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A B S T R AC T

The application of methods originating in arti�cial intelligence research – and ma-
chine learning in particular – to problems in theoretical chemistry o�ers exciting
new possibilities. However, due to the relatively young age of this �eld and the
complexity of the employed models, various di�culties complicate a routine use of
these methods. The main goal of this thesis is to develop improved techniques and
establish new protocols in order to overcome these limitations. These developments
consist of: 1) A new algorithm for training high-dimensional neural network poten-
tials (HDNNPs) – a machine learning technique especially well suited for modeling
chemical systems. This training algorithm, termed the element-decoupled Kalman
�lter, yields HDNNPs of improved accuracy and is also able to incorporate molecu-
lar forces into the training process. 2) A HDNNP based fragmentation approach is
introduced in order to model extended molecular systems. With this approach, macro-
molecular properties can be recovered using only the information contained in small
fragments of a molecule. 3) These developments are supplemented by an improved
adaptive sampling scheme, which identi�es molecular con�gurations required to
construct an accurate HDNNP model for a system in a highly automated fashion.
4) A machine learning approach capable of modeling molecular dipole moments is
obtained by extending the structure of HDNNPs. The pro�ciency of all these novel
strategies is investigated based on a variety of chemical systems. The performance
of the element-decoupled training algorithm is analysed by modeling the Claisen
rearrangement reaction of allyl vinyl ether to 4-pentenal. Linear all-trans alkanes
serve as a simple test system to assess the HDNNP-based fragmentation approach.
A �nal study is dedicated to the adaptive sampling scheme and the dipole moment
model, where these techniques are applied to the molecular dynamics simulation
of infrared spectra of methanol, n-alkanes of di�erent lengths and the protonated
alanine tripeptide.
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Z U S A M M E N FA S S U N G

Strategien aus dem Forschungsbereich der künstlichen Intelligenz und insbeson-
dere dem Gebiet des maschinellen Lernens erö�nen vielversprechende alternative
Lösungswege für zahlreiche Probleme aus der theoretischen Chemie. Unglücklicher-
weise wird eine routinemäßige Anwendung dieser Methoden zur Zeit noch durch
zahlreiche Komplikationen erschwert, welche Aufgrund des relativ jungen Alters
dieses Forschungsgebietes sowie der hohen Komplexität der verwendeten Modelle
auftreten. Das Ziel dieser Arbeit ist es daher, diese Hürden sowohl durch die Verbesse-
rung von vorhandenen als auch die Entwicklung von neuartigen Herangehensweisen
zu überwinden. Zu den zu diesem Zwecke eingeführten Neuerungen zählen: 1) Ein
verbesserter Algorithmus zum Trainieren von hochdimensionalen neuronalen Netz-
werkpotentialen (HDNNPs), ein Ansatz aus dem Bereich des maschinellen Lernens,
welcher besonders für die Beschreibung von Molekülen geeignet ist. Die Verwen-
dung dieses Trainingsalgorithmus – des sogenannten „element-decoupled“ Kalman
Filters – macht es möglich, hochqualitative HDNNPs zu konstruieren und darüber
hinaus auch molekulare Kräfte im Konstruktionsvorgang zu berücksichtigen. 2) Ein
Fragmentationsansatz basierend auf HDNNPs wurde einführt, um große Moleküle
beschreiben zu können. Mittels dieses Ansatzes können die Eigenschaften großer
Moleküle allein anhand kleiner molekularer Fragmente vorhergesagt und so enorme
Einsparungen an Rechenzeit erzielt werden. 3) Eine adaptive Selektionsstrategie stellt
eine Ergänzung zu den beiden vorherigen Entwicklungen dar und ist in der Lage voll-
automatisch jene Molekülgeometrien zu identi�zieren, welche notwendig sind um ein
chemisch aussagekräftiges HDNNP zu erhalten. 4) Eine Modi�zierung der HDNNP
Struktur ermöglicht es, ein generelles Modell für die Vorhersage von molekularen
Dipolmomenten zu erhalten. Die Brauchbarkeit dieser neu eingeführten Methoden
wird anhand einer Reihe von unterschiedlichen chemischen Testsystemen unter-
sucht. Eine Analyse der Leistungsfähigkeit des „element-decoupled“ Kalman Filters
erfolgt anhand der Claisen-Umlagerung von Allyl-vinylether zu 4-Pentenal. Lineare
Alkanketten dienen der Untersuchung des HDNNP-basierten Fragmentationsansat-
zes. Eine weitere Studie beschäftigt sich mit der adaptiven Selektionsstrategie und
dem Modell zur Vorhersage von Dipolmomenten. Im Rahmen dieser Studie werden
die Infrarotspektren von Methanol, n-Alkanen unterschiedlicher Länge sowie des
Alanintripeptidkations mittels Moleküldynamik simuliert.
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I N T R O D U C T I O N 1
The prospect of creating intelligent automata has fascinated humankind since ancient
times. Fueled by the advent of modern computer architectures and sophisticated
algorithms, the realization of this dream has nowadays left the realms of pure �ction
and become a realistic possibility. The last decade in particular has seen several
astounding developments in the �eld of arti�cial intelligence research. Especially the
sub-�eld of machine learning (ML) – the science of autonomously learning complex
relationships from past experience and accumulated data – has undergone dramatic
progress, as is attested by the plethora of ML based applications which now permeate
our everyday life:1,2 Speech and handwriting recognition, spam �lters, reverse image
search, recommendation engines and self-driving cars are only a few examples which
make heavy use of ML techniques.

It is therefore hardly surprising, that modern ML algorithms have also proven to
be an invaluable addition to the �elds of Theoretical Chemistry and Chemoinfor-
matics.3–5 Here, their ability to model highly complicated relationships is utilized
in a variety of applications. In computer aided drug design and materials design
for example, ML methods can be used to relate properties of compounds (e.g. sol-
ubility, biological activity, toxicity, melting points) directly to their structure (e.g.
chemical graphs) in the form of quantitative activity structure relationship (QSAR)
and similar models.3,4,6 Due to the predictive power and computational e�ciency of
the underlying ML algorithms, the resulting models can then be used to screen vast
databases for promising new compounds without the explicit need for experiments.
Hence, ML based strategies can provide important guidance in the development
of new drugs and materials, as is attested by their use to e.g. design special metal
organic frameworks7 and discover e�cient organic photovoltaic materials8. Another
application where ML shows promise is the prediction of organic reaction outcomes9,
a task which is highly relevant for e�cient synthetic planning and design. Similar
to an organic chemist, ML algorithms can learn to predict the products of reactions
based on a set of reagents and reactants.

However, perhaps one of the most fascinating contributions of ML to Theoretical
Chemistry is with respect to computational chemistry methods.3,5 While these meth-
ods constitute a central tool of Theoretical Chemistry, they are hampered by intrinsic
limitations. The most accurate of them aim to �nd a numerically exact solution to the
electronic time-independent Schrödinger equation (full con�guration interaction10,
quantum Monte Carlo11), thus providing an exact description of a molecular system
within the non-relativistic Born–Oppenheimer picture. Unfortunately, the computa-
tions necessary to solve the resulting eigenvalue problem and integrals scale very
unfavorably with the size of the system and quickly become prohibitively expensive.
As a consequence, only extremely small molecules (up to a few atoms) can be treated
with these methods on a routine basis. In order to model larger systems, physical
rigor and in turn predictive accuracy need to be sacri�ced in favor of computational
e�ciency. This necessity has lead to a variegated spectrum of computational chem-
istry methods, introducing varying degrees of physical and empirical approximations.
High-level electronic structure methods, such as coupled cluster based approaches12

(e.g. CCSD(T)), retain a relatively high accuracy, but are still restricted in the size of
systems they can treat (up to a hundred atoms). More approximate methods, such as
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density functional theory13 (DFT), are able to describe much larger systems, albeit
at a reduction in the reliability of their predictions. Situated at the far end of this
spectrum are empirical force �elds14,15 (FF), which substitute the laws of quantum
mechanics by simple, physically motivated functions �t to experimental and/or theo-
retical data. Consequently, FF can be used to simulate systems containing hundreds
of thousands of atoms. However, due to the simplicity of the functions employed, the
predictive accuracy of FF is limited, making most of them e.g. unable to account for
changing bonding patterns. In general, this unfortunate relation between accuracy
and computational e�ciency inherent to all computational chemistry methods leads
to something akin to a tightrope walk. One has to carefully choose a method which
is able to describe the system to be investigated reasonably well, while at the same
time being a�ordable from a computational perspective. Yet, based on the chemical
complexity and size of the system at hand, a good choice of method might not be
readily apparent if it is available at all.

ML o�ers the tantalizing possibility to overcome this precarious balancing act:
By exploiting the ability of ML techniques to model highly complex relationships,
approximate models of high-level electronic structure methods can be created based
on only a handful of reference data points. Due to the powerful statistical machinery
at the core of modern ML algorithms, these approximate ML models exhibit the
same accuracy as the underlying electronic structure method, but can be evaluated
at only a fraction of the original computational cost. This combination of accuracy
and computational e�ciency makes it possible to study problems typically beyond
the reach of conventional theoretical chemistry methods.

ML models of electronic structure methods have undergone rapid development
in the last decade, leading to the emergence of a variety of di�erent strategies.
Depending on their mode of application and the ML algorithms they are based on, it
is possible to group these strategies into di�erent classes. From an application based
point of view, three main types can be di�erentiated: First, models which retain
the basic formalism of electronic structure methods and only use ML techniques to
approximate partial aspects. Examples include the use of ML techniques to substitute
Gaussian basis sets16 and attempts to approximate the exact exchange-correlation
functional in DFT17. The second type of models employs ML in order to augment
basic electronic structure calculations. Here, ML algorithms are used to model the
di�erence between high-level electronic structure methods and a cheap approximate
baseline method.18 For subsequent predictions, only low level computations have
to be performed and the ML model is used as a correction to recover the high-level
results at virtually no extra cost. This approach has e.g. been used to accurately
predict various physicochemical properties of a database containing 134 000 small
organic compounds based on only 10 000 reference samples18. The �nal type of ML
models completely forgoes any kind of electronic structure formalism or baseline and
instead relies purely on the power of ML algorithms to model the target properties.
In this case, electronic structure calculations are only used to generate suitable
reference data points. As a consequence, this class of ML models is extremely
e�cient from a computational point of view but the high �exibility can complicate
the creation process. Examples for this class can e.g. be found in References 5,19–
22. A special case of the latter models are so-called ML potentials, which aim to
accurately predict molecular potential energy surfaces (PESs) and the associated
forces (�rst derivatives).23–27 ML potentials constitute the ML analogue to empirical
FFs. However, unlike FFs, these potentials are based on the �exible functional forms
provided by ML algorithms and can therefore account for situations where classical
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FFs fail (e.g bond breaking and formation events). Moreover, ML potentials exhibit the
same chemical accuracy as the electronic structure method they are based on, while
at the same time retaining the excellent computational speeds of conventional FFs.
Due to this favorable combination of high accuracy and computational e�ciency,
ML potentials can be used to study chemical systems and problems inaccessible
with conventional methods. A wide range of applications have been reported for
ML potentials, with a particular focus on solid state systems28–33, reactions on
surfaces34–42 and molecules21,43–63.

From a method-centered perspective, the ML techniques employed in the above
applications can be grouped into two main classes – Kernel methods64 and arti�cial
neural networks (NNs)1. In Kernel methods, predictions of an unknown sample
are performed by measuring its similarity to known examples. As a similarity
measure, Kernel methods use so-called Kernel functions, which represent an implicit
mapping to high dimensional feature spaces. Due to their underlying structure,
Kernel algorithms are well described by statistical learning theory and can be trained
relatively fast. However, as a new sample needs to be compared against all reference
points during prediction, the prediction speed is slower than other methods and
grows linearly with the size of the reference data set. Moreover, appropriate Kernel
functions – which can be thought of as basis functions used during �tting – have to
be speci�ed in advance and are not adapted during training, which can potentially
limit the expressive power of Kernel methods. Notable examples of Kernel algorithms
include Kernel ridge-regression, Gaussian processes (Kriging) and support vector
machines (for a detailed discussion of these di�erent methods, see References 64 and
2). The second class of algorithms – NNs – is inspired by the central nervous system.
Similar to their biological counterpart, NNs are built from small subunits, which are
connected in elaborate patterns. This arbitrarily complex structure can make NNs
di�cult to train and methods to successfully construct large NN models rank amongst
the most important discoveries in ML in the last decade.65 NNs also lack a sound
theoretical foundation aiding in the interpretation of their predictions. However,
the immense �exibility arising due to this complex structure is at the same time
also the greatest strength of NN methods: Instead of being dependent on prede�ned
basis functions, NNs are able to directly learn a set of appropriate basis functions
during training. This property makes them a powerful tool for modeling abstract
tasks, such as e.g. pattern recognition.1 In addition, unlike Kernel methods, NNs
do not use observed reference data during prediction, but instead store the relevant
information directly in their connections. As a consequence, NNs are generally much
faster to evaluate during prediction than Kernel methods. A wide variety of NN
models are employed nowadays, with feed-forward NNs, convolutional NNs and
recurrent NNs only being a few examples (an in depth description of all models can
be found in Reference 1). In general, the choice between Kernel methods and NNs
strongly depends on the task to be modeled and whether interpretability and fast
training times or high �exibility and e�cient prediction times of the �nal model are
desired.

As is attested by the various examples reported above, ML models of electronic
structure methods are a rapidly developing and diverse �eld of research. Yet, despite
their apparent potential, approximate ML models are still far removed from being
used as a routine tool in Theoretical Chemistry. While this situation has improved
dramatically during the last few years due to the ongoing research e�orts by di�erent
groups, several issues remain which limit the general applicability of ML models
signi�cantly: First, special adaptations to standard ML algorithms are necessary
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in order to deal with the three dimensional structure of molecular systems and
various invariances arising from the laws of quantum mechanics. Consequently,
conventional training methods can no longer be used out of the box and need to
be modi�ed in appropriate ways. These circumstances can complicate the process
of generating ML approximations of electronic structure methods substantially. A
second issue concerns the economic use of the available reference data. Due to the
computational cost of high-level electronic structure calculations, the construction
of extensive reference data sets is not feasible in most cases. Hence, it is highly
desirable to limit the number of reference calculations and instead e�ectively utilize
additional information during the construction of the ML models (e.g. molecular
forces). However, doing so once again requires elaborate modi�cations of existing
training methods. Third, when constructing reference data sets, no straightforward
strategies exist to determine which reference points need to be selected in order to
obtain accurate and reliable ML models. Optimal selection criteria depend strongly
on the chemical problem to be investigated. In addition, unproductive reference
calculations should be kept to a minimum in accordance to the previous issue. These
requirements render the generation of reference data tedious and di�cult to automa-
tize. Finally, the computational cost of high-level electronic structure methods is not
only problematic with regards to the number of reference calculations but also with
respect to the maximum size of the studied molecules. Approximate ML models are
in principle able to describe molecular systems far larger than what is possible with
conventional electronic structure methods. However, in order to train these models,
expensive reference computations still need to be carried out for the whole system.
This requirement imposes a severe limit on the maximum system size which can be
treated with ML models.

The central goal of this thesis is to address the above issues and improve the
general applicability and accessibility of ML methods for problems in Theoretical
Chemistry. Due to the wide spectrum of possible applications and ML techniques,
the current study will focus on a particular type of NN based ML potentials, so-
called high-dimensional NN potentials (HDNNPs)66. HDNNPs are an adaptation of
standard NNs and possess several properties which make them especially well suited
for modeling molecular systems.

In the context of these HDNNPs, a new training algorithm was developed to deal
with the �rst two issues described previously. This algorithm produces ML models
of improved accuracy compared to conventional training methods. Moreover, it is
also able to utilize additional information in the form of molecular forces during
the training process in a consistent manner. Concerning issue number three, the
possibility to simplify and automatize the construction of reference data sets was
investigated by introducing a special sampling scheme. This scheme selects relevant
data points based directly on the predictive uncertainty of the respective ML models
and greatly reduces the number of reference data points required to obtain accurate
HDNNPs. Finally, in order to overcome the limitations with respect to molecular
size, the ability of HDNNPs to operate in a manner akin to fragmentation methods67

was studied. By pursuing this strategy, HDNNPs are capable to reconstruct macro-
molecular properties based only on the information contained in small fragments of
the original molecular system. In addition, it was found, that the special structure
of HDNNPs is not only well-suited for modeling PESs, but can also be extended to
describe molecular dipole moments.

A general overview of the theory underlying HDNNPs and the associated ML
techniques, as well as of the simulation methods employed in this thesis is given
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in Section 2. The strategies developed to address the issues highlighted above are
described in detail in Section 3. Section 4 deals with the application of these strategies
to concrete chemical systems and problems. The e�ectiveness of the employed
methods is studied based on a Claisen rearrangement reaction, n-alkanes of varying
lengths, the methanol molecule and a small tripeptide. To investigate the e�ectiveness
of the HDNNP-based dipole moment model, it is used to simulate infrared (IR) spectra
of methanol, the n-alkanes and the tripeptide. Finally, a conclusion and summary of
the topics covered in this thesis is provided in Section 5.
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T H E O R Y2
The purpose of the following chapter is to provide a short overview of the di�erent
methods and techniques forming the basis for the research conducted in this thesis.
After giving a summary of arti�cial neural networks (NNs), high dimensional NN
potentials (HDNNPs) are introduced along with atom-centered symmetry functions
(ACSFs). This is followed by a discussion of di�erent methods to train these potentials
and NNs in general, as well as their respective advantages and drawbacks. The chapter
is concluded with a brief description of the molecular dynamics (MD) simulation
technique.

2.1 artificial neural networks (nns)

Like the central nervous system, NNs are an arrangement of interconnected subunits
– so-called arti�cial neurons.1,68–70 These neurons collect, process and transmit
incoming signals based on the strength and pattern of the network connections.
Typically, NNs are structured into layers – groups of neurons performing similar
functions: The input layer of the NN collects signals from the environment. These
signals are then transformed by one or more hidden layers. Finally, the signal
processed in this manner is returned by the output layer.

Due to their modular structure, NNs are extremely �exible ML models. As a
consequence, a wide variety of NN architectures suitable for di�erent tasks exists
nowadays, di�ering greatly e.g. in their connectivity patterns or arrangement of
layers. One of the �rst and most frequently used architectures are feed-forward
NNs. An example of such a NN with one hidden layer is shown in Figure 1. In a
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Figure 1: An example for a feed-forward NN with a single hidden layer and one output node.
The nodes of two neighboring layers are connected via the weight parameters {w l

α β }, which
have to be determined during training. The bias nodes provide an adjustable o�set to the
transfer functions σ l .

feed-forward NN, just the neurons between adjacent layers are connected and signals
are only transmitted into one direction. Beginning from the input layer, a vector of
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2.2 high dimensional neural network potentials (hdnnps)

inputs y0 is propagated through the layers l of the network by recursively applying
the relation

ylβ = σ
l ©«w l

0β +

nl−1∑
α

w l
α βy

l−1
α

ª®¬ (2.1)

until the output layer is reached. The signals {yl−1α } obtained in the previous layer
are scaled by the weight parameters {w l

α β }, which encode the strength and patterns
of the connections within the NN. The weight w l

α β connects the neuron α of the
previous layer to the neuron β in the current layer, while the so-called bias weights
{w l

0β } provide an adjustable o�set to the transfer function σ . These weights are
collected into the vector of weights w for the whole NN and have to be determined
during the training process. Following this weighting step, the sum over the signals
is formed and a transfer function σ l is applied. This transfer function computes a
nonlinear transformation (e.g. hyperbolic tangens) of the incoming signals and is the
reason NNs can in principle �t any continuous function to arbitrary accuracy.71–73

Because of this property, as well as their computational e�ciency and the avail-
ability of analytic derivatives, feed-forward NNs are used as the basis of many ML
potentials. Unfortunately, standard feed-forward NNs are plagued by several issues
when they are applied to model molecular PES directly. First, the architecture and
hence the size of the input layer of a NN is �xed. As a consequence, only molecules
containing a speci�c number of atoms prede�ned by the size of the input layer
can be described. Second, the values of the weights remain constant after training.
This means, that the changing the order the inputs (e.g. atomic coordinates) are
presented to the NN, also changes its predictions, a behavior which is unphysical in
the context of PES. Moreover, if Cartesian or related coordinates are used to describe
the molecular geometries, the resulting ML potential is no longer invariant with
respect to translations and rotations of the molecule.

2.2 high dimensional neural network potentials (hdnnps)

HDNNPs66,74 are able to overcome the above problems by pursuing a two-pronged
approach. First, in a HDNNP, the total energy E of a molecule containing N atoms is
expressed as a sum of individual atomic energy contributions Ei :

E =
N∑
i

Ei . (2.2)

These contributions depend on the chemical environment around each atom i and
are modeled by feed-forward NNs, where one NN is used for atoms belonging to
the same element. An example for a HDNNP is shown in Figure 2. Due to this
structure, HDNNPs no longer depend on the order of the input coordinates and can
now describe molecules containing a varying number of atoms. If the size of the
molecule changes, the corresponding terms simply have to be added or removed from
the sum in Equation 2.2. Second, the local chemical environment of an individual
atom i is described by a set of special atom-centered symmetry functions75 (ACSFs)
{Gi }. These ACSFs are many-body functions obtained from the Cartesian coordinates
{Ri } and by construction invariant with respect to rotations and translations of the
molecule.
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Figure 2: Schematic representation of a high-dimensional neural network potential. Each
Cartesian coordinate is transformed into a set of atom-centered symmetry functions (ACSFs)
{Gi } for every atom i , describing the atoms chemical environment. Using these ACSFs as
inputs, the energy contribution Ei of the atom is predicted by the corresponding elemental
neural network (NN). The total molecular energy E is obtained as the sum over these
contributions.

Analytic expressions for molecular forces, which are required for e.g. molecular
dynamics simulations, are readily available within the HDNNP formalism.74 The
force with respect to the Cartesian coordinates Ri of an atom i is obtained via the
relation

Fi = −
N∑
j

Sj∑
ς

∂Ej

∂G jς

∂G jς

∂Ri
, (2.3)

where the �rst term in the sum is the partial derivative of the elemental NNs with
respect to the ACSFs and the second term the partial derivative of the ACSFs with
respect to the Cartesian coordinates Ri . S j is the number of ACSFs used to describe
the environment of atom j.

2.3 atom-centered symmetry functions (acsfs)

The ACSFs75 {Gi } representing the chemical environment of an atom i are computed
from the Cartesian coordinates {Rj } of all neighboring atoms within a sphere around
i . This sphere is de�ned via the cuto� function

fc(ri j ) =

{
1
2

[
cos

(
π ri j
rc

)
+ 1

]
, ri j ≤ rc

0, ri j > rc,
(2.4)

where ri j is the distance between the central atom i and its neighbor j and rc is a pre-
de�ned cuto� radius. By introducing this cuto�, the description of the local chemical
environment is focused on the chemically relevant regions. As a consequence, the
computational cost of HDNNPs scales linearly with system size.

In order to describe the atomic environment within this sphere, a combination
of radial and angular ACSFs is employed. Radial ACSFs are distribution functions
constructed from Gaussian functions according to

Grad
i =

N∑
j,i

e−η(ri j−rs)
2
fc(ri j ), (2.5)
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2.3 atom-centered symmetry functions (acsfs)

where η controls the width and rs the o�set of the Gaussians (see Figure 3). Di�erent
radial ACSFs are de�ned for every chemical element present in the environment of
the central atom.
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Figure 3: Radial ACSF terms e−η(ri j−rs)2 with di�erent values for the width η (given in Å−2)
and the o�set rs (in Å) of the Gaussian function. No cuto� function is used in this example.

ACSFs describing the angular environment take the form

G
ang
i = 21−ζ

N∑
j,k,i

(
1 + ϕ cos(θi jk )

)ζ
e
−η(r 2i j+r

2
ik+r

2
jk ) × fc(ri j )fc(rik )fc(r jk ). (2.6)

Here, θi jk is the angle spanned by atom i and its neighbors j and k . The �rst term in
the sum describes the distribution of angles around the central atom. The parameter
ϕ can take the values ϕ = 1 and ϕ = −1 and shifts the maximum of the angular term
between 0◦ and 180◦, while ζ regulates its width (Figure 4). η once again controls the
width of a Gaussian function describing the radial arrangement of the atoms. As is
the case for the radial functions, individual angular ACSFs are constructed for every
possible pair of chemical elements present among the adjacent atoms.
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Figure 4: Angular term 21−ζ
(
1 + ϕ cos(θi jk )

)ζ of an ACSF, varying in the parameters chosen
for the phase factors ϕ and widths ζ .

Typically, a set of ACSFs {Gi } consisting of several radial and angular functions
using a range of di�erent values for η, rs, ϕ and ζ and covering all possible elemental
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combinations is used to describe the local environment of an atom. Appropriate
values for the individual parameters have to be determined empirically. A detailed
description on various aspects of ACSFs can be found in Reference75.

2.4 nn training

In order to obtain valid ML models of molecular PESs, a NN potential must �rst
learn to reproduce the electronic structure energies of a set of reference geometries
in a process called training. During training, the weight parameters w of a NN are
adapted iteratively in order to minimize a loss function of the type

L(w) =
1
M

M∑
ι

Lι(w). (2.7)

Here, M is the number of molecules in the reference data set. Lι(w) is the error
between the NN prediction and the electronic structure energy value of molecule ι
which should be minimized. One commonly used loss function is the mean squared
error (MSE), which measures the prediction error of the NN as

Lι(w) =
1
2

(
Eι − Ẽι(w)

)2
. (2.8)

Eι is the electronic structure energy computed for molecule ι, while Ẽι(w) is the
energy predicted by the NN using the current set of weights w. Since di�erent
strategies can be used to adjust the weights in a manner that minimizes the MSE, a
variety of algorithms suitable for training NNs exist.

