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1 Introduction

In the past decades the extraction of non-renewable resources has been a highly discussed

topic. Especially the implications on the environment are, at least after the Kyoto Pro-

tocol in 1997, considered of great importance. There have been several research papers

written about how to reduce greenhouse gases and it is often argued that it is important

to start taking measures as early as possible (e.g. Nordhaus 2008).

In 2008 Hans-Werner Sinn asked a new question, namely if it is possible that measures

that are taken to decrease damage on the environment actually have the opposite e�ect,

mostly because only the demand is targeted with said measures and the supply side is

not considered. He called it the green paradox. An accurate de�nition for it is:

In the broad sense, any environmental policy that is formulated with the intention of

improving environmental quality that turns out to have adverse consequences for the en-

vironment is called a green paradox outcome. In a more narrowly de�ned sense, the green

paradox refers to environmental policy failure owing to the failure to recognize the in-

tertemporal supply behavior of extractors of fossil fuel resources (Van Long (2014:2)).

After Sinn published his theory several papers were written about that issue. When Sinn

talked about non-renewable resources, his main example was the oil industry. As there

are only a few major oil exporting countries (OPEC-Countries), and they often meet to

decide how much oil they want to produce, one can argue that it is best to model this

problem using a monopoly approach. Although, like mentioned before, a lot of papers

and di�erent models were created about the green paradox, only few address this issue

(e.g. Van der Ploeg and Withagen 2010).

My thesis is based upon two other papers concerning themselves with the green paradox,

namely the ones by Gerlagh (2010) and Österle (2015). First I look at the implications of

these models and then I extend them to the monopoly case. We will see that the results

stay mostly the same, but not in all cases.

The models about the green paradox can be split up into two major groups. In chapter

2 we discuss models where a backstop, which is a clean alternative to the use of the non-

renewable resource (e.g. wind energy), is assumed and the measure that should help the

environment is e.g. a subsidy on the backstop. Important is that it is assumed that the

backstop-price drops and a green paradox occurs if this leads to a higher environmental

damage. In the models in chapter 3 there doesn't exist a backstop, but a revenue-tax can

be implemented. In these models a green paradox arises if the introduction of such a tax

has a negative implication on the environment. Chapter 4 will then conclude the thesis.
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Following Gerlagh (2010) we di�erentiate between a weak and a strong green paradox.

The weak green paradox occurs when the taken measure leads to an increase in present

damage on the environment and the strong green paradox if it leads to an increase in

overall damage.

4



2 The models with a backstop

This chapter is based on the models by Gerlagh (2010). All the models presented here

are dynamic general equilibrium models. Firms own a �xed stock of the resource1 and

can extract and sell it, maximizing their pro�ts. The extraction costs are either constant

or linearly increasing.

There exists a backstop that has either a constant price (perfect backstop) or it increases

with the amount used (imperfect backstop). When a perfect backstop is assumed, in the

beginning only the resource and then solely the backstop is used. When assuming an

imperfect backstop, there is a simultaneous use of both the resource and the backstop

until the resource is depleted. After that only the backstop is used.

A linear demand function is assumed, although for the competitive equilibrium model

with constant extraction costs and a perfect backstop this restriction is not needed. A

green paradox arises, if a cheaper backstop has negative consequences for the environment.

To be more precise, the weak green paradox occurs if a cheaper backstop implies more

environmental damage at the initial period and a strong green paradox, if it implies a

higher total damage.

We will see that the existence of the green paradoxes depends upon the assumptions

about the extraction costs and the backstop.

2.1 The model with constant resource extraction costs and a per-

fect backstop

2.1.1 The competitive equilibrium

In this �rst model �rms maximize the following discounted pro�t function Π, subject to

a resource constraint, taking the price of the resource as given

Π =

∫ ∞
0

e−rt(pt − ζ)qtdt (2.1.1)

s.t.

∫ ∞
0

qtdt ≤ S0 (2.1.2)

where pt describes the price of the resource, ζ the (constant) extraction costs per unit, qt
1When we talk about resources in this paper, we always mean non-renewable resources.
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the amount of the resource that is extracted and sold, r the real interest rate and S0 the

initial resource stock.

Equation (2.1.2) states that the �rms can't extract more of the resource than there is

available in total.

We assume a strictly decreasing demand function qt = D(pt), with a maximum demand

α (D(0)=α) and a choke-price β (D(β)=0). Furthermore the price of the backstop is

denoted by ψ, with ζ < ψ < β. So the price of the backstop is higher than the extraction

costs, but lower than the choke-price.

It is easy to imagine that under this assumption in the beginning solely the resource

is used and a transition from the resource use to using the backstop after a �nite time

horizon occurs, as the resource either becomes too expensive for the consumers, or there

are no resources left (or both).

Now we want to �nd out how the price-path in this model looks like. Therefore we

rede�ne the problem a little and get

max Π = max

∫ ∞
0

e−rt(pt − ζ)qtdt (2.1.3)

s.t. Ṡt = −qt

St ≥ 0

S0 given

Note that this is really only a reformulation, in which the resource stock (St) is included,

but the problem isn't changed at all. We will use this formulation in the following models

as well. Trying to solve this �new� problem leads us to the following Hamiltonian

H = (pt − ζ)qt − λtqt + νtSt

Hence the optimality conditions are
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∂H

qt
= pt − ζ − λt = 0 (2.1.4)

λ̇t = rλt −
∂H

St

⇔ λ̇t = rλt − νt (2.1.5)

νtSt = 0 (2.1.6)

with λt being the shadow-price of the resource.

Looking at equation (2.1.6) we can now distinguish between two cases, St = 0 and St > 0

(implying νt = 0). As we are only interested in the price when the resource stock is

positive, we can restrict ourselves to the latter case and using (2.1.5) we get

λt = λ0e
rt (2.1.7)

and combining this equation with (2.1.4)

pt = ζ + λ0e
rt (2.1.8)

Using the price-path (equation (2.1.8)) we can write the pro�t function as

Π =

∫ ∞
0

e−rt(pt − ζ)qtdt = λ0S0 (2.1.9)

As pt is strictly increasing, we can denote T as the time where pt reaches the price of

the backstop ψ and the resource is no longer used, as it gets more expensive than the

backstop (note that therefore pT = ψ). We will call this point in time the termination

date.

In equilibrium it is optimal for the �rm to use all of the available resource, as the output
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in this case has to be higher than in the case where some part of the resource stays in

the ground, so
∫∞

0
qtdt = S0. Using the demand function and the fact that after the

termination date the resource is not used any more, we get

∫ T

0

D(ζ + ertλ0)dt = S0 (2.1.10)

The price at time T is equal to pT = ζ + erTλ0 (see equation (2.1.8)). As the price of the

resource at the termination date has to equal the backstop-price (pT = ψ), after some

reformulation we get

Tr = ln(ψ − ζ)− ln(λ0) (2.1.11)

Equations (2.1.10) and (2.1.11) fully characterize the equilibrium, as the only unknown

variables in these two equations are λ0 and T .

A weak green paradox occurs if and only if the extraction at time zero rises when the

price of the backstop drops, as the damage on the environment at a certain point in time

is higher the higher the extraction is.

Concerning the strong green paradox we need to de�ne the total damage on the environ-

ment (Γ), being the present value of the overall in�uence of the resource extraction on

the environment

Γ :=

∫ ∞
0

e−rtθtqtdt (2.1.12)

Hereby we assume that the marginal damage of the resource extraction (θt) increases

over time, but with a lower rate than the discount factor r, so that the term e−rtθt is

decreasing over time. This isn't a very strong assumption and rather common in relevant

literature (see for example Hoel and Kverndokk 1996). Note that the marginal damage

does not have to increase with a constant rate here, but we will need this additional

assumption in chapter 3.

The initial damage on the environment is therefore equal to Γ0 = θ0q0. We can now

de�ne that the weak green paradox holds, if ∂Γ0

∂ψ
< 0 (⇔ ∂q0

∂ψ
< 0) and the strong green
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paradox arises, if ∂Γ
∂ψ

< 0. Note that these de�nitions will be used in all three models in

this chapter.

We can now show that, as the backstop gets cheaper, the resource is extracted faster.

This has a negative in�uence on the environment.

To prove this, we �rst need to �nd out how the variables T and λ0 change with a variation

in ψ. We take total derivatives with respect to ψ in equation (2.1.10), which leads us to

∫ T

0

ertD′(pt) ·
dλ0

dψ
dt+D(pT ) · dT

dψ
= 0 (2.1.13)

Multiplying equation (2.1.13) with dψ
dλ0

and solving for dT
dλ0

we get

dT

dλ0

= −
∫ T

0
ertD′(pt)dt

D(pT )
(2.1.14)

As the derivative of the demand function is always smaller than zero, the right hand side

of the above equation is positive, so we get dT
dλ0

> 0.

Taking now total derivatives in equation (2.1.11) we get

r
dT

dψ
=

1

ψ − ζ
− 1

λ0

dλ0

dψ
(2.1.15)

We multiply equation (2.1.15) again with dψ
dλ0

, and end up with

r
dT

dλ0

=
1

ψ − ζ
dψ

dλ0

− 1

λ0

(2.1.16)

As seen above, the left hand side of equation (2.1.16) is greater than zero. The second

part on the right hand side is smaller than zero, so dψ
dλ0

, and therefore also dλ0
dψ

, has to be

greater than zero.

From dT
dλ0

> 0 and dλ0
dψ

> 0 we can immediately conclude that dT
dψ

is also positive.

So the values of both the initial shadow-price and the termination date drop, when the

backstop gets cheaper.
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The last step is now to compare two cases of this model, where only the price for the

backstop di�ers. We denote the values of the second case with a star and, assuming

ψ∗ < ψ, want to �nd out, if the crucial values corresponding to this cheaper backstop (Γ∗0
and Γ∗) are higher or lower than the original values corresponding to ψ.

From ψ∗ < ψ we can immediately conclude that T ∗ < T and λ∗0 < λ0.

To make it easier to compare Γ and Γ∗, we de�ne θ̃t = e−rtθt. Note that, by assumption,

θ̃t is a strictly decreasing function.

As pt = ζ + ertλ0 ∀t : t < T we can conclude that p∗t < pt ∀t : t < T ∗ and because of the

strictly decreasing demand function we get qt < q∗t ∀t : t < T ∗.

Additionally we know that qt > q∗t ∀t : T ∗ < t < T as for these values of t q∗t = 0 holds,

and of course qt = q∗t = 0 ∀t : t > T . As explained previously in both cases the whole

resource stock is used and thus we have
∫ T

0
qtdt =

∫ T ∗
0

q∗t dt = S0

To prove that both green paradoxes occur, we formulate the following proposition us-

ing all the just derived facts about the paths that describe the extraction of the resource

(qt and q∗t ).

