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Zusammenfassung

Trotz der großen wirtschaftlichen Bedeutung von teilkristallinen Polymeren ist das Wissen
über die wesentlichen mikrostrukturellen Prozesse, die für die mechanischen Eigenschaf-
ten verantwortlich sind, vergleichsweise gering. Oberhalb der Glasübergangstemperatur ist
für die makroskopischen Eigenschaften vor allem die Festigkeit der kristallinen Phase ent-
scheidend. Dabei spielen vor allem lineare Gitterdefekte, wie Versetzungen, eine wichtige
Rolle. Im Gegensatz zu Metallen ist die Untersuchung von Versetzungen in teilkristallinen
Poly-meren schwierig, da nur sehr wenige Methoden mit zum Teil wesentlichen Einschrän-
kungen zur Verfügung stehen.

Daher war es das Ziel dieser Dissertation, neue Charakterisierungsmethoden für Versetzun-
gen in teilkristallinen Polymeren zu etablieren. In den letzten Jahren wurde eine spezielle
Röntgendiffraktionsmethode entwickelt (Multi-reflection X-ray Profile Analysis (MXPA)),
mit der die Dichte, die Anordnung und der Typ der Versetzung, und daneben auch die
Kristallitgrösse bestimmt werden kann. Die erste Aufgabe der vorliegenden Dissertation
war es, die MXPA Methode erstmals für die Anwendung an teilkristallinen Polymeren zu
adaptieren. Zu diesem Zweck wurden spezielle Algorithmen geschaffen, die es erlauben,
sich trotz des durch die Komplexität der polymertypischen Kristallsysteme signifikant erwei-
terten Lösungsraums rasch an das globale Minimum anzunähern. Damit konnte erstmalig
an Polypropylen (PP) gezeigt werden, dass mit zunehmender plastischer Verformung die
Versetzungsdichte von etwa 1015 auf 1016 m−2 ansteigt, womit die grosse Bedeutung der
Versetzungen für die plastische Deformation von teilkristallinen Polymeren bestätigt wurde.

Ein wesentlicher Vorteil der MXPA ist die Möglichkeit, sie auch für in situ Röntgenbeu-
gungsmessungen während der Deformation anwenden zu können. Im Rahmen der Dis-
sertation wurden in situ Kompressions- und Entlastungsversuche an PP mit Synchrotron-
Strahlung durchgeführt. Dabei hat sich gezeigt, dass die Versetzungen bei Entlastung zwar
annihilieren, aber dass bereits in unverformten Proben genügend viele thermisch aktivier-
bare Versetzungen existieren, die für die plastische Verformung mobilisiert werden können.
Erst ab Verformungen weit über der Streckgrenze müssen zusätzliche Versetzungen gene-
riert werden.

Ein weiterer wichtiger Faktor für die mechanischen Eigenschaften von kristallinen Ma-
terialien ist die Kinetik der Versetzungen, welche in teilkristallinen Polymeren bisher unge-
klärt war. Die bisher zur Untersuchung dieser Kinetik durchgeführten Nanoindentierungs-
Kriechexperimente erscheinen wegen der in Ort und Zeit variierenden Spannungen, des
kleinen Messvolumens und der unkontrollierbaren plastischen Verformung problematisch,
weswegen in dieser Dissertation versucht wurde, eine alternative Testmethode auf Basis
eines Torsions-Rheometers zu entwickeln, die all diese Nachteile der Nanoindentierung ver-
meidet. Somit wird eine eindeutige Trennung der Deformation in der amorphen von der
Deformation in der kristallinen Phase gewährleistet und damit die direkte Bestimmung der
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physikalischen Versetzungsmodellparameter ermöglicht. Durch umfangreiche Experimente
mit Polyethylen (PE-HD) bei unterschiedlichen Temperaturen und Belastungen konnte die
Aktivierungsenthalpie für die Generierung und Mobilisierung von Versetzungen mit 0.59
eV bestimmt werden. Dabei konnten bereits bei Spannungen < 1 % der Streckgrenze
Versetzungsbewegungen in Form von Versetzungslawinen nachgewiesen werden.

4



Abstract

Despite the economic importance of semi-crystalline polymers the knowledge of the mi-
crostructural processes responsible for their mechanical properties is low. Beyond the glass
transition temperature the strength of the crystalline phase is primarily responsible for the
macroscopic one. In that case, linear lattice defects such as dislocations can play a decisive
role. In contrast to metals, the investigation of dislocations in semi-crystalline polymers is
challenging, as only few methods for dislocation analysis with partially strong limitations
exist.

Thus it was the aim of this doctoral thesis to establish new characterization methods
for dislocations in semi-crystalline polymers. In recent years, a special method of X-ray
diffraction analysis was developed (Multi-reflection X-ray Profile Analysis (MXPA)) which
is capable of measuring the density, arrangement and type of dislocations. The first task
of the present thesis was to adapt the MXPA method, for the first time, also for the
application in semi-crystalline polymers. For this purpose, special algorithms were created
which allow for a fast approach to the global minimum, in spite of the significantly extended
solution space due to the complexity of polymer-specific crystal systems. It could be shown
for the first time on polypropylene (PP) that during plastic deformation the dislocation
density increases from approximately 1015 to 1016 m−2 which confirmed the importance of
dislocations for the plastic deformation of semi-crystalline polymers.

A major advantage of the MXPA is the possibility to carry out in situ X-ray diffraction
measurements of dislocation parameters during deformation. In frame of this thesis, in
situ compression and unloading experiments in PP have been performed by means of Syn-
chrotron radiation. It has been found that the dislocations annihilate during unloading and
that even in undeformed samples, a sufficient number of thermally activable dislocations
are available which can be mobilized for the plastic deformation. Only for deformations
far beyond the yield stress, additional dislocations are to be generated.

Another important factor for the mechanical properties of crystalline materials is the ki-
netics of dislocations which so far has been widely unclear in semi-crystalline polymers.
Recent experiments achieving creep by nanoindentation to study this kinetics appear to
be problematic because of stresses being not constant with respect to time and space,
the small measuring volume, and the non-controllable plastic deformation. Therefore in
this thesis, an alternative test method based on torsion experiments with a rheometer
was developed, which avoids all these disadvantages, thus permitting a clear separation
of the deformation in the amorphous and crystalline phase and a direct determination of
the physical dislocation model parameters. By extensive experiments with polyethylene
(PE-HD) at different temperatures and loads, an activation enthalpy of 0.59 eV for the
generation and mobilization of dislocations could be determined. The experiments showed
that dislocation movements in the form of dislocation avalanches occur even at stresses
lower than 1 % of the yield stress.
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1. Motivation

Today polymers are the most important material group. At the beginning of the 1990s,
more polymers by volume were processed than steel and with the end of the twentieth
century even more than all metals together [1, 2]. This rapid growth has two main causes.
On the one hand, the 5 bulk plastics polyethylene (PE), polypropylene (PP), polyvinyl
chloride (PVC), polystyrene (PS) and polyethylene terephthalate (PET) mean that low-
cost materials are available (∼ 1.5 e/dm3) and, on the other hand, injection-moulding and
extrusion processing provide two cheap mass-production methods for these thermoplastics.
Therefore high-precision parts (tolerances in the 1/100 mm range) with very good sur-
face quality can be produced cost-effectively. Nevertheless, these standard thermoplastics
have significantly lower strengths (∼ 1/10) and stiffnesses (∼ 1/100) compared to met-
als. While it is possible to improve the strength and stiffness of these polymers through
molecular orientation and/or addition of reinforcing fibres, the intrinsic strength can only
be improved by a small extent, e.g. by modifying the molecular mass distribution.

The situation for metals is totally different. Since many years it is well known that detects,
especially line defects called dislocations, affect the strength essentially. By hindering
the movemennt of these dislocations the strength can be dramatically increased. Many
mechanisms for restricting the dislocation movement have been developed over the last
decades [3]. For example, by adding suitable alloying elements in aluminum in combination
with a heat treatment, these various mechanisms can be used to hinder the dislocation
movement, which leads to an increase in strength from 50 MPa to above 600 MPa. In
nanocrystalline aluminum, the strength can even be increased up to 800 MPa [4].

There are two groups of thermoplastics, the amorphous and semi-crystalline thermoplas-
tics. The majority of engineering applications use semi-crystalline polymers (especially
polyethylene and polypropylene) since they have better mechanical properties. Despite
their commercial importance, the knowledge of the micro-structural processes during plas-
tic deformation of semi-crystalline polymers is relatively low. This is due to their complex
two-phase structure consisting of crystalline and amorphous regions. It is the crystalline
phase that is primarily responsible for the strength. Therefore, the knowledge and under-
standing of the crucial micro-mechanical processes, especially about dislocations and their
kinetic in the crystalline phase of semi-crystalline polymers, is of great importance.
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2. State of the art

2.1. Semi-crystalline polymers

Semi-crystalline polymers consist of an amorphous and a crystalline phase. Due to the large
chain length of the macromolecules, locking and entanglement occur which have essential
influence on the crystallization behaviour. As a result, polymers crystallizing from the
melt never reach 100 % crystallinity. From the melt crystallized semi-crystalline polymers
consist of lamella crystals with intermediate amorphous layers. The lamella crystals form
superstructures called spherulites. A typical spherulite can be seen in Figure 2.1a showing
a characteristic Maltese cross in polarized light. Spherulites grow radially outwards from
a nucleus (Figure 2.1b and c). The growth stops when two adjacent spherulites touch
together. Spherulites typically have a diameter of several µm to some 100 µm.

(a) (b) (c)

Figure 2.1.: Spherulites.
(a) Optical polarisation micrograph of polyhydrxybutyrate spherulites. From [5].
(b,c) Schematic representation of the crystalline lemellae arrangement in the spherulitic
superstructure. From [6, 7].

The typical extinction patterns seen in polarized light are due to the orientation of the
crystals within the spherulites. Analysis of the Maltese cross patterns has indicated that
the molecules are normally aligned tangentially in polymer spherulites. It has been shown
that the b crystal axis is radial in polyethylene spherulites and the a and c crystallographic
directions are tangential. In some polymers, the spherulites in polarized light are seen to
be ringed (Figure 2.1a), which has been attributed to a regular twist in the crystals. The
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2. State of the art

thickness of the lamellae is about 10 - 30 nm, which is similar to solution-grown lamella
single crystals. Selected-area electron diffraction has shown that the polymer molecules
are orientated approximately normal to the lamella surface (Figure 2.1b). This is also
evidence of the similarity between melt-crystallized and solution-grown lamellae [8].

Since during the crystallization process the molecules do not completely disentangle, not all
folded chains can return to the lamellae. It is therefore probable that individual chains ex-
tend over the intermediate amorphous regions from one to the next lamella (tie molecules,
Figure 2.1 and 2.2). These tie molecules play an important role in plastic deformation,
since they mechanically link the lamellae together.

The lamellae need not be of constant thickness and they are more or less curved, since
the less dense and thus more space-consuming amorphous layers have to be incorporated
between the lamellae (Figure 2.2).

(a) (b)

Figure 2.2.: Lamellae geometry.
(a) Schematic representation of the chain arrangement. From [9].
(b) TEM micrograph of high density polyethylene. From [10].

Within the lamellae, the chains are arranged in parallel and almost perpendicular to the
lamella surface. For example in polyethylene the symmetric zigzag chains in the plane are
arranged in an orthorhombic crystalline form (Figure 2.3). Each chain is surrounded by
four equally distant chains. These surrounding chains are rotated along their longitudinal
axis by 82 ° to the central chain. The distance of the carbon atoms in the chain is
0.154 nm, the valence angle is 109 ° and the C-H distance is 0.11 nm. But even more
complex, unsymmetrical macromolecules can form regular crystalline structures, such as
polypropylene and polyethylene terephthalate.

In recent years it has been found that the transition between the amorphous and the
crystalline phase is not abrupt. In the interface between the two phases there is still a
few nm thick intermediate layer, the rigid amorphous phase (Figure 2.4) [12, 13]. This
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2.2. Plasticity of semi-crystalline polymers

Figure 2.3.: Crystalline structure of polyethylene. Left - orthorhombic unit cell. Right -
section in the direction a b, atoms with Van der Waals radius. From [11].

stiffer interface originates from geometrical constraints, because the density cannot change
abruptly. This intermediate phase is non-crystalline and includes amorphous portions of
macromolecules whose mobility is hindered by the near crystalline structures. The limited
molecular mobility significantly increases the stiffness of this layer. This is particularly inter-
esting, since dislocations are formed on the crystal surface and thus in the rigid amorphous
phase.

Figure 2.4.: Rigid amorphous phase (2), the some few nm thick interface between the
amorphous phase (1) and the crystalline phase (3). From [14].

2.2. Plasticity of semi-crystalline polymers

Of course, the mechanical behaviour of the polymers was investigated intensively [15].
Especially the micro-structural changes during plastic deformation, such as orientations of
the amorphous phase, lamella rotation, texture development, lamella deformation, lamella
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2. State of the art

fragmentation and formation of highly oriented structures, have all been studied in depth
[16–19]. But because of their complex structure (amorphous and crystalline phases, su-
perstructures, tie molecules) and the interaction of strong covalent bonding forces within
the macromolecules and the much weaker Van der Waals bonds between the molecules
there are still open questions.

There are strong differences in the mechanical properties of the amorphous and crystalline
phases. This applies in particular to temperatures above the glass transition temperature
Tg and leads to different distinct deformations in the amorphous and crystalline phase.
Therefore a complete understanding of the mechanical properties is only possible if the
micro-structural processes in both phases and their mutual influence are known. The phase
fractions and size effects also play an important role.

2.2.1. Stress-strain characteristics of semi-crystalline polymers

The mechanical behaviour of materials is usually characterized by a stress-strain curve from
a mechanical uniaxial deformation experiment. For semi-crystalline polymers above Tg, the
stress-strain curve can be divided into four characteristic regions. The transition points
A, B, C and D (Figure 2.5) can be determined by cyclic loading unloading experiments
[20]. The deformation can be separated into elastic and plastic parts by means of inter-
mediate complete unloads. An additional temperature treatment of the deformed samples
allows the separation of the plastic deformation into reversible and residual parts. Com-
bining these cyclic experiments with micro-structural observations, the transition points
can be assigned to micro-structural processes [20, 21]. An important aspect is that these
transition points are triggered by the applied strain instead of stress [19].

Point A
End of pure elastic deformation. From this point the plastic deformation starts. Normally,
this point is not directly apparent in the stress-strain curve. However, some types of
polyethylene display a double yield point [22] where the first yield point can be assigned
to this transition. Before this point the deformation mainly takes place in the softer
amorphous phase.

Point B
Macroscopic yield point. Begin of huge slip within lamellae and lamellae rotation. The
crystalline deformation changes from a localized slip in a few lamellae with preferential
orientation with respect to the applied strain, to a general slip in all lamellae. After this
point ideal plastic flow or even softening can be observed.

Point C
Backstresses from the highly strained entangled amorphous network and tie molecules
cause a partial fragmentation of the lamellae and thus a small reduction of crystallinity.
In the following part of the stress strain curve, the highly oriented amorphous phase con-
tributes essential to the macroscopic strength and a strong strain hardening occurs.
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2.2. Plasticity of semi-crystalline polymers

Point D
The formation of micro fibrils starts and the disentanglement of the chains leads to an
unrecoverable deformation. Finally we get a fibrillar structure.

Figure 2.5.: Transition points of the stress strain curve and the corresponding micro-
structure of a semi-crystalline polymer. Modified from [23].

In principle, the compression test is equivalent to the tensile test with regard to micro-
mechanical processes. But additional cavitation (crazing) occurs in tensile tests [24]. The
differences in the stress-strain curve can be explained by the different texture development
[15]. However, new molecular dynamics simulations [25] have shown that there could be
at different strain rate levels differences depending on the type of deformation (extension,
compression, shear). If the compression test is carried out as a plane strain compres-
sion experiment, very large deformations (ε > 1) can be attained. This can lead to the
formation of a new lamella structure with a different lamella thickness [26].
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2. State of the art

2.2.2. Plasticity of the amorphous phase

The amorphous phase is formed from chains which are not immediately folded back into
the same lamella. These chains can end in the amorphous phase or can also extend to
adjacent lamellae and thus produce additional mechanical couplings between the lamellae
(tie molecules). The embedding of the lamellae in the amorphous phase results in further
degrees of freedom in the plastic deformation of the lamellae. This acts as an additional
slip system for the crystalline deformation of the lamella crystals [27].

Basically, three deformation modes can be distinguished in the amorphous phase in semi-
crystalline polymers (Figure 2.6) [28].

• interlamellar slip (shear)

• interlamellar separation

• lamellae stack rotation

Figure 2.6.: Deformation modes of the amorphous phase. Modified from [28].
(a) interlamellar slip (shear), (b) interlamellar separation, (c) stack rotation.

Interlamellar slip (Figure 2.6a) allows shearing of the lamellae parallel to each other. This
deformation mechanism is relatively easy to activate at temperatures above Tg and is
therefore relevant for polyethylene [29] and polypropylene [30]. It was possible to show
that the recoverable part of deformation can be almost entirely attributed to the reversible
interlamellar slip [20]. The restoring forces result from the entropy elasticity of the amor-
phous phase [31]. The stretched tie molecules create a back stress, which returns the
lamellae back to their original position when the sample is unloaded.

Interlamellar separation (Figure 2.6b) is induced by a tensile stress component perpendic-
ular to the lamella surface [29]. As a result, the intermediate amorphous layer becomes
thicker and the long period increases in the load direction. Since the amorphous phase
behaves as a perfect rubber, this type of deformation is unlikely. A lamella separation
simultaneously produces a transverse contraction, which is restricted by lateral constraints
imposed by the souroundig crystalline phase. Thus, such a deformation must involve a
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2.2. Plasticity of semi-crystalline polymers

change in volume. Rubbers are resistant to volume changes (Poisson ratio = 0.5), since
they generally have high bulk modulus and relative low shear modulus [19]. Therefore, this
deformation mode leads to cavitation in the amorphous layer between lamella crystals [32]
and further to the formation of voids or crazes. Whether and to what extent this defor-
mation mode occurs depends strongly on the number of tie molecules and entanglement
density in the amorphous phase.

Applied stress can always lead to lamellae stack rotation (Figure 2.6c). Due to the em-
bedding of the lamellae in the softer amorphous phase this is always possible, especially
at T > Tg and does not lead to any increase of the strain. This results in an additional
degree of freedom in the deformation, which reduces the number of necessary slip systems
for the plastic deformation of the lamellae. Therefore the lamellae rotation does not occur
individually, but in stacks of up to ten lemellae. These lamella stacks behave like a single
body.

During the deformation, the various deformation modes in the amorphous phase can occur
simultaneously. Which mechanism is preferred depends on the position in the spherulite
relative to the load direction (Figure 2.7).

Figure 2.7.: Possible deformation modes within a spherulite, depending on the psition.
Modified from [33].
(a) the 45 ° domains in an undeformed spherulite.
(b) lattice rotations due to simple shear in 45 ° segments subject equatorial regions to
enhanced tension and radial compression and polar regions to enhanced compression.

Interlamellar separation occurs mainly in the equatorial region of the spherulites. Amor-
phous layers tilted by 45 ° towards the applied stress undergo interlamellar shear which
leads to interlamellar slip and simultaneously to a rotation towards the polar region (lamel-
lae stack rotation). A compression stress acts on the vertical lamellae in the polar region
which can lead to interlamellar slip [18, 33].

Due to the low strength of the amorphous phase above Tg, it deforms at very low stresses.
Thereby the molecules are increasingly oriented with the increase in deformation. This
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causes a considerable increase in strength and stress in the amorphous phase. As a re-
sult, the stress is transferred to the crystalline phase. If the critical resolved shear stress
(CRSS) for the easiest slip system is reached, a plastic deformation occurs in the crystalline
phase.

The stress in the two phases is very different. Figure 2.8 shows the stress development
of the equivalent stress in crystalline and amorphous components in polyethylene. During
deformation, the amorphous network is stretched and the chains are oriented in the load
direction. An ever larger tension is necessary for the increasing orientation. In case of still
larger deformations, the stress in the amorphous phase exceeds the stress in the crystalline
phase.

Figure 2.8.: The dependence of normalized equivalent stresses in amorphous (1) and crys-
talline (2) phases of PE on equivalent strain, under uniaxial compression. Modified from
[34].

The mechanical behaviour of the isolated amorphous phase can be described by means of
various thermally activated processes by assuming a number of Eyring processes [35, 36].
More current complex models are discussed by Richeton et al. [37].

2.2.3. Plasticity of the crystalline phase

The yield behaviour of semi-crystalline polymers is mainly influenced by the crystalline
phase. There are three models for explanation.

• Peterlin’s micronecking model [38]

• melting and recrystallisation model [39]

• crystallographic model [28]
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The Peterlin model is very popular despite extensive criticism. This model shows trans-
formation of the original chain-folded lamella morphology into the partially unfolded-chain
fibrillar structure. However, cavitation is a necessary condition. But cavitation is not nec-
essary in other deformation modes than tensile ones. Morphological transformations from
initial isotropic structure into microfibrils during plastic deformation can take place also
without the formation of any cavities or microvoids in the case of plane-strain or uniaxial
compression. In these cavity-free modes the plasticity in lamellae develops according to
crystallographic mechanisms, primarily crystallographic chain slip [19].

Recent molecular dynamics simulations [25] of a lamellae stack of polyethylene under
extension, compression and shear showed different deformation types depending on the
deformation rate and the strain. Crystallographic slip was observed during tensile defor-
mation at low strains (0 < ε < 0.08) regardless of deformation rate. Only at high levels of
strain (ε > 0.26) were melting and recrystallization observed. Under compressive deforma-
tion at the low deformation rates, crystallographic slip was again observed at low strains.
However, no melting or recrystallization phenomena occurred, even at the highest strains
simulated (ε = - 0.33). Under shear deformation, interlamellar slip was observed. However
their results regarding the macroscopic stress differ markedly from experimental results.
Nevertheless, it shows that in the future, in addition to the experimental investigations,
simulations for the understanding of the essential micro-mechanical processes will become
more important.

A comparison of calculations [40] and measurements [41] of the critical resolved shear
stress (CRSS) have shown that overcoming the Van der Waals bonds requires a 10-fold
higher CRSS than was measured in experiments. Comparing the enthalpies of activation of
local melt processes with the generation of dislocations (in polymers regarded as a thermally
activated process [18]) an estimation shows that the energy requirement for local melting
is approximately 50 % higher than for the generation of dislocations [23]. This suggests
that the dislocations must play the most important role in the plastic deformation of
semi-crystalline polymers.

