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Chapter 1

Introduction

In recent years the damages caused by floods in Europe and the rest of the
world have been increasing. While some of the increased damages can be
explained with higher vulnerability it also seems that both frequency and
severity of flooding events increase across the globe. This increase can at
least to some extent be traced back to climate change.

The impact of climate change is especially worrying as any change in the
weather pattern affects all bodies of water in a larger area at the same time.
Therefore climate change increases the probability that many rivers burst
their banks simultaneously and cause significant damages in a wide region.
With this in mind the damage associated to the individual rivers cannot be
viewed as independent, which puts a limit to the extent that the risk posed
by flood damages can be diversified by insurance companies.

A sufficient level of insurance is vital for the economy and it has been
shown that with adequate insurance the impact of a catastrophic event can
be mitigated to a large extent, as provided sufficient funds are available in
the aftermath of catastrophes an increase in innovation and investment can
be observed.[20]

The predicted changes to the climate raise the question whether with
current contracts sufficient insurance will remain available to the public in
the coming years, as those changes will lead to increased insurance premia in
some regions and possibly make insurance completely unavailable in certain
areas as insurance companies withdraw from no longer profitable markets.
It is therefore important to find estimations not only for the damages caused
by the individual river beds but also for the sum of total damages in an area.
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With this motivation in mind, in this work we try to find distributions
for the total flood damages in Europe to enable us to estimate the risk posed
by river floods. For this task we utilize R-Vine-copulas.

The structure of the work will be the following. In chapter 2 we will
introduce the main theoretical concepts of this work. The chapter will not
be exhaustive and additional methods and concepts will be introduced as
they are needed. Chapter 3 will discuss the available data and the decisions
made by the author originating from it. The chapter 4 will then showcase
a small R-Vine model resulting from the data and chapter 5 will give the
forecasts for two key years, 2020 and 2085 derived with the methods of this
work.
We decided to collect additional tables in appendix A and some proofs in B.
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Chapter 2

Important concepts and
definitions

In this chapter we will present the most important concepts and methods we
apply throughout this work. The goal is to explain the used methods to the
reader and provide some insights into these topics.

2.1 Kendall’s τ

Definition 1. Concordance
Let (X, Y ) be a vector of two random variables, and let s0 = (x0, y0), s1 =
(x1, y1) be two samples drawn from (X, Y )).
s0 and s1 are called concordant if

(x0 − x1)(y0 − y1) > 0

and they are called discordant if

(x0 − x1)(y0 − y1) < 0.

Pairs which are neither are called draws.

With the help of definition 1 M.G. Kendall defined the following correla-
tion coefficient in 1938.[12].

Definition 2. Kendall’s τ
Let (X, Y ) = (xi, yi), i = 1, ..., n be a vector of n observations coming from
two random variables. τX,Y is defined as

τX,Y :=
|{concordand pairs}| − |{discordant pairs}|

|{all pairs}|
.
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In the above definition draws which occur if one of the random variables
takes the same value in two or more observations are not part of the nu-
merator but are included in the denominator, so that for n observations the
denominator in the above formula will always take the value n2−n

2
.

Kendall’s τ takes values ranging from −1 to 1. A high absolute value
of Kendall’s τ is an indicator for a high dependence in the random vari-
ables, while for independent random variables Kendall’s τ should converge
to zero if the number of observations increases to infinity. As Kendall’s τ
is non-parametric it can be applied to an empirical sample without making
assumptions about the distribution of the random variables first.

Kendall’s τ is closely related to the Bubble-Sort-Distance dBubble.
The Bubble-Sort-Distance between two orderings A,B of an variable is de-
fined as the number of switches a Bubble-Sort algorithm needs to make in
order to perform the transformation of one ordering into the other.
A Bubble-Sort algorithm goes through the observation of variable in A and
B and switches the location of the observations in B in every consecutive,
discordant pair (ai, bi), (ai+1, bi+1). After reaching the final observation in A
it starts again with the first variable until the variables in B are in the same
order as the variables in A.
This way the Bubble-Sort algorithm switches every discordant pair in (A,B)
exactly once so that, in the absence of draws, the relationship

τA,B =

(
n
2

)
− 2dBubble(A,B)(

n
2

)
holds.

The definition of the Kendall’s τ -distance dτ and our own adaptation,
which we call the information distance d̂τ , is given in the following.

Definition 3. dτ and d̂τ

dτ (X, Y ) := 1− τX,Y
d̂τ (X, Y ) := 1− |τX,Y |

dτ can take values in the interval [0, 2], d̂τ takes values in [0, 1].

It should be noted that dτ (X, Y ) are only metrics if one considers equiv-
alence classes.

d̂τ (X, Y ) := min{dτ (X, Y ), dτ (X,
←−
Y )}
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where for Y = (y1, y2, ..., yn) we define
←−
Y as

←−
Y := (yn, yn−1, ..., y1).

The proof that dτ does satisfy the four requirements of a metric is rather
straightforward and can be found in several sources, so that we decide to not
repeat it in this work.
To the authors knowledge our information distance has not been introduced
yet, therefore a proof that d̂τ does fulfil all requirements of a metric is given
in B.
We find d̂τ advantageous compared to dτ for our work, as it is only affected
by the magnitude of the correlation but not by the sign of the correlation
coefficient. This is beneficial to our work as we are mostly interested in the
dependency of our random variables, and only to lesser extend whether this
dependency increases (positive correlation) or decreases (negative correla-
tion) the total risk.

2.2 Copulas

Definition

Most definitions for the copulas in this section are taken from the book An
introduction to copulas by R.B. Nelson.[16]

Definition 4. Copula
A n-dimensional copula is a function C from [0, 1]n → [0, 1] with the proper-
ties that

• For every u ∈ In if at least one coordinate of u is zero

C(u) = 0.

• If all coordinates of u except uk are equal to one

C(u) = uk.

• For all a and b ∈ In such that ak ≤ bk k = 1, ..n

VC([a,b]) ≥ 0.

VC is the volume given by C for the n-orthotope1 that is parallel to In and
defined by the lower point a and higher point b,

VC([a,b]) :=
∑

d∈
∏n
k=1{ak,bk}

(−1)N(d)C(d), N(d) := |{k|dk = ak}|.

1The n-dimensional generalisation to the two-dimensional rectangle and the three-
dimensional cuboid
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In 1959 A. Sklar showed that every multivariate distribution function
can be expressed though the marginal distribution functions and a coupling
function, the copula.[18]

Theorem 1 (Sklar). Let H be a joint distribution function with marginal
distribution functions F and G. Then there exists a copula C such that for
all x,y

H(x, y) = C(F (x), G(y)).

C is unique if both F and G are continuous. Otherwise it is uniquely deter-
mined on the the range of the marginal distribution functions F and G.

The proof for this theorem in the case of continuous margins is rather
straightforward and is given in B. Proof for cases with non-continuous mar-
gins are more involved and can be found in the book by Nelson or papers by
Sklar.

Theorem 2. Fréchet-Hoeffing bounds
Define

• M(u, v) := min{u, v},

• W (u, v) := max(u+ v − 1, 0).

Then for every two-dimensional copula C(u, v) the following inequality holds

W (u, v) ≤ C(u, v) ≤M(u, v)

The upper Fréchet-Hoeffing bound M(u,v) describes co-monotonicity in
the random variables, the lower Fréchet-Hoeffing bound W(u,v) anti-monotonicity
In two dimensions both bounds are copulas themselves, for more than two
dimensions only the upper bound remains a copula, while the lower bound
looses the properties of a copula.

The field of copulas is rich and copula families to cover many different
dependency structures exist. However since we only have a relatively small
number of observations for each of our random variables available we mostly
restrict ourselves to one-parametric copulas in two dimensions for the pur-
poses of this work. In the following we will introduce the copula families used
throughout this work by giving their definitions and showing some examples
of random variables linked by them.

All of the following copulas are defined in the two-dimensional case that
we need, though higher dimensional versions do exist.
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Archimedian Copulas

Definition 5. Archimedian Copula
Let f(t) be a strictly decreasing, continuous and convex function that maps
the unit interval to the interval (0,inf), such that f(1)=0. Define

f−1(t) :=

{
f−1(t) 0 ≤ t ≤ f(0)

0 f(0) ≤ t ≤ inf

then
C(u, v) := f−1(f(u) + f(v))

is an Archimedian copula.

Theorem 3. If C is an Archimedian copula, then C is

• symmetric, C(u, v) = C(v, u),

• associative C(C(u, v), w) = C(u,C(v, w)).

These two properties follow directly from the definition of an Archime-
dian copula and can be easily verified.

The generator functions and admissible parameter values for the copu-
las that will be discussed in the following pages can be looked up in table A.1.

The first Archimedian copula presented is the Product copula.

Definition 6. Product copula

CProduct(u, v) = uv

The product copula is the simplest Archimedian copula and represents
the case when the two coupled distributions are independent from each other.

Clayton family

Definition 7. Clayton copula

CClayton,θ(u, v) = max([u−θ + v−θ − 1]−
1
θ , 0), θ ∈ [−1,∞) \ {0}

For θ → inf the Clayton family converges to M(u,v), for θ = −1 the
Clayton copula is identical to W and for θ → 0 the family converges to the
Product copula.
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Figure 2.1: Variables linked by different Clayton copulas with the parameters
θ = 0.5 and θ = 2.

Joe Family

Definition 8. Joe copula

CJoe,θ(u, v) = 1− [(1− u)θ + (1− v)θ − ((1− u)(1− v))θ]
1
θ θ ∈ [1,∞)

Figure 2.2: Variables linked by two different Joe copulas with parameters
θ = 2 and θ = 5.

For the Joe copula family dependence increases with the parameter and
it also converges to the upper Fréchet-Hoeffing bound M(u,v) for θ → inf.
However in contrast to the Clayton family the Joe-family does not reach the
lower bound W(u,v). For the lowest admissible parameter θ = 1 the Joe
copula becomes to the Product copula.
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Gumbel family

Definition 9. Gumbel Copula

CGumbel,θ(u, v) = exp(1− [(1− ln(u))θ + (1− ln(v))θ − 1]
1
θ ) θ ∈ [1,∞)

Figure 2.3: Variables linked by members of the Gumbel family with param-
eters θ = 2 and θ = 5.

