

DISSERTATION / DOCTORAL THESIS

Titel der Dissertation /Title of the Doctoral Thesis

Data Integration and Cleansing for Enterprise
Architecture Analytics

verfasst von / submitted by

Mag. Christoph Moser

angestrebter akademischer Grad / in partial fulfilment of the requirements for the degree of

Doktor der technischen Wissenschaften (Dr. techn.)

Wien, 2017 / Vienna, 2017

Studienkennzahl lt. Studienblatt /
degree programme code as it appears on the student
record sheet:

A 084 175

Dissertationsgebiet lt. Studienblatt /
field of study as it appears on the student record sheet:

Dr.-Studium d.Sozial- u.Wirtschaftswiss.
UniStG Wirtschaftsinformatik

Betreut von / Supervisor:

o. Univ.-Prof. Dr. Dimitris Karagiannis

Introduction

2

Acknowledgements

Now that this work is coming to an end, I would like to thank all of the people who have

encouraged me. Without their help and support it would not have been possible to write this

doctoral thesis. It is possible to give only some of them particular mention here.

First and foremost, I would like to express my thanks to my supervisors, Prof. Dr. Dimitris

Karagiannis and Prof. Dr. Wilfrid Grossmann.

Prof. Grossman introduced me to the world of business analytics and statistical metadata

management. Without his advice and guidance this work would not have been possible. I

would like to express appreciation and thanks for all the support he has given me during the

past years.

Prof. Karagiannis, my doctoral father, I want to thank for the endless hours of discussion

guiding me on this long journey. Prof. Karagiannis sparked my interest in meta modelling and

enterprise architecture management many years ago. He not only gave me scientific advice

that enabled me to conduct this work, he also encouraged me to evaluate some of the

discussed concepts in industrial settings. I have to thank him for all the years we have been

working together.

My thanks also go to my colleagues Manuel Timotic and Wilfrid Utz with whom I have

been working together in various university assignments. I have to thank both of them for

sharing their knowledge and advice on building modelling tools and for the many discussions

that have served to advance and improve this doctoral thesis.

I thank my colleagues from BOC Group with whom I intensively worked on the Enterprise

Architecture Management Suite ADOIT for many years.

Finally, it is here that I would like to thank my family, Sabine and our sons Maximilian and

Jakob for their patience, never complaining about the little time I had left for them during

finalisation of this thesis and for the inspiration they gave me.

Introduction

3

Foreword

In the age of digital business, organizations face the challenge of reinventing themselves in

order to cope with new market conditions. IT megatrends, such as artificial intelligence, big

data, cloud computing, mobile internet, the internet of things and smart manufacturing make

possible the delivery of completely new value propositions to the customers. Digitalizing

traditional products, providing additional channels for customers and late-stage assembly to

meet the demands for mass customization are only some examples. Businesses are in a

position to collect data about customer behaviour, customer satisfaction and market

conditions obtained from social media platforms. At the same time, customers demand

valuable, personalized and digital experiences. Customers use social media platforms to

inform themselves about product quality and best-price; they use review sites, the digital

versions of word of mouth, to report on the advantages and disadvantages of products.

In this volatile environment, Enterprise architecture management is concerned to keep pace

with these trends. Topics such as customer experience, business IT alignment, cost reduction,

standardization and reduction of IT’s time to market are addressed, striving for better return

on existing investment and reduced risk for future investment.

Knowledge of the interdependencies between the organisations main design elements, such

as strategic goals, stakeholders, business processes, products and IT resources is being

recognised as a key success factor. Enterprise architecture management and more widely the

application of enterprise modelling methods are management instruments that support

decision making in these challenging environments. At the heart of these initiatives, one

typically finds graphical modelling languages, which make possible documentation of

knowledge about organisations and their business ecosystems. Once available, these models

build a rich foundation for analyzing and optimizing the organizational structures, i.e. the

enterprise architecture. Typical analysis scenarios uncover gaps within the EA and make

possible dependency analysis as well as analysis of cause/effect relations between the central

design elements of an organization and entire business ecosystems. Heterogeneity analysis

makes standardization possible, leading to potential cost-savings and subsequent release of

budgets, which can be invested in innovative products and services. The acquired

transparency supports scenarios such as compliance management to identify misalignments to

policies and regulatory regulations (e.g. Solvency II or Basel III).

Introduction

4

In contrast to previous years, the required analysis does not focus purely on a self-contained

model base created by domain experts. It is recognized that models need to be substantiated

with operative data, whether from organizational internal data, such as customer transactions

and sales data, or external data from social media platforms.

Integrating EA models and EA relevant data is a major challenge. In this context, data

quality and data provenance aspects concerning the analysis results are a key requirement.

This thesis contributes to the support of EA endeavors in this regard. It presents DICE (Data

Integration and Cleansing Environment), a method that supports data integration and

cleansing in a structured way. It places a strong focus on the required metadata that provide

information about data quality and data provenance aspects. In this way, doubt cast on the

accurateness of analysis results can be minimized. Due to its automated approach, data

engineers are to a great extent relieved from the burden of manual documentation and can

focus on the actual business requirements.

At its heart, the presented method provides mechanisms and algorithms to transform data

and metadata concurrently. Due to this approach, data transformations, such as selecting data,

merging data and restructuring of data become comprehensible.

DICE does not consider itself an all-encompassing solution to the abundance of possibly

required transformation tasks. It is conceptualized as a situational method based on a

metamodeling approach. In this way, it can be adapted to actual project situations. With its

meta structure it provides the foundational concepts, which can be specialized and adapted.

The thesis uses these mechanisms in the fields of Enterprise Architecture Analytics, a

combined approach based on enterprise architecture management and business analytics. To

this end, from the DICE core, a situational method for EAA is derived providing specifics to

cope with peculiarities of EA data.

Introduction

5

Abstract

Enterprise architecture management (EAM) is a holistic management approach supporting

organizations in effectively achieving their current and future objectives. The enterprise

architecture (EA) is a conceptual blueprint of an organization or an entire business ecosystem

composed of organizations. It defines the organization’s main structural elements and their

dependencies on each other. These blueprints are typically represented in the form of

architectural descriptions. Taken together, these architectural descriptions form a valuable

foundation for driving management decisions.

An often mentioned problem is the data quality of the EA descriptions. Often, self-contained

descriptions on varying levels of detail are created by domain experts. A concise overview

and comprehensive analysis of the EA is not possible on that basis. EA Frameworks such as

TOGAF plead for architecture repositories that hold EA models instantiated from

standardized metamodels. However, in practice much additional EA relevant documentation

is created and not fed back into these repositories. Typically, even thoroughly curated

repositories are not fully up to date and concise. Moreover, in many cases additional

information about current and future business performance is required to underpin EA models

and to make EA analysis possible. Business Analytics is the management domain focusing on

the provision of knowledge extracted from operational data. The amalgamation of EA models

and operational data offers the best of both worlds: EA models are substantiated by findings

extracted from operative business data and BA data can be structured along the most

important design objects of the organization. This approach is referred to as Enterprise

Architecture Analytics in recent scientific publications.

With DICE (Data Integration and Cleansing Environment) this doctoral thesis introduces a

method for integrating and streamlining EA descriptions for further analysis and for

extraction and integration of operational data. DICE is a general purpose method for the

support of data preparation in BA endeavors. It is conceptualized as a situational method; it

can thus be refined to support domain specifics where needed. To this end, DICE builds

heavily on a metamodeling approach, which makes possible the specialization of DICE to

support Enterprise Architecture Analytics. Besides metamodeling, DICE is built on concepts

from the fields of statistical metadata management, workflow management and data mining.

Introduction

6

It supports all typical transformation tasks, such as data integration, data selection, data

imputation and data cleansing. Thereby, it makes possible the concurrent transformation of

data and metadata. In this way, the impact on the data quality through the transformations

becomes computable. Moreover, the conducted transformations are accurately documented so

that resulting data can be traced back to its sources.

In the context of EAA it is used for cleansing and integration of architecture descriptions as

well as for enriching the architecture descriptions with operational data for subsequent

analysis and decision making. To this end, DICE is specialized by deriving and assembling

new transformation task types, i.e. reusable method chunks able to cope with peculiarities of

EA data. Evaluation of existing EA analysis techniques and a concise analysis of the nature of

EA data lay the groundwork from which EAA-specific requirements are derived. From these

requirements the EAA method chunks are conceptualized.

For evaluation purposes, DICE and the situational method DICE for EAA are prototypically

implemented based on a metamodeling platform. The utility of the method is proven by

presenting a use case where typical EA models and EA-relevant datasets are integrated with

operational business data.

Introduction

7

Zusammenfassung

Unternehmensarchitekturmanagement ist ein ganzheitlicher Managementansatz und verfolgt

das Ziel, Unternehmen bei der Definition und Umsetzung ihrer Strategien zu unterstützen. Die

Unternehmensarchitektur bildet dabei den konzeptionellen Blueprint, welcher die

wesentlichen Gestaltungselemente des Unternehmens sowie deren Abhängigkeiten beschreibt.

Diese Blueprints werden typischerweise in Form von Architekturmodellen beschrieben. Die

Architekturmodelle unterstützen sowohl bei der Entscheidungsfindung zur strategischen

Ausrichtung des Unternehmens, also auch bei taktischen und teilweise auch operativen

Entscheidungen.

Aktualität und Qualität dieser Modelle ist ein entscheidender Erfolgsfaktor für jede

Architekturinitiative. Um die Modelle in strukturierter und auswertbarer Form bereitstellen zu

können, empfehlen Architekturrahmenwerke wie beispielsweise TOGAF die einheitliche

Nutzung eines Metamodells – einer Art Ordnungsrahmen für die zu beschreibenden

Konstrukte. Des Weiteren wird empfohlen, die Modelle in einem Architektur-Repository zu

verwalten und aktuell zu halten. In der Realität ist dies allerdings schwer durchzuhalten. In

der Regel entstehen zahlreiche weitere Dokumentationen und Architektur-relevante Inhalte,

welche nicht in einem derartigen Repository eingepflegt werden und oftmals nicht dem

vereinbarten Metamodell entsprechen.

Darüber hinaus werden bei diesem eher klassischen Ansatz zum Architekturmanagement

operative Unternehmensdaten, welche bei der Entscheidungsfindung über die zukünftige

Unternehmensarchitektur dienlich sein können bzw. Architekturentscheidungen untermauern

können, oftmals gänzlich vernachlässigt.

Business Analytics ist die Managementdomäne, welche auf die Analyse operativer Daten

fokussiert. Zielsetzung ist es, neue Erkenntnisse basierend auf operativen Unternehmens- und

Marktdaten zu gewinnen, um das Unternehmen besser steuern zu können. Die Kombination

von Unternehmensarchitekturmanagement und Business Analytics verspricht das Beste aus

beiden Welten: Unternehmensarchitekturmodelle können mit operativen Daten plausibilisiert

werden und Business Analytics Daten werden entlang der wichtigsten Gestaltungselemente

des Unternehmens strukturiert, sodass weitreichendere Zusammenhänge über alle Ebenen des

der Organisation hinweg abgeleitet werden können. Dieser kombinierte Ansatz wird

neuerdings als Enterprise Architecture Analytics bezeichnet.

Introduction

8

Mit der Methode DICE (Data Integration and Cleansing Environment) trägt die vorliegende

Dissertation dazu bei, Unternehmensarchitekturmodelle und operative Daten integrieren zu

können. DICE ist als situative Methode konzipiert, d.h. die Methode kann einfach an

projektspezifische Gegebenheiten ausgerichtet werden. Zu diesem Zweck basiert DICE auf

einem metamodellierungsgetriebenen Ansatz. Die Methode unterstützt alle typischen

Datentransformationen wie z.B. Datenintegration, Datenselektion, Datenimputation und

Datenbereinigung. Herzstück der Methode sind Mechanismen und Algorithmen, die diese

Datentransformationen nicht nur auf Datenebene, sondern auch auf Metadatenebene

ermöglichen. Parallel zu den Datentransformationen werden Metadaten errechnet und

mitgeschrieben, sodass die durchgeführten Transformationsschritte vom Endergebnis bis hin

zur Datenquelle nachvollziehbar bleiben. Durch das integrierte Qualitätsrahmenwerk, werden

zugleich auch die Auswirkungen von Transformationen auf die Datenqualität errechnet und

dem Methodennutzer als Instrument zur Entscheidungsfindung zur Verfügung gestellt.

Im Kontext von Unternehmensarchitekturmanagement wird DICE zur Integration von

traditionellen Architekturmodellen mit operativen Unternehmensdaten eingesetzt. DICE wird

zu diesem Zweck erweitert, sodass spezialisierte Transformationen auf den oftmals

graphenbasierten Unternehmensarchitekturmodellen möglich werden.

Zur Evaluierung wurde die Methode basierend auf dem Metamodellierungswerkzeug

ADOxx und der Statistikplattform R umgesetzt. Der Nutzen der Methode wird demonstriert,

indem aufgezeigt wird, wie typische Architekturmodelle mit operativen Unternehmensdaten

integriert werden.

Introduction

9

Contents

1 Introduction ... 14

1.1 Motivation & Relevance .. 17

1.2 Problem Statement ... 18

1.3 Research Questions and Objectives ... 19

1.4 Research Approach & Research Procedure ... 20

1.5 Thesis Outline .. 26

2 Methodological and Conceptional Foundations ... 28

2.1 Enterprise Architectures and Enterprise Architecture Management 28

2.2 Architecture Descriptions .. 31

2.3 Data Mining, Knowledge Discovery in Databases and Business Analytics 35

2.4 Modelling Foundations .. 38

2.4.1.1 Models & Viewpoints ... 39

2.4.1.2 Modelling Methods... 39

2.4.1.3 Modelling Language ... 40

2.4.1.4 Modelling Procedure .. 43

2.4.1.5 Mechanisms & Algorithms ... 44

2.5 Situational Methods and Situational Method Engineering .. 45

2.6 DIBA and DICE ... 47

2.7 Tying it all together .. 48

2.8 Motivating Example ... 52

3 Related Work .. 54

3.1 Literature Research Approach ... 54

3.1.1 Defining Review Scope ... 54

3.1.2 Conceptualisation of Topic .. 55

3.1.3 Literature Research & Analysis ... 57

3.1.4 Summary .. 67

Introduction

10

4 DICE – The Centrepiece of the EAA .. 68

4.1 Suggesting a Method for Data Integration and Cleansing ... 68

4.2 Summary .. 75

5 DICE - Method Conceptualization .. 76

5.1 The DICE Modelling Procedure .. 82

5.2 The DICE Modelling Language ... 89

5.2.1 Behaviour concepts of the DICE metamodel ... 91

5.2.2 Structural concepts of the DICE metamodel ... 94

5.3 DICE Algorithms and Mechanisms ... 99

5.3.1 Macro Level: Execution of DICE Workflows ... 99

5.3.2 Micro Level: Algorithms for Performing Data Transformations 101

5.3.2.1 Initialisation .. 104

5.3.2.2 Selection ... 106

5.3.2.3 Addition .. 107

5.3.2.4 Variable Removal ... 108

5.3.2.5 Reclassification ... 109

5.3.2.6 Consolidation .. 109

5.3.2.7 Restructure .. 111

5.4 Summary .. 114

6 DICE Quality Framework ... 115

6.1 Quality Models and Quality Issues .. 115

6.2 DICE Quality Profile ... 118

6.3 Interpreting the Quality Profile .. 132

6.4 Summary .. 133

7 Application of DICE in the Fields of EAA .. 134

7.1 Data Understanding - EAM-specific Requirements .. 134

7.1.1 The object-oriented nature of EA data ... 136

7.1.1.1 Catalogues .. 136

Introduction

11

7.1.1.2 Matrices .. 138

7.1.1.3 Diagrams ... 141

7.1.1.4 Data Structures for EA Analysis based on Probabilistic Relation Models ... 146

7.1.1.5 Multi-criteria Decision Making Methods ... 147

7.1.1.6 The Data Structure for Indicator-based EA Analysis 147

7.1.1.7 EA Analysis Based on Network Measurements ... 149

7.1.2 Amount of Data .. 150

7.1.3 Issues with Structural and Technical Formats ... 150

7.1.4 Granularity, Generality and Abstractness of EA Data ... 152

7.1.4.1 Reflexive Relations... 153

7.1.4.2 Hierarchical Decomposition ... 154

7.1.5 Logical versus Physical Layers .. 156

7.1.5.1 Types and Instances .. 159

7.1.6 Time Dimensions ... 161

7.1.6.1 Architecture Increments ... 162

7.1.6.2 Versioning of Building Blocks ... 165

7.1.6.3 Versioning of Architecture Descriptions .. 167

7.1.7 Planning Scenarios - Alternative Architectures ... 167

7.1.8 Heterogeneous Metamodels ... 170

7.1.9 Common Data Quality Issues .. 171

7.1.10 Summary ... 172

7.2 Extending the DICE Method Base for EAA .. 174

7.2.1 Restructuring EA Datasets ... 174

7.2.2 Equivalence Functions ... 178

7.2.2.1 Syntactic Similarity Analysis ... 180

7.2.2.2 Semantic Similarity Analysis ... 184

7.2.2.3 Structural Similarity Analysis .. 186

7.2.2.4 Attribute-based Similarity Analysis ... 188

Introduction

12

7.2.3 Method Chunks Supporting Record Linkage .. 189

7.2.3.1 Perform Blocking ... 191

7.2.3.2 Similarity Analysis ... 193

7.2.3.3 Consolidation of Equivalent Building Blocks .. 194

7.3 Contraction of Edges and Vertices – Consolidation Strategies 195

7.3.1 Consolidation for Record Linkage ... 197

7.3.2 Consolidation of Hierarchically Structured Building Blocks 198

7.3.3 Special Case of Reflexive Relations .. 199

7.3.4 Filtering and Contraction of Entire Paths .. 202

7.4 Heterogeneous Metamodels and EA Data Schemas .. 205

7.5 Summary .. 207

8 Evaluation Based on Prototypical Implementation ... 209

8.1 Structural Consistency and Efficacy - DICE Prototype Based on ADOxx 209

8.1.1 Architecture .. 211

8.1.2 Development .. 213

8.2 Evaluating Validity - Illustrative Scenario Based on the DICE Prototype 220

8.2.1 Input Datasets ... 220

8.2.2 DICE Process Instance ... 221

8.2.3 Examination ... 231

8.3 Summary .. 232

9 Conclusion and Outlook ... 234

9.1 Conclusion ... 234

9.2 Outlook ... 235

10 Annex ... 237

10.1 DICE Metamodel ... 237

10.2 DICE Transformations ... 241

10.2.1 Initialisation .. 241

10.2.2 Selection ... 242

Introduction

13

10.2.3 Addition .. 243

10.2.4 Variable Removal ... 243

10.2.5 Reclassification ... 244

10.2.6 Consolidation of Observable Units ... 245

10.3 Publications by the Author ... 246

11 Bibliography .. 249

12 List of Tables ... 264

13 List of Figures .. 265

14 List of Abbreviations .. 269

Introduction

14

1 Introduction

Enterprise Architecture Management (EAM) is a management approach that claims to

enable organisations to achieve key business goals. It is a holistic approach covering the entire

organisation. Supporting it from the strategic goals via the organisations business architecture,

to the technologies that enable the business architecture and business models. EAM strives to

manage the organisation’s complexity by providing insight into its main “building blocks”

and the tight net of dependencies between them. EAM deals with current business conditions

as well as the performance of organisations and seeks to support the design of its future states,

the so-called target architecture. Target architectures consider inside and outside influences

that impact the business. Factors, such as demographic change, “disruptive” technologies,

competition and the economic and political environment play an important role when defining

an organisation’s future direction. Programs and projects are the vehicle for implementing the

anticipated target architectures. Fig. 1 illustrates these dependencies.

Fig. 1 Continuously evolving as-is and target architectures

At the heart of EA initiatives one typically finds graphical modelling languages that make

documentation of knowledge about organisations and their business ecosystems possible

(Buckl, Gulden and Schweda 2010). EA Frameworks such as TOGAF (The Open Group

2011), one of the most prominent EA frameworks and the military frameworks DoDAF (DoD

Business Success

Demographic
Development

Technological
Disruption

Market
Trends

Current Architecture

Target Architecture

Project

Project

Project Time

Business
Demands

Introduction

15

2010) and MoDAF (Biggs 2005) define EA metamodels and EA deliverables such as

diagrams based on the metamodels. Archimate (The Open Group 2016) goes one step further

in that it defines an EA modelling language including recommended stakeholder-oriented

viewpoints. Other EA frameworks such as FEAF (Council 1999) and E2AF (Schekkerman

2004a) offer advice on how to define meaningful metamodels by defining the required core

elements or important viewpoints and other EA deliverables. Models based on EA

metamodels facilitate communication to the various groups of stakeholders on all levels of the

EA. These models usually represent context-specific views concerning the organisation and

its environment, typically tailored to the needs of the various EA stakeholders. TOGAF

proposes a so-called enterprise continuum, a classification schema implemented via an

architecture repository to make these EA models available for reuse. Considerable time and

effort usually goes into keeping EA models up-to-date. Approaches to data maintenance range

from manual housekeeping processes to automated documentation processes.

Business ecosystems have become pervasive in the markets. Organisations act as

interconnected and interdependent members of business ecosystems. They “co-evolve” their

capabilities and align their investments and project portfolios to create a maximum of value

for their clients. Whereas in former times EA initiatives were based on organisation-intrinsic

data, nowadays cross-organisational architectures come to the fore. This is not only true for

technical aspects such as interoperability needs, e.g. to ensure the exchange of information by

connecting applications and IT services via adequate interfaces. All levels of architecture have

to be considered. The value chains of the market players have to be aligned on the level of the

business architecture, forming so-called value networks. From the standpoint of EA

modelling and analysis, it is obvious that EA data collected by the relevant market

participants have to be aligned and integrated to support better EA decisions.

EA data and deliverables such as EA models represent valuable input for management

decisions on an operational, tactical and strategic level. Mechanisms and algorithms

concerned with the extraction of previously unseen and "interesting" information from

existing EA descriptions, be it organisation-intrinsic or cross-organisational data, are only

seldom in place (Niemann 2006). In accordance with (Fayyad et al. 1996) this thesis defines

“interest” as “an overall measure of pattern value, combining validity, novelty, usefulness and

simplicity”. In this context, data mining, particularly the fields of Exploratory Data

Analysis, is concerned with the recognition of concealed dependencies between categories of

Introduction

16

data (Coenen, Goulbourne, and Leng 2004) such as the data residing in an EA repository and

any other EA relevant data sources.

To reveal these dependencies, enterprise architecture methods must be extended with data

analysis mechanisms. These mechanisms will make possible the extraction of patterns of an

organisation's business development and its management of resources in the past. By

combining with external data sources such as market and technology trends, predictive

models can be used to facilitate decision making based on the EA descriptions. Admixing the

EA models with external data, such as industry reference models, industry benchmarks and

data from the businesses market will support this endeavour (Neaga and Harding 2005). The

backbone of the required BA mechanisms and algorithms are the metamodels and data

structures of the EA deliverables (e.g. architecture definition documents) and EA relevant

input documents.

Fig. 2 Preparing EA data for EA decision making

X

XX
• Hierarchies
• Time Aspects
• Semantics
• Physical vs. Logical
• Versioning
• Level of Detail
• Missing Data
• Freshness
• Accuracy
• Provenance
• …

PROBLEMS

Rule-based Indicator-basedExpert-based

Data Integration and Cleansing

EA
Analytics

DATA &
METADATA

Introduction

17

Integrating these often self-contained data sources in order to provide a basis for better

decision making can be considered a major challenge. Typically, decision makers are not

solely interested in the decision documents; the data quality and data provenance aspects are

of equal importance. Decision makers need to understand where the data come from and at

what level of quality.

1.1 Motivation & Relevance

An abundance of research literature in the fields of enterprise architecture, taking a wider

perspective in the fields of enterprise modelling, recognizes that the quality and freshness of

the (EA) data is key. EA descriptions must present a correct and current model of the real

world to be valuable for decision making in the context of an organisation’s strategic

orientation and EA-related tactical and operational issues. At the same time, it is stated that

usually the quality of available EA data is insufficient (Farwick et al. 2013), (Fischer, Aier

and Winter 2007) and (Grunow, Matthes and Roth 2013).

In the face of todays and future challenges these models ideally cover the entire ecosystem

that an organisation is part of. These ecosystems evolve and change rapidly with new players

entering the ecosystems and others leaving them. It becomes obvious that traditional

approaches to EA data maintenance (e.g. manual data acquisition) alone will not be sufficient

to satisfy the requirements of data freshness, completeness and accuracy.

As uncovered by the conducted literature review (see section 3), there is little research to

tackle these challenges. Existing research focuses on manual and semi-automated

organisation-intrinsic maintenance of EA data based on optimised data gathering and

maintenance processes. (Fischer, Aier and Winter 2007) and (Moser et al. 2009) propose

process patterns for EA data maintenance. (Farwick et al. 2016) elaborate on semi-automated

data integration approaches mainly focussing on integration of internally available and mostly

IT architecture related data sources such as configuration management systems. (Buschle et

al. 2012) propose enterprise service bus implementations as a valuable source for EA

documentation. The EA relevant information extracted from the ESB is naturally of a rather

technical nature and focuses on application components and their interfaces.

One major drawback of existing automated approaches is that all known applications

heavily focus on the IT architecture and are limited to the current (as-is) architecture.

Introduction

18

Planning data and thus EA data focussing on the architecture vision and on target

architectures are usually not the focus.

1.2 Problem Statement

Methods are required that make possible the integration of EA-relevant data into a sound

basis for EA analysis. As will be discussed, EA analysis typically requires the data in

structured form and typically in compliance with a defined metamodel. Looking into EA

frameworks and real-life EA initiatives, one can see that a lot of relevant EA data are only

available in semi-structured formats. These are typically documents at large adhering to an

agreed template. Examples from TOGAF are: architecture contracts, architecture definition

documents, architecture requirements specifications and so forth. Furthermore, external data

sources, such as regulatory requirements, reference architectures, and sector benchmarks carry

EA-relevant data and are ideally taken into account in EA decision making.

Aggravating this situation, data integration and clearance in the context of EA has to deal

with manifold data sources and data formats. Once the relevant data such as building blocks

and relations between these building blocks have been extracted, one is typically confronted

with inconsistent semantics of hierarchies of building blocks, different types of relations

between building blocks and complex and transitive dependencies (Kurpjuweit and Aier

2009). Different levels of abstraction, versions and variants of building blocks and EA models

as well as the required handling of complex time-aspects add additional complexity.

Besides the typical EA descriptions that allow for structural analysis of dependencies on all

levels of the organisation (business view, application view, technology view etc.), operational

business data as well as external data, e.g. data obtained from social media platforms have to

be considered. Structured along the EA and aggregated to enable business-insights, these data

sources play an important role for accurate decision making on all management levels.

Evidence can be found in (Potts 2010) who claims to consider structural performance ratios

(e.g. based on KPIs such as operating income per unit of staff, profit per transaction and

revenue per unit of operating expense) to guide EA endeavours. (Laverdure and Conn 2012)

plead for analysis and consideration of external factors such as resource risks to support

strategic EA decisions. In their case study they list examples such as “depletion of oil

Introduction

19

reserves, along with a rapidly increasing demand from developing countries” (Laverdure and

Conn 2012).

Mastering these challenges not only requires methods and tools for data integration but also

a means of tracing back the data integration process in order to fully understand the quality of

the EA data sources used for creation of EA deliverables. This quality requirement is well

known from the fields of data mining and statistics where measurement and reporting of

quality aspects such as relevance, accuracy, interpretability and timeliness of used data

sources and data products has always been claimed. In this vein, mechanisms are required to

trace back how EA data sources have been created and the impact of data acquisition and

transformation steps on data quality: a requirement that sometimes is not even met in

thoroughly curated single-source architecture repositories.

To stress the importance of the data integration aspects and the consideration of data sources

not intentionally created to support EA initiatives, the method is called DICE for Enterprise

Architecture Analytics. With reference to business analytics, DICE is intended to support

data preparation phases for subsequent EA analysis and EA-based decision making.

1.3 Research Questions and Objectives

This work establishes data integration and cleansing for EA data as a new research area

within the fields of enterprise architecture management. It brings into focus strategies and

patterns to assemble data integration and cleansing processes. Thereby, the developed method

strives to be domain-agnostic, so that it can be applied to any data integration and clearance

endeavour. Obviously, such a method cannot cover all possible problem areas. Thus, the

method is designed to leverage the concepts of situational method engineering. It can be

adapted to the domain or project-specific needs. For the Enterprise Architecture domain, the

thesis provides extensions to this method.

Based on the given problem statement the following research questions (RQ) are addressed:

 RQ1: How can a sound dataset for EA analysis be established from heterogeneous

datasets?

 RQ2: How can external data sources and data services be integrated in the context of

ad hoc or project-related EA data requirements?

Introduction

20

 RQ3: What main transformation steps are required and how can these transformations

be traced systematically to ensure data provenance?

 RQ4: What metadata has to be collected? What is the structure of this metadata and

how can it be generated automatically or with little human effort?

It is hypothesized that a situational method which makes possible explicit design and

representation of executable data integration and cleansing processes enables the generation

of EA datasets meeting the quality standards. (Semi-)automated documentation of metadata

enforcing data provenance and data quality metrics plays an important role in this context.

Thus, the above stated research questions lead to the following three research objectives:

 the design of a universal method for data integration and cleansing that can be tailored

to specific problem domains and project-specific needs,

 the provision of a structural analysis of the nature of EA data and

 the design of a situational method for data integration and cleansing for the problem

domain of EAM.

To reach these objectives, application of business analytics and data mining techniques is

intended to serve the following purposes:

 DM techniques are applied to EA descriptions to build up a concise dataset for (ad

hoc) EA analysis.

 DM techniques are used to extract relevant EA building blocks, relations among

themselves, and descriptive attributes from operational data (e.g. product catalogues

to setup product component models) or from external sources (e.g. regulations the

organization has to adhere to).

 DM techniques are used to combine EA data and operational data (e.g. performance

values) usually not held in EA models.

 Statistical metadata management techniques are considered to integrate the required

data provenance and data quality aspects.

1.4 Research Approach & Research Procedure

The stated research problems concern a complex system where data, processes, human

stakeholders and technologies form a tight net of dynamic interdependencies. Central to the

Introduction

21

problem is a wide range of sometimes unknown data, often residing in semi-structured

formats that have to be integrated. The diverse facets of the problem require a pragmatic

research approach. “Design science” has been selected as the research approach, which

ensures that the defined problem is researched in a systematic way by applying guidelines and

roadmaps as well as evaluation criteria throughout the entire research process.

For the thesis the author follows the design science research paradigm of (Hevner et al.

2004). In design science research, besides models: constructs, instantiations and methods are

among the viable artefacts. Methods are considered to “describe viable ways of performing

goal-oriented activities in order to solve a real-world problem” (Bucher and Winter 2008).

Obviously, there will not be a “one-size-fits-all” method covering the specific data integration

and clearance requirements addressed in the research objectives. The method must be

configurable and extendable to organisation-specific and project-specific needs. Methods

addressing such requirements are called “situational methods” and stem from the research

field of the same name: situational method engineering. According to (Kumar and Welke

1992), method engineering is a way of developing and implementing methods. Situational

method engineering can be understood as a particular subarea focussing on the development

and implementation of project-specific methods. This thesis adopts these principles for the

fields of EA data preparation.

The main artefact presented in this research is a situational method for data integration and

clearance (DICE) in the fields of EA. At its core the method is generic and can be applied to

any data integration and clearance problem. In this research it is refined for the area of EA

modelling and analysis. It is not meant to be a substitute for proven methods for collection

and provision of EA data. Moreover, it is intended to contribute to these methods in order to

create sound data sources for subsequent EA analysis in an efficient way. Comparable with

data warehouse strategies, DICE can be based on a supply chain metaphor: EA content is

collected, stored and delivered via “data marts” to the consumers for further processing. Other

than traditional EA sources such as EA repositories, DICE strives to build up a virtual data set

for the given individual problem case. The main requirement of this virtual dataset is to

enhance the original datasets (some of them might be extracted from an EA repository)

applying sequences of transformation steps, which are invoked and executed on demand.

Rather than aiming for provision and storing of a unified view of the EA data (typically

represented in a static global schema), the virtual dataset comprises the transformation

Introduction

22

processes together with the original data sources in order to transform the data in an ad hoc

manner to the need at hand. This definition coincides with the definition of virtual datasets in

(Stephan, Vckovski and Bucher 1993), who define virtual datasets as datasets holding virtual

data that is non-persistent but computed on demand at runtime.

In the context of EA, virtual datasets consist of two or more heterogeneous datasets that

need to be integrated. In this context the term heterogeneous emphasises the fact that the input

datasets can stem from arbitrary sources and will not follow a global schema. Fig. 3 illustrates

the steps to be taken from the initial EA knowledge requirements to the data and metadata

ready for EA analysis. The centrepiece is DICE, a process-oriented method for data

integration and cleansing, providing the EA datasets accompanied by their metadata such as

quality and data-provenance data.

Fig. 3 From heterogeneous datasets to a sound basis for EA analysis

X

XX

Q?
Rule-based Indicator-basedExpert-basedIndicator-based

f(x)f(x)
f(x)

DESIGN
DICE METHOD
BASE AND
WORKFLOW

CHOOSE
SOURCES

IDENTIFY
STRUCTURE
& CONTENT

SPECIFY
STRUCTURE,
CONTENT &

QUALITY

2

1 DESCRIBE
CONCERN

3

6 LOAD DATA

4

5

7
EXECUTE

WORKFLOW

DATA &
METADATAD

IC
E

8 DELIVER DATA & METADATA

Introduction

23

As there is no generally accepted EA standard, the thesis is based on TOGAF (The Open

Group 2011) and Archimate (The Open Group 2016). TOGAF is the most prominent EA

framework. Archimate is a widely adopted modelling language. It is based on the

ISO/IEC/IEEE 42010:2011 standard, a standard for providing guidelines for architecture

descriptions (ISO/IEC/IEEE 42010 2011). It makes possible the definition of interrelated

views on an organisation and its information system’s infrastructure. As required, other

frameworks such DODAF (DoD 2010), MODAF (Biggs 2005), FEA (Council 1999) and

E2AF (Schekkerman 2004a) are considered. Hence, the results of this contribution are

intended to be applicable to EA endeavours based on any EA framework.

Research in the fields of BA provides a wealth of “method fragments”, which can contribute

to resolving parts of the given problem. Examples are: techniques for restructuring and

harmonisation of data sources, techniques such as part-of-speech-tagging making possible the

extraction of data from plain text corpuses, techniques for record linkage, which support the

resolution of duplicate data entities, etc. In data mining these methods typically are composed

of a clearance and integration process representing the production process necessary to deliver

the required data sources for subsequent EA analysis. The definition of the data production

processes must be considered as ad hoc, but all design decisions applied to construct the

resulting dataset use standard techniques, which have to be assembled in an adequate way.

Besides the cleansed and integrated data and the corresponding metadata, the documentation

of the required production process itself, the techniques used and the parametrisation of

applied algorithms is one of the main deliverables.

Situational Method Engineering is the research discipline that focusses on defining methods

that make possible the composition of project-specific methods tailored to specific and most

recent needs. DICE is conceptualised as a situational method. At its core, reusable method

fragments are held in the so-called method base. Users assemble these method fragments to

build their own organization and/or project-specific DICE processes, which meet the demand

of data provision and at the same time provide the metadata.

The method base is intended to grow continuously with the requirements by providing a

means to add new or refined method fragments to the method base. According to (Harmsen,

Brinkkemper and Oei 1994), situational methods can be categorised into three levels: (1) the

macro level, i.e. the organisational level, (2) the meso level that is to say, the project level and

(3) the micro level, which focuses on concrete method components. DICE for EAA covers all

Introduction

24

of these levels. On the macro level the method delivers method fragments to build data

production workflows utilising continuously reoccurring clearance and integration patterns.

On the project level specific EA data sources are integrated and cleansed to build up a basis

for EA analysis. Finally, on the micro level, the focus lies on concrete application scenarios,

where the data source is restructured, refined and filtered for concrete EA analysis tasks.

Rigor is established by adhering to Hevners principles of design science research (DSR)

(Hevner et al. 2004). More specifically, (Peffers et al. 2007) design science research

methodology for information systems research that follow these principles is applied. Fig. 4

provides an overview of the research process.

Fig. 4 Design Science Research Methodology Process Model, adapted from (Peffers et al. 2007)

The main steps of this research process also constitute the structure of the work at hand: (1)

problem identification and motivation, (2) definition of the objectives of the solution, (3)

design and development, (4) demonstration, (5) evaluation and (6) communication (Peffers et

al. 2007).

 Problem identification and motivation has been addressed in section 1.1 by stating

the need for the method and sketching the main requirements.

 The concrete objectives and requirements are addressed in section 5, where the

DICE method is conceptualized. In section 6.1, from a detailed analysis of dirty data,

required quality metadata are derived. Section 7.1 focuses on the concrete problem

domain, which is EA. Typical structures of EA data along with transformation needs

are discussed and categorized pursuant to the main elements of the DICE metamodel.

Consequently, the requirements analysis occurs in two main phases: (1) requirements

Communication

Scholarly
publications

Professional
publications

Identify Problem
and Motivate

Define Problem

Show Importance

Define Objectives
of a Solution

What would a
better artefact

accomplish?

Design &
Development

Artefact

Demonstration

Find a suitable
context

Use artefact to
solve problem

Evaluation

Observe how
effective. Efficient

Iterate back to
design

Client/
Context

Initiation

Problem-
Centered
Initiation

Objective-
Centered
Solution

Design &
Dev.

Centered
Initiation

Process Iteration

Introduction

25

analysis for the situational method and (2) requirements analysis for applying DICE in

the context of EA.

 The design phase is framed by design principles for situational methods shaped by

(Harmsen, Brinkkemper and Oei 1994) and by the method conceptualization,

development and deployment framework propagated by the open models initiative

(OMI) (Karagiannis et al. 2016) and (Karagiannis 2015). From the fields of statistical

metadata management, concepts for processing metadata guiding the data production

process are adopted.

 To demonstrate the applicability of DICE for EAA, it is prototypically implemented

based on the metamodeling platform ADOxx. The prototype contains all relevant

components of Situational Method Engineering (SME) tools such as the method base

and the construction toolkit for instantiating and combining the method fragments into

a concrete method.

 The methods utility is evaluated in a threefold manner. Firstly, the conceptualized

DICE metamodel is evaluated in terms of consistency. The main focus lies in the

evaluation of consistency of the DICE inherent quality indicator calculation

mechanisms. Secondly, DICE as a design science artefact is prototypically

implemented. Based on the prototype, DICE is evaluated against a set of artefact

evaluation criteria such as the criteria surveyed by Prat et al. (Prat, Comyn-Wattiau

and Akoka 2014). These criteria are categorized into the five fundamental dimensions

of systems: goal, environment, structure, activity and evolution. Feature-wise

requirements are deliberately derived from (Harmsen 1997), who specifies the main

components of SME tools.

Thirdly, based on an illustrative scenario, the applicability of the method in real-world

situations is demonstrated using well-known EA datasets such as the Archimate

sample EA available in the Archimate model exchange format as input.

 Finally, communication is conducted by this thesis itself, by presenting parts of the

work in publications, see section 10.3 and by providing the prototypical

implementation including sample models as a reference project on the open models

community platform www.openmodels.at.

http://www.openmodels.at/

Introduction

26

1.5 Thesis Outline

In this section the chapters which make up the thesis, their dependencies and logical flow

are presented. Fig. 5 provides an overview.

Fig. 5 Thesis Outline

Section 2 discusses the foundational basis of the DICE method with strong emphasis on

method engineering approaches, methods from the fields of statistical metadata management

and data mining and EA management methods. The literature research places a strong focus

on current EA analysis methods and their positioning in the context of business analytics and

data mining. The reviewed EA analysis approaches additionally serve as one of the main

pillars for the discussion of the nature of EA data in section 7.1. Section 4 introduces DICE,

suggesting a possible design solution in the form of a situational method. Section 5 is

concerned with the conceptualisation of DICE under consideration of the quality framework

introduced in section 6. The DICE quality framework represents a core component of DICE

Literature research with
focus on EA
(section 3)

Application of DICE in the fields of EAA

Method suggestion
(section 4)

Evaluation based on prototype
(section 8)

DICE method conceptualisation
(section 5)

DICE quality framework
(section 6)

EAA method extensions
(section 7.2)

EAA requirements
(section 7.1)

Methodical and conceptual foundations
(section 2)

Introduction

27

metadata layer. Section 7 introduces EEA as the context for the application of DICE. DICE as

a situational method is refined to support the data preparation phases of EA analytics

endeavours. To this end, the nature of EA data is analysed and requirements are derived in

section 7.1. Subsequently, section 7.2 presents how these requirements can be provided by

specialising DICE and extending its method base. Finally, section 8 constitutes the evaluation

of DICE based on the prototypical implementation. The method has to fulfil the common

requirements of SME tools and the specific requirements in the context of EAM.

Methodological and Conceptional Foundations

28

2 Methodological and Conceptional Foundations

The foundations of the thesis are based on four main pillars. Firstly, enterprise architecture

(management) frameworks and methods that lay the groundwork for institutionalised

Enterprise Architecture Management (EAM) conducted by business organisations. Secondly,

the theories of modelling and metamodeling, which can be seen as a cornerstone of EAM,

providing the means to design, communicate and analyse the EA. Thirdly, methods and

concepts from the fields of data mining, business analytics and statistical metadata

management are relevant. They are the main building blocks for establishing integrated

datasets for EA analysis. Finally, the concepts of situational method engineering lay the

groundwork for creating the DICE method, the main artefact of the thesis.

The following section discusses these foundations with an emphasis on their

interdependencies.

2.1 Enterprise Architectures and Enterprise Architecture Management

Better return on existing investment, reduced risk for future investment, flexibility for

business growth and restructuring, more efficient IT operation and enabling new business

models are only some of the value propositions of enterprise architecture management

according to TOGAF (The Open Group 2011).

In conformity with the general theory of systems and the principles of systems thinking, an

enterprise can be understood as a complex socio-technical system made up of people,

processes and technologies (Dietz 2006). Enterprise systems engineering (ESE) is the

discipline that adapts systems engineering concepts to the design of enterprises (Giachetti

2010). EA frameworks such as TOGAF embrace the concepts of ESE by providing methods

and tools for designing enterprises. In essence these methods focus on the systemic

decomposition of enterprises into their main building blocks for the purpose of analysis of

their relationships (Roszczyk 2015).

Hitherto, there has been no generally accepted definition of the term enterprise architecture.

One prominent definition, emphasizing the commonalities and characteristics of architectures

in general, is provided by the ISO standard (ISO/IEC/IEEE 42010 2011), which defines

architecture as the

Methodological and Conceptional Foundations

29

“fundamental concepts or properties of a system in its environment embodied in its

elements, relationships, and in the principles of its design and evolution.”

This definition focuses on the structural aspects of a system. It covers the entire system from

a holistic point of view. Besides the elements and relationships amongst the system

constituting elements, it emphasizes the design principles of the system.

By emphasizing the required change aspects, from analysis of the organization to the

effective implementation of organizational change, the definition of the Federation of EA

Professional Organizations goes one step further. It defines EA as follows:

“a well-defined practice for conducting enterprise analysis, design, planning, and

implementation, using a holistic approach at all times, for the successful development and

execution of strategy. Enterprise architecture applies architecture principles and practices to

guide organizations through the business, information, process, and technology changes

necessary to execute their strategies. These practices utilize the various aspects of an

enterprise to identify, motivate, and achieve these changes” (FEAPO 2013).

In conformity with the ISO/IEC/IEEE 42010, this definition of architecture brings into focus

the holistic nature of (enterprise) architectures. It considers the core elements of

organizations, such as information, processes and technologies. Likewise, the definition

emphasizes the importance of principles guiding design and evolution of the architecture.

Notably, the definition does not, as in many other EA definitions, clearly distinguish between

the practice of “architecturing”, the “process of conceiving, defining, expressing,

documenting, communicating, certifying proper implementation of, maintaining and

improving an architecture throughout a system’s life cycle” (ISO/IEC/IEEE 42010 2011) and

the architecture itself.

Gartner defines enterprise architecture as:

“the process of translating business vision and strategy into effective enterprise change by

creating, communicating, and improving the key principles and models that describe the

enterprise’s future state and enable its evolution” (Lapkin et al. 2008).

With the term “models”, Gartner refers to the documentation aspects of EA. As in many

other definitions, models and more generally architecture descriptions, are a key delivery to

support communication between the various business and IT stakeholders.

Methodological and Conceptional Foundations

30

Recently, EA research has paid more and more attention to cross-organisational aspects,

putting emphasis on so-called business ecosystems, networks of organisations that share and

align social and technical resources to create additional value for customers and improve

efficiency of all stakeholders. The term system in the context of EA does not necessarily refer

to single organizations but also to entire networks of organizations. EA endeavors might

either consider the complete organization, parts of organizations or entire compounds of

organizations (e.g. organized in the form of extended enterprises, virtual enterprises,

networked enterprises or supply chains) (Vernadat 2014). The system boundary has to be

clearly defined for any EA endeavor. Under these circumstances it becomes obvious that

cross-organizational EA endeavors take precedence over the formerly isolated organizational-

centric EA endeavors.

Fig. 6 summarizes the most important concepts. The system (of interest) in EA is typically

an organization, a business ecosystem comprising multiple organizations or relevant parts of

an organization, such as a product line, a service or software. It exhibits an architecture that is

expressed in architecture descriptions. Stakeholders who have an interest in the system use

parts of these architecture descriptions to gain better understanding of the system for

communication purposes and for informed decision making.

Fig. 6 Context of architecture descriptions (ISO/IEC/IEEE 42010 2011)

Architecture
Description

Stakeholder System Architecture

expresses


exhibits 

System
Concern

 situated in

has interests in 

Environment

Purpose

1..*

0..*

1..* 0..*1..*

1

0..*

0..*

Methodological and Conceptional Foundations

31

There are an abundance of EA frameworks that give advice on how to setup an EA practice.

Overviews and discussions about EA frameworks can be found, e.g. in (Leist and Zellner

2006), (Matthes 2011), (Schekkerman 2004b) and (Urbaczewski and Mrdalj 2006). Whereas

some of the frameworks place a strong focus on EA deliverables, others place more emphasis

on the EA processes (see e.g. the TOGAF Architecture Development Method, ADM).

2.2 Architecture Descriptions

For this thesis, architecture descriptions that can be considered the main work products of

any enterprise architecture endeavor are of utmost importance. DICE takes architecture

descriptions as one major input and prepares the data of these descriptions for further analysis.

Thus, architecture descriptions and its constituent elements need to be examined in more

detail.

ISO/IEC/IEEE 42010 is the standard that defines architecture descriptions. In its first

versions (and also in the predecessor version IEEE 1471), the standard was intended for

requirements definition on architectures of software-intense systems. In its latest version

(released in 2011), the scope was widened to also reflect the “creation, analysis and

sustainment of architectures of systems through the use of architecture descriptions“. The

standard introduces a conceptual model as the base structure for architecture descriptions as

illustrated in Fig. 7.

Methodological and Conceptional Foundations

32

Fig. 7 Conceptual model for architecture descriptions (ISO/IEC/IEEE 42010 2011)

Table 1 presents the most important constructs of the conceptional model, referencing EA

and DICE.

Table 1 Concepts for architecture descriptions

Concept Definition
1
 Reference to EA and DICE

System-of-

Interest

“entities whose architectures are

of interest.”

Organisations, parts of

organisations or entire business

ecosystems.

1
 All definitions taken from (ISO/IEC/IEEE 42010 2011).

Architecture
Description

Architecture
View

Architecture

Architecture
Model

Stakeholder

System
Concern

Architecture
Viewpoint

System of
Interest

Model
Kind

Corres-
pondence

Architecture
Rationale

Corres-
pondence

Rule

has

establishes
conventions for 

 identifies
 has
interest in

governs 

 characterises

1..*

 expresses

1..*

1..*

1..*

1..*

0..*

1..*

1

1..*

1..*

1

1

1

1

1

1

1

1

1..*

1..*

1..*

1..*

1..*

0..*

1 1..*

1..*

Methodological and Conceptional Foundations

33

Stakeholder “individual, team, organization or

classes thereof having an interest in

a system.”

Stakeholders are humans who

have key roles in, or concerns

about, the system.

Examples are: people having

roles, such as executive, process

owner, application owner,

technical specialist and

enterprise architect.

Concern “interest in a system relevant to

one or more of its stakeholders.”

Concerns allude to system

aspects, such as design,

development and operations.

Qualities, such as flexibility,

complexity, reliability, security

and customer experience play an

important role.

Architecture

viewpoint

“work product establishing the

conventions for the construction,

interpretation and use of

architecture views to frame specific

system concerns.”

Schema or templates for view

construction, information that

must appear in the architecture

descriptions, i.e. models.

Architecture view “work product expressing the

architecture of a system from the

perspective of specific system

concerns.”

In accordance with TOGAF, a

view is defined as a

representation of a whole system

from the perspective of a related

set of concerns. Examples from

TOGAF are: business

architecture and technology

architecture. Examples from

DODAF are: All view (AV),

Operational view (OV), Systems

Methodological and Conceptional Foundations

34

view (SV) and Technical view

(TV).

Model kind “conventions for a type of

modelling.”

Model kind specifies the type of

architecture model. Examples

are: BPMN process models,

EPC models, Class diagrams and

ER diagrams.

Architecture

model

“can be anything: (i) a model can

be a concept (a “mental model”) or

(ii) a model can be a work

product.”

Architecture models represent

concrete instances. Examples

are: the model of the order

process of an organisation, the

model of the customer data and

organisational charts.

Architecture

Rationale

“records explanation, justification

or reasoning about architecture

decisions that have been made.”

Documentation of architecture

decisions.

Correspondence “defines a relation between

architecture description elements.”

Of high relevance for DICE, as

correspondences can be of

support in the data preparation

(e.g. merging of models)

Correspondence

Rule

“used to enforce relations within

an architecture description (or

between architecture

descriptions).”

Rules might be defined that

enable, e.g. checking

consistency between different

models or model kinds.

For DICE, the concept of architecture model and model kind, which can be considered as

the main sources of EA datasets, is of utmost importance. These can come in a number of

different structures, which DICE has to deal with (e.g. diagrams, matrices and catalogues).

Methodological and Conceptional Foundations

35

Examples of model kinds are TOGAFs artefacts
2
, such as organisation/actor catalogue,

application/data matrix and application communication diagram. For a better understanding,

Fig. 8 depicts the main model kinds of TOGAF grouped into the phases of TOGAF ADM.

Fig. 8 Model kinds defined by TOGAF (The Open Group 2011)

2.3 Data Mining, Knowledge Discovery in Databases and Business Analytics

Knowledge discovery in Databases (KDD) and data mining (DM) are interdisciplinary

domains making possible the extraction of information from large datasets and the

transformation of the data into an interpretable structure for subsequent analysis. The main

goal is to uncover new information and knowledge (Chakrabarti et al. 2006). According to

(Fayyad, Piatetsky-Shapiro and Smyth 1996), data mining represents the required analysis

task of the "knowledge discovery" process, i.e. they view data mining as a subdomain within

the KDD process. Data integration can be considered as another important subdomain and is a

prerequisite step to data mining. According to (Lenzerini 2002), data integration facilitates

2
 The term artifact appears misleading in this context. The reason for this is that TOGAF embraces, encourages

but is not fully compliant with the ISO/IEC 42010:2007 standard.

Methodological and Conceptional Foundations

36

“combining data residing in different sources and providing users with a unified view of these

data”. Based on this unified data structure, formerly unknown and potentially useful

information, sets of patterns and relationships between data can be uncovered via data mining.

Under these terms, business analytics has been defined as “a set of technologies and

processes that use data to understand and analyse business performance” (Davenport 2007).

With a focus on the transformation process initiated and steered by business analytics,

Liberatore and Luo define business analytics as being “more than just analytical

methodologies or techniques used in logical analysis. It is a process of transforming data into

actions through analysis and insights in the context of organizational decision making and

problem solving.” (Liberatore and Luo 2010). This definition provides the docking point for

enterprise architecture management. Whereas business analytics provide the data for

organizational decision making, EA is concerned with analysis of the data, planning

sustainable target architectures and the steadfast support of its implementation.

Manifold research has been conducted to provide mechanisms to uncover relevant data.