However, the CRSS for a particular slip system is not an absolute material parameter.
According to the dislocation theory crystallographic slips occur via the propagation of
dislocations along the slip plane. The CRSS for a crystal depends then on the number
of mobile dislocations and their mobility. An increasing number of mobile dislocations
decreases the CRSS. This reduces the energy necessary for generation of new mobile
dislocations upon deformation [42]. Several sources for the increase of yield stress are
distinguished with regard to the plasticity of metals [43].

• misorientation of crystallites

• lower purity of the crystalline phase

• change of crystal surface conditions

• change in the number of mobile dislocations
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Other interesting discussions regarding the different models can be found in the reviews
from Oleinik [30], Seguela [44] as well as Bartczak and Galeski [19].

In summary it can be said that the crystallographic model is the decisive model for the
description of the plasticity in semi-crystalline polymers.

2.2.4. Crystallographic model

The crystallographic model is based on the clasical theory of crystal plasticity. Bowden and
Young applied 1974 the classical crystallographic (nonpolymer) mechanisms of plasticity
to polymer crystals [28]. They convincingly showed, that these classical concepts of nucle-
ation of dislocations and their slip along the crystal lattice agrees well with the behaviour
of semi-crystalline polymers. Young and other researchers extended this approach in the
following years [18]. Numerous experimental investigations have clearly shown that the
deformation of polymer crystals occurs via the crystallographic mechanisms [45, 46].

In the case of the plastic deformation of the lamellae, the crystalline structure is not
changed. Only at very large tensile deformation levels, when cavitation and voiding lead to
unravelling of the folded chains does a complete break down of the crystals occur. Polymer
crystals can deform plastically by [19]

• crystallographic slip,

• twinning and

• martensitic transformation.

Thereby the crystallographic slip mechanism is the most important. It can accommodate
plastic strains much larger than the other two mechanisms. Much larger plastic strains are
possible than by the other two mechanisms.

Crystallographic slip

Crystallographic slip occurs, if two parallel crystallographic planes move relative to each
other. In this respect a line-shaped defect (screw or edge dislocation) travels along the
slip plane through the crystal. The slip takes place, if the critical resolved shear stress
(CRSS) τ0 of the slip system (= crystallographic plane (hkl) in which slip occurs, and a
slip direction [uvw ]) is exceeded. Single slip is a pure shear deformation. For a uniaxial
deformation with the stress σ the resolved shear stress τ can be calculated using Schmid’s
law.

τ = σcos(χ)cos(λ) = mσ (2.1)
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where χ and λ are the angles of the slip plane normal and of the slip direction with respect
to the axial stress s, respectively (Figure 2.9).

Figure 2.9.: Definition of a slip system, slip plane and slip direction (SD). From [19].

The factor m = cos(χ)cos(λ) is the Schmid factor and can vary within 0 ≤ |m| ≤ 0.5.
For a given stress σ is the highest resolved shear stress τ in the slip system with the highest
Schmid factor. Yielding, i.e. the beginning of plastic deformation, starts when τ > τ0 in
a slip system.

In order to achieve a homogeneous deformation, more slip systems are necessary. There
are a minimum number of 5 independent slip systems required [47]. In polymers the number
of possible independent slip systems is generally lower, since a molecular fracture is not
possible. Thus, the slip planes are limited to those that contain the chain direction, i.e.
(hk0)-planes when [001] is the chain direction. Three main slip systems are observed in
case of polyethylene and polypropylene [46, 48, 49]. Due to the soft amorphous phase
the lamellae can rearrange upon deformation. This permits the compensation of the low
number of slip systems and enables a homogeneous deformation.

Two basic mechanisms for crystallographic slip have been observed.

• chain slip

• transverse slip

For the chain slip, the slip direction is parallel to the chain direction. Chain slip already
occurs at low plastic strains due to its low CRSS [50]. For the transverse slip the slip
direction is normal to the chain axis. Commonly transverse slip appears at higher defor-
mations due to the higher CRSS for this type of slip [16]. The slip planes lie parallel to
the polymer chains for both of these slip mechanisms. Crystallographic slip with the slip
plane perpendicular to the chain axis would require chain rupture which is not possible due
to the strong covalent bonds in the chains (Figure 2.10).

The chain and transverse slip in lamellae can proceed in two different ways [30].

• fine (homogeneous) slip
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Figure 2.10.: Schematic representation of different slip types. Slip that takes place in
planes perpendicular to the chain direction is impossible do to the strong covalent bonds
within the chains.

• coarse (heterogeneous, block) slip

Figure 2.11a and b show schematically two different crystals which have deformed by
single slip to the same final shear strain. Thereby fine slip is defined as a small amount
of slip on a large number of planes and corresponding coarse slip by large amount of slip
on fewer planes. In polymers the slip modes can be distinguished since a wide-angle X-ray
diffraction pattern (WAXS) indicates the direction of the chain axis c , and a small-angle
X-ray pattern (SAXS) indicates the direction of the lamella normal n. For fine slip only n
rotates relative to c whereas for coarse slip n and c rotate together but the angle between
n and c does not change during deformation. In polymer crystals with larger unit cells such
as polyamide (PA) more complex effects can arise. This can be explained by shearing of
the lattice by partial dislocations with a coresponding Burgers vectors less than the lattice
vector in the chain direction. The effect is illustrated schematically in Figure 2.11c [28].

WAXS and SAXS experiments showed that only fine slip occurs at small deformations [46,
51] and at higher strains fine slip is still the prevalent mechanism related to crystallographic
slip [32].

Twinning

The most commonly obtained types of twinned crystals are those in which one part of
the crystal is a mirror image of another part. The boundary between the two regions is
called twinning plane. Deformation twins can be explained in terms of a simple shear of
the crystal lattice. The type of twins that are obtained in polymers are formed in such a
way that the lattice is sheared without either breaking or distorting the polymer molecules.
Figure 2.12a shows a micrograph of a twin obtained by deforming a polydiacetylene single
crystal. The single crystal is viewed at 90 ° to the chain direction. The striations in the
crystal define the molecular axis and it can seen that the molecules kink over sharply at
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(a) (b) (c)

Figure 2.11.: Schematic diagrams illustrating different degrees of fineness of slip. From
[28].
(a) Fine slip. A small displacement of one lattice vector has occurred on every lattice
plane in the crystal. The direction of the normal to the surface of the crystal n has
rotated relative to the chain axis c during deformation.
(b) Coarser slip. A displacement of two lattice vectors on every fourth plane results in
the same total shear.
(c) Fine slip of partial dislocations.

the twin boundary. A schematic diagram of the molecular arrangements on either side of
the twin boundary is given in Figure 2.12b. The result of the twinning process is that the
molecules on every successive plain in the twin are displaced by one unit of c parallel to
the chain direction. This is identical to the result of a chain direction slip [8].

Another type of twinning has been found to occur in polymer crystals involves a simple
shear in directions perpendicular to the chain axis, which, in this case, does not bend the
molecules. An example of this type of twinning was found in polyethylene [52]. Two
particular twinning planes (110) and (310) have been found. The occurrence of twinning
can be detected from measurements of the rotation of the a and b axes about the c axes
since the twinning causes a large rotation of the crystal lattice.

Martensitic Transformation

A Martensitic transformation is a diffusionless (no long-range diffusion) phase transition
which involves a change in crystal structure. Martensitic transformations have not been
widely reported in polymers, but an important one occurs during deformation in polyethy-
lene [53]. The normal crystal structure of polyethylene is orthorhombic. But after or
during deformation an extra Bragg reflection are found in diffraction patterns (Figure
2.24). These could be explained in terms of the formation of a monoclinic form. The
transformation takes place by means of simple two-dimensional shear of the orthorhombic
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Figure 2.12.: Large twin in a polydiacetylene single crystal. From [8].
(a) Scanning electron micrograph of a twin.
(b) Schematic diagram of twin on molecular level. The chain direction axis c is perpen-
dicular to the page and φ is the angle of rotation of the twin.

crystal structure in a direction perpendicular to c . The chain axis length remains virtu-
ally unchanged by the transformation, at about 0.254 nm, but in the monoclinic cell it is
conventionally indexed as b [8].

2.3. Dislocations

If the strength of metal single crystals is investigated, it is found that this can be several
orders of magnitude smaller than the theoretical value. It has been shown that the strength
is strongly effected by lattice defects. Thereby the dislocations play the decisive role [47].

Dislocations are one-dimensional, line-shaped lattice defects. One differentiates between
edge and screw dislocations (Figure 2.13). Edge dislocations can be considered as the
transition of an extra plane of atoms to the undisturbed crystal. Screw dislocations arise if
the crystal is sheared off on one side of the dislocation line by an atomic distance parallel
to the dislocation line. Thereby the Burgers vector b describes the magnitude and the
direction of the relative displacement of the crystal parts. The Burgers vector for edge
dislocations is oriented perpendicular to the dislocation line and for screw dislocations
parallel to the dislocation line.

In a real crystal there are always a combination of edge and screw dislocations. Thus
the dislocation lines (lines along the defect in the crystal) are generally not straight but
curved. They form closed curves within or end at the surface of the crystal. Within the
crystal, dislocation lines cannot end for geometrical reasons. Since the crystal lattice is
locally distorted by dislocations, a dislocation always produces an stress field around the
dislocation line (Figure 2.14).
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(a) (b)

Figure 2.13.: Schematic illustration of edge and screw dislocation. From [54].
(a) Edge dislocation - an extra half-plane of atoms in a lattice. The Burgers vector is
perpendicular to the dislocation line.
(b) Screw dislocation - generated by shearing one side of a crystal with against its
opposite side.

Screw and edge dislocations cause different distortions. Screw dislocations only have a
shear stress component τΘz (in cylindrical coordinates) which acts in a radial plane Θ in
an axial direction z [3]. According to Hook’s law for the shear stress this gives

τΘz = µγΘz =
µb

2πr
(2.2)

where µ is the shear modulus, γ the shear strain, r the radial distance from the core and b
the Burgers vector. This leads to the stress tensor σ�rΘz for screw dislocations in cylindrical
coordinates

σ�rΘz =

0 0 0

0 0 τΘz

0 τΘz 0

 . (2.3)

This relation in Cartesian coordinates would read as

σ�xyz =

 0 0 τxz
0 0 τyz
τxz τyz 0

 (2.4)
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with

τxy = µγxz = −
µb

2π

y

x2 + y 2
(2.5a)

τyz = µγyz =
µb

2π

x

x2 + y 2
(2.5b)

The stress field of the edge dislocations is more complex. Beside the shear stress com-
ponents it also contains normal stress components. In Cartesian coordinates the stress
tensor σ⊥xyz has the form

σ⊥xyz =

σxx τxy 0

τxy σyy 0

0 0 σzz

 . (2.6)

The components of this tensor are

σxx = −
µb

2π(1− ν)

y(3x2 + y 2)

(x2 + y 2)2
= −

µb

2π(1− ν)

sin θ(2 + cos(2θ))

r
(2.7a)

σyy =
µb

2π(1− ν)

y(x2 − y 2)

(x2 + y 2)2
=

µb

2π(1− ν)

sin θ cos(2θ)

r
(2.7b)

σzz = ν (σxx + σyy) (2.7c)

τxy =
µb

2π(1− ν)

x(x2 − y 2)

(x2 + y 2)2
=

µb

2π(1− ν)

cos θ cos(2θ)

r
(2.7d)

This stress components are illustrated in Figure 2.14.

In contrast to the screw dislocation, an edge dislocation causes a change in the crystalline
volume. This will be expressed by the additional Poisson ratio ν.

For the strongly anisotropic polymer crystals the displacements related to the distortions
can be calculated by applying Stroh’s approach [56].

In this continuum-mechanical approach the dislocation core has been ignored, since due
to the large distortions Hooke’s law is no longer valid in this region. To estimate the
magnitude of the dislocation core (r0 inner cut off radius), one can use the fact that the
elastic stress cannot exceed the theoretical stress τth.

For screw dislocations [3] applies

τ(r0) =
µb

2πr0
≈ τth ≈

µ

2π
(2.8)
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Figure 2.14.: Scaled stress field around a in z-direction running edge dislocation. Areas
with compressive stress are darkened. Modified from [55].

with

r0 ≈ b (2.9)

The elastic energy associated with a dislocation can be calculated from the elastic stress
field. Thereby the elastic energy is equal to the energy necessary to create a dislocation
[3, 57]. This can be done by introducing a displacement with the magnitude ξ. The stress
field of an edge dislocation on the glide plane (Θ = 0, Figure 2.15) at a distance x from
the dislocation core is given by equation 2.7d as

τxy(x) =
µξ

2π(1− ν)

1

x
. (2.10)

From the force fx acting on a surface element L · dx (L unit length)

fx(ξ) = τxy · L · dx (2.11)

one can calculate the elastic energy Eel which is necessary for the displacement with a
magnitude of the Burgers vector ξ = b.

Eel =

∫ R0

r0

(∫ b

0

fx(ξ)dξ

)
dx = L

µb2

4π(1− ν)

∫ R0

r0

dx

x
= L

µb2

4π(1− ν)
ln
R0

r0
. (2.12)
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Figure 2.15.: Geometrical correlations for the calculation of the line energy of an edge
dislocation. From [58].

By an integration from the dislocation core size r0 (inner cut off radius) to the crystal
size R0 (outer cut off radius) one excluded the dislocation core where Hook’s law is not
applicable.

If one assume that the the theoretical shear stress τth acts in the core [3], the core energy
can be calculated approximately with

Ecore ≈ L
µb2

4π(1− ν)
. (2.13)

Then the total energy per unit length of an edge dislocation is found as

E⊥ =
Eel
L

+
Ecore
L

=
µb2

4π(1− ν)

(
ln
R0

r0
+ 1

)
(2.14)

and the corresponding line energy of the screw dislocation is

E� =
µb2

4π

(
ln
R0

r0
+ 1

)
. (2.15)

2.3.1. Dislocations in crystal plasticity

The plastic deformation of the crystalline lamellae in polymers is mainly controlled by the
generation and motion of crystal dislocations. For energetic reasons screw dislocations
are preferably generated [59] and therefore they are of particular importance. Apart from
the screw dislocations, however, the edge dislocations also play a role in plasticity [16],
especially at high strains [16, 23].
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From low molecular weight substances is known, that the dislocation density increases with
increasing molecular weight. But there are only rough estimations about the dislocation
density of polymers [19]. Due to the weaker Van der Waals bonds, dislocations can easier
generatet by thermal fluctuations. Therefore the dislocation density should be higher than
in metals, where a dislocation density of about 1014 m−2 is found in undeformed polycrystals
[3]. It is likely that sufficient mobile dislocations are available to initiate plastic deformation.
However, in order to maintain the plastic deformation by crystallographic slip many more
new screw dislocations must be generated at crystal edges and propagate through the
crystal.

An interesting aspect of the plasticity of semi-crystalline polymers is that no strain hard-
ening occurs through the interaction of the dislocations [34]. Although a strong stress
increase at large strains is observed macroscopically, this is attributable to a strong stretch-
ing of the molecules in the amorphous phase and to a less extent also to the reorientation
of crystals due to crystal slip (change in Schmid factor) [19]. The lack of strain hardening
by dislocations can be explained by the fact that the dislocations are necessarily pushed
out of the thin crystal core into the interface. They will never be trapped in the crystal
[30].

2.3.2. Generation of dislocations

The standard approaches to describing the plastic behaviour of semi-crystalline polymers
are the models of thermal nucleation of screw dislocations from Peterson [60, 61] and
Young [62]. These models describe the plasticity of polyethylene [63, 64] and polypropylene
[65] and the yield stress dependence on crystal thickness very well. These models are
successful since only thermal nucleation of dislocations is crucial for the plasticity. A
Frank-Read mechanism can be excluded due to the limited size of the crystallites (lamella
thickness).

All these models are based on the assumption of a homogeneous nucleation of [001] screw
dislocations which cause a (hk0) [00l] slip [63] as sketched in Figure 2.16. The necessary
energy for the nucleation can be provided by

• the applied mechanical shear stress and

• by thermal activation.

In the lamellae a dislocation has a length which is equal to the lamella thickness λ. The
thermal activation of 180 ° chain twist defects are assumed as the origin of the dislocation
generation. Such a twist defect causes a c/2 compressive strain [27, 40, 67]. Thus, the
Burgers vector is considered to be of the dimension of a half of the crystallographic c-axis.
The orthorhombic unit cell of PE leads to a dislocation with Burgers vector [67]

b =
c

2
= 0.127 nm. (2.16)
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(a) (b)

Figure 2.16.: Schematic illustration of the formation of dislocations in the crystalline
lamellae of polyethylene. From [66].
(a) A lamella with an arbitrary orientation in a spherulite.
(b) Principal slip systems of the lamella.

The elastic energy of a screw dislocation can be calculated with the dislocation line energy
(equation 2.15) multiplied with its length λ. According to Figure 2.16b is R0 = r the
distance from the nucleation surface. By neglecting the core energy this leads to

E�el = λ
µb2

4π
ln

(
r

r0

)
. (2.17)

This energy is generated on the one hand by the work ∆W done by the applied shear stress
τ and on the other hand by the Gibbs free energy related to the thermal fluctuations ∆G.
The work applied by the shear stress is

∆W = λτbr (2.18)

Thus, ∆G can be written as

∆G = E�el − ∆W = λ
µb2

4π
ln

(
r

r0

)
− λτbr. (2.19)

The dislocation will be generated and moves (due to very low Peierls stress) when ∆G has
a maximum (Figure 2.17).

(
∂∆G

∂r

)
τ

= 0 (2.20)

From this condition we can calculate the critical value rc for the distance r .
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Figure 2.17.: Different energies for the generation of a screw dislocation. Calculated with
equation 2.19 for λ = 20 nm, µ = 300 MPa, b = 0.127 nm, r0 = b, τ = 10 MPa.

rc =
µb

4πτ
(2.21)

With rc it is possible to rewrite equation 2.19 in order to calculate the critical Gibbs free
energy to generate a screw dislocation.

∆Gc = λ
µb2

4π
ln

[(
rc
r0

)
− 1

]
= λ

µb2

4π
ln

(
µb

4πτr0
− 1

)
(2.22)

If we set now r0 = b [40, 68] and use equation 2.22, one get the yield stress with.

τy =
µ

4π
exp

(
−

4π∆Gc
λµb2

− 1

)
(2.23)

This formula shows that the yield stress has a pronounced dependence on the lamella
thickness λ. Taking into account the Taylor factor m ≈ 3 [3, 34, 66], the yield stress σy
can be related to the critical (resolved) shear stress τy by σy = 3 τy .

The energy contribution by the thermal fluctuations ∆Gc is in the order of 40 to 80kT [40].
It’s interesting that such a simple model describes well the lamella thickness dependence of
the yield stress in polyethylene [69] for thicknesses up to 40 nm. As early as 1974 Young
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[62] had shown that thermal activation becomes very implausible for crystals exceeding 40
nm. For such thick lamela crystals a different process for dislocation generation should be
activated. A reasonable explanation is the occurrence of half loop sources at the edges
(Figure 2.16b) which were discussed by Argon et al. [66] based on the experimental data
of Kazcmierczak [51]. They found a good agreement with the experimental data, by
combining the thermally activated process for small lamellae with the half loop mechanism
(Figure 2.18) [23].

Figure 2.18.: Dependence of compressive flow stress of polyethylene measured at 293 K
and γ̇ = 10−4 s−1 on lamella thickness (open circles) compared with dislocation models
(straight lines). From [66].

2.4. Proof of dislocations

Today the standard method for the direct proof of dislocations in metals is microscopy.
Since dislocations have always a stress field, they can be visualized with metallographic
methods. For this purpose, the surface of a sample is etched. The atoms in the stress
field of a dislocation dissolve more quickly from the surface and leave characteristic etching
pits which are easily visible using an optical microscope (OM). Furthermore, dislocations
can be detected by electron microscopy. Edge and screw dislocations generate contrast
by electron diffraction in the transmission electron microscope (TEM). Screw dislocations
can also be detected by scanning electron microscope (SEM) images of crystal surfaces
[3].

In polymers the proof of dislocations is much more difficult. Although evidence of screw dis-
location was successfully proven using electron microscopy as early as 1959 in polyethylene
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single crystals grown from the solution [70], there is no literature for a sample prepara-
tion method which allows to visualize the dislocations in melt-grown lamella crystals with
electron microscopy.

Indirect detection methods such as the electric resistivity measurement, where the dislo-
cation density can be determined, are only suitable for metals.

A rather universal method for the detection of dislocation and the measurement of the
dislocation density is the X-ray line profile analysis (XPA). This method uses the fact that
any deviation from the regular crystal structure causes a characteristic contrast which leads
to a broadening of the measurable X-ray reflection peaks. Since the 1960s it has been
known that point, line, surface defects and the crystal size influence the X-ray reflections
differently [71, 72]. Point defects cause a homogeneous scattering and thus lead to
an amplification of the diffuse scattering. Line defects (dislocations) cause an diffraction
Bragg peak broadening which increases with the order of diffraction. Surface defects cause
asymmetric peak broadening and/or broadening with complex order dependence. The
crystal size affects the peak width independent of the order if the crystals are spherically
symmetrical.

According to Warren and Averbach [71, 73] is the intensity profile of a diffraction pattern
composed of two contributions. They are

• a strain effect caused by crystal defects (dislocations, twins, stacking faults) and

• a size effect which take into account the limited size of a crystal.

This two parts can be added by a convolution of the size and distortion profiles in the real
space (or a multiplication of the Fourier transform)

A(L) = AS(L)⊗ AD(L) (2.24)

where A(L) are the absolute values of the Fourier coefficients of the physical profiles,
AS(L) and AD(L) are the Fourier coefficients for size and distortion, respectively, L is the
Fourier variable. The distortion coefficient AD(L) were calculated by Warren and Averbach
[73] with statistical distortions

AD(L) = exp
(
−2π2K2L2〈ε2

L〉
)

(2.25)

where 〈ε2
L〉 is the mean square strain and K is the length of the diffraction vector.

Krivoglaz [72] and Wilkens [74] calculated 〈ε2
L〉 under the assumption that the peak broad-

ening is mainly caused by the strain field of restricted random distributed dislocations.

AD(L) = exp

[
−

1

2
ρπb2L2f

(
L

R0

)
K2C

]
(2.26)
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where R0 is the outer cut of radius and f (L/R0) is a function derived explicitly by Wilkens
[74].

