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1 Introduction

1.1 Proteomics

1.1.1 The Foundations of Proteomics

What is “Proteome”

The term “Proteome” was coined by geneticist Marc Wilkins in 1994 in a symposium on “2D
Electrophoresis: from protein maps to genomes” held in Siena in Italy. It appeared in print in
1996([340] [341]). If Proteome was sparsely described as “the PROTEin complement expressed
by a genOME”, the resulting field of Proteomics comprises the large-scale study of protein
properties (expression level, post-translational modification, interactions etc.) of a tissue or
an organism at a certain time point to obtain a global, integrated view of disease processes,
cellular processes and networks at the protein level [30].

Protoproteomics

The origins of Proteomics go back to late 70s, even before the HUGO project was set up: after
the development of 2D-Electrophoresis by Klose, O’Farrell and Scheele [151] [225] [262] there
was such an optimism with its capabilities that it was considered to establish a Human Protein
Index (HPI), a kind of equivalent of the periodic table featuring systematic enumeration of
human proteins, even leading the initiation of a Molecular Anatomy Program at the Argonne
National Laboratory and the formation in 1980 of the Human Protein Index Task Force (un-
luckily, the lack of political consensus and the poor image of large-scale science at these days
doomed the initiative from the start) . Nevertheless, 2D-Electrophoresis still established itself
as the method of choice for visualising and separating complex protein mixtures: due to the

Figure 1.1: Proteomics: from the development of 2D-PAGE to its current application in mi-
crobal community studies (VerBerkmoes et al. 2009) [317]
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high resolution and reproducibility of immobilized pH gradients that allowed the pI and the
MW of the proteins to be predicted , it could display up to 10000 proteins simultaneously in
a single gel (with approximately 2000 proteins being routine), and detecting and quantifying
protein amounts of less than 1ng per spot [183]. 2D-Electrophoresis is a standard procedure for
autoradiographic imaging [100] and through different staining techniques (such as Coomassie
blue, silver staining or fluorescent dyes as in Difference Gel Electrophoresis (DIGE)) it allows
a quick visualisation of differences between two different protein extracts or alterations on a
certain protein in a complex sample (as degradation or PTMs) [210][246].

Peptide Volatisation and Ionisation

The other technical breakthrough that paved the way to Proteomics before the concept came
to existence is the ability to volatise and ionise peptidic molecules. Since the first applications
of Mass Spectrometry in Protein Analysis there has been a huge evolution: despite some pre-
vious experiments on Peptides with Field Desorption Mass Spectrometry, it wasn’t until the
development of the FAB (fast atom bombardment) soft ionisation technique by Morris
(1981) that peptides could be brought as intact, singly protonated/deprotonated molecules in
the gas phase for MS analysis [215]. The first applications were the determination of peptide
molecular mass, and the elucidation of the aminoacid sequence of a certain peptide with higher
speed and efficiency than with the classical Edman-Degradation technique, especially after the
development of TANDEM-Mass Spectrometry by Hunt (1981)[133], incorporating the use
of quadrupole mass spectrometers to create fractionation patterns and measure both parent
and fragment ions. A specific nomenclature for peptide fragments was originally suggested by
Roepstorff (1984) [256] and improved by Johnson (1987) [139]. The next decisive step into
the development of Proteomics is, as previously mentioned, the development of more sophisti-
cated soft ionization techniques that could not only allow, especially two: the Electrospray
Ionisation (ESI) and the Matrix-Assisted Laser Desorption Ionisation (MALDI).

Electrospray Ionisation (ESI) Developed by Fenn and colleagues [84], the Electrospray Ion-
isation is a procedure in which peptides from a steady flow enter the gas-phase through a
voltage-driven desolvatisation process (Coulomb explosions), thus resulting a spray of single-
charged peptide ions directed to the nozzle of the Mass Spectrometer for further analysis. This
makes possible to couple the Mass Spectrometer with liquid chromatographies, thus enabling
continuous measurements. Furthermore, applying different separation strategies at the chro-
matography - such as reverse phase (RP), size exclusion (SE),or hydrophilic interaction (HILIC)
— more comprehensive online studies can be performed on a certain subject. Currently, the
most used setting for LC-MS-Proteomics is an RP-column on a UHPLC combined with linear
quadrupole Mass Spectrometers. For these achievements, Fenn was awarded the Nobel Prize
of Medicine 2002.

Matrix-assisted Laser Desorption Ionisation (MALDI) Developed by Tanaka, Karas and
Hillenkamp towards end of the 1980s [290] [125], this soft ionisation technique was an evolution
on previous laser desorption techniques (until then only capable of ionising particles up to
1000 Da): biopolymers would be embedded on a stable, slightly acidic polymer matrix (the
exact composition can be adjusted depending on the object of study) that would get excited
by bombardment with short duration laser pulses, and subsequently transmit that excitation
energy to the embedded molecules. The resulting ions could be then measured with the also
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pulse-based time-of-flight (TOF) MS-technique: ion pulses excited under an electric field get
separated according to their trajectory to the detector — direcly proportional to the m/z-ratio.
TOF mass spectrometers are neither the quickest instruments nor well suited for continuous
measurements, but they feature very high mass accuracy and range). MALDI-TOF also allowed
for detection of higher charged molecules. Tanaka received the Nobel Prize of Medicine for
MALDI in 2002.

Peptide Fragmentation

Peptide sequence identification by tandem mass spectrometry involves ionization of volatized
peptides or even proteins, usually getting protonated and therefore scanned by the mass spec-
trometer on positive mode. Since ESI brings analytes in the gas phase without rupturing any
covalent bonds, it provides the molecular weight via m/z, but further fragmentation of these
analytes is needed to confirm the aminouacid sequence and determine the structure of an un-
known molecule [351] [14]. Some of the different ion activation and fragmentation mechanisms
are featured on Table 1.1.1 [278] [162][351] [119].

Table 1.1: Overview: different ion activation methods

Ion activation Related MS Application

IRMP (infrared multiphoton dissociation) IT, FTCIR Unimolecular dissociation
Little et al., 1994 [177] Structural elucidation

top-down proteomics

SID (surface induced dissociation) IT, Hybrid TOF, Specific fragmentation
Mabud, 1985 [184] Cooks, 1990 [52] FTCIR, TSQ pathways, isomer
Laskin, 2000 [161] distinction

SORI (sustained off-resonance irradiation) FTCIR Radial separation of
Gauthier, Trautman, Jaconson, 1991 [90] mass-selected ions, MSn

structure determination

CID (collision induced dissociation) IT, TOF, FTCIR, Peptide dissociation
Jennings, 1968 [137] LTQ, TSQ, Orbitrap Most extended method

PQD (pulse Q induced dissociation) Orbitrap (Velos) Overcomes low-mass cut-off
Schwartz et al, 2005 [269] (Peptide tag identification)

HCD (higher energy collisional dissociation) Orbitrap (Velos) Full mass range with
Olsen 2007 [226] high accuracy e.g. PRM

ECD (electron collision dissociation) FTCIR Peptide backbone dissociation
Zubarev 1998 [361] conserving PTMs; multiply

charged protein/peptide ions

ETD (electron transfer dissociation) modifield LTQ Peptide backbone dissociation
McLafferty 2001 [196] QTOF, OTOF conserving PTMs; multiply

charged protein/peptide ions
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Ideally, measured m/z values of these pieces can be assembled to produce the original sequence
(direct sequence ions) [117]. However, some peptides, due to their physical-chemical properties,
cannot be efficiently ionized or fragmented, therefore producing MS/MS spectra unidentifiable
by the current database search tools [221]. It can also happen that many fragment ions undergo
complex rearrangements and therefore differ from the direct sequence ion series (also known as
nondirect sequence ions) [117]. Many models have been proposed to explain the behaviour of
ionized proteins and peptides, such as the “mobile proton model”, defined initially in several
publications by Wysocki et al. as a qualitative description of peptide fragmentation [351], and
further expanded to a more quantitative-oriented models such as the “Pathways in Competition”
model of Paizs [231] and the kinetic model of Zhang [357]. Even though it is commonly accepted
that peptide cleavage occurs predominantly through charge-directed pathways (i.e. initiated
by a charge that is transferred to the vicinity of the cleavage site [351]), questions such as the
dependence of a fragmentation pattern on the aminoacid sequence of the precursor peptides or
the stabilization of the correspondent peptide fragmentes still remain controversial [14].

Peptide properties affecting ionization and fragmentation Despite the great complications
to dilucidate the processes leading to backbone fragmentation, many of the properties of the
peptides can be used to predict loosely how the analyte might ionize and fragmentate:

• Peptide length (the longer, the more energy is needed to fragment)

• Peptide hydrophobicity (higher insolubility in the buffers compatible with electrospray
difficults peptide ionization — lower peptide abundance)

• Higher charged peptides require less energy to fragment

• Cyclic peptides feature poorer fragmentation efficiency

• Amino acid sequence: different aminoacids can produce different effects depending on the
type of fragmentation

• on MALDI: K terminated peptides give more evenly distributed patterns than R termi-
nating peptides

• on CID: R, K or H on either peptide terminus can lead to production of b/y ions

• on CID: Proline enhances fragmentation (as C-side of His, Asp and Blu, and on Asp-Pro),
on the other hand Gly frequently suppresses it, particularly Gly-Gly or Gly-Ala.

Besides, the collision gas used at the ion source also plays a role, being peptide fragmentation
proportional to molecule size and gas pressure.

Peptide fragment nomenclature A nomenclature for peptide fragmentation was already es-
tablished in the middle 80s by Roepstorff and Johnson [256] [139]. This system both describes
the fragment ion types that are produced by cleavage of different bonds along the peptide
backbone and/or fragments from side chains.
Cleavage of the backbone typically occurs at the peptide amide bond, producing b ions in

case the amino terminal fragment retains the charge, or y ions if the carboxy-terminal fragment
retains the charge (it’s notable that b and y ions are not always present at the same spectrum
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Figure 1.2: Roeppstorf Nomenclature Scheme for Peptide Fragmentation Patterns — Produc-
tion of a-/x-Ions, b-/y-Ions, c- Ions, y-Ions.

due to different stability). Beside b and y ions, considered to be the most useful sequence ion
types, other ion types can be observed — for instance, a ions are the result of b ions losing
a CO group (thus, a m/z difference of 28 between two peaks could hint at an a-b ion pair).
Alternative fragmentation methods (such as ECD fragmentation - see Table 1.1.1) produce c/z
ion pairs, with the cleavage at the N-Cα bond. This comes as a result of the energy pathway
of these alternative methods being lower, so that modifications that would usually split with
neutral loss through CID fractionation are still conserved — which is a huge advantage for
PTM characterization [78]. Other relevant ions are side-chain cleavage ions (also known as d,
v and w ions), which result out the cleavage of side-chain bonds, are allow distinction between
isobaric or isomeric ions (e.g. Ile from Leu) [351].

Mass Spectrometry

First developments in Protein Mass Spectrometry One of the classical dilemmas in Protein
Mass Spectrometry is perfectly reflected in the two classic mass spectrometer types that became
most prominent: FTICR and TOF mass spectrometers. FTICR (Fourier Transformation Ion
Cyclotrone Resonance) spectrometers offered high resolution and accuracy at cost of poor
multiplexing and relatively low speed; meanwhile, TOF (Time-of-Flight) mass spectrometers
had a wide dynamic range and high speed but due to poor transmission and pulsed ionisation
they were not very appropiate for continous measurements e.g. coupled to LCs. Also Ion Traps,
despite great transmission and sensitivity, lacked the speed and the accuracy of the FTICR.
The more primitive Sector Field Mass Spectrometers or Linear Quadrupole Spectrometers
were also stuck to similar limitations, bringing great speed at costs of resolution and sensitivity.

The Orbitrap Around 2000, Dr. Alexander Makarov presented a new mass spectrometer de-
sign that brought many advantages from the previous types: improving on an original idea of
Kingdon, it became possible to stabilize ions through pulsed injection into an electrostatic field,
bringing them to rotate in orbitals around a central electrode inside an ion trap. The LTQ
Orbitrap featured two coupled ion traps (linear and orbital) in which a first linear quadrupol
that works both as a first detector and as an ion source for a second, orbital-shaped trap
performing high accuracy ion measurements. Thus, the LTQ Orbitrap allowed parallel mea-
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surement of parent and fragment ions with very high mass resolution. Further developments of
the Orbitrap aimed principally at increasing its transmission (and consequently also its speed)
through use of S-lenses for better focusing and filtering out of neutrals before entering the first
quadrupole, lowering of the ion cut-off values (thus broadening its accuracy for fingerprint ions
enabling the measurement of reporter ions and so the application of techniques like iTRAQ)
and increasing mass accuracy and PSM (peptide per spectrum matches) through more effective
fragmentation methods (see Table 1.1.1). Indeed, many improvements on Mass Spectrometers
have made possible to incorporate alternative fragmentation techniques to the standard CID
procedure (see Table 1.1.1), both on hardware (e.g. through adding an additional chamber for
HCD fragmentation [226]) and software level (introduction of Data-Dependent Decision Trees
for combining different fractionation strategies as e.g. Swaney 2008 [288]).

Latest Developments For Protein MS-Analysis there has always been the compromise be-
tween high mass accuracy and resolution on one hand, and speed and sensitivity on the other
— the recent developments on Orbitrap Mass Spectrometers (Thermo) aim at reaching enough
speed and sensitivity to compete with previous triple quadrupole models hence being suit-
able also for quantitative protein/peptide analysis. New devices incorporated to the original
LTQ-Orbitrap construction, such as the S-Lens or straight/bent flatapoles from the Q-Exactive
Spectrometers (also from Thermo), aim at better ion focusing and filtering out neutrals. Other
alternatives like the triple TOF from ABSciex ditch the DDA, rather focusing on speed and
powerful post-acquisition processing; another alternative from another manufacturer is the de-
velopment of iFunnel technology (aiming to increase the amount of measured ions minimising
ion loss on the way from the ion source to the mass analyzer) by Agilent. Still, there are
still manufacturers splitting clearly between high accuracy and high speed measurements e.g.
Bruker with the maXis II models.

Figure 1.3: Original LTQ-Orbitrap structure
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Table 1.2: Overview: current Mass Spectrometer models and their corresponding features

Instrument Applications Resolution Mass Accuracy Sensitivity Dynamic range Scan rate

LIT (LTQ) Bottom-up protein identification 2000 100 ppm Femtomole 1e4 Fast
in high-complexity, high
-throughput analysis,
LC-MSn capabilities

TQ (TSQ) Bottom-up peptide and protein quantification; 2000 100 ppm Attomole 1e6 Moderate
medium complexity samples,
peptide and protein quantification
(SRM, MRM, precursor, product,
neutral fragment monitoring)

LTQ-Orbitrap Protein identification 100.000 2 ppm Femtomole 1e4 Moderate
Protein quantification
PTM identification

LTQ-FTCIR, Protein identification 500.000 <2 ppm Femtomole 1e4 Slow, slow
Q-FTCIR Protein quantification

PTM identification
top-down protein identification

Q-TOF, IT-TOF Bottom-up protein identification 10.000 2-5 ppm Attomole 1e6 Moderate, fast
top-down protein identification
PTM identification

Q-LIT Bottom-up peptide and 2000 100 ppm Attomole 1e6 Moderate, fast
protein quantification;
medium complexity samples,
peptide and protein quantification
(SRM, MRM, precursor, product,
neutral fragment monitoring)

Orbitrap VELOS Pro Intact Antibody Characterization, > 100.000 < 1ppm RMS 5,000 within a single scan -
Leachables and Extractables guaranteeing specified
Drug Impurities Analysis mass accuracy

Q-Exactive Untargeted proteomics and metabolomics, 140.000 < 1ppm RMS (internal), Full MS: 5000:1 ( intra-scan) <12 Hz
targeted screening 3ppm RMS (external) 500 fg Buspirone

column S/N 100:1
SRM: 50fg Buspirone
column S/N 100:1

Orbitrap ELITE Bottom-up Proteomics 15.000- > 240.000 < 3 ppm RMS 2 µ L of a 50 fg/µL 5000 -
targeted quantitation, (external calib.) reserpine solution (single scan)
top-down proteomics < 1 ppm RMS (100 fg total)
intact protein characterization (internal calib.) 500µl /min
PTMs (glycosylation, phosphorylation) S/N 100:1
relative quantitation (SILAC, TMT, (HESI)
label-free)

Q-Fusion Proteins Bottom-up Proteomics 450.000 < 3 ppm RMS 2 µL of a 50 fg/µL 5,000 within a single scan < 20
targeted quantitation, (external calib.) reserpine solution
top-down proteomics < 1 ppm RMS (100 fg total)
intact protein characterization (internal calib.) S/N 100:1
PTMs (glycosylation, phosphorylation) (HESI)
relative quantitation (SILAC, TMT,
label-free)
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Computer Tools and Strategies

Another key element for the consolidation of Proteomics was the development of computer tools
to both optimize the measurements in the Mass Spectrometers and to correlate the results to
peptides and proteins.

From the first Algorithms to Data Acquisition Strategies Even though there had already
been worked on algorithms for capital aspects as multiply charged ions or peak deconvolution
[189], the first truely disruptive innovation was the introduction of Instrument Control
Language (ICL) on the Finnigan MAT TSQ-70 (Lammert, S. A. Finnigan-MAT Technical
Report Number 603, 1987). ICL could be used to create computer programs to interact with
data and to control the instrument operations based on that data in real time [355]. Therefore,
it was posible to establish automated methods for investigation of fundamental instrument
parameters, or to maximize information per analysis time unit — early applications were e.g.
automatic acquisition of an MS/MS scan for every parent ion found in the mass spectrum above
a given threshold with the mass spectrum not being known in advance [118]. These methods are
commonly known as Data-dependent-acquisition (DDA) and have decisively contributed
to the development of large-scale MS/MS measurements — in fact, the DDA approach has
been the most common data acquisition strategy for peptide analysis since the development of
Shotgun Proteomics. For instance, on a current LC-MS/MS analysis a mass spectrometer can
sequentially survey all the peptide ions that elute from the LC column at a particular time MS1

and subsequently isolate and fragment a selection of parent ions from that MS1 (usually the top
few most intense) to generate MS/MS (MS2) spectra [304]. The increasing speed and resolution
of mass spectrometers, and the development of more powerful software has contributed to
alternative methods to complement DDA, like the Data Independent Acquisition (DIA)
[316]. DIA features no data selection for TANDEM analysis, but rather a serial fragmentation
of all measured peptides in different isolation windows (mass, time · · ·) [170]. Even if DIA
measurements need existing libraries and selects mostly already known peptides — therefore not
being suitable for discovery-based applications [67] — it overcomes the limitations of dynamic
range of DDA, which filters a considerable amount of low abundant peptide signals. Since its
introduction with the Waters Expression System™ in 2002, Data Independent Acquisition has
already been further implemented in different approaches, such as FT-ARM (spanning defined
m/z ranges and assigning a score based on comparison with empirical and theoretical peptide
fragment spectra [332], multiplexed DIA (random selection of five non-overlapping smaller
m/z windows that got analysed simultaneously, instead of sequentially — Egertson 2013 [76])
or MSPLIT-DIA (mixture-spectrum partitioning using libraries of identified tandem mass
spectra, using spectrum projections to match library spectra to each DIA spectrum [324])). A
comprehensive review of DIA methods can be found on Bilbao 2015 [26]. Other applications
of ICL on mass spectrometry measurements are e.g. switching between ionization types or
creating decision algorithms [288].

Peptide Sequence Assignment A critical aspect to make protein analysis quicker and more
effective was the establishment of sequence databases to which single peptides could be matched
without having to sequence the whole protein. Since Henzel introduced the first algorithms to
match mass spectral data to digital protein databases at the Third Symposium of The Protein
Society in 1989 [25], many different algorithms have been developed for this task.
The most popular algorithms are SEQUEST (Yates 1994) [79] and MASCOT (Perkins 1999)
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[238]. The SEQUEST algorithm converts the character-based representations of amino acid
sequences from a protein database to a fragmentation pattern that can subsequently be used to
match fragment mass values to an uninterpreted tandem mass spectrum, then picking putative
ions for each peptide, performing a cross-correlation analysis between theoretical and exper-
imental mass spectra, giving every peptide match a corresponding X-corr factor, and finally
selecting the highest scoring matches. The MASCOT algorithm [238] enhances with MS/MS-
Ion search other capabilites of its precursor, the MOWSE algorithm [234], such as peptide mass
fingerprinting and sequence query. Furthermore, MASCOT adds a probability-based score for
each identified peptide, and a further Protein score gathering all significant peptides of a single
protein.
Other newer algorithms, mostly open-source, have been recently developed, e.g. OMSSA

[91] (in collaboration with the NCBI institute) or X!Tandem (Craig, Cortens, Beavis 2004 [56]
). These algorithms can also be combined with search engines, such as MaxQuant [53] or the
more recent MS-Amanda [70].

Validation Strategies While these algorithms are very powerful, there can however be sub-
stantial overlap between the scores for correct and incorrect peptide identifications [144] —
therefore, additional validation must be made. The standard procedure is the False Discov-
ery Rate (FDR), introduced into proteomics procedures in 2007 and mainly applied in two
approaches: (a) empirical Bayes approach (from the overlap of two score distributions cor-
responding to correct and incorrect identifications, being the FDR computed as the fraction
of the mixture density attributable to the incorrect distribution above a given threshold —
nevertheless both distributions are modelled for every measurement, being highly variable de-
pending on the search engine and the dataset) and (b) target-decoy searching, more extended
in sequence searching (not spectral searching), in which peptide search with both the original
and a decoy database (featuring false peptide sequences e.g. inverted) are concatenated, be-
ing the FDR computed out of the probability of finding false hits in the final search results
[157]. Many algorithms to generate decoy databases can be found on Hoopman and Moritz
2013 [128]. Nowadays, most search engines have integrated FDR in their toolboxes [155]. It
has also been discussed to apply p-Value correction in multiple testing since FDR can be
considered additive (originally via Bonferroni correction). However, this procedure might be
too stringent depending on the type of the experiment, eliminating too many true positives as
false negatives. The usual FDR value for confidence intervals in proteomics experiments is 5%.
Other factors affecting the quality of the peptide identifications/score factors can be the

quality of the spectra and, depending on the used algorithm or search engine, search time or
the size of the used database.

Development of Protein Databases and Repositories

The first comprehensive database of classified and functionally annotated protein sequences
was produced by the Protein Information Resource (PIR, established in 1984 by the
National Biomedical Research Foundation, NBRF) in collaboration with MIPS (Munich In-
formation Center for Protein Sequences) and JIPID (Japan International Protein Informa-
tion Database). This dataset was built from the already collected Atlas of Protein Sequence
and Structure (Margaret Dayhoff, 1965–1978) — full releases have been published quarterly
since 1984 [17] and finally presented in 2004 as the PIR-International Protein Sequence-
Database (PIR-PSD). Besides, PIR joined EBI (European Bioinformatics Institute) and
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SIB (Swiss Institute of Bioinformatics) to form the UniProt consortium, integrating all its
sequences and annotations in the UniProt Knowledgebase. Bidirectional cross-references be-
tween UniProt (UniProt Knowledgebase and/or UniParc) and PIR-PSD are established to
allow easy tracking of former PIR-PSD entries. Furthermore, PIR-PSD unique sequences, ref-
erence citations, and experimentally-verified data can also be found in the relevant UniProt
records. Currently there are 21.176 entries (12.02.2016), 705 of which are reference proteomes
(http://www.uniprot.org/taxonomy/complete-proteomes).

There are two further active databases of high relevance (and with daily updates):

• GPMDB (Global Proteome Machine and Database), which is built after repro-
cessing the information collected in the GPM servers with the X!Tandem algorithm
[55] and focuses on holding the minimum amount of information necessary for certain
bioinformatics-related tasks, such as sequence assignment validation. Most of the data
is held in a set of XML files: the database serves as an index to those files, allowing for
very rapid lookups and reduced database storage requirements (http://thegpm.org).

• PeptideAtlas (Desiere 2006) [65] Mass spectrometer output files are loaded into the
PeptideAtlas data repository, after which they are analyzed through the Trans-Proteomic
Pipeline (TPP) using either Sequest or X!Tandem as database-dependent search algo-
rithm. Further analysis with PeptideProphet and ProteinProphet derives a probability
of correct identification for all results in a uniform manner. Besides, to ensure a high
quality database, false discovery rates at the whole atlas level are also included.

Other repositories were not as successful due to funding problems, like e.g. the Proteome
Commons Tranche repository — linked to the ProteomeCommons.org community in order
to redundantly store and disseminate data sets for the proteomics community. It featured
support for large data files, prepublication access controls, licensing options, and it ensured
both data provenance and integrity ([280], linked to [80] [optional]). The NCBI-Peptidome
[138] had a similar fate: both repositories discontinued on 2011 and migrated to massIVE and
PRIDE, respectively [236], [59].

Proteogenomics Even though a big majority of protein databases comes from translation
of genomic databases (an overview of all the genome projects to this date can be found in
https://gold.jgi.doe.gov/ [254]. Proteomics can also play a very important role for the de-
velopment of protein databases, e.g. in database enhancement through functional annotation
or even for constructing metabolic networks (as in May et al 2008 [195]). In fact, the recently
defined field of Proteogenomics (studies in which proteomic data are applied to improve
genome annotation and characterization of the protein-coding potential) aims at protein-level
validation of expression of the novel transcripts nominated by genomic and transcriptomic
technologies. Proteogenomics includes such procedures as confirmation of translation, reading-
frame determination, identification of gene and exon boundaries, evidence for post-translational
processing, identification of splice-forms including alternative splicing, and also, prediction of
completely novel genes [45]. Furthermore, it also deals with computational strategies for build-
ing and using customized protein sequence databases, e.g. including EST sequences or six-frame
translation of cDNAs [220]. Many of these strategies have been applied at the development of
the mentioned repositories — the SwissProt section even features manual annotation. Never-
theless, for plant proteomics this procedure has barely been applied on other organisms than
Arabidopsis thaliana and Oryza sativa, remaining still the rest of the proteomes ([266]).
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Actual Situation of Protein Databases Good introductions to Proteomics Databases and
repositories have been written by Nesvizhskii [219] or Vizcaíno [321] — more actual develop-
ments can be read under (Perez-Riverol 2015 [236]) or, for plant proteomics, under Sakata &
Komatsu 2014 [141] — including a philogenetic tree of proteomics repositories for plants. A
challenge coming out of this variety in repositories is how to avoid data dissemination and
unify or coordinate data for collaborating groups — the MASCP recommendation is to sub-
mit data to PRIDE because of its compliance with standards developed by the Proteomics
Standards Initiative (PSI) [228] [292] and because it can harbour basically any kind of pro-
cessed proteome data (http://www.masc-proteomics.org/mascp/index.php/Data ). Other
initiatives to overcome this pitfall are the ProteomeXchange consortium (Ternent 2014 [296];
http://www.proteomexchange.org) and the Biomart platform (http://www.biomart.org ),
which has been recently developed as a way to integrate large datasets and biomedical datasets
([113] [279]). Other key aspects regarding protein database standardization are database size,
indexing, clustering vs filtering approaches and correction factors/scores. An important short-
coming is the scarce development of tools to evaluate database performance, especially con-
sidering that protein sequence databases show different levels of completeness and sequence
redundancy. This issue is adressed on the publication “The different proteomes of Chlamy-
domonas reinhardti ” [310], included in this PhD-Thesis.

Spectral Libraries Spectral library searching has been proposed as a useful complement and
in some cases even as a promising alternative to sequence database searching ([353]). In this
approach, peptide identification is made by comparing the query MS/MS spectrum to a library
of reference spectra for which the identifications are known and selecting candidates using a set
of filters (as in Domokos 1984 [68]). This strategy (previously known as Annotated Spec-
trum Libraries, ASLs) has been commonly practiced for mass spectrometric analysis of small
molecules since the 1950s ([158]), but it was in the 1990s when spectral libraries were brought
in connection with cross correlation methods ([230]) and applied on protein analysis as a way
to enhance the current manual interpretation of MS/MS spectra ([353]). The development of
computational methods was not only peptide identification through MS/MS spectra assign-
ment, but also for validating experimental against experimental spectra, as in SILVER [97]
[77]. Nevertheless, both theoretical spectra and generating spectra from synthesized peptides
have been too costly — instead, an alternative strategy was to develop quality controls and
curation schemes that could help building sets of composite spectra, each the result of averag-
ing together multiple observations of the same peptide [54]. In fact, the exponential growth of
data volume owing to rapid experimental advances in the field played an important role in the
development of spectral libraries [156].
Spectral libraries have many advantages to sequence assignment database queries: smaller

databases can save a lot of time for every search (e.g. the P3 Algorithm by Craig 2005 man-
aged 20fold time reduction compared to standard searches with whole protein sequences [57]),
fragment intensity distributions in product ion spectra (nonexistent in sequence search) can be
taken into account as an additional parameter to match unknowns and avoid false positives,
and the storage of high quality spectra from standard peptides featuring modifications such as
phosphorylation or oxidation can enhance the detection of PTMs. Other advantages could be
the simple visual discrimination of false positives, and providing information about sequence
coverage [132]. Despite some limiting factors , it is expected that spectral databases become
more extended, with even software producers including spectral libraries on their programs.
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Classic examples of mass spectral libraries are NIST-related MSPepSearch (featuring spectra
from NIST repositories — validation through SEQUEST search, PeptideProphet, integrated in
an SBEAMS module and finally correlated to their respective genome sequences via BLAST
[65]), X!Hunter (featuring Homo sapiens, Mus musculus, Saccharomyces cerevisiae, it is built
from annotated spectra of the Global Proteome Machine Database, GPMDB; peptide sequence
identification is based on scoring the similarity of the experimental spectrum with the contents
of the library) [54], Bibliospec (modular approach for development of spectral libraries out
of high quality spectra: BlibBuild + BlibFilter + BlibSearch — dot product metric is used
to measure the similarity between reference spectrum and unknown spectrum = dot product
similarity score for higher efficience than usual cross correlation methods. Featured examples:
Caenorhabditis elegans and Escherichia coli) [86], SpectraST (Saccharomyces cerevisiae, in-
tegrated on Trans Proteomic Pipeline, also designed for Targeted Proteomics, originally over
30000 spectra [158] or NIST MSPepSearch (http://peptide.nist.gov). Very relevant for
plant physiologists is ProMEX, a mass spectral library developed by Hummel et al. (2007)
and extended by Wienkoop et al. (2012) which features different plant species such as Ara-
bidopsis thaliana, Chlamydomonas reinhardtii or Medicago truncatula, and fully integrated in
the SwissProt database [132][336].

Mass Spectrometry Measurements Depending On The Fractionation Strategy

On a technical level, there are three different possibilities for protein identification on Proteomics-
related mass spectrometry analysis:

Bottom-up Proteomics “Bottom up” strategies to proteome analysis involve cleaving the
protein into peptide fragments that are smaller but still sufficiently distinctive to allow protein
identification. There are two generally applicable “bottom up” approaches for protein identifica-
tion: a first one based upon MS fragmentation (MS/MS) of one or more of these peptides mass
measurements for a set of peptide digestion products from the parent protein, and a second
approach usually referred to as peptide mass fingerprinting that consists of the creation of a set
of peptide fragments unique to each protein. The m/z value of each one of these fragments is
then used as a “fingerprint” to identify the original protein. Bottom-up Proteomics is presently
unsurpassed in its ability to identify large numbers of proteins — however, it suffers from the
loss of information required to distinguish proteoforms [281]), many of them functionally rel-
evant, and therefore essential to conform a functionally complete proteome that describes the
studied biological system accurately [8].

Top-down Proteomics As already mentioned, bottom-up proteomics strategies show some
limitations at the time of identifying site-specific mutations and post-translational modifica-
tions of invidual proteins which could be relevant in biological function. This is partially due
to the fact that bottom-up proteomics rarely reaches complete sequence coverage of proteins in
proteome analysis. A way to overcome these limitations and gain otherwise unobtainable in-
sights at the peptide level is the MS-analysis of intact proteins, commonly known as “top-down
Proteomics”. Here, mostly single proteins or simple protein mixes are separated and fragmented
directly in the mass spectrometer to achieve both protein identification and characterization,
without the need for prior chemical or enzymatic proteolysis. Nevertheless, “top down” strate-
gies are generally less effective for protein identification than peptide level measurements [33][8].
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Middle-down Proteomics Despite this technique was already conceived by Fenselau et al.
around 1994 [318], the term “Middle-down proteomics” became coined by García and Kelleher
in 2007 to describe a middle term between both previous approaches used basically for histone
analysis: analysis of digested peptidic fragments, but with a much higher molecular weight than
in the bottom up approach (3 to 9kDa), so that some disadvantages of bottom-up proteomics
can be bypassed [88]. This disadvantages are e.g. sensitivity loss due to low ionization efficiency
of a given peptide, poor LC retention of short (<6 aa) and hydrophilic peptides, digestion
efficiency of peptides carrying PTMs [274], or discrimination between protein isoforms with
presence of PTMs [221]. Fragments of this size can be achieved through protein digestion
with GluC instead of Trypsin, relaying on the high concentration of Glc in the Histone ends,
and blocking any sites for tryptic digestion through comprehensive propionylation of the free
lysines. Alternative digestion enzymes for middle down proteomics are AspN [213] and outer
membrane protease T (OmpT) [349]. With the recent development of WCX-HILIC and online
ECD applications in the middle-down range [145], a major breakthrough on the analytical side
is in sight. The current bottleneck is the development of robust bioinformatics pipelines that
can automatically interpret the collected data [213].

1.1.2 Shotgun Proteomics / qualitative analysis

Introduction: Shortcomings of 2D-PAGE for Proteomic Studies

Proteomics was initially established as a combination of 2D-PAGE with MS-spectrometry for
direct and rapid analysis of the entire protein complement of complex biological systems, aiming
at separation, identification and comprehensive coverage of all proteins present in complex
biological samples from whole organelles, cells and tissues [150] [334], [208]. Nevertheless, even
though 2D-Gels were an essential tool for proteome analysis, many disadvantages of 2-D became
evident: lack of reproducibility, failure to resolve most proteins greater than approximately
100 kDa, failure to routinely detect more than 1000 spots that could be identified by mass
spectrometry, and the inability to separate most membrane proteins — extremely acidic or
basic proteins also required special gels to get resolved [188]. Additionally, its limited dynamic
range could limit analyses to less than half of the detectable proteins, as reported by Gygi on
a study on yeast [111] [100].
The first alternative to 2D-PAGE-based Proteomics was presented by Washburn et al. (2001)

as a complementary technique based upon a method previously developed by Link et al. [176]:
the MudPIT approach (/textbfmultidimensional protein identification technology) consisted
on loading different samples with digested protein extracts from cell lysates on a biphasic mi-
crocapillary column packed with SCX and RP materials. MudPIT could not only overcome
the previously mentioned issues of 2D-Gels, but could also mantain the separation of two com-
ponents after they have been resolved in one step. For instance, Washburn et al. detected and
identified in their first trials with Saccharomyces cerevisiae a total of 1,484 proteins, represent-
ing 24% coverage of the predicted open reading frames of this organism [329].
Even though the concept “Shotgun protein analysis” had already been coined by Yates [354],

MudPIT is regarded as the first successful application of the Shotgun proteomics approach.

Shotgun Proteomics

Definition A term adapted from molecular biology (Shotgun Genomics), Shotgun pro-
teomics implies the identification of different proteins from a complex sample through de-
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tection of one or more peptide fragments produced by enzymatic -usually tryptic- or chemical
digestion (therefore, a bottom-up proteomics approach). This process fully automates the sep-
aration and identification of peptides after digestion of complex protein mixtures [329] [100]
and allows also quantitative approaches [331] (see Section 1.1.3).

