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Abstract

A major challenge in software development processes is to detect and fix the deviations of system’s
intended behaviours at different abstraction levels in early phases. Inconsistencies that are detected
at later phases, when the system is already implemented or tested, require huge amounts of time
and effort for correction, revision, and verification. Therefore, it is crucial to detect and fix the
inconsistencies at early phases of software development, and especially as soon as refined models
deviate from their abstract counterparts. This dissertation focuses on a special type of vertical
consistency, in particularly containment checking that verifies whether the behaviour described by
the low-level model encompasses those specified in the high-level counterpart. Previous research
has not investigated the containment relationship for behavioural models.

We have performed a systematic review of software behavioural model consistency checking re-
search, and identified a number of gaps and open problems that serve as a foundation for this
dissertation. The major contributions of this dissertation are novel concepts and techniques for
automatic containment checking of software behaviour models. Containment checking of software
behaviour models, in particularly activity models, sequence models and service choreographies, is
supported using model transformations and model checking. Specifically, the automated transfor-
mation of behaviour models into formal specifications and consistency constraints is performed;
they are required by model checkers for detecting any discrepancies between the input models
and yielding corresponding counterexamples. However, the feedback of model checkers is rather
not helpful for users with limited background on the underlying formal methods to analyse and
understand the causes of consistency violations. A counterexample analysis approach is therefore
proposed for locating the cause(s) of containment violations and presenting appropriate sugges-
tions to stakeholders for their resolution. Dealing with unconditional loops and parallel execution
branches are challenging issues in model checking based techniques. Therefore, we introduced, in
addition to the model checking based techniques, a lightweight graph-based approach that verifies
missing nodes, missing transitive links, and missing cycles.

We have investigated containment checking first generically for the named design models and stud-
ied the application in realistic use case scenarios, taken mainly from enterprise information systems.
As a second application domain, we have studied applying containment checking in the context
of architectural patterns: Architectural patterns impose various kinds of design constraints on the
detailed designs and implementations that should not be violated. We studied the application of
containment checking for checking those design constraints for three popular architectural patterns:
Model-View-Controller, Layers, and Pipe and Filter, as well as their variants. The quantitative
evaluation of the realistic use case scenarios shows that the proposed approaches perform reason-
ably well in typical working environments of software developers and scale well enough for typical
sizes of software design models.
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Zusammenfassung

Während des Softwareentwicklungsprozesses ist es eine große Herausforderung, bereits in den frühen
Phasen auf verschiedenen Abstraktionsebenen festzustellen, ob ein System von beabsichtigtem Ver-
halten abweicht und etwaige Abweichungen zu korrigieren. Werden Inkonsistenzen erst in späteren
Phasen entdeckt, nachdem das System bereits implementiert oder getestet worden ist, führt dies
zu enormem Aufwand für Korrektur, Überarbeitung und Verifikation. Es ist daher von großer
Bedeutung, diese Inkonsistenzen bereits in einer frühen Phase des Softwareentwicklungsprozesses
zu erkennen und zu beheben. Dies gilt vor allem, sobald verfeinerte Modelle von ihren abstrak-
ten Gegenstücken abweichen. Diese Dissertation konzentriert sich auf eine spezielle Art von ver-
tikaler Konsistenz, insbesondere Containment Checking. Dabei wird überprüft, ob das vom Low-
Level-Modell beschriebene Verhalten auch das im High-Level Gegenstück beschriebene erfasst. Die
Containment-Beziehung von Verhaltensmodellen wurde in bereits existierenden Forschungsarbeiten
bisher nicht untersucht.

Nach einer systematischen Überprüfung der vorhandenen Forschung zur Konsistenzprüfung von
Software-Verhaltensmodellen konnten wir eine Reihe an Lücken und offenen Problemen ermitteln,
die als Basis für diese Dissertation dienen. Der hauptsächliche Beitrag dieser Dissertation besteht
aus neuen Konzepten und Techniken zum automatischen Containment Checking von Software-
Verhaltensmodellen. Mittels Modelltransformationen und Modellprüfung (Model Checking) wird
Containment Checking von Software-Verhaltensmodellen, insbesondere Activity Models, Sequence
Models und Service Choreography unterstützt. Genauer gesagt wird eine automatische Transforma-
tion von Verhaltensmodellen in formale Spezifikationen und Konsistenzbeschränkungen durchge-
führt. Diese werden beim Model Checking für das Erkennen von Abweichungen zwischen den
Eingabemodellen und daraus folgende Gegenbeispiele benötigt. Das Feedback von Model Checkern
ist jedoch für Benutzer mit eingeschränktem Wissen über die zugrundeliegenden formalen Metho-
den zur Analyse von beziehungsweise dem Verständnis für Konsistenzverstöße meist wenig hilfre-
ich. Wir schlagen daher einen Ansatz vor, der die Analyse von Gegenbeispielen verwendet, um den
Grund von Konsistenzverstößen zu finden und den jeweiligen Akteuren passende Lösungsvorschläge
zu präsentieren. Endlosschleifen und parallel ausgeführte Programmteile stellen Techniken, die auf
Model Checking basieren, vor große Herausforderungen. Wir haben daher zusätzlich einen Ansatz
entwickelt, der basierend auf Graphen fehlende Knoten, fehlende transitive Verbindungen und
fehlende Abläufe überprüft.

Zunächst wurde Containment Checking allgemein nach benannten Designmodellen untersucht und
die Anwendung in realistischen Use-Case-Szenarien geprüft, wobei letztere überwiegend aus En-
terprise Informationssystemen entnommen wurden. Als einen zweiten Anwendungsbereich un-
tersuchten wir die Anwendung von Containment Checking im Kontext von Architekturmustern.
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Zusammenfassung iii

Diese legen verschiedene Arten von Designbedingungen für den Detailentwurf und für die Imple-
mentierung fest, die nicht verletzt werden dürfen. Wir untersuchten außerdem die Anwendung
von Containment Checking für das Prüfen von Designbedingungen bei drei beliebten Architektur-
mustern: Model-View-Controller, Layers und Pipe and Filter, sowie deren Varianten. Die quanti-
tative Evaluierung der realistischen Anwendungsszenarien zeigt, dass die vorgeschlagenen Ansätze
in typischen Arbeitsumgebungen für Softwareentwickler ziemlich gut funktionieren und gut genug
für übliche Größen von Softwaredesign-Modellen skalieren.
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1 Introduction

The development of a software system often goes through a number of different stages and iter-
ation cycles, and each of them can introduce new elements or more detailed specifications of the
system [Rup10]. In addition, software systems are constantly evolving. In many areas of software
engineering, behavioural models are used to represent the behavioural aspects of a software system.
Examples of behaviour models are UML (Unified Modelling Language) activity models, state ma-
chines, and sequence models [Gro11b], Simulink® Stateflow® [Mat15], the Business Process Model
and Notation (BPMN) [Gro11a], the Business Process Execution Language (BPEL) [OAS07], and
Event-driven Process Chains (EPC) [SN00], to name but a few. In the past decades, a substantial
number of software engineering research works have been devoted to consistency checking between
different models or multiple views of the models that are used in software development [MTZ17a].

An example is ensuring consistency over multiple abstraction levels: Many models are created as
“high-level” models [SV06; Str05; Huz+05]. That is, they are mainly used to convey the core
concepts or principles of the reality they represent in an abstract and/or concise way (e.g., require-
ments models or design models). In addition, technical or “low-level” models are often created
as refinements of the high-level models with purposes such as providing a precise specification of
the source code, executing the model (e.g., in a process engine, interpreter, or virtual machine),
or generating executable code directly from the model, e.g., in model-driven software development
(MDSD) [Fra02; SV06]. It is crucial that the overlapping parts of the high-level and low-level
models are in sync with each other [Str05; SZ01; Huz+05].

Unfortunately, multiple models of the same system (or reality) are often drifting apart over time,
and inconsistencies arise among them, when they are created by different stakeholders and evolved
independently [Str05; SZ01; Huz+05]. For instance, high-level models might be changed according
to new requirements, and low-level models are changed as the implementation is modified. If not
each change is systematically propagated to all other models of the same system (or reality), the
evolved models may include inconsistencies. We have performed a systematic review of software
behavioural model consistency checking research, and identified that a predominance of primary
studies concentrate on consistency checking. However, previous research has not investigated the

1
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containment relationship at different levels of abstraction, which is categorized as vertical consis-
tency. An unsatisfied containment relationship implies the deviation of the low-level descriptions
from the corresponding high-level specifications and properties.

The major contributions of this dissertation are novel concepts and techniques for automatic con-
tainment checking of software behaviour models. Specifically, we have investigated the containment
checking problem for activity models, sequence models and service choreographies at different lev-
els of abstraction. In the context of model checking based containment checking, the automated
transformation of high-level and low-level models into consistency constraints and formal descrip-
tions are provided. The proposed translation strategies not only bridge the gap between manual
specification of formal properties and consistency constraints, but also increase the usability of
formal languages in practice.

The outcomes of particular transformations are fed to a model checker for detecting any dis-
crepancies between the input models and yielding corresponding counterexamples. Because the
produced results are rather cryptic and verbose, the counterexample analysis approach is proposed
for locating the root causes of containment inconsistencies and producing appropriate guidelines
as countermeasures. The technique supports users who have limited knowledge of the underlying
formalisms, and therefore, are not proficient in analysing the cryptic and verbose counterexamples.
By locating actual cause(s) of the inconsistency and providing the relevant countermeasures to
alleviate the inconsistencies to the user, the approach significantly reduces the time of manually
locating the causes of an inconsistency.

Although the containment checking can be realized based on model checking, but not always
the model checking techniques are necessary for addressing the containment checking problem.
Specifically, the unconditional loops and parallel execution branches are challenging issues that
lead to the state explosion problem. A graph-based containment checking approach is therefore
proposed that verifies missing nodes, missing transitive links, and missing cycles.

We have evaluated the containment checking of activity models, sequence models and service
choreographies in realistic use case scenarios, taken mainly from enterprise information systems.
The application of containment checking is also studied for model-view-controller, layers

and pipe and filter patterns as well as their variants. The quantitative evaluation of the realistic
use case scenarios demonstrates that the proposed approaches performs reasonably well on typical
working environments and scales.

The rest of this chapter is organized as follows: Section 1.1 describes background information.
Section 1.2 lists the scientific journal, conference, and workshop publications used in this disserta-
tion. Section 1.3 presents the research methods used in this dissertation. Section 1.4 discusses the
problem statements and research questions. Section 1.5 gives a brief introduction to each chapter
in the dissertation.
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1.1 Background

This section discusses the consistency checking types, temporal logics, model checking and graph-
based search that are key concepts in this dissertation.

1.1.1 Types of Consistency Checking of Software Models

According to Spanoudakis and Zisman [SZ01], an inconsistency is described as “a state in which
two or more overlapping elements of different software models make assertions about aspects of
the system they describe which are not jointly satisfiable”. As Spanoudakis and Zisman [SZ01]
stated, the problem of inconsistencies in software models have been a big concern of the software
engineering community for a long time. As a system is often modelled from different viewpoints
by different stakeholders, in different levels of abstraction and granularity [Fin+93; Boi+00], there
may exist contradicting information [Eng+01; SZ01]. There are several definitions of consistency
and its classification emerging in the literature [Eng+01; Huz+05; Str05; Usm+08; LMT09].

A typical consistency problem happens among different types of representations (e.g., models) of
the same aspect of a software system. For instance, for describing the interactions among various
objects, a UML sequence diagram and/or a communication diagram can be used with respect to a
temporal or structural viewpoint, respectively [Eng+01]. Engels et al. [Eng+01] consider this type
of consistency “horizontal consistency” whilst Huzar et al. [Huz+05] and Usman et al. [Usm+08]
call it “intra-model consistency”.

Looking into another dimension, a software model can be refined or transformed into a richer form
with more details. This scenario happens quite often in model-driven software development in
which model transformations are extensively used to map a high-level, abstract model down to
a lower level of abstraction [Fra02; SV06]. This type of consistency is named “vertical consis-
tency” [Eng+01], “inter-model consistency” [Huz+05], or “refinement” [LMT09]. We note that
the term “model” is interpreted rather differently by Huzar et al. [Huz+05] (as a set of diagrams)
and Engels et al. [Eng+01] (as an umbrella term that embraces the meaning of a diagram) and,
therefore, their definition of consistency types are not totally overlapping. Van Der Straeten [Str05]
used the term “evolution consistency” to indicate the consistency between different versions of the
same model, which fits to the category “vertical consistency” in [Eng+01].

In the context of this dissertation, we adopt the umbrella term “model” as proposed by Spanoudakis
and Zisman [SZ01] and Engels et al. [Eng+01] and use the terms “model” and “diagram” inter-
changeably with the same meaning unless stated otherwise in case it is necessary to distinguish
between these terms. As a result, the interpretation of horizontal consistency and vertical consis-
tency based on this point of view is used in the dissertation.
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In addition, we revealed that several approaches investigate the consistency of a single model
itself for correctness, determinism, and so forth. These consistencies do not fit nicely into the
two categories mentioned above. Inspired by the philosophical stance presented by Man and Van
Gorp [MVG06] in categorizing model transformations, we consider the following definitions of
consistency types for software models in this dissertation.

– Endogenous consistency indicates consistencies within the same model regarding the proper-
ties of itself.

– Exogenous consistency denotes consistencies between different models. It can be refined into
two sub-categories: horizontal and vertical consistencies.

– Horizontal consistency denotes consistencies among different kinds of models or a model
against rules and constraints that are manually specified or derived from other artefacts.

– Vertical consistency shows the consistency among models of the same type at different
levels of abstraction. This also includes the consistency between a design model and a
corresponding implementation.

Existing studies distinguish between syntactic and semantic consistencies [Eng+01]. Syntactical
consistency aims to ensure that a model conforms to a predefined syntax specified by a certain meta-
model or grammar [Eng+01]. This ensures the well-formedness of the model [Eng+01]. Syntactic
(or structural) consistency checking has been extensively discussed in [Huz+05; Usm+08; LMT09].

As the main focus of our dissertation are behavioural models, we will investigate further into
semantic consistency. Semantic consistency addresses the semantic compatibility of models, for
instance, the same identifier that occurs in different models should refer to the same entity (i.e.,
have same meaning). Semantic consistency is stricter and often requires syntactical consistency
beforehand. In the context of horizontal consistency, semantic requires models of different view-
points to be semantically compatible with regards to the aspects of the system which are specified
in both sub-models. For vertical consistency problems, semantic consistency requires that a re-
fined model is semantically consistent with the model it refines. Semantic consistency depends
very much on the underlying semantics of the models being used and of the development process.
Eshuis and Grefen [EG07] also observed that several model structures are described by different
syntaxes but represent the same behaviour. Therefore, the identification of a suitable semantic
domain is important for consistency checking of software models in general and behaviour models
in particular [Eng+01].
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1.1.2 Temporal Logics

Temporal logics are modal logics focused towards the description of the temporal ordering of events
and states. They provide a convenient way to formalise and verify properties of software systems.
There are two types of temporal logics regarding the nature of time [Lam80]: the branching tempo-
ral logic (i.e., Computational Tree Logic (CTL) [CE81]) and Linear Temporal Logic (LTL) [Pnu77].
CTL reasons over many possible traces through time. In CTL a time instance has a finite, non-zero
number of immediate successors and is EXPTIME-complete. The restricted syntax of CTL limits
its expressive power. LTL is a better choice for specification of behavioural properties of the model
since such properties are easily expressed in LTL, which may not be expressible in CTL [Roz11].

LTL [Pnu77] is selected in this dissertation for specifying the temporal relationships between the
involved elements of the high-level behaviour models, which is PSPACE-complete. In LTL, for each
state there is a single successor state, and thus, a unique possible future. This can be represented
using linear traces (state sequences), which corresponds to describing the behaviour of a single
execution of the system. These features of LTL are useful in the context of behaviour models
because they enable explicit reasoning about states and transition executions of the input models
for containment relationships. In this dissertation, we adopt a syntactical definition of a well-formed
LTL formula ϕ in terms of the following BNF grammar (note that p is a primitive proposition).

ϕ ::= �|⊥|p|¬ϕ|ϕ1 ∧ ϕ2|ϕ1 ∨ ϕ2|ϕ1 → ϕ2|Xϕ|Fϕ|Gϕ|ϕ1 U ϕ2|ϕ1R ϕ2|Yϕ|Oϕ|Hϕ

The syntax and standard semantics for LTL operators are as follows: Xϕ (“neXt”) states that ϕ

will hold in the next state. Fϕ (“Future/Finally”) means that formula ϕ will hold in some future
state. Gϕ (“Globally/Always”) indicates that formula ϕ will continuously hold in all future states.
The formula ϕ1 U ϕ2 (“Until”) holds if ϕ2 holds now or at some state in the future; ϕ1 also holds
at every point in time until ϕ2 holds. ϕ1 R ϕ2 (“Release”) states that ϕ2 is true until ϕ1 becomes
true, or ϕ2 is true forever. The operator Yϕ (“Yesterday/Previous”) means that formula ϕ held
in the previous state. Oϕ (“Once”) states that formula ϕ has happened at sometime in the past.
Hϕ (“Historically”) indicates that formula ϕ always held in the past.

We adopt the conventional semantics of LTL as defined in the field of model checking [CGP99]. For
the sake of readability, we have also used the logical exclusive OR operator (hereafter xor) which
is not part of the traditional LTL definition but often supported by several model checking tools
as a useful abbreviation, for instance, a xor b ≡ (a ∧ ¬b) ∨ (¬a ∧ b). To make the formulation of
some formulas significantly more concise and intuitive, we have also used the LTL past operators,
to reason about previous states and transitions. The LTL past formulas, although they do not add
expressive power, compared to future only LTL, allow to write more succinct formulas [Gab87];
there is an increase in the size of a formula when the past operator is removed. This, however, do
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not increase the complexity of model checking and can be easily converted into future time LTL
formulas. For instance, “G(a → Ob)” means that every a is preceded by b. This can be converted
into pure future LTL formula by using the U operator “(¬b U (a ∧ ¬b))”.

1.1.3 Model Checking

Model checking is an automatic property verification approach that systematically and exhaustively
explore the states of software systems. It is most frequently used for the formal verification of safety-
critical systems, for example, air traffic control systems, medical equipment systems, train signalling
systems, and automotive control systems [Roz11]. The advantage of model checking is that it can
be performed in early phases of software modelling and development where no executable products
are produced yet. Model checking starts with a model described in a description language and
temporal properties, and exhaustively explores violations of a property by traversing the complete
state space. If they are valid, an answer true is shown. Otherwise, it generates a counterexample
that consists of the execution traces of the descriptions.

We use existing model checkers for formally verifying the containment relationship. LTL model
checkers can be classified as explicit or symbolic. Explicit model checkers such as SPIN1 (Simple
Promela Interpreter) construct the state-space of the model explicitly and create the automaton.
However, constructing and searching the state space explicitly requires a considerable amount
of space [Roz11]. Therefore, the number of states in the finite state representation increases
exponentially with the number of variables (i.e., the state explosion problem). The NuSMV (New
Symbolic Model Verifier) [Cim+99] model checker used in this dissertation is based on the symbolic
model checking technique, and therefore, is able to support the verification of large systems up to
1020 states [Bur+92]. The language that underpins the formal descriptions is hereafter called SMV
(Symbolic Model Verifier) language, which allows the description of Finite State Machines (FSMs).
The SMV description consists of one main module, and a set of state variables and predicates on
these variables. A module can contain instances of other modules, allowing a structural hierarchy
to be built. The variables can be of type boolean, enumerative or integers. SMV also supports
array as a data type. The predicates use the logical operators AND (“&”), OR (“|”) and NOT
(“!”). The complete syntax and semantics definitions of SMV description can be found in [Cav+05].
One of the biggest advantages of using the NuSMV model checker is that SMV’s finite state based
encoding of the input behaviour models is rather straightforward. That is, each model element is
represented by a boolean variable in the SMV description and LTL formulas.

1See http://spinroot.com
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1.1.4 Graph Based Search

The containment checking problem can be broken down into smaller graph-based tasks (or func-
tions) that has a number of advantages. First, the tasks are independent from each other, and
therefore, can be performed in any order. Moreover, the tasks can also be executed in parallel to
gain better performance. Finally, each task produces concrete and precise information about the
violation of the containment relationship accordingly. More specifically, no missing nodes (i.e., no
missing expected functions), no missing transitive links (i.e., no missing execution paths), and no
missing cycles (i.e., no missing loop executions) are implemented. This implementation performs
within the boundary of O(n3) where n is the size of the inputs.

The implementation of no missing transitive links is based on Warshall’s algorithm [War62]. Nev-
ertheless, Nuutila has presented heuristics for improving Tarjan’s algorithm [Tar72] in detecting
Strongly Connected Components (SCC) and uses the improved SCC detection techniques (plus a
special representation of successor sets) to achieve better TC finding [Nuu95]. Nuutila’s techniques
with respect to the use of Tarjan’s algorithm is used for no missing cycles. However, we opted
not to integrate Nuutila’s techniques in order to better analyse individual performance. Moreover,
tight integration of Nuutila’s techniques implies the dependency between no missing transitive links
and no missing cycles, and hence, may nullify the potential parallelizability of our implementation.

1.2 Publications

This doctoral dissertation is based on scientific journal, conference, and workshop publications,
which are either published, or submitted (currently under review). In particular, content of the
following publications has been used in this dissertation:

1 Faiz UL Muram, Huy Tran and Uwe Zdun, “Systematic Review of Software Behavioral Model
Consistency Checking”, Journal ACM Computing Surveys (CSUR), pages 17:1–17:39, Vol.
50, No. 2, Article 17, April 2017.

2 Faiz UL Muram, Huy Tran and Uwe Zdun, “Automated Mapping of UML Activity Diagrams
to Formal Specifications for Supporting Containment Checking”, In Proceedings of the 11th
International Workshop on Formal Engineering approaches to Software Components and
Architectures (FESCA ’14), pages 93–107, Grenoble, France, April 12, 2014.

3 Faiz UL Muram, Huy Tran and Uwe Zdun, “Supporting Automated Containment Checking of
Software Behavioural Models Using Model Transformations and Model Checking”, submitted
to: Science of Computer Programming [revised in May 2017].
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4 Faiz UL Muram, Huy Tran and Uwe Zdun, “A Model Checking Based Approach for Contain-
ment Checking of UML Sequence Diagrams”, In Proceedings of the 23rd Asia-Pacific Software
Engineering Conference (APSEC ’16), Hamilton, New Zealand, December 6-9, 2016.

5 Faiz UL Muram, Muhammad Atif Javed, Huy Tran and Uwe Zdun, “Towards a Framework
for Detecting Containment Violations in Service Choreography”, In Proceedings of the 14th
IEEE International Conference on Services Computing (SCC ’17), Honolulu, Hawaii, USA,
June 25-30, 2017.

6 Faiz UL Muram, Huy Tran and Uwe Zdun, “Counterexample Analysis for Supporting Con-
tainment Checking of Business Process Models”, In Proceedings of the 13th International
Business Process Management Workshops (BPM ’15), pages 515-528, Innsbruck, Austria,
August 31-September 3, 2015.

7 Huy Tran, Faiz UL Muram and Uwe Zdun, “A Graph-Based Approach for Containment
Checking of Behavior Models of Software Systems”, In Proceedings of the 19th IEEE In-
ternational Enterprise Distributed Object Computing Conference (EDOC ’15), pages 84-93,
Adelaide, Australia, September 21-25, 2015.

8 Faiz UL Muram, Huy Tran and Uwe Zdun, “Towards Containment Checking of Behaviour
in Architectural Patterns”, In Proceedings of the 22nd European Conference on Pattern
Languages of Programs (EuroPLoP ’17), Kloster Irsee, Germany, July 12–16, 2017.

9 Muhammad Atif Javed, Faiz UL Muram and Uwe Zdun, “On-Demand Automated Traceabil-
ity Maintenance and Evolution”, submitted to a journal. This publication is not directly used
in the dissertation, but covers related research inspired by the work in this dissertation. The
results from this publication have influenced some approaches in this dissertation to consider
the implications of traceability between different models and models to code.

1.3 Research Methods

The research conducted in this dissertation adopts the design science framework as a research
methodology. It includes analysis of a problem, finding a solution for the problem, and evaluation
of the solution. Primary and secondary research methods have been applied for the purpose of data
collection, research synthesis and evaluation. In the former case, case studies, formal modelling
and laboratory experiments are performed. In the latter case, we have conducted a systematic
literature review. In the following subsections we briefly introduce the research methods that have
been applied in this dissertation.
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1.3.1 Design Science Research

The research presented in this dissertation is based on design science research, which strives to
obtain rigorous and succinct results for information systems in the absence of a strong theory
base [VK07]. Design science provides the potential to investigate new technologies and to advance
accepted practice. In design science research, first a research question is posed, and then the de-
velop/evaluate cycle is continuously repeated until a satisfactory solution for the research question
has been obtained [Hev+04]. In the course of design science research, the research question can be
altered or refined. Peffers et al. [Pef+08] and Vaishnavi and Kuechler [VK07] specify the following
phases of a design science research process:

1. Identification of the problem and motivation: The goal of this phase is to identify scope of
the problem and significance of the solution.

2. Design and development artefacts: This phase focuses on design and development of artefacts,
which may require a formal proof to show the correctness.

3. Evaluation: In this phase, the developed artefact is evaluated according to the criteria made
in the first phase (identification of the problem and motivation).

4. Conclusion and communication: It concerns the end of a research cycle or termination of a
research project. The final results have to be documented and published in the peer reviewed
conferences and journals.

1.3.2 Systematic Literature Review

Systematic Literature Reviews (SLRs) are suitable for identifying, investigating, and interpreting
all existing research related to a particular research question or topic [KBB15; KC07]. SLRs are
a form of secondary study, while individual studies that contribute to the SLR are considered pri-
mary studies. SLRs address clearly formulated questions and use systematic and explicit methods
to identify primary studies, selecting primary studies relevant to the questions, critically evalu-
ating studies, synthesizing the data reported in the relevant studies, and reporting the combined
results. In this dissertation, we leverage the guidelines for performing SLRs in software engineer-
ing recommended in [KC07] with adjustments recommended in [KB13; KBB15]. The phases for
conducting the review process are not done sequentially at once but rather in an iterative manner
with feedback loops. These phases are defined and described below.

1. Planning the review: In this phase, the research questions and methods for developing a
review protocol are defined.
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2. Conducting the review: The review protocol defined in the previous phase will be enacted in
this phase.

3. Reporting the review: In this phase, the results of the review are documented, validated, and
reported.

1.3.3 Case Study

A case study is “an empirical inquiry that investigates a contemporary phenomenon within its
real-life context; when the boundaries between phenomenon and context are not clearly evident;
and in which multiple sources of evidence are used” [Yin08]. To show the specific properties of a
certain situation deep, rich data is needed [Min03]. For instance, it is not enough to define the
phenomenon in a small number of variables not covering the entire context. The consideration
of large number of cases does not provide additional information about the specific case. Single
and multiple case studies are described by Yin [Yin08]. Single case studies examine a group,
organization, or system in detail; however, it does not involve variable manipulation, experimental
design or controls. Multiple case studies are similar to single case studies, but conducted in a
small number of organizations or contexts. Kitchenham et al. [KPP95] point out that the single
case studies are not suitable for comparison purposes. They introduce a study design in which the
results of a subset of the multiple cases serve as a baseline for the comparison; the method or tool
under evaluation is only applied to the rest of the cases.

1.3.4 Formal Modelling

Formal modelling is used to specify certain aspects of a system by applying a mathematical formal-
ism. Examples of formalisms are set theory, category theory, graph theory and logic. Formalisms
are used to transform a real or fictitious original into a formal system. The use of formal methods
in software development increases understanding of software requirements, avoids ambiguities in
the specifications, enables rigorous verification of specifications of the software systems [FKV94].
Formal modelling is especially helpful when a domain is well understood and certain characteristics
of a system need to be verified [FKV94].

1.3.5 Experimentation

Experimentation strategies include field experiment, laboratory experiment with human subjects or
with software subjects/computer, and experimental simulation [JCP91]. Experimental designs are
guided by theories and facilitated by systems development. The experiment results might be used to
refine theories and improve the developed systems. In this dissertation we have applied laboratory



Chapter 1. Introduction 11

experiment with software subjects. The laboratory experiment compares the performance of newly
proposed system with other existing systems [CA11]. The focus of this research method in the
context of this dissertation is to find out about the performance and scalability of the proposed
system/approach.

1.4 Problem Statements and Research Questions

Several techniques and approaches have been proposed in the existing literature to support be-
havioural model consistency checking. To date, however, no comprehensive systematic review in
the area of software behaviour models consistency checking has been published. Therefore, there
is a need to systematically select and review the published literature with regard to behavioural
model consistency and summarise all existing practices and information in a well-defined and un-
biased manner including problems, limitation, future trends, and possible opportunities within the
context of software behaviour model consistency. This led us to investigate the following research
question:

Research Question RQ1

What is the current state-of-the-art of software behaviour model consistency checking and
potential gaps for future research?

Model checking based containment checking is not explicitly considered for the UML behaviour
models, business process models and service choreographies. It might be noted that the model
checking techniques requires both formal consistency constraints and specifications/descriptions of
behaviour models. This makes the particular techniques hard to apply in practice because creating
formal specifications and consistency constraints requires considerable knowledge of the underlying
formalisms and formal techniques. The creation of formal consistency constraints and specifications
is currently done manually, and therefore, labour-intensive and error prone. Accordingly, there is
a need to define and develop a fully automated transformation of behaviour models into formal
specifications and properties. The generated formal specifications and properties would directly
be used by existing model checkers for detecting any discrepancy between the input models and
yield corresponding counterexamples. This research gap led us to consider the following research
question:

Research Question RQ2

How to perform automated transformation of behavioural diagrams into formal specifications
and consistency constraints?
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In the design and development of service oriented applications, service choreography models de-
scribe the interactions between services at different abstraction levels. The undesired containment
violations in service choreographies would cause severe problems; for example, improper identifi-
cation of services and their corresponding service providers, and therefore affect the delivery of
services. Thus, there is a need to investigate the following research question:

Research Question RQ3

How to verify that the behaviour (or interactions) described in the local choreography models
collectively encompasses those specified in the global model?

Unfortunately, the results produced by existing model checkers (e.g., counterexamples) are rather
cryptic and verbose. As a consequence, the developers and non-technical stakeholders who often
have limited knowledge of the underlying formal techniques are confronted with cryptic and lengthy
information (e.g., states numbers, input variables over tens of cycles and internal transitions, and so
on) in the counterexample. Therefore, there is also a need for an automated approach to interpret
the counterexamples with respect to containment checking, in particularly for identifying the causes
of containment violations and their resolutions. This led us to formulate the following research
question:

Research Question RQ4

Is it possible to facilitate the interpretation of counterexamples for identifying the causes of
containment violations and their resolutions?

The costly exhaustive searches employed by model checking are not always necessary for addressing
the containment checking problem. The most challenging issues in model checking based techniques
are to deal with loops and parallel execution branches. For example, the non-determinism of
decision nodes and loop nodes make the translation of the input models to formal properties, e.g.,
in temporal logics, very difficult and inefficient. The parallel structures, for instance, formed due
to the combination of “ForkNodes” and “JoinNodes”, often cause the state explosion problem. In
order to alleviate the particular challenges, a lightweight graph-based approach might be developed
for supporting the developers in checking the containment relationship between the high-level and
low-level behaviour models. This problem led us to consider the following research question:

Research Question RQ5

Does graph-based containment checking provide better support for dealing with the non-
determinism of decision nodes and loop nodes, as well as the state explosion problems than
model checking based techniques?
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The behaviour of architectural patterns must be consistent in terms of the artefacts produced in
the various activities of the software development process, such as requirements, software archi-
tecture, detailed design and implementation. Previous studies have not considered the checking
of architectural patterns’ behaviour. Therefore, there is a need to verify whether the high-level
design constraints described by an architectural pattern are contained in the low-level design and
implementation. This research gap led us to formulate the following research question:

Research Question RQ6

How to ensure that the behaviour of an architectural pattern is consistent across the artefacts
produced in the various activities of the software development process?

1.5 Major Contributions and Overview of the Dissertation

This dissertation is divided into nine chapters. The first chapter includes the introduction to
software behaviour models consistency checking, background information, publications, problem
statements and research questions, which were presented earlier in this chapter. The main body of
the dissertation comprises eight chapters; they contain systematic literature review, model check-
ing based containment checking of UML behaviour models, business process models and service
choreographies, their counterexample analysis, graph-based containment checking algorithm, con-
tainment checking of architectural patterns’ behaviour, and conclusions. Table 1.1 shows the
research questions together with the papers and chapters, in which they are addressed. Chapters
2 to 8 are based on scientific journal, conference, and workshop publications, which are either
published, or currently under revision. In the following, each chapter is briefly outlined.

Chapter 2 presents a Systematic Literature Review (SLR) that was carried out to obtain an
overview of the various consistency concepts, problems, and solutions proposed regarding be-
haviour models. It addressed the Research Question RQ1 and is based on Paper 1 [MTZ17a].
In our study, the identification and selection of the primary studies was based on a well-planned
search strategy. The search process identified a total of 1770 studies, out of which 96 have been
thoroughly analysed according to our predefined SLR protocol. The SLR aims to highlight the
state-of-the-art of software behaviour model consistency checking and identify potential gaps for
future research. Based on research topics in selected studies, we have identified seven main cate-
gories: targeted software models, types of consistency checking, consistency checking techniques,
inconsistency handling, type of study and evaluation, automation support, and practical impact.
The findings of the systematic review also reveal suggestions for future research, such as improving
the quality of study design and conducting evaluations, and application of research outcomes in
industrial settings. For this purpose, appropriate strategy for inconsistency handling, better tool
support for consistency checking and/or development tool integration should be considered.
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Research Questions Papers Chapters

RQ1: What is the cur-
rent state-of-the-art of soft-
ware behaviour model consis-
tency checking and potential
gaps for future research?

Paper 1: Systematic Review of Software Behav-
ioral Model Consistency Checking

Chapter 2: Systematic Re-
view of Software Behavioural
Model Consistency Checking

RQ2: How to perform auto-
mated transformation of be-
havioural diagrams into for-
mal specifications and consis-
tency constraints?

Paper 2: Automated Mapping of UML Activity
Diagrams to Formal Specifications for Support-
ing Containment Checking
Paper 3: Supporting Automated Containment
Checking of Software Behavioural Models Using
Model Transformations and Model Checking
Paper 4: A Model Checking Based Approach
for Containment Checking of UML Sequence Di-
agrams
Paper 5: Towards a Framework for Detecting
Containment Violations in Service Choreography

Chapter 3: Model Checking
Based Containment Check-
ing of UML Activity Dia-
grams
Chapter 4: Model Checking
Based Containment Check-
ing of UML Sequence Dia-
grams
Chapter 5: Model Checking
Based Containment Check-
ing of Service Choreographies

RQ3: How to verify that the
behaviour (or interactions)
described in the local chore-
ography models collectively
encompasses those specified
in the global model?

Paper 5: Towards a Framework for Detecting
Containment Violations in Service Choreography

Chapter 5: Model Checking
Based Containment Check-
ing of Service Choreographies

RQ4: Is it possible to fa-
cilitate the interpretation of
counterexamples for identify-
ing the causes of containment
violations and their resolu-
tions?

Paper 3: Supporting Automated Containment
Checking of Software Behavioural Models Using
Model Transformations and Model Checking
Paper 4: A Model Checking Based Approach
for Containment Checking of UML Sequence Di-
agrams
Paper 5: Towards a Framework for Detecting
Containment Violations in Service Choreography
Paper 6: Counterexample Analysis for Support-
ing Containment Checking of Business Process
Models

Chapter 6: Counterexam-
ple Analysis for Supporting
Containment Checking

RQ5: Does graph-based
containment checking pro-
vide better support for
dealing with the non-
determinism of decision
nodes and loop nodes, as
well as the state explo-
sion problems than model
checking based techniques?

Paper 7: A Graph-Based Approach for Contain-
ment Checking of Behavior Models of Software
Systems

Chapter 7: Graph-Based
Containment Checking of
UML Activity Diagrams

(continued on next page)
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Research Questions Papers Chapters

RQ6: How to ensure that
the behaviour of an archi-
tectural pattern is consis-
tent across the artefacts pro-
duced in the various activi-
ties of the software develop-
ment process?

Paper 8: Towards Containment Checking of Be-
haviour in Architectural Patterns

Chapter 8: Containment
Checking of Behaviour in Ar-
chitectural Patterns

Table 1.1: Overview of Papers, Chapters and Corresponding Research Questions

Chapter 3 concerns the Research Question RQ2 and is based on Paper 2 [MTZ14] and Paper 3.
The chapter proposes a novel concept and technique for automatic containment checking of UML
activity diagrams. Containment checking aims to verify whether a certain low-level activity dia-
gram, typically created by refining and enhancing a high-level activity diagram, still is consistent
with the specification provided in its high-level counterpart based on model checking techniques.
In this context, the automated transformation of activity diagrams into formal specifications and
consistency constraints is performed; they are used by model checkers for detecting any discrep-
ancies between the input models and yielding corresponding counterexamples. The automated
translation strategy is useful to bridge the gap between manual specification of formal properties
and consistency constraints for containment checking. Formal modelling and comparative case
studies have been utilized to investigate the applicability and technical feasibility of the approach
in a typical developer’s working environment.

Chapter 4 concerns the Research Question RQ2 and is based on Paper 4 [MTZ16]. The chapter
presents a model checking based approach to automatically detect containment inconsistencies be-
tween UML 2 sequence diagrams. In contrast to UML activity diagrams, the sequence diagrams
represent radically different perspectives of a system and have different semantics. Therefore, we
introduce the formalisations of sequence diagrams to track the execution state of an interaction
without compromising the containment relationship. This way, our automated translation helps to
alleviate the burden of manually encoding consistency constraints, and therefore, increase produc-
tivity and avoid potential translation errors. Two research methods have been used for evaluation
purposes: formal modelling and comparative case studies.

Chapter 5 concerns the Research Questions RQ2 and RQ3 and is based on Paper 5 [Mur+17]. In
this chapter, a technique for automatic containment checking in service choreographies is proposed
– that verifies whether the message exchange behaviour (or interactions) described in the joint
local choreography models encompasses the behaviour specified in the global model. The global
model (aka interaction model) is modelled using BPMN 2.0 choreography diagram, while the
local choreography model (aka interconnection model) of each partner is modelled using BPMN
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2.0 collaboration diagram. The approach performs automated translation of global choreography
model into temporal logic based consistency constraints (i.e., LTL) and local choreography models
into formal descriptions (i.e., SMV language), whereas the NuSMV model checker is used for
verification. The approach has been validated using formal modelling and comparative case studies.

Chapter 6 concerns the Research Question RQ4 and is based on Paper 3, Paper 4 [MTZ16], Paper
5 [Mur+17] and Paper 6 [MTZ15]. The chapter presents a counterexample analysis approach for
supporting containment checking of activity diagrams, sequence diagrams, services choreographies,
and business process models. The analysis/interpretation of counterexample consists of two steps.
First, the actual causes of the unsatisfied containment relationship are located based on the gener-
ated counterexamples and appropriate guidelines to resolve the particular violations are produced.
Second, the concise descriptions of the isolation’s causes and potential countermeasures, produced
in the previous step are annotated in the low-level model such that the developers can easily un-
derstand and fix the problems. The applicability of the approach is demonstrated through four use
case scenarios taken from industrial case studies.

Chapter 7 concerns the Research Question RQ5 and is based on Paper 7 [TUMZ15]. The chap-
ter presents a lightweight graph-based approach for containment checking that starts by mapping
the input UML activity diagrams at different levels of abstraction into equivalent intermediate
representations, namely, check models. Subsequently, a lightweight graph-based algorithm verifies
whether there are any missing nodes (i.e., missing expected functions), missing transitive links
(i.e., missing execution paths), and missing cycles (i.e., missing loop executions). The theoretical
complexity of our approach is a cubic polynomial of the number of elements of the input behaviour
models. The approach generates feedbacks that are relevant and easy-to-understand for the stake-
holders. Comparative case studies and laboratory experiments with software subjects have been
performed for evaluation purpose.

Chapter 8 concerns the Research Question RQ6 and is based on Paper 8 [MTZ17b]. The chapter
presents a solution to the containment checking problem in architectural patterns’ behaviour. The
goal is to verify whether the high-level design constraints described by an architectural pattern are
contained in the low-level design and implementation. The containment checking of architectural
patterns’ behaviour not only considers missing elements or interactions but also misplacement of
elements at different levels of abstraction. The solution provides informative and comprehensive
feedback to the stakeholders to identify the violation causes and their resolutions. In addition,
we have selected the stereotypes from the existing vocabulary of design elements as well as we
have proposed new stereotypes to model a specific architectural pattern and its variants. The
applicability of the proposed solution is demonstrated by applying it on three popular architectural
patterns, namely model-view-controller, layers, and pipe and filter, as well as their
variants. We have investigated one specification extension of UML sequence diagram for modelling
the behaviour of each of those patterns. The proposed solutions can also be applied to other types
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of behaviour models, such as state machines, activity diagrams and BPMN models, as well as other
architectural patterns.





2
Systematic Review of Software Behavioural

Model Consistency Checking

This chapter presents the systematic review of software behavioural model consistency checking
research. It has been conducted to establish a foundation for this dissertation, and therefore
concerns the Research Question RQ1. The parts of this chapter focused on the consistency checking
techniques, types of consistency checking, inconsistency handling and targeted software models are
based on a peer-reviewed journal ACM Computing Surveys [MTZ17a].

2.1 Introduction

In software development, models are often used to represent multiple views of the same system.
Such models need to be properly related to each other in order to provide a consistent description
of the developed system. Models may contain contradictory system specifications, for instance,
when they evolve independently. Therefore, it is very crucial to ensure that models conform to
each other. Inconsistencies can also occur due to the multi-view nature of many models [Huz+05;
FLP99]. A system can be defined by multiple views that specify different aspects of the system.
Inconsistencies can occur due to the overlaps between the views [Huz+05]. Consistency is a general
goal to be obtained while building the models. In particular, during system (and model) evolution
it is crucial to maintain the consistency between different behaviour models. As Spanoudakis and
Zisman [SZ01] emphasized, there are severe negative effects of model inconsistencies that may
delay and, therefore, increase the cost of the system development process, jeopardize properties
related to the quality of the system, and make it more difficult to maintain the system [SZ01].
These negative effects can be multiplied manifoldly, especially in the context of developing modern
large scale software systems that are far more complex and might consist of numerous models
and interconnected subsystems (e.g., cloud-based systems, Internet of Things systems, networks of
sensors based systems, or astrophysical systems) [Got08; AIM10; Som+12].

Several techniques and approaches have been proposed in the existing literature to support be-
havioural model consistency checking. There are only a few secondary studies in collecting and
analysing evidence regarding the research of model consistency checking and management [SZ01;

19
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Huz+05; Usm+08; LMT09]. The survey of Spanoudakis and Zisman [SZ01] presents a broad view
and discusses open research issues. Among of those secondary studies, only the SLR conducted by
Lucas et al. [LMT09] has systematically investigated and provided insights regarding consistency
concepts, proposals, problems, supported models and the maintainability of consistency manage-
ment approaches, but only for UML models in the timespan from 2001 to 2007.

We note that the aforementioned studies, except the survey of Spanoudakis and Zisman [SZ01],
mainly focus on UML based modelling and development. They aim to cover broadly both struc-
tural and behavioural consistency checking of software artefacts. Although UML is widely used
in academia and industry, there are still a considerable number of non-UML modelling and de-
velopment methods, for instance, in the domains of workflow and business process management,
embedded and real-time systems, and service-oriented systems, to name but a few. Considering
only UML-based methods and techniques can likely lead to bias against non-UML approaches.
Thus, we decided to conduct a systematic literature review of consistency checking with a broader
scope and, therefore, research objectives. Our study strives for investigating consistency checking
beyond the domain of UML-based software development. As checking of structural aspects has
been extensively reviewed [SZ01; Huz+05; Usm+08; LMT09], we opted to pay special attention
to the behavioural aspects of software system modelling. We planned to carry out the SLR at a
finer granularity, for instance, we studied in-depth the degrees of automation support, inconsis-
tency handling, tool support, evaluation, and evidence of application in industry settings (these
aspects are not yet considered or only in limited form in the previous studies). Chen and Ali
Babar [CA11] emphasized that these aspects are important as they indicate the practical impacts
of the research outcomes to both science and industrial practices. Nevertheless, we adopted and
extended some fundamental concepts and categories of consistency checking and management that
have been proposed in these studies.

The chapter is organized as follows: Section 2.2 explains the systematic literature review process
used in this review. Section 2.3 discusses the results of SLR in relation to the addressed research
questions. Section 2.4 presents the discussion on the results of our SLR. Finally, Section 2.5
concludes the chapter with main findings and potential future research directions.

2.2 Systematic Literature Review Process

An SLR provides a key instrument for identifying, evaluating, and interpreting all existing research
related to a particular research question, phenomenon of interest or topic area [KBB15; KC07].
SLRs are a form of secondary study, while individual studies that contribute to the SLR are
considered primary studies. The process of conducting an SLR must be explicitly defined and
well executed. To facilitate the planning and execution of this SLR, we leverage the guidelines
performing SLRs in software engineering recommended in [KC07] with adjustments recommended
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in [KB13; KBB15]. A clear description of the phases for conducting the review process will be
presented in this section.

1. Planning the review: The goal of this phase is to define the research questions and methods
for developing a review protocol (see Section 2.2.1),

2. Conducting the review: In this phase, the review protocol defined in the previous phase will
be enacted (see Section 2.2.2),

3. Reporting the review: In this phase, the results of the review are documented, validated, and
reported (see Sections 2.3 and 2.4).

The aforementioned phases are not done sequentially at once but rather in an iterative manner
with feedback loops. In particular, many activities are created during the protocol development
phase and should be refined when execution of the review takes place. For example, search terms,
inclusion criteria, and exclusion criteria can be refined during the course of the review. The protocol
provides details of the plan for the review, such as specifying the search process to be followed and
the conditions to apply when selecting relevant primary studies.

2.2.1 Planning the Review

The first phase for undertaking an SLR is related to specifying pre-review activities for conducting
the SLR. The planning phase includes identification of the reasons for carrying out the systematic
review, specifying the research questions, defining the search strategy, and establishing the inclusion
and exclusion criteria.

Need for the Literature Review There are several reasons for undertaking this systematic
review. The main objective of this SLR is to systematically select and review the published
literature with regard to behavioural model consistency and summarise all existing practices and
information in a well-defined and unbiased manner including problems, limitation, future trends,
and possible opportunities within the context of software behaviour model consistency.

This SLR aims at identifying the current state-of-the-art of consistency checking of software be-
haviour models not only in the field of UML based modelling but also in various other domains. As
mentioned above, the existing reviews merely covered UML models. Hence, no comprehensive sys-
tematic review in the area of software behaviour models consistency checking has been previously
published. Our study also aims at a finer level of granularity with regard to automation support,
inconsistency handling, tool support, evaluation, and evidence of application in industry settings
(which have not yet been well considered in the previous studies) as these aspects indicate the
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practical impacts of the research outcomes to both science and industrial practices [CA11]. The
perspective taken in this study is both of practitioners and researchers working on behavioural
model consistency checking to provide them up-to-date state-of-the-art research and therefore
guide them to identify relevant studies that suit their own needs. Furthermore, we aim to appraise
evidence of research on consistency checking of software behaviour models as well as to identify
challenges and open problems that may provide insights for further investigations.

Research Questions Defining the research questions is one of the most important activities of
any systematic review because they guide the selection of primary studies and data extraction. For
this purpose, we leverage the Goal-Question-Metric (GQM) approach [BW84], which is a systematic
method for organizing measurement programs. The GQM model starts with specifying the certain
goal (i.e., purpose, object, issue, and viewpoint). Then, the goal is refined into several questions,
each question is then refined into metrics [BW84]. By using GQM, a goal for conducting the SLR
is defined. The goal is refined into several research questions, and, subsequently, these questions
are refined into metrics that provide means to answer these questions. By providing the answers
of the questions, the data can be analysed to identify whether the goals are achieved or not. The
goal for our SLR is:

Purpose Understand and characterize ...

Issue ... the consistency checking ...

Object ... of behavioural models used in software development ...

Viewpoint ... from a researcher’s and engineer’s viewpoint.

Based on the aforementioned goal, we derive the following research questions.

– Q1: How did research in consistency checking of software behavioural models develop over time?

– Q2: What are the methods, languages, or techniques used in each of the primary studies? This
research question is refined into following research questions:

– Q2.1: What types of models have been studied?

– Q2.2: What kinds of consistency problems have been addressed?

– Q2.3: What consistency checking techniques have been used?

– Q2.4: What inconsistency handling techniques have been proposed?

– Q2.5: What levels of automation have been supported?

– Q2.6: What types of study and evaluation have been conducted?

– Q3: What is the potential practical impact of the primary studies?
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– Q4: What are the limitations of the existing methods?

Q1 and Q2 aim at describing the state-of-the-art of research on consistency checking of software
behavioural models. The expected outcome will be a comprehensive view of behavioural model
consistency checking in various dimensions. This allows us to categorize the state-of-the-art in
consistency checking with respect to the behavioural models. Q3 is proposed for learning about
the practical impact of the existing methods in academia and industry. It aims to provide both
researchers and practitioners with evidence about what methods could be used in practice and
to which degree. A lack of evidence or poor evidence could highlight the need for more rigorous
studies and applications in real or quasi-real settings. Q4 is formulated to identify gaps in current
research that could yield insights regarding the issues or open problems in software behavioural
models consistency research and provide directions for further studies.

