyn � −M0 Üα0 − B0 Ûα0 − K0α0

⇔ (−ω2Mm − iωBdyn + Kdyn)α̃dyn � (−ω2M0 + iωB0 − K0)α̃0.
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6)Matichard et al. 2015

This allowsus to compute the frequency-dependent transmissibility of anyDOF
α̃dyn i for any input excitation α̃0 j . By construction of thematrices, the equation
above does always have an analytic exact solution. In practice, finding this
solution is difficult due to the large number of individual equations that form
the matrix equation. Instead, one can quickly solve the equations numerically
for a discrete number of frequencies ω j with built-in functionality of most
computational software, such as Mathematica’s LinearSolve[] command. We
apply this framework in section 12.3 on p. 157 to estimate the transmissibility
of a proposed test-mass suspension system.

7.4 Effective transfer of chained systems with all degrees of freedom

In order to model the effective transmissibility of a system composed of mul-
tiple isolation stages, it is necessary to combine the individual systems in a
coherent manner. In the case of the sophisticated vibration-isolation systems
of gravitational wave detectors, this is simple: There is a clear mass hierar-
chy between the stages, which effectively allows to regard the next higher
element in the hierarchy-chain as having infinite mass and thereby excludes
the notion of backaction between chain elements (fig. 7.6(a)). For example, for
the Advanced LIGO core optics6, the first (active, hydraulic) isolation stage,
HEPI, receives seismic (i.e. earth-) motion as input, where the effective mass
of the ground is obviously many times heavier than the mass of the stage. The
second (mechanical, passive and active) isolation stage, BSC-ISI, is again much
lighter than the effective mass of HEPI, which allows to consider the input of
HEPI onto BSC-ISI without accounting for backaction. The third-stage, the
quadruple pendulum system, is again much lighter than BSC-ISI, so the same
logic applies. This means that the effective transfer function of the system can
simply be gathered by multiplying the individual transfer function matrices.
For a displacement/rotation vector (®x | ®φ)T and transfer matrices T′′, T′ and T,
we may calculate the output of such systems as( ®x

®φ
)′′
out

� T′′
( ®x
®φ
)′′
in
� T′′

( ®x
®φ
)′
out

� . . . � T′′T′T
( ®x
®φ
)
in
.

The task becomes significantly more challenging when the simplification of
infinitemasses can not bemade, i.e. if themasses or excitations of the individual
systems are similar or less than a feworders ofmagnitude apart. To the author’s
knowledge, there is no general procedure to couple the individual transfer
functions of complex systems into a total transfer function. The problem
arises from the circumstance that in a coupled system where the involved
masses are not vastly different, every spring will cause an effect of backaction
between the masses that it couples. Therefore it is not possible to deduce
the total dynamics by knowing the response curves of all compound spring
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quadruple
pendulum

test mass

BSC-ISI
isolation

HEPI pre-
isolation

concrete
slab

(a) Advanced LIGO isolation schematic (not
representative of the actual isolation system
geometry). Each isolation stage has practi-
cally infinite weight compared to the next in
the chain, making it possible to calculate the
total transmissibility function by multiplica-
tion of sub-system transfers.

separate
pendulums

separate
mass-stages

test-mass
preisolation
common
pre-isola-
tion
laboratory
floor

(b) Isolation schematic for the proposed
experiment (disregarding the circumstance
that both mass stages need to be very close).
The mass stages have comparable weight,
therefore backaction plays a role in the trans-
missibility between the stages and a full mo-
del needs to be calculated

Figure 7.6: Comparison of a typical gravitational wave detector isolation system and
the system required for the proposed experiment.

7)Gatscher and Kawiecki
1996

systems individually, and an exact result can only be achieved when the entire
calculation is performed from scratch for the complete system. This becomes
even harder if some parts of the system can not be easily separated into springs
and masses, i.e. if the system has extended soft bodies (like rubber feet). It
turns out that even for the most simple system of just two coupled springs
(e.g. in the context of mounted accelerometers), sophisticated methods are
required in order to estimate approximate transfer functions7.

As sketched in fig. 7.6, the proposed experiment will necessarily involve a
mechanical coupling between test and source mass as both are in some way
mounted to a shared environment (e.g. the walls of a vacuum system). This
implies that we have to require motion attenuation between the platforms
that host the driving source mass and the test mass, the two of which have
very comparable sizes and necessarily need to be coupled through isolation
systems that at some points will have comparablemasses as well. Therefore, an
extended theory for the estimation of the error caused by neglecting backaction
would be desirable and poses a logical progression of the work presented in
this chapter.
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8)Robertson, Cagnoli, et al.
2002

7.5 Active vibration isolation and damping

Given its massive scope, we can only superficially touch upon the vast topic of
active isolation and damping here. For a proper introduction into the topic of
active isolation in gravitational wave detectors, see e.g. Matichard et al. (2015).

Fundamentally, any kind of active isolation will require inertial sensors that
measure acceleration, and actuators. To counteract vibrational displacement,
the signal from the sensors can be fed into the corresponding actuators. Natu-
rally, even in the optimal case the residual vibration with active compensation
is dictated by the sensor sensitivity, and can only be reached with sufficient
gain in the control scheme. Additionally, both sensors and actuators introduce
additional noise, which is the reason why usually additional passive isola-
tion in later stages is needed to reach the high performance levels required in
gravitational wave detection.8

The requirement of active damping arises from the necessity to neutralize
internal modes of passive suspensions that lie within the frequency band of in-
terest. Given a proper set of filters, it is possible to compensate for these modes
with high selectivity, without significantly affecting the isolation performance
in the neighboring frequencies.

The actuation force required for active control of certain DOFs can be
inferred from the framework presented above. This is essentially compliance,
though it is important to always specify where the force is acting and which
displacement should be compensated. For the one-dimensional isolation chain
discussed in section 7.2, we can simply derive the required actuation force
per incoming displacement. For example, when setting the feedback to act
exclusively on the first stage, F̃act � (F̃act1 , 0, . . . , 0)T , and requiring that the
displacement of the final stage is vanishing, x̃n

!
� 0, solving eq. (7.3) allows us

to find a frequency-dependent F̃act1/x̃0. This method can easily be expanded
to the three-dimensional system analyzed in section 7.3.

80



Part III

Experimental design

In this part we will use the theoretical framework above and present a con-
crete experimental design based on driving of a mechanical oscillator that
will allow to observe the gravitational field of a mm-sized object. We first
present our choice of parameters in chapter 8 and argue that the proposed
experiment is feasible as long as technical noise sources are not dominated
over the actual gravitational signal. In order to tackle the former, we then dive
into the technical aspects of the test mass in chapter 9, review some current
design possibilities and investigate potential show-stoppers. Chapter 10 fol-
lows a similar structure, where we discuss possible implementations of the
source-mass drive and trade-off considerations. As for outside noise sources,
in chapter 11 we propose a compact optical readout scheme that should allow
for thermal noise limited readout of the test mass position. Lastly, in chapter 12
we develop a multi-stage seismic isolation system that will shield the test mass
from both the environment and the source-mass drive to a degree that will
prohibitmechanical excitation through anything else then fundmental physical
forces.
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Chapter 8

Parameters and effect size

We start the experimental part with a chapter on the parameters for the pro-
posed measurement. Given the expressions derived in chapter 5, the aim
is to find a set of conservative quantities that should ultimately allow us to
observe the gravitational attraction of a pinhead-sized source mass. Here, we
are primarily interested in the scenario where the limitations are dominated
by fundamental physical effects, such as thermal noise, as opposed to technical
hurdles. The latter will be the main concern of the remainder of part III.

After choosing the parameters for the test mass in section 8.1, in section 8.2
we motivate our choices for the quantities appearing in the force terms in-
vestigated in chapter 5 (sections 5.6 and 5.7). We check if the magnitude of
gravity-induced frequency- and position-shifts of amicromechanical harmonic
oscillator can be resolved in section 8.3 before demonstrating that a scheme ba-
sed on resonant detection should indeed yield observable effects in section 8.4.
We briefly investigate if the observation of non-Newtonian gravity is feasible
with our current choices of parameters in section 8.5 before concluding with
an overview of noise sources in section 8.6.

Chapter contents
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8.2 Force parameters . . . . . . . . . . . . . . . . . . . 84
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8.5 Effect of non-Newtonian gravity . . . . . . . . . . . . . 89
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1)Gillies and Unnikrishnan
2014

8.1 Test-mass parameters

In the first iteration of this experiment we select spherical masses. The simple
reason for this choice is that by the shell theorem, Newtonian gravity of ob-
jects with spherical symmetry can be reduced to point masses, which heavily
simplified our calculations in chapter 5. Furthermore, we were able to find
exact expressions for most other forces in the common literature. This reduces
the computational effort required to weight the effect of gravity compared to
its potential rivals.

As the goal is to find the smallest feasible source mass for a micromechanical
measurement of gravity, we can in principle chose our test mass size freely.
Larger test masses are advantageous for the proposed measurement due to
their lower thermal noise (see eq. (5.34) on p. 46). However, for this proof-
of-principle demonstration, having a test mass significantly larger than the
source mass would defeat the purpose of demonstrating gravitation between
as-small-as-possible objects. Here, we will fix the test mass to have a diameter
of 2rT � 2 mm. As we will see below, this should allow to see the effect of a
gravitational force with a similarly sized source mass, which is significantly
smaller than source masses in previous measurements of gravity.1

For the resonance frequency of the test-mass device, there are two major
considerations. The desired effect scales favorably with lower frequencies (see
eq. (5.17b) on p. 38), which is the reason why typical torsion balance experi-
ments (section 3.2.2 on p. 10) have oscillation periods up to tens of minutes.
However, overcoming environmental noise (section 5.7.3 on p. 48) and electro-
nic noise poses a significant challenge at low frequencies. This sets some limit
to the lowest frequencies that can be reasonably used without the need for
excessive additional effort in vibration isolation and the development of the
electronic circuits. We chose a frequency of ω0/(2π) ≈ 50 Hz, as we should be
able to reach the required levels of electronic noise given state-of-the-art de-
tectors (section 11.4 on p. 143) and environmental-vibration isolation that can
fall short by some orders of magnitude compared to the highly sophisticated
systems used in modern gravitational wave detectors (section 12.1 on p. 146).
Another reason for this choice of frequency is that the gravitational pull of the
earth may impede achieving comparably low frequencies in a micromecha-
nical test-mass system (see section 9.2.2 on p. 98). Lastly, we assume a very
conservative quality factor Q � 2 · 104 which should be reasonable to achieve
with a variety of current micromechanial systems (see section 9.8 on p. 114).

8.2 Force parameters

Here, we list the relevant choices of parameters for all deterministic force
contributions analyzed in section 5.6 on p. 40. The values are summarized in

84



Force parameters Section 8.2

2) Singh-Miller and Marzari
2009

table 8.1 on p. 88.

Newtonian Gravity. In the following we will consider gold as the material
of choice (ρAu � 19.3 · 103 kg m−3) for the Newtonian force, eq. (5.21). The
reasoning is provided in section 9.1.2 on p. 95.

Coulomb force. For the Coulomb force, eq. (5.24), we assume 200 surface
charges on eachmass with opposing charges and located at the closest position
on each sphere. The magnitude of charging effects is investigated in section 9.5
on p. 109.

London-Van der Waals. FromHamaker (1937) we extract the largest measured
London-vd.Waals constant of λ1−2 � 400 · 10−60 erg cm6 � 400 · 10−67 N m cm6

(for alkalihalides), whereas an average value for other materials will be roughly
a third of that. Using gold (197 amu per molecule and a density of 19.3 g cm−3)
the atom number density of both masses is Q1,2 � 5.7 · 1022 cm−3. This results
in

AVDW < 1.4 · 10−18 N m,

which yields as an upper boundary in the London-vd. Waals force, eq. (5.25).

Casimir force. With the exception of temperature, this force depends entirely
on geometric parameters. For our consideration we choose room temperature
Θ � 293 K. At this temperature, eq. (5.26) indicates that we can consider the
far-field approximation, eq. (5.27), as long as dtot � 7.4 µm.

Patch potentials. Speake and Trenkel (2003) chose the central wave number for
eq. (5.28) such that the integrand ismaximal for the given distance, and awidth
of one decade around that band is chosen to set the integration boundaries.
For our system that number would correspond to a wavelength larger than the
source mass, which is an unphysical assumption. Therefore we take the source-
mass size to be the maximum wavelength and the smallest wavelength to be
one decade smaller. We apply a theoretical value2 for polished gold surfaces
of Vrms ≈ 45 mVa and choose the cross section of the smaller of both spheres
as the effective area. This is a very rough approximation of the situation as the
above expression is only valid for the geometry of two planes. However, since
the effective interaction area is necessarily bounded by the smaller of both
cross-sections, this approximation is unlikely to cause an underestimation of
the effect’s strength.b

a)Note that for contaminated gold surfaces, the value of Vrms is significantly lower (Behunin
et al. 2014).

b)A potential flaw of this estimation is that we only considered the effect of a static determi-
nistic patch potential force, while in fact the patch potentials also behave in a dynamic noise-like
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Gas molecule momentum kicks. For eq. (5.29) we choose a background pres-
sure of 10−8 hPa, which is a reasonable quantity for a non-baked UHV system
that is opened on a regular basis (see section 12.3.6 on p. 166 for an overview
of the proposed vacuum system). This yields a mean air molecule velocity
vair ≈ 500 m s−1, which is much higher than the velocities expected from a
drive modulation at 50 Hz. This confirms the validity of the approximations
performed in section 5.6.7.

8.3 Magnitude of frequency and position shift

As shown in section 5.1 on p. 28, splitting the time-dependent distance into a
static part d0 and a zero-mean contribution of the displacement of both masses
allows us to linearize the force terms around the non-deflected position of the
test mass. Furthermore it was shown that the test-mass position coordinate
and frequency are shifted due to the presence of the force terms.

We calculate the magnitude of parameter shifts due to the gravitational
interaction of source and test mass, which are typically the observables of
torsional-balance experiments. The explicit terms are given in eq. (5.5) on p. 30.
Inserting gravity, eq. (5.21) on p. 40, yields

∆ω0 � ω′0 − ω0, with ω0 �

√
ω′20 + ξ and ξ � −2 GM

d3
0
,

∆x � ςω−2
0 , with ς �

GM
d2

0
.

With the source mass M � 4πρSr3
S/3 (where rS is the source-mass radius) we

assume the extremal case where the surfaces of the test mass and the source-
mass sphere are touching, i.e. d0 � rT + rS. If now the test mass is selected to
be extremely small compared to the source mass, rS � rT ,c the shifts should
be maximized as d0 ≈ rS, leading to ξ ≈ −8πGρS/3 and ς ≈ 4πGρSrS/3.
The resulting values are plotted in fig. 8.1 as a function of source-mass size.
For typical Cavendish-type experiments with centimeter to decimeter-size
source masses and a torsional pendulum operating at a resonance frequency
of some millihertz, one can expect frequency shifts up to some hundreds
of microhertz and displacements up to millimeters, both of which can be
resolved reasonably in precision measurements.d One way of reducing the

manner (Speake and Trenkel 2003). The investigation of this effect was not performed within
the scope of this thesis, but as explained in section 5.6.6, we expect it to be smaller than the
averaged patch potential effect considered here.

c)Note that an infinitely small mass has infinite thermal noise.
d) The frequency shifts in actual measurements of G are typically one order of magnitude

higher, as the geometry of a torsion balance pendulum is only vaguely approximated by our
one-dimensional, linear model.
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Figure 8.1: Gravitationally induced frequency and position shifts of a harmonic oscil-
lator with frequency ω0.

mass further would be to reduce the experimental dimension d0, which is
however accompanied by an increase in resonance frequency w0 (if we assume
an unaltered spring constant). This results in a highly unfavorable scaling
of the observable effects, since ∆ω0 ∝ 1/ω′0 and ∆x ∝ (d0ω0)−2. In particular,
using dS � 2 mm and ω′0 � 10 Hz yields effective frequency and position shifts
of tens of nanohertz and picometers, respectively, which is significantly more
challenging to measure. For this reason, simply scaling down a Cavendish
experiment is not sufficient to measure the gravitational effects of small source
masses.e

8.4 Actual amplitude

We now consider the size of the individual force contributions to the integrated
PSD, or the power spectrum, from eq. (5.17a) on p. 38. As was already pointed
out there, this spectrum will entail cross-terms of various forces listed in
sections 5.6 and 5.7 on p. 40 and on p. 45, which can be neglected as long as one
force (here gravity) is dominating over all other contributions. For now, we

e) The high precision of time measurements, with the definition of the second being down to
one part in 1015, leads to the general consensus that frequency measurements are desirable in
experimental physics. This was explicitly pointed out by Inguscio, Stringari, andWieman (1999)
writing “A precision measurement is almost always a frequency measurement.”, which might
well be absolutely correct for the Bose-Einstein condensates considered in the book, that typically
oscillate at frequencies of hundreds of kilohertz and higher. However, low frequencies become
tedious to measure, and the experimental environment may actually change (e.g. through
drifts) during the measurement time. More precisely, the quote above should therefore read “A
precision measurement is almost always a high frequency measurement (except for the cases
where the effect scales with inverse frequency).”
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symbol meaning value

ω0/(2π) test-mass frequency 50 Hz

rT test-mass radius 1 mm

Q test-mass quality factor 2 · 104

m test-mass 80.9 mg

rS source-mass radius 1 mm

M source mass 80.9 mg

ε minimal surface-distance 0.5 mm

Θ temperature 293 K

Γ/2π integration bandwidth 1/3600 s−1

ρ density 19.3 · 103 kg m−3

q1, q2 charges 200 e

Q1, Q2 atom density 5.7 · 1022 cm−3

λ1−2 London-vd. Waals constant 4 · 10−65 N m cm6

Vrms RMS potential-fluctuations 45 mV

P pressure 10−8 hPa

Table 8.1: Parameters of masses and experimental settings for the comparison of
driving forces.

also ignore the effects of the readout noise and environmental noise, as they
are separately treated in chapters 11 and 12. In this section we purely want to
demonstrate that we can find a parameter regime within a millimeter-scale
system where the effect of gravity dominates not only thermal noise, but also
all other deterministic noise contributions.

In order to maximize the effect of the gravitational drive, we chose an
optimal drive amplitude (see section 5.9 on p. 49; non-optimal amplitudes are
investigated in section 10.1.1 on p. 120), a minimal surface distance ε � 0.5 mm
and an integration time of 1 h. All parameters are summarized in table 8.1.
Figure 8.2 shows the signal contribution of thermal noise and gravity as well as
the other deterministic forces as a function of the source-mass radius. For these
(conservative) settings, a signal to noise ratio of 1 is reached for a source-mass
radius of 500 µm, which in case of gold corresponds to a source-mass weight
of about 10 mg. For the parameters used (table 8.1), the main limitation of
the measurement is posed by thermal noise. For our further considerations
we want to leave some overhead for unaccounted experimental noise sources
and hence choose a source-mass radius of 1 mm, where the gravitational
contribution is about six times higher than the thermal noise. A gold sphere
of this size has a volume of 4.2 mm3 and a mass of 80.9 mg, which is still
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Figure 8.2: Signal contribution of gravity, thermal noise and various forces as a function
of source mass diameter 2rS at Θ � 293 K and Γ/2π � 1/3600 s−1. The parameters
for the various forces are explained in section 8.2 and summarized in table 8.1. The
plot assumes a minimal surface distance of ε � 0.5 mm and an optimal modulation
amplitude.
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three orders of magnitude smaller than the smallest reported attractor masses
in any experiment.3 Using eq. (5.23) on p. 41, we find the actual harmonic
amplitude (0-to-peak) for this configuration to be 5.2 · 10−11 m. As here we
only investigated fundamental physical effects, the main remaining challenge
will now be to reach the requirements for the test- and source-mass in terms
of frequency, mechanical quality, charges and drive amplitude (chapters 9
and 10), and to suppress environmental- and readout-related noise to below
the thermal noise limit (chapters 11 and 12).

We note that due to the relatively large distance ε � 500 µm between the
test- and source-mass surfaces, some unwanted fields as well as the effect of
residual-gas momentum transfers can be shielded by putting a thin membrane
between the two masses.4 The effect of additional Brownian damping through
a membrane in proximity to the test mass is investigated in section 9.3.1 on
p. 100.

8.5 Effect of non-Newtonian gravity

We briefly explore whether the proposed selection of parameters can in princi-
ple yield any improvement on the current bounds of conjectured extensions to
Newtonian gravity. Recalling eq. (5.36) on p. 49, for a typical length scale λY
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Figure 8.3: Current upper bounds of the correction strength αY for given values of the
length scale λY. Data was taken from Kapner et al. (2007) (blue), Hoskins et al. (1985)
(green) and Wagner et al. (2012) (red).

5)Milgrom 1983

the Yukawa potential is defined by a strength αY. The upper bounds for αY
from previous measurements are summarized in fig. 8.3 for the relevant range
of length scales in the context of the proposed experiment. For each pair of
length scale λY and Yukawa strength αY, we checked if the Yukawa correction
could yield a significant deviation from classical Newtonian gravity in the
proposed experiment. Of the listed values, this is only the case for αY < 10−2

at λY � 3 · 10−3 m, which yields a difference in the expected signals of about
1 % for a source-mass diameter below 2 mm. In the scope of the linearized
theory used here, this value is not drastically improved by decreasing the
minimal distance ε between both masses to 10 µm. These numbers might
change with other choices of mass geometries and an advanced theory which
incorporates higher-order force-terms, but with the current linear model of
two spherical masses, detecting deviations from Newtonian gravity is likely
not a worthwhile investigation until the relative precision of the experiment
reaches the low-percentage regime.

As mentioned in section 5.8 on p. 48, accounting for MOND effects would
require a new equation of motion with non-trivial changes to the current
solutions. However, wenote the that the typical lowacceleration scale forwhich
these forces are expected to become relevant lies around a0 ≈ 10−10 m s−2.5 For
the parameters set in table 8.1, the acceleration caused by Newtonian gravity,
FG/m, is located at around 3.9 · 10−10 m s−2. This means that the accelerations
in our experiment are actually on a scale where deviations from standard
gravity through MOND could potentially be tested.
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datadata

Figure 8.4: Individual signal contributions we account for. Deterministic forces as
well as white thermal noise and backaction noise act on the test-mass device via the
(symbolic) compliance χF , while environmental vibrations and the parasitic drive act
on the test mass via the transmissibility χx . The readout of the test-mass motion is
affected by photon shot noise and noise from the conversion from photons to current
and digitization. Fundamental effects are highlighted in light green, while technical
hurdles are highlighted in light red.

8.6 Summary of foreseeable sources of noise

In order tomotivate the remaining chapters of the experimental part, we briefly
categorize the sources of noise that need to be considered. We divide these
sources into two major categories, depending on whether they cause actual
physical displacement noise of the test mass or emerge from the measurement.
The effects are illustrated in fig. 8.4.

In the first category of noise we find the sources that act directly on the
mechanical harmonic oscillator and cause a displacement noise that is intrinsic
to the system. The thermal noise (section 5.7.1 on p. 45) and the photon
backaction (section 5.7.2 on p. 47) have flat force-noise spectra, which are
converted to displacement by the mechanical compliance (eq. (7.2b) on p. 68).
The environmental laboratory noise (section 5.7.3 on p. 48) (typically with a
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1/ f displacement spectrum) and the mechanically coupled effect of the source-
mass drive (parasitic drive) with a delta-like peak at the drive frequency. These
forces act on the test mass support and are converted to oscillator displacement
by the mechanical transmissibility (eq. (7.2a) on p. 68).

The second category has the noise sources that are part of the readout
conversion from actual displacement to some electric signal corresponding to
an equivalent displacement noise. Photon shot noise (sections 6.1 and 11.3.1 on
p. 55 and on p. 139) adds flat, uncorrelated equivalent displacement noise to
the system. Electronic noise (section 11.4 on p. 143) usually consists of 1/ f -type
noise from electronic components. Finally, we include some additional effects
from the discretization of the continuous voltage values.
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Chapter 9

Test mass

The last two decades have seen dramatic improvements in the fabrication
and performance of micro- and nanomechanical devices1. In this chapter we
investigate the feasibility of mass-loading high-Q micromechanical devices
with up to a 100 mg test mass.

We start in section 9.1 with a brief overview on mass-loading of microme-
chanical devices, an argument for our choice of test-mass material and some
considerations for the chip design. In section 9.2 we explain howwe can set up
FEM simulations of test-mass device geometries in order to calculate thermal
spectra and gravitational effects. In section 9.3 we explain test-mass damping
mechanisms beyond internal losses and in section 9.4 we investigate the effects
of device heating from the optical readout. The accumulation of charges on
the test mass is investigated in section 9.5 and in section 9.6 we comment on
the effects of a slowed-down oscillator amplitude response due to the oscilla-
tor’s small bandwidth. We conclude with a section on the optimization of the
test-mass shape (section 9.7) and a list of the current candidates for devices
(section 9.8).

Chapter contents

9.1 Test-mass design . . . . . . . . . . . . . . . . . . . 94
9.1.1 Mass-loading of devices (p. 94)
9.1.2 Test-mass material (p. 95)
9.1.3 Chip design considerations (p. 95)

9.2 Test-mass finite element simulations . . . . . . . . . . . 97
9.2.1 Total thermal power spectral density (p. 97)
9.2.2 Effect of gravitational pull (p. 98)

9.3 Damping . . . . . . . . . . . . . . . . . . . . . . 100
9.3.1 Brownian force noise damping (p. 100)
9.3.2 Clamping losses (p. 102)
9.3.3 Bonding interface and adhesive (p. 104)
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9.4 Absorptive heating . . . . . . . . . . . . . . . . . . 106
9.4.1 Analytic estimation of heating (p. 106)
9.4.2 Finite element modeling of heating (p. 107)
9.4.3 Temperature-induced frequency shift (p. 107)

9.5 Accumulation of charges . . . . . . . . . . . . . . . . 109
9.6 Ring-down and ring-in . . . . . . . . . . . . . . . . 111
9.7 Shape optimization . . . . . . . . . . . . . . . . . . 113
9.8 Current device approaches . . . . . . . . . . . . . . . 114

9.8.1 AlGaAs and InGaAp (p. 115)
9.8.2 SiN (p. 116)
9.8.3 SiC (p. 117)
9.8.4 SiO2 (p. 118)

9.1 Test-mass design

Here, we introduce some general considerations for the design of a microme-
chanical device loaded with a comparably heavy additional mass.

9.1.1 Mass-loading of devices

For our experiment, we are considering amicromechanical system that is mass-
loaded with an 80 mg gold sphere, where the dimensions are chosen such that
a test-mass cantilever at the target frequency ω0 of 50 Hz is formed. An open
question is if there is a limit to the achievable mechanical quality for such a
structure. For the measurement of Casimir forces2 as well as in the context of
biological applications of atomic forcemicroscopy (AFM)with colloidal probes,
microbeads of glass, polystyrene, polyethylene and other materials have been
successfully attached tomicromechanical cantileverswhilemaintaining typical
AFM cantilever quality factors in the ten-thousands to millions3. However,
if the added masses are much larger (tens to hundreds of grams), it remains
an outstanding question whether the desired high quality factors can still
be achieved in this extreme case. Here, a number of new challenges arise,
e.g. increased damping by residual gas molecules (see section 9.3.1 on p. 100)
and losses through clamping of the cantilever-chip to the environment, which
become non-negligible when a huge mass is attached to the cantilever (see
section 9.3.2 on p. 102). We also note that as an alternative to loading the
out-of-plane COM mode of a typical cantilever one might consider loading a
torsion-mode, which has been shown to yield comparably low stiffness while
maintaining high mechanical quality factors in a measurement of Casimir
forces4.

For the stable attachment of a massive sphere to a fragile mechanical mem-
brane or cantilever there are currently three different approaches. The first
method is the application of an adhesive. As the mechanical loss rates of
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most adhesives are high, this method will almost certainly limit the overall
Q of the devices, unless special high-Q adhesives are used (cf. section 9.3.3
on p. 104). A second method is welding by direct melting of the test-mass
sphere. Given the lowmelting point of lead, wewere able to demonstrate clean
attachment points of lead to SiC (see section 9.8.3 on p. 117), but it is unclear
if this technique can be used for higher-density metals with higher melting
points (such as gold and tungsten) due to the limited thermal resistivity of
possible substrate materials. As a third approach one might consider bonding
techniques, i.e. thermal compression bonding5 or wire bonding6.