2.4.1 Stochastic Gradient Descent (SGD)

Perhaps the most widely used NN training algorithm is SGD1. In SGD, the weight
vector is adapted every iteration κ according to

wκ+1 = wκ − γ∇Lι(wκ ), (2.9)

where ∇Lι(wκ ) is the gradient of the prediction error for sample ι with respect to the
network weights wκ and determines the direction of the update. γ is the so-called
learning rate, a scalar factor which controls the size of the update step. Typically,
several passes through the reference data set are performed in order to minimize the
loss function. One such a pass over all samples is referred to as an epoch. In SGD,
the weights are updated for every training example, using the associated gradient
∇Lι(wκ ). This procedure is referred to as stochastic or online learning and has
several advantages when training NNs over batch learning, where the gradient is
�rst accumulated for every sample and the weights are adjusted once per epoch (see
e.g. References 1 and 2). In batch or standard gradient descent, the weight update
takes the form:

wκ+1 = wκ −
γ

M

M∑
ι

∇Lι(wκ ), (2.10)

using an average of the individual sample gradients ∇Lι(wκ ). Consequently, batch
optimization is advantageous if the loss function surface is relatively smooth or
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convex. However, if many local minima and maxima are present, as is the case
for NNs, online learning algorithms are generally faster, handle redundancy in the
reference data better and converge to better minima.

When using a standard feed-forward NN to model a PES, the gradient of the
prediction error Lι(wκ ) becomes

∇Lι(wκ ) = ∇
1
2

(
Eι − Ẽι(wκ )

)2
(2.11)

= −∇Ẽι(wκ )

(
Eι − Ẽι(wκ )

)
(2.12)

after substituting Expression 2.8 and applying the chain rule. Eι and Ẽι(wκ ) are once
again the electronic structure and NN energies. The term ∇Ẽι(wκ ) is the matrix
of �rst derivatives of the NN with respect to the current weights wκ , which is
also commonly referred to as the Jacobian Jκ . Jκ can be computed easily via the
backpropagation algorithm76, which propagates the local derivatives of each network
node backward through the NN by recursively applying the chain rule starting from
the output layer. The bracketed expression in Equation 2.12 is the di�erence between
the reference value and NN prediction νκ obtained with the weights wκ . By using
these two conventions and substituting Expression 2.12 into Equation 2.9, the SGD
update for a feed-forward NN potential becomes

wκ+1 = wκ + γ Jκνκ . (2.13)

SGD is a extremely versatile and robust algorithm and works well in practice
for a wide range of NN architectures. Unfortunately, standard SGD can exhibit
pathological behavior.77 The learning rate γ regulating the size of the update step in
SGD is the same for every individual parameter of the weight vector w. However,
using the same step size for every update direction can be problematic, e.g. when the
surface spanned by the loss function exhibits narrow valleys. An example is shown
in Figure 5. In cases like this, di�erent learning rates would be required for every

W1

W2

Figure 5: Pathological behavior of stochastic gradient descent training in a narrow valley
of the loss surface. Since the update step uses the same magnitude γ in all directions, it
overshoots the minimum and achieves only suboptimal convergence.

weight in order to achieve good convergence. Using a �xed learning rate instead,
the training process might either diverge or converge very slowly, depending on
the initial choice of γ . To overcome this problem, several adaptations to standard
SGD have been developed, where e.g. the learning rate is annealed or varied for
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every weight. Some of the most widely used SGD variants are Nesterov’s accelerated
gradient descent78, AdaGrad79 and ADAM80.

2.4.2 Global Extended Kalman Filter (GEKF)

An elegant solution to the above problem of determining optimal update magni-
tudes are training algorithms, which incorporate information on the second-order
derivatives – the curvature – of the error surface into the weight update. One such
second-order training algorithm for NNs is the GEKF81,82. This algorithm is an
adaptation of the Kalman �lter originally used in signal processing. The regression
for a GEKF training step is given by

wκ+1 = wκ + Kκνκ (2.14)
Kκ+1 = PκJκAκ−1 (2.15)
Aκ = λκ I + JTκPκJκ (2.16)
Pκ+1 = λ−1κ

[
I − KκJTκ

]
Pκ . (2.17)

Here, Kκ is the so-called Kalman gain matrix and Pκ is the �lter covariance matrix.
Aκ is a global scaling matrix, where I represents the identity matrix. A time varying
forgetting schedule is introduced into the GEKF regression, in order to avoid prema-
ture convergence to local minima. The associated forgetting factor λκ is computed
as λκ = λκ−1λ0 + 1 − λ0, where the initial values for λκ and λ0 are chosen close to
unity.

Similar to the SGD algorithm (compare Equations 2.13 and 2.14), the update
direction of wκ is given by the current Jacobian Jκ . However, instead of using the
same scaling factor γ for every direction, the magnitude of the GEKF update is
instead controlled via the �lter covariance matrix Pκ . Pκ is a weighted history of
Gauss–Newton approximations to the inverse Hessian of the loss function and hence
introduces second-order information into the update step. As a consequence, the
GEKF algorithm exhibits superior training and convergence properties compared to
SGD.

However, this improved performance of second order algorithms comes at an
increased computational cost due to the additional matrix multiplications which
have to be performed during every training step. In the case of GEKFs, this additional
cost can be reduced signi�cantly by introducing a so-called adaptive �lter limit. If
the NN error νκ is below this threshold for a molecule, no signi�cant improvement
of the ML model will be attained and the weight update step is skipped. Hence, the
GEKF algorithm focuses computational resources on productive update steps and a
signi�cant speed up of the training procedure is achieved. Typically, a fraction of the
overall RMSE computed during the previous training epoch is used as the �lter limit.

While GEKF training can be applied out of the box to standard NN potentials,
additional modi�cations are required for it to work with HDNNPs. This need arises
due to the special structure of HDNNPs: The term Ẽι(wκ ) in the prediction error
(Equation 2.8) is now a sum of atomic contributions depending on the weight vectors
of di�erent NNs. Moreover, HDNNPs employ one individual NN for every chemical
element. Further adaptations are necessary if molecular forces should be incorporated
into the training process.
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2.4.3 Weight Initialization

Before the training process can be started, a set of initial values for the weight vector
wκ=0 needs to be chosen. This initial choice of weights can in�uence the training
process dramatically83: If the weights are too small, the gradients backpropagated
through the NN shrink uncontrollably and the training process slows down. If the
weights are too large, the gradients explode and the training procedure begins to
diverge. To counteract this phenomenon, it is desirable to select the weights in a
manner, which allows the overall distributions of signals and gradients to maintain a
variance close to unity and a mean close to zero as they pass through the NN layers.

Several heuristic initialization schemes have been developed to satisfy this criterion,
drawing weights from specially modi�ed random distributions. One scheme that
works particularly well in practice was suggested by Glorot and Bengio in Reference
83. Here, the weights {w l

α β } connecting the neurons in layer l to those in the previous
layer l − 1 are drawn from the uniform random distribution

{w l
α β } = U

[
−

√
6

nl−1 + nl
,

√
6

nl−1 + nl

]
(2.18)

where nl−1 and nl are the numbers of neurons in the previous and current layer. The
bias weights {w l

0β } are initialized as zero in this scheme.

2.4.4 Early Stopping

An important issue encountered during the training of NNs is over�tting. When
over�tting, a ML model no longer describes the relationships underlying the data,
but instead memorizes minor variations in the training samples. The resulting model
exhibits poor generalization performance: While it is able to reproduce the reference
data with almost perfect accuracy, its predictions fail for new data not encountered
during training. NNs are especially prone to over�tting, due to their large number
of internal parameters in the form of the weights.

A simple strategy to avoid over�tting is early stopping (see Figure 6).1 In early

ℒ

κ

Training Error

Validation Error

OverfittingOverfitting

Figure 6: Evolution of the loss function for the training and validation set during training.
While the training error decreases continuously, the validation error begins to deteriorate
past a certain number of iterations. This behavior marks the onset of over�tting and in the
early stopping scheme training is stopped at this point.

stopping, the reference data set is split into a training and validation set. The NN is
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then trained based on the data in the training set, while error measures (e.g. root
mean squared error) are monitored for both – training and validation set. The error
computed for the validation set serves as an approximation to the generalization
performance of the model. Initially, both errors should decrease during training, as
the NN learns to model the relations encoded in the samples. However, past a certain
point the validation error begins to deteriorate, while the training error continues to
improve. This behavior indicates the onset of over�tting, the training is stopped and
the weight vector wκ resulting in the minimum validation error is returned.

2.5 molecular dynamics simulations

One �eld of application for ML potentials are molecular dynamics (MD) simulations.
MD is a simulation technique used to describe the dynamical evolution of a molecular
system.84,85 In MD, the nuclei of a molecule move classically on the associated PES.
This is achieved by numerically solving Newton’s equations of motion86 based
on the forces acting on the individual particles. The required forces, as well as
potential energies, can be obtained using di�erent potentials. MD simulations provide
invaluable insights into molecular motion at an atomic resolution and are employed
to study a wide range of phenomena. Examples include the folding of proteins,
solvent e�ects or sampling molecular con�gurations.

2.5.1 Potentials

As stated previously, the molecular forces and energies necessary in MD simulations
can be obtained in various ways. Perhaps the most commonly used potentials are
empirical FFs14,15, which have been parametrized for certain classes of systems
in order to reproduce relevant experimental and/or theoretical properties. Due to
the simple functions used at the core of FFs, forces and potential energies can be
obtained extremely e�ciently, making it possible to simulate systems containing
several hundreds of thousands of atoms. This high computational e�ciency comes at
the cost of overall accuracy and disadvantages of classical FF include their inability
to e.g. describe bond breaking and bond formation or the coordination geometries of
transition metal complexes.

More reliable descriptions of a chemical system can be obtained by computing
molecular forces and energies via electronic structure methods. The practice of using
quantum mechanics to simulate the forces acting on the nuclei while modeling their
overall motion classically is referred to as ab initio MD (AIMD).87 AIMD can be used
to study phenomena not accessible with conventional FFs, such as chemical reactions
or excitation processes.88–92 Unfortunately, AIMD simulations are very costly due to
the underlying need for electronic structure computations. As a consequence, the
range of problems which can be modeled with this technique is limited.

ML potentials and HDNNPs in particular represent a promising alternative to the
above potentials. Since HDNNPs employ ML based techniques in order to closely
reproduce the results of electronic structure computations, they inherit the excellent
computational e�ciency of these techniques, exhibiting speeds on par with classical
FFs and thus overcoming one of the inherent limitations of AIMD simulations. At
the same time, the powerful functional forms provided by ML empower HDNNPs
with the ability to describe e�ects not accounted for by standard FFs, e.g. chemical
reactions. The combination of these properties, as well as the availability of analytic
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forces (see Equation 2.3), makes them well suited for MD simulations, o�ering the
possibility to achieve the accuracy of AIMD simulations at only fraction of the
original cost.

2.5.2 Thermostats

In some cases it is desirable to perform MD simulations at constant temperatures, e.g.
if experimental conditions should be reproduced. This can be achieved by introducing
thermostat algorithms, which couple a system to an external heat bath.93

Various thermostat algorithms exist (e.g. the Berendsen94 or Andersen ther-
mostats95), however not all of them are able to model realistic constant temperature
conditions. A MD trajectory should ultimately be ergodic, meaning all energeti-
cally feasible regions of a molecule’s phase space are actually accessed during long
enough simulations. This condition of ergodicity is ful�lled by the Nóse–Hoover
chain (NHC) thermostat.96 The NHC algorithm is an extension of the Nóse–Hoover
(NH) thermostat97,98. The NH thermostat expands the equations of motion by an
additional degree of freedom, which corresponds to an external heat bath. Since the
basic form of this thermostat is not ergodic for small and rigid molecular systems, the
NHC extends the NH equations by coupling the bath variable to additional degrees
of freedom, thus resembling a chain of baths. The resulting thermostat is robust as
well as physically accurate and hence frequently used in MD and AIMD simulations.

2.5.3 Metadynamics

However, even if MD simulations ful�ll the criterion of ergodicity and all relevant PES
regions can in principle be accessed, problems can still arise if it becomes necessary
to sample events encountered only infrequently. For example, chemical reactions or
rotations along a peptide backbone occur only rarely and thus long simulation times
are needed in order to sample them properly. For this purpose, di�erent methods
have been developed to accelerate the sampling process of these rare events.99,100

One such technique is metadynamics.101 During metadynamics simulations, Gauss-
ian bias potentials are deposited along a set of collective variables at every point
of the PES visited by the MD trajectory. This procedure can be likened to �lling
the valleys present in the PES, thus making it easier to overcome adjacent energy
barriers. As a consequence, regions which have already been explored previously
are visited less frequently and the exploration of new parts of the PES is encouraged.
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M E T H O D D E V E L O P M E N T3
This chapter introduces the di�erent new strategies and methods developed in this
thesis. An initial discussion is dedicated to an improved training algorithm for
HDNNPs, termed the element decoupled global extended Kalman �lter (ED-GEKF).
Subsequently, a HDNNP-based fragmentation method is explored with the aim of
reducing the computational e�ort of obtaining electronic structure reference data for
large molecular systems. This is followed by the description of an adaptive sampling
scheme for the fully automated construction of reference data sets. Finally, a ML
model for molecular dipole moments based on the HDNNP architecture is introduced.
Practical applications of these techniques and the associated results are presented in
Chapter 4. The published articles detailing the above developments are reprinted in
the corresponding sections of the Appendix (A.1-A.3).

3.1 element-decoupled global extended kalman filter (ed-gekf)

In order to successfully train HDNNPs, the basic GEKF algorithm needs to be modi�ed
to suit their special structure. Instead of using a single NN, HDNNPs model the PES
of a molecule as a sum of NNs, where the same NN is used for all atoms belonging to
one chemical element. Hence, the HDNNP prediction error for a molecule ι, which
needs to be minimized during training, takes the form

Lι(wκ ) =
1
2

(
Eι −

Nι∑
i

Ẽ(ι)i (w
(Zi )
κ )

)2
, (3.1)

where w(Zi )κ are the weights of the elemental subnet corresponding to the element
Zi of atom i . The term in brackets is the di�erence νκ between the predicted and
reference energies. The overall HDNNP weight vector wκ is the combination of all
elemental weight vectors w(Z )κ .

The Jacobians J(Z )κ associated with the individual elemental NNs can be easily
derived in this framework by applying the rules of di�erential calculus:

J(Z )κ =
∂
∑N

i Ẽi

∂w(Z )κ

(3.2)

=

N∑
i

∂Ẽi

∂w(Z )κ

(3.3)

=

N∑
i

J(i)κ δZi ,Z . (3.4)

The expression δZi ,Z is one if the element of the current atom Zi is the same as
the elemental index Z of the Jacobian and zero otherwise. Hence, the elemental
Jacobian J(Z ) is simply the sum of the Jacobians associated with all atoms sharing
the same element. However, it is not straightforward on how to implement GEKF
training based on these Jacobians. While di�erent schemes applying independent
GEKF optimizations to the elemental subnets seem feasible at a �rst glance, they
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all su�er from the same disadvantage. Since no reference values for the individual
atomic energy contributions Ẽi are known, all schemes of this type would need to
introduce some kind of ad hoc partitioning of the energy error νκ .

A potential solution to this problem can be found by viewing the HDNNP scheme
as a large composite NN (see Figure 7). Depending on the molecule to be modeled,

w3
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11=1 w3

01=0

E
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1 GH

N GH
1 GH
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1 GO

N
1 21 2

NNONNONNHNNH NNHNNH

Figure 7: A high-dimensional neural network potential (HDNNP) for the water molecule
represented as one composite neural network (NN). The �nal summation in HDNNPs cor-
responds to an output layer with a linear transfer function using constant weights of one
and a bias weight of zero. The elemental NNs predicting the energy contribution of the two
hydrogens share the same weights.

the HDNNP can vary in size, by adding or removing groups of neurons in the form
of the elemental subnets. The last layer of this composite NN – corresponding to
the summation step – can simply be seen as an output layer with linear activation
functions, a bias of zero and all weights equal to one. The most important feature of
this composite picture, is the fact that the groups of neurons belonging to di�erent
atoms are disconnected and can hence be assumed to be independent of each other.
In the context of the GEKF algorithm, this means that the error covariances between
these terms can be neglected and the covariance matrix P of the composite NN takes
a block diagonal form.

This bears striking parallels to the decoupled Kalman �lter102,103, a variant of the
GEKF initially proposed to reduce its overall computational cost. In the decoupled
Kalman �lter, sets of weights are assumed to be independent, leading to a similar
block diagonal structure of the covariance matrix P. As a consequence, the matrix
multiplications necessary for a GEKF update can be broken down into multiplications
of smaller matrices, leading to a signi�cant improvement in computational e�ciency.

By introducing a similar structure into the HDNNP covariance, the decoupled
Kalman equations can be applied, thus making it possible to derive a suitable training
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algorithm. In doing so, elemental updates arise naturally and the Kalman �lter
equations for HDNNPs become:

w(Z )κ+1 = w(Z )κ + K
(Z )
κ νκ (3.5)

K(Z )κ+1 = P(Z )κ J(Z )κ Aκ−1 (3.6)

Aκ = λκ I +
ε∑
Z

(
J(Z )κ

)T
P(Z )κ J(Z )κ (3.7)

P(Z )κ+1 = λ
−1
κ

[
I − K(Z )κ

(
J(Z )κ

)T]
P(Z )κ . (3.8)

This scheme is termed the “element-decoupled” GEKF or ED-GEKF for short. K(Z )κ

is the Kalman matrix associated with element Z . P(Z )κ is the error covariance of the
weights w(Z )κ of an elemental subnet and corresponds to one diagonal block of the
covariance matrix of the compound NN. ε is the number of di�erent elements in the
current sample. An important feature of the decoupled scheme is how the global
scaling matrix Aκ is computed (Equation 3.7). In the ED-GEKF, Aκ intrinsically
depends on all subnetworks. This makes it possible to perform training on the whole
HDNNP model using the total energy error νκ in the update, thus eliminating the
need for any partition schemes.

The ED-GEKF can be adapted to incorporate molecular forces into the training
process. This is achieved by expanding the loss function for the energies in Equa-
tion 3.1 by a term measuring the error in the force predictions of the HDNNP

Lι(wκ ) =
1
2


(
Eι −

Nι∑
i

Ẽ(ι)i (w
(Zi )
κ )

)2
+

ϑ

3Nι

Nι∑
i

���F(ι)i − F̃(ι)i (wκ )

���2 . (3.9)

Here, F(ι)i are the reference forces acting on atom i of molecule ι, while F̃(ι)i (wκ ) are
the corresponding HDNNP forces, computed via Relation 2.3. ϑ is a factor used to
control the in�uence of the force errors relative to the energy errors during training.
The resulting force version of the ED-GEKF only changes in the weight update step,
which becomes:

w(Z )κ+1 = w(Z )κ + K
(Z )
κ νκ +

ϑ

3Nι
P(Z )κ

Nι∑
i

∂F̃(ι)i
∂w(Z )κ

B(i)κ ξ
(i)
κ . (3.10)

∂F̃(ι)i
∂w(Z )κ

is the derivative of the HDNNP forces of atom i with respect to the weights

of the NN describing element Z . ξ (i)κ is the di�erence between the HDNNP and
reference forces F(ι)i − F̃

(ι)
i acting on atom i . Finally, B(i)κ is a scaling matrix, computed

according to the relation

B(i)κ =
λκ I +

ε∑
Z

(
∂F̃(ι)i
∂w(Z )κ

)T
P(Z )κ

∂F̃(ι)i
∂w(Z )κ


−1

. (3.11)

This scaling matrix is introduced for similar reasons as Aκ : The derivatives of the
forces with respect to the weights possess a component vector for every elemental
subnet, where the exact contribution of each component to the atomic force error
ξ (i)κ is unknown.
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The ED-GEKF exhibits superior convergence behavior and accuracy of the trained
HDNNPs compared to other training algorithms. Since it is specially tailored to the
structure of HDNNPs, it performs equally well for di�erent chemical systems with a
wide range of elemental compositions. If just one chemical element is present, the
ED-GEKF reduces to the standard GEKF algorithm. Similar to the GEKF, the ED-GEKF
can make use of an adaptive update strategy in order to reduce the overall training
time. As was demonstrated above, forces can be included in the training process in a
consistent manner, which is especially useful for molecular dynamics applications.
The use of forces increases the overall computational cost due to the additional
derivatives and matrix multiplications which need to be computed. However, the
number of electronic structure reference computations required in order to construct
a valid HDNNP is also reduced signi�cantly as the additional information contained
in the 3N force components of every molecule can be leveraged in addition to the
energy. Moreover, a similar adaptive scheme as for the energies can be introduced in
the force ED-GEKF in order to accelerate the training procedure. Further details on
the ED-GEKF training scheme and its derivation in general, as well as on the choice
of individual parameter settings can be found in the reprint of the original article
provided in Section A.1.

3.2 hdnnp fragmentation

An important feature of ML potentials and HDNNPs in particular is their ability to
model system sizes otherwise beyond the reach of the electronic structure methods
they are based on. However, in order to obtain HDNNPs suitable for simulations, ref-
erence computations using the original electronic structure method are still necessary
during training. For su�ciently large molecular systems, even a few of these refer-
ence calculations can pose an insurmountable bottleneck, thus ultimately restricting
the utility of HDNNPs.

HDNNPs have the potential to overcome this problem by means of their special
structure, as it imbues them with the ability to operate as a fragmentation method.
Fragmentation methods partition the original molecule into several smaller frag-
ments, for which electronic structure computations can still be carried out.67,104

Subsequently, the energy of the unfragmented molecule is obtained through recom-
bination of the fragment energies. In HDNNPs, small local fragments of the molecule
are introduced implicitly via the cuto� spheres of the symmetry functions. The total
energy of the molecule is then recovered as the sum of these fragment energies, mod-
eled via NNs. As a consequence, HDNNPs are able to reconstruct the properties of
large molecular systems based only on the information contained in small fragments
in the same way as standard fragmentation methods. Thus, expensive reference
computations never need to be performed for the whole molecule and the process of
generating reference data essentially becomes linear scaling with respect to system
size. This property of HDNNPs has already been exploited to model several solid
state problems, such as surfaces105 and metal oxides28, but is relatively unexplored
in the context of molecules.

A HDNNP fragmentation procedure typically proceeds along the following steps:
First, the target molecule is partitioned into smaller fragments. The way these frag-
ments are generated is an important aspect of every fragmentation method. While
di�erent alternatives are in principle possible, the most natural way to generate frag-
ments in the context of HDNNPs is directly inspired by the cuto� spheres employed
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by the symmetry functions (see Figure 8). Initially, the central atom of the fragment

(a) (b) (c)

(d) (e) (f)

Figure 8: Generation of a molecular fragment using an alkane (a) as example. First, a cuto�
sphere of a prede�ned radius is placed around the central atom (b). All atoms beyond this
cuto� sphere are removed from the molecule (c). Afterwards, free valencies are saturated:
Free single valencies are saturated with hydrogens. In the case of overlapping hydrogen caps
or if the free valency itself is located on a hydrogen, the next heavy atom present at this
position in the original molecule is included in the fragment (d). This procedure is repeated
iteratively (e) until the �nal fragment (f) is obtained.

is chosen. Then, all atoms whose distance from the central atom exceed a prede�ned
cuto� radius are removed. Usually, the same cuto� radius as in the symmetry func-
tions is used. Finally, free valencies are saturated in an iterative procedure: I) Free
single valencies are saturated with hydrogen atoms. II) If the free valency is situated
on a hydrogen atom or the cut bond is a double or triple bond, the next heavy atom
bonded to this position in the original molecule is included in the fragment. III) If
two hydrogen caps would overlap in the �nal fragment, the heavy atom occupying
their position in the unfragmented structure is instead included in the fragment.
These steps are repeated until no free valencies remain. After a fragment has been
obtained in this manner, the next atom is selected and the same procedure is applied.
This results in one atom-centered fragment for every atom present in the molecule.
Electronic structure computations are then performed for these fragments. Using the
results of these calculations as a reference data set, a HDNNP is trained. Finally, the
resulting HDNNP is used to predict the energy of the unfragmented molecule. Since
no electronic structure computation has to be performed for the whole molecule in
this way, signi�cant speedups can be achieved using the HDNNP-based fragmenta-
tion method. A reprint of the study �rst introducing HDNNP-based fragmentation
in the context of molecules is provided in Section A.2, while the further re�nement
of the method to its present form is discussed in the preliminary manuscript given
in Section A.3.

3.3 adaptive selection scheme

A central aspect of training HDNNPs is the selection of suitable electronic structure
reference data. In order for a HDNNP to provide a reliable description of a chemical
system, the reference data set needs to be representative for all relevant regions of the
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associated PES. While it would in principle be possible to perform extensive sampling
using only electronic structure methods (e.g via AIMD), this strategy is rarely feasible
in a practical setting. First, high-level electronic structure computations can quickly
become prohibitive due to their computational cost and should hence be kept to
a minimum. Second, the overall advantage of introducing HDNNPs compared to
directly simulating a problem with electronic structure methods decreases with the
number of required reference calculations. Hence, selection schemes which can
automatically generate a reference data set spanning all relevant regions of the PES
with as few samples as possible are highly desirable.

A core component of any automatic selection scheme is a so-called uncertainty
measure, providing an estimate of how well a sample is described by the current ML
model and whether it should be included in the training procedure or not. Various
uncertainty measures have been employed to guide the selection of reference data
in the past, with geometry �ngerprints106 and Bayesian inference61 being only
a few examples. In the context of HDNNPs, it is possible to formulate a simple
uncertainty measure, which exploits the high �exibility of NNs. This measure
is based on the direct comparison of di�erent HDNNPs and leads to a selection
procedure of the following form: An initial reference data set is used to train several
HDNNPs, di�ering in their initial sets of weights and/or their architectures. Using
these preliminary HDNNPs, new molecular con�gurations are sampled (e.g. with
MD). Subsequently, the predictions of the di�erent ML models are compared to
each other. If the di�erences between predicted values are small, the corresponding
PES regions are represented well by the HDNNPs. Diverging predictions, however,
indicate PES regions where the HDNNPs extrapolate and hence fail at providing
an accurate description of the sample. The a�icted con�guration is then computed
using the electronic structure method of choice and added to the reference data set.
Based on this expanded reference set, the HDNNPs are retrained and the whole
procedure is repeated until the quality of the HDNNPs reaches a desired level.