Dimension Search Keywords

Type of models behaviour diagram, behavior diagram, behavioural diagram, behavioral di-
agram, behaviour model, behavior model, behavioural model, behavioral
model, activity diagram, sequence diagram, state diagram, state machine,
statechart, collaboration diagram, communication diagram, interaction di-
agram, timing diagram, workflow, business process, process model, BPMN,
WSBPEL, EPC, finite state machine, FSM, state-transition, Stateflow

Type of studies containment/contain/containing, refine/refining/refinement, inconsisten-
cies/inconsistent/inconsistency, consistent/consistency/consistencies

Table 2.1: Literature Search Dimensions and Keywords

Search Strategy Our search strategy aims to find a comprehensive and unbiased collection of
primary studies from the literature related to the research questions. Therefore, we devised a search
strategy that maximizes the possibility to discover every relevant publications in a search result.
For the electronic search, we leveraged the major databases that are widely used in computer science
(CS) and software engineering (SE) research as reported in [ZABT11], which are the ACM Digital
Library1, the IEEE Explore Digital Library2, SpringerLink3, and ScienceDirect4. These are rich
and comprehensive databases containing bibliographic information of a plethora of publications
from all major publishers of the computing literature. We note that ISI Web of Science (WoS)5 is
also a large database of scientific studies. However, in the field of software engineering, WoS mainly
records publications published in premium journals and only a few conferences, whereas conferences
(and sometimes workshops and symposiums) are major outlets for publishing in CS and SE. Thus,
we mainly use WoS along with Google Scholar6 for cross-checking with the search results from the

1See http://dl.acm.org
2See http://ieeexplore.ieee.org
3See http://link.springer.com
4See http://www.sciencedirect.com
5See http://webofknowledge.com
6See http://scholar.google.com
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chosen sources and for performing some meta-analyses. Our search terms stem from the research
questions and can be categorized into two major dimensions, as shown in Table 2.1. On the one
hand, we aim at exploring the different behaviour models or diagrams considered in the primary
studies. On the other hand, we aim to discover relevant types of studies that have been performed
for checking different types of inconsistencies. In order to ensure a sufficient scope of searching, we
also consider different alternative words (e.g., behavior/behaviour/behavioural, model/diagram),
synonyms (e.g., model, diagram, workflow, process), and abbreviations for the search terms. Then
we used the boolean operator “OR” to join the alternate words and synonyms and the boolean
operator “AND” to form a sufficient search string.

Inclusion and Exclusion Criteria Inclusion and exclusion criteria are used to identify the
suitability of primary studies and making decisions for inclusion or exclusion of an article in the
SLR based on the addressed research questions. Our inclusion and exclusion criteria are shown in
Table 2.2.

2.2.2 Conducting the Review

The second phase of the SLR is to perform the search strategy defined in the planning stage. The
steps involved in conducting the review are primary studies selection, quality assessment, and data
extraction and synthesis.

Primary Studies Selection We illustrate the search process and the number of primary studies
identified at each stage in Figure 2.1. We strive for a comprehensive list of studies reported without
any additional constraints. That is, our search strategy dated back to late eighties since that time
period is often considered to foster consistency checking of software artefacts [SZ01]. We started
with the search in June 2015 and ended the search process at the end of July 2015 using the
search string described in Section 2.2.1. The initial search, however, is performed in 2013. After
consolidating the results, overall 1770 studies have been identified. In the initial search process,
we identified 1698 studies; whereas the snowballing process added 72 more studies.

Two researchers working independently have identified the relevant studies by quickly scanning
parts of each publication such as the title, abstract and keywords (and sometimes the conclusion in
case it was difficult to extract information from the abstract). The second selection stage is based
on the aforementioned inclusion and exclusion criteria. We note that there were a number of dupli-
cations due to different reasons. For instance, some authors published their journal articles which
were extended versions of previously published workshop and/or conference papers. Therefore,
we worked carefully to eliminate all potential duplications and retained only the most complete
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Type Description

Inclusion

1. Study is internal to software domain. We are only interested in consistency
checking for software systems.

2. Study is about consistency checking related to software behavioural models/-
diagrams.

3. Study comes from an acceptable source such as a peer-reviewed scientific jour-
nal, conference, symposium, or workshop.

4. Study reports issues, problems, or any type of experience concerning software
behavioural model consistency.

5. Study describes solid evidence on software behavioural model consistency
checking, for instance, by using rigorous analysis, experiments, case studies,
experience reports, field studies, and simulation.

Exclusion

1. Study is about hardware or other fields not directly related to software.

2. Study is not clearly related to at least one aspect of the specified research
questions.

3. Study reports only syntactic or structural consistency checking of models/di-
agrams.

4. Secondary literature reviews.

5. Study does not present sufficient technical details of consistency checking re-
lated to software behavioural models (e.g., they have a different focus (i.e.,
version control) and have insufficient detail).

6. Study did not undergo a peer-review process, such as non-reviewed journal,
magazine, or conference papers, master theses, books and doctoral disserta-
tions (in order to ensure a minimum level of quality).

7. Study is not in English.

8. Study is a shorter version of another study which appeared in a different source
(the longer version will be included).

Table 2.2: Inclusion and Exclusion Criteria



Chapter 2. Systematic Review of Software Behavioural Model Consistency Checking 26

(or recent) versions of the duplicates. After the inclusion and exclusion stage (including removing
duplications), there are 70 primary studies remained out of 1698 identified studies in initial search.

Figure 2.1: Overview of the Stages and Results of Our Search Process

We are aware that it is impossible to achieve a total set of publications using the aforementioned
automated searches. Therefore, we performed an additional snowballing process [Bud+11] (i.e.,
manually scanning and analysing the references and citations of these primary studies) to ensure
that our SLR also covered relevant follow-up works that might exist but have not been included in
the search. In particular, we collected references and related works from each of 70 primary studies
selected in the automated search phase. The snowballing search continued until no more relevant
studies were found. As a result, there are total 72 studies collected from the snowballing process.

Some of these studies did not appear in the results of the aforementioned automated searches. Some
others existed but were not found in the first search because either they have too short abstracts or
their titles or abstracts do not explicitly include the proposed search terms (but their contents and
contribution do). Twenty-six out of the 72 additional studies satisfied the inclusion criteria and
exclusion criteria, and therefore, are selected. Finally, we analysed the remaining primary studies
thoroughly to ensure that we had obtained the most relevant studies. This in-depth analysis results
in total 96 studies within the time period of 1999–2015 that are included for further consideration
in our SLR.

Quality Assessment The quality assessment criteria are used to determine the rigorousness
and credibility of the used research methods and the relevance of the studies. This assessment
is important to limit bias in conducting this SLR, to obtain insight into potential differences,
and to support the interpretation of the results. Three main quality assessment criteria have
been applied that are based on the assessment criteria introduced in [KC07; Kit+09]. We used a
checklist based scoring procedure to evaluate the quality of each selected study and to provide a
quantitative comparison between them. The scoring procedure has only three optional answers:
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“Yes = 1”, “Partly = 0.5”, or “No = 0”. Therefore, for a given study, its quality score is computed
by summing up the scores of the answers to the quality assessment questions.

– Relevance. Are all the collected studies relevant to the objective of this literature review? In
this SLR, the quality assessment is specifically focused on accumulating only those studies
that report adequate information to answer the targeted research questions. The quality as-
sessment has been performed according to our inclusion and exclusion criteria by the first two
researchers who have independently reviewed each study. In case of contradicting opinions,
the third researcher reviewed and resolved the issues together with the two researchers.

– Coverage. Is the literature research cover all relevant studies? In this SLR, the two researchers
have independently reviewed each study in a number of iterations to ensure that none of the
relevant studies are missed. To achieve this, the search is performed on the entire list of
relevant studies following with the screening of the titles, abstracts, keywords, and conclusion.
Moreover, a snowballing process is conducted to broaden the scope of selected studies. Finally,
in-depth analyses have been performed after accessing the full text.

– Validation. Do the collected studies contain adequate data and information? In this SLR,
it is analysed whether the primary studies contain the necessary information to answer the
targeted research questions. In particular, we devised a number of questions to assess the val-
idation of the relevant studies, such as: Is the technique/tool clearly defined? How rigorously
is the technique evaluated? Does the study add value to academia or industry?

Extracted data Relevant Q

Author(s) Study overview
Title Study overview
Year Study overview, Q1
Studied domains Study overview
Publication types and venues (c.f. Section 2.3.1) Study overview, Q1
Active research groups (c.f. Section 2.3.1) Study overview, Q1
Types of studied behavioural models/diagrams (c.f. Section 2.3.2) Q2.1
Consistency checking types (c.f. Section 2.3.3) Q2.2, Q4
Consistency checking techniques (c.f. Section 2.3.4) Q2.3, Q4
Formalisation methods (c.f. Section 2.3.4) Q2.3, Q4
Degree of inconsistency handling (c.f. Section 2.3.5) Q2.4, Q4
Degree of automation support (c.f. Section 2.3.6) Q2.5, Q4
Tool support for consistency checking (c.f. Section 2.3.6) Q2.5, Q3, Q4
Types of study and evaluation (c.f. Section 2.3.7) Q2.6, Q4
Citations (c.f. Section 2.3.8) Q3
Development tool support and integration (c.f. Section 2.3.8) Q3, Q4
Levels of application evidence (c.f. Section 2.3.8) Q3, Q4

Table 2.3: Data Collection
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Data Extraction and Data Synthesis All remaining 96 primary studies were analysed in-
depth and relevant data were extracted from these studies. In the data extraction step, we used
spreadsheets to record and correlate the extracted information. In this SLR, we concentrate on
extracting the following data items from each study. Table 2.3 shows the corresponding data
extracted from the set of selected studies. After the data extraction stage was completed, we
synthesized the resulting information such that they are suitable and sufficient for answering the
review questions. We will explain the rationale of extracting data and analyse the extracted data
in Section 2.3. For further details on the classification and encoding of every aspect related to
extract data, please refer to Appendix C.

2.3 Results

In this section, we summarise the main results obtained in the systematic review together with an
analysis of the collected data in order to determine the current research trends and identify existing
gaps and open problems of the current methods. Table A.1 in Appendix A shows the artefacts
studied by each approach, type of semantic domain and consistency checking technique supported
by existing literature, and the studied domains. For a list of these selected studies with full details,
please refer to Table B.1 in Appendix B.

2.3.1 Historical Development (Q1)

This section presents the result about the research, publication trend (i.e., time and venue) and
active research groups in the context of behavioural models consistency checking. Figure 2.2 shows
an overview of the distribution of selected studies per year grouped by publication types (e.g.,
journal, conference, workshop, symposium, etc.). We can see that consistency checking of software
behaviour models has drawn considerable attention and became active at the beginning of the
2000s. The number of studies reaches a peak around 2006-2008. Apart from that, the trend of
research in behavioural models consistency checking seems stable over time. We did not set a
lower boundary for the year of publication in our search process, yet the timeframe of identified
studies reflects also the timeframe of activeness and maturation of behavioural models consistency
checking field.

With regard to the active research groups within the area of behavioural models consistency check-
ing, we looked at the affiliation details of the selected primary studies. The assignment of con-
tributed studies of each active research group is based on the affiliations that is given in these
studies. Table 2.4 presents the active research groups (with at least three publications within
behavioural models consistency checking) along with the corresponding number of contributed
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Figure 2.2: Primary Studies per Year Grouped by Publishing Venues

studies. The results depict that the University of Paderborn, Germany and Nanjing University,
China are the leading ones in terms of the number of publications.

Affiliations Studies Total

University of Paderborn, Germany S16, S17, S26, S29, S30, S39, S55 7
Nanjing University, China S20, S31, S32, S47, S73, S86 6
University of Potsdam, Germany S72, S81, S82, S83, S84 5
Universität München, Germany S5, S37, S64, S92 4
Eindhoven University of Technology, The Netherlands S19, S77, S78, S82 4
University of Toronto, Canada S56, S62, S63 3
Lingnan University, Hong Kong S88, S89, S90 3

Table 2.4: Active Research Groups and Numbers of Studies

2.3.2 Targeted Software Models (Q2.1)

This subsection discusses different types of software models tackled in the current literature re-
garding behaviour model consistency. Table A.1 in the Appendix A shows the results of our SLR
regarding targeted software models (i.e., the behavioural models being investigated for consistency
checking). We depict in Figure 2.3 the distribution of different behavioural models considered
in the selected studies. The UML specification 1.x uses the term “statecharts” whilst the UML
specification 2.x switches to “state machines” [Gro11b, Sec. 15] instead. Please note that, UML
statecharts (or UML state machines) are based on or derived from Harel’s statecharts, which ex-
tends the classic notion of finite state machines with additional support for hierarchy, concurrency
and communication [Har87]. For this reason, we use the term “statecharts” in this chapter to
denote the aforementioned variants of Harel’s statecharts and “state machine” to explicitly denote
the classic definition of finite state machines. Some other types of behavioural models, such as live
sequence charts (LSCs) and Simulink Stateflow are also various extensions of Harel’s statecharts
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but target different modelling purposes and application domains. Thus, we opted to separate these
types of models as shown in Figure 2.3. We note that “process model” is an umbrella term for
BPMN, BPEL, and workflow models that are used for describing the behaviour of process-centric
information systems (PAIS). The category “Other” indicates a mix of various types of other be-
havioural models that do not belong to any of the aforementioned categories.

We can see that research on behavioural models consistency checking focuses on four major types
of behaviour models, which are statechart (36.59%), sequence diagrams (21.14%), process model
(14.63%), and activity diagrams (9.96%). Less attention (i.e., 1.63%) has been paid on collaboration
diagrams, LSCs, stateflow and labelled transition systems.

Figure 2.3: Types of Studied Software Behavioural Models

2.3.3 Types of Consistency Checking (Q2.2)

Another aspect to be considered in our SLR is the types of consistency checking tackled by the
selected publications. Static consistency checking techniques examine and analyse the targeted
behavioural models and/or their abstracted versions without running systems. Examples are model
checking techniques that systematically and exhaustively explore the states of software systems.
The advantage of static checking is that it can be performed in early phases of software modelling
and development where no executable products are produced yet. However, static checking can be
computationally expensive due to the cost of exhaustive analysis of large and complex models. For
instance, model checking often suffers from the problem of state explosion [Cla+11].
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In contrast, dynamic consistency checking aims to reveal inconsistencies while the system is run-
ning, either by code instrumentation or monitoring. Dynamic checking can achieve better compu-
tational performance as it only examines a small subset of system spaces (i.e., the actual execution
traces). However, dynamic checking techniques, on the one hand, require a running system. On
the other hand, in contrast to static checking, these techniques can not reveal all potential errors.

Apart from static and dynamic consistency checking, there are studies using symbolic execution
or simulation approaches to validate the consistency of models. These approaches often consider a
subset of input parameters and verify the response and consistency of the systems. As such, these
studies do not exactly belong to either of the aforementioned categories. Therefore, we placed
them in an additional category, namely, “symbolic execution/simulation” (SYM/SIM) to refer to
these kinds of studies.

Types Studies Total

Static S1–51, S53–S69, S71–S96 94
Dynamic S65 1
SYM/SIM S48, S50, S52, S70, S17, S96 6

Endogenous S15, S25, S37, S42, S44, S47, S55, S56, S61, S67–S69, S71, S74, S76, S79 16
Horizontal
(Exogenous)

S1–S3, S6–S10, S13–S20, S22–S28, S30, S32–S36, S38, S41, S42, S44–S48,
S50, S54, S56–S60, S62, S63, S65–S68, S70, S73, S77, S78, S84–S88, S90–
S96

66

Vertical
(Exogenous)

S4, S5, S11, S12, S15, S21, S29, S31, S39, S40, S43, S49, S51–S53, S56,
S58, S64, S71, S72, S74, S75, S80–S83, S89

27

Table 2.5: Types of Consistency Checking

Table 2.5 depicts the distribution of consistency checking types in terms of static, dynamic, and
symbolic execution/simulation checking. “Static consistency checking” are addressed prominently
in 94 studies (93.07%) whilst “symbolic execution/simulation” is used in six studies (5.94%). Only
one study (0.99%) covers dynamic consistency checking. Note that the sum of the numbers of
studies on consistency checking types exceeds the total number of studies within a specific category,
because the same study could address more than one type of consistency. Four studies (4.17%)
out of a total of 96 use a combination of static+simulation consistency checking, whereas only one
study (1.04%) uses a combination of static+dynamic consistency checking.

Figure 2.4 presents a bubble-plot distributed over two dimensions regarding: year of publication
and consistency checking types. The results show that the majority of research attention has been
paid to the static consistency checking throughout the years. Only one study has been found on
dynamic consistency checking in the year 2009; however, the SYM/SIM consistency checking has
received more attention in the timeframe 2010-2013 but is still at a rather low level.

Based on the aforementioned statistics, we can see that the research on dynamic and simulation
consistency checking is much less than the research on static consistency checking. This is perhaps
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in accordance with Giannakopoulou and Havelund’s observation that dynamic checking often re-
quires special treatments ranging from extended semantics of temporal logics to monitoring and
analysis algorithms [GH01].

We also examined the existing methods from the perspective of distinguishing endogenous and
exogenous consistency checking. As mentioned in Chapter 1.1, endogenous consistency concentrates
on a single behavioural model whereas exogenous consistency targets various types of models. In
addition, exogenous consistency is further classified into vertical and horizontal consistency. Table
2.5 depicts the support of endogenous and exogenous (i.e., vertical and horizontal) consistency types
of the selected primary studies. We can see that exogenous consistency (85.32%) is addressed more
prominently than endogenous consistency (14.68%). Regarding exogenous consistency, we found
that 66 studies (60.55%) focus on horizontal consistencies whilst 27 studies (24.77%) investigate
vertical consistencies.

We found that seven of the studies (7.29%) out of 96 tackle the combination endoge-
nous+horizontal consistency and two of the studies (2.08%) endogenous+vertical. There
are two studies (2.08%) using the combination horizontal+vertical and one study (1.04%) uses
endogenous+horizontal+vertical.

Figure 2.4: Primary Studies per Year Grouped by Types of Consistency Checking

The year-wise distribution of endogenous and exogenous consistency checking types is shown in
Figure 2.4. We can see that much of research attention has been paid to the endogenous consistency
checking from 2007 to 2008. Apart from that, horizontal consistency has received more attention
from 2005 to 2009, while comparatively less attention has been given to the vertical consistency
checking.

As the complexity of the systems increases, the timing requirements become more and more strin-
gent, especially if the system’s reliability is a key concern. It is therefore necessary to investigate
the studies that support for time-related consistency checking. Considering the existing methods
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in terms of support for a notion of time during consistency checking, we propose a three-level
category of time support in consistency checking, which includes “1=Not considered”, “2=Implicit
using of underlying timing model or rules”, and “3=Explicit timing model and analysis”7. The
first level refers to studies that do not consider time during consistency checking. The second and
third level refer to studies that consider implicit usage of an underlying time model and an explicit
timing model and analysis (i.e., using explicit timed models or real-time constraints), respectively.

Level Studies Total

1 S1–S5, S7, S10–S17, S19, S23–S29, S33, S37, S40, S41, S43, S45, S46, S48, S49,
S51–S56, S58, S60–S68, S70–S72, S74–S94, S96

72

2 S6, S18, S22, S30, S32, S34, S39, S47, S50, S57, S73 11
3 S8, S9, S20, S21, S31, S35, S36, S38, S42, S44, S59, S69, S95 13

Table 2.6: Support for the Notion of Time in Consistency Checking

Table 2.6 presents the result of our SLR regarding the notion of time in consistency checking. We
found that a majority of the existing studies do not consider support for time, i.e., 72 studies
(75.00%) out of a total of 96. Only 11 studies (11.46%) support the second level “2=Implicit using
of underlying timing model or rules”, whereas, 13 studies (13.54%) explicitly address timed models
and real-time constraints. Naturally, these 13 studies stem from the domain of embedded and
real-time systems where time critical conditions are often the highest priority.

2.3.4 Consistency Checking Techniques (Q2.3)

This section discusses the techniques used for checking the consistencies of software behavioural
models. In particular, we have explored two major aspects of consistency checking techniques
including the semantic domains (and correspondingly formal paradigms) employed by existing
methods for formalizing the input models and constraints as well as the techniques (e.g., model
checking, logical inference, theorem proving, etc.) that are used for performing consistency check-
ing.

The descriptive results of investigating the semantic domain used by each approach are shown in
Table A.1 of Appendix A. A semantic domain, when appropriately employed, can help reduce the
ambiguity in modelling behaviour of software systems with precise mathematical terms [Eng+01].
In addition, grounding on a solid semantic domain enables the use of several model checkers and
theorem provers for consistency checking. We adopt the classification of semantic domains into the
following formal paradigms as proposed by Habrias and Frappier [HF06].

– State transition: The description defines the transition relation on a set of states.
7Please refer to Table C.1 in the Appendix C for further details of timing support scales
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– Algebra: The description specifies the set of operations and their relations. An event is
denoted by a function (also known as an operation). The behaviour of functions is specified
by a set of equations (axioms) that describes how these functions are related. A special form
of algebra, namely, process algebra, in which operations are applied to elementary processes
and events, describes how events may occur.

– Logic: The behaviour of functions is specified by a set of equations (axioms) that describes
how these functions are related [LMT09].

– Other: The formal semantic domains that do not exactly belong to either of the aforemen-
tioned definitions are included in this particular category.

Semantic Domain Studies Total

State Transitions S2–S6, S8–S14, S16, S18, S20–S25, S27, S28, S30–S34, S36–S39,
S43–S48, S50, S51, S53–S57, S60, S63–S66, S68, S69, S71–S74,
S76–S79, S82–S84, S86, S87, S90, S91, S93, S94, S95, S97

69

Logic S4, S11, S13, S18, S19, S21–S23, S26, S32, S34, S39, S42, S44,
S45, S47, S50, S54, S57, S61, S67, S79, S84, S92–S94

26

Process Algebra S1, S8, S15, S29, S35, S40, S41, S52, S58, S59, S62, S80, S85,
S87–S89, S96

17

Others S7, S17, S26, S49, S52, S70, S72, S75, S81 9

Table 2.7: Semantic Domains

Table 2.7 presents the studies that are classified according to the aforementioned semantic domains.
57.02% of the studies (i.e., 69 out of 121 studies) are based on state transitions. 17 studies (14.05%)
use process algebra as the semantic domain. 26 studies (21.49%) leverage different kinds of logics
as their semantic domain. The category “Other” shown in Table 2.7 embraces all studies (9, i.e.,
7.44%) that use a semantic domain different from the three domains mentioned above. Please note
that a study may employ more than one semantic domain, and therefore, may be based on multiple
domains. 20 studies (20.83%) out of a total of 96 use the combination of state transitions+logics
as their semantic domains, while two studies (2.08%) use state transitions+process algebra. There
are three studies (i.e., 1.04%) using the combinations state transitions+other, logics+other and
process algebra+other.

Considering the consistency checking techniques of the existing studies, we adopted and extended
the four main categories proposed by Spanoudakis and Zisman [SZ01], which are: model checking
(i.e., using or combining with existing model checkers), specialized algorithm (i.e., algorithms de-
signed for analysing models to detect inconsistencies), logical inference (i.e., using formal inference
techniques to derive inconsistencies), and theorem proving (i.e., reasoning using theorem provers).

Analysing the selected primary studies we have found that a wide range of studies used specialized
algorithm to identify and detect the inconsistencies of software models, i.e., 51 studies (51.00%) out
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of 100. The main reason is that these approaches investigate different sets of inconsistency prob-
lems on particular domains and, therefore, often propose specific algorithms or heuristics for the
particular contexts being studied. About 41 studies (41.00%) use model checking techniques given
the existence of several model checkers such as NuSMV8, SPIN9, FDR10, UPPAAL11, GROOVE12,
and LSTA13, to name but a few.

Technique(s) Studies Total

Model Checking S1, S4, S8, S9, S11, S13–S16, S18, S22, S23, S29, S32, S33, S34, S36,
S39, S44–S47, S50, S53, S54, S57–S59, S63, S70, S78, S84, S85, S87,
S88, S90–S94, S96

41

Specialized
Algorithm

S2, S4–S7, S11, S12, S17, S20, S21, S24–S28, S30, S31, S35, S37, S38,
S40, S41, S43, S44, S48, S49, S51, S52, S55, S60, S62, S64, S65, S66,
S68, S69, S71–S77, S79, S80–S83, S86, S89, S95

51

Logic Inference S10, S19, S42, S61, S67 5
Theorem Proving S3, S56, S67 3

Table 2.8: Consistency Checking Techniques

We note that, even though a reasonable number of studies (21.49%) are based on the logic semantic
domain as mentioned above, logic inference techniques are used only in five studies for identifying
inconsistencies or checking consistency of software models (5.00%). The use of theorem proving
techniques is even less frequent, they are used only in three studies (3.00%). These results partially
explains the emergence of model checking techniques backed by powerful model checkers [CGP99].

Nonetheless, model checking techniques cannot thoroughly cover every aspect of consistency prob-
lems and may suffer from the problem of state explosion [Cla+11]. This could explain why a
majority of the existing methods need to develop specialized algorithms for particular purposes.
The summary of consistency checking techniques is shown in Table 2.8. Please note that, the sum
of the numbers of studies on a technique category exceeds the total number of studies, because
some studies used more than one technique. Two studies (2.08%) out of a total of 96 use the com-
bination model checking+specialized algorithm to identify the inconsistencies of software models,
while one study (1.04%) uses the combination specialized algorithm+theorem proving, and one
study (1.04%) uses the combination logic inference+theorem proving techniques.

2.3.5 Inconsistency Handling (Q2.4)

Detecting behavioural inconsistencies of software systems is important but still far from complete.
Handling inconsistencies has been considered a central task in consistency management [LLD98;

8See http://nusmv.fbk.eu
9See http://spinroot.com

10See https://www.cs.ox.ac.uk/projects/fdr
11See http://www.uppaal.org
12See http://groove.cs.utwente.nl
13See http://www.doc.ic.ac.uk/ltsa



Chapter 2. Systematic Review of Software Behavioural Model Consistency Checking 36

SZ01]. Handling of inconsistencies addresses how to deal with any inconsistencies and analysing
the impacts and consequences of particular methods of dealing with inconsistencies [SZ01]. We
derive a scale from 1–5 for different degrees of handling with inconsistencies based on the set of
activities proposed by Spanoudakis and Zisman [SZ01]:

– 1. Not mentioned / not considered

– 2. Systematic inconsistency diagnosis

– 3. Identifying handling actions

– 4. Evaluating costs and risks

– 5. Automated action selection and execution

Level Studies Total

1 S2–S10, S13, S14, S16, S17, S20–S27, S29–S34, S36–S38, S40–S44, S46–S59, S63–
S70, S72–S78, S80–S82, S85–S96

78

2 S1, S11, S12, S15, S18, S19, S22, S28, S35, S39, S45, S60–S62, S71, S79, S83, S84 18
3–5 – 0

Table 2.9: Degree of Inconsistency Handling

In summary, inconsistencies can be handled by different activities including systematically diag-
nosing inconsistencies and their causes, identifying necessary actions for resolving inconsistencies,
evaluating costs and risks, and automatically selecting and execution the corresponding actions.

Table 2.9 shows our analysis results for inconsistency handling. We have found that most of the
existing approaches provide little or even no support for this important aspect. In particular, a
large number of studies (78, i.e., 81.25%) do not consider any sort of inconsistency handling. Only
18 studies (18.75%) support certain forms of inconsistency diagnosis, for instance, analysing the
counterexamples or error traces back to the origins of the problems. Unfortunately, none of the
studies supports any higher levels of inconsistency handling (i.e, from 3–5).

2.3.6 Automation Support (Q2.5)

Some prior secondary studies such as Lucas et al. [LMT09] examined the support for automation in
model consistency checking but they propose only two levels “yes” (automated) and “no” (manual).
In fact, there exist some techniques where human intervention is partially necessary for specifying
models or consistency rules, and the rest can be automatically performed. Moreover, there are
different phases in consistency checking including specification, checking, and possibly handling
inconsistencies (as mentioned above). Therefore, first of all, we decided to refine the automation
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support into a three-level scale in order to cover the aforementioned cases: which are “1=Man-
ual”, “2=Semi-automated” and “3=Fully automated”14. Moreover, we investigate the automation
support in three main phases of consistency checking (i.e., specification, checking and handling
inconsistencies) as analysed above and assign the corresponding level for each primary study.

We noticed that the phase consistency checking, due to sound formalisation and well-defined check-
ing algorithms and/or techniques, can be performed automatically (i.e., reaching the level 3 “Fully-
automated”). Unfortunately, this is not the case for inconsistency handling. As only a few of the
existing approaches consider a limited form of inconsistency handling, which is the diagnosis of
the checking results, the level of automation supported by these approaches is 2 (i.e., “Semi-
automated”) because human intervention is necessary for investigating the yielded errors. For
these reasons, we do not present details for the two phases consistency checking and inconsistency
handing, but rather focus only on the specification phase.

Automation
Level

Studies Total

1 S3, S5, S10, S11, S12, S18, S19, S21, S22, S23, S26, S29, S35, S43, S44,
S46, S47, S48, S50, S54, S57, S59, S65–S67, S70, S77, S79, S93, S94

30

2 S1, S2, S4, S6, S7, S9, S13–S17, S24, S25, S27, S28, S30–S34, S36, S38,
S39–S42, S45, S49, S51–S53, S55, S56, S58, S60–S64, S68, S69, S71–S76,
S78, S80–S92, S95, S96

62

3 S8, S20, S37, S74 4

Table 2.10: Automation Support for Specification Phase

We present the distribution of the existing approaches in the literature with respect to the afore-
mentioned scale of automation support in the specification phase in Table 2.10. A considerable
number of studies (31.25%) falls into Level 1 (i.e., “Manual”) because they either assume the ex-
istence of formal logic constraints or require manual efforts in specifying the input consistency
constraints (e.g., rules specified in LTL/CTL etc.) or, sometimes, the input models. We note that
these manual tasks ask for considerable knowledge of the underlying formalisms and formal tech-
niques, and therefore, are often not easy to use for many software engineers. A larger number of
studies (64.58%) assume the existence of the input models but propose automated transformations
of these inputs into formal representations. For this reason, we consider them “semi-automated”
because strictly speaking the input models assumed by these approaches are often manually cre-
ated. Nonetheless, these are design models and created during the modelling and development of
software systems, anyway, and there is automated translation support. Only four studies (4.17%)
can be considered “fully-automated” as they encode consistency rules in the corresponding al-
gorithms or libraries and, therefore, do not require any manual effort in the specification phase.
However, the downside could be that the hard-coded consistency rules could lessen the extensibility
and generality, and therefore, the scope of application of these approaches.

14Please refer to Table C.3 in the Appendix C for further details of automation support levels
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Tool Support for Consistency Checking (Q2.5, Q3) Another important dimension is to
consider tool support provided by the existing approaches for consistency checking. We believe
that more or better tool support would showcase a proof of feasibility and attract the attention of
practitioners to the corresponding techniques. The lack of any sort of tool support (e.g., research
prototypes, demos, etc.) will hinder practitioners to use or at least explore the corresponding pro-
posed methods and techniques, and therefore, hinder the transfer of research results into industrial
practice.

We propose three levels of evaluation of tool support as shown in Table C.5: “1=Not mentioned/Not
considered”, “2=Only using existing tools/libraries”, and “3=Prototypes (includes using existing
tools/libraries)”15.

Level Studies Total

1 S2, S6, S11, S17, S24, S27, S38, S42, S64, S66, S68, S71, S73, S75, S81, S83 16
2 S3, S4, S9, S13, S15, S22, S23, S29, S31, S33, S40, S41, S43, S47, S50, S55–S59,

S69, S70, S74, S77, S78, S80, S85, S87–S91, S93, S95
34

3 S1, S5, S7, S8, S10, S12, S14, S16, S18–S21, S25, S26, S28, S30, S32, S34–S37,
S39, S44–S46, S48, S49, S51–S54, S60–S63, S65, S67, S72, S76, S79, S82, S84,
S86, S92, S94, S96

46

Table 2.11: Evidence of Tool Support for Consistency Checking

The distribution of levels of tool support found in the literature on software model consistency
checking is shown in Table 2.11. We did not find evidence of tool support for detecting and handling
inconsistencies in 16 studies (16.67%). 34 studies (35.42%) used existing tools and libraries to carry
out consistency checking, for instance, model checkers such as SPIN, (Nu)SMV, UPPAAL, FDR,
GROOVE, LSTA, and Maude or theorem provers such as SPASS and Z/Eves. Out of 96 there are
46 studies (47.92%) that provide specific tool support for checking consistency between software
models including the development of prototypes or tool-chains that combine the implementation
of various aspects such as model transformations, consistency checking algorithms, and/or existing
tools and libraries. Figure 2.5 shows the distribution of primary studies per year grouped by levels
of tool support. We can see that the trend of tool support for checking consistency by using existing
tools and libraries (i.e., level 2) has received more attention from 2005 to 2008, while comparatively
the developing prototypes or tool-chains (i.e., level 3) reached a peak in 2014.

2.3.7 Types of Study and Evaluation (Q2.6)

As a part of this SLR we investigated the nature of evidence presented in the selected primary
studies and analysed how an evaluation is performed and reported. The main motivation is that
different types of studies provide different strengths of evidence and evaluation. Practitioners

15Please refer to Table C.5 in the Appendix C for a full description of tool support levels
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Figure 2.5: Levels of Tool Support per Year Distribution

could take the strength of evidence and evaluation into consideration before adopting a specific
methodology and tool.

We adopted the classification of types of study and evaluation in six categories as proposed by Chen
and Ali Babar [CA11]. The six types of study and evaluation are Rigorous Analysis (RA), Case
Study (CS), Discussion (DC), Example (EX), Experience Report (ER), Field Study (FS), Lab-
oratory Experiment with Human Subjects (LH), Laboratory Experiment with Software Subjects
(LS), and Simulation (SI)16.

Types Studies Total

DC+EX S7, S16, S47, S50, S57 5
RA+DC S2, S13, S30, S31, S52 5
RA+DC+EX S8, S9, S15, S18–S20, S24, S25, S28, S32, S36–39, S41, S45, S46, S48,

S49, S53, S54, S58, S59, S61–S66, S74, S76, S79, S82, S87, S90
35

RA+DC+EX+LS S12, S22, S26, S35, S55, S72, S81, S83 8
RA+EX S1, S3, S4, S6, S10, S11, S14, S17, S21, S23, S27, S29, S33, S34,

S40, S42–S44, S51, S56, S60, S67, S68, S71, S73, S75, S77, S78, S80,
S84–S86, S88, S89, S91, S93–S96

39

RA+EX+ER S5, S69, S70, S92 4

Table 2.12: Types of Study and Evaluation

Analysing the data extracted from the selected studies, we see that a study may be a combination
of different types. For instance, S8 presents and discusses formal foundations, consistency prob-
lems and gives concrete examples in BPEL. Thus, we clustered the data and divided them into
appropriate groups based on the combination employed by each study. Table 2.12 shows the results
of data analysis and clustering.

16Please refer to Table C.7 in the Appendix C for a full description of these categories
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We observed that a great amount of the studies (36.46%) use the combinations RA+DC+EX
or RA+EX (40.63%). There are eight studies (8.33%) using the combination RA+DC+EX+LS
that, in addition to what is done in RA+DC+EX, also perform some sorts of evaluation with
software models, for instance, rigorously estimating the scalability, correctness, algorithm precision
or comparing with other approaches. Only a few studies (4.17%) report RA+EX+ER, experiences
in some academic settings or application scenarios derived from industry practice. Unfortunately,
none of the existing studies presents clear evidence using any sort of empirical study or validation.

Along with the aforementioned investigation on types of study and evaluation, we also assessed
the level of rigour of the reported evaluations. Rigor is concerned with assessing how an evaluation
is performed and reported [Gal+14]. In particular, we examined how well the selected studies
report their evaluations with respect to three dimensions: the context of the evaluations (C), the
design of the studies conducted in the evaluation (S), and the validity discussion (V ). We leverage
the score for each rigour dimension as proposed in [IG11] that comprises three levels “1=Weak”,
“2=Medium”, and “3=Strong”17. Figure 2.6 depicts an overview of the results regarding the
aforementioned dimensions of the evaluation’s rigour

Figure 2.6: Sum of Rigour Scores per Dimension

We note that the rigour measure proposed above could be more appropriate for empirical studies.
Applying the rigour measure uncovered that many studies mentioned dimensions related to rigour
but do not describe these fully. Nonetheless, we consider this measure in this chapter in order
to show the lack of rigorous evaluations and provide some insights which researchers can consider
when designing and conducting their studies to achieve a reasonable degree of quality.

The results shown in Figure 2.6 indicate that very few studies have been scored the strongest level
in each dimension. The evidence regarding describing the study design and the validity discussions
is very poor. It also reflects our analysis on the type of study and evaluation where only a small
number of studies perform certain rigorous experiments with software models.

17Please refer to Table C.8 in the Appendix C for a full description of the rigour levels
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To illustrate the distribution of rigour measures, we considered a collective rigour metrics for each
study, namely, R, which is calculated as R = C + S + V , following the suggestions of [IG11]
and [Gal+14]. Thus, the value of R for each study is an integer in the range of 3–9. We show the
distribution of the collective rigour metrics R in Figure 2.7.

Figure 2.7: Distribution of the Collective Rigour Metrics R

In accordance with our prior observation, the collective scores of the rigour metrics of the selected
studies are distributed significantly towards the lower side of 3 (40 studies), 4 (32 studies), and 5
(19 studies), respectively. None of these studies could achieve the collective score of 7 or 8. The
only study that reaches the best collective score is S26 in which the authors present rigorously and
thoroughly all three dimensions of evaluation rigour Figure 2.8 presents the temporal distribution
of the rigour metrics for each study. We can see that the trend of rigour evaluations of studies
increased in the last ten years, but overall the rigour is still rather low.

Figure 2.8: Trend of Rigour Dimension per Year
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2.3.8 Practical Impact (Q3)

Analysing the practical impact, or in other words, the effectiveness, of the existing methods for
consistency checking of software behavioural models is a very challenging task because there is no
consensus on an ultimate measurement or metrics for this aspect, to the best of our knowledge.
After studying other relevant surveys in the field of computer science and software engineering,
such as [Alv+10; Gal+14], to name but a few, we propose to examine the practical impact of
the existing methods from different dimensions, including citations (how a study influences the
others), CASE/IDE tool integration (support in daily working environment of practitioners), tool
support (feasibility study: mentioned in Section 2.3.6), degree of evidence, and the applicability of
the proposed techniques in industrial settings.

Citations Table 2.13 presents an overview of the top 10 of most highly cited studies along with
the year of publishing, the total number of citations, and the average number of citations per
year. The numbers of citations are obtained from Google Scholar. We note that these numbers are
roughly estimated because Google Scholar may mistakenly count the citations of different authors
who have similar or the same names. Also please note that these numbers can change over time. We
sampled two times on Aug 9, 2015 and Aug 19, 2015 and noticed slight differences. The presented
numbers are obtained as of date Aug 19, 2015. Nonetheless, the average of citations per year is
quite stable as the change margins are small.

SID Author(s) Year Total Citations Avg. Citations per Year

S6 Bernardi et al. 2002 322 25
S63 Schäfer et al. 2001 247 18
S55 Nejati et al. 2007 243 30
S27 Harel et al. 2002 196 15
S36 Knapp et al. 2002 188 14
S15 Engels et al. 2001 169 12
S76 Van der Aalst et al. 2008 152 22
S18 Eshuis & Wieringa 2004 137 12
S28 Hausmann et al. 2002 127 10
S83 Weidlich et al. 2011 124 31

Table 2.13: Top 10 Most Cited Studies

Because each of the studies in the top 10 is highly and frequently cited, we can draw the conclusion
that at least the studies in the top 10 have substantial influence on other researchers. Unfortunately,
we could not find sufficient evidence to conclude on the correlation between the citations and other
aspects such as the used semantic domains, methods, techniques, or application domains.
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Development Tool Support and Integration The second dimension of the practical impact
that should be considered is the integration of the proposed techniques into the working environ-
ments of practitioners (such as software analysts, software architects, software developers), i.e.,
development tool support. Here, specifically, CASE18 tools and IDEs19 are relevant. CASE/IDE
integration could foster the practical use of the consistency checking techniques. It could help
users of the development tools to obtain feedbacks and support them in handling inconsistencies
detected in the models. Researchers could benefit by receiving improvement suggestions from the
practitioners who are using the corresponding CASE/IDE tools in industrial settings.

We propose a three-level scale to assess the evidence of IDEs/CASE integration that comprises
“1=Not mentioned/Not considered”, “2=Proposed/planned integration”, and “3=Fully imple-
mented integration”20. Table 2.14 shows the analysis result of CASE/IDE integration found in
the selected studies. The weakest scale is applied for studies that do not consider or mention at all
about the integration with any CASE/IDE. There are 80 studies (83.33%) that fall into this level.
On the other end of the spectrum, there are only five studies (5.21%) that develop fully working
integration with existing CASE/IDE tools, i.e., reaching the strongest level. The rest of the stud-
ies (11.46%) (i.e., 11 out of total 96 studies) mainly propose plans for CASE/IDE integration or
partially implement the integration.

Level Studies Total

1 S2–S4, S6, S7, S9–S15, S17–S23, S26, S27, S29–S33, S35–S43, S45–S47, S49–S52,
S55–S59, S61–S68, S71–S78, S80–S96

80

2 S5, S24, S28, S34, S48, S53, S54, S60, S69, S70, S79 11
3 S1, S8, S16, S25, S44 5

Table 2.14: CASE/IDE Support and/or Integration

Application in Industrial Settings For many research works in the field of software engi-
neering, it is significant to apply and evaluate newly proposed or improved techniques in a real
industrial settings. As Ivarsson and Gorschek [IG11] emphasize, research methods and techniques
need to provide tangible evidence of the advantages of using them in order to impact industry.
Ivarsson and Gorschek [IG11] also suggest a step-wise validation to enable researchers to test and
evaluate in real settings with real users and applications (i.e., empirical evidence).

Hence, in our study we examined the evidence of any industrial settings presented in the chosen
primary studies. The types of evidence could be critical for researchers to identify new topics
for empirical studies, and for practitioners to assess the maturity of a particular method or tool.
Some of the approaches use (small-scale) industrial scenarios to illustrate the applicability of their

18CASE: Computer-Aided/Assisted Software Engineering
19IDE: Integrated Development Environment
20Please refer to Table C.4 in the Appendix C for a full description of CASE/IDE support/integration levels
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techniques whilst others evaluate their approaches by using small examples or cases (i.e., providing
the readers with a rough idea of how to apply and use the proposed approaches). We adopted the
6-level scale of evidence as proposed by Alves et al. [Alv+10]21:

– 1. No evidence provided.

– 2. Evidence obtained from demonstration or working out toy examples.

– 3. Evidence obtained from expert opinions or observations.

– 4. Evidence obtained from academic studies.

– 5. Evidence obtained from industrial studies.

– 6. Evidence obtained from industrial practice.

Level Studies Total

1 – 0
2 S2–S11, S13–S19, S21, S23–S31, S34, S36, S38, S40–S47, S49, S51, S53, S54,

S56–S58, S60, S62–S64, S66–S68, S71, S73–S80, S84–S96
73

3 S1, S12, S22, S32, S33, S39, S44, S48, S50, S59, S61, S72 12
4 – 0
5 S20, S35, S37, S52, S55, S65, S69, S70, S81, S82, S83 11
6 – 0

Table 2.15: Levels of Empirical Evidence

The data of our investigation and analysis shows that 73 out of the total 96 studies (76.04%) are
tested and evaluated using toy examples. 12 studies (12.50%) use some scenarios obtained from
expert opinion or observation. Only 11 studies (11.46%) show a higher level of evidence based on
industrial studies. None of the studies support the Levels 4 and 6. Table 2.15 shows the distribution
of empirical evidence found in the literature on software model consistency checking. We note that
there are no studies of Level 1 either. After closer analysis, we found that this is mainly due to
the fact that studies falling into this level have been excluded because they are not presented at
an acceptable quality level (c.f. Section 2.2.2).

We map roughly the six corresponding levels of evidence mentioned above into two levels that
indicate whether the proposed methods/techniques are tried out in any industrial settings. Levels
4–6 of evidence can be considered being applied or tested in industrial settings whilst Levels 1-3
are not. We summarised the data according to this two-level scale, shown in Figure 2.9. Only 11
studies have validated or evaluated their proposed techniques and tools in any sort of industrial
settings. The majority of studies (85, i.e., 88.54%) did not (but rather using other means such as

21Please refer to Table C.6 in the Appendix C for a full description of evidence levels
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Figure 2.9: Studies Tried in Industrial Settings

rigorous analysis, discussion, and toy examples). We also observed that only one study (S70) out
of 11 studies (11.46%) was evaluated in industrial settings in the year 2001 while all the others
were evaluated between 2007 and 2015. That is, while the level industrial evidence seems rather
weak in the total set of studies, it has clearly increased in recent years.

2.4 Discussions

In this section, we will discuss the limitations of existing methods to answer the remaining Research
Question Q4 (c.f. Section 2.2.1) and discuss the validity of our study.

2.4.1 Limitations of the Existing Methods

This SLR is an attempt to give a comprehensive view of the state-of-the-art of research in software
behavioural model consistency checking. Based on our analysis and interpretation presented in
this chapter, we observe a number of limitations and open problems in the existing methods that
could potentially point into interesting further research directions.

Unbalanced Focus of Consistency Checking Problems There is a predominance of primary
studies concentrating on static consistency checking and little attention has been paid on dynamic
checking or consistency checking by means of symbolic execution or simulation. The huge advantage
of static checking is to identify many inconsistencies without the need of and/or connection to any
running systems. However, static checking also has considerable limitations like suffering from the
state explosion problem [Cla+11] or being computationally expensive. A large number of static
checking based approaches use model checkers, which only support finite and discrete data types
(e.g., boolean, integer, vector) and provide limited or even no support for continuous data types
(e.g., floating-point numbers) or strings.
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Many distributed software systems are built upon highly flexibly and dynamic architectures like
event-driven architectures [MFP06]. Besides, there is also an emerging trend in software develop-
ment on supporting higher degrees of flexibility [Aal13; GVC15] or on-the-fly adaptations [ME+13]
at runtime. Static consistency checking of these types of flexible systems might not be solely enough
as several unanticipated changes can happen during system execution. Symbolic execution or sim-
ulation can help to partially examine these dynamic changes, but ultimately, dynamic checking,
through either system instrumentation or monitoring, should be employed for catching any poten-
tial inconsistencies. In the context of exogenous consistency checking the result shows that vertical
consistency, has drawn much less research interest than horizontal consistency checking.

Similar observations can be made (in a less severe manner) for the case of support for time-
related consistency checking. A rather small portion of the existing methods investigates time-
related inconsistencies, especially in the context of real-time constraints. With respect to the
niche fragment of the domain of embedded and real-time systems versus the remaining application
domains, we do not see this as critical nuisance.

Focus on Specific Model Types Besides consistency checking problems, we identified, research
on behavioural models consistency checking focuses on four major types of behaviour models,
which are statecharts, sequence diagrams, process models, and activity diagrams. Considerably
less attention has been paid on collaboration diagrams, LSCs, stateflow, and labelled transition
systems.

Lack of Consideration for Inconsistency Handling Spanoudakis and Zisman [SZ01] empha-
sized the vital role of inconsistency handling and suggested many aspects to consider for adequately
handling consistency issues. Improper or inadequate inconsistency handling could lead to severe
negative effects [SZ01] and could be one of the major obstacles to making significant practical
impact or to transferring the proposed methods and techniques to industry practice. Unfortu-
nately, we found limited evidence of inconsistency handling on diagnosing inconsistencies. Most
of the studies produce consistency checking outcomes in terms of formal representations such as
counterexamples [CGP99] or erroneous traces of states. However, this assumption should be recon-
sidered because most of the practitioners (e.g., software engineers) do not have sufficient knowledge
of the underlying formal methods to understand these outcomes. As a result, a considerable amount
of time and effort is consumed by the practitioners in order to handle the detected inconsisten-
cies. It would be more pragmatic to present the consistency checking outcomes in appropriate
forms of representation (which can be textual or graphical notations or visualization) with suitable
abstractions that practitioners can better comprehend and use to resolve the problems detected
in the models. Further important activities such as identifying corresponding handling actions,
estimating the costs and risks of handling inconsistencies, and eventually choosing and executing
handling actions need to be taken into account.
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Lack of Rigorous Studies, Evaluation, and Practical Impacts Lack of rigorous studies,
evaluation, and practical impacts reflect the quality of studies being conducted in the literature of
software behavioural model consistency checking. As we observed in Section 2.3.7, several primary
studies tend to focus on introducing new ideas and solutions to consistency checking problems but
fail to evaluate their contributions properly and show the validity of their approaches in larger
contexts. This issue is mainly due to less consideration of rigorous study design and validity
discussion. Moreover, our findings in Section 2.3.7 also show that many of the research results
have not been tried out in any sort of industrial settings. As a consequence, these results remain
pure academic contributions and exercises. This could be explained as academic results tend to be
context-specific, and thus, difficult to generalize to many industrial situations [Alv+10]. While the
average rigour of evaluations has increased in the last ten years, it is still at a very low level. The
strongest case found in this SLR is a study which has been thoroughly and rigorously designed
with test cases based on industry practice. We expect that the categories of types of study and
evaluation presented in Table C.7 and discussed in Section 2.3.7 could be considered for design
and evaluation of future studies to achieve more scientific and repeatable results that have greater
practical impact.

Another aspect that is crucial for gaining more practical impact is to provide adequate tool support
for consistency checking and/or integration with existing development tools (such as CASE/IDE
tools). It is noted that automation is usually achieved by integrating the techniques with existing
software development tools. The benefit of tool support for consistency checking and develop-
ment tool integration, which has been underlined above, is twofold. It provides intuitive means
for fostering the application of the implemented techniques in industrial settings, and it allows
for obtaining valuable feedbacks from practitioners who are able to use the tools for their daily
tasks. Unfortunately, only a small number of research results from the existing studies have been
incorporated in commercially used development tools. The rest is either focused on developing
research prototypes or using existing tools and libraries (e.g., model checkers, theorem provers).