Statistical and mathematical techniques, such as genetic algorithms, decision trees, artificial

neural networks, induction and visualization (Ghuman 2014) are just a view of the vast

number of techniques for extracting the information. In their work, (Zorrilla and García-Saiz

2013) consider data warehouse (DW) techniques, the On-Line Analytical Processing (OLAP)

technology, reporting tools and the data mining techniques to be the most essential

components of data mining environments. Data mining environments are platforms for

conducting the required transformations to convert the data into usable structures for further

processing and analytical tasks. The provision of a solid starting position to perform the

modelling activities (modelling in the sense of business analytics) is required in order to

uncover the previously unseen information. Data have to be accessed, restructured and

cleaned before conducting these analysis techniques (Rahm and Do 2000).

In recent years some efforts have been made to standardize methods and tools in the fields

of KDD and DM. Prominent KDD frameworks have devoted an important part of their KDD

processes to this subject, such as SEMMA (Sample, Explore, Modify, Model and Assess),

(Matignon 2007) and CRISP-DM, the Cross Industry Standard Process for Data Mining

(Chapman et al. 2000). SolEuNet (Data Mining and Decision Support for Business

Competitiveness: A European Virtual Enterprise) is another well-known example. See the

work of (Marbán, Mariscal and Segovia 2009) for a comparison of data mining & knowledge

Methodological and Conceptional Foundations

37

discovery process models. Polls conducted by KDnuggets (www.kdnuggets.com), an often-

cited website for business analytics, big data, data mining and data science reveal that the

CRISP-DM is the most acknowledged of the DM methods, followed, lagging far behind, by

SEMMA.

All of the mentioned DM methods stress that a clear understanding of the existing data is a

fundamental prerequisite for receiving reliable statements from the conducted mining

endeavours. Thus, statistical metadata as a means of providing statements on the data quality

and a feature to trace back data to their source, are considered of upmost importance.

Moreover, this metadata will guide the statistical production process providing a sound

starting point for the upcoming modelling phases.

As will be discussed in section 4, to be fully effective DICE has to be embedded in a

superordinated KDD process such as CRISP-DM. CRISP-DM divides the process of data

mining into six major phases: (1) Business understanding, (2) Data understanding, (3) Data

preparation, (4) Modelling, (5) Evaluation and (6) Deployment. Fig. 9 offers an overview of

the CRISP-DM process.

Fig. 9 CRISP-DM process (Chapman et al. 2000)

Evaluation

Business
Understanding

Data
Understanding

Data
Preparation

Modelling

Deployment
DATA

Methodological and Conceptional Foundations

38

 Business understanding: In this phase the project objectives are defined. It consists

of the following tasks: determine business objectives, assess situation (e.g.

requirements, risks, costs and benefits), determine data mining goals and produce a

project plan.

 Data understanding: This phase focusses on collection and review of the available

data. It comprises the following tasks: collect initial data, describe data, explore data

and verify data quality.

 Data preparation: In this phase relevant data are selected and cleansed. Important

tasks are: select data, clean data, construct data, integrate data and format data.

 Modelling: This phase concerns data manipulation and drawing conclusions. It

comprises the tasks: select modelling technique, generate test design, build model

parameter settings and assess model.

 Evaluation: In this phase the model is evaluated and conclusions are drawn.

 Deployment: In this phase conclusions are applied to the business. Additionally, the

final report is created and delivered.

The DICE method supports foremost phases 1-3. Having a clear view of the business

requirements (phase “business understanding”), the available datasets are examined (phase

“data understanding”) and prepared for further analysis (phase “data preparation”). Data

preparation tasks will include model/data enhancements and model/data integration tasks,

such as dimensionality reduction, cleaning, noise/outlier removal accompanied by required

mechanisms for documenting data provenance and generation of data quality measures.

Modelling and evaluation phases (phase 4 and 5) will require standard DM methods, such as

artificial neural networks, decision trees, rule induction, genetic algorithms and nearest

neighbour but also specialized enterprise architecture analysis techniques.

Where required, the prototypical DICE environment (DICE, see section 8) can be used to

deploy a repeatable data mining process (phase 6).

2.4 Modelling Foundations

Modelling methods serve as the backbone of the present work for two reasons: (1) models

are the overall accepted vehicle to represent enterprise architectures and (2) DICE itself

comprises a modelling method.

Methodological and Conceptional Foundations

39

In the following sections modelling foundations are introduced. For a better understanding

the required elements are discussed with a focus on EA modelling. However, the concepts

introduced are important for both: (1) modelling the EA and (2) modelling of the required

data integration and cleansing transformation tasks including the documentation of acquired

metadata.

2.4.1.1 Models & Viewpoints

The concept of models, model kinds, views and viewpoints have been discussed in section

2.2. The definitions of the therein introduced ISO/IEC/IEEE 42010 standard can be matched

with the main elements of modelling methods defined by Karagiannis and Kühn (see section

2.4.1.2).

With the advent of metamodeling platforms, e.g. ADOxx and Metaedit+, see (Karagiannis

and Kühn 2002) for an overview, many organisations decided to build a specific metamodel

for their EA endeavours or to adapt and tailor one of the standard modelling methods or

languages. In many cases, EA stakeholders even chose to use a self-developed modelling

method, which is often not formalised or standardised, even within the organisation. The main

reason for using these “home grown” modelling languages is: inflexible and non-appropriate

modelling languages for a given modelling task or simply a lack of knowledge of the

appropriate modelling methods (Szegheo 2000).

Thus, in many cases EA descriptions will not adhere to standards, definitions and

recommendations, e.g. introduced by ISO/IEC/IEEE 42010. EA descriptions will come in

manifold formats and structures, in many cases not thoroughly instantiated from viewpoints

and model kinds. However, this makes the case for data integration and cleansing of EA data

(including EA models but also additional EA relevant data) even more important and

challenging.

2.4.1.2 Modelling Methods

In line with (Karagiannis and Kühn 2002), a modelling method comprises: (1) a modelling

language, (2) a modelling procedure and (3) mechanisms and algorithms representing the

model-processing functionality.

Methodological and Conceptional Foundations

40

Fig. 10 The main elements of a modelling method

Fig. 10 provides an overview of these core elements of modelling methods:

 the modelling language comprises a modelling notation and a metamodel providing

both a language grammar and a vocabulary,

 a modelling procedure comprising the required steps for setting up and maintaining a

model base and

 mechanisms/algorithms, which in the context of EA modelling, are targeted to support

quantitative evaluations and report generation based on the model base.

In the following sections these core elements are discussed in detail.

2.4.1.3 Modelling Language

The modelling language is specified by syntax, semantics and a (visual) notation. The syntax

defines the grammar of the modelling language. In other words, it determines the elements of

the modelling language and regulates their usage. Semantics defines the meaning of the

constructs of the syntax. Via semantic mapping, the syntactical constructs are associated with

their meaning, which is defined in a semantic schema.

The syntactical elements of a modelling language can essentially be reduced to the following

concepts: (1) modelling classes (in the context of EAM: e.g. business process, application

component and technology component), (2) association classes that define relations between

two modelling classes (e.g. association, generalisation) and (3) attributes which represent

Methodological and Conceptional Foundations

41

properties that specify class semantics (e.g. name, cost and performance) (Visic et al. 2015).

These core concepts often addressed as the meta-elements of modelling languages are

formally discussed by OMG’s (OMG 2015) meta object facility (MOF), which uses classes

and associations to define the (abstract) syntax (i.e. the metamodel) of a modelling language.

Besides MOF, there are manifold meta2models establishing similar primitive meta-elements;

for an overview see (Kern, Hummel and Kühne 2011).

Metamodels can be understood as models of models. They are typically used for defining

EA concepts provided in EA modelling languages. For an example of a metamodel in the

fields of EA see Fig. 11, which illustrates a simplified version of the Archimate metamodel.

For the detailed specification of the Archimate metamodel, see (The Open Group 2016).

Fig. 11 Simplified Archimate Metamodel (Iacob and Jonkers 2006)

Business organisations are systems with a high degree of structural complexity and

dynamics in their behaviour. Enterprise architectures are intended to represent these complex

systems from different angles (EA viewpoints). To represent the architectures or relevant

parts of the architectures, models are used. They are intended to help in mastering complexity,

as they allow for abstraction of aspects that are irrelevant. These models are typically based

Methodological and Conceptional Foundations

42

on modelling languages that are graphical or textual languages. Modelling languages support

the visualisation, specification, construction and documentation of systems and their

constituent artefacts. In the context of EA, the available constructs (modelling classes) for

creating models are the core elements of organisation, called building blocks (in accordance

with TOGAF). The spectrum of building blocks organised within these models ranges from

strategies and goals, to organisational structures and processes, to concepts of the information

system architecture and underlying technological layers (Kurpjuweit and Aier 2009). These

elements typically form a vast web of interconnections.

Enterprise Architecture Modelling Languages (EAML) are specialised modelling languages

that are intended to represent enterprise architectural structures as well as the behaviour and

organisation of enterprises. Examples of EAMLs are: the MEMO modelling languages (Frank

2002), UEML (Anaya et al. 2010) and most notably Archimate (The Open Group 2016).

General purpose modelling languages such as the Unified Modelling Language (UML) are

often used for enterprise modelling, see e.g. (Fatolahi and Shams 2006) and (Zrnec, Bajec and

Krisper 2001). However, as proclaimed by developers of specialised EAMLs, see e.g. (Frank

2002), general purpose languages are not specially designed for this purpose; thus, they show

semantic shortcomings when used for enterprise modelling.

Archimate, as one of the most prominent EA modelling languages, embraces the

ISO/IEC/IEEE 42010 standard. It comes with a set of predefined viewpoints oriented towards

typical concerns of EA stakeholders. Additionally, it provides a way to define new viewpoints

as needed. The centrepiece of Archimate is its metamodel that was designed to cover all

important EA practical modelling tasks and at the same time stay compact. It supports a

layered concept by comprising business layer, application layer and technology layer in its

core. Supporting a service-oriented philosophy, the lower layers provide services which are

used by the higher layers. The Archimate metamodel offers three types of concepts classified

into aspects: (1) active structure elements, which perform behaviour (e.g. organisation), (2)

behaviour elements representing activities (e.g. business process) and (3) passive structure

elements accessed by behaviour elements (e.g. business object). Fig. 12 offers an overview of

the structure of Archimate.

Methodological and Conceptional Foundations

43

Fig. 12 Structure of Archimate 3.0 (The Open Group 2016)

Archimate models have to be constructed in conformity with the Archimate metamodel.

Archimate models are represented as graphs. The vertices in the graphs represent building

blocks (instantiated from the metamodel). Examples are: business process, application

component and technology component. The edges depict the relations between the building

blocks. Examples of relation types are: composition, aggregation and assignment.

2.4.1.4 Modelling Procedure

The modelling procedure represents the recommended steps for creating a model. The

modelling procedures are usually deducted from the applied enterprise architecture

frameworks and their suggested procedures. Evidence can be seen in the application of the

concepts for architecture descriptions promoted by the ISO/IEC/IEEE 42010 (ISO/IEC/IEEE

42010 2011), which recommends clear definition of the concerns of stakeholders, required

viewpoints and views before starting the modelling work. The process for creating

architecture models must be considered as a non-trivial task. Modelers have to examine (the

relevant scope of) the enterprise and determine its structural elements, the building blocks.

Methodological and Conceptional Foundations

44

The structural elements have to be classified applying the concepts (modelling classes)

provided by the metamodel in order to create the corresponding instances and the relations

constituting the EA models (Florez, Sánchez and Villalobos 2014). Models are typically

created manually by subject matter experts (e.g. enterprise architects) or stakeholders

contributing to an EA endeavour, such as process owners, application and technology owners.

Concrete process proposals and patterns for modelling and maintenance procedures for EA

models can be found in the work of (Fischer, Aier and Winter 2007) and (Moser et al. 2009).

Fischer et al. present formal descriptions of a process and the organisational setting necessary

to maintain EA content. Moser et al. define EAM process patterns and exemplarily discuss

EA process patterns such as:

 centralised manual data acquisition/maintenance,

 decentralised manual data acquisition/maintenance,

 automatic data acquisition/maintenance and

 architecture control by applying a release workflow.

The modelling procedure does not only involve the creation and maintenance of the models.

Additionally, and of utmost importance are: analysis, simulation and communication of the

models.

2.4.1.5 Mechanisms & Algorithms

Mechanisms and algorithms provide the functionality for performing the (machine-)

processing of models. Mechanisms and algorithms can come in various forms. In many cases

they are applied to the model base for model evaluation purposes. Examples of algorithms

are: simulation algorithms for business processes, cost calculations applied to EA models,

visualisation mechanisms such as automated heatmapping applied to EA visualisations, etc.

(Karagiannis and Kühn 2002) identified three different classes of mechanisms and

algorithms: (1) generic mechanisms and algorithms, which are defined on meta-level and can

be applied to any modelling language, (2) specific mechanisms and algorithms, which pose

prerequisites for the model-base and respectively for their underlying metamodels to be

conducted successfully and (3) hybrid mechanisms and algorithms, which need to be

configured for concrete modelling languages.

Methodological and Conceptional Foundations

45

With DICE, this thesis focusses strongly on mechanisms and algorithms. Conceptualised as

a situational method, it focusses on data mining mechanisms/algorithms supporting data

integration and cleansing. A strong focus is placed on EA models and EA-relevant data.

However, at its core DICE is intended to work for any data preparation endeavour.

2.5 Situational Methods and Situational Method Engineering

Due to its holistic view of the enterprise, the sheer volume on EA(M) concepts covers a

broad range of topics on all levels of the enterprise. Under the umbrella of EA strategic

concerns, operative challenges are addressed. Under these premises, a "one-size-fits-all" EA

method covering all of these topics, is not plausible.

“Depending on project type and context type, different methods – or at least different

configurations or adaptations of a method are needed.” (Aier, Riege and Winter 2008a).

Situational method engineering addresses this problem through the construction or

composition of new methods from existing methods. Situational Method Engineering is

defined as, “the discipline to build project-specific methods, called situational methods, from

parts of the existing methods, called method fragments (Brinkkemper 1996)”.

These methods are tailored to specific project needs. The term situational method was

coined by (Harmsen 1997), who identified the need for a standardised approach to the

composition of tailor-made methods to address specific organisational circumstances. Stating

that “There is no method that fits all situations” (Harmsen 1997), Harmsen coined the phrase

“controlled flexibility” in the context of situational methods. Situational methods are intended

to be adaptable to specific project requirements in a controlled manner. At the centre of

situational methods, one can find the so-called model base, holding reusable and proven

“method fragments” to be composed into tailor-made methods by applying formally defined

guidelines. The overall process for configuring situational methods comprises four major

steps:

 characterization of situation, which is the step involving requirements gathering for

the method to be constructed,

 selection of method fragments, which involves the selection of method fragments

meeting the previously identified requirements,

Methodological and Conceptional Foundations

46

 assembly of method fragments, which involves tailoring of the selected method

fragments and assembling the chosen fragments to establish the new “situation-

specific” method and

 project performance, where the new situation-specific method is applied.

Fig. 13 The process for configuring a situational method, marginally adjusted from (Harmsen 1997)

Method fragments are the atomic elements of method construction. In DICE method chunks

(compositions of method fragments) are represented in the form of transformation tasks.

Transformation tasks take datasets and metadata describing the datasets as an input and

generate restructured, cleansed and/or integrated datasets as well as appropriate metadata on

the conducted transformations as an output. Via selection of atomic transformation tasks and

by integrating these transformation tasks into an executable data preparation workflow,

complex data transformations can be performed. At the same time, required metadata on these

transformations are generated automatically as far as possible. Fig. 14 illustrates the structure

of transformation tasks, which is discussed in more detail in section 5.

Situation

Characterisation of
Situation

Selection of Method
Chunks

Project
Performance

Method
Administration

Method Base

Assembly of
Method Chunks

Experience
Accumulation

Situational
method

Characterisation

Selected method
chunks

Request for
adaptation

Request for new
method fragments

Situation factors

Validation

Method
chunks

Methods
techniques
tools

Method chunks
additions/updates

Methodological and Conceptional Foundations

47

Fig. 14 Method fragments in DICE

Method chunks are the reusable entities that comprise method fragments. At minimum, a

method chunk consists of two method fragments, one product and one process fragment, see

5.2 for details. Examples of method chunks in DICE are transformation task patterns which

can be configured for their execution. They come with a set of setting options (parameters)

and algorithms for data transformation. When executed (in context of an executed data

preparation workflow), all required data manipulations are conducted in a standardised

manner.

2.6 DIBA and DICE

This thesis must be understood as a continuation and development of the Data Integration in

Business Analytics method (DIBA) (Grossmann 2009). DIBA is a domain agnostic BA

method for data integration and cleansing. DIBA is heavily based on concepts of workflow

management, statistical master data management and data mining. It comes with a basic

metamodel for representing metadata to ensure traceability of data integration steps. The main

purpose of DIBA is to visually support creation and documentation of the data integration and

cleansing processes and to relieve data engineers from the burden of manual documentation of

the undertaken DM steps in the phases of data preparation.

In their work, (Papageorgiou et al. 2001) opt for a KDD process accompanied by definition

and documentation of metadata supporting the production of traceable BA results. They

propose algorithms for the calculation of the metadata based on typical atomic transformation

tasks, such as selection, merge and groupby. (Grossmann 2009) seizes these concepts in

DIBA and proposes to integrate such algorithms into data transformation processes with the

TRANSFORMATION TASK

INPUT
DATA &

METADATA

OUTPUT
DATA &

METADATA

Method Chunk

Method Fragment

*

2..*

Methodological and Conceptional Foundations

48

aim of automatically delivering not only the transformed datasets but also quality indicators

and other metadata.

In 2015 a first prototypical implementation of DIBA was accomplished based on the

metamodeling platform ADOxx (www.adoxx.org) and the statistical platform R (www.r-

project.org). In the course of this, DIBA was renamed DICE. The acronym stands for Data

Integration and Cleansing Environment. For more detailed information see the work of

(Grossmann and Moser 2016).

With DICE, data engineers can focus on the production of the required datasets. Data

preparation services take care of production and interpretation of the statistical metadata. The

statistical metadata guide the production process by delivering quality KPIs to support

decision making regarding the data preparation processes. In the course of this, each (to be)

performed transformation task is evaluated in terms of its quality impact on the transformed

dataset(s) and delivers the required metadata and quality KPIs. Based on these KPIs, the data

engineer can decide whether a taken transformation task will finally be performed or has to be

withdrawn. Thus, early in the data preparation process, the data engineer recognises if the

current status of the workflow fulfils the requirements or if additional datasets have to be

taken into account. In their work, (Grossmann and Moser 2016) present a prototypical

implementation of DICE, substantiating the feasibility of DICE. In the work of (Eltinge,

Biemer and Holmberg 2013), a quality approach for the improvement of the entire statistical

production process is discussed. The key aspects of this approach are recognised by DICE,

making possible the evaluation of the performance of the entire data integration and clearance

workflow itself. DICE is the centrepiece of this thesis. That is why in section 4 a detailed

introduction to DICE is provided.

2.7 Tying it all together

Recalling the research objectives, in order to set up a sound basis for EA analytics, this

thesis seeks to analyse typical EA data and define a method for data cleansing and integration

in the fields of EA.

As EA content comes in manifold shapes and styles (see section 7.1), there will not be a

one-size-fits-all solution to resolving these research objectives. The thesis builds on DICE,

which can be interpreted as a method that is built on concepts of situational method

Methodological and Conceptional Foundations

49

engineering. DICE combines techniques from the fields of workflow management, metadata

management and data mining. The main method chunks facilitated by DICE are

transformation task patterns, which can be composed into executable data preparation

workflows. Transformation task patterns comprise the same elements as modelling methods.

From a conceptual point of view, they represent method function blocks consisting of the

same basic components as entire methods: modelling language, modelling procedures,

mechanisms and algorithms. The modelling procedure involves the configuration of single

transformation tasks and the composition of these tasks into executable workflows.

Mechanisms and algorithms are required for performing the required data and metadata

manipulations. The modelling language is used for modelling the transformation tasks and for

depicting the metadata (via dedicated language constructs or by referencing data sources

holding the data).

A typical initial situation where DICE might be applied, is when information on the

enterprise architecture is required for driving management decisions. Questions to be

answered could be as simple as the following: How many applications does the organisation

run? Which of our applications hold critical customer data? What applications are operated on

outdated technologies? Having a central EA repository in place, which contains all the

required building blocks and dependencies, these questions are easily answered. However, it

is not very likely that the EA repository, if in place at all, will contain all relevant concepts

and relationships for all possible cases. The reality of organisations shows that EA content is

often scattered throughout the organisation. EA content such as models is often created ad hoc

and not maintained in an adequate manner.

Thus, for this thesis DICE is positioned at the intersection of EA data acquisition and BA

data preparation phases. In this sense two spheres have to considered, namely:

 the domain specific sphere of EAM, which is the sphere where DICE is applied and

 the data mining (DM) sphere, which comprises the data integration and cleansing

functions.

This structure allows flexible application of DM methods (DM sphere) to any application

domain. At the core of this thesis, DICE is applied to enterprise architectures (EA sphere).

Fig. 15 offers an overview. Both spheres comprise the three main building blocks of

modelling methods: modelling language, modelling procedure and mechanisms & algorithms.

Methodological and Conceptional Foundations

50

The EA sphere represents the application domain providing the datasets for data mining

endeavours, hoping to learn about the EA, to uncover previously unseen knowledge or to

simply provide an adequate dataset for typical EA analysis. For these purposes the EA sphere

delivers EA contents (in the form of formal models but also any other structured or semi-

structured EA-related information) describing the architecture of an organisation. This content

typically holds information on main EA building blocks, such as the business capabilities,

business processes, roles and actors, organisational units and locations, the applications, and

their software components as well as dependencies between these building blocks. In other

words, the EA content represents the datasets to be cleansed, integrated and analysed in the

BA sphere.

As an example, due to compliance reasons, an organisation needs to understand which of

their applications hold customer data. EA models based on viewpoints such as Archimate’s

“Application Behaviour Viewpoint”, see (The Open Group 2016) are a valuable source of

information for extraction of the required data. Additional information might be found in data

catalogues, software architecture models, etc. To analyse the existing EA descriptions, which

are typically spread over various models and often described in different modelling languages,

data integration and data cleansing tasks have to be performed.

Fig. 15 depicts the interplay between the EA sphere and the DM sphere needed to facilitate

this kind of analysis. Enterprise architecture modelling languages (EAML) have already been

introduced in section 2.4.1.3. In the DM sphere, a modelling method is required to design the

data preparation processes and to hold the metadata generated when conducting the DM

mechanisms and algorithms.

Methodological and Conceptional Foundations

51

Fig. 15 Interaction of BA and EA

As with the modelling language, the modelling procedure must be considered from both the

EA sphere and the DM sphere. The EA sphere covers the procedures for creating the EA

models. The DM sphere requires a modelling procedure for creating the DICE processes.

These processes are framed by the phases and tasks stipulated in CRISP-DM, the DM

reference framework. As explained earlier, in order to be fully effective, the DICE modelling

procedure has to be embedded in a superordinated KDD process such as CRISP-DM

(Chapman et al. 2000).

The dyadic structure of DM and EA spheres also applies to the “mechanisms and

algorithms”, the third of the main elements of a modelling method. The EA specific

mechanisms focus on bringing the EA models under control (e.g. versioning mechanisms,

release workflows etc.) and the algorithms which are required to run EA analysis, such as EA

Methodological and Conceptional Foundations

52

simulation, dependency analysis, view generation and what-if evaluations. These mechanisms

are positioned to infer new knowledge from existing EA models.

Mechanisms and algorithms of the DM sphere are required for executing the DICE

workflows and for performing the data transformation and cleansing tasks. Two types of

algorithms are required (Grossmann and Moser 2016). The first type executes the DICE

workflow itself. It processes the transformation tasks in the intended sequence. The second

type of algorithm, the transformation algorithm, constitutes the processing logic of individual

transformation tasks. Simultaneously these transformation tasks perform the transformation

on the datasets (the EA models) and alter the related metadata.

All of the core elements of the DM sphere are organised within a situational method. As

sketched in section 2.5 (details will be discussed in section 5.2), the set of transformation

tasks is organised within the DICE method base. The transformation tasks are configurable

and serve as the method chunks of DICE. Instructions concerning appropriate usage and

configuration of the transformation tasks and on assembling them into a DICE process have to

be covered in the DM modelling procedures.

2.8 Motivating Example

Enterprise architecture is much about communication. Thus, many of the typical EA

deliverables are in the form of diagrams, matrices that allow better communication of

envisioned target architectures, architectural gaps to be closed and impact on architectural

changes.

Relevant data often reside in different formats and different data sources. Even where EA

repositories are in place, it is unlikely that those hold all information needed to create the

required models for subsequent analysis. Typically, operational data such as customer

transactions and process instance data are, if ever taken into consideration, not part of these

repositories. In the course of creating decision papers, data quality and data provenance

aspects are consequently not considered, which makes the results assailable.

In the course of this thesis a guiding example is introduced. It is based on a scenario where

enterprise architects collect and integrate data from internal and external sources of the

organisation with the aim of providing a sound EA dataset for subsequent decision making.

Methodological and Conceptional Foundations

53

In the guiding example, data on business processes, applications and technologies reside in

different formats and stem from arbitrary internal and external sources. The example is used

to explain the developed mechanisms for data integration and cleansing. It can be seen as a

typical application of the method. DICE does not strive to implement a sound EA repository.

Rather, it strives for case-specific support for EA-related endeavours based on the existing EA

information, which typically resides in manifold data sources.

Related Work

54

3 Related Work

The following section is dedicated to the presentation of related work and discusses it in the

context of this thesis. Before discussing related work, the literature research approach and its

targets will be discussed.

3.1 Literature Research Approach

The subsequent literature research follows the guidelines of (Vom Brocke et al. 2009) to

guarantee rigor in the literature search process. The applied research process stems from

(Svejvig and Andersen 2015) and is an adaptation of the process initially proposed by (Baker

2000). It was also used in a similar setting creating a literature review of EA

analysis/evaluation techniques by (Andersen and Carugati 2014).

Fig. 16 Main steps of the literature research (Andersen and Carugati 2014)

3.1.1 Defining Review Scope

In the initial step the research scope was defined by stating the main research questions to be

answered by the literature research:

 What are the current practices for EA analysis and evaluation and do they pose quality

requirements on their underlying EA data? Are these requirements formally defined?

 Is there research that combines EA practices with methods from the fields of data

mining and related research fields such as business analytics to support EA-based

decision making?

Conceptualisati
on of scope

Literature
research

Literature
analysis

Defining review
scope

Related Work

55

 Are data mining techniques used to improve EA data and vice-versa?

The structured literature review was intended to be comprehensive with the aim of covering

all relevant research literature within the defined scope. This holds true especially for research

literature in the context of EA analysis and evaluation and all relevant literature combining

techniques from EA and data mining.

3.1.2 Conceptualisation of Topic

Following Bakers suggestion, to consult “those sources most likely to contain a summary or

overview of the key issues relevant to a subject” (Baker 2000), the literature review was based

on existing literature reviews such as the work of (Simon, Fischbach and Schoder 2013) and

(Mykhashchuk et al. 2011) providing broad overviews of existing research in the fields of EA

and overviews of EA analysis/evaluation approaches conducted by (Buckl, Matthes and

Schweda 2009) and (Andersen and Carugati 2014). From these sources the relevant search

terms were derived.

Documents containing one of the following keyword combinations were considered

relevant:

{“enterprise architecture”} ×

{“analysis” | “integration” | “quality” | “data mining”| “KDD” | “business analytics” |

“business intelligence” }

The reasons for deciding on these keywords are briefly discussed below:

 The key word {“enterprise architecture”} was chosen as the core key word.

Additionally, in the initial setting of the literature review, key words, such as

“business architecture”, “enterprise modelling” and “IT architecture” were used, as

EAM is a broad discipline and relevant methods and concepts might not necessarily

be presented under the term “enterprise architecture”. However, it turned out that

these key words were not effective, as many of the search hits were irrelevant to the

topic or already identified by the search containing “enterprise architecture”.

 The keywords {“analysis” | “evaluation”} were used in order to identify scientific

literature discussing EA analysis/evaluation techniques. Whereas “evaluation”

commonly refers to a systematic determination of a subject’s worth, significance or

Related Work

56

condition, “analysis” is the process of separating a complex subject into its

component parts to gain a better understanding of it (Merriam-Webster 2007). In

research both terms are often used synonymously, thus, both keywords were

considered. Matching publications are of interest for two reasons: firstly, to check

whether analysis/evaluation techniques from the fields of DM have been applied to

the EA content and secondly, to check how and if these approaches consider and

handle insufficient EA data quality.

 The keyword {“integration”} was used to discover which EA publications consider

integration of EA content (e.g. integration of architecture models). The majority of

the identified research dealt with integration of EA building blocks itself (e.g.

integration of software systems) but not with integration of EA content/descriptions.

This is why the initial set of keywords was extended with the keyword combination

“enterprise model integration”, the term commonly used for integrating models of

different modelling languages (Kühn et al. 2003). Utilizing this keyword

combination a plethora of approaches and methods could be identified.

 The keyword {“quality”} aimed at the detection of research focusing on quality

aspects of EA contents of any type in general and specifically on EA models. Again,

a lot of research dealing with the quality of EA itself (and not with EA descriptions)

had to be sorted out.

 Finally, the keywords {“business analytics” | “data mining”| “KDD” } were used to

identify research that connects methods from the research fields of EA and DM. As

will be discussed in the literature review, only a few publications were identified.

Most of the publications matching these keywords dealt with defining enterprise

architectures to support business analytics and data mining implementation but not

with combining the practices for creating better/new EA content.

The present literature review does not focus solely on top journals and conferences but also

takes industry EA publications (such as articles from the journal of EA) into account, keeping

in mind that not all publications are of equal rigor (Ngai and Wat 2002). This decision was

taken because non-academic EA publications have been judged to be of significant influence

in existing EA literature reviews, see (Mykhashchuk et al. 2011), (Simon, Fischbach and

Related Work

57

Schoder 2013) and (Tamm et al. 2011). Thus, by consideration of peer reviewed IS journals

only, highly relevant practice-oriented literature might have been excluded.

As primary search engine, Google Scholar (https:// scholar.google.at) was used. As a second

source, u:search, the search engine of the university of Vienna was used. Both of these search

engines serve as meta search engines and base their searches on search engines and digital

libraries such as the ACM Portal (http://portal.acm.org) and the IEEE XPlore Digital Library

(http://ieeexplore.ieee.org).

Per search, the first hundred search results were considered. Relevant research results were

listed. From these articles, backward searches (reviewing the references of the identified

articles) and forward searches (reviewing sources that cited the initial articles) were

conducted. For forward searches, the Google Scholar feature “cited by” was used, insofar as a

research paper could be found via Google scholar. Papers considered relevant were listed and

the procedure was repeated for these papers.

For all papers, at least title and abstract were read in order to judge their relevance with

reference to their contribution in the fields of analysing/evaluating EAs or parts thereof.

Articles considered relevant were fully examined.

The literature review was performed throughout the years 2015, 2016 and 2017 and

considered EA articles from the early beginnings of EA, from the mid-1980s with the first

recognised EA frameworks “Zachman” and “PRISM”, see e.g. (Kotusev 2016) to March,

2017.

3.1.3 Literature Research & Analysis

According to (Närman et al. 2008), the mechanisms provided by common enterprise

modelling frameworks (such as TOGAF, DODAF and MODAF) for analysing data are barely

sufficient. Thus, inferring new knowledge from existing EA models can be considered a

major challenge. In their work, Närman et al. present an EA analysis procedure consisting of

the following steps: (1) define scenario, (2) determine properties of interest, (3) modelling

scenarios using a metamodel, (4) analyse the scenario properties and (5) make a decision.

Thus, before analysing the EA, the EA (or subsets of EAs) have to be modelled using a

metamodel. This requirement is common to almost all EA analysis approaches, as will be

elaborated in more detail in the subsequent sections.

Related Work

58

In their work, (Buckl, Matthes and Schweda 2009) categorise EA analysis approaches using

a classification schema. The schema is based on the dimensions: body of analysis (structure,

behaviour statistics and dynamic behaviour), time reference (ex-post vs. ex-ante), analysis

technique (expert-based, rule-based etc.), analysis concern (functional vs. non-functional) and

self-referentiality (none, single-level and multi-level). Presenting their AHP-based (Analytical

Hierarchy Process based) approach, Razavi et al. (Davoudi, Aliee and Badie 2011) add an

additional criteria, namely source of analysis (EA models vs. EA content).

In the following section the current and prominent EA analysis approaches are briefly

introduced and examined regarding requirements they pose to the underlying model base.

Numerous approaches to EA analysis are based on probabilistic relational models (PRM)

and formalisms based on Bayesian network statistics. These approaches make possible the

analysis of EA (scenarios) in the context of a broad range of system qualities, such as data

quality (Närman et al. 2008) and (Närman et al. 2011), modifiability (Lagerström, Johnson

and Höök 2010), maintainability (Ekstedt et al. 2009), reliability (Närman et al. 2014),

security risks in general (Sommestad, Ekstedt and Johnson 2010) and aspects of cyber

security (Sommestad, Ekstedt and Holm 2013). A hybrid approach taking several of these

system qualities into account is presented in (Närman et al. 2010). The PRM formalism in

these analysis techniques makes it possible to deal with uncertainty when computing the

values of qualities. Similar to the above analysis techniques, (Franke et al. 2009) analyse

enterprise architectures by applying Bayesian belief networks to fault tree analysis evaluating

reliability and reusability qualities. All of these approaches require a concise model base as an

input. Moreover, not only dependencies between the various EA elements have to be defined

but also direct relations between quality attributes must be in place in order to analyse their

causal dependencies. This requirement is clearly specified in the work of (Buckl et al. 2011),

which proposes extensions to MOF (Meta Object Facility) in the form of a meta-language to

support PRM analysis.

Johnson et al. (Johnson, Nordström and Lagerström 2007) recommend Architecture

Theory Diagrams (ATDs) and the application of Dempster–Shafer theory, a general

framework for reasoning with uncertainty.

Another type of EA analysis can be grouped under the umbrella decision aid/decision

support systems such as the multi-criteria decision making method (MCDM) Analytic

Related Work

59

Hierarchy Process (AHP), where decision makers split their decision problem into a

hierarchy of separately appraisable sub-criteria. In the context of EA, these sub-criteria are

represented by EA quality attributes such as maintainability and interoperability, which itself

might be further composed. Applications of AHP in the context of EA are discussed in

(Davoudi, Aliee and Badie 2011) and (Davoudi and Sheikhvand 2012). The architecture

(scenarios) to be assessed do not necessarily need to be documented based on strictly-typed

models. That is why (Davoudi and Sheikhvand 2012) categorise their AHP-based approach as

“EA content”, as opposed to “EA models” in the category “Source of analysis”. The multi-

property utility evaluation is another representative of a MCDM. It defines a utility function

over a set of qualities to evaluate a particular scenario. Again, independent qualities such as

maintainability and interoperability are considered by describing their utility in the form of a

utility function. As with the AHP-based approaches, these analysis techniques do not

necessarily need a fine-grained model-base. In contrast, the utility-based approach proposed

by (Österlind et al. 2013) can be applied to meta-object facility compliant EA models only.

(de Boer et al. 2005) use an XML schema representing an enterprise architecture meta-

model, which makes description, analysis and simulation of EA models possible. XML

elements are used to define structural information of the EA. Utilising XML and AML

(ASCII Markup Language) parsing tools, they execute static analysis algorithms on the EA

models. Dynamic behaviour is modelled and analysed applying state machine semantics. Of

course, this approach requires a sound and concise model base structured in XML (and AML

files). The EA analysis approach of (Iacob and Jonkers 2006) presents a similar approach

applying quantitative analysis techniques to Archimate models. For this purpose, they

added quantified attributes, such as workload parameters, cost and performance

characteristics to the concepts and relations of the Archimate modelling language. The

approach supports computational EA analysis by top-down propagation (of workload

characteristics) and bottom-up propagation (of costs and performance characteristics). Similar

to this approach, (Florez, Sánchez and Villalobos 2014) propose the concept of SAMBA

(Specialized or extended ArchiMate Metamodel for Business Analysis), which is an extension

to the Archimate Metamodel for analysis purposes.

Ontology-based analysis techniques are another important category. They support EA

analysis through application of computational inference and querying mechanism. Manifold

research has been conducted in these fields. Examples from the broad set of articles are

Related Work

60

(Caetano 2016), (Hinkelmann, Maise and Thönssen 2013), (Antunes et al. 2013) and (Sunkle,

Kulkarni and Roychoudhury 2013).

As another important category of EA analysis approaches, KPI-based analysis techniques

must be considered. Publications in these fields include the works of (Vasconcelos, Sousa and

Tribolet 2007), (Brückmann et al. 2009), (Monahov et al. 2012), (Singh and van Sinderen

2015), (Vasconcelos, Sousa and Tribolet 2015) and (Addicks and Appelrath 2010). All of

them have in common the use of EA models instantiated from an EA metamodel as a basis.

The KPIs are calculated solely from model-intrinsic data.

EA analysis based on network analysis is discussed in (Aier and Winter 2009) where a

graph-based clustering algorithm is presented, which makes possible the identification of

domains within organizational and application architectures. In his master thesis, (Schoonjans

2016) applies typical metrics from the fields of graph theory to EA models, which are

transferred into directed graphs (such as in social networks) for further analysis. A literature

review of EA network analysis with a broader definition of EA as compared to this thesis can

be found in (Santana, Fischbach and Moura 2016).

Finally, there is research with emphasises on the dynamic behaviour of enterprises. Besides

an abundance of work conducted in the fields of business process management, see e.g. (Van

Der Aalst, Ter Hofstede and Weske 2003) for an overview, there is little research on

simulation techniques dedicated to EA. One noteworthy work on this topic has been done by

(Glazner 2011), who presents a hybrid simulation technique based on system dynamics,

agent-based and discrete event simulation algorithms. Also, in the work of (Manzur et al.

2015), a model-based approach is introduced for simulation of EA models with the aim of

executing and assessing EA scenarios. For this purpose, the Archimate modelling language

has been enriched with dynamic properties (e.g. statistical distributions on usage behaviour of

clients) to allow for simulation.

Revisiting these “prominent approaches” with respect to their underlying information base

has shown that none of the approaches tackle data quality problems prior to the analysis.

Almost all of the EA analysis approaches require a model-base instantiated from an EA

metamodel that is in conformity with the requirements posed by the EA analysis algorithms.

The ontology-based approaches do not require a metamodel but have to adhere to ontology

languages based on either first-order logic or on description logic. Prominent examples of

Related Work

61

ontology languages are: the Web Ontology Language (OWL), the Resource Description

Framework (RDF) and the RDF Schema (RDFS). For an overview of ontology languages see

(Staab and Studer 2013). Thus, the only true exception can be seen in the multi-criteria

decision making methods (e.g. AHP) where scenario descriptions are required, but decision

making does not require formally described EA models as a base for algorithms. Another

important finding is that the required quantitative or operational data concerning the EA

elements have to be imputed manually by the EA experts. Where to take the required data

from is, (if at all) only vaguely discussed in the articles.

Table 2 summarises the results.

Table 2 Overview and assessment of EA analysis approaches

Analysis Type References Model-

based

approach

Application

of BA

techniques

Probabilistic relational

models

Excerpt: (Närman et al. 2008),

(Närman et al. 2011), (Lagerström,

Johnson and Höök 2010), (Ekstedt et

al. 2009), (Närman et al. 2014),

(Sommestad, Ekstedt and Johnson

2010), (Sommestad, Ekstedt and

Holm 2013). (Närman et al. 2010)

Yes No

Architecture Theory

Diagrams (ATDs) /

Dempster–Shafer theory

(Johnson, Nordström and Lagerström

2007)

Yes No

Multi-criteria decision

making methods

(MCDM)

(Davoudi, Aliee and Badie 2011),

(Davoudi and Sheikhvand 2012),

(Österlind et al. 2013)

Yes No

Quantitative analysis (de Boer et al. 2005), (Iacob and

Jonkers 2006), (Florez, Sánchez and

Yes No

Related Work

62

techniques Villalobos 2014)

Ontology-based analysis

techniques

Excerpt: (Caetano 2016),

(Hinkelmann, Maise and Thönssen

2013), (Antunes et al. 2013) and

(Sunkle, Kulkarni and Roychoudhury

2013)

Yes No

KPI-based analysis

techniques

(Vasconcelos, Sousa and Tribolet

2007), (Brückmann et al. 2009),

(Monahov et al. 2012), (Singh and van

Sinderen 2015), (Vasconcelos, Sousa

and Tribolet 2015), (Addicks and

Appelrath 2010)

Yes No

Network analysis

techniques

(Aier and Winter 2009), (Schoonjans

2016), (Santana, Fischbach and Moura

2016)

Simulation-based

analysis techniques

Glatzner (Glazner 2011), (Manzur et

al. 2015)

Yes No

Turning to the second core area of this literature research with a focus on integration aspects

of BA and EAM, it became apparent that there is very little literature available. Most of the

identified literature is concerned with applying methods of enterprise architecture

management to establish business analytics and business intelligence capabilities within an

organisation. The joint use of EA and BA to improve management decisions is only addressed

in four articles.

As early as 2005, (Neaga and Harding 2005) proposed in their work “An Enterprise

Modelling and Integration Framework based on Knowledge Discovery and Data Mining” to

complement enterprise modelling methods with methods from the fields of KDD and DM in

order to improve decision making based on enterprise models. The authors emphasize the

Related Work

63

communalities of enterprise modelling and DM, as both techniques “are building models of

the whole or parts of the enterprise […] mining models are directed to logically fit or overlap

with enterprise models, except that they are obtained by knowledge discovery”. However,

although recognising these communalities, their work is limited to extending enterprise

modelling methods with knowledge and mining views to support modelling and planning of

integrated KD&DM systems.

(Barone et al. 2010) recognise the benefits of integrating enterprise modelling and business

analytics and present an approach to integrate business intelligence mechanisms with their

Business Intelligence Model (BIM). The idea is that business people define their knowledge

requirements in business terms based on goal modelling techniques (inspired by strategy maps

and balanced scorecards), and these specifications are mapped with a minimum effort onto the

technical BI implementation schemas. Although a broader integration with EA approaches is

not explicitly discussed, the proposed BIM can be seen as the strategy model of an EA. Thus,

it serves as the docking point for additional EA views and viewpoints. Concrete algorithms

and mechanisms on how to actually integrate the enterprise models with BI tools, how to use

the BIM to “automatically” map business structures defined in the BIM to the operational data

are not discussed and are left open for future research.

(Stravinskienė and Gudas 2011) conducted an analysis of enterprise modelling methods in

respect to their suitability for supporting DM endeavours. Their work on enterprise

knowledge modelling and data mining integration strives to define principles for the

integration of knowledge components (represented in the form of enterprise models) into data

mining processes by using the EA models as input for “more rational data mining queries”

(Stravinskienė and Gudas 2011). The authors propose a mapping of components of EA

concepts and data mining process steps in order to streamline the mining process and the

configuration of the required mining algorithms. The approach is illustrated by using the

enterprise meta-model (EMM), see (Gudas, Lopata and Skersys 2005) for details and a

sketched data mining process. The approach is intended to be agnostic to the given enterprise

modelling method. However, the presented mapping remains high-level, and details on how

to actually implement this mapping are only discussed superficially.

(Fill and Johannsen 2016) present in their knowledge-based approach, required mechanisms

to integrate enterprise modelling and data analysis. Emphasis lies on interaction and exchange

of data between enterprise models and methods for analysing big data. In their prototypical

Related Work

64

implementation, they demonstrate how prepared data are loaded into a modelling tool

supporting the RUPERT (Johannsen and Fill 2014) modelling method, from where the data

are processed to graphically support decision making by enriching the models defined in

RUPERT. The data preparation process and data quality issues are not covered by their

approach.

Finally, (Veneberg et al. 2014) propose their method “Enterprise Architecture Intelligence

Lifecycle (EAIL)” for combining enterprise architecture descriptions and operational data.

They suggest either enriching EA models with BI data to support model-based enterprise

architecture analysis or integrating the EA descriptions into BI tools for better structuring of

the operational data and to support their retrievability and interpretability. In the second case,

EA structures would serve as the metadata for classifying the operational data and for creating

interrelations among themselves. The proposed lifecycle consists of the phases: (1) explore,

(2) match, (3) enrich, (4) visualize, (5) decide & change and (6) evaluate. In their conclusion,

the authors see the required technical model and data transformations as a critical step, which

has so far not been addressed. Furthermore, the need to investigate the applicability of

existing EA and DM analysis mechanisms is adverted.

In respect to enterprise model integration, a great many approaches could be identified.

Solutions comprise hard-coded model transformation mechanisms, framework-specific

annotations (via metadata), multi-view methods, approaches based on controlled vocabulary

and ontologies. For an overview of model transformation tools, see (Gomes, Barroca and

Amaral 2014), (Lúcio et al. 2014) and (Czarnecki and Helsen 2003). Fig. 9 depicts the general

ideal process of model transformation. What all of these approaches have in common is that

input models instantiated from a source metamodel are transformed into target models that

conform to a target metamodel. Transformation rules are required to specify the mapping

rules. Fig. 17 shows an overview of typical concepts involved in model transformations.

Related Work

65

Fig. 17 Model transformation terminology, adapted from (Syriani, Grayand Vangheluwe 2013)

(Falleri et al. 2008) propose an approach that automatically detects mappings between two

metamodels and uses them to generate an alignment between those metamodels instead of

developing ad hoc model transformations. Their approach is based on concepts from the fields

of schema matching and ontology alignment. Domain-specific approaches with a focus on

transformation of enterprise models are discussed, e.g. in (Kühn et al. 2003) and (Vernadat

1996). Worth particular mention is the work of (Zimmermann et al. 2013), who present with

their service-oriented reference enterprise architecture an approach dedicated to the

integration of enterprise architecture models. The approach is based on correlation analysis

and offers a systematic integration process. (Moser, Fürstenau and Junginger 2010) present an

approach to the integration of EA models with business process models, which again requires

Source
meta model

Meta meta
model

Source
model

Target
meta model

Target
model

Transformation
specification

Transformation
execution

 reads outputs

 refers to refers to

co
n

fo
rm

s
to


co
n

fo
rm

s
to


co
n

fo
rm

s
to


co
n

fo
rm

s
to


1

1..*

1

1

1

1..*

1

1..*1

1

11..*

Transformation
language

co
n

fo
rm

s
to


11

1 1

1

1

Related Work

66

a bidirectional mapping. The focus of their work is on how to organise the model exchange.

They place a strong focus on organisation-specific objectives and conditions but do not

consider BI mechanisms for integration. Worth particular mention is the research of (Roth

2014). In his dissertation on „Federated Enterprise Architecture Model Management“ Roth

presents an approach for collaborative model integration. The approach deals with the

continuous integration of object-oriented models held in different repositories. Strong

emphasis is put on techniques for conflict resolution (model and metamodel inconsistencies).

Roth introduces a software solution to organize the conflict management. Conflicts are passed

to users (the particular owners of the objects) for semi-automated resolution. The approach

assumes a unidirectional synchronization between the data held in the EA repository and all

other relevant information sources. Its main purpose is to support the federated EA model

management and to build up a concise EA model base by integrating building blocks from the

different sources. The EA repository acts as the sink source integrating EA-relevant data in

conforming to a defined target metamodel. In DICE the concept is different. Datasets from

arbitrary sources are adapted, integrated and cleansed as needed without consideration of

structural “limitations” in the first place. DICE for EAA is a specific application of DICE in

context of EAA. It strives for creating situational datasets, as a basis for subsequent BI-driven

analysis. Rather than focusing on the maintenance of a concisely populated EA repository,

datasets are created for specific knowledge needs at hand, which cannot be foreseen in

advance and answered by standard mechanisms of EA repositories, or rather by EA

descriptions/models adhering to a predefined metamodel. To this end DICE for EAA strives

for equipping EA data with operative business data such as customer data, product data and

any transactional business data.

Applying data mining techniques, e.g. supporting the model transformations with

unsupervised transformation techniques, have not been identified by the conducted literature

review. The only exception can be seen in the work of (Gill and Qureshi 2015) who present in

their approach to “adaptive enterprise architecture modelling” techniques for metamodel

integration based on DM techniques such as applying similarity analysis to concepts within

different enterprise (meta) models with the aim of model integration.

Related Work

67

3.1.4 Summary

Compared to the extensive research available on enterprise architecture management, the

subfield of EA analysis can be seen as the orphan child of EA. Nearly all of the identified EA

analysis approaches require formally created EA models as a basis. It is well recognised that

the quality of EA models is of immanent importance for any EA endeavour. Existing

approaches that strive to improve the data quality mainly focus on improving the data quality

of models held in architecture repositories, by either optimising the processes for manual data

acquisition, clearly costing higher data maintenance and governance efforts, or on automated

integration-features that integrate EA data from external sources such as CMDBs. From the

observed research literature, only (Addicks and Appelrath 2010) integrated data quality and

metadata aspects into their approach for indicator-based evaluation of application components

in the context of EA. However, the approach is only roughly sketched and focuses only on

data freshness and population coverage aspects. In addition, (Iacob and Jonkers 2006)

consider model integration and model normalisation (transforming the models to comply with

the required structure for analysis) as an important step but do not explain the required

transformation measures.

 Recently, approaches to integrate EA and BI practices have been put forward. Under

designations such as “Enterprise Architecture Intelligence” and “Enterprise Architecture

Analytics”, initiatives arise striving to combine the management domains of “Enterprise

Architecture Management” and “Business Analytics” respectively in order to combine EA

models with operational data. Although the benefits of integrating EA with operational data

have been identified, research in these fields is still in its infancy.

DICE as a method for data integration and cleansing contributes to these initiatives by

providing the means to integrate all relevant EA models and descriptions, and at the same

time, provides metadata such as quality indicators on the resulting EA datasets.

DICE – The Centrepiece of the EAA

68

4 DICE – The Centrepiece of the EAA

This section is strongly based on the work of Grossmann and Moser (Grossmann and Moser

2016), who introduced DICE as a method for data integration and cleansing in the context of

business analytics scenarios. DICE is, as a continuation of Grossmann’s work on DIBA

(Grossmann 2009), a data integration method for the support of business analytics

endeavours.

4.1 Suggesting a Method for Data Integration and Cleansing

Most DM techniques demand input datasets in a horizontal layout, i.e. a table in which each

row represents an observable unit and each column stands for a variable (Ordonez and Chen

2012), (Rahm and Do 2000), (Klösgen 2002). Examples are DM techniques, such as

association rules, clustering, classification, regression analysis and principal component

analysis (Han and Kamber 2000), (Ordonez 2010).

Knowledge about the data quality and data provenance is a key requirement when applying

the data for decision making in business activities. Thus, along with the actual data (e.g.

provided in the form of management reports), explicit descriptions that provide insight into

data quality, data sources and data structures are required. Such data descriptions are

commonly referred to as metadata. Metadata include information for producing,

understanding, querying and retrieving statistical work products. DICE adopts the concept of

metadata management by leveraging a metadata-model based on concepts stemming from the

fields of statistical metadata management (Grossmann 2015). Against this background, DICE

considers datasets as composite analysis objects (Grossmann and Moser 2016) composed of

observable units, variables and properties that represent populations of observable units. Fig.

18 provides an overview of the structure of these data objects and their interplay in UML

notation.

DICE – The Centrepiece of the EAA

69

Fig. 18 Composite Data Analysis Object

Observable units
AU are the entities for which empirical information is collected or derived.

In a typical enterprise environment, elements, such as products, customers and transactions

are perfect examples of observable units. In the context of enterprise architecture

management, elements, such business processes, application components and technology

components are typical examples. A represents the population that is defined by the set of

observational units. Typically, a distinction is made between target population (aka scope),

representing the real-world population and the covered population which is represented within

the dataset (aka statistical population or sample population). The dataset AD holds the

observable units and their properties. For each of the observable units, properties AP are

available. These properties are categorised into variables AV (i.e. attributes). The typical

representation of a dataset AD in business analytics is a table. The rows correspond to the

observable units, the columns represent the variables and the cells represent the properties.

The properties are observed and described by values assigned to the properties, i.e. the values

are stored within the table’s cells. The covered population is typically implicitly represented

only by the set of observable units, i.e. the rows of the table.

Fig. 19 illustrates an example. It exemplarily depicts an Application Portfolio Catalogue, a

typical EA artefact, see (The Open Group 2011). In the example each row holds data of an

application that is an observable unit within this dataset. The column “ID” holds the unique

identifier of the applications. The “ID” and the subsequent columns “Owner”, […],

“Operating System”, “Operating Costs” and “Production Date” represent the variables. The

cells of the table represent the properties which hold the values that distinguish the

applications.

