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Abstract

by Cong Shi

Photoacoustic tomography (PAT) has attracted much interest in the last decades due to the
excellent contrast, high spatial resolution and good specificity. However, most of the current
research misses one important element, attenuation. Since naturally most of the tissue has
viscoelascity, the energy of the acoustic wave would decrease in the course of propagation.
Failing to accommodate attenuation could degrade the quality of the final image.

This dissertation consists of three articles on medical imaging.

The first two articles focus on PAT taking into account acoustic attenuation. The first aim is to
develop a corresponding mathematical framework. Known research on the attenuated PAT is
sparse. Some fundamental problems, such as the degree of ill-posedness for the inverse problem
and existence of an explicit reconstruction formula, remain open.

In the first article, after summarizing all the known attenuation models, a unified attenuation
model is given. We will analyze the existence and uniqueness for the solution of this attenuation
model, as well as the singular values’ asymptotic behavior of the forward problem. Furthermore,
we also provide a necessary and sufficient condition for finite propagation speed of the wave.

In the second article, we treat the inverse problem, that is, how to reconstruct the initial pressure.
There are some known methods to solve this problem, but there exists no explicit reconstruction
formula. We will introduce novel reconstruction formulas based on the universal backprojection
formula. Numerical results show these formulas work quite well with similar computational
complexity as backprojection formulas.

In the third article, we propose a signal separation technique in sub-cellular scale Optical
Coherence Tomography (OCT). This is useful since in the OCT images the background signal
caused by collagen or other inter-cellular parts is so strong that it covers the useful information
inside the cells. The aim in this project is to remove the influence of this strong, slow-varying
background signal to isolate the useful information. First we study the modeling of the signals
from the background and cell activity, and then we will give an efficient technique utilizing the
Singular Value Decomposition (SVD) to achieve our goal.
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1
Introduction

1.1 Background

1.1.1 Photoacoustic tomography with considering attenuation

Photoacoustic imaging is a biomedical imaging modality based on the photoacoustic effect. In
photoacoustic imaging, non-ionizing laser pulses (such as radio wave or near infrared light) are
delivered into tissues. Some of the delivered energy will be absorbed and converted into heat,
leading to thermo-elastic expansion and thus leads to the propagation of a pressure wave. The
signal is detected by ultrasonic transducers distributed on the boundary of the object, and then
analyzed to produce images. As a result, this image is used for imaging optical properties of the
object, like optical absorption contrast. Figure 1.1 is a schematic illustration showing the basic
principles of photoacoustic imaging. The left figure is the flow chart of PAT process, and the
right figure is a typical PAT mechanism (Reproduced from Zhang, E., J. Laufer, and P.C. Beard,
Appl. Opt. 47(4): 561-77, 2008. )

FIGURE 1.1: Illustration of the PAT setup.

In the standard photoacoustic imaging, see e.g. [Wan09], it is assumed that the medium is non-
attenuating, and the imaging problem consists in visualising the spatially, compactly supported
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2 Chapter 1. Introduction

absorption density function h : R3 Ñ R, appearing as a source term in the wave equation

Bttppt, xq ´∆ppt, xq “ δ1ptqhpxq, t P R, x P R3,

ppt, xq “ 0, t ă 0, x P R3,

from measurements mpt, xq of the pressure p for pt, xq P p0,8qˆBΩ, where BΩ is the boundary
of a compact, convex set Ω containing the support of h.

If the medium is acoustically homogeneous, then the initial pressure wave could be extracted
from the measurements of the pressure by inverting a spherical Radon transform. In this
regard, we refer to the review papers [KK08; Kuc11]. In non-attenuating media, there are some
theoretical and numerical results for the reconstruction. Palamodov [Pal10] has proved the
singular values of the spherical mean operator decays polynomially with the order ´1

3 , which
could provide a theoretical basis for the explicit reconstruction formula. Also, there are some
known reconstruction methods, for example, filtered back-projection formulas and time reversal.

A challenging problem in photoacoustic imaging is to take into account the acoustic attenuation.
Until now there is no ill-posedness analysis, and also no explicit reconstruction formula in the
attenuating medium. However, using time reversal, one can still reconstruct the initial pressure.
In fact, in recent works, Ammari et al. [Amm+13] used a thermo-viscous law model for the
attenuation losses and investigated reconstructing sources in attenuating media by modifying
the time reversal process as a first order correction of the attenuation effect. Kowar [Kow14]
concerned time reversal in photoacoustic tomography of dissipative media that are similar to
water. There are also some literatures which use power laws as attenuation compensation and
applied time reversal on these kinds of models (see e.g. [CT10; TZC10]).

In this thesis, we developed a mathematical framework for photoacoustic imaging in attenuating
media, and provide the ill-posedness analysis for the corresponding inverse problem and explicit
reconstruction formulas for the initial pressure. In order to introduce our results, in the next
sections we will give the background knowledge of inverse problems, the eigenvalue decay
results of integral operators, the classical filtered backprojection formulas, and some tools we use
to solve these problems.

1.1.2 Ill-posedness of inverse problem

A comprehensive theory to ill-posed problems in Hilbert spaces has been introduced, e.g. in
[EHN96]. Let X and Y be Hilbert spaces and T : X Ñ Y be a bounded linear operator.
Considering the equation

Th “ g, (1.1)

where h P X and g P Y . The direct problem or forward problem is to find g from h, while for
given data g solving the equation for h is referred to as the inverse problem. In order to analyze
the inverse problem, we first introduce Hadamard’s definition of well-posedness, which includes
three criteria:

• Existance: For all admissible data g, there exists a function h such that Th “ g, i.e.
g P ranpT q.

• Uniqueness: For all admissible data g, the solution h is unique, i.e. operator T is injective.
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• Continuity: The solution h depends continuously on the data g, i.e. the operator T´1 is
bounded.

Here ranpT q denotes the range of operator T . For problems with a physical background, the
direct problems are usually well-posed in the sense of Hadamard. However, the inverse problem
could be ill-posed. The degree of ill-posedness is measured by the decay of the singular values
of operator T . Let T be an integral operator of the form

T : L2pΩq Ñ L2pΩq

xÑ pThqpxq :“
ż

Ω
F px, yqhpyqdy,

where Ω P Rn is compact and Jordan-measurable with positive measure, and F px, yq is the
integral kernel corresponding to operator T . Let T : be the Moore-Penrose (generalized) inverse
[EHN96] of T and pσn; vn, unq be a singular system for the compact linear operator T . Then for
g P DpT :q which denotes the domain of T : we have

T :g “
8
ÿ

n“1

xg, uny

σn
vn. (1.2)

In practice, the data g will contain some noise. (1.2) shows how the noise influences the solution
T :g. Namely, the component corresponding to un in the noise will be amplified by a factor of
σ´1
n , and this factor can grow without bound. For example, let gδ,n :“ g ` δun be the measured

data with noises, then }gδ,n ´ g}L2 “ δ, but due to (1.2),

T :g ´ T :gδ,n “
xδun, uny

σn
vn,

and therefore,

}T :g ´ T :gδ,n}L2 “
δ

σn
.

Hence, the faster the singular values decay, the more severe instability in (1.2) becomes. This
makes it possible to quantify the degree of ill-posedness of Th “ g.

• Mildly(moderately) ill-posed: if σn “ Opn´aq holds for some a P R`.

• severely ill-posed: if σn “ Ope´bn
a
q holds for some a, b P R`.

Roughly, the rate σn “ Opn´
1
2 q holds in general for computerized tomography in two dimen-

sions, so the corresponding inverse problems are moderately ill-posed. However, ”incomplete
data problems” in computerized tomography, where X-ray measurements are available only for
some directions, are severely ill-posed [EHN96].

The precondition of ill-posedness is that the forward operator T is compact. Here we introduce
an important definition: Hilbert-Schmidt operator, which is a bounded operator T on a Hilbert
space H with finite Hilbert-Schmidt norm

}T }2HS “ trpT ˚T q :“
ÿ

nPI

}Tun}
2,
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where }} is the norm of space H and tr is the trace of a nonnegative self-adjoint operator. Hilbert-
Schmidt operators are compact. An important class of examples is provided by Hilbert-Schmidt
integral operator. Let Ω be a domain in n-dimensional Euclidean space Rn, a Hilbert-Schmidt
kernel is a function F : Ωˆ Ω Ñ C with

ż

Ω

ż

Ω
|F px, yq|2 dx dy ă 8,

and associated Hilbert-Schmidt integral operator is the operator T : L2pΩ;Cq Ñ L2pΩ;Cq
given by

pThqpxq “

ż

Ω
F px, yqhpyqdy, x P Ω.

Then T is a Hilbert-Schmidt operator with Hilbert-Schmidt norm

}T }HS “ }F }L2 .

1.1.3 Eigenvalues of integral operators

Let T be an integral operator with kernel F . The essential thing is to find the asymptotic behavior
of its eigenvalues. In this section we will introduce some results in the literature for the integral
operators with finite differentiable kernel and weak singular kernel.

Integral operator with finite differentiable kernel

If F px, yq is a positive definite Hermitian kernel such that the partial derivative Bp

BypF px, yq exists
and is continuous on the square r0, 1s2 with a positive integer p, then the eigenvalues of integral
operator T have the following asymptotic behavior,

λjpT q “ opj´pp`1qq as j Ñ8. (1.3)

Integral operator with weak singular kernel

For 0 ă η ă n with the space dimension n. If F px, yq is a weak singular kernel, that is,

F px, yq “ φpx, yq ¨ |x´ y|´η (1.4)

where φ P L8pRn ˆRnq. There are several results concerning the eigenvalues of the operator
T :

• If n
2 ă η ă n, then [Kos74] shows that the eigenvalues of the operator T admit the

estimate
λjpT q “ Opj´p1´

η
n
qq. (1.5)

• If η “ n{2, König proved in [Kön80] that, the eigenvalues λj have order

λjpT q “ Opj´
1
2 logpj ` 1qq. (1.6)
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• If 0 ă η ă n{2, it is shown in [CJK91] that the operator T has square-summable
eigenvalues.

All of the above results cannot be improved in general.

1.1.4 Tempered distributions

The Schwartz space is the function space

SpRnq “ tf P C8pRnq : }f}α,β ă 8,@α, β P Zn`u,

where α, β are multi-indices. C8pRnq is the set of smooth functions from Rn to C, and

}f}α,β “ sup
xPRn

|xαDβfpxq|.

The space of tempered distributions, usually denotes by S 1 is defined as the dual of the Schwartz
space. More explicitly, a linear functional T : SpRnq Ñ C is called a tempered distribution if

• T pφ1 ` φ2q “ T pφ1q ` T pφ2q, for all φ1, φ2 P S,

• T paφq “ āT pφq, for all φ P S, and a P C,

• For φj , φ P S , if φj Ñ φ in S , then Tφj Ñ Tφ. Convergence in S means that the supports
of φj are contained in a compact set, and ∇kφj Ñ ∇kφ for every n-tuple k.

The Dirac delta δ is a widely-used distribution defined by the equation 〈δ, φ〉 “ φp0q by assuming
that φ is a Schwartz function. We have the following properties of δ:

• 〈δ1, φ〉 “ ´φ1p0q.

• δpaxq “ δpxq
|a| .

•
ş8

´8
fptqδpt´ T qdt “ fpT q.

Assume the one-dimensional inverse Fourier-transform is given by

ϕ̌ptq “
1
?

2π

8
ż

ω“´8

e´iωtϕpωqdω.

Let φ P SpRq and ψ P SpR3q. The Fourier-transform F r¨s : S 1 Ñ S 1 on the space of tempered
distributions is defined by

〈F rus , φb ψ〉S1,S “
〈
u, φ̌b ψ

〉
S1,S

.

Another important definition is the regular distribution. Let f be locally integrable on Rn, that is,
on every compact set U Ď Rn, we have f P L1pU ;Cq. Then Tf defined by

Tfφ “

ż

Rn
fpxqφpxqdx
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is a regular distribution on Rn, and we can identify Tf with f .

1.1.5 Pseudo-differential operator

In order to analyze the spectrum of the attenuated photoacoustic operator, we will make use of
pseudo-differential operators and the corresponding results about their spectrum. The materials
here follow Shubin’s book [Shu87]. Pseudo-differential operators could be interpreted as a
generalization of differential operators. Differential operators are local in the sense that one only
needs the value of a function in a neighbourhood of a point to determine the effect of the operator.
Pseudo-differential operators are pseudo-local, which means informally that when applied to a
distribution they do not create a singularity at points where the distribution is already smooth.
Let Dα “ p´iB1q

α1 ¨ ¨ ¨ p´iBnqαn , here α “ pα1, ...αnq is a multi-index. Consider x P Rn. A
pseudo-differential operator P px,Dq on Rn is an operator whose value on the function upxq is
the function of x:

P px,Dqupxq “
1

p2πqn

ż

Rn
eix¨ξapx, ξqûpξqdξ,

where ûpξq is the Fourier transform of u and the symbol apx, ξq in the integrand belongs to a
certain symbol class. For instance, if apx, ξq is an infinitely differentiable function on Rn ˆRn

with the property
|Dα

ξD
β
xapx, ξq| ď Cα,βp1` |ξ|qm´|α|

for all x, ξ P Rn, all multi-indices α, β, some constants Cα,β and some real number m, then
a belongs to the symbol class Sm1,0 of Hörmander, and the corresponding operator P px,Dq is
called a pseudo-differential operator of order m and belongs to the class Ψm

1,0.

A pseudo-differential operator of order m is called elliptic if there exist positive constants
R,C1, C2 such that its symbol satisfies

C1|ξ|
m ď |apx, ξq| ď C2|ξ|

m for all |ξ| ě R.

Let A be a self-adjoint elliptic differential operator of order m ą 0 on a closed n-dimensional
manifold M and ampx, ξq be the principle symbol of the operator A. Assume that ampx, ξq ą 0
when ξ ‰ 0. Then the eigenvalues of A have the following asymptotic relation

λj „ V p1q´m{njm{n, j Ñ `8,

for V ptq “ p2πq´n
ş

ampx,ξqăt
dxdξ.

1.1.6 Stationary phase method

There is a very useful analytical tool which allows us to find asymptotic expansions for integrals
that can not, in many cases, be calculated in any other way. This tool is known as stationary
phase method. The descriptions here mostly follow Section 7.7 of [H0̈3].
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The general objective of this method is to find an asymptotic expression as τ Ñ `8 for integrals
of the form

ż

Rn
eiτfpωqgpωqdω.

where f, g are infinitely smooth complex-valued functions, and =m f ě 0. The exact behaviour
of the integral depends on the presence of the points ω P Rn where ∇f “ =m f “ 0.

When no such points are present in Rn, the integral decreases faster than Opτ´kq for any k ą 0,
as described in [H0̈3, Theorem 7.7.1]. More precisely, let f, g P C8pRn;Cq with

• supp g is compact,

• =m fpωq ě 0.

• ∇fpωq and =m fpωq could not be 0 at same frequency ω.

Then there exists a constant C1 ą 0 such that for all l P N and all τ ě 0,

τ l
ˇ

ˇ

ˇ

ˇ

ż

Rn
eiτfpωqgpωq dω

ˇ

ˇ

ˇ

ˇ

ďC1

l
ÿ

α“0
sup
ωPRn

|dαgpωq| p|∇fpωq|2 ` =m fpωqqα{2´l.

(1.7)

On the other hand, when there are points where ∇f “ =m f “ 0, the main contributions to
the integral come from these points. In other words, if we consider fpωq as a phase function,
then these points are exactly where the phase is real and stationary, hence the name "stationary
phase method". The method also describes the contribution of such stationary points in the
non-degenerate case. Under suitable substitutions, we can assume that the stationary point is
ω “ p0, 0, . . . , 0q, and that the phase function fpωq is equal to xAω, ωy{2 whereA is the Hessian
matrix of f at the stationary point. More explicitly, as mentioned in [[H0̈3], Theorem 7.7.3], let
A be a symmetric non-degenerate matrix with

• =mA ě 0,

• fpωq “ xAω, ωy{2, so that ∇fp0q “ =m fp0q “ 0.

• g P C80 pR
n;Cq.

Then for all l P N, we have
ˇ

ˇ

ˇ

ˇ

ˇ

ż

Rn
eiτfpωqgpωqdω ´

ˆ

det τA2πi

˙´1{2
Tlpωq

ˇ

ˇ

ˇ

ˇ

ˇ

ď Cp}A´1}{τqn{2`l
ÿ

|α|ď2l`n{2`1
}dαg}L2pRnq,

(1.8)

where Tlpωq is a polynomial of ω´1 with degree l ´ 1, and its coefficients are determined by
derivatives of g at ω “ p0, 0, . . . , 0q of order up to 2l ´ 2.
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1.1.7 Reconstruction in photoacoustic tomography

Here we will address the procedures of actual reconstruction of the source term hpxq from the
datammeasured by transducers. We assume here that the sound speed is constant and normalized
to be equal to 1.

In constant speed case, there are different reconstruction methods, like explicit reconstruction
formulas, Fourier expansion methods, filtered backprojection algorithms, series solutions for
arbitrary geometries and time reversal methods, which we refer to the review papers [KK08;
Kuc11]. It is well known that different analytic inversion formulas in photoacoustic tomography
can behave differently in numerical implementation, for example, in terms of their stability.
However, numerical implementation seems to show that the analytic (backprojection type)
formulas work quite well, although some of them are not equivalent. Here we mainly consider
the filtered backprojection type formulas for the inversion of high dimensional Radon transform
in Rn with n ě 1.

To illustrate the method, we use the filtered backprojection formula of classical Radon transform
in R2 as an example. For a function h : R2 Ñ R, if the values of the integrals of h along lines
are given, then the Radon Transform of h is given by

Rrhspt, θq :“
ż

Lt,θ

hds “

ż 8

s“´8
h

ˆ

t

ˆ

cos θ
sin θ

˙

` s

ˆ

´ sin θ
cos θ

˙˙

ds,

where t P R and θ P r0, 2πq and

Lt,θ “

"ˆ

t

ˆ

cos θ
sin θ

˙

` s

ˆ

´ sin θ
cos θ

˙˙

: s P R
*

.

Then hpx1, x2q could be reconstructed from Rrhs by

h

ˆ

x1
x2

˙

“
1
2R

˚
`

F´1
ωÑtr|ω|FtÑωrRrhsspω, θqs

˘

ˆ

x1
x2

˙

.

where R˚ is the adjoint operator of the Radon transform R, and F denotes the one-dimensional
Fourier transform. The term |ω| could be interpreted as a filtering of the data. There are different
ways to choose the filter which we denote by E. Then the explicit reconstruction formula of h
from its Radon transform data could be written as

h “ R˚E pRrhsq . (1.9)

In classical PAT, the forward operator maps the initial pressure to the measurements is given by
the spherical mean operator, which could be seen as a generalization of Radon transform to the
families of spheres in R3. Similar to above, there are also some filtered backprojection formulas
in this case.

In non-attenuating media, the most typical type of filtered backprojection formula for reconstruct-
ing h is known as the universal (meaning applicable for a series of measurement geometries)
backprojection algorithm. Such formulas are usually suitable for at least three imaging geome-
tries: planar, spherical, and cylindrical surfaces. A widely-used formula of this type is due to Xu
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& Wang in [XW05], which is given as follows:

hpxq “
2

Ω0

ż

ξPΓ

mp|ξ ´ x|, ξq ´ |ξ ´ x|Bm
Bt p|ξ ´ x|, ξq

|ξ ´ x|2

ˆ

nξ ¨
ξ ´ x
|ξ ´ x|

˙

dspΓq, (1.10)

where Ω0 is 2π for a planar geometry and 4π for cylindrical and spherical geometries, nξ is the
outer normal vector for the measurement geometry Γ.

In 2007, Burgholzer and his coworkers in [Bur+07b] gave a universal back projection formula in
R2 based on Wang’s formula in R3:

hpxq “ ´
4

Ω0

ż

C

ż 8

|ξ´x|

˜

pBtpt
´1mqqpt, ξq

a

t2 ´ |ξ ´ x|2
dt
¸

nξ ¨ pξ ´ xq dC, (1.11)

where Ω0 is 2π for a planar detection surface and 4π for a circular cylinder, nξ is the outer
normal vector for the surface Γ.

1.1.8 Optical coherence tomography

Optical coherence tomography (OCT) is a medical imaging technique that uses light waves to
take micrometer-resolution, three-dimensional images from biological tissue. Optical coherence
tomography is based on low-coherence interferometry, typically employing near-infrared light.
The use of relatively long wavelength light allows it to penetrate into the scattering medium.
It works by measuring the time delay and the intensity of backscattered or back reflected light
coming from the biological tissue.

The research on OCT has been growing very fast for the last two decades. We refer the reader,
for instance, to [EMS15; Hua+91; Fer96; Fer+03; Pod05; Sch99; TW05].

This imaging method has been continuously improved in terms of speed, resolution and sensitivity.
It has also seen a variety of extensions aiming to assess functional aspects of the tissue in addition
to morphology. One of these approaches is Doppler OCT (also called ODT), which aims at
visualizing movements in the tissues (for example, blood flows). ODT is based on the identical
optical design as OCT, but additional signal processing is used to extract information encoded
in the carrier frequency of the interferogram. When Doppler OCT is used to observe cell-scale
details of a tissue, the highly-scattering collagen usually dominates the signal, obscuring the
intra-cellular details. A challenging problem is to remove the influence of the collagen in order
to have a better imaging inside the cells. For extracting useful and meaningful information from
the ODT Signal, there has been some studies, see [Ape+16; Lee+12; Joo+10; LSD09].

We mention here a few methods currently in use:

• Using the autocorrelation function to calculate the mean-squared displacement (MSD) and
time-averaged displacement (TAD) of scattering structures. See, for example, [Joo+10;
LSD09].

• Stochastic method. Similar to above, relating the autocorrelation function of the signal with
some parameters concerning movement of particles. Here those parameters are estimated
using a fitting algorithm, instead of being calculated directly. See [Lee+12].
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• Standard deviation. Taking standard deviations of the signal to disregard the stationary part
of the signal, and obtain information on the intensity of particle movement. See [Ape+16].
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1.2 Contributions

The thesis is organized in a cumulative way, containing manuscripts and publications written in
the last few years. The aim of this chapter is to introduce the most important ideas, concepts, and
the contributions of the thesis.

1.2.1 Eigenvalue analysis of attenuated photoacoustic operator

In inverse problem, one of the fundamental issues is to analyze the ill-posedness, which could
provide theoretical direction for solving the inverse problem. In general, there are two ways to
analyze the ill-posedness, one is to do the stability analysis, and the other one is to study the
eigenvalue asymptotic behavior of the forward operator. In a non-attenuating medium, the ill-
posedness has been given, which is the the eigenvalue decay of the spherical mean operator, see
[Pal10]. In attenuating media, we have proved that the eigenvalues decay differently according to
the degree of attenuation in the medium.

We propose a general attenuation which contains all the known models, for example, power
law[Sza94], Szabo[KS12], Nachman-Smith-Waag [NSW90], Thermo viscous[Kin+00, Chapter
8.2], and Kowar-Scherzer-Bonnefond model[KSB11]. In this thesis, the propagation of the waves
is described by the attenuated wave equation

Aκppt, xq ´∆ppt, xq “ δ1ptqhpxq, t P R, x P R3,

ppt, xq “ 0, t ă 0, x P R3,
(1.12)

where Aκ is the pseudo-differential operator defined in frequency domain by:

Ǎκppω, xq “ ´κ
2pωqp̌pω, xq, ω P R, x P R3, (1.13)

for some attenuation coefficient κ : RÑ C which admits a solution of (1.12). Here f̌ denotes
the one-dimensional inverse Fourier transform of f with respect to time t. The attenuated
photoacoustic imaging problem consists in estimating h from measurements m of p on BΩ over
time.

Attenuation can be understood as the physical phenomenon that certain frequency components
of acoustic waves are attenuated more rapidly over time. Mathematically this is encoded in
the function κ defining the pseudo-differential operator Aκ. A physically and mathematically
meaningful κ has to satisfy the following properties (see [ESS16]):
Definition 1.2.1 We call a non-zero function κ P C8pR;Hq, where H “ tz P C : =m z ą 0u
denotes the upper half complex plane andH its closure in C, an attenuation coefficient if

1. all the derivatives of κ are polynomially bounded.

2. There exists a holomorphic continuation κ̃ : HÑ H of κ on the upper half plane.

3. κp´ωq “ ´κpωq for all ω P R.



12 Chapter 1. Introduction

4. There exists some constant c ą 0 such that the holomorphic extension κ̃ of the attenuation
coefficient κ satisfies

=mpκ̃pzq ´ z
c q ě 0 for every z P H.

The formal difference between (1.12) and the standard wave equation is that the second time
derivative operator Btt is replaced by a pseudo-differential operator Aκ. The different known
models manifest as different κpωq. Let the sound speed c be 1, then

• Standard photoacoustic model: κpωq “ ω.

• Power law model: κpωq “ ω ` iαp´iωqγ for γ P p0, 1q and α ą 0.

• Modified Szabo model: κpωq “
a

ω2 ` 2α0iω|ω|γ for γ P p0, 1q and α0 ą 0.

• Thermo viscous model: κpωq “
ω

?
1´ iτω

for τ ą 0.

• Kowar-Scherzer-Bonnefond model: κpωq “ ω

˜

1` α
a

1` p´iτωqγ

¸

for γ P p0, 1q,

α ą 0 and τ ą 0.

• Nachman-Smith-Waag model: κpωq “ ω

c

1´ iτ̃ω
1´ iτω for c0 ą 0, τ ą 0 and τ̃ P p0, τq.

According to the different asymptotic behaviors of κpωq, the known models are grouped into two
classes,

• Strong attenuation: The attenuation increases sufficiently fast as the frequency increases.
For some constants κ0 ą 0, β ą 0, ω0 ě 0,

=m κpωq ě κ0|ω|
β for all ω P R with |ω| ě ω0 (1.14)

• Weak attenuation: The attenuation decreases sufficiently fast as the frequency increases.
Let κpωq “ ω

c ` iκ8 ` κ˚pωq, ω P R, κ˚ P C8pRq X L2pRq.

The relation between them could be seen clearly in Figure 1.2.

w

ImHkHwLL

ImHkHwLLÆ+•

ImHkHwLLÆC

ImHkHwLLÆ0

FIGURE 1.2: Classification of attenuation. Red curve corresponds to the strong
attenuation, while green and blue curve corresponds to the weak attenuation.



Chapter 1. Introduction 13

Define the integrated photoacoustic operator P̌κ : h ÞÑ
şt
´8

ppτ, ξqdτ , which is given by

P̌κ : L2pΩεq Ñ L2pRˆ BΩq, P̌κhpω, ξq “
1

4π
?

2π

ż

Ωε

eiκpωq|ξ´y|

|ξ ´ y|
hpyq dy. (1.15)

Then, P̌˚κ P̌κ is a self-adjoint operator with the kernel Fκpx, yq given by

Fκpx, yq “
1

32π3

ż 8

´8

ż

BΩ

eiκpωq|ξ´y|´iκpωq|ξ´x|

|ξ ´ y||ξ ´ x|
dSpξqdω. (1.16)

Additionally it is natural to impose that the solution of attenuated wave equation propagates with
finite speed. We say that the solution p P S 1pRˆR3q of the (1.12) propagates with finite speed
c ą 0 if

supp p Ă tpt, xq P RˆR3 | |x| ď ct`Ru

whenever supph Ă BRp0q.

The aim is to get the eigenvalue decay of the operator P̌˚κ P̌κ. We have proved some basic results
for the forward problem.

• The attenuated wave equation

〈Aκp, ϑ〉S1,S ` 〈∆p, ϑ〉S1,S “ ´

ż

R3
hpxqBtϑp0, xqdx, ϑ P SpRˆR3q, (1.17)

where the Laplace operator ∆ : S 1pRˆR3q Ñ S 1pRˆR3q is defined by

〈∆u, φb ψ〉S1,S “ 〈u, φb p∆ψq〉S1,S for all φ P SpRq, ψ P SpR3q,

has a unique solution p P S 1pRˆR3q with supp p Ă r0,8q ˆR3.

• Considering the causal initial condition, the attenuation wave equation (1.12) propagates
with finite speed if and only if limωÑ8

κ̃piωq
iω ą 0. The wave propagates with the speed

c “ limωÑ8
iω

κ̃piωq . The solution p of the attenuated wave equation (1.17) propagates with
finite speed c ą 0 if the holomorphic extension κ̃ of the attenuation coefficient κ fulfils

=mpκ̃pzq ´ z
c q ě 0 for every z P H.

Conversely, if there exists a sequence pz`q8`“1 Ă H with the properties that

– there exists a parameter η1 ą 0 such that =mpz`q ě η1 for all ` P N,

– we have |z`| Ñ 8 for `Ñ8, and

– there exists a parameter δ ą 0 such that

=mpκ̃pz`q ´ z`
c q ď ´δ|z`| for all ` P N,

then p propagates faster than with speed c.
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• The kernel Fκpx, yq P L2pΩε ˆ Ωεq, which deduces that the operator P̌˚κ P̌κ : L2pΩεq Ñ

L2pΩεq is a Hilbert-Schmidt operator and thus compact.

Strong attenuation medium

When the object is in a strong attenuation medium, the kernel Fκpx, yq is infinitely smooth.
The challenge problem is that the known eigenvalue results are only for the integral operator
with finite differentiable kernel. Furthermore, the known results could only get the polynomial
eigenvalue decay at the most, as mentioned in [CH99].

One contribution in this thesis is that we give a criterion for a general integral operator with
smooth kernel to have exponentially fast decaying eigenvalues through an upper bound on the
derivatives of the kernel, see Appendix in Chapter 2.

To get this exponential decay, we give a upper bound for the higher order directional derivatives
of the kernel Fκpx, yq.

1
j! sup

x,yPΩε
sup
vPS2

ˇ

ˇ

ˇ

ˇ

Bj

Bsj

ˇ

ˇ

ˇ

ˇ

s“0
Fκpx, y ` svq

ˇ

ˇ

ˇ

ˇ

ď Cj
CpN

β
´1qj for all j P N0, (1.18)

for β P p0, N s.

Finally, we proved the eigenvalues pλnpP̌˚κ P̌κqqnPN of P̌˚κ P̌κ in decreasing order fulfil

λnpP̌˚κ P̌κq ď Cn 3
?
n exp

´

´cn
β

3N

¯

for all n P N. (1.19)

In inverse problem, this exponential eigenvalue decay of the forward operator indicates that the
corresponding inverse problem is severely ill-posed.

Weak attenuation medium

When the object is in a weak attenuation medium, the kernel Fκpx, yq has weak singularity with
order 1. However, according to the results mentioned in the background section, when the order
of singularity of the kernel is between 0 and n{2 where n is the dimension of space, we only
know that the corresponding operator has square-summable eigenvalues, but this will not help us
to find the asymptotic behavior of eigenvalues. Even when the order of singulary changes, the
known results could only provide the upper bound of eigenvalue decay, while we also need a
lower bound of eigenvalue decay. In Shubin’s book [Shu87], he gave a theorem for both the upper
and lower bounds of the eigenvalue decay of a pseudo-differential operator. This is the only tool
we could use, but the obstacle is that the upper bounds of every order’s derivatives of the kernel
is needed for proving that the attenuated photoacoustic operator is a pseudo-differential operator.