2.4.2 Study Validity

The main threats to validity in this systematic review are potential bias in our search strategy, the
selection of the studies to be included, and data extraction. We aimed for an exhaustive list of high
quality primary studies. Therefore, we followed strictly the guidelines recommended in [KC07] and
took into account lessons learned in [Bre+07]. We have developed a clear protocol for searching
and choosing primary studies (c.f. Section 2.2) including defining research questions, inclusion and
exclusion criteria, and search strategy.

Despite a well-defined systematic procedure, we acknowledge that there may be missing primary
studies, for instance, due to the coverage and quality of the search engines and search portals that
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we used in our search. It is crucial with respect to the extent where relevant keywords are not
standardized or clearly defined [Bre+07]. That is, various studies may use the same terms with
different semantics. To deal with this kind of threat, we decided to carry out a “snowballing” pro-
cess [Bud+11] in which two researchers manually scanned and analysed the references and citations
of the primary studies retrieved from the automated search with the search engines/portals. The
main goal is to make sure that our SLR also covers follow-up works that might exist but have not
been included in the search. As we presented in Section 2.2.2 the snowballing process has caught
72 missing studies out of which 26 studies have been selected.

Bias in study selection may be due to different interpretation and understanding of the researchers
involved in the SLR and potential misalignment between our term and category definitions and
other definitions. To alleviate these problems, two researchers performed an in-depth analysis
and selection of primary studies with respect to the predefined inclusion and exclusion criteria and
clearly recorded the reasons for including or excluding. The third researcher reviewed independently
and provided corresponding judgments, especially for the cases of discrepancy or “in doubt”. Then
all researchers discussed and came to the final conclusion for each study.

During the data extraction phase, we confronted some difficulties, and thus, potential bias, in
extracting objective information from the selected primary studies. First of all, this issue could
be due to the subjective interpretation and/or poorly described report of relevant terms, methods,
techniques, evaluations, and so on. Another difficulty is that different studies could choose differ-
ent research and evaluation methods as mentioned in Section 2.3.7, and therefore, can compromise
the accuracy of data extraction. We tried to minimize this bias by, first of all, defining the ex-
traction strategy and date format with clear encoding descriptions in order to ensure consistent
extraction of relevant data. Furthermore, the extraction has been performed independently by two
researchers. Any sort of discrepancy from all involved researchers has been adequately recorded.
The third researcher then performed the final reviewing and cross-checking. After that, we con-
ducted discussion meetings to resolve any remaining divergence and disagreements. Nonetheless,
we acknowledge that there is still a certain possibility of misunderstanding regarding the way we
extracted data from the primary studies.

Regarding external validity concerned with generalizing our SLR’s findings, we aimed for a rep-
resentative set of primary studies with clear research scope and objectives. We set no constraints
on the time period such that our SLR can cover from the beginning of research on consistency
checking in the eighties to the year 2015. Nonetheless, our findings might not be the same when
being generalized to broader scopes or time periods. This could be due to the fact that our current
findings are mainly based on qualitative analysis. We could consider rigorous quantitative analysis
and inferences to enable the possibility of analytical and statistical generalizations but this is rather
beyond the scope of this SLR.
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2.5 Conclusions

This chapter addressed the Research Question RQ1 by means of an SLR in the area of software
behavioural consistency checking. We aimed to identify the current trend in this field and investi-
gate various dimensions ranging from used methods, languages, techniques to the practical impacts
of the identify studies. To achieve this, we have identified a total of 1770 studies by combining
automated searches and manual snowballing, out of which 96 have been studied in-depth accord-
ing to our predefined SLR protocol. Through in-depth analysis and interpretation of the collected
data, we obtain many interesting findings along with a number of gaps and open problems that
could provide insights for further investigation. In summary, there are promising accomplishments
thanks to sound formal foundations that have been employed in most of the existing studies for
consistency checking of software behavioural models. The results of our SLR show a real need for
improving the quality of study design and conducting evaluations to achieve solid and repeatable
scientific results that have greater impact in both academia and industry. The results also indicate
the need for inconsistency handling techniques, better tool support for consistency checking and/or
development tool integration.

This SLR confirmed that the containment relationship, addressed in this dissertation, has not been
studied in the literature so far. In the next chapter, we will introduce our containment checking
concepts and tool support, which can be classified in the model developed in this SLR as vertical
consistency checking of software behavioural models and inconsistency handling.





3
Model Checking Based Containment Checking of

UML Activity Diagrams

The approach presented in this chapter aims to verify whether a certain low-level activity diagram
is consistent with the specification provided in its high-level counterpart based on model checking
techniques. We interpret the containment checking problem as a model checking problem, which has
not received special treatment in the literature so far. This problem addresses Research Question
RQ2. Furthermore, the chapter is based on a peer-reviewed workshop paper in the proceedings
of 11th International Workshop on Formal Engineering approaches to Software Components and
Architectures [MTZ14] and an article submitted to a peer-reviewed journal Science of Computer
Programming.

3.1 Introduction

During the modelling phase of a software system, behaviour models such as UML activity diagrams,
sequence diagrams, statecharts [Gro11b], Business Process Model and Notation (BPMN) [Gro11a],
and Event Driven Process Chain (EPC) [Sch02] are often used to describe how the system be-
haves. Because of the involvement of different stakeholders in constructing these models and their
independent evolution, inconsistencies might occur between the models at different levels of ab-
straction [SZ01]. This issue becomes extremely relevant for software development processes in
which different models are used to derive or generate the system’s implementations from its spec-
ifications in a stepwise manner. That is, in the long run, the inconsistencies might make the
implementations drift apart from the specifications. The inconsistencies that are detected at later
stages, when the system is already implemented or tested require huge amounts of time and effort
for correction, revision, and verification. Therefore, it is crucial to detect and fix the inconsis-
tencies at early phases of software development, and especially as soon as refined models deviate
from their abstract counterparts. This has led to a rich body of work for checking and managing
model consistency in the literature [SZ01; LMT09]. Of these existing approaches, only a few deal
with consistency checking of behavioural models for software systems [SZ01; LMT09], for instance,
checking behavioural models against non-behavioural models [TE00; EW01; Yeu04], or checking
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different types of behaviour models [Wan+05; SKM01; KMR02; LP05]. Nonetheless, there are
very few studies on checking the deviation of software behavioural models at different abstraction
levels.

This work investigates the problem of containment checking for software behaviour models instead
of aiming to solve more general consistency checking problems. Containment checking is a special
type of consistency checking that verifies whether the behaviour (or functions) described by the
low-level model encompasses those specified in the high-level counterpart. It improves the quality
and reduces the complexity of big and complex system by determining and resolving the devia-
tions between the low-level behaviour models and its high-level counterpart in the design phase.
However, an unsatisfied containment relationship could break the design rather than improve its
quality. The containment relationship mainly aims at unidirectional consistency because the low-
level behaviour models are often constructed by refining and extending the high-level model. To
date, however, none of the published studies has performed a comprehensive exploration of the
containment checking problem in software behaviour models.

A general technique employed by most of the existing consistency checking approaches in the liter-
ature (c.f. [SZ01]) is to describe the behaviour models under study in form of formal specifications
and derive consistency constraints that these specifications must satisfy. These approaches often
presume that formal specifications of the systems under consideration and consistency constraints
can be easily created. Unfortunately, this makes the approaches hard to apply in practice because
creating formal specifications and consistency constraints requires considerable knowledge of the
underlying formalisms and formal techniques [SKM01]. Moreover, this task is often accomplished
in a laborious and manual manner, which is also error-prone [LP05; SS00]. Besides that, the model
checking approach used in our work as a basic technique for realising containment checking is known
to be computationally expensive [Bur+92; CW96; CGP99], it is therefore necessary to investigate
the applicability and technical feasibility of the approach for realistically sized of models.

The approach presented in this chapter aims to address the aforementioned key shortcomings,
which can be summarised by the following fundamental research questions:

• Q1: Can we achieve formal specifications and descriptions for containment checking fully
automatically?

• Q2: Can we design a containment checking approach that offers an acceptable performance
for realistically sized input models?

We interpret the containment checking problem of software behaviour models as a model checking
problem. That is, the behaviour described in the high-level model can be considered as consistency
constraints that the execution of the corresponding low-level model must conform to. This way,
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the first research challenge involves two primary tasks: (T1) deriving formal specifications/consis-
tency constraints from the behaviour described by the high-level model; and (T2) deriving formal
descriptions from the corresponding low-level behaviour model. The model checkers will be fed
with the outcomes of these tasks to verify their satisfaction. A positive result yielded from the
model checker implies that the formal descriptions (resp. the behaviour of the low-level model)
satisfy the specification (resp. the behaviour of the high-level model), and vice versa.

Unlike existing model checking based techniques, our approach does not presume the presence
of specifications and descriptions. We aim at enabling the automated transformation of the in-
put behaviour models into the corresponding formal specifications and descriptions. This way,
our approach can help to alleviate the burden of manually encoding consistency constraints, and
therefore, increase productivity and avoid potential translation errors. Whilst Task T2 might be
efficiently achieved by adapting and extending existing approaches on transforming behaviour mod-
els to formal descriptions accepted by the model checkers such as those presented in [EW02; Esh06;
Lam07; Lam08], no existing techniques can be leveraged for accomplishing Task T1. We propose
an automated method for transforming a behaviour model into temporal logic based consistency
constraints and formal behaviour descriptions, respectively. In particular, Linear temporal logic
(LTL) [Pnu77] and the state based SMV language are used for formalising the input models, and
the NuSMV model checker [Cim+99] is used for verification. The behaviour models studied in this
chapter are UML 2 activity diagrams as they are widely used in both academia and industry for
modelling and analysing behaviours of software systems.

In order to address the second research question, we have applied our approach in scenarios from
four industrial case studies representing real systems from the banking and e-business domains.
Specifically, we investigated the performance of the proposed approach on these scenarios as well
as synthetic larger model to assess whether it supports the developers to verify the containment
relationship during their development tasks.

The contributions presented in this chapter are as follows. First, we devise an efficient method for
transforming the input behaviour models to formal specifications and descriptions. In particular,
the formalisation of activity diagrams is based on the explicit representation of the control nodes in
the formal models rather than implicit encoding. Second, this research covers a more comprehensive
set of modelling constructs used for describing software behaviour. Apart from the fundamental set
of modelling constructs, such as exception handlers, interruptible activity regions, parameterized
tasks, event actions, and loops, that are widely used for modelling complex circumstances in
software systems. Third, we applied our approach in scenarios from four industrial case studies
in order to evaluate the applicability and technical feasibility of our approach, and to measure its
performance in a typical developer’s working environment. Finally, we discuss the generalisation
of our approach including the applicability for other kinds of behaviour models, such as sequence
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diagrams, statecharts and business process models, as well as the possibility to realise our approach
for different formalisations and model checking techniques.

The rest of this chapter is organized as follows: Section 3.2 describes the approach for containment
checking based on model checking in detail. The scenario extracted from industrial case study is
described in depth to illustrate the proposed approach in Section 3.3. In Section 3.4, we present
performance evaluations of the approach using four scenarios from industrial case studies in order
to examine the feasibility and applicability of our technique in an industrial context. In Section 3.5,
we discuss various aspects and challenges of supporting containment checking. Section 3.6 discusses
the related work regarding behavioural consistency checking techniques in general and containment
checking in particular, and formal semantics of behavioural models. Finally, Section 3.7 summarises
the chapter.

3.2 Containment Checking Approach

Our study aims to address the problem of checking whether the behaviour (or functions) described
by the low-level model encompasses those specified in the high-level counterpart, in order to im-
prove the quality of software systems. That is, the “execution” of the low-level model must embrace
the “execution” prescribed in the high-level model. However, a containment violation could break
the system’s quality. By assuming that the low-level behaviour model can be represented in terms
of a formal description, we could achieve containment checking by verifying that the desired spec-
ifications encoded in the corresponding high-level model are satisfied by this formal description.

refines &
models

is refined to

refines

models

Figure 3.1: Overview of the Containment Checking Approach

An overview of our approach is shown in Figure 3.1. The main focus of our approach is represented
by the solid lines, while the relevant modelling and developing activities of the involved stakeholders
are highlighted by the dashed lines. The proposed containment checking approach consists of three
automated steps. First, the high-level behaviour model is transformed into formal consistency
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constraints (i.e., LTL formulas in this work). Then, the low-level behaviour model is mapped into
formal SMV descriptions. Finally, containment checking is performed on the generated constraints
and descriptions using the NuSMV model checker [Cla+96]. If the generated formal description
of the low-level model does not satisfy certain constraints generated from the high-level model,
then counterexamples are produced by the NuSMV model checker. In the subsequent sections, we
explain these steps in detail. The behaviour models considered in this chapter are UML activity
diagrams [Gro11b]. Please note that the opposite direction is not essential in containment checking
because the low-level behaviour models are often constructed by refining and enriching the high-
level model.

3.2.1 Step 1: Generating Consistency Constraints from the High-Level Model

The first step involves an automated transformation of high-level activity diagrams into formal
specifications. The main idea is to represent the diagram’s elements and their relationships in an
appropriate formalism such that the execution order of the activities will become the consistency
constraints for the corresponding low-level model in order to incorporate containment of behaviour
of activity diagrams. That is, given a certain execution path derived from the input high-level
activity diagram, we need to describe the temporal relationship of the involving elements (e.g.,
actions).

According to OMG UML 2 specification [Gro11b], an activity diagram contains different constructs
for expressing the behaviour of software systems. One of the biggest challenges is that the semantics
of UML 2 activity diagrams are informal and ambiguous, although it is based on token semantics
alike to those of Petri nets [Mur89], where the execution of one node affects the execution of another
through directed connections called flows. Thus, our proposed mapping of the constructs of UML
2 activity diagrams to LTL constraints (and formal SMV descriptions presented in the subsequent
section) can also be seen as one of few automated approaches in formalisation of UML 2 activity
diagrams for supporting model checking. Note that the containment of activity diagrams defines
rather loose temporal relationship. The new action(s) in the low-level model, for example, can be
inserted between two directly succeeding actions (serial insert), in parallel to one another using fork
and join (parallel insert), or with additional condition using decision and merge (conditional insert).
The creation of LTL formulas for containment or consistency checking is a very knowledge intensive
endeavour. Therefore, we perform the automated creation of the formal constraints by defining
LTL-based rules for formally representing constructs of activity diagrams based on containment
relationship. Then our approach can take an input UML activity diagram and automatically
transform it into corresponding LTL formulas using the LTL-based transformation rules.

The mapping of a UML activity diagram into LTL formulas and SMV descriptions (presented
in the subsequent section) are achieved using an extended version of the breadth-first search
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Algorithm 1 Mapping UML Activity Diagram A into LTL Formulas
1: procedure Translate(A)
2: Q ← ∅ � Q is the queue of non-visited nodes
3: V ← ∅ � V is the queue of visited nodes
4: Q ← Q ∪ get_initial_nodes(A) � we start with the initial nodes
5: for all n ∈ Q do
6: V ← V ∪ {n}
7: Q ← Q \ {n}
8: generate_ltl_code(n)
9: � for mapping of SMV descriptions we use generate_smv_code(n)

10: Noutgoings ← get_outgoing_nodes(n)
11: for all m ∈ Noutgoings do
12: if (m � V ) then
13: Q ← Q ∪ {m}
14: end if
15: end for
16: end for
17: end procedure

algorithm as shown in Algorithm 1. To facilitate the representation of an activity diagram in
LTL, we define a collection of helper functions to access information of an activity diagram,
namely, get_initial_nodes(), generate_ltl_code(), and get_outgoing_nodes(). The func-
tion get_initial_nodes(A) returns a set of Initial Nodes of the input UML activity diagram.
An initial node indicates the starting execution point of an activity diagram, and therefore, has no
incoming edges. Given a certain node n, its outgoing nodes can be achieved by using the function
get_outgoing_nodes(n). A node m is called “outgoing node” of n if there is a control flow going
from n to m. Thus, a set of outgoing nodes of n can be achieved by following all of its outgoing
edges.

The generate_ltl_code(n) function is responsible for generating LTL formulas for each construct
of a UML activity diagram. We illustrate the skeleton of the function generate_ltl_code(n) in
Algorithm 2. The pair of triple apostrophes (''') denotes the string templates used for gener-
ating code in the our implementation based on Eclipse Xtend framework1. A pair of guillemots
(« and ») is used to denote the parameterized placeholders that will be bound to and substi-
tuted with the actual values extracted from the input model elements by the Xtend engine. The
generate_ltl_code(n) function is not realised as a single function but rather a polymorphism of
multiple functions. That is, depending on the type of the input node n, a particular function for
generating LTL formulas for that node type will be invoked. The LTL-based transformation rules
for initial nodes and sequence of actions, and join nodes are presented in Algorithm 2. In particu-
lar, LTL formula for join node requires visited predecessors (incoming flows) that are joined using
the logical AND operator (“&”) and offered to a join node. The join node cannot execute until

1See https://eclipse.org/xtend
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all incoming flows have been received. Table 3.1 summarises the constructs of UML activity dia-
grams along with their informal descriptions extracted from the UML 2 specification [Gro11b] and
LTL-based transformation rules that constitutes the individual function generate_ltl_code(n).

Algorithm 2 Generating LTL Formulas for a Modelling Construct n of a UML Activity Diagram
1: procedure generate_ltl_formulas(n);
2: extracts node information;
3: binds input values and generates ltl formulas using the following templates:
4: for all n ∈ initial_node | n ∈ action do
5: if m ∈ Noutgoins then
6: '''
7: LTLSPEC G(«n» -> F «m»)
8: '''
9: end if

10: end for
11: for all n ∈ JoinNode ∧ i ∈ Nincomings do
12: if (i ≥ 0) ∧ V ← V ∪ {i} then
13: '''
14: LTLSPEC G((«i» & «i») -> F «n»)
15: '''
16: end if
17: end for
18: end procedure

The transformation rules presented in [MTZ14] were not yet sufficient to cover complex contain-
ment relations for composite control flows. In particular, transformation rules without the explicit
representation of the control nodes increase the complexity and size of LTL formulas. For instance,
if a decision node occurs in between two fork nodes then LTL formulas will be of a rather complex
and long form, like the following example: “G(a1 → F(a2 ∧ a2 ∧ (b1 xor (b2 ∧ b3))))”. In partic-
ular, this formula does not clarify the relationships among the elements of the activity diagram.
In this work, we extend and refine these transformation rules by introducing control nodes which
decrease the complexity and length of the LTL formulas and provide better understandability of
the relationships among the elements of the model. For instance, a Decision Node has two out-
going branches, we use the operator “xor” to describe the outgoing branches of a Decision Node.
However, this strategy cannot be effectively generalised for Decision Nodes that have more than
two outgoing control flows because the operator “xor” with n operands (n ≥ 3) is an odd function
which yields true not only when one of its operands is true but also when the odd numbers of the
operands are true [PH08]. Therefore, a Decision Node can be implemented using “xor” operator
or its equivalent but more complex form “(a ∧ ¬b) ∨ (¬a ∧ b)”.

Similar to the Decision Node, the “xor” operator is used to describe the incoming guard condition
of a Merge Node, but we implement it to its equivalent but more complex form. The LTL formula
for sequential order of actions is formalised as “(a1 → Fa2)” which describes that each time a1
is executed it is eventually followed by the execution of a2. The semantics of sequential order
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defines rather loose temporal relationship; particularly, in the low-level model new action(s) can
be inserted between two directly succeeding actions. If an action is enabled immediately after the
previous element terminates, the X operator is used, for instance, activity parameter nodes lead
to immediate execution of connected nodes. Please note that most of the formulas for different
constructs are surrounded by the G operator to express the meaning of all possible execution
scenarios.

UML Constructs Modeling Notation
LTL-Based Transformation
Rules

Sequencing of Actions: A set of ac-
tions (transitively) executed in sequential
order. For instance, the execution of a1
will trigger the execution of a2.

G (a1 -> F a2)

Fork Node: The execution of a Fork
Node leads to the parallel execution
of subsequent actions (a1...an) [Gro11b,
p. 387].

G (ForkNode -> F (a1 & ...
& an)) & G ((a1 & ... & an)
-> O ForkNode)

Join Node: The concurrent execution of
multiple actions (a1...an) leads to the ex-
ecution of a Join Node [Gro11b, p. 393].
Specifically, a Join Node is used to syn-
chronize incoming concurrent flows. The
semantics states that all actions have to
be completed before the execution of a
Join Node.

G ((a1 & ... & an) -> F
JoinNode)

Decision Node: The semantic repre-
sents the case in which the execution of
a Decision Node is spawn in two or more
branches, which branch is actually tra-
versed depends on the evaluation of the
guards on the outgoing edges [Gro11b,
p. 370].

G (DecisionNode -> F (a1 xor
... xor an))

or equivalently, but more complex
(DecisionNode -> F ((a1 &

! ... & ! an) | (! a1 & !...
& an)))

Merge Node: The execution of exclu-
sively one action among a set of alterna-
tive actions will lead to the execution of
a Merge Node [Gro11b, p. 398].

G (a1 xor ... xor an -> F
MergeNode) or equivalently, but
more complex G (((a1 & ! ...
& !an) | ... | (!a1 & !...

& an)) -> F MergeNode)

(continued on next page)
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UML Constructs Modeling Notation
LTL-Based Transformation
Rules

Send Signal Action: The Send Sig-
nal Action is enabled after the occurrence
of the action from which it takes inputs
and sends the signal to the target ob-
ject. [Gro11b, p. 421].

G (a1 -> X a2)

Accept Event Action: 1) Accept
Event Action with no input causes an
invocation of next action. The Ac-
cept Event Action is enabled upon en-
try to the activity containing it [Gro11b,
p. 317].
2) Accept Event Action with incoming
flows waits to receive an input and en-
ables only after the signal is sent by the
prior action [Gro11b, p. 317]. After-
wards, Accept Event Action leads to the
execution of next action.

1) Accept Event Action with no
input

2) Accept Event Action with in-
coming flows

1) G (a1 -> X a2) & G !(a1
& a2)
2) G (a1 -> G (a2 -> X a3))

Exception Handler: Exception Han-
dler leads to execution of the handler
body in case the specified exception oc-
curs during the execution of the pro-
tected node [Gro11b, p. 373]. A variable,
namely, ExceptionType_i is specified for
handling the exception (i is an incremen-
tally generated number).

G ((a1 & ExceptionType_i =
ExceptType_1) -> X a2)

Interruptible Activity Region:
When a token leaves an interruptible
region via edges designated by the
region as interrupting edges, all to-
kens and behaviours in the region are
terminated [Gro11b, p. 391]. If the
condition “isInterrupted” evaluates to
true then action connected through in-
terrupting_edge is executed; otherwise,
remaining activities will be executed.

1) G (ac & isInterrupted ->
X interrupting_edge) & G !(

ac & interrupting_edge)
2) G (interrupting_edge ->

X a2)
3) G (InitialNode & !(

isInterrupted) -> F a1)

(continued on next page)
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UML Constructs Modeling Notation
LTL-Based Transformation
Rules

Activity Parameter Node: The exe-
cution of input Activity Parameter is en-
abled when the activity is invoked, to
provide input values to the connected
nodes through outgoing edges. During
the execution of the activity an output
Activity Parameter Node accepts all to-
kens offered to it. We abstracted activity
parameter nodes into boolean.

1) (G (in_pn -> X a1) & G (
a1 -> Y in_pn))
2) (G (an -> X out_pn) & G

(out_pn -> Y an))

Loop: The execution of one or more ele-
ments is repeated a number of times until
a specified condition is reached. A loop
can be considered equivalent to a cyclic
execution flow including a Decision Node
and a Merge Node.

(DecisionNode -> F a2) |
(DecisionNode & (max >= 0
& max < 2) -> F MergeNode)
| ((DecisionNode & max =
2) -> F FlowFinal) & ! F(

MergeNode) | F(a1)

Table 3.1: Transformation Rules for Generating LTL Formulas for UML Activity Diagrams

Beyond the basic constructs of activity diagrams, we consider complex structures such as exception
handlers, interruptible activity region, accept event actions, send signal actions, activity parameter
nodes and loops in this chapter. In our implementation, we consider a loop equivalent to a cyclic
execution flow including a decision node and a merge node. In particular, the decision node
(termination condition) decides whether to continue the repetition process or terminate the process.
In the UML 2 specification [Gro11b, p.396], a Loop Node represents a loop with setup, body and
test sections. The test section may precede or follow the body. The setup section executes only
once, when first entering the loop whilst the test and body sections execute each time through the
loop until the test section evaluates to false. The test section is similar to the decision condition
whereas the setup section is similar to the incoming (e.g., action) of the merge node (that executed
once before entering the loop). The condition (i.e., maximum number of iterations) can be applied
with a guard, for instance the edge with condition (max >=0 & max < 2) leads to the merge node
shown in Table 3.1.

We note that an LTL formula can be as simple as G(a1 → Fa2) in case of representing the temporal
relationship between two actions. Nevertheless, an LTL formula can also be quite complex, like
G((JoinNode∧¬a1∧¬a2)∨(¬JoinNode∧a1∧¬a2)∨(¬JoinNode∧¬a1∧a2) → FMergeNode) for
describing composite structures of complex models that embraces two or more control structures or
actions. Our approach supports the automated generation of formal constraints for the combination
of control structures.
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3.2.2 Step 2: Mapping a UML Activity Diagram into SMV Descriptions

In this step, a low-level UML activity diagram is automatically transformed into formal descriptions
accepted by the NuSMV model checker. The language that underpins these formal descriptions is
hereafter called SMV language. The generated descriptions will be used as input for the NuSMV
model checker to verify against the LTL-based constraints generated from the high-level coun-
terparts (as explained in the previous step). On the one hand, the translation of UML activity
diagrams into SMV descriptions should comply with the informal semantics of UML activity dia-
grams as described in UML 2 specification [Gro11b]. On the other hand, as we discussed two tasks
in Section 3.1 the encoding of the low-level activity diagram in terms of SMV description language
should enable better interpretation of the model checking results (e.g. counterexamples) and ef-
fective communicate the results to the developers. In summary, the translation of a UML activity
diagram to SMV descriptions should provide the infrastructure to facilitate the verification of the
containment relationship, and especially, analysing verification results to provide useful feedbacks
for aiding the developers in resolving containment inconsistencies.

We achieve the mapping of a UML activity diagram into SMV descriptions using an extended
version of the breadth-first search. We have developed another algorithm similar to Algo-
rithm 1 for mapping of a UML activity diagram into SMV descriptions. In particular, we
developed three helper functions, namely, get_initial_nodes(), get_outgoing_nodes(), and
generate_smv_code(). First two functions are mentioned in Algorithm 1, whereas the most
important function generate_smv_code(n), responsible for generating SMV descriptions for each
construct of a UML activity diagram is depicted in Algorithm 3.

The UML activity diagram is translated into one main module. In our approach, each node of
the UML activity diagram will be represented by a boolean state variable in the section VAR and
its corresponding state transitions will be defined in the section ASSIGN by a combination of two
functions provided by NuSMV, that are init()—for assigning the initial state of a variable— and
next()—for describing the transition to the next state. The function next() is often combined
with the branching structure “case/esac” for selecting one of many possible choices. Normally a
state variable will be initialized with a false value (except Initial Nodes discussed in the next
subsection). It can move to a different state (e.g. true) if the incoming conditions are satisfied (see
Line 11 in Algorithm 3). The incoming guard conditions can comprise a guard expression and/or
the finishing of preceding nodes. A state variable evaluating to true implies that the corresponding
node of the UML activity diagram is activating. After finishing its execution, the node’s state will
be switched back to false (see Line 12 in Algorithm 3).

We note that generate_smv_code(n) is not realised as a single function but rather a polymorphism
of multiple functions. That is, depending on the type of the input node n, a particular function for
generating SMV descriptions for that node type will be invoked. This can be achieved in traditional
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Algorithm 3 Generating SMV Descriptions for a Modelling Construct n of a UML Activity
Diagram

1: procedure generate_smv_code(n);
2: extracts node information;
3: binds input values and generates SMV descriptions using the following templ-
4: ates:
5: '''
6: VAR
7: «n» : boolean; � State variable declaration
8: ASSIGN
9: init(«n») := «node-initial-state» � Definitions of state transitions

10: next(«n») := case
11: «incoming-guard-condition(s)» : TRUE;
12: «n» : FALSE;
13: esac;
14: '''
15: end procedure

programming languages by using a typical “if/then/else” or “switch/case” construct. In our
prototypical implementation, we leverage the powerful polymorphic method invocation technique
provided by Xtend2, which is used to realise the transformation of UML activity diagram to SMV
descriptions. Using this technique, we devise multiple functions for generating SMV descriptions
with respect to the input node types. The functions have the same name but require different input
types. According to the particular type of the input node at execution time, Xtend will dispatch
the execution to the corresponding function.

In the subsequent sections, we will present and discuss in detail the rules for generating SMV
descriptions for each node type that constitutes the individual function generate_smv_code(n).

Dealing with Data The UML activity diagram can contain variables such as integer, real, or
string [Gro11b]. Thus, directly mapping variables of these types to NuSMV increases a finite
state space which might lead to the state space infinite [EW02]. Nevertheless, we note that the
constraints that are associated with nodes or edges can affect the behaviour of a UML activity
diagram. The range of constraints in a UML activity diagram, regardless of their domains, is B =
{true, false}. Therefore, we need to explore execution paths corresponding to both truth values
yielded by each constraint, which can be done automatically by the NuSMV model checker.

An efficient encoding strategy would therefore be to abstract all data and to introduce for each
constraint expression a boolean representative variable [EW02]. A constraint evaluates to true
(resp. false) iff its boolean representative is true (resp. false). This encoding decision can help
reducing significantly the state space under consideration. In this work, we opt to abstract and
encode each constraint respectively in SMV as a boolean variable, for example, as shown in the

2See https://eclipse.org/xtend/documentation/202_xtend_classes_members.html#polymorphic-dispatch
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LTL formula corresponding to a loop in Table 3.1. However, in cases when the different types of
variables may have dependencies among constraints, temporary variables of enumerated types can
be introduced to handle them.

(a) Initial Node

1 VAR
2 «InitialNode» : boolean;
3 ASSIGN
4 init(«InitialNode») := TRUE;
5 next(«InitialNode») := case
6 «InitialNode» : FALSE;
7 esac;

(b) SMV Generation Rules for Initial Nodes

Figure 3.2: Translation of Initial Nodes into SMV Descriptions

Initial Node The mapping of a UML activity diagram to SMV starts with the Initial Nodes
and follow their outgoing nodes using a breadth-first search. An Initial Node is special node
that denotes a starting point of a UML activity diagram and does not have any incoming edges.
Thus, each Initial Node is represented by a boolean state variable whose initial state would be
assigned as true (see Figure 3.2).

Action, Fork Node, Join Node, and Final Node In this section, we consider a set of nodes
including Action, Fork Node, Join Node, and Final Node that can be encoded rather similarly
in SMV because they will be triggered with respect to their incoming control flows. Please note
that UML allows for multiple incoming edges of the nodes. In case a node has multiple incoming
edges, the semantics of triggering the node’s execution is implicit join [Gro11b]. Therefore, we
use the logical AND operator (“&”) to represent the implicit “and-join” guard for all tokens going
through the incoming control flows. Figure 3.3 describes the translation of Action, Fork Node,
Join Node, and Final Node into SMV descriptions based on the templates shown in Algorithm 3.
The ASSIGN section defines the transition relation of nodes. The node is initially set to false.
However, if the incoming condition(s) are satisfied, it is changed to a true state (see Line 11 in
Algorithm 3. The node’s state shall be switched back to false after the execution.

1 VAR
2 «node» : boolean;
3 ASSIGN
4 init(«node») := FALSE;
5 next(«node») := case
6 «incoming_1» & «incoming_2» & ... & «incoming_n» : TRUE;
7 «node» : FALSE;
8 esac;

Figure 3.3: Generic Rules for Mapping UML Constructs to SMV Descriptions
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According to the UML 2 specification [Gro11b] the semantics of Send Signal Action and Accept
Event Action inherit from an Action. Thus, we can implement the state transitions of Send
Signal Action and Accept Event Action similar to that of an Action node. Note that an Accept
Event Action can be enabled with or without incoming flows. If an Accept Event Action has
no incoming flows, it is always enabled to accept events. Moreover, it does not stop after accepting
an event and providing output, but continues to wait for other events. This indicates an exception
to the normal execution rules in activity diagrams. Thus, in our approach, we consider both an
Accept Event Action that is enabled using an incoming control flow and the case of Accept
Event Action with no incoming edge. We introduce a boolean variable, isEventOccur to capture
semantics of Accept Event Action with no incoming edge. The variable isEventOccur initialises
to false and is set to true when an event arrives.

Merge Node A Merge Node brings together multiple alternative control flows and exclusively
accepts one among them [Gro11b, p. 398]. In case a Merge Node has two incoming control flows, a
straightforward naive encoding strategy is to use the logical exclusive OR operator “a1 xor a2” (or
its equivalent but longer form “(a1∧¬a2)∨(¬a1∧a2)”) to describe the incoming guard condition of
a Merge Node. However, this strategy cannot be effectively generalised for Merge Nodes that have
more than two incoming control flows because the operator “xor” with n operands (n ≥ 3) yields
true not only when one of its operands is true but also when the odd numbers of the operands
are true [PH08]. This semantics does not precisely reflect the (semi-)formal description of Merge
Nodes presented in the UML 2 specification [Gro11b, p. 399]. Moreover, in case of some k of the
incoming nodes a1...an (k ≤ n) are simultaneously activated, the UML 2 specification states that
b should be activated k times respectively [Gro11b, p. 400]. As the UML 2 specification does not
define clearly the execution order of multiple instances of b in this particular case, we can assume
it follows an interleaving execution semantics.

In this chapter, we devise a novel encoding of Merge Nodes in SMV that satisfies the “exclusive
choice of multiple alternate flows” semantics described in the UML 2 specification as shown in
Figure 3.4b. For each Merge Node, we introduce a temporary variable, namely, merge_flag_i,
where i represents an incrementally generated number to avoid name conflicts. This temporary
variable has an enumerated type that comprises “undetermined”—to denote its normal state— and
“in_ax” where x = 1, ..., n—to represent the state values that correspond to the incoming control
flows from a1 to an, respectively. The variable merge_flag_i will be used to handle the case when
some of the incoming nodes a1...an are simultaneously activated, i.e., some k, where 1 ≤ k ≤ n,
of the corresponding state variables yield true at the same time. In this case, merge_flag_i will
choose non-deterministically and exclusively one among these activated nodes as shown in Line
12. We note that the non-deterministic assignment (Line 12) is a powerful means provided by
the NuSMV model checker for exhaustively exploring multiple possible execution paths yielded
by the values of an enumerated state. That is, in order to verify in case some k incoming nodes
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(a) Merge Node

1 VAR
2 «a1» : boolean;
3 ...
4 «an» : boolean;
5 «MergeNode»: boolean;
6 -- temporary variable
7 «merge_flag_i» : {undetermined, «in_a1»,...,«in_an»}
8 ASSIGN
9 ... -- the initializations and transitions of a1...an are

omitted
10 init(«merge_flag_i») := undetermined;
11 next(«merge_flag_i»):= case
12 («merge_flag_i» = undetermined) & («a1» | ... | «an»): {«

in_a1»,...,«in_an»};
13 TRUE : undetermined;
14 esac;
15 init(«MergeNode») := FALSE;
16 next(«MergeNode») := case
17 «a1» & !«a2» & ... & !«an» : TRUE; -- only a1 is true
18 !«a1» & «a2» & ... & !«an» : TRUE; -- only a2 is true
19 ...
20 !«a1» & !«a2» & ... & «an» : TRUE; -- only an is true
21 «merge_flag_i» = «in_a1» | ... |«merge_flag_i» = «in_an» :

TRUE;
22 «MergeNode» : FALSE;
23 esac;

(b) SMV Generation Rules for Merge Nodes

Figure 3.4: Translation of Merge Nodes into SMV Descriptions

are activated, NuSMV will bind merge_flag_i to a certain value “in_ax” in the first place, to
“undetermined” in the next transition, then to another value “in_ay” in the subsequent transition,
and so forth. In combination with the branching construct “case/esac” (Line 16–23), we can see
that the Merge Node is activated if and only if either one of the incoming nodes is true or the
variable merge_flag_i is assigned to a state value “in_ax”, where x = 1, ..., n.

Decision Node A Decision Node is a special case in which its execution will trigger one of the
outgoing control flows according to the corresponding guard conditions. In theory, more than one
outgoing nodes can be activated following a Decision Node if their guard conditions evaluate to
true. However, the UML 2 specification states that the execution traversing through a Decision
Node will be passed to only one outgoing node but does not dictate the order of evaluation and
execution in case multiple guard constraint hold simultaneously [Gro11b, p. 371]. In reality, it is
often assumed that the developers are responsible for the exclusiveness of the guard conditions of
the outgoing control flows. We opt for this assumption and assume that only one of the guards of
the outgoing control flows evaluates to true at a time.

Figure 3.5 illustrates the rules for mapping a Decision Node into SMV descriptions. Similar
to the case of a Merge Node, we introduce a temporary variable, namely, post_decision_i (i
is an incrementally generated number) for exclusively choosing one of many alternative outgoing
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(a) Decision Node

1 VAR
2 «DecisionNode»: boolean;
3 «a1» : boolean;
4 ...
5 «an» : boolean;
6 -- temporary variable
7 «post_decision_i» : {undetermined, «guard_1»,..., «guard_n»

};
8 ASSIGN
9 -- if this Decision Node is not an initial node, FALSE must

be used instead.
10 init(«DecisionNode») := TRUE;
11 next(«DecisionNode») := case
12 «DecisionNode» : FALSE;
13 esac;
14 init(«post_decision_i») := undetermined;
15 next(«post_decision_i») := case
16 «DecisionNode» & («post_decision_i = undetermined») : {«

guard_1»,..., «guard_n»};
17 TRUE : undetermined;
18 esac;
19 -- the first outgoing branch
20 init(«a1») := FALSE;
21 next(«a1») := case
22 «post_decision_i» = «guard_1» : TRUE;
23 «a1» : FALSE;
24 esac;
25 ...
26 -- the n(th) outgoing branch
27 init(«an») := FALSE;
28 next(«an») := case
29 «post_decision_i» = «guard_n» : TRUE;
30 «an» : FALSE;
31 esac;

(b) SMV Generation Rules for Decision Nodes

Figure 3.5: Translation of Decision Nodes into SMV Descriptions

control flows. The variable post_decision_i has an enumerated type including a normal state
“undetermined” and the values corresponding to the outgoing control flows (guard conditions)
(Line 7). The evaluation of the guard conditions is made using a “case/esac” construct (Line
14–17). The next state of post_decision_i will be either guard_1, guard_2 or guard_n (Line
22, 29). For the purpose of verification, it is possible to initialise guard/constraint with the boolean
values that are evaluated at execution time. Nevertheless, we can leverage the ability of NuSMV
to exhaustively inspect all execution paths with respect to two boolean values of each variable to
verify the satisfaction between the generated SMV descriptions and LTL constraints. However, in
cases when the different types of variables may have dependencies among constraints, temporary
variables of enumerated types can be introduced to handle them.
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(a) Exception Handler

1 VAR
2 «a1» : boolean;
3 «a2» : boolean;
4 «ExceptionType_i»: {undetermined, «no_Exception», «

ExceptType_1» ,..., «ExceptType_n»};
5 ASSIGN
6 init(«a1») := FALSE;
7 next(«a1») := case
8 «incoming_1» & «incoming_2» & ... & «incoming_n» :

TRUE;
9 «ExceptionType_i» = «no_Exception» : FALSE;

10 «ExceptionType_i» = «Exception_1» : FALSE;
11 ...
12 «ExceptionType_i» = «Exception_n» : FALSE;
13 «a1» : FALSE;
14 esac;
15 init(«ExceptionType_i») := undetermined;
16 next(«ExceptionType_i») := case
17 («ExceptionType_i» = undetermined) & «a1» : {«

no_Exception», «ExceptType_1», ..., «ExceptType_n»};
18 TRUE : undetermined;
19 esac;
20 --the handler body
21 init(«a2») := FALSE;
22 next(«a2») := case
23 «ExceptionType_i» = «ExceptType_1» : TRUE;
24 «a2» : FALSE;
25 esac;

(b) SMV Generation Rules for Exception Handlers

Figure 3.6: Translation of Exception Handlers into SMV Descriptions

Exception Handler An Exception Handler describes a body to execute when a particular
exception is caught. In particular, if an exception occurs during the execution of the action (pro-
tected node), the set of execution handlers on the action is examined for a handler that matches
the exception. If a match is found, the handler catches the exception and executes its body. The
exception object is placed in the exceptionInput node as a token to start execution of the handler
body. The execution of the handler body may access the caught exception via the exceptionInput
node. A handler matches if the type of the exception is the same as, or a descendant of, one of
the exceptionTypes of the handler [Gro11b, p. 374]. However, theory proposed in the standard
does not clearly define how to declare the type of the exception or its parameters. An Exception
Handler contains a Protected Node (where the exception is raised), a Handler Body (where it is
handled), the Exception Input (ObjectNode), and the Exception Type (Classifier) of the excep-
tion. An exception in the protected node could be raised either by triggering external event or as
a consequence of a branch trigger. A Handler Body is not enabled to execute in any case other
than in response to an exception being caught by its handler.

Figure 3.6 illustrates the rules for mapping an Exception Handler into SMV descriptions. For
handling the exception, we introduce a temporal variable, namely, ExceptionType_i (i is an
incrementally generated number) for more than one handlers connected to the protected node.
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ExceptionType_i has an enumerated type including an initial state “undetermined” and types
of exception that a handler have, for instance, ExceptType_1 and so on (Line 4). The absence of
an exception is represented no_Exception by assigning the value to ExceptionType_i. The next
state of ExceptionType_i will be either no_Exception, ExceptType_1 or ExceptType_n. The
execution of the Handler Body (a2) starts when ExceptType_1 matches with a exception raised
by a protected node (Line 23).

Interruptible Activity Region An Interruptible Activity Region is a group of nodes,
where all tokens and behaviours in the region are terminated, if an edge (designated by the region
as interrupting edge) traverses an interruptible activity, before leaving the region [Gro11b, p. 391].
During the execution of an Interruptible Activity Region, the reception of an event triggers
the block abort of that part of the Activity and resumes execution with another action (target
node) outside the interruptible region. However, other actions outside the interruptible region can
not be executed before the handling of particular event.

Figure 3.7 illustrates the rules for mapping an Interruptible Activity Region into SMV
descriptions. For handling the interrupting event, we introduce a boolean variable, namely,
isInterrupted that evaluates to true if the event occurs; otherwise, it evaluates to false.
More specifically, the execution of an interrupting_edge starts when Accept Event Action (ac)
receives an event (Line 8–17) which leads to the execution of action a2 outside the region (Line
20–23). If isInterrupted is false (i.e., negation of isInterrupted is True), then all the nodes
within the region complete their execution (Line 25–33) other than the source and target nodes of
the interrupting_edge.

Activity Parameter Node The Activity Parameter Nodes are the “Object Nodes” that pro-
vide the means of an activity to accept inputs and supply outputs. When the activity is invoked
the input values are placed as tokens on input activity parameter nodes (with no incoming edges)
and are accessible within the activity via the outgoing edges of those nodes. After completing
the execution of an activity, the output values held by output activity parameter nodes (with no
outgoing edges) are given to the corresponding parameters of the activity [Gro11b, p. 346].

Activity Parameter Nodes are abstracted as boolean variables (Line 2–3). As mentioned in sec-
tion 3.2.2 directly mapping of a node that contains data leads to the state explosion. Therefore, we
introduce temporary variables namely, in_par and out_par for holding the actual parameter values
(Line 5–6). These temporary variables have an enumerated type that comprises “undetermined”—
to denote its normal state— and “in_valx” and “out_valx” where x = 1, ..., n—to represent the
input values and output values that correspond to the input activity parameter node and output
activity parameter node, respectively. The transformation rule for Activity Parameter Nodes
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(a) Interruptible Activity Region

1 VAR
2 «a1» : boolean;
3 ...
4 «ac» : boolean;
5 «isInterrupted» : boolean;
6 «interrupting_edge» : boolean;
7 ASSIGN
8 init(«isInterrupted») := {TRUE, FALSE};
9 init(«ac») := FALSE;

10 next(«ac») := case
11 «isInterrupted» : TRUE;
12 «ac» = : FALSE;
13 esac;
14 init(«interrupting_edge») := FALSE;
15 next(«interrupting_edge») := case
16 «ac» & «isInterrupted» : TRUE;
17 «interrupting_edge» : FALSE;
18 esac;
19 --the target node outside the interruptible region
20 init(«a2») := FALSE;
21 next(«a2») := case
22 «interrupting_edge» : TRUE;
23 «a2» : FALSE;
24 esac;
25 init(«a1») := FALSE;
26 next(«a1») := case
27 «InitialNode» & ! «isInterrupted» : TRUE;
28 «a1» : FALSE;
29 esac;
30 init(«a3») := FALSE;
31 next(«a3») := case
32 «a1» : TRUE;
33 «a3» : FALSE;
34 esac;

(b) SMV Generation Rules for Interruptible Activity Region

Figure 3.7: Translation of Interruptible Activity Region into SMV Descriptions

with no incoming edges i.e., in_pn (Line 8–17) and Activity Parameter Nodes with no outgoing
edges i.e., out_pn (Line 20–29) are shown in Figure 3.8.

Dealing with Loops Describing loops in terms of state-based formal descriptions like SMV is
a very challenging task. Generally, a loop allows repeated execution of one or more actions until a
specified condition is not met. Loops may produce fixed or variable cyclic execution flows. In the
latter case, a loop might execute indefinitely and hence cause a state space explosion for model
checking. However, it is unrealistic for most loops that they really execute indefinitely. The model
checking techniques are not able to prove the correctness of the model, unless an upper limit is
known, that unfolds all loops to their maximum iteration. In order to prevent an indefinite loop
and ensure that loop will eventually stop, we created a way to terminate the loop. In particular,
we consider a loop equivalent to a cyclic execution flow including a Decision Node and a Merge
Node, as illustrated in Figure 3.9 as inspired by [EW02; GM05]. Eshuis and Wieringa use strong
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(a) Activity Parameter Node

1 VAR
2 «in_pn» : boolean;
3 «out_pn»: boolean;
4 -- temporary variables
5 «in_par» : {undetermined, «in_val1»,..., «in_valn»};
6 «out_par»: {undetermined, «out_val1»,..., «out_valn»};
7 ASSIGN
8 init(«in_par») := undetermined;
9 next(«in_par») := case

10 («in_par» = undetermined) : {«in_val1»,..., «in_valn»
};

11 TRUE : undetermined;
12 esac;
13 -- the input parameter node
14 init(«in_pn») := FALSE;
15 next(«in_pn») := case
16 «in_par» = «in_val1» & ... & «in_par» = «in_valn» :

TRUE;
17 «in_pn» : FALSE;
18 esac;
19 ...
20 init(«out_par») := undetermined;
21 next(«out_par») := case
22 («out_par» = undetermined) : {«out_val1»,..., «

out_valn»};
23 TRUE : undetermined;
24 esac;
25 -- the output parameter node
26 init(«out_pn») := FALSE;
27 next(«out_pn») := case
28 «out_par» = «out_val1» & ... & «out_par» = «out_valn»

: TRUE;
29 «out_pn» : FALSE;
30 esac;

(b) SMV Generation Rules for Activity Parameter Nodes

Figure 3.8: Translation of Activity Parameter Nodes into SMV Descriptions

fairness (also known as compassion) constraints to exit loops eventually [EW02], whilst Guelfi and
Mammar only consider loops with predefined limited iterations [GM05].

The execution of a loop would be repeated only if the maximum number of allowed iterations is
not yet reached. To enable model checking, we impose a limit on the number of loops such that a
loop will iterate at least once and at most a defined maximum number of iterations. The condition
(i.e., maximum number of iterations) might be applied to an additional guard. The conditional
edges labelled with max >=0 & max < 2 and max = 2 are shown in Figure 3.9a. If the maximum
number of iterations is not specified by the user, then the loop will terminate after repeating three
times. To deal with loops, we initialise the control variable, namely max. Its value is incremented
each time the action a1 is executed (Line 22–25). The transformation rule for loops is shown in
Figure 3.9. We apply the similar rules for a decision node (choice of outgoing Line 38–41) and
a merge node (Line 10–20) as we presented in Figures 3.5 and 3.4, respectively. If max become
equals to maximum number, a new iteration cannot start and execution of the loop will terminate.
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(a) Loop Structure

1 VAR
2 «MergeNode»: boolean;
3 «DecsisonNode»: boolean;
4 «a1» : boolean;
5 ...
6 «max» : «0..2»; -- control variable
7 «merge_flag_i» : {undetermined, «in_a1», «in_guard_1»};
8 «post_decision_i» : {undetermined, «guard_1», «guard_2», «

guard_3»};
9 ASSIGN

10 init(«merge_flag_i») := undetermined;
11 next(«merge_flag_i»):= case
12 («merge_flag_i» = undetermined) & («incoming_1» | «

DecsisonNode»): {«in_incoming_1»,«in_guard_1»};
13 TRUE : undetermined;
14 esac;
15 init(«MergeNode») := FALSE;
16 next(«MergeNode») := case
17 «incoming_1» & !«DecsisonNode» : TRUE;
18 !«incoming_1» & «DecsisonNode» : TRUE;
19 «merge_flag_i» = «in_incoming_1» | «merge_flag_i» = «

in_guard_1» : TRUE;
20 «MergeNode» : FALSE;
21 esac;
22 init(«a1») := FALSE;
23 next(«a1») := case
24 «MergeNode» : TRUE;
25 «a1» : FALSE;
26 esac;
27 init(«DecisionNode») := FALSE;
28 next(«DecisionNode») := case
29 «a1» :TRUE;
30 «DecisionNode» : FALSE;
31 esac;
32 init(«max»):= (0);
33 next(«max»):= case
34 («max» >= 0) & («max» < 2) : «max» +1;
35 («max» = 2) : «max»;
36 TRUE : «max»;
37 esac;
38 init(«post_decision_i») := undetermined;
39 next(«post_decision_i») := case
40 «DecisionNode» & («post_decision_i» = undetermined) : {

guard_1, guard_2, guard_3};
41 TRUE : undetermined;
42 esac;
43 .....
44 init(«FlowFinal») := FALSE;
45 next(«FlowFinal») := case
46 «post_decision_i» = «guard_3» & «max» = 2 : TRUE;
47 «FlowFinal» : FALSE;
48 esac;

(b) SMV Generation Rules for Loops

Figure 3.9: Translation of Loops into SMV Descriptions
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As mentioned in Section 3.2.1, the test and setup sections of a UML 2 Loop Node are similar to the
decision condition and the incoming (e.g., action) of the merge node. Therefore, aforementioned
mapping rules for the loop can be applied on the Loop Node.

