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Abstract

In 1980 A. A. Starobinsky presented in [1] a model of inflation
that uses a Planck-suppressed order R2 term in the Einstein-Hilbert
action to describe the exponential expansion of the universe. Such an
expansion was first postulated by Guth in [2] to solve the horizon and
flatness problem of cosmology.
The Starobinsky model of inflation, in the context of supergravity,
has been discussed before, for example in [3], [4] and [5]. In this work
however we want to construct generalized Starobinsky type inflation
models that arise from a supergravity that is the low energy limit of
string theory. We hope that on the one hand this restriction gives us
particles in form of the moduli arising from compactifying the string
theory and on the other hand that our work here gives the possibility
to use cosmological data to check some aspects of string theory and
therefore its validity.
The first chapter is dedicated to the classical concepts of cosmology
that we require for our work. In the last section we will look at the
classical Starobinsky inflation in order to motivate our later work.
The basics of supergravity and how we can get a supergravity from
string theory will be outlined in chapter 2. There the STU-model of
supergravity will be presented, which shall serve as the main ingredi-
ent for the work of chapter 3. In the penultimate chapter we will start
our work on simple STU-models with polynomial superpotentials and
check their relevance for inflation. To conclude the chapter we inves-
tigate possibilities to generalize the model via adding additional fields
or loosening our restrictions on the form of the potential.
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1 Classical Inflation

1.1 Motivation

The period of inflation is caused by an unknown mechanism that causes the
universe to expand exponentially happening somewhere in the time frame of
10−35s to 10−14s [6] after the big bang. There are a number of reasons to
postdict inflation as a part in the history of our universe, the most popular
cited ones are the uniform distribution of the cosmic microwave background
(CMB) [7] and the so called flatness problem [8].

1.1.1 The cosmic microwave background (CMB)

The CMB [9] is the radiation from the surface of last scattering [7], the time
the universe cooled down enough from its hot and dense initial state for
light to propagate freely, in other words, the universe became transparent.
This radiation is the oldest observable we can measure directly about our
universe. It corresponds to a thermal radiation of 2.725K and fits the curve
of a black body almost exactly [10], as can be seen from figure 1. It is also
almost perfectly homogeneous in every direction [11]. In figure 2 the CMB
temperature is plotted for all directions. The maximal difference of two
temperatures is merely 600µK , meaning the CMB is in thermal equilibrium,
which we call the horizon problem. Without inflation not all points on the
surface of last scattering (see figure 3) were in causal contact (i.e.: were not
able to interact) in the past since the universe did not exist long enough for
thermal equilibrium to settle in. Thus, there is no reason that the CMB
should be uniform in every direction. In fact there should be around 104

patches of the CMB corresponding to angles of 2◦. [13]
If the universe underwent a period of exponential expansion one such patch
(in thermal equilibrium) could be stretched to the size of the surface of last
scattering, resolving the horizon problem.

1.1.2 The flatness problem

The apparent lack of substantial curvature in the observable universe means
that an incredible amount of fine-tuning of the initial conditions of our uni-
verse would be necessary if there is no mechanism that causes this state. We
call this the flatness problem.
In our universe the contribution to the energy density from curvature is al-
most equal to zero [14]. Conversely that sets the normalized energy density
to ΩT ' 1, meaning that the energy density is due to matter, radiation
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Figure 1: The black-body-spectrum of the CMB. The line is an ideal black-
body while the diamonds give the measurement results. (Graph taken from
[10])

and dark energy alone 1. This is related to the curvature (in a Friedmann
universe) by [7]

ΩT − 1 =
K

ȧ2(t)
=

3K

8πGρc(t)a2(t)
. (1.1)

Todays experimental bounds, according to [14], are

K

ȧ2(t)
< 0.005,

meaning that our universe is almost flat (Minkowski). Today the energy
density is dominated by the cosmological constant Λ and hence the critical
density ρc is constant, but in past times our universe underwent a matter
and a radiation dominated era [7] where ρc(t) was proportional to a(t)−3

1These quantities and the statements below will be discussed in detail in chapter 1.2
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Figure 2: Heat-map of the fluctuation of the CMB. The scale is in µK.
(Taken from [11])

and a(t)−4 respectively, where a(t) is the scale parameter in the Friedman-
Lemâıtre-Robertson-Walker (FLRW) metric 2. This means that a small de-
viation from ΩT = 1 will grow over time, meaning that at the beginning of
the universe ΩT had to be very close to 1 to achieve today’s flat universe.
Going back in time to when the temperature of the universe was around the
Planck scale 3, we find that:

ΩT − 1 ' 10−62.

This seems unlikely, even in a perfectly flat universe (K = 0) we would expect
some local variation of K (the curvature) which would be grow in time.
During inflation ȧ(t) is very large and supresses the K/ȧ(t) term in (1.1)
which can explain our flat universe.

2They each modelled a homogenous, isotropic universe on their own, for an explanation
of the metric see [7].

3We will see how certain quantities can be devolved back in time in chapter 1.3.2
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Figure 3: Schematic picture of the CMB photons propagating from the sur-
face of last scattering. Without inflation points, P1 and P2 cannot be in
thermal equilibrium. Only areas of the size of the blue line can have a causal
connection. (Figure not to scale)

1.2 The Standard Model Of Cosmology

To study inflation we need the basic notions of the standard model of cos-
mology called the ΛCDM 4 model. At very large scales (& 100Mpc [15]) the
observable universe is isotropic and homogeneous [7], meaning it looks the
same in every direction and the distribution of matter (and other forms of
energy) is uniform.
Such a universe can be described by the Friedman-Lemâıtre-Robertson-Walker
(FLRW) metric [7]:

ds2 = −dt2 + a(t)2

(
1 +K

(xi)
2

1−Kx2
i

)
dx2

i (1.2)

(i = 1, 2, 3, (xi)
2 = δijxixj ) where a(t) is the scale factor in units of length.

K can have values 0 and ±1 which correspond to a flat universe (K = 0), a
negative curvature (K = −1) or a positive curvature (K = 1).
In spherical coordinates this reads

ds2 = −dt2 + a(t)2

(
dr2

1−Kr2
+ r2dΩ2

)
. (1.3)

In a universe with this metric (for example our universe for large distances)
an object at co-moving coordinate r has the distance

4Λ is the cosmological constant and CDM stands for cold dark matter
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d(r, t) = a(t)

∫ r

0

dr′√
1−Kr′2

= a(t)×


arcsin(r) K = +1
arsinh(r) K = −1
r K = 0

(1.4)

and thus moves away from us for fixed r if a(t) grows with time. Concretely
an object fixed at r moves away from us with velocity

v(r, t) =
ȧ(t)

a(t)
d(r, t) = H(t)d(r, t)

which amounts to Hubble’s observation [16] of an expanding universe, visu-
alized in figure 4.

Figure 4: In an expanding universe all points move away from each other.
Note that the center point is not special in any way, taking any other point
as a reference paints the same picture.

1.2.1 Friedmann equations

We have seen that a time dependent scale factor a(t) leads to an expanding
(or contracting) universe, and in fact there is good experimental reason to
assume time dependence of a(t), namely the evident expansion of the uni-
verse first observed by Hubble [16]. Using the Einstein equations of general
relativity (GR) one can see that the time dependence of the scale factor is
governed by the energy content of the universe. The Einstein equations with
a cosmological constant [17] are

Rµν +

(
−1

2
R + Λ

)
gµν = 8πGTµν (1.5)
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and in a universe with an FLRW metric (1.2) they reduce to(
ȧ(t)

a(t)

)2

+
K

a(t)2
− Λ

3
=

8πG

3
ρ(t) (1.6)

ä(t)

a(t)
− Λ

3
= − 4πG

3
(ρ(t) + 3p(t)) (1.7)

where, due to isotropy and homogeneity [17], we set Tij = p(t)gij as well
as T00 = ρ(t) (due to isotropy T0i = 0). These are the first and second
Friedmann equations which govern the time evolution of the scale parameter.
Note that by introducing the energy density ρ(t) and the pressure p(t) we
have essentially approximated the universe as a fluid and thus omitted the
“graining” due to the concentration of energy in galaxies and other structures.
Noting that the cosmological constant Λ appears in the same way as ρ(t) and
p(t) in (1.6) and (1.7) we can perform shifts

ρ→ ρ− Λ

8πG

p→ p+
Λ

8πG

(1.8)

to get rid of the cosmological constant and find the Friedmann equations as(
ȧ(t)

a(t)

)2

+
K

a(t)2
=

8πG

3
ρ(t) (1.9)

ä(t)

a(t)
= − 4πG

3
(ρ(t) + 3p(t)) . (1.10)

The Friedmann equations describe the large scale evolution of our universe
as long as we know the complete energy content of the universe.

1.2.2 Critical density

Since we know that our universe is almost exactly flat on large scales it is
useful to define the energy density of a flat universe. If we set K = 0 in (1.9)
we find the critical density

ρc(t) =
3H(t)2

8πG
. (1.11)

The required critical density for our observable universe today is according
to [14]:

ρc(t0) ' 10−26 kg

m3
.
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It proofs useful to also define the normalized energy density for all types of
energy in the universe as

Ωi(t) =
ρi(t)

ρc(t)
(1.12)

where i runs over all types of energy i.e.: matter (m), radiation (r) and the
cosmological constant (Λ). With that definition, equation (1.9) reads

ΩT (t) =
∑
i

Ωi(t) = 1 +
K

ȧ(t)2
. (1.13)

This equation correlates the total normalized energy density with the curva-
ture of the universe. For ΩT = 1 the universe is flat while ΩT > 1 describes
a closed universe and ΩT < 1 an open one. The current upper bound for the
curvature of our universe is [14]∣∣∣∣Kȧ2

0

∣∣∣∣ < 0.005.

1.3 Energy content and expansion of the universe

We approximate our universe as filled by “dust” of different kind: radia-
tion, “ordinary” matter and the cosmological constant. All these satisfy the
equation of state [7]

p(t) = wρ(t) (1.14)

and the continuity equation

ρ̇(t) + 3H(t) [ρ(t) + p(t)] = 0,

which we can derive from (1.9) and (1.10). After a series of manipulations
we arrive at

ρ(t) ∝ a(t)−3(1+w) (1.15)

where w is a constant that depends on the type of matter in question.

• Non-relativistic matter 5 can be approximated to have only energy given
by its mass (we neglect the kinetic energy). We start with a cube of
length a(tin)l filled with some amount of matter, possibly stars, nebulas
or even galaxies. The energy density in this box is ρm = E/(a(tin)l)3 =
M/(a(tin)l)3 where we set the speed of light c = 1 as we will do from

5Generally all matter that cannot be approximated as moving at the speed of light.
Solid matter is considered to be non-relativistic almost always.
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here on almost always. During the expansion of the universe the volume
of the box will change and thus

ρm(t) ∝ a(t)−3 (1.16)

which corresponds to wm = 0 and from the equation of state (1.14) we
see that the pressure for ordinary matter vanishes (pm(t) = 0).
Currently to the best of our knowledge the energy density of non-
relativistic matter is given to be [14]

Ωm,0 = 0.308± 0.012 (1.17)

which includes all visible matter, neutrinos and even dark matter which
is predicted from gravitational effects.

• For radiation we consider an amount of photons of wavelength a(tin)λ
in a cube of initial volume [a(tin)l]3. When we let the cube expand, the
energy E = [2π]/[a(tin)λ] 6 of the radiation will be diluted proportion-
ally to a(t)−3. Furthermore, the energy decreases because of the a(t)−1

factor and we arrive at a behaviour for radiation given as

ρr(t) ∝ a(t)−4 (1.18)

and thus wr = 1/3 and therefore pr(t) = 1/3 ρr(t) for radiation.
Relativistic matter plays only a minor role in today’s energy density.
The energy density is given to be [14]

Ωr,0 ≈ 10−4. (1.19)

Due to the time evolution of the energy density (1.18) radiation actually
dominated the expansion behaviour of the universe at early times.