Basic experimental design A Shotgun Proteomics study usually consists of the following
steps:

1. Sample preparation, including proteolytic digestion of the proteins

2. Online separation of the generated peptides by LC

3. Mass-spectrometric analysis

4. Bioinformatic interpretation of the data series

Even if the general output of proteins in a proteomics study depends on the sampling (studied
conditions, replicates, additional purification or enrichment steps), an expected yield calculated
on a Saccharomyces cerevisiae study estimated an identification of 50 to 106 molecules per cell
[95] [175]. Furthermore, a standard shotgun proteomics study features a dynamic range of
104-105 molecules per cell [60] [344].
A nice overview of (Shotgun) Proteomics Tools can be found in Mallick and Kuster (2010)

[187]. Interesting overviews on different developments on Shotgun Proteomics have been writ-
ten by Gilmore and Washburn(2010) [99] mainly on different chromatography strategies (e.g.
different gradients and column combinations) and sample prefractionation techniques.

Functions and Aspects

Implicit in this methodology is the ability to monitor the system both qualitatively and quan-
titatively [348]. Considering its features, Shotgun Proteomics can be successfully applied on
the following tasks:

1. Identify the entire, dynamic protein complement of an organism, avoiding the modest
separation efficiency and poor mass spectra sensitivity associated with intact protein
analysis

2. Detect covalent modifications on known proteins

3. Allow for quantitative comparisons between samples [348]

4. Validation of genes that are expressed on the protein level and discovery of novel gene
products and variants — for instance, high quality MS/MS spectra that are left unassigned
when searched against protein sequence databases can be reanalyzed more comprehen-
sively by searching genomic databases

5. Elucidation of global protein expression patterns that would otherwise be missed in an
analysis of a single experiment)[221]

6. Optimally suited for discovering protein functions [198]

7. Peptide identification data can be used to improve the quality of the protein sequence
databases by making them more complete and accurate [195], to create proteome maps
[1] and even for enhancing Genome Annotation and Metabolic draft networks [195].
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Drawbacks and Challenges

Despite the many advantages of Shotgun Proteomics over 2D-PAGE, there are still many chal-
lenges to face. These issues are often related to the complexity of the samples, the properties
of the detected peptides, and also methodology aspects like the peptide-to-protein inference or
optimization of the peptide databases. Regarding sample complexity, the limiting factors at the
time of dealing with the enormous dynamic range of a shotgun proteomics measurement can
be both associated with the limit of detection in the mass spectrometer and/or the presence of
high- and low- abundant proteins as a bias towards high-abundant proteins. As shown already
in Liu et al. [179] — among others — the lower the abundance of a protein is, the less fre-
quently it gets identified. Replicate analyses of a complex sample can increase the total number
of proteins identified by increasing detection of lower abundance proteins, and different peptide
enrichment techniques can be applied as well. Another strategy to avoid bias towards high con-
centrated proteins is setting dynamic exclusion parameters during DDA measurements. Low
abundant peptides can also be the result of protein digestion efficiency/constraint. A further
reason for low peptide detection beyond low peptide abundance can be low peptide ionization,
since poorly ionizing peptides are less likely to be selected for MS/MS sequencing. Poor peptide
ionization can be due to the peptide’s physical-chemical properties, but also to ion suppres-
sion — for instance, creating methods to reduce ion suppression and obtain a more uniform
ionization would improve both qualitative and quantitative analysis [355]. Peptide-to-protein
inference relies on the identification of the N- and C-terminal peptides — therefore, since the
whole protein is assigned to single peptide sequences, both the different sequence coverage
and the size of the correspondent protein do play a role in correct protein identification and
quantitation. Likewise, it is posible to obtain false IDs from sequence redundacy, e.g. with
distinct proteins having a high degree of sequence homology (as is the case in protein families,
alternative splice forms of the same gene, or differently processed proteins) [220]. Unexpected
post-translational modifications (PTMs) which are not included in the correspondent peptide
database can also impede correct peptide identification. Further flaws in the used databases,
such as artificial redundancies coming from truncated sequences, sequence alternatives arising
from sequencing errors, or redundant peptide sequences under different gene names, should also
be considerer as possible error sources.
Many of these drawbacks can be overcome through different chromatography techniques, the

continuous improvement of Mass Spectrometers (including higher speed, sensitivity or devel-
opment of new ionization strategies), more stringent search machines, and steady updating of
the present databases. An alternative approach that has been gaining importance throughout
the last years is database-independent protein identification.

Database-independent Shotgun Proteomics

Methods for Data Dependent Acquisition (DDA) Despite the capability of spectral libraries
of identifying post-translational modifications (PTMs) that might not be reflected in protein
sequence databases, many unknown peptide modifications (not only PTMs, but also e.g. al-
ternative splicing) might still get unnoticed. Considering phosphorylation as a key regulatory
mechanism, the identification of phosphopeptides that could serve as potential biomarkers is
more than relevant. One possible approach to search for unknown significant peptides using high
mass accuracy MS-measurements and spectral counting is the database-independent approach
MAPA (Mass Accuracy Precursor Alignment; Hoehenwarter 2011) [126]. This strat-
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egy is constructed around the ProtMax algorithm (Hoehenwarter 2008), which extracts all
peptide precursor ions with the same mass to charge ratio (m/z) from high mass accuracy mass
spectrometric raw data and groups them in a data matrix without any preliminar database
search [127]. This matrix allows statistical treatment of the binned peptides and further anal-
ysis e.g. through existent databases or De Novo sequencing (see next paragraph). Initially,
only the frequency of observed m/z-fragments according to the concentration of peptides was
counted (spectral count) or ion intensity and added to the data matrix — in a new revision,
retention time became also considered for binning the correct m/z-precursors, introducing local
Rt-windows in order to discriminate peptides that share the same error-tolerated m/z values
but that do not elute within an expected time window, binning them separately, and adding
an absolute intensity-based noise filter [75]. ProtMax can be applied on both DDA- and DIA
measurements.

Methods for Data Independent Acquisition (DIA) Other strategies have focused on DIA
measurements, frequently based upon scanning cycles of limited m/z isolation windows that
should be repeated over the whole MS measurement. Two examples of these approaches are
PAcIFIC [233]) scanning CID fragments (no precursors) in 15m/z windows on the whole
range, or SWATH [98], which records a complete, high accuracy fragment ion spectrum of all
precursors selected in one isolation window. The same precursor isolation window is fragmented
over and over at each cycle during the entire chromatographic separation, thus providing a
time-resolved recording of the fragment ions of all the peptide precursors that elute on the
chromatography.

De Novo Sequencing Strategy for the identification of new peptide sequences without match-
ing them to a peptide database — the resulting De novo sequenced peptides can be further
investigated e.g. by homology studies with other sequenced organisms. De novo sequencing
can be very useful in case of PTMs or neutral loss processes that haven’t been included in any
protein/peptide databases, alternative splicing or even detecting bioactive peptides that are
heavily modified and rarely detected in high throughput experiments involving tryptic diges-
tion [202]. Through predictable fragmentation patterns it is possible to find fragments that
can be matched to approximate masses of amino acid residues measured on the MS (a good
overview of the influence of different mass spectrometry approaches and fragmentation mech-
anisms on De Novo sequencing can be found on Seidler 2010 [271]). These fragments can be
further aligned following logical ion series (peptide ladder) [2]. Besides, other rules have to
be considered e.g. there are 16 rules regarding loss of ammonia and water, spectral intensity,
aminoacid composition, isobaric mass (as with Leu/Ileu or Lys/Glu), among others. The main
challenge at this process is that the peptide segments are not measured sequencially, so that a
huge computing power has to be invested to calculate and match all these measured fragments
simultaneously on a complex sample. The most extended program for De Novo sequencing is
IonSource’s PEAKS — many other algorithms and different strategies for De Novo sequencing
are commented in Allmer 2014 [2] .
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1.1.3 Quantitative Proteomics

Definition

Quantitative proteomics is an essential procedure for comparative studies in regulatory mech-
anisms or different responses on stress conditions. Its main advantage over e.g. transcript
analysis is that, despite not having any amplification step such as PCR, it offers an accurate
reflection of post-transcriptional and post-translational modification of the target proteins.
Furthermore, the use of LC-MS allows a more reproducible, precise and accurate measurement
than more “traditional” methods such as densitometric quantification or immunoassays.

Accuracy versus Comprehensiveness

For quantitative protein analysis there are other key factors to be prioritized than with qual-
itative analysis: basically, a reliable chromatography is essential in order to maximize peak
capacity for MS/MS, and fast scanning instruments that can track the presence of an ion
throughout a gradient. The priorities for the MS- measurements are contradictory: on one
hand, there should be captured as many time points as possible in the chromatogramm for
each ion, but on the other hand also move on swiftly to other m/z values, thus including as
many different ions as possible for each ion in a duty cycle without compromising the precision
of the quantification. This conflict between brevity and persistence can lead to trade-offs in
data quality, since the limit of detection for peptide identification most often exceeds the limit
of quantitation [355]. A solution to this problem is to optimize measurements for identification
and quantify well enough to observe the trends in changes which can then be measured more
accurately and precisely with more focused mass spectrometry methods as done by Dong et
al (2007) [69]. In fact, the level of practical experience with quantitative proteins is of major
significance as the choice of the quantitation method to reach a high technical reproducibil-
ity [306]. Besides, the experimental design should also consider the biological variation of the
quantified samples, hence including a corresponding number of replicates [268].

Choice of Mass Spectrometers

In general, quantitative proteomic analyses are performed as a straight-ahead comparison be-
tween two organisms or states using already selected peptides as references (e.g. a metabolic
pathway). The instruments of choice are usually triple quadrupole spectrometers due to their
superior speed and capability of measuring in a continuous flow — nevertheless, the latest evo-
lutions have brought new possibilities that blur these preconceptions, e.g. adjusting Orbitrap
spectrometers to achieve competitive results through enhanced resolution, lower background
noise or higher efficiency through better ion transmission and elimination of neutrals, or triple
TOF spectrometers gaining ion coverage through discarding data-dependent acquisition (DDA).

Normalisation

A key step in proteome analysis, especially when comparing different datasets, is to normalise
the different identified peptides — a factor is applied to minimise the different variation sources
that might exist between different experiments or even different technical replicates. A simple
approach would be referring the measured data to housekeeping proteins, as e.g. on classical
techniques such as Western Blots [42]; nevertheless, this strategy is rather limited considering
that many proteomics approaches such as targeted proteomics or PTM analysis might exclude
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housekeeping proteins, and also that many variation sources relate to the properties of indi-
vidual proteins even in the same measurement (such as peptide ionisation or chain length).
Therefore, different indices have been derived: NSAF (large proteins tend to contribute more
peptide/spectra than small ones, a normalized spectral abundance factor (NSAF) — this
factor compensates for that), RSc (actually an alternative to Spectral Counting (see Label-free
vs. labeled Analysis) — log 2 on the ratio of spectral count — better reduction of variation than
NSAF), SIn (normalized spectral Index, [104] — more powerful reducing variability between
samples than NSAF and RSC — fragment ion intensities calculated from peak heights rather
than integrating precursor ions [218]- PN (Unique peptide number, [104]), MPI (Mean
Protein Intensity, [104]), Q-FISH [166]; scale standardisation through division of intensity
values by its maximum value, noise reduction through creation of mass windows, quantification
through clustering of duplicated peptides with similar patterns — reference spectra: average
built based on patterns of precursor ions and identification of differentially expressed peptides
through beta-binomial tests), PAI (protein abundance index: number of identified peptides
divided by the number of theoretically observable tryptic peptides for each protein — usu-
ally used to estimate protein abundance for absolute quantification), EMPAI (exponentially
modified PAI), or APEX (absolute quantification through a score built from the proportion
between the expected number of unique peptides of a protein and the observed number of pep-
tides expected for a protein — with every protein getting a correspondent critical correction
factor [360]).

Label-free vs. Labeled Analysis

Label-free Analysis Many of the strategies for protein quantification do not necessarily rely on
absolute values, but on ratios between two different states, or on the relative amounts measured
in a sample. One of the first quantitative label-free shotgun proteomics studies was developed
in combination with a metabolomics protocol (Weckwerth et al. 2004) [330]. The label-free
shotgun proteomics method is way more economic since no expensive labeling or internal stan-
dard procedures are needed, and it accomodates to most workflows [27]. Besides, the proteome
coverage of quantified proteins is high because basically every protein that is identified by one
or more peptide spectra can be quantified. Therefore, label-free methods usually have high an-
alytical depth and dynamic range, which is very favourable when large, global protein changes
between treatments are expected [268]. Nevertheless, label free analyses should be thouroughly
planned and executed to minimize the inherent error sources in quantitative measurements,
such as ionization competition between complex samples or non-homogeneous sample intro-
duction. Two standard strategies for label-free comparisons are spectral ion intensity and
spectral count.

Spectral ion intensity Since signal intensity from electrospray ionization (ESI) recorded
chromatographs correlates with ion concentration [323], relative quantification can be achieved
by extracting and calculating peak areas for a certain mass value, and comparing the elution
tags and resulting values from separate LC-MS runs for that same ion. A reproducible chro-
matographic separation is key, since the confidence of the measurement relies heavily on both
reproducible RTs and accurate peptide extraction for a correct peak alignment, and integra-
tion of the measured peptides [27]. For more accurate matching and quantification it is also
recommendable to average and normalize the chromatographic peak intensities, thus eliminat-
ing background noise and reducing experimental variations coming from differences in sample
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preparation and LC-MS/MS injection [360]. It is also important to employ a high mass accu-
racy mass spectrometer so that the influence of interfering signals of similar but distinct ma/z
can be minimized [15]. A major drawback is that parent ion survey scans are interrupted by
the fragment ion scan events (MS/MS), resulting in discontinuous coverage of the peptide ion
peaks: the more interruptions, the more coverage, but also the less accuracy for the detected
ions. Therefore, a balance between acquisition of survey and fragment spectra has to be found
[268],[15].

Spectral intensity (spectral count) Here, relative protein quantification is achieved by
comparing the number of identified MS/MS spectra from the same protein in each of the multi-
ple LC- MS/MS or LC/LC-MS/MS datasets. It was demonstrated that among all the factors of
identification, only spectral count showed strong linear correlation with relative protein abun-
dance [360], all this having a dynamic range over 2 orders of magnitude [179]. Even though
low abundance proteins might get lost, quantification through spectral intensity guarantees a
similar linearity of quantification, less variability between peptides of the same protein, it covers
a higher linear dynamic range in complex matrices and detects a higher number of identified
proteins. Furthermore, it doesn’t need an additional extraction algorithm, thus making further
processing much more comfortable [335].

Labeled Analysis This kind of measurement has been frequently associated with the Single
Reaction Monitoring Technique (SRM). The SRM technique is based upon the selection
of certain ions through a mass window and monitoring them through a complete gradient -
these selected ions become subsequently also fragmented, and the resulting ions also get selected
according to their m/z and measured. Because of the peptide and ion selection, lower selectivity
is required from the machine, shifting the priorities rather to speed, sensitivity and dynamic
range - in fact, the SRM can increase the sensitivity / dynamic range of an average full scan
measurement by one to two orders of magnitude [160] [47] [347]. For this approach, the most
frequently used mass spectrometers are triple quadrupol models, sometimes also LTQ-TOF-
TOFs (Q1: precursor detection / mass filter — Q2/TOF1: fragmentation cell — Q3/TOF2:
ion detector). The multiplexed application of the SRM is also known as MRM (Multiple
Reaction Monitoring). In the recent years, it has been attempted to adapt this approach
to absolute quantification to the slower Orbitrap-based devices, even though the presence of
an ion trap is usually at odds with quantification because of its lower speed. To compensate
for this minor speed though, the more advantageous aspects of Orbitraps have been brought to
the front: lower background noise, better resolution and consequently also higher selectivity.
Further strategies have been incorporated in different methods, such as use of mass or time
windows throughout the LC-gradient (as in the TPM process [124]), or improvement in the
fragmentation and stabilization of ions (e.g. given via HCD-Fragmentation [226], leading to
the development of the Parallel Reaction Monitoring (PRM) approach. In this DIA-based
procedure both parent and fragment ions are measured simultaneously with high accuracy in
the Orbitrap, instead of serially acquiring selected transitions in a Triple Quadrupole like in
MRMs [240][87].

Chemical labeling Chemical labeling is based upon marked tags of a known m/z binding
with certain functional groups of the peptide chains. This is usually achieved through isotope-
coded affinity tags, with the binding taking place either at protein level (ICAT [112]) or
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peptide level (isobaric tags, commercially known as iTRAQ [258] or TMT [298]). Even though
both approaches are based upon the same basic principle of a 3-part-tag, there are some clear
differences: on ICAT, the first component acts as a reagent, binding specifically to Cys rests, a
second component acts as a linker where the isotopes are introduced (up to 8 Deuterium rests)
and the third component is a Biotin rest that allows Protein enrichment via Avidin binding.
Besides, the actual quantification of the protein is achieved on the precursor ions, before the
Biotin fragment gets dissociated by CID. On the other hand, isobaric tags bind to peptides
instead of proteins, thus having a wider peptide coverage (the binding specifity of their peptide
reactant fraction is on primary amine groups) and quantitation takes place in the MS/MS
stage, coming with higher time cost but also higher peptide detection [258]. Isobaric tags,
unlike ICAT, always feature the same mass: this is achieved through concatenation of different
reporter ions with balancer regions to keep the total tag mass constant (the carbonyl-based mass
balancers will later split through neutral loss in MS/MS) . Finally, instead of a Biotin group
these tags feature a cyclic N-methylpiperazine-based group in the reporter peptide fraction to
simplify the interpretation of MS/MS spectra. Quantitation relies on the intensity ratios of
so-called reporter ions in the fragment spectra.
A cheaper alternative for chemical labeling can be Dimethyl labeling, which consists on

substituting the H-atoms from Amin groups for isotope-labeled methyl groups, causing shifts
both in mass and retention time [129]

Metabolic labeling One way to reduce the errors coming from sample loss during protein
extraction [27], purification or digestion is to add the internal standard before the sampling takes
place — for instance, feeding the live organisms with isotopically labeled nutrients, like essential
aminoacids on cell cultures (as in the SILAC approach by Ong 2002 [227], usually arginine
and lysine) and 15N labeled salts (like HILEP, SILIP), or 13C labeled glucose (SMIRP) on high
plants [27]. These techniques usually feature a high labeling efficiency [5] — nevertheless, they
also depend on great part on the labeling efficiency and are relatively limited for multiplexing.

Labeled standards The most extended strategy for absolute protein quantification is the
use of internal standards, emulating on Proteomics the classical mass spectrometry approach of
stable isotope dilution. These internal standards aim at concrete peptide sequences (determined
either experimentally or after an in silico digestion of the analysed proteins) with selected
aminoacids being marked by stable isotopes, thus producing a mass shift.
The first successful approach to stable isotope labeled standard dilution techniques on pep-

tides was first attempted as an alternative to immunoassays by Barr 1996 [18] and aiming to
quantify phosphorylated Separase on HeLa cells by Stemmann 2001 [284]. Nevertheless, it was
with the AQUA (“Absolute Quantification”) approach [93]) that the technique was firmly
established on protein analysis: here, spots from 2D-Gels were cut, digested in the presence of a
known amount of standard peptide and finally analysed through SRMs: quantification resulted
from the ratio of the AUC of the measured peptide to the AUC of its respective standard. De-
spite allowing accurate peptide measurements and leaving also space for further developments,
such as as coupling with purification techniques like SISCAPA (Stable Isotope Standards and
Capture by Anti-Peptide Antibodies [6]), the AQUA approach featured some drawbacks, like
differential ionisation properties of the different peptides or keeping equimolarity among the
different standards at multiplexing.
An alternative method was also developed for whole proteins, usually expressed on cell free
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systems or bacteria [41]: through labeling of complete proteins by PSAQ (“Protein Stan-
dard Absolute Quantification” [73]) different peptides of the same proteins, isoforms, more
reliable digestion and larger sequence coverage should be possible. This strategy not only aimed
at minimizing issues such as ionization competition or affinity issues in the chromatography
through a wider choice of reporter ions, but also left room for other digestion enzymes than
Trypsin. Furthermore, it also pointed at investigating isoforms and quantify proteins on top-
down proteomic approaches. Unfortunately, unlike AQUA peptides, the PSAQ standards are
not feasible for PTM analysis.
A less expensive method that also allows multiplexed quantification (up to 50 tryptic pep-

tides) and guarantees equimolarity between all the different standard peptides is theQconCAT
approach [23]. Here, chimeric, isotope-labeled proteins consisting of concatenated standard
peptide sequences are obtained from heterologous expression of synthetic genes in vivo — af-
ter tryptic digestion of a concatamere, a full stoichiometric set of labeled standard peptides is
obtained. Further developments on QconCAT incorporating some other isotope labeling strate-
gies can be found in Simpson and Beynon (2012) [275]. QconCAT has the great advantage of
multiplexing, thus enabling the measurement of different peptides from the same protein, and
ensuring standard equimolarity in case of quantifying protein complexes or subunits. Besides,
the production of standard peptides doesn’t need to be outsourced: once the vectors with the
synthetic genes are produced, standard peptides can be produced at wish. Nevertheless, the
calibration of the QconCAT standard and its influence on the accuracy of the final quantifica-
tion could become a challenge [41]. Another limitation is the lack of PTMs, since QconCAT
standards are synthesized mostly by E.coli.

An interesting approach which brings together many of the advantages of the previously
mentioned techniques is included in this PhD-Thesis: the Mass Western (Lehmann 2008).
Initially developed in 2008 as an application of SRM with added synthetic stable isotope labeled
standard peptides on complex biological samples with no prefractionation whatsoever [167],
the latest development of the Mass Western has been enhanced through the use of synthetic
peptides that include cross-concatenated peptide sequences from different protein subunits (thus
keeping standard equimolarity and regarding digestion efficiency on the final results) and also
an additional, differentially marked equalizer peptide to compensate other sources of variation
such as peptid e loss during sample desalting [253] — to sum up, the Mass Western is a
method that succeeds bringing together both the high accuracy and flexibility of the classic
AQUA approach, and the robustness and flexibility of PSAQ and QconCAT.

1.1.4 Different Subareas in Proteomics

The field of Proteomics can be divided in different subareas — depending on many aspects of
the correspondent study. These are some of the most relevant criteria:

Depending on the Initial Hypothesis

Depending on the initial hypothesis, it can be differenciated between an unbiased approach
(with a comprehensive study of the entire protein complement of an organism as a goal) and
a targeted approach (if the study aims at detection and quantification of specific proteins,
gene products or groups of proteins from a specific biological phenomenon according to their
physicochemical or biological properties [141].
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Depending on the Number of Different Biological Samples Involved

Depending on the number of different biological samples involved in the study, we can speak
of Descriptive Proteomics (aiming at identifying the protein complement found in a par-
ticular sample) or Comparative Proteomics (Analysis of proteome changes in response to
development, disease, or environment changes in different biological samples) [210].

Depending on the Object of the Study

Subcellular proteomics are defined as proteomic studies on subcellular structures, either
aiming at the protein complement of the whole organel, or protein assignment to specific sub-
cellular locations). They usually involve the use of subcellular fractionation techniques — a
relatively recent review of subcellular proteomics methods has been written by Drissi 2013
[72]. In plant physiology there have also been established Organism-specific subareas, such as
Leaf/seed/stem proteomics [207].

Depending on How Proteins are Related

Depending on how proteins relate or interact with each other, it can be differenciated between
Expression Proteomics (comparative proteomics aiming to confirm functional relation be-
tween proteins with similar expression) and Interactomics (analysis of protein interactions
from scales of binary interactions to proteome- or network-wide). Most proteins function via
protein-protein interactions, and one goal of interaction proteomics is to identify binary protein
interactions, protein complexes, and interactomes). Interactomics also incorporates methods
from wide-genomics approaches (such as yeast-two-hybrid), same as Structural Proteomics,
another subarea that aims at generating protein 3D structures after in silico , crystallographic,
or spectroscopic analysis [141], and that also includes the investigation of the contact sites at
protein interaction.

Depending on the Investigated Macromolecules

Proteomics does not only include the study of proteins as they are featured on a standard
protein database, but some other variations are included: Posttranslational Proteomics
is the large scale screening and mapping of biological protein samples looking for covalent
modifications [343] — these modified peptides (e.g. phosphopeptides) being usually putative
markers for specific physiological processes. Another approach dealing with peptides of “a
different kin” is Peptidomics, aiming at the identification of functionally active single peptide
fragments coming from limited proteolysis of precursor proteins, gaining information about
sites for signal peptide removal, propeptide removal, peptide hormone processing, and domain
shedding [305].

1.2 Chlamydomonas reinhardtii

1.2.1 History and Taxonomy

Chlamydomonas reinhardtii is the most intensively studied and well-developed model for in-
vestigation of a wide-range of microalgal processes ranging from basic development through
understanding triacylglycerol production. This alga is easy to cultivate, grows quickly, and is
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tolerant to varying growth conditions. Additionally, its complete genome has been sequenced
[204], so that the algae can be easily engineered at the genetic level. This makes Chlamy-
domonas reinhardtii an attractive model system for investigation of a wide range of underlying
biology processes, including photosynthesis, cell motility, phototaxis, cell-wall biogenesis and
other fundamental cellular processes [140].
The Chlamydomonas genus was first described 1833 by botanist Ehrenberg in his “Dritter

Beitrag zur Erkenntnis grosser Organisation in der Richtung des kleinen Raumes”. Currently,
there are 575 taxonomically accepted entries among 1163 species and infraspecific names in the
algal database (http://www.algaebase.org). This genus is considered as a representative of
the critically important, early-diverging lineage leading to plants, and as a microbe retaining
important features of the last eukaryotic common ancestor (LECA) that have been lost in the
highly studied yeast lineages [58]. Relatively rare to find in nature, the Chlamydomonas species
has been localized in many different habitats all around the world (such as soil, fresh water,
oceans, and even in snow on mountaintops) but only in a handful of places - all in all, very well
documented, though (see Table 1.3).

Table 1.3: Chlamydomonas reinhardtii : distribution around the world (source: http://www.
algaebase.org)

Continent Country

Europe Germany [291], Great Britain [333], Netherlands [314],
Romania [44], Russia [224], Spain [43]

North America USA [116]
South America Argentina [293], Brazil [201] [285]
South West Asia Iraq [194], India [110]
Asia China [130], Tajikistan [16],

Taiwan (http://http://taibnet.sinica.edu.tw/),
Oceania New Zealand [40]
Antarctica Lake Bonney [243]

The Chlamydomonas reinhardtii species was originally described by Dangeard (1888), and
suggested by Pröschold et al (2001) as the conserved species of this genus. The most widely used
species used in laboratories has been long assumed to come out of clones originated from one
single zygospore isolated in a potato field in Amherst, Massachussetts in 1945 and designated
137c by G.M. Smith. Nevertheless, this topic has been recently revised by Pröschold 2005 and
Kubo 2002 [245] [153], concluding that two further different / nonrelated lines are actually
involved in the development of all the actual strangs of Chlamydomonas reinhardtii [116]. From
these 3 strangs, the third one was inable to use nitrate as a sole nitrogen source, and has also
been consistently designated 137c in publications since then [116]. Recently, the strang cc503
has gained considerable relevance, since the genome sequencing of Chlamydomonas reinhardtii
was performed on it.
All of the different Chlamydomonas reinhardtii mutants are available at the Chlamydomonas

Center [http://www.chlamy.org].
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1.2.2 Morphology

Chlamydomonas are ∼10 µm, typically spherical to subspherical unicellular algae, featuring
a cell wall, a central nucleus, usually two contractile vacuoles (depending on the species they
might be either absent or more numerous, though), multiple mitochondria, Golgi vesicles, starch
granula, and its most distinctive features: two anterior flagella for motility and mating, and a
single chloroplast per cell with a large pyrenoid that houses the photosynthetic apparatus and
also other critical metabolic pathways [204]. The two isokont, anterior flagella (with which they
can swim using a breast-stroke type motion) are rooted in basal bodies, built from a typical
eukaryotic (9+2) microtubule pattern, and contain intraflagellar transport (IFT) particle arrays
between the axoneme and the flagellar membrane. The basal, cup-shaped chloroplast can be
very variable depending on the cell, but many characteristics remain constant: a pyrenoid, and
a light-perceiving eyespot (stigma). The pyrenoid is a proteinaceous structure almost absent
from the chloroplasts of terrestrial plants but very common on eukaryotic, photosynthetic algae
[34] that contains most of the RuBisCO from the chloroplast, separating it from the carbonic
anhydrases in the stroma [214]. Pyrenoids also undergo a dramatic morphological change
when cells are switched from high-to-low-CO2 conditions [251]: when the CCM is functional,
a starch sheath appears around it, and 90% of the total RuBisCO is accumulated. Further
morphological changes can be caused by nitrogen depletion: lipidic bodies can be recognized
and cells get deflagelated, developing into two different mating types that can fuse, forming a
diploid zygospore with a hard outer wall that protects it from adverse environmental conditions.

1.2.3 Cell cycle

A haploid in vegetative state, under light and N-starvation Chlamydomonas cells develop into
mt+ and mt- gametes, as previously mentioned. These two gametes can fuse, forming a diploid
zygospore that will produce 4 haploid zoospores through meiosis once nitrogen has been re-
pleted (in presence of enough light and water) or the environmental conditions have improved.
Vegetative cells can also divide during light/dark cycles by multiple fission into 4-8 zoospores
[116], usually after entering the 3rd hour of the dark cycle. The Chlamydomonas cell cycle
has a striking temporal and functional separation between cell growth and rapid cell divisions
[58], probably connected to the interplay between diurnal cycles that drive photosynthetic cell
growth with the cell division cycle — if a circadian clock is also involved in the regulation of
the cell cycle remains still controversial [58] [320]. Chlamydomonas reinhardtii also features a
highly choreographed interaction between the cell cycle and its centriole/basal body/flagellar
cycle.

1.2.4 Genome

Chlamydomonas reinhardtii features a 110Mb nuclear genome [204], which for meiosis get di-
vided into 17 chromosomes (packaged with histones as standard eukarytic chromatin [58]).
It also contains a 203 kbp chloroplast genome [193] and a 15.8 kbp mitochondrial genome
[206] ) both of them multicopy and packaged into nucleoids that are distributed throughout the
stroma and the mitochondrial network, respectively. It is also remarkable that the chloroplastic
genome replicates independently of the nuclear genome during the growth phase [58]. Through
genomic comparisons to photosynthetic and ciliated organisms two different gene groups could
be distinguished: Green Cut (comprising 349 Chlamydomonas proteins with homologs in
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representatives of the green lineage of the Plantae (Chlamydomonas, Physcomitrella, Ostre-
ococcus tauri and O. lucimarinus), but not in nonphotosynthetic organisms) and Cilia Cut
(195 Chlamydomonas proteins with homologs in human and species of Phytophthora, but not
in nonciliated organisms) [204].
Genome research in Chlamydomonas reinhardtii started already in the mid 20th century,

with Ralph Lewin and Paul Levine isolating the first flagellar and photosynthesis mutants,
respectively [169] [74]. Another breakthrough from these early years was the demonstration of
Chloroplast inheritance, first through the isolation of drug-resistant mutants and later through
tetrad analysis [260] [261] [311]. Further forerunners were Pete Lefebvre and Carolyn Silflow,
who constructed a BAC library [146] and found useful polymorphic strains [105], the Kazusa In-
stitute, which generated the first set of ESTs for Chlamydomonas (http://www.kazusa.or.jp/
en/plant/chlamy/EST) [9], or Jin Billy Li, who developed the gene-finding GreenGenie algo-
rithm for analyzing the first large-scale sequence of the nuclear genome, generating over 200,000
additional sequences assembled into over 10.000 “unique” cDNAs [171]. The decisive catalysator
in the genome research was, though, Arthur Grossman, who launched the Chlamydomonas
Genome Project with funding from the National Science Foundation and, in collaboration
with several Chlamydomonas laboratories, produced a large EST library, the first cDNA mi-
croarray, the chloroplast genome sequence, a more complete set of nuclear markers, and set up
a team for sequencing the nuclear genome with Dan Rokhsar at the Department of Energy’s
Joint Genome Institute (JGI). The first assembly of the nuclear genome was finished in 2002
by Grossman et al. [108], and enabled the first proteomic studies of single organelles such as
flagella [235], basal body [147]), eyespot [264], mitochondria [312]), or thylakoids [3]. However,
it took to 2007 until the complete Chlamydomonas reinhardtii genome sequence was released
[204]). This definitive version marked the beginning of more ambitious, comprehensive studies
featuring proteomics data integrated with e.g. genome annotation (through EST mapping or
computational gene prediction combined with homology-based search methods [346] [195]) for
validation of in silico gel models, evaluation of the accuracy of existing gene models, or, through
combination of proteomics and metabolomics data, for completing metabolic draft networks,
as in May et al (2008). More recent studies have dealt with more specific proteomes (like
its Phosphoproteome [324], the Nuclear Proteome [342] or the Chloroplast proteome [294]),
mechanisms of metabolic/dynamic regulation [191], development of new analysis techniques,
e.g. genome microarray [301], or even the comparison of many proteomes using databases from
different genome assemblies and annotations [310].
The results of these decades of investigation are collected in different resources: genome (Phy-

tozome, http://www.phytozome.net) and protein databases in JGI, Chlamy.org, Chlamy-
Cyc, NCBI, KEGG, SwissProt (UniProt), also Plasmid, cosmid, bacterial artificial chro-
mosome (BAC),RNAseq transcriptome data in different conditions and stresses (GEO, Gene
Expression Omnibus), spectral libraries (ProMex), and many other resources from genetic
and transcript studies with algae, like a library of indexed mutant libraries for reverse genetic
studies [172], the AFAT database integrating gene expression data with metabolic pathway in-
formation [182] or the AlgaePath database including gene information, biological pathways and
NGS datasets [358]. A recommendable and relatively recent overview of the current Chlamy-
domonas reinhardtii resources can be found in Blaby 2014 [28].
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1.2.5 Relevance as a model plant

As previously metioned, Chlamydomonas reinhardtii diverted from plants over a billion years
ago, thus conserving important features inherited from the LECA that have been lost in the
highly studied yeast lineages but shared in land plants and animal cells, such as e.g. Cyclin A,
Cyclin D [58] or the structure, assembly and function of eukaryotic flagella (motility, microtubuli
assembly, flagellar functions, or establishing links between ciliopathy and the composition and
function of flagella [204]). This brought the current understanding of the ancestral eukaryotic
cell considerably further, and also allowed researchers to learn more about regulation of gene
expression in more complex plants and animals. Another side-effect of this early divergence from
high plants is Chlamydomonas not developing some very effective high copy numbers of some
genes as higher plants did in the paleopolyploidization [89]. Thus, Chlamydomonas reinhardtii
has remained a haploid organism with very few gene duplicates, what makes it ideal for loss-
of-function genetic studies — e.g. by suppression of specific gene activities with antisense or
RNA interference (RNAi) constructs, or developing reporter genes to identify regulatory factors
and sequences that are involved in regulating gene expression. Chlamydomonas is also the first
organism in which all three genomes could be easily transformed [37] [148] [248] [311] and
sequenced [193] [308] [32]) [259]. This ease of transformation in a photosynthetic organism
has brought this algae the nicknames of “the green yeast” or “the photosynthetic yeast” [102]
[255]. Many applications have been found for Chlamydomonas reinhardtii e.g. in induction and
isolation of repair-deficient mutants for studying various DNA repair mechanisms, conserved
both in Chlamydomonas and many other organisms.
Among all its features, the ability of Chlamydomonas to grow both photoautotrophically

under light conditions and heteroautotrophically in dark conditions (being even capable of
synthesizing a complete photosynthetic apparatus while mixotrophically growing on acetate
[337]), makes this algae an ideal model system for studying chloroplast-based photosynthesis.
Many aspects of Chloroplast-based photosynthesis have been studied in Chlamydomonas, like
Chloroplast biogenesis [255], abundance and rate of synthesis of individual complexes, assem-
bly of the photosynthetic apparatus, regulatory molecules and distribution of excitation energy
(state transitions / non-photochemical quenching) — [299][94][107] . In recent years, Chlamy-
domonas has been increasingly used to study additional biological processes, including among
others lipid biosynthesis [131][326] [211] [178], pigment biosynthesis and regulation [180] [322],
enzyme stoichiometry [253], basal body functions [283]), Flux analyses [36] [338], carbon-
concentrating mechanisms [11][325] [143] [250], growth during nutrient deprivation [101][46]
[29] [122] [106] [265], responses to heat stress [121], photoreception [19], mating [307] [92], cell
cycle [320] [58], circadian rhythms [39] [267], bioaccumulation processes [242], biotoxicity [164],
or cellular quiescence [303][172]. Especially the studies in TAG accumulation or biomass and
hydrogen gas production [96] [217][123][352] are becoming more relevant due to the potential
role of Chlamydomonas reinhardtii as a bioproducer in the biofuel industry.