The Gumbel family shows the similar behaviour as the Joe family, for low
parameter values it is also close to the Product copula, while for θ → inf it
converges to the upper Fréchet-Hoeffing bound.

Frank family

Definition 10. Frank Copula

CFrank,θ(u, v) = −1

θ
ln(1 +

(e−θu − 1)(e−θv − 1)

e−θ − 1
) θ ∈ (−∞,∞) \ {0}

The Frank family also reaches the upper Fréchet-Hoeffing bound for θ →
inf, however in contrast to the last two examples and similar to our first
example the Clayton family, the Frank family converges to the lower Fréchet-
Hoeffing bound when θ → − inf. For θ → 0 the Frank family converges again
to the Product copula, which exhibits no dependence in the data.

Elliptical Copulas

Since we restrict ourselves in this work to one parametric copulas we only
consider one member from the range of Elliptical copulas, the Gaussian or
Normal copula.
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Figure 2.4: Variables linked by members of the Frank family with parameters
θ = 2 and θ = 5.

Definition 11. Gaussian Copula

CGauß,ρ(u, v) = Φ2(Φ−1(u),Φ−1(v), ρu,v)

Φ2 is the cumulative distribution function of a bivariate normal distribution,
with Pearson correlation coefficient ρu,v and Φ the cumulative distribution
function of the standard normal distribution.

Figure 2.5: Variables linked by Gaussian copulas with ρ = 0.2 and ρ = 0.8.

The Gaussian family is able to reach both the lower Fréchet-Hoeffing
bound, for Φ = −1, and the upper Fréchet-Hoeffing bound for Φ = 1 while
for Φ = 0 a Gaussian copula is identical to the Product copula.
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Rotations

In order to alleviate the limitations we cause by restricting ourselves to this
small selection of all possible copulas we also include rotations for the pre-
sented copulas. This allows us to better capture negative dependencies, as so
far only three copulas are able to capture negative correlation. As a bivariate
copula is defined on the unit square and all the copulas we introduced are
symmetric with respect to the first median, only rotations by 90, 180 and 270
degrees can be considered. As all our copulas are symmetric regarding the
main diagonal these rotations correspond to the base copula being flipped
horizontally (270 degrees), vertically (90 degrees) or both (180 degrees). We
denote the density functions of the resulting copulas as C90, C180 and C270

respectively. The C180 version of a copula is often referred to as the survival
version of the underlying copula C. The formulas for C90, C180 and C270 can
be derived from the underlying C in the following ways.

C90(u, v) = v − C(v, 1− u)

C180(u, v) = u+ v − 1 + C(1− u, 1− v)

C270(u, v) = u− C(1− v, u)

2.3 Tail-dependence

We are most interested in events when many river´s water discharge are
simultaneously high and whether an extreme level in one river´s discharge
contains information about the amount of water discharged by the other
rivers in the same region.

In order to study the dependence conditional on at least one of our random
variables taking either an extremely low or an extremely high value, that is
to say the cumulative distribution function of the random variable is close
to zero or respectively to one, we use the concept of tail-dependence. In
Quantitative Risk Management: Concepts, Techniques, and Tools [6] the
upper and lower tail dependence coefficients are defined in the following way.

Definition 12. Tail-dependence
The tail-dependency of two random variables X, Y is defined as

λl = lim
q→0

P (FY (Y ) ≤ q|FX(X) ≤ q)

16



for the lower tail and

λu = lim
q→1

P (FY (Y ) > q|FX(X) > q)

for the upper tail, provided that these limits exists.

X and Y exhibit upper|lower tail-dependence or extremal dependence in
the upper|lower tail if λu|λu is different from zero. They are asymptotically
independent in the upper|lower tail if λu|λu is equal to zero.

Kendall’s tau and the two tail-dependence coefficients λl and λu for two
random variables X, Y can be expressed in terms of the copula C(u, v) =
C(F (x), G(y)) linking the marginal distributions F and G of the random
variables using the formulas below.

Theorem 4.

τ = 4

∫∫
[0,1]2

C(u, v)dC (u, v)− 1

λl = lim
u→0

C(u, u)

u

λu = lim
u→1

1− 2u+ C(u, u)

1− u

The values for the Kendall’s τ , λl and λu of the copulas used in this work
are given in table A.2.

2.4 Pair-Copula-Construction, and Vines

Even though for most of the presented copulas higher dimensional versions
do exist, we restricted all our definitions to the two-dimensional case so far.

Our reason for this restriction to the two-dimensional case is that even
though copulas do present a powerful tool to model the dependency between
random variables and Sklar´s theorem guaranties the existence of a copula
linking the marginal distributions for an arbitrary number of dimensions, the
formula and parameters for this copula is in most cases impossible to esti-
mate from empirical data.
This is especially true when different subsets of the random variables exhibit
different types and strength of dependency, like some subsets exhibiting up-
per tail dependence while other subsets show lower tail dependence.
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To circumvent these drawbacks of copulas we use pair-copula-construction
as it is presented by Bedford .[3] The pair-copula-construction provides a way
to calculate the joint density function of any number of random variables by
first factorizing the density into a product of conditional densities for the
random variables

f(x1, ...xn) = f1(x1) ∗ f2|1(x2|x1) ∗ ... ∗ fn|1,2,...,n−1(xn|x1, x2, ...xn−1).

The conditional densities appearing in the equation above are calculated
in the following way.

f2|1(x2|x1) = c1,2(F1(x1), F2(x2))f2(x2)

f3|1,2(x3|x1, x2) =
f2,3|1(x2, x3|x1)

f2|1(x2|x1)

=
c23|1(F2|1(x2|x1), F3|1(x3|x1))f2|1(x2|x1)f3|1(x3|x1)

f2|1(x2|x1)

= c23|1(F2|1(x2|x1), F3|1(x3|x1))f3|1(x3|x1)

= c23|1(F2|1(x2|x1), F3|1(x3|x1))c1,3(F1(x1), F3(x3))f3(x3)

...

In this equations a small letter c stand for the density function of a copula
C and is defined as

c(u, v) :=
∂C(u, v)

∂u∂v
.

The conditional cumulative distribution functions Fx|v necessary for the
factorisation in the pair-copula-construction can be calculated as the deriva-
tive of the distribution function of a copula C . Joe.[10]

Fxi|v(xi|v) =
∂Cxi,xj |v−j

(F (xi|v−j), F (xj|v−j))
∂F (xj|v−j)

,

where v−j is the vector v without the jth element. If v only contained one
element the conditioning set v−j is empty so that the unconditioned cumu-
lative distribution function F (xi) can be used in the above formula to derive
the conditional distribution function.

With the help of the pair-copula-construction the joint distribution of a
high number of random variables can be derived. The pair-copula-construction
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by itself however does not make a suggestion in which order the joint density
should be factorized to achieve a good fitting model for a given dataset.
As estimation errors are unavoidable when working with empirical data and
affect all future estimations that are conditioned on the copula fitted early it
is reasonable to use the most informative, in the meaning that they showcase
a high absolute value of correlation, pairs of variables in the dataset as early
as possible in order to avoid loosing information due to estimation errors.

One way to determine the order in which copulas should be fitted to
pairs of variables in the dataset is given by an R(regular)-vine. An R-vine is a
sequence of nested trees fulfilling the requirements in the following definition.

Definition 13. R-Vine
A sequence of trees T1 ,T2 , ...Tn is called a regular vine if it satisfies

• Edges(Ti) = Nodes(Ti+1 ) 1 ≤ i ≤ n− 1.

• Proximity condition If two nodes in Ti+1 are connected by an edge,
the corresponding edges in Ti must share a common node.

Definition 14. Constraint -,Conditioning - and Conditioned set
The edges of a R-Vine are defined by the three following sets.

• The constraint set of an edge e, e = (vi, vj) in tree Ti is the union of
the constraint sets of the edges in Ti−1 that correspond to the endpoints
of the edge e in Ti . The constraint sets for edges in T1 consist of the
two nodes at the ends of the edge.

• The conditioning De set of an edge is the intersection of the constraint
sets of it´s two nodes.

• The conditioned set Ce = (j(e), k(e)) of an edge is the symmetric dif-
ference of the constraint sets of it´s two nodes.

Following this definition the constraint set of an edge can be written as
(Ce|De)

R-Vines structures are not unique, the number of potential R-Vines rises
extremely fast with the number of variables in the data set. Morales-Nápoles
show that the number of possible R-Vines structures for n variables is n! ∗
2
n2−5n+4

2 .[15]

From the Proximity condition in definition 13 follows that every possible
pair of variables occurs exactly once as the conditioned set of an edge in an
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R-Vine. Because of this the R-Vine can be used as structure for the pair-
copula-construction.
With the notation of the last definition the pair-copula-construction of the
density for n random variables f1,2,...n connected by an R-Vine structure can
be written as

f12...n = f1f2...fn

n−1∏
i=1

∏
e∈Ei

c(j(e),k(e)|D(e))(F(j(e)|D(e)), F(k(e)|D(e)))

In this formula Ei denotes the set of edges in tree Ti we leave out the ar-
guments for the density and distribution functions in the PCC , as they are
defined by the same subscript as their respective function.

In the following sections we will give examples for two special cases of R-
Vines and a small example for an R-Vine in order to introduce some notation,
which is helpful to effectively handle R-Vine structures.

C-Vines and D-Vines

Two special cases for R-Vines are the C-Vine and the D-vine.

Definition 15. C-Vines and D-Vines

• A R-Vine with exactly two leaves in the first tree T1 is called a D-Vine.

• A R-Vine for which every tree Ti i = 1, ...n contains exactly one node
of degree n-i is called a C-Vine.

The main feature of an D-Vine is that once the initial tree is selected the
shape of the remaining trees is already determined by the proximity condi-
tion.
In an C-Vine every level will add the same variable to the conditioning sets
of all edges in the next tree. As all edges in a tree share the central node
in each tree of the C-Vine, all remaining nodes are always available for the
central node when selecting the next tree.