While this procedure has been employed successfully for solid state systems,
surfaces and metal clusters (see 74 and references within), additional modi�cations
are necessary to make it suitable for molecules and expensive reference methods.
One important adaptation introduced in this thesis is to combine the previously
independent HDNNPs into an ensemble. New con�gurations are then sampled using
the energies and forces of the HDNNP ensemble, which are computed according to

E =
1
N

N∑
n=1

Ẽn, (3.12)

F =
1
N

N∑
n=1

F̃n (3.13)

and simply represent the average of N HDNNP predictions. Based on these expres-
sions, the predictive uncertainty of an ensemble of HDNNP takes the form

Eσ =

√√√
1
N − 1

N∑
n

(
Ẽn − E

)2
. (3.14)

The introduction of ensembles in the adaptive sampling scheme brings several
distinct advantages. The uncertainty measure in Equation 3.14 grows more reliable
as larger ensembles are used, since it is increasingly unlikely for a large number of
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HDNNPs to show a similar behavior in regions where they extrapolate. Moreover,
ensembles provide a signi�cant increase in predictive accuracy compared to isolated
HDNNPs. This is a direct consequence of a cancellation of errors between the
individual HDNNPs and can lead to a reduction of the ensemble prediction error by
a factor of 1√

N
. By exploiting this property, ensemble based simulations are more

robust and reliable, which is especially important in the early exploratory stages of
the adaptive sampling scheme, where only very rudimentary HDNNPs would be
available otherwise. With ensembles, only a few initial electronic structure reference
points are required to dynamically grow a suitable reference data set. The resulting
procedure is highly automated and progresses in the following manner (see Figure 9):
An initial HDNNP ensemble is trained on a few starting con�gurations, which can

Initial
Data

Train
HDNNPs

Sampling
Step

Converged
HDNNPs

Reference
Computations

HDNNPs
diverge?

Desired
Quality?

Yes

No

Yes

No

Figure 9: In the adaptive selection scheme, a preliminary HDNNP ensemble is �rst trained on
a small number of initial con�gurations. Using this ensemble, new molecular con�gurations
are sampled via e.g. molecular dynamics con�gurations. For every sampled con�guration,
the predictions of the ensemble HDNNPs are compared. If these predictions diverge, the
sampling is stopped and reference calculations are performed for the a�icted con�guration.
The reference data set is then expanded by the new electronic structure data and a next
generation of HDNNPs is trained. This procedure is repeated in an iterative fashion, until
the divergence stays below a prede�ned threshold.

e.g. be obtained via a short AIMD simulation. Sampling runs are then carried out
with the resulting ensemble using a suitable simulation method. In principle any
sampling method can be used during this step, such as MD, metadynamics or Monte–
Carlo algorithms107. During sampling, the uncertainty measure Eσ is monitored. If a
prede�ned threshold is exceeded for a con�guration, the simulation is stopped and
electronic structure calculations are carried out. The reference data set is expanded
by the additional data and the ensemble is retrained. Starting from this point, the
simulations are continued and the process is repeated in a self-consistent fashion
until convergence.

While the above procedure is e�ective for generating suitable reference data sets,
it operates in a highly sequential manner. Two di�erent strategies can be pursued to
circumvent this limitation. One is to use only cheap electronic structure methods
during the iterative re�nement and then recompute the reference con�gurations at a
higher level of theory. This so-called “up-scaling” is based on the assumption that
the shape of both PESs are su�ciently similar and hence additional re�nement steps
might be necessary at the higher level of theory. Another strategy is to use multiple
replicas of the molecular system during the sampling stage. In this case, independent
simulations are carried out on copies of the system, using the same HDNNP ensemble,
but e.g. di�erent initial conditions. After sampling, all insu�ciently described
con�gurations are recomputed and added to the reference set. In this way, di�erent
problematic regions of the PES can be explored simultaneously.
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3.4 dipole moment model

A more detailed presentation of the adaptive sampling scheme is available in the
original article reprinted Section A.3.

3.4 dipole moment model

Although the primary area of application of HDNNPs is the description of molec-
ular PES, their unique structure is also well suited to model a wide range of other
properties. An excellent example for this versatility are HDNNP-based ML models
of molecular dipole moments, which can for example be used to simulate infrared
absorption spectra.90

In a classical system of point charges, the total dipole moment µ is de�ned as

µ̃ =
N∑
i

qiri , (3.15)

whereqi is the partial charge of atom i and ri is the distance vector from the molecular
center of mass to the atom. Equation 3.15 bears a striking resemblance to the
expression for the HDNNP energy (see Equation 2.2): In both cases, a global property
is expressed as the sum of atomic properties, weighted by ri in the case of µ. While
both – energy and dipole moment – are quantum mechanical observables, the same
does not hold for the individual atomic properties – atomic energies and charges.
Therefore, it makes sense on an intuitive level to also use environment dependent
NNs to model the atomic charges q̃ in Equation 3.15 in direct analogy to HDNNPs.
The resulting dipole moment model is trained by minimizing the loss function:

L
Q
ι (w) =

1
2

(
Qι − Q̃ι(w)

)2
+
1
3

3∑
m

1
2
(µιm − µ̃ιm(w))2 + . . . (3.16)

Here, Qι is the total charge of the molecule ι and Q̃ι is the charge of the NN model,
computed as the sum of NN charges Q̃ι =

∑N
i q̃i . µιm is themth Cartesian component

of the dipole moment as computed with electronic structure methods, while µ̃ιm is
computed according to Equation 3.15 using the NN charges q̃i . The �rst term on the
right-hand side serves as an additional constraint, driving the dipole moment model
to reproduce the overall molecular charge. In principle, higher multipole moments
can also be modeled via the above approach by including them in Expression 3.16.
The resulting HDNNP-based dipole moment model is transferable. Once trained, it
can be used to predict the molecular dipole moments of other systems di�ering e.g.
in their size or composition, provided they are su�ciently similar from a chemical
perspective.

Perhaps one of the most interesting properties of this model is related to the
NN charges q̃i . During training, only physical observables in the form of the total
molecular charge and the dipole moment are used and the individual atomic NN
charges are inferred based purely on statistical principles. Hence, the NN dipole
model represents a charge partitioning scheme108 o�ering access to environment
dependent charges. Potential uses for these charges include the description of
electrostatic interactions or to augment classical FFs, which typically employ charges
that do not change based on the environment. If used in the latter manner, the above
NN charges represent a potential alternative to polarizable FFs109. For further details
on the dipole moment model, see the reprint provided in Section A.3.
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R E S U L T S A N D D I S C U S S I O N4
In this chapter, the procedures and algorithms developed in Section 3 will be applied
to a range of chemical problems in order to investigate their overall e�cacy. The
Claisen rearrangement reaction of allyl vinyl ether to 4-pentenal serves as a test case
for the ED-GEKF and its force variant (Figure 10a). HDNNP fragmentation will be

(a) (b)

(c) (d) (e)

n

Figure 10: The chemical systems studied in the present thesis: The Claisen rearrangement
reaction of allyl vinyl ether to 4-pentenal (a), linear all-trans alkanes of various lengths (b),
the methanol molecule (c), di�erent n-alkanes (d) and the protonated alanine tripeptide (e).

studied based on all-trans linear alkanes (Figure 10b), where a direct comparison to
a conventional fragmentation method is carried out. Finally, the adaptive sampling
scheme and dipole moment model are used in combination with the above devel-
opments in order to model the dynamic infrared (IR) spectra of di�erent organic
molecules. Here, an isolated methanol molecule serves as a simple test system to
probe the general accuracy of the employed ML methods (Figure 10c). The applicabil-
ity of the HDNNP fragmentation scheme for molecular dynamics simulations and the
dipole moment model is analyzed using n-alkanes of di�erent lengths as examples
(Figure 10d). A last study uses the protonated alanine tripeptide (Figure 10e) to
investigate the performance of the dipole moment model for species with a compli-
cated charge distribution pattern. The articles containing the respective studies are
reprinted in Sections A.1 to A.3 of the appendix.

4.1 ed-gekf training and forces

The aliphatic Claisen rearrangement of allyl vinyl ether to 4-pentenal (Figure 10a)
constitutes an excellent example to compare the performance of the ED-GEKF train-
ing algorithm to alternative GEKF variants. The reaction proceeds via bond breaking
and formation events, which have to be modeled accurately by the di�erent ML mod-
els. In addition, reference computations can be carried out with little computational
e�ort, due to the relatively small size of the system. At the same time, di�erent
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4.1 ed-gekf training and forces

chemical motifs are present, making it possible to investigate the applicability of
HDNNPs to organic systems in general. Before the development of the ED-GEKF,
two other variants of the Kalman �lter were used to train HDNNPs, both of which
rely on ad hoc partitioning of the HDNNP prediction error: In the �rst variant, the
atomic GEKF or A-GEKF for short, the error is distributed evenly between all atoms
and weight updates are performed for every atom individually. The second �lter,
an elemental variant called E-GEKF, splits the error between the di�erent elements
present in the molecule and introduces elemental updates of the weight vectors in
a similar manner as the ED-GEKF. These two adaptations of the GEKF algorithm
are now compared with the newly developed ED-GEKF. A metadynamics trajectory
consisting of 17100 con�gurations computed at the BP86110–114 level served as a
common reference data set to investigate the performance of the ED-GEKF in relation
to the two other variants. An in depth discussion of the di�erent �lter algorithms as
well as the results and general setup of this study can be found in the original article
reproduced in Section A.1 of the appendix.

4.1.1 Accuracy

The prediction accuracy with respect to the molecular energies of the �nal HDNNP
models obtained with the di�erent GEKF variants is given in Figure 11a. The root
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Figure 11: RMSEs (a) and maximum errors (b) associated with the predictions of HDNNPs
trained with the di�erent GEKF variants.

mean squared error (RMSE) is used as a performance measure. The training set
contains 90 percent of the reference data points, while the validation set is formed by
the remaining samples. In order to account for random e�ects introduced during the
training procedure, �ve HDNNPs di�ering in their initial weights and partitioning
of the data were trained with each GEKF algorithm and only the averaged results
are shown.

The ED-GEKF algorithm outperforms the other variants signi�cantly, achieving
the lowest HDNNP prediction errors for both training and validation set (RMSEs of
0.08 kcal mol−1 and 0.13 kcal mol−1 respectively). Even compared to the E-GEKF,
which already yields excellent results (0.19 kcal mol−1 and 0.27 kcal mol−1), the
ED-GEKF still manages to reduce all errors by more than half. Since both algorithms
employ elemental updates, the main reason for this di�erence in performance can be
found in the special way the ED-GEKF update is formulated. Using the decoupled
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Kalman �lter formalism as a basis, it is possible to model a HDNNP as one large
composite NN (see Section 3). Hence, the individual weight updates in the ED-GEKF
are no longer independent and no empirical partitioning of the error is required, as
opposed to the E-GEKF. By far the worst HDNNPs are obtained with the A-GEKF
algorithm, exhibiting signi�cantly larger deviations from the electronic structure
reference (0.99 kcal mol−1 and 1.16 kcal mol−1 respectively) than those trained with
the other variants. This sub par prediction quality is caused by a combination of two
e�ects. First, the A-GEKF treats every element independently, making it necessary to
distribute the total error in the energy predictions evenly between all atoms during
training. Moreover, since a weight update of the elemental subnets is performed for
every atom individually in the A-GEKF, a bias in favor of more abundant elements is
introduced. Based on the chemical composition of the system under investigation,
the subnets of common elements, such as e.g. hydrogen, are therefore updated more
frequently, leading to an imbalanced training algorithm. By introducing elemental
updates in the E-GEKF and ED-GEKF algorithms, the above bias is eliminated and
HDNNPs of increased quality can be trained. The use of the element-decoupled
formalism in the ED-GEKF improves predictive accuracy further and a training
algorithm especially well suited for the HDNNP architecture is obtained.

The above observations are even more pronounced with respect to the maximum
deviations from the electronic structure reference obtained with the di�erent �lters
shown in Figure 11b. Here, the largest deviations of the HDNNPs trained with the ED-
GEKF are 0.47 kcal mol−1 for the training set and 0.86 kcal mol−1 for the validation
set, which lie below the commonly accepted threshold for chemical accuracy of
1 kcal mol−1 and far below the uncertainty introduced by the electronic structure
reference method.

4.1.2 Filter Convergence

In addition to the increased accuracy compared to the other GEKF versions, the ED-
GEKF training algorithm also exhibits superior convergence behavior. The evolution
of the training set RMSE for the HDNNPs trained with the di�erent �lter variants
over 100 epochs is shown in Figure 12.
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Figure 12: Logarithmic plot of the training set RMSEs yielded by the three di�erent Kalman
�lter variants over the course of the training process.
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4.1 ed-gekf training and forces

Once again, the the ED-GEKF outclasses the two other �lters and the corresponding
HDNNP can be considered fully trained after 40 epochs. In contrast, the E-GEKF only
reaches converge after approximately 60 epochs, while the A-GEKF shows no signs
of converging even after 100 epochs, as is indicated by a noticeable slope present
even towards the end of the training procedure. Moreover, the ED-GEKF already
achieves signi�cantly better results after only 10 epochs of training than the other
variants at the end of a full run. This excellent behavior is a direct consequence of
the decoupled formalism, which leads to an optimal scaling of the individual update
steps during HDNNP training. Another implication of these results is, that training
times can be reduced signi�cantly by using the ED-GEKF, making it possible to
obtain competitive HDNNP models after only a handful of iterations. Combined with
the accuracies observed above, these �ndings serve to demonstrate the potential of
this algorithm in general.

4.1.3 Force Training

An important feature of the ED-GEKF algorithm is the possibility to incorporate
molecular forces into the training procedure in a consistent manner. Although the
previously constructed HDNNPs can be used to predict forces (see Equation 2.3),
only energies were used in their training. In order to investigate the e�ects of
including forces, an additional HDNNP is trained on molecular forces and energies
with the force variant of the ED-GEKF – termed ED-GEKF+F for short. Apart from
the di�erent training procedure, the new HDNNP is identical to the other models.

Subsequently, the RMSEs of the energies and forces predicted by the four di�erent
models are computed over the whole reference data set (Table 1). As can be seen in

Table 1: RMSEs of energies (kcal mol−1) and forces (kcal mol−1 Å−1) over the whole reference
data set.

RMSE
Filter type Energies Forces

A-GEKF 0.86 18.66
E-GEKF 0.20 12.40
ED-GEKF 0.08 11.84
ED-GEKF+F 0.17 6.79

Table 1, the inclusion of forces has a noticeable e�ect on the overall shape of the PES
predicted by the di�erent HDNNPs. Compared to the standard ED-GEKF yielding
a RMSE of 11.84 kcal mol−1 Å−1, the ED-GEKF+F algorithm reduces the error in
the HDNNP forces almost by a factor of two to 6.79 kcal mol−1 Å−1. Hence, the
force variant of the ED-GEKF training algorithm is especially useful for applications,
where accurate molecular forces are required, such as MD simulations. The improved
quality of the HDNNP forces, however, comes at a reduced accuracy with respect to
the energy predictions, dropping from 0.08 kcal mol−1 (ED-GEKF) to 0.17 kcal mol−1
(ED-GEKF+F). The reason for this deterioration of the energy RMSE can be found in
the additional �tting criterion introduced in the ED-GEKF+F (see Equation 3.9). When
using the force variant of the ED-GEKF, the di�erent in�uences exerted by the energy
and force components of the update step need to be balanced. However, the present
study does not yet use such a balanced implementation. Consequently, for a single
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con�guration containing N atoms, the magnitude of the force update outweighs
the energy updates by a factor of 3N and much more emphasis is put on reducing
the force RMSE during training. This observation has lead to the introduction of
a scaling factor of ϑ

3N in all future applications, which yields much more balanced
potentials, as can be seen in Section 4.3.

4.1.4 Interpolation

The main purpose of HDNNPs and other ML potentials is to reliably interpolate
PESs based on electronic structure reference samples. To study the interpolation
capabilities of HDNNPs trained with the di�erent �lter variants and the ED-GEKF in
particular, they are use to predict the energies encountered along the reaction pro�le
of the Claisen rearrangement. While the reference data set sampled via metadynamics
provides a general representation of the reaction, no reference con�guration lies
exactly on the reaction path, making it an excellent test case. Figure 13a shows
the potential energy curves predicted by the di�erent HDNNP models for the 500
con�gurations sampled along the reaction pro�le. The associated overall deviations
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Figure 13: Energies along the reaction path connecting the allyl vinyl ether to 4-pentenal as
predicted by HDNNPs trained with the three �lter variants on the standard reference data
set (a) and by a HDNNP trained with the ED-GEKF on an expanded data set (b) with the
original ED-GEKF values shown in blue.

from the electronic structure energies, as well as the errors associated with the
optimized ether, aldehyde and transition state structures can be found in Table 1.
The least reliable model is produced by the A-GEKF algorithm, exhibiting an overall

Table 2: RMSEs of energies (kcal mol−1) along the reaction path and deviations from the
reference energy ∆E (kcal mol−1) for reactant (ether), transition state (TS) and product
(aldehyde).

Ether TS Aldehyde
Filter type RMSE ∆E

A-GEKF 2.48 3.12 6.81 2.88
E-GEKF 1.43 0.15 5.32 1.20
ED-GEKF 1.24 0.30 4.06 0.10

RMSE of 2.48 kcal mol−1. Besides a signi�cantly overestimated barrier height (∆E
of 6.81 kcal mol−1), the associated HDNNP also introduces arti�cial minima in the
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4.1 ed-gekf training and forces

vicinity of the ether region and close to the barrier in the aldehyde. At the same
time, the energies of the reactant and product are overestimated by approximately
3 kcal mol−1. A more faithful reproduction of the reaction pro�le is achieved by the
E-GEKF (RMSE of 1.43 kcal mol−1). Especially the regions corresponding to the ether
are modeled well and the error of the barrier is reduced to 5.32 kcal mol−1. However,
a much larger error is associated with the con�gurations leading to the aldehyde and
a similar arti�cial minimum as in the case of the A-GEKF is found. By far the most
accurate description of the reaction path is provided by the HDNNP trained with the
ED-GEKF algorithm. Both – reactant and product sides – are described equally well
and no arti�cial minima are introduced. In addition, the ED-GEKF potential exhibits
the lowest error in the barrier height (4.06 kcal mol−1). Although the regions close
to the barrier are slightly overestimated, the ED-GEKF once again provides the best
overall results in general with a RMSE of 1.24 kcal mol−1.

While the pro�le produced with the ED-GEKF can be considered su�ciently
accurate for most practical purposes, deviations are still present, especially close
to the barrier. This �nding indicates, that the associated regions of the PES are not
represented well in the reference data set. In order to validate this assumption, the
optimized structures of reactant and product, as well as the transition state, are
included in the reference set and a new HDNNP is trained on the expanded data.
The inclusion of these three points improves the reaction pro�le signi�cantly (see
Figure 13b), reducing the overall RMSE to 0.91 kcal mol−1and thus con�rming the
previous suspicion. Since the use of a single metadynamics trajectory constitutes
a rather naïve approach to the construction of a well balanced data set, it is little
surprising to �nd undersampled regions of the PES. As can be seen above, this
problem can in principle be solved by manually expanding the reference data in an
appropriate manner using chemical intuition as a guidance. However, the ultimate
goal is to completely automatize this potentially tedious procedure. This aspiration
has lead to the development of the fully automated sampling scheme presented in
Section 3.3 and evaluated in Section 4.3.

4.1.5 Extrapolation

A last study explores the behavior of HDNNPs in regions of the PES absent from
the reference data set. This investigation is based on the dissociation of one of
the hydrogen atoms bound to the sp3 carbon atom of the allyl vinyl ether. The
associated potential energy curves computed with the electronic structure reference
and the di�erent HDNNP models is depicted in Figure 14. Similarly as in the previous
experiments, it is found that the HDNNP trained with the A-GEKF algorithm shows
the worst performance, thus con�rming that this GEKF variant is indeed ill suited for
HDNNPs. The obtained potential energy curve only remotely resembles the electronic
structure reference. For bond lengths ranging from 1.02 to 1.24 Å, both elemental
�lters – E-GEKF and ED-GEKF – produce scans of similar quality, with the RMSEs
being in favor of the ED-GEKF (0.36 kcal mol−1 and 0.53 kcal mol−1respectively).
These regions correspond to the thermal �uctuations of the C-H bond encountered
during the metadynamics sampling and are hence accounted for in the reference
data set, explaining the good agreement. However, when leaving these regions, all
HDNNPs show chaotic behavior and exhibit RMSEs close to 60 kcal mol−1 for the
entire curve, independent of the training algorithm used in their construction. This
behavior is an excellent demonstration for the high �exibility of HDNNPs and NNs
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Figure 14: Reaction pro�les predicted for the dissociation of one of the hydrogens bound
to the sp3 carbon atom of the allyl vinyl ether. The regions corresponding to bond lengths
not sampled during the initial metadynamics simulation and hence not represented in the
reference data set are highlighted in gray.

in general. In the regions of the PES represented in the reference data, properly
trained HDNNPs show excellent agreement with the underlying electronic structure
method, due to their ability to accurately model the complex relationships between
con�gurations and potential energies. For con�gurations not su�ciently similar
to those encountered during training, the HDNNPs begin to extrapolate wrongly
and unphysical predictions are obtained. This behavior is essential for the adaptive
sampling algorithm described in Section 3.3, as it can be exploited as an uncertainty
measure for HDNNPs.

4.2 hdnnp fragmentation

The accuracy of HDNNP-based fragmentation is investigated using linear all-trans
alkanes (Figure 10b) containing up to 10 000 carbon atoms as a model system. To this
end, HDNNP fragmentation is compared to a conventional fragmentation method,
the systematic molecular fragmentation (SMF) approach developed by Collins and
co-workers104. An analysis of the deviations of both methods with respect to a
highly accurate reference model provides insights into their general accuracy. This
reference model is based on the CCSD(T)12,115 energies for alkane chains containing
up to 11 carbon atoms. While conventional electronic structure computations at
the CCSD(T) level are impossible for the largest systems addressed in this study, an
accurate reference model for chains of arbitrary length can be derived due to the
systemic behavior SMF exhibits for this particular model system. Further details on
this study and the associated results are provided in the reprint in Section A.2.

4.2.1 Reference Model

The SMF approach constructs fragments based on the functional groups present in
a molecule – CH3 and CH2 groups in the case of alkanes (for a general description
of SMF, see Reference 104). A prede�ned number of these functional groups are
collected into overlapping fragments. The potential energy of the unfragmented
molecule is then obtained by summing the energies computed for the individual
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4.2 hdnnp fragmentation

fragments and subtracting the energies of the “doubly counted” overlap regions. The
exact number of the functional groups contained in these overlap regions corresponds
to the SMF fragmentation level X . Typically, the error between the SMF approach
and the original electronic structure method decreases as the fragmentation level
and thus the size of the molecular fragments increase. Moreover, this error behaves
in an especially systematic manner if linear all-trans alkane chains are used as a
model system. This behavior can easily be recognized in Figure 15, which shows
the SMF errors for di�erent chain lengths (containing 5 to 11 carbon atoms) and
fragmentation levels ranging from X = 3 to X = 7. Here, the errors associated with
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Figure 15: Deviation ∆E of the systematic fragmentation approach from the electronic
structure reference in dependence on the length of the alkane chains and the employed
fragmentation level (X = 3 − 7). For fragmentation X = 5, the linear �t used to derive the
correction term is shown. The null line indicates the reference method.

a given fragmentation level X grow approximately linearly with respect to the size
of the molecule. The reason for this phenomenon lies in the way the total energy
of a molecule is recovered in the SMF approach: Due to the regular structure of
the alkanes, longer chains are basically constructed by repeating small, chemically
identical fragments. Hence, every additional CH2 group contributes approximately
the same error to the overall energy, leading to the observed linear behavior. This
relation can be exploited to derive an empirical error correction for the SMF energies
via a simple linear �t, as is shown forX = 5 in Figure 15. By applying this correction to
standard SMF results, it is possible to recover almost the exact energies for all chains
studied directly with the CCSD(T) method and it is expected that this trend also holds
for the longer chains. An indicator for the validity of this assumption is the close
agreement between the corrected energies obtained for the di�erent fragmentation
levels (within 1.1 kcal mol−1 for the longest alkane). In the present application, the
model constructed from the level 5 fragmentations and the corresponding energy
corrections is used as a reference. Note that this correction procedure is only possible
in this case due to the linear nature of the alkane model systems.

4.2.2 HDNNP Fragmentation

Having obtained a reliable reference model for alkanes of arbitrary length with
the above procedure, i.e., using SMF with the correction term, the fragmentation
capabilities of HDNNPs are studied. To this end, a set of HDNNPs is trained on the
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electronic structure energies of all chains ranging from C5H12 to C11H24 and their
corresponding fragments. The resulting HDNNP models are then used to predict
the potential energies of alkane chains containing up to 10 000 carbon atoms. The
minimum and maximum deviations achieved with HDNNP fragmentation compared
to the reference model can be found in Figure 16 in addition to the deviations
obtained for di�erent levels of the original SMF approach without the correction
term. Once again, a dependence of the accuracy of SMF on the fragment size is
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Figure 16: Energy deviations ∆E of the di�erent fragmentation approaches from the ref-
erence model for alkane chains of various lengths. Shown are the uncorrected systematic
molecular fragmentation levels X = 3, X = 5, X = 6 and X = 7, as well as the minimum
(NNmin) and maximum (NNmax) deviations achieved with HDNNP-based fragmentation. ∆E
is normalized by the total number of atoms N contained in each chain.

observed, with the best results being achieved with a fragmentation level of X =
7. However, all HDNNP models exhibit a signi�cantly better agreement with the
reference energies and even the HDNNP showing the largest deviations from the
reference outperforms the highest SMF level fragmentation. The HDNNP with the
smallest deviations closely reproduces the reference model. The high accuracy of the
HDNNPs is remarkable insofar, as the ACSFs used in their construction employ a
cuto� of 5 Å. As a consequence, the HDNNP models essentially operate on fragments
containing seven carbon atoms, which corresponds to an SMF fragmentation level of
X = 6. Yet signi�cantly smaller deviations are found for the HDNNPs than for the
equivalent SMF procedure. These observations indicate, that HDNNPs are able to
exploit the local chemical information contained in small fragments to a much greater
extent than the SMF method. Hence, HDNNPs constitute an interesting alternative
to conventional fragmentation approaches. While the above results for HDNNPs are
encouraging, it is not clear whether they hold for more realistic chemical systems.
Hence, the fragmentation capabilities of HDNNPs with regards to more realistic
systems and applications are investigated in Section 4.3.