1.2.6 Industrial applications

It has already been mentioned that Chlamydomonas reinhardtii is relatively easy to cultivate,
growing both in light conditions on simple medium made of inorganic salts (both liquid or solid
medium) and using photosynthesis to provide energy for growth, or in total darkness if acetate
is provided as an alternative carbon source (an alternative to added acetate would be algae
cocultivation with other mutants that would act as a C-source [297]). Furthermore, Chlamy-
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domonas can be also cryopreserved at a cell density lower than 2.5 x 106 cells ml−1 [241] and
even its asexual and sexual reproduction can be controlled by synchronization through nitrate
deprivation [116]. The doubling rate of green algae can be 5-6h under laboratory conditions
[282] and 24h under mass culture ambient conditions ([21]). Many different strains, both motile
and nonmotile, have been developed for specific research purposes and industrial applications,
such as bioremediation [66] and wastewater treatment [350] [252], herbicide biosensors [159],
production of recombinant proteins [163] or even medical use (CR-based vaccines proteins [4],
[257] and immunotoxin cancer therapeutics [302]). Nevertheless, considering the easy cultiva-
tion and conservation, the capabilities of Chlamydomonas reinhardtii as a bioproducer and also
the possibility of scaling-up cultures in bioreactors (which offer many possibilites to develop
economically viable production systems [115] or even its application in Biorefineries), it seems
that this algae will still gain most relevance as a biomass, H, EtOH and TAGs source for the
Biofuel industry [115] [152] [115], [120][131].

1.3 Biofuel production and Chlamydomonas reinhardtii

1.3.1 The Energy Problem

Since the first steps after the oil crisis in the mid 1970s, the necessity to look for alternatives for
fossil fuels has increased dramatically: not only is the actual consumption level unsustainable
(at the actual levels of energy consumption 90% of the total energy is being generated from fossil
fuels — therefore only 10% comes from renewable energy sources [186]), but it is also estimated
that at the present rates of consumption the conventional oil reserves that can be commercially
exploited might last about 40 years — according to the Institute of Mechanical Engineers http:
//www.ibtimes.co.uk/world-energy-day-2014-how-much-oil-left-how-long-will-it-last-1471200.
Furthermore, other side-effects such as global environmental pollution (98% of carbon emissions
result from fossil fuel combustion [63]), ecological degradation and biotic health problems [114],
and also the raising awareness about the climate change have made the transition to renewable
energy sources a major necessity for the world’s future energy supply.

1.3.2 Biofuels: Definition and types

Definition of Biofuel and Advantages over Fossil Fuels

One of the alternatives to fossil fuels are Biofuels, which can be defined as renewable energy
sources produced from biobased material. Biofuels do not only have the potential to provide
energy services with zero or almost zero emissions of both air pollutants and greenhouse gases,
but also are expected to reduce dependence on imported petroleum (and its associated political
and economic vulnerability), also reduce greenhouse gas emissions and other pollutants, and
revitalize the economy by increasing demand and prices for agricultural products [63]. The
most common biofuels are biohydrogen, bioethanol, biodiesel, being the latter one the most
relevant one due to its compatibility with actual motor engines, its energy density, and its low
emission of SOx and NOx after combustion [249].

Classes of Biofuels

The different types of biofuels can be also be classified based on their original feedstocks:
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First generation feedstocks include such food and oil crops, such as rape seed, palm, soy,
sorghum or sunflower and other oil producing plants. This type of biofuels have raised
a lot of controversy, since the need of arable land for they production competes with
food and fibre. Besides, regionally constrained market structures, lack of well managed
agricultural practices in emerging economies, high water and fertiliser requirements, and a
need for conservation of biodiversity (International Energy Agency (IEA) 2007 https://
www.iea.org/publications/freepublications/publication/essentials2.pdf [134])
bring a negative impact on impact on global food markets and on food security [38].

Second generation feedstocks can include non-edible sources like animal fats, waste oils [249]
or whole plant matter (e.g. jatropha, mahua, jojoba oil salmon oil, sea mango)[212],
mostly for biodiesel production. These sources do not suffer as much from the food versus
fuel dilemma since only low quality crops and lower amounts of water and fertilizer are
needed — neverthelesss, their yield is too low to guarantee a stable supply that fulfills
future energy needs.

Third generation feedstocks include microorganisms, but are especially referred to the cul-
tivation of microalgae as a source of different products, such as methane, biohydrogen,
biodiesel and bioethanol, and even further products from processing of such residues as
glycerol [359]. Microalgae are considered the most promising source for biodiesel since
they offer many advantages to other plants, like comfortable cultivation, faster growth,
more efficient biomass production, higher CO2-fixing rate or higher oil content and biofuel
extractability. However, there are many aspects about microalgae cultivation that should
be discussed with more detail.

Microalgae as an Energy Source

The use of algae as an energy source started in the late 1950s when it was suggested that
carbohydrate fractions of algal cells could be used for the production of methane gas via anaer-
obic digestion [197] [229] [328]. Nowadays, algae may serve as potential sources of many types
of biofuels, these including: biogas produced in processes of anaerobic degradation of biomass,
biodiesel produced from lipids accumulated algae, alcohol, hydrogen from photobiological trans-
formations or algae biomass that may be used for direct combustion. The resulting sludge after
biomass fermentation could be also additionally used as a fertilizer or a complement in growth
medium for algal biomass cultivation [61]. Microalgal biofuel systems can theoretically achieve
higher yields per hectare than traditional crops due to their short life cycles and high production
efficiencies [263]. This together with the fact that they can offer improved water use efficiencies
and being potential providers of a wide range of fuels (e.g. biodiesel, methane, ethanol or
hydrogen) explains why the microalgal biofuel sector has seen a rapid increase in investment
over the past years [152].

1.3.3 Biodiesel Production

The standard methodology to obtain biodiesel from algae consists of the following steps: Strain
isolation, Algae cultivation, Harvesting, Drying, Lipid extraction and Biodiesel production.
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Strain Isolation

Since the first steps of investigations on algae as an energy source, the continuous search for
the most appropriate species narrowed the algae collection down to the 300 most promising
strains, mainly Chlorophyceae (green algae) and Bacillariophyceae (diatoms) [24]. Criteria for
this selection are varied: Very popular algae for biofuel production contained in these fam-
ilies (considering the oil content per dry weight) are Botryococcus braunii, Crypthecodinium
cohnii, Cylindrotheca sp., Nitzschia sp., Phaeodactylum tricornutum, Schizochytrium sp., Nan-
nochloropsis occulata, and most of all, Chlorella sp. [249] [24]. Three different strategies are
used for the screening and selection of strains. The first strategy is selection from local environ-
ments where they are to be grown on a large scale. Local species have competitive advantages
under the local geographical, climatic and ecological conditions. The second strategy is ac-
climatization under an environment in which the microalgae do not normally grow well. The
third strategy is the use of a genetic approach to understand and modify the regulation of
metabolic pathways[149]. The difficulties in efficient biodiesel production from algae are not
in extracting the oil, but in finding an algal strain with a high lipid content and fast growth
rate that is not too difficult to harvest, and a cost-effective cultivation system (i.e. type of
photobioreactor and/or possible optimization of two-stage cultivation strategies) that is best
suited to that strain.

Algae Cultivation

For algae cultivation different strategies can be adopted. The classic method is the cultivation
on open ponds, with sunlight as a light source and frequently using wastewater as a C-source.
Despite being the most economic approach, this strategy has many drawbacks — some of them,
such as the heterogeneous conditions inside the pond terms of medium composition, dissolved
O2 or temperature can be partially solved through more intensive mixing e.g. in race ponds
(continuously operated, closed-loop recirculation systems built as individual ponds or as groups
of ponds arranged in a series connection, typically constructed of concrete or compacted earth
[50] [149]). Nevertheless, other drawbacks of open ponds, such as evaporative losses due to the
large surface area or poor species control due to external contamination, are ineludible.
A very effective way to overcome these problems is the use of Photobioreactors. Pho-

tobioreactors are arrays of straight transparent, UV-resistent tubes, usually made of plastic
or glass -thus allowing maximum exposure to sunlight for photosynthesis [50]- through which
microalgal broth is circulated from a reservoir as in a circular culture. Photobioreactors can
also feature an internal light source, allowing continuous lightning, customized light cycles, and
selection of the most appropriate wavelength and light intensity. They not only avoid species
contamination or evaporative losses through isolation from the atmosphere [168] [272], but al-
low much closer monitoring of other cultivation parameters (salinity, pH, temperature, mixing,
gas exchange, flow regime...), more homogeneouos culture conditions, higher cell densities and
more effective biomass recovery. This reflects in a up to 13-fold higher productivity compared
to traditional race ponds [24]. Nevertheless, the high energy consumption of Photobioreactors
compared to ordinary fermenters or open ponds makes the global energy balance lower [277]
and thus too expensive for biodiesel production on a pilot scale [149]. Therefore, until the
development of more sustainable energy sources, the most economically viable strategy is the
development of two-stage hybrid systems e.g. combining incubation in PBRs and upscaling in
open ponds. A Table comparing more in detail the characteristics of open ponds, fermenters
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and photobioreactors can be found in Zhu et al. 2014 [359], and a comparison between different
types of photobioreactors can be bound in Bahadar et al. 2013 [12].
Another important factor to be considered for algae cultivation is the C-source: depending

on the presence of a carbon source and the use of light, it can be differenciated between pho-
toautotrophic growth (microalgae grow in the same way as other photosynthetic plants, by
utilizing carbon dioxide and sunlight), photoheterotrophic growth (microalgae use organic
carbon compounds as a source of energy instead of carbon dioxide, and sunlight), mixotrophic
growth (algae are capable of using both autotrophic (sun- light and carbon dioxide) and het-
erotrophic growth (organic compounds instead of both carbon dioxide and sunlight). In
comparison to photoautotrophic growth, heterotrophic growth usually involves higher growth
rate and lipid content, reportedly reaching yields 3.4 times higher than in photoautotrophic
growth conditions [205]. A few autotrophic microalgae can be converted to heterotrophic by
changing the cultivation conditions or using genetic engineering modification [149]. Generally,
heterotrophic algae cultivation is reported to provide higher biomass and lipid productivity than
photoautotrophic cultivation — to cope with the higher costs of these strategy, alternative C-
sources to glucose or acetate have been searched, being crude glycerol a very popular resource
[174]. Another strategy is the CO2-capture / sequestration or utilization of CO2 from power
plant flue gases and other fossil fuel combustion systems [22]. One example of a biodiesel pro-
duction system including an upstream processing section aimed at sequestering the CO2 from
flue gras produced at an industrial source (e.g. a power plant) can be found in [244]. This
publication also offers a techno-economic analysis to determine the optimal design of a flue gas
to biodiesel system through the cultivation of algae a production chain.

Harvesting

The choice of a harvesting technique is dependent on the characteristics of the cultivated mi-
croalgae, e.g. size, density, and the value of the target products [38].Generally, microalgae
harvesting is a two-stage process, in which biomass has to get first separated from the bulk
suspension (Bulk harvesting) followed by concentration of the resulting slurry (Thickening).
Different techniques can be used: most common for bulk harvesting are Centrifugation (based
on Stoke’s Law and only suitable for large microalgae with a diameter over 70 µm [109] and
preferably with cell wall), Flotation (trapping of algae through micro-air bubbles, therefore
chemical-free — not economically very viable, though) and Flocculation (taking away the
negative charges of the algae surface through addition of metallic salts as FeCl, thus facilitat-
ing aggregation and precipitation), whereas for thickening more intensive techniques favoring
aggregation, such as filtration, ultrasonic aggregation and also centrifugation are used [38].

Drying

The harvested biomass slurry (typical 5-15% dry solid content) is perishable and must be
processed rapidly after harvest. Protocols for wet extraction have been developed, but with
lower yields — however, since drying is a costly procedure, a balance has to be found between
efficiency and cost to maximize the energy output of the fuels [173]. The drying method of
choice depends on the final product required, e.g. sun drying is the cheapest method but
also has the highest material loss, spray drying is widely applied for high quality fats but still
might damage some pigments, and freeze drying is just as expensive but reccomendable for oil
extraction — both from biomass slurry and wet algal biomass). Drying temperature also plays
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an important role, not only on the yield, but also on the lipid composition [38].

Lipid extraction

The development of the method for the extraction and purification of the lipids from dry
biomass is critical for diesel production from microalgae [252]. Conventional extractions usually
involve a previous dewatering process, usually conducted in an expeller or through pressing.
The extraction itself can happen either mechanically (e.g. through mechanical pressing after
steaming the algae under high pressure) or chemically (with addition of chemical solvents like
hexane or toluene). Usually the lack of solvents brings lower efficiency and yields than chemical
extraction — on the other hand, it helps preserving the qualities of the extracted oil since no
further distillation or processing is needed to remove the added solvents. Other methods have
been more recently developed to overcome these limitations: e.g. incorporating ultrasound and
microwave techniques [286] or through supercritical-fluid extraction: the use of SC-CO2 instead
of organic solvents avoids both oil contamination and thermal degradation, thus obtaining high-
quality oil [200] — nevertheless, despite possible scale-up strategies have already been discussed
as in Taher et al 2014 [289], it is too time-consuming for large-scale production.
After oil extraction from algae, the remaining biomass fraction can be used as a high protein

feed for livestock — thus giving further value to the process and reducing waste [63]. It is
important to note that allegedly 51% of the environmental impact of the microalgae production
is not allocated to the biodiesel, but to the algae cake and the glycerine, in line with the
European Directive on Renewable Energy [51]. Therefore, it is key to optimize procedures that
obtain energy from the organic matter of the algae cake, such as fermentation to biogas (also
in presence of other reactants such as maize [61]) or even use that energy to enhance the algae
production (e.g. producing electricity by anaerobic digestion of algal waste residuals following
biodiesel processing, or injecting the CO2 removed during biogas production to the cultivation
broth in order to stimulate algal growth [339]).

Biodiesel production

Various microalgal biofuels have been covered, but biodiesel has received intense focus due to its
diversified use and superior financial viability [149]. Biodiesel is produced by transesterifying
the parent oil or fat to achieve a viscosity close to that of petrodiesel. Transesterification
(also called alcoholysis) is the reaction of fat or oil with an alcohol (usually in excess to favor
the right side of the reaction — it can be recovered and reused [63]) with the involvement of
catalysator to form esters and glycerol (see equation on Fig 1.4. This reaction usually can
happens in three steps (breaking all the three fatty acid chains from the glycerol - see Figure
1.4) although two step catalyzed production has also been reported [24]. The resulting crude
glycerol can be either purified or, as previously mentioned, be used as C-feedstock for further
biodiesel production [286].
There are many methods for transesterification, mostly depending on the fats to be processed

and the catalysators used: acidic (cheapest and most suitable method for organic substrates,
homogeneous acidic catalists such as H2SO4, HCl, BF3 or H3PO4 offer — especially when
added in excess- high conversion rates and high yields despite being a relatively slow process),
alkali (homogeneous base catalists such as NaOH, KOH or CH3Na are frequently used for in-
dustrial scale-up due to higher conversion rates, usually taking place at 60 ℃ as a three-step
process with MetOH and EtOH as alkyl acceptors) or non-catalytic super critical methanol
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Figure 1.4: The chemical reaction of the transesterification process [286]

(which avoids such problems as moisture-related saponification or the formation of two-phase
oil/MetOH mixtures, therefore offering easier biodiesel purification. Nevertheless, this method
is too expensive for industrial application). More advanced strategies involve the use of lipases
instead of chemical catalysators (thus avoiding the removal of alkaline waste, catalists and glyc-
erol, and also not promoting side reactions), which can be either added or immobilized and also
intracellular (having certain bacteria or fungal species immobilized in catalytic beds) or extra-
cellular (more effective but also more expensive due to complicated downstream processes for
enzyme extraction from MOs and immobilization on carriers to allow repeated use). For lipase-
related transesterification there has also been experimented with alternative acyl-acceptors to
EtOH and MetOH, since low chain alcohols in high concentration can inactivate lipases, e.g.
Ethylacetate, Methylacetate or Dimethylcarbonate [24].

1.3.4 Growth optimization mechanisms for lipid production

Many algal metabolic pathways have been obtained through homology with higher plants or
model organisms [82][203]. Chlamydomonas reinhardtii has always been considered rather a
model organism than a serious candidate for biofuel production: thanks to its fully sequenced
genome, many annotation projects have managed to reconstruct metabolic pathways thus pro-
viding important insights for studies on other oleaginous algae with more limited molecular
genomic and genetic resources [328][203]. However, recent studies have shown that the lipid
production of Chlamydomonas reinhardtii can be considerable increased through cultivation
under certain conditions, accumulating TAG up to 46-65% their dry weight [203], thus reach-
ing comparable yields to Chlorella and Scenedesmus (50% [339]. Some of the investigated
conditions are e.g. pH, salinity, extreme temperatures, light, macronutrient supply or macro-
and micronutrient deficiency such as sulfur, phosphorus, zinc, iron, and very especially nitrogen
[35][328].
The most extensively investigated variations on the cultivation of Chlamydomonas reinhardtii

for enhanced lipid storage are provision of a reduced C-source (usually acetate, a standard
procedure for algae cultivation on heterotrophic or mixotrophic conditions [116]) and nutrient
depletion (making Chlamydomonas cells reprogram their metabolism, thus retarding growth
and accumulating starch and neutral lipids — particulary TAGs [328]. Starch and TAGs are the
two main storage sinks for reduced carbon in this algae, starch being preferentially synthesized
and mobilized, and oil representing rather a long-term storage in case of prolonged shortage or
stress [273]. Both pathways are temporally and spatially separated (as shown e.g. in oilseeds
by Focks & Benning [85]1998 and Smith 2010 [7]): both take place inside the chloroplast,
but whereas amylopectin synthesis relies on soluble enzymes and both amylose synthesis and
elongation take place mostly inside insoluble granules and plates surrounding the pyrenoid [116],
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TAG biosynthesis begins with de novo fatty acid synthesis in the stroma [82] . The resulting
TAGs are subsequently directed to the membrane or stored in lipidic droplets both inside
and outside the chloroplast [103] — which acyl-transferases are responsible for cytoplasmic vs
plastidic lipid storage is still unanswered. These lipidic droplets / bodies are not only considered
a housing site for neutral lipids, but also dynamic compartments that participate actively in
lipid metabolism via trafficking and signalling [203]. Further insights into characterization and
biosynthesis of algal lipidic bodies can be found in Wang et al 2009 [326].
There are still many questions about the nature of the interaction of these pathways and

the factors controlling carbon partitioning between these two storage products — actually, de-
spite the starch biosynthetic pathway has been particularly well characterized at the molecular
genetic level in Chlamydomonas [13][273], the TAG metabolism pathway on Chlamydomonas
has been mostly adapted by homology e.g. to Saccharomyces cerevisiae [203]. However, it
could be demonstrated that starch and TAG pathways have a close reciprocal relationship,
with the starch pathway being the predominant one. This is evident e.g. in the fact that
rapid oil synthesis only happens when the C-supply exceeds the capacity of starch synthesis
[82] — in fact, TAG accumulation raises dramatically when the cultivation medium contains
added acetate [24], whereas the increase in starch production is much lower. This leads to the
consideration of carbon availability as a key metabolic factor controlling oil biosynthesis and
carbon partitioning between starch and oil in Chlamydomonas reinhardtii [82].
Since N-free cultivation of Chlamydomonas reinhardtii reportedly increases their lipidic con-

tent, many studies have been led to clarify the mechanisms of C- and N-metabolism under
N(-) stress. Proteomics analyses have been performed on N-deprived Chlamydomonas’ chloro-
plasts [295], mitochondria [10] and lipidic bodies [211] [222] [136] — many of these studies have
brought especially relevant results about TAG accumulation pathways [209] [35] [181] [203]
[216] [28] [273]. For instance, after switching from nitrogen-replete to nitrogen-deprived condi-
tions there was reportedly a notable decrease on ribosomal, photosynthetic and lipid pathway
genes that have been shown to remain stable under N+ conditions — both on protein and
transcript levels.On the other hand, the increased abundance of many proteins related to for
glycolysis and oxydative phosphorylation points at a higher activity of the photosynthetic elec-
tron transport to ensure an adequate supply of metabolic cofactors for TAG accumulation,
even though the abundance of many photosynthesis-related proteins such as photosystems or
LHCs is reduced, thus slowing down cell growth and replication [328]. However, in spite of the
upregulation of some proteins related to aminoacid metabolism and nitrogen assimilation, the
enzymatic machinery associated with fatty acid synthesis to TAG assembly is already present
in excess of, or readily inducible in response to metabolic needs of cells (since most transcripts
encoding de novo fatty acid and membrane lipid synthetic enzymes were downregulated but the
amount of many metabolites related to the synthesis of fatty acids and complex lipids increased)
— therefore, oil accumulation can be considered independent from de novo protein synthesis,
and mainly conditioned by C-availability. To increase that C-availability, the use of carbon in
N-metabolism and cell growth is restrained, and hydrolytic release of carbon skeletons from
proteins and other cellular compounds is stimulated as well [216]. The rapid incorporation of
added acetate into TAG and membrane lipids, as measured in 14C-Acetate, N-free medium fed
algae by Fan et al. [83], also supports C-availability as a key metabolic factor in oil synthesis.
Other intermediates in TAG synthesis could be Acyl-CoA and recycled membrane lipid-derived
fatty acids (as indicated by gene expression and lipid profiling studies [209][81] [203], as well as
exogenous fatty acids exclusively channeled into TAG but not used for starch synthesis [81]).
Other notable variations reported on algae C-metabolism under N-deprivation are the shift
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from glucose synthesis to storage as starch, and the downregulation of the gluconeogenic and
glyoxylate pathways [209], same as the abundance for other selected ribosomal, photosynthetic
and lipidic pathways [216]).
Further insights can be found after N-replenishment: when nitrogen is added back to media,

nearly 70% of the starch is degraded within 20h, with TAG breakdown occuring more slowly.
According to Siaut et al 2011, oil and starch accumulated during N starvation phase are rapidly
mobilised upon switching to nutrient replete conditions [273] — starch degradation was found
to occur very rapidly after switching to dark, starting earlier than oil degradation, which was
degraded between 20 and 24 hours of N resupply — the same results were obtained by Wase
et al. 2014 [328].
There are still many other strategies aiming at higher lipid accumulation, e.g. through

genetic engineering, both through overexpression of key enzymes for lipid biosynthesis and
through inactivation of the dominant starch metabolism. Targeted overexpression has been met
with mixed success: whereas overexpression of type 2 diacylglycerol acyltransferases (DGATs)
DGAT2-1 and DGAT2-5 led to increased lipid content, DGAT2-a,b,c overexpression had no
effect [64][154] and acyl-ACP (acyl carrier protein) esterase (AAE) overexpression led to an
altered lipid profile but not an increase in lipid content [31] [270]. Genetic inactivation of
starch synthesis has also brought diverse results: higher lipid accumulation in some species
like Chlamydomonas or Chlorella [247], no significant changes in other species like Brassica
napus L [319] and even a decrease in the final seed content of other species like Arabidopsis
thaliana [237]. In case of Chlamydomonas, many studies have been performed on mutants with
disrupted isoamylase (sta-7) or ADP glucose pyrophosphorylase (sta6) genes. An interesting
list featuring frequent mutant strains, their genotype, nomenclature and original oil synthesis
is enclosed in a study performed by Siaut et al. 2011 [273].
Another possible strategy to find different strains with enhanced lipid productivity in algae is

Adaptive Laboratory Evolution (ALE, [232], [71]), as performed e.g. by Velmurugan 2014
(with an increase of the C:N ratio at the end of the adaptive period in both WT and sta-mutants
[315]), Yu 2013 (higher biomass concentrations and total lipid content in 3 different Chlamy-
domonas reinhardtii strains after performing ALE according to Palsson in 3-day-cycles [356])
and Perrineau 2014 (with increased size and grow rate, significant upregulation of genes involved
in protein synthesis, the cell cycle and cellular respiration and improved acetate metabolism
after 1880 generations under serial dilution and continous light [239]) .

1.3.5 The Concept of Biorefinery

In general, large-scale production of algal biodiesel still is very expensive and energy-intensive
due to the high demands of algae harvesting and the biofuel extraction/ transesterification
procedures — nowadays the cost of biofuel production from algae might be competitive com-
pared to other biofuel sources, but it still way more expensive than fossile fuels. An interesting
strategy to make these processes more sustainable is to combine in the production of different
substances in common facilities denominatedBiorefineries [190] that produce not only biofuels
and biomass but also power and high-value chemicals with pharmaceutical or other industrial
interest, either simultaneously or in sequence, thus maximizing the profitability of biomass
feedstock [62] [223] [287] [313] [190] [276]. Many of these substances are secondary metabolites
accumulated by algae under different conditions that can be extracted from the algal biomass,
including among others antioxidants (Vitamins E and C, BHT, Gluthathione, Astaxanthine
and other carotenoids), fatty acid derivates, polysaccharides, lectins or antibiotics. The de-
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sired substance depends on the algae and the biological conditions they are cultivated (as e.g.
Chlamydomonas producing Hydrogen under S-deprivation [199], the mesophilic Haematococcus
sp. accumulating Astaxanthin under elevated temperatures [300], or Dunaliella sp. accumulat-
ing β-carotene in highly saline environments [20]). An overview of different algae, cultivation
conditions and produced substances can be found in Skjånes 2013 [276].
The standard steps for Biorefinery production are algae selection and cultivation, biomass

harvesting, cell disruption, fractionation and compound extraction through mild extraction
techniques, purification of the extracted substances, and finally drying of the rest material for
combustion. The major challenge at this point is the separation and mild extraction of the
different fractions from algae, since each compound frequently requires processing methods that
might damage the other fractions. The biorefinery techniques appropriate for mild extraction
are relatively new and should therefore be studied thoroughly before commercial use is possible
[313].
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2 Publications

2.1 Functional analysis of proteins and protein species using
shotgun proteomics and linear mathematics

One of the elements that confer the proteome its high variability is the possibility to extend
the functions of the protein (e.g. activate or inactivate an enzyme), control its behaviour or
modify its structure through transient posttranslationational modifications (PTMs) e.g. block
expression factors or signal transduction pathways. Even though well known PTMs such as
Proline Methylation or Cysteine Carbamoylation can be included in Protein Databases and
new resources for identification of PTMs in Mass Spectrometry measurements such as dbPTM
have been developed recently ( [343], [192]) many modifications or also unidentified peptide
fragments that could be useful for EST confirmation might still remain undetected.
Considering the fact that the high mass accuracy from Orbitrap Mass Spectrometers permits

peptide identification from precursor ions, the MAPA (Mass Accuracy Precursor Alignment)
method was developed by Hoehenwarter et al. 2011 [126]. This procedure is based on the
reducing proteome data to two dimensions (m/z for peptide identification and spectral counting
for ion quantification) and building a matrix in which the measured peptides are arranged
according to these two parameters. This is achieved by the ProtMax-Algorithm (Hoehenwarter
et al. 2008). This algorithm allows unbiased, database-independent peptide analysis, in which
previously unknown peptides can be sorted, statistically analysed, and finally processed through
different strategies, such as testing different databases, matching with EST libraries, or even De
Novo-Sequencing [127]. Therefore, the MAPA method is a very powerful tool for performing
shotgun proteomics analysis on organisms that haven’t been fully sequenced yet, and to search
peptides from posttranslationally modified proteins that might act as biomarkers [127].
For the implementation of the MAPA strategy data from many organisms were used —

among others, also from my studies on Chlamydomonas reinhardtii.

2.1.1 Declaration of authorship

The results of this chapter are presented in the form of a manuscript published in the journal
“Amino Acids”. For this work, I contributed to the experimental work relative to different
measurements on Chlamydomonas reinhardtii and the subsequent data mining that led to
some of the datasets used during the elaboration of this publication.

2.1.2 Published manuscript
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Abstract Covalent post-translational modification of

proteins is the primary modulator of protein function in the

cell. It greatly expands the functional potential of the

proteome compared to the genome. In the past few years

shotgun proteomics-based research, where the proteome is

digested into peptides prior to mass spectrometric analysis

has been prolific in this area. It has determined the kinetics

of tens of thousands of sites of covalent modification on an

equally large number of proteins under various biological

conditions and uncovered a transiently active regulatory

network that extends into diverse branches of cellular

physiology. In this review, we discuss this work in light

of the concept of protein speciation, which emphasizes

the entire post-translationally modified molecule and its

interactions and not just the modification site as the func-

tional entity. Sometimes, particularly when considering

complex multisite modification, all of the modified mole-

cular species involved in the investigated condition,

the protein species must be completely resolved for full

understanding. We present a mathematical technique that

delivers a good approximation for shotgun proteomics data.

Keywords Mass spectrometry � Proteomics �
Protein function � Protein species � PTM

Proteomes and proteomics: an update

The dynamic total protein complement of a biological

system, the proteome, is of enormous complexity and size.

A well-defined concept to deal with this situation is the

speciation of the proteome (Jungblut et al. 2008). Each and

every polypeptide is defined by the sum of its covalent

chemical bonds meaning its primary structure and in

addition any covalently bonded moieties. Thus, every

protein, every expressed member of a multigene family, i.e.

protein isoform, and post-translationally modified form of a

protein is understood as a unique protein species. It is not

clear if every protein species has its own function, the

paradigm, however, captures the extent of function in the

proteome. Newest insights, however, are that one primary

structure can result in multiple secondary structures and

conformations and thus possible multiple functions due to

bias towards synonymous, slowly translated codons (Zhang

et al. 2009).

The meta-analysis of large scale genomics, transcripto-

mics and proteomics studies and the use of central data

repositories such as National Center for Biotechnology

Information (NCBI) and The Arabidopsis Information

Resource (TAIR) allow a relatively good survey of the

proteome of higher eukaryotes (Fig. 1). The lower prote-

ome entries (red) intersect with the upper genome entries

(black) on their common axis reflecting the manifold

greater complexity of the proteome. The human being,

mouse and rat as well as the small flowering plant Ara-

bidopsis thaliana all have around 25,000 protein encoding

genes (Collins et al. 2004; Gibbs et al. 2004; Kaul et al.

2000; Waterston et al. 2002). Transcriptome analysis of 32

human tissues revealed that only about half of these are

expressed at one time (Jongeneel et al. 2005). Transcrip-

tome-based monitoring of more than 10,000 multi-exon
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genes in 52 human tissues and cell lines showed that nearly

every gene is alternatively spliced (Johnson et al. 2003)

and other studies suggest many genes will generate mul-

tiple, sometimes up to a hundred or thousand alternative

mRNAs (Schmucker et al. 2000; Tress et al. 2008).

Therefore, the amount of translated expression products

present in a cell at any one time was estimated to be

approximately 30,000. More than 200,000 post-transla-

tional modifications (PTM) of proteins are reported in the

literature (Seo and Lee 2004) and numerous proteomics

studies have identified tens to hundreds of modifications of

a single protein (Garcia et al. 2007; Larsen et al. 2001;

Scheler et al. 1997). The average number of differently

processed expressed gene products is estimated at 5–7 in

humans (Humphery-Smith 2004), ultimately allowing a

conservative estimate that the proteome of the higher

eukaryotic cell comprises 150,000 protein species at one

time. Others put the number at 1 million (Humphery-Smith

2004). As an afterthought, we note that we have not con-

sidered the dynamic range of protein abundance which has

been shown to be four to five orders of magnitude in E. coli

and yeast (around \100 to 2,000,000 copies per cell) (de

Godoy et al. 2008; Lu et al. 2007; Usaite et al. 2008) and

ten or more in human plasma (Anderson and Anderson

2002).

The current proteomics technologies have had some suc-

cess in dealing with this complexity. Shotgun proteomics is the

most popular application for unbiased, discovery type analysis

of the proteome. The proteins are first digested into peptides

followed by an online combination of liquid chromatography

(LC) for peptide separation and electrospray ionization mass

spectrometry (ESI-MS) for the measurement of peptides mass

to charge ratios (m/z). It has been used to quantify all of the

translated expression products of yeast (de Godoy et al. 2008)

and major coverage of all of the open reading frames of Dro-

sophila (Brunner et al. 2007), mouse (Graumann et al. 2008)

and Arabidopsis (Baerenfaller et al. 2008) has also been

achieved. The large scale identification and quantification of

PTMs has had some encouraging results as well. Several

groups have reported thousands of phosphorylation sites

(Beausoleil et al. 2004; Olsen et al. 2006, 2010; Schmidt et al.

2008; Sugiyama et al. 2008; Villen et al. 2007), acetylation

sites (Choudhary et al. 2009) and other modifications

(MacCoss et al. 2002; Tsur et al. 2005) and hundreds of

ubiquitination sites (Igawa et al. 2009; Maor et al. 2007; Peng

et al. 2003). Nevertheless, the proteome-wide mapping of

PTMs remains a difficult task because the modifications are

transient, modified peptides are often not very abundant and

require specific enrichment strategies and their tandem mass

spectra (MS/MS spectra) are difficult to interpret.

Two-dimensional gel electrophoresis (2DE), tried and

tested for more than 30 years, still provides the best reso-

lution of the proteome on the protein level. It is capable of

separating the heterogenous mixture into up to 10,000

components according to their isoelectric points (PI) and

molecular weights (Mw) (Klose and Kobalz 1995). The

protein species remain intact giving researchers access to

the entire molecule. Analysis with liquid chromatography

for further separation of the proteins at distinct positions in

the gel matrix (2DE spots) and the highly sensitive new

generation of mass spectrometry machines has revealed

that generally a few protein species co-migrate (Jungblut

et al. 2010). This precludes accurate quantification of

individual protein species by measuring polypeptide

staining intensity; they can, however, be quantified by

labeling them with stable isotopes either directly or by

covalently attaching chemical moieties and then comparing

their mass spectrometric signals (Schulze and Usadel

2010). Despite these technological advances, the maximum

entry on the proteomics axis (gray) in Fig. 1 is still more

than one order of magnitude below the maximum entry for

proteomes highlighting the need for further innovation and

that proteomics science will remain challenging for some

years to come.

PTMs: switches that control protein function

Post-translationally modified proteins have a vast array of

functions in the cell, which are often quite different from

those of their unmodified counterparts. Covalent modifi-

cation of primary structure can alter protein conformation

thereby producing new recognition motifs, hiding existing

motifs or making previously hidden motifs accessible.

PTMs can have allosteric effects, controlling protein

function via modification of non-active sites. Initial mod-

ification can recruit subsequent additional modifications by

either the same or different chemical moieties which may

act in concert. Two or more different PTMs can compete

for modification of the same residue in protein primary

structure. All of these mechanisms affect protein interac-

tion via specific PTM-binding domains which defines

function (Seet et al. 2006).