Population

Variable

Observable Unit

Property

Dataset

DICE – The Centrepiece of the EAA

70

Fig. 19 Example of a composite analysis object – data level

Formally the composite analysis object can be denoted as follows:

],,,[AAAAA PVUDO  .

The superscript A refers to the data level. Note, as the population is only implicitly

represented in the dataset, it is not part of the formal definition of the composite analysis

object on data level. The population is made up of the set of observable units that are

described by a set of properties as follows:

 ||...2,1| uuPU u  .

and a set of variables described by a set of properties

 ||...2,1| vvPV v  .

A property belongs to exactly one observable unit and to one variable of the dataset:

 uuvuuvuv UPUPPD  | .

From the above definition follows:

VUD 

i.e. the dataset is made up of the same properties as the set of observable units and the set of

variables.

Of course, for the unambiguous description of a dataset, additional information called

metadata is required. Often quoted examples for metadata are: source information, semantic

definitions of the observable units and the variables and data quality indicators. In this vein,

each of the introduced concepts finds its pendant on the meta-level. Fig. 20 illustrates the

basic structure.

00123 FinApp […] Windows
Server 2013

123

01020 CosMos […] Red Hat Enterprise
Linux 7.x

230

01029 Orinocco […] SUSE Linux 4.2 17

[…] […] […] […] […]

Property

Observable
Unit

Population

DICE – The Centrepiece of the EAA

71

Fig. 20 Data-level concepts and related metadata concepts

Formally the metadata level is represented as follows:

],,,[MMMMM PVUDO  .

The superscript M refers to the meta level. The metadata object MU holds descriptive

information about observable units. Typical examples are: the semantic definition of the

observable unit and quality data per observable unit. The metadata MD holds summary

descriptions of the dataset, such as data profiling contents, summative quality metrics over the

entire dataset, administrative information, such as source and access information, security

issues and data owner etc. Also, information on the population (), such as the unambiguous

definition of the covered population, the size of the real-world population and the required

coverage are part of the metadata. In this context, time aspects, spatial aspects and any other

criteria make possible the specification of the set of contained observable units. The metadata

object MV carries the definitions of the variables, their value domains and measure units.

These definitions are important for specifying data quality aspects. MP provides information

about quality aspects regarding single properties. Examples of quality aspects for properties

Variable

Observable Unit

Property

Dataset

Variable

Observable Unit

Property

Dataset

DICE – The Centrepiece of the EAA

72

are: missing values, compliance with the required datatype and freshness of the property

values etc.

Take the example of the “Application Portfolio Catalogue” depicted in Fig. 19. By solely

examining the dataset, one can conclude that the observable units are the application

components. However, one cannot reliably preclude that the applications are the observable

units. The “operating systems” (contained in the fourth column) could also represent the

observable units of the dataset. Therefore, the observable unit has to be declared

unambiguously within the meta object MU . A similar problem arises with the population.

Without clear specification, one can only guess whether the given dataset covers the entire

organisation, applications of single subsidiaries of the organisation or any other subset of the

set of the organisation’s application components. For each of the dataset’s variables, value

domains and measure units need to be defined. Take for example the variable “Costs of

Operations”. Without information on the currency and the timeframe, the costs related to the

actual costs remain insufficiently interpretable. Thus, value domains and measure units have

to be clearly defined. Looking at this simple example, it becomes obvious that there are a lot

of metadata required to guarantee interpretability and processing of the data.

Fig. 21 shows the previous example data object annotated with some of its metadata.

Fig. 21 Example a data object and annotated metadata

In DICE, metadata are structured into four perspectives: (1) semantics, logistics, process and

quality metadata. Section 2.4.1.3 offers a detailed overview of these perspectives by

introducing the DICE metamodel.

00123 FinApp […] Windows
Server 2013

123

01020 CosMos […] Red Hat Enterprise
Linux 7.x

230

01029 Orinocco […] SUSE Linux 4.2

[…] […] […] […] […]

ID Name […] Operating System Cost

[Integer] [String] […] [String] [Integer]

-- -- -- -- TEUR

[…] […]

[…] […]

[…] […]

[…] […]

Measure Unit

Variable Name

Variable Type

Source
Information

Quality
Measure

Data Metadata

DICE – The Centrepiece of the EAA

73

Representing the data in the form of data objects and associated metadata objects is the core

of the DICE method, which supports the manipulation of the data objects in the context of

data preparation phases. Typical manipulations for the datasets are tasks for reformatting data,

for selecting data, for constructing data (in case of missing values) and for integrating data

from different sources.

In accordance with (Grossmann and Moser 2016), these manipulations are represented as

transformations of the number of input objects ki O iA 1,),(
 into a number of output objects

poO iA 1 ,),(
:

],,,[],,,[:)(,)(,)(,)(,)(,)(,)(,)(, oAoAoAoAiAiAiAiA

i

A PVUDPVUDT 

Depending on the type of applied transformation tasks, various elements of the data objects

are affected. Take the example of performing a selection transformation on a given input data

object. In this case, an output data object is created; the dataset and its meta objects are

likewise changed. By performing the selection, the set of observable units is reduced to the

observable units matching the selection criteria. This of course has a direct impact on the

population of the dataset, while other metadata objects of the data object such as the variables

and their value domains remain unchanged.

Data integration is an example of another but more complex transformation. In the case of

data integration, two input data objects are integrated into one output data object. The

resulting structure of the output object depends on the type of integration applied. (Grossmann

2009) differentiates between two archetypes of integration transformations: horizontal and

vertical integration. In the case of horizontal integration, the variables along with their

associated properties of two formerly independent data objects are merged into one data

object. The resulting data object will contain the superset of variables and hence the superset

of their properties. The number of observable units and the covered population remain

unchanged. In contrast, vertical integration describes the integration of two datasets composed

of the same variables but containing different or an overlapping set of observable units. In this

case, metadata objects do not change in regard to their variables, whereas the population will

change. For a better understanding Fig. 22 illustrates the two archetypical integration

transformations.

DICE – The Centrepiece of the EAA

74

Fig. 22 Horizontal vs. vertical integration of two datasets

In summary, performing transformation tasks requires altering the data on data level and

concurrently on metadata level. In any case, metadata has to be considered as an input. In a

simple case of transformation, the metadata of the input object are merely extended. This

occurs, for example, when calculating summative values from a dataset. However, often

metadata from the input data object will be required in order to make a decision about

adequate transformation steps. An example of such a case is data editing. Data conventions,

represented in the form of edit rules on metadata level, might pose constraints to property

values on data level, which have to be considered when performing editing operations. An

example of an even more challenging case is when computation on the data level requires

input from computation on the metadata level. An example can be seen in data integration on

schematically different datasets. In such a case, similarity measures are typically calculated on

schema-level (thus, based on metadata), and based on these computations the transformation

on data level can be performed. From these examples one can conclude that data and metadata

are closely interlinked. DICE recognises this fact and comes with features which make

possible the alteration of the data and the metadata objects concurrently. Formally the

metadata transformations can be described as follows (Grossmann and Moser 2016):

],,,[],,,[:)(,)(,)(,)(,)(,)(,)(,)(, oMoMoMoMiMiMiMiMM PVUDPVUDT 

Fig. 23 illustrates an entire chain of transformations schematically. The chain of

transformation is called DICE process and consists of the three transformation tasks: T1, T2

and T3. Each of these steps takes a composite data object as input, transforms data and

metadata concurrently and passes on the generated output data object to the next

V1 V2 V3 V4 V5 V6

1

2

3

V4 V5 V6

1

2

3

V1 V2 V3

1

2

3

V1 V2 V3

1

2

3

4

5

6




V1 V2 V3

1

2

3

V1 V2 V3

4

5

6

=

=

vertical integration

horizontal integration

DICE – The Centrepiece of the EAA

75

transformation task. At any position within the DICE process, data quality can be assessed

and data provenance is transparent.

Fig. 23 Simultaneous transformations for data and metadata objects

4.2 Summary

DICE contributes to data preparation endeavours by providing means to alter data and their

metadata simultaneously. It considers data not as pure datasets but as composite data objects

consisting of the data values and their metadata.

DICE is designed as a domain agnostic method for data preparation that can be specialised

for the situational needs of a given BA endeavour. Section 5 introduces its main concepts

following the principles of: (1) agile method engineering and (2) situational method

engineering.

T2 T3T1

Data

DICE
process

Metadata

DICE - Method Conceptualization

76

5 DICE - Method Conceptualization

In their preliminary work on DICE, (Grossmann and Moser 2016) have established the

foundational concepts of the method based on a meta-modelling approach. In general, the

design and implementation of DICE is framed by the Agile Modelling Method Engineering

framework (Karagiannis 2015), which constitutes the following phases: create, design,

formalise, develop and deploy/validate. In (Grossmann and Moser 2016), the authors place a

strong focus on the overall concepts of DICE but give only little guidance on how to apply

DICE in a (situational) project environment. The following section places emphasis on this

aspect of DICE.

DICE is strongly oriented towards the principles of situational method engineering (see

section 2.5). The method overview provided (see section 2.6) reveals that there is no one-size-

fits-all method to support the data preparation phase of a BA endeavour. Applying the

principles of situational method engineering as a foundation provides two vital advantages:

(1) DICE can be continuously extended with new features in a controlled manner and (2)

method users can compose their individual situational methods from DICE.

At the core of situational methods one typically finds the method base, which is a repository

holding reusable method chunks. Each of these method chunks is instantiated from a meta-

model, which is denoted as meta-structure throughout this thesis.
3
 In simple terms, method

chunks are the main building blocks for assembling a situational method. Rather than defining

a method completely from scratch, a method engineer composes his/her method from the

available method chunks.

It is commonly agreed that methods in general comprise process and product aspects. This

also holds true for method chunks. In DICE, method chunks consistent with the definition of

(Henderson-Sellers and Ralyté 2010), consist of one process fragment and one or more

product fragments. The method fragments are the atomic elements of the method. Under these

terms, DICE (or more generally, any method) can be structured into an assembly of reusable

method chunks. Wherein (Ralyté and Rolland 2001):

3
 To avoid confusion we intentionally avoid the common term “meta-model” in the context of the situational

method, as this term is already used to denote meta-models as one of the core components of a modelling

language.

DICE - Method Conceptualization

77

 a method itself is understood as a method chunk on the top level,

 a method is consists of method chunks and

 method chunks are assembled from product and process fragments.

Product fragments denote the product that is created by the method chunk. More broadly,

(Henderson-Sellers, Gonzalez-Perez and Ralyté 2008) consider both the input and the output

(product) to be specified in the form of a product fragment. In consequence, a process

fragment denotes the steps (sometimes also called “guidelines”) required to transform the

input products into the output products. In the following, these definitions are applied to

DICE. Fig. 24 provides an overview of the main concepts and dependencies. DICE draws its

method fragments from various management disciplines:

 from the fields of process and workflow management, concepts are derived to

design DICE workflows graphically and to execute them ,

 statistical metadata management provides concepts for the definition and

management of relevant metadata,

 the research field of data mining provides countless techniques and algorithms to

support data transformations; additionally, reference models are available (such as

CRISIP-DM) for performing the data preparation and setting up entire DM initiatives

 and research from quality management and statistical quality management in

particular provide frameworks for defining adequate quality measures.

The application of DICE is structured in five phases. In the first phase (1) relevant parts of

these methods are identified, extracted and taken to the method base. (2) The method parts are

structured to fit into the meta-structure of DICE. For this purpose the original method parts

are classified into process and product fragments and adapted/enhanced where needed.

Process fragments are made up of guidelines and algorithms, whereas the product fragments

describe input and output data object structures. In the process of method chunk assembly (3)

the reusable method chunks are constructed from the method fragments. Of utmost

importance in DICE, are method chunks representing transformation task types that hold all

the features for the required data transformations. Method chunks relevant for data integration

and cleansing are taken to the method level and refined where required (4). From the method

base they are instantiated and assembled into concrete DICE workflows (5). Fig. 24 provides

an overview of these five phases.

DICE - Method Conceptualization

78

Fig. 24 Core components of situational methods

(Rolland and Prakash 1996) argue that the granularity and abstraction levels of method

chunks are: context, trees and forests of trees where contexts represent atomic method chunks

that can be put into a hierarchy (trees and/or forests). The top most important method chunk in

DICE is the transformation task type. Transformation task types are structured in a refinement

hierarchy where from the abstract top level transformation task subordinate transformation

tasks are derived via specialisation. Initialisation, selection, addition, variable removal,

reclassification, consolidation and restructuring are the main transformation types that can be

further specialised or assembled as needed (see section 5.3.2 for the definitions of the

transformation task types). Fig. 25 shows the refinement hierarchy of the transformation task

types. For a better understanding the transformation task type “Consolidation” is exemplarily

Process and Workflow
Management

Data Mining

Statistical
Meta Data

Management

Quality Management

Method Chunk
Assembly

Meta Structure
Alignment

Method
Construction

Method
Usage

Domain
Analysis

2

5

4

3

1

DICE - Method Conceptualization

79

detailed. Consolidation is the atomic transformation task required for record linkage, i.e. for

merging of observable units. The standard consolidation transformation matches equivalent

observable units based on discrete matches. In these cases, an “all-or-nothing” principle

(Dusetzina et al. 2014) is applied, i.e. the compared properties of the two observable units

fully match. An example is the matching of observable units with the same ID or exactly the

same name. In contrast, “fuzzy” consolidation represents a specialised consolidation task that

uses similarity analysis to identify equivalent observable units. Observable units that match to

a certain extent (a certain degree of similarity) are consolidated. By further specialisation,

additional transformation tasks might be instantiated using more specialised functions for

matching similar observable units. See section 7.2.2 for a detailed discussion of similarity

functions applicable for identification of equivalent observable units in EA descriptions.

Fig. 25 Hierarchical breakdown of method chunks through specialisation/refinement

All of the levels hold method chunks. Method chunks on the top level are abstract and in

contrast to concrete chunks, cannot be taken directly into a situational method. They need to

be refined (specialised) first.

Applying the notion of modelling method as introduced by (Karagiannis and Kühn 2002), in

DICE method chunks (respectively transformation task types) are made up of:

 modelling language parts: attributes, notation and semantics,

 procedure parts: the guidelines to parametrize tasks, and most importantly,

 algorithms for performing the transformations on the data objects.

Transformation
Task

{abstract}

Consolidation
{abstract}

Standard
Consolidation

Fuzzy
Consolidation

… …

Selection
{abstract}

…

DICE method base

DICE meta structure

DICE - Method Conceptualization

80

Fig. 26 Constitutional elements of transformation task types

Adopting OMG’s multi-level hierarchy for SME, the DICE structure can be represented as

shown in Fig. 27.

Fig. 27 Multi-level hierarchy of DICE

In DICE, transformation task types are refined hierarchically (a), (b), until they serve as re-

usable method chunks (c) within the method base.

Transformation
Task Type

Algorithm

Modelling
Language

Part

Procedure
Part For representing

the process
fragments

For representing
the product
fragments

Meta structure

DICE method

DICE instance level (workflow)

(a) Transformation Task

(f) Concrete classes are instantiated
to be used in a DICE workflow.

(b) Transformation Task Type
(e.g. Join)

(c) In the modelbase are
abstract and concrete method
chunks.

DICE Model base

(e) From the set of available method chunks
the relevant are taken into the situational
method (e.g. DICE for EA)

(d) Method chunks can be generated via
different strategies: here „specialisation“

DICE - Method Conceptualization

81

The method base consists of abstract and concrete classes. Its classes are instantiated from

the meta-structure classes. DICE supports multiple strategies (d) to create method chunks, in

conformity with (Ralyté, Rolland and Deneckère 2004) most of which require metamodeling

features:

 Assembly-based strategy: assembly of existing method chunks by means of

aggregation, decomposition and refinement of existing method chunks.

 Extension-based strategy: enhancing existing method chunks with novel features,

e.g. by adding algorithms for calculating additional meta-data or by extending the set

of attributes of classes in the product part for calculation of quality metrics.

 Paradigm-based strategy: instantiating new method chunks from the meta-

structure.

 Ad hoc: creating methods and method chunks from scratch without instantiation

from the meta-structure.

Only concrete modelling classes can be taken into DICE methods such as the DICE method

for enterprise architecture analytics. On the bottom level, concrete instantiations of

transformation tasks are positioned, put into sequence, connected to each other via “flow”

relation and parametrised; they build up an executable DICE workflow.

An example of such an instance is a transformation task “Integrate Application Portfolios”,

which takes two concrete “data objects” (such as the ones depicted in Fig. 19) as input and

generates one integrated output data object. To this end, on model (instance) level at least one

transformation task of type “addition” has to be parametrised; the transformation task requires

a “name” and the two input data objects have to be specified. Depending on the required type

of integration, subsequent transformations have to be applied. For example, in the case of an

inner join, a subsequent selection transformation is applied in order to keep only observable

units contained in both initial datasets.

In (Mirbel and Ralyté 2006), the authors propose a two-step approach for method

engineering: (1) an assembly-based approach for constructing the method and (2) a so-called

roadmap-based approach for refining the method by providing predefined method chunk

configurations. With the concept of DICE subprocess, DICE offers a similar concept. The

above example of combining the two transformation tasks (of type integration and selection)

can be seen as a perfect example of such a subprocess. In this case, the subprocess serves as a

DICE - Method Conceptualization

82

reusable pattern (method chunk) composed of two atomic method chunks. The subprocess can

be put into the method base. It serves as a pattern which can be reused whenever an inner join

transformation is needed.

In the following sections, the constituent parts of the DICE method are introduced in detail.

The first part (section 5.1) covers the DICE modelling procedure and discusses how DICE

models are created, the roles which are typically involved and the interplay with the processes

of situational method construction.

5.1 The DICE Modelling Procedure

The DICE method can be applied in diverse BA situations. In (Grossmann and Moser 2016),

the authors suggest embedding DICE into data mining (DM) and knowledge discovery (KD)

processes to unfold its full potential. The Cross Industry Standard Process for Data Mining

(CRISP-DM) (Chapman et al. 2000), introduced in section 2.3, is one prominent example of

such a process, or more precisely, of such a process-oriented reference model.

In combination with CRISP-DM, a DICE workflow represents a process instance

hierarchically deducted from the superior CRISP-DM levels: (level 1) represents so-called

phases, (level 2) is made up of generic tasks intended to cover all possible steps of a DM

endeavour and (level 3) provides specialised tasks providing concrete input on techniques and

how to apply them in specific situations. Process instances (level 4) reflect the instance level

as enacted in a concrete BA endeavour. In this vein, the DICE workflows represent the 4
th

level and the DICE procedure is part of the 3
rd

 level.

The phases and tasks of the DICE procedure model (3
rd

 level) are presented in an idealised

sequence. Depending on the given situation, tasks will likely be conducted in a different

sequence, will be omitted completely and will definitely be shaped to the actual requirements.

In many cases the tasks will need to be conducted over and over again with different

parametrisation of the transformation tasks and by using additional or different data sources as

an input.

“Modelling a DICE workflow, defining a sequential order of the required data

transformation tasks, must be understood as analytical and creative work” (Grossmann and

Moser 2016). Applying a reference model such as CRISP-DM, a data engineer specialises the

generic recommendations from the reference model until reaching the specific level where the

DICE - Method Conceptualization

83

actual DICE workflow is designed. In the following sections the DICE procedure is

introduced framed by the CRISP-DM phases.

Before starting with the actual data preparation and applying DICE, the phases Business

understanding and Data understanding have to be accomplished. The first phase, Business

understanding addresses the definition of the business objectives of the BA endeavour and

requires assessing the situation with a focus on available resources, risks and given

constraints. Based on these findings, the most important step of the phase, namely the

definition of the Data Mining objectives and the data mining success criteria has to be

conducted. Success might be defined by a certain level of predictive accuracy that must be

achieved in the final delivery. With regard to the work product delivered through the data

preparation, success criteria are defined together with the quality criteria deliberately derived

from the DICE meta structure. Fig. 28 summarises the steps of the business understanding

phase with emphasis on the DICE relevant process steps.

Fig. 28 Modelling procedure – Phase “Business understanding”, adapted from (Chapman et al. 2000)

In the second phase “Data understanding”, the source datasets are collected and explored.

Conducting an initial analysis, the data analyst obtains an impression of the data quality of the

input sources.

Determine
Business

Objectives

Determine
Data Mining

Goals

Continue with phase data understanding

Assess
Situation

Define intendent results in DICE terms:
Population, observable unit, quality criteria for
the final dataset, required level of
documentation for data provenance etc.

Produce
Project Plan

DICE - Method Conceptualization

84

The data analyst creates initial DICE workflows comprising transformation tasks allowing

loading of the data and restructuring of the data as needed. In most cases, datasets in tabular

format will be applicable (the common format of business analytics). Of utmost importance in

this phase is the creation of composite data objects from the given sources. Thus, not only the

datasets themselves but also metadata describing the sources have to be collected and

characterised applying the structure of the composite data objects introduced above. This step

is called initialisation. Any time a new source dataset is considered, it has to be initialised.

Thus, all metadata have to be calculated from the input dataset and manually added where not

automatically ascertainable.

Fig. 29 Modelling procedure – Phase “Data understanding”, adapted from (Chapman et al. 2000)

For example, a typical dataset could be one holding application data as the application

portfolio catalogue in Fig. 19. After loading the dataset, the variables have to be clearly

specified. Each column represents one variable. The variable names and their semantic

meaning have to be specified. Examples of variables in the given dataset are: ID, application

Describe Data

Explore Data

Verify Data
Quality

Collect Initial
Data

Business understanding

Specify structural and quality
requirements and add these
requirements in the form of
metadata.

Apply the DICE meta structure for describing
the source datasets (observable units, covered
population, variables etc.) for relevant
datasets.

Calculate quality indicators.

Define minimum sample size of
population.

Continue with phase data preparation

Data object
initialisation

DICE - Method Conceptualization

85

name, operating costs and operating system. The variable “ID” could be considered as a

unique identifier of the represented observable units.

By semantically interpreting the content of the dataset it becomes clear that the observable

units are application components. Although somehow obvious in this case, one could also

assume that operating systems represent the observable units in the given dataset. The

population is not clear at all. It could be all application components of the entire organisation,

the application components of a specific organisational unit or any other subset of application

components. Without additional information the population represented in the dataset cannot

easily be determined. Thus, additional metadata, which might not be extractable from the

given input sources, has to be collected and imputed.

The same holds true for estimations of the data quality. DICE considers three types of

quality data:

 Instant quality indicators can be calculated directly from the given property values.

Examples are completeness, referential integrity etc.

 Requirement-based quality indicators are not that straight forward and need

additional input for their determination. An example is the calculation of data

freshness, which obviously requires a threshold, specifying the acceptable age of the

data properties (derived from the last update timestamp).

 Assessment-based indicators cannot be calculated from the given dataset and have

to be appraised when initially loading the dataset. (Berka et al. 2016) provide a

catalogue of nine scored questions for such a quality appraisal. Example questions

are: Is the variable important for the data source owner? What is the average time

span in which data are adjusted in case of changes? Are the data revised on entry?

Are there any kind of technical input checks applied to the data?

Detailed information on these metadata types is discussed in section 5.2 where the entire

metamodel with all DICE meta objects is presented. Anticipating this, it can be stated that

quality and structural requirements are formalised in the form of processing metadata and that

DICE provides mechanisms for the automatic appraisal of property values against these

requirements.

Another important step in this phase is the determination of the required population size: the

population coverage. Determining the coverage (respectively the sample size) is critical.

DICE - Method Conceptualization

86

Oversized sample populations may waste time and resources, while samples that are too small

often result in inaccurate results. Thus, the sample population has to be chosen in such a way

that it makes inferences about the target population possible. In the literature, an abundance of

techniques for the determination of sample sizes is discussed, see (Dupont and Plummer

1990). In essence, the required population size (sample size) is calculated from the following

four determinants: (1) population size, (2) margin of error, i.e. confidence interval, (3)

confidence level and (4) the degree of variability in the variables being measured (standard of

deviation), see (Israel 1992). The required population size can be calculated as follows:

2

2

2/1zepulationSiRequiredPoPROC)1(

e

ppZ
D


  

where Z
2
 is the abscissa of the normal curve that cuts off an area α at the tails, e is the

tolerable error for the sample mean (required level of precision) and p is the estimated

proportion of an attribute that is present in the population (Israel 1992).

The third phase of the DICE procedure is data preparation. The initial DICE workflow is

extended in this phase. Transformation tasks, such as select data, restructure data and

consolidate data are applied with the aim of generating a sound dataset for the upcoming data

modelling and evaluation phases.

DICE - Method Conceptualization

87

Fig. 30 Modelling procedure – Phase “Data preparation”, adapted from (Chapman et al. 2000)

Adding any transformation task to a DICE workflow involves searching for an adequate

transformation task type (respectively method chunk) in the method base and instantiating it

into the model. This step is supported by offering formal descriptions of the available method

chunks, which facilitate the discoverability of suitable transformation task types. (Mirbel and

Ralyté 2006) suggest describing the method chunks in a formalized way. A recommendation

on how to describe DICE method chunks is shown in section 5.2, where the DICE metamodel

is discussed in detail.

In a next step, each instantiated transformation task has to be parametrised and connected

with the already instantiated transformation tasks. An example for parametrising is the

assignment of input datasets to an addition task or to specify selection arguments for a

Execute
Workflow
Stepwise

Perform
Feasibility

Check

Choose
Transformation

Task Types

Business understanding

Each transformation step requires
parametrisation. E.g. for a selection the
selection criteria have to be specified.

Perform feasibility check based on quality
indicators and resulting datasets after
execution of each transformation step.
Change parametrization and entire workflow as
needed.

Continue with phase modelling/evaluation

Define Rough
Workflow

Request
New/Adapted

Method Chunks

Request adaptations to
existing or new method
chunks as needed.

Parametrize
Transformation

Tasks

Automatic execution of the
transformations.

DICE - Method Conceptualization

88

selection task. The DICE transformation tasks are assembled via the “flow” relationship,

which determines in what order the transformations have to be executed.

If a required transformation task type (method chunk) is missing in the method base,

respectively in the method, or adaptations of given method chunks are required, business

analysts will ask the method engineer to enhance the method base.

The prototypical DICE implementation (see section 8.1) also makes possible the creation of

transformations from scratch. In this case the required transformations can be coded using a

generic transformation task type as the starting point. Ideally, such cases are re-evaluated.

Where suitable, these transformation tasks can be considered to be generalised/specialised and

added to the method base.

Executing a DICE workflow generates an output data object. Based on the generated

metadata (foremost on the calculated quality KPIs) and by analysing the actually generated

dataset, the data analyst scrutinises the intermediate result of his modelling efforts and

changes the workflow design as needed by aiming for an optimum workflow design. Usually,

repeated backtracking within the designed workflow will be required for the purpose of

correcting and optimising previously designed workflow parts or for adding/exchanging input

data sources (Chapman et al. 2000).

This procedure continues until a satisfactory solution is achieved. The same holds true for

the entire modelling procedure. At any point in time, the business analyst might decide to step

back to a previous task and redo some of the already conducted tasks. Finally, the cleansed

and integrated data objects are handed over to the modelling, analysis and deployment phases.

An important step when constructing and utilising a situational method such as DICE is of

course, the task of “Method Administration”. It emphasises maintaining the method base. It

has to be clearly defined under what conditions method chunks and fragments are added to the

method base. In (Ter Hofstede and Verhoef 1997), the authors adduce “coherency” and

“granularity” of method chunks as important categories for decision making. Too coarse

grained method chunks will lead to higher efforts to refine the chunks for the given

application scenario. On the other hand, if too fine grained, they will only be of value in rare

cases. The hierarchical structured DICE method base alleviates that problem to a large extent.

For example, a simple integration transformation might be supported by a method chunk

“addition transformation task type”. In a standard case the merge task might cover merging

DICE - Method Conceptualization

89

datasets based on exact matching keys. A more sophisticated approach enhancing the

“integration transformation task type” might support fuzzy merge (e.g. based on distance

metrics). In this case, the method base comprises two integration tasks: the standard

integration and the fuzzy merge as a specialisation of the former transformation task type. See

Fig. 25 which elaborates on this example from the viewpoint of the DICE metamodel.

The following section discusses the DICE modelling language with strong emphasis on the

DICE metamodel.

5.2 The DICE Modelling Language

The DICE modelling language can be divided into two parts: (1) the structural part and (2)

the behavioural part. Initially inspired by the Unified Modelling Language (Rumbaugh,

Jacobson and Booch 2004), this classification also reflects the two constituent parts of a

method chunk namely the process fragments and the product fragments.

The concepts of the DICE modelling language, i.e. its disposable modelling classes and the

relation classes that connect them, are grouped into these two categories. The structural part

contains the concepts required to describe the data analysis object AO and its corresponding

meta data object MO . The behavioural part consists of the concepts for defining the dynamic

behaviour, namely for defining the workflows executing the transformations on the data

objects.

UML, a modelling language widely accepted for illustrating knowledge representation

languages, see e.g. (Brockmans, Haase and Studer 2006), (Buckl et al. 2007) and (Fischer and

Winter 2007), is used to represent the DICE metamodel, see Fig. 31.

DICE - Method Conceptualization

90

Fig. 31 DICE Metamodel Overview

Structural

Metadata

Variable (V)

Value
Metadata

Property (P)

Metadata

Observable Unit
(U)

Metadata

Dataset (D)

 belongs to

triggers

1..n

1..*

1

1

1

1..n

1..n

calculateData()
calculateMetaData()

initialise()

Transformation
Task Type

EndStart

Subprocess

re
ad

s/
w

ri
te

s


triggers

triggers

1..n

0..1

1

1

1
1

1

1

0..2

triggers

1

1..*

belongs to

re
ad

s/
w

ri
te

s


re
ad

s/
w

ri
te

s


1

1..n

1..2

1..n

Behavioural

Restructure

Load
AdditionSelect

Consolidation

Reclassification

Transform
Load/Restructure

Variable Removal

DICE - Method Conceptualization

91

In the structural part of the metamodel one can find the aforementioned classes. Notably,

only the class “property” is made up of both a data-level (the concrete values) and a meta-

level. All other classes are represented solely by the meta-level, although inherent in the raw

datasets (i.e. on data level).

The centrepiece of the behavioural part of the DICE metamodel is the transformation task

type, which is specialised into more concrete transformation task types, such as selection,

addition, consolidation and reclassification.

5.2.1 Behaviour concepts of the DICE metamodel

The behavioural part holds the constructs required for defining the processing of the data

objects. A graphical workflow model depicting the conducted transformation tasks including

their parametrisation contributes to the fulfilment of the data provenance requirements.

Traceability is guaranteed by the modelled workflow itself. It represents the processing

history of the data objects. By defining the transformation tasks, their parametrisation and the

sequence in which the transformations have to be enacted, the modification of the data

becomes comprehensible. The resulting data objects become reproducible.

A DICE workflow is defined by the following concepts: Start, Transformation Task Type,

End and by the relation class “triggers”, which connects the aforementioned modelling

classes. Start and End classes are required to define a structurally sound process (van der

Aalst 1996). The class transformation task type specialises two classes: an atomic

transformation called “Transformation Task Type” and a “Subprocess Task”, which links to

an externally defined DICE process that in turn comprises the aforementioned concepts. The

class “Subprocess” makes possible the assembly of transformation tasks into reusable method

fragments. In this case, instantiated subprocesses serve as reusable patterns, which are stored

in the DICE method base.

The abstract transformation task type class is in turn specialised into concrete transformation

task types forming a specialisation hierarchy. The specialised transformation tasks are

classified into the group of: “get transformation tasks” and “integrate and cleansing

transformation tasks”. The latter specialises the transformation task types: selection, addition,

consolidation, reclassification and variable removal. Inspired by the work of (Papageorgiou,

Vardaki and Pentaris 2000), these transformation task types have been identified as the most

DICE - Method Conceptualization

92

important atomic transformation tasks for DICE. DICE provides means to assemble these

atomic transformation tasks into more complex transformations (utilising the concept of

subprocesses). Reflecting on the rich literature on data transformation algorithms, it becomes

obvious that these archetypes often have to be further specialised.

Take the example of a consolidation transformation. In their survey on binary similarity and

distance measures (Choi, Cha and Tappert 2010) cite more than 76 similarity and distance

measures, all of them supporting “fuzzy merge” transformations. With the hierarchical

concept of DICE it becomes possible to find a balance between a high number of specialised

transformation task types versus a smaller number but with higher intrinsic complexity

(accompanied by the increasing parametrisation efforts) of transformation task types. In this

case, the method engineer has to decide whether to offer multiple distance metric functions

within one transformation task type (by offering parametrisation options) or provide several

transformation task types, each based on individual distance algorithms.

The second group of transformation task types is the group of get transformation tasks types.

This group contains transformation task types for accessing, restructuring and formatting the

input sources. Access transformation task types deal with the loading of the data from a given

data source. Data might be retrieved from locally stored files but also from web resources or

any other place. An example is loading data streams from social media platforms such as

twitter
4
. Formatting transformation task types are required to interpret the data, which might

reside in arbitrary technical formats such as csv (comma separated value), pdf (portable

document format) or in proprietary vendor formats such as Microsoft’s xlsx (Excel file) and

docx (Word file).

Besides the technical format, the datasets structural format has to be considered. In the

context of EAM, data can come in various formats. The range extends from highly structured

datasets instantiated from EA metamodels to less formally structured data such as architecture

change requests, architecture vision papers and statements of architecture work, which

typically reside in semi-structured text-heavy formats. All of these relevant datasets have to

be reformatted into tabular form (horizontal format), the most typical input format for DM. As

4
 www.twitter.com, see also (Grossmann and Moser 2016) where a specialised transformation task type for

loading data from twitter is presented.

http://www.twitter.com/

DICE - Method Conceptualization

93

with the group of cleansing and transformation task types, the get transformation tasks types

are structured into a hierarchy.

Table 3 provides an overview of the introduced archetypical transformations and provides

examples from the fields of EAM.

Table 3 Archetypical transformation task types – behaviour concepts in DICE

Archetypical

Transformation Task Type

Definition/Example

Selection Conducting selection transformations limits the population and results in a

reduced dataset. Observable units not meeting the selection criteria are removed.

A simple example is the selection of application components using a certain

operating system from an application portfolio catalogue such as the one of Fig.

19.

Variable Removal Variable Removal transformations remove/discard one or more variables from a

dataset.

An example is to delete one variable (e.g. “Operational Costs”) and its properties

including their values (and metadata) from the application portfolio catalogue

dataset depicted in Fig. 19.

Reclassification The reclassification transformation is used to convert the values of the properties

of a variable from one grouping level to another.

An example in context of the application portfolio catalogue is to change the

“Operational Costs” from the measure unit TEUR into EUR.

Addition The addition transformation combines two datasets by appending one dataset to

another.

An example is to merge the dataset of the application portfolio catalogue with a

second dataset. Typically but not mandatory, both input datasets carry the same

observable units and share at least a subset of variables.

Consolidate observable

units

Consolidation of observable units serves a twofold purpose: (1) it is used for

record linkage where duplicate observable units are removed and (2) to support

groupby-transformations where a group of observable units is aggregated into a

new observable unit.

DICE - Method Conceptualization

94

For each variable, aggregation functions have to be specified. Typical

aggregation functions are: choosing values with the better quality and summative

aggregations such as sum, max, average, mean etc.

5.2.2 Structural concepts of the DICE metamodel

The structural part defines the basic information logic items, namely the composite data

analysis objects (AO) and the composite metadata objects (MO) introduced in section 4.1.

Table 4 discusses the behavioural concepts of the data analysis objects and draws relations to

the fields of EAM.

Table 4 Archetypical types of data analysis objects in DICE

Meta structure

concept

Definition/Example

Observable unit Observable units are the entities for which information is collected and analysed.

In the context of EA, many of them can be derived from the EA metamodels in use and are

represented in the form of the metamodels' modelling classes and relations. Entities of

interest are the typical EA building blocks stipulated in the EA metamodels. According to

TOGAF, a building block is defined as a (potentially) reusable component of the enterprise

architecture. TOGAF cites actors, business services, application components and data entities

as examples of building blocks. In their work, (Aier, Riege and Winter 2008b) provide a

comprehensive overview of typical building blocks. They list and score the building blocks

according to their importance in EA endeavours. In general, each of these building blocks is

an observable unit candidate for EA-related BA endeavours.

Dataset The set of data collected for describing the observable units is called dataset. Datasets

comprise observable units and their properties.

In EA typical datasets are architecture descriptions, such as catalogues (e.g. the application

portfolio catalogue in Fig. 19), matrices and models. However, many times the descriptions

might not be that structured, and relevant observable units, variables, properties etc. have to

be extracted first.

Variables The properties of observable units are classified into variables.

In the context of the given example (Fig. 19), the variables are the columns of the dataset.

Properties Properties carry the values collected/available for observable units.

In the context of EAM they differentiate the building blocks (observable units). In Fig. 19

DICE - Method Conceptualization

95

the properties are represented (as is the rule) in the cells of the application portfolio catalogue

dataset.

Population A population represents the set of observable units.

In DICE, the population is represented as metadata of the dataset. The difference between

the entire population (scope) and the observed part of the population (sample population)

represented in a given dataset must be distinguished.

In the context of an enterprise architecture, typically the entire population of building blocks

is of relevance. Examples are: the population of business processes, of application

components (possibly documented in an application portfolio catalogue as in Fig. 19) or all

technologies in use.

In general it can be denoted that it is difficult to determine the appropriate metadata

(Sundgren 1996). For deciding which meta information is worth keeping, the application

domain has to be analysed. For the EAM domain this is done in section 7.1. However, on the

DICE meta structure level predefinitions are made. Utilising the presented refinement

mechanisms, adequate metadata objects can be derived as needed.

On meta structure level the DICE metamodel structures the concepts into observable unit,

dataset, variable and property. Each of these concepts captures metadata, which is categorised

into the following aspects, inspired by the work of (Kent and Schuerhoff 1997):

 Semantic metadata carry contextually relevant data that provide a level of

understanding about the data, i.e. the meaning of the data.

 Logistic metadata is used to provide technical information on the given datasets.

Examples are: locations, technical data formats, access criteria etc.

 Process metadata is used for processing/transforming the data. All metadata

required for conducting the transformations and for documenting the performed

transformations are stored in this aspect. Additionally, the process metadata

represent the requirements that the property values have to comply with.

 Quality metadata are of utmost importance. Data transformations heavily impact

the data quality. Quality measures are applied to all concepts of the data level.

Fig. 32 shows the big picture. For a better overview, only the DICE-specific meta data

structures are presented in detail. That is, common metadata such as the ones defined in the

Dublin Core Metadata Element Set: creator, description, publisher, contributor, date, type,

DICE - Method Conceptualization

96

language, identifier, source, relation, coverage and rights (Dublin Core Metadata Initiative

2012) can be added as needed, leveraging the DICE meta modelling capabilities. There are a

great many different metadata standards available across disciplines, such as the book

industry, library science, geography, archiving, e-commerce, ecology, arts and education.

Dublin Core is a general purpose standard, which can be used cross-discipline. See (Duval

2001) and (Smith and Schirling 2006) for an overview.

On the following page the structural part of the DICE metamodel is depicted. Please note

that you can find the graphic split and zoomed in the annex for better readability, see

section 10.1.

DICE - Method Conceptualization

97

Fig. 32 Complete MM of the DICE structural part

V

P

D

U

QUALPVALP LOGP PROCP

yconsistencQUALP 

orychangeHistLOGP 

ycircularityconsistencQUALP 

tmeasureUniaccuracyQUALP 

ycardinalityconsistencQUALP 

SEMV

LOGV

QUALV

tmeasureUninvalueDomaiPROCP 

tmeasureUninvalueDomaiPROCP changeDateLOGP 

PROCV

syntaxnvalueDomaiPROCV 

scurrentnesPROCV 

sourceLOGV 

keyPROCV 

descritionSEMV 

complenessQUALP 

accuracyQUALP 

semanticsaccuracyQUALP 

sourceLOGP 

QUALDSEMD LOGD PROCD

veragerequiredCoPROCD 

SizepopulationSEMD 

izesamplePopSSEMD 

populationSEMD 

CoveragePopulationcomplenessQUALD 

tecreationDaLOGD 

typeSEMU 

LOGU

QUALU

SEMU

sourceLOGD 

nameLOGD 

definitionSEMU 

nameSEMV 

ependencyvarDaccuracyQUALP 

scurrentnesQUALP 

keyPROCD 

stepWidthnvalueDomaiPROCV 

pendencyvariableDenvalueDomaiPROCV 

maximumAgescurrentnesQUALP 

niquenessunvalueDomaiPROCV 

nvalueDomaiPROCV 

maximumAgescurrentnesPROCV 

stepWidthaccuracyQUALP 

syntaxaccuracyQUALP 

synonymyconsistencQUALP 

lIntegrityreferentiayconsistencQUALP 

dataTypenvalueDomaiPROCV 

uniquenessQUALP 

tmeasureUninvalueDomaiPROCV 

ycardinalitnvalueDomaiPROCV 

dataTypeaccuracyQUALP 

gmisspellinaccuracyQUALP 

redundancyuniquenessQUALP 

nTypeaggregationvalueDomaiPROCV 

yconsistencQUALV 

ycircularityconsistencQUALV 

tmeasureUniaccuracyQUALV 

ycardinalityconsistencQUALV 

complenessQUALV 

accuracyQUALV 

semanticsaccuracyQUALV 

ependencyvarDaccuracyQUALV 

scurrentnesQUALV 

maximumAgescurrentnesQUALV 

stepWidthaccuracyQUALV 

syntaxaccuracyQUALV 

synonymyconsistencQUALV 

lIntegrityreferentiayconsistencQUALV 

uniquenessQUALV 

dataTypeaccuracyQUALV 

gmisspellinaccuracyQUALV 

redundancyuniquenessQUALV 

yconsistencQUALU 

ycircularityconsistencQUALU 

tmeasureUniaccuracyQUALU 

ycardinalityconsistencQUALU 

complenessQUALU 

accuracyQUALU 

semanticsaccuracyQUALU 

ependencyvarDaccuracyQUALU 

scurrentnesQUALU 

maximumAgescurrentnesQUALU 

stepWidthaccuracyQUALU 

syntaxaccuracyQUALU 

synonymyconsistencQUALU 

lIntegrityreferentiayconsistencQUALU 

uniquenessQUALU 

dataTypeaccuracyQUALU 

gmisspellinaccuracyQUALU 

ncyinconsisteuniquenessQUALU 

PROCU

yconsistencQUALD 

ycircularityconsistencQUALD 

tmeasureUniaccuracyQUALD 

ycardinalityconsistencQUALD 

complenessQUALD 

accuracyQUALD 

semanticsaccuracyQUALD 

ependencyvarDaccuracyQUALD 

scurrentnesQUALD 

maximumAgescurrentnesQUALD 

stepWidthaccuracyQUALD 

syntaxaccuracyQUALD 

synonymyconsistencQUALD 

lIntegrityreferentiayconsistencQUALD 

uniquenessQUALD 

dataTypeaccuracyQUALD 

gmisspellinaccuracyQUALD 

redundancyuniquenessQUALD 

uemissingValcomplenessQUALU 

uemissingValcomplenessQUALD 

uemissingValcomplenessQUALU 

uemissingValcomplenessQUALU 

aggrTypenvalueDomaiPROCP 

redundancyuniquenessQUALU 

DICE - Method Conceptualization

98

In a narrow sense, the dataset
AD is solely represented by its constituent properties. On data

level, structural information such as the observable units and the variables are inherent but not

explicitly represented. Even if a given dataset consists of observable units with unique IDs in

the dataset and column headings, this information has to be extracted and sufficiently defined

on metadata level. As has been discussed in the introduction to section 4, the input datasets

have to be initialised; taking the data level as an input, metadata have to be added to create the

required composite data object. The initialisation transformation task is presented in section

5.3.2.1 in detail.

It creates the composite data object comprising data and metadata objects and is defined as

follows:

    

 
 
 QUALPROCLOGSEMD

QUALPROCLOGSEMU

QUALPROCLOGSEMV

QUALPROCLOGVALPPD uv

initialise

uv

A

,,,

,,,,

,,,,

,,,,







 

where VAL represents the set of atomic property values on data level, and SEM, LOG,

PROC and QUAL represent the sets of meta data objects, which are hierarchically structured

into sub meta objects.

Elements within this hierarchically structured metamodel are denoted via superscript that

presents the path from one of the four base categories to the concrete metadata values. The

“greater than sign” is used to depict the navigation paths. Take the following example:

tsmeasureUninValueDomaiPROC

vV 
provides information about the specification of the measure unit

of variable v which is categorised as processing information (category: PROC). It is required

to specify the value domain of the variable. Likewise,
syntaxQUAL

uvP 
provides information

about whether the syntax of the value held in property uvP complies with the specifications

in
syntaxnvalueDomaiPROC

vV 
.

An unambiguous definition of the observable units requires specifying the metadata

collected in the metadata category SEM, where the observable units are defined in natural

language. As an example:
typeSEMU 

provides information about the semantic definition of the

DICE - Method Conceptualization

99

observable unit. To be able to precisely identify an observable unit within a dataset, unique

identifiers for the observable units have to be defined. Thus, the variables constituting the data

key within the dataset must be indicated. The data key of a dataset can be defined by one or

more variables whose property values contained within are used to uniquely identify each of

the observable units.

 trueVVD keyPROC

vv

keyPROC   | .

Due to the immanent importance of data quality aspects in the context of data preparation, a

detailed discussion of these aspects is provided in section 6.

The set of the DICE metadata cannot be considered as a final set. Refining transformation

task types, as discussed in section 5.2.1, will typically pose requirements on the structural

concepts, i.e. on the product fragments. Take the example of standard and fuzzy consolidation

introduced in section 5.2.2. In addition to the standard metadata, similarity measures and

distance measures have to be documented in order to keep the conducted consolidation steps

comprehensible. The same extensibility requirements hold true for the DICE algorithms, as

will be discussed in the upcoming section.

5.3 DICE Algorithms and Mechanisms

Algorithms and mechanisms are a third important building block of a modelling method.

DICE comes with two basic types of algorithms: (1) algorithms operating on the entire

workflow and required for its execution and (2) algorithms (as part of the process fragments),

for performing the transformations that hold the processing logic of the actual data

transformations.

5.3.1 Macro Level: Execution of DICE Workflows

The DICE workflows are structured in the form of sound workflow nets using a BPMN-like

notation. See (White 2004) for an introduction to BPMN. The macro level algorithms ensure

the processing of the transformation tasks in the defined sequence. The algorithms verify

whether all preconditions are fulfilled before executing a transformation. Typical

preconditions are the checking of whether all required input parameters are available in the

model.

DICE - Method Conceptualization

100

For the execution of a DICE workflow the execution logic of Petri nets is applied. For an

introduction to the application of Petri nets in the context of workflow management see (Van

der Aalst 1998). More specifically, mechanisms of place/transition nets (P/T nets) are applied

where each DICE transformation task represents a transition in the Petri net. The places in the

Petri net represent the state of the data objects after performing a transformation. The tokens

within the Petri net represent input and output datasets.

Only if a transformation was successful (that is to say, all required data and metadata have

been generated, or rather, inputted) are the upcoming transitions ready to be invoked (ready to

‘fire’). Depending on the complexity of the DICE workflow, there can be more than one data

object (tokens) within the system. When a transition fires (i.e. a transformation is performed),

it consumes the required input data objects (tokens) and typically creates one output data

object (token) in its output places (the state after performing the transformation). Thus, only if

preconditions are fulfilled, does the algorithm move on to the next transformation task. Fig.

33 presents a basic DICE workflow comprising three transformation tasks: two for loading

the datasets and converting them into data objects (initialize) and one for integrating the data

objects via addition transformation. The corresponding Petri net is also shown.

DICE - Method Conceptualization

101

Fig. 33 Petri net representation of an exemplary DICE workflow

The marking in the Petri net shows that both datasets have been successfully loaded and

initialised. As soon both datasets (represented by the tokens) are available, the transition

“addition” can fire and produce the integrated dataset. For a more detailed discussion on Petri

net execution algorithms see (Murata 1989).

5.3.2 Micro Level: Algorithms for Performing Data Transformations

Performing a transformation task requires initialised data objects and a parametrised

transformation task. The transformation algorithms are part of process fragments of the

method and typically compose: (1) dedicated transformation algorithms, transforming data

and metadata and (2) a (re-)initialisation algorithm applied after performing the actual

transformation task. The first type addresses the algorithms dedicated to performing the

transformation on data and metadata level. The latter has to be applied after performing the

transformations to re-calculate the affected metadata.

Load
dataset B

Integrate
datasets

Load
dataset A

Petri net

DICE workflow

1

1

!successful

Load
dataset A

Load
dataset B

successful

!successful

successful

Addition

!successful

successful

1

1

1

1

DICE - Method Conceptualization

102

For the data transformations, dedicated algorithms are applied. One can easily find dozens of

merge algorithms, see e.g. (Mishra and Eich 1992) and (DeWitt, Naughton and Schneider

1991) for an overview. For incorporation into DICE, these algorithms typically have to be

extended and restructured to fit into the DICE meta structure. Join algorithms such as the

nested loop join, the sort-merge join and the hash join are perfect examples. Choosing an

appropriate join algorithm depends on the data structure and on the size of the given input

datasets.

Fig. 34 depicts the popular nested loop join as an example. In its most basic form the

algorithm uses one dataset as the outer input table and the second dataset as the inner input

table. In the outer loop the first dataset is consumed row by row (i.e. observable unit by

observable unit). The inner loop, executed for each outer row, searches for matching rows in

the inner input table.

for each observableUnit
rU in dataset

rD do

 for each observableUnit sU in sD do

 if
rU and sU satisfy the join condition

 then output the observableUnit <
rU , sU >

Fig. 34 Nested loop join on data level

To perform the required calculation on metadata level, DICE extends these generic

transformation algorithms by either appending additional algorithms, e.g. the initialisation

algorithm for recalculating the metadata or by directly extending the given algorithms. A

simple example based on the nested loop join is shown in Fig. 35. The join algorithm is

extended with outputting similarity measures as part of the quality metadata. The initialisation

algorithm recalculates the metadata. Details on the (re-)initialisation can be found in section

5.3.2.1.

DICE - Method Conceptualization

103

for each observableUnit
rU in dataset

rD do

 for each observableUnit sU in sD do

 if Ur and Us satisfy the join condition

 then output the observableUnit <
rU , sU >

 % extend algorithm to output similarity degrees

 per observable unit as part of the metadata %

 output the similarity degree SD(
rU , sU)

% initialization algorithm %
initialize (output dataset)
output final data object

Fig. 35 Merge algorithm extended with fragments for calculation of meta objects

Summing up, algorithms are intimately intertwined with the metamodel. Specialising and

refining method chunks requires the adaptation of its algorithms and likewise of its modelling

classes. Parametrisation options for a transformation task type, the structure of the meta data

objects and the algorithms must be aligned to form an instantiable method chunk.

In (Denk, Froeschl and Grossmann 2002), the authors present a framework for documenting

statistical data processing on data and metadata level. Algorithms for altering data taking

metadata into account have been discussed in (Vardaki, Papageorgiou and Pentaris 2009),

(Papageorgiou, Vardaki and Pentaris 2000) and (Papageorgiou et al. 2001). DICE builds on

these approaches. It defines atomic transformation task types and provides means to

instantiate and assemble these tasks into data preparation workflows. Whereas the quoted

research on metadata management defines strict preconditions to avoid biased data generated

by inappropriate transformation tasks, DICE is designed to be more failure-tolerant by

allowing processing of inadequate transformations. Instead of strictly defined preconditions,

DICE provides quality indicators to the data engineer after performing the transformations.

Based on these quality data (calculated via initialisation transformation after performing the

actual data transformation task), the data engineer can reconsider and adapt previously taken

transformation tasks.

Depending on the type of transformation performed, different kinds of metadata require

subsequent alteration. For example, whereas a selection transformation applied to a dataset

will create a subset of the population and thus the semantic metadata of the population

requires an update, the reclassification of property values of a variable affects the metadata of

the variable but not of the population.

DICE - Method Conceptualization

104

In the following sections the archetypical transformation tasks of DICE are introduced.

5.3.2.1 Initialisation

The initialisation transformation creates the composite data object comprising data and

metadata. Input for the initialization transformation is either a raw dataset),(iAD for which the

metadata have to be created or a DICE data object)(iO for which the metadata need to be

recalculated. Output of the initialization are the data objects which are made up of the dataset,

the observable units, the variables and the properties, each including its metadata. Metadata

are recorded manually or automatically calculated. Formally initialiseT can be represented as

follows:

   )()()()()(),(,, ooooiiA

initialise OVUDODT 

For the output dataset: semantic metadata, logistic metadata, process metadata and some of

the quality metadata have to be manually added by the data analyst.

