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Abstract

Quantum information theory investigates the capabilities of quantum systems

for information processing. The counterintuitive features of quantum mechan-

ics, such as superposition principle or quantum entanglement, paved the way to

new possibilities which do not have classical counterparts in information theory.

In modern times, these genuine quantum effects have been exploited to achieve

novel outstanding results, such as quantum computing, quantum cryptography

or quantum communication. The field of quantum communication explores the

principles of quantum theory in order to accomplish certain tasks and protocols

that are impossible by using classical resources. In a general sense, communica-

tion is the process of transmitting a message from a sender to a receiver. Such a

process usually requires to encode the information in some information carriers

(e.g. electromagnetic waves, voltage signals, mechanical waves, etc.), which obey

the laws of physics. From that perspective, quantum physics with its counterin-

tuitive laws and principles that do not have corresponding classical counterparts,

provides a novel and powerful framework for communication and information

processing in general.

The main objective of the present thesis is to investigate a model of com-

munication that is restricted to limited resources (as measured by the amount of

information carries), and the finite speed of propagation. We show that communi-

cation fulfilling the mentioned restrictions, is fundamentally limited for classical

systems. On the contrary, when quantum effects are allowed, one can surpass the

classical limitations. In fact, quantum communication bounded to the exchange

of a single particle (in spatial superposition) with finite speed can result in ”two-

way signalling”, which is impossible by using classical resources. In the language

of multipartite communication games, we show that the probability of success

is always less than the unity, and it monotonically decreases as the number of

players grows, for all classical models of communication. On the other hand,

communication via a quantum particle that is prepared in superposition of dif-

ferent spatial locations, allows to win the game with certainty, independently of

the number of players. The game has been explicitly characterized for two, three

and five parties, and generalized to an arbitrary number of players. Moreover,

we propose a possible experimental implementation of the three-party game by
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using single-photons.
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Zusammenfassung

Quanteninformationstheorie untersucht die Möglichkeiten mit Quantensystemen

Information zu verarbeiten. Die ungewöhnlichen Eigenschaften der Quanten-

mechanik, wie beispielsweise Superposition und Verschränkung, erlauben neue

Wege der Informationsverarbeitung, die in klassischen Theorien nicht denkbar

wären. In den letzten Jahren wurden diese besonderen Quanteneffekte dazu

genutzt, um außergewöhnliche Resultate, wie zum Beispiel Quantencomputer,

Quantenkryptographie und Quantenkommunikation, zu erreichen. Das Feld der

Quantenkommunikation erforscht die Prinzipien der Quantenmechanik, um bes-

timmte Aufgaben und Protokolle zu realisieren, die mit klassischen Ressourcen

unmöglich wären. Im Allgemeinen ist Kommunikation der Prozess bei dem eine

Nachricht von einem Sender zu einem Empfänger übermittelt wird. Solch ein Vor-

gang benötigt die Kodierung der zu sendenden Information auf einem Signalträger

(elektromagnetische Wellen, Spannung, mechanische Wellen, etc.), der den Geset-

zen der Physik gehorcht. Aus dieser Perspektive ermöglicht die Quantenmechanik

mit ihren der Intuition widersprechenden Prinzipien einen völlig neuen Rah-

men für Kommunikationstheorie und Informationsverarbeitung. Das Ziel der

vorliegenden Arbeit ist es, ein Modell der Kommunikation mit beschränkten

Ressourcen (gemessen an der Anzahl an Informationsträgern) und endlicher Aus-

breitungsgeschwindigkeit zu untersuchen. Wir zeigen, dass Kommunikation, welche

die obigen Restriktionen erfüllt, für klassische Systeme grundlegenden Schranken

gehorcht. Im Gegensatz dazu können diese klassischen Barrieren durch Quan-

teneffekte überwunden werden. Tatsächlich kann Quantenkommunikation mit

nur einem Teilchen in räumlicher Superposition und mit endlicher Ausbreitungs-

geschwindigkeit zu
”
Zweiwegkommunikation“ führen, was mit rein klassischen

Ressourcen unmöglich wäre. Im Kontext von Mehrspieler Kommunikationsspie-

len zeigen wir einerseits, dass für klassische Theorien die Gewinnwahrschein-

lichkeit immer unter Eins liegt und mit der Anzahl der Spieler monoton sinkt.

Andererseits erlaubt Kommunikation mittels eines Quantenteilchens in Super-

position verschiedener Aufenthaltsorte das Spiel unabhängig von der Anzahl der

Spieler immer mit Sicherheit zu gewinnen. Dieses Protokoll wird explizit für zwei,

drei und fünf Parteien charakterisiert und danach für eine beliebige Anzahl an

Spielern verallgemeinert. Des Weiteren schlagen wir eine mögliche experimentelle
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Implementation mit einzelnen Photonen für ein Spiel mit drei Parteien vor.

8



Acknowledgments

I owe my deepest gratitude to my supervisors Dr. Borivoje Dakić (Institute of
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Introduction

Since its systematic formulation in the 1920s, it was clear that quantum mechan-

ics (QM) requires a radically new way of looking at the nature. After a first stage

of mere phenomenological explanations of experimental anomalies, since the mid

1920s QM acquired a unique consistent formalism (thanks to the pivotal con-

tributions of physicists the likes of Heisenberg, Born, Jordan and Schrödinger).

Nevertheless the interpretation of the formalism remained an open problem and

have raised many controversies in the scientific community. Indeed, it took a

short time before scientists realized that they were dealing not only with a new

theory, but with some of the most involved philosophical problems that physics

ever had to face. Crudely speaking, although QM is at present the most corrobo-

rated theory ever (in terms of experimental predictions), it breaks some of the a

priori concepts that have been the foundations of natural science for centuries. In

fact, QM seems to be fundamentally incompatible with a deterministic descrip-

tion of Nature, which is assumed in Newtonian and in relativistic mechanics. As

a matter of fact, Bell’s theorem [1] has ruled out the possibility of completing

QM with underlying local deterministic models.

Quantum formalism, allows new peculiar effects - such as the superposition

principle or quantum entanglement - which do not have any classical counter-

part. Historically, these genuine quantum effects have provided the ground for

the formulation of paradoxical examples, which were aimed at finding flaws in

quantum mechanics (or in its interpretations). In this regard, the year 1935

marked a turning point for the critics of QM, since two of the most illustri-

ous among them, Erwin Schrödinger and Albert Einstein, proposed two pivotal

gedankenexperimenten which have changed the conception of foundation of QM

thereafter. The former proposed a thought experiment which has gone down in

history as the Schrödinger’s cat paradox [2]. Exploiting one of the quintessen-

tial quantum effects, the quantum superposition principle, Schrödinger set up

a particular hypothetical arrangement, leading to the conclusion that quantum

mechanics is paradoxical, since it allows the possibility of preparing states of

macroscopic objects, e.g. a cat both dead and alive at the same time, in what

is called a coherent quantum superposition. In the same year Einstein, Podolsky

and Rosen, put forward a distinguished gedankenexperiment, know as the EPR
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paradox [3], which aimed at demonstrating the incompleteness of QM, thanks to

another genuine quantum effect know as quantum entanglement.

An epochal turning point surely is the line of research inaugurated by John

Bell in the mid-1960s. Extending the results of EPR, he managed to put forward

a theorem [1] capable of experimentally discriminating between (local) ’classical’

theories and quantum mechanics. Historically, the research stimulated by Bell’s

theorem helped much to oppose the widespread pragmatic approach in physics

in the postwar era, and to bring back some attentions to the fundamental studies

in QM. Foundation of quantum mechanics have effectively contributed to gain

a more profound understanding of quantum theory, which eventually allowed to

also develop a plethora of new practical applications. In fact, through a long and

winding road, the mentioned peculiar quantum effects led to the development

of quantum information theory and its practical applications known as quantum

technologies [4]. It has been indeed explicitly pointed out that ”if the name of a

field indicated its parentage, then the ’Quantum’ in ’Quantum Information’ would

refer to Quantum Foundations” [5]. Quantum information theory investigates

the capabilities of quantum systems for information processing with a number

of innovative possibilities which have no classical counterpart, such as quantum

cryptography, quantum communication and quantum computation (see e.g. [6,

7, 8, 9]).

The present work is specifically focused on a theoretical analysis of quan-

tum communication tasks. Quantum communication, mainly explores quantum

correlations shared by distant parties (e.g. quantum entanglement) in order to

accomplish certain tasks and protocols that are fundamentally forbidden by the

mere use of classical resources, such as the violation of Bell’s inequality [1] or

quantum teleportation [10]. The present work of thesis aims at providing a con-

tribution towards a deeper comprehension of the fundamental and irreconcilable

differences between QM and classical theories, by means of communication tasks.

In particular we characterize novel communication protocols that are fundamen-

tally forbidden in classical physics.

In chapter 1 we review Bell’s theorem and its modern phrasing in terms of

quantum games [7, 16]. The main result of this work is exposed in chapter 2,

wherein we develop a novel task for quantum communication by exploring quan-

tum superpositions. In fact, a single quantum particle in spatial superposition

enables ”two-way” signaling, which is essentially forbidden in classical physics.

To quantify the discrepancy between the classical and the quantum cases, we for-

mulate the problem as a quantum game played by distant parties, firstly for two,

three and five players, and then providing a generalization for N -parties. Chapter

3 is devoted to a detailed description of a possible experimental implementation

of the proposed protocol, adapted for single-photon quantum optics experiments.

In chapter 4 we discuss briefly the philosophical consequences and relations of
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the model presented here with the notions of ’local realism’ and ’macro-realism’.
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Chapter 1

Quantum Vs classical theories:

Bell’s inequalities

1.1 Local realism and Bell’s inequalities

As it was recalled in the introduction, in a distinguished paper entitled ”on

the Einstein-Podolsky-Rosen paradox” [1], John Bell derived a theorem, that

can be formulated in terms of inequalities, which states that no ’local hidden

variables theory’ can reproduce the same predictions of QM. Although a proper

definition of ’local hidden variables’ is imperative, and it will be largely discussed

in what follows, on an intuitive level, this can be though as strongly related to

the assumptions underlying classical physical theories, such as locality, realism,

determinism, etc. Remarkably, such rather philosophical concepts can be put to

the experimental test thanks to Bell’s inequalities.

In order to derive the pivotal result of Bell’s theorem, we follow here a typical

operational formulation, like the one recently provided by Brunner et al. in [7].

