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Foreword 

In the age of digital business, organizations face the challenge of reinventing themselves in 

order to cope with new market conditions. IT megatrends, such as artificial intelligence, big 

data, cloud computing, mobile internet, the internet of things and smart manufacturing make 

possible the delivery of completely new value propositions to the customers. Digitalizing 

traditional products, providing additional channels for customers and late-stage assembly to 

meet the demands for mass customization are only some examples. Businesses are in a 

position to collect data about customer behaviour, customer satisfaction and market 

conditions obtained from social media platforms. At the same time, customers demand 

valuable, personalized and digital experiences. Customers use social media platforms to 

inform themselves about product quality and best-price; they use review sites, the digital 

versions of word of mouth, to report on the advantages and disadvantages of products.  

In this volatile environment, Enterprise architecture management is concerned to keep pace 

with these trends. Topics such as customer experience, business IT alignment, cost reduction, 

standardization and reduction of IT’s time to market are addressed, striving for better return 

on existing investment and reduced risk for future investment.  

Knowledge of the interdependencies between the organisations main design elements, such 

as strategic goals, stakeholders, business processes, products and IT resources is being 

recognised as a key success factor. Enterprise architecture management and more widely the 

application of enterprise modelling methods are management instruments that support 

decision making in these challenging environments. At the heart of these initiatives, one 

typically finds graphical modelling languages, which make possible documentation of 

knowledge about organisations and their business ecosystems. Once available, these models 

build a rich foundation for analyzing and optimizing the organizational structures, i.e. the 

enterprise architecture. Typical analysis scenarios uncover gaps within the EA and make 

possible dependency analysis as well as analysis of cause/effect relations between the central 

design elements of an organization and entire business ecosystems. Heterogeneity analysis 

makes standardization possible, leading to potential cost-savings and subsequent release of 

budgets, which can be invested in innovative products and services. The acquired 

transparency supports scenarios such as compliance management to identify misalignments to 

policies and regulatory regulations (e.g. Solvency II or Basel III). 
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In contrast to previous years, the required analysis does not focus purely on a self-contained 

model base created by domain experts. It is recognized that models need to be substantiated 

with operative data, whether from organizational internal data, such as customer transactions 

and sales data, or external data from social media platforms.  

Integrating EA models and EA relevant data is a major challenge. In this context, data 

quality and data provenance aspects concerning the analysis results are a key requirement. 

This thesis contributes to the support of EA endeavors in this regard. It presents DICE (Data 

Integration and Cleansing Environment), a method that supports data integration and 

cleansing in a structured way. It places a strong focus on the required metadata that provide 

information about data quality and data provenance aspects. In this way, doubt cast on the 

accurateness of analysis results can be minimized. Due to its automated approach, data 

engineers are to a great extent relieved from the burden of manual documentation and can 

focus on the actual business requirements. 

At its heart, the presented method provides mechanisms and algorithms to transform data 

and metadata concurrently. Due to this approach, data transformations, such as selecting data, 

merging data and restructuring of data become comprehensible. 

DICE does not consider itself an all-encompassing solution to the abundance of possibly 

required transformation tasks. It is conceptualized as a situational method based on a 

metamodeling approach. In this way, it can be adapted to actual project situations. With its 

meta structure it provides the foundational concepts, which can be specialized and adapted. 

The thesis uses these mechanisms in the fields of Enterprise Architecture Analytics, a 

combined approach based on enterprise architecture management and business analytics. To 

this end, from the DICE core, a situational method for EAA is derived providing specifics to 

cope with peculiarities of EA data. 
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Abstract 

Enterprise architecture management (EAM) is a holistic management approach supporting 

organizations in effectively achieving their current and future objectives. The enterprise 

architecture (EA) is a conceptual blueprint of an organization or an entire business ecosystem 

composed of organizations. It defines the organization’s main structural elements and their 

dependencies on each other. These blueprints are typically represented in the form of 

architectural descriptions. Taken together, these architectural descriptions form a valuable 

foundation for driving management decisions. 

An often mentioned problem is the data quality of the EA descriptions. Often, self-contained 

descriptions on varying levels of detail are created by domain experts. A concise overview 

and comprehensive analysis of the EA is not possible on that basis. EA Frameworks such as 

TOGAF plead for architecture repositories that hold EA models instantiated from 

standardized metamodels. However, in practice much additional EA relevant documentation 

is created and not fed back into these repositories. Typically, even thoroughly curated 

repositories are not fully up to date and concise. Moreover, in many cases additional 

information about current and future business performance is required to underpin EA models 

and to make EA analysis possible. Business Analytics is the management domain focusing on 

the provision of knowledge extracted from operational data. The amalgamation of EA models 

and operational data offers the best of both worlds: EA models are substantiated by findings 

extracted from operative business data and BA data can be structured along the most 

important design objects of the organization. This approach is referred to as Enterprise 

Architecture Analytics in recent scientific publications. 

With DICE (Data Integration and Cleansing Environment) this doctoral thesis introduces a 

method for integrating and streamlining EA descriptions for further analysis and for 

extraction and integration of operational data. DICE is a general purpose method for the 

support of data preparation in BA endeavors. It is conceptualized as a situational method; it 

can thus be refined to support domain specifics where needed. To this end, DICE builds 

heavily on a metamodeling approach, which makes possible the specialization of DICE to 

support Enterprise Architecture Analytics. Besides metamodeling, DICE is built on concepts 

from the fields of statistical metadata management, workflow management and data mining. 
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It supports all typical transformation tasks, such as data integration, data selection, data 

imputation and data cleansing. Thereby, it makes possible the concurrent transformation of 

data and metadata. In this way, the impact on the data quality through the transformations 

becomes computable. Moreover, the conducted transformations are accurately documented so 

that resulting data can be traced back to its sources.  

In the context of EAA it is used for cleansing and integration of architecture descriptions as 

well as for enriching the architecture descriptions with operational data for subsequent 

analysis and decision making. To this end, DICE is specialized by deriving and assembling 

new transformation task types, i.e. reusable method chunks able to cope with peculiarities of 

EA data. Evaluation of existing EA analysis techniques and a concise analysis of the nature of 

EA data lay the groundwork from which EAA-specific requirements are derived. From these 

requirements the EAA method chunks are conceptualized. 

For evaluation purposes, DICE and the situational method DICE for EAA are prototypically 

implemented based on a metamodeling platform. The utility of the method is proven by 

presenting a use case where typical EA models and EA-relevant datasets are integrated with 

operational business data. 
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Zusammenfassung 

Unternehmensarchitekturmanagement ist ein ganzheitlicher Managementansatz und verfolgt 

das Ziel, Unternehmen bei der Definition und Umsetzung ihrer Strategien zu unterstützen. Die 

Unternehmensarchitektur bildet dabei den konzeptionellen Blueprint, welcher die 

wesentlichen Gestaltungselemente des Unternehmens sowie deren Abhängigkeiten beschreibt. 

Diese Blueprints werden typischerweise in Form von Architekturmodellen beschrieben. Die 

Architekturmodelle unterstützen sowohl bei der Entscheidungsfindung zur strategischen 

Ausrichtung des Unternehmens, also auch bei taktischen und teilweise auch operativen 

Entscheidungen. 

Aktualität und Qualität dieser Modelle ist ein entscheidender Erfolgsfaktor für jede 

Architekturinitiative. Um die Modelle in strukturierter und auswertbarer Form bereitstellen zu 

können, empfehlen Architekturrahmenwerke wie beispielsweise TOGAF die einheitliche 

Nutzung eines Metamodells – einer Art Ordnungsrahmen für die zu beschreibenden 

Konstrukte. Des Weiteren wird empfohlen, die Modelle in einem Architektur-Repository zu 

verwalten und aktuell zu halten. In der Realität ist dies allerdings schwer durchzuhalten. In 

der Regel entstehen zahlreiche weitere Dokumentationen und Architektur-relevante Inhalte, 

welche nicht in einem derartigen Repository eingepflegt werden und oftmals nicht dem 

vereinbarten Metamodell entsprechen. 

Darüber hinaus werden bei diesem eher klassischen Ansatz zum Architekturmanagement 

operative Unternehmensdaten, welche bei der Entscheidungsfindung über die zukünftige 

Unternehmensarchitektur dienlich sein können bzw. Architekturentscheidungen untermauern 

können, oftmals gänzlich vernachlässigt. 

Business Analytics ist die Managementdomäne, welche auf die Analyse operativer Daten 

fokussiert. Zielsetzung ist es, neue Erkenntnisse basierend auf operativen Unternehmens- und 

Marktdaten zu gewinnen, um das Unternehmen besser steuern zu können. Die Kombination 

von Unternehmensarchitekturmanagement und Business Analytics verspricht das Beste aus 

beiden Welten: Unternehmensarchitekturmodelle können mit operativen Daten plausibilisiert 

werden und Business Analytics Daten werden entlang der wichtigsten Gestaltungselemente 

des Unternehmens strukturiert, sodass weitreichendere Zusammenhänge über alle Ebenen des 

der Organisation hinweg abgeleitet werden können. Dieser kombinierte Ansatz wird 

neuerdings als Enterprise Architecture Analytics bezeichnet.  



Introduction 

 

8 

 

Mit der Methode DICE (Data Integration and Cleansing Environment) trägt die vorliegende 

Dissertation dazu bei, Unternehmensarchitekturmodelle und operative Daten integrieren zu 

können. DICE ist als situative Methode konzipiert, d.h. die Methode kann einfach an 

projektspezifische Gegebenheiten ausgerichtet werden. Zu diesem Zweck basiert DICE auf 

einem metamodellierungsgetriebenen Ansatz. Die Methode unterstützt alle typischen 

Datentransformationen wie z.B. Datenintegration, Datenselektion, Datenimputation und 

Datenbereinigung. Herzstück der Methode sind Mechanismen und Algorithmen, die diese 

Datentransformationen nicht nur auf Datenebene, sondern auch auf Metadatenebene 

ermöglichen. Parallel zu den Datentransformationen werden Metadaten errechnet und 

mitgeschrieben, sodass die durchgeführten Transformationsschritte vom Endergebnis bis hin 

zur Datenquelle nachvollziehbar bleiben. Durch das integrierte Qualitätsrahmenwerk, werden 

zugleich auch die Auswirkungen von Transformationen auf die Datenqualität errechnet und 

dem Methodennutzer als Instrument zur Entscheidungsfindung zur Verfügung gestellt. 

Im Kontext von Unternehmensarchitekturmanagement wird DICE zur Integration von 

traditionellen Architekturmodellen mit operativen Unternehmensdaten eingesetzt. DICE wird 

zu diesem Zweck erweitert, sodass spezialisierte Transformationen auf den oftmals 

graphenbasierten Unternehmensarchitekturmodellen möglich werden. 

Zur Evaluierung wurde die Methode basierend auf dem Metamodellierungswerkzeug 

ADOxx und der Statistikplattform R umgesetzt. Der Nutzen der Methode wird demonstriert, 

indem aufgezeigt wird, wie typische Architekturmodelle mit operativen Unternehmensdaten 

integriert werden. 
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1 Introduction 

Enterprise Architecture Management (EAM) is a management approach that claims to 

enable organisations to achieve key business goals. It is a holistic approach covering the entire 

organisation. Supporting it from the strategic goals via the organisations business architecture, 

to the technologies that enable the business architecture and business models. EAM strives to 

manage the organisation’s complexity by providing insight into its main “building blocks” 

and the tight net of dependencies between them. EAM deals with current business conditions 

as well as the performance of organisations and seeks to support the design of its future states, 

the so-called target architecture. Target architectures consider inside and outside influences 

that impact the business. Factors, such as demographic change, “disruptive” technologies, 

competition and the economic and political environment play an important role when defining 

an organisation’s future direction. Programs and projects are the vehicle for implementing the 

anticipated target architectures. Fig. 1 illustrates these dependencies. 

 

Fig. 1 Continuously evolving as-is and target architectures 

At the heart of EA initiatives one typically finds graphical modelling languages that make 

documentation of knowledge about organisations and their business ecosystems possible 

(Buckl, Gulden and Schweda 2010). EA Frameworks such as TOGAF (The Open Group 

2011), one of the most prominent EA frameworks and the military frameworks DoDAF (DoD 
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2010) and MoDAF (Biggs 2005) define EA metamodels and EA deliverables such as 

diagrams based on the metamodels. Archimate (The Open Group 2016) goes one step further 

in that it defines an EA modelling language including recommended stakeholder-oriented 

viewpoints. Other EA frameworks such as FEAF (Council 1999) and E2AF (Schekkerman 

2004a) offer advice on how to define meaningful metamodels by defining the required core 

elements or important viewpoints and other EA deliverables. Models based on EA 

metamodels facilitate communication to the various groups of stakeholders on all levels of the 

EA. These models usually represent context-specific views concerning the organisation and 

its environment, typically tailored to the needs of the various EA stakeholders. TOGAF 

proposes a so-called enterprise continuum, a classification schema implemented via an 

architecture repository to make these EA models available for reuse. Considerable time and 

effort usually goes into keeping EA models up-to-date. Approaches to data maintenance range 

from manual housekeeping processes to automated documentation processes. 

Business ecosystems have become pervasive in the markets. Organisations act as 

interconnected and interdependent members of business ecosystems. They “co-evolve” their 

capabilities and align their investments and project portfolios to create a maximum of value 

for their clients. Whereas in former times EA initiatives were based on organisation-intrinsic 

data, nowadays cross-organisational architectures come to the fore. This is not only true for 

technical aspects such as interoperability needs, e.g. to ensure the exchange of information by 

connecting applications and IT services via adequate interfaces. All levels of architecture have 

to be considered. The value chains of the market players have to be aligned on the level of the 

business architecture, forming so-called value networks. From the standpoint of EA 

modelling and analysis, it is obvious that EA data collected by the relevant market 

participants have to be aligned and integrated to support better EA decisions. 

EA data and deliverables such as EA models represent valuable input for management 

decisions on an operational, tactical and strategic level. Mechanisms and algorithms 

concerned with the extraction of previously unseen and "interesting" information from 

existing EA descriptions, be it organisation-intrinsic or cross-organisational data, are only 

seldom in place (Niemann 2006). In accordance with (Fayyad et al. 1996) this thesis defines 

“interest” as “an overall measure of pattern value, combining validity, novelty, usefulness and 

simplicity”. In this context, data mining, particularly the fields of Exploratory Data 

Analysis, is concerned with the recognition of concealed dependencies between categories of 
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data (Coenen, Goulbourne, and Leng 2004) such as the data residing in an EA repository and 

any other EA relevant data sources.  

To reveal these dependencies, enterprise architecture methods must be extended with data 

analysis mechanisms. These mechanisms will make possible the extraction of patterns of an 

organisation's business development and its management of resources in the past. By 

combining with external data sources such as market and technology trends, predictive 

models can be used to facilitate decision making based on the EA descriptions. Admixing the 

EA models with external data, such as industry reference models, industry benchmarks and 

data from the businesses market will support this endeavour (Neaga and Harding 2005). The 

backbone of the required BA mechanisms and algorithms are the metamodels and data 

structures of the EA deliverables (e.g. architecture definition documents) and EA relevant 

input documents.  

 

Fig. 2 Preparing EA data for EA decision making 
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Integrating these often self-contained data sources in order to provide a basis for better 

decision making can be considered a major challenge. Typically, decision makers are not 

solely interested in the decision documents; the data quality and data provenance aspects are 

of equal importance. Decision makers need to understand where the data come from and at 

what level of quality. 

1.1 Motivation & Relevance 

An abundance of research literature in the fields of enterprise architecture, taking a wider 

perspective in the fields of enterprise modelling, recognizes that the quality and freshness of 

the (EA) data is key. EA descriptions must present a correct and current model of the real 

world to be valuable for decision making in the context of an organisation’s strategic 

orientation and EA-related tactical and operational issues. At the same time, it is stated that 

usually the quality of available EA data is insufficient (Farwick et al. 2013), (Fischer, Aier 

and Winter 2007) and (Grunow, Matthes and Roth 2013).  

In the face of todays and future challenges these models ideally cover the entire ecosystem 

that an organisation is part of. These ecosystems evolve and change rapidly with new players 

entering the ecosystems and others leaving them. It becomes obvious that traditional 

approaches to EA data maintenance (e.g. manual data acquisition) alone will not be sufficient 

to satisfy the requirements of data freshness, completeness and accuracy. 

As uncovered by the conducted literature review (see section 3), there is little research to 

tackle these challenges. Existing research focuses on manual and semi-automated 

organisation-intrinsic maintenance of EA data based on optimised data gathering and 

maintenance processes. (Fischer, Aier and Winter 2007) and (Moser et al. 2009) propose 

process patterns for EA data maintenance. (Farwick et al. 2016) elaborate on semi-automated 

data integration approaches mainly focussing on integration of internally available and mostly 

IT architecture related data sources such as configuration management systems. (Buschle et 

al. 2012) propose enterprise service bus implementations as a valuable source for EA 

documentation. The EA relevant information extracted from the ESB is naturally of a rather 

technical nature and focuses on application components and their interfaces. 

One major drawback of existing automated approaches is that all known applications 

heavily focus on the IT architecture and are limited to the current (as-is) architecture. 
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Planning data and thus EA data focussing on the architecture vision and on target 

architectures are usually not the focus. 

1.2 Problem Statement 

Methods are required that make possible the integration of EA-relevant data into a sound 

basis for EA analysis. As will be discussed, EA analysis typically requires the data in 

structured form and typically in compliance with a defined metamodel. Looking into EA 

frameworks and real-life EA initiatives, one can see that a lot of relevant EA data are only 

available in semi-structured formats. These are typically documents at large adhering to an 

agreed template. Examples from TOGAF are: architecture contracts, architecture definition 

documents, architecture requirements specifications and so forth. Furthermore, external data 

sources, such as regulatory requirements, reference architectures, and sector benchmarks carry 

EA-relevant data and are ideally taken into account in EA decision making.  

Aggravating this situation, data integration and clearance in the context of EA has to deal 

with manifold data sources and data formats. Once the relevant data such as building blocks 

and relations between these building blocks have been extracted, one is typically confronted 

with inconsistent semantics of hierarchies of building blocks, different types of relations 

between building blocks and complex and transitive dependencies (Kurpjuweit and Aier 

2009). Different levels of abstraction, versions and variants of building blocks and EA models 

as well as the required handling of complex time-aspects add additional complexity.  

Besides the typical EA descriptions that allow for structural analysis of dependencies on all 

levels of the organisation (business view, application view, technology view etc.), operational 

business data as well as external data, e.g. data obtained from social media platforms have to 

be considered. Structured along the EA and aggregated to enable business-insights, these data 

sources play an important role for accurate decision making on all management levels. 

Evidence can be found in (Potts 2010) who claims to consider structural performance ratios 

(e.g. based on KPIs such as operating income per unit of staff, profit per transaction and 

revenue per unit of operating expense) to guide EA endeavours. (Laverdure and Conn 2012) 

plead for analysis and consideration of external factors such as resource risks to support 

strategic EA decisions. In their case study they list examples such as “depletion of oil 
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reserves, along with a rapidly increasing demand from developing countries” (Laverdure and 

Conn 2012).  

Mastering these challenges not only requires methods and tools for data integration but also 

a means of tracing back the data integration process in order to fully understand the quality of 

the EA data sources used for creation of EA deliverables. This quality requirement is well 

known from the fields of data mining and statistics where measurement and reporting of 

quality aspects such as relevance, accuracy, interpretability and timeliness of used data 

sources and data products has always been claimed. In this vein, mechanisms are required to 

trace back how EA data sources have been created and the impact of data acquisition and 

transformation steps on data quality: a requirement that sometimes is not even met in 

thoroughly curated single-source architecture repositories. 

To stress the importance of the data integration aspects and the consideration of data sources 

not intentionally created to support EA initiatives, the method is called DICE for Enterprise 

Architecture Analytics. With reference to business analytics, DICE is intended to support 

data preparation phases for subsequent EA analysis and EA-based decision making. 

1.3 Research Questions and Objectives 

This work establishes data integration and cleansing for EA data as a new research area 

within the fields of enterprise architecture management. It brings into focus strategies and 

patterns to assemble data integration and cleansing processes. Thereby, the developed method 

strives to be domain-agnostic, so that it can be applied to any data integration and clearance 

endeavour. Obviously, such a method cannot cover all possible problem areas. Thus, the 

method is designed to leverage the concepts of situational method engineering. It can be 

adapted to the domain or project-specific needs. For the Enterprise Architecture domain, the 

thesis provides extensions to this method.  

Based on the given problem statement the following research questions (RQ) are addressed: 

 RQ1: How can a sound dataset for EA analysis be established from heterogeneous 

datasets? 

 RQ2: How can external data sources and data services be integrated in the context of 

ad hoc or project-related EA data requirements? 
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 RQ3: What main transformation steps are required and how can these transformations 

be traced systematically to ensure data provenance?  

 RQ4: What metadata has to be collected? What is the structure of this metadata and 

how can it be generated automatically or with little human effort? 

It is hypothesized that a situational method which makes possible explicit design and 

representation of executable data integration and cleansing processes enables the generation 

of EA datasets meeting the quality standards. (Semi-)automated documentation of metadata 

enforcing data provenance and data quality metrics plays an important role in this context. 

Thus, the above stated research questions lead to the following three research objectives: 

 the design of a universal method for data integration and cleansing that can be tailored 

to specific problem domains and project-specific needs, 

 the provision of a structural analysis of the nature of EA data and 

 the design of a situational method for data integration and cleansing for the problem 

domain of EAM. 

To reach these objectives, application of business analytics and data mining techniques is 

intended to serve the following purposes:  

 DM techniques are applied to EA descriptions to build up a concise dataset for (ad 

hoc) EA analysis.  

 DM techniques are used to extract relevant EA building blocks, relations among 

themselves, and descriptive attributes from operational data (e.g. product catalogues 

to setup product component models) or from external sources (e.g. regulations the 

organization has to adhere to).  

 DM techniques are used to combine EA data and operational data (e.g. performance 

values) usually not held in EA models. 

 Statistical metadata management techniques are considered to integrate the required 

data provenance and data quality aspects. 

1.4 Research Approach & Research Procedure 

The stated research problems concern a complex system where data, processes, human 

stakeholders and technologies form a tight net of dynamic interdependencies. Central to the 
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problem is a wide range of sometimes unknown data, often residing in semi-structured 

formats that have to be integrated. The diverse facets of the problem require a pragmatic 

research approach. “Design science” has been selected as the research approach, which 

ensures that the defined problem is researched in a systematic way by applying guidelines and 

roadmaps as well as evaluation criteria throughout the entire research process. 

For the thesis the author follows the design science research paradigm of (Hevner et al. 

2004). In design science research, besides models: constructs, instantiations and methods are 

among the viable artefacts. Methods are considered to “describe viable ways of performing 

goal-oriented activities in order to solve a real-world problem” (Bucher and Winter 2008). 

Obviously, there will not be a “one-size-fits-all” method covering the specific data integration 

and clearance requirements addressed in the research objectives. The method must be 

configurable and extendable to organisation-specific and project-specific needs. Methods 

addressing such requirements are called “situational methods” and stem from the research 

field of the same name: situational method engineering. According to (Kumar and Welke 

1992), method engineering is a way of developing and implementing methods. Situational 

method engineering can be understood as a particular subarea focussing on the development 

and implementation of project-specific methods. This thesis adopts these principles for the 

fields of EA data preparation. 

The main artefact presented in this research is a situational method for data integration and 

clearance (DICE) in the fields of EA. At its core the method is generic and can be applied to 

any data integration and clearance problem. In this research it is refined for the area of EA 

modelling and analysis. It is not meant to be a substitute for proven methods for collection 

and provision of EA data. Moreover, it is intended to contribute to these methods in order to 

create sound data sources for subsequent EA analysis in an efficient way. Comparable with 

data warehouse strategies, DICE can be based on a supply chain metaphor: EA content is 

collected, stored and delivered via “data marts” to the consumers for further processing. Other 

than traditional EA sources such as EA repositories, DICE strives to build up a virtual data set 

for the given individual problem case. The main requirement of this virtual dataset is to 

enhance the original datasets (some of them might be extracted from an EA repository) 

applying sequences of transformation steps, which are invoked and executed on demand. 

Rather than aiming for provision and storing of a unified view of the EA data (typically 

represented in a static global schema), the virtual dataset comprises the transformation 
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processes together with the original data sources in order to transform the data in an ad hoc 

manner to the need at hand. This definition coincides with the definition of virtual datasets in 

(Stephan, Vckovski and Bucher 1993), who define virtual datasets as datasets holding virtual 

data that is non-persistent but computed on demand at runtime.  

In the context of EA, virtual datasets consist of two or more heterogeneous datasets that 

need to be integrated. In this context the term heterogeneous emphasises the fact that the input 

datasets can stem from arbitrary sources and will not follow a global schema. Fig. 3 illustrates 

the steps to be taken from the initial EA knowledge requirements to the data and metadata 

ready for EA analysis. The centrepiece is DICE, a process-oriented method for data 

integration and cleansing, providing the EA datasets accompanied by their metadata such as 

quality and data-provenance data. 

 

Fig. 3 From heterogeneous datasets to a sound basis for EA analysis 
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As there is no generally accepted EA standard, the thesis is based on TOGAF (The Open 

Group 2011) and Archimate (The Open Group 2016). TOGAF is the most prominent EA 

framework. Archimate is a widely adopted modelling language. It is based on the 

ISO/IEC/IEEE 42010:2011 standard, a standard for providing guidelines for architecture 

descriptions (ISO/IEC/IEEE 42010 2011). It makes possible the definition of interrelated 

views on an organisation and its information system’s infrastructure. As required, other 

frameworks such DODAF (DoD 2010), MODAF (Biggs 2005), FEA (Council 1999) and 

E2AF (Schekkerman 2004a) are considered. Hence, the results of this contribution are 

intended to be applicable to EA endeavours based on any EA framework. 

Research in the fields of BA provides a wealth of “method fragments”, which can contribute 

to resolving parts of the given problem. Examples are: techniques for restructuring and 

harmonisation of data sources, techniques such as part-of-speech-tagging making possible the 

extraction of data from plain text corpuses, techniques for record linkage, which support the 

resolution of duplicate data entities, etc. In data mining these methods typically are composed 

of a clearance and integration process representing the production process necessary to deliver 

the required data sources for subsequent EA analysis. The definition of the data production 

processes must be considered as ad hoc, but all design decisions applied to construct the 

resulting dataset use standard techniques, which have to be assembled in an adequate way. 

Besides the cleansed and integrated data and the corresponding metadata, the documentation 

of the required production process itself, the techniques used and the parametrisation of 

applied algorithms is one of the main deliverables. 

Situational Method Engineering is the research discipline that focusses on defining methods 

that make possible the composition of project-specific methods tailored to specific and most 

recent needs. DICE is conceptualised as a situational method. At its core, reusable method 

fragments are held in the so-called method base. Users assemble these method fragments to 

build their own organization and/or project-specific DICE processes, which meet the demand 

of data provision and at the same time provide the metadata.  

The method base is intended to grow continuously with the requirements by providing a 

means to add new or refined method fragments to the method base. According to (Harmsen, 

Brinkkemper and Oei 1994), situational methods can be categorised into three levels: (1) the 

macro level, i.e. the organisational level, (2) the meso level that is to say, the project level and 

(3) the micro level, which focuses on concrete method components. DICE for EAA covers all 
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of these levels. On the macro level the method delivers method fragments to build data 

production workflows utilising continuously reoccurring clearance and integration patterns. 

On the project level specific EA data sources are integrated and cleansed to build up a basis 

for EA analysis. Finally, on the micro level, the focus lies on concrete application scenarios, 

where the data source is restructured, refined and filtered for concrete EA analysis tasks. 

Rigor is established by adhering to Hevners principles of design science research (DSR) 

(Hevner et al. 2004). More specifically, (Peffers et al. 2007) design science research 

methodology for information systems research that follow these principles is applied. Fig. 4 

provides an overview of the research process. 

 

Fig. 4 Design Science Research Methodology Process Model, adapted from (Peffers et al. 2007) 
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analysis for the situational method and (2) requirements analysis for applying DICE in 

the context of EA. 

 The design phase is framed by design principles for situational methods shaped by 

(Harmsen, Brinkkemper and Oei 1994) and by the method conceptualization, 

development and deployment framework propagated by the open models initiative 

(OMI) (Karagiannis et al. 2016) and (Karagiannis 2015). From the fields of statistical 

metadata management, concepts for processing metadata guiding the data production 

process are adopted. 

 To demonstrate the applicability of DICE for EAA, it is prototypically implemented 

based on the metamodeling platform ADOxx. The prototype contains all relevant 

components of Situational Method Engineering (SME) tools such as the method base 

and the construction toolkit for instantiating and combining the method fragments into 

a concrete method.  

 The methods utility is evaluated in a threefold manner. Firstly, the conceptualized 

DICE metamodel is evaluated in terms of consistency. The main focus lies in the 

evaluation of consistency of the DICE inherent quality indicator calculation 

mechanisms. Secondly, DICE as a design science artefact is prototypically 

implemented. Based on the prototype, DICE is evaluated against a set of artefact 

evaluation criteria such as the criteria surveyed by Prat et al. (Prat, Comyn-Wattiau 

and Akoka 2014). These criteria are categorized into the five fundamental dimensions 

of systems: goal, environment, structure, activity and evolution. Feature-wise 

requirements are deliberately derived from (Harmsen 1997), who specifies the main 

components of SME tools. 

Thirdly, based on an illustrative scenario, the applicability of the method in real-world 

situations is demonstrated using well-known EA datasets such as the Archimate 

sample EA available in the Archimate model exchange format as input.  

 Finally, communication is conducted by this thesis itself, by presenting parts of the 

work in publications, see section 10.3 and by providing the prototypical 

implementation including sample models as a reference project on the open models 

community platform www.openmodels.at. 

http://www.openmodels.at/
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1.5 Thesis Outline 

In this section the chapters which make up the thesis, their dependencies and logical flow 

are presented. Fig. 5 provides an overview.  

 

Fig. 5 Thesis Outline 
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metadata layer. Section 7 introduces EEA as the context for the application of DICE. DICE as 

a situational method is refined to support the data preparation phases of EA analytics 

endeavours. To this end, the nature of EA data is analysed and requirements are derived in 

section 7.1. Subsequently, section 7.2 presents how these requirements can be provided by 

specialising DICE and extending its method base. Finally, section 8 constitutes the evaluation 

of DICE based on the prototypical implementation. The method has to fulfil the common 

requirements of SME tools and the specific requirements in the context of EAM. 
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2 Methodological and Conceptional Foundations 

The foundations of the thesis are based on four main pillars. Firstly, enterprise architecture 

(management) frameworks and methods that lay the groundwork for institutionalised 

Enterprise Architecture Management (EAM) conducted by business organisations. Secondly, 

the theories of modelling and metamodeling, which can be seen as a cornerstone of EAM, 

providing the means to design, communicate and analyse the EA. Thirdly, methods and 

concepts from the fields of data mining, business analytics and statistical metadata 

management are relevant. They are the main building blocks for establishing integrated 

datasets for EA analysis. Finally, the concepts of situational method engineering lay the 

groundwork for creating the DICE method, the main artefact of the thesis.  

The following section discusses these foundations with an emphasis on their 

interdependencies.  

2.1 Enterprise Architectures and Enterprise Architecture Management 

Better return on existing investment, reduced risk for future investment, flexibility for 

business growth and restructuring, more efficient IT operation and enabling new business 

models are only some of the value propositions of enterprise architecture management 

according to TOGAF (The Open Group 2011).  

In conformity with the general theory of systems and the principles of systems thinking, an 

enterprise can be understood as a complex socio-technical system made up of people, 

processes and technologies (Dietz 2006). Enterprise systems engineering (ESE) is the 

discipline that adapts systems engineering concepts to the design of enterprises (Giachetti 

2010). EA frameworks such as TOGAF embrace the concepts of ESE by providing methods 

and tools for designing enterprises. In essence these methods focus on the systemic 

decomposition of enterprises into their main building blocks for the purpose of analysis of 

their relationships (Roszczyk 2015). 

Hitherto, there has been no generally accepted definition of the term enterprise architecture. 

One prominent definition, emphasizing the commonalities and characteristics of architectures 

in general, is provided by the ISO standard (ISO/IEC/IEEE 42010 2011), which defines 

architecture as the  
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“fundamental concepts or properties of a system in its environment embodied in its 

elements, relationships, and in the principles of its design and evolution.” 

This definition focuses on the structural aspects of a system. It covers the entire system from 

a holistic point of view. Besides the elements and relationships amongst the system 

constituting elements, it emphasizes the design principles of the system. 

By emphasizing the required change aspects, from analysis of the organization to the 

effective implementation of organizational change, the definition of the Federation of EA 

Professional Organizations goes one step further. It defines EA as follows: 

“a well-defined practice for conducting enterprise analysis, design, planning, and 

implementation, using a holistic approach at all times, for the successful development and 

execution of strategy. Enterprise architecture applies architecture principles and practices to 

guide organizations through the business, information, process, and technology changes 

necessary to execute their strategies. These practices utilize the various aspects of an 

enterprise to identify, motivate, and achieve these changes” (FEAPO 2013). 

In conformity with the ISO/IEC/IEEE 42010, this definition of architecture brings into focus 

the holistic nature of (enterprise) architectures. It considers the core elements of 

organizations, such as information, processes and technologies. Likewise, the definition 

emphasizes the importance of principles guiding design and evolution of the architecture. 

Notably, the definition does not, as in many other EA definitions, clearly distinguish between 

the practice of “architecturing”, the “process of conceiving, defining, expressing, 

documenting, communicating, certifying proper implementation of, maintaining and 

improving an architecture throughout a system’s life cycle” (ISO/IEC/IEEE 42010 2011) and 

the architecture itself.  

Gartner defines enterprise architecture as:  

“the process of translating business vision and strategy into effective enterprise change by 

creating, communicating, and improving the key principles and models that describe the 

enterprise’s future state and enable its evolution” (Lapkin et al. 2008). 

With the term “models”, Gartner refers to the documentation aspects of EA. As in many 

other definitions, models and more generally architecture descriptions, are a key delivery to 

support communication between the various business and IT stakeholders.  
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Recently, EA research has paid more and more attention to cross-organisational aspects, 

putting emphasis on so-called business ecosystems, networks of organisations that share and 

align social and technical resources to create additional value for customers and improve 

efficiency of all stakeholders. The term system in the context of EA does not necessarily refer 

to single organizations but also to entire networks of organizations. EA endeavors might 

either consider the complete organization, parts of organizations or entire compounds of 

organizations (e.g. organized in the form of extended enterprises, virtual enterprises, 

networked enterprises or supply chains) (Vernadat 2014). The system boundary has to be 

clearly defined for any EA endeavor. Under these circumstances it becomes obvious that 

cross-organizational EA endeavors take precedence over the formerly isolated organizational-

centric EA endeavors. 

Fig. 6 summarizes the most important concepts. The system (of interest) in EA is typically 

an organization, a business ecosystem comprising multiple organizations or relevant parts of 

an organization, such as a product line, a service or software. It exhibits an architecture that is 

expressed in architecture descriptions. Stakeholders who have an interest in the system use 

parts of these architecture descriptions to gain better understanding of the system for 

communication purposes and for informed decision making. 

 

Fig. 6 Context of architecture descriptions (ISO/IEC/IEEE 42010 2011)  
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There are an abundance of EA frameworks that give advice on how to setup an EA practice. 

Overviews and discussions about EA frameworks can be found, e.g. in (Leist and Zellner 

2006), (Matthes 2011), (Schekkerman 2004b) and (Urbaczewski and Mrdalj 2006). Whereas 

some of the frameworks place a strong focus on EA deliverables, others place more emphasis 

on the EA processes (see e.g. the TOGAF Architecture Development Method, ADM).  

2.2 Architecture Descriptions 

For this thesis, architecture descriptions that can be considered the main work products of 

any enterprise architecture endeavor are of utmost importance. DICE takes architecture 

descriptions as one major input and prepares the data of these descriptions for further analysis. 

Thus, architecture descriptions and its constituent elements need to be examined in more 

detail.  

ISO/IEC/IEEE 42010 is the standard that defines architecture descriptions. In its first 

versions (and also in the predecessor version IEEE 1471), the standard was intended for 

requirements definition on architectures of software-intense systems. In its latest version 

(released in 2011), the scope was widened to also reflect the “creation, analysis and 

sustainment of architectures of systems through the use of architecture descriptions“. The 

standard introduces a conceptual model as the base structure for architecture descriptions as 

illustrated in Fig. 7. 
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Fig. 7 Conceptual model for architecture descriptions (ISO/IEC/IEEE 42010 2011) 
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Stakeholder “individual, team, organization or 

classes thereof having an interest in 

a system.” 

Stakeholders are humans who 

have key roles in, or concerns 

about, the system.  

Examples are: people having 

roles, such as executive, process 

owner, application owner, 

technical specialist and 

enterprise architect. 

Concern “interest in a system relevant to 

one or more of its stakeholders.” 

Concerns allude to system 

aspects, such as design, 

development and operations. 

Qualities, such as flexibility, 

complexity, reliability, security 

and customer experience play an 

important role. 

Architecture 

viewpoint 

“work product establishing the 

conventions for the construction, 

interpretation and use of 

architecture views to frame specific 

system concerns.” 

Schema or templates for view 

construction, information that 

must appear in the architecture 

descriptions, i.e. models. 

Architecture view “work product expressing the 

architecture of a system from the 

perspective of specific system 

concerns.” 

In accordance with TOGAF, a 

view is defined as a 

representation of a whole system 

from the perspective of a related 

set of concerns. Examples from 

TOGAF are: business 

architecture and technology 

architecture. Examples from 

DODAF are: All view (AV), 

Operational view (OV), Systems 
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view (SV) and Technical view 

(TV).  

Model kind “conventions for a type of 

modelling.” 

Model kind specifies the type of 

architecture model. Examples 

are: BPMN process models, 

EPC models, Class diagrams and 

ER diagrams. 

Architecture 

model 

“can be anything: (i) a model can 

be a concept (a “mental model”) or 

(ii) a model can be a work 

product.” 

Architecture models represent 

concrete instances. Examples 

are: the model of the order 

process of an organisation, the 

model of the customer data and 

organisational charts. 

Architecture 

Rationale 

“records explanation, justification 

or reasoning about architecture 

decisions that have been made.” 

Documentation of architecture 

decisions. 

Correspondence “defines a relation between 

architecture description elements.” 

Of high relevance for DICE, as 

correspondences can be of 

support in the data preparation 

(e.g. merging of models) 

Correspondence 

Rule 

“used to enforce relations within 

an architecture description (or 

between architecture 

descriptions).” 

Rules might be defined that 

enable, e.g. checking 

consistency between different 

models or model kinds. 

 

For DICE, the concept of architecture model and model kind, which can be considered as 

the main sources of EA datasets, is of utmost importance. These can come in a number of 

different structures, which DICE has to deal with (e.g. diagrams, matrices and catalogues). 
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Examples of model kinds are TOGAFs artefacts
2
, such as organisation/actor catalogue, 

application/data matrix and application communication diagram. For a better understanding, 

Fig. 8 depicts the main model kinds of TOGAF grouped into the phases of TOGAF ADM. 

 

Fig. 8 Model kinds defined by TOGAF (The Open Group 2011)  

2.3 Data Mining, Knowledge Discovery in Databases and Business Analytics 

Knowledge discovery in Databases (KDD) and data mining (DM) are interdisciplinary 

domains making possible the extraction of information from large datasets and the 

transformation of the data into an interpretable structure for subsequent analysis. The main 

goal is to uncover new information and knowledge (Chakrabarti et al. 2006). According to 

(Fayyad, Piatetsky-Shapiro and Smyth 1996), data mining represents the required analysis 

task of the "knowledge discovery" process, i.e. they view data mining as a subdomain within 

the KDD process. Data integration can be considered as another important subdomain and is a 

prerequisite step to data mining. According to (Lenzerini 2002), data integration facilitates 

                                                 

2
 The term artifact appears misleading in this context. The reason for this is that TOGAF embraces, encourages 

but is not fully compliant with the ISO/IEC 42010:2007 standard. 
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“combining data residing in different sources and providing users with a unified view of these 

data”. Based on this unified data structure, formerly unknown and potentially useful 

information, sets of patterns and relationships between data can be uncovered via data mining. 

Under these terms, business analytics has been defined as “a set of technologies and 

processes that use data to understand and analyse business performance” (Davenport 2007). 

With a focus on the transformation process initiated and steered by business analytics, 

Liberatore and Luo define business analytics as being “more than just analytical 

methodologies or techniques used in logical analysis. It is a process of transforming data into 

actions through analysis and insights in the context of organizational decision making and 

problem solving.” (Liberatore and Luo 2010). This definition provides the docking point for 

enterprise architecture management. Whereas business analytics provide the data for 

organizational decision making, EA is concerned with analysis of the data, planning 

sustainable target architectures and the steadfast support of its implementation. 

Manifold research has been conducted to provide mechanisms to uncover relevant data. 

Statistical and mathematical techniques, such as genetic algorithms, decision trees, artificial 

neural networks, induction and visualization (Ghuman 2014) are just a view of the vast 

number of techniques for extracting the information. In their work, (Zorrilla and García-Saiz 

2013) consider data warehouse (DW) techniques, the On-Line Analytical Processing (OLAP) 

technology, reporting tools and the data mining techniques to be the most essential 

components of data mining environments. Data mining environments are platforms for 

conducting the required transformations to convert the data into usable structures for further 

processing and analytical tasks. The provision of a solid starting position to perform the 

modelling activities (modelling in the sense of business analytics) is required in order to 

uncover the previously unseen information. Data have to be accessed, restructured and 

cleaned before conducting these analysis techniques (Rahm and Do 2000).  

In recent years some efforts have been made to standardize methods and tools in the fields 

of KDD and DM. Prominent KDD frameworks have devoted an important part of their KDD 

processes to this subject, such as SEMMA (Sample, Explore, Modify, Model and Assess), 

(Matignon 2007) and CRISP-DM, the Cross Industry Standard Process for Data Mining 

(Chapman et al. 2000). SolEuNet (Data Mining and Decision Support for Business 

Competitiveness: A European Virtual Enterprise) is another well-known example. See the 

work of (Marbán, Mariscal and Segovia 2009) for a comparison of data mining & knowledge 
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discovery process models. Polls conducted by KDnuggets (www.kdnuggets.com), an often-

cited website for business analytics, big data, data mining and data science reveal that the 

CRISP-DM is the most acknowledged of the DM methods, followed, lagging far behind, by 

SEMMA. 