• For the cosmological constant Λ we see from (1.8) that

ρΛ(t) = −pΛ(t) =
Λ

8πG
(1.20)

and thus wΛ = −1. This means that the energy density of a constant
does not change in time or dissipate. During an expansion of the uni-
verse more vacuum with the usual energy density is created. This will
also exclude a large cosmological constant as the source of inflation as

6We will generally set ~ = 1.
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we will discuss below.
The energy density of the cosmological constant [14]

ΩΛ,0 = 0.692± 0.012 (1.21)

dominates today. This energy density is commonly called dark energy
and its origin is not understood. It is only clear that it is responsible
for the accelerated expansion of the universe [18].

1.3.1 Time evolution of the universe

As can be guessed from above, due to the different time behaviour of dif-
ferent kinds of energy the universe’s expansion was mostly determined by
one of the above types during different times. Using the Friedmann equation
(1.9) (neglecting curvature) and the general evolution of the energy density
according to (1.15) with an arbitrary starting point:

ρ(t) = ρ0

(
a(t)

a0

)−3(1+w)

(1.22)

we find after some algebraic manipulations

a(t)(1+3w)/2ȧ(t) =

√
8πG

3
ρ0a

3(1+w)
0

which can be separated and integrated to give

2

3(1 + w)
a(3(1+w))/2 =

√
8πG

3
ρ0a

3(1+w)
0 + const

after choosing a(t = 0) = 0 and demanding a(t0) = a0 we get

a(t) = a0

(
t

t0

)2/(3(1+w))

, w 6= −1. (1.23)

Evidently this does not hold for the cosmological constant but for that case
the Friedmann equation (1.9) (again neglecting K) with ρ(t) = const gives
immediately

a(t) = a0e
H0(t−t0). (1.24)
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1.3.2 Redshift

A photon gets stretched during the expansion of the universe according to

λ0 =
a(t0)

a(t1)
λ1.

For expansion (a(t0) > a(t1)), the photon’s wavelength will move more to-
wards the red - it becomes redshifted. It is useful to introduce the redshift
parameter

z =
λ0 − λ1

λ1

=
a(t0)

a(t1)
− 1 (1.25)

as a measure for time in the universe. For example the time the CMB was
released was around z ≈ 1000 [7], also meaning that the universe was 1000
times smaller at that point in time than it is now.

1.4 Inflation

With the tools presented above we now want to solve the problems of sections
1.1.1 and 1.1.2. In particular we want to see how a rapidly expanding uni-
verse solves these problems and we will even get an estimate of the required
expansion to solve them.

1.4.1 The horizon problem revisited

The problem of the uniform distribution of the CMB can be solved in the
context of inflation by stretching a small patch of the CMB that is in thermal
equilibrium to a size that is in agreement with our observable universe. This
is schematically pictured in figure 5.
To tackle this problem we introduce the conformal time via

dt2 = a(τ)2dτ 2. (1.26)

With this transformation the FLRW metric reads

ds2 = a(τ)2

(
−dτ 2 +

dr2

1−Kr2
+ r2dΩ2

)
, (1.27)

which gives a the flat Minkowski metric multiplied by an overall factor for
K = 0.
Using conformal time we can calculate the time from the beginning of the

14



Figure 5: The expansion during inflation stretches a patch in causal contact
to the size of today’s observable universe.

thermal process until the end of the expansion process where the universe
reheats as

τreh − τi =

∫ τreh

τi

dτ ′ =

∫ treh

ti

dt′

a(t′)
=

∫ areh

ai

da

aȧ
=

∫ areh

ai

da

a2Hinf

≈ 1

aiHinf

− 1

arehHinf

≈ 1

aiHinf

,

where we assumed the Hubble parameter to be constant during the duration
of inflation and ai � areh due to the exponential expansion. We need to
compare this to the time evolution after the end of inflation which we can
approximate by

τ0 − τreh =

∫ τ0

τreh

dτ ′ =

∫ a0

areh

da

a2H
≈ 1

a2
rehHinf

(a0 − areh) ≈
a0

a2
rehHinf

,
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where it was assumed that the universe after inflation was radiation domi-
nated such that a(t) = a0

√
t/t0 and a2H = const ≈ a2

rehHinf .
To solve the horizon problem we need

τreh − τi & τ0 − τreh

which gives, using our calculations from above,

areh
ai

&
a0

areh
≈ Treh

T0

7. (1.28)

If we assume the temperature around the time of reheating to be slightly
below the GUT scale: Treh ≈ 1014GeV [19] we find (Tcmb,0 ≈ 2.725K ≈
10−4eV ):

areh
ai

& 1027 ≈ e60.

This factor defines the number of e-folds Ne = log(e60) = 60 required. It
is a convenient measure for the amount the universe has to expand during
inflation.

1.4.2 The flatness problem revisited

In chapter 1.1.2 we discussed that the apparent lack of curvature needs an
incredible amount of fine-tuning in the initial conditions of the universe and
thus is problematic. If we assume a period of inflation we have a(t) ∝ ȧ(t)
during that period which deals with the K/ȧ(t)2 term in (1.1). Assuming
again Tcmb ≈ 1014GeV and

K

ȧi
≈ 1,

we can use (1.1) as well as the critical density from (1.11) and transport these
quantities back in time with our knowledge from 1.3 to find 8

ΩT (tcmb)− 1 =
K

ȧ(tcmb)2
≈ 10−53

⇒ ȧ(tcmb)

ȧ(ti)
≈ a(treh)

a(ti)
& 1053/2 ≈ e60,

which is similar to our above estimate.

7Assuming the CMB to be black body radiation it will follow Wien’s law: λmaxT =
const and thus from the behaviour of λ under expansion we find T (t1) = a0/a(t1)T0.

8At matter-radiation equality z = 3400 and at the electro-weak phase transition z = 105

[20].
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1.5 Scalar Particle Inflation

The easiest way to describe a rapidly expanding universe is by a large cosmo-
logical constant, however the energy density of a constant does not dissipate
during the expansion and thus the expansion does not stop, meaning that
inflation via a large cosmological constant is not possible.
We are looking for a way to have a finite inflationary period. This is possible
for a scalar particle in a potential. At first the particle sits in a false vacuum
state (a local minimum of the potential, see figure 6) or on a very flat slope

Figure 6: The particle rests in a false vacuum of its potential, representing a
large cosmological constant, until it tunnels to the true vacuum of the theory.

(as pictured in figure 7) and then tunnels or rolls off to the true vacuum. The
scalar interacts with other particles and loses its energy/reheats the universe.
The true minimum of the scalar potential then corresponds to the observed
(small) cosmological constant.
The first model for inflation proposed (by Guth [2]) was a false vacuum po-
tential where the particle sits at a local minimum (see figure 6) and then
tunnels to the true vacuum. This can happen at different space-time loca-
tions independently and results in bubbles forming with lower energy inside.
These bubbles expand outwards and our universe could be inside such a bub-
ble.
In practice, however, the problem is that the energy from this transition
gathers on the wall of the bubble, leaving the inside essentially empty. To
resolve this the bubbles need to collide and form our homogeneous universe.
The problem with this is that space continues to inflate and thus the bub-

17



Figure 7: The particle moves along a very flat part of the potential for a long
time before it reaches the vacuum of the theory.

bles move away from each other faster than they expand meaning that no
collisions can ever take place [7].
What remains possible is a particle on a slope that starts to roll towards a
stable vacuum [21]. The particle rolls slowly along the flat part of the poten-
tial and behaves like a large cosmological constant until it reaches the steep
part of the potential where the kinetic energy becomes important and thus no
longer emulates a cosmological potential and inflation ends. Around its true
minimum the particle can interact with standard model (SM) particles and
the remaining potential energy gives today’s (true) cosmological constant.

1.5.1 Scalar Particle in a FLRW Universe

The action of a scalar particle in a general space time is given as [7]

Sφ =

∫
d4x
√
−g
[
−1

2
∂µφ∂

µφ− V (φ)

]
(1.29)

where g = det(gµν). In a FLRW universe the line element is given by (1.2).
Varying (1.29) for φ gives its equation of motion as

φ̈+ 3Hφ̇− (~∇2φ)

a2(t)
+ V ′(φ) = 0 (1.30)
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(~∇2 = ∂i∂
i) where H = ȧ(t)

a(t)
is the Hubble parameter and V ′ = ∂V/∂φ is the

partial derivative of the potential with respect to the field φ.
During inflation the scale parameter a(t) grows exponentially and thus the
equation of motion (1.30) reduces to

φ̈+ 3Hφ̇+ V ′(φ) = 0. (1.31)

1.6 Slow-Roll inflation

As mentioned above, the most successful way to describe inflation is via a
scalar particle in a potential with a very flat part. During slow-roll inflation,
the kinetic energy (∝ φ̇2) is negligible compared to the potential energy
(V (φ)). Furthermore, because of the expansion of space-time during inflation
it is possible to also neglect other sources to the energy density (matter,
radiation). To check possible models for inflation it is useful to introduce
two dimensionless slow-roll parameters [7]. The Friedmann equation (1.9)
with our scalar field as source takes the form 9

H2 =
1

3M2
P

(
1

2
φ̇2 + V (φ)

)
. (1.32)

For φ̇2 � V (φ) (meaning that φ changes very slowly with time) the scalar
potential V (φ) is nearly constant and thus, so is H2. To parametrize the
change in the Hubble parameter we introduce

ε = − Ḣ

H2
. (1.33)

Conversely, for inflation to happen it is necessary that ε � 1. Moreover,
since we require inflation to last for a sufficient long time, ε cannot change
too fast either. This motivates us to introduce

η =
ε̇

Hε
(1.34)

as a second slow roll parameter. It gives the change of ε per Hubble time
and we require η � 1 for inflation.
During inflation it is useful to measure time in terms of e-folds which we
introduced in chapter 1.4. This is done by defining

dN := dln(a) = Hdt. (1.35)

9Remeber that Tµν = (∂νφ) [∂L]/[∂(∂µφ)]−δµνL and that T 00 is energy density while T ii

is pressure. For a homogeneous field the pressure is the same in all three space directions,
hence ρ+ 3p (see below).
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With this, the number of e-folds is given by

Ne =

∫ af

ai

dln(a) = ln

(
af
ai

)
=

∫ tf

ti

Hdt ≈ Hinf (tf − ti),

where we approximated the Hubble parameter as constant during inflation,
as we did before. The second Friedmann equation (1.10) with a homogeneous
scalar field reads

ä(t)

a(t)
= Ḣ +H2 = − 1

3M2
P

(
φ̇2 − V (φ)

)
(1.36)

and using (1.32) we find for the Hubble parameter:

Ḣ = − φ̇

2M2
P

. (1.37)

Putting this into (1.33) we find ε as

ε =
φ̇2

2M2
PH

2
(1.38)

and for η:

η =
ε̇

Hε
= 2

(
φ̈

φ̇H
+ ε

)
. (1.39)

1.6.1 The slow-roll equations

Up until now our considerations were mostly general however during inflation
we need to have η and ε to be rather small, as we discussed above. This allows
us to use approximations to leading order to describe slow-roll inflation. For
ε� 1 we find from (1.32) and (1.38) that

H2 ≈ V

2M2
P

(1.40)

during slow-roll inflation which means that the Hubble constant is given by
the scalar potential and since the scalar field does not change a lot during
inflation, neither does H. Additionally imposing |η| � 1, we can use (1.39)
as well as the equation of motion for φ (1.31) to find

3Hφ̇ ≈ −V ′(φ). (1.41)

With the time derivative of this equation,

3Ḣφ̇ ≈ −φ̇V ′′(φ),
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and the other two equations (1.40) and (1.41) from before, we can write
approximate expressions during slow-roll inflation for ε (1.33) and η (1.34):

ε ≈ M2
P

2

(
V ′

V

)2

, (1.42)

η ≈ 2M2
P

(
−V

′′

V
+

(
V ′

V

)2
)
. (1.43)

For model building, it is fortunate that the slow-roll parameters depend only
on the scalar potential and its derivatives. For convenience, we introduce
another set of slow roll parameters based on the expressions above:

εV :=
M2

P

2

(
V ′

V

)2

≈ ε, (1.44)

ηV := M2
P

V ′′

V
≈ −1

2
η + ε. (1.45)

With these equations, it is easy to see that our conditions on the slow-roll
parameters translate to conditions on the derivatives of the scalar potential.
In particular the smallness of εV , corresponding to a constant Hubble param-
eter, translates to a small first derivative of the potential. Our requirement
for the duration of inflation makes it necessary for the second derivative of
the potential to be small, too.
Finally we can relate the scalar potential to the number of e-folds needed for
inflation via (1.42) and (1.44). We now write

Ne =

∫ tf

ti

Hdt ≈
∫ φf

φi

1

MP

√
2εV
|dφ| = 1

M2
P

∣∣∣∣∫ φf

φi

dφ
V (φ)

V ′(φ)

∣∣∣∣ , (1.46)

which relates the number of required e-folds directly to the scalar potential.