Therein, the authors consider a scenario in which two observers, traditionally

called Alice and Bob, are located at two distant (even space-like separated) po-

sitions. Alice and Bob are interested in characterizing the correlations of some

experiments carried out at their separate local positions. Correlations are usu-

ally encoded into physical systems that can be some kind of material objects or

particles. Hereinafter we refer to these objects also as information carriers. Let

us assume that two information carriers are sent one to Alice and the other to

Bob, and that they have interacted in past, for instance having been produced

by a common source (which might have established correlations between them).

Alice and Bob can carry out some measurements on their respective object, in

order to measure possible correlations in their results. To this end, Alice chooses

to perform a measurement with setting labeled by x, and she finds a certain out-

come a. Bob carries out a measurement with setting y, and finds the outcome b.

The two observers then repeat their measurements many times, and even when
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they chose the same initial settings x and y, the outcomes a and b may vary

from one run to another (i.e. a deterministic behavior is not assumed in general).

After a sufficient number of experimental runs, they can find a good estimation

of the probability distribution p(a, b|x, y) which governs the dependence of the

outcomes on measurement settings.

Now, since Alice and Bob are very far away and they are freely choosing

their local measurement settings, the common sense would suggest that the joint

probability of finding a and b given x and y is independent (i.e. factorizable).

Nevertheless, one finds in general

p(a, b|x, y) 6= p(a|x) p(b|y). (1.1)

Therefore, it may look like that the local measurement settings somehow statisti-

cally influence outcomes of distant experiments. Although this result might seem

at first sight astonishing, Brunner and co-authors clarify that, in principle, ”the

existence of such correlations is nothing mysterious. In particular, it does not nec-

essarily imply some kind of direct influence of one system on the other, for these

correlations may simply reveal some dependence relation between the two sys-

tems which was established when they interacted in the past” [7]. The absence of

direct influences is the operational evidence of the so-called ”no-communication”

(no-signaling) theorem, which states that (both classical and quantum) correla-

tions cannot be used to communicate information between distant parties.

The observed correlations can in fact be thought as the exterior result of some

’common memory’ of the previous interaction, that the two objects have carried

along. Indeed, one can restore the local behavior assuming that some hidden

variables λ take into account all correlations. In such a way, the probabilities in

(1.1) must become independent and thus factorize as:

p(a, b|x, y, λ) = p(a|x, λ)p(b|y, λ). (1.2)

If one is concerned with the nature of the hidden variables λ, John Bell himself

stated in his original paper [1] that ”it is a matter of indifference in the following

whether λ denotes a single variable or a set, or even a set of functions, and

whether the variables are discrete or continuous”. In any case λ is conventionally

treated as a continuous single variable, that might assume different values from

one run to another, governed by a probability distribution q(λ). Therefore, (1.2)

takes the general form

p(a, b|x, y) =

∫
Λ
dλq(λ)p(a|x, λ)p(b|y, λ), (1.3)

where Λ is the domain of λ.

The expression (1.3) is referred to as condition of local realism (LR). Since
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the existence of such a decomposition was derived under the mere assumption

of having local hidden variables that factorize the joint probability distribution.

In chapter 4 we will discuss in greater detail the assumption of LR and the

possible misunderstanding of the interpretation of this condition, which may lead

to tremendous consequences on foundation of physics.

Provided with the condition of LR, the famous result of Bell’s theorem, is

now a matter of an easy mathematical derivation. As a matter of simplicity we

discuss the case where Alice and Bob deal with binary inputs and outputs, i.e. x,

y ∈ {0, 1}and a, b ∈ {−1,+1}. The expectation value of ab (correlation) is given

by

〈axby〉 =
∑
a,b

ab p(a, b|x, y). (1.4)

Out of these, one can construct the following quantity

S := 〈a0b0〉+ 〈a0b1〉+ 〈a1b0〉 − 〈a1b1〉. (1.5)

Now, we insert the condition of LR (1.3) into (1.4), and obtain

〈axby〉 =

∫
Λ
dλq(λ)ab

∑
a

p(a|x, λ)
∑
b

p(b|y, λ) =

∫
Λ
dλq(λ)〈ax〉λ〈by〉λ, (1.6)

where 〈ax〉λ =
∑

a a p(a|x, λ) and 〈by〉λ =
∑

b b p(b|y, λ) are the local expectation

values. This yields to

S =

∫
Λ
dλq(λ)

(
〈a0〉λ〈b0〉λ + 〈a0〉λ〈b1〉λ + 〈a1〉λ〈b0〉λ − 〈a1〉λ〈b1〉λ

)
. (1.7)

Since 〈a0〉λ,〈a1〉λ,〈b0〉λ,〈b1〉λ ∈ [−1, 1], one can easily prove that the quantity S is

bounded by

S(LR) = 〈a0b0〉+ 〈a0b1〉+ 〈a1b0〉 − 〈a1b1〉 ≤ 2. (1.8)

The subscript (LR) denotes that the condition of local realism has been enforced

to derive this inequality.

The results (1.8) is known as the Clauser-Horne-Shimony-Holt inequality

(CHSH) [11], named after the physicists who firstly derived it in 1969, and it

constitutes the easiest non-trivial Bell’s inequality. Such inequalities have a piv-

otal importance because they provide a quantitative and experimentally testable

bound for any local-realistic theory (in the sense of (1.3)).

We turn now to quantum mechanics. This theory allows the preparation of

states which are called entangled or non-separable.1 Let us consider that the same

distant observers Alice and Bob now share a maximally entangled (bipartite)

1Quantum mechanics postulates that a joint state of two systems A and B lives in the tensor
product of the two systems, i.e. HAB = HA ⊗HB . A pure state |ψ〉AB ∈ HAB is then defined
to be separable if |ψ〉AB = |ψ〉A ⊗ |ψ〉B . A non-separable state is referred to as entangled.
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state, say the following singlet state

|ψ−〉 =
1√
2

(|0〉A ⊗ |1〉B − |1〉A ⊗ |0〉B)), (1.9)

where |0〉 and |1〉 are the eigenstates of the standard Pauli z-matrix σz associated

to the eigenvalues +1 and -1, respectively. As before, we assume binary outcomes

a, b ∈ {−1, 1}, meaning that A and B measure dichotomic oservables. In this case,

we associate to the measurement settings x, y the three dimensional vectors ~x,

~y (this is called the Bloch representation for two-level systems, see e.g. [12]),

which denote the measurement direction. In such representation the measured

observables are represented by ~x · ~σ for Alice and ~y · ~σ for Bob. It is possible to

show that correlation, given the choices x and y, reads [1]

〈axby〉 = −~x · ~y. (1.10)

We choose x = 0, 1 to label the measurements in two orthogonal directions ê1, ê2,

whereas y = 0, 1 labels the measurement directions −(ê1 + ê2)/
√

2 and (−ê1 +

ê2)/
√

2, respectively. For this particular choice of measurement settings, we get

the following correlations: 〈a0b0〉 = 〈a0b1〉 = 〈a1b0〉 = 1/
√

2 and 〈a1b1〉 = −1/
√

2.

Plugging these values into the definition of S (1.5), one finds

S(Q) = 2
√

2 > 2 = S(LR), (1.11)

where the subscript (Q) refers to quantum theory.

This is the second crucial result of Bell’s inequalities: the quantum formalism

violates (for certain combinations of states and measurements) the predictions of

local realism (1.3). This result is sometimes referred to as Bell’s theorem.
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1.2 ’Non-local’ games

In modern quantum information theory, Bell’s inequalities are often rephrased in

the more intuitive terms of ’non-local’ games [7, 14, 15, 16, 17]. In the framework

of ’non-local’ games, the usual ’observers’ are referred to as ’players’. An outside

party, called the referee, provides each player with an input and challenges the

players to cooperate in order to answer some questions related to the assigned

inputs. Thus, each player, fully aware of the rules, returns an answer. The referee

then checks whether the answers are correct, according to some expression called

’predicate’ [7], specified by the rules of the game. The players win the game

only if their answers fulfill the predicate. Moreover, players can previously agree

on any possible strategy, in order to optimize their results. However, once the

game starts, they cannot longer communicate (this ensures to test the strength

of correlations between distant parties).

Figure 1.1: Bell’s inequalities can be phrased in terms of quantum games. This figure
is reproduced from [16].

The easiest (non-trivial) version of a ’non-local’ game (Fig. 1.1) involves

two players, Alice and Bob, who are given binary inputs, x, y ∈ {0, 1} and they

shall return binary answers to the referee, i.e. a, b ∈ {0, 1}. Let us consider the
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following predicate that A and B are supposed to fulfill

x · y = a⊕ b, (1.12)

where the symbol ⊕ denotes the sum modulo-2. This is called the CHSH game,

the easiest and most famous example of a class of games called XOR games

[7], because the predicate (1.12) can be phrased in terms of logic operators as

XOR(answers) = AND(inputs). This class of games has been fully analyzed

also for an arbitrary number of players [14, 15].

In the CHSH game, one finds the following values for each possible pair of

inputs and answers:

inputs answers

x y x · y a b a⊕ b
0 0 0 0 0 0
0 1 0 0 1 1
1 0 0 1 0 1
1 1 1 1 1 0

Out of 16 combinations of inputs and answers, the game is won only for

combinations which satisfy the predicate (1.12). If the settings are uniformly and

randomly distributed, we get the following expression for the win probability

Pwin =
1

4
p(a⊕ b = 0|x = 0, y = 0) +

1

4
p(a⊕ b = 0|x = 0, y = 1) +

+
1

4
p(a⊕ b = 0|x = 1, y = 0) +

1

4
p(a⊕ b = 1|x = 1, y = 1). (1.13)

Writing explicitly the probabilities appearing in (1.13), one finds

p(a⊕ b = 0|x = 0, y = 0) = p(a = 0, b = 0|x = 0, y = 0)+p(a = 1, b = 1|x = 0, y = 0),

(1.14)

p(a⊕ b = 0|x = 0, y = 1) = p(a = 0, b = 0|x = 0, y = 0)+p(a = 1, b = 1|x = 0, y = 0),

(1.15)

p(a⊕ b = 0|x = 1, y = 0) = p(a = 0, b = 0|x = 0, y = 0)+p(a = 1, b = 1|x = 0, y = 0),

(1.16)

p(a⊕ b = 1|x = 1, y = 1) = p(a = 0, b = 1|x = 0, y = 0)+p(a = 1, b = 0|x = 0, y = 0).

(1.17)

We now define the correlations Cxy between inputs x and y

Cxy := p(a = 0, b = 0|x, y)− p(a = 0, b = 1|x, y) + (1.18)

− p(a = 1, b = 0|x, y) + p(a = 1, b = 1|x, y).
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Moreover the probabilities have to be normalized, i.e.