In figure 2.6 we give a graphical example for both an C-Vine and an D-
Vine, both for five random variables. The arrows in 2.6 represent the way
edges of one tree turn to nodes of the next tree. We choose not to include
all arrows for the C-Vine, as we believe that this would make the image less
clear.
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The C-Vine in our example also makes it clear that while the proximity
condition is necessary for an R-Vine it is not mandatory that two edges
sharing a node in one tree are directly connected by an edge in the consecutive
tree.

Figure 2.6: Both an D-Vine (left) and C-Vine (right) for five variables.

Example for an R-Vine

Up to this point we always presented an R-Vine structure by a graphical
representation of it´s trees. This can become both quite demanding in space
and incomprehensible to a reader as the number of variables and with it the
size and complexity of the trees increases.
As the trees in the R-Vine are fully specified by the constraint sets of their
edges a more economic method to give the structure of an Vine is the defini-
tion of an R-Vine array by J.F. Dissmann [14]. With this method the whole
structure of the trees can be presented as a triangular array.

To give an example the R-Vine given by figure 2.7 can be represented by
the array 

6
1 3
4 1 1
5 4 4 2
2 5 5 4 5
3 2 2 5 4 4


.
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Figure 2.7: An R-Vine with 6 nodes

In this array for every tree Ti the conditioned set of it’s edges can be
found by looking at the diagonal elements and the (n + 1 − i)th element in
the same column. The conditioning sets associated to the edges with these
conditioned sets is given by the elements in the respective columns below the
(n+1−i)th row. We highlight some examples for this with the three coloured
edges and nodes in figure 2.7 and the correspondingly coloured elements in
the array above.
It should be noted that this representation is not unique, for every R-Vine
structure with n initial nodes there are 2n different arrays describing the
same tree structure of the R-Vine. Another example for the R-Vine in image
2.7 can be found in the appendix under A.3.

In the same fashion the copulas fitted to the edges and their parameters
con be represented as diagonal arrays of size n. This way the whole R-Vine is
fully specified by three arrays, the R-Vine array, giving the structure for the
trees in the vine, the copula array, assigning each edge of the trees a copula,
and the parameter array, containing the parameters of the used copulas.

For the R-Vine in our example the joint density function would be

f123456 =f1 ∗ f2 ∗ f3 ∗ f4 ∗ f5 ∗ f6 ∗ c1,2(F1, F2) ∗ c2,5(F2, F5) ∗ c2,3(F2, F3) ∗ c3,6(F3, F6)∗
c4,5(F4, F5) ∗ c1,5|2(F1|2, F5|2) ∗ c2,4|5(F2|5, F4|5) ∗ c2,6|3(F2|3, F4|3) ∗ c3,5|2(F3|2, F5|2)∗
c1,4|25(F1|25, F4|25) ∗ c3,4|25(F3|25, F4|25) ∗ c5,6|23(F5|23, F6|23) ∗ c1,3|245(F1|245, F3|245)∗
c4,6|235(F4|235, F6|235) ∗ c1,6|2345(F1|2345, F6|2345).
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2.5 Truncation

The example in the last section demonstrates that even for a low number
of variables the joint density can already take quite a complicated form and
require the estimation of many parameters. As it is unavoidable that esti-
mation errors are made when working with real data and the copulas in the
later trees can only be estimated conditionally on the copulas in the first
trees any early estimation error affects the fitting of the future copulas.

For this reason it is favourable to have the strongest dependence in the
first few trees. If most correlation is covered by the first few trees, it is
often possible to ignore any remaining small correlations in the later trees
and allocate the Product copula to the edges in these higher indexed trees
instead of attempting to fit another copula. This procedure is called trun-
cating the R-Vine. A truncation significantly simplifies the distribution of
the R-Vine copula and greatly reduces the number of parameters needing to
be estimated.

There are several ways to decide which level of truncation is optimal given
a data set. In the following we will discuss three options, two methods based
on the Vuong-test and one option based on Bayesian statistics using directed,
acyclic graphs.

Vuong-test

The Vuong-test was first introduced by Vuong [19]. In this work we will use
a special case given by Brechmann [1].

Definition 16. Vuong-test
Let RV1 and RV2 be two different R-Vine models given by Θ1,Θ2, where Θ
contains the tree structure, the fitted copulas and their parameters. Let the
density functions of RV1 and RV2 be rv1 and rv2. Furthermore let the dataset
consist of vectors of observations oi = (v1,i, v2,i, ...vn,i) of the random vari-
ables.
Define di := ln(rv1(oi|Θ1)) − ln(rv2(oi|Θ2)) as the difference in the log-
likelihood of the observation given Θ1,Θ2.

Under the null hypothesis that both models are equally close to the true
distribution the expected value of d is zero and the test statistic

v :=

∑n
i=1 di

n
√∑n

i=1(di − d̄)2
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should follow a standard normal distribution.

The Vuong-test compares two not necessarily nested models and deter-
mines if both are equally close to the true, unknown distribution of the data
using the log-likelihood of the two models.

An R-Vine usually has many parameters that need to be estimated, in or-
der to prevent over-fitting it is recommended to use some form of punishment
term for the number of parameters in the model on the log-likelihood, analo-
gous to the punishing terms for the Akaike(AIC)- or Schwarz(BIC)-criterion
in model selection.

Even though the Vuong-test does not require the tested models to be
nested, in this work we only apply the test to nested models. In order to de-
termine appropriate truncation levels we use the Vuong-test in two different
ways.

For the first method we first build an R-Vine truncated at level one. For
this we simply set the copulas for the edges in all but the first tree to the
Product copula. Because we consider all pairs of variables not occurring in
the first tree independent the structure of the following trees is not important
and we can halt the algorithm for determining the R-Vine. This R-Vine is
tested with the Vuong-test against an R-Vine truncated at level two.
If the larger R-Vine is significantly better we dismiss the smaller R-Vine and
build an R-Vine truncated at the next higher level.
We continue until the larger R-Vine is no longer a better fit. Once this hap-
pens we say that the truncation level of the smaller R-Vine is the optimal
truncation level.

This method is computationally relatively efficient as we do not need to
estimate the full R-Vine and use the Vuong-test for relatively small R-Vines.
A drawback on the other hand is that since the proximity condition limits
the possible pairs of variables considered in each tree it might not be always
possible to use the available information in the dataset in an optimal way
because variable pairs with high correlation might not be available to be im-
mediately used in the current tree and can only be used in later trees. In
such cases this method can terminate early so that the R-Vine is truncated
at a too low level and significant information can be lost.

The second method to determine an optimal truncation level based on
the Vuong-test compares the truncated models to a fully determined R-Vine.
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First the full R-Vine is estimated from the data. Then we set the copula as-
sociated to the edge in the last tree to the Product copula and test this,
truncated at level n-1, model against the full model. If it is not significantly
worse we set the copulas in the second to last tree also to the Product copula
and again test against the full, not truncated R-Vine.
We continue until the we arrive at a model that is significantly worse com-
pared to the full model, and say that the optimal truncation level is the last
truncation level that was not worse than the full model.

The benefit of this method is that it will not result in a too low truncation
level and waste information. On the other hand for this method not only
the full R-Vine must be fitted first which can become quite computationally
expensive for larger datasets, but also the Vuong-test will be more involved
as the tested models are far more complex compared to the first method and
this increases the required processing power.

As both models do not scale well with the number of parameters in the
dataset and the Vuong test requires relatively many observations to be con-
clusive, in the next chapter we discuss a third way to determine an appro-
priate truncation level that is not based on the Vuong-test.

Directed Acyclic Graphs

Figure 2.8: A directed, acyclic graph estimated from a subset of river-basins

This approach for finding an appropriate truncation level for the R-Vine
structure utilises Bayesian networks. A Bayesian network represents the
conditional dependencies in the given data in the form of a directed, acyclic
graph in such a way that the Markov property holds. The Markov property
describes that a node only depends on it´s parents and is conditionally on
the parents independent of all it´s other ancestors.
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C. Czado discusses the similarities of directed, acyclic graphs and trun-
cated R-Vines .[4] Following the argumentation in this paper we try a method
to establish an appropriate truncation level for a R-Vine that does not re-
quire the estimation of the R-Vine first.

Firstly we use an Tabu greedy search algorithm provided in the R-package
bnlearn to try to find a Bayesian network representing the dependency struc-
ture for our data. We use the Tabu algorithm without any restrictions re-
garding the maximal number of parents. Then we search in the resulting
directed, acyclic graph for the node with the highest number of parents and
use this number as the truncation level for our R-Vine. The figure 2.8 gives
an example for a dataset consisting of eleven variables. In it the node for
variable ”8” has the highest amount of parents, (”1”,”3”,”4”,”5”,”6”,”10”).

2.6 Algorithms to estimate R-Vines

Copula selection

There are several possible ways to fit a copula to a pair of random variables.

The first method we consider is the maximum-likelihood method. For this
method for every copula family that is considered the parameters maximising
the likelihood of observing the relationship in the given data is calculated,
and the copula with the highest maximum likelihood is selected to represent
the dependency between the variables.

A second possible method to estimate copulas with one parameter utilises
Kendall´s τ and tries to fit and select the copulas according to the empirical
correlation in the given random variables.

Both methods can be applied for selecting among the copulas we con-
sider in this work, however if one expands the range of considered copulas
to copulas exhibiting different tail-dependence parameters 0 6= λu 6= λl 6= 0,
which require at least two parameters, the method based on Kendall´s τ is
no longer viable.

For this reason we will use the maximum-likelihood method for the re-
mainder of the work to select the copulas for our R-Vines.
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In addition we perform a test for independence before we attempt to fit a
copula to an edge of a tree. We do this both to simplify our R-Vine-copulas
and to avoid estimation errors as the selection from our copula families is es-
pecially hard when the variables are close to independent because members
of all our families can be arbitrarily close to the product copula.

In the following we present three different approaches for the estimation
of R-Vine models. The first two methods that will be showcased work well
together with our presented methods of truncation and our data, the third
method by Kurowicka works somewhat different and is better suited for other
applications.