The covalent attachment of phosphate moieties donated

by ATP and catalyzed by kinases via esterification of side

chain hydroxyl-groups of primarily serine, threonine and

tyrosine residues is the most widely studied PTM. It occurs

on approximately one-third of eukaryotic proteins and is

mostly a monoadduct (Cohen 2000; Hubbard and Cohen

1993). The phosphoryl-group can be removed by phos-

phatase catalyzed hydrolysis so protein phosphorylation is

reversible and in most cases transient. It is a central switch

of protein function. It controls the activity of the compo-

nents of signaling cascades such as the canonical mitogen-

associated protein kinase (MAPK) cascade downstream of

the tyrosine auto-phosphorylated epidermal growth factor
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(EGF) receptor (Pawson and Nash 2000) that consists of

the MAPK kinase kinase (MAPKKK) RAF, the MAPK

kinase (MAPKK) MEK/MKK1 and the MAPK ERK

(Marshall 1994). It also controls the MAPK cascade

MEKK1-MKK4/MKK5-MPK3/MPK6 that administers

response to bacterial pathogens in plants (Asai et al. 2002)

following perception of the flg22 epitope of bacterial fla-

gellin by the leucine rich repeat receptor kinase (LRR-RK)

FLS2 (Chinchilla et al. 2006). MAP kinases are modular as

well as promiscuous. This means that cascades can be

activated by diverse stimuli, that components of different

cascades are interchangeable and act on several substrates

to communicate a host of different signals and that they

produce a wide range of functional responses (Nakagami

et al. 2005). The MAPKs are activated and deactivated by

phosphorylation and dephosphorylation at multiple sites

which gives rise to a large number of functional protein

species whose abundance and very existence is in a high

state of flux.

Phosphorylation can determine the translocation of

proteins to organelles and subcellular compartments for

instance in the case of protein phosphatase-1 (PP1) which

is released from glycogen particles to the cytosol upon

phosphorylation of one of its subunits, GM (Hubbard and

Cohen 1993). Apoptosis is inhibited by binding and

sequestering of the phosphorylated proapototic BAD by

14-3-3 protein (Lizcano et al. 2000). Gene transcription is

initiated by phosphorylation of the active subunit of the

transcription factor NFjB, p65–p50 (Wang and Baldwin

1998), phosphorylation of members of the Jun, Fos and

ATF transcription factor families (Karin et al. 1997;

Murphy et al. 2002; Ventura et al. 2003) as well as other

DNA-associated proteins. Transcription is inhibited by

phosphorylation of HY5, a b-ZIP transcription factor that

controls light induced gene expression in plants (Hardtke

et al. 2000).

Reversible protein phosphorylation ties in with ubiqui-

tination, and indeed, there is extensive regulatory crosstalk

between these two PTMs (Hunter 2007). Protein species

such as the inhibitory subunit of NFjB, IjBa, phosphor-

ylated at serine residues 32 and 36 (Karin 1999; Yaron

et al. 1998), phosphorylated HIV-1-Vpu (Margottin et al.

Fig. 1 Some important reference values regarding genomes in black,

proteomes in red and proteomics in gray. The axes are in logarithmic

scale. The values are from pertinent publications (Adams et al. 2000;

Ahn et al. 2007; Aparicio et al. 2002; Baer et al. 1984; Baerenfaller

et al. 2008; Bogdanov and Smith 2005; Brunner et al. 2007; Collins

et al. 2004; Cox and Mann 2008; Cubitt et al. 1994; de Godoy et al.

2008; Fleischmann et al. 1995; Garcia et al. 2007; Ghaemmaghami

et al. 2003; Gibbs et al. 2004; Goffeau et al. 1996; Graumann et al.

2008; Johnson et al. 2003; Jongeneel et al. 2005; Jungblut et al. 2008;

Kaul et al. 2000; Klose and Kobalz 1995; Larsen et al. 2001; Misra

et al. 2002; Myers et al. 2000; Ono et al. 2006; Scheler et al. 1997;

Schmucker et al. 2000; Tress et al. 2008; Waterston et al. 2002) and

from our experience. The RNA viruses have very small genomes with

less than ten genes; the Epstein–Barr virus has a double-stranded

DNA genome of 84 open reading frames. Unicellular organisms all

have less than 10,000 genes. Peptide ions (MS), LC–MS refers to all

recorded m/z in a 1D shotgun proteomics analysis, sequenced peptide

ions denotes the total number of recorded MS/MS spectra
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1998), cyclins and cyclin-dependent kinase (CDK) inhibi-

tors (Koepp et al. 1999) as well as dephosphorylated

b-catenin (Kitagawa et al. 1999) and the anti-apototic

Bcl-2 protein (Dimmeler et al. 1999) are targeted for

ubiquitination and ultimately degradation by the 26S pro-

teasome. The phosphate moiety and surrounding amino

acids, which has generally become known as a phospho-

degron, is the recognition signal for the ubiquitin protein

ligase E3. The enzyme binds the phosphodegron on the

substrate protein via an F-box subunit that contains the

WD40 or LRR-binding domains and catalyzes the covalent

attachment of ubiquitin to an e-amino group of an internal

lysine residue or to the a-amino group (Breitschopf et al.

1998). Alternatively, the two main types of E3 ubiquitin

protein ligases, the single or multisubunit RING finger

ligases that lack catalytic activity and function by recruiting

the E2-ubiquitin conjugated intermediate and the target pro-

tein substrate and the catalytic HECT domain E3 ligases can

themselves be controlled by phosphorylation. The anaphase

promoting complex type E3 enzyme is phosphorylated con-

ferring substrate specificity and recognition properties

(Shteinberg et al. 1999) and the Itch E3 ligase is allosterically

activated by phosphorylation (Gallagher et al. 2006).

Protein ubiquitination is reversible through nucleophile

attack of the peptide bond between ubiquitin and the sub-

strate catalyzed by deubiquitinating enzymes (Dubs) (Sowa

et al. 2009; Ventii and Wilkinson 2008). Reversible ubiq-

uitination controls cellular processes and in particular

kinase activity and protein phosphorylation primarily by

controlling the stoichiometry of their components via

degradation. The regulatory phosphate moiety on the active

kinase becomes a phosphodegron that is recognized by the

enzymes of the ubiquitination machinery leading to cova-

lent attachment of polyubiquitin moieties branched at

lysine residue 48 of ubiquitin followed by degradation by

the proteasome. In some cases activated kinases are tar-

geted to the lysosome/vacuole or subcellular compart-

ments, which is mediated by lysine 63 branched

polyubiquitination and multiubiquitination (Huang et al.

2006). Polyubiquitin of kinases branched at lysine residues

29 or 33 can directly inhibit kinase activity and kinases can

be activated by polyubiquitin promoted transphosphoryla-

tion (Chen 2005). In plants, the ubiquitin proteasome sys-

tem may play a role in sucrose related processes possibly

via substrate proteins phosphorylated by Snf-1-related

protein kinases (SnRKs) (Ellis et al. 2002). It has also been

implicated in activation of the auxin response by degra-

dation of Aux/IAA proteins and in suppression of tran-

scription of light responsive genes by degradation of

unphosphorylated HY5 (Ellis et al. 2002).

Acetylation of lysine as well as serine and threonine

residues is another PTM that has far reaching impact on

cellular functions. The formation of the amide bond

between the lysine e-amino group and the hydroxyl group

of the acetate moiety that is donated by Acetyl-CoA is

catalyzed by histone acetyltransferases (HAT, also known

as lysine acetyltransferases [KAT]). Its hydrolysis is

mediated by histone deacetylases (HDAC or in analogy

KDAC for lysine acetyltransferase). As for phosphoryla-

tion and sumoylation but not for ubiquitination, primary

structure consensus sequences have been identified and it

has been ascertained that lysine acetylation is favored in

ordered secondary structure as well as in macromolecular

complexes (Choudhary et al. 2009; Kim et al. 2006) such

as the nuclear HAT complexes themselves (Thompson

et al. 2004) or the major actin nucleation complex ARP2/3.

There is ample evidence that protein function is regu-

lated by acetylation in conjunction with phosphorylation,

ubiquitination and other PTMs. The abundance of phos-

phorylated protein species is influenced by acetylation

exercising control over kinases, for example the phos-

phoinositide-3-kinase related protein kinases (PIKK) that

are integral to DNA damage repair (Jiang et al. 2006; Sun

et al. 2005). The activity of CDC2, a kinase involved in cell

cycle progression and mitosis, and CDK9 may be abolished

by acetylation in their kinase domains (Sabo et al. 2008).

Competitive acetylation of serine and threonine residues in

the activation loop of MAPKKs is used by Yersinia species

to shut down signal transduction via the MAPK cascade

and overcome the immune response (Mukherjee et al.

2006). Binding of phosphorylated primary structure motifs

by the 14-3-3 domain is inhibited by its acetylation

(Choudhary et al. 2009) and acetylation and methylation in

cis as well as in trans affects the interaction of binding

domains and recognition motifs on histones (Fischle et al.

2003; Latham and Dent 2007). Ubiquitination, methyla-

tion, SUMOylation and acetylation all compete for modi-

fication of lysine residues and thereby modulate the activity

of such prominent examples as the tumor suppressor p53,

the transcriptional cofactor p300 and the nuclear transport

protein RANGAP1 (Bouras et al. 2005; Mahajan et al.

1997; Yang and Seto 2008). Ubiquitin ligases and DUBs

are themselves extensively acetylated which may affect

their function and the ubiquitination of other proteins

(Choudhary et al. 2009).

In summary, phosphorylated, ubiquitinated and acety-

lated protein species regulate nearly all aspects of cell life

(Choudhary et al. 2009; Ciechanover et al. 2000; Cohen

2000). This includes metabolism (Cohen 1999; Kempa

et al. 2007; Kim et al. 2006; Polge and Thomas 2007), the

cell cycle (Brooks and Gu 2003; Choudhary et al. 2009;

Glotzer et al. 1991; Inze and De Veylder 2006; O’Connell

et al. 2000; Zhang et al. 2008) and cytokinesis (Takahashi

et al. 2004) and growth and death (Haas et al. 1995; Kim

et al. 2006). Signal transduction and concurrently the

response to infection (Kotlyarov et al. 1999; Rock and
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Goldberg 1999), pathogens (Asai et al. 2002; Chisholm

et al. 2006; Devoto et al. 2003; Kunkel and Brooks 2002)

and abiotic stress (Ichimura et al. 2000; Kempa et al. 2007;

Nakagami et al. 2005) is also highly regulated by PTMs.

Reversible, PTM at multiple sites by different moieties

produces a tremendous amount of transiently abundant

protein species that are the primary conveyors of function

in the cell. These protein species greatly amplify the

functional repertoire inherent in the proteome beyond the

unmodified expressed genome. Indeed, the unmodified

proteins and protein complexes may be seen as the

molecular machinery, the PTM as the switches used to

operate it.

Shotgun proteomics unravels the cellular signaling

network

The function of phosphorylated protein species was tradi-

tionally investigated with reverse genetic approaches

combined with enzyme activity and protein interaction

assays, particularly in the case of signaling cascades and the

phosphorylation status of their components (Ahlfors et al.

2004; Asai et al. 2002; Chinchilla et al. 2007; Meskiene

et al., 1998, 2003; Nuhse et al. 2000; Schweighofer et al.

2007; Takahashi et al. 2007). Recent advances in shotgun

proteomics have made the detection and quantification of

site-specific phosphorylation on a proteome-wide scale

feasible (Amanchy et al. 2005; Beausoleil et al. 2004;

Benschop et al. 2007; Chen et al. 2010; Chi et al. 2007;

Nuhse et al. 2004, 2007; Olsen et al. 2006, 2010;

Schmidt et al. 2008; Schulze 2010; Sugiyama et al. 2008;

Thelemann et al. 2005; van Bentem and Hirt 2007; Villen

et al. 2007).

A landmark is the study of the phosphorylation events

following EGF stimulation of HeLa cells that employed

subcellular fractionation to analyze the nuclear and cyto-

solic protein complement, strong cation exchange and

titanium dioxide affinity chromatography to enrich phos-

phorylated peptides and stable isotope labeling (SILAC)

and shotgtun proteomics to identify and quantify the

phosphorylation of amino acid residues over time (Olsen

et al. 2006). It describes the kinetics of 6,600 phosphory-

lation sites mapped to 2,244 proteins, around 20% of the

expressed open reading frames, and of EGF signaling in

unprecedented detail, including the entire MAPK cascade,

a large number of transcription factors and associated

proteins that were not known to be involved in growth

factor signaling, cytoskeletal proteins such as actin and

GTP-associated proteins, the ubiquitination machinery and

RNA-binding proteins. Phosphorylation at multiple sites in

many cases with different kinetics was shown to predom-

inate and to regulate protein function as exemplified by the

early, activating tyrosine autophosphorylation of the EGF

receptor that declined concomitantly with later phosphor-

ylation of serine and threonine residues, which is known to

attenuate the signal via negative feedback (Schlessinger

2000).

Two studies of the plasma membrane-associated prote-

ome that applied similar methodologies as the work on the

EGF receptor describe the early response to perception of

flg22 in Arabidopsis cell culture (Benschop et al. 2007;

Nuhse et al. 2007). Like EGF receptor signaling it is

hallmarked by transient protein phosphorylation. Benschop

et al. (2007) demonstrated that the measured changes in the

phosphorylation levels of amino acid residues were due to

reaction kinetics and not changes in protein abundance by

normalizing the abundance ratios of phosphorylated pep-

tides to peptides that did not contain a phosphorylation site

on the same protein. Both studies identified phosphoryla-

tion sites on numerous receptor-like kinases (RLK),

implicating phosphorylation in sensitizing the plant to further

pathogen challenge and priming of defense response (Conrath

et al. 2002; Zipfel et al. 2004). Phosphorylation of the com-

ponents of the MAPK cascade, regulatory protein phospha-

tases such as PP2C (Schweighofer et al. 2007) and auxin

signaling proteins was also found. The latter connects MAPKs

with the down regulation of auxin signaling which is known to

play a role in the plant immune response (Kovtun et al. 1998;

Navarro et al. 2006).

The induced phosphorylation of many sites on a single

protein was also reported by both authors. Differential

kinetics of several residues of the H?-ATPases AHA1 and

AHA2 and reduction of phosphorylation of the penultimate

threonine residue 948 which directly controls protein

activity (Palmgren 2001) was detected following treatment

with flg22. More pronounced, the respiratory oxidative

burst protein RBOHD, an NADPH oxidase involved in the

production of reactive oxygen intermediates in the apoplast

following pathogen perception and integral to defense

response was found to be differentially phosphorylated at

up to seven distinct residues. This suggests the protein is

controlled by various interacting partners and that it

administers distinct functions in manifold physiological

pathways in a complex regulatory network.

The widespread incidence and far reaching affects of

acetylation in all cellular compartments was discovered

for the first time by two shotgun proteomics studies

(Choudhary et al. 2009; Kim et al. 2006). The more recent

work describes the kinetics of 3,600 sites on 1,750 proteins

in three human cell lines including one affected by acute

myeloid leukemia in response to two KDAC inhibitors, one

of which (SAHA) is in clinical use. The studies show that

multisite acetylation of proteins is a central regulator of all

nuclear and DNA-associated processes. This includes

chromatin remodeling and DNA replication, transcription,
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splicing, DNA damage repair and nuclear transport. They

detected the hitherto unknown acetylation of numerous

cytoplasmic metabolic enzymes including aldolase which

also binds actin and provide evidence for a major role of

acetylated proteins in cytoskeleton architecture as actin-,

micro- and intermediate filament proteins were all func-

tionally acetylated (Anastasiadis et al. 2000; Posern et al.

2004; Zhang et al. 2007). They also showed that the

modification is prominent in the mitochondrion and

uncovered a strong link to its regulation of energy metab-

olism (Kim et al. 2006). Many of the proteins of the TCA

cycle, oxidative phosphorylation, lipid, carbohydrate,

amino acid and nucleotide metabolism as well as the

mitochondrial dehydrogenase protein complexes were

found to be acetylated. The activity of the dehydrogenase

complexes is controlled by NAD? to NADH ratios and

Acetyl-CoA levels which also serve as substrates or

cofactors for HATs and HDACs (Blander and Guarente

2004) suggesting a regulatory feedback loop.

Acetylation of multiple lysine residues of the same

protein was prevalent like in the studies of phosphoryla-

tion. The herpesvirus-associated ubiquitin-specific protease

(HAUSP), a DUB that influences the nuclear cytoplasmic

partitioning of the tumor suppressor PTEN via deubiqui-

tination was acetylated at five different residues. The

cytoskeletal protein cortactin was modified at 7 sites and 14

acetyl-lysine residues were identified for the HSP90-a
subunit. This further indicates that intricate combinatorial

switches that consist of reversible modification at distinct

residues by different interchangeable moieties are common

controls of protein function.

The largest work on PTM sites to date was published

recently. It defines the kinetics of over 20,000 phosphor-

ylation sites on 6,000 proteins in the cell cycle and high-

lights what is possible with mass spectrometry-based

proteomics today (Olsen et al. 2010). While not yet fully

comprehensive, shotgun proteomics has provided sub-

stantial information on the in vivo post-translationally

modified proteome, recording the state of thousands of

residues on thousands of proteins under various conditions.

Shotgun proteomics studies have elucidated an extensive

regulatory network based on the interactions of transiently

abundant highly modified protein species that is universally

active in the cell and given a global perspective on the

function and profound importance of PTMs.

Shotgun proteomics and protein species function

The measurements of the state of modification of individ-

ual amino acid residues reflect the effects of the experi-

mental condition under investigation such as exposure to a

growth factor or temperature stress. In most cases they will

also reflect the effects on individual proteins. An example

is the differential phosphorylation of the EGF receptor

described above. The observed kinetics are in agreement

with the known changes in the phosphorylation state of

several residues in response to EGF perception. In cases of

more complex multisite modification, such as the differ-

ential phosphorylation of the RBOHD protein at seven or

the acetylation of HSP90-a at 14 different residues, the

effects of the experimental condition on the protein may

not be so clear. Although the induced changes in the

modification state at multiple sites can undoubtedly be

brought into causal connotation with the condition, it is not

straightforward to assay if all of the sites are truly localized

on one protein, or more precisely on one protein species, or

are shared by several protein species that administer

function in concert.

This point must not be ignored. As we know, the

polypeptide molecule which has its conformation defined

by primary structure and which in many cases is a subunit

of higher order macromolecular assembly is the basic

functional entity and not the peptide or amino acid residue

(we will not consider the point of multiple secondary

structures with the same primary structure mentioned in the

introduction).To truly pinpoint function in some cases it

may be necessary to have the knowledge of the full primary

structure of all polypeptides involved in a physiological

process in addition to modification kinetics. This can be

achieved experimentally by separating the proteome into

its protein species using top-down technologies such as

2-DE, or, which may be the next true breakthrough in

proteomics research, top-down LC-ESI-MS proteomics

(Chait 2006; Siuti and Kelleher 2007).

Mathematical procedures are very powerful and can

give good approximations of protein species function from

shotgun proteomics data. The proteome is digested into

peptides so the protein species are not separated prior to

analysis. Nevertheless, we routinely use the variance and

covariance of the abundance of the identified proteins,

which is inferred by the measured abundance of the pep-

tides assigned to them by comparative search of translated

nucleic acid sequences or de novo spectral interpretation to

explore a multitude of biological questions. We do this

primarily with a combination of the canonical principal

component analysis (PCA) (Pearson 1901) and indepen-

dent component analysis (ICA) (Comon 1994). These

techniques make it possible to determine correlations

between the shotgun proteomics analyses and the pheno-

types under different experimental conditions (Scholz et al.

2004).

Data consisting of multiple observations of a large

number of variables can be seen as a number of vectors or

points in space. PCA and ICA compress and project this

data into a lower number of dimensions, in a direction so
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that the maximum amount of information is retained, the

principal or independent components (PC or IC). The data

is visualized in up to three dimensions and the user can

judge structure and inherent patterns that can shed light on

relationships that may be interesting. The PC or ICs

themselves can be expressed in terms of the original vari-

ables making it clear which parts of the original data are

prominent and determine the observed structure and rela-

tionships. These can then be interpreted in a biological

context.

In more mathematical terms, PCA can be explained as

an eigenvalue decomposition of the covariance matrix. The

principal components are the orthonormal eigenvectors that

indicate the directions of maximal variance in decreasing

order of their eigenvalues and span the lower dimensional

space of linear combinations of the original variables for

mapping with the minimum reconstruction error. Their

coordinates in the original higher dimensional space are the

loadings that place a scalar value on the contribution of the

variables, in our case the identified proteins, to the data

structure. ICA is an extension of PCA where the compo-

nents are independent, a stronger condition than uncorre-

lation in PCA, and no longer restricted to orthonormality.

The independent components (IC) are sorted according to

their kurtosis, the fourth auto-cumulant of a distribution of

parameter values following the mean, variance/standard

deviation and skewness and which is an indicator of its

Gaussian fit. A sub-Gaussian or flat distribution can be the

result of a single or few significant differences in parameter

values and is therefore often of biological interest, i.e. a

significant difference in protein abundance under two or

more conditions. As in PCA, the loadings are the coordi-

nates of the independent components in the higher

dimensional space.

Figure 2 taken from a recent study of ours (Wienkoop

et al. 2008), shows a plot of 36 combined shotgun pro-

teomics and metabolomics analyses of two A. thaliana

genotypes, the Col-0 wild type and a plastidic PGM

mutant, under cold (4�C), normal ambient (20�C) and heat

(32�C) conditions reduced to three dimensions using PCA/

ICA. Figure 2a, b both contain the first dimension, IC1, and

looking at the data from this angle, it is clear that IC1

separates the two investigated genotypes. Figure 2a addi-

tionally shows the second dimension, IC2, of the com-

pressed data which separates the applied temperatures in a

gradient that goes from low to high. Figure 2b contains the

third dimension, IC3, in addition to the first, which dis-

criminates the temperature stressed conditions of 4 and

32�C from the normal environmental condition of 20�C.

Figure 2c combines the second and third dimensions; the

former again shows the gradient from low to high tem-

perature, the latter again distinguishes the stressed condi-

tions from the normal ambient temperature. These two

independent components do not contain any information

regarding the genotypes so they are congruent.

The plotted reduced data contains 95% of the extent (to

be mathematically precise, the variance) and also 95% of

the information of the original data. Therefore, the

Fig. 2 Visualization of shotgun proteomics data with ICA. Thirty-six

combined shotgun proteomics and metabolomics analyses of two

genotypes of Arabidopsis thaliana, the wild type Col-0 and a starch-

deficient mutant PGM, adapted to three temperatures, 4, 20 and 32�C,

for 3 days, are plotted in three 2-dimensional plots (a–c) of an

optimal three dimensional space using combined principal and

independent component analysis (PCA/ICA). Four principal compo-

nents from the PCA which was applied first were used as the input for

subsequent ICA. The first dimension, IC1 contains information on the

proteins that are discriminatory for the genotypes, the second, IC2, on

proteins indicative of temperature adaption, the third, IC3, on proteins

expressed under temperature stress. The sample pattern in all three

dimensions, i.e. the complete data structure nearly perfectly reflects

the applied experimental conditions. The figure was taken from

Wienkoop et al. (2008) and is reprinted here with permission
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correlation between the shotgun proteomics analyses which

are fully quantitative and the investigated phenotypes is as

equally nearly perfect as the correlation between the lower

dimensional data and the phenotypes as seen in the plot.

This means that the analyses can be used to extrapolate

function. It can also be shown analytically, that there is a

fundamental relationship between the covariance of the

measured proteomics data and the fluctuating concentra-

tions of protein species in physiological pathways which

can be expressed as entries in the Jacobian matrix (Steuer

et al. 2003). In the given example low-temperature induced

protein 78 and cold-regulated protein COR6.6 (KIN2) as

well as several RNA-binding proteins were shown to reg-

ulate the plants’ adaption to temperature (Kim et al. 2005;

Smallwood and Bowles 2002).

To rapidly determine the sites of functional PTMs, we

have developed an application for comparison of hundreds

of shotgun proteomics analyses called mass accuracy pre-

cursor alignment (MAPA) (Hoehenwarter et al. 2008). It

works by measuring the m/z of peptides with very high

accuracy (average error *1.5 ppm, SD *1 ppm) which is

a unique identifier and allows the abundance of every

measured peptide in any number of shotgun proteomics

analyses to be aligned in a quantification matrix. It is done

with a program we developed called ProtMAX. It places

the m/z ratios of all peptides ions for which at least one MS/

MS spectrum is available in all of the compared analyses in

the rows, the analysis identifiers in the columns and the

number of MS/MS spectra for each m/z ratio in each

analysis in the cells. The number of MS/MS spectra is the

spectral count of each peptide ion which correlates linearly

with peptide abundance over two orders of magnitude

(Abdi et al. 2006; Old et al. 2005; Wienkoop et al. 2006) so

the matrix contains a quantitative value for each peptide in

each analysis. The strength of MAPA is that it produces an

accurate quantitative comparison of any number of shotgun

proteomics measurements in minimal time with minimal

computing power.

PCA/ICA as well as clustering or supervised classifi-

cation schemes can be employed to find the peptides that

are especially characteristic of the experimental conditions.

The quantification matrix is unbiased. It is inclusive of all

of the measured peptides and does not omit post-transla-

tionally modified peptides that are difficult to identify by

searching databases of translated DNA sequences. There-

fore, post-translationally modified peptides that are corre-

lated with the different experimental conditions can be

readily detected and then identified by de novo spectral

interpretation.

We employed this strategy to explore the processes

involved in hormone signaling in A. thaliana cell culture,

1, 3 and 6 h after exposure to the phytohormones abscisic

acid (ABA), gibberellic acid (GA), auxin (IAA), jasmonate

(JA) and kinetin (Chen et al. 2010). In total, 152 phos-

phorylated peptides were identified and quantified using

mass spectrometry. These peptides contained 170 phos-

phorylation sites. They were all differentially responsive to

at least one of the hormones and could be mapped to 130

proteins. Many of the sites were induced by several hor-

mones which is indicative of activated protein species

transmitting signals via several pathways in the regulatory

network. The abundance of the phosphorylated peptides at

all of the time points after exposure to the phytohormones

was used to produce the MAPA quantification matrix. This

quantitative data was then used to model the phosphory-

lation kinetics with the combined PCA/ICA.

The activation of MAPK and calcium-dependent kinase

(CDPK) cascades in response to phytohormone perception

is well known (Alonso and Stepanova 2004; Kovtun et al.

1998; Ludwig et al. 2005; Navarro et al. 2006; Sch-

weighofer et al. 2007; Takahashi et al. 2007). As a small

example from the study, Fig. 3 shows the phosphorylation

state of four sites on the central modules of cell signaling

from the membrane to the nucleus 3 h after treatment

with each of the hormones. The RLK is phosphorylated in

response to the continued perception of IAA, JA and

kinetin. The cytosolic CDPK is induced under all of the

conditions which can be expected in light of its promis-

cuous nature. The exclusive phosphorylation of the ABA

responsive element-binding factors (AREB) in response

to ABA indicates the signal has been transmitted through

the network and reached its highly specific destination.

The sites on the AREBs had not been described previ-

ously showing the power of MAPA and PCA/ICA

to uncover novel regulatory modifications because of

their causal and potentially functional correlation to the

phenotype.

Concluding remarks

The proteome is vastly more complex and dynamic than

the genome. PTM in particular expand its functional

potential immensely. Shotgun proteomics has measured the

modification kinetics of a very large number of amino acid

residues on an equally substantial number of proteins

and uncovered a regulatory network that extends into all

aspects of cellular physiology.

Transient modifications of multiple sites by different

interchangeable moieties are recognized by PTM-binding

domains that are organized as modules in proteins (Seet

et al. 2006; Yang 2005). The dynamic interaction of rec-

ognition motifs and binding domains executes a powerful

regulatory program that is flexible, sensitive and far

reaching. These insights, where the modular-binding

domains ‘‘read’’ the state of modification of proteins that
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controls function are expressed in the emerging concept of

the protein code (Gimona 2006; Sims and Reinberg 2008).

Considering the large number of known PTMs, the com-

mon phenomenon of dynamic multisite modification and

the equally large number of interaction domains, this

‘‘protein code’’, if one wishes to use the term, may be much

more complex than the genetic code and constitute a pri-

mary functional dimension in the molecular biology of the

cell.

To truly understand the mechanisms of molecular

interaction and function in some cases it may be necessary

to resolve the proteome on a molecular level, the protein

species level. Shotgun proteomics studies in conjunction

with higher mathematical procedures can give good

approximations of protein species function. Ideally they

should be employed to gain a more or less comprehen-

sive overview of the question at hand. They should be

complemented with top-down technologies such as 2-DE

to focus on the protein species of interest and genetic

and biochemical techniques to validate the functional

hypothesis.
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2.2 The different proteomes of Chlamydomonas reinhardtii

One of the main features of Systems Biology is reflected in the development of the “omics”-
approaches, which aim to identify the complete set of biomolecules of a certain kind in an
organism at a certain time point. Thus, high-throughput measuring devices are needed —
and just as necessary are computer-based strategies that can analyze the correspondently huge
amount of data. For a classical bottom-up LC-MS shotgun proteomics approach, a vital step
is the “protein inference”: the association of measured ions to peptide sequences belonging to
certain proteins, mostly from an organism-specific protein database, with the help of a search
algorithm.
Since the development of proteomics, great advances have been made within the develop-

ment of algorithms (as BLAST) and search engines (SEQUEST, MASCOT or the open source
OMSSA), mostly regarding parameters about the quality of the identification (Xcorr, FDR).
Nevertheless, there hasn’t been as much work done on the other key element of this procedure:
the databases — from the registered 35.000 cultivated plant species, there are only 37 fully se-
quenced and functionally annotated plant genomes ([48]) — for untargeted studies on the rest
of the species, protein databases must be translated from e.g. EST, PUT assembly and contig
libraries; another alternative is to perform homology studies through BLAST with databases
from other organisms (mainly the NCBI-Databases from Arabidopsis thaliana).

Through a comparative study among different databases/annotations and a graphical display
of the corresponding results, we want to remark the need for a standardization of databases
and performance evaluation, considering that the results of a same dataset being analyzed with
different databases or even different releases of the same database can differ considerably, thus
affecting not only protein identification, but also protein quantification and the interpretation
of protein fuctions in a biological context.

2.2.1 Declaration of authorship

The results of this chapter are presented in the form of a manuscript published in the journal
“Journal of Proteomics”. For this work, I contributed to the experimental design and carried
out the experiments that led to the datasets used for the elaboration of this manuscript.
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Protein identification and proteomemappingmostly rely on the combination of tandemmass
spectrometry and sequence database searching. Despite constant improvements achieved in
instrumentation, search algorithms, and genome annotations, little effort has been invested
in estimating the impact of different genome annotation releases on the final results of a
proteome study.Wehave used a large dataset ofmass spectra obtained using anOrbitrap LTQ
XL instrument, covering different growth situations of the model species Chlamydomonas
reinhardtii. More than one million spectra were analyzed employing the SEQUEST algorithm
and four different databases corresponding to the major Chlamydomonas genome assemblies.
In total more than 3000 proteins and about 11,000 peptides were identified. 238 proteins were
exclusively detected in assembly 3.0 in contrast to 1222 missing proteins only detectable in
other databases. The comparison of the results demonstrates that the database selection
affects not only the number of identified proteins but also label free quantitation and the
biological interpretation of the results. Lists of protein accessions exclusively assigned to
individual C. reinhardtii genome assemblies and annotations are provided as a resource for
proteogenomic studies.

© 2012 Elsevier B.V. All rights reserved.
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PROMEX

Nowadays the identification of peptides and the mapping of the
proteomes rely on the combination of tandem mass spectrom-
etry and sequence database searching. In a typical proteomics
pipeline the identification of proteins is based on peptide-centric
proteomics, that identifies peptides rather than proteins [1].
Peptides are identified by matching the acquired MS/MS spectra
against a protein sequence database, while proteins are inferred
after peptide identification. A multitude of search engines are
available for identifying the different peptides in the sample, and
new tools are constantly designed for improving the quality of
the analysis in terms of increasing the positive identifications
while reducing thenumber of false positives [2]. However, in spite
of these advances, the importance of the employed database has
not been specifically addressed in most cases.

The contents of the database are paramount for protein
identification. The first stepof protein identification is the in silico
digestion of all of the sequences of the database, generating
theoretical MS/MS spectra for every possible candidate. The
generated spectra are then compared to each experimental
spectrum and a score is calculated for each peptide [3]. In a
second step, the set of all identified peptides is compared to
the undigested protein database and used to infer which
proteins may have been present [4]. Consequently, the anno-
tated genome database is the foundation of the whole process
including peptide identification and assembly of the corre-
sponding proteins.

Large sequence databases containing sequences of different
species, like NCBI or Uniprot, are classically used for protein
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identification. But the annotation of these databases is not
always good, and their large sizes make the searches slow,
also increasing the possibility of misidentifications. On the
other hand, advances in next generation sequencing (NGS)
technologies have increased the number of organisms that
have been fully sequenced [5], making it possible to utilize
organism-specific databases. The assembly and functional
annotation of these databases is constantly changed and
improved since the genomes of most species are re-sequenced
and reassembled to increase the reliability of the final sequence
[6]. This fact, together with the advances in the algorithms
employed in the bioinformatics-processing pipeline for
predicting new genes and proteins, leads to a regular release
of new assemblies and/or annotations. The different releases of
a genome assembly and annotation can includemore sequences
and functional annotation, but also the elimination or changes
of some genes. Obviously these changes will be reflected in
different protein numbers and sequence modifications, which
will change the in silico digests employed by the search engines.
Here we addressed the question, how do these changes affect
the identification, quantification, and the functional character-
ization of the proteome?

We demonstrate that different assemblies and annotations
of the Chlamydomonas reinhardtii genome lead to dramatically
different results. Differences are not only limited to the number
of detected peptides, but also found in the variable identification
of proteins and coverage of functional units in the metabolic
network.

For this study 280 Orbitrap-LTQ (Thermo Scientific, USA)
runs (>130 Gb of raw data, 1087447 spectra), available at
MOSYS (University of Vienna) [7–9] were selected, aiming to
cover different C. reinhardtii growth situations and cellular
fractions. The objective of using this high number of experi-
mental situations and spectra was to not over-represent some
proteins or introduce a sample dependent bias. We have
employed four different databases covering two versions
of the genome assembly: Chlamydomonas 3.0 (Chlr_3) and
Chlamydomonas 4.0. Three annotations corresponding to
Chlamydomonas 4.0 were considered: Augustus v.5 (Aug_5),
Augustus v.10.1 (JGI_153) and Augustus v10.2 (JGI_169). Files
with raw spectra were processed using the SEQUEST algorithm
available in ProteomeDiscoverer 1.3 (ThermoScientific, USA) and
the four described databases. The following settings were used:
precursor mass tolerance was set to 10 ppm and fragment ion
mass tolerance to 0.8 Da. Only charge states +2 or greater were
used. Identification confidence was set to a 5% FDR and the
variablemodifications were set to: acetylation of N-terminus,
oxidation of methionine and carbamidomethyl cysteine
formation. No fixed modifications were set. A maximum of
two missed cleavages were set for all searches. We have tested
independently two different thresholds for considering a
confident protein identification: i) having at least one unique
peptide (peptide that only appears once in the entire database)
with a X-Correlation value 0.5 greater than the charge state (i.e.
2.5 for peptides with charge +2); ii) having at least two peptides
(one of them being unique) with a X-Correlation value 0.25
greater than the charge state. In our hands, the application of
these thresholds leads to a higher peptide assignment to
proteins, reducing the coefficient of variation of replicates,
and, in consequence, improving final quantitation. Similar

thresholds have been previously proposed for improved protein
identification and quantitation [10,11].