To get around this obstacle, we divide the attenuated photoacoustic operator into the sum of two
operators, one is the standard photoacoustic operator, another one is a perturbation caused by
the attenuation. One contribution in the thesis is that for a standard photoacoustic operator we
proved it is an elliptic pseudo-differential operator of order ´2 by using the stationary phase
method to find the asymptotic expansion of its symbol.
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Another contribution is that we proved that the eigenvalue of the perturbation operator decays
faster than the standard photoacoustic operator using Mercer’s theorem.

Finally, we proved the eigenvalues pλnpP̌˚κ P̌κqqnPN of P̌˚κ P̌κ in decreasing order fulfil

C1n
´ 2

3 ď λnpP̌˚κ P̌κq ď C2n
´ 2

3 for all n P N, (1.20)

for some constants C1, C2 ą 0.

This polynomial eigenvalue decay of the forward operator indicates that the corresponding inverse
problem is mildly ill-posed.

1.2.2 Reconstruction formulas

In the standard photoacoustic imaging, there are some reconstruction formulas, for example, in
[And88; XFW02; HSZ09], either in frequency domain or in time domain for planar measurement
geometry or closed measurement geometry.

Practically, if people consider attenuation in the medium, in the literatures only time reversal has
been used, like [AK07; Kun07]. In Chapter 3 we give explicit reconstruction formulas for initial
pressure h in the attenuating media from the measurement pa on a universal geometry in Rd with
d “ 2, 3. Let qa be defined as qapt, ξq “

şt
´8

papτ, ξqdτ , and W be the operator which maps h
to p, where p is the ideal data in non-attenuating media.

• No attenuation:
hpxq “ W´1 rpas ,

where W´1 r¨s is the universal back-projection operator.

• Constant attenuation: κpωq “ ω ` κ8i,

hpxq “ W´1
„

B

Bt
e´κ8tqapt, ξq



.

• General weak attenuation:

hpxq “ W´1
„

B

Bt
pI ` T q´1e´κ8tqapt, ξq



,

where T is an integral operator with the kernel F
“

eiκ˚pωqτ ´ 1
‰

pt´ τq.

Properties of operator T :

• T is only related to κpωq.

• T is not related to the dimension of space.

• T is not related to the shape of measurement geometry.
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1.2.3 Dynamic optical coherence tomography

Since the cell membrane and the collagen dominate the signal in the imaging of optical coherence
tomography, the aim is to get the information of the metabolic activity inside cells. The first
problem is to relate the movements of different particles from collagen and metabolic activity
and their signal. Based on a single particle model, we build a new multi-particle model. Another
contribution is that we gave a theoretical basis for applying the singular value decomposition
algorithm on the total optical coherence tomography signal, then the numerical experiments
validated this algorithm.

By dividing the particles into collagen particles and the particles from metabolic activities, then
the total OCT signal from one pixel contains the signal from these two parts Γc and Γm. Each
part is sum of the signal from single particles in a domain determined by this pixel and the
coherence length. For j P tc,mu, the corresponding signal could be written by

ΓjODT px, tq “
ż 8

´8

ż L

´L
S0pωqKjpx, ωqpjpx, z, tqe

2πωip 2n̄
c
zqdω dz, (1.21)

where pj is the density function, S0,Kj , n̄ are coefficients (see details in Chapter 4),

We construct four operators ScS˚c , SmS˚c , ScS˚m, SmS˚m using the signal ΓcODT , ΓmODT as the
corresponding kernel. Through the new multi-particle model, the kernel of the operator ΓcΓc is
variable separation form, which deduces that ΓcΓc only has one singular value. Physically, the
the collagen signal is much larger than the signal from metabolic activities. This helps to prove
that the singular value of collagen operator is much larger than the other singular values. Then
the singular values have the following relation.

• λpScS
˚
c q " λipSmS

˚
mq for any i.

• λ1pSmS
˚
mq ě λipSmS

˚
mq for i ą 1.

• λipScS
˚
mq ď

a

λpScS˚c qλ1pSmS˚mq for any i.

Therefore, if we apply the singular value decomposition on the total signal and remove the bigger
singular values, the remaining part corresponds to the signal from the metabolic activities.
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1.3 Outline

The thesis consists of 4 chapters, essentially divided into 3 parts.

Part 1 gives the introduction to the field of photoacoustic imaging with considering attenuation,
including a short summary of some mathematical methods that are fundamental in this work.
Moreover, it aims to give an overview about the main contributions included in this thesis.

Part 2 deals with the photoacoustic tomography with considering attenuation. It consists of
Chapters 2 and 3.

Chapter 2 addresses the uniqueness and existence of the solution in the attenuated wave equation,
and the eigenvalue results for the attenuated photoacoustic operator. In strong attenuating media,
the eigenvalue decays exponentially, while in the weak attenuating media, the eigenvalue decays
polynomially.

Chapter 3 is devoted to the explicit reconstruction formulas for the source term in R2 and R3,
which are based on the universal back-projection formula.

Part 3 deals with the dynamic optical coherence tomography. It consists of Chapter 4.

Chapter 4 aims to present signal from the metabolic activity inside the cells. A dynamic multi-
particle model is given for the signals from both metabolic activity and the collagen. Then an
algorithm based on singular valued decomposition (SVD) is provided. At the end we present
some numerical experiments to verify the algorithm.

Finally in Chapter 5 we sum up the thesis in discussion and outlook, where we also discuss some
open questions related to the subject matter.

In the Appendix. a German version of the thesis’s abstract can be found, as well as a CV including
the author’s publications and conference talks (CV is not attached in the formal submission).

All the chapters of the thesis are self-contained and can be read independently. Thesis mainly
contains the results presented in the following papers.

• Singular values of the attenuated photoacoustic imaging operators, which is a joint work
with Otmar Scherzer and Peter Elbau. It is accepted for publication by the journal of
differential equations.

• Reconstruction formulas for Photoacoustic Imaging in Attenuating Media, which is a joint
work with Otmar Scherzer. It has been submitted and is currently under review.

• A signal separation technique for sub-cellular imaging using dynamic optical coherence
tomography, which is a joint work with Habib Ammari and Francisco Romero, and it is
accepted for publication by the journal SIAM Multiscale Modelling Simulation.

All the articles are submitted with alphabetically ordered authors.
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Abstract

We analyse the ill-posedness of the photoacoustic imaging problem in the case of an attenuating
medium. To this end, we introduce an attenuated photoacoustic operator and determine the
asymptotic behaviour of its singular values. Dividing the known attenuation models into strong
and weak attenuation classes, we show that for strong attenuation, the singular values of the
attenuated photoacoustic operator decay exponentially, and in the weak attenuation case the
singular values of the attenuated photoacoustic operator decay with the same rate as the singular
values of the non-attenuated photoacoustic operator.

2.1 Introduction

In standard photoacoustic imaging, see e.g. [Wan09], it is assumed that the medium is non-
attenuating, and the imaging problem consists in visualising the spatially, compactly supported
absorption density function h : R3 Ñ R, appearing as a source term in the wave equation

Bttppt, xq ´∆ppt, xq “ δ1ptqhpxq, t P R, x P R3,

ppt, xq “ 0, t ă 0, x P R3,
(2.1)
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from measurements mpt, xq of the pressure p for pt, xq P p0,8qˆBΩ, where BΩ is the boundary
of a compact, convex set Ω containing the support of h.

In this paper, we consider photoacoustic imaging in attenuating media, where the propagation of
the waves is described by the attenuated wave equation

Aκppt, xq ´∆ppt, xq “ δ1ptqhpxq, t P R, x P R3,

ppt, xq “ 0, t ă 0, x P R3,
(2.2)

where Aκ is the pseudo-differential operator defined in frequency domain by:

Ǎκppω, xq “ ´κ
2pωqp̌pω, xq, ω P R, x P R3, (2.3)

for some attenuation coefficient κ : RÑ C which admits a solution of (2.2). Here f̌ denotes the
one-dimensional inverse Fourier transform of f with respect to time t, that is, for f P L1pRq:

f̌pωq “
1
?

2π

ż 8

´8

fptqeiωt dt.

The attenuated photoacoustic imaging problem consists in estimating h from measurements m
of p on BΩ over time. The formal difference between (2.2) and (2.1) is that the second time
derivative operator Btt is replaced by a pseudo-differential operator Aκ. We emphasise that
standard photoacoustic imaging corresponds to κ2pωq “ ω2.

We review below, see (2.18), that in frequency domain the solution of (2.2) is given by

p̌pω;xq “ ´
ż

R3

iω
4π
?

2π
eiκpωq|x´y|

|x´ y|
hpyq dy.

We associate with this solution the time-integrated photoacoustic operator in frequency domain:

P̌κhpω, xq “
1

4π
?

2π

ż

R3

eiκpωq|x´y|

|x´ y|
hpyq dy.

One goal of this paper is to characterise the degree of ill-posedness of the problem of inverting
the time-integrated photoacoustic operator by estimating the decay rate of its singular values. We
mention however, that although the attenuated photoacoustic operator, giving the solution p̌, is
related to the integrated photoacoustic operator by just time-differentiation, the singular values
and functions of the photoacoustic operator have not been characterized so far.

In this paper, we are identifying two classes of attenuation models (classes of functions κ), which
correspond to weakly and strongly attenuating media. We prove that for weakly attenuating
media the singular values ppλnpP̌˚κ P̌κqq

1
2 q8n“1 decay equivalently to n´

1
3 , as in the standard

photoacoustic imaging case, where this result has been proven in [Pal10]. For the strongly
attenuating models, the singular values are decaying exponentially, which is proven by using that
in this case the operator P̌˚κ P̌κ is an integral operator with smooth kernel.
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2.2 The Attenuated Wave Equation

To model the wave propagation in an attenuated medium, we imitate the wave equation for the
electric field E : RˆR3 Ñ R3 in an isotropic linear dielectric medium described by the electric
susceptibility χ : RÑ R (extended by χptq “ 0 for t ă 0 to negative times):

1
c2 BttEpt, xq `

1
c2

ż 8

0

χpτq
?

2π
BttEpt´ τ, xqdτ ´∆Ept, xq “ 0,

or written in terms of the inverse Fourier transforms Ě and χ̌ with respect to the time:

´
ω2

c2 p1` χ̌pωqq Ěpω, xq ´∆Ěpω, xq “ 0. (2.4)

Analogously, we want to incorporate attenuation by replacing the second time derivatives in
our equation (2.1) by a pseudo-differential operator Aκ of the form (2.3) for some function
κ : RÑ C (corresponding to ω

c

a

1` χ̌pωq in the electrodynamic model).

We will interpret the equation (2.2) as an equation in the space of tempered distributions S 1pRˆ
R3q so that the Fourier transform and the δ-distribution are both well-defined. To make sense
of Aκ as an operator on S 1pR ˆ R3q and to be able to find a solution of (2.2), we impose the
following conditions on the function κ.
Definition 2.2.1 We call a non-zero function κ P C8pR;Hq, where H “ tz P C | =m z ą 0u
denotes the upper half complex plane andH its closure in C, an attenuation coefficient if

1. all the derivatives of κ are polynomially bounded. That is, for every ` P N0 there exist
constants κ1 ą 0 and N P N such that

|κp`qpωq| ď κ1p1` |ω|qN , (2.5)

2. there exists a holomorphic continuation κ̃ : HÑ H of κ on the upper half plane, that is,
κ̃ P CpH;Hq with κ̃|R “ κ and κ̃ : HÑ H is holomorphic; with

|κ̃pzq| ď κ̃1p1` |z|qÑ for all z P H

for some constants κ̃1 ą 0 and Ñ P N.

3. we have the symmetry κp´ωq “ ´κpωq for all ω P R.

The condition 1 in Definition 2.2.1 ensures that the product κ2u of κ2 with an arbitrary tempered
distribution u P S 1pRq is again in S 1pRq and therefore, the operator Aκ is well-defined.
Definition 2.2.2 Let κ P C8pRq be an attenuation coefficient. Then, we define the attenuation
operator Aκ : S 1pRˆR3q Ñ S 1pRˆR3q by its action on the tensor products φbψ P SpRˆR3q,
given by pφb ψqpω, xq “ φpωqψpxq:

〈Aκu, φb ψ〉S1,S “ ´
〈
u, pF´1κ2Fφq b ψ

〉
S1,S

, (2.6)

where F : SpRq Ñ SpRq, Fφpωq “ 1?
2π

ş8

´8
φptqe´iωt dt denotes the Fourier transform. This

uniquely defines the operator Aκ, see for example [Tar07, Lemma 6.2].
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Remark: We use F when we are talking of the Fourier transform as an operator and use in the
calculations φ̂ “ Fφ and φ̌ “ F´1φ. We will use the notation F also for the Fourier transform
on different spaces (in particular for the three-dimensional Fourier transform on SpR3q).

The condition 2 in Definition 2.2.1 is motivated by the fact that the function χ̌ in the electrody-
namic model (2.4) is the inverse Fourier transform of a function whose support is inside r0,8q
and can therefore be holomorphically extended to the upper half plane. We will see later, see
Proposition 2.2.6, that this condition guarantees that the attenuated wave equation (2.2) has a
causal solution in S 1pRˆR3q, that is a solution whose support is contained in r0,8q ˆR3.

Finally, the condition 3 in Definition 2.2.1 is required so that the attenuation operator Aκ maps
real-valued distributions to real-valued distributions: To see this, let u P S 1pR ˆ R3q be a
real-valued distribution. Then, for two real-valued functions φ P SpRq and ψ P SpR3q, the
relation (2.6) implies

〈Aκu, φb ψ〉S1,S “ ´
〈
u,F´1κ2Fφb ψ

〉
S1,S

.

By substituting the variable ω by ´ω in the Fourier integral below, we get that

pF´1κ2Fφqptq “ 1
2π

ż 8

´8

e´iωtκ2pωq

ż 8

´8

eiωτφpτq dτ dω “ pF´1κ2
r Fφqptq

with κr given by κrpωq “ κp´ωq. Thus, the condition 〈Aκu, φb ψ〉S1,S “ 〈Aκu, φb ψ〉S1,S
is equivalent to κ2 “ κ2

r . Besides the case of a constant, real function κ (something we are not
interested in), this is equivalent to κ “ ´κr because of the condition =m κ̃pzq ě 0 for all z P H.

2.2.1 Solution of the Attenuated Wave Equation

In this section, we want to determine the solution p P S 1pR ˆ R3q of (2.2). To this end, we
do a Fourier transform of the wave equation and end up with a Helmholtz equation for each
value ω P R, which in the case =m κpωq ą 0 has a unique solution in the space of tempered
distributions.
Lemma 2.2.3 Let κ be a complex number with positive imaginary part, that is κ P H, f P
L2pR3q with compact essential support. Then, the Helmholtz equation

κ2 〈u, φ〉S1,S ` 〈u,∆φ〉S1,S “

ż

R3
fpxqφpxq dx, φ P SpR3q,

has a unique solution u P S 1pR3q, which is explicitly given by

〈u, φ〉S1,S “ ´
1

4π

ż

R3

ż

R3

eiκ|x´y|

|x´ y|
fpyq dy φpxqdx, φ P SpR3q. (2.7)

Proof: Writing φ “ F´1φ̂, where F : SpR3q Ñ SpR3q denotes the three-dimensional Fourier
transform, we find with the function ψ P SpR3q defined by ψ “ κ2φ ` ∆φ, and therefore
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ψ̂pkq “ Fψpkq “ pκ2 ´ |k|2qφ̂pkq, that

〈u, ψ〉S1,S “

ż

R3
fpxqφpxq dx “ 1

p2πq
3
2

ż

R3
fpxq

ż

R3

ψ̂pkq

κ2 ´ |k|2
ei〈k,x〉 dk dx. (2.8)

The inner integral is the inverse Fourier transform of a product and can thus be written as the
convolution of two inverse Fourier transforms:

1
p2πq

3
2

ż

R3

ψ̂pkq

κ2 ´ |k|2
ei〈k,x〉 dk “ 1

p2πq3

ż

R3
ψpx´ yq

ż

R3

ei〈k,y〉

κ2 ´ |k|2
dk dy. (2.9)

Using spherical coordinates, we obtain by substituting ρ “ |k| and cos θ “ 〈k,y〉
|k||y| that

ż

R3

ei〈k,y〉

κ2 ´ |k|2
dk “ 2π

ż 8

0

ż π

0

eiρ|y| cos θ

κ2 ´ ρ2 ρ
2 sin θ dθ dρ

“
4π
|y|

ż 8

0

ρ sinpρ|y|q
κ2 ´ ρ2 dρ “ ´2πi

|y|

ż 8

´8

ρeiρ|y|

κ2 ´ ρ2 dρ.

Extending the integrand on the right hand side to a meromorphic function on the upper half
complex plane, we can use the residue theorem to calculate the integral and find by taking into
account that κ P H that

ż

R3

ei〈k,y〉

κ2 ´ |k|2
dk “ ´2π2 eiκ|y|

|y|
. (2.10)

Inserting (2.10) into (2.9) and further into (2.8), and remarking that ψ is indeed an arbitrary
function in SpR3q, we end up with (2.7). ˝

To translate the initial condition in (2.2) that the solution p vanishes for negative times into
Fourier space, we use that the Fourier transform of such a function can be characterised by being
polynomially bounded on the upper half complex plane away from the real axis.

We will briefly summarise the theory as we need it. For a detailed exposition, we refer to [H0̈3,
Chapter 7.4].
Definition 2.2.4 Let u P D1pRq be a distribution with suppu Ă r0,8q such that e´ηu P S 1pRq
for every η ą 0, where we denote by ez P C8pRq, z P C, the function ezptq “ ezt.

We define the adjoint Fourier–Laplace transform ǔ : HÑ C of u by choosing for every point
z P H an arbitrary ηz P p0,=m zq and by setting

ǔpzq “
1
?

2π
〈e´ηzu, ẽiz`ηz〉S1,S .

Here ẽz denotes for every z P C with <e z ă 0 an arbitrary extension of the function ez|r0,8q
to the negative axis such that ẽz P SpRq. (The definition does not depend on the choice of the
extension, since suppu Ă r0,8q, see the proof of [H0̈3, Theorem 2.3.3].)

Note that if u is a regular distribution: 〈u, φ〉D1,D “
ş8

´8
Uptqφptqdt for all φ P C8c pRq with

an integrable function U : RÑ C with suppU Ă r0,8q, then this is exactly the holomorphic
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extension of the inverse Fourier transform of U to the upper half plane:

ǔpzq “
1
?

2π

ż 8

0
Uptqeizt dt, z P H.

With this construction, we have that the inverse Fourier transform of the tempered distribution
uη “ e´ηu for η ą 0 is the regular distribution corresponding to ǔp¨ ` iηq, that is,

〈
F´1uη, φ

〉
S1,S

“

ż 8

´8

ǔpω ` iηqφpωqdω. (2.11)

Now, the causality of a distribution u, that is, suppu Ă r0,8q, can be written in the form of a
polynomial bound on its Fourier–Laplace transform ǔ.
Lemma 2.2.5 We use again for every z P C the notation ez P C8pRq for the function ezptq “
eizt.

1. Let u P D1pRq be a distribution with suppu Ă r0,8q and such that e´ηu P S 1pRq for
every η ą 0.

Then, we find for every η1 ą 0 constants C ą 0 and N P N such that the adjoint
Fourier–Laplace transform ǔ of u fulfils

|ǔpzq| ď Cp1` |z|qN for all z P C with =m z ě η1. (2.12)

2. Conversely, if we have a holomorphic function ǔ : HÑ C such that there exist for every
η1 ą 0 constants C ą 0 and N P N with

|ǔpzq| ď Cp1` |z|qN for all z P C with =m z ě η1, (2.13)

then ǔ coincides with the adjoint Fourier–Laplace transform of a distribution u P D1pRq
with suppu Ă r0,8q and the property that e´ηu P S 1pRq for all η ą 0.

Proof:

1. Let η1 ą 0 and η0 P p0, η1q be arbitrary. We choose a function ψ P C8pRq with ψptq “ 1
for t P p´8, 0s and ψptq “ 0 for t P r1,8q. Then, we write the given distribution u in
the form u “ u1 ` u2 by setting

〈u1, φ〉D1,D “ 〈u, ψφ〉D1,D and 〈u2, φ〉D1,D “ 〈u, p1´ ψqφ〉D1,D for all φ P C8c pRq.

Since we have by assumption e´η0u P S 1pRq and since u1 has by construction compact
support, we get that e´η0u2 P S 1pRq. Thus, because of suppp1´ ψq Ă r0,8q, there exist
constants A2 ą 0 and N2 P N such that

ˇ

ˇ

ˇ
〈e´η0u2, φ〉S1,S

ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ
〈e´η0u, p1´ ψqφ〉S1,S

ˇ

ˇ

ˇ
ď A2

N2
ÿ

k,`“0
sup

tPr0,8q
|t`φpkqptq| for all φ P SpRq.

(2.14)
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Moreover, since e´η0u1 has compact support supppe´η0u1q Ă r0, 1s, we find, see for
example [H0̈3, Theorem 2.3.10], constants A1 ą 0 and N1 P N so that

ˇ

ˇ

ˇ
〈e´η0u1, φ〉E 1,E

ˇ

ˇ

ˇ
ď A1

N1
ÿ

k“0
sup
tPr0,1s

|φpkqptq| for all φ P C8pRq. (2.15)

We now define as in Definition 2.2.4 for z P C with <e z ą 0 an extension ẽz P SpRq of
the function ez|r0,8q and choose for every z P H the function φ “ ẽiz`η0 in (2.14) and
(2.15). Then, there exists a constant C ą 0 such that with N “ maxtN1, N2u

|ǔpzq| “
1
?

2π

ˇ

ˇ

ˇ
〈e´η0u, ẽiz`η0〉S1,S

ˇ

ˇ

ˇ

ď
1
?

2π

ˇ

ˇ

ˇ
〈e´η0u1, ẽiz`η0〉S1,S

ˇ

ˇ

ˇ
`

1
?

2π

ˇ

ˇ

ˇ
〈e´η0u2, ẽiz`η0〉S1,S

ˇ

ˇ

ˇ
ď Cp1` |z|qN

holds for every z P H with =m z ě η1.

2. To construct the distribution u, we define from the given function ǔ for every η ą 0 the
distribution uη P S 1pRq via the relation (2.11), so that the inverse Fourier transform of uη
is given by the regular distribution corresponding to the function ω ÞÑ ǔpω ` iηq.

Now, we want to show that eηuη is in fact independent of η, so that there exists a distribution
u such that uη “ e´ηu for every η ą 0. To do so, we first remark that the derivative Bηuη
of uη with respect to η fulfils for every φ P SpRq

〈Bηuη, φ〉S1,S “ i
ż 8

´8

ǔ1pω` iηqφ̂pωq dω “ ´i
ż 8

´8

ǔpω` iηqφ̂1pωqdω “ 〈uη, fφ〉S1,S ,

where φ̂ “ Fφ denotes the Fourier transform of φ and fptq “ ´t, so that φ̂1 “ iFpfφq.
Thus, Bηuη “ fuη and therefore, Bηpeηuηq “ eηpBηuη ´ fuηq “ 0, proving that eηuη is
independent of η.

So, the distribution u “ eηuη P D1pRq is well-defined and fulfils by construction that
e´ηu P S 1pRq for every η ą 0.

Next, we want to show that suppu Ă r0,8q. Let φ P C8c pRq and write again φ̂ “ Fφ.
Then, by our construction, we have for every η1 ą 0 that

〈e´η1u, φ〉S1,S “

ż 8

´8

ǔpω ` iη1qφ̂pωqdω. (2.16)

Since φ̂ is the Fourier transform of a function with compact support, we can extend it
holomorphically to C and get for every N1 P N0 a constant C1 ą 0 such that the upper
bound

|φ̂pzq| “
1
?

2π

ˇ

ˇ

ˇ

ˇ

ż 8

´8

φptqe´izt dt
ˇ

ˇ

ˇ

ˇ

ď
C1

p1` |z|qN1
esuptPsuppφpt=m zq

holds.
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Therefore, we can shift the line of integration in (2.16) by an arbitrary value η ą 0 upwards
in the upper half plane and get with the upper bound (2.13) that

ˇ

ˇ

ˇ
〈e´η1u, φ〉S1,S

ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ

ˇ

ż 8

´8

ǔpω ` ipη1 ` ηqqφ̂pω ` iηqdω
ˇ

ˇ

ˇ

ˇ

ď Aeη suptPsuppφ t

for some constant A ą 0. Choosing now φ such that suppφ Ă p´8, 0q and taking the
limit η Ñ8, the right hand side tends to zero, showing that 〈e´η1u, φ〉S1,S “ 0 whenever
suppφ Ă p´8, 0q. Thus, e´η1u, and therefore also u, has only support on r0,8q.

Finally, we verify that the Fourier–Laplace transform of u is given by ǔ. Indeed, given
any ω P R and η ą 0, we have by construction for every η1 P p0, ηq and every extension
ẽz P SpRq of ez|r0,8q for z P C with <e z ą 0 that

〈
e´η1u, ẽipω`iηq`η1

〉
S1,S

“

ż 8

´8

ǔpω1 ` iη1qF ẽiω`pη1´ηqpω1q dω1.

Since suppu Ă r0,8q, we know that this expression is independent of the concrete choice
of the extension ẽz . Moreover, both sides are independent of η1. Thus, letting on the
right hand side ẽz converge to ez and η1 to η, F ẽiω`pη1´ηq will tend to

?
2π times the

δ-distribution at ω, and we therefore get

1
?

2π

〈
e´η1u, ẽipω`iηq`η1

〉
S1,S

“ ǔpω ` iηq.
˝

We now return to the solution of the attenuated wave equation (2.2).
Proposition 2.2.6 Let κ be an attenuation coefficient and Aκ : S 1pRˆR3q Ñ S 1pRˆR3q be
the corresponding attenuation operator. Let further h P L2pR3q with compact essential support.

Then, the attenuated wave equation

〈Aκp, ϑ〉S1,S ` 〈∆p, ϑ〉S1,S “ ´

ż

R3
hpxqBtϑp0, xq dx, ϑ P SpRˆR3q, (2.17)

where the Laplace operator ∆ : S 1pRˆR3q Ñ S 1pRˆR3q is defined by

〈∆u, φb ψ〉S1,S “ 〈u, φb p∆ψq〉S1,S for all φ P SpRq, ψ P SpR3q,

has a unique solution p P S 1pRˆR3q with supp p Ă r0,8q ˆR3.

Moreover, p is of the form

〈p, φb ψ〉S1,S “

ż 8

´8

ż

R3

ż

R3
Gκpω, x´ yqhpyqdy φ̂pωqψpxq dx dω, (2.18)

where φ̂ denotes the Fourier transform of φ and G denotes the integral kernel

Gκpω, xq “ ´
iω

4π
?

2π
eiκpωq|x|

|x|
, ω P R, x P R3zt0u. (2.19)
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Proof: Let p P S 1pRˆR3q be a solution of (2.17) with supp p Ă r0,8qˆR3. We evaluate the
equation (2.17) for ϑ “ φb ψ P C8c pRˆR

3q and write Fφ “ φ̂. It then follows that

´
〈
p,F´1pκ2φ̂q b ψ

〉
S1,S

`
〈
p,F´1φ̂b∆ψ

〉
S1,S

“ φ1p0q
ż

R3
hpxqψpxqdx. (2.20)

For arbitrary z P H, we define the adjoint Fourier–Laplace transform p̌pzq P S 1pR3q of p by

〈p̌pzq, ψ〉S1,S “
1
?

2π
〈p, ẽiz b ψ〉S1,S ,

where ẽz P SpRq, z P C with <e z ă 0, is an arbitrary extension of ẽzptq “ ezt for t ě 0, see
Definition 2.2.4. Then, z ÞÑ 〈p̌pzq, ψ〉 is holomorphic in the upper half planeH and we have〈

p,F´1pκ2φ̂q b ψ
〉

S1,S
“ lim

ξÓ0

〈
p, ẽ´ξF´1pκ2φ̂q b ψ

〉
S1,S

“ lim
ξÓ0

ż 8

´8

〈p̌pω ` iξq, ψ〉S1,S κ
2pωqφ̂pωq dω.

We replace κ in the integrand now by its holomorphic extension κ̃ : H Ñ H, see 2 in Def-
inition 2.2.1, and also extend the Fourier transform φ̂ of the compactly supported function φ
holomorphically to C. Since z ÞÑ 〈p̌pzq, ψ〉 is the adjoint Fourier–Laplace transform of a distri-
bution with support on r0,8q, it is polynomially bounded, see Lemma 2.2.5. Moreover, we have
by Definition 2.2.1 of the attenuation coefficient a polynomial bound on κ̃ and get therefore with
the dominated convergence theorem that〈

p,F´1pκ2φ̂q b ψ
〉

S1,S
“ lim

ξÓ0
lim
ηÓ0

ż 8

´8

〈p̌pω ` ipξ ` ηqq, ψ〉S1,S κ̃
2pω ` iηqφ̂pω ` iηq dω.

Since all functions in the integrand are holomorphic in the upper half plane the integral is
independent of η and we can therefore remove the limit with respect to η. Using again the
dominated convergence theorem, we can evaluate now the limit with respect to ξ and obtain for
arbitrary η ą 0 the equality〈

p,F´1pκ2φ̂q b ψ
〉

S1,S
“

ż 8

´8

〈p̌pω ` iηq, ψ〉S1,S κ̃
2pω ` iηqφ̂pω ` iηq dω.

Inserting this into the equation (2.20) and arguing in the same way for the two other terms therein,
we see that p̌pzq P S 1pR3q solves for every z P H the equation

κ̃2pzq 〈p̌pzq, ψ〉S1,S ` 〈p̌pzq,∆ψ〉S1,S “
iz
?

2π

ż

R3
hpxqψpxqdx.

Thus, by Lemma 2.2.3, we get for every z P H with =m κ̃pzq ą 0 that

〈p̌pzq, ψ〉S1,S “ ´
iz

4π
?

2π

ż

R3

ż

R3

eiκ̃pzq|x´y|

|x´ y|
hpyq dy ψpxqdx (2.21)

is the only solution. However, since κ̃ is holomorphic, its imaginary part cannot vanish in any



30 Chapter 2. Singular Values of the Attenuated Photoacoustic Imaging Operator

open set unless κ̃ were a constant, real function which is excluded by the symmetry condition 3
in Definition 2.2.1. Therefore, we can uniquely extend the formula (2.21) for 〈p̌pzq, ψ〉S1,S by
continuity to all z P H.

It remains to verify that supp p Ă r0,8q ˆR3. To see this, we use that =m κ̃pzq ě 0 for every
z P H to estimate the integral in (2.21) by

ˇ

ˇ

ˇ
〈p̌pzq, ψ〉S1,S

ˇ

ˇ

ˇ
ď C|z|

with some constant C ą 0. Therefore, by Lemma 2.2.5, 〈p̌pzq, ψ〉S1,S is the Fourier–Laplace
transform of a distribution with support in r0,8q. ˝

2.2.2 Finite Propagation Speed

Seeing the equation (2.17) as a generalisation of the wave equation, it is natural to additionally
impose that the solution propagates with finite speed.
Definition 2.2.7 We say that the solution p P S 1pR ˆ R3q of the equation (2.17) propagates
with finite speed c ą 0 if

supp p Ă tpt, xq P RˆR3 | |x| ď ct`Ru

whenever supph Ă BRp0q.