1∑
a,b=0

p(a, b|x, y) = 1 (1.19)

Inserting the normalization condition together with the expressions for Cxy, the

four terms of (1.13) then read

p(a⊕ b = 0|x = 0, y = 0) =
1

2
(1 + C00), (1.20)

p(a⊕ b = 0|x = 0, y = 1) =
1

2
(1 + C01), (1.21)

p(a⊕ b = 0|x = 1, y = 0) =
1

2
(1 + C10), (1.22)

p(a⊕ b = 1|x = 1, y = 1) =
1

2
(1− C11). (1.23)

Thus, the probability of winning becomes

Pwin =
1

2
+

1

8
(C00 + C01 + C10 − C11) . (1.24)

The quantity in parenthesis in (1.24) is nothing else than S (as defined in (1.5).

We already know from the last section that, if the condition of local realism is

enforced, S(LR) = 2 at most. Hence, the probability of winning the game is

upper-bounded by

P
(LR)
win =

3

4
. (1.25)

In contrast, in a quantum scenario, S can violate this bound and take the values

up to S(Q) = 2
√

2. Consequently, the game can be won with a probability as high

as

P
(Q)
win =

1

2
(1 +

1√
2

) ≈ 85%. (1.26)
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Chapter 2

Quantum communication with

limited resources

Generally speaking, communication is the process of transmitting a message (in-

formation) from a sender to a receiver [18]. We usually think of sending a physi-

cal information, i.e. a message embodied in a (physical) information carrier, and

send it as a signal, such as voltage signals, speech, video or radar. In the classi-

cal world, physical systems that carry the information obey the laws of classical

physics. For example, the electromagnetic signal propagates in space according

to Maxwell’s equations, thus the speed of information transfer is fundamentally

limited to that of light. Similarly, in radio communications, we know that in-

formation flows from a radio emitter to the radio receiver but not vice-versa, as

it follows from the causality principle. In other words, the capabilities and lim-

itations of communication, and information processing in general, are governed

by the laws of physics. Quantum theory allows for novel possibilities that can

surpass some of the limitations imposed by classical physics.

In the present chapter, we investigate a model of communication that is re-

stricted to the following fundamental assumptions:

A1 - Limited resources. The amount of information carriers is limited.

A2 - Finite speed of propagation. Information carriers travel with finite ve-

locity (upper-bounded by that of light).

Our goal is here to show that the model suffers from fundamental limitations

when restricted to classical systems. On the other hand, quantum mechanics

allows for a novel possibility, i.e. to put the particles in superposition of spatially

distinct locations, and we shall prove here that this is a more powerful resource

for communication (as compared to its classical counterpart). In particular, we

show that communication restricted to the exchange of a single quantum particle

that is coherently distributed at different spatial locations can result in a two-way

signaling, which is essentially impossible by using classical resources. Based on
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the model, we introduce a simple game played by distant players that are sup-

posed to accomplish certain tasks by exchanging (limited) communication. Our

aim is to investigate the fundamental difference between quantum and classical

scenario, showing that, for certain tasks, the win probability is bounded and

strictly lower than 1 for all classical strategies. In contrast, quantum information

carriers in (spatial) superpositions enable the players to accomplish the task with

certainty. Unlike many quantum information protocols based on entanglement

and quantum correlations between different parties, our task involves only a sin-

gle quantum particle and it is based solely on the superposition principle. In

this respect our findings are similar to the recent proposals exploring quantum

superpositions for information processing purposes, such as quantum processes

without a defined causal order [19], superposition of orders [20] and directions

[21], quantum combs [22], quantum switch [23] and quantum causal models [24].

Some of these novel phenomena have been demonstrated in recent experiments

[25, 26].

In the present chapter, we define and analyze in detail a bipartite game,

and extend the result to an increasing number of players. Finally, we provide a

generalization of it for an arbitrarily large number of players (also in the limit of

very many of them).

2.1 ”Two-way signaling” with a single quantum par-

ticle

Consider a classical model of communication where two agents, say Alice and

Berta,1 are located at the distance d from each other and they are allowed to

communicate via single information carrier. Here as carrier, we think of a particle

or object that can travel with the finite speed bounded by c. For example, if Alice

holds the particle, she can imprint the message in it and send it to Berta. The

message needs at least d/c time to arrive at Berta’s side. We assume that the

communication channel is open for a certain time window of d/c ≤ τ < 2d/c+ ε,

where ε ≥ 0 is a small constant, such that the particle has enough time to arrive

at Berta’s side, but not to come back to Alice. This is what we mean when we

refer to limited communication, i.e. within the time window τ , A and B can

exchange only “one-way” communication. Before they are assigned the inputs,

Alice and Berta, fully aware of the rules, are granted an initialization phase, in

which they are allowed to communicate without restrictions and agree on any

strategy to be adopted in the subsequent game .Their task is to answer a certain

question imposed by referee as good as possible, i.e. with the maximal probability

1The name of the second player has here been changed from the traditional Bob to Berta, in
honor of Berta Karlik, the physicist who has been the first woman to become full professor at
the University of Vienna (and in the whole Austria), as late as 1956 [28].

24



of success. Therefore such a task is to be thought as probabilistic (the imposed

questions and answers may vary from run to run).

At the time t = 0, A and B are respectively given the input variables x and

y by the referee and they are asked to return the output variables a and b at the

later time t = τ . If we represent the communication in the space-time diagram

(see Fig. 2.1.a), it is clear that there are only two possible options, i.e. if the

particle was in possession of Alice at t = 0, she can encode her input in it and

send it to Berta, but she gets no information on Berta’s input, or vice-versa.

In the formalism of causal diagrams [24], there are two possible causal relations

between the variables x, y, a, b (see Fig. 2.1.b), i.e. either x influences a and b,

whereas y influences b only or y influences a and b, whereas x influences a only.

Therefore, the probability distribution p(ab|xy) is a classical mixture of one-way

signaling distributions, i.e.

p(ab|xy) = λpA(a|x)pA≺B(b|xy) + (1− λ)pB(b|y)pB≺A(a|xy), (2.1)

where symbol ≺ denotes the direction of signaling, e.g. A ≺ B denotes the case

of A sending her particle to B. The probability distribution (2.1) is completely

characterized by a the “so-called” classical polytope [7], and its facets are repre-

sented by the Bell’s-like inequalities which impose the limits on classical model.

For the case of binary inputs x, y = 0, 1 and binary outputs a, b = 0, 1, there are

only two inequivalent inequalities [27]

p(a = y, b = x) ≤ 1

2
, (2.2)

p(x(a⊕ y) = y(b⊕ x) = 0) ≤ 3

4
, (2.3)

known as two variants of “guess your neighbor’s input” (GYNI) game [17], i.e.

the players are supposed to guess the inputs of their partners. Here the inputs

x and y are uniformly distributed, i.e. p(x, y) = 1/4. We will focus on (2.2)

which when translated into the language of communication game results in the

requirement of computing the neighbor’s input, i.e. for given inputs x and y, A

and B are asked to reveal the input of their partners. Formally speaking, they

win the game when their outcomes satisfy a = y and b = x. Clearly, in classical

scenario, the probability of success is bounded by (2.2).

In contrast to the Bell scenarios (see Chapter 1), the parties are allowed to

exchange communication during the game, which however is restricted by the

abovementioned assumptions A1-A2. Moreover, the game can be played either

in a classical or quantum scenario, depending on whether the information car-

rier is granted the possibility to exploit quantum effects (superposition principle,

specifically). In either case, the players shall adopt the optimal strategy to an-

swer referee’s question about the value assigned to the other player’s input. The
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Figure 2.1: a) Space-time diagram. Within the time window τ either A signals to
B or B to A. b) Causal diagram. The variables x and y are in common past of a and
b. There are two possible causal relations between the variables, i.e. either x influences
a and b, whereas y influences b only (left) or y influences a and b, whereas x influences
a only (right).

question then arises: is it possible to perform such a task in a more efficient way

by means of the use of spatial quantum superpositions?

In the quantum scenario, the single particle used in the process of communica-

tion is not spatially localized within either of the two parties, but it is prepared in

a equally weighted quantum superposition between A and B, i.e. 1√
2
(|A〉+ |B〉).

For the sake of simplicity, we will use the second quantization formalism (see

section 2.5) and write the initial state as

|ψ〉in =
1√
2

(|0〉A|1〉B + |1〉A|0〉B) =
1√
2

(â† + b̂†)|0〉A|0〉B, (2.4)

where, for example, |1〉A|0〉B indicates that particle is localized with Alice, whereas

Bob has zero (vacuum) particles in possession. The operators â† and b̂† are the

standard ladder operators that create a particle on A and B side, respectively.

Note that ladder operators are used here just for convenience reasons, and as long

as we are dealing with a single particle, our results are completely independent

of the distinguishability property or type of particle used.

Now let us imagine to interpose a unitary device right in the middle between

Alice’s and Berta’s respective positions (at the distance d/2). The device acts

such that if the particle is sent from A to B it is “half-reflected” and “half-

transmitted” in a coherent way (see in Fig. 2.2). A similar situation is found if

the particle is sent from B to A. The unitary device serves as a communication

channel, and it can be realized in practice by putting a simple potential barrier

for material particles or a 50:50 beam splitter for the case of single-photons.

Generally, we shall refer to such a device simply as beam splitter (BS). A beam
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A

 

B

BS

x y

in.

ref. trans.

Figure 2.2: Two players Alice (A) and Berta (B) both receive a binary input x and y. A
beam-splitter (BS) is interposed halfway between the parties. If the particle was initially
localized, say with A (in.), it gets “half-reflected” (ref.) and “half-transmitted” (trans.),
represented by blue arrows. However, if when the particle is superposed between both
the locations A and B (wavy line), the particle will end up deterministically localized in
either positions A or B.

splitter is mathematically represented by the 2× 2 unitary operator:

BS =
1√
2

[
1 1

1 −1

]
. (2.5)

In quantum information theory this operator represents the Hadamard gate [9],

which plays an important role in quantum computing. Formally speaking, such

an operator represents the two-dimensional discrete Fourier matrix, F2 (for an

insight on Fourier matrices see e.g.[57]). Therefore we can completely identify BS

with F2.