1.7 Experimental bounds on inflation models

Currently, collecting data from measurements of the cosmic microwave back-
ground is our only way to get restrictions on possible inflation models. The
best data available is from the ESA’s10 Planck collaboration which measures
the black body spectrum of the CMB at different frequencies and also looks
at the polarizations of the CMB photons. This data allows us to look back in

10European Space Agency
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time to about 50 to 60 e-folds before inflation ended. Their results exclude
models in terms of the spectral tilt [11] [12]

ns ≈ 1− 6εV + 2ηV (1.47)

and the tensor-to-scalar ratio

r ≈ 16εV . (1.48)

In figure 8 we see a recent plot of the data with some types of models filled
into the plot. Theoretically the value of ns can be larger than 1, but data

Figure 8: Data from ESA’s Planck mission with predictions from different
inflation models drawn over it. Notably, natural inflation and certain poly-
nomial potential are unlikely. The Starobinsky-type inflation is denoted as
R2-inflation. Figure taken from [22].

shows that ns < 1 is required. The tensor-to-scalar ratio is experimentally
constrained to be smaller than 0.07 with a confidence level of 95%.
As can be seen by the data, some potential models are already excluded
by the data and a lot of further models are unlikely. Predictions from past
improvements also indicate that the r ratio will go down even further.

1.8 Starobinsky Inflation

One of the earliest models of inflation was proposed by A. A. Starobinsky
in [1]. He considered an additional term in the Einstein-Hilbert action [23]

22



proportional to the squared curvature scalar R2:

S =
M2

P

2

∫
d4x
√
−g
[
R +

κ

2M2
P

R2

]
. (1.49)

Here κ is some real parameter and has to be rather large in order for the
Planck-suppressed R2 term to matter.
To see that this can lead to a suitable inflation potential one performs a
conformal transformation on the metric:

gµν → Ω2gµν = ḡµν , (1.50)

with Ω2 = 1 + κR/M2
P = e−ω. Under this transformation the curvature

scalar transforms like

R̄ = e−2ω [R− (2d− 1)∂µ∂µω − (d− 1)(d− 2)(∂µω)(∂µω)]

= Ω−2 [R− (2d− 1)∂µ∂µlog(Ω)− (d− 1)(d− 2)(∂µlog(Ω))(∂µlog(Ω))]

with the space-time dimension d. The ∂µ∂
µω term is a total derivative and

therefore can be omitted. Defining a scalar field φ as

φ = MP

√
3

2
log

(
1 + κ

R

M2
P

)
(1.51)

we find in 4 space-time dimensions (omitting ∂µ∂
µω):

R̄ = e−
√

2/3 φ/MP

[
M2

P

κ

(
e
√

2/3 φ/MP − 1
)
− 1

M2
P

(∂µφ)(∂µφ)

]
.

Squaring this but keeping only terms up to second order in the fields (no
interactions) yields:

R̄2 =
M4

P

κ2

(
1− e−

√
2/3 φ/MP

)2

− 2

κ
Ω−2gµν︸ ︷︷ ︸

=:ḡµν

(∂µφ)(∂νφ) + · · · .

Inserting this in the action (1.49) and writing everything in terms of barred
quantities one finds

S =

∫
d4x
√
−ḡ

M2
P

2
R̄− 1

2
(∂̄µφ)(∂̄µφ) +

M4
P

4κ

(
1− e−

√
2/3 φ/MP

)2

︸ ︷︷ ︸
=:−V (φ)

 .
(1.52)
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The form of this potential, which is the same as in figure 7, allows, for
sufficiently large κ, for inflation with the slow roll parameters (for φ � MP

during inflation)

ηV = −4

3
e−
√

2/3 φ/MP (1.53)

εV =
4

3

(
e−
√

2/3 φ/MP

)2

=
3

4
η2
V . (1.54)

This model has a spectral tilt of

nS ≈ 0.96 (1.55)

and a tensor to scalar ratio of

r ≈ 3 · 10−3 (1.56)

where we have estimated φ/MP ≈ 5 by using equation (1.46) with the goal
to get at least 60 e-folds of inflation. These values lie well within current
data [22] and can be seen in figure 8.

2 dS Vacua and Inflation in Supergravity

Supergravity is the field theory that arises when one imposes local supersym-
metry as an additional gauge symmetry in combination with the Poincaré
group. A gauged version of supersymmetry was first mentioned by P. Nath
and R. Arnowitt [24] and later, a complete model of supergravity was popu-
larized by Daniel Z. Freedman, Peter van Nieuwenhuizen and Sergio Ferrara
[25]. In order to get the required tools for our work below we will review
a few basic concepts of supersymmetry and supergravity. A thorough and
complete introduction to these topics can be found for example in [26] and
[27].
Later in this chapter we review how supergravity theories are related to low-
energy limit compactifications of string theories and motivate our decision to
restrict ourselves to such a theory.

2.1 Supersymmetry

Supersymmetry (SUSY) is a symmetry that relates fermions with bosons
and vice versa. Under this symmetry, particles form a doublet or multiplet
where the particles are related via supersymmetry transformations. SUSY
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is a unique maximal extension to the Poincaré algebra of space-time, which
would be motivation enough to study this theory. The algebra relations are:

{QA
α , Q̄β̇B} = 2σµ

αβ̇
Pµδ

A
B,

{QA
α , Q

B
β } = {Q̄α̇A, Q̄β̇B} = 0,

[Pµ, Q
A
α ] = [Pµ, Q̄α̇A] = 0,

[Mµν , Q
A
α ] = −1

2
(σµν)

β
αQ

A
β ,

[Mµν , Q̄
A
α̇ ] = +

1

2
(σ̄µν)

β̇
α̇Q

A
β̇
,

[Pµ, Pν ] = 0,

[Mµν , Pρ] = ηνρPµ − ηµρPν ,
[Mµν ,Mρσ] = ηνρMµσ − ηµρMνσ − ηνσMµρ + ηµσMνρ.

(2.1)

Here, Q and Q̄ are the newly introduced supersymmetry generators with
α, α̇, β, β̇ = 1, 2 while the P and M generate the Poincaré transformations.
We use the usual conventions for (anti-)commutators and σµ = (1, σi) the
Pauli matrices σi. σµν is the anti-symmetric product of two Pauli matrices:
σµν = 1/2(σµσν−σνσµ). Note also that the supersymmetry generators carry
spin indices - in fact the supersymmetry is a fermionic symmetry. The above
version of the symmetry includes labels A and B which count different SUSY
generators. From here on we will only consider N = 1 supersymmetry, mean-
ing that we have only one set of such generators. Another important remark
is that neither the Poincaré nor the SUSY algebra requires 4 space-time di-
mensions. In fact, supergravity is commonly considered in 10 dimensions, as
is (super-)string theory.
So far supersymmetry has not been observed in nature or any experiments
we are able to set up. This means that SUSY has to be broken below energies
of at least 14TeV 11. On the other hand SUSY could solve a lot of problems
we face in modern physical theories. For example SUSY can lead to a uni-
fication of the forces of the standard model of particle physics (SM) and it
gives rise to possible dark matter candidates. Furthermore, since SUSY is
the maximal symmetric extension of the Poincaré group, it is only natural
to investigate such a beautiful theory.

11The energies reached by CERN’s large hadron collider (LHC).
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2.1.1 A representation of SUSY

As already mentioned, we will restrict ourself to the case N = 1 SUSY and
for now we will only consider massless particles, this means that we can al-
ways move to a frame where the particle has momentum Pµ = (−E, 0, 0, E)
(PµP

µ = 0). With this assumption, the anti-commutator of two SUSY gen-
erators from (2.1) becomes

{Qα, Q̄β̇} = 2

(
2E 0
0 0

)
. (2.2)

Ignoring the other generators for a moment, we can introduce creation and
annihilation operators just like for a harmonic oscillator in regular quantum
mechanics as

a =
1

2
√
E
Q1,

a† =
1

2
√
E
Q̄1̇,

(2.3)

where the normalization was chosen for convenience. In terms of the creation
and annihilation operators the algebra relation from (2.2) reads:

{a, a†} = 1

{a, a} = {a†, a†} = 0.
(2.4)

Note that according to (2.2) Q2 and Q̄2 anti-commute and thus must be rep-
resented by 0.
Now to demonstrate the action of the SUSY generators, we assume a lowest
helicity state such that aΩ = 0. Acting with the creation operator a† on Ω
we generate a state with higher helicity. For example, take a scalar φ as the
lowest helicity state. After acting with a†, we get a spin-1/2 state χ = a†φ.
Additional action with the creation operator on χ gives a†χ = 0. We see
that we have a chiral doublet (φ, χ) under SUSY transformations. If we start
from a spin-1/2 particle, say λ, and act on it with a† we get a vector Aµ
belonging in the vector doublet (λ,Aµ).
One of the reasons that we restrict ourself to the N = 1 case is, besides
simplicity, that for N = 2 every matter multiplet (i.e.: containing no gauge
fields) would have to start with a right-handed Weyl fermion λR that gets
mapped into two scalars which in turn get mapped to a single left-handed
fermion. This is inconsistent with the standard model of particle physics since
the electron can either be left- or right-handed and according to this sits in
the SU(2) singlet (right-handed) or doublet (left-handed). Under SUSY these
two particles would need to be in a N = 2 multiplet and thus have the same
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quantum numbers. Due to this observation one usually studies 4d N = 1
models in order to relate the SM to a supersymmetric theory.
One question that arises is whether the particles in the multiplets have
the same number of possible states, which would be expected. In order
to show that this is the case we introduce the fermion number operator
(−1)F with eigenvalue +1 for bosons and −1 for fermions. Due to the
anti-commuting (fermionic) nature of the SUSY generators it follows that
(−1)FQα = −Qα(−1)F . Using the cyclic property of the trace 12, the follow-
ing holds for any representation of the SUSY algebra (2.1):

Tr
(
(−1)F{Qα, Q̄β̇}

)
= Tr

(
−Qα(−1)F Q̄β̇ +Qα(−1)F Q̄β̇

)
= 0.

On the other hand we can also use the algebra relation directly to find

Tr
(
(−1)F{Qα, Q̄β̇}

)
= 2σµ

αβ̇
· Tr

(
(−1)FPµ

)
= 0,

which for any non-zero momentum Pµ means that

Tr
(
(−1)F

)
= 0. (2.5)

We see that there are an equal number of fermionic and bosonic states in
any given finite dimensional representation.
This in fact gives a restriction to the possible actions we can write down
in supergravity and thus also on our work to build a model for inflation:
Since the chiral multiplet contains a fermion χ with four off-shell degrees of
freedom and it satisfies ∂χ = 0, the scalar in the doublet necessarily has to
be a complex one (without any condition on the first derivatives).