3.2.3 Step 3: Containment Checking Using NuSMV Model Checker

The main goal of our approach is to assess the containment relationship between a high-level and
low-level activity diagram. More specifically, containment checking aims to verify whether the
elements and structures of a high-level model, such as actions, control nodes and edges/guards
correspond to those of a refined low-level model. Note that the refined and extended low-level
model may contain new actions that are inserted between two directly succeeding actions (serial
insert), in parallel to another one using fork and join (parallel insert), and/or with in separate
path using decision and merge (conditional insert). In addition, the low-level model can have new
loops, exception handlers and event actions, and so on, but the elements should not be inserted
arbitrarily. Therefore, it is necessary to check the containment consistency between the low-level
model and its high-level counterpart to correctly build the software system.

In our approach, containment checking is performed using the NuSMV model checker. NuSMV
takes the LTL properties (generated in Step 1) and the SMV descriptions (generated in Step 2),
and exhaustively explores violations of a property by traversing the complete state space. In
case the SMV descriptions satisfy the LTL properties, it implies that the behaviour described
in the high-level model can be embraced by the low-level model’s behaviour. Otherwise, the
low-level model deviates improperly from the high-level counterpart. In particular, each LTL
formula/property represents a part of the high-level model. If a certain property does not satisfied
the SMV descriptions, it means that the corresponding part of the high-level model is not contained
in the low-level model. In this case, NuSMV will generate a counterexample that consists of the
execution traces of the SMV descriptions leading to the violation. The counterexample can help
the developers to locate and resolve the containment inconsistencies. Note that the counterexample
provides only limited information for understanding the causes of inconsistencies but not how to
fix the inconsistencies.

3.3 Scenario from Industrial Case Study

In this section, a representative case, namely, the Loan Approval, will be described in detail to
illustrate how our approach works to detect and resolve the containment inconsistencies. This sce-
nario is extracted from an e-business application in the banking sector. The banking domain must
enforce security and must be in conformity with the regulations in effect. The core functionality of
the loan approval system can be described as follows: It starts after receiving a new customer’s loan
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Figure 3.10: High-Level Activity Diagram of Loan Approval System

request, and then preliminary inspections are performed to assure that the customer has provided
valid information about the credit (e.g., saving or debit account). Afterwards, the customer’s credit
worthiness is evaluated. Finally, the evaluation of loan risk is carried out. If the loan inquired by
the customer is low, the loan contract is initialised otherwise a loan declined. The first two subsec-
tions describe the automated translation of high-level loan approval system into LTL formulas and
low-level (refined and enhanced) loan approval system into SMV descriptions respectively. The
last subsection presents analysis of containment checking results.

3.3.1 Generating LTL Formulas from the High-Level Model

The high-level representation of the loan approval system in terms of a UML activity diagram is
shown in Figure 3.10. LTL formulas are automatically generated from the high-level activity dia-
gram of the loan approval system using our LTL-based transformation rules presented in Table 3.1.
For instance, the LTL formula “ LTLSPEC (DecisionNode -> F ((DeclinedDuetoInvalidPrivilege

& ! RequestBankInformation) | (! DeclinedDuetoInvalidPrivilege & RequestBankInformation

)))” is generated for the Decision Node (as discussed in Section 3.2.1). The high-level loan
approval activity diagram contains 78 elements including 14 control nodes and 21 actions. For
these elements, 27 LTL formulas are generated. Each generated LTL formula is used as input
for containment checking. Table 3.2 shows the generated LTL formulas from the high-level loan
approval system.
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UML Constructs Generated LTL Formulas

Sequence

LTLSPEC G (InitialNode -> F ReceiveLoanRequest);
LTLSPEC G (ReceiveLoanRequest -> F SendStarterAccountContractKit);
LTLSPEC G (SendStarterAccountContractKit -> F CreateLoanFile);
LTLSPEC G (CreateLoanFile -> F SendAccountIdandWelcomeMessage);
LTLSPEC G (SendAccountIdandWelcomeMessage -> F ForkNode);
LTLSPEC G (JoinNode -> F DecisionNode);
LTLSPEC G (RequestBankInformation -> F ReceiveSupportingDocuments);
LTLSPEC G (ReceiveSupportingDocuments -> F DecisionNode1);
LTLSPEC G (DispatchApprovalTask -> F CheckCreditWorthiness);
LTLSPEC G (CheckCreditWorthiness -> F DecisionNode2);
LTLSPEC G (EvaluateLoanRisk -> F DecisionNode3);
LTLSPEC G (ReviewHigh_RiskLoanbyManager -> F DecisionNode4);
LTLSPEC G (MergeNode -> F InitializeLoanContract);
LTLSPEC G (MergeNode1 -> F ForkNode2);
LTLSPEC G (MergeNode2 -> F ActivityFinalNode);

Fork Node

LTLSPEC G (ForkNode -> F (CheckCustomerBankPrivilege & VerifyLiquidAssets
& VerifyEmploymentStatus)) & G ((CheckCustomerBankPrivilege &

VerifyLiquidAssets & VerifyEmploymentStatus) -> O ForkNode);
LTLSPEC G (ForkNode2 -> F (NotifyBank & NotifyCustomer &

NotifyLoanOfficer)) & G ((NotifyBank & NotifyCustomer &
NotifyLoanOfficer) -> O ForkNode2);

Join Node

LTLSPEC G ((CheckCustomerBankPrivilege & VerifyLiquidAssets &
VerifyEmploymentStatus) -> F JoinNode);

LTLSPEC G ((NotifyBank & NotifyCustomer & NotifyLoanOfficer) -> F
JoinNode2);

Decision Node

LTLSPEC (DecisionNode -> F ((DeclinedDuetoInvalidPrivilege & !
RequestBankInformation) | (! DeclinedDuetoInvalidPrivilege &
RequestBankInformation)));

LTLSPEC (DecisionNode1 -> F ((DeclinedDuetoUnsatisfiedCondition & !
DispatchApprovalTask) | (! DeclinedDuetoUnsatisfiedCondition &
DispatchApprovalTask)));

LTLSPEC (DecisionNode2 -> F ((DeclinedDuetoBadCredit & ! EvaluateLoanRisk
) | (! DeclinedDuetoBadCredit & EvaluateLoanRisk)));

LTLSPEC (DecisionNode3 -> F ((ReviewHigh_RiskLoanbyManager & ! MergeNode)
| (! ReviewHigh_RiskLoanbyManager & MergeNode)));

LTLSPEC (DecisionNode4 -> F ((DeclinedDuetoHighRisk & ! MergeNode) | (!
DeclinedDuetoHighRisk & MergeNode)));

Merge Node

LTLSPEC (G (DecisionNode3 & ! DecisionNode4) | (! DecisionNode3 &
DecisionNode4) -> F MergeNode);

LTLSPEC (G (DeclinedDuetoInvalidPrivilege & !
DeclinedDuetoUnsatisfiedCondition & ! DeclinedDuetoBadCredit & !
DeclinedDuetoHighRisk) | (! DeclinedDuetoInvalidPrivilege &
DeclinedDuetoUnsatisfiedCondition & ! DeclinedDuetoBadCredit & !
DeclinedDuetoHighRisk) | (! DeclinedDuetoInvalidPrivilege & !
DeclinedDuetoUnsatisfiedCondition & DeclinedDuetoBadCredit & !
DeclinedDuetoHighRisk) | (! DeclinedDuetoInvalidPrivilege & !
DeclinedDuetoUnsatisfiedCondition & ! DeclinedDuetoBadCredit &
DeclinedDuetoHighRisk) -> F MergeNode1);

LTLSPEC (G (JoinNode2 & ! InitializeLoanContract) | (! JoinNode2 &
InitializeLoanContract) -> F MergeNode2);

Table 3.2: LTL Formulas Generated from the High-Level Loan Approval Activity Diagram
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3.3.2 Generating SMV Descriptions from the Low-Level Model

The low-level loan approval model is a refined and extended version of the high-level model that
provides more detailed information about the system. For instance, the contract documents are
sent to the customer for a final decision. If the customer agrees with loan terms and contract then
manager and customer both officially sign the loan contract. Otherwise loan terms and contract
are revised. Finally, if no negative reports have been filed, the loan settlement task is performed
otherwise the loan approval process will be closed. The low-level model shown in Figure 3.11, is
automatically converted into SMV descriptions using our aforementioned transformation rules.

Figure 3.11: Low-Level Activity Diagram of Loan Approval System
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Listing 3.1 shows an excerpt of the SMV descriptions resulting from the translation of the low-
level loan approval system. Some repetitive parts that produced from the similar types of nodes,
have been omitted in the listing. Without going into excessive detail, the SMV description can
be summarised as follows: The SMV description consists of two parts, the variables declaration
part and the variable assignment part. All the elements of the loan approval activity diagram are
declared as variables under the “VAR” keyword. The nodes of the loan approval activity diagram
are represented by boolean variables except temporary variables for decision and merge nodes
to handle outgoing branching and incoming nodes, respectively. These temporary variables are
represented as scalar variables (enumerative type) as discussed in Section 3.2.2. Furthermore, the
control variable max is initialised for handling loop. The corresponding present states and next
states of these variables are declared under the keyword “ASSIGN”. Inside the next expression of the
variable, a “case...esac” expression is created for every state that lists all possible subsequent
states.

3.3.3 Containment Checking Results

The containment checking is achieved by using the NuSMV model checker to check the generated
SMV descriptions (as illustrated in Listing 3.1) against the LTL formulas generated from the high-
level model (as presented in Table 3.2). The LTL formulas and SMV descriptions are combined
into one NuSMV input file and executed by the NuSMV model checker. Listing 3.2 shows the
verification result including the list of satisfied and unsatisfied LTL formulas. The NuSMV model
checker generates a counterexample demonstrating a sequence of permissible state executions lead-
ing to a state in which the violation occurs in LTL formula. By looking at the violation reported as
a counterexample by NuSMV, we find that LTL formulas “G (SendStarterAccountContractKit
-> F CreateLoanFile)”, “G (CreateLoanFile -> F SendAccountIdandWelcomeMessage)”

and “G (ForkNode2 -> F (NotifyBank & NotifyCustomer & NotifyLoanOfficer)) & G ((
NotifyB- ank & NotifyCustomer & NotifyLoanOfficer) -> O ForkNode2)” are false. It
means that this sequence of formal properties specified by the high-level loan approval model
is not contained in its low-level counterpart. Despite the size and execution traces of this
counterexample, the exact cause of the containment inconsistency is unclear, for instance, “is
the containment violation caused by a missing element, or a misplacement of elements, or both
of them?”. After the generation of the counterexample, it is important to analyse the generated
counterexample to find the actual source of the inconsistency and correct the responsible elements
in the model.
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1 MODULE main
2 VAR
3 InitialNode : boolean;
4 ReceiveLoanRequest : boolean;
5 ReviewRequest : boolean;
6 GenerateAccountId : boolean;
7 ForkNode : boolean;
8 JoinNode : boolean;
9 MergeNode : boolean;

10 merge_flag_1 : {undetermined, in_DecisionNode4, in_DecisionNode3};
11 .....
12 ASSIGN
13 init(InitialNode) := TRUE;
14 next(InitialNode) := case
15 InitialNode : FALSE;
16 TRUE : InitialNode;
17 esac;
18 init(ReceiveLoanRequest) := FALSE;
19 next(ReceiveLoanRequest) := case
20 InitialNode : TRUE;
21 ReceiveLoanRequest : FALSE;
22 TRUE : ReceiveLoanRequest;
23 esac;
24 .....
25 init(SendStarterAccountContractKit) := FALSE;
26 next(SendStarterAccountContractKit) := case
27 GenerateAccountId : TRUE;
28 SendStarterAccountContractKit : FALSE;
29 TRUE : SendStarterAccountContractKit;
30 esac;
31 init(SendAccountIdandWelcomeMessage) := FALSE;
32 next(SendAccountIdandWelcomeMessage) := case
33 SendStarterAccountContractKit : TRUE;
34 SendAccountIdandWelcomeMessage : FALSE;
35 TRUE : SendAccountIdandWelcomeMessage;
36 esac;
37 .....
38 init(RequestBankInformation) := FALSE;
39 next(RequestBankInformation) := case
40 post_decision_975 = guard_2 : TRUE;
41 RequestBankInformation : FALSE;
42 TRUE : RequestBankInformation;
43 esac;
44 init(CreateLoanFile) := FALSE;
45 next(CreateLoanFile) := case
46 RequestBankInformation : TRUE;
47 CreateLoanFile : FALSE;
48 TRUE : CreateLoanFile;
49 esac;
50 init(ReceiveSupportingDocuments) := FALSE;
51 next(ReceiveSupportingDocuments) := case
52 CreateLoanFile : TRUE;
53 ReceiveSupportingDocuments : FALSE;
54 TRUE : ReceiveSupportingDocuments;
55 esac;
56 .....

Listing 3.1: Excerpts of the SMV Description for the Low-level Loan Approval Model
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$ NuSMV LoanApproval.smv
-- specification G (InitialNode -> F ReceiveLoanRequest) is true
-- specification G (ReceiveLoanRequest -> F SendStarterAccountContractKit) is true
-- specification G (SendStarterAccountContractKit -> F CreateLoanFile) is false
-- as demonstrated by the following execution sequence
Trace Description: LTL Counterexample
Trace Type: Counterexample
-> State: 1.1 <-
InitialNode = TRUE
ReceiveLoanRequest = FALSE
.....
-- Loop starts here
-> State: 1.18 <-
NotifyBank = FALSE
NotifyCustomer = FALSE
merge_flag_3 = undetermined
-> State: 1.19 <-
merge_flag_3 = in_JoinNode1
-> State: 1.20 <-
merge_flag_3 = undetermined
-- specification G (CreateLoanFile -> F SendAccountIdandWelcomeMessage) is false
-- as demonstrated by the following execution sequence
Trace Description: LTL Counterexample
.....
-- specification G (MergeNode1 -> F ForkNode2) is true
-- specification ( G (ForkNode2 -> F ((NotifyBank & NotifyCustomer) & NotifyLoanOfficer)) & G (((

NotifyBank & NotifyCustomer) & NotifyLoanOfficer) -> O ForkNode2)) is false
-- as demonstrated by the following execution sequence
Trace Description: LTL Counterexample
.....

Listing 3.2: NuSMV Containment Checking Result along with a Counterexample

3.4 Performance Evaluation

So far, we have presented a scenario from industrial case study representing real systems from the
banking sector that illustrate how our approach works and demonstrate its applicability in real
cases. As our approach aims to support the developers to verify the containment relationship during
their development tasks, it is crucial to assess whether our approach’s performance is reasonable
in a normal working environment. The sizes of the input models used for performance evaluation
are ranging from a few dozens to hundreds of elements, which are the typical sizes of software
behaviour models that developers can efficiently work with [Stö14].

We evaluate the performance of our approach using five different cases. Four of them are taken
from the industrial scenarios. One of them is the Loan Approval mentioned in the previous section.
The other three are Itinerary Management, Customer Relationship Management (CRM) fulfilment
system [Tra+12] and Billing Renewal [Tra+11]. The itinerary management provides the services
for booking airline tickets, hotels, and cars, respectively. The CRM fulfilment scenario is a part of a
customer relationship management system concerning the customer care, billing, and provisioning
of an Austrian Internet Service Provider. The billing renewal system concerns a billing and provi-
sioning system of a domain registrar and hosting provider. Furthermore, we artificially increased
the size of the billing renewal system by adding a number of control nodes, actions and edges to
evaluate a model with close to 100 elements in the high-level model and more than 300 elements in
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the low-level model. This case is called Synthetic Larger Model. While the Synthetic Larger Model
is in our point of view already a model that is too large for efficiently working with it, this model
provides a useful data point in terms of an upper bound. The performance evaluation is conducted
on a regular computer equipped with an 2.6 GHz i5 processor and eight gigabytes of memory
running Windows 8. The approach under consideration is implemented using Java and executed
with the Java VM 1.7, in particular, the automated transformation UML activity diagrams into
formal descriptions/consistency constraints has been realised using Eclipse Xtend3. Note that we
used the NuSMV model checker version 2.5.4 for verifying the containment relationship.

Table 3.3: Model Size and Translation Time of UML Activity Diagrams

The time taken for model loading, transforming and verification of models are measured in mil-
liseconds. Before measuring each task, sufficient warming up executions are performed to eliminate
potential confounding factors of class loading in Java. The first part of Table 3.3 shows the com-
plexity of the input UML activity diagrams (HL = high-level model, LL = low-level model) with
regard to their elements including control nodes (i.e., those nodes that can change the flow of the
execution), action nodes (including special actions that represent data handling tasks), and edges
(representing the links between nodes). The second part of the table presents the evaluation results
for loading and transforming activity diagrams into formal constraints and descriptions. Table 3.4
shows the containment checking time, total time (i.e., verification plus loading and translation
time) and violated formulas.

The evaluation results show that the containment checking time spent by NuSMV for the loan
approval is longer than for the itinerary management, CRM fulfilment system and billing renewal
system. It is because NuSMV found inconsistencies between the formal properties of the low-
level model and the LTL formulas of the high-level model and thus NuSMV needed to generate a
counterexample. We note that the NuSMV model checker consumes more time for verification than
is used for translation of the models. The results show that the loading and translation times of
the itinerary management system are lower than for the other models because the activity models
of the other three systems contain a greater number of control and action nodes. In summary, all
realistic cases are handled in a total time below or around two seconds which is quite acceptable
for practical purposes.

We also applied our approach on a Synthetic Larger Model which contains a wide range and larger
number of model elements. The time taken for containment checking of the Synthetic Larger

3See http://www.eclipse.org/xtend
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Model (HL=122 and LL=324) is around 35630 ms (i.e., about 0.59 minutes). The model checking
time, although it grows considerably for such a large number of elements, is still reasonable in
the context of a typical working environment. The verification of the Synthetic Larger Model
has allowed us to evaluate the scalability of our containment checking approach. The evaluation
results show that our approach efficiently translates activity diagrams into formal specifications for
supporting containment checking. The analysis and evaluation results also demonstrate that our
approach works well for larger realistic scenarios. Our approach can also handle composite controls
(combinations of two or more control structures) quite well. For instance, activity diagrams of the
loan approval system contain a Merge Node after a Decision Node that have been adequately
mapped into LTL formulas. Moreover, after locating the causes of containment inconsistencies for
loan approval system and systematic lager model, the low-level activity diagrams of these models
are updated and re-mapped to their formal descriptions, and then re-verified. As expected, the
rerunning of the containment checking process on these models yielded no further violations.

Table 3.4: Performance Evaluation Results for UML Activity Diagrams

One of the issues of our approach is to rely on model checkers which can suffer from the “state space
explosion” problem. The number of states examined by the model checkers can grow exponentially
with the size of the input [CW96; CGP99]. This problem can be partially alleviated by using
predicates instead of enumeration types [EW02]. The size of models can negatively affect the veri-
fication time of containment checking. This is because symbolic model checking allows verification
of large systems that have over 1020 states [Bur+92]. In this work constraints are abstracted and
encoded as boolean representative (see Section 3.2.2). This encoding decision can help reducing
significantly the state space under consideration.

3.5 Discussion

In this section, we discuss various aspects of our model checking based approach for the containment
relationship between a low-level activity diagram and its high-level counterpart. The research
questions are revisited and briefly discussed below:
Q1: Can we achieve formal specifications and descriptions for containment checking
fully automatically?
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We have introduced a set of transformation rules to facilitate the automated transformation of
high-level and low-level UML activity diagrams into LTL constraints and SMV descriptions, re-
spectively. Our proposed translation techniques provide effective means for automated generation
of formal specifications for large and complex behavioural models. These techniques aim at reduc-
ing the burden on the developers for manually specifying the consistency constraints and formal
descriptions of behaviour diagrams to check for containment inconsistencies. In the scope of this
chapter, we covered complex structures of UML activity diagrams along with basic constructs.
The more complex structures of activity diagrams are often used for modelling complex software
system behaviour but have not been adequately considered by most of the existing studies in the
literature so far.

Because containment checking is performed on generated SMV descriptions and LTL constraints,
we present a simple sketch of a proof. The idea is to prove that an activity diagram and SMV
descriptions derived from it are behaviourally equivalent. Let’s assume that an activity diagram A
is a tuple (N, E, G) where N is a finite set of nodes derived from the UML 2 specification [Gro11b,
Sec. 12] InitialNode, ActivityFinalNode, FlowFinalNode, Action, DecisionNode, MergeNode, Fork-
Node, JoinNode, ParameterNode and ExceptionHandler, E ⊆ N × N is an ordered finite set of
edges, and G is a finite set of guard expressions. An edge e connects a source node s to a target
node t: this is represented by e(s, t) in which e ∈ E and s, t ∈ N . Note that the semantics of SMV
corresponds to a finite state machine tuple M = (V, S, R, I) where S and V are set of states and
variables respectively. Specifically, a state s assigns a value s(v) to each variable v ∈ V . The tran-
sition relation R ⊆ S × S specifies the possible state to state transitions; I ∈ S is the initial state.
The SMV translation rules mentioned in Section 3.2.2 might also be considered for mapping of
activity diagrams to finite state machines. An execution (or trace) of finite state machine is a finite
sequence of states (s0, s1, .., sn) so that s0 = I and each pair si, si+1 in the sequence, (si, si+1) ∈ R.
Therefore, the SMV descriptions for the activity diagrams are derived by translating each N into
a state S in M – they have same content. The next sequential node is replaced by the next state.
That is an edge e = (s, t) will have the same semantics to (si, si+1) ∈ R. It is however rather
straightforward that activity diagrams and derived SMV descriptions are behaviourally equivalent.
In LTL a path is an ordered sequence of states, such that each state is followed by its next state
via a transition. Accordingly, we have derived several formulas from the high-level model that have
similar semantics to the derived SMV descriptions.

Our approach makes use of the existing model checkers for formally verifying the containment
relationship. Unfortunately, one of the drawbacks of model checking techniques is that they
are not scalable to very large systems. The number of states in the finite state representation
increases exponentially with the number of variables (i.e., the state explosion problem). The
NuSMV model checker used in our study is based on the symbolic model checking technique, and
therefore, is able to support the verification of large systems up to 1020 states [Bur+92]. One
of the biggest advantages of using the NuSMV model checker is that SMV’s finite state based
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encoding of the input behaviour models is rather straightforward. That is, each model element
is represented by a boolean variable in the SMV description and LTL formulas. However, this
also implies that our technique is only applicable for other model checkers that support similar
encoding techniques, such as SPIN4. Like NuSMV, the SPIN model checker has similar concepts
regarding LTL formulas and exhaustive verification options; hence, it is possible to easily modify
the encoding with reasonable extra efforts.

Q2: Can we design a containment checking approach that offers an acceptable perfor-
mance for realistically sized input models?

In order to illustrate the applicability and feasibility of the overall approach, we conducted indus-
trial case studies in the banking sector and e-business domains from previous industry projects of
our team [Tra+11; Tra+12] and also performed performance evaluations of our approach in these
cases. By analysing the evaluation results we found that our approach efficiently translates activity
diagrams into formal specifications and works well for larger realistic scenarios. The time taken for
both transformation and verification of all these realistic scenarios is less than 2 seconds. Our study
of a synthetic larger model also shows the exponential growth for much larger models, so that we
suggest to perform performance evaluations if the approach should be used for very large models
and immediate results are needed. However, our evaluation results show that even with the input
models having about 300 model elements, the verification time stays within less than 1 minute.
Therefore, the proposed containment checking approach can be used for practical purposes.

One of the most challenging issues, among others, in comparing behaviour models is to deal with
various types of loops. In our approach we currently consider one case to handle loops which are
formed by combing decision nodes and merge nodes. However, the derived mapping rules for the
loop can be easily applied on the Loop Node as mentioned in the UML 2 specification [Gro11b].
Another issue is that a loop structure, especially an unconditional loop (i.e., the number of iter-
ations may be nondeterministic), cannot be efficiently described by temporal logics. A loop with
a predetermined number of iterations can be represented using temporal logics such as k-bounded
existence [DAC98]. Nevertheless, Dwyer et al. [DAC98] show that even in the case k = 2, the
bounded existence structure already becomes rather sophisticated. Thus, automated generation of
complex temporal formulas like our approach does can help to efficiently deal with such complex
structures. Furthermore, the containment relationship between two behaviour models at different
abstraction levels is based on the assumption that element names of a high-level model and its
corresponding low-level counterparts are aligned to a common ontology respected by all stakehold-
ers. The assumption is rather realistic because a low-level model is mainly achieved through a
refinement of a high-level model where existing high-level elements are often enriched with more
details and elements [TZD10].

4See http://spinroot.com
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3.6 Related Work

Several approaches have been proposed in the literature for model consistency checking. In the
subsequent sections, we briefly summarise the existing works related to our approach, in particular,
approaches that focus on consistency checking and containment checking as well as those approaches
that provide the mapping of models into formal descriptions, specification of formal constraints
and formalisations of activity diagram.

3.6.1 Existing Approaches for Consistency Checking

In the literature, many approaches tackled different types of models and/or model checking tech-
niques [LMT09; SZ01; MTZ17a]. Some of them focus on checking the consistency of behavioural
models against structural models or checking different types of behaviour models (models and other
representations of the same reality such as the requirements or implementations). For instance,
Yeung proposes an approach for checking the consistency between UML class diagram (i.e., struc-
tural model) and statechart model (i.e., behavioural model) by applying a pair of integrated formal
methods, namely B method and Communicating Sequential Processes (CSP) [Yeu04]. The models
are manually translated into B and CSP and also no discussion regarding the automation level of
verification is provided. Van der Straeten et al. present an approach for checking the consistency of
different UML models by using description logic [Str+03]. This approach tackled the UML version
1.5 and concentrates on evolution consistency (i.e., consistency between different versions of the
same model). Graaf and van Deursen introduce a model-driven consistency checking approach for
checking the consistency between several behaviour models [GD07]. The approach first normalises
the input models, then performs an automated model transformation to UML statecharts, and
afterwards compares the different statecharts to identify inconsistencies. Knapp et al. check the
consistency between two views of a system by verifying the state machines with sequence dia-
gram [SKM01; KMR02]. The authors propose an encoding system, namely, HUGO, for translating
state machines into PROMELA (Process or Protocol Meta Language), the formal input language
of the SPIN5 model checker [SKM01]. In another study, the authors present the transformation
of timed UML state machines and collaborations into timed automata using the HUGO/RT tool,
and consistency checking is performed using the UPPAAL6 model checker [KMR02]. Amálio et al.
[ASP04] developed a modelling framework to construct UML class, state and snapshot diagrams
(i.e., object diagrams) and analyse models of sequential systems using Z notation. However, models
are manually translated into Z but formal analysis is supported by the Z/Eves7 theorem prover.

5http://spinroot.com
6http://www.uppaal.org
7http://czt.sourceforge.net/eclipse/zeves/
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Lam and Paget propose an algebraic approach for verifying the consistency between sequence and
statecharts. In this approach, behaviour models are encoded into π-calculus to support the veri-
fication of model consistency [LP05]. Wang et al. introduce an approach for consistency checking
between UML 1.5 statecharts and sequence diagrams [Wan+05]. In this approach finite state pro-
cesses are used to express statecharts whereas a trace of messages is used for sequence diagrams.
Heimdahl et al. propose deviation analysis approach using existing model checkers, related to the
identification and analysis of changes in system behaviour between two similar control systems in
slightly distinct environments [HCW05]. The RSML−e language is used for the specification of the
systems which is then translated into NuSMV8 input language, whereas constraints are manually
specified in Computation Tree Logic (CTL).

The aforementioned approaches concentrate on consistency between different models, typically from
different development activities (such as requirements elicitation and implementation) or between
different views of the system. The major difference of these approaches and our approach is that
we consider the consistency of the same model at different levels of abstraction, i.e., “vertical
consistency” [Str05]. In particular, we focus on checking the consistency of the containment of
the high-level model in the low-level model, rather than checking the consistency of elements of
two different representations. These approaches introduce the formalisations for class, sequence, or
statecharts but not for activity diagrams. Their formalisations might be used when it is important
to consider the connection among different diagrams in the verification process but not for verifying
the containment relationship for activity diagrams.

In the field of business process management, several approaches on computing the similarity of
process models have been presented [BL12]. Some approaches concentrate on retrieving process
models in the large repository that are similar or even identical models of a given process model
or fragment thereof (the search model) [DDGBn09; Dij+11]. Dijkman et al. focus on three
perspectives of similarity: text similarity based on a comparison of the labels, structural similarity
based on the topology of the process models, and behavioural similarity based on the causal
relations between activities in a process model. However, a search query involves determining the
degree of similarity between the search model and each model in the repository.

While other approaches focus on a trace theory to validate the conformance of two process models or
process models against their execution traces recorded in the event logs. An approach presented in
[AMW06] measures the degree of behavioural similarity between Petri net based process models and
their execution traces ranging from “completely different” to “identical”. Another approach aims
at verifying whether two process models are similar using their corresponding event traces mined
from process execution logs [Aal+08]. Bae et al. propose quantitative process similarity metric
for measuring mining process similarity and difference [Bae+07]. In this method, dependency
graphs are extracted from process models and converted into normalized matrices. Afterwards,

8 http://nusmv.fbk.eu
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metric space distances are calculated based on the difference between the normalized matrices.
However, these approaches produce an estimated degree of similarity of these models and are
useful for finding similar or alternative behavioural descriptions but not applicable for verifying
the containment relationship.

3.6.2 Containment Checking

In recent years, the notion of behaviour inheritance has been studied in the realm of consistency
checking of behaviour diagrams, in particular, the inheritance of object life cycles in statecharts.
Stumptner and Schrefl introduce specialisations of object life cycles by examining extension and re-
finement in the context of UML statecharts. The approach introduced a one-to-one rule-based map-
ping of statecharts into some semantic domains but does not support automation [SS00]. Van der
Aalst presents a theoretical framework for defining the semantics of behaviour inheritance [Aal02].
In this work, four different inheritance rules, based on hiding and blocking principles, are defined for
UML activity diagram, statechart and sequence diagram. However, the application of these inheri-
tance concepts in the context of actual scenarios is not clarified, such as the formal semantics of the
consistency constraints or the automatic generation of these formal descriptions. In addition, this
approach only considers some selected parts of UML diagrams. Engels et al. [EKG02] deal with the
consistency of models made up of different submodels: UML-RT capsule and protocol statecharts.
They used CSP as a mathematical model for describing the consistency requirements with respect
to deadlock freeness and protocol conformance; the FDR9 (Failures-Divergences Refinement) tool
is used for checking purposes. However, the trace model can only be used for expressing that some
actions will not occur and also not all actions indeed occur. CSP does not support state variables;
however, they can be simulated to some extent by using a recursive process with parameters.

A closely related work is proposed by Egyed for structural models. In particular, Egyed’s approach
aims to check whether a UML class diagram conforms to another more abstract class diagram based
on structural transformation rules [Egy02]. This approach alone is not applicable for containment
checking, as behaviour models contain control constructs that cannot be matched only structurally.
Arcaini et al. [AGR16] and Krings and Leuschel [KL16] focus on mathematical proof of a logical
relation between an abstract model and its refined models. The former approach concentrates on
a proof of stuttering refinement between two Abstract State Machines (ASMs). Specifically, the
translation of ASM to SMT (Satisfiability Modulo Theories) instances is proposed, and the SMT
solver Yices10 is used to prove refinement correctness. The later focusses on the implementation of
BMC, k-Induction and IC3 symbolic model checking algorithms for B and Event-B. In particular,
they included the proof information to improve the algorithms’ performance and integrated them
in the nightly builds of ProB11. However, these approaches consider formal specification languages

9 https://www.cs.ox.ac.uk/projects/fdr
10http://yices.csl.sri.com/
11 http://www3.hhu.de/stups/prob/
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(i.e., B, Event-B and ASM) to describe a system architecture instead of software behavioural
models. Therefore, in contrast to our approach, these approaches require a strong mathematical
background from the user.

So far, none of the published studies have considered the containment checking problem for be-
haviour models. The idea with this research is to resolve the particular problem for a comprehensive
set of modelling constructs used for describing software behaviour such as exception handlers, in-
terruptible activity regions, parameterized tasks, event actions, and loops.

3.6.3 Mapping of Models into Formal Descriptions and Specification of Formal
Constraints

The existing consistency checking approaches mainly focus on the manual mapping of input models
into formal descriptions, in addition, the consistency constraints (in the form of formal specifica-
tions) are provided by the users. These approaches require a substantial time and effort, and there-
fore, are not favourable by developers and non-technical stakeholders. For example, Koehler et al.
propose a model checking approach for a business process model and its implementation [KTK02].
The approach uses automata as the basis of the operational models through which the behaviour of
the processes and their implementing systems are specified; however, automated transformation of
automata into the input language of NuSMV is not supported. Engels et al. check contracts between
business processes (modelled as UML activity diagrams) and Web services (specified by visual con-
tracts), i.e., they check the consistency between behavioural and structural properties [Eng+08].
The approach uses graph-based algorithms for checking the consistency. Martens’ technique veri-
fies the consistency between a locally specified executable model and a globally described abstract
process model based on the simulation relation [Mar05]. To perform verification, BPEL process
models are manually transformed into Petri nets. Ehrig and Tsiolakis use attributed graphs to
represent sequence diagrams and attributed type graphs with graphical constraints for class dia-
grams [TE00]. This approach considers only the existence, correct multiplicity, and valid scoping for
checks of model elements. In contrast to these approaches our approach introduces transformation
rules grounded on formal expressions. Therefore, the high-level behaviour models are automati-
cally translated into consistency constraints (i.e., LTL formulas) and low-level behaviour models
into formal descriptions using the transformation rules. The generated consistency constraints and
formal descriptions are used by model checkers to verify the containment relationship.

There are only few approaches that introduce process patterns to provide help for specifying the
formal constraints, for instance, Förster et al. introduce an approach to visualise the modelling of
business process constraints through the Process Pattern Specification Language (PPSL) [F+̈07].
To perform the conformance checking, the corresponding process constraints are further translated
into temporal logics whilst business processes are translated to transition systems by using DMM+
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rules and GROOVE12 (Graphs for Object-Oriented Verification). Janssen et al. present the busi-
ness query patterns to support specification of process requirements, afterwards, these patterns are
translated into LTL formulas, whereas, business processes modelled using Testbed modelling lan-
guage AMBER (Architectural Modelling Box for Enterprise Redesign) that are further translated
into PROMELA for performing verification [Jan+99]. Wasylkowski and Zeller propose the concept
of operational preconditions along with a tool named Tikanga [WZ09]. In the approach, first a
Java program is provided as an input and Kripke structures are derived from them. Then, for each
Kripke structure a set of CTL formulas are derived from user-given templates. Afterwards, these
specifications are generalised into operational preconditions for detecting violations. Despite of
the few attempts to support the specification of requirements or formal constraints using patterns,
these approaches still require a considerable amount of knowledge of formal specifications/patterns.
In particular, these approaches do not eliminate the need for translating the requirements directly
into formal constraints.

In our approach we considered LTL, as its formulas are defined over Kripke structures such that
every state must have at least one successor state. Furthermore, LTL past operators provide a
more concise and intuitive way to reason about previous states and transitions. A major difference
between our approach and existing works is that our approach provides automatic translation of
the high-level input model into formal consistency constraints (i.e., LTL formulas) thus, does not
require the strong knowledge of formal methods.

3.6.4 Formalisations of Activity Diagram

Many attempts have been made to give a formal definition for UML activity diagrams to enable
model checking. For instance, Yang and Zhang present an approach for formalising the UML 1.4
activity diagrams into π-calculus to check the consistency between requirements and business pro-
cesses, modelled using activity diagrams [DS03]. Guelfi and Mammar introduce formal semantics
for activity diagrams enriched with timing aspects and translate them into PROMELA. In this
approach the temporal logics for verification of activity diagrams are specified by the users [GM05].
Eshuis and Wieringa present the formal semantics of UML 1.3 activity diagrams for workflow mod-
els based on STATEMATE semantics (see [HN96]) of statecharts and also introduce data integrity
constraints [EW01]. In [EW02], they also propose a verification approach for verifying workflow
models represented in UML 1.4 activity diagrams. In this approach, first an activity diagram is
converted into an activity hypergraph, then the hypergraph is encoded into a Kripke structure. In
another work [Esh06], Eshuis extends prior work by refining existing translations and introducing
another translation based on the statechart semantics of UML 1.5 to check data integrity con-
straints for an activity diagram and a set of class diagrams. In the translation, the author handles
fork and join nodes as transitions rather than nodes. These approaches tackle UML 1.x semantics

12 http://groove.cs.utwente.nl
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Reference Consistency
Type Model Type UML

Version

Translation
to Formal
Descriptions

Support for
Consistency
Checking

Yeung [Yeu04] horizontal statechart, class diagram UML 1.4 manual -
Van der Straeten et al.
[Str+03]

evolution-
horizontal

statechart, class diagram,
sequence diagram UML 1.5 manual automated

Graaf and Van Deursen
[GD07] horizontal statechart, sequence dia-

gram UML 1.4 semi-automated manual

Amálio et al. [ASP04] horizontal statechart, class diagram,
snapshot diagram − manual automated

Knapp et al. [SKM01;
KMR02] horizontal statechart, collaboration

diagram UML 1.4 semi-automated automated

Lam et al. [LP05] horizontal statechart, sequence dia-
gram UML 2.0 semi-automated automated

Wang et al. [Wan+05] horizontal statechart, sequence dia-
gram UML 1.5 semi-automated automated

Heimdahl et al. [HCW05] horizontal RSML−e − semi-automated automated
Dijkman et al. [DDGBn09;
Dij+11] horizontal process model − semi-automated automated

Bae et al. [Bae+07] horizontal process model − semi-automated automated
Stumptner and Schrefi [SS00] vertical statechart UML 1.3 semi-automated automated

Van der Aalst [Aal02] vertical statechart, activity dia-
gram, sequence diagram UML 1.4 semi-automated automated

Egyed [Egy02]
vertical-
structure
containment

class diagram UML 1.3 automated automated

Arcaini et al. [AGR16] vertical abstract state machine - automated automated
Krings and Leuschel [KL16] vertical - - - automated
Van der Aalst et al.
[AMW06] horizontal process model − manual automated

Van der Aalst et al. [Aal+08] horizontal process model − semi-automated automated

Engels et al. [Eng+08] horizontal activity diagram, visual
contracts UML 2.1 semi-automated automated

Engels et al. [EKG02] horizontal-
vertical

capsule and protocol stat-
echarts UML 1.4 manual automated

Koehler et al. [KTK02] vertical process model − semi-automated automated
Förster et al. [F+̈07] horizontal process model UML 2.0 automated automated
Wasylkowski and Zeller
[WZ09] horizontal Java program − semi-automated automated

Janssen et al. [Jan+99] horizontal process model − automated automated
Martens [Mar05] vertical process model − semi-automated automated

Tsiolakis and Ehrig [TE00] horizontal class diagram, sequence
diagram UML 1.3 manual automated

Yang and Shensheng [DS03] horizontal activity diagram UML 1.4 manual automated

Eshuis and Wieringa [EW01] − class diagram, activity di-
agram UML 1.3 − −

Eshuis [Esh06] horizontal class diagram, activity di-
agram UML 1.5 semi-automated automated

Eshuis and Wieringa [EW02] horizontal activity diagram UML 1.4 semi-automated automated
Guelfi and Mammar [GM05] horizontal activity diagram UML 2.0 manual automated
Lam [Lam08] horizontal activity diagram UML 2.1 manual −
Lam [Lam07] horizontal activity diagram UML 2.1 manual automated

Our Approach
vertical-
behaviour
containment

activity diagram UML
2.4.1 automated automated

Table 3.5: Overview and Comparison of Related Work
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based on statecharts; although activity diagrams and statecharts seem syntactically similar, every
activity diagram cannot be transformed into a statechart [GM05]. Besides that, UML 2 activity
diagrams have different semantics based on Petri nets [Esh06; GM05]. Furthermore, the modelling
capability of UML 2.0 allows unrestricted parallelism, whereas in UML 1.x, the entire state ma-
chine (activity) performed a run-to-completion step. For these reasons the translation of activity
diagrams into formal languages is not considered as feasible and applicable [GM05].

Lam introduces theoretical foundations for specifying and classifying different equivalence notions
of a subset of UML activity diagrams [Lam08]. In [Lam07] the author also provides the semantics
of UML 2 activity diagram into input language of NuSMV model checker to check the correctness
of the activity diagram. In the formalisation activity edges are directly encoded as tokens of typed
boolean variable. The aforementioned approach uses similar concepts for formalisation of activity
diagram, however, comparing to our proposal, it does not provide clear information for dealing
with data.

In our approach, we create a state variable of type boolean in the SMV descriptions (i.e., input
language of NuSMV model checker) for each construct of a UML activity diagram. Similar to
Eshuis and Wieringa’s technique [EW02], we abstract and encode constraints that are associated
with nodes or edges as boolean variables. Compared to these previous works, our formalisation
makes several different choices, such as our treatment of merge and decision nodes. In this research,
we not only focus on a fundamental set of modelling constructs, but also complex structures such
as exception handlers, interruptible activity regions, parameterized tasks, event actions, and loops.
The complex structures are, although highly useful in certain modelling situations to enhance the
maintainability of the overall system, rarely considered in existing other approaches. For instance,
exception handlers and interruptible activity regions can be used to describe exceptional circum-
stances that might occur during the execution of a system [Ler+10], and loops are used for handling
the situations that require certain action(s) to be executed more than once. Our approach is based
on UML 2 activity diagram rather than statechart based semantics. None of these semantics, in
our opinion, achieves the desired simplicity and conceptual clarity of verifying the containment re-
lationship for activity diagrams. They are only useful for verification of activity diagrams against
safety and/or liveness properties such as deadlock freedom. Besides the automated transforma-
tion of the low-level activity diagram into formal SMV descriptions, we consider high-level activity
diagram as an input model which is automatically translated into formal consistency constraints.

Table 3.5 summarises the related works and compares them to our work in the context of model
consistency checking, especially containment checking, activity diagram formalisation, modelling
support and mapping of models into formal descriptions and consistency checking. However, the
details for manually specifying the formal consistency constraints (e.g., rules specified through
Assertions, LTL and CTL etc.) are not presented in this table. The minus (−) symbols in the table
represents the unavailability of information regarding particular activity. The table demonstrates
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that none of the published approaches have considered the containment checking problem for
behaviour models. It might be noted that automatic translation to formal consistency constraints
have also not been considered in existing approaches.

3.7 Summary

This chapter has investigated the problem of containment checking for software behaviour models at
different levels of abstraction in order to improve the quality and correctness of the software system,
which is based on the Research Question RQ2. The containment checking of behaviour models
using formal verification techniques requires both formal descriptions and consistency constraints
of these models. In our approach, on the one hand, automated transformation of high-level UML
activity diagrams into LTL formulas is provided. On the other hand, low-level activity diagrams,
often resulting from various steps of refinement and enriching of the high-level counterparts, are
transformed into formal SMV descriptions. Therefore our automated translation strategy is useful
to bridge the gap between manual specification of formal properties as well as consistency constraint
for containment checking. To illustrate the applicability of the proposed approach, we realized use
case scenarios of loan approval system, itinerary management, CRM fulfilment, billing renewal
system and synthetic larger model; the performance evaluation is also carried out in particular
cases. The evaluation results demonstrate that the proposed approach performs for typical activity
diagram size reasonably well in a typical working environment. Through the evaluation of industrial
scenarios, we also show that automated transformation of activity diagrams into formal constraints
and/or descriptions significantly increases the usability of formal languages in practice. In contrast
to activity diagrams, the sequence diagrams represent different perspectives of a system and have
different semantics. The next chapter will investigate the sequence diagrams in order to support
containment checking throughout the behavioural views of a software system model.



4
Model Checking Based Containment Checking of

UML Sequence Diagrams

This chapter presents a model checking based approach for containment checking between UML
2 sequence diagrams at different levels of abstraction. Previous studies have not adequately ad-
dressed the containment checking problem in sequence diagrams. This problem addresses Research
Question RQ2. Furthermore, the chapter is based on a peer-reviewed conference paper in the pro-
ceedings of the 23rd Asia-Pacific Software Engineering Conference [MTZ16].

4.1 Introduction

In software development process, scenarios are often modelled using sequence diagrams to de-
scribe the interactions among environment (e.g., human beings) and components (aka lifelines)
for analysing the behaviour of software systems. In the course of software system modelling, as
models are created and evolved independently by different stakeholders, inconsistencies among
models often occur. Therefore, it is crucial to detect and fix the inconsistencies at early phases of
the software development process. To address the particular problems, we developed a technique
which allows to automatically check containment consistency of UML 2 sequence diagrams based
on model checking techniques that has not been addressed adequately so far. The idea behind
containment checking is to verify whether the behaviour (or functions) described by the refined
and extended low-level sequence model conforms those specified in the high-level counterpart. It
allows the stakeholders to improve the quality of the complex systems by determining and resolving
the deviations at design phase, before the systems are actually implemented and deployed.

Although, some semantics have been proposed for the verification of sequence diagrams against
safety properties such as deadlock freedom [Stö04; Hau+05; JS15], they do not cover the contain-
ment relationship between sequence diagrams. In this work we therefore provide the efficient and
simpler formalisations of sequence diagrams to track the execution state of an interaction involving
send/receive events of messages and combined fragments without compromising the containment
relationship. Specifically, we introduced a fully automated technique to translate both high-level
and low-level sequence diagrams into temporal logic based constraints (LTL) [Pnu77] and formal
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behaviour descriptions (i.e., symbolic model language (SMV) [Cim+99]), respectively. The model
checker NuSMV is used to verify the containment relationship. If the consistency constraints do not
satisfy formal descriptions then the model checker produces a counterexample as a trace of states.
We have developed a tool to implement all of the techniques and have validated our approach by
detecting inconsistencies in three realistic scenarios.

The chapter is structured as follows: Section 4.2 discusses the model checking based approach for
containment checking of UML sequence diagrams. In Section 4.3 a realistic use case scenario is
described in detail to illustrate our approach along with a performance evaluation of three realistic
scenarios. Finally, Section 4.4 presents related work and Section 4.5 summarises the chapter.

4.2 Containment Checking Approach for UML Sequence Dia-
grams

In this section, we describe our model checking based approach for addressing the problem of
containment checking of UML 2 sequence diagrams. An overview of our approach is presented in
Figure 3.1 located at Chapter 3, consists of the following steps: (i) mapping the high-level sequence
diagram into formal consistency constraints (i.e., LTL formulas), (ii) translating the low-level
sequence diagram into formal SMV descriptions, (iii) verifying whether the generated constraints
and descriptions satisfy the containment relationship using the NuSMV model checker [Cla+96].
The subsequent sections describe the steps involved in our containment checking approach.

4.2.1 Automated Transformation of Sequence Diagrams into LTL and SMV
Descriptions

As the definitions and semantics of UML 2 sequence diagrams are rather informal and ambigu-
ous [Gro11b], we facilitate the automated creation of the formal constrains and descriptions by
defining transformation rules for formally representing constructs of sequence diagrams based on
containment relationship. The main objective is to represent the high-level sequence diagram’s con-
structs and their relationships in an LTL formalism such that the execution order of the interactions
will become the consistency constraints for the corresponding low-level sequence model. Further-
more, the encoding of the low-level sequence diagram in terms of the SMV description language
should provide the foundation to facilitate the verification of the containment relationship.

Our approach takes advantage of the standards that are widely used in industry, such as Eclipse
Papyrus1, which is an Eclipse based open source UML 2 tool. In order to translate the high-level
and low-level sequence diagrams into LTL formulas and SMV descriptions, respectively, we

1See https://www.eclipse.org/papyrus
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Algorithm 4 Mapping UML Sequence Diagram SeqD into SMV Descriptions / LTL
1: procedure Translate(SeqD)
2: Q ← ∅ � Q is the queue of non-visited interactions
3: V ← ∅ � V is the queue of visited interactions
4: Q ← Q ∪ get_lifelines(Lf)
5: for all i ∈ Q do
6: V ← V ∪ {i}
7: Q ← Q \ {i}
8: generate_smv_code(i)/generate_ltl(i)
9: Iinteractions ← get_interactions(i)

10: for all e ∈ Iinteractions do
11: if (e � V ) then
12: Q ← Q ∪ {e}
13: end if
14: end for
15: end for
16: end procedure

leverage the Eclipse Xtend framework2. We achieve the mapping of sequence diagram into
SMV descriptions and LTL formulas using an extended version of the breadth-first search
algorithm as shown in Algorithm 4. In this algorithm, we develop four helper functions, namely,
get_lifelines(), get_interactions(), generate_smv_code() and generate_ltl(). The
function get_lifelines(Lf) returns a set of lifelines. The function get_interactions(i)
extract all interactions i, i.e., messages along with sending and receiving OccurrenceSpecifications
(OSs) covered by lifelines in temporal order, associated CombinedFragments included operands.
An interaction e is called “receiving event” of i “sending event” if there is a link from i to e that
synchronize with the appropriate sending and receiving lifelines.