Goodness of fit-method

This method is described in a paper by C. Czado. [9]
This method aims at generating the best fitting trees in each step in order to
minimize estimation errors when deciding about the later trees and decides
which edges should belong to the individual trees accordingly.

1. Start with the complete graph with
(
n
2

)
edges,

2. Fit a copula Ci,j to every edge (vi, vj) of the graph,

3. Calculate the Akaike Information Criterion AIC for all copulas and use
-AIC as the weight for the corresponding edges,

4. Apply a Maximum-Spanning-Tree algorithm to the graph,

5. Use the edges of the resulting tree as nodes for a new complete graph,

6. Delete all edges in the new graph which do not fulfil the Proximity
condition from definition 13,

7. Use the fitted copulas to transform the variables vi into vi|j to account
for correlation explained by the copulas Ci,j,

8. Continue from step 2 onward until the full R-Vine is specified.

The Akaike Information Criterion in the above algorithm can be replaced by
other goodness-of-fit measures like the log-likelihood.

This method cares less about the correlation in the data-sample compared
to the following algorithms, it is well suited in situations when there is little
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information about possible causes for correlation in the data available. As
this algorithm fits the copulas before it decides on the tree structure it can
require a lot of computational power to calculate copulas that are dismissed
in the next step of the algorithm.

Sequential method

This algorithm was introduced by Dissmann. [14] The sequential method
cares less about generating the best fitting tree in each step but rather tries
to find the R-Vines which capture the highest correlation between variables
in the early trees. It is recommended to use Kendall’s τ as a measure for the
correlation between the random variables.

• Start with the complete graph with
(
n
2

)
edges,

• Calculate Kendall’s τ for each edge and use the absolute value of it as
the weight for the corresponding edge,

• Apply a Maximum-Spanning-Tree algorithm to the graph,

• Fit a copula Ci,j to every edge (vi, vj) of the resulting tree,

• Use the edges of the resulting tree as nodes for a new complete graph,

• Delete all edges in the new graph which do not fulfil the the Proximity
condition from definition 13,

• Use the fitted copulas to transform the variables vi into vi|j to account
for correlation already explained by the copulas Ci,j,

• Continue from step 2 onward until the full R-Vine is specified.

The algorithm can be adjusted to use a different weight function, like
different measures of correlation or predetermined connections (in regard to
our topic this can be natural river connections) when selecting the tree.

This algorithm is very similar to the first algorithm we presented, the
main difference is that the copulas are fitted before the selection of the trees.
However this algorithm is more efficient compared to the last presented al-
gorithm as it avoids to calculate unnecessary copulas in each step and only
fits those that will remain in the model.
Together with the flexibility in the weight function this makes this algorithm
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the standard algorithm when fitting R-Vines and we will use it for the re-
mainder of this work.

The first two algorithm we presented are the same in the respect that
one starts with the first tree of the R-Vine and works forwards until the
full R-Vine is specified and both decide both the shape of the trees and the
copulas for the edges of the tree in the same round of the algorithm. In the
next section we will shortly present an algorithm that differs from them in
both this regards.

Kurowicka‘s algorithm

This algorithm was proposed by Kurowicka [13]. Unlike the previous two
algorithms presented this algorithm starts with the solitary node of the last
tree Tn and works it’s way back to the first tree T1 while always choosing
edges with the least possible partial correlation so that the first trees.
In order to ensure that the result will be an R-Vine, Kurowicka first intro-
duces the following notation.

For an edge in the form e = (x, y|Ae) with conditioned set {x, y} and
conditioning set Ae we define Bx := {x} ∪ Ae and By := {y} ∪ Ae.

Using this notation, the following conditions ensure that the at the end
of the algorithm an R-vine will be specified.

• Condition 1 If in tree Tj there are an x and y such that Bx = By and
x 6= y then there must me a node in tree Tj−1 with the conditioned set
{x, y}.

• Condition 2 For all Bi1 , ...Bik such that |Bip4Biq | = 2

Bip = {ip, s|Aip \ {s}} ∨Bip = {ip, t|Aip \ {t}}, s, t ∈ Aip

4 denotes the symmetric difference, the union without the intersection,
of two sets. A4B := (A ∪B) \ (A ∩B).

With these two conditions the Algorithm by Kurowicka works the follow-
ing way.

1. Choose two variables x, y ∈ 1, 2, ...n = I as conditioned set for the sole
edge in Tn−1, choose partners p(x), p(y) for x, y in I \ {x, y} to get the
two edges (x, p(x)|I \ {x, y, p(x)}) and (y, p(y)|I \ {x, y, p(y)}) of Tn−2,

2. Find the sets Bi for all edges of the last tree Tj,
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3. Remove sets for which ip = iq for p 6= q,

4. Apply Condition 1,

5. Choose partners for the variables satisfying Condition 2 for the tree
Tj−1 ,

6. Go back to step 2 until the R-Vine tree structure is fully specified.

7. Fit copulas to the trees.

This algorithm provides an alternative to the previous forward working
algorithms. As argument for the choice amongst available partners in step
5, Kurowicka suggest the partial correlation between the variables.

This makes this algorithm especially suited when working with elliptical
copulas, but unsuited for our selection of copulas. It is also not an ideal
algorithm when one wants to study the dependence for extreme events as
the only elliptical copula that we consider for this work does not exhibit tail-
dependence as can be seen in table A.2.
We can observe again that the restrictions of the R-Vine structure might
prevent the algorithm from finding the R-Vine-structure that is optimal for
truncation.
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Chapter 3

Data

In this section we will discuss the data that we use to estimate the depen-
dency structure, as well as the data we use for our forecasts.

The main source of our data is the Joint Research Centre of the European
Union. Our data consist of two separate parts, historic data for the peak
water discharges in European rivers and estimations of future economic losses
in loss-areas associated to these rivers.
In the following two sections both types of data will be described.

3.1 Historic Data for the water discharge

We have monthly data for both the maximal and the median water discharge
for 776 riverbeds across Europe available for the estimation of our models.
The observation period for these water discharges ranges from the year 1990
until the year 2011.
In addition to the data on the water discharge in the river beds we also
have the geographic locations of the rivers and data on natural connections
between the rivers available.

The figure 3.1 gives a graphical representation of the the river basins we
use as the basis for this work.
Because in this work we want to analyse dependency under extreme events,
it seems reasonable to us to use the data for the peak instead of the median
water discharge to estimate our R-Vines.

As we have relatively few observations for each river basin available we
decide for this work to forgo controlling for seasonal effects, as this would re-
quire us to sacrifice additional twelve observations for each random variable.
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Figure 3.1: River-basins are represented by the blue dots, a connection be-
tween two rivers is given by a red line.

However we want to note that we verified that controlling for seasonality
does not greatly impact the results presented in this work and could be eas-
ily implemented without invalidating any of our presented results if enough
data becomes available.

Our first step is to verify whether there is significant correlation in the
river basins´ water discharges.
For this we calculate a correlation coefficient, throughout this work we will
use Kendall´s τ as standard, for each of the possible

(
776
2

)
= 300700 pairs of

variables.
As can be seen in the image 3.2 even though most pairs are little correlated

or even uncorrelated, there are many highly correlated river beds in the data.

This suggests that we can separate our variables so that rivers in the
resulting smaller sets exhibit above average correlation with other members
of their own set, while rivers belonging to different sets are uncorrelated from
each other.
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Figure 3.2: A histogram of the correlation found in the JRC data

Clustering

In order to find these smaller, highly correlated subgroups in the data set,
we apply a hierarchical clustering algorithm.
For a hierarchical clustering initially each random variable is considered a
separate cluster. The algorithm then merges the two clusters with the small-
est distance between them in each step until the desired number of clusters
is reached.
We tried several different metrics for the initial distance function and also
various distinct methods to update the distance between newly merged and
old clusters and found that a combination of the information distance, as
we defined it in chapter 2, and updating our distances analogous to Ward´s
method during the algorithm gives the most satisfying results.

Definition 17. Ward’s method
Let Ci, Cj, Ck be three clusters with cluster-sizes ni, nj, nk and let the dis-
tance between two clusters Ci and Cj be denoted by the function di,j. Define
Cl := Ci∪Cj. Then Ward´s method written in the Lance-Williams recursive
formula [21] is

d(Cl, Ck) =
ni + nk
nl + nk

d(Ci, Ck) +
nj + nk
nl + nk

d(Cj, Ck)−
nk

nl + nk
d(Ci, Cj).

In the original paper [11] Ward merges clusters such that the sum of the
variances of the clusters is minimal. This corresponds to the recursive for-
mula with the initial distance defined as d(X, Y ) = ||X − Y ||2. Because of
this it is also known as Ward´s minimum variance method.

For deciding on the optimal number of clusters we looked at several dif-
ferent possible criteria like the Dunn index [5] or the Calinski and Harabasz

33



criterion [8]. We find that sixteen clusters provide a reasonable trade-off be-
tween separating our data in easier to manage subgroups and keeping most
correlation between the individual river beds in the data.

Figure 3.3: The clustering for Europe

The results of this clustering approach can be seen in figure 3.3 and ta-
ble A.4. We feel it is important to note that the clustering algorithm only
received data for the water discharge but no geographic information. The
fact that all clusters are geographically concentrated and that there is little
overlap between clusters confirms the assumption of climate simultaneously
influencing the behaviour of river beds in larger areas.
The size of our individual clusters is given in table 3.1.

Cluster ID 1 2 3 4 5 6 7 8

Number of basins 89 11 51 37 37 41 43 85

Cluster ID 9 10 11 12 13 14 15 16

Number of basins 65 43 26 70 33 17 52 76

Table 3.1: An overview of the clusters

In the following we will treat these sixteen clusters as independent from
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each other to simplify further calculations. This will lead to a lower forecast
for the total damages in Europe since there is still some positive correlation
between river beds in different clusters left, this is especially true for rivers
close to the borders between clusters.