All of the mentioned DM methods stress that a clear understanding of the existing data is a 

fundamental prerequisite for receiving reliable statements from the conducted mining 

endeavours. Thus, statistical metadata as a means of providing statements on the data quality 

and a feature to trace back data to their source, are considered of upmost importance. 

Moreover, this metadata will guide the statistical production process providing a sound 

starting point for the upcoming modelling phases. 

As will be discussed in section 4, to be fully effective DICE has to be embedded in a 

superordinated KDD process such as CRISP-DM. CRISP-DM divides the process of data 

mining into six major phases: (1) Business understanding, (2) Data understanding, (3) Data 

preparation, (4) Modelling, (5) Evaluation and (6) Deployment. Fig. 9 offers an overview of 

the CRISP-DM process. 

 

Fig. 9 CRISP-DM process (Chapman et al. 2000) 
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 Business understanding: In this phase the project objectives are defined. It consists 

of the following tasks: determine business objectives, assess situation (e.g. 

requirements, risks, costs and benefits), determine data mining goals and produce a 

project plan. 

 Data understanding: This phase focusses on collection and review of the available 

data. It comprises the following tasks: collect initial data, describe data, explore data 

and verify data quality. 

 Data preparation: In this phase relevant data are selected and cleansed. Important 

tasks are: select data, clean data, construct data, integrate data and format data. 

 Modelling: This phase concerns data manipulation and drawing conclusions. It 

comprises the tasks: select modelling technique, generate test design, build model 

parameter settings and assess model. 

 Evaluation: In this phase the model is evaluated and conclusions are drawn. 

 Deployment: In this phase conclusions are applied to the business. Additionally, the 

final report is created and delivered.  

The DICE method supports foremost phases 1-3. Having a clear view of the business 

requirements (phase “business understanding”), the available datasets are examined (phase 

“data understanding”) and prepared for further analysis (phase “data preparation”). Data 

preparation tasks will include model/data enhancements and model/data integration tasks, 

such as dimensionality reduction, cleaning, noise/outlier removal accompanied by required 

mechanisms for documenting data provenance and generation of data quality measures.  

Modelling and evaluation phases (phase 4 and 5) will require standard DM methods, such as 

artificial neural networks, decision trees, rule induction, genetic algorithms and nearest 

neighbour but also specialized enterprise architecture analysis techniques.  

Where required, the prototypical DICE environment (DICE, see section 8) can be used to 

deploy a repeatable data mining process (phase 6). 

2.4 Modelling Foundations 

Modelling methods serve as the backbone of the present work for two reasons: (1) models 

are the overall accepted vehicle to represent enterprise architectures and (2) DICE itself 

comprises a modelling method.  
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In the following sections modelling foundations are introduced. For a better understanding 

the required elements are discussed with a focus on EA modelling. However, the concepts 

introduced are important for both: (1) modelling the EA and (2) modelling of the required 

data integration and cleansing transformation tasks including the documentation of acquired 

metadata. 

2.4.1.1 Models & Viewpoints 

The concept of models, model kinds, views and viewpoints have been discussed in section 

2.2. The definitions of the therein introduced ISO/IEC/IEEE 42010 standard can be matched 

with the main elements of modelling methods defined by Karagiannis and Kühn (see section 

2.4.1.2).  

With the advent of metamodeling platforms, e.g. ADOxx and Metaedit+, see (Karagiannis 

and Kühn 2002) for an overview, many organisations decided to build a specific metamodel 

for their EA endeavours or to adapt and tailor one of the standard modelling methods or 

languages. In many cases, EA stakeholders even chose to use a self-developed modelling 

method, which is often not formalised or standardised, even within the organisation. The main 

reason for using these “home grown” modelling languages is: inflexible and non-appropriate 

modelling languages for a given modelling task or simply a lack of knowledge of the 

appropriate modelling methods (Szegheo 2000). 

Thus, in many cases EA descriptions will not adhere to standards, definitions and 

recommendations, e.g. introduced by ISO/IEC/IEEE 42010. EA descriptions will come in 

manifold formats and structures, in many cases not thoroughly instantiated from viewpoints 

and model kinds. However, this makes the case for data integration and cleansing of EA data 

(including EA models but also additional EA relevant data) even more important and 

challenging.  

2.4.1.2 Modelling Methods 

In line with (Karagiannis and Kühn 2002), a modelling method comprises: (1) a modelling 

language, (2) a modelling procedure and (3) mechanisms and algorithms representing the 

model-processing functionality.  
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Fig. 10 The main elements of a modelling method 

Fig. 10 provides an overview of these core elements of modelling methods: 

 the modelling language comprises a modelling notation and a metamodel providing 

both a language grammar and a vocabulary, 

 a modelling procedure comprising the required steps for setting up and maintaining a 

model base and 

 mechanisms/algorithms, which in the context of EA modelling, are targeted to support 

quantitative evaluations and report generation based on the model base. 

In the following sections these core elements are discussed in detail. 

2.4.1.3 Modelling Language 

The modelling language is specified by syntax, semantics and a (visual) notation. The syntax 

defines the grammar of the modelling language. In other words, it determines the elements of 

the modelling language and regulates their usage. Semantics defines the meaning of the 

constructs of the syntax. Via semantic mapping, the syntactical constructs are associated with 

their meaning, which is defined in a semantic schema. 

The syntactical elements of a modelling language can essentially be reduced to the following 

concepts: (1) modelling classes (in the context of EAM: e.g. business process, application 

component and technology component), (2) association classes that define relations between 

two modelling classes (e.g. association, generalisation) and (3) attributes which represent 



Methodological and Conceptional Foundations 

 

41 

 

properties that specify class semantics (e.g. name, cost and performance) (Visic et al. 2015). 

These core concepts often addressed as the meta-elements of modelling languages are 

formally discussed by OMG’s (OMG 2015) meta object facility (MOF), which uses classes 

and associations to define the (abstract) syntax (i.e. the metamodel) of a modelling language. 

Besides MOF, there are manifold meta2models establishing similar primitive meta-elements; 

for an overview see (Kern, Hummel and Kühne 2011).  

Metamodels can be understood as models of models. They are typically used for defining 

EA concepts provided in EA modelling languages. For an example of a metamodel in the 

fields of EA see Fig. 11, which illustrates a simplified version of the Archimate metamodel. 

For the detailed specification of the Archimate metamodel, see (The Open Group 2016). 

 

Fig. 11 Simplified Archimate Metamodel (Iacob and Jonkers 2006) 

Business organisations are systems with a high degree of structural complexity and 

dynamics in their behaviour. Enterprise architectures are intended to represent these complex 

systems from different angles (EA viewpoints). To represent the architectures or relevant 

parts of the architectures, models are used. They are intended to help in mastering complexity, 

as they allow for abstraction of aspects that are irrelevant. These models are typically based 
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on modelling languages that are graphical or textual languages. Modelling languages support 

the visualisation, specification, construction and documentation of systems and their 

constituent artefacts. In the context of EA, the available constructs (modelling classes) for 

creating models are the core elements of organisation, called building blocks (in accordance 

with TOGAF). The spectrum of building blocks organised within these models ranges from 

strategies and goals, to organisational structures and processes, to concepts of the information 

system architecture and underlying technological layers (Kurpjuweit and Aier 2009). These 

elements typically form a vast web of interconnections. 

Enterprise Architecture Modelling Languages (EAML) are specialised modelling languages 

that are intended to represent enterprise architectural structures as well as the behaviour and 

organisation of enterprises. Examples of EAMLs are: the MEMO modelling languages (Frank 

2002), UEML (Anaya et al. 2010) and most notably Archimate (The Open Group 2016). 

General purpose modelling languages such as the Unified Modelling Language (UML) are 

often used for enterprise modelling, see e.g. (Fatolahi and Shams 2006) and (Zrnec, Bajec and 

Krisper 2001). However, as proclaimed by developers of specialised EAMLs, see e.g. (Frank 

2002), general purpose languages are not specially designed for this purpose; thus, they show 

semantic shortcomings when used for enterprise modelling. 

Archimate, as one of the most prominent EA modelling languages, embraces the 

ISO/IEC/IEEE 42010 standard. It comes with a set of predefined viewpoints oriented towards 

typical concerns of EA stakeholders. Additionally, it provides a way to define new viewpoints 

as needed. The centrepiece of Archimate is its metamodel that was designed to cover all 

important EA practical modelling tasks and at the same time stay compact. It supports a 

layered concept by comprising business layer, application layer and technology layer in its 

core. Supporting a service-oriented philosophy, the lower layers provide services which are 

used by the higher layers. The Archimate metamodel offers three types of concepts classified 

into aspects: (1) active structure elements, which perform behaviour (e.g. organisation), (2) 

behaviour elements representing activities (e.g. business process) and (3) passive structure 

elements accessed by behaviour elements (e.g. business object). Fig. 12 offers an overview of 

the structure of Archimate. 
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Fig. 12 Structure of Archimate 3.0 (The Open Group 2016) 

Archimate models have to be constructed in conformity with the Archimate metamodel. 

Archimate models are represented as graphs. The vertices in the graphs represent building 

blocks (instantiated from the metamodel). Examples are: business process, application 

component and technology component. The edges depict the relations between the building 

blocks. Examples of relation types are: composition, aggregation and assignment. 

2.4.1.4 Modelling Procedure 

The modelling procedure represents the recommended steps for creating a model. The 

modelling procedures are usually deducted from the applied enterprise architecture 

frameworks and their suggested procedures. Evidence can be seen in the application of the 

concepts for architecture descriptions promoted by the ISO/IEC/IEEE 42010 (ISO/IEC/IEEE 

42010 2011), which recommends clear definition of the concerns of stakeholders, required 

viewpoints and views before starting the modelling work. The process for creating 

architecture models must be considered as a non-trivial task. Modelers have to examine (the 

relevant scope of) the enterprise and determine its structural elements, the building blocks. 
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The structural elements have to be classified applying the concepts (modelling classes) 

provided by the metamodel in order to create the corresponding instances and the relations 

constituting the EA models (Florez, Sánchez and Villalobos 2014). Models are typically 

created manually by subject matter experts (e.g. enterprise architects) or stakeholders 

contributing to an EA endeavour, such as process owners, application and technology owners. 

Concrete process proposals and patterns for modelling and maintenance procedures for EA 

models can be found in the work of (Fischer, Aier and Winter 2007) and (Moser et al. 2009). 

Fischer et al. present formal descriptions of a process and the organisational setting necessary 

to maintain EA content. Moser et al. define EAM process patterns and exemplarily discuss 

EA process patterns such as: 

 centralised manual data acquisition/maintenance, 

 decentralised manual data acquisition/maintenance, 

 automatic data acquisition/maintenance and 

 architecture control by applying a release workflow. 

The modelling procedure does not only involve the creation and maintenance of the models. 

Additionally, and of utmost importance are: analysis, simulation and communication of the 

models.  

2.4.1.5 Mechanisms & Algorithms 

Mechanisms and algorithms provide the functionality for performing the (machine-) 

processing of models. Mechanisms and algorithms can come in various forms. In many cases 

they are applied to the model base for model evaluation purposes. Examples of algorithms 

are: simulation algorithms for business processes, cost calculations applied to EA models, 

visualisation mechanisms such as automated heatmapping applied to EA visualisations, etc. 

(Karagiannis and Kühn 2002) identified three different classes of mechanisms and 

algorithms: (1) generic mechanisms and algorithms, which are defined on meta-level and can 

be applied to any modelling language, (2) specific mechanisms and algorithms, which pose 

prerequisites for the model-base and respectively for their underlying metamodels to be 

conducted successfully and (3) hybrid mechanisms and algorithms, which need to be 

configured for concrete modelling languages. 
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With DICE, this thesis focusses strongly on mechanisms and algorithms. Conceptualised as 

a situational method, it focusses on data mining mechanisms/algorithms supporting data 

integration and cleansing. A strong focus is placed on EA models and EA-relevant data. 

However, at its core DICE is intended to work for any data preparation endeavour.  

2.5 Situational Methods and Situational Method Engineering 

Due to its holistic view of the enterprise, the sheer volume on EA(M) concepts covers a 

broad range of topics on all levels of the enterprise. Under the umbrella of EA strategic 

concerns, operative challenges are addressed. Under these premises, a "one-size-fits-all" EA 

method covering all of these topics, is not plausible.  

“Depending on project type and context type, different methods – or at least different 

configurations or adaptations of a method are needed.” (Aier, Riege and Winter 2008a). 

Situational method engineering addresses this problem through the construction or 

composition of new methods from existing methods. Situational Method Engineering is 

defined as, “the discipline to build project-specific methods, called situational methods, from 

parts of the existing methods, called method fragments (Brinkkemper 1996)”. 

These methods are tailored to specific project needs. The term situational method was 

coined by (Harmsen 1997), who identified the need for a standardised approach to the 

composition of tailor-made methods to address specific organisational circumstances. Stating 

that “There is no method that fits all situations” (Harmsen 1997), Harmsen coined the phrase 

“controlled flexibility” in the context of situational methods. Situational methods are intended 

to be adaptable to specific project requirements in a controlled manner. At the centre of 

situational methods, one can find the so-called model base, holding reusable and proven 

“method fragments” to be composed into tailor-made methods by applying formally defined 

guidelines. The overall process for configuring situational methods comprises four major 

steps:  

 characterization of situation, which is the step involving requirements gathering for 

the method to be constructed, 

 selection of method fragments, which involves the selection of method fragments 

meeting the previously identified requirements, 
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 assembly of method fragments, which involves tailoring of the selected method 

fragments and assembling the chosen fragments to establish the new “situation-

specific” method and 

 project performance, where the new situation-specific method is applied. 

 

Fig. 13 The process for configuring a situational method, marginally adjusted from (Harmsen 1997)  

Method fragments are the atomic elements of method construction. In DICE method chunks 

(compositions of method fragments) are represented in the form of transformation tasks. 

Transformation tasks take datasets and metadata describing the datasets as an input and 

generate restructured, cleansed and/or integrated datasets as well as appropriate metadata on 

the conducted transformations as an output. Via selection of atomic transformation tasks and 

by integrating these transformation tasks into an executable data preparation workflow, 

complex data transformations can be performed. At the same time, required metadata on these 

transformations are generated automatically as far as possible. Fig. 14 illustrates the structure 

of transformation tasks, which is discussed in more detail in section 5.  
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Fig. 14 Method fragments in DICE 

Method chunks are the reusable entities that comprise method fragments. At minimum, a 

method chunk consists of two method fragments, one product and one process fragment, see 

5.2 for details. Examples of method chunks in DICE are transformation task patterns which 

can be configured for their execution. They come with a set of setting options (parameters) 

and algorithms for data transformation. When executed (in context of an executed data 

preparation workflow), all required data manipulations are conducted in a standardised 

manner.  

2.6 DIBA and DICE 

This thesis must be understood as a continuation and development of the Data Integration in 

Business Analytics method (DIBA) (Grossmann 2009). DIBA is a domain agnostic BA 

method for data integration and cleansing. DIBA is heavily based on concepts of workflow 

management, statistical master data management and data mining. It comes with a basic 

metamodel for representing metadata to ensure traceability of data integration steps. The main 

purpose of DIBA is to visually support creation and documentation of the data integration and 

cleansing processes and to relieve data engineers from the burden of manual documentation of 

the undertaken DM steps in the phases of data preparation.  

In their work, (Papageorgiou et al. 2001) opt for a KDD process accompanied by definition 

and documentation of metadata supporting the production of traceable BA results. They 

propose algorithms for the calculation of the metadata based on typical atomic transformation 

tasks, such as selection, merge and groupby. (Grossmann 2009) seizes these concepts in 

DIBA and proposes to integrate such algorithms into data transformation processes with the 
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aim of automatically delivering not only the transformed datasets but also quality indicators 

and other metadata.  

In 2015 a first prototypical implementation of DIBA was accomplished based on the 

metamodeling platform ADOxx (www.adoxx.org) and the statistical platform R (www.r-

project.org). In the course of this, DIBA was renamed DICE. The acronym stands for Data 

Integration and Cleansing Environment. For more detailed information see the work of 

(Grossmann and Moser 2016). 

With DICE, data engineers can focus on the production of the required datasets. Data 

preparation services take care of production and interpretation of the statistical metadata. The 

statistical metadata guide the production process by delivering quality KPIs to support 

decision making regarding the data preparation processes. In the course of this, each (to be) 

performed transformation task is evaluated in terms of its quality impact on the transformed 

dataset(s) and delivers the required metadata and quality KPIs. Based on these KPIs, the data 

engineer can decide whether a taken transformation task will finally be performed or has to be 

withdrawn. Thus, early in the data preparation process, the data engineer recognises if the 

current status of the workflow fulfils the requirements or if additional datasets have to be 

taken into account. In their work, (Grossmann and Moser 2016) present a prototypical 

implementation of DICE, substantiating the feasibility of DICE. In the work of (Eltinge, 

Biemer and Holmberg 2013), a quality approach for the improvement of the entire statistical 

production process is discussed. The key aspects of this approach are recognised by DICE, 

making possible the evaluation of the performance of the entire data integration and clearance 

workflow itself. DICE is the centrepiece of this thesis. That is why in section 4 a detailed 

introduction to DICE is provided. 

2.7 Tying it all together 

Recalling the research objectives, in order to set up a sound basis for EA analytics, this 

thesis seeks to analyse typical EA data and define a method for data cleansing and integration 

in the fields of EA. 

As EA content comes in manifold shapes and styles (see section 7.1), there will not be a 

one-size-fits-all solution to resolving these research objectives. The thesis builds on DICE, 

which can be interpreted as a method that is built on concepts of situational method 
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engineering. DICE combines techniques from the fields of workflow management, metadata 

management and data mining. The main method chunks facilitated by DICE are 

transformation task patterns, which can be composed into executable data preparation 

workflows. Transformation task patterns comprise the same elements as modelling methods. 

From a conceptual point of view, they represent method function blocks consisting of the 

same basic components as entire methods: modelling language, modelling procedures, 

mechanisms and algorithms. The modelling procedure involves the configuration of single 

transformation tasks and the composition of these tasks into executable workflows. 

Mechanisms and algorithms are required for performing the required data and metadata 

manipulations. The modelling language is used for modelling the transformation tasks and for 

depicting the metadata (via dedicated language constructs or by referencing data sources 

holding the data). 

A typical initial situation where DICE might be applied, is when information on the 

enterprise architecture is required for driving management decisions. Questions to be 

answered could be as simple as the following: How many applications does the organisation 

run? Which of our applications hold critical customer data? What applications are operated on 

outdated technologies? Having a central EA repository in place, which contains all the 

required building blocks and dependencies, these questions are easily answered. However, it 

is not very likely that the EA repository, if in place at all, will contain all relevant concepts 

and relationships for all possible cases. The reality of organisations shows that EA content is 

often scattered throughout the organisation. EA content such as models is often created ad hoc 

and not maintained in an adequate manner. 

Thus, for this thesis DICE is positioned at the intersection of EA data acquisition and BA 

data preparation phases. In this sense two spheres have to considered, namely:  

 the domain specific sphere of EAM, which is the sphere where DICE is applied and  

 the data mining (DM) sphere, which comprises the data integration and cleansing 

functions.  

This structure allows flexible application of DM methods (DM sphere) to any application 

domain. At the core of this thesis, DICE is applied to enterprise architectures (EA sphere). 

Fig. 15 offers an overview. Both spheres comprise the three main building blocks of 

modelling methods: modelling language, modelling procedure and mechanisms & algorithms.  



Methodological and Conceptional Foundations 

 

50 

 

The EA sphere represents the application domain providing the datasets for data mining 

endeavours, hoping to learn about the EA, to uncover previously unseen knowledge or to 

simply provide an adequate dataset for typical EA analysis. For these purposes the EA sphere 

delivers EA contents (in the form of formal models but also any other structured or semi-

structured EA-related information) describing the architecture of an organisation. This content 

typically holds information on main EA building blocks, such as the business capabilities, 

business processes, roles and actors, organisational units and locations, the applications, and 

their software components as well as dependencies between these building blocks. In other 

words, the EA content represents the datasets to be cleansed, integrated and analysed in the 

BA sphere.  

As an example, due to compliance reasons, an organisation needs to understand which of 

their applications hold customer data. EA models based on viewpoints such as Archimate’s 

“Application Behaviour Viewpoint”, see (The Open Group 2016) are a valuable source of 

information for extraction of the required data. Additional information might be found in data 

catalogues, software architecture models, etc. To analyse the existing EA descriptions, which 

are typically spread over various models and often described in different modelling languages, 

data integration and data cleansing tasks have to be performed.  

Fig. 15 depicts the interplay between the EA sphere and the DM sphere needed to facilitate 

this kind of analysis. Enterprise architecture modelling languages (EAML) have already been 

introduced in section 2.4.1.3. In the DM sphere, a modelling method is required to design the 

data preparation processes and to hold the metadata generated when conducting the DM 

mechanisms and algorithms.  
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Fig. 15 Interaction of BA and EA 

As with the modelling language, the modelling procedure must be considered from both the 

EA sphere and the DM sphere. The EA sphere covers the procedures for creating the EA 

models. The DM sphere requires a modelling procedure for creating the DICE processes. 

These processes are framed by the phases and tasks stipulated in CRISP-DM, the DM 

reference framework. As explained earlier, in order to be fully effective, the DICE modelling 

procedure has to be embedded in a superordinated KDD process such as CRISP-DM 

(Chapman et al. 2000).  

The dyadic structure of DM and EA spheres also applies to the “mechanisms and 

algorithms”, the third of the main elements of a modelling method. The EA specific 

mechanisms focus on bringing the EA models under control (e.g. versioning mechanisms, 

release workflows etc.) and the algorithms which are required to run EA analysis, such as EA 
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simulation, dependency analysis, view generation and what-if evaluations. These mechanisms 

are positioned to infer new knowledge from existing EA models. 

Mechanisms and algorithms of the DM sphere are required for executing the DICE 

workflows and for performing the data transformation and cleansing tasks. Two types of 

algorithms are required (Grossmann and Moser 2016). The first type executes the DICE 

workflow itself. It processes the transformation tasks in the intended sequence. The second 

type of algorithm, the transformation algorithm, constitutes the processing logic of individual 

transformation tasks. Simultaneously these transformation tasks perform the transformation 

on the datasets (the EA models) and alter the related metadata. 

All of the core elements of the DM sphere are organised within a situational method. As 

sketched in section 2.5 (details will be discussed in section 5.2), the set of transformation 

tasks is organised within the DICE method base. The transformation tasks are configurable 

and serve as the method chunks of DICE. Instructions concerning appropriate usage and 

configuration of the transformation tasks and on assembling them into a DICE process have to 

be covered in the DM modelling procedures. 

2.8 Motivating Example 

Enterprise architecture is much about communication. Thus, many of the typical EA 

deliverables are in the form of diagrams, matrices that allow better communication of 

envisioned target architectures, architectural gaps to be closed and impact on architectural 

changes. 

Relevant data often reside in different formats and different data sources. Even where EA 

repositories are in place, it is unlikely that those hold all information needed to create the 

required models for subsequent analysis. Typically, operational data such as customer 

transactions and process instance data are, if ever taken into consideration, not part of these 

repositories. In the course of creating decision papers, data quality and data provenance 

aspects are consequently not considered, which makes the results assailable. 

In the course of this thesis a guiding example is introduced. It is based on a scenario where 

enterprise architects collect and integrate data from internal and external sources of the 

organisation with the aim of providing a sound EA dataset for subsequent decision making. 
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In the guiding example, data on business processes, applications and technologies reside in 

different formats and stem from arbitrary internal and external sources. The example is used 

to explain the developed mechanisms for data integration and cleansing. It can be seen as a 

typical application of the method. DICE does not strive to implement a sound EA repository. 

Rather, it strives for case-specific support for EA-related endeavours based on the existing EA 

information, which typically resides in manifold data sources. 
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3 Related Work 

The following section is dedicated to the presentation of related work and discusses it in the 

context of this thesis. Before discussing related work, the literature research approach and its 

targets will be discussed. 

3.1 Literature Research Approach 

The subsequent literature research follows the guidelines of (Vom Brocke et al. 2009) to 

guarantee rigor in the literature search process. The applied research process stems from 

(Svejvig and Andersen 2015) and is an adaptation of the process initially proposed by (Baker 

2000). It was also used in a similar setting creating a literature review of EA 

analysis/evaluation techniques by (Andersen and Carugati 2014). 

 

Fig. 16 Main steps of the literature research (Andersen and Carugati 2014) 

3.1.1 Defining Review Scope 

In the initial step the research scope was defined by stating the main research questions to be 

answered by the literature research: 

 What are the current practices for EA analysis and evaluation and do they pose quality 

requirements on their underlying EA data? Are these requirements formally defined? 

 Is there research that combines EA practices with methods from the fields of data 

mining and related research fields such as business analytics to support EA-based 

decision making? 
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 Are data mining techniques used to improve EA data and vice-versa? 

The structured literature review was intended to be comprehensive with the aim of covering 

all relevant research literature within the defined scope. This holds true especially for research 

literature in the context of EA analysis and evaluation and all relevant literature combining 

techniques from EA and data mining.  

3.1.2 Conceptualisation of Topic 

Following Bakers suggestion, to consult “those sources most likely to contain a summary or 

overview of the key issues relevant to a subject” (Baker 2000), the literature review was based 

on existing literature reviews such as the work of (Simon, Fischbach and Schoder 2013) and 

(Mykhashchuk et al. 2011) providing broad overviews of existing research in the fields of EA 

and overviews of EA analysis/evaluation approaches conducted by (Buckl, Matthes and 

Schweda 2009) and (Andersen and Carugati 2014). From these sources the relevant search 

terms were derived. 

Documents containing one of the following keyword combinations were considered 

relevant: 

{“enterprise architecture”} ×  

{“analysis” | “integration” | “quality” | “data mining”| “KDD” | “business analytics” | 

“business intelligence” } 

The reasons for deciding on these keywords are briefly discussed below: 

 The key word {“enterprise architecture”} was chosen as the core key word. 

Additionally, in the initial setting of the literature review, key words, such as 

“business architecture”, “enterprise modelling” and “IT architecture” were used, as 

EAM is a broad discipline and relevant methods and concepts might not necessarily 

be presented under the term “enterprise architecture”. However, it turned out that 

these key words were not effective, as many of the search hits were irrelevant to the 

topic or already identified by the search containing “enterprise architecture”.  

 The keywords {“analysis” | “evaluation”} were used in order to identify scientific 

literature discussing EA analysis/evaluation techniques. Whereas “evaluation” 

commonly refers to a systematic determination of a subject’s worth, significance or 
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condition, “analysis” is the process of separating a complex subject into its 

component parts to gain a better understanding of it (Merriam-Webster 2007). In 

research both terms are often used synonymously, thus, both keywords were 

considered. Matching publications are of interest for two reasons: firstly, to check 

whether analysis/evaluation techniques from the fields of DM have been applied to 

the EA content and secondly, to check how and if these approaches consider and 

handle insufficient EA data quality. 

 The keyword {“integration”} was used to discover which EA publications consider 

integration of EA content (e.g. integration of architecture models). The majority of 

the identified research dealt with integration of EA building blocks itself (e.g. 

integration of software systems) but not with integration of EA content/descriptions. 

This is why the initial set of keywords was extended with the keyword combination 

“enterprise model integration”, the term commonly used for integrating models of 

different modelling languages (Kühn et al. 2003). Utilizing this keyword 

combination a plethora of approaches and methods could be identified. 

 The keyword {“quality”} aimed at the detection of research focusing on quality 

aspects of EA contents of any type in general and specifically on EA models. Again, 

a lot of research dealing with the quality of EA itself (and not with EA descriptions) 

had to be sorted out. 

 Finally, the keywords {“business analytics” | “data mining”| “KDD” } were used to 

identify research that connects methods from the research fields of EA and DM. As 

will be discussed in the literature review, only a few publications were identified. 

Most of the publications matching these keywords dealt with defining enterprise 

architectures to support business analytics and data mining implementation but not 

with combining the practices for creating better/new EA content. 

The present literature review does not focus solely on top journals and conferences but also 

takes industry EA publications (such as articles from the journal of EA) into account, keeping 

in mind that not all publications are of equal rigor (Ngai and Wat 2002). This decision was 

taken because non-academic EA publications have been judged to be of significant influence 

in existing EA literature reviews, see (Mykhashchuk et al. 2011), (Simon, Fischbach and 
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Schoder 2013) and (Tamm et al. 2011). Thus, by consideration of peer reviewed IS journals 

only, highly relevant practice-oriented literature might have been excluded.  

As primary search engine, Google Scholar (https:// scholar.google.at) was used. As a second 

source, u:search, the search engine of the university of Vienna was used. Both of these search 

engines serve as meta search engines and base their searches on search engines and digital 

libraries such as the ACM Portal (http://portal.acm.org) and the IEEE XPlore Digital Library 

(http://ieeexplore.ieee.org).  

Per search, the first hundred search results were considered. Relevant research results were 

listed. From these articles, backward searches (reviewing the references of the identified 

articles) and forward searches (reviewing sources that cited the initial articles) were 

conducted. For forward searches, the Google Scholar feature “cited by” was used, insofar as a 

research paper could be found via Google scholar. Papers considered relevant were listed and 

the procedure was repeated for these papers.  

For all papers, at least title and abstract were read in order to judge their relevance with 

reference to their contribution in the fields of analysing/evaluating EAs or parts thereof. 

Articles considered relevant were fully examined.  

The literature review was performed throughout the years 2015, 2016 and 2017 and 

considered EA articles from the early beginnings of EA, from the mid-1980s with the first 

recognised EA frameworks “Zachman” and “PRISM”, see e.g. (Kotusev 2016) to March, 

2017. 

3.1.3 Literature Research & Analysis 

According to (Närman et al. 2008), the mechanisms provided by common enterprise 

modelling frameworks (such as TOGAF, DODAF and MODAF) for analysing data are barely 

sufficient. Thus, inferring new knowledge from existing EA models can be considered a 

major challenge. In their work, Närman et al. present an EA analysis procedure consisting of 

the following steps: (1) define scenario, (2) determine properties of interest, (3) modelling 

scenarios using a metamodel, (4) analyse the scenario properties and (5) make a decision. 

Thus, before analysing the EA, the EA (or subsets of EAs) have to be modelled using a 

metamodel. This requirement is common to almost all EA analysis approaches, as will be 

elaborated in more detail in the subsequent sections. 



Related Work 

 

58 

 

In their work, (Buckl, Matthes and Schweda 2009) categorise EA analysis approaches using 

a classification schema. The schema is based on the dimensions: body of analysis (structure, 

behaviour statistics and dynamic behaviour), time reference (ex-post vs. ex-ante), analysis 

technique (expert-based, rule-based etc.), analysis concern (functional vs. non-functional) and 

self-referentiality (none, single-level and multi-level). Presenting their AHP-based (Analytical 

Hierarchy Process based) approach, Razavi et al. (Davoudi, Aliee and Badie 2011) add an 

additional criteria, namely source of analysis (EA models vs. EA content).  

In the following section the current and prominent EA analysis approaches are briefly 

introduced and examined regarding requirements they pose to the underlying model base. 

Numerous approaches to EA analysis are based on probabilistic relational models (PRM) 

and formalisms based on Bayesian network statistics. These approaches make possible the 

analysis of EA (scenarios) in the context of a broad range of system qualities, such as data 

quality (Närman et al. 2008) and (Närman et al. 2011), modifiability (Lagerström, Johnson 

and Höök 2010), maintainability (Ekstedt et al. 2009), reliability (Närman et al. 2014), 

security risks in general (Sommestad, Ekstedt and Johnson 2010) and aspects of cyber 

security (Sommestad, Ekstedt and Holm 2013). A hybrid approach taking several of these 

system qualities into account is presented in (Närman et al. 2010). The PRM formalism in 

these analysis techniques makes it possible to deal with uncertainty when computing the 

values of qualities. Similar to the above analysis techniques, (Franke et al. 2009) analyse 

enterprise architectures by applying Bayesian belief networks to fault tree analysis evaluating 

reliability and reusability qualities. All of these approaches require a concise model base as an 

input. Moreover, not only dependencies between the various EA elements have to be defined 

but also direct relations between quality attributes must be in place in order to analyse their 

causal dependencies. This requirement is clearly specified in the work of (Buckl et al. 2011), 

which proposes extensions to MOF (Meta Object Facility) in the form of a meta-language to 

support PRM analysis.  

Johnson et al. (Johnson, Nordström and Lagerström 2007) recommend Architecture 

Theory Diagrams (ATDs) and the application of Dempster–Shafer theory, a general 

framework for reasoning with uncertainty. 

Another type of EA analysis can be grouped under the umbrella decision aid/decision 

support systems such as the multi-criteria decision making method (MCDM) Analytic 
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Hierarchy Process (AHP), where decision makers split their decision problem into a 

hierarchy of separately appraisable sub-criteria. In the context of EA, these sub-criteria are 

represented by EA quality attributes such as maintainability and interoperability, which itself 

might be further composed. Applications of AHP in the context of EA are discussed in 

(Davoudi, Aliee and Badie 2011) and (Davoudi and Sheikhvand 2012). The architecture 

(scenarios) to be assessed do not necessarily need to be documented based on strictly-typed 

models. That is why (Davoudi and Sheikhvand 2012) categorise their AHP-based approach as 

“EA content”, as opposed to “EA models” in the category “Source of analysis”. The multi-

property utility evaluation is another representative of a MCDM. It defines a utility function 

over a set of qualities to evaluate a particular scenario. Again, independent qualities such as 

maintainability and interoperability are considered by describing their utility in the form of a 

utility function. As with the AHP-based approaches, these analysis techniques do not 

necessarily need a fine-grained model-base. In contrast, the utility-based approach proposed 

by (Österlind et al. 2013) can be applied to meta-object facility compliant EA models only. 

(de Boer et al. 2005) use an XML schema representing an enterprise architecture meta-

model, which makes description, analysis and simulation of EA models possible. XML 

elements are used to define structural information of the EA. Utilising XML and AML 

(ASCII Markup Language) parsing tools, they execute static analysis algorithms on the EA 

models. Dynamic behaviour is modelled and analysed applying state machine semantics. Of 

course, this approach requires a sound and concise model base structured in XML (and AML 

files). The EA analysis approach of (Iacob and Jonkers 2006) presents a similar approach 

applying quantitative analysis techniques to Archimate models. For this purpose, they 

added quantified attributes, such as workload parameters, cost and performance 

characteristics to the concepts and relations of the Archimate modelling language. The 

approach supports computational EA analysis by top-down propagation (of workload 

characteristics) and bottom-up propagation (of costs and performance characteristics). Similar 

to this approach, (Florez, Sánchez and Villalobos 2014) propose the concept of SAMBA 

(Specialized or extended ArchiMate Metamodel for Business Analysis), which is an extension 

to the Archimate Metamodel for analysis purposes. 

Ontology-based analysis techniques are another important category. They support EA 

analysis through application of computational inference and querying mechanism. Manifold 

research has been conducted in these fields. Examples from the broad set of articles are 



Related Work 

 

60 

 

(Caetano 2016), (Hinkelmann, Maise and Thönssen 2013), (Antunes et al. 2013) and (Sunkle, 

Kulkarni and Roychoudhury 2013). 

As another important category of EA analysis approaches, KPI-based analysis techniques 

must be considered. Publications in these fields include the works of (Vasconcelos, Sousa and 

Tribolet 2007), (Brückmann et al. 2009), (Monahov et al. 2012), (Singh and van Sinderen 

2015), (Vasconcelos, Sousa and Tribolet 2015) and (Addicks and Appelrath 2010). All of 

them have in common the use of EA models instantiated from an EA metamodel as a basis. 

The KPIs are calculated solely from model-intrinsic data. 

EA analysis based on network analysis is discussed in (Aier and Winter 2009) where a 

graph-based clustering algorithm is presented, which makes possible the identification of 

domains within organizational and application architectures. In his master thesis, (Schoonjans 

2016) applies typical metrics from the fields of graph theory to EA models, which are 

transferred into directed graphs (such as in social networks) for further analysis. A literature 

review of EA network analysis with a broader definition of EA as compared to this thesis can 

be found in (Santana, Fischbach and Moura 2016). 

Finally, there is research with emphasises on the dynamic behaviour of enterprises. Besides 

an abundance of work conducted in the fields of business process management, see e.g. (Van 

Der Aalst, Ter Hofstede and Weske 2003) for an overview, there is little research on 

simulation techniques dedicated to EA. One noteworthy work on this topic has been done by 

(Glazner 2011), who presents a hybrid simulation technique based on system dynamics, 

agent-based and discrete event simulation algorithms. Also, in the work of (Manzur et al. 

2015), a model-based approach is introduced for simulation of EA models with the aim of 

executing and assessing EA scenarios. For this purpose, the Archimate modelling language 

has been enriched with dynamic properties (e.g. statistical distributions on usage behaviour of 

clients) to allow for simulation.  

Revisiting these “prominent approaches” with respect to their underlying information base 

has shown that none of the approaches tackle data quality problems prior to the analysis. 

Almost all of the EA analysis approaches require a model-base instantiated from an EA 

metamodel that is in conformity with the requirements posed by the EA analysis algorithms. 

The ontology-based approaches do not require a metamodel but have to adhere to ontology 

languages based on either first-order logic or on description logic. Prominent examples of 



Related Work 

 

61 

 

ontology languages are: the Web Ontology Language (OWL), the Resource Description 

Framework (RDF) and the RDF Schema (RDFS). For an overview of ontology languages see 

(Staab and Studer 2013). Thus, the only true exception can be seen in the multi-criteria 

decision making methods (e.g. AHP) where scenario descriptions are required, but decision 

making does not require formally described EA models as a base for algorithms. Another 

important finding is that the required quantitative or operational data concerning the EA 

elements have to be imputed manually by the EA experts. Where to take the required data 

from is, (if at all) only vaguely discussed in the articles. 

Table 2 summarises the results. 

Table 2 Overview and assessment of EA analysis approaches 

Analysis Type References Model-

based 

approach 

Application 

of BA 

techniques 

Probabilistic relational 

models 

Excerpt: (Närman et al. 2008), 

(Närman et al. 2011), (Lagerström, 

Johnson and Höök 2010), (Ekstedt et 

al. 2009), (Närman et al. 2014), 

(Sommestad, Ekstedt and Johnson 

2010), (Sommestad, Ekstedt and 

Holm 2013). (Närman et al. 2010) 

Yes No 

Architecture Theory 

Diagrams (ATDs) / 

Dempster–Shafer theory 

(Johnson, Nordström and Lagerström 

2007) 

Yes No 

Multi-criteria decision 

making methods 

(MCDM) 

(Davoudi, Aliee and Badie 2011), 

(Davoudi and Sheikhvand 2012), 

(Österlind et al. 2013) 

Yes No 

Quantitative analysis (de Boer et al. 2005), (Iacob and 

Jonkers 2006), (Florez, Sánchez and 

Yes No 
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techniques Villalobos 2014) 

Ontology-based analysis 

techniques 

Excerpt: (Caetano 2016), 

(Hinkelmann, Maise and Thönssen 

2013), (Antunes et al. 2013) and 

(Sunkle, Kulkarni and Roychoudhury 

2013)  

Yes No 

KPI-based analysis 

techniques 

(Vasconcelos, Sousa and Tribolet 

2007), (Brückmann et al. 2009), 

(Monahov et al. 2012), (Singh and van 

Sinderen 2015), (Vasconcelos, Sousa 

and Tribolet 2015), (Addicks and 

Appelrath 2010) 

Yes No 

Network analysis 

techniques 

(Aier and Winter 2009), (Schoonjans 

2016), (Santana, Fischbach and Moura 

2016) 

  

Simulation-based 

analysis techniques 

Glatzner (Glazner 2011), (Manzur et 

al. 2015) 

Yes No 

 

Turning to the second core area of this literature research with a focus on integration aspects 

of BA and EAM, it became apparent that there is very little literature available. Most of the 

identified literature is concerned with applying methods of enterprise architecture 

management to establish business analytics and business intelligence capabilities within an 

organisation. The joint use of EA and BA to improve management decisions is only addressed 

in four articles.  

As early as 2005, (Neaga and Harding 2005) proposed in their work “An Enterprise 

Modelling and Integration Framework based on Knowledge Discovery and Data Mining” to 

complement enterprise modelling methods with methods from the fields of KDD and DM in 

order to improve decision making based on enterprise models. The authors emphasize the 
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communalities of enterprise modelling and DM, as both techniques “are building models of 

the whole or parts of the enterprise […] mining models are directed to logically fit or overlap 

with enterprise models, except that they are obtained by knowledge discovery”. However, 

although recognising these communalities, their work is limited to extending enterprise 

modelling methods with knowledge and mining views to support modelling and planning of 

integrated KD&DM systems.  

(Barone et al. 2010) recognise the benefits of integrating enterprise modelling and business 

analytics and present an approach to integrate business intelligence mechanisms with their 

Business Intelligence Model (BIM). The idea is that business people define their knowledge 

requirements in business terms based on goal modelling techniques (inspired by strategy maps 

and balanced scorecards), and these specifications are mapped with a minimum effort onto the 

technical BI implementation schemas. Although a broader integration with EA approaches is 

not explicitly discussed, the proposed BIM can be seen as the strategy model of an EA. Thus, 

it serves as the docking point for additional EA views and viewpoints. Concrete algorithms 

and mechanisms on how to actually integrate the enterprise models with BI tools, how to use 

the BIM to “automatically” map business structures defined in the BIM to the operational data 

are not discussed and are left open for future research. 

