
MASTERARBEIT/ MASTER’S THESIS

Titel der Masterarbeit / Title of the Master‘s Thesis

ROBUST OPTIMIZATION

verfasst von / submitted by

Fabian Steurer B.Sc.

angestrebter akademischer Grad/in partial fulfilment of the requirements for the degree of

Master of Science (M.Sc.)

Wien, 2017 / Vienna, 2017

Studienkennzahl lt. Studienblatt/ A 066 920
degree programme code as it appears
on the student record sheet:

Studienrichtung lt. Studienblatt/ Quantitative Economics, Management
degree programme as it appears on and Finance
the student record sheet:

Betreut von / Supervisor: Univ.-Prof. Mag. Dr. Immanuel Bomze





Acknowledgement

I would first like to thank my supervisor Dr. Immanuel Bomze for his effort and
help. In the previous semester I had the opportunity to participate in one of his lec-
tures called "Applied Optimization" that motivated me writing my master’s thesis
in this field. I highly appreciate his valuable insights as well as his quick feedbacks
that helped me working through the underlying topics of this thesis. This work is
an important component to fulfil the requirements of my degree and I am glad that
Dr. Immanuel Bomze accepted me to write this thesis under his supervision.

Furthermore, I am very grateful to my parents for the wonderful, exciting and in-
formative possibility of studying in Vienna. Their generosity and patience were an
important and highly valued support on my educational path. Studying in a city
with some distance to my home brought some difficulties along but their under-
standing, even when I missed some family events, let me enjoy my time.

In addition, I want to thank my colleagues for the collaborations, discussions and
cheerfulness during the time of my studies. They made it possible to enjoy the time
in university even when exercises, deadlines and exams kept us busy. Among those,
I especially want to thank Stefan M. Haas and Jasmin Riegler for their interest,
suggestions of improvements and support during this writing process.

3



4



curriculum vitæ

Fabian Steurer BSc
Date of Birth September 16th 1991
Nationality Austrian
Phone +43660 3408448
Mail fabiansteurer@gmx.at

Education
2015 - 2017 Master Study Quantitative Economics, Management and

Finance with focus on Finance, University of Vienna
Mar. 2012 - Jan. 2015 B.Sc. in Mathematics, University of Vienna
Mar. 2011 - Jan. 2012 Technical Mathematics: Finance- & Insurance Mathematics,

TU Vienna
Jul. 2010 - Dez. 2010 Military service as professional athlete in Vienna
June 2010 Matura, Sportgymnasium Dornbirn Schoren

Employment
Mar. 2015 - Aug. 2015 Internship: Quantitative Riskmanagement

Group Actuarial and Risk Management
UNIQA Insurance Group AG

Holiday works: Assistant at Permapak
Bakery Mangold
Greber-Catering and Mo-Catering
ÖWD

Special Interests

• Microsoft Office Word, Excel + VBA

• MATLAB, Mathematica and R-Studio

• C and C++

Languages

• German (native) and English (fluent)

Further Interests

• National league player (Badminton)

• Umpire

• Trainer

5





Abstracts

This master’s thesis studies optimization problems handling data influenced by un-
certainties as they appear in various ’real life’ applications. The transformation of
a general optimization problem into the according robust optimization problem by
developing the robust counterpart is of special interest. This optimization approach
can ensure feasibility of solutions without significantly decreasing the optimal value
of the objective function for particular problems. Furthermore, specified restric-
tions on the constraints, the cone in use as well as on the uncertainty set itself
influences the structure of the robust counterpart. After giving a short overview of
the topic, this thesis is structured by analyzing linear optimization problems with
uncertainties, which are well researched and in real life applications the most com-
monly used ones, and the process of relaxing some restrictions, that lead to more
general optimization problems. The quadratic optimization problems and especially
the quadratically constrained quadratic optimization problems are in the focus of
the last sections. An essence on researching these problems are the tractability
properties, which are investigated by trying to reformulate the problems into ex-
plicit solvable forms.

Diese Masterarbeit behandelt das Thema Robuste Optimierung. Dies sind Op-
timierungsprobleme die von Unsicherheiten in den Daten beeinflusst werden, wie
dies auch häufig in praktischen Anwendungen der Fall ist. Die Umformulierung
eines gewöhlichen Optimierungsproblems in ein robustes Optimierungsproblem steht
hier im Vordergrund. Mit dieser Methode der Optimierung kann für Probleme von
speziellen Strukturen die Lösbarkeit von Anfang an sichergestellt werden. Ebenso
kann garantiert werden, dass eine Lösung alle gewünschten Bedingungen erfüllt.
Gezielte Einschränkungen der Bedingungen, des verwendeten Kegels und der Menge,
welche die Unsicherheiten der Daten beschreibt, verändert die Struktur des Op-
timierungsproblems maßgeblich. Beginnend mit einer kurzen Einführung in das
Thema ergibt sich die weitere Struktur der Arbeit durch das Analysieren der in
den Anwendungen am häufigsten vorkommenden, linearen Optimierungsprobleme
und durch das weitere Lockern einzelner Einschränkungen, durch das sich Prob-
leme übergeordneter Strukturen ergeben. Im Mittelpunkt dieses Dokuments ist die
Eigenschaft der Lösbarkeit solcher Probleme, welche durch das Umformulieren des
ursprünglich Problems in explizit lösbaren Formen untersucht wird.
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1 Motivation

The Robust Optimization approach, which is also called Robust Counterpart ap-
proach, can be applied to all generic optimization problems with uncertain or partly
uncertain data. These uncertain informations are often separated into an numerical
data part, with uncertain data belonging to a uncertainty set, and the structure
part, that is known for all possible realizations of the uncertainties. The main struc-
ture of the optimization problem is not only defined by the latter one of those but
also depends on the choice of the uncertainty set.
For many years data uncertainty has already been an important aspect in the areas
of operations research and mathematical programming.
It is quite common that optimization problems which describe real world processes
have to work with uncertain data. Nevertheless, some informations are often avail-
able that make it possible to work with approximations or mean values. While there
are many different sources for data uncertainties in such problems the most frequent
ones are:

1. The data values are unknown at the exact moment when the problem is solved.
This is the case for problems incorporating future values like returns, temper-
atures or other state conditions. Nevertheless, some prior values or approxi-
mations do exist that help making a forecast. The deviation of those values
from the real value are called forecast/prediction errors.

2. Other data components such as parameters of technological processes or cer-
tain conditions on remote places (space, deep sea) exist but metering them
exactly is not possible. Those values are mostly given by nominal values of
rough measurements such that they are often distorted by measurement errors.

3. The third possible explanation for the use of uncertainties is given when the
determined solution cannot be realized as calculated. Even if all informations
are given and the optimal solution for a process can be detected it might
happen that the machines or processes in use are not working precisely enough.
These deflections from the optimal values are called implementation errors.
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All of the uncertainties from the above sources can be modelled in the same way.
Contrary to most of the usual approaches on problems with data uncertainties, the
Robust Optimization approach is a practical tool that allows to ensure feasibility
of problems. It has been shown in the past that even small changes in the values
and parameters can lead to suboptimal, unpractical, or even (highly) infeasible so-
lutions. While there are various ways to deal with data uncertainties we recall the
two most popular approaches. Beginning with the most common one of dealing with
those kind of problems leads to the Stochastic Optimization approach. Another well
known approach is given by the ignorance of the uncertainties in combination with
a sensitivity analysis that can be interpreted as a special form of the Stochastic Op-
timization approach. The most important characteristics and the main differences
to the Robust Counterpart approach are discussed in detail in the following para-
graph, since the Robust Counterpart approach offers some beneficial characteristics
that are not, or only partly given by the above mentioned ones.

1.1 Stochastic vs. Robust Optimization Approach

This approach considers the data to be of random kind that follows a distributional
structure. In the best and utopic case this distribution is known, which only hap-
pens in a rare number of events. In most practical applications the information on
the distribution is sparse. The robust optimization approach seems much more con-
servative since all the worst-case scenarios are considered. While on the other hand,
the Stochastic Optimization approach works with constraints where it usually uses
nominal values with particular confidence intervals depending only on the previous
observations and simulations. It is possible that in these events no rare outcomes
or extreme values were attained. Also the specification or approximations of the
underlying distributions are a complicated routine for most processes. Particularly
in real-life applications it is difficult to find good and reliable approximations for the
probability distribution. Even if the distribution can be considered to belong to a
certain family of distributions, a large enough sample size is required to estimate the
relevant parameters accurately. Especially for multidimensional probability distri-
butions, an enormous size of observations is required to fit the relevant parameters.

All of the above leads to the suspicion that Stochastic Optimization approaches
have to work with strong and crucial simplifications and it is difficult to determine
the influence of these simplifications on the quality of the results. Determining
the tractability of Stochastic Optimization problems and especially of the ones that

11



incorporate information via chance-constraints let us observe that the tractability
of those is the exception, since the feasible sets are mostly non-convex. For opti-
mization problems with sparse distribution information this approach might become
unstable.
On the other side of the coin, the fact that no distribution information is incorpo-
rated in the Robust Optimization approach is often held against it. Nevertheless, the
consideration of the worst-case scenarios and the accompanied conservatism should
be viewed as a huge plus point. Specifically in construction calculations for bridges
and truss designs the engineers usually work with thicker (up to 50% more) mate-
rials to compensate for the possibility of modelling deviations. This could simpler
be taken care of by the Robust Optimization approach through expanding the un-
certainty set. For the Stochastic Optimization approach this is more complicated
due to the probabilistic structure. If the probability for a scenario gets increased
the likelihood of another (or multiple) scenario(s) get reduced.

1.2 ’Ignorance’ and Sensitivity Analysis vs. Robust

Optimization

Besides the Stochastic Optimization approach and the Robust Optimization ap-
proach another typical strategy to handle data uncertainties is the Sensitivity Anal-
ysis. This approach can be interpreted as a special case of the Stochastic Opti-
mization approach since the values with the largest probabilities or the mean of the
uncertain data variables are taken to solve the problem. These nominal data values
are taken to be certain such that the problem can be solved without considering
the uncertainties. Only after calculating the optimal solution by ignoring the un-
certainties, the influence of small changes in the data components are observed and
analyzed. This process is applied in the hope that the real values are very close to
the used ones and the optimality and the feasibility remains, or at least does not
change drastically. But as shown in numerous examples, solutions might become
suboptimal or even infeasible and therefore unpractical for small changes.

Overall, this approach is a practical option to simplify a problem and determine
a solution in almost no time, but it should not be put to use for problems where the
violation of a constraint has a potentionally critical impact as it might be the case
for construction problems or in portfolio theory (see [4]).
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One of the major characteristics and motivation for the use of the Robust Opti-
mization approach is that the feasibility of a solution can be ensured, while with the
Stochastic Optimization approach outcomes with small probabilities might be over-
looked. In a general Robust Mathematical Optimization approach, various possible
data realizations are taken into account but constraint violations are possible since
those violations are only added via a cost term. With this focus on the stability
of the results, the feasibility of the results might not always be guaranteed. The
Robust Mathematical approach is similar to the Robust Optimization approach if
the constraints are taken to be binding and no constraint violations are allowed.
This can be accomplished by a significant increase of the cost terms.

To conclude, one of the major characteristics of the Robust Counterpart method
in comparison to the other approaches mentioned above is the set-based and de-
terministic structure instead of the usual stochastic one. A so constructed solution
takes every possible realization of the uncertain parameters in the uncertainty set
into account. This set-based uncertainty fits the parameter uncertainty well in
numerous applications (as seen in [7] & [8]). In consideration of all possible uncer-
tainty realizations the question of tractability and solvability occurs. It is shown
in [3] and various other papers that the robust counterpart of a tractable optimiza-
tion problem does not need to be tractable itself, as there could be infinitely many
constraints and the robust counterpart might become a semi-infinite optimization
problem. Therefore a focus on tractable results depending on the characteristic of
the nominal problem is of special interest. This leads to the structure of this work as
particular classes of problems, defined by the objective function and the constraint
functions in combination with an specified uncertainty set, are of explicit forms that
are efficiently solvable. The structure of an uncertainty set has a significant impact
on the tractability of the problem.

Sometimes it might be the case that the Robust Counterpart approach seems too
pessimistic to be practical. Since this approach looks mostly on worst-case scenarios,
it might be impractical in some situations, as it could be the case in the financial
sector (portfolio theory). Nevertheless this approach finds numerous applications in
various fields that handle optimization problems with different uncertainties. It is
remarkable that such a ’reliable solution’ does not decrease the optimal value or the
functionality of the original problem significantly. For further information on this
property consult [4] and/or [1].
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Remark 1. Not only medium-sized problems, as they occur in fields like man-
agement, combinatorial optimization, engineering and controlling, benefit from this
approach but especially the large-scale problems, like they often arise in signal and
image processing problems or quantum mechanics, highly appreciate the ’a priori’-
tractability characteristics of this approach.