9.1.2 Test-mass material

We chose gold as the material for both the source and the test mass due to its
high density (ρAU � 19.3 g m−3), purity (there is just a single stable isotope of
gold) and homogeneity7. Though possessing comparable density, we chose
gold over tungsten. In addition to a much higher melting point8 and the
existence of four stable isotopes, the latter has higher surface hardness9, which
potentially increases the mechanical quality but makes the manufacturing
process of the test mass more challenging. Using electropolishing techniques,
high surface qualities can be achieved.10 For testing purposes we acquired
sample goldmasses in both spherical and cylindric shape (bothwith a diameter
of 2 mm) from a local goldsmith11. We measured the deviation of weight to be
within 1 % for a sample size of ten masses.

Since a thin layer of gold can easily be deposited on clean surfaces12, this
leaves the possibility to create lower-density test- and source masses with iden-
tical surface properties to the actual devices in order to perform consistency-
and background measurements. Note that in the context of AFM cantilevers,
gold coatings have been associated with significant reduction in mechanical
quality.13

9.1.3 Chip design considerations

The are some geometric considerations when designing the chip that hosts
the mass-loaded device. We naturally require some kind of access from both
sides of the chip. On the mass-loaded side, we require enough space to bring
the source mass sufficiently close (down to ε � 0.5 mm) and potentially to fit a
shielding membrane. We should also account for some tolerance here as the
test and source mass will be mounted on individual free-swinging vibration
isolation stages. Ideally, a cylinder above the test mass of at least 3 mm to 4 mm
in diameter should be kept clear. The other side of the chip will be used for
optical readout. This means that we require a certain minimal reflectivity to
keep test-mass heating low (see section 9.4 on p. 106) and enough space to
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(a) Cantilever design where a high-
frequency reflective “tongue” is added
to the substrate in order to provide the
reflective point for the local oscillator beam.

(b) Membrane designwhere a separate layer
needs to be added for the local oscillator
reflective point, such that the motion of the
membrane is not affected.

Figure 9.1: Chip designs that provide additional mirror surface for local oscillator
beams.

fit the (possibly angled) beams for the interferometric position probe.a These
geometric constraints of clearance above and below the test-mass device seem
trivial to achieve when thinking of a flat chip design, however, as explained in
section 9.3.2 on p. 102, it will likely be required to have a stiff bond between
the chip and a large high-Q mass, which makes it more challenging to achieve
the necessary clearances.

There is a another geometric requirement arising from our specific choice
of optical readout geometry. As is argued for in section 11.2.3 on p. 132, it is
advantageous to reflect not only the signal beam, but also the local oscillator
beam off the device chip. This interferometer design puts the beam separation
of signal and local oscillator at about 2 mm, so an additional mirror surface
needs to be placed close to the test-mass mirror to reflect the local oscillator.
In the case of a tethered structure, this can be done easily by adding a tongue
shape to the tether cutout (fig. 9.1(a)), while for a membrane structure it might
require an additional fabrication layer (fig. 9.1(b)). A similar scheme was
demonstrated by Paolino, Sandoval, and Bellon (2013) with a much smaller
beam separation by reflecting the local oscillator beam off a device arm (instead
of the substrate). We note that this method will naturally lead to decreased
sensitivity for the fundamental mode, where the mode shape spans the whole
space from the point of maximal deflection to the substrate monotonously.

Due to the “floppy” nature of the proposed device, handling might pose an
additional challenge. As shown in section 9.2.2, the effect of the gravitational
pull alone will cause a significant deflection of the device. With impacts from
transportation potentially exerting enough force to break devices, one might

a) Depending on the readout scheme (see fig. 11.2 on p. 134), this can either be a cylindric
clearance for the less-efficient scheme (fig. 11.2(a)), or a prism-like clearance for themore efficient
scheme with an angled reflection (fig. 11.2(b)).

96



Test-mass finite element simulations Section 9.2

14)Gillespie and Raab 1995;
Levin 1998; Saulson 1990

therefore consider specially damped transport boxes that provide some degree
of vibration isolation.

9.2 Test-mass finite element simulations

We are interested in eigenmodes and -frequencies of specific device geometries,
mechanical qualities of modes, thermal-conduction behavior and the effects
of external forces. These questions can be efficiently investigated with finite
element solvers. Specifically, we use the COMSOL suite and its built-in functiona-
lity (such as the Eigenfrequency solver for Solid Mechanics) that is tailored
to typical applications in physics research (opposed to engineering-focused
applications).

Tuning the dimensions of a given device such that an out-of-plane COM
mode has the desired shape and frequency can be achieved in multiple ways.
Trial-and-error iterations yield reasonable results after a few attempts. As a
more systematic approach, onemay vary the parameters in a parametric sweep
with COMSOL’s onboard tools, or connect COMSOL to MatLab via the LiveLink
interface and write an optimizer program to find the ideal geometry.

9.2.1 Total thermal power spectral density

So far, we have considered just one mechanical mode. An actual mechanical
oscillator will not have a single eigenmode, but a spectrum of higher-order
modes. Reading out the position of a thermally driven oscillator will show a
spectrum of all of those modes combined. The results of the Eigenfrequency
study can be processed into such a thermal mode spectrum by using the
effective modal mass as defined in eq. (5.38) on p. 50. In order to extract
the quantities needed to calculate this expression, we require two probes. A
Domain Probe is used to integrate the total squared local displacement times
the local mass density (u^2+v^2+w^2)*solid.rho over the entire volume of
the device for each mode. This is normalized using a Boundary Probe that
integrates the mode overlap, namely the product of the local deflection in
the beam’s direction and the Gaussian beam profile of the readout beam,
w*exp(-(x^2+y^2)/(2r0)^2), over the reflective surface of the device. For
every individual mode i, both expressions are then combined as shown in
eq. (5.38), yielding the effective modal masses meff i .

As seen in eq. (5.34) on p. 46, the thermal PSD of a single mode is given
by Sx th � |χ(ω)|2 2γ/(meffβ). Using eq. (5.15c) on p. 36, we may utilize the
orthogonality of mechanical modes and generalize this expression to a sum of
individual modal contributions as14
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Sx th,tot �
∑

i

|χi(ω)|2 2γi

meff iβ
with χi(ω) � (ω0

2
i − ω2 − iγiω)−1, (9.1)

where for every mode i, ω0 i denotes the eigenfrequency, γi denotes the specific
damping rate and meff i is the specificmasswehave just calculated.b In fig. 9.2(d)
below we show such a total spectrum for a specific example geometry.

9.2.2 Effect of gravitational pull

We estimate the deflection caused by the Earth’s gravitational pull acting on
the test mass. We also evaluate the added stress-induced effect on the model
frequency. With a spring in vertical direction, the analytic expression for the
static deflection follows directly from the harmonic oscillator equations of
motion. It is

∆x � gm/k � g/ω2
0, (9.2)

which is about 100 µm for the selected frequency of 50 Hz. In a perfect har-
monic oscillator (i.e. with a linear restoring force), no gravitationally-induced
frequency shift should occur in this scenario, as the gravitational background
field has negligible position dependence. However, as seismic isolation is signi-
ficantly easier in horizontal direction (see chapter 12), it would be preferable to
drive the test mass horizontally. With gravity then pulling the sample in some
in-plane direction, which might have less stiffness, even stronger deflections
could be encountered (see figs. 9.2(a) to 9.2(c)). It therefore makes sense to
incorporate the gravitational pull into the FEM model. In COMSOL, we can
perform a Prestressed Analysis, which is a Study that consists of two steps.
In the Stationary step the solver is searching for the steady-state of the device
given the forces caused by a high-stress membrane layer and the gravitational
pull on a relatively huge mass, which is implemented by adding a Gravity
domain force. The result of the first step is then taken as the linearization
point for the Eigenfrequency step, which finds the mechanical modes and
eigenfrequencies of the model while neglecting external forces (this makes the
first step necessary). If the model and the computational power allows it, it is
advantageous to set both study steps to Include geometric nonlinearity, as
the expected deflection due to the actual test mass are significant and therefore
may change the qualitative behavior of the system.

We performed the above analysis for a four-arm tethered AlGaAs structure
(cf. section 9.8.1) for the case of no gravitational pull, a gravitational pull within

b)As is pointed out by Levin (1998) and Neben et al. (2012), we have to implicitly assume that
the dissipation of the individual modes is uniformly distributed over the test-mass interior for
the above expression to be correct, and more general methods to estimate the PSD are required
for genuinely precise estimations.
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(a) No gravitational pull
yields a clean mode at
ω0/(2π) � 52.2 Hz.

g

(b) An in-plane gravitational
pull yields a distorted mode
at ω0/(2π) � 543 Hz.

g

(c) An out-of-plane pull
yields a distorted mode at
ω0/(2π) � 677 Hz.
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(d) Thermal PSD for the same structure and three different cases of gravitational pull,
generated from the first 40 modes.

Figure 9.2: Effect of gravitational pull for a test mass based on a tethered AlGaAs
structure with a thickness of 7 µm, a mirror pad with diameter 600 µm (tether length
700 µm and width 40 µm) and a readout beam spot radius r0 � 100 µm. In (a), (b)
and (c) the top pictures show the to-scale static deflections, while the bottom pictures
show the normalized COM out-of-plane modes (all of which have an effective mass
meff � 83 mg).

the plane of the device and an out-of-plane pull. The results are shown in
fig. 9.2, alongwith the thermal PSD as explained in section 9.2.1. The frequency
shift induced by the change of the linearization point is massive, yielding an
increase by more than one order of magnitude. This is very surprising as in
a simple harmonic oscillator analytic model, no such shift should occur. A
potential reason for the change in eigenfrequency could be a drastic increase in
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stress due to the gravitational pull. Initially no pre-stress (typical for AlGaAs)
was assumed for the simulation, so we should also expect a different behavior
for (inherently) pre-stressed devices from e.g. silicon nitride or silicon carbide
(section 9.8). It will be necessary to compare these results to spectra obtained
from actual devices in order to reach a final conclusion.c

9.3 Damping

In this section we investigate the magnitude of additional damping effect, i.e.
effects that ore not directly related to geometry or internal material losses, as
the goal is to ultimately be limited only by the internal losses of the substrate
material.

9.3.1 Brownian force noise damping

We estimate the effect of additional Brownian force noise from residual air
molecule impacts. For optically levitated nano-particles, an expression for the
damping rate is provided by Li, Kheifets, and Raizen (2011) that holds for both
the viscous as well as the molecular regime,

γnano �
6πηrT

m
0.619

0.619 + Kn(P) (1 + cK(P)),

with cK(P) � 0.31Kn(P)
0.785 + 1.152Kn(P) + Kn2(P) ,

Kn(P) � s(P)
rT

and s(P) �
(√

2πd2
molβP

)−1
,

where η is the viscosity of air, P is the pressure, rT is the test-mass radius,
Kn(P) is the Knudsen number and dmol is the molecular diameter of air. As our
test mass is significantly larger than nano-particles, it is not clear whether this
estimation holds. Therefore, we compare this to an expression for macroscopic
bodies in the molecular regime.d For spheres and cylinders, we find15

γsphere �
P

mvair
r2

T

(
128π

9

)1/2 (
1 +

π
8

)
c)Note that lowering the frequency of gravitational pull-free devices further in order to

compensate for the shifts will likely not yield devices that exhibit the desired frequencies under
gravitational load. The additional stress through gravitational pull causes an additional stiffness
that simply dominates in the total stiffness. In the worst case, one then has to transition to an
experimental parameter regime that incorporates higher test-mass frequencies.

d)At the transition from the viscous to the molecular regime the mean free path length s(P)
of gas molecules is on the order of the scale of the object. As this quantity exceeds significant
scales of the experiment already below 10−3 hPa, we can safely assume to be in the molecular
regime.
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Figure 9.3: Gas-molecule induced damping rates as a function of background pressure.
The dashed linesmark the quality factorQ equivalent values for a frequencyω0/(2π) �
50 Hz.
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γcylinder �
P

mvair
r2

T
√

8π
(

hT
2rT

+
π
4 + 1

)
,

where vair � (βmair)−1/2 is the average velocity of air molecules and hT is the
test-mass cylinder height. We also take into account the additional damping
due to a membrane that is placed between the test mass and the source mass,
since significant increases in residual-gas damping rates have been observed
for larger test masses in constraint volumes.16 As we will potentially deploy a
membrane close to the test mass, we need to take these effects into account.
An analytic expression for the additional losses in a cylinder close to a wall in
the low-frequency limit is given by Dolesi et al. (2011) as

γwalls �
P

mvair
r2

T
π3/2r2

T√
2d2

mem ln
(
r2

T/d2
mem + 1

) ,
with a separation length dmem between the cylinder face and the surface. This is
essentially aworst-case estimate for the proposed spherical test-mass design, as
a cylinder face close to a flat surface can trap significantly more gas molecules.

We choose rT � 1 mm and hT � 2 mm, and, for the estimation of γwalls,
dmem � 10 µm. All resulting damping rates are shown in fig. 9.3 as functions
of the background pressure P. For the chosen parameters and at a fixed
backgroundpressure ofP � 10−8 hPa, the damping from residual airmolecules,
γair, can only limit the mechanical quality Q if it approaches values above
107. In order to achieve higher values of Q, one would have to decrease the
background pressure or increase the distance dmem � 10 µm between test mass
and membrane; both of which can easily be done as our assumed parameters
are conservative.

We see that air damping should not pose an issue in vacuum systems that
are continuously pumped; however, from our experience, in a system without
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a running pump UHV components will be necessary to keep the pressure
below 10−3 hPa.

9.3.2 Clamping losses

Typical chip-scale support structures that carry the micromechanical structure
are on the order of a few centimeters in size and a few milligrams in weight.
For example, the chips used by Vanner et al. (2013) have a weight of about 1 mg.
This has to be contrasted with the 80 mg test mass selected for the proposed
experiment. Thinking in terms of the eigenmodes of an unconstrained device,
it is clear that the mode shapes feature much higher displacement amplitudes
in the light chip than in the heavy test mass, as the total COM needs to be
conserved. In consequence, if the chip motion is constrained by clamping it to
a heavy environment, the mechanical quality of the clamp will ultimately limit
the effectiveQ of the device. This effect also occurs in the context of suspensions
for the mirrors of gravitational wave detectors, where it is referred to as recoil
damping.17 The theory is consistent with the observation that the clamping
losses scale extremely favorably with temperatures approaching cryogenic
regimes18, due to increased hardness and therefore increased mechanical
quality of a relatively soft clamping material.

In order to estimate the effect of a low-Q clamping, we can set up a simple
mechanical model (fig. 9.4(a)). As before (cf. chapter 7), the test mass has
coordinate x and mass m and is connected to the chip substrate with a spring
of spring constant k and damping β (with k/m � ω2

0, β/m � γ). The chip
has the coordinate xC and mass mC and is connected to the (infinitely heavy)
environment with a spring of stiffness kC � mCω2

C and damping βC � mCγC.
This system is described by the equations of motion

0 � m Üx + β( Ûx − ÛxC) + k(x − xC),
0 � mC ÜxC + β( ÛxC − Ûx) + k(xC − x) + βC ÛxC + kCxC.

We are interested in the damping rates of the effective modes of the compound
system. Therefore we make the ansatz x � x0 exp(st), xC � xC0 exp(st), where
the real and imaginary part of s correspond to the modal damping rate and
frequency, respectively. We may then rewrite the above equations as(

s2 + γs + ω2
0 −γs − ω2

0
−γs − ω2

0 µ−1(s2 + γCs + ω2
C) + γs + ω2

0

) (
x0

xC0

)
� 0, (9.3)

where we substituted the individual damping rates and frequencies for the
damping coefficients and spring constants and introduced the mass ratio
µ � m/mC. This equation has four complex solutions for s, which are obtained
by requiring the determinant of the left-hand matrix to vanish. The four
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Figure 9.4: Effective mechanical quality for a clamped system where we assumed
QC � 10, ωC/(2π) � 10 Hz and the standard test-mass parameters (table 8.1 on p. 88).

solutions correspond to the two mechanical eigenmodes with damping rate
γeff � −2<(s) and two opposing-sign frequencies per mode ωeff � ±=(s).
A full exact expression for these terms is quickly derived with computer
algebra; however, it fills multiple pages. Fortunately, a formally identical
model has been analyzed by Saulson (1990) to estimate the thermal noise of
mirror suspensions. There, a simple approximation for the relevant mode in
the regime of the support mass being much higher than the test mass (µ � 1)
has been derived as

γeff ≈ γ + γCµ
ω4

0

(ω2
0 − ω2

C)2
. (9.4)

This expression as well as the exact solution above are plotted in fig. 9.4(b). It
is immediately clear that similar frequencies of the test-mass mode and the
clamp mode should be avoided, as this will massively increase the effective
damping rate. This is consistent with the observation that the frequency of
the exact solution, =(s), will jump non-continuously in the regime of similar
frequencies due to the degeneracy of the effective modes.

Demanding that recoil damping will only increase the effective damping
by a small fraction κ, i.e. γeff < (1 + κ)γ, we can rewrite the above equation as

κmC
!
> m

Q
QC

ω3
0ωC

(ω2
0 − ω2

C)2
.

Typical clamps are compact and made from soft materials, such as polytetraf-
luoroethylene. We roughly estimate a clamping frequency of ωC/(2π) � 10 Hz
and quality QC ≈ 10. Demanding a maximum relative damping increase
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κ � 10 %, this yields a minimum chip mass of 35 g for a test mass Q � 2 · 104

and 3.5 kg for Q � 2 · 106.
We can think of two ways to effectively increase the chip mass. The first

solution is to either directly bond, or to rigidly glue the chip to an appropriately
shaped slab of a high-Q material, such as quarz or aluminum, using a very
thin layer of a high-Q glue (see also section 9.3.3). The second solution is to
extend the chip such that it reaches the desired mass, either by bonding it to a
bulk piece of the same material in the microfabrication process, or by actually
fabricating the structures on massive wafers (which can be made up to 40 mm
thickness, where other restrictions of the fabrication process will likely limit
the size).

9.3.3 Bonding interface and adhesive

Compared to themasses that are used in biological applications and established
force-sensing techniques (section 9.1.1), our experiment dealswith significantly
more massive objects. From the need of a relatively large contact-area follows a
comparably large deformation of the test mass as part of the relevant oscillator
mode. This means that the bulk mechanical quality Qmass of the test mass
becomes relevant for the overall loss rate of the device. Since we could not find
a convincing value for the mechanical quality of the high-density metals gold
and lead, we performed a forward transmission measurement19 (also referred
to as measuring the S21 matrix element of a two-port network) of a 2 mm gold
sphere (fig. 9.5(a)). This was implemented by piezomechanical excitation and
readout, and the desired transmission parameter is the ratio of generated
readout-voltage and applied excitation-voltage.e With the half-maximum
width∆ω/(2π) � γ/π ≈ 1.6 Hz and central frequency ω0/(2π) ≈ 360.5 Hz, we
can estimate the mechanical quality as Qmass � ω0/γ ≈ 456. However, we do
not expectmore than order-of-magnitude precision out of thismeasurement, as
the piezo heads were large compared to the test mass. Instead of the measured
value, we use a safer value of Qmass � 100 for the computation.

With such low mechanial quality it is important to avoid deformation of
the test mass as a mode-shape contribution of the relevant COMmode. This
requires a careful design of the cantilever geometry. FEMmethods provide the
means to analyzemode shapes and to estimate effective Q-values of compound
cantilever systems. The results can be used to optimize geometries with regard
to test-mass deformation.

For devices that are limited in mechanical quality not geometrically but
by internal losses, one obtains the overall dissipation by adding up the loss

e) These initial Q measurements where performed in collaboration with Stephan Puchegger
(Faculty Center for Nanostructure Research, University of Vienna), who also supported us with
Q measurements of commercial adhesives.
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Figure 9.5: Relevant plots for the estimation of Q for a compound system of AlGaAs
cantilever, adhesive layer and test mass.

20)Harry et al. 2002

angles while scaling their contribution with the mode stress derived from FEM
simulations. The effective Q value of a compound system can therefore be
computed as20

Q−1
� U−1

∑
i

Q−1
i Ui .

Here, U is the total elastic energy of the excited mode, Ui is the part of the
energy stored in the ith component and Qi is its quality factor. In our case,

Q � U
(

Usubstrate
Qsubstrate

+
Uadhesive
Qadhesive

+
Umass
Qmass

)−1

, (9.5)

where substrate denotes the cantilever material. For completeness we added
an (optional) adhesive layer to our model.

With COMSOL eigenmode simulations we can tune a cantilever geometry to
roughly oscillate at 50 Hz with the out-of-plane COMmode. We then integrate
the energy density in the deflected state bymeans of solid.Ws for all individual
components of the system for anygivenmodeusing Domain Probes. This allows
us to calculate Q using the above expression. The individual Q-values were
gathered as follows: For the adhesive, a Qadhesive value of “more than 300”
at room temperature was reported by Schediwy et al. (2005). As a substrate
we assume AlGaAs (section 9.8.1), similar to the devices used by Cole (2012),
with a room temperature Qsubstrate ≈ 30 000. The geometry we chose for the
FEM simulation is a 4-arm-cantilever with a central mirror pad (fig. 9.2) with
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a thickness of 7 µm, an arm length of roughly 1 mm and a resulting center
of mass out-of-plane mode frequency of roughly 53 Hz. Applying eq. (9.5)
to the results obtained from the FEM simulations we estimate the effective
mechanical quality of the compound system as a function of the adhesive
thickness. The results are shown in fig. 9.5(b). Since the mechanical quality
decreases when the adhesive layer thickness is smaller than 20 µm, it will be
necessary to apply a suitable minimal amount when assembling the actual
structures. Note that this unintuitive scaling is an effect of the adhesive having
a largermechanical quality than the test mass. Assuming that our assumptions
are valid (i.e. specifically that the device is not Q-limited by geometric losses),
mass-loaded structures with quality factors of at least Q ≈ 24 000 should be
feasible.

9.4 Absorptive heating

The readout of the test mass motion will be achieved via optical interferometry
as described in chapter 11. Even for the most advanced mirror-coatings, a
fraction of the probing light will not be reflected or scattered and necessa-
rily absorbed by the test-mass substrate. Significant heating of the test mass
would not only shift the mechanical resonance, but may also raise the ther-
mal noise and could potentially render the proposed experiment unfeasible.
Therefore, we estimate the heating effect from absorbed light both with an
analytic approximation as well as a finite element model.

9.4.1 Analytic estimation of heating

Assuming a fraction κ of the probing light P is absorbed by the test-massmirror,
we consider two major dissipation mechanisms for heat. First, dissipation
through the cantilever arms or the membrane. Integrating Fourier’s law21 over
the total cross section Across of all cantilever arms yields

Ptransfer � −kheatAcross∆Θ/l with ∆Θ � Θ −Θ0,

where kheat is the material’s heat conductivity, l is the length of the cantilever
arms, Θ is the temperature of the test mass and Θ0 is the temperature of the
environment. The expression will be slightly more complex for the case of a
membrane, but conceptually indifferent. The second mechanism is black body
radiation of the test-mass surface Asurf, where the dissipated power is given
by the Stefan-Boltzmann law,

Pradiation � −Asurfσε
[(Θ0 + ∆Θ)4 −Θ4

0
]
,

with the material- and wavelength dependent emissivity ε ≤ 1 and the Stefan-
Boltzmann constant σ � π2k4

B(60~3c2)−1 ≈ 5.67 · 10−8 W m−2 K−4. Both functi-
ons are shown in fig. 9.6(b) for the specific case of a 4-arm AlGaAs cantilever
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test mass (fig. 9.6(a)). In a thermal steady state, the sum of both dissipation
terms has to be equal to the absorbed power κPlight, where κ is the absorption
coefficient. Selecting the physical (i.e. real and positive) solution for ∆Θ(κ)
from all solutions of

κPlight � Ptransfer + Pradiation

yields the curve shown in fig. 9.6(c).

9.4.2 Finite element modeling of heating

Using the Heat Transfer in Solidmodule of COMSOL, we can perform a similar
estimation numerically with finite elements. The absorbed laser power can be
implemented with a Heat Source domain; while a diffuse surface boundary
node marks the parts of the system that emit black body radiation. The results
of an exemplary study are shown in fig. 9.6(c). From the results it is safe to
say that for AlGaAs structures test-mass heating through light absorption will
likely not pose an issue for thermal noise, as the increase in temperature is at
most 1 K even for an absorption coefficient as high as κ ≈ 10 %.f Obviously,
once the designs for SiN (section 9.8.2) are finalized, this study has to be
repeated with the new geometry and material properties.

9.4.3 Temperature-induced frequency shift

We suspect that a heating-induced eigenfrequency shift of the desired COM
mode could bring it out of the resonant driving range (for a delta-like driving
peak). Therefore, we process the last result further by analyzing the frequency
dependence of the out-of-plane COMmode on temperature. In COMSOL, this
can be done with a Prestressed Analysis, where the resulting stress from the
thermal study above is used as the linearization point for an Eigenfrequency
study. Figure 9.6(d) shows the frequency shift as a function of the heating-
induced shift of the average test-mass temperature Θ. Also shown is the
mechanical width γ � ω0/Q for the given set of parameters. We see that
already a minor increase of ∆Θ ≈ 10−2 K is enough to shift the resonant peak
by more than one mechanical bandwidth. Therefore, in a resonant detection
scheme it will likely be necessary to drive the test mass with a drive width
broader than γ.g Alternatively, the problem of consistently driving the test

f) Typical absorption coefficients are much lower. For example, κ < 10−6 has recently been
demonstrated for GaAs/AlGaAs multilayer mirrors (Cole, Zhang, et al. 2016).

g) In the signal derivation starting from section 5.2 on p. 33 we assumed a delta-like source
drive. In order to derive the correct signal contributions for a broadened drive, this treatment
will have to be expanded to a more general case incorporating finite-width drive modulations.
Note that due to the small bandwidth of the test mass, the amount of power that effectively
drives the test mass will not drastically change with a broader drive, and hence we do not
expect significant changes in signal contributions.
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(a) 4-arm AlGaAs cantilever design with a
heat source at the bottomcircularmirror pad,
qualitative temperature distribution when
the outer edge of the chip is defined as a
heat bath (left). Shape of the relevant COM
displacement mode with ω/(2π) ≈ 60 Hz
(right).
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(d) Relative frequency shift of the COM
mode depending on test-mass temperature.
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bandwidth of the test mass, which for the
rightmost two points are too narrow to be
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Figure 9.6: Relevant plots for the dissipation of heat in a 4-arm AlGaAs cantilever
design (see also fig. 9.2). The parameters are Plight � 1 mW, kheat � 14 Wm−1K−1

(Al0.92Ga0.08As), Across � 4 · 20 µm · 7 µm, l � 1.5 mm, Θ0 � 293.15 K, Asurf �

4π(1 mm)2, ε � 0.5.

mass on resonance could be completely avoided by transitioning to an off-
resonant driving scheme. We investigate this in section 9.6.

As a side remark, we note that with this specific cantilever geometry, for
temperature changeshigher thana fewKelvin theCOMmodedisappears, likely
due to the additional internal stress. This emphasizes again that temperature
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stability plays a crucial role in the proposed experiment, and heating/cooling
effects need to properly be accounted for.

9.5 Accumulation of charges

Charge accumulation on suspended test masses has been studied extensively
in the context of gravitational wave detectors. For the case of large (cm-scale)
fused-silica mirrors, surface charge densities up to 106 C cm−2 have been obser-
ved directly after evacuation, probably due to friction-related effects during the
pumping process.22 For our geometry (spherical masses of 2 mm diameter) this
would result in approx. 30 000 charges per mass. However, static charging of
this type can be removed through various ways, either by discharging through
electrical contact or by UV light illumination23.