2.2 Superspace

It is sometimes convenient to formulate a supersymmetric theory in an ab-
stract space-time called superspace in which the SUSY transformations can
be interpreted as translations in fermionic space directions. These addi-
tional directions are labelled θ and θ̄ and are Grassmann-valued13. Via the
exponential map the non-trivial anti-commutator (for N = 1) of two SUSY
generators from (2.1) gives the group element

g(x, θ, θ̄) = e−xP−θQ−θ̄Q̄, (2.6)

12Tr(abc) = Tr(bca) = Tr(cab)
13Grassman variables are anti-commuting numbers ab = −ba and from this it also follows

that a2 = 0.
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which has the same form as a usual translation but with the additional
directions θ and θ̄. The group elements of the SUSY group, constructed
in this manner, act on functions f

(
g(x, θ, θ̄)

)
= f(x, θ, θ̄) on this abstract

space-time.
The infinitesimal action of the SUSY generators on an arbitrary function in
superspace is determined by

(ξQ)f(x, θ, θ̄) =
[
f
(
g(0, ξ, 0) · g(x, θ, θ̄)

)
− f

(
g(x, θ, θ̄)

)]
|O(ε).

Using the Baker-Campbell-Hausdorff formula [29] as well as the algebra re-
lations (2.1) we find

(ξQf) =
[
f(x+ iξσµθ̄, ξ + θ, θ̄)− f(x, θ, θ̄)

]
|O(ε). (2.7)

From this it is evident that the action of the SUSY generator Q also affects
the x-coordinate. With (2.7) we can represent the generators as differential
operators:

Qα =
∂

∂θα
+ iσµαα̇θ̄

α̇∂µ

Q̄α̇ =
∂

∂θ̄α̇
+ iσ̄µα̇αθ

α∂µ

Pµ =
∂

∂xµ
,

(2.8)

which satisfy the algebra relations of (2.1).
Note that we chose to represent the SUSY generators by a left translation. In
a completely analogous way we can represent Q and Q̄ by a right translation
and find:

Dα =
∂

∂θα
− iσµαα̇θ̄α̇∂µ

D̄α̇ =
∂

∂θ̄α̇
θα∂µ.

(2.9)

Notably, they commute with the left translations.

2.2.1 Superfields

Our goal is to formulate a Lagrangian field theory on superspace. To that
end we have to consider fields on superspace which we can later identify
with fields in our ordinary space-time. Due to the Grassmann nature of the
coordinates θ and θ̄, every field in superspace has an exact expansion that
terminates at order θ2θ̄2 14:

Φ(x, θ, θ̄) = φ(x) + θχ(x) + θ̄ζ̄(x) + · · ·+ θ2θ̄2E(x). (2.10)

14Note that θ2 = θαθα.
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We now want to use such fields to formulate a Lagrangian theory where the
action is of the form

S =

∫
d4x

∫
d2θ

∫
d2θ̄L(x, θ, θ̄).

Note that we have to integrate over the complete superspace, in particular
including the coordinates θ and θ̄. Another important thing to notice is that
by the rules of Grassmann integration only terms in L that are proportional
to θ2θ̄2 will contribute to the physical theory. All others yield 0 after the
integration over the coordinates θ and θ̄.

A chiral superfield satisfies D̄α̇Φ = 0 and due to this restriction the
superspace expansion of a chiral superfield is

S(x, θ, θ̄) = s(x) +
√

2θψ(x) + θ2Fs(x). (2.11)

where on the right hand side we use coordinates yµ = xµ− iθσµθ̄. Recently it
was shown that by using nilpotent or otherwise constrained chiral superfields
it is possible to construct dS vacua in supergravity, see for example [33].

2.3 Supergravity

So far the SUSY transformations we looked at were global transformations
with a fixed parameter ε for Q or correspondingly ε̄ for Q̄. By allowing these
parameters to depend on the space-time coordinates we get local supersym-
metry. As we will see in a moment this already implies that the theory
becomes a theory of gravity called supergravity [27]. Most of the work done
here and in the next chapter is based on [28].
We can write the algebra (2.1) as commutators using the space-time depen-
dent parameters. The part relevant for us reads:

[ε(x)Q, ε̄(x)Q̄] = 2ε(x)σµε̄(x)Pµ,

[ε(x)Q, ε(x)Q] = [ε̄(x)Q̄, ε̄(x)Q̄] = 0,

[Pmu, εQ] = [Pµ, ε̄Q̄] = 0,

[Pµ, Pν ] = 0,

(2.12)

from which we see that the commutator of 2 SUSY transformations amounts
to a translation with time-dependent parameter 2ε(x)σµε̄(x). This means
that our theory has to be invariant under diffeomorphisms and requires the
metric gµν(x) = eaµ(x)ebν(x)ηab and the vielbein eaµ(x) to be dynamical fields,
which is equivalent to having a theory of gravity. To write down a super-
symmetric theory of gravity we need, in accordance with the spinor nature
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of the SUSY parameter, a gauge field that carries also spinor indices. This
gauge field is called the gravitino and transforms like

Ψµα → Ψµα + ∂εα(x). (2.13)

The gravitino together with the vielbein eaµ(x) forms the multiplet (eaµ,Ψµ)
underN = 1 SUSY. The pure supergravity action contains only terms formed
by this multiplet but is still quite convoluted, to leading order:

S =
M2

P

2

∫
d4x
√
−g
[
R− Ψ̄µγ

µνρ

(
∂ν +

1

4
ωνabγ

ab

)
Ψρ +O(Ψ4)

]
, (2.14)

with the spin connection ωµab and the anti-symmetrised gamma matrices
γµνρ.

2.3.1 Matter in supergravity and the bosonic action

Supergravity does not yield any other particles besides the gravitino and the
vielbein field, but we can add any number of chiral or vector multiplets that
we wish to. These particles are not restricted in any way except for the
Poincaré- and (local) supersymmetry of the theory. Note that in addition to
these symmetries there are internal symmetries allowed, like the gauge groups
of the standard model of particle physics. The complete possible action is
written down for example in chapter 18 of [27] and the action is discussed
in detail in that book. We will only focus on the parts relevant to our work
here.
An important feature of a supergravity action is that the SUSY relates bosons
to fermions, which allows us to focus on the bosonic part. The fermionic
physics follows from the action of the SUSY transformations. For 4d, N =
1 supergravity, this means that the complete field content is given by the
gravity doublet (eaµ,Ψµ) with Nc chiral matter multiplets (φI , χI) and Nv

vector multiplets (λA, AAµ ) corresponding to some gauge groups G = G1 ×
G2×· · ·×GNv . With this we can write down the bosonic supergravity action

S =

∫
d4x
√
−g
[
M2

P

2
R−KIJ̄ ∂̂µφ

I ∂̂µφ̄J̄ − VF − VD

− Re(fAB)

4
FA
µνF

µν B + i
Im(fAB)

4
FA
µνF̃

µν B

]
,

(2.15)

where the first term, proportional to the curvature scalar R, is also present
in the Einstein-Hilber action [17]. The kinetic term of the scalar field is
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determined by the Kähler potential which is real valued and depends only
on the scalar fields of the theory. It gives us the Kähler metric

KIJ̄ = ∂I∂J̄K (2.16)

with the definition of the partial derivative

∂I =
∂

∂φI
.

The gauge covariant derivatives

∂̂φI = ∂µφ
I + iAAµK

IJ̄∂J̄DA (2.17)

with the real valued D-term DA correspond to the gauge group GA. Like
the Kähler potential the D-term only depends on the scalar fields. Under a
gauge transformation of GA the scalar fields transform as

φI → φI − iθAKIJ̄∂J̄DA. (2.18)

Next up are the two scalar potentials VF and VD where the first one is

VF = e
K

M2
P

(
KIJ̄DIWDJW − 3

|W |2

M2
P

)
, (2.19)

which is completely determined by the Kähler potential K(φI , φ̄J̄), and the
superpotential W (φI), which is a holomorphic function of the scalar fields.
The Kähler covariant derivative DIW is given as

DIW (φ) = ∂IW +
1

M2
P

W∂IK. (2.20)

The second scalar potential is called the D-term potential and is determined
by the holomorphic gauge-kinetic function fAB(φI) = fBA(φI) and reads

VD =
1

2
(Re(f))−1AB DADB. (2.21)

An important remark is that, since the gauge-kinetic function fAB determines
the kinetic terms of the vector fields (as we will see shortly), they have to
be positive definite and thus VD ≥ 0. In the second line we have the kinetic
terms of the gauge fields determined by the field strength tensor and its dual:

FA
µν = ∂µA

A
ν − ∂νAAµ

F̃ µν A =
1

2
εµνρσFA

ρσ.
(2.22)

31



In conclusion, 4d N = 1 supergravity action is determined by two real valued
functions K(φI , φJ̄) and DA(φI , φ̄J̄ as well as a pair of holomorphic functions
W (φI) and fAB(φI).
As we will discuss later, we will restrict our theory further by requiring it
to be a type IIB compactification of a string theory. In particular, in the
specific way we choose to do our compactification it will not give rise to any
gauge fields15 and thus the action we will be discussing reads

S =

∫
d4x
√
−g
[
M2

P

2
R−KIJ̄∂µφ

I∂µφ̄J̄ − VF (φI , φ̄J̄)

]
. (2.23)

This action will be invariant under SUSY if it is combined with the corre-
sponding fermionic action.

2.3.2 Supersymmetry breaking

Just like in the Higgs-mechanism, SUSY can be preserved or broken at a
minimum of the scalar potential VF of (2.23). In the case of a pure F-term
potential SUSY remains unbroken if

DIW = ∂IW +
1

M2
P

W∂IK = 0 (2.24)

at the minimum of the scalar potential. With this restriction the value of
the potential at the minimum is

VF |DIW=0 = −3e
K

M2
P
|W |2

M2
P

≤ 0. (2.25)

Remembering our discussion of chapter 1.5 we note that the resulting cos-
mological constant of such a potential is negative or zero, which contradicts
our observations (and would correspond to an AdS or Minkowski space-time
respectively). We conclude that SUSY has to be broken to explain today’s
cosmological constant. It is only necessary that supersymmetry is broken for
energies below a certain threshold Ebreak > ELHC ≈ 104GeV which implies
exp[K/M2

P ]KIJ̄DIWDJW > (104GeV )4 and to explain our cosmological con-
stant we find

Vtoday ≈ 10−120M4
P ≈ (2.4 · 10−12GeV )4 ≈ e

K

M2
P

(
KIJ̄DIWDJW − 3

|W |2

M2
P

)
,

15This is not general for type IIB theories and depends on specific choices during the
process of compactification.
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which means that the terms must cancel very precisely.
From our condition for unbroken SUSY (2.24) we can derive a more conve-
nient condition to find the minimum of the scalar potential than calculating
∂IVF . Differentiating the scalar potential VF (2.19) we find:

∂IVF = e
K

M2
P

[
(∂IK)

(
KIJ̄DIWDJW − 3

|W |2

M2
P

)
+ ∂I

(
KIJ̄DIWDJW

)
− 3∂I

|W |2

M2
P

]
.

Remembering our condition for a SUSY minimum (2.24)

DIW = ∂IW +
1

M2
P

W∂IK = 0

and applying this to the above we find:

∂IVF = e
K

M2
P

(
−3
|W |2

M4
P

∂IK − 3∂I
|W |2

M2
P

)
= − 3

M2
P

e
K

M2
P

(
|W |2

M2
P

∂IK + ∂I |W |2
)

︸ ︷︷ ︸
∝DIW

= 0.