3.2 Provided Forecasts

As forecast for future losses we use data provided by the LISFLOOD model of
the European Union’s Joint Research Centre (JRC). The LISFLOOD model
is a hydrological rainfall and water run-off model, capable of simulating the
hydrological processes that occur in a catchment .[17] With the help of the
LISFLOOD model and various future scenarios the JRC estimated flood
damages in 1433 different loss areas. These loss areas can each be connected
to at least one of the rivers we use for the estimation of the R-Vines.
The estimation by the JRC are provided in the form of yearly return periods
ranging from 1995 to 2085.

Definition 18. Return period
A return period RPt for an event of magnitude k is the expected time, usually
in years, between two occurrences of the event. It is related to a quantile qα
from the distribution function of possible magnitudes within a year by

α = 1− 1

RPt
.

The range of provided return periods and the corresponding quantiles can
be seen in table 3.2.

RP 2 5 10 20 50 100 250
α .5 .8 .9 .95 .98 .99 .996

RP 500 750 1000 2500 5000 7500 10000

α .998 .9986̇ .999 .9996 .9998 .99986̇ .9999

Table 3.2: Return Periods and corresponding quantiles

Actual losses larger than zero are provided for 914 of the 1433 areas.
The lack of forecasts for this many loss areas causes that several of our 776
river basins cannot be linked to at least one loss-area with positive estimated
losses. We nonetheless decide to keep these river basins in our R-Vine mod-
els, because we are of the opinion that even though their presence does not
directly affect the total predicted losses in an cluster, they are still valuable
in regards to the estimation of dependency structure between the river beds.
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Additionally this way the predictions for the total losses can be easily up-
dated if new forecasts for losses associated to these rivers are provided.

The forecast coming from the JRC is generated by first simulating the
losses for some years and calculating key quantiles, or return periods, from
these simulations. They use a thirty year timespan between the years in their
simulation. The quantiles for the remaining years are subsequently estimated
through interpolation.

This generates two different problems. The larger concern are cases of
missing data, an example for an loss-area with two forecasts initially missing
is loss-area 36 in figure 3.4. As can be seen in this image the missing val-
ues do not only generate a problem for the directly affected year but spread
through the periods before and after.
A second source for errors is that the interpolating polynomials do not neces-
sarily show the same monotonicity as the simulated points. An example for
this can be seen by loss-area 283 in figure 3.4, the 0.99 quantile represented
by the violet line intersects and for some years exceeds the 0.996 quantile
represented by the dashed black line.

As both this types of errors are rare in the provided forecasts, only six
loss areas are affected by one of them, we decide not to remove the affected
loss areas and instead attempt to correct them. We tried to alter the data as
little as possible in doing so. For the first type of error we replace the poly-
nomial interpolation during the affected years by a linear combination of the
neighbouring forecasts. In the cases when the interpolation of an quantile by
the JRC gives a result which is contradicting the axioms of probability we try
to estimate the wrong quantile by the next higher and next lower quantiles.

The corrections for the two examples we provided is given in image 3.5.

The JRC provides fourteen different quantiles from the distribution func-
tions of damages in each loss-area for the years 1995-2085. For our work
we need the full distribution of the damages. In order to find the quantile
function we decide to interpolate the given quantiles with cubic splines. It is
important to pay attention to the fact that the result of an unrestricted in-
terpolation is not necessarily monotone, even if the initial points are strictly
monotonic. To avoid non-monotone results we apply the method described
by Fritsch and Carlson [2] to restrict our interpolating polynomials suffi-
ciently to ensure the required monotonicity.
Figure 3.6 gives an example of a cumulative distribution function derived
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Figure 3.4: Two examples for errors in the forecast

Figure 3.5: Our corrections for our two examples

this way, for both the whole range of damages and the last decile.

Figure 3.6: The cdf for the damages predicted for loss area 8 in the year 2050

In addition to the data from the JRC we also use protection standards
for the individual loss areas provided by Jongman et al. [7]. The protection
standards are given in the form of return periods and give the severity upon
which damages caused by an event are negated through protective measures.
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Chapter 4

Vines

Out of the three algorithms for the estimation of R-Vines we presented in
chapter 2 we decided to use Dissmann´s sequential algorithm as our main
interest lies in the dependency exhibited in the trees with the lower indices
and Dissmann´s algorithm allows us to prioritize this while also being the
most efficient algorithm for our data.
We use the absolute value of Kendall´s τ as weight for the edges for the
selection of the trees in the algorithm.

The first tree for each cluster following Dissmann´s sequential algorithm
can be seen in image 4.1. It is noticeable that most edges are short so that
mostly pairs of geographical close rivers appear as edges in the first trees of
the R-Vines, which is in line with initial assumptions.

In the next section we take a closer look at one example from our fitted
R-Vines.

38



Figure 4.1: The first tree for each cluster

4.1 Cluster 2-Iceland

Figure 4.2: Iceland or Cluster 2 in our clustering

In order to give an example for the fitted R-Vines in this chapter we
present an R-Vine for one cluster in greater detail. As most clusters are too
big to serve as an easily understood example we decide to use our smallest
cluster, which covers Iceland and is number two in our list of clusters, for
this example.
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A secondary reason to choose this cluster is that it is well disconnected from
the other clusters. This can be easily verified by investigating the correlation
of river beds in this cluster and the rivers in the remaining fifteen clusters.
Figure 4.3 gives a histogram of this correlation. Most remaining correlations
are in the range [-0.15,0.05] which allows to assume independence between
the two sets of river basins .

Figure 4.3: A histogram of the pairwise Kendall’s τ for the rivers of Iceland
and the rest of Europe. We calculated Kendall´s τ for all possible 8415 =
11 ∗ 765 combinations.

As this cluster two only contains eleven individual river beds, it is a ideal
candidate to showcase the structure of an R-Vine and our three methods of
truncation.

The first tree of this cluster is given in figure 4.2. In this image we also
give our labelling of the individual rivers that we will use for the remainder
of this example.

Using the notation we presented in chapter 2 the trees of this R-Vine are
given by the array in table 4.1.

The copula families fitted to the edges of the trees given by 4.1 are given
by the array 4.2 and the corresponding parameters for the copulas by the
array 4.3.
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6
3 11
1 3 8
7 1 3 5
9 7 1 3 1
2 9 7 1 3 3
10 2 9 7 4 4 7
4 10 2 9 10 7 4 9
11 4 10 2 2 10 10 4 2
8 5 4 10 9 2 2 10 4 4
5 8 5 4 7 9 9 2 10 10 10


Table 4.1: The R-Vine array for cluster 2



. . . . . . . . . . .
P . . . . . . . . . .
P Ga . . . . . . . . .
P P C270 . . . . . . . .

Gu90 P F P . . . . . . .
P P P C180 P . . . . . .

Ga Gu180 Gu90 Gu180 Ga P . . . . .
P P P F P F P . . . .
C270 C90 Gu Gu P Gu F Ga . . .

C P Gu270 Gu180 J F Gu90 Gu90 P . .
Gu Gu Gu Gu Gu Gu Gu Gu Gu Gu .


Table 4.2: The fitted copulas for cluster 2, The letter P stand for the in-
dependence respectively the Product copula, Ga for a Normal or Gaussian
copula, C for the Clayton copula, Gu for the Gumbel copula, F for the Frank
copula and J for the Joe copula. A superscript, if present, denotes by how
many degrees the copula is rotated

4.2 Truncation

The directed, acyclic graph for this cluster is already presented in chapter 2
as image 2.8.
The results of using the Tabu-algorithm to find the optimal truncation levels
for the remaining clusters in our work are given by table 4.4.
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. . . . . . . . . . .
0.0000 . . . . . . . . . .
0.0000 -0.24286 . . . . . . . . .
0.0000 0.00000 -0.21597 . . . . . . . .
-1.2386 0.00000 1.20045 0.00000 . . . . . . .
0.0000 0.00000 0.00000 0.37722 0.00000 . . . . . .
0.2166 1.24362 -1.17633 1.12945 0.45045 0.0000 . . . . .
0.0000 0.00000 0.00000 1.24980 0.00000 1.8335 0.00000 . . . .
-0.2676 -0.32260 1.10723 1.31903 0.00000 1.1837 -4.89764 0.26564 . . .
1.1320 0.00000 -1.41912 1.30756 1.15489 2.4636 -1.22729 -1.19087 0.0000 . .
4.7861 8.71813 5.19527 6.55273 6.77228 10.1681 8.64628 7.74405 10.5221 6.8506 .



Table 4.3: The parameters for fitted copulas for cluster 2

Cluster ID 1 2 3 4 5 6 7 8

Trunc. level 11 6 12 12 9 7 10 12

Cluster ID 9 10 11 12 13 14 15 16

Trunc. level 9 7 7 10 9 7 10 13

Table 4.4: The optimal truncation level for clusters with the DAG method

For cluster two the approach with directed acyclic graphs suggests a trun-
cation level of six.
Alternatively the two methods based on the Vuong-test in chapter 2 yield
the results in the tables 4.5 and 4.6.

In table 4.5 we test truncated Vines against the full model. In addition
we choose to use a correction based on the Schwarz information criterion to
account for the number of parameters in the R-Vines. The p-value in this
table gives the probability that both tested model represent the data equally
well. Depending on which p-value is deemed acceptable, the optimal trun-
cation level with this method ranges from seven to eight which is higher or
equal to the truncation level attained via the directed, acyclic graph method.
Therefore this truncation method suggest more complex models with a bet-
ter fit compared to the method utilising directed, acyclic graphs.