The four different files obtained after processing each
batch of LC/MS analyses, one per database, weremerged with
Proteome Discoverer© (Thermo-Fisher-Scientific) into a single
file. This file includes the different identifications obtainedwith
the different databases and shows most of the overlapping
accessions between the different databases. These lists includ-
ed redundancies, corresponding to peptides and proteins
present in more than one intermediate file. For example some
photosynthesis-related proteins were present in all of the
batches. In a second step these redundancies were removed,
keeping only the best-scoring peptide entry for each protein
accession. This procedure was done twice, considering indepen-
dently the two different thresholds described above (Supple-
mentary Fig. 1). The next step of the analysiswas to compare the
different lists of peptides and proteins obtained with each
database. Since each database has different accession names
wehaveused the capabilities of ProteomeDiscoverer© (Thermo-
Fisher-Scientific) for comparing sequences, the “Algal Functional
Annotation Tool” [12] for comparing annotations, and BLAST
algorithm for establishing the correspondences between data-
bases when the other approaches failed.

Our first aim was to make an estimation of the influence of
the different genome assemblies and annotations over the
detection of peptides employing a 5% FDR and X-Correlation
value greater than charge state +0.25 as thresholds (Fig. 1a). A
total of 10,957 different peptides were identified employing
the four databases (List of identified peptides is available in
Supplementary Table 1). Despite most of the peptides (8485)
being shared by all of the genome annotations, two different
groups corresponding to eachmajor genome assembly can be
established: Assembly release 3.0 (Chlr_3) which detected the
lowest number of peptides (8760) and release 4.0 (Aug_5-
Augustus 5, JGI_153-Augustus 10.1,JGI_169-Augustus 10.2) that
detected 10,680±62depending on the version of the annotation.
These differences can be explained by the fact that the different
assemblies do not share the same genome sequence. Release
4.0 is larger and more accurate, which is reflected in the high
number of identified peptides, but it lacks some sequences,
with 150 peptides that only can be found employing the
release 3.0. Even the differences between the three annota-
tions based on the 4.0 assembly are not trivial. In fact, despite
sharing the same genome sequence, 138 peptides are differ-
ently identified between Augustus 5 and JGI_169 (Augustus
10.2) annotations.

Theoretically the increased number of peptides between
the releases can be explained by the fact that there are big
technical gaps between them, with improved sequence reads
and computer algorithms. Our data agree with this hypothesis,
since the newest release revealed the highest number of
detected peptides. However, the different annotations of assem-
bly 4.0 showed strongunexpected differences. Themost probable
answer is that the differences between transcript prediction
algorithms employed for the release of the different annotations
may result in some incorrectly predicted, truncated or removed
proteins. The genemodel Cre09.g410550, N5-Phosphoribosyl-ATP
transferase, has different protein sequences in the different
databases. This protein has been truncated (more than 80 amino
acids) in the Chlamy 4.0 release of the genome (Supplementary
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Fig. 2a). This problem can also be observed in closely related
annotations, i.e. the gene Cre09.g405500 (Supplementary 2b).
Considering only the closest annotations JGI_153 (Augustus
10.1) and JGI_169 (Augustus 10.2) we have detected 3 extra
amino acids that validate the “old” JGI153 sequence rather than
the updated JGI_169 (Supplementary Fig. 2b). It must be also
noticed that changes in the database sequencemay change the
pool of peptides obtained after in silico digestion and their
probabilistic distribution, altering the X-Correlation score [13].
To discard this technical effect we have studied the distribution
of the X-Correlations between the identified peptides and
databases (Supplementary Fig. 3a), showing that Chlr_3 has
slightly lower values than assembly 4 in which no significant
differences can be established between annotations. The pep-
tides that are exclusive from the different databases have the
same X-Correlation distribution as the whole population (Sup-
plementary Fig. 3b), with high confidence values (Supplementa-
ry Fig. 3c) indicating that the missed detection of peptides is
related to the protein database.

At protein level, as in the case of the peptides, the
databases based on assembly 4.0 detected more proteins
than those based on 3.0 (Fig. 1b, c) (Supplementary Table 2).
The differences in the number of proteins that can be identified
exclusively in each genome release are remarkable: 238 proteins
were exclusively detected using assembly 3.0 while 1222 pro-
teins were exclusively found in assembly 4.0. These ratios are

similar to those obtained for peptides. Supplementary Table 4
summarizes Fig. 1b, c showing the protein accessions that were
found only in one database.

Some remarkable differences between identified peptides
and proteins can be observed. For example, considering the
database JGI_153 (Augustus 10.1) we detected only 1 peptide
(“MSTSEFETVVLTPSRLR”) that is not present in the other
databases (Fig. 1a). But this number increases to 48 in the case
of the proteins (2 peptides per protein) (Fig. 1b, c). The appearance
of 48 exclusive proteins using two peptide threshold, means that
at least 48 unique peptides are required for its identification, so
this is theminimumnumber of spectra not assigned, or assigned
to other proteins when using other database releases. This can
only be explained by the principles of the search algorithm. The
basis of the identification is usage of all peptides for explaining
the minimum number of proteins [1]. Consequently, depending
on the protein sequences present in the different databases some
spectra will be assigned to different peptides-protein accessions,
having a high impact over the final result.

The assignment of peptides-spectra to different proteins is
also important for label free quantitation methods, since both
precursor ion areas or spectral count methods are based on
the assignment of the discriminatory peptides to individual
proteins [14,15]. Table 1 shows some protein accessions for
which the peptide to spectra match (PSM) changes depending
on the employed database.

Fig. 1 – Venn diagrams of non-redundant peptides and proteins identified with the different databases and thresholds. Chlr_3:
Assembly 3, Annotation 3; Aug_5: Assembly 4.0, Annotation Augustus 5; JGI_153: Assembly 4.0, Annotation Augustus 10.1;
JGI_169: Assembly 4.0, Annotation: Augustus 10.2. Non-redundant peptides identified with each database (a). Proteins
identified with at least 1 (b) or 2 (c) peptides. Diagramswere plot employing the on-line tool Venny (http://bioinfogp.cnb.csic.es/
tools/venny/index.html).
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Furthermore there are notable differences between the
different annotations based on assembly 4.0. Focusing on the
more conservative threshold of 2 peptides per protein our data
shows that only 1394 identifications, about 80%, are shared by
all the different annotations of assembly 4.0.Moreover there are
48, 71 and 91 proteins that can only be detected employing
release Augustus 10.1(JGI_153), 10.2 (JGI_169) or Aug_5, respec-
tively. These differences dramatically change the biological
interpretation of the results, since components of these path-
ways are differentially identified (Supplementary Table 3).

Comparing the differences between databases at this level
is complex, and should be done case by case. In Fig. 2 an
overview of these results is shown. There are significant
differences between the numbers of proteins assigned to
each MapMan category depending on the database. We have
employed MapMan categories for representation since they
are less complex and consequently easier to visualize than

KEGG [16] or Gene Onthology [17]. However, KEGG classification
showed a higher number of differences than MapMan as 224
categorieswere analyzed, as detailed in Supplementary Table 3.

The discrepancies between databases, i.e. the loss of proteins
between releases or truncated sequences, highlight the need
for new algorithms of gene prediction and implementation
strategies for proteomics data. In this sense the integration of
proteomic technologies into the annotation process will lead
to improved accuracy and experimental validation of the in
silico gene models [7,18–20].

In conclusion the comparison of the performance of the
different databases demonstrates that the database selection
affects not only the protein identification, but also its quanti-
fication and interpretation in a biological context. This fact
increases the importance of the database design in order to
maximize the number of identifications while reducing the
artifacts, and also hinder the direct comparison of datasets

Table 1 – Impact of the different tested databases on spectral counting (∑PSM) employed for label-free quantitation. PSM
value was directly obtained from Proteome Discoverer results file when using 2 peptides per protein threshold. Five
samples corresponding to cold stress and nitrogen depletion datasets were pooled to get this table.

Accession ID ∑PSM Chlr3 ∑PSM Aug5 ∑PSM Aug10.1 ∑PSM Aug10.2

Cre09.g405500 64 64 64 61
Cre07.g344400 3-Phosphoglycerate dehydrogenase 199 250 250 250
Cre28.g776100 Carbamoyl phosphate synthase 178 232 232 232
Cre18.g749750 PSI LHCA3 166 167 167 167
Cre10.g436550 Low-CO2 inducible protein 95 141 141 141
Cre11.g477950 17 184 184 184
Cre02.g076250 Chloroplast elongation factor G 111 110 111 111
Cre06.g263250 17 41 42 42
Cre01.g021250 Argininosuccinate lyase (ARG7) 18 35 29 35
Cre10.g439550 5 17 18 18
Cre12.g496000 Peptidyl-prolyl cis-trans isomerase, cyclophilin-type 43 43 43 8
Cre03.g193750 Glycine cleavage system, (GCST) 45 43 43 43
Cre13.g595250 Ribosomal protein L21 11 11 11 4

Fig. 2 – Doughnut chart representing the identified proteins (at least two peptides per protein) according to level 1 MapMan
categories employing the indicated Chlamydomonas databases. Proteins were classified employing Algal Functional
Annotation Tool [12].
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analyzed with different databases and even releases of the
same assembly. Further work is in progress towards the
standardization and evaluation of the performance of the
databases, since they play a significant role as essential as
the identification algorithms.

Supplementary data to this article can be found online at
http://dx.doi.org/10.1016/j.jprot.2012.07.045.
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2.3 System Level Network Analysis of Nitrogen Starvation and
Recovery in Chlamydomonas reinhardtii reveals potential
new targets for increased lipid accumulation

Nitrogen starvation has been widely studied on Chlamydomonas reinhardtii, ranging from nu-
tritional regulation of its sexuality in the 1950s to the role of Nitrogen in flagellar coordination.
Nevertheless, none of these findings might be as economically relevant as its increased lipid
accumulation -mostly TAGs stored in lipid droplets / oil bodies (LBs) — during N starvation.
This phenomenon has been very well documented in the latest years. Chlamydomonas has also
been widely investigated for hydrogen photoproduction (mostly under sulphur deprivation1,
4), and its capability to photosynthesis on both autotrophic and heteroautotrophic conditions
enhances its appeal as a biomass producer (especially considering how easy it is to reproduce
this conditions in Chlamydomonas cultures e.g. adding Acetate as a carbon source to the cul-
tivation medium) Furthermore, having Chlamydomonas reinhardtii a fully sequenced genome,
many proteomics and metabolomics protocols and databases, pathway annotations, and a wide
range of molecular biology and transcriptomics tools, the possibilites of further improvement
of the lipidic production via Bioengineering makes this model algae one of the most appropiate
organisms for further investigation in the field of microalgae-related biofuel production.
There have already been many studies about TAG-Accumulation in Chlamydomonas rein-

hardtii ( [273], [327], [35]), more recently also with starch mutants [345], [165]. However, even
if some of these studies already integrate transcript, metabolites and even proteomic data, all
of them deal only with the immediate response to N-depletion. In this publication, the CR
stress reaction has been followed over a longer period of time — 4 days including N-repletion
after 72 hours, thus following the recovery of the algae for a complete day. To gain a more com-
prehensive insight into the CR adaptation to N-starvation and its recovery at a cellular level,
Metabolomics and Proteomics analyses (featuring qualititative and semiquantitative analysis
on all proteins, and absolute quantification of proteins from several metabolic pathways) were
performed and correlated with physiological measurements (including Fv/Fm, Biomass and
lipid content) and an additional Chlamydomonas reinhardtii transcript dataset. Besides, we
also aimed at a narrower search of transcription factors and biomarkers for these metabolic
changes — hence, enriched nuclei fractions were prepared at every time point for Shotgun
Proteomics analysis. To enhance our biomarker search, we additionally used the database-
independent MAPA-approach, as described in Hoehenwarter et al. 2011 and Egelhofer et
al. 2013 [126], [75].

2.3.1 Declaration of authorship

The results of this chapter are presented in the form of a manuscript published in the journal
“Biotechnology for Biofuels”. For this work, I contributed to the experimental design and carried
out the experiments relative to the sampling, the cell nuclei purification and proteomics analysis
- I also cowrote the Materials and Methods section, and collaborated in the data mining and
evaluation.
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Abstract

Background: Nitrogen starvation is known to cause drastic alterations in physiology and metabolism leading to
the accumulation of lipid bodies in many microalgae, and it thus presents an important alternative for biofuel
production. However, despite the importance of this process, the molecular mechanisms that mediate the metabolic
remodeling induced by N starvation and especially by stress recovery are still poorly understood, and new candidates
for bioengineering are needed to make this process useful for biofuel production.

Results: We have studied the molecular changes involved in the adaptive mechanisms to N starvation and full
recovery of the vegetative cells in the microalga Chlamydomonas reinhardtii during a four-day time course.
High throughput mass spectrometry was employed to integrate the proteome and the metabolome with physiological
changes. N starvation led to an accumulation of oil bodies and reduced Fv/Fm.. Distinct enzymes potentially
participating in the carbon-concentrating mechanism (CAH7, CAH8, PEPC1) are strongly accumulated. The membrane
composition is changed, as indicated by quantitative lipid profiles. A reprogramming of protein biosynthesis was
observed by increased levels of cytosolic ribosomes, while chloroplastidic were dramatically reduced. Readdition of N
led to, the identification of early responsive proteins mediating stress recovery, indicating their key role in regaining
and sustaining normal vegetative growth.
Analysis of the data with multivariate correlation analysis, Granger causality, and sparse partial least square (sPLS)
provided a functional network perspective of the molecular processes. Cell growth and N metabolism were clearly
linked by the branched chain amino acids, suggesting an important role in this stress. Lipid accumulation was also
tightly correlated to the COP II protein, involved in vesicle and lysosome coating, and a major lipid droplet protein. This
protein, together with other key proteins mediating signal transduction and adaption (BRI1, snRKs), constitute a series
of new metabolic and regulatory targets.

Conclusions: This work not only provides new insights and corrects previous models by analyzing a complex dataset,
but also increases our biochemical understanding of the adaptive mechanisms to N starvation in Chlamydomonas,
pointing to new bioengineering targets for increased lipid accumulation, a key step for a sustainable and profitable
microalgae-based biofuel production.
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Background
The need for an alternative to fossil fuels, with rising
prices and declining reserves, has led to renewed interest
in microalgae as a potential source for biofuel production
[1-3]. Nutrient availability, temperature, and light intensity
are the major environmental determinants of algal growth,
reproduction, and morphology, including the accumula-
tion of lipids in the form of triacylglycerols (TAGs) [4-6].
Photoautotrophically grown algae offer better solar energy
conversion efficiency and a range of technical and ethical
advances compared to traditional oil crops [7-9]. Consid-
ering their increasing importance as bioproducers and the
need to achieve an optimized balance between lipid pro-
duction and growth, thorough analyses of the underlying
molecular mechanisms that mediate stress-induced accu-
mulation of lipids in microalgae are necessary. Neverthe-
less, these analyses are still in a very early stage [10].
Growth-inhibiting conditions and an imbalance between

carbon and some macro- and micro- elements such as Fe,
S, Zn, or N [11] lead to metabolic rearrangements modulat-
ing cell division, morphology, and photosynthetic capacity
[12] and the accumulation of starch [13] and/or lipids [14]
to protect cellular structures and increase the microalgae
survival probability under adverse circumstances. The accu-
mulation of lipid bodies in Chlamydomonas reinhardtii
under N deficiency has been recently documented in detail
[4,14,15], establishing a well-known environment in which
changes in morphology and some key genes are defined.
These studies together with the availability of a se-

quenced genome [16], proteomics and metabolomics pro-
tocols and databases [17-27], pathway annotations [28-30],
and a wide range of molecular biology [31] and transcripto-
mics tools [32] make C. reinhardtii the premier molecular
model for research in microalgae.
The employment of recent advances in high through-

put profiling methodologies has allowed the system-
level characterization of C. reinhardtii at transcriptomic
[11,15,33], proteomic, and metabolomic levels [19,21,34].
In the present study, we have added a further layer of in-
vestigation, in particular distinguishing short- and long-
term adaptive mechanisms and the recovery phase of the
cells from N starvation to normal vegetative growth. In
contrast to previous studies on differential gene expres-
sion [33,35] or metabolomics analyses [34], we have stud-
ied N starvation and the following recovery process after
N readdition during a four-day experiment. Using classical
physiological measurements, mass spectrometry for quan-
titative proteomics (GeLC-LTQ-Orbitrap-MS) and meta-
bolomic (GC-MS) changes, and mining available datasets
we depicted the responses of C. reinhardtii to available N,
showing the dynamic behavior of the biochemical path-
ways and metabolism to the N availability and providing
new potential bioengineering targets for increased lipid
accumulation.

Results
Physiological responses to nitrogen starvation and
recovery in Chlamydomonas reinhardtii cells
Chlamydomonas reinhardtii cells show a high ability to
adapt dynamically to environmental conditions. The stress
adaption process is based in short- and long-term changes
in metabolism affecting the morphological phenotype.
Therefore, we have selected controls (0 h), three sampling
times under N starvation (5 h-N5h, 24 h-N24h, 72 h-
N72h), and two further samplings after N replenishment
(77 h +N5h, 96 h +N24h), aiming to cover both short-
and long-term responses for acclimation and recovery.
N starvation leads to a block of growth (Figure 1),

which is significantly slower than that in control cultures
(Additional file 1: Figure S1). The fresh weight (FW) of
the cultures was sustained during initial N starvation,
and reduced after 72 h. Also, chlorophylls were affected,
with a turn in the culture color from green to yellow
under N starvation with a 30% decrease in Fv/Fm
(Figures 1 and 2). As expected, N starvation induced a
quick accumulation of lipids, a 1.75-fold increase in 72 h
(Figure 1), most of them in the form of lipid bodies
(Figure 2). N starvation is affecting the normal physio-
logical behavior of the cells, blocking cell growth and re-
ducing photosynthesis. Cells stop dividing probably
because there is no available N for sustaining protein
and nucleotide biosynthesis. Under these circumstances
intracellular N should be recycled to support critical life-
supporting pathways. Photosynthesis and antennas are
reduced to avoid oxidative cellular damages and changes
in cellular pools. The excess of available energy and car-
bon is then channeled into an increased production of
lipids. Lipids act not only as an energy and carbon sink,
but also in membrane stabilization.
N replenishment quickly reverted these physiological

adaptations, with total lipids, Fv/Fm, and chlorophylls
returning to normal levels in 24 h (Figures 1 and 2). The
FW of cell cultures was increased 1.5- and 2.5-fold at
5 h or 24 h after N replenishment. The degradation of
TAGs and also the recovered photosynthetetic activity
probably provided the energy needed for this fast recov-
ery of vegetative cell growth. These results support the
hypothesis that there are sensing mechanisms that regu-
late not only N uptake and N assimilation, but also
many other metabolic pathways (ranging from glycolysis
to secondary metabolism) defining physiology and cell
growth.
An initial functional overview of the changes in the

proteome (Additional file 2: Tables S1, S2) and metabo-
lome (Additional file 2: Table S3) showed that N starva-
tion affects most of the cellular metabolism (Figure 3,
Additional file 3: Figure S2, Additional file 4: Figure S3,
Additional file 5: Figure S4, Additional file 6: Figure S5,
Additional file 7: Figure S6), that is, ammonia transport and
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fixation proteins, photorespiration, or oxidative pentose
phosphate pathways. Differential pathways are depicted
below.
We applied multivariate analyses for integrating physio-

logical measurements with protein and metabolite data-
sets, reducing the complexity of the data, and performing
untargeted correlation network analysis [22,36-38]. Princi-
pal component analysis (PCA) and partial least square
discriminant analysis (PLS-DA) resulted in a similar

classification of the samples (Figure 4A; Additional file 8:
Figure S7a, b; Additional file 2: Tables S4,S5) while sparse
partial least square (sPLS) analysis gave a slightly different
picture (Additional file 8: Figure S7c; Additional file 2:
Table S6). PC1 seems to explain the adaption to N starva-
tion: ammonia transport and assimilation enzymes are
positively correlated to this component, while N demand-
ing activities, like polyamine and protein biosynthesis,
and amino acid degradation are negatively correlated.
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Figure 1 Physiological measurements. Variations in the photosynthetic rate (Fv/Fm) and in the accumulation of lipids, fatty acids, and fresh
weight during the experimental time course. Different letters within series indicate significant differences (ANOVA followed by a TukeyHSD,
P < 0.05). Fresh weight and fatty acid values were normalized as a relative abundance considering the average contents in T0. Fv/Fm values were
plotted without transformation.

Figure 2 Lipid bodies accumulation during the time course experiment. Nitrogen starvation causes a quick accumulation of lipid bodies
(yellow dots) with a maximum density obtained after 72 h of culture. Notice that the autofluorescence of the cells is dramatically reduced at 72
to 77 h, indicating a sharp decrease in the pigment content. Lipid bodies disappear completely 24 h after the addition of ammonia (96 h). Cells
were fixed in 1% formaldehyde and stored at 4°C until analysis. Cells were stained with Nile red to identify the lipid bodies.
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Furthermore, the high correlation of central metabolism
enzymes and cGMP-dependent kinases showed that N
starvation also affects normal respiration. The high correl-
ation of glycerol pathways and C18:2 indicated the import-
ance of lipid biosynthesis during N starvation. PC2, on the
other hand, explains the N-starvation recovery and growth
on the basis of an increased energy production through
lipid degradation, and the recovery of the pigments bio-
synthesis. These findings support our previous hypothesis,
based on physiological parameters, of how N starvation af-
fects the cell function since the previously described ef-
fects can be explained at a biochemical level based on PC1
and PC2 (plotting other components does not improve
the separation between groups (Additional file 8: Figure
S7d, e, f)). Biclustering of functional categories of protein
changes (Figure 4B) against the time points of N starvation

and N readdition demonstrated impressively that the re-
covered cells are more similar to the control cells and that
there is a complete remodeling of cellular processes during
starvation and recovery. Clusters of short- and long-term
responsive functional processes can be identified. Further-
more, we have used sPLS networks in which protein and
metabolites were used as predictive variables to explain
the physiological parameters aiming to establish interac-
tions between proteins, metabolites, and phenotype
(Figure 4C, Additional file 6: Figure S5D, Additional file 9:
Figure S8, Additional file 10: Figure S9).

Dynamics of 1,658 proteins and 52 metabolites during
nitrogen starvation and recovery
The application of mass-spectrometry-based profiling of
proteins and metabolites allowed a comprehensive analysis

Figure 3 Representation of N starvation- and recovery-induced changes in major pathways and processes using MapMan visualization
platform and our Chlamydomonas reinhardtii mapping. Lines in gray represent individual proteins that were differentially accumulated during
the experiment (P < 0.05) at each category, thick red lines represent the average value within all of the clustered proteins at each time point, and
thin red lines represent the average ± one standard deviation. Protein abundances were normalized as a percentage of the maximal value in the
time series.
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of the responses to N starvation and N readdition. More
than 15,000 peptides and 3,200 proteins were detected
in 552,529 spectra obtained from whole cell and nuclei
protein extracts. 1,658 proteins were above the mini-
mum abundance threshold for confident quantitation
(Additional file 2: Tables S1 and S2). This number
represents about 15% of the genes in the C. reinhardtii
genome [16]. GC-MS allowed the unequivocal identifi-
cation of 52 primary metabolites after comparison to
reference standards (Additional file 2: Table S3) and

quantified 60% of them with differential accumulation,
at least in one of the sampling times.
The use of proteomics- and metabolomics-based ap-

proaches provides a direct readout of the metabolic and
physiological adaptive mechanisms that are present in the
cell and links molecular dynamics to genome-based theor-
etical metabolic networks [39,40]. The reconstruction of
the C. reinhardtii network based on KEGG Orthology
(KO) annotation consists in 7,330 reactions belonging to
263 pathways, which are catalyzed by 713 enzyme classes

Figure 4 Classification of the different samples according to multivariate methods. (A) Principal componet analysis (PCA) of the integrated
proteomic, metabolomic, and physiological datasets. Glutamate family enzymes (ASS, ASL, OCT, NAG), ammonia metabolism (Cre13.g592200.t1.2),
purine biosynthesis proteins (Cre07.g318750.t1.2, Cre08.g364800.t1.2), NADH:ubiquinone oxidoreductase, cGMP-dependent kinases (Cre03.g199050.t1.2),
glycolysis enzymes (PK, GAP-DH, PEPC), glyceraldehyde-3P-DH, glycerol, and C18:3 showed high correlations to PC1. Calvin cycle proteins (SBPase, PPE),
chloroplastic ATPase, amino acid degradation, polyamine synthase, fatty acid elongation, catalases, and aspartic acid showed a negative correlation to
PC1. Fresh weight, alanine, beta oxidation-related proteins (Acyl-CoA oxidases, HADH), oxidoreductases (Cre16.g677950.t1.3, g13806.t1, g4488.t1, g9426.
t1), signal peptide and protein peptidases, and tetrapyrrole biosynthesis proteins showed a high correlation to PC2, while organic acids (fumaric and
glyceric), phosphate, and photosynthesis-related enzymes (light reaction and carbon fixation), showed a negative correlation. These variables were
used to infer the biological meaning of the principal components 1 and 2. Loading matrix is available in Additional file 2: Table S4. (B) Hierarchical
clustering and heatmap of the analyzed proteins grouped by functional category according to MapMan. Three different clusters (0, 5 h, and 96 h, 24 h,
and 72 and 77 h) can be distinguished, showing the different degrees of response to N starvation. The aggrupation of the 96-h and 5-h samples
remarks the effect of the N repletion over the cultures. (C) sPLS-based network, showing the significant interaction between proteins and metabolites.
Three major clusters can be distinguished, corresponding to fresh weight, glycerol/C18:2/C16, and N metabolism, which are mixed in the image.
Fv/Fm and C16 are outside these groups acting as a link. For further details see Results and Discussion. This complex network is depicted in Additional
file 6: Figure S5D, Additional file 10: Figures S9 and Additional file 11: Figure S10.
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[23]. Of the total proteins described in this study, 845
were annotated to enzyme commission (EC) numbers
using Biomart, the KEGG enzyme database, and manual
annotation during the curation process. These enzymes
defined 447 classes of reactions belonging to 157 path-
ways, constituting more than 50% of the modeled class re-
actions and pathways in C. reinhardtii [23,41].
We have further analyzed the total proteome using

MapMan [30,42] and a custom bin map for the release 5.3
of the Chlamydomonas genome. A total of 1,233 proteins
were assigned to functional bins. Employing this classifica-
tion tool allowed us to plot the dynamics of the differen-
tially accumulated proteins (P <0.05) to illustrate the
overall changes in the metabolome (Figure 3), and also to
focus specifically on photosynthetic (Additional file 3:
Figure S2), N (Additional file 4: Figure S3, Additional
file 5: Figure S4), lipid (Additional file 6: Figure S5),
and nucleotide metabolism (Additional file 7: Figure S6).
The integration of the generated data with the available
datasets with transcriptomic [33] and metabolomic [34]
data in the overlapping experimental points (0 and 72 h)
allowed a robust and comprehensive analysis of the mo-
lecular changes induced by N starvation. However, 166
differentially accumulated proteins of the total protein
dataset were not mapped to any pathway, indicating the
need for a continuous improvement of functional
annotation.

Response of Chlamydomonas reinhardtii primary
metabolism to N depletion and recovery
N starvation induces quick and profound changes in pri-
mary metabolism (Figure 3, Additional file 3: Figure S2,
Additional file 4: Figure S3, Additional file 5: Figure S4,
Additional file 6: Figure S5, Additional file 7: Figure S6).
Glyceraldehyde-3-P-dehydrogenase (GAPDH) showed
maximum peaks at 72 h. Interestingly, one pyruvate
kinase isoform (Cre06.g280950.t1.2) was only detect-
able after N depletion, showing a drop in abundance
24 h after N repletion. At the same time pyruvate in-
creased after N repletion. Fructose bisphosphate aldol-
ase (FBA2) and glucose-6-P-isomerase (PGIC) showed
a peak after 5 h and were then repressed until N reple-
tion. This repression might lead to the accumulation of
the glucose-6-P-pool which could be channeled into
starch synthesis. Indeed, starch accumulates during N
starvation [4,13]. Starch synthases (SS1, SS2, SS4,
GBSS1) were upregulated during starvation, and quickly
decreased after N repletion. The sugars fructose, glu-
cose, and trehalose are accumulated during starvation
(+15-, +5-, and +9-fold, respectively), being reduced
after N repletion. Trehalose has been described as a
substitute of N-containing compatible solutes [43] and
a positive regulator of starch biosynthesis [44]. More
recently a key role of trehalose in stress responses by

regulating the SNF/bZIP system was postulated [45]. Glu-
cose and fructose can also act as regulators of this system
involving hexokinase (HXK) and potentially sucrose and
trehalose metabolism [46]. However, sucrose metabolism
is not clarified completely in Chlamydomonas reinhardtii.
One gene which is at least assigned to sucrose metabolism
is sucrose phosphate phosphatase (SPP). HXK and SPP
abundances were already increased 24 h after N starva-
tion, showing a maximum peak after 72 h, being quickly
downregulated after N repletion.
On the other hand, the pool of glucose-6-P can also

enter the oxidative pentose phosphate pathway. The
rate-controlling enzyme of this pathway glucose-6-P-de-
hydrogenase (G6PDH) and 6-phosphogluconate de-
hydrogenase (6PGDH) showed an increased abundance
under N starvation with a peak 5 h after N repletion (+3
to 5fold). In contrast, nonoxidative enzymes, transaldo-
lase and cytosolic ribose-5-P-isomerase, showed an op-
posite trend with a minimum presence after 24 h of
stress, potentially reducing the synthesis of ribulose-5-P
(see discussion below).
To extend the classical correlation analysis, we applied

Granger causality analysis (see also [22,38,47,48]). Here,
time-lagged correlations are exploited with the potential
that pairs of precusors and products can be identified.
The Granger causality function is implemented in the
COVAIN toolbox [22,49]. The COVAIN function also
applies a Benjamini-Hochberg correction to reveal only
significant correlations (for further information see the
COVAIN manual; http://www.univie.ac.at/mosys/soft-
ware.html). Because of the low number of time points,
only a few Granger causalities have been identified and
they have to be treated carefully. For example, in Figure 5A
Granger causality showed a steady increase of NADH:
ubiquinone reductase (Cre09.g415850.t1.2) that was
negatively correlated with one of the precursors of
NAD-biosynthesis nicotinic acid (Figure 5A), pointing
to an increase in mitochondrial activity. The citric acid
cycle (tricarboxylic acid, TCA) enzymes were in general
upregulated, with a twofold increase for most of the pro-
teins after 72 h, and a quick return to control levels after
N repletion. Both succinate dehydrogenase (SDH2) and
pyruvate dehydrogenase (PDH1) behaved the same. The
abundance of TCA intermediates was not consistent with
a unified response of this pathway. Pyruvate concentration
is reduced during N starvation while malate is accumu-
lated. Succinate and oxalate levels are constant during the
whole experiment. The malic enzyme (ME3) also remains
at constant levels during N starvation, but after repletion
its abundance is increased sevenfold, which is correlated
to a fivefold decrease of malate abundance. The upregula-
tion of the TCA cycle is also functional for the production
of carbon backbones for amino acid biosynthesis by ana-
plerotic reactions.
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Most of the proteins related to oxidative phosphoryl-
ation are accumulated during N starvation. NADH-DH
isoforms, ATP synthases, and cytochrome c oxidase
(COX) increased up to seven-, two-, or eightfold, re-
spectively (Additional file 2: Table S1). This response is
not shared with other nutrient depletions such as sulfur
[50] or temperature stress [51].

N starvation induces a decrease in abundance of proteins
involved in photosynthesis and increased carbon
concentrating mechanism (CCM)
A sharp decrease of light-dependent reactions proteins
(Additional file 3: Figure S2) followed N starvation. The

reduction of cytochrome b6f complex (negative fivefold),
ATP synthases (negative twofold), and photosystem II
(PSII) proteins may explain at least partially the observed
reduction in photosynthesis, confirming the observations
of Majeran et al. [52], which showed a degradation of
cytochrome b6f and light harvesting complexes (LHCs)
after N starvation. Interestingly, although only two PSII
proteins reached control levels, the Fv/Fm rate was fully
recovered 24 h after replenishment. These results showed
that, as proposed by Plumley and Schmidt [53], the effi-
ciency of PSII during N starvation is not mainly limited by
protein content but by other compounds such as chloro-
phylls. This was supported phenotypically and molecularly
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Figure 5 Examples for identified Granger causalities. Metabolite, protein, and physiological data were combined and analyzed with respect
to time-shifted correlations using the toolbox COVAIN [38]. This procedure, called Granger causality, allows for the identification of directed
correlations or nonlinear processes. Therefore, these associations must be carefully interpreted. (A) The metabolite nicotinic acid (NA) shows a
time-shift behavior with respect to an NAD-reductase. Because NA is an intermediate in NAD biosynthesis, the increased levels of NAD-reductase
may be involved in the consumption of NA. (B) A clathrin assembly protein involved in vesicle formation (COP II, see also Discussion) follows with
a time-shift the accumulation of total lipids. After readdition of N, the protein concentration declines. This protein is also highly correlated to a
major lipid droplet protein, glycerol, and various fatty acids, indicating its potential role in the formation of lipid bodies during N starvation (for
further details see Results and Discussion sections).
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with a sharp recovery of green cells in the culture and the
upregulation of the tetrapyrrole-related biosynthetic path-
ways (Figure 3).
Other pathways such as the cyclic electron flow have

been recently described as essential mechanisms for photo-
synthesis [54] to provide ATP in situations of stress [55].
Cyclic electron flow-related enzymes showed a peak after
72 h (up to threefold), being then reduced after repletion,
confirming its essential role as initially suggested by Peltier
and Schmidt [56].
Most of the enzymes belonging to the CO2 fixation

pathway, like RuBisCO large subunit (RBCL), FBPase,
transketolase, or phosphoglycerate kinase, were reduced
under N starvation (Additional file 3: Figure S2) as pre-
viously pointed out in [34]. Other proteins such as Ru-
BisCO activase (RBCA) or phosphoribulokinase (PRKA)
were increased with time, with a maximum abundance
peak measured after 72 h in the case of PRKA.
Carbonic anhydrases (CAH1, CAH3, CAH7, and

CAH8) belonging to CCMs are differentially regulated
during N starvation. CAH3 decreased in abundance; con-
versely, CAH7 and CAH8 increased in abundance, peak-
ing at 72 or 77 h. Phosphoenolpyruvate carboxylases
(PEPC1, PEPC2) were not detectable when N was present
in the media (0 and 96 h) and its maximum abundance
was detected at around 72 h. Apparently, C. reinhardtii is
highly flexible to maintain CO2 fixation, triggering specific
enzymes depending on the type of stress, as cold stress
was characterized by increased PEPC2 and CAH3 [22].
We have not detected a good correlation between changes

of photosynthesis-related proteins and its transcripts (r2 =
0.166), showing that the specific regulation of protein spe-
cies abundance does occur at the translational level, but also
by posttranslational and degradation mechanisms.