Like already stated, the missing incorporation of distribution information is some-
times held against the Robust Counterpart approach. However, it is possible to em-
body a probabilistic guarantee via the design and the dimension of the uncertainty
set. This and further benefits of the Robust Optimization approach that go beyond
the scope of this work can be reviewed in [9] and other works listed in the bibliogra-
phy. In this work we concentrate on robust linear optimization problems as well as
on more general robust conic optimization problems where the robust counterpart
is of a particular structure that lead to interesting insights and feasibility of the
problems.

In the following chapter the basic framework and most common notational con-
ventions are introduced. A lot of the definitions and notations are compatible with
the ones in [4] and [3]. After introducing the uncertainty set and some practical
and commonly used simplification tricks in Chapter 2, we begin analyzing optimiza-
tion problems with particular structures. Starting with the well-researched linear
optimization problems and allowing for uncertainties in the data component, let us
develop the related robust counterpart in Chapter 3. After considering the robust
counterpart for different (ellipsoidal) uncertainty set structures we continue with
’Robust Conic Optimization’ in Chapter 4 by weakening the restriction on the con-
straint functions and allow for more complex ones. This lets us immediately look on
robust quadratic programs and robust quadratically constrained quadratic programs
with uncertain data components. By analogy to the ’Robust Linear Optimization’
chapter we look at the properties of those problems as well as on those of their
robust counterparts.
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2 Introduction to Robust
Optimization

The definition of an Optimization Problem is given by

min
x∈Rn

f(x, ζ)

subject to F̃ (x, ζ) ∈ K̃ ⊂ Rm,
(2.1)

with x ∈ Rn being the vector of decision variables, ζ ∈ RK being the parameter ele-
ments, while f(·, ·) and F̃ (·, ·) represent the objective and the constraint functions
respectively. In most literature the cone K̃ is taken to be convex and also in this
and the following chapters we stick to that assumption. With the prerequisite that
the data of the optimization problem is only partly known or entirely unknown,
an uncertainty set U ⊂ Rm is introduced. This set contains all given and relevant
informations about the data ζ. To ensure robustness and feasibility of the solutions
the constraints F̃ (x, ζ) ∈ K̃ must be fulfilled for every possible realization of ζ ∈ U
and an appropriate candidate solution x.
As stated in the previous chapter, this approach considers the worst-case scenarios.
Therefore, the following analysis is done with the largest possible value of the ob-
jective function.
For an uncertain optimization problem (2.1) with the additional assumption that
the objective function is certain (see Section 2.2), the robust counterpart is now
defined by

min
x∈Rn

f(x)

subject to F (x, ζ) ∈ K ⊂ Rm+1,∀ζ ∈ U .
(2.2)

Remark 2. An objective function that depends on the uncertain parameters can
be avoided by introducing a new variable and adapting the constraint function.
This procedure is shown in detail in (2.5). The constraint function in use is given

by F (x, ζ) =

(
F̃ (x, ζ)

s− f(x, ζ)

)
∈ K with K = K̃× R+.
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The solution to this problem is now called robust feasible solution of (2.1). In
the following a solution value to (2.2) is called robust optimal value to the uncertain
optimization problem (2.1) .

For the Robust Counterpart approach to be considered in practice at all, it must
be numerically solvable. In general the robust counterpart (2.2) of an uncertain
problem as given by (2.1) cannot be solved since it might be a semi-infinite program
depending on the constraints. The necessary and sufficient restrictions that imply
solvability of the optimization problems and the according robust counterparts are
therefore of special interest. Moreover, for the robust optimization approach to be
really useful for applications the problem must not only be theoretical numerically
solvable, but we must also be able to find such a solution in an efficient manner.
Therefore, the robust counterpart of an uncertain convex problem must be trans-
formed into a solvable convex optimization problem. This transformation does not
only depend on the characteristics of the original problem itself but also on the used
class of the uncertainty set U .
A convenient type of uncertainty sets is given by ellipsoidal uncertainty sets as

explained in the following Section 2.1. These ellipsoidal uncertainty sets have a con-
venient representation and the necessary flexibility to incorporate various restrictions
and structures on the unknown data part.

2.1 Uncertainty Sets

As stated in [2] ellipsoids and intersections of finitely many ellipsoids are reasonable
types of uncertainty sets. Ellipsoids have an easy parametric representation, and of
equal importance is that various cases of stochastic uncertainties can be expressed
as ellipsoidal deterministic uncertainties. One of the practical benefits with this
set-based optimization approach is that no complicated assumptions or guesses on
distributions have to be made. Ellipsoidal uncertainty sets are practical in various
scenarios since partial uncertainties as well as boundaries on certain values can be
incorporated. In the following sections we work with ellipsoids in RK that are given
by the definition

E1 (Π,Λ) = Π(B) + Λ (2.3)

with a certain affine embedding from RL into RK given by Π, the L-dimensional
euclidean unit ball B =

{
u ∈ RL : ‖u‖2 ≤ 1

}
and a linear subspace in RK represented

by Λ.

16



For problems with partly certain and partly uncertain data, this structure can
be incorporated with an uncertainty set in the form of a flat ellipsoid. In the case
of restricted data values that are bounded from above and/or from below, they
can be represented by the use of ellipsoidal cylinders as uncertainty sets. The
standard K−dimensional ellipsoids, as well as the just mentioned flat ellipsoids and
the ellipsoidal cylinders can be represented by the definition (2.3) above.

A standard K-dimensional ellipsoid is stated by the definition (2.3) if L = K and
Λ = {0}. The following figure 2.1 shows a possible function Π(B) + Λ for the two
dimensional case.

Standard Ellipsoid function from R2 → R2

Figure 2.1: Standard Ellipsoid

This figure shows an affine embedding Π from R2 into R2 with the addition of a
subspace Λ = {0}. Important to mention is that the dimension of the domain equals
the dimension of the codomain from Π(B) + Λ.

The case of partial uncertainty and the corresponding flat ellipsoid is covered by
Λ = {0} while the dimensions of the affine embedding are of the order L < K. A
few possible examples of such a projection Π(B) + Λ are illustrated below.

Flat Ellipsoid function from R2 → R3

Figure 2.2: Flat Ellipsoid

The crucial point of this projection is that the codomain of the function Π(B) + Λ is
larger than the domain itself and the additional subspace is again given by Λ = {0}.
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The case of ellipsoidal cylinders can be constructed with a non-trivial Λ and an
affine embedding Π. Three possible images of such a function are illustrated by the
following figure.

Ellipsoidal Cylinder function from R2 → R3

Figure 2.3: Ellipsoidal Cylinder

As in the previous two cases the function Π is still given as an affine embedding
while the non-trivial subspace Λ adds the relevant characteristics.

The figures above are simply added for a better understanding of the uncertainty
set U , although the images of the function Π(B) + Λ could look strongly differ-
ent, e.g. the axis of the ellipsoidal cylinders need not have to be orthogonal to the
standard axis/planes. The following definition considers the intersection of such sets.

Definition 1. We talk about an ∩−ellipsoidal uncertainty set U if the following
three assumptions hold:

1. U can be written as finitely many intersections of ellipsoids with explicitly given
affine transformations Πk and linear subspaces Λk such as U =

⋂L
k=1 E(Πk,Λk).

2. The uncertainty set U is bounded.

3. All ellipsoids E(Πk,Λk) for k ≤ L have at least one data representative in their
relative interior in common:
∃ζ ∈ RK : ∀k ≤ L ∃uk with ‖uk‖2 < 1, λk ∈ Λk s.t. Πk (uk) + λk = ζ ∀k ≤ L.

Remark 3. An uncertainty set U given by only one ellipsoid is simply called
ellipsoidal uncertainty set.
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Remark 4. An ellipsoidal uncertainty set E1 (Π1,Λ) from above, can equivalently
be written as E2 (Π2, Q) = {Π2(v) : ‖Qv‖2 ≤ 1}, with Π2 (·) being a certain affine
embedding. This property is shown in the following paragraph.

Let an ellipsoid E1 (Π1,Λ) = Π1(B) + Λ = {Au+ a : ‖u‖2 ≤ 1}+ Λ be given for a
particular matrix A ∈ RK×L, a vector a ∈ RK and a linear subspace Λ ⊂ RK . The
existence of such an equivalent representation is shown by a case distinction:

Case Λ = {0}: Let the matrix Q ∈ RL×L be given by the L−dimensional iden-
tity matrix Il. Furthermore define C := A and c := a to enable the following
reformulations

Π1(B) + Λ = {Au+ a : ‖u‖2 ≤ 1}+ Λ

=
{
Au+ a+ λt : u>u ≤ 1, λ ∈ Λ, t ∈ R

}
=

Cv + c : v>Q>Q︸ ︷︷ ︸
IL

v ≤ 1

 = E2 (Π2, Q) .

Case Λ 6= {0}: The reformulations below are fulfilled for matrix C := (A, λ1, λ2, . . . , λm) ∈
RK×(L+m) with the basis vectors λ1, . . . , λm ∈ RL from the linear subspace Λ, the
matrix Q := (IL, 0, . . . , 0) ∈ RL×(L+m), with the L-dimensional identity matrix IL
and the vectors c := a ∈ RK , t ∈ Rm and v> =

[
u>, t>

]
:

Π1(B) + Λ =
{
Au+ a : u>u ≤ 1

}
+ Λ

=
{
Au+ a+ λ1t1 + . . .+ λmtm : u>u ≤ 1, t1, . . . , tm ∈ R

}
=

Cv + c : v>Q>Q︸ ︷︷ ︸
IL

v ≤ 1

 = E2 (Π2, Q) .

After showing that E1 (Π1,Λ) can be restated by E2 (Π2, Q) we have to show the
other direction as well to prove the equality of both formulations.

Let E2 (Π2, Q) =
{
Cv + c : v>Q>Qv ≤ 1

}
be given for explicit matrices C ∈

RK×L, Q ∈ RM×L and a vector c ∈ RK . We recall that Q>Q is positive semi-definite.
Also this direction is shown by the use of a case distinction.
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Case 1: Q>Q ∈ RL×L is positive definite. Therefore the condition of the ellipsoid
can be transformed by using the Cholesky-factorization as shown below:

v>Q>Qv ≤ 1⇔ v>U>


q1

. . .

qL

Uv ≤ 1

⇔ v>U>


√
q1

. . .
√
qL


>

√
q1

. . .
√
qL

Uv ≤ 1.

The q1, q2, . . . , qL > 0 state the eigenvalues of Q>Q. Now we obtain the required

formulation by defining u :=


√
q1

. . .
√
qL

Uv that leads to the correspond-

ing v = U>


1√
q1

. . .
1√
qL

u. In this way the ellipsoid {Cv + c : ‖Qv‖2 ≤ 1}

can be given by the formulation

{
Au+ a : u>u ≤ 1

}
+ Λ,

for the matrix A = CU>


1√
q1

. . .
1√
qL

, the vector a = c and the linear sub-

space given by Λ = kerQ>Q = {0}.
The second case considers a positive semi-definite matrix Q>Q. We can use

the notation from the first case with the modification that q1, . . . , qn > 0, while
qn+1 = . . . = qL = 0. With this observation, the formulation is given by choosing

u :=


√
q1

. . .
√
qn

Uv ∈ Rn, A = CU>



1√
q1

. . .
1√
qn

0
...
0


∈ Rk×L,

a = c and a nontrivial subspace Λ = C
(
kerQ>Q

)
.
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It is demonstrated below that such ellipsoidal uncertainty sets are able to represent
polytopes. Since polytopes are defined by finitely many intersections of half spaces it
is not trivial that they can be designed by an uncertainty set of the above structure.
Let the uncertainty set be given in the form of a polytope. The commonly used def-
inition of a polytope is a bounded set defined by finitely many linear inequalities, so
the uncertainty set is given (for di 6= 0) by U =

{
u ∈ Rk | dTi u ≤ ri, i = 1, 2, . . .M

}
.

Due to the boundedness assumption of the uncertainty set follows that d>i u attains
its minimum. Let this minimum be given by si such that the uncertainty set U can
equivalently be given by

{
u ∈ Rk | si ≤ dTi u ≤ ri, i = 1, 2, . . .M

}
.