Proposition 1. Consider two piecewise continuous paths qt, q
∗
t : R+ → R+ with qt =

0 ∀t : t > T , q∗t = 0 ∀t : t > T ∗, T > T ∗ and
∫ T

0
qtdt =

∫ T ∗
0

q∗t dt. Moreover we know that

qt < q∗t ∀t : t < T ∗ and qt > q∗t ∀t : T ∗ < t < T . Additionally we have a strictly positive

parameter θ0 and a strictly decreasing weight function θ̃t.

Then we can conclude that Γ∗0 := θ0q
∗
0 is strictly greater than Γ0 := θ0q0 and Γ∗ :=∫ T ∗

0
θ̃tq
∗
t dt is strictly greater than Γ :=

∫ T
0
θ̃tqtdt.

Proof. See appendix 5.1

The fact that Γ∗0 is strictly greater that Γ0 is exactly the requirement for the weak green

paradox to occur and from Γ∗ > Γ we can immediately conclude that the strong green

paradox holds as well.

In �gure 1 we see how the initial damage Γ0 and the total damage Γ change with the

backstop-price ψ. The used parameters and marginal damage function can be found be-

low the �gure.

It is not surprising to see that both the initial damage and the total damage are lower,

the higher the price of the backstop is, as both green paradoxes occur. Moreover we see
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(a) Initial damage Γ0 in dependence upon ψ (b) Total damage Γ in dependence upon ψ

Figure 1: α = β = 1, ζ = 0.2, r = 0.02, S0 = 100, θt = e0.01t

that both functions decline faster when the backstop-price is small. Keep in mind that

we assumed ζ < ψ < β, which are the borders we used for ψ in �gure 1.

2.1.2 The monopoly allocation

Now we want to �nd out if the results are the same if we assume a monopoly. So now there

is just one �rm, which can then, of course, set the price of the resource maximizing its

pro�t. So every combination of price and amount of the resource satisfying the demand

function can be chosen. For the model this means that we are using a price-function

depending on the amount of the resource extracted and sold pt = p(qt). Therefore, when

considering monopoly models, we are sometimes going to write p(qt) instead of pt, when

we want to highlight the fact that pt depends on qt, but there is, of course, no di�erence

in the two expressions.

Again we write the maximization problem using the resource stock St

max Π = max

∫ ∞
0

e−rt(p(qt)− ζ)qtdt (2.1.17)

s.t. Ṡt = −qt

St ≥ 0

S0 given
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Therefore we get the following Hamiltonian

H = (p(qt)− ζ)qt − λtqt + νtSt

The optimality conditions are

∂H

qt
=
∂pt
∂qt

qt + p(qt)− ζ − λt = 0 (2.1.18)

λ̇t = rλt −
∂H

St

⇔ λ̇t = rλt − νt (2.1.19)

νtSt = 0 (2.1.20)

We now assume that the demand function is linear

qt = D(pt) = α(1− pt
β

) (2.1.21)

which immediately leads us to pt = p(qt) = β(1− qt
α

).

Note that, as in the competitive model, the maximum demand is equal to α and the

choke-price equal to β.

Rewriting equation (2.1.18) using (2.1.19), (2.1.21) and because ∂pt
∂qt

= −β
α
we get

pt =
ζ + β

2
+

1

2
λ0e

rt (2.1.22)

as long as the resource stock is positive (because from St > 0 we can immediately con-

clude νt = 0).

If the backstop-price is lower than ζ+β
2

the price of the resource would be higher than the

backstop-price and no resource would be sold. Therefore we have to distinguish between
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the two cases ψ > ζ+β
2

and ψ ≤ ζ+β
2
.

In the �rst case we take the same approach as in the competitive case and get, as the

whole resource stock is depleted until the termination date, similar to equation (2.1.10),

just with a di�erent price-path

∫ T

0

D(
ζ + β

2
+

1

2
ertλ0)dt = S0 (2.1.23)

and the price-path at the termination date pT = ζ+β
2

+ 1
2
λ0e

rT can be, using pT = ψ,

rewritten as

rT = ln(2ψ − ζ − β)− ln(λ0) (2.1.24)

using the same arguments as in (2.1.11).

As in the competitive case we now take total derivatives of equations (2.1.23) and (2.1.24),

multiply them with dψ
dλ0

and rearrange them. Equation (2.1.23) leads us to

dT

dλ0

= −
∫ T

0
ert

2
D′(pt)dt

D(pT )
(2.1.25)

Thus we can conclude, like in the previous chapter that dT
dλ0

> 0, as the derivative of the

demand function is smaller than zero.

Equation (2.1.24) gives us

r
dT

dλ0

=
2

2ψ − ζ − β
dψ

dλ0

− 1

λ0

(2.1.26)

As the left hand side of this equation is positive and the second term of the right hand

side is smaller than zero, the �rst term has to be positive, as we assumed ψ > ζ+β
2
. So

we get dψ
dλ0

> 0 and thus also dλ0
dψ

> 0 and dT
dψ

> 0. As these are the same conclusions

as we derived in the competitive case, the same conditions hold for the paths qt and q∗t
and hence we can apply proposition 1 again to prove that Γ∗0 is strictly greater than Γ0

and Γ∗ is strictly greater than Γ and therefore, as in the competitive case, both green

paradoxes occur.

Figure 2 shows how the damage in this model depends on the backstop-price ψ. The
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same parameter values as in the competitive model are used. Note that now ψ has to be

between ζ+β
2

and β, as we have the additional assumption (compared to the competitive

case) ψ > ζ+β
2
.

(a) Initial damage Γ0 in dependence upon ψ (b) Total damage Γ in dependence upon ψ

Figure 2: α = β = 1, ζ = 0.2, r = 0.02, S0 = 100, θt = e0.01t

As already mentioned, in the case that ψ ≤ ζ+β
2
, the initial price would be higher than

the price of the backstop and the �rm would make zero pro�t. This can't be optimal, as,

by assumption, the extraction costs are cheaper than the backstop-price (ζ < ψ). So the

best strategy for the �rm is to set the price as high as possible, such that the resource

still can be sold, which is exactly at the backstop-price, until the resource is depleted.

Assume now that the backstop-price drops (ψ∗ < ψ). This would lead to a decrease in

the price of the resource in each period (p∗t < pt). So the extraction in each period rises

until the resource is depleted (q∗t > qt ∀t : t < T ∗) and thus the termination date drops

(T ∗ < T ).

Therefore we have T ∗ < T , qt < q∗t ∀t : t < T ∗, qt > q∗t ∀t : T ∗ < t < T and qt = q∗t =

0 ∀t : t > T . This are the exact conditions we need to apply proposition 1 again and

hence we get Γ∗0 > Γ0 and Γ∗ > Γ. So both green paradoxes arise in this case.

2.2 The model with increasing resource extraction costs and a

perfect backstop

One can now argue that constant extraction costs, and hence a depletion of the resource

is not likely, as it seems more realistic that the extraction costs rise when the resource
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becomes more scarce. In the example of oil this argument can be supported by the

consideration that, if a lot of oil is already extracted, the �rms need to drill deeper to

reach the still existing oil deposits, which is more expensive.

In this model we address this issue and assume that extraction costs rise with the amount

of the resource that is already extracted. More precisely we assume a linear extraction

cost function ζt = ηst, where st is the cumulative extraction up to point t.

st =

∫ t

0

qt̂dt̂ (2.2.1)

Moreover we assume that ηS0 > ψ, so at some point in time, as the resource becomes

more scarce, the extraction of it becomes more expensive than the backstop.

2.2.1 The competitive equilibrium

Again we want to formulate the model using the resource stock St. As st describes the

cumulative extraction in period t, we get St = S0 − st. Using this relationship we can

conclude that ζt = ηst = η(S0 − St). We get the following optimization problem

max Π = max

∫ ∞
0

e−rt(pt − η(S0 − St))qtdt (2.2.2)

s.t. Ṡt = −qt

St ≥ 0

S0 given

Thus the Hamiltonian is

H = (pt − η(S0 − St))qt − λtqt + νtSt

which leads us to the following optimality conditions
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∂H

qt
= (pt − η(S0 − St))− λt = 0

⇔pt − ηst − λt = 0 (2.2.3)

λ̇t = rλt −
∂H

∂St

⇔λ̇t = rλt − ηqt − νt (2.2.4)

νtSt = 0 (2.2.5)

The goal is now to �nd λ0 such that at the also unknown termination date T the resource-

price equals the backstop-price (pT = ηsT +λT = ψ) and the shadow-price of the resource

equals zero (λT = 0).

At �rst we want to derive a system of two di�erential equations in st and λt. There-

fore we again assume a linear demand function, as in (2.1.21). As in the previous model,

we assume that the price of the backstop is smaller than the choke-price (ψ < β).

Using ṡt = qt (see (2.2.1)) and equations (2.1.21)and (2.2.3) we get

ṡt = −αη
β
st −

α

β
λt + α (2.2.6)

Plugging equations (2.1.21) and (2.2.3) into (2.2.4), we get for t < T (as then νt = 0

holds)

λ̇t =
αη2

β
st + (r +

αη

β
)λt − αη (2.2.7)

In Figure 3 we see the phase plane of this system of di�erential equations. The used

parameter values can be found right below the �gure.

The red dot represents the steady state and the green lines the stable and the unstable
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Figure 3: α = β = 1, η = 0.1, r = 0.02

eigenvectors. We see that both eigenvectors are downwards sloping, where the one corre-

sponding to the unstable eigenvalue has a greater absolute slope. Initially st is of course

always zero. We know that, as ψ < β, ζt = ηst and ζT = ψ, at the termination date

sT = ψ
η
and λT = 0 hold, so the isocline has to end there, leaving some amount of the

resource in the ground.

To get the equilibrium path, it is therefore necessary to �nd the right λ0, such that the

system ends in this particular point.

In �gure 3 we have two di�erent example values for the backstop ψ∗ < ψ(< β). We

see that a cheaper backstop implies a lower λ0 and therefore a lower p0 which leads to a
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higher q0. So we can conclude, without a formal proof yet, that the weak green paradox

is going to hold. On the other hand the total amount of the resource extracted is lower,

which, at this point, makes it hard to make a good guess if the strong green paradox

arises or not. But we are going to show now that it, in fact, does not occur.

Proposition 2. Given the system of di�erential equations, which is de�ned by equa-

tions (2.2.6) and (2.2.7), a strictly positive parameter θ0 and a strictly decreasing weight

function θ̃t and knowing additionally that s0 = 0, sT = ψ
η
, λT = 0, λt = pt − ηst (see

equation (2.2.3)) and ṡt = qt = α(1 − pt
β

) the function Γ0 := θ0q0 depends negatively on

the backstop-price ψ and the function Γ :=
∫ T

0
θ̃tqtdt depends positively on ψ.

Proof. See appendix 5.1

As all the requirements for proposition 2 are ful�lled here, we know that if the backstop-

price ψ drops, the initial damage Γ0 is going to rise, but the total damage Γ drops. Thus

the weak green paradox occurs, but the strong green paradox does not.