Further potential charging-mechanisms arise from cosmic radiation.24 Fol-
lowing Buchman et al. (1995) we can use the Bethe-Bloch formula to calculate
the energy range of protons and electrons that would, after penetrating the
laboratory walls and the vacuum tank, come to stop in the test mass and po-
tentially charge it. We start by writing down the penetration depth ∆x of a
particle by

∆x �

∫ Tout

Tin

dx
dT

dE,

where Tin and Tout denote the kinetic energy of the proton entering and exiting
the absorber. Through substitution we may rewrite this in terms of velocity as

. . . �

∫ vout

vin

(
dT
dx

)−1 dT
dv

dv. (9.6)

As the kinetic energy of a particle of mass mp is given by T � mpc2(γ − 1),
where γ � (1 − β2)1/2 with β � v/c is the relativistic factor, we see that

dT
dv

� mpvγ3.

Now, for dx/dT, we use the Bethe-Bloch formula in SI units,

−dT
dx

�
K
A
ρz2Z

1
β2

[
1
2 ln

(
2me e2β2γ2Tmax

I2 − β2
)]

with K � 4πr2
e me c2,

and the maximal transferable energy for a single collision,

Tmax �
2me c2β2γ2

1 + 2γme/mp + (me/mp)2 .
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This gives us the mean rate of energy loss, or stopping power, of a particle with
charge factor z in an absorber with atomic mass A, density ρ, atomic number
Z and mean ionization potential I ≈ 10 eV · Z. We may now use eq. (9.6) to
estimate a penetration depth depending on the in- and outgoing velocities of
the particle.

To arrive at an energy range that we can compare to that of incoming cosmic
protons, we start “from the end”, i.e. from the last absorber, which is the gold
mass of depth 2 mm. Then, we work backwards to the chamber and a concrete
wall. For gold we have Z � 79, A � 197 amu and ρ � 19 300 kg m−3. Obviously
every incoming proton with velocity vgold,lo > 0 will penetrate the particle, but
we also need to know the highest velocity of a particle that will still come to rest
within the goldmass. We can not solve eq. (9.6) analytically, but numericallywe
find that for ∆x � 2 mm all particles up to a velocity vgold,hi ≈ 1.11 · 108 m s−1

will stop within that range (see fig. 9.7(a)). For the next layer, a 3 mm thick
steel vacuum tank, the highest relevant incoming velocity vsteel,hi will be one
that results in outgoing velocity vgold,hi after penetrating the steel, as higher
velocities will not come to rest within the gold mass.h Correspondingly, the
lowest relevant incoming velocity vsteel,low will be the one that results in a
velocity of 0 � vgold,low after penetrating the steel, as those particles with
lower velocity will not be able to penetrate the gold mass. Approximating
steel with iron, we have Z ≈ 26, A ≈ 56 amu and ρ ≈ 7874 kg m−3 and with
the same numeric method used before, we find that that for ∆x � 3 mm we
have vsteel,low ≈ 1.02 · 108 m s−1, vsteel,hi ≈ 1.23 · 108 m s−1. Finally, we repeat
the same step for a concrete wall with Z ≈ 13, A � 27 amu, ρ ≈ 1500 kg m−3

and ∆x � 0.3 m and find that the relevant velocity band for incoming protons
is vconcrete,lo < v < vconcrete,hi with

vconcrete,lo ≈ 1.858 · 108 m s−1 or Tconcrete,lo≈ 268 MeV,
vconcrete,hi ≈ 1.884 · 108 m s−1 or Tconcrete,hi ≈ 257 MeV.

Now, we may simply take some proton-flux data at sea level, e.g. by Diggory
et al. (1974) or Grieder (2001, ch. 3), and integrate the flux over this energy
band at the relevant energies well below 1 GeV (i.e. close to the material critical
energy). The data is shown in fig. 9.7(b). The integration yields a proton
absorption rate of roughly 0.1 m−2 s−1 sr−1. For a sphere with 2 mm diameter
and a half sphere of incoming particles with 2π sr, this sums up to about 10−5

scattering events per second, or on the order of one ionizing scattering event
per five to fifty hours. This estimate is consistentwith long-termmeasurements
on silica test masses in high vacuum, which report a monotonic charging rate
of up to 105 charges per cm2 per month.25

h)Obviously, the above procedure would not work if the solution to the Bethe formula was
not strongly monotonic.
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Figure 9.7: Relevant plots for the accumulation of charges through absorption of cosmic
radiation.

26) Jackson 1998

For the flux of electrons, values for integrated spectra are given by Olive
(2014, ch. 28), whichwe need to numerically derive in order to find the flux den-
sities which are plotted in fig. 9.7(b). When we repeat the process from above
for electrons, we find that within standard machine precision, there are no
scattering events from electrons at all. In addition, we know that for electrons
Bremsstrahlung26 provides a loss mechanism even stronger than collisional
losses, implying that we can safely assume that the charging rate by electrons
is negligible. The relevant charging mechanism is therefore dominated by
protons.

Lastly we note that even though in our estimation of signal contributions
(fig. 8.2 on p. 89) we assumed 200 charges per mass, up to 5000 opposing
charges could be tolerated without increasing the Coulomb force above the
thermal contribution.

9.6 Ring-down and ring-in

As seen from eq. (5.6) on p. 31, the homogeneous solution of the harmonic
oscillator decays on a time scale of τ � 2/γ, which for the given parameters is
on the order of a few minutes. As this time is proportional to the mechanical
quality, it will easily increase to above one hour for higher values of Q. This
leads to two closely related potential problems: Ring-down and ring-in times.
The steady-state of a driven harmonic oscillation will be reached when the non-
driven component of the motion, or in mathematical terms the homogeneous
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27)Albrecht et al. 1991; Gies-
sibl 2003; Poggio and Degen
2010

28)Arcizet et al. 2006; Gies-
sibl 2003

solution, has decayed. Therefore, the waiting times before time traces of the
driven test mass or the dark noise of the non-driven test mass can be taken
will potentially be intolerable.

The requirement for a decrease of ring-in times is similar to those found in
the AFM community, where it is necessary to collect data of many points in
short concussion. In the slope detectionmethod, the AFM cantilever is driven
slightly off-resonant and gets pulled onto resonance by a force gradient dF/dz
(cf. eq. (5.5) on p. 30), where its amplitude is amplified. The clear downside
of this method, apart from the small bandwidth, is the requirement for a
ring-in at every point of measurement. And while large mechanical qualities
Q of the cantilever increase the sensitivity per point, they also increase the
ring-in times. Here, the solution comes in form of the FM method, where the
cantilever is always driven on resonance, with a carefully deployed feedback
circuit (accounting for the correct phase) that corrects for force gradient induced
frequency shifts.27 Unfortunately, the expected frequency shifts in the proposed
experiment aremuch smaller than those in typical AFM systems, and therefore
cannot be resolved in reasonable time, independent of the detection scheme.
However, it would still be feasible to modulate the test-mass oscillator such
that its amplitude corresponds to the expected signal. This requires a feed
back/feed forward scheme that takes into account both the current motion of
the device as well as the motion of the gravitational source mass.i

An alternative to such a scheme would be to artificially dampen the test-
mass oscillator during the ring-ins, effectively lowering the mechanical Q and
thereby making the amplitude changes happen on a much shorter time scale.28
The technical implementation of this would be not trivial in the proposed
experiment. Because of the relatively large test mass, optical feedback would
require around 100 W of optical circulating power (cf. eq. (11.2) on p. 140),
which is simply unfeasible due to the lack of appropriate laser source and the
absurd heating rates imposed on the test mass. Instead, one might think of
modulating the base of the testmass using amechanical actuator. The potential
issuewith this approach is that such an actuator, i.e. most likely a piezoactuator,
would require electrical power, which puts an actuating broad-band antenna
directly at the base of the test mass – where it is most critical when it comes to
unwanted excitations. In addition, the backaction of an actuator would act on
the center of mass of the test-mass stage, thereby moving it and potentially
exciting modes of the vibration isolation, which would then have to be actively
damped as well.

In summary, if the test-mass quality factors approach a regime where ring-
in times become excessive, dampening techniques will be required. However,

i) Similar techniques have been used to suppress residual motion to a fraction of the standard
quantum limit in ion trap experiments (Bushev et al. 2013).
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one must expect to spend considerable engineering effort into not introducing
additional low frequency noise when using them.

One approach to completely circumvent this problem could be to transition
from a resonant detection-scheme to an off-resonant scheme, where the system
is driven close to, but not directly on resonance. As all forces acting on the
test-mass scale with the susceptibility χ(ω) (see eqs. (5.15a) to (5.15h) on
pages 36–37), this would not change the fundamental signal to noise limits
and not only annihilate the problem of resonant ring-in, but also of thermal
frequency drifts analyzed in section 9.4.3 on p. 107. However, an off-resonant
detection scheme necessarily requires thermal-noise limited optical readout
off the resonance without a cavity, which, as we describe in section 11.4 on
p. 143, is at the edge of current technology.

9.7 Shape optimization

In section 5.11 on p. 51 we derived a general expression for the gravitational
potential between two rigid bodies (eq. (5.42)). We now perform a rough nume-
ric estimation on the potential improvement in force gradient ι through mass
shape optimization. For the case of two cylinders, the integration boundaries
become

zm1 � −hcyl, zm2 � 0, r(zm) � m1/2(πρm hcyl)−1/2,
zM1 � 0, zM2 � hcyl, rS(zM) � M1/2(πρM hcyl)−1/2,

and for the case of two cones we have

zm1 � −hcon, zm2 � 0, r(zm) � (3m)1/2(πρm h3
con)−1/2(zm + hcon),

zM1 � 0, zM2 � hcon, rS(zM) � −(3M)1/2(πρM h3
con)−1/2(zM − hcon).

We may normalize ι to units of GρmρM , which will then only depend on geo-
metry (without densities), and compare it to the case of two spheres, eq. (5.43)
on p. 53, for the given set of parameters. The results of the numeric integrations
are presented in fig. 9.8 for different values of surface separation d0. It becomes
clear that for an optimal choice of cylinder dimensions, using cylindric masses
over spheres can roughly double the force gradient ι.j

It is safe to assume that a more thorough numerical estimation based on the
formalism presented in section 5.11 will allow to find optimal mass shapes that
potentially increase the gravitational effect in the driven test-mass scenario,
possibly up to an order of magnitude. However, it is also important to mention

j) Interestingly, this is significantly more than the 3 % increase that is to be expected in the
scenario where the gravitational force, and not the force gradient, is optimized by variation of the
source-mass shape (Alemi 2009; McDonald 2003).
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(a) Sphere-sphere geometry (b) Cylinder-cylinder geome-
try with optimal radius.

(c) Cone-cone geometry with
optimal inclination.
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cone, d0 � 0.5 mm cone, d0 � 1 mm cone, d0 � 2 mm
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(d) Normalized force gradient as a function of mass height, where the volume is kept
fixed. Continuous lines represent the scenario with spherical masses of the same
volume.

Figure 9.8: Results of numerical force gradient estimation for three different shapes.
The top-row figures are to-scale (i.e. have identical volumes in this representation)
and have the optimal geometry as determined by the bottom figure.

that for optimized gravitational mass shapes, other forces, especially those
with shorter interaction ranges, will potentially scale evenmore beneficial with
the modified geometries and therefore all forces considered so far will likely
have to be reevaluated.

9.8 Current device approaches

The goal is to establish mass-loaded micromechanical systems as possible test-
mass oscillators. In this section we list a few materials that have been subject
of discussion in the context of realizing a high-Q 50 Hz mechanical system
with a 80 mg mass load. This represents the current state of development at
the time of writing this thesis.k

k) The work listed in sections 9.8.2 to 9.8.4 has been carried out Richard Norte, Simon
Gröblacher (Delft University of Technology) and Claus Gärtner (University of Vienna) from the
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(a) InGaP membrane in a he-
lium cryostat (Cole, Yu, et al.
2014). A reflection of the fo-
cused fiber coupler used for
position readout is visible on
themirroringmembrane chip
(approx. 10 by 10 mm2).

(b) Fabrication drawing
(crop) for mask production
of AlGaAs cantilevers.
Blue parts indicate actual
device structures; green
parts are used for etching
of the underlying support
structure.

(c) Chrome mask for etching
based on the fabrication dra-
wing in (b). For the presen-
ted work, this marks the la-
test point in AlGaAs-based
device fabrication.

Figure 9.9: Pictures showing current progress in the manufacturing of devices based
on InGaP and AlGaAs.

29)Cole, Gröblacher, et al.
2008; Cole, Wilson-Rae, et al.
2011; Vanner et al. 2013
30) Liu, Usami, et al. 2011
31)Cole, Yu, et al. 2014

9.8.1 Aluminium gallium arsenide and indium gallium phosphide

Aluminium gallium arsenide (AlGaAs) based Bragg mirror cantilevers have
been used in multiple optomechanical applications29 and offer reasonable
quality factors of up to 5 · 104 at room temperature. Membranes based on
gallium arsenide30 (GaAs) and indium gallium phosphide31 (InGaP, fig. 9.9(a))
have been reported to reach Qs of over 106 at room temperature. All three
material systems demonstrate order-of-magnitude improvements of Q at cryo-
genic temperatures. In the ideal case, the loading the test mass will raise the
effective mass of the fundamental COM oscillator mode, thereby lowering
the resonance frequency while maintaining the mechanical quality. In the
case of AlGaAs cantilevers, if the cantilever arms are sufficiently long and
thin, geometrical losses will be completely overshadowed by internal material
losses.l In contrast, in the case of membranes the clamping of the chip can
have negative impact on the (albeit much higher) quality factors. The clear
advantage of AlGaAs is that the relatively low stress (compared to e.g. typical
SiN membranes) allows to reach the desired low frequencies with structu-
res of smaller spatial dimensions. Figure 9.9 shows some pictures of current
developments.

fabrication side as well as Ralf Riedinger and Hans Hepach (University of Vienna) from the
testing side.

l) For the FEM treatment of situations where this is not the case, see e.g. Cole, Wilson-Rae,
et al. (2011).
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(a) Welding a lead sphere
onto a SiN membrane with a
blowtorch. Photo by Richard
Norte.

(b) Resulting mass-loaded
device with a slightly off-
centered mass. Photo by
Claus Gärtner.
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(c) Ringdown with data
(green) and fitted decay
envelope (purple) yiel-
ding Q ≈ 50.

Figure 9.10: Pictures of the first brute-force mass-loaded SiN device and performance
plot.

32)Chakram et al. 2014;
Purdy, Peterson, Yu, et al.
2012; Thompson et al. 2008;
Wilson, Regal, et al. 2009;
Zwickl et al. 2008

9.8.2 Silicon nitride

Silicon nitride (SiN) membranes have been successfully used in a number of
optomechanical applications, being known for their high stress and quality fac-
tors exceeding 106 already at room temperature.32 A first attempt of fabricating
a mass loaded SiN membrane was made using a 1 mm diameter lead ball that
was welded onto the membrane using a blowtorch (figs. 9.10(a) and 9.10(b)).
In addition to the contamination of the blowtorch, the chip was dropped on
the floor twice and showed some wrinkling around the region where the ball
was attached. Not surprisingly, a ringdown measurement confirmed a low
quality factor Q ≈ 50 for the fundamental mode at 1114 Hz (fig. 9.10(c)).

However, even if there are cleaner ways of attaching a gold ball to a SiN
membrane without contaminating it, the tension of such a membrane is ef-
fectively too high to reach the desired frequency of around 50 Hz. This can
be seen by performing a quick estimation using an expression for a circular
membrane by Fletcher (1992, sec. 5.7), where the fundamental mode frequency
of a circular mass-loaded membrane with radius a and attachment radius b is
given by

ω/(2π) �
(

T
2πm ln(a/b)

)1/2
⇒ a � b exp

(
2πT
ω2m

)
,

whith the surface tension T. For the existing system with a ≈ 4 mm, b ≈
100 µm, a lead mass with a diameter of 500 µm and a typical SiN tension of
T ≈ 400 N m−1, this formula yields a frequency of 1700 Hz, which reasonably
agrees with the measured frequency of 1114 Hz for the fundamental mode.
Since the minimum radius scales exponentially with inverse frequency, a
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(a) SiC device, (5 mm)2 win-
dowwith 50 µm wide tethers
holding a 100 nm thick tram-
poline,mounting and suppor-
ting a Pb ball with 800 µm di-
ameter.

(b) SiO2 devices (before
etching the support layer),
5.3 µm thickness with
500 µm respective 100 µm
wide tethers.

(c) Partly released SiC (top)
and SiO2 (bottom) trampoli-
nes after partial XeF2 etching.

Figure 9.11: Pictures showing the current progress in the manufacturing of devices
based SiC and SiO2. Photos by Richard Norte and Hans Hepach.

33)Norte 2015; Schmid et al.
2011; Verbridge et al. 2006

34)Manos and Flamm 1989

35) Liu, Tang, et al. 2011
36)Zerr et al. 2004

frequency ω/(2π) ≈ 50 Hz with a 2 mm gold ball would push the diameter of
the required membrane to roughly 80 orders of magnitude above the visible
universe. This suggests that the tensile strength of SiN is simply far too high
for our low frequency requirement.

In order to weaken the tension of the membranes, one might think of using
lower stress films – however, this will likely lower the achievable Q as the
high mechanical quality of SiN is mainly a product of high stress films.33 A
second approach would be to plasma etch the membrane after the mass has
been attached to it and thereby make it thinner.34 This reduces the effective
spring constant while raising the mechanical quality. As a third approach one
could think of tethered SiN structures, similar to the devices discussed below.

9.8.3 Silicon carbide

An alternative to SiN comes in the form of tethered silicon carbide35 (SiC)
trampolines. SiC has a higher hardness and ultimate yield strength than SiN36

and is chemically inert to a significant degree. To the author’s knowledge,
there have been few attempts at making devices from high-stress SiC. The
downside of SiC is its high optical absorption, which could be fixed by adding
an additional mirror surface.

In a first attempt 100 nm of high stress SiC were deposited on a 500 µm
siliconwafer (fig. 9.11(a)). Since SiCfilms are chemically inert, a simple hotplate
can be used to cleanly melt a ball onto an unreleased trampoline. Finally, the
structure can be released with a fluorinated gas, e.g. via SF6 plasma release or
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37)Knizikevičius and Kopus-
tinskas 2004; SPTS Technolo-
gies 2014

38)Hori 1997

39)Cumming et al. 2014
40)Alexandrova, Szekeres,
and Christova 1988

XeF2 etch.37
Several technical hurdles still need to be overcome. It is not entirely clear if

it is possible to achieve the 400 nm of thickness in SiC on Si, which are likely
required to hold the test masses. The slow etch process for such thick layers
poses an additional challenge. In addition, we could already observe plastic
deformation through the tensile stress from an 800 µm lead sphere, painting
a rather dim future for mounting 2 mm gold spheres. Alternatively to SiC,
trampolines from other materials with high XeF2 selectivity on silicon, such as
aluminum, could be tested, but would likely have worse mechanical quality
than SiC.

9.8.4 Silicon dioxide

Another current approach is making trampolines from thick (about 5 µm)
Silicon dioxide (SiO2), which again has almost infinite etch selectivity to XeF2.
SiO2 is thermally grown38 at 1100 ◦C, resulting in high mechanical quality
through high density and little impurities. These properties make them useful
even for mirror suspensions in gravitational wave observatories.39 As opposed
to SiN and SiC, the stress in SiO2 is compressive and not tensile40, leading to
potentiallymuch lower frequencies. First devices are currently being fabricated
(see fig. 9.11(b)).
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Source mass

In this chapter we cover the driving mechanism of the source mass. The
challenge in actuating a millimeter-sized object in the proposed scheme ari-
ses from the fact that the combination of frequency, amplitude and effective
mass lies within a parameter regime that is mostly unexplored in mechanical
engineering.

This chapter is composed of a list of the various constraints for the drive
engine (section 10.1), some comments on potential solutions for positioning
and amplitude/phase readout (section 10.2) and some brief notes on actual
technical implementations that are currently investigated (section 10.3).

Chapter contents

10.1 Source-mass constraints . . . . . . . . . . . . . . . . 119
10.1.1 Drive amplitude and minimal distance (p. 120)
10.1.2 Drive bandwidth and frequency stability (p. 121)
10.1.3 Residual vibrations (p. 121)
10.1.4 Stray field leakage (p. 122)
10.1.5 Additional moving mass (p. 123)
10.1.6 Lifetime (p. 124)

10.2 Positioning and readout . . . . . . . . . . . . . . . . 124
10.3 Possible drive-implementations . . . . . . . . . . . . . 125

10.1 Source-mass constraints

In this section we investigate the constraints on the source-mass driving engine.
We split the discussion into amplitude- and frequency-domain constraints,
residual vibrations and stray fields, and constraints for the effective moving
mass as well as the minimal lifetime.
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Figure 10.1: Change of the gravitationally driven signal amplitudewith variedminimal
surface distance and drive amplitude.

10.1.1 Drive amplitude and minimal distance

In section 5.9 on p. 49, eq. (5.37) we derived the optimal amplitude dSopt of the
driving motion in order to maximize the effect of the gravitational drive;

Px
1/2
G ∝ dS(dS + rT + rS + ε)−3 ⇒ dSopt � (rT + rS + ε)/2, (10.1)

For the parameters discussed in chapter 8 (table 8.1 on p. 88, ε � 0.5 mm,
rT � rS � 1 mm) this yields optimal values of

d0opt � 3.75 mm for the COM distance
and dSopt � 1.25 mm for the actuation amplitude.

(10.2)

We can quickly check if a decrease of the minimal surface-to-surface dis-
tance ε yields a significant gain in the signal. Figure 10.1(a) shows the relative
signal as a function of ε, where the reference signal strength is given for our
choice of ε � 0.5 mm, for both the case of keeping the driving amplitude opti-
mal and a pessimistic fixed driving amplitude of dS � 100 µm. The gain from
a decrease of the minimal surface distance is minor, topping out at around
50 %. This is also clear from themathematical form of optimal drive amplitude,
eq. (10.1), which for small values of ε is mainly dictated by the size of both
spheres. However, we can qualitatively expect this to be different for forces
with a higher-order scaling in distance. It is therefore advisable to keep the
surface separation around the (rather safe) proposed value of 0.5 mm.

In a similar fashion to the above, we can analyze the decrease in relative
signal strength for non-optimal drive amplitudes dS, as shown in fig. 10.1(b).
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While slight deviations from the optimal value of 1.25 mm yield negligible
change, going significantly smaller (e.g. into the range of typical commercial
Piezo stacks at dS ≈ 100 µm) will reduce the signal to around 25 % of its optimal
value. With the current parameter settings, an overall signal-to-noise ratio of 1
can be achieved with a drive amplitude of around 70 µm.

10.1.2 Drive bandwidth and frequency stability

With the resonance frequency of the test mass in the double-digit Hertz range,
ω0/(2π) � 50 Hz, and a mechanical quality of 2 · 104, the spectral width of
the mechanical resonance lies in the range of γ/(2π) � ω0/(2πQ) ≈ 2.5 mHz
or even smaller for higher values of Q. In order to continuously drive the
test mass on resonance, one therefore has to require that the spectral width
γD,w/(2π) of the drive should not exceed said value. However, an even stricter
requirement arises from the long integration times and, in consequence, small
integration bandwidth Γ of the proposed experiment. As we ideally require
that the entire driven signal contribution falls into the same integration band,
we have to impose that

γD,w/(2π) < Γ/(2π) ≈ 0.3 mHz

for both the resonant and off-resonant detection cases. This should, in principle,
not pose a problem as frequency references with smaller width are commonly
available (e.g., Tektronix, Inc. (2017) states relative frequency drifts of less than
10−6 per year). We also note that drifts of the drive center-frequency ωD on
the scale of days or longer are currently no concern, as we expect that – at least
in the case of a resonant detection scheme – it will be necessary to readjust ωD
on the scale of hours in order to account for thermally induced drifts of the
test-mass frequency ω0.

10.1.3 Residual vibrations

As we see from the PSD of the driven harmonic oscillator (eqs. (5.15a), (5.15b)
and (5.15f) on p. 36 and on p. 37), the source-mass displacement will not only
act on the test mass via force gradients, but also via direct displacement of the
test-mass support (parasitic drive). Both effects scale with the same mechanical
susceptibility χ(ω) of the test-mass device and are therefore amplified by the
mechanical quality Q. We attenuate the drive displacement in two ways, yiel-
ding a combined transfer function TS: First, the engine itself can be constructed
such that the displacement of an effective combined mass is much smaller
than the motion of the test mass (see below). Second, a sophisticated vibration
isolation system, as we describe in chapter 12, can be deployed to reduce the
force acting on the test mass that is caused by the motion of the drive engine
by several orders of magnitude.
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1) Sumner, Pendlebury, and
Smith 1987

The requirement of a sinusoidal modulation of the source mass, xS(t) �
dS cos(ωSt) (eq. (5.9) on p. 33), results in a sinusoidal momentum pS(t) �
−MdSωS sin(ωSt). In this simplified, one-dimensional model, the total mo-
mentum can be canceled by adding a displacement-modulated mass Mcomp
with amplitude dcomp and requiring that Mcompdcomp � −MdS. In any practical
scenario, however, this system will naturally bulge and therefore translate
the initial one-dimensional problem into a multi-dimensional vibration issue.
Furthermore, assuming that the drive engine is mounted on some hanging iso-
lation platform (as described in section 12.3.4 on p. 164), non-ideal alignment
could cause more complex rotation-motions of the mounting stage. The issues
arise in a completely symmetric systemwith two identical drive engines acting
in opposite directions. Ultimately, it is safe to assume that proper engineering
of the drive engine can decrease the effective mass-amplitude-product and
thereby the effective amplitude of the driving system, but it would be unwise
to completely rely on this mechanism to cancel the parasitic drive effect. An
analysis of the total performance of both source mass and isolation system
should be seen as a combined engineering goal and is further investigated in
section 12.3 on p. 157.

10.1.4 Stray field leakage

There are few methods of achieving millimeter-scale actuation or rotation
without electromagnetic components, and even fewer methods to achieve such
motion at a certain frequency ωS without generating electromagnetic stray
fields modulated at ωS. For example, while low-frequency loud speakers can
achieve displacements of 2 mm at a frequency ωS/(2π) � 50 Hz, the actuation
necessarily goes hand-in-hand with a powerful magnetic coil and a significant
electromagnetic dipole field. The same is true for almost every electromagnetic
and piezoelectric motor. Since the stray fields act at the drive frequency, which
is the frequency of interest if the detection of the test-mass displacement, they
can in principle drive the test mass (e.g. via dipole effects) and overshadow
the effect of the gravitational interaction.

To a certain extent, high-permeability materials such as Mu-metal can
be used to shield such low-frequency modulated electromagnetic fields and
prevent them from acting on the test mass1, though there will necessarily be
restrictions to the tolerances (as moving parts of the drive engine require some
clearance) and thickness of the shielding material. A proper investigation, e.g.
using finite-element methods, can only be performed once a prototype design
has been established, which was not the case during the writing of this thesis.
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(a) Additional drive-engine mass MA that is
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(b) Minimal additional distance dA required
to suppress the effect of a co-moving motor
mass MA. Bottom/left scale: natural units;
top/right scale: units for the given source
mass M � 80.9 mg and the optimal drive
d0opt � 3.75 mm.

Figure 10.2: Relevant figures for the gravitational drive effect of an additional point-like
mass.

10.1.5 Additional moving mass

The engine driving the source mass will necessarily involve some support and
motor parts that are rigidly connected to the source mass and therefore add to
the effective gravitational drive. Our goal is to suppress the gravitational effect
of the additional mass by bringing it sufficiently far away from the test mass.

From the processing the Newtonian signal, eq. (5.22b) on p. 41, we know
that the gravitational contribution of the power signal is proportional to powers
of the sourcemass M, the drive amplitude dS and the non-deflected distance d0
as

PxG(ω0) ∝ M2d2
Sd−6

0 .