(Stravinskienė and Gudas 2011) conducted an analysis of enterprise modelling methods in 

respect to their suitability for supporting DM endeavours. Their work on enterprise 

knowledge modelling and data mining integration strives to define principles for the 

integration of knowledge components (represented in the form of enterprise models) into data 

mining processes by using the EA models as input for “more rational data mining queries” 

(Stravinskienė and Gudas 2011). The authors propose a mapping of components of EA 

concepts and data mining process steps in order to streamline the mining process and the 

configuration of the required mining algorithms. The approach is illustrated by using the 

enterprise meta-model (EMM), see (Gudas, Lopata and Skersys 2005) for details and a 

sketched data mining process. The approach is intended to be agnostic to the given enterprise 

modelling method. However, the presented mapping remains high-level, and details on how 

to actually implement this mapping are only discussed superficially. 

(Fill and Johannsen 2016) present in their knowledge-based approach, required mechanisms 

to integrate enterprise modelling and data analysis. Emphasis lies on interaction and exchange 

of data between enterprise models and methods for analysing big data. In their prototypical 
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implementation, they demonstrate how prepared data are loaded into a modelling tool 

supporting the RUPERT (Johannsen and Fill 2014) modelling method, from where the data 

are processed to graphically support decision making by enriching the models defined in 

RUPERT. The data preparation process and data quality issues are not covered by their 

approach. 

Finally, (Veneberg et al. 2014) propose their method “Enterprise Architecture Intelligence 

Lifecycle (EAIL)” for combining enterprise architecture descriptions and operational data. 

They suggest either enriching EA models with BI data to support model-based enterprise 

architecture analysis or integrating the EA descriptions into BI tools for better structuring of 

the operational data and to support their retrievability and interpretability. In the second case, 

EA structures would serve as the metadata for classifying the operational data and for creating 

interrelations among themselves. The proposed lifecycle consists of the phases: (1) explore, 

(2) match, (3) enrich, (4) visualize, (5) decide & change and (6) evaluate. In their conclusion, 

the authors see the required technical model and data transformations as a critical step, which 

has so far not been addressed. Furthermore, the need to investigate the applicability of 

existing EA and DM analysis mechanisms is adverted. 

In respect to enterprise model integration, a great many approaches could be identified. 

Solutions comprise hard-coded model transformation mechanisms, framework-specific 

annotations (via metadata), multi-view methods, approaches based on controlled vocabulary 

and ontologies. For an overview of model transformation tools, see (Gomes, Barroca and 

Amaral 2014), (Lúcio et al. 2014) and (Czarnecki and Helsen 2003). Fig. 9 depicts the general 

ideal process of model transformation. What all of these approaches have in common is that 

input models instantiated from a source metamodel are transformed into target models that 

conform to a target metamodel. Transformation rules are required to specify the mapping 

rules. Fig. 17 shows an overview of typical concepts involved in model transformations. 
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Fig. 17 Model transformation terminology, adapted from (Syriani, Grayand Vangheluwe 2013) 

(Falleri et al. 2008) propose an approach that automatically detects mappings between two 

metamodels and uses them to generate an alignment between those metamodels instead of 

developing ad hoc model transformations. Their approach is based on concepts from the fields 

of schema matching and ontology alignment. Domain-specific approaches with a focus on 

transformation of enterprise models are discussed, e.g. in (Kühn et al. 2003) and (Vernadat 

1996). Worth particular mention is the work of (Zimmermann et al. 2013), who present with 

their service-oriented reference enterprise architecture an approach dedicated to the 

integration of enterprise architecture models. The approach is based on correlation analysis 

and offers a systematic integration process. (Moser, Fürstenau and Junginger 2010) present an 

approach to the integration of EA models with business process models, which again requires 
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a bidirectional mapping. The focus of their work is on how to organise the model exchange. 

They place a strong focus on organisation-specific objectives and conditions but do not 

consider BI mechanisms for integration. Worth particular mention is the research of (Roth 

2014). In his dissertation on „Federated Enterprise Architecture Model Management“ Roth 

presents an approach for collaborative model integration. The approach deals with the 

continuous integration of object-oriented models held in different repositories. Strong 

emphasis is put on techniques for conflict resolution (model and metamodel inconsistencies). 

Roth introduces a software solution to organize the conflict management. Conflicts are passed 

to users (the particular owners of the objects) for semi-automated resolution. The approach 

assumes a unidirectional synchronization between the data held in the EA repository and all 

other relevant information sources. Its main purpose is to support the federated EA model 

management and to build up a concise EA model base by integrating building blocks from the 

different sources. The EA repository acts as the sink source integrating EA-relevant data in 

conforming to a defined target metamodel. In DICE the concept is different. Datasets from 

arbitrary sources are adapted, integrated and cleansed as needed without consideration of 

structural “limitations” in the first place. DICE for EAA is a specific application of DICE in 

context of EAA. It strives for creating situational datasets, as a basis for subsequent BI-driven 

analysis. Rather than focusing on the maintenance of a concisely populated EA repository, 

datasets are created for specific knowledge needs at hand, which cannot be foreseen in 

advance and answered by standard mechanisms of EA repositories, or rather by EA 

descriptions/models adhering to a predefined metamodel. To this end DICE for EAA strives 

for equipping EA data with operative business data such as customer data, product data and 

any transactional business data. 

Applying data mining techniques, e.g. supporting the model transformations with 

unsupervised transformation techniques, have not been identified by the conducted literature 

review. The only exception can be seen in the work of (Gill and Qureshi 2015) who present in 

their approach to “adaptive enterprise architecture modelling” techniques for metamodel 

integration based on DM techniques such as applying similarity analysis to concepts within 

different enterprise (meta) models with the aim of model integration. 
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3.1.4 Summary 

Compared to the extensive research available on enterprise architecture management, the 

subfield of EA analysis can be seen as the orphan child of EA. Nearly all of the identified EA 

analysis approaches require formally created EA models as a basis. It is well recognised that 

the quality of EA models is of immanent importance for any EA endeavour. Existing 

approaches that strive to improve the data quality mainly focus on improving the data quality 

of models held in architecture repositories, by either optimising the processes for manual data 

acquisition, clearly costing higher data maintenance and governance efforts, or on automated 

integration-features that integrate EA data from external sources such as CMDBs. From the 

observed research literature, only (Addicks and Appelrath 2010) integrated data quality and 

metadata aspects into their approach for indicator-based evaluation of application components 

in the context of EA. However, the approach is only roughly sketched and focuses only on 

data freshness and population coverage aspects. In addition, (Iacob and Jonkers 2006) 

consider model integration and model normalisation (transforming the models to comply with 

the required structure for analysis) as an important step but do not explain the required 

transformation measures. 

 Recently, approaches to integrate EA and BI practices have been put forward. Under 

designations such as “Enterprise Architecture Intelligence” and “Enterprise Architecture 

Analytics”, initiatives arise striving to combine the management domains of “Enterprise 

Architecture Management” and “Business Analytics” respectively in order to combine EA 

models with operational data. Although the benefits of integrating EA with operational data 

have been identified, research in these fields is still in its infancy. 

DICE as a method for data integration and cleansing contributes to these initiatives by 

providing the means to integrate all relevant EA models and descriptions, and at the same 

time, provides metadata such as quality indicators on the resulting EA datasets.  
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4 DICE – The Centrepiece of the EAA 

This section is strongly based on the work of Grossmann and Moser (Grossmann and Moser 

2016), who introduced DICE as a method for data integration and cleansing in the context of 

business analytics scenarios. DICE is, as a continuation of Grossmann’s work on DIBA 

(Grossmann 2009), a data integration method for the support of business analytics 

endeavours.  

4.1 Suggesting a Method for Data Integration and Cleansing 

Most DM techniques demand input datasets in a horizontal layout, i.e. a table in which each 

row represents an observable unit and each column stands for a variable (Ordonez and Chen 

2012), (Rahm and Do 2000), (Klösgen 2002). Examples are DM techniques, such as 

association rules, clustering, classification, regression analysis and principal component 

analysis (Han and Kamber 2000), (Ordonez 2010). 

Knowledge about the data quality and data provenance is a key requirement when applying 

the data for decision making in business activities. Thus, along with the actual data (e.g. 

provided in the form of management reports), explicit descriptions that provide insight into 

data quality, data sources and data structures are required. Such data descriptions are 

commonly referred to as metadata. Metadata include information for producing, 

understanding, querying and retrieving statistical work products. DICE adopts the concept of 

metadata management by leveraging a metadata-model based on concepts stemming from the 

fields of statistical metadata management (Grossmann 2015). Against this background, DICE 

considers datasets as composite analysis objects (Grossmann and Moser 2016) composed of 

observable units, variables and properties that represent populations of observable units. Fig. 

18 provides an overview of the structure of these data objects and their interplay in UML 

notation. 
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Fig. 18 Composite Data Analysis Object 

Observable units 
AU are the entities for which empirical information is collected or derived. 

In a typical enterprise environment, elements, such as products, customers and transactions 

are perfect examples of observable units. In the context of enterprise architecture 

management, elements, such business processes, application components and technology 

components are typical examples. A  represents the population that is defined by the set of 

observational units. Typically, a distinction is made between target population (aka scope), 

representing the real-world population and the covered population which is represented within 

the dataset (aka statistical population or sample population). The dataset AD  holds the 

observable units and their properties. For each of the observable units, properties AP are 

available. These properties are categorised into variables AV  (i.e. attributes). The typical 

representation of a dataset AD  in business analytics is a table. The rows correspond to the 

observable units, the columns represent the variables and the cells represent the properties. 

The properties are observed and described by values assigned to the properties, i.e. the values 

are stored within the table’s cells. The covered population is typically implicitly represented 

only by the set of observable units, i.e. the rows of the table.  

Fig. 19 illustrates an example. It exemplarily depicts an Application Portfolio Catalogue, a 

typical EA artefact, see (The Open Group 2011). In the example each row holds data of an 

application that is an observable unit within this dataset. The column “ID” holds the unique 

identifier of the applications. The “ID” and the subsequent columns “Owner”, […], 

“Operating System”, “Operating Costs” and “Production Date” represent the variables. The 

cells of the table represent the properties which hold the values that distinguish the 

applications.  

Population
  

Variable
  

Observable Unit
  

Property
  

Dataset
  



DICE – The Centrepiece of the EAA 

 

70 

 

 

Fig. 19 Example of a composite analysis object – data level 

Formally the composite analysis object can be denoted as follows: 

],,,[ AAAAA PVUDO  . 

The superscript A refers to the data level. Note, as the population is only implicitly 

represented in the dataset, it is not part of the formal definition of the composite analysis 

object on data level. The population is made up of the set of observable units that are 

described by a set of properties as follows: 

 ||...2,1| uuPU u  . 

and a set of variables described by a set of properties 

 ||...2,1| vvPV v  . 

A property belongs to exactly one observable unit and to one variable of the dataset:  

 uuvuuvuv UPUPPD  | . 

From the above definition follows: 

VUD   

i.e. the dataset is made up of the same properties as the set of observable units and the set of 

variables. 

Of course, for the unambiguous description of a dataset, additional information called 

metadata is required. Often quoted examples for metadata are: source information, semantic 

definitions of the observable units and the variables and data quality indicators. In this vein, 

each of the introduced concepts finds its pendant on the meta-level. Fig. 20 illustrates the 

basic structure. 
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Fig. 20 Data-level concepts and related metadata concepts 

Formally the metadata level is represented as follows: 

],,,[ MMMMM PVUDO  . 

The superscript M refers to the meta level. The metadata object MU  holds descriptive 

information about observable units. Typical examples are: the semantic definition of the 

observable unit and quality data per observable unit. The metadata MD  holds summary 

descriptions of the dataset, such as data profiling contents, summative quality metrics over the 

entire dataset, administrative information, such as source and access information, security 

issues and data owner etc. Also, information on the population ( ), such as the unambiguous 

definition of the covered population, the size of the real-world population and the required 

coverage are part of the metadata. In this context, time aspects, spatial aspects and any other 

criteria make possible the specification of the set of contained observable units. The metadata 

object MV carries the definitions of the variables, their value domains and measure units. 

These definitions are important for specifying data quality aspects. MP provides information 

about quality aspects regarding single properties. Examples of quality aspects for properties 
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are: missing values, compliance with the required datatype and freshness of the property 

values etc.  

Take the example of the “Application Portfolio Catalogue” depicted in Fig. 19. By solely 

examining the dataset, one can conclude that the observable units are the application 

components. However, one cannot reliably preclude that the applications are the observable 

units. The “operating systems” (contained in the fourth column) could also represent the 

observable units of the dataset. Therefore, the observable unit has to be declared 

unambiguously within the meta object MU . A similar problem arises with the population. 

Without clear specification, one can only guess whether the given dataset covers the entire 

organisation, applications of single subsidiaries of the organisation or any other subset of the 

set of the organisation’s application components. For each of the dataset’s variables, value 

domains and measure units need to be defined. Take for example the variable “Costs of 

Operations”. Without information on the currency and the timeframe, the costs related to the 

actual costs remain insufficiently interpretable. Thus, value domains and measure units have 

to be clearly defined. Looking at this simple example, it becomes obvious that there are a lot 

of metadata required to guarantee interpretability and processing of the data.  

Fig. 21 shows the previous example data object annotated with some of its metadata. 

 

Fig. 21 Example a data object and annotated metadata 

In DICE, metadata are structured into four perspectives: (1) semantics, logistics, process and 

quality metadata. Section 2.4.1.3 offers a detailed overview of these perspectives by 

introducing the DICE metamodel. 
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Representing the data in the form of data objects and associated metadata objects is the core 

of the DICE method, which supports the manipulation of the data objects in the context of 

data preparation phases. Typical manipulations for the datasets are tasks for reformatting data, 

for selecting data, for constructing data (in case of missing values) and for integrating data 

from different sources. 

In accordance with (Grossmann and Moser 2016), these manipulations are represented as 

transformations of the number of input objects ki O iA 1,),(
 into a number of output objects

poO iA 1 ,),(
: 

],,,[],,,[: )(,)(,)(,)(,)(,)(,)(,)(, oAoAoAoAiAiAiAiA

i

A PVUDPVUDT   

Depending on the type of applied transformation tasks, various elements of the data objects 

are affected. Take the example of performing a selection transformation on a given input data 

object. In this case, an output data object is created; the dataset and its meta objects are 

likewise changed. By performing the selection, the set of observable units is reduced to the 

observable units matching the selection criteria. This of course has a direct impact on the 

population of the dataset, while other metadata objects of the data object such as the variables 

and their value domains remain unchanged.  

Data integration is an example of another but more complex transformation. In the case of 

data integration, two input data objects are integrated into one output data object. The 

resulting structure of the output object depends on the type of integration applied. (Grossmann 

2009) differentiates between two archetypes of integration transformations: horizontal and 

vertical integration. In the case of horizontal integration, the variables along with their 

associated properties of two formerly independent data objects are merged into one data 

object. The resulting data object will contain the superset of variables and hence the superset 

of their properties. The number of observable units and the covered population remain 

unchanged. In contrast, vertical integration describes the integration of two datasets composed 

of the same variables but containing different or an overlapping set of observable units. In this 

case, metadata objects do not change in regard to their variables, whereas the population will 

change. For a better understanding Fig. 22 illustrates the two archetypical integration 

transformations. 
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Fig. 22 Horizontal vs. vertical integration of two datasets 

In summary, performing transformation tasks requires altering the data on data level and 

concurrently on metadata level. In any case, metadata has to be considered as an input. In a 

simple case of transformation, the metadata of the input object are merely extended. This 

occurs, for example, when calculating summative values from a dataset. However, often 

metadata from the input data object will be required in order to make a decision about 

adequate transformation steps. An example of such a case is data editing. Data conventions, 

represented in the form of edit rules on metadata level, might pose constraints to property 

values on data level, which have to be considered when performing editing operations. An 

example of an even more challenging case is when computation on the data level requires 

input from computation on the metadata level. An example can be seen in data integration on 

schematically different datasets. In such a case, similarity measures are typically calculated on 

schema-level (thus, based on metadata), and based on these computations the transformation 

on data level can be performed. From these examples one can conclude that data and metadata 

are closely interlinked. DICE recognises this fact and comes with features which make 

possible the alteration of the data and the metadata objects concurrently. Formally the 

metadata transformations can be described as follows (Grossmann and Moser 2016): 

],,,[],,,[: )(,)(,)(,)(,)(,)(,)(,)(, oMoMoMoMiMiMiMiMM PVUDPVUDT   

Fig. 23 illustrates an entire chain of transformations schematically. The chain of 

transformation is called DICE process and consists of the three transformation tasks: T1, T2 

and T3. Each of these steps takes a composite data object as input, transforms data and 

metadata concurrently and passes on the generated output data object to the next 
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transformation task. At any position within the DICE process, data quality can be assessed 

and data provenance is transparent. 

 

Fig. 23 Simultaneous transformations for data and metadata objects 

4.2 Summary 

DICE contributes to data preparation endeavours by providing means to alter data and their 

metadata simultaneously. It considers data not as pure datasets but as composite data objects 

consisting of the data values and their metadata.  

DICE is designed as a domain agnostic method for data preparation that can be specialised 

for the situational needs of a given BA endeavour. Section 5 introduces its main concepts 

following the principles of: (1) agile method engineering and (2) situational method 

engineering.  
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5 DICE - Method Conceptualization 

In their preliminary work on DICE, (Grossmann and Moser 2016) have established the 

foundational concepts of the method based on a meta-modelling approach. In general, the 

design and implementation of DICE is framed by the Agile Modelling Method Engineering 

framework (Karagiannis 2015), which constitutes the following phases: create, design, 

formalise, develop and deploy/validate. In (Grossmann and Moser 2016), the authors place a 

strong focus on the overall concepts of DICE but give only little guidance on how to apply 

DICE in a (situational) project environment. The following section places emphasis on this 

aspect of DICE. 

DICE is strongly oriented towards the principles of situational method engineering (see 

section 2.5). The method overview provided (see section 2.6) reveals that there is no one-size-

fits-all method to support the data preparation phase of a BA endeavour. Applying the 

principles of situational method engineering as a foundation provides two vital advantages: 

(1) DICE can be continuously extended with new features in a controlled manner and (2) 

method users can compose their individual situational methods from DICE.  

At the core of situational methods one typically finds the method base, which is a repository 

holding reusable method chunks. Each of these method chunks is instantiated from a meta-

model, which is denoted as meta-structure throughout this thesis.
3
 In simple terms, method 

chunks are the main building blocks for assembling a situational method. Rather than defining 

a method completely from scratch, a method engineer composes his/her method from the 

available method chunks.  

It is commonly agreed that methods in general comprise process and product aspects. This 

also holds true for method chunks. In DICE, method chunks consistent with the definition of 

(Henderson-Sellers and Ralyté 2010), consist of one process fragment and one or more 

product fragments. The method fragments are the atomic elements of the method. Under these 

terms, DICE (or more generally, any method) can be structured into an assembly of reusable 

method chunks. Wherein (Ralyté and Rolland 2001): 

                                                 

3
 To avoid confusion we intentionally avoid the common term “meta-model” in the context of the situational 

method, as this term is already used to denote meta-models as one of the core components of a modelling 

language. 
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 a method itself is understood as a method chunk on the top level, 

 a method is consists of method chunks and 

 method chunks are assembled from product and process fragments.  

Product fragments denote the product that is created by the method chunk. More broadly, 

(Henderson-Sellers, Gonzalez-Perez and Ralyté 2008) consider both the input and the output 

(product) to be specified in the form of a product fragment. In consequence, a process 

fragment denotes the steps (sometimes also called “guidelines”) required to transform the 

input products into the output products. In the following, these definitions are applied to 

DICE. Fig. 24 provides an overview of the main concepts and dependencies. DICE draws its 

method fragments from various management disciplines: 

 from the fields of process and workflow management, concepts are derived to 

design DICE workflows graphically and to execute them , 

 statistical metadata management provides concepts for the definition and 

management of relevant metadata, 

 the research field of data mining provides countless techniques and algorithms to 

support data transformations; additionally, reference models are available (such as 

CRISIP-DM) for performing the data preparation and setting up entire DM initiatives  

 and research from quality management and statistical quality management in 

particular provide frameworks for defining adequate quality measures. 

The application of DICE is structured in five phases. In the first phase (1) relevant parts of 

these methods are identified, extracted and taken to the method base. (2) The method parts are 

structured to fit into the meta-structure of DICE. For this purpose the original method parts 

are classified into process and product fragments and adapted/enhanced where needed. 

Process fragments are made up of guidelines and algorithms, whereas the product fragments 

describe input and output data object structures. In the process of method chunk assembly (3) 

the reusable method chunks are constructed from the method fragments. Of utmost 

importance in DICE, are method chunks representing transformation task types that hold all 

the features for the required data transformations. Method chunks relevant for data integration 

and cleansing are taken to the method level and refined where required (4). From the method 

base they are instantiated and assembled into concrete DICE workflows (5). Fig. 24 provides 

an overview of these five phases. 
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Fig. 24 Core components of situational methods 

(Rolland and Prakash 1996) argue that the granularity and abstraction levels of method 

chunks are: context, trees and forests of trees where contexts represent atomic method chunks 

that can be put into a hierarchy (trees and/or forests). The top most important method chunk in 

DICE is the transformation task type. Transformation task types are structured in a refinement 

hierarchy where from the abstract top level transformation task subordinate transformation 

tasks are derived via specialisation. Initialisation, selection, addition, variable removal, 

reclassification, consolidation and restructuring are the main transformation types that can be 

further specialised or assembled as needed (see section 5.3.2 for the definitions of the 

transformation task types). Fig. 25 shows the refinement hierarchy of the transformation task 

types. For a better understanding the transformation task type “Consolidation” is exemplarily 
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detailed. Consolidation is the atomic transformation task required for record linkage, i.e. for 

merging of observable units. The standard consolidation transformation matches equivalent 

observable units based on discrete matches. In these cases, an “all-or-nothing” principle 

(Dusetzina et al. 2014) is applied, i.e. the compared properties of the two observable units 

fully match. An example is the matching of observable units with the same ID or exactly the 

same name. In contrast, “fuzzy” consolidation represents a specialised consolidation task that 

uses similarity analysis to identify equivalent observable units. Observable units that match to 

a certain extent (a certain degree of similarity) are consolidated. By further specialisation, 

additional transformation tasks might be instantiated using more specialised functions for 

matching similar observable units. See section 7.2.2 for a detailed discussion of similarity 

functions applicable for identification of equivalent observable units in EA descriptions. 

 

Fig. 25 Hierarchical breakdown of method chunks through specialisation/refinement 

All of the levels hold method chunks. Method chunks on the top level are abstract and in 

contrast to concrete chunks, cannot be taken directly into a situational method. They need to 

be refined (specialised) first. 

Applying the notion of modelling method as introduced by (Karagiannis and Kühn 2002), in 

DICE method chunks (respectively transformation task types) are made up of: 

 modelling language parts: attributes, notation and semantics, 

 procedure parts: the guidelines to parametrize tasks, and most importantly, 

 algorithms for performing the transformations on the data objects. 
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Fig. 26 Constitutional elements of transformation task types 

Adopting OMG’s multi-level hierarchy for SME, the DICE structure can be represented as 

shown in Fig. 27. 

 

Fig. 27 Multi-level hierarchy of DICE 

In DICE, transformation task types are refined hierarchically (a), (b), until they serve as re-

usable method chunks (c) within the method base.  
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The method base consists of abstract and concrete classes. Its classes are instantiated from 

the meta-structure classes. DICE supports multiple strategies (d) to create method chunks, in 

conformity with (Ralyté, Rolland and Deneckère 2004) most of which require metamodeling 

features: 

 Assembly-based strategy: assembly of existing method chunks by means of 

aggregation, decomposition and refinement of existing method chunks. 

 Extension-based strategy: enhancing existing method chunks with novel features, 

e.g. by adding algorithms for calculating additional meta-data or by extending the set 

of attributes of classes in the product part for calculation of quality metrics. 

 Paradigm-based strategy: instantiating new method chunks from the meta-

structure. 

 Ad hoc: creating methods and method chunks from scratch without instantiation 

from the meta-structure. 

Only concrete modelling classes can be taken into DICE methods such as the DICE method 

for enterprise architecture analytics. On the bottom level, concrete instantiations of 

transformation tasks are positioned, put into sequence, connected to each other via “flow” 

relation and parametrised; they build up an executable DICE workflow. 

An example of such an instance is a transformation task “Integrate Application Portfolios”, 

which takes two concrete “data objects” (such as the ones depicted in Fig. 19) as input and 

generates one integrated output data object. To this end, on model (instance) level at least one 

transformation task of type “addition” has to be parametrised; the transformation task requires 

a “name” and the two input data objects have to be specified. Depending on the required type 

of integration, subsequent transformations have to be applied. For example, in the case of an 

inner join, a subsequent selection transformation is applied in order to keep only observable 

units contained in both initial datasets. 

In (Mirbel and Ralyté 2006), the authors propose a two-step approach for method 

engineering: (1) an assembly-based approach for constructing the method and (2) a so-called 

roadmap-based approach for refining the method by providing predefined method chunk 

configurations. With the concept of DICE subprocess, DICE offers a similar concept. The 

above example of combining the two transformation tasks (of type integration and selection) 

can be seen as a perfect example of such a subprocess. In this case, the subprocess serves as a 
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reusable pattern (method chunk) composed of two atomic method chunks. The subprocess can 

be put into the method base. It serves as a pattern which can be reused whenever an inner join 

transformation is needed. 

In the following sections, the constituent parts of the DICE method are introduced in detail. 

The first part (section 5.1) covers the DICE modelling procedure and discusses how DICE 

models are created, the roles which are typically involved and the interplay with the processes 

of situational method construction.  

5.1 The DICE Modelling Procedure 

The DICE method can be applied in diverse BA situations. In (Grossmann and Moser 2016), 

the authors suggest embedding DICE into data mining (DM) and knowledge discovery (KD) 

processes to unfold its full potential. The Cross Industry Standard Process for Data Mining 

(CRISP-DM) (Chapman et al. 2000), introduced in section 2.3, is one prominent example of 

such a process, or more precisely, of such a process-oriented reference model.  

In combination with CRISP-DM, a DICE workflow represents a process instance 

hierarchically deducted from the superior CRISP-DM levels: (level 1) represents so-called 

phases, (level 2) is made up of generic tasks intended to cover all possible steps of a DM 

endeavour and (level 3) provides specialised tasks providing concrete input on techniques and 

how to apply them in specific situations. Process instances (level 4) reflect the instance level 

as enacted in a concrete BA endeavour. In this vein, the DICE workflows represent the 4
th

 

level and the DICE procedure is part of the 3
rd

 level.  

The phases and tasks of the DICE procedure model (3
rd

 level) are presented in an idealised 

sequence. Depending on the given situation, tasks will likely be conducted in a different 

sequence, will be omitted completely and will definitely be shaped to the actual requirements. 

In many cases the tasks will need to be conducted over and over again with different 

parametrisation of the transformation tasks and by using additional or different data sources as 

an input. 

“Modelling a DICE workflow, defining a sequential order of the required data 

transformation tasks, must be understood as analytical and creative work” (Grossmann and 

Moser 2016). Applying a reference model such as CRISP-DM, a data engineer specialises the 

generic recommendations from the reference model until reaching the specific level where the 
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actual DICE workflow is designed. In the following sections the DICE procedure is 

introduced framed by the CRISP-DM phases. 

Before starting with the actual data preparation and applying DICE, the phases Business 

understanding and Data understanding have to be accomplished. The first phase, Business 

understanding addresses the definition of the business objectives of the BA endeavour and 

requires assessing the situation with a focus on available resources, risks and given 

constraints. Based on these findings, the most important step of the phase, namely the 

definition of the Data Mining objectives and the data mining success criteria has to be 

conducted. Success might be defined by a certain level of predictive accuracy that must be 

achieved in the final delivery. With regard to the work product delivered through the data 

preparation, success criteria are defined together with the quality criteria deliberately derived 

from the DICE meta structure. Fig. 28 summarises the steps of the business understanding 

phase with emphasis on the DICE relevant process steps. 

 

Fig. 28 Modelling procedure – Phase “Business understanding”, adapted from (Chapman et al. 2000) 

In the second phase “Data understanding”, the source datasets are collected and explored. 

Conducting an initial analysis, the data analyst obtains an impression of the data quality of the 
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The data analyst creates initial DICE workflows comprising transformation tasks allowing 

loading of the data and restructuring of the data as needed. In most cases, datasets in tabular 

format will be applicable (the common format of business analytics). Of utmost importance in 

this phase is the creation of composite data objects from the given sources. Thus, not only the 

datasets themselves but also metadata describing the sources have to be collected and 

characterised applying the structure of the composite data objects introduced above. This step 

is called initialisation. Any time a new source dataset is considered, it has to be initialised. 

Thus, all metadata have to be calculated from the input dataset and manually added where not 

automatically ascertainable.  

 

Fig. 29 Modelling procedure – Phase “Data understanding”, adapted from (Chapman et al. 2000) 

For example, a typical dataset could be one holding application data as the application 
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name, operating costs and operating system. The variable “ID” could be considered as a 

unique identifier of the represented observable units. 

By semantically interpreting the content of the dataset it becomes clear that the observable 

units are application components. Although somehow obvious in this case, one could also 

assume that operating systems represent the observable units in the given dataset. The 

population is not clear at all. It could be all application components of the entire organisation, 

the application components of a specific organisational unit or any other subset of application 

components. Without additional information the population represented in the dataset cannot 

easily be determined. Thus, additional metadata, which might not be extractable from the 

given input sources, has to be collected and imputed.  

The same holds true for estimations of the data quality. DICE considers three types of 

quality data:  

 Instant quality indicators can be calculated directly from the given property values. 

Examples are completeness, referential integrity etc. 

 Requirement-based quality indicators are not that straight forward and need 

additional input for their determination. An example is the calculation of data 

freshness, which obviously requires a threshold, specifying the acceptable age of the 

data properties (derived from the last update timestamp). 

 Assessment-based indicators cannot be calculated from the given dataset and have 

to be appraised when initially loading the dataset. (Berka et al. 2016) provide a 

catalogue of nine scored questions for such a quality appraisal. Example questions 

are: Is the variable important for the data source owner? What is the average time 

span in which data are adjusted in case of changes? Are the data revised on entry? 

Are there any kind of technical input checks applied to the data? 

Detailed information on these metadata types is discussed in section 5.2 where the entire 

metamodel with all DICE meta objects is presented. Anticipating this, it can be stated that 

quality and structural requirements are formalised in the form of processing metadata and that 

DICE provides mechanisms for the automatic appraisal of property values against these 

requirements. 

Another important step in this phase is the determination of the required population size: the 

population coverage. Determining the coverage (respectively the sample size) is critical. 
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Oversized sample populations may waste time and resources, while samples that are too small 

often result in inaccurate results. Thus, the sample population has to be chosen in such a way 

that it makes inferences about the target population possible. In the literature, an abundance of 

techniques for the determination of sample sizes is discussed, see (Dupont and Plummer 

1990). In essence, the required population size (sample size) is calculated from the following 

four determinants: (1) population size, (2) margin of error, i.e. confidence interval, (3) 

confidence level and (4) the degree of variability in the variables being measured (standard of 

deviation), see (Israel 1992). The required population size can be calculated as follows: 

2
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where Z
2
 is the abscissa of the normal curve that cuts off an area α at the tails, e is the 

tolerable error for the sample mean (required level of precision) and p is the estimated 

proportion of an attribute that is present in the population (Israel 1992). 

The third phase of the DICE procedure is data preparation. The initial DICE workflow is 

extended in this phase. Transformation tasks, such as select data, restructure data and 

consolidate data are applied with the aim of generating a sound dataset for the upcoming data 

modelling and evaluation phases.  
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Fig. 30 Modelling procedure – Phase “Data preparation”, adapted from (Chapman et al. 2000) 
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selection task. The DICE transformation tasks are assembled via the “flow” relationship, 

which determines in what order the transformations have to be executed.  

If a required transformation task type (method chunk) is missing in the method base, 

respectively in the method, or adaptations of given method chunks are required, business 

analysts will ask the method engineer to enhance the method base.  

The prototypical DICE implementation (see section 8.1) also makes possible the creation of 

transformations from scratch. In this case the required transformations can be coded using a 

generic transformation task type as the starting point. Ideally, such cases are re-evaluated. 

Where suitable, these transformation tasks can be considered to be generalised/specialised and 

added to the method base. 

Executing a DICE workflow generates an output data object. Based on the generated 

metadata (foremost on the calculated quality KPIs) and by analysing the actually generated 

dataset, the data analyst scrutinises the intermediate result of his modelling efforts and 

changes the workflow design as needed by aiming for an optimum workflow design. Usually, 

repeated backtracking within the designed workflow will be required for the purpose of 

correcting and optimising previously designed workflow parts or for adding/exchanging input 

data sources (Chapman et al. 2000).  

This procedure continues until a satisfactory solution is achieved. The same holds true for 

the entire modelling procedure. At any point in time, the business analyst might decide to step 

back to a previous task and redo some of the already conducted tasks. Finally, the cleansed 

and integrated data objects are handed over to the modelling, analysis and deployment phases. 

An important step when constructing and utilising a situational method such as DICE is of 

course, the task of “Method Administration”. It emphasises maintaining the method base. It 

has to be clearly defined under what conditions method chunks and fragments are added to the 

method base. In (Ter Hofstede and Verhoef 1997), the authors adduce “coherency” and 

“granularity” of method chunks as important categories for decision making. Too coarse 

grained method chunks will lead to higher efforts to refine the chunks for the given 

application scenario. On the other hand, if too fine grained, they will only be of value in rare 

cases. The hierarchical structured DICE method base alleviates that problem to a large extent. 

For example, a simple integration transformation might be supported by a method chunk 

“addition transformation task type”. In a standard case the merge task might cover merging 
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datasets based on exact matching keys. A more sophisticated approach enhancing the 

“integration transformation task type” might support fuzzy merge (e.g. based on distance 

metrics). In this case, the method base comprises two integration tasks: the standard 

integration and the fuzzy merge as a specialisation of the former transformation task type. See 

Fig. 25 which elaborates on this example from the viewpoint of the DICE metamodel.  

The following section discusses the DICE modelling language with strong emphasis on the 

DICE metamodel. 

5.2 The DICE Modelling Language 

The DICE modelling language can be divided into two parts: (1) the structural part and (2) 

the behavioural part. Initially inspired by the Unified Modelling Language (Rumbaugh, 

Jacobson and Booch 2004), this classification also reflects the two constituent parts of a 

method chunk namely the process fragments and the product fragments.  

The concepts of the DICE modelling language, i.e. its disposable modelling classes and the 

relation classes that connect them, are grouped into these two categories. The structural part 

contains the concepts required to describe the data analysis object AO  and its corresponding 

meta data object MO . The behavioural part consists of the concepts for defining the dynamic 

behaviour, namely for defining the workflows executing the transformations on the data 

objects.  

UML, a modelling language widely accepted for illustrating knowledge representation 

languages, see e.g. (Brockmans, Haase and Studer 2006), (Buckl et al. 2007) and (Fischer and 

Winter 2007), is used to represent the DICE metamodel, see Fig. 31. 
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Fig. 31 DICE Metamodel Overview 
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In the structural part of the metamodel one can find the aforementioned classes. Notably, 

only the class “property” is made up of both a data-level (the concrete values) and a meta-

level. All other classes are represented solely by the meta-level, although inherent in the raw 

datasets (i.e. on data level).  

The centrepiece of the behavioural part of the DICE metamodel is the transformation task 

type, which is specialised into more concrete transformation task types, such as selection, 

addition, consolidation and reclassification.  

5.2.1 Behaviour concepts of the DICE metamodel 

The behavioural part holds the constructs required for defining the processing of the data 

objects. A graphical workflow model depicting the conducted transformation tasks including 

their parametrisation contributes to the fulfilment of the data provenance requirements. 

Traceability is guaranteed by the modelled workflow itself. It represents the processing 

history of the data objects. By defining the transformation tasks, their parametrisation and the 

sequence in which the transformations have to be enacted, the modification of the data 

becomes comprehensible. The resulting data objects become reproducible. 

A DICE workflow is defined by the following concepts: Start, Transformation Task Type, 

End and by the relation class “triggers”, which connects the aforementioned modelling 

classes. Start and End classes are required to define a structurally sound process (van der 

Aalst 1996). The class transformation task type specialises two classes: an atomic 

transformation called “Transformation Task Type” and a “Subprocess Task”, which links to 

an externally defined DICE process that in turn comprises the aforementioned concepts. The 

class “Subprocess” makes possible the assembly of transformation tasks into reusable method 

fragments. In this case, instantiated subprocesses serve as reusable patterns, which are stored 

in the DICE method base. 

The abstract transformation task type class is in turn specialised into concrete transformation 

task types forming a specialisation hierarchy. The specialised transformation tasks are 

classified into the group of: “get transformation tasks” and “integrate and cleansing 

transformation tasks”. The latter specialises the transformation task types: selection, addition, 

consolidation, reclassification and variable removal. Inspired by the work of (Papageorgiou, 

Vardaki and Pentaris 2000), these transformation task types have been identified as the most 
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important atomic transformation tasks for DICE. DICE provides means to assemble these 

atomic transformation tasks into more complex transformations (utilising the concept of 

subprocesses). Reflecting on the rich literature on data transformation algorithms, it becomes 

obvious that these archetypes often have to be further specialised.  

Take the example of a consolidation transformation. In their survey on binary similarity and 

distance measures (Choi, Cha and Tappert 2010) cite more than 76 similarity and distance 

measures, all of them supporting “fuzzy merge” transformations. With the hierarchical 

concept of DICE it becomes possible to find a balance between a high number of specialised 

transformation task types versus a smaller number but with higher intrinsic complexity 

(accompanied by the increasing parametrisation efforts) of transformation task types. In this 

case, the method engineer has to decide whether to offer multiple distance metric functions 

within one transformation task type (by offering parametrisation options) or provide several 

transformation task types, each based on individual distance algorithms.  

The second group of transformation task types is the group of get transformation tasks types. 

This group contains transformation task types for accessing, restructuring and formatting the 

input sources. Access transformation task types deal with the loading of the data from a given 

data source. Data might be retrieved from locally stored files but also from web resources or 

any other place. An example is loading data streams from social media platforms such as 

twitter
4
. Formatting transformation task types are required to interpret the data, which might 

reside in arbitrary technical formats such as csv (comma separated value), pdf (portable 

document format) or in proprietary vendor formats such as Microsoft’s xlsx (Excel file) and 

docx (Word file).  

Besides the technical format, the datasets structural format has to be considered. In the 

context of EAM, data can come in various formats. The range extends from highly structured 

datasets instantiated from EA metamodels to less formally structured data such as architecture 

change requests, architecture vision papers and statements of architecture work, which 

typically reside in semi-structured text-heavy formats. All of these relevant datasets have to 

be reformatted into tabular form (horizontal format), the most typical input format for DM. As 

                                                 

4
 www.twitter.com, see also (Grossmann and Moser 2016) where a specialised transformation task type for 

loading data from twitter is presented. 

http://www.twitter.com/
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with the group of cleansing and transformation task types, the get transformation tasks types 

are structured into a hierarchy. 

Table 3 provides an overview of the introduced archetypical transformations and provides 

examples from the fields of EAM.  

Table 3 Archetypical transformation task types – behaviour concepts in DICE 

Archetypical 

Transformation Task Type 

Definition/Example 

Selection Conducting selection transformations limits the population and results in a 

reduced dataset. Observable units not meeting the selection criteria are removed.  

A simple example is the selection of application components using a certain 

operating system from an application portfolio catalogue such as the one of Fig. 

19. 

Variable Removal Variable Removal transformations remove/discard one or more variables from a 

dataset. 

An example is to delete one variable (e.g. “Operational Costs”) and its properties 

including their values (and metadata) from the application portfolio catalogue 

dataset depicted in Fig. 19. 

Reclassification The reclassification transformation is used to convert the values of the properties 

of a variable from one grouping level to another. 

An example in context of the application portfolio catalogue is to change the 

“Operational Costs” from the measure unit TEUR into EUR. 

Addition The addition transformation combines two datasets by appending one dataset to 

another.  

An example is to merge the dataset of the application portfolio catalogue with a 

second dataset. Typically but not mandatory, both input datasets carry the same 

observable units and share at least a subset of variables.  

Consolidate observable 

units 

Consolidation of observable units serves a twofold purpose: (1) it is used for 

record linkage where duplicate observable units are removed and (2) to support 

groupby-transformations where a group of observable units is aggregated into a 

new observable unit. 
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For each variable, aggregation functions have to be specified. Typical 

aggregation functions are: choosing values with the better quality and summative 

aggregations such as sum, max, average, mean etc. 

5.2.2 Structural concepts of the DICE metamodel 

The structural part defines the basic information logic items, namely the composite data 

analysis objects ( AO ) and the composite metadata objects ( MO ) introduced in section 4.1. 

Table 4 discusses the behavioural concepts of the data analysis objects and draws relations to 

the fields of EAM. 

Table 4 Archetypical types of data analysis objects in DICE 

Meta structure 

concept 

Definition/Example 

Observable unit Observable units are the entities for which information is collected and analysed.  

In the context of EA, many of them can be derived from the EA metamodels in use and are 

represented in the form of the metamodels' modelling classes and relations. Entities of 

interest are the typical EA building blocks stipulated in the EA metamodels. According to 

TOGAF, a building block is defined as a (potentially) reusable component of the enterprise 

architecture. TOGAF cites actors, business services, application components and data entities 

as examples of building blocks. In their work, (Aier, Riege and Winter 2008b) provide a 

comprehensive overview of typical building blocks. They list and score the building blocks 

according to their importance in EA endeavours. In general, each of these building blocks is 

an observable unit candidate for EA-related BA endeavours. 

Dataset The set of data collected for describing the observable units is called dataset. Datasets 

comprise observable units and their properties. 

In EA typical datasets are architecture descriptions, such as catalogues (e.g. the application 

portfolio catalogue in Fig. 19), matrices and models. However, many times the descriptions 

might not be that structured, and relevant observable units, variables, properties etc. have to 

be extracted first. 

Variables The properties of observable units are classified into variables. 

In the context of the given example (Fig. 19), the variables are the columns of the dataset. 

Properties Properties carry the values collected/available for observable units. 

In the context of EAM they differentiate the building blocks (observable units). In Fig. 19 
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the properties are represented (as is the rule) in the cells of the application portfolio catalogue 

dataset. 

Population A population represents the set of observable units.  