We can give an explicit characterisation of the equations whose solutions propagate with finite
speed in terms of the holomorphic extension κ̃ of the attenuation coefficient κ.
Lemma 2.2.8 The solution p of the attenuated wave equation (2.17) propagates with finite speed
c ą 0 if the holomorphic extension κ̃ of the attenuation coefficient κ fulfils

=mpκ̃pzq ´ z
c q ě 0 for every z P H.

Conversely, if there exists a sequence pz`q8`“1 Ă H with the properties that

• there exists a parameter η1 ą 0 such that =mpz`q ě η1 for all ` P N,

• we have |z`| Ñ 8 for `Ñ8, and

• there exists a parameter δ ą 0 such that

=mpκ̃pz`q ´ z`
c q ď ´δ|z`| for all ` P N,

then p propagates faster than with speed c.
Proof: Since the solution p P S 1pR ˆ R3q is a regular distribution with respect to the second
component, see (2.18), having finite propagation speed is equivalent to the condition that the
distribution ppxq P S 1pRq, given by

〈ppxq, φ〉S1,S “

ż 8

´8

ż

R3
Gκpω, x´ yqhpyq dy φ̂pωqdω, x P R3,
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has supp ppxq Ă r1c p|x| ´Rq,8q. Letting h tend to a three dimensional δ-distribution, we see
that the distribution gpxq P S 1pRq, defined by

〈gpxq, φ〉S1,S “

ż 8

´8

Gκpω, xqφ̂pωq dω,

has to fulfil supp gpxq Ă r |x|c ,8q. If we shift gpxq now by |x|
c via τ : SpRq Ñ SpRq, pτφqptq “

φpt` |x|
c q, this means that the distribution gτ pxq P S 1pRq, given by

〈gτ pxq, φ〉S1,S “
〈
gpxq, τ´1φ

〉
S1,S

“

ż 8

´8

Gκpω, xqe´iω|x|
c φ̂pωq dω

has to have supp gτ pxq Ă r0,8q. Extending the function ω ÞÑ Gκpω, xqe´iω|x|
c to the upper half

plane using the explicit formula (2.19) for Gκ, we obtain the adjoint Fourier–Laplace transform
z ÞÑ ǧτ pz, xq of the distribution gτ pxq:

ǧτ pz, xq “ ´
iz

4π
?

2π
eipκ̃pzq´ z

c
q|x|

|x|
,

see (2.11). According to Lemma 2.2.5, we can therefore equivalently characterise a finite
propagation speed in terms of a polynomial bound on the function ǧτ p¨, xq.

• If =mpκpzq ´ z
c q ě 0 for every z P H, then the adjoint Fourier–Laplace transform of

gτ pxq fulfils that for every x P R3 there exists a constant C ą 0 such that

|ǧτ pz, xq| ď C|z|.

Thus, the condition (2.13) of Lemma 2.2.5 is satisfied and therefore supp gτ pxq Ă r0,8q,
so that p propagates with the finite speed c ą 0.

• On the other hand, if there exists a sequence pz`q8`“1 Ă H with =mpz`q ě η1 for some
η1 ą 0, |z`| Ñ 8, and =mpκ̃pz`q ´ z`

c q ď ´δ|z`| for some δ ą 0, then

|ǧτ pz`, xq| ě
|z`|

4π|x|
?

2π
eδ|x||z`|,

so that condition (2.12) of Lemma 2.2.5 is violated and therefore the support of gτ pxq
cannot be contained in r0,8q. ˝

Proposition 2.2.9 Let κ be an attenuation coefficient with the holomorphic extension κ̃ : HÑ H.
Then, the solution p of the attenuated wave equation (2.17) propagates with finite speed if and
only if

lim
ωÑ8

κ̃piωq
iω ą 0.

In this case, it propagates with the speed c “ limωÑ8
iω

κ̃piωq .
Proof: We make use of the theory of Nevanlinna functions, see for example [Akh65, Chapter
3.1]. Similar to the Riesz–Herglotz formula, which characterises the functions mapping the unit
circle to the upper half plane, we have that all holomorphic functions κ̃ : HÑ H have an integral
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representation of the form

κ̃pzq “ Az `B `

ż 8

´8

1` zν
ν ´ z

dσpνq, z P H, (2.22)

where σ : RÑ R is a monotonically increasing function of bounded variation and A ě 0 and
B P R are arbitrary parameters, and vice versa, see [Akh65, Formula 3.3].

Then, κ̃pzq ´Az is still of the form (2.22) and therefore is a holomorphic function mappingH
to H. In particular, it satisfies =mpκ̃pzq ´Azq ě 0 for all z P H. Thus, if A ą 0, p propagates
with the finite speed c “ 1

A according to Lemma 2.2.8.

Evaluating κ̃ along the imaginary axis, we find that asymptotically as ω Ñ8

κ̃piωq “ iω
ˆ

A`
B

iω `
ż 8

´8

1` iων
iωpν ´ iωq dσpνq

˙

“ iωpA` op1qq. (2.23)

Thus,

A “ lim
ωÑ8

κ̃piωq
iω .

Moreover for A “ 0, we see from (2.23) that for every choice of c ą 0, we have the behaviour
κ̃piωq ´ iω

c “ iωp´1
c ` op1qq and therefore =mpκ̃piωq ´ iω

c q ď ´ ω
2c for all ω ě ω0 for a

sufficiently large ω0. Thus, by Lemma 2.2.8, p cannot have finite propagation speed for A “ 0.˝

2.3 Examples of Attenuation Models

The following examples of attenuation coefficient have been collected in [KS12], where also
references to original papers can be found. In this section, we review them and catalog them into
two groups which are characterised by different spectral behaviour.

If the attenuation in the medium increases faster than some power of the frequency, we are in the
case of strong attenuation.
Definition 2.3.1 We call an attenuation coefficient κ P C8pR;Hq a strong attenation coefficient
if it fulfils that

=m κpωq ě κ0|ω|
β for all ω P R with |ω| ě ω0 (2.24)

for some constants κ0 ą 0, β ą 0, and ω0 ě 0.

A common example, which has the drawback of an infinite propagation speed, is the thermo-
viscous model, see Table 2.1. In [KSB11], the authors modified this model to obtain one with
finite propagation speed, see Table 2.2. Other models, trying to match the heuristic power law
behaviour of the attenuation are the power law in Table 2.3 and Szabo’s model, see Table 2.4,
where we chose the modified version introduced in [KS12] as the original one does not lead to a
causal model.
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In these tables and in the following we always use the principal branch of the complex roots, that
is, we define for γ P C

preiϕqγ “ eγplogprq`iϕq for every r ą 0, ϕ P p´π, πq.

Remark: The attenuation coefficients in Table 2.2, Table 2.3, and Table 2.4 do not fulfil the
smoothness assumption κ P C8pRq. However, this requirement originates mainly from our
choice of solution concept for the attenuated wave equation (2.2) and we may still consider
formula (2.25) as definition of the solution p of (2.2) if κ is non-smooth. In particular, the
smoothness assumption is not required for the derivation of the decay of the singular values of
the integrated photoacoustic operator.

In the case where the attenuation decreases sufficiently fast as the frequency increases, we call
the medium weakly attenuating.
Definition 2.3.2 We call an attenuation coefficient κ P C8pR;Hq a weak attenuation coefficient
if it is of the form

κpωq “
ω

c
` iκ8 ` κ˚pωq, ω P R,

for some constants c ą 0 and κ8 ě 0 and a bounded function κ˚ P C8pRq X L2pRq.

Clearly, the non-attenuating case where κpωq “ ω
c with c ą 0, so that the attenuated wave

equation (2.2) reduces to the linear wave equation, falls under this category and we will later on
treat the case of a weak attenuation coefficient as a perturbation of this non-attenuated case.

A non-trivial example of a weak attenuation model is the model by Nachman, Smith, and Waag,
see Table 2.5.

2.4 The Integrated Photoacoustic Operator

Let us now return to the attenuated photoacoustic imaging problem. Thus, we consider the
operator mapping the source term h in the attenuated wave equation (2.2) (interpreted in the
sense of (2.17)) to the measurements, which shall correspond to the solution of the attenuated
wave equation on the measurement surface BΩ measured for all time.

According to Proposition 2.2.6, the solution p of the attenuated wave equation is given by
(2.18). This means that the temporal inverse Fourier transform of p is the regular distribution
corresponding to the function

p̌pω, xq “

ż

R3
Gκpω, x´ yqhpyq dy “ ´ iω

4π
?

2π

ż

R3

eiκpωq|x´y|

|x´ y|
hpyq dy, ω P R, x P R3,

(2.25)
where Gκ is defined by (2.19).

We therefore introduce our measurements m̌ as the function

m̌pω, ξq “ p̌pω, ξq for all ω P R, ξ P BΩ.
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Name: Thermo-viscous model, see for example [Kin+00, Chapter 8.2]

Attenuation coefficient: κ : RÑ C, κpωq “
ω

?
1´ iτω

Parameters: τ ą 0

Holomorpic extension: κ̃ : HÑ C, κ̃pzq “
z

?
1´ iτz

Upper bound: |κ̃pzq| ď |z| for all z P H

This follows from |1´ iτz| ě <ep1´ iτzq ě 1 for z P H.

Propagation speed: c “ lim
ωÑ8

iω
κ̃piωq “ lim

ωÑ8

?
1` τω “ 8

Attenuation type: Strong attenuation coefficient

Indeed a Taylor expansion with respect to 1
ω

around 0 yields for ω Ñ8:

=mκpωq “ =m
c

iω
τ

ˆ

1` i
τω

˙´ 1
2

“ =m
c

iω
τ

`

1`Opω´1
q
˘

“

c

ω

2τ `Opω´1
q.

Range of κ̃:

1

i

´1

´i

κ̃

1

i

´1

´i

To see analytically that κ̃ maps the upper half planeH into itself, we first remark that
because of the symmetry κ̃p´z̄q “ ´κ̃pzq, it is enough to show that the first quadrant
Q`` “ tz P C | <epzq ě 0, =mpzq ě 0u is mapped under κ̃ intoH.
Since f : C̄ Ñ C̄, fpzq “ 1

1´iτz is a Möbius transform which maps Q`` to the
half ball B̄ 1

2
p 1

2 q X Q`` and κ̃ is the composition κ̃pzq “ z
a

fpzq, we indeed have

κ̃pQ``q Ă H.

TABLE 2.1: The thermo-viscous model.
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Model: Kowar–Scherzer–Bonnefond model, see [KSB11]

Attenuation coefficient: κ : RÑ C, κpωq “ ω

˜

1` α
a

1` p´iτωqγ

¸

Parameters: γ P p0, 1q, α ą 0, τ ą 0

Holomorphic extension: κ̃ : HÑ C, κ̃pzq “ z

˜

1` α
a

1` p´iτzqγ

¸

Upper bound: |κ̃pzq| ď p1` αq|z|

This follows from |1` p´iτzqγ | ě |<ep1` p´iτzqγq| ě 1 for z P H.

Propagation speed: c “ lim
ωÑ8

iω
κ̃piωq “ lim

ωÑ8

1
1` α?

1`pτωqγ
“ 1

Attenuation type: Strong attenuation coefficient

A Taylor expansion with respect to ω´γ around 0 yields for ω Ñ8:

=mκpωq “ αω=m
`

p´iτωq´
γ
2 p1` p´iτωq´γq´

1
2
˘

“ αω=m
`

p´iτωq´
γ
2 `Opω´

3
2 γq

˘

“ ατ´
γ
2 sinpπγ4 qω

1´ γ
2
`

1`Opω´γq
˘

.

Range of κ̃:

1

i

´1

´i

κ̃

1

i

´1

´i

To see where κ̃ maps the upper half plane, we write κ̃ in the form

κ̃pzq “ zp1` α
a

f2pf1pzqqq with f2pzq “
1

1` z , f1pzq “ p´iτzqγ .

Now, f1 maps the first quadrant Q`` in a subset of the fourth quadrant Q`´ “ tz P
C | <epzq ě 0,=mpzq ď 0u. And f2 is a Möbius transform which maps Q`´ to the
half ball B̄ 1

2
p 1

2 q XQ``.
Thus, since the product of two points in the first quadrant Q`` is in the upper half
plane, κ̃pQ``q Ă H and because of the symmetry κ̃p´z̄q “ ´κ̃pzq, we therefore have
κ̃pHq Ă H.

TABLE 2.2: The Kowar–Scherzer–Bonnefond model.

Instead of considering the operator mapping h to m̌, we will divide the data by ´iω, meaning
that we consider the map from h to the inverse Fourier transform of the measurements which
were integrated over time. Additionally, we want to assume that the measurements are performed



36 Chapter 2. Singular Values of the Attenuated Photoacoustic Imaging Operator

Model: Power law, see for example [Sza94]

Attenuation coefficient: κ : RÑ C, κpωq “ ω ` iαp´iωqγ

Parameters: γ P p0, 1q, α ą 0

Holomorphic extension: κ̃ : HÑ C, κ̃pzq “ z ` iαp´izqγ

Upper bound: |κ̃pzq| ď |z| ` α|z|γ ď αp1´ γq ` p1` αγq|z|

The second inequality uses Young’s inequality to estimate |z|γ ď γ|z| ` 1´ γ.

Propagation speed: c “ lim
ωÑ8

iω
κ̃piωq “ lim

ωÑ8

1
1` αωγ´1 “ 1

Attenuation type: Strong attenuation coefficient

We have =mκpωq “ α sin
`

p1´ γqπ2
˘

|ω|γ .

Range of κ̃:

1

i

´1

´i

κ̃

1

i

´1

´i

That the range of κ̃ is a subset ofH follows immediately from

=m κ̃preiϕ
q “ r sinϕ` αrγ sin

´π

2 `
´

ϕ´
π

2

¯

γ
¯

ě 0

for all r ě 0 and ϕ P r0, πs.

TABLE 2.3: The power law model.

outside the support of the source.
Remark: This assumption that the absorption density functions h has compact support in the
domain Ω is very common in the theory of photoacoustics, see for instance [AKQ07; KK08].
Definition 2.4.1 Let Ω Ă R3 be a bounded Lipschitz domain and κ be either a strong or a weak
attenuation coefficient. For ε ą 0, we define Ωε “ tx P Ω | distpx, BΩq ą εu.

Then, we call

P̌κ : L2pΩεq Ñ L2pRˆ BΩq, P̌κhpω, ξq “
1

4π
?

2π

ż

Ωε

eiκpωq|ξ´y|

|ξ ´ y|
hpyq dy (2.26)

the integrated photoacoustic operator of the attenuation coefficient κ in frequency domain.
Lemma 2.4.2 Let Ω Ă R3 be a bounded Lipschitz domain and ε ą 0. Then, the integrated
photoacoustic operator P̌κ : L2pΩεq Ñ L2pRˆBΩq of an attenuation coefficient κ is a bounded
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Model: Modified Szabo model, see [KS12] and, for the original version, [Sza94]

Attenuation coefficient: κ : RÑ C, κpωq “ ω
a

1` αp´iωqγ´1

Parameters: γ P p0, 1q, α ą 0

Holomorphic extension: κ̃ : HÑ C, κ̃pzq “ z
a

1` αp´izqγ´1

Upper bound: |κ̃pzq| ď |z| `
?
α|z|

γ`1
2 ď 1

2αp1´ γq ` p1`
α
2 p1` γqq|z|

The second inequality uses Young’s inequality to estimate |z|
1`γ

2 ď 1
2 p1 ` γq|z| `

1
2 p1´ γq.

Propagation speed: c “ lim
ωÑ8

iω
κ̃piωq “ lim

ωÑ8

1
?

1` αωγ´1 “ 1

Attenuation type: Strong attenuation coefficient

A Taylor expansion with respect to ωγ´1 around 0 yields for ω Ñ8:

=mκpωq “ =m
´

ω
`

1` 2αp´iωqγ´1˘ 1
2
¯

“ ω `Opωγq.

Range of κ̃:

1

i

´1

´i

κ̃

1

i

´1

´i

To determine the range, we write κ̃ in the form

κ̃pzq “ z
a

1` fpzq with fpzq “ αp´izqγ´1.

Now, since γ ´ 1 ă 0, f maps the first quadrant Q`` to a subset of Q``. Thus,
since the product of two points in the first quadrant is in the upper half plane, we have
κ̃pQ``q Ă H and because of the symmetry κ̃p´z̄q “ ´κ̃pzq therefore κ̃pHq Ă H.

TABLE 2.4: The modified Szabo model.

linear operator and its adjoint is given by

P̌˚κ : L2pRˆ BΩq Ñ L2pΩεq, P̌˚κm̌pyq “
1

4π
?

2π

ż 8

´8

ż

BΩ

e´iκpωq|ξ´y|

|ξ ´ y|
m̌pω, ξqdSpξqdω.

(2.27)
Proof:
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Name: Nachman–Smith–Waag model, see [NSW90]

Attenuation coefficient: κ : RÑ C, κpωq “
ω

c0

c

1´ iτ̃ω
1´ iτω

Parameters: c0 ą 0, τ ą 0, τ̃ P p0, τq

Holomorpic extension: κ̃ : HÑ C,
z

c0

c

1´ iτ̃ z
1´ iτz

Upper bound: |κ̃pzq| ď 1
c0
|z| for all z P H

This follows from |1´ iτ̃ z| ď |1´ iτz| for z P H.

Propagation speed: c “ lim
ωÑ8

iω
κ̃piωq “ lim

ωÑ8
c0

c

1` τω
1` τ̃ω “ c0

c

τ

τ̃

Attenuation Type: Weak attenuation coefficient

Indeed a Taylor expansion with respect to 1
ω

around 0 yields for ω Ñ8:

κpωq “
ω

c0

c

τ̃

τ

ˆ

1` i
τ̃ω

˙ 1
2
ˆ

1` i
τω

˙´ 1
2

“
ω

c0

c

τ̃

τ

ˆ

1` i
2τ̃ω `Opω´2

q

˙ˆ

1´ i
2τω `Opω´2

q

˙

“
ω

c0

c

τ̃

τ
`

ipτ ´ τ̃q
2c0τ

?
τ̃ τ
`Opω´1

q.

Range of κ̃:

1

i

´1

´i

κ̃

1

i

´1

´i

The Möbius transform f : C̄ Ñ C̄, fpzq “ 1´iτ̃z
1´iτz maps the first quadrant Q`` to

B̄rpaq XQ`` where r “ 1
2 p1´

τ̃
τ
q and a “ 1

2 p1`
τ̃
τ
q. Thus, κ̃pzq “ z

c0

a

fpzq P H

for z P Q`` and the symmetry κ̃p´z̄q “ ´κ̃pzq then implies that κ̃pzq P H for every
z P H.

TABLE 2.5: The Nachman–Smith–Waag model.

1. We first consider the case of a strong attenuation coefficient. Then, we have for every
ω P R and ξ P BΩ the estimate

|P̌κhpω, ξq|2 ď
|Ωε|

32ε2π3 }h}
2
2e´2ε=mκpωq.

Since, by Definition 2.3.1, =m κpωq ě κ0|ω|
β for all ω P R with |ω| ě ω0 for some
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sufficiently large ω0 ě 0, this shows that P̌κ : L2pΩεq Ñ L2pRˆ BΩq is a bounded linear
operator.

2. In the case of a weak attenuation coefficient, see Definition 2.3.2, we split the operator into
P̌κ “ P̌p0qκ ` P̌p1qκ , where we define

P̌p0qκ hpω, ξq “
1

4π
?

2π

ż

Ωε

eiω
c
|ξ´y|

|ξ ´ y|
e´κ8|ξ´y|hpyq dy (2.28)

as the photoacoustic operator with constant attenuation and the perturbation

P̌p1qκ hpω, ξq “
1

4π
?

2π

ż

Ωε

eiω
c
|ξ´y|

|ξ ´ y|
e´κ8|ξ´y|peiκ˚pωq|ξ´y| ´ 1qhpyqdy. (2.29)

Now, P̌p0qκ h is seen to be the inverse Fourier transform of the function Pp0qκ h, defined by

Pp0qκ hpt, ξq “
e´κ8ct

4πt

ż

ΩεXBBctpξq
hpzqdSpzq, t ą 0, ξ P BΩ,

and Pp0qκ hpt, ξq “ 0 for t ď 0, ξ P BΩ. Now, Pp0qκ : L2pΩεq Ñ L2pR ˆ BΩq can be
directly seen to be a bounded linear operator, since we have, recalling that κ8 ě 0,

}Pp0qκ h}22 ď

ż

BΩ

ż 8

0

1
16π2t2

ˇ

ˇ

ˇ

ˇ

ˇ

ż

ΩεXBBctpξq
hpzq dSpzq

ˇ

ˇ

ˇ

ˇ

ˇ

2

dt dSpξq

ď

ż

BΩ

ż 8

0

c2

4π

ż

ΩεXBBctpξq
|hpzq|2 dSpzq dt dSpξq.

Thus, combining the two inner integrals to an integral over Ωε, we find that

}Pp0qκ h}22 ď
c

4π |BΩ|}h}
2
2.

This is a special case of the more general result in [Pal10, Lemma 4.1].

Thus, Pp0qκ : L2pΩεq Ñ L2pR ˆ BΩq and therefore, because the Fourier transform on
L2pRq is an isometry, also P̌p0qκ : L2pΩεq Ñ L2pRˆ BΩq are bounded, linear operators.

For P̌p1qκ h, we get the estimate

|P̌p1qκ hpω, ξq|2 ď
|Ωε|

32ε2π3 }h}
2
2 sup
yPΩε

|eiκ˚pωq|ξ´y| ´ 1|2. (2.30)

We now remark that we can find for every bounded set D Ă C a constant C ą 0 such that

|ez ´ 1| ď C|z| for all z P D. (2.31)
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Therefore, since κ˚ is according to Definition 2.3.2 bounded and |ξ ´ y| remains bounded
since Ω is bounded, we find a constant C̃ ą 0 such that

sup
yPΩε

|eiκ˚pωq|ξ´y| ´ 1|2 ď C̃|κ˚pωq|
2 for all ω P R, ξ P BΩ.

Since κ˚ is additionally square integrable by Definition 2.3.2, we find by inserting this into
the estimate (2.30) that P̌p1qκ : L2pΩεq Ñ L2pRˆ BΩq is a bounded, linear operator, and
therefore so is the operator P̌κ : L2pΩεq Ñ L2pRˆ BΩq. ˝

To obtain the singular values of the operator P̌κ, we consider the operator P̌˚κ P̌κ on L2pΩεq. It
turns out that this operator is a Hilbert–Schmidt integral operator, in particular therefore compact.
So, by the singular theorem for compact operators, its spectrum consists of at most countably
many positive eigenvalues and the value zero.
Proposition 2.4.3 Let P̌κ : L2pΩεq Ñ L2pRˆ BΩq be the integrated photoacoustic operator
of a weak or a strong attenuation coefficient κ for some bounded, convex domain Ω Ă R3 with
smooth boundary and some ε ą 0. Then, P̌˚κ P̌κ : L2pΩεq Ñ L2pΩεq is a self-adjoint integral
operator with kernel F P L2pΩε ˆ Ωεq given by

Fκpx, yq “
1

32π3

ż 8

´8

ż

BΩ

eiκpωq|ξ´y|´iκpωq|ξ´x|

|ξ ´ y||ξ ´ x|
dSpξqdω, (2.32)

that is
P̌˚κ P̌κhpxq “

ż

Ωε
Fκpx, yqhpyqdy. (2.33)

In particular, P̌˚κ P̌κ is a Hilbert–Schmidt operator and thus compact.

We remark that the convexity and smoothness assumptions on Ω are only needed for the weak
attenuation case. For strong attenuation, a Lipschitz domain Ω is sufficient.
Proof: The representation (2.32) of the integral kernel Fκ of the operator P̌˚κ P̌κ is directly
obtained by combining the formulas (2.26) and (2.27) for P̌κ and P̌˚κ . To prove that F P

L2pΩε ˆ Ωεq, we treat the two cases of strong and weak attenuation coefficients separately.

1. For a strong attenuation coefficient, we estimate directly

|Fκpx, yq|
2 ď

|BΩ|
32ε2π3

ż 8

´8

e´2ε=mκpωq dω for all x, y P Ωε.

According to Definition 2.3.1, we have =m κpωq ě κ0|ω|
β for all |ω| ě ω0 for some

ω0 ě 0 and therefore, |Fκ|2 is uniformly bounded. Thus, Fκ P L2pΩε ˆ Ωεq, which
implies that P̌˚κ P̌κ is a Hilbert–Schmidt operator and compact, see for example [Wei80,
Theorems 6.10 and 6.11].

2. In the case of a weak attenuation coefficient, we writeFκ similar to the proof of Lemma 2.4.2
as the sum of a contribution F p0qκ of a medium with constant attenuation and perturbations
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x

y

1
2 px` yq

e3cosϕe1 ` sinϕe2

Γϕ “ Γϕ´π

rpϕ, zq

´rpϕ´ π, zq

´z

ψpϕ, zq

ψpϕ´ π, zq

1
2 px` yq ` z e3

1
2 px` yq ` bϕe3

1
2 px` yq ` aϕe3

FIGURE 2.1: Parametrisation of the intersection Γϕ, ϕ P p0, πq, of the boundary
BΩ and the plane Eϕ.

F
p1q
κ and F p2qκ : Fκ “ F

p0q
κ ` F

p1q
κ ` F

p2q
κ with

F pjqκ px, yq “
1

32π3

ż 8

´8

ż

BΩ

eiω
c
p|ξ´y|´|ξ´x|q

|ξ ´ y||ξ ´ x|
e´κ8p|ξ´y|`|ξ´x|qf pjqκ pω, ξ, x, yqdSpξq dω,

(2.34)
where

f p0qκ pω, ξ, x, yq “ 1,
f p1qκ pω, ξ, x, yq “ iκ˚pωq|ξ ´ y| ´ iκ˚pωq|ξ ´ x|,

f p2qκ pω, ξ, x, yq “ eiκ˚pωq|ξ´y|´iκ˚pωq|ξ´x| ´ f p1qκ pω, ξ, x, yq ´ f p0qκ pω, ξ, x, yq.

• To calculate the double integral in F p0qκ , we first parametrise BΩ depending on the
values x, y P Ωε with x ‰ y.

We choose a positively oriented, orthonormal basis pejq3j“1 Ă R
3 with e3 “

y´x
|y´x|

and consider the curve

Γϕ “ BΩX Eϕ, Eϕ “ tξ P R
3 |
〈
ξ ´ 1

2px` yq, cosϕe2 ´ sinϕe1
〉
“ 0u,

given as the intersection of the boundary BΩ and the plane Eϕ through 1
2px ` yq,

spanned by the vectors e3 and cosϕe1 ` sinϕe2.

Setting

aϕ “ min
ξPΓϕ

〈
ξ ´ 1

2px` yq, e3
〉

and bϕ “ max
ξPΓϕ

〈
ξ ´ 1

2px` yq, e3
〉
,

we choose the parametrisation ψ P C1pU ;R3q of BΩ (up to a set of measure zero)
defined on the open set U “ tpϕ, zq | z P paϕ, bϕq, ϕ P p´π, 0q Y p0, πqu as

ψpϕ, zq “ 1
2px` yq ` rpϕ, zqpcosϕe1 ` sinϕe2q ` z e3, (2.35)
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where we pick for ϕ P p0, πq the function r in such a way that rpϕ, zq ą ´rpϕ´π, zq
so that the two maps ψpϕ´ π, ¨q and ψpϕ, ¨q parametrise together Γϕ, see Figure 2.1.

• If we would formally interchange the order of integration in the definition (2.34) of
F
p0q
κ , the integral over ω would lead to a δ-distribution at the zeros of the exponent

1
c p|ξ ´ x| ´ |ξ ´ y|q. We therefore start by analysing this exponent, which is up to
the prefactor 1

c given by

gpϕ, zq “ |ψpϕ, zq ´ x| ´ |ψpϕ, zq ´ y|

if we use the parametrisation ψ for integrating over BΩ.

The zeros of g are exactly those points pϕ, zq such that ψpϕ, zq is in the bisection
plane of x and y. Thus, we have by construction of the parametrisation ψ, see (2.35),
that

gpϕ, zq “ 0 is equivalent to z “ 0. (2.36)

Furthermore, we can prove that

Bzgpϕ, zq “

〈
ψpϕ, zq ´ x

|ψpϕ, zq ´ x|
´

ψpϕ, zq ´ y

|ψpϕ, zq ´ y|
, Bzψpϕ, zq

〉
(2.37)

only vanishes at the two points where ψpϕ, zq is the intersection point of the line
through x and y with BΩ: We assume by contradiction that Bzgpϕ, zq “ 0 at a point
pϕ, zq P U with ψpϕ, zq not lying on the line through x and y. Then, the first vector
ψpϕ,zq´x
|ψpϕ,zq´x| ´

ψpϕ,zq´y
|ψpϕ,zq´y| would be a non-zero vector in Eϕ, and the second vector

Bzψpϕ, zq is by construction a non-zero tangent vector on Γϕ Ă Eϕ at ψpϕ, zq. Thus,
Bzgpϕ, zq “ 0 would imply that the first vector is a non-trivial multiple of the outer
unit normal vector νpψpϕ, zqq to Γϕ at ψpϕ, zq. However, if w1, w2 P R

2 are two
unit vectors with w1 ´ w2 “ n, n ‰ 0, then 〈w1, n〉 “ ´ 〈w2, n〉, since for given
w1 P S

1, w2 is the intersection point of S1 with the line parallel to n through w1.
Thus, we would have〈

ψpϕ, zq ´ x

|ψpϕ, zq ´ x|
, νpψpϕ, zqq

〉
“ ´

〈
ψpϕ, zq ´ y

|ψpϕ, zq ´ y|
, νpψpϕ, zqq

〉
,

but, because of the convexity of Ω, the projections
〈
ψ´x
|ψ´x| , ν ˝ ψ

〉
and

〈
ψ´y
|ψ´y| , ν ˝ ψ

〉
have to be both positive, which is a contradiction. Therefore, Bzgpϕ, zq “ 0 if and
only if ψpϕ, zq is on the line through x and y.

• After these preparations, we can now reduce the formula (2.34) for F p0qκ to a one-
dimensional integral and estimate it explicitly to show that F p0qκ P L2pΩε ˆ Ωεq.

We plug in the parametrisation ψ into the definition (2.34) of F p0qκ and find for x ‰ y

F p0qκ px, yq “

ż π

´π

ż 8

´8

ż bϕ

aϕ

eiωgpϕ,zqµpϕ, z, x, yq dz dω dϕ, (2.38)
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where

µpϕ, z, x, yq “
1

32π3
e´κ8p|ψpϕ,zq´y|`|ψpϕ,zq´x|q

|ψpϕ, zq ´ y||ψpϕ, zq ´ x|

b

detpdψTpϕ, zqdψpϕ, zqq.
(2.39)

To evaluate the integrals, we remark that if λ P C1pRq is a real-valued, strictly
monotone function with λpRq “ I Ă R and ρ P L1pR2q, then
ż 8

´8

ż 8

´8

eiωλpzqρpzqdz dω “
ż 8

´8

ż 8

´8

eiωζρλpζq dζ dω, where ρλpζq “
ρpλ´1pζqq

|λ1pλ´1pζqq|
χIpζq

with the characteristic function χI of the interval I . Now, the inner integral is up to
the missing factor 1?

2π exactly the inverse Fourier transform ρ̌λ of ρλ so that we get

ż 8

´8

ż 8

´8

eiωλpzqρpzq dz dω “
?