In 1953, Williamson and Hall [75] simplified the Warren-Averbach approach to determine
the particle size d (coherently scattering domain size) by plotting the peak width ∆K

(full width at half mean (FWHM) or integral width) over the diffraction vector K (Figure
2.19a). Thereby ∆K depends on two influences.

∆K =
0.9

d
+ ∆KD (2.27)

The first term, which is independent of the diffraction order K, represents the dependence
on d whereas the second, ∆KD, includes the broadening from lattice distortions which
strongly depends on K. Because of the anisotropy of this distortion, equation 2.27 usually
is of limited use but, especially if the distortions arise from dislocations, the model for
the strain results in a single quantity to cover the whole complicated hkl dependence [71,
74].

Applying this to texture-free polycrystals, in 1996, Ungár and Borbély [76] introduced
the so-called modified Williamson–Hall analysis. Here the full width at half maximum
(FWHM = ∆K(K)) is plotted as a function of the diffraction vector, using the K2Chkl
as independent variable, introducing an average dislocation contrast factor Chkl . The
average dislocation contrast factor comprises the total anisotropy of the distortion field
of the dislocation ensemble. To average the contrast it was assumed that the polycrystal
is texture free and all slip-systems are equally active. The average contrast factors Chkl
are obtained by averaging the contrast factors of the (hkl) planes by considering their
permutations for different crystal structures [76].

With this modification they achieved in the so-called modified Williamson–Hall plot (Figure
2.19b) a monotonous function of ∆K(K) when K in equation 2.27 is replaced by K2Chkl .

∆KFWHM =
0.9

d
+ α′(K

√
Chkl)

2 +O(K
√
Chkl)

4 (2.28a)

α′ =
πTb2

2

√
ρ (2.28b)

This allows one to determine the dislocation density ρ and the mean crystallite size d (size
of the coherently scattering domains - CSD size) in separate way. A typical application is
shown in Figure 2.19.

Ungár and Borbély succeeded in extending the Warren-Averbach approach with an average
contrast factor by applying the same dislocation model to the full profile. Thereby not only
the FWHM but also the shape of the peaks are taken into account. With their so-called
Multiple Whole Profile Analysis (MXPA) [76] it is possible to determine the dislocation
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Figure 2.19.: Modified Williamson–Hall analysis of Rb3C60. From [77].
(a) The classical Williamson–Hall analysis shows strong anisotropy and assumes the
presence of dislocations.
(b) The modified Williamson–Hall plot with the consideration of a dislocation contrast
factor C shows an excellent description of the order dependence of the peak broadening.
The intersection at K = 0 gives d = 100 nm for the average crystallite size.

density, the crystallite size and with some assumption the crystallite size distribution. It
is based on the approach to fit the Bragg profile measured with the theoretical peak
profiles.

As an X-ray method, the MXPA is also applicable to polymer crystals [78]. However, in
this respect mathematical fit problems arise. Since the polymer crystals normally have a
much lower symmetry there are much more fit parameters than for metals and resulting
the fits may not converge. 1

In addition to the direct methods, however, indirect detection methods for dislocations
via dynamical mechanical experiments (e.g. strain rate jump experiments) are of great
importance. Thus, the essential parameters for the physical dislocation models such as
activation energies and activation volumes can be determined [85].

Nevertheless, in semi-crystalline polymers a two-phase model must be applied to take into
account the influence of the amorphous phase. By combining the model of Young for the
crystalline phase with a simple Ree-Eyring model for the amorphous phase Scogna and
Register [86] could model the strain rate dependence of the yield stress σy(T ) for a wide
temperature range,

σy
T

=
σa
T

+
σc
T

(2.29)

1 This conclusion relates to the initial situation of the present dissertation. Within the scope of the
dissertation, the method has been further developed and has already been successfully applied to different
polymers [79–84].
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where σa is the yield stress of the amorphous fraction, and σc is the yield stress of the
crystalline fraction. The yield stress of the amorphous phase can, according to Eyring [87],
be written as

σa =
kT

Va
arcsinh

[
ε̇

ε̇0a

exp

(
∆Ha
kt

)]
(2.30)

where k is the Boltzmann constant, Ha is the activation enthalpy of the related Eyring
process, Va is the corresponding activation volume and ε̇0a is the reference strain rate in
the amorphous phase. The yield stress of the crystalline fraction is given by [62, 66]

σc =
µ(T )b

πr0
exp

(
−2π∆G∗c
µ(T )bλ

− 1

)
(2.31)

where µ(T ) is the temperature dependence shear modulus of the polymer crystal, b is
the Burgers vector length, r0 is the inner dislocation cut-off radius (core radius of the
dislocation), and λ is the lamella thickness. The activation Gibbs free energy ∆G∗c is strain
rate sensitive and can be expressed by [88]

∆G∗c = −kT log
(
ε̇

ε̇0c

)
= −kT log

(
ε̇

bρmv0

)
(2.32)

where ε̇0c is the reference strain rate in the crystalline phase. ε̇0c is thereby related to the
number of mobile dislocations by making use of the Orowan equation [57] as suggested
by Argon et al. [66]. In this equation b is the Burgers vector length, ρm the dislocation
density of mobile dislocations and v0 the average dislocation velocity which results from the
experimental frequency ν0 multiplied by the mean free path of the dislocation L (∼ lamella
thickness λ). This makes it possible to describe the influence of the average dislocation
velocity v0 on the strain rate and allows one to relate the Gibbs free energy ∆G∗c of the
dislocation process to physical parameters that can be determined experimentally. Strain
rate jump experiments with high density polyethylene have shown that it was possible to
obtain very realistic values for ε̇0c with this model [88].

However, a decisive disadvantage of the classical mechanical experiments is that the de-
formation cannot be evaluated phase-specifically. Thus, the physical models have many
fit parameters (for the amorphous and crystalline phase). To obtain reasonable model
parameters by the fit of the experimental data some of the physical model parameters
must be estimated.

Li and Ngan [89] were able to illustrate one possible solution to this problem. They
could show with nanoindentation creep experiments on high density polyethylene that the
deformation in the amorphous and crystalline phase does not occur simultaneously with
very small loads. They found discrete relaxation events (strain bursts) on the sub-micron
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scale during constant load. Thus, macroscopic deformation can be divided into a uniform
smooth amorphous and a jerky crystalline deformation (Figure 2.20).

Figure 2.20.: Nanoindentation creep experiments. From [89].
(a) Example of a displacement–time curve of PE-HD (61.2 % crystallinity) during hold-
ing at 900 µN at 30 °C, showing two strain bursts at 97 and 372 s, respectively.
(b) Differential displacement between two successive data points, versus holding time.

They assumed dislocation avalanches as the source of the jerky deformation. From metals
it is known that very small single crystals (µm range) are jerkily deformed by dislocation
avalanches [90]. The interpretation that dislocation avalanches are the reason for the strain
bursts was supported by Zare Ghomsheh et al. [91] with systematic nanoindentation creep
experiments. They investigated the effect of variations in the loading rate and of the
applied load on the number and the height of strain bursts. In a current analysis they were
also able to determine the activation energy of strain bursts during nanoindentation creep
on polyethylene by a statistical evaluation [92].

Although the nanoindentation creep experiments allow the separation of the deformation
into the amorphous and the crystalline phase, this experimental set-up has some decisive
disadvantages.

• Inhomogeneous stress field
The stress field is strongly inhomogeneous. Figure 2.21b shows the result of a
FEM simulation with the typical stress concentration at the indentor tip. The stress
distribution is also dependent on the penetration depth. The deeper the indent
penetrates the larger the projected area. With a constant force (= constraint of the
nanoindentation creep experiment) the stress decreases with increasing penetration
depth. In addition, there is also a complex three-dimensional stress field with a
superposition of tensile, compressive and shear stresses. Thus, the stress can only
be estimated approximately for the evaluations.

• Plastic deformation
Since the indentor has only a very small projecting surface, there are locally large
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stresses despite the small loads (some µN), especially at the indentor tip. Therefore,
irrespective of the penetration depth, a plastic deformation beyond the yield point
can occur locally.

• Small sample volume tested
The sample volume tested is very small and local effects can play a role. It has also
been shown that strain burst occurs very rarely [89]. In order to obtain statistically
reliable results (for example, the frequency distribution of the step heights), many
experiments have to be carried out.

• Complex evaluation
Due to the above mentioned disadvantages some assumptions and estimates are
required for the evaluation.

Figure 2.21.: FEM simulation results of nanoindentation. From [93].
(a) Geometry of indentation of a cylindrical specimen.
(b) The von Mises equivalent stress field.

2.5. Reference materials

Among the semi-crystalline polymers, polypropylene (iPP) and polyethylene (PE-LD and
PE-HD) are the two most important polymers with ∼ 50 % of the world market share.
Both materials have been extensively investigated in many scientific papers. Therefore,
both were selected as reference materials for this dissertation.

Due to its regular linear molecular structure, polyethylene is the reference material for
studies on the plasticity of semi-crystalline polymers. It was used for the nano-creep exper-
iments (chapter 6). Unfortunately, polyethylene has only two prominent X-ray reflections
(Figure 2.24) and is therefore not suitable for defect analysis by means of MXPA. Since
polypropylene with five main peaks (Figure 5.6) has a sufficient number, it was chosen
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for the X-ray investigations (chapter 4 and 5). In addition, with the gamma phase, it has
an extraordinary crystal modification, which is very interesting with regard to dislocation
mobility.

2.5.1. Polypropylene

Polypropylene crystallizes from the melt with a crystallinity of 60 - 70 % and has a glass
transition temperature Tg = 0 °C. It is polymorphic and has three different crystal modifi-
cations [94].

The standard phase is the monoclinic alpha phase with the lattice parameters a = 0.665
nm, b = 2.096 nm, c = 0.65 nm and β = 99.62 °. The main peak positions are listed
in Table 2.1. A special feature of the alpha phase is the formation of a branched lamella
structure (lamella branching, Figure 2.22).

(a) (b)

Figure 2.22.: Structural anomalies of polypropylene.
(a) Lamella branching of α-PP. SEM micrograph of a thin film with profuse branching
of lamellae at a constant angle of 100 ° or 80 ° and schematic diagram. This lamella
branching is the root of the unusual optical properties of spherulites of the alpha phase.
From [94, 95].
(b) Cross over molecular arrangement of γ-PP in the unit cell, (110) plane viewed from
above. From [96].

In the case of the plastic deformation (rolling with side constraints - plain strain compres-
sion), the slip systems (010) [001], (110) [001], (100) [001] are activated in the alpha
phase [97]. Bartczak et al. [42] has measured a CRSS of 22.6 MPa for the (010) [001]
slip system.

The beta phase is metastable [98] compared to the alpha phase (Tm ∼155 °C versus 170
°C) and has a significantly higher toughness than the alpha phase approaching -10 °C. The
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crystal structure is trigonal with the lattice parameters a = b = 1.101 nm and c = 0.65
nm. Isotactic polypropylene (iPP) crystallizes preferentially in the alpha phase, so that
practically no beta polypropylene is formed during the crystallisation from the melt.

During crystallisation under shear [99, 100], or with addition of suitable nucleation agents
[101], polypropylene can be produced with a high content of the beta phase.

The gamma phase is crystallographically similar to the alpha phase (isomorphism of the
alpha phase [96]). The crystal structure is very complex and was be clarified by von Meille
and Brückner [102]. The gamma phase is formed by crystallization under high pressure
(p > 180 MPa) [103–105]. γ-polypropylene crystallizes in a very large area-centered
orthorhombic unit cell (a = 0.854 nm, b = 0.993 nm, c = 4.241 nm) with a triclinic
subcell. The macromolecules are arranged in bilayers (Figure 2.22b) each rotated by 80
° or 100 °. The main peak positions for α and γ-PP are listed in Table 2.1. The typical
X-ray diffraction pattern of polypropylene (alpha and gamma phase) is shown in Figure
5.6.

Gamma polypropylene is a material where the structure can be strongly influenced by the
crystallisation conditions. For instance the crystallisation pressure pc and temperature Tc
change the spherolithe structure [103]. Figure 2.23 illustrated the different spherolithe
morphology obtained by different crystallisation pressure at the same crystallisation tem-
perature.

pc = 200 MPa pc = 300 MPa

Figure 2.23.: Optical micrographs, viewed between crossed polarizers, from γ-PP
spherulites, crystallized at different pressures and Tc = 195 °C.

Interestingly, the strength of the gamma phase can be much higher than of the alpha phase
[106]. Since the gamma phase is an isomorphism of the alpha phase, the chain distances
are only slightly different. Although the heat of fusions are different (Hα = 207 J/g [107],
Hγ = 145 J/g [104]), this does not explain the magnitude of the strength difference,
especially since Hγ < Hα. Therefore, the difference in strength cannot be explained either
by breaking of Van der Waals bonds or by local melting processes.
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2 Theta k phase hkl
[◦] [1/nm]

13.86 1.5649 γ 111
14.11 1.5928 α 110
15.11 1.7053 γ 113
16.86 1.9014 α 040
17.02 1.9194 γ 008
17.36 1.9574 γ 115
18.47 2.0816 α 130
20.27 2.2823 γ 117
21.19 2.3845 α 111
21.32 2.3992 γ 202
21.70 2.4413 α 13-1
21.77 2.4495 α 041
21.97 2.4715 γ 026
25.29 2.8394 α 060
25.65 2.8790 γ 00 12
27.28 3.0586 γ 1,1,11
27.58 3.0916 γ 220
27.92 3.1290 γ 222
28.80 3.2254 α 061
28.91 3.2376 γ 224
30.40 3.4006 γ 226
32.30 3.6076 α 042

Table 2.1.: Polypropylene peak positions for alpha and gamma phase [108]. 2 Theta for
Cu Kα with λ = 0.1542 nm.

2.5.2. Polyethylene

Polyethylene is a very versatile material. Depending on the number and length of the
side chains, crystallinity, density and mechanical properties can vary widely. High density
polyethylene (PE-HD, ρ = 0.94 – 0.97 g/cm3) shows the highest crystallinity of about 80
%. The glass transition temperature is typically far below 0 °C.

Polyethylene crystallizes in an orthorhombic unit cell (Figure 2.3) with a = 0.742 nm, b =
0.495 and c = 0.255 nm [109]. The main peak positions are listed in Table 2.2.

Bartczak et al. [46] identified the (100) [001], (010) [001] chain slip and (100) [010]
transverse slip processes as the dominant active slip systems during plastic deformation.
The respective critical shear stresses were directly determined in mechanical shear tests as
7.2, 15.6, and 12.2 MPa, respectively, at room temperature. In addition 110 twinning and
the Tl2 stress-induced martensitic transformation to a monoclinic unit cell are also known
to be active modes of plastic deformation for certain particular orientations of polyethylene
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2 Theta k hkl
[◦] [1/nm]
21.3 2.3970 110
23.5 2.6413 200
29.6 3.3132 210
36.0 4.0080 020

Table 2.2.: Polyethylene peak positions [110]. 2 Theta for Cu Kα with λ = 0.1542 nm.

crystals [26]. At room temperature these two mechanisms occur at approximately 14 MPa
of resolved shear stress [53]. The typical X-ray diffraction pattern of PE-HD undeformed
and deformed is shown in Figure 2.24.

Figure 2.24.: X-ray diffraction pattern (WAXS) of PE-HD undeformed and deformed with
the typical additional peak left from the stress-induced martensitic transformation to the
monoclinic crystal unit cell.

Modern high-performance PE-HD types (PE100 and PE100 RC types respectively) used
today for pressure pipes are copolymers of ethylene and hexene. As a result, the resistance
to slow crack growth (SCG) can be significantly increased.
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In several semi-crystalline polymers, it was found that the deformation of the crystalline
phase is governed by the generation and motion of dislocations, especially at deformations
within the extended plastic regime [27, 40, 62, 65, 66]. Although the importance of
dislocations for the plastic deformation in many semi-crystalline polymers is beyond dispute
[32, 50, 88], the kinetic mechanisms of dislocations remains widely unclear.

In order to be able to investigate mechanisms involving dislocations for plasticity in more
detail, methods for the

• proof and quantification of dislocations and

• determination of the model parameters of the dislocation models, such as dislo-
cation density, activation energy, and activation volume of the dislocation generation
of mobile dislocations

capable for semi-crystalline polymers are necessary.

Unfortunately, many investigation methods, which have been developed for metals, cannot
be applied to semi-crystalline polymers. This is, apart from the complex structure (amor-
phous and crystalline phase, atomic bonding and Van der Waals bond, macromolecules
which form complex superstructures and create additional constraints), an important rea-
son why the processes responsible for the plasticity could not fully clarified yet.

Therefore, existing methods for the investigation of dislocation should be improved
and new methods for the characterization of the kinetics of dislocations should be
developed within the framework of the dissertation.

A standard method for the proof of dislocation and the determination of the dislocation
density is the Multiple Whole Profile Analysis (MXPA) [76, 78]. As a X-ray diffraction
method, the MXPA should be applicable to polymer crystals. However, polymer crystals
normally have a substantially lower symmetry. Thus there are much more fit parameters
in the evaluation, as opposed to the metals, and the fits may not converge. Thus, the
evaluation process must be improved in order to allow the application of the method to
polymers in a reliable way.

Nanoindentation creep experiments from Li and Ngan [89] have shown that with very small
loads the deformation of the amorphous phase and that of the crystalline phase can be
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analysed in separated way. This allows the direct investigation of the deformation pro-
cesses in the crystalline phase with mechanical experiments and thus the determination of
essential parameters of the dislocation models. However, this method has some decisive
disadvantages which limits the exact determination of the model parameters. Therefore
a new mechanised test method should be created which does not have these disadvan-
tages.
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Proof of dislocations by X-ray
diffraction
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4. Evidence of dislocations in
melt-crystallised and plastically
deformed polypropylene1

4.1. Introduction

The direct observation of dislocations in polymer crystals is difficult. Only in solution grown
single crystals it is possible to verify the existence of dislocations by means of transmission
electron microscopy [111]. In melt-crystallised spherolites no preparation method is yet
available to allow detection of dislocations. However, several mechanical investigations
indicated that dislocations must exist in spherolites and their lamellas. The dislocation
model of Peterson [60] and Young [62] suggested that the yield stress depends primarily
on crystal thickness rather than crystallinity, and has been indeed confirmed by experiments
of Darras et al. [69] for polyethylene (PE). Furthermore, a method developed by Brown
[112], for measuring the initiation and reversibility of dislocation motion in metals by means
of microstrain measurements could be realized successfully on polyethylene [113].

Recently, there has been developed a new X-ray diffraction method (multiple X-ray profile
analysis, MXPA [76]) which offers now the possibility to proof the presence of dislocations
in an arbitrary crystalline material and to obtain the dislocation density in absolute terms
[114] on the one hand, to determine the size and size distribution of the undistorted
crystallites on the other. Therefore, it was the aim of this work to adapt the MXPA for
semic-rystalline polymers, i.e. to apply it for the first time to variously deformed samples
of isotactic polypropylene.

4.2. Experiments

The polypropylene used in this work was BE 50 produced by Borealis. This material
type includes a nucleation agent, which affects the crystallisation in the monoclinic α-
phase. Thereby a uniform structure with small spherolites across the whole cross-section
is achieved with approximately 70 % crystallinity.

1 published in Materials Science and Engineering A 387–389 (2004) p1018–1022
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The polymer was processed by injection moulding to shouldered test bars (DIN 53455, type
3). From these test bars the highly oriented surface layer of 0.5 mm has been mechanically
removed in order to avoid surface texture effects. The resulting thickness amounted to 3
mm. Specimens were plastically deformed by rolling to different amounts. The maximum
deformation achieved was εtrue = ln (do/d) = 0.5 (50 %).

The rolling deformation was performed by several passes; the magnitude of passes has
been adapted to the actual sample thickness in order to achieve roughly constant true
strain per pass being within 0.02 – 0.03. The rolling direction was chosen identical with
the injection moulding direction at sample preparation (Figure 4.1a).

a) b)

Figure 4.1.: Deformation modes.
(a) rolling. The broken line arrows indicate the injection direction by the sample prepa-
ration, the full line arrows the deformation direction.
(b) Sample adjustment during measuring. α is the rotation angle for texture reduction.

For the X-ray diffraction investigations, samples revealing 10 mm in square were cutted
from the parallel section of tensile specimens. The X-ray measurements were performed
at the small-angle X-ray scattering (SAXS) beamline of the Synchrotron ELETTRA in
Trieste. The energy was 8 keV which corresponds to a wave length of Cu Kα radiation
of 0.154 nm. The incident beam was focused to a spot with size 1 mm x 1 mm. The
photon flux amounted to 5 · 1011 photons mm−2s−1. The measurements were made
with a linear position-sensitive detector (1024 channels, type PSD 50 of Braun, Munich,
Germany). The distance of the detector to the specimen was 370 mm. As a condition for
reliable evaluation of wide-angle X-ray scattering (WAXS) profiles, at least 104 counts were
registered in the maximum of the diffraction peaks. In order to minimize the inluence of
the texture an average WAXS profile has been determined; for this purpose the specimens
were rotated perpendicularly to their square plane to different sample orientations (0 –
90 ° in 10 ° steps, Figure 4.1b) at which individual WAXS profiles have been taken and
averaged. From the resulting WAXS profile the (110), (040), (130), (050) and (041)
peaks were considered for evaluation.
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4.3. Evaluation procedure

4.3.1. The modified Williamson–Hall analysis

In 1953, Williamson and Hall [75] suggested to determine the particle size d (coherently
scattering domain size) by plotting the peak width ∆K (full width at half mean (FWHM)
or integral width) over the diffraction vector K (Figure 4.2), with ∆K depending on two
influences:

∆K =
0.9

d
+ ∆KD (4.1)

The first term which is independent of diffraction order K represents the dependence on
d whereas the second, ∆KD, includes the broadening from lattice distortions which is
strongly depending on K.

Figure 4.2.: Classical Williamson–Hall plot for polypropylene peaks (110), (040), (130),
(050) and (041) deformed by rolling up to εtrue = 49.6 %.

Because of the anisotropy of this distortion, equation 4.1 is usually not satisfied. However,
in case when the distortions arise from dislocations it is possible to quantify this contribu-
tion in terms of dislocation contrast theory [74], equation 4.2. In 1996, Ungár and Borbély
[76] introduced the so called modified Williamson–Hall plot (Figure 4.3), which achieves
a monotonous function ∆K(K) when K in equation 4.1 is replaced by K2C as
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∆KFWHM =
0.9

d
+ α′(K

√
Chkl)

2 +O(K
√
C)4 (4.2a)

α′ =
πTb2

2

√
ρ (4.2b)

where C is the dislocation contrast factor which, e.g. depends on the orientation of its
Burgers vector b relative to the diffraction vector K. The coefficient α′ also contains
the dislocation density ρ, and the constant T , which itself depends on the effective outer
cut-off radius of dislocations R0.