So it follows that for SUSY to remain unbroken we require16:

DIW = 0 ⇒ ∂IVF = 0. (2.26)

In conclusion we only need to solve DIW = 0 to find the minimum of the
scalar potential. Furthermore, remembering our previous remark that the
scalar potential is positive semi-definite we see that the minimum is stable
for V |min = 0. If the minimum of the scalar potential is < 0, we have AdS
geometry and the masses are allowed to be negative as long as they are above
the Breitenlohner-Freedman bound, which is the case as long as DIW = 0.

2.3.3 Planck suppressed operators and the eta-problem

In chapter 1.8 we looked at Starobinsky-type inflation, an interesting model
that we want to consider further later on. In that model we introduced a
term proportional to R2 into the action that was Planck suppressed, with no
justification. In supergravity the Kähler potential receives corrections of the
form

cn
(φφ̄)n

M2n−2
P

16Note that the inverse is not true: ∂IVF ; DIW = 0.
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(with some constant cn) and since the scalar potential (2.19) has a pre factor
exp[K/M2

P ] the corrections in K lead to a change in VF of form:

V → V +
∑
n

δVn with δVn ∝ cn
(φφ̄)n

M2n−2
P

V. (2.27)

This means that a correction of order n = 2 leads to a correction of order c2

to the slow roll parameter ηV as defined in (1.45). From this we see that in
supergravity Planck suppressed operators cannot automatically be dismissed.

2.4 Supergravity from string theory

Why string theory? As mentioned above supergravity does not contain
any physical restrictions on the particles we consider, besides the symmetries.
Moreover it does not give us any particles to work with. In supergravity the
way to get inflation is to assume a suitable scalar particle in an equally suit-
able potential and write down the solution. By restricting ourselves to a
theory of supergravity that arises as the low energy limit of a string theory
we get particles as candidates for our inflaton17 and also restrict the theory
by the symmetries and properties of string theory. Furthermore string theory
is UV complete and thus we can, in principle, calculate corrections from the
Planck suppressed operators that we discussed above. Such operators might
either allow inflation by their additional dynamics or spoil it with their pres-
ence.
Discussing inflation in the context of such a theory may also allow us, with
improving data from cosmological experiments, to actually check some prop-
erties of string theories and see if it is a good candidate for a high energy
theory. For example, as discussed in [30], we expect the value of the tensor
to scalar ratio r to be restricted to much lower values in the near future. The
prognosis for these advances is shown in figure 9 and we expect to either con-
firm non-zero r or get at least a greatly improved bound, further restricting
possible models for inflation.

2.4.1 Energy scales and compactification

Since it is unfortunately too hard to completely solve string theories without
restriction, we have a hard time building a model that can give predictions
for cosmology. Luckily in the low energy limit of a string theory, below
the string scale E � MS = 1/

√
αs, where

√
αs is the string length, string

theories reduce to 10d supergravities with particles instead of strings.

17The particle whose dynamics are responsible for inflation.
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Figure 9: The prognosis for the improvement of cosmological data taken from
[30]. Most interesting for analysing inflation models is the column labelled
σ(r), which gives the one sigma confidence for the value of the tensor to
scalar ratio r.

Another important scale is the Kaluza-Klein (KK) scale that arises from the
compactification of a 10d supergravity to a 4d one. For each dimension we
compactify, we get a scale given by the radius of the rolled-up dimension:
1/R. This is relevant because due to the compactification we will get new
particles. For example consider a 5d space-time R3,1 × S1 where the circle
S1 has radius R. The space-time can be split up into xµ and the additional
coordinated y = y + 2πR. A real scalar field on this 5d space-time has a
Fourier expansion

φ(xµ, y) =
∑
k∈Z

φk(x
µ)eik

y
R ,

where the reality condition of the field φ also implies φ−k = φ̄k for the
coefficients. The action of the 5d scalar gets reduced to a 4d action by
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integrating over the additional coordinate:

S = −
∫
d4x

∫
dy∂Mφ∂

Mφ

= −
∫
d4x

∫
dy (∂µφ∂

µφ+ ∂yφ∂
yφ)

= −
∫
d4x

∫
dy
∑
k,l

(
∂µφ∂

µφ− kl

R2
φkφl

)
eiy

k+l
R

= −
∫
d4x(2πR)

∑
k

(
∂µφk∂

µφ−k +
k2

R2
φkφ−k

)
.

This final 4d action corresponds to the action of a massless 4d scalar and
an infinite number of massive scalar particles, called the Kaluza-Klein tower,
with masses set by the inverse radius of compactification MKK = 1/R. These
particles are usually neglected by restricting our theory to energies below the
KK-scale of MKK = 1/R.
The familiar Planck scale in 4d is in this case not independent but is related
to the compactification volume vol6 = V(αs)

3 such that MP = g
−1/4
S V1/2Ms,

with the string coupling gs = eφ, in which the real scalar field φ is called the
dilaton. In particular our 10d supergravities are derived in the limit of small
string couplings gs � 1 and large internal volumes V � 1.
In conclusion, to trust our theory, we require

E �MKK �Ms �MP ≈ 2.4 · 1018GeV.

These restrictions are valid in general for supergravity theories that stem
from a string compactification and in particular need to hold during inflation.
Because of this we are allowed to neglect very heavy particles with masses way
above the Hubble scale H ≈ V 2

inf/MP like the KK-modes. Other particles
can be around that scale but still contribute. Our model below will use scalar
particles from a compactification and we will try to tune our model such that
one of them is lighter than the rest and call it the inflaton that is responsible
for inflation.

2.4.2 The moduli of type IIB compactification

For the rest of this work we will deal with models from a specific type of
string theory namely type IIB [31]. The low energy limit of this theory is
a 10d N = 2 supergravity which in turn gets compactified to a 4d N = 1
theory. This theory contains 2 10d scalars, the dilaton eφ and the axion C0.
It is possible to combine them into a complex scalar

S = C0 + ie−φ, (2.28)
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called the axio-dilaton. Two other objects that appear in this theory are the
two-forms BMN and CMN , however we will compactify in such a way that
they do not give rise to any scalar particles. The final object in the theory
is the 4-form CMNOP which will give rise to scalar fields in 4d. Those scalars
can be combined with the geometric moduli18 from the metric to give com-
plex scalars for our theory.
Other than the aforementioned fields the only remaining object we have is
the 10d metric gMN that will give us additional scalar fields. How this plays
out exactly is beyond the scope of this work but we shall show in the toy
example of the compactification of a torus what types of fields arise. A torus
T 2 = S1 × S1 can be viewed as a parallelogram as shown in figure 10, with

Figure 10: We view a torus as a parallelogram by identifying two opposing
sides, practically rolling it up to a cylinder at first and then by identifying
the boundary circles to a torus. Making both radii small we eventually
compactify this (internal) volume away. Image taken from [32]
.

the sides identified. With this picture in mind it is easy to see that we can
describe a torus with only 3 real parameters: The length of the sides R1 and
R2 as well as the angle θ between two sides. Another way to categorize a
torus with these parameters is by noting that the volume is given by R1 ·R2

and the shape is given by R1/R2 and θ. Compactifying a dynamical metric
gMN(xµ, yI) on a torus to 4d, we will find that the size and shape parameters
belong to the internal metric gyIyJ and will manifest themselves as scalar
fields.
In more sophisticated compactifications, one usually uses Calabi-Yau mani-
folds [34]. However one can construct singular limits of CY-manifolds from
orbifolds of three T 2s. For the case of an Z2×Z2 orbifold one relates the tori
via a Z3 symmetry which leaves us again with the above 3 parameters.
As hinted above, the volume R1 ·R2 combines with a scalar from the 4-form

18Scalar fields that arise due to a compactification are called moduli.
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CMNOP to give the complex modulus T , called a Kähler- or volume-modulus.
The two shape parameters on the other hand combine to give the complex
structure modulus U . In general there can be multiple moduli T i and U i,
depending on the compactification. This simple compactification scheme is
called the STU-model, after the names of the appearing moduli. In terms of
supergravity, this theory is given by the Kähler and superpotentials:

K = −ln
(
−i(S − S̄)

)
− 3ln

(
−i(T − T̄ )

)
− 3ln

(
−i(U − Ū)

)
,

W = 0.
(2.29)

A note on the regime of our theory: The previous conditions of gS � 1
and V � 1 translate to our moduli to require Im(S) � 1 and Im(T ) � 1
respectively.

2.4.3 The Gukov-Vafa-Witten flux superpotential

The above discussion leads us to a very simple model of supergravity from
the compactification of string theory. In fact, due to W = 0 ⇒ V = 0,
and thus, inflation is impossible. An important idea, discussed in [35], is to
introduce fluxes, similar to the fluxes in electro-magnetism derived from the
field strength tensor Fµν . If we consider a simple torus compactification we
have

− 1

4

∫
d4x

∫
d2y
√
−gFMNF

MN

− 1

4

∫
d4x

∫
d2y
√
−g
(
FµνF

µν + Fy1y2F y1y2
)
.

As long as Fy1y2 is non-vanishing, the second term will give a contribu-
tion to the scalar potential. This contribution is connected to the moduli
from the metric since the metric is involved in the contractions: F y1y2

=
gy

1yigy
2yjFyiyj .

In string theory, this method was first done by Gukov, Vafa and Witten
in [36]. In our compactification scheme we have the 2 two-forms BMN and
CMN that gave no scalar particles due to our choice of orientifold projection.
However we still can use them to get fluxes because

GMNO(S) = ∂[MBNO] − S∂[MCNO] (2.30)

can be non-vanishing.
We can now use these non-zero fluxes along the internal directions to get
contributions to the scalar potential. With the field strength from (2.30)
and the holomorphic 3-form ΩJ1J2J3(U i), containing the structure moduli U i,
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integrated over the internal CY-manifold, we get from a proper reduction the
supergravity given in terms of the Kähler- and superpotential as

K = −ln
(
−i(S − S̄)

)
− 3ln

(
−i(T − T̄ )

)
− 3ln

(
F (U i, Ū ı̄)

)
W =

∫
CY

d6y
√
gCYGI1I2I3(S)gI1J1

CY gI2J2
CY gI3J3

CY ΩJ1J2J3(U i) =: WGVW (S, U i),

(2.31)
where, in case of multiple complex structure moduli U i,

F (U i, Ū ı̄) =

∫
CY

d6y
√
gCY ΩI1I2I3(U i)gI1J1

CY gI2J2
CY gI3J3

CY Ω̄J1J2J3(Ū ı̄). (2.32)

To illustrate an important feature, let us take a look at the situation for
one Kähler modulus T . We find the Kähler-covariant derivative and the T T̄
component of the Kähler metric to be 19

DTW = ∂TW +W∂TK = − 3W

T − T̄

KT T̄ = ∂T∂T̄K = − 3

(T − T̄ )2
,

which leads us to

KT T̄DTWDTW = −(T − T̄ )2

3

(
− 3W

(T − T̄ )

)(
3W̄

(T − T̄ )

)
= 3|W |2

and using this result we find that KT T̄DTWDTW cancels the −3|W |2 in
equation (2.19) to yield

V = eK
(
KSS̄DSWDSW +KU iŪ īDU iWDU iW

)
. (2.33)

The feature of T to cancel the−3|W |2 term of the scalar potential is called no-
scale property. From the above we also see that the Kähler metric governs the
kinetic terms of the moduli and thus has to be positive definite, making V the
sum of two positive definite parts. Finally the Kähler modulus T enters the
scalar potential V only via the pre-factor exp[K] and thus is ∝ (i(T − T̄ ))−3,
meaning that the volume modulus T will be minimized at Im(T )→∞, which
decompactifies our internal dimensions and thus the whole theory. For the
case that the other moduli have an extremum DSW = DU iW = 0, the scalar
potential has a minimum (∂T )nV = 0 and the T modulus remains a flat
direction and massless. Furthermore, since DSW = DU iW = 0 provides the
same number of constraints as the complex fields have degrees of freedom,
we generically find solutions where all fields take a fixed value.