2π
ż 8

´8

ρ̌λpωqdω “ 2πρλp0q.

Applying this result to the two inner integrals in (2.38), where we use from above
that gpϕ, ¨q has only two critical points and is therefore piecewise strictly monotone
to first split the innermost integral into integrals over intervals where Bzgpϕ, zq ‰ 0,
we find with (2.36) that

F p0qκ px, yq “ 2π
ż π

´π

µpϕ, 0, x, yq
|Bzgpϕ, 0q|

dϕ. (2.40)

Evaluating (2.37) at z “ 0, we find with |ψpϕ, 0q ´ x| “ |ψpϕ, 0q ´ y|, see (2.36),
and the explicit formula (2.35) for the parametrisation ψ that

Bzgpϕ, 0q “
〈

y ´ x

|ψpϕ, 0q ´ x| , Bzrpϕ, 0qpcosϕe1 ` sinϕe2q ` e3

〉
“

|y ´ x|

|ψpϕ, 0q ´ x| .

Plugging this together with formula (2.39) for µ into (2.40), we finally get for F p0qκ

the representation

F p0qκ px, yq “
1

16π2|y ´ x|

ż π

´π

e´2κ8|ψpϕ,0q´x|

|ψpϕ, 0q ´ x|

b

detp dψTpϕ, 0qdψpϕ, 0qq dϕ.

(2.41)

This is an integral over the intersection γx,y “ tξ P BΩ |
〈
ξ ´ 1

2px` yq, y ´ x
〉
“

0u of BΩ and the bisection plane of the points x and y. To express it in a parametri-
sation invariant form, we write it as a line integral over γx,y, which means we want
to use the volume element |Bϕψpϕ, 0q| dϕ. Calculating the outer unit normal vector
explicitly from (2.35), we find

ν ˝ ψ “
Bϕψ ˆ Bzψ

a

detp dψT dψq
“
r e1 ` Bϕr e2 ´ rBzr e3

a

detp dψT dψq
.
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Thus, we get the relation

|Bϕψ|
2 “ r2 ` pBϕrq

2 “ detpdψT dψq |ν ˝ ψ ´ 〈ν ˝ ψ, e3〉 e3|
2 .

With this, we can write (2.41) as the parametrisation free line integral

F p0qκ px, yq “
1

16π2|y ´ x|

ż

γx,y

e´2κ8|ξ´x|

|ξ ´ x|

ˇ

ˇ

ˇ

ˇ

νpξq ´

〈
y ´ x

|y ´ x|
, νpξq

〉
y ´ x

|y ´ x|

ˇ

ˇ

ˇ

ˇ

´1
dSpξq.

(2.42)

In particular, we have

|F p0qκ px, yq| ď
A

|x´ y|
for all x, y P Ωε with x ‰ y (2.43)

for some constant A ą 0, and therefore F p0qκ P L2pΩε ˆ Ωεq.

• To estimate the first perturbation F p1qκ , we remark that, according to Definition 2.3.2,
κ˚ is bounded and square integrable. We can therefore pull in the definition (2.34)
of F p1qκ the integration over the variable ω as an inverse Fourier transform inside the
surface integral and find that

F p1qκ px, yq “
1

16π2
?

2π

ż

BΩ
ie´κ8p|ξ´y|`|ξ´x|q

ˆ

˜

κ̌˚p
1
c p|ξ ´ y| ´ |ξ ´ x|qq

|ξ ´ x|
´
κ̌˚p

1
c p|ξ ´ x| ´ |ξ ´ y|qq

|ξ ´ y|

¸

dSpξq.

Choosing now a radius R ą diam Ω, we get by applying Hölder’s inequality and
increasing the domain of integration that
ż

Ωε

ż

Ωε
|F p1qκ px, yq|2 dx dy ď |BΩ|

128π5ε2

ż

BΩ

ż

BRpξq

ż

BRpξq
|κ̌˚p

1
c p|ξ´y|´|ξ´x|qq|

2 dx dy dSpξq

Thus, switching in the two inner integrals to spherical coordinates around the point ξ,
we find
ż

Ωε

ż

Ωε
|F p1qκ px, yq|2 dx dy ď |BΩ|

2R4

8π3ε2

ż R

0

ż R

0
|κ̌˚p

1
c pr´ρqq|

2 dr dρ ď |BΩ|
2R5c

8π3ε2 }κ̌˚}
2
2,

which shows that F p1qκ P L2pΩε ˆ Ωεq.

• The second perturbation F p2qκ can be bounded directly via

|F p2qκ px, yq| ď
1

32π3ε2

ż 8

´8

ż

BΩ
|f p2qκ pω, ξ, x, yq| dSpξq dω (2.44)

for all x, y P Ωε. Using that for every bounded set D Ă C, there exists a constant
C ą 0 such that

|ez ´ z ´ 1| ď C|z|2 for all z P D
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holds, we find a constant C̃ ą 0 so that

|f p2qκ pω, ξ, x, yq| ď C̃|κ˚pωq|
2 for all ω P R, ξ P BΩ, x, y P Ωε. (2.45)

Plugging this into (2.44), we get that

|F p2qκ px, yq| ď
C̃|BΩ|
32π3ε2 }κ˚}

2
2 for all x, y P Ωε.

Thus, in particular, we have F p2qκ P L2pΩε ˆ Ωεq.

We conclude therefore that Fκ “ F
p0q
κ ` F

p1q
κ ` F

p2q
κ P L2pΩε ˆ Ωεq, which shows as in

the first part of the proof that P̌˚κ P̌κ is a Hilbert–Schmidt operator and compact. ˝

2.5 Singular Values of the Integrated Photoacoustic Operator

We have seen in Proposition 2.4.3 that the operator P̌˚κ P̌κ, given by (2.33), is a compact operator.
The inversion of the photoacoustic problem is therefore ill-posed. To quantify the ill-posedness,
we want to study the decay of the eigenvalues pλnpP̌˚κ P̌κqqnPN of P̌˚κ P̌κ, where we enumerate
the eigenvalues in decreasing order: 0 ď λn`1pP̌˚κ P̌κq ď λnpP̌˚κ P̌κq for all n P N.

We differ again between the two cases of a strong and of a weak attenuation coefficient κ.

2.5.1 Strongly Attenuating Media

To obtain the behaviour of the eigenvalues of P̌˚κ P̌κ in the case of a strong attenuation coeffi-
cient κ, see Definition 2.3.1, we will use Corollary 2.A.4 which gives a criterion for a general
integral operator with smooth kernel to have exponentially fast decaying eigenvalues in terms of
an upper bound on the derivatives of the kernel, see (2.79). We therefore only have to check that
the kernel (2.32) of P̌˚κ P̌κ fulfils these estimates. The calculations are straightforward (although
a bit tedious) and can be found explicitly in section 2.B.
Proposition 2.5.1 Let Ω be a bounded Lipschitz domain in R3, ε ą 0 and P̌κ : L2pΩεq Ñ

L2pRˆ BΩq be the integrated photoacoustic operator of a strong attenuation coefficient κ.

Then, the kernel Fκ of P̌˚κ P̌κ, explicitly given by (2.32), fulfils the estimate

1
j! sup

x,yPΩε
sup
vPS2

ˇ

ˇ

ˇ

ˇ

Bj

Bsj

ˇ

ˇ

ˇ

ˇ

s“0
Fκpx, y ` svq

ˇ

ˇ

ˇ

ˇ

ď Bbjj
pN
β
´1qj for all j P N0, (2.46)

for some constants B, b ą 0, where N P N denotes the exponent for ` “ 0 in the condition (2.5)
and β P p0, N s is the exponent in the condition (2.24) for the strong attenuation coefficient κ.
Proof: Putting the derivatives with respect to s inside the integrals in the definition (2.32) of the
kernel Fκ, we get that

Bj

Bsj

ˇ

ˇ

ˇ

ˇ

s“0
Fκpx, y ` svq “

ż 8

´8

1
ω2

ż

BΩ
Gκpω, x´ ξq

Bj

Bsj

ˇ

ˇ

ˇ

ˇ

s“0
Gκpω, y ´ ξ ` svq dSpξq dω,
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where Gκ denotes the integral kernel (2.19). We remark that the term 1
ω2 comes from the fact that

we consider the integrated photoacoustic operator instead of the operator which maps directly the
measurements to the initial data.

Using Proposition 2.B.3 to estimate the derivative of Gκ, we find a constant C ą 0 so that

1
j!

ˇ

ˇ

ˇ

ˇ

Bj

Bsj

ˇ

ˇ

ˇ

ˇ

s“0
Fκpx, y ` svq

ˇ

ˇ

ˇ

ˇ

ď Cj
ż 8

´8

1
ω2

ż

BΩ
|Gκpω, x´ ξq| |Gκpω, y ´ ξq|

ˆ

1
|y ´ ξ|j

`
1
j! |κpωq|

j

˙

dSpξq dω.

From the uniform estimate

|Gκpω, x´ ξq| ď
|ω|e´ε=mκpωq

4πε
?

2π
for all x P Ωε, ξ P BΩ, ω P R,

which is directly obtained from the definition (2.19) of Gκ by using that |x ´ ξ| ě ε for all
ξ P BΩ and x P Ωε, it then follows that

1
j!

ˇ

ˇ

ˇ

ˇ

Bj

Bsj

ˇ

ˇ

ˇ

ˇ

s“0
Fκpx, y ` svq

ˇ

ˇ

ˇ

ˇ

ď
|BΩ|Cj

32π3ε2

ż 8

´8

e´2ε=mκpωq

ˆ

1
εj
`

1
j! |κpωq|

j

˙

dω.

Applying now Lemma 2.B.4 (for the first term in the integrand, we use Lemma 2.B.4 with j “ 0),
we find constants B, b ą 0 so that

1
j!

ˇ

ˇ

ˇ

ˇ

Bj

Bsj

ˇ

ˇ

ˇ

ˇ

s“0
F px, y ` svq

ˇ

ˇ

ˇ

ˇ

ď Bbjj
pN
β
´1qj for all x, y P Ωε, v P S

2, j P N0.
˝

Combining Proposition 2.5.1 with Corollary 2.A.4, we obtain the decay of the singular values of
the integrated photoacoustic operator.
Corollary 2.5.2 Let Ω be a bounded Lipschitz domain in R3, ε ą 0, and P̌κ : L2pΩεq Ñ

L2pRˆ BΩq be the integrated photoacoustic operator of a strong attenuation coefficient κ.

Then, there exist constants C, c ą 0 so that the eigenvalues pλnpP̌˚κ P̌κqqnPN of P̌˚κ P̌κ in
decreasing order fulfil

λnpP̌˚κ P̌κq ď Cn m
?
n exp

´

´cn
β
Nm

¯

for all n P N. (2.47)

Proof: According to Proposition 2.5.1, we know that there exist constants B, b ą 0 so that the
integral kernel Fκ of the operator P̌˚κ P̌κ fulfils the estimate (2.46). Applying thus Corollary 2.A.4
with µ “ N

β ´ 1 to the operator P̌˚κ P̌κ, we obtain the decay rate (2.47). ˝

2.5.2 Weakly Attenuating Media

To analyse the operator P̌˚κ P̌κ in the case of a weak attenuation coefficient κ, see Definition 2.3.2,
we split P̌κ as in the proof of Lemma 2.4.2 in P̌κ “ P̌p0qκ ` P̌p1qκ , see (2.28) and (2.29). We
will show that decomposing the operator as P̌˚κ P̌κ “ P̌p0qκ ˚P̌p0qκ `Qκ, the eigenvalues of the
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operator Qκ “ P̌p0qκ ˚P̌p1qκ ` P̌p1qκ ˚P̌p0qκ ` P̌p1qκ ˚P̌p1qκ decay faster than those of P̌p0qκ ˚P̌p0qκ so that
Qκ does not alter the asymptotic decay rate of the eigenvalues of P̌p0qκ ˚P̌p0qκ .

The term P̌p0qκ ˚P̌p0qκ corresponds to a constant attenuation and its behaviour was already discussed
in [Pal10].
Lemma 2.5.3 Let κ be a weak attenuation coefficient, Ω Ă R3 be a bounded, convex domain
with smooth boundary, and ε ą 0. We define the operator P̌p0qκ : L2pΩεq Ñ L2pΩεq by (2.28).
Then, there exist constants C1, C2 ą 0 such that we have

C1n
´ 2

3 ď λnpP̌p0qκ ˚P̌p0qκ q ď C2n
´ 2

3 for all n P N. (2.48)

Proof: The idea of the proof is to show that the operator P̌p0qκ ˚P̌p0qκ has the same eigenvalues as
an elliptic pseudofifferential operator T : L2pMq Ñ L2pMq of order ´2 on a closed manifold
M . Then, we can apply the result [Shu87, Theorem 15.2] to obtain the asymptotic behaviour of
the eigenvalues.

• First, we want to replace the operator P̌p0qκ ˚P̌p0qκ by a pseudodifferential operator T on a
closed manifold with the same eigenvalues.

We have seen in the proof of Proposition 2.4.3 that the operator P̌p0qκ ˚P̌p0qκ is an integral
operator with integral kernel F p0qκ defined by (2.34). We now generate the closed manifold
M by taking two copies of Ωε and identifying their boundary points: M “ pΩε ˆ

t1, 2uq{ „ with the equivalence relation px, aq „ px̃, ãq if and only if x “ x̃ and either
a “ ã or x P BΩε. This is called the double of the manifold with boundary Ωε, see for
example [Lee13, Example 9.32]. Then, the operator T : L2pMq Ñ L2pMq given by

T hprx, asq “ 1
2

2
ÿ

b“1

ż

Ωε
F p0qκ px, yqhpry, bsqdy

has the same non-zero eigenvalues as P̌p0qκ ˚P̌p0qκ : L2pΩεq Ñ L2pΩεq. Indeed, if h is
an eigenfunction of T with eigenvalue λ ‰ 0, then necessarily hprx, 1sq “ hprx, 2sq for
almost every x P Ωε and therefore x ÞÑ hprx, 1sq is an eigenfunction of P̌p0qκ ˚P̌p0qκ with
eigenvalue λ. Conversely, if h is an eigenfunction of P̌p0qκ ˚P̌p0qκ with eigenvalue λ, then
clearly rx, as ÞÑ hpxq is an eigenfunction of T with eigenvalue λ.

To write T in the form of a pseudodifferential operator, we extend the kernel F p0qκ to
a smooth function F̃ p0qκ P C8pΩε ˆ R

3q by choosing an arbitrary cut-off function φ P
C8c pR

3q with φpyq “ 1 for y P Ωε and suppφ Ă Ω and setting

F̃ p0qκ px, yq “
φpyq

32π3

ż 8

´8

ż

BΩ

e´κ8p|ξ´y|`|ξ´x|q

|ξ ´ y||ξ ´ x|
eiω
c
p|ξ´y|´|ξ´x|q dSpξq dω, x P Ωε, y P R

3.

(2.49)
Then, defining g up to the normalisation factor p2πq

3
2 as the inverse Fourier transform of

F̃
p0q
κ with respect to y:

gpx, kq “

ż

R3
F̃ p0qκ px, yqe´i〈k,x´y〉 dy, x P Ωε, k P R

3, (2.50)
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we can write the kernel F p0qκ with the Fourier inversion theorem in the form

F p0qκ px, yq “
1

p2πq3

ż

R3
gpx, kqei〈k,x´y〉 dk, x, y P Ωε,

where g is smooth, since gpx, ¨q is the Fourier transform of a function with compact
support.

• In the expression (2.50) for g, the integral over ω from the definition (2.49) of F̃ p0qκ can
be seen as a one-dimensional inverse Fourier transform, which allows us to get rid of two
one-dimensional integrals.

To this end, we pull the outer integral over R3 inside both other integrals and write it in
spherical coordinates around the point ξ: y “ ξ ` rθ with r ą 0 and θ P S2. This gives us

gpx, kq “
1

32π3

ż

BΩ
ei〈k,ξ´x〉

ż

S2

ż 8

´8

e´iω
c
|ξ´x|

ˆ

ż 8

0

re´κ8pr`|ξ´x|q

|ξ ´ x|
φpξ ` rθqeipω

c
`〈k,θ〉qr dr dω dSpθqdSpξq.

For every ξ P BΩ and every θ P S2, the two inner integrals with respect to r and ω each
represent a Fourier transform and we get with ρprq “ re´κ8pr`|ξ´x|q

|ξ´x| φpξ ` rθqχr0,8qprq
that

ż 8

´8

e´iω
c
|ξ´x|

ż 8

0
ρprqeipω

c
`〈k,θ〉qr dr dω “

?
2π

ż 8

´8

ρ̌pωc ` 〈k, θ〉qe´iω
c
|ξ´x| dω

“ 2πcei|ξ´x|〈k,θ〉ρp|ξ ´ x|q.

Thus, we find

gpx, kq “
c

16π2

ż

BΩ

ż

S2
e´2κ8|ξ´x|φpξ ` |ξ ´ x|θqeip|ξ´x|〈k,θ〉`〈k,ξ´x〉q dSpθqdSpξq.

(2.51)

• We are now interested in the leading order asymptotics of gpx, kq as |k| Ñ 8. To obtain
this, we will apply the stationary phase method, see for example [H0̈3, Theorem 7.7.5].

So, let ψ P C8pU ;R3q be a parametrisation of BΩ and Θ P C8pV ;R3q be a paramtetri-
sation of S2 with some open sets U, V Ă R2. Then, according to the stationary phase
method, the asymptotics is determined by the region around the critical points of the phase
function

Φx,kpη, ϑq “ |ψpηq ´ x| 〈k,Θpϑq〉` 〈k, ψpηq ´ x〉

in the integrand in (2.51). The optimality conditions

0 “ BϑiΦx,kpη, ϑq “ |ψpηq ´ x| 〈k, BϑiΘpϑq〉 , i “ 1, 2,
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with respect to ϑ imply that k is normal to the tangent space of S2 in the point Θpϑq at a
critical point pη, ϑq of Φx,k, that is Θpϑq “ ˘ k

|k| . The optimality conditions

0 “ BηiΦx,kpη, ϑq “

〈
Bηiψpηq,˘|k|

ψpηq ´ x

|ψpηq ´ x|
` k

〉
, i “ 1, 2,

with respect to η then imply for a critical point pη, ϑq of Φx,k that the projections of the two
vectors ´ ψpηq´x

|ψpηq´x| and Θpϑq “ ˘ k
|k| on the tangent space of BΩ at ψpηq coincide. Since

both vectors have unit length, this means that up to the sign of the normal component they
have to be equal. Additionally, we use that, because of the cut-off term φpψpηq ` |ψpηq ´
x|Θpϑqq in the integrand, the critical points at which the vector Θpϑq points outwards the
domain Ω at ψpηq do not contribute to the integral. Therefore, a relevant critical point
pη, θq is such that Θpϑq is pointing inwards at ψpηq and since ´ ψpηq´x

|ψpηq´x| is also pointing

inwards, we are left with the two critical points pηp`q, ϑp`qq given by

Θpϑp`qq “ p´1q` k
|k|
“ ´

ψpηp`qq ´ x

|ψpηp`qq ´ x|
, ` “ 1, 2.

In particular, we have Φx,kpη
p`q, ϑp`qq “ 0.

For the second derivatives of Φx,k at the critical points, we find

BηiηjΦx,kpη
p`q, ϑp`qq “

p´1q`|k|
|ψpηq ´ x|

ˆ〈
Bηiψpη

p`qq, Bηiψpη
p`qq
〉
´

〈
Bηiψpη

p`qq,
k

|k|

〉〈
Bηjψpη

p`qq,
k

|k|

〉˙
,

BϑiϑjΦx,kpη
p`q, ϑp`qq “ |ψpηp`qq ´ x|

〈
k, BϑiϑjΘpϑp`qq

〉
,

BηiϑjΦx,kpη
p`q, ϑp`qq “ 0.

For the determinants of the derivatives with respect to η and ϑ, we obtain (this can be
readily checked for parametrisations ψ and Θ corresponding to normal coordinates at the
points pψpηp`qq,Θpϑp`qqq)

detpBηiηjΦx,kpη
p`q, ϑp`qqq2i,j“1 “

〈
k, νpψpηp`qqq

〉2

|ψpηp`qq ´ x|2
detpdψTpηp`qq dψpηp`qqq,

detpBϑiϑjΦx,kpη
p`q, ϑp`qqq2i,j“1 “ |k|

2 detp dΘTpϑp`qq dΘpϑp`qqq,

where ν : BΩ Ñ S2 denotes the outer unit normal vector field on BΩ.

Therefore, the stationary phase method, see for example [H0̈3, Theorem 7.7.5], implies for
x P Ωε, k P R3, and µ ą 0 that we have asymptotically for µÑ8

gpx, µkq “
c

16π2

ż

UˆV
e´2κ8|ψpηq´x|φpψpηq ` |ψpηq ´ x|ΘpϑqqeiµΦx,kpη,ϑq

ˆ

b

detpdψTpηq dψpηqq detpdΘTpϑq dΘpϑqq dpη, ϑq

“
c

4|k|µ2

2
ÿ

`“1

|ψpηp`qq ´ x|

|
〈
k, νpψpηp`qqq

〉
|
e´2κ8|ψpηp`qq´x| `O

ˆ

1
µ3

˙

.
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Thus, g is of the form
gpx, kq “ g´2px, kq `Op|k|´3q

with g´2px, ¨q being a positive function which is homogeneous of order ´2.

Therefore, a parameterix of the pseudodifferential operator T on L2pMq is an elliptic pseudod-
ifferential operator of order 2 and thus has, according to [Shu87, Theorem 15.2], eigenvalues
which grow as n

2
3 . Consequently, the eigenvalues of T and thus also those of P̌˚κ P̌κ decay as

n´
2
3 . ˝

To estimate the eigenvalues of the term P̌p1qκ ˚P̌p1qκ in P̌˚κ P̌κ, we show with Mercer’s theorem that
the operator is trace class.
Lemma 2.5.4 Let κ be a weak attenuation coefficient, Ω Ă R3 be a bounded, convex domain
with smooth boundary, and ε ą 0. We define the operator P̌p1qκ : L2pΩεq Ñ L2pΩεq by (2.29).
Then, we have that

lim
nÑ8

nλnpP̌p1qκ ˚P̌p1qκ q “ 0. (2.52)

Proof: Using the definition (2.29) of P̌p1qκ , we find that

P̌p1qκ ˚P̌p1qκ hpxq “

ż

Ωε
Rκpx, yqhpyq dy

with the integral kernel

Rκpx, yq “
1

32π3

ż 8

´8

ż

BΩ
rκpξ, ω, x, yqdSpξq dω,

rκpξ, ω, x, yq “
eiω
c
p|ξ´y|´|ξ´x|q

|ξ ´ y||ξ ´ x|
e´κ8p|ξ´y|`|ξ´x|qpeiκ˚pωq|ξ´y| ´ 1qpe´iκ˚pωq|ξ´x| ´ 1q.

Since for every bounded set D Ă C, there exists a constant C such that

|ez ´ 1| ď C|z| for all z P D,

we find a constant C̃ ą 0 such that the integrand rκ is uniformly estimated by an integrable
function:

|rκpξ, ω, x, yq| ď C̃|κ˚pωq|
2 for all x, y P Ωε, ξ P BΩ, ω P R.

Taking now an arbitrary sequence pxk, ykqkPN Ă Ωε converging to an element px, yq P Ωε, we
get with the dominated convergence theorem and the continuity of rκ that

lim
kÑ8

Rκpxk, ykq “
1

32π3

ż 8

´8

ż

BΩ
lim
kÑ8

rκpξ, ω, xk, ykq dSpξqdω “ Rκpx, yq.

Thus, Rκ is continuous and therefore Mercer’s theorem, see for example [CH53, Chapter III,
Section 5 and 9], implies that

8
ÿ

n“1
λnpP̌p1qκ ˚P̌p1qκ q ă 8.

Since pλnpP̌p1qκ ˚P̌p1qκ qq8n“1 is by definition a decreasing sequence, Abel’s theorem, see for
example [Har21, §173], gives us (2.52). ˝
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From the decay rates of the singular values of P̌p0qκ and P̌p1qκ , we can directly deduce the decay
rate of the perturbation P̌˚κ P̌κ ´ P̌p0qκ ˚P̌p0qκ .
Lemma 2.5.5 Let κ be a weak attenuation coefficient, Ω Ă R3 be a bounded, convex domain
with smooth boundary, and ε ą 0.

Then, the operator

Qκ : L2pΩεq Ñ L2pΩεq, Qκ “ P̌˚κ P̌κ ´ P̌p0qκ ˚P̌p0qκ (2.53)

with P̌p0qκ : L2pΩεq Ñ L2pΩεq being defined by (2.28) fulfils

lim
nÑ8

n
5
6 |λnpQκq| “ 0. (2.54)

Here pλnpQκqqnPN denotes the eigenvalues of Qκ, sorted in decreasing order: |λn`1pQκq| ď

|λnpQκq| for all n P N.
Proof: We start with the positive semi-definite operator P̌˚κ P̌κ. We split P̌κ as in the proof of
Lemma 2.4.2 in P̌κ “ P̌p0qκ ` P̌p1qκ with P̌p1qκ given by (2.29). Then, we can write Qκ in the form

Qκ “ P̌˚κ P̌κ ´ P̌p0qκ ˚P̌p0qκ “ P̌p1qκ ˚P̌p0qκ ` P̌p0qκ ˚P̌p1qκ ` P̌p1qκ ˚P̌p1qκ .

To estimate the eigenvalues of the operator P̌p1qκ ˚P̌p0qκ ` P̌p0qκ ˚P̌p1qκ , we use that for all m,n P N
the inequalities

|λm`n´1pP̌p1qκ ˚P̌p0qκ ` P̌p0qκ ˚P̌p1qκ q| ď smpP̌p0qκ ˚P̌p1qκ q ` snpP̌p0qκ ˚P̌p1qκ q and

sm`n´1pP̌p0qκ ˚P̌p1qκ q ď smpP̌p0qκ qsnpP̌p1qκ q

hold, see for example [GK69, Chapter II.2.3, Corollary 2.2], where snpT q “
a

λnpT ˚T q denotes
the singular values of a compact operator T sorted in decreasing order: sn`1pT q ď snpT q for all
n P N. Here, we used that snpT q “ snpT

˚q, see for example [GK69, Chapter II.2.2]. Inserting
the decay rates (2.48) and (2.52) for psnpP̌p0qκ qq8n“1 and psnpP̌p1qκ qq8n“1 into these inequalities,
we find that

lim
nÑ8

n
5
6 |λnpP̌p1qκ ˚P̌p0qκ ` P̌p0qκ ˚P̌p1qκ q| “ 0.

Estimating, again with [GK69, Chapter II.2.3, Corollary 2.2], the eigenvalues of the sum Qκ of
the two operators P̌p1qκ ˚P̌p0qκ ` P̌p0qκ ˚P̌p1qκ and P̌p1qκ ˚P̌p1qκ , we find that

|λm`n´1pQκq| ď |λmpP̌p1qκ ˚P̌p0qκ ` P̌p0qκ ˚P̌p1qκ q| ` λnpP̌p1qκ ˚P̌p1qκ q

for all m,n P N, which yields with the behaviour (2.52) of the eigenvalues of P̌p1qκ ˚P̌p1qκ the
result (2.54). ˝

Combining Lemma 2.5.3 and Lemma 2.5.5, we obtain that the singular values of the photoacoustic
operator P̌κ decay as in the unperturbed case.
Theorem 2.5.6 Let P̌κ : L2pΩεq Ñ L2pRˆ BΩq be the integrated photoacoustic operator of a
weak attenuation coefficient κ for some bounded, convex domain Ω Ă R3 with smooth boundary
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and some ε ą 0. Then, there exist constants C1, C2 ą 0 such that we have

C1n
´ 2

3 ď λnpP̌˚κ P̌κq ď C2n
´ 2

3 for all n P N. (2.55)

Proof: Defining again the operators P̌p0qκ , see (2.28), and Qκ, see (2.53), we know from [GK69,
Chapter II.2.3, Corollary 2.2] for all m,n P N that

λm`n´1pP̌˚κ P̌κq ď λmpP̌p0qκ ˚P̌p0qκ ˚q ` |λnpQκq|

and
λm`n´1pP̌p0qκ ˚P̌p0qκ q ´ |λnpQκq| ď λmpP̌˚κ P̌˚κ q.

Therefore, Lemma 2.5.3 and Lemma 2.5.5 imply bounds of the form (2.55). ˝

2.A Eigenvalues of Integral Operators of Hilbert–Schmidt Type

In this section, we derive estimates for the eigenvalues of operators T of the form

T : L2pUq Ñ L2pUq, pThqpxq “

ż

U
F px, yqhpyq dy (2.56)

on a bounded, open set U Ă Rm with an Hermitian integral kernel F P CpŪ ˆ Ūq (that
is, F px, yq “ F py, xq). In particular, such an operator T is a self-adjoint Hilbert–Schmidt
operator, and we want to additionally assume that T is positive semi-definite. So, the eigenvalues
pλnpT qqnPN of T are non-negative and we enumerate them in decreasing order:

0 ď λn`1pT q ď λnpT q for all n P N.

To obtain the asymptotic decay rate of the eigenvalues of such an operator T , we proceed as
in [CH99] where a characterisation for a decay rate of the form λnpT q “ Opn´kq was presented
in terms of an upper estimate on the derivatives of the kernel F . The extension to an exponential
decay rate is rather straightforward.

First, we show that when approximating an operator T1 by a finite rank operator T2, we can
estimate the eigenvalues above the rank of the finite rank operator T2 in terms of the supremum
norm of the difference of their kernels, see for example [Wey12, Satz II].
Lemma 2.A.1 Let U Ă Rm be a bounded, open set, Ti : L2pUq Ñ L2pUq, i “ 1, 2, be two
integral operators with Hermitian integral kernels Fi P CpŪ ˆ Ūq. Moreover, let T1 be positive
semi-definite and T2 have finite rank r P N0.

Then, the eigenvalues pλnpT1qqnPN of T1 (sorted in decreasing order) satisfy

8
ÿ

n“r`1
λnpT1q ď p2r ` 1q|U |}F1 ´ F2}8.
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Proof: The min-max theorem (see for example [GK69, Chapter II.2.3]) states that for every
self-adjoint, compact operator T and every fixed m P N

|λmpT q| “ min
rankpAqďm´1

}T ´A}, (2.57)

where the minimum is taken over all operators A : L2pUq Ñ L2pUq with rank less than or equal
to m´ 1.

Let us fix n P N now. Applying (2.57) with T “ T1 ´ T2 shows that there exists an operator A
with rankpAq ď n´ 1 such that

|λnpT1 ´ T2q| “ }T1 ´ T2 ´A}. (2.58)

Because rankpT2q ď r and rankpAq ď n ´ 1, rankpT2 ` Aq ď n ` r ´ 1, and we therefore
have

}T1 ´ T2 ´A} ě min
rankpÃqďn`r´1

}T1 ´ Ã}. (2.59)

Using (2.57) with T “ T1 and m “ n` r we find that

min
rankpÃqďn`r´1

}T1 ´ Ã} “ |λn`rpT1q| “ λn`rpT1q, (2.60)

since T1 is positive semi-definite. Combining the three relations (2.58), (2.59), and (2.60), we get

λn`rpT1q ď |λnpT1 ´ T2q| for all r, n P N.