Depending on the type of quality indicators, the assessment must be carried out manually or

can run fully automated. For example, whereas semantical correctness of a property value

requires human appraisal, many other quality indicators such as the completeness of a

variable, can be calculated automatically. In section 6 the list of DICE quality indicators is

discussed in detail.

In the case of large amounts of data, a manual appraisal of all observable units will not be

sufficient. Hence, a set of observable units (a sample) needs to be selected from the given

dataset, which is less in number (size) but adequately represents the population so that true

inferences about the data quality of the entire dataset can be obtained. A two-stage approach

is suggested where in a first step for a selection of observable units, an estimation of the data

quality is conducted. This information is then used to construct the missing quality indicator

values of the non-evaluated properties. This approach is commonly referred to as data

imputation. There are manifold approaches and algorithms for data imputation that can be

classified into context dependent imputation (based on association rule techniques) and

context-independent imputation techniques (based on clustering techniques), see (Allison

2002) for an overview. The context-independent approach hypothesizes a probabilistic

relationship between the assessed properties and the missing values. Based on this, the

DICE - Method Conceptualization

105

occurrence probabilities of the properties are estimated. The subsequent data imputation is

done randomly based on the estimated probabilities. The minimum sample size required,

avoiding biased results, can be determined by applying sample size determination methods as

have been discussed in section 2.4.1.4. The initialization algorithm in pseudo code can be

found in the annex in section 10.2.1.

For a better understanding, Table 5 exemplarily illustrates the metadata of the application

portfolio catalogue after initialisation based on the DICE metamodel.

Table 5 Example data object after initialisation

Metadata Example Remark

populationSEMD  All applications used within the

organisation

sampleSEMD  All applications used within the

organisation

Note that the finite population of all

applications is ideally covered:

sampleSEMD 
 =

populationSEMD 
.

SizePopulationSEMD  800 Based on estimation

The sample size of the population can be

calculated from the observable units.

Assume |U|=755

sourceLOGD  EA repository The organisation’s EA repository is the

source of the given dataset.

nameLOGD  Application portfolio catalogue

report

In most cases the file name or the

heading of the table

tecreationDaLOGD  03/12/2016 MM/TT/YYYY

keyPROCD  ID As a unique identifier, the variable ID is

defined.

totalQUALD  0,83 83 %, calculated from the quality

indicators of the subordinated concepts

(U, V, P)

… … …

uniquenessQUALD  1 100 %, assuming no duplicate IDs in the

dataset

... … …

DICE - Method Conceptualization

106

ndescriptioSEMU  “An application component is

defined as a modular, deployable

and replaceable part of a software

system that encapsulates its

behaviour and data and exposes

these through a set of interfaces.”

Note: In this example the definition of

application component is taken from

Archimate (The Open Group 2016).

ndescriptioSEM

ostOperatingCV 

The yearly expenses which are

related to the operation of the

application component including

license cost, infrastructure cost and

HR related costs.

A precise definition of the semantic

meaning of the variable must be defined.

In this example of the variable

“Operating Cost”

tmeasureUninvalueDomaiPROC

ostOperatingCV 

€/year

… … …

totalQUALU 

1020
0,93 Quality indicators are evaluated per

observable unit. The example shows the

estimated total quality of the application

CosMos (with ID 1020). Details on how

to calculate the total quality indicator are

presented in section 6.

… … …

VAL

CostoperatingP ,1020
23.000 Operating costs of the observable unit

“CosMos” with ID 1020

23.000 is the value assigned to the

property.

5.3.2.2 Selection

Conducting a selection transformation limits the population of a given input data object by

removing those observable units not meeting the selection criteria (Papageorgiou, Vardaki

and Pentaris 2000). Formally the selection transformation can be denoted as follows:

 riteriaselectionCOUriteriaselectionCOTU i

i

i

select

o

select |),()()()(

where selectionCriteria consist of

     constantoperatorUconstantoperatorPconstantoperatorP VAL

i

QUAL

iv

VAL

iv ,,,,,,  .

DICE - Method Conceptualization

107

Thus, selection criteria may refer to values of the dataset)(VAL

ivP on data level but also to

quality metadata of observable units (
QUAL

iU) and/or of quality metadata of single properties

).(QUAL

ivP An operator in this context is a reserved word or a character to perform operations.

Operators as part of the selection criteria are typically of the following types: arithmetic,

comparison and logical. The selection algorithm in pseudo code can be found in the annex in

section 10.2.2.

5.3.2.3 Addition

With this archetypical transformation, two datasets typically containing observable units of

the same type or with equivalent variables are appended. If the set of contained observable

units is not disjointed, duplicate observable units might arise in the output dataset.

DICE considers the classical merge (join) transformation as a composite transformation

made up of addition and subsequent selection transformations. Operating on data and

metadata concurrently, after performing an addition transformation, the possible duplicates

can be distinguished by their metadata and subsequent selection of unique observable units

(see section 5.3.2.2) remains possible. The addition transformation can formally be denoted as

follows:

    )()()()()(, lklk ii

initialise

ii

additioninitialise

o

addition OOTOOTTO 

where)(kiO and)(ilO denote the input data objects. initialiseT has to be performed to recalculate

the metadata.

Matching variables and concatenating the variables’ properties is expedient only for those

variables that carry the same semantic meaning. A simple but in many cases sufficient

equivalence function may consider the variables’ names. Two variables of the input data

objects ik and il can be concatenated only if they have equivalent names:

}|{
),(),()()()(nameSEMi

n

nameSEMi

m

iio lklk VVV×VV




where each of the index m indicates a variable of the data object
)(kiO and the index n

represents a variable in
)(liO .

DICE - Method Conceptualization

108

More elaborative equivalence functions will take additional metadata such as the variable

definition and the value domain into consideration. In an ideal case the datasets do not contain

duplicate observable units such that subsequent record linkage transformations are not

required. The intersecting set of observable units of the two input objects is empty in this

case; respectively the output data object (after performing the addition transformation) does

not contain any observable units labelled with a high degree of similarity to another

observable unit of the dataset. Formally this can be denoted as follows:

0),({})()()(
 uniqueUOTUU o

select

ii lk

where the selection criteria uniqueU retrieves all observable units marked by a high

similarity value
similarityaccuracyQUALoU ),(

 which has to be calculated as part of the initialisation

transformation. See section 7.2.2 for calculating similarity degrees.

In the annex in section 10.2.3 the addition algorithm is presented in pseudo code.

5.3.2.4 Variable Removal

Variable removal is involved with the discarding of one or more variables from a dataset.

DICE refrains from the concept of “projection” quoted in (Papageorgiou et al. 2001) and

(Papageorgiou, Vardaki and Pentaris 2000). A projection transformation in DICE is

considered as a composite transformation task made up of a variable removal transformation

and possibly followed by an observable unit consolidation transformation (see section

5.3.2.6). The latter is required only if a variable belonging to the data key is removed and the

remaining dataset consists of duplicate entries according to the residual key attributes.

The variable removal transformation can formally be denoted as follows:

    )()()()()(|),(i

ri

i

iinitialise

i

r

i

movevariableReinitialise

o

movevariableRe VVVVTVOTTO 

and

)(:)()(o

movevariableReionconsolidat

keyPROCi

r OT trueV if 

The variable removal algorithm in pseudo code can be found in the annex in section 10.2.4.

DICE - Method Conceptualization

109

5.3.2.5 Reclassification

Reclassification transformations change the classification schema of a variable, i.e. they

convert the properties of a variable from one grouping level to another. (Papageorgiou,

Vardaki and Pentaris 2000) call this type of operation “grouping transformations”. They

differentiate between two types of grouping transformations: (1) transformations applied to

key variables of the dataset and (2) transformations applied to any other variables. DICE

considers these grouping tasks as composite transformation task types: first, the actual

reclassification transformation and in a second step (if data key variables are affected) a

consolidation transformation (see section 5.3.2.6).

Reclassification transformations allow transformation of the value domains of a variable into

another. In this context, DICE acknowledges the three main types of statistical data:

numerical (discrete and continues), categorical and ordinal. Equivalent variables can be

transformed by applying transformation rules. Property values that do not meet the conditions

of these rules are assigned the value ‘not available’ (NA). Transformation rules are specified

via simple lookup tables or via conversion functions.

The reclassification transformation can formally be denoted as follows:

 


 




otherwise

failP if

P

,PRF
VOTO

nvalueDomaiQUALi

ir
VALi

ir

VALi

iri

r

i

cationreclassifi

o

cationreclassifi

),(

),(

),(
)()()(

,
),(

where RF() denotes the reclassification function that delivers a reclassified value in case of

success or the value ‘NA’ for ‘not available’ if the reclassification failed. RF() is only applied

if the property value
VALi

irP),(
 does not comply the defined value domain, i.e.

falseP nvalueDomaiQUALi

ir ),(
. See section 6.2 where this quality KPI is defined in detail.

The reclassification algorithm in pseudo code can be found in the annex in section 10.2.5.

5.3.2.6 Consolidation

Consolidation is the transformation step which merges observable units. As a precondition,

observable units have to be equivalent. In DM, equivalence of data is typically measured via

similarity/distance functions where similarity functions calculate the similarity and distance

functions calculate dissimilarity. Pairs of observable units with high similarity have a low

distance and vice versa.

DICE - Method Conceptualization

110

Two observable units are considered as equivalent if they compose similar property values

in a defined set of variables. Not necessarily all values have to be similar. Thus, duplicate

observable units are often identified taking only their data key into account. Duplicate

observable units might arise through incorrect data entry, integration transformations, etc. but

also through reclassification transformations (as discussed in section 5.3.2.5) or variable

removal transformations which affected the data key (see section 0). In most cases data

engineers try to avoid duplicate observable units by either assigning a unique key to the

similar (all) observable units to keep them distinguishable or by consolidating the observable

units in the case of real duplicates. Consolidation of duplicates is usually referred to as record

linkage in the DM domain. A third option is to consolidate observable units via aggregation

mechanisms onto an observable unit of a superior grouping level. DICE distinguishes

between these types inkageionRecordLconsolidatT and tionionAggregaconsolidatT .

 
  
   



















thresholdUUSFUUT

thresholdUUSFUUT
TOT

i

b

i

a

ii

tionoinAggregaconsolidat

i

b

i

a

ii

inkageoinRecordLconsolidat

initialise

i

ionconsolidat)()()()(

)()()()(

)(

,

,

For record linkage, naive strategy is to remove one of the observable units:

 )()()()(, i

b

i

a

i

b

i

ainkageionRecordLconsolidat UUUUT  .

A more elaborate strategy is to choose the observable unit of higher quality or to create a

new observable unit choosing the properties with the higher quality indicator from each of the

input observable units. In the latter case, for all of the variables of the pair of observable units,

the total property quality has to be compared. The property with the lower quality indicator is

withdrawn. Formally this can be denoted as follows:

   baj...i,,PPPVVUUUT totalQUALi

cj

totalQUALi

ci

i

ci

i

c

oi

b

i

ainkageionRecordLconsolidat ,|:,),(

,

),(

,

)(

,

)()()()( 

The consolidation function for performing aggregation transformations is similar. In

contrast to the deduplication approach, the pairs of property values (per variable) are

aggregated instead of choosing one of the properties. Formally the aggregation consolidation

transformation can be denoted as follows:

   )(

,

)(

,

)()()()(,, i

cb

i

ca

i

c

oi

b

i

ationionAggregaconsolidat PPnaggregatio : VVUUUT 

where ()naggregatio is a function that aggregates the property values per variable.

DICE - Method Conceptualization

111

The consolidation algorithm in pseudo code can be found in the annex in section 10.2.6.

5.3.2.7 Restructure

Consequently, techniques are needed to restructure data sources into this horizontal layout.

To restructure relational data, the discussed transformation task types can be applied.

However, there are a great many other types of data structures ranging from structured data to

semi-structured data such as plain text. The difference between the types of data is not sharply

defined and varies depending on particular disciplines and data representations. Roughly

speaking, semi-structured data does not conform to strict standards. It is not strictly typed and

not strictly constrained by a schema as compared to structured data. In contrast to structured

data, which is typically considered to be relational or object-oriented data where each

property has a designated variable, semi-structured data spans a continuum from plain text

documents to fully-structured data.

Abiteboul’s (Abiteboul 1997) definitions provide an overview of indications for semi-

structuredness, see Table 6.

Table 6 Characteristics of semi-structured data based on (Abiteboul 1997)

Characteristic Description

Irregular structure The data consists of heterogeneous entities. In some cases the entities are

incomplete, meaning that information is missing. In other cases additional

information is available. Furthermore, different types for the same

information type might be used.

Implicit structure In the case of implicit structure, a well-formed structure exists. An example

is an XML document which has been successfully validated against the

corresponding doctype declaration (DTD). By parsing the document the

contained entities, their variables and properties can be extracted.

However, the data is considered to be semi-structured, since extraction and

reformatting steps have to be applied and the interplay between the parse

tree and the required relational representation is not always obvious.

(Mourya and Saxena 2015) provide an overview of schema conversion

methods between XML and relational models by comparing seventeen

different approaches.

DICE - Method Conceptualization

112

Partial structure Partial structure is given if parts of the data are not structured. Examples

are documents with embedded graphics (e.g. in png format).

Indicated structure In contrast to a constrained structure, which presupposes a strict typing

policy, an indicated structure permits deviations from the given typing policy.

An example is the data guide approach propagated by the Lore Project of

Stanford University, see e.g. the work of (McHugh et al. 1997). It proposes a

database management system for XML-based data which does not require an

explicitly defined schema.

Non-A-priory schema Unlike traditional relational or object-oriented data structures, in this case,

the schema is not fixed prior to capturing the data. The data is often already

given and has to be structured to support querying and analysis of the data.

Large schema In contrast to structured data where the schema is precisely defined, semi-

structured data often comprises a wide schema. Transforming these data

sources into relational schema creates wide sparse tables.

Ignored schema For some of the typical scenarios the schema is ignored. Examples are, the

simple browsing and searching for information without taking the schema

into account.

Rapidly evolving

schema

As opposed to relational and object-oriented data, the schema is rapidly

changing. Thus, velocity not only refers to the speed at which new data is

generated but also the ever-changing and non-predictability of its structure.

Data is eclectic This characteristic applies to the versatileness of data, taking into account

that the structure of a data entity depends on the point of view and point in

time the data entity is used.

Whereas at the beginning only a few attributes might be considered, the

entity might be enriched and restructured for further use in later phases of a

given BA initiative.

An example in EA is that for a business process one might just require the

name and the description in a first phase, whereas in later phases a detailed

list of process tasks has to be extracted from the process description.

DICE - Method Conceptualization

113

Data is blurred In semi-structured data there is often no clear distinction between schema

and the data content. Data content and schema are intertwined in a single

format.

Typical examples are XML-based documents where no DTD (doctype

declaration) is given.

Considering this wide range of data structure types, a multiplicity of approaches to extract

relevant data has been developed in recent years. Information extraction is the process of

selecting and restructuring text fragments identified via text pattern matching in one or more

text documents. The results of this extraction process differ from case to case. However,

generally speaking, information extraction results in populating some type of database (Cowie

and Lehnert 1996). Usually the focus lies on the processing of human language text by

employing natural language processing techniques (NLP). As of late, content extraction from

images, audio and video must also be considered under the roof of information extraction. In

general, information extraction is part of the greater puzzle of data mining and KDD (see

section 2.3).

In the context of EAA specifically: the sub fields of entity recognition and relationship

extraction play an important role. Entity recognition is concerned with the identification of

named entities based on predefined categories, such as locations, expressions of time or

specifically to EAM: of technologies, application components and any other of the typical EA

building blocks. Relation extraction is concerned with the identification of relations between

the entities (e.g. application component >> runs on >> technology). In the context of EAM,

relation extraction focuses on extraction of relations between the building blocks. In an EA,

the building blocks and the relations together form a tight net. The schema which makes

possible the storage of the identified entities and relations, i.e. the building blocks and the

relationships between them is the EA metamodel introduced in section 2.4.1.3.

In section 7.2.1 an example of a restructure transformation task is shown. In the example the

XML-based structure of the Archimate Model Exchange Format is transformed into the

tabular-structured DICE schema.

DICE - Method Conceptualization

114

5.4 Summary

DICE is designed following the principles of situational method engineering. Data may

reside in many different formats and structures. A multitude of data mining techniques has

been developed to prepare and cleanse the data for actual data mining needs. DICE is

intended to support any data preparation endeavour providing a meta structure for integrating

and assembling existing algorithms and techniques into a situational BA method. In this way,

the individual algorithms and techniques serve as method fragments which are restructured to

fit into DICE and serve as reusable method chunks. In this vein, DICE does not strive for a

universal solution for every kind of data preparation problem. DICE is designed as a

situational method allowing method engineers to assemble individual methods from its

method base.

In this context, metamodeling plays an important role. Applying agile method engineering

techniques as introduced by (Karagiannis 2015), DICE is made up of three main building

blocks:

 a modelling language to design data integration and cleansing processes,

 a procedure providing guidance on how to accomplish a data preparation endeavor

and

 the algorithms for performing the data and metadata transformations.

At its core, DICE provides the data structures for holding required data and metadata in the

form of a composite data object. It consists of the main transformation tasks required for data

preparation which operate on these data objects, (such as selection, addition etc.). Both the

DICE metamodel as well as the transformation tasks (algorithms) are designed to be

specialised and extended as needed.

DICE Quality Framework

115

6 DICE Quality Framework

6.1 Quality Models and Quality Issues

It has been stressed that quality measures are of immanent importance in the data

preparation phase and for DM endeavours as a whole. For that reason DICE comes with a

framework that makes possible the definition of data quality requirements and the evaluation

of these requirements.

According to (Fröschl and Grossmann 2001), quality assurance in statistical data processing

has to consider:

 the design of the production process (i.e. of the DICE workflow) as a whole,

 the quality of data transformations within the production process and most

importantly,

 the quality of the generated data objects.

There are many data quality models, all of them comprising similar quality criteria. One

prominent example is the “Software engineering - Software product Quality Requirements

and Evaluation (SQuaRE) - Data quality model” (ISO/IEC/IEEE 25012 2008), which defines

fifteen data quality characteristics that must be reflected when assessing a data product. The

DICE output datasets can be understood as such a data product. The standard supports

definition and evaluation of data quality requirements in “data production, acquisition and

integration processes” (ISO/IEC/IEEE 25012 2008). It comprises data quality characteristics,

such as accuracy, completeness, consistency, credibility, currentness and accessibility. A

decision regarding which of these data quality criteria have to be applied and what efforts are

to be invested related to apprising significant quality assessments, is of course, dependent on

the application domain and situational circumstances.

When conducting data production and preparation processes, one has to consider two

perspectives on data quality: (1) the actual data quality inherent in the given data source and

(2) the expected data quality that is required for the subsequent analysis phases (Berti-Équille

2007). Due to this relative aspect, DICE has to cope with data quality in a twofold manner: it

must support data quality appraisals and the matching of data quality against defined data

quality requirements. In this vein, DICE focusses on the inherent data quality aspects as

DICE Quality Framework

116

opposed to system-dependent data quality aspects. According to (ISO/IEC/IEEE 25012

2008), inherent data quality refers to “the degree to which quality characteristics have the

intrinsic potential to satisfy stated and implied needs […]”. System-dependent data quality

focuses on software and user interfaces, and thus, on aspects, such as availability, portability

and recoverability of the data. DICE presupposes that the data is available and thus does not

consider quality aspects of the source systems which provide the data. Focusing on data-

inherent quality aspects, DICE considers the following quality dimensions taken from

(ISO/IEC/IEEE 25012 2008):

 Accuracy: data have to represent the true values correctly.

 Completeness: datasets provide all required variables and values for these variables.

 Consistency: data are coherent and data dependencies are clearly specified.

 Creditability: data are considered to be reliable by the users.

 Currency: data are of a suitable age for the given purpose.

 Precision: data reside in the required measure units.

 Traceability: data provenance is comprehensible.

 Understandability: observable units, variables and population are unambiguously

defined.

In order to measure these quality aspects, a more detailed analysis of possible data quality

issues is required. Taxonomies of data quality problems have been presented by (Rahm and

Do 2000) who divide data quality problems into single-source problems and multi-source

problems. On the next level they categorise quality problems into schema and instance level

problems. Single-source problems arise mainly from data entry (e.g. misspellings,

contradicting values) whereas multi-source problems (duplicates, overlappings etc.) are rooted

in performed data integration activities. (Kim et al. 2003) present a more detailed taxonomy

of dirty data. Their taxonomy is hierarchically structured and comprises more than twenty

typical quality issues accompanied by techniques for preventing, checking or cleaning the

quality issues. (Oliveira et al. 2005) also provide a comprehensive taxonomy. Additionally,

they present methods for detecting data quality issues based on checklists structured into

binary trees according to their hierarchical taxonomy of dirty data. With their rule-based

taxonomy on dirty data, (Li, Peng and Kennedy 2014) provide a taxonomy that makes

DICE Quality Framework

117

possible the classification of the data quality issues into classical data quality dimensions,

such as accuracy, completeness, currentness, consistency and uniqueness.

In the following, typical data quality issues extracted from the above research are introduced

and defined. The problem fields are taken from (Oliveira et al. 2005). Additional problem

fields extracted from the dirty data taxonomies of (Rahm and Do 2000), (Kim et al. 2003) and

(Li, Peng and Kennedy 2014) are added:

 Missing value: Properties without values.

 Syntax violation: Values not conforming to the defined patterns.

 Outdated values: Property values not conforming to the defined data freshness criteria.

 Interval violation: Numeric data values that are not within specified boundaries.

 Set violation: Categorical data values not in conformity with the predefined values.

 Wrong datatype: Property values violating the defined datatype, e.g. strings in a

numeric variable.

 Misspelling: Incorrectly spelled values.

 Meaningless values: Values not conforming to the designated meaning of the variable.

 Erroneous value: Values that do not violate any constraints but which are simply

wrong.

 Lack of value: An example is, when a part of the required entry is missing/cropped.

 Value with imprecise and doubtful meaning, e.g. values consisting of abbreviations.

 Uniqueness violation: Values that violate an identity rule.

 Synonyms existence: Occurrence of syntactically different values with the same

semantic meaning.

 Semi-emptiness: Observable units with many missing values defined in light of a

certain percentage of missing values.

 Inconsistency among values: Violation of defined dependencies between property

values of two variables.

 Redundancy about an entity: Duplicate observable units within one dataset.

 Inconsistency about an entity: Special case of duplicate observable unit with

inconsistent property values.

 Missing tuple: Missing observable units within a specified population.

 Referential integrity violation: Wrong reference to an observable unit.

DICE Quality Framework

118

 Outdated reference: Outdated reference to an observable unit.

 Circularity among tuples in a self-relationship: Recursive relationship problem.

 Cardinality violation: when defined minimum/maximum references between

observable units of two datasets are not fulfilled.

 Non-compliant measure units: Property values not measured in the defined measure

unit, e.g. cost values defined in EUR and not in Dollar.

 Representation inconsistency: Different value denomination of the same type, e.g.

Boolean values defined in true/false and as specified in 1/0.

 Heterogeneous aggregation levels: Different level of abstraction, e.g. costs per product

and costs per product group.

 Synonyms existence: Syntactically different values with the same semantic meaning,

e.g. “customer” versus “client”.

 Homonyms existence: Syntactically equal values with different semantic meaning.

The term “glass” can be interpreted as “magnifying glass” or “tumbler”.

6.2 DICE Quality Profile

In Table 7 the data quality issues are categorised along the DICE meta structure.

Additionally, inspired by (Li, Peng and Kennedy 2014), they are assigned to a quality

dimension. According to Rahm and Do (Rahm and Do 2000), schema-related issues comprise

issues that originate from bad schema design, schema translation and schema integration. In

contrast, instance-related data quality issues arise in the actual datasets and cannot be avoided

on the schema level. The classification into schema and instance level can also be found in the

table. From the definition of schema vs. instance level, requirements for DICE are drawn.

Schema-level violations can typically be covered/healed via concise definition and

examination of metadata. Thus, at minimum for the schema-level issues, DICE has to provide

clear specifications of the admissible property values by precisely defining their value

domain. Data property values have to be assessable against these definitions. The column

“Metadata” of Table 7 defines the metadata carrying these definitions.

DICE Quality Framework

119

Table 7 Common quality indicators organised along the DICE metamodel

Problem

field

DICE

element

Single/

multi

source

Schema

vs.

instance

Defined in

DICE Metadata

Quality perspective &

DICE target quality

indicator

Missing

value

P Single instance syntaxnvalueDomaiPROC

vV 
 Completeness measured in

sscompleteneQUAL

uvP 

Syntax

violation

P single schema syntaxnvalueDomaiPROC

vV 
 Accuracy measured in

syntaxaccuracyQUAL

uvP 

Outdated

value

P single instance max.AgescurrentnesPROC

vV 
 Currentness measured in

maximumAgescurrentnesQUAL

uvP 

Interval

violation

P single schema syntaxnvalueDomaiPROC

vV 
 Accuracy measured in

syntaxaccuracyQUAL

uvP 

Set violation P single schema syntaxnvalueDomaiPROC

vV 
 Accuracy measured in

syntaxaccuracyQUAL

uvP 

Wrong

datatype

P single schema dataTypenvalueDomaiPROC

vV 

Accuracy measured in

dataTypeaccuracyQUAL

uvP 

Imprecise

value

P single schema stepWidthnvalueDomaiPROC

vV 

Accuracy measured in

stepWidthaccuracyQUAL

uvP 

Misspelling P single instance/

schema

(not required) Accuracy measured in

gmisspellinaccuracyQUAL

uvP 

Meaningless

value

P single instance ndescriptioSEM

vV 
 Accuracy measured in

semanticsaccuracyQUAL

uvP 

Erroneous

value

P single instance ndescriptioSEM

vV 
 Accuracy measured in

semanticsaccuracyQUAL

uvP 

DICE Quality Framework

120

Problem

field

DICE

element

Single/

multi

source

Schema

vs.

instance

Defined in

DICE Metadata

Quality perspective &

DICE target quality

indicator

Lack of

value

P single instance (not required) Accuracy measured in

semanticsaccuracyQUAL

uvP 
or

syntaxaccuracyQUAL

uvP 

Value with

imprecise

and doubtful

meaning

P Single instance ndescriptioSEM

vV 
 Accuracy measured in

semanticsaccuracyQUAL

uvP 

Uniqueness

value

violation

P Single schema keyPROC

vV 
 Consistency measured in

redundancyuniquenessQUAL

uvP 

Synonyms

existence

P Single schema (not required) Currentness measured in

synonymyconsistencQUAL

uvP 

Semi-

emptiness

U Single instance (not required) Completeness measured in

U
QUAL>completeness

Incon-

sistency

among

attribute

values

P Single schema varDepnvalueDomaiPROC

vV 
 Accuracy measured in

pvariableDeaccuracyQUAL

uvP 

Redundancy

about an

entity

D single schema (not required) Uniqueness measured in

redundancyuniquenessQUAL

uU 

Incon-

sistency

about an

entity

D single instance (not required) Uniqueness measured in

ncyinconsisteuniquenessQUAL

uU 

Missing

tuple

(observable

unit)

D single instance D
PROC>requiredCoverage

 Completeness measured in

D
QUAL>completeness>popCoverage

DICE Quality Framework

121

Problem

field

DICE

element

Single/

multi

source

Schema

vs.

instance

Defined in

DICE Metadata

Quality perspective &

DICE target quality

indicator

Referential

integrity

violation

P Single schema (not required) Consistency measured in

tyrefIntegriyconsistencQUAL

uvP 

Outdated

reference

P Single schema maxAgescurrentnesPROC

vV 
 Currentness measured in

maximumAgescurrentnesQUAL

uvP 

Circularity

among

tuples in a

self-

relationship

P Single schema (not required) Consistency measured in

ycircularityconsistencQUAL

uvP 

Cardinality

violation

P Multi schema ardinalitycnvalueDomaiPROC

vV 

Consistency measured in

ycardinalityconsistencQUAL

uvP 

Syntax

incon-

sistency

V Multi schema yntaxsnvalueDomaiPROC

vV 
 Accuracy

average from

syntaxaccuracyQUAL

uvP 

Non-

compliant

measure

units

P Multi schema easureUnitmvalueDomPROC

vV  .

Accuracy measured in

tmeasureUniaccuracyQUAL

uvP 

Repre-

sentation

incons.

P Multi schema yntaxsnvalueDomaiPROC

vV 
 Accuracy measured in

syntaxaccuracyQUAL

uvP 

Synonyms

existence

D Multi n.a. (not required) Consistency measured in

D
QUAL>uniqueness>synonymy

Homonyms

existence

D Multi n.a. (not required) Consistency measured in

D
QUAL>consistency>homonymy

Redundancy

about an

entity

D Multi n.a. (not required) Uniqueness measured in

D
QUAL> uniqueness>redundancy

DICE Quality Framework

122

Problem

field

DICE

element

Single/

multi

source

Schema

vs.

instance

Defined in

DICE Metadata

Quality perspective &

DICE target quality

indicator

Incon-

sistency

about an

entity

D Multi n.a. (not required) Consistency measured in

D
QUAL>uniqueness>inconsistency

In a detailed analysis of the above atomic quality indicators, it becomes clear that some of

these cannot be evaluated automatically. Whereas quality aspects such as missing values and

compliance with defined syntax requirements can be calculated by cross-checking with value

domain requirements (defined in PROCV), others such as meaningless value have to be assessed

manually. In order to obtain the atomic quality indicators (pass vs. fail), the property values

have to be compared with the specifications defined in the set of quality requirements V
PROC

that are made up of the following parameters:

 V
SEM>description

: This parameter carries the documentation of the semantic meaning

of the properties assigned to the variable.

 V
PROC>key

: This parameter states whether the properties of the variable serve as

data key or are part of the data key of the given dataset.

 V
PROC>currentness>maximumAge

: The values of the properties have to be of the right age.

This parameter carries the allowed maximum age measured in days.

 V
PROC>valueDomain>uniqueness

: This parameter defines whether values of properties

have to be unique throughout the variable.

 V
PROC>valueDomain>measureUnit

: The measure unit has to be unambiguously defined.

Examples are: currencies in the case of monetary values or measure units for

temperature such as Celsius and Fahrenheit.

 V
PROC>valueDomain>stepWidth

: This parameter defines the required precision of the

data. For example, monetary values could be measured in EUR or TEUR.

 V
PROC>valueDomain>dataType

 defines the required datatype for the properties of

variables.

 V
PROC>valueDomain>syntax

: This quality characteristic defines the abstract set of

possible values for the properties of the variable. Intervals and value sets are

typical examples.

 V
PROC>valueDomain>aggregationType

: In some cases it is important to understand whether

the property values are atomic or represent summative values (e.g. such as max,

min, mean or average). Condensing averaged values in many cases will lead to

biased results.

DICE Quality Framework

123

 V
PROC>valueDomain>variableDependency

: Property values of variables often pose

dependencies on one another. Metadata have to provide information about these

dependencies.

 V
PROC>valueDomain>cardinality

: This variable definition carries the minimum/maximum

number of outgoing/incoming relations of an observable unit.

DICE ascribes the same importance to each of the problem fields of a certain quality

category (quality aspect). The problem fields are measured via dedicated atomic quality

indicators. These indicators are categorised into quality categories. The atomic quality

indicators of properties are rated in a Boolean variable: pass for proper and fail for erroneous.

On property level this can be formally denoted as follows:

,...},,,{ 321 egoryqualityCategoryqualityCategoryqualityCatPQUAL 

 ...,, 321 indicatorindicatorindicatorP egoryqualityCatQUAL 

and

failpassP indicatoregoryqualityCatQUAL

uv 

For each property, a set of quality indicators P
QUAL

 is defined. The set of quality indicators is

categorised into quality categories which in turn comprise the atomic quality indicators of a

variable. Atomic qualities (per property) can be either fulfilled (pass) or non-fulfilled (fail). In

the following the rules for evaluating the atomic quality indicators are defined.

For the evaluation of values regarding missing values the following rule is applied:

  
otherwise

NAP fi
fail

pass
P

VAL

uvuemissingValsscompleteneUALQ

uv









,

,

where NA stands for ‘not available’ or any other symbol indicating non-existence of the

value. Examples for NA values are: default values such as 01.01.1970 (Unix time) for date

values, NULL values such as the string ‘no entry’ etc.

Syntax violations may come in many flavours and are dependent on the data type of the

variable. Simple data types, such as numeric, strings, date and complex data such as arrays

(sets) are considered. The following rule checks whether a property value is compliant with

the defined datatype.

 


 






otherwise

VPDT if
fail

pass
P

dataTypenvalueDomaiPROC

v

VAL

uvdataTypeaccuracyQUAL

uv ,

,

where DT() is a function based on regular expression making possible the retrieval of the

datatype of a given value.

DICE Quality Framework

124

 The rule for checking whether a numeric value is within a defined interval can be denoted as

follows:



 



otherwise

yPx if
fail

pass
P

VAL

uvsyntaxaccuracyQUAL

uv ,

,

where x and y are the interval delimiters defined in
syntaxnvalueDomaiPROC

vV 
.

To evaluate whether a string value complies with a specified pattern (e.g. expressed in the

form of regular expressions) the following rule applies:



 






otherwise

true)V,PRE(if
fail

pass
P

syntaxnvalueDomaiPROC

v

VAL

uvsyntaxaccuracyQUAL

uv ,

,

where
syntaxnvalueDomaiPROC

vV 
defines a text pattern, and RE() is a function which matches the

property value against the text pattern.

Using this rule, lack of value issues can also be determined in case the properties have to

fulfil a certain pattern (e.g. 4-digit postal codes, email addresses).

In some cases the step width of numeric values, i.e. of double values is of relevance. DICE

applies the definition of (Wolfram Alpha 2017a) where step width (precision) is defined as

the total number of significant decimal digits in a numeric value:














otherwise

V
P

 if

fail

pass
P

tepWidthsnvalueDomaiPROC

vVAL

uv

tepWidthsccuracyaQUAL

uv ||

1
log

,

, 10

where tepWidthsccuracyaPROCV  defines the required number of decimal digits.

 Misspellings can be identified by comparing property values to entries in a dictionary.

 


 



otherwise

yes PDICT if
fail

pass
P

VAL

uvgmisspellinaccuracyQUAL

uv

''
,

,

where DICT () is a function which returns “yes” where VAL

uvP matches an entry in the

dictionary.

Data freshness is dependent on the actual age of a property (i.e. date when the data was

collected or changed). This value has to be compared with the freshness requirements defined

in maximumAgescurrentnesPROC

vV  . To determine whether a property value is outdated, the following

expression has to be evaluated:

 


 






otherwise

VPAGE if
fail

pass
P

maximumAgescurrentnesPROC

v

DatehangecLOG

uvmaximumAgescurrentnesQUAL

uv ,

,

where AGE() is the function which delivers the age in days.

DICE Quality Framework

125

Functional dependencies of variables may exist between properties of variables of the

same dataset (variable dependencies) and between properties of variables that reference

observable units (references). To evaluate whether stated dependency requirements between

variables are fulfilled the following rule is applied:

 


 






otherwise

VFDFP if
fail

pass
P

ypendencvariableDenvalueDomaiPROC

v

VAL

uvpendencyvariableDeaccuracyQUAL

uv ,

,

where FDF() is a function that implements the functional dependency rules defined in

pendencyvariableDePROC

vV 
.

Uniqueness value violations of properties arise in variables marked as “uniqueness

required” where a property value is contained multiple times:

 


 






otherwise

 |U| ... 2, iP P falseV if

fail

pass

P
VAL

iv

VAL

uv

uniquenessnvalueDomaiPROC

v

redundancyuniquenessQUAL

uv

1,1|

,

,

Synonyms existence arises in variables carrying syntactically different property values with

the same meaning, i.e. if there exists another property value within the variable which has the

same meaning.

   


 



otherwise

PxSFPP x if
fail

pass
P

VAL

uv

VAL

uv

VAL

vsynonymyconsistencQUAL

uv

,:\
,

,

where SF() is an ontology-based function to compute semantic similarity of a pair of property

values, and  is a defined threshold. For an overview of such similarity functions see (Lee et

al. 2008).

Redundancy of an entity is given for an observable unit when the dataset contains another

observable unit with the exact same property values.

   



 



otherwise

 D VvP if

fail

pass
U

VAL

uvredundancyuniquenessQUAL

u

1||..1,

,

,

Inconsistency of an entity is given when the same observable unit exists, i.e. an observable

unit with the same data key but with different property values:

   

otherwise

failU

PPtrueVVPU\DU if

fail

pass

U redundancyuniquenessQUAL

u

VAL

zv

VAL

uv

keyPROC

vuvuz

ncyinconsisteuniquenessQUAL

u 









 





::

,

,

DICE Quality Framework

126

Whether a property value is compliant with the defined measure unit or not is determined

by comparison of the property’s “measure unit” (P
PROC>valueDomain>measureUnit

) with the required

measure unit stated within the process metadata of the variable (V
PROC>valueDomain>measureUnit

):



 






otherwise

V P if
fail

pass
P

tmessureUninvalueDomaiPROC

v

tmeasureUninvalueDomaiPROC

uvtmessureUniaccuracyQUAL

uv ,

,

Referential integrity violations arise where a variable of a dataset contains wrong

references to observable units (usually, but not necessarily held in another dataset). Reference

variables permit only those values that appear in the variable to which it refers. Note that in

DICE the data key of a given dataset is defined by labeling one or more variables as key

variables.

The same holds true for references. If the “foreign key” does not match a “primary key” in

the target dataset (D’), a referential integrity violation arises.

  




 









otherwise

PP v vvv DU if

fail

pass
P

VAL

vu

VAL

uvu'IntegrityeferentialryconsistencQUAL

uv
'''|',:'

,

,

where D’ is the referenced dataset, and v’ is the referenced variable, and (v,v’) is a set of

variables, as the references are not necessarily defined by a pair of single variables.

Cardinalities define relationships between two tables. Basically, two types of relationships

exist: one-to-many and many-to-many. Relationships between two tables are defined via

foreign key reference. The variable(s) that compose the primary key value for one table are

linked to another column in another table. Via cardinality constraints the number of links

between observable units of the two tables can be restricted. In DICE, V
PROC>cardinality

 defines

such restrictions by defining intervals of the number of allowed relationships between

observable units between two tables. A cardinality violation arises where the number of

allowed relations is not within this defined interval. The quality indicator rule can be denoted

as follows:

 


 



otherwise

y UjPP x if

fail

pass
P

VAL

jv

VAL

uvardinalitycyconsistencQUAL

uv

...1,

,

,

where x and y are the cardinality delimiters defined in
ycardinalitnvalueDomaiPROC

vV 
and

x=0, y = ∞ if undefined. In case of a 1:1 cardinality x=1 and y=1.

DICE Quality Framework

127

Outdated references are defined in the same way as outdated values, as references are

represented the same way as properties with the only difference being that the same property

has to be defined as a primary key in a variable of any other dataset.
5

Circularity among tuples arises where the relationships k (pairs of foreign key and primary

key) can be arranged in a cyclic sequence (k1, k2, k3,…, k1) such that:

 
otherwise

kknikk: n if

fail

pass
V iniiycircularityconsistencQUAL

v


  :1,...,1,

,

, 1

The remaining quality indicators not discussed in the previous sections have to be assessed

manually. Examples are meaningless values where non-conformance to the designated

meaning of their variable description (semantics) cannot be assessed automatically.

The stated quality indicators clearly pose dependencies on each other. For example, a

missing value cannot be meaningless, and a property with “data type violation” cannot be

assessed in the context of “set violation”. DICE recognizes this fact by introducing the

measurement category “not applicable (n.a.)” for quality indicators that do not apply. In

addition to these dependencies not all quality indicators apply to all variables. Applicability of

the stated quality indicators is dependent on the requirements defined in other V
PROC

. For

example, the indicator “set violation” is not suitable for evaluating string properties. From this

fact, it follows that assessing the quality of a certain property is ideally done in a certain

sequence. Similar to the approach of (Oliveira et al. 2005), DICE introduces an assessment

algorithm based on a binary tree metaphor defined in the algorithm of Fig. 36.

input:
)(iO

output:
)(oO

begin

for v=1 to |V| in
vV // for each variable in the dataset

5
 Note that in section 7.1.1.2 the concept of edge tables is introduced, the typical relational concept to depict

the references (pairs of primary and foreign key). In this context outdated references have to be evaluated per

table row.

DICE Quality Framework

128

 for u=1 to |U|

 check completeness of Puv // check for missing value

 set
uemissingValsscompleteneQUAL

uvP 

 if missingValue = fail

 % in case of missing value none of the subsequent checks has
 to be performed %

 set ‘n.a.’ for all indicators in
QUAL

uvP

 else

 if
QUAL

uvP represents a value //not a relation

 check datatype, set
dataTypeaccuracyQUAL

uvP 

 check semantics, set
semanticsaccuracyQUAL

uvP 

 check syntax, set
syntaxaccuracyQUAL

uvP 

 if datatype = double

 check syntax, set
stepWidthaccuracyQUAL

uvP 

 endif

 check misspelling, set
gmisspellinaccuracyQUAL

uvP 

 check data freshness, set
maximumAgescurrentnesQUAL

uvP 

 check dependencies, set
pendenciesvariableDeaccuracyQUAL

uvP 

 check redundancy, set
redundancyuniquenessQUAL

uvP 

 check synonyms existence, set
synonymyconsistencQUAL

uvP 

 check measureUnits compliance, set tmessureUniaccuracyQUAL

uvP 

 elseif QUAL

uvP represents a relation

 check referential integrity, set IntegrityeferentialryconsistencQUAL

uvP 

 check cardinality requirements, set ardinalitycyconsistencQUAL

uvP 

 check outdated references, set
maximumAgescurrentnesQUAL

uvP 

 endif

 endfor

 check circularity among obs. units, set ycircularityconsistencQUAL

vV 

for u=1 to |U|

 check uniqueness, set redundancyuniquenessQUAL

uU 

 check uniqueness, set ncyinconsisteuniquenessQUAL

uU 

endfor

calculate summative indicators on property level

DICE Quality Framework

129

calculate summative indicators on variable level

calculate summative indicators on observable units level

calculate summative indicators on dataset level

Fig. 36 Determine quality indicators for properties

The total quality of a property is defined as the averaged quality category values of all

quality categories (except the total quality indicator itself) and hence can be denoted as

follows:

  P

P

P
egoryqualityCatQUAL

uv

egoryqualityCat

eogoryqualityCatQUAL

uv

QUAL

uv 




where the superscript qualityCategory indicates the quality value per category, which in turn

is calculated from the averaged values of its subordinated quality indicator values:

 
  P

 passPP
P

indicatoregoryqualityCatQUAL

uv

indicatoregoryqualityCatQUAL

uv

indicatoregoryqualityCatQUAL

uvegoryqualityCatQUAL

uv 








where the superscript indicator is the index representing an atomic quality indicator

categorised into a given quality category.

Whereas all of the quality indicators of a quality category are considered of equal

importance, corrective measures related to quality issues require different efforts. Take the

following example: “missing values” have to be imputated (if expedient at all) considering

additional sources or often complex imputation techniques. On the other hand, “representation

inconsistencies” can often be resolved using simple reclassification transformations (see

section 5.3.2.5). Whereas many of the identified quality issues relate to single property values,

others refer to observable units, variables or entire datasets.

DICE defines summative quality measures based on averaged values of the quality

indicators on property level, i.e. quality issues arising on property level are averaged onto

variable and/or observable unit level and from there on dataset level.

In line with this, DICE offers a “data quality profile” for datasets. Based on this data quality

profile, the data engineer can easily investigate the data quality and take corrective actions as

needed. Moreover, as the quality measures are part of the composite data object, they can be

used for data cleansing purposes, e.g. by selecting observable units of high quality only. Fig.

37 shows the dependencies between quality indicators on property level and summative

quality indicators on level of observable units and variables.

DICE Quality Framework

130

Fig. 37 Levels and structure of DICE quality indicators

For each variable the quality measures are calculated for the entire variable for its

constituent quality categories and on lowest level per quality indicator.

The quality measure of a variable per atomic quality indicator is defined as follows:

 
 U

 passPP
V

indicatoregoryqualityCatQUAL

uvuvindicatoregoryqualityCatQUAL

v







|

.

An example is syntaxaccuracyQUAL

vV  which for example, shows the average fulfilment of the

syntax requirement stated for the variable v over all observable units within a dataset.

Note that for reasons of readability, properties evaluated with ‘not applicable’ are not

considered in this and the subsequent equations.

set of quality indicators
of a variable

quality indicator of a variable

atomic quality indicator

indicatoregoryqualityCatQUAL

vV 

indicatorcategoryQUAL

uvP 
φ

quality indicator
per observable
unit over all
values of the
same indicator
type

indicatoregoryqualityCatQUAL

uU 

set of all quality
indicators of an
observable unit

QUAL

uU

φ

QUAL

vV

Set of atomic
quality

indicators of a
single property QUAL

uvP

Quality Indicator

Quality category

Dataset

set of quality indicators
of a variable per
quality category egoryqualityCatQUAL

vV 

Variable

DICE Quality Framework

131

The total quality per quality category (e.g. completeness, accuracy and currentness) of a

variable is calculated as the average of the indicator-based quality measures and can be

formalised as follows:

  V

V

V
indicatoregoryqualityCatQUAL

v

indicator

indicatoregoryqualityCatQUAL

v
egoryqualityCatQUAL

v 






 .

An example is accuracyQUAL

vV  which presents the averaged quality measures in the context of

syntax compliance, valueStep compliance, etc.

The total quality of a given variable is calculated as the average of its category-based quality

measures and can be formalised as follows:

  V

V

V
egoryqualityCatQUAL

v

egoryqualityCat

egoryqualityCatQUAL

v

QUAL

v 


 .

Similar to variables, the averaged values for the observable units are calculated. The

averaged quality measures per quality category of an observable unit are calculated as

follows:

  P

P

U
egoryqualityCatQUAL

uv

v

egoryqualityCatQUAL

uv
egoryqualityCatQUAL

u 






 .

The averaged quality measures per variable of an observable unit are calculated as follows:

  P

P

U
egoryqualityCatQUAL

uv

egoryqualityCat

egoryqualityCatQUAL

uv

QUAL

uv 






where qualityCategory is the index for all possible quality categories and

 egoryqualityCatQUAL

uvP  is the set of all quality categories (comprising the atomic quality

indicators) of one property within a given dataset.

The total quality of an observable unit is calculated as the average of all property quality

indicators:

||V

P

U v

QUAL

uv
QUAL

u


 .

For the entire dataset the quality per atomic indicator of a variable is calculated as follows:

DICE Quality Framework

132

||V

V

D v

indicatoregoryqualityCatQUAL

v
indicatoregoryqualityCatQUAL

 

 

where indicatoregoryqualityCatQUAL

vV  represents the average quality of a given variable per

indicator.

Likewise, the quality of the dataset in the context of its quality categories is defined as

follows:

||V

V

D v

egoryqualityCatQUAL

v
egoryqualityCatQUAL

 

 

and the total quality of the entire dataset is calculated as the average of the total quality

indicator of its variables:

|| V

V

D v

QUAL

v
QUAL


 .

6.3 Interpreting the Quality Profile

The data engineer uses the quality profile after performing a transformation task to evaluate

the data quality of the output dataset. By investigating the total quality per variable

(V
QUAL>total

), problematic variables can easily be identified. By analysing the variable quality

indicators (V
QUAL>indicator

), the reasons for poor quality can be identified easily and quality

improvement measures can be triggered. In many cases redesigning the DICE workflow will

help to raise data quality, e.g. by adding additional transformation tasks or by changing the

sequence of transformation tasks.

The same holds true for the quality measures of observable units. One strategy to improve

data quality could be to simply remove observable units with bad data quality from the data

object via selection transformation. Of course, the data engineer has to ensure that this

transformation does not violate the coverage requirements (lationSizequiredPopuPROCD Re), i.e. that

the selection leads to coverage of a population that is too small. In many cases improving data

quality will require optimising the values within the given input datasets. For such cases (Kim

et al. 2003) identify the following strategies:

DICE Quality Framework

133

 Intervention by domain expert, i.e. provision of additional high quality data or

performing manual quality improvements on the input datasets.

 Use of a lookup-table, e.g. for regrouping categorical data.

 Use of abbreviation dictionaries for resolving abbreviations.

 Use of conversion algorithms for resolving representation differences.

 Use of encoding tables for resolving format issues, e.g. to convert from ASCII to

Unicode.

 Recalculation of properties in the case of functional dependencies.

 Running a spell-checker to correct misspellings.

 Applying data imputation techniques in the case of missing values.

However, one must point out that in the vast majority of quality issues according to (Kim et

al. 2003), in more than 75% of the stated cases intervention by a domain expert is the only

alternative for raising data quality.

6.4 Summary

The introduced quality framework serves a two-fold purpose: (1) it supports unambiguous

definition of the output data object ready to be used for upcoming DM modelling/evaluation

phases, (2) it makes possible the determination of the data quality after each performed

transformation task and thereby supports the definition of an adequate data transformation

process.

The DICE data quality indicators have been deliberately derived from the ISO standard for

“Software product Quality Requirements and Evaluation, Data Quality Model”

(ISO/IEC/IEEE 25012 2008) and shaped by the extraction of typical quality issues from

“dirty data taxonomies”. Quality indicators are assigned to the meta structure elements of

DICE, making possible the evaluation of the data quality for entire datasets, for observable

units and variables and on lowest level, for each of the properties within the dataset. The

DICE quality framework follows the principles of situational method engineering, so that the

framework can be enhanced with additional quality indicators and algorithms for their

calculation.

Application of DICE in the Fields of EAA

134

7 Application of DICE in the Fields of EAA

As for any KDD endeavour, Enterprise Architecture Analytics requires a profound

understanding of the available and required data. KDD frameworks such as CRISP-DM

(Chapman et al. 2000) savour this requirement and propose data understanding/exploration as

one of the first phases of KDD endeavours (see section 2.3). This of course also applies for

EAA and is reflected in the DICE modelling procedure (see section 5.1). In this section an

analysis of the typical structure of EA data is performed. Peculiarities of EA data are analysed

and discussed. From the findings, requirements on method chunks to support EAA are

derived. Section 7.2 draws on these requirements by discussing how these requirements can

be satisfied by assembling and deriving new method chunks from the DICE meta structure to

build a situational method for EAA data preparation.

For illustration purposes, the EA modelling language Archimate and the TOGAF content

metamodel are used. Archimate is often quoted in the examined research papers and TOGAF

can be considered as one of the most prominent EA frameworks (Schekkerman 2004b),

(Moser, Fürstenau and Junginger 2010), (Urbaczewski and Mrdalj 2006). Where required,

additional metamodels from EA frameworks such as from DODAF (DoD 2010) are used for

illustration purposes.

7.1 Data Understanding - EAM-specific Requirements

EA relevant data comes in manifold flavours. To apply DICE on datasets residing in EA

models, adequate transformation task types have to be derived from the DICE meta structure

introduced in section 5. For this purpose, common EA data structures are analysed in the

subsequent sections. Requirements of the DICE method base are collected. For the purpose of

illustration business IT alignment is used, an often quoted problem in context of EAM, (see

e.g. Winter and Fischer 2006), (Pereira and Sousa 2005), (Aier and Winter 2009) and

(Wegmann 2002)). For a better understanding, the following guiding example is used to

examine the different problem cases.

Guiding case: The case focuses on the interplay of applications and technologies

(i.e. system software) both intended to serve business processes. The assumption

is that due to the use of inappropriate technology, the application architecture of

Application of DICE in the Fields of EAA

135

an organisation is inefficient, leading to suboptimal business support in terms of

functional business requirements, cost, flexibility and time to market. To address

this problem, enterprise architects need to have a clear understanding of the

applications and technologies in place. To detect problematic areas in the

business architecture, the enterprise architects connect the applications and

technologies to business processes of the organisations. In this way, enterprise

architects are able to provide an overview of problematic business areas in regard

to IT support and foster targeted budget allocation for IT investments. To

illustrate the findings, the architecture team plans to use a heatmapped

clustermap as sketched in in Fig. 38, as the model kind.

Fig. 38 Heatmapped Clustermap – Technology support of business processes

In the example, the colour code applied to the system software artefacts

represents the individual technology fit. System software building blocks

coloured in green represent high technological fit, yellow-coloured system

software is problematic and system software in red is highly recommended to be

decommissioned. Similar diagrams have been proposed by (Karagiannis, Moser

and Mostashari 2012) and (Pouya Aleatrati Khosroshahi et al. 2015).