Figure 4.3.: Modified Williamson–Hall plot for polypropylene peaks (110), (040), (130),
(050) and (041) deformed by rolling up to εtrue = 49.6 %.

Now, as a proof of the existence of dislocations, the measured peak width ∆K must linearly
increase in CK2 [76, 115]. In order to fully calculate the dislocation contrast factor C it is
necessary to know the atom lattice and the elastic constants (equation 4.3). Unfortunately,
in the literature no equation for the contrast factor of the monoclinic lattice is available.
In this situation it has been decided to use the equation for the orthorhombic lattice for
the determination of the dislocation contrast factor [115, 116]

CK4 = h4 + a1k
4 + a2l

4 + a3h
2k2 + a4k

2l2 + a5h
2l2 (4.3a)

K4 =

(
h2

a2
+
k2

b2
+
l2

c2

)2

(4.3b)
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where the coefficients a1, ... , a5 include the elastic constants of the material, and a, b, c
are the lattice parameters. The error due to this approximation should be small, because
for α-PP, the β-angle amounts to 99.33 ° which is only slightly different from β = 90 ° as
being true for the orthorhombic unit cell.

4.3.2. Multiple whole X-ray profile analysis (MXPA)

In contrast to the modified Williamson–Hall plot which only provides an estimation of the
dislocation density, the MXPA provides an accurate analysis of the defects in a crystal.
This is possible because of the consideration of the whole peak profile instead of the peak
width by the Williamson–Hall analysis. From the kinematical theory of X-ray diffraction
it is well known that a physical profile of a Bragg’s reflection is given by a convolution of
the size and distortion profiles [73, 75]. With the assumption that the lattice distortions
are caused by dislocations, the Fourier transform reads as [72, 74, 117]

A(L) = AS(L)⊗ AD(L) = AS(L)exp(−
1

2
ρπb2L2f (η)K2C) (4.4)

where A(L) are the absolute values of the Fourier coefficients of the physical profiles,
AS(L) and AD(L) are the Fourier coefficients for size and distortion, respectively, L is
the Fourier variable, and η stands for η = L/R0 (for the meaning of other quantities,
see above). C is the average dislocation contrast factor, and f (η) is a function derived
explicitly by Wilkens [74]. With the MXPA the Fourier transform of the whole profile will
be fitted by theoretically derived functions.

In the first evaluations it turned out that the standard version of the program MWP for
the MXPA for metals [118] is not suitable for the presently studied polymer. Because
of the complex lattice (monoclinic), 10 parameters had to be fitted simultaneously: five
parameters a1, ... , a5 of the dislocation contrast factor (equation 4.3), three parameters of
the theoretical distortion function, and two parameters of a size function. Moreover, only
five peaks were available for the evaluation. A careful analysis showed that only four fitting
parameters can be independently chosen in order to account for a convergent fit with small
errors. One possibility to reduce the parameters of the MXPA is the precalculation of the
dislocation contrast factor, i.e. of the coefficients a1, ... , a5. They were precalculated by
non-linear fitting of the ai with the condition of linearisation of ∆K(K2C) in the modified
Williamson–Hall plot. A further and reasonable reduction of the fitting parameter was
achieved by fixing the dislocation arrangement parameter as M = 1 [119]. This means
that the effective outer cut-off radius of dislocations R0 equals the average dislocation
distance (1/ρ)1/2. Other simplifications concern the assumptions that: (i) all slip systems
have the same dislocation density, and that (ii) screw type dislocations prevail because of
the low dislocation line energy in polyolefins [40].
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4.4. Results

In Figure 4.2 for the case of rolled PP specimens, the classical Williamson–Hall plot is
demonstrating the typically irregular slope of the peak width with K. The peak width of
the undeformed sample was remarkable lower than that of the plastically deformed samples.
Already the sample deformed with εtrue = 10 % exhibited a clear peak broadening. Further
deformation led to only small increases of the peak width. Nevertheless, it was possible to
obtain an almost perfectly monotonous slope of FWHM over K2C (Figure 4.3) by suitably
adapting the dislocation contrast factor C (i.e. by proper choice of coefficients a1, ... ,
a5 in equation 4.3). Thereby the calculation of the dislocation contrast factor occurred
independently for each undeformed and deformed sample.

The convergence of the final fit with small errors, by the use of theoretical functions of
distortions caused by dislocation, can be regarded as proof that dislocations are present in
melt-crystallised polypropylene being the predominant crystal defects.

Figure 4.4 shows the dislocation density resulting for different degrees of true deformation
for the rolled specimens, as it has been calculated by MXPA. It increases from 2 · 1016

to 2.2 · 1017 m−2 with increasing plastic deformation. The increase can be explained
by the deformation induced formation of new dislocations which is consistent with the
experience in other materials [114]. In general, the generation of dislocation density in PP
is remarkable higher than in metals and alloys where typical dislocation densities span 1010

to 1016 m−2 [3].

Figure 4.4.: Dislocation density depending on the true deformation for the rolled speci-
mens. The dislocation density was calculated by MXPA.

The value of the dislocation arrangement parameter M gives the extent of the dipole
character of dislocations (i.e. of their strain field) and does not directly reflect either the
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distance between dislocations or the coherently scattering crystallite size [120]. In this
work the MXPA has been performed for a series of reasonable values of M. It turned out
that the best fit convergence was achieved by taking M = 1 although other M values up
to 2 yielded similar dislocation densities.

For the coherently scattering crystallite size (apparent particle size) the evaluation yielded
a continuous decrease with increasing plastic deformation. The resulting domain sizes lie
between 20 nm (undeformed) and 15 nm (εtrue = 50 %). This value well agrees with the
known lamella thickness [107].

4.5. Discussion

The reported dislocation densities in polypropylene are considerably higher than the val-
ues for common metals. An explanation is the long-chain nature of the macromolecules
which cause additional constraints when polymer crystals develop. This, in some natural
way, leads to a considerable generation of dislocations already in the undeformed material
[16].

However, it must be noted that only correlated defects have been considered in the eval-
uation, i.e. such with long range strain fields ruling the position of adjacent atoms and/or
molecules and thus the position of other crystal defects. Particularly at the interface with
the amorphous phase, also uncorrelated defects may exist which can cause peak broad-
ening, too. As a consequence, the dislocation density will be overestimated when the
presence of uncorrelated defects will not be taken into account.

Nevertheless, two basic estimates for the dislocations density can be done:

(i) The amount of dislocations necessary for plastic shear in terms of Burgers vector b,
and the mean free path of the dislocations L is as follows [57]:

ρm =
ε

bL
(4.5)

Using b = 0.65 nm for polypropylene [65], a mean free path of the dislocations of the
order of the lamella thickness (20 nm) and a deformation of ε = 50 %, the density
of mobile dislocations is obtained as 3.8 · 1016 m−2. This assumption suggests that
almost all dislocations contribute to plastic deformation and predominantly move
across the lamellas.

(ii) The other estimation is based on theoretical considerations by Peterson [60]. He
showed that the lamellas are too thin to act as a Frank-Read source. This suggests
that plastic slip is mainly controlled by the nucleation of screw dislocations at the
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edge of lamellas caused by local shear and thermal fluctuations. By this assumption
is it possible to estimate an upper limit of the dislocation density [67]:

ρm =
1

ab
(4.6)

With the crystallographic parameters a and b (a = 0.66 nm, b = 2.08 nm) an upper
limit of 7.3 · 1017 m−2 for the dislocation density is derived.

As mentioned, in polymer crystals already the density of grown-in dislocations is much
higher than those in metals. Accordingly, the dislocation density of samples amounted
to about 1016 m−2 before any deformation occurred, and has been increased through
deformation to 2 · 1017 m−2. These values exceed estimation (i) but satisfy estimation
(ii). Together with some possible overestimation because of the restriction to correlated
defects, the conclusion might be that both processes (i, ii) account for the resulting
values of the dislocation density. The increase of dislocation density by a factor of 10
with respect to the initial dislocation density during a deformation of 50 % is higher
than that occurring in metals where, however, the initial dislocation density is much lower
yielding fewer sources for dislocation generation. As a matter of fact, the results of our
measurements seem reasonable and can be consistently understood which encourages to
further investigations.

4.6. Conclusions

The combination of the multiple X-ray Bragg profile analysis (MXPA) and the modified
Williamson–Hall procedure yields evidence for the massive presence of dislocations in melt-
crystallised and plastically deformed polypropylene. The application of MXPA further allows
for the determination of the dislocation density which increases with the deformation degree
applied. Although the dislocation densities of plastically deformed PP exceed that of metals
by two orders of magnitude, two independent theoretical estimations for dislocation activity
in polypropylene provide values 1016 to 1017 m−2 similar to the experimental results.
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5. In situ measurements of dislocation
density during cyclic deformation of
polypropylene

5.1. Introduction

Dislocations play a decisive role in the plasticity of semi-crystalline polymers [16, 19, 50,
62]. For energetic reasons, there are mainly screw dislocations in undeformed specimens
[59]. The dislocation density is typically considerably larger in comparison to metals and
is in the order of 1015 - 1016 m−2 (chapter 4) [83]. Dislocation density measurements
on deformed polypropylene samples have shown that with progressive plastic deformation,
the dislocation density increases by an order of magnitude (chapter 4). While at the
beginning of the deformation only screw dislocations are present, the amount of edge
dislocations increases during compression experiments with increasing plastic deformation
to approximately 20 %. At the same time, the slipping mechanism changes. At the
beginning of the deformation exclusively chain slip occurs which is increasingly accompanied
by transvers slip. From a deformation of about ε = 50 % a balance of 60 % chain slip and
40 % transverse slip is achieved [23]. If the dislocation density is measured on deformed
polypropylene samples (which were immediatly cooled in liquid nitrogen after deformation)
during heating, a significant decrease of the dislocation density occures at about 10 °C
and 85 °C. These distinct changes in the dislocation density could be identified as the
mechanisms of β (= glass transition) and α-relaxation [54, 84]. This shows that the
dislocations in semi-crystalline polymers can also recover. In order to measure the actual
dislocation density during the plastic deformation, dislocation density measurements have
to be carried out in situ during the deformation.

For the determination of the dislocation density in semi-crystalline polymers, it was possible
to combine the modified Williamson-Hall analysis and the Multiple Whole Profile Analysis
(MXPA) [76] successfully for various semi-crystalline polymers [79–84]. Thereby the num-
ber of fit parameters for the MXPA, carried out using the CMWP-fit program [118], can be
reduced by a modified Williamson-Hall analysis (chapter 4). This is necessary because the
semi-crystalline polymers have a more complex crystal structure (lower symmetry crystal
systems such as monoclinic in isotactic polypropylene (iPP) and nylon (PA6), orthorombic
in polyethylene (PE) and poly(3-hydroxybutyrate) (B3HB) [121]). This results in a large
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5. In situ measurements of dislocation density during cyclic deformation of polypropylene

number of fit parameters for the MXPA and the fits may not converge. The modified
Williamson-Hall analysis can be used to determine the coefficients of the average disloca-
tion contrast factor Chkl [76]. This significantly reduces the number of fit parameters of
the MXPA and a successful application is possible. However, there are some limitations
and problems with the modified Williamson-Hall analysis. Mathematically, the fits always
converge. However, depending on the starting values, there are very different results for
the coefficients of the average dislocation contrast factor. Since these are used as starting
values for the MXPA, they also influence the result of the MXPA. If the coefficients of the
average dislocation contrast factor not determined correctly in the modified Williamson-
Hall analysis, the MXPA usually does not converge or only with very large residuals. This
means that a large number of fit tests are always necessary to determine the correct start-
ing values for the MXPA. This greatly increases the time and effort required for a successful
MXPA application. In order to optimize the evaluation process, an improvement of the fit
procedure for the modified Williamson-Hall analysis is necessary. Thus, an important aim
of the present work was to optimize the modified Williamson-Hall analysis by reducing the
degree of freedom with additional physically reasonable assumptions. That allows to find
the best start parameter sets for the MXPA and is an distinct improvement compared to
the first application of the MXPA in polymers described in chapter 4.

5.2. Methods

5.2.1. Advanced modified Williamson-Hall analysis

As described in section 4.3.1, the modified Williamson-Hall analysis will be used to inves-
tigate the dependence of the peak width at half peak height ∆K (full width at half mean
(FWHM) or integral width) on the diffraction vector K. If a linearization can be achieved
by introducing an average dislocation contrast factor Chkl , this can be regarded as an evi-
dence of dislocations, since the half-width with the diffraction order only increases linearly
in the case of dislocation like lattice distortions [115]. Thereby the average dislocation
contrast factor considers the complex anisotropy of the distortion field of a dislocation. If
the ratio of edge to screw dislocations, the crystal orientations (texture) and the elastic
constants of the material are known, an average dislocation contrast factor can also be
calculated theoretically. However, in practice this is almost never the case. Therefore
the average dislocation contrast factor must be determined by fitting the measured data
(FWHM depending on K). Thereby, Chkl is determined so that a linearization of the
FWHM of all peaks as a function of K

√
Chkl is obtained (Figure 5.15).

Most semi-crystalline polymers have relatively few X-ray diffraction (XRD) peaks which
originates from a complex crystal structure with low symmetry. This leads to the unfavor-
able situation that the contrast factors have many fittable parameters with simultaneously
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few measuring points (half-widths). Therefore, a fit for linearization has many local min-
ima and no pronounced global minimum. This means that the physical meaning gets lost
and the desired reduction of the degrees of freedom for the determination of the contrast
factor coefficients cannot be fulfilled completely. Thus the contrast factor coefficients can
only be restricted in their range of values and the fit parameters for the MXPA can only
be reduced to a limited extent.

In order to improve the modified Williamson-Hall analysis further boundary conditions had
to be added. Since the typical lamella thickness of semi-crystalline polymers is known from
differential scanning calorimetry (DSC) measurements, the crystallite size can be limited
to 5 – 50 nm. Furthermore, complex valued contrast factors can be excluded. If we fix
the crystallite size at 5 to 50 nm in 1 nm steps, 46 solutions are obtained. It has been
shown that for small crystallite sizes only complex valued contrast factors are found and
thus are eliminated. As a whole, this approach makes it possible to limit the number of
solutions.

The average contrast factor Chkl represents the anisotropy of the distortion field. Chkl
can be considered as a scaling factor of the displacement field. Therefore, a small average
dislocation contrast factor or a small shift on the x-axis is more favourable. Large contrast
factors are not reasonable, since these increases the degrees of freedom of the modified
Williamson-Hall analysis. Based on the modified Williamson-Hall plot, this means that the
peak shift should be minimal for the contrast factors. Therefore, the shift on the x-axis
(K
√
Chkl) of the modified Williamson-Hall plot relative to the position on the Williamson-

Hall (x-axis = K) plot was used to reduce the degrees of freedom. It was chosen as criteria
for the best fit selection. The one with the smallest shift was chosen as the best fit. The
shift is proportional to |1 −

√
Chkl | because a

√
Chkl of 1 means no shift. If the sum of

|1−
√
Chkl | for all peaks is plotted versus the crystallite size, a unique minimum is obtained

(Figure 5.1).

This minimum means that the linearization is realized with the smallest possible shift of
the peaks. This can be seen as the most physically reasonable solution. An alternative
option would be to evaluate only the minimum for the largest contrast factor. However,
this always leads to larger crystallite sizes and is therefore in disagreement to the crystallite
sizes measured by DSC.

With this additional criterion, the crystallite size and the dislocation density can be esti-
mated more reliably from the modified Williamson-Hall plot. The resulting contrast factor
coefficients are better starting values for the MXPA and allow the reduction of the fit
parameters in the MXPA.

5.2.2. Multiple Whole Profile Analysis (MXPA)

In the case of the MXPA, the whole XRD profile is fitted with theoretical functions, which
are composed of the undisturbed scattering function and contributions of the different
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5. In situ measurements of dislocation density during cyclic deformation of polypropylene

Figure 5.1.: Shift factors from Williamson-Hall Plot depending on given crystallite size
for an undeformed iPP sample. Red line sum over |1 −

√
Chkl | of all five peaks, green

dashed line only |1−
√
Chkl | of maximum contrast factor. Fit results for crystallite sizes

< 25 nm were neglected, since they had partly complex valued contrast factors.

defect types [76, 118]. In contrast to the modified Williamson-Hall analysis, where only
the half-width of the peaks is taken into account, with the MXPA the whole peak shape
is considered. Since each defect has a specific order dependence and effects the peak
shape on the X-ray profile, the various defects can be separated from others and described
separately. Of particular importance are the tails of the peak profiles since they are strongly
influenced by the long range displacements. For an accurate analysis a good peak to
background ratio as well as a good peak to noise ratio is crucial.

The MXPA has proven, particularly in the analysis of dislocations, mainly in metals but
also in nonmetals [78, 122]. For the MXPA should be available at least 5 independent
reflections with a good signal to background ratio. Of the commercially most impor-
tant semi-crystalline polymers, only polypropylene has a sufficient number of reflections.
Furthermore, the biopolymer polyhydroxybutyrate (PHB), polyamide (PA), polyethylene
terephthalate (PET), polytrimethylene terephthalate (PTT), polybutylene terephthalate
(PBT) and isotactic polystyrene (iPS) are suitable for the MXPA.

The analysis of dislocations by using the MXPA is possible due to the characteristic distor-
tion field of dislocations [57] (see section 2.3). Especially, the drop in the distortion field
around a dislocation is unique and thus is cannot arise from other lattice defects. This
particular distortion field causes an order dependent peak broadening and a characteristic
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change in the profile shape in the peak tails. The contrast also takes into account the
position of the dislocation (Burgers vector b) with respect to the incident X-ray beam.
The contrast and therefore the contribution to the peak broadening is maximal if b is
parallel to the diffraction vector K and 0 if b is perpendicular K. This means, e.g. if the
Burgers vector is perpendicular to the incident x-ray, the dislocation does not contribute
to peak broadening.

Through the use of an average conrast factor, it is not necessary to know the fraction
of the dislocations (edge or screw) and their distribution. In semi-crystalline polymers
are mainly screw dislocations and it can be expected that a maximum of 20 % edge
dislocations are formed during plastic deformation [23]. Thus the edge dislocations may
be neglected. The distortion field around a dislocation is usually anisotropic and depends
on the elastic constants of the crystal system and the material respectively. This anisotropy
and a preferential orientation of the crystals (texture) are also taken into account with
the average dislocation contrast factor Chkl . The lower the symmetry, the more complex
is Chkl . For an orthorhombic crystal system the average dislocation contrast factor has 5
coefficients a1 ... a5 [123], which depend on the elastic constants (Figure 5.2).

Figure 5.2.: Average dislocation contrast factor Chkl for orthorhombic crystal system
(h, k, l Miller indizes and a, b, c latice constants).

It turned out that for the successful application of the MXPA for polypropylene is a pre-
fit of the wide-angle X-ray scattering (WAXS) profile, in which overlapping peaks, the
scattering parts from different crystalline phases (alpha and gamma) and the amorphous
phase will be separated. Additionally a modified Williamson-Hall analysis is necessary in
order to reduce the degrees of freedom for the fit. Thereby reliable start values for the
contrast factor coefficients are determined.

For the fit, the theoretical XRD profile is composed of three parts,

• the undisturbed instrumental profile function,

• the theoretical Wilkens functions describing the distortion field of dislocations and

• a size component.
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5. In situ measurements of dislocation density during cyclic deformation of polypropylene

These are combined by a convolution operation in the Fourier space. For a convergent
fit, the dislocation density ρ , the outer cut off radius R0 (the measure of the drop in
the stress field around the dislocation line), the mean crystal size d (CSD size), and the
crystal shape (deviation from the spherical symmetry) can be determined.

Lamella crystals shape in polymers are extremely asymmetric. Due to the non-planar
arrangement in the spherulite, the lamella is divided into relatively symmetrical subregions
(coherently scattering domains, CSD). A mutual tilting of this subregions by a few degrees
causes the X-rays no longer to be coherently scattered. For X-ray measurements, this is
equivalent to a crystal boundary (Figure 5.3).

Figure 5.3.: Schematic representation of a lamella. The lamella is divided in sub-blocks
(= CSD for X-rays). Misfit dislocations are located between this blocks (highlighted
blue areas). In a first approximation a single block can be considerd as approximately
spherically symmetric (fitted sphere with an ellipticity of 1). From [124].

The reliability of the MXPA method for polymers was already demonstrated impressively
by Spieckermann et al. [81]. The lamella thickness distribution on undeformed and plasti-
cally deformed polypropylene samples was determined using DSC and MXPA. These two
methods are based on entirely different physical principles. It was found that, with in-
creasing deformation, the lamella thickness distribution from the MXPA agrees with the
DSC measurements but only if an increase in the dislocation density is considered. If the
dislocation density is fixed at the level of the undeformed sample, the MXPA provides too
large lamella thicknesses compared to the DSC measurements. If the dislocation density
is a fit parameter of the MXPA the lamella thickness distribution obtained is in very good
agreement with DSC measurements. This is a clear evidence for the fundamental validity
of the MXPA method for polymers. Furthermore it confirms the increase in the dislocation
density by plastic deformation of polypropylene.

However, the experiments have also shown that the resolution limit for the dislocation
density is 1 to 2 orders of magnitude worse than for metals ecause of the much worse
signal to nois ratio. If, in the case of the undeformed specimens, the dislocation density is
intentionally reduced and fixed during the fit, the lamella size distribution is still correctly
calculated by the MXPA. It was found that a dislocation density in the order of 1014 m−2
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causes no significant broadening, compared to the size effect. Due to the small crystallite
size of approximately 10 – 30 nm, a distinctive peak broadening already occurs. An
additional measurable peak broadening only results for relatively large dislocation densities.
Therefore, dislocation densities less than 1014 m−2 cannot be reliable determined with
MXPA in semi-crystalline polymers [81].

5.3. Experiments

5.3.1. Sample preparation

For the experiments, polypropylene BE50-7032 from Borealis was used. This is an extrusion
type with a density of 905 kg/m3, a Melt Flow Rate (MFR 230 °C/2.16 kg) of 0.30 g/10
min and a tensile modulus (measured at 1 mm/min) of 1650 MPa. This type contains a
nucleating agent for the alpha phase. To obtain non-textured test specimens, extruded 10
mm thick sheets were stored in a furnace for 3 h at 190 °C, followed by 2 h at 160 °C, and
then slowly cooled in the furnace once switched off. Cylindrical test specimens (diameter
6 mm, height 10 mm) were machined from the pretreated sheets.