In DICE, the population is represented as metadata of the dataset. The difference between 

the entire population (scope) and the observed part of the population (sample population) 

represented in a given dataset must be distinguished. 

In the context of an enterprise architecture, typically the entire population of building blocks 

is of relevance. Examples are: the population of business processes, of application 

components (possibly documented in an application portfolio catalogue as in Fig. 19) or all 

technologies in use.  

 

In general it can be denoted that it is difficult to determine the appropriate metadata 

(Sundgren 1996). For deciding which meta information is worth keeping, the application 

domain has to be analysed. For the EAM domain this is done in section 7.1. However, on the 

DICE meta structure level predefinitions are made. Utilising the presented refinement 

mechanisms, adequate metadata objects can be derived as needed. 

On meta structure level the DICE metamodel structures the concepts into observable unit, 

dataset, variable and property. Each of these concepts captures metadata, which is categorised 

into the following aspects, inspired by the work of (Kent and Schuerhoff 1997): 

 Semantic metadata carry contextually relevant data that provide a level of 

understanding about the data, i.e. the meaning of the data. 

 Logistic metadata is used to provide technical information on the given datasets. 

Examples are: locations, technical data formats, access criteria etc.  

 Process metadata is used for processing/transforming the data. All metadata 

required for conducting the transformations and for documenting the performed 

transformations are stored in this aspect. Additionally, the process metadata 

represent the requirements that the property values have to comply with.  

 Quality metadata are of utmost importance. Data transformations heavily impact 

the data quality. Quality measures are applied to all concepts of the data level. 

Fig. 32 shows the big picture. For a better overview, only the DICE-specific meta data 

structures are presented in detail. That is, common metadata such as the ones defined in the 

Dublin Core Metadata Element Set: creator, description, publisher, contributor, date, type, 
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language, identifier, source, relation, coverage and rights (Dublin Core Metadata Initiative 

2012) can be added as needed, leveraging the DICE meta modelling capabilities. There are a 

great many different metadata standards available across disciplines, such as the book 

industry, library science, geography, archiving, e-commerce, ecology, arts and education. 

Dublin Core is a general purpose standard, which can be used cross-discipline. See (Duval 

2001) and (Smith and Schirling 2006) for an overview. 

On the following page the structural part of the DICE metamodel is depicted. Please note 

that you can find the graphic split and zoomed in the annex for better readability, see 

section 10.1. 
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Fig. 32 Complete MM of the DICE structural part 
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In a narrow sense, the dataset 
AD is solely represented by its constituent properties. On data 

level, structural information such as the observable units and the variables are inherent but not 

explicitly represented. Even if a given dataset consists of observable units with unique IDs in 

the dataset and column headings, this information has to be extracted and sufficiently defined 

on metadata level. As has been discussed in the introduction to section 4, the input datasets 

have to be initialised; taking the data level as an input, metadata have to be added to create the 

required composite data object. The initialisation transformation task is presented in section 

5.3.2.1 in detail.  

It creates the composite data object comprising data and metadata objects and is defined as 

follows: 
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where VAL represents the set of atomic property values on data level, and SEM, LOG, 

PROC and QUAL represent the sets of meta data objects, which are hierarchically structured 

into sub meta objects.  

Elements within this hierarchically structured metamodel are denoted via superscript that 

presents the path from one of the four base categories to the concrete metadata values. The 

“greater than sign” is used to depict the navigation paths. Take the following example: 

tsmeasureUninValueDomaiPROC

vV 
provides information about the specification of the measure unit 

of variable v which is categorised as processing information (category: PROC). It is required 

to specify the value domain of the variable. Likewise, 
syntaxQUAL

uvP 
provides information 

about whether the syntax of the value held in property uvP  complies with the specifications 

in 
syntaxnvalueDomaiPROC

vV 
. 

An unambiguous definition of the observable units requires specifying the metadata 

collected in the metadata category SEM, where the observable units are defined in natural 

language. As an example: 
typeSEMU 

provides information about the semantic definition of the 
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observable unit. To be able to precisely identify an observable unit within a dataset, unique 

identifiers for the observable units have to be defined. Thus, the variables constituting the data 

key within the dataset must be indicated. The data key of a dataset can be defined by one or 

more variables whose property values contained within are used to uniquely identify each of 

the observable units. 

 trueVVD keyPROC

vv

keyPROC   | . 

Due to the immanent importance of data quality aspects in the context of data preparation, a 

detailed discussion of these aspects is provided in section 6.  

The set of the DICE metadata cannot be considered as a final set. Refining transformation 

task types, as discussed in section 5.2.1, will typically pose requirements on the structural 

concepts, i.e. on the product fragments. Take the example of standard and fuzzy consolidation 

introduced in section 5.2.2. In addition to the standard metadata, similarity measures and 

distance measures have to be documented in order to keep the conducted consolidation steps 

comprehensible. The same extensibility requirements hold true for the DICE algorithms, as 

will be discussed in the upcoming section. 

5.3 DICE Algorithms and Mechanisms 

Algorithms and mechanisms are a third important building block of a modelling method. 

DICE comes with two basic types of algorithms: (1) algorithms operating on the entire 

workflow and required for its execution and (2) algorithms (as part of the process fragments), 

for performing the transformations that hold the processing logic of the actual data 

transformations.  

5.3.1 Macro Level: Execution of DICE Workflows 

The DICE workflows are structured in the form of sound workflow nets using a BPMN-like 

notation. See (White 2004) for an introduction to BPMN. The macro level algorithms ensure 

the processing of the transformation tasks in the defined sequence. The algorithms verify 

whether all preconditions are fulfilled before executing a transformation. Typical 

preconditions are the checking of whether all required input parameters are available in the 

model.  
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For the execution of a DICE workflow the execution logic of Petri nets is applied. For an 

introduction to the application of Petri nets in the context of workflow management see (Van 

der Aalst 1998). More specifically, mechanisms of place/transition nets (P/T nets) are applied 

where each DICE transformation task represents a transition in the Petri net. The places in the 

Petri net represent the state of the data objects after performing a transformation. The tokens 

within the Petri net represent input and output datasets. 

Only if a transformation was successful (that is to say, all required data and metadata have 

been generated, or rather, inputted) are the upcoming transitions ready to be invoked (ready to 

‘fire’). Depending on the complexity of the DICE workflow, there can be more than one data 

object (tokens) within the system. When a transition fires (i.e. a transformation is performed), 

it consumes the required input data objects (tokens) and typically creates one output data 

object (token) in its output places (the state after performing the transformation). Thus, only if 

preconditions are fulfilled, does the algorithm move on to the next transformation task. Fig. 

33 presents a basic DICE workflow comprising three transformation tasks: two for loading 

the datasets and converting them into data objects (initialize) and one for integrating the data 

objects via addition transformation. The corresponding Petri net is also shown. 



DICE - Method Conceptualization 

 

101 

 

 

Fig. 33 Petri net representation of an exemplary DICE workflow 

The marking in the Petri net shows that both datasets have been successfully loaded and 

initialised. As soon both datasets (represented by the tokens) are available, the transition 

“addition” can fire and produce the integrated dataset. For a more detailed discussion on Petri 

net execution algorithms see (Murata 1989). 

5.3.2 Micro Level: Algorithms for Performing Data Transformations  

Performing a transformation task requires initialised data objects and a parametrised 

transformation task. The transformation algorithms are part of process fragments of the 

method and typically compose: (1) dedicated transformation algorithms, transforming data 

and metadata and (2) a (re-)initialisation algorithm applied after performing the actual 

transformation task. The first type addresses the algorithms dedicated to performing the 

transformation on data and metadata level. The latter has to be applied after performing the 

transformations to re-calculate the affected metadata.  
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For the data transformations, dedicated algorithms are applied. One can easily find dozens of 

merge algorithms, see e.g. (Mishra and Eich 1992) and (DeWitt, Naughton and Schneider 

1991) for an overview. For incorporation into DICE, these algorithms typically have to be 

extended and restructured to fit into the DICE meta structure. Join algorithms such as the 

nested loop join, the sort-merge join and the hash join are perfect examples. Choosing an 

appropriate join algorithm depends on the data structure and on the size of the given input 

datasets.  

Fig. 34 depicts the popular nested loop join as an example. In its most basic form the 

algorithm uses one dataset as the outer input table and the second dataset as the inner input 

table. In the outer loop the first dataset is consumed row by row (i.e. observable unit by 

observable unit). The inner loop, executed for each outer row, searches for matching rows in 

the inner input table. 

for each observableUnit 
rU in dataset 

rD do 

   for each observableUnit sU  in sD  do 

      if 
rU  and sU  satisfy the join condition 

        then output the observableUnit < 
rU , sU  > 

Fig. 34 Nested loop join on data level 

To perform the required calculation on metadata level, DICE extends these generic 

transformation algorithms by either appending additional algorithms, e.g. the initialisation 

algorithm for recalculating the metadata or by directly extending the given algorithms. A 

simple example based on the nested loop join is shown in Fig. 35. The join algorithm is 

extended with outputting similarity measures as part of the quality metadata. The initialisation 

algorithm recalculates the metadata. Details on the (re-)initialisation can be found in section 

5.3.2.1. 
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for each observableUnit 
rU  in dataset 

rD  do 

   for each observableUnit sU  in sD  do 

      if Ur and Us satisfy the join condition 

  then output the observableUnit < 
rU , sU  >  

 
 % extend algorithm to output similarity degrees  

   per observable unit as part of the metadata % 

       output the similarity degree SD(
rU , sU ) 

 
% initialization algorithm % 
initialize (output dataset) 
output final data object 

Fig. 35 Merge algorithm extended with fragments for calculation of meta objects 

Summing up, algorithms are intimately intertwined with the metamodel. Specialising and 

refining method chunks requires the adaptation of its algorithms and likewise of its modelling 

classes. Parametrisation options for a transformation task type, the structure of the meta data 

objects and the algorithms must be aligned to form an instantiable method chunk. 

In (Denk, Froeschl and Grossmann 2002), the authors present a framework for documenting 

statistical data processing on data and metadata level. Algorithms for altering data taking 

metadata into account have been discussed in (Vardaki, Papageorgiou and Pentaris 2009), 

(Papageorgiou, Vardaki and Pentaris 2000) and (Papageorgiou et al. 2001). DICE builds on 

these approaches. It defines atomic transformation task types and provides means to 

instantiate and assemble these tasks into data preparation workflows. Whereas the quoted 

research on metadata management defines strict preconditions to avoid biased data generated 

by inappropriate transformation tasks, DICE is designed to be more failure-tolerant by 

allowing processing of inadequate transformations. Instead of strictly defined preconditions, 

DICE provides quality indicators to the data engineer after performing the transformations. 

Based on these quality data (calculated via initialisation transformation after performing the 

actual data transformation task), the data engineer can reconsider and adapt previously taken 

transformation tasks. 

Depending on the type of transformation performed, different kinds of metadata require 

subsequent alteration. For example, whereas a selection transformation applied to a dataset 

will create a subset of the population and thus the semantic metadata of the population 

requires an update, the reclassification of property values of a variable affects the metadata of 

the variable but not of the population. 
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In the following sections the archetypical transformation tasks of DICE are introduced. 

5.3.2.1 Initialisation 

The initialisation transformation creates the composite data object comprising data and 

metadata. Input for the initialization transformation is either a raw dataset ),(iAD  for which the 

metadata have to be created or a DICE data object )(iO for which the metadata need to be 

recalculated. Output of the initialization are the data objects which are made up of the dataset, 

the observable units, the variables and the properties, each including its metadata. Metadata 

are recorded manually or automatically calculated. Formally initialiseT  can be represented as 

follows: 

    )()()()()(),( ,, ooooiiA

initialise OVUDODT   

For the output dataset: semantic metadata, logistic metadata, process metadata and some of 

the quality metadata have to be manually added by the data analyst. 

Depending on the type of quality indicators, the assessment must be carried out manually or 

can run fully automated. For example, whereas semantical correctness of a property value 

requires human appraisal, many other quality indicators such as the completeness of a 

variable, can be calculated automatically. In section 6 the list of DICE quality indicators is 

discussed in detail. 

In the case of large amounts of data, a manual appraisal of all observable units will not be 

sufficient. Hence, a set of observable units (a sample) needs to be selected from the given 

dataset, which is less in number (size) but adequately represents the population so that true 

inferences about the data quality of the entire dataset can be obtained. A two-stage approach 

is suggested where in a first step for a selection of observable units, an estimation of the data 

quality is conducted. This information is then used to construct the missing quality indicator 

values of the non-evaluated properties. This approach is commonly referred to as data 

imputation. There are manifold approaches and algorithms for data imputation that can be 

classified into context dependent imputation (based on association rule techniques) and 

context-independent imputation techniques (based on clustering techniques), see (Allison 

2002) for an overview. The context-independent approach hypothesizes a probabilistic 

relationship between the assessed properties and the missing values. Based on this, the 
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occurrence probabilities of the properties are estimated. The subsequent data imputation is 

done randomly based on the estimated probabilities. The minimum sample size required, 

avoiding biased results, can be determined by applying sample size determination methods as 

have been discussed in section 2.4.1.4. The initialization algorithm in pseudo code can be 

found in the annex in section 10.2.1. 

For a better understanding, Table 5 exemplarily illustrates the metadata of the application 

portfolio catalogue after initialisation based on the DICE metamodel. 

Table 5 Example data object after initialisation 

Metadata Example Remark 

populationSEMD   All applications used within the 

organisation 

 

sampleSEMD   All applications used within the 

organisation 

Note that the finite population of all 

applications is ideally covered: 

sampleSEMD 
 = 

populationSEMD 
. 

SizePopulationSEMD   800 Based on estimation 

The sample size of the population can be 

calculated from the observable units. 

Assume |U|=755 

sourceLOGD   EA repository The organisation’s EA repository is the 

source of the given dataset. 

nameLOGD   Application portfolio catalogue 

report 

In most cases the file name or the 

heading of the table 

tecreationDaLOGD   03/12/2016 MM/TT/YYYY 

keyPROCD   ID As a unique identifier, the variable ID is 

defined. 

totalQUALD   0,83 83 %, calculated from the quality 

indicators of the subordinated concepts 

(U, V, P) 

… … … 

uniquenessQUALD   1 100 %, assuming no duplicate IDs in the 

dataset 

... … … 
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ndescriptioSEMU   “An application component is 

defined as a modular, deployable 

and replaceable part of a software 

system that encapsulates its 

behaviour and data and exposes 

these through a set of interfaces.”  

Note: In this example the definition of 

application component is taken from 

Archimate (The Open Group 2016). 

ndescriptioSEM

ostOperatingCV 
 

The yearly expenses which are 

related to the operation of the 

application component including 

license cost, infrastructure cost and 

HR related costs. 

A precise definition of the semantic 

meaning of the variable must be defined. 

In this example of the variable 

“Operating Cost” 

tmeasureUninvalueDomaiPROC

ostOperatingCV 
 

€/year  

… … … 

totalQUALU 

1020  
0,93 Quality indicators are evaluated per 

observable unit. The example shows the 

estimated total quality of the application 

CosMos (with ID 1020). Details on how 

to calculate the total quality indicator are 

presented in section 6. 

… … … 

VAL

CostoperatingP ,1020  
23.000 Operating costs of the observable unit 

“CosMos” with ID 1020  

23.000 is the value assigned to the 

property. 

5.3.2.2 Selection 

Conducting a selection transformation limits the population of a given input data object by 

removing those observable units not meeting the selection criteria (Papageorgiou, Vardaki 

and Pentaris 2000). Formally the selection transformation can be denoted as follows: 

 riteriaselectionCOUriteriaselectionCOTU i

i

i

select

o

select |),( )()()(   

where selectionCriteria consist of

     constantoperatorUconstantoperatorPconstantoperatorP VAL

i

QUAL

iv

VAL

iv ,,,,,,  . 
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Thus, selection criteria may refer to values of the dataset )( VAL

ivP  on data level but also to 

quality metadata of observable units (
QUAL

iU ) and/or of quality metadata of single properties 

).( QUAL

ivP  An operator in this context is a reserved word or a character to perform operations. 

Operators as part of the selection criteria are typically of the following types: arithmetic, 

comparison and logical. The selection algorithm in pseudo code can be found in the annex in 

section 10.2.2. 

5.3.2.3 Addition 

With this archetypical transformation, two datasets typically containing observable units of 

the same type or with equivalent variables are appended. If the set of contained observable 

units is not disjointed, duplicate observable units might arise in the output dataset.  

DICE considers the classical merge (join) transformation as a composite transformation 

made up of addition and subsequent selection transformations. Operating on data and 

metadata concurrently, after performing an addition transformation, the possible duplicates 

can be distinguished by their metadata and subsequent selection of unique observable units 

(see section 5.3.2.2) remains possible. The addition transformation can formally be denoted as 

follows: 

    )()()()()( , lklk ii

initialise

ii

additioninitialise

o

addition OOTOOTTO   

where )( kiO and )(ilO denote the input data objects. initialiseT  has to be performed to recalculate 

the metadata. 

Matching variables and concatenating the variables’ properties is expedient only for those 

variables that carry the same semantic meaning. A simple but in many cases sufficient 

equivalence function may consider the variables’ names. Two variables of the input data 

objects ik and il can be concatenated only if they have equivalent names: 

}|{
),(),()()()( nameSEMi

n

nameSEMi

m

iio lklk VVV×VV


  

where each of the index m indicates a variable of the data object 
)( kiO and the index n 

represents a variable in 
)( liO . 



DICE - Method Conceptualization 

 

108 

 

More elaborative equivalence functions will take additional metadata such as the variable 

definition and the value domain into consideration. In an ideal case the datasets do not contain 

duplicate observable units such that subsequent record linkage transformations are not 

required. The intersecting set of observable units of the two input objects is empty in this 

case; respectively the output data object (after performing the addition transformation) does 

not contain any observable units labelled with a high degree of similarity to another 

observable unit of the dataset. Formally this can be denoted as follows: 

0),({} )()()(
 uniqueUOTUU o

select

ii lk  

where the selection criteria uniqueU retrieves all observable units marked by a high 

similarity value 
similarityaccuracyQUALoU ),(

 which has to be calculated as part of the initialisation 

transformation. See section 7.2.2 for calculating similarity degrees. 

In the annex in section 10.2.3 the addition algorithm is presented in pseudo code.  

5.3.2.4 Variable Removal 

Variable removal is involved with the discarding of one or more variables from a dataset. 

DICE refrains from the concept of “projection” quoted in (Papageorgiou et al. 2001) and 

(Papageorgiou, Vardaki and Pentaris 2000). A projection transformation in DICE is 

considered as a composite transformation task made up of a variable removal transformation 

and possibly followed by an observable unit consolidation transformation (see section 

5.3.2.6). The latter is required only if a variable belonging to the data key is removed and the 

remaining dataset consists of duplicate entries according to the residual key attributes. 

The variable removal transformation can formally be denoted as follows: 

    )()()()()( |),( i

ri

i

iinitialise

i

r

i

movevariableReinitialise

o

movevariableRe VVVVTVOTTO   

and 

)(: )()( o

movevariableReionconsolidat

keyPROCi

r OT  trueV if 
 

The variable removal algorithm in pseudo code can be found in the annex in section 10.2.4. 



DICE - Method Conceptualization 

 

109 

 

5.3.2.5 Reclassification 

Reclassification transformations change the classification schema of a variable, i.e. they 

convert the properties of a variable from one grouping level to another. (Papageorgiou, 

Vardaki and Pentaris 2000) call this type of operation “grouping transformations”. They 

differentiate between two types of grouping transformations: (1) transformations applied to 

key variables of the dataset and (2) transformations applied to any other variables. DICE 

considers these grouping tasks as composite transformation task types: first, the actual 

reclassification transformation and in a second step (if data key variables are affected) a 

consolidation transformation (see section 5.3.2.6). 

Reclassification transformations allow transformation of the value domains of a variable into 

another. In this context, DICE acknowledges the three main types of statistical data: 

numerical (discrete and continues), categorical and ordinal. Equivalent variables can be 

transformed by applying transformation rules. Property values that do not meet the conditions 

of these rules are assigned the value ‘not available’ (NA). Transformation rules are specified 

via simple lookup tables or via conversion functions. 

The reclassification transformation can formally be denoted as follows: 

 


 




otherwise

failP if

P

,PRF
VOTO

nvalueDomaiQUALi

ir
VALi

ir

VALi

iri

r

i

cationreclassifi

o

cationreclassifi

),(

),(

),(
)()()(

,
),(  

where RF() denotes the reclassification function that delivers a reclassified value in case of 

success or the value ‘NA’ for ‘not available’ if the reclassification failed. RF() is only applied 

if the property value 
VALi

irP ),(
 does not comply the defined value domain, i.e. 

falseP nvalueDomaiQUALi

ir ),(
. See section 6.2 where this quality KPI is defined in detail. 

The reclassification algorithm in pseudo code can be found in the annex in section 10.2.5. 

5.3.2.6 Consolidation 

Consolidation is the transformation step which merges observable units. As a precondition, 

observable units have to be equivalent. In DM, equivalence of data is typically measured via 

similarity/distance functions where similarity functions calculate the similarity and distance 

functions calculate dissimilarity. Pairs of observable units with high similarity have a low 

distance and vice versa. 
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Two observable units are considered as equivalent if they compose similar property values 

in a defined set of variables. Not necessarily all values have to be similar. Thus, duplicate 

observable units are often identified taking only their data key into account. Duplicate 

observable units might arise through incorrect data entry, integration transformations, etc. but 

also through reclassification transformations (as discussed in section 5.3.2.5) or variable 

removal transformations which affected the data key (see section 0). In most cases data 

engineers try to avoid duplicate observable units by either assigning a unique key to the 

similar (all) observable units to keep them distinguishable or by consolidating the observable 

units in the case of real duplicates. Consolidation of duplicates is usually referred to as record 

linkage in the DM domain. A third option is to consolidate observable units via aggregation 

mechanisms onto an observable unit of a superior grouping level. DICE distinguishes 

between these types inkageionRecordLconsolidatT  and tionionAggregaconsolidatT .  

 
  
   



















thresholdUUSFUUT

thresholdUUSFUUT
TOT

i

b

i

a

ii

tionoinAggregaconsolidat

i

b

i

a

ii

inkageoinRecordLconsolidat

initialise

i

ionconsolidat )()()()(

)()()()(

)(

,

,
 

For record linkage, naive strategy is to remove one of the observable units:  

  )()()()( , i

b

i

a

i

b

i

ainkageionRecordLconsolidat UUUUT  . 

A more elaborate strategy is to choose the observable unit of higher quality or to create a 

new observable unit choosing the properties with the higher quality indicator from each of the 

input observable units. In the latter case, for all of the variables of the pair of observable units, 

the total property quality has to be compared. The property with the lower quality indicator is 

withdrawn. Formally this can be denoted as follows: 

   baj...i,,PPPVVUUUT totalQUALi

cj

totalQUALi

ci

i

ci

i

c

oi

b

i

ainkageionRecordLconsolidat ,|:, ),(

,

),(

,

)(

,

)()()()(  

 

The consolidation function for performing aggregation transformations is similar. In 

contrast to the deduplication approach, the pairs of property values (per variable) are 

aggregated instead of choosing one of the properties. Formally the aggregation consolidation 

transformation can be denoted as follows: 

   )(

,

)(

,

)()()()( ,, i

cb

i

ca

i

c

oi

b

i

ationionAggregaconsolidat PPnaggregatio : VVUUUT   

where ()naggregatio is a function that aggregates the property values per variable. 
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The consolidation algorithm in pseudo code can be found in the annex in section 10.2.6. 

5.3.2.7 Restructure 

Consequently, techniques are needed to restructure data sources into this horizontal layout. 

To restructure relational data, the discussed transformation task types can be applied. 

However, there are a great many other types of data structures ranging from structured data to 

semi-structured data such as plain text. The difference between the types of data is not sharply 

defined and varies depending on particular disciplines and data representations. Roughly 

speaking, semi-structured data does not conform to strict standards. It is not strictly typed and 

not strictly constrained by a schema as compared to structured data. In contrast to structured 

data, which is typically considered to be relational or object-oriented data where each 

property has a designated variable, semi-structured data spans a continuum from plain text 

documents to fully-structured data.  

Abiteboul’s (Abiteboul 1997) definitions provide an overview of indications for semi-

structuredness, see Table 6. 

Table 6 Characteristics of semi-structured data based on (Abiteboul 1997) 

Characteristic Description 

Irregular structure The data consists of heterogeneous entities. In some cases the entities are 

incomplete, meaning that information is missing. In other cases additional 

information is available. Furthermore, different types for the same 

information type might be used.  

Implicit structure In the case of implicit structure, a well-formed structure exists. An example 

is an XML document which has been successfully validated against the 

corresponding doctype declaration (DTD). By parsing the document the 

contained entities, their variables and properties can be extracted.  

However, the data is considered to be semi-structured, since extraction and 

reformatting steps have to be applied and the interplay between the parse 

tree and the required relational representation is not always obvious. 

(Mourya and Saxena 2015) provide an overview of schema conversion 

methods between XML and relational models by comparing seventeen 

different approaches. 
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Partial structure Partial structure is given if parts of the data are not structured. Examples 

are documents with embedded graphics (e.g. in png format). 

Indicated structure In contrast to a constrained structure, which presupposes a strict typing 

policy, an indicated structure permits deviations from the given typing policy.  

An example is the data guide approach propagated by the Lore Project of 

Stanford University, see e.g. the work of (McHugh et al. 1997). It proposes a 

database management system for XML-based data which does not require an 

explicitly defined schema. 

Non-A-priory schema Unlike traditional relational or object-oriented data structures, in this case, 

the schema is not fixed prior to capturing the data. The data is often already 

given and has to be structured to support querying and analysis of the data.  

Large schema In contrast to structured data where the schema is precisely defined, semi-

structured data often comprises a wide schema. Transforming these data 

sources into relational schema creates wide sparse tables. 

Ignored schema For some of the typical scenarios the schema is ignored. Examples are, the 

simple browsing and searching for information without taking the schema 

into account.  

Rapidly evolving 

schema 

As opposed to relational and object-oriented data, the schema is rapidly 

changing. Thus, velocity not only refers to the speed at which new data is 

generated but also the ever-changing and non-predictability of its structure. 

Data is eclectic This characteristic applies to the versatileness of data, taking into account 

that the structure of a data entity depends on the point of view and point in 

time the data entity is used.  

Whereas at the beginning only a few attributes might be considered, the 

entity might be enriched and restructured for further use in later phases of a 

given BA initiative.  

An example in EA is that for a business process one might just require the 

name and the description in a first phase, whereas in later phases a detailed 

list of process tasks has to be extracted from the process description. 
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Data is blurred In semi-structured data there is often no clear distinction between schema 

and the data content. Data content and schema are intertwined in a single 

format.  

Typical examples are XML-based documents where no DTD (doctype 

declaration) is given. 

 

Considering this wide range of data structure types, a multiplicity of approaches to extract 

relevant data has been developed in recent years. Information extraction is the process of 

selecting and restructuring text fragments identified via text pattern matching in one or more 

text documents. The results of this extraction process differ from case to case. However, 

generally speaking, information extraction results in populating some type of database (Cowie 

and Lehnert 1996). Usually the focus lies on the processing of human language text by 

employing natural language processing techniques (NLP). As of late, content extraction from 

images, audio and video must also be considered under the roof of information extraction. In 

general, information extraction is part of the greater puzzle of data mining and KDD (see 

section 2.3). 

In the context of EAA specifically: the sub fields of entity recognition and relationship 

extraction play an important role. Entity recognition is concerned with the identification of 

named entities based on predefined categories, such as locations, expressions of time or  

specifically to EAM: of technologies, application components and any other of the typical EA 

building blocks. Relation extraction is concerned with the identification of relations between 

the entities (e.g. application component >> runs on >> technology). In the context of EAM, 

relation extraction focuses on extraction of relations between the building blocks. In an EA, 

the building blocks and the relations together form a tight net. The schema which makes 

possible the storage of the identified entities and relations, i.e. the building blocks and the 

relationships between them is the EA metamodel introduced in section 2.4.1.3.  

In section 7.2.1 an example of a restructure transformation task is shown. In the example the 

XML-based structure of the Archimate Model Exchange Format is transformed into the 

tabular-structured DICE schema. 
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5.4 Summary 

DICE is designed following the principles of situational method engineering. Data may 

reside in many different formats and structures. A multitude of data mining techniques has 

been developed to prepare and cleanse the data for actual data mining needs. DICE is 

intended to support any data preparation endeavour providing a meta structure for integrating 

and assembling existing algorithms and techniques into a situational BA method. In this way, 

the individual algorithms and techniques serve as method fragments which are restructured to 

fit into DICE and serve as reusable method chunks. In this vein, DICE does not strive for a 

universal solution for every kind of data preparation problem. DICE is designed as a 

situational method allowing method engineers to assemble individual methods from its 

method base. 

In this context, metamodeling plays an important role. Applying agile method engineering 

techniques as introduced by (Karagiannis 2015), DICE is made up of three main building 

blocks: 

 a modelling language to design data integration and cleansing processes, 

 a procedure providing guidance on how to accomplish a data preparation endeavor 

and 

 the algorithms for performing the data and metadata transformations. 

At its core, DICE provides the data structures for holding required data and metadata in the 

form of a composite data object. It consists of the main transformation tasks required for data 

preparation which operate on these data objects, (such as selection, addition etc.). Both the 

DICE metamodel as well as the transformation tasks (algorithms) are designed to be 

specialised and extended as needed.  
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6 DICE Quality Framework 

6.1 Quality Models and Quality Issues 

It has been stressed that quality measures are of immanent importance in the data 

preparation phase and for DM endeavours as a whole. For that reason DICE comes with a 

framework that makes possible the definition of data quality requirements and the evaluation 

of these requirements.  

According to (Fröschl and Grossmann 2001), quality assurance in statistical data processing 

has to consider: 

 the design of the production process (i.e. of the DICE workflow) as a whole, 

 the quality of data transformations within the production process and most 

importantly, 

 the quality of the generated data objects.  

There are many data quality models, all of them comprising similar quality criteria. One 

prominent example is the “Software engineering - Software product Quality Requirements 

and Evaluation (SQuaRE) - Data quality model” (ISO/IEC/IEEE 25012 2008), which defines 

fifteen data quality characteristics that must be reflected when assessing a data product. The 

DICE output datasets can be understood as such a data product. The standard supports 

definition and evaluation of data quality requirements in “data production, acquisition and 

integration processes” (ISO/IEC/IEEE 25012 2008). It comprises data quality characteristics, 

such as accuracy, completeness, consistency, credibility, currentness and accessibility. A 

decision regarding which of these data quality criteria have to be applied and what efforts are 

to be invested related to apprising significant quality assessments, is of course, dependent on 

the application domain and situational circumstances.  

When conducting data production and preparation processes, one has to consider two 

perspectives on data quality: (1) the actual data quality inherent in the given data source and 

(2) the expected data quality that is required for the subsequent analysis phases (Berti-Équille 

2007). Due to this relative aspect, DICE has to cope with data quality in a twofold manner: it 

must support data quality appraisals and the matching of data quality against defined data 

quality requirements. In this vein, DICE focusses on the inherent data quality aspects as 
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opposed to system-dependent data quality aspects. According to (ISO/IEC/IEEE 25012 

2008), inherent data quality refers to “the degree to which quality characteristics have the 

intrinsic potential to satisfy stated and implied needs […]”. System-dependent data quality 

focuses on software and user interfaces, and thus, on aspects, such as availability, portability 

and recoverability of the data. DICE presupposes that the data is available and thus does not 

consider quality aspects of the source systems which provide the data. Focusing on data-

inherent quality aspects, DICE considers the following quality dimensions taken from 

(ISO/IEC/IEEE 25012 2008): 

 Accuracy: data have to represent the true values correctly. 

 Completeness: datasets provide all required variables and values for these variables. 

 Consistency: data are coherent and data dependencies are clearly specified. 

 Creditability: data are considered to be reliable by the users. 

 Currency: data are of a suitable age for the given purpose. 

 Precision: data reside in the required measure units. 

 Traceability: data provenance is comprehensible. 

 Understandability: observable units, variables and population are unambiguously 

defined.  

In order to measure these quality aspects, a more detailed analysis of possible data quality 

issues is required. Taxonomies of data quality problems have been presented by (Rahm and 

Do 2000) who divide data quality problems into single-source problems and multi-source 

problems. On the next level they categorise quality problems into schema and instance level 

problems. Single-source problems arise mainly from data entry (e.g. misspellings, 

contradicting values) whereas multi-source problems (duplicates, overlappings etc.) are rooted 

in performed data integration activities. (Kim et al. 2003) present a more detailed taxonomy 

of dirty data. Their taxonomy is hierarchically structured and comprises more than twenty 

typical quality issues accompanied by techniques for preventing, checking or cleaning the 

quality issues. (Oliveira et al. 2005) also provide a comprehensive taxonomy. Additionally, 

they present methods for detecting data quality issues based on checklists structured into 

binary trees according to their hierarchical taxonomy of dirty data. With their rule-based 

taxonomy on dirty data, (Li, Peng and Kennedy 2014) provide a taxonomy that makes 
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possible the classification of the data quality issues into classical data quality dimensions, 

such as accuracy, completeness, currentness, consistency and uniqueness. 

In the following, typical data quality issues extracted from the above research are introduced 

and defined. The problem fields are taken from (Oliveira et al. 2005). Additional problem 

fields extracted from the dirty data taxonomies of (Rahm and Do 2000), (Kim et al. 2003) and 

(Li, Peng and Kennedy 2014) are added:  

 Missing value: Properties without values. 

 Syntax violation: Values not conforming to the defined patterns. 

 Outdated values: Property values not conforming to the defined data freshness criteria. 

 Interval violation: Numeric data values that are not within specified boundaries. 

 Set violation: Categorical data values not in conformity with the predefined values. 

 Wrong datatype: Property values violating the defined datatype, e.g. strings in a 

numeric variable. 

 Misspelling: Incorrectly spelled values. 

 Meaningless values: Values not conforming to the designated meaning of the variable. 

 Erroneous value: Values that do not violate any constraints but which are simply 

wrong. 

 Lack of value: An example is, when a part of the required entry is missing/cropped. 

 Value with imprecise and doubtful meaning, e.g. values consisting of abbreviations. 

 Uniqueness violation: Values that violate an identity rule. 

 Synonyms existence: Occurrence of syntactically different values with the same 

semantic meaning. 

 Semi-emptiness: Observable units with many missing values defined in light of a 

certain percentage of missing values. 

 Inconsistency among values: Violation of defined dependencies between property 

values of two variables. 

 Redundancy about an entity: Duplicate observable units within one dataset. 

 Inconsistency about an entity: Special case of duplicate observable unit with 

inconsistent property values. 

 Missing tuple: Missing observable units within a specified population. 

 Referential integrity violation: Wrong reference to an observable unit. 
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 Outdated reference: Outdated reference to an observable unit. 

 Circularity among tuples in a self-relationship: Recursive relationship problem. 

 Cardinality violation: when defined minimum/maximum references between 

observable units of two datasets are not fulfilled.  

 Non-compliant measure units: Property values not measured in the defined measure 

unit, e.g. cost values defined in EUR and not in Dollar. 

 Representation inconsistency: Different value denomination of the same type, e.g. 

Boolean values defined in true/false and as specified in 1/0. 

 Heterogeneous aggregation levels: Different level of abstraction, e.g. costs per product 

and costs per product group. 

 Synonyms existence: Syntactically different values with the same semantic meaning, 

e.g. “customer” versus “client”. 

 Homonyms existence: Syntactically equal values with different semantic meaning. 

The term “glass” can be interpreted as “magnifying glass” or “tumbler”. 

6.2 DICE Quality Profile 

In Table 7 the data quality issues are categorised along the DICE meta structure. 

Additionally, inspired by (Li, Peng and Kennedy 2014), they are assigned to a quality 

dimension. According to Rahm and Do (Rahm and Do 2000), schema-related issues comprise 

issues that originate from bad schema design, schema translation and schema integration. In 

contrast, instance-related data quality issues arise in the actual datasets and cannot be avoided 

on the schema level. The classification into schema and instance level can also be found in the 

table. From the definition of schema vs. instance level, requirements for DICE are drawn. 

Schema-level violations can typically be covered/healed via concise definition and 

examination of metadata. Thus, at minimum for the schema-level issues, DICE has to provide 

clear specifications of the admissible property values by precisely defining their value 

domain. Data property values have to be assessable against these definitions. The column 

“Metadata” of Table 7 defines the metadata carrying these definitions. 
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Table 7 Common quality indicators organised along the DICE metamodel 

Problem 

field 

DICE 

element 

Single/ 

multi 

source 

Schema 

vs. 

instance 

Defined in 

DICE Metadata 

Quality perspective &  

DICE target quality 

indicator 

Missing 

value 

P Single instance syntaxnvalueDomaiPROC

vV 
 Completeness measured in 

sscompleteneQUAL

uvP 
 

Syntax 

violation 

P single schema syntaxnvalueDomaiPROC

vV 
 Accuracy measured in 

syntaxaccuracyQUAL

uvP 
 

Outdated 

value 

P single instance max.AgescurrentnesPROC

vV 
 Currentness measured in 

maximumAgescurrentnesQUAL

uvP 
 

Interval 

violation 

P single schema syntaxnvalueDomaiPROC

vV 
 Accuracy measured in 

syntaxaccuracyQUAL

uvP 
 

Set violation P single schema syntaxnvalueDomaiPROC

vV 
 Accuracy measured in 

syntaxaccuracyQUAL

uvP 
 

Wrong 

datatype 

P single schema dataTypenvalueDomaiPROC

vV 

 

Accuracy measured in 

dataTypeaccuracyQUAL

uvP 
 

Imprecise 

value 

P single schema stepWidthnvalueDomaiPROC

vV 

 

Accuracy measured in 

stepWidthaccuracyQUAL

uvP 
 

Misspelling P single instance/ 

schema 

(not required) Accuracy measured in 

gmisspellinaccuracyQUAL

uvP 
 

Meaningless 

value 

P single instance ndescriptioSEM

vV 
 Accuracy measured in 

semanticsaccuracyQUAL

uvP 
 

Erroneous 

value 

P single instance ndescriptioSEM

vV 
 Accuracy measured in 

semanticsaccuracyQUAL

uvP 
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Problem 

field 

DICE 

element 

Single/ 

multi 

source 

Schema 

vs. 

instance 

Defined in 

DICE Metadata 

Quality perspective &  

DICE target quality 

indicator 

Lack of 

value 

P single instance (not required) Accuracy measured in 

semanticsaccuracyQUAL

uvP 
or 

syntaxaccuracyQUAL

uvP 
 

Value with 

imprecise 

and doubtful 

meaning 

P Single instance ndescriptioSEM

vV 
 Accuracy measured in 

semanticsaccuracyQUAL

uvP 
 

Uniqueness 

value 

violation 

P Single schema keyPROC

vV 
 Consistency measured in 

redundancyuniquenessQUAL

uvP 
 

Synonyms 

existence 

P Single schema (not required) Currentness measured in 

synonymyconsistencQUAL

uvP 
 

Semi-

emptiness  

U Single instance (not required) Completeness measured in  

U
QUAL>completeness

 

Incon-

sistency 

among 

attribute 

values 

P Single schema varDepnvalueDomaiPROC

vV 
 Accuracy measured in

pvariableDeaccuracyQUAL

uvP 
 

Redundancy 

about an 

entity 

D single schema (not required) Uniqueness measured in  

redundancyuniquenessQUAL

uU 
 

Incon-

sistency 

about an 

entity 

D single instance (not required) Uniqueness measured in 

ncyinconsisteuniquenessQUAL

uU 
 

Missing 

tuple  

(observable 

unit) 

D single instance D
PROC>requiredCoverage

 Completeness measured in 

D
QUAL>completeness>popCoverage
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Problem 

field 

DICE 

element 

Single/ 

multi 

source 

Schema 

vs. 

instance 

Defined in 

DICE Metadata 

Quality perspective &  

DICE target quality 

indicator 

Referential 

integrity 

violation 

P Single schema (not required) Consistency measured in 

tyrefIntegriyconsistencQUAL

uvP 
 

Outdated 

reference 

P Single schema maxAgescurrentnesPROC

vV 
 Currentness measured in 

maximumAgescurrentnesQUAL

uvP 
 

Circularity 

among 

tuples in a 

self- 

relationship 

P Single schema (not required) Consistency measured in 

ycircularityconsistencQUAL

uvP 
 

Cardinality 

violation 

P Multi schema ardinalitycnvalueDomaiPROC

vV 

 

Consistency measured in 

ycardinalityconsistencQUAL

uvP 
 

Syntax 

incon-

sistency 

V Multi schema yntaxsnvalueDomaiPROC

vV 
 Accuracy 

average from  

syntaxaccuracyQUAL

uvP 
 

Non-

compliant 

measure 

units 

P Multi schema easureUnitmvalueDomPROC

vV  .

 

Accuracy measured in 

tmeasureUniaccuracyQUAL

uvP 
 

Repre-

sentation 

incons. 

P Multi schema yntaxsnvalueDomaiPROC

vV 
 Accuracy measured in 

syntaxaccuracyQUAL

uvP 
 

Synonyms 

existence 

D Multi n.a. (not required) Consistency measured in 

D
QUAL>uniqueness>synonymy

 

Homonyms 

existence 

D Multi n.a. (not required) Consistency measured in 

D
QUAL>consistency>homonymy

 

Redundancy 

about an 

entity 

D Multi n.a. (not required) Uniqueness measured in 

D
QUAL> uniqueness>redundancy
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Problem 

field 

DICE 

element 

Single/ 

multi 

source 

Schema 

vs. 

instance 

Defined in 

DICE Metadata 

Quality perspective &  

DICE target quality 

indicator 

Incon-

sistency 

about an 

entity 

D Multi n.a. (not required) Consistency measured in 

D
QUAL>uniqueness>inconsistency

 

 

In a detailed analysis of the above atomic quality indicators, it becomes clear that some of 

these cannot be evaluated automatically. Whereas quality aspects such as missing values and 

compliance with defined syntax requirements can be calculated by cross-checking with value 

domain requirements (defined in PROCV ), others such as meaningless value have to be assessed 

manually. In order to obtain the atomic quality indicators (pass vs. fail), the property values 

have to be compared with the specifications defined in the set of quality requirements V
PROC

 

that are made up of the following parameters: 

 V
SEM>description

: This parameter carries the documentation of the semantic meaning 

of the properties assigned to the variable. 