The example draws on the likely assumption that this is only one of the arbitrary

scenarios addressed by the architecture team and that no encompassing EA

repository containing the required data is in place. However, in the fictive

organisation there are a multitude of EA descriptions available which might serve

as a valuable input for the required analysis.

Business Process B

Application Component C

System Software E

System Software D

Business Process C

Application Component E

System Software A

Application Component D

System Software E

System Software A

Business Process A

Application Component B

System Software C

System Software A

Application Component A

System Software B

System Software A

Application of DICE in the Fields of EAA

136

7.1.1 The object-oriented nature of EA data

Many of the EA frameworks use as a base the formal definitions of systems and software:

ISO/IEC 42010:2007 Systems and software engineering, see TOGAF (The Open Group

2011), Archimate (The Open Group 2016), NATO (Handley and Smillie 2008), the TUM EA

pattern catalogue (Pouya Aleatrati Khosroshahi et al. 2015) and many more.

Architecture descriptions based on this “schema” come in a variety of formats and contents.

TOGAF for example defines the following major architecture artefacts types, i.e. model kinds

(The Open Group 2011): (1) catalogues, (2) matrices and (3) diagrams. An overview has been

provided in Fig. 8. In the following subsections, the most common data structures used to

represent EA data are discussed. To this end, the typical representation formats used in EA

analysis are examined using the research papers discussed in section 3.1.3 and architecture

artefacts recommended by TOGAF and Archimate as a main input.

7.1.1.1 Catalogues

Catalogues are lists of building blocks. They have to be considered as the basis for any EA

analysis, as they carry the atomic design elements of EA, namely the EA building blocks. The

application portfolio catalogue introduced in Fig. 19 is a perfect example of such a catalogue.

According to TOGAF, the purpose of this catalogue is to identify, categorize and maintain a

list of all the application components used by the enterprise. TOGAF recommends

maintaining catalogues of all relevant building blocks in a so-called architecture repository.

They serve as the datasets on which to base any EA analysis. TOGAF suggests (not meant to

be exhaustive) more than ten catalogues, examples are:

 Interface catalogue, providing information on interfaces between applications.

Applications typically create, read, update and delete data via these interfaces from

other applications.

 Technology portfolio catalogue, capturing the list of all technologies used to

implement and run the applications and interfaces throughout the entire organization.

 Requirements catalogue, holding the list of all requirements generated in the course

of architecture engagements.

Application of DICE in the Fields of EAA

137

The building blocks (in DICE terms, the observable units) within these lists are always

derived from the content metamodel and in an ideal case, the catalogues cover the entire

population of these observable units. The applications in the application portfolio catalogue

can correspond to the modelling classes: information system service, logical application

component and physical application component of TOGAF’s content metamodel. In

equivalence, Archimate offers the concept of application components and DoDAF offers the

concept of system as the core elements of the application architecture/layer.

The variables within the catalogues capture the characteristics of the building blocks, e.g.

characteristics such as operating costs, production date and planned decommission date. Thus,

catalogues represent multivariate datasets such as the DICE standard format defined in section

4.1. Typical graphical representations of the catalogued building blocks are: bar charts,

portfolio charts and box plots, all of them ways to graphically depict the property values of

numerical or categorical variables of observable units held within a catalogue.

Fig. 39 Gantt, portfolio and box plot views on catalogues

Te
ch

n
o

lo
gi

ca
l f

it

Costs

Business fit Time (production/decommissioning date)

Cost
fit

Business
fit

Technology
fit

(b) Gantt chart(a) Portfolio view

(c) Box plot

Application of DICE in the Fields of EAA

138

Guiding case (continued): For the targeted architecture model, the enterprise

architects need to gain an overview of the business processes, the application

components as well as the technologies (i.e. system software) in use. For

representing these datasets, catalogues such as the application portfolio

catalogue need to be in place. The catalogues can be represented in the DICE

standard data format, which is a horizontal layout or roughly speaking, a table.

Let us assume that for all the three building block types corresponding datasets

are available.

As the architects strive to assess the technology adequacy, additional information

on technologies such as standard conformity, maintainability, operation costs

etc. needs to be in place, serving as the atomic data for calculating the

technology fitness. These atomic data elements, as far as they are available, are

categorised into the set of variables of the technology dataset.

7.1.1.2 Matrices

Matrices represent the relationships between building blocks (the observable units)

instantiated from the given metamodel. In the conducted literature review, matrices are

explicitly mentioned in (The Open Group 2011), (Pouya Aleatrati Khosroshahi et al. 2015)

and (Karagiannis, Moser and Mostashari 2012). Examples from TOGAF are:

 Application/Data Matrix, to depict the relationships between data elements and the

application components that manipulate these data elements.

 Application/Organization Matrix, holding information about which organisational

units use which application components.

 System/Technology Matrix, capturing the mapping of applications to technologies

required for operating the applications.

The most basic form of representation is an adjacency matrix. The underlying data structure

is a bipartite graph whose vertices are divided into two disjoint sets of building blocks.

Formally this graph can be defined as G=(ΩA, ΩB, RAB) where ΩA, ΩB define the sets of

observable units (i.e. the population) instantiated from a given metamodel, and RAB is the set

of relations of a certain type between the building blocks. The values represented in the

matrix cells indicate whether there is a relation between the building blocks or not.

Application of DICE in the Fields of EAA

139

Fig. 40 The data structure of EA matrices

Analysing typical EA artefacts, one finds evidence of more complex matrix structures. Fig.

41 shows an example from (Moser et al. 2017).

Fig. 41 Heatmapped matrix (Moser et al. 2017)

The example shows a matrix based on populations (of the observable units: applications and

standards) represented by the observable units on the axis and dependencies between them

within the cells. The matrix is colour-coded, thus the relationships between the observable

units are labelled, i.e. relations have properties and property values. The required data

structure is in the form of Blaha’s node-edge directed graph template (Blaha 2010)

comprising two tables for presenting the catalogues of observable units and a third table, more

specifically an edge table, specifying the relations between the observable units. Fig. 42

shows the structure in the form of an UML model and Fig. 43 provides an example.

A B

1 1 0 0

1 0 1 1

0 0 1 0

0 0 1 0

0 0 0 1

2BU 3BU
4BU

2AU

3AU

4AU

5AU

1AU

1BU

2AU

3AU

4AU

5AU

1AU

2BU

3BU

4BU

1BU

§ §§

ControlIT

CRMconnect

…

Cash System

…
Authorisation
Services

DBMS
Standard

Application

Application of DICE in the Fields of EAA

140

Fig. 42 Structure of node/edge directed graph template in UML, adapted from (Blaha 2010)

Fig. 43 Node edge template, adapted from (Blaha 2010)

Guiding case (continued): It is obvious that for the envisioned clustermap

model, information is required concerning the interplay between applications and

technologies as well as use of applications in the context of business processes.

Let us assume that the IT operations team supplies the enterprise architects with

a matrix presenting the technology usage of the applications. Fig. 44 presents

this system/technology matrix where applications are represented on the x-axis

and technologies are represented on the y-axis.

buildingBlock nodeList

variableNbuildingBlockName
variableN

*

source

sink

1

*1

model

*

0..10..1

*

as part of the
DICE metadata

C

A

E
D

B

F

building
BlockID

model
ID

building
Block
Name

1 1 A

2 1 B

3 1 C

4 1 D

5 1 E

6 1 F

Relation
ID

modelID source
Building
BlockID

Sink
Building
BlockID

51 1 1 3

52 1 1 4

53 1 1 5

54 1 2 5

55 1 3 6

56 1 4 6

57 1 5 6

Application of DICE in the Fields of EAA

141

Fig. 44 Example system/technology matrix

As the application portfolio catalogue and the system/technology matrix stem

from different sources, it is unlikely that the applications contained in both

datasets will fully match. However, the system/technology matrix can easily be

converted into a node-table representing a dataset in conformity with DICE.

Let us furthermore assume that a similar table matching business processes with

application components is not available. Thus, the enterprise architects have to

look for additional sources to extract the missing mapping between applications

and business processes…

7.1.1.3 Diagrams

The third category of EA artifacts of TOGAF is denoted as diagrams. TOGAF vaguely

defines diagrams as a means to graphically “present building blocks plus their relationships

and interconnections in a graphical way that supports effective stakeholder communication”

(The Open Group 2011). This definition corresponds to the concept of model defined in

(ISO/IEC/IEEE 42010 2011), see section 2.2.

Examining TOGAF, one mainly finds evidence of two types of artifacts:

 nested box diagrams and

 node/edge diagrams.

Models of this type are common in almost all of the studied EA research papers. Archimate

uses node-edge diagram as its main model kind. The majority of investigated EA research

papers, e.g. (Ekstedt et al. 2009), (Johnson, Nordström and Lagerström 2007), (Niemann

Oracle
11g

Oracle
11g.R12

SQLserver
2016

Windows
Server 2014

…

Document
Management
System

1 0 0 0 …

CRM System 1 0 0 0 …

Home and
Away Financial
Application

0 1 0 0 …

Home and
Away Policy
Administration

0 0 1 0 …

… … … … …

Application of DICE in the Fields of EAA

142

2006), (Florez, Sánchez and Villalobos 2016) and (Manzur et al. 2015)) use node-edge

diagrams for visualising the EA. Nested-box diagrams are not that common but are also used

in some of the analysed EA research papers, see e.g. (Pouya Aleatrati Khosroshahi et al.

2015), (Karagiannis, Moser and Mostashari 2012) and (The Open Group 2016). Fig. 45

exemplarily depicts examples of the two artefact types.

Fig. 45 Nested box (The Open Group 2016) and node/edge diagrams (The Open Group 2011)

(b) Nested-box diagram

(a) Node-edge diagram

Application of DICE in the Fields of EAA

143

Enterprise Architecture (EA) models can be thought of as structured, object-oriented

descriptions that usually correspond to an organisation-specific, i.e. customized metamodel

that evolves over time due to ever changing organisational requirements and problem fields

(Roth and Matthes 2014). The metamodels described in EA standards and frameworks,

comprise varying levels of formality. See for example: TOGAFs Content Metamodel, the

DODAF metamodel, the I-patterns of TUM’s pattern catalog and many of the revisited EA

publications in section 3. Whereas Archimate and DoDAF provide concise definitions of their

metamodels, in TOGAF the metamodel is only roughly sketched. Archimate goes one step

further and defines a modelling language on top of its metamodel (The Open Group 2016)

including concepts such as viewpoints, model types, graphical notations for their modelling

classes, etc.

Building blocks instantiated from EA metamodels are typically complex, viz. they are units

of components that themselves may be put together from subordinated building blocks. Thus,

building blocks have to be considered either as containers or atomic objects. The typical

course of action in design modelling reinforces the need for such a structure: where typically

the design elements (building blocks in EA) tend to be less explicit and more abstract in the

early design phases, additional building blocks and descriptive data are added to the model as

the design evolves. Analogous data structures can be found in construction planning where

the design objects are seen as “a convenient aggregation of information describing real world

concepts” (Ahmed and Navathe 1991). Building blocks such as business processes,

application components and technology components describe these real world concepts, i.e.

the main structure elements of an organisation.

Ehrig et al. state in (Ehrig et al. 2005) that any metamodel can be represented in the form of

a labelled, directed and finite graph. From this, it follows that EA data can be represented in

the form of labelled, directed graphs. Based on (van Buuren et al. 2004), a metamodel is

described by a signature A)R,T,(C,=M where:

 C is a finite set of modelling classes.

 T is a finite set of relation types.

 T × C × C R is a finite set of relations between the modelling classes. Thus, an

element R t) ,c ,(c 21  represents a relation type and expresses the fact that a relation

of type t exists from concept c1 to c2.

Application of DICE in the Fields of EAA

144

 A is a finite set of attributes assigned to the modelling classes and to the relation

classes.

On data level (respectively on model level), the EA data can be represented as a set of

models following the above metamodel definitions. (van Buuren et al. 2004) defined a model

(X) by a 4-tuple X = (O, T’, F,A’) where:

 O is a set of objects, respectively the building blocks.

 T’ is a set of relations (of the relation types that are defined in the metamodel), in

DICE represented in the form of 3-degree edge lists comprising the node pairs and

an additional variable for denoting the relation type.

 TT COF  ':  is a function that maps objects to metamodel concepts and

relations to relation types. In DICE terms, this mapping corresponds to the structure

of the composite data object where observable units and variables are defined by

their associated metadata.

 A’ is the set of attributes available for an object (defined in the metamodel). In DICE

the attributes are named variables (the equivalent term used in the domain of

statistical metadata management).

In this vein, a model X must be understood as a multi-attributed directed graph. In the

following sections, the identified EA analysis mechanisms are revisited and their underlying

data structures are examined. At the outset, typical EA visualization patterns are discussed.

For representing a model graph in DICE, Blaha’s node edge directed graph template (Blaha

2010), as exemplarily depicted in Fig. 43 appears to be sufficient.

Guiding case (continued): From previous architecture work a lot of architecture

models in Archimate language exist. Many of the models are instantiated from

Archimate’s application usage viewpoint comprising information on business

processes and application components. Fig. 46 shows an example.

Application of DICE in the Fields of EAA

145

Fig. 46 Application Usage Viewpoint (The Open Group 2016)

By restructuring the input models the enterprise architects create the following

data structure.

building

BlockID modelID

building

Block

Name

modelling

class

1 1 Handle Claim business process

2 1 Register Claim business process

3 1 Accept Claim business process

4 1 Valuate Claim business process

5 1 Pay Claim business process

6 1 Scanning Service application service

7 1

Customer

Administration

Service application service

… … … …

relationID modelID

source

Building

BlockID

sink

Building

BlockID

relation

class

1 1 1 2 aggregation

2 1 1 3 aggregation

3 1 1 4 aggregation

4 1 1 5 aggregation

5 1 6 2 aggregation

6 1 7 2 serves

7 1 8 3 serves

… … … … …

Application of DICE in the Fields of EAA

146

Fig. 47 Node edge representation of application usage models6

It is obvious that the intermediate business service layer (comprising the services

“Scanning Service”, “Customer Administration Service” etc.) is not required for the

given problem statement and can be removed. This issue is addressed in section

7.1.4.2 by introducing a transformation task type for bypassing EA layers.

7.1.1.4 Data Structures for EA Analysis based on Probabilistic Relation Models

Numerous application scenarios for EA analysis based on probabilistic relation models

(PRM) have been studied and presented by the research group “Industrial Information and

Control Systems” of the “KTH Royal Institute of Technology”. Their PRM-based approach

requires extensions to the given definition of metamodel in section 3.1.3: it requires a

capability to express dependencies between attributes (Buckl et al. 2011). Fig. 48 provides an

example. Note that not only the EA concepts but also single attributes (in the example the

attribute “availability”) are interlinked.

Fig. 48 Exemplary meta model snippet supporting PRM analysis (Buckl et al. 2011)

Therefore, the given metamodel definition and the underlying data structure defined in

section 7.1.1.3 has to be extended to support PRM based-analysis. The following definition is

added:

6
 Note that in the given example data and metadata might be considered mashed, as the information on

modelling class and relation types can likewise be seen as data and metadata.

Application of DICE in the Fields of EAA

147

 A × C × C R

where the finite set of relations is extended by the set of relations connecting properties of

modelling classes.

(Friedman et al. 1999) who specify a relational schema for PRM analysis in their work on

“Learning Probability Models”, consider node edge templates as sufficient for storing the

data. Importantly it must be noted that in this case, the rows of the edge table do not represent

the relations between the building blocks but rather relations between attributes of the same

type of the building blocks.

7.1.1.5 Multi-criteria Decision Making Methods

In essence, this type of EA analysis requires a structure to depict models in the form of a

weighed tree, to whose nodes and edges, labels are assigned. Each of the nodes represents a

quality criterion (as opposed to building blocks) that can be categorized into sub criteria. The

topmost node represents an architecture scenario that is being evaluated. The leafs of such a

tree are assessed by an expert, and based on the edge weights, for each node within the tree,

its total quality is calculated until reaching the topmost node. Typically multiple scenarios

(each represented by such a tree structure) are assessed by different experts and finally have to

be consolidated into one resulting tree. Again, the node edge directed graph template 7.1.1.3

appears to be most efficient for storing the required data.

The modelling of concrete building blocks and relations is not required for this approach.

However, use of EA models is suggested to depict the different scenarios. With its plateau

concept, Archimate makes it possible to represent various EA scenarios within one model.

From that, one can conclude that the structure for EA data also has to cope with optional EA

scenarios. In section 7.1.7 this problem area is discussed in more detail.

7.1.1.6 The Data Structure for Indicator-based EA Analysis

Indicator-based EA analysis requires a well-structured dataset. Approaches such as

presented in (Brückmann et al. 2009), (Addicks and Appelrath 2010), (Vasconcelos, Sousa

and Tribolet 2015) pose requirements on their underlying datasets with a strong focus on the

metamodels. All of the examined research papers define a concise metamodel for calculating

the indicators. Although not providing how to ensure data quality, it appears obvious that for

Application of DICE in the Fields of EAA

148

calculating the EA indicators completeness on observable units, property values and

relationships are required. An example of such a metamodel obtained from (Vasconcelos,

Sousa and Tribolet 2007) is shown in Fig. 49.

Fig. 49 Exemplary metamodel for an indicator-based approach (Vasconcelos, Sousa and Tribolet 2015)

Based on data structured in conformity with the given metamodel, the authors calculate

indicators, such as average number of possible operating systems, average number of

different implementations of an information entity and average number of used security

components.

The required data structure corresponds to the definition of an EA metamodel provided in

section 7.1.1.3.

Guiding case (continued): In conformity with (Vasconcelos, Sousa and Tribolet

2015), the enterprise architects might be interested in the “average response of a

business process”, which can be computed by averaging the number of

applications supporting a business process. Assumed that the hitherto compelled

datasets are complete, this indicator can easily be calculated.

Process

Business
Service

IS Block

IT Block

Information
Entity

is used>

relates

has operation

contains

exists

part of

< CRUD

is implemented

IT
Service

Operation

is supported

Application of DICE in the Fields of EAA

149

Suppose that additionally, the system indicator “average number of used security

components” is one of the indicators used to calculate the technology fitness of

the applications and thus will be required to calculate the colour coding of the

envisioned heatmap. In accordance with (Vasconcelos, Sousa and Tribolet 2015),

the indicator requires all technologies in use to run an application as an input.

Security relevant technology components have to be flagged accordingly.

From this fact, the requirement is drawn that the technology component

catalogue has to be extended with a variable, “Security relevant”. As this

information is not available so far, the enterprise architects have to find ways to

deal with this “missing value”…

7.1.1.7 EA Analysis Based on Network Measurements

This type of EA analysis considers the EA as a complex network. In their literature review

(Santana, Fischbach and Moura 2016) focus strongly on EA analysis based on structural

aspects of EA models. Typical measurements from graph theory are: central measurements

(determining the prominence of nodes in a network), such as degree centrality, closeness

centrality, betweenness centrality and eigenvector centrality, see the work of (Schoonjans

2016) who cites (Faust 1997) and (Rusinowska et al. 2011) in this context as a theoretical

foundation.

The most efficient data structure for this graph-based analysis is organized in the node and

edge undirected graph template (Blaha 2010). In graph theory, node edge tables are denoted

as incident lists representing a list of edges incident to nodes. Fig. 50 exemplarily shows the

required structure. Note that no attributes for edges and nodes are required and that the edges

are not typed. However, without any informational loss, the node edge directed graph

template introduced in section 7.1.1.3 serves the purpose as well.

Fig. 50 Node edge undirected graph template, adapted from (Blaha 2010)

Relation

Model

Building Block

0..1

*

0..1

*2

Application of DICE in the Fields of EAA

150

From the explanations in the above sections, it becomes clear that the node-edge directed

graph template is ideal for structuring EA data for subsequent analysis.

To summarize, the node-edge directed graph template is suitable for most of the EA analysis

approaches. DICE requires means to restructure given input datasets into this format.

Requirement 1: Provide method chunks to support the restructuring of EA data structures

according to the node-edge directed graph template.

7.1.2 Amount of Data

Typically in EAA scenarios, there will not be millions of records as in the often-quoted BA

and DM applications scenarios operating on census data and public health data files. Even in

major enterprises the set of relevant EA models will not contain millions of building blocks.

This fact is based on an evaluation of five EA repositories of organizations from the public

administration, the financial sector and from the logistics sector. All of these organisations

run EA endeavours at minimum for five years. The largest repository contained

approximately 517.000 architecture artefacts, where it must be concluded that this repository

to a great extent held detailed system parameters that are not considered as the typical EA

building blocks.

If one takes the SAP reference model (Daneva 2004) with the rather “small” amount of

20.000 different process tasks dispersed throughout various industrial sectors (Mendling,

Reijers and Recker 2010) as an example, it becomes evident that the population of EA

building blocks of an organisation will not go into the millions.

This is of course in contrast to the operational business analytics data gathered to extend the

EA models (see section 7.1.5.1).

7.1.3 Issues with Structural and Technical Formats

Any relevant input ideally is converted into the horizontal (tabular) layout for further

processing. EA input data will typically come in various technical formats. Typical exchange

formats are: spreadsheet formats (such as csv, xlsx), formatted text-files and xml-based

formats. Some EA frameworks such as Archimate and DoDAF offer tool-agnostic exchange

formats. Both Archimates' Model Exchange File Format (The Open Group 2015) and

Application of DICE in the Fields of EAA

151

DoDAF’s PES (DoD 2010) provide well-documented XML schemas which make possible the

exchange of EA models.

Clearly, EA management does not exclusively rely on modelled information sources.

Information will also come from external sources, which have to be pre-processed and

integrated with the EA model base for further use. The external sources might be used to

enrich and validate the existing EA data. Take the following common examples:

 Service Level Agreements (SLAs) and underpinning contracts will often be available

in the form of text-heavy documents only. In some cases they might be based on an

agreed template. In other cases no template may be used at all. However, typically

such documents will carry EA-relevant information about IT services and

applications.

 Plain text business process documentations can be considered as an important part of

the business architecture descriptions.

 Technology lifecycle data and technology ratings might be obtained from vendor

websites or from sources such as www.technopedia.com, a platform providing a

taxonomy of technologies and technology descriptions. Another valuable external

source are reference models published in HTML and other formats (see e.g. the

BIAN service catalogue, www.bian.org).

 Customer sentiment data and market trends extracted from social media platforms

are among the classical sources for BA.

Guiding case (continued): So far the enterprise architects identified a couple of

datasets relevant for the endeavour. Table 8 offers an overview of the data

sources and their structural and technical formats.

Table 8 Exemplary sources for EA data

Source Structural format Technical format

Application portfolio catalogue Horizontal layout, One row per

application, One column per

variable

Microsoft Excel

Application x Technology

Matrix

Structured as adjacency

matrix

CSV (comma separated value

format)

Archimate models Models in conformity with the

Archimate metamodel (more

precisely: in the form of

XML structure based on the

Archimate model exchange file

format

http://www.technopedia.com/
http://www.bian.org/

Application of DICE in the Fields of EAA

152

“Application Usage Viewpoint”

models)

Set of security relevant

software technologies

Not available Not available

From this, one can conclude that DICE has to cope with manifold structural and technical

formats. Means to load and interpret technical formats will be highly dependent on the

capabilities of the data mining tool in use.

Requirement 2: Provide method chunks to load EA data from a diverse set of technical

formats and sources.

7.1.4 Granularity, Generality and Abstractness of EA Data

Architecture design processes are typically of iterative and exploratory nature. Take

TOGAF’s ADM as one typical design approach for enterprise architectures. In the first phase

(architecture vision), architectures are roughly designed. In the successive phases, (business

architecture, information system architecture and technology architecture) the architectures

are refined. Even later, in the phase “opportunities and solutions”, the architecture is detailed

into a solution architecture. While running through the different phases, arbitrary models

might be created. The models in the later phases are typically more detailed as compared to

those in the previous phases.

To foster this progressive approach, e.g. Archimate and DoDAF provide relationship types

within their metamodels that make possible the documentation and analysis of architectures

on different levels of detail. Aggregation (part-whole relation), composition (whole-part

relation), generalisation (IS-A) and specialisation (whole-part) relationships are offered to

facilitate the description the EA at different abstractions and level of detail. For EA analysis,

this is clearly impeding. Transformation tasks have to be in place to “normalise” the EA data

as needed. In the following sections archetypical EA structures in this context are discussed.

Application of DICE in the Fields of EAA

153

7.1.4.1 Reflexive Relations

In the case of reflexive relations, the building blocks of the same modelling class are related

to each other. Often the building blocks are (hierarchically) decomposed into building blocks

of their own type. In other words, the building blocks are participants in a parent-child

relationship. To reduce complexity and gain an overview, lower level building blocks can be

condensed into higher levels. Archimate’s metamodel defines aggregation, composition and

specialisation relationships being permitted between building blocks of the same modelling

class. Each building block in an Archimate model can be refined into building blocks of its

own modelling class using one of these relations, and conversely, complexity can be reduced

by condensing the building blocks to higher layer building blocks. Reflexive relations of type

association do not indicate different layers. Usually (but not mandatorily) building blocks of

the same level of detail are connected via relationships of type “association”.

Fig. 51 shows an example of reflexive relations modelled in Archimate.

Guiding example (continued): Looking closer at the given data structure

extracted from the application usage viewpoint in Fig. 46, the enterprise

architects detect that the business processes “Register Claim” ,”Accept Claim”,

“Valuate Claim” and “Pay Claim” are grouped into a super-ordinated business

process, “Handle Claim”. Fig. 51 depicts the situation in an alternative Archimate

compliant representation.

Fig. 51 Reflexive relations – example in Archimate notation

The enterprise architects have to define the required level of detail for the

envisioned clustermap. They decide: either using level 1 or level 2 of the process

architecture or alternatively, to extend the initial clustermap layout with another

level. The alternative represents the business processes in a two-level hierarchy

visualised in a box-in-a-box layout.

Application of DICE in the Fields of EAA

154

To avoid biased results in subsequent analysis phases it is essential to clearly identify these

hierarchies and to “normalise” them where required.

Requirement 3: Provide method chunks to filter/consolidate building blocks organised in

reflexive relations.

7.1.4.2 Hierarchical Decomposition

According to Fischer et al. (Fisher et al. 2014), the majority of concepts defined within an

EA metamodel can be interpreted as aggregation hierarchies. Consequently, architecture

building blocks are typically decomposed into more specific building blocks. The multi-level

systems theory differentiates between strata, layers and echelons (Fischer and Winter 2007).

These concepts have been addressed in the context of EA in various publications, see e.g.

(Abraham, Tribolet and Winter 2013), (Korhonen, Yildiz and Mykkanen 2009) and (Gale and

Eldred 1996).

Examples of stratified hierarchies are: the refinement of strategies into objectives/goals and

the decomposition of applications into their software components etc. These hierarchies are

typically established via relation classes providing inheritance and containment mechanisms

(Sprinkle et al. 2010) such as the aforementioned relation types (aggregation, composition,

etc.). Perfect examples of such relationships can found in almost all EA metamodels.

Examples from the TOGAF content metamodel are: relationships such as “decomposes” for

the composition of application and technology components or the “is realised through”

relationship which decomposes goals into objectives. The case of reflexive relations discussed

in section 7.1.4.1 must be understood as a special case of stratified composition where the

hierarchically ordered concepts are of the same type, i.e. of the same modelling class.

The concept of layers refers to the typical architecture layers, such as TOGAF’s business

architecture, information systems architecture and technology architecture or Archimate’s

business, application and technology layer. In keeping with the hierarchical multi-level

systems theory, conditions and definitions of a superordinate EA hierarchy layer reduce the

degrees of freedom of the downstream layers (Torokhti and Howlett 2000), i.e. “business

follows IT”. Echelons refer to responsibilities and decision-making structures in the context of

such stratified structures.

Application of DICE in the Fields of EAA

155

EA is typically interested in the top level strata and in the dependencies between its

elements.

Fig. 52 EA strata, adapted from (Fischer and Winter 2007)

One significant impact on DICE results from the different modelling classes involved in

hierarchical decomposition, as the different modelling classes typically will carry different

attributes, and merging objects on different levels will not be that straight forward as in the

case of reflexive relations.

Guiding example (continued): The provided architecture usage diagrams contain

application services which implement (in Archimate terms “realise”) application

services. Although the relation class “realise” is not classified as superclass-class

relationship, the enterprise architects decide to apply a contraction transformation

to these objects, thus, the objects are deleted from the dataset and the former

relations are restored by directly connecting business processes to applications.

Fig. 52 shows the resulting model.

Technology Layer

Business Layer

Application Layer

Top-level
EA Strata

Application of DICE in the Fields of EAA

156

Fig. 53 Application usage model with contracted application services

From the above explanations, the requirement to “bypass” intermediary building blocks on

the path between a pair of building blocks is drawn. In this connection possible problems of

cyclic references (Beyer, Noack and Lewerentz 2005) have to be tackled where changes to

one building block might influence an entire cycle of building blocks and degenerate

inheritance (Beyer, Noack and Lewerentz 2005) or where a building block might inherit (e.g.

via groupby transformation) values from another building block.

Requirement 4: Provide method chunks to filter/consolidate structures organised into

different strata.

7.1.5 Logical versus Physical Layers

EA descriptions often comprise logical and physical building blocks. Whereas logical views

are intended to offer an implementation-independent view of the architecture, the physical

view is intended to represent the implementation details of the logical view. In this vein, the

physical view describes the real world entities.

Application of DICE in the Fields of EAA

157

Consider the following example: a technology component might be characterised

independently of any specific vendor or technology solution that represents the logical view;

it focuses on functional aspects of the EA. In TOGAF, these logical building blocks are

referred to as “architecture building blocks” (ABBs).

In contrast, the physical view describes so-called solution building blocks. For a better

understanding Fig. 54 shows a few examples.

Fig. 54 ABBs and SBBs

Whereas the logical building blocks are used to describe the envisioned “ideal” architecture,

the physical building blocks describe the actual implementation, i.e. the solution architecture

(The Open Group 2011).

Guiding example (continued): By comparing the application components within

the application portfolio catalogue (Fig. 19) and the application components

documented within the architecture usage model (Fig. 46), the difference

becomes obvious. Whereas the application portfolio catalogue contains physical

entities, e.g. such as a concrete version of SharePoint, the architecture usage

models comprise solely logical application components, such as the “Home and

Away Financial Application”. This situation will raise complexity for the given

endeavour, as simple merge transformations will not be sufficient. Additionally,

the situation stresses the importance of unambiguous specification of the

observable units, i.e. the need for semantic metadata.

Some enterprise architecture frameworks differentiate between logical and physical building

blocks in their metamodels. Evidence can be found in TOGAF’s content metamodel, which

offers dedicated modelling classes for ABBs and SBBs. The differentiation between “logical

application component” and “physical application component” is one example. Notably, this

differentiation in TOGAF is not made for building blocks of the business architecture.

Archimate’s approach for dealing with the progression from abstract to concrete building

Windows Server 2016

SBB (physical)

Oracle 13g

Apache 2.4

Operating system

Database management system

Web server

ABB (logical)

Application of DICE in the Fields of EAA

158

blocks mainly focuses on the refinement of building blocks via the relationship type

“realisation”: “The realization relationship indicates that more abstract entities (‘what’ or

‘logical’) are realized by means of more tangible entities (‘how’ or ‘physical’)“, (The Open

Group 2016).

Additionally, for describing the physical representations of application components and data

objects Archimate stipulates the modelling class “Artefact”. The concepts node and device are

defined as physical resources. However, their logical pendants are not defined in the

Archimate specification.

For example, the information flow between two application components might be modelled

using two or more physical interfaces connecting the two application components. In the

logical view, these physical interfaces might be depicted with only one logical interface or in

some cases, just by a relation class "Information flow". For clarity, Fig. 55 illustrates these

examples.

Fig. 55 Different representations of logical and physical interfaces in Archimate

Providing an overview of all interfaces within the enterprise, in this case, is a non-trivial

task. Applicable harmonisation strategies in such a case are contradiction of the physical

interface into one logical interface, deletion of the interfaces and reconstruction of the

relations etc. In terms of DICE, populations and observable units (in this case the interfaces)

have to be clearly specified to avoid biased results. Rules for differentiating between logical

and physical have to be worked out by the enterprise architects in such cases. DICE can then

support selecting and restructuring the data as needed.

Physical

interfaces

between two

application

components

Information flow

between two

application

components

Logical

interface

between two

application

components

Application of DICE in the Fields of EAA

159

Requirement 5: Provide method chunks to filter/consolidate logical/physical building

blocks.

7.1.5.1 Types and Instances

Another characteristic of EA concepts, not to be confused with the previously introduced

concepts of logical and physical building blocks, is the concept of types and instances

(Moser, Winklhofer and Kuplich 2008). Types and instances can be considered as

specialisation of the concept of physical building blocks discussed in the previous section.

In this context, the meaning of the term “type” is rather similar to the meaning of the word

“type” in everyday language. Types represent collections of instances, and instances are

specific realizations of a type. In accordance with DoDAF (DoD 2010), instances can be

defined as things that exist in 3D space and time. Enterprise architects usually model types of

things rather than instances, but some architecture frameworks such as DoDAF consider

instances explicitly. In DoDAF, instances of types are named using the preface “individual”

and an explicit “is-type-of” relation is offered (see e.g. the relation “typeInstance”).

Archimate and TOGAF do not differentiate between types and instances in their metamodels.

For example, a solution building block (physical) such as the technology component Oracle

11g can be interpreted as type or as instance. If we interpret Oracle 11g as instance, it

represents a solution building block, which is installed on a concrete node (a concrete server),

holds a concrete database schema and stores concrete data. As opposed to types, instances

correspond to things found in the real world. Typically tools such as configuration

management systems (CMS) manage instances (Klosterboer 2007). They hold physical

instances of databases, application components etc. of the “real world” IT landscape.

Enterprise architecture is typically not interested in modelling these concrete instances.

However, datasets comprising concrete instances (such as CMS/CMDB) are often quoted as

valuable sources for populating EA repositories, see e.g. the survey of (Farwick et al. 2013)

where the majority of EA architects are convinced that CMS/CMDBs hold EA-relevant data.

A concrete example would be that enterprise architects are interested in the absolute number

of instances of a certain technology. (E.g. how many oracle database instances do we have?)

Guiding example (continued): To make sure that the list of used technologies is

fully covered, the enterprise architects plan to run a completeness check, i.e. in

Application of DICE in the Fields of EAA

160

DICE terms: the architects determine the completeness of the sample population

of technologies.

Table 9 shows an excerpt of the list of technologies retrieved from the

organisations Configuration Management Database System (CMDB) in csv

format.

Table 9 Exemplary excerpt of CMDB report

[…]

Oracle 11gR12,CosMosDB

Oracle 11gR12,OrinocoDB

Oracle 11gR12,CRMDB

SQLserver 2016 (13.0),FinAppDB

[…]

Obviously the table contains physical configuration Items (CIs) as is customary

for CMDB data. The list has to be cleaned to truly represent the list of

technologies on type level. Removal of the second variable followed by

consolidation of the observable units in the resulting dataset would be a

sufficient approach.

With a focus on the building blocks of the business architecture level, the importance of the

concept of types and instances is even more explicit. Instance data on products (sales

transactions and prices), customers (customer data) and processes (workflow instances) are

the classical sources for BA analysis.

By aggregating this data, valuable information for EA initiatives can be generated. The BA

data will produce insights that enable decision making on competitive actions that change

organisational capabilities. Examples of such competitive actions are: the launch of new

products or product extension, changes in the channels through which customers are reached

and expansion of target markets and customer segments (Sharma et al. 2010). Each of these

changes affects the organisations business capabilities where the resources of the capabilities

are based on: business processes, stakeholders, information entities, applications and

technologies.

Application of DICE in the Fields of EAA

161

Fig. 56 Types and Instances - Usage of BA data in EAA

In regards to DICE, it must be possible to identify and filter building blocks based on their

kinds (types versus instances) and preparing/aggregating instance data to be used in type data.

Requirement 6: Provide method chunks to filter/consolidate types and instance building

blocks.

7.1.6 Time Dimensions

From the definitions of EA and EAM (shown in section 2.1), it is evident that time aspects

play an important role. Take for example Gartner’s definition which emphasises the need for

“models that describe the enterprise’s future state and enable the organisations evolution”

(Lapkin et al. 2008). From this, one can conclude right away that time aspects are critical in

the context of EA and that time aspects are inseparably related to EA descriptions. This also

becomes obvious from Zachman’s Architecture Framework (Zachman 1987) where the

interrogative “When?” is prominently positioned.

The reasons for permanently adapting the EA and the EA descriptions are manifold.

Examples given in TOGAF are: the adaption of the organisational structure (e.g. the

introduction of business units, introduction of mid-office etc.), the harmonisation of business

Technology Layer

Business Layer

Application Layer

BA Strata

Dependencies on
EA Level

Aggregation of
Operative Data

Application of DICE in the Fields of EAA

162

processes, the launch of new products or the enhancement of legacy systems to support the

service oriented architectures (The Open Group 2011). In any case, building blocks and their

interplay will change over time. From an EA description point of view, this holds true for the

building blocks as a whole, for the relations between the building blocks as well as for their

attribute values.

7.1.6.1 Architecture Increments

Enterprise architecture frameworks such as TOGAF, GERAM, FEAF, see e.g. (Saha 2004),

(Buckl et al. 2009) and (Saha 2007) postulate mechanisms for time-related views on the

enterprise architecture. Typically, as-is (i.e. baseline) and target architectures as well as

transition architectures are differentiated. Transition architectures represent interim

architectures that point the way towards target architecture. Architecture increments represent

architectures at a certain point in time. All of the above mentioned EA frameworks specify

metamodels, however, in none of the metamodels are time-related aspects referred to (Buckl

et al. 2009).

Fig. 57 As-is, transition and target architectures

Time-based architecture descriptions are “user-level versioned” models, i.e. they represent

versions of EA models and building blocks created for specific purposes (Sciore 1994).

Model types (model kinds) such as the “Business Support Migration Roadmap”, see (Buckl et

al. 2009) typically point the way from as-is architectures towards the desired target

architectures by depicting building blocks, such as applications, functions and implementation

projects in Gantt-like diagrams (see Fig. 39).

Another important fact to be considered in this context is that typically the level of details

between as-is, transformation and target architectures differ considerably. Whereas the as-is

TRANSITION

time

TARGETAS-IS

Application of DICE in the Fields of EAA

163

architecture typically gives a clear picture of the overall architecture, target architectures

usually anticipating the needs of the next 3-5 years, are not defined at the same level of detail

(strata), see e.g. (The Open Group 2011).

As an example, as-is architectures often comprise concrete versions of technology products

(i.e. physical view building blocks), whereas target architectures typically refer to technology

capabilities and required qualities only (logical building blocks). The concrete design of

implementation details is not important years in advance and might even restrict the solution

space for architectural solutions in the future. Thus, as-is architectures usually comprise

deeper levels of the strata as compared to target architectures (see sections 7.1.4.2 and

7.1.4.1).

Archimate recognises the need for time-based views and introduces the concept “plateau” as

a solution. Plateaus are part of its language definition and are represented via the modelling

class "plateau". Plateaus are used to specify points in time and can be assigned to any building

block (Jonkers et al. 2010). For a better understanding Fig. 58 provides an example. The

cuboid-like elements represent the plateaus, each of them representing periods in time. The

associated building blocks are decommissioned / set in production at the end / at the

beginning of these time periods.

Application of DICE in the Fields of EAA

164

Fig. 58 Application usage model incl. plateaus depicting transition architectures

Other approaches equip the modelling classes and relation classes, respectively the building

blocks and their relation classes, with time attributes directly (e.g. production date,

decommission date). Via this construct, it becomes possible to select the set of active (valid)

building blocks for a given architecture increment (respectively period in time). These

concepts are summarised under the heading of time-based versioning and temporal modelling,

see e.g. (Parent, Spaccapietra and Zimányi 1999) and (Theodoulidis and Loucopoulos 1991).

Subsetting the gaps between as-is and target architectures respectively between as-is and

transition architectures is also of major importance.

Another important fact is that target architectures are evolutionary in nature and are subject

to continuous planning and update in consideration of evolving business requirements and

technological change. By contrast, in order to avoid complications caused by moving targets,

transition architectures (at least in the short-term) should not be altered during the course of

the implementation projects (The Open Group 2011).

A third major aspect is the possible amalgamation of as-is and target building blocks in one

EA model. In such a case, models typically contain building blocks documented on different

strata. Whereas as-is building blocks are modelled on a deeper strata and possibly on a deeper

Application of DICE in the Fields of EAA

165

versioning level (see section 7.1.4), planned building blocks serve as “placeholders” and are

described on a higher EA strata, as implementation details are not required (or not even

known). Temporal aspects have to be considered in the context of building blocks, the

relations between building blocks and their attributes.

Dealing with temporal aspects is a non-trivial task. EA descriptions apply different time

concepts. (Gschwandtner et al. 2012) define the following types of time inherent in datasets:

 Non-rastered points in time, representing concrete points in time.

 Non-rastered intervals, representing time intervals defined by start and end date.

 Rastered intervals, representing units of time constituting a raster. An example is using

Q1, Q2, Q3 and Q4 to represent quarters of a year.

Guiding example (continued): Luckily, the application portfolio catalogue

carries the variables “production date” and “decommission” date for applications.

Based on these variables the enterprise architects can select those applications

that are currently in production. Already decommissioned application

components are not of interest for the envisaged clustermap.

DICE method chunks that allow for filtering the datasets in a time-based manner need to be

in place.

Requirement 7: The selection transformation task type has to cope with time-related data.

7.1.6.2 Versioning of Building Blocks

Building blocks and their relations are typically regarded as versioned items. Versioning is

required for comprehensible handling of changes within the EA. The concept of versioning

anticipates the possibility of the concurrent existence of arbitrary implementations of the same

building block. Notably, prominent frameworks such as TOGAF, MODAF, DODAF and the

modelling language Archimate do not explicitly recognise this requirement. None of their

metamodels explicitly define attributes for version control of their building blocks.

As discussed in (Conradi and Westfechtel 1998) and (Sciore 1994), versioning is performed

with several intentions. In the context of building blocks, a version is typically defined to

supersede its predecessor. This type of version is commonly called revision. An example is a

new version of a technology component that typically will be the result of a bug fix or feature

Application of DICE in the Fields of EAA

166

enhancement of a previous version. The same principle holds true for any type of building

block.

The level of depth of the applied versioning strategy plays an important role. As a rule of

thumb, building blocks such as applications and technology products are managed on the

level of major releases in the context of EA management (Moser, Fürstenau and Junginger

2010). However, depending on the case, a deeper versioning level might have been chosen,

see e.g. (Klosterboer 2007). An example is technology data held for security management

issues where detailed versioning levels down to the patch level of software products might be

required.

For a better understanding Fig. 59 exemplarily depicts common versioning units for

applications and technology products.

Fig. 59 Varying depths of versioning for applications and technologies

Guiding example (continued): In the used system × technology matrix (see Fig.

44) one can find the database system “Oracle” multiple times. It holds Oracle 11g

and on a more detailed versioning level Oracle 11g.R12.

The latter is on a level too detailed for the intended purposes, thus, the enterprise

architects decide to consolidate the two technologies into one building block

(Oracle 11g).

In a DICE endeavour, for all observable units (EA building blocks) the applied versioning

strategy has to be examined. Groupby mechanisms are required to conflate low level

versioned building blocks. An example is the conflation of technologies such as Archimate’s

modelling class “system software” versioned on the level of service packs into building

blocks versioned on the major release level.

<no version>

patch

w/o version

major release

minor release

…

V1 …

……

V1.1 ………

V1.1.1 …

V1.2

… … …

versioning
level

time

Application of DICE in the Fields of EAA

167

Requirement 8: Provide method chunks to consolidate low level versioned building blocks

into higher level versioned building blocks.

7.1.6.3 Versioning of Architecture Descriptions

As the EA of an organisation undergoes continuous change, the architecture descriptions are

updated on a frequent basis. Thus, EA descriptions typically evolve over time through various

revisions. This versioning will lead to the existence of EA descriptions depicting the same or

similar scope of the EA at different points in time.

In their work, (Moser, Winklhofer and Kuplich 2008) propose a release workflow for EA

models implemented as a status automation that defines states such as “Draft”, “Quality

Assurance”, “Released” and “Archived” to control the process of model creation and release.

In many cases only released models will be of interest, as the quality of these models typically

has been approved and will comprise validated EA data.

The given EA descriptions need to be analysed regarding their currentness and correctness.

The available meta information of the models must be captured in DICE. Information about

approval status, approval date, spatial information etc. is of high relevance. It is obvious that

the data in formally released models is more trustworthy than data without such a

characteristic. In the case of duplicates within the dataset record, linkage mechanism must be

in place to resolve duplicate building blocks including their relations.

Requirement 9: Provide mechanism to filter/select building blocks in datasets based on

their (description) version.

7.1.7 Planning Scenarios - Alternative Architectures

Scenarios have been widely used as a requirements engineering technique, especially with

respect to software architectures, see (Dardenne 1993), (Gough et al. 1995) and (Kazman et

al. 1996). Architecture scenarios are used in the design phases as a method for comparing

design alternatives. The EA analysis techniques such as the “multi-criteria decision making

techniques” (see section 3.1.3) build heavily on this concept.

In TOGAF, in the Phases B, C and D of the Architecture Development Method, the as-is

architecture and target architectures are defined. In Phase E: Opportunities and Solutions, one

Application of DICE in the Fields of EAA

168

or more alternative solution architectures may be defined. Alternative design options may for

example, depend on build-versus-buy-versus-reuse options (Moser, Winklhofer and Kuplich

2008). In order to choose the best solution, the alternative architecture designs are evaluated

and compared. Applied evaluation criteria are: costs, time to market and architectural fit (i.e.

compliance with stated architecture principles). As in TOGAF, other EA frameworks such as

FEAF and GERAM recommend the design and comparison of planning scenarios.

The starting point for defining a new scenario (baseline) is the EA at any given point in

time. Typically, scenarios will be designed for the target architecture. In this context, the

baseline architecture represents the released and authorised state of the EA. The baseline

serves as the basis for designing and implementing architectural changes.

Archimate takes advantage of its plateau concept which was introduced in section 7.1.6. As

discussed, plateaus serve to depict architecture increments; they are also used to represent

architecture scenarios and competing architecture designs as well. Utilizing the concept of

plateaus, baseline building blocks and scenario-specific building blocks can be distinguished.

The main criteria for identifying building blocks of a baseline are that they are formally

agreed and released, see (Moser, Winklhofer and Kuplich 2008). Fig. 60 depicts the baseline

and its progression to the target architecture incl. examples of alternative architecture designs.

Application of DICE in the Fields of EAA

169

Fig. 60 Alternative Architectures

Guiding example (continued): The collected application usage models might not

only be categorised as “as-is” architecture models but also planning alternatives

might be contained. The enterprise architects have to analyse the models and

sort out non-relevant variants to avoid biased results by merging non-relevant

data into the dataset used to create the envisioned clustermap.

Summing up, it is important to differentiate between architecture scenarios and agreed plan

and target architectures. Obtaining the required information from the input models and other

architecture descriptions in an automated way will, in many cases, be impossible without

detailed investigation of available metadata. Scenario comparison must be possible.

Requirement 10: Support scenario-based data structures.

PLAN

time

AS-IS

Chosen

alternatives

TARGET

Alternative

architectures

Baseline

Application of DICE in the Fields of EAA

170

7.1.8 Heterogeneous Metamodels

As mentioned in section 2.1, there are a great many EA metamodels. Almost all EA

frameworks and approaches come with their own metamodels. In addition to that, in EAA

endeavours dealing with EA content not following a “standard” metamodel at all might be

required. “Standard” metamodels might have been tailored to fit a purpose in the context of

specific scenarios. Thus, mechanisms for the integration of data stemming from

heterogeneous metamodels are a critical requirement.

In spite of the differences in these metamodels, many of them share a common ground. All

of them are intended to organise the topmost important concepts of an organisation. Take for

example the metamodels of Archimate and TOGAF. Fig. 61 shows the mapping between the

two metamodels published by the Open Group (Band et al. 2015).

Fig. 61 Metamodel mapping: Archimate vs. TOGAF content metamodel (Band et al. 2015)

Although originally stemming from different organisations and developed independently of

one another, one can recognise that the two metamodels have a high degree of overlap. Other

examples of available mappings are: mappings between the military frameworks DoDAF and

MODAF (Hause, Brookshier and Bleakley 2012) and the TOGAF-BIAN mapping (TOGAF

BIAN Collaboration Work Group 2012) to name just some examples. Where such mappings

are available, they provide valuable input for the required “normalisation” of the data.

Application of DICE in the Fields of EAA

171

However, often the available data may not be instantiated from EA metamodels or may be

based on individually tailored metamodels.

Guiding example (continued): The case of heterogeneous metamodels exactly

reflects the situation of our EAA endeavour. Datasets from different sources have

been taken into consideration. Because of the small number of involved types of

architecture artefacts (modelling classes), relations and attributes, the mapping

is straight forward.

However, if many different types of input sources are available, support for the

required mapping would be appreciated by the enterprise architects. These

mechanisms ideally would generate mapping proposals based on the input

datasets.

For these cases DICE needs to provide mechanisms that support the integration of the EA

data.

Requirement 11: Provide means to integrate datasets stemming from heterogeneous

metamodels.

7.1.9 Common Data Quality Issues

Data quality issues have already been discussed in chapter 6.1. The same criteria apply to

EA data. Probably the biggest difference to common BA and DM endeavours is that in EA in

many cases the population has to be fully covered, i.e.

D
SEM>popultationSize

=D
SEM>samplePopulationSize

. An important issue requiring special attention is the

consolidation of observable units. As becomes obvious from the guiding example,

consolidation of building blocks is one of the major challenges when integrating models.

Thus, adequate mechanisms to identify equivalent building blocks need to be in place.

As opposed to the standard case in horizontally laid out data, in graph-oriented data

additional information such as the observable units’ neighbours and incoming/outgoing

relations have to be taken into account.

Requirement 12: Provide mechanisms to identify equivalent building blocks.

Application of DICE in the Fields of EAA

172

Requirement 13: Provide mechanism for performing record linkage on EA building blocks.

7.1.10 Summary

As has been shown, EA data is object-oriented in nature. In order to examine relationships

between building blocks, most of the EA analysis approaches require not only information on

observable units and their characteristics but also rich structural information. From the

analysis of the nature of the EA the following requirements have been derived that require an

extension of the DICE core method base. Enriching the DICE core method base makes it

possible to assemble a situational method for data integration and cleansing in the fields of

EAA. Table 10 summarizes the derived requirements:

Table 10 Requirements for supporting EAA

Requirement Source

Requirement 1: Provide method chunks to support

the restructuring of EA data in accordance with the

node-edge directed graph template.

The object-oriented nature of EA

data

Requirement 2: Provide method chunks to load EA

data from a diverse set of technical formats and

sources.

Issues with Structural and

Technical Formats

Requirement 3: Provide method chunks to

filter/consolidate building blocks organised in

reflexive relations.

Reflexive Relations

Requirement 4: Provide method chunks to

filter/consolidate EA data organised into different

strata.

Hierarchical Decomposition

Requirement 5: Provide method chunks to

filter/consolidate logical/physical building blocks.

Logical versus Physical Layers

Requirement 6: Provide method chunks to

filter/consolidate types and instance building blocks.

Types and Instances

Application of DICE in the Fields of EAA

173

Requirement 7: The selection transformation task

has to cope with time-related data.

Architecture Increments

Requirement 8: Provide method chunks to

consolidate low level versioned building blocks into

higher level versioned building blocks.

Versioning of Building Blocks

Requirement 9: Provide a mechanism to filter/select

building blocks in datasets based on their

(description) version.

Versioning of Architecture

Descriptions

Requirement 10: Support scenario-based data

structures.

Planning Scenarios - Alternative

Architectures

Requirement 11: Provide means to integrate

datasets stemming from heterogeneous metamodels.

Heterogeneous Metamodels

Requirement 12: Provide mechanisms to identify

equivalent building blocks.

Common Data Quality Issues

Requirement 13: Provide a mechanism for

performing record linkage on EA building blocks.

Common Data Quality Issues

The following section focuses on the implementation of the above requirements by extending

the DICE method base with specialised method chunks required for preparing EA data for

subsequent EA analysis. The enhancement of the method base leads to a situational method

for data integration and cleansing for EAA.

 Requirements 1 and 2 deal with the problem of loading and restructuring data. As

repeatedly stated, a countless number of possible technical and structural formats exist.