19From here on we will set MP = 1 whenever possible.
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SUSY breaking In this model supersymmetry remains unbroken as long
as DTW = −3W/(T − T̄ ) = 0, meaning that W = 0 as well. If this holds
true, all derivatives are zero and we have a stable supersymmetric solution.
However for W 6= 0 SUSY is broken but all masses are still ≥ 0 because we
already saw that V ≥ 0, so any critical point with V = 0 is a global minimum
and thus the masses likewise have to be ≥ 0.

2.4.4 The KKLT construction of dS vacua

To match current data we need to achieve Vmin > 0, corresponding to a dS
space-time. This was first done by Kachru, Kallosh, Linde and Trivedi who
introduced an uplift term to the superpotential in [37].
We will only outline how this works by continuing our simple example with
one T modulus from above. As mentioned, the T modulus remains a flat
direction in the minimum. However this is not allowed by string theory
because no continuous global symmetries are possible in its framework [31].
The Kähler- and superpotential of equation (2.31) are invariant under a shift
symmetry Re(T ) → Re(T ) + c, c ∈ R. Symmetries of this type are broken
to discrete symmetries via non-perturbative effects and the potentials receive
corrections:

K = −ln
(
−i(S − S̄)

)
− 3ln

(
−i(T − T̄ )

)
− 3ln

(
F (U i, Ū ī)

)
,

W = WGVW (S, U i) + A(S, U i)eiaT ,
(2.34)

where a ∈ R. Since we require Im(T ) � 1 and thus exp[iaT ] � 1, we can
set U i and S to their minimum values, essentially integrating those fields out
of the theory. With this we have

A(U i, S) = A(U i
min, Smin) = const

W0 := WGVW (Smin, U
i
min) = const

and are left with a single field model given in terms of Kähler- and superpo-
tential:

K = −3ln
(
−i(T − T̄ )

)
W = W0 + AeiaT ,

(2.35)

where we choose W0, A ∈ R as a simplification. As usual we look at the
Kähler-covariant derivative which reads

DTW = iaAeiaT − 3
W0 + AeiaT

T − T̄
!

= 0.
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Defining T := b+ iρ we look at the real and imaginary part separately:

0 = Re(DTW ) = −aAe−aρIm(eiab)− 3
Ae−aρIm(eiab)

2ρ

0 = Im(DTW ) = aAe−aρ + 3
W0 + Ae−aρ

2ρ
.

The real part is solved by b = 0 since Im(exp[i ·0]) = Im(exp[0]) = Im(1) =
0, while the imaginary part has an implicit solution given by

W0 = −Ae−aρmin
(

1 +
2

3
aρmin

)
6= 0.

This means that, since ρ0 � 1, we require |W0| � 1 in order for our theory
to be trustworthy. These are the conditions for a supersymmetric minimum
in our theory and we need to look at the value of the scalar potential (2.19)
at the minimum:

Vmin = eK
(
KT T̄DTWDTW − 3|W |2

)
= −3eK |W |2 = −3

1

8ρ3
min

∣∣W0 + Ae−aρmin
∣∣2

= − 3

8ρmin

∣∣∣∣23ρminaAe−aρmin
∣∣∣∣2

= −a
2A2e−2aρmin

6ρmin
< 0.

(2.36)

We need to check that this is in fact the only minimum because otherwise,
another positive minimum would be possible. This can be achieved by plot-
ting the first line in (2.36) as shown in figure 11.
Therfore it is non-trivial to get a dS vacuum and we need to modify our
model somewhat to arrive at a theory that can describe our observations of
a small, positive cosmological constant. We will follow [37] and add an uplift
term to our superpotential. This term can arise in string theory from anti-
D3-branes (D3). In terms of our supergravity language, this can be achieved
by adding a chiral multiplet N , where the scalar part of N is actually given
by the fermion bilinear χ̄χ. The potentials for this models are:

K = −3ln
(
−i(T − T̄ )

)
+NN̄,

W = W0 + AeiaT + µN = WKKLT + µN,
(2.37)

with some number µ. To get a bosonic answer we need to set N = 0 at the
end of our considerations. With this in mind we find:

DNW = µ+WN̄ = µ,

DTW = DTWKKLT ,
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Figure 11: The scalar potential of (2.36) plotted for a = 0.1, A = 1 and
W0 = −10−4. We see that no other minimum exists and that the minimum
we found is, in fact, negative.

which immediately tells us that there are no supersymmetric solutions for
µ 6= 0. Our discussion about DTW remains unchanged because we have to
set N = 0. The scalar potential (2.19) becomes

V =
1

8ρ3

(
KT T̄DTWKKLTDTWKKLT + |µ|2 − 3|WKKLT |2

)
= VKKLT +

|µ|2

8ρ3
,

(2.38)

in the presence of an uplift. Looking at this we see that our efforts have
worked out. The added positive part to the otherwise negative minimum
of the scalar potential can lift our potential above zero as shown in figure
12, thereby yielding a positive cosmological constant. Note that the SUSY-

breaking is set by µ and the cosmological constant is given by Vmin + |µ|2
8ρ3

with Vmin from equation (2.36). We can fine-tune our parameters to fix
both the value of the cosmological constant as well as the scale at which
supersymmetry breaks.

On the topic of the “uplifting field”: We argued before that the su-
perfield N does not give rise to a bosonic part which might contribute. This
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Figure 12: The scalar potential of (2.38) with the uplift term for |µ|2 =
2.4 · 10−8. It is evident that it is possible to get a positive cosmological
constant with this method.

allowed us to set N = 0 after all of our calculations. One way to achieve this
is by using constrained superfields. One particular way was shown in [33]
where nil-potent superfields, for which N2 = 0 holds, were used. Consider
for example the chiral field

N = n+
√

2θψ + θ2Fn, N2 = 0. (2.39)

The condition in terms of the component fields reads

N2 = n2 + 2
√

2θψ + θ2
(
2nFn − ψ2

)
= 0

and we see from the highest component term that we can write the scalar
component as

n =
ψ2

2Fn
, (2.40)

which actually solves all three equations. This is what we meant by stating
that there is no bosonic degree of freedom in N . However, it also implies
that supersymmetry is non-lineary realized. The corresponding action was
first discussed by Vuolkov and Akulov in [38] and [39], while the connec-
tion between the VA-action and the fermion in the nil-potent superfield was
established in [40].
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3 Models for Starobinsky-type inflation in Su-

pergravity

In this work we use the saxions Im(S) and Im(U) to build a model for
inflation. Usually one uses one of the axions, particles that do not appear
in the Kähler potential as the inflaton since they do not receive potentially
problematic Planck suppressed corrections and retain their shift symmetry.
We hope that in an explicit compactification of string theory the saxions can
be used as inflatons and produce the required scalar potential.
Armed with the tools of the previous chapters our goal is now to investigate a
model using primarily Im(U) as inflaton and try to find inflationary dynamics
that resemble the Starobinsky type of inflation of chapter 1.8. We are not
looking to reproduce the potential (1.52) exactly but only its general form is
important, constants and the like can be adjusted to fit our needs. We want
to have a positive minimum, corresponding to a positive constant term in
the expansion of the scalar potential and an infinite (or at least long enough)
flat part of the potential for inflation to happen.
We begin by stating the form of the Kähler- and superpotential we want to
consider. They arise from compactifications of type IIB string theory on CY3

orientifolds. The general form of the potentials was first derived in [41] and
for our specific model we have, with a single Kähler modulus T :

K =− ln
(
−i(S − S̄)

)
− 3ln

(
−i(T − T̄ )

)
− ln

(
(−i)3κijk(U

i − Ū i)(U j − Ū j)(Uk − Ūk)
)

W =



f0

f1i

f i2
f3

− S

h0

h1i

hi2
h3


 ·


1
U i

κijkU
jUk + gi

κijkU
iU jUk + giU

i + iq


(3.1)

where all parameters are real and κijk ∈ R are the intersection numbers that
encode the relation of the Us. For one light U we find for the potentials 20

K = −ln
(
−i(S − S̄)

)
− 3ln

(
−i(U − Ū)

)
− 3ln

(
−i(T − T̄ )

)
,

W =
3∑

α=0

aαU
α + S

3∑
α=0

bαU
α,

(3.2)

where the parameters were combined for each order and renamed for conve-
nience. Note that for the simple STU-model all terms need to be real and
thus q = 0.

20Here α is not numbering the fields but gives the power of the field.
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In (3.1) we can assume that some of the fields U i are heavy compared to the
rest and they do not produce any dynamics during inflation. In that case
we can integrate them out, effectively setting them to a constant value, with
this we can find a general potential of form

K = −ln
(
−i(S − S̄)

)
− p · ln

(
−i(U − Ū)

)
− 3ln

(
−i(T − T̄ )

)
,

W =
n∑

α=0

aαU
α + S

n∑
α=0

bαU
α,

(3.3)

where p = n = 1, 2, 3, for the light modulus U . In our work here we will use
the imaginary part of this light modulus as the inflaton and investigate its
scalar potential for possible inflationary dynamics.
We proceed by taking different values and minimizing the directions by set-
ting DIW = 0. This method gives us conditions on parameters or fields
which reduce the amount of free parameters. After using up all equations
we are left with an expansion of the scalar potential in orders of U which we
then review for compatibility with inflation.

3.1 Remarks about the model

Kinetic terms of the moduli It is important to note that the kinetic
terms of the moduli, as seen in (2.23), are canonical when setting the mod-
uli to exp[±φ]. For example, consider a single complex structure modulus
Im(U) → exp[±φ]. From (2.23) we find by using the Kähler potential of
(3.3) we find

KUU∂µU∂
µU =

−1

((U − Ū))2
∂µU∂

µU ≈ −e2φ
(
e−φ∂µφ

) (
e−φ∂µφ

)
+ · · ·

⇒ KUU∂µU∂
µU ≈ −∂µφ∂µφ+ · · · ,

where the · · · are contributions from the real part of the modulus U . This to-
gether with the fact that the superpotential is a polynomial makes it natural
to try to relate this model with classical Starobinsky inflation.

Relation to the Starobinsky potential In the classical model of Starobin-
sky type inflation of chapter 1.8 we found a potential with the form given
by

1 + e−2
√

2
3
φ − 2e−

√
2
3
φ.

In order to identify our modulus with the scalar particle appearing here we
substitute

Im(U)→ eφ.
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Other, higher negative-order terms that might appear in the expansion have
no corresponding term in the Starobinsky model of 1.8 but do not spoil
inflation. Since we do not seek to reproduce the Starobinsky model exactly
but only the general shape of its potential those terms only have to behave
and we will not require them to vanish.
Positive order terms however need to vanish because they diverge and spoil
the form of the potential, preventing a long flat part for slow-roll inflation.

General restriction on the potential Looking at the scalar potential
(2.19) we see that the pre-factor is ∝ U−p and thus, since we do not want
the potential to grow at infinity, we see that the rest of the potential can at
most be of power Up. This gives a restriction on the maximal power n in the
superpotential W , which has to satisfy n ≤ p/2. As a sanity check we still
will consider these models in our work below but we expect them to fail. In
a final attempt to build a model for inflation we will look at models where
the above condition is not satisfied in order to have a positive power in the
series expansion of the scalar potential. There we will try to have a long, flat
part of the potential, suitable for inflation, but with monotonically growing
potential for φ→ ±∞.

The imaginary term in the potential The observant reader might have
noticed that there is a term proportional to iq, with q ∈ R appearing in (3.1)
that we then chose to neglect. One does not expect this term to change the
results for the simple model and in fact it is often not considered for STU-
models. We expect that the parameter q cannot change our conclusions in a
meaningful way due to the reality condition on our parameters.
Nevertheless the impact of the iq term was checked for models with p = 1, 2, 3
and n ≤ p/2 and indeed no changes in the results were found.