5.3.2. Mechanical cyclic experiments

The deformation was carried out cyclically with an average deformation speed of dε/dt

= 0.0035 s−1 in compression to prevent crazing. At each cycle, the maximum strain was
gradually increased (nominal engineering strain ε = 1, 2, 3, 5, 10, 15, 20, 25, 30, 35,
45, 55 %). XRD measurements were carried out under load and fully unloaded (relaxed)
(Figure 5.4) respectively.

In order to calculate the true stress, images were taken from the sample during the defor-
mation and the sample diameter was evaluated. Due to the friction between the sample
and the pressure plate, the sample deforms inhomogeneously during compression exper-
iments. This can be seen by a bulging of the sample during deformation. In order to
keep this effect as low as possible, a Teflon film was inserted between the sample and the
pressure plate.

5.3.3. FEM simulation

FEM simulations were performed to determine the true (inhomogeneous) deformation in
the sample. The coefficient of friction between the sample and the punch was set to
0.2. With this coefficient of friction a good agreement between the simulation and the
experiment was obtained for the sample diameter. Thus the mean true strain over the
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5. In situ measurements of dislocation density during cyclic deformation of polypropylene

Figure 5.4.: Cyclic deformation, red points – measurements under load, blue points –
measurements in a fully relaxed state.

sample cross-section, which was penetrated by the X-ray beam, could be calculated from
the simulation results. Ansys Workbench 17.1 was used for the FEM calculations. A true
stress-strain diagram from a standard compression experiment [125] was used as material
data. The material behaviour was considered as multilinear without softening.

5.3.4. DSC

DSC measurements were performed to determine the lamella thickness distribution and
the degree of crystallinity. For this purpose, disks with a thickness of 1 mm were cut from
the cylindrical compression samples from the center of the sample by means of a diamond
saw. A sample with a mass of about 20 mg was then punched out from these disks for
the DSC measurements. The measurements were carried out using a Netzsch DSC 204
calorimeter. 10 K/min was chosen as the heating rate in order to minimize a change in
the lamella thickness by postcrystallization during the measurement.

5.3.5. X-ray measurements

Polypropylene with a glass transition temperature of Tg ∼ 0 °C shows a pronounced re-
laxation behaviour at room temperature, like all semi-crystalline thermoplastics above the
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glass transition temperature. The relaxation processes take place mainly in the soft amor-
phous phase. This also results in a back deformation of the lamellae despite the load being
maintained. These (back) deformations can lead to recovery processes in the crystals and
thus they are accompanied by a decrease in the dislocation density [54, 84]. In order to
suppress these relaxation processes as far as possible, in situ XRD measurements were
performed with synchrotron radiation during the cyclic compression experiments. Thus,
despite the high demands of the MXPA on the signal-to-noise ratio, the measurement time
could be limited to 10 minutes. The in situ X-ray measurements were performed on the
SAXS Beamline of the ELETTRA synchrotron in Trieste. The energy was 8 keV, which
corresponds to the wavelength of the Cu Kα radiation of λ = 0.154 nm. The incident
X-ray beam was focused to 1 x 1 mm2 and the sample was always penetrated in the center
perpendicular to the compression direction, independent of the deformation. The mea-
surements were carried out in transmission with a linear position-sensitive detector (1024
channels, type PSD 50 of Braun, Munich, Germany). The distance between the sample
and the detector was approximately 380 mm. Between the sample and the detector there
was a vacuum chamber to prevent air scattering. It was possible to take evaluable XRD
measurements up to a deformation of ε = 0.55. The X-ray profiles for larger deformations
could not be acceptably evaluated because of the large backgrounds and the associated
bad peak to background ratio.

5.4. Evaluation

5.4.1. Mechanical cyclic experiments

From the cyclic deformation curves the characteristic points A, B and C were determined
by using the method of Hiss et al. [20]. Thereby A correlates with the start of isolated
gliding processes, B with the activation of massive gliding processes (corresponds to the
yield point) and C with the beginning of the crystallite fragmentation. For this evaluation,
the strain at the load maximum of each cycle is separated in a relaxing εrecoverable and an
elastic εresidual part (Figure 5.5).

εtotal = εresidual + εrecoverable (5.1)

If we plot for all cycles the relaxed strain εrecoverable against the maximum stress of the
cycle, the characteristic points B and C can be evaluated (Figure 5.7b) [125].

5.4.2. DSC measurements

The DSC measurements were performed to determine the lamella thickness distribution.
For plate-shaped lamellas with a uniform lamella thickness, the Gibbs-Thomson formula
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Figure 5.5.: Strain definitions. Modified from [126].

Tm = T 0
m

(
1−

2σe
∆hcλ

)
(5.2)

can be used to determine the lamella thickness λ from the melting temperature Tm of
the sample. For iPP the free fold surface energy is σe = 0.07 J/m2 and the melting
temperature of the 100 % crystalline material T 0

m = 187.5 °C (= 460.6 K). The enthalpy
of fusion per unit volume ∆hc = ∆H0/ρc can be calculated with the enthalpy of fusion
∆H0 = 207 J/g and the density ρc = 0.936 g/cm3 of the ideal crystalline sample [107,
127]. In polymer crystals of homopolymers, the distribution of the lamella thickness λ has
usually a log-normal form [23, 128]

f (λ) =
1

λσ
√

2π
exp

(
−

(ln λ− ln m)2

2σ2

)
(5.3)

with the paramter σ and m. Thereby µ = ln(m) is the median and σ the variance
of the distribution. Such a distribution is typical of nucleation-controlled crystallization
processes.

In order to determine a correct lamella thickness distribution from a DSC measurement,
a differential approach must be used [128, 129]. This is necessary since the DSC signal
P (T ) is proportional to the molten volume and therefore cannot be directly used as a
lamella thickness distribution function.

P (T ) = αm∆H0mβf (T ) (5.4)
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With αm mass fraction crystallinity, ∆H0 heat of fusion per unit mass, m sample mass, β =

dT/dt heating rate and f (T ) the volume fraction which melts at a certain temperature.
The resulting lamella size distribution function g(λ) for a constant heating rate β is given
by

g(λ) = f (T )
dT

dλ
=

P (T )

αm∆H0mβ

dT

dλ
(5.5)

Setting Tm = T and assuming ∆hc to be temperature independent we can substitute
equation 5.2 in 5.5. This leads to an equation for the lamella size distribution function
g(λ) depending on the DSC signal P (T ).

g(λ) = aP (T )(T 0
m − Tm)2 (5.6)

The normalisation constant a can be considered as temperature independent and is there-
fore determined by the numerical integration of P (T )(T 0

m − Tm)2 [128].

In order to calculate an average lamella thickness from the lamella thickness distribution,
the distribution function must be multiplied by the lamella thickness. This takes into
account that thicker lamellae occupy a larger volume.

Due to the tilt of the molecular axis (c axis in the crystal) against the surface normal
n of the lamella crystal (Figure 2.11a) small differences between the lamella thicknesses,
determined from DSC measurements and XRD measurements respectively, can occur. For
the XRD method, the stem length (= crystal thickness measured parallel to the c axis)
is decisive since only crystal parameters parallel to the crystal axes a, b and c can be
determined. The chain axis is tilted by 10 ° against the lamella normal in polypropylene.
Therefore, the XRD method usually provides larger lamella thicknesses than the DSC
method.

5.4.3. WAXS measurements

Although the iPP materials tested contains a α-nucleating agent, the WAXS profile mea-
sured shows a significant amount of γ-phase. This can be seen in the distinct additional
peak between the α-peaks 130 and 111 as well as the pronounced anisotropy of the first
reflection (Figure 5.6).

This anisotropy results from the overlap of the α 110 reflection with the γ 111 and γ
113 reflections. For an accurate analysis, the WAXS profile has to be separated into the
phase-specific fractions. Therefore, a special fit program has been developed in scope of
this dissertation which reproducibly performs the separation in several steps according to
objective criteria. In a first step, the background is fitted by means of interpolation points
between non-overlapping peaks with a polynomial of 5th degree. Afterwards, a Pearson VII
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Figure 5.6.: Phase specific WAXS profil of undeformed sample.

function is fitted at a fixed background for each distinct peak (single peak or superimposed
peaks). As a result, the WAXS profile can be decomposed into individual profiles for each
pronounced peak by subtracting the residual profile (background + n-1 peaks). If these
individual peaks are still composed of overlapping peaks, they are separated in a further
step. The starting values for the two separated peaks are calculated from the amplitude,
the peak position and the half-width of the single peak. The separation fit is robust (i.e.,
it has a clear solution even with slightly modified starting values) if there is a clear distance
between the maximum of the individual peaks. This procedure can be applied to separate
the α 040 and γ 008 reflections. The separation of the 041 and 13-1 α-reflections is
much more difficult since both reflections appear at the same angular position. In order
to obtain a stable fit result, one peak position had to be fixed. This leads to a small peak
distance. With this special fit algorithm it was now possible to separate the measured
WAXS profile into a WAXS profile of the α and γ-phase as well as the background. This
allows the different phases to be analysed independently.
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5.4.4. Modified Williamson-Hall Analysis

For the modified Williamson-Hall analysis, the FWHM of the fitted Pearson VII functions
were used. An orthorhombic contrast factor (Figure 5.2) with 5 coefficients a1 ... a5 was
used for the fits because the MXPA software currently supports only one orthorhombic
lattice. Since the monoclinic α-phase with β = 99.62 ° is only slightly different from
orthorhombic geometry (β = 90 °), the error is small.

If all the parameters (d , a1 ... a5) are freely fitted, the fit usually converges with negative
crystallite sizes. In order to obtain physically reasonable values, the crystallite size was
specified for the fit in the range from 5 to 50 nm and the resulting average dislocation
contrast factors Chkl were evaluated. Results with complex contrast factors or negative
slopes in the modified Williamson-Hall plot were rejected. For the remaining fits, the
shift on the x-axis (K

√
Chkl) of the modified Williamson-Hall plot was judged against

the Williamson-Hall plot (x-axis = K). As best fit that one with the smallest shift was
selected.

5.4.5. Multiple Whole Profile Analysis (MXPA)

For the MXPA, the program CMWP-fit1 [118, 130] with the extension Multi-Eval ex-
tension to CMWP-fit from Kerber [131] was used. The Multi-Eval extension varies the
different starting values of each parameter over the whole parameter range and all possible
permutations and uses the CMWP-fit program for the fit. This procedure ensures that
the global minimum which represents the best physical solution can be determined with
a high degree of reliability. This allows one to calculate a value for the reliability of the
fit results. If many different starting values lead to the same fit result, this results in a
high degree of reliability. In the result plots, this is expressed by error bars. The smaller
the error bars the more robust the fits are. The error bars do not represent a confidence
interval, but are a measure of the mathematical robustness of the fits.

In order to reduce the parameters to be fitted, the fit was performed in two steps. For the
first step, the contrast factor coefficients were taken from the modified Williamson-Hall
analysis and fixed. In a second step further parameters were released by a semi-automated
procedure.

5.4.6. Determination of degree of crystallinity

The degree of crystallinity from the XRD profiles was additionally determined by the
method of Ruland and Vonk [132, 133]. This method expands the standard formula
for calculating the crystallinity degree

1 CMWP-fit is freely available at http://www.renyi.hu/cmwp/
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Xc =
Ic
It

=

∫
icdV∫
itdV

=

∫
ics

2ds∫
its2ds

(5.7)

by the following factor.

K =

∫
f

2
s2ds∫

f
2
s2D(s)ds

> 1 (5.8)

With the factor K the disturbances in the crystalline phase, such as thermal fluctuations
and local lattice defects, can be considered. For the calculation of the degree of crystallinity
according to the variant of Vonk [133], only the linear approach was used because the
WAXS measurements were only made in an angle range from 2Θ = 12 – 23.5 °.

The crystallinity degree from the DSC measurements was calculated from the melt peak
area with a enthalpy of fusion of H = 207 J/g (100 % crystalline α-iPP [107]).

In contrast to the lamella thickness distribution, where for polymers with a log-normal
distribution a very good agreement between DSC and X-ray method can be found [81],
the crystallinity degree typically shows a difference between DSC and X-ray measurements.
The order of magnitude depends on the assumed enthalpy of fusion for the DSC evaluation,
which is very different in the literature [107].

5.5. Results and Discussion

5.5.1. Mechanical cyclic experiments

The residual and recoverable strains determined from the cyclic compression experiments
show the typical characteristics for semi-crystalline polymers (Figure 5.7a) [20, 125]. The
huge slip within lamellae and the lamellae rotation begins at the macroscopic yield point
(Point B in Figure 5.7b). Therefore, from this point the mobile dislocation density should
increase. Since the MXPA cannot distinguish between fixed and mobile dislocations, this
means that the dislocation density (= total dislocation density) measured does not have to
increase automatically. In semi-crystalline polymers, the dislocation density in undeformed
samples is relatively high (chapter 4), and therefore it is not unlikely that many of them
can be mobilized and new dislocations need not be formed immediately at the beginning
of the plastic deformation.

These results also show that the point C is just reached at the maximum deformation. Until
this point no fragmentation of the lamellas should be occur [20]. The lamella thickness
and the degree of crystallinity thus remain almost unchanged up to the point C.
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(a) (b)

Figure 5.7.: Evaluations of the cyclic experiment.
(a) Residual and recoverable strains for each cycle as a function of the total true strain.
(b) Characteristic points B and C from cyclic compression experiments.

5.5.2. FEM Simulation

The FEM simulation results clearly show that the deformation in the compression experi-
ment is inhomogeneous (Figure 5.8a).

The forging cross typical of this type of deformation is formed [134]. The largest plastic
deformation (equivalent plastic strain) occurs in the sample center and decreases towards
the edge. The local deviation of the actual plastic strain from the mean value increases
strongly with the deformation. Figure 5.9 shows the von Mises equivalent plastic strain
over the cross section for different deformation paths s.
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(a)

(b)

Figure 5.8.: Results from FEM calculation.
(a) Von Mises equivalent plastic strain for different deformations εtrue, elastic strain
0.042.
(b) Von Mises stress for different deformations εtrue.
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Figure 5.9.: Von Mises equivalent plastic strain from FEM calculations depending on the
sample position (left - sample center, right sample edge) for different deformation paths
s.

However, it is noteable that the average plastic deformation over the sample volume
(average of Mises equivalent plastic strain) calculated from the FEM simulation agrees
very well with the true strain εtrue = −ln(l/l0) from the compression experiment. The
deviation is at maximum 4 % (Table 5.1).

deformation
path εtrue εFEM difference
[mm] [1] [1] [%]

2 0.22 0.24 -2
4 0.51 0.55 -4
6 0.92 0.91 1

Table 5.1.: Comparison of true stain εtrue with average von Mises equivalent plastic strain
from FEM εFEM.

In contrast, the stress distribution (Figure 5.8b) is relatively homogeneous. This is relevant
as the generation of the dislocations and the dislocation movement is stress-controlled.
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5.5.3. DSC

The lamella thickness distribution from the DSC measurements has in principle the typical
log-normal distribution shape for polypropylene. However, the samples investigated show
in detail a superimposition of two log-normal distributions. (Figure 5.10).

Figure 5.10.: Lamella thickness distribution for an undeformed sample measured with
DSC.

From the WAXS measurements it is clear that the sample examined consists of approxi-
mately 40 % α-phase and 10 % γ-phase (Figure 5.12). This suggests to assign the two
log-normal distributions to the different crystalline phases. However, the lamella thickness
distribution does not give a volume fraction. Therefore, a direct identification of the phases
over the volume fraction is not possible. The evaluation of the WAXS measurements with
respect to the half-widths of the peaks (FWHM) shows that the crystallite size (lamella
thickness) of the γ-phase is less than that of the α-phase, thus making an identification
possible. This results in the average lamella thicknesses of the undeformed sample λ̄γ(ε =
0) = 11.7 nm in the γ-phase and λ̄α(ε = 0) = 15.2 nm in the α-phase. The lamella thick-
ness distribution of the γ-phase is strongly asymmetric and has its maximum at a lamella
thickness of 5 nm. Thus, the lamella thickness of the γ-phase is comparable to the results
of Lezak et al. [106] which found an average lamella thickness of 8.5 nm for pure γ-PP
by means of SAXS measurements. With increasing deformation the characteristics of the
distribution changes only slightly (Figure 5.11).

Also, the bimodal log-normal character remains. Up to a deformation of ε = 0.7, there
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Figure 5.11.: Lamella thickness distribution from DSC depending from deformation. From
[23].

is also no significant change in the average lamella thickness. The degree of crystallinity
is constant at XDSC

c = 0.5 and agrees well with the degree of crystallinity from the X-ray
measurements for the undeformed and slightly deformed samples (Figure 5.12). Larger
deviations are only in the case of larger deformations (ε > 15 %), since the degree of
crystallinity from the WAXS measurements decreases continuously.

The mechanical evaluations have shown that the point C (Figure 5.7b) is not significantly
exceeded. Therefore, only a small fragmentation of the lamellae should take place up to
the maximum deformation, and the crystallinity should not change significantly. However,
it must be noted that the deformation in compression is relatively inhomogeneous. The
FEM simulations have shown that the plastic deformation in the core of the sample is
significantly larger (Figure 5.9). This means that the point C is also clearly exceeded, and
fragmentation of the lamellae can take place locally. This can explain the decrease in the
degree of crystallinity by X-ray measurements, since the measurement was carried out in
transmission through the sample center.

5.5.4. WAXS measurements

Phase selection

The WAXS profile measured (Figure 5.6) shows a pronounced asymmetry for the α 110
reflection, and there is an additional peak between the α 130 and α 111 reflection. These
are clear indications of the existence of a γ-phase. The 111, 113, 008 and 117 reflec-
tions of the γ-phase could be separated relatively reliably using the procedure described
in section 5.4.3. A reliable separation of the γ 115 reflection is not possible because the
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Figure 5.12.: Normalised phase specific X-ray scattering intensities Xc compared with
cristallinity from DSC XDSC

c .

intensity is too low. The γ 202 and 026 reflections could not be separated, since they are
too close to the α 041 and 13-1 reflections.

Phase fractions, crystallinity

The phase-specific WAXS evaluations have been shown a very high γ-phase content.
With absolute 10 % γ-phase content and 20 % γ-phase content in the total crystalline
phase, respectively, the investigated material shows a significantly higher γ-content than in
polypropylene without alpha nucleation agents where the γ-phase content is typically 6 %
[135]. For high-pressure crystallization (p = 200 MPa), a α-nucleating agent also acts as
a γ-nucleating agent [136]. Obviously, this effect is also present under atmospheric pres-
sure, although not so strongly pronounced. This is rather a disadvantage for phase-specific
defect analysis, since the α-phase separation of the XRD profile is more difficult.

While the α-phase fraction decreases continuously, for the γ-phase a slight decrease occurs
only in case of deformations ε > 15 % (Figure 5.12). The ratio of the phase fractions
hardly changes with the deformation and is α:γ = 4:1.

If we compare the phase-specific scattering intensities measured under load (loaded) and
relaxed (unloaded), a significant constant increase is already shown for the α-phase at
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small deformations. There are the following possible explanations.

• Due to the unloading, the defects (dislocations) recover and this leads to an increase
in crystallinity. Although the dislocation density decreases markedly at unloading,
because many deformation-induced dislocations recover above the glass transition
temperature [54, 84], this effect should be small.

• Above the glass transition temperature, the amorphous phase is much softer than
the crystalline phase. The Young’s modulus of the crystalline phase is larger by about
3 orders of magnitude. Therefore, the amorphous phase is compressed more signif-
icantly and thus its volume fraction under load is clearly reduced. This assumption
is supported by the fact that the difference is smaller for small loads.

It is remarkable that this effect does not occur in the stronger γ-phase until a deformation
of ε = 55 %. Comparing the yield stress of α and γ-phase (σαyield = 48 MPa [125], σγy ield
= 68 MPa [106, 124]) the γ-phase is 42 % stronger. This means that there is only too
little plastic deformation in the γ-phase. Furthermore, the plastic deformation in γ-PP
occurs mainly by interlamella amorphous shear [106] and not by dislocation generation and
dislocation mobilization. Thus, there is only a slight reduction of the absolute γ-phase
fraction.

The crystallinity determined by the method of Ruland [132] and Vonk [133] is higher than
the crystallinity determined from the phase-specific scattering intensities. The reason
therefore is that this method also extrapolates into the WAXS region with large angles
outside the measurement range. The larger decrease at larger deformations ε > 25 % is
due to the evaluation method, the selected limits and the relatively small angular range of
the measurement.

Peak shift

The peak shift during compression deformation occurs for all peaks to larger angles, which
corresponds to a reduction in the lattice plane spacings (Figure 5.13).

A strong linear increase in the peak shift is observed for small deformations (ε < 2 %,
elastic deformation range), which is for all peaks equal within the precision of measure-
ments. The deformation in the crystalline phase can be calculated from the change in the
lattice plane spacings l compared to the unloaded state l0. Thus, a modulus of elasticity
for the crystalline phase can be determined with the macroscopic stress measured. For the
α 130 reflection, a modulus of elasticity of 2700 MPa is obtained. From the propagation
of longitudinal sound the modulus of the crystalline phase can be calculated theoretically
[137]. With this approach Menyhárd et al. [138] calculated = 6600 MPa for polypropy-
lene, which clearly differs from the experimentally determined value. In order to be able
to determine a more accurate value for Ec , one would have to measure the peak shift
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Figure 5.13.: Peak shift during deformation for different α-PP peaks. It can be assumed
that the beginning of the plateau region in the peak shift correlates with the point A
which can be determined by mechanical experiments.

continuously during deformation. But a direct determination of the modulus of elasticity
of the crystalline phase from the peak shift should be possible principally.