Section 7.2.1 focusses on loading and restructuring data residing in the Archimate Model

Exchange Format. The defined transformation task for the restructuring of models in this

format is used as a representative example. Requirements 3, 4, 5 and 8 can be condensed to

the following graph of theoretical problems: contraction and filtering of vertices, edges and

entire paths. This problem area is addressed in section 7.3. Solutions to the requirements 7

and 10 (time-related and scenario-based views on EA data) follow the same solution pattern

Application of DICE in the Fields of EAA

174

and thus are discussed jointly in section 7.2.1. Functions supporting identification of

equivalent observable units (Requirement 13) are presented in section 7.2.2. Record linkage

issues (Requirement 14) are presented in section 7.2.3. Finally, 7.4 deals with heterogeneous

metamodels (Requirement 11 and 12).

7.2 Extending the DICE Method Base for EAA

7.2.1 Restructuring EA Datasets

The first crucial step is always to restructure the input data into the DICE meta structure (see

section 5.3.2.7). The datasets have to be initialised (see the instantiation transformation task

type introduced section 5.3.2.1), i.e. the input datasets have to be structured into a composite

data object (see Fig. 31). The initialisation transformation creates the structure and calculates

the metadata where possible. Additional metadata such as the semantic metadata and the

logistical metadata have to be inputted manually.

Transferring an EA model (such as the exemplary application usage diagrams, see Fig. 46)

but also the matrix-oriented datasets (see the system × technology matrix of Fig. 44) or any

other input format will result in a number of datasets organised in node and edge directed

graph templates (see section 7.1.1.3). The overall structure will be as follows:

 One dataset per building block type (modelling class) contained in the input model.

 One variable to carry the ID values for building blocks which can be arbitrary but

require consistency within the set of relevant datasets.

 One edge table where each row represents one relation between a pair of building

blocks indicating source and sink building blocks. The variable “Relation Type”

within the edge table provides information about the type of relation (composition,

aggregation etc.).

Fig. 62 represents the resulting structure (on data level) in the form of an UML diagram.

Application of DICE in the Fields of EAA

175

Fig. 62 Structure of datasets on data-level to represent EA data

Note (1): As none of the prominent EA frameworks (TOGAF, Archimate, DoDAF) define

attributes for relation classes, this structure is seen as suitable. However, where required the

aforementioned edge table can be split up into edge table per relation class, if relations carry

different attributes (variables).

Note (2): In exceptional cases not all relation classes are directed. This fact is ignored due to

the advantage of a simplified data structure. A more exact schema would penalize data

retrieval and raise the complexity regarding the conducted data transformation steps, e.g. by

requiring multi-table joins (Moody and Kortink 2000).

From the analysis of EA data structures it becomes clear that this initial data structure has to

be extended to provide information about time aspects (see section 7.1.6.1). Thus, each of the

above datasets (carrying the building blocks and their relations) has to be extended by the

following columns:

 Start date, to provide information about the birth of a building block (e.g. production

date of an application component) and

 End date, to provide information about the expiration date of a building block (e.g.

decommission date of an application component).

Note (3): Rastered intervals representing units of time constituting a raster (e.g. quarters,

years etc.) require only one variable indicating the rastered interval (see section 7.1.6.1).

buildingBlock nodeList

variableN
startDate
endDate

buildingBlockName
variableN
startDate
endDate

*

source

sink

1

*1

model

*

0..10..1

*

as part of the
DICE metadata

Application of DICE in the Fields of EAA

176

The resulting data structure on data level has the structure as illustrated in the form of an

UML class diagram in Fig. 63.

Fig. 63Structure of datasets on data-level to represent EA data including time aspects

Typical exchange formats for EA models are: spreadsheet formats (such as csv, xlsx files),

formatted text-files and xml-based formats. Some EA frameworks such as Archimate and

DoDAF offer toolset-agnostic exchange formats. Both the Archimate Model Exchange File

Format (The Open Group 2015) and DoDAF’s PES (DoD 2010) provide well-documented

XML schemas which facilitate the exchange of EA models based on their modelling

languages. Of course, it cannot be guaranteed that the model-base is available based on this

format. Thus, transformation of Archimate models residing in the Archimate Model Exchange

File Format is solely used for illustration purposes. Based on common XML transformation

techniques, the models are transformed into the required structure. Divergences to

Archimate’s standard format or completely different initial structures need to be tackled based

on adequate restructuring of transformation tasks. In these cases, the DICE method base has

to be extended with additional transformation task types. (Shu 1987) provides an overview of

typical transformation techniques.

Guiding example (continued): Let us assume that the application usage models and

numerous other models representing Archimate viewpoints of the organisation are

available in the Archimate Model Exchange File Format. Figure Fig. 64 shows a

representative snippet of such an input file. For more information see the XML schema

buildingBlock nodeList

variableN
startDate
endDate

buildingBlockName
variableN
startDate
endDate

*

source

sink

1

*1

model

*

0..10..1

*

as part of the
DICE metadata

Application of DICE in the Fields of EAA

177

definition given in (The Open Group 2015).

<?xml version="1.0" encoding="UTF-8"?>

<model xmlns= ...>

 <metadata>

 <elements>

 <element identifier="id-855" xsi:type="ApplicationComponent">

 <label xml:lang="en">Customer Data Access</label>

 </element>

 <element identifier="id-1414" xsi:type="ApplicationService">

 <label xml:lang="en">Claim InfoServ</label>

 </element>

 <element identifier="id-596" xsi:type="BusinessProcess">

 <label xml:lang="en">Close Contract</label>

 </element>

 <element identifier="...

 ...

 </element>

 </elements>

 <relationships>

 <relationship identifier="id-884" source="id-861" target="id-838" xsi:type="AccessRelationship"/>

 <relationship identifier="id-880" source="id-855" target="id-837" xsi:type="AccessRelationship"/>

 <relationship identifier=".../>

 </relationships>

 <organization>

 <views>

</model>

Fig. 64 Exemplary snippet of an Archimate model in the Archimate Model Exchange Format

The transformation task type “Restructure Archimate Model” reads in the file and generates

the two datasets: one for the building blocks and a second one carrying the relations between

the building blocks. The enterprise architects load the data and perform the restructure

transformation. Finally, by executing the initialisation transformation, they create the required

DICE data objects, i.e. the composite objects holding data and metadata. See section 5.3.2.1

for more information on the initialisation transformation task.

The new transformation task type “Restructure Archimate Model” is a specialisation of the

transformation task type “Restructure Dataset”. Fig. 65 illustrates this extension of the DICE

method base.

Application of DICE in the Fields of EAA

178

Fig. 65 The DICE “Restructure Archimate Model” transformation task type

7.2.2 Equivalence Functions

Equivalence functions serve a twofold purpose: (1) they are required for performing

integration of data objects and (2) for record linkage transformations in the case of duplicate

observable units.

Note: In DICE the term integration is preferred over the term join, to stress the fact that

integration of datasets requires more steps than a common join operation known from

relational database operations. In addition, it has to be stated that “integration” is not seen as

an atomic transformation step. Integration transformation is assembled by the atomic

transformation task types addition and selection (see 5.3.2.3).

Equivalence functions provide similarity/distance metrics. Discrete matches where an “all-

or-nothing” principle (Dusetzina et al. 2014) is applied will lead to first suitable matches.

Pairs of building blocks are classified as a match if the two building blocks share exactly the

same properties in the data key. For all other building blocks probabilistic linkage methods

(so-called continues methods) are applied.

In their work, (Jeners, Lichter and Pyatkova 2012) classify techniques to determine the

similarity of entities on measurement theory into the following four categories:

 Spatial methods that consider entities as vectors in the n-dimensional space.

Recognized representatives of these methods are the Euclidean Distance (Deza and

Deza 2009) and the Cosine Similarity (Deza and Deza 2009).

 Feature-based methods where the set of features that the entities have in common are

the basis for calculating similarity measures. Prominent methods are: the Jaccard

similarity (Deza and Deza 2009) and Tversky index (Deza and Deza 2009), both

representatives of similarity measures based on sets theory.

Restructure
Archimate

Model

DICE Method Base

DICE Meta Structure

Restructure
{abstract}

Application of DICE in the Fields of EAA

179

 Transformational methods which recognize that entities that are perceived to be

similar have representations that can be transformed into one another with little effort.

The number of required transformation steps is the main indicator. Prominent

representatives are distance metrics such as Jaro, Jaro-Winkler and Levenshtein (Deza

and Deza 2009). For a detailed overview see the work of (Choi, Cha and Tappert

2010).

 Alignment methods are based on Gentner's structure-mapping theory (Gentner 1983).

Techniques such as the Structure Mapping Engine offer an analogy-driven approach

where entities are compared based on their structural features.

In the context of EA descriptions all of these techniques appear helpful for the indication of

equivalence between building blocks and thus are discussed in detail in the subsequent

sections. Since DICE is conceived as a situational method, all the presented techniques can be

understood as being method fragments. They are adapted to be used in the DICE initialisation

transformation task (Tinitialise) which (re)calculates the metadata of a data object including

D
QUAL>uniqueness

, the indicator that provides information on the degree of similarity of

observable units within a given dataset.

In the following sections similarity techniques applicable for EA descriptions are presented.

All of these techniques are understood as (process) method fragments specialising the

equivalency algorithm of the initialisation transformation task type. Fig. 66 illustrates this

extension introducing four EA applicable similarity algorithms: (1) syntactic similarity

analysis, (2) semantic similarity analysis, (3) structural similarity analysis and (4) attribute-

based similarity analysis.

Application of DICE in the Fields of EAA

180

Fig. 66 Extending the initialisation transformation task type

Note that similarity analysis and its specialisations are not transformation tasks on their own;

they are algorithms as part of the initialisation transformation task type.

7.2.2.1 Syntactic Similarity Analysis

This analysis technique is based on string similarity metrics. The names of the building

blocks are compared. A wealth of similarity/distance measurement techniques exist for string

matching. For a brief overview see, e.g. the work of (Choi, Cha and Tappert 2010) and the

work of (Cohen, Ravikumar and Fienberg 2003). These techniques are commonly known as

distance or similarity functions.

Note: Distance is a measurement of dissimilarity. Any distance measurement can be

converted into a similarity measurement and vice versa. The distance measurements presented

in the following paragraphs are normalised into intervals from 0 to 1 where 0 represents a full

match and 1 stands for completely dissimilar. From this, it follows that s=d-1 where d

represents a distance measurement and s the corresponding similarity measurement.

Distance functions can be divided into three main categories: edit distance, token-based and

hybrid (Ribeiro and Härder 2006). All of these techniques provide a cost function which

evaluate edit operations (insert, delete and replace) required to convert one lexical string to

another (Bilenko et al. 2003). Cohen et al. who did a performance evaluation of popular string

distance metrics in the fields of name-matching (Cohen, Ravikumar and Fienberg 2003) and

other sources such as (Bilenko et al. 2003) and (Ribeiro and Härder 2006) recommend the

Jaro and the Jaro-Winkler metrics for the matching of short strings. More elaborate

Initialisation

Syntactic
Similarity
Analysis

DICE Method Base

DICE Meta Structure

Similarity
Analysis

Attribute-based
Similarity
Analysis

Structural
Similarity
Analysis

Semantic
Similarity
Analysis

…

Application of DICE in the Fields of EAA

181

approaches such as the level two distance function “Monge-Elkan distance” (Deza and Deza

2009) , a hybrid method combining token-based and edit-distance like functions perform

slightly better in some cases but according to (Cohen, Ravikumar and Fienberg 2003) require

up to a tenth of computational efforts in terms of computation time.

The characteristics of the strings are the most important factor when choosing the distance

function. By comparing the names of building blocks, DICE has to deal with short strings.

Archimate recommends either single words (nouns or verbs) or short sentences (verb-noun-

combinations) for naming its building blocks. According to (Cohen, Ravikumar and Fienberg

2003), the Jaro similarity functions, which account for the number and order of common

characters between the pair of two strings, perform best for short sentences and single words.

The Jaro-Winkler similarity, which is an extension of the Jaro similarity, emphasizes matches

in the first few characters (prefix), as Winkler recognized that typos more likely arise in the

middle or at the end of a word as opposed to its beginning (Winkler 1999). However, for

some of the building blocks, (namely for building blocks of the modelling classes “technology

component” and “artefact”), this weighted rating is obstructive, as oftentimes these building

blocks will comprise the reoccurring vendor name at the beginning of the strings, the more

differentiating characters and designations in the middle and concrete version numbers at the

end. Examples are: “Microsoft SQLserver 2012” vs. “Microsoft Server 2013” and “Apache

Tomcat 7” vs. “Apache Tomcat 8” etc. Putting stronger emphasis on the prefix of words is

inapplicable in these cases.

As is common for distance metrics, the score of the Jaro distance is normalized and will

always be between 0 and 1 where 0 equates to a positive match and 1 is a bad match. In other

words, the lower the distance for two strings is, the more similar the strings are. In general,

scores higher than 0.2 are not considered useful. The Jaro distance is defined as follows (E. H.

Porter and Winkler 1997):






















 



otherwise

0 if

m

tm

s

m

s

md j ,
3

1

,0

21

where m is the number of matching characters of the strings s1 and s2 and t is half the

number of transpositions.

Application of DICE in the Fields of EAA

182

Furthermore, two characters from a given pair of strings are considered equal only if they

are of the same character and not farther than

 
1

2

,max 21








 ss
.

To obtain better results, pre-processing transformations are often performed on the strings

before conducting the similarity analysis. Typical pre-processing transformations are: stop

word removal (Fox 1989), white space removal and word stemming (M. F. Porter 1980). In

cases where the building block names are not represented by single words but by short

sentences (as is common for business processes, e.g. “Handle Claim” and “Pay Claim”),

additional operations might be conducted. From the broad set of techniques from the fields of

natural language processing (NLP), part-of-speech-tagging (POS) can be applied to filter out

relevant text chunks only. A naïve but effective strategy would be to filter out verbs and

nouns only and subsequently to assemble the text chunks alphabetically. See e.g. (Kao and

Poteet 2007) for an introductory overview of NLP techniques and POS and the subsequent

explanations in the guiding example.

Guiding example (continued): Take the business processes “Claim

Registration” and “Register Claim” from the two EA models of Fig. 46 and

Fig. 67.

Application of DICE in the Fields of EAA

183

Fig. 67 Multi-layer viewpoint

Their Jaro Distance is 0,36 (Jaro Similarity of 1-036=0,64). Based on this

value, the enterprise architects are unlikely to consider the two business

processes to be equal.

Applying POS tagging (based on the Penn Treebank tagset (Marcus,

Marcinkiewicz and Santorini 1993) and subsequent word stemming using

the Porter word stem algorithm, (Van Rijsbergen, Robertson and Porter

1980), the process names are represented as follows: “Register/VB

Claim/NN” and “Claim/NN Registration/NN”. By reordering the text chunks

alphabetically and removing white spaces and POS annotations, the

enterprise architects obtain the following strings: “claimregistr” and

“claimregis” with a respectable jaro distance of 0,06 (similarity of 0,94).

Application of DICE in the Fields of EAA

184

7.2.2.2 Semantic Similarity Analysis

Semantic similarity analysis is based on the assumption that the vocabulary that is used for

naming the building blocks is taken from the given domain terminology (Deerwester et al.

1990). Thus, two building blocks are classified as similar if they use similar vocabulary based

on a vector of synonyms (Kessentini et al. 2014) obtained from a thesaurus or domain

ontology.

Since it is very likely that the dataset contains different concepts having the same semantics

under different names (see common data quality issue: semantic similarity, section 6.2), solely

identifying syntactic similarity of building blocks isolated from their semantics will not be

sufficient in many cases. Take the following example: semantically similar building blocks,

such as “client” and “customer”, both instantiated from Archimate’s modelling class

“business object”, will obviously have a low similarity score applying the previously

introduced Jaro distance which happens to be 0,51 in this case. Other similarity metrics such

as the widely-used Levensthein distance will result in even lower similarity values (Cohen,

Ravikumar and Fienberg 2003).

By applying semantic similarity analysis, we overcome this issue taking synonyms into

account. The synonyms can be gathered from a general-purpose natural language ontology

such as the lexical database WordNet (Miller 1995). Wordnet basically groups words into sets

of synonyms called synsets. In other words, a synset represents a set of words in which all

words have a similar meaning. For an overview on general-purpose ontologies, see (Bond and

Paik 2012). For specific vocabulary, e.g. the set of technology components, specific

ontologies and/or technical reference models will be helpful where available.

From the designations of two given building blocks, their synsets S and T are retrieved. In a

next step the joint word set of the synsets S and J is formed:

 nwwwTSJ ..., 21

where J contains all the distinct words from S and T. Inflectional morphology (different

word forms) can be accepted when the technique is combined with a preceding syntactic

similarity analysis (see section 7.2.2.1) that will identify the similarity of morphologic words

in a previous step.

Application of DICE in the Fields of EAA

185

The word order within the synsets is unimportant. Typically, token-based distance metrics

are suitable. One simple and often quoted as being effective technique from the fields of

token-based metrics is the Jaccard similarity. Between the word sets S and T, Jaccard

similarity is defined as
TS

TS




, see e.g. (Deza and Deza 2009). Other prominent approaches

are: the cosine similarity, the TF-IDF, the Euclidean distance and the Manhattan distance; see

(Deza and Deza 2009) for these distance metrics and for many more. For the purposes at hand

the cosine similarity is used, as it is very efficient especially for vectors such as the introduced

synsets (Bilenko and Mooney 2003).

For calculating the cosine similarity, the name of each building block is represented in the

form of a vector in n-dimensional space where n is the number of unique terms of a particular

building block’s names synset, i.e. the number of alternative denominations including the

original name of the building block. By calculating the cosine similarity, the cosine of the

angle between the two synsets (vectors based on the building block’s names) is determined.

For cosine similarities of value 0, the two compared vectors do not share any terms; the

building blocks are not considered to be similar. In this case, the angle between two given

vectors is 90 degrees. The mathematical equation is defined as follows:

 


















n

i i

n

i i

i

n

i i

TS

TS

TS

TS
TSsimilarity

1

2

1

2

1
cos ,

where Si and Ti are components of the vectors S and T and S and T represent the synsets of

the names of the two observable units US and UT. For a detailed discussion of the cosine

similarity see, e.g. (Ye 2011).

In cases where the names of building blocks are not represented by single words but rather

by short sentences, the algorithm has to be refined. Again, NLP techniques (see section

7.2.2.1) can be used to filter out relevant words only. Additionally, the mentioned classical

pre-processing steps (stop word removal, word stemming etc.) can be applied to obtain better

results.

Take the above example of the pair of business processes, “register client” and “record

customer”. In a naïve approach one would obtain the synset of each designation by creating

the superset of all synonyms of all contained words. The following synsets have been

retrieved from wordnet (Miller 1995):

Application of DICE in the Fields of EAA

186

  file-cross show,read, record, file, register,Sregister and

 nodecustomerclientSclient ,,

  showread, down, putenter, register, record,Trecord and

 customerclientTcustomer , .

The cosine similarity can be applied to these supersets resulting in a cosine similarity of 0.71

by comparing the vectors S and T where clientregister S SS  and clientrecord TTT  .

An alternative approach is to generate the cross-products of the synsets first:

TrecordCustomer = Trecord × Tcustomer and SregisterClient = Sregister × Sclient and subsequently applying

the cosine similarity.

7.2.2.3 Structural Similarity Analysis

This technique is based on the assumption that similar building blocks share the same

neighbouring building blocks. Thus, two given building blocks which have the same

neighbouring building blocks can be considered equivalent. The similarity calculation follows

the same technique as the semantic similarity analysis. For each building block, the list of its

immediate neighbouring building blocks is created. This list forms the word set of a given

building block which has to be compared via similarity analysis. Again, cosine similarity for

determining the similarity of given pairs of building blocks is applied. The cosine similarity

does not penalize negative matches. This is important, as positive matches are far more

important than negative matches because negative matches might simply result from the

concept of viewpoints where not necessarily all relations and neighbouring building blocks

are contained in a model.

Formally this is denoted as follows:

Let    neigbours

uu UUN  be the (set of names of) the neighbours of a building block uU and

consequently  xUN be the neighbouring building blocks of building block xU . The two

building blocks can be considered similar where

     thresholdUNUN xu ,distancecos is given.

In DICE this type of similarity analysis is called structural similarity analysis.

Application of DICE in the Fields of EAA

187

Guiding example (continued): In the application usage model the direct

neighbours of the business process “Register Claim” are the

superordinated business process “Handle Claim”, the application services

“Scanning service” and “Customer administration service”. Table 11

shows the neighbours categorised by relation class and modelling class.

Table 11 Categorized list of structural neighbours

Neighbouring
BB

Connecting
Relation class

Modelling class

Handle claim Aggregation Business process

Scanning
service

Is used by Application service

Customer

administration

service

Is used by Application service

From the model in Fig. 67 the following neighbours of the business process

“Claim Registration” can be obtained:

Table 12 Neighbours of the building block "Claim registration"

Neighbouring

BB

Connecting

Relation class

Modelling class

Handle claim Aggregation Business process

Scanning
service

Is used by Application
service

Customer

administration

service

Is used by Application

service

Customer Access Business object

Claim Access Business object























- - -

 - - -

 servicetionadministra Customer

service Scanning

claim Handle

 and























Claim

Customer

 servicetionadministra Customer

service Scanning

claim Handle

Fig. 68 Vectors on structural neighbours

Application of DICE in the Fields of EAA

188

Transferred into binary vectors one receives the following vectors:























0

 0

1

1

1

and























1

1

1

1

1

Fig. 69 Binary vectors on structural neighbours

The cosine similarity on the two vectors is 0,775.

In their work on semi-automatic schema matching algorithm for EDI/XML-based data,

(Chukmol, Rifaieh and Benharkat 2005) present a similar approach classifying structural

neighbours into ancestors, siblings, immediate children and leafs. This becomes possible due

to the hierarchical structure of EDI/XML documents. Transferring this concept to DICE for

EAA, the subset of structural neighbours have to be classified into neighbours based on the

connecting relationship type. Relationship types such as “Specialization” and “Composition”

make it possible to derive parent/child relationships of the building blocks. However, DICE

refrains from this detailed segmentation as this would result in inadequate small subsets of

neighbours to be compared. Furthermore, this approach would require high quality models as

input datasets where proper utilization of the used relation types is guaranteed.

7.2.2.4 Attribute-based Similarity Analysis

This approach has to be understood as a variation on the previously discussed approaches.

While up to now only the building block’s designations (the variable “name”) have been

taken into account, the attribute-based similarity analysis considers multiple variables

(attributes) of building blocks. A building block is considered as a vector with all its property

values representing the components of the vector. Again the cosine distance can be used to

calculate the similarity:

  thresholdUUsimilartiy tsine ,cos

where Us and Ut (as has been defined) represent the vectors comprising all property values

of selected variables of the observable units. To obtain better results one typically chooses

variables of type categorical as the relevant variables to be compared.

Application of DICE in the Fields of EAA

189

Following the concept of (Gill and Qureshi 2015) who combined different similarity

measures, the overall similarity can be calculated as follows:

     

   

 

  its

attrstrucsemsyni

i

attrtsattrstructsstruc

semtssemsyntssynts

CoefUUsimilarity

CoefUUsimilarityCoefUUsimilarity

CoefUUsimilarityCoefUUsimilarityUUsimilarity

*,

,,

,,,

,,,








where
 

1
,,,


 attrstrucsemsyni

iCoef and 10  iCoef .

The weight per coefficient must be adapted to the given situation and applied naming

conventions (if any) of the building blocks.

An important precondition for calculating the similarity of building blocks is that the two

building blocks do not have any relationships to one another. Take the following example: the

business process “Claim Registration” is specialised into a business process “Claim

Registration (online)”. As the processes have similar names, they will be considered as

equivalent (depending on the defined threshold). From the specialisation relation between the

two building blocks it is obvious that they have to be considered as different objects.

The following condition applies:

 
 

 

  otherwiseCoefUUsimilarity

UNU

UUsimilarity
its

attrstrucsemsyni

i

ts

ts ,*,

 if,0

,

,,,








Thus, building blocks can only be considered similar as long as there is no relation defined

between the building blocks. However, especially when it comes to specialisation relations

between building blocks, it will be permissible to consolidate the specialised building block

with its superior building block (see section 7.3).

7.2.3 Method Chunks Supporting Record Linkage

A typical transformation in the case of EA analysis is the addition of self-contained models

to support cross-model analysis. In the guiding example, self-contained models are merged to

support EA analysis. The required DICE transformation step (after restructuring the models)

is the addition that will ultimately lead to duplicate observable units in the various datasets. In

EAA the types of observable units typically correspond to the modelling classes defined in the

metamodel. Performing addition on the models leads to a disconnected super graph where

Application of DICE in the Fields of EAA

190

each of the former models represents a graph component. Via record linkage, duplicate

observable units are fusioned such that the independent graph components form a connected

graph.

Fig. 70 schematically illustrates the required transformation based on the pair of two

simplified EA models.

Fig. 70 Merging of EA models

The record linkage transformation is composed of the following atomic DICE

transformation task types:

1. Restructuring the input models into data objects.

2. Addition of the data objects.

3. Blocking of building blocks.

4. Similarity analysis on building blocks.

5. Consolidation of equivalent observable units.

In the following sections, focus is placed on blocking strategies and the consolidation of the

duplicate observable units. Restructuring of EA models has been discussed in section 7.2.1,

and for addition of the datasets, the DICE transformation task type “addition” introduced in

section 5.3.2.3 can be applied.

Fig. 71 Generic record linkage process

A‘

A B

A‘‘

CA B

A

C

 =

Step 1:

Addition

Step 3:

Similarity

Analysis

Step 2:

Blocking

Non-

matches

Matches
Step 4:

ConsolidationInput

model B

Input

model C

Input

model A

Application of DICE in the Fields of EAA

191

7.2.3.1 Perform Blocking

Record linkage requires the comparison of all building blocks within a dataset. The

comparison space is the Cartesian product of all pairs of building blocks. With a given large

population a naïve approach of comparing all building blocks is computationally prohibitive

(Dusetzina et al. 2014). The number of required comparisons is
2

|1|||  ×
 where Ω is the

population, i.e. the set of building blocks within the dataset. The concept of blocking makes

the reduction of this wide search space possible by determining which record pairs to

consider. It makes possible significant improvements in related processing efforts. To this

end, the building blocks are grouped by so-called blocking attributes. Thus, the application of

blocking strategies results in partitioning the initial set of building blocks into subsets. The

matching of a given pair of building blocks will then be restricted to the building blocks

residing in a block.
7

The building blocks within these subsets must at least share one common attribute which

characterises a block. Manifold blocking algorithms have recently been proposed. Prominent

examples are: the standard blocking technique, the sorted neighbourhood technique, the q-

gram indexing technique, the canopy clustering technique and the TFIDF, see (Baxter,

Christen and Churches 2003) for an overview. Most of these blocking algorithms are based on

the multi-pass approach first discussed in the work of (Hernández and Stolfo 1998) where

candidate matches are generated using different attributes (and combinations of attributes)

across independent matching passes.

For EAA the required partitioning into separate datasets can easily be performed by the

DICE transformation task type “selection”. When applying a blocking strategy to any given

dataset based on the Archimate modelling language, obviously the building block type (i.e.

the modelling class) must be considered as a selection criterion. Depending on the given set of

building blocks, and thus, on their different modelling classes, this strategy might lead to

more than fifty subsets (blocks), as the Archimate 3.0 specification comes with more than

fifty modelling classes. Fig. 72 illustrates the identified blocks of the guiding example’s

7
 Note: the notions “building block” (the elements within the EA models) and “blocking” are coincidently

termed in a similar way and have nothing in common.

Application of DICE in the Fields of EAA

192

application usage diagrams. The initial table containing all the building blocks has been split

into one table per modelling class (i.e. per business process, application service and

application component). Each block is generated by performing a DICE selection task (

selectionT) based on a selection criteria P
SEM>type

= [modelling class].

Guiding example (continued): After performing the blocking transformations (i.e.

selection of building blocks per type), the enterprise architects receive four datasets:

one table per modelling class and one additional table carrying the relations.

Fig. 72 Data after applying blocking transformation

The sketched approach is based on the blocking technique “standard blocking”; all building

blocks of the modelling class are inserted into the same block (Peter Christen 2007). The

major drawback of standard blocking is that errors in the blocking key values will lead to

building blocks being assigned to the false block. This problem is mitigated by the

assumption that the input format is based on Archimate’s Model Exchange Format. Under

these circumstances, one can assume that all building blocks are typed correctly in regard to

their underlying modelling class.

However, in case further blocking is required due to the high number of building blocks per

block, additional blocking strategies can be applied. For an overview of blocking strategies,

such as sorted neighbourhood, q-gram based blocking, canopy clustering and string map

based blocking, see e.g. (Baxter, Christen and Churches 2003) and (Peter Christen 2007). In

any case, the use of blocking strategies needs to be well thought through as errors in the

blocking key values will lead to records being inserted into the false block, and thus, they will

not be compared.

building

BlockID modelID

building

Block

Name

1 1 Handle Claim

2 1 Register Claim

… … …

5 1 Pay Claim

building

BlockID modelID

building

Block

Name

6 1

Scanning

Service

7 1

Customer

Administration

Service

… … …

building

BlockID modelID

building

Block

Name

11 1

Document

Management

System

12 1 CRM System

… … …

relationID modelID

source

Building

BlockID

sink

Building

BlockID

relation

class

1 1 1 2 aggregation

2 1 1 3 aggregation

3 1 1 4 aggregation

4 1 1 5 aggregation

5 1 6 2 aggregation

6 1 7 2 serves

7 1 8 3 serves

… … … … …

Application of DICE in the Fields of EAA

193

7.2.3.2 Similarity Analysis

Similar to Gill’s and Qureshi’s approach to aligning metamodels (Gill and Qureshi 2015), a

multiple-step strategy (also referred to as iterative strategy to record linkage) (Dusetzina et al.

2014) based on all of the above similarity techniques is often most effective. To this end, the

building blocks are matched in a sequence of steps. Building blocks that do not match

syntactically are passed on to a second step for semantical analysis and so forth. The

calculated similarities are collected in a node list: a dataset holding the pairs of compared

building blocks along with the calculated similarity measures. Fig. 73 shows the structure of

this dataset.

Fig. 73 DICE similarity node table

From a graph theoretical point of view, additional edges are created between the pairs of

building blocks.

 All of the proposed similarity functions are not applicable for all types of building blocks.

In a semantical similarity analysis a thesauri or domain specific ontologies need to be

available. This might be the case for building blocks of type business process and business

objects since little domain-specific vocabulary is required. For building blocks of type

application component where application components often carry fictional names or

abbreviations, it is unlikely to find suitable general purpose ontologies. DICE considers this

issue by introducing coefficients which make weighing the similarity measures possible (see

section 7.2.2.4).

In the following section the required merge approach is presented in more detail.

buildingBlock similarityNodeList

syntacticSimilarity
semanticSimilarity
structuralSimilarity
attribute-based Similarity
totalSimilarity

buildingBlockName
*

source

sink

1

*1

Application of DICE in the Fields of EAA

194

7.2.3.3 Consolidation of Equivalent Building Blocks

Each of the four similarity analysis steps generates a so-called similarity matrix, a

symmetric square matrix of distances between the building blocks. Each entry dij in such a

matrix is the distance (or similarity) between building blocks i and j. The matrix is symmetric

(dij=dji) and its diagonal has values of either 1 (one) in case of similarity or all 0’s in case of

distance. Hence, for reasons of symmetry only the left lower part of the matrix or likewise the

right upper part of the matrix has to be considered. Fig. 74 illustrates this issue.

Fig. 74 Symmetric distance matrix

As explained in section 7.2.2, only those candidate pairs of building blocks are relevant that

have a distance lower than a defined threshold  , that is to say a similarity measure beyond a

given threshold. Two given building blocks with a distance ijd are considered to be equal

and have to be consolidated.

As has been introduced in section 5.3.2.6, DICE provides two basic functions for

consolidation of observable units: inkageionRecordLconsolidatT and tionionAggregaconsolidatT . The first has to be

applied in the case of duplicate observable units, i.e. observable units which have an

equivalent observable unit within the relevant datasets. The latter is used as a consolidation

step after variable removal. In this view, the combination of a variable removal transformation

and a subsequently applied consolidation transformation represent a groupby transformation.

Consolidation of observable units, like any other transformation step, impacts the quality

metadata. The applied similarity measures are incorporated into the quality indicators of the

properties. Thus, the set of quality indicators on the property level is extended by the quality

indicator P
QUAL>uniqueness

.

 U1 U2 … Un

U1  d12 … d1n

U2 d21  … d2n

… … …  …

Un dn1 dn2 … 

Application of DICE in the Fields of EAA

195

7.3 Contraction of Edges and Vertices – Consolidation Strategies

The requirement of consolidating edges and vertices stems from the diverse characteristics

of EA data, such as reflexive relations, hierarchical decomposition, types and instances,

physical vs. logical view and variants of building blocks. In all cases, formerly discrete

building blocks are merged into one new building block. In (Kurpjuweit and Aier 2009), the

authors conclude that three categories of relations are of importance: association, aggregation

and generalisation. Specialisation is considered as the opposite of generalisation. Thus,

generalisations can be converted into aggregation and vice versa by converting the direction

of the relation. Any other relationship types of an EA metamodel can be classified into these

categories (Kurpjuweit and Aier 2009). For a better understanding Fig. 75 presents this idea

for some of the Archimate relationship types.

Application of DICE in the Fields of EAA

196

Fig. 75 Generic Relationship Types in DICE mapped onto Archimate relations

The following types of relations have to be considered:

 Whole/part relations where one building block can be considered to be part of

another. The relationship types aggregation and composition are the typical

representatives. Obviously, in such a relationship the component (the subordinated)

building blocks can be consolidated into the super-ordinated building block but not

vice-versa.

 The situation is different with generalization/specialization relationships.

Subordinate building blocks are subsets of building blocks of a superior building

block where specialization building blocks inherit the attributes of the generalization

RelationType
{abstract}

Generalisation/
Specialisation

{abstract}

Aggregation/
Composition

{abstract}

Association
{abstract}

Realisation

Specialisation

Flow

Serving

Accesss

Triggering

Aggregation

Composition

Assignment

Influence

DICE Categories

Archimate

Application of DICE in the Fields of EAA

197

building blocks. Per definition, generalization building blocks can be consolidated

into their specialization building blocks. However, the data engineer can decide to

consolidate specialization building blocks into generalization building blocks if he

considers this a valid decision.

 The case of association is not that clear. Associations can be bidirectional, directed

or undirected and do not provide inheritance and/or containment mechanisms per se.

The desired behaviour in the case of record linkage has to be specified for the given

situation. The similarity relation introduced in section 7.2.3.3 is a special case.

Obviously, pairs of building blocks have to be consolidated in this case.

From the fields of graph theory, graph transformation techniques, such as vertex, edge and

path contraction are adopted for DICE. In a graph G, contraction of an edge e with vertices

x,y is the substitution of x and y with a new vertex such that edges incident to this new vertex

are the edges that originally were incident to x or y. The resulting graph G\e has one less

vertex than G (Wolfram Alpha 2017b). Vertex contraction is defined as a less restrictive

transformation. In the case of vertex contraction, vertices can be substituted by a new vertex

without originally being connected via an edge. Thus, vertex contraction may be applied to

any pair of vertices.

7.3.1 Consolidation for Record Linkage

In DICE terms, edge and vertex contraction refers to the consolidation of building blocks.

Take again the example section 7.2.3.2. Duplicate building blocks are consolidated. Duplicate

building blocks are identified via their similarity measure stored in the similarity node list (see

Fig. 73). Relations representing high similarity between a pair of building blocks are

contracted. The direction of the association relationship is irrelevant in this case.

Application of DICE in the Fields of EAA

198

Fig. 76 Contradiction of equivalent building blocks

As has been defined in section 5.3.2.6, a consolidation transformation of type

TconsolidateRecordlinkage has to be performed. In the DICE super structure there is no extra handling

of relationships. Thus, the method base has to be enriched by a transformation task type that is

capable of handling the incidence relations (which connect the adjacent building blocks).

7.3.2 Consolidation of Hierarchically Structured Building Blocks

It is obvious that in the case of whole-part relations or specialisation/generalisation relations

different building blocks will be retained. Thus, relationship type and direction are important.

For a better understanding Fig. 77 illustrates an edge contraction based on the exemplary

application usage model of Fig. 46. One of the level-1 processes is consolidated with the

superior level-0 process.

Fig. 77 Contraction of a building block in the case of reflexive relations (with aggregation relation)

Removal of all of the L2 objects corresponds to vertex deletions of all L2 objects followed by

replacement of all previously adjacent edges with new relations. The cross product of the set

of L1 and L2 elements where both sets contain the neighbours of a removed vertex Lu has

Low SimilarityHigh Similarity

EDGE
CONTRACTION

Resulting graph G/xInitial graph G

Ln+1

Ln

Ln-1

EDGE
CONTRACTION

×

Initial Graph G/eInitial Graph G

e

Application of DICE in the Fields of EAA

199

to be determined to create the relations. Formally this condition is written as follows:

 11,)( nnG LLuN and 11  nn L ×L

where NG(u) is the function which retrieves an observable unit’s (u) neighbouring building

block and Ln-1 as well as Ln+1 are the sets of neighbouring building blocks. Removal of all

building blocks on L2 results in a model as illustrated in Fig. 78.

Fig. 78 One level entirely removed

7.3.3 Special Case of Reflexive Relations

Deciding which level to remove in order to acquire the required results clearly depends on

the targeted dataset, in the guiding example the dataset required to create the envisioned

cluster map. Usually, the determination of the required level will not be that straight forward.

The EA might contain structures organised in different levels of hierarchy. A strategy for

“normalising” the layers has to be defined. Fig. 79 illustrates an example with different levels

of hierarchy in the case of reflexive relations.









 )(|/ 1 nn LLeeG 

Application of DICE in the Fields of EAA

200

Fig. 79 Matching reflexively structured graph components

 From Fig. 79 it becomes clear that determination of hierarchy levels is a non-trivial

problem. The data engineers have to decide which levels to keep, remove or merge. As a

general rule, one can state that siblings and cousins reside on the same level. Possible non-

supervised strategies involve:

 vertical alignment to the top where the ‘top’ is defined by the height of the root node

on the longest path from the root node to a leaf,

 vertical alignment to the bottom where ‘bottom’ is defined as the height of the leaf

on the longest path from the root node the leaf,

 centered alignment where ‘center’ represents the middle level of the longest path

 or any individually defined situational strategies.

Using one of these strategies requires knowing the actual level where a building block

resides in the hierarchy. These kinds of hierarchies comprise reflexive relations (see section

7.1.4.1) with the building blocks organized in a parent-child hierarchy (i.e. relations of super

type specification, composition or aggregation). In graph theory, these hierarchies correspond

to directed acyclic graphs (DAG) and the problem can be considered as an all-pair longest

path problem. The longest path problem deals with discovering a simple path of maximum

Component G2Component G1

Component G2Component G1

Component G2Component G1

?

Component G1 Component G2

(c) alternative 3

(a) alternative 1 (b) alternative 2

Application of DICE in the Fields of EAA

201

length within the given graph. Simple paths are paths which do not contain repeated vertices.

For the given problem statement, the graph can be considered as non-weighed, hence the

length of a path can be calculated by simply counting its number of edges.

The given all-pairs longest path problem reduces to an all-pairs shortest path problem (Khan

2011). DICE adopts the Floyd–Warshall algorithm (Weisstein 2008), a general purpose

algorithm for solving all-pairs shortest path problems. The algorithm uses each vertex

(building block) in turn and computes the distance between every pair of building blocks in

the model. The edges have no weights, i.e. a weight of 1. To adapt the algorithm (from

shortest path to longest path) the edge weights need to be negated (multiplied by -1). Based

on this transformation, the problem can be considered as a shortest path problem which is

solved by applying the standard algorithm. Finally, the resulting distances have to be negated

again to represent the longest paths.

% bb … buildingblocks of the model %

let dist be a |bb|×|bb| matrix of min. distances initialized to -∞ (negative infinity)

for each bb

 dist[bbv][bbv] ← ∞

for each relation (bbu, bbv)

 dist[bbu][bbv] ← w(bbu, bbv) = -1 % the weight of the relation (u,v) is -1 %

for bbk from 1 to |bb|

 for bbi from 1 to |bb|

 for bbj from 1 to |bb|

 if dist[bbi][bbj] > dist[bbi][bbk] + dist[bbk][bbj])

 dist[bbi][bbj] ← dist[bbi][bbk] + dist[bbk][bbj]

 end if

(|bb|×|bb|)* (-1) % negate the distances in the matrix %

dist[bbv][bbv] ← 0

Fig. 80 Longest path algorithm to determine height of building blocks in graph-based models

Like many of the shortest path algorithms (e.g. the Dijkstra's algorithm and the Bellman–

Ford algorithm), see (Pallottino 1984)), the Floyed-Warshall algorithm does not compute the

shortest paths themselves but rather the shortest distances between the pair of two nodes.

From that the nodes and vertices defining the shortest path can easily be obtained. This of

course also holds true for the longest distances computed with the introduced longest path

algorithm.

For the problem at hand, the resulting matrix is used to define the height of the building

blocks. Starting from the source nodes (level 0), all nodes with a distance of 1 represent the

Application of DICE in the Fields of EAA

202

level 1 nodes; nodes with distance of 2 represent level 2 nodes and so forth. On this basis the

data engineer can decide on matching levels and levels to be contradicted.

7.3.4 Filtering and Contraction of Entire Paths

As in any BA endeavour, the input datasets will come in many different structures.

Typically EA models contain complex dependencies between the building blocks. To serve as

input for the subsequent EA analysis, non-relevant building blocks and their dependencies

have to be filtered. Often entire paths within the EA models have to be filtered.

Take the example of the introduced guiding example. To produce the final analysis view,

only building blocks of the types business process, application component and technology are

required. The selection transformation task type supports the filtering out of the relevant

building blocks and their relations. However, filtering is a non-trivial task, as important

relations between the observable units might get lost. To keep all relevant dependencies

between building blocks and at the same time allow the filtering of the datasets, DICE comes

with the concept of path contradiction. It makes possible the deletion of unnecessary building

blocks and at the same time the restoration of dependencies between the building blocks.

Archimate proposes a concept which supports object contraction transformations. Archimate

comes with an abstraction rule called “derivation of relations” which states that “two

relationships that join at an intermediate building block can be replaced by the weaker of the

two” (The Open Group 2016), bypassing the intermediate building block. Formally this rule

is specified as follows: “If two structural relationships r:R and s:S are permitted between

elements a, b and c such that r(a,b) and s(b,c), then a structural relationship t:T is also

permitted with t(a,c) and type T being the weakest of R and S” (The Open Group 2016).

Information on the formal derivation of this rule is provided in (van Buuren et al. 2004).

DICE for EAA makes use of this concept, which makes it possible to bypass intermediate

observable units and at the same time preserve the relations between the remaining building

blocks.

Guiding example (continued): Take Fig. 81 as an example. The model

presents paths from application components down to the technology level.

For the envisioned clustermap only application components and technology

components (system software) are of interest.

Application of DICE in the Fields of EAA

203

Fig. 81 Example of derived relationships

The enterprise architects make use of the derived relations concept to

bypass all non-relevant building blocks and then delete these from the

dataset.

Filtering the relevant paths and creating the derived relations between the remaining

building blocks can be considered as shortest path problem in a directed graph. A path is

defined as a graph whose vertices can be arranged in a sequence v1, v2, v3 … vn such that the

edge set is  1,...,2,11   n ivvE ii . With regard to EA, model’s paths connect building

blocks. In section 7.1.1.3 EA models have been defined as directed cyclic graphs. It can be

concluded that there can be more than one path connecting two building blocks within an EA

model. DICE assumes that the greater the distance between a pair of building blocks, the

weaker is the dependency on one another. Thus, the number of intermediate nodes within a

graph plays an important role. Revisiting the concept of derived relationships of Archimate,

one can see that Archimate goes one step further by assigning weights to its relations.

The Archimate relationships on which this rule is intended to be applied and their associated

weights are the following: association (1), access (2), used by (3), realization (4), assignment

(5), aggregation (6) and composition (7). Under the premise that two consecutive relations on

a path within a model (dataset) point in the same direction, a new relation bypassing the

intermediate object can be derived. A similar concept inspired by Archimate and

universalized to be applicable for any EA metamodel has been introduced by (Kurpjuweit and

Aier 2009). EA models and datasets not based on Archimate have to be extended by this

Application of DICE in the Fields of EAA

204

mechanism. Existing relation types have to be categorised into concepts, such as

specialisation, generalisation and composition. Additionally, weights have to be assigned to

the type of relations. Alternatively, the distance between two building blocks can be

calculated simply by counting the nodes on the path between the two building blocks. In this

case, simply the shortest path between vertices on a non-weighed graph has to be calculated.

However, for these cases it is obvious that the resulting graph of shortest paths will not be that

exact.

For EA analysis, one is usually interested in the most direct paths, i.e. in the shortest path, as

it can be assumed that the greater the distance between two building blocks, the lower the

reliability of estimates on their dependencies. The problem of finding the shortest paths

between two nodes within a graph is well-studied in the fields of graph theory: “Given a

directed weighed graph, and a set of pairs of vertices,     nn vuvu ,,..., 11 where Vvu ii , , the

problem is to compute, for each i, a simple path in G from ui to vi (a list of vertices

visssu ikiioi  ,...,, 1 such that for all kj 0 and   Ess jiji 1,, , such that no other simple

path in G from ui to vi has a lower total weight” (Woburn C.I. Programming Enrichment

Group (PEG) 2016).

In EA, one is usually not simply interested in the shortest path between two nodes,

respectively between two building blocks. Moreover, a so-called all-pairs shortest path is

required where the shortest paths between two sets of building blocks can be calculated. The

two sets are typically sets of building blocks each of a certain type. In the guiding example the

enterprise architects are interested in all shortest paths connecting business processes to

application components, any intermediary building blocks such as building blocks of type

“business service” have to be omitted.

DICE again adopts the Floyd–Warshall algorithm (Weisstein 2008) for the given problem.

To this end the Archimate weights on relation types (see above) have to be inverted such that

a small weight reflects a strong relation: association (7), access (6), used by (5), realization

(4), assignment (3), aggregation (2) and composition (1).

Fig. 82 shows the Floyd-Warshall algorithm adapted to support the DICE path contradiction.

Application of DICE in the Fields of EAA

205

% bb … buildingblocks of the model %

let dist be a |bb| × |bb| matrix of minimum distances initialized to ∞ (infinity)

for each bb

 dist[bbv][bbv] ← 0

for each relation (bbu, bbv)

 dist[bbu][bbv] ← w(bbu, bbv) // the weight of the relation (u,v)

for bbk from 1 to |bb|

 for bbi from 1 to |bb|

 for bbj from 1 to |bb|

 // weakest relation within the path bbi-bbk-bbj is inserted between bbi and bbj if …

 if dist[bbi][bbj] > min(dist[bbi][bbk], dist[bbk][bbj]) then

 dist[bbi][bbj] ← min(dist[bbi][bbk], dist[bbk][bbj])

 end if

Fig. 82 Adoption of the Floyd-Warshall algorithm to detect shortest paths within EA models

As already mentioned, the Floyed-Warshall algorithm does not compute the shortest paths

themselves but rather the shortest distances between the pair of two nodes from where the

shortest paths can be obtained easily.

The resulting adjacency matrix holds the distances between two edges, respectively between

two building blocks of the model. The distance measurements then can be transferred into EA

relationships. The distance directly indicates the relation type. Relations not lying on the

shortest path are discarded.

The above algorithm is embedded into a new transformation task type: Contradict Paths.

Input parameters are two sets of building blocks. The set of building blocks typically

represents building blocks on different layers of the EA. All building blocks residing on the

path between the two sets of building blocks are contradicted and removed from the dataset

by bypassing the building blocks first and then by removing these building blocks including

their incoming and outgoing relations. This type of transformation task is not a specialisation

of the existing transformation tasks of the DICE method base. Thus, it has to be directly

specialised from the top level transformation task type.

DICE for EAA keeps the information on used relationships and considers the information

for assessing the quality of the dataset. This is not only true for derived relationships but also

for relationships existing in the original datasets.

7.4 Heterogeneous Metamodels and EA Data Schemas

In case of heterogeneous metamodels (and EA schemas), the metamodels/schemas but also

the EA data inferred from them have to be aligned. The approach is similar to the one

Application of DICE in the Fields of EAA

206

introduced in section 7.2.2 where strategies to calculate the equivalency of building blocks

(instance level) have been introduced. The introduced equivalency functions also work for the

metamodels constituting concepts, i.e. the modelling classes, the relation classes and their

attributes. In cases where no metamodel mappings such as the TOGAF-Archimate-Mapping

of Fig. 61 exist, equivalency functions support the generation of such mappings. With the

introduction of the addition function (see section 5.3.2.3), the calculation of variable

similarity has already been brought up. Taking this requirement one step further, equivalency

functions need to be in place for all metamodel elements. Thus, these are required for

modelling classes as well as relation classes. (Gill and Qureshi 2015) introduce such an

approach and demo the feasibility by merging the partial metamodels of BPMN and

Archimate. Adapted for DICE, in contrast to the record linkage on building block level (see

section 7.2.2), the metadata of the datasets have to be aligned. Main input is the semantic

definitions of the observable (U
SEM

) units and the variables (V
SEM

). Two datasets carry

equivalent observable units when their semantic metadata are equivalent:

nameSEM

B dataset

nameSEM

A dataset UU   where similarity is calculated via syntax, semantics and structural

analysis. The same holds true for variables. The equivalency of two variables from the

different data objects is also calculated using the variables metadata: V
SEM>name

. To obtain

more reliable results, besides the name, additional metadata such as V
PROC>measureUnit

 might be

considered to obtain the equivalency measures by calculating the cosine distance as

introduced in section 7.2.2. To sum up, the following techniques are propagated in DICE for

EAA:

 Syntactical Analysis: The metamodel concept’s names are compared. In the case of

modelling classes the metadata U
SEM>NAME

 are compared. For attributes and relations

the variable names V
SEM>NAME

 are used for calculation of equivalency.

 Semantical Analysis: Again, the concept names are the input for the equivalency

calculations. Synonyms are generated using adequate ontologies in a first step.

Token-based similarity functions calculate the similarity in a next step.

 Structural Analysis: The concept’s neighbouring concepts are considered.

Neighbours are all modelling classes within the metamodel adjacent to a certain

modelling class. Again, a token-based similarity function is used to calculate the

similarity.

Application of DICE in the Fields of EAA

207

 Attribute-based Analysis: In the case of attribute-based analysis, besides the name of

a modelling class, the names of its variables are taken into account for the token-

based similarity calculation.

Table 13 illustrates such a mapping on level of modelling classes for the metamodels of

Archimate and BPMN. The overall similarity is calculated by a function weighing the

structural, semantical and syntactical similarity measurements obtained from the concepts

names and their set of variables.

Table 13 Excerpt of overall similarity of Archimate and BPMN concepts (Gill and Qureshi 2015)

Archimate BPMN Overall Similarity

Data Object Data Object 0,6

Artifact Artifact 0,63

Business Role Partrner Role 0,3

Business Event Boundary Event 0,3

Business Collaboration Collaboration 0,18

Where no mappings are available, such a transformation task type is valuable for performing

the required addition transformations. DICE presents the final outcome in a metamodel

comparison sheet. Based on this input, the data engineer decides on the next steps. DICE

restrains from an automated addition based on the calculated mapping, as the results from

(Gill and Qureshi 2015) show that semantic interpretation and decision on these mappings in

most cases will be required to avoid biased results.

7.5 Summary

In this section the characteristics of EA data are discussed. The classical EA data is object-

oriented. EA data in the form of EA models can typically be described in the form of a

directed graph. Consequently, many of the EA-situational transformation tasks types deal

with graph-based transformations. Examples are: hierarchical dependencies of architecture

elements caused by type-instance relations or by whole-part relations that are used to describe

building blocks in more detail, i.e. on different strata. In addition, peculiarities of EA data,

such as time-aspects, versioning issues, etc. are addressed.

In the data preparation phase of an EAA endeavour, the EA descriptions (models) need to be

“normalised”. The data typically requires the same level of granularity. Time-aspects need to

be clearly defined. The required transformation task types to create a sound data basis are

Application of DICE in the Fields of EAA

208

discussed. All of these EAA situational transformation task types are integrated into DICE by

specialising its foundational transformation task types.

In this vein, the section serves a twofold purpose. Firstly, the EAA-specific requirements on

method chunks are described from the nature of EA data and from the requirements of the EA

analysis techniques. Adequate method chunks fulfilling these requirements are introduced.

Secondly, it is shown how the scenario-agnostic foundational DICE concepts can be

specialised to support situational method engineering.