Taking the sum over all n P N, we get

8
ÿ

n“r`1
λnpT1q ď

8
ÿ

n“1
|λnpT1 ´ T2q|. (2.61)

The eigenvalues of T1 ´ T2 do not need to be all non-negative, however, since T2 has rank at
most r, the operator T1 ´ T2 cannot have more than r negative eigenvalues. Moreover, their
norm is bounded by

|λnpT1 ´ T2q| ď }T1 ´ T2} ď }F1 ´ F2}L2pUˆUq ď |U |}F1 ´ F2}8. (2.62)

Thus, we can estimate the sum in (2.61) by

8
ÿ

n“1
|λnpT1 ´ T2q| “

8
ÿ

n“1
λnpT1 ´ T2q ` 2

ÿ

λnpT1´T2qă0
|λnpT1 ´ T2q|

ď

8
ÿ

n“1
λnpT1 ´ T2q ` 2r|U |}F1 ´ F2}8.

(2.63)

Moreover, choosing an orthonormal eigenbasis pψnq8n“1 Ă L2pUq of the compact, self-adjoint
operator T1 ´ T2, we get with Mercer’s theorem, see for example [CH53, Chapter III, §5 and
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§9], that

F1px, yq ´ F2px, yq “
8
ÿ

n“1
λnpT1 ´ T2qψnpxqψnpyq,

and therefore

8
ÿ

n“1
λnpT1 ´ T2q “

ż

U
pF1px, xq ´ F2px, xqq dx ď |U |}F1 ´ F2}8. (2.64)

Combining (2.61), (2.63), and (2.64) gives

8
ÿ

n“r`1
λnpT1q ď p2r ` 1q|U |}F1 ´ F2}8. ˝

Thus, approximating the kernel in our integral operator by one of its Taylor polynomials, we
get a convergence rate for the eigenvalues depending on the approximation error of the Taylor
polynomial. To improve this estimate, we first subdivide the domain U in smaller domains, so
that the approximation error of the Taylor polynomial is smaller.

Regarding an upper bound for the eigenvalues, it is indeed enough to keep the subdomains along
the diagonal of U ˆ U , see [CH99, Lemma 1].
Lemma 2.A.2 Let U Ă Rm be a bounded, open set and T1 : L2pUq Ñ L2pUq be a positive
semi-definite integral operator with Hermitian kernel F1 P CpŪ ˆ Ūq. Let further Q` Ă U ,
` “ 1, . . . , N , be open, pairwise disjoint sets such that U Ă

ŤN
`“1 Q̄` and define the kernel

F2 : Ū ˆ Ū Ñ C by

F2 “ F1

N
ÿ

`“1
χQ`ˆQ` .

Then, the integral operator T2 : L2pUq Ñ L2pUq with the integral kernel F2 is also positive
semi-definite and fulfils

8
ÿ

n“r`1
λnpT1q ď

8
ÿ

n“r`1
λnpT2q for every r P N0. (2.65)

Proof: For each ` P t1, . . . , Nu, let P` : L2pUq Ñ L2pUq, P`h “ hχQ` be the orthogonal
projection onto the subspace L2pQ`q. In particular, because the sets Q` are pairwise disjoint, we
have

PkP` “ δk,`P`. (2.66)

With this notation, we can write

T2 “
N
ÿ

`“1
P`T1P`. (2.67)

Now, we first show that T2 is indeed positive semi-definite. Let us assume by contradiction that
this is not the case. Then, there exists a function h P L2pUq so that 〈h, T2h〉 ă 0. Thus, because
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of the representation (2.67) of T2, we find an index ` P t1, . . . , Nu such that

〈P`h, T1P`h〉 “ 〈h, P`T1P`h〉 ă 0.

However, this contradicts the fact that T1 should be positive semi-definite.

To get a relation between the eigenvalues of T1 and T2, we construct a sequence pT pkqqNk“0 of
positive semi-definite operators interpolating between T p0q “ T1 and T pNq “ T2. We define
recursively for every k P t1, . . . , Nu

T pkq “
1
2 rT

pk´1q ` p1´ 2PkqT pk´1qp1´ 2Pkqs with T p0q “ T1. (2.68)

Before continuing, we want to verify that this definition indeed yields T pNq “ T2. We first
remark that, because of the orthogonality relation (2.66), the equation (2.68) can be written as

T pkqPk “ PkT
pk´1qPk and

T pkqP` “ p1´ PkqT pk´1qP` for ` ‰ k.

Thus, we get recursively for every ` that

T pNqP` “ p1´ PN qT pN´1qP`

“ p1´ PN q ¨ ¨ ¨ p1´ P``1qT
p`qP`

“ p1´ PN q ¨ ¨ ¨ p1´ P``1qP`T
p`´1qP`

“ p1´ PN q ¨ ¨ ¨ p1´ P``1qP`p1´ P`´1q ¨ ¨ ¨ p1´ P1qT1P`

“ P`T1P`.

So, again using the representation (2.67) of T2, we see that

T pNq “ T pNq
N
ÿ

`“1
P` “

N
ÿ

`“1
P`T1P` “ T2.

Now, by Ky Fan’s maximum principle, see for example [GK69, Chapter II.4], we can write the
sum of the r P N largest eigenvalues of T pkq, k P t1, . . . , Nu, in the form

r
ÿ

n“1
λnpT

pkqq “ sup
#

r
ÿ

n“1

〈
hn, T

pkq
2 hn

〉
| phnq

r
n“1 Ă L2pUq, 〈hn, hn1〉 “ δn,n1

+

,

Inserting the recursive definition (2.68) for T pkq, we get from the subadditivity of the supremum
the estimate

r
ÿ

n“1
λnpT

pkqq ď
1
2

r
ÿ

n“1

”

λn
`

T pk´1q˘` λn

´

p1´ 2PkqT pk´1qp1´ 2Pkq
¯ı

.
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Since p1 ´ 2Pkq2 “ 1 and eigenvalues are invariant under conjugation (that is, we have
λnpAT

pk´1qA´1q “ λnpT
pk´1qq for every invertible operator A), this simplifies to

r
ÿ

n“1
λnpT

pkqq ď

r
ÿ

n“1
λnpT

pk´1q.

We therefore get recursively the inequality

r
ÿ

n“1
λnpT2q ď

r
ÿ

n“1
λnpT1q. (2.69)

Additionally, since h is an eigenfunction of T2 if and only if the functions P`h are for every
` P t1, . . . , Nu either zero or an eigenfunction of P`T1P` with the same eigenvalue, we have that

8
ÿ

n“1
λnpT2q “

N
ÿ

`“1

8
ÿ

n1“1
λn1pP`T1P`q.

According to Mercer’s theorem, see for example [CH53, Chapter III, §5 and §9], we therefore
get as in (2.64) that

8
ÿ

n“1
λnpT2q “

N
ÿ

`“1

ż

Q`

F1px, xqdx “
ż

U
F1px, xq dx “

8
ÿ

n“1
λnpT1q. (2.70)

Finally, combining (2.69) and (2.70), we obtain the estimate (2.65). ˝

Now, putting together Lemma 2.A.1 and Lemma 2.A.2, we obtain a decay rate for the eigenvalues
of the integral operator depending on the convergence rate of the Taylor series of its kernel.
Proposition 2.A.3 Let U Ă Rm be a bounded, open set, T : L2pUq Ñ L2pUq be a positive
semi-definite integral operator with an Hermitian kernel F P CkpŪ ˆ Ūq, k P N, and define

Mj “
1
j! sup

x,yPU
sup

vPSm´1

ˇ

ˇ

ˇ

ˇ

Bj

Bsj

ˇ

ˇ

ˇ

ˇ

s“0
F px, y ` svq

ˇ

ˇ

ˇ

ˇ

, j P N, j ď k.

Then, there exist constants A ą 0 and a ą 0 such that for every n P N

λnpT q ď A min
jPJk,n

»

–Mj

˜

a m

c

2
n

¸j

pj `mqj`m

fi

fl , (2.71)

where we take the minimum over all values j in the set

Jk,n “

"

j P N | apj `mq ď m

c

n

2 , j ď k

*

.

Proof: For some δ P p0, 1q, we partition the domain U in pairwise disjoint open sets Q`,
` “ 1, . . . , N , with diameter not greater than δ such that

ŤN
`“1 Q̄` Ą U . We remark that there

exists a constant a ą 0 so that we can find for every δ P p0, 1q such a partition with N sets where
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N ă

´a

δ

¯m
(2.72)

(for example by picking a cube with side lengthD “ diampUq containing U Ă Rm and choosing
a partition in rDL s

m cubes of side length L “ δ?
m

, which gives an estimate of the form (2.72)
with a “ D

?
m` 1).

According to Lemma 2.A.2, we can now get an upper bound for the behaviour of the lower
eigenvalues of T by considering the eigenvalues of the integral operator T̃ : L2pUq Ñ L2pUq
with kernel F

řN
`“1 χQ`ˆQ` or, equivalently, the eigenvalues of the integral operators T` :

L2pQ`q Ñ L2pQ`q with the integral kernels FχQ`ˆQ` .

To obtain an estimate for the eigenvalues of the operators T`, we consider instead of T` the finite
rank operator which we get by approximating the kernel F on Q`ˆQ` by a polynomial and then
apply Lemma 2.A.1, see [Wey12, §2].

So, we pick in every setQ` an arbitrary point z` and expand F onQ`ˆQ` in a Taylor polynomial
of degree j ´ 1 for some j ď k with respect to the second variable around the points z`. Then,
we get

F px, yq “ Fj,`px, yq ` Cj,`px, yq, x, y P Q`,

with the Taylor polynomial Fj,` explicitly given by

Fj,`px, yq “
ÿ

tαPNm0 ||α|ďj´1u

1
α!B

α
y F px, z`qpy ´ z`q

α,

and with the remainder term Cj,`, which can be uniformly estimated by

|Cj,`px, yq| ďMjδ
j for all x, y P Q`. (2.73)

Since Fj,` is not necessarily Hermitian, we symmetrise it by defining the kernel F̃j,` on Q` ˆQ`
as

F̃j,`px, yq “
1
2pFj,`px, yq ` Fj,`py, xqq.

Then, F̃j,` is of the form F̃j,`px, yq “
řrj
i“1 ai,`pxqbi,`pyq for some functions ai,`, bi,` P CpQ̄`q

with rj given by two times the number of elements in the set tα P Nm
0 | |α| ď j ´ 1u, which

is rj “ 2
`

j`m´1
m

˘

. Thus, the integral operator T̃j,` : L2pQ`q Ñ L2pQ`q with kernel F̃j,` has a
finite rank which is not grater than rj . Moreover, we get from (2.73) the uniform estimate

sup
x,yPQ`

|F px, yq ´ F̃j,`px, yq| ďMjδ
j .

Therefore, Lemma 2.A.1 gives us directly that

8
ÿ

n“rj`1
λnpT`q ď p2rj ` 1qMj |Q`|δ

j . (2.74)
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Now, since every eigenvalue of the integral operator T̃ corresponds exactly to one eigenvalue of
one of the operators T`, we have that

8
ÿ

n“1
λnpT̃ q “

N
ÿ

`“1

8
ÿ

n“1
λnpT`q, (2.75)

and since the eigenvalues of every operator are enumerated in decreasing order, we have that

Nrj
ÿ

n“1
λnpT̃ q ě

N
ÿ

`“1

rj
ÿ

n“1
λnpT`q. (2.76)

Thus, we get from Lemma 2.A.2 for the eigenvalues of the operator T by combining (2.75),
(2.76), and using the estimate (2.74) that

8
ÿ

n“Nrj`1
λnpT q ď

8
ÿ

n“Nrj`1
λnpT̃ q ď

N
ÿ

`“1

8
ÿ

n“rj`1
λnpT`q ď p2rj ` 1qMj |U |δ

j . (2.77)

For fixed n P N and j P N, we now want to choose the parameter N P N in such a way that
Nrj ă n and that we can make the parameter δ as small as possible. We pick

δ “ a m

c

rj
n
,

where we assume that j is chosen such that rj ă n
am , so that δ ă 1 is fulfilled (an upper bound

on δ is needed for an estimate of the form (2.72)). Because of rj “ 2
`

j`m´1
m

˘

ď 2pj`m´ 1qm,
this condition on rj can be ensured by imposing

j `m ď
1
a

m

c

n

2 . (2.78)

Then, according to (2.72), there exists a partition pQ`qN`“1 with

N ă

´a

δ

¯m
“
n

rj
.

Evaluating (2.77) at these parameters, we find that

λnpT q ď
8
ÿ

ñ“Nrj`1
λñpT q ď p2rj ` 1qMj |U |δ

j ď p2rj ` 1qMj |U |a
j
´rj
n

¯

j
m
.

Simplifying the expression by estimating rj ď 2pj `m ´ 1qm ď 2pj `mqm and 2rj ` 1 ď
4pj `mqm, we finally get that

λnpT q ď 4|U |Mj

˜

a m

c

2
n

¸j

pj `mqj`m,
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where we can choose j P t1, . . . , ku arbitrary as long as the condition (2.78) is fulfilled. ˝

In particular, Proposition 2.A.3 includes the trivial case where the kernel F is a polynomial of
degree K, in which case MK`1 “ 0 and we obtain λnpT q “ 0 for all n ě 2papK `m` 1qqm,
since then K ` 1 P JK`1,n. Moreover, we find that for a general F P CkpŪ ˆ Ūq, we may
always pick j “ k for n ě 2papk `mqqm to obtain that the eigenvalues decay at least as

λnpT q ď Cn´
k
m

for some constant C ą 0.

For smooth kernels F , the optimal choice of j depends on the behaviour of the supremum Mj of
the directional derivative as a function of j.
Corollary 2.A.4 Let U Ă Rm be a bounded, open set and T : L2pUq Ñ L2pUq be the positive
semi-definite integral operator with the smooth, Hermitian kernel F P C8pŪ ˆ Ūq.

If we have for some constants B, b, µ ą 0 the inequality

1
j! sup

x,yPU
sup

vPSm´1

ˇ

ˇ

ˇ

ˇ

Bj

Bsj

ˇ

ˇ

ˇ

ˇ

s“0
F px, y ` svq

ˇ

ˇ

ˇ

ˇ

ď Bbjjµj , (2.79)

then there exist constants C, c ą 0 so that the eigenvalues decay at least as

λnpT q ď Cn m
?
n exp

´

´cn
1

mp1`µq
¯

, n P N. (2.80)

Proof: Using Proposition 2.A.3 with the upper bound (2.79) for the constants Mj , we find that
there exist constants A, a ą 0 so that

λnpT q ď AB min
j`mď 1

a
m
?

n
2

»

–

˜

ab m
c

2
n

¸j

jµjpj `mqj`m

fi

fl for all n P N.

To simplify this, we estimate jµj ď pj `mqµpj`mq and obtain with j̃ “ j `m

λnpT q ď Ãn min
j̃ď 1

a
m
?

n
2

»

–

˜

ab m
c

2
n

¸j̃

j̃p1`µqj̃

fi

fl for all n P N (2.81)

for some constant Ã ą 0.

To evaluate the minimum in (2.81), we consider for

αn “ ab m
c

2
n

(2.82)

the function
fn : p0,8q Ñ p0,8q, fnpζq “

`

αnζ
1`µ˘ζ .

Then, by solving the optimality condition

0 “ f 1npζq “ pp1` µq log ζ ` 1` µ` logαnqfnpζq,
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we find that fn attains its minimum at

ζn “ e´1α
´ 1

1`µ
n , (2.83)

see Figure 2.2.

1
2
ζn 1 3

2
2

1
2

1

3
2

2

FIGURE 2.2: Graph of the function fnpζq “ pαnζ1`µqζ for αn “ 1
2 and µ “ 1

2 .

Since we only need the asymptotic behaviour for nÑ8, let us pick a value n0 P N such that

ζn ą 1, that is αn ă e´p1`µq ă 1, and

ζn ă
1
a

m

c

n

2 “
b

αn
, that is α

µ
1`µ
n ă be,

for all n ě n0. This can be always achieved since αn Ñ 0 as nÑ8.

Now, the minimum in (2.81) is restricted to the set of natural numbers j̃ ď 1
a
m
a

n
2 so that we

cannot simply insert for j̃ the minimum point ζn of the function fn. Instead, we estimate the
minimum from above by the value of fn at the largest integer tζnu below ζn:

λnpT q ď Ãn min
j̃ď 1

a
m
?

n
2

fnpj̃q ď Ãnfnptζnuq.

Since αn ă 1 and ζn ą 1 for all n ě n0, we get from the explicit formula (2.83) for ζn that

fptζnuq ď αζn´1
n ζp1`µqζnn “

1
αn
pαnζ

1`µ
n qζn “

1
αnep1`µqζn

.

Thus, using the expressions (2.82) and (2.83) for αn and ζn, we find constants C, c ą 0 such that

λnpT q ď Cn m
?
n exp

´

´cn
1

mp1`µq
¯

for all n P N.
˝

2.B Estimating the Kernel of the Integrated Photoacoustic Opera-
tor

To be able to use Corollary 2.A.4 to estimate the eigenvalues of the operator P̌˚κ P̌κ, we need to
find an upper bound for the derivatives of the integral kernel Fκ of the operator P̌˚κ P̌κ, which is
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given by (2.32). Since

Fκpx, yq “

ż 8

´8

ż

BΩ

1
ω2Gκpω, ξ ´ xqGκpω, ξ ´ yq dSpξqdω,

where Gκ denotes the fundamental solution of the Helmholtz equation, given by (2.19), we start
with the directional derivatives of the function Gκpω, ¨q. Since Gκpω, ¨q is radially symmetric,
this means we can write it for arbitrary ω P R and x P R3zt0u in the form

Gκpω, xq “ gκ,ωp
1
2 |x|

2q with gκ,ωpρq “ ´
iω

4π
?

2π
eiκpωq

?
2ρ

?
2ρ for ρ ą 0, (2.84)

this problem reduces to the calculation of one dimensional derivatives of the function gκ,ω.
Lemma 2.B.1 Let φ P C8pRq be defined by

φpsq “
1
2 |x` sv|

2

for some arbitrary x P Rm and v P Sm´1. Then, we have for every function γ P C8pRq that

pγ ˝ φqpjqp0q “
t
j
2 u
ÿ

k“0

j!
2kk!pj ´ 2kq! 〈v, x〉j´2k γpj´kqp1

2 |x|
2q. (2.85)

Proof: Since φ1p0q “ 〈v, x〉, φ2p0q “ 1, and all higher derivatives of φ are zero, the formula of
Faà di Bruno, see for example [Com74, Chapter 3.4, Theorem A], simplifies to

pγ ˝ φqpjqp0q “
ÿ

αPA2,j

j!
α1!α2!

ˆ

〈v, x〉
1!

˙α1 ˆ 1
2!

˙α2

γpα1`α2qp1
2 |x|

2q,

where A2,j “ tα P N
2
0 | α1 ` 2α2 “ ju. Setting k “ α2 and thus α1 “ j ´ 2k, we obtain the

formula in the form (2.85). ˝

Thus, the directional derivatives of Gκpω, ¨q can be calculated from the derivatives of gκ,ω, which
we may estimate directly.
Lemma 2.B.2 Let γa P C8pp0,8qq denote the function

γapρq “
ea
?

2ρ
?

2ρ , ρ ą 0, a P C. (2.86)

Then, we have for every j P N0 and all ρ ą 0 the inequality

|γpjqa pρq| ď 2jpj ` 1q!
ˆ

ej`1 `
1
j!

´ρ

2

¯

j
2
|a|j

˙

|γapρq|

ρj
. (2.87)

Proof: Let us first assume that a ‰ 0 and write γapρq “ 1
a

d
dρea

?
2ρ. Thus, we have for every

j P N0 that

γpjqa pρq “
1
a

dj`1

dρj`1 ea
?

2ρ.
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Applying to this the formula of Faà di Bruno, see for example [Com74, Chapter 3.4, Theorem
A], we find with Aj`1 “ tα P N

j`1
0 |

řj`1
k“1 kαk “ j ` 1u that

γpjqa pρq “
ÿ

αPAj`1

pj ` 1q!
α! p2ρq´

α1
2

j`1
ź

k“2

ˆ

p´1qk`1 p2k ´ 3q!!
k! p2ρq

1
2´k

˙αk

a|α|´1ea
?

2ρ

“
ÿ

αPAj`1

pj ` 1q!
α!

j`1
ź

k“2

ˆ

p´1qk`1 p2k ´ 3q!!
k!

˙αk

p2ρq
1
2 |α|´j´1a|α|´1ea

?
2ρ.

This formula also extends continuously to the case a “ 0.

Estimating it from above by using that p2k´3q!!
k! ď

2k´1pk´1q!
k! ď 2k´1, we obtain that

|γpjqa pρq| ď
ÿ

αPAj`1

pj ` 1q!
α!

´ρ

2

¯
1
2 |α|

|a||α|´1 e<e a
?

2ρ

ρj`1 .

Now, using the combinatorial identity

ÿ

αPAj`1XPj`1,``1

pj ` 1q!
α! “

ˆ

j

`

˙

pj ` 1q!
p`` 1q!

for Pj`1,``1 “ tα P N
j`1
0 | |α| “ `` 1u, see for example [Com74, Chapter 3.3, Theorem B],

we find that

|γpjqa pρq| ď
j
ÿ

`“0

ˆ

j

`

˙

pj ` 1q!
p`` 1q!

´ρ

2

¯
``1

2
|a|`

e<e a
?

2ρ

ρj`1 .

We may further estimate this by using
`

j
`

˘

ď
řj
k“0

`

j
k

˘

“ 2j and

j
ÿ

`“0

s`

p`` 1q! ď ej`1 `
sj

j! for every s ą 0 (2.88)

(since
řj
`“0

s`

p``1q! ď
řj
`“0

sj

pj`1q! “
sj

j! if s ě j ` 1 and
řj
`“0

s`

p``1q! ď
řj
`“0

pj`1q`
`! ď ej`1

otherwise) to obtain (2.87). ˝

Putting together Lemma 2.B.1 and Lemma 2.B.2, we find an estimate for the directional deriva-
tives of the function Gκ.
Proposition 2.B.3 Let Gκ be given by (2.19) for some arbitrary function κ : R Ñ C. Then,
there exists a constant C ą 0 so that we have for every j P N0, x P R3zt0u, and v P S2 the
inequality

1
j!

ˇ

ˇ

ˇ

ˇ

Bj

Bsj

ˇ

ˇ

ˇ

ˇ

s“0
Gκpω, x` svq

ˇ

ˇ

ˇ

ˇ

ď |Gκpω, xq|C
j

ˆ

1
|x|j

`
1
j! |κpωq|

j

˙

. (2.89)
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Proof: Writing Gκ in the form (2.84), Lemma 2.B.1 implies (with γ “ gκ,ω) that

ˇ

ˇ

ˇ

ˇ

Bj

Bsj

ˇ

ˇ

ˇ

ˇ

s“0
Gκpω, x` svq

ˇ

ˇ

ˇ

ˇ

ď

t
j
2 u
ÿ

k“0

j!
2kk!pj ´ 2kq! |x|

j´2k |gpj´kqκ,ω p1
2 |x|

2q|.

Inserting the estimate for gpj´kqκ,ω obtained from Lemma 2.B.2 (using that gκ,ω “ ´ iω
4π
?

2πγiκpωq

with γiκpωq being defined by (2.86) and evaluating at ρ “ 1
2 |x|

2), we find that

ˇ

ˇ

ˇ

ˇ

Bj

Bsj

ˇ

ˇ

ˇ

ˇ

s“0
Gκpω, x` svq

ˇ

ˇ

ˇ

ˇ

ď j! |Gκpω, xq|
|x|j

t
j
2 u
ÿ

k“0

pj ´ k ` 1q!
k!pj ´ 2kq! 22j´3k

˜

ej´k`1 `
1

pj ´ kq!

ˆ

|x| |κpωq|

2

˙j´k
¸

.

Using further that pj´k`1q!
k!pj´2kq! “ pj ´ k ` 1q

`

j´k
k

˘

ď pj ´ k ` 1q2j´k, we find that there exists a

constant C̃ ą 0 so that

1
j!

ˇ

ˇ

ˇ

ˇ

Bj

Bsj

ˇ

ˇ

ˇ

ˇ

s“0
Gκpω, x` svq

ˇ

ˇ

ˇ

ˇ

ď
|Gκpω, xq|

|x|j
C̃j

¨

˝1`
j
ÿ

k“r
j
2 s

1
k!

ˆ

|x| |κpωq|

2

˙k
˛

‚.

Estimating the sum herein by using relation (2.88), we obtain the inequality (2.89). ˝

Proposition 2.B.3 allows us to estimate the derivatives of the function Gκ, however, to apply
Corollary 2.A.4 to P̌˚κ P̌κ for the integrated photoacoustic operator P̌κ, we need to estimate the
derivatives of the kernel Fκ of P̌˚κ P̌κ, given by (2.32). For the integral over the frequency which
appears in this estimate, we use the following result in the proof of Proposition 2.5.1.
Lemma 2.B.4 Let ε ą 0 and κ : RÑ H̄ be a measurable function fulfilling the inequality (2.5)
for ` “ 0 with some constants κ1 ą 0 and N P N and the inequality (2.24) with some constants
ω0 ą 0, κ0 ą 0, and β ą 0.

Then, there exist constants B, b ą 0 so that we have for every j P N0 the estimate

1
j!

ż 8

´8

|κpωq|je´2ε=mκpωq dω ď Bbjj
pN
β
´1qj

.

Proof: By our assumptions on κ, we have that there is a constant C ě 0 such that =m κpωq ě
κ0|ω|

β ´ C for all ω P R. Thus,

1
j!

ż 8

´8

|κpωq|je´2ε=mκpωq dω ď 2e2Cεκj1
j!

ż 8

0
p1` ωqNje´2εκ0ωβ dω.

By Jensen’s inequality, applied to the convex function fprq “ rNj , we can estimate

p1` ωqNj “ 2Nj
ˆ

1
2 `

1
2ω

˙Nj

ď 2Nj´1p1` ωNjq.
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Then, we find with the substitution ν “ ωβ that

1
j!

ż 8

´8

|κpωq|je´2ε=mκpωq dω ď p2
Nκ1q

je2Cε

βj!

ż 8

0
ν

1
β
´1
p1` ν

Nj
β qe´2εκ0ν dν

“
p2Nκ1q

je2Cε

βΓpj ` 1q

´

p2εκ0q
´ 1
β Γp 1

β q ` p2εκ0q
´
Nj`1
β ΓpNj`1

β q

¯

,

where

Γpρq “
ż 8

0
νρ´1e´ν dν, ρ ą 0,

denotes the gamma function.

Recalling Stirling’s formula, see for example [AS72, Section 6.1.42], we know that the gamma
function can be bounded from below and above by

c

2π
ρ

´ρ

e

¯ρ
ď Γpρq ď

c

2π
ρ

´ρ

e

¯ρ
e

1
12ρ for every ρ ą 0.

Thus, we find constants B, b ą 0 so that

1
j!

ż 8

´8

|κpωq|je´2ε=mκpωq dω ď Bbjj
pN
β
´1qj

for all j P N0. ˝
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Abstract

In this paper we study the problem of photoacoustic inversion in a weakly attenuating medium.
We present explicit reconstruction formulas in such media and show that the inversion based on
such formulas is moderately ill–posed. Moreover, we present a numerical algorithm for imaging
and demonstrate in numerical experiments the feasibility of this approach.

3.1 Introduction

When a probe is excited by a short electromagnetic (EM) pulse, it absorbs part of the EM-
energy, and expands as a reaction, which in turn produces a pressure wave. In photoacoustic
experiments, using measurements of the pressure wave, the ability of the medium to transfer
absorbed EM-energy into pressure waves is visualized and used for diagnostic purposes. Common
visualizations, see [Wan09], are based on the assumptions that the specimen can be uniformly
illuminated, is acoustically non-attenuating, and that the sound-speed and compressibility are
constant.

In mathematical terms, the photoacoustic imaging problem consists in calculating the compactly
supported absorption density function h : R3 Ñ R, appearing as a source term in the wave
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equation
Bttppt,xq ´∆ppt,xq “ δ1ptqhpxq, t P R, x P R3,

ppt,xq “ 0, t ă 0, x P R3,
(3.1)

from some measurements over time of the pressure p on a two-dimensional manifold Γ outside
of the specimen, that is outside of the support of the absorption density function. This problem
has been studied extensively in the literature (see e.g. [KK08; WA11; Kuc14], to mention just a
few survey articles).

Biological tissue has a non-vanishing viscosity, thus there is thermal consumption of energy.
These effects can be described mathematically by attenuation. Common models of such are the
thermo-viscous model [Kin+00], its modification [KSB11], Szabo’s power law [Sza94; Sza95]
and a causal modification [KS12], Hanyga & Seredy’nska [HS03], Sushilov & Cobbold [SC05],
and the Nachman–Smith–Waag model [NSW90]. Photoacoustic imaging in attenuating medium
then consists in computing the absorption density function h from measurements of the attenuated
pressure pa on a surface containing the object of interest. The attenuated pressure equation reads
as follows

Aκrp
aspt,xq ´∆papt,xq “ δ1ptqhpxq, t P R, x P R3,

papt,xq “ 0, t ă 0, x P R3,
(3.2)

where Aκ is the pseudo-differential operator defined in frequency domain (see (3.4)). The formal
difference between (3.1) and (3.2) is that the second time derivative operator Btt is replaced by a
pseudo-differential operator Aκ.

The literature on Photoacoustics in attenuating media concentrates on time-reversal and attenua-
tion compensation based on power laws: We mention the k-wave toolbox implementation and
the according papers [CT10; TZC10], [Bur+07a; Hua+12]. In [ESS16] several attenuation laws
from the literature have been cataloged into two classes, namely weak and strong attenuation
laws. Power laws lead, in general, to severely ill–posed photoacoustic imaging problem, while
mathematically sophisticatedly derived models, like the Nachman-Smith-Waag model [NSW90],
lead to moderately ill–posed problems.

The paper is based on the premise that Photoacoustics is moderately ill–posed, and we therefore
concentrate on photoacoustic inversion in weakly attenuating media, which have not been part
of extensive analytical and numerical studies in the literature. Another goal of this work is
to derive explicit reconstruction formulas for the absorption density function h in attenuating
media. Previously there have been derived asymptotical expansions in the case of small absorbers
[Amm+12; KS13].

Notation

We use the following notations:

• For s “ 0, 1, 2, . . . we denote by SpR ˆ Rsq the Schwartz-space of complex valued
functions and its dual space, the space of tempered distribution, is denoted by S 1pRˆRsq.

We abbreviate S “ SpRˆR3q and S 1 “ S 1pRˆR3q.
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• For φ P SpRq we define the Fourier-transform by

φ̂pωq “
1
?

2π

8
ż

t“´8

eiωtφptqdt,

and the one-dimensional inverse Fourier-transform is given by

ϕ̌ptq “
1
?

2π

8
ż

ω“´8

e´iωtϕpωq dω.

• Let ϕ P SpRq and ψ P SpR3q. The Fourier-transform F r¨s : S 1 Ñ S 1 on the space of
tempered distributions is defined by

〈F rus , ϕb ψ〉S1,S “ 〈u, ϕ̌b ψ〉S1,S . (3.3)

Note that for functions u P S we have

〈F rus , ϕb ψ〉S1,S “

ż

RˆR3

upt,xqϕ̌ptqψpxq dt dx .