Nitrogen metabolism quickly adapts to an environment
without ammonia
N starvation leads to an increased abundance of specific
mRNAs, proteins, and metabolites [15,33,34,57]. In our
study we used the strain CC503, a nit1 nit2 mutant lack-
ing an active nitrate signaling pathway (nit2). As expected,
no differences within nitrate transporters, nitrate, and
nitrite reductases (Additional file 4: Figure S3) were
detected. By contrast, proteins involved in NH4

+ assimila-
tion were overaccumulated: two ammonia transporters
(g3261.t2, Cre13.g569850.t1.2) were induced by N starva-
tion. Interestingly, Cre13.g569850.t1.2 accumulation con-
tinued with a maximum abundance 24 h after N repletion
(a threefold increase compared to 24 h of N starvation),
indicating a long responsive time in this element. Enzymes
of the Glu-Gln (GS/GOGAT) system were also upregu-
lated, and the abundance of all glutamine synthase (GS)
isoforms increased five- to tenfold, just to decrease quickly
to control levels after N repletion. On the other hand,

glutamate synthase (GSN) isoforms behave differentially:
GSN1 abundance is stable, while GSN2 was induced by N
starvation. Glutamate dehydrogenases (GDH1, GDH2),
involved in N degradation, showed a tenfold decrease
starting to respond to N repletion after 24 h (slower than
GS and GSN enzymes). The correlation of fold change at
transcript and protein levels (r2 > 0.8) points to the tran-
scriptional regulation of this system.
The central amino acid metabolism and some degradation

pathways were decreased (two- to threefold) after N starva-
tion (Figure 3). Conversely, the glutamate family pathway
quickly responded to the availability of N, being strongly
upregulated by N starvation with a fourfold increase in
N-acetyl-gamma-glutamyl-phosphate reductase (AGPR),
arginosuccinate lyase (AGS1) and synthase (ARG7). Fur-
thermore, three enzymes of the branched amino acid bio-
synthesis (acetolactate synthase 1 and 2, ALS1, ALS2;
acetohydroxy acid isomeroreductase, AAI1) showed
abundance peaks at 5 h and 77 h. Most of the amino
acids were tightly connected in the sPLS correlation
network (Additional file 11: Figure S10) with glutamate
and its derivative pyroglutamic acid among the central
nodes. These nodes also linked proteins involved in a
wide range of activities and functions, showing the di-
versity of the responses triggered by N starvation.

Cytosolic ribosomes are accumulated during N starvation,
while chloroplastidic ribosomes are degraded
A general ribosomal degradation and resynthesis is clas-
sically associated to N starvation [58]. These observations
are partially supported, at least for chloroplast ribosomes,
by a recent high-throughput transcriptomic study [33].
We detected a differential behavior between chloroplast
and cytoplasmic ribosomes (Additional file 5: Figure S4).
Evidence of protein accumulation was observed for cyto-
solic ribosomes, with a two- to tenfold increase in the pro-
teins corresponding to 40S. In the case of chloroplastidic
ribosomes, the abundance of both subunits decreased
after N starvation, being downregulated by more than
40% of the quantified proteins. However, these proteins
quickly responded to N replenishment, recovering its
initial abundance values in 5 h. Our data refine the
current model of ribosome recycling following N starva-
tion, in contrast to previous theories pointing to an untar-
geted ribosomal degradation-resynthesis. Here, we rather
observe a targeted accumulation of cytosolic and a deg-
radation of chloroplastidic ribosomes. Furthermore, the
differential behavior of cytosolic, increased, and chloro-
plast, decreased, ribosomes suggests a more active role of
the nuclear encoded proteins for adapting to N starvation.

Response of lipid metabolism to N starvation
N starvation led to the accumulation of lipids (Figures 1
and 2) mainly in the form of TAGs [10]. In consequence
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we expected to detect upregulated lipid biosynthetic
pathways but, surprisingly, most of the enzymes of the
fatty acid biosynthesis were not changed after starvation
(Additional file 6: Figure S5A). The key enzymes 3-
ketoacyl-CoA-synthase 1 (KAS1), which catalyzes the re-
action of acetyl-ACP with chain-extending malonyl-ACP,
and one isoform of enoyl-ACP-reductase (Cre06.g294950.
t1.3), which catalyzes the last step of the fatty acid biosyn-
thesis, are downregulated. This behavior was previously
shown at protein level [59]. The downregulation of two
triglyceride lipases (Cre01.g002400.t1.3, g9707.t1) suggests
that this decrease compensates the decrease in lipogenic
enzymes allowing an effective lipid accumulation. At tran-
script level a modest increment (less than +2-fold) of bio-
synthetic genes of fatty acids under N deprivation was
observed [33]. An undescribed monogalactosyl diacylgly-
cerol synthase annotated to locus g14367.t1 showed
a +3-fold change following N starvation. The product of
this reaction could serve as a substrate for the desaturation
of oleic and linoleic acid [60] while also controlling the cell
proliferation by blocking replicative DNA polymerase as
described in animals [61]. The pool of glycerol, essential
for the formation of TAG, was significantly increased after
N starvation (+4-fold; Additional file 2: Table S3), and can
be explained by the accumulation of glycerol-3-phosphate
dehydrogenase/dihydroxyacetone-3-phosphate reductases
(GPD2, GPD4) (Additional file 6: Figure S5B). These en-
zymes showed a high correlation to glycerol in the inter-
action network (Additional file 6: Figure S5C). This
network also links acetate, glycerol, and C18:2, oxidore-
ductases, ribosomal proteins, and a major lipid droplet
protein (Cre09.g405500.t1.3) [62,63]. This protein has a
high similarity to a major protein in lipid droplets in Hae-
motococcus pluvialis and Dunaliella (BLAST e-values of
10−84 and 10−46, respectively, NCBI-nr database). Cre09.
g405500.t1.3 was not detected at 0 h, but from 5 h to 72 h
it increased its abundance up to 14-fold. Proteins for NH4

+

transport and assimilation and specific signaling proteins
(BSU1) were also part of this network. These results dem-
onstrate the power of the integrative networks based on
sPLS-correlation for discovering new interactions between
proteins and metabolites, allowing the capability to also
accurately associate uncharacterized proteins to functional
clusters.
N starvation leads not only to the accumulation of lipids,

but also to the change of the total lipid composition of the
cells. We have studied 10 long chain fatty acids (Additional
file 2: Table S3, Additional file 6: Figure S5D). Four of them,
C16:3, C16:0, C18:2, and C18:3 (9,12,15), were significantly
different in our experiment. C16:0, C16:3, and C18:2 were
accumulated, while C18:3 (9,12,15) was reduced. Chloro-
plastidic desaturase Δ12 (CDD12, Cre13.g590500.t1.2) is
eightfold reduced at transcript level, and may explain the re-
duction in C18:3. Stearoyl-CoA desaturase Δ9 (SCD, Cre09.

g397250.t1.2) transcripts are twofold increased during N
starvation and may also explain the increase of C18:2. How
this system is regulated is not clear, and cannot be elucidated
alone at the protein or transcript level.
N replenishment causes a quick activation of beta-

oxidation pathways, with increased levels of five acyl-
CoA-oxidase isoforms and also the recovery of the levels
of the lipase Cre01.g002400.t1.3.

Nitrogen starvation induces significant changes in the
nuclear proteome
To further investigate changes at the nuclear regulatory level
we first studied nuclei-enriched fractions of C. reinhardtii
(Additional file 2: Table S2). Secondly, we performed an in
silico analysis of total cell and nuclear fractions focusing on
nuclear proteins related to signaling and transcriptional
regulation and finding 268 proteins (Additional file 2: Table
S8), from which 136 were differentially expressed (P ≤0.01).
As expected, the levels of histones and other core proteins
did not significantly change with time, whereas other
chromatin-interacting proteins followed different dynamics.
N starvation induced an initial decrease in RNA polymerase
I and RNA helicases, which were partially recovered after re-
pletion. On the other hand, N starvation triggered the accu-
mulation of DNA binding proteins, such as Cre06.g252000.
t1.2, a leucine/zipper transcription factor, which was quickly
silenced again after N replenishment (a fivefold reduction in
5 h). An Argonaute-like protein (AGO; Cre04.g214250.t1.3)
was also induced by N repletion, suggesting a role of the
siRNA system [64]. The DEAD/DEAH box helicase Cre01.
g021600.t1.2 is also accumulated in the absence of N in the
medium, indicating that some SWI/SNF regulation pathway
may be occurring. This class of enzymes and regulation has
been described to be part of the abiotic stress response
mechanism [65]. We have used the Plant Transcription Fac-
tor database [66] to mine the Chlamydomonas genome re-
lease 5.3 for finding transcription factors. However, many of
these postulated transcription factors were not detected in
the nuclear-enriched fractions, pointing to its low abun-
dance and the technical challenges for high-throughput
identification. To date most of these proteins are uncharac-
terized, and even for the known families their members can
have different regulatory roles [67].
N starvation is known for triggering gametogenesis and

sexual reproduction in C. reinhardtii [31], but we have
not detected related proteins, probably because they are
expressed at very low levels or they are not functionally
annotated.

Discussion
C. reinhardtii cells respond to changes in the availability of
ammonia by drastically changing their metabolism and nor-
mal development. In this work we analyzed the changes in
the metabolome and proteome, also integrating other
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available datasets, thus presenting the most complete and
comprehensive overview of the response to total available
nitrogen and its recovery. The design of this study, together
with the employed analytical techniques, allowed us to up-
date current knowledge, providing new insights for the un-
derstanding of the complex metabolic dynamics that follow
N starvation and, for the first time, recovery of vegetative
growth after N replenishment, by using high-throughput
omics analyses.

Nitrogen/carbon balance defines the metabolic switch
under N starvation
The sensing of the balance between N and C is transduced
into a change in N- and C-responsive pathways, leading to
a metabolic adjustment that dominates many pathways
and defines the observed physiological and phenotypical
changes. However, it has to be considered that the pres-
ence of acetate in the medium will change the cellular
sensitivity towards the maintenance of favorable C/N ra-
tios [68], causing increased responses to the oxidative
stress as a side effect of the downregulation of photosyn-
thesis and carbon assimilation [69]. N starvation also leads
to increased ammonia uptake and assimilation proteins
and a decreased nucleic acid and protein biosynthesis,
which may be the cause for the reduced cell growth.
The reduced photosynthesis is proposed to be mediated

by the degradation of LHCs and cytochromes, rather as
an adaptive mechanism to stress and energy contents than
as a way to recycle nitrogen. The reduction of PSII activity
would lead to the production of less reactive oxygen spe-
cies, but at a cost of reducing ATP and NADPH produc-
tion. But even in a situation of reduced growth, as
observed under N starvation, energy is still necessary to
sustain metabolism. We detected an increase of cyclic
electron flow proteins which pump H+ to the thylakoid
lumen in order to increase ATP production. Furthermore,
and based on the metabolic reconstruction, an increased
pool of glucose-6-P was predicted. Part of this glucose-6-P
can join the initial reactions of the oxidative pentose path-
way. The corresponding enzymes were accumulated, ra-
ther than glycolytic enzymes. In contrast, nonoxidative
enzymes, transaldolase, and cytosolic ribose-5-P-isomer-
ase showed an opposite trend with a minimum presence
after 24 h of stress, potentially reducing the synthesis of
ribulose-5-P. The pool of ribose-5-P could enter the chlo-
roplastic reductive pentose phosphate pathway to produce
3-phosphoglycerate, which can continue with the glyco-
lytic pathway. The result of this reprogramming could be
the production of enough pyruvate and NADPH +H+

to support biosynthetic processes at a cost of half ATP
payback compared to glycolysis. This hypothesis was
supported by the accumulation of phosphoribulokinase
(PRK1), which followed the same abundance trend
as G6PDH and 6PGDH. These changes in protein

abundance are coincident with the changes in the mRNA
expression levels given by [33] in an N-depletion study;
furthermore, [34] recently described the increased accu-
mulation in the metabolites 3-phosphoglycerate and
ribose-5-P during N starvation. This remodeling, although
energetically unfavorable, can be used by the cell to main-
tain adequate levels of NADPH+H+, which are required
to maintain an increased lipid production. However, fu-
ture studies applying flux analyses are necessary to investi-
gate these processes in more detail.
The functional role of cyclic electron flow and the

quick recovery of PSII efficiency (correlated rather to
pigment biosynthesis than to the recovery of PSII pro-
teins) indicate that photosystems and electron transfer
chain were fully functional during N starvation, even
though the abundance of some subunits and cyto-
chromes was reduced.
Athough CO2 fixation enzymes were in general re-

duced, the abundance of CCM proteins CAH7, CAH8,
and PEPC1 increased. CAH7 was only detected after a
long exposure to N depletion (72 h) and may explain
why this enzyme was not detected in previous studies
limited in time to not more than 48 h [33,34]. CAH7
and CAH8 are similar and both of them contain a
hydrophobic chain which localizes them in periplasmic
space associated to the plasma membrane, probably cov-
ering decreased CAH1 and 2 activities and transferring
inorganic CO2 to a transport system or pore [70]. The
specific role of these CAHs under nutrient deprivation
remains undetermined and cannot be easily explained at
this time. By contrast, the kinases belonging to the
Snrk2-SNF2 family have an essential role in the control
of gene expression through the activation of bZIP tran-
scription factors and SWI/SNF chromatin remodeling
complexes [71,72]. These were quickly responsive to N
starvation in our experimental system. Kinases of this
family control the lipid accumulation in yeast [73], and
have been linked to increased tolerance to N deficiency
in Arabidopsis [74] or S in C. reinhardtii [50]. SNF fam-
ilies, also implied in energy sensing and gene regulation
[75], control the metabolic response to other stresses
like cold acclimation, inducing the accumulation of
sugars and starch [51]. The accumulation of the signal-
ing molecules glucose-6-P and trehalose [45,76] and the
specific dynamics of HEX and SPP found in the N star-
vation, provide an extra support to this hypothesis.

Branched chain amino acids linked N metabolism and cell
growth
The unavailability of N caused a rearrangement of amino
acid metabolism at the same time. The pool of glutamate,
essential for ammonia assimilation, was drastically reduced
after starvation, triggering aspartate aminotransferases and
citrate synthases from the oxoglutarate pathway. Enzymes
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belonging to branched chain amino acids (BCAs) were
negatively correlated to the abundance of Val, Ile, and Leu,
which indicates that enzyme abundance is increased to com-
pensate the lower abundance of BCAs. Leu and Ile were sig-
nificantly correlated (r2 > 0.9) to Cre16.g687350.t1.2, an acyl-
CoA oxidase and mediator of amino acid degradation, and a
monofunctional catalase which may be controlling the oxi-
dative damage. Interestingly, the same interaction cluster
was found when analyzing the sPLS-based network; it was
the bridge that linked FW and amino acid-nitrogen clusters.
The increased abundance of carbamoyl phosphate syn-

thetase subunits (CMP1, CMP2) and the dynamics
shown by arginine and ornithine suggest the importance
of the urea cycle for recycling the ammonia originated in
the protein breakdown.

Are glycerol metabolism, MLDP, and COP II proteins key
elements for lipid droplet formation and TAG
accumulation?
The increased abundance of total lipids and lipid droplets
following N-deprivation could indicate that the TAG of
the droplets is synthesized de novo. The expected increase
of the fatty acid biosynthetic pathway was, in general, not
present but two Acetyl-CoA-Synthetases (g1224.t1, Cre12.
g507400.t1.2) required for the activation of fatty acids and
forming part of lipid droplets [62] were significantly accu-
mulated. Glycerol metabolism, needed to provide the
backbone for the glycerolipid biosynthesis, was signifi-
cantly responsive, with a combined accumulation of the
proteins of this pathway of more than 50-fold. Cre09.
g405500, a major lipid droplet protein (MLDP) [62,63], in-
creased 14-fold under N starvation and was linked to
C18:2 and glycerol, showing further correlation (>0.93)
with clathrin and COP II, which forms vesicle coats and
allows liposome fusion [77]. The MLDP protein was iden-
tified by Moellering and Benning and by James et al. after
analyzing lipid bodies associated proteins [62,78]. Recently
Wase et al. described a similar behavior of this protein
under N deprivation, showing a 4.1-fold change after six
days of culture without nitrogen [59]. MLDP is highly cor-
related with lipid accumulation during N starvation and
dropped completely after N replenishment. MLDP and
other proteins linked by sPLS and Granger causality ana-
lysis such as COP II provide hub proteins in the adapta-
tion process to N starvation and revovery (see Figure 5B).
These proteins are involved in vesicle formation, suggest-
ing their strong role in lipid body formation, thereby con-
fining the TAGs into storage structures and promoting
their accumulation. Lipid body formation can be also in-
fluenced by GTPases as COP II protein is inactivated by
GTPases [79], which we also found to be decreased during
N starvation. Correlation networks need to be further
analyzed since they also reach fatty acid and starch

biosynthetic enzymes, pointing to key processes and
promising targets for strain engineering.
The increased C18:2 and the consequent alteration of

the different fatty acids suggest a remodeling of the
membranes, and thus fatty acids in membranes seem to
be recycled into TAGs. TAG lipases and phospholipases
were downregulated.
N repletion led to an increased beta-oxidation for rapid

lipid degradation and also increased the abundance of five
acyl-CoA-oxidases. These were not correlated to enzymes
of the BCA metabolism, demonstrating differential regula-
tory pathways. The lipase Cre01.g002400.t1.3 that was re-
covered after N replenishment was negatively correlated
(>|0.9|) to the translation initiation inhibitor (Cre12.
g551350.t1.2) and a protein showing a DNA methyltrans-
ferase domain (Cre12.g508050.t1.2). This might indicate
that the transcriptional response to N starvation is regu-
lated not only by transcription factors, but also by epigen-
etic mechanisms, as suggested by [50].

Can N recovery help us to understand lipid accumulation
or metabolism and provide new targets for
biotechnological improvement of oil production?
The study of specific changes occurring 5 h and 24 h
after N resupply provides specific targets that could have
potential use for bioengineering applications. Some of
them have been depicted above (PEPC, CAH); however,
there are specific targets that can be highlighted. One of
the possible ways of intervention involves the enzymes
and proteins related to lipid body stabilization and deg-
radation with MLDP a key protein in the lipid biogenesis
network. MLDP has been studied extensively and, des-
pite its silencing by RNAi, does not lead to an increased
lipid accumulation; however, the droplet size is signifi-
cantly increased [62]. This is a surprising result since
our data, and also that of [54], points out that the abun-
dance of this protein is positively correlated to lipid ac-
cumulation. The combined manipulation of this protein
together with beta oxidation, silencing acyl-CoA oxi-
dases (especially Cre16.g687350.t1.2, Cre11.g467350.
t1.2) and lipase (Cre01.g002400.t1.3), could result in an
increased accumulation of lipids. Lipid transporters
also play a key role in lipid metabolism, with Cre15.
g641200.t1.2 a mitochondrial fatty acid transporter as
a responsive candidate. g13764.t1, Cre13.g573150.t1.3
(hydroxylases) and Cre11.g467350.t1.2 (acyl-CoA oxi-
dase) were accumulated (hydroxylases) or repressed
(acyl-CoA oxidase) under N starvation, following the
same trend as its transcripts.
Interestingly, these genes were not reported to be signifi-

cantly expressed under other stresses such as C, S, or Fe
deprivation or oxidative stress according to AlgaePath [80].
However, finding central metabolism enzymes related to
lipid biogenesis and only responsive to N starvation (when
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comparing with the available NGS/proteomics datasets) is
particularly difficult. Furthermore, modifying the gene ex-
pression of a number of genes is tricky, and a perfect flux
model should be available in order to avoid unintended ef-
fects. Previous attempts to increase lipid accumulation by
targeting specific genes have not been completely successful
[10]. This indicates that lipid accumulation is the result of a
complex regulatory network linking cellular processes such
as vesicle formation as well as processes of central metabol-
ism such as G6P, branched chain amino acids, and energy
metabolism. This is clearly demonstrated by the system-
level analysis of our study.
In this sense, our results and other proteomic and tran-

scriptomic datasets [23,33-35,50,59] show many comple-
mentary genes/protein clusters responsive to stress [80].
This suggests that there are major points of metabolic regu-
lation based on common signaling elements that can be
considered as potential targets for increasing lipid accumula-
tion. Numerous DNA and RNA binding proteins and heli-
cases showed differential accumulations in our assay
(described above), but these candidates could not be easily
proposed as biotechnological targets since their interaction
network is unknown. On the other hand, the BRI1 suppres-
sor (Cre01.g050850.t1.2), an inhibitor of BRI1, a receptor-
like kinase which is responsive to brassinosteroids located
both in plasma and in nuclear membranes [81], was corre-
lated to glycerol and C18:2, and it is known to initiate a sig-
naling cascade leading to regulation of gene expression in
the nucleus through BZR/BES proteins [82]. BZR is known
to block the metabolic switch in response to P deprivation
[83] and other abiotic stresses [82] in Arabidopsis and also
inhibits chloroplast development [84], so a similar effect
could be expected in Chlamydomonas. Thus, blocking not
only the receptor, but also the transcription factor BZR by
14-3-3 proteins may be needed to respond to N starvation.
In our dataset a 14-3-3 protein responding to N deprivation
and recovery was quantified (Cre06.g257500.t1.2). The BRI1
suppressor was only detected when N was not present
in the medium, showing a quick adaptive response to
environment.
FtsH chloroplast metalloproteases are closely related to

development [85], stress responses [86], and chloroplast
function [87], also regulating lipid degradation in bacteria
[88]. We found three metalloproteases (Cre12.g485800.t1.2,
Cre17.g720050.t1.2, g14586.t1) that were downregulated
when N was absent from the media. Interestingly, and ac-
cording to [74] and considering all available datasets, Cre17.
g720050.t1.2 responds only to N starvation, making this en-
zyme a potential candidate for further study.

Conclusions
The comprehensive analysis of systemic responses to N
starvation and recovery in C. reinhardtii demonstrated
that metabolism and growth are significantly affected at

a system level. A complex network of stress-responsive
proteins, metabolites, and physiological parameters was
established, expanding our current understanding of
physiological processes driven by a small set of proteins.
Many uncharacterized proteins were identified by multi-
variate correlation network analysis to be involved in the
response to N starvation. By N readdition it was possible
to extract a list of proteins that showed a fast recovery
effect, suggesting that they are highly involved in the re-
establishment of vegetative cell growth. This study pro-
vides new insights and alterations to previous models
and offers a complex dataset, which will be further ana-
lyzed towards increasing our biochemical understanding
of the adaptive mechanisms to N starvation and recovery
in Chlamydomonas.

Methods
Strains and cultures
Chlamydomonas reinhardtii CC-503 cw92, mt+, agg1+,
nit1, nit2 (available at the Chlamydomonas Culture Collec-
tion, Duke University) cultures were grown in HEPES-
Acetate-Phosphate medium supplemented with 7 mM
NH4Cl (HAP +N; TAP medium in which Tris was replaced
by 5 mM HEPES) at 25°C with shaking (120 rpm) in a 14:8
light:dark photoperiod (85 μmol m-2 s-1; Sylvania GroLux
lamps). Cultures were pelleted down by centrifugation and
resuspended in HAP -N (NH4Cl was replaced by 7 mM
KCl) media to a final density of 1-3 × 105 cells mL-1. Cells
were sampled at times 0, 5, 24, and 72 h. After this sam-
pling, NH4Cl was added to the HAP-N cultures to a final
concentration of 7 mM, and then the cultures were sam-
pled after 5 h (77 h) and 24 h (96 h).

Physiological measurements
At each harvesting time the cell density was measured
by employing a Thoma counting chamber and the fresh
weight was determined gravimetrically. The photosyn-
thetic rate was measured with an imaging/pulse-ampli-
tude modulation fluorimeter (OS1-FL, Opti-Sciences).
Total lipids were extracted from frozen pellets with

200 μL of a mixture of chloroform:isopropanol (1:1) and
vigorous vortexing for 3 min. The samples were centri-
fuged (14.000 × g, 5 min, room temperature) and the su-
pernatants were transferred to a new tube. The pellet
was re-extracted with 500 μL of hexane and vigorous
vortexing for 3 min. The samples were centrifuged, and
the combined supernatants were dried in a speed vac.
The amount of lipids was determined gravimetrically.

Microscopy
The Chlamydomonas cultures were fixed in 3% (v/v) formal-
dehyde and kept at 4°C until staining. The cells were stained
in a mixture of HEPES-Acetate-Phosphate medium with 3%
(v/v) formaldehyde and 5 μg mL-1 of Nile red and incubated
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15 min in the dark before imaging. Nile red was freshly
added to the staining solution from a concentrated stock
(0.1 g mL-1 in acetone). The stained cultures were directly
observed by adding 15 μL to each slide under an LSM 780
confocal microscope (Zeiss, Germany) and Z series covering
all of the cell height were captured. DIC, Nile red, and auto-
fluorescence were recorded in different channels. From
these stacks the four images closer to the middle section
were selected and used for obtaining a maximum projection
using the software Fiji (Figure 2).

Nuclei isolation
Nuclei were isolated following the protocol described in
[89] starting from 250 mg of fresh weight. Isolated nuclei
were separated from cell debris by the use of a Percoll
cushion.

Quantitative proteome analysis (GeLC-LTQ-Orbitrap-MS)
Proteins were extracted from frozen pellets (40 to 50 mg
fresh weight), gel fractionated, and trypsin digested following
a previously described protocol [18]. Ten micrograms of
digested peptides were loaded per injection into a one-
dimensional nano-flow LC-Orbitrap/MS and resolved in a
90-min gradient from 5 to 40% (v/v) acetonitrile/0.1% (v/v)
formic acid using a monolithic C18 column (Chromolith
RP-18r, Merck, Darmstadt, Germany). MS analysis was per-
formed on an Orbitrap LTQ XL mass spectrometer [22].
The raw data were searched with the SEQUEST algo-

rithm present in Proteome Discoverer version 1.3
(Thermo, Germany) as described by Valledor et al. [17]
using the Chlamydomonas genome v.5.3 (17,737 acces-
sions), Chlamydomonas mitochondria (8 accessions),
and chloroplast (76 accessions) databases. Only highly
confident proteins, defined by at least two peptides with
XCorr value greater than charge state +0.25 and 5%
FDR, were considered for this work. Protein functions
were identified using the BioMart tool available at Phy-
tozome (http://www.phytozome.org), Mercator (http://
MapMan.gabipd.org/web/guest/app/mercator), and the
Algal Functional Annotation Tool [28].
The identified proteins were quantitated by a label-

free approach based on total ion count followed by an
NSAF normalization strategy:

NSAFð Þk ¼ PSM=Lð Þk=XN

i¼1
PSM=Lð Þi

in which the total number of spectra counts for the
matching peptides from protein k (PSM) was divided by
the protein’s length (L), then divided by the sum of PSM/L
for all N proteins within each sample. Before quantitation
a second filtering step was performed to retain only those
proteins with enough abundance (minimum abundance of

0.001) for a low-biased quantitation [90,91]. Statistical
analyses were conducted according to [92,93]. Proteins
were accounted for quantification only if they were
present in all of the biological replicates (n = 4) at least
one sampling time, or in five samples corresponding to
different times. Missing spot volumes were determined
from the dataset employing a sequential K-nearest neigh-
bor algorithm. Univariate comparison between treatments
was performed by the nonparametric Kruskal-Wallis test
over log-transformed data for obtaining P-values (Additional
file 2: Tables S1, S2, S8). Protein abundance values were
scaled and subjected to principal component analysis (PCA),
discriminant analysis (PLS-DA), sparse partial least square
(sPLS), and heatmap-clustering analyses (Additional file 2:
Tables S4-S6).

GC-MS polar metabolite and fatty acid methyl ester
(FAME) analyses
Polar metabolites were extracted from frozen pellets (15
to 20 mg fresh weight) as described in [94]. Fatty acids
were extracted from frozen cell pellets (15 to 20 mg) pre-
viously disrupted with liquid nitrogen and glass beads in a
homogenizer (15 seconds, maximum speed, Retsch Mixer
Mill MM400). One mL of cyclo-hexane:water (1:0.4) was
quickly added to the homogenized tissue, and mixing was
repeated with the same conditions. The organic phase was
recovered after centrifugation (24,000 × g, 10 min) and
transferred to a new tube. Pellets were re-extracted follow-
ing the same procedures, and both organic fractions were
combined in a 2-mL tube and dried by speed vac.
Sample derivatization (polar metabolites), methylesterifica-

tion (lipids), and GC-MS measurements were carried out
following the procedure previously developed in our group
[95] on a triple quad (TSQ Quantum GC; Thermo) instru-
ment. Metabolites were identified based on their mass spec-
tral characteristics and GC retention times, by comparison
with retention times of reference compounds in an in-house
reference library. Only metabolite peaks that were detected
in all of the biological replicates for at least one sampling
point or in more than 18 samples were further considered.
Normalized abundance values for each metabolite were ob-
tained by dividing peak areas by the total peak areas of each
sample (sample-centric normalization). Significant differ-
ences between sampling times were assessed by One-way
ANOVA (Additional file 2: Table S3), and multivariate ana-
lyses were conducted together with proteins and physio-
logical data as described above.

Bioinformatic tools
All statistical procedures described above were per-
formed using the software R v2.15.2 [96] core functions
plus the packages SeqKNN, mixOmics, and gplots. Con-
focal microscopy images were processed and analyzed
using the last version of the software Fiji [97] employing
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core packages. MapMan 3.5.1R2 [42] was used to make
a functional classification of the proteins. A map for the
proteome of the JGI_236 version was specifically created
using Mercator [23] and the Algal Functional Annota-
tion Tool [28]. The accuracy of the classification was su-
pervised by comparison to local databases, also adding
some manual annotations. Experimental data were clas-
sified according to this newly developed map.
We have used the dataset of transcriptomic data pro-

vided in [33]. This dataset was generated using version 4
of the Chlamydomonas genome. To compare this dataset
to ours, we have BLASTed Chlamy 4 against Chlamy 5.3
considering significant all hits with e-values lower than
10-80. The equivalences between Chlamy 4 and Chlamy 5,
as the Illumina-based normalized abundance employed
for this work, are given as supplementary material
(Additional file 2: Table S9).
Granger causality was tested with the statistical tool-

box COVAIN [38]. Parameter settings for COVAIN were
Granger lag time 1 and Granger significance P-value
0.05 including a Benjamini-Hochberg correction. A list
of all identified Granger causalities can be found in
Additional file 2: Table S10.

Additional files

Additional file 1: Figure S1. Comparison of cell growth (fresh weight)
of N repleted and depleted cultures of C. reinhardtii CC503 grown under
the same conditions employed in this study. Cultures were grown in
triplicate.

Additional file 2: Table S1. List of the 1,534 quantified proteins in
whole cell fractions. Protein abundance was determined following an
NSAF approach. The mean abundance ± SD for each sampling time is
indicated, as well as P- and q-values. Percentage of coverage and number
of unique peptides used for identification and score are indicated.
Deflines, E.C. number, and MapMan bins were manually curated.
Table S2. List of proteins extracted from nuclei-enriched extracts. Spectra
were processed as previously described. Deflines, E.C. number, and
MapMan bins were manually curated. Table S3. List of the 52 quantified
metabolites. Metabolite abundance was estimated from the peak areas of
the indicated characteristic ions. The mean normalized abundances with
respect to control ± SD for each sampling time are indicated as well as
P-values. Table S4. PCA summary, sample scores, and variable loadings
of the integrated (proteins, metabolites, physiological measurements)
dataset. Table S5. PLS-discriminant analysis correlations of the integrated
dataset. Table S6. sPLS analysis correlations of the integrated dataset
employing proteins-metabolites as predictive variables and physiological
measurements as responsive variables. Table S7. Values of individual
replicates of the datasets employed for multivariate analyses. (a)
Normalized abundances for proteins; (b, c) normalized abundances for
polar metabolites and FAME; (d) physiological measurements. Table S8.
List of nuclear proteins obtained after the joint analysis of total protein
and nuclear extracts. Spectra were processed as previously described,
but one step of in silico fractionation was added to remove non-nuclear
contaminants. Deflines, E.C. number, and MapMan bins were manually
curated. Table S9. Correspondence between 454 dataset (Miller et al.
[33]), Chlamydomonas 5.3, and MapMan analyses. Abundace of 454
detected transcripts is also provided. Table S10. Granger causality
analyzed by COVAIN (Sun and Weckwerth, 2012 [38]) between metabolites,
proteins, and physiological data.

Additional file 3: Figure S2. Representation of nitrogen starvation- and
recovery-induced changes in photosynthetic pathways using MapMan.
Individual plots show the variations in protein abundance at the six
studied time points. Only differential proteins (P < 0.05) were plotted.
Protein abundances were normalized as a percentage of the maximal
value in the time series.

Additional file 4: Figure S3. Representation of simplified N transport,
fixation, and assimilation pathways showing N starvation- and recovery-induced
changes using MapMan. Individual plots show the variations in protein
abundance at the six studied time points. Only differential proteins (P < 0.05)
were plotted. Protein abundances were normalized as a percentage of the
maximal value in the time series.

Additional file 5: Figure S4. Representation of ribosomal proteins
using MapMan. Individual plots show the variations in protein abundance
at the six studied time points. Only differential proteins (P < 0.05) were
plotted. Protein abundances were normalized as a percentage of the
maximal value in the time series.

Additional file 6: Figure S5. Metabolic changes in lipid biosynthetic
pathways induced by N starvation. (A) MapMan-based representation of
the evolution of the enzymes related to fatty acid biosynthesis and
elongation. (B) Variations in the protein abundance of the functional
groups involved in lipid metabolism. (C) Evolution of the cellular content
of the indicated fatty acids during the time course experiment. (D)
sPLS-based network showing the most correlated proteins and metabolites
to glycerol and C18:2 nodes. C18:2 was connected to ammonia transport
and assimilation proteins, whereas glycerol was mainly connected to
glycerol biosynthesis proteins and NADH:ubiquinone oxidoreductases.
Interestingly, Cre09.g405500.t1.3 (major lipid droplet protein, with a
high importance in the model) links C18:2 and glycerol. This protein
was manually annotated to major lipid droplet protein. Other proteins
that link both metabolites are a ribosomal protein and g13518.t1 (annotated
as amine oxidase). Network interpretation: edge color indicates correlation
between nodes, circle diameter indicates the importance of each node
within the network, and node color its radiality. Figure was plotted
employing Cytoscape 2.8.3.

Additional file 7: Figure S6. Representation of nitrogen starvation- and
recovery-induced changes in nucleotide metabolism pathways. Individual
plots show the variations in protein abundance at the six studied time
points. Only differential proteins (P < 0.05) were plotted. Protein
abundances were normalized as a percentage of the maximal value in
the time series.

Additional file 8: Figure S7. Classification of the integrated dataset
employing different multivariate methods such as principal component
analysis, PCA (a,d), partial least squares discriminant analysis, PLS-DA (b,e),
and sparse partial least squares, s-PLS (c,f), for which proteins and
metebolites were used as predictive variables and physiological
measurements as explanatory. For all analyses the first two components
allowed an effective classification of the samples based on the sample time.

Additional file 9: Figure S8. Simplified sPLS-based network constructed
considering only highly correlated nodes (correlation > |0.85|). The three
main nodes established different correlations among them, with the
glycerol-C18:2 cluster negatively correlated to the others. Interestingly, the
fresh weight (FW) cluster is positively linked to the amino acids-myo-inositol
cluster by a bridge constituted by the branched amino acids. Val, Leu, and
Ile are positively correlated to a monofunctional catalase grouping with
amino acids, and on the other side to an acyl-CoA oxidase linked to the FW.
Surprisingly one enoyl-ACP-reductase, which is correlated to the amino
acids cluster, is negatively correlated to glycerol-C18:2. Glycerol is also
negatively correlated to Cre12.g536800.t1.2, a protein showing an
uncharacterized domain which is related to FW. Network interpretation:
edge color indicates correlation between nodes, circle diameter indicates
the importance of each node within the network, and node color its
radiality. Figure was plotted employing Cytoscape 2.8.3.

Additional file 10: Figure S9. Detailed representation of the fresh
weight (FW). FW is correlated to different kinds of enzymes: signaling
enzymes, mainly GTPases and Ca2+ dependent, endopeptidases,
oxidoreductases, and acyl-CoA synthases, oxidases, and dehydrogenases.
Node size is dependent on stress value and node color on radiality. Edge
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color indicates correlation (red, positive, green negative). Figures were
plotted employing Cytoscape 2.8.3. Only highly correlated nodes
(correlation > |0.85|) were plotted.