Evaluation Based on Prototypical Implementation

209

8 Evaluation Based on Prototypical Implementation

DICE is a design science artefact. Thus, it can be evaluated against the broad spectrum of

evaluation criteria presented by (Prat, Comyn-Wattiau and Akoka 2014). The criteria:

structural consistency, efficacy and validity gain priority in the evaluation. The evaluation is

structured in accordance with these criteria into three parts.

Firstly, the structure of DICE is evaluated with a focus on the evaluation criteria of

structural consistency. According to (Prat, Comyn-Wattiau and Akoka 2014), “consistency of

structure is internal consistency”. Internal consistency of DICE is evaluated with a strong

focus on the DICE metamodel. To this end, the DICE metamodel is implemented on the

metamodeling platform ADOxx, building the basis for the DICE modeller, a modelling

environment that makes the design and transformation processes possible and holds the

metadata defined in the structural part of the DICE metamodel.

Secondly, the DICE algorithms are implemented on ADOxx and R statistics to demonstrate

the DICE efficacy. Efficacy is “the degree to which the artefact produces its desired effect”,

(Prat, Comyn-Wattiau and Akoka 2014). The prototypical implementation is used to

demonstrate the feasibility of DICE. The DICE macro level algorithms (see section 5.3.1) are

implemented directly in ADOxx, whereas the micro level algorithms (see section 5.3.2) are

implemented on R statistics. Together they allow for concurrent transformation of data and

metadata (the “desired effect”). To this end, a significant part of the DICE transformation

tasks and algorithms has been implemented.

Finally, validity of DICE is demonstrated by an illustrative scenario. Validity is defined as

“the degree to which the artefact works correctly” (Prat, Comyn-Wattiau and Akoka 2014).

In this connection a standard EA dataset is used. The dataset comprises Archimate models

residing in the Archimate Model Exchange File Format (see section 7.1.3). The data is loaded

and transformed executing DICE workflows designed in the DICE modeller for the purpose

of evaluation.

8.1 Structural Consistency and Efficacy - DICE Prototype Based on ADOxx

ADOxx is a metamodeling platform provided by the OMiLab (Open Models Laboratory), a

collaborative environment for modelling method engineering (Götzinger, Miron and Staffel

Evaluation Based on Prototypical Implementation

210

2016). Based on ADOxx, the DICE modelling environment is implemented. The modelling

environment “DICE modeller” is intended to design executable DICE workflows in a

graphical manner. Through its integration with R statistics, the required transformations are

conducted on the datasets and the corresponding metadata are generated. R statistics is a

programming language and environment to statistically explore data (Dalgaard 2008).

The implementation of the DICE modeller follows the principles of agile modelling method

engineering (Karagiannis 2015). In the course of implementing a modelling method, a number

of design decisions have to be taken. Typically, in a first step the platform-independent

metamodel defined in the conceptional base (see section 5.2) has to be translated into a

platform-specific metamodel. The metamodel represents the core of the modelling language.

The implemented modelling classes have to be extended with a graphical notation and must

be embedded in a modeltype (model kind, see section 2.2). In a second step, the required

mechanisms and algorithms for machine-processing of the models have to be implemented.

In the course of this, how the features of the chosen metamodeling platform support the

implementation of the method has to be considered. This aspect is denoted as

the“conceptualisation of a modelling method” in (Karagiannis 2015). The OMiLab lifecycle

introduced by (Visic et al. 2015) defines the method conceptualisation lifecycle in five

phases: (1) create, (2) design, (3) formalize, (4) develop and (5) deploy/validate. Fig. 83

provides an overview.

Phase (1) focuses on knowledge acquisition and requirements analysis (see sections 4,

6.1and 7.1). The subsequent design phase covers the specification of the metamodel, the

procedure model and the required mechanisms and algorithms (see section 5). The formalise

phase targets the unambiguous definition of the method and makes it possible to share the

results with a scientific community, see e.g. (Grossmann and Moser 2016). The develop phase

concentrates on the implementation of the modelling method, often based on a metamodeling

platform. The deployment phase usually involves domain experts who evaluate the modelling

method and its implementation. The following sections focus on development and deployment

of DICE.

Evaluation Based on Prototypical Implementation

211

Fig. 83 Method conceptualisation lifecycle, adapted from (Visic et al. 2015)

8.1.1 Architecture

The DICE 2.1 prototype, a revised version of the DIBA prototype
8
, consists of a three-layer

architecture. The top-layer represents the modelling environment providing the user interface

for the data engineer. It is made up of the modelling component, which makes it possible to

graphically design the DICE workflows. The main functions of the modelling environment

are: (1) to design and manage DICE workflows, (2) to specify the metadata and

transformation parameters, (3) to generate the transformation statements to be executed on the

input datasets/data objects and (4) to store and visualise the calculated metadata. The

modelling classes offered to design a DICE workflow are derived from the DICE metamodel,

i.e. the conceptualisation base which is discussed in section 5.2. The implementation makes

use of the predefined concepts defined in the meta2model of ADOxx.

Via the external coupling component of ADOxx, R statistics, an environment for statistical

computing, is integrated. R statistics represents the BI-tier. Utilising AdoScript, the ADOxx-

internal DSL (domain specific programming language), the modelling environment

communicates with the BI-tier. The modelling environment uses the designed workflow and

the user-inputted parameters to create the executable (platform-specific) code and triggers the

required transformations/calculations, which are performed in R. R, transforms the input

datasets and calculates the metadata. The latter are returned to the modelling environment for

analysis by the data engineer.

The data layer is the bottom layer. It holds the datasets, the processing information (DICE

workflows) and the metadata. More precisely, the workflow definitions and the metadata are

8
 See http://austria.omilab.org/psm/content/diba/info, access: 02.04.2017

DEPLOY/VALIDATECREATE DESIGN FORMALISE DEVELOP

Intra-iteration evaluations

Inter-iteration evaluation
(for method evolution)

http://austria.omilab.org/psm/content/diba/info

Evaluation Based on Prototypical Implementation

212

managed in the ADOxx database; the input datasets (data level) are initially retrieved from

various source systems, and after transformation, stored in flat files from where they can be

accessed for further processing. Via its access functions, the DICE prototype is capable of

accessing data from social media platforms (e.g. from twitter, see www.twitter.com), from

cloud storages such as google drive (https://www.google.com/intl/de/drive/) or from local

shares.

Fig. 84 illustrates the DICE architecture. For reasons of overview, central components of the

ADOxx metamodeling platform, such as the ADOxx web interface, the ADOxx simulation

component and the ADOxx model analysis component are intentionally omitted. The ADOxx

modelling component (1) is used for graphically designing the DICE workflows. Within the

modelling subsystem (CORE), the models are interpreted and the platform-specific R code is

assembled automatically from the DICE workflows and the parameters of its constituent

transformation tasks. The generated R code (3) is embedded in the execution code

(implemented in AdoScript) and triggers the execution (4) of the code in R statistics. R

statistics retrieves the input data and performs the calculations using R packages (libraries of

reproducible R code). Via R packages, additional application components (6) such as the

WordNet 2.1 application, a lexical database of English delivering the synsets introduced in

section 7.2.3.2 are integrated. R delivers the calculated metadata (7a), charts on the metadata

(7b) and the transformed datasets (7c), which are stored in flat files (csv) for further usage.

file:///C:/Users/cmoser/Dropbox/Uni/Bisherige%20Paperes/In%20Progress/13%20DIBA/2%20-%20Wordvorlage%20incl.%20Readme/www.twitter.com
https://www.google.com/intl/de/drive/

Evaluation Based on Prototypical Implementation

213

Fig. 84 The DICE architecture

8.1.2 Development

Central to the implemented modelling method is the modeltype "DICE workflow".

Modeltypes correspond to the concept “model kind” as introduced in section 2.2. It contains

all relevant modelling classes and relation classes required to: (1) design the DICE workflow,

(2) specify the required data transformations and (3) visualize the generated metadata. The

metamodel of the DICE workflow is represented in Fig. 85. The DICE concepts are

specialised from the meta2model foundational constructs of the ADOxx meta2model, which

is discussed in detail in (Karagiannis et al. 2016).

R-3.0.1 Rcmd.exe

Modelling subsystem (Core)

External
Coupling

…

…Modelling

User Interface

Releational Database

R interface
(AdoScript)

R code
(ADOxx
expr)

R package
…

WordNet
2.13

1

2

4

5c5a

7b

7a

6

5b

DICE
modeller
based on
ADOxx

7c

Evaluation Based on Prototypical Implementation

214

Fig. 85 Metamodel of the DICE workflow (excerpt)

The implemented metamodel deviates from the metamodel of the conceptualisation base, as

it had to be transferred into the ADOxx platform concepts. From the foundational concept

“class”, method-specific classes are specialised. On the top-most level one can find the

modelling classes of the DICE meta structure (of utmost importance, the transformation task

types). From these task types EAA-specific transformation task types are derived.

As can be seen in Fig. 85, the separation of behaviour and structural concepts has been

abandoned. In the platform-specific metamodel, the DICE transformation tasks also carry the

metadata of the product fragments. This design decision has been made for reasons of

usability. In this way, the DICE workflows remain clear and the modeller does not have to

bother about maintaining consistency between transformation tasks and input/output datasets.

DICE
Modelling
Language

Modelling
Technique

Mechanism
& Algorithm

Specific
Mechanisms &

Algorithms

DICE
Transformation

Algorithms

Wf Execution
Algorithm

Modeltype

RelationclassClass

is subclass of

End

Start

DICE
Subprocess

Transformation
Task Type

trigger

AdditionSelection Consolidation …
Variable
Removal

DICE Procedure

DICE
Workflow

Model

DICE Procedure
Steps

 uses

Addition
Algorithms

Selection
Algorithms

is substep of

Attributes

Notebook
Definition

Graphical
Representation

Common
Attributes

…

Evaluation Based on Prototypical Implementation

215

The DICE modeltype composes the modelling classes: start event, end event, DICE

subprocess, the atomic transformation task types and the situational transformation task types

supporting EAA scenarios. In addition, the EAA-situational transformation task type “Load

Archimate Models” is illustrated. The transformation task types correspond to the concept of

DICE method chunks of the DICE meta structure. The relation class “triggers” is instantiated

from the foundational concept “relation class” and makes the connection of the transformation

tasks possible, thus, defining the order in which the transformation tasks are processed in

runtime.

For each of the modelling classes a graphical notation is defined. This graphical notation is

defined in foundational attribute of type “GraphRep” utilising the ADOxx-specific DSL. Fig.

86 illustrates an example.

Fig. 86 GraphRep definition of the transformation task type “Selection”

In addition, each modelling class comprises a set of attributes. “Attributes” are defined as

“properties attached to the semantic definition of modelling concepts” (Karagiannis et al.

2016). Attributes are made visible and editable via the so-called notebook assigned to the

modelling classes. A notebook represents the property box of a modelling object. Fig. 87

shows an example screenshot of the transformation task type selection and the corresponding

Evaluation Based on Prototypical Implementation

216

notebook definition based on the AttrRep configuration. The AttrRep attribute is one of the

foundational attributes which carries the notebook definitions of a modelling class. It defines

the chapter structure and the set of visible attributes of the class. The AttrRep configuration is

interpreted during runtime of the modelling tool and creates the notebooks according to the

configurations.

Fig. 87 AttrRep - ADOxx notebook definition

In ADOxx, attributes can be of a simple type, such as string, integer and double but also of

more complex types such as records which are classes of their own and in turn compose

attributes. Records are presented in the form of tables within the notebooks. An example can

be seen in Fig. 88 where the record attribute “Metadata” carries some of the DICE metadata

of the data object.

Evaluation Based on Prototypical Implementation

217

Fig. 88 DICE processing metadata and quality metadata (per variable)

The concept of ADOxx expressions is used to assemble the PSM (platform-specific model)

code which can be executed in R statistics. Expressions are used to collect all required input

data from the attributes and to integrate the attribute values into the generic R code held

directly in the expression attribute. ADOxx expressions are comparable to the concept of

formulas within spreadsheet software and in DICE serve as the code generator for generating

the R-specific transformation code. During run-time, it delivers the (platform-specific) code to

be executed on the BI-tier. To this end, the DICE algorithms (see e.g. section 5.3.2) have to be

implemented in platform-specific R code where the parameters (e.g. path to source files)

specified in the attributes (edited via the ADOxx notebooks) are dynamically embedded. Fig.

89 illustrates an example of an expression.

Evaluation Based on Prototypical Implementation

218

Fig. 89 Example of an ADOxx expression assembling R code

AdoScript is used to execute the DICE workflow. It triggers the required calculations by

integrating with the BI-tier (via external coupling APIs). Via AdoScript, the calculations are

triggered in R statistics and the results (more precisely, the calculated metadata and graphical

charts) are written back into the attributes of the transformation tasks.

Basically, objects of three types are created by execution of a single transformation task: the

output dataset, the corresponding metadata object and charts depicting the metadata. Whereas

the metadata and supporting graphical charts are stored in the modelling environment

(returned via API from R), the output datasets are stored in flat files structured in the defined

tabular layout in csv-format.

Automatically generated R
code utilising the ADOxx

expression features: Here the
path to the input dataset is

included automatically.

Evaluation Based on Prototypical Implementation

219

To sum up, the prototypical implementation of DICE covers the following part of the DICE

method chunks implemented in the form of transformation task types:

 Load datasets: This transformation task type is capable of loading datasets residing

in csv-format structured according to the DICE main structure, respectively in

tabular form.

 Load Archimate Models: The transformation task type makes it possible to load

files residing in the Archimate Model Exchange File Format. Via this transformation,

task type files can be loaded and transferred into the DICE standard format as

discussed in section 7.2.1. It creates two tables: one holding the observable units

represented by the various Archimate objects which can be of different types (e.g.

business process, application component, technology component) and a second one

holding all relations between the objects including the type of the relations.

 Selection: From a given dataset, observable units can be selected by specifying

selection criteria that can be based on data and metadata of observable units. In the

context of EA, the selection transformation task is capable of selecting observable

units based on their attribute values but also based on metadata, such as total quality

(U
QUAL

), currentness (U
QUAL>currentness

), accuracy (U
QUAL>accuracy

) and completeness

(U
QUAL>completeness

).

 Variable Removal: From a given dataset, variables and their metadata can be

removed.

 Addition: The transformation task type makes the concatenation of two datasets

possible. The input datasets are horizontally integrated. Columns that are not present

in all input datasets are added to the output datasets.

The initialization function is a fixed component of all the mentioned transformation task

types. In its current version (DICE 2.1), it calculates the quality indicators:

 completeness,

 accuracy,

 currentness,

 uniqueness and

 total quality

Evaluation Based on Prototypical Implementation

220

of properties, variables and the entire dataset. For each of the named quality aspects, at

minimum one of the DICE atomic quality indicators is implemented. See the following

section for more details and for a concrete example.

8.2 Evaluating Validity - Illustrative Scenario Based on the DICE Prototype

The illustrative scenario presented in the subsequent sections shows an example where

architecture descriptions are combined with operational data. For reasons of overview and

understandability, the focus is to demo the DICE features. Real world examples will be more

complex and challenging to be integrated and cleansed.

8.2.1 Input Datasets

For the illustrative example, three input datasets are considered. The first dataset is based on

the Archimate 2.1 example files, officially issued by the Opengroup to demo the Archimate

Model Exchange File Format
9
. Table 14 Quantity structures of the input datasets provides an

overview of the quantity structures of contained building blocks and relation classes. The

overall structure of this file format has been discussed in section 7.2.1.

Table 14 Quantity structures of the input datasets

Number of modelling classes 12

Number of building blocks 156

Number of relation class types 23

Number of relations 574

The second dataset is a table which comprises objects of modelling class “business objects”,

i.e. observable units of type “business objects”. Besides a variable specifying the names of the

observable units, it comprises the three typical variables for specifying security requirements:

(1) “Confidentiality”, (2) “Integrity” and (3) “Availability”. All of these variables are

categorical variables with the admissible values “very high”, “high”, “medium”, “low” and

9
 The file can be downloaded from http://www.opengroup.org/xsd/archimate, access: 08.03.2017.

http://www.opengroup.org/xsd/archimate

Evaluation Based on Prototypical Implementation

221

“very low”. The property values of these variables are set randomly. Some of the values do

not comply with these syntactical requirements, such that P
QUAL>accuracy>syntax

 and

V
QUAL>accuracy>syntax

 will calculate insufficient quality values. Table 16 illustrates a subset of

this dataset. Some of the contained observable units have syntactically similar names and

others have equal names as compared to the data objects contained in the formerly mentioned

dataset.

The third dataset holds operational data. Table 15 shows a snapshot of the dataset. The

dataset holds a list of transactions, the related customer and the transaction date. As can be

seen, the contained transaction types have the same name as the business objects in the

previous datasets.

Table 15 Operational Data – Simplified Dataset

Objects FirstName LastName Date

[…] […] […] […]

Car Insurance Policy Henry Fonda 13.12.2016

Insurance Request Harrison Ford 14.12.2016

Insurance Policy John Wayne 15.12.2016

Damage Claim Lex Barker 16.12.2016

Car Insurance Policy Gary Cooper 17.12.2016

Car Insurance Policy Dean Martin 18.12.2016

Car Insurance Policy Ronald Reagan 19.12.2016

Insurance Request Gregory Beck 20.12.2016

Insurance Policy Clint Eastwood 21.12.2016

[…] […] […] […]

8.2.2 DICE Process Instance

One major advantage of DICE is that each of the conducted transformation steps results in

datasets that can be examined in detail. For purposes of demonstration, the two datasets are

loaded into the DICE prototype, transformed, integrated and cleansed. Fig. 90 depicts the

DICE process.

Evaluation Based on Prototypical Implementation

222

Fig. 90 Exemplary DICE workflow mapped in the DICE modeller

Evaluation Based on Prototypical Implementation

223

(1) Get business objects from CSV (GET): In this transformation task, the Dataset 2,

which is already structured in the DICE preferred data structure, is loaded and subsequently

initialized. Table 16 shows the initial structure of the input dataset including some of its

observable units.

Table 16 Initial structure of input dataset

Objects Description Confidentiality Integrity Availability

Customer

A person or

organization using

the services of

Archisurance. high medium low

Car Insurance

Policy NA medium High

 Insurance Request NA 123 High low

Insurance Policy

A document

detailing the terms

and conditions of

a contract of

insurance. high medium low

Customer File NA medium High very low

Damage Claim

Formal

notification of a

loss or damage

that might be

covered by the

policy. no entry

low

Client

A person or

organization using

the services of

Archisurance. medium high very low

… … … … …

After performing the initialisation (T
initialise

), the dataset is enriched with the following

metadata (columns):

 P_LOG_ChangeDate_Objects,

P_LOG>ChangeDate_Description,

P_LOG_ChangeDate_Confidentiality,

P_LOG>ChangeDate_Integrity,

P_LOG_ChangeDate_Availability:

Each of these columns holds the last change date of properties. As initially no

information on the last change date on property level is available, the change date is

Evaluation Based on Prototypical Implementation

224

retrieved from the input file’s metadata (provided by the operating system in use)

and imputed on property level. This metadata needs to be stored on the level of

single properties because due to merge operations, tractability of the values will

suffer if held on dataset level only.

 P_LOG>Sourcepath_Objects,

P_LOG>Sourcepath_Description,

P_LOG>Sourcepath_Confidentiality,

P_LOG>Sourcepath_Integrity,

P_LOG>Sourcepath_Availability:

Each of these columns holds the storage location of the input datasets. The storage

location is specified by the data engineer via the DICE notebook.

 P_LOG>Filename_Objects,

P_LOG>Filename_Description,

P_LOG>Filename_Confidentiality,

P_LOG>Filename_Integrity,

P_LOG>Filename_Availability:

Each of these columns holds the filename of the source file.

 P_QUAL>completeness>missingValue_Objects,

P_QUAL>completeness>missingValue_Description,

P_QUAL>completeness>missingValue_Confidentiality,

P_QUAL>completeness>missingValue_Integrity,

P_QUAL>completeness>missingValue_Availability:

Each of these columns holds the atomic quality indicator on property level required

for calculation of completeness of a variable. In V
PROC>valueDomain>missingValue

 the

syntactical patterns for missing values are defined. Missing values in the given case

are specified via a regular expression: ^(|no entry)$

The exemplarily specified regular expression evaluates whether a property value is

entirely empty or carries the value “no entry”.

 P_QUAL>accuracy>syntax_Confidentiality,

P_QUAL>accuracy>syntax_Integrity,

Evaluation Based on Prototypical Implementation

225

P_QUAL>accuracy>syntax_Availability:

In the example given, syntax compliance has to be ensured for the variables

confidentiality, integrity and availability only. To this end, the syntax definition is

defined in the form of the following regular expression:

^(very high|high|medium|low|very low)$

which has to be defined by the data engineer in

V_PROC>valueDomain>Syntax_Confidentiality,

V_PROC>valueDomain>Syntax_Integrity,

V_PROC>valueDomain>Syntax_Availability.

Thus, the three variables are considered as categorical variables with the admissible

values “very high”, “high”, “medium”, “low” and “very low”.

 P_QUAL>currentness>maximumAge_Objects, etc.:

Each of these columns holds information on whether the property values fulfil the

currentness criteria "maximumAge" which is specified in the metadata

V_PROC>currentness>maximumAge_Objects, etc.

All properties evaluated with “pass” fulfil the criteria:

P_LOG>changeDate ≥

V_PROC>currentness>maximumAge_[variableName].

 D_QUAL_currentness,

D_QUAL_accuracy,

D_QUAL_completeness

Each of these columns holds the averaged quality values obtained from the variable

quality indicators of the respective quality category. As an example:

D_QUAL_completeness is obtained from the averaged quality values of

D_QUAL_completeness_Objects,

D_QUAL_completeness_ObjectIDs,

D_QUAL_completeness_Description,

D_QUAL_completeness_Criticallity,

D_QUAL_completeness_Integrity and

D_QUAL_completeness_Availability.

 Finally, U_QUAL holds the total quality per observable unit.

Evaluation Based on Prototypical Implementation

226

Fig. 91 shows a screenshot of the DICE modeller. It illustrates parts of the V_PROC and

V_QUAL metadata.

Fig. 91 Example of DICE metadata specification in ADOxx

(2) Addition of building block type (ADDITION)

In this transformation step the column “U_SEM_type” (U
SEM>type

) is added. It specifies the

type of the contained building blocks (business objects). In addition, the resulting data object

is initialised.

(3) Load Archimate model (GET) is of type “Load Archimate model”. It is capable of

loading datasets residing in the Archimate Exchange File Format and transforms it into the

required tabular structure. In its finalisation step, the resulting dataset is initialised, i.e. the

metadata are calculated and assigned to the data object. The required parametrisation to

conduct the transformation and the subsequent initialisation is done in the same way as in (1).

Evaluation Based on Prototypical Implementation

227

For a better understanding, Fig. 92 illustrates some of the building blocks contained in the

dataset in the form of an Archimate viewpoint.

Fig. 92 Exemplary subset of the building blocks in the dataset

(4) Handle building block type (SEM metadata): The input data object already carries the

U
SEM>type

 (see section 5.2.2) of the contained building blocks. The column only has to be

renamed to correspond to the DICE metamodel and to be identified as DICE metadata.

Evaluation Based on Prototypical Implementation

228

(5) Select observable units of type “Business Objects”: The building blocks catalogued

within the Archimate file are of different types (modelling classes). In the case at hand, the

emphasis lies on building blocks (observable units) of type “business objects”. To this end,

the input dataset delivered from the preceding transformation task is reduced to hold

observable units of modelling class “business objects” only. This is achieved by selection of

those observable units which are typed as business objects (variable “Classes”). Again, as a

last step the dataset is initialized. The input parameters for conducting the initialisation do not

change, as solely observable units have been removed.

(6) Addition of the datasets: In this step both data objects are concatenated via vertical

integration and initialized. By appending one data object to the other, the superset of their

variables is created. Equal variables of the two datasets are bound together. In the DICE

prototype, equivalency is established by comparing the variable’s names, i.e. the metadata

(V
SEM>name

). Variables only existing in one of the data objects are added (including the

variable metadata).

(7) Filter out duplicate building blocks: Due to the fact that the sample input datasets

(specified in section 8.2.1) carried similar/equal observable units, the data object resulting

from the previous append transformation has to be cleansed by consolidating equal/similar

observable units. From a pair of similar observable units, the one with the better overall

quality is kept, whereas the other one is deleted from the data object. In section 7.2.3.2, four

different types of similarity analysis are introduced: syntactical, semantical, neighbouring and

attribute-based. In its initial version the DICE prototype handles only the syntactical

equivalency check, which is conducted during data object initialisation, after each of the

performed transformations. In the course of this, equal building blocks are labelled being

equal, more precisely: the observable unit with the lower overall quality indicator from a pair

of equal observable units is labelled as duplicate. Thus, duplicate observable units can be

filtered out easily by conducting a selection on the metadata U
QUAL>uniqueness>inconsistency

 and

U
QUAL>uniqueness>redundancy

, both metadata indicating duplicates.

(8) Load Transactions: In this step again data from csv is loaded. This time, it is

transactional data, i.e. data from an operative source. After loading the data it is initialised as

in any transformation step.

Evaluation Based on Prototypical Implementation

229

(9) Aggregate Transactions per Type: In this step the individual transactional observable

units are consolidated per type. Each type represents a business object such as customer,

policy, insurance policy, etc. as defined in the aforementioned datasets. During aggregation of

the data the frequency of the individual transactions is calculated. In a final step the dataset is

initialised.

(10) Merge aggregated data: This transformation is a perfect example, where operational

data and architecture description are merged. It holds the final data object. With the available

metadata, together with the DICE process itself, data provenance can easily be traced back to

the initial input datasets.

Fig. 93 again depicts the DICE process. This time it additionally shows the resulting

metadata D
QUAL>syntax

, D
QUAL>currentness

, D
QUAL>uniqueness

 and D
QUAL>completeness

.

Evaluation Based on Prototypical Implementation

230

Fig. 93 DICE process incl. quality line charts

The charts show the development of the summative qualities currentness, completeness,

uniqueness and syntax of the resulting data objects after performing the transformations. In

Evaluation Based on Prototypical Implementation

231

this way, data engineers obtain an overview of quality issues and the quality impact after

performing the transformations. Fig. 94 shows a concrete example.

Fig. 94 Development of the quality indicator "uniqueness" throughout the process

The quality indicator “uniqueness” changes after performing the transformation step.

Initially the quality is about 95% for the first dataset. After subsetting the business objects, the

quality rises to 100%. Obviously, there have not been any duplicate “business objects” in the

initial dataset. Through addition to the second dataset the quality indictor falls dramatically.

This is an indication that there are many duplicates in the set of business objects of both

datasets. By subsetting the unique business objects in the last step of the DICE process the

quality rises again.

8.2.3 Examination

The DICE prototype covers a representative subset of the DICE capabilities. In the

following section the most important components of the DICE prototype are summarised.

Modeltype “DICE process”: The modeltype makes modelling of an entire DICE process

possible. It is used to demonstrate the DICE workflow capabilities. DICE transformation tasks

can be assembled to executable DICE workflows as discussed in section 5.3.1.

DICE method base: The method base is made up of the core DICE transformation tasks:

load, restructure, selection, addition, variable removal, reclassification and consolidation.

From these atomic transformation tasks, some specialised method chunks are derived to

demonstrate the DICE capabilities of derivation of specialised method chunks, which is

considered to be a core feature of situational methods. An example is the method chunk

“Merge Transformation”, which is an assembly of the atomic transformation task types

“addition” and “selection”. An example of a tailored (situational) EA specific transformation

Through the selection of
„Business Objects“ (step 5)

uniqueness changes to 100%. No
duplicate observable units are

contained in the resulting dataset

Through the addition step
(step 6) the quality indicator

dramatically falls. It is
obvious that both datasets

contain duplicate
observable units.

By subsetting the duplicates
(step 7) the quality indicator

raises to 100% fulfilment
again.

Evaluation Based on Prototypical Implementation

232

task is the “Load Archimate model” transformation, where the DICE method base is enhanced

with a situational method chunk, providing features to transform input datasets residing in the

Archimate Exchange File Format into the DICE horizontal layout.

DICE initialisation: The DICE initialisation is an example of a process fragment, which is

reused in all method chunks (transformation task types). With these process fragments the

prototypical implementation places strong emphasis on the metadata aspects of DICE.

From the set of introduced meta data, representative examples are implemented. Some of

them are based directly on the raw data on data level; others require logistical or processing

metadata as an input.

 V
QUAL>completeness

: This quality metadata scores the completeness of a variable within a

dataset.

 V
QUAL>currentness

: This quality indicator requires logistical metadata as an input. More

precisely, information on the latest update of the property values is taken into

account for its calculation. The logistical metadata is retrieved from the input file’s

metadata (provided from the operating system in use). Besides last change date,

other logistical meta data such as source path and file names of input files are

retrieved and subsequently propagated onto property level of the resulting output

data object. Keeping records on these meta data strongly supports data provenance;

at any step within the transformation process the source stays traceable.

 V
QUAL>accuracy

: For demonstrating the DICE features in the context of accuracy,

quality indicators are calculated using processing metadata as an input. In the

concrete case, the accuracy is calculated from the atomic quality indicators

V
QUAL>accuracy>syntax

 and V
QUAL>accuracy>dataType

. Both of these atomic quality indicators

require processing metadata as an input that has to be specified by the data engineer.

 In addition, D
QUAL>uniqueness

 is calculated (based on U
QUAL>uniqueness>redundancy

 and

U
QUAL>uniqueness>inconsistency

) to demonstrate the DICE record linkage capabilities.

8.3 Summary

The evaluation of DICE has been performed in a two-step approach. (1) DICE has been

implemented based on a metamodeling platform, a typical environment for implementing

situational methods such as DICE. In a second step, the validity of DICE has been

Evaluation Based on Prototypical Implementation

233

demonstrated by applying DICE in a concrete case: a representative dataset from the

application domain of enterprise architecture management was loaded and transformed for

upcoming BI modelling phases. The demo revealed that the compulsory simultaneous

transformation of datasets and their metadata is possible, leading to meaningful data objects

as an input for further analysis and decision making.

Conclusion and Outlook

234

9 Conclusion and Outlook

9.1 Conclusion

Acknowledging the significance of data integration and cleansing mechanism in the fields of

enterprise architecture management and with a wider perspective of management domains

based on modelling, this thesis introduces DICE. DICE stands for Data Integration and

Cleansing Environment. It is a domain-agnostic method for data integration and cleansing and

is intended to support the data preparation phases of business analytics endeavours.

To this end, it borrows from the fields of workflow management, statistical metadata

management and data mining. Concepts from the fields of workflow management are used to

design executable workflows that allow for design and execution of data transformations.

Concepts from the fields of statistical metadata management, with particular focus on

processing and quality metadata, are incorporated to keep the conducted transformations

traceable. The quality of the resulting datasets is known and quality improvement potentials

can easily be derived. The same holds true for data provenance aspects; sources of the data

remain fully transparent. Comprehensibility is also assisted through incorporation of concepts

from the fields of workflow management. By graphically designing the DICE workflows, the

conducted data transformations are fully documented.

Concepts from workflow management do not only contribute in terms of clarity. Their

excitability grants reproducibility. In this way, DICE workflows represent deployable

production processes that perform the actual data transformations and calculate the metadata

with minimal human interaction.

To conduct the actual data transformation, DICE draws from the abundance of algorithms

and techniques from the fields of data mining. It defines and implements the atomic

transformation tasks immanent in many of these techniques and enriches these transformation

tasks with concepts of statistical metadata. According to this design principle, the

transformation task types represent method chunks comprising features for data

transformation and concurrent calculation of metadata.

Conceptualised as a situational method, DICE can be adapted to the given situation by

means of metamodelling, i.e. it can be tuned to domain/project specific situations. Enterprise

architecture management is considered as such a domain specific situation. By analysing the

Conclusion and Outlook

235

peculiarities of EA models and EA related data, requirements for the specific method are

drawn. The DICE method base (initially holding generic method chunks) is extended with

domain specific method chunks. In the fields of EA, examples such as the loading of models

residing in typical EA formats, restructuring of the EA data, filtering of EA data etc. are

introduced. The aim of this action was twofold: (1) the adaptability of DICE by means of

meta-modelling is demonstrated and (2) powerful transformation tasks to be applied in EA

scenarios are presented.

DICE and DICE for EAA are evaluated in a three-staged approach. Firstly, the metadata

calculations are demonstrated based on an implementation of the structural part of the DICE

metamodel. To this end, parts of the metamodel and some of the algorithms to calculate

quality indicators are implemented. The metamodel is instantiated into a model representing a

common dataset, its constituent parts and some of the quality metadata, which are calculated

automatically.

DICE is evaluated in regard to efficacy by implementing DICE based on the metamodeling

platform ADOxx and R statistics, an environment for statistical computation. With this

prototypical DICE modeller, the feasibility of DICE can be proven. Some of the

transformation task types (the main method chunks) have been implemented, making possible

the design and execution of DICE workflows. It could be demonstrated that the concurrent

transformation of data instances and metadata is possible with a minimum of human

intervention.

To assess the resulting data quality (the outcome of the transformations), an illustrative

scenario is presented. For this purpose, a typical EA dataset, initially residing in an EA

standard format, is loaded and transformed using the EA-situational transformation task types.

9.2 Outlook

In this section the possible directions of future work are briefly discussed.

In general, inter-iteration evaluation as recommended by (Visic et al. 2015) and

(Karagiannis 2015) has to be performed to enrich the DICE method base with reusable

method fragments and to possibly streamline the existing method fragments. In the context of

DICE for EAA, additional EA specific method fragments can be defined. This obviously has

to be done in the context of specific EA projects ensuring applicability and foremost

Conclusion and Outlook

236

reusability of the transformation task types. To this end, the prototypical implementation of

DICE has to be extended to cover the full set of transformation task types and metadata.

DICE places a strong focus on data integration and cleansing of structured data. Taking a

wider perspective, the preceding steps of data loading and restructuring, which are only

fractionally covered in this thesis, need to be explored. Especially when it comes to DICE for

EAA, the data loading and restructuring of semi-structured data gains importance. Thus,

extending DICE by derivation of method chunks that focus on data restructuring of semi-

structured data is one important direction for future work. During the course of writing this

thesis, some promising results have been obtained by analysing and restructuring text corpora

of ISO standards in the fields of security management. The main aim was to extract and

highlight the most important compliance requirements, i.e. processes and tasks to be

performed to ensure compliance. The resulting tasks and processes are intended to be used to

ensure and measure compliance of EAs. However, neither atomic transformation tasks

extracted nor the required metadata supporting the results on data level have been defined.

In addition, it has to be noted that EAA the integration of EA and BA is still in its infancy.

Thus, besides the data driven-approach discussed in this thesis, research has to be conducted

on the actual management scenarios in these fields. What kind of data is required for adequate

management decision making in the context of the phases of EA management cycles such as

the TOGAF ADM has to be investigated in more detail.

Annex

237

10 Annex

10.1 DICE Metamodel

Fig. 95 DICE - Structural part of the metamodel - subset "Dataset"

D

QUALDSEMD LOGD PROCD

veragerequiredCoPROCD 

SizepopulationSEMD 

izesamplePopSSEMD 

populationSEMD 

CoveragePopulationcomplenessQUALD 

tecreationDaLOGD 

sourceLOGD 

nameLOGD 

keyPROCD 

yconsistencQUALD 

ycircularityconsistencQUALD 

tmeasureUniaccuracyQUALD 

ycardinalityconsistencQUALD 

complenessQUALD 

accuracyQUALD 

semanticsaccuracyQUALD 

ependencyvarDaccuracyQUALD 

scurrentnesQUALD 

maximumAgescurrentnesQUALD 

stepWidthaccuracyQUALD 

syntaxaccuracyQUALD 

synonymyconsistencQUALD 

lIntegrityreferentiayconsistencQUALD 

uniquenessQUALD 

dataTypeaccuracyQUALD 

gmisspellinaccuracyQUALD 

redundancyuniquenessQUALD 

uemissingValcomplenessQUALD 

Annex

238

Fig. 96 DICE - Structural part of the metamodel - subset "Observable Unit"

U

typeSEMU 

LOGU

QUALU

SEMU

definitionSEMU 

yconsistencQUALU 

ycircularityconsistencQUALU 

tmeasureUniaccuracyQUALU 

ycardinalityconsistencQUALU 

complenessQUALU 

accuracyQUALU 

semanticsaccuracyQUALU 

ependencyvarDaccuracyQUALU 

scurrentnesQUALU 

maximumAgescurrentnesQUALU 

stepWidthaccuracyQUALU 

syntaxaccuracyQUALU 

synonymyconsistencQUALU 

lIntegrityreferentiayconsistencQUALU 

uniquenessQUALU 

dataTypeaccuracyQUALU 

gmisspellinaccuracyQUALU 

ncyinconsisteuniquenessQUALU 

PROCU

uemissingValcomplenessQUALU 

redundancyuniquenessQUALU 

Annex

239

Fig. 97 DICE - Structural part of the metamodel - subset "Variable"

V

SEMV

LOGV

QUALV

PROCV

syntaxnvalueDomaiPROCV 

scurrentnesPROCV 

sourceLOGV 

keyPROCV 

descritionSEMV 

nameSEMV 

stepWidthnvalueDomaiPROCV 

pendencyvariableDenvalueDomaiPROCV 

niquenessunvalueDomaiPROCV 

nvalueDomaiPROCV 

maximumAgescurrentnesPROCV 

dataTypenvalueDomaiPROCV 

tmeasureUninvalueDomaiPROCV 

ycardinalitnvalueDomaiPROCV 

nTypeaggregationvalueDomaiPROCV 

yconsistencQUALV 

ycircularityconsistencQUALV 

tmeasureUniaccuracyQUALV 

ycardinalityconsistencQUALV 

complenessQUALV 

accuracyQUALV 

semanticsaccuracyQUALV 

ependencyvarDaccuracyQUALV 

scurrentnesQUALV 

maximumAgescurrentnesQUALV 

stepWidthaccuracyQUALV 

syntaxaccuracyQUALV 

synonymyconsistencQUALV 

lIntegrityreferentiayconsistencQUALV 

uniquenessQUALV 

dataTypeaccuracyQUALV 

gmisspellinaccuracyQUALV 

redundancyuniquenessQUALV 

uemissingValcomplenessQUALU 

Annex

240

Fig. 98 DICE - Structural part of the metamodel - subset "Property"

P

QUALPVALP LOGP PROCP

yconsistencQUALP 

orychangeHistLOGP 

ycircularityconsistencQUALP 

tmeasureUniaccuracyQUALP 

ycardinalityconsistencQUALP 

tmeasureUninvalueDomaiPROCP 

tmeasureUninvalueDomaiPROCP changeDateLOGP 

complenessQUALP 

accuracyQUALP 

semanticsaccuracyQUALP 

sourceLOGP 

ependencyvarDaccuracyQUALP 

scurrentnesQUALP 

maximumAgescurrentnesQUALP 

stepWidthaccuracyQUALP 

syntaxaccuracyQUALP 

synonymyconsistencQUALP 

lIntegrityreferentiayconsistencQUALP 

uniquenessQUALP 

dataTypeaccuracyQUALP 

gmisspellinaccuracyQUALP 

redundancyuniquenessQUALP 

uemissingValcomplenessQUALU aggrTypenvalueDomaiPROCP 

Annex

241

10.2 DICE Transformations

10.2.1 Initialisation

input:

)(, iAD or)(iO % a raw dataset or a composite input data

 object which requires recalculation %

output:

)(oO % the composite output data object %

Begin

 if initial input is
)(iAD % if raw data)(iO is

 constructed first %

 input
SEMD ,

LOGD ,
PROCD % manual input %

 input SEMU % manual input %

 input SEMV , PROCV % manual input %

 propagate
LOGD to

LOGP

 % iterate through all variables & through their quality indicators %

 for v = 1 to |V|

for indicator = 1 to k

 retrieve indicator-relevant requirements from
PROC

vV

 % iterate through observable units %

 for each u = 1 to |U|

 % match property value against requirement %

if calculable calculate

indicatorQUAL

uvP 

 else input
indicatorQUAL

uvP 
 manually

 % calculate
indicatorQUAL

vV 
from the set of qualities

 per observable unit %

 calculate average value from
indicatorQUAL

vP 

% iterate through observable units %

 for u = 1 to |U|

 for v = 1 to |V|

 % average quality per variable of observable unit %

 calculate
totalQUAL

uvP 
from set of

QUAL

uvP

 % calculate total quality of
uU : average of

totalQUAL

uvP 
 %

 calculate totalQUALU 

Annex

242

% total quality per indicator on dataset level
indicatorQUALD 

 %

 calculate average
indicatorQUALV 

 % total quality of dataset %

 calculate
QUALD

 return)(iO

end

10.2.2 Selection

input:

 selection criteria

)(iO % the composite input data object %

output:

)(oO % the composite output data object %

begin

% an empty output data object is created %

 create empty)(oO

 % iterate trough all observable units %

 for u = 1 to |U|

 % selection criteria can refer to data & metadata %

 if selection criteria match

 % transfer metadata of uU , property values of uU

 incl. property metadata: %

 copy
)(i

uU into)(oO

% transfer metadata %

 copy
SEMiV),(

,
LOGiV),(

,
PROCiV),(

 into)(oO

 % conduct reinitialisation: %

 initialize)(oO

 return)(oO

end

Annex

243

10.2.3 Addition

input:

)(kiO and)(liO % two data objects %

output:

)(oO % the composite output data object %

begin

 create empty)(oO

 %)(kiO holds the leading metadata %

 copy)(kiO to)(oO

 for v = 1 to |)(kiV | in)(kiO

 for z = 1 to |)(liV | in)(liO

 calculate similarity degree of <
)(ki

vV ,
)(li

zV >

 if variable similar

 % append all properties of
)(li

zV and their metadata %

 append
)(li

zP to corresponding variable in)(oO

 else

 append
)(li

zV as new variable

 % conduct reinitialisation %

 initialize
)(oO

 return
)(oO

end

10.2.4 Variable Removal

input:

)(i

rV % the to be removed variable %

)(iO % the composite input data object %

output:

)(oO % the composite output data object %

begin

 create empty)(oO

 for each
)(i

vV in)(iO

Annex

244

 % transfer all remaining variables incl. their properties %

 if
)()(i

r

i

v V V  copy
)(i

vV to)(oO

 copy
SEMiD),(

,
PROCiD),(

,
LOGiD),(

 % conduct reinitialisation %

 initialize
)(oO

 return
)(oO

end

10.2.5 Reclassification

input:

)(iO % composite input data object %

nameSEMi

rV ),(
 % name of variable which requires reclassification

%

 reclassification rules % mapping table or conversion function %

output:

)(oO % the composite output data object %

begin

 create empty)(oO

 for all
)(i

vV in)(iO

 if
)()(i

r

i

v V V  copy
)(i

vV to)(oO

 for u = 1 to |U|

 if
VALi

urP),(
 does not comply with

syntaxaccuracyPROC

rV 

 % after reclassification processing meta data are adapted %

 reclassify
VALi

urP),(
&& adapt

PROCi

urP),(

 % conduct reinitialisation %

 initialize
)(oO

 return
)(oO

end

Annex

245

10.2.6 Consolidation of Observable Units

input:

)(iO % composite input data object %

  nameSEMiV ),(
 % array on variables holding properties to be compared %

 similarity threshold

output:

)(oO % the composite output data object %

begin

 create empty)(oO

 % compare all observable units within the dataset with each other %

 for u =1 to |U|

 for i =1 to |U|

 calculate similarity between uU and iU

 if similarity > threshold

 mark uU and iU for consolidation

 consolidate similar pairs and copy to)(oO

 copy non-similar observable units to)(oO

 copy variable metadata to)(oO

 copy dataset metadata to)(oO

 % conduct reinitialisation %

 initialize
)(oO

 return
)(oO

end

Annex

246

10.3 Publications by the Author

Table 17 provides an overview of the articles published by the author. Most of the articles

have been written with the influence and help of the Research Group Knowledge Engineering,

led by Prof. Dr. Dimitris Karagiannis.

Table 17 Publications by the author

Author Title Year Outlet

Christoph Moser,

Franz Bayer,

Dimitris Karagiannis

ITIL: Modellgestützte

Umsetzung mit ADOIT

2004 Optimiertes IT-Management

mit ITIL. Victor, F., Günther,

H., Vieweg (2004)

Christoph Moser,

Franz Bayer

IT Architecture

Management: A

Framework for IT-

Services.

2007 In: Proceedings of the

Workshop on Enterprise

Modelling and Information

Systems Architectures, Desel J.,

Frank U. (eds.) Lecture Notes

in Informatics – Gesellschaft

für Informatik (GI), Klagenfurt,

Austria

Christoph Moser,

Matthias Winklhofer,

Christian Kuplich

Business Objectives

Compliance Architecture

Framework

2008 Proceedings of Modellierung

2008, Kühne T., Reisig W.,

Steimann F. (eds.) Lecture

Notes in Informatics–

Gesellschaft für Informatik

(GI), Berlin, Germany.

Christoph Moser,

Franz Bayer

Einführung von ISO

20000 - ein

prozessbasierter Ansatz

2008 In: ISO 20000: Praxishandbuch

für Servicemanagement und IT-

Governance, Andenmatten M.

(eds.), Symposion Publishing.

Christoph Moser,

Stefan Junginger,

Some Process Patterns for

Enterprise Architecture

2009 In: Conference: Software

Engineering 2009 -

Annex

247

Mathias Brückmann,

Klaus-Manfred

Schöne

Management. Workshopband, Fachtagung des

GI-Fachbereichs

Softwaretechnik, Münch J.,

Liggesmeyer P. (eds.),

Kaiserslautern, Germany.

Robert Winter, Jan

vom Brocke, Peter

Fettke, Peter Loos,

Stefan Junginger,

Christoph Moser,

Wolfgang Keller,

Florian Matthes,

Alexander Ernst

Patterns in der

Wirtschaftsinformatik

2009 In: Wirtschaftsinformatik 51,

no. 6

Christoph Moser,

Daniel Fürstenau,

Stefan Junginger

A Method for Integrating

EAM and BPM

2010 In: 2nd European Workshop on

Patterns for Enterprise

Architecture Management

(PEAM2010), Paderborn,

Germany.

Christoph Moser,

Lutz Kirchner

Integration von

Prozessmanagement und

Unternehmensarchitektur-

Management – Konzepte

und Vorgehensweisen

zum Business IT

Alignment

2013 In: Prozessmanagement für

Experten, Bayer F., Kühn H.

(eds), Springer Gabler Verlag.

Tobias Rausch,

Michael Puncochar,

Kai-Helmut Eckert,

Christoph Moser

Technische Umsetzung

von Geschäftsprozessen

2013 In: Prozessmanagement für

Experten, Bayer F., Kühn H.

(eds), Springer Gabler Verlag.

Karagiannis, Compliance evaluation 2012 In: International Conference on

Annex

248

Dimitris, Christoph

Moser, Arash

Mostashari

featuring heat maps (CE-

HM): a meta-modeling-

based approach

Advanced Information Systems

Engineering. Springer Berlin

Heidelberg, Germany.

Wilfried Grossmann,

Christoph Moser

Big Data—Integration

and Cleansing

Environment for Business

Analytics with DICE

2016 In: Domain-Specific

Conceptual Modeling -

Concepts, Methods and Tools,

Karagiannis D., Mayr H. C.,

Mylopoulos J., Springer

Bibliography

249

11 Bibliography

Aalst, Wil MP van der. 1996. “Structural Characterizations of Sound Workflow Nets.”

Computing Science Reports 96 (23): 18–22.

Abiteboul, Serge. 1997. “Querying Semi-Structured Data.” In Database Theory—ICDT’97.

Springer.

Abraham, Ralf, José Tribolet, and Robert Winter. 2013. “Transformation of Multi-Level

Systems–theoretical Grounding and Consequences for Enterprise Architecture

Management.” In Advances in Enterprise Engineering VII, 73–87. Springer.

Addicks, Jan Stefan, and Hans-Jürgen Appelrath. 2010. “A Method for Application

Evaluations in Context of Enterprise Architecture.” In Proceedings of the 2010 ACM

Symposium on Applied Computing, 131–36. ACM.

Ahmed, Rafi, and Shamkant B Navathe. 1991. “Version Management of Composite Objects

in CAD Databases.” In ACM SIGMOD Record, 20:218–27. ACM.

Aier, Stephan, Christian Riege, and Robert Winter. 2008a. “Classification of Enterprise

Architecture Scenarios-An Exploratory Analysis.” Enterprise Modelling and

Information Systems Architectures 3 (1): 14–23.

———. 2008b. “Unternehmensarchitektur - Literaturüberblick Und Stand Der Praxis.”

Wirtschaftsinformatik 50 (4): 292–304.

Aier, Stephan, and Robert Winter. 2009. “Virtual Decoupling for IT/Business Alignment–

conceptual Foundations, Architecture Design and Implementation Example.” Business

& Information Systems Engineering 1 (2): 150–63.

Allison, Paul D. 2002. “Missing Data: Quantitative Applications in the Social Sciences.”

British Journal of Mathematical and Statistical Psychology 55 (1): 193–96.

Andersen, Peter, and Andrea Carugati. 2014. “Enterprise Architecture Evaluation.” In

Proceedings of the 8th Mediterranean Conference on Information Systems.

Antunes, Gonçalo, Marzieh Bakhshandeh, Rudolf Mayer, José Borbinha, and Artur Caetano.

2013. “Using Ontologies for Enterprise Architecture Analysis.” In 2013 17th IEEE

International Enterprise Distributed Object Computing Conference Workshops, 361–

68. IEEE.

Baker, Michael J. 2000. “Writing a Literature Review.” The Marketing Review 1 (2): 219–47.

Band, Iver, Henk Jonkers, Erik Proper, Dick Quartel, and Mike Turner. 2015. “Using the

TOGAF 9.1 Framework with the ArchiMate 2.1 Modeling Language.”

Barone, Daniele, Eric Yu, Jihyun Won, Lei Jiang, and John Mylopoulos. 2010. “Enterprise

Modeling for Business Intelligence.” In IFIP Working Conference on The Practice of

Enterprise Modeling, 31–45. Springer.

Baxter, Rohan, Peter Christen, and Tim Churches. 2003. “A Comparison of Fast Blocking

Methods for Record Linkage.” In ACM SIGKDD, 3:25–27. Citeseer.

Berka, Christopher, Stefan Humer, Manuela Lenk, Mathias Moser, Henrik Rechta, and Eliane

Schwerer. 2016. “A Quality Framework for Statistics Based on Administrative Data

Sources Using the Example of the Austrian Census 2011.” Austrian Journal of

Statistics 39 (4): 299–308.

Bibliography

250

Berti-Équille, L. 2007. “Quality Awareness for Data Managing and Mining.” Habilitation À

Diriger Les Recherches, Université de Rennes 1.

Beyer, Dirk, Andreas Noack, and Claus Lewerentz. 2005. “Efficient Relational Calculation

for Software Analysis.” IEEE Transactions on Software Engineering 31 (2).

Biggs, Bill. 2005. “Ministry of Defence Architectural Framework (Modaf).”

Bilenko, Mikhail, Raymond Mooney, William Cohen, Pradeep Ravikumar, and Stephen

Fienberg. 2003. “Adaptive Name Matching in Information Integration.” IEEE

Intelligent Systems, no. 5: 16–23.

Bilenko, Mikhail, and Raymond J Mooney. 2003. “Adaptive Duplicate Detection Using

Learnable String Similarity Measures.” In Proceedings of the Ninth ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, 39–48. ACM.

Blaha, Michael. 2010. Patterns of Data Modeling. Vol. 1. CRC Press.

Boer, Frank S de, Marcello M Bonsangue, Joost Jacob, Andries Stam, and L Van der Torre.

2005. “Enterprise Architecture Analysis with Xml.” In System Sciences, 2005.

HICSS’05. Proceedings of the 38th Annual Hawaii International Conference on,

222b–222b. IEEE.

Bond, Francis, and Kyonghee Paik. 2012. “A Survey of Wordnets and Their Licenses.” Small

8 (4): 5.

Brinkkemper, Sjaak. 1996. “Method Engineering: Engineering of Information Systems

Development Methods and Tools.” Information and Software Technology 38 (4): 275–

80.

Brockmans, Saartje, Peter Haase, and Rudi Studer. 2006. “A MOF-Based Metamodel and

UML Syntax for Networked Ontologies.” In Intl. Semantic Web Conf. Georgia, US.

Brückmann, Matthias, Klaus-Manfred Schöne, Stefan Junginger, and Diana Boudinova. 2009.

“Evaluating Enterprise Architecture Management Initiatives-How to Measure and

Control the Degree of Standardization of an IT Landscape.” In EMISA, 155–68.