After the range with a linear increase in the peak shift, a direct transition occurs into a
plateau region with a constant or slightly falling peak shift. This transition takes place
between ε = 2 – 5 % depending on the peak type. This means that, despite the increasing
macroscopic stress, the lattice planes are not being further pressed together. This could
mean that from this point

1. the deformation occurs mainly in the amorphous phase or

2. in the crystalline phase slip processes are activated, i.e. plastic deformation occurs

Since this transition does not take place at the same time for all peaks types, variant 2
is the most likely. The different strain values (and thus stress values) for the beginning
of the plateau range can be explained by different CRSS in the different slip systems. In
polypropylene, the (010)[001] slip system is activated before the (110)[001] slip system
[97]. This is confirmed by our measurements, since the peak shift for the 040 peak is
already at ε = 3 % and that of the 110 peak at ε = 5 % is on a constant level. Assuming
that the beginning of the plateau level corresponds to the activation of the corresponding
slip system, the critically resolved shear stress (CRSS) can be estimated by taking into
account a Taylor factor m = 3 [3, 34, 66]. For the (010)[001] slip system a CRSS of 10
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MPa and for the (110)[001] slip system a CRSS of 13 MPa are obtained. These values are
significantly lower than those measured by Bartczak et al. [42] of 22.6 MPa for the (010)
[001] sliding system. However, the Coulomb yield criterion was used, which does not take
into account crystallographic slip before the yield point. The nano-creep experiments with
polyethylene (chapter 6), have shown that plastic deformations in the crystalline phase can
be detected even at stresses < 1 % of yield stress. First preliminary tests with polypropylene
have shown similar results as for polyethylene. However, from which load the plastic
deformation in the crystalline phase reaches a significant level is difficult to determine.
One possibility to detect the beginning of relevant plastic deformation in the crystalline
phase is the method presented by Hiss et al. [20] using cyclic deformation experiments.
With this method a characteristic point A can be determined, which is assigned to the
beginning of the plastic deformation in the crystalline phase. This point is clearly before
the yield point. Due to too low resolution the point A could not be determined with the
cyclic compression experiments performed. However, it can be assumed that the beginning
of the plateau region in the peak shift correlates with the point A (Figure 5.13).

Peak broadening

Comparing the peak widths (full width at half mean, FWHM) of the best separable peaks of
α and γ-phase with increasing deformation (Figure 5.14), it is noticeable that the FWHM
of the α-peaks is about half of that of the γ-peaks.

Since the two phases crystallize under very similar conditions, it can be assumed in a first
approximation that the defect density is comparable in both phases. It was possible to
confirm this by dislocation density measurement [124]. Thus the different peak width
has to be caused by the crystallite size (lamella thickness). Since the crystal size is
proportional to 1/FWHM, one can assume that the γ-lamella is about half as thick as the
α-lamella. However, one has to take into account that the broadening comes mainly from
the small crystals (thin lamellae) and is not proportional to the average lamella thickness.
The lamella thickness distribution from the DSC measurements (Figure 5.10) shows two
superimposed log-normal distributions whose lamella thickness ratio is approximately 1:2
for the smallest lamellae (smallest 30 %). This confirms the results from the FWHM
evaluations and is a further evidence for the assignment of the lamella thickness distribution
to the phases.

With increasing deformation, the FWHM increases continuously for the α-peaks, while
the FWHM of the γ-peaks only changes slightly. The DSC measurements show that
although the lamella thickness distribution changes slightly with increasing deformation
(Figure 5.11), the average crystallite size remains nearly constant for both phases. An
increase in the peak width in the α-phase can therefore only be caused by an increase
in the defect density (dislocation density). Measurements of the dislocation density for
gamma polypropylene as a function of the deformation [124] show that the dislocation
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Figure 5.14.: Peak width (full width at half mean, FWHM) of α-PP peaks during defor-
mation.

density in gamma polypropylene does not increase. This explains why the peak width of
the γ-peaks does not change.

The FWHM in the relaxed, unloaded state is typically smaller regardless of the deforma-
tion. The difference increases with the deformation in the α-phase. During unloading the
crystalline phase is also deformed back by restoring forces coming from the oriententation
of the amorphous phase. Thereby defects (dislocations) can recover [84] and this leads
to a decrease in the defect density (dislocation density), which is expressed by a reduc-
tion in FWHM. This is also confirmed by the modified Williamson-Hall analysis and the
MXPA, where the dislocation density in the higher-deformed samples decreases markedly
with unloading (Figure 5.18).

Modified Williamson-Hall analysis

In the classical Williamson-Hall Plot (Figure 5.15) the peak width (FWHM) is plotted
against the peak position (diffraction vector K).

For the α-phase of the undeformed sample, a linear increase with an increasing order is
seen (Figure 5.15a). If the peak width increases with the order, the broadening is caused
by a strain field. The linearity means that the distortion field of the defects has only a
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a) undeformed b) deformed

Figure 5.15.: Williamson-Hall and modified Williamson-Hall analyses for undeformed and
deformed (ε = 0.45) samples of iPP.

small anisotropy or the stress field is not of long range [76]. This linear increase is lost
with growing deformation (Figure 5.15b), which can be caused by

• an increase of the defect density or

• a decrease of the crystallite size.

Since the crystallite size, determined by DSC measurements, remains almost unchanged,
a pronounced increase of the defect density (dislocation density) is likely.

For all α-PP WAXS profiles, a linearisation in the modified Williamson-Hall plot is possible
by a fit of the average dislocation contrast factor coefficients a1 ... a5 (Figure 5.15). This
is evidence of the dislocation character of the lattice imperfections [76]. It has been shown
however, that a linearization for α-PP is always possible numerically, since only 6 peaks are
available for the evaluation and 5 parameters of the contrast factor are fitted. Therefore,
successful linearisation cannot be used as a direct proof of the dislocation characteristics
of the defects. Since the linearity is present in the undeformed sample without taking into
account a contrast, it can basically be assumed that the present defects have a relatively
small contrast which applies e.g. to screw dislocations.
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(a) (b)

(c) (d)

Figure 5.16.: Average dislocation contrast factor coefficients a1 ... a5 (a overview, b
zoom), and shift factors 1−

√
Chkl from average dislocation contrast factors (c loaded,

d unloaded samples) determined with modified Williamson-Hall analysis.
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The contrast factor coefficients show a pronounced coupling and symmetry respectively
(Figure 5.16a and b).

a2 = −k · a5 (5.9a)

a3 = −k · a4 (5.9b)

This can be explained by the fact that only three sliping systems are activated [97] and
these have almost the same contrast [23].

The contrast factor coefficients decrease with increasing deformation. However, large
values for a2 and a5 of the undeformed samples do not mean that the contrast factors and
therefore the shift factors in the modified Williamson-Hall plot 1 −

√
Chkl are also large.

From the formula for the contrast factors (Figure 5.2) can be seen that, due to different
sign, for large ai the resulting contrast factor can be still small.

The shift factors (Figure 5.16c) have relatively small values up to a deformation of ε = 10
% and then a continuous increase to approximately twice the initial values.

This may mean that the dislocation characteristics up to these particular deformations
do not substantially change, and thereafter also a different type of dislocation can be
generated. For energetic reasons in the undeformed and slightly deformed sample there
are mainly screw dislocations and the deformation in the lamellae occures by chain slip.
Investigations by Spieckermann [23] with theoretical contrast factors have shown that
from a deformation of about ε = 10 %, additional edge dislocations are generated and
increasingly transverse slip occurs. This can explain why the shift factors increase after
a certain deformation, especially since the contrast factors for the edge dislocations are
larger.

The shift factor behaves similarly for unloaded samples (Figure 5.16d). Generally, the shift
factor for the unloaded samples is always smaller than for the deformed samples. This can
be explained on the one hand by the reduction of texture during unloading and on the other
hand with a reduction in the defect density by annealing of dislocations. At temperatures
above the glass transition temperature, a relatively large number of dislocations can anneal
[84].

Comparing the crystallite size from the modified Williamson-Hall analysis with that from
DSC measurements (Figure 5.17), it is shown that for small deformation, the average
crystallite size is over-estimated by the X-ray method.

However, compared to earlier measurements (chapter 4), the determination of the lamella
thickness could be improved by the additional criterion that the shift factor 1 −

√
Chkl is

a minimum. Nevertheless, for deformations up to ε < 30 %, there is still a quite larger
difference to the DSC measurements. A much better match can be obtained by the MXPA
[81]. There are only minor differences, which can be explained by the different methods.
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Figure 5.17.: Lamella thickness from loaded (solid lines) and unloaded (dashed lines) sam-
ples determined with different methods.
MXPA (green), average lamella thickness from calculated log-normal lamella thickness
distribution. The error bars are a measure of the convergence of the fits at different
start values.
Modified Williamson-Hall analysis (red).
DSC (gray), average lamella thickness from lamella thickness distribution (with lamella
thickness weighted 50 % value).

If one assumes a lamella model consisting of several subblocks in the order of magnitude
of the lamella thickness, this difference can be interpreted as a cluster of lamella blocks
in a coherent position. It is likely that several adjacent sub-blocks scatter the X-ray beam
coherently in the undeformed sample and even at small degrees of deformation [124].

As a result, especially the modified modified Williamson-Hall analysis provides larger crys-
tallite sizes. As the deformation increases, the clusters disappear and thus the CSD size
decreases. In addition, it must be taken into account that only a log-normal distribution
of the crystallite size can be considered at the MXPA. The evaluation of the lamella thick-
ness distribution from the DSC measurements (Figure5.10) have shown that the examined
samples do not have an exact log-normal distribution of the lamella thickness.
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Dislocation density

In the dislocation density from the modified Williamson-Hall analysis there can be rec-
ognized a clear difference between loaded and relaxed (unloaded) samples (Figure 5.18a).
The dislocation density of the unloaded samples is clearly (almost factor 10) smaller than
under load. Already at small deformations, a large increase in the dislocation density can
be observed.

The MXPA was executed in two steps. In the first step, the contrast factor coefficients
were taken from the modified Williamson-Hall analysis and fixed. At this fully automatic
run with the Multi-Eval extension to CMWP-fit [131], the results of the MXPA scatter
relatively strongly depending on the starting values (error bars in Figure 5.18b). In a second
step, the MXPA parameters were adapted manually and further parameters were released
for the fitting process. As a result, in the determination of the dislocation density much
more stable and reliable results were obtained (Figure 5.18c and d) than of the first step
which one described in the following. Up to a deformation of ε = 20 %, the dislocation
density increases only slightly. This shows that there are sufficient dislocations up to far
above the point B (= beginning of massive plastic deformation in the crystals) and these
have only to be mobilized. Only at relatively large deformations the dislocation density
increases significantly. During unloading the dislocations annihilate and the dislocation
density decreases to the initial value. Measurements on pre-deformed samples have shown
that beyond a residual deformation of εresidual ∼ 30 %, the dislocation density remain
increased and not all additionally generated dislocations annihilate (Figure 4.4).
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(a) (b)

(c) (d)

Figure 5.18.: Dislocation density from (a) modified Williamson-Hall analysis, (b) MXPA
after first step, (c) and (d) MXPA after second semi-automatic step, (d) linearly scaled
plot.
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5.6. Conclusions and summary

The MXPA is a powerful method for the determination of the dislocation density and
the crystallite size (CSD size) of semi-crystalline polymers. But after a first successful
application on polypropylene (chapter 4) there remained some challenges. Semi-crystalline
polymers have typically complex crystal systems with low symmetry. Thus, the MXPA
has a lot of fit parameters and for the evaluation process many manual corrections are
necessary. The aim of this second work of the dissertation was to improve the modified
Williamson-Hall analysis in order to get an automatised evaluation procedure which results
in reliable start values for the contrast factor coefficients and the MXPA, respectively. This
goal could be achieved by an additional boundary condition for the modified Williamson-
Hall analysis thus reducing the degree of freedom for the fit. This led to much better
start values and convergent fits in the multieval variant of the MXPA [131]. However,
the results (Figure 5.18b) were still not fully satisfactory. Good results could only be
achieved with a second semi-automatic evaluation step, where the MXPA parameters
were adapted manually and further parameters were released for the fitting process. Thus
the evaluation process could be considerably shortened and the reliability of the results
significantly improved.

By applying this improved approach, the MXPA for a undeformed polypropylene sample
has shown a dislocation density of 1015 m−2. Thus, the measured dislocation density
was lower by an order of magnitude relatively to the first application of the MXPA to
polypropylene (chapter 4). Recent studies on polypropylene [84, 124] have confirmed a
dislocation density of 1015 m−2 in undeformed polypropylene.

In contrast to the first application of the MXPA (chapter 4), the measurements were
carried out in situ during cyclic deformation at a synchrotron. Thus relaxation phenomena
could be taken into account. It has been shown that with increasing plastic deformation
(ε > 10 %), the dislocation density does not increase strongly (Figure 5.18d). This
means that there are sufficient dislocations available and these are mobilized thermally.
Any additionally necessary mechanical stresses are small. This is confirmed by the novel
nano-creep experiments developed also in scope of this dissertation (chapter 6), where in
polyethylene the dislocation movement occurs in the form of dislocation avalanches even
at stresses lower than 1 % of the yield stress.

The dislocations annihilate during unloading and the dislocation density decreases to the
level of the undeformed sample. This clearly shows that for the determination of the dislo-
cation density as a function of the deformation, in situ experiments are indispensible. The
first experiments for the determination of the development of the dislocation density dur-
ing plastic deformation were performed on predeformed polypropylene specimens (chapter
4). Thus, these results correspond to the measurements from the unloaded sampels. For
these relaxed (unloaded) predeformed samples an increase in the dislocation density not
before approximately 30 % deformation occurred (Figure 4.4). However, this deformation
corresponds to the permanent deformation εresidual (Figure 5.7a), whereas in the current
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evaluations the total deformation εtotal was used. In order to compare the results, it is
necessary to correct the strain values by the relaxing deformation εrecoverable. This means
that the strain values from the earlier measurements must be increased by approximately
10 % and therefore an increase in the dislocation density in the unloaded samples from
εtotal > 40 % is expected. Unfortunately, the XRD profiles for a strain of εtotal > 45
% could not be evaluated. However, a small increase in the dislocation density of the
unloaded samples appears in the measurement for εtotal = 45 % (Figure 5.18c and d).
Therefore, from a deformation of εtotal > 45 %, an increase in the dislocation density in
the unloaded samples is expected. This means that the dislocation density decreases by
about one order of magnitude during unloading and corresponds roughly to twice the value
of the data reported by Spieckermann et al. [84]. In these experiments, PP specimens
were stored in liquid nitrogen immediately after deformation to ε = 120 % in order to pre-
vent annihilation of dislocations. Subsequently, the dislocation density during heating was
determined. It was found that at the glass transition temperature the dislocation density
drops sharply. Despite the much larger deformation, the initial value of the dislocation
density was lower than the value determined for ε = 45 % in this work. Therefore, it must
be assumed that shock freezing in liquid nitrogen is not suitable to stabilize all disloca-
tions and a large portion of dislocations already annihilate during cooling respectively. This
explains the different decrease in the dislocation density and shows that the annihilation
process above the glass transition temperature is significant.

With the results from the XRD measurements, the lamellar thickness distribution from the
DSC measurements could be clearly assigned to the α and γ-phase. It has been found
that the lamellar thickness in the γ-phase is distinctly smaller than in the α-phase. This
agrees with recent lamella thickness distribution measurements of pure alpha and gamma
polypropylene determined by DSC [139]. Regarding Young’s dislocation model [62], where
the yield stress linearly increases with the lamellar thickness (equation 2.23), the strength
of the γ-phase should be much smaller than that of the α-phase. However, exactly the
contrary is the case. Significantly higher strengths were found for γ-PP than in α-PP [106,
124]. Reasons could be the special cross-molecular arrangement in γ-PP which restricts the
dislocation movement or a modified rigid amorphous phase which influences the generation
of dislocations. Recent investigations by von Baeckmann [140] have shown that the γ-
phase is not always stronger. Under standard high-pressure crystallization conditions, the
γ-phase has the same strength as the α-phase. Only with special crystallization conditions,
γ-PP samples with up to 40 % higher strength are obtained [139, 140].
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Part III.

Investigation of the dislocation kinetics
by a novel nano-creep test
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6. Characterization of strain bursts in
polyethylene by means of a novel
nano-creep test

6.1. Introduction

In several semi-crystalline polymers, as already mentioned, it was found that the deforma-
tion of the crystalline phase is governed by the generation and motion of crystal defects
- namely dislocations - especially at deformations within the extended plastic regime [27,
40, 62, 65, 66]. Although the importance of dislocations for the plastic deformation in
many semi-crystalline polymers is beyond dispute [19, 32, 50], the kinetic mechanisms of
dislocations remains widely unclear.

While diffraction methods like the Multi-Reflection X-Ray Profile Analysis (MXPA) [76,
78], can be considered as highly phase selective, the situation is more complex for mechan-
ical experiments as they register an overlap of effects originating from the crystalline as
well the amorphous phase. Nevertheless, for analysing the nature, mobility and annihilation
of defects, the determination of activation volumes and energies from mechanical tests
seems indispensable for the understanding and identification of the molecular processes
controlling elastic properties, strength and ductility.

The first attempts to investigate the deformation behaviour of the crystalline phase inde-
pendent of the amorphous phase were made by Rabinowitz and Brown 1967 [141]. They
observed the onset of plastic deformation in the crystalline phase of high density polyethy-
lene (PE-HD) at a stress of 0.18 MPa by cyclic tension experiments in the micro-strain
region with high-resolution strain measurement (strain sensitivity of 10−6).

From metals it is known that under certain conditions the flow of deformation can be
jerky, which means that the macroscopic deformation curve exhibits significant jumps
(strain bursts). Uchic [90] showed that the deformation of small cylindrical nickel single
crystals, with a diameter of some µm, occurs almost exclusively through strain bursts.
The jumps become smaller with increasing sample size and they disappear for macroscopic
specimens.

The cause of strain bursts in metals are usually dislocation avalanches [142]. In metallic
glasses, shear banding and martensitic transformations can also cause strain bursts [143].
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Since the deformation of the crystalline phase in many semi-crystalline polymers is dislo-
cation controlled [19, 50], strain bursts should also emerge. The first evidence for strain
bursts in a polymer was found by Li and Ngan [89] with nanoindentation creep experiments
on PE-HD. With some estimations they could determine an activation energy of 0.22 eV
for the plastic deformation of the crystalline phase. Further comprehensive experiments
were performed by Zare Ghomsheh et al. [91, 92].

However, nanoindentation creep experiments have several limitations.

• The stress field is strongly inhomogeneous, which requires some assumptions and
estimations for the evaluation of the activation energy.

• The tested sample volume is very small, and local effects can play a role.

Therefore, an alternative test method would be desirable, which is not affected by these
disadvantages.

In semi-crystalline, the path length is limited by the lamella thickness and therefore strain
bursts can only be in the order of the lamella thickness. In order to verify single strain
bursts in polymers the resolution of the deformation measurement had to be in the nm
scale. In addition, the deformation rate in the amorphous phase should be not too large, so
that single strain bursts can be detected. A possibility would be a creep experiment above
the glass transition temperature Tg with very small loadings in the micro-strain region
(finite strain near the origin). Thereby the soft amorphous phase deforms continuously
with very little creep rates (few nm/s), while the deformation in the crystalline phase is
may be jerky over strain bursts (some nm in typically 0.1 s). This would give the possibility
to separate the deformation in the amorphous phase from that of the crystalline phase and
to study independently the mechanisms of plastic deformation in the crystalline phase.

An important aspect is the constant application of a homogeneous stress field over a large
specimen volume. Thus the occurrence of strain bursts becomes more likely. The sepa-
ration of deformations in the amorphous and crystalline phase is only possible at very low
stresses. If the stress exceeds a critical value, strain bursts do not occur as a single event.
So they cannot be separated from the deformation of the amorphous phase. In addition,
a too high deformation rate in the amorphous phase can make the detection of individual
strain bursts impossible. Since strain burst in semi-crystalline polymers cause deforma-
tions of several nm, a nm resolution in the deformation measurement is required. The
demand on the temperature stability during a measurement is very high. On the one hand
temperature fluctuations can influence the strength of the amorphous phase. Otherwise
the deformation caused by low thermal fluctuations is, due to the large thermal expansion
coefficient of polymers, much higher as the required deformation resolution. For instance
in PE-HD (linear expansion coefficient α = 2 · 10−4 1/K) causes a temperature increase of
0.1 °C at a length of 10 mm, a length change of 200 nm. Therefore, a very good tempera-
ture stability during the measurement is required. In order to avoid this problem a torsional
loading with a pure shear deformation is preferred. In this load case volume changes from
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temperature fluctuations do not play a crucial role, since a volume change does not cause
torsional deformations. Furthermore a pure shear stress enables the determination of the
stress in the sliding plane without additional assumptions/estimations.

6.2. Description of the novel nano-creep test

Many of the required criteria are fulfilled by a torsion measurement with a rheometer. This
was the reason for the decision to develop the novel test method for strain bursts on the
basis of a torsional rheometer tests. For the development and evaluation of the testing
method an Anton Paar rheometer MCR 301 with temperature chamber CCD 600 was
available. This rheometer has a torque resolution < 1 µNm and an angular resolution <
1 µrad. Data acquisition with 10 Hz is possible.

6.2.1. Stress distribution

A torsional stress causes a linear stress gradient over the cross section of the sample, zero
stress in the center of rotation and maximum stress at the sample surface. In order to
obtain a uniform, homogeneous stress distribution within the sample the measurements
were carried out with a hollow cylindrical specimen (diameter 5 mm), with a wall thickness
of 1 mm (Figure 6.1). Because of the used temperature chamber the total sample height
was limited to 50 mm.

Figure 6.1.: Sample geometry.

For a torque of 1 mNm this results in an average shear stress in the cross section of 0.0375
MPa (inner surface 0.0281 MPa, outer surface 0.0468 MPa, Figure 6.2). This stress is
significantly smaller than 1 % of yield stress (typical of PE-HD σy ield = 22 - 25 MPa [144])
even if we consider the von Mises yield criterion for pure sheer [47], which is
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τy ield =
σy ield√

3
= 12.7− 14.4MPa (6.1)

Figure 6.2.: Stress distribution in the sample cross section (blue area) for a torque of 1
mNm.

6.2.2. Angular resolution - deformation resolution

The Anton Paar rheometer MCR 301 has an optical incremental encoder for the angle
measurement with an internal digital resolution of 0.012 µrad. The current angle position
is determined by oversampling (averaging over several measurements).

The measurements have shown that the actual angular resolution ϕres is 0.2 µrad. This
results in a shear strain resolution γres (R = 2.5 mm, l = 38 mm) of

γres =
Rϕ

l
= 1.32 · 10−8 (6.2)

which can be converted to a von Mises equivalent strain εvMres

εvMres =
γres√

3
= 7.62 · 10−9 (6.3)

With the outer sample diameter D = 5 mm this leads to an absolute deformation resolution
bres on the sample surface of

bres = Dπ
ϕ

2π
= 0.5 nm (6.4)

This deformation resolution is about three orders of magnitude higher than the best ex-
tensometers for tensile tests. The latter have an absolute resolution of about 100 nm
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and therefore they are not suitable for the measurement of dislocation mediated strain
bursts.