Let the ellipsoidal set be given as in the previous mentioned form E2 (Π2, Qi) =

{Π2(v) : ‖Qiv‖2 ≤ 1} with the matrix Qi = 2
ri−sid

>
i ∈ R1×K . Furthermore, the con-

dition of the ellipsoidal set v>Q>i Qiv =
[

2
(ri−si)d

>
i v
]2

≤ 1 implies that | d>i v |≤ ri−si
2

.
On the other hand, the vector u is given by u = Π2(v) = Ikv + pi, for the
k−dimensional identity matrix Ik and an arbitrary vector pi ∈ Rk. As the con-
dition of the polytope is tested, we obtain that d>i u = d>i v+ d>i pi ≤| d>i v | +d>i pi ≤
ri−si

2
+ d>i pi ≤ ri holds for pi that fulfil d>i pi = ri+si

2
.

To show that the polytopic set is a subset of the ellipsoidal set we suppose that a
point x belongs to U and therefore fulfils d>i x ≤ ri. If the condition of the ellipsoidal
set is now tested we observe:

v>Q>i Qiv =

(
2

ri − si
d>i (x− p)

)2

≤ 1⇔

d>i x− d>i p ≤ ri − d>i p = ri −
ri + si

2
=
ri − si

2
.

Therefore it is shown that polytopes can be described by ellipsoidal sets as defined
in this chapter.

Not only the easy representation and the possibility to express polytopes but also
the reason that more complicated sets can be well approximated by intersections of
ellipsoidal uncertainty sets justifies their use.
An ellipsoidal uncertainty set in applications is often given in the form

U =

{
Do +

L∑
i=1

piDi : p ∈ P

}
, (2.4)

with D0 denoting the nominal values and p belonging to a perturbation set P .
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The robust feasible solution set is given by

X = {x : F (x, ζ) ∈ K ∀ζ ∈ U} =
⋂
ζ∈U

{x : F (x, ζ) ∈ K} .

For the main part of this work we focus on this specified uncertainty sets. In
order to keep the notation for the uncertainty sets relatively easy and short a few
simplifications are presented in the following Section 2.2.
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2.2 Simplification

This section introduces a few very useful tools for the following chapters that can
be used to handle problems with uncertain data values. Since the tractability of a
general robust optimization problem is not given in most of the cases, some simpli-
fication steps are introduced to keep the search for tractable problems as simple as
possible.
To catch up the last point of the previous section we start this chapter with a
standardization trick for the perturbation sets.

Remark 5. Whenever a perturbation set P can be given as an image of a different
perturbation set P̄ by an affine mapping p 7→ p̄ = α+Pp, it can be switched between
those perturbations without changing the relevant structure of the problem. Because
of this statement more complicated forms can be represented by standard and nor-
malized geometries. In particular, some perturbation sets with ’box-like’ geometries
such as parallelotopes or rectangles can be reformulated by an affine mapping to
perturbation sets given by the unit box

{
u ∈ RL : −1 ≤ ul ≤ 1, l = 1, 2 . . . , L

}
. In

the same way, can we represent ellipsoidal and ’circle-like’ perturbation sets with
the help of the standard euclidean ball

{
b ∈ RL : ‖b‖2 ≤ 1, l = 1, 2, . . . , L

}
. Those

reformulations for the sets work as follows:

U =

{
D0 +

L∑
j=1

pjDj : p ∈ P

}

=

{
D0 +

L∑
j=1

[
αj +

K∑
k=1

Pj,kp̄k

]
Dj : p̄ ∈ P̄

}

=


[
D0 +

L∑
j=1

αjDj

]
︸ ︷︷ ︸

D̄0

+
K∑
k=1

p̄k

[
L∑
j=1

Pj,kDj

]
︸ ︷︷ ︸

D̄k

: p̄ ∈ P̄


.

The first step in developing the robust counterpart of a general optimization
problem given by (2.1) is to simplify the objective function. By adding a new variable
s and attaching an additional constraint s−f (x, ζ) ≥ 0 to the optimization problem,
the objective function can be written as a linear function without dependency on
the data uncertainties

min
s,x∈Rn

{
s : s− f(x, ζ) ≥ 0, F̃ (x, ζ) ∈ K̃ ⊂ Rm−1

}
. (2.5)

23



By assuming that this was already done we continue with an uncertain conic opti-
mization problem of the form

min
x∈Rn

{
cTx+ d : F (x, ζ) ∈ K ⊂ Rm

}
, (2.6)

with the new F (·, ·) already incorporating the additional constraint s− f (x, ζ).
The assumption of a certain objective function and in awareness that a shift term

d only influences the optimal value and not the solution itself, this term can be left
aside and be taken care of after finding an optimal solution for the problem without
this part. With an optimal solution x∗ for the reduced objective function c>x the
term c>x∗ + sup {d} solves the robust counterpart if d belongs to the projection of
U .
So we finally end up with an even simpler form of the optimization problem given
by

min
x∈Rn

{
cTx : F (x, ζ) ∈ K ∀ζ ∈ U

}
,K ⊂ Rm,U ⊂ Rk. (2.7)

This simplifications are used in the following chapters and give us the possibil-
ity to look at linear and uncertainty independent objective functions. In a broad
spectrum of practical applications linear optimization problems are in use. While
data uncertainties can source from various different reasons they can be treated in
similar ways. Due to the high usability of linear optimization problems in numerous
areas such as statistics, engineering and finance they are put on a closer look in the
following chapter.
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3 Robust Linear Optimization

3.1 Uncertain Linear Optimization Problems

We start this chapter with explaining a standard linear optimization problem and
continue by looking at the robust counterpart of the original problem arising from
allowing uncertainties in the data.
For most applications of Linear Optimization problems, the data components are
not known exactly. In these cases of data uncertainties the real values are often
estimated or approximated. While some data are simply not known exactly, other
data uncertainties arise from the fact that they cannot be measured or implemented
exactly enough to describe the problem sufficiently. In various applications of linear
optimization problems with very small uncertainties around 1% the deviation from
the real values are mostly ignored and the problems are solved as in a case with
no uncertainty. This method is used with the belief that small changes in the data
do not influence the feasibility or the optimality properties of the obtained optimal
solution. But this "good hope" does not always hold true as it can easily be shown
(Example 1.1.1. in [6]).

Definition 2. A general Linear Optimization problem is given by

min
x

{
cTx+ d : Ax ≤ b

}
, (3.1)

where c ∈ Rn and d ∈ R denote the objective while x ∈ Rn represents the vector of
decision variables.

These decision variables can describe various different processes from actions up
to some conditions like temperature or pressure. The matrix A ∈ Rm×n and the
vector b ∈ Rm define the constraints former introduced in (2.1) as F̃ (x, ζ).

Remark 6. For f(x) = c>x+d, ζ = (A, b) , F (x, ζ) = b−Ax and the cone K being
the m−dimensional positive orthant Rm+ in the definition (2.2), we obtain the form
(3.1).
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The variables c, d, A and b might be affected by uncertainties. Therefore an un-
certainty set U was introduced in Section 2.1 that describes and incorporates the
uncertain parameters. The problem does not have a predefined method to be solved
if the uncertainties influence the variables c and/or d of the objective function. In-
stead of handling the linear optimization problem with data uncertainties in c, d, A
and b we usually use the before stated simplification steps (2.5) to get a linear and
uncertainty independent objective function.

Further to mention is, that the constraints of linear optimization problems are
usually written in various forms of equalities and inequalities. Nevertheless, those
can be rewritten equivalently as constraints of the form aTx ≤ b as it is shown
for some cases in the following Section 3.1.1. After this is shown it is sufficient to
assume that all constraints of the original optimization problem are given in the
form of Ax ≤ b.

3.1.1 Equivalent Constraint Representations

An important point to mention is, that the constraints of the uncertain linear op-
timization problem can be given in numerous forms of equalities and inequalities.
Without trouble, these forms can be reformulated to end up with only linear in-
equalities of the same kind. However not all reformulations of the constraints lead
to the same robust counterpart of the nominal problem. Sometimes, the robust
counterpart can become more or less conservative [6] and this might lead to huge
differences in solving the problem or even could induce infeasibility of the robust
counterpart.
Additional to mention is, that slack variables might contradict the first of the three
assumptions (3.1.1) in this section and should therefore be eliminated and avoided
when reformulations are made. In the same sense should state variables, as they
often appear in supply chain problems, be avoided since they might cause a different
robust counterpart.

The legitimate transformations of constraints that lead to equivalent robust coun-
terparts of the nominal optimization problem are called equivalent constraint repre-
sentations.

Definition 3. We call a set X̄ ⊂ Rnx × Rmu an equivalent representation of another
set X ⊂ Rnx if the projection of X̄ onto the space of x-variables is X.
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This can be clarified in the following example: A vector x belongs exactly to a set
X when there exists a another vector u ∈ Rku such that (x, u) ∈ X̄. The set X can
be formally stated as X =

{
x : ∃u : (x, u) ∈ X̄

}
. With the help of this definition

nonlinear inequalities like

|x|+ |y| ≤ 1

can equivalently be represented by the five linear inequality constraints

−u1 ≤ x1 ≤ u1,−u2 ≤ y ≤ u2, u1 + u2 ≤ 1.

In the same manner the single constraint
∑n

j=1 |xj| ≤ 1 can be represented by the
2n+ 1 inequality constraints

−ui ≤ xi ≤ ui, i = 1, . . . , n,
n∑
i=1

ui ≤ 1.

For an arbitrary optimization problem in the general form of

min
x
{f (x) | x fulfills Si, i = 1, 2, . . . ,m} , (3.2)

with a constraint system Si, we can now find an equivalent representation of the
problem with an amended constraint system S̄i by

min
x,y1,...,ym

{
f (x) | (x, yi) fulfills S̄i, i = 1, 2, . . . ,m

}
, (3.3)

with constraints variables (x, yi). If a solution (x, yi) is feasible for (3.3) then the
first component x is also feasible for (3.2) and since the objective is identical they
also have the same value. This implies that also the optimal values are identical.
The main motivation of this equivalent representation is that the new representation
might have wanted additional characteristics. The goal of this paragraph is to find
a representation with finitely many convex constraints instead of a semi-infinite
problem, which finally leads to an explicit convex and computationally tractable
problem. For further information on this refer to [6].
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If we look at a single row of an inequality equation a>x ≤ β from the system of
linear constraints Ax ≤ b with a and β belonging to an uncertainty set U given by

U =

{
[a, β] =

[
a0, β0

]
+

L∑
k=1

pk
[
ak, βk

]
: p ∈ P

}
,

then the equivalent representation for the robust counterpart is given by

{
a>x ≤ β ∀ [a, β] ∈ U

}
.

Before analyzing the structures of robust counterparts for general ellipsoidal un-
certainty sets, two examples with specified uncertainty sets are presented. The
application of the just mentioned steps for two particular cases of perturbation sets
P , are shown in the following examples.
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Example 1. With an interval uncertain perturbation set in the form of the unit
box given by P =

{
p ∈ RL : ‖p‖∞ ≤ 1

}
, the robust counterpart can equivalently be

represented by inequality constraints:

a>x ≤ β, ∀[a, β] ∈ U

⇔
[
a0
]>
x+

L∑
l=1

pl
[
al
]>
x ≤ β0 +

L∑
l=1

plβ
l, ∀p : ‖p‖∞ ≤ 1

⇔
L∑
l=1

pl
[
al
]>
x−

L∑
l=1

plβ
l ≤ −

[
a0
]>
x+ β0, ∀p : |pl| ≤ 1, l = 1, . . . , L

⇔
L∑
l=1

pl(
[
al
]>
x− βl) ≤ −

[
a0
]>
x+ β0, ∀p : |pl| ≤ 1, l = 1, . . . , L

⇔ max
−1≤pl≤1

L∑
l=1

pl(
[
al
]>
x− βl) ≤ −

[
a0
]>
x+ β0

⇔
L∑
l=1

|
[
al
]>
x− βl| ≤ β0 −

[
a0
]>
x

The last line can equivalently be represented by the 2L+ 1 inequality constraints

−ul ≤
[
al
]>
x− βl ≤ ul for l = 1, 2, . . . , L, and

L∑
l=1

ul +
[
a0
]>
x ≤ β0,

as shown previously in this section.
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Example 2. Suppose in the following example that the perturbation has the form
of a centred ball with radius r and is represented by the set P =

{
p ∈ RL : ‖p‖2 ≤ r

}
.