2.2.2 The monopoly allocation

As in the previous model, when considering the case of a monopoly, the only change in

the model is that the price of the resource is a function of the amount of the resource

that is extracted and sold (pt = p(qt)). Hence we get

max Π = max

∫ ∞
0

e−rt(p(qt)− η(S0 − St))qtdt (2.2.8)

s.t. Ṡt = −qt

St ≥ 0

S0 given

Thus the Hamiltonian is

H = (p(qt)− η(S0 − St)) qt − λtqt + νtSt

which leads us to the following optimality conditions
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∂H

∂qt
= (pt − η(S0 − St)) +

∂pt
∂qt

qt − λt = 0

⇔pt − ηst +
∂pt
∂qt

qt − λt = 0 (2.2.9)

λ̇t = rλt −
∂H

∂St

⇔λ̇t = rλt − ηqt − νt (2.2.10)

νtSt = 0 (2.2.11)

From (2.2.9) we can conclude, using the demand function (2.1.21) and the fact that
∂pt
∂qt

= −β
α
, that

pt =
1

2
(ηst + λt + β) (2.2.12)

Like in the model with constant extraction costs, we have to distinguish between two

cases.

At �rst we assume that the initial price of the resource has to be smaller than the

backstop-price. This is the case when ψ > β
2
(see equation (2.2.12)), and can continue

similar to the competitive case. Using the demand function (2.1.21), equations (2.2.10)

and (2.2.12) as well as the fact that ṡt = qt we get

ṡt =
1

2

(
−αη
β
st −

α

β
λt + α

)
(2.2.13)

and

λ̇t =
1

2

(
αη2

β
st + (2r +

αη

β
)λt − αη

)
(2.2.14)

So we get a system of di�erential equations, de�ned by (2.2.13) and (2.2.14), which looks

19



similar as the system of di�erential equations in the competitive case (equations (2.2.6)

and (2.2.7)) divided by 2. The only di�erence is that in equation (2.2.14) we have the

term 2r instead of r.

Let us at �rst take a look at the phase plane of the monopoly case, using the same values

for the parameters as in the competitive case.

Figure 4: α = β = 1, η = 0.1, r = 0.02

We see that the structure of the phase plane looks identical to the competitive case. Only

the slope of the eigenvectors and therefore also the initial values of the shadow-price (λ0)

are di�erent.
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Now we want to prove that we in fact have the same implications as in the competi-

tive case using the following proposition

Proposition 3. Given the system of di�erential equations, which is de�ned by equations

(2.2.13) and (2.2.14)), a strictly positive parameter θ0 and a strictly decreasing weight

function θ̃t and knowing additionally that s0 = 0, sT = ψ
η
, λT = 0, λt = 2pt−β− ηst (see

equation (2.2.12)) and ṡt = qt = α(1 − pt
β

) the function Γ0 = θ0q0 depends negatively on

the backstop-price ψ and the function Γ =
∫ T

0
θ̃tqtdt depends positively on ψ.

Proof. See appendix 5.1

As the requirements for proposition 3 are ful�lled, we can immediately conclude that, as

in the competitive case, the weak green paradox occurs, but the strong green paradox

does not.

Now we are going to analyse the model when ψ ≤ β
2
. Then it is, like in the monopoly

setup of the �rst model in the case where we assumed that ψ ≤ ζ+β
2
, best to set the price

of the resource equal to the backstop-price in all periods (pt = ψ ∀t).
Thus we have

qt = α(1− ψ

β
) (2.2.15)

Next we look at the cumulative extraction st =
∫ t

0
qt̂dt̂ and using equation (2.2.15) we

get

st = α(1− ψ

β
)t (2.2.16)

Combining equation (2.2.16) with sTη = ψ and solving this for T , we get

T =
βψ

αη(β − ψ)
(2.2.17)

We are going to show now that the occurrence of the strong green paradox depends on
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the values of the parameters used. To do this we will use a marginal damage function

with a constant growth rate (θt = θ0e
σt).

Proposition 4. Assume that ṡt = qt = α(1 − ψ
β

), T = βψ
αη(β−ψ)

, ψ ≤ β
2
, θ0 > 0 and

r, σ > 0 with r > σ.

Then the function Γ0 = θ0qt depends negatively upon ψ and the dependence of the function

Γ =
∫∞

0
e−rtθ0e

σtqt on ψ can't be uniquely determined, but depends on the parameters used.

The chance of ∂Γ
∂ψ

being lower than zero is high for a big di�erence between the real interest

rate and the growth rate of the marginal damage function (r−σ high) as well as for small

values of α and η.

Proof. See appendix 5.1

So we see that in this case the weak green paradox arises, but the occurrence of the strong

green paradox depends on the parameters used. It is more likely to occur if there is a

big di�erence between the real interest rate and the growth rate of the marginal damage

function, as well as for small values of α and η.

2.3 The model with constant resource extraction costs and an

imperfect backstop

In the third model we return to the assumption of a constant resource-price and deal

with the issue of the perfect backstop.

In the previous models it was possible to get an in�nitely large amount of the backstop

at a constant price. It can be argued that this is not a very realistic assumption. Let's

for example think about the backstop being wind power. There are spots that are more

suited for a wind turbine and spots where turbines are less productive. At �rst obviously

the best spots are used. As more and more turbines are put into operation the spots get

worse and the marginal productivity of wind power drops.

Therefore the price of one unit of energy should rise with the amount of the backstop

being used.

We assume in this model that the �rst unit of the backstop is cheaper than the extraction

costs. This leads to a simultaneous use of both the resource and the backstop until the

resource is depleted.

The initial price of the backstop is denoted by ψ0. We assume that ψ0 < ζ and that
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the costs for the backstop rise by ψ′ for every additional unit used. Therefore we get

pet = ψ0 + ψ′et. Where et is the amount of the backstop used and pet is the price of the

backstop.

As the maximization problem for the �rms is the same as in the �rst model, we get for

the price-path (for t < T ) again

pt = ζ + λt (2.3.1)

and for the shadow-price

λt = λ0e
rt (2.3.2)

Note that in equilibrium both resources are used simultaneously, therefore the prices have

to coincide (pet = pt).

As the �rm in this model is in competition with the supplier of the backstop in each

period (because the resource and the backstop are used simultaneously) a monopoly

model would not make any sense. Thus we will only discuss the competitive case.

2.3.1 The competitive equilibrium

The di�erence compared to the �rst model is that, when de�ning the demand function,

one has to take the use of the backstop into account

D(pt) = qt + et = qt +
pt − ψ0

ψ′
(2.3.3)

Assuming again a linear demand function as in (2.1.21) we get, using (2.3.1) and (2.3.3),

an expression for the resource extraction path

qt = α(1− ζ

β
)− ζ − ψ0

ψ′
− (

α

β
+

1

ψ′
)λt (2.3.4)
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To make further calculations easier, we want to write this function as qt = a(1− λt
b

) with

a = α(1− ζ

β
)− ζ − ψ0

ψ′
(2.3.5)

and

b =
a

α
β

+ 1
ψ′

(2.3.6)

It is easy to see that ∂a
∂ψ0

> 0 and ∂a
∂ψ′

> 0, as ψ0 < ζ. We now want to �nd out how T

and q̇t, and later on q0 and Γ, depend upon the variable a and prove that neither T nor

qt depends on b.

We know that qT = 0 has to hold, so we get λT = b and thus because of (2.3.2)

λt = ber(t−T ).

This leads to

qt = a(1− er(t−T )) (2.3.7)

and

S0 = sT =

∫ T

0

qtdt =

∫ T

0

a(1− er(t−T ))dt = a(T − 1− e−rT

r
) (2.3.8)

As qt only depends on T and a, and, considering the above equation, we know that T

only depends on a, we get ∂qt
∂b

= ∂T
∂b

= 0.

Taking the derivative with respect to a from equation (2.3.8), we get

0 = T − 1− e−rT

r
+ a · ∂T

∂a
− ae−rT ∂T

∂a
(2.3.9)

And solving this for ∂T
∂a

gives us

∂T

∂a
= −

T − 1−e−rT
r

a(1− e−rT )
= − S0

a2(1− e−rT )
< 0 (2.3.10)
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The last inequality holds, because from (2.3.7) we know that 0 < q0 = a(1− e−rT )).

For the change of the resource extraction we get q̇t = −raer(t−T ) (see equation (2.3.7))and

therefore

∂q̇t
∂a

= −rer(t−T (a)) + r2aer(t−T (a)) · ∂T
∂a

< 0 (2.3.11)

As neither T nor qt depend upon b, we can solely focus our considerations on the changes

in a when the price of the backstop drops.

Assume that there exists a cheaper backstop with ψ∗0 < ψ0 and/or ψ′∗ < ψ′ and la-

bel again all the variables corresponding to the cheaper backstop with a star. From

the calculated derivatives we know that this leads to a∗ < a and thus to T ∗ > T and

q̇t
∗ > q̇t ∀t : t < T . Moreover as q̇t = 0 ∀t : t > T and ˙qt∗ < 0 ∀t : T < t < T ∗ we have

q̇t
∗ < q̇t ∀t : T < t < T ∗.

So we know that with a cheaper backstop the variable a falls, the resource becomes de-

pleted later and the absolute change in the amount of resources used is smaller (as q̇t < 0).

To �nd out if the green paradoxes occur, we use the following proposition

Proposition 5. Consider two continuous paths qt, q
∗
t : R+ → R+ with qt = 0 ∀t : t > T ,

q∗t = 0 ∀t : t > T ∗, T < T ∗ and
∫ T

0
qtdt =

∫ T ∗
0

q∗t dt. Moreover we know that q̇t < q̇∗t ∀t :

t < T and q̇t > q̇∗t ∀t : T < t < T ∗. Additionally we have a strictly positive parameter θ0

and a strictly decreasing weight function θ̃t.

Then we can conclude that Γ∗0 := θ0q
∗
0 is strictly smaller than Γ0 := θ0qt and Γ∗ :=∫ T ∗

0
θ̃tq
∗
t dt is strictly smaller than Γ :=

∫ T
0
θ̃tqtdt.

Proof. See appendix 5.1

So the initial damage and the total damage corresponding to the cheaper backstop are

smaller than the ones corresponding to the higher backstop, which means that neither of

the green paradoxes does arise.

Figure 5 shows how the initial and the overall damage change with the initial backstop-

price ψ0 and the rise of the backstop-price per additionally unit used ψ′.

We see that both the initial and the total damage are higher the higher the initial

backstop-price is and the faster it rises respectively. So if the price of the backstop
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(a) Initial damage Γ0 in dependence on ψ0 and ψ′ (b) Total damage Γ in dependence on ψ0 and ψ′

Figure 5: α = β = 1, ζ = 0.2, r = 0.02, S0 = 100, θt = e0.01t

gets lower and/or rises slower, the damage on the environment (both initial and total)

declines. This goes in line with our �ndings that in this model the green paradoxes do

not occur.

2.4 Discussion

The existence of the green paradox in the models with a backstop depends strongly on

the assumptions made. In three di�erent models, where always only one assumption is

changed, we get three completely di�erent outcomes concerning the green paradoxes.