We idealize the additional mass moving with the source mass as a mass point
MA with a distance dA to the source mass (see fig. 10.2(a)). The requirement
that the additional mass is not gravitationally driving the source mass can
then be written as

PxGS(ω0) !
> PxGA(ω0),

where the indexes T and A denote the source mass and the additional mass
contribution. This yields

⇔ M2d2
Sd−6

0 > M2
Ad2

S(d0 + dA)−6,
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2) SmarAct GmbH 2017
3) Physik Instrumente (PI)
GmbH & Co. KG 2017
4) attocube systems AG 2016

where the drive amplitude dS is of course identical for both masses, and there-
fore

⇔ dA/d0 > (MA/M)1/3 − 1.

This is plotted in fig. 10.2(b), both as a relation of unitless quantities dA/d0 and
MA/M and for the concrete parameters (eq. (10.2) and table 8.1). For example,
when modeling the bulk of the drive with a point mass MA ≈ 50 g, we need to
require a distance of at least dA & 30 mm between the source-mass origin and
the point mass in order for the gravitational effect of the drive no to dominate
the effect of the source mass.

10.1.6 Lifetime

We keep the previous assumption of a measurement time τ � 3600 s (table 8.1)
for a single trace and, motivated by the PSD variance scaling we derive in
appendix A.3.1 on p. 191, assume that up to some tens of traces will be required
for a smooth spectrum. Given that some fraction of the measurements will
likely by corrupted by environmental events, we believe that the collection of
sufficient amounts of data will require at least a few days. For the testing phase
of the system we should therefore account for around ten times the minimum
requirement in lifetime, yielding around 750 h, or with ω0/(2π) � 50 Hz, a
total of around 1.4 · 108 cycles.

10.2 Positioning and readout

In order to position the sourcemass, an optical scheme can be employed to read
out the relative positioning of test mass and the source mass in all DOFs. This
can be accomplished, for example, with quadrant diodes at the source-mass
stage paired with (focused) light beams from the test-mass stage (fig. 10.3(a)).
If higher precision is required, one might think of interferometric schemes
(see e.g. Speake and Aston (2004)). As part of a high-precision measurement,
the time-dependent displacement of the source mass could be read out in a
similar fashion (fig. 10.3(b)). However, naturally the technical implementation
of this will depend on the mechanism used for the source-mass drive.

In addition to the readout, a precise positioning of the source mass also
requires actuation. This can be done with stable micro-positioning stages,
which might have to switched off during measurement to avoid residual
motion from electronic noise (e.g. by picking up stray fields through the wires
and translating them into motion), as active stages could potentially cause
additional vibration that interferes with the predicted signals. Suitable ultra-
stable positioning systems can be found among standard components of, e.g.
Smaract2, PI3 or attocube4. In addition to a precise positioning of the source
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quadrant
diode

focussed light
source

(a) 3D readout-scheme of test-mass and
source-mass stage positions with quadrant
diodes.

drive

BS

detector
mirror

mirror
collimated

light source

(b) Interferometric readout of source-mass
position.

Figure 10.3: Conceptual schemes for optical stage positioning and drive-displacement
readout.

5)Dragosits 2016

mass for measurements, this should also allow to move it further away from
the test mass while maintenance and calibration work is performed. This
should help with keeping the source mass from crashing into the test mass
due to accidental movements.

10.3 Possible drive-implementations

Achieving smooth driving of the source mass at around ω0/(2π) � 50 Hz
with a peak-to-peak amplitude of 2dS � 2.5 mm with sufficiently large lifetime
and not adding significant stray fields represents a substantial engineering
challenge. State-of-the art piezoelectric actuators fall short of the required
drive amplitude by at least one order of magnitude and available actuated
positioning platforms do not achieve the desired accelerations of more than
120 ms−2.

A selection of current design approaches can be found in fig. 10.4. The
development and engineering of drive implementations for the proposed
experiment is performed by Mathias Dragosits5 (University of Vienna) and is
not a part of the author’s work.
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(a) Flexure guiding systems
use a piezoelectric actua-
tor that is mounted such
that its contraction causes
a bulge mode orthogonal
to the actuators direction,
which can cause displace-
ments far beyond the piezoe-
lectric range. Commercial sy-
stems allow for up to 1 mm
peak-to-peak amplitude (Phy-
sik Instrumente (PI) GmbH&
Co. KG 2017).

(b) Adrive engine similar to a
resonantly driven tuning-fork
would be a comparably sim-
ple manufacturing task, but
it is unclear weather the de-
sired amplitudes can be rea-
ched and how the system can
be tuned to the desired fre-
quency.

(c) A piezo stack drives one
end of a thin string that is lo-
aded with the sources mass.
Resonant amplification of the
piezo drive is achieved byme-
ans of excitation of the fun-
damental string mode. Si-
milar to the tuning fork, this
scheme is highly dependent
on matched resonance fre-
quencies of test mass and
drive mechanism; however,
the latter can be tuned by ad-
justing the string tension.

(d) In the con-rod drive the
circular motion of an electric
motor is converted to linear
motion by a crankshaft. Gi-
ven the small scale of the in-
volved parts, we have to ex-
pect issues with imbalances
and initial torque from this
design, in addition to stray
fields from the motor.

(e) Using a lever, the compa-
rably small motion of a pie-
zoelectric actuator (typically
up to 100 µm) can be ampli-
fied. This scheme requires a
stiff and lightweight lever as
well as at least three bearings
and a restoring spring.

(f) Inspired by loudspeaker
membrane driving, a spring-
mounted electromagnetic
coil allows actuation at
a small input power and
therefore small stray fields
and heating. A similar
approach is used in injection
nozzles (Drummer et al.
2008).

Figure 10.4: Overview of current candidate designs for implementing the drive engine.
The color coding is yellow for source masses, blue for the driving element and purple
for fixed points.
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Chapter 11

Optical readout

The readout of the test-mass displacement plays a crucial role in the mea-
surement scheme. Optical and/or electronic noise are always unavoidable,
which can potentially overshadow the signal of the desired effect in practical
scenarios. The goal of our approach is to limit the added readout noise to well
below the thermal noise of the test mass.

After defining the readout requirements in section 11.1, we separately
discuss the main noise sources that need to be considered. The practical reali-
zation of the readout architecture and potential noise from the implementation
are discussed in section 11.2. Both classical amplitude noise and phase noise
of the source need to be considered when selecting a laser (section 11.3). Lastly,
suppressing quantum shot noise requires a suitable amount of optical power,
that then needs to be detected without adding significant additional electronic
noise (section 11.4).
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1)Abbott, Abbott, Adhikari,
et al. 2009

2) Bachor and Ralph 2004,
sec. 8.4

11.1 Readout requirements

Apart from backaction noise through photon momentum (see section 5.7.2
on p. 47), no part of an optical readout (especially photon shot noise and
electronic noise) is correlated with actual test-mass motion.a Neither do these
noise sources have any impact on the test-mass dynamics nor do they depend
on its mechanical susceptibility. In particular, when defining the requirement
for the optical readout to be “thermal-noise limited” (as given by eq. (5.34) on
p. 46), one needs to specify if only the thermal resonance peak of the relevant
test-mass mode needs to be resolved (resonant readout),

Sth(ω0) � 2Q(ω3
0mβ)−1 ≈ (2.6 · 10−10 m Hz−1/2)2,

or if the noise added by the readout needs to be below off-resonant thermal
noise (off-resonant readout),

Sth(ω < ω0) ≈ Sth(0) � 2(Qω3
0mβ)−1 ≈ (1.3 · 10−14 m Hz−1/2)2,

which is much tougher to achieve (i.e. by a factor of Q). For a measurement
on resonance in an ideal scenario without any unforeseeable noise peaks,
suppression of readout noise just below thermal noise on resonance would be
sufficient, as in this case identification of a high-Q peak by visual inspection
should be straight-forward. However, a typical spectrum, even if averaged,
can be full of sharp, delta-like noise peaks. With the proposed parameters
(table 8.1 on p. 88), the width of the thermal mechanical peak is on the order
of a few mHz, so in practical scenarios it will be indistinguishable from these
delta-like noise-peaks.b Ideally, the optical readout should be designed such
that becoming thermal-noise limited even off-resonance is feasible in order to
simplify the identification of the relevant mechanical peak. A second reason to
aim for readout noise below off-resonance thermal noise is the possibility of off-
resonant driving and detection, whichwould allow to circumvent the problems
associated with thermal frequency-drifts when driving the small mechanical
bandwidth on resonance (section 9.4.3 on p. 107), stability (section 10.1.2 on
p. 121) and ring-in (section 9.6 on p. 111).

A significant and rather untypical challenge in the proposed experiment is
posed by the comparably low eigenfrequency of the test mass.c Systems with
mechanical eigenmodes up to a few hundred Hertz are very susceptible to
acoustic vibrations.1 For a practical interferometer, these vibrations (combined
with thermal drifts) cause relative phase shifts that move the interferometer
away from a set point. In most experiments, this is compensated by locking2

a)Note that in general, once cavities (with decay times) are incorporated, shot noise and the
test-mass motion are not necessarily uncorrelated (Clerk et al. 2010).

b)While in principle the test-mass support could be mechanically driven to excite mechanical
modes, this would require an actuator directly at the test-mass stage, which should be avoided
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3) Bachor and Ralph 2004,
sec. 8.1.4

the interferometer, where one feeds back a correction derived from an error
signal to induce an additional phase shift, which counters the shift caused
by disturbances. This is a convenient method if the aimed signals are located
at higher frequencies than the disturbances. However, in our case we are
interested in a frequency that is located somewhere in the low-frequency
acoustic band. If active locking during data acquisition is required, one has to
be careful to completely suppress noise from the lock into the frequency rangeof
interest (in this case, a small band around the drive frequency). Hence, ideally
the interferometer is stable enough to not require locking duringmeasurement.

11.2 A homodyne interferometric readout proposal

In the typical interferometric displacement readout scheme, a moving cantile-
ver (or other mechanical transducer) introduces a phase modulation on the
probing light beam. This phase shift is proportional to the displacement as
dφ � 2k dx.d The phase of the signal beam (SI) can be read out by overlap-
ping it with a phase-stable reference beam called local oscillator3 (LO). In the
following we motivate our choice for a specific interferometer implementation
and investigate the individual optical components.

11.2.1 Established schemes for interferometric readout in the acoustic band

Naturally, a simple interferometer that probes a phasewill still be susceptible to
frequency noise and amplitude noise of the laser source. In order to reduce the
effect of frequency noise, one can minimize the optical path length difference
of the interferometer arms. For amplitude noise, there are mainly two different
ways of amplitude-fluctuation compensation that can be found in the literature.

due to the reasoning given in section 9.6 on p. 111.
c)At first glance it may seem fair to compare the proposed experiment to second genera-

tion gravitational wave detectors, where a much lower effective displacement-noise than the
10−14 m Hz−1/2 required here is measured over a larger bandwidth and even down to frequen-
cies lower than 50 Hz. However, we need to take into account how this low noise background is
achieved. First, both interferometer arms use cavities to enhance the effective amplitude change
∆P per mirror strain ∆x at the detector by the finesse. Second, an optical DC readout scheme
(Ward et al. 2008) allows to reach high sensitivity while only detecting a fraction of the power
that is circulated inside the interferometer, also allowing to pump significantly more power
into the system than would otherwise be possible. An implementation of a similar scheme in
the proposed experiment would require a number of auxiliary optics and also lead to a high
amount of incident power at the test mass. As we are confident that the required performance
levels can be reached with significantly less effort, we do not consider such a scheme at this
stage of development. However, for future iterations of our proposed experiment that exhibit
stronger noise requirements, this will likely have to be reconsidered.

d) This only holds in the case of vertical reflection. For a non-zero incident angle α, the
relation changes as dφ � 2k dx/cos α.
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(a) Conceptual fiber interferometer. A semi-
reflective mirror forms a cavity with the me-
chanical mirror. The light is circularized
through a beam splitter and detected on a
single diode. Optionally, a fraction of the
initial light can be used for normalization.

(b) Conceptual free-space Mach-Zehner in-
terferomter. The light is split into different
pathways and later recombined. By taking
the difference signal of both output ports,
amplitude fluctuations can be reducedwhen
similar powers are sensed at both ports (ba-
lanced homodyning).

Figure 11.1: Schematic drawings of the two basic homodyne interferomter types descri-
bed in section 11.2

The first approach resembles a Fabry-Pérot interferometer with a low-
finesse cavity. Here, a semi-reflecting surface close to the cantilever is used to
generate the local oscillator. The part of the light that is transmitted enters a
cavity that is formed by the semi-reflecting surface and a second mirror on the
cantilever. The light inside the cavity accumulates a phase shift and is hence
called signal beam. When leaving the cavity it interfereswith the local oscillator
(fig. 11.1(a)).e This first method in combination with a coherence-controlled
laser (see section 11.3.2), coated evanescent wave couplers and rigidly clamped
bend-insensitive fibers was used by Smith, Pratt, and Howard (2009) to reach
displacement noise PSDs of 10−13 m Hz−1/2 at 10 Hz.f

The second commonly found approach to compensate amplitude fluctu-
ations is to use a Mach-Zehnder type interferometer where SI and LO are
split into separate pathways and later recombined at a second beam splitter
(fig. 11.1(b)). The advantage of this approach is that both interferometer output

e)Note that for the overall power to be conserved in this scheme, there has to exist a second
output port for the cavity, as otherwise no amplitude modulation would be possible at the first
output. Typically, the second output is formed by a partially reflecting second cavity mirror
and through photons scattered out of the cavity.

f) In order to get an estimate of the potential noise performance, we replicated the scheme
(fig. 11.1(a)) with available components. Specifically, we used a 1064 nm Mephisto-laser by
Coherent, rigidly clamped standard fibers and simple custom detectors (Böhm 2007) on a
small honeycomb breadboard (300 mm by 400 mm) placed on a passive vibration isolation
stage (Platus 1996). This yielded a noise performance of 5 · 10−12 m Hz1/2 above 50 Hz and
10−13 m Hz1/2 above 1 kHz, which falls short of the performance demonstrated by Smith, Pratt,
and Howard (2009) by one to two orders of magnitude. We can therefore state that this scheme
is promising, but certainly requires careful selection of components to yield the best possible
performance.
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4) Smith, Pratt, and Howard
2009

ports can be accessed easily, which allows to subtract the measured powers
and to significantly reduce the sensitivity to laser amplitude noise (balanced
optical homodyning, chapter 6). The disadvantage is that due to the sepa-
ration of SI and LO, it is easier to introduce additional phase noise between
the two arms. Also it requires two closely matched detectors (i.e. with equal
detection-efficiency).

As an optional extension to both methods, one can split off a fraction of
the input power (i.e. before entering the interferometer) and divide the output
signal by this quantity, as demonstrated by Rugar, Mamin, and Guethner
(1989). This normalizes the outgoing amplitude to the incoming amplitude
and therefore compensates for classical fluctuations of the laser power. Na-
turally, it cannot compensate for amplitude noise that is generated within
the interferometer, e.g. by parasitic cavities. Interestingly, Smith, Pratt, and
Howard (2009) report that with their stable coherence-controlled laser, this
technique did not yield any noteworthy improvement of noise performance.

11.2.2 Choosing a suitable readout scheme

In our specific case, we require interferometric stability in the low frequency
acoustic band. The readout is employed to measure the displacement of a
test mass that is isolated from environmental vibrations by an isolation chain
with multiple stages (see chapter 12) inside of a large vacuum system. As
commercial laser sources are typically not compatible with high vacuum, the
source will have to be installed outside of the vacuum, with the power fed into
the system either free-space through a suitable viewport or by the means of
an optical fiber feedthrough.g

The first of the approaches presented in the previous section (fig. 11.1(a))
does in principle allow displacement readout at low acoustic frequencies. Here
it is crucial to rigidly mount all optical fibers, so that classical amplitude fluc-
tuations from mechanical excitations of the fibers are at a minimum.4 This
impedes the requirements for vibration isolation, according to which a fiber
would have to hang loosely between stages in order to keep the transmissibility
low. Such a fiber, however, would oscillate at acoustic frequencies and intro-
duce both amplitude noise and phase noise due to stress-induced birefringence
and thermal effects.

Given the obvious obstacles of thefiber interferometric approach,we choose
a balanced optical Mach-Zehnder type interferomter based on (polarization-
selective) beam displacers. This scheme is similar to but more compact than

g)Alternatively, one could house the laser source in a vacuum can (Coyne et al. 2007) that has
atmospheric pressure within the UHV system. However, the additional payload through the
can would significantly toughen the payload requirements for the last stage of seismic isolation
(and in consequence all previous stages, due to the hanging nature of the isolation system).

131



Chapter 11 Optical readout

5) Bachor and Ralph 2004

the scheme presented by Paolino, Sandoval, and Bellon (2013), who managed
to achieve long-term drifts between the interferometer arms of less than 3 nm
at room temperature and without locking. Hence, it should yield high interfe-
rometric stability through a small separation of SI and LO, while allowing the
usage of both output ports to measure a power difference signal.

We note that in principle both approaches can be combined with (better)
optical cavities to massively enhance readout precision for a given amount
of power.5 As we will see below (section 11.3.1), our power requirements are
sufficiently low that the gain of an optical cavity would not outweigh the
substantial hurdles added in practicality. Still, as an optical cavity can yield
much better noise performance given a maximum input- or detection-power,
it is a worthy consideration for future iterations of this scheme.

11.2.3 A polarization-based interferometer

In order to achieve maximum stability of an interferometer the first obvious
step is to limit the effect of acoustics by transferring the system into vacuum.
In our case this means that all crucial components, especially those involved
in the beam separation and recombination, need to be installed inside the
vacuum tank. However, this will not shield them from the acoustic vibrations
transfered via the mechanical parts. The obvious solution is to transfer the
interferometer part entirely onto the test-mass stage, which naturally needs
to have high vibration-isolation. The last step towards a low mechanical
susceptibility for acoustic frequencies is to push all relevant mechanical modes
of the interferometric setup beyond the detection band frequencies in order to
prevent the resonant enhancement of previously suppressed vibrations. This
can be achieved bymaking the system compact, i.e. of small spatial dimensions,
as examined in section 11.2.6.

Typically an optical Mach-Zehnder interferometer requires the ability to
separate and recombine different (spatial, temporal or polarization) modes of
the electromagnetic field. Our approach is to encode SI and LO into orthogonal
polarizations of the same geometric mode, which by the use of optical beam
displacers are separated into parallel beams over a small spatial region. Depen-
ding on the design of the test-mass device, the SI beam can be reflected off the
point of maximal deflection, while the LO beam is reflected off the substrate
(see fig. 11.2). The spatial recombination of SI and LO can be achieved in two
ways – either with a second beam displacer when not reflecting under normal
incidence off the test-mass device, or with the first beam displacer used in
the opposite direction. The latter approach requires an optical circulator to
separate the outgoing from the incoming beam. At this point SI and LO are still
stored in orthogonal polarizations. In order to split both contributions and al-
low for interference, a combination of half-wave plate and polarizer performs a
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distribution of the horizontal/vertical modes into diagonal polarizationmodes
that equally mix the LO and SI components.

As the first beam displacer splits the incoming beam into its horizontal and
vertical polarization components, it is possible to tune the fraction of light in
the SI and LObeams by rotating a linearly polarized incoming beamwith a half-
wave plate. In order to reach the set-point of the interferometer, i.e. the setting
of average relative phase between SI and LO that yields a balanced output and
optimal common mode rejection for laser intensity noise, an optical element
is required that introduces a relative phase between horizontal and vertical
polarization. A differential phase shift can be achieved with a birefringent
material, which can serve as an arbitrary phase retarder if it is rotated around
its optical axis.6 This element could also be used to stabilize the interferometer
to its set point actively. However, the achievable locking frequencies are quite
limited due to the fact that a physical element has to be rotated. Furthermore,
care must be taken not to introduce additional noise into the actuation band.

In section 6.3 on p. 57 we demonstrated that this interferometric scheme
can be fitted with all necessary degrees of freedom to tune the distribution of
power into both interferometer arms as well as into the output ports. In the
followingwediscuss thepractical implementation of twovariants of the scheme
described above. First, we investigate an implementation with two different
beam displacers, and second we repeat the analysis for an implementation
with a single displacer and a beamsplitter acting as a circulating element.

11.2.4 Implementation with two displacers and non-normal reflection

We briefly summarize the current selection of optical elements used in the
proposed scheme. Adetailed derivation of the signal yielded by this design can
be found in section 6.3. A conceptual representation is presented in fig. 11.2(a).

Initial fiber coupler. For coupling out of the incoming fiber we use a “60SMS”
laser beam coupler (Schäfter + Kirchhoff 2017) that has titan mechanics and is
HV compatible (and upon request can be made UHV compatible by omitting
viton parts). Lenses for this coupler are available in a range of coatings and focal
lenghts/apertures and offer tilt as well as longitudinal translation functions.
Transverse adjustment can be achieved with an additional “48MB-19.5-SXY-1”
adjustment clamp, though it might be advisable to perform a thermal noise
analysis (cf. section 11.2.6) of this specific clamp before progressing with the
design. Preliminary experiments showed that the five degrees of freedom
offered by the coupler are sufficient to align the entire optical system given
sufficient manufacturing precision of the mounting hardware.

Polarization filter. The polarization purification is done with a Glan-Taylor
polarizer7, which is has a much higher extinction ratio than a regular polarizing
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(a) Polarization based double displacer interferometer with (in order of beam transmis-
sion) x/y/z/φx/φy fiber coupler, Glan-Taylor polarizer, half-wave plate, YVO4 phase
retarder, focusing lens, first set of beam displacers, test mass on chip, second set of beam
displacers, colimating lens, half-wave plate, Wollaston prism, wedge mirror and detector
diodes.

(b) Polarization based single displacer interferometer with (in order of beam transmis-
sion) x/y/z/φx/φy fiber coupler, Glan-Taylor polarizer, half-wave plate, YVO4 phase
retarder, focusing lens, set of beam displacers, test mass on chip, 50/50 beam splitter
(circulator), half-wave plate, Wollaston prism, wedge mirror and detector diodes.

Figure 11.2: Roughly to-scale models of both possible implementations of the interfero-
meter described in sections 11.2.4 and 11.2.5 on p. 133 and on p. 137 and conceptually
analyzed in sections 6.3 and 6.3.6 on p. 57 and on p. 65. In order to compactify the
setup, one might consider to remove the need for wave plates by either rotating the
components accordingly around the beam axis, or by directly coating/depositing the
wave plates onto other components (the first onto the Glan-Taylor polarizer output,
the second onto the second beam displacer output).

beam splitter.

First wave plate. Following the analysis in section 6.3.4 on p. 62, we use a stan-
dardλ/2waveplate to rotate the light by 45° in order to achieve a 50/50 splitting
ratio of the orthogonally polarized SI and LO signal. Ideally, a zero-order wa-
veplate is used as the path lengths for horizontal and vertical polarization
must not deviate by more than a few hundred micron. This is required by the
small coherence length of the employed laser source (see section 11.3.2) and it
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(a) An optical element that
shifts the phase between ho-
rizontal and vertical polariza-
tion can be realized with a bi-
refringent material in the cor-
rect orientation.

(b) Chaining two beam dis-
placers allows to separate ho-
rizontal and vertical polariza-
tions while keeping them pa-
rallel and with identical opti-
cal path lengths.

(c) Off-angled reflection of
the SI and LO beams in a
scheme with optimal power
efficiency and minimal para-
sitic stray effects.

Figure 11.3: Conceptual principles for a polarization-determined beam-displacer im-
plementation of a Mach-Zehnder interferometer.

8) Trojek 2007

9) SmarAct GmbH 2017

10) Bachor and Ralph 2004

also keeps the effect of laser frequency noise at a minimum.

Arbitrary phase retarder. In order to achieve an arbitrary relative phase shift
between horizontal and vertical polarizations, we employ an YVO4 crystal.8 If
the optical axis is aligned with one of the polarizations, it will maintain both
polarizations and leave the amplitudes unaffected as well. However, their
relative phase can be tuned by adjusting the rotation of the crystal around its
optical axis (fig. 11.3(a)). As this adjustment has to be performed in order to
set the interferometer to the optimal operation point (highest phase sensitivity
and optimal laser-intensity-noise suppression), a remote actuation is required.
With the “SR-2013” the company Smaract9 offers an UHV-compatible low-
footprint rotation stage which retains its position and remains noise-free when
the power supply is cut. As this is another crucially sensitive part of the optical
readout, mode analysis is advisable.

Focusing. The spatial beam-separation will not exceed a few millimeters at
any point, which is on the order of the width of a collimated beam. Therefore,
focusingof the beamshouldbedoneprior to the splitting (as lenses smaller than
1 mm are rare, apart from the obvious problems of positioning). Figure 11.4
shows the Gaussian beam profile10

w(z) � w0
√

1 + (z/zR)2 with zR � πw2
0/λ (11.1)

for this scenario. A smaller beam waist w0 (i.e. focal spot size) implies larger
beam diameters w(z) at a distance z from the waist position. Requiring a beam
diameter w(z) < 2 mm up to 40 mm away from the test mass (e.g. because of
the beam displacer’s clear aperture), we are limited to a spot size w0 & 10 µm,
which sets an effective minimum area for the test-mass mirror.h

h)We point out that since both lens positions and spot positions are fixed, it is not clear if
focusing can always be achieved with the available degrees of freedom in the interferometer.
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Figure 11.4: Gaussian beam profile (eq. (11.1)) for a wavelength λ � 1064 nm. Limiting
the width of the beam at a distance z � 40 mm to w(40 mm) < 2 mm implies a
minimum waist size of w0 & 10 µm.

Polarization-dependent beam separation. The spatial separation of beams
is done with two beam displacers rotated by 90° with respect to each other
(fig. 11.3(b)), similar to the schemeused by Paolino, Sandoval, and Bellon (2013).
In this configuration the optical path length of SI and LO can in principle be
kept exactly equal. Typical calcite or YVO4 displacers yield around 1 mm of
beam separation per 10 mm of length, so in order to reach a design goal of
2 mm, the length of the displacement block will be about 20 mm. Due to their
fragility, stable mounting of the displacers in this HV application could pose a
significant challenge as temperature-induced stress might cause birefringence
or even breaking. This could be achieved for example by rigidly mounting the
displacers to a metal with an expansion coefficient similar to calcite or YVO4,
which then can be loosely mounted in a scheme that allows deterministic
relative motion of the mechanical parts.

Probing of test-mass displacement. Both SI and LO beam will be reflected off
the chip (see figs. 11.3(b) and 11.3(c)). The beams are reflected under an angle,
so the outgoing light can be directed towards the detection part without the
need for (lossy) circulation. The SI beam hits the backside of the cantilever
or the part of the membrane where the test mass is mounted, while the LO
beam is reflected off the substrate. This scheme cancels a phase shift between
SI and LO through most modes of the test-mass chip, especially translation in
the direction of the beam. Naturally, reflection under an angle requires that

We are currently investigating this question in a realization of the discussed scheme based on
standard components (see also section 14.1.4 on p. 183).
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some (prism-shaped) space above the reflective part of the test-mass device is
kept clear. Therefore, this space can not be used for additional chip mass or
mounting structures.

Recombination. Here we use the same configuration of two beam displacers
in order to recombine the beams.

Second wave plate. Similar to the first wave plate, a second zero-order half
wave plate rotates both polarizations by 45°. The horizontal and vertical
component of the outgoing beam each entail half of the power of each ingoing
horizontal and vertical polarizations (i.e. SI and LO).

Final interference and beam separation. Again, we do not use a regular (i.e.
Glan-Taylor) PBS but a symmetric optical element with a much higher ex-
tinction ratio, a so-called Wollaston prism. Typically, horizontally and verti-
cally polarized beams leave the prismwith an angle of roughly 20°. To simplify
the placement of detector diodes, it might be advantageous to split the beams
further by using small mirrors or a total reflection of a wedge-shaped prism.

11.2.5 Implementation with a double pass of a single beam-displacer

This approach deviates from the one presented above by the usage of a beam
splitter to circulate the light. It allows to use the first displacer in both directions
by reflecting the readout beam vertically off the test-mass chip (fig. 11.2(b)).
The derivation of the signal in this configuration is presented in section 6.3.6
on p. 65. Apart from the output power being reduced by 75 % and the signal to
shot-noise by 50 %, this approach is equivalent to the case with two displacers.
Overall this scheme has reduced power and thereby higher shot noise, but is
potentially much easier to align. As opposed to the scheme above, this scheme
has been successfully demonstrated by Paolino, Sandoval, and Bellon (2013).
Compared to the scheme treated in the previous section, there are two major
differences in the optical elements.