We are identifying distributions and functions and we are writing in the following for all
u P S 1

F rus pω,xq “ 1
?

2π

8
ż

t“´8

eiωtupt,xqdt and

F´1 rys pt,xq “ 1
?

2π

8
ż

ω“´8

e´iωtypω,xq dω.

• We define the attenuation operator Aκr¨s : S 1 Ñ S 1 by

〈Aκrus, φb ψ〉S1,S “ ´

〈
u,

}

κ2φ̂b ψ

〉
S1,S

. (3.4)

This means that if u P SpRˆR3q then

Aκruspt,xq “ ´F´1 “κ2F rus
‰

pt,xq, ω P R, x P R3. (3.5)

• I r¨s denotes the time integration operator on the space of tempered distributions and is
given by

〈I rus, φb ψ〉S1,S “ ´
〈
u, φ1 b ψ

〉
S1,S , (3.6)

and we write formally for u P S 1

uÑ I ruspt,xq “
t
ż

´8

upτ,xq dτ. (3.7)
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• (3.2) and (3.1) (here κpωq “ ω2) are understood in a distributional sense, which means
that for all φ P SpRq and ψ P SpR3q〈

pa,
}

κ2φ̂b ψ

〉
S1,S

` 〈pa, φb∆xψ〉S1,S

“φ1p0q 〈h, ψ〉S1pR3q,SpR3q .

(3.8)

3.2 Attenuation

Attenuation describes the physical phenomenon that certain frequency components of acoustic
waves are attenuated more rapidly over time. Mathematically this is encoded in the function κ
defining the pseudo-differential operator Aκ. A physically and mathematically meaningful κ has
to satisfy the following properties (see [ESS16]):
Definition 3.2.1 We call a non-zero function κ P C8pR;Hq, where H “ tz P C : =m z ą 0u
denotes the upper half complex plane andH its closure in C, an attenuation coefficient if

1. all the derivatives of κ are polynomially bounded. That is, for every ` P N0 there exist
constants κ1 ą 0 and N P N such that

|κp`qpωq| ď κ1p1` |ω|qN , (3.9)

2. There exists a holomorphic continuation κ̃ : HÑ H of κ on the upper half plane, that is,
κ̃ P CpH;Hq with κ̃|R “ κ and κ̃ : H Ñ H is holomorphic, and there exists constants
κ̃1 ą 0 and Ñ P N such that

|κ̃pzq| ď κ̃1p1` |z|qÑ for all z P H.

3. κ is symmetric: That is, κp´ωq “ ´κpωq for all ω P R.

4. There exists some constant c ą 0 such that the holomorphic extension κ̃ of the attenuation
coefficient κ satisfies

=mpκ̃pzq ´ z
c q ě 0 for every z P H.

Remark: The four conditions in Definition 3.2.1 on κ encode the following physical properties
of the attenuated wave equation (see [ESS16]):

The condition (3.9) in Definition 3.2.1 ensures that the product κ2u of κ2 with an arbitrary
tempered distribution u P S 1 is again in S 1 and therefore, the operator Aκ : S 1 Ñ S 1 is
well-defined on the space of tempered distributions.

The second condition guarantees that the solution of the attenuated wave equation is causal.

Condition three ensures that real valued distributions (such as the pressure) are mapped to real
valued distributions. That is pa is real valued if the absorption density h is real.
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The forth condition guarantees that the solution pa P S 1pRˆR3q of the equation (3.2) propa-
gates with finite speed c ą 0. That is

supp pa Ă tpt, xq P RˆR3 : |x| ď ct`Ru

whenever supph Ă BRp0q.

In the literature there have been documented two classes of attenuation models:
Definition 3.2.2 We call an attenuation coefficient κ P C8pR;Hq (see Definition 3.2.1)

• a weak attenuation coefficient if there exists a constant 0 ď k8 P R and a bounded
function k˚ P C8pR;Cq X L2pR;Cq such that

κpωq “ ω ` ik8 ` k˚pωq for all ω P R. (3.10)

In particular, κ is constantly attenuating, if κ is a weak attenuation coefficient with k˚ ” 0.
That is, there exists a constant k8 ě 0 such that

κpωq “ ω ` ik8 for all ω P R. (3.11)

• κ is called strong attenuation coefficient if there exist constants κ0 ą 0, β ą 0, and ω0 ą 0

=m κpωq ě κ0 |ω|
β for all ω P R with |ω| ě ω0. (3.12)

For such attenuation coefficients we proved in [ESS16] well-posedness of the attenuated wave
equation:
Lemma 3.2.3 Let κ be an attenuation coefficient. Then the solution pa of the equation (3.2)
exists and is a real-valued tempered distribution in RˆR3.

Moreover, qa :“ I rpas is a tempered distribution and satisfies the equation

Aκrq
aspt,xq ´∆qapt,xq “ δptqhpxq, t P R, x P R3,

qapt,xq “ 0, t ă 0, x P R3,
(3.13)

and in Fourier domain

κ2pωqF rqas pω,xq `∆xF rqas pω,xq “ ´ 1
?

2π
hpxq. (3.14)

Proof: The first item has been proven in [ESS16]. The second item is an immediate consequence
of the definition of a tempered distribution. ˝

Remark: (3.13) has to be understood in a distributional sense: That is qa P S 1 and satisfies for
every φ P SpRq and ψ P SpR3q the equation

〈Aκrq
as, φb ψ〉S1,S ´ 〈qa, φb∆xψ〉S1,S “ φp0q 〈h, ψ〉S1pR3q,SpR3q . (3.15)
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If κpωq “ ω (that is the case of the standard wave equation) q “ qa solves the following equation
in a distributional sense

Bttqpt,xq ´∆xqpt,xq “ δptqhpxq, t P R, x P R3,

qpt,xq “ 0, t ă 0, x P R3,
(3.16)

and its Fourier-transform F rqs satisfies the Helmholtz equation

ω2F rqs pω,xq `∆xF rqs pω,xq “ ´ 1
?

2π
hpxq, ω P R, x P R3. (3.17)

Again q P S 1pRˆR3q and satisfies (3.16) in a distributional sense:

〈q, Bttφb ψ〉S1,S ´ 〈q, φb∆xψ〉S1,S “ φp0q 〈h, ψ〉S1pR3q,SpR3q . (3.18)

The solution of (3.16) can also be written as the solution of the initial value problem:

Bttqpt,xq ´∆xqpt,xq “ 0, t ą 0, x P R3,

qp0,xq “ 0, x P R3,

Btqp0,xq “ hpxq, x P R3.

(3.19)

In the following we derive a functional relation between q and qa, which is the basis of analytical
back-projection formulas in attenuating media.
Theorem 3.2.4 Let φ P SpRq and define

ν`rφspτq :“ 1
?

2π

8
ż

ω“´8

e´iκpωqτ φ̂pωqdω for all τ ě 0 .

Then there exists a sequence pamqmě1 of real numbers satisfying
ř

mě1 am2mj “ p´1qj and a
function ϑ P C80 pR;Rq such that ϑpτq “ 1 when |τ | ă 1 and ϑpτq “ 0 when |τ | ě 2 such that
the function ν : RÑ C, defined by

νpτq :“ νrφspτq :“

$

’

’

&

’

’

%

ν`rφspτq for all τ ě 0,

ř8
m“0 amν`rφsp´2mτqϑp´2mτq for all τ ă 0,

(3.20)

is an element of the Schwartz space SpRq.
Proof: 1. Using that for all k P N0

ψkpτ, ωq :“ Bkτ e´iκpωqτ “ p´iqkκpωqke´iκpωqτ for all ω, τ P R,

it follows from Definition 3.2.2 that, uniformly in τ , for all ω P R
ˇ

ˇ

ˇ
ψkpτ, ωqφ̂pωq

ˇ

ˇ

ˇ
ď |κpωq|k e´=mκpωqτ

ˇ

ˇ

ˇ
φ̂pωq

ˇ

ˇ

ˇ
ď |κpωq|k

ˇ

ˇ

ˇ
φ̂pωq

ˇ

ˇ

ˇ
.

From (3.9) and φ̂ P SpRq (in particular κ P L8pR;Cq and φ̂ P CpR;Cq), ω Ñ



Chapter 3. Reconstruction formulas for Photoacoustic Imaging in Attenuating Media 73

|κpωq|k
ˇ

ˇ

ˇ
φ̂pωq

ˇ

ˇ

ˇ
P L1pR;Rq. Thus by interchanging integration and differentiation it

follows that for RÑ8

dkν`rφspτq “
1
?

2π

8
ż

ω“´8

ψkpτ, ωqφ̂pωqdω for all τ ě 0 (3.21)

and that these functions are continuous. Thus ν`rφs P C8pr0,8q;Cq.

2. From [See64] it follows that νrφs defined in (3.20) is inC8pR;Cq and extends the function
ν`rφs defined on r0,8q.

3. We are proving that ν`rφs and all its derivative are faster decaying than polynomials in τ
for τ Ñ `8.

For this purpose we use the stationary phase method summarized in Theorem 3.A.1:

Let θ P C80 pR;Rq be a mollifier satisfying θpωq “ 1 when |ω| ă 1 and θpωq “ 0 when
|ω| ě 2. For k P N and R ą 0 fixed, we apply the stationary phase method with

ω Ñ fpωq “ ´κpωq and ω Ñ gRpωq :“ ψkpτ, ωqθpω{Rq.

Below we are verifying the assumptions of the stationary phase method:

• f P C8pR;Cq by Definition 3.2.1 and gR P C80 pR;Cq, because it is the product of
a C8pR;Cq function and the compactly supported function ω Ñ θpω{Rq.

• The second property
=m f “ =m κ ě 0 . (3.22)

is an immediate consequence of the assumption κ P C8pR;Hq in Definition 3.2.1.

Thus (3.49) can be applied with the functions f “ ´κ and gR, and using Lemma 3.A.2
(3.50) it follows that

τ l

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

8
ż

ω“´8

eiτfpωqgRpωq dω

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ďC1

l
ÿ

α“0
sup
ωPR

|dαgRpωq| p|f
1pωq|2 ` =m fpωqqα{2´l

ďC1

l
ÿ

α“0
sup
ωPR

|dαgRpωq|C
α{2´l
2 .

(3.23)

Next, we consider the limit RÑ8. Because θ P C80 pR;Rq and g P SpRq and

dαgRpωq “
α
ÿ

β“0
dα´βgpωq

ˆ

α

β

˙

1
Rβ

dβθpωq,
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it follows that

|dαgRpωq ´ d
αgpωq| ď

ˇ

ˇ

ˇ

ˇ

ˇ

α
ÿ

β“1
dα´βgpωq

ˆ

α

β

˙

1
Rβ

dβθpωq

ˇ

ˇ

ˇ

ˇ

ˇ

“ OpR´1q.

and from (3.22) and the assumption τ ě 0 it follows
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

8
ż

ω“´8

eiτfpωqgRpωq dω ´
8
ż

ω“´8

eiτfpωqgpωq dω

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď

8
ż

ω“´8

e´τ =m fpωq |gRpωq ´ gpωq| dω ď

8
ż

ω“´8

|gRpωq ´ gpωq| dω.

Using the definition of gR it follows that

8
ż

ω“´8

|gRpωq ´ gpωq| dω ď
8
ż

ω“´8

|gpωq| |1´ θpω{Rq| dω

ď

ż

|ω|ěR

|gpωq| dω.
˝

Since g P SpRq the last integral tends to 0 for R Ñ 8 and thus (3.49) holds even for
the functions ω Ñ fpωq “ ´κpωq and ω Ñ gpωq “ ψkpτ, ωq, although they are not
satisfying the assumptions of Theorem 3.A.1.

Because (according to Theorem 3.2.4), for every φ P SpRq, νrφs P SpRq, the operator from the
following definition is well-defined.
Definition 3.2.5 The attenuation solution operator B r¨s : S 1 Ñ S 1 is defined by

〈B rρs , φb ψ〉S1,S “ 〈ρ, νrφs b ψ〉S1,S

for all ρ P S 1 and φ P SpRq, ψ P SpR3q .
(3.24)

Remark: In a weakly attenuating medium κpωq “ ω ` ik8 ` k˚pωq, and therefore, for every
t, τ P R

kpt, τq :“ F´1
”

eip¨`iκ8`k˚p¨qqτ
ı

ptq

“ e´k8τF´1
”

eik˚p¨qτ
ı

pt´ τq

“ e´k8τF´1
”

1` peik˚p¨qτ ´ 1q
ı

pt´ τq

“
?

2πe´k8τδpt´ τq ` e´k8τF´1
”

eik˚p¨qτ ´ 1
ı

pt´ τq.

(3.25)

Because there exists a constant C ą 0 such that
ˇ

ˇ

ˇ
eik˚pωqτ ´ 1

ˇ

ˇ

ˇ
ď C |k˚pωqτ | for all ω, τ P R,
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it follows from Definition 3.2.2 (stating that k˚ P L2pR;Cq) and Plancharel’s identity that

ω Ñ eik˚pωqτ ´ 1 P L2pR;Cq and

tÑ e´k8τF´1
”

eik˚p¨qτ ´ 1
ı

pt´ τq P L2pR;Cq for all τ P R .

Now, assume that ρ P C0pRˆR3;CqXS 1 with support in r0,8qˆR3, φ P SpRq and ψ P SpR3q

〈ρ, νrφs b ψ〉S1,S

“

ż

R3

8
ż

τ“´8

ρpτ,xqνrφspτqψpxq dτ dx

“
1
?

2π

ż

R3

ψpxq
8
ż

τ“´8

ρpτ,xq
8
ż

ω“´8

eiκpωqτ φ̂pωqdω dτ dx .

Using Parseval’s identity we get

〈ρ, νrφs b ψ〉S1,S

“
1
?

2π

ż

R3

8
ż

τ“´8

ρpτ,xqψpxq
8
ż

t“´8

kpt, τqφptq dt dτ dx

“

ż

R3

8
ż

t“´8

ψpxqφptq

¨

˝

1
?

2π

8
ż

τ“´8

kpt, τqρpτ,xq dτ

˛

‚

loooooooooooooooooomoooooooooooooooooon

“Brρspt,xq

dtdx.

(3.26)

Then for ρ P C0pRˆR3;Cq X S 1 it follows from (3.26) and (3.25) that

ek8tB rρs pt,xq “ pId` T qrρspt,xq , (3.27)

where

T rρspt,xq “ 1
?

2π

8
ż

τ“´8

ek8pt´τqF´1
”

eik˚pωqτ ´ 1
ı

pt´ τqρpτ,xq dτ . (3.28)

Theorem 3.2.6 Let q “ I rps and qa “ I rpas, where p and pa are the solutions of the equations
(3.1) and (3.2), respectively. Then

qa “ B rqs . (3.29)

Proof: Let φ P SpRq and ψ P SpR3q. Then, from (3.29), the definition of the Fourier-transform
(3.3), the definition of B r¨s in (3.24), because νrφs P SpRq (see (3.20)) and because q solves
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(3.16) it follows that

〈AκrB rqss, φb ψ〉S1,S ´ 〈B rqs , φb∆xψ〉S1,S

“´

〈
B rqs , }κ2φ̂b ψ

〉
S1,S

´ 〈B rqs , φb∆xψ〉S1,S

“´

〈
q, ν

„

}

κ2φ̂



b ψ

〉
S1,S

´ 〈q, νrφs b∆xψ〉S1,S

“´

〈
q, ν

„

}

κ2φ̂



b ψ

〉
S1,S

´ 〈q, Bττνrφs b ψ〉S1,S

` νrφsp0q 〈h, ψ〉S1pR3q,SpR3q

(3.30)

We are representing every term on the right hand side:

1. From Theorem 3.2.4 it follows that

νrφsp0q “ 1
?

2π

8
ż

ω“´8

φ̂pωq dω “ ˇ̂
φp0q “ φp0q

and thus
νrφsp0q 〈h, ψ〉S1pR3q,SpR3q “φp0q 〈h, ψ〉S1pR3q,SpR3q .

2. The first term on the right hand side of (3.30) can be represented as follows:

〈
q, ν

„

}

κ2φ̂



b ψ

〉
S1,S

“

〈
q,

1
?

2π

8
ż

ω“´8

κ2pωqe´iκpωq¨φ̂pωqdω b ψ
〉

S1,S

.

3. For the second term we find that

〈q, Bττνrφs b ψ〉S1,S “

〈
q,

1
?

2π

8
ż

ω“´8

Bττe
´iκpωq ¨ φ̂pωqdω b ψ

〉
S1,S

“´

〈
q,

1
?

2π

8
ż

ω“´8

κ2pωqe´iκpωq¨φ̂pωq dω b ψ
〉

S1,S

.

The sum of the first and second term vanishes and thus from (3.30) it follows that

〈AκrB rqss, φb ψ〉S1,S ´ 〈B rqs , φb∆xψ〉S1,S

“φp0q 〈h, ψ〉S1pR3q,SpR3q ,

which shows that B rqs solves (3.15). Since the solution of this equation is unique it follows that
qa “ B rqs. ˝
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3.3 Reconstruction formulas

In this section we provide explicit reconstruction formulas for the absorption density h (the right
hand side of (3.2)) in attenuating media. The basis of these formulas are exact reconstruction
formulas in non-attenuating media.

In the case of non-attenuating media the problem of photoacoustic tomography consists in
determining the absorption density h from measurement data of

mpt, ξq :“ ppt, ξq for all t ą 0, ξ P Γ ,

where Γ denotes the measurement surface and p is the solution of (3.1).

Let W be the operator which maps h to p. The most universal (meaning applicable for a series of
measurement geometries Γ) formula for W´1 r¨s is due to Xu & Wang [XW05]. Several different
formulas of such kind were presented and analyzed in [KK08; Nat12; Kuc12]. The formula of
Xu & Wang [XW05] in R3 reads as follows:

hpxq “
2

Ω0

ż

ξPΓ

pp|ξ ´ x|, ξq ´ |ξ ´ x|Bp
Bt p|ξ ´ x|, ξq

|ξ ´ x|2

ˆ

nξ ¨
ξ ´ x
|ξ ´ x|

˙

dspΓq (3.31)

where Ω0 is 2π for a planar geometry and 4π for cylindrical and spherical geometries and nξ is
the outer normal vector for the measurement surface Γ.

From Theorem 3.2.6 we get an explicit reconstruction formula in the case of attenuating media:
Theorem 3.3.1 Under the assumption that the universal back-projection can be applied in the
non-attenuating case, we have

h “ W´1 “BtB´1 rpt, ξq Ñ qapt, ξqs
‰

. (3.32)

In the following we study the attenuation operator B r¨s and its inverse in weakly attenuating
media.

From (3.27) it follows

h “ W´1
”

BtpId` T q´1rpt, ξq Ñ ek8tqapt, ξqs
ı

. (3.33)

In particular, in the case of a constantly attenuating medium the kernel of the integral operator
B r¨s simplifies to (k˚pωq “ 0)

1
?

2π
F´1

”

eiκp¨qτ
ı

ptq “
1
?

2π
e´k8τF´1 “ei¨τ ‰ ptq “ e´k8τδpt´ τq.

Thus from (3.26) it follows that

B rqs pt,xq “ 1
?

2π
e´k8tqpt,xq . (3.34)
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Thus the operator B r¨s is a multiplication operator and the reconstruction formula (3.33)
rewrites to

h “ W´1
”

pt, ξq Ñ Bt

´

ek8tqapt, ξq
¯ı

. (3.35)

Using that q “ ek8tqa, we get explicit formulas for the time derivatives of q:

Btqpt, ξq “ ek8t pk8q
apt, ξq ` Btq

apt, ξqq ,

Bttqpt, ξq “ ek8t
`

k2
8q

apt, ξq ` 2k8Btqapt, ξq ` Bttqapt, ξq
˘

.

Therefore, inserting the representation of the derivatives in (3.31) we get

q̃apt, ξq “Btq
apt, ξq ´ tBttq

apt, ξq ,

hpxq “ 2
Ω0

ż

ξPΓ

q̃ap|ξ ´ x|, ξq
|ξ ´ x|2

ˆ

nξ ¨
ξ ´ x
|ξ ´ x|

˙

dspΓq. (3.36)

3.4 Numerical experiments

In this section we describe an algorithm for photoacoustic inversion in a weakly attenuating
medium, in which case the attenuation coefficient is ω Ñ κpωq “ ω ` ik8 ` k˚pωq, with
k˚ P L

2pR;Cq X C8pR;Cq.

The numerical inversions and examples will be performed in R2 for the two-dimensional at-
tenuated wave equation. This is consistent with a distributional solution of (3.2) in R3 where
px, y, zq Ñ hpx, yq is considered a distribution in R3, which is independent of the third vari-
able. In this case pa can be considered a two-dimensional distribution (3.2), which solves the
two-dimensional attenuated wave equation:

Aκrp
aspt, x1, x2q ´∆papt, x1, x2q “ δ1ptqhpx1, x2q, t P R, px1, x2q P R

2,

papt, x1, x2q “ 0, t ă 0, px1, x2q P R
2.

(3.37)

The two-dimensional universal back-projection formula from [Bur+07a], which is used below, is
given by

hpxq “ ´
4

Ω0

ż

ξPΓ

8
ż

t“|ξ´x|

˜

pBtpt
´1pqqpt, ξq

a

t2 ´ |ξ ´ x|2
dt
¸

nξ ¨ pξ ´ xqdspΓq, (3.38)

where Ω0 is 2π for a line measurement geometry and 4π for a circular measurement geometry,
nξ is the outer normal vector for the curve Γ.

We assume that the attenuated photoacoustic pressure pa is measured on a set of N points on a
measurement curve Γ at NT uniformly distributed time points

ti “ i∆T , i “ 1, . . . , NT where ∆T “
T

NT
.
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In our experiments Γ will either be a circle of radius R, where the N measurement points are
radially uniformly distributed,

ξj “ Rpcospj∆ξq, sinpj∆ξqq, j “ 0, 1, . . . , N ´ 1 where ∆ξ “
2π
N

or on a segment of length 2l of the x-axis, in which case

ξj “ p2j∆x ´ 1, 0q, where ∆x “ l{N.

In this case we consider h to be supported in the upper half-space.

The evaluation of the integral operator I r.s is numerically realized as follows: For every mea-
surement point

 

ξj : j “ 0, 1, . . . , N ´ 1
(

qapti, ξjq “ ∆T

i
ÿ

n“1
paptn, ξjq. (3.39)

The relation qa “ B rqs from (3.29) is realized numerically as follows: Because we assume a
weakly attenuation medium B r¨s (defined in (3.24)) is an integral operator with kernel k defined
in (3.25). We use the Taylor-series expansion of the exponential function τ Ñ eik˚pωqτ and get

F´1
”

eik˚pωqτ ´ 1
ı

ptq “
8
ÿ

k“1

τk

k! F´1
”

pik˚pωqqk
ı

ptq. (3.40)

Inserting (3.40) into (3.28) and taking into account (3.27) and (3.29) we get for all i “ 1, . . . , NT

that
qapti, ξjq

“e´k8tiqpti, ξjq `
1
?

2π

8
ż

τ“´8

e´k8τ
8
ÿ

k“1

τk

k! rkpti ´ τqqpτ, ξjq dτ,
(3.41)

where
sÑ rkpsq :“ F´1

”

ikkk˚pωq
ı

psq.

The integral on the right hand side of (3.41) is approximated for numerical purposes as follows:

∆T
?

2π

NT
ÿ

m“1
e´k8tm

8
ÿ

k“1

tkm
k! rkpti ´ tmqqptm, ξjq. (3.42)

This expression is represented as a matrix-vector multiplication with vector ~qj “ pqptm, ξjqqm“1,...,NT
and matrix with entries

bim “
∆T
?

2π
e´k8tm

8
ÿ

k“1

tkm
k! rkpti ´ tmq with 1 ď i ď NT , and 1 ď m ď NT . (3.43)

Then it follows from (3.41) that

~qaj “ pe
´k8tiI `Bq~qj , (3.44)
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which is the discretized version of (3.27). To get numerical values for the entries of B, the terms
rkpti ´ tmq have to be numerically calculated. For k “ 1,

r1ptq “
1
?

2π

8
ż

ω“´8

ik˚pωqe´iωt dω, (3.45)

which can be evaluated by numerical integration for all ti. When k ą 1, rk is a convolution of
rk´1 and r1 and thus

rkptq “
1
?

2π
pr1 ˚ rk´1qptq “

1
?

2π

t
ż

0

r1pτqrk´1pt´ τqdτ. (3.46)

Numerically, we approximate the convolution by

rkptiq «
∆T
?

2π

i
ÿ

m“1
r1ptmqrk´1pti ´ tmq.

We summarize the inversion process in a pseudo-code, where we truncate the Taylor-series (3.40)
at the tenth coefficient (the number ten has been found from numerical simulations):
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Data: The measurements are denoted by P ai,j “ papti, ξjq for all i “ 1, . . . , NT and
j “ 0, . . . , N ´ 1

Result: Numerical calculation of the absorption density hl “ hpxlq
for 1 ď i ď NT do

ri,1 Ð
1?
2π

8
ş

ω“´8
e´iωtipik˚pωqqdω;

end
for 1 ď k ď 10 do

for 1 ď m ď n ď NT do
pFkqi,m Ð

1?
2π ri´m,kt

k
me
´k8tm ;

end
for 1 ď i ď NT do

ri,k`1 “
∆T?

2π ¨ p
ři
m“1 rm,kri´m,kq;

end
end
B Ð diagpe´k8t1 , e´k8t2 , . . . q `∆T

ř10
k“1

Fk
k! ;

for 1 ď i ď NT do
Qai,j Ð Qai´1,j `∆TP

a
i,j ;

end
QÐ QaB´1;
for 1 ď i ď NT do

Pi,j Ð
Qi,j´Qi´1,j

∆T
;

end
Calculate hl by applying the back-projection operator W´1 r¨s on Pi,j ;

Algorithm 1: Pseudocode for reconstructing the absorption density h.

Numerical experiments

We assume that h is a function with compact support inR2. We calculated p, the solution of (3.1)
using the k-wave toolbox [TC10]. By integrating p at the points ξj , j “ 0, . . . , N ´ 1 over time
with (3.39) we get qpti, ξjq for i “ 1, . . . , NT and j “ 0, . . . , N ´ 1. Then we find qapti, ξjq by
matrix-vector multiplication (3.44).

In order to avoid inverse crimes we used different discretization points in space and time for
the simulation of the forward data and the inversion. The forward problem is simulated with
NT “ 500 and N “ 896, while the inverse problem is solved with NT “ 443 and N “ 849.
The absorption density function h : R2 Ñ R with support in p´0.8, 0.8q2 is the Shepp-Logan
phantom [SV74]. In all numerical experiments the material parameter k8 “ 0.45.

Circular measurement geometry

In these examples the measurement geometry is a circle with radius R “ 1.7 on which there are
recorded data on N “ 849 uniformly distributed measurement points. Moreover, the time length
is 6 and thus ∆T “ 6{NT “ 6{443.
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We consider a constantly attenuating medium, with attenuation coefficient κpωq “ ω ` ik8.
Figure 3.2 shows the ground truth (top left) and the simulated pressure data pa on Γ over time.
Two reconstructions are presented: The first one is obtained by applying the universal back-
projection formula (3.38) (middle left), while the middle right image shows the reconstruction
obtained with algorithm 1. The quantitative values of ground truth and the two reconstructions
are plotted on the bottom.

-3 -2 -1 1 2 3

0.01

0.02

0.03

0.04

FIGURE 3.1: Blue curve corresponds to =m κpωq of NSW model. Red curve
corresponds to power law 0.005ω2.

Next we consider the Nachman, Smith and Waag (NSW) [NSW90] attenuation model:

κpωq “ ω

c

1´ iωτ̃
1´ iωτ “ ω `

τ ´ τ̃

2τ τ̃ i` k˚pωq (3.47)

where k˚pωq “ Op|ω|´1q. Therefore, κ is a weak attenuation coefficient with k8 “ τ´τ̃
2τ τ̃ . In

Figure 3.3 we present ground truth, simulated measurements pa, and compare three imaging
techniques:

• Applying the universal back-projection formula W´1 rpas (3.38) (thus neglecting the
attenuation).

• The compensated back-projection formula

W´1
”

pt, ξq ÞÑ Bt

´

ek8tqapt, ξq
¯ı

, (3.48)

which neglects k˚pωq but takes into account k8.

• Reconstruction using (3.32) with the numerical code described in algorithm 1.

The parameters of attenuation coefficient in the NSW model are τ̃ “ 0.1 and τ “ 0.11. For small
frequencies the NSW coefficients behaves like a power law of order 2. However, asymptotically,
for large frequencies, it behaves like ω` τ´τ̃

2τ τ̃ i. The NSW-coefficient has been plotted in Figure 3.1.
In order to demonstrate the stability of the algorithm, we also performed reconstructions from
noisy data, where a uniformly distributed noise is added with a variance of 20% of the maximal
intensity. The reconstruction results are depicted in the last image of Figure 3.2 and Figure 3.3,
respectively.
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FIGURE 3.2: Measurements along a circle and constantly attenuating model.
Top left: Ground truth. Top Right: the simulated pressure data pa. Middle:
Reconstruction by universal back-projection (not taking into account attenuation),
and by algorithm 1 with noise-free and 20% noise. Bottom: Cross section through

ground truth and reconstructions.
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FIGURE 3.3: Measurements along a circle and NSW model. Top left: Ground
truth. Top Right: the simulated pressure data pa. Middle: Reconstruction by
universal back-projection (not taking into account attenuation), by compensated
attenuation (3.48) and by algorithm 1 with noise-free and 20% noise. Bottom:

Cross section through ground truth and reconstructions.
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Measurements on a line

The measurement points are N “ 849 uniformly distributed on a line segment with length
l “ 10.2. The distance of the line to the center of the phantom is 1.7. The time length is 8 and
thus ∆T “ 8{443.

We consider a constantly attenuating medium, with attenuation coefficient κpωq “ ω ` ik8.
Figure 3.4 shows the ground truth (top left) and the simulated pressure data pa on Γ over time.
Two reconstructions are presented: The first one is obtained by applying the universal back-
projection formula (3.38) (middle left) and the middle right image shows the reconstruction
obtained with algorithm 1. The quantitative values of ground truth and the two reconstructions
are plotted on the bottom.

In Figure 3.5 we present ground truth, simulated measurements pa using NSW model, and
compare three imaging techniques, the universal back-projection formula neglecting attenuation,
the compensated back-projection formula (3.48), which neglects k˚pωq but takes into account
k8, and reconstruction with algorithm 1. The parameters of the NSW attenuation coefficient are
again τ̃ “ 0.1 and τ “ 0.11. The reconstruction results from noisy data are depicted in the last
image of Figure 3.4 and Figure 3.5, where uniformly distributed noise is added with a variance
of 20% of the maximal intensity value. Numerical results show that the algorithm is quite stable
even with 20% noise.
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FIGURE 3.4: Measurements along a line and constantly attenuating model.
Top left: Ground truth. Top Right: the simulated pressure data pa. Middle:
Reconstruction by universal back-projection (not taking into account attenuation),
and by algorithm 1 with noise-free and 20% noise. Bottom: Cross section through

ground truth and reconstructions.
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FIGURE 3.5: Measurements along a line and NSW model. Top left: Ground
truth. Top Right: the simulated pressure data pa. Middle: Reconstruction by
universal back-projection (not taking into account attenuation), by compensated
attenuation (3.48) and by algorithm 1 with noise-free and 20% noise. Bottom:

Cross section through ground truth and reconstructions.
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Conclusion

We have presented explicit reconstruction formulas for photoacoustic imaging in acoustically
attenuating media, which are based on the universal back-projection formula. We have presented
a numerical algorithm and showed numerical reconstructions, which were compared with atten-
uation compensation techniques. The numerical simulations show that the new technique can
produce better visualization in 2D with a similar numerical complexity.
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3.A Appendix

Theorem 3.A.1 [H0̈3, Section 7.7] Let f, g P C8pR;Cq satisfying

• supp g is compact and

• =m fpωq ě 0.