The operator F2, when applied to single-particle states, provides the following

transformations:

|1〉A|0〉B
F2−−→ 1√

2
(|1〉A|0〉B + |0〉A|1〉B), (2.6)

|0〉A|1〉B
F2−−→ 1√

2
(|1〉A|0〉B − |0〉A|1〉B). (2.7)

It is particularly convenient to explicitly write transformation rules for ladder

operators under the action of F2:

â†
F2−−→ 1√

2
(â† + b̂†), (2.8)

b̂†
F2−−→ 1√

2
(â† − b̂†). (2.9)
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We define the operator T as the inverse of F2,

T := F2
−1,

with the corresponding transformation for ladder operators

1√
2

(â† + b̂†)
T−→ â†, (2.10)

1√
2

(â† − b̂†) T−→ b̂†. (2.11)

It ought to be remarked that the two-dimensional Fourier matrix is involutory,

i.e. it is equal to its own inverse, F2 = F−1
2 .

Let us now turn to the operations that Alice and Berta are locally carrying

out after they have received their respective inputs. In fact, assume that they

have previously agreed to encode their inputs by adding a local phase to the

state, in the following way:

â† −→ (−1)xâ†, (2.12)

b̂† −→ (−1)y b̂†. (2.13)

Since binary inputs have been assigned to both players, four different cases can

occur:

x y
encoding

inputs
state of the system

with inputs encoded

0 0
(x,y)−−−→ |ψ〉00 = 1√

2
(â† + b̂†)|0〉A|0〉B

0 1
(x,y−−→ |ψ〉01 = 1√

2
(â† − b̂†)|0〉A|0〉B

1 0
(x,y)−−−→ |ψ〉10 = 1√

2
(−â† + b̂†)|0〉A|0〉B

1 1
(x,y)−−−→ |ψ〉11 = 1√

2
(−â† − b̂†)|0〉A|0〉B

Here |ψ〉xy, refers to the state of the system after encoding the inputs x and y by

means of (2.12), (2.13).

Now the players exchange communication, by sending their respective ’part of

particle’ to the partner. The constrain of limited communication A1 is satisfied,

since at any instant during the game only one particle is present. The referee can

even make a random inspection, by measuring the number of particles and their

position. Clearly, he shall always find a single particle only.

Let us now focus on the action of BS. During the communication exchange

the state of the system |ψ〉xy, is transformed under the action of beam splitter:

BS [|ψ〉xy] = T [|ψ〉xy]. There are four different states |ψ〉xy and they transform
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in the following way

T
[
|ψ〉00

]
= T

[
1√
2

(â† + b̂†)|0〉A|0〉B
]

= â†|0〉A|0〉B = |1〉A|0〉B, (2.14)

T
[
|ψ〉01

]
= T

[
1√
2

(â† − b̂†)|0〉A|0〉B
]

= b̂†|0〉A|0〉B = |0〉A|1〉B, (2.15)

T
[
|ψ〉10

]
= T

[
1√
2

(−â† + b̂†)|0〉A|0〉B
]

= −b̂†|0〉A|0〉B = −|0〉A|1〉B, (2.16)

T
[
|ψ〉11

]
= T

[
1√
2

(−â† − b̂†)|0〉A|0〉B
]

= −â†|0〉A|0〉B = −|1〉A|0〉B. (2.17)

At the final stage, players can locally detect the presence of the particle,

and in any case they find two possible outcomes: either Alice or Berta has the

particle. In fact, (2.14) is equal to (2.17) up to a global phase and the same holds

for (2.15) and (2.16). Alice and Berta can now extract the parity of the inputs,

s := x⊕ y, where the symbol ⊕ denotes the sum modulo-2. More precisely, if the

particle is to be found with Alice, the initial inputs could be either x = y = 0

or x = y = 1, corresponding to parity s = 0. On the contrary, if the particle is

eventually localized with Berta, the initial inputs could only be either x = 0, y = 1

or x = 1, y = 0, with the corresponding s = 1. Therefore, the players can

deterministically extract the value of parity, and from there, they can easily

extract the value of the neighbor’s input, i.e. a = p⊕x = y forA, and b = p⊕y = x

forB. Thus the players are able to answer the request of the referee with certainty,

i.e. with probability PQ = 1. The protocol is summarized in Table 2.1.

inputs parity final state measurement

x y s(x, y) |ψ〉xyf
0 0

0
|1〉A|0〉B

particle with A
1 1 −|1〉A|0〉B
0 1

1
|0〉A|1〉B

particle with B
1 0 −|0〉A|1〉B

Table 2.1: Summary of the two-party quantum game. A referee assigns a binary
input, x (y) to player A (B). After encoding their inputs via local operations and
exchanging a single particle, the players are able to guess the parity of the inputs with
certainty, only by means of local measurements.
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2.2 Three-party game

In the present section we extend the result found in previous section to the case

of three parties. The same set of assumptions A1,A2, as defined in section 2,

are in force. As before, the players are granted to exchange an unlimited amount

of communication and adopt an optimal strategy during the initialization phase,

and then restrict to limited communication via a single particle. Nonetheless,

the scope of the game needs to be slightly revised in order to show the quantum

advantage for communication.

Quantum scenario

The game involves now three players, A, B and C, who are spatially separated

and disposed on the vertices of an equilateral triangle as displayed in Fig. 2.3.

The distance between a vertex and the geometrical center of the triangle is set

to d/2. As before, the speed of particle is bounded by c, and time window within

which the exchange of communication is allowed is set to d/c ≤ τ ≤ d/c + ε.

So, let us assume a single particle prepared in an equally weighted superposition

Figure 2.3: Three players, arranged on the vertices of a equilateral triangle, receive an
initial input string (iA, iB , iC), and share a single quantum particle prepared in spatial
superposition (wavy line). A unitary device (tri-splitter, TS) is placed in the geometrical
center of the triangle.

between A, B and C. Such a superposition is graphically represented in Fig. 2.3
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as a wavy line. This initial state reads:

|ψ〉in =
1√
3

(|0〉A|0〉B|1〉C + |0〉A|1〉B|0〉C + |1〉A|0〉B|0〉C)

=
1√
3

(a† + b† + c†)|0〉A|0〉B|0〉C , (2.18)

where a†, b† and c† are the standard creation operators acting on modes associated

to the spatial locations of A, B, and C, respectively. As a matter of convenience,

hereinafter we identify a single-particle state with just the linear combination of

ladder operators:

|ψ〉in =
1√
3

(a† + b† + c†)|0〉A|0〉B|0〉C ≡
1√
3

(a† + b† + c†). (2.19)

This is just a formal identification and the real state can be recovered by applying

the corresponding combination of ladder operators to the vacuum state. We can

now define a unitary operator which is going to play the analogous role of BS

(defined in (2.5)) for the two-party game. In the case of three parties, we shall

use the three-dimensional Fourier matrix:

F3 =
1√
3

1 1 1

1 ω ω2

1 ω2 ω

 . (2.20)

with ω = e2πi/3. The corresponding transformation rules for ladder operators

read

a†
F3−−→ 1√

3
(a† + b† + c†), (2.21)

b†
F3−−→ 1√

3
(a† + ωb† + ω2c†), (2.22)

c†
F3−−→ 1√

3
(a† + ω2b† + ωc†). (2.23)

Similarly to the two-party game, we define TS as the inverse of F3,

TS := F3
−1. (2.24)

It is straightforward to verify that:

1√
3

(a† + b† + c†)
TS−−→ a†, (2.25)

1√
3

(a† + ωb† + ω2c†)
TS−−→ b†, (2.26)

1√
3

(a† + ω2b† + ωc†)
TS−−→ c†. (2.27)
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The operator TS, is called tri-splitter (or tritter [40]), because it splits a beam

in three equiprobable paths. Chapter 3 is devoted to a detailed analysis of the

possible experimental realization of TS, inclusive of the required geometrical ar-

rangement. The tritter TS is placed in the geometrical center of the triangle with

vertices A, B, C (see Fig. 2.3).

Similarly to the bipartite case, the main task for players is to guess the correct

answer to some referee’s requests, that shall be directly related to the other play-

ers’ inputs (we will introduce a generalization of GYNI game defined in previous

section). Nonetheless, we postpone the explicit exposition of game rules to the

end of the section, since it is worthwhile to discuss some features of the present

arrangement firstly.

The game starts with the referee assigning a random input to each of the

players. The inputs, iA, iB, iC ∈ {0, 1, 2}, are labeled with the corresponding

letter of the player to whom they are assigned. We call input string the ordered

triplet X = (iA, iB, iC). Clearly, the total number of possible input strings is

33 = 27. Assume now that the players encode their inputs by applying the

following local phase to the input state |ψ〉in, i.e.

a† −→ ωiAa†, (2.28)

b† −→ ωiBb†, (2.29)

c† −→ ωiCc†. (2.30)

There are in total 27 possible states |ψ〉iAiBiC after the encoding transforma-

tion. However, only three states can be perfectly distinguished in a single-shot

experiment (in general, for a d-level quantum system, only d orthogonal states

are perfectly distinguishable). Therefore, we cannot expect to distinguish all 27

states after encoding, hence an additional restriction is needed:

Constrain on the inputs (CI) for three-party game. The referee assigns an

input string X = (iA, iB, iC), by randomly choosing (with equal probability)

among the following nine possibilities:

{(0, 0, 0), (1, 1, 1), (2, 2, 2), (0, 1, 2), (1, 2, 0), (2, 0, 1), (0, 2, 1), (1, 0, 2), (2, 1, 0)}.