Beam splitter. A regular 50/50 beamsplitter between the arbitrary phase
retarder and the beam displacer is used to circulate (a part of) the optical
power.i

Polarization-dependent beam separation. Here, just one beam displacer is
deployed, and the beam passes it in both forward and backwards direction.
Therefore, the same optical element serves for both beam separation and
recombination.

i)Note that this requires a splitting ratio of 50/50 for both polarizations, which might be
challenging with standard components.
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11.2.6 Eigenmodes and thermal spectrum

Interferometers are typically susceptible to thermal drifts of their supporting
structure, which affects the phases and the alignment of the interferometer
arms. Thermal drifts are a low-frequency effect caused by environmental
temperature changes. In the case of the proposed experiment the interfero-
meter is supported by an alternating cascade of thin wires and heavy masses
(chapter 12), which effectively acts as a thermal low-pass filter. We therefore
assume that the effects caused by thermal drifts are small.

In addition, thermal mechanical excitations can cause phase noise within
the interferometer, i.e. Brownian noise of the interferometer. While thermal
drifts and external vibrations can be shielded to a large degree, mechanical
excitations due to thermal noise are always present. Due to the typical 1/ f to
1/ f 2 falloff in the susceptibility of harmonic oscillators above resonance (see
section 7.1 on p. 68), mechanical modes of interferometers do not play a huge
role in high frequency experiments. However, as the proposed experiment
necessarily has to be performed at comparably low frequencies, Brownian noise
can cause a large noise floor or excite even mechanical resonances within the
detection band. Hence, if low noise performance is crucial, one has to optimize
themechanical design of the interferometerwith respect to its eigenfrequencies
and mode shapes.

At the time of writing of this thesis, there is no finished design of the
entire interferometer. Therefore we propose a method based on the model
presented in section 6.4 on p. 66 that should in principal allow to estimate
the Brownian noise of a given design using finite elements. Here, we use the
method exemplary to analyze the properties of a basic toy model.

Figure 11.5(a) shows a basic model of a large-area Mach-Zehnder inter-
ferometer with SI and LO beam path colored differently for simplicity. As
the interferometer will be supported by soft springs in all spatial directions
(chapter 12), we can treat it as being in free fall without additional boundary
conditions. Computing the first 150 eigenmodes allows us to estimate the
effective mass per mode via eq. (6.11) on p. 66, where ∆z is the difference of
path length changes of SI and LO due to the mechanical mode.j As seen in
section 9.2.1 on p. 97, wemay then calculate and sumup the individual thermal
PSDs to a total thermal PSD Sx th,tot (eq. (9.1)). The resulting PSD for our toy
model is shown in fig. 11.5(b) for three different sizes of the interferometer and
a fixed Q � ω0 i/γi of 50 for all modes. It immediately becomes clear that a
reduction of interferometer size is advantageous for noise performance. Lastly,

j)As described in detail by Gillespie and Raab (1995), one always has to check if the thermal
PSD at the given frequency of interest is actually converging for the amount of eigenmodes
that is incorporated. Here, the spectra were effectively converging after adding around 100
eigenmodes.
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(b) Thermal displacement noise PSD for
the first 150 modes as a function of fre-
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of the interferometer and the physical se-
paration of SI and LO greatly helps with
reducing thermal noise.

Figure 11.5: Demonstration of interferometer thermal noise estimation for the case of a
simple toy model.

we point out that given the very narrow bandwidth of the proposed testmass,
γ/(2π) � ω/(2πQ) ≈ 2.5 mHz, we would actually have to be rather unlucky
to accidentally “catch” a high-Q mechanical mode of the interferometer. In
that case, one could slightly shift the interferometer’s eigenmode frequencies
via small geometric modifications.

11.3 Laser source

Here we estimate the requirements for the light source in terms of power and
stability.

11.3.1 Power requirements

In order to become limited by thermal noise Sx th, it is necessary to suppress
the photon shot noise Sxsh well below the thermal noise limit by increasing
the power of the light source. From eqs. (5.34) and (6.1) on p. 46 and on p. 56
we have

Sx th � |χ(ω)|2 2γ
mβ

and Sxsh �
~

32π
λc
P

.

As explained in section 11.1, while reaching the thermal noise limit on re-
sonance (ω � ω0) is in principle sufficient for a resonant measurement of
gravity, for practical reasons it will likely be necessary to resolve thermal noise
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Figure 11.6: Comparison of thermal noise and photon shot noise. For a given test-mass
diameter 2rT a value of the thermal PSD is found in the left-hand figure. One can
then use the right-hand figure to see the minimal power needed to suppress photon
shot noise below the thermal PSD.

off-resonance (ω < ω0). In fig. 11.6 we compare the noise PSD generated by
both Sx th on- and off-resonance as a function of test-mass size as well as Sxsh
as a function of power.

In order to become thermal-noise limited, we require Sxsh � Sx th. For the
on-resonance case this yields a minimum power requirement

Pmin,res � ~λcmβ
64π Q−1ω3

0,

while being shot noise limited off-resonance requires

Pmin,offres �
~λcmβ

64π Qω3
0.

For our usual parameters, this is

Pmin,res � 5 fW and Pmin,offres � 2 µW.

So far we have not factored in photon back-action (section 5.7.2 on p. 47). Back-
action becomes relevant starting in the power regime around the lowest point
of the SQL (eq. (6.3) on p. 56). For our parameters, this is

PSQL � (256π)−1/2 λcm
|χ(ω)| ≈

{
(256π)−1/2λcmω0γ ≈ 4 mW, ω � ω0

(256π)−1/2λcmω2
0 ≈ 90 W, ω ≈ 0

. (11.2)

It becomes clear that due to our comparably large test mass and the lack of
an optical cavity, the chosen parameters yield an experiment far away from
the lowest point of the SQL. Neglecting the effect of backaction is therefore
justified.
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2009

11.3.2 Suppression of parasitic scattering

A major source of noise in interferometric setups is parasitic interference11,
where scattered light from multiple backreflections between optical compo-
nents reinterferes with the main signal path. In the worst case, light scattered
this way picks up acoustic vibrations and therefore gets phase-shifted around
the frequency of interest. This effect can be drastically reduced if the light
source has a very short coherence length (on the order of a few hundred mi-
crons). Then, light scattered multiple times can not interfere with the main
signal beam due to the difference in optical path lengths. This approach of low
frequency noise suppression has been successfully demonstrated in atomic
force microscopy applications by Rugar, Mamin, and Guethner (1989). In
recent years commercial laser systems became available that have specific
modes to achieve broad linewidth while maintaining sub-nanometer central
peak stability, such as the 51nano-series (Schaefter + Kirchhoff) with built-in
permanent linewidth broadening12 and the 8160x-series (Agilent) that features
a user controllable “coherence control”. The latter has been reported to drasti-
cally reduce noise up to 1 kHz while introducing a huge amount of artifacts at
higher frequencies.13 This method requires that the difference of optical paths
of SI and LO is much shorter than the coherence length. For this reason, the
design proposed above has identical optical path lengths for both beams.

11.3.3 Amplitude stability

As we have seen in eqs. (6.8b) and (6.10) on p. 61 and on p. 63, an optimal
choice of waveplate angles ϕ1, ϕ2 and compensation phase θ yields a photon
count difference

〈ĉ†H ĉH − d̂†V d̂V〉 ≈ 1
2φmod |α |2,

where φmod is the phase modulation and |α |2 is proportional to the power
of the light source. As α denotes a quantum-mechanical expectation value
for a steady-state, this expression remains unchanged by photon shot noise.
It does, however, include classical variations of α, which can be caused by
drifts or instabilities of the laser source. Therefore, ideally, one would divide
the difference signal 〈ĉ†H ĉH − d̂†V d̂V〉 by a signal that is proportional to the
laser power before entering the interferometer, e.g. by splitting and detecting
a small fraction off the main beam. As mentioned before, Rugar, Mamin,
and Guethner (1989) saw a significant improvement in a single-output fiber
interferometer using this technique. However, Smith, Pratt, andHoward (2009),
who used a similar setup but focused on thorough fixation of all involved
(custom bend-insensitive) fibers, mention that such a scheme did not yield
further improvements in their noise performance.
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11.3.4 Frequency stability

Assuming that the integrated homodyne setup is well-isolated, thermalized
and mechanically stable, low-frequency noise and drifts should mainly be
caused by wavelength instability of the laser source. We perform a rough
estimation on how stable the wavelength needs to be in order to

1. not cause additional low-frequency noise above the desired signal and

2. allow us to chose the homodyne phase φ0 once before every measure-
ment trace and then leave it at the set point for the remainder of that
measurement without the need for real-time active locking.

To answer the first question, we start by defining ∆L as the difference in
optical path lengths of SI and LO beam. The number m of waves that will fit
into this path length is then m � ∆L/λ. An infinitesimal change of wavelength
dλ will cause a signal equivalent to a change of position dx as

dx � m dλ � ∆L
dλ
λ

� ∆L
dν
ν
,

where ν is the optical frequency. This allows us to compare RMS values, or,
which is more natural when relating laser frequency noise to thermal noise,
PSDs. With the above the frequency PSD can be written as Sxν � (∆L/ν)2Sν,
and we should require

Sx
1/2
ν � νSx

1/2
th /∆L ≈ 3.7 · 103 Hz Hz−1/2 · (∆L/mm)−1

in order to reach frequencynoisewell below the thermal noiseSx th off-resonance.
Moving on to the second point above, we now start with an initial wave-

length λ1, fitting a number of waves m1 � ∆L/λ1 in the arm length difference.
After some drifting, the new wavelength yields m2 � ∆L/λ2. A small diffe-
rence of those two numbers is then equivalent to having tolerable drifts in the
system. We demand ∆m

!� 1 with ∆m � |m1 − m2 |. We can rewrite this as
∆L∆λ/λ2 !� 1, where we approximated λ1λ2 ≈ λ2. Since the difference of
two frequencies can be expressed as ∆ν ≈ c∆λ/λ2, we have

∆ν
!� c
∆L

,

Taking the employment of a short coherence length (< 1 mm) laser as given
limits the mechanical design to a few hundred micron of tolerable SI-LO path
length difference, thus allowing laser frequency drifts ∆ f as

∆ν � 300 GHz.

This is not to be confused with the linewidth. It is the maximum drift of the
central frequency (and independent of the width) that can be tolerated over a
span of multiple hours.
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11.4 Detector electronics

For the detection part of the optical readout, we require that an upper limit for
the noise PSD is given by the optical shot noise, which is usually referred to as
being shot-noise limited. Becoming shot-noise limited at high frequencies is com-
parably easy as the typical 1/ f (flicker) noise14 of many electronic components
becomes negligible.15 However, in the proposed low-frequency experiment, we
have to be more careful about proper circuit design and selection of low-noise
components.

Following Stefszky (2012), there are in principle two ways to electronically
implement the two diodes used for a balanced homodyne detection. The first
one is the variable gainmethod where both photo currents are converted and
amplified individually and then subtracted, either electronically or in post-
processing (see e.g. McKenzie (2002)). The advantage is that the gain of both
amplification circuits can be tuned individually to account for mismatched
photo diodes (i.e. diodes with unequal efficiency). In this scheme it is possible
to directly measure both individual diode signals so they can be used for,
e.g., normalization as explained in section 11.3.3. This comes at the cost of
additional noise through the amplification, since the added noise of both
amplification circuits contributes to the difference signal, and through the
need to resolve a small power modulation over a comparably large offset. The
second method, current subtraction, allows to reduce the additional electronic
noise by directly subtracting the current of both diodes before the amplification
(see e.g. Vahlbruch (2008) and Vahlbruch et al. (2007)). The advantage here
is that the added electronic noise is much lower compared to the variable
gain scenario, as just one common amplification stage is employed. At the set
point for maximum phase sensitivity the difference current has zero-mean,
which means that this scheme also allows for higher total amplification. The
disadvantage is that the balancing of both diodes has to be achieved optically
(e.g. by tuning optical elements as analyzed in section 6.3.5 on p. 64 or by
using neutral-density filters), which reduces the contrast. Also it is not easily
possible to measure the sum of both ports, making it harder to detect total
power fluctuations.

A technical detail to consider for the practical implementation is that achie-
ving sufficiently stable coupling of the two ports of the interferometer into
optical fibers will potentially be challenging, as it might introduce jitter noise16
(with coupling efficiency into optical fibers being highly depended on beam
position and direction) and amplitude noise through typical effects in long
fibers (section 11.2). Therefore, it is advisable to perform the detection directly
at the optics stage, as the cross section of photodiodes is much higher than
that of optical fibers. As most electronic components are not vacuum com-
patible, having the detector circuit board directly next to the optics would
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source method S1/2
x (50 Hz) [m Hz−1/2]

Rugar, Mamin, and
Guethner (1989)

fiber interferometer 1.0 · 10−13

Smith, Pratt, and Ho-
ward (2009)

fiber interferometer 1.6 · 10−14

Paolino, Sandoval, and
Bellon (2013)

balanced homodyne
interferometer

1.4 · 10−14

Table 11.1: Benchmark noise levels for low frequency detector electronics.

17)Westphal 2016

18)Hepach 2015

require a vacuum can (a can which shields the vacuum on the outside from
non-vacuum compatible materials inside) housing the electronics. It turns
out17 that for low-frequency applications, it is actually quite feasible to run long
well-shielded wires from the diodes through vacuum feedthroughs outside
before performing the electronic conversion.

We require that, for the proposed parameters, photon shot noise should be
far below off-resonant thermal noise, and that electronic noise Sxel should be
below the photon shot noise:

√
Sxel <

√
Sxsh �

√
Sx th �

√
2γ

mβω4
0
≈ 1.3 · 10−14 m Hz−1/2.

Unfortunately the literature on low frequencydetector electronics outside of the
gravitational wave detector community (which works in an entirely different
power regime) is quite sparse. A few relevant publications that explicitly focus
on low frequency displacement performance without optical cavities are listed in
table 11.1. However, comparing these numbers to recent publications that did
not explicitly convert the detection noise to displacement indicates that much
better performance should in principle be possible. For example, Stefszky
et al. (2012) report shot-noise-limited measurements at 1 mW of power, which
for our parameters puts the equivalent displacement PSD of the electronic
noise into the regime of 10−16 m Hz−1/2. Therefore, combining an ultra-stable
interferometerwith low-noise electronics and a sufficiently powerful and stable
laser source to set a new benchmark for the measurement of displacement
noise at audio-band frequencies poses a feasible side-goal in the development
of the proposed experiment.

The investigation and development of detector circuits for the proposed
experiment is currently performed by Hans Hepach18 (University of Vienna)
and is not a part of the author’s work.
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Vibration isolation

The test mass is subject to additional external noise sources, in particular seis-
mic noise of the environment, and mechanical backaction of the source-mass
displacement. Therefore, there are two major requirements for the vibration
isolation system of the proposed experiment. The first requirement is to suf-
ficiently isolate the test mass against seismic and acoustic vibrations of the
laboratory environment (and from other external sources). In this regard, the
required isolation system is qualitatively very similar to typical isolation sys-
tems used for example in gravitational wave detection. However, the second
requirement is conceptually different, as we also require vibration isolation
of the test mass against a nearby modulated source mass. As we explained
in section 7.4 on p. 78, if masses within vibration isolation chains are of si-
milar magnitude, e.g. a suspended stage with a moving source mass and a
suspended stage with a supposedly vibration-isolated test mass, the energy
transfer between stages is close to maximal and therefore needs to be properly
modeled.

In this chapter we start with the isolation requirements for the detection
of gravity in a micromechanical system in section 12.1. We then give give an
overview of the relevant elements and techniques for passive (section 12.2)
and active (section 12.4) vibration isolation, where we dive into the details
whenever relevant for the scheme that is proposed in section 12.3.

Chapter contents

12.1 Isolation requirements . . . . . . . . . . . . . . . . . 146
12.2 Passive vibration isolation elements . . . . . . . . . . . 149
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12.2.5 Damping (p. 155)
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12.2.6 Effect of a large intermediate mass (p. 156)
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12.3.1 Laboratory background noise (p. 158)
12.3.2 Pre-Isolation (p. 159)
12.3.3 Test-mass isolation (p. 159)
12.3.4 Source-mass isolation (p. 164)
12.3.5 Total vibration-isolation performance (p. 165)
12.3.6 Vacuum system (p. 166)

12.4 Active isolation . . . . . . . . . . . . . . . . . . . . 170

12.1 Isolation requirements

The vibration noise of the environment, SxE , and the source-mass backaction,
SxS , are coupled through the mechanical support structure via the trans-
fer functions TE(ω) and TS(ω), respectively. Specifically, from eqs. (5.15d)
and (5.15g) on p. 36 and on p. 37 we have

SxE(ω) � |χ(ω)|2
���(ω′20 − iγ′supω

)
TE(ω)

���2 SxE(ω).

Inserting eq. (5.15f) into eq. (5.15b), splitting the contributions of direct drive
and gravity, eq. (5.21), and ignoring the other contributions yields

SxP(ω) � d2
S
π
2 |χ(ωS)|2

���(ω′20 − iγ′supω
)

TS(ω)
���2 [δ(ω − ωS) + δ(ω + ωS)] ,

Sx G(ω) � d2
S
π
2 |χ(ωS)|2

(
2GM

d3
0

)2

[δ(ω − ωS) + δ(ω + ωS)] ,

where the subscript P now denotes the effect of a parasitic drive excitation.
As we require to reach the thermal noise limit of the test mass, we need to
compare these expressions to the test-mass thermal noise given in eq. (5.34)
on p. 46,

Sx th(ω) � |χ(ω)|2
2γ
mβ

.

In the original article (Schmöle et al. 2016) we compared both the drive
backaction contribution SxP as well as the environmental contribution SxE
to the thermal noise Sx th. Here, we follow a different approach. We realize
that the contributions of environmental noise and thermal noise scale with
the integration time, while the contribution of the drive does not. Hence, the
comparison we performed in the paper required the assumption of a specific
integration bandwidth. In this thesis, we instead compare the contributions
that naturally fall together: Both environmental noise and thermal noise have
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continuous PSDs and can therefore be compared independent of integration
time. The same is true for the gravitational drive and the parasitic backaction
drive, which are both deterministic and possess delta-peaks at the same fre-
quencies. In order to state general requirements that are independent of the
integration time, we can therefore demand

SxE(ω) � Sx th(ω) and SxP(ω) � Sx G(ω),
i.e. the environmental noise should be below the thermal noise and the parisitic
drive should be below the gravitational drive. This yields

TE(ω) �
���ω′20 − iγ′supω

���−1
(

2γ
mβ

)1/2
S−1/2

xE (ω)

for the required environmental suppression and

TS(ω) �
���ω′20 − iγ′supω

���−1 2GM
d3

0

for the required source-mass motion suppression. A benefit to this approach
is that the second requirement is now independent of the drive amplitude
dS and can be made independent of the mechanical quality Q by a straight-
forward approximation: as seen before, in the regime of small forces we can
approximate ω′0 ≈ ω0, and for a test-mass device that is limited by support
losses, γ′sup ≈ γ. This yields���ω′20 − iγ′supω

��� ≈ ω0
(
ω2

0 + ω
2/Q2)1/2 ≈ ω2

0,

where the second approximation holds as long as Q � 1 and the frequencies
ω of interest are much smaller than Qω0, which is trivially the case in the
proposed experiment. Therefore the requirements read

TE(ω) �
(

2γ
ω4

0mβ

)1/2
S−1/2

xE (ω) and TS � 2GM
ω2

0d3
0
.

Of course, in a measurement scheme where technically only a single driving
frequency ωS is of interest, these requirements only need to be fulfilled at said
frequency and not for all ω. We also note that by the above relation we can
estimate the maximum tolerable residual environmental displacement noise
directly at the test-mass stage, S1/2

xE,T(ω), by setting TE(ω) :� 1:

S1/2
xE,T(ω) �

(
2γ

ω4
0mβ

)1/2
.
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Figure 12.1: Upper boundaries for the transfer functions as a function of frequency-of-
interest ωS.

1)Matichard et al. 2015

From preliminary acceleration measurements we extracted a conservative
value of S1/2

xE ≈ 10−8 m Hz−1/2 in the relevant frequency band around 50 Hz (see
fig. 12.5). For our chosen parameters (table 8.1 on p. 88) the upper boundaries
for both transfer functions are shown in fig. 12.1. A measurement at 50 Hz and
room temperature requires

TE � 1.3 · 10−6, TS � 2.1 · 10−12 and S1/2
xE,T � 1.3 · 10−14 m Hz−1/2.

(12.1)

An isolation of the test-mass cantilever platform from the seismic noise even
by more than six orders of magnitude is clearly within current state of the
art. For example, a combination of multiple passive and actively controlled
suspension stages in gravitational wave detectors routinely achieve a seismic
isolation of 10−11 and better, even at lower frequencies. For our case, already a
dual-stage passive spring-pendulum system should be sufficient to achieve the
required levels of isolation at 50 Hz.1 The second requirement seems to impose
amore significant challenge, but one should bear inmind that we consider here
the contribution of the source-mass displacement that is due to mechanical
backaction on the support structure of the experiment. There are several
strategies to minimize this. First, mechanical unbalance of the source-mass
drive can be compensated for by having a secondmass counter-moving against
the first (see also section 10.1.3 on p. 121). Second, the source-mass drive
platform can be physically separated from the test-mass cantilever platform.
This requires a separate vibration-isolation (spring/pendulum) system, which
couples to the test-mass cantilever platform only via the large mass of the
vacuum tank that hosts the experiment. Finally, one can even envision a
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Figure 12.2: Illustrations showing the geometry and dimensions of blade springs
(section 12.2.1) and wire pendulums (section 12.2.2).

2)Goodkind 1999

3)Winterflood, Blair, and
Slagmolen 2002

4) Beccaria et al. 1998

complete mechanical isolation of the source mass by levitating and driving it
in external fields.2

12.2 Passive vibration isolation elements

In this section we explain the passive vibration isolation elements that will be
used in the proposed experiment and potential future iterations.

12.2.1 Blades

Intuitively, coil springs are the obvious candidate for realizing vertical springs,
as they come in a huge variety of stiffnesses and materials and are linear over
a large region of deflection.3 Furthermore, they can serve as pendulums at
the same time, thereby providing isolation in all spatial directions in a single
element. However, due to their nature of being wound thin wires, coil springs
typically possess a huge number of resonances directly above the fundamental
mode frequency, which almost certainly lie within the relevant detection band.
Instead, many high-performance isolation systems rely on triangular blades,
which are solid pieces of metal and therefore have much higher eigenfrequen-
cies above the fundamental modes than coil springs. The main problem with
using solid springs, despite the requirement for a high yield strength material,
is creep noise, a type of mechanical noise due to sudden microscopic stress
release in the stressed material. This effect can be reduced significantly by
artificially aging (i.e. annealing) the blade material.4 One commonly found
blade material in gravitational wave detector mirror suspensions is maraging
steel (Marvel18).

According to Coyne et al. (2007), “simplified bending” equations can be
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used to calculate the vertical stiffness of a triangular blade as

kB �
EbBt3

B

6l3
B

�
FB

αBl2
B

with αB :� 6FBlB
EBbBt3

B

,

where lB, bB and tB denote the length, width and thickness of the blades (see
fig. 12.2(a)), EB is the elastic modulus and FB is the force resulting from the
weight of the payload (i.e. FB � mBg where mB is the mass that is attached to
the blade). Assuming a homogeneous stress distribution, the stress σB on the
loaded blade is given by

σB �
6FBlB
bBt2

B

� αBEBtB.

As the spring constant scales in third order with the blade thickness tB, we
strive to make it as thin as possible to obtain a low eigenfrequency, yet large
enough to avoid plastic deformation of the loaded blade. To this endwe require
that the stress σB is a “safe” fraction ξσ of the material yield strength σmax,
σB � ξσσmax, and hence

tB ≈
(

6FBlB
bBξσσmax

)1/2
.

From the above relations it is clear that a higher payload requires a larger
width or thickness in order to keep the stress low, which again requires longer
blades in order to retain a low stiffness kB.

Treating the blades as a pure spring in the out-of-plane direction is a valid
simplification, but neglects the possibility for additional mode-coupling due to
the finite stiffness of the blades against transverse forces. An expression for the
blade spring constant in the transverse direction was derived by Greenhalgh
(2005) to be

kD �
EBb3

BtB
12l3

B

εB with εB � ln(lB/xD) + xD/lB − 1,

where xD denotes the distance of the displacement point from the blade tip,
which is usually chosen on the order of a few millimeters to centimeters.

In order to maximize the in-plane stiffness of the loaded blade, one usually
chooses to have a completely flat profile in the loaded state. With this require-
ment, there is a simple argument as to why the optimal unloaded blade shape
has to be circular. We assume that the blades, modeled as triangular cantilevers
of constant thickness, become flat under load. We know that the mechanical
moment on every point in the blade has to be proportional to the distance
from the blade tip. Since the width of a triangular blade is proportional to the
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(a) Blade bent along an arc with radius rB
and angle θB. The origin is located in the
root of the blade and the blade tip has coor-
dinates xB and yB.

0 π/2 π 3π/2 2π
0

1

2

curvature angle θB � lB/rB

de
fle

ct
io
n
le
ng

th
s B
/l B yB√

(lB − xB)2+y2
B

exact

(b) Numeric solution for the deflection
length integral and two approximations.
Both approximations are applicable for
angles below π/2 but fail for stronger
curvatures.

Figure 12.3: Determination of the blade curvature parameters θB and rB from a given
blade deflection path length sB. The function shown in the right-hand plot has to be
used inversely for this purpose, which can only be achieved numerically.

5)Coyne et al. 2007

distance from the blade tip as well, it follows that the stress is homogeneous
over the entire blade. Therefore the relative change in length of every volume
element has to be constant over the blade, which naturally leads to a circular
load-free blade-shape. Note that this argument is subject to debate and for
very thick blades, parabolic shapes appear to be the more accurate model.5

The path length of the blade deflection is uniquely given by the spring
constant and the attached payload via Hooke’s law. However, the curvature
of the blade required to yield a certain deflection towards the flat state is not
directly clear, as the blade has to be deflected radially (with respect to its
radius of curvature) at every point of the process. As shown in fig. 12.3(a), we
start deriving the relation between deflection s and radius of curvature rB by
observing that

θB �
lB
rB

, cos θB �
rB − yB

rB
and tan θB2 �

yB
xB

,

⇔ rB � lB/θB, yB � lB(1 − cos θB)/θB and xB � lB sin θB/θB,

for the horizontal (xB) and vertical (yB) coordinates of the spring blade relative
to the origin of the blade. This allows us to express the differential elements of
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both coordinates as

dxB �
∂xB

∂θB
dθB �

lB
θ2
B

(θB cos θB − sin θB) dθB,

dyB �
∂yB
∂θB

dθB �
lB
θ2
B

(cos θB + θB sin θB − 1) dθB.

We can therefore rewrite the differential length element dsB as

ds2
B � dx2

B + dy2
B � l2

Bθ
−4
B

(
θ2
B − 2 cos θB − 2θB sin θB + 2

)
dθ2

B,

and find the length sB of the curve that is described by the blade tip when
loading radially as

sB �

∫ sB

0
dsB � lB

∫ lB/rB

0
θ−2
B

(
θ2
B − 2 cos θB − 2θB sin θB + 2

)1/2 dθB.

The solution of this integral is plotted in fig. 12.3(b) along with two approxima-
tions. This allows to numerically find the required blade radius of curvature rB
for a given deflection sB and hence for a given eigenfrequency (due to the
direct relation between displacement under load and frequency, cf. eq. (9.2)
on p. 98).

12.2.2 Wire pendulums

The common choice for springs in the horizontal plane are wire pendulums
with a payload-dependent wire thickness. For payloads of several hundred
kilograms, these pendulums need to have diameters up to centimeters and
effectively become flexure rods, but are in principle still governed by the same
equations as silica wires of a few hundred micron diameter.