If constant extraction costs and a perfect backstop are assumed both the weak and the

strong green paradox occur. If we change the models by using increasing extraction

costs, the strong green paradox doesn't arise any more, due to the fact that less of the

resource is used and that outweighs the negative e�ect of the greater extraction in the

beginning. If we assume constant extraction costs and an imperfect backstop (backstop-

price rises the more units are used), both the initial backstop-price and how fast it rises

has a positive correlation with both the initial and the total damage in�icted on the

environment. Therefore in this case neither of the green paradoxes does arise, due to the

fact that the cheaper the backstop-price, the more of the backstop and not the resource

is used.

Note that it is not argued here that the models get more realistic from the �rst to the last

in this chapter. There have already been presented arguments that support increasing

extraction costs as well as ones supporting an imperfect backstop, but it can also be
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argued that constant extraction costs are more realistic. One can't deny that it gets

more di�cult to extract resources when there are fewer left, but new technologies can

be invented, which makes extraction cheaper again, so it may be true that it is closer

to reality to assume constant extraction costs (see e.g. Stürmer and Schwerho� 2012).

Similarly it can be argued that maybe a perfect backstop is more realistic, as e.g. the

spots where the wind turbines are put get less productive, but again the more wind

turbines are installed, the better the technologies get and the costs for a unit of energy

produced may stay the same. So if one should believe the green paradoxes occur or not

is entirely based on which model she or he thinks re�ects reality best.

When assuming a monopoly, what is, especially when we think about oil, a reasonable

assumption, the structure of the solutions stay mostly the same. In the case of constant

extraction costs and an additional parameter restriction ( ζ+β
2
> ψ), the structure changes

and the �rm sets the price for the resource equal to the backstop-price in all periods. But

what doesn't change is that still both green paradoxes arise.

The case of rising extraction costs and the additional parameter restriction β
2
> ψ is the

only one where the conclusions about one of the green paradoxes may change, because

there the strong green paradox may arises, depending on the chosen parameters, whereas

in the competitive case we know that it does not. As already mentioned in the last

model a monopoly case does not make any sense as the �rm owning the resource is in

competition with the backstop-owner.
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3 The models with tax

This chapter is based on the model by Österle (2015). Here we study the second group of

models that deal with the green paradox. The assumptions are a bit di�erent compared

to the models we looked at in the previous chapter. We drop the assumption of the

existence of a backstop, but assume that the government can collect taxes on the resource.

Therefore we have to change the de�nition of the green paradoxes. In this kind of models

a weak green paradox arises if the introduction of a tax leads to a higher damage in the

initial period and a strong green paradox if it leads to a higher overall damage.

The mentioned tax is a revenue tax, with tax rate τt, where τt = 1 − κt. So κt denotes

the fraction of the revenue that the �rms can keep. We assume that κt = κ0 · e−κ̂t with
κ0 ∈ (0, 1) and κ̂ > 0. So the tax increases with τt → 1 for t → ∞. Note that if no tax

is implemented, we have κt = 1 and therefore κ0 = 1 and κ̂ = 0.

Another big di�erence is the structure of the demand function. Contrary to the previous

chapter, we assume that the elasticity of the demand function is constant, which is

equivalent to using the form D(pt) = p−γt , which is presented in Dasgupta and Heal

(1979). They show that the property of this demand function leads to an optimal time

horizon, in which the resource is extracted, that is equal to in�nity.

As Österle omits extraction costs in her model (probably for simplicity), we will do the

same in this chapter. Note that the cost-function in the model with an endogenous

resource stock describes exploration and not extraction costs.

3.1 The model with an exogenous resource stock

In this �rst model with tax we assume a �xed resource stock, as in the models before. In

the next section we will then relax this assumption.

3.1.1 The competitive equilibrium

The goal of the �rms is again to maximize their discounted pro�ts. This leads us to the

following maximization problem
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max Π = max

∫ ∞
0

ptqtκte
−rtdt (3.1.1)

s.t. Ṡt = −qt

St ≥ 0

S0 given

Therefore we get for the Hamiltonian

H = ptqtκt − λtqt + νtSt

which leads to the optimality conditions

∂H

qt
=ptκt − λt = 0 (3.1.2)

λ̇t =rλt −
∂H

∂St

⇔ λ̇t =rλt − νt (3.1.3)

νtSt =0 (3.1.4)

As we know that the optimal time of extraction is equal to in�nity, we get St > 0 ∀t and
thus νt = 0 ∀t.
Hence we can conclude from (3.1.3) that λt = λ0e

rt and therefore from (3.1.2)

pt =
λt
κt

=
λ0

κ0

e(r+κ̂)t = p0e
(r+κ̂)t (3.1.5)

Thus we also know that

p0 =
λ0

κ0

(3.1.6)
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As already mentioned, the demand function is de�ned as

qt = D(pt) = p−γt (3.1.7)

Using (3.1.5) and (3.1.7) we get for the resource extraction

qt = p−γt = p−γ0 e−γ(r+κ̂)t = q0e
−γ(r+κ̂)t (3.1.8)

As there are no extraction costs, it is optimal to use all of the available resource, so

the total extracted amount has to equal the initial resource stock S0 =
∫∞

0
qtdt. Using

equation (3.1.8) we can rewrite this expression as

q0 = S0γ(r + κ̂) (3.1.9)

Combining equations (3.1.8) and (3.1.9) we get

qt = S0γ(r + κ̂)e−γ(r+κ̂)t (3.1.10)

From equation (3.1.9) we can immediately conclude that the extraction at time zero is

smallest if there is no tax (κ̂ = 0 compared to κ̂ > 0 in the case of a tax), therefore

the weak green paradox arises. Moreover, as ∂q0
∂κ̂

= S0γ > 0, we know that the higher

κ̂ is, so the faster the tax rate grows, the higher is the initial damage. The initial tax

rate τ0 has no in�uence on the initial damage, as neither τ0 nor κ0 arise in equation (3.1.9).

To see if the strong green paradox arises, we look at the overall damage, restricting

ourselves in this chapter to the case where θt = θ0e
σt and assuming, as in the previous

chapter, σ < r. Thus we get Γ =
∫∞

0
θ0e
−(r−σ)tqtdt. Using equation (3.1.10) we can

rewrite this expression as
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Γ =
S0θ0γ(r + κ̂)

r − σ + γ(r + κ̂)
(3.1.11)

So Γ does not depend on the initial tax rate either.

Next we compute the derivative of Γ with respect to κ̂

∂Γ

∂κ̂
=
S0θ0γ [r − σ + γ(r + κ̂)]− S0θ0γ

2(r + κ̂)

[r − σ − γ(r + κ̂)]2
=

=
S0θ0γ(r − σ)

[r − σ + γ(r + κ̂)]2
> 0

So the overall damage rises if κ̂ rises. Which means that the case without taxes is the

best for the environment, as again the lowest possible value of κ̂ is zero and this occurs

in the case without taxes. Thus the strong green paradox occurs.

As before for the initial extraction, the faster the tax rate rises, the higher the damage.

This results can be easily explained, as a faster growth of the tax rate makes an early

extraction of the resource more pro�table for the �rm, which is exactly what increases

the damage on the environment, when the total extraction stays constant.

3.1.2 The monopoly allocation

Again the �rm maximizes the pro�t function with a price that depends on the amount

of the resource extracted (pt = p(qt))

max Π = max

∫ ∞
0

p(qt)qtκte
−rtdt (3.1.12)

s.t. Ṡt = −qt

St ≥ 0

S0 given

So the Hamiltonian is

H = p(qt)qtκt − λtqt + νtSt
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As mentioned before, because the optimal time horizon for the extraction equals in�nity,

νt equals zero. This leads to following optimality conditions

∂H

qt
= p(qt)κt +

∂pt
∂qt

qtκt − λt = 0

⇔p(qt)κt −
1

γ
κtq
− 1
γ

t − λt = 0 (3.1.13)

λ̇t = rλt −
∂H

∂St

⇔λ̇t = rλt (3.1.14)

Rewriting (3.1.13), using the demand function (3.1.7), equation (3.1.14) and the de�nition

of κt, we can get an expression for the price path

pt =
λ0

κ0(1− 1
γ
)
e(r+κ̂)t = p0e

(r+κ̂)t (3.1.15)

So we know that

p0 =
λ0

κ0(1− 1
γ
)

(3.1.16)

To get the equation for the resource extraction path, we combine the demand function

(3.1.7) with equation (3.1.15) and get

qt =

(
λ0

κ0(1− 1
γ
)

)−γ
e−γ(r+κ̂)t = q0e

−γ(r+κ̂)t (3.1.17)

We see that qt is only positive, if the elasticity of the demand function γ is greater than

one. An elasticity smaller than or equal to one means that a higher price always implies

a higher output. This leads to a price equal to in�nity and an extraction of zero in each

period. This is a common result in monopoly literature (see e.g. Varian 2010).
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If the elasticity is greater than one, qt is strictly positive and it is again optimal to use

all of the available resource, so S0 =
∫∞

0
qtdt. Using this and equation (3.1.17) we get for

the initial amount of the resource that is extracted the following expression

q0 = S0γ(r + κ̂) (3.1.18)

and thus when combining equations (3.1.17) and (3.1.18) we end up with

qt = S0γ(r + κ̂)e−γ(r+κ̂)t (3.1.19)

which is exactly the same solution as in the competitive case. Hence, if we rule out the

case where γ ≤ 1, which would lead to no extraction at all, the results are the same as

in the competitive case. So both the weak and the strong green paradox occur.

3.2 The model with endogenous resource exploration

The resource stock of oil and many other non-renewable resources has risen in the past

decades (see e.g. Stürmer and Schwerho� 2012). This is due to the fact that new

technologies allow the extraction of resources that have not been extractable before.

In the following model we will account for that and assume that the initial resource stock

is not �xed, but has to be explored. To do this, the �rms have to pay exploration costs,

which we will de�ne as C(S0). The higher the initial resource stock should be, the more

money has to be invested, so C ′(S0) > 0. Additionally we assume rising marginal costs

(C ′′(S0) > 0), because at �rst it is relatively easy to explore new resources, but as a lot

of them are already explored, it gets more expensive to provide an additional unit of the

resource. Thus the cost function has to be rising and convex, more precisely we assume

C(S0) = βSα0 with β > 0 and α > 1. A further assumption is that the exploration of the

resource happens before the extraction. So the model can be divided into two phases, an

exploration and an extraction phase.