6.2.3. Stability of temperature

In a torsional experiment the temperature control is not so critical, since volume changes
caused by temperature fluctuation do not result torsional deformations. At the current
measurements the temperature could be kept constant within several 1/100 °C. A control
experiment with a temperature oscillation of ± 2 °C has only influenced the creep rate. No
additional strain bursts could be observed. Therefore, the required temperature constancy
was set to ± 0.1 °C, which could be fulfilled without difficulty by the temperature chamber
used.

6.2.4. Measuring method - cycling

The measurements of Li and Ngan [89] showed that strain bursts occur relatively rarely.
For a reliable evaluation many and long-time measurements are necessary. The mechanical
sample preparation of the special rheometer specimens is complicated and thus limits
the specimen number. Since the nano-creep experiments were carried out with very low
stresses (< 1 % of yield stress), the occurring small deformation is reversible [125] and
takes place almost exclusively in the softer amorphous phase, especially for tests above
the glass transition temperature. The few strain bursts do not lead to relevant plastic
deformation in the crystalline phase. To keep the maximum sample deformation small
even in long-time experiments, the measurements were carried out as nano cycling creep
experiments. A complete cycle consists of four parts (Figure 6.3). In the first part a
constant loading is applied for 33 min in one direction, followed by a 33 min relaxation
phase without stress. Then the sample is creep deformed 33 min in the opposite direction
and then again relaxed 33 min without loading. With this cyclic procedure the maximum
deformation of the sample is limited. Thus, a sample can pass through many cycles without
experiencing relevant structural changes.

For a typical test a loading of 1 mNm is applied to a PE-HD sample (Figure 6.4), which
leads to a maximum deformation of about 3 mrad. This corresponds to an absolute
deformation at the sample surface of b = 7.5 µm or a relative deformation of γ = 1.97 ·
10−4 and εvM = 1.14 · 10−4, respectively. So numerous and longtime measurements can be
carried out with a single sample. This also allows fully automated measurements without
any manipulation of the samples. To determine whether the sample gets changes by the
measurements, the loading can be varied after each cycle. A non-destructive measurement
can be assumed when this randomized loading has no impact on the results.
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Figure 6.3.: Torque/Stress (red) and deformation (blue) behaviour during a nano-creep
cycle. PEHD sample, torque 1 mNm, temperature 30 °C.

6.3. Experimental details

The specimens were produced by machining of a compression molded sheet of high density
polyethylene Borealis HE 3492 LS-H. This material is classified as a MRS 10.0 material
(PE100) with a Young’s modulus E = 1100 MPa and a tensile yield stress σy ield = 25
MPa. The crystallinity of the samples was 61 % determined by differential scanning
calorimetry (DSC) measurements. To avoid influences due to the mechanical processing,
the specimens were annealed after preparation for 4 hours in a furnace at 120 °C.

Preliminary tests have been performed to determine the optimal test conditions. It has
been shown that there exists a minimum stress for reasonable experiments. Too little
stress results in a very noisy signal that cannot be evaluated. Similar results were also
found for nanoindentation creep experiments [91]. In principle, the lower the temperature
the larger the necessary minimum stress. On the other hand, higher stress increases the
risk for irreversible changes in the micro-structure of the sample. In this undesirable case, a
test specimen could be used only for a single measurement. Furthermore, a higher loading
results in a larger average creep rate in the amorphous phase, which makes a reliable
detection of a strain burst difficult.

Table 6.1 shows the test conditions for the performed isothermal measurements.
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Table 6.1.: Overview of test conditions.

In order to detect changes in the specimen caused by the experiments, the measurements
were carried out in randomized way. The loading was varied after 5 cycles (10 individual
creep measurements). In addition, the measurements were carried out at 30 °C with
different specimens. The preliminary tests have shown that for a reasonable, statistically
significant analysis at least 80 individual experiments must be carried out. There was
also evidence that the clamping of the specimen is critical. Despite of a careful clamping
procedure, the results of the first 5 - 10 experiments after clamping were unusual (modified
strain burst number and altered creep rate in the amorphous phase). Even with the greatest
care a plastic deformation of the specimens (much larger than the actual experiment) could
not be prevented. Therefore, the first 10 experiments after a specimen change were not
considered for the evaluation.

6.4. Results

For all evaluations only measurement data > 1.5 min after the beginning of the experiment
were considered. This ensures a very small average creep rate. Thus the jump height from
the creep in the amorous phase is much smaller than the expected jump height of the
strain bursts. Figure 6.4 shows the result of a nano-creep experiment (red curve) with a
relative high number of strain bursts.

Besides the positive strain bursts (in the direction of the loading), there are also back
jumps (negative strain bursts). The green curve shows the torsion angle difference between
two measuring points. Potential strain bursts are torsion angle differences between two
measuring points which are larger than ± 0.0015 mrad. This corresponds to approximately
± 6 times the standard deviation of the normal distribution of the torsion angle differences
caused by the creep process in the amorphous phase.

All experiments were analyzed with a self-developed octave evaluation program [145]. The
evaluation program determines automatically the occurrence time of the strain burst, the
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Figure 6.4.: Nano-creep curve of PE-HD with a static loading of 1 mNm (0.05 MPa on
the sample surface, i.e < 1 % of the yield stress) and 30 °C.

strain burst height (red and blue triangles in Figure 6.4) and the average creep rate of the
amorphous phase (= average torsion angle difference between two measuring points).

A key question was whether the specimens are changed by the nano-creep experiments and
these results in an impact on the number of strain burst. Therefore, the experiments were
carried out randomized (different test conditions for a specimen). To check whether the
experiment changes the structure of the specimen (and influences the number of strain
bursts), all experiments for a test condition were evaluated separately. This evaluation
shows that neither the number of positive nor the number of negative strain bursts changes
with multiple use of the specimen (= experiment number, Figure 6.5).

An evaluation of the number of strain bursts depending of their occurring time shows
slight tendencies. The number of positive strain bursts decreases slightly with time while
the number of negative strain burst increases slightly. However, the decrease/increase is
not statistically significant, also due to the strong scattering. But these results were the
reason to limit the time for a cycle (= single experiment) to 33 min (Figure 6.6).

For the negative strain bursts it seems that there is a slight increase after about 7 min.
This can be explained by the fact that for the back jumps (negative strain bursts) a back
stress is necessary witch must be built up in the amorphous phase.

Nevertheless, the results clearly show that the performed nano-creep cycling experiments
are a non-destructive test method. Therefore, a specimen can be used for more than one
measurements.

Looking at a single strain burst in detail (Figure 6.7a and b), it can be seen that the strain
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(a) (b)

Figure 6.5.: Distribution of positive (a) and negative (b) strain bursts depending on ex-
periment for torque 1.5 mNm and temperature 30 °C.

burst height is significantly larger than the angular resolution of the rheometer and the
jumps caused by the creep of the amorphous phase. The time for a strain burst is within
the time resolution of the measurement (0.1 s).

After a strain burst we observe temporarily a larger scattering of the measuring values as
before (= post-oscillation). For some strain bursts this unstable phase lasts for several sec-
onds, and the scattering amplitude of the measurement values is in the order of the strain
burst height (Figure 66.7b, strong post-oscillation). Thereby the first 2 - 3 vibrations with
the highest amplitude are with a frequency of 2 Hz. Thereafter, the amplitude decreases
and the frequency increases to about 5 Hz and is then comparable to the amplitude and
frequency of the low post-oscillations (Figure 6.7a).

A finite element modal analysis has revealed that the resonance frequency of a rotational
vibration of the specimen is bejond 1000 Hz. Therefore, a self-oscillation of the specimen
as origin of the post-oscillations is unlikely. Also as known from strain bursts in metals,
emission of sound waves [146] cannot be the cause due to the extremely small frequency.
One possible explanation for the post-oscillations is that dislocation avalanches cause large
local deformations in a crystal lamella. The surrounding amorphous phase or the interface
(rigid amorphous phase) would thereby limit the rate of deformation. Since dislocations
move by the order of the speed of sound [3] the local deformation rate is high which leads to
relatively stiff amorphous phase even over the glass transition temperature. This may cause
strong local restoring forces (back stresses) which finally effects the post-oscillations. A
strong indication of the fundamental possibility of local back deformations are the negative
strain bursts.
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(a) (b)

Figure 6.6.: Distribution of positive (a) and negative (b) strain bursts depending on time,
torque 1.5 mNm, temperature 30 °C.

In order to evaluate the height of a strain bursts the measuring points prior and after the
strain burst were fitted by a straight line (blue lines in Figure 6.7). The jump height of
the strain bursts was then evaluated as the difference of the lines at the first major torsion
angle difference (black arrows in Figure 6.7).

Over several experiments, the number of negative strain bursts is always lower than the
number of positive strain bursts. Their characteristics is a mirror image of the positive
strain bursts. Before some negative strain bursts there a significant increase of the creep
rate of the amorphous phase is observed (Figure 6.8). It is noteworthy that the macro-
scopic creep of the amorphous phase (green doted line in Figure 6.8) is not affected
through this short-term increase in the creep rate, therefore it is probably a local effect.

To ensure that the strain bursts are not an artefact of the rheometer, measurements with
a metal (silver steel wire, diameter 3 mm) and with an amorphous rigid polyvinyl chloride
(PVC) sample were carried out. Neither with the metal sample nor with the PVC sample
strain bursts could be detected.

In order to get statistically valid results for each test condition (temperature, stress) at least
80 nano-creep experiments were performed. In Figure 6.9, the results of such statistical
analysis for all experiments with 1.5 mNm at a temperature of 30 °C are plotted as a
frequency distribution.
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(a) (b)

Figure 6.7.: Different types of strain bursts.
(a) Strain burst with low post-oscillation (PE-HD, static loading 1mNm, 0.05 MPa on
the sample surface and 30 °C).
(b) Strain burst with strong post-oscillation (PE-HD, static loading 0.5 mNm, 0.025
MPa on the sample surface and 30 °C).

Figure 6.8.: Negative strain bursts with increased creep rate before the strain burst (PE-
HD, static loading 1 mNm, 0.05 MPa on the sample surface and 30 °C.
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Figure 6.9.: Frequency distribution of all torsion angle differences between 2 measuring
points, torque 1.5 mNm, temperature 30 °C. The red circles correspond to all measured
torsion angle differences (raw data) and the triangles to the separately evaluated strain
bursts.

One has to distinguish between the torsion angle differences between two measuring points
(red circles in Figure 6.9) and the actual strain bursts (red and blue triangles in Figure 6.9).
A major part of the torsion angle differences (approximately 2 · 106) are a consequence of
the continuous creep process in the amorphous phase. This torsion angle differences show
a normal distribution (blue curve in Figure 6.9) and scatter around 0 with a very small
positive average value corresponding to the average creep rate of the amorphous phase.
The unusual shape of the normal distribution curve results from the the logarithmic scaled
y-axis. The green dotted line corresponds to ± 6 times the standard deviation of the
calculated normal distribution. Values outside this limit are highly significant for another
deformation process and thus allow the proper separation of the creep deformation of the
amorphous phase. These much larger torsion angle differences can be separated into two
groups. On the one hand into the strain bursts (red and blue triangles) and into an other
part which originates from the post-oscillations after a strain burst (= range between red
and blue triangles and red circles).

The creep rate in the amorphous phase increases linearly with the loading (torque propor-
tional to stress) (Figure 6.10) and is consistent with literature values of short time creep
experiments with PE-HD at higher stresses [147].
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Figure 6.10.: Dependence of the average creep rate of the amorphous phase on loading
(torque).

6.5. Discussion

So far mechanical experiments in the micro-strain region were hardly performed on poly-
mers [148]. Reasons are that commercially available strain gauge systems do not have
the required high resolution and there are very high demands on the temperature control
during the experiment due to the large thermal expansion coefficient. One exception are
the cyclic tensile tests of Brown and Rabinowitz [113] on PE-HD with constant strain
rate. They could separate the deformation in 3 parts

• elastic strain associated with stretching of van der Waals bonds

• amorphous flow that varies as σ2 and is activated at zero stress

• dislocation motion that varies as σ3/2 and is activated at 0.18 MPa

Since the current nano-creep experiments were performed at a constant stress and not
a constant strain rate, the results are not directly comparable. But it turns out that
the amorphous flow in the nano-creep experiments is also activated with practically zero
stress. However, the stress dependence of the amorphous flow is linear (Figure 6.10).
Furthermore, strain bursts (= dislocation motion and plastic deformation in the crystalline
phase) could be identified in the nano-creep experiments already at stresses of 0.05 MPa
(Figure 6.4) which is 1/3 of the stress measured by Brown and Rabinowitz.
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The deformation takes place mainly in the amorphous phase at small loadings, since the
stiffness of the amorphous and crystalline phases above Tg is extremely different. Due to
the experimental setup, a reliable detection of any strain burst in the first 1.5 min after
after applying the loading is not possible. In this range of the experiment a relatively high
creep rate in the amorphous phase is observed and a proof of strain bursts is therefore
difficult. During these first 1.5 min locally significantly higher stresses in the interface
(rigid amorphous phase) and in the crystalline phase can be build up through molecular
entanglement in the amorphous phase and tie molecules. Therefore, when the first strain
bursts are detected, it must be assumed that the stress distribution is no longer homo-
geneous, and locally higher stresses can act in the crystalline phase. Nevertheless it is
remarkable that the plastic deformation can occur in the crystalline phase at macroscopic
stresses lower than 1 % of the yield stress.

6.5.1. Strain bursts characteristics: jump height and deformed
volume

If we consider the frequency distribution of the strain bursts, it is remarkable that the jump
height of the strain bursts (maximum deformation of the sample surface) is of the order
of the lamella thickness. In Figure 6.11, the frequency distribution of the strain bursts
is compared with the lamella thickness distribution determined from DSC measurements
(dashed red line). This lamella thickness distribution shows an average lamella thickness
of 18 nm. The frequency distribution of the evaluated strain bursts has a maximum at
a corresponding deformation angle of 0.009 mrad (equivalent to 22.5 nm deformation at
the sample surface) of the positive strain bursts and 0.007 mrad (equivalent to 17.5 nm
at the sample surface) of the negative strain bursts. Thus it seems that the majority of
strain bursts have a height in the range of the average lamella thickness. But one has to
consider that the shear strain and the absolute deformation increases with the radius. The
deformation at the inner surface of the sample is about 40 % smaller than at the outer
surface. Therefore, the deformation at the outer sample surface is an upper limit for the
actual deformation in the sample.

Since only the crystalline phase is deformed in case of a strain burst, the question arises how
large is the volume actually deformed by a single strain burst. The measured deformation
is always the total deformation of the sample. A single strain bust leads to an overall
deformation of about 20 nm on the sample surface. This corresponds to a deformation
of γ = 5.26 · 10−7 or γvM = 3.04 · 10−7. With the Burgers vector b = 0.254 nm and an
average lamella thickness λ = 18 nm (as an estimation for the path length) the apparent
mobile dislocation density ρapparentmobile for a single strain burst results to [57]

ρapparentmobile =
γvM

bλ
= 6.64 · 1010 m−2 (6.5)
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Figure 6.11.: Histogram of evaluated strain bursts, torque 1.5 mNm, temperature 30 °C.

This dislocation density is very small compared to the measured dislocation densities in
polypropylene (chapter 4 and 5). However, one must be aware that in the present measure-
ments the strain bursts are caused by dislocation avalanches which are limited to very small
sample areas (only lamellae). Therefore, the local deformation in the area where disloca-
tion avalanches occur, is substantially larger than the measured macroscopic one. Knowing
the necessary mobile dislocation density of plastic deformation, the locally deformed vol-
ume by a strain burst can be estimated. The plastic deformation of a macroscopic PE-HD
sample typically starts in the order of εy ield = 0.1 [144], so the necessary mobile dislocation
density can be estimated with equation 6.5 to ρplasticdef ormationmobile = 2.2 · 1016 m−2.

A further possibility is the estimation of the total dislocation density for plastic deformation
with the equation of Taylor [149]

τ = αGb
√
ρtotal (6.6)

ρtotal =
( τ

αGb

)2

= 3.3 · 1016 m−2 (6.7)

Here, for τ the critical resolved shear stress τcrss = 7.5 MPa for PE-HD with the preferred
(100)[001] chain slip system at room temperature [46] have been inserted. Since the
bonding in polymer crystals is highly anisotropic, the shear modulus G must be replaced
by an effective crystal shear modulus. The shear modulus for slip in chain direction will be
either c44 = 3.19 GPa or c55 = 1.62 GPa [150] depending upon whether the slip plane is
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(010) or (100). Therefore G = 1.62 GPa was chosen. α is a parameter that varies between
0.1 and 1.0 depending on the type of dislocations involved [57]. Since the nucleation of
screw dislocations is dominant in polyethylene during plastic deformation [23, 62] and a
screw dislocation pile up is unlikely, a value of 0.1 was chosen for the present estimation.

This confirms the above estimation that for the plastic deformation of PE-HD a mobile
dislocation density ρplasticdef ormationmobile = 2.2 · 1016 m−2 is necessary. However, this value is
by a factor of 10 higher than dislocation densities measured in polypropylene during plastic
deformation (chapter 5).

So the deformed volume by dislocation avalanches Vavalanches (V def ormedspesimen = 477 mm3) can
be estimated with

Vavalanches = V def ormedspesimen

ρapparentmobile

ρplasticdef ormationmobile

= 0.00144mm3 (6.8)

This corresponds to a cube with an edge length of about 113 µm.

6.5.2. Activation energy

The number of strain bursts depends on the loading and temperature. The loading de-
pendence has a pronounced maximum with a linear increase before and a linear decrease
after the maximum (Figure 6.12a). A similar dependence was already proven by extensive
nanoindentation creep experiments [91].

Regarding the temperature dependence of the strain bursts, it is interesting that the typical
behaviour of a thermally activated process (Figure 6.12 b) was only observed for very small
loadings (1 mNm, 0.05 MPa) and temperatures below 50 °C. At high temperatures and/or
high loadings (but still < 1 % of yield stress), the behaviour changes dramatically. The
number of strain burst decreases with increasing temperature.

The creep rate in the amorphous phase according to Eyring [87] is

dε

dt
= ε̇ = ε̇0e

− ∆H
kBT sinh

( νσ
RT

)
(6.9)

with ε̇0 being the constant pre-exponential factor, ∆H the potential energy barrier, T the
temperature, kB the Boltzmann constant, ν the activation volume for the molecular event,
σ the stress and R the ideal gas constant.

With the measured average creep rates in the amorphous phase (Figure 6.13a) and equa-
tion 6.9, one obtains for the creep process in the amorphous phase an activation energy
∆H = 0.31 eV and an activation volume ν = 1 nm3. Literature values range from 0.23
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(a) (b)

Figure 6.12.: Number of strain bursts depending on torque (a) and temperature (b).

eV with an activation volume ν ∼ 2 nm3 for oriented PE-HD films [151] to 0.53 eV in
experiments with small stress extrapolated to zero stress [152].

The activation energy for the generation of strain bursts was determined with a classical
Arrhenius evaluation [153]

ln(n) = ln(A)−
EA
R

1

T
(6.10)

with EA being the activation energy, n the number of strain bursts and A the pre-
exponential factor. This results in a activation energy of positive strain bursts EA = 0.59
eV (Figure 6.13b), which is twice the measured activation energy of the creep process of
the amorphous phase. In their nanoindentation creep experiments Li and Ngan found an
activation energy of 0.22 eV for the strain bursts [89]. This value is even lower than the
activation energy for creep of the amorphous phase and is therefore not realistic. Current
nanoindentation creep experiments of Zare Ghomsheh et.al. [92], show that the activation
energy for strain bursts in PE-HD is significantly higher. They found an activation energy
of 0.64 eV which confirms the present results.

6.5.3. Stress and temperature dependence of strain bursts

It has been shown that strain bursts in nano-creep experiments occur only in a relatively
small experimental window. With increasing stress, a maximum number of strain bursts
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(a) (b)

Figure 6.13.: Arrhenius evaluation of actication energy for
(a) amorphous creep, torque 1 and 2 mNm (stress 0.05 MPa/0.1 MPa on the sample
surface),
(b) strain bursts, torque 1 mNm (stress 0.05 MPa on the sample surface).

is reached followed by a strong decrease (Figure 6.13b). One possible explanation is that
the thermal activation of dislocations in the crystalline phase does not occur at all or
only at a very limited way. This would mean a strengthening of the crystalline phase or
of the interface (rigid amorphous phase) where the dislocations are generated. Such a
strengthening of the interface could be explained by the larger deformation rate of the
amorphous phase caused by the higher stress. It is more likely that the deformation in
the crystalline phase is no longer caused by only local and limited dislocation avalanches
and the deformation in the crystalline phase now occurs in a more homogeneous way
(transition from coarse to fine slip). Therefore the deformation in the crystalline phase is
no longer jerky and cannot be separated from the deformation of the amorphous phase.
This is similar to the disappearance of strain bursts in metallic single crystals, where with
increasing sample size, the jump height of the strain bursts decreases and the macroscopic
deformation becomes smoother.

It is worth mentioning that at a loading of 1 mNm (stress 0.05 MPa on the sample surface)
in the temperature range 30 - 40 °C we observe a typical Arrhenius behaviour, while at 2
mNm (stress 0.1 MPa on the sample surface) this is no longer the case (Figure 6.12b).
This is an indication that there is a change of the deformation process. I.e. the thermal
activation of the dislocations is no longer the rate controlling mechanism.

At a temperature of 50 °C with a loading of 1 mNm (stress 0.05 MPa on the sample
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surface) also a change in the behaviour of the material occures. The number of strain
bursts decreases, contrary to the Arrhenius behaviour (Figure 6.12 b). This temperature-
dependent change in the behaviour is correlated with the alpha transition in PE-HD [17,
154, 155]. From polypropylene it is known that the dislocations annihilate in the area of
the alpha transition and thus the dislocation density decreases strongly [84] which causes
a decrease of the probability of dislocation avalanches.