We roughly outline the derivation of the restoring force of a flexure rod
spring; for a complete derivation of the forces associated with flexure rods,
see Smith (2004). Starting with the beam equation(

EGIG
d2

dz2
G

− FG

)
− d2vG

dz2
G

� 0,

where vG(zG) is the orthogonal beam deflection as a function of the axial coor-
dinate zG (see fig. 12.2(b)), EG is the Young’s modulus, IG is the area moment of
inertia and FG is the axial load, one finds a general solution

vG(zG) � cG1 + cG2z + cG3 cosh κGz + cG4 sinh κGz, κG �

√
FG

EGIG
.
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6)Crooks 2002

The constants cG are then determined by setting the boundary constraints in
form of the displacements and rotation angles of the beam at the end points.
This allows computation of the forces and moments acting on the end points
for a given deflection and rotation. Interestingly, one finds that a shear and
moment at each end is equivalent to a pure shear load at the distance

λG �
1
κG

tanh(κGlG/2)

from the end points, where lG is the length of the pendulum. This allows to
treat the flexure rod analogously to a pin-ended penduluma connecting the
virtual zero-moment points zG1 � λG and zG2 � lG − λG. The according lateral
stiffness is

kG �
FG

lG − 2λG
.

Additionally, the wire yields a fundamental spring in the axial direction
creating a restoring force against axial compression and expansion. Its stiffness
k� is simply given by the ratio of wire cross-section AG � π(dG/2)2 (with
diameter dG) to length lG,

k� � EG

π(dG/2)2
lG

.

When choosing the diameter of a wire, it should be as small as possible
to minimize the restoring force due to deformation and the effective wire-
shortening through larger values of λG. On the other hand it should be as large
as necessary to ensure that the payload is securely supported and no plastic
deformation occurs as part of the regular swinging motion. As seen above, we
require that the stress is a fraction ξσ of the maximum tensile strength σmax of
the wire material, σ � ξσσmax. The stress of a wire under load is simply given
by σ � FG/AG, and therefore choosing

dG ≈ 2
(

FG

πξσσmax

)1/2
,

ensures that the wires will not plastically deform or rip under load.
What we did not account for here are violin modes, which behave similar to

the strings of musical instruments and are typically located at several hundred
Hertz6. Their presence imposes the restriction tomake thewires neither several
meters long nor too thick, as this would cause lower frequency resonances.

a) The equivalence holds up to rotational stiffness terms (Smith 2004), which we did not
consider in the current model.
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13) Blair et al. 2012, sec. 11.4

12.2.3 Advanced isolation concepts

There are currently a number of approaches to increase the performance of
passive vibration isolation systems even further. Several of these approaches
have already been successfully demonstrated in experimental applications
and even commercial systems.

Abreakthrough concept of passive vibration isolation camewith thedeploy-
ment of negative stiffness or anti-springmechanisms acting parallel to regular
springs. The effective spring constants (and therefore eigenfrequencies) can be
much lower in these systems. Implementations of anti-springs can be found,
e.g., in geometric anti-spring (GAS) filters7 for vertical isolation and inverted
pendulums8 for horizontal isolation. GASfilters consist of sets of buckled blade
springs and can be tuned to low frequencies by adjusting the mounting angles
and positions of the blades. In inverted pendulums, a mass that is supported
by vertical rods provides an unstable quadratic potential (which is tunable
via adjustment of the payload), while the restoring force of the deflected rods
accounts for the regular spring. Isolation systems based on GAS filters and
inverted pendulums have been demonstrated in the AEI prototype, where na-
tural frequencies of 0.25 Hz and 0.05 Hz respectively were achieved.9 They are
also planned for the cryogenic gravitational wave detector KAGRA10. Passive
isolation systems that rely on anti-spring effects are available commercially.11

While commercial systems lack the desired performance for our proposed
experiment, custom anti-spring isolation systems require careful planning and
adjustment. A system that yields a positive effective spring constant as a result
of poor adjustment would naturally move away from the set point, posing an
immediate threat to the mechanical components. We therefore chose not to
incorporate custom anti-spring systems into the proposed isolation scheme.
From our analysis presented in section 12.3, we are confident that we can reach
the required levels with conventional spring systems.

Another passive vibration isolation concept of increasing interest is based
on nonlinear springs. Every passive isolation system will yield a mechanical
amplificationwhen driven on resonance. The novel approach there is to deploy
springs with non-proportional amplitude responses in order to counteract
potentially dangerous resonant excitations. For an overview of this topic, see
e.g. Ibrahim (2008). Finally, linear state-of-the art springs still undergo deve-
lopment. Examples include Euler springs and self-damped pendulums12, which
yield stiffness values competing with anti-spring systems, though naturally
lower eigenfrequencies usually come at the expense of convenience.13
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12.2.4 Suspension thermal noise

We have touched upon the vibrational noise caused by thermal excitation of
mechanical eigenmodes in the context of the test-mass device background
noise and the geometric readout noise in sections 5.7.1 and 11.2.6 on p. 45
and on p. 138. Naturally, similar effects occur in the mirror suspensions of
gravitational wave detectors14 as well as in the mirror material15. In fact, the
most significant classical noise contributions in current gravitational wave
detectors stem from thermal noise in both mirror suspension and in mirror
coatings and substrates.16 Thermal effects also pose the main hurdle for other
optical precision measurements involving large mirrors on soft springs, e.g.
the detection of photon backaction.17 For this reason, extensive research is
focusing on the development of new coatings with extremely high mechanical
qualities18 and cryogenic vibration isolation systems19. A rough estimate on
the magnitude of suspension thermal noise in the proposed experiment is
performed in section 12.3.3 as part of the test-mass isolation proposal.

12.2.5 Damping

As seen in section 7.1 on p. 68, the transmissibility of an isolation stage that is
damped relative to its supportb follows a ω2

0/ω2-falloff between the resonance
frequency and a transition frequency ω2

0/γ � Qω0, i.e. for ω0 < ω < Qω0.
Above this transition frequency it follows a γ/ω � ω0/(Qω) curve, which is
linked to the so-called “damping shortcut” effect. In that case the relative
damping rate γ between the isolation stage and its support creates a coupling
that dominates the otherwise (i.e. in the non-damped case) steeper falloff of
the transmissibility at higher frequencies.

Naturally, a ω−2-falloff is more efficient than a ω−1-falloff for isolation
performance. One would therefore expect that high mechanical qualities are
desired when designing a vibration-isolation system. However, high values of
Q for isolation stages come with practical downsides. Most importantly, the
amplification of environmental displacement around themechanical resonance
frequency ω0 can cause significant RMS movement for high values of Q. In
most practical cases, one artificially lowers the mechanical quality, thereby
trading in a steeper falloff (i.e. a more superior isolation at higher frequencies)
for improved practicality.

To a certain extent, when designing multi-stage isolation systems it is still
possible to retain the isolation performance of high-Q springs, while at the
same time avoiding low-frequency resonances. This is possible if eigenmodes

b)Note that while inertial damping, i.e. damping with respect to an inertial frame, would be
highly desirable, it is somewhat impractical as this requires the existence of a heavy inertial
object. In the context of vibration isolation, this could only be an object that is isolated to a
similar or higher degree than the system of interest.
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of the system can be fully damped by applying direct damping exclusively at
the first (i.e. topmost) stage.20 This way, one sacrifices just one order of inverse
power of frequency, while effectively damping all resonances.

A second reason for designing a multi-stage isolation system in a way
that damping only needs to be applied at the topmost stage is the inherent
noise of external damping. For passive eddy-current damping, typically arrays
of coated neodymium or samarium-cobalt magnets on the stage are used in
conjunction with aluminum or copper blocks on the supporting structure.
These magnets are prone to 50 Hz electric grid noise and exhibit thermal
noise as well as Barkhausen noise.21 In the case of active damping (see also
section 12.4), feedback has to be applied based on a noisy error signal. However,
as long as there are further undamped elements down the isolation chain, the
additional noise from passive or active damping can usually be sufficiently
suppressed.

12.2.6 Effect of a large intermediate mass

In the actual experimental setup, both the source-mass isolation chain as well
as the one for the test mass will be supported by a common suspension point,
a heavy vacuum tank (see also fig. 7.6 on p. 79). As long as its eigenmodes
have frequencies far above the frequency of interest ω0/(2π) ≈ 50 Hz, the
intermediate mass can be considered as a rigid body that is coupled to the
outside environment by an additional spring with stiffness kex. We may now
ask how this additional mass is affecting the total transmissibility. We build
a toy-model by following eq. (7.3) on p. 71 for the case of three masses and
add an additional spring kex connecting m2 to a fixed environment. The
transmissibility of this system is then computed to be

x̃3/x̃0 � k01k12k23
{(

k23 − m3ω
2)

· [ (k01 + k12 − m1ω
2) (

k12 + k23 + kex − m2ω
2) − k2

12
]

+k2
23

(−k01 − k12 + m1ω
2)}−1 ,

where we neglected the damping terms for simplicity. This function is plotted
in fig. 12.4 for multiple values of spring constants and masses. We directly
see that above a certain frequency (roughly the resonance of the external
spring) the transmissibility from source mass to test mass is independent
of the external spring stiffness. As long is this frequency is lower than the
frequency of interest, there is no gain from having a softer coupling from
the intermediate mass to the environment (while, of course, there will be an
advantage for the environmental isolation of the test mass from having a softer
coupling to the environment). What does have a significant impact though is
the size of the intermediatemass, which should be chosen as high as possible to
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Figure 12.4: Transmissibility from a source mass (x0) to a test mass (x3) in a three-mass-
chain, where the central mass m2 is large and coupled to the outsidewith an additional
spring kex. The values for m2 and kex are given in the plot legend. Further, we chose
k01 � k12 � k23 � 100 N m−1 and m1 � m3 � 1 kg. Increasing the central mass shifts its
resonance to lower frequencies and decreases the effect of the stiffness kex at higher
frequencies.

22)Aston et al. 2012

minimize the transmissibility in the relevant frequency band. We also note that
above the various additional resonances caused by an intermediate large mass,
neglecting the mass will effectively lead to overestimating the transmissibility.
It therefore does not compromise our conservative performance estimations.

12.3 Proposed vibration-isolation chain

In this section we propose a scheme that should allow to reach the vibration
isolation requirements stated in section 12.1. The system is supposed to operate
in an environmentwedescribe in section 12.3.1. It is composedof apre-isolation
system (section 12.3.2) that supports the entire vacuum system (section 12.3.6).
Inside of the vacuum system, separate isolation chains are in place for the test
(section 12.3.3) and the source mass (section 12.3.4).

The concept of the proposed setup is inspired by the systems used in
advanced LIGO.22 The requirements for our experiment differ in two major
aspects. First, not only the environment, but also the source mass act as input
for vibration noise, and the latter needs to be accounted for with an individual
isolation subchain. Second, our main experimental interest is focused on a
small frequency band around the drive frequency, and our environmental
noise isolation requirements are less stringent. Therefore, compared to the
highly sophisticated systems used in aLIGO, a simpler system both in terms
of development and operation should fulfill our requirements.
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Figure 12.5: Laboratory background displacement PSDs extracted from acceleration
sensor data, converted using eq. (12.2). Each line is the square root of the mean of
ten successively measured PSDs. The first and second peaks likely correspond to
internal sensor resonances that were shifted by ambient temperature or themechanical
properties of the mounting surface.

23) Blair et al. 2012; Fritschel
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As we are currently planning to run the experiment with the gravitational
drive in horizontal direction, horizontal isolation should be the main concern.
Due to coupling between modes, in particular tilt coupling, vertical isolation
is being considered as well.

12.3.1 Laboratory background noise

Typically, experimentswith low-noise requirements in the single- to triple-digit
Hertz range are placed on concrete slabs (often called technical slab) which are
separated from the slab for the laboratory building.23 In addition, facilities
housing sensitive experiments are often placed at remote locations, sufficiently
far away from areas of high population density. For example, themeasurement
of G by Gundlach and Merkowitz (2000) was performed in a former cyclotron
cave at the University of Washington. We design the vibration isolation system
in a way that can cope with the “standard” environment of a typical laboratory
(in our case an early 20th century building located adjacent to a heavy-traffic
road and several tram lines).

We performed some preliminary noise measurements at multiple points
within the building (fig. 12.5). The used acceleration sensor has a bandwidth
from single digit to two-thousand Hertz. We obtain a typical displacement
noise on the level of 10−9 m Hz−1/2 at 50 Hz, although the measurement was
likely limited by sensor noise. While these values certainly compatible with
our design goals for vibration isolation, we note that typically not high average
displacement noise PSDs are the main concern in precision experiments, as
achieving one or two additional orders of vibration isolation is a comparably
minor effort. Instead, due to the long integration time, single transient events,
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as they often occur in this type of environment, can potentially render hours of
data unusable. In addition, as both test and sourcemass are suspended on long
pendulums, sub-Hertz drifts, e.g. due to rocking of the building, can cause
relative positioning drifts that may cause systematic errors in measurements.
Further experimental investigationwill show how severe these issues are and if
the proposed measurement is feasible in the given environment, or otherwise
identify another, more suited location.

12.3.2 Pre-Isolation

We are currently planning to install one initial isolation stage outside of the
vacuum system. As seen in section 12.2.6, a heavy vacuum tank that is con-
nected to the environment with an effective soft spring can add low-frequency
resonances, but will largely reduce the transmissibility above resonance. From
our experience, standard optical tables typically have tilt modes around 1 Hz
that are underdamped, which could cause alignment issues with the test and
source-mass pendulums described below. We therefore choose an active vibra-
tion isolation system by Herzan24. According to the specifications, this system
should yield similar performance as heavy optical tables with stiffer springs,
since the active feedback artificially increases the effective mass. It reaches a
transmissibility of below 0.02 above 10 Hz and is less susceptible to changes
in payload than passive systems. With the option to continuously monitor the
sensor data one gains the possibility to detect significant vibrational distur-
bances already at the first isolation stage. The performance can in principle
even be improved by the deployment of an additional sensor on the laboratory
floor close to the platform in a feed-forward scheme.

12.3.3 Test-mass isolation

Motivated by eq. (12.1), we require around seven to eight orders of magnitude
in horizontal isolation in the direction of interaction at 50 Hz. A similar number
will be required in the transmissibility of vertical motion to horizontal motion,
which are coupled via tilt degrees of freedom.25 Following basic insights from
previous experience, the suspension system should be designed with roughly
similar masses of the individual stages and similar pendulum wire lengths to
ensure that all modes are well observable (i.e. dampable) at the top stage. In
the direction of the horizontal isolation requirement, the attachment points of
the wires should be kept close to the center of mass of the respective stages,
yielding low tilt frequencies and small horizontal-tilt coupling.

Basic design. We base the test-mass suspension design (fig. 12.6(a)) on the
triple suspensions used in GEO 60026 and advanced LIGO27 (which are con-
ceptually very similar). Between the topmost stage T0 and the first suspended
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Figure 12.6: Proposed vibration isolation chain described in detail in section 12.3. The
individual stages are designed such that a test and source-mass isolation chain share
a vertical axis and the entire system fits into a vertically oriented cylinder of 500 mm
diameter.

28)Robertson, Cagnoli, et al.
2002

stage T1 two blades and two pendulums provide an initial isolation that is
quite insensitive to pitch (tilt) motion due to the small restoring force. A set
of four blades and wires connects the first and the second suspended stage
T2, and a set of four wires connects the second and third stage T3. The reason
for choosing four wires instead of two is that active control as well as passive
damping can be applied at T1. At low frequencies the wires affect the lower
stages similar to a marionette, so that alignment drifts can be compensated.28

Ideally, the blades are rotated such that a stage rotation caused by thermal
drifts of the blade lengths is compensated, though naturally there is always
a trade-off associated with the space taken by the blade arrangements. The
electrical cabling and optical fibers required for the actual experiment can be
run alongside the stages. They should be rigidly clamped at every individual
stage while hanging loosely between stages to avoid mechanical shortcuts. The
parameters for all stages of the test-mass suspension are listed in table 12.1.

The last stage of the test-mass isolation chain houses the interferometer
and the test mass. One crucial aspect for the design of this stage is to place the
test mass as close to the stage COM as possible. This will minimize coupling
of stage tilt-motion into test-mass motion in the crucial DOF.

Positioning and control. For the first iteration of the experiment we estimate
that the passive isolation performance will be sufficient (see below) and there-
fore no active control and isolation has to be deployed for the test-mass stage.
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T1 T2 T3 S1 S2

m [kg] 6 4 4 6 10
®j [g m2] ( 20 20 40 ) ( 13 13 27 ) ( 13 13 27 ) ( 20 20 40 ) ( 34 34 67 )

T0 → T1 T1 → T2 T2 → T3 S2 → S1 S1 → S0

# 2 4 4 4 2

hG [mm] 200 350 500 450 550

®pup [mm] ( 0 ±122 −2 ) ( ±30 ±95 −2 ) ( ±10 ±114 −2 ) ( ±155 ±59 −2 ) ( 0 ±180 −2 )
®plo [mm] ( 0 ±114 2 ) ( ±30 ±114 2 ) ( ±10 ±114 2 ) ( ±155 ±59 2 ) ( 0 ±180 2 )
dG [µm] 920 490 260 700 800

lB [mm] 250 180 302

bB [mm] 110 40 60

tB [µm] 1250 940 1400

λG [mm] 9.9 5.0 3.8 7.5 8.4

lG [mm] 220 361 508 515 517

kG [N m−1] 343 55.9 19.6 78.4 98.1

k� [kN m−1] 583 101 36.5 144 187

kB [N m−1] 430.8 178.5 190

kD [kN m−1] 739 83.1 70.5

Table 12.1: Parameters of the test and source-mass isolation stages. The upper table
lists the masses and inertial moments of the stages, while the properties of the springs
are shown in the lower table. # denotes the number of elements, hG denotes the
height of the wire projected onto the vertical axis and the ®p-vectors refer to the
locations of the zero-moment points. The values listed in the last block are derived
from the given parameters. We assumed annealed steel as the blade material with
EB � 188 GPa (Matichard et al. 2015) and steel (Fort Wayne 2017) for the wire material
with EG � 193 GPa, and a maximal stress fraction ξσ � 1/3.

29)Westphal 2016

However, we plan to account for sufficient space so that we can upgrade the sy-
stem with the small-footprint integrated optical motion sensors and actuators
currently used at the AEI 10 m prototype facility.29 For the time being, the set
point of the suspension can be indicated with mechanical pointers and targets
or with light pointers and quadrant diodes as shown in section 10.2 on p. 124.

Performance of test-mass isolation. We implemented the vibration isolation
model derived in section 7.3 on p. 71 in a Mathematica notebook and derived
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the transmissibility curves shown in fig. 12.7.c As we gained access to the
MatLab “state space” model for the advanced LIGO triple suspension30, we
compare both models for the parameters listed in table 12.1. In horizontal
direction (x → x), the results agree to a reasonable qualitative extend, though
it is not entirely clear how the small modal frequency deviation between both
models can be explained. For the vertical direction (z → z), the models agree
strikingly well at lower frequencies and follow a very similar fall-off curve
for higher frequencies. It is not yet clear how the deviations between both
models can be explained, or which of the two models is more accurate. The
model presented here might include conceptual errors, but at the same time,
the LIGO model had to be heavily modified to fit our geometry and can not be
considered experimentally justified anymore. While this dissonance is subject
to current investigations, it is safe to assume that the presented geometry will
suffice to reach the desired seven to eight orders of magnitude in horizontal
transmissibility attenuation around 50 Hz.

Thermal noise of test-mass suspension. We perform a rough estimate of the
test-mass suspension thermal noise. The basic concept of this noise source
is explained in section 12.2.4. Here, instead of analyzing all effective modes
of the entire isolation chain, we focus on the last pendulum of the chain and
apply the for the PSD of a single pendulum, Sx o, which is given by González
(2000) as

Sx o(ω) ≈ 4
βω2<

[
iω

1 − jx/(FGploz)
FG(1 − ω2/ω2

+)(1 − ω2/ω2−)/lG

]
,

with the thermodynamic beta β and the complex eigenfrequencies

ω+ ≈ FGploz/ jx(1 + i/Q+) and ω− ≈ FG/(mlG)(1 + i/Q−),
c)Originally it was planned to realize the simulations in COMSOLwith finite elements, using the

Multibody Dynamics module, which allows to model compound systems of bodies connected
with springs and joints of different types. However, it turned out that achieving convergence
of such models is by no means trivial due to the close-to-zero stiffness in some degrees of
freedom (e.g. pitch stiffness in the T1 stage). Another problematic point is the huge difference in
displacement amplitudes, corresponding to the more than ten orders of magnitude in required
suppression between source and test mass. One approach is to increase the numerical working
precision to a degree where the simulation of even simple models consumes many hours
of computation time. Alternatively, one can make simplifications to the simulation which
essentially make the results less precise than the outcome of a simplified analytical model, such
as the one presented in section 7.3. In consequence, we abandoned the initial plan of a full
vibration isolation model with finite element simulation.

d) Some commercial active pre-isolation systems can not properly act against motion on the
isolated plattform, depending on the configuration of the feedback circuit. Here, we design
our passive isolation system such that we can in principle perform the experiment without
additional pre-isolation.
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Figure 12.7: Simulated performance of test-mass isolation chain T0 → T1 → T2 → T3
using both the model described in section 7.3 on p. 71 (mod.) as well as the advanced
LIGO state space model. The target transmissibility is shown for the combined system
of preisolation and test-mass isolation, while the former has not been included into
the transmissibility curves.d

which incorporates different quality factors Q± for both eigenfrequencies. As-
suming a suspension quality Q± � 105, this puts the thermal noise around
ω/(2π) � 50 Hz at Sx

1/2
o ≈ 8 · 10−16 m Hz−1/2. Even though our assumptions

are rather conservative (the mechanical quality of wire suspensions is typi-
cally higher than 105 (Goßler 2004)), this is well below the crucial level of
1.3 · 10−14 m Hz−1/2 (see eq. (12.1)).
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12.3.4 Source-mass isolation

Given the expected performance of the test-mass platform (section 12.3.3) and
the effect of the vacuum tank acting as a large intermediatemass (section 12.2.6),
an attenuation in transmissibility of five to six orders of magnitude should
suffice to comfortably reach the total target transmissibility of twelve orders of
well below 10−12 given in eq. (12.1).

Basic design. Compared to the test-mass isolation chain, we chose a simpler
design with just two platforms, one of them with blades for vertical isolation
(fig. 12.6(b)). For the drive motion the isolation scheme has to work “bac-
kwards”. We hence deploy two wires (for improved tilt isolation) between the
topmost and the intermediate suspended stage (S0 and S1) and a set of four
blade-wire pairs between the intermediate suspended and the bottommost
stage (S1 and S2).

The critical design aspect is the requirement that the moving COM of the
source-mass drive should be located as closely as possible to the COM of the
source-mass stage in order to prevent excessive excitation of tilt motion due to
the drive. In consequence, the effect of the source-mass suspension needs to
be convoluted with the test-mass suspension, as both share the same vertical
axis (with a small horizontal offset as the test mass and the source mass are
separated by a few millimeters). In addition, achieving the same COM height
of the penultimate test mass and source-mass stages will require additional
“offset”-masses.

The current selection of parameters is listed in table 12.1. The total pendu-
lum length and fixation height of the source-mass pendulum chain should be
similar to that of the test-mass chain. In that way a change of separation of
the masses due to tilt of the entire experimental apparatus is avoided. Further,
as demonstrated in section 12.2.6, a comparably heavy drive platform might
lead to a smaller effective amplitude of the motion induced by the drive due to
reduced recoil. A heavier stage implies the need for thicker and thereby stiffer
blades for vertical isolation, which implies a trade-off, leading (potentially) to
the existence of an optimal stage mass. We currently investigate this effect.

If we want to suppress the effect of the drive amplitude even further, two
additional measures come into mind: First, one might think of an active
compensation scheme for the drive motion in order to reduce the drive recoil.
However, such a scheme would require compensation against another mass
(i.e. the vacuum tank), which in consequence would itself be subject to an
mechanical excitation. From this short argument, an active compensation
scheme would, if anything, worsen the situation. Second, one might deploy
resonant dampers or differential dampers.31 These are systems composed of a
mass and a (tunable) well-damped spring, supposed to absorb the vibration
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Figure 12.8: Simulated performance of the source-mass isolation chain S2 → S1 → S0.

energy of excitations in certain frequency bands when strategically mounted at
specific locations in the isolation chain, preferably antinodes. Due to the added
complexity to the overall vibration isolation scheme we decided against the
addition of resonant dampers in the current design, but keep it as an (relatively
easy applicable) option for the future.

An outstanding question is whether the heat generated by the drive engine
will necessitate an additional dissipation scheme. In this case, one might think
of thermoelectric cooling or sufficiently decoupled cryogenic cold fingers that
provide a cold bath.

Performance of source mass isolation. In order to properly estimate the perfor-
mance of the source-mass chain and the amplitude that is fed into the test-mass
suspension, one would have to calculate the compliance of the source-mass
chain, where the force is generated at the lowest element. This can in principle
be done with the method presented in section 7.3, but increases the complexity
of the computational implementation. Instead, as a rough estimate, we calcu-
late the transmissibility of the source-mass chain in the samewaywe estimated
the one of the test-mass isolation chain (fig. 12.8). With the proposed geometry
we reach a comforting six orders of magnitude in horizontal attenuation, well
within the design goal.

12.3.5 Total vibration-isolation performance

In order to derive an estimate for the total transmissibility from source mass to
test mass, we consider two different estimationmethods. First, wemultiply the
6 × 6 matrices of both individual transmissibility functions of the source and
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test-mass isolation chains presented in sections 12.3.3 and 12.3.4, including all
cross-terms, as shown in section 7.4 on p. 78. By doing this we ignore all effects
of coupling and backaction between both individual systems, as well as the
effect of the large intermediate mass (the vacuum tank), which itself is situated
on an active isolation stage (section 12.3.2). We can roughly account for the
effect of the tank and the active stages by a broadband attenuation factor that
we conservatively set to 0.1.

The second method is to combine the source mass and test-mass chain into
a single chain by flipping the source-mass stage “upside-down”. We may then
treat the active platform as a heavy intermediate stage that is coupled to the
(rigid) environment by a spring with an effective frequency that we set to be
at 1 Hz. This model neglects the active attenuation and obviously does not
properly incorporate the static offset of equilibrium coordinates due to the
Earth’s gravitational field, but it includes backaction effects.

Both models are compared in fig. 12.9 and confirm that the requirements
posed in section 12.1 can be met. However, if it should turn out that the
experiment can only be performed vertically, the proposed isolation system
can not produce the required transmissibility of 10−12 between source and test
mass. Nevertheless, there is still reason to be optimistic, as both approaches do
not properly account for the effective performance of the active pre-isolation.
Depending on the implementation, the assumed attenuation factor of 0.1 could
be a severe underestimation. Further, the mass of 300 kg that we assumed for
the actively damped vacuum tank stage could effectively be increased by the
active gain, depending on the feedback loop.

12.3.6 Vacuum system

In this last section we give a brief overview of the currently planned vacuum
system.

Geometry. The geometry of the proposed isolation system requires the vo-
lume of a vertical cylinder of roughly 500 mm in diameter and 1200 mm in
length, with sufficient additional space to fit tools and with the possibility
for visual inspection during the assembly. One method to achieve this would
be the deployment of a “walkable” UHV system, similar to most gravitati-
onal wave detectors where the vacuum chambers fit entire people in sterile
suits. Due to their size and stable mounting, these systems are typically quite
versatile and can be used for several generations of experiments. However,
because of the cost and the facilities required to operate such a massive tank,
we instead opt for a much smaller, cylindric system. The advantage of such
a system is that its shell can be removed to completely expose the vibration
isolation system, thereby making it accessible for assembly and adjustments.
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Figure 12.9: Performance of full isolation chain S2 → S1 → (S0 � T0) → T1 → T2 →
T3 estimated in two ways: By roughly combining both systems as if they were a
single chain (“full”) and by matrix multiplication of the individual transmissibilities
(“prod.”).