Then there exists a constant C1 ą 0 such that for all l P N and all τ ě 0,

τ l

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

8
ż

ω“´8

eiτfpωqgpωqdω

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ďC1

l
ÿ

α“0
sup
ωPR

|dαgpωq| p|f 1pωq|2 ` =m fpωqqα{2´l.

(3.49)

Lemma 3.A.2 Let κ be an attenuation coefficient (cf. Definition 3.2.1), then there exists a
constant C2 ą 0 such that

ˇ

ˇκ1pωq
ˇ

ˇ

2
` =m κpωq ě C2 . (3.50)

Proof: The fourth assumption of Definition 3.2.1 ensures that the maximal speed of propagation
c is finite. Then from [ESS16, Proposition 2.9], it follows that the holomorphic extension κ̃ (cf.
Definition 3.2.1)of κ to the upper half plane can be represented as

κ̃pzq “ Az `B `

8
ż

ν“´8

1` zν
ν ´ z

dσpνq, z P H, (3.51)

where A “ 1
c ą 0, B P R are constants, and σ : RÑ R is a monotonically increasing function

of bounded variation.
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From [Nus72, Formula (C9)] we know that if κ̃ satisfies (3.51), then

ν Ñ =m κpνq “ πp1` ν2qσ1pνq for all ν P R . (3.52)

Because, by assumption κ P C8pR;Cq, and because σ : RÑ R is a monotonically increasing
function of bounded variation, we conclude from (3.52) that σ1 P C8pR;Rq X L1pR;Rq.
Moreover, for all fixed z P H, because ν´z ‰ 0 for all ν P R, we have ν Ñ 1`ν2

pν´zq2 is uniformly
bounded and thus the function

ν Ñ
1` ν2

pν ´ zq2
σ1pνq P L1pR;Cq .

Differentiation of (3.51) with respect to z and taking into account that σ1 P C8pR;RqXL1pR;Rq
yields

κ̃1pzq “ A`

8
ż

ν“´8

p1` ν2q

pν ´ zq2
σ1pνqdν, z P H.

Let now z “ ω ` iη and take real parts in the above formula to get

<e κ̃1pω ` iηq “ A`

8
ż

ν“´8

p1` ν2q
pν ´ ωq2 ´ η2

ppν ´ ωq2 ` η2q2
σ1pνq dν. (3.53)

We are proving now that there exists a constant Cr ą 0 such that

<eκ1pωq “ lim
ηÑ0`

<e κ̃1pω ` iηq ě A´ 2p1` Crq
a

p1` ω2qσ1pωq. (3.54)

Let
A` :“

 

ν P R : |ν ´ ω|2 ě p1` ω2qσ1pωq
(

,

A´ :“
 

ν P R : |ν ´ ω|2 ă p1` ω2qσ1pωq
(

,

A0 :“
 

ν̂ P R : |ν̂|2 ă p1` ω2qσ1pωq
(

.

For ω P R and η ą 0 let

ν Ñ ρω,ηpνq :“ p1` ν2q
pν ´ ωq2 ´ η2

ppν ´ ωq2 ` η2q2
σ1pνq for all ω ‰ ν P R.

The function ρω,η can be estimated as follows:

ρω,ηpνq “
1` ν2

pν ´ ωq2 ` η2
pν ´ ωq2 ´ η2

pν ´ ωq2 ` η2
looooooomooooooon

ď1

σ1pνq

Moreover, since ν P A`, we find that

1` ν2

pν ´ ωq2 ` η2 ď
1` ν2

pν ´ ωq2
“

1` ν2

1` pν ´ ωq2
loooooomoooooon

ď2p1`ω2q

1` pν ´ ωq2

pν ´ ωq2
loooooomoooooon

ď1`pp1`ω2qσ1pωqq´1

,
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where the inequality 1`ν2

1`pν´ωq2 ď 2p1 ` ω2q is a consequence of the algebraic identity 2p1 `
ω2qp1 ` pν ´ ωq2q ´ p1 ` ν2q “ 2ω2pν ´ ωq2 ` pν ´ 2ωq2 ` 1 ą 0. Therefore with Cω “
2p1` ω2qp1` pp1` ω2qσ1pωqq´1q it follows that

|ρω,ηpνq| ď Cωσ
1pνq,

and because σ1 P L1pR;Rq the latter means that the functions tρω,η : η ą 0u are uniformly
dominated by an L1pR;Rq function. Therefore we can apply the dominated convergence
theorem and get

lim
ηÑ0`

ż

A`

ρω,ηpνqdν “
ż

A`

ρω,0pνqdν ě 0. (3.55)

To estimate
ş

A´ ρω,ηpνq dν, we use the Taylor’s expansion of ω Ñ p1 ` pν̂ ` ωq2qσ1pν̂ ` ωq
and get

p1` pν̂ ` ωq2qσ1pν̂ ` ωq “ p1` ω2qσ1pωq ` ν̂
`

p1` ω2qσ2pωq ` 2ωσ1pωq
˘

` rpν̂q, (3.56)

with
|rpν̂q| ď Crν̂

2 for all ν̂ P A´.

Using the substitution ν Ñ ν̂ :“ ν ´ ω and (3.56) we get

lim
ηÑ0`

ż

A´

ρω,ηpνqdν

“ lim
ηÑ0`

ż

A0

p1` pν̂ ` ωq2qσ1pν̂ ` ωq ν̂2 ´ η2

pν̂2 ` η2q2
dν̂

“ p1` ω2qσ1pωq lim
ηÑ0`

ż

A0

ν̂2 ´ η2

pν̂2 ` η2q2
dν̂

`
`

p1` ω2qσ2pωq ` 2ωσ1pωq
˘

lim
ηÑ0`

ż

A0

ν̂
ν̂2 ´ η2

pν̂2 ` η2q2
dν̂

` lim
ηÑ0`

ż

A0

rpν̂q
ν̂2 ´ η2

pν̂2 ` η2q2
dν̂

(3.57)

Plugging in the integral formulas

a
ż

´a

ν2 ´ η2

pν2 ` η2q2
dν “ ´2a

a2 ` η2 and

a
ż

´a

ν
ν2 ´ η2

pν2 ` η2q2
dν “ 0
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into (3.57) we get for the first term with a “
a

p1` ω2qσ1pωq

p1` ω2qσ1pωq lim
ηÑ0`

ż

A0

ν̂2 ´ η2

pν̂2 ` η2q2
dν̂

“ p1` ω2qσ1pωq lim
ηÑ0`

´2
a

p1` ω2qσ1pωq

p1` ω2qσ1pωq ` η2 “ ´2
a

p1` ω2qσ1pωq,

(3.58)

and the second integral term in (3.57) is vanishing, and for the third term we get
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ż

A0

rpν̂q
ν̂2 ´ η2

pν̂2 ` η2q2
dν̂

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď Cr

ż

A0

1 dν̂ ď 2Cr
a

p1` ω2qσ1pωq. (3.59)

Using the estimates (3.58) and (3.59) in (3.57) we get

lim
ηÑ0`

ż

A´

ρω,ηpνq dν ě ´2p1` Crq
a

p1` ω2qσ1pωq. (3.60)

Considering the integral (3.53) as the sum of the two integrals over A˘ and using the estimates
(3.55) and (3.60) we get

lim
ηÑ0`

<e κ̃1pω ` iηq ě A´ 2p1` Crq
a

p1` ω2qσ1pωq.

Therefore, |<eκ1pωq| ě maxp0, A ´ 2p1 ` Crq
a

p1` ω2qσ1pωqq and together with (3.52) it
follows that

|κ1pωq|2 ` =m κpωq

ěπp1` ω2qσ1pωq ` |<eκ1pωq|2

ěπp1` ω2qσ1pωq `
´

max
!

0, A´ 2p1` Crq
a

p1` ω2qσ1pωq
)¯2

ě
πA2

4p1` Crq2 ` π
loooooooomoooooooon

:“C2

,

where in the last inequality we estimated the minimum of the quadratic function ρ Ñ A2 ´
4Ap1` Crqρ` p4p1` Crq2 ` πqρ2. ˝
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4.1 Introduction

Since dynamic properties are essential for a disease prognosis and a selection of treatment options,
a number of methods to explore these dynamics has been developed. When optical imaging
methods are used to observe cell-scale details of a tissue, the highly-scattering collagen usually
dominates the signal, obscuring the intra-cellular details. A challenging problem is to remove the
influence of the collagen in order to have a better imaging inside the cells.

There have been many studies on optical imaging to extract useful information. In [Lee+12] the
authors use stochastic method, which follows from a probabilistic model for particle movements,
and then they express the autocorrelation function of the signal in terms of some parameters
including different components of the velocity and the fraction of moving particles. Those
parameters are then estimated using a fitting algorithm. In [Joo+10; LSD09], the autocorrelation
function of the signal can be written as a complex-valued exponential function of the particle
displacements. Through the relation between the real and imaginary parts of this autocorrelation
function, the authors analyze the temporal autocorrelation on the complex-valued signals to obtain
the mean-squared displacement (MSD) and also time-averaged displacement (TAD) (which is
the velocity) of scattering structures. Very recently, in [Ape+16], Apelian et. al. use difference
imaging method, which consists in directly removing the stationary parts from the images by
taking differences or standard deviations. The motivation of this paper comes from [Ape+16].

Some researchers use Doppler optical coherence tomography to obtain high resolution tomo-
graphic images of static and moving constituents simultaneously in highly scattering biological
tissues, for example, [Che+99] and in [DF08, Chapter 21].

In this paper, using dynamic optical coherence tomography we introduce a signal separation
technique for sub-cellular imaging and give a detailed mathematical analysis of extracting
useful information. This includes giving a new multi-particle dynamical model to simulate the
movement of the collagen and metabolic activity, and also providing some results relating the
eigenvalues and the feasibility of using singular value decomposition (SVD) in optical imaging,
which as far as we know is original.

The paper has three main contributions. First, we give a new model as an extension of the
single particle optical Doppler tomography, which allows us to justify the SVD approach for
the separation between the collagen signal and metabolic activity signal. Then we perform
eigenvalue analysis for the operator with the intensity as an integral kernel, and prove that the
largest eigenvalue corresponds to the collagen. This means that using a SVD of the images and
removing the part corresponding to the largest eigenvalue is a viable method for removing the
influence of collagen signals. Finally, based on SVD, we give a new method for isolating the
intensity of the metabolic activity.

The paper is structured as follows. In Section 2 we introduce our multi-particle dynamical model
based on a classical model in [DF08]. In Section 3, we discuss the forward operator with total
signal as its integral kernel, and give its eigenvalue analysis, showing that the part corresponding
to the collagen signal have rank one, which provides the theoretical foundation for using SVD.
In Section 4, we discuss the mathematical rationality for using a SVD method and the method
of isolating the metabolic signal. In Section 5 we give some numerical experiments. Some
concluding remarks are presented in the final section.
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4.2 The dynamic forward problem

Optical Coherence Tomography (OCT) is a medical imaging technique that uses light to capture
high resolution images of biological tissues by measuring the time delay and the intensity of
backscattered or back reflected light coming from the sample. The research on OCT has been
growing very fast for the last two decades. We refer the reader, for instance, to [EMS15; Hua+91;
Fer96; Fer+03; Pod05; Sch99; TW05]. This imaging method has been continuously improved in
terms of speed, resolution and sensitivity. It has also seen a variety of extensions aiming to assess
functional aspects of the tissue in addition to morphology. One of these approaches is Doppler
OCT (called ODT), which aims at visualizing movements in the tissues (for example, blood
flows). ODT is based on the identical optical design as OCT, but additional signal processing is
used to extract information encoded in the carrier frequency of the interferogram.

The purpose of this paper is to analyze the mathematics of ODT in the context of its application
for imaging sub-cellular dynamics. We prove that a signal separation technique performs well
and allows imaging of sub-cellular dynamics. We refer the reader to [AA17; Alb+17; Alb+16]
for recently developed signal separation approaches in different biomedical imaging frameworks.
These include ultrasound imaging, photoacoustic imaging, and electrical impedance tomography.

4.2.1 Single particle model

We first consider a single moving particle. In [DF08, Chapter 21], the optical Doppler tomography
is modeled as follows. Assume that there is one moving particle at a point x in the sample Ω and
denote by ν the z-component of its velocity. Then the ODT signal generated by this particle is
given by

ΓODT px, tq “ 2
ż 8

0
S0pωqKpx, ωqKRpx, ωq cosp2πωpτ ` ∆

c
q ` 2πω2n̄vt

c
qdω, (4.1)

where ω is the frequency, S0pωq is the spectral density of the light source, Kpx, ωq and KRpx, ωq
are the reflectivities of the sample and the reference mirror respectively, n̄ is the index of
refraction, c is the speed of the light, τ is the time delay on the reference arm, and ∆ is the path
difference between the reference arm and sample arm.

Since cos is an even function, the above integral can be rewritten as

ΓODT px, tq “
ż 8

´8

S0pωqKpx, ωqKRpx, ωqe
2πωipτ`∆

c
q`2πωi 2n̄vt

c dω. (4.2)

To give an explanation for the exponential term of the above formula, we choose a suitable
coordinate system such that the beam propagates along the z-direction, and suppose that the
particle moves in this direction from point A to point B with velocity v, which also means
covering a distance of vt (see Figure 4.1). Physically, the received signal ΓODT is determined by
the effective path-length difference between the sample and reference arms. In addition, for this
moving particle the effective path-length difference is represented by the quantity cτ `∆` 2n̄vt,
which could also be seen as the z-coordinate of the particle (see Figure 4.1).
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a b

FIGURE 4.1: a) Illustration of the imaging setup. b) A particle moves from A
to B covering a distance of vt. When the particle is at B, the light travels an
additional distance of 2vt inside a medium with refrative index n̄, so the effective

path-length of the sample arm increases by 2n̄vt.

Note that (4.2) is only applicable to a single particle at x moving with a constant velocity v. For
a particle with a more general movement, the path-length difference is no longer a linear function
with respect to t. Nevertheless, we define ϕptq as the z-coordinate of the particle at time t, which
is a generalization of cτ `∆` 2n̄vt. Also, in our case the reference arm is a mirror, so without
loss of generality, we make the assumption that KRpx, ωq “ 1. Then the following expression
for signal ΓODT px, tq holds

ΓODT px, tq “
ż 8

´8

S0pωqKpx, ωqe
2πωip 2n̄

c
ϕptqqdω.

This is not just a simplification of the model (4.1), but also a small modification, since the
particles with regular and random movements produce difference signals. Here we look into
more details of particle movements. For the sake of simplicity, we assume that the collagen
particles move with a constant speed v, so ϕptq “ ϕp0q ` vt. On the other hand, for the particles
belonging to the metabolic activity part, ϕptq behaves as a random function, since we do not
have much information with regard to them.

Remark. Figure 4.2.1 is derived in [DF08] by considering what is essentially our ϕptq (written
as ∆d there, see formula (21.11) and (21.15) of [DF08].) This justifies our treatment for general
particles above. We emphasize that we generalized the model in [DF08] to accommodate particles
with variable velocities.
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4.2.2 Multi-particle dynamical model

We have seen the effect of the image ΓODT px, tq for one moving particle. We now consider
the more realistic case of a medium (could be cell or tissue) with a large number of particles
in motion. In actual imaging, for each pixel which we denote also by x, there would be many
particles, all with different movement patterns.

We choose an appropriate coordinate system, such that for any particle on the plane z “ 0, its
effective path-length difference is zero. Let L be the coherence length. Physically, only the
particles with path-length difference smaller than L, or equivalently z P r´L,Ls, will be present
in the image. In fact, if the differences between the two arms are larger than the coherence length,
then the lights from two arms do not interfere anymore, and thus do not contribute to the received
signal. This means that the imaging region is a "thin slice" within the sample with thickness 2L
(see Figure 4.2). Then we divide the slice into small regions, such that each region corresponds
to a pixel of the final image. See Figure 4.2 for the imaged small region, which is given by
xˆ r´L,Ls, and for the correspondence between them and pixels of the final image.

FIGURE 4.2: One "slice" in the sample, and its division into small regions
corresponding to the pixels of the image.

Since there are many particles in this region, we describe their distribution using a density
function p. Moreover, for any function fpzq, we have that the integral

şz2
z1
fpzqppx, z, tqdz is

equal to the sum of fpzq over all particles in x ˆ rz1, z2s. We know that the received light
intensity in the small region x ˆ r´L,Ls could be seen as the sum of light intensity over all
particles in this region. Therefore for uniform medium, we can write it as an integral in terms of
the density function ppx, z, tq,

ΓODT px, tq “
ż 8

´8

ż L

´L
S0pωqKpx, ωqe

2πωip 2n̄
c
zqppx, z, tqdω dz,

noting that the reflectivity coefficient K must be the same for all involved particles. According to
the definition of ppx, z, tq, we consider it as the sum of the density function of collagen particles
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and the density function of metabolic activity particles, namely,

ppx, z, tq “ pcpx, z, tq ` pmpx, z, tq. (4.3)

Consequently, their respective reflectivities will be denoted Kc and Km, giving us the ODT
measurements formula

ΓODT px, tq “ ΓcODT px, tq ` ΓmODT px, tq, (4.4)

where ΓcODT px, tq corresponds to the collagen signal and ΓmODT px, tq corresponds to the metabolic
activity signal, with formulas

ΓjODT px, tq “
ż 8

´8

ż L

´L
S0pωqKjpx, ωqpjpx, z, tqe

2πωip 2n̄
c
zqdω dz, for j P tc,mu . (4.5)

Physically, since the collagen moves as a whole, we could assume that the collagen particles
move with one uniform (and very small) velocity v0, which means any such particles will be at
position z ` v0t at time t. Let qcpx, zq denote the density function of all the collagen particles
inside area x with initial vertical position z. Then we have

pcpx, z ` v0t, tq “ qcpx, zq. (4.6)

Furthermore, from this expression we could see when t “ 0, qcpx, zq “ pcpx, z, 0q.

In the case of metabolic activity we do not assume any conditions on the density function
pmpx, v, zq, because there is no physical law of motions for us to use. In the numerical experi-
ments, because of the large number of particles, a random medium generator is used to simulate
the particle distribution while keeping the computational cost low.

Since x is a small area inside the sample, when we choose x, it could include both collagen
particles and metabolic activity particles. The aim is to separate the two classes of particles.
In practice, the contributions of collagen particles to the intensity is much larger than the
contributions of the metabolic activity. This allows us to understand that the reflectivity of
collagen particles Kc is much larger (realistic quantities are about 102 to 104 times) than the
reflectivity of metabolic activity particles Km, and

|ΓcODT px, tq| " |ΓmODT px, tq|. (4.7)

In this section, we have given a multi-particle dynamical model, to separate the collagen signal
and the metabolic activity signal. The next step is to analyze the properties of this model.

4.3 Property analysis of the forward problem

4.3.1 Direct operator representation

Based on the multi-particle dynamical model, in order to analyze the properties of collagen and
metabolic activity, we first represent their corresponding operators.
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Let S be the integral operator with the kernel ΓODT px, tq, which is a real-valued function
given by (4.5). Similarly, Let Sc and Sm be integral operators with kernels ΓcODT px, tq and
ΓmODT px, tq, respectively. The collagen signal has high correlation between different points,
while the metabolic signals have relatively lower correlation, so it would be useful to look at the
correlation of the whole signal. The correlation between two points x and y can be represented
as

ş

ΓODT px, tqΓODT py, tq dt, which is exactly the integral kernel of the operator SS˚, where
S˚ is the adjoint operator of S. We denote the kernel of SS˚ by

F px, yq “

ż T

0
ΓODT px, tqΓODT py, tqdt, (4.8)

for some fixed T ą 0. Substituting the representation of ΓODT px, tq in (4.4) into (4.8), we arrive
to

F px, yq “ Fccpx, yq ` Fcmpx, yq ` Fmcpx, yq ` Fmmpx, yq,

where for j, k P tc,mu, Fjkpx, yq is given by

Fjkpx, yq “

ż

R2ˆr´L,Ls2ˆr0,T s
S0pω1qS0pω2qKjpx, ω1qKkpy, ω2qpjpx, z1, tq

ˆ pkpy, z2, tqe
4πin̄
c
pω1z1´ω2z2qdω1dω2dz1dz2dt,

(4.9)

with z1, z2 P r´L,Ls and ω1, ω2 P R, t P r0, T s. Likewise, the integral operators with kernel
Fjkpx, yq are exactly the operators SjS˚k for j, k P tc,mu. In the case of the collagen signal,
note that the operator ScS˚c contains the solely collagen information.

First we consider its kernel Fcc. Applying the uniform movements of collagen particles (4.6)
along the z-direction yields

Fccpx, yq “

ż

R2ˆr´L,Ls2ˆr0,T s
S0pω1qS0pω2qKcpx, ω1qKcpy, ω2qqcpx, z1 ´ v0tq

ˆ qcpy, z2 ´ v0tqe
4πin̄
c
pω1z1´ω2z2qdω1dω2dz1dz2dt.

(4.10)

In order to simplify this expression even further, let us introduce a couple of assumptions.

Physically, since the scale of collagen and inter-cellular structures (such as collagen) are much
larger than the coherence length L, the particle distribution inside a small slice |z| ă L should be
more or less uniform. Therefore, it is reasonable to assume that qcpx, zq does not actually depend
on z inside such a small slice, namely, qcpx, zq “ qcpxq.

Furthermore, in practice the tissue being imaged is nearly homogeneous, and therefore the
reflectivity spectrum, (or more intuitively, the "color" of the tissue) should stay the same every-
where. The only difference in reflectivity between two points should be a difference of total
reflectivity (using our "color" analogy, the two points would look like, e.g. "different shades
of red", and not "red and yellow"). Therefore, for any two pixels x1 and x2, by looking at the
reflectivities Kcpx1, ωq and Kcpx2, ωq as functions of frequency ω, they are directly proportional.
Thus it is reasonable to assume that Kcpx, ωq could be written in the variable separation form
Kc1pxqKc2pωq.
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Under these two assumptions, the expression of Fccpx, yq can be simplified considerably:

Fccpx, yq “ TKc1pxqKc1pyqqcpxqqcpyq

ˆ

ż

R2ˆr´L,Ls2
S0pω1qS0pω2qKc2pω1qKc2pω2qe

4πin̄
c
pω1z1´ω2z2qdω1dω2dz1dz2

“ TKc1pxqKc1pyqqcpxqqcpyq

ˆ

ż

r´L,Ls2
FpS0Kc2qp´

4πn̄z1
c

qFpS0Kc2qp
4πn̄z2
c

qdz1dz2

(4.11)

where the Fourier transform of a function fpωq is defined as Ffpτq “
ş

R fpωqe
´iωτdω.

This is the fundamental formula for analyzing collagen signal, since from this formula, we could
see that Fccpx, yq is variable separable with respect to x and y. This property gives us a hint to
compute the eigenvalues of the collagen signal.

For the correlation terms Fcmpx, yq and Fmcpx, yq, which contains both the collagen and
metabolic activity signals, we use again the uniform movement assumption for pc while keeping
the metabolic part pm. Inserting (4.6) into (4.9), we have

Fmcpx, yq “ Kc1pyqqcpyq

ż

r´L,Ls2ˆr0,T s
FpS0Kc2qp

4πn̄z2
c

q

ˆ FpS0Kmqpx,´
4πn̄z1
c

qpmpx, z1, tqdz1dz2dt,

(4.12)

and

Fcmpx, yq “ Kc1pxqqcpxq

ż

r´L,Ls2ˆr0,T s
FpS0Kc2qp´

4πn̄z1
c

q

ˆ FpS0Kmqpy,
4πn̄z2
c

qpmpy, z2, tqdz1dz2dt.

(4.13)

From representations (4.12) and (4.13), we could see that Fmcpx, yq and Fcmpx, yq have also
variable separated forms with respect to x and y.

In the case of the metabolic activity kernel Fmmpx, yq, by keeping the representation pm, it is
clear that

Fmmpx, yq “

ż

r´L,Ls2ˆr0,T s
FpS0Kmqpx,´

4πn̄z1
c

qFpS0Kmqpy,
4πn̄z2
c

q

ˆ pmpx, z1, tqpmpy, z2, tqdz1dz2dt.

(4.14)

To sum up, the main feature of our multi-particle dynamical model is that, except the sole
metabolic activity signal, all the other parts have kernels of variable separable form. Therefore, it
is important to relate this property to the separation of the signals. This will be the aim of the
next subsection.
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4.3.2 Eigenvalue analysis

Since the light source has a limited frequency range, the function S0pωq has compact support.
Therefore, using (4.5), the functions ΓcODT px, tq and ΓmODT px, tq are given by integrals of a
bounded integrand over a bounded region, so they are bounded functions on Ωˆ r0, T s.

Then the operators Sc and Sm are integral operators with L2 kernels. Therefore, they are
Hilbert-Schmidt integral operators by definition. Since the composition of two Hilbert-Schmidt
operators is trace-class (see [GG77]), the operators ScS˚c , ScS˚m, SmS˚c , and SmS˚m are trace-
class operators, and their trace is given by

trpScS
˚
c q “ }Sc}

2
HS , trpScS

˚
mq “ xSc, SmyHS ;

trpSmS
˚
mq “ }Sm}

2
HS , trpSmS

˚
c q “ xSm, ScyHS ,

where the Hilbert-Schmidt inner product is written by

xSj , SkyHS “

ż

Ωˆr0,T s
ΓjODT px, tqΓkODT px, tqdx dt,

and the Hilbert-Schmidt norm is written by

}Sc}
2
HS “

ż

Ωˆr0,T s
|ΓjODT px, tq|

2dx dt,

for any j, k P tm, cu.

In order to argue for the feasibility of using a SVD, we will calculate the corresponding eigen-
values, showing that the collagen signal has one very large eigenvalue relative to the metabolic
activity. We assume that the eigenvalues are ordered decreasingly, so λ1 is the largest one.

We first recall that for an operator A with rank one, the unique non-zero eigenvalue λ is equal
to the trace of A. From the expression of Fccpx, yq, we could see that Fccpx, yq has rank one
because of the separable form with respect to x and y, so the operator ScS˚c has only one nonzero
eigenvalue, which we denote by λpScS˚c q. Now we compare λpScS˚c q and the eigenvalues of the
operator SmS˚m.
Lemma 4.3.1 Let ScS˚c and SmS˚m be the integral operators with kernels Fcc and Fmm defined
in (4.11) and (4.14), respectively. If the intensities of collagen and metabolic activity satisfy (4.7),
then we have

λpScS
˚
c q " λipSmS

˚
mq, @i ě 1.

Proof: On one hand, Fccpx, yq has rank one, so it is clear that

λpScS
˚
c q “ trpScS˚c q. (4.15)

On the other hand, since the eigenvalues of operator SmS˚m are all positive, any eigenvalue
λipSmS

˚
mq satisfies

λipSmS
˚
mq ă Σ8i“1λipSmS

˚
mq “ trpSmS˚mq. (4.16)
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Then it suffices to prove that trpScS˚c q " trpSmS˚mq. From the definition of trace of an operator,
we readily get trpScS˚c q “

ş

xPΩ Fccpx, xqdx. Substituting the expression (4.8) into the above
formula yields

trpScS˚c q “
ż

xPΩ

1
2

ż 8

´8

ΓcODT px, tqΓcODT px, tqdtdx

“
1
2

ż

xPΩ

ż 8

´8

|ΓcODT px, tq|2dtdx.

The same analysis can be carried out by looking at trpSmS˚mq,

trpSmS˚mq “
1
2

ż

xPΩ

ż 8

´8

|ΓmODT px, tq|2dtdx. ˝

Recall that the intensity of collagen signal is much larger than metabolic activity signal, which is
the assumption in (4.7). Hence, we obtain the trace comparison trpScS˚c q " trpSmS˚mq.

Now we compare the eigenvalue λpScS˚mq with λpScS˚c q and λ1pSmS
˚
mq.

Lemma 4.3.2 Let ScS˚c , ScS˚m and SmS˚m be the integral operators with kernels defined in
(4.11), (4.12) and (4.14). Then their eigenvalues satisfy

λipScS
˚
mq ď

a

λpScS˚c qλ1pSmS˚mq

for all i.
Proof: Recall the definition of the operator norm of an operatorA, namely, }A}OP “ supt }Av}

}v} , v P

V with v ‰ 0u, which yields λpScS˚mq ď }ScS
˚
m}OP . Since the operator norm is equal to the

largest singular value, direct calculation shows that

}ScS
˚
m}OP ď }Sc}OP }S

˚
m}OP

“ σ1pScqσ1pS
˚
mq

“
a

λpScS˚c q
a

λ1pSmS˚mq,

where σ1 denotes the largest singular value. ˝

In this section, we discussed eigenvalue analysis for the forward operator of multi-particle
dynamical model. More explicitly, we showed that the largest eigenvalue corresponds to the
collagen signal, the middle eigenvalues mix the collagen signal and metabolic activity signal,
and the remaining eigenvalue corresponds to the metabolic activity signal. Also in our model
the solely collagen signal has rank one, which provides a good reason to use SVD in solving the
inverse problem.

4.4 The inverse problem: Signal separation

Our main purpose in this paper is to image the dynamics of metabolic activity of cells. Highly
backscattering structures like collagen dominate the dynamic OCT signal, masking low-backscattering
structures such as metabolic activity. As shown in the modeling part, we divide the scattering
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particles in the tissue into the high-backscattering collagen part, and the low-backscattering
metabolic activity part. Based on this division, the resulting image ΓODT px, tq could also be
written as the sum of the collagen ΓcODT px, tq and the metabolic activity part ΓmODT px, tq. The in-
verse problem is to recover the intensity of metabolic activity of cells from the image ΓODT px, tq.
In this paper, we use singular value decomposition (SVD) method to approximate the metabolic
activity part, then using a particular formula (see (4.23)) to get its corresponding intensity.

4.4.1 Analysis of SVD algorithm

Since we have proved the high backscattering signal corresponds to a rank one kernel and this
part is far larger than the rest, It is natural to associate it to the first singular value of the SVD
expansion. We claim that in order to remove the high backscattering signal, it is reasonable to
remove the first term in the SVD expansion of the image. Given the orthogonal nature of the SVD
decomposition, it is not possible to ensure a clean signal separation. Nonetheless at the end of
this section we provide a result that illustrates how the error committed with this decomposition
is actually small.

Let x1, x2, . . . , xj , . . . denote the pixels of the image. Define the matrices A,Ac P Cnxˆnt by

Aj,k “ ΓODT pxj , tkq
pAcqj,k “ ΓcODT pxj , tkq,

where j P t1, ..., nxu, k P t1, ..., ntu.

Recall that a non-negative real number σ is a singular value for a matrix A, if and only if there
exists unit vectors u P Rnx and v P Rnt such that

Av “ σu and A˚u “ σv,

where the vectors u and v are called left-singular and right-singular vectors of A for the singular
value σ.