Algorithm 5 Generating SMV Specifications for an Interaction i of a UML Sequence Diagram
SeqD

1: procedure generate_smv_code(i);
2: extracts interaction information;
3: binds input values and generates SMV descriptions using the following temp-
4: lates:
5: '''
6: VAR
7: «i» : boolean; � State variable declaration
8: ASSIGN
9: init(«i») := «interaction-initial-state»

10: next(«i») := case
11: «incoming-condition(s)» : TRUE;
12: «i» : FALSE;
13: esac;
14: '''
15: end procedure

2See https://eclipse.org/xtend
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The most important function is generate_smv_code(i), which is responsible for generating SMV
descriptions for each interaction of a UML sequence diagram. We illustrate the skeleton of the
function generate_smv_code(i) in Algorithm 5. The pair of triple apostrophes (''') denotes the
string templates used for generating code in the our implementation. For the sake of readability,
we opt to omit the verbosity of the transformation code realized using the Xtend language and use
a pair of guillemots i.e., “«” and “»” to denote the parameterized placeholders that will be bound
to and substituted with the actual values extracted from the low-level input model interactions
by the Xtend engine, as we see in Figure 4.1c. In our formalisations, we map a message and its
sending and receiving OSs (i.e., events) as a tuple 〈Lf, msg, snd/rec〉, where Lf represents the
lifeline that is responsible for sending or receiving messages. msg denotes the message name. snd

and rec represent the sending OS and receiving OS of the corresponding message on a lifeline,
respectively. To represent multiple inputs for an element (i.e., state or event) the logical AND
operator (“&”) is used.

We note that generate_smv_code(i) is not realized as a single function but rather a polymor-
phism of multiple functions. That is, depending on the type of the input interaction i, a par-
ticular function for generating SMV descriptions for that OS or fragment type will be invoked.
This can be achieved in traditional programming languages by using a typical “if/then/else” or
“switch/case” construct. In our prototypical implementation, we leverage the powerful polymor-
phic method invocation technique provided by Xtend3, which is used to realize the transformation
of UML sequence diagram to SMV descriptions. Using this technique, we devise multiple functions
for generating SMV descriptions with respect to the input types. Due to space limitations and
similar technical details we do not discuss generate_ltl(i) function here.

Basic Sequence Diagram A sequence diagram without a CombinedFragment is referred to as
a basic sequence diagram (such as the one in Figure 4.1a). The following rules for sending and
receiving messages must be considered as the semantics of a basic sequence diagram.

• The OSs on the same lifeline must occur in the same order in which they are de-
scribed [Gro11b, p.505].

• “The semantics of a complete message is simply the trace 〈sendEvent, receiveEvent〉”
[Gro11b, p.507]. A receiving OS of a message is enabled for execution if and only if the
sending occurrence of the same message has already occurred [Gro11b, p.507].

• If sending and receiving OSs of the same message are on the same lifeline then the sending
event of a message must exist before its receiving event [Gro11b, p.506].

3See https://eclipse.org/xtend/documentation/202_xtend_classes_members.html
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(a) Basic Sequence Diagram

1. G (Lf1 -> F (Lf1_msg1_asyn_snd1
))

2. F (Lf2_msg3_rep_rec3) -> ((!
Lf2_msg3_rep_rec3) U (
Lf2_msg2_syn_snd2 &
Lf3_msg3_rep_snd3 & wait_rep)
)

3. G ((Lf2_msg3_rep_rec3) & ! (
wait_rep) -> F (
Lf2_msg2_asyn_snd4))

4. F (Lf1_msg4_asyn_rec4) -> ((!
Lf1_msg4_asyn_rec4) U (
Lf2_msg4_asyn_snd4 &
Lf1_msg1_asyn_snd1))

(b) LTL Generation Rules

1 VAR
2 «Lf1_msg1_asyn_snd1» : boolean;
3 «wait_rep» : boolean;
4 ...
5 ASSIGN
6 init(«Lf1») := TRUE;
7 next(«Lf1») := case
8 «Lf1» : FALSE;
9 esac;

10 --sending OS on a lifeline Lf1
11 init(«Lf1_msg1_asyn_snd1») := FALSE;
12 next(«Lf1_msg1_asyn_snd1») := case
13 «Lf1» : TRUE;
14 «Lf1_msg1_asyn_snd1» : FALSE;
15 esac;
16 --receiving OS on a lifeline Lf1
17 init(«Lf1_msg4_asyn_rec4») := FALSE;
18 next(«Lf1_msg4_asyn_rec4») := case
19 «Lf1_msg1_asyn_snd1» & «Lf2_msg4_asyn_snd4» :

TRUE;
20 «Lf1_msg4_asyn_rec4» : FALSE;
21 esac;
22 ...
23 init(«wait_rep») := FALSE;
24 next(«wait_rep») := case
25 «Lf2_msg2_syn_snd2» : TRUE;
26 «wait_rep» : FALSE;
27 esac;
28 --sending OS after receiving reply
29 init(«Lf2_msg4_asyn_snd4») := FALSE;
30 next(«Lf2_msg4_asyn_snd4») := case
31 «Lf2_msg3_rep_rec3» & ! «wait_rep» : TRUE;
32 «Lf2_msg4_asyn_snd4» : FALSE;
33 esac;

(c) SMV Generation Rules

Figure 4.1: Translation of Basic Sequence Diagram

Figure 4.1a shows a basic sequence diagram where msg4_asyn is a message received on the lifeline
Lf1 which is sent from the lifeline Lf2. The receiving OS is only enabled when its sending OS

(snd4) on Lf2 and its prior OS (snd1) on Lf1 have already occurred. The particular receiving
rule is shown in Figure 4.1c (Line 17–21). In case the synchronous message is sent, a condition
wait_rep is used indicating that the OS can not be sent when the lifeline is waiting for the reply
(Line 23–33). Figure 4.1b shows the LTL generation rules for sending OSs of messages msg1 and
msg4, and receiving OSs of messages msg3 and msg4.

Weak Sequencing Combined Fragment The seq interaction operator imposes the order of
the execution of operands associated with the same lifeline with the following constraints [Gro11b,
p.483]:
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• The ordering of events (i.e., OSs) within each of the operands are maintained.

• OSs on different lifelines from different operands may execute in any order.

• OSs on the same lifeline from different operands are ordered such that an OS of the first
operand comes before that of the second operand.

(a) Weak Sequencing Example

1. G (seq -> F opd1) & G (opd1 ->
F opd2)

2. G (opd1 -> F (Lf1_msg1_snd1))
3. G (Lf1_msg1_snd1 -> F (

Lf1_msg2_snd2))
4. G ((opd2 & Lf1_msg2_snd2) -> F

(Lf1_msg3_snd3))
5. F (Lf2_msg3_rec3) -> ((!

Lf2_msg3_rec3) U (
Lf1_msg3_snd3 & opd2 &
Lf2_msg2_rec2))

(b) LTL Generation Rules

1 ASSIGN
2 ...
3 init(«opd1») := FALSE;
4 next(«opd1») := case
5 «seq» : TRUE;
6 «opd1» : FALSE;
7 esac;
8 --OSs in the first operand on Lf1
9 init(«Lf1_msg1_snd1») := FALSE;

10 next(«Lf1_msg1_snd1») := case
11 «opd1» : TRUE;
12 «Lf1_msg1_snd1» : FALSE;
13 esac;
14 init(«Lf1_msg2_snd2») := FALSE;
15 next(«Lf1_msg2_snd2») := case
16 «Lf1_msg1_snd1» : TRUE;
17 «Lf1_msg2_snd2» : FALSE;
18 esac;
19 init(«opd2») := FALSE;
20 next(«opd2») := case
21 «opd1» : TRUE;
22 «opd2» : FALSE;
23 esac;
24 --OS in the second operand on Lf1
25 init(«Lf1_msg3_snd3») := FALSE;
26 next(«Lf1_msg3_snd3») := case
27 «opd2» & «Lf1_msg2_snd2» : TRUE;
28 «Lf1_msg3_snd3» : FALSE;
29 esac;

(c) SMV Generation Rules

Figure 4.2: Translation of Weak Sequencing Combined Fragment

Figure 4.2a shows an example of a Weak Sequencing combined fragment. Figure 4.2c illustrates
the rules for mapping a Weak Sequencing combined fragment into SMV descriptions. The com-
bined fragment, corresponding operands, each of its covered lifelines, and OSs are mapped into
state variables. The choice of the order of OSs is made using a “case/esac” construct. For in-
stance, the sending OS of a message msg3 on a lifeline Lf1 within the second operand opd2 (i.e.,
Lf1_msg3_snd3) cannot occur until the last OS of the first operand opd1 on the same lifeline (i.e.,
Lf1_msg2_snd2) completes its execution (Line 25–29). Figure 4.2b shows the LTL generation rules
for sending messages within both operands on a lifeline Lf1 (Line 2–4) and receiving a message
within a second operand on a lifeline Lf2 (Line 5).
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Strict Sequencing Combined Fragment The semantics of Strict Sequencing (i.e., strict in-
teraction operator) imposes the total order between adjacent operands. It contains a stronger
version of the second rule introduced for Weak Sequencing, in particular, OSs on different lifelines
from different operands have strict order of execution [Gro11b, p.483]. In other words, the first OS

in a succeeding operand cannot be enabled until all the OSs on all the covered lifelines within the
preceding operand have completed. Any covered lifeline needs to wait for other lifelines to enter
the second or subsequent operand. For instance, sending OS of a message msg3 within the second
operand covered by a lifeline Lf1 will not be executed until the last OS that is rec2 within a first
operand on a lifeline Lf3 finishes its execution, as shown in Figure 4.3c (Line 15–19). Figure 4.3b
shows LTL generation rules for the Strict Sequencing.

(a) Strict Sequencing Example

1. G (opd1 -> F (Lf1_msg1_snd1))
2. F (Lf3_msg2_rec2) -> ((!

Lf3_msg2_rec2) U (Lf2_msg2_snd2
))

3. G ((Lf1_msg1_snd1 &
Lf3_msg2_rec2 & opd2) -> F (
Lf1_msg3_snd3))

(b) LTL Generation Rules

1 ASSIGN
2 ...--OSs within the first operand
3 init(«Lf1_msg1_snd1») := FALSE;
4 next(«Lf1_msg1_snd1») := case
5 «opd1» : TRUE;
6 «Lf1_msg1_snd1» : FALSE;
7 esac;
8 ...
9 init(«Lf3_msg2_rec2») := FALSE;

10 next(«Lf3_msg2_rec2») := case
11 «Lf2_msg2_snd2» : TRUE;
12 «Lf3_msg2_rec2» : FALSE;
13 esac;
14 --the first OS within the second operand
15 init(«Lf1_msg3_snd3») := FALSE;
16 next(«Lf1_msg3_snd3») := case
17 «Lf3_msg2_rec2» & «Lf1_msg1_snd1» & «opd2»

: TRUE;
18 «L1_msg2_snd2» : FALSE;
19 esac;

(c) SMV Generation Rules

Figure 4.3: Translation of Strict Sequencing Combined Fragment

Alternatives In the UML 2 specification [Gro11b, p.482], an Alternative combined fragment
describes a branching operation in a sequence diagram. The alt operator of the combined fragment
represents a choice of behaviour where at most one of the operands will be selected whose interaction
constraint (guard condition) evaluates to True (i.e., an if-then-else statement). The else guard is
the negation of the disjunction of all other constraints in the enclosing combined fragment. If none
of the operands has a guard that evaluates to True, none of the operands will be executed and the
remainder of the enclosing InteractionFragment will be performed.

Figure 4.4a shows an example of an Alternative combined fragment, whose guard is encoded as
a boolean variable. If the guard of the first operand evaluates to True, the OSs enclosed within
the first operand are executed, otherwise the whole operand is skipped. We introduce a temporary
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(a) Alternatives Example

1. G (alt -> F ((opd1 xor ... xor
opdn) xor ! (opd1 & ... & opdn))
)

2. G (opd1 & guard_1 -> F (
Lf1_msg1_snd1))

3. F (Lf2_msg1_rec1) -> ((!
Lf2_msg1_rec1) U (Lf1_msg1_snd1
& guard_1))

4. G (opdn & else -> F (
Lf1_msgn_sndn))

5. F (Lf2_msgn_recn) -> ((!
Lf2_msgn_recn) U (Lf1_msgn_sndn
& else))

(b) LTL Generation Rules

1 VAR
2 «guard_1» : boolean;
3 ... -- temporary variable
4 «post_alt_i» : {undetermined, «ch_opd1»,..., «

ch_opdn»};
5 ASSIGN
6 ...
7 init(«post_alt_i») := undetermined;
8 next(«post_alt_i») := case
9 «alt» & «guard_1» : «ch_opd1»;

10 ...
11 «alt» & «else» : «ch_opdn»;
12 TRUE : undetermined;
13 esac;
14 --the first operand
15 init(«opd1») := FALSE;
16 next(«opd1») := case
17 «post_alt_i» = «ch_opd1» : TRUE;
18 «opd1» : FALSE;
19 esac;
20 init(«Lf1_msg1_snd1») := FALSE;
21 next(«Lf1_msg1_snd1») := case
22 «opd1» : TRUE;
23 «Lf1_msg1_snd1» : FALSE;
24 esac;
25 ... --the nth operand
26 init(«opdn») := FALSE;
27 next(«opdn») := case
28 «post_alt_i» = «ch_opdn» : TRUE;
29 «opdn» : FALSE;
30 esac;
31 init(«Lf1_msgn_sndn») := FALSE;
32 next(«Lf1_msgn_sndn») := case
33 «opd2» : TRUE;
34 «Lf1_msgn_sndn» : FALSE;
35 esac;

(c) SMV Generation Rules

Figure 4.4: Translation of Alternative Combined Fragment

variable, namely, post_alt_i (i is an incrementally generated number) for exclusively choosing
one of many alternative operands. The variable post_alt_i has an enumerated type including a
normal state “undetermined” and the values corresponding to the operands (Line 4). The choice
among alternatives is made using a “case/esac” construct as shown in Figure 4.4c (Line 7–13).
The LTL generation rules for the alt operator enumerate all possible choices of executions; that is,
only OSs of one of the operands, whose guard evaluates to True, will happen, as shown in Figure
4.4b.

Parallel Combined Fragment A Parallel combined fragment is denoted by an interaction oper-
ator par which defines potentially parallel merge execution of behaviours of the operands [Gro11b,
p.483]. The OSs of different operands can be interleaved in any way as long as the ordering imposed
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(a) Parallel Combined Fragment

1. G (par -> F (opd1 & opd2))
2. G (Lf1_msg1_snd1 & opd1 -> F (

Lf1_msg2_snd2)) & G (
Lf1_msg1_snd1 & opd2 -> F (
Lf1_msg3_snd3))

3. F (Lf2_msg2_rec2) -> ((!
Lf2_msg2_rec2) U (Lf2_msg1_rec1
& Lf1_msg2_snd2)) & F (
Lf2_msg3_rec3) -> ((!
Lf2_msg3_rec3) U (Lf2_msg1_rec1
& Lf1_msg3_snd3))

(b) LTL Generation Rules

1 ASSIGN
2 ...
3 init(«Lf1_msg1_snd1») := TRUE;
4 next(«Lf1_msg1_snd1») := case
5 «Lf1» : TRUE;
6 «Lf1_msg1_snd1» : FALSE;
7 esac;
8 ... --the first operand on Lf1
9 init(«opd1») := TRUE;

10 next(«opd1») := case
11 «par» : TRUE;
12 «opd1» : FALSE;
13 esac;
14 init(«Lf1_msg2_snd2») := FALSE;
15 next(«Lf1_msg2_snd2») := case
16 «opd1» & «Lf1_msg1_snd1» : TRUE;
17 «Lf1_msg2_snd2» : FALSE;
18 esac;
19 --the second operand on Lf1
20 init(«opd2») := TRUE;
21 next(«opd2») := case
22 «par» : TRUE;
23 «opd2» : FALSE;
24 esac;
25 init(«Lf1_msg3_snd3») := FALSE;
26 next(«Lf1_msg3_snd3») := case
27 «opd2» & «Lf1_msg1_snd1» : TRUE;
28 «Lf1_msg3_snd3» : FALSE;
29 esac;

(c) SMV Generation Rules

Figure 4.5: Translation of Parallel Combined Fragment

by each operand is preserved. In other words, OSs of messages within the same operand respect
the order along a lifeline whilst OSs of messages on the same lifeline from different operands are
ordered such that the first message occurrence of the operands has the same preceding OS. Figure
4.5c shows the translation of a Parallel combined fragment into SMV descriptions where a sending
OS of a message msg1 (Lf1_msg1_snd1) on a lifeline Lf1 leads to the execution of sending OSs

of messages in both operands (i.e., Lf1_msg2_snd2 and Lf1_msg3_snd3). LTL generation rules for
Parallel combined fragments for the covered lifelines Lf1 and Lf2 are presented in Figure 4.5b.

Loop Combined Fragment Describing Loop combined fragments in terms of state-based formal
specifications like SMV is a very challenging task. The interaction operator loop defines that its
sole operand will be repeated for at-least the minimum (minint) number of times and at-most
maximum (maxint) number of times as long as the guard condition remains True [Gro11b, p.485].
If the loop has no bounds, this means that an indefinite loop (with minint = 0 and maxint =
infinite) is executed, which can cause a state space explosion for model checking. However, it is
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unrealistic for most loops that they really execute indefinitely, and therefore, we assume that loops
will eventually stop.

(a) Loop Combined Fragment

1. G ((cond & counter < 2) -> F opd
)

2. G (opd -> F (Lf1_msg1_snd1))
3. F (Lf2_msg1_rec1) -> ((!

Lf2_msg1_rec1) U (Lf1_msg1_snd1
))

(b) LTL Mapping Rules

1 VAR
2 «counter» : «0..2»;
3 ...
4 ASSIGN
5 init(«cond») := {TRUE, FALSE};
6 init(«counter»):= ((0));
7 next(«counter»):= case
8 «Lf2_msg1_rec1» & («counter» >= 0) & («

counter» < 2) : «counter» +1;
9 («counter» >= 2) : «counter»;

10 TRUE : «counter»;
11 esac;
12 init(«opd») := FALSE;
13 next(«opd») := case
14 «counter» < 2 & «cond» : TRUE;
15 «opd» : FALSE;
16 esac;
17 init(«Lf1_msg1_snd1») := FALSE;
18 next(«Lf1_msg1_snd1») := case
19 «opd» : TRUE;
20 «Lf1_msg1_snd1» : FALSE;
21 esac;
22 init(«Lf2_msg1_rec1») := FALSE;
23 next(«Lf2_msg1_rec1») := case
24 «Lf1_msg1_snd1» : TRUE;
25 «Lf2_msg1_rec1» : FALSE;
26 esac;

(c) SMV Generation Rules

Figure 4.6: Translation of Loop Combined Fragment

Figure 4.6a shows an example of a Loop combined fragment having minint = 0 and maxint = 2.
To deal with Loop combined fragments, we initialize the control variable, namely counter, which
is 0 initially (i.e., equal to minint). After the end of the current iteration, the counter is increased
by one at the beginning of the next iteration shown in Figure 4.6c (Line 8). Furthermore, the loop
condition and counter are checked at the beginning of each iteration (Line 5–11). If the condition
is evaluated to False or counter is greater or equals to maxint, a new iteration cannot start and
execution of the loop will terminate. The OSs of all the messages within the operand among
iterations execute sequentially along a lifeline. Figure 4.6b presents the LTL generation rules for
the Loop fragment.

Option Combined Fragment The interaction operator opt designates that the combined frag-
ment represents a branching operation (i.e., a simple if-then statement) in a sequence diagram where
either the (sole) operand executes or nothing happens [Gro11b, p.483]. The Option combined frag-
ment is semantically similar to an Alternative combined fragment, except that it has one operand
with non-empty content and there is no else guard. If the guard condition evaluates to True, all
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the OSs of messages within an enclosing Option combined fragment take place. Otherwise, the
Option combined fragment is excluded, and its succeeding messages will be executed. Figure 4.7c
illustrates the rules for mapping an Option combined fragment into SMV descriptions correspond-
ing to the lifeline Lf1; whereas Figure 4.7b shows the LTL-based translation rules for the diagram
in Figure 4.7a.

(a) Option Combined Fragment

1. G (opt -> F (opd1)) & G (opd1 &
guard -> F (Lf1_msg1_snd1))

2. F (Lf2_msg1_rec1) -> ((!
Lf2_msg1_rec1) U (Lf1_msg1_snd1 &
guard))

3. G (Lf1 | Lf1_msg1_snd1 -> F (
Lf1_msg2_snd2))

4. F (Lf2_msg2_rec2) -> ((!
Lf2_msg2_rec2) U (Lf2 &
Lf1_msg2_snd2))

(b) LTL Transformation Rules

1 ASSIGN
2 ... -- the initializations of guard is omitted
3 init(«opd1») := FALSE;
4 next(«opd1») := case
5 «opt» : TRUE;
6 «opd1» : FALSE;
7 esac;
8 init(«Lf1_msg1_snd1») := FALSE;
9 next(«Lf1_msg1_snd1») := case

10 «opd1» & «guard» : TRUE;
11 «Lf1_msg1_snd1» : FALSE;
12 esac;
13 ... --the remainder occurrences
14 init(«Lf1_msg2_snd2») := FALSE;
15 next(«Lf1_msg2_snd2») := case
16 «Lf1» | «Lf1_msg1_snd1» : TRUE;
17 «Lf1_msg2_snd2» : FALSE;
18 esac;
19 init(«Lf2_msg2_rec2») := FALSE;
20 next(«Lf2_msg2_rec2») := case
21 «Lf2» & «Lf1_msg2_snd2» : TRUE;
22 «Lf2_msg2_rec2» : FALSE;
23 esac;

(c) SMV Generation Rules

Figure 4.7: Translation of Option Combined Fragment

Break Combined Fragment The interaction operator break represents a breaking scenario
in the sense that if the interaction constraint (guard condition) evaluates to True its sole operand
executes [Gro11b, p.483]. When the constraint evaluates to False, the break operand will be
ignored and the remainder of the enclosing InteractionFragment will be performed. Figure 4.8a
shows an example of a break combined fragment in which guard is encoded as a boolean variable.
If the guard of the break operand evaluates to True, the OSs enclosed within the break operand
are executed, otherwise the whole operand is skipped. The constraint after the break operand
is the negation of the break operand’s constraint (i.e., !guard is True). Figure 4.8c and Figure
4.8b illustrate the rules for mapping a Break combined fragment into SMV descriptions and LTL
formulas, respectively.

Ignore and Consider Combined Fragments The interaction operator ignore defines that
there is a set of messages that needs to be ignored within the combined fragment [Gro11b, p.487].
Conversely, the interaction operator consider specifies a set of messages that are to be considered
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(a) Break Combined Fragment

1. G (break -> F (opd1)) & G (opd1
& guard -> F (Lf1_msg1_snd1))

2. F (Lf2_msg1_rec1) -> ((!
Lf2_msg1_rec1) U (Lf1_msg1_snd1
& guard))

3. G (! guard -> F (Lf1_msg2_snd2))
4. F (Lf2_msg2_rec2) -> ((!

Lf2_msg2_rec2) U (! guard &
Lf1_msg2_snd2))

(b) LTL Generation Rules

1 ASSIGN
2 ... -- the initializations of guard is omitted
3 init(«opd1») := FALSE;
4 next(«opd1») := case
5 «break» : TRUE;
6 «opd1» : FALSE;
7 esac;
8 init(«Lf1_msg1_snd1») := FALSE;
9 next(«Lf1_msg1_snd1») := case

10 «opd1» & «guard» : TRUE;
11 «Lf1_msg1_snd1» : FALSE;
12 esac;
13 ... --the remainder occurrences
14 init(«Lf1_msg2_snd2») := FALSE;
15 next(«Lf1_msg2_snd2») := case
16 ! «guard» : TRUE;
17 «Lf1_msg2_snd2» : FALSE;
18 esac;
19 init(«Lf2_msg2_rec2») := FALSE;
20 next(«Lf2_msg2_rec2») := case
21 ! «guard» & «Lf1_msg2_snd2» : TRUE;
22 «Lf2_msg2_rec2» : FALSE;
23 esac;

(c) SMV Generation Rules

Figure 4.8: Translation of Break Combined Fragment

within the combined fragment; all other messages are ignored. Due to space limitations and similar
technical details, the mapping rules for Ignore and Consider combined fragments into LTL and SMV
descriptions are omitted.

4.2.2 Checking Containment between Sequence Diagrams via NuSMV

The main goal of this chapter is to assess whether the “execution” of the low-level model includes
the “execution” prescribed in the high-level model (in the same order of executed elements). More
specifically, containment checking for sequence diagrams aims to verify whether the elements and
structures of a high-level sequence diagram (e.g., lifelines, sending and receiving events of messages
and combined fragments) correspond to those of a refined and extended low-level sequence diagram.
In this research, containment checking is achieved by utilizing the NuSMV model checker. NuSMV
takes as inputs the generated SMV descriptions and LTL formulas, and exhaustively explore all
executions of the SMV descriptions by traversing the complete state space to determine whether
the temporal logic properties hold. In case the SMV descriptions satisfy the LTL formulas, this
implies that the behaviour described in the high-level sequence diagram is contained in the low-
level sequence diagram’s behaviour. Otherwise, the low-level sequence diagram deviates improperly
from the high-level counterpart. In this case, NuSMV will generate a counterexample that consists
of the execution traces of the SMV descriptions leading to the violation.
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4.3 Evaluation

4.3.1 ATM System Scenario

This section presents a realistic scenario, namely, the Automated Teller Machine (ATM) to validate
whether the proposed approach helps identifying containment inconsistencies in UML sequence
diagrams. The high-level representation of the ATM system in terms of a UML sequence diagram
is shown in Figure 4.9. For performing the containment checking first the high-level sequence
diagram of the ATM system is automatically translated into LTL formulas. Afterwards, the low-
level ATM system–a refined version of the high-level model (see Figure 4.10) is automatically
converted into SMV descriptions using our translation tool. Finally, the containment checking is
achieved by using the NuSMV model checker.

Figure 4.9: High-Level Sequence Diagram of ATM System

Listing 4.1 shows an excerpt of a violation trace generated by NuSMV including the list of satisfied
and unsatisfied LTL formulas, i.e., a counterexample. By looking at the violation reported as a
counterexample, we found that LTL formulas “G (User_DisplayInvalidPIN_Rec8 -> F ATM_TryAgain_Sn

-d9)” and “(F User_TryAgain_Rec9 -> (!User_TryAgain_Rec9 U (ATM_TryAgain_Snd9 & User_DisplayInvalid

-PIN_Rec8)))” are violated. This means that this sequence of formal properties specified by the
high-level ATM system is not contained in its low-level counterpart. After the generation of the
counterexample, it is important to analyse the generated counterexample to find the actual source
of the inconsistency and correct the responsible elements in the sequence diagram.
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Figure 4.10: Low-Level Sequence Diagram of ATM System

4.3.2 Performance Evaluation

The main idea behind our performance evaluation is to validate whether the proposed approach
provides considerable support for typical models used in real-world settings. The performance
evaluation is conducted on a regular computer equipped with an 2.6 GHz i5 processor and 8GB of
memory using NuSMV 2.5.4 running under Windows 8. In addition to the Automated Teller Ma-
chine (ATM) system presented in Section 4.3.1, we perform the evaluation on two other industrial
scenarios with different sizes and complexity, in particular, Order Processing (OP) and Itinerary
Management (IM), adapted from our previous projects in e-business domain [Tra+12]. The re-
ported times include model loading, generating and verification of models measured in milliseconds.
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$ NuSMV ATM.smv
...
-- specification G ((PIN_invalid & max < 2) -> F opd5) is true
-- specification G (opd5 -> F ATM_DisplayInvalidPIN_Snd8) is true
-- specification (F User_DisplayInvalidPIN_Rec8 -> (!User_DisplayInvalidPIN_Rec8 U

ATM_DisplayInvalidPIN_Snd8)) is true
-- specification G (ATM_DisplayInvalidPIN_Snd8 -> F ATM_TryAgain_Snd9) is false
-- as demonstrated by the following execution sequence
Trace Description: LTL Counterexample
Trace Type: Counterexample
-- Loop starts here
-> State: 1.1 <-
User = FALSE
ATM = FALSE
Bank = FALSE
-- specification (F User_TryAgain_Rec9 -> (!User_TryAgain_Rec9 U (ATM_TryAgain_Snd9 &

User_DisplayInvalidPIN_Rec8))) is false
-- as demonstrated by the following execution sequence
Trace Description: LTL Counterexample
Trace Type: Counterexample
-- Loop starts here
-> State: 2.1 <-
User = FALSE
...

Listing 4.1: NuSMV Containment Checking Result

Table 4.1 shows the complexity of the input sequence diagrams (HL = high-level model, LL = low-
level model) with respect to their elements including OSs of messages, interaction operators and
operands, and covered lifelines.

Table 4.1: Model Size and Translation Time of UML Sequence Diagrams

Table 4.2 shows the total execution time of three models, reachable states and violated formulas.
The evaluation results indicate that the containment checking time spent by NuSMV for the
ATM system is longer than for the Itinerary management and Order processing. This is the
case because NuSMV found inconsistencies between the formal descriptions of the low-level model
and LTL formulas of the high-level model and thus NuSMV needed to generate a counterexample
for two violated LTL formulas. The evaluation results demonstrate that our approach efficiently
translates sequence diagrams into formal descriptions and consistency constraints for supporting
containment checking. In particular, all realistic scenarios are handled in a total time around a
second which is quite reasonable for practical purposes. Our analysis and evaluation results based
on the aforementioned use case scenarios show the feasibility of our approach for larger realistic
scenarios.
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Table 4.2: Performance Evaluation Results for UML Sequence Diagrams

4.4 Related Work

Some attempts have been made to give a formal definition for UML sequence diagrams to enable
model checking. For instance, Alawneh et al. introduce a unified paradigm to verify and vali-
date prominent diagrams, including sequence diagrams, using NuSMV [Ala+06]. The proposed
semantics is not in full accordance with the standard semantics specified in UML 2 due to the
lack of send and receive events. Moreover, the approach only supports alternatives and paral-
lel combined fragments. Störrle [Stö04] proposes the semantics for sequence diagrams in terms
of the set of valid and invalid traces for “plain InteractionFragments”, i.e., ones without com-
bined fragments. Haugen et al. present the formal semantics of sequence diagram through an
approach named STAIRS [Hau+05]. STAIRS focuses on the refinement for interactions, as a tu-
ple 〈action, sender, receiver, messagename〉. However, this notation cannot describe the order of
occurrences, where same message appears twice on the same lifelines. In contrast our work con-
siders that each OS is unique within a sequence diagram. The aforementioned approaches have
ignored the guard conditions, which compromises soundness of containment reasoning. Lima et
al. provide a tool to translate sequence diagrams into PROMELA and verify using SPIN model
checker [Lim+09]. Their translation does not support strict sequencing, consider and ignore com-
bined fragments, as well as synchronous messages. Leue et al. translate the Message Sequence
Charts (MSCs), especially branching and iteration of high-level MSC into PROMELA to verify
MSCs using the XSPIN tool [LL96]. Jacobs and Simpson present the translation of sequence dia-
gram into process algebra CSP to investigate whether a potential design meets its description using
FDR refinement checker [JS15]. None of these semantics, in our opinion, achieves the simplicity
and conceptual clarity of verifying the containment relationship for sequence diagrams. They are
only useful for verification of sequence diagrams against safety properties such as deadlock freedom.

4.5 Summary

This chapter addressed the Research Question RQ2. It presents a model checking based approach
to automatically detect containment inconsistencies between UML 2 sequence diagrams at different
levels of abstraction in order to improve the system’s quality. To this end, we proposed a transla-
tion technique for automated generation of consistency constraints (i.e., LTL formulas) and SMV



Chapter 4. Containment Checking of UML Sequence Diagrams 107

descriptions from high-level and low-level sequence diagrams, respectively. The NuSMV model
checker is employed for verifying containment relationship. In order to illustrate the applicability
of the proposed approach, we realized realistic scenarios from various domains and also evaluated
the performance our approach in these cases. The next chapter will investigate the containment
checking problem between global and local choreography models.





5
Model Checking Based Containment Checking of

Service Choreographies

This chapter presents a model checking based approach for containment checking between service
choreography models at different levels of abstraction, in order to improve the quality and correct-
ness of the service oriented systems. To date, however, previous studies have not considered the
containment relationship between global and local choreography models. This problem addresses
Research Questions RQ2 and RQ3. The chapter is based on a peer-reviewed conference paper in
the proceedings of the 14th IEEE International Conference on Services Computing [Mur+17].

5.1 Introduction

In choreography-based service-oriented systems, a typical design and development scenario is that
the global model (aka interaction model) is created by business analysts to agree on interaction
scenarios from a global perspective. The global model will then be refined during detailed design
phase into the public visible behaviour and hence forms a local choreography model (aka inter-
connection model) of each participant. The local choreography model shows an abstraction of
orchestration internal actions/activities. The local choreography models often deviate from the
global model due to the involvement of different stakeholders and independent evolutions. Hence,
detecting model inconsistencies in early phases of the service development life cycle is crucial to
eliminate as many anomalies as possible before service-oriented systems are actually implemented
and deployed.

The literature discusses two possible ways to alleviate such problems: (i) the local models (i.e.,
representing implementation of individual services) can be generated from the global model (i.e.
public view) [DW07; Zah+06]; (ii) the global and orchestration models can be created separately
and then checked against each other [Bus+06; Fos+05; Yeu07]. The former strategy, although
helpful to certain extent, did not prevent the overriding of manual changes that are made to
complete the models. The later strategy focuses on the assessment of model inconsistencies that
require formal descriptions and consistency constraints of the models. However, it is a challenging
task to accurately and correctly express such formal descriptions and consistency constraints due to

109
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the substantial amount of knowledge and specialized training required for the underlying formalisms
and formal techniques.

In this chapter, we proposed a containment checking approach that verifies whether the behaviour
(or interactions) described in the local choreography models collectively encompasses those specified
in the global model. This improves the quality and correctness of the service oriented systems. To
date, however, previous studies have not considered the containment relationship between global
and local choreography models. Specifically, we have performed automated translation of global
choreography model into temporal logic based consistency constraints (i.e. LTL) [Pnu77] and local
choreography models into formal behaviour descriptions (i.e., SMV language); whereas the NuSMV
model checker [Cim+99; Cla+96] is used for verification. This way, our approach helps to alleviate
the burden of manually encoding consistency constraints, and therefore, increase productivity
and avoid potential translation errors. Moreover, we investigated the performance of the proposed
approach on use case scenarios of ATM machine, travel booking and order processing systems. This
is done to ensure whether the stakeholders are supported to verify the containment relationship
during their development tasks.

The rest of this chapter is organized as follows: Section 5.2 motivates the necessity of containment
checking in service choreographies and explains a running example modelled using business process
model and notation (BPMN) diagrams. Section 5.3 describes a novel approach for assessment of
containment violations in service choreographies. Section 5.4 describes the performance evaluation
of the proposed approach. Section 5.5 presents the related work. Finally, Section 5.6 summarises
the chapter.

5.2 Motivation and Running Example

Service choreography is a set of interrelated service interactions at the high-level of abstraction,
which represents message exchanges, interaction rules and agreements between web service part-
ners. Figure 5.1 shows a global model of the Travel Booking application modelled using the BPMN
2.0 choreography notation [Gro11a]. The sender and receiver of a message are collapsed into one
choreography activity; the unshaded and gray shaded bands represent the sender (initiating par-
ticipant) and the receiver (non-initiating participant) of a message, respectively. The collaboration
in travel booking choreography process involves six partners/participants, namely traveller, travel
agency, acquirer, airline, hotel and rent a car agencies. More specifically, the process starts when
a traveller sends an itinerary request to the travel agency which, in turn, contacts the acquirer for
validation of a credit card. If the traveller has enough credit, then approval is sent to the travel
agency that further triggers airline, hotel and rent a car partners. Accordingly, the purchase con-
firmation, reservation confirmation and vehicle assign are sent. Otherwise, the traveller is informed
about unauthorized credit card.
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Figure 5.1: Travel Booking System: Global Choreography Model

The local choreography models of all participants (i.e., pools) involved in the travel booking system
are shown in Figure 5.2. The message flow indicates the exchange of a message between two
participants; whereas the sequence flow reflects the order in which activities are performed within
a pool. It is crucial to sequence the choreography activities in such a way that the participants
involved in the service choreography know when they are responsible for initiating the interactions.
For instance, the BookingRequest and CreditDetails messages in the global model meant to
be received in a sequential order (i.e., CreditDetails message follows BookingRequest message), as
shown in Figure 5.1. However, the local model of the travel agency participant shown in Figure
5.2 specifies that the CreditDetails message precedes BookingRequest message. Furthermore,
the sequential order of PurchaseConfirmation and e-Ticket messages is replaced by the parallel
order using fork and join in the local choreography models, in particularly travel agency and
airline. Please note that the containment checking not only deals with the missing participant
or interaction but also misplacement of elements among the models. The undesired containment
violations would cause severe problems; for example, improper identification of services and their
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Figure 5.2: Travel Booking System: Local Choreography Models

corresponding service providers, and therefore affect the delivery of services. In order to eliminate
such problems, containment checking shall be performed.

5.3 Approach

In this section, we address the problem of checking whether the message exchange behaviour (or
interactions) described in the joint local choreography models encompasses those specified in the
global model. Formally, the containment relationship between service choreographies is defined in
such a way that (GCM �→ LTL) ≺ (LCMi = (LCM1...LCMn) �→ SMV ), where GCM denotes
the global choreography model that is mapped to LTL formulas and LCMi denotes a joint set
of local choreography models that is mapped to SMV descriptions. Note that a symbolic model



Chapter 5. Model Checking Based Containment Checking of Service Choreographies 113

checker named NuSMV [Cim+99] is used to verify the containment relationship between generated
constraints and descriptions. If the generated formal descriptions of the local choreography models
do not satisfy certain constraints generated from the global choreography model, then counterex-
amples are produced by the NuSMV model checker. An overview of our approach is shown in
Figure 5.3. In the following sections, we describe each steps of our approach.

Figure 5.3: Overview of the Containment Checking Approach

5.3.1 Generating LTL Constraints from Global Choreography Model

The section is concerned with the automated transformation of global choreography model (GCM)
into formal consistency constraints. From the containment checking perspective, the control flow
relations between choreographic activities or interactions need to be represented in an appropriate
formalism so that the execution order of interactions will become the consistency constraints for
all local choreography models. In this context, a certain execution path is derived from the global
model for describing the temporal relationships among the elements (e.g., choreography tasks,
senders and receivers of the interactions, and guard conditions) using Linear Temporal Logic (LTL)
[Pnu77].

This research focuses on both future and past temporal operators because LTL with past operators
is exponentially more succinct than its future-only counterpart [LMS02]. The exclusive decision
and merge gateways are implemented as “(a∧¬b)∨(¬a∧b)” instead of using logical “xor” operator.
This is because, xor operator yields true not only when one of its operands is true but also when
the odd numbers (i.e., n ≥ 3) of the operands are true [PH08]. The generated formulas for
different path constructs i.e., fork and join are enclosed by the G and H operators to express that
all possible execution scenarios of the formulas are satisfied.

The construction of LTL formulas for containment checking is a highly knowledge intensive en-
deavour. In this context, the LTL-based transformation rules are defined to formally represent
the constructs of BPMN 2.0 choreography model. Therefore, the input GCM is automatically
translated into corresponding LTL formulas using the LTL-based transformation rules. In our
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Algorithm 6 Translate Global Choreography Model GCM into LTL Formulas
1: procedure Translate(GCM)
2: Q ← ∅ � Q is the queue of non-visited interactions
3: V ← ∅ � V is the queue of visited interactions
4: Q ← Q ∪ get_start_events(e)
5: for all i ∈ Q do
6: V ← V ∪ {i}
7: Q ← Q \ {i}
8: generate_ltl_code(i)
9: Isucceding_interactions ← get_interaction(i)

10: for all j ∈ Isucceding_interactions do
11: if (j � V ) then
12: Q ← Q ∪ {j}
13: end if
14: end for
15: end for
16: extracts interaction information;
17: binds input values and generates ltl formulas using the following templates:
18: for all (1 ≥ i ≥ j) do
19: if i ∈ AND − Split ∧ j ∈ Isucceding_interactions_snd then
20: '''
21: (LTLSPEC G(«i» -> F «j» & «j») & H(«j» & «j» -> O «i»))
22: '''
23: end if
24: end for
25: for all (i ≥ 0) ∧ V ← V ∪ {i} do
26: if i ∈ AND − Join ∧ i ∈ Ipreceding_interactions_rec then
27: '''
28: (LTLSPEC G(«i» & «i» -> F «j») & H(«j» -> O «i» & «i»))
29: '''
30: end if
31: end for
32: end procedure

formalisation, we map a choreography interaction as a 3-tuple 〈participant_name, msg, snd/rec〉;
where (i) participant_name indicates the corresponding participant; (ii) msg represents a message
that describes communication contents between two participants; and (iii) snd and rec describe
the sending and receiving actions of the corresponding message, respectively. However, the initi-
ating participants of the choreography activities must have been involved in the previous activity
(excluding first activity).

The Eclipse Xtend1 framework is leveraged to translate the GCM into LTL formulas. Specifically,
the breadth-first search algorithm is extended with three helper functions, namely get_events(e),
get_interaction(i) and generate_ltl_code(i), as shown in Algorithm 6. The function
get_events(e) returns a set of start events. A start event indicates the starting point of a

1See https://eclipse.org/xtend
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BPMN Choreography Modelling Notation LTL-Based Transformation
Rules

Sequence: (i) The sending action of
a choreography task must exist before
its receiving action. (ii) The initiator
of a choreography task (excluding first
activity) can not send a message to the
receiver until it has received the prior
message.

1) G (ParticipantA_Task1_Snd ->
F (ParticipantB_Task1_Rec)) & H
(ParticipantB_Task1_Rec -> O (

ParticipantA_Task1_Snd))
2) F (ParticipantB_Task2_Snd)

-> (! ParticipantB_Task2_Snd U (
ParticipantB_Task1_Rec))

Parallel Fork: The execution of a Par-
allel Fork (AND-Split) leads to the par-
allel execution of subsequent choreogra-
phy tasks. The initiators of all choreog-
raphy tasks immediately following the
Parallel Fork must be same as the com-
mon sender or receiver of choreography
tasks preceding the gateway.

G (Fork -> F (
ParticipantA_Task1_Snd &
ParticipantA_Task2_Snd)) & H
((ParticipantA_Task1_Snd &

ParticipantA_Task2_Snd) -> O Fork
)

Parallel Join: The concurrent exe-
cution of multiple interactions lead to
the execution of a Parallel Join (AND-
Join) gateway. However, all incoming
branches have to be completed before
the execution of a Parallel Join.

G ((ParticipantB_Task1_Rec
& ParticipantB_Task2_Rec)
-> F Join) & H ((Join) ->
O (ParticipantB_Task1_Rec &
ParticipantB_Task2_Rec))

Exclusive Decision: The execution
of an Exclusive Decision (XOR-Split) is
spawn in two or more branches, which
branch is actually traversed depends on
the evaluation of the guards on the out-
going flows.

(ExclusiveDecision -> F ((
ParticipantB_Task2_Snd & !
ParticipantB_Task3_Snd) |
(! ParticipantB_Task2_Snd &
ParticipantB_Task3_Snd)))

Exclusive Merge: The execution of
one of the choreography receiving action
among a set of alternative receiving ac-
tions will lead to the execution of an Ex-
clusive Merge (XOR-Join).

(G (ParticipantB_Task1_Rec &
! ParticipantB_Task2_Rec) |

(! ParticipantB_Task1_Rec &
ParticipantB_Task2_Rec) -> F
ExclusiveMerge)

Inclusive Decision: An Inclusive De-
cision gateway (OR-Split) represents the
execution of one or more alternative
branches. The traversal of branches de-
pend on the evaluation of the guard con-
ditions. In particular, all sequence flows
with a true evaluation will be traversed.

G ((InclusiveDecision
& Condition1) -> F (

ParticipantB_Task1_Snd)) | G
((InclusiveDecision & Condition2)
-> F (ParticipantB_Task2_Snd))

Inclusive Merge: The alternative but
also parallel execution of two or more ac-
tive interactions lead to the execution of
the Inclusive Merge gateway (OR-Join).

(G (ParticipantB_Task1_Rec |
ParticipantB_Task2 _Rec) -> F
InclusiveMerge)

Event-Based: The execution of an
Event-based gateway is spawn in two
or more branches, which branch is ac-
tually traversed depends on a specific
Event that occur. Usually, the receipt
of a message or timeout determines the
path that will be taken rather than the
evaluation of the guards.

G (Event-basedgateway
& rec_msg1) -> F (

ParticipantB_Task1_Snd & (!
ParticipantB_Task2_Snd)) | G (
Event-basedgateway & rec_msg2) ->
F ((! ParticipantB_Task1_Snd) &

ParticipantB_Task2_Snd)

Table 5.1: LTL-Based Transformation Rules for BPMN Global Choreography Model



Chapter 5. Model Checking Based Containment Checking of Service Choreographies 116

choreography. Hence, it has no incoming sequence flow. The function get_interaction(i)
extract all interactions i. The choreography tasks along with the senders and receivers of the
messages, as well as the message exchange dependencies (i.e., sequence flows for performing two
tasks in sequence or gateways for more complex behaviours) are extracted. An interaction j is
called “succeeding interaction” of i if there is a control flow going from i to j. Thus, a set of
succeeding choreography activities of i can be achieved by following all of its outgoing control
flows.

The generate_ltl_code(i) function is responsible for generating LTL formulas for each construct
of a GCM . The pair of triple apostrophes (''') represents the string templates that are used for
code generation based on Eclipse Xtend framework. However, a pair of guillemots (« and ») is used
to represent the parametrised place-holders that will be bound to and substituted with the actual
values extracted from the input model elements by the Xtend engine. The generate_ltl_code(i)
function is not realized as a single function but rather a polymorphism of multiple functions.
That is, depending on the type of the input interaction i, a particular function for generating LTL
formulas for that interaction will be invoked. The LTL-based transformation rules for Parallel Fork
and Join are presented in Algorithm 6. In particular, LTL formula for Parallel Join requires visited
predecessors that are joined using the logical AND operator (“&”) and offered to Parallel Join. The
Parallel Join cannot execute until all incoming flows have been received. In case of Parallel Fork the
token offers are made at each outgoing flows (i.e., initiating participant of succeeding interaction).
Table 5.1 summarises the constructs of choreography models along with their informal descriptions
extracted from the BPMN 2.0 specification [Gro11a] and LTL-based transformation rules that
constitutes the interactions between participants.

5.3.2 Generating SMV Descriptions from Local Choreography Models

This section concerns the generation of formal descriptions (i.e., SMV language) from the lo-
cal choreography models (LCMi). To define the interactions within a BPMN 2.0 collabora-
tion diagram, 2-tuple 〈participant_name, task_snd/task_rec〉 is used to represent the partici-
pant name and send task/receive task. The mapping of local choreography models (LCMi) into
SMV descriptions is attained using an extended version of the breadth-first search, as shown
in Algorithm 7. Similar to global choreography model (GCM), three helper functions are cre-
ated, namely get_events(el), get_interaction(i) and generate_smv_code(i). The function
get_events(el) returns a set of start events concerning the input LCMi. However, none start
event shall be used as a graphical marker for starting the pool. The function get_interaction(i)
extracts all interactions such as choreography tasks, control nodes and connecting edges. In partic-
ular, given a certain interaction i, the outgoing interactions (within pool) can be attained using the
function get_interaction(i). An interaction j is called “outgoing interaction” of i if there is a
sequence flow going from i to j. In a similar way, communication between two participants (pools)
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can be achieved. An interaction j is called “receiving interaction” of i if there is a message flow
going from i to j. Thus, a set of receiving actions of choreography tasks and outgoing interactions
of i can be achieved by following all of its message flows and outgoing sequence flows, respectively.

Algorithm 7 Generating SMV Descriptions from Local Choreography Models LCMi

1: procedure Translate(LCMi)
2: Q ← ∅ � Q is the queue of non-visited interactions
3: V ← ∅ � V is the queue of visited interactions
4: Q ← Q ∪ get_start_events(el)
5: for all i ∈ Q do
6: V ← V ∪ {i}
7: Q ← Q \ {i}
8: generate_smv_code(i)
9: Ioutgoing_interactions ← get_interaction(i)

10: Ireceiving_interactions ← get_interaction(i)
11: for all j ∈ Isucceding_interactions|j ∈ Ireceiving_interactions do
12: if (j � V ) then
13: Q ← Q ∪ {j}
14: end if
15: end for
16: end for
17: extracts interaction information;
18: binds input values and generates SMV descriptions using the following templates:
19: '''
20: VAR
21: «i» : boolean; � State variable declaration
22: ASSIGN
23: init(«i») := «interaction-initial-state»
24: next(«i») := case
25: «incoming-condition(s)» : TRUE;
26: «i» : FALSE;
27: esac;
28: '''
29: end procedure

The function generate_smv_code(i) is responsible for generating the SMV description for each
interaction within the LCMi. In particular, the aforementioned 2-tuple, control node or event
will be represented by a boolean state variable in the section VAR and its corresponding state
transitions will be described in the section ASSIGN by a combination of two functions given in
NuSMV. The init() is used for assigning the initial state of a variable and next() is used for
defining the transition to the next state. The function next() is often combined with the branching
structure “case/esac” for selecting one of many possible choices. The state is initially set to false.
However, if the incoming condition(s) are satisfied, it is changed to a true state (see Line 22 in
Algorithm 7). The incoming condition(s) would be a guard expression and/or finishing of the
preceding interaction(s). The interaction’s state shall be switched back to false after finishing
the execution (see Line 23 in Algorithm 7). Note that the generate_smv_code(i) is not realised
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1 VAR
2 «interaction» : boolean;
3 ASSIGN
4 init(«interaction») := FALSE;
5 next(«interaction») := case
6 «incoming_1» & «incoming_2» & ... & «incoming_n» : TRUE;
7 «interaction» : FALSE;
8 esac;

Figure 5.4: Generic Rules for Mapping BPMN Collaboration Constructs to SMV Descriptions

as a single function but rather a polymorphism of multiple functions. That is, depending on the
type of the input interaction i, a particular function for generating SMV descriptions for that node
type will be invoked. The subsequent sections discuss the rules for generating SMV descriptions
for each node type that constitutes the individual function generate_smv_code(i).