Additional file 11: Figure S10. Detailed representation of the amino
acid cluster. This cluster showed complex interactions, in which nitrogen
assimilation and amino acid metabolism enzymes interact with lipid
biosynthesis proteins. Based on this network, some relation between N
metabolism and lipid biosynthesis can be established, for example, at the
level of one enoyl-ACP-reductase, which correlated to Asp, Arg, Glu, and
myo-inositol, or a 3-oxoacyl-ACP reductase linked to Thr and myo-inositol.
Thus, myo-inositol is a metabolite that needs to be further investigated
since it is in the center of this cluster, linking amino acids, lipids, and sugars.
Node size is dependent on stress value and node color on radiality. Edge
color indicates correlation (red, positive, green negative). Figures were
plotted employing Cytoscape 2.8.3. Only highly correlated nodes
(correlation > |0.85|) were plotted.
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2.4 Targeted quantitative analysis of a diurnal RuBisCO subunit
expression and translation profile in Chlamydomonas
reinhardtii introducing a novel Mass Western approach

My previous research to this PhD-Thesis includes co-authoring the first systematic target pro-
teomics strategy for absolute quantification of proteins in Chlamydomonas reinhardtii (Wienkoop
et al, 2010), measuring 89 proteins from different metabolic pathways with a dynamic range
of 4 orders of magnitude; combined with a subcellular fractionation and two different growth
conditions (heteroautotrophic / heteroautotrophic), interesting insights on were achieved on
the activation of mitochondrial metabolism in air-adapted and CO2-limited autotrophic cells
or the distribution and relevance of certain enzyme isoforms, such as the CAHs. However, an
unexpected conclusion captured our interest: the measured values of both RuBisCO subunits
RbLS and RbSS differed considerably from the classical 1:1 stoichiometry of the holoenzyme,
as it had been previously suggested/assumed [338].
For the elucidation of the stoichiometry of the RuBisCO synthesis on Chlamydomonas rein-

hardtii, different proteomics approaches are performed on algae grown on heteroautotrophic
conditions with a dark/light photoperiod and with samples collected every 3h over a 24h gra-
dient. The Mass Western approach used for absolute protein quantification has been also
implemented: critical factors like equimolarity and accurate quantity of the standard peptides
have been improved through standard peptides designed with cross-concatenated peptide se-
quences from both RuBisCO subunits and an equalizer peptide, and including an additional
quantifier peptide. To exclude any kind of artifacts in our protein data, the results of the
cell extracts were confirmed with additional analyses: prefractionation with SDS-PAGE for
both LC-MS/MS, densitometric analysis and Western Blotting, and also through LC-MS/MS
measurements on RuBisCO holoenzyme, purified both with BN-PAGE and FPLC. For a more
accurate description of the diurnal oscillation of both subunits, the mRNA content for RbcLS
and RbcSS was also measured, and finally correlated to our proteomics data.

2.4.1 Declaration of authorship

The results of this chapter are presented in the form of a manuscript published in the journal
“Journal of Proteomics”. For this work, I contributed to the experimental design, carried out
the sampling and all the experiments relative to the proteomics section, collaborated in the
data mining and wrote the corresponding “Materials and Methods” section on the manuscript.

2.4.2 Published manuscript
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RuBisCO catalyzes the rate-limiting step of CO2 fixation in photosynthesis. Hypothetical
mechanisms for the regulation of rbcL and rbcS gene expression assume that both large
(LSU) and small (SSU) RuBisCO subunit proteins (RSUs) are present in equimolar amounts to
fit the 1:1 subunit stoichiometry of the holoenzyme. However, the actual quantities of the
RSUs have never been determined in any photosynthetic organism. In this study the
absolute amount of rbc transcripts and RSUs was quantified in Chlamydomonas reinhardtii
grown during a diurnal light/dark cycle. A novel approach utilizing more reliable protein
stoichiometry quantification is introduced. The rbcL:rbcS transcript and protein ratios were
both 5:1 on average during the diurnal time course, indicating that SSU is the limiting factor for
the assembly of the holoenzyme. The oscillation of the RSUs was 9 h out of phase relative to
the transcripts. The amount of rbc transcripts was at its maximum in the dark while that of
RSUswas at itsmaximum in the light phase suggesting that translation of the rbc transcripts is
activated by light as previously hypothesized. A possible post-translational regulation that
might be involved in the accumulation of a 37-kDa N-terminal LSU fragment during the light
phase is discussed.

Biological significance
A novel MS based approach enabling the exact stoichiometric analysis and absolute
quantification of protein complexes is presented in this article. The application of this
method revealed new insights in RuBisCO subunit dynamics.

© 2014 Elsevier B.V. All rights reserved.

Keywords:
RuBisCO
SRM
Mass Western
Chlamydomonas reinhardtii
Targeted protein absolute
quantification
Protein complex stoichiometry

1. Introduction

During the last decade, quantitative analysis of proteins and
their relative changes in abundance in response to environmen-
tal perturbation has become routine. Absolute quantification,

however, remains challenging. The most accurate method to
date is the utilization of the stable isotope dilution technique [1]
using isotopic labeled standard peptides of known amounts in
combination with the SRM approach. This method has initially
been used by Barnidge and colleagues [2] for the targeted
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absolute protein quantification of G protein-coupled receptor
rhodopsin using SDS-PAGE and was called Mass Western [3,4]
for the targeted absolute protein quantification of complex
in-solution digests. Different protein isoforms can be distinc-
tively quantified to yield absolute amounts from a complex
sample with a single MS analysis [3,5]. However, equimolarity
and accurate quantity of the standard peptides remain critical
factors for determination of precise protein complex stoichiom-
etry. Holzmann and colleagues [6] described the equimolarity
through equalizer peptide (EtEP) strategy based on mTRAQ. For
this method, each standard peptide is coupled to an equalizer
peptide (EP). Labeling is introduced to peptides after synthe-
sis using mTRAQ. Alternatively, labeled synthesized pep-
tides with amino acid quantitative analysis are available.
Here, we introduce a novel Mass Western strategy that uses
cross-concatenated synthetic peptides from different RSU
protein subunits including an EP and introducing a quantifier
peptide (QP).

The Ribulose-1,5-bisphosphate carboxylase/oxygenase
(RuBisCO) is the key CO2-fixing enzyme in photosynthetic
eukaryotes. RuBisCO has been described as one of the most
inefficient enzymes due to a very low catalytic turnover rate
and competing carboxylase and oxygenase activities. RuBisCO
therefore limits photosynthetic CO2 fixation and it is generally
accepted that chloroplasts must accumulate large quantities of
RuBisCO to sustain sufficient rates of carbohydrate synthesis
[7]. Besides its role in carbon assimilation this enzyme complex
became ofmain focus for its plant nitrogen (N) use efficiency [8].
RuBisCO degradation into amino acids leads to N re-utilization
for the de novo protein synthesis.

RuBisCO consists of eight large and eight small protein
subunits in both higher and lower plants. The large subunit
(LSU) is encoded by the rbcL gene localized in the chloroplastic
genome while several variants of the small subunit (SSU) are
encoded in the nuclear genome by the rbcS gene family. The
LSU and SSU subunits are assumed to be present in equimolar
quantities within plant cells to match the one-to-one RuBisCO
subunit stoichiometry [9]. The localization of RuBisCO genes
in two different cellular compartments and the assumed
one-to-one stoichiometric balance of its subunits suggest the
existenceofmechanisms to tightly coordinate the expression of
rbcL and rbcS genes [10]. Although the coordinated synthesis of
the subunits has been observed [11], the absolute concentra-
tions of LSU and SSUhave never been determined. The absolute
concentration of LSU and SSU at a certain time point integrates
several parameters such as the stability as well as the rates of
synthesis and decay of eachpolypeptide and is therefore crucial
to a quantitative understanding of RuBisCO gene expression.

Diurnal cycling of LSU and SSU cellular concentration
with peak abundance levels during the photoperiod has been
recently suggested by an analysis of protein relative expres-
sion change in rice leaves [12]. However, a transcript study [13]
reported that in Arabidopsis, grown in a light/dark photoperi-
od, rbcS mRNA exhibits a diurnal pattern of expression, with
peak abundance occurring soon after onset of light and
minimum levels at the end of the light period. Thus, diurnal
oscillation of relative rbcSmRNA levels in Arabidopsis occurred
in an inverse time frame to the SSU oscillation in rice leaves.
Consistently with this observation, several studies of rbcL
gene expression in Chlamydomonas reinhardtii [14–16] indicated

that rbcL mRNA levels are not directly correlated to the
amount of LSU. However, the diurnal variations of the
absolute amount of rbcL and rbcS transcript and protein have
never been characterized altogether in any plant model.

The aimof this studywas to determine the absolute amounts
of rbcL and rbcS transcripts and proteins in C. reinhardtii grown
during a diurnal time course. The green algae C. reinhardtii is an
interesting model system for the study of the photosynthetic
apparatus, because mixotrophic cells under low light have been
shown to achieve growth rates similar to photoautotrophic
counterparts when supplied with acetate [17]. The particular
strain CC503 was used to investigate phototaxis and biofuel
production and its genome sequence [18] was used to recon-
struct a genome-scale metabolic network [19].

We present a novel conceptual approach of the Mass
Western [5] that allowed us to determine absolute protein
concentrations with accurate stoichiometry as well as diurnal
protein translation changes of the different RuBisCO subunit
proteins (RSUs).

2. Materials and methods

2.1. Chlamydomonas growth conditions and cell sampling

The cell wall deficient strain C. reinhardtii CC503 cw92 agg1+,
nit1, nit2, mt+ (originally derived from strain CC-125), was
obtained from the Chlamydomonas Center. Synchronic C.
reinhardtii CC503 cultures were cultivated in 250 mL flasks
at 24 °C, stirred at 110 rpmonanorbital shaker (NewBrunswick
44R) and exposed to 100 mmol m2 s1 light (Sylvania GroLux)
and a light/dark cycle of 14/10 h. Cells were grown in fresh HAP
medium (TAP media in which TRIS was replaced by 5 mM
HEPES, and supplemented with 8 mM NH4Cl) for four days
and supplied with air without additional CO2 before sampling.
For mixotrophic growth condition HAP medium supplemented
with 10 mM NaAc was employed [4]. Samples were taken at
early log phase (cell density ~ 1.5 × 106 cells/mL) every 3 h for
24 h. For an overview of the experimental setup see also Fig. 1.

2.2. Total protein extraction and in solution digestion

C. reinhardtii cell pellets (1.0 g fresh weight each) were ground
in a chilled mortar using liquid N. Extraction buffer (For in
solution digestion: 50 mM Tris–HCl, pH 8.0, 5 mM dithiothre-
itol, 1 mM EDTA, 1 mM phenylmethylsulfonyl fluoride (PMSF) -
For SDS-PAGE: 62,5mM TrisHCl, pH 6.8, 2% SDS (w/v), 10%
Glycerol 10% (v/v), 0,01M DTT, 2mM PMSF, PI 0,2%) was added
and crude protein extracts were then centrifuged at 10,000 ×g
for 10 min. For in solution digestion, the supernatants were
immediately desalted on a Sephadex G-25 column (1.5 cm),
previously equilibrated with 50 mL Tris–HCl, pH 8.0. For
SDS-PAGE, the supernatants were precipitated using overnight
incubations in 10 volumes of chilled Acetone
(0.5%-ß-Mercaptoethanol), washed three times with chilled
methanol (0.5%-ß-Mercaptoethanol), air-dried, and kept at −
20°C until further SDS-PAGE analysis. Concentration of total
protein extracts was measured according to Bradford [20].

Aliquots containing 25 μgof solubleC. reinhardtiiproteinswere
digested overnight at 37 °C with Poroszyme immobilized trypsin
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beads (1:10, v/v, Applied Biosystems, Darmstadt, Germany). The
peptide mixtures were centrifuged at 6000 ×g and desalted using
SPEC C18 columns (Varian, Darmstadt, Germany) according to
the manufacturer's instructions. Desalted digest solutions were
dried and pellets stored at −20 °C until use. Three biological
replicates were analyzed per time point each replicate consisting
of 1 μg total spiked with 0.5 pmol standard peptides. Protein
concentration of the extract was measured using Bradford's
assay [20].

2.3. RuBisCO holoenzyme extraction

For the isolation of the intact RuBisCO holoenzyme complex, a
Size Exclusion (SE) FPLC and a Blue Native (BN) gel approach
were used.

The SE protocol of Olinares et al. [21] was used with
following modifications: The cell pellets were ground in a
chilled mortar using liquid N under addition of extraction

buffer (50 mM HEPES, pH 8.0, 5 mM MgCl2, 1 mM NaCl, 1 mM
PMSF) and then homogenized with a 7 mL glass homogenizer.
Extracts were centrifuged at 4 °C for 10 min (10,000 ×g) to
pellet cell debris and supernatant protein concentration was
measured according to Bradford [20]. Supernatants were
sterile-filtered through 45 μm cut-off cellulose acetate filters
(VWR) and desalted with Mini-Trap G-25 Sephadex columns
(GE-Healthcare, previously equilibrated with 10 volumes of
extraction/elution buffer). Total protein concentration was
measured a second time using Bradford's assay [20] and
extracts were centrifuged for 5 min at 13,000 ×g before Fast
Protein Liquid Chromatography (FPLC) SE.

The extract (400 μg each) was loaded onto a Superdex 200
10/300 GL column (GE Healthcare) at a flow rate of 0.5 mL min−1

with an Äkta FPLC System (Amersham). The elution was
monitored at an absorbance of 280 nm and 27 fractions of
300 μL were collected. The fractions containing the RuBisCO
(~550 kDa) were immediately precipitated using overnight

A

B

Fig. 1 – Overview of the experimental setup. A. Sampling strategy B. Analytical structure; The Mass Western is schematically
depicted and used for abs. quant. of the 55- and 15 kDa RuBisCO subunit gel-bands of gel a) SDS gel of total protein extract and
b) SDS gel of RuBisCO holoenzyme after size exclusion (gel lane was chosen from time point 12 as an average example); and the
abs. quant. of the 550 kDa gel-band of c) the BN gel of the RuBisCO holoenzyme plus NativeMarker™ (Novex®). Gel-band at
37 kDa (a) was separately extracted for protein Identification on MS (Supplemental Table 2). Mass Western was additionally
used for gel-free abs. quant. of the RuBisCO subunits within the crude extract. EP = equalizer peptide; QP = quantifier peptide;
LSU = large subunit; SSU = small subunit; * = isotopic labeled.
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incubations in 10 volumes of chilled Acetone
(0.5%-ß-Mercaptoethanol), washed once with chilled metha-
nol (0.5%-ß-Mercaptoethanol), air-dried, and kept at −20 °C
until further SDS-PAGE analysis.

The BN protocol of Fiala and colleagues [22] was used with
followingmodifications: after the first centrifugation (1500 ×g,
4 °C), the cell pellets were washed once in TBS-buffer, and
homogenizedwith a 7 mL glass homogenizer after adding 500 μL
of extraction buffer (20 mM BisTris, 500 mM Aminocaproic acid,
20 mM NaCl, 2 mM EDTA, 10% Glycerol, 1 mM PMSF). Extracts
were centrifuged at 4 °C for 15 min (13,000 ×g) to pellet cell
debris, filtered with 45 μm and kept at 4 °C until subsequent
dialysis over night at 4 °C with 10 μm-cutoff membranes
(extraction buffer was used as dialysis buffer). After dialysis,
protein concentration was measured according to Bradford [20].
Finally, 10 μg of each sample was loaded and separated in a
4%–15% gradient BN-Gel, according to Fiala et al. [22].

2.4. SDS-PAGE and digestion of the RuBisCO subunits and
holoenzyme

Pellets of total protein extracts and FPLC size exclusion
fractions were re-dissolved in SDS-loading buffer and sepa-
rated by SDS-PAGE on 12.5% (w/v) polyacrylamide gels. After
electrophoresis, proteins were visualized using Gel-Code Blue
Stain reagent (Pierce Biotechnology, Rockford, USA) and densi-
tometric analysis of the RuBisCO subunit stoichiometry was
performedwith ImageJ software (http://rsb.info.nih.gov/ij/index.
html). Gel bands corresponding to a molecular weight of
approximately 55 kDa for the LSU and 15 kDa for the SSU as
well as the 560 kDa BN band of the RuBisCO holoenzyme were
cut out and digested for determining theabsolute amount of the
RuBisCO subunits. In-gel digestionwas carried out as previously
described [3]. Digests of bands taken from the same gel lane
were combined and spiked with standard synthetic peptides
prior to desalting. A total number of three biological replicates
were analyzed per time point.

2.5. Western Blot analysis

The above-mentioned SDS-gels were additionally used for
Western Blot analysis of the RSUs. For the immunostaining
of both RuBisCO subunits, acetone-precipitated pellets of
total protein extracts as well as holoenzyme fractions were
re-dissolved in SDS-loading buffer and separated by SDS-PAGE
on 12.5% (w/v) polyacrylamide gels as described before. After
electrophoresis, proteins were electrotransferred to a Millipore
Immobilon PVDFmembrane (16 V, 80 mA, 1 h), blockedwith 5%
milk on TBS-T buffer (no previous Ponceau-staining used for
band preview), and incubated over night at 4 °C with two
primary antibodies: against RbcS (AS07 259, Agrisera) diluted
1:2500 in milk, and against RbcL (AS03 037, Agrisera) diluted
1:5000 in milk, both of them being rabbit polyclonal and
KLH-conjugated. Subsequently, the membranes were incu-
bated with conjugate Rabbit F(ab′)2 Fragment ECL-HRP
antibodies (NA9340, GE Healthcare) at 1:5000 dilution in
milk for 1 h at room temperature. Blots were developed
with the ECL Prime Western Blotting Detection Reagent
RPN2232 (GE Healthcare) and exposed to X-ray film (Fuji)
(Supplemental Fig. 1).

2.6. EnhancedMassWestern approach for protein stoichiometry
analysis

The strategy to determine subunit stoichiometry ofmulti-protein
complexes as reported by Holzmann et al. [6] was adapted to
the Mass Western approach [5] and further optimized as
follows: Stoichiometric quantification of the absolute amounts of
subunits is achieved by the use of cross-concatenated internal
standards that deliver equimolar amounts of synthetic peptide
standards for all subunits of the investigated protein complex
upon tryptic digestion [6]. Two cross-concatenated proteotypic
standards, labeled with heavy isotopes (13C/15N) (AQUAPoP 3H
Ultimate, Thermo Electron, Ulm, Germany) were used in this
study (Table 1). Each standard consisted of one RuBisCO
LSU-specific mono-labeled peptide, one RuBisCO SSU-specific
mono-labeled peptide (present in both SSU1 and SSU2) and one
double-labeled non-target (i.e. absent from the proteome of C.
reinhardtii) peptide. The two concatenated standards were
made of different LSU- and SSU-specific peptides (cross-
concatenated) but identical non-target peptides. Non-target
peptide moieties were used as equalizer peptide (EP), allowing
normalization between the two concatenated internal standards.

Absolute quantification of the concatenated standards and
protein complex subunits is enabled by direct comparison to a
third internal standard (i.e. quantifier peptide), consisting of a
mono-labeled version of the EP,whichwas quantifiedwith high
accuracy (AQUA Ultimate, Thermo Electron, Ulm, Germany).

The concatenated peptide standards (approximately
0.5 pmol), and the quantitative standard peptide (0.5 pmol)
were added to every sample, as this amount is within the linear
range of detection [23] and in accordance within the estimated
(high) abundance of the RuBisCO subunits.

2.7. LC-Orbitrap-MS RuBisCO holoenzyme analysis

A one-dimensional (1D) nano-flow LC-MS/MS system (Ulti-
Mate 3000, Thermo Fisher Scientific, Austria) was employed to
detect and quantify the amount of RuBisCO subunits. Peptide
mixtures (RuBisCO holoenzyme from SE plus standard pep-
tides) were eluted using an Easy-Spray RSLC PEPMAP® C18
column (15 cm × 50 μm, 2 μm; Thermo Scientific) during a
20 min gradient from 2% to 50% (v/v) acetonitrile containing
0.1% (v/v) FA with a controlled flow rate of 0.3 μL min−1. MS
analysis was performed on anOrbitrap Elitemass spectrometer
(Thermo Scientific) operated in the positive profilemodewithin
a mass range from 350 to 800. One dependent (MS2) scan was
enabled for each full scan with collision energy of 35. The
minimal signal threshold was set to 10,000. Spray voltage was
adjusted to 1.6 kV and temperature of heated transfer capillary

Table 1 – Average ratio between LSU and SSU protein and
rbcL and rbcS transcript levels across a diurnal time course.
a) total amount of crude extract; b) intact RSU gel bands;
c) RuBisCO holoenzyme (BN); d) transcripts; Standard error
n = 3, t-test p values given when p < 0.05.

a) LSU/SSU of crude samples 4.8 ± 1.5; p = 0.00043
b) LSU/SSU of crude SDS gel samples 1.3 ± 0.4; ns
c) LSU/SSU of BN gel samples 1.5 ± 0.08; ns
d) rbcL/rbcS 5.0 ± 0.9; p = 0.000012
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to 200 °C. Same settingswere used for the 37 kDa SDS gel digest
of the crude extract (Supplemental Table 2).

2.8. LC-triple quadrupole (TripleQuad)-mass spectrometry
(MS) and selective reaction monitoring (SRM)

LC system and gradient were as described above with some
modifications: Peptide mixtures were eluted using a Peptide
ES-18 column (15 cm × 0.1 mm, 2.7 μm; Sigma-Aldrich) dur-
ing a 20 min gradient from 2% to 50% (v/v) acetonitrile
containing 0.1% (v/v) FA with a controlled flow rate of
0.4 μL min−1. MS analysis was performed on a TSQ Quantum
Vantage mass spectrometer (Thermo Scientific) operated in
the positive mode and tuned to its optimum sensitivity for
each standard peptide as previously described [4]. Scan width
for all SRMs was 0.7 mass units, and resolution was set to 0.3
and 0.7 mass units for Q1 and Q3, respectively. The dwell time
per transition was 50 ms, collision gas pressure was set to
1.5 mTorr, the declustering voltage to 5 V and the chrome
filter peak width to 20 s. Spray voltage was adjusted to 1.8 kV
and temperature of heated transfer capillary to 270 °C.
Collision energies used for recording transitions are summa-
rized in Supplemental Table 1.

2.9. Transcript analysis

Nucleic acids were extracted from C. reinhardtii cell pellets
(1.0 g fresh weight) using a protocol based on the method of
Tourna and colleagues [24]. Cells were disrupted using a bead
beating approach, an SDS-based lysis buffer and a phenol/
chloroform/isoamyl-alcohol solution, as described previously.
Precipitation of nucleic acids was performed for 2 h at 4 °Cwith
the addition of one volume of isopropanol, 5 M NaCl (final salt
concentration 0.2 M) and glycogen. Precipitated nucleic acids
were resuspended in nuclease free water (Qiagen, Hilden,
Germany) and then purified with an RNeasy minikit (Qiagen).
DNA was removed from the nucleic acid extracts by digestion
with 2.5 U of DNase I (Fermentas, St. Leon-Rot, Germany) in
10 μL reactions which were incubated for 1 h at 37 °C. The
extractswere further purified using anRNeasyminikit (Qiagen).
Reverse transcription of the purified RNA templates was
performed with random hexamers using SuperScript® III
reverse transcriptase (LifeTech — Invitrogen, Wien, Austria)
according to themanufacturer's instructions. Control reactions
containing C. reinhardtii RNA templates and all reagents except
the reverse transcriptase were performed to ensure that no
DNA was present in the purified RNA extracts. An additional
control reaction without template was performed to check for
the presence of contaminants in the reagents.

Two new primer pairs were designed to target fragments of
C. reinhardtii rbcL gene sequence and another two primer pairs,
fragments of the concatenated rbcS gene exon sequences. PCR
primers were designed using Primer3-web 0.4 [25] and C.
reinhardtii CC503 cw92 mt+ rbcL, rbcS1 and rbcS2 gene sequences
as input sequences. Specificity of theprimerpairswas confirmed
byBLAST searches againstC. reinhardtii genomesequence andby
characterizing the length of PCR-generated amplicons using
agarose gel electrophoresis analysis. Primer pairs designed
to match rbcS exon sequences target both rbcS1 and rbcS2
sequences.

Quantification of reverse transcribed rbcL and rbcS mRNAs
(rbcL and rbcS cDNA) was performed using a SybrGreen I
quantitative PCR approach. Amplification of rbcL cDNA frag-
ments was performed with primer Cr-rbcL-1059F (5′-CGTTGAA
AAAGACCGTAGCC-3′) and Cr-rbcL-1215R (5′-ACCACCACCGAA
CTGAAGAC-3′) and duplicate dilution series (102–107 rbcL gene
copies) of a 938 bp C. reinhardtii rbcL gene fragment generated
with primer Cr-rbcL-441F (5′-ATTCGTAGGTCCTCCACACG-3′)
and Cr-rbcL-1378R (5′-CACATGCAGCAGCAAGTTCT-3′) was
used as a standard with an efficiency of 93% and R2 value of
0.995. Amplification of rbcS cDNA fragments was carried out
with primer Cr-rbcS-205F (5′-GACAACCGCTACTGGACCAT-3′)
and Cr-rbcS-353R (5′-ATCTGCACCTGCTTCTGGTT-3′) and du-
plicate dilution series (102–107 rbcS gene copies) of a 416 bp C.
reinhardtii rbcS1 gene fragment and a 450 bp C. reinhardtii rbcS2
gene fragment, both generated with primer Cr-rbcS-1069F
(5′-ACAAGGCCTACGTGTCCAAC-3′) and Cr-rbcS-1444R (5′-GAT
CTGCACCTGCTTCTGGT-3′), were used as standard with an
efficiency of 86% and R2 value of 0.997. All reactions (25 μL)
contained 12.5 μL of 2× Quantifast SYBR Green PCR Master Mix
(Qiagen), 0.2 mg mL−1 BSA, 1 μM of each primer and 5 μL of
cDNA template. Amplification conditionswere 95 °C for 15 min,
followed by 35 cycles of 15 s at 95 °C, 30 s at 60 °C and plate
read at 78 °C and a final extension step of 10 min at 60 °C.
Temperature cycling of the reactions was carried out in a
Mastercycler® RealPlex2 thermocycler (Eppendorf, Wien,
Austria) and the specificity of the amplification was assessed
by melting curve analysis at the end of each PCR run and
agarose gel electrophoresis. For normalization, total protein
sample amounts of 5.3 mg ± 12% (standard deviation) and
5.5 mg ± 17% during light and dark phase were used,
respectively.

2.10. Statistics

For regression analysis, calculation of standard deviation,
standard error and Student's t-test Excel (Microsoft Office
2007) was used. Settings for the t-test were 2 sites, type 1.
Anova was carried out using the MatLab tool Covain [26].
Statistical significance was defined with a p value ≤ 0.05.

3. Results

3.1. RuBisCO holoenzyme stoichiometry after BN and SE

The fully sequenced C. reinhardtii genome revealed one
putative transcript of the rbcL and two for the rbcS. The two
SSU coding sequences are highly similar (98%). Thus, no
proteotypic peptides could be selected for the differentiation
of the two SSUs. The protein abundance of SSU is therefore a
sum of both isoforms (if both were present). For technical
verification, two RuBisCO holoenzyme purification strategies
were conducted prior to stoichiometric analysis (Fig. 1B) using
either a BN or SE approach [21,22]. For the highly abundant and
purified RuBisCO holoenzyme, a direct LC–MS/MS Orbitrap
based Mass Western approach (without SRM) was conducted.
Ion traces of the target peptides were extracted from the
chromatogram (see also Fig. 1B) and concentrations calculated
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from the peak areas. The ratio for the LSU vs. SSU was found to
be around 1:1 (Table 1c).

Additionally, densitometric analyses of the subunit stoi-
chiometry were performed using the 2D SE × SDS-gel images
of the purified intact RSUs (Fig. 1B). Here also an average ratio
of about 1:1 (1.3 ± 0.03) was observed without further normal-
ization to the protein size. No diurnal oscillation was observed
for the purified holoenzyme (data not shown).

3.2. RuBisCO large and small subunit transcript and protein
abundances are not stoichiometric equivalent across the
diurnal cycle: large subunit on average fivefold more abundant

For absolute protein quantification of the RuBisCO subunits of a
crude (total protein) extract the novel SRM based MassWestern
approach of improved accuracy was chosen [27] and two
different digestions were performed (Fig. 1a): i) an in-solution
digestion of the crude extract and ii) an in-gel digest of the two
intact RuBisCO subunit (15 and 55 kDa) bands of the crude
extract. Independently, transcript (Fig. 3) as well as in solution
protein absolute amounts (Fig. 2A) showed a statistically
significant average 5:1 fold ratio between the large vs. small
subunit(s) of RuBisCO (RSU and rbc ratio t-test p < 0.05) across

the diurnal time course (Table 1). In contrast the ratio of intact
RSUs of the in-gel digest of the crude extract showednearly a 1:1
(1.3:1) stoichiometry (Fig. 2B, Table 1) as well as 1.5:1 for the
BN-gel digest of the holoenzyme (Table 1).

MassWestern showed that LSU reached amaximumamount
of 192 and 902 fmol/μg total protein extract of the in-gel (intact
55-kDa subunit) and in-solution digest (presumably intact
55-kDa subunit plus breakdown fragments), respectively. Note:
100 fmol equals 5 ng and 1.5 ng of LSU and SSU, respectively.
Thus, the difference between intact amounts of LSU (in-gel 15
and 55 kDa bands) to total LSU amount (in-solution) may
explain the amount of LSU N-terminal fragment(s), although
two different extractions are compared and the 37 kDa-band
has not been quantified separately. SSU amounts only slightly
oscillated between 51 and 212 fmol/μg total protein extract both
in-gel and in-solution (Fig. 2A and B).

3.3. The diurnal transcript-to-protein pattern of RuBisCO
small and large subunits shows best correlation within a 9 h
shift

The protein pattern analyses demonstrated a pronounced
change in abundance during the diurnal time course for the
in-solution total LSU protein (intact plus fragment) (Fig. 2).
LSU abundance of the complex protein extract revealed an
increase in protein abundance during the light phase and a
second increase during the end of the dark phase (statistically
significant compared to SSU). For the SSU the diurnal changes
seem to be less pronounced (Fig. 2A). Here RSU oscillations do
correlate with the regression R2 = 0.664. Protein patterns of
intact LSU and SSU of the crude extract with 1:1 stoichiometry
exhibit a trend to positive correlation of R2 = 0.568 (Fig. 2B).
Data of the diurnal BN holoenzyme analysis are almost
identical and thus not presented.

The transcript analysis revealed possible changes with a
general decrease during the light phase and an increase
during the dark phase, however statistically not significant
(Fig. 3). Nevertheless, compared to the time course of the
protein levels no good correlation was observed, the best
transcript-to-protein fit was found by shifting protein abun-
dance of the total RSUs for 9 h (Fig. 4). Here, the regression for
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Fig. 2 – Diurnal time course of intact and complete RuBisCO
subunit concentration levels of the crude extract. Mass
Western analysis of (A) RSUs from total soluble protein
extract, (B) of intact RSU protein bands from
SDS-polyacrylamide gel electrophoresis of the crude extract.
Standard error n = 3; Anova p < 0.05 marked with asterisks.
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Fig. 3 – Diurnal time course of RuBisCO transcripts normalized
to the total protein content of the sample. Standard error n = 3;
Anova p < 0.05 marked with asterisks.
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rbcS vs. SSU was R2 = 0.474 and for rbcL vs. LSU R2 = 0.464.
There was no correlation (best pos. fit 0.251) found between
transcripts and intact RSUs. This might be due to the fact that
intact RSUs seem not to have a significant diurnal oscillation.
The average transcript-to-protein conversions were deter-
mined as 60 amol intact RSU per transcript and 85 amol
total RSU per transcript with a high variance of around 50%
between day and night phases.

4. Discussion

4.1. Technical challenges for the correct calculation of RuBisCO
subunit dynamics

Understanding the dynamics of proteins and protein complexes
is becoming more and more important. This includes protein
turnover analysis and the ability to accurately measure the
stoichiometry of protein complexes and frequency of their
related subunits. The dual role of RuBisCO, both as the enzyme
responsible for CO2-fixation andasN storage protein [8,28], is the
reason why the quantification of changes in RuBisCO pool size,
and the determination of underlying mechanisms, are of major
interest [29]. The most common hexadecameric form of the
RuBisCO holoenzyme with a subunit stoichiometry of the LSU
and SSU of 1:1 is also present in C. reinhardtii [30]. It consists of
eight 55-kDa chloroplast-encoded catalytic LSUs and eight
15-kDa nuclear encoded non-catalytic SSUs that can be separat-
ed by gel-electrophoresis. In various proteomic studies, the
authors calculated RuBisCO subunit stoichiometry using differ-
ent methods. Peltier and colleagues [31] calculated the relative
abundance of the subunits by normalizing the spot densities
after 2D gel analysis of enriched Arabidopsis thaliana chloroplast
proteins bydividing itwith themolecularmasses of theproteins.
In fact, this way they reached a stoichiometry of one-to-one for
the RuBisCO subunits. However, density calculations of our 2D
(SE × SDS-PAGE) purified holoenzyme without further normali-
zation to molecular masses already resulted in a ratio (LSU/SSU)

of about one-to-one (Fig. 1Bb). Thus we assume that further
normalization of 2D gel spot or band densities or density
calculations for stoichiometric analyses in general appears
critical. Also recently, Mastrobuoni and colleagues [32] pro-
posed the stoichiometry of RuBisCO protein of a C. reinhardtii
crude extract close to 1:1. They used a modified emPAI
(Exponentially Modified Protein Abundance Index; [33]) for the
relative quantification of the protein. The emPAI is based on the
normalization of the number of identified peptides (spectral
count) of a protein by its number of possible peptides. This is
similar to theNSAF (NormalizedSpectralAbundance Factor) [34].
Based on the spectral count, both are relatively good approxi-
mations for relative stoichiometry calculations of different
proteins within a sample. However, in the above-mentioned
study, peptide intensities were used for normalization. Due to
the diverse ionization properties of each peptide, intensities (or
areas) of peptide spectra – especially when comparing different
proteins – can only be used for relative or absolute quantification
if combined with the stable isotope dilution technique [1]. It is
the incorporation of heavy standard peptides (usually of known
amounts) into native samples that enables normalization of
different peptide signals for the same or different proteins.
Consequently, only this allows for the peptide signal intensity
based comparison of different proteins within the same or
different samples.

Because of the above-mentioned examples, uncertainty
seems to persist on the correct interpretation of protein
abundance data. Summarizing the methods described the
absolute quantification of proteins from complex samples
using direct shotgun-LC-TripleQuadMS and selective reaction
monitoring (SRM) without pre-fractionation, also called Mass
Western [4,5,35] is to the best of our knowledge the most
accurate approach to date. Nevertheless, some challenges
remain concerning accurate stoichiometric analysis using
Mass Western or related techniques. Due to diverse solubili-
zation and digestion properties, exact absolute quantification
and stoichiometry of proteins may remain deficient. To
overcome this, we developed an enhanced Mass Western
approach for improved accuracy of stoichiometric analysis.

Novelty of the Mass Western: Compared to the previous
Mass Western approach for absolute quantification, the novel
Mass Western comprises of several new features providing
the means for very accurate stoichiometric protein analysis.
We now introduced a) concatenated synthetic peptides, b) a
singly labeled EP, and c) a QP. The MassWestern is different to
QconCAT [36] since concatenated signature peptides are not
encoded by genes (and expressed as recombinant proteins)
but simply synthesized. They are cross-concatenated as
explained above. In comparison to Holzmann and colleagues
[6], Mass Western uses stable isotope labeled peptides of
differentially labeled amino acids. This way, the same peptide
sequence can be used as equalizer for several concatenated
peptides. For price efficiency, only the quantifier peptide is
precisely quantified by amino acid analysis. This peptide
can be used for several hundreds of analyses and peptide
combinations. A drawbackmight be the peptide length. Only a
limited number of amino acids (<40) with suitable hydropho-
bicity can be used for peptide synthesis (synthesis feasibility
check with the company is recommended). It should be
mentioned, that the novel described improvements of the

time of day for proteins 
9 1512 21 0 318 6

time of day for transcripts

Fig. 4 – RuBisCO transcript-to-protein correlation. Normalized
diurnal transcript andprotein datawere log10 transformedand
in-all plotted with a time shift of 9 h of best data fitting
(no significant correlation).
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Mass Western are directed to enhance accuracy of the
stoichiometry between different proteins not the absolute
concentrations itself. Sample handling such as desalting
might still cause unspecific sample loss, leading to a loss in
absolute concentration. However, for stoichiometry analysis
sample handling is identical since protein complex ismeasured
from the very same sample. Thus, differences due to technical
artefacts may be excluded. Comparing Mass Western and
Western Blot, both techniques are challenging: While less
sample handling is necessary for Western Blotting, antibody
availability/specificity and reliability of densitometric analysis
of quantities are a major drawback compared to stable isotope
dilution based MS approaches [37].