Finally we assume that the reserves of the resource, being the maximal initial resource

stock, are either in�nity, or at least so high that it is economically not optimal to use all

of the available reserves.
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3.2.1 The competitive equilibrium

At �rst we take a look at the extraction phase and get a similar maximization problem

as in the previous model.

max Π = max

∫ ∞
0

ptqtκte
−rtdt− C(S0) (3.2.1)

s.t. Ṡ = −q

St ≥ 0

S0 endogenous

As long as we don't use the fact that the initial resource stock is endogenous, the results

are exactly the same as in the previous model, as C(S0) is a constant in the extraction

phase and hence not relevant for maximisation. Thus we get for the initial price (see

equation (3.1.6))

p0 =
λ0

κ0

(3.2.2)

For the initial resource extraction we get (see equation (3.1.9))

q0 = S0γ(r + κ̂) (3.2.3)

and for the resource extraction path (see equations (3.1.8) and (3.1.10))

qt = q0e
−γ(r+κ̂)t = S0γ(r + κ̂)e−γ(r+κ̂)t (3.2.4)

At time zero the marginal utility of the resource, which is equal to the shadow-price λ0,

has to coincide with the marginal costs of the initial resource stock (C ′(S0)), otherwise

it would be optimal to increase or decrease the amount of the resource made available.
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Therefore we have C ′(S0) = λ0 (see also Lasserre 1991). Using this equation we can get

an expression for the initial extraction q0

q0 =

(
κ0

αβ

) γ
(α−1)γ+1

[γ(r + κ̂)]
(α−1)γ

(α−1)γ+1 (3.2.5)

For the derivation of equation (3.2.5) see appendix 5.2.1.

Now we compare the model where taxes have to be paid to the model without taxes.

Remember that in the model without taxes we have κ0 = 1 and κ̂ = 0.

The weak green paradox arises, if the initial damage in the case where taxes are imposed

is higher than in the case without taxes (Γtax0 > Γnotax0 ⇔ qtax0 > qnotax0 ). Thus, using

equation (3.2.5) we can derive the condition for the weak green paradox to occur and get

τ0 < 1−
(

1 +
κ̂

r

)−(α−1)

(3.2.6)

The derivation can again be found in appendix 5.2.1.

So the occurrence of the weak green paradox depends on the structure of the tax, that

is implemented. A low initial tax rate τ0 favours the weak green paradox to occur. The

same is true if the tax rises fast (κ̂ high). For which combination of κ0 and κ̂ the weak

green paradox arises, can be seen in �gure 6. The values of α and r are stated below the

�gure. What we can additionally conclude from (3.2.6) is that a high real interest rate

r as well as high marginal exploration costs (α high) favour the weak green paradox to

occur.

To see if the strong green paradox occurs we look at the total damage, again restricted

to the case where θt = θ0e
σt and get

Γ =
θ0

γ(r + κ̂) + r − σ

(
κ0

αβ

) γ
(α−1)γ+1

[γ(r + κ̂)]
(α−1)γ

(α−1)γ+1 (3.2.7)

For the derivation see appendix 5.2.1.

As before we compare the case where a tax is collected to the case without a tax, to see
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Figure 6: α = 1.5, r = 0.02

when the strong green paradox occurs (Γtax > Γnotax) and �nd out that it does if for the

implemented tax the condition

τ0 < 1−

[(
1 +

γκ̂

r(1 + γ)− σ

)α−1+ 1
γ
(

1 +
κ̂

r

)−(α−1)
]

(3.2.8)

holds. The derivations can again be found in appendix 5.2.1.

As it was before for the weak green paradox, a low initial tax rate makes it more likely

for the strong green paradox to occur. What can be said additionally is that the strong

green paradox is more likely if the growth rate of the marginal damage function σ is

small. How fast the tax rises (κ̂), as well as the e�ect of the real interest rate r and the

parameter describing the elasticity of demand γ is ambiguous and depends on the values

of the other parameters. But we know that for κ̂→ 0 the right hand side of the inequality

(3.2.8) goes to zero. Therefore for low values of κ̂ the strong green paradox is not going

to arise. On the other hand for κ̂→∞ the right hand side goes to minus in�nity, as the

absolute value of the exponent of the �rst term in the square brackets is higher than the

absolute value of the exponent of the second term in the square brackets. Thus there is

no strong green paradox for high values of κ̂ either. In between, depending on the other

parameter values, it is either possible that there exist combinations of τ0 and κ̂ where the
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strong green paradox occurs (see �gure 7a) or not (see �gure 7b). This depends strongly,

but not solely on how fast the marginal exploration costs rise.

(a) Fast rising marginal exploration costs α = 5 (b) Slowly rising marginal exploration costs α = 2

Figure 7: r = 0.1, σ = 0.01, γ = 2

3.2.2 The monopoly allocation

As there is only a solution in the monopoly case if γ > 1, we will take that assumption

throughout this section. We already discussed in the previous section that equations

(3.2.3) and (3.2.4) do not change, when a monopoly is assumed. What changes is the

initial price p0. We have

p0 =
λ0

κ0(1− 1
γ
)

(3.2.9)

instead of p0 = λ0
κ0

as in the competitive case (see equation (3.1.16)). We will show that

this doesn't lead to a di�erent outcome concerning the green paradoxes.

Because the initial price is di�erent, we also get a new expression for the initial extraction.

Instead of (3.2.5) we get

q0 =

(
κ0(1− 1

γ
)

αβ

) γ
(α−1)γ+1

[γ(r + κ̂)]
(α−1)γ

(α−1)γ+1 (3.2.10)

See appendix 5.2.2 for the derivation.
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At �rst we again try to �nd out when the weak green paradox occurs. This is the case

when the initial extraction in the tax-case is greater than the initial extraction in the

case without a tax. After some calculations (see appendix 5.2.2) we �nd out that this is

the case when

τ0 < 1−
(

1 +
κ̂

r

)−(α−1)

(3.2.11)

We see that this is the exact same inequality as in the competitive case (see (3.2.6)).

So the weak green paradox occurs for the same combinations of κ0 and κ̂ in the monopoly

case as in the competitive case.

Next we calculate the overall damage (see appendix 5.2.2) and get

Γ =
θ0

γ(r + κ̂) + r − σ

(
κ0(1− 1

γ
)

αβ

) γ
(α−1)γ+1

[γ(r + κ̂)]
(α−1)γ

(α−1)γ+1 (3.2.12)

Now it is just left to �nd out when the strong green paradox occurs by �nding out when

Γtax is greater than Γnotax. This is the case when

τ0 < 1−

[(
1 +

γκ̂

r(1 + γ)− σ

)α−1+ 1
γ
(

1 +
κ̂

r

)−(α−1)
]

(3.2.13)

For the derivation see again appendix 5.2.2.

This is again the exact same condition as in the competitive case. Hence the strong green

paradox arises also for the same combinations of κ0 and κ̂ in the monopoly case as in the

competitive case.

3.3 Discussion

If we assume an exogenous resource stock when using the tax model, both green paradoxes

occur. This is due to the fact that a rising revenue tax leads to more extraction earlier

in time.

One can argue that it is more realistic that �rms can invest money (e.g. in better

extraction methods) to increase the size of the resource stock, as it grows with new

technologies, which has happened for oil and a lot of other non-renewable resources in
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the past decades. When taking this into account we concluded that it depends on the

structure of the implemented tax if the weak and the strong green paradox occur. The

weak green paradox is more likely to occur when the initial tax rate is low and/or the

tax rises fast (holding the other parameters constant). The strong green paradox is also

more likely to arise with a low initial tax rate. Its occurrence is unlikely for a very slow

or a fast rise of the tax rate (again holding the other parameters constant). For some

parameter values, particularly for slowly rising marginal exploration costs (α small), the

strong green paradox is not going to occur, no matter how the tax is structured.

When assuming a monopoly, the implications concerning the green paradoxes do not

change at all in the tax models, when we assume that the elasticity of the demand is

bigger than one, which guaranties that the monopoly models have a solution.
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4 Conclusion

We showed that no matter if we look at the models with a backstop or the ones with tax,

the occurrence of both the weak and the strong green paradox depends strongly upon

the underlying assumptions. When changing an assumption such as e.g. the structure of

the extraction costs, or the implemented tax, the results concerning the green paradoxes

may change as well. As unfortunate as it is to not have an unambiguous result, it is

nevertheless important (e.g. for policy makers) to know that they may be confronted

with a green paradox. Moreover this coincides with the existing literature, where several

papers conclude that a green paradox may occur, but it often depends on the assumptions

(in most cases on the values of the parameters used).

In almost all cases the assumptions of a monopoly does not change the implications

concerning the green paradoxes. The only exception is the backstop-model with increasing

extraction costs where the strong green paradox may occur (for a low backstop-price (ψ <
β
2
) and some additional parameter restrictions), which it doesn't in the competitive case.

So in the great majority of models looked at one need not to worry if the observed market

is a competitive or a monopoly market, when the occurrence of the green paradoxes is

analysed.
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5 Appendix

5.1 Proofs of chapter 2

Proposition 1. Consider two piecewise continuous paths qt, q
∗
t : R+ → R+ with qt =

0 ∀t : t > T , q∗t = 0 ∀t : t > T ∗, T > T ∗ and
∫ T

0
qtdt =

∫ T ∗
0

q∗t dt. Moreover we know that

qt < q∗t ∀t : t < T ∗ and qt > q∗t ∀t : T ∗ < t < T . Additionally we have a strictly positive

parameter θ0 and a strictly decreasing weight function θ̃t.

Then we can conclude that Γ∗0 := θ0q
∗
0 is strictly greater than Γ0 := θ0q0 and Γ∗ :=∫ T ∗

0
θ̃tq
∗
t dt is strictly greater than Γ :=

∫ T
0
θ̃tqtdt.

Proof. From qt < q∗t ∀t : t < T we can immediately conclude that q0 < q∗0 and therefore

Γ∗0 > Γ0.

For the second part of the proof we take the di�erence between Γ∗ and Γ and get

Γ∗ − Γ =

∫ T ∗

0

θ̃tq
∗
t dt−

∫ T

0

θ̃tqtdt =

=

∫ T

0

θ̃t(q
∗
t − qt)dt

=

∫ T ∗

0

θ̃t(q
∗
t − qt)dt−

∫ T

T ∗
θ̃tqtdt >

>

∫ T ∗

0

θ̃T ∗(q
∗
t − qt)dt−

∫ T

T ∗
θ̃T ∗qtdt =

= θ̃T ∗

∫ T

0

(q∗t − qt)dt =

= θ̃T ∗

(∫ T

0

q∗t dt−
∫ T

0

qtdt

)
=

= θ̃T ∗

(∫ T ∗

0

q∗t dt−
∫ T

0

qtdt

)
= 0

Thus we know that Γ∗ has to be strictly greater than Γ.