For this structure the reformulation to a problem with convex constraints looks as
follows:

a>x ≤ b, ∀[a, b] ∈ U

⇔
[
a0
]>
x+

L∑
l=1

pl
[
al
]>
x ≤ b0 +

L∑
l=1

plb
l, ∀p : ‖p‖2 ≤ r

⇔
L∑
l=1

pl
[
al
]>
x−

L∑
l=1

plb
l ≤ −

[
a0
]>
x+ b0, ∀p : ‖p‖2 ≤ r

⇔
L∑
l=1

pl(
[
al
]>
x− bl) ≤ −

[
a0
]>
x+ b0, ∀p : ‖p‖2 ≤ r

⇔max
‖p‖2≤r

L∑
l=1

pl(
[
al
]>
x− bl) ≤ −

[
a0
]>
x+ b0

⇔r

√√√√ L∑
l=1

(
[al]> x− bl

)2

≤ b0 −
[
a0
]>
x

⇔
[
a0
]>
x− b0 + r

√√√√ L∑
l=1

(
[al]> x− bl

)2

≤ 0.

The last line states a conic quadratic inequality which is also a tractable convex
constraint.
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Definition 4. The definition of an uncertain linear optimization problem in general
is given by the set {

min
x

{
cTx+ d : Ax ≤ b

}}
(c,d,A,b)∈U

(3.4)

of linear optimization problems where the data variables take values in the uncer-
tainty set U ⊂ R(m+1)×(n+1).

Without applying the simplification steps we combine the data from the linear
programming problem (3.1) into a matrix D ∈ Rm+1×n+1 such as

D =

[
cT d

A b

]
.

The uncertainty set is defined as in Section 2.1 and therefore given by

U =


[
cT d

A b

]
︸ ︷︷ ︸

D

=

[
cT0 d0

A0 b0

]
︸ ︷︷ ︸

D0

+
L∑
l=1

pl

[
cTl dl

Al bl

]
︸ ︷︷ ︸

Dl

: p ∈ P ⊂ RL

 . (3.5)

The uncertain data D is separated as explained in (2.4) into a nominal part D0 and
a shift part Dl with a factor pl from a perturbation set P. Without considering the
kind of uncertainties that we are dealing with for different problems, the nominal
part does not change for different realizations of the problem and therefore defines
the major characteristic of the program in question. The shift-part on the other hand
only depends on the possible realizations of the values belonging to the uncertainty
set.
To develop the robust counterpart of an uncertain linear problem like (3.4) three
assumptions are defined to set the basic structure of the framework (for more details
see [6]).
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3.1.1. Assumptions:

1. First, all values in the decision vector x should be specific numerical values
assigned according to the knowledge of the data given at that exact moment.
These values are determined before the actual values are finally known.

2. Second, the choice of the uncertainty set is crucial because the person in charge
is accountable for the obtained results only if the revealed data belongs to the
predefined uncertainty set U .

3. The third assumption is that all constraints of the uncertain linear optimiza-
tion problem must be fulfilled for data realizations belonging to the specified
uncertainty set.

Remark 7. The combination of the second and the third assumption assures a
solution x ∈ Rn of the uncertain linear optimization problem to be robust feasible.
Explicitly, a vector x ∈ Rn is called robust feasible if Ax ≤ b is fulfilled for all
uncertain realizations of c, d, A, b belonging to a specified uncertainty set U .

Remark 8. These assumptions above do not guarantee the uniqueness of a solu-
tion. This instance is taken care of by taking the supremum of the objective function
which represents a "worst-case" scenario for all relevant data from the uncertainty
set. These assumptions give us some important characteristics, concerning the feasi-
bility and the boundedness of the nominal problem, that are required later in Section
3.5.

Now all prerequesites are introduced to define the robust counterpart of the un-
certain linear optimization problem.

3.2 Robust Counterpart of Uncertain Linear

Optimization Problems

Definition 5. The definition of a Robust Counterpart to an uncertain linear prob-
lem is given by

min
x∈Rn

{
sup

(c,d,A,b)∈U

[
cTx+ d

]
: Ax ≤ b, ∀(c, d, A, b) ∈ U

}
. (3.6)
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As already mentioned in (2.5) we can consider an objective function independent
of the data uncertainties and without a shift term d. Therefore, also the robust
counterpart simplifies to

min
x∈Rn

{
sup

(A,b)∈U

[
cTx
]

: Ax ≤ b ∀(A, b) ∈ U

}
. (3.7)

In order to develop a consistent uncertainty set that is convex and closed, it is nec-
essary to show that the constraints of an uncertain linear optimization problem can
be interpreted constraint-wise. Since the objective function can be taken as certain,
the uncertainty set is solely defined by the single rows of the constraints. Already
works in 1973 [19] considered the column-wise uncertainty dependency which might
be even more conservative since values can take the worst scenario realizations in
all instances. The row constraint-wise version incorporates the more realistic as-
sumption that not all worst case scenarios can be realized at the same time. Let ai
denote the i-th row of the matrix A while bi represents the i-th entry of the vector
b, it follows:

(Ax)i ≤ bi ⇒ aix ≤ bi.

This yields for the robust counterpart

aix ≤ bi ∀[ai; bi] ∈ Ui,

with Ui := {[ai; bi] : [A; b] ∈ U} being a projection of U . Let now x̄ be a robust
feasible solution to the i-th constraint aix ≤ bi, then x̄ is also robust feasible if
the uncertainty set Ui is replaced by its convex hull conv(Ui). If we have [âi; b̂i] ∈
conv(Ui) then there exists a linear combination

∑J
j=1 λj[aj,i; bj,i] with [aj,i; bj,i] ∈ Ui,

λj ≥ 0 and
∑J

j=1 λj = 1 such that [âi; b̂i] =
∑J

j=1 λj[aj,i; bj,i]. With this structure we
can easily prove that the i-th constraint also holds for the convex uncertainty set:

âix̄ =
J∑
j=1

λjaj,ix̄ ≤
J∑
j=1

λjbj,i = b̂i.

Therefore we can assume that the given uncertainty set of an uncertain linear opti-
mization problem is convex. With a similar argumentation it can be shown that the
set of robust feasible solutions remains unchanged if the uncertainty set is replaced
by its closure. These properties let us rewrite the uncertainty set for a robust coun-
terpart of an uncertain linear optimization problem from (3.5) as the direct product
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of convex and closed uncertainty sets defined by the row-wise constraints:

U = U1 × U2 × . . .Um where Ui =

{
[a0
i ; b

0
i ] +

Li∑
l=1

pl[a
l
i; b

l
i] : p ∈ P

}
(3.8)

for a convex and closed perturbation set P and 1 ≤ i ≤ m. The individual uncer-
tainty sets are solely defined by the single row-constraints and have no dependencies
with each other.

Now the solvability question arises: ’Are general robust counterparts tractable?’
It is not clear from the beginning that the robust counterpart of an uncertain lin-
ear optimization problem is solvable. In general the robust counterpart might have
infinitely many constraints and can be NP-hard to solve as shown below (Example
1.2.7 in [6]):

Let the constraints of an uncertain linear program be given by {‖Ax− a‖1 ≤ 1}[A,a]∈U

where the uncertainty only influences the vector a while the matrix A is certain.1

The vector a is characterized by the perturbations in a: {a = Bζ : ‖ζ‖∞ ≤ 1} for a
positive semidefinite matrix B.2 This restricts the perturbations to be in the unit
box. Verifying if x = 0 is robust feasible is equivalent to analyzing if ‖Bζ‖1 ≤ 1

holds whenever ‖ζ‖∞ ≤ 1. With the fact that ‖z‖1 = max
‖α‖∞≤1

α>z it follows that the

problem can be rewritten to

max
α,ζ

{
α>Bζ : ‖α‖∞ ≤ 1, ‖ζ‖∞ ≤ 1

}
≤ 1.

By using the Cauchy-Schwarz inequality

α>Bζ =
(√

Bα
)> (√

Bζ
)
≤
∥∥∥√Bα∥∥∥

2

∥∥∥√Bζ∥∥∥
2

≤ max
‖α‖2≤1

√
α>Bα max

‖ζ‖2≤1

√
ζ>Bζ = max

‖ζ‖2≤1
ζ>Bζ

and α equals ζ without loss of generality for a positive semidefinite matrix B, with
its symmetric square-roots matrix.

To sum up the above, analyzing if x = 0 is a robust feasible solution for the
program with the linear inequality is analog to checking if the maximum, with ζ

belonging to the unit box, of the nonnegative quadratic form ζ>Bζ is smaller than

1 Where ‖·‖1 states the ’Taxicab/Manhattan’ norm: ‖x‖1 =
∑n

i=1 |xi|.
2The ‖·‖∞ states the ’infinity/maximum’ norm: ‖x‖∞ = maxi=1,...,n |xi|.
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one. This problem is well known as ’max-cut problem’ and is NP-hard to solve [15].
Therefore, also our problem of interest is NP-hard to solve.
So the answer to the above question is ’No’ in most cases, but some restrictions
on the uncertainty sets lead to tractable robust counterparts for linear optimization
problems with uncertainties. This specifications are in the focus of the next section.

3.3 Tractability of Robust Counterparts

The general robust counterpart of a linear optimization problem with uncertainties
can be reformulated to

min
{
cTx : x ∈ GU

}
, for GU = {x : Ax ≤ b, ∀[A; b] ∈ U}

with GU being closed and convex as shown in the previous section. Without re-
stricting the uncertainty set to be of ellipsoidal structure we look at some properties.
Various works (e.g. [14]) show that an efficient separation oracle is sufficient for a
linear objective function to be efficiently minimized over a closed and convex set. An
efficient separation oracle for a given set G ⊂ Rn states for an input vector y ∈ Rn

if the vector y belongs to the set G or not. In the case that y does not lie in G the
separation oracle returns a separator s>y ∈ Rn for G and y like e.g. syy > sup

x∈G
{syx}.

With this observation the tractability question for the robust counterpart of a linear
optimization problem changes to the possible geometrical forms of uncertainty sets U
that have an efficient separation oracle. To simplify the notation we reformulate the
uncertainty set and the notation of the problem from U(x) = {Ax ≤ b : [A; b] ∈ U}
to

U(x) =
{
Ax ≥ 0 : A ∈ U , f>x = 1

}
.

Remark 9. For reasons of simplicity the constraints are often reformulated as
Ax ≥ 0. This formulation is obtained by defining c := (c, 0)> , A := (−A, b)> and
x := (x, 1)> in the above definition (3.1) of a linear optimization problem.

This notational convention is solely introduced for a simpler representation and
makes reformulations more understandable and convenient as seen in Section 3.5.
Notable for the following is that the earlier stated (in 2.1) cone in this particular
case of linear optimization problems is the positive orthant Rm+ .
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It is shown in the following that instead of looking for an efficient separation or-
acle we can look for an efficient inclusion oracle. The latter one should report for
an input vector y ∈ Rn if the convex set U(y) = {Ay : A ∈ U} is a subset of the
nonnegative orthant Rm+ . If it is not a subset of the nonnegative orthant Rm+ a ma-
trix Ay ∈ U is returned as separator like in the case before, such that Ayy does not
belong to Rm+ .
Now, for any given vector x ∈ Rn combined with an efficient inclusion oracle we can
construct an efficient separation oracle as follows:
The simple condition f>x = 1 is tested first. If this constraint does not hold then ob-
viously x does not belong to the also adaptedGU =

{
x : Ax ≥ 0, ∀[A] ∈ U , f>x = 1

}
and a separator for x and GU is given by f in case f ∗ x− 1 < 0 (or respectively −f
in case of , f>x− 1 > 0).
For the case when f>x = 1 holds true we have to evaluate if U(x) is a subset of Rm+ .
In the case of being a subset it follows immediately that x belongs to GU , but oth-
erwise a separator matrix Ax ∈ U is required. In the case of U(x) not being a subset
of Rm+ there exists a matrix Ax ∈ U with Axx not belonging to Rm+ . This means in
particular that at least one value is non-positive. Without loss of generality let this
be the j-th value ((Axx)j < 0). Then a separator is given by s>x := −e>j Ax for an
input value y ∈ Rn, the matrix Ax ∈ U from above and e>j denoting the j-th row
of the m-dimensional unit matrix. For y ∈ GU it follows that −e>j Axy︸︷︷︸

≥0

≤ 0 holds

because Ay ∈ Rm+ , for all A ∈ U and in particular for Ax. Contrary, for the point x
it holds that sxx = −e>j Axx︸︷︷︸

<0

> 0 , and therefore sx is a valid separator for x and GU .