The axio-dilaton The potential possibility for the axio-dilaton S to be
the inflaton is already addressed in this model as for the n = p = 1 model
the potentials are invariant under the exchange S ↔ U .

The T modulus An important remark is that in all of this we do not need
to consider the T modulus as of now. If we find a working model we will
have to consider this modulus again and try to stabilize it. Reintroducing
the T modulus may spoil our model, however stabilizing the T modulus to
begin with will not improve the behaviour (i.e. a model that does not work
without T will also not work with T ) and thus, to make things simple, we
do not consider T for now.
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Axions As mentioned before the particles that do not appear in the Kähler
potential, specifically the real parts of U and S, are called axions. We will
often set them to zero without loss of generality because it is at value zero
that they are at the minimum of their respective potentials. This is especially
important for higher power models where the calculations, even with the use
of a computer program, become too involved to solve on normal hardware.
We employed this for models with n, p ≥ 2.

A note on the absence of AeiaT and the uplift term As we mentioned
in chapter 2.4.4 the shift symmetry present in (3.3) is broken and we need
to introduce a term AeiaT into the superpotential corresponding to that fact.
Furthermore in order to get a positive minimum value of the scalar potential
we need to introduce an uplift term. Neither of these terms is present in (3.3).
We omitted them because they are not needed for general considerations. As
soon as we find our desired potential we can introduce both these terms and
build the dS vacuum we are after.

3.2 Simple models for n and p and methodology

First off we want to look at the models given by the Kähler- and superpoten-
tial (3.3) and we will try to construct a potential with the general behaviour
as seen in 7: A minimum with a steep potential to one side and an infinitely
long flat part for the inflaton to roll down on.
Even though the formulas seem to be rather tame and manageable, due to the
amount of terms involved the help of a computer algebra program, namely
Mathematica, was employed to arrive at results in a timely manner. The
code is based on the works of [42].

3.2.1 Outline of employed code and procedure

Our code is supplied with the potentials of (3.3) with the values of p and n
that we want to consider. In the first step the Kähler-covariant derivatives,
Kähler-metric and scalar potential are calculated. For convenience these
objects are converted to real- and imaginary-part and split up if necessary.
We then use the equations

Re(DUW ) = 0,

Re(DSW ) = 0,

Im(DSW ) = 0,

(3.4)

to fix, for example, the values of the S field (Re(S) and Im(S)) and one of
the parameters that appear in the superpotential.
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Armed with these conditions we expand the scalar potential (2.19) in orders
of our inflaton Im(U) for Im(U)→∞21 and check the form of this potential.
In particular we require there to be no positive powers of Im(U), a constant
term corresponding to the energy scale of inflation and real coefficients. The
last condition is of importance as soon as roots appear in the series and re-
quires us to tune parameters to retain reality. Positive powers that appear in
the initial expansion of the scalar potential can be set to zero by introducing
further restrictions on the parameters.

3.2.2 Results for models up to n = 3, p = 3

The results for all models with n = 1, 2, 3 and p = 1, 2, 3 are shown in table
3.2.2. All models terminate due to a number of different reasons:

• NS: The potential is not usable in the first place because it has too few
terms in the expansion or the constant term is missing, thus giving no
cosmological constant.

• Im(S) = 0 : The dilaton as given by Im(S) has to be zero and we can
no longer trust our supergravity as discussed in chapter 2.4.2.

• RED: In the process of eliminating positive order of Im(U) we either
reduce the model to one of the lower order ones or the expansion of
the potential with the conditions on the parameters is not suitable for
inflation.

n = 1 n = 2 n = 3
p = 1 NS Im(S) = 0 RED
p = 2 NS Im(S) = 0 NS
p = 3 NS NS RED

Table 1: The summary of the results of the simple models for n = 1, 2, 3
and p = 1, 2, 3. All models fail according to one of the problems mentioned
above.

Discussion of all models

• n=1, p=1: After solving DSW = 0 the scalar potential vanishes iden-
tically.

21Inflation for large fields.
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Figure 13: The general behaviour of a potential that is only given by a
term with a single negative power. The inflaton cannot roll towards a stable
minimum.

• n=1, p=2: Here we find a single term potential with only one negative
power ∝ Im(U)−1. A potential like this is not suitable for inflation
starting at φ ≈ ∞ as is evident from figure 13.

• n=1, p=3: For this case the conditions from DSW = 0 are again
sufficient to arrive at a single term potential in this case ∝ Im(U)−2.

• n=2, p=1: Solving DSW = 0 requires Si = 0 which is not compatible
with our requirements on the moduli from chapter 2.4.2.

• n=2, p=2: The same problem arises as in the previous model, solving
the constraints requires Im(S) = 0 which is not acceptable.

• n=2, p=3: This is the first model for which we use the simplification
to set the axions Re(U) = Re(S) = 0. With this we find our first
multi-term potential, however, one of them is a positive power. The
potential has the general form AIm(U)+B+CIm(U)−1 which cannot
be used as seen in figure 14. Setting it to zero by a condition on the
parameters renders the potential unusable.
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Figure 14: A potential with single positive and negative power gives generi-
cally no flat part on which the particle can roll during inflation. We see that
we need to get rid of the positive order and require a higher negative one.

• n=3, p=1: The series for the potential of this model has enough terms
to require a more thorough investigation than the previous models. It
starts with a positive power of Im(U)4 and importantly has a constant
term. The term Im(U)4 proved resilient and in the end we found that
the model either becomes not usable or reduces to the model for n=2,
p=1.

• n=3, p=2: Here we again find a promising potential expansion with
positive powers. It is possible to reduce it to an interesting expansion
without the positive powers but sadly also without a constant term
which we would need for inflation.

• n=3, p=3: Again we find a series for V that might lead to a usable
potential but we need to get rid of some positive powers. Due to the
amount of parameters this is a somewhat lengthy process and leads us
to find that the model reduces to a previous one with all the problems
this implies.

Unfortunately we find that each attempt fails for one reason or another.
Below we review our attempts to generalize the model in order to get a
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working model for inflation.

3.3 Adding another field

One method that might introduce enough additional dynamics to allow us
to build a suitable potential for inflation is to introduce another field to the
model. We can allow for two different complex structure moduli in (3.1)
to become light and we call the additional one F 22 to distinguish the two.
Looking at (3.1) we see that we can get a number of different superpotentials
that are polynomial in U and F . We will consider three different models that
can arise for by setting some of the U i → U or → F .

3.3.1 Maximal model with U2

First if we take κijkU
iU jUk = U2F we find potentials that can be written

down as:

K = −ln
(
−i(S − S̄)

)
− 3ln

(
−i(T − T̄ )

)
− 2ln

(
−i(U − Ū)

)
− ln

(
−i(F − F̄ )

)
,

W = a0 + a1U + a2U
2 + c1F + c2UF + a3U

2F

+ S
(
b0 + b1U + b2U

2 + d1F + d2UF + b33U
2F
)

+ iq (a3 + b3S) .

(3.5)

One general fact to note is that not every term in the superpotential has a
unique parameter due to the general form given in (3.1). This is of course a
restriction on the model, limiting the number of parameters we can tune in
order to arrive at our required potential form. Note also that for this model
the imaginary coefficient iq does not necessarily vanish. As for all fields we
will require DFW = 0. With the conditions on the parameters that arise by
solving this equation as well as DSW = 0 we try to find our scalar potential
expansion. Note that our reality condition on the scalar potential does not
change and we have to impose conditions on the parameters accordingly.
For this particular case we find a potential with a positive term ∝ Im(U)
which we have to set to zero. Unfortunately due to the roots appearing in
the coefficients of the series it is not possible to achieve a real potential. No
matter how one tunes the parameters there will always either be an imaginary
term or the potential becomes unsuitable for inflation.

22Not to be confused with the F-term.
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3.3.2 Model with F 2

Another possibility we can explore is to choose the κijk such that hi2κijkU
jUk =

0 and κijkU
iU jUk = UF 2. For this case the potentials read:

K = −ln
(
−i(S − S̄)

)
− 3ln

(
−i(T − T̄ )

)
− ln

(
−i(U − Ū)

)
− 2ln

(
−i(F − F̄ )

)
,

W = a0 + a1U + c1UF
2 + fF 2

+ S
(
b0 + b1U + c2F

2 + d2UF
2
)

+ iq (c1 + d2S) .

(3.6)

Important to note is that in this model, other than the term iqS, the fields
S and U appear on equal footing.
With these choices it is possible to use either Im(U) or Im(F ) as the inflaton
and to minimize other directions. Choosing for example U we find after
minimizing F and S a potential expansion with a constant term and even
powers of Im(U), starting at the positive power Im(U)2. We can easily
eliminate this positive power by a condition on a parameter and find that it
only eliminates the term we aimed for. Substituting Im(U)→ eφ we have for
the first three terms in the series expansion of the scalar potential a potential
of form

V ≈ α− βe−2φ + γe−4φ,

where we have chosen one parameter such that the second term is negative
and assumed T to be stable for now. With such a potential we can achieve
a scalar potential as depicted in figure 15. While this is not quite the same
as a the Starobinsky type potential from figure 7 it might actually work as
the characteristics for φ→∞ allow for inflation to happen.
However there is one thing we still need to check: In our attempt to have a
potential with only negative powers of Im(U) we imposed another condition
on one of the parameters. This condition as well as the condition we use
to get a negative sign in front of the term ∝ Im(U)−2 must be compatible
with our solution of the equations DSW = DFW = 0 that restrict our fields
Im(S) and Im(F ). As a matter of fact we find that substituting all these
conditions into the the solution for the fields leads to a vanishing field Im(F )
for large field values of Im(U) and a complicated condition on parameters to
have Im(S) ∈ R. Since we require Im(U i) > 1 this contradicts our stability
requirements that we described in chapter 2.4.2. Again this is the end of the
model.

3.3.3 Superpotential without squared terms

Finally we can consider a model where none of the fields appear with higher
power, via κijkU

jUk = UF and κijkU
iU jUk = 0 we find for the Kähler- and
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Figure 15: The first two terms of the potential found by using the potentials
(3.6) give a symmetric potential with a fake vacuum for φ = 0 and allow
inflationary dynamics when φ starts at large values. By choice of parameters
it seems to be possible to achieve the correct behaviour in correspondence
with our current observations.

superpotential:

K = −ln
(
−i(S − S̄)

)
− 3ln

(
−i(T − T̄ )

)
− ln

(
−i(U − Ū)

)
− ln

(
−i(F − F̄ )

)
,

W = a0 + a1U + f1UF + f2SUF

+ b0S + iq (c+ dS) .

(3.7)

For this model there is no way to minimize the Im(F ) and Im(S) direction
simultaneously and thus inflation using Im(U) is not possible.