 V
PROC>key

: This parameter states whether the properties of the variable serve as 

data key or are part of the data key of the given dataset. 

 V
PROC>currentness>maximumAge

: The values of the properties have to be of the right age. 

This parameter carries the allowed maximum age measured in days. 

 V
PROC>valueDomain>uniqueness

: This parameter defines whether values of properties 

have to be unique throughout the variable.  

 V
PROC>valueDomain>measureUnit

: The measure unit has to be unambiguously defined. 

Examples are: currencies in the case of monetary values or measure units for 

temperature such as Celsius and Fahrenheit. 

 V
PROC>valueDomain>stepWidth

: This parameter defines the required precision of the 

data. For example, monetary values could be measured in EUR or TEUR. 

 V
PROC>valueDomain>dataType

 defines the required datatype for the properties of 

variables. 

 V
PROC>valueDomain>syntax

: This quality characteristic defines the abstract set of 

possible values for the properties of the variable. Intervals and value sets are 

typical examples. 

 V
PROC>valueDomain>aggregationType

: In some cases it is important to understand whether 

the property values are atomic or represent summative values (e.g. such as max, 

min, mean or average). Condensing averaged values in many cases will lead to 

biased results. 
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 V
PROC>valueDomain>variableDependency

: Property values of variables often pose 

dependencies on one another. Metadata have to provide information about these 

dependencies. 

 V
PROC>valueDomain>cardinality

: This variable definition carries the minimum/maximum 

number of outgoing/incoming relations of an observable unit. 

DICE ascribes the same importance to each of the problem fields of a certain quality 

category (quality aspect). The problem fields are measured via dedicated atomic quality 

indicators. These indicators are categorised into quality categories. The atomic quality 

indicators of properties are rated in a Boolean variable: pass for proper and fail for erroneous. 

On property level this can be formally denoted as follows: 

,...},,,{ 321 egoryqualityCategoryqualityCategoryqualityCatPQUAL   

 ...,, 321 indicatorindicatorindicatorP egoryqualityCatQUAL   

and 

failpassP indicatoregoryqualityCatQUAL

uv 
 

For each property, a set of quality indicators P
QUAL

 is defined. The set of quality indicators is 

categorised into quality categories which in turn comprise the atomic quality indicators of a 

variable. Atomic qualities (per property) can be either fulfilled (pass) or non-fulfilled (fail). In 

the following the rules for evaluating the atomic quality indicators are defined.  

 

For the evaluation of values regarding missing values the following rule is applied: 

  
otherwise

NAP fi
fail

pass
P

VAL

uvuemissingValsscompleteneUALQ

uv









,

,
 

where NA stands for ‘not available’ or any other symbol indicating non-existence of the 

value. Examples for NA values are: default values such as 01.01.1970 (Unix time) for date 

values, NULL values such as the string ‘no entry’ etc. 

Syntax violations may come in many flavours and are dependent on the data type of the 

variable. Simple data types, such as numeric, strings, date and complex data such as arrays 

(sets) are considered. The following rule checks whether a property value is compliant with 

the defined datatype. 

 


 






otherwise

VPDT if
fail

pass
P

dataTypenvalueDomaiPROC

v

VAL

uvdataTypeaccuracyQUAL

uv ,

,
 

where DT() is a function based on regular expression making possible the retrieval of the 

datatype of a given value.  
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 The rule for checking whether a numeric value is within a defined interval can be denoted as 

follows: 



 



otherwise

yPx if
fail

pass
P

VAL

uvsyntaxaccuracyQUAL

uv ,

,
 

where x and y are the interval delimiters defined in 
syntaxnvalueDomaiPROC

vV 
. 

To evaluate whether a string value complies with a specified pattern (e.g. expressed in the 

form of regular expressions) the following rule applies: 



 






otherwise

true  )V,PRE( if
fail

pass
P

syntaxnvalueDomaiPROC

v

VAL

uvsyntaxaccuracyQUAL

uv ,

,
 

where 
syntaxnvalueDomaiPROC

vV 
defines a text pattern, and RE() is a function which matches the 

property value against the text pattern. 

Using this rule, lack of value issues can also be determined in case the properties have to 

fulfil a certain pattern (e.g. 4-digit postal codes, email addresses). 

In some cases the step width of numeric values, i.e. of double values is of relevance. DICE 

applies the definition of (Wolfram Alpha 2017a) where step width (precision) is defined as 

the total number of significant decimal digits in a numeric value: 














otherwise

V
P

 if

fail

pass
P

tepWidthsnvalueDomaiPROC

vVAL

uv

tepWidthsccuracyaQUAL

uv ||

1
log

,

, 10
 

where tepWidthsccuracyaPROCV   defines the required number of decimal digits. 

 Misspellings can be identified by comparing property values to entries in a dictionary. 

 


 



otherwise

yes PDICT if
fail

pass
P

VAL

uvgmisspellinaccuracyQUAL

uv

''
,

,
 

where DICT () is a function which returns “yes” where VAL

uvP  matches an entry in the 

dictionary.  

Data freshness is dependent on the actual age of a property (i.e. date when the data was 

collected or changed). This value has to be compared with the freshness requirements defined 

in maximumAgescurrentnesPROC

vV  . To determine whether a property value is outdated, the following 

expression has to be evaluated: 

 


 






otherwise

VPAGE if
fail

pass
P

maximumAgescurrentnesPROC

v

DatehangecLOG

uvmaximumAgescurrentnesQUAL

uv ,

,
 

where AGE() is the function which delivers the age in days. 
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Functional dependencies of variables may exist between properties of variables of the 

same dataset (variable dependencies) and between properties of variables that reference 

observable units (references). To evaluate whether stated dependency requirements between 

variables are fulfilled the following rule is applied: 

 


 






otherwise

VFDFP if
fail

pass
P

ypendencvariableDenvalueDomaiPROC

v

VAL

uvpendencyvariableDeaccuracyQUAL

uv ,

,
 

where FDF() is a function that implements the functional dependency rules defined in 

pendencyvariableDePROC

vV 
. 

Uniqueness value violations of properties arise in variables marked as “uniqueness 

required” where a property value is contained multiple times: 

 


 






otherwise

   |U| ... 2, iP  P     falseV if

fail

pass

P
VAL

iv

VAL

uv

uniquenessnvalueDomaiPROC

v

redundancyuniquenessQUAL

uv

1,1|

,

,  

Synonyms existence arises in variables carrying syntactically different property values with 

the same meaning, i.e. if there exists another property value within the variable which has the 

same meaning. 

   


 



otherwise

PxSFPP  x  if
fail

pass
P

VAL

uv

VAL

uv

VAL

vsynonymyconsistencQUAL

uv

,:\
,

,
 

where SF() is an ontology-based function to compute semantic similarity of a pair of property 

values, and   is a defined threshold. For an overview of such similarity functions see (Lee et 

al. 2008).  

Redundancy of an entity is given for an observable unit when the dataset contains another 

observable unit with the exact same property values. 

   



 



otherwise

 D  VvP  if

fail

pass
U

VAL

uvredundancyuniquenessQUAL

u

1||..1,

,

,
 

Inconsistency of an entity is given when the same observable unit exists, i.e. an observable 

unit with the same data key but with different property values: 

   

otherwise

failU

PPtrueVVPU\DU if

fail

pass

U redundancyuniquenessQUAL

u

VAL

zv

VAL

uv

keyPROC

vuvuz

ncyinconsisteuniquenessQUAL

u 









 





::

,

,
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Whether a property value is compliant with the defined measure unit or not is determined 

by comparison of the property’s “measure unit” (P
PROC>valueDomain>measureUnit

) with the required 

measure unit stated within the process metadata of the variable (V
PROC>valueDomain>measureUnit

): 



 






otherwise

V P if
fail

pass
P

tmessureUninvalueDomaiPROC

v

tmeasureUninvalueDomaiPROC

uvtmessureUniaccuracyQUAL

uv ,

,
 

Referential integrity violations arise where a variable of a dataset contains wrong 

references to observable units (usually, but not necessarily held in another dataset). Reference 

variables permit only those values that appear in the variable to which it refers. Note that in 

DICE the data key of a given dataset is defined by labeling one or more variables as key 

variables.  

The same holds true for references. If the “foreign key” does not match a “primary key” in 

the target dataset (D’), a referential integrity violation arises.  

  




 









otherwise

PP  v  vvv DU  if

fail

pass
P

VAL

vu

VAL

uvu'IntegrityeferentialryconsistencQUAL

uv
'''|',:'

,

,
 

where D’ is the referenced dataset, and v’ is the referenced variable, and (v,v’) is a set of 

variables, as the references are not necessarily defined by a pair of single variables. 

Cardinalities define relationships between two tables. Basically, two types of relationships 

exist: one-to-many and many-to-many. Relationships between two tables are defined via 

foreign key reference. The variable(s) that compose the primary key value for one table are 

linked to another column in another table. Via cardinality constraints the number of links 

between observable units of the two tables can be restricted. In DICE, V
PROC>cardinality

 defines 

such restrictions by defining intervals of the number of allowed relationships between 

observable units between two tables. A cardinality violation arises where the number of 

allowed relations is not within this defined interval. The quality indicator rule can be denoted 

as follows: 

 


 



otherwise

y  UjPP x  if

fail

pass
P

VAL

jv

VAL

uvardinalitycyconsistencQUAL

uv

...1,

,

,
 

where x and y are the cardinality delimiters defined in 
ycardinalitnvalueDomaiPROC

vV 
and  

x=0, y = ∞ if undefined. In case of a 1:1 cardinality x=1 and y=1. 
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Outdated references are defined in the same way as outdated values, as references are 

represented the same way as properties with the only difference being that the same property 

has to be defined as a primary key in a variable of any other dataset.
5
 

Circularity among tuples arises where the relationships k (pairs of foreign key and primary 

key) can be arranged in a cyclic sequence (k1, k2, k3,…, k1) such that: 

 
otherwise

kknikk: n if

fail

pass
V iniiycircularityconsistencQUAL

v


  :1,...,1,

,

, 1  

The remaining quality indicators not discussed in the previous sections have to be assessed 

manually. Examples are meaningless values where non-conformance to the designated 

meaning of their variable description (semantics) cannot be assessed automatically.  

The stated quality indicators clearly pose dependencies on each other. For example, a 

missing value cannot be meaningless, and a property with “data type violation” cannot be 

assessed in the context of “set violation”. DICE recognizes this fact by introducing the 

measurement category “not applicable (n.a.)” for quality indicators that do not apply. In 

addition to these dependencies not all quality indicators apply to all variables. Applicability of 

the stated quality indicators is dependent on the requirements defined in other V
PROC

. For 

example, the indicator “set violation” is not suitable for evaluating string properties. From this 

fact, it follows that assessing the quality of a certain property is ideally done in a certain 

sequence. Similar to the approach of (Oliveira et al. 2005), DICE introduces an assessment 

algorithm based on a binary tree metaphor defined in the algorithm of Fig. 36. 

 

input: 
)(iO  

 

output:  
)(oO  

 

begin 

for v=1 to |V| in 
vV  // for each variable in the dataset 

                                                 

5
 Note that in section 7.1.1.2  the concept of edge tables is introduced, the typical relational concept to depict 

the references (pairs of primary and foreign key). In this context outdated references have to be evaluated per 

table row. 
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  for u=1 to |U|  

   check completeness of Puv        // check for missing value 

   set 
uemissingValsscompleteneQUAL

uvP 
 

   if missingValue = fail 

   % in case of missing value none of the subsequent checks has  
    to be performed % 

    set ‘n.a.’ for all indicators in
QUAL

uvP   

   else 

    if 
QUAL

uvP represents a value     //not a relation 

       check datatype, set 
dataTypeaccuracyQUAL

uvP 
 

       check semantics, set 
semanticsaccuracyQUAL

uvP 
 

       check syntax, set 
syntaxaccuracyQUAL

uvP 
 

       if datatype = double 

          check syntax, set 
stepWidthaccuracyQUAL

uvP 
 

       endif 

       check misspelling, set 
gmisspellinaccuracyQUAL

uvP 
 

       check data freshness, set 
maximumAgescurrentnesQUAL

uvP 
 

       check dependencies, set 
pendenciesvariableDeaccuracyQUAL

uvP 
 

       check redundancy, set 
redundancyuniquenessQUAL

uvP 
 

       check synonyms existence, set 
synonymyconsistencQUAL

uvP 
 

       check measureUnits compliance, set tmessureUniaccuracyQUAL

uvP   

    elseif QUAL

uvP represents a relation 

       check referential integrity, set IntegrityeferentialryconsistencQUAL

uvP   

       check cardinality requirements, set ardinalitycyconsistencQUAL

uvP   

       check outdated references, set 
maximumAgescurrentnesQUAL

uvP 
 

    endif 

  endfor 

  check circularity among obs. units, set ycircularityconsistencQUAL

vV   

for u=1 to |U| 

  check uniqueness, set redundancyuniquenessQUAL

uU   

  check uniqueness, set ncyinconsisteuniquenessQUAL

uU   

endfor 

 

calculate summative indicators on property level 
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calculate summative indicators on variable level 

calculate summative indicators on observable units level 

calculate summative indicators on dataset level 

Fig. 36 Determine quality indicators for properties 

The total quality of a property is defined as the averaged quality category values of all 

quality categories (except the total quality indicator itself) and hence can be denoted as 

follows: 

  P 

P

P
egoryqualityCatQUAL

uv

egoryqualityCat

eogoryqualityCatQUAL

uv

QUAL

uv 


  

where the superscript qualityCategory indicates the quality value per category, which in turn 

is calculated from the averaged values of its subordinated quality indicator values: 

 
  P 

 passPP 
P

indicatoregoryqualityCatQUAL

uv

indicatoregoryqualityCatQUAL

uv

indicatoregoryqualityCatQUAL

uvegoryqualityCatQUAL

uv 






  

where the superscript indicator is the index representing an atomic quality indicator 

categorised into a given quality category. 

Whereas all of the quality indicators of a quality category are considered of equal 

importance, corrective measures related to quality issues require different efforts. Take the 

following example: “missing values” have to be imputated (if expedient at all) considering 

additional sources or often complex imputation techniques. On the other hand, “representation 

inconsistencies” can often be resolved using simple reclassification transformations (see 

section 5.3.2.5). Whereas many of the identified quality issues relate to single property values, 

others refer to observable units, variables or entire datasets.  

DICE defines summative quality measures based on averaged values of the quality 

indicators on property level, i.e. quality issues arising on property level are averaged onto 

variable and/or observable unit level and from there on dataset level.  

In line with this, DICE offers a “data quality profile” for datasets. Based on this data quality 

profile, the data engineer can easily investigate the data quality and take corrective actions as 

needed. Moreover, as the quality measures are part of the composite data object, they can be 

used for data cleansing purposes, e.g. by selecting observable units of high quality only. Fig. 

37 shows the dependencies between quality indicators on property level and summative 

quality indicators on level of observable units and variables. 
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Fig. 37 Levels and structure of DICE quality indicators 

For each variable the quality measures are calculated for the entire variable for its 

constituent quality categories and on lowest level per quality indicator. 

The quality measure of a variable per atomic quality indicator is defined as follows:  
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An example is syntaxaccuracyQUAL

vV   which for example, shows the average fulfilment of the 

syntax requirement stated for the variable v over all observable units within a dataset. 

Note that for reasons of readability, properties evaluated with ‘not applicable’ are not 

considered in this and the subsequent equations. 
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The total quality per quality category (e.g. completeness, accuracy and currentness) of a 

variable is calculated as the average of the indicator-based quality measures and can be 

formalised as follows: 

  V 

V

V
indicatoregoryqualityCatQUAL

v

indicator

indicatoregoryqualityCatQUAL

v
egoryqualityCatQUAL

v 






 . 

An example is accuracyQUAL

vV  which presents the averaged quality measures in the context of 

syntax compliance, valueStep compliance, etc. 

The total quality of a given variable is calculated as the average of its category-based quality 

measures and can be formalised as follows: 
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Similar to variables, the averaged values for the observable units are calculated. The 

averaged quality measures per quality category of an observable unit are calculated as 

follows: 
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The averaged quality measures per variable of an observable unit are calculated as follows: 
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where qualityCategory is the index for all possible quality categories and 

 egoryqualityCatQUAL

uvP   is the set of all quality categories (comprising the atomic quality 

indicators) of one property within a given dataset. 

The total quality of an observable unit is calculated as the average of all property quality 

indicators: 
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For the entire dataset the quality per atomic indicator of a variable is calculated as follows: 
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||V
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where indicatoregoryqualityCatQUAL

vV   represents the average quality of a given variable per 

indicator. 

Likewise, the quality of the dataset in the context of its quality categories is defined as 

follows: 
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and the total quality of the entire dataset is calculated as the average of the total quality 

indicator of its variables: 
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
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6.3 Interpreting the Quality Profile 

The data engineer uses the quality profile after performing a transformation task to evaluate 

the data quality of the output dataset. By investigating the total quality per variable 

(V
QUAL>total

), problematic variables can easily be identified. By analysing the variable quality 

indicators (V
QUAL>indicator

), the reasons for poor quality can be identified easily and quality 

improvement measures can be triggered. In many cases redesigning the DICE workflow will 

help to raise data quality, e.g. by adding additional transformation tasks or by changing the 

sequence of transformation tasks. 

The same holds true for the quality measures of observable units. One strategy to improve 

data quality could be to simply remove observable units with bad data quality from the data 

object via selection transformation. Of course, the data engineer has to ensure that this 

transformation does not violate the coverage requirements ( lationSizequiredPopuPROCD Re ), i.e. that 

the selection leads to coverage of a population that is too small. In many cases improving data 

quality will require optimising the values within the given input datasets. For such cases (Kim 

et al. 2003) identify the following strategies:  
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 Intervention by domain expert, i.e. provision of additional high quality data or 

performing manual quality improvements on the input datasets. 

 Use of a lookup-table, e.g. for regrouping categorical data. 

 Use of abbreviation dictionaries for resolving abbreviations. 

 Use of conversion algorithms for resolving representation differences. 

 Use of encoding tables for resolving format issues, e.g. to convert from ASCII to 

Unicode. 

 Recalculation of properties in the case of functional dependencies. 

 Running a spell-checker to correct misspellings. 

 Applying data imputation techniques in the case of missing values.  

However, one must point out that in the vast majority of quality issues according to (Kim et 

al. 2003), in more than 75% of the stated cases intervention by a domain expert is the only 

alternative for raising data quality.  

6.4 Summary 

The introduced quality framework serves a two-fold purpose: (1) it supports unambiguous 

definition of the output data object ready to be used for upcoming DM modelling/evaluation 

phases, (2) it makes possible the determination of the data quality after each performed 

transformation task and thereby supports the definition of an adequate data transformation 

process.  

The DICE data quality indicators have been deliberately derived from the ISO standard for 

“Software product Quality Requirements and Evaluation, Data Quality Model” 

(ISO/IEC/IEEE 25012 2008) and shaped by the extraction of typical quality issues from 

“dirty data taxonomies”. Quality indicators are assigned to the meta structure elements of 

DICE, making possible the evaluation of the data quality for entire datasets, for observable 

units and variables and on lowest level, for each of the properties within the dataset. The 

DICE quality framework follows the principles of situational method engineering, so that the 

framework can be enhanced with additional quality indicators and algorithms for their 

calculation. 
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7 Application of DICE in the Fields of EAA 

As for any KDD endeavour, Enterprise Architecture Analytics requires a profound 

understanding of the available and required data. KDD frameworks such as CRISP-DM 

(Chapman et al. 2000) savour this requirement and propose data understanding/exploration as 

one of the first phases of KDD endeavours (see section 2.3). This of course also applies for 

EAA and is reflected in the DICE modelling procedure (see section 5.1). In this section an 

analysis of the typical structure of EA data is performed. Peculiarities of EA data are analysed 

and discussed. From the findings, requirements on method chunks to support EAA are 

derived. Section 7.2 draws on these requirements by discussing how these requirements can 

be satisfied by assembling and deriving new method chunks from the DICE meta structure to 

build a situational method for EAA data preparation. 

For illustration purposes, the EA modelling language Archimate and the TOGAF content 

metamodel are used. Archimate is often quoted in the examined research papers and TOGAF 

can be considered as one of the most prominent EA frameworks (Schekkerman 2004b), 

(Moser, Fürstenau and Junginger 2010), (Urbaczewski and Mrdalj 2006). Where required, 

additional metamodels from EA frameworks such as from DODAF (DoD 2010) are used for 

illustration purposes. 

7.1 Data Understanding - EAM-specific Requirements 

EA relevant data comes in manifold flavours. To apply DICE on datasets residing in EA 

models, adequate transformation task types have to be derived from the DICE meta structure 

introduced in section 5. For this purpose, common EA data structures are analysed in the 

subsequent sections. Requirements of the DICE method base are collected. For the purpose of 

illustration business IT alignment is used, an often quoted problem in context of EAM, (see 

e.g. Winter and Fischer 2006), (Pereira and Sousa 2005), (Aier and Winter 2009) and 

(Wegmann 2002)). For a better understanding, the following guiding example is used to 

examine the different problem cases. 

Guiding case: The case focuses on the interplay of applications and technologies 

(i.e. system software) both intended to serve business processes. The assumption 

is that due to the use of inappropriate technology, the application architecture of 
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an organisation is inefficient, leading to suboptimal business support in terms of 

functional business requirements, cost, flexibility and time to market. To address 

this problem, enterprise architects need to have a clear understanding of the 

applications and technologies in place. To detect problematic areas in the 

business architecture, the enterprise architects connect the applications and 

technologies to business processes of the organisations. In this way, enterprise 

architects are able to provide an overview of problematic business areas in regard 

to IT support and foster targeted budget allocation for IT investments. To 

illustrate the findings, the architecture team plans to use a heatmapped 

clustermap as sketched in in Fig. 38, as the model kind. 

 

Fig. 38 Heatmapped Clustermap – Technology support of business processes 

In the example, the colour code applied to the system software artefacts 

represents the individual technology fit. System software building blocks 

coloured in green represent high technological fit, yellow-coloured system 

software is problematic and system software in red is highly recommended to be 

decommissioned. Similar diagrams have been proposed by (Karagiannis, Moser 

and Mostashari 2012) and (Pouya Aleatrati Khosroshahi et al. 2015). 

The example draws on the likely assumption that this is only one of the arbitrary 

scenarios addressed by the architecture team and that no encompassing EA 

repository containing the required data is in place. However, in the fictive 

organisation there are a multitude of EA descriptions available which might serve 

as a valuable input for the required analysis.  
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7.1.1 The object-oriented nature of EA data 

Many of the EA frameworks use as a base the formal definitions of systems and software: 

ISO/IEC 42010:2007 Systems and software engineering, see TOGAF (The Open Group 

2011), Archimate (The Open Group 2016), NATO (Handley and Smillie 2008), the TUM EA 

pattern catalogue (Pouya Aleatrati Khosroshahi et al. 2015) and many more.  

Architecture descriptions based on this “schema” come in a variety of formats and contents. 

TOGAF for example defines the following major architecture artefacts types, i.e. model kinds 

(The Open Group 2011): (1) catalogues, (2) matrices and (3) diagrams. An overview has been 

provided in Fig. 8. In the following subsections, the most common data structures used to 

represent EA data are discussed. To this end, the typical representation formats used in EA 

analysis are examined using the research papers discussed in section 3.1.3 and architecture 

artefacts recommended by TOGAF and Archimate as a main input. 

7.1.1.1 Catalogues 

Catalogues are lists of building blocks. They have to be considered as the basis for any EA 

analysis, as they carry the atomic design elements of EA, namely the EA building blocks. The 

application portfolio catalogue introduced in Fig. 19 is a perfect example of such a catalogue. 

According to TOGAF, the purpose of this catalogue is to identify, categorize and maintain a 

list of all the application components used by the enterprise. TOGAF recommends 

maintaining catalogues of all relevant building blocks in a so-called architecture repository. 

They serve as the datasets on which to base any EA analysis. TOGAF suggests (not meant to 

be exhaustive) more than ten catalogues, examples are: 

 Interface catalogue, providing information on interfaces between applications. 

Applications typically create, read, update and delete data via these interfaces from 

other applications. 

 Technology portfolio catalogue, capturing the list of all technologies used to 

implement and run the applications and interfaces throughout the entire organization. 

 Requirements catalogue, holding the list of all requirements generated in the course 

of architecture engagements. 
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The building blocks (in DICE terms, the observable units) within these lists are always 

derived from the content metamodel and in an ideal case, the catalogues cover the entire 

population of these observable units. The applications in the application portfolio catalogue 

can correspond to the modelling classes: information system service, logical application 

component and physical application component of TOGAF’s content metamodel. In 

equivalence, Archimate offers the concept of application components and DoDAF offers the 

concept of system as the core elements of the application architecture/layer. 

The variables within the catalogues capture the characteristics of the building blocks, e.g. 

characteristics such as operating costs, production date and planned decommission date. Thus, 

catalogues represent multivariate datasets such as the DICE standard format defined in section 

4.1. Typical graphical representations of the catalogued building blocks are: bar charts, 

portfolio charts and box plots, all of them ways to graphically depict the property values of 

numerical or categorical variables of observable units held within a catalogue.  

 

Fig. 39 Gantt, portfolio and box plot views on catalogues 
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Guiding case (continued): For the targeted architecture model, the enterprise 

architects need to gain an overview of the business processes, the application 

components as well as the technologies (i.e. system software) in use. For 

representing these datasets, catalogues such as the application portfolio 

catalogue need to be in place. The catalogues can be represented in the DICE 

standard data format, which is a horizontal layout or roughly speaking, a table. 

Let us assume that for all the three building block types corresponding datasets 

are available. 

As the architects strive to assess the technology adequacy, additional information 

on technologies such as standard conformity, maintainability, operation costs 

etc. needs to be in place, serving as the atomic data for calculating the 

technology fitness. These atomic data elements, as far as they are available, are 

categorised into the set of variables of the technology dataset. 

7.1.1.2 Matrices 

Matrices represent the relationships between building blocks (the observable units) 

instantiated from the given metamodel. In the conducted literature review, matrices are 

explicitly mentioned in (The Open Group 2011), (Pouya Aleatrati Khosroshahi et al. 2015) 

and (Karagiannis, Moser and Mostashari 2012). Examples from TOGAF are:  

 Application/Data Matrix, to depict the relationships between data elements and the 

application components that manipulate these data elements. 

 Application/Organization Matrix, holding information about which organisational 

units use which application components. 

 System/Technology Matrix, capturing the mapping of applications to technologies 

required for operating the applications. 

The most basic form of representation is an adjacency matrix. The underlying data structure 

is a bipartite graph whose vertices are divided into two disjoint sets of building blocks. 

Formally this graph can be defined as G=(ΩA, ΩB, RAB) where ΩA, ΩB define the sets of 

observable units (i.e. the population) instantiated from a given metamodel, and RAB is the set 

of relations of a certain type between the building blocks. The values represented in the 

matrix cells indicate whether there is a relation between the building blocks or not. 
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Fig. 40 The data structure of EA matrices 

Analysing typical EA artefacts, one finds evidence of more complex matrix structures. Fig. 

41 shows an example from (Moser et al. 2017). 

 

Fig. 41 Heatmapped matrix (Moser et al. 2017) 

The example shows a matrix based on populations (of the observable units: applications and 

standards) represented by the observable units on the axis and dependencies between them 

within the cells. The matrix is colour-coded, thus the relationships between the observable 

units are labelled, i.e. relations have properties and property values. The required data 

structure is in the form of Blaha’s node-edge directed graph template (Blaha 2010) 

comprising two tables for presenting the catalogues of observable units and a third table, more 

specifically an edge table, specifying the relations between the observable units. Fig. 42 

shows the structure in the form of an UML model and Fig. 43 provides an example. 
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Fig. 42 Structure of node/edge directed graph template in UML, adapted from (Blaha 2010) 

 

Fig. 43 Node edge template, adapted from (Blaha 2010) 

Guiding case (continued): It is obvious that for the envisioned clustermap 

model, information is required concerning the interplay between applications and 

technologies as well as use of applications in the context of business processes. 

Let us assume that the IT operations team supplies the enterprise architects with 

a matrix presenting the technology usage of the applications. Fig. 44 presents 

this system/technology matrix where applications are represented on the x-axis 

and technologies are represented on the y-axis.  
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Fig. 44 Example system/technology matrix 

As the application portfolio catalogue and the system/technology matrix stem 

from different sources, it is unlikely that the applications contained in both 

datasets will fully match. However, the system/technology matrix can easily be 

converted into a node-table representing a dataset in conformity with DICE. 

Let us furthermore assume that a similar table matching business processes with 

application components is not available. Thus, the enterprise architects have to 

look for additional sources to extract the missing mapping between applications 

and business processes… 

7.1.1.3 Diagrams 

The third category of EA artifacts of TOGAF is denoted as diagrams. TOGAF vaguely 

defines diagrams as a means to graphically “present building blocks plus their relationships 

and interconnections in a graphical way that supports effective stakeholder communication” 

(The Open Group 2011). This definition corresponds to the concept of model defined in 

(ISO/IEC/IEEE 42010 2011), see section 2.2. 

Examining TOGAF, one mainly finds evidence of two types of artifacts: 

 nested box diagrams and 

 node/edge diagrams. 

Models of this type are common in almost all of the studied EA research papers. Archimate 

uses node-edge diagram as its main model kind. The majority of investigated EA research 

papers, e.g. (Ekstedt et al. 2009), (Johnson, Nordström and Lagerström 2007), (Niemann 
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2006), (Florez, Sánchez and Villalobos 2016) and (Manzur et al. 2015)) use node-edge 

diagrams for visualising the EA. Nested-box diagrams are not that common but are also used 

in some of the analysed EA research papers, see e.g. (Pouya Aleatrati Khosroshahi et al. 

2015), (Karagiannis, Moser and Mostashari 2012) and (The Open Group 2016). Fig. 45 

exemplarily depicts examples of the two artefact types.  

 

Fig. 45 Nested box (The Open Group 2016) and node/edge diagrams (The Open Group 2011)  

(b) Nested-box diagram

(a) Node-edge diagram
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Enterprise Architecture (EA) models can be thought of as structured, object-oriented 

descriptions that usually correspond to an organisation-specific, i.e. customized metamodel 

that evolves over time due to ever changing organisational requirements and problem fields 

(Roth and Matthes 2014). The metamodels described in EA standards and frameworks, 

comprise varying levels of formality. See for example: TOGAFs Content Metamodel, the 

DODAF metamodel, the I-patterns of TUM’s pattern catalog and many of the revisited EA 

publications in section 3. Whereas Archimate and DoDAF provide concise definitions of their 

metamodels, in TOGAF the metamodel is only roughly sketched. Archimate goes one step 

further and defines a modelling language on top of its metamodel (The Open Group 2016) 

including concepts such as viewpoints, model types, graphical notations for their modelling 

classes, etc. 

Building blocks instantiated from EA metamodels are typically complex, viz. they are units 

of components that themselves may be put together from subordinated building blocks. Thus, 

building blocks have to be considered either as containers or atomic objects. The typical 

course of action in design modelling reinforces the need for such a structure: where typically 

the design elements (building blocks in EA) tend to be less explicit and more abstract in the 

early design phases, additional building blocks and descriptive data are added to the model as 

the design evolves. Analogous data structures can be found in construction planning where 

the design objects are seen as “a convenient aggregation of information describing real world 

concepts” (Ahmed and Navathe 1991). Building blocks such as business processes, 

application components and technology components describe these real world concepts, i.e. 

the main structure elements of an organisation. 

Ehrig et al. state in (Ehrig et al. 2005) that any metamodel can be represented in the form of 

a labelled, directed and finite graph. From this, it follows that EA data can be represented in 

the form of labelled, directed graphs. Based on (van Buuren et al. 2004), a metamodel is 

described by a signature A)R,T,(C,=M where: 

 C is a finite set of modelling classes. 

 T is a finite set of relation types. 

  T × C × C  R is a finite set of relations between the modelling classes. Thus, an 

element R  t) ,c ,(c 21   represents a relation type and expresses the fact that a relation 

of type t exists from concept c1 to c2. 
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 A is a finite set of attributes assigned to the modelling classes and to the relation 

classes. 

On data level (respectively on model level), the EA data can be represented as a set of 

models following the above metamodel definitions. (van Buuren et al. 2004) defined a model 

(X) by a 4-tuple X = (O, T’, F,A’) where: 

 O is a set of objects, respectively the building blocks. 

 T’ is a set of relations (of the relation types that are defined in the metamodel), in 

DICE represented in the form of 3-degree edge lists comprising the node pairs and 

an additional variable for denoting the relation type. 

 TT  COF  ':  is a function that maps objects to metamodel concepts and 

relations to relation types. In DICE terms, this mapping corresponds to the structure 

of the composite data object where observable units and variables are defined by 

their associated metadata. 

 A’ is the set of attributes available for an object (defined in the metamodel). In DICE 

the attributes are named variables (the equivalent term used in the domain of 

statistical metadata management).  

In this vein, a model X must be understood as a multi-attributed directed graph. In the 

following sections, the identified EA analysis mechanisms are revisited and their underlying 

data structures are examined. At the outset, typical EA visualization patterns are discussed. 

For representing a model graph in DICE, Blaha’s node edge directed graph template (Blaha 

2010), as exemplarily depicted in Fig. 43 appears to be sufficient.  

Guiding case (continued): From previous architecture work a lot of architecture 

models in Archimate language exist. Many of the models are instantiated from 

Archimate’s application usage viewpoint comprising information on business 

processes and application components. Fig. 46 shows an example. 
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Fig. 46 Application Usage Viewpoint (The Open Group 2016) 

By restructuring the input models the enterprise architects create the following 

data structure. 
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Fig. 47 Node edge representation of application usage models6 

It is obvious that the intermediate business service layer (comprising the services 

“Scanning Service”, “Customer Administration Service” etc.) is not required for the 

given problem statement and can be removed. This issue is addressed in section 

7.1.4.2 by introducing a transformation task type for bypassing EA layers.  

7.1.1.4 Data Structures for EA Analysis based on Probabilistic Relation Models 

Numerous application scenarios for EA analysis based on probabilistic relation models 

(PRM) have been studied and presented by the research group “Industrial Information and 

Control Systems” of the “KTH Royal Institute of Technology”. Their PRM-based approach 

requires extensions to the given definition of metamodel in section 3.1.3: it requires a 

capability to express dependencies between attributes (Buckl et al. 2011). Fig. 48 provides an 

example. Note that not only the EA concepts but also single attributes (in the example the 

attribute “availability”) are interlinked. 

 

Fig. 48 Exemplary meta model snippet supporting PRM analysis (Buckl et al. 2011) 

Therefore, the given metamodel definition and the underlying data structure defined in 

section 7.1.1.3 has to be extended to support PRM based-analysis. The following definition is 

added: 

                                                 

6
 Note that in the given example data and metadata might be considered mashed, as the information on 

modelling class and relation types can likewise be seen as data and metadata. 
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 A × C × C  R  

where the finite set of relations is extended by the set of relations connecting properties of 

modelling classes.  

(Friedman et al. 1999) who specify a relational schema for PRM analysis in their work on 

“Learning Probability Models”, consider node edge templates as sufficient for storing the 

data. Importantly it must be noted that in this case, the rows of the edge table do not represent 

the relations between the building blocks but rather relations between attributes of the same 

type of the building blocks. 

7.1.1.5 Multi-criteria Decision Making Methods 

In essence, this type of EA analysis requires a structure to depict models in the form of a 

weighed tree, to whose nodes and edges, labels are assigned. Each of the nodes represents a 

quality criterion (as opposed to building blocks) that can be categorized into sub criteria. The 

topmost node represents an architecture scenario that is being evaluated. The leafs of such a 

tree are assessed by an expert, and based on the edge weights, for each node within the tree, 

its total quality is calculated until reaching the topmost node. Typically multiple scenarios 

(each represented by such a tree structure) are assessed by different experts and finally have to 

be consolidated into one resulting tree. Again, the node edge directed graph template 7.1.1.3 

appears to be most efficient for storing the required data.  

The modelling of concrete building blocks and relations is not required for this approach. 

However, use of EA models is suggested to depict the different scenarios. With its plateau 

concept, Archimate makes it possible to represent various EA scenarios within one model. 

From that, one can conclude that the structure for EA data also has to cope with optional EA 

scenarios. In section 7.1.7 this problem area is discussed in more detail. 

7.1.1.6 The Data Structure for Indicator-based EA Analysis 

Indicator-based EA analysis requires a well-structured dataset. Approaches such as 

presented in (Brückmann et al. 2009), (Addicks and Appelrath 2010), (Vasconcelos, Sousa 

and Tribolet 2015) pose requirements on their underlying datasets with a strong focus on the 

metamodels. All of the examined research papers define a concise metamodel for calculating 

the indicators. Although not providing how to ensure data quality, it appears obvious that for 
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calculating the EA indicators completeness on observable units, property values and 

relationships are required. An example of such a metamodel obtained from (Vasconcelos, 

Sousa and Tribolet 2007) is shown in Fig. 49. 

 

Fig. 49 Exemplary metamodel for an indicator-based approach (Vasconcelos, Sousa and Tribolet 2015) 

Based on data structured in conformity with the given metamodel, the authors calculate 

indicators, such as average number of possible operating systems, average number of 

different implementations of an information entity and average number of used security 

components.  

The required data structure corresponds to the definition of an EA metamodel provided in 

section 7.1.1.3. 

Guiding case (continued): In conformity with (Vasconcelos, Sousa and Tribolet 

2015), the enterprise architects might be interested in the “average response of a 

business process”, which can be computed by averaging the number of 

applications supporting a business process. Assumed that the hitherto compelled 

datasets are complete, this indicator can easily be calculated. 

Process

Business 
Service

IS Block

IT Block

Information 
Entity

is used>

relates

has operation

contains

exists

part of

< CRUD

is implemented

IT
Service

Operation

is supported



Application of DICE in the Fields of EAA 

 

149 

 

Suppose that additionally, the system indicator “average number of used security 

components” is one of the indicators used to calculate the technology fitness of 

the applications and thus will be required to calculate the colour coding of the 

envisioned heatmap. In accordance with (Vasconcelos, Sousa and Tribolet 2015), 

the indicator requires all technologies in use to run an application as an input. 

Security relevant technology components have to be flagged accordingly. 

From this fact, the requirement is drawn that the technology component 

catalogue has to be extended with a variable, “Security relevant”. As this 

information is not available so far, the enterprise architects have to find ways to 

deal with this “missing value”… 

7.1.1.7 EA Analysis Based on Network Measurements 

This type of EA analysis considers the EA as a complex network. In their literature review 

(Santana, Fischbach and Moura 2016) focus strongly on EA analysis based on structural 

aspects of EA models. Typical measurements from graph theory are: central measurements 

(determining the prominence of nodes in a network), such as degree centrality, closeness 

centrality, betweenness centrality and eigenvector centrality, see the work of (Schoonjans 

2016) who cites (Faust 1997) and (Rusinowska et al. 2011) in this context as a theoretical 

foundation. 

The most efficient data structure for this graph-based analysis is organized in the node and 

edge undirected graph template (Blaha 2010). In graph theory, node edge tables are denoted 

as incident lists representing a list of edges incident to nodes. Fig. 50 exemplarily shows the 

required structure. Note that no attributes for edges and nodes are required and that the edges 

are not typed. However, without any informational loss, the node edge directed graph 

template introduced in section 7.1.1.3 serves the purpose as well. 

 

Fig. 50 Node edge undirected graph template, adapted from (Blaha 2010) 
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From the explanations in the above sections, it becomes clear that the node-edge directed 

graph template is ideal for structuring EA data for subsequent analysis.  

To summarize, the node-edge directed graph template is suitable for most of the EA analysis 

approaches. DICE requires means to restructure given input datasets into this format. 

 

Requirement 1: Provide method chunks to support the restructuring of EA data structures 

according to the node-edge directed graph template. 

7.1.2 Amount of Data 

Typically in EAA scenarios, there will not be millions of records as in the often-quoted BA 

and DM applications scenarios operating on census data and public health data files. Even in 

major enterprises the set of relevant EA models will not contain millions of building blocks. 

This fact is based on an evaluation of five EA repositories of organizations from the public 

administration, the financial sector and from the logistics sector. All of these organisations 

run EA endeavours at minimum for five years. The largest repository contained 

approximately 517.000 architecture artefacts, where it must be concluded that this repository 

to a great extent held detailed system parameters that are not considered as the typical EA 

building blocks. 

If one takes the SAP reference model (Daneva 2004) with the rather “small” amount of 

20.000 different process tasks dispersed throughout various industrial sectors (Mendling, 

Reijers and Recker 2010) as an example, it becomes evident that the population of EA 

building blocks of an organisation will not go into the millions. 

This is of course in contrast to the operational business analytics data gathered to extend the 

EA models (see section 7.1.5.1). 

7.1.3 Issues with Structural and Technical Formats 

Any relevant input ideally is converted into the horizontal (tabular) layout for further 

processing. EA input data will typically come in various technical formats. Typical exchange 

formats are: spreadsheet formats (such as csv, xlsx), formatted text-files and xml-based 

formats. Some EA frameworks such as Archimate and DoDAF offer tool-agnostic exchange 

formats. Both Archimates' Model Exchange File Format (The Open Group 2015) and 
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DoDAF’s PES (DoD 2010) provide well-documented XML schemas which make possible the 

exchange of EA models.  

Clearly, EA management does not exclusively rely on modelled information sources. 

Information will also come from external sources, which have to be pre-processed and 

integrated with the EA model base for further use. The external sources might be used to 

enrich and validate the existing EA data. Take the following common examples:  

 Service Level Agreements (SLAs) and underpinning contracts will often be available 

in the form of text-heavy documents only. In some cases they might be based on an 

agreed template. In other cases no template may be used at all. However, typically 

such documents will carry EA-relevant information about IT services and 

applications. 

 Plain text business process documentations can be considered as an important part of 

the business architecture descriptions.  