The introduction of such a restriction is necessary to enable the players to

distinguish the final states with certainty. Indeed, if the CI is enforced, there are

nine possible states after encoding and we group then into three different classes:
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iA iB iC encoding inputs
state of the system with inputs encoded

|ψ〉iAiBiC

0 0 0

(iA,iB ,iC)−−−−−−→

1√
3
(a† + b† + c†)

1 1 1 ω√
3
(a† + b† + c†)

2 2 2 ω2
√

3
(a† + b† + c†)

0 1 2 1√
3
(a† + ωb† + ω2c†)

1 2 0 ω√
3
(a† + ωb† + ω2c†)

2 0 1 ω2
√

3
(a† + ωb† + ω2c†)

0 2 1 1√
3
(a† + ω2b† + ωc†)

1 0 2 ω√
3
(a† + ω2b† + ωc†)

2 1 0 ω2
√

3
(a† + ω2b† + ωc†)

The first state in each class (i.e. |ψ〉000, |ψ〉012 and |ψ〉021) corresponds exactly

to the ones on the left-hand side of the transformation relations (2.25)-(2.27),

and they are perfectly distinguishable (orthogonal states). The states in the

second and third row are instead equal to the one in first row up-to a global

phase (ω and ω2 for the second and third states, respectively). This means that,

only the states from different classes can be distinguished perfectly (the classes

are mutually orthogonal). After encoding, the parties then send their ’parts of

particle’ to TS. And the application of TS on |ψ〉iAiBiC is straightforward, since it

is directly given by equations (2.25)-(2.27). Therefore, after the transformation,

there are nine possible final states:

TS
[
|ψ〉000

]
= TS

[
1√
3

(a† + b† + c†)

]
= a†, (2.31)

TS
[
|ψ〉111

]
= ω · TS

[
|ψ〉000

]
= ωa†, (2.32)

TS
[
|ψ〉222

]
= ω2 · TS

[
|ψ〉000

]
= ω2a†, (2.33)

TS
[
|ψ〉012

]
= TS

[
1√
3

(a† + ωb† + ω2c†)

]
= b†, (2.34)

TS
[
|ψ〉120

]
= ω · TS

[
|ψ〉012

]
= ωb†, (2.35)

TS
[
|ψ〉201

]
= ω2 · TS

[
|ψ〉012

]
= ω2b†, (2.36)

TS
[
|ψ〉021

]
= TS

[
1√
3

(a† + ω2b† + ωc†)

]
= c†, (2.37)

TS
[
|ψ〉102

]
= ω · TS

[
|ψ〉021

]
= ωc†, (2.38)

TS
[
|ψ〉210

]
= ω2 · TS

[
|ψ〉021

]
= ω2c†. (2.39)

From equations (2.31)-(2.39) it is evident that the particle is to be found with
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A if the input string X was chosen from the first class. The same relation holds

for the location of particle at B and C, and the second and third class of inputs,

respectively. Therefore, it is natural to divide inputs into three corresponding

categories, i.e.

Set A Set B Set C
0 0 0 0 1 2 0 2 1
1 1 1 1 2 0 1 0 2
2 2 2 2 0 1 2 1 0

Associated to these categories, we assign the following binary questions (of which

the answers are labeled as ’YES’ or ’NO’) asked by the referee:

� Question to player A (QA): is the given input string from set A?

� Question to player B (QB): is the given input string from set B?

� Question to player C (QC): is the given input string from set C?

In analogy to the two-party game, at the final stage of the game, each player

performs a measurement to detect the location of the particle. If the particle is

to be found localized in A, this necessarily means that the initial input string

belongs to Set A. Therefore, when A is asked, she knows the right answer to QA

with certainty. In particular, A wins the game if she answers ’YES’ every time

she finds the particle in her possession, and ’NO’ otherwise. Similarly, there is a

one-to-one correspondence between the detection of the particle in B or in C and

corresponding classes (Set B and Set C, respectively). Therefore, B and C can

answer as well with certainty the question asked by the referee. We conclude that

players win the game with probability PQ = 1. The main steps of this section

are summarized in Table 2.2.

Classical scenario

Let us turn now to the classical case. In contrast to the quantum case, only clas-

sical communication can be used and, as such, no quantum superpositions of the

particle are allowed. Consider at first the case in which the particle must follow

the same geometrical constrain of passing thought the center of the triangle. This

can be imagined as a communication channel, e.g. an actual physical constrain

(tunnels or optical fibers, etc.), which forces the particle to travel only along

fixed and well defined paths. Since the channel stays open only for the period τ ,

the information carrier can travel between any two players (via the center of the

triangle), but can never reach the third one, resulting again in ”one-way” commu-

nication between a pair of parties. In this case, one of the most efficient strategies

for players is to agree in advance that one of them, say B, will always send her
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input to another player, say A. Notice that all the nine input strings are univo-

cally identified by only two ordered input values, out of three. This means that A

can acquire the full information on X = (iA, iB, iC) after getting B’s input. The

other two players, on the other hand, only know their own respective inputs, and

therefore they do not have enough information to determine the exact answers.

So, one of the best strategy is that B and C agree to answer with ’NO’ always.

Since A knows the entire input string X, she can answer with certainty always.

Now, if the referee randomly asks only one player to answer his request for each

run of the game, the probability of guessing is P ′class = 1
3 · 1 + 1

3 ·
1
3 + 1

3 ·
1
3 = 2

3 .

On the contrary, if all the players are asked to answer at every run, the classical

probability of success is bounded by Pclass = 1
3 .

As a more general instance, one can release the constrain of passing via the

center, and consider a classical particle free to take a ’shortcut’, traveling along

the edges of the triangle. To this extent, one should compute how far can travel

a particle within the time window τ . In the considered case (see Fig. 2.4) the

maximal distance is d (without loss of generality we have here set ε = 0). On

the other hand, twice the edge of triangle is longer than the allowed maximal

distance. In particular, the particle traveling along the edges (each of which are

` long) can only cover d = 2√
3
` < 2`. Therefore only a single round of ”one-way”

communication (between two players) can be exchanged within τ . Therefore, the

analysis is completely equivalent to the one given in the preceding paragraph.

Figure 2.4: Path traveled by the classical particle within τ (in blue). Only one round
of ”one-way” communication can be exchanged between the players.
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input strings final state measurement answers

iA iB iC |ψ〉iAiBiCf QA QB QC

0 0 0 a†
particle

with A
YES NO NO1 1 1 ωa†

2 2 2 ω2a†

0 1 2 b†
particle

with B
NO YES NO1 2 0 ωb†

2 0 1 ω2b†

0 2 1 c†
particle

with C
NO NO YES1 0 2 ωc†

2 1 0 ω2c†

Table 2.2: Summary of the three-party quantum game. A referee assigns an
input (iA, iB , iC) to each of the players, A, B and C. The set of inputs is categorized into
three different classes. After encoding their inputs via local operations and exchanging
communication, the players are able to distinguish whether the input string belongs to
a certain class, and thus they in the game with certainty.
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2.3 Five-party game

Figure 2.5: Five players, disposed on the vertices of a regular pentagon, receive an initial
input string (iA, iB , iC , iD, iE). They share a single-particle state in spatial quantum
superposition (wavy line). A linear device T is placed in the geometrical center of the
pentagon.

Once we have fully characterized a three-party game, it is rather natural to

generalize the game to a grater number of parties, simply by following the same

set of assumptions A1-A2. Although a proper generalization to an arbitrary

number of parties is presented in the next section, we deem it useful to shortly

analyze another particular instance, too. So, let us consider now a five-party

game. With reference to Fig. 2.5, the players, A, B, C, D and E are disposed on

the vertices of a regular pentagon (the distance between a vertex and the center

is set to d/2). As in the previous case, they are challenged by a referee to guess

the correct answer to some requests. At the beginning of every run, the referee

assigns an input string X = (iA, iB, iC , iD, iE), where ik = 0, 1, 2, 3, 4.

We start by considering the quantum scenario, namely an initial state |ψ〉in,

in spatial superposition between all the five parties:

|ψ〉in =
1√
5

(a† + b† + c† + d† + e†)|0〉A|0〉B|0〉C |0〉D|0〉E , (2.40)

where a†, b†, c†, d†, e† are the creation operators acting on the the modes associ-

ated to locations A, B, C, D and E, respectively. We then recall the explicit form
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of the five-dimensional Fourier matrix:

F5 =
1√
5


1 1 1 1 1

1 ω ω2 ω3 ω4

1 ω2 ω4 ω ω3

1 ω3 ω ω4 ω2

1 ω4 ω3 ω2 ω

 , (2.41)

where we redefine ω = e2πi/5. The matrix F5 transform the ladder operators in

the following way

a†
F5−−→ 1√

5
(a† + b† + c† + d† + e†), (2.42)

b†
F5−−→ 1√

5
(a† + ωb† + ω2c† + ω3d† + ω4e†), (2.43)

c†
F5−−→ 1√

5
(a† + ω2b† + ω4c† + ωd† + ω3e†), (2.44)

d†
F5−−→ 1√

5
(a† + ω3b† + ωc† + ω4d† + ω2e†), (2.45)

e†
F5−−→ 1√

5
(a† + ω4b† + ω3c† + ω2d† + ωe†). (2.46)

Clearly, T := F5
−1 inverts the order of transformations in the equations (2.42)

- (2.46). The players have previously agreed to encode their inputs locally by

means of local phases, i.e.

a† −→ ωiAa†,

b† −→ ωiBb†,

c† −→ ωiCc†, (2.47)

d† −→ ωiDd†,

e† −→ ωiEe†.

As in previous example of three-party game, an additional constraint to inputs

is needed:

Constrain on the inputs (CI) for five-party game. The referee assigns an input

string X = (iA, iB, iC , iD, iE) , by randomly choosing (with equal probability)

among the 25 possibilities displayed on the left-hand side of the following table:
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iA iB iC iD iE encoding inputs state with inputs encoded

0 0 0 0 0

(iA,iB ,iC ,iD,iE)−−−−−−−−−−→

|ψ〉1 := 1√
5
(a† + b† + c† + d† + e†)

1 1 1 1 1 ω|ψ〉1
2 2 2 2 2 ω2|ψ〉1
3 3 3 3 3 ω3|ψ〉1
4 4 4 4 4 ω4|ψ〉1

0 1 2 3 4 |ψ〉2 := 1√
5
(a† + ωb† + ω3c† + ω4d† + ω5e†)

1 2 3 4 0 ω|ψ〉2
2 3 4 0 1 ω2|ψ〉2
3 4 0 1 2 ω3|ψ〉2
4 0 1 2 3 ω4|ψ〉2

0 2 4 1 3 |ψ〉3 := 1√
5
(a† + ω2b† + ω4c† + ωd† + ω3e†)

1 3 0 2 4 ω|ψ〉3
2 4 1 3 0 ω2|ψ〉3
3 0 2 4 1 ω3|ψ〉3
4 1 3 0 2 ω4|ψ〉3

0 3 1 4 2 |ψ〉4 := 1√
5
(a† + ω3b† + ωc† + ω4d† + ω2e†)

1 4 2 0 3 ω|ψ〉4
2 0 3 1 4 ω2|ψ〉4
3 1 4 2 0 ω3|ψ〉4
4 2 0 3 1 ω4|ψ〉4

0 4 3 2 1 |ψ〉5 := 1√
5
(a† + ω4b† + ω3c† + ω2d† + ωe†)

1 0 4 3 2 ω|ψ〉5
2 1 0 4 3 ω2|ψ〉5
3 2 1 0 4 ω3|ψ〉5
4 3 2 1 0 ω4|ψ〉5

In complete analogy to the three-partite case, one can see that the states in

rows 2-4 are up-to a global phase equal to the ones displayed in the first row.