Proposition 2. Given the system of di�erential equations, which is de�ned by equa-

tions (2.2.6) and (2.2.7), a strictly positive parameter θ0 and a strictly decreasing weight

function θ̃t and knowing additionally that s0 = 0, sT = ψ
η
, λT = 0, λt = pt − ηst (see

equation (2.2.3)) and ṡt = qt = α(1 − pt
β

) the function Γ0 := θ0q0 depends negatively on

the backstop-price ψ and the function Γ :=
∫ T

0
θ̃tqtdt depends positively on ψ.
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Proof. At �rst we need to �nd the stationary point of the system of di�erential equations

(2.2.6) and (2.2.7)

0 = ṡ∗ = −αη
β
s∗ − α

β
λ∗ + α

0 = λ̇∗ =
αη2

β
s∗ + (r +

αη

β
)λ∗ − αη

Solving this system of linear equations leads us to

s∗ =
β

η
(5.1.1)

λ∗ = 0 (5.1.2)

Now we derive the Jacobian matrix of the system

J =

(
δṡt
δst

δṡt
δλt

δλ̇t
δst

δλ̇t
δλt

)
=

(
−αη

β
−α
β

η2α
β

r + αη
β

)

To get the eigenvalues µi of this matrix we set the characteristic polynomial equal to zero

(−αη
β
− µ)(r +

αη

β
− µ) +

η2α2

β2
= µ2 − rµ− rαη

β
= 0 (5.1.3)

Solving this equation, we get the two eigenvalues

µ1 =
r

2
−

√
r2

4
+
rαη

β
(5.1.4)

µ2 =
r

2
+

√
r2

4
+
rαη

β
(5.1.5)

Next we want to prove that the following (in)equalities hold
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µ1 + µ2 =
r

2
> 0 − αη

β
< µ1 < 0 0 < r < µ2 (5.1.6)

µ1 + µ2 = r
2
we get immediately from (5.1.4) and (5.1.5).

To prove the chain of inequalities for µ1 we have

µ1 =
r

2
−

√
r2

4
+
rαη

β
>

>
r

2
−

√
r2

4
+
rαη

β
+ (

αη

β
)2 =

= −αη
β

and

µ1 =
r

2
−

√
r2

4
+
rαη

β
<

<
r

2
−
√
r2

4
= 0

For the last inequality of (5.1.6) the proof is similar

µ2 =
r

2
+

√
r2

4
+
rαη

β
>

>
r

2
+

√
r2

4
= r

Knowing the eigenvalues µi and that in the steady state s∗ = β
η
, we can write the general

solution of the cumulative extraction at time t as

st =
β

η
+Beµ1t + Aeµ2t (5.1.7)
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Using now s0 = 0 gives us

0 =
β

η
+B + A

⇔ B = −(A+
β

η
) (5.1.8)

Plugging equation (5.1.8) into equation (5.1.7) we get

st =
β

η
− (A+

β

η
)eµ1t + Aeµ2t (5.1.9)

For the use of the resource we have

qt = ṡt = −(A+
β

η
)µ1e

µ1t + Aµ2e
µ2t (5.1.10)

The next step is to �nd out how A and T depend upon ψ.

At �rst we plug both st and qt into the equation for λt and get using pt = β(1− qt
α

)

λt = pt − ηst =

= β(1− qt
α

)− ηst =

= β +
β

α
(A+

β

η
)µ1e

µ1t − β

α
Aµ2e

µ2t − β + η(A+
β

η
)eµ1t − ηAeµ2t =

= (A+
β

η
)(
µ1β

α
+ η)eµ1t − A(

µ2β

α
+ η)eµ2t (5.1.11)

As we know that λT = 0 holds, we get
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(A+
β

η
)(
µ1β

α
+ η)eµ1T − A(

µ2β

α
+ η)eµ2T = 0

⇔e(µ2−µ1)T =
(A+ β

η
)(µ1β

α
+ η)

A(µ2β
α

+ η)

⇔eT =

(
(A+ β

η
)(µ1β + αη)

A(µ2β + αη)

) 1
µ2−µ1

(5.1.12)

To make calculations easier, we de�ne Z := µ1β+αη
µ2β+αη

. Using the inequalities in (5.1.6),

we see that the numerator and the denominator are greater than zero. Moreover the

numerator is smaller than the denominator, so we get 0 < Z < 1.

We can rewrite equation (5.1.12) as

eT =

(
A+ β

η

A
Z

) 1
µ2−µ1

(5.1.13)

The next step is �nding out how big the total amount of the extracted resource is and

how it depends upon A

sT =
β

η
− (A+

β

η
)eµ1T + Aeµ2T =

=
β

η
− (A+

β

η
)

(
A+ β

η

A
Z

) µ1
µ2−µ1

+ A

(
A+ β

η

A
Z

) µ2
µ2−µ1

=

=
β

η
− (A+

β

η
)

µ2
µ2−µ1A

− µ1
µ2−µ1Z

µ1
µ2−µ1 + (A+

β

η
)

µ2
µ2−µ1A

− µ1
µ2−µ1Z

µ2
µ2−µ1 =

=
β

η
− (A+

β

η
)

µ2
µ2−µ1A

− µ1
µ2−µ1 (Z

µ1
µ2−µ1 − Z

µ2
µ2−µ1 ) (5.1.14)

Looking at equations (5.1.13) and (5.1.14), we see that for A→ 0, T goes to in�nity and

sT to β
η
. Moreover we have ∂A

∂T
< 0 and ∂A

∂sT
< 0, as the exponents of (A + β

η
) and A, as

well as the last part in the brackets, are positive (because 0 < Z < 1, µ1 < 0 and µ2 > 0).

As we also know that sT = ψ
η
we can easily conclude that ∂A

∂ψ
< 0 and ∂T

∂ψ
> 0.

Now we just need to �nd out how Γ0 and Γ depend upon A and T .

For the initial extraction we have
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q0 = −β
η
µ1 + (µ2 − µ1)A (5.1.15)

We can easily see that ∂q0
∂A

> 0 and therefore ∂q0
∂ψ

< 0 and ∂Γ0

∂ψ
< 0.

To see how Γ depends on ψ, we restrict ourselves to the case where θ̃t = θ0e
(−r+σ)t

and generalize later. Note that in this case, as by assumption θ̃t is strictly decreasing,

σ < r has to hold.

For the overall damage we get, using equation (5.1.13) for the last equality,

Γ =

∫ T

0

θ0e
(−r+σ)tqtdt =

=θ0

∫ T

0

−(A+
β

η
)µ1e

(−r+σ+µ1)t + Aµ2e
(−r+σ+µ2)tdt =

=θ0

(
−

(A+ β
η
)µ1

−r + σ + µ1

e(−r+σ+µ1)T +
Aµ2

−r + σ + µ2

e(−r+σ+µ2)T

+
(A+ β

η
)µ1

−r + σ + µ1

− Aµ2

−r + σ + µ2

)
=

=θ0

(
−

(A+ β
η
)µ1

−r + σ + µ1

(e(−r+σ+µ1)T − 1) +
Aµ2

−r + σ + µ2

(e(−r+σ+µ2)T − 1)

)
=

=θ0

− (A+ β
η
)µ1

−r + σ + µ1

((A+ β
η
)

A
Z

)−r+σ+µ1
µ2−µ1

− 1


+

Aµ2

−r + σ + µ2

((A+ β
η
)

A
Z

)−r+σ+µ2
µ2−µ1

− 1


Now we de�ne X = µ1

−r+σ+µ1
and Y = µ2

−r+σ+µ2
and get
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Γ =θ0

−(A+
β

η
)X

((A+ β
η
)

A
Z

)−r+σ+µ1
µ2−µ1

− 1


+ AY

((A+ β
η
)

A
Z

)−r+σ+µ2
µ2−µ1

− 1

 =

=θ0

[
AX +

β

η
X −X(A+

β

η
)
−r+σ+µ2
µ2−µ1 A

−−r+σ+µ1
µ2−µ1 Z

−r+σ+µ1
µ2−µ1

− AY + Y (A+
β

η
)
−r+σ+µ2
µ2−µ1 A

−−r+σ+µ1
µ2−µ1 Z

−r+σ+µ2
µ2−µ1

]
=

=θ0

[
β

η
X + A(X − Y )

+ (A+
β

η
)
−r+σ+µ2
µ2−µ1 A

−−r+σ+µ1
µ2−µ1

(
−XZ

−r+σ+µ1
µ2−µ1 + Y Z

−r+σ+µ2
µ2−µ1

)]
(5.1.16)

As the damage at time t can only be positive for all t smaller than T , an increase in T

can only lead to an increase in Γ, so ∂Γ
∂T

> 0.

The dependence upon A is a little more di�cult.

It is easy to see that X−Y < 0 and that the exponents of A+ β
η
and A are both positive.

If we can show that the last expression in the round brackets is lower than zero, we can

conclude that ∂Γ
∂A

< 0.

−XZ
−r+σ+µ1
µ2−µ1 + Y Z

−r+σ+µ2
µ2−µ1 < 0

⇔XZ
−r+σ+µ1
µ2−µ1 > Y Z

−r+σ+µ2
µ2−µ1

⇔X

Y
> Z (5.1.17)

Now we are going to prove that the inequality (5.1.17) holds, using the fact that the

characteristic polynomial is equal to zero (µ2
i − rµi −

rαη
β

= 0).
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X

Y
=
µ1(−r + σ + µ2)

µ2(−r + σ + µ1)
=

=
−µ2r + µ2σ + µ2

2

−µ1r + µ1σ + µ2
1

· µ
2
1

µ2
2

=

=

rαη
β

+ µ2σ
rαη
β

+ µ1σ
· µ

2
1

µ2
2

>

>
µ2

1

µ2
2

=
rµ1 + rαη

β

rµ2 + rαη
β

=
µ1β + αη

µ2β + αη
= Z

So we know that ∂Γ
∂A

< 0 and ∂Γ
∂T

> 0. Thus, and because we know that ∂A
∂ψ

< 0 and
∂T
∂ψ

> 0, we get ∂Γ
∂ψ

> 0.

What is now left to prove is that this also holds in the case where θ̃t is an arbitrary

decreasing function. We assume again that the backstop drops from ψ to ψ∗ (ψ∗ < ψ).

It is possible to �nd a σ, such that σ < r holds and the growth rate of θ̃t is greater than

−r + σ for all t ∈ [0, T ]. Now we choose θ0 such that θ0e
(−r+σ)t coincides with θ̃t at T ∗

(θ0e
(−r+σ)T ∗ = θ̃T ∗). As we know that T ∗ < T , we get θ̃t < θ0e

(−r+σ)t ∀t : t < T ∗ and

θ̃t > θ0e
(−r+σ)t ∀t : T ∗ < t < T . Using q∗t > qt ∀t : t < T ∗ and q∗t < qt ∀t : T ∗ < t < T

we get

Γ∗ − Γ =

∫ T ∗

0

θ̃tq
∗
t dt−

∫ T

0

θ̃tqtdt =

=

∫ T ∗

0

θ̃t(q
∗
t − qt)dt−

∫ T

T ∗
θ̃tqtdt <

<

∫ T ∗

0

θ0e
(−r+σ)t(q∗t − qt)dt−

∫ T

T ∗
θ0e

(−r+σ)tqtdt =

=

∫ T ∗

0

θ0e
(−r+σ)tq∗t dt−

∫ T

0

θ0e
(−r+σ)tqtdt < 0

As the expression in the last line is exactly the di�erence in the overall damage in the

case where θ̃t = θ0e
(−r+σ)t and we know that in this case Γ depends positively on ψ, we

can conclude that this expression is smaller than zero. Therefore also the di�erence in

the overall damage using the generalized function θ̃t is smaller than zero and thus the

function Γ depends positively on ψ in this case as well.
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Proposition 3. Given the system of di�erential equations, which is de�ned by equations

(2.2.13) and (2.2.14)), a strictly positive parameter θ0 and a strictly decreasing weight

function θ̃t and knowing additionally that s0 = 0, sT = ψ
η
, λT = 0, λt = 2pt−β− ηst (see

equation (2.2.12)) and ṡt = qt = α(1 − pt
β

) the function Γ0 = θ0q0 depends negatively on

the backstop-price ψ and the function Γ =
∫ T

0
θ̃tqtdt depends positively on ψ.