 Technology lifecycle data and technology ratings might be obtained from vendor 

websites or from sources such as www.technopedia.com, a platform providing a 

taxonomy of technologies and technology descriptions. Another valuable external 

source are reference models published in HTML and other formats (see e.g. the 

BIAN service catalogue, www.bian.org). 

 Customer sentiment data and market trends extracted from social media platforms 

are among the classical sources for BA. 

Guiding case (continued): So far the enterprise architects identified a couple of 

datasets relevant for the endeavour. Table 8 offers an overview of the data 

sources and their structural and technical formats. 

Table 8 Exemplary sources for EA data 

Source Structural format Technical format 

Application portfolio catalogue Horizontal layout, One row per 

application, One column per 

variable 

Microsoft Excel 

Application x Technology 

Matrix 

Structured as adjacency 

matrix 

CSV (comma separated value 

format) 

Archimate models Models in conformity with the 

Archimate metamodel (more 

precisely: in the form of 

XML structure based on the 

Archimate model exchange file 

format 

http://www.technopedia.com/
http://www.bian.org/
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“Application Usage Viewpoint” 

models) 

Set of security relevant 

software technologies 

Not available Not available 

 

 

From this, one can conclude that DICE has to cope with manifold structural and technical 

formats. Means to load and interpret technical formats will be highly dependent on the 

capabilities of the data mining tool in use. 

 

Requirement 2: Provide method chunks to load EA data from a diverse set of technical 

formats and sources. 

7.1.4 Granularity, Generality and Abstractness of EA Data 

Architecture design processes are typically of iterative and exploratory nature. Take 

TOGAF’s ADM as one typical design approach for enterprise architectures. In the first phase 

(architecture vision), architectures are roughly designed. In the successive phases, (business 

architecture, information system architecture and technology architecture) the architectures 

are refined. Even later, in the phase “opportunities and solutions”, the architecture is detailed 

into a solution architecture. While running through the different phases, arbitrary models 

might be created. The models in the later phases are typically more detailed as compared to 

those in the previous phases.  

To foster this progressive approach, e.g. Archimate and DoDAF provide relationship types 

within their metamodels that make possible the documentation and analysis of architectures 

on different levels of detail. Aggregation (part-whole relation), composition (whole-part 

relation), generalisation (IS-A) and specialisation (whole-part) relationships are offered to 

facilitate the description the EA at different abstractions and level of detail. For EA analysis, 

this is clearly impeding. Transformation tasks have to be in place to “normalise” the EA data 

as needed. In the following sections archetypical EA structures in this context are discussed. 
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7.1.4.1 Reflexive Relations  

In the case of reflexive relations, the building blocks of the same modelling class are related 

to each other. Often the building blocks are (hierarchically) decomposed into building blocks 

of their own type. In other words, the building blocks are participants in a parent-child 

relationship. To reduce complexity and gain an overview, lower level building blocks can be 

condensed into higher levels. Archimate’s metamodel defines aggregation, composition and 

specialisation relationships being permitted between building blocks of the same modelling 

class. Each building block in an Archimate model can be refined into building blocks of its 

own modelling class using one of these relations, and conversely, complexity can be reduced 

by condensing the building blocks to higher layer building blocks. Reflexive relations of type 

association do not indicate different layers. Usually (but not mandatorily) building blocks of 

the same level of detail are connected via relationships of type “association”.  

Fig. 51 shows an example of reflexive relations modelled in Archimate. 

Guiding example (continued): Looking closer at the given data structure 

extracted from the application usage viewpoint in Fig. 46, the enterprise 

architects detect that the business processes “Register Claim” ,”Accept Claim”, 

“Valuate Claim” and “Pay Claim” are grouped into a super-ordinated business 

process, “Handle Claim”. Fig. 51 depicts the situation in an alternative Archimate 

compliant representation. 

 

Fig. 51 Reflexive relations – example in Archimate notation 

The enterprise architects have to define the required level of detail for the 

envisioned clustermap. They decide: either using level 1 or level 2 of the process 

architecture or alternatively, to extend the initial clustermap layout with another 

level. The alternative represents the business processes in a two-level hierarchy 

visualised in a box-in-a-box layout. 
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To avoid biased results in subsequent analysis phases it is essential to clearly identify these 

hierarchies and to “normalise” them where required. 

 

Requirement 3: Provide method chunks to filter/consolidate building blocks organised in 

reflexive relations. 

7.1.4.2 Hierarchical Decomposition 

According to Fischer et al. (Fisher et al. 2014), the majority of concepts defined within an 

EA metamodel can be interpreted as aggregation hierarchies. Consequently, architecture 

building blocks are typically decomposed into more specific building blocks. The multi-level 

systems theory differentiates between strata, layers and echelons (Fischer and Winter 2007). 

These concepts have been addressed in the context of EA in various publications, see e.g. 

(Abraham, Tribolet and Winter 2013), (Korhonen, Yildiz and Mykkanen 2009) and (Gale and 

Eldred 1996).  

Examples of stratified hierarchies are: the refinement of strategies into objectives/goals and 

the decomposition of applications into their software components etc. These hierarchies are 

typically established via relation classes providing inheritance and containment mechanisms 

(Sprinkle et al. 2010) such as the aforementioned relation types (aggregation, composition, 

etc.). Perfect examples of such relationships can found in almost all EA metamodels. 

Examples from the TOGAF content metamodel are: relationships such as “decomposes” for 

the composition of application and technology components or the “is realised through” 

relationship which decomposes goals into objectives. The case of reflexive relations discussed 

in section 7.1.4.1 must be understood as a special case of stratified composition where the 

hierarchically ordered concepts are of the same type, i.e. of the same modelling class.  

The concept of layers refers to the typical architecture layers, such as TOGAF’s business 

architecture, information systems architecture and technology architecture or Archimate’s 

business, application and technology layer. In keeping with the hierarchical multi-level 

systems theory, conditions and definitions of a superordinate EA hierarchy layer reduce the 

degrees of freedom of the downstream layers (Torokhti and Howlett 2000), i.e. “business 

follows IT”. Echelons refer to responsibilities and decision-making structures in the context of 

such stratified structures. 
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EA is typically interested in the top level strata and in the dependencies between its 

elements.  

 

Fig. 52 EA strata, adapted from (Fischer and Winter 2007) 

One significant impact on DICE results from the different modelling classes involved in 

hierarchical decomposition, as the different modelling classes typically will carry different 

attributes, and merging objects on different levels will not be that straight forward as in the 

case of reflexive relations. 

Guiding example (continued): The provided architecture usage diagrams contain 

application services which implement (in Archimate terms “realise”) application 

services. Although the relation class “realise” is not classified as superclass-class 

relationship, the enterprise architects decide to apply a contraction transformation 

to these objects, thus, the objects are deleted from the dataset and the former 

relations are restored by directly connecting business processes to applications. 

Fig. 52 shows the resulting model. 
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Fig. 53 Application usage model with contracted application services 

 

From the above explanations, the requirement to “bypass” intermediary building blocks on 

the path between a pair of building blocks is drawn. In this connection possible problems of 

cyclic references (Beyer, Noack and Lewerentz 2005) have to be tackled where changes to 

one building block might influence an entire cycle of building blocks and degenerate 

inheritance (Beyer, Noack and Lewerentz 2005) or where a building block might inherit (e.g. 

via groupby transformation) values from another building block. 

 

Requirement 4: Provide method chunks to filter/consolidate structures organised into 

different strata. 

7.1.5 Logical versus Physical Layers 

EA descriptions often comprise logical and physical building blocks. Whereas logical views 

are intended to offer an implementation-independent view of the architecture, the physical 

view is intended to represent the implementation details of the logical view. In this vein, the 

physical view describes the real world entities.  
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Consider the following example: a technology component might be characterised 

independently of any specific vendor or technology solution that represents the logical view; 

it focuses on functional aspects of the EA. In TOGAF, these logical building blocks are 

referred to as “architecture building blocks” (ABBs). 

In contrast, the physical view describes so-called solution building blocks. For a better 

understanding Fig. 54 shows a few examples. 

 

Fig. 54 ABBs and SBBs 

Whereas the logical building blocks are used to describe the envisioned “ideal” architecture, 

the physical building blocks describe the actual implementation, i.e. the solution architecture 

(The Open Group 2011).  

Guiding example (continued): By comparing the application components within 

the application portfolio catalogue (Fig. 19) and the application components 

documented within the architecture usage model (Fig. 46), the difference 

becomes obvious. Whereas the application portfolio catalogue contains physical 

entities, e.g. such as a concrete version of SharePoint, the architecture usage 

models comprise solely logical application components, such as the “Home and 

Away Financial Application”. This situation will raise complexity for the given 

endeavour, as simple merge transformations will not be sufficient. Additionally, 

the situation stresses the importance of unambiguous specification of the 

observable units, i.e. the need for semantic metadata. 

 

Some enterprise architecture frameworks differentiate between logical and physical building 

blocks in their metamodels. Evidence can be found in TOGAF’s content metamodel, which 

offers dedicated modelling classes for ABBs and SBBs. The differentiation between “logical 

application component” and “physical application component” is one example. Notably, this 

differentiation in TOGAF is not made for building blocks of the business architecture. 

Archimate’s approach for dealing with the progression from abstract to concrete building 

Windows Server 2016

SBB (physical)

Oracle 13g

Apache 2.4

Operating system

Database management system

Web server

ABB (logical)



Application of DICE in the Fields of EAA 

 

158 

 

blocks mainly focuses on the refinement of building blocks via the relationship type 

“realisation”: “The realization relationship indicates that more abstract entities (‘what’ or 

‘logical’) are realized by means of more tangible entities (‘how’ or ‘physical’)“, (The Open 

Group 2016).  

Additionally, for describing the physical representations of application components and data 

objects Archimate stipulates the modelling class “Artefact”. The concepts node and device are 

defined as physical resources. However, their logical pendants are not defined in the 

Archimate specification. 

For example, the information flow between two application components might be modelled 

using two or more physical interfaces connecting the two application components. In the 

logical view, these physical interfaces might be depicted with only one logical interface or in 

some cases, just by a relation class "Information flow". For clarity, Fig. 55 illustrates these 

examples. 

 

Fig. 55 Different representations of logical and physical interfaces in Archimate 

Providing an overview of all interfaces within the enterprise, in this case, is a non-trivial 

task. Applicable harmonisation strategies in such a case are contradiction of the physical 

interface into one logical interface, deletion of the interfaces and reconstruction of the 

relations etc. In terms of DICE, populations and observable units (in this case the interfaces) 

have to be clearly specified to avoid biased results. Rules for differentiating between logical 

and physical have to be worked out by the enterprise architects in such cases. DICE can then 

support selecting and restructuring the data as needed. 
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Requirement 5: Provide method chunks to filter/consolidate logical/physical building 

blocks. 

7.1.5.1 Types and Instances 

Another characteristic of EA concepts, not to be confused with the previously introduced 

concepts of logical and physical building blocks, is the concept of types and instances 

(Moser, Winklhofer and Kuplich 2008). Types and instances can be considered as 

specialisation of the concept of physical building blocks discussed in the previous section.  

In this context, the meaning of the term “type” is rather similar to the meaning of the word 

“type” in everyday language. Types represent collections of instances, and instances are 

specific realizations of a type. In accordance with DoDAF (DoD 2010), instances can be 

defined as things that exist in 3D space and time. Enterprise architects usually model types of 

things rather than instances, but some architecture frameworks such as DoDAF consider 

instances explicitly. In DoDAF, instances of types are named using the preface “individual” 

and an explicit “is-type-of” relation is offered (see e.g. the relation “typeInstance”). 

Archimate and TOGAF do not differentiate between types and instances in their metamodels.  

For example, a solution building block (physical) such as the technology component Oracle 

11g can be interpreted as type or as instance. If we interpret Oracle 11g as instance, it 

represents a solution building block, which is installed on a concrete node (a concrete server), 

holds a concrete database schema and stores concrete data. As opposed to types, instances 

correspond to things found in the real world. Typically tools such as configuration 

management systems (CMS) manage instances (Klosterboer 2007). They hold physical 

instances of databases, application components etc. of the “real world” IT landscape. 

Enterprise architecture is typically not interested in modelling these concrete instances. 

However, datasets comprising concrete instances (such as CMS/CMDB) are often quoted as 

valuable sources for populating EA repositories, see e.g. the survey of (Farwick et al. 2013) 

where the majority of EA architects are convinced that CMS/CMDBs hold EA-relevant data. 

A concrete example would be that enterprise architects are interested in the absolute number 

of instances of a certain technology. (E.g. how many oracle database instances do we have?)  

Guiding example (continued): To make sure that the list of used technologies is 

fully covered, the enterprise architects plan to run a completeness check, i.e. in 
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DICE terms: the architects determine the completeness of the sample population 

of technologies. 

Table 9 shows an excerpt of the list of technologies retrieved from the 

organisations Configuration Management Database System (CMDB) in csv 

format. 

Table 9 Exemplary excerpt of CMDB report 

[…] 

Oracle 11gR12,CosMosDB 

Oracle 11gR12,OrinocoDB 

Oracle 11gR12,CRMDB 

SQLserver 2016 (13.0),FinAppDB 

[…] 

Obviously the table contains physical configuration Items (CIs) as is customary 

for CMDB data. The list has to be cleaned to truly represent the list of 

technologies on type level. Removal of the second variable followed by 

consolidation of the observable units in the resulting dataset would be a 

sufficient approach. 

 

With a focus on the building blocks of the business architecture level, the importance of the 

concept of types and instances is even more explicit. Instance data on products (sales 

transactions and prices), customers (customer data) and processes (workflow instances) are 

the classical sources for BA analysis. 

By aggregating this data, valuable information for EA initiatives can be generated. The BA 

data will produce insights that enable decision making on competitive actions that change 

organisational capabilities. Examples of such competitive actions are: the launch of new 

products or product extension, changes in the channels through which customers are reached 

and expansion of target markets and customer segments (Sharma et al. 2010). Each of these 

changes affects the organisations business capabilities where the resources of the capabilities 

are based on: business processes, stakeholders, information entities, applications and 

technologies. 
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Fig. 56 Types and Instances - Usage of BA data in EAA 

In regards to DICE, it must be possible to identify and filter building blocks based on their 

kinds (types versus instances) and preparing/aggregating instance data to be used in type data.  

 

Requirement 6: Provide method chunks to filter/consolidate types and instance building 

blocks. 

7.1.6 Time Dimensions 

From the definitions of EA and EAM (shown in section 2.1), it is evident that time aspects 

play an important role. Take for example Gartner’s definition which emphasises the need for 

“models that describe the enterprise’s future state and enable the organisations evolution” 

(Lapkin et al. 2008). From this, one can conclude right away that time aspects are critical in 

the context of EA and that time aspects are inseparably related to EA descriptions. This also 

becomes obvious from Zachman’s Architecture Framework (Zachman 1987) where the 

interrogative “When?” is prominently positioned.  

The reasons for permanently adapting the EA and the EA descriptions are manifold. 

Examples given in TOGAF are: the adaption of the organisational structure (e.g. the 

introduction of business units, introduction of mid-office etc.), the harmonisation of business 
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processes, the launch of new products or the enhancement of legacy systems to support the 

service oriented architectures (The Open Group 2011). In any case, building blocks and their 

interplay will change over time. From an EA description point of view, this holds true for the 

building blocks as a whole, for the relations between the building blocks as well as for their 

attribute values. 

7.1.6.1 Architecture Increments 

Enterprise architecture frameworks such as TOGAF, GERAM, FEAF, see e.g. (Saha 2004), 

(Buckl et al. 2009) and (Saha 2007) postulate mechanisms for time-related views on the 

enterprise architecture. Typically, as-is (i.e. baseline) and target architectures as well as 

transition architectures are differentiated. Transition architectures represent interim 

architectures that point the way towards target architecture. Architecture increments represent 

architectures at a certain point in time. All of the above mentioned EA frameworks specify 

metamodels, however, in none of the metamodels are time-related aspects referred to (Buckl 

et al. 2009).  

 

Fig. 57 As-is, transition and target architectures 

Time-based architecture descriptions are “user-level versioned” models, i.e. they represent 

versions of EA models and building blocks created for specific purposes (Sciore 1994). 

Model types (model kinds) such as the “Business Support Migration Roadmap”, see (Buckl et 

al. 2009) typically point the way from as-is architectures towards the desired target 

architectures by depicting building blocks, such as applications, functions and implementation 

projects in Gantt-like diagrams (see Fig. 39).  

Another important fact to be considered in this context is that typically the level of details 

between as-is, transformation and target architectures differ considerably. Whereas the as-is 
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architecture typically gives a clear picture of the overall architecture, target architectures 

usually anticipating the needs of the next 3-5 years, are not defined at the same level of detail 

(strata), see e.g. (The Open Group 2011).  

As an example, as-is architectures often comprise concrete versions of technology products 

(i.e. physical view building blocks), whereas target architectures typically refer to technology 

capabilities and required qualities only (logical building blocks). The concrete design of 

implementation details is not important years in advance and might even restrict the solution 

space for architectural solutions in the future. Thus, as-is architectures usually comprise 

deeper levels of the strata as compared to target architectures (see sections 7.1.4.2 and 

7.1.4.1).  

Archimate recognises the need for time-based views and introduces the concept “plateau” as 

a solution. Plateaus are part of its language definition and are represented via the modelling 

class "plateau". Plateaus are used to specify points in time and can be assigned to any building 

block (Jonkers et al. 2010). For a better understanding Fig. 58 provides an example. The 

cuboid-like elements represent the plateaus, each of them representing periods in time. The 

associated building blocks are decommissioned / set in production at the end / at the 

beginning of these time periods. 
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Fig. 58 Application usage model incl. plateaus depicting transition architectures 

Other approaches equip the modelling classes and relation classes, respectively the building 

blocks and their relation classes, with time attributes directly (e.g. production date, 

decommission date). Via this construct, it becomes possible to select the set of active (valid) 

building blocks for a given architecture increment (respectively period in time). These 

concepts are summarised under the heading of time-based versioning and temporal modelling, 

see e.g. (Parent, Spaccapietra and Zimányi 1999) and (Theodoulidis and Loucopoulos 1991). 

Subsetting the gaps between as-is and target architectures respectively between as-is and 

transition architectures is also of major importance.  

Another important fact is that target architectures are evolutionary in nature and are subject 

to continuous planning and update in consideration of evolving business requirements and 

technological change. By contrast, in order to avoid complications caused by moving targets, 

transition architectures (at least in the short-term) should not be altered during the course of 

the implementation projects (The Open Group 2011).  

A third major aspect is the possible amalgamation of as-is and target building blocks in one 

EA model. In such a case, models typically contain building blocks documented on different 

strata. Whereas as-is building blocks are modelled on a deeper strata and possibly on a deeper 



Application of DICE in the Fields of EAA 

 

165 

 

versioning level (see section 7.1.4), planned building blocks serve as “placeholders” and are 

described on a higher EA strata, as implementation details are not required (or not even 

known). Temporal aspects have to be considered in the context of building blocks, the 

relations between building blocks and their attributes. 

Dealing with temporal aspects is a non-trivial task. EA descriptions apply different time 

concepts. (Gschwandtner et al. 2012) define the following types of time inherent in datasets: 

 Non-rastered points in time, representing concrete points in time. 

 Non-rastered intervals, representing time intervals defined by start and end date. 

 Rastered intervals, representing units of time constituting a raster. An example is using 

Q1, Q2, Q3 and Q4 to represent quarters of a year. 

Guiding example (continued): Luckily, the application portfolio catalogue 

carries the variables “production date” and “decommission” date for applications. 

Based on these variables the enterprise architects can select those applications 

that are currently in production. Already decommissioned application 

components are not of interest for the envisaged clustermap. 

DICE method chunks that allow for filtering the datasets in a time-based manner need to be 

in place.  

 

Requirement 7: The selection transformation task type has to cope with time-related data. 

7.1.6.2 Versioning of Building Blocks 

Building blocks and their relations are typically regarded as versioned items. Versioning is 

required for comprehensible handling of changes within the EA. The concept of versioning 

anticipates the possibility of the concurrent existence of arbitrary implementations of the same 

building block. Notably, prominent frameworks such as TOGAF, MODAF, DODAF and the 

modelling language Archimate do not explicitly recognise this requirement. None of their 

metamodels explicitly define attributes for version control of their building blocks.  

As discussed in (Conradi and Westfechtel 1998) and (Sciore 1994), versioning is performed 

with several intentions. In the context of building blocks, a version is typically defined to 

supersede its predecessor. This type of version is commonly called revision. An example is a 

new version of a technology component that typically will be the result of a bug fix or feature 
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enhancement of a previous version. The same principle holds true for any type of building 

block.  

The level of depth of the applied versioning strategy plays an important role. As a rule of 

thumb, building blocks such as applications and technology products are managed on the 

level of major releases in the context of EA management (Moser, Fürstenau and Junginger 

2010). However, depending on the case, a deeper versioning level might have been chosen, 

see e.g. (Klosterboer 2007). An example is technology data held for security management 

issues where detailed versioning levels down to the patch level of software products might be 

required. 

For a better understanding Fig. 59 exemplarily depicts common versioning units for 

applications and technology products.  

 

Fig. 59 Varying depths of versioning for applications and technologies 

Guiding example (continued): In the used system × technology matrix (see Fig. 

44) one can find the database system “Oracle” multiple times. It holds Oracle 11g 

and on a more detailed versioning level Oracle 11g.R12. 

The latter is on a level too detailed for the intended purposes, thus, the enterprise 

architects decide to consolidate the two technologies into one building block 

(Oracle 11g). 

 

In a DICE endeavour, for all observable units (EA building blocks) the applied versioning 

strategy has to be examined. Groupby mechanisms are required to conflate low level 

versioned building blocks. An example is the conflation of technologies such as Archimate’s 

modelling class “system software” versioned on the level of service packs into building 

blocks versioned on the major release level.  
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Requirement 8: Provide method chunks to consolidate low level versioned building blocks 

into higher level versioned building blocks. 

7.1.6.3 Versioning of Architecture Descriptions 

As the EA of an organisation undergoes continuous change, the architecture descriptions are 

updated on a frequent basis. Thus, EA descriptions typically evolve over time through various 

revisions. This versioning will lead to the existence of EA descriptions depicting the same or 

similar scope of the EA at different points in time.  

In their work, (Moser, Winklhofer and Kuplich 2008) propose a release workflow for EA 

models implemented as a status automation that defines states such as “Draft”, “Quality 

Assurance”, “Released” and “Archived” to control the process of model creation and release. 

In many cases only released models will be of interest, as the quality of these models typically 

has been approved and will comprise validated EA data. 

The given EA descriptions need to be analysed regarding their currentness and correctness. 

The available meta information of the models must be captured in DICE. Information about 

approval status, approval date, spatial information etc. is of high relevance. It is obvious that 

the data in formally released models is more trustworthy than data without such a 

characteristic. In the case of duplicates within the dataset record, linkage mechanism must be 

in place to resolve duplicate building blocks including their relations.  

 

Requirement 9: Provide mechanism to filter/select building blocks in datasets based on 

their (description) version. 

7.1.7 Planning Scenarios - Alternative Architectures 

Scenarios have been widely used as a requirements engineering technique, especially with 

respect to software architectures, see (Dardenne 1993), (Gough et al. 1995) and (Kazman et 

al. 1996). Architecture scenarios are used in the design phases as a method for comparing 

design alternatives. The EA analysis techniques such as the “multi-criteria decision making 

techniques” (see section 3.1.3) build heavily on this concept. 

In TOGAF, in the Phases B, C and D of the Architecture Development Method, the as-is 

architecture and target architectures are defined. In Phase E: Opportunities and Solutions, one 
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or more alternative solution architectures may be defined. Alternative design options may for 

example, depend on build-versus-buy-versus-reuse options (Moser, Winklhofer and Kuplich 

2008). In order to choose the best solution, the alternative architecture designs are evaluated 

and compared. Applied evaluation criteria are: costs, time to market and architectural fit (i.e. 

compliance with stated architecture principles). As in TOGAF, other EA frameworks such as 

FEAF and GERAM recommend the design and comparison of planning scenarios. 

The starting point for defining a new scenario (baseline) is the EA at any given point in 

time. Typically, scenarios will be designed for the target architecture. In this context, the 

baseline architecture represents the released and authorised state of the EA. The baseline 

serves as the basis for designing and implementing architectural changes.  

Archimate takes advantage of its plateau concept which was introduced in section 7.1.6. As 

discussed, plateaus serve to depict architecture increments; they are also used to represent 

architecture scenarios and competing architecture designs as well. Utilizing the concept of 

plateaus, baseline building blocks and scenario-specific building blocks can be distinguished.  

The main criteria for identifying building blocks of a baseline are that they are formally 

agreed and released, see (Moser, Winklhofer and Kuplich 2008). Fig. 60 depicts the baseline 

and its progression to the target architecture incl. examples of alternative architecture designs. 



Application of DICE in the Fields of EAA 

 

169 

 

 

Fig. 60 Alternative Architectures 

Guiding example (continued): The collected application usage models might not 

only be categorised as “as-is” architecture models but also planning alternatives 

might be contained. The enterprise architects have to analyse the models and 

sort out non-relevant variants to avoid biased results by merging non-relevant 

data into the dataset used to create the envisioned clustermap. 

 

Summing up, it is important to differentiate between architecture scenarios and agreed plan 

and target architectures. Obtaining the required information from the input models and other 

architecture descriptions in an automated way will, in many cases, be impossible without 

detailed investigation of available metadata. Scenario comparison must be possible.  

 

Requirement 10: Support scenario-based data structures. 
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7.1.8 Heterogeneous Metamodels 

As mentioned in section 2.1, there are a great many EA metamodels. Almost all EA 

frameworks and approaches come with their own metamodels. In addition to that, in EAA 

endeavours dealing with EA content not following a “standard” metamodel at all might be 

required. “Standard” metamodels might have been tailored to fit a purpose in the context of 

specific scenarios. Thus, mechanisms for the integration of data stemming from 

heterogeneous metamodels are a critical requirement.  

In spite of the differences in these metamodels, many of them share a common ground. All 

of them are intended to organise the topmost important concepts of an organisation. Take for 

example the metamodels of Archimate and TOGAF. Fig. 61 shows the mapping between the 

two metamodels published by the Open Group (Band et al. 2015). 

 

Fig. 61 Metamodel mapping: Archimate vs. TOGAF content metamodel (Band et al. 2015) 

Although originally stemming from different organisations and developed independently of 

one another, one can recognise that the two metamodels have a high degree of overlap. Other 

examples of available mappings are: mappings between the military frameworks DoDAF and 

MODAF (Hause, Brookshier and Bleakley 2012) and the TOGAF-BIAN mapping (TOGAF 

BIAN Collaboration Work Group 2012) to name just some examples. Where such mappings 

are available, they provide valuable input for the required “normalisation” of the data. 



Application of DICE in the Fields of EAA 

 

171 

 

However, often the available data may not be instantiated from EA metamodels or may be 

based on individually tailored metamodels.  

Guiding example (continued): The case of heterogeneous metamodels exactly 

reflects the situation of our EAA endeavour. Datasets from different sources have 

been taken into consideration. Because of the small number of involved types of 

architecture artefacts (modelling classes), relations and attributes, the mapping 

is straight forward. 

However, if many different types of input sources are available, support for the 

required mapping would be appreciated by the enterprise architects. These 

mechanisms ideally would generate mapping proposals based on the input 

datasets.  

 

For these cases DICE needs to provide mechanisms that support the integration of the EA 

data.  

 

Requirement 11: Provide means to integrate datasets stemming from heterogeneous 

metamodels.  

7.1.9 Common Data Quality Issues 

Data quality issues have already been discussed in chapter 6.1. The same criteria apply to 

EA data. Probably the biggest difference to common BA and DM endeavours is that in EA in 

many cases the population has to be fully covered, i.e. 

D
SEM>popultationSize

=D
SEM>samplePopulationSize

. An important issue requiring special attention is the 

consolidation of observable units. As becomes obvious from the guiding example, 

consolidation of building blocks is one of the major challenges when integrating models. 

Thus, adequate mechanisms to identify equivalent building blocks need to be in place.  

As opposed to the standard case in horizontally laid out data, in graph-oriented data 

additional information such as the observable units’ neighbours and incoming/outgoing 

relations have to be taken into account. 

 

Requirement 12: Provide mechanisms to identify equivalent building blocks.  
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Requirement 13: Provide mechanism for performing record linkage on EA building blocks. 

7.1.10 Summary 

As has been shown, EA data is object-oriented in nature. In order to examine relationships 

between building blocks, most of the EA analysis approaches require not only information on 

observable units and their characteristics but also rich structural information. From the 

analysis of the nature of the EA the following requirements have been derived that require an 

extension of the DICE core method base. Enriching the DICE core method base makes it 

possible to assemble a situational method for data integration and cleansing in the fields of 

EAA. Table 10 summarizes the derived requirements: 

Table 10 Requirements for supporting EAA  

Requirement Source 

Requirement 1: Provide method chunks to support 

the restructuring of EA data in accordance with the 

node-edge directed graph template. 

The object-oriented nature of EA 

data 

Requirement 2: Provide method chunks to load EA 

data from a diverse set of technical formats and 

sources. 

Issues with Structural and 

Technical Formats 

Requirement 3: Provide method chunks to 

filter/consolidate building blocks organised in 

reflexive relations. 

Reflexive Relations 

Requirement 4: Provide method chunks to 

filter/consolidate EA data organised into different 

strata. 

Hierarchical Decomposition 

Requirement 5: Provide method chunks to 

filter/consolidate logical/physical building blocks. 

Logical versus Physical Layers 

Requirement 6: Provide method chunks to 

filter/consolidate types and instance building blocks. 

Types and Instances 
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Requirement 7: The selection transformation task 

has to cope with time-related data. 

Architecture Increments 

Requirement 8: Provide method chunks to 

consolidate low level versioned building blocks into 

higher level versioned building blocks. 

Versioning of Building Blocks  

Requirement 9: Provide a mechanism to filter/select 

building blocks in datasets based on their 

(description) version. 

Versioning of Architecture 

Descriptions 

Requirement 10: Support scenario-based data 

structures. 

Planning Scenarios - Alternative 

Architectures 

Requirement 11: Provide means to integrate 

datasets stemming from heterogeneous metamodels. 

Heterogeneous Metamodels  

Requirement 12: Provide mechanisms to identify 

equivalent building blocks. 

Common Data Quality Issues 

Requirement 13: Provide a mechanism for 

performing record linkage on EA building blocks. 

Common Data Quality Issues 

 

The following section focuses on the implementation of the above requirements by extending 

the DICE method base with specialised method chunks required for preparing EA data for 

subsequent EA analysis. The enhancement of the method base leads to a situational method 

for data integration and cleansing for EAA. 

 Requirements 1 and 2 deal with the problem of loading and restructuring data. As 

repeatedly stated, a countless number of possible technical and structural formats exist. 

Section 7.2.1 focusses on loading and restructuring data residing in the Archimate Model 

Exchange Format. The defined transformation task for the restructuring of models in this 

format is used as a representative example. Requirements 3, 4, 5 and 8 can be condensed to 

the following graph of theoretical problems: contraction and filtering of vertices, edges and 

entire paths. This problem area is addressed in section 7.3. Solutions to the requirements 7 

and 10 (time-related and scenario-based views on EA data) follow the same solution pattern 
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and thus are discussed jointly in section 7.2.1. Functions supporting identification of 

equivalent observable units (Requirement 13) are presented in section 7.2.2. Record linkage 

issues (Requirement 14) are presented in section 7.2.3. Finally, 7.4 deals with heterogeneous 

metamodels (Requirement 11 and 12).  

7.2 Extending the DICE Method Base for EAA 

7.2.1 Restructuring EA Datasets 

The first crucial step is always to restructure the input data into the DICE meta structure (see 

section 5.3.2.7). The datasets have to be initialised (see the instantiation transformation task 

type introduced section 5.3.2.1), i.e. the input datasets have to be structured into a composite 

data object (see Fig. 31). The initialisation transformation creates the structure and calculates 

the metadata where possible. Additional metadata such as the semantic metadata and the 

logistical metadata have to be inputted manually.  

Transferring an EA model (such as the exemplary application usage diagrams, see Fig. 46) 

but also the matrix-oriented datasets (see the system × technology matrix of Fig. 44) or any 

other input format will result in a number of datasets organised in node and edge directed 

graph templates (see section 7.1.1.3). The overall structure will be as follows: 

 One dataset per building block type (modelling class) contained in the input model. 

 One variable to carry the ID values for building blocks which can be arbitrary but 

require consistency within the set of relevant datasets. 

 One edge table where each row represents one relation between a pair of building 

blocks indicating source and sink building blocks. The variable “Relation Type” 

within the edge table provides information about the type of relation (composition, 

aggregation etc.). 

Fig. 62 represents the resulting structure (on data level) in the form of an UML diagram. 
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Fig. 62 Structure of datasets on data-level to represent EA data 

Note (1): As none of the prominent EA frameworks (TOGAF, Archimate, DoDAF) define 

attributes for relation classes, this structure is seen as suitable. However, where required the 

aforementioned edge table can be split up into edge table per relation class, if relations carry 

different attributes (variables). 

Note (2): In exceptional cases not all relation classes are directed. This fact is ignored due to 

the advantage of a simplified data structure. A more exact schema would penalize data 

retrieval and raise the complexity regarding the conducted data transformation steps, e.g. by 

requiring multi-table joins (Moody and Kortink 2000).  

From the analysis of EA data structures it becomes clear that this initial data structure has to 

be extended to provide information about time aspects (see section 7.1.6.1). Thus, each of the 

above datasets (carrying the building blocks and their relations) has to be extended by the 

following columns: 

 Start date, to provide information about the birth of a building block (e.g. production 

date of an application component) and 

 End date, to provide information about the expiration date of a building block (e.g. 

decommission date of an application component). 

Note (3): Rastered intervals representing units of time constituting a raster (e.g. quarters, 

years etc.) require only one variable indicating the rastered interval (see section 7.1.6.1).  
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The resulting data structure on data level has the structure as illustrated in the form of an 

UML class diagram in Fig. 63. 

 

Fig. 63Structure of datasets on data-level to represent EA data including time aspects 

Typical exchange formats for EA models are: spreadsheet formats (such as csv, xlsx files), 

formatted text-files and xml-based formats. Some EA frameworks such as Archimate and 

DoDAF offer toolset-agnostic exchange formats. Both the Archimate Model Exchange File 

Format (The Open Group 2015) and DoDAF’s PES (DoD 2010) provide well-documented 

XML schemas which facilitate the exchange of EA models based on their modelling 

languages. Of course, it cannot be guaranteed that the model-base is available based on this 

format. Thus, transformation of Archimate models residing in the Archimate Model Exchange 

File Format is solely used for illustration purposes. Based on common XML transformation 

techniques, the models are transformed into the required structure. Divergences to 

Archimate’s standard format or completely different initial structures need to be tackled based 

on adequate restructuring of transformation tasks. In these cases, the DICE method base has 

to be extended with additional transformation task types. (Shu 1987) provides an overview of 

typical transformation techniques. 

Guiding example (continued): Let us assume that the application usage models and 

numerous other models representing Archimate viewpoints of the organisation are 

available in the Archimate Model Exchange File Format. Figure Fig. 64 shows a 

representative snippet of such an input file. For more information see the XML schema 
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definition given in (The Open Group 2015). 

<?xml version="1.0" encoding="UTF-8"?> 

<model xmlns= ...> 

   <metadata> 

 <elements>  

  <element identifier="id-855" xsi:type="ApplicationComponent"> 

   <label xml:lang="en">Customer Data Access</label> 

  </element>    

  <element identifier="id-1414" xsi:type="ApplicationService"> 

   <label xml:lang="en">Claim InfoServ</label> 

  </element> 

  <element identifier="id-596" xsi:type="BusinessProcess"> 

   <label xml:lang="en">Close Contract</label> 

  </element> 

  <element identifier="... 

  ... 

  </element> 

 </elements> 

 <relationships> 

  <relationship identifier="id-884" source="id-861" target="id-838" xsi:type="AccessRelationship"/> 

  <relationship identifier="id-880" source="id-855" target="id-837" xsi:type="AccessRelationship"/> 

  <relationship identifier=".../> 

 </relationships> 

 <organization> 

 <views> 

</model> 

Fig. 64 Exemplary snippet of an Archimate model in the Archimate Model Exchange Format 

The transformation task type “Restructure Archimate Model” reads in the file and generates 

the two datasets: one for the building blocks and a second one carrying the relations between 

the building blocks. The enterprise architects load the data and perform the restructure 

transformation. Finally, by executing the initialisation transformation, they create the required 

DICE data objects, i.e. the composite objects holding data and metadata. See section 5.3.2.1 

for more information on the initialisation transformation task. 

The new transformation task type “Restructure Archimate Model” is a specialisation of the 

transformation task type “Restructure Dataset”. Fig. 65 illustrates this extension of the DICE 

method base. 
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Fig. 65 The DICE “Restructure Archimate Model” transformation task type 

7.2.2 Equivalence Functions 

Equivalence functions serve a twofold purpose: (1) they are required for performing 

integration of data objects and (2) for record linkage transformations in the case of duplicate 

observable units. 

Note: In DICE the term integration is preferred over the term join, to stress the fact that 

integration of datasets requires more steps than a common join operation known from 

relational database operations. In addition, it has to be stated that “integration” is not seen as 

an atomic transformation step. Integration transformation is assembled by the atomic 

transformation task types addition and selection (see 5.3.2.3). 

Equivalence functions provide similarity/distance metrics. Discrete matches where an “all-

or-nothing” principle (Dusetzina et al. 2014) is applied will lead to first suitable matches. 

Pairs of building blocks are classified as a match if the two building blocks share exactly the 

same properties in the data key. For all other building blocks probabilistic linkage methods 

(so-called continues methods) are applied. 

In their work, (Jeners, Lichter and Pyatkova 2012) classify techniques to determine the 

similarity of entities on measurement theory into the following four categories: 

 Spatial methods that consider entities as vectors in the n-dimensional space. 

Recognized representatives of these methods are the Euclidean Distance (Deza and 

Deza 2009) and the Cosine Similarity (Deza and Deza 2009). 

 Feature-based methods where the set of features that the entities have in common are 

the basis for calculating similarity measures. Prominent methods are: the Jaccard 

similarity (Deza and Deza 2009) and Tversky index (Deza and Deza 2009), both 

representatives of similarity measures based on sets theory. 
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 Transformational methods which recognize that entities that are perceived to be 

similar have representations that can be transformed into one another with little effort. 

The number of required transformation steps is the main indicator. Prominent 

representatives are distance metrics such as Jaro, Jaro-Winkler and Levenshtein (Deza 

and Deza 2009). For a detailed overview see the work of (Choi, Cha and Tappert 

2010). 

 Alignment methods are based on Gentner's structure-mapping theory (Gentner 1983). 

Techniques such as the Structure Mapping Engine offer an analogy-driven approach 

where entities are compared based on their structural features. 

In the context of EA descriptions all of these techniques appear helpful for the indication of 

equivalence between building blocks and thus are discussed in detail in the subsequent 

sections. Since DICE is conceived as a situational method, all the presented techniques can be 

understood as being method fragments. They are adapted to be used in the DICE initialisation 

transformation task (Tinitialise) which (re)calculates the metadata of a data object including 

D
QUAL>uniqueness

, the indicator that provides information on the degree of similarity of 

observable units within a given dataset. 

In the following sections similarity techniques applicable for EA descriptions are presented. 

All of these techniques are understood as (process) method fragments specialising the 

equivalency algorithm of the initialisation transformation task type. Fig. 66 illustrates this 

extension introducing four EA applicable similarity algorithms: (1) syntactic similarity 

analysis, (2) semantic similarity analysis, (3) structural similarity analysis and (4) attribute-

based similarity analysis.  



Application of DICE in the Fields of EAA 

 

180 

 

 

Fig. 66 Extending the initialisation transformation task type 

Note that similarity analysis and its specialisations are not transformation tasks on their own; 

they are algorithms as part of the initialisation transformation task type. 

7.2.2.1 Syntactic Similarity Analysis 

This analysis technique is based on string similarity metrics. The names of the building 

blocks are compared. A wealth of similarity/distance measurement techniques exist for string 

matching. For a brief overview see, e.g. the work of (Choi, Cha and Tappert 2010) and the 

work of (Cohen, Ravikumar and Fienberg 2003). These techniques are commonly known as 

distance or similarity functions.  

Note: Distance is a measurement of dissimilarity. Any distance measurement can be 

converted into a similarity measurement and vice versa. The distance measurements presented 

in the following paragraphs are normalised into intervals from 0 to 1 where 0 represents a full 

match and 1 stands for completely dissimilar. From this, it follows that s=d-1  where d 

represents a distance measurement and s the corresponding similarity measurement. 

Distance functions can be divided into three main categories: edit distance, token-based and 

hybrid (Ribeiro and Härder 2006). All of these techniques provide a cost function which 

evaluate edit operations (insert, delete and replace) required to convert one lexical string to 

another (Bilenko et al. 2003). Cohen et al. who did a performance evaluation of popular string 

distance metrics in the fields of name-matching (Cohen, Ravikumar and Fienberg 2003) and 

other sources such as (Bilenko et al. 2003) and (Ribeiro and Härder 2006) recommend the 

Jaro and the Jaro-Winkler metrics for the matching of short strings. More elaborate 
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approaches such as the level two distance function “Monge-Elkan distance” (Deza and Deza 

2009) , a hybrid method combining token-based and edit-distance like functions perform 

slightly better in some cases but according to (Cohen, Ravikumar and Fienberg 2003) require 

up to a tenth of computational efforts in terms of computation time.  

The characteristics of the strings are the most important factor when choosing the distance 

function. By comparing the names of building blocks, DICE has to deal with short strings. 

Archimate recommends either single words (nouns or verbs) or short sentences (verb-noun-

combinations) for naming its building blocks. According to (Cohen, Ravikumar and Fienberg 

2003), the Jaro similarity functions, which account for the number and order of common 

characters between the pair of two strings, perform best for short sentences and single words. 