In the table 4.6 we use the Vuong test in the opposite direction, we start
with the R-Vine model in which only the first tree contains copulas other
than the Product copula and always test a model against the model with
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trunc. levels 10vs8 10vs7 10vs6 10vs5 10vs4 10vs3 10vs2 10vs.1

test-stat. 2.004 2.515 3.423 4.223 5.800 6.169 7.767 8.713
p-value 0.045 0.012 0.001 2.4e-5 6.6e-9 6.8e-10 8.0e-15 0
Schwarz stat. 1.396 1.704 2.512 3.233 4.595 4.761 6.287 7.262
adj. p-value 0.163 0.088 0.012 0.001 4.3e-6 1.9e-6 3.2e-10 3.8e-13

Table 4.5: The Vuong-test testing various truncation levels,given by the num-
ber of trees included in the model, against the full model with the all ten
trees

one additional tree containing copulas other than the Product copula. With
this method the first suggested truncation level is three, well below the trun-
cation level suggested by the other two methods.

trunc. levels 1vs2 2vs3 3vs4 4vs5 5vs6 6vs7 7vs8 8vs9

test-stat. -5.352 -6.304 -1.994 -4.564 -2.575 -2.692 -1.878 -2.004
p-value 8.7e-8 2.9e-10 0.046 5.0e-6 0.010 0.007 0.060 0.045
Schwarz stat. -4.689 -5.368 -1.097 -3.712 -2.166 -2.082 -1.231 -1.395
adj. p-value 2.8e-6 8.0e-8 0.273 2.1e-4 0.030 0.037 0.218 0.163

Table 4.6: The Vuong-test testing R-Vine testing mo.

In both tables we do not test a model with 10 trees against a model with
9 trees because the copula assigned to the final edge is the Product copula,
as can be seen in array 4.2, so that truncation at this level does not change
the model.

The methods based on the Vuong-test are computationally expensive for
our larger clusters. Additionally we only have 264 observations, a number
that for the larger clusters is dwarfed by the number of parameters to be
estimated, our largest cluster containing 89 rivers requires the selection 3916
copulas and their parameters. Considering that this affects the power of the
Vuong-test for the rest of this work we use the truncation levels derived by
utilizing directed, acyclic graphs which are given in table 4.4.
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Chapter 5

Forecast

In this chapter we first present the algorithm used to calculate the joint distri-
bution function for the sum of total damages in a cluster and then introduce
two risk measures the Value-at-Risk and the Expected Shortfall. Afterwards
we take a closer look at the loss forecast for one of the clusters. In the last
part of the chapter we will provide the Value-at-Risk at different levels α
for our clusters in two sample years, the year 2020 and 2085, as well as the
expected shortfall for the same levels in these years.

Since our marginal distributions are only piecewise parametric, which
greatly increases the complexity of the joint density function of our random
variables and we are more interested in the sum of total damages we decided
to use the following algorithm to approximate the cumulative distribution
function numerically instead of trying to analytically solve the joint density
function.

• Generate a grid of possible losses,

• Generate m*n, where n is the size of the cluster, independent samples
from a uniform distribution on [0,1].

• Use the R-Vine to transform this into m samples of a vector v =
(v1, ..., vn) containing the severity of the losses associated to each river
basin.

• Calculate the losses associated to each basin with the help of the quan-
tile functions for the loss areas connected to the river basins d =
(d1,1(v1), d1,2(v1), ..., d1,k(v1), d2,1(v2), ..., dn,kn(vn)).

• If protection standards are used set damages below the severity thresh-
old to zero.
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• Calculate the total damages d1,1(v1) + d1,2(v1) + ...+ dn,kn(vn).

• Build the empirical cumulative distribution function.

• Evaluate the empirical cumulative distribution function on the grid-
points.

Limitations to computational power, especially for larger R-Vines, restrict
the number of samples m that can be drawn in one step. To circumvent this
we decided to use the above algorithm several times on the same grid and
then calculate the arithmetic mean of the individual functions. To give the
numbers we choose m equal to 2000 and applied the algorithm 2000 times,
resulting in 4000000 samples for each cluster in a year. We decided to use
a grid with 100000 grid-points, with 10000 points in both the lowest and
highest 5 percent of potential damages each.

In order to evaluate the risk arising from the dependency between the
water discharge of our river beds we need risk measures. Since we are mostly
interested in the behaviour at the right tail of the distribution we use the
following definition for two possible risk measures to judge the risk presented
by a distribution.

Definition 19. Value-at-Risk, Expected Shortfall

The value at risk for the threshold α is defined as

V aRα := inf{l ∈ R, P (L > l) ≤ 1− α}

The expected shortfall, or average value at risk, is defined as

ESα := E[L|L > V aRα] :=
1

1− α

∫ 1

α

V aRγdγ

With this definition the V aRα is another name for the α quantile, while
the expected shortfall is the the expected value of the distribution conditional
that a certain threshold severity is exceeded. The Value at Risk is the more
intuitive of our two used risk measures, but unlike the Expected Shortfall it
does not contain information how the distribution behaves past α. Therefore
we consider the Expected Shortfall the superior risk measure as it gives the
expected value of the magnitude of the extreme events and can therefore
serve as an guideline for appropriate reserves.
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Figure 5.1: Cluster 14

5.1 Cluster 14-Northern Italy

Since the JRC data lacks any forecasts for Iceland, for this section we use
our second smallest cluster depicted in figure 5.1. This cluster covers the
northern part of Italy and the maximal loss according to the JRC forecast
for this cluster in the year 2020 is 3.49 ∗ 1010 Euro and 4.09 ∗ 1010 Euro in
the year 2085.

We first give a comparison between our R-Vine model CV ine and assuming
the water discharge of the rivers in the cluster as independent without the
use of protection levels. Figure 5.2 gives a visual comparison of the cumula-
tive distribution functions for the two models. Both models yield the same
expected value however compared to the model with independence CV ine
suggests that both very high and very low damages occur more frequently.

The table 5.1 gives the Value-at-Risk and the expected shortfall for some
sample levels. For the right tail of the distribution the Value-at-Risk for the
CV ine is 54.85 percent higher compared to independence, while the Expected
Shortfall is 55.35 percent higher.

From now on we always use the provided protection levels. If the protec-
tion standards are used the cumulative distributions change to the functions
shown in image 5.3 and table 5.2.

From the images 5.2, 5.3 and the tables 5.1 and 5.2 it becomes clear that
if the simplifying assumption of independence is made even though the true
distribution is close to our CV ine, several errors are occur.
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Figure 5.2: The predicted losses for the year 2020 in cluster 14 according to
the R-Vine (solid) and assuming independence (dashed)

α .9 .95 .975 .99 .999

VaR
Indep. 1.39 ∗ 1010 1.48 ∗ 1010 1.56 ∗ 1010 1.65 ∗ 1010 1.84 ∗ 1010

CV ine 1.75 ∗ 1010 1.94 ∗ 1010 2.12 ∗ 1010 2.33 ∗ 1010 2.76 ∗ 1010

ES
Indep. 1.51 ∗ 1010 1.59 ∗ 1010 1.65 ∗ 1010 1.74 ∗ 1010 1.92 ∗ 1010

CV ine 2.01 ∗ 1010 2.18 ∗ 1010 2.34 ∗ 1010 2.53 ∗ 1010 2.88 ∗ 1010

Table 5.1: Value at risk and Expected Shortfall for levels α for both models.

α .9 .925 .95 .975 .99 .999

VaR
Indep. 2.46 ∗ 107 4.81 ∗ 108 1.39 ∗ 109 2.97 ∗ 109 5.57 ∗ 109 6.42 ∗ 109

CV ine 1.92 ∗ 106 2.11 ∗ 107 1.63 ∗ 108 3.06 ∗ 109 6.50 ∗ 109 1.62 ∗ 1010

ES
Indep. 2.10 ∗ 109 2.71 ∗ 109 3.61 ∗ 109 4.89 ∗ 109 6.16 ∗ 109 8.04 ∗ 109

CV ine 2.11 ∗ 109 2.81 ∗ 109 4.20 ∗ 109 7.08 ∗ 109 1.03 ∗ 1010 1.88 ∗ 1010

Table 5.2: Value at risk and Expected Shortfall for some α for both models.

The first error is that independence underestimates the probability of low
impact events and the probability of high events, so that if real data is used
to estimate the function the fitted distribution will be shifted one side and
therefore have a too low or too high expected value, affecting all estimations
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Figure 5.3: The cumulative distribution functions for the R-Vine copula
(solid) and the independence model (dashed) for the losses in cluster 14 for
the year 2020, if the protection standards are used

based on this distribution. Even if the first error can be avoided and the true
expected value is reached, the second error is that the distribution under
the assumption of independence has too thin tails in comparison to the true
distribution which even with the true or a too high expected value leads to
an underestimation of the risk when independence is assumed.

Both this effects are responsible that, if the dependence within the river
system is ignored, there will not be sufficient reserves for the coverage of
flood damages.

In the next step we look into how the distribution of damages changes
over the years. In order to to this we use our algorithm to calculate the
distribution functions for three years, 2020, 2055 and 2085. Figure 5.4 and
table 5.3 give the corresponding visualisation and data. With our estimations
we find that the expected shortfall, which we consider a good guideline for
the amount of required risk reserves, increases by more than 3000 million
Euro alone in the region covered by cluster 14 in the next seventy to sixty
years.
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Figure 5.4: Cluster 14, for the years 2020 (top),2055(middle) and 2085 (bot-
tom)

α .9 .925 .95 .975 .99 .999

Value at Risk
2020 1.92 ∗ 106 2.11 ∗ 107 1.63 ∗ 108 3.06 ∗ 109 6.50 ∗ 109 1.62 ∗ 1010

2055 1.94 ∗ 106 2.15 ∗ 107 1.69 ∗ 108 3.33 ∗ 109 7.49 ∗ 109 1.76 ∗ 1010

2085 2.25 ∗ 106 2.27 ∗ 107 1.78 ∗ 108 3.64 ∗ 109 7.73 ∗ 109 1.86 ∗ 1010

Expected shortfall
2020 2.11 ∗ 109 2.81 ∗ 109 4.20 ∗ 109 7.08 ∗ 109 1.03 ∗ 1010 1.88 ∗ 1010

2055 2.33 ∗ 109 3.10 ∗ 109 4.64 ∗ 109 7.86 ∗ 109 1.14 ∗ 1010 2.07 ∗ 1010

2085 2.45 ∗ 109 3.26 ∗ 109 4.88 ∗ 109 8.25 ∗ 109 1.20 ∗ 1010 2.19 ∗ 1010

Table 5.3: Some risk measures for cluster 14 in the years 2020, 2055 and 2085



5.2 Forecast for all clusters

In tables 5.4 and 5.5 it is possible see that climate change will increase the
potential flood damages in some areas while in other clusters the losses due to
flooding are decreasing in the future. The clusters with decreasing damages
are located in north-east Europe, while damages in clusters in the south-
west of the continent increase as can be seen in Figure 5.5. This can be
explained because river floods in the north eastern regions are mainly caused
by the spring snow melt which is predicted to decline, while the south-western
region is more vulnerable to heavy rainfall which should increase due to the
increased evaporation of ocean water.