Having in mind the action of the inverse transform F−1
5 , it is clear that particle

ends up with A if the input was from the first block. An analogous situation is

to be found for all the other players. Therefore, we shall divide the inputs into

the following five sets:
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Set A Set B Set C Set D Set E
0 0 0 0 0 0 1 2 3 4 0 2 4 1 3 0 3 1 4 2 0 4 3 2 1
1 1 1 1 1 1 2 3 4 0 1 3 0 2 4 1 4 2 0 3 1 0 4 3 2
2 2 2 2 2 2 3 4 0 1 2 4 1 3 0 2 0 3 1 4 2 1 0 4 3
3 3 3 3 3 3 4 0 1 2 3 0 2 4 1 3 1 4 2 0 3 2 1 0 4
4 4 4 4 4 4 0 1 2 3 4 1 3 0 2 4 2 0 3 1 4 3 2 1 0

The referee then asks a different question to each of the players, to which they

can only return binary answer, labeled as ’YES’ or ’NO’:

� Question to player A: is the given input string from set A?

� Question to player B : is the given input string from set B?

� Question to player C: is the given input string from set C?

� Question to player D: is the given input string from set D?

� Question to player E: is the given input string from set E?

After encoding, the parties send their ’parts of particle’ to the center of the

pentagon, where T is implemented. The states get transformed under the action

of T, according to the reversed order of (2.42)-(2.46). At the final stage, each

player performs the measurement and only one of them finds the particle at

her position. In that case, the winning answer to the question addressed to

corresponding player is ’YES’, otherwise she shall reply with ’NO’. It is clear

that the players win the game with certainty.

For what concerns the best classical strategy, we can start by restricting

the communication to occur along the same channels of the quantum one, thus

passing through the center of the pentagon. In such a case, only one round of

”one-way” communication between two players can be exchanged within τ . Even

though this constrain is released, and the particle can travel from one player to

another along the edges of the pentagon, still only one classical communication

is allowed within τ . This is because twice the length of the edge of a regular

pentagon is longer than d. So, even in the best classical scenario, only one player

would know the exact answer with certainty, namely the one who receives the

input from another player via the communication process. Thus, the optimal

strategy is that all the other players agree to always answer with ’NO’ since only

one ’YES’ per run wins the game.

If the referee asks the question only one player per run, choosing her randomly

(each player has in average 1/5 of probability of being asked), the best classical

probability to guess the right answer is P ′Class = 1
5 ·1+ 1

5 ·
1
5 + 1

5 ·
1
5 + 1

5 ·
1
5 + 1

5 ·
1
5 = 9

25 .

On the other hand, if the referee asks all the player to answer, the probability of

guessing the right result is PClass = 1
5 . In both cases, the corresponding quantum

scenario reveals PQ = 1.

40



2.4 N-party generalization

In this section we address the following question: Does quantum superposition

principle provides a stronger resource for communication when very many parties

are involved? In order to answer this question we need to find the general rules

for arbitrary number of parties.

We start by considering N players (N ≥ 2) disposed on the vertices of a

convex regular polygon with N edges, with the distance between a vertex and

the geometrical center d/2. We label the players with j such that 0 ≤ j ≤ N − 1.

The number of player can be arbitrarily large, but we add the constrain that N

must be a prime number, for a reason that will become clear in what follows.

Similarly to the analysis provided in previous sections, the conjunction of

the assumptions A1-A2 is still in force, and we impose to have only one particle

for communication. The communication is restricted to occur within the same

time window d/c ≤ τ ≤ d/c + ε. Moreover, the players are allowed to exchange

unrestricted information in an initialization phase, during which they can agree

on any legal strategy.

The actual game starts (at t = 0) when the usual referee assigns to the jth

player an input xj , where xj ∈ [0, N − 1] ⊂ Z. Here we label an N -element input

string as X = (x0, x2, · · · , xN−1). In analogy with the three-party and five-party

games, a constraint on the inputs needs to be added to the game in order to

experience the advantage provided by quantum superpositions (compared with

the corresponding classical resource). In fact, it has been shown in sections 2.2

and 2.3, that only certain input strings allow the players to accomplish their

tasks with certainty. In particular for the three-party and the five-party cases,

the acceptable input strings were restricted to 32 = 9 over 33 = 27 and to 52 = 25

over 55 = 3125 possibilities respectively, as described by the corresponding CI

(see sections 2.2 and 2.3). It is well known from combinatorial analysis that the

total number of possible input strings is given by the number of symbols (i.e.

possible values that the single inputs can assume) to the power of the length of

the string. Hence, in this case the total number of input strings is NN , whereas

we have clear sign that only N2 of them can be taken. We can generalize CI to

the N -party game as

Constrain on the inputs (CI). At the beginning of every run of the game, the

referee assigns an input string (x1, x2, · · · , xN−1), defined by two integers (n,m),

such that

xk = nk +m (mod N), (2.48)

with (n,m) picked randomly from the set n,m = 0, . . . , N − 1 (with probability

1/N2). In such a way, we limit the accepted input strings to N2 over a total

number of NN .

The referee then divides the allowed input strings into N sets corresponding
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to those which share the same value of k. The referee addresses the following

question to each of the N players, who can only answer ’YES’ or ’NO’:

� Question to kth player (Qk) : Does the given input string X satisfies n = k?

In order to win the game, only one player has to answer with “YES” (n = k

is true for one k only), while the rest shall answer with “NO”. Let us consider

separately the best solution to the problem posed by the referee in both quantum

and classical scenario.

Quantum scenario

In a quantum scenario, the N players are granted the possibility of using quantum

superposition principle to prepare their initial state. A single particle is prepared

in equally weighted superposition of Ndifferent locations. The initial state, in

second quantized formalism reads:

|ψ〉in =
1√
N

(

N−1∑
j=0

a†j)

N−1⊗
k=0

|0〉k

≡ 1√
N

(
N−1∑
j=0

a†j), (2.49)

where a†j is the creation operator only acting on the mode associated to the spa-

tial location of the jth player, i.e. a†j |0〉j = |1〉j , whereas ⊗ denotes the standard

tensor product. The last member of (2.49) is a shorter notation, already encoun-

tered in (2.19), that neglects the explicit writing of the vacuum state on which

the ladder operators acts, but describes the state merely as the corresponding

linear combination of ladder operators. As a matter of simplicity this notation is

to be adopted in what follows.

We start by introducing the N -dimensional Fourier matrix FN :

{FN}k,j =
1√
N
ωk·j , (2.50)

where ω = e2πi/N . The matrix FN transforms the ladder operators in the fol-

lowing way:

a†k
FN−−→ 1√

N

N−1∑
j=0

ωk·ja†j . (2.51)

As before, we set TN := F−1
N , therefore we have

1√
N

N−1∑
j=0

ωk·ja†j
TN−−→ a†k. (2.52)
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Similarly to our previous analysis, a unitary device implementing the action of

TN is placed in the geometrical center of the regular polygon. All the N players

have previously agreed to encode their own inputs into the initial state |ψ〉in,

using the following local operations (adding of phases):

a†j −→ ωxja†j . (2.53)

Referring to the new state which encodes all the inputs as |ψ〉xj , it is now possible

to compute its evolution under the application of TN . In fact, thanks to CI, only

the input strings of the form xk = nk + m (mod N) are allowed, therefore the

state after encoding the inputs reads:

|ψ〉xk =
1√
N

N−1∑
j=0

ωk·j+ϕa†j =
ωϕ√
N

N−1∑
j=0

ωk·ja†j . (2.54)

In the next step the players exchange their communication by sending their ’part

of particle’ towards the other players (via the polygon center), letting the state

evolve through the unitary device TN . The process occurs, once again, within

the time window τ which would correspond to a particle traveling, with a fi-

nite velocity, from one player to another via the center of the polygon (in the

corresponding classical scenario).

After the communication process, the final state |ψ〉f is obtained. Recalling

the action of TN from (2.52) and (2.54), the final state reads:

|ψ〉f = TN |ψ〉xk = TN

 ωϕ√
N

N−1∑
j=0

ωk·ja†j

 = ωϕa†k. (2.55)

Since ωϕ is a global phase, when the players perform a measurement (detection

of particles) on the final state, they will find N possible distinct states, one for

each k. Therefore if and only if the given input string was from the set k, the

particle is to be found localized with the kth player. This player will thus answer

’YES’ to the referee’s request, whereas all the other players, who do not detect

the particle, will answer to the respective question with ’NO’. Thus, they win

the game with certainty. In conclusion, all the players are able, using a strategy

based on quantum superposition principle, to achieve the win probability PQ = 1,

independently of the number of players.

Classical scenario

Here we analyze a classical scenario, in which players exchange only one informa-

tion carrier and, without loss of generality, we assume that it is initially localized

with one of them. As it happened in the other variants of this game analyzed

in the previous sections, the players agree on a strategy during the initialization
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phase. Firstly, we consider that the particle is bounded to travel through the

center of the regular polygon on which vertices the players are located. There-

fore, within the time window τ , only a single round of ”one-way” communication

is possible, independently of the number of players. Also in this case the best

strategy seems to be that a player, say the kth one, sends her input to another

player, say the lth one. In such a way, player l knows the given input string

and she is able to answer with certainty the question that the referee posed to

her. In fact, since l has in possession xk = nk + m and xl = nl + m, she can

simply find the difference xk − xl = n(k − l) and from there she can extract the

value of n = (xk − xl)(k − l)−1 (N is chosen to be a prime number, thus the

division modulo N is well defined). Therefore, l can verify n = l with certainty.

Nevertheless, the rest of N − 1 players do not have any information on inputs

of the other players. As it was argued in previous examples, they should answer

’NO’ to their respective question, since only one ’YES’ per run is allowed. In this

way, the players achieve a win probability of 1/N . Another optimal strategy is

to fix one player who will always reveal ’YES’ and other ones shall answer with

’NO’. Again they achieve the same value of 1/N , yet curiously enough, in this

particular case they do not have to exchange any communication.

As a second and slightly more general instance of game, we release the re-

striction on the possible paths that can be traveled by the classical particle. The

players can now send communications along the edges of the polygon. Without

loss of generality, consider the communication to occur in series from say the jth

player, to the next one, and so forth until the time window τ closes. For a convex

regular polygon, it is easy to find the maximal number of classical communica-

tions, ncc, since it corresponds to the maximal number of edges contained in d,

i.e. ncc = bd` c, where ` is the length of the polygon edge and b.c denotes the

integer part function. Referring to figure 2.6, it is trivial to infer the following

Figure 2.6: A generic convex regular polygon with edge `, inscribed in a circle with
radius r = d/2. For regular polygons the ration between 2r and ` only depends on the
number of edges N .
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relations from elementary trigonometric relations:

d

2
=

`

2sin( θ2)
, (2.56)

where θ is the central angle subtended by the edge `. For any regular polygon

θ = 2π
N and

d

2
=

`

2sin( πN )
. (2.57)

Therefore, the number of classical communication allowed within the chosen time

window, as a function of the number of parties N , is given by

ncc =
⌊ 1

sin( πN )

⌋
. (2.58)

The behavior of (2.58) is displayed in figure 2.7, where the number of classical

communication is plotted versus the number of parties (values of N up to 30 are

shown).