6.5.4. Negative strain bursts

Surprisingly negative strain bursts occur in the nano-creep experiments. Negative strain
bursts could not be observed in the nanoindentation creep experiments on PE-HD and are
unknown in metals at all. Their behaviour is equal to the positive strain bursts with the
difference that they occur less often (at least at the beginning of deformation) and only
after a certain deformation. Basically, the deformation in semi-crystalline polymer is very
inhomogeneous, since the two phases, especially above the glass transition temperature,
have an extremely different strength. This may result in a locally more deformed amorphous
phase than the crystalline one. Through entanglements and tie molecules this can lead
to locally much higher stresses, which may also be directed against the loading direction
(back stresses). This is also reflected in the strong recovery behaviour with increasing
temperature of plastically deformed polymers [20, 125]. Such a back stress can obviously
cause back deformations in the crystalline phase which manifest as negative strain bursts.

6.5.5. Line energies

With the calculations of Shadrake & Guiu for the line energy of a <001> screw dislocation
in a polyethylene crystal µb2 = 9.59 · 10−11 – 1.51 · 10−10 J/m [59] the energy to generate
a screw dislocation in a polyethylene lamella crystal with a thickness λ = 18 nm can be
estimated as (outer cut off radius R0 = λ, inner cut off radius r0 = b = 0.254 nm, neglecting
the elastic energy of the dislocation core).

E⊥ =
µb2

4π
ln

(
R0

r0

)
λ = 1.5− 2.6 eV (6.11)

Correctly, instead of the lamella thickness λ the stem length should be used and the
equation is only valid in a limited temperature range [19]. But this point is irrelevant for
an estimation of the magnitude of the line energy.

The, with equation 6.11 calculated, value for E⊥ is much higher than the activation energy
for the strain bursts (= dislocation movement) measured with nano-creep experiments.
This supports the assumption that only the dislocation mobilisation can be thermally ac-
tivated. To generate new dislocations an increased shear stress is necessary. Dislocation
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density measurements on polypropylene (chapter 4 and 5) have shown that already unde-
formed samples have high dislocation densities (∼ 1015 m−2). Therefore, at least at low
loadings, only the Peierls stress must be achieved for a plastic deformation. A significant
increase in the dislocation density in compression tests occurs only at deformations ε > 0.1
and thus only after exceeding the yield stress. In both materials polypropylene (chapter
4 and 5) and PE-HD [156] the dislocation density increases significantly with increasing
deformation.

6.5.6. Timing of strain burst after plastic pre-deformation

Another amazing observation concerns the timing of the strain bursts. In the standard
nano-creep experiments the number of strain bursts is time independent (Figure 6.5).
However, if the specimens are plastically deformed before the nano-creep experiment, a
characteristic time sequence of the strain bursts can be observed. The larger the temporal
distance from the pre-deformation, the more rarely the strain bursts occur (Figure 6.14).

Figure 6.14.: Number of aftershocks per unit time rAS as a function of time distance t
to to the main shock (= plastic pre-deformation at the begin of the creep experiment)
load 1 mNm at 35 °C.

After approximately 30 minutes, an equilibrium is obtained that corresponds to the level
without plastic pre-deformation. Thereby the time behaviour of strain bursts after plastic
pre-deformation follows Omori’s law and is independent of the applied stress. Omori’s
law [157, 158] describes the number of aftershocks depending on the time after the main
shock. Usually the modified version of Utsu [159] is used
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ars =
k(

1 + t
c

)p (6.12)

where ars is the number of aftershocks per unit time, k and c are scaling factors, t is the
time distance to the main shock and p modifies the decay rate.

For earthquakes the number of aftershocks is also independent of the magnitude of the
main shock. Interestingly, the coefficient p = 0.95 for the strain bursts is in the same range
as for standard earthquakes (typical p = 0.75 ... 1.5). It can be concluded that defects
for deformation processes from km to nm scale play a decisive role and maybe follow the
same physical laws.

6.6. Conclusions and summary

A new method for the investigation of the kinetics of dislocations in semi-crystalline poly-
mers would be introduced. By means of the novel experimental setup via a torsion loading
all the main disadvantages of nanoindentation creep experiment could be avoided. In ad-
dition, this also minimizes possible influences caused by temperature fluctuations. The
use of hollow-cylinder specimens also results in a rather constant stress distribution over
the cross section of the specimens. As a result, the activation energy for the dislocation
movement could be determined with higher reliability compared to nanoindentation creep
experiments.

By the cyclic execution of the nano-creep experiment the maximum deformation of the
sample could be limited. Thereby, a sample can pass through many cycles without ex-
periencing relevant structural changes and a specimen can be used for multiple measure-
ments. The results clearly show that the performed nano-creep cycling experiment is a
non-destructive test method.

A very surprising result was the appearance of negative strain bursts which could never
be observed in other experiments and/or materials. This clearly shows that in the semi-
crystalline polymers the interplay of two phases with very different mechanical properties
causes complex and locally fluctuating stresses during deformation. This is the prerequisite
for the formation of local forces, oppose to the macroscopic loading direction (back-
stresses), which causes the negative strain bursts. This also shows that the amorphous
phase above the glass transition temperature also affects the processes in the crystalline
phase. It must be taken into account that the nano-creep experiments have been carried
out with stresses < 1 % of yield stress, and thus the amorphous phase has not undergone
any substantial changes such as orientations.

A further phenomenon, unknown with other experiments and/or materials, are the post-
oscillations after a strain burst. In contrast to the strain burst observed in metals during
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the deformation of very small single crystals, the lamellae (= single crystals) in the semi-
crystalline polymers are surrounded via an interphase (rigid amorphous phase) by the amor-
phous phase. Since a strain burst is caused by dislocation avalanches, there are locally very
large deformations which the surrounding amorphous phase must take part. Depending on
the stiffness (viscosity) of the amorphous phase, it acts more as a damper (at low viscosity
or slow strain rate) or more as a spring (at higher viscosity or high strain rate). If there is a
large back deformation, as in the case of strong post-oscillations, the spring characteristics
prevails. In the current example (Figure 6.7), the strong post-oscillations after a strain
burst occur after relative long creep. Thus, one can assume that the amorphous phase is
locally more stretched and stiffer, which reinforces the spring characteristics. For an exact
clarification, however further specific experiments are necessary. By lowering the temper-
ature closer to the glass transition temperature, the amorphous phase could be stiffened.
This should increase the number of strain bursts with strong post-oscillations.

The total deformation of the sample surface during a single strain burst is in the order
of magnitude of the lamellar thickness. One must assume that a single strain burst does
not deform the whole sample homogeneously and the deformation is very localized. An
estimation of the necessary mobile dislocation for the plastic deformation results in a
deformed volume of approximately 113 µm3 for a single strain burst. This shows that a
strain burst is produced by the simultaneous plastic deformation of a very large number of
lamellae and thus can cause considerable larger local deformations than the macroscopic
one. This also explains why strong local back-stresses can arise, which can cause strong
post-oscillations. The temporal sequence of the post-oscillations shows that this is a strain
burst like deformation. The individual post-oscillations occur in a time interval (∼ 0.1 s)
comparable to that of the triggering strain burst.

Another unexpected result of the nano-creep experiments is that both the loading and the
temperature can change the characteristics of the deformation process in the crystalline
phase. For small loadings, a classical thermally activated process with an activation energy
of 0.59 eV could be found up to a temperature of 45 °C. For higher temperatures as well
as higher loadings (static loading > 2 mNm, σ > 0.1 MPa but still < 1 % yield stress)
the behaviour changes (Figure 6.12). Instead of the expected increase of strain bursts
with increasing temperature, the number of starin busts decreases with T (= increase
with 1/T ). This means that either a non-thermally activated process becomes dominant,
or that the deformation of the crystalline phase no longer proceeds jerkily via dislocation
avalanches but more homogeneously (transition from coarse to fine slip). As a result, the
deformations of the two phases can no longer be separated.

An additional question is, why strain bursts occur at such extreme low loadings (σ < 1
% of yield stress), since they represents the plastic deformation of the crystalline phase.
One possible cause is the very small strain rate ε̇vM. Taking the average creep rate of the
amorphous phase (Figure 6.10) with γ̇ ∼ 2 mrad/h = 5.55 · 10−7 rad/s as the macroscopic
strain rate, then follows
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ε̇vM =
γ̇√

3
= 3.2 · 10−7 s−1 (6.13)

At these extremely small strain rates, which are corresponding to very small frequencies
in mechanical spectroscopy, the relaxation processes are shifted to substantially lower
temperatures. So the α-process can be shifted to temperatures less than the ambient
temperature (Figure 6.15).

Figure 6.15.: Loss tangent of mechanical α-process in PE-LD. From [31].

The α-process in polyethylene is connected with additional translational mobility in the
crystalline phase [160]. This is equivalent to a softening of the crystalline phase and
therefore allows the plastic deformation of the lamellae to occur even at very small load-
ings.

The results suggest that at low stresses (as in nano-creep experiments) the plasticity in
the crystalline phase is mainly influenced by the mobility of dislocations because sufficient
thermally activated dislocations exist to allow localized deformations of lamella crystals
(strain bursts caused by dislocation avalanches). But for a plastic flow of macroscopic
samples (yield behaviour) the number of these thermally activated dislocations is too low
and additional dislocations must be mechanically generated. Therefore the dislocation
generation is crucial for the mechanical behaviour.
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7. Summary

At the beginning of this dissertation in 2001 the knowledge about dislocations in semi-
crystalline polymers was relatively low, since methods for the analysis of dislocations were
rarely. Although the existence of dislocations in semi-crystalline polymers is known from
single crystals for a long time, the proof in samples crystallized from the melt was not
possible at that time. Nevertheless the importance of dislocations for plastic deformation
was generally accepted. With Young’s dislocation model from 1974 it was possible to
describe the plasticity of many semi-crystalline polymers realistically and this model was
confirmed several times by experiments.

In order to improve the knowledge about dislocation in semi-crystalline polymers and to
enable to study the significance for the plasticity the dissertation pursued two main objec-
tives.

• Proof of dislocations and reliable measurement of dislocation density by X-ray diffrac-
tion.

• Investigation of the dislocation kinetics by a novel nano creep test.

7.1. Proof of dislocations by X-ray diffraction

For the proof of dislocations in semi-crystalline polymers by X-ray diffraction the MXPA,
a novel method for dislocation analysis in metals, has been combined with the modified
Williamson-Hall analysis. With the modified Williamson-Hall analysis, start values for the
MXPA could be determined and the number of fit parameters for the MXPA reduced. This
enabled the successful application of the MXPA to polypropylene for the first time (chapter
4). In a second step, the modified Williamson-Hall analysis was extended by additional
constraints to limit the degree of freedom at the determination of the start values for the
MXPA. Thus the quality of the start values for the MXPA could be improved. As a result,
the effort for a MXPA was clearly reduced and the quality and reliability of the results
could be significantly improved. By means of synchrotron radiation the dislocation density
and the crystallite size (CSD size) could be determined in an in situ experiment during
cyclic deformation (chapter 5).

Thereby it was possible to prove dislocations in melt-crystallized polypropylene and to
measure the dislocation density as a function of the deformation. It could be shown that
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in PP with increasing plastic deformation the dislocation density increases by about one
order of magnitude. Thereby the distinct increase in the dislocation density originates
from crystallographic slip processes which are accompanied by dislocation generation and
motion which confirms Youngs’s dislocation model for the description of plasticity in PP.
It has been shown that the dislocation density in undeformed polypropylene is 1015 m−2.
If the plastic deformation exceeds ε ∼ 25 %, the dislocation density increases up to one
order of magnitude. The increase at deformations far beyond the yield point (ε > εy ∼
10 %) shows that there is a sufficient number of dislocations and these have only to be
mobilized.

The dislocations annihilate during unloading and the dislocation density decreases to the
level of the undeformed sample. This clearly shows that for the determination of the
dislocation density as a function of the deformation, in situ experiments have to be carried
out. Only after a deformation εtotal > 45 % is there no longer a complete annihilation of the
newly generated dislocations. It can be assumed that during the unloading the dislocation
density decreases at least by a factor of 10, but not below the level of the undeformed
sample. Thereby the annihilation of the dislocations depends on the molecular mobility in
the amorphous and crystalline phase.

In principle, it can be summarized that in suitable semi-crystalline polymers the combina-
tion of the modified Williamson-Hall analysis with the MXPA can reliably determine the
dislocation density and the crystallite size (CSD size). The evaluation process could be
considerable shortened and the reliability of the results significantly improved. But further
optimizations regarding the automatisation of the evaluation procedure are desirable. The
evaluation procedure, developed in this dissertation, has already been successfully applied
to α-PP, γ-PP , PHB and PA.

7.2. Investigation of the dislocation kinetics by a novel
nano-creep test

For a better understanding of the processes responsible for plasticity (e.g. the generation
of dislocations and their movement), the knowledge about their kinetics is also of decisive
importance. For this purpose usually mechanical tests with strain rate jumps are carried
out. Since semi-crystalline polymers consist of two phases and the macroscopic deforma-
tion cannot be easely attributed to the individual phases. Nevertheless Li and Ngan were
able to show that at nanoindentation creep experiments on polyethylene, the deformation
in the crystalline phase occurs jerky over dislocation avalanches. This allows the spec-
ification of the macroscopic deformation to that of the amorphous phase (uniform and
smooth) and of the crystalline phase (jerky). Thus a direct observation of the crystalline
phase by mechanical experiments was possible. But these nanoindentation creep experi-
ments have some limitations (inconstant loading stress, inhomogeneous stress field, small
test volume) which can lead to unrealistic results. Therefore, a new nano-creep test based
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on torsional loading has been developed within the scope of this dissertation (chapter 6)
which avoid all these ambiguities. With the new nano-creep experiment, the stress can be
applied much more homogeneously in a larger sample volume, so that the kinetics of the
dislocation movement can be examined much more detailed as in nanoindentation creep
experiments. With this new approach a reliable value of 0.59 eV for the activation energy
for the mobilization of dislocations could be determined for the first time. In addition to the
measurement of the activation energy the following four previously unknown phenomena
could be observed.

1. Negative strain bursts.
The most surprising result was the appearance of negative strain bursts which could
never be observed in other materials. This means that considerable back-stresses
are generated in the amorphous phase, which can cause a deformation in opposite
direction to the macroscopic deformation. This shows that the amorphous phase
above the glass transition temperature Tg also affects the processes in the crystalline
phase. This is particularly noteworthy, since the macroscopic stress at the nano-creep
experiments is always lower than 1 % of the yield stress and one must assume that
the amorphous phase has not undergone any significant structural changes.

2. Post-oscillations after a strain burst.
An estimation of the necessary dislocation density for the plastic deformation results
in a volume of approximately 113 µm3 being deformed for a single strain burst. This
means that, in spite of a macroscopically very small deformation (few nm), locally
significant deformations must occur. To a similar extent these deformations must
also occur in the surrounding amorphous phase. Thereby in the amorphous phase
arise back-stresses which undo the entire deformation, and the dislocation avalanches
can run several times in different directions through the crystal. Therefore, the
strong post-oscillations can be interpreted as a sequence of positive and negative
strain bursts.

3. Strain bursts and thus plastic deformation in the crystalline phase already occur
at stresses < 1 % of yield stress.
Considering classical plasticity models for different materials, a plastic deformation
in the applied stress range should be excluded. However, polymers show a time-
temperature superposition due to the weak and temperature-dependent Van der
Waals bonds between the macromolecules. This means that at very low strain
rates (in case of the nano-creep experiments is ε̇vM = 3.2 · 10−7) the relaxation
processes can run also at significantly lower temperatures and thus the strength of
the crystalline phase is substantially reduced even at room temperature. This allows
plastic deformations in the crystalline phase at significantly lower stresses.

4. There is only a very small stress and temperature range in which the strain
bursts show Arrhenius behaviour.
At very low loadings and extremely small associated strain rates, the deformation of
the crystalline phase can be separated from that of the amorphous phase. In this

123



7. Summary

range, the strain bursts also show the expected Arrhenius behaviour. But doubling
of the loading, or a temperature rise exceeding 45 °C will change the appearance
of the strain bursts completely. The deformation of the crystalline phase occurs
no longer via dislocation avalanches but increasingly by homogeneous movement of
dislocations (transition from coarse to fine slip) and thus individual strain bursts are
more and more difficult to detect.

The results show that the plasticity in the crystalline phase at low stresses (as in nano-
creep experiments) and the yield behaviour of macroscopic samples is mainly influenced
by the mobility of dislocations because sufficient thermally activable dislocations exist to
allow the deformation of lamella nano-crystals. But for plastic flow far beyond the yield
point the number of these thermally activatable dislocations is too low and additional dis-
locations must be mechanically generated. Here, the generation of dislocation determines
the mechanical behaviour.
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With the new methods developed within the scope of this dissertation, some fundamental
questions concerning the dislocations in semi-crystalline polymers could be clarified. But
new methods often raise new questions. The investigated materials alpha polypropylene
and polyethylene are important model materials for basic research. However, other semi-
crystalline polymers or crystal modifications may show a different behaviour. Therefore
the new developed methods for the analysis of dislocation should be applied to other
semi-crystalline polymers as well.

A very interesting, hardly investigated model material is gamma polypropylene. The mor-
phology of γ-PP can be strongly influenced by the crystallization conditions [103, 104].
Also γ-PP shows no increase of dislocation density during plastic deformation [124]. The
major deformation mechanism in γ-PP is the interlamellar shear of the lamellae within the
amorphous phase [106], which is different to PE and α-PP. By first systematic investiga-
tions regarding the strength of γ-PP [139, 140], quite unexpected results were observed.
The strength strongly depends on the crystallization temperature and the crystallization
pressure. Although the crystallization at different pressures leads to a completely different
spherulite structure (Figure 2.23), it does not necessary cause different strengths (Figure
8.1a). Due to the higher pressure, an increase in strength results at higher crystalliza-
tion temperatures, but comparable strengths are obtained despite a completely different
spherulite structure. Rather, in terms of Young’s dislocation model the differences in the
strength of the γ-PP can be explained by differences in the lamellar thickness (Figure
8.1b). But this does not explain the difference in strength between alpha and gamma
polypropylene.

In principle, gamma polypropylene is comparable to polyhydroxybutyrate (PHB). PHB also
has relatively small lamellar thicknesses below 10 nm and shows a similar behaviour during
plastic deformation [80]. Like in γ-PP, there is no increase in the dislocation density during
plastic deformation. This could also mean that Young’s dislocation model is not applicable
for very small lamella thicknesses. This conclusion also follows from the consideration that
at equal crystallinity degree the thickness of the amorphous intermediate layer is reduced
by a small lamellar thickness. Thus, the fraction of the rigid amorphous phase is very high
over the entire amorphous phase. This leads to a solidification of the entire amorphous
phase and can strongly influence the macroscopic strength. This means that for small
lamellar thicknesses Young’s dislocation model has to be added to a composite model (like
[64, 88]), since it does not consider the amorphous phase which cannot be neglected even
at temperatures far over Tg.

125



8. Outlook

(a) (b)

Figure 8.1.: Gamma polypropylene.
(a) Strength dependence on crystallization pressure pc und crystallization temperature
Tc [31].
(b) Lamella thickness distribution from DSC for a sample with high (red) and low (green)
strength.

Another aspect, in this context, is the behaviour of high density polyethylene (PE-HD).
This semi-crystalline polymer shows no β relaxation (= glass transition) [17], which means
there is no pronounced glass transition in the amorphous phase. Thus the amorphous phase
should also be relatively stiff beyond Tg and considerably contribute to the macroscopic
strength. However, the strength of PE-HD shows a good agreement with Young’s dislo-
cation model [51] which suggests that the amorphous phase does not affect the strength
of semi-crystalline polymer, at least at temperatures above Tg.

On the other hand Rozanski and Galeski [161] could show that an additional stress in the
amorphous phase decreases the macroscopic yield stress. The stress required for plastic
deformation of crystals is equal to the measured yield stress plus the stress exerted by a
swollen amorphous phase. Therefore, there are still open questions about the influence of
the amorphous phase on the strength of semi-crystalline polymers.

Other interesting model materials are the terephthalates PET, PTT and PBT because
they have a sufficient number of XRD reflections to analyse the defects by means of the
MXPA. Furthermore, the rate of crystallization of PET is very small, thus the crystallinity
can be controlled over the cooling conditions.

The MXPA has proven to be a very powerful method for the analysis of defects (dislo-
cations) in semi-crystalline polymers. But their application to semi-crystalline polymers is
still difficult because of the complex crystal systems with low symmetry. Further improve-
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ments are therefore desirable. Through the calculation of the theoretical contrast factors,
Spieckermann [23] could determine dislocation types (screw or edge) and slip directions
(chain or transverse slip) by means of modified Williamson-Hall analysis. By integrat-
ing this approach into MXPA, the reliability of this method could be further increased.
In addition, the distribution of the slip systems could be measured by means of a XRD
texture measurement and thus the whole quality of the MXPA with respect to the reliabil-
ity and resolution could be remarkably enhanced. Since for semi-crystalline polymers the
lamellar thickness distribution can be measured by means of DSC, it is desirable to take
this information into account at the MXPA. This could further reduce the number of fit
parameters.

Unfortunately, the MXPA requires at least five XRD reflections. Therefore, the MXPA
is not suitable for applying it to polyethylene (Figure 2.24). A relatively new method
for defect analysis is the moment method developed by Groma [162–164], which allows
a defect analysis on single X-ray reflection. This method is based on the asymptotic
behaviour of the second and fourth order restricted moments. It can be considered as
an advancement of the variance method originally proposed by Wilson [165]. In principle,
by this method all semi-crystalline polymers can be analysed. Polt could showed that a
quantitative analysis is possible at a background-to-peak-ratio of 10−3 [54]. In high density
polyethylene, despite the high crystallinity of 80 %, the required signal quality cannot be
achieved. Thus, an absolute defect density (dislocation density) cannot be determined but
the analysis of the relative dislocation density development during the plastic deformation
and of the annihilation behaviour is possible [54, 156].

Strain bursts in semi-crystalline polymers are a recently discovered phenomenon and, apart
from this dissertation, only few nanoindentation creep experiments with polyethylene were
carried out so far [89, 91]. Although a new nano-creep experiment, introduced by this
dissertation, could be used to gain substantial new insights into strain bursts in semi-
crystalline polymers, there are still open questions. Preliminary tests on polypropylene
showed a similar behaviour as in polyethylene, it was also possible to induce strain bursts.
Thus it is likely that strain bursts are a typical phenomenon in semi-crystalline polymers at
small loadings, but further tests are necessary. An interesting approach is the calculation
of the activation energy from the creep rate combined with a frequency evaluation [166]
which could sucsessfuly applied by Zare Ghomsheh et al. [92] for nanoindentation creep
experiments. Such an evaluation procedure may be also of interest for the nano-creep
experiments.
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