Figure 5.5: River basins in clusters with increasing losses in are depicted red
and in clusters with decreasing losses in blue
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.9 .925 .95 .975 .99 .999 0.9999

1
2020 1.05 ∗ 109 1.21 ∗ 109 1.41 ∗ 109 1.85 ∗ 109 2.33 ∗ 109 3.30 ∗ 109 4.27 ∗ 109

2085 4.63 ∗ 108 6.41 ∗ 108 8.97 ∗ 108 1.29 ∗ 109 1.84 ∗ 109 2.87 ∗ 109 3.76 ∗ 109

3
2020 3.60 ∗ 108 6.34 ∗ 108 1.13 ∗ 109 2.49 ∗ 109 5.40 ∗ 109 1.21 ∗ 1010 1.69 ∗ 1010

2085 3.5 ∗ 108 6.3 ∗ 108 1.1 ∗ 109 2.5 ∗ 109 5.2 ∗ 109 1.2 ∗ 1010 1.6 ∗ 1010

4
2020 4.24 ∗ 108 6.17 ∗ 108 8.19 ∗ 108 1.40 ∗ 109 2.13 ∗ 109 4.19 ∗ 109 5.67 ∗ 109

2085 3.69 ∗ 108 6.22 ∗ 108 7.84 ∗ 108 1.34 ∗ 109 2.05 ∗ 109 4.04 ∗ 109 5.53 ∗ 109

5
2020 2.34 ∗ 108 3.53 ∗ 108 5.74 ∗ 108 1.21 ∗ 109 2.32 ∗ 109 4.85 ∗ 109 6.00 ∗ 109

2085 1.87 ∗ 108 2.81 ∗ 108 4.69 ∗ 108 1.03 ∗ 109 1.99 ∗ 109 4.20 ∗ 109 5.17 ∗ 109

6
2020 4.41 ∗ 108 1.09 ∗ 109 1.75 ∗ 109 7.57 ∗ 109 1.31 ∗ 1010 2.60 ∗ 1010 3.70 ∗ 1010

2085 4.90 ∗ 108 1.20 ∗ 109 1.94 ∗ 109 8.57 ∗ 109 1.43 ∗ 1010 2.75 ∗ 1010 4.06 ∗ 1010

7
2020 1.77 ∗ 108 4.61 ∗ 108 9.72 ∗ 108 2.42 ∗ 109 5.82 ∗ 109 1.39 ∗ 1010 2.07 ∗ 1010

2085 1.62 ∗ 108 5.26 ∗ 108 9.87 ∗ 108 2.37 ∗ 109 5.53 ∗ 109 1.31 ∗ 1010 1.95 ∗ 1010

8
2020 1.23 ∗ 109 1.90 ∗ 109 3.26 ∗ 109 6.11 ∗ 109 1.19 ∗ 1010 2.44 ∗ 1010 3.62 ∗ 1010

2085 1.05 ∗ 109 1.58 ∗ 109 2.88 ∗ 109 5.36 ∗ 109 1.03 ∗ 1010 2.16 ∗ 1010 3.20 ∗ 1010

9
2020 8.37 ∗ 108 1.97 ∗ 109 3.09 ∗ 109 7.50 ∗ 109 1.64 ∗ 1010 4.04 ∗ 1010 5.39 ∗ 1010

2085 8.45 ∗ 108 1.97 ∗ 109 3.16 ∗ 109 7.61 ∗ 109 1.65 ∗ 1010 4.05 ∗ 1010 5.44 ∗ 1010

10
2020 5.76 ∗ 108 9.56 ∗ 108 1.60 ∗ 109 4.04 ∗ 109 7.90 ∗ 109 1.76 ∗ 1010 2.34 ∗ 1010

2085 6.12 ∗ 108 9.62 ∗ 108 1.59 ∗ 109 4.01 ∗ 109 7.59 ∗ 109 1.69 ∗ 1010 2.27 ∗ 1010

11
2020 1.60 ∗ 107 1.22 ∗ 108 5.09 ∗ 108 2.59 ∗ 109 9.86 ∗ 109 3.05 ∗ 1010 3.96 ∗ 1010

2085 1.58 ∗ 107 1.30 ∗ 108 5.18 ∗ 108 2.67 ∗ 109 9.71 ∗ 109 2.96 ∗ 1010 3.87 ∗ 1010

12
2020 4.93 ∗ 108 7.90 ∗ 108 1.17 ∗ 109 2.05 ∗ 109 4.50 ∗ 109 1.84 ∗ 1010 2.20 ∗ 1010

2085 5.31 ∗ 108 8.01 ∗ 108 1.29 ∗ 109 2.11 ∗ 109 5.27 ∗ 109 1.81 ∗ 1010 2.24 ∗ 1010

13
2020 3.18 ∗ 108 4.59 ∗ 108 6.31 ∗ 108 1.12 ∗ 109 2.02 ∗ 109 4.20 ∗ 109 5.28 ∗ 109

2085 3.17 ∗ 108 4.19 ∗ 108 5.94 ∗ 108 1.12 ∗ 109 2.04 ∗ 109 4.30 ∗ 109 5.33 ∗ 109

14
2020 1.92 ∗ 106 2.11 ∗ 107 1.63 ∗ 108 3.06 ∗ 109 6.50 ∗ 109 1.62 ∗ 1010 2.30 ∗ 1010

2085 2.25 ∗ 106 2.27 ∗ 107 1.78 ∗ 108 3.64 ∗ 109 7.73 ∗ 109 1.86 ∗ 1010 2.69 ∗ 1010

15
2020 1.02 ∗ 109 1.53 ∗ 109 2.05 ∗ 109 3.60 ∗ 109 5.44 ∗ 109 9.84 ∗ 109 1.42 ∗ 1010

2085 1.02 ∗ 109 1.57 ∗ 109 2.20 ∗ 109 4.03 ∗ 109 6.12 ∗ 109 1.09 ∗ 1010 1.58 ∗ 1010

16
2020 3.92 ∗ 108 5.76 ∗ 109 9.24 ∗ 108 1.69 ∗ 109 3.20 ∗ 109 6.10 ∗ 109 7.14 ∗ 109

2085 9.95 ∗ 108 5.82 ∗ 109 9.59 ∗ 108 1.71 ∗ 109 3.20 ∗ 109 6.11 ∗ 109 7.20 ∗ 109

Table 5.4: Value at risk for the clusters in 2020 and 2085.



.9 .925 .95 .975 .99 .999 .9999

1
2020 1.04 ∗ 109 1.22 ∗ 109 1.46 ∗ 109 1.85 ∗ 109 2.33 ∗ 109 3.30 ∗ 109 4.27 ∗ 109

2085 1.06 ∗ 109 1.23 ∗ 109 1.46 ∗ 109 1.84 ∗ 109 2.31 ∗ 109 3.26 ∗ 109 4.13 ∗ 109

3
2020 2.15 ∗ 109 2.70 ∗ 109 3.61 ∗ 109 5.54 ∗ 109 8.18 ∗ 109 1.42 ∗ 1010 1.81 ∗ 1010

2085 2.11 ∗ 109 2.66 ∗ 109 3.55 ∗ 109 5.41 ∗ 109 7.90 ∗ 109 1.37 ∗ 1010 1.75 ∗ 1010

4
2020 1.12 ∗ 109 1.32 ∗ 109 1.63 ∗ 109 2.22 ∗ 109 3.02 ∗ 109 4.86 ∗ 109 6.21 ∗ 109

2085 1.08 ∗ 109 1.28 ∗ 109 1.56 ∗ 109 2.13 ∗ 109 2.91 ∗ 109 4.71 ∗ 109 6.05 ∗ 109

5
2020 9.87 ∗ 108 1.22 ∗ 109 1.60 ∗ 109 2.37 ∗ 109 3.43 ∗ 109 5.42 ∗ 109 6.16 ∗ 109

2085 8.33 ∗ 108 1.03 ∗ 109 1.36 ∗ 109 2.04 ∗ 109 2.96 ∗ 109 4.68 ∗ 109 5.30 ∗ 109

6
2020 4.84 ∗ 109 6.21 ∗ 109 8.63 ∗ 109 1.37 ∗ 1010 1.83 ∗ 1010 3.06 ∗ 1010 4.25 ∗ 1010

2085 5.31 ∗ 109 6.82 ∗ 109 9.48 ∗ 109 1.51 ∗ 1010 2.00 ∗ 1010 3.33 ∗ 1010 4.61 ∗ 1010

7
2020 2.14 ∗ 109 2.74 ∗ 109 3.77 ∗ 109 6.02 ∗ 109 9.27 ∗ 109 1.75 ∗ 1010 2.27 ∗ 1010

2085 2.05 ∗ 109 2.63 ∗ 109 3.61 ∗ 109 5.73 ∗ 109 8.80 ∗ 109 1.65 ∗ 1010 2.15 ∗ 1010

8
2020 5.13 ∗ 109 6.33 ∗ 109 8.24 ∗ 109 1.20 ∗ 1010 1.77 ∗ 1010 2.93 ∗ 1010 4.01 ∗ 1010

2085 4.48 ∗ 109 5.55 ∗ 109 7.24 ∗ 109 1.06 ∗ 1010 1.55 ∗ 1010 2.59 ∗ 1010 3.53 ∗ 1010

9
2020 6.43 ∗ 109 8.10 ∗ 109 1.09 ∗ 1010 1.71 ∗ 1010 2.66 ∗ 1010 4.72 ∗ 1010 5.76 ∗ 1010