Task, Fork, Join, End Event and Start Event This section focuses on a set of elements
that are triggered with respect to their incoming flows and are formalised rather similar in SMV.
Figure 5.4 illustrates the translation of Task, Fork, Join and End Event into SMV descriptions
based on the translation template shown in Algorithm 7. If an interaction has multiple incoming
flows, the logical AND operator (“&”) is used to represent the implicit “and-join” guard for all tokens
passing through the incoming flows. Note that none Start Event is a special event that denotes
the starting point of a BPMN model. It does not have any incoming flows. Thus, each none Start
Event is represented by a boolean state variable whose initial state would be assigned as true.

Branching The Exclusive Decision, Inclusive Decision, and Event-based gateways are
the branching constructs in BPMN specification [Gro11a]. The execution of the Exclusive
Decision will trigger one of the outgoing flows according to the corresponding guard conditions.
The initiating participant of the messages that follow the gateway controls the decision. Figure 5.5
shows the rules for mapping an Exclusive Decision into SMV descriptions whose guard con-
ditions is abstracted as boolean variables (Line 7–8). We introduce a temporary variable named
post_decision_i in which i is an incrementally generated number for exclusively choosing one of
many alternative sequence flows. The variable post_decision_i has an enumerated type which
includes a normal state “undetermined” and the values corresponding to the sequence flows (Line
10). The choice among alternative sequence flows is made using a “case/esac” construct (Line
17–21). In case none of the guard conditions is true, the state transitions defined in Figure 5.5
will be stuck. This is precise, but undesired, behaviour. To avoid this stuck a “Default Condition”
for one of the outgoing sequence flows can be used. The default condition is a complement of
other guard conditions and will be chosen when all other conditions turn out to be false.

An Inclusive Decision represents the execution of any number of branches instead of one or
all. The translation rules of Inclusive Decision are similar to Exclusive Decision; however, a
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(a) Exclusive Decision

1 VAR
2 «ExclusiveDecision»: boolean;
3 «ParticipantB_Task1_Rec» : boolean;
4 ...
5 «ParticipantB_Task3_Snd» : boolean;
6 -- abstraction of boolean expressions
7 «guard_1» : boolean;
8 «guard_2» : boolean;
9 -- temporary variable

10 «post_decision_i» : {undetermined, «out_yes
», «out_no»};

11 ASSIGN
12 init(«ExclusiveDecision») := FALSE;
13 next(«ExclusiveDecision») := case
14 «ExclusiveDecision» : FALSE;
15 esac;
16 ... -- the initializations of guards are

omitted
17 init(«post_decision_i») := undetermined;
18 next(«post_decision_i») := case
19 «ExclusiveDecision» & «guard_1» : «

out_yes»;
20 «ExclusiveDecision» & «guard_2» : «

out_no»;
21 TRUE : undetermined;
22 esac;
23 init(«ParticipantB_Task2_Snd») := FALSE;
24 next(«ParticipantB_Task2_Snd») := case
25 «post_decision_i» = «guard_1» : TRUE;
26 «ParticipantB_Task2_Snd» : FALSE;
27 esac;
28 init(«ParticipantB_Task3_Snd») := FALSE;
29 next(«ParticipantB_Task3_Snd») := case
30 «post_decision_i» = «guard_2» : TRUE;
31 «ParticipantB_Task3_Snd» : FALSE;
32 esac;

(b) SMV Generation Rules for Exclusive Decision

Figure 5.5: Translation of Exclusive Decision into SMV Descriptions

“true” evaluation of one guard condition does not exclude the evaluation of other guard conditions.
All sequence flows with a “true” evaluation will be traversed by a token. The Event-based gateway
represents an alternative branching point where the decision is made by two or more events; for
instance, the choice for an outgoing sequence flow is made when an event will occur on the particular
outgoing flow. When execution of process arrives at the particular point, the execution stops
until either the message event or the timer event occurs. However, the occurrence of first event
will immediately continue its outgoing sequence flow by disabling the other paths. In this case, a
boolean variable wait_event is used to indicate that the outgoing flows can not be proceed until an
event is occurred. The SMV descriptions of Inclusive Decision and Event-based gateways can
be derived from the Exclusive Decision. The complete translation details cannot be presented
due to space reasons and similar technical details.
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Exclusive Merge and Inclusive Merge An Exclusive Merge brings together multiple al-
ternative interactions and exclusively accepts one among them. If an Exclusive Merge has
two incoming interactions, a straightforward naive encoding strategy is to use the xor opera-
tor “ParticipantB_Task1_Rec xor ParticipantB_Task2_Rec” to express the incoming guard
condition of an Exclusive Merge. However, this strategy cannot be effectively generalised for
Exclusive Merge that has more than two incoming sequence flows because the operator “xor”
with n operands (n ≥ 3) yields true not only when one of its operands is true but also when
the odd numbers of the operands are true [PH08]. Exclusive Merge is therefore implemented
by its equivalent but longer form “(ParticipantB_Task1_Rec ∧ ¬ParticipantB_Task2_Rec) ∨
(¬ParticipantB_Task1_Rec ∧ ParticipantB_Task2_Rec)”.

(a) Exclusive Merge

1 VAR
2 «ParticipantB_Task1_Rec» : boolean;
3 «ParticipantB_Task2_Rec» : boolean;
4 «ExclusiveMerge» : boolean;
5 -- temporary variable
6 «merge_flag_i» : {undetermined, «in_t1», «

in_t2»}
7 ASSIGN
8 ... -- the initializations and transitions

of tasks are omitted
9 init(«merge_flag_i») := undetermined;

10 next(«merge_flag_i»):= case
11 («merge_flag_i» = undetermined) & («

ParticipantB_Task1_Rec» | «
ParticipantB_Task2_Rec»): {«in_t1», «in_t2
»};

12 TRUE : undetermined;
13 esac;
14 init(«ExclusiveMerge») := FALSE;
15 next(«ExclusiveMerge») := case
16 «ParticipantB_Task1_Rec» & ! «

ParticipantB_Task2_Rec» : TRUE;
17 ! «ParticipantB_Task1_Rec» & «

ParticipantB_Task2_Rec» : TRUE;
18 «merge_flag_i» = «in_t1» | «merge_flag_i

» = «in_t2» : TRUE;
19 «ExclusiveMerge» : FALSE;
20 esac;

(b) SMV Generation Rules for Exclusive Merge

Figure 5.6: Translation of Exclusive Merge into SMV Descriptions

In order to avoid name conflicts, a temporary variable merge_flag_i is introduced for each
Exclusive Merge, where i represents an incrementally generated number to avoid name con-
flicts, as shown in Figure 5.6. This temporary variable has an enumerated type that comprises
“undetermined” and “in_tx”. The former denotes the normal state; whereas the latter repre-
sent the state values that correspond to the incoming sequence flows (x = 1, ..., n). As we see
in Line 11, one branch will be non-deterministically and exclusively selected from the activated
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branches. That is, in order to verify in case some k (k ≤ n) incoming interactions are simultane-
ously activated, NuSMV will bind merge_flag_i to a certain value “in_tx” in the first place, to
“undetermined” in the next transition, then to another value “in_ty” in the subsequent transition,
and so forth. In combination with the branching construct “case/esac” (Line 14–20), we can see
that the Exclusive Merge is activated if and only if either one of the incoming interactions is true
or the variable merge_flag_i is assigned to a state value “in_tx”, where x = 1, ..., n.

An Inclusive Merge has similar semantics to Exclusive Merge; however, it brings together not
only multiple alternatives but also parallel interactions and accepts one or more among them. In
the case of Inclusive Merge, we use the logical OR operator (“|”) to express the incoming guard
condition instead of xor operator.

5.3.3 Containment Checking Using NuSMV Model Checker

This section is devoted to the identification of containment problems. The containment violations
may occur due to a variety of reasons, such as (i) missing participant or interaction – a participant
or interactions exist in the global model may not exist in the local choreography models; (ii)
misplacement of elements – the local choreography model contains interactions with participant
specified in the global choreography model but with different structure. Listing 5.1 shows an
excerpt of a violation trace generated by NuSMV including the list of satisfied and unsatisfied LTL
formulas, i.e., a counterexample. Four LTL formula are violated; this means that the sequence
of formal properties specified by the global travel booking model is not contained in the local
choreography counterparts.

$ NuSMV TravelBookingProcess.smv $
...
-- specification ( G (Traveler_CreditDetails_Snd -> F TravelAgency_CreditDetails_Rec) & H (

TravelAgency_CreditDetails_Rec -> O Traveler_CreditDetails_Snd)) is true
-- specification ( F TravelAgency_CreditDetails_Rec -> (!TravelAgency_CreditDetails_Rec U (

TravelAgency_BookingRequest_Rec & Traveler_CreditDetails_Snd))) is false
-- as demonstrated by the following execution sequence
Trace Description: LTL Counterexample
Trace Type: Counterexample
-> State: 1.1 <-
StartEvent1 = TRUE
...
-- specification ( G (TravelAgency_CreditCardNotAuthorized_Snd -> F Traveler_CreditCardNotAuthorized_Rec)

& H (Traveler_CreditCardNotAuthorized_Rec -> O TravelAgency_CreditCardNotAuthorized_Snd))
is true
-- specification ( G (Airline_PurchaseConfirmation_Snd -> F TravelAgency_PurchaseConfirmation_Rec) & H (

TravelAgency_PurchaseConfirmation_Rec -> O Airline_PurchaseConfirmation_Snd)) is false
...
-> State: 2.8 <-
-- specification ( G (Airline_e-Ticket_Snd -> F TravelAgency_e-Ticket_Rec) & H (TravelAgency_e-

Ticket_Rec -> O Airline_e-Ticket_Snd)) is false
...
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-> State: 3.8 <-
-- specification ( G ((Hotel_ReservationConfirmed_Snd & Fork5) -> F TravelAgency_ReservationConfirmed_Rec

) & H (TravelAgency_ReservationConfirmed_Rec -> O (Hotel_ReservationConfirmed_Snd & Fork5)))
is true
-- specification ( G ((RentaCar_VehicleAssign_Snd & Fork5) -> F TravelAgency_VehicleAssign_Rec) & H (

TravelAgency_VehicleAssign_Rec -> O (RentaCar_VehicleAssign_Snd & Fork5))) is true
-- specification ( F Airline_e-Ticket_Snd -> (!Airline_e-Ticket_Snd U (

TravelAgency_PurchaseConfirmation_Rec & Airline_PurchaseConfirmation_Snd))) is false
...

Listing 5.1: NuSMV Containment Checking Result for Travel Booking Process

5.4 Evaluation

We implement containment checking approach and conduct a preliminary evaluation of its per-
formance. The main idea is to validate whether the proposed approach performs reasonably for
typical models used in industry on typical workstations used by developers. The workstation used
for the performance evaluation is running under Windows 8 on a 2.6 GHz i5 processor with 8GB
of memory using NuSMV 2.5.4. The evaluation is conducted through three behaviour models of
different sizes and complexity that are taken from our previous industry projects. One of them is
the Travel Booking (TB) mentioned in the previous section. The other two are Automated Teller
Machine (ATM) and Order Processing (OP). ATM occupies an important position in the e-Banking
domain. It allows the authenticated user to perform financial transactions such as view account
balance, withdraw cash and deposit funds. The OP scenario allows the customer to order the
company’s products via the website. Table 5.2 shows the complexity of the input BPMN model
(GCM = global choreography model, LCMi = local choreography models) with respect to their
elements including tasks, gateways, and edges (sequence and message flows).

Table 5.2: Model Size and Translation Time of Service Choreographies

Table 5.3 shows the total execution time of three models, reachable states and violated formulas.
The evaluation results indicate that the containment checking time spent by NuSMV for the TB
process is longer than the ATM and OP. This is because NuSMV found violations between the
formal descriptions of the LCMi and LTL formulas of the GCM and thus NuSMV needed to
generate a counterexample for violated LTL formula. The evaluation results demonstrate that our
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approach efficiently translates service choreography models into formal descriptions and consistency
constraints for supporting containment checking. In particular, all realistic scenarios are handled
in a total time around a second which is quite reasonable for practical purposes. Our analysis
and evaluation results based on the aforementioned use case scenarios show the feasibility of our
approach for larger systems.

Table 5.3: Performance Evaluation Results for Service Choreographies

5.5 Related Work

In recent years, considerable attention has been paid to composition of web services in terms of
choreography, interface behaviours, provider behaviours, or orchestration. Zaha et al. [Zah+06]
present the algorithms for checking the local enforceability of global models and for generating
local models (i.e., provider behaviour) from global models. Decker and Weske [DW07] introduce
a Petri Net based formalism for specifying choreographies called interaction Petri Nets. They
propose algorithms for deriving the behavioural interface and for verifying local enforceability.
Busi et al. [Bus+06] examined the bi-simulation based correspondence between choreography
and orchestration. In particular, they operationally relate choreographies to orchestration. Yu
et al. [Yu+06] propose an approach for the specification of properties called PROPOLS and for
verification of BPEL schemas. The approach first translated the BPEL schemas and PROPOLS
into Finite State Automatas (FSAs), then compares these FSAs. However, the approach does not
deal with the service choreographies.

Li et al. [LZP07] introduce two formal languages ChorL and OrchL for describing choreography
and orchestration derived from WS-CDL (Web Services Choreography Description Language)2

and BPEL, respectively. Based on the two languages, they give a definition of endpoint projection
which is used for automatic generation of orchestrations. Lohmann and Wolf [LW09] show that the
existing techniques for controllability problem of orchestrations can be reused for the verification
of realizability of choreographies. In particular, they focus on the transformation of choreography
specification into service orchestration.

Kwantes et al. [Kwa+15] present the translation of the BPMN collaboration diagram into an LTL
formula to check conformance with local workflows as BPMN process diagrams using GROOVE3

2See https://www.w3.org/TR/ws-cdl-10/
3See http://groove.cs.utwente.nl
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tool. However, the translation has been done manually. Poizat and Salaün [PS12] introduce the
LOTOS NT (Language Of Temporal Ordering Specification New Technology) process algebra for-
malism for BPMN choreographies to validate the realizability between models using the CADP4

(Construction and Analysis of Distributed Processes) state space exploration tools. In particular,
the interactions produced by the global choreography model and communicating peer processes
are compared. Fu et al. [FBS04] present a formal specification, verification, and analysis tool for
web service compositions based on Guarded Automata (GA). BPEL specifications are translated
to GA and then mapped to PROMELA, the input language of the SPIN5 model checker. Solaiman
et al. [SSMJ15] developed a BPMNverifier tool that automatically converts BPMN choreography
models into PROMELA. However, the LTL properties are manually created or otherwise retrieved
for the generated PROMELA models; they are stored in a repository. In [Yeu07], Yeung introduces
an approach for checking the consistency of the global view (WS-CDL) with the abstract BPEL
process. In this context, both WSBPEL and WS-CDL are translated into communicating sequen-
tial processes. Then, consistency checking is performed using the FDR26 model checker. These
approaches require a considerable amount of knowledge of temporal logics properties.

In the course of our earlier research, we have investigated the containment checking problem for
activity diagrams [MTZ14] and sequence diagrams [MTZ16]. This research focuses on the contain-
ment relationship between global and local choreography models, which has not been considered
in the literature. The proposed approach provides formalisation for automated transformation of
global and local choreography models into consistency constraints and formal descriptions.

5.6 Summary

Motivated by the need to address the Research Questions RQ2 and RQ3, the central theme of
this chapter focuses on the containment checking in service choreographies. This chapter has
introduced a set of transformation rules to facilitate the automated transformation of global and
local choreography models into LTL constraints and SMV descriptions, respectively. This provides
efficient means for automated generation of consistency constraints and formal descriptions for
large and complex choreography models. To illustrate the applicability of the proposed approach,
we realized use case scenarios of ATM machine, travel booking and order processing systems; the
performance evaluation is also carried out in particular cases. By analysing the evaluation results
we found that our approach efficiently translates choreography models into formal specifications
and works well for larger realistic scenarios.

4See http://cadp.inria.fr/publications/Garavel-Lang-Mateescu-Serwe-13.html
5See http://spinroot.com
6See https://www.cs.ox.ac.uk/projects/fdr
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The results produced by the model checkers (i.e., counterexamples) are rather cryptic and verbose,
and thus, tracking the entire evidence is difficult for architects/developers. In order to mitigate
the need for strong background of formal techniques, the counterexample analysis mechanism is
required. Therefore, the next chapter will investigate the interpretation of generated counterexam-
ple, in order to provide more informative and comprehensive feedbacks to understand and resolve
the cause(s) of containment inconsistencies.





6
Counterexample Analysis for Supporting

Containment Checking

This chapter presents an approach for interpreting the containment checking results produced by
model checking in order to facilitate better understanding and resolving of the violations revealed
by containment checking. The approach aims to analyse the counterexamples to identify the actual
causes of containment inconsistencies. Based on the analysis, it produced an appropriate set of
guidelines to countermeasure the containment violations. This problem is related to the Research
Question RQ4. The chapter is based on a peer-reviewed workshop paper in the proceedings of
the 13th International Business Process Management Workshops [MTZ15], an article submitted
to a peer-reviewed journal Science of Computer Programming, and two peer-reviewed conference
papers, one in the proceedings of the 23rd Asia-Pacific Software Engineering Conference [MTZ16],
and another in the 14th IEEE International Conference on Services Computing [Mur+17].

6.1 Introduction

Model checking is a powerful verification technique for detecting inconsistencies of software sys-
tems [CGP99]. In general, behaviour models are transformed into formal descriptions and veri-
fied against predefined properties/constraints. The model checker then exhaustively searches for
property violations in formal descriptions of a model and produces counterexample(s) when these
properties do not satisfy the formal descriptions. The ability to generate counterexamples in case of
consistency violations are considered as one of the strengths of the model checking approach. Un-
fortunately, counterexamples produced by existing model checkers are rather cryptic and verbose.
In particular, there are two major problems in analysing counterexamples. First, the developers
and non-technical stakeholders who often have limited knowledge of the underlying formal tech-
niques are confronted with cryptic and lengthy information (e.g., states numbers, input variables
over tens of cycles and internal transitions, and so on) in the counterexample [KT11]. Second,
because a counterexample is produced as a trace of states, it is challenging to trace back the causes
of inconsistencies to the level of the original model in order to correct the flawed elements [DRS03].
As a result, the developers have to devote significant time and effort in order to identify the cause
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of the violation, or they get confused about the relevance of a given trace in the overall explanation
of the violation [JRS04; BNR03]. Besides that, in order to raise the practical applicability of model
checking, there is a need for an automated approach to interpret the counterexamples with respect
to containment checking and finding the causes of a violation.

For this purpose, one can choose to either intervene in the model checking process or analyse the
model checking outcomes to achieve the necessary information. The former method is more direct
and can be better optimised (due to close integration with the model checkers) but likely leads
to tight dependence with a particular model checker or underlying model checking techniques,
and therefore, will be less generalisable. Hence, in this work we opt to focus on analysing the
outcomes of model checking. So far, some approaches have been proposed for counterexample
analysis [BNR03; DRS03; KT11]. Out of these existing approaches, only a few are aiming at sup-
porting counterexample analysis of behavioural models [KT11]. Most of these approaches focus
on fault localization in source programs for safety and liveness properties or generation of proofs
to aid the understanding of witnesses. As these approaches focus on model checking in a generic
context, their analysis techniques can be applied in a wide range of application domains. However,
this comes with a price: the analysis outcomes are rather abstract and far from helping in under-
standing the specific causes of a violation in a particular domain. Furthermore, these techniques
have not considered to provide any annotations or visual supports for understanding the actual
causes nor suggest any potential countermeasures.

In this chapter, we present an automated method for analysing the counterexamples in the con-
text of containment checking and produce an appropriate set of guidelines to countermeasure the
containment violations. In particular, we have constructed a counterexample analyser that auto-
matically extracts the information from the counterexample trace file generated by containment
checking using the NuSMV model checker [Cim+00]. Based on the extracted information along
with formalisation rules for the containment relationship, our counterexample analyser identifies
the cause(s) of the violation(s) and produces an appropriate set of guidelines to countermeasure the
containment violations. Our approach allows the developers to focus on the immediate cause of an
inconsistency without having to sort through irrelevant information. In order to make our approach
more usable in practice, we devise visual supports that can highlight the involved elements in the
process models. Furthermore, it provides annotations containing causes of inconsistencies and po-
tential countermeasures shown in the input models. In the scope of this chapter, counterexample
interpretation of containment checking results not only deals with the BPMN [Gro11a] process
diagrams and collaboration diagrams, but also UML [Gro11b] activity diagrams and sequence
diagrams.

The rest of this chapter is organized as follows: Section 6.2 describes the counterexample interpre-
tation approach for BPMN process models in detail, while the three subsequent sections present the
counterexample analysis for service choreographies (Section 6.3), activity diagrams (Section 6.4)
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and sequence diagrams (Section 6.5). In Section 6.6, we review the related approaches regarding
behavioural consistency checking and counterexamples interpretation. Finally, Section 6.7 sum-
marises the chapter.

6.2 Interpretation of Containment Inconsistencies

In this research, containment checking is performed using the NuSMV model checker. NuSMV
takes the LTL properties and the SMV descriptions, and exhaustively explores violations of a
property by traversing the complete state space. If, however, the low-level process model deviates
improperly from the high-level counterpart, NuSMV will generate a counterexample that consists
of the linear (looping) paths of the SMV specification/description leading to the violation. The
counterexample essentially shows the progress of the states from the beginning (i.e., all variables
are initialized) until the point of violation along with the corresponding variables’ values. Hence,
it is time consuming and error-prone to locate relevant states because the developers may have to
exhaustively walk through all of these execution traces. We note that counterexamples generated
by the NuSMV model checker may contain different information depending on the selected model
checking options, model encoding techniques, and the input LTL formulas. Thus, it is crucial
to provide useful feedbacks to the developers and non-technical stakeholders that can reveal the
causes of containment inconsistencies and suggest potential resolutions.

refines &
models

is refined to

refines

models

Figure 6.1: Overview of the Counterexample Analysis Approach
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Containment inconsistencies may occur due to a variety of reasons, such as missing or misplaced
elements in the low-level model, and so on. We propose a two-step approach for locating the
causes of containment inconsistencies. In the first step, the counterexample analyser extracts the
information from the output trace file generated by the NuSMV model checker and identifies the
actual causes of the unsatisfied containment relationship and produces appropriate suggestions. In
the second step, the information provided by the counterexample analyser will be annotated in
the low-level process model along with concise descriptions of the violation’s causes and potential
countermeasures. Figure 6.1 shows an overview of model checking based containment checking
research. However, the main focus of this chapter (i.e., counterexample analysis) is shown in the
big blue box.

6.2.1 Counterexample Analyser for Locating Causes of Containment Inconsis-
tencies

The counterexample analyser investigates the causes of an unsatisfied containment relationship
with respect to the LTL-based transformation rules. Initially, the counterexample analyser reads
the output trace file and parses the counterexamples that represent the unsatisfied LTL formulas.
Afterwards, the counterexample analyser traverses the extracted information, LTL-based trans-
formation rules and SMV description to find out why the elements and control flow structures of
the high-level model are not matched by their corresponding low-level counterparts. Note that
the elements that are described in the high-level model but missing or misplaced in the low-level
model can be the causes of the containment inconsistencies. The counterexample analyser inspects
and addresses all possible causes of an unsatisfied containment relationship defined by a specific
LTL-based transformation rule and possible countermeasures.

In order to locate the causes of the inconsistency, the counterexample analyser first verifies whether
all the elements (e.g., activities, events and/or gateways) that exist in the high-level model are also
present in the low-level model by using function match() (see Algorithm 8). Note that match() es-
sentially compares the nodes’ names, types, and/or guard conditions. For this, the counterexample
analyser locates the missing element cause (either one, multiple, or all elements could be missing)
and suggests the countermeasure (i.e., insert missing element at a specific position in the model).

After that a number of rules related to unsatisfied LTL formulas for different possible kinds of
elements in the BPMN model are checked. For this, the counterexample analyser matches the exact
position of the corresponding elements in the high-level model related to unsatisfied LTL formulas
with elements present in the low-level model. Specifically, the counterexample analyser reads the
sequence (of elements of the low-level model) from the SMV description and identifies corresponding
element (i.e., activity, a gateway and so on) causing the violation of the LTL formulas. The
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Algorithm 8 Verifying Missing/Deleted Elements in the Low-Level Model
1: procedure find_missing_elements(HL, LL);
2: extracts nodes inforamtion from output trace file, SMV descriptions and
3: LTL-based transformation rules;
4: takes two model elements
5: � where n ∈ HL(high − level model) ∧ m ∈ LL(low − level model)
6: for all n ∧ m do
7: match(n, m)
8: if type(n) = type(m) ∧ (n.name = m.name) then
9: returns true

10: else
11: returns false
12: end if
13: generate missing element cause and countermeasure (insert the missing element)
14: end for
15: end procedure

preceding and succeeding elements of that element are matched with the elements of LTL formulas
to locate the causes of inconsistencies (i.e., misplacement of elements) as shown in Algorithm 9.

Algorithm 9 Verify Misplacement of Elements in the Low-Level Model
1: procedure find_misplacement_elements(HL, LL);
2: extracts nodes inforamtion from output trace file, SMV descriptions and
3: LTL-based transformation rules;
4: takes elements (n) of unsatisfied LTL formula and element (m) from
5: SMV descriptions
6: for all unsatisfied(n, m) do
7: match(n, msucceeding_elements)
8: if n = msucceeding_elements then
9: m ← msucceeding_elements

10: generate violation causes and countermeasures
11: else match(n, mpreceding_elements)
12: m ← mpreceding_elements

13: generate violation causes and countermeasures
14: end if
15: end for
16: end procedure

The descriptions of the possible causes for each LTL-based transformation rule and relevant counter-
measures to resolve these causes are presented in Table 6.1. The right-hand side column contains
the informal description of elements and second column contains the corresponding LTL-based
transformation rules for formally representing these constructs. Let us consider the first one as
an example: sequential order, which describes the relation that one element A2 eventually follows
another element A1. As in the other rules in Table 6.1, violations occur due to a misplacement
of elements. For instance, in the case of the sequence described by the LTL formula (G (A1 -> F
A2)), a violation might happen because the element A2 (transitively) exists in the low-level model
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as a preceding element of the element A1, but not as a succeeding element of A1. In this con-
text, the counterexample analyser generates the relevant countermeasures to resolve the violation
(in this case: “swapping the occurrence of A2 to A1” or “add A2 after A1”). Nevertheless, our
approach provides promising results for composite controls, for instance, combinations of two or
more control structures, like G (ParallelFork -> F (ExclusiveDecision & A1 & .... & An)).

Elements LTL-Based
Rules

Causes of Unsatisfied
Rule

Possible Countermeasures

Sequence: A set of elements
(transitively) executed in se-
quential order.

(G (A1 -> F A2)) The sequential rule is vio-
lated, if element A2 does not
eventually follow element A1
in the low-level model, but
A2 exists as a preceding el-
ement of A1.

• Swap the occurrence of A2 and
A1.
• Add A2 after A1 in the low-
level BPMN model.

Parallel Fork (AND-Split):
The execution of a Fork leads
to the parallel execution of sub-
sequent activities or events (A1,
A2...An). Please note that the
activities or events may be exe-
cuted one after the other or pos-
sibly may be executed in a real
parallel enactment.

G (ParallelFork
-> F (A1 & A2
&...& An))

The Parallel Fork rule is un-
satisfied, if a Fork gateway
is not eventually followed by
either one or all the activi-
ties/events (A1, A2,...An), or
either one or all the activi-
ties/events exist as a preced-
ing element of a Fork gate-
way.

• Put elements (A1 and/or A2
...and/or An) after the Parallel
Fork in the low-level model.
• Elements (A1, A2...An) shall
be triggered from the Parallel
Fork.

Parallel Join (AND-Join):
The execution of two or more
parallel elements (A1, A2...An)
leads to the execution of a Join
gateway. The semantics is rep-
resented that all elements must
complete before the execution
of a Join gateway.

(G (A1 & A2 &
...& An) -> F
ParallelJoin)

The Parallel Join rule is vi-
olated, because either one or
all the elements (A1, A2 ...
An) exist as succeeding ele-
ments of a Join gateway, but
are not followed by a Join
gateway.

• Replace flawed elements(s)
(“element’s name”) with the
correct elements (“element’s
name”), respectively.
• Remove flawed element(s)
(“element’s name”) from the
low-level BPMN model.
• Elements (A1, A2...An) shall
be followed by a Parallel Join.

Exclusive Decision (XOR-
Split): The execution of an Ex-
clusive Decision eventually fol-
lowed by the execution of at
least one of the elements among
the available set of elements
based on condition expressions
for each gate of the gateway.

(G
(ExclusiveDecision
-> F (A1 xor
A2)))

The Exclusive Decision
rule is violated, if both of
the branches return either
FALSE or TRUE exclusively.
It means that the Exclusive
Decision gateway is not
followed by elements (i.e., A1
and A2).

• Replace flawed elements (“ele-
ment’s name”) with correct ele-
ments (“element’s name”) after
the Exclusive Decision, respec-
tively.
• Remove flawed elements (“el-
ement’s name”) from the low-
level BPMN model.

Exclusive Merge (XOR-
Join): The execution of at least
one element among a set of al-
ternative elements will lead to
the execution of an Exclusive
Merge gateway.

( G (A1 xor
A2) -> F
ExclusiveMerge)

The Exclusive Merge rule
is unsatisfied, because activ-
ity A1 and activity A2 are
not followed by an Exclusive
Merge, but one or both el-
ements exist as the succeed-
ing elements of an Exclusive
Merge in the low-level model.

• Put the Exclusive Merge after
A1 and A2 in the model.
• Replace the flawed elements
(“element’s name”) with correct
elements (“element’s name”) be-
fore the Exclusive Merge, respec-
tively.

Table 6.1: Tracking Back the Causes of Containment Violations and Relevant Countermeasures
for BPMN Process Diagrams
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6.2.2 Visual Support for Understanding and Resolving Inconsistencies

In this section, we explain how the containment checking results can be presented to the developers
in a user friendlier manner in comparison to the counterexamples. The visual support aims at
shows the developer the causes of containment inconsistencies that occur when the elements and
structures (e.g., activities, events and/or gateways) of the high-level process model do not have
corresponding parts in the low-level model and also provides relevant countermeasures to resolve
the violations.

The visual support is based on the information provided by the counterexample analyser along with
the input low-level process model. In particular, the element(s) that indicates the first element
causing the violation of the LTL formula is highlighted in blue whilst the elements that are causes
of containment violations are visualized in red, and the elements that satisfied the corresponding
LTL formula appear in green. In order to improve the understandability of the counterexamples, we
create annotations at the first element causing the violation to show the description of the cause(s)
of the containment violation and relevant potential countermeasures to address the violation. Once
the root cause of a containment violation is located, the cause is eliminated by updating the
involving elements of the low-level process model. To differentiate more than one unsatisfied rule,
shades of the particular colour are applied, for instance, the first unsatisfied rule is displayed in the
original shade while others are gradually represented in lighter tones. The low-level process model
displaying highlighted involving elements and annotation of the actual causes of the containment
inconsistencies and relevant countermeasures is shown in Figure 6.3.

6.2.3 Use Case from Industrial Case Study

This section briefly discusses a use case from an industrial case study on a billing and provisioning
system of a domain name registrar and hosting provider to illustrate the validity of our technique.
The Billing Renewal process is taken from our previous industry projects [TZD10]. The Billing
Renewal process comprises a wide variety of services, for instance, credit bureau services (cash
clearing, credit card validation and payment activities, etc.), hosting services (web and email
hosting, cloud hosting, provisioning, etc.), domain services (domain registration, private domain
registration, transfer, website forwarding, etc.), and retail services (customer service and support,
etc.). Figure 6.2 shows the high-level Billing Renewal process modelled as a BPMN 2.0 process
diagram. The model is devised to capture essential control structures such as sequence and parallel
execution, exclusive decision, and so on. Similarly, the low-level model of the Billing Renewal
process containing detailed information is also modelled

Formal consistency constraints (i.e., LTL formulas) are automatically generated from the high-
level BPMN model whilst the low-level BPMN model is transformed into SMV description. Next,
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Figure 6.2: High-Level BPMN Model of the Billing Renewal Process

NuSMV verifies whether the formal SMV description is consistent with the generated LTL formulas.
The NuSMV model checker generates a counterexample demonstrating a sequence of permissible
state executions leading to a state in which the violation occurs in LTL formula. Finally, our
approach for counterexample interpretation is applied to process the violation traces and visualize
the involved elements in the low-level BPMN model along with annotations containing containment
violation causes and suggestions. We opt to omit the verbose generated LTL formulas and SMV
descriptions and focus more on the interpretation of the generated counterexample.

Listing 6.1 shows an excerpt of a violation trace generated by NuSMV including the list of satisfied
and unsatisfied LTL formulas, i.e., a counterexample. Despite the size and execution traces of this
counterexample, the exact cause of the inconsistency is unclear, for instance, “is the containment
violation caused by a missing element, or a misplacement of elements, or both of them?”. It is
time consuming and human labour intensive to locate the relevant states because the developers
may have to exhaustively walk through all of these execution traces. The counterexample presents
symptoms of the cause, but not the cause of the violation itself. Therefore, any manual refinement
to the model could fail to resolve the deviation and may introduce other violations.

Figure 6.3 shows the low-level Billing Renewal process displaying the actual causes of the contain-
ment inconsistency and relevant countermeasures to address them. Using the visualizations of the
violation, it is easy to see which elements of the low-level model involve in the containment inconsis-
tency. In this case, the containment relationship is not satisfied due to the violation of a parallel fork
rule and a sequential rule. The parallel fork rule G (ParallelFork1 -> F ((ComputerPayment
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& CheckPaymentType) & RetrieveCustomerProfile)) is unsatisfied because ParallelFork1 is
not followed by the parallel execution of the subsequent tasks (i.e., ComputerPayment, Check-
PaymentType and RetrieveCustomerProfile) in the low-level model, which is the actual cause of
the containment violation. This violation can be addressed by triggering ComputerPayment from
ParallelFork1 as shown in the attached comment to ParallelFork1. Similarly, the root cause
of second violation is mainly because SendInvoice does not lead to ParallelJoin4. This might
be a symptom of a misplacement of SendInvoice in the model as the primary cause that led to
the containment inconsistency.

$ NuSMV BillingRenweal.smv
...
-- specification G (StartEvent -> F ReceiveExpiryNotification) is true
-- specification G (ReceiveExpiryNotification -> F ParallelFork1) is true
-- specification G (ParallelFork1 -> F ((ComputerPayment & CheckPaymentType) & RetrieveCustomerProfile))

is false
-- as demonstrated by the following execution sequence
Trace Description: LTL Counterexample
Trace Type: Counterexample
-> State: 1.1 <-
StartEvent = TRUE
ReceiveExpiryNotification = FALSE
ParallelFork1 = FALSE
RetrieveCustomerProfile = FALSE
ComputerPayment = FALSE
.....
-- Loop starts here
-> State: 1.6 <-
CheckPaymentType = FALSE
ParallelJoin2 = TRUE
SendLastPaymentRequest = FALSE
ExclusiveDecision5 = TRUE
ParallelJoin3 = TRUE
.....

Listing 6.1: NuSMV Containment Checking Result of the Billing Renewal Process

The use case illustrates that a rich and concise visualization of the inconsistency causes can allow
for an easy identification of the elements that cause the violation and helps developers correct the
process model accordingly. In the particular case, after following the suggested countermeasures,
rerunning the containment checking process yielded no further violations. Without these supports,
the developers would have to study and investigate the syntax and semantics of the trace file
in order to determine the relationship between the execution traces and the process model, and
then locate the corresponding inconsistency within the model, meaning that the complex matching
between the variables and states in the counterexample and the elements of the models must be
performed manually. This is especially cumbersome for those having limited knowledge of the
underlying formal techniques.
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Figure 6.3: Visual Support for Understanding and Resolving Containment Violations in BPMN

6.3 Dealing with Containment Violations for Service Choreogra-
phies

This section is devoted to the identification of containment problems for service choreographies and
their resolutions. The containment violations may occur due to a variety of reasons, such as (i)
missing participant or interaction – a participant or interactions exist in the global choreography
model may not exist in the local choreography models (collaboration diagram); (ii) misplacement
of elements – the local choreography model contains interactions with participant specified in
the global choreography model but with different structure. To alleviate containment checking
problems, an analysis of the generated counterexample is supported as described in Section 6.2.
The automated counterexample analysis not only detects the actual causes of the unsatisfied con-
tainment relationship but also provides appropriate guidelines to resolve the particular violations.
Therefore, the output trace file (presented in Listing 5.1 of Chapter 5) is scrutinised and parsed to
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determine the unsatisfied LTL formulas. The extracted formulas and SMV descriptions together
with LTL-based transformation rules are traversed to find out why the elements of the global
choreography model are not matched with their corresponding local choreography counterparts
(collaboration diagram).

Figure 6.4: Local Choreography Models After Running Counterexample Analysis

The counterexample analysis results for Travel Booking application are presented in Figure 6.4.
The gray boxes display the actual causes and potential countermeasures of the unsatisfied formu-
las. Furthermore, the elements responsible for causing the containment violation are highlighted
in red; whereas the elements that satisfied the rule are highlighted in green. In this case, the
containment relationship is not satisfied due to the violation of sequential rules. The receiving
rule for the RequestBooking and CreditDetails messages is violated because traveller invokes
the travel agency by sending RequestBooking message before CreditDetails message; however,
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travel agency receives the CreditDetails message before the RequestBooking message. This im-
plies that either receiving event of one or both tasks are misplaced. It can be resolved by putting
the CreditDetails receive task after the RequestBooking receive task in the local choreography
model of travel agency.

Similarly, the primary root causes of other violations are due to the execution of PurchaseConfirma-
tion and e-Ticket messages in parallel order instead of sequential order. These violations
can be resolved by deleting forks and joins, and putting the e-Ticket message after the
PurchaseConfirmation message in the local choreography models of travel agency and airline.
Once the causes are located, they are eliminated by updating the responsible elements of the
choreography models and rerunning the containment checking process yielded no further violations.

6.4 Dealing with Containment Violations for Activity Diagrams

The NuSMV model checker generates a counterexample if the SMV descriptions do not satisfy the
LTL properties. However, the counterexample provides only limited information for understanding
the causes of inconsistencies but not how to fix the inconsistencies. Understanding the causes of
containment violations is a prerequisite to resolve the inconsistencies in the models. As described
in Section 6.2, the counterexample analysis approach consists of two steps. In the first step, the
actual causes of the unsatisfied containment relationship are located based on the generated coun-
terexamples and appropriate guidelines to resolve the particular violations are produced. In the
second step, the concise descriptions of the isolation’s causes and potential countermeasures, pro-
duced in the previous step are annotated in the low-level model. Please note that the containment
inconsistencies may occur due to a variety of reasons, such as missing and misplacement of elements
in the low-level model and so on.

We report typical possible causes of a containment inconsistency by presenting a set of reasons
why the specific LTL formula is false and what strategies can be used to resolve it. For instance,
consider a Send Signal Action (a2) in a low-level activity diagram (shown in Figure 6.5b), Send
Signal Action (a2) is not preceded by Action a1 as compared to the high-level diagram (shown
in Figure 6.5a). In this case, the results produced by NuSMV indicate that G (a1 -> Xa2) is
false. This containment inconsistency occurs due to a violation of the containment relationship at
Send Signal Action, because its semantics specifies that whenever Action (a1) is executed it will
immediately enable the execution of Send Signal Action (a2). This can imply either one or both
actions are misplaced. This containment inconsistency can be resolved by adding a2 immediately
after a1 or by swapping the occurrence of a1 and a2 in the low-level model. If either a1 or a2
does not appear (i.e., deleted) in the low-level model, then the containment violation occurs due
to missing Action (a1) or Send Signal Action (a2). In case of missing a2 the violation can be
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resolved by adding a2 immediately after a1, or in case of missing a1 the violation can be resolved
by adding a1 before a2.

(a) The High-Level Activity Diagram (b) The Low-Level Activity Diagram

Figure 6.5: Send Signal Action Preceded by Different Action

6.4.1 Locating Causes of Containment Inconsistencies Due to Misplacement of
Elements

Table 6.2 shows the violations occur due to a misplacement of elements for each LTL-based transfor-
mation rule and relevant countermeasures for changing the input models to satisfy the containment
relationship. In Table 6.2, a state sequence is denoted by k − 1, k, k + 1, ...., kn, where k is the
current state of the element, k − 1 and k + 1 are preceding and succeeding states of the element
respectively, and kn is the last state. The nodes a1, ..., an and b1, ..., bn will be parameterized with
the actual node names.

Unsatisfied Rule
Cause of Violation Due to Mis-
placement

Possible Countermeasure(s)

G (a1 -> F a2)

Action a1 exists at k position but Action
a2 does not exist in future k + 1 to kn

(i.e., a2 does not eventually follow a1) in
the low-level model. a2 appears before
a1 in the low-level model.

• Swap the occurrence of a2 and a1.
• Add a2 after a1 in the low-level model,
where (a1) and (a2) are nodes that will
be parameterized with the actual action
names.

G (ForkNode -> F (a1
& ... & an)) & G ((

a1 & ... & an) -> O
ForkNode)

A Fork Node is activated but either one
or all of the elements (a1...an) are not.
One or all elements exist before a Fork
Node or a Fork Node is not concurrently
followed by either one or all of elements.

• Add elements (a1...an) in the low-level
model after the particular Fork Node.
• Elements (a1...an) must exist after the
particular Fork Node.

G ((a1 &...& an) ->
F JoinNode)

The Join Node rule is violated when one
or all the elements (a1...an) exist as suc-
ceeding elements of a Join Node, but are
not followed by a Join Node.

• Elements (a1...an) shall be followed by
a particular Join Node.
• Remove element(s) (a1...an) from the
low-level model.
• Replace flawed elements(s) (b1...bn)
with the corresponding correct elements
(a1...an).

(continued on next page)
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Unsatisfied Rule
Cause of Violation Due to Mis-
placement

Possible Countermeasure(s)

(DecisionNode -> F
((a1 & !a2) | (!a1 &
a2)))

The Decision Node rule is violated, if
both of the branches return either false
or true exclusively. It means that the
Decision Node is not followed by ele-
ments (i.e., a1 and a2) in the low-level
model.

• Replace the flawed elements (e.g., b1
and b2) with the corresponding correct el-
ements a1 and a2 after the particular De-
cision Node.
• Remove flawed elements (b1 and b2)
from the low-level model, respectively.
• Put corresponding Decision Node before
a1 and a2.

G (((a1 & !a2) |
(!a1 & a2)) -> F
MergeNode)

The Merge Node rule is unsatisfied, be-
cause elements (i.e., a1 and a2) are not
followed by a Merge Node, but one or
both elements exist as the succeeding el-
ements of a Merge Node in the low-level
model.

• Put the particular Merge Node after a1
and a2 in the model.
• Replace the flawed elements b1 and/or
b2 with corresponding correct elements a1
and a2 before the particular Merge Node.

G (a1 -> X a2)

The Send Signal Action rule is violated,
if Send Signal Action a2 either (transi-
tively) exists in the low-level model as an
eventually succeeding element of Action
a1 (k + 2) to (kn) or preceding element
of the a1 (k − 1) to (k − n), but not as
next element of the a1.

• Add a2 immediately after a1 in the low-
level model.
• Swap the occurrence of a1 and a2.

1) G (a1 -> X a2) &
G !(a1 & a2)
2) G (a1 -> G (a2 ->
X a3))

Accept Event Action a2 (transitively) ex-
ists in the low-level model as a preceding
element of Action a1 but not after a1.
In the second rule, the Action a3 is not
at next position k + 1 (i.e., a3 exists as
an eventually succeeding element of a2
(k + 2) to (kn)).

• Replace the flawed action b1 with the
corresponding correct action (a1 or a3).
• Put a2 after a1 in the low-level model.
• Put a3 immediately after a2 in the low-
level model, where a1...a3 and b1 are ac-
tion nodes that will be parameterized with
the actual action names.

G ((a1 &
ExceptionType_i =
ExceptType_1) -> X

a2)

The rule is violated, because a2 (i.e.,
exception handler) does not exist after
a1 (i.e., protected node) and Exception
Type.

• Put correct handler body a2 after cor-
responding protected node and Exception
Type in the low-level model.

1) G (ac &
isInterrupted ->
X interrupting_edge
) & G !(ac &
interrupting_edge)
2) G (
interrupting_edge
-> X a2)

3) G (InitialNode &
! (isInterrupted) ->
F a1)

The first rule is unsatisfied, because
the element interrupting_edge is not at
next position k + 1 of Accept Event Ac-
tion ac (i.e., it exists as an eventually suc-
ceeding element of ac (k + 2) to (kn)).
The second rule is violated, because ei-
ther interrupting_edge and a2 are mis-
placed, or a1 is misplaced.

• Put interrupting_edge immediately
after Accept Event Action ac.
• Remove interrupting_edge and a2
from the low-level model.
• Remove element a1 from the low-level
model.
• Replace flawed elements b1...b3
with corresponding correct elements
interrupting_edge, a1 and a2.

(continued on next page)
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Unsatisfied Rule
Cause of Violation Due to Mis-
placement

Possible Countermeasure(s)

1) (G (in_pn -> X a1
) & H (a1 -> Y in_pn
))
2) (G (an -> X
out_pn) & H (out_pn
-> Y an))

The first rule is violated, because Ac-
tion a1 (transitively) exists in the low-
level model as an eventually succeed-
ing element of input Activity Parameter
Node in_pn, but not as next element of
the in_pn. The second rule is violated,
because the output Activity Parameter
Node out_pn (transitively) exists in the
low-level model as a preceding element of
Action an, but not as next element of an.

• Put a1 immediately after in_pn in the
low-level model.
• Put out_pn immediately after an in the
low-level model.

(DecisionNode -> F
a2) | (DecisionNode
& (max >= 0 & max <
2) -> F MergeNode) |
(DecisionNode & max
= 2 -> F FlowFinal)
& ! F(MergeNode) |

F(a1)

The rule is unsatisfied, because the ele-
ments that consist of the loop (e.g., deci-
sion node, merge node, actions) are not
present in the correct order, for instance,
Action a2 exists before a DecisionNode,
but not followed by a DecisionNode. The
MergeNode does not exist before Action
a1.

• Replace flawed elements (action, deci-
sion node, or merge node) with the corre-
sponding correct elements, such as a1 and
a2.
• Put action a1 before a Decision Node.
• Put action a2 after a Decision Node.
• Add corresponding MergeNode and a1
in the low-level model.
• Add the flow final in the low-level model.

Table 6.2: Tracking Back the Causes of Violation Due to Misplacement of Elements and Possible
Countermeasures

6.4.2 Counterexample Analysis Results for Loan Approval System

This section describes the analysis of counterexample generated by NuSMV model checker for a
loan approval system (presented in Listing 3.2 of Chapter 3), in order to find the actual source of
the inconsistency and correct the responsible elements in the model. Here, the question arises why
formulas regarding sequential order and fork node rules are violated. It is tedious and challenging
for the developers to manually navigate and locate the relevant states because they have to exhaus-
tively walk through all of these execution traces. In order to interpret the generated counterexam-
ple, we applied our counterexample analysis technique that visualises the involved elements in the
low-level activity diagram along with annotations containing violation causes and suggestions. In
this case, the sequential rules are violated because CreateLoanFile does not eventually follow the
SendStarterAccountContractKit and does not precede the SendAccountIdandWelcomeMessage.
However, it exists as the succeeding element of RequestBankInformation and preceding element
of ReceiveSupportingDocuments. This might indicate that a misplacement of CreateLoanFile
in the low-level model can be seen as a reason for the sequential violation. Therefore, this violation
can be resolved by putting the CreateLoanFile after action SendStarterAccountContractKit
and before SendAccountIdandWelcomeMessage in the low-level loan approval model. In addition,
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involved elements are highlighted to complement the textual descriptions by easing the under-
standing, and not overloading the developer with text. For instance, CreateLoanFile causing the
violation is highlighted in red colour, whereas SendAccountIdandWelcomeMessage action of the
formula is highlighted in green colour. As we can see in Figure 6.6, the first two boxes display the
actual causes and potential countermeasures of the unsatisfied sequential formulas.

In a similar way, the fork node rule G (ForkNode2 -> F (NotifyBank & NotifyCustomer
& NotifyLoanOfficer)) & G ((NotifyBank & NotifyCustomer & NotifyLoanOfficer

) -> O ForkNode2) is violated because actions (NotifyBank, NotifyCustomer and
NotifyLoanOfficer) do not follow the ForkNode2 concurrently, in particular, NotifyLoanOfficer
action exists before the ForkNode2. This violation can be addressed by adding NotifyLoanOfficer
after the ForkNode2 as shown in Figure 6.6, insert by in the third box. The element responsible
for causing the containment inconsistency is highlighted in red, whereas the elements that satisfied
the rule are highlighted in green. Once the causes are located, causes are eliminated by updating
the responsible elements of the low-level activity diagram and rerunning the containment checking
process yielded no further violations.

6.5 Dealing with Containment Violations for Sequence Diagrams

After the generation of the counterexample, it is important to analyse the generated counterexample
to find the actual source of the inconsistency and correct the responsible elements in the sequence
diagram. In order to interpret the generated counterexample, we applied our counterexample
analysis technique on the output trace file (presented in Listing 4.1 of Chapter 4) that creates
annotation at the first element causing the inconsistency to show the description of inconsistency
causes and suggestions. In this case, the sending and receiving OSs rules for the TryAgain message
are violated because the TryAgain message is sent and received prior to the receiving OS of the
DisplayInvalidPIN message in the low-level model. These violations can be resolved by putting
the TryAgain message after the DisplayInvalidPIN message in the low-level ATM system. In
Figure 6.7, the blue boxes show the actual causes and potential countermeasures of unsatisfied
formulas. Once the causes are located, causes are eliminated by updating the responsible elements
of the low-level sequence diagram.