4.3 adaptive selection scheme and dipole moment model

An important application, where the selection scheme and the dipole moment model
render e�cient ML simulations possible is the prediction of molecular IR spectra.
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One of the most accurate simulation techniques to model IR spectra is AIMD.90 In
AIMD, IR spectra are obtained via the Fourier transform of the time autocorrelation
function of the time derivative of the molecular dipole moment Ûµ:

IIR ∝

∫ +∞

−∞

〈 Ûµ(τ ) Ûµ(τ + t)〉τ e
−iωtdt , (4.1)

where ω is the vibrational frequency, τ is a delay time and t is the time. Since
AIMD inherently accounts for the temporal evolution of a chemical system, it is
able to model several e�ects which are typically neglected in conventional static
approaches for computing IR spectra90,116. Among these phenomena, vibrational
anharmonicities and temperature e�ects are of particular importance. The ability
to provide accurate descriptions of both e�ects, makes AIMD an indispensable tool
for the interpretation of experimental IR spectra of e.g. biological systems, where
temperature and anharmonic phenomena play a signi�cant role.

However, even a single AIMD trajectory requires a large number of electronic
structure calculations (see Section 2.5). As a consequence, AIMD simulations su�er
from a high computational cost and are usually limited to small systems and/or
short timescales. By replacing the individual electronic structure calculations by
signi�cantly cheaper ML models, it is possible to overcome these limitations. This
endeavor represents an excellent challenge to the di�erent approaches developed
previously, since several di�erent aspects need to be considered when modeling
IR spectra via Equation 3.15: First of all, an accurate HDNNP model is required to
describe the time evolution of the investigated system. Such a model can only be
constructed, if the reference data set is representative of all relevant regions of the
molecular PES and hence constitutes an exemplary test case for the adaptive sampling
scheme. Moreover, if IR spectra for large molecules should be predicted, HDNNP-
based fragmentation is indispensable in order to carry out the required reference
computations e�ciently. With an appropriate reference data set at hand, ED-GEKF
training would be employed to construct HDNNPs providing access to reliable
molecular forces and energies. Finally, an accurate description of the molecular
dipole moments is necessary, making it possible to assess the performance of dipole
moment model. These di�erent aspects are studied by modeling the IR spectra of
three di�erent chemical systems: The general accuracy and validity of the di�erent
developments is assessed based on the methanol molecule (Figure 10d). Di�erent
n-alkanes (Figure 10e) serve as a test case for the fragmentation method , which goes
beyond the linear all-trans alkanes studied previously (see Section 4.2). Subsequently,
the pro�ciency of the sampling scheme and the dipole moment model is analyzed by
modeling the protonated alanine tripeptide (Figure 10e). The submitted manuscript
containing a detailed description of the above study and its results is reprinted in
Section A.3.

4.3.1 Methanol

The ML model used for methanol consists of an ensemble of two HDNNPs and a
dipole moment model, which were trained on 245 reference con�gurations identi�ed
with the adaptive sampling scheme. The necessary electronic structure energies,
forces and dipole moments were computed with the BP86 density functional. In order
to study the accuracy of the individual components of this model, a conventional
AIMD simulation spanning a time interval of 30 ps is performed. The ML model is
then used to predict energies, forces and dipole moments for the 60 000 con�gurations
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produced by this simulation. Figure 17 depicts the distribution of errors between ML
predictions and the BP86 reference in blue.

1.0 0.5 0.0 0.5 1.0
E [kcal mol ]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

C
o
n
fi
g
u
ra

ti
o
n
s (a)

×

15 10 5 0 5 10 15

F [kcal mol Å ]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Fo
rc

e
 C

o
m

p
o
n
e
n
ts (b)

×

0.15 0.10 0.05 0.00 0.05 0.10 0.15
 [Debye]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

C
o
n
fi
g
u
ra

ti
o
n
s (c)

×

Figure 17: Distribution of the error between the ML predictions and the BP86 reference
computed for the energies (a), force components (b) and dipole moments (c) of the 60 000
con�gurations sampled by the AIMD trajectory. The deviations associated with the ML
model based on the adaptive sampling scheme are shown in blue, while those obtained for a
ML model trained on con�gurations drawn randomly from a classical molecular dynamics
simulation are depicted in gray.

In all instances, the ML model is able to reproduce the electronic structure results
with excellent �delity. With a mean absolute error (MAE) of only 0.048 kcal mol−1
the deviations observed for the energies (Figure 17a) are signi�cantly smaller than the
postulated limit of chemical accuracy (1.0 kcal mol−1), as well as the error inherent
to the BP86 method. A similar trend is observed for the molecular forces (Figure 17b),
where a MAE of 0.533 kcal mol−1 Å−1 is achieved. These results are an excellent
demonstration for the ability of the ED-GEKF training algorithm to construct high
quality HDNNPs suitable for MD simulations based only on a small number of
reference energies and forces. The molecular dipole moment model shows an equally
satisfactory performance, exhibiting an overall MAE of 0.016 D for the magnitude of
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the dipole moments and MAEs ranging between 0.0173 D and 0.0200 D with respect
to the spatial orientation of the dipole vector.

After the analysis of its individual components, the ability of the composite model
to simulate molecular IR spectra is investigated. A comparison of the IR spectra
obtained via the ML approach (red) and the BP86 AIMD simulation (blue) is shown
in Figure 18, together with an experimental spectrum recorded between 600 cm−1
and 4100 cm−1 for a methanol molecule in the gas phase117 (gray). The ML spec-
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Figure 18: Gas phase IR spectrum of methanol, as predicted by the BP86 AIMD simulation
(blue) and the ML model (red). The ML spectrum agrees closely with the BP86 reference
and both methods accurately reproduce the experimental spectrum recorded in the range
between 600 cm−1 and 4100cm−1 (gray).

trum shows excellent agreement with the AIMD spectrum, accounting for all peak
positions and intensities in a highly accurate fashion. A minor deviation from the ref-
erence can be observed for the intensity of the O-H stretching vibration at 3700 cm−1,
which is underestimated in the ML spectrum. A possible reason for this discrepancy
are small �uctuations in the dipole moment model. The general utility of both ap-
proaches – traditional AIMD and the ML based model – is attested by how closely
they reproduce the experimental spectrum.

On a �nal note, it should once again be stressed, that the current ML model is
only based on a small set of 245 BP86 reference points, while 60 000 single points
were used in the AIMD simulation. Nevertheless, the ML model is able to accurately
describe the PES and dipole moments of the methanol system, serving as a testimony
to the e�ectiveness of the adaptive sampling scheme. Additional insights into the
performance of the newly developed scheme are gained by comparing the accuracy of
the current methanol model to one constructed from 245 con�gurations selected by a
random selection scheme. As can be seen in Figure 17, the random ML model su�ers
from a signi�cant reduction in accuracy, indicated by the wide error distributions
associated with the di�erent properties. This observation highlights the importance
of a representative reference data set and, at the same time, serves as a con�rmation
for the high e�cacy of the adaptive sampling scheme employed in this thesis.
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4.3.2 n-Alkanes

The applicability of the HDNNP-based fragmentation approach to structurally di-
verse systems, as well as the ability of HDNNPs and the dipole moment model to
describe molecules signi�cantly larger than methanol is studied by using these three
techniques to predict the IR spectrum of the C69H140 n-alkane (Figure 10d). In this
study, the B2PLYP double hybrid density functional118 is used as electronic structure
reference method. B2PLYP provides highly accurate predictions of a molecule’s
electronic structure, albeit at considerable computational cost. As such, conventional
AIMD simulations of the C69H140 IR spectrum using the B2PLYP method are currently
close to impossible, demonstrating the potential of the ML approach pursued in this
thesis. The composite ML model for this n-alkane – consisting of two HDNNPs and a
dipole moment model – is constructed from the energies, forces and dipole moments
of 534 molecular fragments. These fragments are generated from con�gurations
selected by the adaptive sampling scheme via the fragmentation procedure described
in Section 3.2, using a cuto� radius of 4 Å. In this manner, fragments containing an
average of 37 atoms and with a maximum size of 70 atoms are obtained.

The C69H140 IR spectrum simulated with the composite ML model is depicted
in Figure 19. All features typical for the IR spectrum of an alkane are present in
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Figure 19: Gas phase IR spectrum predicted by the composite ML model for the C69H140
molecule. The regions of the expected experimental frequencies for alkanes are highlighted
in gray.

the ML spectrum: The bands close to 3100 cm−1 correspond to the C-H stretching
vibrations. The scissoring vibrations of the CH2 groups are responsible for the peaks
in the vicinity of 1500 cm−1. Features indicating the C-C bond stretches are found at
1000 cm−1 and the peak close to 600 cm−1 is caused by the CH2 rocking vibrations.

While the ML model is able to account for the general structure of the IR spectrum
in a reliable manner, a blue shift compared to the expected experimental frequencies
is observed for all peaks. For instance, the C-H stretching bands are shifted from
a typical value of 2900 cm−1 to 3100 cm−1in the ML spectrum. Although a direct
analysis of this phenomenon is not possible due to the high computational cost
of the B2PLYP method, its source can still be investigated in an indirect manner
by exploiting the transferability of the composite model. Since the HDNNPs and
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the dipole moment model are also valid for systems chemically similar to C69H140,
the composite model can be used to simulate the IR spectrum of the much smaller
n-Butane molecule for which electronic structure computations at the B2PLYP level
are still feasible. The ML spectrum of n-butane, along with a static B2PLYP spectrum
and an experimental spectrum recorded in the gas phase117, is shown in Figure 20.
As can be seen, the spectral bands in the B2PLYP spectrum are shifted to the same
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Figure 20: Comparison of the n-Butane IR spectrum simulated with the ML model (red)
and the static IR spectrum calculated with the B2BLYP method (blue) within the harmonic
oscillator approximation. The bands of the static spectrum are convoluted with Gaussian
functions. An experimental gas phase spectrum is shown in gray.

extent as those in the ML spectrum. This �nding supports the conclusion, that
the observed blue shift is not an artifact introduced by the ML model, but indeed
caused by the underlying electronic structure method. In general, the peak positions
predicted by the ML approach show excellent agreement with the reference method.
Moreover, in contrast to the static spectrum, the ML accelerated AIMD approach is
able to reproduce the vibrational structure found for the experimental C-H bands
to a high degree of accuracy (see insert Figure 20), highlighting the importance of
including dynamic and anharmonic e�ects even when modeling the IR spectra of
small molecules.

The above results serve not only as a demonstration for the accuracy of the
composite ML approach, but also for its transferability, as well as the e�cacy of
HDNNP-based fragmentation. Further insights with regards to the computational
e�ciency of the ML models paired with fragmentation can be gained by studying
the timings obtained for C69H140: The search for all relevant con�gurations with the
sampling scheme takes approximately 7 days on a single Xeon E5-2650 v3 CPU. The
computation of the energies and forces of all fragments at the B2PLYP level requires
0.9 days if one core is used for every fragment. Training of the dipole moment model,
as well as the HDNNPs takes 0.3 days. The energies, forces and dipole moments of
the 110 000 con�gurations (5 ps equilibration and 50 ps production) encountered
during the ML-accelerated AIMD simulation can be predicted in 3.5 hours. Hence, the
total time necessary to obtain the ML spectrum is approximately 8.3 days. Using the
B2PLYP method, computing the energies and forces of a single C69H140 con�guration
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would take 30 days. Since a full AIMD trajectory requires 110 000 such evaluations,
the total simulation time becomes 3.3 million days or 9 041 years, respectively.

4.3.3 Protonated Alanine Tripeptide

As a �nal test for the new developments presented in this thesis, the IR spectrum
of the protonated alanine tripeptide (Ala +

3 , Figure 10e) is simulated. The tripeptide
ML model is composed of two HDNNPs and a dipole model trained on the BLYP
density functional110–112,119 energies and forces of 717 reference points selected by
the adaptive sampling scheme.

The experimental spectrum of Ala +
3 is composed of the individual spectra of

three di�erent conformers (Figure 21):120 First, an elongated chain protonated at
the amine group of the N-terminus, henceforth referred to as the NH3 conformer. A
second conformer – termed NH2 for short – di�ers in its protonation site, with the
proton located at the oxygen of the N-terminal carbonyl group. The �nal species is a
folded chain which carries its proton at the same position as the NH3 conformer. To
emulate these circumstances, the overall IR spectrum is computed by performing ML
accelerated AIMD simulations for the three individual conformers and averaging
the resulting spectra afterwards. The ML spectrum based on BLYP, as well as the
spectra of the NH3, NH2 and folded species are depicted in blue in Figure 21. Since
the experimental spectrum120 (shown in gray) was recorded for the region between
2700 cm−1and 3700 cm−1, the following analysis will focus primarily on the stretching
vibrations involving hydrogen atoms.

On the whole, the composite ML model provides an accurate description of the
di�erent features encountered in the experimental spectrum. The ML spectrum faith-
fully reproduces the peak caused by the O-H stretching vibrations of the C-terminal
carboxylic acid at 3570 cm−1. N-H stretching modes not involved in any hydrogen
bonds to neighboring atoms are found in the spectral regions from 3300 cm−1 to
3500 cm−1. The two free hydrogens of the N-terminal amine group in the NH3 and
folded conformers give rise to the particularly intense signal at 3420 cm−1. Deviations
from the experimental spectrum are observed in the region between 3250 cm−1 to
3350 cm−1, which are underpopulated in the ML spectrum. This di�erence is caused
by the employed BLYP method and – to a certain extent – temperature e�ects (see
discussion in Appendix A.3). The N-H vibrations participating in hydrogen bonds
are correctly shifted to the region ranging from 3100 cm−1 to 3300 cm−1, where the
ML model is able to resolve several experimental subpeaks. The regions between
2800 cm−1 and 3100 cm−1 correspond to the vibrations of the C-H groups. Here, the
ML spectrum is able to di�erentiate the peaks due to the Cα groups of the peptide at
2930 cm−1 and the methyl groups at 2970 cm−1.

Additional insights into the accuracy of the present ML approach are o�ered by a
comparison of the BLYP based model to another model using the BP86 functional as
electronic structure reference (the corresponding BP86 IR spectrum is shown in red
in Figure 21). Although both methods are closely related and should produce similar
spectra, striking deviations can be found between BLYP and BP86. Compared to the
BLYP and experimental spectra, the peak corresponding to the O-H stretching modes
of the C-terminal carboxylic acid group is blue shifted by almost 80 cm−1and split into
two smaller peaks. Moreover, signi�cant di�erences can also be found in the regions
of the N-H stretching vibrations. Whether these discrepancies are caused by the ML
models or the respective electronic structure methods can be ascertained using he
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Figure 21: Gas phase IR spectra of the protonated alanine tripeptide. The spectra predicted
by the ML models based on the BLYP (red) and BP86 (blue) electronic structure methods are
shown in the top panel, alongside the experimental spectrum (gray). The individual BLYP
based ML spectra of the di�erent conformers are given in the subsequent panels.

vibrations of the N-terminal amine group in the NH3 conformer as an example. The
hydrogens in this moiety participate in a proton transfer reaction to the oxygen of the
adjacent carbonyl group. As can be seen in Figure 22, the energy barrier computed for
this reaction di�ers signi�cantly between the BLYP and BP86 method, while the ML
models manage to closely reproduce their respective reference. The small changes
in the barrier height, which are present in the electronic structure calculations as
well as the ML models, lead to di�erent rates for the proton transfer event, which
in turn gives rise to the disparate spectral features in the �nal spectra. Based on
these �ndings, it is safe to assume that the deviations between the BLYP and BP86
spectra are not caused by erroneous behavior of the ML models, but instead by the
intrinsic di�erences in the underlying electronic structure reference. Faced with this
signi�cant disagreement between two closely related methods, the faithfulness with
which the ML models reproduce their respective reference methods is particularly
impressive: Compared to the error between BLYP and BP86, the deviation of the ML
predictions from their respective reference methods is negligible (see Figure 22), once
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Figure 22: Energy barrier of the proton transfer from the N-terminal amine to the adjacent
carbonyl group in the NH3 conformer of the alanine tripeptide. The energy pro�les calculated
with the BLYP (red) and BP86 (blue) electronic structure methods are shown as solid lines.
The barriers predicted by the ML models based on these methods are depicted as dashed
lines. The distance rOH between the carbonyl oxygen and the transfered proton is used as
the reaction coordinate.

again demonstrating the potential of the ML models constructed with the strategies
introduced in this thesis.

At the same time, the above example emphasizes an important feature of the
adaptive sampling scheme, which is its ability to select molecular con�gurations
important for the characterization of a chemical system. Proton transfer events play
a crucial role in the experimental IR spectrum of Ala +

3 .120 Although no information
about this chemical transformation is present in the initial reference data set, the
sampling scheme automatically chooses samples in such a manner, that the �nal
ML model is able to provide an accurate description of these events (see Figure 22).
The relatively small reference set size needed to obtain high quality ML spectra
throughout this study serves as an indicator, that this property of the sampling
scheme also holds in the general case.
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S U M M A R Y A N D C O N C L U S I O N 5
The central objective of this thesis was the development of new strategies and
protocols for machine learning (ML) methods in theoretical chemistry. ML techniques
– and ML potentials in particular – o�er tantalizing new possibilities for the simulation
of molecular systems, combining the excellent computational e�ciency of empirical
force �elds with the accuracy of high-level electronic structure methods. However,
several issues complicate a routine application of these methods: First, standard
ML algorithms need to be adapted in special ways in order to accommodate the
three dimensional structure of molecules. Due to the complexity of the resulting
ML architectures, new training strategies need to be developed. Second, although
ML models can treat far larger molecular systems than conventional electronic
structure methods, electronic structure reference computations are still required in
order to train accurate models. As a consequence, the prohibitive scaling of these
methods imposes an indirect limit on the range of systems which can be modeled
with ML. Third, in order to obtain a ML model providing a reliable description of a
chemical problem, all relevant regions of the PES need to be accounted for in the
reference data set. However, no clear criteria on how to select relevant con�gurations
exist, making it di�cult to automate this process. Finally, the simulation of various
molecular properties imposes further requirements on ML architectures apart from
the adaptations necessary to model molecular structures, presenting an additional
challenge for the construction of valid ML models. In order to overcome the above
limitations, a range of new strategies is introduced in this thesis and their e�cacy
tested through the practical application to di�erent chemical systems.

Among the main developments is an improved training algorithm for high di-
mensional neural network potentials (HDNNPs), a ML technique which is especially
well suited for modeling molecular potential energy surfaces (PESs). This training
algorithm – termed the element decoupled global extended Kalman �lter (ED-GEKF) –
makes it possible to create HDNNPs of unprecedented accuracy, reducing the overall
errors of these ML models signi�cantly, especially compared to alternative training
algorithms. Moreover, the ED-GEKF also exhibits superior convergence behavior.
As a consequence, highly accurate HDNNPs can now be obtained at only a fraction
of the training time required by other methods. In addition to energies, molecular
forces can also be included into ED-GEKF training in a consistent manner. The use of
molecular forces results in a twofold advantage: 1) Fewer reference computations are
required, since the additional information contained in the 3Natoms molecular force
components of every con�guration can now be utilized during training and 2) the
overall accuracy, and especially the accuracy of predicted forces, of the HDNNPs is
improved, a property which is highly desirable in such applications as e.g. molecular
dynamics simulations.

Another important innovation is the introduction of a HDNNP-based fragmenta-
tion approach capable of bypassing the system size restrictions imposed by the need
for electronic structure reference data. Using this fragmentation scheme, properties
of a macromolecular system (e.g. energies) can be reconstructed given only the in-
formation contained in small fragments of the original molecule. Hence, prohibitive
electronic structure computations of macromolecular systems are no longer neces-
sary, since these molecules can now be treated in a divide and conquer approach.
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Moreover, due to the special structure of HDNNPs, the e�ective computational cost
for obtaining electronic structure reference data using HDNNP fragmentation scales
linearly with the size of the system. Besides a high computational e�ciency, the
present fragmentation approach is furthermore characterized by an excellent ac-
curacy, easily outperforming a conventional fragmentation scheme by achieving
signi�cantly lower deviations from the electronic structure reference. This accuracy
also holds for properties other than energies, such as molecular forces and dipole mo-
ments. In addition, the HDNNP-based fragmentation scheme can easily be interfaced
with molecular dynamics simulations.

The two above developments are supplemented by introducing a special adaptive
selection scheme. Driven by ensembles of HDNNPs, this scheme makes it possible
to incrementally grow reference data sets in a highly automated fashion based on
only a small initial number of electronic structure reference data points. Using
this scheme, the number of reference computations required to construct HDNNPs
can be reduced signi�cantly, while at the same time maintaining a high predictive
power. This is achieved through the ability of the adaptive selection scheme to
automatically infer the chemistry underlying the investigated systems, selecting
representative con�gurations in a highly reliable manner. When combined with the
ability of the ED-GEKF to incorporate forces during HDNNP training, the overall
size of the electronic structure reference sets can be decreased even further. As
a consequence, even HDNNPs based on expensive high level electronic structure
methods can be constructed with ease, thus extending the potential applications for
this ML technique signi�cantly.

As a �nal step towards improving the general applicability of ML methods for
theoretical chemistry simulations, the architecture of HDNNPs is modi�ed in order
to provide them with the ability to model molecular dipole moments. The resulting
dipole moment model is able to reproduce electronic structure dipole moments with
high �delity, making it for example suitable for the simulation of molecular infrared
(IR) spectra. However, the present model does not only o�er access to molecular
dipole moments, but also to environment dependent atomic partial charges. These
charges are determined from quantum mechanical observables in the form of the
molecular multipole moments based purely on statistical principles. Hence, the dipole
moment model constitutes a novel, ML based charge partitioning scheme. As such,
the dipole model is expected to be only the �rst example of a class of HDNNP-based
models, serving as partition schemes to access various molecular properties or even
modeling long range interactions.

To obtain insights into the pro�ciency of the newly introduced strategies, they are
applied to a variety of chemical problems. The performance of ED-GEKF training
was analyzed using the Claisen rearrangement of allyl vinyl ether to 4-pentenal as an
example. Linear all-trans alkanes served as a simple test case for a proof of concept
study of the HDNNP-based fragmentation approach. A �nal study was dedicated to
probing the e�cacy of the adaptive sampling scheme and the dipole moment model,
as well as exploring the overall synergies between the individual developments. To
this end, the above techniques were used to simulate the molecular IR spectra of
methanol, n-alkanes of di�erent length and the protonated alanine tripeptide via ML
accelerated ab initio molecular dynamics (AIMD). In all cases, excellent results were
achieved, attesting to the e�ectiveness of the methods introduced in this thesis.

Moreover, these practical applications also provide a broader perspective on the
potential inherent to the ML approaches used in this work: The combination of
accuracy and speed of the obtained ML models o�ers an elegant way to overcome
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the inherent limitations of electronic structure methods. This was demonstrated by
using a ML model based on a high-level electronic structure method to perform a
molecular dynamics simulation of the C69H140 n-alkane, a feat close to impossible
with the reference method itself. Furthermore, the successful description of a Claisen
rearrangement, as well as the proton transfer reactions occurring in the tripeptide,
highlights the ability of the present ML models to operate in situations where conven-
tional force �elds encounter di�culties, the prime example being bond breaking and
bond formation events. However, the application with perhaps the most immediate
implications is the use of the introduced ML techniques to predict molecular IR
spectra. Since these simulations employ ML accelerated AIMD to obtain IR spectra,
they account for several e�ects typically neglected in alternative approaches, such
as temperature e�ects and vibrational anharmonicities. As a result, highly accurate
spectra can be obtained at only a fraction of the cost required for conventional AIMD
simulations. This �nding is especially relevant for the interpretation of experimental
IR spectra of biomolecules (e.g. proteins), where the large system size and the high
importance of anharmonic and temperature e�ects renders a direct analysis with
electronic structure methods impractical.

The entirety of the research conducted in this thesis – encompassing the develop-
ment of new strategies, as well as their practical applications – represents a large
step towards the goal of establishing ML techniques as a routine tool in theoretical
chemistry. However, in the same manner as concurrent ML algorithms are still far
from achieving the dream of true arti�cial intelligence, several unsolved problems
also remain in the �eld of theoretical chemistry, providing a rich substrate for future
research. Among the most interesting issues to address is the design of ML models,
which are capable of automatically learning suitable representations of molecular
geometries. The process of determining an optimal set of representations currently
involves a signi�cant amount of trial and error, thus rendering it a time consuming
task. An equally fascinating endeavor is the interpretation and rationalization of
the predictions of ML models, since as of now little is understood about the inner
workings at their at their core.
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A P P E N D I X : R E P R I N T E D P U B L I C AT I O N SA
The reprints of the di�erent publications forming the basis of this thesis can be
found in the following appendix. Section A.1 contains the paper detailing the train-
ing algorithm introduced in Section 3.1 and the associated computational studies
discussed in Section 4.1. HDNNP based fragmentation (Section 3.2), as well as the
associated test studies on linear all-trans alkanes (Section 4.2) are covered in the
publication reprinted in Section A.2. The dipole moment model (Section 3.4) and
adaptive sampling scheme (Section 3.3) are part of the submitted paper given in
Section A.3, which also details the application of all techniques developed in this
thesis to the simulation of molecular IR spectra (Section 4.3).
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High-Dimensional Neural Network Potentials for Organic Reactions
and an Improved Training Algorithm
Michael Gastegger and Philipp Marquetand*

Institute of Theoretical Chemistry, University of Vienna, Waḧringer Str. 17, 1090 Vienna, Austria

ABSTRACT: Artificial neural networks (NNs) represent a
relatively recent approach for the prediction of molecular
potential energies, suitable for simulations of large molecules
and long time scales. By using NNs to fit electronic structure
data, it is possible to obtain empirical potentials of high
accuracy combined with the computational efficiency of
conventional force fields. However, as opposed to the latter,
changing bonding patterns and unusual coordination geo-
metries can be described due to the underlying flexible
functional form of the NNs. One of the most promising approaches in this field is the high-dimensional neural network (HDNN)
method, which is especially adapted to the prediction of molecular properties. While HDNNs have been mostly used to model
solid state systems and surface interactions, we present here the first application of the HDNN approach to an organic reaction,
the Claisen rearrangement of allyl vinyl ether to 4-pentenal. To construct the corresponding HDNN potential, a new training
algorithm is introduced. This algorithm is termed “element-decoupled” global extended Kalman filter (ED-GEKF) and is based
on the decoupled Kalman filter. Using a metadynamics trajectory computed with density functional theory as reference data, we
show that the ED-GEKF exhibits superior performance − both in terms of accuracy and training speed − compared to other
variants of the Kalman filter hitherto employed in HDNN training. In addition, the effect of including forces during ED-GEKF
training on the resulting potentials was studied.