Proof. The proof of this proposition is, unsurprisingly, very similar to the one of propo-

sition 2. Some parts are in fact exactly the same. We will therefore refer to said proof

for some implications.

At �rst we will show that the stationary point of the system of di�erential equations is

the same as in the competitive case

0 = ṡ∗ =
1

2

(
−αη
β
s∗ − α

β
λ∗ + α

)
0 = λ̇∗ =

1

2

(
αη2

β
s∗ + (2r +

αη

β
)λ∗ − αη

)

Solving this system of linear equations leads us again to

s∗ =
β

η
(5.1.18)

λ∗ = 0 (5.1.19)

Next we derive the Jacobian matrix of the system and get

J =

(
δṡt
δst

δṡt
δλt

δλ̇t
δst

δλ̇t
δλt

)
=

1

2
·

(
−αη

β
−α
β

η2α
β

2r + αη
β

)

Setting the characteristic polynomial equal to zero leads us to

(−αη
β
− µ)(2r +

αη

β
− µ) +

η2α2

β2
= µ2 − 2rµ− 2rαη

β
= 0 (5.1.20)

Solving this equation, we get the two eigenvalues
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µ1 = r −
√
r2 +

2rαη

β
(5.1.21)

µ2 = r +

√
r2 +

2rαη

β
(5.1.22)

Now we are going to show that the following (in)equalities hold

µ1 + µ2 = r > 0 − αη

β
< µ1 < 0 0 < 2r < µ2 (5.1.23)

µ1 + µ2 = r we get immediately from (5.1.21) and (5.1.22).

Moreover we know

µ1 = r −
√
r2 +

2rαη

β
>

> r −
√
r2 +

2rαη

β
+ (

αη

β
)2 =

= −αη
β

(5.1.24)

and

µ1 = r −
√
r2 +

2rαη

β
<

< r −
√
r2 = 0

For the last inequality in (5.1.23) concerning µ2 we have

µ2 = r +

√
r2 +

2rαη

β
>

> r +
√
r2 = 2r
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As the steady state is the same as in the competitive case, we can also write st as

st =
β

η
+Beµ1t + Aeµ2t (5.1.25)

which leads us to

qt = ṡt = −(A+
β

η
)µ1e

µ1t + Aµ2e
µ2t (5.1.26)

Look at the proof of proposition 2 (5.1.7)-(5.1.10) for con�rmation.

Now we plug st and qt into the equation for λt and get using pt = β(1− qt
α

)

λt = 2pt − β − ηst =

= 2β(1− qt
α

)− β − ηst =

= 2β +
2β

α
(A+

β

η
)µ1e

µ1t − 2β

α
Aµ2e

µ2t − β − β + η(A+
β

η
)eµ1t − ηAeµ2t =

= (A+
β

η
)(

2µ1β

α
+ η)eµ1t − A(

2µ2β

α
+ η)eµ2t (5.1.27)

Using λT = 0 we get

(A+
β

η
)(

2µ1β

α
+ η)eµ1T − A(

2µ2β

α
+ η)eµ2T = 0

⇔e(µ2−µ1)T =
(A+ β

η
)(2µ1β

α
+ η)

A(2µ2β
α

+ η)

⇔eT =

(
(A+ β

η
)(2µ1β + αη)

A(2µ2β + αη)

) 1
µ2−µ1

(5.1.28)

Now we de�ne Z := 2µ1β+αη
2µ2β+αη

and end up with the same equation as in the proof of

proposition 2. So as long as we don't need the de�nition of Z, which we do not between

equations (5.1.13) and (5.1.17), we can follow the same steps as there. From equation

(5.1.15) we know that Γ0 depends negatively on ψ. To show that Γ depends positively

upon ψ, we just need to prove that X
Y
> Z holds for X = µ1

−r+σ+µ1
, Y = µ2

−r+σ+µ2
and
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Z = 2µ1β+αη
2µ2β+αη

(see equations (5.1.16) and (5.1.17)). We will do that using the characteristic

polynomial (5.1.20)

X

Y
=
µ1(−r + σ + µ2)

µ2(−r + σ + µ1)
=

=
−µ2r + µ2σ + µ2

2

−µ1r + µ1σ + µ2
1

· µ
2
1

µ2
2

=

=

2rαη
β

+ µ2σ + µ2r
2rαη
β

+ µ1σ + µ1r
· µ

2
1

µ2
2

>

>
µ2

1

µ2
2

=
2rµ1 + 2rαη

β

2rµ2 + 2rαη
β

=
µ1β + αη

µ2β + αη
>

2µ1β + αη

2µ2β + αη
= Z

So we can conclude that Γ depends positively upon ψ.

For the generalization to θ̃t being an arbitrary decreasing function we again refer to the

proof of proposition 2 (last part).

Proposition 4. Assume that ṡt = qt = α(1 − ψ
β

), T = βψ
αη(β−ψ)

, ψ ≤ β
2
, θ0 > 0 and

r, σ > 0 with r > σ.

Then the function Γ0 = θ0qt depends negatively upon ψ and the dependence of the function

Γ =
∫∞

0
e−rtθ0e

σtqt on ψ can't be uniquely determined, but depends on the parameters used.

The chance of ∂Γ
∂ψ

being lower than zero is high for a big di�erence between the real interest

rate and the growth rate of the marginal damage function (r−σ high) as well as for small

values of α and η.

Proof. It is relatively easy to prove that Γ0 depends negatively on the ψ, as the initially

extracted amount of the resource is q0 = α(1 − ψ
β

) and if the backstop-price drops, q0

rises and therefore Γ0 rises as well.

For the overall damage we get

Γ =

∫ T

0

θ̃tqtdt =

= α(1− ψ

β
)

∫ T

0

θ0e
(−r+σ)tdt =

= α(1− ψ

β
)

θ0

−r + σ
(e(−r+σ)T − 1) =

= α(1− ψ

β
)
θ0

r − σ
(1− e−

βψ(r−σ)
αη(β−ψ) )
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Now we need to calculate the derivative of Γ with respect to ψ and get

∂Γ

∂ψ
=α(1− ψ

β
)
θ0

r − σ
(r − σ)βαη(β − ψ) + (r − σ)βψ(αη)

α2η2(β − ψ)2
e−

βψ(r−σ)
αη(β−ψ)

− αθ0

β(r − σ)
(1− e−

βψ(r−σ)
αη(β−ψ) )

Factoring out the term αθ0
β(r−σ)

, de�ning x := βψ(r−σ)
αη(β−ψ)

and simplifying the expression gives

us

∂Γ

∂ψ
=

αθ0

β(r − σ)

[
(
β

ψ
x+ 1)e−x − 1

]

Now we want to show that this term can be positive or negative, depending on the values

of the parameters.

To do this the �rst factor is irrelevant here, as it is always positive. So we can drop it.

Moreover we de�ne a := β
ψ
and get

∂Γ

∂ψ

∗
= (ax+ 1)e−x − 1 (5.1.29)

From β > ψ we can conclude that a > 1. Moreover we know that x > 0 holds, but x can

get very small (when σ is close to r) or very large (when the term αη is small), holding

ψ and β, and therefore a constant. So it is enough now to prove that there exist some

x greater than zero for which equation (5.1.29) is positive and there also exist some x

greater than zero for which it is negative.

To do that we are going to prove that equation (5.1.29) has two roots for non-negative

x (one at x = 0) and the only extremum is a maximum turning point in between. Note

that it would be enough to �nd two example values to prove the statement, but we want

to get an understanding of how the solution is structured.

It is easy to see that equation (5.1.29) has a root at x = 0. To �nd the turning point we

calculate the �rst derivative of (5.1.29) with respect to x and get

∂[(ax+ 1)e−x − 1]

∂x
= (a− ax− 1)e−x (5.1.30)
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Equation (5.1.30) is equal to zero if x = a−1
a

(> 0). Plugging this into the second derivative

of (5.1.29) with respect to x gives us

∂2 [(ax+ 1)e−x − 1]

∂2x2
= (ax− 2a+ 1)e−x = −ae−

a−1
a (5.1.31)

As this expression is smaller than zero we have a single extremum, which is a maximum

turning point at x = a−1
a
. Now we only need to show that if x gets high enough the value

of (5.1.29) gets negative.

We set x = a and get

(ax+ 1)e−x − 1 = (a2 + 1)e−a − 1 (5.1.32)

This expression is smaller than zero if and only if a2 + 1 < ea ∀a : a > 1. This is the

case because the equation is ful�lled for a = 1 and the derivation of the left hand side is

smaller than the derivation of the right hand side (2a < ea) if a is greater than one.

So if x is high enough we have ∂Γ
∂ψ

< 0 and vice versa. The variable x is higher the higher

(r − σ) is and the lower α and η are respectively.

Proposition 5. Consider two continuous paths qt, q
∗
t : R+ → R+ with qt = 0 ∀t : t > T ,

q∗t = 0 ∀t : t > T ∗, T < T ∗ and
∫ T

0
qtdt =

∫ T ∗
0

q∗t dt. Moreover we know that q̇t < q̇∗t ∀t :

t < T and q̇t > q̇∗t ∀t : T < t < T ∗. Additionally we have a strictly positive parameter θ0

and a strictly decreasing weight function θ̃t.

Then we can conclude that Γ∗0 := θ0q
∗
0 is strictly smaller than Γ0 := θ0qt and Γ∗ :=∫ T ∗

0
θ̃tq
∗
t dt is strictly smaller than Γ :=

∫ T
0
θ̃tqtdt.

Proof. First we de�ne ∆t = q∗t − qt.
From the above implications we get ∆̇t = q̇t

∗ − q̇t > 0 ∀t : t < T and ∆̇t = q̇t
∗ < 0 ∀t :

T < t < T ∗.

Moreover we have ∆T = q∗T − qT = q∗T > 0 and thus

∫ T

0

∆tdt =

∫ T

0

q∗t dt−
∫ T

0

qtdt =

∫ T

0

q∗t dt−
∫ T ∗

0

q∗t dt = −
∫ T ∗

T

q∗t dt < 0
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So ∆t is a strictly increasing, continuous function with ∆T > 0 and a negative integral

from zero to T . This implies that ∆0 < 0 and the existence of a t∗ ∈ (0, T ) with ∆t∗ = 0.