The Jaro-Winkler similarity, which is an extension of the Jaro similarity, emphasizes matches 

in the first few characters (prefix), as Winkler recognized that typos more likely arise in the 

middle or at the end of a word as opposed to its beginning (Winkler 1999). However, for 

some of the building blocks, (namely for building blocks of the modelling classes “technology 

component” and “artefact”), this weighted rating is obstructive, as oftentimes these building 

blocks will comprise the reoccurring vendor name at the beginning of the strings, the more 

differentiating characters and designations in the middle and concrete version numbers at the 

end. Examples are: “Microsoft SQLserver 2012” vs. “Microsoft Server 2013” and “Apache 

Tomcat 7” vs. “Apache Tomcat 8” etc. Putting stronger emphasis on the prefix of words is 

inapplicable in these cases.  

As is common for distance metrics, the score of the Jaro distance is normalized and will 

always be between 0 and 1 where 0 equates to a positive match and 1 is a bad match. In other 

words, the lower the distance for two strings is, the more similar the strings are. In general, 

scores higher than 0.2 are not considered useful. The Jaro distance is defined as follows (E. H. 

Porter and Winkler 1997): 
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where m is the number of matching characters of the strings s1 and s2 and t is half the 

number of transpositions. 



Application of DICE in the Fields of EAA 

 

182 

 

Furthermore, two characters from a given pair of strings are considered equal only if they 

are of the same character and not farther than 

 
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,max 21





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

 ss
. 

To obtain better results, pre-processing transformations are often performed on the strings 

before conducting the similarity analysis. Typical pre-processing transformations are: stop 

word removal (Fox 1989), white space removal and word stemming (M. F. Porter 1980). In 

cases where the building block names are not represented by single words but by short 

sentences (as is common for business processes, e.g. “Handle Claim” and “Pay Claim”), 

additional operations might be conducted. From the broad set of techniques from the fields of 

natural language processing (NLP), part-of-speech-tagging (POS) can be applied to filter out 

relevant text chunks only. A naïve but effective strategy would be to filter out verbs and 

nouns only and subsequently to assemble the text chunks alphabetically. See e.g. (Kao and 

Poteet 2007) for an introductory overview of NLP techniques and POS and the subsequent 

explanations in the guiding example.  

Guiding example (continued): Take the business processes “Claim 

Registration” and “Register Claim” from the two EA models of Fig. 46 and 

Fig. 67.  
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Fig. 67 Multi-layer viewpoint 

Their Jaro Distance is 0,36 (Jaro Similarity of 1-036=0,64). Based on this 

value, the enterprise architects are unlikely to consider the two business 

processes to be equal. 

Applying POS tagging (based on the Penn Treebank tagset (Marcus, 

Marcinkiewicz and Santorini 1993) and subsequent word stemming using 

the Porter word stem algorithm, (Van Rijsbergen, Robertson and Porter 

1980), the process names are represented as follows: “Register/VB 

Claim/NN” and “Claim/NN Registration/NN”. By reordering the text chunks 

alphabetically and removing white spaces and POS annotations, the 

enterprise architects obtain the following strings: “claimregistr” and 

“claimregis” with a respectable jaro distance of 0,06 (similarity of 0,94). 
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7.2.2.2 Semantic Similarity Analysis 

Semantic similarity analysis is based on the assumption that the vocabulary that is used for 

naming the building blocks is taken from the given domain terminology (Deerwester et al. 

1990). Thus, two building blocks are classified as similar if they use similar vocabulary based 

on a vector of synonyms (Kessentini et al. 2014) obtained from a thesaurus or domain 

ontology. 

Since it is very likely that the dataset contains different concepts having the same semantics 

under different names (see common data quality issue: semantic similarity, section 6.2), solely 

identifying syntactic similarity of building blocks isolated from their semantics will not be 

sufficient in many cases. Take the following example: semantically similar building blocks, 

such as “client” and “customer”, both instantiated from Archimate’s modelling class 

“business object”, will obviously have a low similarity score applying the previously 

introduced Jaro distance which happens to be 0,51 in this case. Other similarity metrics such 

as the widely-used Levensthein distance will result in even lower similarity values (Cohen, 

Ravikumar and Fienberg 2003). 

By applying semantic similarity analysis, we overcome this issue taking synonyms into 

account. The synonyms can be gathered from a general-purpose natural language ontology 

such as the lexical database WordNet (Miller 1995). Wordnet basically groups words into sets 

of synonyms called synsets. In other words, a synset represents a set of words in which all 

words have a similar meaning. For an overview on general-purpose ontologies, see (Bond and 

Paik 2012). For specific vocabulary, e.g. the set of technology components, specific 

ontologies and/or technical reference models will be helpful where available.  

From the designations of two given building blocks, their synsets S and T are retrieved. In a 

next step the joint word set of the synsets S and J is formed: 

 nwwwTSJ ..., 21  

where J contains all the distinct words from S and T. Inflectional morphology (different 

word forms) can be accepted when the technique is combined with a preceding syntactic 

similarity analysis (see section 7.2.2.1) that will identify the similarity of morphologic words 

in a previous step.  
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The word order within the synsets is unimportant. Typically, token-based distance metrics 

are suitable. One simple and often quoted as being effective technique from the fields of 

token-based metrics is the Jaccard similarity. Between the word sets S and T, Jaccard 

similarity is defined as 
TS

TS




, see e.g. (Deza and Deza 2009). Other prominent approaches 

are: the cosine similarity, the TF-IDF, the Euclidean distance and the Manhattan distance; see 

(Deza and Deza 2009) for these distance metrics and for many more. For the purposes at hand 

the cosine similarity is used, as it is very efficient especially for vectors such as the introduced 

synsets (Bilenko and Mooney 2003).  

For calculating the cosine similarity, the name of each building block is represented in the 

form of a vector in n-dimensional space where n is the number of unique terms of a particular 

building block’s names synset, i.e. the number of alternative denominations including the 

original name of the building block. By calculating the cosine similarity, the cosine of the 

angle between the two synsets (vectors based on the building block’s names) is determined. 

For cosine similarities of value 0, the two compared vectors do not share any terms; the 

building blocks are not considered to be similar. In this case, the angle between two given 

vectors is 90 degrees. The mathematical equation is defined as follows: 

 


















n

i i

n

i i

i

n

i i

TS

TS

TS

TS
TSsimilarity

1

2

1

2

1
cos ,  

where Si and Ti are components of the vectors S and T and S and T represent the synsets of 

the names of the two observable units US and UT. For a detailed discussion of the cosine 

similarity see, e.g. (Ye 2011). 

In cases where the names of building blocks are not represented by single words but rather 

by short sentences, the algorithm has to be refined. Again, NLP techniques (see section 

7.2.2.1) can be used to filter out relevant words only. Additionally, the mentioned classical 

pre-processing steps (stop word removal, word stemming etc.) can be applied to obtain better 

results. 

Take the above example of the pair of business processes, “register client” and “record 

customer”. In a naïve approach one would obtain the synset of each designation by creating 

the superset of all synonyms of all contained words. The following synsets have been 

retrieved from wordnet (Miller 1995):  
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  file-cross  show,read, record, file, register,Sregister  and 

 nodecustomerclientSclient ,,  

  showread, down, putenter, register, record,Trecord  and 

 customerclientTcustomer , . 

The cosine similarity can be applied to these supersets resulting in a cosine similarity of 0.71 

by comparing the vectors S and T where clientregister S SS   and clientrecord TTT  . 

An alternative approach is to generate the cross-products of the synsets first:  

TrecordCustomer = Trecord × Tcustomer and SregisterClient = Sregister × Sclient and subsequently applying 

the cosine similarity.  

7.2.2.3 Structural Similarity Analysis 

This technique is based on the assumption that similar building blocks share the same 

neighbouring building blocks. Thus, two given building blocks which have the same 

neighbouring building blocks can be considered equivalent. The similarity calculation follows 

the same technique as the semantic similarity analysis. For each building block, the list of its 

immediate neighbouring building blocks is created. This list forms the word set of a given 

building block which has to be compared via similarity analysis. Again, cosine similarity for 

determining the similarity of given pairs of building blocks is applied. The cosine similarity 

does not penalize negative matches. This is important, as positive matches are far more 

important than negative matches because negative matches might simply result from the 

concept of viewpoints where not necessarily all relations and neighbouring building blocks 

are contained in a model.  

Formally this is denoted as follows: 

Let    neigbours

uu UUN   be the (set of names of) the neighbours of a building block uU  and 

consequently  xUN  be the neighbouring building blocks of building block xU . The two 

building blocks can be considered similar where 

     thresholdUNUN xu ,distancecos  is given. 

In DICE this type of similarity analysis is called structural similarity analysis.  
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Guiding example (continued): In the application usage model the direct 

neighbours of the business process “Register Claim” are the 

superordinated business process “Handle Claim”, the application services 

“Scanning service” and “Customer administration service”. Table 11 

shows the neighbours categorised by relation class and modelling class. 

 

Table 11 Categorized list of structural neighbours 

Neighbouring 
BB 

Connecting 
Relation class 

Modelling class 

Handle claim Aggregation Business process 

Scanning 
service 

Is used by Application service 

Customer 

administration 

service 

Is used by Application service 

 

From the model in Fig. 67 the following neighbours of the business process 

“Claim Registration” can be obtained: 

Table 12 Neighbours of the building block "Claim registration" 

Neighbouring 

BB 

Connecting 

Relation class 

Modelling class 

Handle claim Aggregation Business process 

Scanning 
service 

Is used by Application 
service 

Customer 

administration 

service 

Is used by Application 

service 

Customer Access Business object 

Claim Access Business object 
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Fig. 68 Vectors on structural neighbours 



Application of DICE in the Fields of EAA 

 

188 

 

Transferred into binary vectors one receives the following vectors: 
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






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
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






1

1

1

1

1

 

Fig. 69 Binary vectors on structural neighbours 

The cosine similarity on the two vectors is 0,775. 

 

In their work on semi-automatic schema matching algorithm for EDI/XML-based data, 

(Chukmol, Rifaieh and Benharkat 2005) present a similar approach classifying structural 

neighbours into ancestors, siblings, immediate children and leafs. This becomes possible due 

to the hierarchical structure of EDI/XML documents. Transferring this concept to DICE for 

EAA, the subset of structural neighbours have to be classified into neighbours based on the 

connecting relationship type. Relationship types such as “Specialization” and “Composition” 

make it possible to derive parent/child relationships of the building blocks. However, DICE 

refrains from this detailed segmentation as this would result in inadequate small subsets of 

neighbours to be compared. Furthermore, this approach would require high quality models as 

input datasets where proper utilization of the used relation types is guaranteed. 

7.2.2.4 Attribute-based Similarity Analysis 

This approach has to be understood as a variation on the previously discussed approaches. 

While up to now only the building block’s designations (the variable “name”) have been 

taken into account, the attribute-based similarity analysis considers multiple variables 

(attributes) of building blocks. A building block is considered as a vector with all its property 

values representing the components of the vector. Again the cosine distance can be used to 

calculate the similarity: 

  thresholdUUsimilartiy tsine ,cos  

where Us and Ut (as has been defined) represent the vectors comprising all property values 

of selected variables of the observable units. To obtain better results one typically chooses 

variables of type categorical as the relevant variables to be compared. 
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Following the concept of (Gill and Qureshi 2015) who combined different similarity 

measures, the overall similarity can be calculated as follows: 

     

   
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 attrstrucsemsyni

iCoef and 10  iCoef .  

The weight per coefficient must be adapted to the given situation and applied naming 

conventions (if any) of the building blocks.  

An important precondition for calculating the similarity of building blocks is that the two 

building blocks do not have any relationships to one another. Take the following example: the 

business process “Claim Registration” is specialised into a business process “Claim 

Registration (online)”. As the processes have similar names, they will be considered as 

equivalent (depending on the defined threshold). From the specialisation relation between the 

two building blocks it is obvious that they have to be considered as different objects. 

The following condition applies: 

 
 

 

  otherwiseCoefUUsimilarity

UNU

UUsimilarity
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Thus, building blocks can only be considered similar as long as there is no relation defined 

between the building blocks. However, especially when it comes to specialisation relations 

between building blocks, it will be permissible to consolidate the specialised building block 

with its superior building block (see section 7.3). 

7.2.3 Method Chunks Supporting Record Linkage 

A typical transformation in the case of EA analysis is the addition of self-contained models 

to support cross-model analysis. In the guiding example, self-contained models are merged to 

support EA analysis. The required DICE transformation step (after restructuring the models) 

is the addition that will ultimately lead to duplicate observable units in the various datasets. In 

EAA the types of observable units typically correspond to the modelling classes defined in the 

metamodel. Performing addition on the models leads to a disconnected super graph where 
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each of the former models represents a graph component. Via record linkage, duplicate 

observable units are fusioned such that the independent graph components form a connected 

graph. 

Fig. 70 schematically illustrates the required transformation based on the pair of two 

simplified EA models. 

 

Fig. 70 Merging of EA models 

The record linkage transformation is composed of the following atomic DICE 

transformation task types:  

1. Restructuring the input models into data objects. 

2. Addition of the data objects. 

3. Blocking of building blocks. 

4. Similarity analysis on building blocks. 

5. Consolidation of equivalent observable units. 

In the following sections, focus is placed on blocking strategies and the consolidation of the 

duplicate observable units. Restructuring of EA models has been discussed in section 7.2.1, 

and for addition of the datasets, the DICE transformation task type “addition” introduced in 

section 5.3.2.3 can be applied. 

 

Fig. 71 Generic record linkage process 
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7.2.3.1 Perform Blocking 

Record linkage requires the comparison of all building blocks within a dataset. The 

comparison space is the Cartesian product of all pairs of building blocks. With a given large 

population a naïve approach of comparing all building blocks is computationally prohibitive 

(Dusetzina et al. 2014). The number of required comparisons is 
2

|1|||   ×
 where Ω is the 

population, i.e. the set of building blocks within the dataset. The concept of blocking makes 

the reduction of this wide search space possible by determining which record pairs to 

consider. It makes possible significant improvements in related processing efforts. To this 

end, the building blocks are grouped by so-called blocking attributes. Thus, the application of 

blocking strategies results in partitioning the initial set of building blocks into subsets. The 

matching of a given pair of building blocks will then be restricted to the building blocks 

residing in a block.
7
  

The building blocks within these subsets must at least share one common attribute which 

characterises a block. Manifold blocking algorithms have recently been proposed. Prominent 

examples are: the standard blocking technique, the sorted neighbourhood technique, the q-

gram indexing technique, the canopy clustering technique and the TFIDF, see (Baxter, 

Christen and Churches 2003) for an overview. Most of these blocking algorithms are based on 

the multi-pass approach first discussed in the work of (Hernández and Stolfo 1998) where 

candidate matches are generated using different attributes (and combinations of attributes) 

across independent matching passes. 

For EAA the required partitioning into separate datasets can easily be performed by the 

DICE transformation task type “selection”. When applying a blocking strategy to any given 

dataset based on the Archimate modelling language, obviously the building block type (i.e. 

the modelling class) must be considered as a selection criterion. Depending on the given set of 

building blocks, and thus, on their different modelling classes, this strategy might lead to 

more than fifty subsets (blocks), as the Archimate 3.0 specification comes with more than 

fifty modelling classes. Fig. 72 illustrates the identified blocks of the guiding example’s 

                                                 

7
 Note: the notions “building block” (the elements within the EA models) and “blocking” are coincidently 

termed in a similar way and have nothing in common. 
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application usage diagrams. The initial table containing all the building blocks has been split 

into one table per modelling class (i.e. per business process, application service and 

application component). Each block is generated by performing a DICE selection task (

selectionT ) based on a selection criteria P
SEM>type 

= [modelling class]. 

Guiding example (continued): After performing the blocking transformations (i.e. 

selection of building blocks per type), the enterprise architects receive four datasets: 

one table per modelling class and one additional table carrying the relations. 

 

Fig. 72 Data after applying blocking transformation 

The sketched approach is based on the blocking technique “standard blocking”; all building 

blocks of the modelling class are inserted into the same block (Peter Christen 2007). The 

major drawback of standard blocking is that errors in the blocking key values will lead to 

building blocks being assigned to the false block. This problem is mitigated by the 

assumption that the input format is based on Archimate’s Model Exchange Format. Under 

these circumstances, one can assume that all building blocks are typed correctly in regard to 

their underlying modelling class. 

However, in case further blocking is required due to the high number of building blocks per 

block, additional blocking strategies can be applied. For an overview of blocking strategies, 

such as sorted neighbourhood, q-gram based blocking, canopy clustering and string map 

based blocking, see e.g. (Baxter, Christen and Churches 2003) and (Peter Christen 2007). In 

any case, the use of blocking strategies needs to be well thought through as errors in the 

blocking key values will lead to records being inserted into the false block, and thus, they will 

not be compared. 
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7.2.3.2 Similarity Analysis 

Similar to Gill’s and Qureshi’s approach to aligning metamodels (Gill and Qureshi 2015), a 

multiple-step strategy (also referred to as iterative strategy to record linkage) (Dusetzina et al. 

2014) based on all of the above similarity techniques is often most effective. To this end, the 

building blocks are matched in a sequence of steps. Building blocks that do not match 

syntactically are passed on to a second step for semantical analysis and so forth. The 

calculated similarities are collected in a node list: a dataset holding the pairs of compared 

building blocks along with the calculated similarity measures. Fig. 73 shows the structure of 

this dataset.  

 

Fig. 73 DICE similarity node table 

From a graph theoretical point of view, additional edges are created between the pairs of 

building blocks.  

 All of the proposed similarity functions are not applicable for all types of building blocks. 

In a semantical similarity analysis a thesauri or domain specific ontologies need to be 

available. This might be the case for building blocks of type business process and business 

objects since little domain-specific vocabulary is required. For building blocks of type 

application component where application components often carry fictional names or 

abbreviations, it is unlikely to find suitable general purpose ontologies. DICE considers this 

issue by introducing coefficients which make weighing the similarity measures possible (see 

section 7.2.2.4). 

In the following section the required merge approach is presented in more detail. 

buildingBlock similarityNodeList

syntacticSimilarity
semanticSimilarity
structuralSimilarity
attribute-based Similarity
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7.2.3.3 Consolidation of Equivalent Building Blocks 

Each of the four similarity analysis steps generates a so-called similarity matrix, a 

symmetric square matrix of distances between the building blocks. Each entry dij in such a 

matrix is the distance (or similarity) between building blocks i and j. The matrix is symmetric 

(dij=dji) and its diagonal has values of either 1 (one) in case of similarity or all 0’s in case of 

distance. Hence, for reasons of symmetry only the left lower part of the matrix or likewise the 

right upper part of the matrix has to be considered. Fig. 74 illustrates this issue. 

 

Fig. 74 Symmetric distance matrix 

As explained in section 7.2.2, only those candidate pairs of building blocks are relevant that 

have a distance lower than a defined threshold  , that is to say a similarity measure beyond a 

given threshold. Two given building blocks with a distance ijd  are considered to be equal 

and have to be consolidated. 

As has been introduced in section 5.3.2.6, DICE provides two basic functions for 

consolidation of observable units: inkageionRecordLconsolidatT and tionionAggregaconsolidatT . The first has to be 

applied in the case of duplicate observable units, i.e. observable units which have an 

equivalent observable unit within the relevant datasets. The latter is used as a consolidation 

step after variable removal. In this view, the combination of a variable removal transformation 

and a subsequently applied consolidation transformation represent a groupby transformation.  

Consolidation of observable units, like any other transformation step, impacts the quality 

metadata. The applied similarity measures are incorporated into the quality indicators of the 

properties. Thus, the set of quality indicators on the property level is extended by the quality 

indicator P
QUAL>uniqueness

. 
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7.3 Contraction of Edges and Vertices – Consolidation Strategies 

The requirement of consolidating edges and vertices stems from the diverse characteristics 

of EA data, such as reflexive relations, hierarchical decomposition, types and instances, 

physical vs. logical view and variants of building blocks. In all cases, formerly discrete 

building blocks are merged into one new building block. In (Kurpjuweit and Aier 2009), the 

authors conclude that three categories of relations are of importance: association, aggregation 

and generalisation. Specialisation is considered as the opposite of generalisation. Thus, 

generalisations can be converted into aggregation and vice versa by converting the direction 

of the relation. Any other relationship types of an EA metamodel can be classified into these 

categories (Kurpjuweit and Aier 2009). For a better understanding Fig. 75 presents this idea 

for some of the Archimate relationship types. 
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Fig. 75 Generic Relationship Types in DICE mapped onto Archimate relations 

The following types of relations have to be considered: 

 Whole/part relations where one building block can be considered to be part of 

another. The relationship types aggregation and composition are the typical 

representatives. Obviously, in such a relationship the component (the subordinated) 

building blocks can be consolidated into the super-ordinated building block but not 

vice-versa. 

 The situation is different with generalization/specialization relationships. 

Subordinate building blocks are subsets of building blocks of a superior building 

block where specialization building blocks inherit the attributes of the generalization 
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building blocks. Per definition, generalization building blocks can be consolidated 

into their specialization building blocks. However, the data engineer can decide to 

consolidate specialization building blocks into generalization building blocks if he 

considers this a valid decision.  

 The case of association is not that clear. Associations can be bidirectional, directed 

or undirected and do not provide inheritance and/or containment mechanisms per se. 

The desired behaviour in the case of record linkage has to be specified for the given 

situation. The similarity relation introduced in section 7.2.3.3 is a special case. 

Obviously, pairs of building blocks have to be consolidated in this case. 

From the fields of graph theory, graph transformation techniques, such as vertex, edge and 

path contraction are adopted for DICE. In a graph G, contraction of an edge e with vertices 

x,y is the substitution of x and y with a new vertex such that edges incident to this new vertex 

are the edges that originally were incident to x or y. The resulting graph G\e has one less 

vertex than G (Wolfram Alpha 2017b). Vertex contraction is defined as a less restrictive 

transformation. In the case of vertex contraction, vertices can be substituted by a new vertex 

without originally being connected via an edge. Thus, vertex contraction may be applied to 

any pair of vertices. 

7.3.1 Consolidation for Record Linkage 

In DICE terms, edge and vertex contraction refers to the consolidation of building blocks. 

Take again the example section 7.2.3.2. Duplicate building blocks are consolidated. Duplicate 

building blocks are identified via their similarity measure stored in the similarity node list (see 

Fig. 73). Relations representing high similarity between a pair of building blocks are 

contracted. The direction of the association relationship is irrelevant in this case.  
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Fig. 76 Contradiction of equivalent building blocks 

As has been defined in section 5.3.2.6, a consolidation transformation of type 

TconsolidateRecordlinkage has to be performed. In the DICE super structure there is no extra handling 

of relationships. Thus, the method base has to be enriched by a transformation task type that is 

capable of handling the incidence relations (which connect the adjacent building blocks). 

7.3.2 Consolidation of Hierarchically Structured Building Blocks 

It is obvious that in the case of whole-part relations or specialisation/generalisation relations 

different building blocks will be retained. Thus, relationship type and direction are important. 

For a better understanding Fig. 77 illustrates an edge contraction based on the exemplary 

application usage model of Fig. 46. One of the level-1 processes is consolidated with the 

superior level-0 process. 

 

Fig. 77 Contraction of a building block in the case of reflexive relations (with aggregation relation) 

Removal of all of the L2 objects corresponds to vertex deletions of all L2 objects followed by 

replacement of all previously adjacent edges with new relations. The cross product of the set 

of L1 and L2 elements where both sets contain the neighbours of a removed vertex Lu  has 
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to be determined to create the relations. Formally this condition is written as follows: 

 11,)(  nnG LLuN  and 11  nn L ×L  

where NG(u) is the function which retrieves an observable unit’s (u) neighbouring building 

block and Ln-1 as well as Ln+1 are the sets of neighbouring building blocks. Removal of all 

building blocks on L2 results in a model as illustrated in Fig. 78. 

 

Fig. 78 One level entirely removed 

7.3.3 Special Case of Reflexive Relations 

Deciding which level to remove in order to acquire the required results clearly depends on 

the targeted dataset, in the guiding example the dataset required to create the envisioned 

cluster map. Usually, the determination of the required level will not be that straight forward. 

The EA might contain structures organised in different levels of hierarchy. A strategy for 

“normalising” the layers has to be defined. Fig. 79 illustrates an example with different levels 

of hierarchy in the case of reflexive relations. 
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Fig. 79 Matching reflexively structured graph components 

 From Fig. 79 it becomes clear that determination of hierarchy levels is a non-trivial 

problem. The data engineers have to decide which levels to keep, remove or merge. As a 

general rule, one can state that siblings and cousins reside on the same level. Possible non-

supervised strategies involve:  

 vertical alignment to the top where the ‘top’ is defined by the height of the root node 

on the longest path from the root node to a leaf, 

 vertical alignment to the bottom where ‘bottom’ is defined as the height of the leaf 

on the longest path from the root node the leaf,  

 centered alignment where ‘center’ represents the middle level of the longest path 

 or any individually defined situational strategies. 

Using one of these strategies requires knowing the actual level where a building block 

resides in the hierarchy. These kinds of hierarchies comprise reflexive relations (see section 

7.1.4.1) with the building blocks organized in a parent-child hierarchy (i.e. relations of super 

type specification, composition or aggregation). In graph theory, these hierarchies correspond 

to directed acyclic graphs (DAG) and the problem can be considered as an all-pair longest 

path problem. The longest path problem deals with discovering a simple path of maximum 

Component G2Component G1

Component G2Component G1

Component G2Component G1

?

Component G1 Component G2

(c) alternative 3

(a) alternative 1 (b) alternative 2
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length within the given graph. Simple paths are paths which do not contain repeated vertices. 

For the given problem statement, the graph can be considered as non-weighed, hence the 

length of a path can be calculated by simply counting its number of edges. 

The given all-pairs longest path problem reduces to an all-pairs shortest path problem (Khan 

2011). DICE adopts the Floyd–Warshall algorithm (Weisstein 2008), a general purpose 

algorithm for solving all-pairs shortest path problems. The algorithm uses each vertex 

(building block) in turn and computes the distance between every pair of building blocks in 

the model. The edges have no weights, i.e. a weight of 1. To adapt the algorithm (from 

shortest path to longest path) the edge weights need to be negated (multiplied by -1). Based 

on this transformation, the problem can be considered as a shortest path problem which is 

solved by applying the standard algorithm. Finally, the resulting distances have to be negated 

again to represent the longest paths.  

% bb … buildingblocks of the model % 

let dist be a |bb|×|bb| matrix of min. distances initialized to -∞ (negative infinity) 

for each bb 

   dist[bbv][bbv] ← ∞ 

for each relation (bbu, bbv) 

   dist[bbu][bbv] ← w(bbu, bbv) = -1  % the weight of the relation (u,v) is -1 % 

for bbk from 1 to |bb| 

   for bbi from 1 to |bb| 

      for bbj from 1 to |bb| 

         if dist[bbi][bbj] > dist[bbi][bbk] + dist[bbk][bbj])  

             dist[bbi][bbj] ← dist[bbi][bbk] + dist[bbk][bbj] 

         end if 

 

(|bb|×|bb|)* (-1) % negate the distances in the matrix % 

dist[bbv][bbv] ← 0 

Fig. 80 Longest path algorithm to determine height of building blocks in graph-based models  

Like many of the shortest path algorithms (e.g. the Dijkstra's algorithm and the Bellman–

Ford algorithm), see (Pallottino 1984)), the Floyed-Warshall algorithm does not compute the 

shortest paths themselves but rather the shortest distances between the pair of two nodes. 

From that the nodes and vertices defining the shortest path can easily be obtained. This of 

course also holds true for the longest distances computed with the introduced longest path 

algorithm. 

For the problem at hand, the resulting matrix is used to define the height of the building 

blocks. Starting from the source nodes (level 0), all nodes with a distance of 1 represent the 
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level 1 nodes; nodes with distance of 2 represent level 2 nodes and so forth. On this basis the 

data engineer can decide on matching levels and levels to be contradicted. 

7.3.4 Filtering and Contraction of Entire Paths 

As in any BA endeavour, the input datasets will come in many different structures. 

Typically EA models contain complex dependencies between the building blocks. To serve as 

input for the subsequent EA analysis, non-relevant building blocks and their dependencies 

have to be filtered. Often entire paths within the EA models have to be filtered. 

Take the example of the introduced guiding example. To produce the final analysis view, 

only building blocks of the types business process, application component and technology are 

required. The selection transformation task type supports the filtering out of the relevant 

building blocks and their relations. However, filtering is a non-trivial task, as important 

relations between the observable units might get lost. To keep all relevant dependencies 

between building blocks and at the same time allow the filtering of the datasets, DICE comes 

with the concept of path contradiction. It makes possible the deletion of unnecessary building 

blocks and at the same time the restoration of dependencies between the building blocks. 

Archimate proposes a concept which supports object contraction transformations. Archimate 

comes with an abstraction rule called “derivation of relations” which states that “two 

relationships that join at an intermediate building block can be replaced by the weaker of the 

two” (The Open Group 2016), bypassing the intermediate building block. Formally this rule 

is specified as follows: “If two structural relationships r:R and s:S are permitted between 

elements a, b and c such that r(a,b) and s(b,c), then a structural relationship t:T is also 

permitted with t(a,c) and type T being the weakest of R and S” (The Open Group 2016). 

Information on the formal derivation of this rule is provided in (van Buuren et al. 2004). 

DICE for EAA makes use of this concept, which makes it possible to bypass intermediate 

observable units and at the same time preserve the relations between the remaining building 

blocks. 

Guiding example (continued): Take Fig. 81 as an example. The model 

presents paths from application components down to the technology level. 

For the envisioned clustermap only application components and technology 

components (system software) are of interest. 
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Fig. 81 Example of derived relationships 

The enterprise architects make use of the derived relations concept to 

bypass all non-relevant building blocks and then delete these from the 

dataset. 

Filtering the relevant paths and creating the derived relations between the remaining 

building blocks can be considered as shortest path problem in a directed graph. A path is 

defined as a graph whose vertices can be arranged in a sequence v1, v2, v3 … vn such that the 

edge set is  1,...,2,11   n ivvE ii . With regard to EA, model’s paths connect building 

blocks. In section 7.1.1.3 EA models have been defined as directed cyclic graphs. It can be 

concluded that there can be more than one path connecting two building blocks within an EA 

model. DICE assumes that the greater the distance between a pair of building blocks, the 

weaker is the dependency on one another. Thus, the number of intermediate nodes within a 

graph plays an important role. Revisiting the concept of derived relationships of Archimate, 

one can see that Archimate goes one step further by assigning weights to its relations. 

The Archimate relationships on which this rule is intended to be applied and their associated 

weights are the following: association (1), access (2), used by (3), realization (4), assignment 

(5), aggregation (6) and composition (7). Under the premise that two consecutive relations on 

a path within a model (dataset) point in the same direction, a new relation bypassing the 

intermediate object can be derived. A similar concept inspired by Archimate and 

universalized to be applicable for any EA metamodel has been introduced by (Kurpjuweit and 

Aier 2009). EA models and datasets not based on Archimate have to be extended by this 
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mechanism. Existing relation types have to be categorised into concepts, such as 

specialisation, generalisation and composition. Additionally, weights have to be assigned to 

the type of relations. Alternatively, the distance between two building blocks can be 

calculated simply by counting the nodes on the path between the two building blocks. In this 

case, simply the shortest path between vertices on a non-weighed graph has to be calculated. 

However, for these cases it is obvious that the resulting graph of shortest paths will not be that 

exact. 

For EA analysis, one is usually interested in the most direct paths, i.e. in the shortest path, as 

it can be assumed that the greater the distance between two building blocks, the lower the 

reliability of estimates on their dependencies. The problem of finding the shortest paths 

between two nodes within a graph is well-studied in the fields of graph theory: “Given a 

directed weighed graph, and a set of pairs of vertices,     nn vuvu ,,..., 11  where Vvu ii , , the 

problem is to compute, for each i, a simple path in G from ui to vi (a list of vertices 

visssu ikiioi  ,...,, 1  such that for all kj 0 and   Ess jiji 1,, , such that no other simple 

path in G from ui to vi has a lower total weight” (Woburn C.I. Programming Enrichment 

Group (PEG) 2016). 

In EA, one is usually not simply interested in the shortest path between two nodes, 

respectively between two building blocks. Moreover, a so-called all-pairs shortest path is 

required where the shortest paths between two sets of building blocks can be calculated. The 

two sets are typically sets of building blocks each of a certain type. In the guiding example the 

enterprise architects are interested in all shortest paths connecting business processes to 

application components, any intermediary building blocks such as building blocks of type 

“business service” have to be omitted. 

DICE again adopts the Floyd–Warshall algorithm (Weisstein 2008) for the given problem. 

To this end the Archimate weights on relation types (see above) have to be inverted such that 

a small weight reflects a strong relation: association (7), access (6), used by (5), realization 

(4), assignment (3), aggregation (2) and composition (1). 

Fig. 82 shows the Floyd-Warshall algorithm adapted to support the DICE path contradiction. 
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% bb … buildingblocks of the model % 

let dist be a |bb| × |bb| matrix of minimum distances initialized to ∞ (infinity) 

for each bb 

   dist[bbv][bbv] ← 0 

for each relation (bbu, bbv) 

   dist[bbu][bbv] ← w(bbu, bbv)  // the weight of the relation (u,v) 

for bbk from 1 to |bb| 

   for bbi from 1 to |bb| 

      for bbj from 1 to |bb| 

       // weakest relation within the path bbi-bbk-bbj is inserted between bbi and bbj if … 

         if dist[bbi][bbj] > min(dist[bbi][bbk], dist[bbk][bbj]) then  

             dist[bbi][bbj] ← min(dist[bbi][bbk], dist[bbk][bbj]) 

         end if 

Fig. 82 Adoption of the Floyd-Warshall algorithm to detect shortest paths within EA models 

As already mentioned, the Floyed-Warshall algorithm does not compute the shortest paths 

themselves but rather the shortest distances between the pair of two nodes from where the 

shortest paths can be obtained easily. 

The resulting adjacency matrix holds the distances between two edges, respectively between 

two building blocks of the model. The distance measurements then can be transferred into EA 

relationships. The distance directly indicates the relation type. Relations not lying on the 

shortest path are discarded. 

The above algorithm is embedded into a new transformation task type: Contradict Paths. 

Input parameters are two sets of building blocks. The set of building blocks typically 

represents building blocks on different layers of the EA. All building blocks residing on the 

path between the two sets of building blocks are contradicted and removed from the dataset 

by bypassing the building blocks first and then by removing these building blocks including 

their incoming and outgoing relations. This type of transformation task is not a specialisation 

of the existing transformation tasks of the DICE method base. Thus, it has to be directly 

specialised from the top level transformation task type. 

DICE for EAA keeps the information on used relationships and considers the information 

for assessing the quality of the dataset. This is not only true for derived relationships but also 

for relationships existing in the original datasets. 

7.4 Heterogeneous Metamodels and EA Data Schemas 

In case of heterogeneous metamodels (and EA schemas), the metamodels/schemas but also 

the EA data inferred from them have to be aligned. The approach is similar to the one 
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introduced in section 7.2.2 where strategies to calculate the equivalency of building blocks 

(instance level) have been introduced. The introduced equivalency functions also work for the 

metamodels constituting concepts, i.e. the modelling classes, the relation classes and their 

attributes. In cases where no metamodel mappings such as the TOGAF-Archimate-Mapping 

of Fig. 61 exist, equivalency functions support the generation of such mappings. With the 

introduction of the addition function (see section 5.3.2.3), the calculation of variable 

similarity has already been brought up. Taking this requirement one step further, equivalency 

functions need to be in place for all metamodel elements. Thus, these are required for 

modelling classes as well as relation classes. (Gill and Qureshi 2015) introduce such an 

approach and demo the feasibility by merging the partial metamodels of BPMN and 

Archimate. Adapted for DICE, in contrast to the record linkage on building block level (see 

section 7.2.2), the metadata of the datasets have to be aligned. Main input is the semantic 

definitions of the observable (U
SEM

) units and the variables (V
SEM

). Two datasets carry 

equivalent observable units when their semantic metadata are equivalent: 

nameSEM

B dataset

nameSEM

A dataset UU    where similarity is calculated via syntax, semantics and structural 

analysis. The same holds true for variables. The equivalency of two variables from the 

different data objects is also calculated using the variables metadata: V
SEM>name

. To obtain 

more reliable results, besides the name, additional metadata such as V
PROC>measureUnit

 might be 

considered to obtain the equivalency measures by calculating the cosine distance as 

introduced in section 7.2.2. To sum up, the following techniques are propagated in DICE for 

EAA:  

 Syntactical Analysis: The metamodel concept’s names are compared. In the case of 

modelling classes the metadata U
SEM>NAME

 are compared. For attributes and relations 

the variable names V
SEM>NAME

 are used for calculation of equivalency. 

 Semantical Analysis: Again, the concept names are the input for the equivalency 

calculations. Synonyms are generated using adequate ontologies in a first step. 

Token-based similarity functions calculate the similarity in a next step. 

 Structural Analysis: The concept’s neighbouring concepts are considered. 

Neighbours are all modelling classes within the metamodel adjacent to a certain 

modelling class. Again, a token-based similarity function is used to calculate the 

similarity.  
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 Attribute-based Analysis: In the case of attribute-based analysis, besides the name of 

a modelling class, the names of its variables are taken into account for the token-

based similarity calculation.  

Table 13 illustrates such a mapping on level of modelling classes for the metamodels of 

Archimate and BPMN. The overall similarity is calculated by a function weighing the 

structural, semantical and syntactical similarity measurements obtained from the concepts 

names and their set of variables. 

Table 13 Excerpt of overall similarity of Archimate and BPMN concepts (Gill and Qureshi 2015) 

Archimate BPMN Overall Similarity 

Data Object Data Object 0,6 

Artifact Artifact 0,63 

Business Role Partrner Role 0,3 

Business Event Boundary Event 0,3 

Business Collaboration Collaboration 0,18 

Where no mappings are available, such a transformation task type is valuable for performing 

the required addition transformations. DICE presents the final outcome in a metamodel 

comparison sheet. Based on this input, the data engineer decides on the next steps. DICE 

restrains from an automated addition based on the calculated mapping, as the results from 

(Gill and Qureshi 2015) show that semantic interpretation and decision on these mappings in 

most cases will be required to avoid biased results. 

7.5 Summary 

In this section the characteristics of EA data are discussed. The classical EA data is object-

oriented. EA data in the form of EA models can typically be described in the form of a 

directed graph. Consequently, many of the EA-situational transformation tasks types deal 

with graph-based transformations. Examples are: hierarchical dependencies of architecture 

elements caused by type-instance relations or by whole-part relations that are used to describe 

building blocks in more detail, i.e. on different strata. In addition, peculiarities of EA data, 

such as time-aspects, versioning issues, etc. are addressed. 

In the data preparation phase of an EAA endeavour, the EA descriptions (models) need to be 

“normalised”. The data typically requires the same level of granularity. Time-aspects need to 

be clearly defined. The required transformation task types to create a sound data basis are 
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discussed. All of these EAA situational transformation task types are integrated into DICE by 

specialising its foundational transformation task types. 

In this vein, the section serves a twofold purpose. Firstly, the EAA-specific requirements on 

method chunks are described from the nature of EA data and from the requirements of the EA 

analysis techniques. Adequate method chunks fulfilling these requirements are introduced. 

Secondly, it is shown how the scenario-agnostic foundational DICE concepts can be 

specialised to support situational method engineering. 
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8 Evaluation Based on Prototypical Implementation 

DICE is a design science artefact. Thus, it can be evaluated against the broad spectrum of 

evaluation criteria presented by (Prat, Comyn-Wattiau and Akoka 2014). The criteria: 

structural consistency, efficacy and validity gain priority in the evaluation. The evaluation is 

structured in accordance with these criteria into three parts.  

Firstly, the structure of DICE is evaluated with a focus on the evaluation criteria of 

structural consistency. According to (Prat, Comyn-Wattiau and Akoka 2014), “consistency of 

structure is internal consistency”. Internal consistency of DICE is evaluated with a strong 

focus on the DICE metamodel. To this end, the DICE metamodel is implemented on the 

metamodeling platform ADOxx, building the basis for the DICE modeller, a modelling 

environment that makes the design and transformation processes possible and holds the 

metadata defined in the structural part of the DICE metamodel. 

Secondly, the DICE algorithms are implemented on ADOxx and R statistics to demonstrate 

the DICE efficacy. Efficacy is “the degree to which the artefact produces its desired effect”, 

(Prat, Comyn-Wattiau and Akoka 2014). The prototypical implementation is used to 

demonstrate the feasibility of DICE. The DICE macro level algorithms (see section 5.3.1) are 

implemented directly in ADOxx, whereas the micro level algorithms (see section 5.3.2) are 

implemented on R statistics. Together they allow for concurrent transformation of data and 

metadata (the “desired effect”). To this end, a significant part of the DICE transformation 

tasks and algorithms has been implemented. 

Finally, validity of DICE is demonstrated by an illustrative scenario. Validity is defined as 

“the degree to which the artefact works correctly” (Prat, Comyn-Wattiau and Akoka 2014). 

In this connection a standard EA dataset is used. The dataset comprises Archimate models 

residing in the Archimate Model Exchange File Format (see section 7.1.3). The data is loaded 

and transformed executing DICE workflows designed in the DICE modeller for the purpose 

of evaluation.  

8.1 Structural Consistency and Efficacy - DICE Prototype Based on ADOxx 

ADOxx is a metamodeling platform provided by the OMiLab (Open Models Laboratory), a 

collaborative environment for modelling method engineering (Götzinger, Miron and Staffel 
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2016). Based on ADOxx, the DICE modelling environment is implemented. The modelling 

environment “DICE modeller” is intended to design executable DICE workflows in a 

graphical manner. Through its integration with R statistics, the required transformations are 

conducted on the datasets and the corresponding metadata are generated. R statistics is a 

programming language and environment to statistically explore data (Dalgaard 2008). 

The implementation of the DICE modeller follows the principles of agile modelling method 

engineering (Karagiannis 2015). In the course of implementing a modelling method, a number 

of design decisions have to be taken. Typically, in a first step the platform-independent 

metamodel defined in the conceptional base (see section 5.2) has to be translated into a 

platform-specific metamodel. The metamodel represents the core of the modelling language. 