It can be concluded from [3] and [14] that the theoretical tractability of an un-
certainty set U is equivalent to finding an efficient separation/inclusion oracle for
this set. This oracle can always be found for an uncertainty set in the form of a
convex hull for a finite set of possible realizations A1, A2, . . . , AL. Any given vector
x ∈ Rn can be tested for Aix being greater or equal to zero for i = 1, . . . , L and
therefore also the convex hull conv(A1x,A2x, . . . , ALx) is a subset of Rm+ . In case
Ajx < 0 for j ∈ {1, 2, . . . , L} then Aj can be used as separator and an efficient
separation oracle is given. Additionally in this particular case the "Tractability
Principle" from [3] implies an efficient separation oracle for the formerly defined set
GU and this further implies the computational tractability of the robust counterpart
of a linear optimization problem with an uncertainty set of this kind.
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To sketch this statement for a convex uncertainty set, like it is the case for an
ellipsoidal uncertainty set, we have to analyse if U(x) ⊂ Rm+ holds true for a given
vector x ∈ Rn. This is equivalent to solving the convex programs

min{e>i Ax : A ∈ U}, i = 1, 2, . . . ,m. (3.9)

Now similar to the "finite realization set-case" from before, it follows that if all opti-
mal values are greater or equal to zero, then the set U(x) is a subset of Rm+ . If this is
not the case then at least one optimal value is negative. Without loss of generality
let this again be the j-th optimal value of the convex program (3.9) that is smaller
than zero. So a feasible solution for Aj that has a negative objective value works as
a separator and implies an efficient separation oracle.
While the "Tractability Principle" in [3] states the computational tractability for all
robust counterparts of linear optimization problems with "reasonable closed convex
uncertainty sets" there might be a crucial difference to the practical solvability. Es-
pecially the enormous dimensions of linear programs conducted from applications
require a justified simple structure on the uncertainty sets to achieve practical solv-
ability of the robust counterparts.

In this and the following chapters we stick to ellipsoidal uncertainty sets. These
sets have various benefits such as a simple geometrical and structural representation
as well as the necessary flexibility to model different characteristics on the data. The
term "ellipsoidal uncertainty" already appeared in [19] in 1973 and was revisited
thereafter in many works dealing with Robust Optimization.

Motivated by various works (e.g. [3]) it is shown in the following section that
the robust counterpart of a linear program with ellipsoidal uncertainties is a conic
quadratic program. These conic quadratic programs can be efficiently solved in prac-
tice for problems incorporating enormous amounts of data with the developments
on interior point algorithms and other methods.

3.4 Uncertainty Sets in Linear Optimization

Problems

In the case of linear problems the following definition of an ellipsoid in RK from
Section 2.1 is used:

E = E (Π, Q) = {Π(b) : ‖Qb‖2 ≤ 1}
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with Π : b 7→ Π(b) being the certain affine embedding of RL into RK and Q ∈ RM×L

being a matrix replacing the additional subspace in the previous Definition (2.3).
To recall, we can cover the three required cases of normal ellipsoids, flat ellipsoids
and ellipsoidal cylinders with properly chosen dimensions of the affine embedding
and the right matrix Q.
A regular K-dimensional ellipsoid is represented by a nonsingular matrix Q and the
matching dimensions L = K = M .
If a part of the data is certain or known the relevant characteristics can be incor-
porated by the usage of flat ellipsoids as uncertainty sets. Flat ellipsoids can be
portrayed by the above definition if Q is nonsingular and the corresponding dimen-
sions of the affine embedding are of the order L = M and M ≤ K.
And finally, ellipsoidal cylinders as uncertainty sets that connect ellipsoidal or in-
terval restrictions on the data with the optimization problem. These are taken care
of by the above definition if a singular matrix Q is given.
The three conditions in (2.1) for an ellipsoidal uncertainty set can be slightly restated
for the case of linear problems with uncertainties as:

1. U can be written as finitely many intersections of ellipsoids with explicitly
given affine transformations Πk and matrices Qk such as U =

⋂L
k=0 E(Πk, Qk).

2. The uncertainty set U is bounded.

3. All ellipsoids E(Πk, Qk) for k ≤ L share at least one data representative.

The importance of these assumptions becomes clear in the next sections.

3.5 Explicit Form of Robust Counterpart

To derive the representation of the robust counterpart for an uncertain linear prob-
lem we assume that the uncertainty set is given as stated above (3.4). While
problems might be given in various forms for numerous applications they can be
reformulated to determine the tractability of a problem.

Remark 10. Not all different formulations of a problem lead to the same robust
counterpart as shown in the ’equivalent constraint representations’ Section 3.1.1.

In the following section, we take a look at the structure of the robust counterpart
when the uncertainty set U is given as a simple ellipsoid or as direct product of
ellipsoids.
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3.5.1 Ellipsoidal and Constraint-wise Uncertainty Set

First we consider the case that the uncertainty U is a standard ellipsoid of the form
U =

{
A = D0 +

∑k
j=1 bjD

j | ‖b‖2 ≤ 1
}

with Dj ∈ Rm×n, j = 1, . . . , k. Here Π(B)

is given by Π(B) = D0 +
∑k

j=1 bjD
j and is an affine embedding of a k-dimensional

standard ball B = {b : ‖b‖2 ≤ 1}. We define
(
rji
)>

to be the i-th row of Dj for
j = 1, 2, . . . , k and further set the matrix Ri of the dimension n × k to have these
rji as columns. In this way the matrix is given by Ri =

(
r1
i , r

2
i , . . . , r

k
i

)
. With the

above notation from [3] the i-th row of the affine embedding Π(B) can be simplified
to (r0

i +Rib)
> as shown below.

The data matrix that defines the uncertainty set is notated by

D0 =


d0

11 · · · d0
1n

... . . . ...
d0
m1 · · · d0

mn

 and Dj =


dj11 · · · dj1n
... . . . ...
djm1 · · · djmn

 ∈ Rm×n for j = 1, 2, . . . , k.

The affine embedding Π(B) and the i-th row thereof Π(B)i are given by

Π(B) = Π(b : ‖b‖2 ≤ 1) = {D0 + b1D
1 + b2D

2 + · · ·+ bkD
k} with ‖b‖2 ≤ 1, and

Π(B)i = {
(
d0
i1, · · · , d0

in

)
+ b1

(
d1
i1, · · · , d1

in

)
+ . . .+

(
dki1, · · · , pkin

)
=
(
d0
i1 + b1d

1
i1 + . . .+ bkd

k
i1, · · · , d0

in + b1d
1
i1 + . . .+ bkd

k
in

)
}, with ‖b‖2 ≤ 1,

for i ∈ {1, 2, . . . ,m} .

Now from the definition of rji :=
(
dji1, · · · , d

j
in

)
for j = 1, 2, . . . , k and Ri given by

Ri :=
(
r1
i , r

2
i , . . . , r

k
i

)
=


d1
i1 d2

i1 · · · dki1
...

... . . . ...,
d1
in d2

in · · · dkin

 for i = 1, 2, . . . ,m,

follows that an element of Π(B)i can be written as (r0
i +Rib)

> for i = 1, . . . n:

r0
i +Rib =


d0
i1
...
d0
in

+


d1
i1 d2

i1 · · · dki1
...

... . . . ...
d1
in d2

in · · · dkin




b1

...
bk

 = (Π(B)i)
>

Towards getting the explicit form of the robust counterpart a definition for a
robust feasible vector with the above stated notations and structures is required.
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Definition 6. A vector x ∈ Rn is called robust feasible iff f>x = 1 holds true and

∀i ∈ {1, 2, . . . ,m}
(
r0
i

)>
x+ (Rib)

>x ≥ 0, ∀ b : ‖b‖2 ≤ 1.

This is exactly the case when f>x = 1 and

min
b:‖b‖2≤1

{(
r0
i

)>
x+ (Rib)

>x
}

= min
b:‖b‖2≤1

{(
r0
i

)>
x+ bTR>i x

}
=
(
r0
i

)>
x−

∥∥R>i x∥∥2
≥ 0, for i = 1, 2, . . . ,m.

The above statement is true iff min
‖b‖2≤1

{b>R>i x} = −
∥∥R>x∥∥

2
holds and this can easily

be shown with the help of the Cauchy-Schwarz inequality:

b>R>i x︸︷︷︸
=:r

≥ −
∥∥b>∥∥

2
‖r‖2 ≥ −1 ‖r‖2 = −‖r‖2 , for ‖b‖2 ≤ 1.

The validity of the equality sign is shown by the two following case distinctions.
(1) The first case for r = 0 is trivial because both sides become zero.
(2) For the r 6= 0 case, we define b := − r

‖r‖2
and therefore ‖b‖2 = 1 holds always

true with

bT r = − r>

‖r‖2

r = −‖r‖
2
2

‖r‖2

= −‖r‖2 .

And finally, the robust counterpart of a linear program with a simple ellipsoid as
uncertainty set is given as a conic quadratic program of the form

min
x∈Rn

{
c>x | r0

i x ≥
∥∥R>i x∥∥2

; i = 1, 2, . . . ,m; f>x = 1
}
. (3.10)

or again stated in terms of D0 and Dj from U =
{
A = D0 +

∑k
j=1 bjD

j | bT b ≤ 1
}

as

min
x∈Rn


c>x |


d0
i1
...
d0
in


>

x1

...
xn

 ≥
√√√√√√√√√

k∑
j=1




d1
i,1 d1

i,2 · · · d1
i,n

d2
i,1 d2

i,2 · · · d2
i,n

...
... . . . ...

dmi,1 dmi,2 · · · dmi,n

x


2

,

,for i = 1, 2, . . . ,m; and f>x = 1.

If the uncertainty set U is given as the direct product U = U1 × U2 × . . . × Um,
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where the single uncertainty sets Ui for i = 1, 2, . . . ,m represent the uncertainty set
of each row and they all are of ellipsoidal structure as above, the robust counterpart
turns out to be again a conic quadratic program.

Let the separated uncertainty sets be given by

Ui =
{
A | A>êi = r0

i +Rib
i with bi ∈ Rmi and

∥∥bi∥∥
2
≤ 1; i = 1, 2, . . . ,m

}
with êi denoting the i-th unit vector, r>i ∈ Rn and Ri ∈ Rn×mi .

Analogue to the simple ellipsoid case we get as robust counterpart for the uncertain
linear problem

min
x∈Rn

{
cTx |

[
r0
i

]>
x ≥

∥∥RT
i x
∥∥

2
; i = 1, 2, . . . ,m; f>x = 1

}
.

3.5.2 General ellipsoidal Uncertainty set

Even if the uncertainty set has a more general ellipsoidal form, the robust coun-
terpart turns out to be a conic quadratic program (see [3] (Theorem 3.1)). The
importance of this finding is given by the ’a priori-tractability’ since such problems
can be solved efficiently up to a huge data size. Due to the wide variety in appli-
cations of such problems and the therefore accompanied interest, the theorem and
the proof is shown in detail below.

Theorem 3.1. The robust counterpart of a linear optimization problem{
min
x

{
cTx : Ax ≥ 0

}}
A∈U

(3.11)

for a given uncertainty set of ellipsoidal or ∩-ellipsoidal structure is a conic quadratic
program of the form

min
x∈Rn

{
cTx | aTi x+ αi ≥ ‖Bix+ bi‖2 , i = 1, 2, . . . ,M

}
(3.12)

with ai, bi being certain vectors, αi being a fixed value and Bi representing a certain
matrix.

Remark 11. The terms of this conic quadratic program are defined by the struc-
tural parameters of the nominal linear problem as well as the characteristics of the
uncertainty set. As a result it follows that the conic quadratic program is given by
the affine embeddings Πk and the attendant matrices Qk.
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Proof: A general ellipsoidal uncertainty set is given by

U =
L⋂
k=1

E(Πk, Qk) =
L⋂
k=1

{
Πk

(
bk
)
|
∥∥Qkb

k
∥∥

2
≤ 1
}
.

Similar to the simple ellipsoid case and the constraint wise ellipsoid case earlier, we
look at a robust feasible point x ∈ Rn. A solution x with f>x = 1 is robust feasible
iff, forall i ∈ {1, 2, . . .} the ideal/minimum value of the program, which is defined by
the inner product of the i-th row of Π0 (b0) and x, conditioned on Πk

(
bk
)

= Π0 (b0)

and
∥∥Qkb

k
∥∥

2
≤ 1 for k = 1, 2, . . . , L, is nonnegative in every coordinate. The terms

bk simply state the design variables for k ∈ {1, 2, . . . , L}. The feasible solution set
of this program is the definition of the uncertainty set U with Π0(b0) = Πk(b

k) for
k = 1, 2, . . . , L. Let ’OP0’ be the above optimization problem given by

minimize the i-th entry of Π0(b0)x

s.t. Πk(b
k) = Π0(b0) for k = 1, 2, . . . , L, and ‖Qkbk‖2 ≤ 1 for k = 0, 1, . . . , L.