Figure 2.7: Number of classical communication (y-axis) allowed within the time window
τ , as a function of the number of parties N (x-axis). The prime numbers are highlighted
in red.

So, coming back to the best classical strategy, the players agree to send their

input in a series of ncc consecutive rounds of ”one-way” communication. In such

a way up to ncc players will know the right answer to the question of the referee,
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whereas all the remaining N -ncc players, who do not receive any information

about the other players’ inputs, shall agree to always answer ’NO’, since only

one question over N has ’YES’ as correct answer. Again in comparison with

the special cases presented in the previous sections, a first possibility is that the

referee only asks one player per run to answer the respective question. If this

choice is randomly made according to a uniform distribution, each player is asked

to answer in average 1/N times. As we have shown, only ncc players would be able

to answer with certainty the right answer, whereas the remaining ones have the

chance of 1/N to guess the correct answer. Therefore the probability of success

is Pclass(N)′ = ncc
1
N + (N − ncc) 1

N2 . On the other hand, if all the players are

supposed to answer referee’s questions, the best classical probability of success is

Pclass(N) =
ncc(N)

N
=
⌊ 1

sin( πN )

⌋ 1

N
. (2.59)

It is remarkable that such classical probabilities are monotonically decreasing

functions of N , and always assume values smaller than the unity (for every

N > 2), whereas the corresponding quantum probability is always equal to 1,

independently of N . As a further comparison, it is also of some interest to ana-

lyze how the classical probability behaves when very many parties (N →∞) are

involved:

lim
N→∞

P ′class(N) = lim
N→∞

Pclass(N) ' lim
N→∞

1

Nsin( πN )
= lim

N→∞

1
sin(π/N)
π/N π

=
1

π
.

(2.60)

The same result can be found with geometrical considerations. In fact, while

the number of parties increases, the polygon on which the players are located

approaches a circle. In this case, the edge length can be well approximated by

an arc length, i.e. ` = 2π/N , therefore, the number of classical communications

is ncc = 2
2π/N = N

π . Consequently, the corresponding probability of success reads

Pclass = 1
π , which is consistent with the solution provided by (2.60).
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2.5 Superposition or entanglement?

So far, we have shown that quantum system can violate the classical bounds im-

posed by assumptions A1-A2. One may wonder: what is the resource that enables

quantum advantage? In Bell-like scenarios it is clear that quantum entanglement

between distant parties allows for stronger-than-classical correlations. In the case

analyzed here, one may argue that the quantum superposition principle allows

for a fundamental difference between quantum mechanics and classical physics.

On the other hand, the state of a single particle in spatial superposition can be

seen as an entangled state when described in the second quantisatized notation

(Fock’s formalism). Indeed, the problem of determining whether the state of a

particle in superposition between two spatial position is actually entangled has

long been matter of debate.

As early as the 1990s Tan et al. investigated the possible non-local properties

of single-photons, and proposed the first experiment to violate Bell’s inequali-

ties using single-particle entanglement [29]. At present, a number of works have

strengthened the conviction that states of the type (2.4) are actually entangled.

This has been shown using theoretical arguments for single-photon states [30, 31]

and recently also for single-electron states [32]. Moreover, entanglement and vio-

lations of Bell’s inequalities with single-photons have been experimentally demon-

strated using heterodyne measurements [33] and homodyne tomography [34, 35].

Single-photon entangled states find also application in quantum information and

quantum communication protocols [36].

Superpositions of single-particle states are the main object of investigation in

this work. The preparation of such a state can be realized by sending a single

particle located at the position A through a beam splitter (2.5), which creates a

superposition of the particle between the two positions A and B. This correspond

to the transformation

|A〉 → 1√
2

(|A〉+ |B〉). (2.61)

As already mentioned, an equivalent description of the same scenario, is given

by the second quantization formalism., i.e. we write |A〉 = |1〉A|0〉B and |B〉 =

|0〉A|1〉B, meaning one particle in mode A and zero particles (vacuum) in mode

B, and vice-versa. Therefore, the transformation of beam splitter in second quan-

tization reads

|1〉A|0〉B →
1√
2

(|1〉A|0〉B + |0〉A|1〉B). (2.62)

This clearly shows creation of entanglement in Fock space (mode entanglement)

thanks to the action of a beam splitter. In other words, the beam splitter acts

as an entangling quantum gate.

It ought to be stressed that the first quantization formalism describes a state

living in a two-dimensional Hilbert space H spanned by |A〉, |B〉. Whereas, the
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latter formalism describes the state as a four-dimensional vector in the Hilbert

space, constructed as the composition of the subsystems A and B, HAB = HA ⊗
HB, and spanned by the basis vectors |0〉A|0〉B, |0〉A|1〉B, |1〉A|0〉B, |1〉A|1〉B.

Nonetheless, the physical constrain of having a well defined number of parti-

cles reduces the space to a two-dimensional subspace generated by |0〉A|1〉B, |1〉A|0〉B.

This allowed us, in section 2.1, to define BS as a 2 × 2 matrix, despite the use

of the second quantisatized notation. In general, a state of a single particle in

superposition between N different positions, lives in a N -dimensional Hilbert

space, whereas the same state described in terms of second quantization (2.49)

lives in a 2N -dimensional space. Yet, the physical constrain of allowing only a

single particle plays the role of a superselection rule which restricts the space to

a N -dimensional subspace of single-particle excitations.
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Chapter 3

Experimental implementation

with single photons

In this chapter we investigate the possible experimental realization of the quan-

tum game proposed in the previous sections. We consider here the case of a

quantum optics experiment and single-photon in superposition between differ-

ent spatial modes (path degrees of freedom). In particular, we analyze in detail

the three-partite case. The generalization to an arbitrary number of parties is

straightforward.

Following the derivation of the game, the players can be thought, from an

experimental perspective, as spatially separated stations, arranged to fulfill the

required geometrical configuration (i.e. they are disposed on the vertices of a

regular triangle). Single-photon sources, commonly used for quantum optics ex-

periments, seems to be here the natural choice for generating the carrier of com-

munication. The source emits a photon which is split into three beams (paths)

coherently (via some unitary device that implements F3 in order to prepare an

initial state given by the eq. (2.19)). Subsequently, each path is guided towards

the observers A, B and C, and the photon arrives at their position at the same

time, say t = 0. Each observer is provided with a local tunable phase shifter

and a photodetector. Just after receiving their inputs (t ' 0) the players encode

them using the corresponding phase shifter (see eq. (2.28)-(2.30)). The observers

then guide their modes to the center of the polygon, which implements the action

of TS (according to the transformation defined in (2.25)-(2.27)). After TS, the

photon goes back towards players and at the final stage the detectors allow the

final read out.

The experimental realization of the operators involved in the game, i.e. the

corresponding Fourier matrix, requires a more careful analysis. Since Fourier

matrices are unitary, they can be experimentally implemented using elementary

optical devices [39]. It is indeed well known that any element of the group U(2)
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can be experimentally realized by a lossless beam splitter1 with an additional

phase shift between the splitting modes [37, 38, 39].

The matrix describing such a device transforms input modes (k1, k2) into the

output modes (k′1, k
′
2), as follows:[

k′1
k′2

]
=

[
eiφsinθ eiφcosθ

cosθ −sinθ

]
·

[
k1

k2

]
. (3.1)

This matrix is fully characterized by the two parameters θ and φ. The latter

parameter, is here referred to as the phase parameter, since it accounts for the

relative phase of eiφ between the modes. Such a phase can be experimentally

implemented by inserting a phase shifter (usually a birefringent crystal) on pho-

ton’s path. The other parameter, θ, is here refereed to as the angular parameter

and it characterizes the coefficients of reflectivity (R) and transmittancy (T):

T = cos2θ,

R = sin2θ.

Here we will assume that an experimentalist is occupied by elementary building-

blocks, such as standard beam splitters and phase shifters only. In such a case,

it is very useful to notice that a simple Mach-Zehnder interferometer, composed

of two mirrors, two standard beam splitters and two phase shifters (as displayed

in Fig. 3.1), can substitute any variable beam splitter of the form (3.1).

Figure 3.1: A Mach-Zehnder interferometer can be used to implement any non-standard
beam splitter, by the modulation of two phase shifters eθi and eφi (labelled with θ and
φ, respectively).

Using this construction as a basic building block, Reck et al. [39] have shown

that every element of U(N) group (the set of N × N unitary matrices) can be

decomposed into the product of matrices acting as U(2) transformations on two-

1With beam splitter we refer here to a device capable of dividing a beam into two ones, with
an arbitrary ratio between the intensity of the outcomes, depending on some internal parameters.
We refer here to the half-transmitting and half-reflecting beam splitter as ”standard” or 50:50
beam splitter.

50



dimensional subspaces of the whole N -dimensional Hilbert space. The product of

these matrices corresponds, in an experimental setup, to sequential application

of tunable beam splitters, as defined in (3.1). We label as Tij the N -dimensional

matrix that acts non-trivially in the subspace ij, with the transformation defined

in (3.1). If a general N ×N unitary matrix UN , is multiplied from the right with

the sequence of N − 1 nearest-neighbor Tij matrices, i.e.

UN · TN,N−1 · TN,N−2 · · ·TN,1 =

[
UN−1 0

0 eiα

]
, (3.2)

the dimension is effectively reduced for one, i.e. from N to N − 1. This defines a

recursive algorithm that can be applied the necessary number of times in order to

transform the original UN into a diagonal matrix with phase factors on diagonal.

We define D to be the inverse of such diagonal matrix, i.e

UN · TN,N−1 · TN,N−2 · · ·T2,1 ·D = 1. (3.3)

It is not difficult too see, that the number of required beam splitters of the type

(3.1) is N(N−1)
2 . Additional N phase shifters (non-zero elements of the matrix

D) are needed for the full decomposition.