From ∆0 < 0 we can conclude q∗0 < q0 and Γ∗0 < Γ0.

To see if Γ∗ < Γ holds, we look at the di�erence in the total damage

Γ∗ − Γ =

∫ T ∗

0

θ̃tq
∗
t dt−

∫ T

0

θ̃tqtdt =

=

∫ T ∗

0

θ̃t∆tdt =

=

∫ t∗

0

θ̃t∆tdt+

∫ T ∗

t∗
θ̃t∆tdt <

<

∫ t∗

0

θ̃t∗∆tdt+

∫ T ∗

t∗
θ̃t∗∆tdt =

= θ̃t∗

∫ T ∗

0

∆tdt =

= θ̃t∗

(∫ T ∗

0

q∗t dt−
∫ T ∗

0

qtdt

)
=

= θ̃t∗

(∫ T ∗

0

q∗t dt−
∫ T

0

qtdt

)
= 0

5.2 Derivations in chapter 3

5.2.1 The competitive case

For the derivation of equation (3.2.5) we use the de�nition of C(S0), the fact that C ′(S0) =

λ0, as well as equations (3.2.2), (3.2.3) and the demand function (3.1.7)

C ′(S0) = λ0

⇔αβSα−1
0 = p0κ0

⇔αβ
(

q0

γ(r + κ̂)

)α−1

= q
− 1
γ

0 κ0

⇔q
α−1+ 1

γ

0 = (αβ)−1[γ(r + κ̂)]α−1κ0

⇔q0 =

(
κ0

αβ

) γ
(α−1)γ+1

[γ(r + κ̂)]
(α−1)γ

(α−1)γ+1
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To get the inequality (3.2.6) we use τ0 = 1 − κ0, equation (3.2.5) as well as the fact

that in the case with no tax κ0 = 1 and κ̂ = 0 holds

qtax0 > qnotax0

⇔ κ0

αβ

γ
(α−1)γ+1

[γ(r + κ̂)]
(α−1)γ

(α−1)γ+1 >

(
1

αβ

) γ
(α−1)γ+1

(γr)
(α−1)γ

(α−1)γ+1

⇔κ
γ

(α−1)γ+1

0 [γ(r + κ̂)]
(α−1)γ

(α−1)γ+1 > (γr)
(α−1)γ

(α−1)γ+1

⇔κ
γ

(α−1)γ+1

0 >

(
γr

γ(r + κ̂)

) (α−1)γ
(α−1)γ+1

⇔κ0 >

(
r

r + κ̂

)α−1

⇔κ0 >

(
1 +

κ̂

r

)−(α−1)

⇔τ0 < 1−
(

1 +
κ̂

r

)−(α−1)

Equation (3.2.7) can be derived using the fact that θt = θ0e
σt, as well as equations

(3.2.4)and (3.2.5)

Γ =

∫ ∞
0

e−rtθtqtdt =

=

∫ ∞
0

θ0e
(−r+σ)tqtdt =

=

∫ ∞
0

θ0e
(−r+σ)tq0e

−γ(r+κ̂)tdt =

=

∫ ∞
0

θ0

(
κ0

αβ

) γ
(α−1)γ+1

[γ(r + κ̂)]
(α−1)γ

(α−1)γ+1 e−[γ(r+κ̂)+r−σ]tdt =

=
θ0

γ(r + κ̂) + r − σ

(
κ0

αβ

) γ
(α−1)γ+1

[γ(r + κ̂)]
(α−1)γ

(α−1)γ+1

For the derivation of (3.2.8) we use equation (3.2.7) and again τ0 = 1 − κ0 and the

fact that in the case with no tax κ0 = 1 and κ̂ = 0 holds
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Γtax > Γnotax

⇔ θ0

γ(r + κ̂) + r − σ

(
κ0

αβ

) γ
(α−1)γ+1

[γ(r + κ̂)]
(α−1)γ

(α−1)γ+1 >
θ0

γr + r − σ

(
1

αβ

) γ
(α−1)γ+1

(γr)
(α−1)γ

(α−1)γ+1

⇔ 1

γ(r + κ̂) + r − σ
κ

γ
(α−1)γ+1

0 [γ(r + κ̂)]
(α−1)γ

(α−1)γ+1 >
1

γr + r − σ
(γr)

(α−1)γ
(α−1)γ+1

⇔κ
γ

(α−1)γ+1

0 >
γ(r + κ̂) + r − σ
γr + r − σ

(
γr

γ(r + κ̂)

) (α−1)γ
(α−1)γ+1

⇔κ0 >

(
γ(r + κ̂) + r − σ
γr + r − σ

) (α−1)γ+1
γ

(
γr

γ(r + κ̂)

)α−1

⇔κ0 >

(
1 +

γκ̂

r(1 + γ)− σ

)α−1+ 1
γ
(

1 +
κ̂

r

)−(α−1)

⇔τ0 < 1−

[(
1 +

γκ̂

r(1 + γ)− σ

)α−1+ 1
γ
(

1 +
κ̂

r

)−(α−1)
]

(5.2.1)

5.2.2 The monopoly model

For the derivation of equation (3.2.10) we use again the de�nition of C(S0), the fact that

C ′(S0) = λ0, as well as equations (3.2.9), (3.2.3) and the demand function (3.1.7)

C ′(S0) = λ0

⇔αβSα−1
0 = p0κ0(1− 1

γ
)

⇔αβ
(

q0

γ(r + κ̂)

)α−1

= q
− 1
γ

0 κ0(1− 1

γ
)

⇔q
α−1+ 1

γ

0 = (αβ)−1[γ(r + κ̂)]α−1κ0(1− 1

γ
)

⇔q0 =

(
κ0(1− 1

γ
)

αβ

) γ
(α−1)γ+1

[γ(r + κ̂)]
(α−1)γ

(α−1)γ+1

To get the inequality (3.2.11) we use equation (3.2.10) as well as τ0 = 1−κ0 and the fact

that in the case with no tax κ0 = 1 and κ̂ = 0 holds
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qtax0 > qnotax0

⇔
κ0(1− 1

γ
)

αβ

γ
(α−1)γ+1

[γ(r + κ̂)]
(α−1)γ

(α−1)γ+1 >

(
1− 1

γ

αβ

) γ
(α−1)γ+1

(γr)
(α−1)γ

(α−1)γ+1

⇔κ
γ

(α−1)γ+1

0 [γ(r + κ̂)]
(α−1)γ

(α−1)γ+1 > (γr)
(α−1)γ

(α−1)γ+1

⇔κ
γ

(α−1)γ+1

0 >

(
γr

γ(r + κ̂)

) (α−1)γ
(α−1)γ+1

⇔κ0 >

(
r

r + κ̂

)α−1

⇔κ0 >

(
1 +

κ̂

r

)−(α−1)

⇔τ0 < 1−
(

1 +
κ̂

r

)−(α−1)

Equation (3.2.12) can be derived using the fact that θt = θ0e
σt, as well as equations

(3.2.4) and (3.2.10)

Γ =

∫ ∞
0

e−rtθtqtdt =

=

∫ ∞
0

θ0e
(−r+σ)tqtdt =

=

∫ ∞
0

θ0e
(−r+σ)tq0e

−γ(r+κ̂)tdt =

=

∫ ∞
0

θ0

(
κ0(1− 1

γ
)

αβ

) γ
(α−1)γ+1

[γ(r + κ̂)]
(α−1)γ

(α−1)γ+1 e−[γ(r+κ̂)+r−σ]tdt =

=
θ0

γ(r + κ̂) + r − σ

(
κ0(1− 1

γ
)

αβ

) γ
(α−1)γ+1

[γ(r + κ̂)]
(α−1)γ

(α−1)γ+1

For the derivation of (3.2.13) we use equation (3.2.12) and again τ0 = 1 − κ0, as well

as the fact that in the case with no tax κ0 = 1 and κ̂ = 0 holds
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Γtax > Γnotax

⇔ θ0

γ(r + κ̂) + r − σ

(
κ0(1− 1

γ
)

αβ

) γ
(α−1)γ+1

[γ(r + κ̂)]
(α−1)γ

(α−1)γ+1 >
θ0

γr + r − σ

(
1− 1

γ

αβ

) γ
(α−1)γ+1

(γr)
(α−1)γ

(α−1)γ+1

⇔ 1

γ(r + κ̂) + r − σ
κ

γ
(α−1)γ+1

0 [γ(r + κ̂)]
(α−1)γ

(α−1)γ+1 >
1

γr + r − σ
(γr)

(α−1)γ
(α−1)γ+1

⇔κ
γ

(α−1)γ+1

0 >
γ(r + κ̂) + r − σ
γr + r − σ

(
γr

γ(r + κ̂)

) (α−1)γ
(α−1)γ+1

⇔κ0 >

(
γ(r + κ̂) + r − σ
γr + r − σ

) (α−1)γ+1
γ

(
γr

γ(r + κ̂)

)α−1

⇔κ0 >

(
1 +

γκ̂

r(1 + γ)− σ

)α−1+ 1
γ
(

1 +
κ̂

r

)−(α−1)

⇔τ0 < 1−

[(
1 +

γκ̂

r(1 + γ)− σ

)α−1+ 1
γ
(

1 +
κ̂

r

)−(α−1)
]

(5.2.2)
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5.3 Abstract

A current question in environmental economics is, if measures that are taken to protect

the environment (e.g. subsidies for renewable energy or taxes on non-renewable resources)

can have the opposite e�ect, because the supply side is not considered and non-renewable

resources are then extracted faster.

This thesis looks at the implications concerning this so called green paradox using existing

competitive equilibrium models and �nds out that changes in only one of the assumptions

of such a model can change the occurrence of the green paradox.

These models are then expanded by a monopoly case, as for example in the oil industry

it can be argued that this is closer to reality. It is then shown that in nearly all cases the

assumption of a monopoly instead of a competitive setup doesn't change the occurrence

of the green paradox.

Eine aktuelle Frage in der Umweltökonomie ist, ob Maÿnahmen, die eigentlich die Umwelt

schützen sollen (z.B. Förderungen für erneuerbare Energien oder Steuern auf nichterneuer-

bare Ressourcen), negative Auswirkungen auf diese haben können, weil die Angebotsseite

nicht beachtet wird und nichterneuerbare Ressourcen dadurch früher abgebaut werden.

Diese Arbeit betrachtet dieses sogenannte grüne Paradoxon unter Verwendung von ex-

istierenden Modellen, die einen vollständigenWettbewerb annehmen. Hierbei wird gezeigt,

dass eine Veränderung in nur einer Annahme die Resultate bezüglich des Auftretens eines

grünen Paradoxons verändern können.

Danach werden die verwendeten Modelle unter der Annahme eines Monopols betrachtet,

da argumentiert werden kann, dass dies zum Beispiel im Fall von Erdöl besser der Real-

ität entspricht. Es kann gezeigt werden, dass diese Veränderung in den Modellannahmen

in fast allen Fällen keinen Ein�uss auf ein Auftreten des grünen Paradoxons hat.
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