2085 6.52 ∗ 109 8.19 ∗ 109 1.11 ∗ 1010 1.73 ∗ 1010 2.67 ∗ 1010 4.74 ∗ 1010 5.86 ∗ 1010

10
2020 3.18 ∗ 109 3.99 ∗ 109 5.37 ∗ 109 8.09 ∗ 109 1.20 ∗ 1010 2.03 ∗ 1010 2.57 ∗ 1010

2085 3.11 ∗ 109 3.89 ∗ 109 5.23 ∗ 109 7.81 ∗ 109 1.15 ∗ 1010 1.95 ∗ 1010 2.48 ∗ 1010

11
2020 3.05 ∗ 109 4.04 ∗ 109 5.94 ∗ 109 1.04 ∗ 1010 1.86 ∗ 1010 3.47 ∗ 1010 4.09 ∗ 1010

2085 3.02 ∗ 109 4.00 ∗ 109 5.87 ∗ 109 1.02 ∗ 1010 1.81 ∗ 1010 3.38 ∗ 1010 3.99 ∗ 1010

12
2020 2.35 ∗ 109 2.92 ∗ 109 3.89 ∗ 109 6.21 ∗ 109 1.13 ∗ 1010 1.97 ∗ 1010 2.30 ∗ 1010

2085 2.45 ∗ 109 3.05 ∗ 109 4.05 ∗ 109 6.42 ∗ 109 1.14 ∗ 1010 1.96 ∗ 1010 2.34 ∗ 1010

13
2020 9.61 ∗ 108 1.15 ∗ 109 1.46 ∗ 109 2.09 ∗ 109 3.03 ∗ 109 4.71 ∗ 109 5.52 ∗ 109

2085 9.52 ∗ 108 1.15 ∗ 109 1.47 ∗ 109 2.12 ∗ 109 3.08 ∗ 109 4.81 ∗ 109 5.62 ∗ 109

14
2020 2.11 ∗ 109 2.81 ∗ 109 4.20 ∗ 109 7.08 ∗ 109 1.03 ∗ 1010 1.88 ∗ 1010 2.53 ∗ 1010

2085 2.45 ∗ 109 3.26 ∗ 109 4.88 ∗ 109 8.25 ∗ 109 1.20 ∗ 1010 2.19 ∗ 1010 2.92 ∗ 1010

15
2020 2.88 ∗ 109 3.42 ∗ 109 4.23 ∗ 109 5.64 ∗ 109 7.44 ∗ 109 1.19 ∗ 1010 1.58 ∗ 1010

2085 3.10 ∗ 109 3.71 ∗ 109 4.62 ∗ 109 6.22 ∗ 109 8.16 ∗ 109 1.32 ∗ 1010 1.75 ∗ 1010

16
2020 1.43 ∗ 109 1.75 ∗ 109 2.25 ∗ 109 3.22 ∗ 109 4.65 ∗ 109 6.58 ∗ 109 7.53 ∗ 109

2085 1.44 ∗ 109 1.77 ∗ 109 2.27 ∗ 109 3.24 ∗ 109 4.65 ∗ 109 6.61 ∗ 109 7.57 ∗ 109

Table 5.5: Expected shortfall for the clusters in 2020 and 2085



Chapter 6

Conclusions and outlook

The first conclusion we draw from this work is that the dependence between
the behaviour of rivers in geographic proximity prevent a sufficient hedging
of the risk originating from flood events unless sufficiently large areas are
considered. Therefore cooperation on the national, and especially for smaller
nations, on the international level is needed to provide sufficient reserves
without too expensive costs.

Our results show that in the most affected areas the expected damages
will increase significantly. This suggests that for the strongly affected areas
it becomes necessary to increase flood protection to counteract the increased
risk caused by the increased precipitation triggered by climate change.

We hope that this work does provide insight why the dependency between
random variables cannot be ignored when one deals with risk presented by
natural hazards and that the findings of this work can be used to improve
precautions and reserves for flood hazards in Europe.

We find that the work and results could be improved by including further
observations and inclusion of the so far missing forecasts for some of the loss
areas. An increased number of observations would allow to increase the fit of
the models in this work and would improve the power of the statistical test
we use throughout the work.

In addition, with more observation controlling for seasonal effects would
become viable which would allow a more nuanced separation of the individual
rivers into clusters and a better forecast for individual smaller regions.
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Appendix A

Additional Tables

copula generator function parameter range

Product −ln(t)
Clayton 1

θ
(t−θ − 1) [−1, inf) \ 0

Joe −ln(1− (1− t)θ) [0, inf)
Gumbel (−ln(t))θ [0, inf)
Frank ln(e−θ − 1)− ln(e−tθ − 1) (− inf, inf) \ 0

Table A.1: Generator functions and parameter ranges for Archimedian cop-
ulas

copula Kendall’s τ λl λu

Clayton θ/(θ + 2) 2−1/θ 0

Joe 1 + 4
θ2

∫ 1

0
x · ln(x)(1− x)

2(1−θ)
θ dx 0 2− 2−1/θ

Gumbel 1− 1/θ 0 2− 2−1/θ

Frank 1− 4
θ2

+ 4D1(θ)/θ 0 0
Gaussian 2

π
arcsin(ρ) 0 0

Table A.2: Kendall’s τ , λl and λu for the copulas used in this work. D1(θ) =∫ θ
0

x/θ
ex−1

dx .
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1
6 4
3 6 5
4 3 6 2
5 2 3 6 3
2 5 2 3 6 6


Table A.3: An alternative array representation for the R.Vine in figure 2.7

Cluster countries
1 Norway, Sweden, Finland
2 Iceland
3 Finland
4 Denmark,Sweden
5 Estonia, Latvia, Lithuania
6 Ireland,UK,Belgium,Netherlands
7 Germany
8 Poland,Czech R.,Slovakia
9 France
10 Romania, Hungary
11 Switzerland,Austria
12 Croatia,Bosnia,Albania,

Greece,Southern Italy
13 Bulgaria,Romania
14 Northern Italy
15 Northern Spain, Southern France, Italy
16 Spain, Portugal

Table A.4: The allocation of clusters to European countries.



Appendix B

Proofs

The information distance is a metric.

A metric must fulfil four requirements:

• dτ̂ (X, Y ) ≥ 0: Kendall’s τ only takes values in the interval (−1, 1),
positivity of dτ̂ is ensured by construction.

• dτ̂ (X, Y ) = 0⇔ X ∼ Y .

dτ̂ (X, Y ) = 0⇔ τX,Y ∈ {−1, 1} ⇔ X = Y ∨X =
←−
Y ⇔ X ∼ Y

• dτ̂ (X, Y ) = dτ̂ (Y,X) this is true since τX,Y = τY,X

• dτ̂ (X,Z) ≤ dτ̂ (X, Y ) + dτ̂ (Y, Z)

dτ̂ (X,Z) =

min{dτ (X,Z), dτ (X,
←−
Z ), dτ (X,

←−
Z ), dτ (X,Z)} ≤

min{dτ (X, Y ) + dτ (Y, Z), dτ (X, Y ) + dτ (Y,
←−
Z ),

dτ (X,
←−
Y ) + dτ (

←−
Y ,
←−
Z ), dτ (X,

←−
Y ) + dτ (

←−
Y , Z)} =

min{dτ (X, Y ), dτ (X,
←−
Y )}+min{dτ (Y, Z), dτ (Y,

←−
Z )} =

dτ̂ (X, Y ) + dτ̂ (Y, Z)
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Sklar’s theorem for continuous margins.

Let H be the joined distribution function of two random variables X, Y
with continuous marginal distributions F (x), G(y). Let ∀u ∈ [0, 1] F−1(u) :=
inf{x : F (x) ≥ u}, ∀v ∈ [0, 1] G−1(v) := inf{y : G(y) ≥ v}. Then

C(u, v) := H(F−1(u), G−1(v))

. By construction C full-fills all requirements for a copula.
The uniqueness of C also follows from the continuity of the marginal distri-
butions. Assume there exist two different copulas C, C̃ for all u ∈ [0, 1] there
exists an x such that F (x) = u ⇔ F−1(u) 6= ∅ the same is true for v this
implies that ∀(u, v) ∈ [0, 1]2 C(u, v) = C̃(u, v)⇒ C = C̃.
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Abstract

In the recent years Europe was hit several times by large-scale flooding events.
This makes it rather clear that in order to estimate damages and resulting
claims to insurance companies it is important not only to analyse each body
of water independently from the rest, but to also examine the joint distribu-
tion of the water discharges in the individual basins.

In order to model the joint distribution we use R-Vine-copulas. First we
use historic data on the monthly peak water discharge of the river basins
to calculate the R-Vine-copulas. Then we use these R-Vines combined with
individual forecasts for the rivers to sample from the joint distribution and
build the cumulative distribution function for the sum of total losses.

From these cumulative distribution functions we calculate some risk mea-
sures like the value at risk and the expected shortfall in order to estimate
the impact of climate change on the frequency and magnitude of damages
caused by floods in Europe.



Abstract

In den letzten Jahren gab mehrere großflächige Überflutungen in Europa.
Um Flutschäden und die daraus entstehenden Forderungen an Versicherun-
gen abschätzen zu können ist es daher wichtig nicht nur die einzelnen Flüsse
zu betrachten sondern auch die gemeinschaftliche Verteilung der Durchfluss-
menge der Flüsse zu berücksichtigen.

Zur Modellierung der gemeinschaftlichen Verteilung verwenden wir R-
Vine-Copulas. Zuerst benutzen wir Daten für die monatliche Höchstdurchflussmenge
der einzelnen Flüsse in der Vergangenheit um die R-Vine-Copulas zu berech-
nen Danach benutzen diese R-Vine zusammen mit Vorhersagen zu den einzel-
nen Flüssen um Stichproben aus der gemeinschaftlichen Verteilung zu ziehen
und die Verteilungsfunktion für die Summe der Schäden zu bilden.

Mit Hilfe dieser Verteilungsfunktionen berechnen wir einige Risikomaße
wie Value at Risk und Expected Shortfall um die Auswirkungen des Kli-
mawandels auf Vorkommen und Höhe von Flutschäden in Europa abzuschätzen.