1. INTRODUCTION
Computational chemistry is a tightrope walk between accuracy
and efficiency. Evidently, a sufficiently accurate potential energy
surface (PES) is required in order to provide a reasonable
description of a molecular system. However, when dealing with
large systems or long simulation times, computational efficiency
becomes an additional concern, and a compromise has to be
found.
The most accurate PESs are provided by electronic structure

methods, based on first-principles quantum mechanics, albeit at
considerable computational expense, due to the explicit
treatment of the many-electron problem. As a result, only
systems of limited size and relatively short time-scales are
accessible on a routine basis, when using these methods.1,2

Empirical force fields are several orders of magnitude faster
to evaluate, since the PES is described as a sum of physically
motivated analytic functions fitted to experimental or computa-
tional reference data. However, as a consequence of the fitting
procedure involved, empirical potentials are only accurate for
limited regions of the PES. Another drawback is the inability to
describe bond breaking and bond formation events, as well as
unusual coordination geometries and bonding situations, due to
predefined atom types and the form of the analytic functions
employed.3,4 While so-called reactive force fields are capable of
addressing this kind of problems, the accuracy of these
approaches is ultimately still limited by the underlying physical
approximations.5

A promising alternative is the use of machine learning (ML)
techniques to construct PESs from electronic structure data.

The highly flexible functional form of ML potentials allows for
very accurate interpolation even of complicated PESs, as well as
the description of complex and changing bonding patterns.
Moreover, paired with a computational efficiency on par with
empirical potentials, ML potentials can offer an accuracy
comparable to high level electronic structure methods at the
computational cost of force fields.6

Up to date, various ML approaches have been successfully
applied to either the construction of PESs or the description of
contributing terms, with Polynomial Fitting procedures,7

Gaussian Processes,8,9 Modified Shepard Interpolation,10−13

Interpolating Moving Least Squares,14,15 and Support Vector
Machines16 only being some of the most prominent examples.
Particularly promising in this field are Neural Networks (NNs),
a machine-learning technique inspired by the central nervous
system.
The number of neural network potential energy surfaces

(NN-PESs) has steadily increased over the course of the past
decade, with applications ranging from surface science17−25 to
molecular systems.26−45 For an exhaustive list of NN-PESs, see
reviews.46−48 These applications were accompanied by several
advances to NN training algorithms and architectures, such as
the inclusion of gradients in the training procedure.42,49

Another example is the use of symmetrized NNs43 or symmetry
functions18,50,51 to account for permutational invariance in the
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input data and high dimensional representation schemes,52,53

which employ multiple NNs for the construction of the PES.
An important step toward the routine use of NN-PESs in

computational chemistry is the introduction of the high-
dimensional neural network (HDNN) scheme by Behler and
Parinello.52 In the HDNN scheme, the PES is constructed from
a sum of individual atomic energy contributions. These
contributions depend on the atomic environment and are
computed by a set of NNs, where a single NN is used for atoms
of the same element. In order to describe the environment of
the different atoms, a special set of atom centered symmetry
functions (ACSFs) is employed.51 The combination of these
features allows HDNN potentials to overcome several
limitations of standard NNs, the most important ones being
limited system size, transferability of parameters, fixed amount
of atoms and elements, and dependence of the NN-PES on
translations and rotations in input space. The utility of HDNN
potentials is demonstrated by a wide range of applications to
solid state systems,54−59 surface interactions,21,22,60 and water
clusters.61−63

Our work is based on these foundations and goes beyond in
two ways: First, a novel training algorithm for HDNNs is
presented. This “element-decoupled” Kalman filter is based on
the decoupled formulation of the standard global extended
Kalman filter (GEKF)64 and exhibits superior performance in
terms of training speed and accuracy of the final PES fits
compared to other variants of the Kalman filter commonly used
for HDNN training. Second, this algorithm is applied to the
construction of HDNN-PESs for the Claisen rearrangement of
allyl vinyl ether to 4-pentenal, which presents, to the best
knowledge of the authors, the first application of the HDNN
scheme to an organic reaction involving bond breaking and
formation. Based on the resulting HDNN-PESs, the overall
performance of the element-decoupled filter and its inter-
polation capabilities as well as the effect of the inclusion of
forces during the training process are studied.

2. THEORETICAL BACKGROUND

This section is divided into two parts: The first part provides an
outline of the NN architecture employed, with special focus on
Behler−Parinello HDNNs. In the second part, the standard
Kalman filter training algorithm will be reviewed, and
adaptations thereof with regard to HDNNs will be discussed.
2.1. Neural Network Architecture. Similar to biological

nervous systems, NNs consist of an arrangement of simple
subunits, so-called neurons, often also referred to as nodes.
These artificial neurons collect, process, and transmit incoming
signals according to a predefined connection pattern, making
NNs highly parallel, flexible, and robust nonlinear universal
approximators capable of accurately fitting any continuous real
function.65−67 Due to these properties, NNs are typically
employed in classification tasks, pattern recognition, and for the
approximation of complicated functional relations, e.g. PESs.
One of the most frequently used NN architectures is the

feed-forward multilayer perceptron.68 An example for a NN of
this type with one hidden layer and a single neuron in the
output layer is depicted in Figure 1. In a feed-forward NN,
signals are only transmitted into one direction. Starting with the
vector of inputs y0 in the input layer, the output of a node j in
layer l can be computed according to the regression

∑= + −
−

y f w w y( )j
l l

j
l

i

n

ij
l

i
l

t 0
1

l 1

(1)

until the output layer is reached. The signals of the previous
layer {yi

l−1} are scaled by a set of weight parameters {wij
l }, where

wij
l is the weight connecting node i of the previous layer to node

j in the current layer and w0j
l is a bias weight, which provides an

adjustable offset to the transfer function, hence adding
additional flexibility. These weights are the adjustable
parameters of the NN and are collected in the vector of
weights w, which has to be determined in the training process.
After weighting and summation, a transfer function f t

l is applied
to the nodes in layer l. Typically, sigmoidal functions (e.g.,
hyperbolic tangents) are employed in the hidden layers, as they
provide the NN with the ability to model any continuous, real
function to arbitrary accuracy with a finite number of nodes in
the hidden layer.65−67 In the output layer, usually linear transfer
functions are used. The output of the NN can be described as a
function f NN(y

0,w) depending on the input parameters and the
vector of all weights.
Due to their robustness, computational efficiency, simplicity

of training, and the availability of analytic gradients, feed-
forward NNs are the type of NNs most commonly used in the
construction of NN-PESs. However, several problems limit
their applicability when employed in the interpolation of
multidimensional PESs. Due to the predetermined structure of
the NN after training, the output of the NN depends on the
ordering of the inputs, in the case of a NN-PES the molecular
coordinates. In a similar manner, the number of atoms that can
be treated with such simple NNs must be proportional to the
number of input nodes, making it impossible to treat molecules
of different size with the same NN. In addition, the NN shows
an unwanted variance with respect to translation and rotation
of the molecular geometry if Cartesian coordinates are used.
One strategy to overcome these limitations is the HDNN

scheme introduced by Behler and Parinello in 2007.52 In this
approach, the total energy E of a molecular system with N
atoms is constructed from atomic energy contributions Ei

according to

∑=E E
i

N

i
(2)

Figure 1. Feed-forward neural network with a single output node and
one hidden layer. Bias nodes provide a constant offset to the transfer
functions f t

l. Nodes in adjacent layers are connected by the weights
{wij

l }, the fitting parameters of the neural network.
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The atomic energies depend on the chemical environment of
atom i and are computed by individual NNs. Figure 2 shows an
example for a Behler−Parinello HDNN.

Since the total energy is now expressed as a sum of NN
contributions Ei , any dependence on the ordering of inputs is
eliminated. Moreover, by using one NN for nuclei of the same
element, the HDNN can model molecular systems of arbitrary
size. For every new atom, the sum in eq 2 is simply augmented
by the energy contribution of the corresponding elemental NN.
To ensure invariance with respect to translation and rotation of
the molecule, the Cartesian coordinates {Ri} are transformed to
a set of many-body symmetry functions {Gi}, depending on the
internuclear distances and angles between all atoms. These
ACSFs describe the local chemical environment of atom i via
radial and angular distributions of the surrounding nuclei.51 An
example for a radial ACSF is
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while an angular distribution can be characterized by
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Here, Rij is the distance between atoms i and j, Rij is the vector
Rj−Ri, and Rs, η, ζ, and λ are parameters which determine the
shape of the ACSFs. Typically, a combination of radial and
angular ACSFs {Gi}, differing in the parameters Rs, η, ζ, and λ,
is employed in the description of every atom. In addition, a
radial cutoff Rc is introduced around the central atom in the
form of a cutoff function
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This reduces the local chemical environment to the energeti-
cally relevant regions, leading to a linear scaling of the HDNN
computation cost with system size.
Due to the well-defined functional form of the individual

elemental NNs, an analytic expression for the HDNN forces
can be derived. The force with respect to the Cartesian
coordinates Rj of atom j is given by the relation
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where Mi is the number of ACSFs used to describe nucleus i.51

The first term in eq 6 is the derivative of the elemental NNs
with respect to the ACSFs, and the second term is the
derivative of the ACSFs with respect to the Cartesian
coordinates of atom j.

2.2. HDNN Training. A NN is defined by its structure and
its weights w. Once the structure − the number of hidden
layers and nodes in the hidden layers − has been determined
empirically, the initially random NN weights need to be
optimized in order to reproduce the desired function, a process
also called “training” of the NN.
Several different NN training algorithms exist, from gradient-

based approaches, such as the so-called backpropagation
algorithm,69 to second-order methods, e.g. the Levenberg−
Marquardt optimization.70 One second-order training method
that is particularly promising for the construction of NN-PESs
is the GEKF.71,72 In the GEKF, every sample (e.g., molecular
geometry) is presented to the algorithm sequentially,
immediately followed by an update of the weight vector w.
The correction of w is based on the current error and a
weighted history of previous update steps. In the case of PES
fitting, the error νk of the current update step k, also referred to
as filter innovation, is

ν = − ̃E Ek k k (7)

with Ek being the reference energy (from a quantum-chemical
calculation), and ̃Ek being the corresponding NN-PES value.
The direction in which w is changed in each update step is
based on the current Jacobian matrix Jk − the NN gradient with
respect to the weights − while the magnitude of the update is
given by the filter covariance matrix Pk. In short, Pk is the
weighted history of Gauss−Newton approximations to the
inverse Hessian of the modeling error surface and the main
reason for the excellent training properties of the Kalman filter.
For a detailed explanation of the GEKF for standard NNs as
well as the associated recursion scheme and derivation thereof,
we refer to refs 49, 71, and 72.
For a HDNN of the Behler-Parinello type, ̃Ek in eq 7

becomes the HDNN total energy given in eq 2. Since an
individual NN is now used for every element with atomic
number Z, the different elemental weight vectors wk

(Z) need to
be optimized simultaneously with the help of their respective
error covariances Pk

(Z). One possible approach to HDNN
training is to use an “atomic” Kalman filter (A-GEKF), where
an update of the corresponding wk

(Z) is performed for every
atom i in the molecular sample of step k according to the
regression scheme:

ν= +−
−Nw w Kk

Z
k
Z

k
i

k
( )

1
( ) ( )

atom
1

(8)

λ= +− −

−⎡
⎣⎢

⎤
⎦⎥( )K P J I J P Jk

i
k
Z

k
i

k
Z

k
i T

k
Z

k
i( )

1
( ) ( ) ( ) ( )

1
( ) ( )

1

(9)

Figure 2. Scheme of a high-dimensional neural network of the
Behler−Parinello type. The Cartesian coordinates {Ri} of a molecule
are transformed into a set of atomic symmetry functions {Gi}
describing an atom subject to its chemical environment. With these
symmetry functions as inputs, the atomic contributions Ei to the total
energy E are computed with atomic neural networks.
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Here, Kk
(i) is the Kalman gain matrix computed for atom i, I is

the identity matrix, and the expression in brackets on the right-
hand side of eq 9 is a scaling matrix. The λk are time-varying
forgetting factors computed according to λk = λk−1λ0 + 1 −λ0,
which are introduced in order to reduce the risk of convergence
to local minima early in the training process.71 Both λk and λ0
are typically initialized close to unity. For the update of the
weights (eq 8), the total error is averaged over the number of
atoms Natom, because the individual atomic contribution to the
error is unknown. This assumption is problematic, especially in
combination with atomic weight updates, since the weights of
some elements are updated more frequently, leading to a
smaller relative error in the weights when compared to the ones
of less abundant elements. This uneven distribution of the
errors imposes a severe limitation to the quality of the PES fit
obtained.
An alternative is to model the HDNN scheme as one large

composite NN. Using the sum rule, it is possible to show that
the Jacobian Jk

(Z) associated with every element can be
computed as
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where δZi ,Z is one if the element of the current atom Zi

corresponds to the elemental index Z of the Jacobian and zero
otherwise. Instead of individual updates for all atoms, one
update per element is now performed for every molecule,
according to
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In this “elemental” GEKF (E-GEKF), the bias due to the
frequency of elements is eliminated, as every element is only
updated once. However, it is still assumed that the elemental
NNs contribute to the total error in a similar fashion. Since no
clear guidelines on how to treat the total error in eq 12 exist, ad
hoc corrections have to be introduced e.g. by weighting νk with
the elemental fraction or, as is the case here, by dividing by the
number of elements present in the molecule.
Compared to gradient-based NN training methods such as

backpropagation, second-order algorithms based on the GEKF
offer superior accuracy and convergence behavior, albeit at an
increased computational cost. For every sample in the training
data, several matrix operations including inversion have to be
performed, and several passes over the training data, so-called
“epochs”, are required in order to obtain a suitably trained NN.
However, the computational effort associated with HDNN
training is still negligible compared to the generation of the
electronic structure reference data, which currently represents
the bottleneck in NN-PES construction. Furthermore, the
efficiency of the GEKF can be increased by employing an
adaptive threshold to the filter updates.71 In this approach, the
error of the current sample is compared to a threshold defined
as a fixed fraction of the total root-mean-square error (RMSE)

of the previous epoch. An update of the weights is only
performed, if the error exceeds the threshold. In this way, the
number of unproductive updates can be kept to a minimum,
leading to an efficiency almost on par with standard
backpropagation, while retaining all advantages of the GEKF.

3. A NEW TRAINING ALGORITHM
In the following, we present a new GEKF variant for HDNN
training, which requires neither partitioning of the total error,
nor any assumptions regarding its distribution among the
subnets. This approach exhibits superior fitting performance
and filter convergence behavior compared to the atomic and
elemental GEKF algorithms. This improved filter algorithm is
based on a variant of the GEKF initially proposed to reduce its
computational effort, the so-called “decoupled” Kalman
filter.64,73

3.1. Element-Decoupled Kalman Filter. In the de-
coupled Kalman filter, sets of weights are treated as
independent from each other in order to reduce the
dimensionality of the matrix operations. Since it can be safely
assumed that the weight vectors wk

(Z) of the different elemental
NNs in a HDNN fulfill this criterion, a decoupled Kalman
scheme can be applied to HDNNs in the form of an “element-
decoupled” GEKF (ED-GEKF). In this scheme, the computa-
tion of the Kalman gain in eq 13 is modified to
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where the expression in the brackets now depends on the
subnets of all elements (indicated by z). In this way, the total
error can be used in the weight update, without introducing
additional assumptions regarding the distribution of individual
atomic or elemental errors, making the “element-decoupled”
GEKF an excellent training algorithm for the HDNN network
architecture. Hence, eq 12 is modified to
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Moreover, it is also possible to extend the element-decoupled
GEKF to include the forces in the training process. The force
innovation associated with atom i is given by

ξ = − ̃F Fk
i
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where Fk
(i) is the atomic reference force as computed by e.g.

electronic structure methods, and F̃k
(i) is the force obtained for

the HDNN via eq 6. To incorporate forces in the element-
decoupled scheme, only the weight update (eq 16) has to be
changed to
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where (∂F̃k
(i))/(∂wk

(Z)) is the derivative of the HDNN forces
with respect to the weights. Bk

(i) is a scaling matrix computed
according to
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This scaling matrix is required, since the derivation of the forces
with respect to the weights produces a component vector for
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every elemental NN and the contribution of each subnet to the
overall atomic force error is unknown.
The ED-GEKF algorithm is straightforward to implement,

and the associated computational performance is similar to or
even better than the other filter variants. Compared to both the
A-GEKF and E-GEKF, the presented algorithm exhibits a
significant increase in the quality of the obtained PES fits, as
well as improved convergence behavior (see Section 5). These
properties open up new possibilities in the construction of
HDNN potentials for a multitude of compound classes and
reaction types. The ED-GEKF is expected to perform especially
well for systems with several different elements (e.g., organic
molecules, proteins), since the distribution of errors between
the elemental subnets is inherently modeled by the algorithm.
In addition, forces can be included in the training process in a
consistent manner, albeit at an increased computational cost,
due to the more expensive computation of the derivatives of the
HDNN forces with respect to the weights compared to the
standard Jacobian.

4. COMPUTATIONAL DETAILS

In order to apply the new training algorithm in the simulation
of an organic reaction, reference electronic structure calcu-
lations were carried out with ORCA

74 at the BP86/def2-
SVP75−80 level of theory employing the resolution of identity
approximation.81,82 The obtained energies and gradients were
augmented by the empirical D3 dispersion correction of
Grimme83 with the Becke−Johnson damping scheme.84 A
minimum energy reaction path of 500 intermediate geometries
describing the transition between substrate and product was
generated and optimized at the same level of theory with the
WOELFLING chain-of-states method85 implemented in TURBO-

MOLE.86,87 Energies and gradients of these geometries were then
recomputed with ORCA in order to ensure consistency of the
reference data.
Born−Oppenheimer dynamics88 and metadynamics89 were

carried out using electronic-structure gradients. Newton’s
equations of motion for the nuclei were integrated using the
Velocity-Verlet algorithm90 with timesteps of 0.5 fs. A
Berendsen thermostat was employed in all simulations.91 Initial
velocities were sampled from a Maxwell−Boltzmann distribu-
tion at the corresponding bath temperature.92 Metadynamics
simulations were performed according to the scheme of Laio
and Parinello,89 utilizing the interatomic distances rO−C5

and

rC2 −C3
(see Figure 3) as collective variables to describe the

Claisen rearrangement reaction.
Behler-type ACSFs were used to represent the chemical

environment of the individual atoms in the HDNN-scheme.51

A set of 10 radial and 32 angular distribution functions was
employed for hydrogen and carbon atoms, while 7 radial and 20
angular functions were used for the single oxygen atom. The

different number of ACSFs for oxygen and the other elements
is due to combinatorial reasons. Since there is only one oxygen
atom present in the molecule, it can only have C and H atoms
as neighbors, while a carbon or hydrogen atom can have the
neighbors C, H, and O. For all ACSFs a radial cutoff of 10.0 Å
was used.
Elemental subnets of different architectures were employed

in the construction of the HDNN-PESs. The number of nodes
in the input layer was constrained to the number of symmetry
functions used in the description of the atomic environment
(42 for hydrogen and carbon and 27 for oxygen), and a single
node was used in the output layer. Hyperbolic tangent
activation functions were used for the hidden layers, while a
linear transformation was applied to the output layer of all
networks. Since the elemental NN architectures can differ only
in their respective hidden layers, a shorthand notation will be
introduced, where e.g. C-40-40 refers to a subnet for the
element carbon with two hidden layers of 40 nodes each. For
the system at hand, elemental subnets of different size were
tested, and it was found that two hidden layers of 40 nodes for
every element offer the best compromise between accuracy and
computational efficiency.
The weights of all NNs were initialized at random according

to the scheme of Nguyen and Widrow.93 In order to facilitate
HDNN training, all symmetry functions derived from the
reference data set and the corresponding reference energies
were normalized to obtain an average of zero and a standard
deviation of σ = 1.0 over the whole set. Overfitting of the
reference data was detected by means of an early stopping
procedure based on cross-validation.94 In this approach, the
reference data set is divided into a training and validation set.
Only points in the training set are used in the construction of
the HDNN potential, while the RMSEs of both data sets are
monitored during training. At the onset of overfitting, the
RMSE of the training set continues to decrease, while the
RMSE of the validation set begins to increase. At this point, the
fitting procedure is stopped, and the set of weights associated
with the lowest validation RMSE is returned. In this work, the
reference data was split into a training and validation set with a
ratio of 9:1 in a random manner, and the training procedure
was terminated after three successive training epochs with an
increase in the validation RMSE. A ratio of 9:1 was chosen as a
compromise between a sufficiently dense spacing of data points
in the training set and a large enough validation set to reliably
detect overfitting. The elemental covariance matrices required
by the different Kalman filter variants were initialized as
diagonal matrices P(Z) = δ−1I, with a scaling factor δ = 0.01.
Values of lk = 0.99 and l0 = 0.996 were used for the time-varying
forgetting schedule. The adaptive Kalman filter threshold was
set to 0.9 times the RMSE of the training set in the previous
epoch.71

Training of the HDNNs, as well as dynamics and
metadynamics simulations, were carried out with a suite of
programs developed in PYTHON95 using the NUMPY package.96

5. RESULTS AND DISCUSSION
5.1. Model Reaction and Reference Data Generation.

To study the performance of the different Kalman filter variants
and the effect of including forces into the training procedure,
the aliphatic Claisen rearrangement of allyl vinyl ether was
chosen as a model reaction (Figure 3). This reaction is a [3,3]-
sigmatropic rearrangement, where the substrate allyl vinyl ether
is converted thermally to the aldehyde 4-pentenal via bond

Figure 3. Thermal, aliphatic Claisen rearrangement reaction of allyl
vinyl ether to 4-pentenal. Over the course of the reaction, the O−C5
bond is broken, and a new bond is formed between C2 and C3.
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breaking and bond formation events. The transformation is
irreversible and occurs at elevated temperatures. For an
extensive review of this kind of rearrangement reaction, see
ref 97 and references therein.
Several traits make this particular reaction an excellent

subject of study for the construction of HDNN-PESs: The
encountered molecules are comparatively small, rendering the
generation of electronic structure reference data inexpensive.
More than two different elements are present, leading to a
multitude of chemical environments and allowing to test the
applicability of the HDNN scheme to organic systems. Most
importantly, different and changing bonding patterns have to be
described in order to accurately model the rearrangement,
which is one of the major advantages of ML potentials
compared to standard empirical potentials.
The Claisen rearrangement reference data set for HDNN

training was generated in a metadynamics run at 400 K using
electronic structure energies and gradients. After an initial
period of equilibration, Gaussians with a height of 6.28 kcal
mol−1 and widths of 0.27 Å were deposited along the
dimensions of the collective variables every 100 steps. The
system was propagated for a total of 8.55 ps simulation time.
Geometries, energies, and forces were collected every step,
resulting in a total of 17100 molecules in the final reference
data set.
It should be stressed at this point that the main focus of the

present study is the accurate reproduction of a quantum
chemically derived PES and not the accuracy of the underlying
reference PES. Concerns regarding e.g. the character of the
encountered species, quality of reaction barriers, and viability of
the employed electronic structure method are therefore only of
secondary importance. The BP86 functional was chosen in
favor over more sophisticated methods primarily due to its
overall computational cheapness and robustness, which further
facilitated the metadynamics sampling procedure. All HDNN
training methods presented in this work can be applied to any
electronic structure method without additional adaptations.
5.2. ED-GEKF Performance. The performance of the

different Kalman filter variants was studied based on HDNN-
PESs constructed from HDNNs trained with the A-GEKF, E-
GEKF, and the newly developed ED-GEKF algorithm,
respectively. The employed HDNNs consisted of C-40-40,
H-40-40, and O-40-40 subnets and were trained for 100
epochs. In order to account for the dependence of the final PES
fit on the initial random partitioning of the data into training
and validation sets, as well as the randomly initialized network
weights, five HDNNs were trained with each filter, and the
averaged results are reported here.
The RMSEs per molecule of the obtained HDNN-PES fits

relative to the reference data set are shown in Figure 4. A clear
improvement in the quality of the PESs is observed when going
from the A-GEKF (0.99 kcal mol−1 RMSE for the training set
and 1.16 kcal mol−1 for the validation set) over the E-GEKF
(0.19 kcal mol−1 and 0.27 kcal mol−1) to the ED-GEKF (0.08
kcal mol−1 and 0.13 kcal mol−1). Especially the gain in accuracy
obtained with the elemental and element-decoupled filter
variants compared to the A-GEKF is pronounced. The reason
for this behavior is most likely the elemental weight update in
the A-GEKF algorithm, which is performed for each atom
individually. This procedure introduces a bias in favor of more
abundant elements, which − in combination with the
assumption of an even distribution of the total error between

the individual subnets − ultimately limits the quality of PESs
obtainable with this particular filter variant (see Section 2.2).
While the E-GEKF already shows superior performance

compared to the A-GEKF, the HDNNs trained with the ED-
GEKF reproduce the reference data even more accurately.
Using the latter training algorithm, the RMSEs over the training
and validation set are reduced to less than half of their
corresponding E-GEKF values. Since the update frequency bias
present in the A-GEKF is eliminated in both E-GEKF and ED-
GEKF, this additional increase in fit quality can be solely
attributed to the improved treatment of the error distribution
between the subnets in the ED-GEKF. In contrast, no clear
approach exists on how to distribute the total error between the
respective subnets in the E-GEKF weight update (see eq 12),
and one of the various imaginable empirical weighting schemes
needs to be introduced. Several alternative schemes were
investigated prior to this work, and the best results for the
system at hand were achieved by averaging the total error
evenly over the number of elements present in the current
molecule Nelem. All data for the E-GEKF reported here was
obtained with this weighting scheme. However, an unfortunate
partitioning of the total error can easily lead to inferior fit
accuracies on par with or even worse than those yielded by the
A-GEKF algorithm, a problem not encountered with the ED-
GEKF variant.
The aforementioned trends are even more pronounced,

when the maximum deviations of the HDNN-PESs from the
reference energies are compared (Figure 5). As above, changing
from the A-GEKF to the other filters leads to a substantial
improvement in the quality of the fit. The best accuracy is once

Figure 4. RMSEs (kcal mol−1) for the potential energies predicted by
HDNNs trained with different Kalman filter variants.