(3.13)

As stated earlier in this section, OP0 is a quadratic optimization program and
therefore can be written in the form

min cy + d s.t.

Ry = r and ‖Aky − bk‖2 ≤ cky − dk for k = 0, 1, . . . , L,
(3.14)

with the decision vector y and the restrictions defined by the matrices Ak, the vectors
bk, c, ck and the variables dk and d for k ∈ {0, 1, . . . L}. Nestrov, Yu and Nemirovski
show in their work [16] in 1994 (Thm.4.2.1) that the dual of a conic quadratic
program like (3.14) is also a conic quadratic problem and in the particular case of
(3.14) the dual program is then represented by

max r>λ+
L∑
k=0

[
dkνk + b>k µk

]
+ d s.t.

R>λ+
L∑
k=1

[
ckνk + A>k µk

]
= c> and ‖µk‖2 ≤ νk for k = 0, 1, . . . , L.

(3.15)

where λ, µk and νk represent the design variables for k = 0, 1 . . . L. Due to the
boundedness of (3.14) from below in addition to the feasibility of the problem, the
dual problem is also solvable and shares the optimal values with the primal problem.
Since the nominal problem (3.13) only depends affinely on the decision variable x in
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the objective and the conic quadratic problem (3.14) is the same as (3.13) for some
row i, the dual conic quadratic problem (3.15) can be written as

max
[
r(i)
]>
λ(i) +

L∑
k=0

[
d

(i)
k ν

(i)
k +

[
b

(i)
k

]>
µ

(i)
k

]
+ d(i) (x) s.t.

[
R(i)

]>
λ(i) +

L∑
k=1

[
c

(i)
k ν

(i)
k +

[
A

(i)
k

]>
µ

(i)
k

]
=
[
c(i)
]>

(x) and∥∥∥µ(i)
k

∥∥∥
2
≤ ν

(i)
k for k = 0, 1, . . . , L.

(3.16)

As before, λ(i), µ
(i)
k and ν(i)

k are the design variables while d(i) (x) and c(i) (x) are affine
functions depending on x. The terms r(i) as well as b(i)

k , c
(i)
k , d

(i)
k for k = 1, 2, . . . , L

and the matrices A(i)
l for k = 1, 2, . . . , L and R(i) are independent of the variable x.

These independent terms are solely defined by the affine mappings Πk (·) and Qk (·).
The earlier mentioned (3.1.1) characteristics of the assumptions play an important
role here, since they ensure the feasibility and the boundedness from below of the
problem (3.13) which imply that the problem (3.13) has the same optimal value as
the problem (3.16).
Bringing all this together states that a vector x ∈ Rn can be called robust feasible for
a given uncertainty set U iff the following constraints are fulfilled ∀i ∈ {1, 2, . . . ,m}:

f>x = 1[
r(i)
]>
λ(i) +

L∑
k=0

[
d

(i)
k ν

(i)
k +

[
b

(i)
k

]>
µ

(i)
k

]
+ d(i) (x) ≥ 0

[
R(i)

]>
λ(i) +

L∑
k=1

[
c

(i)
k ν

(i)
k +

[
A

(i)
k

]>
µ

(i)
k

]
=
[
c(i)
]>

(x)∥∥∥µ(i)
k

∥∥∥
2
≤ ν

(i)
k for k = 0, 1, . . . , L

(3.17)

and given design variables λ(i), µ
(i)
k and ν(i)

k for k = 0, 1, . . . , L. Now we have that the
robust counterpart of the nominal problem is equivalent to the program minimizing
c̄>x such that x, λ(i), µ

(i)
k and ν

(i)
k for k = 0, 1, . . . , L satisfy the conditions (3.17).

This problem is of conic quadratic form where the variables are defined by the affine
functions Πk (·) and Qk (·) . �
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4 Robust Conic Optimization

Like in the previous chapter, we are dealing now with conic optimization problems
that are influenced by data uncertainties. The main difference to Chapter 3 is that
we are not restricting the cone to be the positive orthant anymore and allow the
constraint functions, that are influenced by the choice of the uncertainty set, to be
given by a more complex (non-linear) structure. To recall, the initial problem of
interest is {

min
x

{
cTx+ d : F (x, ζ) ∈ K

}}
, (4.1)

with K ∈ RN being a nonempty pointed and closed convex cone. The data uncer-
tainties might influence the constraint functions represented by F (·, ·) as well as the
variables of the objective function c ∈ Rn and d ∈ R.
Recall: With the simplification steps from 2.2 we can again assume that the objec-
tive function is linear and certain without a shift part. Now the uncertain conic
problem can be stated similar to the linear case by{

min
x

{
cTx : F (x, ζ) ∈ K : ζ ∈ U

}}
, (4.2)

with U denoting the uncertainty set. Also in this case the robust conic optimization
problem can be represented by the robust counterpart as{

min
x

{
cTx : F (x, ζ) ∈ K : ∀ζ ∈ U

}}
. (4.3)

A general problem in the form of such a robust counterpart seems again not practi-
cal at all since the resulting problem states now a semi-infinite conic problem. The
required computational effort looks overwhelming to be useful for practical applica-
tions. Unlike as in the previous chapter the cone K as well as the constraint function
F (·, ·) are allowed to be of a more intricate structure than just the positive orthant
and linear functions. With a similar approach as in the linear case, we are able to
obtain some information when putting restrictions on the cone K, the uncertainty
set U and look at particular (non-linear) functions F (·, ·).
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In order to work with such kind of problems and create a convenient framework
some assumptions and restrictions are introduced in the following, before the focus
is on optimization problems with specified constraint functions and perturbation
sets.
The following assumptions imply convexity for our problem in focus.

Assumptions:

1. The cone K must be closed, convex and nonempty. Remark: This was obvi-
ously fulfilled in the case of the uncertain linear optimization problems since
the cone was the positive orthant Rm+ .

2. The ’decision vector’ x belongs to a set X that is also closed, convex and
nonempty.

3. Also the uncertainty set U is closed, convex and nonempty.

4. The constraint function F (·, ·) is a continuously differentiable function on its
domain (X× U) of definition and isK-concave in the first component (x ∈ X).

Definition 7. A function F (·, ·) is called K-concave in the first component if

∀ (x1, x2 ∈ X, ζ ∈ U) & ∀ (λ ∈ [0, 1]) :

F (λx1 + (1− λ)x2, ζ) ≥K λF (x1, ζ) + (1− λ)F (x2, ζ) ,

with a ≥K b meaning that a− b belongs to K.

Remark 12. The definition of a function beingK-convave in the second component
is by analogy.

These assumptions ensure the problem of interest to be a convex problem for ζ
belonging to the specified uncertainty set U . As in the previous chapter we want
the uncertainty set to be closed and convex. As we see next, the robust counterpart
of a convex problem with uncertainties does not change when the uncertainty set is
replaced by its closure or its convex hull, iff the constraint function is K-concave in
the second component.

Remark 13. If the constraint function is K-concave in the second component then
due to the last of the above assumptions it follows immediately that we talk about
a function that is K-concave in both components.
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Obviously the robust counterpart does not change when we replace U by its closure
since this is already taken care of by the third assumption. For the replacement of U
by the convex hull, suppose a robust feasible vector x for a data vector ζ ∈ conv(U)

is given. This vector ζ can also be written as a convex combination by
∑k

i=1 λiζi

with ζi ∈ U for i = 1, 2, . . . , k. So
∑k

i=1 λiF (x, ζi) ≥K 0 holds true and since F (·, ·)
is given as a concave function it follows that also F (x, ζ) ≥K

∑k
i=1 λiF (x, ζi) is

true. This in extension implies that F (x, ζ) ≥K 0 and therefore also the robust
counterpart remains equivalent if the uncertainty set is replaced by its convex hull.

Furthermore we say that the uncertainty is an affine uncertainty when the map-
ping F (·, ·) is affine in the second component whenever the values of x belong to
the definition set X.

Remark 14. Not only the linear problems in Chapter 3 but also the quadratic
(and semidefinite problems) in this chapter are given by constraint functions that
are affine in the data component.

Analyzing the structure for the robust counterpart of a convex program with un-
certainties in the data under the above assumptions exhibits that its feasible set is
again a convex and closed set. These assumptions also imply from the feasibility
of the robust counterpart that the nominal uncertainty affected problem of interest
is feasible for all instances. Furthermore, it is clear that the optimal value of the
feasible robust counterpart is at least as great as the optimal value of the convex
uncertain problem for all possible ζ realizations in U . Not only might the optimal
value of the robust counterpart be significantly worse than for the nominal problem
but it might even happen that the initial uncertainty affected optimization problem
is feasible while this is not the case for the attendant robust counterpart. It turns
out in the following that this difference in the optimal values does not occur if the
uncertainty is considered to be ’constraint-wise’ and affine.

A uncertainty is called to be contstraint-wise in this chapter when the cone is given
by the positive orthant K = Rm

+ and the constraints are given by independent
functions as follows

F (x, ζ) =


f1 (x, ζ)

f2 (x, ζ)
...

fm (x, ζ)

with fi (x, ζ) ≥ 0 for i = 1, 2, . . . ,m.
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Accordingly, the robust counterpart can be stated by the individual functions as

min
x

{
c>x : x ∈ X, fi (x, ζ) ≥ 0, ∀ i = 1, 2, . . . ,m, ∀ ζ ∈ U

}
.

Instead of looking on one single data vector ζ the robust counterpart stays the same
when we assume that there are disconnected data vectors for every constraint func-
tion. This leads to a reinterpretation of the uncertainty set U by simply being the
direct product of the individual uncertainty sets Ui for i = 1, 2, . . . ,m. The sepa-
rated uncertainty set Ui is again closed and convex as well as defined on the specified
area for its particular ζi for each i = 1, 2, . . . ,m.

This chapter often considers positive definite and positive semi-definite matrices
via the Schur-complement and is therefore shortly recalled.

Definition 8. The Schur-complement goes back to Issai Schur and gives the follow-
ing statement about block-matrices (also see [12]). Let a matrix M ∈ R(m+n)×(m+n)

be given by four sub-matrices A ∈ Rm×m, B ∈ Rm×n, C ∈ Rn×m and D ∈ Rn×n in the
following way:

M =

(
A B

C D

)
.

If A is invertible then the Schur-complement of M with respect to A is given by

M/A := D − CA−1B.

Respectively the Schur-complement of the (invertible) matrix D in M is given by

M/D := A− CD−1B.

Remark 15. Furthermore, a symmetric matrix M with the above structure is
positive (semi-)definite if and only if the matrix A and the Schur-complement M/A

is positive (semi-)definite, provided that A is invertible.

We continue this chapter by looking at specified cases of robust conic problems
and start with quadratic optimization problems that incorporate not entirely certain
data.
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4.1 Robust Quadratic Optimization

These problems are of special interest since they often occur when a distance function
is minimized in real world applications. An optimization problem of the form

min
x

1

2
x>Qx+c>x+ d such that (4.4)

Ax ≤ a and Bx = b (4.5)

for a symmetric matrix Q ∈ S ⊂ Rn×n, real matrices A,B ∈ Rm×n ,vectors a, b ∈ Rm

and x, c ∈ Rn, and the real variable d, is called Quadratic Optimization Problem.

Remark 16. Note that if the symmetric matrix Q is the zero matrix we get back
to a linear problem case. Thus, the statements and observations in this chapter also
stay true for the special case of linear optimization problems.

Remark 17. Every quadratic problem of the above form (4.4) with Q positive-
definite can be reduced to a second order cone program. With the usual simplifica-
tion trick (2.5) we get a linear objective function as well as an additional constraint
of the above quadratic form t ≥ x>Qx. Since every positive definite matrix Q can
be written as product of two matrices Q = A>A with the Cholesky-factorization we
can reformulate the term as

x>Qx = x>A>Ax = ‖Ax‖2
2 .

Now lets say a vector [Ax; t; t+ 1] belongs to the second order cone Ln+2. Explicitly
written is this the case when

t+ 1 ≥
√
‖Ax‖2

2 + t2.

Due to the positivity of both sides, squaring them is a monotone transformation and
by further rearrangements of the terms we obtain the second order cone problem

t ≥ ‖Ax‖
2
2

2
− 1

2
.