6.6 Related Work

The work presented in this chapter relates to the two main research areas: behaviour model con-
sistency checking and analysis of the model checking results (i.e., counterexamples) for identifying
the causes of inconsistencies.
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Figure 6.6: Low-Level Activity Diagram of Loan Approval System After Running Counterexam-
ple Analysis
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Figure 6.7: Low-Level ATM System After Running Counterexample Analysis

6.6.1 Behaviour Model Consistency Checking

In the literature, many approaches tackle different types of models and/or model checking tech-
niques [LMT09]. However, very few of these studies focus on the consistency of behaviour models;
for instance, van der Straeten et al. [Str+03] present an approach for checking the consistency of
different UML models by using description logic. This approach considers model-instance, instance-
instance, and model-model conflicts, instead of containment checking. Van der Aalst presents a
theoretical framework for defining the semantics of behaviour inheritance [Aal02]. In this work, four
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different inheritance rules, based on hiding and blocking principles, are defined for UML activity di-
agram, state-chart and sequence diagram. Similar ideas have been presented in [SS00]. In [EHK01]
a general methodology is presented to deal with consistency problem of state-chart inheritance,
which involves state-charts as well as the corresponding class diagrams. Communicating Sequential
Processes (CSP) is used as a mathematical model for describing the consistency requirements and
the FDR tool is used for checking purposes. Weidlich et al. consider the compatibility between
referenced process models and the corresponding implementation based on the notion of behaviour
inheritance [WDW12]. Awad et al. introduce an approach for automated compliance checking of
BPMN process models using BPMN-Q queries [ADW08]. They adopted the reduction approach
to verify the correctness of process models, instead of performing the detailed analysis using model
checker. Unlike our approach, the aforementioned techniques do not aim at providing the analysis
of the violation results for identifying the causes of inconsistencies and a set of countermeasures
to resolve inconsistencies. Thus, these approaches are very useful for finding similar or alternative
behavioural descriptions but not applicable for verifying the containment relationship.

6.6.2 Generating and Analysing Counterexamples

The problem of generating and analysing model-checking counterexamples are classified as follows:
generating the counterexample efficiently, automatically analysing the counterexample to extract
the exact cause of violations, and creating a visualization framework suitable for interactive explo-
ration.

Several existing approaches have addressed the idea of generating proofs from the model-checking
runs. Many of these techniques focus on building evidence in form of a proof and controlling the
generation of information to aid the understanding of counterexamples [Cla+95; TC02]. One of
the drawbacks of these approaches is their size and complexity, which can be polynomial in the
number of states of the system and of exponential length in the worst case. The proof-like witness
techniques also require manual extrapolation, and the developers still need certain knowledge of
the underlying formalisms in order to understand the proofs.

The problem of the automated analysis of counterexamples was addressed by many researchers,
for instance, Ball et al. [BNR03] describe an error trace as a symptom of the error and identify the
cause of the error as the set of transitions in an error trace that does not appear in a correct trace
of the program via the SLAM1 model checker. Kumazawa and Tamai present an error localization
technique LLL-S for a given behaviour model. The proposed technique identifies the infinite and
lasso-shaped witnesses that resemble the given counterexample [KT11]. However, these approaches
focus on finding the error causes in the program, such as deadlocks, assertion violations, and so
on, but they are not applicable for verifying the causes of unsatisfied containment relationships.

1See https://www.microsoft.com/en-us/research/project/slam/
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Visual presentation of generated counterexamples is explored by Dong et al. [DRS03]. The authors
developed a tool that simplifies the counterexample exploration by presenting evidence for modal
μ-calculus through various graphical views. In particular, the highlighting correspondence between
the generated counterexample and the analysed property is addressed in their visualization process.
Armas-Cervantes et al. [AC+14] developed a tool for identifying behavioural differences between
pairs of business process models by using Asymmetric Event Structure (AES) and verbalization of
the results.

The above discussed approaches focus on general consistency checking. In contrast to our work,
none of these techniques focuses on the diagnosis of counterexamples generated by a model checker
with respect to containment checking. Note that, in our approach we do not need nor modify the
source code of the model checker. Our interpretation process automatically extracts the information
from the generated counterexample. In addition, another differentiating factor of our approach in
comparison to aforementioned approaches is that our framework provides a compact and concise
representation of the failure causes (such as missing or misplacement of elements) and counter-
measures that are easily understandable for non-expert stakeholders. Finally, the counterexample
interpretation steps are fully automated and do not require developer intervention.

6.7 Summary

This chapter addressed the Research Question RQ4. It presents, the counterexample analysis
approach for locating the root causes of a containment inconsistency and producing appropriate
guidelines as countermeasures based on the information extracted from counterexample trace file,
formalisation rules, and the SMV descriptions of the low-level model. The advantage of this
interpretation technique is twofold. On the one hand, the technique supports users who have
limited knowledge of the underlying formalisms, and therefore, are not proficient in analysing
the cryptic and verbose counterexamples. On other hand, by locating actual cause(s) of the
inconsistency and providing the relevant countermeasures to alleviate the inconsistencies to the
user, it significantly reduces the time of manually locating the causes of an inconsistency. The
costly exhaustive searches employed by model checking are not always necessary for addressing the
containment checking problem. Therefore, the next chapter will provide a lightweight graph-based
approach for addressing the containment checking problem.



7
Graph-Based Containment Checking of UML

Activity Diagrams

This chapter presents a lightweight graph-based approach for addressing the containment checking
problem of software behaviour models at different levels of abstraction, since the costly exhaustive
searches employed by model checking are not always necessary for containment checking. This
problem addresses Research Questions RQ5. The chapter is based on a peer-reviewed conference
paper in the proceedings of the 19th IEEE International Enterprise Distributed Object Computing
Conference [TUMZ15].

7.1 Introduction

Model-based software development is maturing and potentials for solving problems with large and
complex system development [Tai+04; HT06; BF14]. Thus, software engineers are increasingly
using models for several development tasks such as describing and analysing software systems or
generating system implementations out of these models. A typical development scenario based
on models is, especially in the domain of enterprise systems, that a business analyst or software
architect uses a high-level model for outlining the system and discussing with the customers and
developers. The high-level model will then be refined to one or more low-level models by the
development team. In the course of software system modelling and implementation, as models
are created and evolved independently by different stakeholders and teams, inconsistencies among
models often occur. Hence, detecting model inconsistencies in early phases of the software develop-
ment life cycle is crucial to eliminate as many anomalies as possible before the systems are actually
implemented and deployed. This has led to a rich body of work for checking and managing model
consistency in the literature [LMT09]. Of these existing approaches, only a few are aiming at
supporting consistency checking of behavioural models for software systems [LMT09], for instance,
checking behavioural models against non-behavioural models [RW03; TE00; KC02] or checking
different types of behaviour models [Wan+05; YS06; DM03; LP08; LP05]. Nonetheless, there are
very few studies on checking the deviation of software behavioural models at different abstraction
levels.

147
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In this work, we focus on the containment relationship which is a special type of consistency rela-
tionship between software models at different levels of abstraction. The containment relationship
is categorized as vertical consistency [Str05]. An unsatisfied containment relationship implies the
deviation of the low-level descriptions from the corresponding high-level specifications and prop-
erties. To the best of our knowledge, very few existing studies have addressed the containment
relationship so far.

Containment checking for software behaviour models, from a broader point of view, is related to the
notion of behavioural equivalence relations between state transition systems [Par81; Mil89]. A no-
table challenge of behavioural equivalence checking (that can be deduced to containment checking)
is that the estimated theoretical computational complexity is NP-hard, even for a class of simple
finite communicating elements [Rab97]. Thus, it is rather costly to apply behavioural equivalence
checking to complex and large scale software systems. Moreover, behavioural equivalence checking
is strict in requiring a bidirectional equivalence of two behaviour models whilst the containment
relationship mainly aims at unidirectional consistency.

There are some existing approaches trying to alleviate the complexity of equivalence checking by
aiming at the similarity of behaviour models in particular application domains, for instance, work-
flows and business processes [RA06; Hid+05], state-charts [Nej+07], state-based models [WB13],
to name but a few. Nevertheless, the outcome of these techniques is not a precise answer whether
two behaviour models are equivalent or subsumed but rather an estimated degree of similarity of
the input models. Hence, these approaches are useful for finding similar behavioural descriptions
but not quite applicable for verifying the containment relationship.

Another challenge that has not been adequately addressed by the existing approaches for be-
havioural equivalence checking, and also consistency checking, is to assist the stakeholders in un-
derstanding the outcomes of the checking process. For instance, existing approaches for checking
behavioural equivalence (aka bisimulation) often return a binary true (satisfied) or false (unsat-
isfied) answer without concrete information of the inequivalent cases [Mil89; Gla90; Gla93]. An-
other example are verification techniques based on model checking [CGP99; MTZ14] that produce
counterexamples which are complex state based error traces [Cim+99; Hol91]. Those are, how-
ever, rather cryptic for users who often have limited knowledge of the underlying formal meth-
ods [DRS03].

We present in this chapter a lightweight approach for addressing these challenges of containment
checking. First, the input behaviour models will be mapped onto intermediate representations,
namely, check models. Based on a formal definition of the containment problem, our approach can
be used to verify whether the resulting check models satisfy the containment relationship. Our
proposed graph-based containment checking technique performs reasonably within the boundary
of O(n3), where n = max(n1, n2) and n1, n2 are the numbers of elements of the two input models,
respectively. Furthermore, our approach aims at producing concrete and helpful information about
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Figure 7.1: Overview of the Graph-Based Containment Checking Approach

the inconsistencies, such as missing elements, missing execution paths, or missing loops, in case
the containment relationship is not satisfied. We illustrate our approach using UML activity
diagrams—a part of the Unified Modelling Language [Gro11b]—which are widely used in both
academia and industry for modelling and analysing behaviours of software systems. Nevertheless,
our approach can also be applied to other types of behaviour models such as BPMN [Gro11a] that
share similar notions and structures with UML activity diagrams.

The chapter is structured as follows. We describe our graph-based approach for containment check-
ing in detail in Section 7.2. In Section 7.3 we use a realistic example extracted from industrial case
studies to illustrate our approach along with its performance evaluation. Section 7.4 is dedicated
for discussing the related studies on supporting behavioural consistency checking and especially
containment checking. We summarise the main contributions in Section 7.5.

7.2 Approach

In this section, we describe our graph-based approach for containment checking of UML activity
diagrams. An overview of the approach is shown in Figure 7.1. The main focus of the approach
is depicted by the solid lines whilst the dashed lines illustrate relevant modelling and developing
activities of the involved stakeholders.

Our approach starts by mapping the input UML activity diagrams at different levels of abstraction
into equivalent intermediate representations, namely, check models. Then, our graph-based con-
tainment checking algorithm is used for verifying whether the resulting check models satisfy the
containment relationship. In case the containment relationship is not satisfied (i.e., the input UML
activity diagrams are inconsistent), our approach will be able to produce relevant checking results



Chapter 7. Graph-Based Containment Checking of UML Activity Diagrams 150

with concrete information about the causes of inconsistencies such as missing elements, missing
execution paths, or missing cycles as well as the involved model elements.

7.2.1 Activity Models and Check Models

As the definitions and semantics of UML activity diagrams are rather informal [Gro11b, Sec. 12],
we derive a representative description, namely, activity model, to provide the basis for formally
analysing UML activity diagrams. The definition of an activity model is based on the definition of
classical transition systems [Mil89]. An activity model needs to adequately accommodate relevant
concepts of a UML activity diagram such as different kinds of nodes, edges, and guards.

Definition 7.1 (Activity model). An activity model A is a tuple (N, E, G, type, guard) where

• N is a finite set of nodes

• E ⊆ N × N is an ordered finite set of edges,

• G is a finite set of guard expressions,

• type : N →{InitialNode, ActivityFinalNode, FlowFinalNode, Action, DecisionNode, MergeN-
ode, ForkNode, JoinNode, LoopNode, ConditionalNode} is a function that maps a node to its
type. Node types are derived from the UML 2 specification [Gro11b, Sec. 12].

• guard : E → G is a function that maps an edge to its guard expressions1.

In Figure 7.2 we depict a simplified activity diagram A = (N, E, G, type, guard) of a travel agency
system where N={Start, ReceiveItinerary, Fork, M1, M2, M3, BookCar, BookHotel, BookFlight,
D1, D2, D3, Join, ChargeCreditCard, NotifyCustomer, Finish}, guard(e12) = “c_booked=no”,
guard(e15) = “c_booked=yes”, guard(e13) = “h_booked=no”, guard(e16) = “h_booked=yes”,
guard(e14) = “f_booked=no”, guard(e17) = “f_booked=yes”, type(Start) = InitialNode,
type(M1) = type(M2) = type(M3) = MergeNode, type(ReceiveItinerary) = type(BookHotel) =
type(BookFlight) = type(ChargeCreditCard) = type(NotifyCustomer) = Action, type(Fork) =
ForkNode, type(Join) = JoinNode, type(D1) = type(D2) = type(D3) = DecisionNode, type(Finish)
= ActivityFinalNode. For the sake of illustration, we explicitly name the control nodes such as
“Start”, “Fork”, “Join”, and “Finish”. The edges are prefixed with “e”. In reality, the developers
can often accept the default identifiers generated automatically by UML modeling tools.

The main goal of our approach is to develop a lightweight graph-based algorithm for supporting
the developers in checking the containment relationship between a high-level and low-level activity

1We note that guard expressions are sub-classes of ValueSpecification in UML. For instance, a guard expression
could be an OpaqueExpression such as “x ≤ 1” or a LiteralString such as “credit card accepted”. Here we omit the
detailed formal definition of each possible kind of ValueSpecification as only their presence and comparability for
equality is relevant for our containment checking approach, and hence, a more detailed definition is not needed.
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Figure 7.2: An Illustrative Simplified Activity Model of a Travel Agency

model. That is, our algorithm needs to verify whether the behaviour (or functions) described by
the low-level activity model encompasses those specified in the high-level counterpart. Thus, the
containment checking algorithm will walk through the high-level activity model to check whether
its elements and structures (e.g., actions, control nodes, and edges) have corresponding parts in
the low-level model.

However, the current form of an activity model might render the graph-based searching inefficient
because it might also contain—apart from the essential elements such as nodes (including both
actions and control nodes) and control flows that are similar to the nodes and edges of a graph—
some unparalleled kinds of elements. For instance, an activity model might have edges associated
with guards. A guard will determine whether the corresponding edge can be activated (i.e., leading
to the execution of the edge’s target) following the execution of the edge’s source. This implies that
the algorithm must dedicate special treatments for them as for the other control nodes because the
guards have significant impact on the behaviour of the software systems described in the models.

Unfortunately, most of the existing approaches do not take guards into account adequately but
rather assume that the control flows will be automatically activated. To alleviate this problem,
we introduce an intermediate representation, namely, a check model, that can explicitly represent
such kinds of elements. The essential idea is to transform the model elements associated with
guards (e.g., edges) into pseudo nodes to yield an intermediate representation that poses the same
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semantics as the original model and is efficient for graph searching. We show here how the edges
are transformed to pseudo nodes of a check model. Similar model elements can be treated in the
same manner.

Definition 7.2 (Check model). We assume that A = (NA, EA, GA, typeA, guardA) is an activity
model. A check model C derived from A is represented by a tuple (NC , EC , GC , typeC , guardC) where
NC = NA∪{n | typeC(n) = GuardNode}, EC = EA∪Eg, GC = GA, typeC = typeA∪{GuardNode},
and guardC = NC ∪ EC → GC .

We use e(s, t) to denote an edge e ∈ EA that connects a source node s to a target node t where
s, t ∈ NA. The construction of NC and EC is defined as follows. For every edge e ∈ EA labeled
with valid a guard constraint (i.e., guard(e) � null), we create a new node ng, assign the guard
value of e to the node, establish additional unlabeled links between ng and the source and target
nodes of e, and remove e from C. Formally, the translation can be described as in Equation 7.1.

∀e(s, t) ∈ EA such that guardA(e) � null •
(
NC = NA ∪ {ng}) ∧

(
EC = (EA ∪ {(s, ng), (ng, t))} \ {(s, t)}) ∧

(
guardC(ng) ≡ guardA(e)

)

(7.1)

We note that the containment checking will be performed on the check model. Thus, it is necessary
to prove that an activity model and the check model derived from it are behaviourally equivalent.
We present a simple sketch of a proof as following.

Proof Sketch: Let us assume that an activity model A = (NA, EA, GA, typeA, guardA) is de-
fined on a semantic domain DA. Based on DA the semantics of a guarded edge e ∈ EA is denoted
as �e�. A check model C = (NC , EC , GC, typeC , guardC) is mapped from A using the procedure
presented in Equation 7.1. We can derive a semantic domain DC for the check model C based on
DA such that each newly added guarded node n ∈ C corresponding to an edge e ∈ EA will have the
same semantics of e. That is �n� ≡ �e�. Hence, it is rather straightforward that C and A behave
in the same way with respect to these semantic domains.

Here we give a simple example to illustrate the aforementioned proof. In the semi-formal token-
based semantic domain DA of the UML 2 specification [Gro11b, pg. 371], a token is allowed to pass
along an edge e if and only if guardA(e) evaluates to true. Hence, DC can be defined based on DA

such that a guarded node n mapped from e will pass along the token to the next node(s) if and
only if guardC(n) ≡ guardA(e) holds.

In Figure 7.3 we depict the check model (with omitted edges’ labels) derived from the activity
model shown in Figure 7.2. The two models are rather alike. The major difference is that all
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Figure 7.3: The Corresponding Check Model of the Travel Agency Activity Model

guarded edges of the activity model are transformed into pseudo nodes (shown with dashed border
lines) associated with corresponding guard expressions in the check model. In this way, a graph
search algorithm can treat all edges in the same manner.

7.2.2 Graph-Based Containment Checking

Our approach takes as inputs a high-level activity model AH and a low-level activity model AL to
verify whether the containment relationship between these models are satisfied (i.e., AL “contains”
AH). In case of inconsistencies, we need to inform the developers the particular causes of the
violation. We use the relation symbol ≺ to denote the containment relationship between these
behaviour models. The containment relationship to be validated by our graph-based algorithm is
defined in Equation 7.2.

AH ≺ AL
def== noMissingNodes(CH , CL)

∧ noMissingTransitiveLinks(CH , CL)

∧ noMissingCycles(CH , CL)

(7.2)
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where CH (resp. CL) is mapped from AH (resp. AL).

Next, we will explain in detail three functions noMissingNodes(), noMissingTransitiveLinks(), and
noMissingCycles() presented in Equation 7.2. We note that these functions represent the (sub)tasks
of containment checking. That is, our graph-based containment checking algorithm will verify
whether there are any missing nodes (i.e., missing expected functions), missing transitive links (i.e.,
missing execution paths), and missing cycles (i.e., missing loop executions). In other words, the
containment checking problem is divided into three sub-problems represented by the corresponding
functions shown in Equation 7.2.

The huge advantage of this divide-and-conquer strategy is that our approach is able to tell specif-
ically about the violation of the containment relationship based on the results achieved from each
function. For instance, we can inform the violation of the containment relationship due to missing
nodes, execution paths, or loops along with the involved elements by analysing the relevant formu-
las. Moreover, we note that these functions can be performed independently, and therefore, can
potentially be parallelized to gain better performance.

noMissingNodes(CH , CL) def== ∀n ∈ NCH
• (type(n) = MergeNode) ∨

(type(n) � MergeNode ∧ ∃m ∈ NCL
• match(n, m))

(7.3)

The function noMissingNodes() aims to ensure that any nodes (e.g., actions, control nodes) that
are present in the high-level model must also appear in the low-level counterpart. That implies
the behaviour described in the low-level model can embrace the expected functions defined in
the high-level model. The expected output of noMissingNodes() will be a set of nodes that are
described in the high-level model but missing in the low-level model. If noMissingNodes() yields
an empty set, we can assume that the functions described in the low-level model at least embrace
the behaviour defined in the high-level model. As noMissingNodes() is rather straightforward, we
present in Equation 7.3 its short formal description. Please note that MergeNodes can be safely
ignored in this context because different combinations of merges do not lead to different ordering
of the executed action nodes [Gro11b, pg. 398].

The function match(), which is used by noMissingNodes(), takes two model elements as inputs and
returns true if two elements are matched and false otherwise. Intuitively, two matched elements
must be of the same type and having the same identifier. Formally, match() can be described as
shown in Equation 7.4.
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match(p, q) def== type(p) = type(q) ∧ (p.name = q.name)

∧ (type(p) = DecisionNode =⇒ guardMatch(p, q))

∧ (type(p) = JoinNode =⇒ specMatch(p, q))

∧ (type(p) = GuardNode =⇒ specMatch(p, q))

(7.4)

guardMatch(p, q) def== ∀ei(p, ti) ∈ EC •
guard(e) � null =⇒
∃eo(q, to) ∈ EC • specMatch(guard(p), guard(q))

(7.5)

The definition of specMatch() is not presented in detail here because it just defines the equality for
all existing sub-classes of the class ValueSpecification in UML [Gro11b, pg. 139]. As this is rather
trivial and lengthy, we opt to omit its definition here.

In the definition of the function noMissingTransitiveLinks(), we use the conventional definitions
of the adjacency matrix and transitive closure of a directed graph. Let G = (V, E) be a directed
graph where V is the set of nodes and E is the ordered set of arcs. The adjacency matrix AG of
G is an n × n boolean matrix whose elements AG[i, j] is true if e(i, j) ∈ E and false otherwise.

Based on the adjacency matrix AG, we derive a reachability matrix RG = A∗
G to represent the

transitive closure of G. It is denoted as RG[i, j] = true if there is a directed path from node i to
node j and false otherwise. The function noMissingTransitiveLinks() is defined in Equation 7.6.

noMissingTransitiveLinks(CH , CL) def== ∀p, q ∈ NCH
• (RCH

[p, q] = false) ∨
(
RCH

[p, q] = true =⇒ (type(p) = MergeNode ∨ type(q) = MergeNode) ∨
(type(p) � MergeNode ∧ type(q) � MergeNode)

∧ (∃pmatch, qmatch ∈ NCL
• match(p, pmatch)

∧ match(q, qmatch) ∧ RCL
[pmatch, qmatch] = true)

)

(7.6)

The main idea of noMissingTransitiveLinks() is to verify whether any possible execution paths
defined in the high-level model are missing in the low-level counterpart. Let CH (resp. CL) be
input high-level and low-level check models and RCH

(resp. RCL
) be the corresponding reachability

graph. Let us consider an arbitrary pair of nodes (p, q), where p, q ∈ NCH
. In case there are no

paths between p and q in CH , i.e., RCH
[p, q] = RCH

[q, p] = false, we do not need to consider
the corresponding links in CL. If a path between p and q exists, i.e., either RCH

[p, q] = true or
RCH

[q, p] = true, there must be a corresponding path in the low-level check model.

The function noMissingCycles() is responsible for verifying whether any loops described in the high-
level model are not realized by the low-level counterpart. In order to define noMissingCycles(),
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we use Tarjan’s algorithm [Tar72] to obtain a set of strongly connected components (SCC)2 in the
helper function getStronglyConnectedComponents().

Assuming that SH (resp. SL) is the set of the strongly connected components of CH (resp. CL),
we define noMissingCycles() in Equation 7.7. Given an SCC s, Ns and Es are used to denote the
sets of nodes and edges of s, respectively.

noMissingCycles(CH , CL) def== ∀sH ∈ SH •
(|NsH | = 1 ∧ ∃p ∈ NsH

∧ hasSelfLink(p, EsH ) =⇒ ∃sL ∈ SL • (|NsL | = 1 ∧ ∃q ∈ NsL

• match(p, q) ∧ hasSelfLink(q, EsL)) ∨
(|NsL | > 1 ∧ allNodesPresent(sH , sL))

)

∨
(|NsH | > 1 ∧ ∃sL ∈ SL • allNodesPresent(sH , sL))

where

Sx = getStronglyConnectedComponents(Cx)

hasSelfLink(n, E) def== ∃e = (s, t) ∈ E • s = n ∧ t = n

allNodesPresent(G1, G2) def== ∀n1 ∈ NG1 , ∃n2 ∈ NG2 • match(n1, n2)

(7.7)

The function noMissingCycles() will examine two cases: either there is only one element in the
nodes of an SCC or more. An SCC with only one node must have a link from that node to itself
to form a cycle. If the only node p in a single node SCC has a link to itself, a containing SCC
in the low-level model must exist respectively and contain the same cycle. This can be the case,
either if the containing SCC is the same single node graph with a self link, or if it is a bigger
SCC that contains the node p. If an SCC has more than one element, a bigger cycle is present in
sH , and an SCC sL ∈ SL must exist that contains all the nodes from sH . Please note that it is
sufficient to show here that the same nodes exist in cycles, as we have already established above
(in noMissingTransitiveLinks()) that none of the transitive links between nodes is missing.

So far we have described the main ideas along with formal definitions of the containment relation-
ship between two software behaviour models. These definitions are the basis of our lightweight
graph-based approach for containment checking. In the subsequent part of the chapter, we will
analyse the theoretical complexity of our approach based on the individual (sub)-functions and con-
duct a quantitative evaluation of the scalability and applicability of our approach using realistic
industrial scenarios derived from our previous projects.

2A graph is strongly connected if every vertex is reachable from every other vertex. The strongly connected
components of a directed graph form a partition into subgraphs that are themselves strongly connected.
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Table 7.1: Estimation of Theoretical Complexity of Graph-based Containment Checking

Main function Sub-function(s) Worst-Case Complexity

translateAtoC addPseudoNodes(G) O(|EG|)
noMissingNodes checkMissingModelElements(G1, G2) O(|VG1 | × |VG2 |)

match(n1, n2) O(|out(n1)| × |out(n2)|)
noMissingCycles hasSelfLink(n) O(|out(n)|)

getStronglyConnectedComponents(G) O(|VG| + |EG|)
allNodesPresent(S1, S2) O(|VS1 | × |VS2 |)

noMissingTransitiveLinks getTransitiveClosure(G) O(|VG|3)
checkMissingTransitiveLinks(G1,G2) O(|SG1 | × |SG2 |)

7.2.3 Theoretical Complexity Analysis

In this section, we present an analysis of the theoretical worst-case complexity of our approach
through the constituent functions. The mapping of an activity model into a check model can be
achieved by traversing the set of the activity’s edges and converting guarded edges to pseudo nodes
as described in Equation 7.1. This process is represented by the function addPseudoNodes() shown
in Table 7.1.

The complexity of noMissingNodes() (see Equation 7.3) can be estimated as two loops over the
nodes of two input check models. noMissingNodes() uses the function match() (see Equation 7.4)
to check whether two arbitrary model elements are matched. We note that match() essentially
compares the nodes’ names, types, and/or guard conditions or valueSpec. Thus, the worst-case of
match() occurs when we analyse the guards associated with the outgoing edges of a DecisionNode
(we use out(n) to denote the set of outgoing edges of n).

In the function noMissingTransitiveLinks(), establishing the transitive closure of an input digraph
G is obtained by using the traditional Warshall’s algorithm [War62] that has the time complexity of
O(|V 3

G|) where VG is the number of nodes of G. Then, comparing for transitive links (aka execution
paths) of two check models can be quickly performed using the reachability matrix.

The function noMissingCycles() comprises three sub-functions. The first function hasSelfLink()
can perform in constant time. The second function getStronglyConnectedComponents() is based on
Tarjan’s algorithm [Tar72] that has the worst-case complexity of O(|V | + |E|). The third function
allNodePresent() compares the nodes of two corresponding strongly connected components (SCC),
and therefore, is bounded by O(|VS1 | × |VS2 |) where S1 and S2 are the aforementioned SCCs. The
worst-case complexity of allNodePresent() occurs when a strongly connected component under
consideration becomes the whole input graph (which rarely, or even never, happens because this
implies all nodes of the graph must be connected).
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7.3 Quantitative Evaluation and Discussion

7.3.1 Quantitative Evaluation

We implement our graph-based approach for containment checking and conduct a preliminary
evaluation of its performance. The main idea is to validate whether the proposed approach performs
reasonably for typical models used in industry on typical workstations used by developers. We also
aim to compare with existing techniques for containment checking. Unfortunately, apart from our
early work based on model checking [MTZ14], we cannot find any working tools for comparison
purpose. Nevertheless, we note that the containment checking approach presented in [MTZ14] is
based on model checking techniques that can support exhaustively exploring the state space to find
out any behavioural inconsistencies. Therefore, this technique, when enabling the exhaustive state
space search options, can be considered as an estimated upper boundary of the complexity of the
containment checking problem. As a result, we will perform the comparison of our graph-based
approach and the model checking based approach [MTZ14] to see how well our approach scales
with respect to that upper boundary.

The workstation used for the performance evaluation is running Linux on a CPU Quad-Core 2.66
GHz with 2048 megabytes of memory. The two approaches under consideration are implemented
in Java and executed with the Java VM 1.7. We note that the model checking based approach
uses the NuSMV model checker [Cim+99] version 2.5.4 for verifying the containment relationship.
Hence, the NuSMV’s source code has been instrumented for measuring the corresponding model
checking time. The evaluation is conducted through four behaviour models extracted from indus-
trial scenarios in network service and banking sectors. These behaviour models are, namely, Order
Processing (OP), Travel Booking (TB), Customer Fulfillment (CF), Billing Renewal (BP), and
Loan Approval (LA) with different sizes and complexity.

For measuring and comparing the performance of our approach and the exhaustive exploring tech-
niques, we focus on the worst-case scenarios. In theory, the worst-case execution of containment
checking taking two input behavioural models is, as shown in the theoretical complexity analysis,
when these input models have approximate or equal sizes (the size of a behavioural model refers
to the number of elements of different types such as nodes, paths, and so on). Thus, in our ex-
periments we take each behaviour model and perform the containment checking using different
techniques to verify the model against itself. This way, we can estimate the worst-case perfor-
mance of both approaches. We report in Table 7.2 our measurement and analysis results based on
the aforementioned cases. We also summarise the total execution time of the two techniques and
visualize them in Figure 7.4 to analyse how fast the execution times grow.

In the first part of Table 7.2, we present the complexity of the input UML activity diagrams
in terms of their elements including actions—representing computational or data handling tasks,
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OP TB CF BR LA

Input Size
Action Nodes 11 7 16 22 29
Control Nodes 8 12 8 17 22
Edges 22 24 30 54 63
Guarded Edges 3 8 4 10 19
Total Elements 41 43 54 93 114

Graph-Based Approach
Model Loading (ms) 3159 ± 112 3377 ± 77 3890 ± 161 5666 ± 137 5142 ± 417
AtoC (ms) 311 ± 38 821 ± 91 447 ± 74 1048 ± 105 1776 ± 239
cNMN (ms) 34 ± 2 24 ± 7 49 ± 3 116 ± 10 216 ± 57
cNMC (ms) 23 ± 2 37 ± 6 30 ± 5 56 ± 3 85 ± 17
cNML (ms) 575 ± 19 723 ± 11 1145 ± 92 6124 ± 97 15 045 ± 1349
Total Time (ms) 4102 4982 5560 13 009 22 264

Model Checking Based Approach
Model Loading (ms) 3167 ± 882 3357 ± 80 3862 ± 122 5481 ± 190 5364 ± 135
UMLtoSMV (ms) 535 ± 38 564 ± 30 665 ± 31 1190 ± 29 1590 ± 48
ModelChecking (ms) 22 635 ± 1859 32 978 ± 1394 24 632 ± 715 56 606 ± 2985 438 174 ± 35 814
Total Time (ms) 26 336 36 899 29 159 63 277 445 128

Table 7.2: Performance Evaluation and Comparison

control nodes—representing the nodes that can change the flow of execution described in the
activity diagrams, and edges—representing the links between nodes. In measuring the execution
of the graph-based containment checking approach, we observe individual tasks such as model
loading, translating activity models to check models (AtoC), checking for missing nodes (cNMN),
missing transitive links (cNML), and missing cycles (cNMC), respectively. The execution time
of the model checking based approach can be broken down to model loading, translating activity
models to NuSMV descriptions (UMLtoSMV), and performing model checking. The corresponding
time consumed by each task is the average time out of 1000 rounds of execution. Before measuring
each task, sufficient warming-up executions are performed to reduce potential confounding factors
of class loading and instantiation in Java. The execution time is measured in nanoseconds but
rounded and shown in milliseconds for the sake of readability. We also include in Table 7.2 the
corresponding unbiased standard deviation of the execution time of each case.

In accordance with the theoretical complexity analyzed in Section 7.2.3, the costly aspect of our
approach is noMissingTransitiveLinks() that consumes reasonable time for building the transitive
closure matrix. Nevertheless, the total execution time of the graph-based technique, to the best
of our knowledge, is still reasonable for a typical working environment. In the model checking
based technique, performing model checking is often a time-consuming task and it grows rather
exponentially (see Figure 7.4).
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Figure 7.4: Comparison of the Scalability of Two Approaches

7.3.2 Discussions

The containment relationship between two behaviour models at different abstraction levels is based
on the assumption that a high-level model element and its low-level corresponding have the same
name and type. That reflects in the function match() where two input elements are compared
with respect to their names, types, and/or other associated properties such as guards. The afore-
mentioned assumption is rather realistic because a low-level model is mainly achieved through a
refinement of a high-level model where existing high-level elements are often enriched with more
details and elements [TZD10]. Nevertheless, in cases of mismatches of their names and types, one
possibility to alleviate this problem, like in the approaches on checking behaviour similarity [BL12],
is to employ supporting text matching techniques [Nav01].

Breaking down the problem of containment checking into smaller tasks (or functions) as shown in
Equation 7.2 brings a number of advantages. First, these tasks are independent from each other,
and therefore, can be performed in any order. For instance, we can perform noMissingNodes() to
quickly validate whether the low-level model covers all functions specified in the high-level model
or noMissingTransitiveLinks() to assess that no execution link in the high-level model is missing.
Moreover, these tasks can also be executed in parallel to gain better performance. Last but not
least, each of these tasks can inform the developers precisely about the causes of the violation of the
containment relationship, for instance, due to missing nodes, cycles, or execution paths, along with
the involved model elements. To the best of our knowledge, none of existing related approaches
has addressed this aspect yet.

The most challenging issues in comparing behaviour models are to deal with loops (e.g., a combina-
tion of decisions nodes and backward edges or a structured loop node [Gro11b, pg. 396]) and parallel
execution branches (e.g., a combination of fork and join nodes). A loop, especially a conditional
loop, cannot be efficiently described by existing property specification logics such as temporal log-
ics [Wol83] that are the formal basis of several model checking based techniques. Parallel execution
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branches lead to the state explosion problem for existing techniques that are based on exhaustive
searches through state spaces of the behaviour models [CGP99]. We aim to address these issues
in our graph-based approach by using the noMissingTransitiveLinks() to verify the presence of all
possible execution branches and noMissingCycles() to verify the presence of corresponding loops
in both behaviour models.

There is a considerable overhead (growing towards O(V 3)) of building the transitive closure (TC)
used by our graph-based containment checking technique in noMissingTransitiveLinks(). Our im-
plementation of noMissingTransitiveLinks() is based on Warshall’s algorithm [War62]. Neverthe-
less, Nuutila has presented heuristics for improving Tarjan’s algorithm [Tar72] in detecting strongly
connected components (SCC) and uses the improved SCC detection techniques (plus a special rep-
resentation of successor sets) to achieve better TC finding [Nuu95]. Our approach is well in line
with Nuutila’s techniques with respect to the use of Tarjan’s algorithm for noMissingCycles() and
Warshall’s algorithm for noMissingTransitiveLinks(). However, we opted not to integrate Nuu-
tila’s techniques in order to better analyze individual performance. Moreover, tight integration of
Nuutila’s techniques implies the dependency between noMissingTransitiveLinks() and noMissing-
Cycles(), and hence, may nullify the potential parallelizability of our approach.

7.4 Related Work

The consistency checking problem has been extensively studied in the literature [LMT09]. However,
very few of these studies focus on the consistency of behaviour models [LMT09]. To the best of
our knowledge, none of them considers the containment checking problem for behaviour models,
which verifies whether an expected software behaviour specified at a higher level of abstraction is
satisfied by a corresponding behaviour description at a lower level of abstraction.

Containment checking for behaviour models, to a broader extent, is related to the notion of be-
havioural equivalence [Mil89]. However, behavioural equivalence based techniques are rather not
applicable for checking the containment relationship. On the one hand, these techniques produce a
binary “true” (satisfied) or “false” (unsatisfied) answer but do not provide further concrete infor-
mation of the inequivalent cases [Mil89; Gla90; Gla93; GW89]. Several studies have been conducted
to alleviate the aforementioned complexity by measuring the degree of behavioural equivalence. On
the other hand, Rabinovich showed that the complexity of the behavioural equivalence checking
on directed graphs is NP-hard, even for a class of simple finite communicating elements [Rab97].
It leads to a considerable number of approaches for alleviating the aforementioned complexity by
relaxing the equivalence relationship and, instead, computing the similarity of behaviour models
in different application domains. For instance, Nejati et al. propose an approach to matching
hierarchical state-charts models [Nej+07]. Walkinshaw and Bogdanov propose two techniques to
compare state machines in terms of language perspective—the externally observable sequences of
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events (transition labels) and in terms of structure perspective—to compute the precise difference
of their actual states and transitions [WB13].

In the field of business process management, there also is a research trend focusing on computing the
similarity of process models [BL12]. Some approaches concentrate on searching for process models
in a large repository that match a given process model or a process fragment thereof [Dij+11;
DDGBn09]. Also in this field, there are a considerable number of approaches using trace the-
ory to validate the conformance of two process models or process models against their execution
traces recorded in the event logs. An approach presented in [AMW06] checks the conformance
between Petri net based process models and their execution traces and returns a degree of be-
havioural similarity ranging from “completely different” to “identical”. Another approach aims
at verifying whether two process models are similar using their corresponding event traces mined
from process execution logs [Aal+08]. Wang et al. measure the similarity of behaviour of pro-
cess models, based on the coverability tree of labeled Petri nets [Wan+10]. Bae et al. propose to
use distance measures metric for measuring mining process similarity and difference [Bae+07]. In
this method, dependency graphs are extracted from process models and converted into normal-
ized matrices. Afterwards, metric space distances are calculated based on the difference between
the normalized matrices. Weidlich, Dijkman, and Weske consider the compatibility between ref-
erenced process models and the corresponding implementation based on the notion of behaviour
inheritance [WDW12]. We note that, unlike our approach, the aforementioned techniques do not
aim at providing precise answers whether two behaviour models are equivalent or subsumed nor
concrete information about any inconsistencies. These approach rather produce an estimated de-
gree of similarity of these models. Therefore, they are very useful for finding similar or alternative
behavioural descriptions but not applicable for verifying the containment relationship.

A closely related work is proposed by Eshuis and Grefen for structurally matching BPEL [OAS07]
business process models [EG07]. The main idea of this approach is to transform a BPEL process
model into a tree structure and exhaustively compare two trees to find out whether the underlying
process models fall into one of four matching categories, namely, “exact matching”, “plug-in match-
ing”, “inexact matching”, and “mismatched”. This approach leverages the tree structures that are
only possible to derive from block-structured behaviour models like BPEL processes3. Thus, it is
not applicable to a wide range of behaviour models that allows flexible connections between model
elements (e.g. UML activity diagrams [Gro11b, Sec. 12], BPMN [Gro11a]). Moreover, the tree
structure in this approach does not allow cyclic paths, and therefore, cannot be used to verify loop
matching as our approach4.

3Please note that the authors consider links in BPEL but restrict the boundary of links inside the containing
block in order to create the underlying tree structures.

4Please note that the authors introduce loop sensitive matching but only for loops nodes, which is fundamentally
different from loop structures formed by cyclic paths.
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Our graph-based containment checking approach presented in this chapter is illustrated via UML
activity diagrams. Like many other behaviour models, an activity diagram embraces fundamen-
tal constructs to express sequential and concurrent executions, choices, merges, and iterations.
Unfortunately, the semantics described in the UML 2 specification [Gro11b] is rather informal.
As a result, our earlier work presented in [MTZ14]—among the others based on model checking
techniques—must derive a transformation of the input activity diagrams to equivalent formal de-
scriptions [Shi06; TMH08]. One challenging aspect is that the non-determinism of decision nodes
and loop nodes make the translation of the input models to formal properties, e.g., in temporal log-
ics, very difficult and inefficient. Another challenge is that parallel structures, for instance, formed
due to the combination of “ForkNodes” and “JoinNodes” in UML activity diagrams, often cause
the state explosion problem [CGP99] as we discussed above. In contrast to our approach, most of
the model checking based approaches have not considered to provide adequate and concrete infor-
mation about the causes of the non-equivalence between behaviour models. In case inconsistencies
exist, the outcomes, for instance, counterexamples [CGP99], are very cryptic for the stakeholders
who often have limited knowledge about the underlying formal methods [DRS03]. Last but not
least, most of the approaches based on model checking techniques are very time-consuming as
shown in our evaluation, and therefore, rather not realistic to apply in complex and large software
development settings.

7.5 Summary

This chapter addressed the Research Question RQ5. It presents a graph-based approach for ad-
dressing the problem of containment checking of software behaviour models at different levels of
abstraction. In this approach, the input behaviour models are mapped to a formal intermediate
representation that can be handled efficiently by graph search algorithms. The containment re-
lationship is formally defined and divided into smaller problems that are resolved by three tasks:
finding missing nodes, missing execution paths, and missing loops, respectively. The advantage of
this divide-and-conquer strategy is twofold. On the one hand, these tasks can be performed inde-
pendently, and therefore, can be parallelized to gain better performance. On the other hand, each
task produces concrete and precise information about the violation of the containment relationship
accordingly. The prototypical implementation of our approach performs within the boundary of
O(n3) where n is the size of the inputs. The quantitative evaluation on industrial scenarios shows
that the proposed approach performs reasonably on a typical working environment and scales well
within the complexity upper bound of an exhaustive model checking based approach. Next chap-
ter will investigate whether the behaviour of an architectural pattern is consistent in terms of the
artefacts produced in the various activities of the software development process.





8
Containment Checking of Behaviour in

Architectural Patterns

This chapter aims to verify whether the behaviour of architectural patterns is consistent in terms
of the artefacts produced in the various activities of the software development process, such as
requirements, software architecture, detailed design and implementation. To date, however, none
of the published studies have considered the containment inconsistencies of architectural patterns’
behaviour. This problem addresses Research Question RQ6. Furthermore, the chapter is based on
a peer-reviewed conference paper in the proceedings of the 22nd European Conference on Pattern
Languages of Programs [MTZ17b].

8.1 Introduction

A typical development scenario for modelling architectural patterns’ behaviour is that a business
analyst or software architect uses a high-level model for outlining the system and discussing it with
the customers and developers. The development team will expand the high-level model to include
one or more low-level models. The low-level model, for example a sequence diagram showing the
detailed interactions, is closer to or even very closely related to the source code of the system. As the
software development process involves various activities, such as requirements elicitation, software
architecture design, detailed design and implementation that are created and evolved independently
by different stakeholders and teams, inconsistencies often occur among them. For instance, high-
level models might be changed according to new requirements, and low-level models are changed as
the implementation is modified. If each change is not systematically propagated to all other models
of the same system (or reality), the evolved models may become inconsistent. Hence, detecting
inconsistencies in early phases of the software development life-cycle is crucial to eliminate as many
anomalies as possible before the systems are actually deployed. Such inconsistencies concern all
kinds of constraints that a high-level model imposes on the low-level model. This is important for
architectural patterns, as they impose various kinds of design constraints on the detailed designs
and implementations that should not be violated. To date, however, none of the published studies
have considered the consistency checking of architectural patterns’ behaviour.

165
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The main idea of architectural patterns is to resolve the recurring design problems that arise in
a specific context at the level of software architectures, including those related to helping in doc-
umentation of architectural design decisions, facilitating the communication between stakeholders
through a common vocabulary, and describing the quality attributes of a software system [AZ05].
There have been many attempts at modelling the structure of architectural patterns [Gam+95;
SG96; MT00; ZA08]; however, only a very few studies have focused on behaviour modelling of
patterns [GAO94; KA08; PTT06]. In practice, the most popular languages for modelling of ar-
chitectural patterns and pattern variants in software design are various kinds of informal and
semi-formal box-and-line diagrams [RW05], the Unified Modelling Language (UML) [Gro11b], Ar-
chitecture Description Language (ADL) [SG96; MT00], and Domain Specific Language (DSL)
[MHS05].

This work focuses on a special type of consistency checking, containment checking, which can be
categorized as vertical consistency [Str05; MTZ17a]. The idea of containment checking is to verify
whether the high-level design constraints described by an architectural pattern are contained in
the low-level design and implementation. Therefore, the containment checking of architectural
patterns’ behaviour not only deals with missing elements or interactions but also misplacement of
elements at different levels of abstraction. Please note that there are severe negative effects of con-
tainment inconsistencies that may cause serious delays in and therefore increased costs of the system
development process, jeopardize properties related to the quality of the system, and make it more
difficult to maintain the system [SZ01]. In order to support containment checking, we conducted
a systematic literature review on behaviour consistency checking research [MTZ17a]. In addition,
we have investigated the containment relationship for various behaviour models in our previous
work, including activity diagrams [MTZ14; TUMZ15], sequence diagrams [MTZ16] and BPMN1

choreography and collaboration models [MTZ15; Mur+17]. We have also investigated possible solu-
tions that are based on model-checking techniques [MTZ14; MTZ16; MTZ15; Mur+17] and graph
algorithms [TUMZ15]. In this research on modelling and analysing behaviours of architectural
patterns, we illustrate the containment checking solution using sequence diagrams [Gro11b]. Our
solution provides informative and comprehensive feedback to the stakeholders to identify the vio-
lation causes and their resolutions. Unfortunately, modelling or mapping of architectural patterns’
behaviour to sequence diagram is also a challenging task due to different variants of architectural
patterns and different semantics of pattern elements and UML. In order to guide the user to fol-
low a specific architectural pattern and its variants, we extend the UML metaclasses using UML
profile mechanism. In particular, we use stereotypes to extend the properties of existing UML
metaclasses. The applicability of the proposed solution is demonstrated for the model-view-

controller, layers, and pipe and filter patterns. The proposed solution can also be applied
to other types of behaviour models such as BPMN, UML activity diagrams and state machines.

1See http://www.omg.org/spec/BPMN/2.0.2/PDF
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The remainder of this chapter is structured as follows: Section 8.2 describes the proposed con-
tainment checking solution in detail. Section 8.3 demonstrates the applicability of the proposed
solution to the model-view-controller, layers, and pipe and filter patterns. Section 8.4
summarises the related work on modelling and formalisation of architectural patterns, and be-
havioural consistency checking. Section 8.5 summarises the chapter.

8.2 Approach Overview

This research aims at identification and resolution of containment checking problems for architec-
ture patterns’ behaviour, in particularly whether the generic behaviour described by the low-level
model of a software system that is based on an architectural pattern encompasses those specified
in the high-level counterpart of that particular pattern. Typically, a high-level model is created
by a business analyst or software architect for outlining the system and discussing with the cus-
tomers and developers. The low-level models are created by the development team or otherwise
reverse-engineered from the source code; they are closer to or even very closely related to the
source code of the system. In the course of software system modelling and implementation, as
models are created and evolved independently by different stakeholders and teams, inconsistencies
among models often occur. Therefore, containment checking improves the quality and reduces the
complexity of big and complex system by determining and resolving the deviations between the
low-level behaviour models and a high-level counterpart in the design phase. To guide the user
to follow a specific architectural pattern and its variants, we extend UML metaclasses using the
UML profile mechanism. In particular, we use stereotypes to extend the properties of existing
UML metaclasses. An overview of our containment checking approach is shown in Figure 8.1. The
main focus of the approach is depicted by the solid lines whilst the dashed lines illustrate relevant
modelling and developing activities of the involved stakeholders.

Two possible ways of containment checking are graph-based search and model checking techniques.
The graph based techniques might require intermediate representation of behaviour models, i.e.,
mapping of elements to nodes and edges [FK07; Tru+09; TUMZ15]. Subsequently, the graph
search algorithms are used to verify the containment relationship between input models. The
model checking techniques require the transformation of high-level behaviour model into design
constraints, whereas the low-level behaviour model can be mapped into formal descriptions. This
can be done using either manual mapping of input models into formal descriptions and consis-
tency constraints (e.g., specifying the transformation rules) or automated techniques. In [MTZ14;
MTZ16] we have introduced the transformation rules grounded on formal expressions that can
support the automated transformation of the high-level behaviour models into design constraints
and low-level behaviour models into formal descriptions. In particular, the behaviour models are
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Figure 8.1: Approach Overview

created in Eclipse Papyrus2 and the Eclipse Xtend framework3 is used to realise the transforma-
tion of behaviour models to formal descriptions and design constraints. In case the containment
relationship is not satisfied (i.e., the input behaviour models are inconsistent), the checking results
have to provide concrete information about the causes of inconsistencies and their resolution such
as missing elements and/or misplacement of elements. In the subsequent section we will describe
our approach in detail.