Conclusion By considering the three models of this chapter we have ex-
hausted the possibilities of (3.1) because in the limit of large U only the high-
est order in the superpotential will be relevant. For the case that κijkU

iU jUk ∝
U3 the superpotential is of form W = const ·U3 + · · · and for the behaviour
of the potential the remaining terms are irrelevant. If the dominant power
appearing is const · U2 · (other fields) + · · · , we can call the other fields
F and the relevant part for U → ∞ is given by the U2 term. Similarly for
const ·U ·(other fields)+ · · · we can call the other fields F or F 2 and the be-
haviour is yet again determined by the U term and the rest is not important.
So we see that we have dealt with the most general case of (3.1).
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3.4 Plateau model for inflation

In the previous attempts we always tried to make the positive powers of
Im(U) vanish, corresponding to an infinitely long flat part of the potential.
Strictly speaking this is not required. We can imagine a potential as symboli-
cally pictured in figure 16, with a long finite flat part, that grows continuously
after that. It is only important that the flat part is long enough to allow for
our target amount of e-folds and that in the limits for φ→ ±∞ the potential
is monotonically growing, meaning that there are no other (local) minima.
This can be achieved by allowing a positive power of Im(U) appearing in the

Figure 16: A possible potential for inflation that grows for both limits φ →
±∞. The long flat part in the middle allows for slow-roll inflation.

series expansion of the scalar potential to be present, but with a very small
parameter such that the flat part of the potential is sufficiently long.
We pursue that goal by proceeding as normal, but instead of trying to set
the parameters in front of the positive terms to zero, we set it to a parameter
ε > 0 that we can use to set the length of the flat part of the potential.
We used the model (3.5) with the additional field present because it was the
most promising one we investigated so far. However we found no improve-
ment, there are still either roots appearing that cannot be made real without
either spoiling the form of the potential or the aforementioned parameter
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ε appearing in other terms of the expansion, like the constant term, that
should not be small.
For example, after setting the parameter in the term ∝ Im(U) to ε, we found
three different roots of the parameters in the constant term. The general form
of this term is

r
√
X + s

√
X
√
Y

t
√
Z

For this to give a real solution we need either all roots to be real or both
√
X

and
√
Z be imaginary and

√
Y real. For one particular case we found

X = a2a3c2

Y =
a2b3(a3b1 − a1b3 + a2d2)

a3c2

Z = −b3(a3b1 − a1b3 + a2d2)

and we immediately note Y = −a2/(a3c2)Z. Now if sign(a2a3c2) = −1
we see that Y = |a2/(a3c2)|Z and thus if Z is imaginary so is Y . For
sign(a2a3c2) = +1 we have Y = − |a2/(a3c2)|Z and thus if Z is real Y will
be imaginary.
These kind of cases appear in all situations and the only remaining option
is to begin to set parameters to zero which in turn sets whole terms in the
series of the scalar potential to zero. This reduces the amount of terms in
our series expansion of the scalar potential and always leads to an unusable
potential form.

4 Conclusion and outlook

In this work we investigated the possibility to construct a potential that re-
produces the main features that we require from inflation, namely around 60
e-folds of inflation and the slow-roll parameters (1.44) and (1.45), compatible
with the best current bounds from experiments. To that end we looked at
type IIB string theory compactifications on Calabi-Yau orientifolds in the
limit of large complex structure moduli. We investigated whether a complex
structure modulus can be used as an inflaton in this limit in order to produce
a scalar potential similar in form to the Starobinsky model. We started with
the STU-model with only one such complex structure modulus.
We found that the simplest models for a polynomial superpotential did not
allow for inflationary dynamics to arise. The model seems to be too restric-
tive to accommodate all our additional requirements of reality while staying
in the region of the model (Im(S)� 1) where it is still reliable.
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Additional attempts to expand our model showed some signs of improvement
but ultimately neither adding an additional field nor allowing for only a finite
flat part of the potential did yield the desired results.
Moving forward we hope that it will possible to construct a model of infla-
tion in a similar framework or to at least find a way to proof generally that
inflation is not possible in such a model.

56



References

[1] A. A. Starobinsky, A new type of isotropic cosmological models without singularity,
Physics Letters Volume 91B, number 1 (1980)

[2] A. H. Guth, Inflationary universe: A possible solution to the horizon and flatness
problems, Phys. Rev. D 23.2 1981

[3] F. Farakos, A. Kehagias and A. Riotto, On the Starobinsky Model of Inflation from
Supergravity, arXiv:1307.1137

[4] J. Ellis, D. V. Nanopoulos and K. A. Olive, No-Scale Supergravity Realization of the
Starobinsky Model of Inflation, arXiv:1305.1247

[5] S. Ferrara, R. Kallosh and A. Van Proeyen, On the Supersymmetric Completion of
R+R2 Gravity and Cosmology, arXiv:1309.4052

[6] A. H. Guth, The Infaltionary Universe, Addison-Wesley 1997

[7] S. Weinberg, Cosmology, Oxford University Press 2008

[8] A. P. Lightman, Ancient Light: Our Changing View of the Universe, Harvard Uni-
versity Press 1993

[9] A. A. Penzias and R. Wilson, A Measurement of Excess Antenna Temperature at
4080 Mc/s, Astrophys. J 142, 419 1965

[10] D. J. Fixsen, The Temperature of the Cosmic Microwave Background, Astrophys. J
707, 916 2009 arXiv:0911.1955

[11] Planck Collaboration, Planck 2015 results. IX. Diffuse component separation: CMB
maps, arXiv:1502.05956v1

[12] Keck Array, BICEP2 Collaborations, BICEP2 / Keck Array VI: Improved Con-
straints On Cosmology and Foregrounds When Adding 95 GHz Data From Keck Ar-
ray, arXiv:1510.09217

[13] D. Baumann, Cosmology: Part III: Mathematical Tripos,
http://www.damtp.cam.ac.uk/user/db275/Cosmology/

[14] Planck Collaboration, Planck 2015 results XIII. Cosmological parameters,
arXiv:1502.01589v3

[15] K. K. S. Wu, O. Lahav, and M. J. Rees, Nature 397, 225 (January 21, 1999)

[16] Hubble, E. P. (1929) Proc. Natl. Acad. Sci. USA 15, 168–173

[17] R. M. Wald, General Relativity, The University of Chicago Press (1984)

[18] P. J. E. Peebles and B. Ratra, arXiv:astro-ph/0207347v2

[19] G. Ross, Grand Unified Theories, Westview Press (1984)

[20] J. A. Peacock, Cosmological Physics, Cambridge University Press (1999)

[21] A. D. Linde, Phys. Lett. B 108, 389 (1982); 114, 431 (1982); Phys. Rev. Lett. 48,
335 (1982)

[22] Planck Collaboration, Planck 2015 results: XX Constraints on inflation,
arXiv:1502.02114

57



[23] D. Baumann and L. McAllister, Inflation and String Theory, Cambridge University
Press (2014)

[24] P. Nath and R. Arnowitt, Generalized Super-Gauge Symmetry as a New Framework
for Unified Gauge Theories, Physics Letters B 56 (1975)

[25] Daniel Z. Freedman, Peter van Nieuwenhuizen and Sergio Ferrara, Progress Toward
A Theory Of Supergravity, Physical Review D13 (1976)

[26] J. Wess and J. Bagger, Supersymmetry and Supergravity, Princeton series in Physics
(1992)

[27] D. Z. Freedman and A. Van Proeyen, Supergravity, Cambridge University Press
(2012)

[28] T. Wrase, dS Vacua and inflation in string theory, https://indico.jinr.ru/getFile.py/
access?contribId=11& sessionId=7& resId=0& materialId=2& confId=97

[29] A. Messiah, Quantum Mechanics (2 volumes), North-Holland publishing company
Amsterdam (1969)

[30] CMB-S4 Collaboration, CMB-S4 Science Book, First Edition, arXiv:1610.02743

[31] J. Polchinski, String Theory (2 volumes), Cambridge University Press (2005)

[32] Review of the universe, Elementary Particles and the World of Planck Scale , Super-
strings, universe-review.ca

[33] S. Ferrara, R. Kallosh and A. Linde, Cosmology with Nilpotent Superfields, JHEP 10
(2014) 143, [1408.6096]

[34] S. Banerjee, Calabi-Yau compactification of type II string theories, arXiv:1609.04454

[35] S. B. Giddings, S. Kachru and J. Polchinski, Hierachies from fluxes in string com-
pactifications, Phy. Rev. D66 (2003) 046005

[36] S. Gukov, C. Vafa and E. Witten, CFT’s from Calabi-Yau four folds, Nucl. Phys.
B584 (2000) 69-108

[37] S. Kachru, R. Kallosh, A. D. Linde and S. P. Trivedi, De Sitter vacua in string
theory, Phys. Rev. D68 (2003) 046005

[38] D. V. Volkov and V. P. Akulov, Possible universal neutrino interaction, JETP Lett.
16 (1972) 438-440

[39] D. V. Volkov and V. P. Akulov, Is the Neutrino a Goldstone Particle?, Phys. Lett.
B46 (1973) 109-110

[40] M. Rocek, Linearizing the Volkov-Akulov Model, Phys. Lett. 41 (1978) 451-453

[41] T. W. Grimm and J. Louis, The effective action of N = 1 Calabi-Yau orientifolds,
arXiv:hep-th/0403067v3

[42] R. Kallosh and S. Prokushkin, SuperCosmology, arXiv:hep-th/0403060

58



A Englisch Abstract

Abstract
In 1980 A. A. Starobinsky presented a model of inflation that uses a Planck-
suppressed order R2 term in the Einstein-Hilbert action to describe the ex-
ponential expansion of the universe. Such an expansion was first postulated
by Guth to solve the horizon and flatness problem of cosmology.
The Starobinsky model of inflation, in the context of supergravity, has been
discussed before. In this work however we want to construct generalized
Starobinsky type inflation models that arise from a supergravity that is the
low energy limit of string theory. We hope that on the one hand this restric-
tion gives us particles in form of the moduli arising from compactifying the
string theory and on the other hand that our work here gives the possibility
to use cosmological data to check some aspects of string theory and therefore
its validity.
The first chapter is dedicated to the classical concepts of cosmology that we
require for our work. In the last section we will look at the classical Starobin-
sky inflation in order to motivate our later work. The basics of supergravity
and how we can get a supergravity from string theory will be outlined in
chapter 2. There the STU-model of supergravity will be presented, which
shall serve as the main ingredient for the work of chapter 3. In the penulti-
mate chapter we will start our work on simple STU-models with polynomial
superpotentials and check their relevance for inflation. To conclude the chap-
ter we investigate possibilities to generalize the model via adding additional
fields or loosening our restrictions on the form of the potential.
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B German Abstract - Zusammenfassung

Zusammenfassung
Bereits 1980 hat A. A. Starobinsky ein Inflationsmodell vorgestellt, in dem
er einen Planck-unterdrückten Term, proportional zu R2, in der Einstein-
Hilbert Wirkung betrachtet. Damit gelang es ihm eine exponentielle Ex-
pansion unseres Universums zu beschreiben. Die Notwendigkeit solch einer
Expansion wurde erstmals von Guth beschrieben, um das Horizont- und das
Flachheitsproblem der Kosmologie zu lösen.
Im Kontext von Supergravitation wurde das Starobinsky-Modell für Infla-
tion bereits betrachtet. In dieser Arbeit wollen wir versuchen, Starobinsky-
ähnliche Inflationsmodelle im Rahmen von Supergravitationsmodellen, die
der Grenzwert niedriger Energie von Typ IIB Stringtheorie sind, zu kon-
struieren. Wir hoffen, dass wir auf diesem Weg einerseits Teilchen vom
Kompaktifizierungsprozess erhalten und andererseits, dass es möglich ist kos-
mologische Messdaten zu verwenden, um Vorhersagen der Stringtheorie zu
überprüfen.
Im ersten Kapitel besprechen wir die klassischen Konzepte der Kosmologie,
die wir für unsere Arbeit benötigen. Im letzten Unterkapitel betrachten wir
das Modell von Starobinsky in diesem Kontext. Die Grundlagen der Super-
gravitation werden in Kapitel zwei betrachtet, wo wir auch motivieren wollen,
warum wir eine spezielle Kompaktifizierung von Typ IIB Stringtheorie be-
trachten. Außerdem wird das STU-Modell besprochen, unser wichtigstes
Werkzeug für die weitere Arbeit. Im vorletzten Kapitel schließlich werden
wir diese Grundlagen verwenden, um Inflationsmodelle zu konstruieren und
deren Konsistenz zu überprüfen. Zum Abschluss dieses Kapitels und der
Arbeit betrachten wir Verallgemeinerungen unserer Modelle.
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