The implemented modelling classes have to be extended with a graphical notation and must 

be embedded in a modeltype (model kind, see section 2.2). In a second step, the required 

mechanisms and algorithms for machine-processing of the models have to be implemented.  

In the course of this, how the features of the chosen metamodeling platform support the 

implementation of the method has to be considered. This aspect is denoted as 

the“conceptualisation of a modelling method” in (Karagiannis 2015). The OMiLab lifecycle 

introduced by (Visic et al. 2015) defines the method conceptualisation lifecycle in five 

phases: (1) create, (2) design, (3) formalize, (4) develop and (5) deploy/validate. Fig. 83 

provides an overview. 

Phase (1) focuses on knowledge acquisition and requirements analysis (see sections 4, 

6.1and 7.1). The subsequent design phase covers the specification of the metamodel, the 

procedure model and the required mechanisms and algorithms (see section 5). The formalise 

phase targets the unambiguous definition of the method and makes it possible to share the 

results with a scientific community, see e.g. (Grossmann and Moser 2016). The develop phase 

concentrates on the implementation of the modelling method, often based on a metamodeling 

platform. The deployment phase usually involves domain experts who evaluate the modelling 

method and its implementation. The following sections focus on development and deployment 

of DICE. 
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Fig. 83 Method conceptualisation lifecycle, adapted from (Visic et al. 2015) 

8.1.1 Architecture 

The DICE 2.1 prototype, a revised version of the DIBA prototype
8
, consists of a three-layer 

architecture. The top-layer represents the modelling environment providing the user interface 

for the data engineer. It is made up of the modelling component, which makes it possible to 

graphically design the DICE workflows. The main functions of the modelling environment 

are: (1) to design and manage DICE workflows, (2) to specify the metadata and 

transformation parameters, (3) to generate the transformation statements to be executed on the 

input datasets/data objects and (4) to store and visualise the calculated metadata. The 

modelling classes offered to design a DICE workflow are derived from the DICE metamodel, 

i.e. the conceptualisation base which is discussed in section 5.2. The implementation makes 

use of the predefined concepts defined in the meta2model of ADOxx.  

Via the external coupling component of ADOxx, R statistics, an environment for statistical 

computing, is integrated. R statistics represents the BI-tier. Utilising AdoScript, the ADOxx-

internal DSL (domain specific programming language), the modelling environment 

communicates with the BI-tier. The modelling environment uses the designed workflow and 

the user-inputted parameters to create the executable (platform-specific) code and triggers the 

required transformations/calculations, which are performed in R. R, transforms the input 

datasets and calculates the metadata. The latter are returned to the modelling environment for 

analysis by the data engineer. 

The data layer is the bottom layer. It holds the datasets, the processing information (DICE 

workflows) and the metadata. More precisely, the workflow definitions and the metadata are 

                                                 

8
 See http://austria.omilab.org/psm/content/diba/info, access: 02.04.2017 

DEPLOY/VALIDATECREATE DESIGN FORMALISE DEVELOP

Intra-iteration evaluations

Inter-iteration evaluation
(for method evolution)

http://austria.omilab.org/psm/content/diba/info
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managed in the ADOxx database; the input datasets (data level) are initially retrieved from 

various source systems, and after transformation, stored in flat files from where they can be 

accessed for further processing. Via its access functions, the DICE prototype is capable of 

accessing data from social media platforms (e.g. from twitter, see www.twitter.com), from 

cloud storages such as google drive (https://www.google.com/intl/de/drive/) or from local 

shares. 

Fig. 84 illustrates the DICE architecture. For reasons of overview, central components of the 

ADOxx metamodeling platform, such as the ADOxx web interface, the ADOxx simulation 

component and the ADOxx model analysis component are intentionally omitted. The ADOxx 

modelling component (1) is used for graphically designing the DICE workflows. Within the 

modelling subsystem (CORE), the models are interpreted and the platform-specific R code is 

assembled automatically from the DICE workflows and the parameters of its constituent 

transformation tasks. The generated R code (3) is embedded in the execution code 

(implemented in AdoScript) and triggers the execution (4) of the code in R statistics. R 

statistics retrieves the input data and performs the calculations using R packages (libraries of 

reproducible R code). Via R packages, additional application components (6) such as the 

WordNet 2.1 application, a lexical database of English delivering the synsets introduced in 

section 7.2.3.2 are integrated. R delivers the calculated metadata (7a), charts on the metadata 

(7b) and the transformed datasets (7c), which are stored in flat files (csv) for further usage. 

file:///C:/Users/cmoser/Dropbox/Uni/Bisherige%20Paperes/In%20Progress/13%20DIBA/2%20-%20Wordvorlage%20incl.%20Readme/www.twitter.com
https://www.google.com/intl/de/drive/
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Fig. 84 The DICE architecture 

8.1.2 Development 

Central to the implemented modelling method is the modeltype "DICE workflow". 

Modeltypes correspond to the concept “model kind” as introduced in section 2.2. It contains 

all relevant modelling classes and relation classes required to: (1) design the DICE workflow, 

(2) specify the required data transformations and (3) visualize the generated metadata. The 

metamodel of the DICE workflow is represented in Fig. 85. The DICE concepts are 

specialised from the meta2model foundational constructs of the ADOxx meta2model, which 

is discussed in detail in (Karagiannis et al. 2016). 
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Fig. 85 Metamodel of the DICE workflow (excerpt) 

The implemented metamodel deviates from the metamodel of the conceptualisation base, as 

it had to be transferred into the ADOxx platform concepts. From the foundational concept 

“class”, method-specific classes are specialised. On the top-most level one can find the 

modelling classes of the DICE meta structure (of utmost importance, the transformation task 

types). From these task types EAA-specific transformation task types are derived. 

As can be seen in Fig. 85, the separation of behaviour and structural concepts has been 

abandoned. In the platform-specific metamodel, the DICE transformation tasks also carry the 

metadata of the product fragments. This design decision has been made for reasons of 

usability. In this way, the DICE workflows remain clear and the modeller does not have to 

bother about maintaining consistency between transformation tasks and input/output datasets.  
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The DICE modeltype composes the modelling classes: start event, end event, DICE 

subprocess, the atomic transformation task types and the situational transformation task types 

supporting EAA scenarios. In addition, the EAA-situational transformation task type “Load 

Archimate Models” is illustrated. The transformation task types correspond to the concept of 

DICE method chunks of the DICE meta structure. The relation class “triggers” is instantiated 

from the foundational concept “relation class” and makes the connection of the transformation 

tasks possible, thus, defining the order in which the transformation tasks are processed in 

runtime.  

For each of the modelling classes a graphical notation is defined. This graphical notation is 

defined in foundational attribute of type “GraphRep” utilising the ADOxx-specific DSL. Fig. 

86 illustrates an example. 

 

Fig. 86 GraphRep definition of the transformation task type “Selection” 

In addition, each modelling class comprises a set of attributes. “Attributes” are defined as 

“properties attached to the semantic definition of modelling concepts” (Karagiannis et al. 

2016). Attributes are made visible and editable via the so-called notebook assigned to the 

modelling classes. A notebook represents the property box of a modelling object. Fig. 87 

shows an example screenshot of the transformation task type selection and the corresponding 
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notebook definition based on the AttrRep configuration. The AttrRep attribute is one of the 

foundational attributes which carries the notebook definitions of a modelling class. It defines 

the chapter structure and the set of visible attributes of the class. The AttrRep configuration is 

interpreted during runtime of the modelling tool and creates the notebooks according to the 

configurations. 

 

Fig. 87 AttrRep - ADOxx notebook definition 

In ADOxx, attributes can be of a simple type, such as string, integer and double but also of 

more complex types such as records which are classes of their own and in turn compose 

attributes. Records are presented in the form of tables within the notebooks. An example can 

be seen in Fig. 88 where the record attribute “Metadata” carries some of the DICE metadata 

of the data object. 
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Fig. 88 DICE processing metadata and quality metadata (per variable) 

The concept of ADOxx expressions is used to assemble the PSM (platform-specific model) 

code which can be executed in R statistics. Expressions are used to collect all required input 

data from the attributes and to integrate the attribute values into the generic R code held 

directly in the expression attribute. ADOxx expressions are comparable to the concept of 

formulas within spreadsheet software and in DICE serve as the code generator for generating 

the R-specific transformation code. During run-time, it delivers the (platform-specific) code to 

be executed on the BI-tier. To this end, the DICE algorithms (see e.g. section 5.3.2) have to be 

implemented in platform-specific R code where the parameters (e.g. path to source files) 

specified in the attributes (edited via the ADOxx notebooks) are dynamically embedded. Fig. 

89 illustrates an example of an expression. 
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Fig. 89 Example of an ADOxx expression assembling R code 

AdoScript is used to execute the DICE workflow. It triggers the required calculations by 

integrating with the BI-tier (via external coupling APIs). Via AdoScript, the calculations are 

triggered in R statistics and the results (more precisely, the calculated metadata and graphical 

charts) are written back into the attributes of the transformation tasks.  

Basically, objects of three types are created by execution of a single transformation task: the 

output dataset, the corresponding metadata object and charts depicting the metadata. Whereas 

the metadata and supporting graphical charts are stored in the modelling environment 

(returned via API from R), the output datasets are stored in flat files structured in the defined 

tabular layout in csv-format.  

Automatically generated R 
code utilising the ADOxx

expression features: Here the 
path to the input dataset is 

included automatically.
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To sum up, the prototypical implementation of DICE covers the following part of the DICE 

method chunks implemented in the form of transformation task types: 

 Load datasets: This transformation task type is capable of loading datasets residing 

in csv-format structured according to the DICE main structure, respectively in 

tabular form. 

 Load Archimate Models: The transformation task type makes it possible to load 

files residing in the Archimate Model Exchange File Format. Via this transformation, 

task type files can be loaded and transferred into the DICE standard format as 

discussed in section 7.2.1. It creates two tables: one holding the observable units 

represented by the various Archimate objects which can be of different types (e.g. 

business process, application component, technology component) and a second one 

holding all relations between the objects including the type of the relations. 

 Selection: From a given dataset, observable units can be selected by specifying 

selection criteria that can be based on data and metadata of observable units. In the 

context of EA, the selection transformation task is capable of selecting observable 

units based on their attribute values but also based on metadata, such as total quality 

(U
QUAL

), currentness (U
QUAL>currentness

), accuracy (U
QUAL>accuracy

) and completeness 

(U
QUAL>completeness

). 

 Variable Removal: From a given dataset, variables and their metadata can be 

removed. 

 Addition: The transformation task type makes the concatenation of two datasets 

possible. The input datasets are horizontally integrated. Columns that are not present 

in all input datasets are added to the output datasets. 

The initialization function is a fixed component of all the mentioned transformation task 

types. In its current version (DICE 2.1), it calculates the quality indicators:  

 completeness,  

 accuracy,  

 currentness, 

 uniqueness and 

 total quality 
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of properties, variables and the entire dataset. For each of the named quality aspects, at 

minimum one of the DICE atomic quality indicators is implemented. See the following 

section for more details and for a concrete example. 

8.2 Evaluating Validity - Illustrative Scenario Based on the DICE Prototype 

The illustrative scenario presented in the subsequent sections shows an example where 

architecture descriptions are combined with operational data. For reasons of overview and 

understandability, the focus is to demo the DICE features. Real world examples will be more 

complex and challenging to be integrated and cleansed. 

8.2.1 Input Datasets 

For the illustrative example, three input datasets are considered. The first dataset is based on 

the Archimate 2.1 example files, officially issued by the Opengroup to demo the Archimate 

Model Exchange File Format
9
. Table 14 Quantity structures of the input datasets provides an 

overview of the quantity structures of contained building blocks and relation classes. The 

overall structure of this file format has been discussed in section 7.2.1. 

Table 14 Quantity structures of the input datasets 

Number of modelling classes 12 

Number of building blocks  156 

Number of relation class types 23 

Number of relations 574 

 

The second dataset is a table which comprises objects of modelling class “business objects”, 

i.e. observable units of type “business objects”. Besides a variable specifying the names of the 

observable units, it comprises the three typical variables for specifying security requirements: 

(1) “Confidentiality”, (2) “Integrity” and (3) “Availability”. All of these variables are 

categorical variables with the admissible values “very high”, “high”, “medium”, “low” and 

                                                 

9
 The file can be downloaded from http://www.opengroup.org/xsd/archimate, access: 08.03.2017. 

http://www.opengroup.org/xsd/archimate
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“very low”. The property values of these variables are set randomly. Some of the values do 

not comply with these syntactical requirements, such that P
QUAL>accuracy>syntax

 and 

V
QUAL>accuracy>syntax

 will calculate insufficient quality values. Table 16 illustrates a subset of 

this dataset. Some of the contained observable units have syntactically similar names and 

others have equal names as compared to the data objects contained in the formerly mentioned 

dataset. 

The third dataset holds operational data. Table 15 shows a snapshot of the dataset. The 

dataset holds a list of transactions, the related customer and the transaction date. As can be 

seen, the contained transaction types have the same name as the business objects in the 

previous datasets. 

Table 15 Operational Data – Simplified Dataset 

Objects FirstName LastName Date 

[…] […] […] […] 

Car Insurance Policy Henry Fonda 13.12.2016 

Insurance Request Harrison Ford 14.12.2016 

Insurance Policy John Wayne 15.12.2016 

Damage Claim Lex Barker 16.12.2016 

Car Insurance Policy Gary Cooper 17.12.2016 

Car Insurance Policy Dean Martin 18.12.2016 

Car Insurance Policy Ronald Reagan 19.12.2016 

Insurance Request Gregory Beck 20.12.2016 

Insurance Policy Clint Eastwood 21.12.2016 

[…] […] […] […] 

 

8.2.2 DICE Process Instance 

One major advantage of DICE is that each of the conducted transformation steps results in 

datasets that can be examined in detail. For purposes of demonstration, the two datasets are 

loaded into the DICE prototype, transformed, integrated and cleansed. Fig. 90 depicts the 

DICE process. 
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Fig. 90 Exemplary DICE workflow mapped in the DICE modeller 
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(1) Get business objects from CSV (GET): In this transformation task, the Dataset 2, 

which is already structured in the DICE preferred data structure, is loaded and subsequently 

initialized. Table 16 shows the initial structure of the input dataset including some of its 

observable units. 

Table 16 Initial structure of input dataset 

Objects Description Confidentiality Integrity Availability 

Customer 

A person or 

organization using 

the services of 

Archisurance. high medium low 

Car Insurance 

Policy NA medium High 

 Insurance Request NA 123 High low 

Insurance Policy 

A document 

detailing the terms 

and conditions of 

a contract of 

insurance. high medium low 

Customer File NA medium High very low 

Damage Claim 

Formal 

notification of a 

loss or damage 

that might be 

covered by the 

policy. no entry 

 

low 

Client 

A person or 

organization using 

the services of 

Archisurance. medium high very low 

… … … … … 

 

After performing the initialisation (T
initialise

), the dataset is enriched with the following 

metadata (columns): 

 P_LOG_ChangeDate_Objects,  

P_LOG>ChangeDate_Description,  

P_LOG_ChangeDate_Confidentiality,  

P_LOG>ChangeDate_Integrity,  

P_LOG_ChangeDate_Availability:  

Each of these columns holds the last change date of properties. As initially no 

information on the last change date on property level is available, the change date is 
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retrieved from the input file’s metadata (provided by the operating system in use) 

and imputed on property level. This metadata needs to be stored on the level of 

single properties because due to merge operations, tractability of the values will 

suffer if held on dataset level only.  

 P_LOG>Sourcepath_Objects,  

P_LOG>Sourcepath_Description,  

P_LOG>Sourcepath_Confidentiality,  

P_LOG>Sourcepath_Integrity,  

P_LOG>Sourcepath_Availability:  

Each of these columns holds the storage location of the input datasets. The storage 

location is specified by the data engineer via the DICE notebook. 

 P_LOG>Filename_Objects,  

P_LOG>Filename_Description,  

P_LOG>Filename_Confidentiality,  

P_LOG>Filename_Integrity,  

P_LOG>Filename_Availability:  

Each of these columns holds the filename of the source file. 

 P_QUAL>completeness>missingValue_Objects, 

P_QUAL>completeness>missingValue_Description, 

P_QUAL>completeness>missingValue_Confidentiality, 

P_QUAL>completeness>missingValue_Integrity, 

P_QUAL>completeness>missingValue_Availability: 

Each of these columns holds the atomic quality indicator on property level required 

for calculation of completeness of a variable. In V
PROC>valueDomain>missingValue

 the 

syntactical patterns for missing values are defined. Missing values in the given case 

are specified via a regular expression: ^(|no entry)$ 

The exemplarily specified regular expression evaluates whether a property value is 

entirely empty or carries the value “no entry”. 

  

 P_QUAL>accuracy>syntax_Confidentiality,  

P_QUAL>accuracy>syntax_Integrity,  
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P_QUAL>accuracy>syntax_Availability: 

In the example given, syntax compliance has to be ensured for the variables 

confidentiality, integrity and availability only. To this end, the syntax definition is 

defined in the form of the following regular expression:  

^(very high|high|medium|low|very low)$ 

which has to be defined by the data engineer in 

V_PROC>valueDomain>Syntax_Confidentiality, 

V_PROC>valueDomain>Syntax_Integrity, 

V_PROC>valueDomain>Syntax_Availability. 

Thus, the three variables are considered as categorical variables with the admissible 

values “very high”, “high”, “medium”, “low” and “very low”. 

 P_QUAL>currentness>maximumAge_Objects, etc.: 

Each of these columns holds information on whether the property values fulfil the 

currentness criteria "maximumAge" which is specified in the metadata 

V_PROC>currentness>maximumAge_Objects, etc.  

All properties evaluated with “pass” fulfil the criteria:  

P_LOG>changeDate ≥ 

V_PROC>currentness>maximumAge_[variableName]. 

 D_QUAL_currentness, 

D_QUAL_accuracy, 

D_QUAL_completeness 

Each of these columns holds the averaged quality values obtained from the variable 

quality indicators of the respective quality category. As an example: 

D_QUAL_completeness is obtained from the averaged quality values of 

D_QUAL_completeness_Objects,  

D_QUAL_completeness_ObjectIDs, 

D_QUAL_completeness_Description, 

D_QUAL_completeness_Criticallity, 

D_QUAL_completeness_Integrity and 

D_QUAL_completeness_Availability. 

 Finally, U_QUAL holds the total quality per observable unit. 
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Fig. 91 shows a screenshot of the DICE modeller. It illustrates parts of the V_PROC and 

V_QUAL metadata. 

 

Fig. 91 Example of DICE metadata specification in ADOxx 

(2) Addition of building block type (ADDITION) 

In this transformation step the column “U_SEM_type” (U
SEM>type

) is added. It specifies the 

type of the contained building blocks (business objects). In addition, the resulting data object 

is initialised. 

(3) Load Archimate model (GET) is of type “Load Archimate model”. It is capable of 

loading datasets residing in the Archimate Exchange File Format and transforms it into the 

required tabular structure. In its finalisation step, the resulting dataset is initialised, i.e. the 

metadata are calculated and assigned to the data object. The required parametrisation to 

conduct the transformation and the subsequent initialisation is done in the same way as in (1). 
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For a better understanding, Fig. 92 illustrates some of the building blocks contained in the 

dataset in the form of an Archimate viewpoint. 

 

Fig. 92 Exemplary subset of the building blocks in the dataset 

(4) Handle building block type (SEM metadata): The input data object already carries the 

U
SEM>type

 (see section 5.2.2) of the contained building blocks. The column only has to be 

renamed to correspond to the DICE metamodel and to be identified as DICE metadata. 
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(5) Select observable units of type “Business Objects”: The building blocks catalogued 

within the Archimate file are of different types (modelling classes). In the case at hand, the 

emphasis lies on building blocks (observable units) of type “business objects”. To this end, 

the input dataset delivered from the preceding transformation task is reduced to hold 

observable units of modelling class “business objects” only. This is achieved by selection of 

those observable units which are typed as business objects (variable “Classes”). Again, as a 

last step the dataset is initialized. The input parameters for conducting the initialisation do not 

change, as solely observable units have been removed. 

(6) Addition of the datasets: In this step both data objects are concatenated via vertical 

integration and initialized. By appending one data object to the other, the superset of their 

variables is created. Equal variables of the two datasets are bound together. In the DICE 

prototype, equivalency is established by comparing the variable’s names, i.e. the metadata 

(V
SEM>name

). Variables only existing in one of the data objects are added (including the 

variable metadata). 

(7) Filter out duplicate building blocks: Due to the fact that the sample input datasets 

(specified in section 8.2.1) carried similar/equal observable units, the data object resulting 

from the previous append transformation has to be cleansed by consolidating equal/similar 

observable units. From a pair of similar observable units, the one with the better overall 

quality is kept, whereas the other one is deleted from the data object. In section 7.2.3.2, four 

different types of similarity analysis are introduced: syntactical, semantical, neighbouring and 

attribute-based. In its initial version the DICE prototype handles only the syntactical 

equivalency check, which is conducted during data object initialisation, after each of the 

performed transformations. In the course of this, equal building blocks are labelled being 

equal, more precisely: the observable unit with the lower overall quality indicator from a pair 

of equal observable units is labelled as duplicate. Thus, duplicate observable units can be 

filtered out easily by conducting a selection on the metadata U
QUAL>uniqueness>inconsistency

 and 

U
QUAL>uniqueness>redundancy

, both metadata indicating duplicates. 

(8) Load Transactions: In this step again data from csv is loaded. This time, it is 

transactional data, i.e. data from an operative source. After loading the data it is initialised as 

in any transformation step. 
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(9) Aggregate Transactions per Type: In this step the individual transactional observable 

units are consolidated per type. Each type represents a business object such as customer, 

policy, insurance policy, etc. as defined in the aforementioned datasets. During aggregation of 

the data the frequency of the individual transactions is calculated. In a final step the dataset is 

initialised. 

(10) Merge aggregated data: This transformation is a perfect example, where operational 

data and architecture description are merged. It holds the final data object. With the available 

metadata, together with the DICE process itself, data provenance can easily be traced back to 

the initial input datasets. 

Fig. 93 again depicts the DICE process. This time it additionally shows the resulting 

metadata D
QUAL>syntax

, D
QUAL>currentness

, D
QUAL>uniqueness

 and D
QUAL>completeness

.  
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Fig. 93 DICE process incl. quality line charts 

The charts show the development of the summative qualities currentness, completeness, 

uniqueness and syntax of the resulting data objects after performing the transformations. In 
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this way, data engineers obtain an overview of quality issues and the quality impact after 

performing the transformations. Fig. 94 shows a concrete example. 

 

Fig. 94 Development of the quality indicator "uniqueness" throughout the process 

The quality indicator “uniqueness” changes after performing the transformation step. 

Initially the quality is about 95% for the first dataset. After subsetting the business objects, the 

quality rises to 100%. Obviously, there have not been any duplicate “business objects” in the 

initial dataset. Through addition to the second dataset the quality indictor falls dramatically. 

This is an indication that there are many duplicates in the set of business objects of both 

datasets. By subsetting the unique business objects in the last step of the DICE process the 

quality rises again. 

8.2.3 Examination 

The DICE prototype covers a representative subset of the DICE capabilities. In the 

following section the most important components of the DICE prototype are summarised. 

Modeltype “DICE process”: The modeltype makes modelling of an entire DICE process 

possible. It is used to demonstrate the DICE workflow capabilities. DICE transformation tasks 

can be assembled to executable DICE workflows as discussed in section 5.3.1.  

DICE method base: The method base is made up of the core DICE transformation tasks: 

load, restructure, selection, addition, variable removal, reclassification and consolidation. 

From these atomic transformation tasks, some specialised method chunks are derived to 

demonstrate the DICE capabilities of derivation of specialised method chunks, which is 

considered to be a core feature of situational methods. An example is the method chunk 

“Merge Transformation”, which is an assembly of the atomic transformation task types 

“addition” and “selection”. An example of a tailored (situational) EA specific transformation 

Through the selection of 
„Business Objects“  (step 5) 

uniqueness changes to 100%. No 
duplicate observable units are 

contained in the resulting dataset

Through the addition step 
(step 6) the quality indicator 

dramatically falls. It is 
obvious that both datasets 

contain duplicate 
observable units.

By subsetting the duplicates 
(step 7) the quality indicator 

raises to 100% fulfilment 
again.
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task is the “Load Archimate model” transformation, where the DICE method base is enhanced 

with a situational method chunk, providing features to transform input datasets residing in the 

Archimate Exchange File Format into the DICE horizontal layout. 

DICE initialisation: The DICE initialisation is an example of a process fragment, which is 

reused in all method chunks (transformation task types). With these process fragments the 

prototypical implementation places strong emphasis on the metadata aspects of DICE. 

From the set of introduced meta data, representative examples are implemented. Some of 

them are based directly on the raw data on data level; others require logistical or processing 

metadata as an input. 

 V
QUAL>completeness

: This quality metadata scores the completeness of a variable within a 

dataset.  

 V
QUAL>currentness

: This quality indicator requires logistical metadata as an input. More 

precisely, information on the latest update of the property values is taken into 

account for its calculation. The logistical metadata is retrieved from the input file’s 

metadata (provided from the operating system in use). Besides last change date, 

other logistical meta data such as source path and file names of input files are 

retrieved and subsequently propagated onto property level of the resulting output 

data object. Keeping records on these meta data strongly supports data provenance; 

at any step within the transformation process the source stays traceable.  

 V
QUAL>accuracy

: For demonstrating the DICE features in the context of accuracy, 

quality indicators are calculated using processing metadata as an input. In the 

concrete case, the accuracy is calculated from the atomic quality indicators 

V
QUAL>accuracy>syntax

 and V
QUAL>accuracy>dataType

. Both of these atomic quality indicators 

require processing metadata as an input that has to be specified by the data engineer. 

 In addition, D
QUAL>uniqueness

 is calculated (based on U
QUAL>uniqueness>redundancy

 and 

U
QUAL>uniqueness>inconsistency

) to demonstrate the DICE record linkage capabilities. 

8.3 Summary 

The evaluation of DICE has been performed in a two-step approach. (1) DICE has been 

implemented based on a metamodeling platform, a typical environment for implementing 

situational methods such as DICE. In a second step, the validity of DICE has been 



Evaluation Based on Prototypical Implementation 

 

233 

 

demonstrated by applying DICE in a concrete case: a representative dataset from the 

application domain of enterprise architecture management was loaded and transformed for 

upcoming BI modelling phases. The demo revealed that the compulsory simultaneous 

transformation of datasets and their metadata is possible, leading to meaningful data objects 

as an input for further analysis and decision making.  
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9 Conclusion and Outlook 

9.1 Conclusion 

Acknowledging the significance of data integration and cleansing mechanism in the fields of 

enterprise architecture management and with a wider perspective of management domains 

based on modelling, this thesis introduces DICE. DICE stands for Data Integration and 

Cleansing Environment. It is a domain-agnostic method for data integration and cleansing and 

is intended to support the data preparation phases of business analytics endeavours. 

To this end, it borrows from the fields of workflow management, statistical metadata 

management and data mining. Concepts from the fields of workflow management are used to 

design executable workflows that allow for design and execution of data transformations. 

Concepts from the fields of statistical metadata management, with particular focus on 

processing and quality metadata, are incorporated to keep the conducted transformations 

traceable. The quality of the resulting datasets is known and quality improvement potentials 

can easily be derived. The same holds true for data provenance aspects; sources of the data 

remain fully transparent. Comprehensibility is also assisted through incorporation of concepts 

from the fields of workflow management. By graphically designing the DICE workflows, the 

conducted data transformations are fully documented.  

Concepts from workflow management do not only contribute in terms of clarity. Their 

excitability grants reproducibility. In this way, DICE workflows represent deployable 

production processes that perform the actual data transformations and calculate the metadata 

with minimal human interaction.  

To conduct the actual data transformation, DICE draws from the abundance of algorithms 

and techniques from the fields of data mining. It defines and implements the atomic 

transformation tasks immanent in many of these techniques and enriches these transformation 

tasks with concepts of statistical metadata. According to this design principle, the 

transformation task types represent method chunks comprising features for data 

transformation and concurrent calculation of metadata.  

Conceptualised as a situational method, DICE can be adapted to the given situation by 

means of metamodelling, i.e. it can be tuned to domain/project specific situations. Enterprise 

architecture management is considered as such a domain specific situation. By analysing the 
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peculiarities of EA models and EA related data, requirements for the specific method are 

drawn. The DICE method base (initially holding generic method chunks) is extended with 

domain specific method chunks. In the fields of EA, examples such as the loading of models 

residing in typical EA formats, restructuring of the EA data, filtering of EA data etc. are 

introduced. The aim of this action was twofold: (1) the adaptability of DICE by means of 

meta-modelling is demonstrated and (2) powerful transformation tasks to be applied in EA 

scenarios are presented. 

DICE and DICE for EAA are evaluated in a three-staged approach. Firstly, the metadata 

calculations are demonstrated based on an implementation of the structural part of the DICE 

metamodel. To this end, parts of the metamodel and some of the algorithms to calculate 

quality indicators are implemented. The metamodel is instantiated into a model representing a 

common dataset, its constituent parts and some of the quality metadata, which are calculated 

automatically. 

DICE is evaluated in regard to efficacy by implementing DICE based on the metamodeling 

platform ADOxx and R statistics, an environment for statistical computation. With this 

prototypical DICE modeller, the feasibility of DICE can be proven. Some of the 

transformation task types (the main method chunks) have been implemented, making possible 

the design and execution of DICE workflows. It could be demonstrated that the concurrent 

transformation of data instances and metadata is possible with a minimum of human 

intervention. 

To assess the resulting data quality (the outcome of the transformations), an illustrative 

scenario is presented. For this purpose, a typical EA dataset, initially residing in an EA 

standard format, is loaded and transformed using the EA-situational transformation task types. 

9.2 Outlook 

In this section the possible directions of future work are briefly discussed.  

In general, inter-iteration evaluation as recommended by (Visic et al. 2015) and 

(Karagiannis 2015) has to be performed to enrich the DICE method base with reusable 

method fragments and to possibly streamline the existing method fragments. In the context of 

DICE for EAA, additional EA specific method fragments can be defined. This obviously has 

to be done in the context of specific EA projects ensuring applicability and foremost 
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reusability of the transformation task types. To this end, the prototypical implementation of 

DICE has to be extended to cover the full set of transformation task types and metadata. 

DICE places a strong focus on data integration and cleansing of structured data. Taking a 

wider perspective, the preceding steps of data loading and restructuring, which are only 

fractionally covered in this thesis, need to be explored. Especially when it comes to DICE for 

EAA, the data loading and restructuring of semi-structured data gains importance. Thus, 

extending DICE by derivation of method chunks that focus on data restructuring of semi-

structured data is one important direction for future work. During the course of writing this 

thesis, some promising results have been obtained by analysing and restructuring text corpora 

of ISO standards in the fields of security management. The main aim was to extract and 

highlight the most important compliance requirements, i.e. processes and tasks to be 

performed to ensure compliance. The resulting tasks and processes are intended to be used to 

ensure and measure compliance of EAs. However, neither atomic transformation tasks 

extracted nor the required metadata supporting the results on data level have been defined. 

In addition, it has to be noted that EAA the integration of EA and BA is still in its infancy. 

Thus, besides the data driven-approach discussed in this thesis, research has to be conducted 

on the actual management scenarios in these fields. What kind of data is required for adequate 

management decision making in the context of the phases of EA management cycles such as 

the TOGAF ADM has to be investigated in more detail.  
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10 Annex 

10.1 DICE Metamodel 

 

Fig. 95 DICE - Structural part of the metamodel - subset "Dataset" 
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Fig. 96 DICE - Structural part of the metamodel - subset "Observable Unit" 

U

typeSEMU 

LOGU

QUALU

SEMU

definitionSEMU 

yconsistencQUALU 

ycircularityconsistencQUALU 

tmeasureUniaccuracyQUALU 

ycardinalityconsistencQUALU 

complenessQUALU 

accuracyQUALU 

semanticsaccuracyQUALU 

ependencyvarDaccuracyQUALU 

scurrentnesQUALU 

maximumAgescurrentnesQUALU 

stepWidthaccuracyQUALU 

syntaxaccuracyQUALU 

synonymyconsistencQUALU 

lIntegrityreferentiayconsistencQUALU 

uniquenessQUALU 

dataTypeaccuracyQUALU 

gmisspellinaccuracyQUALU 

ncyinconsisteuniquenessQUALU 

PROCU

uemissingValcomplenessQUALU 

redundancyuniquenessQUALU 



Annex 

 

239 

 

 

Fig. 97 DICE - Structural part of the metamodel - subset "Variable" 
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tmeasureUniaccuracyQUALV 

ycardinalityconsistencQUALV 

complenessQUALV 

accuracyQUALV 

semanticsaccuracyQUALV 

ependencyvarDaccuracyQUALV 

scurrentnesQUALV 

maximumAgescurrentnesQUALV 

stepWidthaccuracyQUALV 

syntaxaccuracyQUALV 

synonymyconsistencQUALV 

lIntegrityreferentiayconsistencQUALV 

uniquenessQUALV 

dataTypeaccuracyQUALV 

gmisspellinaccuracyQUALV 

redundancyuniquenessQUALV 

uemissingValcomplenessQUALU 
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Fig. 98 DICE - Structural part of the metamodel - subset "Property" 
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10.2 DICE Transformations 

10.2.1 Initialisation 

input: 

 
)(, iAD  or )(iO          % a raw dataset or a composite input data      

                         object which requires recalculation % 

output: 

 )(oO                    % the composite output data object % 

 

Begin 

  if initial input is 
)(iAD                % if raw data )(iO  is      

                                            constructed first % 

   input 
SEMD , 

LOGD , 
PROCD               % manual input % 

   input SEMU                              % manual input % 

   input SEMV , PROCV                     % manual input % 

   propagate 
LOGD to 

LOGP    

 

 % iterate through all variables & through their quality indicators % 

 for v = 1 to |V|
 

  
for indicator = 1 to k 

    retrieve indicator-relevant requirements from 
PROC

vV  

    % iterate through observable units % 

    for each u = 1 to |U| 

       % match property value against requirement % 

       
if calculable calculate 

indicatorQUAL

uvP 
 

         else  input 
indicatorQUAL

uvP 
 manually 

    % calculate 
indicatorQUAL

vV 
from the set of qualities  

       per observable unit %  

    calculate average value from 
indicatorQUAL

vP 
 

  

% iterate through observable units % 

 for u = 1 to |U| 

   for v = 1 to |V| 

     % average quality per variable of observable unit %  

     calculate 
totalQUAL

uvP 
from set of 

QUAL

uvP  

   % calculate total quality of 
uU : average of 

totalQUAL

uvP 
 % 

   calculate totalQUALU   
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% total quality per indicator on dataset level 
indicatorQUALD 

 % 

 calculate average
indicatorQUALV 

 

 % total quality of dataset % 

 calculate 
QUALD  

 return )(iO  

end 

 

 

10.2.2 Selection 

input: 

 selection criteria 

 )(iO                    % the composite input data object % 

output: 

 )(oO                   % the composite output data object % 

 

begin 

% an empty output data object is created % 

  create empty )(oO  

  % iterate trough all observable units % 

  for u = 1 to |U| 

    % selection criteria can refer to data & metadata % 

    if selection criteria match  

        % transfer metadata of uU , property values of uU   

          incl. property metadata: % 

         copy 
)(i

uU  into )(oO  

% transfer metadata % 

  copy 
SEMiV ),(

, 
LOGiV ),(

, 
PROCiV ),(

 into )(oO  

 

 % conduct reinitialisation: % 

 initialize )(oO  

 return )(oO  

end 
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10.2.3 Addition 

input: 

 )( kiO and )( liO          % two data objects % 

output: 

 )(oO                  % the composite output data object % 

 

begin 

  create empty )(oO  

  % )( kiO  holds the leading metadata % 

  copy )( kiO to )(oO  

  for v = 1 to | )( kiV | in )( kiO  

    for z = 1 to | )( liV | in )( liO  

      calculate similarity degree of <
)( ki

vV , 
)( li

zV > 

      if variable similar  

        % append all properties of 
)( li

zV  and their metadata % 

        append 
)( li

zP to corresponding variable in )(oO  

      else  

        append 
)( li

zV as new variable 

 % conduct reinitialisation % 

 initialize 
)(oO  

 return 
)(oO  

end 

 

10.2.4 Variable Removal 

input: 

)(i

rV          % the to be removed variable % 

 )(iO          % the composite input data object % 

output: 

 )(oO         % the composite output data object % 

 

begin 

  create empty )(oO  

  for each 
)(i

vV  in )(iO  
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      % transfer all remaining variables incl. their properties % 

      if  
)()( i

r

i

v V V  copy 
)(i

vV to )(oO   

  copy 
SEMiD ),(

, 
PROCiD ),(

,
LOGiD ),(

  

  % conduct reinitialisation % 

  initialize 
)(oO  

  return 
)(oO  

end 

 

10.2.5 Reclassification 

input: 

   )(iO                % composite input data object % 

  
nameSEMi

rV ),(
         % name of variable which requires reclassification 

% 

   reclassification rules   % mapping table or conversion function % 

output: 

  )(oO                % the composite output data object % 

 

begin 

  create empty )(oO  

  for all 
)(i

vV  in )(iO  

     if 
)()( i

r

i

v V V  copy 
)(i

vV to )(oO  

     for u = 1 to |U| 

        if 
VALi

urP ),(
 does not comply with 

syntaxaccuracyPROC

rV 
 

           % after reclassification processing meta data are adapted % 

           reclassify 
VALi

urP ),(
&& adapt 

PROCi

urP ),(
 

  % conduct reinitialisation % 

  initialize 
)(oO  

  return 
)(oO  

end 
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10.2.6 Consolidation of Observable Units 

input: 

  )(iO             % composite input data object % 

  nameSEMiV ),(
    % array on variables holding properties to be compared % 

 similarity threshold 

   

output: 

 )(oO             % the composite output data object % 

 

begin 

  create empty )(oO  

  % compare all observable units within the dataset with each other % 

  for u =1 to |U| 

    for i =1 to |U| 

       calculate similarity between uU  and iU  

       if similarity > threshold  

          mark uU  and iU  for consolidation 

       consolidate similar pairs and copy to )(oO  

       copy non-similar observable units to )(oO   

       copy variable metadata to )(oO  

       copy dataset metadata to )(oO  

 

  % conduct reinitialisation % 

  initialize 
)(oO  

  return 
)(oO  

end 
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10.3 Publications by the Author 

Table 17 provides an overview of the articles published by the author. Most of the articles 

have been written with the influence and help of the Research Group Knowledge Engineering, 

led by Prof. Dr. Dimitris Karagiannis. 

Table 17 Publications by the author 

Author Title Year Outlet 

Christoph Moser, 

Franz Bayer, 

Dimitris Karagiannis 

ITIL: Modellgestützte 

Umsetzung mit ADOIT 

2004 Optimiertes IT-Management 

mit ITIL. Victor, F., Günther, 

H., Vieweg (2004) 

Christoph Moser, 

Franz Bayer 

IT Architecture 

Management: A 

Framework for IT-

Services. 

2007 In: Proceedings of the 

Workshop on Enterprise 

Modelling and Information 

Systems Architectures, Desel J., 

Frank U. (eds.) Lecture Notes 

in Informatics – Gesellschaft 

für Informatik (GI), Klagenfurt, 

Austria 

Christoph Moser, 

Matthias Winklhofer, 

Christian Kuplich 

Business Objectives 

Compliance Architecture 

Framework 

2008 Proceedings of Modellierung 

2008, Kühne T., Reisig W., 

Steimann F. (eds.) Lecture 

Notes in Informatics– 

Gesellschaft für Informatik 

(GI), Berlin, Germany. 

Christoph Moser, 

Franz Bayer 

Einführung von ISO 

20000 - ein 

prozessbasierter Ansatz 

2008 In: ISO 20000: Praxishandbuch 

für Servicemanagement und IT-

Governance, Andenmatten M. 

(eds.), Symposion Publishing. 

Christoph Moser, 

Stefan Junginger, 

Some Process Patterns for 

Enterprise Architecture 

2009 In: Conference: Software 

Engineering 2009 - 
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Mathias Brückmann, 

Klaus-Manfred 

Schöne 

Management. Workshopband, Fachtagung des 

GI-Fachbereichs 

Softwaretechnik, Münch J., 

Liggesmeyer P. (eds.), 

Kaiserslautern, Germany. 

Robert Winter, Jan 

vom Brocke, Peter 

Fettke, Peter Loos, 

Stefan Junginger, 

Christoph Moser, 

Wolfgang Keller, 

Florian Matthes, 

Alexander Ernst 

Patterns in der 

Wirtschaftsinformatik 

2009 In: Wirtschaftsinformatik 51, 

no. 6 

Christoph Moser, 

Daniel Fürstenau, 

Stefan Junginger 

A Method for Integrating 

EAM and BPM 

2010 In: 2nd European Workshop on 

Patterns for Enterprise 

Architecture Management 

(PEAM2010), Paderborn, 

Germany. 

Christoph Moser, 

Lutz Kirchner 

Integration von 

Prozessmanagement und 

Unternehmensarchitektur-

Management – Konzepte 

und Vorgehensweisen 

zum Business IT 

Alignment 

2013 In: Prozessmanagement für 

Experten, Bayer F., Kühn H. 

(eds), Springer Gabler Verlag. 

Tobias Rausch, 

Michael Puncochar, 

Kai-Helmut Eckert, 

Christoph Moser 

Technische Umsetzung 

von Geschäftsprozessen 

2013 In: Prozessmanagement für 

Experten, Bayer F., Kühn H. 

(eds), Springer Gabler Verlag. 

Karagiannis, Compliance evaluation 2012 In: International Conference on 
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Dimitris, Christoph 

Moser, Arash 

Mostashari 

featuring heat maps (CE-

HM): a meta-modeling-

based approach 

Advanced Information Systems 

Engineering. Springer Berlin 

Heidelberg, Germany. 

Wilfried Grossmann, 

Christoph Moser 

Big Data—Integration 

and Cleansing 

Environment for Business 

Analytics with DICE 

2016 In: Domain-Specific 

Conceptual Modeling - 

Concepts, Methods and Tools, 

Karagiannis D., Mayr H. C., 

Mylopoulos J., Springer 
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