The fact that we are looking at a minimization problem let us ignore the addition/subtraction-
term of a constant in this inequality, since it does not influence the solution but only
the optimal value of the objective.
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We have seen now that every convex quadratic optimization problem can be stated
as a second order cone problem. On the other hand, not every second order cone
problem is a quadratic optimization problem, e.g. the following quadratically con-
strained quadratic optimization problems.

Definition 9. An optimization problem is called Quadratically Constrained Quadratic
Optimization Problem if it can be stated as

min
x

1

2
x>Qx+c>x+ d such that

1

2
x>Qix+c>i x+ di ≤ 0, i = 1, 2, . . . ,m,

Bx = b,

(4.6)

with Qi being symmetric matrices, ci, di being vectors for i = 1, 2, . . . ,m.

Now we assume that the data elements are partly or entirely uncertain. As men-
tioned in the previous chapters, equality constraints should be avoided or reformu-
lated to inequalities. Suppose that by equivalent constraint representations and the
use of the simplification steps, we end up with the following representation.
In the following, let a Quadratically Constrained Convex Optimization Problem with
uncertainties in the data be given by the second order cone program

min
x

{
cTx : −xT [Ai]TAix+ 2[bi]Tx+ γi ≥ 0

}
(4.7)

with i = 1, 2, . . . ,m and (A1, b1, γ1;A2, b2, γ2; . . . ;Am, bm, γm) ∈ U . The matrices
Ai are of the dimension li × n. This notation is used to allow comparisions and
extensional readings in [3] without complicated formulation adjustments.

Remark 18. This can be obtained through equation (2.2) by restricting K to be
Rm+ , defining ζ to be (A1, b1, c1;A2, b2, c1; . . . ;Am, bm, cm) with Ai ∈ Rli×n, bi ∈ Rn

and γi ∈ R, and setting F (x, ζ) =


−xT [A1]A1x+ 2 [b1]

T
x+ γ1

−xT [A2]A2x+ 2 [b2]
T
x+ γ2

· · ·
−xT [Am]Amx+ 2 [bm]T x+ γm

.

With this notation we are again able to work with the positive orthant of the ac-
cording dimension as cone K.

In the following section we are looking at the robust counterparts of such quadrat-
ically constrained quadratic optimization problems or alternatively on the robust
counterpart of their second order cone representations.
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4.2 Robust Counterpart of Uncertain Quadratic

Optimization Problems

With the same order of steps as in the linear case chapter we first consider the case
of the uncertainty set to be an ellipsoid and further look at an finite intersection of
ellipsoids as a uncertainty set.

4.2.1 Ellipsoid and Constraint-wise Uncertainty Set

By assuming that the uncertainty set U is a bounded ellipsoid we can define Ui as a
projection of the uncertainty set on the data described by the i− th constraint as:

Ui =

{(
Ai, bi, γi

)
=
(
Ai0, bi0, γio

)
+

k∑
j=1

uj
(
Aij, bij, γij

)
| ‖u‖2 ≤ 1

}
, i = 1, 2, . . . ,m.

(For further details recall the beginning of this chapter and/or [2].)
The robust counterpart for (4.7) does not change if the uncertainty set is given by
the combination of its constraint-wise ellipsoidal set U = U1 × U2 × . . .× Um.
In the following we interpret the inequality sign ‘≥‘ for two matrices A and B as:

A ≥ B implies that A and B are symmetric and A−B is positive semidefinite.

The robust counterpart of (4.7) is given by

min
x

{
cTx s.t. − xTATAx+ 2bTx+ γ ≥ 0 ∀ (A, b, γ) ∈ Ui, i = 1, 2, . . . ,m

}
.

For a fixed i and a separation of the uncertain data into the structure part, that is
certain for all possible data realizations, and the numerical part, that incorporates
the characteristics for the different realizations of the uncertain data, the robust
counterpart is given by

min
x

cTx

s.t. − xT
[
Ai0 +

k∑
j=1

ujA
ij

]T [
Ai0 +

k∑
j=1

ujA
ij

]
x

+ 2

[
bi0 +

k∑
j=1

ujb
ij

]T
x+

[
γi0 +

k∑
j=1

ujγ
ij

]
≥ 0 ∀ (u : ‖u‖2 ≤ 1) .

(4.8)
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The constraint term (4.8) remains the same when it is multiplicated by a positive
term τ 2:

s.t. − τ 2xT

[
Ai0 +

k∑
j=1

ujA
ij

]T [
Ai0 +

k∑
j=1

ujA
ij

]
x

+ τ 22

[
bi0 +

k∑
j=1

ujb
ij

]T
x+ τ 2

[
γi0 +

k∑
j=1

ujγ
ij

]
≥ 0 ∀ (u : ‖u‖2 ≤ 1) .

(4.9)

The following equation (4.10) is obtained by replacing u with û defined by

û =


u

τ
, if τ > 0

0, otherwise

s.t. − xT

τAi0 +
k∑
j=1

τ ûj︸︷︷︸
uj

Aij


T τAi0 +

k∑
j=1

τ ûj︸︷︷︸
uj

Aij

x

+ 2τ

τbi0 +
k∑
j=1

τ ûj︸︷︷︸
uj

bij


T

x+ τ

τγi0 +
k∑
j=1

τ ûj︸︷︷︸
uj

γij

 ≥ 0 ∀ ((u, τ) : ‖û‖2 ≤ 1) .

(4.10)

Remark, that the last term ‖û‖2 ≤ 1 can be written as ‖u‖2 ≤ τ . It is shown in [2]
that (4.10) is an even function in (τ, u) and can therefore be restated as

s.t. − xT
[
τAi0 +

k∑
j=1

ujA
ij

]T [
τAi0 +

k∑
j=1

ujA
ij

]
x

+ 2τ

[
τbi0 +

k∑
j=1

ujb
ij

]T
x+ τ

[
τγi0 +

k∑
j=1

ujγ
ij

]
≥ 0 ∀

(
(u, τ) : ‖u‖2

2 ≤ τ 2
)
.

(4.11)

With the following Lemma 4.1 (for additional information consult [2]) the line to
an existing factor λi ≥ 0 can be drawn. This factor is a required tool to construct
the robust counterpart as an explicit semidefinite problem.
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Lemma 4.1 (S-Lemma). For two symmetric matrices P,Q and with z0 satisfying
z>0 Pz0 > 0 the implication

z>Pz ≥ 0⇒ z>Qz ≥ 0

holds true if and only if there exists a λ ≥ 0 such that Q ≥ λP .

From (4.8) - (4.11), it can be concluded as shown in [2] that the implication

P (τ, u) ≥ 0⇒ Qx
i (τ, u) ≥ 0 (4.12)

holds for

P (τ, u) =τ 2 − u>u ≥ 0,

Qx
i (τ, u) =− xT

[
τAi0 +

k∑
j=1

ujA
ij

]T [
τAi0 +

k∑
j=1

ujA
ij

]
x

+ 2τ

[
τbi0 +

k∑
j=1

ujb
ij

]T
x+ τ

[
τγi0 +

k∑
j=1

ujγ
ij

]
.

We now use for this observation the S-Lemma 4.1 that states for the implication
(4.12) the existence of a factor λi ≥ 0 with

Qx
i (τ, u)− λi

(
τ 2 − u>u

)
≥ 0. (4.13)

Remark 19. The term Qx
i (τ, u) − λi

(
τ 2 − u>u

)
is positive definite. For every

matrix A ∈ Rm×n that is invertible, it follows that A>A is positive definite since
x>A>Ax = ‖Ax‖2

2 ≥ 0 ∀x ∈ Rn with x 6= 0 holds. Furthermore, the term A>A is
symmetric due to the fact that

[
A>A

]>
= A>

[
A>
]>

= A>A is true.

The quadratic term (4.13) can be rewritten as follows

Qx
i (τ, u)− λi

(
τ 2 − u>u

)
=

(
τ

u

)> [
Si(x)−

[
Ri(x)

]>
Ri(x)

]( τ

u

)
− λi

(
τ 2 − u>u

)
where Si(x) ∈ R(k+1)×(k+1) is a symmetric matrix and Ri(x) ∈ Rli×(k+1) is a rect-
angular matrix. Note that the matrices Ri(x) depend affinely on x (see Remark
20) and the product [Ri(x)]

>
Ri(x) is not only positive definite but also symmetric.

Furthermore, is the sum of symmetric matrices again a symmetric matrix and so is
the term given by Si(x) − [Ri(x)]

>
Ri(x). We observe that the Schur-complement
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(see [11]) for the quadratic form of Qx
i (τ, u)− λi

(
τ 2 − u>u

)
is positive semidefinite

for some λi exactly when Si +

(
−λi

λiIk

)
[Ri(x)]

>

Ri(x) Ili


is positive semidefinite. The statements of this section brought together form the
following theorem.

Theorem 4.1. The robust counterpart of a quadratically constrained quadratic prob-
lem, as given in (4.7), with a simple ellipsoid as uncertainty set has the structure of
a semidefinite problem.

Remark 20. Furthermore, if the uncertainty set is of the structure given by the
following two lines

Ui =

{(
Ai, bi, γi

)
=
(
Ai0, bi0, γio

)
+

k∑
j=1

uj
(
Aij, bij, γij

)
|uTu ≤ 1

}
, i = 1, 2, . . . ,m

U = U1 × U2 × . . .× Um,

the semidefinite problem representing the robust counterpart can explicitly be writ-
ten as:

min
x

{
c>x
}

with respect to λi ∈ R for i = 1, 2, . . . ,m s.t.

γi0 + 2x>bi0 − λi γi1

2
+ x>bi1 γi2

2
+ x>bi2 · · · γik

2
+ x>bik [Ai0x]

>

γi1

2
+ x>bi1 λi [Ai1x]

>

γi2

2
+ x>bi2 λi [Ai2x]

>

... . . . ...
γi(k−1)

2
+ x>bi(k−1)

[
Ai(k−1)x

]>
γik

2
+ x>bik λi

[
Aikx

]>
Ai0x Ai1x Ai2x · · · Aikx Ili


≥ 0,

i = 1, 2, . . . ,m,

where Ili is the (li× li) identity matrix. Important to mention is the non-negativity
of λi for i = 1, 2, . . . ,m. This statement becomes clearer in the Section 4.3 as a step
by step derivation for a similar case is shown.
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4.2.2 General Ellipsoidal Uncertainty Set

This section shows the difficulties in finding and solving the explicit robust coun-
terpart when the uncertainty set is given as intersection of ellipsoidal uncertainty
sets with the help of a short example. To show the intractability for the robust
counterpart of a quadratically constrained problem of the form

min
x

{
c>x s.t. − xTATAx+ 2bTx+ γ ≥ 0 ∀ (A, b, γ) ∈ U

}

if the uncertainty set U is given by intersections of ellipsoids, it is sufficient to
consider a simple uncertainty set of the form

U =


ξ = (A, b, γ) |A =


a1 0 · · · 0

0 a2
. . . ...

... . . . . . . 0

0 · · · 0 an

 , b = 0, γ = 1


a∈B

,

with B being a n−dimensional polytope. More specifically, let B ⊂ Rn be a cen-
tralized parallelotope. As mentioned in Section 2.1 polytopes can be expressed by
intersections of ellipsoidal sets. Now the intractability is shown when the feasibility
for a specific solution x = (1, 1, . . . , 1)> ∈ Rn is tested. This task is equivalent to the
proof that the euclidean norm of the variable a is smaller than one for all possible
a ∈ B. In other words, it must be shown that the polytope B is included in the unit
euclidean ball. This latter problem is known to be NP-hard (for further information
on this example see [18] and/or [17]). In the following section we consider more
general conic optimization problems.
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4.3 Robust Conic Quadratic Optimization

Suppose the uncertain optimization problem is given in the form of a Conic Quadratic
Problem by the set {

min
x

{
cTx+ d : F (x, ζ) ∈ K

}}
ζ∈U

.

Let the function F (·, ·) for the uncertain data ζ = (A1, b1, d1, γ1, . . . , Am, bm, dm, γm)

be constraint-wise functions of the form

F (x, ζ) =


f1 (x, ζ)

f2 (x, ζ)
...

fm (x, ζ)

 =



[
A1x+ b1

[d1]
>
x+ γ1

]
[

A2x+ b2

[d2]
>
x+ γ2

]
...[

Amx+ bm

[dm]> x+ γm

]


∈ K.