Bucher, Tobias, and Robert Winter. 2008. “Dissemination and Importance of the Method

Artifact in the Context of Design Research for Information Systems.” Proceedings of

the Third International Conference on Design Science Research in Information

Systems and Technology (DESRIST 2008).

Buckl, Sabine, Markus Buschle, Pontus Johnson, Florian Matthes, and Christian M Schweda.

2011. “A Meta-Language for Enterprise Architecture Analysis.” In Enterprise,

Business-Process and Information Systems Modeling, 511–25. Springer.

Buckl, Sabine, Alexander M Ernst, Josef Lankes, Kathrin Schneider, and Christian M

Schweda. 2007. “A Pattern Based Approach for Constructing Enterprise Architecture

Management Information Models.” Wirtschaftinformatik Proceedings 2007, 65.

Buckl, Sabine, Alexander M Ernst, Florian Matthes, René Ramacher, and Christian M

Schweda. 2009. “Using Enterprise Architecture Management Patterns to Complement

TOGAF.” In Enterprise Distributed Object Computing Conference, 2009. EDOC’09.

IEEE International, 34–41. IEEE.

Buckl, Sabine, Jens Gulden, and Christian M Schweda. 2010. “Supporting Ad Hoc Analyses

on Enterprise Models.” In EMISA, 69–83.

Buckl, Sabine, Florian Matthes, and Christian M Schweda. 2009. “Classifying Enterprise

Architecture Analysis Approaches.” In Enterprise Interoperability, 66–79. Springer.

Bibliography

251

Buschle, Markus, Mathias Ekstedt, Sebastian Grunow, Matheus Hauder, Florian Matthes, and

Sascha Roth. 2012. “Automating Enterprise Architecture Documentation Using an

Enterprise Service Bus.”

Buuren, René van, Henk Jonkers, Maria-Eugenia Iacob, and Patrick Strating. 2004.

“Composition of Relations in Enterprise Architecture Models.” In ICGT, 3256:39–53.

Springer.

Caetano, Artur. 2016. “An Application of Semantic Techniques to the Analysis of Enterprise

Architecture Models.” In 2016 49th Hawaii International Conference on System

Sciences (HICSS), 4536–45. IEEE.

Chakrabarti, Soumen, Martin Ester, Usama M. Fayyad, Johannes Gehrke, Jiawei Han,

Shinichi Morishita, Gregory Piatetsky-Shapiro, and Wei Wang. 2006. “Data Mining

Curriculum: A Proposal (Version 1.0).” Intensive Working Group of ACM SIGKDD

Curriculum Committee, 140.

Chapman, Pete, Julian Clinton, Randy Kerber, Thomas Khabaza, Thomas Reinartz, Colin

Shearer, and Rüdiger Wirth. 2000. “CRISP-DM 1.0.” CRISP-DM Consortium.

Choi, Seung-Seok, Sung-Hyuk Cha, and Charles C Tappert. 2010. “A Survey of Binary

Similarity and Distance Measures.” Journal of Systemics, Cybernetics and Informatics

8 (1): 43–48.

Chukmol, Uddam, Rami Rifaieh, and Nabila Aicha Benharkat. 2005. “Exsmal: Edi/Xml

Semi-Automatic Schema Matching Algorithm.” In Proceedings of the Seventh IEEE

International Conference on E-Commerce Technology, 422–25. IEEE.

Coenen, Frans, Graham Goulbourne, and Paul Leng. 2004. “Tree Structures for Mining

Association Rules.” Data Mining and Knowledge Discovery 8 (1): 25–51.

Cohen, William W, Pradeep D Ravikumar, and Stephen E Fienberg. 2003. “A Comparison of

String Distance Metrics for Name-Matching Tasks.” In Proceedings of IJCAI-03

Workshop on Information Integration, 2003:73–78.

Conradi, Reidar, and Bernhard Westfechtel. 1998. “Version Models for Software

Configuration Management.” ACM Computing Surveys (CSUR) 30 (2): 232–82.

Council, CIO. 1999. “Federal Enterprise Architecture Framework Version 1.1.” Retrieved

from 80: 3–1.

Cowie, Jim, and Wendy Lehnert. 1996. “Information Extraction.” Communications of the

ACM 39 (1): 80–91.

Czarnecki, Krzysztof, and Simon Helsen. 2003. “Classification of Model Transformation

Approaches.” In Proceedings of the 2nd OOPSLA Workshop on Generative

Techniques in the Context of the Model Driven Architecture, 45:1–17. USA.

Dalgaard, Peter. 2008. Introductory Statistics with R. Springer Science & Business Media.

Daneva, Maya. 2004. “ERP Requirements Engineering Practice: Lessons Learned.” Software,

IEEE 21 (2): 26–33.

Dardenne, Anne. 1993. On the Use of Scenarios in Requirements Acquisition. Department of

Computer and Information Science, University of Oregon.

Davenport, Thomas, H. 2007. “Competing on Analytics.” HBR Press.

Davoudi, Mahsa Razavi, Fereidoon Shams Aliee, and Kambiz Badie. 2011. “An AHP-Based

Approach toward Enterprise Architecture Analysis Based on Enterprise Architecture

Quality Attributes.” Knowledge and Information Systems 28 (2): 449–72.

Bibliography

252

Davoudi, Mahsa Razavi, and K Sheikhvand. 2012. “An Approach towards Enterprise

Architecture Analysis Using AHP and Fuzzy AHP.” International Journal of Machine

Learning and Computing 2 (1): 46.

Deerwester, Scott, Susan T Dumais, George W Furnas, Thomas K Landauer, and Richard

Harshman. 1990. “Indexing by Latent Semantic Analysis.” Journal of the American

Society for Information Science 41 (6): 391.

Denk, Michaela, Karl Anton Froeschl, and Wilfried Grossmann. 2002. “Statistical

Composites: A Transformation-Bound Representation of Statistical Datasets.” In

SSDBM ’02 Proceedings of the 14th International Conference on Scientific and

Statistical Database Management, 217–26. IEEE.

DeWitt, David J, Jeffrey F Naughton, and Donovan A Schneider. 1991. “An Evaluation of

Non-Equijoin Algorithms.” In Proceedings of the 17th International Conference on

Very Large Data Bases, 443–52. Morgan Kaufmann Publishers Inc.

Deza, Michel Marie, and Elena Deza. 2009. “Encyclopedia of Distances.” In Encyclopedia of

Distances, 1–583. Springer.

Dietz, JLG. 2006. “Enterprise Ontology: Theory and Methodology.” Berling: Springer.

DoD, CIO. 2010. “DoDAF Architecture Framework Version 2.02.” Website, August.

Dublin Core Metadata Initiative. 2012. “Dublin Core Metadata Element Set, Version 1.1.”

Dupont, William D, and Walton D Plummer. 1990. “Power and Sample Size Calculations: A

Review and Computer Program.” Controlled Clinical Trials 11 (2): 116–28.

Dusetzina, Stacie B, Seth Tyree, Anne-Marie Meyer, Adrian Meyer, Laura Green, and

William R Carpenter. 2014. “An Overview of Record Linkage Methods.”

Duval, Erik. 2001. “Metadata Standards: What, Who & Why.” Journal of Universal

Computer Science 7 (7): 591–601.

Ehrig, Hartmut, Karsten Ehrig, Ulrike Prange, and Gabriele Taentzer. 2005. “Formal

Integration of Inheritance with Typed Attributed Graph Transformation for Efficient

VL Definition and Model Manipulation.” In , 71–78. IEEE.

Ekstedt, Mathias, Ulrik Franke, Pontus Johnson, Robert Lagerström, Teodor Sommestad,

Johan Ullberg, and Markus Buschle. 2009. “A Tool for Enterprise Architecture

Analysis of Maintainability.” In , 327–28.

Eltinge, John L, Paul P Biemer, and Anders Holmberg. 2013. “A Potential Framework for

Integration of Architecture and Methodology to Improve Statistical Production

Systems.” Journal of Official Statistics 29 (1): 125–45.

Falleri, Jean-Rémy, Marianne Huchard, Mathieu Lafourcade, and Clémentine Nebut. 2008.

“Metamodel Matching for Automatic Model Transformation Generation.” In Model

Driven Engineering Languages and Systems, 326–40. Springer.

Farwick, Matthias, Ruth Breu, Matheus Hauder, Sascha Roth, and Florian Matthes. 2013.

“Enterprise Architecture Documentation: Empirical Analysis of Information Sources

for Automation.” In Proceedings of the 2013 46th Hawaii International Conference

on System Sciences, 3868–77. IEEE.

Farwick, Matthias, Christian M Schweda, Ruth Breu, and Inge Hanschke. 2016. “A

Situational Method for Semi-Automated Enterprise Architecture Documentation.”

Software & Systems Modeling 15 (2): 397–426.

Bibliography

253

Fatolahi, Ali, and Fereidoon Shams. 2006. “An Investigation into Applying UML to the

Zachman Framework.” Information Systems Frontiers 8 (2): 133–43.

Faust, Katherine. 1997. “Centrality in Affiliation Networks.” Social Networks 19 (2): 157–91.

Fayyad, Usama M., Gregory Piatetsky-Shapiro, and Padhraic Smyth. 1996. “From Data

Mining to Knowledge Discovery in Databases.” AI Magazine 17 (3): 37.

Fayyad, Usama M., Gregory Piatetsky-Shapiro, Padhraic Smyth, and Ramasamy Uthurusamy.

1996. “Advances in Knowledge Discovery and Data Mining.”

FEAPO. 2013. “Common Perspectives on Enterprise Architecture.” Architecture and

Governance Magazine Issue 9-4 (November).

Fill, Hans-Georg, and Florian Johannsen. 2016. “A Knowledge Perspective on Big Data by

Joining Enterprise Modeling and Data Analyses.” In System Sciences (HICSS), 2016

49th Hawaii International, 4052–61. IEEE.

Fischer, Ronny, Stephan Aier, and Robert Winter. 2007. “A Federated Approach to Enterprise

Architecture Model Maintenance.” Enterprise Modelling and Information Systems

Architectures 2 (2): 14–22.

Fischer, Ronny, and Robert Winter. 2007. “Ein Hierarchischer, Architekturbasierter Ansatz

Zur Unterstützung Des IT/Business Alignment.” Wirtschaftinformatik Proceedings

2007, 66.

Fisher, Amit, Mike Nolan, Sanford Friedenthal, Michael Loeffler, Mark Sampson, Manas

Bajaj, Lonnie VanZandt, Krista Hovey, John Palmer, and Laura Hart. 2014. “3.1. 1

Model Lifecycle Management for MBSE.” In INCOSE International Symposium,

24:207–29. Wiley Online Library.

Florez, Hector, Mario Sánchez, and Jorge Villalobos. 2014. “Extensible Model-Based

Approach for Supporting Automatic Enterprise Analysis.” In Enterprise Distributed

Object Computing Conference (EDOC), 2014 IEEE 18th International, 32–41. IEEE.

———. 2016. “Analysis of Imprecise Enterprise Models.” In International Workshop on

Business Process Modeling, Development and Support, 349–64. Springer.

Fox, Christopher. 1989. “A Stop List for General Text.” In ACM SIGIR Forum, 24:19–21.

ACM.

Frank, Ulrich. 2002. “Multi-Perspective Enterprise Modeling (Memo) Conceptual Framework

and Modeling Languages.” In System Sciences, 2002. HICSS. Proceedings of the 35th

Annual Hawaii International Conference on, 1258–67. IEEE.

Franke, Ulrik, David Höök, Johan König, Robert Lagerström, Per Närman, Johan Ullberg, Pia

Gustafsson, and Mathias Ekstedt. 2009. “EAF2-a Framework for Categorizing

Enterprise Architecture Frameworks.” In SNPD ’09 Proceedings of the 2009 10th

ACIS International Conference on Software Engineering, Artificial Intelligences,

Networking and Parallel/Distributed Computing, 327–32. IEEE.

Friedman, Nir, Lise Getoor, Daphne Koller, and Avi Pfeffer. 1999. “Learning Probabilistic

Relational Models.” In IJCAI, 99:1300–1309.

Fröschl, K. A., and Wilfrid Grossmann. 2001. “Deciding Statistical Data Quality.” New

Techniques and Technologies for Statistics/Exchange of Technology and Know-How,

Pre-Proc., no. 1.

Gale, Thornton, and James Eldred. 1996. Getting Results with the Object-Oriented Enterprise

Model. Sigs Books New York, NY, USA.

Bibliography

254

Gentner, Dedre. 1983. “Structure‐Mapping: A Theoretical Framework for Analogy*.”

Cognitive Science 7 (2): 155–70.

Giachetti, Ronald E. 2010. Design of Enterprise Systems: Theory, Architecture, and Methods.

CRC Press.

Gill, Asif Qumer, and Muhammad Atif Qureshi. 2015. “Adaptive Enterprise Architecture

Modelling.” Journal of Software 10 (5): 628–38.

Glazner, Christopher G. 2011. “Enterprise Transformation Using a Simulation of Enterprise

Architecture.” Journal of Enterprise Transformation 1 (3): 231–60.

Gomes, Cláudio, Bruno Barroca, and Vasco Amaral. 2014. “Classification of Model

Transformation Tools: Pattern Matching Techniques.” In International Conference on

Model Driven Engineering Languages and Systems, 619–35. Springer.

Götzinger, David, Elena-Teodora Miron, and Franz Staffel. 2016. “OMiLAB: An Open

Collaborative Environment for Modeling Method Engineering.” In Domain-Specific

Conceptual Modeling, 55–76. Springer.

Gough, Paul A, Filip T Fodemski, Stewart A Higgins, and SJ Ray. 1995. “Scenarios-an

Industrial Case Study and Hypermedia Enhancements.” In Proceedings of the Second

IEEE International Symposium on, 10–17. IEEE.

Grossmann, Wilfried. 2009. “A Conceptual Approach for Data Integration in Business

Analytics.” International Journal of Software and Informatics 4: 53–68.

———. 2015. “Metadata.” Wiley StatsRef: Statistics Reference Online.

doi:10.1002/9781118445112.

Grossmann, Wilfried, and Christoph Moser. 2016. “Big Data—Integration and Cleansing

Environment for Business Analytics with DICE.” In Domain-Specific Conceptual

Modeling. Springer.

Grunow, Sebastian, Florian Matthes, and Sascha Roth. 2013. “Towards Automated Enterprise

Architecture Documentation: Data Quality Aspects of SAP PI.” In Advances in

Databases and Information Systems, 103–13. Springer.

Gschwandtner, Theresia, Johannes Gärtner, Wolfgang Aigner, and Silvia Miksch. 2012. “A

Taxonomy of Dirty Time-Oriented Data.” In International Conference on Availability,

Reliability, and Security, 58–72. Springer.

Gudas, Saulius, Audrius Lopata, and Tomas Skersys. 2005. “Approach to Enterprise

Modelling for Information Systems Engineering.” Informatica 16 (2): 175–92.

Han, Jiawei, and Micheline Kamber. 2000. “Data Mining: Concepts and Techniques (the

Morgan Kaufmann Series in Data Management Systems).”

Handley, Holly AH, and Robert J Smillie. 2008. “Architecture Framework Human View: The

NATO Approach.” Systems Engineering 11 (2): 156–64.

Harmsen, Anton Frank. 1997. “Situational Method Engineering.” University of Twente,

Twente, The Netherlands.

Harmsen, Anton Frank, Jacobus Nicolaas Brinkkemper, and JL Han Oei. 1994. Situational

Method Engineering for Information System Project Approaches. Citeseer.

Hause, Matthew, Daniel Brookshier, and Graham Bleakley. 2012. “UPDM-Unified Profile for

DoDAF/MODAF.” DTIC Document.

Bibliography

255

Henderson-Sellers, Brian, Cesar Gonzalez-Perez, and Jolita Ralyté. 2008. “Comparison of

Method Chunks and Method Fragments for Situational Method Engineering.” In ,

479–88. IEEE.

Henderson-Sellers, Brian, and Jolita Ralyté. 2010. “Situational Method Engineering: State-of-

the-Art Review.” J. UCS 16 (3): 424–78.

Hernández, Mauricio A, and Salvatore J Stolfo. 1998. “Real-World Data Is Dirty: Data

Cleansing and the Merge/Purge Problem.” Data Mining and Knowledge Discovery 2

(1): 9–37.

Hevner, AR, Salvatore T March, Jinsoo Park, and Sudha Ram. 2004. “Design Science in

Information Systems Research.” MIS Quarterly 28 (1): 75–105.

Hinkelmann, Knut, Michaela Maise, and Barbara Thönssen. 2013. “Connecting Enterprise

Architecture and Information Objects Using an Enterprise Ontology.” In , 1–11. IEEE.

Iacob, Maria-Eugenia, and Henk Jonkers. 2006. “Quantitative Analysis of Enterprise

Architectures.” In Interoperability of Enterprise Software and Applications, 239–52.

Springer.

ISO/IEC/IEEE 25012. 2008. “Software Engineering — Software Product Quality

Requirements and Evaluation (SQuaRE) — Data Quality Model.”

ISO/IEC/IEEE 42010. 2011. “Systems and Software Engineering–Architecture Description.”

ISO/IEC/IEEE 42010.

Israel, Glenn D. 1992. Determining Sample Size. University of Florida Cooperative Extension

Service, Institute of Food and Agriculture Sciences, EDIS Gainesville.

Jeners, Simona, Horst Lichter, and Elena Pyatkova. 2012. “Metric Based Comparison of

Reference Models Based on Similarity.” International Journal of Digital Content

Technology and Its Applications 6 (21): 50.

Johannsen, Florian, and Hans-Georg Fill. 2014. “RUPERT: A Modelling Tool for Supporting

Business Process Improvement Initiatives.” In International Conference on Design

Science Research in Information Systems, 418–22. Springer.

Johnson, Pontus, Lars Nordström, and Robert Lagerström. 2007. “Formalizing Analysis of

Enterprise Architecture.” In Enterprise Interoperability, 35–44. Springer.

Jonkers, Henk, Harmen van den Berg, Maria-Eugenia Iacob, and Dick Quartel. 2010.

“ArchiMate® Extension for Modeling the TOGAF
TM

 Implementation and Migration

Phases.” Reading, Berkshire: Whitepaper, The Open Group.

Kao, Anne, and Steve R Poteet. 2007. Natural Language Processing and Text Mining.

Springer Science & Business Media.

Karagiannis, Dimitris. 2015. “Agile Modeling Method Engineering.” In , 5–10. ACM.

Karagiannis, Dimitris, Robert Andrei Buchmann, Patrik Burzynski, Ulrich Reimer, and

Michael Walch. 2016. “Fundamental Conceptual Modeling Languages in OMiLAB.”

In Domain-Specific Conceptual Modeling, 3–30. Springer.

Karagiannis, Dimitris, and Harald Kühn. 2002. “Metamodelling Platforms.” In EC-Web,

2455:182.

Karagiannis, Dimitris, Christoph Moser, and Arash Mostashari. 2012. “Compliance

Evaluation Featuring Heat Maps (CE-HM): A Meta-Modeling-Based Approach.” In

Advanced Information Systems Engineering, 414–28. Springer.

Bibliography

256

Kazman, Rick, Gregory Abowd, Len Bass, and Paul Clements. 1996. “Scenario-Based

Analysis of Software Architecture.” Software, IEEE 13 (6): 47–55.

Kent, Jean-Pierre, and Maarten Schuerhoff. 1997. “Some Thoughts about a Metadata

Management System.” In SSDBM ’97 Proceedings of the Ninth International

Conference on Scientific and Statistical Database Management, 97:174–85. Citeseer.

Kern, Heiko, Axel Hummel, and Stefan Kühne. 2011. “Towards a Comparative Analysis of

Meta-Metamodels.” In Proceedings of the Compilation of the Co-Located Workshops

on DSM’11, TMC’11, AGERE! 2011, AOOPES’11, NEAT’11, & VMIL’11, 7–12.

ACM.

Kessentini, Marouane, Ali Ouni, Philip Langer, Manuel Wimmer, and Slim Bechikh. 2014.

“Search-Based Metamodel Matching with Structural and Syntactic Measures.”

Journal of Systems and Software 97: 1–14.

Khan, Mumit. 2011. “Longest Path in a Directed Acyclic Graph (DAG).”

Kim, Won, Byoung-Ju Choi, Eui-Kyeong Hong, Soo-Kyung Kim, and Doheon Lee. 2003. “A

Taxonomy of Dirty Data.” Data Mining and Knowledge Discovery 7 (1): 81–99.

Klösgen, Willi. 2002. “Types and Forms of Data.” Handbook of Data Mining and Knowledge

Discovery, Oxford University Press, New York, USA, 33–44.

Klosterboer, Larry. 2007. Implementing ITIL Configuration Management. Pearson Education.

Korhonen, Janne J, Mehmet Yildiz, and Juha Mykkanen. 2009. “Governance of Information

Security Elements in Service-Oriented Enterprise Architecture.” In Pervasive Systems,

Algorithms, and Networks (ISPAN), 2009 10th International Symposium on, 768–73.

IEEE.

Kühn, Harald, Franz Bayer, Stefan Junginger, and Dimitris Karagiannis. 2003. “Enterprise

Model Integration.” In International Conference on Electronic Commerce and Web

Technologies, 379–92. Springer.

Kumar, Kuldeep, and Richard J Welke. 1992. “Methodology Engineering: A Proposal for

Situation-Specific Methodology Construction.” In Challenges and Strategies for

Research in Systems Development, 257–69. John Wiley & Sons, Inc.

Kurpjuweit, Stephan, and Stephan Aier. 2009. “Ein Allgemeiner Ansatz Zur Ableitung von

Abhängigkeitsanalysen Auf Unternehmensarchitekturmodellen.” In

Wirtschaftsinformatik, 129–38.

Lagerström, Robert, Pontus Johnson, and David Höök. 2010. “Architecture Analysis of

Enterprise Systems Modifiability–models, Analysis, and Validation.” Journal of

Systems and Software 83 (8): 1387–1403.

Lapkin, Anne, Phillip Allega, Brian Burke, Betsy Burton, R Scott Bittler, Robert A Handler,

Greta A James, Bruce Robertson, David Newman, and Deborah Weiss. 2008. “Gartner

Clarifies the Definition of the Term Enterprise Architecture.” Research G00156559,

Gartner.

Laverdure, Leo, and Alex Conn. 2012. “SEA Change: How Sustainable EA Enables Business

Success in Times of Disruptive Change.” Journal of Enterprise Architecture 8 (1).

Lee, Wei-Nchih, Nigam Shah, Karanjot Sundlass, and Mark A Musen. 2008. “Comparison of

Ontology-Based Semantic-Similarity Measures.” In Annual Symposium Proceedings.

AMIA Symposium.

Bibliography

257

Leist, Susanne, and Gregor Zellner. 2006. “Evaluation of Current Architecture Frameworks.”

In Proceedings of the 2006 ACM Symposium on Applied Computing, 1546–53. ACM.

Lenzerini, Maurizio. 2002. “Data Integration: A Theoretical Perspective.” In , 233–46. ACM.

Li, Lin, Taoxin Peng, and Jessie Kennedy. 2014. “A Rule Based Taxonomy of Dirty Data.”

GSTF Journal on Computing (JoC) 1 (2).

Liberatore, Matthew J, and Wenhong Luo. 2010. “The Analytics Movement: Implications for

Operations Research.” Interfaces 40 (4): 313–24.

Lúcio, Levi, Moussa Amrani, Jürgen Dingel, Leen Lambers, Rick Salay, Gehan MK Selim,

Eugene Syriani, and Manuel Wimmer. 2014. “Model Transformation Intents and

Their Properties.” Software & Systems Modeling, 1–38.

Manzur, Laura, Jorge Mario Ulloa, Mario Sánchez, and Jorge Villalobos. 2015. “xArchiMate:

Enterprise Architecture Simulation, Experimentation and Analysis.” Simulation 91

(3): 276–301.

Marbán, Óscar, Gonzalo Mariscal, and Javier Segovia. 2009. “A Data Mining & Knowledge

Discovery Process Model.” Data Mining and Knowledge Discovery in Real Life

Applications. IN-TECH 2009: 8.

Marcus, Mitchell P, Mary Ann Marcinkiewicz, and Beatrice Santorini. 1993. “Building a

Large Annotated Corpus of English: The Penn Treebank.” Computational Linguistics

19 (2): 313–30.

Matthes, Dirk. 2011. Enterprise Architecture Frameworks Kompendium. Springer-Verlag.

McHugh, Jason, Serge Abiteboul, Roy Goldman, Dallan Quass, and Jennifer Widom. 1997.

“Lore: A Database Management System for Semistructured Data.” SIGMOD Record

26 (3): 54–66.

Mendling, Jan, Hajo A Reijers, and Jan Recker. 2010. “Activity Labeling in Process

Modeling: Empirical Insights and Recommendations.” Information Systems 35 (4):

467–82.

Merriam-Webster, I. 2007. “Merriam-Webster’s Dictionary and Thesaurus.”

Miller, George A. 1995. “WordNet: A Lexical Database for English.” Communications of the

ACM 38 (11): 39–41.

Mirbel, Isabelle, and Jolita Ralyté. 2006. “Situational Method Engineering: Combining

Assembly-Based and Roadmap-Driven Approaches.” Requirements Engineering 11

(1): 58–78.

Mishra, Priti, and Margaret H Eich. 1992. “Join Processing in Relational Databases.” ACM

Computing Surveys (CSUR) 24 (1): 63–113.

Monahov, Ivan, Christopher Schulz, Alexander Schneider, and Florian Matthes. 2012. “EAM

KPI Catalog.”

Moser, Christoph, Robert Buchmann Andrei, Wilfrid Utz, and Dimitris Karagiannis. 2017.

“CE-SIB: A Modelling Method Plug-in for Managing Standards in Enterprise

Architectures.”

Moser, Christoph, Daniel Fürstenau, and Stefan Junginger. 2010. “A Method for Integrating

EAM and BPM.” In Software Engineering (Workshops), 2nd European Workshop on

Patterns for Enterprise Architecture Management (PEAM2010), 231–42. Paderborn,

Germany.

Bibliography

258

Moser, Christoph, Stefan Junginger, Matthias Brückmann, and Klaus-Manfred Schöne. 2009.

“Some Process Patterns for Enterprise Architecture Management.” In Workshopband,

Fachtagung Des GI-Fachbereichs Softwaretechnik, 19–30. Kaiserlautern, Germany:

Citeseer.

Moser, Christoph, Mathias Winklhofer, and Christian Kuplich. 2008. “Business Objectives

Compliance Architecture Framework.” In Proceedings of Modellierung 2008. Berlin,

Germany: Springer.

Mourya, Maya, and Preeti Saxena. 2015. “Survey of Xml to Relational Database Mapping

Techniques.” Adv. Comput. Sci. Inf. Technol.(ACSIT) 2: 162–66.

Murata, Tadao. 1989. “Petri Nets: Properties, Analysis and Applications.” Proceedings of the

IEEE 77 (4): 541–80.

Mykhashchuk, Mariana, Sabine Buckl, Thomas Dierl, and Christian M Schweda. 2011.

“Charting the Landscape of Enterprise Architecture Management.” In

Wirtschaftsinformatik, 83.

Närman, Per, Markus Buschle, Johan Konig, and Pontus Johnson. 2010. “Hybrid Probabilistic

Relational Models for System Quality Analysis.” In Enterprise Distributed Object

Computing Conference (EDOC), 2010 14th IEEE International, 57–66. IEEE.

Närman, Per, Ulrik Franke, Johan König, Markus Buschle, and Mathias Ekstedt. 2014.

“Enterprise Architecture Availability Analysis Using Fault Trees and Stakeholder

Interviews.” Enterprise Information Systems 8 (1): 1–25.

Närman, Per, Hannes Holm, Pontus Johnson, Johan König, Moustafa Chenine, and Mathias

Ekstedt. 2011. “Data Accuracy Assessment Using Enterprise Architecture.” Enterprise

Information Systems 5 (1): 37–58.

Närman, Per, M Schonherr, Pontus Johnson, Mathias Ekstedt, and Moustafa Chenine. 2008.

“Using Enterprise Architecture Models for System Quality Analysis.” In Enterprise

Distributed Object Computing Conference, 2008. EDOC’08. 12th International IEEE,

14–23. IEEE.

Neaga, Elena I, and Jennifer A Harding. 2005. “An Enterprise Modeling and Integration

Framework Based on Knowledge Discovery and Data Mining.” International Journal

of Production Research 43 (6): 1089–1108.

Niemann, Klaus D. 2006. From Enterprise Architecture to IT Governance. Vol. 1. Springer.

Oliveira, Paulo, Fátima Rodrigues, Pedro Henriques, and Helena Galhardas. 2005. “A

Taxonomy of Data Quality Problems.” In 2nd Int. Workshop on Data and Information

Quality, 219–33. Citeseer.

OMG. 2015. “Meta Object Facility (MOF) Core, Version 2.5.” Object Management Group.

http://www.omg.org/spec/MOF/2.5.

Ordonez, Carlos. 2010. “Statistical Model Computation with UDFs.” IEEE Transactions on

Knowledge and Data Engineering 22 (12): 1752–65.

Ordonez, Carlos, and Zhibo Chen. 2012. “Horizontal Aggregations in SQL to Prepare Data

Sets for Data Mining Analysis.” IEEE Transactions on Knowledge and Data

Engineering 24 (4): 678–91.

Österlind, Magnus, Pontus Johnson, Kiran Karnati, Robert Lagerström, and Margus Välja.

2013. “Enterprise Architecture Evaluation Using Utility Theory.” In 2013 17th IEEE

International Enterprise Distributed Object Computing Conference Workshops, 347–

51. IEEE.

Bibliography

259

Pallottino, Stefano. 1984. “Shortest‐path Methods: Complexity, Interrelations and New

Propositions.” Networks 14 (2): 257–67.

Papageorgiou, Haralambos, Fragkiskos Pentaris, Eirini Theodorou, Maria Vardaki, and

Michalis Petrakos. 2001. “A Statistical Metadata Model for Simultaneous

Manipulation of Both Data and Metadata.” Journal of Intelligent Information Systems

17 (2–3): 169–92.

Papageorgiou, Haralambos, Maria Vardaki, and Fragkiskos Pentaris. 2000. “Data and

Metadata Transformations.” Research in Official Statistics 3 (2): 27–43.

Parent, Christine, Stefano Spaccapietra, and Esteban Zimányi. 1999. “Spatio-Temporal

Conceptual Models: Data Structures+ Space+ Time.” In , 26–33. ACM.

Peffers, Ken, Tuure Tuunanen, Marcus A Rothenberger, and Samir Chatterjee. 2007. “A

Design Science Research Methodology for Information Systems Research.” Journal of

Management Information Systems 24 (3): 45–77.

Pereira, Carla Marques, and Pedro Sousa. 2005. “Enterprise Architecture: Business and IT

Alignment.” In Proceedings of the 2005 ACM Symposium on Applied Computing,

1344–45. ACM.

Peter Christen. 2007. “Towards Parameter-Free Blocking for Scalable Record Linkage.”

Porter, Edward H, and William E Winkler. 1997. “Approximate String Comparison and Its

Effect on an Advanced Record Linkage System.” In Advanced Record Linkage

System. US Bureau of the Census, Research Report. Citeseer.

Porter, Martin F. 1980. “An Algorithm for Suffix Stripping.” Program 14 (3): 130–37.

Potts, Chris. 2010. “Using Structural Performance Rations to Guide Investments in Enterprise

Architecture.” Journal of Enterprise Architecture 6 (4): 14–18.

Pouya Aleatrati Khosroshahi, Alexander W. Schneider, Matheus Hauder, and Florian

Matthes. 2015. “Enterprise Architecture Management Pattern Catalog,” no. Version

2.0.

Prat, Nicolas, Isabelle Comyn-Wattiau, and Jacky Akoka. 2014. “Artifact Evaluation in

Information Systems Design-Science Research-a Holistic View.” In PACIS 2014

Proceedings - Pacific Asia Conference on Information Systems, 23. Citeseer.

Rahm, Erhard, and Hong Hai Do. 2000. “Data Cleaning: Problems and Current Approaches.”

IEEE Data Eng. Bull. 23 (4): 3–13.

Ralyté, Jolita, and Colette Rolland. 2001. “An Assembly Process Model for Method

Engineering.” In International Conference on Advanced Information Systems

Engineering, 267–83. Springer.

Ralyté, Jolita, Colette Rolland, and Rébecca Deneckère. 2004. “Towards a Meta-Tool for

Change-Centric Method Engineering: A Typology of Generic Operators.” In

International Conference on Advanced Information Systems Engineering, 202–18.

Springer.

Ribeiro, Leonardo, and Theo Härder. 2006. “Entity Identification in XML Documents.” In

Grundlagen von Datenbanken, 130–34.

Rolland, Colette, and Naveen Prakash. 1996. “A Proposal for Context-Specific Method

Engineering.” In Method Engineering, 191–208. Springer.

Bibliography

260

Roszczyk, Marcin. 2015. “Enterprise Architecture - A System Engineering Discipline.”

August 3. https://www.linkedin.com/pulse/enterprise-architecture-system-engineering-

marcin-roszczyk.

Roth, Sascha. 2014. “Federated Enterprise Architecture Model Management.” Dissertation.

Munich University.

Roth, Sascha, and Florian Matthes. 2014. “Visualizing Differences of Enterprise Architecture

Models.” In Proceedings of International Workshop on Comparison and Versioning of

Software Models (CVSM) at Software Engineering (SE).

Rumbaugh, James, Ivar Jacobson, and Grady Booch. 2004. Unified Modeling Language

Reference Manual, The. Pearson Higher Education.

Rusinowska, Agnieszka, Rudolf Berghammer, Harrie De Swart, and Michel Grabisch. 2011.

“Social Networks: Prestige, Centrality, and Influence.” In , 22–39. Springer.

Saha, Pallab. 2004. “Analyzing The Open Group Architecture Framework from the GERAM

Perspective.”

http://www.opengroup.org/architecture/wp/saha/TOGAF_GERAM_Mapping.htm.

———. 2007. “A Synergistic Assessment of the Federal Enterprise Architecture Framework

against GERAM (ISO15704: 2000).”

Santana, Alixandre, Kai Fischbach, and Hermano Moura. 2016. “Enterprise Architecture

Analysis and Network Thinking: A Literature Review.” In System Sciences (HICSS),

2016 49th Hawaii International Conference on, 4566–75. IEEE.

Schekkerman, Jaap. 2004a. “Extended Enterprise Architecture Framework (E2AF) Essentials

Guide.” Institute For Enterprise Architecture Developments.

———. 2004b. How to Survive in the Jungle of Enterprise Architecture Frameworks:

Creating or Choosing an Enterprise Architecture Framework. Trafford Publishing.

Schoonjans, Anthony. 2016. “Social Network Analysis Techniques in Enterprise Architecture

Management.”

Sciore, Edward. 1994. “Versioning and Configuration Management in an Object-Oriented

Data Model.” The VLDB Journal—The International Journal on Very Large Data

Bases 3 (1): 77–106.

Sharma, Rajeev, Peter Reynolds, Rens Scheepers, Peter B Seddon, and Graeme G Shanks.

2010. “Business Analytics and Competitive Advantage: A Review and a Research

Agenda.” In , 187–98.

Shu, Nan C. 1987. “Automatic Data Transformation and Restructuring.” In , 173–80. IEEE.

Simon, Daniel, Kai Fischbach, and Detlef Schoder. 2013. “An Exploration of Enterprise

Architecture Research.” Communications of the Association for Information Systems

32 (1): 1–72.

Singh, Prince M, and Marten J van Sinderen. 2015. “Lightweight Metrics for Enterprise

Architecture Analysis.” In International Conference on Business Information Systems,

113–25. Springer.

Smith, John R, and Peter Schirling. 2006. “Metadata Standards Roundup.” IEEE MultiMedia

13 (2): 84–88.

Sommestad, Teodor, Mathias Ekstedt, and Hannes Holm. 2013. “The Cyber Security

Modeling Language: A Tool for Assessing the Vulnerability of Enterprise System

Architectures.” IEEE Systems Journal 7 (3): 363–73.

Bibliography

261

Sommestad, Teodor, Mathias Ekstedt, and Pontus Johnson. 2010. “A Probabilistic Relational

Model for Security Risk Analysis.” Computers & Security 29 (6): 659–79.

Sprinkle, Jonathan, Bernhard Rumpe, Hans Vangheluwe, and Gabor Karsai. 2010.

“Metamodelling - State of the Art and Research Challenges.” Springer.

Staab, Steffen, and Rudi Studer. 2013. Handbook on Ontologies. Springer Science &

Business Media.

Stephan, Eva-Maria, Andrej Vckovski, and Felix Bucher. 1993. “Virtual Data Set-An

Approach for the Integration of Incompatible Data.” In , 93–93. ASPRS.

Stravinskienė, Auksė, and Saulius Gudas. 2011. “Enterprise Knowledge Modeling and Data

Mining Integration.”

Sundgren, Bo. 1996. “Making Statistical Data More Available.” International Statistical

Review/Revue Internationale de Statistique, 23–38.

Sunkle, Sagar, Vinay Kulkarni, and Suman Roychoudhury. 2013. “Analyzing Enterprise

Models Using Enterprise Architecture-Based Ontology.” In International Conference

on Model Driven Engineering Languages and Systems, 622–38. Springer.

Svejvig, Per, and Peter Andersen. 2015. “Rethinking Project Management: A Structured

Literature Review with a Critical Look at the Brave New World.” International

Journal of Project Management 33 (2): 278–90.

Syriani, Eugene, Jeff Gray, and Hans Vangheluwe. 2013. “Modeling a Model Transformation

Language.” In Domain Engineering, 211–37. Springer.

Szegheo, Orsolya. 2000. “Introduction to Enterprise Modeling.” In Enterprise Modeling, 21–

32. Springer.

Ter Hofstede, Arthur HM, and TF Verhoef. 1997. “On the Feasibility of Situational Method

Engineering.” Information Systems 22 (6): 401–22.

The Open Group. 2011. “TOGAF Version 9.1.”

———. 2015. “Archimate Model Exchange File Format.”

———. 2016. “ArchiMate 3.0 Specification.” Van Haren Publishing.

Theodoulidis, Charalampos I, and Pericles Loucopoulos. 1991. “The Time Dimension in

Conceptual Modelling.” Information Systems 16 (3): 273–300.

TOGAF BIAN Collaboration Work Group. 2012. “TOGAF BIAN White Paper.”

Torokhti, Anatoli, and Phil Howlett. 2000. Theory of Hierarchical, Multilevel, Systems. Vol.

68. Elsevier.

Urbaczewski, Lise, and Stevan Mrdalj. 2006. “A Comparison of Enterprise Architecture

Frameworks.” Issues in Information Systems 7 (2): 18–23.

Van der Aalst, Wil MP. 1998. “The Application of Petri Nets to Workflow Management.”

Journal of Circuits, Systems, and Computers 8 (01): 21–66.

Van Der Aalst, Wil MP, Arthur HM Ter Hofstede, and Mathias Weske. 2003. “Business

Process Management: A Survey.” In International Conference on Business Process

Management, 1–12. Springer.

Van Rijsbergen, Cornelis J, Stephen Edward Robertson, and Martin F Porter. 1980. New

Models in Probabilistic Information Retrieval. British Library Research and

Development Department.

Bibliography

262

Vardaki, Maria, Haralambos Papageorgiou, and Fragkiskos Pentaris. 2009. “A Statistical

Metadata Model for Clinical Trials’ Data Management.” Computer Methods and

Programs in Biomedicine 95 (2): 129–45.

Vasconcelos, André, Pedro Sousa, and José Tribolet. 2007. “Information System Architecture

Metrics: An Enterprise Engineering Evaluation Approach.” The Electronic Journal

Information Systems Evaluation 10 (1): 91–122.

———. 2015. “Enterprise Architecture Analysis-An Information System Evaluation

Approach.” Enterprise Modelling and Information Systems Architectures 3 (2): 31–53.

Veneberg, RKM, Maria-Eugenia Iacob, MJ van Sinderen, and Lianne Bodenstaff. 2014.

“Enterprise Architecture Intelligence: Combining Enterprise Architecture and

Operational Data.” In Enterprise Distributed Object Computing Conference (EDOC),

2014 IEEE 18th International, 22–31. IEEE.

Vernadat, François. 1996. Enterprise Modeling and Integration. Boom Koninklijke Uitgevers.

———. 2014. “Enterprise Modeling in the Context of Enterprise Engineering: State of the

Art and Outlook.” International Journal of Production Management and Engineering

2 (2): 57–73.

Visic, Niksa, Hans-Georg Fill, Robert Andrei Buchmann, Dimitris Karagiannis, Thang Le

Dinh, Tim Rickenberg, Michael H Breitner, Florian Johannsen, Hans-Georg Fill, and

Claudiu Vasile Kifor. 2015. “A Domain-Specific Language for Modeling Method

Definition: From Requirements to Grammar.” In IEEE Ninth International Conference

on Research Challenges in Information Science.

Vom Brocke, Jan, Alexander Simons, Bjoern Niehaves, Kai Riemer, Ralf Plattfaut, and Anne

Cleven. 2009. “Reconstructing the Giant: On the Importance of Rigour in

Documenting the Literature Search Process.” In , 9:2206–17.

Wegmann, Alain. 2002. “The Systemic Enterprise Architecture Methodology (SEAM).

Business and IT Alignment for Competitiveness.”

Weisstein, Eric W. 2008. “Floyd-Warshall Algorithm.”

White, Stephen A. 2004. “Introduction to BPMN.” IBM Cooperation 2 (0): 0.

Winkler, William E. 1999. “The State of Record Linkage and Current Research Problems.” In

Statistical Research Division, US Census Bureau.

Winter, Robert, and Ronny Fischer. 2006. “Essential Layers, Artifacts, and Dependencies of

Enterprise Architecture.” In Enterprise Distributed Object Computing Conference

Workshops, 2006. EDOCW’06. 10th IEEE International, 30–30. IEEE.

Woburn C.I. Programming Enrichment Group (PEG). 2016. “Shortest Path.”

http://wcipeg.com/wiki/Shortest_path#Single-source_shortest_paths.

Wolfram Alpha. 2017a. “Numerical Precision.” August 2.

http://reference.wolfram.com/language/tutorial/NumericalPrecision.html.

———. 2017b. “Vertex Contraction.” August 2.

http://reference.wolfram.com/language/tutorial/NumericalPrecision.html.

Ye, Jun. 2011. “Cosine Similarity Measures for Intuitionistic Fuzzy Sets and Their

Applications.” Mathematical and Computer Modelling 53 (1): 91–97.

Zachman, John A. 1987. “A Framework for Information Systems Architecture.” IBM Systems

Journal 26 (3): 276–92.

Bibliography

263

Zimmermann, Alfred, Kurt Sandkuhl, Michael Pretz, Michael Falkenthal, Dierk Jugel, and

Matthias Wissotzki. 2013. “Towards an Integrated Service-Oriented Reference

Enterprise Architecture.” In Proceedings of the 2013 International Workshop on

Ecosystem Architectures, 26–30. ACM.

Zrnec, Aljaz, Marko Bajec, and Marjan Krisper. 2001. “Enterprise Modelling with UML.”

Electro Tech. Rev 68 (2–3): 109–14.

List of Tables

264

12 List of Tables

Table 1 Concepts for architecture descriptions .. 32

Table 2 Overview and assessment of EA analysis approaches .. 61

Table 3 Archetypical transformation task types – behaviour concepts in DICE 93

Table 4 Archetypical types of data analysis objects in DICE .. 94

Table 5 Example data object after initialisation ... 105

Table 6 Characteristics of semi-structured data based on (Abiteboul 1997) 111

Table 7 Common quality indicators organised along the DICE metamodel 119

Table 8 Exemplary sources for EA data .. 151

Table 9 Exemplary excerpt of CMDB report ... 160

Table 10 Requirements for supporting EAA .. 172

Table 11 Categorized list of structural neighbours .. 187

Table 12 Neighbours of the building block "Claim registration" .. 187

Table 13 Excerpt of overall similarity of Archimate and BPMN concepts (Gill and Qureshi

2015) .. 207

Table 14 Quantity structures of the input datasets ... 220

Table 15 Operational Data – Simplified Dataset ... 221

Table 16 Initial structure of input dataset ... 223

Table 17 Publications by the author ... 246

List of Figures

265

13 List of Figures

Fig. 1 Continuously evolving as-is and target architectures .. 14

Fig. 2 Preparing EA data for EA decision making ... 16

Fig. 3 From heterogeneous datasets to a sound basis for EA analysis 22

Fig. 4 Design Science Research Methodology Process Model, adapted from (Peffers et al.

2007) .. 24

Fig. 5 Thesis Outline .. 26

Fig. 6 Context of architecture descriptions (ISO/IEC/IEEE 42010 2011) 30

Fig. 7 Conceptual model for architecture descriptions (ISO/IEC/IEEE 42010 2011) 32

Fig. 8 Model kinds defined by TOGAF (The Open Group 2011) ... 35

Fig. 9 CRISP-DM process (Chapman et al. 2000) ... 37

Fig. 10 The main elements of a modelling method .. 40

Fig. 11 Simplified Archimate Metamodel (Iacob and Jonkers 2006) 41

Fig. 12 Structure of Archimate 3.0 (The Open Group 2016) ... 43

Fig. 13 The process for configuring a situational method, marginally adjusted from (Harmsen

1997) .. 46

Fig. 14 Method fragments in DICE .. 47

Fig. 15 Interaction of BA and EA .. 51

Fig. 16 Main steps of the literature research (Andersen and Carugati 2014) 54

Fig. 17 Model transformation terminology, adapted from (Syriani, Grayand Vangheluwe

2013) .. 65

Fig. 18 Composite Data Analysis Object ... 69

Fig. 19 Example of a composite analysis object – data level ... 70

Fig. 20 Data-level concepts and related metadata concepts ... 71

Fig. 21 Example a data object and annotated metadata ... 72

Fig. 22 Horizontal vs. vertical integration of two datasets ... 74

Fig. 23 Simultaneous transformations for data and metadata objects 75

Fig. 24 Core components of situational methods ... 78

List of Figures

266

Fig. 25 Hierarchical breakdown of method chunks through specialisation/refinement 79

Fig. 26 Constitutional elements of transformation task types .. 80

Fig. 27 Multi-level hierarchy of DICE ... 80

Fig. 28 Modelling procedure – Phase “Business understanding”, adapted from (Chapman et

al. 2000) ... 83

Fig. 29 Modelling procedure – Phase “Data understanding”, adapted from (Chapman et al.

2000) .. 84

Fig. 30 Modelling procedure – Phase “Data preparation”, adapted from (Chapman et al. 2000)

 ... 87

Fig. 31 DICE Metamodel Overview .. 90

Fig. 32 Complete MM of the DICE structural part .. 97

Fig. 33 Petri net representation of an exemplary DICE workflow ... 101

Fig. 34 Nested loop join on data level .. 102

Fig. 35 Merge algorithm extended with fragments for calculation of meta objects 103

Fig. 36 Determine quality indicators for properties ... 129

Fig. 37 Levels and structure of DICE quality indicators .. 130

Fig. 38 Heatmapped Clustermap – Technology support of business processes

 ... 135

Fig. 39 Gantt, portfolio and box plot views on catalogues .. 137

Fig. 40 The data structure of EA matrices ... 139

Fig. 41 Heatmapped matrix (Moser et al. 2017) .. 139

Fig. 42 Structure of node/edge directed graph template in UML, adapted from (Blaha 2010)

 ... 140

Fig. 43 Node edge template, adapted from (Blaha 2010) .. 140

Fig. 44 Example system/technology matrix ... 141

Fig. 45 Nested box (The Open Group 2016) and node/edge diagrams (The Open Group 2011)

 ... 142

Fig. 46 Application Usage Viewpoint (The Open Group 2016) 145

Fig. 47 Node edge representation of application usage models 146

List of Figures

267

Fig. 48 Exemplary meta model snippet supporting PRM analysis (Buckl et al. 2011) 146

Fig. 49 Exemplary metamodel for an indicator-based approach (Vasconcelos, Sousa and

Tribolet 2015) .. 148

Fig. 50 Node edge undirected graph template, adapted from (Blaha 2010) 149

Fig. 51 Reflexive relations – example in Archimate notation 153

Fig. 52 EA strata, adapted from (Fischer and Winter 2007) .. 155

Fig. 53 Application usage model with contracted application services 156

Fig. 54 ABBs and SBBs ... 157

Fig. 55 Different representations of logical and physical interfaces in Archimate 158

Fig. 56 Types and Instances - Usage of BA data in EAA .. 161

Fig. 57 As-is, transition and target architectures .. 162

Fig. 58 Application usage model incl. plateaus depicting transition architectures 164

Fig. 59 Varying depths of versioning for applications and technologies 166

Fig. 60 Alternative Architectures ... 169

Fig. 61 Metamodel mapping: Archimate vs. TOGAF content metamodel (Band et al. 2015)

 ... 170

Fig. 62 Structure of datasets on data-level to represent EA data ... 175

Fig. 63Structure of datasets on data-level to represent EA data including time aspects 176

Fig. 64 Exemplary snippet of an Archimate model in the Archimate Model Exchange Format

 ... 177

Fig. 65 The DICE “Restructure Archimate Model” transformation task type 178

Fig. 66 Extending the initialisation transformation task type .. 180

Fig. 67 Multi-layer viewpoint .. 183

Fig. 68 Vectors on structural neighbours ... 187

Fig. 69 Binary vectors on structural neighbours .. 188

Fig. 70 Merging of EA models ... 190

Fig. 71 Generic record linkage process .. 190

Fig. 72 Data after applying blocking transformation ... 192

List of Figures

268

Fig. 73 DICE similarity node table .. 193

Fig. 74 Symmetric distance matrix .. 194

Fig. 75 Generic Relationship Types in DICE mapped onto Archimate relations 196

Fig. 76 Contradiction of equivalent building blocks .. 198

Fig. 77 Contraction of a building block in the case of reflexive relations (with aggregation

relation) .. 198

Fig. 78 One level entirely removed .. 199

Fig. 79 Matching reflexively structured graph components .. 200

Fig. 80 Longest path algorithm to determine height of building blocks in graph-based models

 ... 201

Fig. 81 Example of derived relationships ... 203

Fig. 82 Adoption of the Floyd-Warshall algorithm to detect shortest paths within EA models

 ... 205

Fig. 83 Method conceptualisation lifecycle, adapted from (Visic et al. 2015) 211

Fig. 84 The DICE architecture ... 213

Fig. 85 Metamodel of the DICE workflow (excerpt) ... 214

Fig. 86 GraphRep definition of the transformation task type “Selection” 215

Fig. 87 AttrRep - ADOxx notebook definition .. 216

Fig. 88 DICE processing metadata and quality metadata (per variable) 217

Fig. 89 Example of an ADOxx expression assembling R code ... 218

Fig. 90 Exemplary DICE workflow mapped in the DICE modeller 222

Fig. 91 Example of DICE metadata specification in ADOxx .. 226

Fig. 92 Exemplary subset of the building blocks in the dataset ... 227

Fig. 93 DICE process incl. quality line charts .. 230

Fig. 94 Development of the quality indicator "uniqueness" throughout the process 231

Fig. 95 DICE - Structural part of the metamodel - subset "Dataset" 237

Fig. 96 DICE - Structural part of the metamodel - subset "Observable Unit" 238

Fig. 97 DICE - Structural part of the metamodel - subset "Variable".................................... 239

List of Abbreviations

269

Fig. 98 DICE - Structural part of the metamodel - subset "Property".................................... 240

14 List of Abbreviations

ABB Architecture Building Block

ADM Architecture Development Method

AHP Analytical Hierarchy Process

BA Business Analytics

BI Business Intelligence

BB Building Block

BPM Business Process Management

BPMN Business Process Management Notation

CRISP-DM CRoss-Industry Standard Process for Data Mining

D Dataset

DAG Directed acyclic graph

DICE Data Integration and Clearance Environment

DoDAF Department of Defence Architecture Framework

GERAM Generalised Enterprise Reference Architecture and Methodology

EA Enterprise Architecture

EAA Enterprise Architecture Analytics

EAM Enterprise Architecture Management

FEAF Federal Enterprise Architecture Framework

ITIL IT Infrastructure Library

LOG Logistics Metadata

MODAF Ministry of Defense Architecture Framework

MM Metamodel

P Property

PRM Probabilistic Relation Model

List of Abbreviations

270

PROC Processing Metadata

SBB Solution Building Block

SEM Semantic Metadata

SEMMA Sample, Explore, Modify, Model, and Assess

SME Situational Method Engineering

TOGAF The Open Group Architecture Framework

U Observable Unit

UML Unified Modelling Language

V Variable