Given the “hanging” nature of the vibration isolation, it needs to be sus-
pended at its highest point. It therefore makes sense to construct the tank
around a relatively high base plate that provides all the necessary attachment
points for the vibration isolation pendulums. The vessel can then by extended
downwards with a cylindric piece. This makes it possible to open the chamber
by lowering the cylinder, thereby completely exposing the suspension system
and allowing to work at a convenient height. If the total height of the expe-
riment is limited, e.g. by a low ceiling, one might even imagine dividing the
cylindric part into two pieces which can be attached and detached successively.
The majority of feedthroughs as well as the pumps can then be mounted at
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Figure 12.10: Currently planned vacuum system (not to scale). The base plate and
chamber cylinder have been halved vertically for illustrative purposes.

the non-moving base plate.

Acces and viewports. In addition the the flanges on top, a number of large
flanges should be provided on the circumference of the cylinder. These can act
as viewports or provide access to work on the suspension system without the
need to strip the entire (heavy) cylinder part. One large flange at the bottom of
the cylinder could be fittedwith awindow to provide an additional vertical line
of sight. Generally it is advantageous to add additional versatility flanges for
unforeseeable modifications that become necessary during the commissioning
phase.

Vacuum gaskets. The required background pressure is set by two factors: first,
the mechanical quality of the test-mass device (see section 9.3.1 on p. 100),
and second, the coupling between source mass and test mass by gas molecule
scattering (see section 8.4 on p. 87). For the current geometry, we can avoid a
degradation of the mechanical quality through background gas already with
pressures below 10−2 hPa, which in our experience is trivial to achieve with
standard high-vacuum components. From our estimation for the effect of force
transfer by gas molecules, we require around 10−8 hPa to assure that this effect
is smaller than the gravitational drive. Reaching such pressures generally
requires ultra-high-vacuum components and heating of the vacuum system
when pumping from ambient pressure.

The main difference between HV and UHV components is the type of
sealing used and the flanges that connect the individual pieces of the vacuum
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system. With high pressure gradients, water molecules can diffuse through the
elastomer orings that are typically used in HV vacuum seals, which limits the
ultimate pressure. UHV systems therefore use metal seals (typically copper)
instead of rubber. The main disadvantage of UHV metal seals is that they get
permanently deformed under the pressure of the flanges and therefore can
be only reused a few times. While flanges with small diameters sealings are
relatively cheap, large sizes (above 400 mm) usually have to be custom-made
and easily go up to hundreds of Euros for a single seal. Alternatively, for large
diameters one can use differential elastomer seals32, where two concentric
seals per flange are used. When the volume between the seals is held at rough
vacuum by a separate pumping system the pressure gradient over the inner
seal is small, leading to minimal diffusion. While this system requires wide
flanges with two grooves, the seals are reusable, making it more suitable for a
vacuum system that needs to be opened on a regular basis. In this design, an
optional metal wire loop can be used to create a seal that allows to reach the
UHV regime of 10−10 hPa and below.

Pumps. A roughing pump and, at lower pressures, a turbo pump are used to
evacuate the large volume. If the optical readout system is compatible with
higher temperatures, the evacuation process could be sped up significantly
by baking out the tank. An alternative to remove residual water molecules
from the metal walls is illumination with strong UV light.33 This could yield
several advantages over baking as it does not expose crucial components to
potentially damaging amounts of heat, and would significantly reduce the
time until the isolation system reaches thermal equilibrium after pumping.e

As both the roughing pumps and turbo pumps are based onmechanical gas-
transportation andhence cause addedvibrations in the tens to several hundreds
of Hertz range, they must not run while measurements are performed. To
maintain the ultra-high vacuum during measurements, an additional, non-
mechanical pump has to be deployed. One possibility is to use ion pumps or
titanium-sublimation pumps. They have no lubricants or moving parts, but
involve strong magnetic fields and currents34 (around 40 A). Alternatively, a
non-evaporable getter pump can be used, which is an entirely passive pump
that works by metallic surface sorption of gas molecules.35 In addition to a
large pump with an inlet in a wall of the vacuum tank, one might also consider
a trap close to the test mass that would locally reduce the background pressure.
Such a local pump could be formed by either a much smaller sorption element,
or a cryogenic cold-trap.

e)We are currently investigating if strong UV lighting could cause threatening effects in
the proposed setup, e.g. by creating additional charges or causing excessive heating in the
birefringent optical elements such as calcite and YVO4.
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We note that even if the mechanical pumps are switched off during measu-
rements, they could still impose additional challenges for the experimental
setup. While spinning up to their working frequency turbo pumps sweep
the entire lower frequency range starting from DC, which might trigger cru-
cial resonances and cause misalignment. Similar issues could be caused by
the sheer amplitude of typical roughing pumps, which for this reason in
vibration-sensitive experiments are commonly decoupled from the laboratory
environment, e.g. by means of stacked layers of granite plates and rubber feet.

12.4 Active isolation

We expect that the presented passive isolation chain will demonstrate suf-
ficient performance for the proposed experiment. However, if the isolation
requirements become stronger in future iterations of the experiment, e.g. for
significantly smaller source masses, one will likely have to add active vibration
isolation in addition to a passive system. Here, we briefly touch upon some
solutions to read out residual motion of isolation platforms and to compensate
this via active feedback.

From the sensing side, we note that we can roughly convert acceleration
spectral densities S Üx to displacement spectral densities Sx and vice-versa via

S1/2
x (ω) ≈ S1/2

Üx (ω)/ω2, (12.2)

given that we neglect the effects of damping. Due to the inverse square fre-
quency falloff, at high frequencies accelerometer sensors become quite potent
displacement measurement devices, even if the acceleration measurement is
limited by (relatively flat) electronic noise. Accordingly, at lower frequencies
direct measurements of velocity or displacement can yield much better noise
performance.

Surprisingly, most off-the-shelf accelerometers are not even sufficient to
resolve the vibrational background noise in a regular laboratory. Specialized
piezoelectric accelerometers can reach sensitivities of 10 ngHz−1/2 at 10 Hz,
corresponding to 2.5 · 10−11 m Hz−1/2.36 The bandwidth of such devices is then
typically limited to below 100 Hz, whereas less sensitive accelerometers are
available up to tens of kilohertz. Another method of measuring acceleration
in these acoustic low-frequency bands is through induction, specifically by
sensing the motion of a permanent magnet (that is attached to a relatively
heavy test mass) by the voltage that it induces in an electric coil. This is a
common approach in commercial seismometers as these voltages can typically
be generated and determined with comparably low noise. Converting spectral
densities of typical seismometers and geophones, e.g. the Nanometric Trillium
T240 and Geotech GS-13 used in the advanced LIGO intermediate isolation
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plattforms, yields noise levels between 10−12 m Hz−1/2 and 10−13 m Hz−1/2 at
10 Hz.37 The disadvantage of these devices is that they can hardly be made
high-vacuum compatible and therefore need to be housed in specially made
air tanks (vacuum cans) if they have to be placed inside of vacuum systems.38

Specifically in the case of gravitational wave detectors, several types of
active elements are used in combination. To understand the working principle
based on actuation on multi-stage isolation pendulums, we have to recall two
major effects. First, at comparatively low frequencies, noise typically comes
with higher amplitudes, which requires less sensor performance to resolve
but higher feedback powers to compensate, thereby causing more feedback
noise. Second, due to the characteristic high-frequency falloff of passive vi-
bration isolation, actuations at early stages in the chain can compensate for
low-frequency vibrations in later stages, while high-frequency actuations are
strongly attenuated. As an example, we consider the quadruple pendulum
mirror suspensions used in advanced LIGO,39 an isolation systemwith a target
noise of 10−19 m Hz−1/2 at 10 Hz. Here the topmost stage motion is sensed by
shadowflag sensors integratedwith electromagnetic actuation coils40 (BOSEM)
that reach sensing noise levels around 10−10 m Hz−1/2.f Intermediate stages
are actuated with smaller coils in the 1 Hz to 10 Hz range and not directly sen-
sed, while the bottommost stage is sensed by the main optical interferometric
readout in the high frequency regime and actuated by electrostatic drives,
both of which obviously have to yield noise less than the target sensitivity of
10−19 m Hz−1/2 in the higher frequency regimes (> 10 Hz). As actuation forces
applied between the well isolated test mass and the seismically noisy environ-
ment potentially couple noise and hence reduce the isolation performance,
each quadruple pendulum is accompanied by a nearly identical reaction chain.
The masses in the reaction chain then serve as an inertially quiet recoil masses
for the actuation and the respective actuation elements can be placed between
the according stages of main chain and reaction chain without increased envi-
ronmental noise coupling. Of course, a substantial effort in low-noise control
electronics is necessary to collect the signals of more than ten input sensors
and combine them into a vibration model that is then fed back onto more than
twenty actuators each limited with specific band pass filters to its respective
frequency regime.41

f) Interferometric sensors have been proposed to replace shadow sensors in the next genera-
tion of vibration isolation suspensions, as they could reduce the readout noise by more than an
order of magnitude (Aston 2011; Speake and Aston 2005).
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Part IV

Discussion and outlook

A brief outlook on future possible applications of the discussed apparatus as
both a precision measurement device for the gravitational constant G as well
as an experiment interfacing quantum mechanics and gravity is presented in
chapter 13. The last chapter, chapter 14, concludes with the current status of
the technical development and open problems.
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Chapter 13

Further developments

Demonstrations of a gravitationally driven displacement of a micromechanical
system through a millimeter-scale source mass serve as a major milestone
for small-force sensing. There are several ways to improve the sensitivity of
the currently planned test-mass device even further. As the ratio between
the Newtonian signal and the Brownian force noise scales favorably with
mechanical quality Q (eq. (13.1)), the most promising one is to transition to a
cryogenic scheme in order to both decrease the thermal noise and to increase Q.
Schemes basedonmagnetic levitation couldyielddrastically highermechanical
quality through their strongly suppressed environmental coupling.1 These
improvements could open up interesting application areas for our scheme.

On the one hand, high-precision measurements of the gravitational field
of small source masses offer a completely different approach to determine
Newton’s constant, possibly less sensitive to systematic errors present in expe-
riments with macroscopic source masses, which we analyze in section 13.1. On
the other hand, combining the sensitivity to gravitational coupling between
microsopic source masses with the ever growing ability to achieve quantum
control over their center-of-mass motion might eventually lead to a completely
new generation of experiments at the interface between quantum physics and
gravity, which is discussed in section 13.2.

Chapter contents

13.1 Measurement of the gravitational constant . . . . . . . . . 175
13.2 Towards quantum source-masses . . . . . . . . . . . . 178

13.1 Measurement of the gravitational constant

Aswe pointed out in section 3.2.2 on p. 10, the uncertainty in themeasurements
of the gravitational constant is high and spans multiple standard deviations
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of individual experiments. Many potential systematic flaws arise from the
large spatial dimensions of the experiments, including inhomogeneities in the
macroscopic source masses due to manufacturing limitations, inaccuracies
in the determination of the effective distance between test and source masses
due to, for example, temperature fluctuations, and nonlinear effects as well as
suspension noise in the typical pendulum fiber suspensions. In addition, long
integration times require a detailed understanding of all long-term systematics
in these experiments. Figure 13.1 shows an overview over all measurements
of G that have been incorporated into the latest determination of the CODATA
recommended value2,

G � 6.674 08(31) · 10−11 m3 kg−1 s−2, ∆G/G � 4.7 · 10−5,

as a function of the source mass size. The figure also shows the current record
for themeasurement of a gravitational field from a small sourcemass (VIRG-89)
as well as the milliG experiment proposed in this thesis. According to Gillies
and Unnikrishnan (2014), when the dependence of the measured value for
G is plotted against the total source mass for a selection of higher-precision
experiments, one might even think of interpreting a power-law dependency
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into the data. Clearly, despite gravitational forces being much weaker in a
microscopic system than in decimeter to meter-scale setups with much larger
masses, the prospect of entering a hitherto unexplored regime of sourcemasses
for gravitational measurements is very attractive, even if it may not reach
competitive precision.

Our approach involves a centimeter-scale experimental architecture, a
microscopic source mass and short integration times of only hours. When
compared with the common measurements of G, this combination yields a
very small overlap of systematic effects, since the small volumes enable a
better control of positioning and density inhomogeneities of the masses as
well as of temperature fluctuations. All components can be defined in a clean
microfabrication process and are in principle small enough to even perform
tomography and identify inhomogeneities and cavities in the substrates and
materials. Also, the scheme does not rely on long fibers twisted in nonlinear
regimes. In addition, short integration times may allow for a systematic study
of the influence of fluctuations of other spurious external forces that give rise
to systematic errors in long-term experiments.

A remaining challenge is to achieve ameasurement precision that is compe-
titive with experiments involving macroscopic source masses, as new potential
systematic errors arise from the determination of the effective modal and
gravitational mass and nonlinear effects due to the gravitational pull on the
test mass (see section 9.2.2 on p. 98). In addition, due to the comparably high
frequencies and small masses, the gravitational effects in the proposed system
are much weaker. We may briefly estimate the performance of the milliG
proposal if thermal noise limits the signal-to-noise performance. This compa-
rison is not necessarily fair, as thermal noise in conventional measurements is
always overshadowed by other sources of uncertainty. However, it provides an
insight for the ultimate precision limit. Comparing the effect of the Newtonian
contribution (eq. (5.22a) on p. 41) to the thermal noise (eq. (5.34) on p. 46)
yields

(
PxG(ω)
Px th(ω)

)1/2
� GM

(
πmβ
γΓ

)1/2 dS

d3
0
� GM

(
mQTβ

2ω0

)1/2 dS

d3
0
, (13.1)

which is independent of the drive frequency ωS. We keep our previous parame-
ters of 2 mm-diameter gold spheres for both the source and the test mass and
an optimal drive amplitude dS � 1.25 mm, but assume cryogenic temperatures
in a system with good vibration isolation (Θ � 20 K). The latter has been
studied and judged feasible for cryogenic third-generation gravitational wave
detector designs.3 We estimate a conservative value of Q � 106 and choose a
reasonable test-mass frequency of ω0/(2π) � 100 Hz to make the system less
susceptible to systematic errors associated with lower frequencies, yielding a
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hypothetical signal-to-noise optimum of
(

PxG
Px th

)1/2
≈ 2 s−1/2 · T1/2.

This is around 120 for an integration time of T � 1 hour, and 1500 for T �

1 week, slowly approaching a regime that is competitive with existing high-
precision experiments to measure G. One straight-forward way to improve
these numbers is to increase the size of the masses, which will both boost the
gravitational signal and decrease the thermal cantilever noise. For example,
using 10 mm radius spheres instead of 1 mm would push the signal-to-noise
ratio to (PxG/Px th)1/2 ≈ 55 · 103 after 1 hour of integration. We need to point
out that in this scenario, achieving the optimal drive amplitude of over 10 mm
at 100 Hz might be unfeasible, as analyzed in chapter 10 on p. 119, and all resi-
dual noise, such as readout noise and vibrational noise, need to be constrained
to a considerably lower thermal noise level than before as well. In summary,
even though a micromechanical system will likely not be able to compete with
current measurements of G in the near future, it is still a worthwhile investi-
gation as it opens up a mass regime that has been completely unaccessible to
previous setups.

13.2 Towards quantum source-masses

The two main fundamental theories of modern physics, quantum theory and
gravity, individually withstood a huge number of tests. Specifically, quantum
superposition has been demonstrated, for example, using orbital angular mo-
mentum of photons up to hundred quantum numbers4, microampere current
states carrying up to 106 electrons5, collective spin degrees of freedom of 1012

rubidium atoms6, large organic molecules7 and vibrational degrees of freedom
of mechanical resonators composed of up to 1015 atoms8. In general relativity,
we find, next to the variety of lab-based experiments discussed in section 3.2
on p. 9, the measurement of gravitational waves from binary pulsars9 and in
gravitational wave observatories10 or tests of the Lense-Thirring effect using
satellites11 and laser ranging12.a However, today, physics finds itself in a pe-
culiar situation. Despite the fact that the predictions of both quantum theory
and general relativity are extremely well confirmed by experiment, interfacing
these two theories still belongs to one of the outstanding big challenges of
modern science. Notwithstanding the conceptual and mathematical hurdles
in writing down a full quantum theory of gravity, the number of available
experiments that probe the interface between quantum physics and gravity is
also extremely sparse – thus far, all of the laboratory scale experiments above

a) For a more complete overview of tests of general relativity, see e.g. Will (2006).
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13)DeWitt and Rickles 2011,
p. 250

14)Aspelmeyer 2017

15) Juffmann et al. 2012
16)Müntinga et al. 2013

17) Palomaki et al. 2013

have, at most, been using quantum systems as test masses in external gravita-
tional fields, with source masses ranging from several-kilo heavy objects to
the entire earth. Therefore, we may legitimately ask: What happens if we put
a gravitational source mass in a quantum superposition state and what would
be the gravitational field of such a state?

The question about the gravitational field of a quantum spatial superposi-
tion was discusssed already by Feynmann at the 1957 Chapel Hill conference13.
He suggested a Gedankenexperiment in which such a mass configuration
would attract a second mass, thereby generating entanglement through gra-
vitational interaction. Estimating the practicality of an experiment to test
gravitational entanglement, we may ask for the time that it would take to
generate such entanglement in a configuration with two masses, one of them
being in a spatial superposition. Using a straight-forward calculation14, the
entanglement rate Γent, which in this scenario is equivalent to a decoherence
rate, can be estimated as

Γent �
GM2

~d3 dψ∆xψ.

Here, dψ is the superposition displacement of the source masses, ∆xψ is the
width of the test-mass wave packet, and d is the COM separation. Both mas-
ses M are chosen to be identical. We set the material to be gold, the masses to
be spheres with a diameter of 2 mm located at a surface distance of 100 µm,
the superposition size to dψ � 100 nm and the test mass to be in the COM
ground-state of a harmonic trapwith ω � 50 Hz, i.e.∆xψ � ~1/2(Mω)−1/2. This
yields an entanglement rate Γent ≈ 3 Hz, so entanglement would be generated
on a scale of less than a second. Unfortunately, today’s experiments are still far
away from reaching comparable numbers of spatial superpositions for such
massive objects. Similar coherence times have only been achieved for spatial
superpositions of large organic molecules15 or BECs16 up to a few thousand
amu, while experiments approaching the relevant mass regime have much
shorter coherence times, such as 120 µs for a micromechanical resonator with
an effective mass of 48 pg17 or 7 ps for the collective motion of 1016 diamond
atoms. Obviously, achieving quantum control over the motion of sufficiently
massive objects while at the same time keeping the experimental sensitivity to
their gravitational forces – which is needed for establishing quantum systems
as gravitational sourcemass – is notwithin reach at this point in time. However,
in this context, our micromechanics platform presented in this thesis can be
seen as a top-down approach towards designing such future experiments. The
lowest masses and shortest timescales over which gravitational coupling can be
observed will be an important benchmark for both mass and coherence time of
future quantum experiments. In the most optimistic scenario, the combination
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of force sensitivity and coherence time will eventually enable the quantum
regime of gravitational source masses.
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Chapter 14

Conclusion

We have introduced a micromechanical method to measure gravitational cou-
pling between small masses. Current state-of-the-art technology should allow
for a proof-of-concept demonstration for objects on the scale of millimeters
and tens of milligrams, which already improves the current limit for sensing
the gravitational field of a small source mass by three orders of magnitude.

We divide this chapter into two parts: A brief summary of the current state
of the project and the outstanding challenges (section 14.1), and an outlook for
the near future of the experiment (section 14.2).

Chapter contents

14.1 Current status . . . . . . . . . . . . . . . . . . . . 181
14.1.1 Status of the relevant theory (p. 182)
14.1.2 Test-mass status (p. 182)
14.1.3 Source-mass status (p. 182)
14.1.4 Readout status (p. 183)
14.1.5 Vibration isolation status (p. 183)

14.2 Outlook . . . . . . . . . . . . . . . . . . . . . . 185

14.1 Current status

At the time ofwriting, the proposed experiment undergoes heavy development.
The theoretical model of the detection scheme, which is at the heart of this
thesis, leaves few open questions of direct relevance for the near future. Our
work is now mainly focused on the four main components – test mass, source-
mass drive, optical readout and vibration isolation – of the experimental
implementation.
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14.1.1 Status of the relevant theory

In this thesis we have developed a scheme to calculate the contributions of all
foreseeable forces and fundamental noise-sources in a driven harmonic oscilla-
tor measurement. The estimation of the effect of nonlinear force contributions
and the proper inclusion of distance-dependent statistical noise components
are ongoing efforts.

Further, wehavepresented anew framework to estimate the transmissibility
of passive vibration-isolation chains. Due to its generality, this method can in
principle be applied to arbitrary systems with fewmodifications. We currently
extend the framework to account for additional effects of thin suspensionwires,
i.e. restoring forces on rotational degrees of freedom and higher-order violin
modes.

14.1.2 Test-mass status

Throughout this thesiswehave established routines to characterize and tune the
frequencies and modes of test-mass devices using finite-element simulations.
These simulations can account for a range of additional effects, such as the
local absorption of incident readout power and stress due to the gravitational
background field. Further, we have investigated the effects of damping by
residual gas molecules and by soft clamping materials, which allows us to
formulate geometric requirements for the experimental assembly in order to
achieve an optimal mechanical quality of the test mass.

There are a few promising candidates for test-mass substrates and first
working devices are expected by mid-2017. A few open questions still require
further investigation. Compensating the displacement magnitude of the gra-
vitational pull could require slight redesigns of the interferometer, and it is
not entirely clear if more complex device geometries will be needed in order
to counteract the potential degradation of mechanical quality through the
attachment of larges masses.

14.1.3 Source-mass status

Our investigations lead to a set of requirements for the source-mass drive
engine. The most promising system that meets our needs is an actuator based
on a flexure-guiding system (fig. 10.4(a) on p. 126). At the time of this writing,
first prototypes are tested (fig. 14.1(a)) and iterated (fig. 14.1(b)). Preliminary
simulations give enough reason to be optimistic that this system will be able
to achieve a reasonable amplitude (i.e. at least 1 mm peak-to-peak) at 50 Hz.

Open questions primarily concern the dissipation of heat generated by
the drive engine (as the drive itself needs to be vibrationally decoupled) and
the life times that can be achieved. Both can be tested and optimized once
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(a) Current source-mass drive design with
a length of 200 mm, driven with a piezo-
actuator. This design already yields an actu-
ation of 1 mm (peak-to-peak) at 50 Hz.

(b) Design-drawing of the next iteration
with a length of 270 mm and two piezo-
actuators. The design is expected to yield
more than 2 mm of peak-to-peak actuation
at 50 Hz

Figure 14.1: Status of the source-mass drive engine realized as a flexure-guiding system.
The force appliedby thepiezo actuators causes the structures to bulge,which effectively
amplifies the piezo amplitude by (roughly) the aspect ratio of the steel frame. The
design and manufacturing was performed by Mathias Dragosits.

first running drives are established. Further current work is concerned with
finite-element simulations for the estimation of electromagnetic stray-fields
generated by the drive.

14.1.4 Readout status

We have proposed a polarization-based Mach-Zehnder homodyne interfero-
meter that can be implemented with a small geometric footprint. This scheme
has been tested with standard components (fig. 14.2(a)) and yields promising
performance and stability. The components for a fully-integrated realization
of this scheme have already been selected and, as the next step, need to be
arranged on the test-mass platform. Selecting an appropriate laser source
should be feasible as there are a few commercial short-coherence length laser
systems available that likely meet our requirements.

The remaining challenge for the optical readout comes down to the noise
performance of the detection and electronic signal conversion. If the electro-
nic noise can be suppressed far enough, an off-resonant detection scheme
becomes feasible, which circumvents the challenges associated with test-mass
frequency drifts and ring-ins/downs. The electronic circuit is undergoing
active development and is currently in its fourth iteration (fig. 14.2(b)).

14.1.5 Vibration isolation status

The good agreement between the vibration isolation model we built from
scratch and a similar model used for advanced LIGO leads us to believe in
the credibility of our performance estimation results. A complete model of
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(a) Noise performance of a polarization-based interferometer built with standard compo-
nents. For the experimental scheme, see fig. 11.2(a) on p. 134. The detection was realized
with a commercial “Nirvana” auto-balanced photoreceiver byNewport Corporation (2017).
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(b) Simulated performance of analogue detector electronics for a range of light powers P
incident on the detector diodes. The results were achieved with a program based on the
open software LISO (Heinzel 1999).

Figure 14.2: Status of readout optics and electronics. The measurements and simulati-
ons were performed by Hans Hepach and Tobias Westphal.

the entire system including both the test- and source-mass chains as well
as the active pre-isolation is being set up. This is mainly a programming
effort and does not impose new principle challenges. The design of a blade-
pendulum system yielding the desired performance is straightforward as our
requirements are far looser than those typically encountered in gravitational
wave detectors, which can be considered established technology. A commercial
pre-isolation systemhas been selected, andwhile the available laboratory space
is far from ideal, we are optimistic that our design allows us to complete the
experiment.

The remaining challenge is of engineering nature; namely designing the
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test-mass and source-mass stages in a way that both have their center-of-total-
mass in the respective masses, while test and source mass are separated by
a few hundred microns. This is absolutely feasible, but still requires careful
planning and execution.

14.2 Outlook

As of early 2017, we are confident that the proposed experiment is feasible
with current technology. We expect to be able to fabricate and characterize
test-mass devices meeting the requirements by the end of the year. The off-
resonant thermal-noise limited readout of such devices will certainly be a first
major technical milestone, as it is only possible if the test mass, the optical
readout and the test-mass vibration isolation meet our requirements. Once
this is established, demonstrating gravitational interaction between the source
and the test mass comes down to the engineering of the drive and the drive
vibration-isolation. As the development of the drive engine is already in the
stage of prototype testing and revision, we expect that by the time a thermal-
noise limited readout of the test mass has been established, the driving side
of the proposed experiment will be finalized. Without major setbacks, this
should render the achievement of measuring gravitational interaction between
milligram-masses feasible by 2018.

Aswe layout in chapter 13, futuredirections of this experiment could lead to
an alternative high-precisionmeasurement of the gravitational constant, which
might be less susceptible to conventional source-mass related disturbances of
other approaches. Further, in the long run, the ability to extend the control
over gravitational coupling into the microscopic domain may enable a new
generation of quantum experiments, in which the source-mass character of the
quantum systems start to play a role. However, while the former can be seen
as a straight-forward extension of current state-of-the-art technology, the latter
poses technical hurdles for environmental isolation and mechanical quality
factors so demanding that it is not quite clear if they can ever be achieved.
Nevertheless, these steps will ultimately accumulate to significant progress
and even its early stages, the proposed experiment may act as a driving motor
for the technical developments necessary to ultimately achieve gravitating
quantum systems in the far future.
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Part V

Supplement

We lay out the definitions used throughout this thesis and perform some
technical calculations in appendix A. In appendix B we appeal to some of
the comments that are regularly brought up in the context of this work. We
conclude with acknowledgments and the relevant indexes.
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“I know my apprehensions might
never be allayed, and so I close,
realizing that perhaps the en-

ding has not yet been written.”

Myst
Rand Miller, Robyn Miller

“This was a triumph.
I’m making a note here: huge success.
It’s hard to overstate my satisfaction.”

Portal
Erik Wolpaw, Chet Faliszek
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Mathematics
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A.1 Conventions

We define the Fourier transform as

F [x(t)](ω) �x̃(ω) :�
∫

+∞

−∞
x(t)e+iωt dt,

which means that the inverse transform has to be

F −1[x̃(ω)](t) �x(t) � 1
2π

∫
+∞

−∞
x̃(ω)e−iωt dω,

with the Dirac delta function

δ(ω) :� 1
2π

∫
+∞

−∞
e+iωt dt.