Figure 5. Maximum errors (kcal mol−1) for the potential energies
predicted by HDNNs trained with different Kalman filter variants.
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again obtained with the ED-GEKF, exhibiting maximum errors
smaller than 1.0 kcal mol−1 over the training as well as the
validation data set. These results are an excellent demonstration
for the high accuracy of HDNN-PESs produced by the ED-
GEKF training algorithm.
With regards to computational efficiency, the A-GEKF

algorithm performs worst, since the computation of the
Kalman gain matrix, the weight update and the update of the
covariance matrix are carried out for every individual atom
present in the molecule. In contrast, these computations are
only performed once per element in the E-GEKF and ED-
GEKF variants, leading to a much better scaling behavior,
especially for larger molecules. The major difference between
the E-GEKF and ED-GEKF is that the scaling matrix
(expression in the square brackets in eqs 13 and 15,
respectively) has to be computed only once per molecular
system in the ED-GEKF algorithm, while in the E-GEKF it is
evaluated for every element. In order to calculate this
expression, nout

(Z) × nout
(Z) matrices have to be inverted, where

nout
(Z) is the number of output nodes of the elemental subnets.
Since a matrix inversion usually is an expensive operation in
terms of computation time, the ED-GEKF is expected to
perform even better than the E-GEKF in theory. In the special
case of HDNNs, the elemental subnets possess only one output
node (the atomic energy), and the matrix to be inverted is
therefore a 1 × 1 matrix. Hence, the inversion operation
reduces to a standard division, and virtually no difference in the
computational efficiency between the E-GEKF and ED-GEKF
variants is observed in praxis. In the implementation used in
this work, both the ED-GEKF and E-GEKF algorithms are
approximately 2.4 times faster than the A-GEKF for the system
at hand from a purely computational perspective. It should be
noted, however, that compared to the E-GEKF and A-GEKF
variants, fewer iterations are needed for ED-GEKF to obtain
accurate HDNN-PESs, making it the faster algorithm overall, as
shown in the next section.
5.3. Filter Convergence. In addition to the quality of the

fit, the evolution of the RMSEs over the course of the training
procedure was investigated. The corresponding results for the
training set are depicted in Figure 6. As before, the averages
over five HDNNs for each filter variant are reported.
The atomic Kalman filter shows signs of convergence only at

the end of the 100 training epochs, and even longer training
periods would be required to fully converge the results. The E-
GEKF can be considered converged after approximately 60

epochs, as only minor changes in the training RMSEs (smaller
than 0.01 kcal mol−1) are observed afterward. In case of the
ED-GEKF algorithm, convergence is already reached after 40
epochs of training, and only small corrections to the network
weights are performed after this point, once again demonstrat-
ing its excellent viability for HDNN training. Moreover, if
training speed is of primary concern, sufficiently accurate
HDNN-PESs with an average training RMSE of 0.12 kcal mol−1

can already be obtained after 20 training epochs. Even in this
case, the accuracy of the ED-GEKF fit still exceeds the levels
achieved by the A-GEKF and the E-GEKF variants after the full
100 epochs of training (0.99 kcal mol−1 and 0.19 kcal mol−1

training RMSE, respectively). Curves for the validation RMSEs,
as well as the maximum deviations, are not shown here as they
paint an identical picture.

5.4. Training including Forces. All HDNN-PESs
presented in this work, up to this point, were created
employing only energy data in the fitting procedure. It is,
however, also possible to extend the ED-GEKF algorithm to
perform a simultaneous fit of energies and forces (see Section
3.1). In order to study the effects of the inclusion of forces in
the training procedure, a HDNN of the same dimensions as
before (C-40-40, H-40-40, O-40-40) was trained with the force
variant of the ED-GEKF (ED-GEKF+F). Due to the increased
computational expense compared to the standard algorithm,
only a single HDNN fit was performed. The required training
time was further reduced by exploiting the fast convergence of
the ED-GEKF and limiting the training to 40 epochs. The
RMSEs over energies and forces obtained with the
ED-GEKF+F and the other filter variants are given in Table
1. Since the trends observed for the training and validation data

set are similar and the primary focus lies on the general
performance of the different training algorithms, the RMSEs
computed over the whole reference data set are reported here.
In addition, due to the availability of only one HDNN for the
ED-GEKF+F case, the values given for the A-GEKF, E-GEKF,
and ED-GEKF are those obtained with the respective HDNNs
exhibiting the smallest RMSE on the validation data set after
training.
For the HDNNs based on the energy data only, a similar

pattern emerges for the forces as previously for the energies.
While the A-GEKF is associated with the greatest deviation in
the forces (18.66 kcal mol−1 Å−1), the difference between the
elemental and element-decoupled filters is less pronounced
(12.40 kcal mol−1 Å−1 and 11.84 kcal mol−1 Å−1, respectively)
but still clearly in favor of the ED-GEKF, which produces the
more accurate fit even in this case.
Compared to the standard element-decoupled algorithm, the

force variant leads to a dramatic increase in the accuracy of the
HDNN-PES forces. The RMSE of the forces over the whole
reference data set is reduced to 6.79 kcal mol−1 Å−1, almost half
of the corresponding ED-GEKF value. However, while forces

Figure 6. Evolution of the training set RMSEs (kcal mol−1) during the
training process for different GEKF variants.

Table 1. RMSEs of Energies (kcal mol−1) and Forces (kcal
mol−1 Å−1) over the Whole Reference Data Set

RMSE

filter type energies forces

A-GEKF 0.86 18.66
E-GEKF 0.20 12.40
ED-GEKF 0.08 11.84
ED-GEKF+F 0.17 6.79
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are reproduced more accurately, a deterioration in the quality of
the HDNN-PES energies is observed, with the RMSE
increasing from 0.08 kcal mol−1 for the ED-GEKF HDNN to
0.17 kcal mol−1 for its ED-GEKF+F counterpart. This
phenomenon originates from the second fit criterion
introduced in the ED-GEKF+F algorithm in the form of the
molecular forces. Since every molecule contributes only one
energy but 3Natom force components to the fitting process, a
bias toward the fit of the forces over the energies is introduced.
A similar strategy as in the combined function derivative
approximation (CFDA) method by Pukrittayakamee and co-
workers42 can be employed to counteract this effect. By
introducing a scaling factor for the force component of the
weight update in eq 18, the relative importance of energies and
forces during HDNN training can be regulated. However, an
adaptation of this kind will be the subject of future research.
Nevertheless, the deterioration in energies observed in this
work is only minor (0.09 kcal mol−1) compared to the greatly
improved forces. This feature makes the force variant of the
ED-GEKF algorithm especially attractive for cases where
accurate forces are required, e.g. molecular dynamics
simulations. In addition, since the ED-GEKF+F incorporates
not only information on the energies but also information on
the gradients (forces) in a similar manner to the CFDA
method, no overfitting of the underlying PES should occur,
thus eliminating the need for a cross-validation procedure. This
implication will be tested in further studies.
5.5. HDNN Interpolation. One major feature of NNs is

their capability to reliably interpolate data. To obtain insight
into the interpolation performance of the HDNNs trained with
the different Kalman filter variants, their ability to reproduce
the electronic structure reaction profile of the Claisen
rearrangement was studied. HDNN energies were computed
for 500 intermediate geometries encountered along the reaction
path (starting with allyl vinyl ether and ending in 4-pentenal)
and compared to the corresponding reference values. The
resulting reaction profiles are shown in Figure 7. RMSEs over

the whole reaction path, as well as deviations of the HDNNs
from the reference energies for the ether, the transition state
(TS), and the aldehyde, are given in Table 2. As before, the
HDNNs exhibiting the smallest validation RMSE for the
respective filter algorithm were used.

All investigated HDNN-PESs capture the general shape of
the reaction profile, with a tendency to overestimate the barrier
height. The HDNN trained with the A-GEKF algorithm yields
the least accurate profile with a RMSE of 2.48 kcal mol−1. In the
region corresponding to allyl vinyl ether, the energy of the
initial reactant is too high (ΔE = 3.12 kcal mol−1), leading to an
artificial minimum far from the original equilibrium structure of
the ether. The onset of the A-GEKF’s barrier, as well as the
barrier itself, shows the greatest deviation from the reference
energies out of all filter variants (ΔE = 6.81 kcal mol−1 for TS).
The 4-pentenal region lies too high in energy (ΔE = 2.88 kcal
mol−1). In addition, a second artificial minimum is present
immediately after the barrier. In case of the E-GEKF, better
agreement with the reference curve is obtained (RMSE of 1.43
kcal mol−1). The region preceding the barrier and the onset of
the barrier are modeled accurately. Nevertheless, an artificial
minimum can still be found close to the reactant. The barrier
height is smaller than for the atomic filter variant (ΔE = 5.32
kcal mol−1 for TS). Although the region leading to the product
is predicted closer to the reference (ΔE = 1.20 kcal mol−1) by
the E-GEKF, this part of the potential curve exhibits a similar
shape as the one produced by the A-GEKF HDNN, showing an
artificial minimum close to the barrier.
The most reliable reproduction of the original reaction

profile is obtained by the ED-GEKF HDNN (RMSE of 1.24
kcal mol−1). The region close to the ether is in good agreement
with the reference. A small minimum is still present but less
pronounced than in the other variants. The slightly larger error
of the ED-GEKF (ΔE = 0.30 kcal mol−1) compared to the E-
GEKF (ΔE = 0.15 kcal mol−1) observed directly at the
equilibrium geometry of the reactant is due to the random
nature of the initial HDNN weights and the partitioning of the
reference data. Such small deviations from the overall trend that
the ED-GEKF yields the highest quality fits are expected at
individual points. The energies at the onset of the barrier are
overestimated in the ED-GEKF, but the barrier height shows
the smallest error compared to the reference energy (ΔE = 4.06
kcal mol−1 for TS). In the aldehyde region, energies are slightly
overestimated, but near the product geometry, the HDNN
energies closely resemble the reference values (ΔE = 0.10 kcal
mol−1). Unlike for the other filter variants, no additional
minimum is present in the case of the ED-GEKF potential.
While the curve for the ED-GEKF is sufficiently accurate to

demonstrate the interpolation capability of HDNNs trained
with this algorithm, it still shows deviations from the electronic
structure reaction profile, especially in the region of the barrier.
The reason for this effect is that a single metadynamics
trajectory was used in the generation of the reference data set.
Due to this rather naıv̈e sampling approach, no point in the
reference data lies exactly on the reaction coordinate. Improved
reference data sets could e.g. be generated with guided or self-
consistent sampling procedures.10,35,63

Figure 7. Reaction path of the Claisen rearrangement leading from
allyl vinyl ether (left) to 4-pentenal (right) as obtained with the
WOELFLING method implemented in TURBOMOLE. The curves for the
different HDNNs correspond to the HDNN potential energies
predicted for the geometries encountered along the profile.

Table 2. RMSEs of Energies (kcal mol−1) along the Reaction
Path and Deviations from the Reference Energy ΔE (kcal
mol−1) for Reactant (Ether), Transition State (TS), and
Product (Aldehyde)

ΔE

filter type RMSE ether TS aldehyde

A-GEKF 2.48 3.12 6.81 2.88
E-GEKF 1.43 0.15 5.32 1.20
ED-GEKF 1.24 0.30 4.06 0.10
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A less sophisticated but yet extremely effective alternative is
to include some critical points of the PESs into the training
data. Here, three geometries corresponding to the equilibrium
structures of allyl vinyl ether and 4-pentenal, as well as the TS
structure of the rearrangement, were included in the reference
data set to demonstrate the influence of additional training
points on the interpolation performance. These geometries
correspond to stationary points on the PES and are easily
obtainable through routine electronic structure computations.
HDNNs (C-40-40, H-40-40, O-40-40) were trained on this
minimally expanded set for 100 epochs using the ED-GEKF.
The reaction curve obtained for the HDNN with the smallest
validation RMSE is depicted in Figure 8, along with the

reaction profile previously obtained for the ED-GEKF HDNN.
Inclusion of only a few critical points greatly improves the
accuracy of the HDNN reaction profile, reducing the RMSE to
0.91 kcal mol−1. Especially the effect of incorporating the TS
geometry is noticeable, as the barrier height is now reproduced
accurately. The use of this extended reference data set also
improves the performance of the other filter variants (not
shown), although not to the same extent as in the ED-GEKF
case.
Next, the distribution of the reference points in coordinate

space is discussed. Although the 17100 points in the original
reference data set are not situated directly on the reaction
coordinate, the majority of them is nevertheless located in parts
of the PES relevant for the transition. HDNN potentials trained
on this data can therefore be expected to perform reasonably
well in the description of the Claisen reaction, as demonstrated
above.
In order to assess the performance of the HDNNs in regions

of the PES not sampled during the initial metadynamics
simulation, the bond dissociation of one of the hydrogen atoms
bound to the C5 carbon atom of allyl vinyl ether was studied
exemplarily. The C−H bond length was varied from 0.8 to 4.5
Å in 500 equidistant steps. The resulting potential energy
profiles obtained for the electronic structure reference and the
different HDNNs trained on the unexpanded reference data set
are shown in Figure 9 for bond lengths between 0.9 and 1.5 Å.
Similar to before, the A-GEKF HDNN produces the worst

fit, in this case only remotely reproducing the shape of the
reference curve. The E-GEKF and ED-GEKF HDNNs perform
well between bond lengths from 1.02 to 1.24 Å (up to energies
of approximately 4 kcal mol−1), with the ED-GEKF exhibiting a
slightly smaller RMSE (0.36 kcal mol−1) compared to the E-

GEKF (0.53 kcal mol−1) for this section of the PES. Such a
behavior is expected, since this region of the reaction curve
corresponds to the fluctuations of the C−H bond around the
equilibrium bond length encountered during the metadynamics
simulation and the E-GEKF and ED-GEKF HDNNs
interpolate the reference data. Beyond this region, the
HDNNs begin to extrapolate, and the quality of the HDNN-
PESs deteriorates quickly, resulting in RMSEs close to 60 kcal
mol−1 over the entire computed curve for all three HDNNs.
These observations are in accordance with the fact that NNs

in general excel at interpolating data but perform poorly at
extrapolation tasks. Because of this behavior, care should be
taken to identify and avoid regions of the PES where
extrapolation occurs. Approaches to address this problem
exist, see e.g. ref 46. However, in those regions of the PES
represented in the reference data set, an excellent fit can be
obtained, provided a suitable training algorithm is chosen.
Hence, while room for improvement still exists (e.g., addition
of TS structure to the training set), the HDNN potential
obtained with the ED-GEKF filter can be considered to give a
reasonably accurate description of the degrees of freedom
encountered in the Claisen reaction.

6. SUMMARY AND CONCLUSION
We report on a new training algorithm for high-dimensional
neural networks (HDNNs) of the Behler−Parinello type and
its application to the Claisen reaction of allyl vinyl ether. To the
best of our knowledge, it is the first study of an organic reaction
using HDNNs.
The training algorithm developed to generate the corre-

sponding HDNNs has a substantially improved performance
compared to other variants of the Kalman filter employed in
HDNN training. In contrast to the latter, the new algorithm −
termed element-decoupled global extended Kalman filter (ED-
GEKF) − goes without the need for empirical weighting
schemes or ad hoc assumptions. By employing the ED-GEKF
during training, both root-mean-square errors and maximum
fitting errors are reduced significantly. Moreover, fewer training
periods and hence less time are required to obtain accurate
HDNNs with the ED-GEKF in comparison to the other
algorithms. The ED-GEKF can be extended to allow energies
and forces to be fit simultaneously during training in a
consistent manner, thus improving the description of the

Figure 8. Comparison of the ED-GEKF HDNN reaction profiles
obtained with the original reference data set and the data set expanded
by the geometries of reactant, TS, and product.

Figure 9. Potential energy profile for the dissociation of one of the
hydrogen atoms bound to carbon atom C5. The curves for the
different HDNNs correspond to the HDNN potential energies
predicted for the geometries encountered along the profile.
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HDNN forces tremendously. Especially applications which
require highly accurate forces (e.g., molecular dynamics
simulations) are expected to profit from this extension. The
benefits of the ED-GEKF are expected to become even more
pronounced for larger molecular systems or molecules
involving many different elements. The ED-GEKF allows for
the creation of HDNNs of unprecedented accuracy, putting the
treatment of biological problems and complex organic reactions
within reach.
In order to arrive at the aforementioned results, we used

metadynamics and chain-of-states simulations to obtain the
reaction path for the Claisen rearrangement of allyl vinyl ether
to 4-pentenal. The potential energies were predicted by
HDNNs trained on a set of reference points obtained with
BP86/def2-SVP. Due to a naıv̈e sampling scheme, none of the
reference points lay on the reaction coordinate. We show that
the accuracy of the predicted reaction profile can be drastically
improved by including only a few critical points (reactant,
transition state, and product geometries) in the reference data.
This fact calls for the development of more efficient sampling
procedures in the future in order to facilitate the automated
generation of highly accurate potential energy surfaces for
complicated systems and reactions with HDNNs.
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Many approaches, which have been developed to express the potential energy of large systems,
exploit the locality of the atomic interactions. A prominent example is the fragmentation methods
in which the quantum chemical calculations are carried out for overlapping small fragments of a
given molecule that are then combined in a second step to yield the system’s total energy. Here we
compare the accuracy of the systematic molecular fragmentation approach with the performance of
high-dimensional neural network (HDNN) potentials introduced by Behler and Parrinello. HDNN
potentials are similar in spirit to the fragmentation approach in that the total energy is constructed
as a sum of environment-dependent atomic energies, which are derived indirectly from electronic
structure calculations. As a benchmark set, we use all-trans alkanes containing up to eleven carbon
atoms at the coupled cluster level of theory. These molecules have been chosen because they allow
to extrapolate reliable reference energies for very long chains, enabling an assessment of the energies
obtained by both methods for alkanes including up to 10 000 carbon atoms. We find that both methods
predict high-quality energies with the HDNN potentials yielding smaller errors with respect to the
coupled cluster reference. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4950815]

I. INTRODUCTION

Computer simulations of chemical processes rely on the
potential energy surfaces (PESs) of the structures involved,1

and consequently, the accuracy of these PESs defines the
quality of the simulations. While highly accurate ab initio
calculations are at hand for moderately sized systems, larger
systems can only be addressed by employing an increasing
number of empirical approximations in order to keep the
computational effort feasible, which necessarily results in a
reduced accuracy of the obtained energies. Thus, maintaining
accuracy while enabling a fast evaluation is one of the main
goals when constructing PESs. Many different approaches
have been developed in past decades, which have either been
based on physical considerations or on purely mathematical
principles.

Within the latter subgroup, PESs derived from machine
learning techniques,2 and in particular, employing neural
networks (NNs),3–13 have made a lot of progress. NNs are
nonlinear models inspired by the central nervous system,
which are especially adept at interpolating trends in existing
data. Their flexible and unbiased nature has lead to a variety
of NN-based applications in many fields14 and makes them
a useful tool for fitting PESs for different types of chemical
systems.15,16 However, early NN potentials usually required
system-specific adoptions and were limited to small numbers
of atoms, which has been finally resolved in the high-
dimensional NN (HDNN) approach by Behler and Parrinello.4

a)Electronic mail: philipp.marquetand@univie.ac.at

Still, the applicability of NN-based methods is limited by
the need for large sets of ab initio reference calculations in
order to construct a valid and accurate potential. Especially for
large molecular systems—such as proteins—these reference
calculations quickly become prohibitive, due to the scaling
behavior of high-level ab initio methods. In the HDNN
approach, the need for reference calculations comprising the
full systems of interest is circumvented by the exploitation of
the so-called17 chemical locality. Consequently, it is possible
to construct HDNNs based solely on fragments of the original
molecular system, while the validity for the full system is
retained. Hence, one costly reference computation can be
replaced by several significantly cheaper calculations on
smaller subsystems. This approach is well tested for solid
state systems18–20 as well as for molecular clusters21 and
liquid water22 and has been used in numerous applications.5

Amongst the physically motivated approaches are
fragmentation-based methods, where the original system is
first divided into smaller independent subsystems. The prop-
erties of these fragments (e.g., energies) are then calculated
with ab initio methods and recombined to obtain the composite
properties of the whole molecular system. Several fragmen-
tation schemes have been developed over the last 20 years,
differing mainly in how the original system is divided into frag-
ments and how the recombination step is carried out.23,24 Here,
we focus on the systematic molecular fragmentation approach
(SMF) developed by Collins and coworkers.25–27 The SMF
approach generates overlapping fragments of a certain size by
gathering bonded atoms into functional groups. The energy
of the total system is calculated by summing the energies of

0021-9606/2016/144(19)/194110/6/$30.00 144, 194110-1 Published by AIP Publishing.
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these fragments and subtracting the energy contributions of
the overlap regions. SMF has been applied successfully to a
wide range of molecular systems, including proteins,27,28 water
clusters,28 SiO2 crystals,26 and organic molecules.29

The aim of the present study is to assess and compare the
performance of the HDNN method and of the SMF approach
in terms of the accuracy of the obtained potential energies. For
this purpose, linear all-trans alkane chains of varying lengths
containing up to 10 000 carbon atoms have been chosen as a
model system. Reference computations for the shorter chains
containing up to eleven carbon atoms have been carried out
directly with the coupled cluster method including single,
double, and perturbative triple excitations (CCSD(T)), while
the reference energies of longer chains have been extrapolated
using corrected energies of the fragmentation approach. Based
on these reference calculations, we investigate how well
HDNNs and the conventional fragmentation approach can
predict the potential energies of large organic molecules
if only the energies of the small fragments accessible by
CCSD(T) are provided. The simplicity of our model system
is motivated by the need for high-quality reference energies
for very large molecules, which could not be obtained for
more complex systems as detailed below, but our findings are
general and not restricted to linear alkanes.

II. METHODS

A. High dimensional neural network potentials

Similar to their biological counterparts, NNs are
assembled from several interconnected subunits, called
neurons. These neurons collect and process incoming signals
(e.g., molecular geometries) and assign an output (e.g., the
potential energy). This processing is performed by computing
a weighted sum and applying a nonlinear activation function,
where the network weights control the magnitude of the
incoming signals. If the input signals are the outputs of
other neurons, a network structure is obtained and the
weights represent the connections between the neurons in
the network. In analogy to biological learning, the strength
of these connections has to be determined in order to obtain
NNs suitable for practical use and the weights are hence the
important fitting parameters of a NN.

Unfortunately, the basic NN structure outlined above
suffers from several drawbacks when applied to the
interpolation of PESs. Once the weight parameters have been
learned, the structure of the NN is fixed. As a consequence,
the NN can only be used for molecules with the same number
of atoms and elemental composition. Moreover, the output
of the NN is not invariant with respect to translations and
rotations of the molecule if standard Cartesian coordinates
are used as inputs. One method to overcome these problems
is the high-dimensional NN (HDNN) approach developed by
Behler and Parrinello.4,30

In the HDNN approach, shown schematically in Figure 1,
each atom of a system is characterized by its chemical
environment. Depending on this environment, its energy
contribution Ei to the total potential energy Epot is then
calculated as output of an individual atomic NN, which is

FIG. 1. Schematic structure of a high-dimensional neural network potential.4

Each Cartesian atomic coordinate vector Qi is transformed to a symmetry
function vector Gi, which is used as the input for the respective atomic NN.
The resulting energy contributions Ei are summed to yield the molecule’s
potential energy.

usually a conventional feed-forward NN.31 By summing these
energy contributions, Epot is obtained. The individual atomic
NNs are identical for a given element to ensure the required
permutation invariance of the final PES.

The local chemical environments of the atoms i are
described via sets, i.e., vectors, of many-body atom-centered
symmetry functions Gi (ACSFs), which depend on all
Cartesian atomic position vectors Qi within a predefined cutoff
radius around the respective central atom. These symmetry
functions resemble radial and angular distribution functions
and are invariant to translations and rotations of the molecule,
thus eliminating one of the problems of standard NNs. The
introduction of a cutoff radius restricts the description of
the atomic environments to the chemically relevant regions
and facilitates exploiting chemical locality in the training and
application of the HDNNs. An in-depth description of HDNNs
and suitable symmetry functions can be found elsewhere.5,30,32

As stated above, the weights of the NNs have to be
optimized in order to obtain meaningful potential energy
predictions. This is done in a process called “training,” where
a reference set of geometries and corresponding energies is
iteratively reproduced to minimize the root mean squared
error (RMSE) of the energies predicted by the NN. This
minimization can be achieved by a variety of algorithms,
e.g., stochastic gradient descent33 or Levenberg–Marquardt
optimization.34,35 In the present work, a special adaption of the
global extended Kalman filter36,37 for HDNNs, the element-
decoupled Kalman filter,38 has been used. This algorithm is
well suited for the flexible structure of HDNNs and results
in improved training speeds and an increased quality of the
resulting PESs for molecular systems.

B. Systematic fragmentation method

The SMF method has been used for two purposes in
the present work. First, its performance has been tested and
compared to that of HDNNs. Second, it has been applied
in combination with an energy correction scheme to provide
very accurate reference energies, which enabled to test both
methods for systems being inaccessible for direct coupled
cluster calculations.
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FIG. 2. Exemplary fragmentation of C5H12 with fragmentation levels 3 and
2. The C–C bonds are broken homolytically, and hydrogen caps are added
both on the respective colored fragments and shaded overlaps. The energies
of the fragments are summed and the energies of the overlaps are subtracted,
yielding an approximation for the molecule’s potential energy.

The basic principle of the SMF method25–27 is illustrated
in Figure 2 using the fragmentation of C5H12 as an example.
The fragments (highlighted in green, red, and blue) are
constructed from the functional groups of the molecule, in
the case of alkanes CH2 and CH3 groups. The single-bonds
are broken homolytically and hydrogen caps are added to
maintain charge neutrality. The molecule’s potential energy
is then approximated by adding the fragment energies and
subtracting the “double counted,” shaded overlapping regions.
By using larger fragments, thus increasing the overlap size,
the approximation becomes more accurate and approaches the
calculation results for the entire molecule. The overlap size is
denominated by the fragmentation level X , where X indicates
the number of functional groups (saturated C-atoms in our
case) within the overlap.