8.2.1 Approach Details

As emphasized, this chapter deals with the problem of checking the containment between generic
behaviour of architectural patterns at different level of abstraction. We modelled the generic
behaviour of architectural patterns using UML2 sequence diagrams as these diagrams can be used
to capture the interaction between architectural pattern elements. Sequence diagrams show the
sequence of methods/operations entailed by the architectural patterns, occurrence of events to
invoke specific methods/operations, and use messages to represent the interaction among pattern
elements [KA08]. In particular, a sequence diagram consists of lifelines/objects representing the
individual participants in the interaction that communicate via messages. A message is sent from
its source object to its target object (represents an operation/method on the objects) and has two
endpoints. Each endpoint is an intersection with an object and is called an OccurrenceSpecification
(OS). In particular, each message associates normally two OSs (aka events): one is the sending OS

and the other is the receiving OS. An OccurrenceSpecification is a specialization of a MessageEnd.
2See https://www.eclipse.org/papyrus
3See https://eclipse.org/xtend
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ExecutionOccurence is represented by two event occurrences, the start event occurrence and the
finish event occurrence. Messages can be asynchronous or synchronous. The source object continues
to send and receive other messages after an asynchronous message is sent. In contrast, when a
synchronous message is sent, the source object blocks and waits to receive a response (i.e., reply
message) from the target object. As the definitions and semantics of UML sequence diagrams are
rather informal [Gro11b], we derive a representative description of sequence diagrams constructs,
to provide the basis for formally analysing the generic behaviour of architectural patterns.

Definition 8.1 (Sequence Model). A sequence model Seq is a tuple (Objects, Interactions) to
express the generic behaviour of architectural pattern where

Object ::= is a finite set of objects/lifelines

type : Interaction ::= (Object_Source, Message, Asynchronous/Synchronous, Snd) |
(Object_Target, Message, Asynchronous/Synchronous, Rec)

Snd ::= is a sending OccurrenceSpecification of a message on a lifeline

Object_Source

Rec ::= is a receiving OccurrenceSpecification of a message on a lifeline

Object_Target

The main goal of our approach is to verify whether the generic behaviour described by the low-
level sequence model of an architectural pattern encompasses those specified in the high-level
counterpart. Thus, our approach takes as inputs a high-level sequence model SeqH and a low-level
sequence model SeqL to verify whether the containment relationship between these models are
satisfied (denoted below as: SeqH ≺ SeqL). In particular, the containment checking algorithm
will walk through the high-level sequence model to check whether its elements and structures (e.g.,
objects, messages, sending and receiving occurrence specifications) have corresponding parts in the
low-level model. In case of inconsistencies, we need to inform the developers the particular causes
of the violation and their resolution. The following rules for sending and receiving messages must
be considered as the generic behaviour specification of patterns:

• The sending and receiving occurrence specifications of messages on the same object must
occur in the same order in which they are described.

• A receiving occurrence specification Rec of a message is enabled for execution if and only if
the sending occurrence Snd of the same message has already occurred.

• In the case that a synchronous message is sent, the source object cannot send or receive the
other messages until it has received the reply message from the target object.
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In order to perform containment checking, it is necessary to extract all elements that represent the
generic behaviour of architectural patterns. To this end, we use a breadth-first search algorithm
as shown in Algorithm 10. In this algorithm, we use two helper functions, namely, get_objects()
and get_interactions(). The function get_objects() returns a set of objects. The function
get_interactions(i) extract all interactions i, i.e., messages, message sorts (i.e., asynchronous,
synchronous) along with sending and receiving OccurrenceSpecifications (OSs) covered by the
objects in temporal order. An interaction e is called “receiving event” of i “sending event” if there
is a link from i to e that synchronize with the appropriate source and target objects.

Algorithm 10 Extract Elements from UML Sequence Diagram Seq

1: procedure Extract Elements(Seq)
2: Q ← ∅ � Q is the queue of non-visited interactions
3: V ← ∅ � V is the queue of visited interactions
4: Q ← Q ∪ get_objects(O)
5: for all i ∈ Q do
6: V ← V ∪ {i}
7: Q ← Q \ {i}
8: Iinteractions ← get_interactions(i)
9: for all e ∈ Iinteractions do

10: if (e � V ) then
11: Q ← Q ∪ {e}
12: end if
13: end for
14: end for
15: end procedure

Algorithm 11 Matching Elements of Seq_H, Seq_L
1: procedure noMissingElements(SeqH , SeqL);
2: extract interactions inforamtion from Seq_H, Seq_L;
3: for all i ∈ Iinteractions do � Iinteractions(p, q), where p ∈ SeqH ∧ q ∈ SeqL

4: match(p, q)
5: if type(p) = type(q) ∧ (p.name = q.name) then
6: returns true
7: else
8: returns false
9: end if

10: end for
11: end procedure

The containment inconsistencies occur due to several reasons, such as improper insertion of ele-
ments, deletion and/or misplacement of elements in the concrete design of the software system.
The containment relationship to be validated is defined in the following Equation 8.1:

SeqH ≺ SeqL = noMissingElemnts(SeqH , SeqL)

∧ noMisplacementElements(SeqH , SeqL)
(8.1)
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The relation symbol ≺ is used to denote the containment relationship between the behavioural
models. Please note that the noMissingElements() and noMisplacedElements() functions rep-
resent the (sub)tasks of containment checking. The function noMissingElements() aims to ensure
that all the elements (e.g., objects, messages) existing in the high-level model are also present in
the low-level model. That implies the behaviour described in the low-level model can embrace the
expected functions defined in the high-level model. The expected output of noMissingElements()
will be a set of elements that are described in the high-level model but missing in the low-level
model. For this, name-based matching could be performed using the function match() described in
Algorithm 11. The match() function takes two model elements (from high-level and low-level) as
inputs and returns true if two elements are matched and false otherwise. Intuitively, two matched
elements must be of the same type and have the same identifier. In order to identify the misplace-
ment of elements, the sequence of elements of the low-level model is matched with the high-level
model. If the position of elements in the high-level model are not matched with elements in the
low-level model, then the preceding and succeeding elements of the unmatched elements are used
to identify the misplacement of elements. The function noMisplacedElements() is defined in
Algorithm 12.

Algorithm 12 Sequence of Elements
1: procedure noMisplacedElements(SeqH , SeqL);
2: extract interactions inforamtion from Seq_H, Seq_L;
3: for all unmatched(p, q) do � where p ∈ SeqH ∧ q ∈ SeqL

4: match(p, qsucceeding_interactions)
5: if p = qsucceeding_interactions then
6: q ← qsucceeding_interactions

7: generate violation causes and countermeasures
8: else match(p, qpreceding_interactions)
9: q ← qpreceding_interactions

10: generate violation causes and countermeasures
11: end if
12: end for
13: end procedure

Containment checking can be done is several ways. For example, we can map both models onto
formal specifications and constraints, and verify the containment relationship using model checkers.
If the consistency constraints do not satisfy formal specifications then the model checker produces
a counterexample as a trace of states. Another way is to apply graph-based containment checking
to verify whether there are any missing nodes (i.e., missing expected functions), missing transitive
links (i.e., missing execution paths), and missing cycles (i.e., missing loop executions) [TUMZ15].
In both cases, the analysis for locating the cause(s) of inconsistency is performed to aid stakeholders
in identification and resolution of containment inconsistencies. The containment relationship to be
validated by the graph-based algorithm is defined in the following Equation 8.2:
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SeqH ≺ SeqL = noMissingNodes(SeqH , SeqL)

∧ noMissingTransitiveLinks(SeqH , SeqL)

∧ noMissingCycles(SeqH , SeqL)

(8.2)

The function match(), which is used by noMissingNodes(), takes two model elements as inputs
and returns true if two elements are matched and false otherwise, as shown in Algorithm 11. For
the function noMissingTransitiveLinks() the conventional definitions of the adjacency matrix
and transitive closure of a directed graph can be used. Let G = (V, E) be a directed graph where
V is the set of nodes and E is the ordered set of arcs. The adjacency matrix AG of G is an n × n

boolean matrix whose elements AG[i, j] is true if e(i, j) ∈ E and false otherwise. Based on the
adjacency matrix AG, a reachability matrix RG = A∗

G can be derived to represent the transitive
closure of G. It is denoted as RG[i, j] = true if there is a directed path from node i to node j and
false otherwise. In order to define noMissingCycles(), Tarjan’s algorithm [Tar72] can be used to
obtain a set of strongly connected components (SCC)4. For more details see [TUMZ15].

8.3 Application of Our Approach to Architectural Patterns

8.3.1 Containment Checking in Model-View-Controller

The section discusses the identification and resolution of containment inconsistencies in the model-

view-controller (MVC) pattern’s behaviour at different levels of abstraction. In the MVC
pattern the system is divided into three different parts: The Model concerns the object or objects
that encapsulate some application data and the logic that manipulates that data independently
of the user interfaces. One or multiple Views display a specific portion of the data to the user.
The Controller associated with each view receives user input and translates it into a request
to the model. In particular, the views and controllers constitute the user interface. The users
interact strictly through the views and their controllers, independently of the model, which in turn
notifies all different user interfaces about updates. There are many variations of the MVC pattern,
for instance, passive model and classic MVC5[SLG13]. The former is used when one controller
manipulates the model exclusively. The controller modifies the model and then notifies the view
about the changed model, which should be updated. The later is employed when the model changes
state, and it notifies the view without the controller involvement.

UML sequence diagrams need to be extended to express the specific semantics of MVC, especially
to denote which objects are which participants of MVC and which kinds of messages are sent.

4A graph is strongly connected if every vertex is reachable from every other vertex. The strongly connected
components of a directed graph form a partition into subgraphs that are themselves strongly connected.

5See https://msdn.microsoft.com/en-us/library/ff649643.aspx
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Accordingly, a set of stereotypes is required to help architects and developers in correctly mapping
the elements of the MVC architectural pattern to UML sequence diagrams. This will also reduce the
occurrence of containment violations between the high-level and low-level behaviour models. With
the consideration of semantics for sequence diagram elements (i.e., lifelines/objects and messages)
and their use in modelling different variants of the MVC pattern, we selected five stereotypes
from the existing vocabulary of design elements [KA08]. The «Model», «View», «Controller»
stereotypes are used to extend the semantics of lifelines/objects in UML sequence diagrams for
modeling the model, view and controller participants of the pattern, respectively. UML sequence
diagram support asynchronous messaging; however, the semantics defined in the UML standard
do not clearly define the difference between the return values from the receiver lifeline (i.e., target
object). Without using the «AsynchMessage» stereotype, it is difficult to identify whether the
return value is merely a notification/acknowledgement event about the receipt of a message or the
actually processed data. Similarly, the «SynchMessage» stereotype is used when the source object
blocks and waits to receive a response (i.e., reply message) from the target object to update the
status of the operation that invoked the synchronous communication. In summary:

• The «Model» stereotype extends the Lifeline/Object metaclass of UML and contains occur-
rence specifications for interaction with Controller and/or View objects.

• The «View» stereotype extends the Lifeline metaclass of UML and contains occurrence spec-
ifications for interaction with Model and Controller objects.

• The «Controller» stereotype extends the Lifeline metaclass of UML and contains occurrence
specifications for interaction with Model and View objects.

• The «SynchMessage» stereotype extends the Message metaclass and uses the existing UML
synch-message operations to ensure that an end-to-end connection is established with the
receiver lifeline (target object), which covers the receiving occurrence specification (event
end). A return operation is necessary for the synchronous communication/messaging to
update the status of the operation that invoked the synchronous messaging.

• The «AsynchMessage» stereotype extends the Message metaclass to ensure that the invoca-
tion flag is active when an operation is invoked. The asynchronous communication is further
constrained to ensure that the method invoking the operation is not bound to receive the reply
message and only a notification/acknowledgement can inform about the receipt of message.

Furthermore, there is need for additional stereotypes to cover the missing aspects concerning the
containment relationships. For instance, the User/Client object is covered by any stereotypes
explained so far. Furthermore, we also consider the case in which the object(s) in the low-level
model are broken down into multiple entities, so that each of them not necessarily receives an
update message, in particular, if the View is broken down into mobileView and desktopView, the
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message will be sent to only one specific view. For this purpose we introduce the «ViewPart»
stereotype. Similarly, model and controller can be broken down into sub-components.

• The «Actor» stereotype extends the Object/Lifeline metaclass of UML and contains occur-
rence specifications for the interaction with View.

• The «ViewPart» stereotype extends the Lifeline metaclass of UML and divides the View into
parts for interaction with a Controller and/or Model.

• The «ModelPart» stereotype extends the Lifeline metaclass of UML and divides the Model
into parts for interaction with a Controller and/or View.

• The «ControllerPart» stereotype extends the Lifeline metaclass of UML and divides the
Controller into parts for interaction with a Model and Views.

Figure 8.2: High-Level Model of Itinerary Management System

The high-level sequence diagram of an itinerary management system is shown in Figure 8.2. It
follows the MVC pattern and involves five objects, namely client, website, user controller, travel
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agency, and airline. Specifically, airline and travel agency objects represent the models; website
concerns view which forward client requests to user controller; and user controller stores and
retrieves data from airline and travel agency models and updates the website view accordingly.
The core functionality of the itinerary management system can be described as follows: the process
starts when client sends search flight request by invoking an event through the website, the user
controller, in turn, contacts the travel agency model for loading airlines. The travel agency replies
with a flight list to the controller which in turn is asked to update the view. When the client
selects the preferred flight, the user controller asks the airline model about seat info and cost
details, respectively.

The low-level itinerary management system is a refined and extended version of the high-level
diagram that provides more detailed information about the system (an example of a low-level
model is shown in Figure 8.3 in the context of detected violations and their causes). For instance,
it contains additionally a payment model to calculate the price of an itinerary, as well as an email
model and service for managing the user registration and login strategy. The low-level model may
contain new messages that can be inserted in-between existing ones, or new objects and messages
in parallel with existing ones, and so on, but the elements should not be inserted arbitrarily. Our
containment checking for generic behaviour of the MVC pattern aims to verify whether the elements
of high-level model correspond to those of a detailed design of a system.

The containment checking solution presented in the aforementioned Section 8.2.1 first ver-
ifies whether all the objects (i.e. model, view, and controller) that exist in the high-level
sequence diagram of the itinerary management system (Seq_H) are also present in the
low-level sequence diagram (Seq_L). For each object the respective interactions (e.g.,
Client_SearchF light_Asyn_Snd, Client_Show_Asyn_Rec) are also matched. If an ob-
ject present in the Seq_H no longer exists in the Seq_L it means that interactions corresponding
to this object are also deleted. For this, the “missing element cause” (either one, multiple, or
all elements could be missing) is detected and a corresponding countermeasure (i.e., insert the
missing element at a particular position in the low-level model) is suggested. In this case, the
TakeAnotherScreen message is sent from the UserController «Controller» to Client «Actor»
present in the high-level model, but does not exist in the low-level model, can be seen as a reason
for the containment violation. As we can see in Figure 8.3, the third box displays the actual cause
and potential countermeasures (i.e., add TakeAnotherScreen after AccessSuccessful message –
connecting UserController «Controller» to Client «Actor»).

If all objects present in Seq_H are also present in Seq_L, the next check is, whether the corre-
sponding interactions have a different structure. The preceding and succeeding interactions of a
corresponding object of Seq_L are matched with the interaction of Seq_H to locate the causes of
inconsistencies. In our example, the sending OS of the RetrieveCost «SynchMessage» message
and the receiving occurrence of the CostDetails reply message covered on the UserController



Chapter 8. Containment Checking of Behaviour in Architectural Patterns 176

Figure 8.3: Feedback of Containment Results in the Low-Level Model
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«Controller» are violated because the RetrieveCost and CostDetails message are sent and re-
ceived prior to the sending OS of the RetrieveSeatInfo message and receiving occurrence of
the SeatInfo message in the low-level model. Similarly, a misplacement of message occurrences
exists for the Airline «Model». These violations can be resolved by putting the RetrieveCost
and CostDetails messages after the RetrieveSeatInfo and SeatInfo messages – connecting the
UserController «Controller» and Airline «Model» in the Seq_L. In Figure 8.3, the first and
second box show the actual causes and potential countermeasures of misplacement of elements.
Once the causes are located, causes are eliminated by updating the responsible elements of the
low-level sequence diagram.

8.3.2 Containment Checking in Layers

So far, we have presented a scenario from a realistic use case representing the MVC pattern that
illustrates how our proposed solution works to identify and resolve the containment inconsistencies
of the MVC pattern at different levels of abstraction. As our proposed solution aims to support
the software architects and/or developers to verify the containment relationship during their de-
velopment tasks, it is crucial to assess whether our solution is also applicable for other architecture
patterns, like the layers architecture pattern, as well.

In the layers pattern a system is structured into Layers in which each Layer provides a set of
services to the layer above and uses the services of the layer below [AZ05]. Within each layer all
constituent components work at the same level of abstraction and can interact through connectors.
Between two adjacent layers a clearly defined interface is provided. In the pure form of the pattern,
layers should not be by-passed: higher-level layers access lower-level layers only through the layer
beneath. However, a relaxed layered scheme loosens the constraints and allows the by-passing such
that a component can interact with components from any lower-level layer. The components in
the layer should be organized in such a way that they share a set of common behaviours and one
layer member cannot be part of multiple layers.

The generic behaviour of the layers pattern at different levels of abstraction satisfies the contain-
ment relationship if elements or behaviours of the high-level model are contained in the detailed
design of a layers-based architecture. It is also important that the detailed design follows the same
definition of layers patterns as the high-level model. The semantics of UML sequence diagram
elements (i.e., lifelines/objects and messages) again need to be extended for modelling the concerns
of layers pattern. Therefore, we used the two stereotypes «SynchMessage» and «AynchMessage»
from the previous section to map the layers pattern into sequence diagrams. Specifically, they
support synchronous and asynchronous communication between two adjacent layers and members
within a layer. The «Actor» stereotype might also be used to model the client/user. In addi-
tion, we need to ensure that interactions between lifelines residing in different layers do not allow
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Figure 8.4: Modelling Layers Architecture Pattern Using Stereotypes

by-passing; also one layer member cannot be part of multiple layers. Therefore, an additional
stereotype is needed to cover the missing aspects concerning these containment relationships – a
similar stereotype for components is proposed in [ZA08]. Figure 8.4 shows an example of using the
stereotypes used for expressing the layers pattern.

• «Layer»: A stereotype that extends the Lifeline metaclass of UML and owns occurrence
specifications for interaction with lower layer. The «Layer» stereotype allows lifelines who
are members of the upper layer (e.g., layer N) to interact with their fellow lifelines in layer N,
as well as lifelines in layer N-1 but does not allow them to communicate with other layers (e.g.,
N-2 and below). We also support the tag definition layerNumber (+layerNumber:Integer)
for layers – representing the number of the layer in the ordered structure of layers.

Using these extensions to UML sequence diagrams it is possible to support containment checking
for the explained containment relationships akin to the support for MVC explained before.
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8.3.3 Containment Checking in Pipe and Filter

In this section, we describe the identification and resolution of containment inconsistencies in the
pipe and filter pattern’s behaviour at different levels of abstraction. In a pipe and filter

architecture a complex task is divided into several sequential subtasks. Each of these subtasks
is implemented by a separate, independent component (or filter), which handles only this task.
Filters are connected through pipes, each of which transmits outputs of one filter to the inputs of
another filter [Bus+96]. A Data Source produces an output stream without any input and supplies
data streams to the first pipe. A Data Sink consumes an input stream but does not produce any
output. The elements in the pipe and filter pattern can vary in the functions they perform.
For instance, filters can be characterised into active and passive filters based on their input/output
behaviour. An active filter starts processing on its own as a separate program or thread. It pulls
in data and pushes out the transformed data. A passive filter is activated by being called either as
a function (pull output data) or as a procedure (push input data). Pipes can buffer data between
filters, form feedback loops or synchronize the filters.

Similar to the MVC and layers patterns, UML sequences diagrams need to be extended in order to
enable containment checking. Based on this, the containment checking can be performed to ensure
that the generic behaviour described by the low-level model of a software system that is based on
the pipe and filter pattern encompasses those specified in the high-level counterparts, akin to the
support for the MVC pattern described above. Here, we require at least an «Filter» and «Pipe»
stereotype to denote the participants of the pattern (as also introduced in [KA08]), and again
the «AynchMessage» and «SynchMessage» stereotypes described above. The Filter stereotype is
used to depict the lifelines/objects that transmit streams of data, and Pipe is used for message
interaction from source object (filter) to target object (adjacent filter). The AsynchMessage and
SynchMessage stereotypes are used to specify asynchronous and synchronous communication from
one filter to the next filter in the chain, respectively. Figure 8.5 shows the stereotypes used for
expressing the pipe and filter pattern in an example.

• The «Filter» stereotype extends the Lifeline metaclass of UML and covers the occurrence
specification of the associated pipes.

• The «Pipe» stereotype extends the Message metaclass of UML and connects the occurrence
specification of a sender lifeline to the occurrence specification of a receiver lifeline.

8.4 Related Work

This section gives an overview of existing work on modelling and formalisation of architectural
patterns and consistency checking of behavioural models.
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Figure 8.5: Modelling Pipe And Filter Pattern Using Stereotypes

8.4.1 Modelling and Formalisation of Architectural Patterns

The literature describes a number of attempts to model the structure of patterns [Gam+95; MT00;
ZA08]. For instance, Giesecke et al. [Gie+07] extend the UML metamodel by creating profiles based
on patterns. Their work maps the MidArch ADL to the UML metamodel for describing patterns
in software design. Garlan et al. [GK00] introduce four strategies (classes and objects, classes
and classes, UML components, and subsystems) for encoding the architectural elements in UML
typically found in modern ADLs. Clements et al. [Cle+03] demonstrate how UML can be used to
represent the fundamental architectural concepts in a number of architectural views. Selic [Sel98]
describe a UML profile for real-time systems, which demonstrates several architectural concepts
such as components, connectors, and ports.

Mehta and Medvidovic [MM03] propose an approach, called Alfa, for composing elements of ar-
chitectural patterns using a small set of architectural primitives. In particular, they identified
eight forms and nine functions as architectural primitives. Similarly, Bass et al. [BCK03] have
also proposed a predefined set of unit operations, such as abstraction, compression, separation and
resource sharing as the building blocks for all architectural and design patterns. Zdun et al. [ZA05;
KAZ08] present a generic and extensible approach for modelling architectural patterns by means
of architectural primitives. They use a vocabulary of pattern elements in parallel to architectural
primitives to capture the missing semantics of architectural patterns.

There are many approaches for modelling or representing software patterns, which focuses on the
design patterns from [Gam+95]. A number of such approaches attempted to formally specify the
patterns (see for instance [Mik98; EHL99; SH04; MCL04]). These approaches have not been used
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for architectural patterns or whole pattern languages, but just for some isolated patterns from
[Gam+95].

There have also been attempts to support the modelling of patterns’ behaviour in software design.
For instance, Garlan et al. [GAO94] propose an object model for representing architectural designs.
The authors characterise architectural patterns as specialization of the object models. Perronne et
al. [PTT06] describe a modelling framework consists of two design patterns to support behaviour
specification of patterns. The first, polymorphic behaviour pattern provides the integration and the
execution of new behaviours for a system. The second, structured behaviour pattern provides the
means to use finite state machines for behaviour switching. Kamal and Avgeriou [KA08] describe
the use of primitives for systematically modelling the behaviour of architectural patterns. How-
ever, the published studies have not considered the consistency checking of architectural patterns’
behaviour so far.

8.4.2 Behavioural Consistency Checking

Many approaches tackled different types of models and/or model checking techniques [SZ01;
LMT09; MTZ17a]. Some of them focus on checking the consistency of behavioural models against
structural models [RW03; TE00; KC02] or checking different types of behaviour models (models
and other representations of the same reality such as the requirements or implementations) [LP05;
YS06; GK07; Mar05]. To the best of our knowledge, very few of them consider the consistency
checking problem for behaviour models at levels of abstraction. The major difference of these
approaches and our approach is that we consider the consistency of the same model at different
levels of abstraction, i.e., “vertical consistency” [Str05]. In particular, we focus on checking the
consistency of the containment of the high-level model in the low-level model, rather than checking
the consistency of elements of two different representations.

In some studies, the notion of behaviour inheritance has been studied in the realm of consistency
checking of behaviour diagrams, in particular, the inheritance of object life cycles in statecharts.
Stumptner and Schrefl introduce specialisations of object life cycles by examining extension and re-
finement in the context of UML statecharts [SS00]. Van der Aalst presents a theoretical framework
for defining the semantics of behaviour inheritance [Aal02]. In this work, four different inheritance
rules, based on hiding and blocking principles, are defined for UML activity diagram, statechart
and sequence diagram. However, the application of these inheritance concepts in the context of
actual scenarios is not clarified.

In our earlier work, we have investigated the containment checking problem for various behavioural
models. Particularly, our previous research not only supports automated transformation of activ-
ity diagrams [MTZ14], sequence diagrams [MTZ16], and BPMN choreography and collaboration
diagrams [MTZ15; Mur+17] into equivalent formal specifications and consistency constraints, but
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also interprets the counterexamples for locating the cause(s) of inconsistencies and their resolu-
tions [MTZ15; MTZ16; Mur+17]. Besides model checking techniques, graph-based solutions for
addressing the problem of containment checking are also investigated [TUMZ15]. This research
deals with the checking of architecture patterns’ behaviour at different levels of abstraction, which
has not been addressed so far.

8.5 Summary

Motivated by the need to address the Research Question RQ6, the central theme of this chapter
focuses on the identification and resolution of containment violations in architecture patterns’
behaviour at different abstraction levels. In this context, we have performed a systematic review of
behaviour consistency checking research, investigated various behaviour models including activity
diagrams, sequence diagrams and BPMN models, as well as possible solutions based on model-
checking techniques and graph algorithms. This research help in identification of violation causes
of an architectural patterns’ behaviour in various activities of the development process; the software
architecture, detailed design and implementation are based on the specific architecture pattern.
The applicability of the proposed solution is demonstrated for model-view-controller, layers,
and pipe and filter patterns.



9 Conclusions and Future Work

This chapter presents the conclusions of this dissertation. At first, the answers to the research
questions introduced in Chapter 1 are presented – they primarily concern containment checking
problems in software behaviour models. After that, the major contributions of the dissertation are
summarised. Finally, ongoing and future research directions are discussed.

9.1 Research Questions and Answers

Chapter 1 summarised the containment checking problems tackled in this dissertation. This led
to the formulation of six research questions. They are addressed in Chapters 2 to 8. The research
questions are revisited and briefly discussed below:

RQ1: What is the current state-of-the-art of software behaviour model consistency
checking and potential gaps for future research?

We have performed a Systematic Literature Review (SLR) in the area of software behaviour model
consistency checking. In our study, the identification and selection of the primary studies was
based on a well-planned search strategy. The search process identified a total of 1770 studies, out
of which 96 have been thoroughly analysed according to our predefined SLR protocol. Through
in-depth analysis and interpretation of the collected data, many interesting findings along with a
number of gaps and open problems are obtained that provide insights for further investigation.
More specifically, the containment checking which is categorized as vertical consistency has not
received special treatment in the literature. The results also indicate that a considerable number
of studies either assume the existence of formal logic constraints or require manual efforts in
specifying the input consistency constraints (e.g., rules specified in LTL/CTL etc.). There is also
a need to improve the quality of study design and conducting evaluations to achieve solid and
repeatable scientific results that have greater impact in both academia and industry. In future
studies, an appropriate strategy for inconsistency handling, better tool support for consistency
checking and/or development tool integration should be considered. The categories and encoding
proposed in the SLR would also be considered as a guideline or recommendation for practitioners in
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evaluating relevant methods and techniques as well as for researchers in designing rigorous studies
and evaluations that aim for higher practical impact.

RQ2: How to perform automated transformation of behavioural diagrams into formal
specifications and consistency constraints?

At the time we began working on this dissertation, none of the published studies has performed
a comprehensive exploration of the containment checking problem in software behaviour mod-
els as a model checking problem. The containment checking of behaviour models using model
checking techniques requires both formal consistency constraints and specifications/descriptions of
these models. Unfortunately, creating formal consistency constraints and specifications was done
manually, and therefore, labour-intensive and error prone.

We have investigated the problem of containment checking for activity diagrams, sequence diagrams
and service choreographies at different levels of abstraction. In our proposed approaches, on the
one hand, automated transformation of high-level models into LTL formulas is provided. On the
other hand, low-level models, often resulting from various steps of refinement and enriching of
the high-level counterparts, are transformed into formal SMV descriptions. The NuSMV model
checker is employed for verifying containment relationship. Therefore, the automated translation
strategy is useful to bridge the gap between manual specification of formal properties as well as
consistency constraint for containment checking. In order to illustrate the applicability of the
proposed approaches, we realized realistic scenarios from various domains and also evaluated the
performance of approaches in particular cases. Through the evaluation of use case scenarios from
industrial case studies, we also show that automated transformation of behaviour model into formal
constraints and/or descriptions significantly increases the usability of formal languages in practice.

RQ3: How to verify that the behaviour (or interactions) described in the local chore-
ography models collectively encompasses those specified in the global model?

Service choreography is a set of interrelated service interactions at a high-level of abstraction, which
represents message exchanges, interaction rules and agreements between web service partners. The
undesired containment violations in service choreographies would cause severe problems; for ex-
ample, improper identification of services and their corresponding service providers, and therefore
affect the delivery of services. Previous studies have not considered the containment relationship
between global and local choreography models. Accordingly, we proposed an approach for con-
tainment checking in service choreographies that verifies whether the message exchange behaviour
(or interactions) described in the joint local choreography models encompasses those specified in
the global model. More specifically, a set of transformation rules are introduced to facilitate the
automated transformation of global and local choreography models into LTL constraints and SMV
specifications, respectively. The generated formal descriptions and properties are used by existing
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model checkers for detecting any discrepancy between global and local choreography models and
yield corresponding counterexamples.

RQ4: Is it possible to provide better support to the stakeholders for identification of
containment problems and their resolutions?

The erroneous results reported by the model checkers (i.e., counterexamples) are not quite informa-
tive to the users. On the one hand, it requires reasonable knowledge of the underlying formalism
to analyse the counterexamples. On the other hand, they show only parts of the chain of execution
states leading to the cause of the inconsistency. Therefore, it is difficult for developers to track the
entire evidence. This process requires considerable amount of time and effort to identify the root
causes of the containment inconsistencies in order to fix the input models.

To address this problem, we introduce counterexample analysis approach for locating the root
causes of a containment inconsistency and producing appropriate guidelines as countermeasures
based on the information extracted from counterexample trace file, formalisation rules, and the
SMV descriptions of the low-level model. Automatically analysing and presenting the root causes
of inconsistencies in intuitive forms support the developers to better comprehend and resolve the
problems and it also significantly reduces the time and effort of manually locating the causes of an
inconsistency. The counterexample analysis problem is resolved for the activity diagrams, sequence
diagrams, BPMN process models and service choreographies.

RQ5: Does graph-based containment checking provide better support for dealing with
the non-determinism of decision nodes and loop nodes, as well as the state explosion
problems than model checking based techniques?

Although the containment checking can be realized based on model checking, but not always the
costly exhaustive searches employed by model checking are necessary for addressing the contain-
ment checking problem, leading to potentials for optimization. Accordingly, we have proposed a
graph-based approach for addressing the problem of containment checking of software behaviour
models at different levels of abstraction. In the approach, the input behaviour models are mapped
to a formal intermediate representation that can be handled efficiently by graph search algorithms.
The containment relationship is formally defined and divided into smaller problems that are re-
solved by three tasks: finding missing nodes, missing execution paths, and missing loops, respec-
tively. The advantage of this divide-and-conquer strategy is twofold. On the one hand, these tasks
can be performed independently, and therefore, can be parallelized to gain better performance.
On the other hand, each task produces concrete and precise information about the violation of the
containment relationship accordingly. The prototypical implementation of our approach performs
within the boundary of O(n3) where n is the size of the inputs. The quantitative evaluation on
industrial scenarios shows that the proposed approach performs reasonably on a typical working
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environment and scales well within the complexity upper bound of an exhaustive model checking
based approach.

RQ6: How to ensure that the behaviour of an architectural pattern is consistent across
the artefacts produced in the various activities of the software development process?

Containment checking is important for architectural patterns, as they impose various kinds of de-
sign constraints on the detailed designs and implementations that should not be violated. To date,
however, none of the published studies have considered the containment checking of architectural
patterns’ behaviour. The proposed solution aims at identifying and resolving the containment
checking problems in architecture patterns’ behaviour, in particularly whether the generic be-
haviour described by the low-level model of a software system that is based on an architectural
pattern encompasses those specified in the high-level counterpart of that particular pattern. In
order to guide the user to follow a specific architectural pattern and its variants, we extend UML
metaclasses using the UML profile mechanism. In particular, we use stereotypes to extend the prop-
erties of existing UML metaclasses. The applicability of the proposed solution is demonstrated for
model-view-controller, layers, and pipe and filter patterns.

9.2 Major Contributions

The central theme of this dissertation focuses on a special type of vertical consistency, in particu-
larly containment checking. We have performed an SLR in the area of software behaviour model
consistency checking. A total of 1770 studies have been identified by combining automated searches
and manual snowballing, out of which 96 have been studied in-depth according to our predefined
SLR protocol. In particular, we have studied the targeted software models, types of consistency
checking, consistency checking techniques, inconsistency handling, type of study and evaluation,
automation support, and practical impact.

Three model checking based techniques are proposed to address the containment checking problems
in activity diagrams, sequence diagrams and service choreographies. More specifically, we intro-
duced a set of transformation rules to facilitate the automated transformation of high-level models
into formal consistency constraints (i.e., LTL formulas), whereas the low-level models are trans-
formed into formal SMV descriptions. The formal consistency constraints and SMV descriptions
are inputs to the model checker; however, the results produced by existing model checkers (e.g.,
counterexamples) are rather cryptic and verbose. Therefore, a counterexample analysis mechanism
has been developed that provides more informative and comprehensive feedbacks to the stakehold-
ers for identification of containment problems and their resolutions.

A lightweight graph-based approach has also been proposed because the costly exhaustive searches
employed by model checking are not always necessary for addressing the containment checking
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problem. First, we have investigated containment checking generically for the named design models
and studied the application in realistic use case scenarios, taken mainly from enterprise information
systems. Second, we have studied applying containment checking in the context of architectural
patterns, in particularly problems with the modelling of architectural patterns’ behaviour and
comprehensive feedbacks have been addressed.

9.3 Future Research Directions

Model checkers require formal descriptions and consistency constraints, which are automatically
generated for activity diagrams, sequence diagrams and service choreographies. In the future,
the proposed transformation rules might be adapted to support the other behaviour models such
as UML state machines, communication diagrams, and EPCs. Similarly, the support for other
behaviour models might be investigated for the graph-based solution. Although the prototypical
implementation shows reasonable performance, further integration of improved graph algorithms,
for instance for transitive closure finding and strongly connected component detection, is promising
in order to gain more improvement in performance.

A controlled experiment is an analysis of a testable hypothesis in which one or more independent
variables are manipulated to measure their effect on one or more dependent variables. We plan to
conduct controlled experiments to empirically validate whether the proposed containment checking
and counterexample analysis approaches significantly support the human analysts in identification
and resolution of containment inconsistencies. Another important future work area is to develop
a process related to refactoring, a catalogue of applicable refactorings, and evaluations for that
catalogue of refactorings. The intention is that the architecture should not be violated during code
or model refactorings.
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A Overview of Selected Primary Studies

SID Studied Artifacts Semantic Domains Checking Techniques Studied Domains

S1 Statechart, Activity Dia-
gram (fUML)

Process Algebra (CSP) Model Checking fUML

S2 Sequence Diagram, State-
chart

State Transition (Transition
Matrix)

Specialized Algorithm (Transi-
tion Set/Matrix, Super State
Analysis)

UML

S3 Statechart State Transition (Z) Theorem Proving UML
S4 Disjunctive Modal Transi-

tion Systems (DMTS)
Temporal Logic (LTL), State
Transition

Model Checking+Specialized
Algorithm (synthesis)

General

S5 Modal Transition System State Transition, Quantified
Boolean formulae (QBF)

Specialized Algorithm General

S6 Statechart, Sequence Dia-
gram

Petri Net (Generalized Stochas-
tic PNs)

Specialized Algorithm
(Analysable PNs)

UML

S7 Process Model Guard-Action-Trigger (based
on Event-Condition-Action)

Specialized Algorithm
(Guard-Action-Trigger)

BPM+SOA

S8 Process Model (BPEL) Process Algebra (D-LOTOS),
Durational Action Timed Au-
tomata (DATA)

Model Checking BPM+SOA

S9 Message Sequence Chart
(MSC)

State Transition (Timed
Message-Passing Automata)

Model Checking UML

S10 Object Behavior Logic
Models

State Transition (OBL) Logical Inference Object-Oriented
Design

S11 Modal Transition Systems Temporal Logic (CTL), State
Transition

Model Checking, Specialized
Algorithm (Repair)

General

S12 SCR Behavioral Require-
ments, Control-flow based
PDL

State Transition, Graph (DFG) Specialized Algorithm
(Dataflow analysis)

SCR/PDL

S13 SDL, Message Sequence
Chart (MSC)

Temporal Logic (LTL), State
Transition (Finite State Au-
tomata)

Model Checking (SPIN) Distributed Systems

S14 Service Behavioral Interface
(STS)

State Transition (Symbolic
Transition System STS)

Model Checking (Maude) SOC/SOA

S15 Statechart, Sequence Dia-
gram (UML-RT)

Process Algebra (CSP) Model Checking Embedded/Real-
time

S16 Activity Diagram, Visual
Contract

State Transition, Graph Model Checking BPM+SOA

S17 Activity Diagram Typed Graph Specialized Algorithm (Graph
Transformation)

UML

S18 Activity Diagram Temporal Logic, State Transi-
tion

Model Checking UML

(Continued on next page)
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SID Studied Artifacts Semantic Domains Checking Techniques Studied Domains

S19 Workflow Ontology, Description Logic
(DL)

Ontology Logic Reasoning Workflow

S20 Activity Diagram (UML-
MARTE)

State Transition (Time Transi-
tion System TTS)

Specialized Algorithm Real-time

S21 Sequence Diagram, State-
chart (UML/SPT)

Temporal Logic (CTL), Timed
Automata

Specialized Algorithm
(Schedulability Analysis)

Embedded/Real-
time

S22 Statechart Temporal Logic (CTL), State
Transition

Model Checking (AGAVE) UML

S23 Statechart Temporal Logic (ACTL),
Automata (Hierarchical Au-
tomata)

Model Checking (JACK) UML

S24 Statechart, Sequence Dia-
gram

State Transition (State Ma-
chine)

Specialized Algorithm UML

S25 Sequence Diagram, Use
Case

Modal Sequence Diagram
(based on Harel’s LSC)

Specialized Algorithm (Play-
out + Synthesis)

UML

S26 Process Model (BPMN) Description Logic, GRL
(i*+NFR)

Specialized Algorithm BPM

S27 Live Sequence Chart (LSC) Global System Automaton Specialized Algorithm UML
S28 Use Case, Activity Dia-

gram, Collaboration Dia-
gram

State Transition (Typed
Graph)

Specialized Algorithm (Graph
Transformation)

UML

S29 Statechart Process Algebra (CSP) Model Checking (FDR) UML
S30 Sequence Diagram, Inter-

face Automaton
State Transition (Interface Au-
tomata)

Specialized Algorithm (Exis-
tential Consistency)

Embedded/Real-
time

S31 Sequence Diagram w. Tim-
ing Constraints

State Transition (Real-time In-
terface Automata RIA)

Specialized Algorithm Embedded/Real-
time

S32 Statechart, Sequence Dia-
gram

Temporal Logic (LTL), State
Transition

Model Checking Software Architec-
ture

S33 Statechart, LTS State Transition (Labeled Tran-
sition System)

Model Checking UML

S34 Sequence Diagram, Activity
Diagram

Temporal Logic of Actions
(cTLA)

Model Checking UML

S35 Statechart (Timed
Resource-Oriented State-
chart TRoS)

Process Algebra (ACSR, for
Real-time)

Specialized Algorithm Embedded/Real-
time

S36 Statechart, Sequence Dia-
gram

Timed Automata Model Checking Real-time

S37 Sequence Diagram State Transition (csTS, Modal
TS)

Specialized Algorithm (syn-
thesis)

UML

S38 Statechart, Sequence Dia-
gram (UML-RT)

State Transition Specialized Algorithm Embedded/Real-
time

S39 Process Model (BPMN) Temporal Logic, Petri Nets Model Checking (GROOVE) BPMN
S40 Statechart Process Algebra (Pi-Calculus) Specialized Algorithm (Weak

Bisimulation)
UML

S41 Statechart, Sequence Dia-
gram

Process Algebra (Pi-Calculus) Specialized Algorithm (Open
Bisimulation)

UML

S42 Sequence, Collaboration Di-
agram

Real-time Action Logic (RAL) Logical Inference Real-time

S43 Modal Transition System State Transition Specialized Algorithm General
S44 Label Transition System,

I/O FSM
State Transition, Modal Logic Model Checking + Specialized

Algorithm (Bit Vectors)
UML

(Continued on next page)
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SID Studied Artifacts Semantic Domains Checking Techniques Studied Domains

S45 Process Model, Domain On-
tology

Kripke Structure, Description
Logic (DL)

Model Checking BPM

S46 Statechart State Transition (Automata) Model Checking UML
S47 Sequence Diagram, State-

chart
Temporal Logic, State Transi-
tion (SMV Language)

Model Checking BPM+SOA

S48 Statechart State Transition, Operational
Semantics

Specialized Algorithm (Asser-
tion Checking)

UML

S49 Sequence Diagram Trace Semantics Specialized Algorithm UML
S50 Statechart Temporal Logic, State Transi-

tion (Kripke Structure)
Model Checking Embedded/Real-

time
S51 Abstract, Executable Pro-

cess Model (BPEL)
Petri Net, Communication
Graph

Specialized Algorithm (Simu-
lation)

BPM

S52 Stateflow (Simulink) Process Algebra (Circus:Z,
CSP, Guarded Commands)

Specialized Algorithm (Simu-
lation)

Simulink

S53 Activity Diagram State Transition Model Checking (NuSMV) UML
S54 Process Model Temporal Logic (CTL), State

Transition (LTS)
Model Checking BPM

S55 Statechart State Transition Specialized Algorithm
(Matching+Merging, Bisimu-
lation)

UML

S56 Statechart State Transition (B) Theorem Proving UML
S57 Statechart Temporal Logic, State Transi-

tion (PROMELA)
Model Checking Adaptive System

S58 Statechart, Class Diagram Process Algebra (CSP) Model Checking (FDR) UML
S59 Statechart Process Algebra (CSP) Model Checking UML
S60 Activity Diagram, State-

chart
State Transition Specialized Algorithm (Rules) BPM

S61 Statechart First Order Logic Logical Inference (CrocoPat) UML
S62 Modal Transition System Process Algebra (Modal Pi-

Calculus)
Specialized Algorithm Modal Transition

Systems
S63 Statechart, Sequence Dia-

gram
State Transition Model Checking UML

S64 Object Behavior Diagram Petri Net (Object Behavior Di-
agram)

Specialized Algorithm BPM

S65 Statechart State Transition (Symbolic
Transition System STS)

Specialized Algorithm UML

S66 Statechart (Invariant State-
chart)

State Transition Specialized Algorithm (State
Invariant)

UML

S67 Sequence Diagram, State-
chart

First Order Logic Logical Inference, Theorem
Proving

UML

S68 Use Case, Activity Dia-
gram, Statechart, Sequence
Diagram

Petri Net (Colored PN) Specialized Algorithm (PN
consistency)

UML

S69 Statechart State Transition (Timed Au-
tomata)

Specialized Algorithm (Reach-
ability Analysis+Constraint
Solving)

Real-time

S70 Stateflow (Simulink) Graph (Binary Decision Dia-
gram BDD)

Model Checking (Salsa) Simulink

S71 Process Model Petri Net Specialized Algorithm BPM
S72 Process Model (BPEL) Petri Nets, BPEL Program De-

pendence Graph (BPD)
Specialized Algorithm BPM
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SID Studied Artifacts Semantic Domains Checking Techniques Studied Domains

S73 Statechart Petri Net (Object Behavior Di-
agram)

Specialized Algorithm (Obser-
vation Consistency)

UML

S74 Activity Diagram Petri Net (Instantialble PN) Specialized Algorithm UML
S75 Use Case, Statechart Graph Specialized Algorithm (Graph

Search)
UML

S76 Process Model (BPEL),
Service Behavior (Message)

Petri Net Specialized Algorithm (Con-
formance Checking)

SOC/SOA

S77 Use Case, Sequence Dia-
gram, Statechart

State Transition (Petri Net) Specialized Algorithm (Sys-
thesis, Invariant)

UML

S78 Statechart, Sequence Dia-
gram

State Transition, Traces Model Checking UML

S79 Workflow Formal Workflow, First Order
Logic

Specialized Algorithm (Rules) Workflow

S80 Process Model (BPEL 2.0) Process Algebra (Pi-Calculus) Specialized Algorithm (Bisim-
ulation)

BPM+SOA

S81 Process Model Graph Specialized Algorithm
(Matching, Edit Distance)

BPM

S82 Process Model Petri Net Specialized Algorithm (Causal
Behavioral Profiles)

BPM

S83 Process Model
(BPMN,BPEL,EPC)

Petri Net Specialized Algorithm (Behav-
ioral Profiles)

BPM

S84 Statechart, Sequence Dia-
gram

Temporal Logic, State Transi-
tion (Extended Sequence Dia-
gram)

Model Checking SOC/SOA

S85 Activity Diagram Process Algebra (CSP) Model Checking (FDR) UML
S86 Statechart, Sequence Dia-

gram
Petri Net (Extended Colored
PN)

Specialized Algorithm (Cover-
ability Checking)

UML

S87 Statechart Process Algebra (CSP), Ab-
stract Machine Notation (B)

Model Checking UML

S88 WS-CDL, BPEL Process Algebra (CSP) Model Checking BPM+SOA
S89 Process Model (ebXML

BPSS, BPEL)
Process Algebra (Pi-Calculus) Specialized Algorithm (Trace

Refinement CSP)
BPM+SOA

S90 Statechart, Sequence Dia-
gram

Automata (Split Automata) Model Checking UML

S91 Statechart, Message Se-
quence Chart (MSC)

Automata Model Checking UML

S92 Statechart, Sequence Dia-
gram

Propositional Logic Model checking (SAT) UML

S93 Statechart Temporal Logic (LTL), Au-
tomata (Extended Hierarchical
Automata)

Model Checking UML

S94 Statechart Temporal Logic (CTL), State
Transition (Kripke Structure)

Model Checking UML

S95 Modal Transition System State Transition Specialized Algorithm Modal Transition
Systems

S96 Statechart Process Algebra (CSP) Model Checking UML
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Table B.1: List of Selected Primary Studies





C Data Extraction: Data Items and Encoding

Table C.1: Evidence of Timing Support

Level Description
1 Not considered
2 Implicit using of underlying timing model or rules, for instance, providing a way to

represent temporal information using timers, temporal logics, CSP, etc.
3 Explicit timing model and analysis, for instance, by using explicitly timed models or

real-time constraints

Table C.2: Evidence of Inconsistency Handling (adapted from [SZ01])

Level Description
1 Not mentioned / Not considered
2 Systematic inconsistency diagnosis
3 Identifying handling actions
4 Evaluating costs and risks
5 Automated action selection and execution

Table C.3: Evidence of Automation Support

Level Description
1 Manual: requiring human interactions or manually specifying rules, constraints
2 Semi-automated: assuming existing input models, partially human interaction
3 Fully automated

Table C.4: Evidence of Development Tool Support and Integration

Level Description
1 Not mentioned / Not considered
2 Proposed/planned integration
3 Fully implemented integration

Table C.5: Evidence of Tool Support for Consistency Checking

Level Description
1 Not mentioned / Not considered
2 Only using existing tools / libraries
3 Prototypes (including using existing tools / libraries)
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Table C.6: Level of Empirical Evidence (adapted from [Kit04; Alv+10])

Level Description
1 No evidence.
2 Evidence obtained from demonstration or working out toy examples.
3 Evidence obtained from expert opinions or observations.
4 Evidence obtained from academic studies, e.g., controlled experiments
5 Evidence obtained from industrial studies.
6 Evidence obtained from industrial practice.

Table C.7: Type of Study and Evaluation (adapted from [CA11])

Type Description
Rigorous analysis (RA) Rigorous derivation and proof, suited for formal model
Case study (CS) An empirical inquiry that investigates a contemporary phenomenon

within its real-life context; when the boundaries between phe-
nomenon and context are not clearly evident; and in which multiple
sources of evidence are used

Discussion (DC) Provided some qualitative, textual, opinion
Example (EX) Authors describing an application and provide an example to as-

sist in the description, but the example is “used to validate” or
“evaluate” as far as the authors suggest

Experience Report (ER) The result has been used on real examples, but not in the form
of case studies or controlled experiments, the evidence of its use is
collected informally or formally

Field study (FS) Controlled experiment performed in industry settings
Laboratory experiment
with human subjects
(LH)

Identification of precise relationships between variables in a de-
signed controlled environment using human subjects and quanti-
tative techniques

Laboratory experiment
with software subjects
(LS)

A laboratory experiment to compare the performance of newly pro-
posed system with other existing systems

Simulation (SI) Execution of a system with artificial data, using a model of the real
word

Not mentioned These types of studies have been excluded
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Table C.8: Rigour (adapted from [IG11])

Aspect Description
Level=Weak Level=Medium Level=Strong

Context described
(C)

There appears to
be no description
of the context in
which the evalua-
tion is performed.

The context in which
the study is performed is
mentioned or presented
in brief but not de-
scribed to the degree to
which a reader can un-
derstand and compare it
to another context.

The context is described
to the degree where a
reader can understand
and compare it to an-
other context.

Study design de-
scribed (S)

There appears to
be no description
of the design of
the presented eval-
uation.

The study design is
briefly described, e.g.,
“ten students did step 1,
step 2 and step 3”.

The study design is
described to the de-
gree where a reader
can understand, e.g.,
the variables measured,
the control used, the
treatments, the selec-
tion/sampling used etc.

Validity discussed
(V)

There appears to
be no description of
any threats to va-
lidity of the evalua-
tion.

The validity of the study
is mentioned but not de-
scribed in detail.

The validity of the eval-
uation is discussed in de-
tail where threats are de-
scribed and measures to
limit them are detailed.
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