Noteworthy, most studies on RuBisCO dynamics are based
on the determination of RuBisCO content and turnover analysis
using a colorimetric measurement of protein stained with
Coomassie brilliant blue R on SDS gel electrophoresis by eluting
with formamide [38–41]. They used stained RuBisCO subunit
bands from SDS gel, using calibration curves made with
RuBisCO purified from wheat or rice leaves. Our data, however,
reveal a difference in analyzing intact subunit ratios compared
to the total amount in crude sample.

A recent study on the absolute quantities of C. reinhardtii
proteins using the Mass Western revealed strong differences
in the translation stoichiometry between the RuBisCO sub-
units [4]. Unexpected, the LSU was found several folds higher
in abundance compared to the SSU. In the present work, we
want to refine and try to explain these findings using Mass
Western. In addition, we analyzed absolute transcript and
protein levels to test previously described non-correlative or
inverse diurnal transcript-to-protein patterns [13].

4.2. The differential RuBisCO subunit dynamics

It has been suggested that interplays between LSU and the
SSUs are crucial for the function of the enzyme by maintain-
ing its active conformation [42,43]. Thus, for assembly of the
RuBisCO holoenzyme, translations of the RSUs are discussed
to have concerted regulation. On the other hand, the lack of
SSU in Rhodospirillum, led to the conclusion that LSU transla-
tional regulation must be SSU independent [9].

Data show a RuBisCO holoenzyme ratio of nearly 1:1 (Fig. 2b
and Table 1). Nevertheless, deviation between our 1.5:1 holoen-
zyme stoichiometry to the general known 1:1 stoichiometry can
either be explained by a selective loss of SSU during sample
handling or by another yet to identify reason. Note: an almost
identical stoichiometric result of the holoenzyme can be
obtained with and without purification. RuBisCO LSU always
shows a trend to higher ratios.

Interestingly, ratios between transcripts as well as large and
small protein subunits of the crude extract are on average about
5 fold higher for the large subunit, independently (Figs. 2a, 3 and
Table 1). The significantly higher LSU level of the crude extract
can, at least to a high extent be explained by the presence of a
previously described 37-kDa fragment [28–31]. A mass spec-
trometry based gel band digest analysis of the crude extract that
revealed a large peptide sequence coverage of RuBisCO at
37 kDa (see Supplemental Table 2). Western Blot analysis of
crude extract as well as the purified holoenzyme fraction
(Supplemental Fig. 1), however, did not visualize the 37-kDa

fragment. This is in agreement with several other publications,
where Western Blot analysis of C. reinhardtii did not capture any
specific (or artificial) breakdown products at all [32–34].

The Coomassie blue stained 37 kDa as well as 15 kDa gel
bands of the crude extracts appear much weaker than the
55 kDa band. This observation is well known and explained
by the fact that smaller proteins bind less dye and more
importantly because several proteins also co-resolve with e.g.
RuBisCO in a 1D-gel band [35]. This is the reason, why
Coomassie blue staining may not be valid for stoichiometric
analysis. Our results thus suggest a strong degradation of LSU
thatmay either be caused artificially during sample preparation
ormight be post-translationally regulated and thus of biological
relevance. MS based analyses of in-gel digests of the 37 kDa
bands, however, only identified RuBisCo in the crude extracts—
not in the gels of purified in vivo samples. These results may
suggest a specific rather than artificially caused breakdown.
Furthermore, transcript and protein data suggests that
hexadecameric holoenzyme formation is limited by the
SSUs which has never been shown before. These data are
from mixotrophic algae and there are indications for similar
ratios in photoautotrophically grown C. reinhardtii cells [4],
although, the absolute amount of SSU was significantly higher
in photoautotrophic compared to mixotrophic cells.

Pyrenoids are specific algae organelles located in the
plastids. It is the site of elevated CO2 channeled by the carbon
concentration mechanism (CCM). The SSU has been shown to
be involved in the formation of the pyrenoid [10]. The rather
slow catalysis and confused specificity [44] of RuBisCO seem
to be improved by two surface-exposed α-helices of SSU
targeting the holoenzyme to the pyrenoid of C. reinhardtii [45].
A higher concentration of SSU might thus be crucial for
photoautotrophic organisms.

The diurnal time course revealed a possible inverse
oscillation with maximum values for transcripts during the
dark phase and a maximum increase especially for the total
LSU abundance during the light phase with a slight increase
also during dark phase (Fig. 2). In chloroplasts of C. reinhardtii,
Ryo and colleagues [46] showed a circadian regulation of
transcripts with a daily peak during the end of the dark phase.
Herrin and colleagues [47] studied the regulation of rbcL and
other genes during the cell cycle of C. reinhardtii. They also
found accumulation of the rbcL mRNA during the last half of
the light and during the dark period with evidence for a
differential translational regulation of LSU synthesis initiat-
ed during the light phase. Increased transcript degradation
of rbcL upon light was described by Salvadort and colleagues
[48].

The rbcmRNAson one side and the RSUproteins on the other
seemed not well correlated (Fig. 4). Best transcript-to-protein
correlation across the day, however, was foundwith a nine hour
time shift where the 12 h dark point of the transcripts correlates
positivelywith the 21 h light point for the total RSUs. Noticeably,
intact RSUs (55- and 15-kDa gel bands) did not correlate with
corresponding transcripts as they do not show a diurnal
oscillation compared to the total RSU and transcript abun-
dances. These findings suggest that 1) total holoenzyme
abundance may not significantly change during the day while
2) turnover of LSU synthesis and breakdown seems to increase
since 3) total but not intact LSU abundance increases with
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maximum CO2-fixation during light phase and may not be
controlled by epistasy of synthesis as previously described in
higher plants [49]. These results may confirm the hypothesis
of Kim and Mullet [50] that translation initiation complexes
for rbcL are formed in the dark, but the transition step of
translation initiation complexes entering the elongation
phase of protein synthesis and/or the elongation step might
be inhibited. This translational block seems to be released
upon illumination and contribute to light-activated transla-
tion of rbcL transcript [51].

Nassoury and colleagues [51] demonstrated a circadian CO2

fixation rhythm in Dinoflagellates. They found that CO2-fixation
rate changes were not related to differing RuBisCO holoenzyme
levels, which matches with our results. In addition, a Western
Blot analysis revealed no significant changes in RuBisCO
holoenzyme levels in rice leaves [12]. Interestingly, however,
several degradation products of the LSU of RuBisCO were
initially found in pea chloroplasts after incubation in light [52].
Desimone and colleagues [53] reported that oxidative treatment
stimulated partial degradation of the LSU of RuBisCO in isolated
chloroplasts of barley. LSU was found to be degraded into an
N-terminal side fragment of 37-kDa and a C-terminal side
fragment of 16-kDa by the hydroxyl radical in chloroplasts
in light [54]. Light seems an essential requirement for the
fragmentation due to the production of hydrogen peroxide and
generation of the reducing power at thylakoid membranes
in light [55]. Ishida and colleagues [56] described that the
C-terminus of the 37-kDa fragment was Ser-328 (Ser-327 in C.
reinhardtii). They found the cleavage site positioned at the
N-terminal end of the flexible loop (loop 6) within the b/a-barrel
domain, constituting the catalytic site of RuBisCO. CO2 fixation
is related to the level of phosphorylation of both the large and
small subunits such that phosphorylation accompanies CO2

assimilation [57]. If phosphorylation plays a regulatory role for
this site-specific cleavage is unknown. So far the explanation
for the specific degradation of the LSU in the light has been
explained by reactive oxygen species generated at its catalytic
site by a Fenton-type reaction [56]. The exact function of the
37-kDa fragment of the LSU remains yet to be understood.
Taken all data into consideration, it becomes evident that the
high amount of total LSU is explained by an increase in LSU
degradation during the light phase along with higher synthesis
rates derived by possible increased mRNA levels in the dark. A
hypothesis may be that, due to limited SSU availability, most of
the LSU is unstable and rapidly fragmented upon light [55] or
that LSU is to a large extent only partially translated [58]. Despite
its rapid degradation, LSU fragments might have catalytic
function explaining higher CO2 fixation rates in light. This may
further suggest a rapid degradation of LSU after catalytic
reaction that needs to be replaced more frequently than SSU.
Besides all hypotheses, it should also be considered that
degradation of the LSU may as well have no biologically
relevant function. Nevertheless, a significantly higher ratio of
large subunit on both, transcript and protein level and trends
of diurnal dynamics suggests biological relevance. Indica-
tions for a specific translational regulation of the LSU may
also be underlined by the fact that changes in protein
abundance in response to environmental perturbations
have so far only been observed for the LSU and not SSU for
instance upon salt stress [59] and drought [60].

5. Conclusions and outlook

We found that,

1) The ratios of transcripts as well as proteins are 5 fold on
average for the large subunit in crude extracts, and around
1:1 for the purified holoenzyme.

2) The presented data suggest that LSU translation regulation
is SSU independent and holoenzyme assembly SSU limited.

3) Diurnal oscillation of the LSU translation seems controlled
by light and post translational regulation.

4) The data further indicate that LSU accumulation in the
light phase may play a role during increased CO2-fixation.

Further work needs to be done to clarify if and as to how
the 37-kDa LSU fragment plays a biological relevant role. In
this respect, it will be especially interesting to study the
diurnal changes and RuBisCO abundance of photoautotrophi-
cally grown cells in the future.

We believe that in future, Mass Western combined with
additional 15N metabolic labeling experiments for RuBisCO
turnover calculations will allow gaining better understanding
of the role of RuBisCO specifically in the regulation of N use
efficiency not only at the whole plant level but also at organ
and subcellular level. The Mass Western may be adapted to
most protein(s) of interest.
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3 Concluding Discussion

3.1 Consolidation of publications, delineating the preamble and
comprehensive methodology

The increasing importance of algae Chlamydomonas reinhardtii both as a model organism with
a completely sequenced genome and as a potential bioproducer has led to many comprehensive
studies in a systems biology context. The work within this thesis continues the line of work
initiated by me and my current group in 2008 with the publication of the first comprehen-
sive analysis on this model algae integrating genome annotation techniques, systematic high-
resolution shotgun proteomics, systematic metabolite profiling and structural modeling [195].
In this experiment, 4202 unique peptide sequences were identified — these sequences could be
mapped to 1069 proteins, finally reconstructing a draft metabolic network that allowed the
identification of missing enzymatic links (e.g. galactinol synthase). A second integrative study
on Chlamydomonas reinhardtii was published by me and my group in 2010 [338]. Here, we
aimed to elucidate basal growth processes (especially the interplay of photosynthetic apparatus,
mitochondrial proteins and metabolites) in both autotrophical and mixotrophical growth condi-
tions — through integration of metabolomics, stable flux measurements, untargeted proteomics
and absolute protein quantification, a comprehensive dataset with 25% proteome coverage, high
complementarity and strong correlations between intracellular protein and metabolite concen-
trations (most notably in the TCA-cycle) was produced. By means of a previous subcellular
fractionation and the introduction of the Mass Western technique, the exact amount of differ-
ent enzyme isoforms could be measured in their respective locations (e.g. CAH), reaching a
dynamic range of four orders of magnitude. This enabled the measurement of low-abundance
proteins that would be barely detectable on relative quantification approaches, such as SBPase.
Nevertheless, despite the wide scope of techniques and the achievements reached in these

two previous publications, many newer questions have arised both from a technical and from a
biological standpoint.
For instance, since many approaches rely on protein inference from ion matches to tryptic

peptides (obtained through in silico digestion of a protein database), it is key to determine the
degree in which a certain database influences every measurement — not only on qualitative
measurements, but also on quantitative ones. To evaluate the degree of variability coming from
different databases on a proteomics measurement, a Chlamydomonas reinhardtii MS-dataset
was analysed using the same algorithm, FDR value and correlation score with four different
databases containing different annotations from two different genome assemblies. These anal-
yses were performed both for peptide and protein identification to test the effect of different
databases on the identification of discriminatory peptides and thus protein assignment. To
avoid any sample-dependent bias the dataset covered different growth situations and cell frac-
tions, and the distribution of X-Correlations between identified peptides and databases was
also studied to evaluate the variation of score factors according to the different database sizes.
This study has been published in Valledor et al. 2012 [310].
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The identification and relative quantification of previously unknown ions by an untargeted
proteomics approach has been used to enhance tryptic peptide databases, but it could also help
define the role of posttranslational modifications on protein function (or “protein speciation”,
as denominated by Jungblut et al. [142]), protein interaction (e.g. acetylation, ubiquitination).
With this goal in mind, the Mass Accuracy Precursor Alignment (MAPA) workflow was
developed. First published in 2008, MAPA allows the alignment of precursor ions of an exact
m/z with their respective spectral counts from an MS measurement in a single matrix. Through
normalisation of these values, data reduction through PCA and consequent unsupervised in-
dependent component analysis, the characteristic peptides for certain experimental conditions
can be clustered and further identified by de novo peptide sequence prediction. This allows
quick and reliable identification of previously unknown PTMs, and by extension the localisation
of functional PTMs, making MAPA a powerful tool for proteins as functional entities. This
procedure has been tested by this group on Chlamydomonas sets, and also on hormone signal-
ing experiments on Arabidopsis thaliana in which phosphorylation kinetics were correlated to
phytohormone exposure [49], as published on Hoehenwarter et al 2011 [126].
Another possible application of absolute peptide quantification and functional protein anal-

ysis is the study of protein complexes regarding subunit localisation and exact stoichiometry.
Even though the highly abundant/relevant PS-related enzyme RuBisCO presents a 1:1 stoi-
chiometry as a holoenzyme, the measured ratio between LS and SS in Wienkoop et al. 2010
was actually several fold [338] — besides, recent models on other species have also noted the
accumulation of a 37 kDa (oxidative) degradation N-fragment from LS [135]. To determine
the stoichiometry of RuBisCO accurately, the amounts of the single protein subunits should
be measured both on raw cell extracts and in their isolated fractions. Protein separation on
SDS-PAGE would also allow to look for LSU peptide sequences in the 37kDa protein band from
every sample. The presence of the RuBisCo subunits on the SDS-PAGE should be addition-
ally visualized with Western Blots. To exclude any effects from sample manipulation on the
final subunit ratio, further quantification of both subunits should be performed on previously
purified RuBisCo holoenzyme extracts (final result should be 1:1). To describe the dynamics
of the synthesis of both subunits, samples were collected every 3 hours during a light/dark
cycle of 24h. For absolute peptide quantification, a new version of the Mass Western (Lehmann
2008) was developed: to guarantee constant stoichiometry between the different standard pep-
tides and also reflect the variability brought by digestion efficiency, standard peptides featuring
cross-concatenated peptide sequences were used. Furthermore, an additional, double-labeled
equaliser peptide was used for higher accuracy. This study has been published on Recuenco-
Muñoz et al. 2015 [253].
A further study regarding the different connections between C- and N-metabolism in mi-

croalgae are an increasingly relevant topic due to the high potential of microalgae as potential
bioproducers for the growing biofuel industry. Since lipid accumulation is significantly higher
during N starvation, many studies related to Nitrogen stress have been performed on Chlamy-
domonas reinhardtii — however, most of them had been limited to a 24h interval of N-depletion,
instead of considering not only short but also long-term adaptive responses to N-depletion. Aim-
ing to elucidate these physiological changes and to search for potential target genes to increase
TAG accumulation through bioengineering, samples were obtained over a 96 hour interval con-
sisting of a 72h starvation phase and a 24h recovery phase. The dynamic behaviour of the
biochemical pathways and metabolism to N availability was investigated through a systems bi-
ology approach at a protein level, at a metabolite level, and enhanced with classical physiology
measurements to track cell density, Fm/Fv rate, and total lipid and biomass content. At a pro-
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tein level, qualitative and semiquantitative LC-MS/MS proteomics were performed on whole
cell extracts — additionally, cell nuclei were isolated to look for significant changes in tran-
scription factors that would otherwise go under higher concentrated cytosolic and membrane
proteins. The identified proteins were then functionally classified and mapped. The changes on
a metabolic level were followed through GC-MS polar metabolite analysis, whereas lipid com-
position was studied through fatty acid methyl ester (FAME) analysis. Finally, the correlations
between all the datasets were tested/established with multivariate statistics, Granger causality
and sparse partial least square (sPLS) analyses. For a more robust and comprehensive analysis,
the generated data were also mined with previously existing transcriptomic and metabolomic
datasets at their overlapping experimental points (0h and 72h). This study has been published
on Valledor et al. 2014 [309].

3.2 Contribution to the scientific progress

There have already been comprehensive studies on Chlamydomonas reinhardtii in a Systems Bi-
ology context due to its importance as a model organism with a completely sequenced genome,
its unique phyisiological properties and also due to its growing importance as a potential bio-
producer.
My PhD-Thesis further explores different aspects and connections of C- and N-metabolism

of model algae Chlamydomonas reinhardtii, both as a systemic response to external stress con-
ditions (enhanced lipid accumulation during N starvation) and through a specific stoichiometry
study of RuBisCO, a key enzyme of C-metabolism which also acts as a major N-storage protein.
For this purpose, a wide range of proteomics methods were applied: qualitative and quantita-
tive analysis, database dependent and independent protein identification, absolute and relative
quantification, or spectral counting and AUC. Many of these techniques were also coupled
to different subfractionation techniques (SDS-PAGE, BN-PAGE, FPLC, nuclei isolation) and
complemented with both more classical strategies (physiological measurements, Western Blot-
ting) and other omics-related methods (metabolomics, transcriptomics, genome annotation).
This wide scope of different proteomics methods makes this PhD-Thesis a very comprehensive
overview of the current approaches to protein analysis in a systems biology context. The data
obtained from these experiments were also used to evaluate and refine other aspects of pro-
teomic analysis such as PTM localization through MAPA and how different databases can alter
the results of both qualitative and quantitative analysis.
From a biological standpoint, the relevance of this PhD-Thesis relates to the two already

mentioned questions within C- and N-metabolism of Chlamydomonas reinhardtii :
(a) RuBisCO-stoichiometry study: the results previously published inWienkoop et al.

2010 were confirmed, having a LSU:SSU stoichiometry of 5:1 on both complete cell extracts
and prefractionated RSU fractions. This difference is not only due to sample preparation
effects, since our results from purified holoenzyme extracts were way closer to the classical 1:1
ratio (∼ 1.5:1). This data are also supported by transcriptomics results, featuring a similar
stoichiometry of 5:1, what suggests that the translation of both subunits might be regulated
independently. Whereas SSU levels remained relatively constant during the whole 24h, the
correlation between protein and mRNA values for the LSU diurnal oscillation was only apparent
after considering a 9 hour time shift, with higher mRNA accumulation during the dark phase
and higher protein accumulation during the light phase — this could be evidence of light being
a key factor at the regulation of LSU synthesis. The presence of an 37kDa N-fragment from the
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LSU could not only be confirmed but also correlated with higher CO2-fixation. Therefore, this
fragment may not only play a role on RuBisCO synthesis or as a marker for oxidative stress,
but also have catalytic activity as well. Since these conclusions are still very speculative (and
controversial) further research should be performed. On a technical level, the new Mass Western
manages to compensate many of the challenges of peptide quantification, giving the most
accurate peptide quantification to date — nonetheless, new improvements on MS-technology
should enhance its accuracy. Besides, the addition of further equilizer peptides might help
overcome further issues, such as compensating for protein loss during sample treatment, or
increase the limited size of the cross-concatenated standard peptides. On a biological level,this
experimental design could be applied also on related enzymes (such as RuBisCO activase),
subsequently studying their correlation with both RuBisCO subunits and the 37kDa fragment.
Besides, further information about the dynamics of RuBisCO synthesis might be won from
applying this approach on different cultivation conditions, e.g. photoautotrophic grown algae.
(b) Enhanced TAG accumulation as a result of N-deprivation: this experimental

design turned out decisive to gain new insights on TAG accumulation by Chlamydomonas
reinhardtii under N-starvation. First of all, a complex network of stress-responsive proteins,
metabolites and physiological parameters was established and complemented with older tran-
scriptomes and metabolomics datasets. This network showed many complementary gene/protein
complexes responsive to stress, suggesting major points of metabolic regulation based on com-
mon signaling elements. In general, it could be confirmed that the adaptation mechanisms to
N-depletion might be switched by the C/N balance in the cell. Another distinctive mechanism
was the differential ribosome accumulation in the cell (decrease in the chloroplasts, increase in
the cytosol), hinting at a more active role of nuclear encoded proteins during N-stress. This
can be supported by major changes found in the nuclear proteome (136 proteins were differen-
tially expressed), even though, ironically, none of them were related to the major physiological
changes N-starvation on Chlamydomonas reinhardtii is known for (gametogenesis and sexual
reproduction). The adjustment of lipid metabolism to N-starvation could be confirmed both on
the a higher TAG accumulation as also in a change of the total lipid composition of the cell (with
an increased relative amount of C18-2 fatty acids). Significant changes on a protein level were
detected mainly on proteins related to oxidative phosphorylation (most notably the increase
on NADH-synthases, ATP-synthases and COX) and a sharp decrease of the light-dependent
reaction proteins. These changes are especially relevant since they are not shared with other
depletions or abiotic stresses. Another novelty of this study is the inclusion of a recovery phase
after N-deprivation: most significant was the instant biomass increase after N-replenishment
and the significantly higher expression of proteins related to the β-oxidation pathways. At this
stage, proteins related to glycerol metabolism, MLDP and COP were found to be relevant for
cell growth processes. Finally, we also managed to find target genes that could potentially bring
higher lipid accumulation through bioengineering, both through iRNA silencing (e.g. MDLP)
or overexpression (e.g. BRI1 suppressor, related to glycerol and C18:2 and only detected at N
deprivation). Nevertheless, even though these genes have not been reported to be significant
in other stresses, these results still should be complemented by a perfect flux model in order to
correct and avoid unintended effects. Besides, this line of work could be also continued through
other approaches already used in this thesis, such as the study of individual enzymes (e.g. FtsH
metalloproteases) or the application of MAPA on nuclear proteome analysis to find hitherto
unidentified transcription factors.
In general, the findings contained in my PhD-Thesis would also profit from further technical

enhancements. From a technical standpoint, new improvements in LC-MS/MS technology
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should bring better chromatographic peptide separation and MS measurements with higher
speed and accuracy. The incorporation of new devices to mass spectrometers has also led to
the development of further quantification techniques (e.g. Parallel Reaction Monitoring
(PRM) by Thermo). These advances have also been reflected on the development of many
(open source) platforms like Skyline [185] or MaxQuant [53] that offer both more machine
compatibility and more complex data mining workflows. Also previously existing workflows
like MAPA have been improved, adding new parameters such as RT. Nevertheless, besides
powerful identification algorithms and versatile analysis tools, protein databases are a capital
element for reliable protein identification and quantification that cannot be taken for granted
— in fact, this work gives evidence of the difficulties in keeping track of proteins from the
same species, showing very disparate protein identifications coming out of a same dataset, no
matter if using different genome assemblies, different annotations from the same assembly, or
even identifying proteins through detection of one or two peptides. These results remark how
continous update of the currently available, manually curated protein databases with novel
experimental data and newer genome annotation models are capital for accurate and reliable
protein identification and quantification, and how important it is not only to implement these
databases but also to develop new strategies for database quality control.
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4 Summary

Systems Biology can be described as a holistic approach striving to analyze an organism as a
biological system, integrating the characterization of its components and the description of their
interactions and dynamics. This strategy led to the development of the -omics studies, which
aim at collecting the complete set of a determined kind of biomolecules from an organism at a
certain time point (e.g. transcriptomics: mRNA; proteomics: proteins; metabolomics: metabo-
lites, etc). Thus, high-throughput technologies that allow highly reproducible measurements
and large data production must be applied: a good example is the use of Mass Spectrometry
(MS) for Proteomics studies. My PhD thesis continues our previous work with two compre-
hensive -omics publications on Chlamydomonas reinhardtii, exploring different applications of
LC-MS/MS for Proteomics studies on this organism. Chlamydomonas reinhardtii, a unicellular
algae with high ability to adapt dynamically to environmental conditions, great relevance as a
model plant, and also increasingly important as a potential bioproducer of fuel and biomass.
This line of work has led to two publications previous to this PhD-Thesis, both of which I
co-authored: May et al 2008 [195] and Wienkoop et al. 2010 [338]).
This PhD-Thesis comprehends four different topics within the context of the proteomic study

of Chlamydomonas reinhardtii :
1- The data gained from this and also previous studies were also used to implement theMass

Accuracy Precursor Alignment (MAPA) strategy, which is based on the combination of
the ProtMax algorithm and multivariate statistics (PCA/ICA). OnHoehenwarter et al.2011
the application of this workflow for search of functional PTMs for protein speciation in samples
from different species is discussed. The MAPA approach was successfully applied on a study of
the phosphorylation state of key components of signal induction cascades after phytohormone
treatment in Arabidopsis thaliana — not only were the phosphorylated peptides identified, but
also their phosphorylation site [126].
2- Proteomics data can also be used to enhance genomic annotation and implement the cur-

rently existing protein databases, since databases made of different genome assemblies and even
from the same genome assembly but different annotations can still significantly influence the
results of a proteomics study. Hence, four different databases made from different annotations
of two different genome assemblies were tested for the same proteomics dataset. On Valledor
et al. 2012 these results are displayed graphically, mapping the identified proteins, evaluating
the overlaps between different databases, and also comparing the outcomes of single peptide
and two-peptide protein identification for each database, showing significant differences for both
qualitative and quantitative analysis —– in fact, different databases can significantly alter both
qualitative analyses (different IDs in different annotations) and quantitative protein analysis
(with key peptides for protein validation not being identified at all). [310].
3- A qualitative/semiquantitative experiment was developed for a Nitrogen deprivation study

during a four day cycle, comprising three days of Nitrogen depletion and 24h of Nitrogen reple-
tion for recovery. To establish the connection between N-metabolism, lipid accumulation, cell
growth and eventual changes in membrane composition, proteomic and metabolomic data were
gained from whole cell extracts and isolated nuclear fractions, correlated with pyhsiological
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measurements and mapped. Subsequently, these data were further correlated with an existing
transcriptomic dataset, and associated to a metabolic network. This approach led to new in-
sights into physiological mechanisms for both adaptation to N-starvation and its recovery after
N-repletion, finding significant changes at organelle (e.g. differential ribosome accumulation),
protein and lipid levels (e.g. downregulation of PS-relative proteins and changes in both lipid
amount and lipid composition during N-starvation), and finding putative target genes to in-
crease lipid accumulation through bioengineering (e.g. overexpression of the BRI1 suppressor,
as published in Valledor et al. 2014 [309].

4- After having found evidence of different stoichiometry for the large and the small RuBisCO
subunit in our previous work [338], a new strategy was developed, including enhanced Mass
Western via cross-concatenated peptides for absolute quantification and combining it with
different extraction and prefractionation methods to exclude any kind of technical artefacts.
Furthermore, the protein data were correlated with transcript data over a diurnal cycle to follow
the dynamic of RuBisCO-Expression during a light/dark cycle and discuss possible physiological
effects of the diurnal oscillation of the large subunit. The results of this study, published on
Recuenco-Munoz et al. 2015 do not only confirm the 5:1 stoichiometry for LSU:SSU and a
possible light regulation of LSUs diurnal cycle, but also bring evidence for the accumulation of a
37kDa N-fragment from LSU and its possible physiological functions — the positive correlation
of C-assimilation and the amount of 37kDa N-fragment suggests a catalytic activity of its own
[253].
As a result, my PhD-Thesis not only covers a wide range of applications and challenges of

the current Proteomics plant research (different strategies for quantitative/qualitative analysis
and a comparative study on protein databases), but also deals with relevant aspects of the
Chlamydomonas reinhardtii metabolism, bringing new insights on key aspects of its C- and N-
metabolism (RuBisCO, N-starvation and recovery) and offering new tools and suggestions for
both functional studies (MAPA) and industrial application (bioengineering targets for improved
lipid production).
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Zusammenfassung

Systembiologie kann als ein holistischer Ansatz beschrieben werden, laut dessen ein Organ-
ismus nicht als Summe seiner Bestandteile betrachtet wird, sondern auch deren Interaktion
und Dynamik berücksichtigt. Diese Strategie führte zur Entwicklung der -Omics Studien.
Ziel der Omics-Studien ist es, den gesamten Satz einer gewissen Makromolekülenklasse eines
Organismus zu einem bestimmten Zeitpunkt zu detektieren, identifizieren und wenn möglich
quantifizieren.
In der vorliegenden Arbeit wurden vier zentrale Fragestellungen der Proteomanalyse in der

einzelligen Modellalge Chlamydomonas reinhardtii behandelt:
1- Die Datensätze aus diesen und auch aus anderen Proteomics-Studien an verschiedenen

Pflanzensorten wurden benutzt, um den MAPA (Mass Accuracy Precursor Alignment) Work-
flow zu implementieren. Diese Strategie umfasst die Kombination des ProtMax Algorithmus
mit multivariater Statistik. In Hoehenwarter et al. 2011 wird die Anwendung von MAPA
für funktionellen Studien und Proteinspezifikation diskutiert [126] und erfolgreich an einer
Studie über Signalinduktionskaskaden nach Phytohormonbehandlung an Arabidopsis thaliana
angewendet: hier wurden nicht nur phosphorylierte Peptide identifiziert, sondern auch ihre
jeweilige Phosphorylierungsstelle.
2- Experimentelle Datensätze von Proteomics-Untersuchungen können auch für Genoman-

notationsstudien und Verbesserung der bestehenden, manuell gewarteten Proteindatenbanken
dienen. Proteindatenkbanken können sowohl aus verschiedenen Genomrekonstruktionen als
auch aus verschiedenen Annotationen der gleichen Genomrekonstruktion stammen — dabei
können verschiedene Proteindatenbanken signifikante Unterschiede bei der Analyse des gleichen
Datensatzes erzeugen. Dies wurde gestestet, indem ein bestimmter Chlamydomonas reinhardtii
Datensatz mit vier verschiedenen Datenbanken analysiert wurde. Diese Datenbanken stammen
aus mehreren Annotationen von zwei verschiedenen Genomrekonstruktionen. Die Ergebnisse
aus diesem Vergleich wurden in Valledor et al. 2012 grafisch dargestellt, die entsprechenden
Überlappungen veranschaulicht, und die Ergebnisse aus verschiedenen Identifizierungsstrate-
gien analysiert (Einzelpeptidbestimmung, Proteinbestimmung mit 2 Peptiden). Hier wurden
signifikante Unterschiede zwischen den verschiedenen Datenbanken gefunden — tatsächlich
wird nicht nur die qualitative Analyse (z.B. verschiedene Genomannotationen ergeben ver-
schiedene Protein-IDs) sondern auch die quantitative Proteinanalyse (z.B. durch Nichtidenti-
fizierung notwendiger Peptide für die Validierung ihrer ursprünglicher Proteine) entscheidend
beeinfluβt [310].

3- Um den Zusammenhang zwischen N-Streβ und erhöhter TAG-Akkumulation in CR zu un-
tersuchen, wurde ein Experiment geplant, welches die Anpassung über 72 Stunden N-Mangel
und die Erholung 24 Stunden nach N-Zugabe verfolgen sollte. Dabei wurden Proteomics
und Metabolomics Untersuchungen an komplette Zellextrakte und auch aufgereinigte Zel-
lkernfraktionen durchgeführt und mit klassischen physiologischen Messungen kombiniert —
die entstehenden Ergebnisse wurden zusätzlich mit bereits bestehenden Metabolomics und
Transcriptomics-Datensätzen verglichen. Um die Zusammenhänge zwischen N-Metabolismus,
Lipidakkumulation, Zellwachstum und etliche Veränderungen in der Lipidzusammensetzung
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der Zelle zu veranschaulichen wurden die gewonnenen Daten mithilfe multivariater Statistik
prozessiert und schlieβlich in einem metabolischen Netzwerk visualisiert. Durch diese Strategie
gelang es Valledor et al. 2014, neue Erkenntnisse über die physiologischen Mechanismen von
Chlamydomonas reinhardtii zur Anpassung an N-Mangel und von N-Mangel zurück zum Aus-
gangszustand zu erlangen. Dabei konnten signifikante Veränderungen auf Organell-, Protein-
und Lipidniveau gefunden werden, genauso wie potentielle Target-Gene, dessen Manipulation
durch Bioengineering zu einer Erhöhung der Lipidakkumulation der Alge führen könnte [309].

4- Nachdem Evidenz aus unseren vorigen Untersuchungen auf eine von 1:1 abweichende Stö-
chiometrie von beiden RuBisCO Untereinheiten hinwies [338], wurde eine Studie durchgeführt,
um diese Hypothese gründlich zu untersuchen. Dafür wurden beide Untereinheiten mittels einer
neuen Entwicklung des Mass Western (Lehmann 2008) untersucht, dessen Standardpeptide aus
aneinandergereihten, querverknüpften Peptidsequenzen aus beiden RuBisCO-Untereinheiten
bestanden — dazu wurde auch einen zusätzlichen, doppelt-markierten Equalizer-Peptid zu
genaueren Quantifizierung benutzt. Um etliche präparativ erzeugten Artefakte auszuschlieβen,
wurden die Mengen der beiden Untereinheiten in Messproben aus (a) rohen Zellextrakten (b)
präfraktionierten Proteinextrakten und (c) purifiziertem RuBisCO-Holoenzym quantifiziert.
Zusätzlich wurden diese Proteindaten mit Transkriptdaten über einen 24stündigen Zeitinter-
vall korreliert, um die Dynamik der RSU-Expression über ein Licht/Dunkel Tageszyklus zu
verfolgen. Die von mir in Recuenco-Munoz et al. 2015 publizierten Ergebnisse nicht nur
bestätigen die 5:1 Stöchiometrie für LSU:SSU, sondern zeigen auch eine Oszillation der LSU-
Konzentration über den Tageszyklus. Da diese Oszillation eine Verschiebung von 9h zwischen
der höchsten mRNA-Konzentration (im Dunkel) und der höchsten LSU-Konzentration zeigt,
könnte man eine lichtbedingte Regulation der LSU-Synthese annehmen. Zudem wurde eine
Akkumulation eines 37-kDa N-Proteinfragmentes der LSU gemessen, dessen positiven Korrela-
tion mit der C-Assimilation auf eigene katalytische Aktivität hinweisen könnte [253].
Die vorliegende Arbeit deckt somit nicht nur eine grosse Bandbreite an Techniken und Her-

ausforderungen der heutigen Proteomics-Forschung in der molekularen Pflanzenphysiologie ab,
sondern bringt neue Ansichten über den C- und N-Stoffwechsel einer der relevantesten Model-
lalgen, Chlamydomonas reinhardtii (RuBisCO, Lipidproduktion unter N-Mangel). Schlieβlich
wurden neue Methoden und Strategien entwickelt, die sowohl in funktionellen (z.B. MAPA,
Mass Western) als auch in industriellen Studien (Steigerung der Lipidproduktion durch Bio-
engineering) Anwendung finden könnten.
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