III. COMPUTATIONAL DETAILS

All quantum mechanical reference calculations were
carried out with ORCA.39 Geometry optimizations were
performed at the RI-MP2/cc-pVTZ level of theory.40 MP2
correlation and Coulomb integrals were calculated employing
the resolution of identity approximation41,42 as well as
the COSX numerical integration43,44 for the Hartree-Fock
exchange term. Single-point energies of the optimized
structures and all of its fragments were obtained using
implicitly correlated CCSD(T)-F12 with the resolution of
identity approximation and the cc-pVTZ, cc-pVDZ-F12,45

and cc-pVDZ-F12-CABS46 basis sets.
For the SMF approach, C–C bonds were broken

homolytically and hydrogen caps were added according to
Collins,28 using covalent radii of 0.31 Å for hydrogen and
0.76 Å for carbon. In total, 9 optimized alkanes containing
between 3 and 11 carbon atoms, an additional alkane with 11
carbon atoms, and all 474 non-optimized fragments of these
molecules have been calculated and included in the reference
set irrespective of close structural similarities between many
of these fragments.

The HDNN construction and training were carried out
using the RuNNer code.47 The atomic environments were
characterized by ACSFs,30 whose parameters are given in
the supplementary material.49 A combination of 8 radial and
24 angular functions was employed for both carbon and
hydrogen. A cutoff radius of 5 Å was used for all ACSFs.
Consequently each atomic NN contains 32 input nodes
corresponding to the individual ACSFs, and one output node
was used to obtain the atomic potential energy contribution.

The architectures of the atomic NNs were determined by an
initial training run using subnets with 1 or 2 hidden layers
consisting of up to 35 nodes. Based on these preliminary
training results (average error, standard deviation, minimal
deviation), the five most promising architectures were chosen.
The architectures are read as “first hidden layer”-“second
hidden layer”: 2-2, 3-4, 5-4, 10-2, and 15 for both carbon and
hydrogen. Hyperbolic tangents were employed as activation
function in the hidden layers, while a linear transformation
was applied to the output layers.

The training process was performed using the “element-
decoupled” global extended Kalman filter.38 The weight
parameters were adjusted over 150 epochs and an adaptive
filter threshold of 0.9 times the RMSE of the previous
epoch was used. Values of λ0 = 0.9995 and λk = 0.95 were
employed for the time-dependent forgetting schedule, and the
network weights were initialized according to the scheme
of Nguyen and Widrow.48 In order to facilitate the training,
the energies of the free atoms were subtracted from the
reference energies of the studied molecules. Overfitting was
controlled by early stopping using cross validation5 with
randomly chosen training and test sets with a ratio of 9:1.
Five different random seeds were used to determine training
and test set compositions of each HDNN architecture. In this
way, the influence of the test set composition was ensured
to be negligible. The HDNN with the lowest test set RMSE
was then chosen for the subsequent calculations, a model with
elemental NNs of size 15 and training set and test set RMSEs
of 0.000 63 (kcal/mol)/atom and 0.001 26 (kcal/mol)/atom,
respectively.

IV. RESULTS AND DISCUSSION

A. Fragmentation

The accuracy of the SMF approach for the model
system used in this work is studied using short all-trans
alkane chains with lengths ranging from 3 to 11 carbon
atoms. After geometry optimization at the MP2 level, single
point energies are computed with CCSD(T). Based on these
optimized geometries, systematic fragmentation is carried out
with fragmentation levels from 1 to the respective maximum
level given by the chain length. The energies of the full alkane
molecules obtained in this way are then compared to their
respective CCSD(T) values.

Using alkanes from C6H14 to C10H22 as an example,
Figure 3 compares the fragmentation-derived potential
energies EFragX with the full-sized CCSD(T) calculations
ECC. With higher fragmentation levels, the potential energy
approaches the coupled cluster result of the entire molecule, as
higher fragmentation levels account for a larger overlap region
between the fragmentation sites. Since a higher ratio of the
entire molecule is included when calculating each fragment,
the general convergence trend observed in Figure 3 can be
expected. However, the increased potential energy difference
of level 4 compared to 3 is interesting to note. We have not
found a satisfactory explanation for this behavior.

Figure 4 shows the deviation of fragmentation energies
obtained for alkanes of length 5 to 11 using fragmentation
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FIG. 3. Total energy deviations of the energies computed at different frag-
mentation levels from the coupled cluster reference calculations for the alka-
nes C6H14 to C10H22.

levels starting with level 3 from the CCSD(T) results.
Investigating the deviation as a function of the molecule size,
the following trend can be observed: At a given fragmentation
level, the energy difference increases with the number of
carbon atoms (a trend which can also be observed in Figure 3).
The reason for this behavior is the way the energy of the
whole molecule is computed in the SMF approach. By using
fragments of the same size to construct alkanes of different
lengths, the corresponding error in energy is replicated with
every additional C-atom, resulting in the approximately linear
trend shown in Figure 4. Hence, the intrinsic error of the
respective fragmentation level becomes visible.

This error is only small for short alkanes, but it increases
with chain size. This linear increase in the error is a
consequence of the chosen model system as each CH2 group
contributes approximately the same error with respect to the
coupled cluster reference. This linear relation can therefore
be employed to construct an energy correction for alkane
chains of arbitrary length as shown for fragmentation level 5
in Figure 4. Taking this correction into account, the almost
exact CCSD(T) values are recovered for chains with up to
11 C-atoms and it is reasonable to assume that this trend
holds also for longer chains, where CCSD(T) calculations
are unfeasible. The corrected energies obtained by adding the
correction to the fragmentation energies are denoted as Ecorr.
While these energies can be calculated for every fragmentation

FIG. 4. Energy deviations between the fragmentation method and the cou-
pled cluster calculations for different alkanes and fragmentation levels.

level, the Ecorr values for the different fragmentation levels
show only extremely small deviations from each other (within
1.1 kcal/mol for the 10 000 carbon chain), demonstrating the
stability of the correction. In what follows, we use the Ecorr
derived from fragmentation level of 5 as it offered a sufficient
amount of data points with reasonably small deviations from
CCSD(T) results. By using this correction, we can go beyond
the standard accuracy of the fragmentation method. However,
this is possible only due to the linear nature of the chosen
model system and such a scheme would not be applicable for
arbitrary organic molecules, which is the reason why we have
chosen linear alkanes for the present benchmark study.

B. Neural networks

In order to assess the ability of HDNNs to model
the potential energy of large linear alkanes based on the
information contained in small fragments, the five NN
architectures introduced in Section III are used to predict
potential energies of all-trans alkane chains with lengths up
to 10 000 carbon atoms. Since the geometry optimization of
alkanes of this size with ab initio methods is impossible,
model geometries are used. These structures are obtained
by replicating fragments based on the MP2 optimized bond
lengths, angles, and dihedral angles calculated for C10H22 until
the desired length is reached. In the present work, alkanes
containing 11 to 10 000 carbon atoms are generated in this
manner. The reference energies of these chains were computed
using the level 5 fragmentation approach augmented by the
previously derived correction.

The training set employed in the construction of the
HDNN potentials contained the MP2 optimized alkanes (3
to 11 carbons) and a C11H24 structure generated as outlined
in the previous paragraph, as well as all their respective
fragments. Note that a training set with purely MP2 based
geometries leads to strong fluctuations in the predicted
potential energies for the long artificial chains. The reason
for this effect is the highly regular nature of the linear alkane
model system, which prevents a comprehensive sampling
of the possible configuration space. As a consequence, the
HDNNs are sensitive with respect to tiny differences between
MP2-optimized and artificially generated geometries, which
is not expected to happen in typical molecular systems if the
PESs are based on more representative data sets of the relevant
configuration space.

The deviations from Ecorr of the potential energies
computed with the different methods are illustrated in Figure 5.
For the HDNNs, the predictions with the highest and lowest
deviation (ENNmax and ENNmin) are shown. They are compared
with the EFragX approximations, where X denominates the
corresponding fragmentation level. In order to achieve a
reasonable scale, the energy is normalized to the number
of atoms N for demonstrative purposes.

Once again, the trend of the EFragX energies to yield more
accurate approximations with higher fragmentation levels can
be observed. However, all HDNN approximations yield even
smaller deviations from Ecorr, with the maximum deviations
still lying below the ones obtained for fragmentation level
7 and the best HDNNs (ENNmin) performing significantly
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FIG. 5. Potential energies derived from fragmentation and NN approxima-
tions (EFragX and ENN) in comparison to the error-corrected level 5 fragmen-
tation results Ecorr. The energy is normalized to the number of atoms N of
the alkanes.

better. This result is remarkable insofar, as the choice of
a 5 Å cutoff radius used in the ACSFs limits the effective
chemical environment seen by a HDNN to a maximum
of 7 carbon atoms. Compared to the SMF method, this
number of carbons corresponds to a fragmentation level of 6,
which shows significantly larger deviations than the HDNNs.
Apparently, the HDNNs are able to exploit chemical locality
to a greater extent compared to the standard SMF method
and hence utilize the information present in the molecular
fragments in a more efficient manner.

The errors in the NN predictions in general exhibit the
same linearity as the fragmentation derived values, which is to
be expected as also for the HDNN potential, each additional
CH2 group contributes a certain energy error, but for the given
reference the NN energies are notably more accurate. Thus,
HDNNs represent a promising alternative to the fragmentation
method, and we believe that this finding also holds for general
organic molecules. A comparison between the SMF approach
and HDNNs is more difficult in this case, as no simple
corrections can be exploited and accurate reference data are
hence more difficult or even impossible to obtain.

V. CONCLUSION

A comparison of the performance of high-dimensional
neural network (HDNNs) potentials and of the SMF approach
for the energies of linear all-trans alkanes has been presented.
Due to the linearity of the energy error of the fragmentation
approach with system size, an energy correction scheme could
be implemented that enabled to assess the accuracy of both
methods for systems containing up to 10 000 C-atoms. While
both approaches provide very accurate energies close to the
underlying coupled cluster data, the energy errors employing
the HDNN approach have been found to be systematically
smaller for all chain lengths. Unlike the fragmentation
method, the purely mathematical structure of HDNNs is
not restricted by underlying physical considerations. Another
advantage of HDNN potentials is their transferability. Once
trained, they can be used to obtain the energy of sufficiently
similar molecules, without the need of additional ab initio
calculations. This principal flexibility, accuracy, and efficiency

illustrate the benefits of HDNNs for other chemical systems
and applications. However, it should once again be stressed
that the model system studied in this work is extremely well
behaved and exhibits no significant long range electrostatic or
dispersion interactions. Whether the results of our particular
model system can be reproduced for more complex systems
like proteins will be the subject of further studies.
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Machine Learning Molecular Dynamics
for the Simulation of Infrared Spectra

Michael Gastegger,a Jörg Behler,b and Philipp Marquetanda∗

Abstract

Machine learning has emerged as an invaluable tool in many research areas. In the present work, we harness this
power to predict highly accurate molecular infrared spectra with unprecedented computational efficiency. To account for
vibrational anharmonic and dynamical effects – typically neglected by conventional quantum chemistry approaches – we
base our machine learning strategy on ab initio molecular dynamics simulations. While these simulations are usually
extremely time consuming even for small molecules, we overcome these limitations by leveraging the power of a variety of
machine learning techniques, not only accelerating simulations by several orders of magnitude, but also greatly extending
the size of systems that can be treated. To this end, we develop a molecular dipole moment model based on environment
dependent neural network charges and combine it with the neural network potentials of Behler and Parrinello. Contrary
to the prevalent big data philosophy, we are able to obtain very accurate machine learning models for the prediction of
infrared spectra based on only a few hundreds of electronic structure reference points. This is made possible through
the introduction of a fully automated sampling scheme and the use of molecular forces during neural network potential
training. We demonstrate the power of our machine learning approach by applying it to model the infrared spectra of a
methanol molecule, n-alkanes containing up to 200 atoms and the protonated alanine tripeptide, which at the same time
represents the first application of machine learning techniques to simulate the dynamics of a peptide. In all these case
studies we find excellent agreement between the infrared spectra predicted via machine learning models and the respective
theoretical and experimental spectra.

1 Introduction
Machine learning (ML) – the science of autonomously learn-
ing complex relationships from data – has experienced an
immensely successful renaissance during the last decade.1,2
Increasingly powerful ML algorithms form the basis of a
wealth of fascinating applications, with image and speech
recognition, search engines or even self-driving cars being
only a few examples. In a similar manner, ML based tech-
niques have lead to several exciting developments in the field
theoretical chemistry.3–6

ML potentials are an excellent example for the benefits
ML algorithms can offer when paired with theoretical chem-
istry methods.7–13 These potentials aim to accurately repro-
duce the potential energy surface (PES) of a chemical system
(and its forces) based on a number of data points computed
with quantum chemistry methods. Due to the powerful non-
linear learning machines at their core, ML potentials are able
to retain the accuracy of the underlying quantum chemical
method, but are several orders of magnitude faster to eval-
uate. This combination of speed and accuracy is especially
advantageous in situations where a large number of costly
quantum chemical calculations would be required.

One such case is ab initio molecular dynamics (AIMD), a
a University of Vienna, Faculty of Chemistry, Department of The-

oretical Chemistry, Währinger Str. 17, 1090 Vienna, Austria.
b Universität Göttingen, Insititut für Physikalische Chemie, The-

oretische Chemie, Tammanstr. 6, 37077 Göttingen, Germany.
∗ E-mail: philipp.marquetand@univie.ac.at

simulation technique used to describe the evolution of chem-
ical systems with time.14 In AIMD, the motion of the nuclei
is described classically according to Newton’s equations of
motion15 and depends on the quantum mechanical force ex-
erted by the electrons and nuclei. AIMD is a highly versa-
tile tool and has been used to model a variety of phenomena
like photodynamical processes or the vibrational spectra of
molecules.16–20

The latter application is of particular interest in the field
of vibrational spectroscopy. With the development of more
and more sophisticated experimental techniques, it is now
possible to use methods like infrared (IR) and Raman spec-
troscopy to obtain highly accurate spectra of macromolec-
ular systems (e.g. proteins).21,22 As a consequence, vibra-
tional spectra have become increasingly complex and theo-
retical chemistry simulations are now an indispensable aid in
their interpretation. Unfortunately, the standard approach
to model vibrational spectra, static calculations based on
the harmonic oscillator (HO) approximation, suffers from
several inherent limitations.18,23 Due to the HO approxima-
tion, anharmonic vibrational effects are neglected, which are
of great importance in molecular systems with high degrees
of flexibility and/or hydrogen bonding, such as biological
systems. Moreover, HO based calculations are unable to ac-
count for conformational and dynamic effects, due to their
restriction to one particular conformer. This also makes it
hard to accurately model temperature effects, which have a
large influence on conformational dynamics and are highly
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relevant for spectra recorded at room temperature.17 These
deficiencies lead to disagreements between experimental and
theoretical spectra, thus complicating a consistent analysis.

Different strategies, like the variational self-consistent
field (VSCF) approach and its extensions23, as well as quan-
tum dynamics based methods24,25, have been developed to
account for these effects, but they either neglect dynam-
ical effects or are computationally intractable for systems
containing more than a few tens of atoms. Consequently,
AIMD, which is able to describe anharmonicities, dynamic
effects at manageable computational costs, is an invaluable
tool for the practical simulation of vibrational spectra.17,18

Yet, standard AIMD is still comparatively expensive,
placing severe restrictions on the maximum size of the sys-
tems under investigation (approximately 100 atoms) and on
the quality of the quantum chemical method. However,
AIMD simulations can be accelerated significantly with-
out sacrificing chemical accuracy by replacing the individ-
ual electronic structure calculations with much cheaper ML
computations. This opens the way for exciting new possi-
bilities, making it possible to simulate larger systems and
longer timescales in only a fraction of the original computer
time.

The goal of the current work is to use ML accelerated
AIMD calculations to simulate accurate IR spectra of dif-
ferent organic molecules. This is achieved by harnessing
the synergies between established techniques, improvements
to existing schemes and new developments: (I) A special
kind of ML potential, called high-dimensional neural net-
work potential (HDNNP), is used to model the PES.26 (II)
Molecular forces are employed in the construction of these
HDNNPs, using a novel method based on the element de-
coupled Kalman filter.27 (III) electronic structure reference
data points are selected via an enhanced adaptive sampling
scheme for molecular systems. (IV) A HDNNP based frag-
mentation method is used to accelerate reference computa-
tions for macromolecules.28 Finally, (V) a newML scheme to
model dipole moments is introduced. A detailed description
of all these individual components is given in the following
section.

Three different molecular systems are studied using the
strategies described above. First, a single methanol molecule
serves as a test case to assess the overall accuracy of the
HDNNP based simulations compared to spectra obtained
with standard AIMD. Second, the ability of HDNNPs to ef-
ficiently deal with macromolecular systems is demonstrated
by (a) constructing a HDNNP of a simple alkane chain based
only on small fragments of the macromolecule and (b) then
using the resulting model to predict the IR spectra of alkanes
of varying chain lengths. In order to probe the suitability of
HDNNPs for systems of biological relevance, a final study
is dedicated to the protonated trialanine peptide. This also
serves as an excellent test case for the ML based dipole mo-
ment model.

All HDNNPs are constructed using density functional the-
ory (DFT) as electronic structure reference method. Gener-
alized gradient functionals are used in for methanol and the

tripeptide. In the case of alkanes, we demonstrate that in
principle also highly accurate double-hybrid density func-
tionals29 can be used. The simulations carried out with
these latter HDNNPs would be next to impossible using on-
the-fly AIMD. In all cases, comparisons to experimental IR
spectra are shown.

2 Theoretical Background
In AIMD, vibrational spectra are computed via the Fourier
transform of time autocorrelation functions.18 Different
physical properties give rise to different types of spectra.
IR spectra depend on the molecular dipole moments:

IIR ∝
∫ +∞

−∞
〈µ̇(τ)µ̇(τ + t)〉τ e−iωtdt, (1)

where µ̇ is the time derivative of the molecular dipole mo-
ment, ω is the vibrational frequency, τ is a time lag and t is
the time.

Upon closer examination of Equation 1, several challenges
to model AIMD quality IR spectra via ML become apparent:
Reliable ML potentials (and especially forces) are required
to describe the time evolution of a chemical system. Con-
sequently, electronic structure reference points need to be
selected from representative regions of the PES, while keep-
ing the number of costly electronic structure calculations to
a minimum. This also calls for efficient strategies to handle
the reference calculations of large molecules. And finally,
a method to accurately model molecular dipole moments is
required.

2.1 High-Dimensional Neural Network Po-
tentials.

In a HDNNP (shown in Figure 1), the total potential energy
Epot of a molecule is expressed as a sum of individual atomic
energies.26,30 The contribution Ei of every atom depends on
its local chemical environment and is modeled by a neural
network (NN). These atomic NNs are typically constrained
to be the same for a given element and thus, also termed
elemental NNs. Due to this unique structure, HDNNPs can
easily adapt to molecules of different size and even be trans-
ferred between sufficiently similar molecular systems.

The chemical environment of an atom is represented by a
set of many-body symmetry functions {Gi}, so-called atom-
centered symmetry functions (ACSFs).31 ACSFs depend on
the positions {Ri} of all neighboring atoms around the cen-
tral atom, up to a predefined cutoff radius. By introducing
a cutoff radius, an atom’s environment is restricted to the
chemically relevant regions. This brings two distinct ad-
vantages: the computational cost of HDNNPs now scales
linearly with molecular size and chemical locality can be
exploited in their construction and application7, which has
been demonstrated recently e.g. for alkanes28. In addi-
tion, HDNNPs are well suited for molecular dynamics sim-
ulations, since an analytic expression for molecular forces is
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Figure 1: Schematic representation of a high-dimensional
neural network potential (HDNNP). The Cartesian coordi-
nates R are transformed into many-body symmetry func-
tions {Gi} describing an atom’s chemical environment.
Based on these functions, a NN then predicts the energy
contribution Ei associated with atom i. The potential en-
ergy EPot of the whole molecule is obtained by summing
over all individual atomic energies.

available due to their well-defined functional form. For a
detailed discussion of HDNNPs and ACSFs, see reference30.

In order for HDNNPs to yield reliable models of the PES,
a set of optimal parameters needs to be determined for the
elemental NNs. This is done in a process called training,
where a cost function (typically the mean squared error)
between reference data points (e.g. energies and forces) and
the HDNNP predictions is minimized iteratively. Different
algorithms can be used to carry out the minimisation. The
current work uses the element-decoupled Kalman filter27, a
special adaptation of the global extended Kalman filter32
for HDNNPs.

Besides the energies, it is also possible to include molec-
ular forces in the training process, by minimizing the cost
function30

CE,F =
1

M

M∑
m

(
Ẽm − Em

)2
+
η

M

M∑
m

1

3Nm

3Nm∑
α

(
F̃mα − Fmα

)2
.

(2)
The first term on the right hand side corresponds to
the mean squared error between reference energies E and
HDNNP energies Ẽ. The second term describes the devi-
ation between HDNNP (F̃ ) and quantum chemical forces
(F ). M is the number of molecules in the reference data
set, N the number of atoms in a molecule, and α is an in-
dex running over the 3N Cartesian force components. η is
a constant used to tune the importance of the force error on
the update step. Including the forces in the training process
leads to substantial improvements in the forces predicted by
the HDNNP. Furthermore, instead of only one single energy,
3N points of additional information per molecule can now
be utilized during training, thus greatly reducing the num-
ber of reference points required for a converged potential.
An in-depth description of the element-decoupled Kalman
filter and its extension to molecular forces can be found in
reference27.

2.2 Adaptive Selection Scheme.

Ultimately, the quality of a ML potential does not only de-
pend on the underlying ML algorithm and the employed
training procedure, but also on how well the reference data
set represents the chemical problem under investigation.
Ideally, the reference data spans all relevant regions of the
PES with as few data points as possible to avoid costly elec-
tronic structure computations. To this end, different strate-
gies – e.g. based on Bayesian inference33 or geometric fin-
gerprints34 – have been developed in the past.

A simple, but relatively effective procedure to select data
points is based on the use of multiple HDNNPs and is de-
scribed for example in reference30. After choosing an initial
set of reference data points, a set of preliminary HDNNPs
is trained, differing in the initial parameters and/or archi-
tectures of their elemental NNs (Figure 2). These proto-
potentials are then used sample different molecular confor-
mations, using e.g. molecular dynamics simulations. Af-
terwards, the predictions of the HDNNPs are compared
to each other. Regions of the PES, where the different
HDNNPs agree closely are assumed to be represented well,
whereas conformations with diverging HDNNP predictions
are modeled inaccurately. The inaccurately described con-
formations are recomputed with the electronic structure ref-
erence method and added to the reference data set. The
HDNNPs are then retrained using the expanded data set
and the process is repeated in a self consistent manner until
the HDNNPs reach the desired quality.

The current work introduces small adaptations to this pro-
cedure in order to make it more suitable for the use with
biomolecules and expensive electronic structure reference
methods. Instead of performing independent sampling sim-
ulations with the individual HDNNPs, they are instead com-
bined into an ensemble. In the ensemble, energy and forces
are computed as the average of the J different HDNNP pre-
dictions:

E = 1
J

∑J
j=1 Ẽj , (3)

F = 1
J

∑J
j=1 F̃j . (4)

Simulations are then carried out using these averaged prop-
erties. The prediction uncertainty of the HDNNP ensembles
is defined as

Eσ =

√√√√ 1

J − 1

J∑
j

(
Ẽj − E

)2
. (5)

Ensembles of HDNNPs are less susceptible to erratic behav-
ior in their individual parts. Moreover, the error of ensem-
ble methods is typically proportional to 1√

J
, leading to a

significant improvement in accuracy at negligible extra cost.
The combination of both effects leads to more reliable sim-
ulations, especially in the early stages of PES exploration,
hence diminishing the number of electronic structure start-
ing points needed to seed the self-consistent refinement pro-
cedure. As a consequence, HDNNPs can now be grown on
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Figure 2: A typical run of the adaptive selection scheme
starts by using a small set of initial reference data points to
train a preliminary ensemble of HDNNPs. These HDNNPs
are then used to sample new molecular conformations (e.g.
via molecular dynamics simulations). During sampling, the
predictions of the individual potentials are monitored and
if divergence is detected, the sampling run is stopped. The
conformation for which the HDNNPs disagree is computed
with the electronic structure reference method and added to
the set of reference points. Subsequently, the HDNNP en-
semble is retrained on the expanded data set and sampling
is continued with the new potential. This procedure is re-
peated in an iterative manner, until the divergence stops to
exceed a predetermined threshold.

the fly from only a handful of data points in a highly auto-
mated manner: Starting from e.g. a few molecular dynamics
steps, HDNNP ensemble simulations are run until Eσ of a
visited structure exceeds a predefined threshold. The cor-
responding conformation is recomputed with the reference
method and added to the training set. The HDNNPs are re-
trained and simulations are continued from the problematic
conformation.

This procedure is effective, but highly sequential and cal-
culations using expensive reference methods constitute a sig-
nificant bottleneck. Under the assumption, that the approx-
imate shape of PES is sufficiently similar for different elec-
tronic structure methods, an “upscaling” step is introduced.
First, the iterative refinement is carried out using a low-level
method until convergence of the HDNNPs. The conforma-
tions obtained in this manner are then recomputed using a
high-level method. Since these high-level calculations can
be done in parallel, the overall procedure is highly efficient.
Afterwards, new HDNNPs are trained, now at the quality
of the better method. The above assumption with regard to
the similar shape of the PES at the different levels of theory
is not necessarily valid, hence an upscaling step is typically
followed by additional refinement steps at the higher level
of theory.

A detailed discussion of the performance of the adaptive

selection scheme and the convergence of the ML predictions
with ensemble size can be found in the supporting informa-
tion.

2.3 Fragmentation with High-Dimensional
Neural Network Potentials.

Since the computational cost of electronic structure calcu-
lations scale very unfavorably with system size and the ac-
curacy of the underlying method, individual reference com-
putations can still be problematic. Hence, the required ref-
erence computations would quickly become intractable for
highly accurate HDNNPs describing large molecular sys-
tems, despite the efficient sampling scheme.