In addition, suppose that the cone K is given as direct product of cones: K =

K1 × K2 × · · · × Km. If these cones Ki are Lorentz-cones (also known as second
order-, Minkowski-, light- or ice cream-cones) for i = 1, 2, . . . ,m then the robust
conic quadratic optimization problem is given by{

min
x

{
cTx+ d :

∥∥Aix+ bi
∥∥

2
≤
[
di
]>
x+ γi for i = 1, 2, . . . ,m

}}
ζ∈U

, (4.14)

for matrices Ai ∈ Rki×n, vectors bi ∈ Rki , di ∈ Rn and the scalars γi ∈ R.

Definition 10. A Lorentz-cone Lk ⊂ Rk is defined as

Lk =

x ∈ Rk : xk ≥

√√√√k−1∑
j=1

x2
j

 .

Remark 21. The one dimensional Lorentz-cone L1 is given by the nonnegative
orthant R+ since the sum over an empty set is defined as zero. A Lorentz-cone Lk

is regular and self dual.

Remark 22. The robust conic program (4.14) is just another formulation for the

vector

[
Aix+ bi

c>x+ di

]
belonging to the Lorentz-cone Lki+1 for i = 1, 2, . . . ,m.
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Since the robust counterpart of a quadratically constrained quadratic problem,
where the uncertainty set is given by an intersection of ellipsoids, leads to an in-
tractable problem, this is also the case for those problems of a more general structure.

Therefore, we continue by checking the properties for the case of a simple ellip-
soidal uncertainty set.

4.3.1 Ellipsoidal Case

Let the uncertainty be constraint wise such that the uncertainty set U is given by
U = U1×U2× . . .×Um. Each Ui depends on its constraint function fi (·, ·) ∈ Ki for
i = 1, 2, . . . ,m. The ellipsoidal sets Ui are given as direct product of both ellipsoids
deducted from components of the according constraint functions. This specifically
means that every single uncertainty set Ui for i = 1, 2, . . . ,m can be written as

Ui = Ūi × Ûi,with

Ūi =

[Ai; bi] =
[
Ai0; bi0

]
+

k̄i∑
j=1

uj
[
Aij; bij

]
| ‖u‖2

2 ≤ 1

 ,

Ûi =

[ci; γi] =
[
ci0; γi0

]
+

k̂i∑
j=1

uj
[
cij; γij

]
| ‖u‖2

2 ≤ 1

 .

Analogous to the previous cases, the robust counterpart of the uncertain quadratic
conic problem (4.14) is given by

min
x

{
cTx+ d :

∥∥Aix+ bi
∥∥

2
≤
[
di
]>
x+ γi for i = 1, 2, . . . ,m, ∀ζ ∈ U

}
. (4.15)

In order to research the robust counterpart of this problem it is sufficient to observe
the robust formulation of one single constraint. Let one robust constraint be given
by

‖Ax+ b‖2 ≤ d>x+ γ ∀ (A, b, d, γ) ∈ U , (4.16)

with (A, b) ∈ Ū and (d, γ) ∈ Û .
More precisely, this constraint is given by

∀(u, v) : ‖u‖2
2 ≤ 1, ‖v‖2

2 ≤ 1

x>d0 + γ0 +
k̂∑
j=1

uj
(
x>dj + γj

)
≥

∥∥∥∥∥A0x+ b0 +
k̄∑
i=1

vi
(
Aix+ bi

)∥∥∥∥∥
2

.
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Obviously there exists a λ ≥ 0 which lets us rewrite the constraint by the following
two lines

x>d0 + γ0 +
k̂∑
j=1

uj
(
x>dj + γj

)
≥ λ ∀ u : ‖u‖2

2 ≤ 1

λ ≥

∥∥∥∥∥A0x+ b0 +
k̄∑
i=1

vi
(
Aix+ bi

)∥∥∥∥∥
2

∀ v : ‖v‖2
2 ≤ 1.

Furthermore a pair (x, λ) fulfills the constraints above exactly when the matrix

[d0]
>
x+ γ0 − λ [d1]

>
x+ γ1 [d2]

>
x+ γ2 · · ·

[
dk̂
]>
x+ γk̂

[d1]
>
x+ γ1 [d0]

>
x+ γ0 − λ

[d2]
>
x+ γ2 [d0]

>
x+ γ0 − λ

... . . .[
dk̂
]>
x+ γk̂ [d0]

>
x+ γ0 − λ


(4.17)

is positive definite (and symmetric) for a λ ≥ 0 and

λ2 ≥

∥∥∥∥∥A0x+ b0 +
k̄∑
i=1

vi
(
Aix+ bi

)∥∥∥∥∥
2

2

∀ v : ‖v‖2
2 ≤ 1 (4.18)

holds. Due to the positivity of the terms, the constraint (4.18) can be written as

∀ (t, v), ‖v‖2
2 ≤ t2 : λ2t2 ≥

∥∥∥∥∥t(A0x+ b) +
k̄∑
i=1

vi
(
Aix+ bi

)∥∥∥∥∥
2

2

.

In this sense, a pair (x, λ) with a positive λ fulfills (4.18) exactly when the non-
negativity of the quadratic term (t2 − v>v) implies that the other quadratic term

λ2t2 −
∥∥∥t(A0x+ b) +

∑k̄
i=1 vi (A

ix+ bi)
∥∥∥2

2
is nonnegative.

This indication statement can as well be given (see [2] for further information)
according to the S-Lemma by the existence of an α ≥ 0 that states

λ2t2 −

∥∥∥∥∥t(A0x+ b) +
k̄∑
i=1

vi
(
Aix+ bi

)∥∥∥∥∥
2

2

− α
(
t2 − v>v

)
≥ 0.

Since λ is nonnegative, let α be given as α = µλ for a µ ≥ 0. Note, if λ is zero then
also µ is considered to be zero.
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To sum up the last few lines, for a nonnegative λ to a given x which fulfills (4.18)
there exists another variable µ that satisfies the following statement for the quadratic
term:

For λ, µ ≥ 0 ( if λ = 0⇒ µ = 0)(
λ2 − λµ

)
t2 + λµv>v −

(
t v>

)
[R(x)]>R(x)

(
t

v

)
≥ 0

for the matrix R =
(
A0x+ b0, A1x+ b1, · · · , Ak̂x+ bk̂

)
.

(4.19)

Similar, as the above constraints could be expressed by the positive semi-definiteness
of the matrix (4.17), we want to find a symmetric matrix S depending on the three
just introduced variables x, λ and µ. Suppose that an analogous way to check the
statement (4.19) is to determine if the matrix

S(x, λ, µ) =



λ− µ (A0x+ b0)
>

µ (A1x+ b1)
>

. . . ...

µ
(
Ak̄x+ bk̄

)>
(A0x+ b0) (A1x+ b1) · · ·

(
Ak̄x+ bk̄

)
λIl


(4.20)

is positive semi-definite. To show that this statement is equivalent a case distinction
is used.
Case λ > 0 (and therefore µ > 0): The positiveness of λ lets us rewrite the quadratic
term of (4.19) by a division of λ to

(λ− µ) t2 + µv>v −
(
t v>

)
R>(x)

(
λÎl

)−1

R(x)

(
t

v

)
≥ 0.

This on the other hand, is exactly the Schur-complement of the matrix S(x, λ, µ).
We recall that the symmetric matrix S(x, λ, µ) with an invertible upper left block
is positive-semidefinite if this upper left block matrix and its Schur-complement is
positive semi-definite.
Case λ = 0⇒ µ = 0: For this case the quadratic term of the statement (4.19) is true
exactly when R(x) = 0. From that follows that the matrix S(x, λ, µ)(= S(x, 0, 0))

obviously is positive semi-definite and (4.18) is also satisfied with λ = 0 if and only
if R(x) = 0.
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Bringing together the statements of this section, for an uncertain conic quadratic
problem where the uncertainty set is given as the direct product of the individual un-
certainty sets and each of them is the product of two ellipsoidal spaces corresponding
to their data parts of the form

U = U1 × · · · × Um with Ui = Ūi × Ûi

Ūi =

[Ai; bi] =
[
Ai0; bi0

]
+

k̄i∑
j=1

uj
[
Aij; bij

]
| ‖u‖2

2 ≤ 1

 ,

Ûi =

[ci; γi] =
[
ci0; γi0

]
+

k̂i∑
j=1

uj
[
cij; γij

]
| ‖u‖2

2 ≤ 1

 .

The corresponding robust counterpart can equivalently be written as the semi-
definite problem by

min
x
c>x w.r.t. x ∈ Rn, λ1, . . . , λm ∈ R, µ1, . . . , µm ∈ R s.t.

[d0]
>
x+ γ0 − λi [d1]

>
x+ γ1 [d2]

>
x+ γ2 · · ·

[
dk̂
]>
x+ γk̂

[d1]
>
x+ γ1 [d0]

>
x+ γ0 − λi

[d2]
>
x+ γ2 [d0]

>
x+ γ0 − λi

... . . .[
dk̂
]>
x+ γk̂ [d0]

>
x+ γ0 − λi


≥ 0,

and



λi − µ (A0x+ b0)
>

µ (A1x+ b1)
>

. . . ...

µ
(
Ak̄x+ bk̄

)>
(A0x+ b0) (A1x+ b1) · · ·

(
Ak̄x+ bk̄

)
λiÎl


≥ 0,

forall i = 1, 2, . . . ,m.
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5 Summary

Nearly all optimization models that describe practical processes have to deal with
uncertain variables or at least partly uncertain data. In contrast to the most common
approaches for these kind of problems, that try to find or estimate a fitting family of
distributions for the uncertain variables, the approach of this work operates with a
set based structure. This has the simple benefit that various error sources are ruled
out. Although it might not be necessary for every problem to consider the strict
observance of all constraints, it is important for some, since small perturbations in
the uncertain data of the problem could lead to a practically worthless solution [4].
All information on the uncertain data are used to construct a so called uncertainty
set, such that the constraints are fulfilled for all possible data realizations belonging
to this set. Especially, if a constraint violation has the potential to implement a cru-
cial incident, as it might be the case in construction- or chemical-processes, the use
of the robust counterpart approach could offer some important benefits. Another
perspective is that even if parameters are not known, they simply cannot violate
their constraints, e.g. the positivity of supply.
Even though in some cases the constraint violations can be compensated for e.g. by
a purchase from a different company, the approach in this thesis only considers hard
constraints. Extensions like allowing soft constraints in the robust optimization ap-
proach can be found in [6].
Not only the set based approach itself is interesting on its own but also the fact
that numerous problems turn out to be tractable if the underlying uncertainty set
is specified accordingly.
A wide range of real life processes and procedures, like shipping and distribution
problems, can be modelled by linear programs that incorporate uncertainties. These
kind of problems are tractable by the use of the robust optimization approach for
ellipsoidal uncertainty sets, since the corresponding robust counterpart is a conic
quadratic program. Even if the uncertainty set is given by the intersection of finitely
many ellipsoids this is still the case. This conic quadratic program can explicitly
be given in terms of the initial problem and the choice/characteristics of the uncer-
tainty set.
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A more general and also heavily used family of problems is given by the conic
quadratic problems with uncertainties, as they often appear in applications when a
distance function is optimized. Like in the uncertain linear optimization case the
problems turn out to be safe tractable for an ellipsoidal uncertainty set, due to the
fact that the robust counterpart can be stated as an explicit semi-definite program.
The same holds true for a quadratically constrained quadratic optimization prob-
lem that incorporates partial uncertain data via an ellipsoidal uncertainty set. More
complicated to solve is the robust counterpart of these problems, if the uncertainty
set is given by an intersection of finitely many ellipsoids. For this cases the corre-
sponding robust counterpart states an NP-hard problem.
Another wide spread and well researched kind of problems is given by the semi-
definite programs with uncertainties. Although their robust counterpart for an
ellipsoidal uncertainty set is NP-hard to solve, the problems turn out to be safe
tractable for particular structured ellipsoidal uncertainty sets. For more on this
consult the work [2].

Other possible extensions of this thesis are different ways to find safe tractable
approximations for the cases when the robust counterpart turns out to be NP-
hard. Another interesting area is that links between different models of multi-stage
decision-making problems and the robust optimization approach can be found and
researched [7]. Also the link between stochastic optimization problems with choice-
constraints and their safe tractable approximations with the help of robust opti-
mization are possible extensions that can be looked up in [6].
Overall, this approach presents a reliable way to obtain a feasible solution for par-
ticular problems that have to deal with uncertainties. Due to its sparse use of
distribution information and other valuable characteristics, this way of problem
solving is widely used in many areas like engineering (see for instance [1] and refer-
ences therein), finance and statistics. Other cases of practical use of this approach
are TV-tubes manufacturings as well as processes in inventory- and supply-chain
management [9].
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