We turn now to the possible experimental realization and we refer to the

setup schematically described in Fig. 2.3. The goal here is to provide a suitable

geometrical arrangement of elementary devices (beam splitters and phase shifters)

in order to implement operator TS defined in (2.24). We start by considering the

application of the present algorithm, to decompose the 3 × 3 Fourier matrix

F3 into a sequence of operators T32, T31, T21. The problem of the experimental

realization of a tritter has been discussed already in [40]. According to (3.3), the

decomposition of the matrix F3 reads:

F3 · T32 · T31 · T21 ·D = 1 (3.4)

=⇒ F3 = (T32 · T31 · T21 ·D)−1 .

Yet, one has to recall that TS, is actually the inverse of F3, thus:

TS := F−1
3 = T32 · T31 · T21 ·D.

It is easy to verify that the matrices fulfilling this relation are the following ones:

T32 =


1 0 0

0 1√
2
e
π
3
i 1√

2
e
π
3
i

0 1√
2

− 1√
2

 , (3.5)
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T31 =


√

2
3e

2
3
πi 0

√
1
3e

2
3
πi

0 1 0√
1
3 0 −

√
2
3

 , (3.6)

T21 =


i√
2

i√
2

0

− 1√
2

1√
2

0

0 0 1

 =

1 0 0

0 −1 0

0 0 1

 ·


i√
2

i√
2

0
1√
2
− 1√

2
0

0 0 1

 , (3.7)

D =

e
5
6
πi 0 0

0 e
5
6
πi 0

0 0 e−
2
3
πi

 :=

e
iα1 0 0

0 eiα2 0

0 0 eiα3

 . (3.8)

Thus, the matrix TS can be implemented by the ordered application of three

phase shifters (one for each diagonal element of D) and three beam splitters with

ratios T/R presented in Table 3.1 (each with an additional output phase as in

(3.1)). This result, together with the explicit values of the angular and phase

parameters is reported in Table 3.1.

operator angular parameter (θ) phase parameter (φ)
beam splitter

T R

T32
π
4

π
3 1/2 1/2

T31
1
2(π − arctan(2

√
2)) 2

3π 1/3 2/3

T21 −3
4π −π

2 1/2 1/2

Table 3.1: A tri-splitter (operator TS) can be experimentally implemented by three
beam splitters characterized by the values of the parameters φ and θ.

The experimental setup also requires to fulfill the geometrical arrangement of

Fig. 2.3, namely TS must be disposed on the geometrical center of an equilateral

triangle, of which the vertices are the players. A possible geometrical solution is

proposed in Fig. 3.2.
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Figure 3.2: A possible experimental arrangement of the thee-party game. The operator
TS has been decomposed into elementary optical devices, i.e. beam splitters (T32, T31
and T21) and phase shifters (α1, α2 and α3). The apparatus is supplemented by mirrors
(Ms) that serve to guide the photons from A, B, C towards the center (where TS is
implemented) and back to players.
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Chapter 4

Philosophical issues

4.1 Assumptions underlying Bell’s theorem: local re-

alism

Although Bell’s theorem has celebrated its first half a century, there is no global

consensus on its interpretation. This rather simple mathematical derivation is

leading not only to a contradiction with the prediction of QM on a theoretical

basis. Actual experimental violations of the bounds imposed by the theorem

have been demonstrated in a plethora of more and more ambitious experiments

(recently, loophole-free experiments have been realized, i.e. [41] [42]). Now,

an observed violation of Bell’s theorem necessary implies, according to classical

logic (modus tollens), that the conjunction of the assumptions used to derive it

is untenable. But which are exactly these assumptions?

A tacit underlying assumption in the original proposal of Bell, is the ’freedom

of choice’ (or ’free will’) of the parties, who are completely free to locally choose

their settings. The relaxation of this assumption would in any case bring to a

form of ’super-determinism’, but, in Bell’s words: ”I do not expect to see a serious

theory of this kind”[43], and we will not consider this possibility in what follows.

On the mathematical level, we have shown in chapter 1 that the main as-

sumption of Bell’s inequalities is the existence of a set of hidden variables λ,

governed by a probability distribution q(λ) which allows to write the conditioned

probability distribution as in equation (1.3). The meaning of these variables,

and thus their implications in physics, are open to interpretations, and has been

referred to with a number of expressions: ”The λ [...] can pop up under many

guises such as, e.g. ‘the physical state of the systems as described by any possible

future theory’ , ‘local beables’, ‘the real state of affairs’, ‘complete description of

the state’, etc. Since λ do not appear in quantum mechanics, thus they are (good

old) hidden variables”[44]. Related to the role played by λ there are contrasting

schools of thought which attribute different interpretations to the assumption

leading to the condition (1.3), that we have here called local realism. In a recent
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paper [44], Zukowski and Brukner have refuted two quite accredited views on the

assumptions underlying Bell’s inequalities (besides ’free will’):

View 1. The unique fundamental assumption leading to Bell’s inequalities is

locality.

View 2. There are additional premises besides locality (e.g. ’realism’, ’deter-

minism’), but they can all be inferred from locality.

Therefore the implication that both of these views attribute to Bell’s inequalities

is that of ruling out once and for all locality from all the possible theories violating

them, including quantum mechanics. We also agree that such positions are quite

untenable, and that locality alone cannot be thought as the fundamental concept

leading to Bell’s inequality. Another quite popular view, which can be find e.g.

in [45], should be also critically revised:

View 3. Both locality and realism are two independent fundamental assump-

tions to derive Bell’s theorem.

Realism is here associated to the existence of the hidden variables λ and its

distribution q(λ), whereas locality to the separability condition which leads from

equation (1.1) to (1.2). But in fact, the definition of λ is empty by itself in this

context, and its introduction becomes meaningful only when it allows to write

the expression (1.2), i.e. when it decouples the local probabilities.

In conclusion, Bell’s inequalities rely on a ”compound condition”[44] as a

whole, which we have called local realism (sometimes referred to ’local causality’).

Indeed, such a condition is intuitively deeply related to the concept of realism and

locality, and yet it is not possible to formally enforce either of the two conditions

one by one. A violation of Bell’s inequalities merely means that local realism (in

conjunction with that of ’free will’) is untenable, and nothing more.

4.2 Leggett-Garg inequality and macrorealism

Reminiscent of Bell’s inequalities, in 1985, Leggett and Garg proposed a new

family of inequalities [46], with the scope of testing a possible break down of

quantum mechanics at the ’macroscopic’ scale. This is done by the investigation

of Scrödinger’s cat-like states, namely the study of the possibility of preparing

quantum superpositions of macroscopic objects (defined according to some rea-

sonable criteria).

The formalization of this concept is completely derived by adopting some of

fundamental assumptions, which all together go under the name of macrorealism

[47]:
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Macrorealism per se. A macroscopic object which has available to it two or

more macroscopically distinct states is at any given time in a definite one

of those states.

Non-invasive measurability. It is possible in principle to determine which of

these states the system is in without any effect on the state itself or on the

subsequent system dynamics.

Induction. The properties of ensembles are determined exclusively by initial

conditions (and in particular not by final conditions).”

Out of these simple assumptions, it is possible to derive a series of inequalities

which play analogous role that Bell’s inequalities play for local realism. Following

the formalism provided in [48], one can consider a macroscopic object described

by a set of ’macroscopically distinct’ [47] variables {Q,Q′, ...}. Let the object be

prepared, in a series of runs, always in the same initial state, and let the time

always reset to t = 0 at the beginning of each run. If variable a ∈ {Q,Q′, ...} is

measured at time ta > 0 and the variable b ∈ {Q,Q′, ...} is measured at tb > ta,

macrorealism allows to write the joint probabilities of these events as

p(ata , btb) =
∑

q(λ)p(ata |λ)p(btb |λ). (4.1)

Such convex decomposition is completely analogous to the (discrete) condition

of local realism (1.3), and we call it condition of macrorealism. It is easy to

verify that in the simplest case, i.e. when the variables can only assume binary

values Q ∈ {−1, 1}, macrorealism (4.1) leads to the Leggett-Garg inequalities of

the CHSH-type

Ct1t2 + Ct2t3 + Ct3t4 − Ct1t4 ≤ 2, (4.2)

were Ctatb := 〈QtaQtb〉 are the temporal correlations, and t1 < t2 < t3 < t4.

Violation of Leggett-Garg inequalities are a pervading phenomenon at the

microscopic quantum level [48, 49, 50], but only in recent years technological

progress approached a regime in which experimental tests on macroscopic objects

seems to be feasible. Superpositions of magnetic-flux states in superconducting

quantum interference devices (SQUID) [47, 51, 52] are good candidates, as well as

nanometer-sized massive objects [53], nano-sphere [54] or large molecules [55, 56].

4.3 Quantum communication with limited resources:

meaning of the assumptions

The new game discussed in chapter 2, shows that, under certain conditions, com-

munication tasks are more efficient when genuine quantum effects are exploited.

This helps to shed light on the intrinsic fundamental difference between classical
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and quantum theories. In the present chapter it was recalled that both Bell’s

theorem and the Leggett-Garg inequalities test quantum mechanics against clas-

sical alternatives, on the basis of the fundamental assumptions of local realism

and macrorealism, respectively. In this spirit, in chapter 2, we have proposed

a new model based on the assumptions of limited resources and finite speed of

propagation. When referring to classical scenarios throughout our derivation, we

have always enforced the additional underlying assumption of definiteness of the

position (we denote it as Assumption 3, A3), namely that the spatial location

of physical objects is well defined at any time. This resulted in the fundamental

restriction to ”one-way” communication if one uses only a single particle. On the

contrary, it appears evident from the proposed model that quantum formalism

(specifically the possibility of using coherent quantum superpositions) violates

the classical restrictions, and thus implies that the conjunction of assumptions

A1-A3 is untenable. We deem it of great interest to discuss the relation that

these assumptions A1-A3 have, if any, with local realism and macrorealism.

Indeed, assumption A1 and A3, are strongly related to the idea of realism,

since they assume that the two physical properties ’number of information car-

riers’ and ’position’ are well defined at any moment in time. These assumptions

are in fact fulfilling the macrorealism per se leading to Leggett-Garg inequalities.

Notice however that the second assumption of macrorealism, i.e. the non-invasive

measurability, is not required for the model proposed here, since the latter only

requires a single final measurement to be performed by the parties, whereas all

the other processes - including the encoding of the inputs - are carried out by

means of unitary operators.

On the other hand the last assumption A2, is directly related to the request of

compatibility with relativity, and thus in direct connection with the no-signaling

condition [7] and to locality in a broad sense.1.

1In his original paper for instance, Bell defined locality as the property demanding that ”if
two measurements are made at places remote from one another the [setting of one measurement
device] does not influence the result obtained with the other” [48]
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