It is possible to circumvent this problem by exploiting the
special structure of HDNNPs. As a consequence of express-
ing the HDNNP energy as a sum of atomic contributions
and introducing a cutoff radius, HDNNPs operate the same
manner as fragmentation methods using a divide and con-
quer approach: Given only the energies of small molecular
fragments, HDNNPs can reconstruct the energy of the total
system.7,28 Thus, expensive electronic structure calculations
never have to be performed for the whole molecule, but only
for small parts of it. The result is a linear scaling of the com-
putational effort with system size.

In practice, a molecule is first divided into its individual
fragments. Reference computations are then carried out for
these fragments and the resulting data set is used to train a
HDNNP. The ML potential is then applied to the geometry
of the original molecule and the energy of the full system
is recovered in this way. Different strategies can be used
to partition the full molecular system. In the current work,
every molecule is split into N atom-centered fragments (see
Figure 3). The size and shape of these fragments are deter-
mined by a cutoff radius around the central atom. Atoms
beyond the cutoff radius are removed and free valencies are
saturated with hydrogen atoms. If a free valency is situ-
ated on a hydrogen atom or two capping hydrogens overlap,
the heavy atom corresponding to this position is instead
included in the fragment and the process is repeated itera-
tively. Typically, the same cutoff radius as in the ACSFs is
used.

HDNNP fragmentation can easily be integrated into the
adaptive sampling scheme. By using the deviations in
atomic forces predicted by different HDNNPs as uncertainty
measure, inaccurately modeled fragments can be identified.
These fragments are then added to the reference data set.

2.4 Neural Network Dipole Moments and
Charge Analysis.

A vital ingredient in the simulation of IR spectra with AIMD
are molecular dipole moments (see Equation 1). While
strategies to predict dipole moments using NNs exist35,
HDNNPs themselves have only been used to predict environ-
ment dependent charges in full analogy to the atomic energy
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Figure 3: In order to generate molecular fragments, first
all atoms beyond a predetermined cutoff radius from the
central atom are removed. Afterwards, free valencies are
saturated with hydrogen atoms, unless the valency itself is
situated on a hydrogen or corresponds to a double bond in
the unfragmented molecule. In this case, the heavy atom
connected to this atom in the original molecule is included
in the fragment and the process is repeated iteratively. This
procedure is performed for the whole system, leading to one
fragment per atom.

contributions with the aim to model electrostatic long range
interactions.36

In this work, we extend this approach, by constructing
molecular dipole moments as a sum of such environment
dependent atomic partial charges:

µ̃ =

N∑
i

q̃iri, (6)

where q̃i is the charge of atom i modeled by a NN and ri is
the distance vector of the atom from the molecule’s center
of mass.

While the elemental charge NNs could in principle be
trained to reproduce charges computed with quantum chem-
ical charge partitioning schemes (as was e.g. done in Ref-
erence37 to model electrostatic interactions), this approach
has the following problems: First, the charge of a given atom
obtained with such a partitioning scheme can in principle
change along a trajectory in a non-continuous manner. The
resulting inconsistencies in the reference data can in turn
lead to erratic predictions of the final model. Second, unlike
molecular energies and forces, atomic partial charges are no
quantum mechanical observable. Hence, there is no physi-
cally unique way to determine them and a variety of different
partitioning schemes exists.38 This complicates the choice of
a suitable method to compute reference charges, since dif-
ferent schemes often exhibit vastly different behavior and
sometimes fail to reproduce the molecular dipole moment
accurately.39

Both problems can be avoided by training the elemental
NNs to reproduce the molecular moments directly, while the
environment dependent atomic charges q̃i are inferred in an
indirect manner. In order to achieve this, a cost function of
the form

CQ =
1

M

M∑
m

(
Q̃m −Qm

)2
+

1

3M

M∑
m

3∑
l

(µ̃lm − µlm)
2

+ . . .

(7)
is minimized. Here, Qm and µlm are the reference total
charge and dipole moment components of molecule m. The
index l runs over the three Cartesian components of the
dipole moment. Q̃ is the total charge of the composite NN
model, computed as Q̃ =

∑N
i q̃i, while µ̃ is the NN dipole

moment (Equation 6). While the cost function (from Equa-
tion 7) can be easily extended to include higher multipole
moments, it was found that including only the total molec-
ular charge and dipoles is sufficient for the purpose of mod-
eling IR spectra. Since this scheme depends exclusively on
molecular moments which are quantum mechanical observ-
ables, charge partitioning is no longer required. On the con-
trary, the trained NN model itself constitutes a new kind
of partitioning scheme, where the atomic partial charges qi
depend on the chemical environment and are determined on
a purely statistical basis. These charges can also be used
for additional purposes, e.g. to compute electrostatic inter-
actions. Another possible application would be to augment
classical force fields35, where partial charges typically do
not change with the chemical environment.40 As such, the
NN charge scheme presented here constitutes an interesting
alternative to static point charges or polarizable models.41

3 Computational Details
Electronic structure reference calculations were car-
ried out with Orca42 at the BP8643–47/def2-SVP48

(Methanol, Ala +
3 ), BLYP43–45,49/def2-SVP (Ala +

3 ) and
B2PLYP29/def2-TZVPP48 (n-alkanes) levels of theory. All
calculations were accelerated using the resolution of identity
approximation.50,51

All HDNNPs were constructed and trained with the RuN-
Ner program.52 The NN dipole models were implemented in
python53 using the numpy54 and theano55 packages. Ref-
erence data points were obtained with the adaptive selec-
tion scheme, employing molecular dynamics trajectories at
a temperature of 500 K with a 0.5 fs timestep to sample
relevant conformations. The final ML models are based on
245 (methanol), 534 (n-alkanes) and 718 (peptide) reference
data points, with a maximum network size of 35-35-1 (two
hidden layers with 35 nodes each and one node in the output
layer) for the HDNNPs and 100-100-1 for the dipole moment
model.

IR spectra were obtained with molecular dynamics sim-
ulations in the gas phase employing the same timestep as
the sampling procedure. After a short initial equilibration
period (3ps for methanol, 5ps otherwise), constant temper-
ature molecular dynamics simulations were run for 30 ps
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in the case of methanol and 50 ps for the other molecules.
In addition to ML accelerated dynamics, AIMD simulations
were carried out for methanol using the BP86 level of theory
described above.

Detailed information regarding the setup of the electronic
structure calculations and molecular dynamics simulations,
as well as the ML models can be found in the supporting
information.

4 Results and Discussion

4.1 Methanol.

Due to its small size, the methanol molecule constitutes an
excellent test system, not only for the direct comparison
between IR spectra obtained via standard AIMD and ML
simulations, but also to investigate the overall accuracy of
the ML approximations.

The final ML model for methanol consists of two HDNNPs
and a NN dipole moment model trained on the BP86 data
for 245 configurations. To assess the errors associated with
the individual components of the model, a standard AIMD
simulation is run 30 ps, producing 60 000 configurations.
For the sampled geometries, energies, forces and dipoles are
predicted with the ML model. These predictions are then
compared to the respective electronic structure results. The
distribution of errors between ML predictions and the BP86
method are shown in blue in Figure 4.

Excellent agreement between electronic structure calcula-
tions and the ML model is found for all investigated proper-
ties. In the case of energies (Figure 4a), the mean absolute
error (MAE) of 0.048 kcal mol−1 (range of energies 13.620
kcal mol−1) is well below the commonly accepted limit for
chemical accuracy (1 kcal mol−1) and is expected to be
negligible compared to the intrinsic error of the electronic
structure reference method in practical applications. The
components of the force vectors are reproduced equally well
(Figure 4b), with a MAE of 0.533 kcal mol−1 Å−1 (range
242.34 kcal mol−1 Å−1). These findings are comparable
with other state of the art ML learning strategies developed
specifically for the modeling of forces56 and demonstrate the
excellent capabilities of HDNNPs to create potentials suit-
able for the dynamical simulation of molecules. This conclu-
sion is also supported by a comparison of the normal mode
frequencies obtained for the optimized methanol structure
at the ML- and BP86-level (see Table 1). Although the
HDNNP model was never explicitly trained to reproduce
normal mode frequencies, its predictions agree well with the
electronic structure frequencies, exhibiting a maximum de-
viation of only 31.38 cm−1 (0.090 kcal mol−1). The NN
dipole model is also found to provide an accurate descrip-
tion of the molecular dipole moments (Figure 4c). The total
dipole moment shows an overall MAE of 0.016 D (over a
range of 0.723 D) and the spatial orientation of the dipole
vector is modeled equally reliable, with the MAEs of the
individual Cartesian components ranging from 0.0173 D to
0.0200 D. The small shift of the dipole error distribution
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Figure 4: Distribution of errors between the ML model
based on the adaptive sampling scheme and the BP86 ref-
erence (blue). The deviations were computed based on
the electronic structure energies, forces and dipole moments
(from top to bottom) of 60 000 configurations of methanol
sampled with an AIMD simulation. The deviations obtained
with a ML model trained on data points selected at random
from a force field simulation are shown in grey (see support-
ing info).

towards negative values is due to the fact that the atomic
charges fluctuate around values other than zero. This effect
is enhanced further, by the final summation to obtain the
dipol moment model (see 6).

In order to study the quality of the IR spectrum modeled
with the composite ML model, it is compared directly to the
spectrum obtained via the BP86 AIMD simulation. Figure 5
shows both IR spectra alongside an experimental spectrum
of methanol recorded in the gas phase57. The overall shape
of the ML spectrum, as well as the peak positions and inten-
sities, show excellent agreement with the electronic structure
reference. The most distinctive difference between QM and
ML spectra is the intensity of the stretching vibration of
the O-H bond observed at 3700 cm−1. This relatively mi-
nor deviation is most likely caused by small deviations of
the dipole moment model. Overall, the ML approach pre-
sented here is able to reproduce the AIMD IR spectrum of
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Table 1: Comparison of the normal mode frequencies of
methanol obtained with DFT and the ML model

# DFT [cm−1] ML [cm−1] ∆ [cm−1]
1 331.70 346.94 -15.24
2 1037.82 1030.00 7.82
3 1080.46 1092.09 -11.63
4 1135.08 1138.21 -3.13
5 1328.95 1320.84 8.11
6 1420.02 1416.42 3.60
7 1427.64 1422.59 5.05
8 1449.79 1449.02 0.77
9 2880.76 2892.94 -12.18
10 2930.10 2961.48 -31.38
11 3034.15 3054.08 -19.93
12 3707.93 3707.73 0.20
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Figure 5: IR spectra of the methanol molecule. The ML
spectrum (red) is able to reproduce the AIMD spectrum
(blue) obtained with BP86 with high accuracy. In addition,
both theoretical spectra agree well with the experimental
one (grey).

methanol with high accuracy. These results are remarkable
insofar, as the final ML model is based on only 245 electronic
structure calculations. This demonstrates the effectiveness
of the combination of HDNNPs and the NN dipole model,
as well as the power of the improved sampling scheme.

Finally, both simulations agree well with experiment,
serving as an example for the utility of AIMD and ML-
accelerated AIMD for the prediction of accurate vibrational
spectra.

4.2 n-Alkanes.
When constructing ML potentials for large molecular sys-
tems containing hundreds or thousands of atoms, the neces-
sary electronic structure reference calculations can quickly
become intractable, especially for high-level electronic struc-
ture methods. HDNNPs, as well as the dipole moment
model presented in this work, can overcome this limitation
via their implicit use of fragmentation (see Section 2.3).
In order to demonstrate the potential of this approach, it

is used to predict the IR spectrum of an n-alkane with
the chemical formula C69H140 (depicted in Figure 6) via
ML-accelerated AIMD simulations based on the B2PLYP
double-hybrid density functional method.

The two HDNNPs and NN dipole moment model consti-
tuting the final ML model were trained on reference calcula-
tions for 534 fragments of the n-alkane. These fragments use
a cutoff radius of 4.0 Å and contain 37 atoms on average and
a maximum of 70 atoms. After initial adaptive sampling at
the BP86/def2-SVP level, the final B2PLYP/TZVPP level
ML-model is obtained via an upscaling step described in
Section 2.2. Dispersion interactions, which are expected to
play an important role in molecular systems of this size,
are accounted for via a simple scheme: the HDNNPs are
constructed from standard B2PLYP calculations and aug-
mented with the empirical D3 dispersion correction using
Becke–Johnson damping58,59 in an a posteriori fashion.

The IR spectrum of the C69H140 n-Alkane predicted via
ML is shown in Figure 6. It exhibits all spectroscopic fea-
tures typical for simple hydrocarbons: The intense peak at
3000 cm−1 corresponds to symmetric and asymmetric C-H
stretching vibrations. Deformations of the CH2-groups give
rise to the bands close to 1500 cm−1, while the extremely
weak signals in vicinity of 1000 cm−1 and 600 cm−1 are gen-
erated by C-C bond stretching and CH2 rocking vibrations.
Although the general shape and features of the IR spectrum

Figure 6: IR spectrum of the C69H140 alkane as predicted
by the ML model based on the B2PLYP method.

are described well by the ML-model, some peak positions
deviate from the expected experimental frequencies. This
effect is especially pronounced for the C-H stretching vibra-
tions, which are blue-shifted from the typical experimental
value of 2900 cm−1 to 3040 cm−1.

This blue shift is due to the electronic structure method
(and not an artifact introduced by the ML approximations),
as will be explained in the following. Direct AIMD simula-
tions and even static frequency calculations are prohibitively
expensive for the C69H140 molecule. Instead, we exploit the
transferability of the combined HDNNP and dipole model
and use it to simulate the IR spectrum of the much smaller
n-butane, for which static theoretical and experimental spec-
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tra can be obtained easily. Figure 7 shows the n-butane IR
spectra obtained with ML-accelerated AIMD, static elec-
tronic structure calculations and experiment57. The strong
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Figure 7: IR spectrum of n-Butane obtained via the ML
model (red), compared to the static quantum mechanical
spectrum computed at the B2PLYP level (blue) and convo-
luted with Gaussians. The peak positions in the ML and
electronic structure spectra agree closely, suggesting that
the observed deviations from experiment (grey) are due to
the electronic structure method and not an artifact intro-
duced by the ML approximation. The overall structure of
the peaks is reproduced much better by the ML acceler-
ated AIMD simulation, especially in the region of the C-H
stretching vibrations (see insert).

blue shift of the C-H stretching vibrations present in the ML
spectrum can also be found in the static electronic structure
spectrum. Moreover, both spectra show good agreement
with each other with respect to the overall positions of the
spectral peaks. These findings support the conclusion, that
the observed frequency shifts are indeed a consequence of the
underlying electronic structure method and not an artifact
of the ML approximation. Furthermore, the ML accelerated
AIMD approach is found to accurately reproduce the struc-
ture of the experimental vibrational bands (especially the
C-H stretching vibrations, see insert Figure 7). This is not
the case for the static spectrum and shows, that even for rel-
atively small molecules an accurate description of dynamic
effects is important in order to obtain high-quality IR spec-
tra. Both observations demonstrate the excellent accuracy
of the HDNNP and NN dipole model, even for molecular
systems not encountered during training.

Finally, to demonstrate the power the ML based approach
in general and the fragmentation based approach in partic-
ular, a few exemplary timings are given for the C69H140
molecule (using a single core of an Intel Xeon E5-2650 v3
CPU): Obtaining the relevant molecular fragments using the
iterative sampling scheme takes approximately 7 days. The
reference calculations of the fragments on the B2PLYP level
of theory can be carried out in a highly parallel manner
within 1.2 days (using a single CPU per configuration), in-
cluding the time necessary to construct the final ML model.

ML-accelerated AIMD simulations for the C69H140 molecule
which involve the calculation of 110 000 energies and forces
(5ps equilibration and 50ps simulation) take 3 hours. The
NN dipole moments can be obtained within half an hour.
Including the generation of the model, the total time to ob-
tain the ML based IR spectrum amounts to a little over
8 days. In contrast, the evaluation of a single energy and
gradient at the B2PLYP level for the full n-alkane would
require 30 days, extrapolating from the timings of the frag-
ment reference calculations. Hence, performing the 110 000
calculations necessary for the AIMD simulation would re-
quire a total of 3.3 million days or 9 041 years.

4.3 Protonated Alanine Tripeptide.

Vibrational anharmonicities, as well as conformational and
dynamic effects play a crucial role in the vibrational spectra
of biomolecules. In order to investigate the ability of ML ac-
celerated AIMD to account for these effects, the composite
ML model is used to simulate the IR spectrum of the proto-
nated alanine tripeptide molecule (Ala +

3 ) in the gas phase.
Modeling the Ala +

3 molecule poses several challenges: An
accurate description of the complicated PES depends cru-
cially on the ability of the adaptive sampling scheme and the
HDNNPs to reliably identify and interpolate relevant elec-
tronic structure data points. Moreover, the changing charge
distribution and dipole moment of the protonated species
need to be captured by the NN dipole model. Since the IR
spectrum of Ala +

3 has been studied extensively, both ex-
perimentally and theoretically60,61, the quality of the ML
approach can be assessed directly.

The composite Ala +
3 ML model consists of two HDNNPs

and a NN dipole model and was constructed from 658 refer-
ence geometries selected with the adaptive sampling scheme.
The model exhibits overall RMSEs of 1.56 kcal mol−1, 3.40
kcal mol−1 Å−1 and 0.26 Debye for energies, forces and
dipoles respectively. This increase in the RMSEs and num-
ber of required data points compared to the previous sys-
tems is an indicator for the chemical complexity of the pro-
tein. Long range dispersion interactions were accounted for
in the same manner as in the case of the n-alkanes.

Previous theoretical studies by Vaden and coworkers61
have found, that the experimental IR spectrum of Ala +

3 is
primarily composed of the contributions of three different
conformers: 1) An elongated Ala +

3 chain with the proton
situated at the N-terminal amine group, 2) a folded chain
protonated at the same site and 3) a elongated form in which
the proton is located a the carbonyl group of the N-terminus
(see Figure 8), which will be referred to as the NH3, folded
and NH2 families henceforth. In order to account for these
effects, ML accelerated AIMD simulations were carried out
for all three conformers at 350 K, the estimated experimen-
tal temperature. The final ML IR spectrum was then ob-
tained by averaging. Figure 8 shows the overall spectrum,
as well as the contributions of the individual conformations
alongside the experimental spectrum.61 Due to the range of
the recorded spectrum and the high congestion of spectral
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Figure 8: IR spectra of the protonated alanine tripeptide.
The top panel shows the experimental spectrum (gray), as
well as the ML spectra based on the BLYP (blue) and BP86
(red) reference methods. The lower panels depict the struc-
tures of the three main Ala +

3 conformers, along with their
respective contributions to the averaged BYLP ML spec-
trum.

bands in the regions of the lower vibrational modes, we re-
strict our discussion only to the stretching modes involving
hydrogens (ca. 2700 cm−1 to 3700 cm−1).

As can be seen, the ML model correctly captures the fea-
tures present in the experimental spectrum. The intense
peak at 3570 cm−1 is due to the O-H stretching vibrations
of the carboxylic acid group of the C-terminus. The posi-
tion as well as the slight asymmetry of this band are almost
perfectly reproduced in the ML spectrum. The region from
3300 cm−1 to 3500 cm−1 is populated by signals arising from
the stretching modes of N-H bonds not participating in hy-
drogen bonds (e.g. NH2 terminus in the NH2 family). The
free N-terminal N-H groups of the NH3 and folded family
give rise to the intense feature at 3420 cm−1. Vibrations
associated with the N-H groups directly involved in hydro-
gen bonds are situated in the regions from 3100 cm−1 to
3300 cm−1, where the ML spectrum captures several ex-
perimental subpeaks. Finally, the region from 2800 cm−1
to 3100 cm−1 corresponds to the C-H stretching vibrations.

Here, the most distinct features are the peak at 2930 cm−1
due to C-H vibrations of the Cα groups and the peak at
2970 cm−1, which is caused by the vibrations of the methyl
group hydrogens. The generally good agreement between
the ML and experimental spectrum and the ability to reli-
ably resolve individual bands is a testament for the efficacy
of the composite ML scheme introduced in this work: The
dipole model is able to describe the charge distribution of
Ala +

3 accurately, while the HDNNP ensemble provides a
reliable approximate PES.

A good perspective on the accuracy of the ML approach
can also be gained by comparing the current ML model
to one based on a different electronic structure reference
method. The top panel of Figure 8 shows the averaged IR
spectrum predicted by a ML model based on the BP86 den-
sity functional next to the previously discussed BLYP spec-
trum. Although one would expect the closely related BLYP
and BP86 methods to give similar results, significant dif-
ferences can be found: Besides a strong blue shift of the
signal caused by the C-terminal COOH group by almost
80 cm−1compared to the BLYP spectrum and experiment,
large deviations are also found in the shape and positions of
the bands corresponding to N-H stretching vibrations. Here,
we investigate the cause of the latter effect by closer exam-
ination of the NH3 conformer. Since the hydrogens of the
N-terminal NH3 group can be involved in a proton transfer
event to the neighboring carbonyl group, different spectra
can arise depending on how often this transfer occurs. The
transfer rate is directly correlated to the energy barrier as-
sociated with the transfer, suggesting that BLYP and BP86
differ significantly in the description of this event, which in
turn leads to differences in the ML spectra. Whether this
phenomenon is caused by the ML approximations or due to
the BP86 method itself, can easily be verified by comput-
ing the proton transfer barriers with both electronic struc-
ture methods and ML models. As can be seen in Figure 9,
the barrier height is indeed underestimated by the BP86
functional compared to BLYP, giving rise to the observed
behavior. At the same time, the ML models faithfully re-
produce the barriers found with their respective electronic
structure methods. This is an excellent demonstration for
the reliability of the ML approach, since the deviation be-
tween ML model and reference method is actually negligi-
ble compared to the differences between two closely related
electronic structure methods. The ease with which ML of
different QM methods can be generated, also suggests a po-
tential use of the ML approach presented here as an efficient
tool for extensively comparing and thus benchmarking elec-
tronic structure methods. Additional ML models can simply
be constructed by recomputing in a parallel fashion the rep-
resentative conformations selected by the sampling scheme
with a different method and subsequent retraining of the
new model (see Section2.2). Possible applications of this
finding will be explored in the future.

The above observations also serve to highlight the ability
of the ML model to automatically infer the chemistry under-
lying the Ala +

3 system. Proton transfer events are essen-
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Figure 9: Reaction barriers associated with the proton
transfer from the N-terminal NH3 group in the NH3 con-
former of Ala +

3 to the neighboring carbonyl. The reaction
coordinate is the distance between the transferred NH3 hy-
drogen and the carbonyl oxygen. The barriers computed
with the electronic structure reference methods are shown
as solid lines colored red for the BYLP method and blue in
case of BP86. The dashed curves correspond to the predic-
tions of the respective ML models, maintaining the above
color scheme.

tial in characterizing the experimental spectrum.60 Driven
by the automated sampling scheme, the composite ML ap-
proach gradually learns to describe these relevant chemical
events, as is nicely demonstrated based on the reaction bar-
rier previously obtained for the NH3 transfer (Figure 9):
Although the description of this event was never explicitly
targeted in the training procedure, the barrier is neverthe-
less reproduced to an excellent degree of accuracy. This feat
is impressive insofar, as the ML model is based on an rela-
tively small set of ab intio computations. These findings also
serve to highlight an important advantage of HDNNPs over
typical classical force fields, which is the ability to describe
bond breaking and formation reactions.

Once again, the excellent computational efficiency of the
composite ML model should be stressed: While the com-
putational chemistry method employed for Ala +

3 is already
considered to be relatively cheap, the speedup gained is still
significant. A single step in the BP86 simulation takes ap-
proximately 1.5 minutes (on a single Intel Xeon E5-2650 v3
CPU). The dynamics of every Ala +

3 conformer are simu-
lated for 55 ps, requiring a total of 110 000 steps. This
amounts to a simulation time of 114 days for full AIMD.
In contrast, using the ML model one can perform the same
simulation in only one hour.

5 Conclusions

Here, we present the first application of machine learning
(ML) techniques to the dynamical simulation of molecular
infrared spectra. We find that our ML approach is able
to predict infrared spectra of various chemical systems in a
highly reliable manner, correctly describing anharmonicities,

as well as dynamic effects, such as proton transfer events.
The excellent accuracy – which is only limited by the under-
lying computational chemistry method – is paired with high
computational efficiency, reducing the overall computation
time by several orders of magnitude. This makes it possi-
ble to treat molecular systems usually beyond the scope of
standard electronic structure methods. As a proof of prin-
ciple, we have simulated n-alkanes containing several hun-
dreds of atoms, as well as the protonated alanine tripetide.
However, even larger systems can in principle be handled
easily by our ML approach. To realize the above simula-
tions, we combined neural network potentials (NNPs) of the
Behler–Parrinello type26 with a newly developed ML model
for molecular dipole moments. This neural network based
model constitutes a new form of charge partitioning scheme
based purely on statistical principles and offers access to
environment dependent atomic charges. For the efficient se-
lection of electronic structure data points, a new adaptive
sampling scheme is introduced. By employing this scheme,
it is possible to incrementally grow ML potentials for specific
applications in a highly automated manner based on only a
small initial seed of reference data. When combined with the
ability of NNPs to include molecular forces in their training
procedure, the amount of electronic structure data points re-
quired to construct a ML potential is reduced tremendously
(e.g. 700 conformations are sufficient for a converged po-
tential of the tripeptide). Furthermore, we demonstrate the
ability of NNPs to model macromolecules based only on the
information contained in small fragments, making it possible
to treat even these systems with highly accurate electronic
structure methods in a divide and conquer fashion. The
above findings are not only restricted to the simulation of
infrared spectra via dynamics simulations, but apply to ML
potentials in a broader sense. The ML approach presented
here thus constitutes an alternative to the currently prevail-
ing trend of fitting potentials to more and more reference
data points. The latter strategy suffers from the disadvan-
tage, that electronic structure reference calculations become
prohibitively expensive for highly accurate methods and/or
large molecular systems. Here we show that these problems
can be overcome through the efficient use of data, bring-
ing the dream of simulating the dynamics of e.g. enzymatic
reactions with highly accurate methods one step closer.
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