With these definitions, we see that

F [ Ûx(t)](ω) � −iωx̃(ω) and F [ Üx(t)](ω) � −ω2 x̃(ω).
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1)Zwillinger 2011

Further, for real valued x(t),

x(t) ∈ R ⇒ ¯̃x(ω) � x̃(−ω) ⇒ |x̃(ω)|2 � x̃(ω)x̃(−ω). (A.1)

The chosen conventions imply the following convolution identities:

F [x(t) y(t)](ω) � 1
2π

[
x̃ · ỹ] (ω),

F −1[x̃(ω) ỹ(ω)](t) � [
x · y] (t), (A.2)

as well as the Parseval identity for real, square-integrable x(t),
∫

+∞

−∞
x(t)2 dt �

1
2π

∫
+∞

−∞
|x̃(ω)|2 dω. (A.3)

As another important identity we find that
∫

+∞

−∞
Sx dω � 2π lim

T→∞
1

2T

∫
+T

−T
〈x(t)2〉 dt. (A.4)

A.2 Formulae

We need the following trigonometric identities1:

sinn x �
1

2n

(
n
n
2

)
+

2
2n

n
2 −1∑
k�0
(−1)( n

2 −k)
(
n
k

)
cos ((n − 2k)x), n even,

sinn x �
2

2n

n−1
2∑

k�0
(−1)( n−1

2 −k)
(
n
k

)
sin ((n − 2k)x), n odd,

cosn x �
1

2n

(
n
n
2

)
+

2
2n

n
2 −1∑
k�0

(
n
k

)
cos ((n − 2k)x), n even,

cosn x �
2

2n

n−1
2∑

k�0

(
n
k

)
cos ((n − 2k)x), n odd,

(A.5)

as well as

sin x sin y �
1
2

(
cos(x − y) − cos(x + y)

)
,

cos x cos y �
1
2

(
cos(x − y) + cos(x + y)

)
,

sin x cos y �
1
2

(
sin(x − y) + sin(x + y)

)
.

(A.6)
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A.3 Calculcations

A.3.1 Variance of variance for Gaussian white noise

We closely follow the derivation given by Smith (2010) with modified notation.
First, we define an expectation estimation function 〈y〉M of a quantity y, which
is the expectation value of y for a finite number M of systems in an ensemble
or of repetitions of a measurement on a single system:

〈y〉M :� 1
M

M−1∑
m�0

ym ,

where m is an ensemble index and so y can be any quantity that is accessible in a
repeatable fashion, e.g. the value of a Fourier transform at a specific frequency
ω∗, y � x̃(ω∗). We directly see that the expectation value of this quantity is
the expectation value of y, as 〈〈y〉M〉 � M−1 ∑M−1

m�0 〈y〉 � 〈y〉. Now, taking the
variance σ2

y of y as σ2
y :� 〈(y − 〈y〉)2〉, we may ask about the variance of the

estimation function of y2, or more specifically in the case of white noise with
〈y〉 � 0, about the variance of a variance:

σ2
〈y2〉M � 〈(〈y2〉M − 〈〈y2〉M〉

)2〉 .

We use that 〈〈y2〉M〉 � 〈y2〉, and that for a zero-mean quantity (〈y〉 � 0)
σ2

y � 〈(y − 〈y〉)2〉 � 〈y2〉, so

. . . � 〈
(
〈y2〉M − σ2

y

)2
〉 � 〈〈y2〉2M〉 − σ4

y

�
1

M2

M−1∑
m1�0

M−1∑
m2�0
〈y2

m1 y2
m2〉 − σ4

y .

In the case of Gaussian white noise, the fourth moment is given by

〈y2
m1 y2

m2〉 �
{

3σ4
y , m1 � m2

σ4
y , m1 , m2

,

and therefore

σ2
〈y2〉M �

1
M2

(
(M2 −M)σ4

y + 3Mσ4
y

)
− σ4

y �
2
M
σ4

y .

For example, when considering the power spectral density S of white noise (or
a PSD that is deterministically derived of white noise, such as the displacement
PSD of a thermally driven oscillator), we can now write

S(ω) � 〈S(ω)〉M ±
√

2
M

S(ω) ≈
(
1 ±

√
2
M

)
〈S(ω)〉M .

191



Appendix A Mathematics

2) Stein and Weiss 1971,
Theorem 1.18
3)Rudin 1991, sec. 6.31

This means that for a non-averaged spectral density of a Gaussian white-noise
signal, i.e. M � 1, the error at each measured frequency will be larger than the
power-spectrum expectation value (by a factor of

√
2).

A.3.2 Proof of the Wiener-Khinchin theorem

In order to proof the Wiener-Khinchin theorem (see section 4.6 on p. 23) we
consider

〈|x̃T(ω)|2〉 � 1
2T

∫
+T

−T
dt2

∫
+T

−T
dt1 〈x(t2)x(t1)〉 eiω(t2−t1)

�
1

2T

∫
+T

−T
dt2

∫
+T

−T
dt1 rx(t2 − t1)eiω(t2−t1),

where we assumed that the autocorrelation function does not depend on the
individual times t1, t2 but only on their difference. This kind of process is often
referred to as weakly stationary or wide-sense stationary. Using the following
identity,

∫
+T

−T
dt2

∫
+T

−T
dt1 f (t2 − t1) �

∫
+2T

−2T
dτ g(τ)(2T − |τ |),

we can process the above as

〈|x̃T(ω)|2〉 � 1
2T

∫
+2T

−2T
dτ rxx(τ)eiωτ(2T − |τ |)

�

∫
+2T

−2T
dτ rxx(τ)eiωτ

(
1 − |τ |2T

)
.

Therefore,

SP,x � lim
T→∞
〈|x̃T(ω)|2〉 �

∫
+∞

−∞
dτrxx(τ) eiωτ

� F [rxx(τ)](ω).

A.3.3 Limit of T sinc2(ωT)
The limit of T sinc2(ωT) for T → ∞ is of relevance for the spectra-related
calculations. To derive this limit, we first consider the expression

η(ω) :� τ
π

sinc2(ωτ),

which is continuous, absolutely integrable and fulfills
∫
+∞
−∞ η(ω)dω � 1. The-

refore, a nascent delta function ηε(x) :� ε−1η(x/ε) can be constructed2 which
will weakly converge3 to the Dirac delta function in the limit of ε→ 0:
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lim
ε→0

ηε(x) � lim
ε→0

τ
π ε

sinc2
(
ω
τ
ε

)
� δ(ω).

If we substitute T :� τ/ε, the limit ε→ 0 becomes T →∞ and the equation
above can be rewritten as

lim
T→∞

T sinc2 (ω T) � π δ(ω).

A.3.4 Integrated susceptibility

For the susceptibility χ(ω) � (ω2
0 − ω2 − iγω)−1, we find that the integral is∫ ∞

−∞
|χ(ω)|2 dω �

π

γω2
0
. (A.7)

A.3.5 Splitting of Fourier contributions for the PSD calculation

Suppose we split the position coordinate into a sum of multiple contributions,
x(t) � ∑

i xi(t). Naturally, the Fourier transform of the position can be split up
in the same way,

x̃(ω) �
∑

i

x̃i(ω),

and due to the linearity of the convolution, we may apply eq. (4.2) on p. 21
and write the windowed Fourier transform as

T x̃(ω) �
∑

i
T x̃i(ω)

with T x̃i(ω) � 1√
2T

1
2π

[
T h̃ · x̃i

] (ω), T h̃(ω) � 2T sinc(ωT).

The power spectral density, eq. (4.4) on p. 23, is then given by

Sx � lim
T→∞
〈|T x̃(ω)|2〉 � lim

T→∞

∑
i , j

〈T x̃i(ω) T ¯̃x j(ω)〉 .

If we now assume that we split x(t) in such a way that at most one of the xi(t)
is deterministic and all other xi(t) are statistic with zero-mean, and we further
assume that all statistic xi(t) are uncorrelateda, we have that

lim
T→∞
〈T x̃i(ω) T ¯̃x j(ω)〉 � δi jSxi ,

and therefore

Sx � lim
T→∞

∑
i

Sxi .

a)As is pointed out by Clerk et al. (2010), this is not always trivially the case. E.g. in opto-
mechanical cavities mixed terms between shot noise and backaction can occur, as they are
effects of the same underlying photon rate fluctuations.
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A.3.6 Nonlinear source-contributions

Here, we will briefly investigate the nonlinear terms in eq. (5.8e) on p. 32,
namely

x̃Ξ(ω) � χ(ω)
∞∑

n1 ,n2�1
Ξ(n1 , n2)F [xn1

S Ûxn2
S ]

with Ξ(n1 , n2) �
∑

i

1
n1!n2!

∂n1+n2

∂xn1
S ∂ Ûxn2

S
Fi(xS , ÛxS)

�����
0,0

.

Similar to section 5.2 on p. 33, we assume a sinusoidal drive motion xS(t) :�
dS cos(ωSt). With this, we can break down the Fourier transform of xn1

S Ûxn2
S as

F [xn1
S Ûxn2

S ] � dn1+n2
S (−ωS)n2F [cosn1(ωSt) sinn2(ωSt)].

Without actually processing this expression much further, we can look at the
trigonometric power expansion theorems, eq. (A.5), and see that for all n1, n2
we can reduce both the cos and the sin power expressions to sums of single
trigonometric functions oscillating with frequencies ω � (n − 2k)ωS with
integer-valued ks. Using the trigonometric multiplication theorems, eq. (A.6),
it becomes clear that all terms of the total sum oscillate at frequencies

ω � ((n1 − 2k1) ± (n2 − 2k2))ωS.

Thinking in terms of spectra, the meaning of this expression is obvious: On
top of additional contributions at the drive frequency, the nonlinear drive
terms generate a spectrum of higher order frequency contributions, which are
positioned at integer multiples of the original source frequency ωS.
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B.1 Making sense of spectrum analyzers

Here, we account for some of the confusion that can arise when trying to put
a spectrum analyzer in the context of PSD estimation. A general issue is that
the default units of a spectrum analyzer, e.g. dbm, are not valuable for much
more than an “arbitrary units” figure and require more work if quantitative
amplitude information is desired. Let us assume that the spectrum analyzer
is set to a power mode, so in principle it should show the square of the voltage
spectral density of the signal integrated of some frequency band, times an
unknown conversion constant. We call this the spectrum analyzer power
spectrum PSA (SAPS). The SAPS can then be related to the actual PSD of the
relevant quantity by deterministic modulation. We call the desired quantity
x, which could be position, phase, voltage or any quantity that is part of the
physical detection chain and can be modulated, and vary it as

x(t) � Bmod cos(ωmodt),
where the amplitude Bmod has to be known. For example, in a position mea-
surement with interference where some diode voltage is measured, one can
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cause a half wave phase shift π and from that measurement extract the phase
shift that corresponds to a certain voltage difference. We can then calculate
the theoretical power spectral density of x to be

Sx � B2
modπ/2 (δ(ω + ωmod) + δ(ω − ωmod)) ,

repeating the calculation we performed in section 5.2 on p. 33. The signal of
the spectrum analyzer will be the integral of this expression with a certain
bandwidth Γ and multiplication with an unknown factor α, i.e. PSA(ω) �
α
∫ ω+Γ/2
ω−Γ/2 Sx dω.a Referring to the height of the modulation peak in the SAPS

with BSA, at ω � ωmod the condition reads BSA � αB2
modπ/2, and therefore

Sx(ω) ≈
πB2

mod
2ΓBSA

PSA(ω) �
TB2

mod
4BSA

PSA(ω)

with the integration time T. This conversion should, in principle, hold true
for any spectrum analyzer in power mode and does not change for different
modes of conversion between symmetrized and non-symmetrized spectra
or different settings of input resisance (as long as the amplitude BSA and the
integration time T are used correctly).

B.2 Fourier transform: From continuous to discrete

In this section we lay out how a spectral density from an actual, finite and
discrete measurement differs from the idealized value. The definition we
introduced in section 4.2 on p. 20,

Sx � lim
T→∞
〈|T x̃(ω)|2〉 ,

has little to do with the experimental reality, as from a physical point of view
there are no continuous measurements (every measurement yields a discrete
series of data points) and no infinitely long measurements.

First, we have to assume that the deterministic part of the system is periodic
and that there is a T′ which is the longest period, which allows us to effectively
treat a trace as being infinite if we chose T � T′ and drop the limit. We also
have to comply with the fact that usually there is no ensemble of systems, but
just a single system available. This means that we have to drop the ensemble
average and replace it with a time average, where we evaluate the same system
at different periods in time:

Sx ≈ 〈Sx ,single〉time with Sx ,single � |T x̃(ω)|2.
a) Technically, we also need to account for the window function that is caused by the finite

measurement time as discussed in appendix B.2.2, which here we skip for clarity.
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We previously used T x̃(ω) � (2T)−1/2 ∫
+T
−T x(t)eiωt dt, but for convenience here

we redefine it as

T x̃(ω) :� 1√
T

∫
+T

0
x(t)eiωt dt.

An actual measurement will not yield a continuous trace x(t), but instead
a serious of points xn � x(n∆t), corresponding to snapshots (or weighted
averages) of the actual trace in time steps ∆t. We therefore replace the integral
with a sum as

T x̃(ω) ≈ 1√
T

N−1∑
n�0

xneiωn∆t∆t (B.1)

where N∆t � T with the total number of points N and the total measurement
time T.

B.2.1 Software implementation of spectral densities

Computationally it is convenient to also treat the transformed function (and
not only the original data) as a series of points. Starting from eq. (B.1) we write

x̃m :�T x̃(m∆ω) �T x̃(m2π∆ f ) ≈ ∆t√
T

N−1∑
n�0

xnei2πnm∆t∆ f (B.2)

It seems like one can choose ∆ f freely, but there is just one choice that actually
makes sense. For the smallest step in frequency ∆ f , we require that the
exponent is periodic in n with period N , which leads to

1 � ei2πN∆t∆ f ⇒ N∆t∆ f � 1

Inserting this into eq. (B.2), we get

x̃m �

√
∆t
N

N−1∑
n�0

xnei2πnm/N ,

and coming back to the single spectral density, we have

Sx ,single,m ≈ ∆t
N

�����
N−1∑
n�0

xnei2πnm/N
�����
2

.

The implementation of the above depends on the definition of the discrete
fourier transform in the respective programming language. For example, in
Mathematica the default Fourier transform is defined as
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Fourier[list_ ]:= Table[
1/Sqrt[nMax] Sum[

list[[n]] Exp[I 2 Pi (n-1)(m-1)/nMax],

{n,1,nMax}],

{m,1,nMax}]

where one should note that in Mathematica lists start at the first and not at the
zeroth entry. As canbe seen from this definition, in order the extract the spectral
density we have to multiply the absolute square of the Mathematica Fourier
series by the time step size ∆t. The single spectral density in Mathematica
code is therefore given by
spectralDensity = timeStep Abs[ Fourier[ trace ] ]^2

where the timestep can be extracted from the difference between the first and
the last timestamp of the trace divided by the number of points in the trace,
which equals the time difference between two successive points in the trace.

B.2.2 Finite sampling of a continuous signal

As seen in eq. (4.2) on p. 21 we may write

T x̃(ω) � 1√
2T

1
2π

[
T h̃ · x̃] (ω)

where T h(t) represents a step-window function in the simplest case, but can
be any appropriate L2 function. While a window step-window function corre-
sponds to the case where the measurement is switched on and off at certain
points in time, one might also think of taking snippets of longer traces by
“fading” the values of the outside of the range in and out, e.g. by using a Gauss
function instead of a discrete window function, and having some amount of
overlap between traces

If we now introduce a finite sampling rate 1/∆t, the expression above will
slightly change. Generalizing eq. (B.1) to arbitrary window functions h(t), we
have

T x̃(ω) ≈ 1√
2T

∞∑
n�−∞

h(n∆t)x(n∆t)eiωn∆t∆t

�
1√
2T

1
2π

∞∑
n�−∞

h(n∆t)
(∫

+∞

−∞
x̃(ω′)e−iω′n∆t dω′

)
eiωn∆t∆t

�
1√
2T

1
2π

∫
+∞

−∞

( ∞∑
n�−∞

h(n∆t)ei(ω−ω′)n∆t∆t

)
x̃(ω′)dω′,

thereby allowing us to write

T x̃(ω) � 1√
2T

1
2π

[
h̃ f · x̃

] (ω) with h̃ f (ω) :�
∞∑

n�−∞
T h(n∆t)eiωn∆t∆t, (B.3)
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1) Luke 1999

meaning that we now use a finitely sampled Fourier transform h̃ f (ω) instead
of the continuous one.

We may briefly check the impact of the finite sampling for the easiest case
of a step-window T h(t),

T h(t) :�

{
1 for t ∈ [−T; T)
0 else

,

which can be inserted into eq. (B.3) to compute the finitely sampled Fourier
transform h̃ f (ω) as

h̃ f (ω) � ∆t
N−1∑

n�−N

eiωn∆t
�
∆t√
2T

N−1∑
n�0

(
eiωn∆t

+ e−iω∆te−iωn∆t )

� ∆t
(

1 − exp(iωT)
1 − exp(iω∆t) + e−iω∆t 1 − exp(−iωT)

1 − exp(−iω∆t)
)

� 2T sinc(ωT)exp(−iω∆t/2)
sinc(ω∆t/2) ,

where in the second line we identified a geometric series and the third line is
basic calculus. To re-iterate, the continuous Fourier transform of T h(t), which
was used for the idealized power spectral densities throughout this thesis, is

T h̃(ω) �
∫ T

−T
eiωtdt �

(
eiωT − e−iωT ) (iω)−1

� 2T sinc(ωT).

The consistency of these results is quickly verified as h̃ f (ω) ∆t→0−−−−→ T h̃(ω), which
is required as the continuous case should be recovered from the discrete for
infinitely small time steps ∆t → 0. Both functions are compared in fig. 4.1
on p. 25. It becomes evident that the actual values of x will be sampled into
smooth bins, the width of which depend on the time span of the trace – the
longer the time, the smaller the bins become as h̃ f (ω) is modulatedwith period
ωm � 2π/(N∆t) � 2π/T, which is the frequency resolution of the trace. Butwe
also note that due to the finite sampling, the higher frequency contributions of
x̃(ω) will be convoluted, or shifted, onto the lower ones. This effectively adds
to their amplitudes as h̃ f (ω) is periodic in ω with period ωp � 2π/∆t, which is
the bandwidth of the trace. In essence, this is the sampling theorem.1 In signal
processing, when signals at specific frequencies cause spectral contributions at
different frequencies due to the nature of the sampling, one speaks of leakage,
and in general there is a variety of window functions T h(t), some of which are
more and and some of which are less suitable for specific signals. A detailed
analysis of windows for discrete Fourier transforms was first published by
Harris (1978), and a more recent overview of the topic can be found in Heinzel
et al. (2002).
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2)Veggeberg 2008

B.3 Relation between power spectral density and RMS

It is very typical to find root mean square, or RMS, noise characteristics in
technical data sheets of devices – usually without any frequency dependence,
sometimes given at a specific frequency and in rare cases given as a spectral
plot. Here, we analyze when this actually makes sense (and when it does not).
Generally, the mean square at a certain frequency ω0 is proportional to the
integrated power spectrum Px ,

RMS2 ∝ Px(ω0) �
∫ ω0+Γ/2

ω0−Γ/2
Sx(ω)dω (B.4)

where Γ is the integration bandwidth and the proportionality comes down to
factors of π and 2, depending on the convention. As this definition depends
on Γ, it generally does not make sense to specify RMS without naming the
integration bandwidth. The only relevant exception to this is the case where
a single sharp peak dominates the power spectral density, which we explain
below. Nevertheless, one often finds RMS values given without any reference
to bandwidth. Sometimes, they implicitly refer to conventions, such as the
1/3 octave standard2 which does not use a fixed integration bandwidth Γ for all
frequencies ω0, but an octave-based scaling.

In the cases where a single sharp peak dominates an otherwise broad
spectrum, the power-spectral density is not the ideal tool in the proximity
of the peak. As we demonstrated in section 5.2 on p. 33, sinusoidal signals
become delta-peaks in the PSD, meaning they diverge at a single frequency.
It is clear that a finite measurement bandwidth will always yield a finite
peak height; however, if we deduce the PSD from the integrated power via
Sx(ω) ≈ Px(ω)/Γ, the height of adeterministic peak in thePSDwill nowdepend
on the integration bandwidth Γ. This becomes clear if we insert Sx ∝ δ(ω−ω′)
into eq. (B.4), which means that the estimated PSD will be a step function with
amplitude proportional to 1/Γ around ω′ and zero elsewhere. As in this case
Px is independent of Γ, it makes sense to specify an RMS value instead of a PSD.
Note though that this information will only be relevant for measurements of
signals around the frequency of the dominating noise peak and is not a valid
figure for the overall noise performance of a technical device.

B.4 Phase information in power spectral densities

It is clear from the definition of the power spectral density, eq. (4.4) on p. 23,
that due to the absolute square, the phase information of the time trace can
not be recovered from the PSD. However, as a measure against noise, this
information might actually be useful.
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B.4.1 Phase-coherent power spectral density

Suppose the signal x(t) is composed of a deterministic part xD(t) and a zero-
mean statistic part xN(t),

x(t) � xD(t) + xN(t).

Then, by eq. (4.4), the PSD is given by

Sx � lim
T→∞
〈|T x̃(ω)|2〉 � lim

T→∞
〈
����
∫

+T

−T
[xD(t) + xN(t)][cos(ωt) + i sin(ωt)]

����
2

〉

� lim
T→∞

1
2T

{(∫
+T

−T
xD(t) cos(ωt)dt

)2

+

(∫
+T

−T
xD(t) sin(ωt)dt

)2}

+ lim
T→∞

1
2T

{
〈
(∫

+T

−T
xN(t) cos(ωt)dt

)2

〉 + 〈
(∫

+T

−T
xN(t) sin(ωt)dt

)2

〉
}
,

(B.5)

where we used that 〈xD(t)xN(t)〉 � xD(t) 〈xN(t)〉 � 0. As xD(t) and xN(t) are
naturally uncorrelated, we expect that the individual PSDs add as

Sx � SxD + SxN . (B.6)

Therefore, we can identify

lim
T→∞

1
2T

(∫
+T

−T
xN(t) cos(ωt)dt

)2

� lim
T→∞

1
2T

(∫
+T

−T
xN(t) sin(ωt)dt

)2

�
1
2SxN

Further, setting a sinusoidal signal

xD :� dD cos(ωDt)

we see thatb

lim
T→∞

1
2T

(∫
+T

−T
xD(t) sin(ωt)dt

)2

� 0

and therefore the first term of eq. (B.5) contains the full deterministic PSD
contribution, i.e.

lim
T→∞

1
2T

(∫
+T

−T
xD(t) cos(ωt)dt

)2

� SxD(ω).

b)Note that, while the nature of the solution remains unchanged, this derivation becomes
more complicated for the choice of a non-symmetric time window.
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3) Turin 1960

Now, realizing that Sx � limT→∞ 〈<2 [T x̃(ω)] + =2 [T x̃(ω)]〉, instead of the
PSD, we consider a new quantity

S′x :� lim
T→∞
〈<2 [T x̃(ω)]〉

and call it the phase-coherent power spectral density. By identifying the appropri-
ate terms in the above calculation, we immediately see that

S′x � SxD +
1
2SxN .

Interestingly, in comparison to the regular PSD (eq. (B.6)), this quantity halves
the contribution of statistic noise. The intuition behind this result is that by
ignoring the imaginary part of the windowed Fourier transform T x̃(ω), we
can keep the entire deterministic signal information, while erasing the statistic
contributions that are not in phase with the signal. Of course, this simple
example works because we set the deterministic motion to be an non-shifted
cosine function. More generally, we have to define the phase-coherent PSD as

φS′x :� lim
T→∞
〈<2 [

eiφ
T x̃(ω)]〉 , (B.7)

where the phase φ has to be tuned to match the deterministic signal. With this
choice, the quantity can be seen as a PSD that is optimized with respect to the
measurement of a sinusoidal signal.

B.4.2 Optimal measurement of a sinusoidal signal

Above, we showed that we can define a quantity that is in phase with a deter-
ministic sinusoidal signal xD(t) to improve the ratio of signal to noise. Being
motivated by these results, we now ask in general for the optimal solution of
the problem at hand.

Suppose, again, that a signal is composed of a deterministic part and a
statistic part, x(t) � xD(t)+ xN(t). The goal is to find a filter h(t) that generates
a filtered signal x′(t) via a convolution

x′(t) � [h · x] (t).
Now, by comparing the contributions of signal and noise power in x′(t), one
can show3 that the optimal choice of h(t) is a matched filter, i.e. the time-reverse
of the expected signal xD(t),

hopt(t) � xD(−t).
Due to the symmetry of the cosine, the optimally filtered signal is then

x′(t)opt � [xD · x] (t) � dD

∫
+∞

−∞
[xD(τ) + xN(τ)] cos(ωDτ − ωDt)dτ. (B.8)
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We can compare this to the phase-coherent PSD, eq. (B.7), at a specific fre-
quency ω � ωD,

φS′x(ωD) � lim
T→∞
〈
(∫

+T

−T
[xD(τ) + xN(τ)] cos(ωDτ + φ)dτ

)2

〉 . (B.9)

It becomes clear that the expressions are closely related. Knowing that in
eq. (B.8) the ratio of contributions of the xD-term and the xN-term of is optimi-
zed, the same is likely true for eq. (B.9). Indeed, this is an indicator that for a
sinusoidal signal, the phase-coherent part of the Fourier transform acts as an
optimized filter. Therefore, we have reason to believe that the choice of the
phase-coherent PSD, eq. (B.7), as the signal evaluation method is optimal.

B.5 Two-dimensional driving mass pattern

A common technical suggestion to the presented work is to modify the drive
such that it moves in a circular fashion instead of back and forth on a line.
Here, we analyze if the dynamics of the test mass will change significantly due
to a two-dimensional driving pattern. We may quickly check this by looking
at eqs. (5.2) and (5.3) on p. 29 and on p. 30. For convenience, we focus on a
single force ®F( ®dtot) with ®dtot �

(
d0
0

)
+

( xS
yS

) − ( x
0 ) and drop the dependence on

velocity. Since the oscillator with position x can only move in one direction,
we may restrict the relevant force term to the same direction by defining

Fx :� ®F · ®ex .

Now, similar to eq. (5.2), we write

Fx(
(

d0
0

)
+

( xS
yS

) − ( x
0 )) ≈ Fx(

(
d0
0

)
+

( xS
yS

)) + ∂xFx | ( d0
0

) x + . . .,

and similar to eq. (5.3)

Fx(
(

d0
0

)
+

( xS
yS

)) ≈ Fx(
(

d0
0

)
) + ∂xS Fx

��(
d0
0

) xS + ∂yS Fx
��(

d0
0

) yS + . . . . (B.10)

If we now assume a isotropic force, i.e. one that only depends on the distance
| ®dtot |, of the form

Fx( ®dtot) � c | ®dtot |n ,
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and insert this into eq. (B.10), we realize that there is no contribution of yS in
first order, while the contributions of xS remain unchanged:

∂xS Fx
��(

d0
0

) xS � cndn−1
0 xS,

1
2∂

2
xS Fx

����( d0
0

) x2
S �

1
2 cn(n − 1)dn−2

0 x2
S,

∂yS Fx
��(

d0
0

) yS � 0, 1
2∂

2
yS Fx

����( d0
0

) y2
S �

1
2 cndn−2

0 y2
S,

1
2∂xS∂yS Fx

����( d0
0

) xS yS � 0.

This means that as long as our implicit assumption xS, yS < d0 remains correct,
a circular, or any two-dimensional drive motion, will only cause a deviation in
the second order of themotion orthogonal to the test-mass direction. Therefore,
in first order we recover the equation of motion for the 1-dimensional case,
eq. (5.4) on p. 30.

We can also see from the equations above that adding additional masses
to a circular drive can only decrease the signal: The first order contribution in
xS would then become

cndn−1
0 xS → cndn−1

0

M−1∑
m�0

xSm ,

with M being the total number of masses on the circular support. If we now
assume an explicit drive xSm � dS cos(ωSt + 2πm/M), i.e. source masses that
are equally spaced on a circle, we find that

M−1∑
m�0

xSm � 0,

so surprisingly, in first order gravity vanishes completely for the multi-mass
disk drive, and therefore this configuration provides a terribly inefficient
source drive. Even more so, by the generalization of this argument any drive
configuration that has a constant center of mass will not cause a gravitational
drive in first order, as the dipole moment of the source mass is the main cause
of the discussed effect.
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