Assuming that the singular values of A are ordered decreasingly, that is, σ1 ě σ2 ě . . . , and let
ui and vi be the singular vectors for σi. We emphasize that the vectors ui and vi are orthonormal
sets in Cnx and Cnt respectively. Thus, the SVD of the matrix A is given by

A “ Σnt
i“1σiuivi

T . (4.17)

Since the matrix A is composed of a large rank one part Ac and a small part coming from
metabolic signal ΓmODT , we can say that A ´ Ac is "relatively small" with respect to A. It is
well known that the first term in the SVD expansion of A is the rank one matrix A1 such that
}A ´ A1}op is minimal. Therefore, it is natural to think that Ac is "close" to A1 in some way.
But A1 “ σ1u1v1

T is generally not the same as Ac, because as we will see in section 4.A, the
eigenvectors of the kernels Fcc, Fcm and Fmc are generally not orthogonal. Since SVD always
gives an orthogonal set of eigenvectors, we conclude that the SVD approach itself does not
give the eigenvectors exactly. Nevertheless, we can show that the SVD result is still a good
approximation to the true eigenvectors.
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Total signal
ΓODT

First term in the
SVD of ΓODT

collagen signal
ΓcODT

Matrix A A1 Ac

First singular value σ1 σ1 σc

First singular vector u1, v1 u1, v1 uc, vc

Other singular values σ2 ą σ3 ą

¨ ¨ ¨ ą σi

0 0

TABLE 4.1: Singular values and singular vectors.

To bridge the gap between the collagen signal ΓcODT and the first term of SVD expansion of
ΓODT , we investigate the relationship between their singular values and singular vectors. ΓcODT
has only one nonzero singular value σc, with the corresponding singular vectors uc and vc.

We claim in the following theorem that the singular value σ1 and the corresponding singular
vector u1 are good approximations of the singular value σc and singular vector uc. See Table 4.1
for the notations of their singular values and singular vectors.
Theorem 4.4.1 Let σi, ui, vi, Ac, uc and vc be described in Table 4.1. Assume that the collagen
signal dominates, that is,

}A´Ac}op
}Ac}op

“ 1{N (4.18)

for a large N . Then there exist constants C ą 0 and ε P t´1, 1u such that

|σc ´ σ1|

σc
ď C{N,

and

}uc ´ εu1}l2 ď C{N.

Proof: We define a matrix-valued function

F : s ÞÑ pAc ` sNpA´Acqq
˚pAc ` sNpA´Acqq. (4.19)

Through this construct of F , we obtain

F p0q “ A˚cAc and F p
1
N
q “ A˚A.

Applying Rellich’s perturbation theorem on hermitian matrices F (see, for example, [Rel69])
to get the following two properties. There exists a set of n analytic functions λ1psq, λ2psq, . . . ,
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such that they are all the eigenvalues of F psq. Also, there exists a set of vector-valued analytic
functions u1psq, u2psq, . . . , such that F psquipsq “ λipsquipsq, and xuipsq, ujpsqy “ δij .

In view of the definition of uipsq and λipsq, we show four useful properties, for some ε P t´1, 1u,

u1p0q “ uc, u1p1{Nq “ εu1,

λ1p0q “ σ2
c “ }Ac}

2
op, λ1p1{Nq “ σ2

1,
(4.20)

where the last property comes from the fact λ1p1{Nq is the largest eigenvalue of F p1{Nq “ A˚A
when N " 1.

The objective is to get upper bounds for }uc ´ εu1}l2 and |σc ´ σ1|. Using (4.20), we have
uc´ εu1 “ u1p0q ´ u1p1{Nq and σc´ σ1 “

a

λ1p0q ´
a

λ1p1{Nq. Since u1psq and λ1psq are
analytic, a Taylor expansion at 0 yields

}uc ´ εu1}l2 “ }
u11p0q
N

}l2 `Op1{N3{2q,

|σc ´ σ1| “
λ11p0q

2
a

λ1p0qN
`Op1{N2q.

(4.21)

The next step is to seek for proper upper bounds for λ11p0q and u11p0q.

For the upper bound of λ11p0q, we differentiate F psquipsq “ λipsquipsq with respect to s and
then take s “ 0 to obtain

F 1p0quip0q ` F p0qu1ip0q “ λip0qu1ip0q ` λ1ip0quip0q. (4.22)

Since we always have }uipsq}`2 “ 1, a direct calculation shows that

xuipsq, u
1
ipsqy “

1
2
d

ds
}uipsq}

2 “ 0.

By taking an inner product of both sides of (4.22) with uip0q, we get

λ1ip0q “ λ1ip0q}uip0q}2l2
“ xuip0q, F 1p0quip0qy ` xuip0q, F p0qu1ip0qy
“ xuip0q, F 1p0quip0qy ` xF p0quip0q, u1ip0qy
“ xuip0q, F 1p0quip0qy ` λip0qxuip0q, u1ip0qy
“ xuip0q, F 1p0quip0qy.

Hence, λ1ip0q satisfies |λ1ip0q| ď }F 1p0q}op. By the definition of F psq, we have }F 1p0q}op “
N}A˚c pA ´ Acq ` pA ´ Acq

˚Ac} ď 2N}Ac}op}A ´ Ac}op. Replacing N with (4.18) yields
|λ1ip0q| ď 2}Ac}2op. Therefore, by inserting the expression λ1p0q in (4.20) into (4.21), we get
|σc ´ σ1| ď

σc
N `Op1{N

2q.

For the upper bound of u11p0q, we look again at (4.22). By taking an inner product with u11p0q,
we immediately obtain

xu11p0q, F 1p0qu1p0qy ` xu11p0q, F p0qu11p0qy “ λ1p0q}u11p0q}2l2 .



108
Chapter 4. A signal separation technique for sub-cellular imaging using dynamic optical

coherence tomography

Recall that the matrix Ac is of rank one. So, there exists a positive constant c, such that
A˚cAc “ cu1p0quT1 p0q, which reads

F p0qu11p0q “ cu1p0qpuT1 p0qu11p0qq “ cu1p0qxu1p0q, u11p0qy “ 0.

Therefore, direct calculation shows that }u11p0q}l2 ď
}F 1p0qu1p0q}l2

λ1p0q ď
}F 1p0q}op
}Ac}2op

ď 2.

The rest of the proof follows by substituting the above bound into (4.21), then we have }uc ´
εu1}l2 ď

2
N `Op1{N

3{2q. ˝

Remark 1. Theorem 4.4.1 shows that the eigenvector difference of two classes is the order of 1
N ,

where N could be seen as the ratio between collagen signal and metabolic signal, so when N is
large enough, the difference could be ignored, therefore, it is reasonable to use the eigenvectors
of the SVD to approximate the true eigenvectors.

Remark 2. In the proof of Theorem 4.4.1, we did not use any representation of A and Ac, so in a
more general case, for any matrix A “ Ac ` opAcq where rank of Ac is 1, the first singular value
and first singular vector of A could be used to approximate the singular value and the singular
vector of Ac.

4.4.2 Analysis of obtaining the intensity of metabolic activity

Recall that our objective is to get the intensity of the metabolic activity after removing the
influence of the collagen signal. We have proved that the largest singular value corresponds to the
collagen signal, and the following few singular values correspond to the correlation part between
collagen signal and metabolic activity, the rest of the singular values contains information related
to the metabolic activity.

Let T be the set of these "rest" singular values. In practice, we only know the total signal
ΓODT px, tq (or the matrix A). By performing a SVD for ΓODT px, tq, we take the terms only
corresponding to the singular values in T in the SVD expansion. The next problem is to
reconstruct the intensity of the particle movements of metabolic activity. In the numerical
experiments, by observation the sum

ř

iPT σ
2
i |uipxjq|

2 gives a very good approximation to the
intensity of metabolic activity at the pixel xj . A theorem is given to explain why it works.

Physically, we expect the metabolic activity signal to be centered around 0, so in each pixel xj ,
the norm }Ampxj , tq}

2
`2 could be seen as the standard deviation of the metabolic signal, which

could represent the intensity of metabolic activities in pixel xj . However, the eigenvectors of
the operators with the kernels Fcc, Fcm and Fmc are not orthogonal (this statement may be
justified by arguing as in section 4.A). Thus when using a SVD, we do not get the exact "pure"
metabolic activity signal Am, but only an approximation, which we denote by Am1 . We first give
an interpretation that

ř

iPT σ
2
i |uipxjq|

2 could be written as a `2 norm of the matrix Am1 .
Theorem 4.4.2 Let A be the matrix after the discretization of ΓODT px, tq with respect to x and
t, such that the j-th row of A corresponds to the pixel xj , and the k-th column of A corresponds
to the time tk. Let T be a subset of singular values of A, and Am1 be the result of taking only the
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singular values in T from A. Then for any pixel xj , we have
ÿ

iPT

σ2
i |uipxjq|

2 “
ÿ

k

|Am1pxj , tkq|
2. (4.23)

Proof: We apply the SVD algorithm to the matrixA to getA “ USV ˚, whereU “ pu1, u2, . . . q,
V “ pv1, v2, . . . q are unitary matrices, and S is a diagonal matrix containing the singular values
of A.

We construct a new diagonal matrix ST , which is obtained from S by keeping all the singular
values in T , but changing everything else to zero. By the definition of Am1 , we readily derive
Am1 “ USTV

˚.

Note that σiuipxjq is the element at row j, column i of the matrix US. By the construction of
ST , we know σiuipxjq is the element at row j, column i of the matrix UST for every i P T .
Therefore, the sum

ř

iPT σ
2
i |uipxjq|

2 is equal to the square-sum of the j-th row of the matrix
UST , which gives

}UST pxj , ¨q}
2
`2 “

ÿ

iPT

σ2
i |uipxjq|

2. (4.24)

On the other hand, the relation Am1 “ pUST qV
˚ means that for each xj , Am1pxj , ¨q “

pUST qpxj , ¨qV
˚.

A direct calculation from the definition of `2 norm of vectors shows that
ÿ

k

|Am1pxj , tkq|
2 “ }Am1pxj , ¨q}

2
`2 “ Am1pxj , ¨qAm1pxj , ¨q

˚.

Using V ˚V “ I and substituting pUST qpxj , ¨qV ˚ for Am1pxj , ¨q yields

ÿ

k

|Am1pxj , tkq|
2 “ UST pxj , ¨qpUST pxj , ¨qq

˚ “ }UST pxj , ¨q}
2
`2 . (4.25)

Combining (4.24) and (4.25) completes the proof. ˝

Then let us look at the `2 norm of the difference between the two matrices Am and Am1 .
Proceeding as in the proof of Theorem 4.4.1, we can estimate }Am ´Am1}. When N in (4.18)
is large enough, it is reasonable to approximate Am by Am1 . This fact enables us to say that
}Am1pxj , tq}

2
`2 « }Ampxj , tq}

2
`2 for each pixel xj .

Therefore, we conclude that
ř

iPT σ
2
i |puiqj |

2 over the set T of "rest" singular values is indeed a
good approximation for the metabolic activity intensity.

4.5 Numerical experiments

In this section we model the forward measurements of our problem. Using the SVD decomposi-
tion we filter out the signal, finally obtaining images of the hidden weak sources.
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4.5.1 Forward problem measurements

To simulate the signal measurements using ((4.5)), we only need to simulate the density function
ppx, z, tq of the media to be illuminated. For each pixel x, there are two types of superimposed
media. One is the collagen media characterized for having a strong signal and slow movement.
The second medium is the metabolic activity, that has a fast movement relative to the time
samples. According to [Ape+16], the collagen signal intensity is around 100 times stronger than
the metabolic one.

Given these properties, both media are modeled differently. The collagen particles are simulated
as an extended random medium on z that displaces slowly on time; see [Kli02]. For each pixel
x, an independent one-dimensional random medium rxp¨q is generated, and then ppx, z, tq “
rxpz ` tvq with v being the constant movement velocity. The metabolic activity is simulated as
an uniform white noise, whose intensity represents its magnitude. Background or instrumental
noise is added everywhere in a similar fashion, but with smaller intensity.

After the medium is simulated, ((4.5)) is applied to reproduce the measured signal, where for
integration purposes, the broadband light is approximated by Dirac deltas in certain frequencies.
All the model parameters are set such that we obtain similar measurements to the ones obtained
in [Ape+16]. In Figure 4.3 we can see, for a single pixel, the simulated signal as a function of
time.
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FIGURE 4.3: On top we can see the total signal measured at a fixed pixel. If
decomposed into the one corresponding to the collagen structures and metabolic

signal, we obtain the bottom images, left and right hand side respectively.



Chapter 4. A signal separation technique for sub-cellular imaging using dynamic optical
coherence tomography 111

In the following, we consider a two-dimensional 21x21 grid of pixels. The collagen signal, albeit
being generated by an independent random media, has the same parameters everywhere, thus
sharing a similar behavior. In Figure 4.4, we present the considered metabolic activity intensity
map and two snapshots at different times of the total signal.
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FIGURE 4.4: On the left we can see the considered metabolic map, it describes
the intensity of the metabolic signal presented in Figure 4.3. The other two

images correspond to raw sampling of the media at different times.

4.5.2 SVD of the measurements

To use the singular value decomposition on the signal, we reshape the raw data ΓODT px, tq
under a Casorati matrix form, where the two-dimensional pixels on the x variable are rearranged
as a one-dimensional variable, and hence the total signal is written as a matrix A where each
dimension corresponds respectively to the space and time variables. The total signal consists on
the addition of the metabolic and collagen signals, namely A “ Am ` Ac. Our objective is to
recover the spatial information of the metabolic signal Am.

We apply the SVD decomposition (4.17) over the total signal A, where the dimension of each
space corresponds to the amount of pixels of the image and the time samples respectively. Each
space vector tuiu point out which pixels are participating in the ith singular value. To obtain
an image of the pixels participating in a particular subset of singular values T Ă N, we use the
following formula (see Section 4.2 for why it works):

Ipjq “

d

ÿ

iPT

σ2
i uipjq

2, (4.26)

where the indices j are for indexing the image’s pixels. When the signal has mean 0, (4.26)
corresponds to the standard deviation that was already considered as an imaging formula in
[Ape+16].

In Figure 4.5, we can see an image of each space vector tuiu ordered by their associated singular
value, these vectors correspond to the decomposition of the total signal A. The other two pictures
on the right of it, correspond to the singular space vectors but for each unmixed signal Ac and
Am, separately. As it can be seen, the spatial vectors of both signals get mixed in the total signal,
but the metabolic activity ones get embedded in a clustered fashion, although there is a distortion
of these vectors, this is unavoidable given the nature of the SVD.

The location of the spatial vectors is related to their respective singular values, that are presented
in Figure 4.6. It is observed, that the moment in which the spatial vectors of the total signal start
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FIGURE 4.5: These images are the space matrices obtained with the SVD, where
each column of these matrices corresponds to a singular space-vector, naturally
ordered from left to right by their respective singular value index. Notice that
each row of these matrices represents each pixel of the image presented in
Figure 4.4 and the color intensity indicates how much weight does each singular
vector placed in that particular pixel. From the bottom-right image we can see
that the first singular space-vectors from the metabolic signal are clearly clustered
on some pixels (that correspond to the zones in where there is metabolic activity),
whereas from the bottom-left image we notice that the singular space-vectors do
not concentrate in any specific location, as the collagen is present everywhere.
Observing the image on the top, that is the total signal, we notice that after
dropping the firsts singular space-vectors, we also observe a clustered behavior.

This information is the one we seek to recover from the total signal.

to look like the ones from the metabolic activity, is close to the moment in which the singular
values from the metabolic activity get close to those in the total signal. In a mathematical way, we
say that the index j P N in which the spatial vectors ui start to resemble those of the metabolic
activity, corresponds to

j “ argmintσjpAq ă σ1pAmqu ´ k, with k small. (4.27)

In practice, for the tested examples (up to 24x24 grid of pixels, and 500 to 1000 time samples)
k « 10 achieve the best results.

The clustered behavior of the singular vectors arise from the model itself, as it generates fast
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decaying singular values for the collagen signal, whereas the metabolic singular values decay in
a more slow fashion. Hence, it is possible to assign an interval of the total signal space vectors as
an approximation to the metabolic activity Am.
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FIGURE 4.6: Singular values for the signals. The circle represents the optimal
starting index j at which we should consider the singular space-vectors of the
total signal to contain mostly information on the singular space-vectors of the
metabolic activity. The first singular value of the total signal and the collagen

signal is outside the plot, with an approximate value of 2.3ˆ 106.

4.5.3 Selection of cut-off singular value

The before mentioned criteria to choose an adequate interval of singular-space vectors to apply
the imaging (4.26) is not possible in practice, as we have no a priori information on where the
metabolic singular values σipAmq lie. Since the idea is to consider an interval of singular space
vectors, the first and last elements must be defined. The length of the interval corresponds to the
range of the matrix Am, with some added terms coming from the matrix Ac. This can be left as
a free parameter to be decided by the controller. As a general guideline, it corresponds to the
quantity of pixels in which it is expected to find the metabolic activity.

For the considered first singular space vector, also called cut-off one, there is a criteria that arises
from the model. Given the differences between the metabolic and collagen signal, the latter in
the time variable has some regularity and self correlation. This characteristic is transferred to the
first singular time-vectors. In Figure 4.7 we can see plots of these time-vectors for each signal.

Our proposed technique consists in measuring the regularity of the time vectors using the total
variation semi-norm, the smaller the value the more regular. With this information we seek to
estimate the argmintσjpAq ă σ1pAmqu and thus, using ((4.27)), select the cut-off point. In the
case of a discrete signal, the total variation can be stated as

| v |TV “

N´1
ÿ

i“1
|vpi` 1q ´ vpiq|.

Applying the total variation norm to the total signal singular time-vectors vi, we can see that the
regularity drops until arriving to, in mean, a slowly increasing plateau. To find it, in an operator
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FIGURE 4.7: Plots of the singular time-vectors for each signal, at the second sin-
gular value. The collagen time vectors are more regular and correlated compared
to the metabolic signal, albeit this property is gradually loosed as we augment
the index of the time vectors. Since the SVD of the total signal is dominated by

the collagen signal, its time vectors inherit the same property.

free way, it is possible to fit a 2 piece continuous quadratic spline in the total variation plot,
and estimate the first metabolic singular value index as the index l in which the spline changes.
In our simulations this l is a good approximation for the first singular value of the metabolic
activity, meaning that σl « σ1pAmq; see Figure 4.8, thus by subtracting the value k in (4.27), we
obtain a cut-off point. Keep in mind that this considered method does not make use of a priori
information.
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FIGURE 4.8: Same plot as in Figure 4.6, but including the total variation of the
singular time-vectors of the total signal. The total variation is scaled to fit the

plot with the singular values.

4.5.4 Signal reconstruction

Employing the cut-off criteria in subsection subsection 4.5.3 and (4.26) to our simulation, we
can reconstruct the metabolic activity. In Figure 4.9 we have on the left-hand side the best
possible reconstruction using the SVD technique, that is the one we could do if we could isolate
completely the signal Am from the total signal A. On the right-hand side, we have the actual
reconstruction. It is worth mentioning that we are not able to reconstruct the exact metabolic
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map, as (4.26) is used on the simulated media, and thus the image obtained out of the isolated
signal Am is the one we are aiming to reconstruct.
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FIGURE 4.9: Reconstruction of the metabolic map presented in Figure 4.4. The
left image correspond to using directly (4.26) on the isolated Am signal. The
right-hand side image correspond to using our reconstruction method on the total
signal. Once the images are normalized, the committed error with respect to the

original metabolic map is 0.011 and 0.017, respectively

4.5.5 Discussion and observations

Since the SVD uses information of all pixels simultaneously to filter out the collagen signal, this
technique works better the larger the considered image size is, as the main point is to use the
joint information of all the pixels in the image, in contrast to frequency filtering that considers
only point-wise information. Numerically, this effect is notorious, as the larger the image size,
the more clustered are the singular space-vectors associated to the metabolic activity and thus it
is easier to filter out the collagen signal.

With respect to the time samples, keep in mind that all simulations considered a fixed sample rate,
and it is observed that the filtering process degrades if too many time samples are considered
(i.e. lengthier measurement experiences). When this happens (for our 21x21 grid size, this is
above 1000 time samples), the singular values of the collagen signal start decaying in a slower
rate, accomplishing a less clustered behavior of the metabolic singular space-vectors, and thus
achieving a worse signal separation. Therefore, if there are too many available time samples, one
possible recommendation is to do several reconstructions using subsets of these time samples
and then averaging the results.

The reasons of this behavior when too many time samples are accessible, are specific to the
singular value decomposition and not the sample rate or the noise level. It is possible that the
sample rate gets small enough to the point that we could track specific metabolic movements
inside the cell, if this is the case, the model becomes invalid and new assumptions must be placed.
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4.6 Conclusion

In this paper, we performed a mathematical analysis of extracting useful information for sub-
cellular imaging based on dynamic optical coherence tomography. By using a novel multi-particle
dynamical model, we analyzed the spectrum of the operator with the intensity as an integral
kernel, and shown that the dominant collagen signal is rank-one. Therefore, a SVD approach can
theoretically separate the metabolic activity signal from the collagen signal. We proved that the
SVD eigenvectors are good approximation to the collagen signal, proving that the SVD approach
is feasible and reliable as a method to remove the influence of collagen signals. And we also
discovered a new formula that gives the intensity of metabolic activity from the SVD analysis.
This is further confirmed by our numerical results on simulated data sets.

4.A Appendix

In this appendix we will illustrate the fact that the eigenvectors of the kernels Fccpx, yq, Fcmpx, yq
and Fmcpx, yq are in general not orthogonal. Since all of them have variable separable forms with
respect to x and y, which is the basis of our analysis, so here we only prove the nonorthogonality
between eigenvectors of the kernels Fccpx, yq in (4.11) and Fcmpx, yq in (4.12).

Let A be the matrix obtained from discretizing the signal ΓODT . The singular values of A are
the square roots of the eigenvalues of the matrix A˚A, and the singular vectors of A are the
corresponding eigenvectors of A˚A. We notice that A˚A is a discretization of the integral kernel
F px, yq. We first demonstrate the relation between kernels with variable separable forms and
eigenvectors.
Lemma 4.A.1 For any function fpx, yq P L2pΩˆ Ωq, if there exist functions f1pxq and f2pyq,
such that fpx, yq “ f1pxqf2pyq, then the operator T : L2pΩq Ñ L2pΩq with kernel fpx, yq
can have only one nonzero eigenvalue. Furthermore, the eigenvector of T corresponding to the
unique nonzero eigenvalue is given by f1pxq or f2pyq.
Proof: Using the variable separation form fpx, yq “ f1pxqf2pyq yields

pThqpxq “

ż

Ω
fpx, yqhpyqdy

“

ż

Ω
f1pxqf2pyqhpyqdy

“ f1pxq

ż

Ω
f2pyqhpyqdy.

(4.28)

Suppose that λ is a nonzero eigenvalue of T , and gpxq is the corresponding eigenvector, so that
Tgpxq “ λgpxq. Comparing this with (4.28) implies

λgpxq “ f1pxq

ż

Ω
f2pyqgpyqdy. ˝

Therefore, the eigenvector gpxq is a multiple of f1pxq, and the corresponding eigenvalue λ “
ş

Ω f2pyqf1pyqdy.
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Denote the functions ϕcpxq and ϕmpxq by

ϕcpxq “ Kc1pxqqcpxq,

ϕmpxq “

ż

r´L,Ls2ˆr0,T s
FpS0Kc2qp

4πn̄z2
c

q

ˆ FpS0Kmqpx,´
4πn̄z1
c

qpmpx, z1, tqdz1dz2dt

Then the kernels Fcc and Fcm can be written as

Fccpx, yq “ C1ϕ
cpxqϕcpyq,

Fcmpx, yq “ C2ϕ
cpxqϕmpyq,

where C1 and C2 are constants.

Applying Lemma 4.A.1 to the kernels Fcc and Fcm, we know that the corresponding eigenvectors
are ϕc and ϕm respectively.

Since this integral
ş

Ω ϕ
cpxqϕmpxqdx depends much on the random term pmpx, z, tq, it will not

be zero almost all of the time. Hence, in our construction, the vectors ϕc and ϕm are in general
not orthogonal.
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5
Discussion and Outlook

Photoacoustic tomography has been of significant interest in recent years due to the high contrast
and high resolution images. In this work, we concentrate on the inverse problems related to
acoustic wave equation in attenuating media from wavefield measurements. We successfully
handle attenuation effect in acoustic media, analyze the ill-posedness of the inverse problems
in different attenuating media. Furthermore, explicit reconstruction formulas are given and
numerical results show the viability of these formulas.

In order to address the ill-posedness of inverse problems. we first prove the existence and
uniqueness of solution of attenuated wave equation in the distributional sense. Then, we propose
a necessary and sufficient condition for the finite propagation speed of wave. By giving the
definitions of weak attenuation and strong attenuation, we divide the known photoacoustic models
to two classes. We consider a self-adjoint integral operator which is generated by the integrated
photoacoustic operator. Through proving the L2 property of its kernel, we get that the self-adjoint
operator is a Hilbert-Schmidt operator and thus compact. Based on this property, we analyzed
the decay rate of its eigenvalues. In strong attenuating media, the kernel of this integral operator
is infinitely smooth, and we give the bound of its directional derivatives of every order. Using
this information, we prove that the singular values of the attenuated photoacoustic operator decay
exponentially. On the other hand, in the weak attenuation case the kernel of the integral operator
is weak singular. By dividing the integral operator into the sum of constant attenuating operator
and a perturbation, we prove the singular values of the attenuated photoacoustic operator decay
with the same rate as the singular values of the non-attenuated photoacoustic operator, which is
polynomial with the order ´1

3 .

The research about spectral analysis provides fundamental theoretical basis and important tools
for analysing the degree of ill-posedness of inverse problems. More generally, our method to
analyze the eigenvalue asymptotic behavior of integral operator is applicable to any integral
operators with infinity smooth kernels or weak singular kernels. Thus, we could apply these
methods on other similar problems which may lie outside of the scope of imaging problems.
Also, these methods could be extended to analyze the eigenvalue asymptotic behaviors of the
related nonlinear problems.

After giving the ill-posedness of the attenuated PAT problem, we introduce some reconstruction
formulas for the initial pressure in the attenuated wave equation, that is, explicit reconstruction
formulas in the time domain based on the universal back-projection formula. Numerical ex-
periments show the formula works quite well. The reconstruction methods give more accurate
approximations for the initial pressure, which can be used in the subsequent quantitative PAT.

There are still some open problems. Since until now it is hard to make a standard rule to
distinguish good attenuation models. An interesting problem is to recover both the initial pressure
hpxq and complex wave number κpωq by providing more information.
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Also, in the thesis, we consider a homogenous medium. That is, we assumed the acoustic
properties of the medium, as defined by the complex wave number κpωq, does not change
throughout the tissue we’re imaging. In practice, according to the different properties of the
tissue, the acoustic properties could be spatially varying, so the problem is how to recover the
initial pressure hpxq in the attenuating media with a varying complex wave number κpω, xq. The
non-attenuating counterpart of this problem deals with a variable sound-speed cpxq, and there are
some known works for this case. In this regard we refer to [AK07; Kun07].

Moreover, the reconstruction formulas we gave in the thesis are for plane, cylinder or sphere.
More generally, if the observation surface is only assumed to be smooth and convex, what will
the reconstruction formulas look like? In non-attenuating media, we refer to [Nat12].

Another topic in the thesis is about optical coherence tomography. Our work on OCT present a
general technique to remove the influence of a strong and slow-varying background signal, to
unveil useful information on the cellular scale.

Using dynamic optical coherence tomography, based on a single particle model we give a new
multi-particle dynamical model to simulate the movements of the collagen and the cell metabolic
activity. We prove that the largest singular value of the associated Casorati matrix corresponds to
the collagen. Then, we present an efficient signal separation technique for sub-cellular imaging.
To isolate the signal from the metabolic activity, we perform a singular-value decomposition on
the dynamic optical images. Several numerical results are given to illustrate and validate our
approach.

This signal separation technique could be more generally used to separate two sets of signals
which have large difference in intensity. Also it provides some ideas to model other dynamical
imaging methods.



A
Deutsche Zusammenfassung

Das wissenschaftliche Interesse an photoakustischer Tomographie (PAT) hat in den letzten
Jahrzehnten stark zugenommen. Die Gründe dafür sind vielfältig, unter anderem liegt dies an der
hohen Auflösung, dem starken Kontrast, sowie der guten Genauigkeit der Methode. Dennoch
vernachlässigen die meisten aktuellen Artikel einen wichtigen Aspekt, die Dämpfung. Da das
meiste Gewebe viskoelastische Eigenschaften aufweist, würde sich die Energie während der
Ausbreitung einer akustischen Welle verringern. Lässt man die Dämpfung dabei außer Acht,
könnte dies die Qualität der finalen Rekonstruktion verschlechtern.

Dies ist eine kumulative Dissertation, bestehend aus drei Artikeln aus dem Bereich der medi-
zinischen Bildverarbeitung.

Die ersten beiden Artikel beschäftigen sich mit PAT unter Berücksichtigung von akustischer
Dämpfung. Unser erstes Ziel ist es ein dazugehöriges mathematisches Modell zu entwickeln.
Bekannte Forschungsergebnisse diesbezüglich gibt es bisher kaum. Einige der fundamentalen
Probleme, wie zum Beispiel die Frage danach wie sehr ein Problem schlecht gestellt ist und die
Existenz einer expliziten Rekonstruktionsformel, verbleiben offen.

Im ersten Artikel wird zuerst ein überblick über bekannte photoakustische Dämpfungsmodelle
gegeben. Anschließend präsentieren wir ein allgemeines Modell unter Berücksichtigung der
Dämpfung und zeigen Existenz und Eindeutigkeit der Lösung. Außerdem untersuchen wir das
asymptotische Verhalten der Singulärwerte des direkten Problems und geben eine notwenige und
hinreichende Bedingung für die endliche Ausbreitungsgeschwindigkeit einer akustischen Welle
an.

Nach der Behandlung des direkten Problems beschäftigen wir uns im zweiten Artikel mit dem
inversen Problem, das heißt, unser Ziel ist es die anfängliche Druckverteilung zu rekonstru-
ieren. Es gibt einige bekannte Methoden zur Lösung dieses Problems, jedoch keine bekannte
Rekonstruktionsformel. Wir stellen neue Rekonstruktionsformeln basierend auf der allgemeinen
Rückprojektionsformel vor. Numerische Resultate zeigen vielversprechende Ergebnisse mit
ähnlichem rechnerischen Aufwand wie Rückprojektionsformeln.

Im dritten Artikel entwickeln wir eine Methode zur Teilung des Signals in sub-zellularer optischer
Kohärenztomographie (OKT). Dies rührt daher, dass das Hintergrundsignal in OKT Bildern,
verursacht durch Kollagen oder andere interzelluläre Teilstücke, so stark ist, dass wichtige
Informationen im Inneren der Zelle verborgen bleiben. Unser Ziel ist es den Einfluss dieses
Signals zu minimieren, um so die benötigten Informationen zu isolieren. Dazu untersuchen wir
zunächst die Modellierung des Hintergrundsignals sowie die Zellaktivität und schlagen, unter
Verwendung der Singulärwertzerlegung, eine effiziente Methode vor, um das Problem zu lösen.
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